Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Truncation.Properties where
open import Cubical.HITs.Truncation.Base
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.HITs.Sn
open import Cubical.Data.Empty
open import Cubical.HITs.Susp
open import Cubical.HITs.PropositionalTruncation renaming (∥_∥ to ∥_∥₋₁)
open import Cubical.HITs.SetTruncation
open import Cubical.HITs.GroupoidTruncation
open import Cubical.HITs.2GroupoidTruncation
private
variable
ℓ ℓ' : Level
A : Type ℓ
sphereFill : (n : ℕ) (f : S n → A) → Type _
sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S n) → top ≡ f x)
isSphereFilled : ℕ → Type ℓ → Type ℓ
isSphereFilled n A = (f : S n → A) → sphereFill n f
isSphereFilled∥∥ : {n : ℕ₋₁} → isSphereFilled (1+ n) (∥ A ∥ n)
isSphereFilled∥∥ f = (hub f) , (spoke f)
isSphereFilled→isOfHLevel : (n : ℕ) → isSphereFilled n A → isOfHLevel (1 + n) A
isSphereFilled→isOfHLevel {A = A} 0 h x y = sym (snd (h f) north) ∙ snd (h f) south
where
f : Susp ⊥ → A
f north = x
f south = y
f (merid () i)
isSphereFilled→isOfHLevel {A = A} (suc n) h x y = isSphereFilled→isOfHLevel n (helper h x y)
where
helper : {n : ℕ} → isSphereFilled (suc n) A → (x y : A) → isSphereFilled n (x ≡ y)
helper {n = n} h x y f = l , r
where
f' : Susp (S n) → A
f' north = x
f' south = y
f' (merid u i) = f u i
u : sphereFill (suc n) f'
u = h f'
z : A
z = fst u
p : z ≡ x
p = snd u north
q : z ≡ y
q = snd u south
l : x ≡ y
l = sym p ∙ q
r : (s : S n) → l ≡ f s
r s i j = hcomp
(λ k →
λ { (i = i0) → compPath-filler (sym p) q k j
; (i = i1) → snd u (merid s j) k
; (j = i0) → p (k ∨ (~ i))
; (j = i1) → q k
})
(p ((~ i) ∧ (~ j)))
isOfHLevel→isSphereFilled : (n : ℕ) → isOfHLevel (1 + n) A → isSphereFilled n A
isOfHLevel→isSphereFilled 0 h f = (f north) , (λ _ → h _ _)
isOfHLevel→isSphereFilled {A = A} (suc n) h = helper λ x y → isOfHLevel→isSphereFilled n (h x y)
where
helper : {n : ℕ} → ((x y : A) → isSphereFilled n (x ≡ y)) → isSphereFilled (suc n) A
helper {n = n} h f = l , r
where
l : A
l = f north
f' : S n → f north ≡ f south
f' x i = f (merid x i)
h' : sphereFill n f'
h' = h (f north) (f south) f'
r : (x : S (suc n)) → l ≡ f x
r north = refl
r south = h' .fst
r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north
; (i = i1) → h' .snd x (~ k) j
; (j = i0) → f north
; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j)))
isOfHLevel∥∥ : (n : ℕ₋₁) → isOfHLevel (1 + 1+ n) (∥ A ∥ n)
isOfHLevel∥∥ n = isSphereFilled→isOfHLevel (1+ n) isSphereFilled∥∥
ind : {n : ℕ₋₁}
{B : ∥ A ∥ n → Type ℓ'}
(hB : (x : ∥ A ∥ n) → isOfHLevel (1 + 1+ n) (B x))
(g : (a : A) → B (∣ a ∣))
(x : ∥ A ∥ n) →
B x
ind hB g (∣ a ∣ ) = g a
ind {B = B} hB g (hub f) =
isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (ind hB g (f x)) ) .fst
ind {B = B} hB g (spoke f x i) =
toPathP {A = λ i → B (spoke f x (~ i))}
(sym (isOfHLevel→isSphereFilled _ (hB (hub f)) (λ x → subst B (sym (spoke f x)) (ind hB g (f x))) .snd x))
(~ i)
ind2 : {n : ℕ₋₁}
{B : ∥ A ∥ n → ∥ A ∥ n → Type ℓ'}
(hB : ((x y : ∥ A ∥ n) → isOfHLevel (1 + 1+ n) (B x y)))
(g : (a b : A) → B ∣ a ∣ ∣ b ∣)
(x y : ∥ A ∥ n) →
B x y
ind2 {n = n} hB g = ind (λ _ → hLevelPi (1 + 1+ n) (λ _ → hB _ _)) λ a →
ind (λ _ → hB _ _) (λ b → g a b)
ind3 : {n : ℕ₋₁}
{B : (x y z : ∥ A ∥ n) → Type ℓ'}
(hB : ((x y z : ∥ A ∥ n) → isOfHLevel (1 + 1+ n) (B x y z)))
(g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣)
(x y z : ∥ A ∥ n) →
B x y z
ind3 {n = n} hB g = ind2 (λ _ _ → hLevelPi (1 + 1+ n) (hB _ _)) λ a b →
ind (λ _ → hB _ _ _) (λ c → g a b c)
idemTrunc : (n : ℕ₋₁) → isOfHLevel (1 + 1+ n) A → (∥ A ∥ n) ≃ A
idemTrunc {A = A} n hA = isoToEquiv (iso f g f-g g-f)
where
f : ∥ A ∥ n → A
f = ind (λ _ → hA) λ a → a
g : A → ∥ A ∥ n
g = ∣_∣
f-g : ∀ a → f (g a) ≡ a
f-g a = refl
g-f : ∀ x → g (f x) ≡ x
g-f = ind (λ _ → hLevelSuc (1+ n) _ (hLevelPath (1+ n) (isOfHLevel∥∥ n) _ _)) (λ _ → refl)
propTrunc≃Trunc-1 : ∥ A ∥₋₁ ≃ ∥ A ∥ neg1
propTrunc≃Trunc-1 =
isoToEquiv
(iso
(elimPropTrunc (λ _ → isOfHLevel∥∥ neg1) ∣_∣)
(ind (λ _ → propTruncIsProp) ∣_∣)
(ind (λ _ → hLevelSuc 0 _ (hLevelPath 0 (isOfHLevel∥∥ neg1) _ _)) (λ _ → refl))
(elimPropTrunc (λ _ → hLevelSuc 0 _ (hLevelPath 0 propTruncIsProp _ _)) (λ _ → refl)))
setTrunc≃Trunc0 : ∥ A ∥₀ ≃ ∥ A ∥ (suc neg1)
setTrunc≃Trunc0 =
isoToEquiv
(iso
(elimSetTrunc (λ _ → isOfHLevel∥∥ (suc neg1)) ∣_∣)
(ind (λ _ → squash₀) ∣_∣₀)
(ind (λ _ → hLevelSuc 1 _ (hLevelPath 1 (isOfHLevel∥∥ (suc neg1)) _ _)) (λ _ → refl))
(elimSetTrunc (λ _ → hLevelSuc 1 _ (hLevelPath 1 squash₀ _ _)) (λ _ → refl)))
groupoidTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ (ℕ→ℕ₋₁ 1)
groupoidTrunc≃Trunc1 =
isoToEquiv
(iso
(groupoidTruncElim _ _ (λ _ → isOfHLevel∥∥ (ℕ→ℕ₋₁ 1)) ∣_∣)
(ind (λ _ → squash₁) ∣_∣₁)
(ind (λ _ → hLevelSuc 2 _ (hLevelPath 2 (isOfHLevel∥∥ (ℕ→ℕ₋₁ 1)) _ _)) (λ _ → refl))
(groupoidTruncElim _ _ (λ _ → hLevelSuc 2 _ (hLevelPath 2 squash₁ _ _)) (λ _ → refl)))
2groupoidTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ (ℕ→ℕ₋₁ 2)
2groupoidTrunc≃Trunc2 =
isoToEquiv
(iso
(g2TruncElim _ _ (λ _ → isOfHLevel∥∥ (ℕ→ℕ₋₁ 2)) ∣_∣)
(ind (λ _ → squash₂) ∣_∣₂)
(ind (λ _ → hLevelSuc 3 _ (hLevelPath 3 (isOfHLevel∥∥ (ℕ→ℕ₋₁ 2)) _ _)) (λ _ → refl))
(g2TruncElim _ _ (λ _ → hLevelSuc 3 _ (hLevelPath 3 squash₂ _ _)) (λ _ → refl)))
|
{
"alphanum_fraction": 0.49531351,
"avg_line_length": 33.4486486486,
"ext": "agda",
"hexsha": "bfcaf1a30a2f472205a5e6208f69a10388fcdd9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Truncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Truncation/Properties.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Truncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2706,
"size": 6188
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Boolean.Definition
open import Sets.FinSet.Definition
open import LogicalFormulae
open import Groups.Abelian.Definition
open import Groups.Vector
open import Groups.Definition
open import Groups.Abelian.Definition
open import Numbers.Integers.Integers
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Modules.Definition
open import Groups.Cyclic.Definition
open import Groups.Cyclic.DefinitionLemmas
open import Rings.Polynomial.Multiplication
open import Rings.Polynomial.Ring
open import Rings.Definition
open import Rings.Lemmas
open import Groups.Polynomials.Definition
open import Numbers.Naturals.Semiring
open import Vectors
open import Modules.Span
open import Numbers.Integers.Definition
open import Numbers.Integers.Addition
open import Rings.IntegralDomains.Definition
open import Numbers.Naturals.Order
open import Numbers.Modulo.Definition
open import Numbers.Modulo.Group
module Modules.Examples where
abGrpModule : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {G' : Group S _+_} (G : AbelianGroup G') → Module ℤRing G (λ x i → elementPower G' i x)
Module.dotWellDefined (abGrpModule {S = S} {G' = G'} G) {m} {n} {g} {h} m=n g=h = transitive (elementPowerWellDefinedG G' g h g=h {m}) (elementPowerWellDefinedZ' G' m n m=n {h})
where
open Setoid S
open Equivalence eq
Module.dotDistributesLeft (abGrpModule {G' = G'} G) {n} {x} {y} = elementPowerHomAbelian G' (AbelianGroup.commutative G) x y n
Module.dotDistributesRight (abGrpModule {S = S} {G' = G'} G) {r} {s} {x} = symmetric (elementPowerCollapse G' x r s)
where
open Equivalence (Setoid.eq S)
Module.dotAssociative (abGrpModule {G' = G'} G) {r} {s} {x} = elementPowerMultiplies G' r s x
Module.dotIdentity (abGrpModule {G' = G'} G) = Group.identRight G'
zAndZ : Module ℤRing ℤAbGrp _*Z_
Module.dotWellDefined zAndZ refl refl = refl
Module.dotDistributesLeft zAndZ = Ring.*DistributesOver+ ℤRing
Module.dotDistributesRight zAndZ {x} {y} {z} = Ring.*DistributesOver+' ℤRing {x} {y} {z}
Module.dotAssociative zAndZ {x} {y} {z} = equalityCommutative (Ring.*Associative ℤRing {x} {y} {z})
Module.dotIdentity zAndZ = Ring.identIsIdent ℤRing
twoOrAnother : ℤ → Bool → ℤ
twoOrAnother _ BoolTrue = nonneg 2
twoOrAnother n BoolFalse = n
23Spans : Spans zAndZ (twoOrAnother (nonneg 3))
23Spans m = 2 , (((BoolTrue ,- (BoolFalse ,- [])) ,, (Group.inverse ℤGroup m ,- (m ,- []))) , t m)
where
open Group ℤGroup
open Ring ℤRing
t : (m : ℤ) → inverse m *Z nonneg 2 +Z (m *Z nonneg 3 +Z nonneg 0) ≡ m
t m rewrite identRight {m *Z nonneg 3} | *DistributesOver+ {m} {nonneg 2} {nonneg 1} | +Associative {inverse m *Z nonneg 2} {m *Z nonneg 2} {m *Z nonneg 1} = transitivity (transitivity (+WellDefined {inverse m *Z nonneg 2 +Z m *Z nonneg 2} {m *Z nonneg 1} {nonneg 0} {_} (transitivity (equalityCommutative (*DistributesOver+' {inverse m} {m} {nonneg 2})) (*WellDefined (invLeft {m}) refl)) refl) *Commutative) identIsIdent
evenNotOdd : (i : ℤ) → nonneg 0 ≡ i *Z nonneg 2 +Z nonneg 1 → False
evenNotOdd (nonneg x) pr rewrite equalityCommutative (+Zinherits (x *N 2) 1) = evenNotOdd' x (nonnegInjective pr)
where
evenNotOdd' : (i : ℕ) → 0 ≡ i *N 2 +N 1 → False
evenNotOdd' zero ()
evenNotOdd' (succ i) ()
evenNotOdd (negSucc zero) ()
evenNotOdd (negSucc (succ zero)) ()
evenNotOdd (negSucc (succ (succ x))) ()
2NotSpan : Spans zAndZ {_} {True} (λ _ → nonneg 2) → False
2NotSpan f with f (nonneg 1)
2NotSpan f | n , (trues , b) = bad (_&&_.fst trues) (_&&_.snd trues) (nonneg 0) b
where
open Group ℤGroup
open Ring ℤRing
bad : {n : ℕ} → (t : Vec True n) (u : Vec ℤ n) (i : ℤ) → dot zAndZ (vecMap (λ _ → nonneg 2) t) u ≡ ((i *Z nonneg 2) +Z nonneg 1) → False
bad [] [] i x = evenNotOdd i x
bad (record {} ,- t) (u ,- us) i x = bad t us (i +Z inverse u) (transitivity (+WellDefined (equalityCommutative (invLeft {u *Z nonneg 2})) refl) (transitivity (equalityCommutative (+Associative {inverse (u *Z nonneg 2)} {u *Z nonneg 2})) (transitivity (+WellDefined (refl {x = inverse (u *Z nonneg 2)}) x) (transitivity (+Associative {inverse (u *Z nonneg 2)} {i *Z nonneg 2}) (+WellDefined {inverse (u *Z nonneg 2) +Z i *Z nonneg 2} {_} {(i +Z inverse u) *Z nonneg 2} (transitivity (transitivity (groupIsAbelian {inverse (u *Z nonneg 2)}) (applyEquality (i *Z nonneg 2 +Z_) (equalityCommutative (ringMinusExtracts' ℤRing)))) (equalityCommutative (*DistributesOver+' {i} {inverse u} {nonneg 2}))) (refl {x = nonneg 1}))))))
3NotSpan : Spans zAndZ {_} {True} (λ _ → nonneg 3) → False
3NotSpan f with f (nonneg 1)
... | n , ((trues ,, coeffs) , b) = bad trues coeffs (nonneg 0) b
where
open Group ℤGroup
open Ring ℤRing
bad : {n : ℕ} → (t : Vec True n) (u : Vec ℤ n) (i : ℤ) → dot zAndZ (vecMap (λ _ → nonneg 3) t) u ≡ ((i *Z nonneg 3) +Z nonneg 1) → False
bad [] [] (nonneg zero) ()
bad [] [] (nonneg (succ i)) ()
bad [] [] (negSucc zero) ()
bad [] [] (negSucc (succ i)) ()
bad (record {} ,- ts) (u ,- us) i x = bad ts us (i +Z inverse u) (transitivity (+WellDefined (equalityCommutative (invLeft {u *Z nonneg 3})) (refl {x = dot zAndZ (vecMap (λ _ → nonneg 3) ts) us})) (transitivity (equalityCommutative (+Associative {inverse (u *Z nonneg 3)} {u *Z nonneg 3})) (transitivity (+WellDefined (equalityCommutative (ringMinusExtracts' ℤRing {u} {nonneg 3})) x) (transitivity (+Associative {inverse u *Z nonneg 3} {i *Z nonneg 3} {nonneg 1}) (+WellDefined (transitivity {x = (inverse u *Z nonneg 3 +Z i *Z nonneg 3)} (equalityCommutative (*DistributesOver+' {inverse u} {i})) (*WellDefined (groupIsAbelian {inverse u} {i}) (refl {x = nonneg 3}))) (refl {x = nonneg 1}))))))
nothingNotSpan : Spans zAndZ {_} {False} (λ ()) → False
nothingNotSpan f with f (nonneg 1)
nothingNotSpan f | zero , (([] ,, []) , ())
nothingNotSpan f | succ n , (((() ,- fst) ,, snd) , b)
1Basis : Basis zAndZ {_} {True} (λ _ → nonneg 1)
_&&_.fst 1Basis m = 1 , (((record {} ,- []) ,, (m ,- [])) , transitivity (Group.+WellDefined ℤGroup (transitivity (Ring.*Commutative ℤRing {m}) (Ring.identIsIdent ℤRing)) refl) (Group.identRight ℤGroup))
_&&_.snd 1Basis {zero} r x [] x₁ = record {}
_&&_.snd 1Basis {succ zero} (record {} ,- []) x (b ,- []) pr = equalityCommutative (transitivity (equalityCommutative (transitivity (Group.+WellDefined ℤGroup (transitivity (Ring.*Commutative ℤRing {b}) (Ring.identIsIdent ℤRing)) refl) (Group.identRight ℤGroup))) pr) ,, record {}
_&&_.snd 1Basis {succ (succ n)} (record {} ,- (record {} ,- r)) x b pr with x {0} {1} (succIsPositive _) (succPreservesInequality (succIsPositive _)) refl
_&&_.snd 1Basis {succ (succ n)} (record {} ,- (record {} ,- r)) x b pr | ()
2Independent : Independent zAndZ {_} {True} (λ _ → nonneg 2)
2Independent {zero} r x [] x₁ = record {}
2Independent {succ zero} (record {} ,- []) x (coeff ,- []) pr rewrite Group.identRight ℤGroup {coeff *Z nonneg 2} = equalityCommutative (IntegralDomain.intDom ℤIntDom (transitivity (Ring.*Commutative ℤRing) pr) λ ()) ,, record {}
2Independent {succ (succ n)} (record {} ,- (record {} ,- rest)) pr b x = exFalso (naughtE t)
where
t : 0 ≡ 1
t = pr {0} {1} (succIsPositive (succ n)) (succPreservesInequality (succIsPositive n)) refl
2AndExtraNotIndependent : (n : ℤ) → Independent zAndZ (twoOrAnother n) → False
2AndExtraNotIndependent n indep = exFalso (naughtE (nonnegInjective ohNo))
where
r : {a b : ℕ} → (a<n : a <N 2) → (b<n : b <N 2) → vecIndex (BoolTrue ,- (BoolFalse ,- [])) a a<n ≡ vecIndex (BoolTrue ,- (BoolFalse ,- [])) b b<n → a ≡ b
r {zero} {zero} a<n b<n x = refl
r {zero} {succ (succ b)} a<n (le (succ zero) ()) x
r {zero} {succ (succ b)} a<n (le (succ (succ y)) ()) x
r {succ zero} {succ zero} a<n b<n x = refl
r {succ zero} {succ (succ b)} a<n (le (succ zero) ()) x
r {succ zero} {succ (succ b)} a<n (le (succ (succ i)) ()) x
r {succ (succ a)} {b} (le (succ zero) ()) b<n x
r {succ (succ a)} {b} (le (succ (succ i)) ()) b<n x
s : dot zAndZ (vecMap (twoOrAnother n) (BoolTrue ,- (BoolFalse ,- []))) (Group.inverse ℤGroup n ,- (nonneg 2 ,- [])) ≡ nonneg 0
s rewrite Group.identRight ℤGroup {nonneg 2 *Z n} | Ring.*Commutative ℤRing {nonneg 2} {n} | equalityCommutative (Ring.*DistributesOver+' ℤRing {additiveInverse n} {n} {nonneg 2}) | Group.invLeft ℤGroup {n} = refl
t : _=V_ zAndZ (Ring.additiveGroup ℤRing) (nonneg 0 ,- (nonneg 0 ,- [])) (Group.inverse ℤGroup n ,- (nonneg 2 ,- []))
t = indep (BoolTrue ,- (BoolFalse ,- [])) r (Group.inverse ℤGroup n ,- (nonneg 2 ,- [])) s
ohNo : nonneg 0 ≡ nonneg 2
ohNo with t
ohNo | ()
oneLengthAlwaysInj : {a b : ℕ} → (a<n : a <N 1) → (b<n : b <N 1) → a ≡ b
oneLengthAlwaysInj {zero} {zero} a<n b<n = refl
oneLengthAlwaysInj {zero} {succ b} a<n (le zero ())
oneLengthAlwaysInj {zero} {succ b} a<n (le (succ x) ())
oneLengthAlwaysInj {succ a} {b} (le zero ()) b<n
oneLengthAlwaysInj {succ a} {b} (le (succ x) ()) b<n
noBasisExample : Independent (abGrpModule (ℤnAbGroup 5 (le 4 refl))) (λ (t : True) → record { x = 1 ; xLess = le 3 refl }) → False
noBasisExample ind with ind (record {} ,- []) (λ a<n b<n _ → oneLengthAlwaysInj a<n b<n) (nonneg 5 ,- []) refl
noBasisExample ind | ()
|
{
"alphanum_fraction": 0.6547850508,
"avg_line_length": 62.5540540541,
"ext": "agda",
"hexsha": "a269544d622910f61ebad9f8cadeb67438df7b73",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Modules/Examples.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Modules/Examples.agda",
"max_line_length": 727,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Modules/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3334,
"size": 9258
}
|
module Data.Map
(Key : Set)
where
import Data.Bool
import Data.Maybe
open Data.Bool
infix 40 _<_ _>_
postulate
_<_ : Key -> Key -> Bool
_>_ : Key -> Key -> Bool
x > y = y < x
private
data Map' (a : Set) : Set where
leaf : Map' a
node : Key -> a -> Map' a -> Map' a -> Map' a
Map : Set -> Set
Map = Map'
empty : {a : Set} -> Map a
empty = leaf
insert : {a : Set} -> Key -> a -> Map a -> Map a
insert k v leaf = node k v leaf leaf
insert k v (node k' v' l r) =
| k < k' => node k' v' (insert k v l) r
| k > k' => node k' v' l (insert k v r)
| otherwise node k' v l r
open Data.Maybe
lookup : {a : Set} -> Key -> Map a -> Maybe a
lookup k leaf = nothing
lookup k (node k' v l r) =
| k < k' => lookup k l
| k > k' => lookup k r
| otherwise just v
|
{
"alphanum_fraction": 0.5367088608,
"avg_line_length": 17.1739130435,
"ext": "agda",
"hexsha": "019d26ec86dbe74f1da1b29b06e4e6b3af654f11",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Map.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Map.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Map.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 290,
"size": 790
}
|
{-# OPTIONS --show-irrelevant #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
postulate
A : Set
f : .(Bool → A) → Bool → A
mutual
X : .A → Bool → A
X = _
test : (x : Bool → A) → X (x true) ≡ f x
test x = refl
|
{
"alphanum_fraction": 0.5755102041,
"avg_line_length": 15.3125,
"ext": "agda",
"hexsha": "ff4b73f1d8b00110c9d741a45ba9052a41f3eafe",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4134.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4134.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4134.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 91,
"size": 245
}
|
{-# OPTIONS --without-K --safe #-}
module Experiment.Transitive where
open import Level
open import Relation.Binary
open import Relation.Binary.Construct.Closure.Transitive
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
insert-permutation : ∀ x xs → insert x xs ↭ x ∷ xs
insert-pres-Sorted : ∀ x {xs} → Sorted xs → Sorted (insert x xs)
sort-Sorted : ∀ xs → Sorted (sort xs)
sort-permutation : ∀ xs → sort xs ↭ xs
private
variable
a b r : Level
A B : Set a
R S : Rel A r
fold : Transitive R → A [ R ]⁺ B → R A B
fold R-trans [ x∼y ] = x∼y
fold R-trans (x ∼⁺⟨ x₁ ⟩ x₂) = R-trans (fold R-trans x₁) (fold R-trans x₂)
reverse : Symmetric R → A [ R ]⁺ B → B [ R ]⁺ A
reverse R-sym [ x∼y ] = [ R-sym x∼y ]
reverse R-sym (x ∼⁺⟨ x₁ ⟩ x₂) = _ ∼⁺⟨ reverse R-sym x₂ ⟩ reverse R-sym x₁
fold-reverse : (R-trans : Transitive R) (R-sym : Symmetric R) (xs : A [ R ]⁺ B) →
(∀ {a b c} (x : R b c) (y : R a b) →
R-trans (R-sym x) (R-sym y) ≡ R-sym (R-trans y x)) →
fold R-trans (reverse R-sym xs) ≡ R-sym (fold R-trans xs)
fold-reverse R-trans R-sym [ x∼y ] homo = ≡.refl
fold-reverse R-trans R-sym (x ∼⁺⟨ xs₁ ⟩ xs₂) homo = begin
R-trans (fold R-trans (reverse R-sym xs₂)) (fold R-trans (reverse R-sym xs₁))
≡⟨ ≡.cong₂ R-trans (fold-reverse R-trans R-sym xs₂ homo) (fold-reverse R-trans R-sym xs₁ homo) ⟩
R-trans (R-sym (fold R-trans xs₂)) (R-sym (fold R-trans xs₁))
≡⟨ homo (fold R-trans xs₂) (fold R-trans xs₁) ⟩
R-sym (R-trans (fold R-trans xs₁) (fold R-trans xs₂))
∎
where
open ≡.≡-Reasoning
-- map :
-- Star⇔ReflexiveTransitive : Star R x y ↔ Reflexive (Transitive R x y)
-- map-reverse : (RS : R ⊆ S) (R-sym : Symmetric R) (S-sym : Symmetric S) xs → map RS (reverse R-sym xs) ≡ reverse S-sym (map RS xs)
-- map-reverse R-sym xs = ?
-- ∘ᵢ-tc (reverse f⁺) ∘ᵢ ∘ᵢ-tc f⁺ ≃ ≅.refl
|
{
"alphanum_fraction": 0.5910761155,
"avg_line_length": 38.1,
"ext": "agda",
"hexsha": "d626c59ba3f506bb518ca19bbea5d14800c2d4d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Transitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Transitive.agda",
"max_line_length": 132,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Transitive.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 739,
"size": 1905
}
|
-- {-# OPTIONS -v tc.size.solve:60 #-}
module Issue300 where
open import Common.Size
data Nat : Size → Set where
zero : (i : Size) → Nat (↑ i)
suc : (i : Size) → Nat i → Nat (↑ i)
-- Size meta used in a different context than the one created in
A : Set₁
A = (Id : (i : Size) → Nat _ → Set)
(k : Size) (m : Nat (↑ k)) (p : Id k m) →
(j : Size) (n : Nat j ) → Id j n
-- should solve _ with ↑ i
-- 1) Id,k,m |- ↑ 1 ≤ X 1 ==> ↑ 4 ≤ X 4
-- 2) Id,k,m,p,j,n |- 1 ≤ X 1
-- Unfixed by fix for #1914 (Andreas, 2016-04-08).
|
{
"alphanum_fraction": 0.5175600739,
"avg_line_length": 23.5217391304,
"ext": "agda",
"hexsha": "64c9f8db7305c94c0dcc9dca09fad02fcd843c1d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue300.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue300.agda",
"max_line_length": 64,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue300.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 210,
"size": 541
}
|
module Everything where
import Library
import NfCBPV
|
{
"alphanum_fraction": 0.8518518519,
"avg_line_length": 10.8,
"ext": "agda",
"hexsha": "cb947b5fb43e6d1d82997c81da03b7f62cc48860",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z",
"max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "andreasabel/ipl",
"max_forks_repo_path": "src-cbpv/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "andreasabel/ipl",
"max_issues_repo_path": "src-cbpv/Everything.agda",
"max_line_length": 23,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "andreasabel/ipl",
"max_stars_repo_path": "src-cbpv/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z",
"num_tokens": 13,
"size": 54
}
|
module Foreword where
open import Relation.Binary
--open Setoid ⦃ … ⦄
--open IsEquivalence ⦃ … ⦄
open import Level
record HasEquivalence (A : Set) ℓ : Set (suc ℓ) where
field
_≈_ : Rel A ℓ
⦃ isEquivalence ⦄ : IsEquivalence _≈_
setoid : Setoid _ _
Setoid.Carrier setoid = A
Setoid._≈_ setoid = _≈_
Setoid.isEquivalence setoid = isEquivalence
open HasEquivalence ⦃ … ⦄
module TestEquivalence (A : Set) (B : Set) ⦃ _ : HasEquivalence A zero ⦄ ⦃ _ : HasEquivalence B zero ⦄ where
testA : (x : A) → x ≈ x
testA = {!!}
|
{
"alphanum_fraction": 0.6556169429,
"avg_line_length": 20.8846153846,
"ext": "agda",
"hexsha": "cb4d744b482df06a13228608fedc24ae4b2e425e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Foreword.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Foreword.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Foreword.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 213,
"size": 543
}
|
-- Andreas, 2019-07-09, issue #3900
-- Regression introduced by the fix of #3434
-- {-# OPTIONS -v tc.inj:100 #-}
data Bool : Set where
true false : Bool
abstract
data Unit : Set where
unit : Unit
f : Unit
f with true
... | true = unit
... | false = unit
-- Error WAS:
-- Not in Scope: unit
-- Should succeed.
|
{
"alphanum_fraction": 0.6017964072,
"avg_line_length": 14.5217391304,
"ext": "agda",
"hexsha": "1a995fbc70d395ed5ce529c4443746211d660c90",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3900.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3900.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3900.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 334
}
|
open import Oscar.Prelude
open import Oscar.Class.IsPrecategory
open import Oscar.Class.IsCategory
open import Oscar.Class.Category
open import Oscar.Class.IsFunctor
open import Oscar.Class.Functor
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transitivity
open import Oscar.Class.Surjection
open import Oscar.Class.Smap
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transassociativity
open import Oscar.Class.Transleftidentity
open import Oscar.Class.Transrightidentity
open import Oscar.Class.Surjidentity
open import Oscar.Class
module Oscar.Class.Kitten where
productCat : ∀ {𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} → Category 𝔬₁ 𝔯₁ ℓ₁ → Category 𝔬₂ 𝔯₂ ℓ₂ → Category (𝔬₁ ∙̂ 𝔬₂) (𝔯₁ ∙̂ 𝔯₂) (ℓ₁ ∙̂ ℓ₂)
Category.𝔒 (productCat c₁ c₂) = Category.𝔒 c₁ × Category.𝔒 c₂
Category._∼_ (productCat c₁ c₂) (x₁ , x₂) (y₁ , y₂) = Category._∼_ c₁ x₁ y₁ × Category._∼_ c₂ x₂ y₂
Category._∼̇_ (productCat c₁ c₂) {x₁ , x₂} {y₁ , y₂} (f₁ , g₁) (f₂ , g₂) = Category._∼̇_ c₁ f₁ f₂ × Category._∼̇_ c₂ g₁ g₂
Category.category-ε (productCat c₁ c₂) = (Category.category-ε c₁) , (Category.category-ε c₂)
Category._↦_ (productCat c₁ c₂) (f₁ , f₂) (g₁ , g₂) = (Category._↦_ c₁ f₁ g₁) , (Category._↦_ c₂ f₂ g₂)
Category.`IsCategory (productCat c₁ c₂) .IsCategory.`IsPrecategory .IsPrecategory.`𝓣ransextensionality .⋆ (x₁ , y₁) (x₂ , y₂) = transextensionality x₁ x₂ , transextensionality y₁ y₂
Category.`IsCategory (productCat c₁ c₂) .IsCategory.`IsPrecategory .IsPrecategory.`𝓣ransassociativity .⋆ f g h = transassociativity (f .π₀) (g .π₀) (h .π₀) , transassociativity (f .π₁) (g .π₁) (h .π₁)
Category.`IsCategory (productCat c₁ c₂) .IsCategory.`𝓣ransleftidentity .⋆ = transleftidentity , transleftidentity
Category.`IsCategory (productCat c₁ c₂) .IsCategory.`𝓣ransrightidentity = ∁ (transrightidentity , transrightidentity)
record AFunctor {𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂} (source : Category 𝔬₁ 𝔯₁ ℓ₁) (target : Category 𝔬₂ 𝔯₂ ℓ₂) : Ø 𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂ where
constructor ∁
private module S = Category source
private module T = Category target
field
F₀ : S.𝔒 → T.𝔒
F₁ : Smap.type S._∼_ T._∼_ F₀ F₀
isFunctor : IsFunctor S._∼_ S._∼̇_ S.category-ε S._↦_ T._∼_ T._∼̇_ T.category-ε T._↦_ F₁
record MonoidalCategory 𝔬 𝔯 ℓ : Ø ↑̂ (𝔬 ∙̂ 𝔯 ∙̂ ℓ) where
constructor ∁
field
thecat : Category 𝔬 𝔯 ℓ
thefunc : AFunctor (productCat thecat thecat) thecat
O : Ø 𝔬
O = Category.𝔒 thecat
field
𝟏 : O
_⟶_ : O → O → Ø 𝔯
_⟶_ = Category._∼_ thecat
_⊗_ : O → O → O
_⊗_ = λ x y → AFunctor.F₀ thefunc (x , y)
_⨂_ : ∀ {w x y z} → w ⟶ x → y ⟶ z → (w ⊗ y) ⟶ (x ⊗ z)
_⨂_ f g = AFunctor.F₁ thefunc (f , g)
_↦_ : ∀ {x y z} (f : x ⟶ y) (g : y ⟶ z) → x ⟶ z
_↦_ = Category._↦_ thecat
i : ∀ {x} → x ⟶ x
i = Category.category-ε thecat
_≈̇_ = Category._∼̇_ thecat
-- infixr 9 _⊗_
field
associator : ∀ (x y z : O)
→ Σ (((x ⊗ y) ⊗ z) ⟶ (x ⊗ (y ⊗ z))) λ f
→ Σ ((x ⊗ (y ⊗ z)) ⟶ ((x ⊗ y) ⊗ z)) λ f⁻¹
→ ((f ↦ f⁻¹) ≈̇ i) × ((f⁻¹ ↦ f) ≈̇ i)
left-unitor : ∀ (x : O)
→ Σ ((𝟏 ⊗ x) ⟶ x) λ f
→ Σ (x ⟶ (𝟏 ⊗ x)) λ f⁻¹
→ ((f ↦ f⁻¹) ≈̇ i) × ((f⁻¹ ↦ f) ≈̇ i)
right-unitor : ∀ (x : O)
→ Σ ((x ⊗ 𝟏) ⟶ x) λ f
→ Σ (x ⟶ (x ⊗ 𝟏)) λ f⁻¹
→ ((f ↦ f⁻¹) ≈̇ i) × ((f⁻¹ ↦ f) ≈̇ i)
assoc : ∀ (x y z : O) → ((x ⊗ y) ⊗ z) ⟶ (x ⊗ (y ⊗ z))
assoc x y z = π₀ (associator x y z)
ru : ∀ x → (x ⊗ 𝟏) ⟶ x
ru x = π₀ (right-unitor x)
lu : ∀ x → (𝟏 ⊗ x) ⟶ x
lu x = π₀ (left-unitor x)
field
triangle-identity : ∀ (x y : O)
→ (ru x ⨂ i) ≈̇ (assoc x 𝟏 y ↦ (i ⨂ lu y))
pentagon-identity : ∀ (w x y z : O)
→ (((assoc w x y ⨂ i) ↦ assoc w (x ⊗ y) z) ↦ (i ⨂ assoc x y z))
≈̇ (assoc (w ⊗ x) y z ↦ assoc w x (y ⊗ z))
module _
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂}
(source : MonoidalCategory 𝔬₁ 𝔯₁ ℓ₁)
(target : MonoidalCategory 𝔬₂ 𝔯₂ ℓ₂)
where
record LaxMonoidalFunctor : Ø 𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂ where
module C = MonoidalCategory source
module D = MonoidalCategory target
field
𝓕 : AFunctor C.thecat D.thecat
open AFunctor 𝓕 public
field
e : D.𝟏 D.⟶ F₀ C.𝟏
μ : ∀ x y → (F₀ x D.⊗ F₀ y) D.⟶ F₀ (x C.⊗ y) -- F A → F B → F (A × B)
associativity : ∀ x y z
→ ((μ x y D.⨂ D.i) D.↦ (μ (x C.⊗ y) z D.↦ F₁ (C.assoc x y z)))
D.≈̇
(D.assoc (F₀ x) (F₀ y) (F₀ z) D.↦ ((D.i D.⨂ μ y z) D.↦ μ x (y C.⊗ z)))
left-unitality : ∀ x → (D.lu (F₀ x)) D.≈̇ ((e D.⨂ D.i) D.↦ (μ C.𝟏 x D.↦ F₁ (C.lu x)))
right-unitality : ∀ x → (D.ru (F₀ x)) D.≈̇ ((D.i D.⨂ e) D.↦ (μ x C.𝟏 D.↦ F₁ (C.ru x)))
module _
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂}
(source : MonoidalCategory 𝔬₁ 𝔯₁ ℓ₁)
(target : MonoidalCategory 𝔬₂ 𝔯₂ ℓ₂)
(let module C = MonoidalCategory source)
(let module D = MonoidalCategory target)
(𝓕 : AFunctor C.thecat D.thecat)
(open AFunctor 𝓕)
(e : D.𝟏 D.⟶ F₀ C.𝟏)
(μ : ∀ x y → (F₀ x D.⊗ F₀ y) D.⟶ F₀ (x C.⊗ y))
where
record IsLaxMonoidalFunctor : Ø 𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂ where
field
associativity : ∀ x y z
→ ((μ x y D.⨂ D.i) D.↦ (μ (x C.⊗ y) z D.↦ F₁ (C.assoc x y z)))
D.≈̇
(D.assoc (F₀ x) (F₀ y) (F₀ z) D.↦ ((D.i D.⨂ μ y z) D.↦ μ x (y C.⊗ z)))
left-unitality : ∀ x → (D.lu (F₀ x)) D.≈̇ ((e D.⨂ D.i) D.↦ (μ C.𝟏 x D.↦ F₁ (C.lu x)))
right-unitality : ∀ x → (D.ru (F₀ x)) D.≈̇ ((D.i D.⨂ e) D.↦ (μ x C.𝟏 D.↦ F₁ (C.ru x)))
record GenericApplicativeRaw
{lc ld} {Oc : Ø lc} {Od : Ø ld}
(F : Oc → Od)
(1c : Oc) (1d : Od)
(_⊗c_ : Oc → Oc → Oc) (_⊗d_ : Od → Od → Od)
{ℓc} (_⟶c_ : Oc → Oc → Ø ℓc)
{ℓd} (_⟶d_ : Od → Od → Ø ℓd)
: Ø ℓd ∙̂ lc ∙̂ ℓc
where
field
m : ∀ {x y} → x ⟶c y → F x ⟶d F y -- fmap
e : 1d ⟶d F 1c -- pure
μ : ∀ {x y} → (F x ⊗d F y) ⟶d F (x ⊗c y) -- apply
-- _<*>_ : ∀ {x y : Oc} → ? → ? → {!!} -- F (x ⟶c y) → F x ⟶d F y
-- _<*>_ f x = m ? (μ )
{-
_<*>_ : ∀ {A B} → F (A → B) → F A → F B
_<*>_ f x = sfmap (λ {(f , x) → f x}) (f <s> x)
-}
{-
record ContainedGenericApplicativeRaw
{lc ld} {Oc : Ø lc} {Od : Ø ld}
(F : Oc → Od)
(1c : Oc) (1d : Od)
(_⊗c_ : Oc → Oc → Oc) (_⊗d_ : Od → Od → Od)
{ℓd} (_⟶d_ : Od → Od → Ø ℓd)
: Ø ℓd ∙̂ lc
where
field
e : 1d ⟶d F 1c
μ : ∀ {x y} → (F x ⊗d F y) ⟶d F (x ⊗c y)
-}
open import Oscar.Data.𝟙
open import Oscar.Data.Proposequality
record Action {a b} {A : Set a} {B : Set b} {f g h} (F : A → B → Set f) (G : A → Set g) (H : B → Set h) : Ø a ∙̂ b ∙̂ f ∙̂ g ∙̂ h where
field
act : ∀ {x y} → F x y → G x → H y
record SetApplyM {a b} (F : Set a → Set b)
-- (𝟏ᴬ : Set a) (𝟏ᴮ : Set b) (_⊕_ : Set p → Set p → Set p) (_⟶_ : A → A → Set ℓ)
: Ø ↑̂ a ∙̂ b where
field
sfmap : ∀ {A B} → (A → B) → F A → F B
sunit : Lift {_} {a} 𝟙 → F (Lift 𝟙)
_<s>_ : ∀ {A B} → F A → F B → F (A × B)
_<*>_ : ∀ {A B} → F (A → B) → F A → F B
_<*>_ f x = sfmap (λ {(f , x) → f x}) (f <s> x)
_⨂_ : ∀ {A B C D : Ø a} → (A → B) → (C → D) → A × C → B × D
_⨂_ f g ac = let (a , c) = ac in f a , g c
assoc : ∀ {A B C : Ø a} → A × (B × C) → (A × B) × C
assoc abc = let (a , (b , c)) = abc in (a , b) , c
field
law-nat : ∀ {A B C D} (f : A → B) (g : C → D) u v → sfmap (f ⨂ g) (u <s> v) ≡ (sfmap f u <s> sfmap g v)
leftid : ∀ {B} (v : F B) → sfmap π₁ (sunit _ <s> v) ≡ v
righttid : ∀ {A} (u : F A) → sfmap π₀ (u <s> sunit _) ≡ u
associativity : ∀ {A B C} u v w → sfmap (assoc {A} {B} {C}) (u <s> (v <s> w)) ≡ ((u <s> v) <s> w)
source-cat : MonoidalCategory _ _ _
source-cat .MonoidalCategory.thecat .Category.𝔒 = Ø a
source-cat .MonoidalCategory.thecat .Category._∼_ = Function
source-cat .MonoidalCategory.thecat .Category._∼̇_ = _≡̇_
source-cat .MonoidalCategory.thecat .Category.category-ε = ¡
source-cat .MonoidalCategory.thecat .Category._↦_ = flip _∘′_
source-cat .MonoidalCategory.thecat .Category.`IsCategory = {!!}
source-cat .MonoidalCategory.thefunc .AFunctor.F₀ (A , B) = A × B
source-cat .MonoidalCategory.thefunc .AFunctor.F₁ = {!!}
source-cat .MonoidalCategory.thefunc .AFunctor.isFunctor = {!!}
source-cat .MonoidalCategory.𝟏 = Lift 𝟙
source-cat .MonoidalCategory.associator = {!!}
source-cat .MonoidalCategory.left-unitor = {!!}
source-cat .MonoidalCategory.right-unitor = {!!}
source-cat .MonoidalCategory.triangle-identity = {!!}
source-cat .MonoidalCategory.pentagon-identity = {!!}
target-cat : MonoidalCategory _ _ _
target-cat .MonoidalCategory.thecat .Category.𝔒 = Ø b
target-cat .MonoidalCategory.thecat .Category._∼_ = Function
target-cat .MonoidalCategory.thecat .Category._∼̇_ = _≡̇_
target-cat .MonoidalCategory.thecat .Category.category-ε = ¡
target-cat .MonoidalCategory.thecat .Category._↦_ = flip _∘′_
target-cat .MonoidalCategory.thecat .Category.`IsCategory = {!!}
target-cat .MonoidalCategory.thefunc .AFunctor.F₀ (A , B) = A × B
target-cat .MonoidalCategory.thefunc .AFunctor.F₁ = {!!}
target-cat .MonoidalCategory.thefunc .AFunctor.isFunctor = {!!}
target-cat .MonoidalCategory.𝟏 = Lift 𝟙
target-cat .MonoidalCategory.associator = {!!}
target-cat .MonoidalCategory.left-unitor = {!!}
target-cat .MonoidalCategory.right-unitor = {!!}
target-cat .MonoidalCategory.triangle-identity = {!!}
target-cat .MonoidalCategory.pentagon-identity = {!!}
module C = MonoidalCategory source-cat
module D = MonoidalCategory target-cat
the-functor : AFunctor C.thecat D.thecat
the-functor .AFunctor.F₀ = F
the-functor .AFunctor.F₁ = sfmap
the-functor .AFunctor.isFunctor = {!!}
open AFunctor the-functor
the-e : D.𝟏 D.⟶ F₀ C.𝟏 -- F (Lift 𝟙)
the-e = {!!}
the-μ : ∀ x y → (F₀ x D.⊗ F₀ y) D.⟶ F₀ (x C.⊗ y) -- F A → F B → F (A × B)
the-μ A B (FA , FB) = FA <s> FB
toSetApply : ∀ {a b} (F : Set a → Set b) (gar : GenericApplicativeRaw F (Lift 𝟙) (Lift 𝟙) (λ A B → A × B) (λ A B → A × B) Function Function) → SetApplyM F
toSetApply F gar .SetApplyM.sfmap = GenericApplicativeRaw.m gar
toSetApply F gar .SetApplyM.sunit _ = GenericApplicativeRaw.e gar !
toSetApply F gar .SetApplyM._<s>_ FA FB = GenericApplicativeRaw.μ gar (FA , FB)
toSetApply F gar .SetApplyM.law-nat = {!!}
toSetApply F gar .SetApplyM.leftid = {!!}
toSetApply F gar .SetApplyM.righttid = {!!}
toSetApply F gar .SetApplyM.associativity = {!!}
module _
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂}
(C : MonoidalCategory 𝔬₁ 𝔯₁ ℓ₁)
(D : MonoidalCategory 𝔬₂ 𝔯₂ ℓ₂)
where
record LaxMonoidalFunctorWithStrength : Ø 𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂ where
field
laxMonoidalFunctor : LaxMonoidalFunctor C D
open LaxMonoidalFunctor laxMonoidalFunctor
{-
field
β : ∀ v w → (v D.⊗ F₀ w) D.⟶ F₀ (v C.⊗ w)
commute-5 : ∀ u v w → (C.assoc u v (F₀ w) C.↦ ((C.i C.⨂ β v w) C.↦ β u (v C.⊗ w))) C.≈̇ (β (u C.⊗ v) w C.↦ F₁ (C.assoc u v w))
commute-3 : ∀ v → C.lu (F₀ v) C.≈̇ (β C.𝟏 v C.↦ F₁ (C.lu v))
-- strength : TensorialStrength C (LaxMonoidalFunctor.𝓕 laxMonoidalEndofunctor)
-}
module _ {𝔬 𝔯 ℓ} (V : MonoidalCategory 𝔬 𝔯 ℓ) (let C = MonoidalCategory.thecat V) (F : AFunctor C C) where
open MonoidalCategory V
open AFunctor F
record TensorialStrength : Ø 𝔬 ∙̂ 𝔯 ∙̂ ℓ where
field
β : ∀ v w → (v ⊗ F₀ w) ⟶ F₀ (v ⊗ w)
commute-5 : ∀ u v w → (assoc u v (F₀ w) ↦ ((i ⨂ β v w) ↦ β u (v ⊗ w))) ≈̇ (β (u ⊗ v) w ↦ F₁ (assoc u v w))
commute-3 : ∀ v → lu (F₀ v) ≈̇ (β 𝟏 v ↦ F₁ (lu v))
module _
{𝔬 𝔯 ℓ}
(C : MonoidalCategory 𝔬 𝔯 ℓ)
where
record LaxMonoidalEndofunctorWithStrength : Ø 𝔬 ∙̂ 𝔯 ∙̂ ℓ where
field
laxMonoidalEndofunctor : LaxMonoidalFunctor C C
strength : TensorialStrength C (LaxMonoidalFunctor.𝓕 laxMonoidalEndofunctor)
{- want parameters :
X : Set a
Y : Set b
X₀ : X
F : X → Y
_⨁_ : X → X → Set a
LaxMonoidalFunctor.e = unit : F X₀
LaxMonoidalFunctor.μ = apply : ∀ {A B : X} → F A → F B → F (A ⨁ B)
LaxMonoidalFunctor.𝓕.F₀ = F : X → Y
-}
record GenericApplyM {a ℓ} {A : Set a} (F : A → A) (𝟏 : A) (_⊕_ : A → A → A) (_⟶_ : A → A → Set ℓ) : Ø a ∙̂ ℓ where
field
gunit : 𝟏 ⟶ F 𝟏
gproduct : ∀ {x y : A} → (F x ⊕ F y) ⟶ F (x ⊕ y)
open import Oscar.Data.𝟙
-- open import Oscar.Class.Kitten
open import Oscar.Class.Category
open import Oscar.Class.IsPrefunctor
open import Oscar.Class.IsCategory
open import Oscar.Class.IsPrecategory
open import Oscar.Property.Category.Function
open import Oscar.Class
open import Oscar.Class.Fmap
import Oscar.Class.Reflexivity.Function
module _
{𝔬₁ 𝔬₂} (𝓕 : Ø 𝔬₁ → Ø 𝔬₂)
(fmapper : Fmap 𝓕)
(fpure : ∀ {𝔄} → 𝔄 → 𝓕 𝔄)
(fapply : ∀ {𝔄 𝔅} → 𝓕 (𝔄 → 𝔅) → 𝓕 𝔄 → 𝓕 𝔅)
where
-- instance _ = fmapper
fmap' = λ {A B} (f : A → B) → fapply (fpure f)
mkProductMonoidalCategory : MonoidalCategory _ _ _
mkProductMonoidalCategory .MonoidalCategory.thecat .Category.𝔒 = Ø 𝔬₁
mkProductMonoidalCategory .MonoidalCategory.thecat .Category._∼_ = MFunction 𝓕
mkProductMonoidalCategory .MonoidalCategory.thecat .Category._∼̇_ = Proposextensequality
mkProductMonoidalCategory .MonoidalCategory.thecat .Category.category-ε = ε
mkProductMonoidalCategory .MonoidalCategory.thecat .Category._↦_ = (flip _∘′_)
mkProductMonoidalCategory .MonoidalCategory.thecat .Category.`IsCategory = ?
mkProductMonoidalCategory .MonoidalCategory.thefunc .AFunctor.F₀ (A , B) = A × B
mkProductMonoidalCategory .MonoidalCategory.thefunc .AFunctor.F₁ (f , g) xy = fapply (fmap' _,_ (f (fmap' π₀ xy))) (g (fmap' π₁ xy))
mkProductMonoidalCategory .MonoidalCategory.thefunc .AFunctor.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`𝓢urjtranscommutativity = {!!}
mkProductMonoidalCategory .MonoidalCategory.thefunc .AFunctor.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`𝓢urjextensionality = {!!}
mkProductMonoidalCategory .MonoidalCategory.thefunc .AFunctor.isFunctor .IsFunctor.`𝒮urjidentity = {!!}
mkProductMonoidalCategory .MonoidalCategory.𝟏 = {!!}
mkProductMonoidalCategory .MonoidalCategory.associator = {!!}
mkProductMonoidalCategory .MonoidalCategory.left-unitor = {!!}
mkProductMonoidalCategory .MonoidalCategory.right-unitor = {!!}
mkProductMonoidalCategory .MonoidalCategory.triangle-identity = {!!}
mkProductMonoidalCategory .MonoidalCategory.pentagon-identity = {!!}
record HApplicativeFunctor {𝔬₁ 𝔬₂} (𝓕 : Ø 𝔬₁ → Ø 𝔬₂) : Ø (↑̂ (↑̂ 𝔬₁ ∙̂ 𝔬₂)) where
constructor ∁
field
fmapper : Fmap 𝓕
fpure : ∀ {𝔄} → 𝔄 → 𝓕 𝔄
fapply : ∀ {𝔄 𝔅} → 𝓕 (𝔄 → 𝔅) → 𝓕 𝔄 → 𝓕 𝔅
field
isStrongLaxMonoidalEndofunctor : LaxMonoidalEndofunctorWithStrength (mkProductMonoidalCategory 𝓕 fmapper fpure fapply)
module LMF = LaxMonoidalFunctor (LaxMonoidalEndofunctorWithStrength.laxMonoidalEndofunctor isStrongLaxMonoidalEndofunctor)
derive-fpure : ∀ {𝔄} → 𝔄 → 𝓕 𝔄
derive-fpure = {!LMF!} where
{-
⦃ isFunctor ⦄ : IsFunctor
{𝔒₁ = Ø 𝔬₁} (λ A B → A × 𝓕 B)
{!(λ { {A} {B} (x₁ , f₁) (x₂ , f₂) → {!(x₁ ≡ x₂) × !}})!} (λ {A} → {!!} , {!!}) {!!}
{𝔒₂ = Ø 𝔬₁} {!!}
{!!} {!!} {!!}
{!!}
-}
record MonoidalFunctor {𝔬₁ 𝔬₂} (𝓕 : Ø 𝔬₁ → Ø 𝔬₂) : Ø (↑̂ (↑̂ 𝔬₁ ∙̂ 𝔬₂)) where
constructor ∁
field
⦃ isFmap ⦄ : Fmap 𝓕
unit : 𝓕 (Lift 𝟙)
mappend : ∀ {𝔄 𝔅} → 𝓕 𝔄 → 𝓕 𝔅 → 𝓕 (𝔄 × 𝔅)
{-
⦃ isFunctor ⦄ : IsFunctor
Function⟦ 𝔬₁ ⟧
Proposextensequality ε (flip _∘′_)
(MFunction 𝓕)
Proposextensequality ε (flip _∘′_)
{!!}
-}
pure : ∀ {𝔄} → 𝔄 → 𝓕 𝔄
pure x = fmap (x ∞) unit
infixl 4 _<*>_
_<*>_ : ∀ {𝔄 𝔅} → 𝓕 (𝔄 → 𝔅) → 𝓕 𝔄 → 𝓕 𝔅
f <*> x = fmap (λ {(f , x) → f x}) (mappend f x)
app-identity : ∀ {𝔄} (v : 𝓕 𝔄) → (pure ¡[ 𝔄 ] <*> v) ≡ v
app-identity v = {!!}
open MonoidalFunctor ⦃ … ⦄ public using (unit; mappend)
-- record ApplicativeFunctor where
module Purity
{𝔵₁ 𝔵₂ 𝔯} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂} (F : 𝔛₁ → 𝔛₂) (x₁ : 𝔛₁) (x₂ : 𝔛₂) (_⟶_ : 𝔛₂ → 𝔛₂ → Ø 𝔯)
= ℭLASS (F , x₁ , x₂ , _⟶_) (x₂ ⟶ F x₁)
module Applicativity
{𝔵₁ 𝔵₂ 𝔯} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂} (F : 𝔛₁ → 𝔛₂) (_⊗₁_ : 𝔛₁ → 𝔛₁ → 𝔛₁) (_⊗₂_ : 𝔛₂ → 𝔛₂ → 𝔛₂) (_⟶_ : 𝔛₂ → 𝔛₂ → Ø 𝔯)
= ℭLASS (F , _⊗₁_ , _⊗₂_ , _⟶_) (∀ x y → (F x ⊗₂ F y) ⟶ F (x ⊗₁ y))
-- FunctionalMonoidalCategory
AFunctorFunction²Function : ∀ {𝔬₁} → AFunctor (productCat (CategoryFunction {𝔬₁}) (CategoryFunction {𝔬₁})) (CategoryFunction {𝔬₁})
AFunctorFunction²Function .AFunctor.F₀ = uncurry _×_
AFunctorFunction²Function .AFunctor.F₁ (f₁ , f₂) (x₁ , x₂) = f₁ x₁ , f₂ x₂
AFunctorFunction²Function .AFunctor.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`𝓢urjtranscommutativity = {!!}
AFunctorFunction²Function .AFunctor.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`𝓢urjextensionality = {!!}
AFunctorFunction²Function .AFunctor.isFunctor .IsFunctor.`𝒮urjidentity = {!!}
record LMF {𝔬₁ 𝔬₂} (𝓕 : Ø 𝔬₁ → Ø 𝔬₂) ⦃ _ : Fmap 𝓕 ⦄ : Ø ↑̂ (↑̂ 𝔬₁ ∙̂ 𝔬₂) where
constructor ∁
field
lmf-pure : Purity.type 𝓕 (Lift 𝟙) (Lift 𝟙) Function
lmf-apply : Applicativity.type 𝓕 _×_ _×_ Function
lmf-happly : ∀ {𝔄 𝔅} → 𝓕 (𝔄 → 𝔅) → 𝓕 𝔄 → 𝓕 𝔅
lmf-happly f x = fmap (λ {(f , x) → f x}) (lmf-apply _ _ (f , x))
field
⦃ islmf ⦄ : IsLaxMonoidalFunctor (∁ CategoryFunction (∁ (uncurry _×_) {!!} {!!}) (Lift 𝟙) {!!} {!!} {!!} {!!} {!!}) (∁ CategoryFunction (∁ (uncurry _×_) {!!} {!!}) ((Lift 𝟙)) {!!} {!!} {!!} {!!} {!!}) (record { F₀ = 𝓕 ; F₁ = fmap ; isFunctor = ∁ ⦃ {!!} ⦄ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ {!!} ⦄ }) lmf-pure lmf-apply
|
{
"alphanum_fraction": 0.5812550282,
"avg_line_length": 41.3349168646,
"ext": "agda",
"hexsha": "a8857bebe8f598ad2742efb02f58f62891121bff",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Kitten.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Kitten.agda",
"max_line_length": 302,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Kitten.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7918,
"size": 17402
}
|
open import Common.Prelude renaming (Nat to ℕ)
open import Common.Reflect
module StrangeRecursiveUnquote where
`ℕ : Term
`ℕ = def (quote ℕ) []
-- the term f n is stuck and so we cannot unquote (as expected)
f : ℕ → Term
f zero = `ℕ
f (suc n) = unquote (f n)
|
{
"alphanum_fraction": 0.6856060606,
"avg_line_length": 20.3076923077,
"ext": "agda",
"hexsha": "7d8a4e0118486a09af246a574907c519ba7a5728",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/StrangeRecursiveUnquote.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/StrangeRecursiveUnquote.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/StrangeRecursiveUnquote.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 84,
"size": 264
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
record R : Set where
field
r1 r2 : Nat
test : (x : R) → R.r1 x ≡ 0 → Nat
test x refl = 0
|
{
"alphanum_fraction": 0.6419753086,
"avg_line_length": 13.5,
"ext": "agda",
"hexsha": "97d69cf4ac80283cb3e3a057ad523e195ea7b280",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/PartiallyInstantiatedVariable.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/PartiallyInstantiatedVariable.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/PartiallyInstantiatedVariable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 162
}
|
------------------------------------------------------------------------
-- Syntax of pure type systems (PTS)
------------------------------------------------------------------------
module Pts.Syntax where
open import Data.Fin using (Fin)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Fin.Substitution.Typed
open import Data.Star using (Star; ε; _◅_)
open import Data.Nat using (ℕ; suc; _+_)
open import Data.Vec using (lookup)
open import Relation.Binary.PropositionalEquality as PropEq
open PropEq.≡-Reasoning
-- All submodules are parametrized by a given set of sorts.
module _ (Sort : Set) where
----------------------------------------------------------------------
-- Abstract syntax of terms
module Syntax where
infixl 9 _·_
-- Untyped terms with up to n free variables.
data Term (n : ℕ) : Set where
var : (x : Fin n) → Term n -- variable
sort : (s : Sort) → Term n -- sort
Π : (a : Term n) (b : Term (1 + n)) → Term n -- dependent product
ƛ : (a : Term n) (b : Term (1 + n)) → Term n -- abstraction
_·_ : (a b : Term n) → Term n -- application
open Syntax
----------------------------------------------------------------------
-- Substitutions in terms
-- Application of generic substitutions to terms
module SubstApp {T} (l : Lift T Term) where
open Lift l
infixl 8 _/_
-- Apply a substitution to a term.
_/_ : ∀ {m n} → Term m → Sub T m n → Term n
var x / σ = lift (lookup x σ)
sort s / σ = sort s
Π a b / σ = Π (a / σ) (b / σ ↑)
ƛ a b / σ = ƛ (a / σ) (b / σ ↑)
a · b / σ = (a / σ) · (b / σ)
-- Some helper lemmas about applying sequences of substitutions.
-- To be used in PathSubstLemmas.
open Application (record { _/_ = _/_ }) hiding (_/_)
-- Sorts are invariant under substitution.
sort-/✶-↑✶ : ∀ k {m n s} (σs : Subs T m n) → sort s /✶ σs ↑✶ k ≡ sort s
sort-/✶-↑✶ k ε = refl
sort-/✶-↑✶ k (σ ◅ σs) = cong₂ _/_ (sort-/✶-↑✶ k σs) refl
-- Substitutions in dependent product types are compositional.
Π-/✶-↑✶ : ∀ k {m n a b} (σs : Subs T m n) →
(Π a b) /✶ σs ↑✶ k ≡ Π (a /✶ σs ↑✶ k) (b /✶ σs ↑✶ suc k)
Π-/✶-↑✶ k ε = refl
Π-/✶-↑✶ k (σ ◅ σs) = cong₂ _/_ (Π-/✶-↑✶ k σs) refl
-- Substitutions in abstractions are compositional.
ƛ-/✶-↑✶ : ∀ k {m n a b} (σs : Subs T m n) →
(ƛ a b) /✶ σs ↑✶ k ≡ ƛ (a /✶ σs ↑✶ k) (b /✶ σs ↑✶ suc k)
ƛ-/✶-↑✶ k ε = refl
ƛ-/✶-↑✶ k (σ ◅ σs) = cong₂ _/_ (ƛ-/✶-↑✶ k σs) refl
-- Substitutions in applications are compositional.
·-/✶-↑✶ : ∀ k {m n a b} (σs : Subs T m n) →
(a · b) /✶ σs ↑✶ k ≡ (a /✶ σs ↑✶ k) · (b /✶ σs ↑✶ k)
·-/✶-↑✶ k ε = refl
·-/✶-↑✶ k (σ ◅ σs) = cong₂ _/_ (·-/✶-↑✶ k σs) refl
-- Substitutions in terms and associated lemmas.
module Substitution where
-- Term substitutions.
termSubst : TermSubst Term
termSubst = record { var = var; app = SubstApp._/_ }
-- Lemmas relating application of sequences of generic substitutions
-- lifted to any number of additional variables.
--
-- Using these generic lemmas, we can instantiate the record
-- Data.Fin.Substitution.Lemmas.TermLemmas below, which gives access
-- to a number of useful (derived) lemmas about path substitutions.
module Lemmas {T₁ T₂} {lift₁ : Lift T₁ Term} {lift₂ : Lift T₂ Term} where
open SubstApp
open Lift lift₁ using () renaming (_↑✶_ to _↑✶₁_)
open Lift lift₂ using () renaming (_↑✶_ to _↑✶₂_)
open Application (record { _/_ = SubstApp._/_ lift₁ }) using ()
renaming (_/✶_ to _/✶₁_)
open Application (record { _/_ = SubstApp._/_ lift₂ }) using ()
renaming (_/✶_ to _/✶₂_)
-- Sequences of (lifted) T₁ and T₂-substitutions are equivalent
-- when applied to terms if they are equivalent when applied to
-- variables.
/✶-↑✶ : ∀ {m n} (σs₁ : Subs T₁ m n) (σs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ σs₁ ↑✶₁ k ≡ var x /✶₂ σs₂ ↑✶₂ k) →
∀ k t → t /✶₁ σs₁ ↑✶₁ k ≡ t /✶₂ σs₂ ↑✶₂ k
/✶-↑✶ σs₁ σs₂ hyp k (var x) = hyp k x
/✶-↑✶ σs₁ σs₂ hyp k (sort s) = begin
sort s /✶₁ σs₁ ↑✶₁ k ≡⟨ sort-/✶-↑✶ _ k σs₁ ⟩
sort s ≡⟨ sym (sort-/✶-↑✶ _ k σs₂) ⟩
sort s /✶₂ σs₂ ↑✶₂ k ∎
/✶-↑✶ σs₁ σs₂ hyp k (Π a b) = begin
(Π a b) /✶₁ σs₁ ↑✶₁ k
≡⟨ Π-/✶-↑✶ _ k σs₁ ⟩
Π (a /✶₁ σs₁ ↑✶₁ k) (b /✶₁ σs₁ ↑✶₁ suc k)
≡⟨ cong₂ Π (/✶-↑✶ σs₁ σs₂ hyp k a) (/✶-↑✶ σs₁ σs₂ hyp (suc k) b) ⟩
Π (a /✶₂ σs₂ ↑✶₂ k) (b /✶₂ σs₂ ↑✶₂ suc k)
≡⟨ sym (Π-/✶-↑✶ _ k σs₂) ⟩
(Π a b) /✶₂ σs₂ ↑✶₂ k
∎
/✶-↑✶ σs₁ σs₂ hyp k (ƛ a b) = begin
(ƛ a b) /✶₁ σs₁ ↑✶₁ k
≡⟨ ƛ-/✶-↑✶ _ k σs₁ ⟩
ƛ (a /✶₁ σs₁ ↑✶₁ k) (b /✶₁ σs₁ ↑✶₁ suc k)
≡⟨ cong₂ ƛ (/✶-↑✶ σs₁ σs₂ hyp k a) (/✶-↑✶ σs₁ σs₂ hyp (suc k) b) ⟩
ƛ (a /✶₂ σs₂ ↑✶₂ k) (b /✶₂ σs₂ ↑✶₂ suc k)
≡⟨ sym (ƛ-/✶-↑✶ _ k σs₂) ⟩
(ƛ a b) /✶₂ σs₂ ↑✶₂ k
∎
/✶-↑✶ σs₁ σs₂ hyp k (a · b) = begin
(a · b) /✶₁ σs₁ ↑✶₁ k
≡⟨ ·-/✶-↑✶ _ k σs₁ ⟩
(a /✶₁ σs₁ ↑✶₁ k) · (b /✶₁ σs₁ ↑✶₁ k)
≡⟨ cong₂ _·_ (/✶-↑✶ σs₁ σs₂ hyp k a) (/✶-↑✶ σs₁ σs₂ hyp k b) ⟩
(a /✶₂ σs₂ ↑✶₂ k) · (b /✶₂ σs₂ ↑✶₂ k)
≡⟨ sym (·-/✶-↑✶ _ k σs₂) ⟩
(a · b) /✶₂ σs₂ ↑✶₂ k
∎
-- By instantiating TermLemmas, we get access to a number of useful
-- (derived) lemmas about path substitutions.
termLemmas : TermLemmas Term
termLemmas = record
{ termSubst = termSubst
; app-var = refl
; /✶-↑✶ = Lemmas./✶-↑✶
}
open TermLemmas termLemmas public hiding (var; termSubst)
-- By instantiating TermLikeLemmas, we get access to a number of
-- useful (derived) lemmas about variable substitutions (renamings).
private
termLikeLemmas : TermLikeLemmas Term Term
termLikeLemmas = record
{ app = SubstApp._/_
; termLemmas = termLemmas
; /✶-↑✶₁ = Lemmas./✶-↑✶
; /✶-↑✶₂ = Lemmas./✶-↑✶
}
open TermLikeLemmas termLikeLemmas public
using (varLiftAppLemmas; varLiftSubLemmas; _/Var_)
infix 10 _[_]
-- Shorthand for single-variable term substitutions.
_[_] : ∀ {n} → Term (1 + n) → Term n → Term n
a [ b ] = a / sub b
----------------------------------------------------------------------
-- Concrete typing contexts over terms.
module Ctx where
open Substitution using (weaken)
open Context Term public hiding (module Ctx)
weakenOps : WeakenOps
weakenOps = record { weaken = weaken }
open WeakenOps weakenOps public hiding (weaken)
|
{
"alphanum_fraction": 0.4917582418,
"avg_line_length": 36.7872340426,
"ext": "agda",
"hexsha": "fa0b366b9cbdd06edc2ce15633030c24e80569c8",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z",
"max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/pts-agda",
"max_forks_repo_path": "src/Pts/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/pts-agda",
"max_issues_repo_path": "src/Pts/Syntax.agda",
"max_line_length": 77,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/pts-agda",
"max_stars_repo_path": "src/Pts/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z",
"num_tokens": 2694,
"size": 6916
}
|
module Structure.Setoid.Uniqueness where
import Lvl
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid
open import Type
private variable ℓₗ ℓₗ₁ ℓₗ₂ : Lvl.Level
module _ {ℓ₁}{ℓ₂} where
-- Definition of uniqueness of a property.
-- This means that there is at most one element that satisfies this property.
-- This is similiar to "Injective" for functions.
Unique : ∀{Obj : Type{ℓ₁}}{ℓₗ} → ⦃ equiv : Equiv{ℓₗ}(Obj) ⦄ → (Pred : Obj → Stmt{ℓ₂}) → Stmt
Unique {Obj = Obj} Pred = ∀{x y : Obj} → Pred(x) → Pred(y) → (x ≡ y)
-- Definition of existence of an unique element satisfying a property.
-- This means that there is one and only one element that satisfies this property.
∃! : ∀{Obj : Type{ℓ₁}}{ℓₗ} → ⦃ equiv : Equiv{ℓₗ}(Obj) ⦄ → (Pred : Obj → Stmt{ℓ₂}) → Stmt
∃! {Obj} Pred = ∃(Pred) ∧ Unique(Pred)
[∃!]-intro : ∀{T} → ⦃ _ : Equiv{ℓₗ}(T) ⦄ → ∀{property} → ∃(property) → Unique{T}(property) → ∃!(property)
[∃!]-intro = [∧]-intro
[∃!]-existence : ∀{Obj} → ⦃ _ : Equiv{ℓₗ}(Obj) ⦄ → ∀{Pred} → ∃!{Obj}(Pred) → ∃(Pred)
[∃!]-existence = [∧]-elimₗ
[∃!]-uniqueness : ∀{Obj} → ⦃ _ : Equiv{ℓₗ}(Obj) ⦄ → ∀{Pred} → ∃!{Obj}(Pred) → Unique(Pred)
[∃!]-uniqueness = [∧]-elimᵣ
[∃!]-witness : ∀{Obj} → ⦃ _ : Equiv{ℓₗ}(Obj) ⦄ → ∀{Pred} → ∃!{Obj}(Pred) → Obj
[∃!]-witness e = [∃]-witness ([∃!]-existence e)
[∃!]-proof : ∀{Obj} → ⦃ _ : Equiv{ℓₗ}(Obj) ⦄ → ∀{Pred} → (e : ∃!{Obj}(Pred)) → Pred([∃!]-witness(e))
[∃!]-proof e = [∃]-proof ([∃!]-existence e)
[∃!]-existence-eq : ∀{T} → ⦃ _ : Equiv{ℓₗ}(T) ⦄ → ∀{P} → (e : ∃!(P)) → ∀{x} → P(x) → (x ≡ [∃!]-witness e)
[∃!]-existence-eq e {x} px = [∃!]-uniqueness e {x} {[∃!]-witness e} px ([∃!]-proof e)
[∃!]-existence-eq-any : ∀{T} → ⦃ _ : Equiv{ℓₗ}(T) ⦄ → ∀{P} → (e : ∃!(P)) → ∀{x} → P(x) → ([∃!]-witness e ≡ x)
[∃!]-existence-eq-any e {x} px = [∃!]-uniqueness e {[∃!]-witness e} {x} ([∃!]-proof e) px
-- TODO: [∃!]-equivalence {T} property = ∃(a ↦ ∃{property(a)}(pa ↦ pa ∧ Uniqueness{T}(property){a}(pa)))
|
{
"alphanum_fraction": 0.5504100338,
"avg_line_length": 44.1063829787,
"ext": "agda",
"hexsha": "6adb16b7a2b6614c7d0abdd30760a22736a25f01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Setoid/Uniqueness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Setoid/Uniqueness.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Setoid/Uniqueness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 943,
"size": 2073
}
|
------------------------------------------------------------------------
-- Some χ program combinators
------------------------------------------------------------------------
module Combinators where
open import Equality.Propositional
open import Prelude hiding (id; if_then_else_; not; const)
open import Tactic.By.Propositional
open import Equality.Decision-procedures equality-with-J
import Nat equality-with-J as Nat
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Chi χ-ℕ-atoms
open import Coding χ-ℕ-atoms
open import Constants χ-ℕ-atoms
open import Deterministic χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open import Substitution χ-ℕ-atoms
open import Termination χ-ℕ-atoms
open import Values χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
import Coding.Instances.Nat
------------------------------------------------------------------------
-- A non-terminating expression
loop : Exp
loop = rec v-x (var v-x)
loop-closed : Closed loop
loop-closed =
Closed′-closed-under-rec $
Closed′-closed-under-var (inj₁ refl)
¬loop⇓ : ¬ Terminates loop
¬loop⇓ (_ , p) = lemma p
where
lemma : ∀ {w} → ¬ loop ⇓ w
lemma (rec p) with v-x V.≟ v-x
... | no x≢x = x≢x refl
... | yes _ = lemma p
------------------------------------------------------------------------
-- The identity function
id : Exp
id = lambda v-x (var v-x)
id-closed : Closed id
id-closed = from-⊎ (closed? id)
id-correct : ∀ {e v} → e ⇓ v → apply id e ⇓ v
id-correct {e = e} {v = v} e⇓v =
apply id e ⟶⟨ apply lambda e⇓v ⟩
var v-x [ v-x ← v ] ≡⟨ var-step-≡ (refl {x = v-x}) ⟩⟶
v ■⟨ ⇓-Value e⇓v ⟩
------------------------------------------------------------------------
-- Natural numbers
-- Equality of natural numbers.
private
equal-ℕ′ : Exp
equal-ℕ′ =
rec v-equal (lambda v-m (lambda v-n (case (var v-m) branches)))
module Equal-ℕ where
zero-branches =
branch c-zero [] (const c-true []) ∷
branch c-suc (v-n ∷ []) (const c-false []) ∷
[]
suc-branches =
branch c-zero [] (const c-false []) ∷
branch c-suc (v-n ∷ []) (
apply (apply (var v-equal) (var v-m)) (var v-n)) ∷
[]
branches =
branch c-zero [] (case (var v-n) zero-branches) ∷
branch c-suc (v-m ∷ []) (case (var v-n) suc-branches) ∷
[]
equal-ℕ : Exp → Exp → Exp
equal-ℕ e₁ e₂ = apply (apply equal-ℕ′ e₁) e₂
equal-ℕ-closed :
∀ {xs e₁ e₂} →
Closed′ xs e₁ → Closed′ xs e₂ → Closed′ xs (equal-ℕ e₁ e₂)
equal-ℕ-closed {xs} cl-e₁ cl-e₂ =
Closed′-closed-under-apply
(Closed′-closed-under-apply
(from-⊎ (closed′? equal-ℕ′ xs))
cl-e₁)
cl-e₂
equal-ℕ-correct :
∀ m n →
equal-ℕ ⌜ m ⌝ ⌜ n ⌝ ⇓
⌜ Prelude.if m Nat.≟ n then true else false ⌝
equal-ℕ-correct m n =
equal-ℕ ⌜ m ⌝ ⌜ n ⌝ ⟶⟨⟩
apply (apply equal-ℕ′ ⌜ m ⌝) ⌜ n ⌝ ⟶⟨ apply (apply (rec lambda) (rep⇓rep m) lambda) (rep⇓rep n) ⟩
case ⟨ ⌜ m ⌝ [ v-n ← ⌜ n ⌝ ] ⟩
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ m ⌝ ]B⋆ [ v-n ← ⌜ n ⌝ ]B⋆) ≡⟨ ⟨by⟩ (subst-rep m) ⟩⟶
case ⌜ m ⌝
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ m ⌝ ]B⋆ [ v-n ← ⌜ n ⌝ ]B⋆) ⇓⟨ lemma m n ⟩■
⌜ Prelude.if m Nat.≟ n then true else false ⌝
where
open Equal-ℕ
lemma :
∀ m n →
case ⌜ m ⌝
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ m ⌝ ]B⋆ [ v-n ← ⌜ n ⌝ ]B⋆)
⇓
⌜ Prelude.if m Nat.≟ n then true else false ⌝
lemma zero zero =
case ⌜ zero ⌝
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ zero ⌝ ]B⋆ [ v-n ← ⌜ zero ⌝ ]B⋆) ⟶⟨ _⇓_.case (rep⇓rep zero) here [] ⟩
case ⌜ zero ⌝ zero-branches ⇓⟨ case (rep⇓rep zero) here [] (rep⇓rep (true ⦂ Bool)) ⟩■
⌜ true ⦂ Bool ⌝
lemma zero (suc n) =
case ⌜ zero ⌝
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ zero ⌝ ]B⋆ [ v-n ← ⌜ suc n ⌝ ]B⋆) ⟶⟨ case (rep⇓rep zero) here [] ⟩
case ⌜ suc n ⌝ zero-branches ⇓⟨ case (rep⇓rep (suc n)) (there (λ ()) here) (∷ [])
(rep⇓rep (false ⦂ Bool)) ⟩■
⌜ false ⦂ Bool ⌝
lemma (suc m) zero =
case ⌜ suc m ⌝
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ suc m ⌝ ]B⋆ [ v-n ← ⌜ zero ⌝ ]B⋆) ⟶⟨ case (rep⇓rep (suc m)) (there (λ ()) here) (∷ []) ⟩
case ⌜ zero ⌝
(suc-branches [ v-equal ← equal-ℕ′ ]B⋆ [ v-m ← ⌜ m ⌝ ]B⋆
[ v-n ← ⌜ zero ⌝ ]B⋆) ⇓⟨ case (rep⇓rep zero) here [] (rep⇓rep (false ⦂ Bool)) ⟩■
⌜ false ⦂ Bool ⌝
lemma (suc m) (suc n) =
case ⌜ suc m ⌝
(branches [ v-equal ← equal-ℕ′ ]B⋆
[ v-m ← ⌜ suc m ⌝ ]B⋆ [ v-n ← ⌜ suc n ⌝ ]B⋆) ⟶⟨ case (rep⇓rep (suc m)) (there (λ ()) here) (∷ []) ⟩
case ⟨ ⌜ suc n ⌝ [ v-m ← ⌜ m ⌝ ] ⟩
(suc-branches [ v-equal ← equal-ℕ′ ]B⋆ [ v-m ← ⌜ m ⌝ ]B⋆
[ v-n ← ⌜ suc n ⌝ ]B⋆) ≡⟨ ⟨by⟩ (subst-rep (suc n)) ⟩⟶
case ⌜ suc n ⌝
(suc-branches [ v-equal ← equal-ℕ′ ]B⋆ [ v-m ← ⌜ m ⌝ ]B⋆
[ v-n ← ⌜ suc n ⌝ ]B⋆) ⟶⟨ case (rep⇓rep (suc n)) (there (λ ()) here) (∷ []) ⟩
apply (apply equal-ℕ′ ⟨ ⌜ m ⌝ [ v-n ← ⌜ n ⌝ ] ⟩) ⌜ n ⌝ ≡⟨ ⟨by⟩ (subst-rep m) ⟩⟶
apply (apply equal-ℕ′ ⌜ m ⌝) ⌜ n ⌝ ⟶⟨⟩
equal-ℕ ⌜ m ⌝ ⌜ n ⌝ ⇓⟨ equal-ℕ-correct m n ⟩
⌜ Prelude.if m Nat.≟ n then true else false ⌝ ≡⟨ by lem ⟩⟶
⌜ Prelude.if suc m Nat.≟ suc n then true else false ⌝ ■⟨ rep-value (Prelude.if suc m Nat.≟ suc n then true else false) ⟩
where
lem : Prelude.if m Nat.≟ n then true else false ≡
Prelude.if suc m Nat.≟ suc n then true else false
lem with m Nat.≟ n
... | yes _ = refl
... | no _ = refl
private
equal-ℕ-correct′ :
∀ m n {v} →
equal-ℕ ⌜ m ⌝ ⌜ n ⌝ ⇓ v →
v ≡ ⌜ Prelude.if m Nat.≟ n then true else false ⌝
equal-ℕ-correct′ m n p =
⇓-deterministic p (equal-ℕ-correct m n)
-- Membership of a list of natural numbers.
private
member′ : Exp
member′ =
lambda v-x body
module Member where
cons-branches =
branch c-true [] (const c-true []) ∷
branch c-false [] (apply (var v-member) (var v-xs)) ∷
[]
branches =
branch c-nil [] (const c-false []) ∷
branch c-cons (v-y ∷ v-xs ∷ []) (
case (equal-ℕ (var v-x) (var v-y))
cons-branches) ∷
[]
body = rec v-member (lambda v-xs (case (var v-xs) branches))
body-closed : ∀ {xs} → Closed′ (v-x ∷ xs) body
body-closed {xs} = from-⊎ (closed′? body (v-x ∷ xs))
member : Exp → Exp → Exp
member m ns = apply (apply member′ m) ns
member-closed :
∀ {xs m ns} →
Closed′ xs m → Closed′ xs ns → Closed′ xs (member m ns)
member-closed cl-m cl-ns =
Closed′-closed-under-apply
(Closed′-closed-under-apply
(Closed′-closed-under-lambda Member.body-closed)
cl-m)
cl-ns
member-correct :
∀ m ns →
member ⌜ m ⌝ ⌜ ns ⌝ ⇓
⌜ Prelude.if V.member m ns then true else false ⌝
member-correct m ns =
member ⌜ m ⌝ ⌜ ns ⌝ ⟶⟨⟩
apply (apply member′ ⌜ m ⌝) ⌜ ns ⌝ ⟶⟨ apply (apply lambda (rep⇓rep m) (rec lambda)) (rep⇓rep ns) ⟩
case ⌜ ns ⌝
(branches [ v-x ← ⌜ m ⌝ ]B⋆ [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆) ⇓⟨ lemma ns ⟩■
⌜ Prelude.if V.member m ns then true else false ⌝
where
open Member
lemma :
∀ ns →
case ⌜ ns ⌝ (branches [ v-x ← ⌜ m ⌝ ]B⋆
[ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆)
⇓
⌜ Prelude.if V.member m ns then true else false ⌝
lemma [] =
case ⌜ [] ⦂ List ℕ ⌝
(branches [ v-x ← ⌜ m ⌝ ]B⋆
[ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆) ⇓⟨ case (rep⇓rep ([] ⦂ List ℕ)) here [] (const []) ⟩■
⌜ false ⦂ Bool ⌝
lemma (n ∷ ns) =
case ⌜ n List.∷ ns ⌝
(branches [ v-x ← ⌜ m ⌝ ]B⋆
[ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆) ⟶⟨ case (rep⇓rep (n List.∷ ns)) (there (λ ()) here) (∷ ∷ []) ⟩
case (equal-ℕ ⟨ ⌜ m ⌝ [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]
[ v-xs ← ⌜ ns ⌝ ] [ v-y ← ⌜ n ⌝ ] ⟩
⌜ n ⌝)
(cons-branches [ v-x ← ⌜ m ⌝ ]B⋆
[ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆ [ v-y ← ⌜ n ⌝ ]B⋆) ≡⟨ ⟨by⟩ (substs-rep m ((v-y , ⌜ n ⌝) ∷ (v-xs , ⌜ ns ⌝) ∷
(v-member , body [ v-x ← ⌜ m ⌝ ]) ∷ [])) ⟩⟶
case (equal-ℕ ⌜ m ⌝ ⌜ n ⌝)
(⟨ cons-branches [ v-x ← ⌜ m ⌝ ]B⋆ ⟩
[ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆ [ v-y ← ⌜ n ⌝ ]B⋆) ≡⟨ ⟨by⟩ (subst-∉-B⋆ _ _ ⌜ m ⌝ (from-⊎ (v-x ∈?-B⋆ cons-branches))) ⟩⟶
case (equal-ℕ ⌜ m ⌝ ⌜ n ⌝)
⟨ cons-branches [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆ [ v-y ← ⌜ n ⌝ ]B⋆ ⟩ ≡⟨ ⟨by⟩ (subst-∉-B⋆ _ _ _
λ { (._ , ._ , ._ , inj₁ refl , const _ () , _)
; (._ , ._ , ._ , inj₂ (inj₁ refl) , y∈FV[body[x←m]ns] , _) →
Closed′-closed-under-apply
(Closed′-closed-under-subst body-closed (rep-closed m))
(rep-closed ns)
v-y (λ ()) y∈FV[body[x←m]ns]
; (_ , _ , _ , (inj₂ (inj₂ ())) , _) }) ⟩⟶
case (equal-ℕ ⌜ m ⌝ ⌜ n ⌝)
(cons-branches [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆) ⇓⟨ lemma′ (m Nat.≟ n) (equal-ℕ-correct m n) ⟩■
⌜ Prelude.if V.member m (n ∷ ns) then true else false ⌝
where
lemma′ :
(m≟n : Dec (m ≡ n)) →
equal-ℕ ⌜ m ⌝ ⌜ n ⌝
⇓
⌜ Prelude.if m≟n then true else false ⌝ →
case (equal-ℕ ⌜ m ⌝ ⌜ n ⌝)
(cons-branches [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆)
⇓
⌜ Prelude.if V.member m (n ∷ ns) then true else false ⌝
lemma′ (yes m≡n) hyp =
case (equal-ℕ ⌜ m ⌝ ⌜ n ⌝)
(cons-branches [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆) ⟶⟨ case hyp here [] ⟩
⌜ true ⦂ Bool ⌝ ≡⟨ cong ⌜_⌝ lem ⟩⟶
⌜ Prelude.if V.member m (n ∷ ns) then true else false ⌝ ■⟨ rep-value (Prelude.if V.member m (n ∷ ns) then true else false) ⟩
where
lem : true ≡ Prelude.if V.member m (n ∷ ns) then true else false
lem with m Nat.≟ n
... | yes _ = refl
... | no m≢n = ⊥-elim (m≢n m≡n)
lemma′ (no m≢n) hyp =
case (equal-ℕ ⌜ m ⌝ ⌜ n ⌝)
(cons-branches [ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆
[ v-xs ← ⌜ ns ⌝ ]B⋆) ⟶⟨ case hyp (there (λ ()) here) [] ⟩
apply ⟨ body [ v-x ← ⌜ m ⌝ ] [ v-xs ← ⌜ ns ⌝ ] ⟩ ⌜ ns ⌝ ≡⟨ ⟨by⟩ (subst-closed v-xs ⌜ ns ⌝
(Closed′-closed-under-subst body-closed (rep-closed m))) ⟩⟶
apply (body [ v-x ← ⌜ m ⌝ ]) ⌜ ns ⌝ ⟶⟨ apply (rec lambda) (rep⇓rep ns) ⟩
case ⌜ ns ⌝
(branches [ v-x ← ⌜ m ⌝ ]B⋆
[ v-member ← body [ v-x ← ⌜ m ⌝ ] ]B⋆) ⇓⟨ lemma ns ⟩
⌜ Prelude.if V.member m ns then true else false ⌝ ≡⟨ cong ⌜_⌝ lem ⟩⟶
⌜ Prelude.if V.member m (n ∷ ns) then true else false ⌝ ■⟨ rep-value (Prelude.if V.member m (n ∷ ns) then true else false) ⟩
where
lem : Prelude.if V.member m ns then true else false ≡
Prelude.if V.member m (n ∷ ns) then true else false
lem with m Nat.≟ n
... | yes m≡n = ⊥-elim (m≢n m≡n)
... | no _ with V.member m ns
... | yes _ = refl
... | no _ = refl
------------------------------------------------------------------------
-- Booleans
-- If-then-else.
infix 5 if_then_else_
if_then_else_ : Exp → Exp → Exp → Exp
if c then t else f =
case c (branch c-true [] t ∷
branch c-false [] f ∷
[])
if-then-else-closed :
∀ {xs c t f} →
Closed′ xs c → Closed′ xs t → Closed′ xs f →
Closed′ xs (if c then t else f)
if-then-else-closed c-cl t-cl f-cl =
Closed′-closed-under-case
c-cl
λ where
(inj₁ refl) → t-cl
(inj₂ (inj₁ refl)) → f-cl
(inj₂ (inj₂ ()))
if-then-else-correct :
∀ {A : Type} ⦃ cA : Rep A Consts ⦄ {e₁ e₂ e₃}
(b₁ : Bool) (v₂ v₃ : A) →
e₁ ⇓ ⌜ b₁ ⌝ → e₂ ⇓ ⌜ v₂ ⌝ → e₃ ⇓ ⌜ v₃ ⌝ →
if e₁ then e₂ else e₃ ⇓ ⌜ Prelude.if b₁ then v₂ else v₃ ⌝
if-then-else-correct true _ _ e₁⇓ e₂⇓ e₃⇓ = case e₁⇓ here [] e₂⇓
if-then-else-correct false _ _ e₁⇓ e₂⇓ e₃⇓ =
case e₁⇓ (there (λ ()) here) [] e₃⇓
-- Negation of booleans.
not : Exp → Exp
not e = if e then ⌜ false ⦂ Bool ⌝ else ⌜ true ⦂ Bool ⌝
not-closed : ∀ {xs e} → Closed′ xs e → Closed′ xs (not e)
not-closed cl-e =
if-then-else-closed
cl-e
(Closed→Closed′ (from-⊎ (closed? ⌜ false ⦂ Bool ⌝)))
(Closed→Closed′ (from-⊎ (closed? ⌜ true ⦂ Bool ⌝)))
not-correct : ∀ {e} (b : Bool) → e ⇓ ⌜ b ⌝ → not e ⇓ ⌜ Prelude.not b ⌝
not-correct true e⇓ = case e⇓ here [] (rep⇓rep (false ⦂ Bool))
not-correct false e⇓ =
case e⇓ (there (λ ()) here) [] (rep⇓rep (true ⦂ Bool))
-- Conjunction.
and : Exp → Exp → Exp
and e₁ e₂ = if e₁ then e₂ else ⌜ false ⦂ Bool ⌝
and-closed :
∀ {xs e₁ e₂} → Closed′ xs e₁ → Closed′ xs e₂ → Closed′ xs (and e₁ e₂)
and-closed cl-e₁ cl-e₂ =
if-then-else-closed
cl-e₁
cl-e₂
(Closed→Closed′ (from-⊎ (closed? ⌜ false ⦂ Bool ⌝)))
and-correct :
∀ {e₁ e₂} b₁ b₂ →
e₁ ⇓ ⌜ b₁ ⌝ → e₂ ⇓ ⌜ b₂ ⌝ →
and e₁ e₂ ⇓ ⌜ b₁ ∧ b₂ ⌝
and-correct b₁ b₂ e₁⇓ e₂⇓ =
if-then-else-correct b₁ b₂ false e₁⇓ e₂⇓ (rep⇓rep (false ⦂ Bool))
-- Disjunction.
or : Exp → Exp → Exp
or e₁ e₂ = if e₁ then ⌜ true ⦂ Bool ⌝ else e₂
or-closed :
∀ {xs e₁ e₂} → Closed′ xs e₁ → Closed′ xs e₂ → Closed′ xs (or e₁ e₂)
or-closed cl-e₁ cl-e₂ =
if-then-else-closed
cl-e₁
(Closed→Closed′ (from-⊎ (closed? ⌜ true ⦂ Bool ⌝)))
cl-e₂
or-correct :
∀ {e₁ e₂} b₁ b₂ →
e₁ ⇓ ⌜ b₁ ⌝ → e₂ ⇓ ⌜ b₂ ⌝ →
or e₁ e₂ ⇓ ⌜ b₁ ∨ b₂ ⌝
or-correct b₁ b₂ e₁⇓ e₂⇓ =
if-then-else-correct b₁ true b₂ e₁⇓ (rep⇓rep (true ⦂ Bool)) e₂⇓
-- Equality of booleans.
equal-Bool : Exp → Exp → Exp
equal-Bool e₁ e₂ =
if e₁ then e₂ else not e₂
equal-Bool-closed :
∀ {xs e₁ e₂} →
Closed′ xs e₁ → Closed′ xs e₂ → Closed′ xs (equal-Bool e₁ e₂)
equal-Bool-closed cl-e₁ cl-e₂ =
if-then-else-closed cl-e₁ cl-e₂ (not-closed cl-e₂)
equal-Bool-correct :
∀ {e₁ e₂} b₁ b₂ →
e₁ ⇓ ⌜ b₁ ⌝ → e₂ ⇓ ⌜ b₂ ⌝ →
equal-Bool e₁ e₂ ⇓ ⌜ Prelude.if b₁ Bool.≟ b₂ then true else false ⌝
equal-Bool-correct {e₁} {e₂} b₁ b₂ e₁⇓ e₂⇓ =
equal-Bool e₁ e₂ ⇓⟨ if-then-else-correct b₁ b₂ (Prelude.not b₂) e₁⇓ e₂⇓ (not-correct b₂ e₂⇓) ⟩
⌜ Prelude.if b₁ then b₂ else Prelude.not b₂ ⌝ ≡⟨ cong ⌜_⌝ (lemma b₁ b₂) ⟩⟶
⌜ Prelude.if b₁ Bool.≟ b₂ then true else false ⌝ ■⟨ rep-value (Prelude.if b₁ Bool.≟ b₂ then true else false) ⟩
where
lemma :
∀ b₁ b₂ →
Prelude.if b₁ then b₂ else Prelude.not b₂ ≡
Prelude.if b₁ Bool.≟ b₂ then true else false
lemma true true = refl
lemma true false = refl
lemma false true = refl
lemma false false = refl
-- An internal decoding function for booleans.
decode-Bool : Exp → Exp
decode-Bool e =
case e
(branch c-const (v-c ∷ v-es ∷ [])
(equal-ℕ (var v-c) ⌜ c-true ⌝) ∷ [])
decode-Bool-closed :
∀ {xs e} → Closed′ xs e → Closed′ xs (decode-Bool e)
decode-Bool-closed cl-e =
Closed′-closed-under-case
cl-e
λ where
(inj₁ refl) → equal-ℕ-closed
(Closed′-closed-under-var
(from-⊎ (V.member v-c (v-c ∷ v-es ∷ _))))
(Closed→Closed′ (rep-closed c-true))
(inj₂ ())
decode-Bool-correct :
∀ {e} (b : Bool) →
e ⇓ ⌜ ⌜ b ⌝ ⦂ Exp ⌝ → decode-Bool e ⇓ ⌜ b ⌝
decode-Bool-correct true e⇓ =
case e⇓ here (∷ ∷ []) (equal-ℕ-correct c-true c-true)
decode-Bool-correct false e⇓ =
case e⇓ here (∷ ∷ []) (equal-ℕ-correct c-false c-true)
|
{
"alphanum_fraction": 0.4553459868,
"avg_line_length": 33.5469061876,
"ext": "agda",
"hexsha": "f4d7528f230795fd0d35051bfde89a449ac17ddf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Combinators.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Combinators.agda",
"max_line_length": 137,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Combinators.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 6841,
"size": 16807
}
|
-- Various operations and proofs on morphisms between products
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Object.Product.Morphisms {o ℓ e} (C : Category o ℓ e) where
import Categories.Object.Product
open Categories.Object.Product C
open Category C
open Equiv
open HomReasoning
open import Function using (flip)
open import Level
infix 10 [_]⟨_,_⟩ [_⇒_]_⁂_
[[_]] : ∀{A B} → Product A B → Obj
[[ p ]] = Product.A×B p
[_]⟨_,_⟩ : ∀ {A B C}
→ (p : Product B C) → A ⇒ B → A ⇒ C → A ⇒ [[ p ]]
[ p ]⟨ f , g ⟩ = Product.⟨_,_⟩ p f g
[_]π₁ : ∀ {A B}
→ (p : Product A B) → [[ p ]] ⇒ A
[_]π₁ = Product.π₁
[_]π₂ : ∀ {A B}
→ (p : Product A B) → [[ p ]] ⇒ B
[_]π₂ = Product.π₂
[_⇒_]_⁂_ : ∀ {A B C D}
→ (p₁ : Product A C)
→ (p₂ : Product B D)
→ (A ⇒ B) → (C ⇒ D) → ([[ p₁ ]] ⇒ [[ p₂ ]])
[ p₁ ⇒ p₂ ] f ⁂ g = [ p₂ ]⟨ f ∘ p₁.π₁ , g ∘ p₁.π₂ ⟩
where
module p₁ = Product p₁
module p₂ = Product p₂
.id⁂id : ∀ {A B}(p : Product A B) → [ p ⇒ p ] id ⁂ id ≡ id
id⁂id p =
begin
⟨ id ∘ π₁ , id ∘ π₂ ⟩
↓⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ π₁ , π₂ ⟩
↓⟨ η ⟩
id
∎
where
open Product p
.repack≡id⁂id : ∀{X Y}(p₁ p₂ : Product X Y) → repack p₁ p₂ ≡ [ p₁ ⇒ p₂ ] id ⁂ id
repack≡id⁂id p₁ p₂ = sym (Product.⟨⟩-cong₂ p₂ identityˡ identityˡ)
where open Equiv
.[_⇒_]π₁∘⁂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D}
→ (p₁ : Product A C)
→ (p₂ : Product B D)
→ Product.π₁ p₂ ∘ [ p₁ ⇒ p₂ ] f ⁂ g ≡ f ∘ Product.π₁ p₁
[_⇒_]π₁∘⁂ {f = f} {g} p₁ p₂ = Product.commute₁ p₂
.[_⇒_]π₂∘⁂ : ∀ {A B C D} → {f : A ⇒ B} → {g : C ⇒ D}
→ (p₁ : Product A C)
→ (p₂ : Product B D)
→ Product.π₂ p₂ ∘ [ p₁ ⇒ p₂ ] f ⁂ g ≡ g ∘ Product.π₂ p₁
[_⇒_]π₂∘⁂ {f = f} {g} p₁ p₂ = Product.commute₂ p₂
.[_⇒_]⁂-cong₂ : ∀ {A B C D}{f g h i}
→ (p₁ : Product A B)
→ (p₂ : Product C D)
→ f ≡ g
→ h ≡ i
→ [ p₁ ⇒ p₂ ] f ⁂ h ≡ [ p₁ ⇒ p₂ ] g ⁂ i
[_⇒_]⁂-cong₂ {A}{B}{C}{D}{f}{g}{h}{i} p₁ p₂ f≡g h≡i =
Product.⟨⟩-cong₂ p₂ (∘-resp-≡ f≡g refl) (∘-resp-≡ h≡i refl)
.[_⇒_]⁂∘⟨⟩ : ∀{A B C D X}
→ {f : A ⇒ C} {f′ : X ⇒ A}
→ {g : B ⇒ D} {g′ : X ⇒ B}
→ (p₁ : Product A B)
→ (p₂ : Product C D)
→ ([ p₁ ⇒ p₂ ] f ⁂ g) ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≡ [ p₂ ]⟨ f ∘ f′ , g ∘ g′ ⟩
[_⇒_]⁂∘⟨⟩ {A}{B}{C}{D}{X}{f}{f′}{g}{g′} p₁ p₂ =
begin
[ p₂ ]⟨ f ∘ p₁.π₁ , g ∘ p₁.π₂ ⟩ ∘ [ p₁ ]⟨ f′ , g′ ⟩
↓⟨ p₂.⟨⟩∘ ⟩
[ p₂ ]⟨ (f ∘ p₁.π₁) ∘ p₁.⟨_,_⟩ f′ g′
, (g ∘ p₁.π₂) ∘ p₁.⟨_,_⟩ f′ g′ ⟩
↓⟨ p₂.⟨⟩-cong₂ assoc assoc ⟩
[ p₂ ]⟨ f ∘ p₁.π₁ ∘ p₁.⟨_,_⟩ f′ g′
, g ∘ p₁.π₂ ∘ p₁.⟨_,_⟩ f′ g′ ⟩
↓⟨ p₂.⟨⟩-cong₂ (∘-resp-≡ refl p₁.commute₁) (∘-resp-≡ refl p₁.commute₂) ⟩
[ p₂ ]⟨ f ∘ f′ , g ∘ g′ ⟩
∎
where
module p₁ = Product p₁
module p₂ = Product p₂
.[_⇒_⇒_]⁂∘⁂ : ∀ {A B C D E F}{f g h i}
→ (p₁ : Product A B)
→ (p₂ : Product C D)
→ (p₃ : Product E F)
→ ([ p₂ ⇒ p₃ ] g ⁂ i) ∘ ([ p₁ ⇒ p₂ ] f ⁂ h) ≡ [ p₁ ⇒ p₃ ] (g ∘ f) ⁂ (i ∘ h)
[_⇒_⇒_]⁂∘⁂ {A}{B}{C}{D}{E}{F}{f}{g}{h}{i} p₁ p₂ p₃ =
begin
[ p₃ ]⟨ g ∘ p₂.π₁ , i ∘ p₂.π₂ ⟩ ∘ [ p₂ ]⟨ f ∘ p₁.π₁ , h ∘ p₁.π₂ ⟩
↓⟨ [ p₂ ⇒ p₃ ]⁂∘⟨⟩ ⟩
[ p₃ ]⟨ g ∘ f ∘ p₁.π₁ , i ∘ h ∘ p₁.π₂ ⟩
↑⟨ p₃.⟨⟩-cong₂ assoc assoc ⟩
[ p₃ ]⟨ (g ∘ f) ∘ p₁.π₁ , (i ∘ h) ∘ p₁.π₂ ⟩
∎
where
module p₁ = Product p₁
module p₂ = Product p₂
module p₃ = Product p₃
.[_⇒_⇒_]repack∘⁂ : ∀ {A B C D}{f g}
→ (p₁ : Product A B)
→ (p₂ : Product C D)
→ (p₃ : Product C D)
→ repack p₂ p₃ ∘ [ p₁ ⇒ p₂ ] f ⁂ g ≡ [ p₁ ⇒ p₃ ] f ⁂ g
[_⇒_⇒_]repack∘⁂ {A}{B}{C}{D}{f}{g} p₁ p₂ p₃ =
begin
repack p₂ p₃ ∘ [ p₁ ⇒ p₂ ] f ⁂ g
↓⟨ repack≡id⁂id p₂ p₃ ⟩∘⟨ refl ⟩
([ p₂ ⇒ p₃ ] id ⁂ id) ∘ ([ p₁ ⇒ p₂ ] f ⁂ g)
↓⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]⁂∘⁂ ⟩
[ p₁ ⇒ p₃ ] (id ∘ f) ⁂ (id ∘ g)
↓⟨ [ p₁ ⇒ p₃ ]⁂-cong₂ identityˡ identityˡ ⟩
[ p₁ ⇒ p₃ ] f ⁂ g
∎
.[_⇒_⇒_]repack∘repack : ∀{A B}
→ (p₁ p₂ p₃ : Product A B)
→ repack p₂ p₃ ∘ repack p₁ p₂ ≡ repack p₁ p₃
[_⇒_⇒_]repack∘repack = repack∘
{-
begin
repack p₂ p₃ ∘ repack p₁ p₂
↓⟨ repack≡id⁂id p₂ p₃ ⟩∘⟨ repack≡id⁂id p₁ p₂ ⟩
([ p₂ ⇒ p₃ ] id ⁂ id) ∘ ([ p₁ ⇒ p₂ ] id ⁂ id)
↓⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]⁂∘⁂ ⟩
[ p₁ ⇒ p₃ ] (id ∘ id) ⁂ (id ∘ id)
↓⟨ [ p₁ ⇒ p₃ ]⁂-cong₂ identityˡ identityˡ ⟩
[ p₁ ⇒ p₃ ] id ⁂ id
↑⟨ repack≡id⁂id p₁ p₃ ⟩
repack p₁ p₃
∎
-}
[_⇒_]first
: ∀ {A B C}
→ (p₁ : Product A C) → (p₂ : Product B C)
→ A ⇒ B → [[ p₁ ]] ⇒ [[ p₂ ]]
[ p₁ ⇒ p₂ ]first f = [ p₁ ⇒ p₂ ] f ⁂ id
[_⇒_]second
: ∀ {A B C}
→ (p₁ : Product A B) → (p₂ : Product A C)
→ B ⇒ C → [[ p₁ ]] ⇒ [[ p₂ ]]
[ p₁ ⇒ p₂ ]second g = [ p₁ ⇒ p₂ ] id ⁂ g
.first-id : ∀ {A B}(p : Product A B) → [ p ⇒ p ]first id ≡ id
first-id = id⁂id
.second-id : ∀ {A B}(p : Product A B) → [ p ⇒ p ]second id ≡ id
second-id = id⁂id
.[_⇒_]first∘⟨⟩ : ∀ {A B C D}
→ {f : B ⇒ C} {f′ : A ⇒ B} {g′ : A ⇒ D}
→ (p₁ : Product B D) (p₂ : Product C D)
→ [ p₁ ⇒ p₂ ]first f ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≡ [ p₂ ]⟨ f ∘ f′ , g′ ⟩
[_⇒_]first∘⟨⟩ {A}{B}{C}{D}{f}{f′}{g′} p₁ p₂ =
begin
[ p₁ ⇒ p₂ ]first f ∘ [ p₁ ]⟨ f′ , g′ ⟩
↓⟨ [ p₁ ⇒ p₂ ]⁂∘⟨⟩ ⟩
[ p₂ ]⟨ f ∘ f′ , id ∘ g′ ⟩
↓⟨ p₂.⟨⟩-cong₂ refl identityˡ ⟩
[ p₂ ]⟨ f ∘ f′ , g′ ⟩
∎
where
module p₂ = Product p₂
.[_⇒_]second∘⟨⟩ : ∀ {A B D E}
→ {f′ : A ⇒ B} {g : D ⇒ E} {g′ : A ⇒ D}
→ (p₁ : Product B D) (p₂ : Product B E)
→ [ p₁ ⇒ p₂ ]second g ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≡ [ p₂ ]⟨ f′ , g ∘ g′ ⟩
[_⇒_]second∘⟨⟩ {A}{B}{D}{E}{f′}{g}{g′} p₁ p₂ =
begin
[ p₁ ⇒ p₂ ]second g ∘ [ p₁ ]⟨ f′ , g′ ⟩
↓⟨ [ p₁ ⇒ p₂ ]⁂∘⟨⟩ ⟩
[ p₂ ]⟨ id ∘ f′ , g ∘ g′ ⟩
↓⟨ p₂.⟨⟩-cong₂ identityˡ refl ⟩
[ p₂ ]⟨ f′ , g ∘ g′ ⟩
∎
where
module p₂ = Product p₂
.[_⇒_⇒_]first∘first : ∀ {A B C D}{f : B ⇒ C} {g : A ⇒ B}
→ (p₁ : Product A D)
→ (p₂ : Product B D)
→ (p₃ : Product C D)
→ [ p₂ ⇒ p₃ ]first f ∘ [ p₁ ⇒ p₂ ]first g ≡ [ p₁ ⇒ p₃ ]first(f ∘ g)
[_⇒_⇒_]first∘first {A}{B}{C}{D}{f}{g} p₁ p₂ p₃ =
begin
[ p₂ ⇒ p₃ ]first f ∘ [ p₁ ⇒ p₂ ]first g
↓⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]⁂∘⁂ ⟩
[ p₁ ⇒ p₃ ] (f ∘ g) ⁂ (id ∘ id)
↓⟨ [ p₁ ⇒ p₃ ]⁂-cong₂ refl identityˡ ⟩
[ p₁ ⇒ p₃ ]first (f ∘ g)
∎
.[_⇒_⇒_]second∘second : ∀ {A B C D}{f : C ⇒ D} {g : B ⇒ C}
→ (p₁ : Product A B)
→ (p₂ : Product A C)
→ (p₃ : Product A D)
→ [ p₂ ⇒ p₃ ]second f ∘ [ p₁ ⇒ p₂ ]second g ≡ [ p₁ ⇒ p₃ ]second(f ∘ g)
[_⇒_⇒_]second∘second {A}{B}{C}{D}{f}{g} p₁ p₂ p₃ =
begin
[ p₂ ⇒ p₃ ]second f ∘ [ p₁ ⇒ p₂ ]second g
↓⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]⁂∘⁂ ⟩
[ p₁ ⇒ p₃ ] (id ∘ id) ⁂ (f ∘ g)
↓⟨ [ p₁ ⇒ p₃ ]⁂-cong₂ identityˡ refl ⟩
[ p₁ ⇒ p₃ ]second (f ∘ g)
∎
.[_⇒_,_⇒_]first↔second : ∀ {A B C D}{f : A ⇒ B}{g : C ⇒ D}
→ (p₁ : Product A D)
→ (p₂ : Product B D)
→ (p₃ : Product A C)
→ (p₄ : Product B C)
→ [ p₁ ⇒ p₂ ]first f ∘ [ p₃ ⇒ p₁ ]second g ≡ [ p₄ ⇒ p₂ ]second g ∘ [ p₃ ⇒ p₄ ]first f
[_⇒_,_⇒_]first↔second {A}{B}{C}{D}{f}{g} p₁ p₂ p₃ p₄ =
begin
[ p₁ ⇒ p₂ ]first f ∘ [ p₃ ⇒ p₁ ]second g
↓⟨ [ p₃ ⇒ p₁ ⇒ p₂ ]⁂∘⁂ ⟩
[ p₃ ⇒ p₂ ] (f ∘ id) ⁂ (id ∘ g)
↓⟨ [ p₃ ⇒ p₂ ]⁂-cong₂ identityʳ identityˡ ⟩
[ p₃ ⇒ p₂ ] f ⁂ g
↑⟨ [ p₃ ⇒ p₂ ]⁂-cong₂ identityˡ identityʳ ⟩
[ p₃ ⇒ p₂ ] (id ∘ f) ⁂ (g ∘ id)
↑⟨ [ p₃ ⇒ p₄ ⇒ p₂ ]⁂∘⁂ ⟩
[ p₄ ⇒ p₂ ]second g ∘ [ p₃ ⇒ p₄ ]first f
∎
|
{
"alphanum_fraction": 0.4342808894,
"avg_line_length": 28.5381526104,
"ext": "agda",
"hexsha": "66e9ddd28f29518158d3ec5ac880d3cea88289b8",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/Product/Morphisms.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/Product/Morphisms.agda",
"max_line_length": 87,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/Product/Morphisms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 4047,
"size": 7106
}
|
open import Prelude
module Implicits.Substitutions.Lemmas where
open import Implicits.Syntax.Type
open import Implicits.Syntax.Term hiding (var)
open import Implicits.Syntax.Context
open import Implicits.WellTyped
open import Implicits.Substitutions
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Vec.Properties
open import Extensions.Substitution
import Category.Applicative.Indexed as Applicative
open Applicative.Morphism using (op-<$>)
module TypeLemmas where
open import Implicits.Substitutions.Lemmas.Type public
open import Implicits.Substitutions.Lemmas.MetaType public
{-
module SubstLemmas (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) where
open TypingRules _⊢ᵣ_
private
⊢subst : ∀ {m n} {Γ₁ Γ₂ : Ktx n m} {t₁ t₂ : Term n m} {a₁ a₂ : Type n} →
Γ₁ ≡ Γ₂ → t₁ ≡ t₂ → a₁ ≡ a₂ → Γ₁ ⊢ t₁ ∈ a₁ → Γ₂ ⊢ t₂ ∈ a₂
⊢subst refl refl refl hyp = hyp
⊢substCtx : ∀ {m n} {Γ₁ Γ₂ : Ktx n m} {t : Term n m} {a : Type n} →
Γ₁ ≡ Γ₂ → Γ₁ ⊢ t ∈ a → Γ₂ ⊢ t ∈ a
⊢substCtx refl hyp = hyp
⊢substTp : ∀ {m n} {Γ : Ktx n m} {t : Term n m} {a₁ a₂ : Type n} →
a₁ ≡ a₂ → Γ ⊢ t ∈ a₁ → Γ ⊢ t ∈ a₂
⊢substTp refl hyp = hyp
module WtTermLemmas where
weaken : ∀ {ν n} {K : Ktx ν n} {t : Term ν n} {a b : Type ν} →
K ⊢ t ∈ a → b ∷Γ K ⊢ tmtm-weaken t ∈ a
-- weaken {Γ = Γ} {b = b} ⊢t = Var.wk /Var ⊢substCtx (C.wkVar-/Var-∷ Γ b) ⊢t
module TermTypeLemmas where
open TermTypeSubst
private module T = TypeLemmas
private module TS = TypeSubst
private module V = VarLemmas
/-↑⋆ :
∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} →
let open TS.Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/tp₁_)
open Lifted lift₁ using () renaming (_/_ to _/₁_)
open TS.Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/tp₂_)
open Lifted lift₂ using () renaming (_/_ to _/₂_)
in
∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) →
(∀ i x → tvar x /tp₁ ρ₁ ↑⋆₁ i ≡ tvar x /tp₂ ρ₂ ↑⋆₂ i) →
∀ i {m} (t : Term (i N+ n) m) → t /₁ ρ₁ ↑⋆₁ i ≡ t /₂ ρ₂ ↑⋆₂ i
/-↑⋆ ρ₁ ρ₂ hyp i (new x) = refl
/-↑⋆ ρ₁ ρ₂ hyp i (var x) = refl
/-↑⋆ ρ₁ ρ₂ hyp i (Λ t) = cong Λ (/-↑⋆ ρ₁ ρ₂ hyp (1 N+ i) t)
/-↑⋆ ρ₁ ρ₂ hyp i (λ' a t) =
cong₂ λ' (T./-↑⋆ ρ₁ ρ₂ hyp i a) (/-↑⋆ ρ₁ ρ₂ hyp i t)
/-↑⋆ ρ₁ ρ₂ hyp i (t [ b ]) =
cong₂ _[_] (/-↑⋆ ρ₁ ρ₂ hyp i t) (T./-↑⋆ ρ₁ ρ₂ hyp i b)
/-↑⋆ ρ₁ ρ₂ hyp i (s · t) =
cong₂ _·_ (/-↑⋆ ρ₁ ρ₂ hyp i s) (/-↑⋆ ρ₁ ρ₂ hyp i t)
/-↑⋆ ρ₁ ρ₂ hyp i (x) = {!!}
/-wk : ∀ {m n} (t : Term m n) → t / TypeSubst.wk ≡ weaken t
/-wk t = /-↑⋆ TypeSubst.wk VarSubst.wk (λ k x → begin
tvar x T./ T.wk T.↑⋆ k ≡⟨ T.var-/-wk-↑⋆ k x ⟩
tvar (finlift k suc x) ≡⟨ cong tvar (sym (V.var-/-wk-↑⋆ k x)) ⟩
tvar (lookup x (V.wk V.↑⋆ k)) ≡⟨ refl ⟩
tvar x TS./Var V.wk V.↑⋆ k ∎) 0 t
module KtxLemmas where
open KtxSubst hiding (ktx-map)
private module Tp = TypeLemmas
private module Var = VarSubst
ktx-map-cong : ∀ {ν μ n} {f g : Type ν → Type μ} →
f ≗ g → _≗_ {A = Ktx ν n} (ktx-map f) (ktx-map g)
ktx-map-cong K = ?
-- Term variable substitution (renaming) commutes with type
-- substitution.
{-
/Var-/ : ∀ {m ν n l} (ρ : Sub Fin m n) (Γ : Ktx ν n) (σ : Sub Type ν l) →
(Γ /Var ρ) / σ ≡ Γ /Var (ρ / σ)
/Var-/ ρ Γ σ = begin
(ρ /Var Γ) / σ
≡⟨ sym (map-∘ _ _ ρ) ⟩
map (λ x → (lookup x Γ) Tp./ σ) ρ
≡⟨ map-cong (λ x → sym (Tp.lookup-⊙ x)) ρ ⟩
map (λ x → lookup x (Γ / σ)) ρ
∎
-- Term variable substitution (renaming) commutes with weakening of
-- typing contexts with an additional type variable.
/Var-weaken : ∀ {m n k} (ρ : Sub Fin m k) (Γ : Ctx n k) →
weaken (ρ /Var Γ) ≡ ρ /Var (weaken Γ)
/Var-weaken ρ Γ = begin
(ρ /Var Γ) / Tp.wk ≡⟨ ? ⟩ --/Var-/ ρ Γ Tp.wk
ρ /Var (weaken Γ) ∎
-}
-- Term variable substitution (renaming) commutes with term variable
-- lookup in typing context.
{-
/Var-lookup : ∀ {m n k} (x : Fin m) (ρ : Sub Fin m k) (Γ : Ctx n k) →
lookup x (ρ /Var Γ) ≡ lookup (lookup x ρ) Γ
/Var-lookup x ρ Γ = op-<$> (lookup-morphism x) _ _
-- Term variable substitution (renaming) commutes with weakening of
-- typing contexts with an additional term variable.
/Var-∷ : ∀ {m n k} (a : Type n) (ρ : Sub Fin m k) (Γ : Ctx n k) →
a ∷ (ρ /Var Γ) ≡ (ρ Var.↑) /Var (a ∷ Γ)
/Var-∷ a [] Γ = refl
/Var-∷ a (x ∷ ρ) Γ = cong (_∷_ a) (cong (_∷_ (lookup x Γ)) (begin
map (λ x → lookup x Γ) ρ ≡⟨ refl ⟩
map (λ x → lookup (suc x) (a ∷ Γ)) ρ ≡⟨ map-∘ _ _ ρ ⟩
map (λ x → lookup x (a ∷ Γ)) (map suc ρ) ∎))
-- Invariants of term variable substitution (renaming)
idVar-/Var : ∀ {m n} (Γ : Ctx n m) → Γ ≡ (Var.id /Var Γ)
wkVar-/Var-∷ : ∀ {m n} (Γ : Ctx n m) (a : Type n) → Γ ≡ (Var.wk /Var (a ∷ Γ))
idVar-/Var [] = refl
idVar-/Var (a ∷ Γ) = cong (_∷_ a) (wkVar-/Var-∷ Γ a)
wkVar-/Var-∷ Γ a = begin
Γ ≡⟨ idVar-/Var Γ ⟩
Var.id /Var Γ ≡⟨ map-∘ _ _ VarSubst.id ⟩
Var.wk /Var (a ∷ Γ) ∎
ctx-weaken-sub-vanishes : ∀ {ν n} {Γ : Ktx ν n} {a} → (ktx-weaken Γ) / (Tp.sub a) ≡ Γ
ctx-weaken-sub-vanishes {Γ = Γ} {a} = begin
(Γ / Tp.wk) / (Tp.sub a)
≡⟨ sym $ map-∘ (λ s → s tp/tp Tp.sub a) (λ s → s tp/tp Tp.wk) Γ ⟩
(map (λ s → s tp/tp Tp.wk tp/tp (Tp.sub a)) Γ)
≡⟨ map-cong (TypeLemmas.wk-sub-vanishes) Γ ⟩
(map (λ s → s) Γ) ≡⟨ map-id Γ ⟩
Γ ∎
-}
module WtTypeLemmas where
open TypeLemmas hiding (_/_; weaken)
private
module Tp = TypeLemmas
module TmTp = TermTypeLemmas
module C = KtxLemmas
infixl 8 _/_
-- Type substitutions lifted to well-typed terms
_/_ : ∀ {m n k} {Γ : Ktx n m} {t : Term n m} {a : Type n} →
Γ ⊢ t ∈ a → (σ : Sub Type n k) → Γ ktx/ σ ⊢ t tm/tp σ ∈ a Tp./ σ
new c / σ = new c
var x / σ = ⊢substTp (lookup-⊙ x) (var x)
_/_ {Γ = Γ} (Λ ⊢t) σ = Λ (⊢substCtx eq (⊢t / σ ↑))
where
eq : (ktx-weaken Γ) ktx/ (σ Tp.↑) ≡ ktx-weaken (Γ ktx/ σ)
{-
eq = begin
(ktx-map (λ s → s tp/tp Tp.wk) Γ) ktx/ (σ Tp.↑)
≡⟨ KtxLemmas.ktx-map-cong (λ a → a ktx/ (σ Tp.↑))
(KtxLemmas.ktx-map-cong (λ a → Tp./-wk {t = a}) Γ) ⟩
(ktx-map Tp.weaken Γ) ⊙ (σ Tp.↑)
≡⟨ sym $ map-weaken-⊙ Γ σ ⟩
map Tp.weaken (Γ ⊙ σ)
≡⟨ (map-cong (λ a → sym $ Tp./-wk {t = a}) (Γ ⊙ σ)) ⟩
ktx-weaken (Γ ktx/ σ) ∎
-}
λ' a ⊢t / σ = λ' (a Tp./ σ) (⊢t / σ)
_[_] {a = a} ⊢t b / σ = ⊢substTp (sym (sub-commutes a)) ((⊢t / σ) [ b Tp./ σ ])
⊢s · ⊢t / σ = (⊢s / σ) · (⊢t / σ)
x / σ = ?
-- Weakening of terms with additional type variables lifted to
-- well-typed terms.
weaken : ∀ {m n} {Γ : Ktx n m} {t : Term n m} {a : Type n} →
Γ ⊢ t ∈ a → ktx-weaken Γ ⊢ tm-weaken t ∈ Tp.weaken a
weaken {t = t} {a = a} ⊢t = ⊢subst refl (TmTp./-wk t) (/-wk {t = a}) (⊢t / wk)
-- Weakening of terms with additional type variables lifted to
-- collections of well-typed terms.
weakenAll : ∀ {m n k} {Γ : Ktx n m} {ts : Vec (Term n m) k}
{as : Vec (Type n) k} → Γ ⊢ⁿ ts ∈ as →
ktx-weaken Γ ⊢ⁿ map tm-weaken ts ∈ map Tp.weaken as
weakenAll {ts = []} {[]} [] = []
weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts
-- Shorthand for single-variable type substitutions in well-typed
-- terms.
_[/_] : ∀ {m n} {Γ : Ktx (1 N+ n) m} {t a} →
Γ ⊢ t ∈ a → (b : Type n) → Γ ktx/ sub b ⊢ t tm/tp sub b ∈ a Tp./ sub b
⊢t [/ b ] = ⊢t / sub b
{-
tm[/tp]-preserves : ∀ {ν n} {Γ : Ctx ν n} {t τ} → Γ ⊢ Λ t ∈ ∀' τ → ∀ a → Γ ⊢ (t tm[/tp a ]) ∈ τ tp[/tp a ]
tm[/tp]-preserves {Γ = Γ} {t} {τ} (Λ p) a = ctx-subst C.ctx-weaken-sub-vanishes (p / (Tp.sub a))
where
ctx-subst = Prelude.subst (λ c → c ⊢ t tm[/tp a ] ∈ τ tp[/tp a ])
-}
module WtTermLemmas where
private
module Tp = TypeLemmas
module TmTp = TermTypeLemmas
module TmTm = TermTermSubst
module Var = VarSubst
module C = KtxLemmas
TmSub = TmTm.TermSub Term
infix 4 _⇒_⊢_
-- Well-typed term substitutions are collections of well-typed terms.
_⇒_⊢_ : ∀ {ν m k} → Ktx ν m → Ktx ν k → TmSub ν m k → Set
Γ ⇒ Δ ⊢ s = Δ ⊢ⁿ s ∈ (proj₁ Γ)
infixl 8 _/_ _/Var_
infix 10 _↑
-- Application of term variable substitutions (renaming) lifted to
-- well-typed terms.
_/Var_ : ∀ {ν m n} {K : Ktx ν n} {t : Term ν m} {a : Type ν}
(s : Sub Fin m n) → s ktx/Var K ⊢ t ∈ a → K ⊢ t TmTm./Var s ∈ a
_/Var_ {K = K} s (new c) = new c
_/Var_ {K = K} s (var x) = ?
-- ⊢substTp (sym (ktx/Var-lookup x ρ Γ)) (var (lookup x ρ))
_/Var_ {K = K} s (Λ ⊢t) = ?
-- Λ (ρ /Var ⊢substCtx (ktx/Var-weaken ρ Γ) ⊢t)
_/Var_ {K = K} s (λ' a ⊢t) = ?
-- λ' a (ρ Var.↑ /Var ⊢substCtx (ktx/Var-∷ a ρ Γ) ⊢t)
s /Var (⊢t [ b ]) = (s /Var ⊢t) [ b ]
s /Var (⊢s · ⊢t) = (s /Var ⊢s) · (s /Var ⊢t)
s /Var (x) = ?
-- Weakening of terms with additional term variables lifted to
-- well-typed terms.
weaken : ∀ {ν n} {K : Ktx ν n} {t : Term ν n} {a b : Type ν} →
K ⊢ t ∈ a → b ∷Γ K ⊢ TmTm.weaken t ∈ a
weaken {K = K} {b = b} ⊢t = ? -- Var.wk /Var ⊢substCtx (C.wkVar-/Var-∷ Γ b) ⊢t
-- Weakening of terms with additional term variables lifted to
-- collections of well-typed terms.
weakenAll : ∀ {ν n k} {K : Ktx ν n} {ts : Vec (Term ν n) k}
{as : Vec (Type ν) k} {b : Type ν} →
K ⊢ⁿ ts ∈ as → (b ∷Γ K) ⊢ⁿ map TmTm.weaken ts ∈ as
weakenAll {ts = []} {[]} [] = []
weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts
-- Lifting of well-typed term substitutions.
_↑ : ∀ {ν n} {Γ : Ktx ν n} {Δ : Ktx ν n} {ρ b} →
Γ ⇒ Δ ⊢ ρ → b ∷Γ Γ ⇒ b ∷Γ Δ ⊢ ρ TmTm.↑
⊢ρ ↑ = var zero ∷ weakenAll ⊢ρ
-- The well-typed identity substitution.
id : ∀ {ν n} {K : Ktx ν n} → K ⇒ K ⊢ TmTm.id
id {K = K} = ?
-- id {zero} {._} {K = [] , _} = []
-- id {suc _} {._} {K = a ∷ Γ , _} = id ↑
-- Well-typed weakening (as a substitution).
wk : ∀ {m n} {Γ : Ktx n m} {a} → Γ ⇒ a ∷Γ Γ ⊢ TmTm.wk
wk = weakenAll id
-- A well-typed substitution which only replaces the first variable.
sub : ∀ {ν n} {K : Ktx ν n} {t a} → K ⊢ t ∈ a → a ∷Γ K ⇒ K ⊢ TmTm.sub t
sub ⊢t = ⊢t ∷ id
-- Application of term substitutions lifted to well-typed terms
_/_ : ∀ {ν n} {K : Ktx ν n} {Δ : Ktx ν n} {t a s} →
K ⊢ t ∈ a → K ⇒ Δ ⊢ s → Δ ⊢ t TmTm./ s ∈ a
new c / ⊢ρ = new c
var x / ⊢ρ = lookup-⊢ x ⊢ρ
_/_ {K = K} {Δ = Δ} {s = s} (Λ ⊢t) ⊢ρ = Λ (⊢t / weaken-⊢p)
where
weaken-⊢p : ktx-weaken K ⇒ ktx-weaken Δ ⊢ map tm-weaken s
weaken-⊢p = (WtTypeLemmas.weakenAll ⊢ρ)
λ' a ⊢t / ⊢ρ = λ' a (⊢t / ⊢ρ ↑)
(⊢t [ a ]) / ⊢ρ = (⊢t / ⊢ρ) [ a ]
(⊢s · ⊢t) / ⊢ρ = (⊢s / ⊢ρ) · (⊢t / ⊢ρ)
-- Shorthand for well-typed single-variable term substitutions.
_[/_] : ∀ {m n} {Γ : Ctx n m} {s t a b} →
b ∷ Γ ⊢ s ∈ a → Γ ⊢ t ∈ b → Γ ⊢ s TmTm./ TmTm.sub t ∈ a
⊢s [/ ⊢t ] = ⊢s / sub ⊢t
tm[/tm]-preserves : ∀ {ν n} {Γ : Ctx ν n} {t u a b} →
b ∷ Γ ⊢ t ∈ a → Γ ⊢ u ∈ b → Γ ⊢ (t tm[/tm u ]) ∈ a
tm[/tm]-preserves ⊢s ⊢t = ⊢s / sub ⊢t
open WtTypeLemmas public using ()
renaming (weaken to ⊢tp-weaken)
open WtTermLemmas public using ()
renaming (_/_ to _⊢/tp_; _[/_] to _⊢[/_]; weaken to ⊢weaken)
-}
|
{
"alphanum_fraction": 0.4819356977,
"avg_line_length": 39.5672131148,
"ext": "agda",
"hexsha": "222304ad04ae5ba648d6f7bc0a355fc4e17cf0d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Substitutions/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Substitutions/Lemmas.agda",
"max_line_length": 110,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Substitutions/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 5242,
"size": 12068
}
|
module BasicIS4.Metatheory.DyadicGentzen-BasicKripkeBozicDosen where
open import BasicIS4.Syntax.DyadicGentzen public
open import BasicIS4.Semantics.BasicKripkeBozicDosen public hiding (_⊨_) -- TODO
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
eval (var i) γ δ = lookup i γ
eval (lam t) γ δ = λ ξ a → eval t (mono⊩⋆ ξ γ , a) (λ ζ →
let _ , (ζ′ , ξ′) = ≤⨾R→R⨾≤ (_ , (ξ , ζ))
in mono⊩⋆ ξ′ (δ ζ′))
eval (app {A} {B} t u) γ δ = _⟪$⟫_ {A} {B} (eval t γ δ) (eval u γ δ)
eval (mvar i) γ δ = lookup i (δ reflR)
eval (box t) γ δ = λ ζ → eval t ∙ (λ ζ′ → δ (transR ζ ζ′))
eval (unbox t u) γ δ = eval u γ (λ ζ → δ ζ , (eval t γ δ) ζ)
eval (pair t u) γ δ = eval t γ δ , eval u γ δ
eval (fst t) γ δ = π₁ (eval t γ δ)
eval (snd t) γ δ = π₂ (eval t γ δ)
eval unit γ δ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
|
{
"alphanum_fraction": 0.5175438596,
"avg_line_length": 41.04,
"ext": "agda",
"hexsha": "22585bb964f0f34dbe02e1ad7ebb0d7049e247f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Metatheory/DyadicGentzen-BasicKripkeBozicDosen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Metatheory/DyadicGentzen-BasicKripkeBozicDosen.agda",
"max_line_length": 80,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Metatheory/DyadicGentzen-BasicKripkeBozicDosen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 404,
"size": 1026
}
|
module Coirc.Network.Primitive where
{-# IMPORT Coirc.Network.FFI #-}
{-# IMPORT System.IO #-}
open import Data.String
open import IO.Primitive
open import Foreign.Haskell
postulate Handle : Set
{-# COMPILED_TYPE Handle System.IO.Handle #-}
postulate hConnect : String → IO Handle
{-# COMPILED hConnect Coirc.Network.FFI.hConnect #-}
postulate hPutStr : Handle → String → IO Unit
{-# COMPILED hPutStr System.IO.hPutStr #-}
postulate hGetLine : Handle → IO String
{-# COMPILED hGetLine System.IO.hGetLine #-}
|
{
"alphanum_fraction": 0.7378640777,
"avg_line_length": 25.75,
"ext": "agda",
"hexsha": "94059b41ce1336a9338993961e3b10ede60f3dba",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:53:29.000Z",
"max_forks_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/coirc",
"max_forks_repo_path": "src/Coirc/Network/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/coirc",
"max_issues_repo_path": "src/Coirc/Network/Primitive.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/coirc",
"max_stars_repo_path": "src/Coirc/Network/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 129,
"size": 515
}
|
module Algebra.Dioid.Bool.Theorems where
open import Algebra.Dioid
open import Algebra.Dioid.Bool
or-left-congruence : ∀ {b c d : Bool} -> b ≡ c -> (b or d) ≡ (c or d)
or-left-congruence {b} {.b} {d} reflexivity = reflexivity
or-left-congruence {b} {c} {d} (symmetry eq) = symmetry (or-left-congruence eq)
or-left-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (or-left-congruence eq) (or-left-congruence eq₁)
or-right-congruence : ∀ {b c d : Bool} -> c ≡ d -> (b or c) ≡ (b or d)
or-right-congruence {b} {c} {.c} reflexivity = reflexivity
or-right-congruence {b} {c} {d} (symmetry eq) = symmetry (or-right-congruence eq)
or-right-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (or-right-congruence eq) (or-right-congruence eq₁)
and-left-congruence : ∀ {b c d : Bool} -> b ≡ c -> (b and d) ≡ (c and d)
and-left-congruence {b} {.b} {d} reflexivity = reflexivity
and-left-congruence {b} {c} {d} (symmetry eq) = symmetry (and-left-congruence eq)
and-left-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (and-left-congruence eq) (and-left-congruence eq₁)
and-right-congruence : ∀ {b c d : Bool} -> c ≡ d -> (b and c) ≡ (b and d)
and-right-congruence {b} {c} {.c} reflexivity = reflexivity
and-right-congruence {b} {c} {d} (symmetry eq) = symmetry (and-right-congruence eq)
and-right-congruence {b} {c} {d} (transitivity eq eq₁) = transitivity (and-right-congruence eq) (and-right-congruence eq₁)
or-idempotence : ∀ {b : Bool} -> (b or b) ≡ b
or-idempotence {true} = reflexivity
or-idempotence {false} = reflexivity
or-commutativity : ∀ {b c : Bool} -> (b or c) ≡ (c or b)
or-commutativity {true} {true} = reflexivity
or-commutativity {true} {false} = reflexivity
or-commutativity {false} {true} = reflexivity
or-commutativity {false} {false} = reflexivity
or-associativity : ∀ {b c d : Bool} -> (b or (c or d)) ≡ ((b or c) or d)
or-associativity {true} {c} {d} = reflexivity
or-associativity {false} {true} {d} = reflexivity
or-associativity {false} {false} {true} = reflexivity
or-associativity {false} {false} {false} = reflexivity
or-false-identity : ∀ {b : Bool} -> (b or false) ≡ b
or-false-identity {true} = reflexivity
or-false-identity {false} = reflexivity
and-associativity : ∀ {b c d : Bool} -> (b and (c and d)) ≡ ((b and c) and d)
and-associativity {true} {true} {true} = reflexivity
and-associativity {true} {true} {false} = reflexivity
and-associativity {true} {false} {d} = reflexivity
and-associativity {false} {c} {d} = reflexivity
and-left-false : ∀ {b : Bool} -> (false and b) ≡ false
and-left-false {b} = reflexivity
and-right-false : ∀ {b : Bool} -> (b and false) ≡ false
and-right-false {true} = reflexivity
and-right-false {false} = reflexivity
and-left-true : ∀ {b : Bool} -> (true and b) ≡ b
and-left-true {true} = reflexivity
and-left-true {false} = reflexivity
and-right-true : ∀ {b : Bool} -> (b and true) ≡ b
and-right-true {true} = reflexivity
and-right-true {false} = reflexivity
left-distributivity : ∀ {b c d : Bool} -> (b and (c or d)) ≡ ((b and c) or (b and d))
left-distributivity {true} {true} {d} = reflexivity
left-distributivity {true} {false} {true} = reflexivity
left-distributivity {true} {false} {false} = reflexivity
left-distributivity {false} {c} {d} = reflexivity
right-distributivity : ∀ {b c d : Bool} -> ((b or c) and d) ≡ ((b and d) or (c and d))
right-distributivity {true} {true} {true} = reflexivity
right-distributivity {true} {true} {false} = reflexivity
right-distributivity {true} {false} {true} = reflexivity
right-distributivity {true} {false} {false} = reflexivity
right-distributivity {false} {true} {true} = reflexivity
right-distributivity {false} {true} {false} = reflexivity
right-distributivity {false} {false} {d} = reflexivity
bool-dioid : Dioid Bool _≡_
bool-dioid = record
{ zero = false
; one = true
; _+_ = _or_
; _*_ = _and_
; reflexivity = reflexivity
; symmetry = symmetry
; transitivity = transitivity
; +left-congruence = or-left-congruence
; *left-congruence = and-left-congruence
; *right-congruence = and-right-congruence
; +idempotence = or-idempotence
; +commutativity = or-commutativity
; +associativity = or-associativity
; +zero-identity = or-false-identity
; *associativity = and-associativity
; *left-zero = λ {r} → reflexivity
; *right-zero = and-right-false
; *left-identity = and-left-true
; *right-identity = and-right-true
; left-distributivity = left-distributivity
; right-distributivity = right-distributivity
}
|
{
"alphanum_fraction": 0.675049636,
"avg_line_length": 41.2090909091,
"ext": "agda",
"hexsha": "045a83fe39a9f38b7a84dcee87250c9226e1e82e",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2019-05-09T23:53:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-17T20:48:20.000Z",
"max_forks_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "snowleopard/alga-proofs",
"max_forks_repo_path": "src/Algebra/Dioid/Bool/Theorems.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_issues_repo_issues_event_max_datetime": "2018-06-23T13:54:02.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-04-12T16:25:13.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "snowleopard/alga-proofs",
"max_issues_repo_path": "src/Algebra/Dioid/Bool/Theorems.agda",
"max_line_length": 122,
"max_stars_count": 60,
"max_stars_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "snowleopard/alga-proofs",
"max_stars_repo_path": "src/Algebra/Dioid/Bool/Theorems.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:05:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-12-27T14:57:04.000Z",
"num_tokens": 1561,
"size": 4533
}
|
{-# OPTIONS --without-K --exact-split #-}
module 11-function-extensionality where
import 10-truncation-levels
open 10-truncation-levels public
-- Section 9.1 Equivalent forms of Function Extensionality.
-- We first define the types Funext, Ind-htpy, and Weak-Funext.
htpy-eq :
{i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} →
(Id f g) → (f ~ g)
htpy-eq refl = refl-htpy
FUNEXT :
{i j : Level} {A : UU i} {B : A → UU j} →
(f : (x : A) → B x) → UU (i ⊔ j)
FUNEXT f = is-fiberwise-equiv (λ g → htpy-eq {f = f} {g = g})
ev-refl-htpy :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) (C : (g : (x : A) → B x) → (f ~ g) → UU l3) →
((g : (x : A) → B x) (H : f ~ g) → C g H) → C f refl-htpy
ev-refl-htpy f C φ = φ f refl-htpy
IND-HTPY :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) → UU _
IND-HTPY {l1} {l2} {l3} {A} {B} f =
(C : (g : (x : A) → B x) → (f ~ g) → UU l3) → sec (ev-refl-htpy f C)
WEAK-FUNEXT :
{i j : Level} (A : UU i) (B : A → UU j) → UU (i ⊔ j)
WEAK-FUNEXT A B =
((x : A) → is-contr (B x)) → is-contr ((x : A) → B x)
-- Our goal is now to show that function extensionality holds if and only if the homotopy induction principle is valid, if and only if the weak function extensionality principle holds. This is Theorem 9.1.1 in the notes.
abstract
is-contr-total-htpy-Funext :
{i j : Level} {A : UU i} {B : A → UU j} →
(f : (x : A) → B x) → FUNEXT f → is-contr (Σ ((x : A) → B x) (λ g → f ~ g))
is-contr-total-htpy-Funext f funext-f =
fundamental-theorem-id' f refl-htpy (λ g → htpy-eq {g = g}) funext-f
ev-pair :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : Σ A B → UU l3} →
((t : Σ A B) → C t) → (x : A) (y : B x) → C (pair x y)
ev-pair f x y = f (pair x y)
sec-ev-pair :
{l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2)
(C : Σ A B → UU l3) → sec (ev-pair {A = A} {B = B} {C = C})
sec-ev-pair A B C =
pair (λ f → ind-Σ f) (λ f → refl)
triangle-ev-refl-htpy :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) (C : Σ ((x : A) → B x) (λ g → f ~ g) → UU l3) →
ev-pt (Σ ((x : A) → B x) (λ g → f ~ g)) (pair f refl-htpy) C ~
((ev-refl-htpy f (λ x y → C (pair x y))) ∘ (ev-pair {C = C}))
triangle-ev-refl-htpy f C φ = refl
abstract
IND-HTPY-FUNEXT :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) →
FUNEXT f → IND-HTPY {l3 = l3} f
IND-HTPY-FUNEXT {l3 = l3} {A = A} {B = B} f funext-f =
Ind-identity-system l3 f
( refl-htpy)
( is-contr-total-htpy-Funext f funext-f)
abstract
FUNEXT-IND-HTPY :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) →
IND-HTPY {l3 = l1 ⊔ l2} f → FUNEXT f
FUNEXT-IND-HTPY f ind-htpy-f =
fundamental-theorem-id-IND-identity-system f
( refl-htpy)
( ind-htpy-f)
( λ g → htpy-eq)
abstract
WEAK-FUNEXT-FUNEXT :
{l1 l2 : Level} →
((A : UU l1) (B : A → UU l2) (f : (x : A) → B x) → FUNEXT f) →
((A : UU l1) (B : A → UU l2) → WEAK-FUNEXT A B)
WEAK-FUNEXT-FUNEXT funext A B is-contr-B =
let pi-center = (λ x → center (is-contr-B x)) in
pair
( pi-center)
( λ f → inv-is-equiv (funext A B pi-center f)
( λ x → contraction (is-contr-B x) (f x)))
abstract
FUNEXT-WEAK-FUNEXT :
{l1 l2 : Level} →
((A : UU l1) (B : A → UU l2) → WEAK-FUNEXT A B) →
((A : UU l1) (B : A → UU l2) (f : (x : A) → B x) → FUNEXT f)
FUNEXT-WEAK-FUNEXT weak-funext A B f =
fundamental-theorem-id f
( refl-htpy)
( is-contr-retract-of
( (x : A) → Σ (B x) (λ b → Id (f x) b))
( pair
( λ t x → pair (pr1 t x) (pr2 t x))
( pair (λ t → pair (λ x → pr1 (t x)) (λ x → pr2 (t x)))
( λ t → eq-pair refl refl)))
( weak-funext A
( λ x → Σ (B x) (λ b → Id (f x) b))
( λ x → is-contr-total-path (f x))))
( λ g → htpy-eq {g = g})
-- From now on we will be assuming that function extensionality holds
postulate funext : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) → FUNEXT f
equiv-funext : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} →
(Id f g) ≃ (f ~ g)
equiv-funext {f = f} {g} = pair htpy-eq (funext f g)
abstract
eq-htpy :
{i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} →
(f ~ g) → Id f g
eq-htpy = inv-is-equiv (funext _ _)
issec-eq-htpy :
{i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} →
((htpy-eq {f = f} {g = g}) ∘ (eq-htpy {f = f} {g = g})) ~ id
issec-eq-htpy = issec-inv-is-equiv (funext _ _)
isretr-eq-htpy :
{i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} →
((eq-htpy {f = f} {g = g}) ∘ (htpy-eq {f = f} {g = g})) ~ id
isretr-eq-htpy = isretr-inv-is-equiv (funext _ _)
is-equiv-eq-htpy :
{i j : Level} {A : UU i} {B : A → UU j}
(f g : (x : A) → B x) → is-equiv (eq-htpy {f = f} {g = g})
is-equiv-eq-htpy f g = is-equiv-inv-is-equiv (funext _ _)
eq-htpy-refl-htpy :
{i j : Level} {A : UU i} {B : A → UU j}
(f : (x : A) → B x) → Id (eq-htpy (refl-htpy {f = f})) refl
eq-htpy-refl-htpy f = isretr-eq-htpy refl
{-
The immediate proof of the following theorem would be
is-contr-total-htpy-Funext f (funext f)
We give a different proof to ensure that the center of contraction is the
expected thing:
pair f refl-htpy
-}
abstract
is-contr-total-htpy :
{i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) →
is-contr (Σ ((x : A) → B x) (λ g → f ~ g))
is-contr-total-htpy f =
pair
( pair f refl-htpy)
( λ t →
( inv (contraction
( is-contr-total-htpy-Funext f (funext f))
( pair f refl-htpy))) ∙
( contraction (is-contr-total-htpy-Funext f (funext f)) t))
abstract
Ind-htpy :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) →
IND-HTPY {l3 = l3} f
Ind-htpy f = IND-HTPY-FUNEXT f (funext f)
ind-htpy :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) (C : (g : (x : A) → B x) → (f ~ g) → UU l3) →
C f refl-htpy → {g : (x : A) → B x} (H : f ~ g) → C g H
ind-htpy f C t {g} = pr1 (Ind-htpy f C) t g
comp-htpy :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) (C : (g : (x : A) → B x) → (f ~ g) → UU l3) →
(c : C f refl-htpy) →
Id (ind-htpy f C c refl-htpy) c
comp-htpy f C = pr2 (Ind-htpy f C)
abstract
is-contr-Π :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
((x : A) → is-contr (B x)) → is-contr ((x : A) → B x)
is-contr-Π {A = A} {B = B} = WEAK-FUNEXT-FUNEXT (λ X Y → funext) A B
is-trunc-Π :
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} →
((x : A) → is-trunc k (B x)) → is-trunc k ((x : A) → B x)
is-trunc-Π neg-two-𝕋 is-trunc-B = is-contr-Π is-trunc-B
is-trunc-Π (succ-𝕋 k) is-trunc-B f g =
is-trunc-is-equiv k (f ~ g) htpy-eq
( funext f g)
( is-trunc-Π k (λ x → is-trunc-B x (f x) (g x)))
is-prop-Π :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
is-subtype B → is-prop ((x : A) → B x)
is-prop-Π = is-trunc-Π neg-one-𝕋
Π-Prop :
{l1 l2 : Level} (P : UU-Prop l1) →
(type-Prop P → UU-Prop l2) → UU-Prop (l1 ⊔ l2)
Π-Prop P Q =
pair
( (p : type-Prop P) → type-Prop (Q p))
( is-prop-Π (λ p → is-prop-type-Prop (Q p)))
abstract
is-set-Π :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
((x : A) → is-set (B x)) → is-set ((x : A) → (B x))
is-set-Π = is-trunc-Π zero-𝕋
Π-Set :
{l1 l2 : Level} (A : UU-Set l1) →
(type-Set A → UU-Set l2) → UU-Set (l1 ⊔ l2)
Π-Set A B =
pair
( (x : type-Set A) → type-Set (B x))
( is-set-Π (λ x → is-set-type-Set (B x)))
abstract
is-trunc-function-type :
{l1 l2 : Level} (k : 𝕋) (A : UU l1) (B : UU l2) →
is-trunc k B → is-trunc k (A → B)
is-trunc-function-type k A B is-trunc-B =
is-trunc-Π k {B = λ (x : A) → B} (λ x → is-trunc-B)
is-prop-function-type :
{l1 l2 : Level} (A : UU l1) (B : UU l2) →
is-prop B → is-prop (A → B)
is-prop-function-type = is-trunc-function-type neg-one-𝕋
is-set-function-type :
{l1 l2 : Level} (A : UU l1) (B : UU l2) →
is-set B → is-set (A → B)
is-set-function-type = is-trunc-function-type zero-𝕋
{- The type theoretic principle of choice is the assertion that Π distributes
over Σ. In other words, there is an equivalence
((x : A) → Σ (B x) (C x)) ≃ Σ ((x : A) → B x) (λ f → (x : A) → C x (f x)).
In the following we construct this equivalence, and we also characterize the
relevant identity types.
We call the type on the left-hand side Π-total-fam, and we call the type on
the right-hand side type-choice-∞. -}
Π-total-fam :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(C : (x : A) → B x → UU l3) → UU (l1 ⊔ (l2 ⊔ l3))
Π-total-fam {A = A} {B} C = (x : A) → Σ (B x) (C x)
type-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2}
(C : (x : A) → B x → UU l3) → UU (l1 ⊔ (l2 ⊔ l3))
type-choice-∞ {A = A} {B} C = Σ ((x : A) → B x) (λ f → (x : A) → C x (f x))
{- We compute the identity type of Π-total-fam. Note that its characterization
is again of the form Π-total-fam. -}
{- We compute the identity type of type-choice-∞. Note that its identity
type is again of the form type-choice-∞. -}
Eq-type-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : type-choice-∞ C) → UU (l1 ⊔ (l2 ⊔ l3))
Eq-type-choice-∞ {A = A} {B} C t t' =
type-choice-∞
( λ (x : A) (p : Id ((pr1 t) x) ((pr1 t') x)) →
Id (tr (C x) p ((pr2 t) x)) ((pr2 t') x))
reflexive-Eq-type-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t : type-choice-∞ C) → Eq-type-choice-∞ C t t
reflexive-Eq-type-choice-∞ C (pair f g) = pair refl-htpy refl-htpy
Eq-type-choice-∞-eq :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : type-choice-∞ C) → Id t t' → Eq-type-choice-∞ C t t'
Eq-type-choice-∞-eq C t .t refl = reflexive-Eq-type-choice-∞ C t
abstract
is-contr-total-Eq-type-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t : type-choice-∞ C) →
is-contr (Σ (type-choice-∞ C) (Eq-type-choice-∞ C t))
is-contr-total-Eq-type-choice-∞ {A = A} {B} C t =
is-contr-total-Eq-structure
( λ f g H → (x : A) → Id (tr (C x) (H x) ((pr2 t) x)) (g x))
( is-contr-total-htpy (pr1 t))
( pair (pr1 t) refl-htpy)
( is-contr-total-htpy (pr2 t))
is-equiv-Eq-type-choice-∞-eq :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : type-choice-∞ C) → is-equiv (Eq-type-choice-∞-eq C t t')
is-equiv-Eq-type-choice-∞-eq C t =
fundamental-theorem-id t
( reflexive-Eq-type-choice-∞ C t)
( is-contr-total-Eq-type-choice-∞ C t)
( Eq-type-choice-∞-eq C t)
eq-Eq-type-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
{t t' : type-choice-∞ C} → Eq-type-choice-∞ C t t' → Id t t'
eq-Eq-type-choice-∞ C {t} {t'} =
inv-is-equiv (is-equiv-Eq-type-choice-∞-eq C t t')
choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
Π-total-fam C → type-choice-∞ C
choice-∞ φ = pair (λ x → pr1 (φ x)) (λ x → pr2 (φ x))
inv-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
type-choice-∞ C → Π-total-fam C
inv-choice-∞ ψ x = pair ((pr1 ψ) x) ((pr2 ψ) x)
issec-inv-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
( ( choice-∞ {A = A} {B = B} {C = C}) ∘
( inv-choice-∞ {A = A} {B = B} {C = C})) ~ id
issec-inv-choice-∞ {A = A} {C = C} (pair ψ ψ') =
eq-Eq-type-choice-∞ C (pair refl-htpy refl-htpy)
isretr-inv-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
( ( inv-choice-∞ {A = A} {B = B} {C = C}) ∘
( choice-∞ {A = A} {B = B} {C = C})) ~ id
isretr-inv-choice-∞ φ =
eq-htpy (λ x → eq-pair refl refl)
abstract
is-equiv-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
is-equiv (choice-∞ {A = A} {B = B} {C = C})
is-equiv-choice-∞ {A = A} {B = B} {C = C} =
is-equiv-has-inverse
( inv-choice-∞ {A = A} {B = B} {C = C})
( issec-inv-choice-∞ {A = A} {B = B} {C = C})
( isretr-inv-choice-∞ {A = A} {B = B} {C = C})
equiv-choice-∞ :
{ l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
Π-total-fam C ≃ type-choice-∞ C
equiv-choice-∞ = pair choice-∞ is-equiv-choice-∞
abstract
is-equiv-inv-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} →
is-equiv (inv-choice-∞ {A = A} {B = B} {C = C})
is-equiv-inv-choice-∞ {A = A} {B = B} {C = C} =
is-equiv-has-inverse
( choice-∞ {A = A} {B = B} {C = C})
( isretr-inv-choice-∞ {A = A} {B = B} {C = C})
( issec-inv-choice-∞ {A = A} {B = B} {C = C})
equiv-inv-choice-∞ :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) →
(type-choice-∞ C) ≃ (Π-total-fam C)
equiv-inv-choice-∞ C = pair inv-choice-∞ is-equiv-inv-choice-∞
mapping-into-Σ :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : B → UU l3} →
(A → Σ B C) → Σ (A → B) (λ f → (x : A) → C (f x))
mapping-into-Σ {B = B} = choice-∞ {B = λ x → B}
abstract
is-equiv-mapping-into-Σ :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
{C : B → UU l3} → is-equiv (mapping-into-Σ {A = A} {C = C})
is-equiv-mapping-into-Σ = is-equiv-choice-∞
{- Next we compute the identity type of products of total spaces. Note again
that the identity type of a product of total spaces is again a product of
total spaces. -}
Eq-Π-total-fam :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : (a : A) → Σ (B a) (C a)) → UU (l1 ⊔ (l2 ⊔ l3))
Eq-Π-total-fam {A = A} C t t' =
Π-total-fam (λ x (p : Id (pr1 (t x)) (pr1 (t' x))) →
Id (tr (C x) p (pr2 (t x))) (pr2 (t' x)))
reflexive-Eq-Π-total-fam :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t : (a : A) → Σ (B a) (C a)) → Eq-Π-total-fam C t t
reflexive-Eq-Π-total-fam C t a = pair refl refl
Eq-Π-total-fam-eq :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : (a : A) → Σ (B a) (C a)) → Id t t' → Eq-Π-total-fam C t t'
Eq-Π-total-fam-eq C t .t refl = reflexive-Eq-Π-total-fam C t
is-contr-total-Eq-Π-total-fam :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t : (a : A) → Σ (B a) (C a)) →
is-contr (Σ ((a : A) → Σ (B a) (C a)) (Eq-Π-total-fam C t))
is-contr-total-Eq-Π-total-fam {A = A} {B} C t =
is-contr-equiv'
( (a : A) →
Σ (Σ (B a) (C a)) (λ t' →
Σ (Id (pr1 (t a)) (pr1 t')) (λ p →
Id (tr (C a) p (pr2 (t a))) (pr2 t'))))
( equiv-choice-∞
{- ( λ x t' →
Σ ( Id (pr1 (t x)) (pr1 t'))
( λ p → Id (tr (C x) p (pr2 (t x))) (pr2 t')))-})
( is-contr-Π
( λ a →
is-contr-total-Eq-structure
( λ b c p → Id (tr (C a) p (pr2 (t a))) c)
( is-contr-total-path (pr1 (t a)))
( pair (pr1 (t a)) refl)
( is-contr-total-path (pr2 (t a)))))
is-equiv-Eq-Π-total-fam-eq :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : (a : A) → Σ (B a) (C a)) → is-equiv (Eq-Π-total-fam-eq C t t')
is-equiv-Eq-Π-total-fam-eq C t =
fundamental-theorem-id t
( reflexive-Eq-Π-total-fam C t)
( is-contr-total-Eq-Π-total-fam C t)
( Eq-Π-total-fam-eq C t)
eq-Eq-Π-total-fam :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3)
(t t' : (a : A) → Σ (B a) (C a)) → Eq-Π-total-fam C t t' → Id t t'
eq-Eq-Π-total-fam C t t' = inv-is-equiv (is-equiv-Eq-Π-total-fam-eq C t t')
-- Section 9.2 Universal properties
abstract
is-equiv-ev-pair :
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : Σ A B → UU l3} →
is-equiv (ev-pair {C = C})
is-equiv-ev-pair =
pair
( sec-ev-pair _ _ _)
( pair ind-Σ
( λ f → eq-htpy
( ind-Σ
{C = (λ t → Id (ind-Σ (ev-pair f) t) (f t))}
(λ x y → refl))))
ev-refl :
{l1 l2 : Level} {A : UU l1} (a : A) {B : (x : A) → Id a x → UU l2} →
((x : A) (p : Id a x) → B x p) → B a refl
ev-refl a f = f a refl
abstract
is-equiv-ev-refl :
{l1 l2 : Level} {A : UU l1} (a : A)
{B : (x : A) → Id a x → UU l2} → is-equiv (ev-refl a {B = B})
is-equiv-ev-refl a =
is-equiv-has-inverse
( ind-Id a _)
( λ b → refl)
( λ f → eq-htpy
( λ x → eq-htpy
( ind-Id a
( λ x' p' → Id (ind-Id a _ (f a refl) x' p') (f x' p'))
( refl) x)))
-- Section 9.3 Composing with equivalences.
precomp-Π :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) →
((b : B) → C b) → ((a : A) → C (f a))
precomp-Π f C h a = h (f a)
tr-precompose-fam :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3)
(f : A → B) {x y : A} (p : Id x y) → tr C (ap f p) ~ tr (λ x → C (f x)) p
tr-precompose-fam C f refl = refl-htpy
abstract
is-equiv-precomp-Π-is-half-adjoint-equivalence :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-half-adjoint-equivalence f →
(C : B → UU l3) → is-equiv (precomp-Π f C)
is-equiv-precomp-Π-is-half-adjoint-equivalence f
( pair g (pair issec-g (pair isretr-g coh))) C =
is-equiv-has-inverse
(λ s y → tr C (issec-g y) (s (g y)))
( λ s → eq-htpy (λ x →
( ap (λ t → tr C t (s (g (f x)))) (coh x)) ∙
( ( tr-precompose-fam C f (isretr-g x) (s (g (f x)))) ∙
( apd s (isretr-g x)))))
( λ s → eq-htpy λ y → apd s (issec-g y))
abstract
is-equiv-precomp-Π-is-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f →
(C : B → UU l3) → is-equiv (precomp-Π f C)
is-equiv-precomp-Π-is-equiv f is-equiv-f =
is-equiv-precomp-Π-is-half-adjoint-equivalence f
( is-half-adjoint-equivalence-is-path-split f
( is-path-split-is-equiv f is-equiv-f))
precomp-Π-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
(C : B → UU l3) → ((b : B) → C b) ≃ ((a : A) → C (map-equiv e a))
precomp-Π-equiv e C =
pair
( precomp-Π (map-equiv e) C)
( is-equiv-precomp-Π-is-equiv (map-equiv e) (is-equiv-map-equiv e) C)
abstract
ind-is-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
(C : B → UU l3) (f : A → B) (is-equiv-f : is-equiv f) →
((x : A) → C (f x)) → ((y : B) → C y)
ind-is-equiv C f is-equiv-f =
inv-is-equiv (is-equiv-precomp-Π-is-equiv f is-equiv-f C)
comp-is-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3)
(f : A → B) (is-equiv-f : is-equiv f) (h : (x : A) → C (f x)) →
Id (λ x → (ind-is-equiv C f is-equiv-f h) (f x)) h
comp-is-equiv C f is-equiv-f h =
issec-inv-is-equiv (is-equiv-precomp-Π-is-equiv f is-equiv-f C) h
htpy-comp-is-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
(C : B → UU l3) (f : A → B) (is-equiv-f : is-equiv f)
(h : (x : A) → C (f x)) →
(λ x → (ind-is-equiv C f is-equiv-f h) (f x)) ~ h
htpy-comp-is-equiv C f is-equiv-f h = htpy-eq (comp-is-equiv C f is-equiv-f h)
precomp :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : UU l3) →
(B → C) → (A → C)
precomp f C = precomp-Π f (λ b → C)
abstract
is-equiv-precomp-is-equiv-precomp-Π :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
((C : B → UU l3) → is-equiv (precomp-Π f C)) →
((C : UU l3) → is-equiv (precomp f C))
is-equiv-precomp-is-equiv-precomp-Π f is-equiv-precomp-Π-f C =
is-equiv-precomp-Π-f (λ y → C)
abstract
is-equiv-precomp-is-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f →
(C : UU l3) → is-equiv (precomp f C)
is-equiv-precomp-is-equiv f is-equiv-f =
is-equiv-precomp-is-equiv-precomp-Π f
( is-equiv-precomp-Π-is-equiv f is-equiv-f)
equiv-precomp-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) (C : UU l3) →
(B → C) ≃ (A → C)
equiv-precomp-equiv e C =
pair
( precomp (map-equiv e) C)
( is-equiv-precomp-is-equiv (map-equiv e) (is-equiv-map-equiv e) C)
abstract
is-equiv-is-equiv-precomp-subuniverse :
{ l1 l2 : Level}
( α : Level → Level) (P : (l : Level) → UU l → UU (α l))
( A : Σ (UU l1) (P l1)) (B : Σ (UU l2) (P l2)) (f : pr1 A → pr1 B) →
( (l : Level) (C : Σ (UU l) (P l)) →
is-equiv (precomp f (pr1 C))) →
is-equiv f
is-equiv-is-equiv-precomp-subuniverse α P A B f is-equiv-precomp-f =
let retr-f = center (is-contr-map-is-equiv (is-equiv-precomp-f _ A) id) in
is-equiv-has-inverse
( pr1 retr-f)
( htpy-eq (ap pr1 (is-prop-is-contr'
( is-contr-map-is-equiv (is-equiv-precomp-f _ B) f)
( pair
( f ∘ (pr1 retr-f))
( ap (λ (g : pr1 A → pr1 A) → f ∘ g) (pr2 retr-f)))
( pair id refl))))
( htpy-eq (pr2 retr-f))
abstract
is-equiv-is-equiv-precomp :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
((l : Level) (C : UU l) → is-equiv (precomp f C)) → is-equiv f
is-equiv-is-equiv-precomp {A = A} {B = B} f is-equiv-precomp-f =
is-equiv-is-equiv-precomp-subuniverse
( const Level Level lzero)
( λ l X → unit)
( pair A star)
( pair B star)
( f)
( λ l C → is-equiv-precomp-f l (pr1 C))
-- Exercises
-- Exercise 9.1
abstract
is-equiv-htpy-inv :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f g : (x : A) → B x) → is-equiv (htpy-inv {f = f} {g = g})
is-equiv-htpy-inv f g =
is-equiv-has-inverse
( htpy-inv)
( λ H → eq-htpy (λ x → inv-inv (H x)))
( λ H → eq-htpy (λ x → inv-inv (H x)))
equiv-htpy-inv :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f g : (x : A) → B x) → (f ~ g) ≃ (g ~ f)
equiv-htpy-inv f g = pair htpy-inv (is-equiv-htpy-inv f g)
abstract
is-equiv-htpy-concat :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
{f g : (x : A) → B x} (H : f ~ g) →
(h : (x : A) → B x) → is-equiv (htpy-concat H h)
is-equiv-htpy-concat {A = A} {B = B} {f} =
ind-htpy f
( λ g H → (h : (x : A) → B x) → is-equiv (htpy-concat H h))
( λ h → is-equiv-id (f ~ h))
equiv-htpy-concat :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
{f g : (x : A) → B x} (H : f ~ g) (h : (x : A) → B x) →
(g ~ h) ≃ (f ~ h)
equiv-htpy-concat H h =
pair (htpy-concat H h) (is-equiv-htpy-concat H h)
inv-htpy-concat' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) {g h : (x : A) → B x} →
(g ~ h) → (f ~ h) → (f ~ g)
inv-htpy-concat' f K = htpy-concat' f (htpy-inv K)
issec-inv-htpy-concat' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) {g h : (x : A) → B x}
(K : g ~ h) → ((htpy-concat' f K) ∘ (inv-htpy-concat' f K)) ~ id
issec-inv-htpy-concat' f K L =
eq-htpy (λ x → issec-inv-concat' (f x) (K x) (L x))
isretr-inv-htpy-concat' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) {g h : (x : A) → B x}
(K : g ~ h) → ((inv-htpy-concat' f K) ∘ (htpy-concat' f K)) ~ id
isretr-inv-htpy-concat' f K L =
eq-htpy (λ x → isretr-inv-concat' (f x) (K x) (L x))
is-equiv-htpy-concat' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) {g h : (x : A) → B x} (K : g ~ h) →
is-equiv (htpy-concat' f K)
is-equiv-htpy-concat' f K =
is-equiv-has-inverse
( inv-htpy-concat' f K)
( issec-inv-htpy-concat' f K)
( isretr-inv-htpy-concat' f K)
equiv-htpy-concat' :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2}
(f : (x : A) → B x) {g h : (x : A) → B x} (K : g ~ h) →
(f ~ g) ≃ (f ~ h)
equiv-htpy-concat' f K =
pair (htpy-concat' f K) (is-equiv-htpy-concat' f K)
-- Exercise 9.2
abstract
is-subtype-is-contr :
{l : Level} → is-subtype {lsuc l} {A = UU l} is-contr
is-subtype-is-contr A =
is-prop-is-contr-if-inh
( λ is-contr-A →
is-contr-Σ
( is-contr-A)
( λ x → is-contr-Π (is-prop-is-contr is-contr-A x)))
abstract
is-prop-is-trunc :
{l : Level} (k : 𝕋) (A : UU l) → is-prop (is-trunc k A)
is-prop-is-trunc neg-two-𝕋 = is-subtype-is-contr
is-prop-is-trunc (succ-𝕋 k) A =
is-prop-Π (λ x → is-prop-Π (λ y → is-prop-is-trunc k (Id x y)))
abstract
is-prop-is-prop :
{l : Level} (A : UU l) → is-prop (is-prop A)
is-prop-is-prop = is-prop-is-trunc neg-one-𝕋
abstract
is-prop-is-set :
{l : Level} (A : UU l) → is-prop (is-set A)
is-prop-is-set = is-prop-is-trunc zero-𝕋
-- Exercise 9.3
postcomp :
{l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (A : UU l3) →
(X → Y) → (A → X) → (A → Y)
postcomp A f h = f ∘ h
abstract
is-equiv-is-equiv-postcomp :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) →
({l3 : Level} (A : UU l3) → is-equiv (postcomp A f)) → is-equiv f
is-equiv-is-equiv-postcomp {X = X} {Y = Y} f post-comp-equiv-f =
let sec-f = center (is-contr-map-is-equiv (post-comp-equiv-f Y) id) in
is-equiv-has-inverse
( pr1 sec-f)
( htpy-eq (pr2 sec-f))
( htpy-eq (ap pr1 (is-prop-is-contr'
( is-contr-map-is-equiv (post-comp-equiv-f X) f)
( pair ((pr1 sec-f) ∘ f) (ap (λ t → t ∘ f) (pr2 sec-f)))
( pair id refl))))
{- The following version of the same theorem works when X and Y are in the same
universe. The condition of inducing equivalences by postcomposition is
simplified to that universe. -}
is-equiv-is-equiv-postcomp' :
{l : Level} {X : UU l} {Y : UU l} (f : X → Y) →
((A : UU l) → is-equiv (postcomp A f)) → is-equiv f
is-equiv-is-equiv-postcomp'
{l} {X} {Y} f is-equiv-postcomp-f =
let sec-f = center (is-contr-map-is-equiv (is-equiv-postcomp-f Y) id)
in
is-equiv-has-inverse
( pr1 sec-f)
( htpy-eq (pr2 sec-f))
( htpy-eq (ap pr1 (is-prop-is-contr'
( is-contr-map-is-equiv (is-equiv-postcomp-f X) f)
( pair ((pr1 sec-f) ∘ f) (ap (λ t → t ∘ f) (pr2 sec-f)))
( pair id refl))))
abstract
is-equiv-postcomp-is-equiv :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) → is-equiv f →
({l3 : Level} (A : UU l3) → is-equiv (postcomp A f))
is-equiv-postcomp-is-equiv {X = X} {Y = Y} f is-equiv-f A =
is-equiv-has-inverse
( postcomp A (inv-is-equiv is-equiv-f))
( λ g → eq-htpy (htpy-right-whisk (issec-inv-is-equiv is-equiv-f) g))
( λ h → eq-htpy (htpy-right-whisk (isretr-inv-is-equiv is-equiv-f) h))
-- Exercise 9.4
is-contr-sec-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} →
is-equiv f → is-contr (sec f)
is-contr-sec-is-equiv {A = A} {B = B} {f = f} is-equiv-f =
is-contr-is-equiv'
( Σ (B → A) (λ g → Id (f ∘ g) id))
( tot (λ g → htpy-eq))
( is-equiv-tot-is-fiberwise-equiv
( λ g → funext (f ∘ g) id))
( is-contr-map-is-equiv (is-equiv-postcomp-is-equiv f is-equiv-f B) id)
is-contr-retr-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} →
is-equiv f → is-contr (retr f)
is-contr-retr-is-equiv {A = A} {B = B} {f = f} is-equiv-f =
is-contr-is-equiv'
( Σ (B → A) (λ h → Id (h ∘ f) id))
( tot (λ h → htpy-eq))
( is-equiv-tot-is-fiberwise-equiv
( λ h → funext (h ∘ f) id))
( is-contr-map-is-equiv (is-equiv-precomp-is-equiv f is-equiv-f A) id)
is-contr-is-equiv-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2}
{f : A → B} → is-equiv f → is-contr (is-equiv f)
is-contr-is-equiv-is-equiv is-equiv-f =
is-contr-prod
( is-contr-sec-is-equiv is-equiv-f)
( is-contr-retr-is-equiv is-equiv-f)
abstract
is-subtype-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-subtype (is-equiv {A = A} {B = B})
is-subtype-is-equiv f = is-prop-is-contr-if-inh
( λ is-equiv-f → is-contr-prod
( is-contr-sec-is-equiv is-equiv-f)
( is-contr-retr-is-equiv is-equiv-f))
is-equiv-Prop :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → UU-Prop (l1 ⊔ l2)
is-equiv-Prop f =
pair (is-equiv f) (is-subtype-is-equiv f)
abstract
is-emb-map-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-emb (map-equiv {A = A} {B = B})
is-emb-map-equiv = is-emb-pr1-is-subtype is-subtype-is-equiv
{- For example, we show that homotopies are equivalent to identifications of
equivalences. -}
htpy-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} → A ≃ B → A ≃ B → UU (l1 ⊔ l2)
htpy-equiv e e' = (map-equiv e) ~ (map-equiv e')
reflexive-htpy-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → htpy-equiv e e
reflexive-htpy-equiv e = refl-htpy
htpy-equiv-eq :
{l1 l2 : Level} {A : UU l1} {B : UU l2}
{e e' : A ≃ B} (p : Id e e') → htpy-equiv e e'
htpy-equiv-eq {e = e} {.e} refl =
reflexive-htpy-equiv e
abstract
is-contr-total-htpy-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
is-contr (Σ (A ≃ B) (λ e' → htpy-equiv e e'))
is-contr-total-htpy-equiv (pair f is-equiv-f) =
is-contr-total-Eq-substructure
( is-contr-total-htpy f)
( is-subtype-is-equiv)
( f)
( refl-htpy)
( is-equiv-f)
is-equiv-htpy-equiv-eq :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e e' : A ≃ B) →
is-equiv (htpy-equiv-eq {e = e} {e'})
is-equiv-htpy-equiv-eq e =
fundamental-theorem-id e
( reflexive-htpy-equiv e)
( is-contr-total-htpy-equiv e)
( λ e' → htpy-equiv-eq {e = e} {e'})
eq-htpy-equiv :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} {e e' : A ≃ B} →
( htpy-equiv e e') → Id e e'
eq-htpy-equiv {e = e} {e'} = inv-is-equiv (is-equiv-htpy-equiv-eq e e')
abstract
Ind-htpy-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
(P : (e' : A ≃ B) (H : htpy-equiv e e') → UU l3) →
sec
( λ (h : (e' : A ≃ B) (H : htpy-equiv e e') → P e' H) →
h e (reflexive-htpy-equiv e))
Ind-htpy-equiv {l3 = l3} e =
Ind-identity-system l3 e
( reflexive-htpy-equiv e)
( is-contr-total-htpy-equiv e)
ind-htpy-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
(P : (e' : A ≃ B) (H : htpy-equiv e e') → UU l3) →
P e (reflexive-htpy-equiv e) → (e' : A ≃ B) (H : htpy-equiv e e') → P e' H
ind-htpy-equiv e P = pr1 (Ind-htpy-equiv e P)
comp-htpy-equiv :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
(P : (e' : A ≃ B) (H : htpy-equiv e e') → UU l3)
(p : P e (reflexive-htpy-equiv e)) →
Id (ind-htpy-equiv e P p e (reflexive-htpy-equiv e)) p
comp-htpy-equiv e P = pr2 (Ind-htpy-equiv e P)
-- Exercise 9.5
{- We use that is-equiv is a proposition to show that the type of equivalences
between k-types is again a k-type. -}
is-contr-equiv-is-contr :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-contr A → is-contr B → is-contr (A ≃ B)
is-contr-equiv-is-contr is-contr-A is-contr-B =
pair
( equiv-is-contr is-contr-A is-contr-B)
( λ e → eq-htpy-equiv
( λ x →
is-prop-is-contr' is-contr-B (center is-contr-B) (map-equiv e x)))
is-trunc-is-contr :
{ l : Level} (k : 𝕋) {A : UU l} → is-contr A → is-trunc k A
is-trunc-is-contr neg-two-𝕋 is-contr-A = is-contr-A
is-trunc-is-contr (succ-𝕋 k) is-contr-A x y =
is-trunc-is-contr k (is-prop-is-contr is-contr-A x y)
is-trunc-is-prop :
{ l : Level} (k : 𝕋) {A : UU l} → is-prop A → is-trunc (succ-𝕋 k) A
is-trunc-is-prop k is-prop-A x y = is-trunc-is-contr k (is-prop-A x y)
is-trunc-equiv-is-trunc :
{ l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} →
is-trunc k A → is-trunc k B → is-trunc k (A ≃ B)
is-trunc-equiv-is-trunc neg-two-𝕋 is-trunc-A is-trunc-B =
is-contr-equiv-is-contr is-trunc-A is-trunc-B
is-trunc-equiv-is-trunc (succ-𝕋 k) is-trunc-A is-trunc-B =
is-trunc-Σ (succ-𝕋 k)
( is-trunc-Π (succ-𝕋 k) (λ x → is-trunc-B))
( λ x → is-trunc-is-prop k (is-subtype-is-equiv x))
is-prop-equiv-is-prop :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-prop A → is-prop B → is-prop (A ≃ B)
is-prop-equiv-is-prop = is-trunc-equiv-is-trunc neg-one-𝕋
prop-equiv :
{ l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU-Prop (l1 ⊔ l2)
prop-equiv P Q =
pair
( type-Prop P ≃ type-Prop Q)
( is-prop-equiv-is-prop (is-prop-type-Prop P) (is-prop-type-Prop Q))
is-set-equiv-is-set :
{ l1 l2 : Level} {A : UU l1} {B : UU l2} →
is-set A → is-set B → is-set (A ≃ B)
is-set-equiv-is-set = is-trunc-equiv-is-trunc zero-𝕋
set-equiv :
{ l1 l2 : Level} → UU-Set l1 → UU-Set l2 → UU-Set (l1 ⊔ l2)
set-equiv A B =
pair
( type-Set A ≃ type-Set B)
( is-set-equiv-is-set (is-set-type-Set A) (is-set-type-Set B))
{- Now we turn to the exercise. -}
_↔_ :
{l1 l2 : Level} → UU-Prop l1 → UU-Prop l2 → UU (l1 ⊔ l2)
P ↔ Q = (pr1 P → pr1 Q) × (pr1 Q → pr1 P)
equiv-iff :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) →
(P ↔ Q) → (pr1 P ≃ pr1 Q)
equiv-iff P Q t = pair (pr1 t) (is-equiv-is-prop (pr2 P) (pr2 Q) (pr2 t))
iff-equiv :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) →
(pr1 P ≃ pr1 Q) → (P ↔ Q)
iff-equiv P Q equiv-PQ = pair (pr1 equiv-PQ) (inv-is-equiv (pr2 equiv-PQ))
abstract
is-prop-iff :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → is-prop (P ↔ Q)
is-prop-iff P Q =
is-prop-prod
( is-prop-function-type (pr1 P) (pr1 Q) (pr2 Q))
( is-prop-function-type (pr1 Q) (pr1 P) (pr2 P))
abstract
is-prop-equiv-Prop :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) →
is-prop ((pr1 P) ≃ (pr1 Q))
is-prop-equiv-Prop P Q =
is-prop-equiv-is-prop (pr2 P) (pr2 Q)
abstract
is-equiv-equiv-iff :
{l1 l2 : Level} (P : UU-Prop l1) (Q : UU-Prop l2) → is-equiv (equiv-iff P Q)
is-equiv-equiv-iff P Q =
is-equiv-is-prop
( is-prop-iff P Q)
( is-prop-equiv-Prop P Q)
( iff-equiv P Q)
abstract
is-prop-is-contr-endomaps :
{l : Level} (P : UU l) → is-contr (P → P) → is-prop P
is-prop-is-contr-endomaps P H =
is-prop-is-prop'
( λ x → htpy-eq (is-prop-is-contr' H (const P P x) id))
abstract
is-contr-endomaps-is-prop :
{l : Level} (P : UU l) → is-prop P → is-contr (P → P)
is-contr-endomaps-is-prop P is-prop-P =
is-contr-is-prop-inh (is-prop-function-type P P is-prop-P) id
-- Exercise 9.6
abstract
is-prop-is-path-split :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-prop (is-path-split f)
is-prop-is-path-split f =
is-prop-is-contr-if-inh (λ is-path-split-f →
let is-equiv-f = is-equiv-is-path-split f is-path-split-f in
is-contr-prod
( is-contr-sec-is-equiv is-equiv-f)
( is-contr-Π
( λ x → is-contr-Π
( λ y → is-contr-sec-is-equiv (is-emb-is-equiv f is-equiv-f x y)))))
abstract
is-equiv-is-path-split-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-equiv (is-path-split-is-equiv f)
is-equiv-is-path-split-is-equiv f =
is-equiv-is-prop
( is-subtype-is-equiv f)
( is-prop-is-path-split f)
( is-equiv-is-path-split f)
abstract
is-prop-is-half-adjoint-equivalence :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-prop (is-half-adjoint-equivalence f)
is-prop-is-half-adjoint-equivalence {l1} {l2} {A} {B} f =
is-prop-is-contr-if-inh (λ is-hae-f →
let is-equiv-f = is-equiv-is-half-adjoint-equivalence f is-hae-f in
is-contr-equiv'
( Σ (sec f)
( λ sf → Σ (((pr1 sf) ∘ f) ~ id)
( λ H → (htpy-right-whisk (pr2 sf) f) ~ (htpy-left-whisk f H))))
( equiv-Σ-assoc (B → A)
( λ g → ((f ∘ g) ~ id))
( λ sf → Σ (((pr1 sf) ∘ f) ~ id)
( λ H → (htpy-right-whisk (pr2 sf) f) ~ (htpy-left-whisk f H))))
( is-contr-Σ
( is-contr-sec-is-equiv is-equiv-f)
( λ sf → is-contr-equiv'
( (x : A) →
Σ (Id ((pr1 sf) (f x)) x) (λ p → Id ((pr2 sf) (f x)) (ap f p)))
( equiv-choice-∞)
( is-contr-Π (λ x →
is-contr-equiv'
( fib (ap f) ((pr2 sf) (f x)))
( equiv-tot
( λ p → equiv-inv (ap f p) ((pr2 sf) (f x))))
( is-contr-map-is-equiv
( is-emb-is-equiv f is-equiv-f ((pr1 sf) (f x)) x)
( (pr2 sf) (f x))))))))
{-
is-contr-is-equiv'
( Σ (sec f)
( λ sf → Σ (((pr1 sf) ∘ f) ~ id)
( λ H → (htpy-right-whisk (pr2 sf) f) ~ (htpy-left-whisk f H))))
( Σ-assoc (B → A)
( λ g → ((f ∘ g) ~ id))
( λ sf → Σ (((pr1 sf) ∘ f) ~ id)
( λ H → (htpy-right-whisk (pr2 sf) f) ~ (htpy-left-whisk f H))))
( is-equiv-Σ-assoc _ _ _)
( is-contr-Σ
( is-contr-sec-is-equiv is-equiv-f)
( λ sf → is-contr-is-equiv'
( (x : A) →
Σ (Id ((pr1 sf) (f x)) x) (λ p → Id ((pr2 sf) (f x)) (ap f p)))
( choice-∞)
( is-equiv-choice-∞)
( is-contr-Π (λ x →
is-contr-is-equiv'
( fib (ap f) ((pr2 sf) (f x)))
( tot (λ p → inv))
( is-equiv-tot-is-fiberwise-equiv
( λ p → is-equiv-inv (ap f p) ((pr2 sf) (f x))))
( is-contr-map-is-equiv
( is-emb-is-equiv f is-equiv-f ((pr1 sf) (f x)) x)
( (pr2 sf) (f x))))))))
-}
abstract
is-equiv-is-half-adjoint-equivalence-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-equiv (is-half-adjoint-equivalence-is-equiv f)
is-equiv-is-half-adjoint-equivalence-is-equiv f =
is-equiv-is-prop
( is-subtype-is-equiv f)
( is-prop-is-half-adjoint-equivalence f)
( is-equiv-is-half-adjoint-equivalence f)
-- Exercise 9.7
is-invertible-id-htpy-id-id :
{l : Level} (A : UU l) →
(id {A = A} ~ id {A = A}) → has-inverse (id {A = A})
is-invertible-id-htpy-id-id A H = pair id (pair refl-htpy H)
triangle-is-invertible-id-htpy-id-id :
{l : Level} (A : UU l) →
( is-invertible-id-htpy-id-id A) ~
( (Σ-assoc (A → A) (λ g → (id ∘ g) ~ id) (λ s → ((pr1 s) ∘ id) ~ id)) ∘
( left-unit-law-Σ-map-gen
( λ s → ((pr1 s) ∘ id) ~ id)
( is-contr-sec-is-equiv (is-equiv-id A)) (pair id refl-htpy)))
triangle-is-invertible-id-htpy-id-id A H = refl
abstract
is-equiv-invertible-id-htpy-id-id :
{l : Level} (A : UU l) → is-equiv (is-invertible-id-htpy-id-id A)
is-equiv-invertible-id-htpy-id-id A =
is-equiv-comp
( is-invertible-id-htpy-id-id A)
( Σ-assoc (A → A) (λ g → (id ∘ g) ~ id) (λ s → ((pr1 s) ∘ id) ~ id))
( left-unit-law-Σ-map-gen
( λ s → ((pr1 s) ∘ id) ~ id)
( is-contr-sec-is-equiv (is-equiv-id A))
( pair id refl-htpy))
( triangle-is-invertible-id-htpy-id-id A)
( is-equiv-left-unit-law-Σ-map-gen
( λ s → ((pr1 s) ∘ id) ~ id)
( is-contr-sec-is-equiv (is-equiv-id A))
( pair id refl-htpy))
( is-equiv-Σ-assoc _ _ _)
-- Exercise 9.8
abstract
dependent-universal-property-empty :
{l : Level} (P : empty → UU l) → is-contr ((x : empty) → P x)
dependent-universal-property-empty P =
pair
( ind-empty {P = P})
( λ f → eq-htpy ind-empty)
abstract
universal-property-empty :
{l : Level} (X : UU l) → is-contr (empty → X)
universal-property-empty X = dependent-universal-property-empty (λ t → X)
abstract
uniqueness-empty :
{l : Level} (Y : UU l) → ((l' : Level) (X : UU l') →
is-contr (Y → X)) → is-equiv (ind-empty {P = λ t → Y})
uniqueness-empty Y H =
is-equiv-is-equiv-precomp ind-empty
( λ l X → is-equiv-is-contr
( λ g → g ∘ ind-empty)
( H _ X)
( universal-property-empty X))
abstract
universal-property-empty-is-equiv-ind-empty :
{l : Level} (X : UU l) → is-equiv (ind-empty {P = λ t → X}) →
((l' : Level) (Y : UU l') → is-contr (X → Y))
universal-property-empty-is-equiv-ind-empty X is-equiv-ind-empty l' Y =
is-contr-is-equiv
( empty → Y)
( λ f → f ∘ ind-empty)
( is-equiv-precomp-is-equiv ind-empty is-equiv-ind-empty Y)
( universal-property-empty Y)
-- Exercise 9.9
ev-inl-inr :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (P : coprod A B → UU l3) →
((t : coprod A B) → P t) → ((x : A) → P (inl x)) × ((y : B) → P (inr y))
ev-inl-inr P s = pair (λ x → s (inl x)) (λ y → s (inr y))
abstract
dependent-universal-property-coprod :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2}
(P : coprod A B → UU l3) → is-equiv (ev-inl-inr P)
dependent-universal-property-coprod P =
is-equiv-has-inverse
( λ p → ind-coprod P (pr1 p) (pr2 p))
( ind-Σ (λ f g → eq-pair-triv (pair refl refl)))
( λ s → eq-htpy (ind-coprod _ (λ x → refl) λ y → refl))
abstract
universal-property-coprod :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (X : UU l3) →
is-equiv (ev-inl-inr (λ (t : coprod A B) → X))
universal-property-coprod X = dependent-universal-property-coprod (λ t → X)
abstract
uniqueness-coprod :
{ l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {Y : UU l3}
( i : A → Y) (j : B → Y) →
( (l : Level) (X : UU l) →
is-equiv (λ (s : Y → X) → pair' (s ∘ i) (s ∘ j))) →
is-equiv (ind-coprod (λ t → Y) i j)
uniqueness-coprod {Y = Y} i j H =
is-equiv-is-equiv-precomp
( ind-coprod _ i j)
( λ l X → is-equiv-right-factor
( λ (s : Y → X) → pair (s ∘ i) (s ∘ j))
( ev-inl-inr (λ t → X))
( precomp (ind-coprod (λ t → Y) i j) X)
( λ s → refl)
( universal-property-coprod X)
( H _ X))
abstract
universal-property-coprod-is-equiv-ind-coprod :
{ l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (X : UU l3)
( i : A → X) (j : B → X) → is-equiv (ind-coprod (λ t → X) i j) →
( (l4 : Level) (Y : UU l4) →
is-equiv (λ (s : X → Y) → pair' (s ∘ i) (s ∘ j)))
universal-property-coprod-is-equiv-ind-coprod X i j is-equiv-ind-coprod l Y =
is-equiv-comp
( λ s → pair (s ∘ i) (s ∘ j))
( ev-inl-inr (λ t → Y))
( precomp (ind-coprod (λ t → X) i j) Y)
( λ s → refl)
( is-equiv-precomp-is-equiv
( ind-coprod (λ t → X) i j)
( is-equiv-ind-coprod)
( Y))
( universal-property-coprod Y)
-- Exercise 9.10
ev-star :
{l : Level} (P : unit → UU l) → ((x : unit) → P x) → P star
ev-star P f = f star
abstract
dependent-universal-property-unit :
{l : Level} (P : unit → UU l) → is-equiv (ev-star P)
dependent-universal-property-unit P =
is-equiv-has-inverse
( ind-unit)
( λ p → refl)
( λ f → eq-htpy (ind-unit refl))
equiv-ev-star :
{l : Level} (P : unit → UU l) → ((x : unit) → P x) ≃ P star
equiv-ev-star P = pair (ev-star P) (dependent-universal-property-unit P)
ev-star' :
{l : Level} (Y : UU l) → (unit → Y) → Y
ev-star' Y = ev-star (λ t → Y)
abstract
universal-property-unit :
{l : Level} (Y : UU l) → is-equiv (ev-star' Y)
universal-property-unit Y = dependent-universal-property-unit (λ t → Y)
equiv-ev-star' :
{l : Level} (Y : UU l) → (unit → Y) ≃ Y
equiv-ev-star' Y = pair (ev-star' Y) (universal-property-unit Y)
abstract
is-equiv-ind-unit-universal-property-unit :
{l1 : Level} (X : UU l1) (x : X) →
((l2 : Level) (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) →
is-equiv (ind-unit {P = λ t → X} x)
is-equiv-ind-unit-universal-property-unit X x H =
is-equiv-is-equiv-precomp
( ind-unit x)
( λ l Y → is-equiv-right-factor
( λ f → f x)
( ev-star (λ t → Y))
( precomp (ind-unit x) Y)
( λ f → refl)
( universal-property-unit Y)
( H _ Y))
abstract
universal-property-unit-is-equiv-ind-unit :
{l1 : Level} (X : UU l1) (x : X) →
is-equiv (ind-unit {P = λ t → X} x) →
((l2 : Level) (Y : UU l2) → is-equiv (λ (f : X → Y) → f x))
universal-property-unit-is-equiv-ind-unit X x is-equiv-ind-unit l2 Y =
is-equiv-comp
( λ f → f x)
( ev-star (λ t → Y))
( precomp (ind-unit x) Y)
( λ f → refl)
( is-equiv-precomp-is-equiv (ind-unit x) is-equiv-ind-unit Y)
( universal-property-unit Y)
-- Exercise 9.11
Eq-sec :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
sec f → sec f → UU (l1 ⊔ l2)
Eq-sec f sec-f sec-f' =
Σ ( (pr1 sec-f) ~ (pr1 sec-f'))
( λ H → (pr2 sec-f) ~ ((f ·l H) ∙h (pr2 sec-f')))
reflexive-Eq-sec :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
(sec-f : sec f) → Eq-sec f sec-f sec-f
reflexive-Eq-sec f (pair g G) = pair refl-htpy refl-htpy
Eq-sec-eq :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
(sec-f sec-f' : sec f) → Id sec-f sec-f' → Eq-sec f sec-f sec-f'
Eq-sec-eq f sec-f .sec-f refl = reflexive-Eq-sec f sec-f
abstract
is-contr-total-Eq-sec :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (sec-f : sec f) →
is-contr (Σ (sec f) (Eq-sec f sec-f))
is-contr-total-Eq-sec f (pair g G) =
is-contr-total-Eq-structure
( λ g' G' H → G ~ ((f ·l H) ∙h G'))
( is-contr-total-htpy g)
( pair g refl-htpy)
( is-contr-total-htpy G)
abstract
is-equiv-Eq-sec-eq :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
(sec-f sec-f' : sec f) → is-equiv (Eq-sec-eq f sec-f sec-f')
is-equiv-Eq-sec-eq f sec-f =
fundamental-theorem-id sec-f
( reflexive-Eq-sec f sec-f)
( is-contr-total-Eq-sec f sec-f)
( Eq-sec-eq f sec-f)
eq-Eq-sec :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
{sec-f sec-f' : sec f} → Eq-sec f sec-f sec-f' → Id sec-f sec-f'
eq-Eq-sec f {sec-f} {sec-f'} =
inv-is-equiv (is-equiv-Eq-sec-eq f sec-f sec-f')
isretr-section-comp :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (sec-h : sec h) →
((section-comp f g h H sec-h) ∘ (section-comp' f g h H sec-h)) ~ id
isretr-section-comp f g h H (pair k K) (pair l L) =
eq-Eq-sec g
( pair
( K ·r l)
( ( htpy-inv
( htpy-assoc
( htpy-inv (H ·r (k ∘ l)))
( H ·r (k ∘ l))
( (g ·l (K ·r l)) ∙h L))) ∙h
( htpy-ap-concat'
( (htpy-inv (H ·r (k ∘ l))) ∙h (H ·r (k ∘ l)))
( refl-htpy)
( (g ·l (K ·r l)) ∙h L)
( htpy-left-inv (H ·r (k ∘ l))))))
sec-left-factor-retract-of-sec-composition :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
sec h → (sec g) retract-of (sec f)
sec-left-factor-retract-of-sec-composition {X = X} f g h H sec-h =
pair
( section-comp' f g h H sec-h)
( pair
( section-comp f g h H sec-h)
( isretr-section-comp f g h H sec-h))
Eq-retr :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
retr f → retr f → UU (l1 ⊔ l2)
Eq-retr f retr-f retr-f' =
Σ ( (pr1 retr-f) ~ (pr1 retr-f'))
( λ H → (pr2 retr-f) ~ ((H ·r f) ∙h (pr2 retr-f')))
reflexive-Eq-retr :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
(retr-f : retr f) → Eq-retr f retr-f retr-f
reflexive-Eq-retr f (pair h H) = pair refl-htpy refl-htpy
Eq-retr-eq :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
(retr-f retr-f' : retr f) → Id retr-f retr-f' → Eq-retr f retr-f retr-f'
Eq-retr-eq f retr-f .retr-f refl = reflexive-Eq-retr f retr-f
abstract
is-contr-total-Eq-retr :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (retr-f : retr f) →
is-contr (Σ (retr f) (Eq-retr f retr-f))
is-contr-total-Eq-retr f (pair h H) =
is-contr-total-Eq-structure
( λ h' H' K → H ~ ((K ·r f) ∙h H'))
( is-contr-total-htpy h)
( pair h refl-htpy)
( is-contr-total-htpy H)
abstract
is-equiv-Eq-retr-eq :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
(retr-f retr-f' : retr f) → is-equiv (Eq-retr-eq f retr-f retr-f')
is-equiv-Eq-retr-eq f retr-f =
fundamental-theorem-id retr-f
( reflexive-Eq-retr f retr-f)
( is-contr-total-Eq-retr f retr-f)
( Eq-retr-eq f retr-f)
eq-Eq-retr :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
{retr-f retr-f' : retr f} → Eq-retr f retr-f retr-f' → Id retr-f retr-f'
eq-Eq-retr f {retr-f} {retr-f'} =
inv-is-equiv (is-equiv-Eq-retr-eq f retr-f retr-f')
isretr-retraction-comp :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (retr-g : retr g) →
((retraction-comp f g h H retr-g) ∘ (retraction-comp' f g h H retr-g)) ~ id
isretr-retraction-comp f g h H (pair l L) (pair k K) =
eq-Eq-retr h
( pair
( k ·l L)
( ( htpy-inv
( htpy-assoc
( htpy-inv ((k ∘ l) ·l H))
( (k ∘ l) ·l H)
( (k ·l (L ·r h)) ∙h K))) ∙h
( htpy-ap-concat'
( (htpy-inv ((k ∘ l) ·l H)) ∙h ((k ∘ l) ·l H))
( refl-htpy)
( (k ·l (L ·r h)) ∙h K)
( htpy-left-inv ((k ∘ l) ·l H)))))
sec-right-factor-retract-of-sec-left-factor :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) →
retr g → (retr h) retract-of (retr f)
sec-right-factor-retract-of-sec-left-factor f g h H retr-g =
pair
( retraction-comp' f g h H retr-g)
( pair
( retraction-comp f g h H retr-g)
( isretr-retraction-comp f g h H retr-g))
-- Exercise 9.12
postcomp-Π :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
(e : (i : I) → A i → B i) →
((i : I) → A i) → ((i : I) → B i)
postcomp-Π e f i = e i (f i)
htpy-postcomp-Π :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
{f f' : (i : I) → A i → B i} (H : (i : I) → (f i) ~ (f' i)) →
(postcomp-Π f) ~ (postcomp-Π f')
htpy-postcomp-Π H h = eq-htpy (λ i → H i (h i))
abstract
is-equiv-postcomp-Π :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
(e : (i : I) → A i → B i) (is-equiv-e : is-fiberwise-equiv e) →
is-equiv (postcomp-Π e)
is-equiv-postcomp-Π e is-equiv-e =
is-equiv-has-inverse
( λ g i → inv-is-equiv (is-equiv-e i) (g i))
( λ g → eq-htpy (λ i → issec-inv-is-equiv (is-equiv-e i) (g i)))
( λ f → eq-htpy (λ i → isretr-inv-is-equiv (is-equiv-e i) (f i)))
equiv-postcomp-Π :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
(e : (i : I) → (A i) ≃ (B i)) → ((i : I) → A i) ≃ ((i : I) → B i)
equiv-postcomp-Π e =
pair
( postcomp-Π (λ i → map-equiv (e i)))
( is-equiv-postcomp-Π _ (λ i → is-equiv-map-equiv (e i)))
-- Exercise 9.13
hom-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) → UU (l1 ⊔ (l2 ⊔ l3))
hom-slice {A = A} {B} f g = Σ (A → B) (λ h → f ~ (g ∘ h))
map-hom-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) → hom-slice f g → A → B
map-hom-slice f g h = pr1 h
triangle-hom-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) (h : hom-slice f g) →
f ~ (g ∘ (map-hom-slice f g h))
triangle-hom-slice f g h = pr2 h
fiberwise-hom-hom-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
hom-slice f g → (x : X) → (fib f x) → (fib g x)
fiberwise-hom-hom-slice f g (pair h H) = fib-triangle f g h H
hom-slice-fiberwise-hom :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
((x : X) → (fib f x) → (fib g x)) → hom-slice f g
hom-slice-fiberwise-hom f g α =
pair
( λ a → pr1 (α (f a) (pair a refl)))
( λ a → inv (pr2 (α (f a) (pair a refl))))
issec-hom-slice-fiberwise-hom-eq-htpy :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) (α : (x : X) → (fib f x) → (fib g x)) (x : X) →
(fiberwise-hom-hom-slice f g (hom-slice-fiberwise-hom f g α) x) ~ (α x)
issec-hom-slice-fiberwise-hom-eq-htpy f g α .(f a) (pair a refl) =
eq-pair refl (inv-inv (pr2 (α (f a) (pair a refl))))
issec-hom-slice-fiberwise-hom :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
((fiberwise-hom-hom-slice f g) ∘ (hom-slice-fiberwise-hom f g)) ~ id
issec-hom-slice-fiberwise-hom f g α =
eq-htpy (λ x → eq-htpy (issec-hom-slice-fiberwise-hom-eq-htpy f g α x))
isretr-hom-slice-fiberwise-hom :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
((hom-slice-fiberwise-hom f g) ∘ (fiberwise-hom-hom-slice f g)) ~ id
isretr-hom-slice-fiberwise-hom f g (pair h H) =
eq-pair refl (eq-htpy (λ a → (inv-inv (H a))))
abstract
is-equiv-fiberwise-hom-hom-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
is-equiv (fiberwise-hom-hom-slice f g)
is-equiv-fiberwise-hom-hom-slice f g =
is-equiv-has-inverse
( hom-slice-fiberwise-hom f g)
( issec-hom-slice-fiberwise-hom f g)
( isretr-hom-slice-fiberwise-hom f g)
abstract
is-equiv-hom-slice-fiberwise-hom :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
is-equiv (hom-slice-fiberwise-hom f g)
is-equiv-hom-slice-fiberwise-hom f g =
is-equiv-has-inverse
( fiberwise-hom-hom-slice f g)
( isretr-hom-slice-fiberwise-hom f g)
( issec-hom-slice-fiberwise-hom f g)
equiv-slice :
{l1 l2 l3 : Level} (X : UU l1) {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) → UU (l1 ⊔ (l2 ⊔ l3))
equiv-slice X {A} {B} f g = Σ (A ≃ B) (λ e → f ~ (g ∘ (map-equiv e)))
hom-slice-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
equiv-slice X f g → hom-slice f g
hom-slice-equiv-slice f g (pair (pair h is-equiv-h) H) = pair h H
{- We first prove two closely related generic lemmas that establishes
equivalences of subtypes -}
abstract
is-equiv-subtype-is-equiv :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2}
{P : A → UU l3} {Q : B → UU l4}
(is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q)
(f : A → B) (g : (x : A) → P x → Q (f x)) →
is-equiv f → ((x : A) → (Q (f x)) → P x) → is-equiv (toto Q f g)
is-equiv-subtype-is-equiv {Q = Q} is-subtype-P is-subtype-Q f g is-equiv-f h =
is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map Q f g is-equiv-f
( λ x → is-equiv-is-prop (is-subtype-P x) (is-subtype-Q (f x)) (h x))
abstract
is-equiv-subtype-is-equiv' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2}
{P : A → UU l3} {Q : B → UU l4}
(is-subtype-P : is-subtype P) (is-subtype-Q : is-subtype Q)
(f : A → B) (g : (x : A) → P x → Q (f x)) →
(is-equiv-f : is-equiv f) →
((y : B) → (Q y) → P (inv-is-equiv is-equiv-f y)) →
is-equiv (toto Q f g)
is-equiv-subtype-is-equiv' {P = P} {Q}
is-subtype-P is-subtype-Q f g is-equiv-f h =
is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map Q f g is-equiv-f
( λ x → is-equiv-is-prop (is-subtype-P x) (is-subtype-Q (f x))
( (tr P (isretr-inv-is-equiv is-equiv-f x)) ∘ (h (f x))))
abstract
is-fiberwise-equiv-fiberwise-equiv-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X)
(t : hom-slice f g) → is-equiv (pr1 t) →
is-fiberwise-equiv (fiberwise-hom-hom-slice f g t)
is-fiberwise-equiv-fiberwise-equiv-equiv-slice f g (pair h H) =
is-fiberwise-equiv-is-equiv-triangle f g h H
left-factor-fiberwise-equiv-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
Σ (hom-slice f g) (λ hH → is-equiv (pr1 hH)) →
Σ ((x : X) → (fib f x) → (fib g x)) is-fiberwise-equiv
left-factor-fiberwise-equiv-equiv-slice f g =
toto
( is-fiberwise-equiv)
( fiberwise-hom-hom-slice f g)
( is-fiberwise-equiv-fiberwise-equiv-equiv-slice f g)
swap-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
equiv-slice X f g →
Σ (hom-slice f g) (λ hH → is-equiv (pr1 hH))
swap-equiv-slice {A = A} {B} f g =
double-structure-swap (A → B) is-equiv (λ h → f ~ (g ∘ h))
abstract
is-equiv-swap-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
is-equiv (swap-equiv-slice f g)
is-equiv-swap-equiv-slice f g =
is-equiv-double-structure-swap _ is-equiv (λ h → (f ~ (g ∘ h)))
abstract
fiberwise-equiv-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
equiv-slice X f g → Σ ((x : X) → (fib f x) → (fib g x)) is-fiberwise-equiv
fiberwise-equiv-equiv-slice {X = X} {A} {B} f g =
( left-factor-fiberwise-equiv-equiv-slice f g) ∘
( swap-equiv-slice f g)
abstract
is-equiv-hom-slice-is-fiberwise-equiv-fiberwise-hom-hom-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
(t : hom-slice f g) →
((x : X) → is-equiv (fiberwise-hom-hom-slice f g t x)) →
is-equiv (pr1 t)
is-equiv-hom-slice-is-fiberwise-equiv-fiberwise-hom-hom-slice
f g (pair h H) =
is-equiv-triangle-is-fiberwise-equiv f g h H
abstract
is-equiv-fiberwise-equiv-equiv-slice :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) →
is-equiv (fiberwise-equiv-equiv-slice f g)
is-equiv-fiberwise-equiv-equiv-slice {X = X} {A} {B} f g =
is-equiv-comp
( fiberwise-equiv-equiv-slice f g)
( left-factor-fiberwise-equiv-equiv-slice f g)
( swap-equiv-slice f g)
( refl-htpy)
( is-equiv-swap-equiv-slice f g)
( is-equiv-subtype-is-equiv
( λ t → is-subtype-is-equiv (pr1 t))
( λ α → is-prop-Π (λ x → is-subtype-is-equiv (α x)))
( fiberwise-hom-hom-slice f g)
( is-fiberwise-equiv-fiberwise-equiv-equiv-slice f g)
( is-equiv-fiberwise-hom-hom-slice f g)
( is-equiv-hom-slice-is-fiberwise-equiv-fiberwise-hom-hom-slice
f g))
-- Exercise 9.14
hom-over-morphism :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) → UU (l1 ⊔ (l2 ⊔ l4))
hom-over-morphism i f g = hom-slice (i ∘ f) g
fiberwise-hom-hom-over-morphism :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
hom-over-morphism i f g → (x : X) → (fib f x) → (fib g (i x))
fiberwise-hom-hom-over-morphism i f g (pair h H) .(f a) (pair a refl) =
pair (h a) (inv (H a))
hom-over-morphism-fiberwise-hom :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
((x : X) → (fib f x) → (fib g (i x))) → hom-over-morphism i f g
hom-over-morphism-fiberwise-hom i f g α =
pair
( λ a → pr1 (α (f a) (pair a refl)))
( λ a → inv (pr2 (α (f a) (pair a refl))))
issec-hom-over-morphism-fiberwise-hom-eq-htpy :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
(α : (x : X) → (fib f x) → (fib g (i x))) (x : X) →
( fiberwise-hom-hom-over-morphism i f g
( hom-over-morphism-fiberwise-hom i f g α) x) ~ (α x)
issec-hom-over-morphism-fiberwise-hom-eq-htpy i f g α .(f a) (pair a refl) =
eq-pair refl (inv-inv (pr2 (α (f a) (pair a refl))))
issec-hom-over-morphism-fiberwise-hom :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
( ( fiberwise-hom-hom-over-morphism i f g) ∘
( hom-over-morphism-fiberwise-hom i f g)) ~ id
issec-hom-over-morphism-fiberwise-hom i f g α =
eq-htpy
( λ x →
( eq-htpy
( issec-hom-over-morphism-fiberwise-hom-eq-htpy i f g α x)))
isretr-hom-over-morphism-fiberwise-hom :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
( ( hom-over-morphism-fiberwise-hom i f g) ∘
( fiberwise-hom-hom-over-morphism i f g)) ~ id
isretr-hom-over-morphism-fiberwise-hom i f g (pair h H) =
eq-pair refl (eq-htpy (λ a → (inv-inv (H a))))
abstract
is-equiv-fiberwise-hom-hom-over-morphism :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
is-equiv (fiberwise-hom-hom-over-morphism i f g)
is-equiv-fiberwise-hom-hom-over-morphism i f g =
is-equiv-has-inverse
( hom-over-morphism-fiberwise-hom i f g)
( issec-hom-over-morphism-fiberwise-hom i f g)
( isretr-hom-over-morphism-fiberwise-hom i f g)
abstract
is-equiv-hom-over-morphism-fiberwise-hom :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
(i : X → Y) (f : A → X) (g : B → Y) →
is-equiv (hom-over-morphism-fiberwise-hom i f g)
is-equiv-hom-over-morphism-fiberwise-hom i f g =
is-equiv-has-inverse
( fiberwise-hom-hom-over-morphism i f g)
( isretr-hom-over-morphism-fiberwise-hom i f g)
( issec-hom-over-morphism-fiberwise-hom i f g)
-- Exercise 9.15
set-isomorphism :
{l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) → UU (l1 ⊔ l2)
set-isomorphism A B =
Σ ((pr1 A) → (pr1 B)) has-inverse
has-inverse-is-half-adjoint-equivalence :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-half-adjoint-equivalence f → has-inverse f
has-inverse-is-half-adjoint-equivalence f =
tot (λ g → tot (λ G → pr1))
set-isomorphism-equiv-fiberwise :
{l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) →
(f : (pr1 A) → (pr1 B)) → is-equiv f → has-inverse f
set-isomorphism-equiv-fiberwise A B f =
( has-inverse-is-half-adjoint-equivalence f) ∘
( is-half-adjoint-equivalence-is-equiv f)
abstract
is-equiv-has-inverse-is-half-adjoint-equivalence-is-set :
{l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) (f : (pr1 A) → (pr1 B)) →
is-equiv (has-inverse-is-half-adjoint-equivalence f)
is-equiv-has-inverse-is-half-adjoint-equivalence-is-set
(pair A is-set-A) (pair B is-set-B) f =
is-equiv-tot-is-fiberwise-equiv
( λ g → is-equiv-tot-is-fiberwise-equiv
( λ G → is-equiv-pr1-is-contr
( coherence-is-half-adjoint-equivalence f g G)
( λ H → is-contr-Π
( λ x → is-set-B _ _ (G (f x)) (ap f (H x))))))
abstract
is-fiberwise-equiv-set-isomorphism-equiv-fiberwise :
{l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) →
is-fiberwise-equiv (set-isomorphism-equiv-fiberwise A B)
is-fiberwise-equiv-set-isomorphism-equiv-fiberwise A B f =
is-equiv-comp
( set-isomorphism-equiv-fiberwise A B f)
( has-inverse-is-half-adjoint-equivalence f)
( is-half-adjoint-equivalence-is-equiv f)
( refl-htpy)
( is-equiv-is-half-adjoint-equivalence-is-equiv f)
( is-equiv-has-inverse-is-half-adjoint-equivalence-is-set A B f)
set-isomorphism-equiv :
{l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) →
((pr1 A) ≃ (pr1 B)) → set-isomorphism A B
set-isomorphism-equiv A B =
tot (set-isomorphism-equiv-fiberwise A B)
abstract
is-equiv-set-isomorphism-equiv :
{l1 l2 : Level} (A : UU-Set l1) (B : UU-Set l2) →
is-equiv (set-isomorphism-equiv A B)
is-equiv-set-isomorphism-equiv A B =
is-equiv-tot-is-fiberwise-equiv
( is-fiberwise-equiv-set-isomorphism-equiv-fiberwise A B)
{- Some lemmas about equivalences on Π-types -}
abstract
is-equiv-htpy-inv-con :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x}
( H : f ~ g) (K : g ~ h) (L : f ~ h) →
is-equiv (htpy-inv-con H K L)
is-equiv-htpy-inv-con H K L =
is-equiv-postcomp-Π _ (λ x → is-equiv-inv-con (H x) (K x) (L x))
equiv-htpy-inv-con :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x}
( H : f ~ g) (K : g ~ h) (L : f ~ h) →
( (H ∙h K) ~ L) ≃ (K ~ ((htpy-inv H) ∙h L))
equiv-htpy-inv-con H K L =
pair
( htpy-inv-con H K L)
( is-equiv-htpy-inv-con H K L)
abstract
is-equiv-htpy-con-inv :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x}
( H : f ~ g) (K : g ~ h) (L : f ~ h) →
is-equiv (htpy-con-inv H K L)
is-equiv-htpy-con-inv H K L =
is-equiv-postcomp-Π _ (λ x → is-equiv-con-inv (H x) (K x) (L x))
equiv-htpy-con-inv :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x}
( H : f ~ g) (K : g ~ h) (L : f ~ h) →
( (H ∙h K) ~ L) ≃ (H ~ (L ∙h (htpy-inv K)))
equiv-htpy-con-inv H K L =
pair
( htpy-con-inv H K L)
( is-equiv-htpy-con-inv H K L)
map-equiv-Π :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} {B' : A' → UU l2} {A : UU l3} (B : A → UU l4)
( e : A' ≃ A) (f : (a' : A') → B' a' ≃ B (map-equiv e a')) →
( (a' : A') → B' a') → ( (a : A) → B a)
map-equiv-Π {B' = B'} B e f =
( postcomp-Π (λ a →
( tr B (issec-inv-is-equiv (is-equiv-map-equiv e) a)) ∘
( map-equiv (f (inv-is-equiv (is-equiv-map-equiv e) a))))) ∘
( precomp-Π (inv-is-equiv (is-equiv-map-equiv e)) B')
id-map-equiv-Π :
{ l1 l2 : Level} {A : UU l1} (B : A → UU l2) →
( map-equiv-Π B (equiv-id A) (λ a → equiv-id (B a))) ~ id
id-map-equiv-Π B = refl-htpy
abstract
is-equiv-map-equiv-Π :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} {B' : A' → UU l2} {A : UU l3} (B : A → UU l4)
( e : A' ≃ A) (f : (a' : A') → B' a' ≃ B (map-equiv e a')) →
is-equiv (map-equiv-Π B e f)
is-equiv-map-equiv-Π {B' = B'} B e f =
is-equiv-comp'
( postcomp-Π (λ a →
( tr B (issec-inv-is-equiv (is-equiv-map-equiv e) a)) ∘
( map-equiv (f (inv-is-equiv (is-equiv-map-equiv e) a)))))
( precomp-Π (inv-is-equiv (is-equiv-map-equiv e)) B')
( is-equiv-precomp-Π-is-equiv
( inv-is-equiv (is-equiv-map-equiv e))
( is-equiv-inv-is-equiv (is-equiv-map-equiv e))
( B'))
( is-equiv-postcomp-Π _
( λ a → is-equiv-comp'
( tr B (issec-inv-is-equiv (is-equiv-map-equiv e) a))
( map-equiv (f (inv-is-equiv (is-equiv-map-equiv e) a)))
( is-equiv-map-equiv (f (inv-is-equiv (is-equiv-map-equiv e) a)))
( is-equiv-tr B (issec-inv-is-equiv (is-equiv-map-equiv e) a))))
equiv-Π :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} {B' : A' → UU l2} {A : UU l3} (B : A → UU l4)
( e : A' ≃ A) (f : (a' : A') → B' a' ≃ B (map-equiv e a')) →
( (a' : A') → B' a') ≃ ( (a : A) → B a)
equiv-Π B e f = pair (map-equiv-Π B e f) (is-equiv-map-equiv-Π B e f)
HTPY-map-equiv-Π :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} (B' : A' → UU l2) {A : UU l3} (B : A → UU l4)
( e e' : A' ≃ A) (H : htpy-equiv e e') →
UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4)))
HTPY-map-equiv-Π {A' = A'} B' {A} B e e' H =
( f : (a' : A') → B' a' ≃ B (map-equiv e a')) →
( f' : (a' : A') → B' a' ≃ B (map-equiv e' a')) →
( K : (a' : A') → ((tr B (H a')) ∘ (map-equiv (f a'))) ~ (map-equiv (f' a'))) →
( map-equiv-Π B e f) ~ (map-equiv-Π B e' f')
htpy-map-equiv-Π-refl-htpy :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} {B' : A' → UU l2} {A : UU l3} (B : A → UU l4)
( e : A' ≃ A) →
HTPY-map-equiv-Π B' B e e (reflexive-htpy-equiv e)
htpy-map-equiv-Π-refl-htpy {B' = B'} B e f f' K =
( htpy-postcomp-Π
( λ a →
( tr B (issec-inv-is-equiv (is-equiv-map-equiv e) a)) ·l
( K (inv-is-equiv (is-equiv-map-equiv e) a)))) ·r
( precomp-Π (inv-is-equiv (is-equiv-map-equiv e)) B')
abstract
htpy-map-equiv-Π :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} {B' : A' → UU l2} {A : UU l3} (B : A → UU l4)
( e e' : A' ≃ A) (H : htpy-equiv e e') →
HTPY-map-equiv-Π B' B e e' H
htpy-map-equiv-Π {B' = B'} B e e' H f f' K =
ind-htpy-equiv e
( HTPY-map-equiv-Π B' B e)
( htpy-map-equiv-Π-refl-htpy B e)
e' H f f' K
comp-htpy-map-equiv-Π :
{ l1 l2 l3 l4 : Level}
{ A' : UU l1} {B' : A' → UU l2} {A : UU l3} (B : A → UU l4)
( e : A' ≃ A) →
Id ( htpy-map-equiv-Π {B' = B'} B e e (reflexive-htpy-equiv e))
( ( htpy-map-equiv-Π-refl-htpy B e))
comp-htpy-map-equiv-Π {B' = B'} B e =
comp-htpy-equiv e
( HTPY-map-equiv-Π B' B e)
( htpy-map-equiv-Π-refl-htpy B e)
map-automorphism-Π :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2}
( e : A ≃ A) (f : (a : A) → B a ≃ B (map-equiv e a)) →
( (a : A) → B a) → ((a : A) → B a)
map-automorphism-Π {B = B} e f =
( postcomp-Π (λ a → (inv-is-equiv (is-equiv-map-equiv (f a))))) ∘
( precomp-Π (map-equiv e) B)
abstract
is-equiv-map-automorphism-Π :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2}
( e : A ≃ A) (f : (a : A) → B a ≃ B (map-equiv e a)) →
is-equiv (map-automorphism-Π e f)
is-equiv-map-automorphism-Π {B = B} e f =
is-equiv-comp' _ _
( is-equiv-precomp-Π-is-equiv _ (is-equiv-map-equiv e) B)
( is-equiv-postcomp-Π _
( λ a → is-equiv-inv-is-equiv (is-equiv-map-equiv (f a))))
automorphism-Π :
{ l1 l2 : Level} {A : UU l1} {B : A → UU l2}
( e : A ≃ A) (f : (a : A) → B a ≃ B (map-equiv e a)) →
( (a : A) → B a) ≃ ((a : A) → B a)
automorphism-Π e f =
pair (map-automorphism-Π e f) (is-equiv-map-automorphism-Π e f)
-- is-contr-total-Eq-Π
is-contr-total-Eq-Π :
{ l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) →
( is-contr-total-C : (x : A) → is-contr (Σ (B x) (C x))) →
( f : (x : A) → B x) →
is-contr (Σ ((x : A) → B x) (λ g → (x : A) → C x (g x)))
is-contr-total-Eq-Π {A = A} {B} C is-contr-total-C f =
is-contr-equiv'
( (x : A) → Σ (B x) (C x))
( equiv-choice-∞)
( is-contr-Π is-contr-total-C)
|
{
"alphanum_fraction": 0.519982006,
"avg_line_length": 35.2852022529,
"ext": "agda",
"hexsha": "4c674ab91606e7d477cb87659262326ed5656725",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/11-function-extensionality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/11-function-extensionality.agda",
"max_line_length": 220,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/11-function-extensionality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 29506,
"size": 68912
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- the usual notion requires C to have finite limits.
-- this definition is a generalization by omitting that requirement as the definition
-- itself does not involve any limit.
module Categories.Diagram.SubobjectClassifier {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Categories.Object.Terminal C
open import Categories.Morphism C
open import Categories.Diagram.Pullback C
record SubobjectClassifier : Set (o ⊔ ℓ ⊔ e) where
field
Ω : Obj
terminal : Terminal
module terminal = Terminal terminal
open terminal
field
true : ⊤ ⇒ Ω
universal : ∀ {X Y} {f : X ⇒ Y} → Mono f → Y ⇒ Ω
pullback : ∀ {X Y} {f : X ⇒ Y} {mono : Mono f} → Pullback (universal mono) true
unique : ∀ {X Y} {f : X ⇒ Y} {g} {mono : Mono f} → Pullback g true → universal mono ≈ g
|
{
"alphanum_fraction": 0.6703539823,
"avg_line_length": 29.1612903226,
"ext": "agda",
"hexsha": "0d5cabf334b2c54000a35fb0d1ef0a7d00110d07",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/SubobjectClassifier.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/SubobjectClassifier.agda",
"max_line_length": 94,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/SubobjectClassifier.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 254,
"size": 904
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to negation
------------------------------------------------------------------------
module Relation.Nullary.Negation where
open import Relation.Nullary
open import Relation.Unary
open import Data.Bool
open import Data.Empty
open import Function
open import Data.Product as Prod
open import Data.Fin using (Fin)
open import Data.Fin.Dec
open import Data.Sum as Sum
open import Category.Monad
open import Level
contradiction : ∀ {p w} {P : Set p} {Whatever : Set w} →
P → ¬ P → Whatever
contradiction p ¬p = ⊥-elim (¬p p)
contraposition : ∀ {p q} {P : Set p} {Q : Set q} →
(P → Q) → ¬ Q → ¬ P
contraposition f ¬q p = contradiction (f p) ¬q
-- Note also the following use of flip:
private
note : ∀ {p q} {P : Set p} {Q : Set q} →
(P → ¬ Q) → Q → ¬ P
note = flip
-- If we can decide P, then we can decide its negation.
¬? : ∀ {p} {P : Set p} → Dec P → Dec (¬ P)
¬? (yes p) = no (λ ¬p → ¬p p)
¬? (no ¬p) = yes ¬p
------------------------------------------------------------------------
-- Quantifier juggling
∃⟶¬∀¬ : ∀ {a p} {A : Set a} {P : A → Set p} →
∃ P → ¬ (∀ x → ¬ P x)
∃⟶¬∀¬ = flip uncurry
∀⟶¬∃¬ : ∀ {a p} {A : Set a} {P : A → Set p} →
(∀ x → P x) → ¬ ∃ λ x → ¬ P x
∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x)
¬∃⟶∀¬ : ∀ {a p} {A : Set a} {P : A → Set p} →
¬ ∃ (λ x → P x) → ∀ x → ¬ P x
¬∃⟶∀¬ = curry
∀¬⟶¬∃ : ∀ {a p} {A : Set a} {P : A → Set p} →
(∀ x → ¬ P x) → ¬ ∃ (λ x → P x)
∀¬⟶¬∃ = uncurry
∃¬⟶¬∀ : ∀ {a p} {A : Set a} {P : A → Set p} →
∃ (λ x → ¬ P x) → ¬ (∀ x → P x)
∃¬⟶¬∀ = flip ∀⟶¬∃¬
-- When P is a decidable predicate over a finite set the following
-- lemma can be proved.
¬∀⟶∃¬ : ∀ n {p} (P : Fin n → Set p) → Decidable P →
¬ (∀ i → P i) → ∃ λ i → ¬ P i
¬∀⟶∃¬ n P dec ¬P = Prod.map id proj₁ $ ¬∀⟶∃¬-smallest n P dec ¬P
------------------------------------------------------------------------
-- Double-negation
¬¬-map : ∀ {p q} {P : Set p} {Q : Set q} →
(P → Q) → ¬ ¬ P → ¬ ¬ Q
¬¬-map f = contraposition (contraposition f)
-- Stability under double-negation.
Stable : ∀ {ℓ} → Set ℓ → Set ℓ
Stable P = ¬ ¬ P → P
-- Everything is stable in the double-negation monad.
stable : ∀ {p} {P : Set p} → ¬ ¬ Stable P
stable ¬[¬¬p→p] = ¬[¬¬p→p] (λ ¬¬p → ⊥-elim (¬¬p (¬[¬¬p→p] ∘ const)))
-- Negated predicates are stable.
negated-stable : ∀ {p} {P : Set p} → Stable (¬ P)
negated-stable ¬¬¬P P = ¬¬¬P (λ ¬P → ¬P P)
-- Decidable predicates are stable.
decidable-stable : ∀ {p} {P : Set p} → Dec P → Stable P
decidable-stable (yes p) ¬¬p = p
decidable-stable (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p)
¬-drop-Dec : ∀ {p} {P : Set p} → Dec (¬ ¬ P) → Dec (¬ P)
¬-drop-Dec (yes ¬¬p) = no ¬¬p
¬-drop-Dec (no ¬¬¬p) = yes (negated-stable ¬¬¬p)
-- Double-negation is a monad (if we assume that all elements of ¬ ¬ P
-- are equal).
¬¬-Monad : ∀ {p} → RawMonad (λ (P : Set p) → ¬ ¬ P)
¬¬-Monad = record
{ return = contradiction
; _>>=_ = λ x f → negated-stable (¬¬-map f x)
}
¬¬-push : ∀ {p q} {P : Set p} {Q : P → Set q} →
¬ ¬ ((x : P) → Q x) → (x : P) → ¬ ¬ Q x
¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q (λ P⟶Q → ¬Q (P⟶Q P))
-- A double-negation-translated variant of excluded middle (or: every
-- nullary relation is decidable in the double-negation monad).
excluded-middle : ∀ {p} {P : Set p} → ¬ ¬ Dec P
excluded-middle ¬h = ¬h (no (λ p → ¬h (yes p)))
-- If Whatever is instantiated with ¬ ¬ something, then this function
-- is call with current continuation in the double-negation monad, or,
-- if you will, a double-negation translation of Peirce's law.
--
-- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However,
-- sometimes it is nice to avoid leaving the double-negation monad; in
-- that case this function can be used (with Whatever instantiated to
-- ⊥).
call/cc : ∀ {w p} {Whatever : Set w} {P : Set p} →
((P → Whatever) → ¬ ¬ P) → ¬ ¬ P
call/cc hyp ¬p = hyp (λ p → ⊥-elim (¬p p)) ¬p
-- The "independence of premise" rule, in the double-negation monad.
-- It is assumed that the index set (Q) is inhabited.
independence-of-premise
: ∀ {p q r} {P : Set p} {Q : Set q} {R : Q → Set r} →
Q → (P → Σ Q R) → ¬ ¬ (Σ[ x ∈ Q ] (P → R x))
independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle
where
helper : Dec P → _
helper (yes p) = Prod.map id const (f p)
helper (no ¬p) = (q , ⊥-elim ∘′ ¬p)
-- The independence of premise rule for binary sums.
independence-of-premise-⊎
: ∀ {p q r} {P : Set p} {Q : Set q} {R : Set r} →
(P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R))
independence-of-premise-⊎ {P = P} f = ¬¬-map helper excluded-middle
where
helper : Dec P → _
helper (yes p) = Sum.map const const (f p)
helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p)
private
-- Note that independence-of-premise-⊎ is a consequence of
-- independence-of-premise (for simplicity it is assumed that Q and
-- R have the same type here):
corollary : ∀ {p ℓ} {P : Set p} {Q R : Set ℓ} →
(P → Q ⊎ R) → ¬ ¬ ((P → Q) ⊎ (P → R))
corollary {P = P} {Q} {R} f =
¬¬-map helper (independence-of-premise
true ([ _,_ true , _,_ false ] ∘′ f))
where
helper : ∃ (λ b → P → if b then Q else R) → (P → Q) ⊎ (P → R)
helper (true , f) = inj₁ f
helper (false , f) = inj₂ f
-- The classical statements of excluded middle and double-negation
-- elimination.
Excluded-Middle : (ℓ : Level) → Set (suc ℓ)
Excluded-Middle p = {P : Set p} → Dec P
Double-Negation-Elimination : (ℓ : Level) → Set (suc ℓ)
Double-Negation-Elimination p = {P : Set p} → Stable P
private
-- The two statements above are equivalent. The proofs are so
-- simple, given the definitions above, that they are not exported.
em⇒dne : ∀ {ℓ} → Excluded-Middle ℓ → Double-Negation-Elimination ℓ
em⇒dne em = decidable-stable em
dne⇒em : ∀ {ℓ} → Double-Negation-Elimination ℓ → Excluded-Middle ℓ
dne⇒em dne = dne excluded-middle
|
{
"alphanum_fraction": 0.5249626804,
"avg_line_length": 31.0773195876,
"ext": "agda",
"hexsha": "ba2ce61e6e5c027971ea61e05b1a6fa33298ccf2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Negation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Negation.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Negation.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2246,
"size": 6029
}
|
{-# OPTIONS --without-K #-}
module hott where
open import hott.level public
open import hott.equivalence public
open import hott.univalence public
-- open import hott.truncation public
|
{
"alphanum_fraction": 0.7807486631,
"avg_line_length": 20.7777777778,
"ext": "agda",
"hexsha": "f6effcd58cb512ea9afb6c98d918db190b318a96",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "hott.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "hott.agda",
"max_line_length": 37,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "hott.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 39,
"size": 187
}
|
postulate
A : Set
data B (a : A) : Set where
conB : B a → B a
data C (a : A) : B a → Set where
conC : (b : B a) → C a (conB b)
goo : (a1 a2 a3 : A) (c : C a1 _) → Set
goo a1 a2 a3 (conC b) = {!!}
|
{
"alphanum_fraction": 0.4829268293,
"avg_line_length": 17.0833333333,
"ext": "agda",
"hexsha": "eb185f26a5d4682896c1bf4f3c1568962a62ae92",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2679c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2679c.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2679c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 98,
"size": 205
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sublist-related properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Sublist.Propositional.Disjoint
{a} {A : Set a} where
open import Data.List.Base using (List)
open import Data.List.Relation.Binary.Sublist.Propositional
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong)
------------------------------------------------------------------------
-- A Union where the triangles commute is a
-- Cospan in the slice category (_ ⊆ zs).
record IsCospan {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} (u : UpperBound τ₁ τ₂) : Set a where
field
tri₁ : ⊆-trans (UpperBound.inj₁ u) (UpperBound.sub u) ≡ τ₁
tri₂ : ⊆-trans (UpperBound.inj₂ u) (UpperBound.sub u) ≡ τ₂
record Cospan {xs ys zs : List A} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) : Set a where
field
upperBound : UpperBound τ₁ τ₂
isCospan : IsCospan upperBound
open UpperBound upperBound public
open IsCospan isCospan public
open IsCospan
open Cospan
module _
{x : A} {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs}
(d : Disjoint τ₁ τ₂) (c : IsCospan (⊆-disjoint-union d)) where
∷ₙ-cospan : IsCospan (⊆-disjoint-union (x ∷ₙ d))
∷ₙ-cospan = record
{ tri₁ = cong (x ∷ʳ_) (c .tri₁)
; tri₂ = cong (x ∷ʳ_) (c .tri₂)
}
∷ₗ-cospan : IsCospan (⊆-disjoint-union (refl {x = x} ∷ₗ d))
∷ₗ-cospan = record
{ tri₁ = cong (refl ∷_) (c .tri₁)
; tri₂ = cong (x ∷ʳ_) (c .tri₂)
}
∷ᵣ-cospan : IsCospan (⊆-disjoint-union (refl {x = x} ∷ᵣ d))
∷ᵣ-cospan = record
{ tri₁ = cong (x ∷ʳ_) (c .tri₁)
; tri₂ = cong (refl ∷_) (c .tri₂)
}
⊆-disjoint-union-is-cospan : ∀ {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} →
(d : Disjoint τ₁ τ₂) → IsCospan (⊆-disjoint-union d)
⊆-disjoint-union-is-cospan [] = record { tri₁ = refl ; tri₂ = refl }
⊆-disjoint-union-is-cospan (x ∷ₙ d) = ∷ₙ-cospan d (⊆-disjoint-union-is-cospan d)
⊆-disjoint-union-is-cospan (refl ∷ₗ d) = ∷ₗ-cospan d (⊆-disjoint-union-is-cospan d)
⊆-disjoint-union-is-cospan (refl ∷ᵣ d) = ∷ᵣ-cospan d (⊆-disjoint-union-is-cospan d)
⊆-disjoint-union-cospan : ∀ {xs ys zs : List A} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} →
Disjoint τ₁ τ₂ → Cospan τ₁ τ₂
⊆-disjoint-union-cospan d = record
{ upperBound = ⊆-disjoint-union d
; isCospan = ⊆-disjoint-union-is-cospan d
}
|
{
"alphanum_fraction": 0.5691747573,
"avg_line_length": 34.8169014085,
"ext": "agda",
"hexsha": "576644a77a022d5664ddfa2517dffbebff8be471",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Disjoint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Disjoint.agda",
"max_line_length": 102,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Disjoint.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 961,
"size": 2472
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.MaybeEmbed {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Tools.Product
-- Any level can be embedded into the highest level (validity variant).
maybeEmbᵛ : ∀ {l A r Γ}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ A ^ r / [Γ]
→ Γ ⊩ᵛ⟨ ∞ ⟩ A ^ r / [Γ]
maybeEmbᵛ {ι ⁰} [Γ] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = maybeEmb (proj₁ ([A] ⊢Δ [σ]))
in [σA]′
, (λ [σ′] [σ≡σ′] → irrelevanceEq [σA] [σA]′ (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
maybeEmbᵛ {ι ¹} [Γ] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = maybeEmb (proj₁ ([A] ⊢Δ [σ]))
in [σA]′
, (λ [σ′] [σ≡σ′] → irrelevanceEq [σA] [σA]′ (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
maybeEmbᵛ {∞} [Γ] [A] ⊢Δ [σ] = [A] ⊢Δ [σ]
maybeEmbTermᵛ : ∀ {l A t r Γ}
→ ([Γ] : ⊩ᵛ Γ)
→ ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ r / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A ^ r / [Γ] / [A]
→ Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ r / [Γ] / maybeEmbᵛ {A = A} [Γ] [A]
maybeEmbTermᵛ {ι ⁰} [Γ] [A] [t] = [t]
maybeEmbTermᵛ {ι ¹} [Γ] [A] [t] = [t]
maybeEmbTermᵛ {∞} [Γ] [A] [t] = [t]
-- The lowest level can be embedded in any level (validity variant).
maybeEmbₛ′ : ∀ {l A r Γ}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ ι ⁰ ⟩ A ^ r / [Γ]
→ Γ ⊩ᵛ⟨ l ⟩ A ^ r / [Γ]
maybeEmbₛ′ {ι ⁰} [Γ] [A] = [A]
maybeEmbₛ′ {ι ¹} [Γ] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = maybeEmb′ (<is≤ 0<1) (proj₁ ([A] ⊢Δ [σ]))
in [σA]′
, (λ [σ′] [σ≡σ′] → irrelevanceEq [σA] [σA]′ (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
maybeEmbₛ′ {∞} [Γ] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = maybeEmb (proj₁ ([A] ⊢Δ [σ]))
in [σA]′
, (λ [σ′] [σ≡σ′] → irrelevanceEq [σA] [σA]′ (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
maybeEmbEqTermᵛ : ∀ {l A t u r Γ}
→ ([Γ] : ⊩ᵛ Γ)
→ ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ r / [Γ] )
→ Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A ^ r / [Γ] / [A]
→ Γ ⊩ᵛ⟨ ∞ ⟩ t ≡ u ∷ A ^ r / [Γ] / maybeEmbᵛ {A = A} [Γ] [A]
maybeEmbEqTermᵛ {ι ⁰} [Γ] [A] [t≡u] = [t≡u]
maybeEmbEqTermᵛ {ι ¹} [Γ] [A] [t≡u] = [t≡u]
maybeEmbEqTermᵛ {∞} [Γ] [A] [t≡u] = [t≡u]
|
{
"alphanum_fraction": 0.4693277311,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "88f466b57c61c33d26fd7efdc9617b41107c4b5e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/MaybeEmbed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/MaybeEmbed.agda",
"max_line_length": 84,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/MaybeEmbed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 1270,
"size": 2380
}
|
module WeakArrows where
open import Library
open import Categories
record Arrow {l m}(J : Cat {l}{m}) : Set (lsuc (l ⊔ m)) where
constructor arrow
open Cat J
field R : Obj → Obj → Set m
pure : ∀{X Y} -> Hom X Y -> R X Y
_<<<_ : ∀{X Y Z} → R Y Z -> R X Y -> R X Z
alaw1 : ∀{X Y Z}(g : Hom Y Z)(f : Hom X Y) ->
pure (comp g f) ≅ pure g <<< pure f
alaw2 : ∀{X Y}(s : R X Y) -> s <<< pure iden ≅ s
alaw3 : ∀{X Y}(r : R X Y) -> pure iden <<< r ≅ r
alaw4 : ∀{W X Y Z}(t : R Y Z)(s : R X Y)(r : R W X) ->
t <<< (s <<< r) ≅ (t <<< s) <<< r
open import Functors
open import Naturals
open import Categories.Sets
open import YonedaLemma
open import RMonads
module Arrow2RMonad {l m}(C : Cat {l}{m})(A : Arrow C) where
open Cat C
open Arrow A
T : Cat.Obj C -> Fun (C Op) (Sets {m})
T X = functor
(λ Y -> R Y X)
(λ f s -> s <<< pure f)
(ext alaw2)
(ext (λ s -> trans (cong (s <<<_) (alaw1 _ _)) (alaw4 _ _ _)))
η : {X : Obj} -> NatT HomF[-, X ] (T X)
η = natural pure (ext λ _ -> sym (alaw1 _ _))
bind : {X Y : Obj} ->
NatT HomF[-, X ] (T Y) -> NatT (T X) (T Y)
bind α = natural (λ s -> cmp iden <<< s) (ext λ _ -> sym (alaw4 _ _ _))
where open NatT α
-- cmp iden is one direction of the yoneda lemma
law1 : {X : Obj} → bind (η {X}) ≅ idNat {F = T X}
law1 = NatTEq (iext (\ _ -> ext alaw3))
law2 : {X Y : Obj}{f : NatT HomF[-, X ] (T Y)} →
compNat (bind f) η ≅ f
law2 {f = f} = NatTEq
(iext \ _ -> ext \ s -> trans (fcong iden (nat {f = s})) (cong cmp idl))
where open NatT f
law3 : {X Y Z : Obj}
{f : NatT HomF[-, X ] (T Y)} →
{g : NatT HomF[-, Y ] (T Z)} →
bind (compNat (bind g) f) ≅ compNat (bind g) (bind f)
law3 = NatTEq (iext \ W -> ext (\ s -> sym (alaw4 _ _ s)))
ArrowRMonad : RMonad (y C)
ArrowRMonad = rmonad
T
η
bind
law1
law2
(λ {_ _ _ f g} -> law3 {f = f}{g = g})
module RMonad2Arrow {l m}(C : Cat {l}{m})(M : RMonad (y C)) where
open Cat C
open RMonad M
open Fun
open NatT
R : Obj → Obj → Set m
R X Y = OMap (T Y) X
pure : {X Y : Obj} → Hom X Y → R X Y
pure f = cmp η f
_<<<_ : ∀{X Y Z} → R Y Z → R X Y → R X Z
s <<< t = cmp (bind (ylem C (T _) _ s)) t
alaw1 : ∀{X Y Z}(g : Hom Y Z)(f : Hom X Y) →
pure (comp g f) ≅ (pure g <<< pure f)
alaw1 g f = trans
(sym (fcong g (nat η)))
(sym (fcong f (ifcong _ (cong cmp law2))))
alaw2 : ∀{X Y} -> (s : R X Y) → (s <<< pure iden) ≅ s
alaw2 s = trans
(fcong iden (ifcong _ (cong cmp law2)))
(fcong s (fid (T _)))
alaw3 : ∀{X Y}(r : R X Y) → (pure iden <<< r) ≅ r
alaw3 r = trans
(cong (\ α -> cmp (bind α) r)
(NatTEq (iext \ Z -> ext \ f -> trans
(fcong iden (nat η))
(cong (cmp η) idl))))
(fcong r (ifcong _ (cong cmp law1)))
alaw4 : ∀{W X Y Z}(t : R Y Z)(s : R X Y)(r : R W X) →
(t <<< (s <<< r)) ≅ ((t <<< s) <<< r)
alaw4 t s r = trans
(sym (fcong r (ifcong _ (cong cmp law3))))
(cong (\ α -> cmp (bind α) r)
(NatTEq (iext \ _ -> ext \ _ ->
sym (fcong s (nat (bind (ylem C (T _) _ t)))))))
RMonadArrow : Arrow C
RMonadArrow = arrow
R
pure
_<<<_
alaw1
alaw2
alaw3
alaw4
|
{
"alphanum_fraction": 0.4726457399,
"avg_line_length": 27.875,
"ext": "agda",
"hexsha": "23bf6900e23f426a0841a665861d5f2ebfc69779",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "WeakArrows.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "WeakArrows.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "WeakArrows.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 1387,
"size": 3345
}
|
{-# OPTIONS --without-K #-}
module PiLevel1 where
open import Data.Unit using (⊤; tt)
open import Relation.Binary.Core using (IsEquivalence)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst; sym; [_])
open import PiU using (U; ZERO; ONE; PLUS; TIMES)
open import PiLevel0
-- hiding triv≡ certainly; we are replacing it with _⇔_
using (_⟷_; !;
unite₊l; uniti₊l; unite₊r; uniti₊r; swap₊; assocl₊; assocr₊;
unite⋆l; uniti⋆l; unite⋆r; uniti⋆r; swap⋆; assocl⋆; assocr⋆;
absorbr; absorbl; factorzr; factorzl;
dist; factor; distl; factorl;
id⟷; _◎_; _⊕_; _⊗_)
------------------------------------------------------------------------------
-- Level 1: instead of using triv≡ to reason about equivalence of
-- combinators, we use the following 2-combinators
infix 30 _⇔_
data _⇔_ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → Set where
assoc◎l : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} →
(c₁ ◎ (c₂ ◎ c₃)) ⇔ ((c₁ ◎ c₂) ◎ c₃)
assoc◎r : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} →
((c₁ ◎ c₂) ◎ c₃) ⇔ (c₁ ◎ (c₂ ◎ c₃))
assocl⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
((c₁ ⊕ (c₂ ⊕ c₃)) ◎ assocl₊) ⇔ (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃))
assocl⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
(assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃)) ⇔ ((c₁ ⊕ (c₂ ⊕ c₃)) ◎ assocl₊)
assocl⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
((c₁ ⊗ (c₂ ⊗ c₃)) ◎ assocl⋆) ⇔ (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃))
assocl⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
(assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃)) ⇔ ((c₁ ⊗ (c₂ ⊗ c₃)) ◎ assocl⋆)
assocr⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
(((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) ⇔ (assocr₊ ◎ (c₁ ⊕ (c₂ ⊕ c₃)))
assocr⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
(assocr⋆ ◎ (c₁ ⊗ (c₂ ⊗ c₃))) ⇔ (((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆)
assocr⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
(((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) ⇔ (assocr⋆ ◎ (c₁ ⊗ (c₂ ⊗ c₃)))
assocr⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} →
(assocr₊ ◎ (c₁ ⊕ (c₂ ⊕ c₃))) ⇔ (((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊)
dist⇔l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
((a ⊕ b) ⊗ c) ◎ dist ⇔ dist ◎ ((a ⊗ c) ⊕ (b ⊗ c))
dist⇔r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
dist ◎ ((a ⊗ c) ⊕ (b ⊗ c)) ⇔ ((a ⊕ b) ⊗ c) ◎ dist
distl⇔l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
(a ⊗ (b ⊕ c)) ◎ distl ⇔ distl ◎ ((a ⊗ b) ⊕ (a ⊗ c))
distl⇔r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
distl ◎ ((a ⊗ b) ⊕ (a ⊗ c)) ⇔ (a ⊗ (b ⊕ c)) ◎ distl
factor⇔l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
((a ⊗ c) ⊕ (b ⊗ c)) ◎ factor ⇔ factor ◎ ((a ⊕ b) ⊗ c)
factor⇔r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
factor ◎ ((a ⊕ b) ⊗ c) ⇔ ((a ⊗ c) ⊕ (b ⊗ c)) ◎ factor
factorl⇔l : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
((a ⊗ b) ⊕ (a ⊗ c)) ◎ factorl ⇔ factorl ◎ (a ⊗ (b ⊕ c))
factorl⇔r : {t₁ t₂ t₃ t₄ t₅ t₆ : U}
{a : t₁ ⟷ t₂} {b : t₃ ⟷ t₄} {c : t₅ ⟷ t₆} →
factorl ◎ (a ⊗ (b ⊕ c)) ⇔ ((a ⊗ b) ⊕ (a ⊗ c)) ◎ factorl
idl◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (id⟷ ◎ c) ⇔ c
idl◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ id⟷ ◎ c
idr◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ id⟷) ⇔ c
idr◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ (c ◎ id⟷)
linv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ ! c) ⇔ id⟷
linv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (c ◎ ! c)
rinv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! c ◎ c) ⇔ id⟷
rinv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (! c ◎ c)
unite₊l⇔l : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
(unite₊l ◎ c₂) ⇔ ((c₁ ⊕ c₂) ◎ unite₊l)
unite₊l⇔r : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
((c₁ ⊕ c₂) ◎ unite₊l) ⇔ (unite₊l ◎ c₂)
uniti₊l⇔l : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
(uniti₊l ◎ (c₁ ⊕ c₂)) ⇔ (c₂ ◎ uniti₊l)
uniti₊l⇔r : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
(c₂ ◎ uniti₊l) ⇔ (uniti₊l ◎ (c₁ ⊕ c₂))
unite₊r⇔l : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
(unite₊r ◎ c₂) ⇔ ((c₂ ⊕ c₁) ◎ unite₊r)
unite₊r⇔r : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
((c₂ ⊕ c₁) ◎ unite₊r) ⇔ (unite₊r ◎ c₂)
uniti₊r⇔l : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
(uniti₊r ◎ (c₂ ⊕ c₁)) ⇔ (c₂ ◎ uniti₊r)
uniti₊r⇔r : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} →
(c₂ ◎ uniti₊r) ⇔ (uniti₊r ◎ (c₂ ⊕ c₁))
swapl₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} →
(swap₊ ◎ (c₁ ⊕ c₂)) ⇔ ((c₂ ⊕ c₁) ◎ swap₊)
swapr₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} →
((c₂ ⊕ c₁) ◎ swap₊) ⇔ (swap₊ ◎ (c₁ ⊕ c₂))
unitel⋆⇔l : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
(unite⋆l ◎ c₂) ⇔ ((c₁ ⊗ c₂) ◎ unite⋆l)
uniter⋆⇔l : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
((c₁ ⊗ c₂) ◎ unite⋆l) ⇔ (unite⋆l ◎ c₂)
unitil⋆⇔l : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
(uniti⋆l ◎ (c₁ ⊗ c₂)) ⇔ (c₂ ◎ uniti⋆l)
unitir⋆⇔l : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
(c₂ ◎ uniti⋆l) ⇔ (uniti⋆l ◎ (c₁ ⊗ c₂))
unitel⋆⇔r : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
(unite⋆r ◎ c₂) ⇔ ((c₂ ⊗ c₁) ◎ unite⋆r)
uniter⋆⇔r : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
((c₂ ⊗ c₁) ◎ unite⋆r) ⇔ (unite⋆r ◎ c₂)
unitil⋆⇔r : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
(uniti⋆r ◎ (c₂ ⊗ c₁)) ⇔ (c₂ ◎ uniti⋆r)
unitir⋆⇔r : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} →
(c₂ ◎ uniti⋆r) ⇔ (uniti⋆r ◎ (c₂ ⊗ c₁))
swapl⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} →
(swap⋆ ◎ (c₁ ⊗ c₂)) ⇔ ((c₂ ⊗ c₁) ◎ swap⋆)
swapr⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} →
((c₂ ⊗ c₁) ◎ swap⋆) ⇔ (swap⋆ ◎ (c₁ ⊗ c₂))
id⇔ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ c
trans⇔ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} →
(c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃)
_⊡_ : {t₁ t₂ t₃ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} →
(c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ◎ c₂) ⇔ (c₃ ◎ c₄)
resp⊕⇔ : {t₁ t₂ t₃ t₄ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} →
(c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊕ c₂) ⇔ (c₃ ⊕ c₄)
resp⊗⇔ : {t₁ t₂ t₃ t₄ : U}
{c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} →
(c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊗ c₂) ⇔ (c₃ ⊗ c₄)
-- below are the combinators added for the RigCategory structure
id⟷⊕id⟷⇔ : {t₁ t₂ : U} → (id⟷ {t₁} ⊕ id⟷ {t₂}) ⇔ id⟷
split⊕-id⟷ : {t₁ t₂ : U} → (id⟷ {PLUS t₁ t₂}) ⇔ (id⟷ ⊕ id⟷)
hom⊕◎⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₅ ⟷ t₁} {c₂ : t₆ ⟷ t₂}
{c₃ : t₁ ⟷ t₃} {c₄ : t₂ ⟷ t₄} →
((c₁ ◎ c₃) ⊕ (c₂ ◎ c₄)) ⇔ ((c₁ ⊕ c₂) ◎ (c₃ ⊕ c₄))
hom◎⊕⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₅ ⟷ t₁} {c₂ : t₆ ⟷ t₂}
{c₃ : t₁ ⟷ t₃} {c₄ : t₂ ⟷ t₄} →
((c₁ ⊕ c₂) ◎ (c₃ ⊕ c₄)) ⇔ ((c₁ ◎ c₃) ⊕ (c₂ ◎ c₄))
id⟷⊗id⟷⇔ : {t₁ t₂ : U} → (id⟷ {t₁} ⊗ id⟷ {t₂}) ⇔ id⟷
split⊗-id⟷ : {t₁ t₂ : U} → (id⟷ {TIMES t₁ t₂}) ⇔ (id⟷ ⊗ id⟷)
hom⊗◎⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₅ ⟷ t₁} {c₂ : t₆ ⟷ t₂}
{c₃ : t₁ ⟷ t₃} {c₄ : t₂ ⟷ t₄} →
((c₁ ◎ c₃) ⊗ (c₂ ◎ c₄)) ⇔ ((c₁ ⊗ c₂) ◎ (c₃ ⊗ c₄))
hom◎⊗⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₅ ⟷ t₁} {c₂ : t₆ ⟷ t₂}
{c₃ : t₁ ⟷ t₃} {c₄ : t₂ ⟷ t₄} →
((c₁ ⊗ c₂) ◎ (c₃ ⊗ c₄)) ⇔ ((c₁ ◎ c₃) ⊗ (c₂ ◎ c₄))
-- associativity triangle
triangle⊕l : {t₁ t₂ : U} →
(unite₊r {t₁} ⊕ id⟷ {t₂}) ⇔ assocr₊ ◎ (id⟷ ⊕ unite₊l)
triangle⊕r : {t₁ t₂ : U} →
assocr₊ ◎ (id⟷ {t₁} ⊕ unite₊l {t₂}) ⇔ (unite₊r ⊕ id⟷)
triangle⊗l : {t₁ t₂ : U} →
((unite⋆r {t₁}) ⊗ id⟷ {t₂}) ⇔ assocr⋆ ◎ (id⟷ ⊗ unite⋆l)
triangle⊗r : {t₁ t₂ : U} →
(assocr⋆ ◎ (id⟷ {t₁} ⊗ unite⋆l {t₂})) ⇔ (unite⋆r ⊗ id⟷)
pentagon⊕l : {t₁ t₂ t₃ t₄ : U} →
assocr₊ ◎ (assocr₊ {t₁} {t₂} {PLUS t₃ t₄}) ⇔
((assocr₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ assocr₊)
pentagon⊕r : {t₁ t₂ t₃ t₄ : U} →
((assocr₊ {t₁} {t₂} {t₃} ⊕ id⟷ {t₄}) ◎ assocr₊) ◎ (id⟷ ⊕ assocr₊) ⇔
assocr₊ ◎ assocr₊
pentagon⊗l : {t₁ t₂ t₃ t₄ : U} →
assocr⋆ ◎ (assocr⋆ {t₁} {t₂} {TIMES t₃ t₄}) ⇔
((assocr⋆ ⊗ id⟷) ◎ assocr⋆) ◎ (id⟷ ⊗ assocr⋆)
pentagon⊗r : {t₁ t₂ t₃ t₄ : U} →
((assocr⋆ {t₁} {t₂} {t₃} ⊗ id⟷ {t₄}) ◎ assocr⋆) ◎ (id⟷ ⊗ assocr⋆) ⇔
assocr⋆ ◎ assocr⋆
-- from the braiding
-- unit coherence
unite₊l-coh-l : {t₁ : U} → unite₊l {t₁} ⇔ swap₊ ◎ unite₊r
unite₊l-coh-r : {t₁ : U} → swap₊ ◎ unite₊r ⇔ unite₊l {t₁}
unite⋆l-coh-l : {t₁ : U} → unite⋆l {t₁} ⇔ swap⋆ ◎ unite⋆r
unite⋆l-coh-r : {t₁ : U} → swap⋆ ◎ unite⋆r ⇔ unite⋆l {t₁}
hexagonr⊕l : {t₁ t₂ t₃ : U} →
(assocr₊ ◎ swap₊) ◎ assocr₊ {t₁} {t₂} {t₃} ⇔
((swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swap₊)
hexagonr⊕r : {t₁ t₂ t₃ : U} →
((swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swap₊) ⇔
(assocr₊ ◎ swap₊) ◎ assocr₊ {t₁} {t₂} {t₃}
hexagonl⊕l : {t₁ t₂ t₃ : U} →
(assocl₊ ◎ swap₊) ◎ assocl₊ {t₁} {t₂} {t₃} ⇔
((id⟷ ⊕ swap₊) ◎ assocl₊) ◎ (swap₊ ⊕ id⟷)
hexagonl⊕r : {t₁ t₂ t₃ : U} →
((id⟷ ⊕ swap₊) ◎ assocl₊) ◎ (swap₊ ⊕ id⟷) ⇔
(assocl₊ ◎ swap₊) ◎ assocl₊ {t₁} {t₂} {t₃}
hexagonr⊗l : {t₁ t₂ t₃ : U} →
(assocr⋆ ◎ swap⋆) ◎ assocr⋆ {t₁} {t₂} {t₃} ⇔
((swap⋆ ⊗ id⟷) ◎ assocr⋆) ◎ (id⟷ ⊗ swap⋆)
hexagonr⊗r : {t₁ t₂ t₃ : U} →
((swap⋆ ⊗ id⟷) ◎ assocr⋆) ◎ (id⟷ ⊗ swap⋆) ⇔
(assocr⋆ ◎ swap⋆) ◎ assocr⋆ {t₁} {t₂} {t₃}
hexagonl⊗l : {t₁ t₂ t₃ : U} →
(assocl⋆ ◎ swap⋆) ◎ assocl⋆ {t₁} {t₂} {t₃} ⇔
((id⟷ ⊗ swap⋆) ◎ assocl⋆) ◎ (swap⋆ ⊗ id⟷)
hexagonl⊗r : {t₁ t₂ t₃ : U} →
((id⟷ ⊗ swap⋆) ◎ assocl⋆) ◎ (swap⋆ ⊗ id⟷) ⇔
(assocl⋆ ◎ swap⋆) ◎ assocl⋆ {t₁} {t₂} {t₃}
absorbl⇔l : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
(c₁ ⊗ id⟷ {ZERO}) ◎ absorbl ⇔ absorbl ◎ id⟷ {ZERO}
absorbl⇔r : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
absorbl ◎ id⟷ {ZERO} ⇔ (c₁ ⊗ id⟷ {ZERO}) ◎ absorbl
absorbr⇔l : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
(id⟷ {ZERO} ⊗ c₁) ◎ absorbr ⇔ absorbr ◎ id⟷ {ZERO}
absorbr⇔r : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
absorbr ◎ id⟷ {ZERO} ⇔ (id⟷ {ZERO} ⊗ c₁) ◎ absorbr
factorzl⇔l : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
id⟷ ◎ factorzl ⇔ factorzl ◎ (id⟷ ⊗ c₁)
factorzl⇔r : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
factorzl ◎ (id⟷ {ZERO} ⊗ c₁) ⇔ id⟷ {ZERO} ◎ factorzl
factorzr⇔l : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
id⟷ ◎ factorzr ⇔ factorzr ◎ (c₁ ⊗ id⟷)
factorzr⇔r : {t₁ t₂ : U} {c₁ : t₁ ⟷ t₂} →
factorzr ◎ (c₁ ⊗ id⟷) ⇔ id⟷ ◎ factorzr
-- from the coherence conditions of RigCategory
swap₊distl⇔l : {t₁ t₂ t₃ : U} →
(id⟷ {t₁} ⊗ swap₊ {t₂} {t₃}) ◎ distl ⇔ distl ◎ swap₊
swap₊distl⇔r : {t₁ t₂ t₃ : U} →
distl ◎ swap₊ ⇔ (id⟷ {t₁} ⊗ swap₊ {t₂} {t₃}) ◎ distl
dist-swap⋆⇔l : {t₁ t₂ t₃ : U} →
dist {t₁} {t₂} {t₃} ◎ (swap⋆ ⊕ swap⋆) ⇔ swap⋆ ◎ distl
dist-swap⋆⇔r : {t₁ t₂ t₃ : U} →
swap⋆ ◎ distl {t₁} {t₂} {t₃} ⇔ dist ◎ (swap⋆ ⊕ swap⋆)
assocl₊-dist-dist⇔l : {t₁ t₂ t₃ t₄ : U} →
((assocl₊ {t₁} {t₂} {t₃} ⊗ id⟷ {t₄}) ◎ dist) ◎ (dist ⊕ id⟷) ⇔
(dist ◎ (id⟷ ⊕ dist)) ◎ assocl₊
assocl₊-dist-dist⇔r : {t₁ t₂ t₃ t₄ : U} →
(dist {t₁} ◎ (id⟷ ⊕ dist {t₂} {t₃} {t₄})) ◎ assocl₊ ⇔
((assocl₊ ⊗ id⟷) ◎ dist) ◎ (dist ⊕ id⟷)
assocl⋆-distl⇔l : {t₁ t₂ t₃ t₄ : U} →
assocl⋆ {t₁} {t₂} ◎ distl {TIMES t₁ t₂} {t₃} {t₄} ⇔
((id⟷ ⊗ distl) ◎ distl) ◎ (assocl⋆ ⊕ assocl⋆)
assocl⋆-distl⇔r : {t₁ t₂ t₃ t₄ : U} →
((id⟷ ⊗ distl) ◎ distl) ◎ (assocl⋆ ⊕ assocl⋆) ⇔
assocl⋆ {t₁} {t₂} ◎ distl {TIMES t₁ t₂} {t₃} {t₄}
absorbr0-absorbl0⇔ : absorbr {ZERO} ⇔ absorbl {ZERO}
absorbl0-absorbr0⇔ : absorbl {ZERO} ⇔ absorbr {ZERO}
absorbr⇔distl-absorb-unite : {t₁ t₂ : U} →
absorbr ⇔ (distl {t₂ = t₁} {t₂} ◎ (absorbr ⊕ absorbr)) ◎ unite₊l
distl-absorb-unite⇔absorbr : {t₁ t₂ : U} →
(distl {t₂ = t₁} {t₂} ◎ (absorbr ⊕ absorbr)) ◎ unite₊l ⇔ absorbr
unite⋆r0-absorbr1⇔ : unite⋆r ⇔ absorbr
absorbr1-unite⋆r-⇔ : absorbr ⇔ unite⋆r
absorbl≡swap⋆◎absorbr : {t₁ : U} → absorbl {t₁} ⇔ swap⋆ ◎ absorbr
swap⋆◎absorbr≡absorbl : {t₁ : U} → swap⋆ ◎ absorbr ⇔ absorbl {t₁}
absorbr⇔[assocl⋆◎[absorbr⊗id⟷]]◎absorbr : {t₁ t₂ : U} →
absorbr ⇔ (assocl⋆ {ZERO} {t₁} {t₂} ◎ (absorbr ⊗ id⟷)) ◎ absorbr
[assocl⋆◎[absorbr⊗id⟷]]◎absorbr⇔absorbr : {t₁ t₂ : U} →
(assocl⋆ {ZERO} {t₁} {t₂} ◎ (absorbr ⊗ id⟷)) ◎ absorbr ⇔ absorbr
[id⟷⊗absorbr]◎absorbl⇔assocl⋆◎[absorbl⊗id⟷]◎absorbr : {t₁ t₂ : U} →
(id⟷ ⊗ absorbr {t₂}) ◎ absorbl {t₁} ⇔
(assocl⋆ ◎ (absorbl ⊗ id⟷)) ◎ absorbr
assocl⋆◎[absorbl⊗id⟷]◎absorbr⇔[id⟷⊗absorbr]◎absorbl : {t₁ t₂ : U} →
(assocl⋆ ◎ (absorbl ⊗ id⟷)) ◎ absorbr ⇔
(id⟷ ⊗ absorbr {t₂}) ◎ absorbl {t₁}
elim⊥-A[0⊕B]⇔l : {t₁ t₂ : U} →
(id⟷ {t₁} ⊗ unite₊l {t₂}) ⇔
(distl ◎ (absorbl ⊕ id⟷)) ◎ unite₊l
elim⊥-A[0⊕B]⇔r : {t₁ t₂ : U} →
(distl ◎ (absorbl ⊕ id⟷)) ◎ unite₊l ⇔ (id⟷ {t₁} ⊗ unite₊l {t₂})
elim⊥-1[A⊕B]⇔l : {t₁ t₂ : U} →
unite⋆l ⇔
distl ◎ (unite⋆l {t₁} ⊕ unite⋆l {t₂})
elim⊥-1[A⊕B]⇔r : {t₁ t₂ : U} →
distl ◎ (unite⋆l {t₁} ⊕ unite⋆l {t₂}) ⇔ unite⋆l
fully-distribute⇔l : {t₁ t₂ t₃ t₄ : U} →
(distl ◎ (dist {t₁} {t₂} {t₃} ⊕ dist {t₁} {t₂} {t₄})) ◎ assocl₊ ⇔
((((dist ◎ (distl ⊕ distl)) ◎ assocl₊) ◎ (assocr₊ ⊕ id⟷)) ◎
((id⟷ ⊕ swap₊) ⊕ id⟷)) ◎ (assocl₊ ⊕ id⟷)
fully-distribute⇔r : {t₁ t₂ t₃ t₄ : U} →
((((dist ◎ (distl ⊕ distl)) ◎ assocl₊) ◎ (assocr₊ ⊕ id⟷)) ◎
((id⟷ ⊕ swap₊) ⊕ id⟷)) ◎ (assocl₊ ⊕ id⟷) ⇔
(distl ◎ (dist {t₁} {t₂} {t₃} ⊕ dist {t₁} {t₂} {t₄})) ◎ assocl₊
-- At the next level we have a trivial equivalence that equates all
-- 2-morphisms of the same type.
triv≡ : {t₁ t₂ : U} {f g : t₁ ⟷ t₂} → (α β : f ⇔ g) → Set
triv≡ _ _ = ⊤
triv≡Equiv : {t₁ t₂ : U} {f₁ f₂ : t₁ ⟷ t₂} →
IsEquivalence (triv≡ {t₁} {t₂} {f₁} {f₂})
triv≡Equiv = record
{ refl = tt
; sym = λ _ → tt
; trans = λ _ _ → tt
}
------------------------------------------------------------------------------
-- Inverses for 2paths
2! : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₁)
2! assoc◎l = assoc◎r
2! assoc◎r = assoc◎l
2! assocl⊕l = assocl⊕r
2! assocl⊕r = assocl⊕l
2! assocl⊗l = assocl⊗r
2! assocl⊗r = assocl⊗l
2! assocr⊕r = assocr⊕l
2! assocr⊕l = assocr⊕r
2! assocr⊗r = assocr⊗l
2! assocr⊗l = assocr⊗r
2! dist⇔l = dist⇔r
2! dist⇔r = dist⇔l
2! distl⇔l = distl⇔r
2! distl⇔r = distl⇔l
2! factor⇔l = factor⇔r
2! factor⇔r = factor⇔l
2! factorl⇔l = factorl⇔r
2! factorl⇔r = factorl⇔l
2! idl◎l = idl◎r
2! idl◎r = idl◎l
2! idr◎l = idr◎r
2! idr◎r = idr◎l
2! linv◎l = linv◎r
2! linv◎r = linv◎l
2! rinv◎l = rinv◎r
2! rinv◎r = rinv◎l
2! unite₊l⇔l = unite₊l⇔r
2! unite₊l⇔r = unite₊l⇔l
2! uniti₊l⇔l = uniti₊l⇔r
2! uniti₊l⇔r = uniti₊l⇔l
2! unite₊r⇔l = unite₊r⇔r
2! unite₊r⇔r = unite₊r⇔l
2! uniti₊r⇔l = uniti₊r⇔r
2! uniti₊r⇔r = uniti₊r⇔l
2! swapl₊⇔ = swapr₊⇔
2! swapr₊⇔ = swapl₊⇔
2! unitel⋆⇔l = uniter⋆⇔l
2! uniter⋆⇔l = unitel⋆⇔l
2! unitil⋆⇔l = unitir⋆⇔l
2! unitir⋆⇔l = unitil⋆⇔l
2! unitel⋆⇔r = uniter⋆⇔r
2! uniter⋆⇔r = unitel⋆⇔r
2! unitil⋆⇔r = unitir⋆⇔r
2! unitir⋆⇔r = unitil⋆⇔r
2! swapl⋆⇔ = swapr⋆⇔
2! swapr⋆⇔ = swapl⋆⇔
2! id⇔ = id⇔
2! (α ⊡ β) = (2! α) ⊡ (2! β)
2! (trans⇔ α β) = trans⇔ (2! β) (2! α)
2! (resp⊕⇔ α β) = resp⊕⇔ (2! α) (2! β)
2! (resp⊗⇔ α β) = resp⊗⇔ (2! α) (2! β)
2! id⟷⊕id⟷⇔ = split⊕-id⟷
2! split⊕-id⟷ = id⟷⊕id⟷⇔
2! hom⊕◎⇔ = hom◎⊕⇔
2! hom◎⊕⇔ = hom⊕◎⇔
2! id⟷⊗id⟷⇔ = split⊗-id⟷
2! split⊗-id⟷ = id⟷⊗id⟷⇔
2! hom⊗◎⇔ = hom◎⊗⇔
2! hom◎⊗⇔ = hom⊗◎⇔
2! triangle⊕l = triangle⊕r
2! triangle⊕r = triangle⊕l
2! triangle⊗l = triangle⊗r
2! triangle⊗r = triangle⊗l
2! pentagon⊕l = pentagon⊕r
2! pentagon⊕r = pentagon⊕l
2! pentagon⊗l = pentagon⊗r
2! pentagon⊗r = pentagon⊗l
2! unite₊l-coh-l = unite₊l-coh-r
2! unite₊l-coh-r = unite₊l-coh-l
2! unite⋆l-coh-l = unite⋆l-coh-r
2! unite⋆l-coh-r = unite⋆l-coh-l
2! hexagonr⊕l = hexagonr⊕r
2! hexagonr⊕r = hexagonr⊕l
2! hexagonl⊕l = hexagonl⊕r
2! hexagonl⊕r = hexagonl⊕l
2! hexagonr⊗l = hexagonr⊗r
2! hexagonr⊗r = hexagonr⊗l
2! hexagonl⊗l = hexagonl⊗r
2! hexagonl⊗r = hexagonl⊗l
2! absorbl⇔l = absorbl⇔r
2! absorbl⇔r = absorbl⇔l
2! absorbr⇔l = absorbr⇔r
2! absorbr⇔r = absorbr⇔l
2! factorzl⇔l = factorzl⇔r
2! factorzl⇔r = factorzl⇔l
2! factorzr⇔l = factorzr⇔r
2! factorzr⇔r = factorzr⇔l
2! swap₊distl⇔l = swap₊distl⇔r
2! swap₊distl⇔r = swap₊distl⇔l
2! dist-swap⋆⇔l = dist-swap⋆⇔r
2! dist-swap⋆⇔r = dist-swap⋆⇔l
2! assocl₊-dist-dist⇔l = assocl₊-dist-dist⇔r
2! assocl₊-dist-dist⇔r = assocl₊-dist-dist⇔l
2! assocl⋆-distl⇔l = assocl⋆-distl⇔r
2! assocl⋆-distl⇔r = assocl⋆-distl⇔l
2! absorbr0-absorbl0⇔ = absorbl0-absorbr0⇔
2! absorbl0-absorbr0⇔ = absorbr0-absorbl0⇔
2! absorbr⇔distl-absorb-unite = distl-absorb-unite⇔absorbr
2! distl-absorb-unite⇔absorbr = absorbr⇔distl-absorb-unite
2! unite⋆r0-absorbr1⇔ = absorbr1-unite⋆r-⇔
2! absorbr1-unite⋆r-⇔ = unite⋆r0-absorbr1⇔
2! absorbl≡swap⋆◎absorbr = swap⋆◎absorbr≡absorbl
2! swap⋆◎absorbr≡absorbl = absorbl≡swap⋆◎absorbr
2! absorbr⇔[assocl⋆◎[absorbr⊗id⟷]]◎absorbr =
[assocl⋆◎[absorbr⊗id⟷]]◎absorbr⇔absorbr
2! [assocl⋆◎[absorbr⊗id⟷]]◎absorbr⇔absorbr =
absorbr⇔[assocl⋆◎[absorbr⊗id⟷]]◎absorbr
2! [id⟷⊗absorbr]◎absorbl⇔assocl⋆◎[absorbl⊗id⟷]◎absorbr =
assocl⋆◎[absorbl⊗id⟷]◎absorbr⇔[id⟷⊗absorbr]◎absorbl
2! assocl⋆◎[absorbl⊗id⟷]◎absorbr⇔[id⟷⊗absorbr]◎absorbl =
[id⟷⊗absorbr]◎absorbl⇔assocl⋆◎[absorbl⊗id⟷]◎absorbr
2! elim⊥-A[0⊕B]⇔l = elim⊥-A[0⊕B]⇔r
2! elim⊥-A[0⊕B]⇔r = elim⊥-A[0⊕B]⇔l
2! elim⊥-1[A⊕B]⇔l = elim⊥-1[A⊕B]⇔r
2! elim⊥-1[A⊕B]⇔r = elim⊥-1[A⊕B]⇔l
2! fully-distribute⇔l = fully-distribute⇔r
2! fully-distribute⇔r = fully-distribute⇔l
2!! : {t₁ t₂ : U} {f g : t₁ ⟷ t₂} {α : f ⇔ g} → triv≡ (2! (2! α)) α
2!! = tt
-- This makes _⇔_ an equivalence relation...
⇔Equiv : {t₁ t₂ : U} → IsEquivalence (_⇔_ {t₁} {t₂})
⇔Equiv = record
{ refl = id⇔
; sym = 2!
; trans = trans⇔
}
------------------------------------------------------------------------------
-- Unit coherence has two versions, but one is derivable
-- from the other. As it turns out, one of our examples
-- needs the 'flipped' version.
unite₊r-coh-r : {t₁ : U} → swap₊ ◎ unite₊l ⇔ unite₊r {t₁}
unite₊r-coh-r =
trans⇔ (id⇔ ⊡ unite₊l-coh-l) (
trans⇔ assoc◎l ((
trans⇔ (linv◎l ⊡ id⇔) idl◎l ) ) )
------------------------------------------------------------------------------
-- It is often useful to have that reversing c twice is ⇔ c rather than ≡
-- Unfortunately, it needs a 'proof', which is quite dull, though
-- it does have 3 non-trivial cases.
!!⇔id : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! (! c)) ⇔ c
!!⇔id {c = unite₊l} = id⇔
!!⇔id {c = uniti₊l} = id⇔
!!⇔id {c = unite₊r} = id⇔
!!⇔id {c = uniti₊r} = id⇔
!!⇔id {c = swap₊} = id⇔
!!⇔id {c = assocl₊} = id⇔
!!⇔id {c = assocr₊} = id⇔
!!⇔id {c = unite⋆l} = id⇔
!!⇔id {c = uniti⋆l} = id⇔
!!⇔id {c = unite⋆r} = id⇔
!!⇔id {c = uniti⋆r} = id⇔
!!⇔id {c = swap⋆} = id⇔
!!⇔id {c = assocl⋆} = id⇔
!!⇔id {c = assocr⋆} = id⇔
!!⇔id {c = absorbr} = id⇔
!!⇔id {c = absorbl} = id⇔
!!⇔id {c = factorzr} = id⇔
!!⇔id {c = factorzl} = id⇔
!!⇔id {c = dist} = id⇔
!!⇔id {c = factor} = id⇔
!!⇔id {c = distl} = id⇔
!!⇔id {c = factorl} = id⇔
!!⇔id {c = id⟷} = id⇔
!!⇔id {c = c ◎ c₁} = !!⇔id ⊡ !!⇔id
!!⇔id {c = c ⊕ c₁} = resp⊕⇔ !!⇔id !!⇔id
!!⇔id {c = c ⊗ c₁} = resp⊗⇔ !!⇔id !!⇔id
-------------
mutual
eval₁ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} (ce : c₁ ⇔ c₂) → (t₁ ⟷ t₂)
eval₁ (assoc◎l {c₁ = c₁} {c₂} {c₃}) = (c₁ ◎ c₂) ◎ c₃
eval₁ (assoc◎r {c₁ = c₁} {c₂} {c₃}) = c₁ ◎ (c₂ ◎ c₃)
eval₁ (assocl⊕l {c₁ = c₁} {c₂} {c₃}) = assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃)
eval₁ (assocl⊕r {c₁ = c₁} {c₂} {c₃}) = (c₁ ⊕ (c₂ ⊕ c₃)) ◎ assocl₊
eval₁ (assocl⊗l {c₁ = c₁} {c₂} {c₃}) = assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃)
eval₁ (assocl⊗r {c₁ = c₁} {c₂} {c₃}) = (c₁ ⊗ (c₂ ⊗ c₃)) ◎ assocl⋆
eval₁ (assocr⊕r {c₁ = c₁} {c₂} {c₃}) = assocr₊ ◎ (c₁ ⊕ (c₂ ⊕ c₃))
eval₁ (assocr⊗l {c₁ = c₁} {c₂} {c₃}) = ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆
eval₁ (assocr⊗r {c₁ = c₁} {c₂} {c₃}) = assocr⋆ ◎(c₁ ⊗ (c₂ ⊗ c₃))
eval₁ (assocr⊕l {c₁ = c₁} {c₂} {c₃}) = ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊
eval₁ (dist⇔l {a = c₁} {c₂} {c₃}) = dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃))
eval₁ (dist⇔r {a = c₁} {c₂} {c₃}) = ((c₁ ⊕ c₂) ⊗ c₃) ◎ dist
eval₁ (distl⇔l {a = c₁} {c₂} {c₃}) = distl ◎ ((c₁ ⊗ c₂) ⊕ (c₁ ⊗ c₃))
eval₁ (distl⇔r {a = c₁} {c₂} {c₃}) = (c₁ ⊗ (c₂ ⊕ c₃)) ◎ distl
eval₁ (factor⇔l {a = c₁} {c₂} {c₃}) = factor ◎ ((c₁ ⊕ c₂) ⊗ c₃)
eval₁ (factor⇔r {a = c₁} {c₂} {c₃}) = ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor
eval₁ (factorl⇔l {a = c₁} {c₂} {c₃}) = factorl ◎ (c₁ ⊗ (c₂ ⊕ c₃))
eval₁ (factorl⇔r {a = c₁} {c₂} {c₃}) = ((c₁ ⊗ c₂) ⊕ (c₁ ⊗ c₃)) ◎ factorl
eval₁ (idl◎l {c = c}) = c
eval₁ (idl◎r {c = c}) = id⟷ ◎ c
eval₁ (idr◎l {c = c}) = c
eval₁ (idr◎r {c = c}) = c ◎ id⟷
eval₁ (linv◎l {c = c}) = id⟷
eval₁ (linv◎r {c = c}) = c ◎ ! c
eval₁ (rinv◎l {c = c}) = id⟷
eval₁ (rinv◎r {c = c}) = ! c ◎ c
eval₁ (unite₊l⇔l {c₁ = c₁} {c₂}) = (c₁ ⊕ c₂) ◎ unite₊l
eval₁ (unite₊l⇔r {c₁ = c₁} {c₂}) = unite₊l ◎ c₂
eval₁ (uniti₊l⇔l {c₁ = c₁} {c₂}) = c₂ ◎ uniti₊l
eval₁ (uniti₊l⇔r {c₁ = c₁} {c₂}) = uniti₊l ◎ (c₁ ⊕ c₂)
eval₁ (unite₊r⇔l {c₁ = c₁} {c₂}) = (c₂ ⊕ c₁) ◎ unite₊r
eval₁ (unite₊r⇔r {c₁ = c₁} {c₂}) = unite₊r ◎ c₂
eval₁ (uniti₊r⇔l {c₁ = c₁} {c₂}) = c₂ ◎ uniti₊r
eval₁ (uniti₊r⇔r {c₁ = c₁} {c₂}) = uniti₊r ◎ (c₂ ⊕ c₁)
eval₁ (swapl₊⇔ {c₁ = c₁} {c₂}) = (c₂ ⊕ c₁) ◎ swap₊
eval₁ (swapr₊⇔ {c₁ = c₁} {c₂}) = swap₊ ◎ (c₁ ⊕ c₂)
eval₁ (unitel⋆⇔l {c₁ = c₁} {c₂}) = (c₁ ⊗ c₂) ◎ unite⋆l
eval₁ (uniter⋆⇔l {c₁ = c₁} {c₂}) = unite⋆l ◎ c₂
eval₁ (unitil⋆⇔l {c₁ = c₁} {c₂}) = c₂ ◎ uniti⋆l
eval₁ (unitir⋆⇔l {c₁ = c₁} {c₂}) = uniti⋆l ◎ (c₁ ⊗ c₂)
eval₁ (unitel⋆⇔r {c₁ = c₁} {c₂}) = (c₂ ⊗ c₁) ◎ unite⋆r
eval₁ (uniter⋆⇔r {c₁ = c₁} {c₂}) = unite⋆r ◎ c₂
eval₁ (unitil⋆⇔r {c₁ = c₁} {c₂}) = c₂ ◎ uniti⋆r
eval₁ (unitir⋆⇔r {c₁ = c₁} {c₂}) = uniti⋆r ◎ (c₂ ⊗ c₁)
eval₁ (swapl⋆⇔ {c₁ = c₁} {c₂}) = (c₂ ⊗ c₁) ◎ swap⋆
eval₁ (swapr⋆⇔ {c₁ = c₁} {c₂}) = swap⋆ ◎ (c₁ ⊗ c₂)
eval₁ (id⇔ {c = c}) = c
eval₁ (trans⇔ {t₁} {t₂} {c₁} {c₂} {c₃} ce ce₁) with eval₁ ce | exact ce
... | cc | refl = eval₁ {c₁ = cc} {c₃} ce₁
eval₁ (_⊡_ {c₁ = c₁} {c₂} {c₃} {c₄} ce₀ ce₁) =
let r₀ = eval₁ ce₀ in
let r₁ = eval₁ ce₁ in
r₀ ◎ r₁
eval₁ (resp⊕⇔ ce₀ ce₁) =
let r₀ = eval₁ ce₀ in
let r₁ = eval₁ ce₁ in
r₀ ⊕ r₁
eval₁ (resp⊗⇔ ce₀ ce₁) =
let r₀ = eval₁ ce₀ in
let r₁ = eval₁ ce₁ in
r₀ ⊗ r₁
eval₁ id⟷⊕id⟷⇔ = id⟷
eval₁ split⊕-id⟷ = id⟷ ⊕ id⟷
eval₁ (hom⊕◎⇔ {c₁ = c₁} {c₂} {c₃} {c₄}) = (c₁ ⊕ c₂) ◎ (c₃ ⊕ c₄)
eval₁ (hom◎⊕⇔ {c₁ = c₁} {c₂} {c₃} {c₄}) = (c₁ ◎ c₃) ⊕ (c₂ ◎ c₄)
eval₁ id⟷⊗id⟷⇔ = id⟷
eval₁ split⊗-id⟷ = id⟷ ⊗ id⟷
eval₁ (hom⊗◎⇔ {c₁ = c₁} {c₂} {c₃} {c₄}) = (c₁ ⊗ c₂) ◎ (c₃ ⊗ c₄)
eval₁ (hom◎⊗⇔ {c₁ = c₁} {c₂} {c₃} {c₄}) = (c₁ ◎ c₃) ⊗ (c₂ ◎ c₄)
eval₁ triangle⊕l = assocr₊ ◎ (id⟷ ⊕ unite₊l)
eval₁ triangle⊕r = unite₊r ⊕ id⟷
eval₁ triangle⊗l = assocr⋆ ◎ (id⟷ ⊗ unite⋆l)
eval₁ triangle⊗r = unite⋆r ⊗ id⟷
eval₁ pentagon⊕l = ((assocr₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ assocr₊)
eval₁ pentagon⊕r = assocr₊ ◎ assocr₊
eval₁ pentagon⊗l = ((assocr⋆ ⊗ id⟷) ◎ assocr⋆) ◎ (id⟷ ⊗ assocr⋆)
eval₁ pentagon⊗r = assocr⋆ ◎ assocr⋆
eval₁ unite₊l-coh-l = swap₊ ◎ unite₊r
eval₁ unite₊l-coh-r = unite₊l
eval₁ unite⋆l-coh-l = swap⋆ ◎ unite⋆r
eval₁ unite⋆l-coh-r = unite⋆l
eval₁ hexagonr⊕l = ((swap₊ ⊕ id⟷) ◎ assocr₊) ◎ (id⟷ ⊕ swap₊)
eval₁ hexagonr⊕r = (assocr₊ ◎ swap₊) ◎ assocr₊
eval₁ hexagonl⊕l = ((id⟷ ⊕ swap₊) ◎ assocl₊) ◎ (swap₊ ⊕ id⟷)
eval₁ hexagonl⊕r = (assocl₊ ◎ swap₊) ◎ assocl₊
eval₁ hexagonr⊗l = ((swap⋆ ⊗ id⟷) ◎ assocr⋆) ◎ (id⟷ ⊗ swap⋆)
eval₁ hexagonr⊗r = (assocr⋆ ◎ swap⋆) ◎ assocr⋆
eval₁ hexagonl⊗l = ((id⟷ ⊗ swap⋆) ◎ assocl⋆) ◎ (swap⋆ ⊗ id⟷)
eval₁ hexagonl⊗r = (assocl⋆ ◎ swap⋆) ◎ assocl⋆
eval₁ absorbl⇔l = absorbl ◎ id⟷
eval₁ (absorbl⇔r {c₁ = c₁}) = (c₁ ⊗ id⟷) ◎ absorbl
eval₁ absorbr⇔l = absorbr ◎ id⟷
eval₁ (absorbr⇔r {c₁ = c₁}) = (id⟷ ⊗ c₁) ◎ absorbr
eval₁ (factorzl⇔l {c₁ = c₁}) = factorzl ◎ (id⟷ ⊗ c₁)
eval₁ (factorzl⇔r {c₁ = c₁}) = id⟷ ◎ factorzl
eval₁ (factorzr⇔l {c₁ = c₁}) = factorzr ◎ (c₁ ⊗ id⟷)
eval₁ (factorzr⇔r {c₁ = c₁}) = id⟷ ◎ factorzr
eval₁ swap₊distl⇔l = distl ◎ swap₊
eval₁ swap₊distl⇔r = (id⟷ ⊗ swap₊) ◎ distl
eval₁ dist-swap⋆⇔l = swap⋆ ◎ distl
eval₁ dist-swap⋆⇔r = dist ◎ (swap⋆ ⊕ swap⋆)
eval₁ assocl₊-dist-dist⇔l = (dist ◎ (id⟷ ⊕ dist)) ◎ assocl₊
eval₁ assocl₊-dist-dist⇔r = ((assocl₊ ⊗ id⟷) ◎ dist) ◎ (dist ⊕ id⟷)
eval₁ assocl⋆-distl⇔l = ((id⟷ ⊗ distl) ◎ distl) ◎ (assocl⋆ ⊕ assocl⋆)
eval₁ assocl⋆-distl⇔r = assocl⋆ ◎ distl
eval₁ absorbr0-absorbl0⇔ = absorbl
eval₁ absorbl0-absorbr0⇔ = absorbr
eval₁ absorbr⇔distl-absorb-unite = (distl ◎ (absorbr ⊕ absorbr)) ◎ unite₊l
eval₁ distl-absorb-unite⇔absorbr = absorbr
eval₁ unite⋆r0-absorbr1⇔ = absorbr
eval₁ absorbr1-unite⋆r-⇔ = unite⋆r
eval₁ absorbl≡swap⋆◎absorbr = swap⋆ ◎ absorbr
eval₁ swap⋆◎absorbr≡absorbl = absorbl
eval₁ absorbr⇔[assocl⋆◎[absorbr⊗id⟷]]◎absorbr = (assocl⋆ ◎ (absorbr ⊗ id⟷)) ◎ absorbr
eval₁ [assocl⋆◎[absorbr⊗id⟷]]◎absorbr⇔absorbr = absorbr
eval₁ [id⟷⊗absorbr]◎absorbl⇔assocl⋆◎[absorbl⊗id⟷]◎absorbr = (assocl⋆ ◎ (absorbl ⊗ id⟷)) ◎ absorbr
eval₁ assocl⋆◎[absorbl⊗id⟷]◎absorbr⇔[id⟷⊗absorbr]◎absorbl = (id⟷ ⊗ absorbr) ◎ absorbl
eval₁ elim⊥-A[0⊕B]⇔l = (distl ◎ (absorbl ⊕ id⟷)) ◎ unite₊l
eval₁ elim⊥-A[0⊕B]⇔r = id⟷ ⊗ unite₊l
eval₁ elim⊥-1[A⊕B]⇔l = distl ◎ (unite⋆l ⊕ unite⋆l)
eval₁ elim⊥-1[A⊕B]⇔r = unite⋆l
eval₁ fully-distribute⇔l = ((((dist ◎ (distl ⊕ distl)) ◎ assocl₊) ◎ (assocr₊ ⊕ id⟷)) ◎
((id⟷ ⊕ swap₊) ⊕ id⟷))
◎ (assocl₊ ⊕ id⟷)
eval₁ fully-distribute⇔r = (distl ◎ (dist ⊕ dist)) ◎ assocl₊
exact : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} (ce : c₁ ⇔ c₂) → eval₁ ce ≡ c₂
exact assoc◎l = refl
exact assoc◎r = refl
exact assocl⊕l = refl
exact assocl⊕r = refl
exact assocl⊗l = refl
exact assocl⊗r = refl
exact assocr⊕r = refl
exact assocr⊗l = refl
exact assocr⊗r = refl
exact assocr⊕l = refl
exact dist⇔l = refl
exact dist⇔r = refl
exact distl⇔l = refl
exact distl⇔r = refl
exact factor⇔l = refl
exact factor⇔r = refl
exact factorl⇔l = refl
exact factorl⇔r = refl
exact idl◎l = refl
exact idl◎r = refl
exact idr◎l = refl
exact idr◎r = refl
exact linv◎l = refl
exact linv◎r = refl
exact rinv◎l = refl
exact rinv◎r = refl
exact unite₊l⇔l = refl
exact unite₊l⇔r = refl
exact uniti₊l⇔l = refl
exact uniti₊l⇔r = refl
exact unite₊r⇔l = refl
exact unite₊r⇔r = refl
exact uniti₊r⇔l = refl
exact uniti₊r⇔r = refl
exact swapl₊⇔ = refl
exact swapr₊⇔ = refl
exact unitel⋆⇔l = refl
exact uniter⋆⇔l = refl
exact unitil⋆⇔l = refl
exact unitir⋆⇔l = refl
exact unitel⋆⇔r = refl
exact uniter⋆⇔r = refl
exact unitil⋆⇔r = refl
exact unitir⋆⇔r = refl
exact swapl⋆⇔ = refl
exact swapr⋆⇔ = refl
exact id⇔ = refl
exact (trans⇔ ce ce₁) rewrite exact ce | exact ce₁ = refl
exact (ce ⊡ ce₁) rewrite exact ce | exact ce₁ = refl
exact (resp⊕⇔ ce ce₁) rewrite exact ce | exact ce₁ = refl
exact (resp⊗⇔ ce ce₁) rewrite exact ce | exact ce₁ = refl
exact id⟷⊕id⟷⇔ = refl
exact split⊕-id⟷ = refl
exact hom⊕◎⇔ = refl
exact hom◎⊕⇔ = refl
exact id⟷⊗id⟷⇔ = refl
exact split⊗-id⟷ = refl
exact hom⊗◎⇔ = refl
exact hom◎⊗⇔ = refl
exact triangle⊕l = refl
exact triangle⊕r = refl
exact triangle⊗l = refl
exact triangle⊗r = refl
exact pentagon⊕l = refl
exact pentagon⊕r = refl
exact pentagon⊗l = refl
exact pentagon⊗r = refl
exact unite₊l-coh-l = refl
exact unite₊l-coh-r = refl
exact unite⋆l-coh-l = refl
exact unite⋆l-coh-r = refl
exact hexagonr⊕l = refl
exact hexagonr⊕r = refl
exact hexagonl⊕l = refl
exact hexagonl⊕r = refl
exact hexagonr⊗l = refl
exact hexagonr⊗r = refl
exact hexagonl⊗l = refl
exact hexagonl⊗r = refl
exact absorbl⇔l = refl
exact absorbl⇔r = refl
exact absorbr⇔l = refl
exact absorbr⇔r = refl
exact factorzl⇔l = refl
exact factorzl⇔r = refl
exact factorzr⇔l = refl
exact factorzr⇔r = refl
exact swap₊distl⇔l = refl
exact swap₊distl⇔r = refl
exact dist-swap⋆⇔l = refl
exact dist-swap⋆⇔r = refl
exact assocl₊-dist-dist⇔l = refl
exact assocl₊-dist-dist⇔r = refl
exact assocl⋆-distl⇔l = refl
exact assocl⋆-distl⇔r = refl
exact absorbr0-absorbl0⇔ = refl
exact absorbl0-absorbr0⇔ = refl
exact absorbr⇔distl-absorb-unite = refl
exact distl-absorb-unite⇔absorbr = refl
exact unite⋆r0-absorbr1⇔ = refl
exact absorbr1-unite⋆r-⇔ = refl
exact absorbl≡swap⋆◎absorbr = refl
exact swap⋆◎absorbr≡absorbl = refl
exact absorbr⇔[assocl⋆◎[absorbr⊗id⟷]]◎absorbr = refl
exact [assocl⋆◎[absorbr⊗id⟷]]◎absorbr⇔absorbr = refl
exact [id⟷⊗absorbr]◎absorbl⇔assocl⋆◎[absorbl⊗id⟷]◎absorbr = refl
exact assocl⋆◎[absorbl⊗id⟷]◎absorbr⇔[id⟷⊗absorbr]◎absorbl = refl
exact elim⊥-A[0⊕B]⇔l = refl
exact elim⊥-A[0⊕B]⇔r = refl
exact elim⊥-1[A⊕B]⇔l = refl
exact elim⊥-1[A⊕B]⇔r = refl
exact fully-distribute⇔l = refl
exact fully-distribute⇔r = refl
|
{
"alphanum_fraction": 0.5066322136,
"avg_line_length": 40.4247910864,
"ext": "agda",
"hexsha": "66aa71c697da078def68f7814139cdf73ea8f5fb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/PiLevel1.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/PiLevel1.agda",
"max_line_length": 99,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/PiLevel1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 18174,
"size": 29025
}
|
{-# OPTIONS --without-K #-}
{- *** Definition 5.3 and Lemma 5.5 are taken from the library ***
*** Corollary 6.8 is too trivial a consequence of -}
{- ConnectednessAlt and the last submodule of Connection are the
only modules importing real truncation types from the library.
Except for that, Univalence is the only additional assumption
to Agda-style MLTT we work with. -}
module Universe.index where
{- General utility funcions and type constructors for
the pseudo-universe of types of fixed truncation level. -}
import Universe.Utility.General
import Universe.Utility.TruncUniverse
{- Pointed types.
Corresponds to section 4 plus some lemmata of section 5,
which are used in multiple modules and thus belong here. -}
-- *** Definitions 4.1, 4.3, 4.5, 4.6 and Lemmata 4.5, 4.7, 5.1, 5.4 ***
import Universe.Utility.Pointed
{- Homotopically complicated types.
Corresponds to section 5 sans the initial lemma.
Concludes with the main theorem that the n-types
in the n-th universe from a strict n-type.
Hierarchy and Trunc.* are mutually independent. -}
{- *** Lemmata 5.2, 5.7, 5.8(*), Theorems 5.9, 5.11, and Corollary 5.6 ***
(*) a slightly weaker version -}
import Universe.Hierarchy
{- Connectedness constructions
Corresponds to section 6 and 7.
The first three modules develop a framework of
truncations internal to MLTT+Univalence without truncations.
Connection contains the main result of section 6.
ConnectednessAlt is independent from the first four modules
and presents a provably equivalent definition of n-connectedness
using only propositional truncation (as remarked in the article
and mentioned in an exercise in the HoTT book). -}
--- *** Definition 6.2, Lemma 6.6
import Universe.Trunc.Universal
--- *** Definition 6.4, Lemma 6.7 ***
import Universe.Trunc.Basics
--- *** Lemmata 6.9, 6.10
import Universe.Trunc.TypeConstructors
--- *** Definitions 6.11, 6.13, Lemmata 6.12, 6.14, 6.15
import Universe.Trunc.Connection
import Universe.Trunc.ConnectednessAlt
|
{
"alphanum_fraction": 0.7354807223,
"avg_line_length": 37.9444444444,
"ext": "agda",
"hexsha": "7369a9b296ad05d90e5a68a014abf5a7a53deb9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sattlerc/HoTT-Agda",
"max_forks_repo_path": "Universe/index.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sattlerc/HoTT-Agda",
"max_issues_repo_path": "Universe/index.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sattlerc/HoTT-Agda",
"max_stars_repo_path": "Universe/index.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 552,
"size": 2049
}
|
module +-example where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
open import Naturals using (suc; _+_)
+-example : 3 + 4 ≡ 7
+-example =
begin
3 + 4
≡⟨⟩
suc (2 + 4)
≡⟨⟩
suc (suc (1 + 4))
≡⟨⟩
suc (suc (suc (0 + 4)))
≡⟨⟩
suc (suc (suc 4))
≡⟨⟩
7
∎
|
{
"alphanum_fraction": 0.5333333333,
"avg_line_length": 15.652173913,
"ext": "agda",
"hexsha": "b0fdc0360a4b1b33a257476e75b678f581bde003",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/naturals/+-example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/naturals/+-example.agda",
"max_line_length": 50,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/naturals/+-example.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 170,
"size": 360
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors where all elements satisfy a given property
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Relation.Unary.All where
open import Data.Nat.Base using (zero; suc)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Product as Prod using (_×_; _,_; uncurry; <_,_>)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Function using (_∘_)
open import Level using (Level; _⊔_)
open import Relation.Nullary hiding (Irrelevant)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Unary
open import Relation.Binary.PropositionalEquality as P using (subst)
private
variable
a b c p q r : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- All P xs means that all elements in xs satisfy P.
infixr 5 _∷_
data All {a} {A : Set a} (P : Pred A p) : ∀ {n} → Vec A n → Set (p ⊔ a) where
[] : All P []
_∷_ : ∀ {n x} {xs : Vec A n} (px : P x) (pxs : All P xs) → All P (x ∷ xs)
------------------------------------------------------------------------
-- Operations on All
module _ {P : Pred A p} where
head : ∀ {n x} {xs : Vec A n} → All P (x ∷ xs) → P x
head (px ∷ pxs) = px
tail : ∀ {n x} {xs : Vec A n} → All P (x ∷ xs) → All P xs
tail (px ∷ pxs) = pxs
uncons : ∀ {n x} {xs : Vec A n} → All P (x ∷ xs) → P x × All P xs
uncons = < head , tail >
lookup : ∀ {n} {xs : Vec A n} (i : Fin n) →
All P xs → P (Vec.lookup xs i)
lookup zero (px ∷ pxs) = px
lookup (suc i) (px ∷ pxs) = lookup i pxs
tabulate : ∀ {n xs} → (∀ i → P (Vec.lookup xs i)) → All P {n} xs
tabulate {xs = []} pxs = []
tabulate {xs = _ ∷ _} pxs = pxs zero ∷ tabulate (pxs ∘ suc)
module _ {P : Pred A p} {Q : Pred A q} where
map : ∀ {n} → P ⊆ Q → All P {n} ⊆ All Q {n}
map g [] = []
map g (px ∷ pxs) = g px ∷ map g pxs
zip : ∀ {n} → All P ∩ All Q ⊆ All (P ∩ Q) {n}
zip ([] , []) = []
zip (px ∷ pxs , qx ∷ qxs) = (px , qx) ∷ zip (pxs , qxs)
unzip : ∀ {n} → All (P ∩ Q) {n} ⊆ All P ∩ All Q
unzip [] = [] , []
unzip (pqx ∷ pqxs) = Prod.zip _∷_ _∷_ pqx (unzip pqxs)
module _ {P : Pred A p} {Q : Pred B q} {R : Pred C r} where
zipWith : ∀ {_⊕_ : A → B → C} →
(∀ {x y} → P x → Q y → R (x ⊕ y)) →
∀ {n xs ys} → All P {n} xs → All Q {n} ys →
All R {n} (Vec.zipWith _⊕_ xs ys)
zipWith _⊕_ {xs = []} {[]} [] [] = []
zipWith _⊕_ {xs = x ∷ xs} {y ∷ ys} (px ∷ pxs) (qy ∷ qys) =
px ⊕ qy ∷ zipWith _⊕_ pxs qys
------------------------------------------------------------------------
-- Properties of predicates preserved by All
module _ {P : Pred A p} where
all : ∀ {n} → Decidable P → Decidable (All P {n})
all P? [] = yes []
all P? (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (P? x ×-dec all P? xs)
universal : Universal P → ∀ {n} → Universal (All P {n})
universal u [] = []
universal u (x ∷ xs) = u x ∷ universal u xs
irrelevant : Irrelevant P → ∀ {n} → Irrelevant (All P {n})
irrelevant irr [] [] = P.refl
irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) =
P.cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂)
satisfiable : Satisfiable P → ∀ {n} → Satisfiable (All P {n})
satisfiable (x , p) {zero} = [] , []
satisfiable (x , p) {suc n} = Prod.map (x ∷_) (p ∷_) (satisfiable (x , p))
|
{
"alphanum_fraction": 0.4779005525,
"avg_line_length": 33.8317757009,
"ext": "agda",
"hexsha": "14d4a3c05bb2487ab936638582e06ccfcbe3d1e0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Relation/Unary/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Relation/Unary/All.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Relation/Unary/All.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1270,
"size": 3620
}
|
-- Andreas, 2015-07-22 Fixed bug in test for empty type of sizes
{-# OPTIONS --copatterns #-}
open import Common.Size
record U (i : Size) : Set where
coinductive
field out : (j : Size< i) → U j
open U
fixU : {A : Size → Set} (let C = λ i → A i → U i)
→ ∀ i (f : ∀ i → (∀ (j : Size< i) → C j) → C i) → C i
out (fixU i f a) j = out (f i {!λ (j : Size< i) → fixU j f!} a) j
-- Giving should succeed (even if termination checking might not succeed yet)
|
{
"alphanum_fraction": 0.579175705,
"avg_line_length": 27.1176470588,
"ext": "agda",
"hexsha": "e7c2a284d8b1e2dc76222d303b97d95763f3ed18",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1523.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1523.agda",
"max_line_length": 77,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1523.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 169,
"size": 461
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module Dijkstra.Syntax where
open import Dijkstra.EitherD
open import Dijkstra.EitherLike
open import Dijkstra.RWS
open import Haskell.Prelude
open import Optics.All
{-
Within a "Dijkstra-fied" monad `M`, `if` and `ifD` are semantically interchangeable.
The difference is in how proof obligations are generated
- with the *D variants generating new weakestPre obligations for each case.
In some cases, this is helpful for structuring proofs, while in other cases it is
unnecessary and introduces more structure to the proof without adding any benefit.
A rule of thumb is that, if the "scrutinee" (whatever we are doing case analysis on,
i.e., the first argument) is the value provided via >>= (bind) by a previous code block,
then we already have a weakestPre proof obligation, so introducing additional ones via the
*D variants only creates more work and provides no additional benefit.
-}
record MonadIfD {ℓ₁ ℓ₂ ℓ₃ : Level} (M : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁ ℓ⊔ ℓ+1 ℓ₃) where
infix 1 ifD‖_
field
⦃ monad ⦄ : Monad M
ifD‖_ : ∀ {A : Set ℓ₁} → Guards{ℓ₂}{ℓ₃} (M A) → M A
open MonadIfD ⦃ ... ⦄ public
module _ {ℓ₁ ℓ₂ ℓ₃} {M : Set ℓ₁ → Set ℓ₂} where
private
variable
A : Set ℓ₁
B : Set ℓ₃
infix 0 ifD_then_else_
ifD_then_else_ : ⦃ _ : MonadIfD{ℓ₃ = ℓ₃} M ⦄ ⦃ _ : ToBool B ⦄ → B → (c₁ c₂ : M A) → M A
ifD b then c₁ else c₂ =
ifD‖ b ≔ c₁
‖ otherwise≔ c₂
whenD : ∀ {ℓ₂ ℓ₃} {M : Set → Set ℓ₂} {B : Set ℓ₃} ⦃ _ : MonadIfD{ℓ0}{ℓ₂}{ℓ₃} M ⦄ ⦃ _ : ToBool B ⦄ → B → M Unit → M Unit
whenD b f = ifD b then f else pure unit
module _ {ℓ₁ ℓ₂} {M : Set ℓ₁ → Set ℓ₂} where
private
variable A B : Set ℓ₁
ifMD : ⦃ mi : MonadIfD{ℓ₃ = ℓ₁} M ⦄ ⦃ _ : ToBool B ⦄ → M B → (c₁ c₂ : M A) → M A
ifMD{B = B} ⦃ mi ⦄ m c₁ c₂ = do
x ← m
ifD x then c₁ else c₂
record MonadMaybeD {ℓ₁ ℓ₂ : Level} (M : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where
field
⦃ monad ⦄ : Monad M
maybeD : ∀ {A B : Set ℓ₁} → M B → (A → M B) → Maybe A → M B
open MonadMaybeD ⦃ ... ⦄ public
infix 0 caseMD_of_
caseMD_of_ : ∀ {ℓ₁ ℓ₂} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : MonadMaybeD M ⦄ {A B : Set ℓ₁} → Maybe A → (Maybe A → M B) → M B
caseMD m of f = maybeD (f nothing) (f ∘ just) m
record MonadEitherD {ℓ₁ ℓ₂ : Level} (M : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where
field
⦃ monad ⦄ : Monad M
eitherD : ∀ {E A B : Set ℓ₁} → (E → M B) → (A → M B) → Either E A → M B
open MonadEitherD ⦃ ... ⦄ public hiding (eitherD)
eitherD
: ∀ {ℓ₁ ℓ₂ ℓ₃} {M : Set ℓ₁ → Set ℓ₂} ⦃ med : MonadEitherD M ⦄ →
∀ {EL : Set ℓ₁ → Set ℓ₁ → Set ℓ₃} ⦃ _ : EitherLike EL ⦄ →
∀ {E A B : Set ℓ₁} → (E → M B) → (A → M B) → EL E A → M B
eitherD ⦃ med = med ⦄ f₁ f₂ e =
MonadEitherD.eitherD med f₁ f₂ (toEither e)
infix 0 case⊎D_of_
case⊎D_of_
: ∀ {ℓ₁ ℓ₂ ℓ₃} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : MonadEitherD M ⦄ →
∀ {EL : Set ℓ₁ → Set ℓ₁ → Set ℓ₃} ⦃ _ : EitherLike EL ⦄ →
∀ {E A B : Set ℓ₁} → EL E A → (EL E A → M B) → M B
case⊎D e of f = eitherD (f ∘ fromEither ∘ Left) (f ∘ fromEither ∘ Right) e
|
{
"alphanum_fraction": 0.6233128834,
"avg_line_length": 34.6808510638,
"ext": "agda",
"hexsha": "af6a59470f745755de4ee4dd4a9ab2a8bc342d66",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Dijkstra/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Dijkstra/Syntax.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Dijkstra/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1396,
"size": 3260
}
|
open import Agda.Builtin.Nat
foo : Nat → Nat
foo x = bar x
where
bar : Nat → Nat
bar y = {!x!}
-- WAS: Splitting on x produces the following garbage:
-- foo : Nat → Nat
-- foo x = bar x
-- where
-- bar : Nat → Nat
-- bar y = {!!}
-- bar y = {!!}
-- SHOULD: raise an error
|
{
"alphanum_fraction": 0.5317725753,
"avg_line_length": 16.6111111111,
"ext": "agda",
"hexsha": "b7d232f5f35886ac17e00b9aa35c08aed33a0198",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3095-visible.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3095-visible.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3095-visible.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 98,
"size": 299
}
|
module Numeral.Natural.Relation.Divisibility.Proofs where
import Lvl
open import Data
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
open import Logic.Predicate.Theorems
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Function
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.Proofs.Multiplication
open import Numeral.Natural.Oper.Proofs.Order
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Classical
open import Numeral.Natural.Relation.Order.Proofs
open import Numeral.Natural.Relation.Order.Existence using ([≤]-equivalence)
open import Numeral.Natural.Relation.Order.Existence.Proofs using ()
open import Numeral.Natural.Relation.Divisibility
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Operator
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
open import Type.Properties.MereProposition
{-
div-elim-test : ∀{ℓ ℓ₁}{A : Type{ℓ₁}}{f : A → ℕ}{g : ℕ → ℕ}{P : ∀{y x} → (f(y) ∣ x) → Type{ℓ}} → (∀{y} → P(Div𝟎{f y})) → (∀{y x}{p : f y ∣ g x} → P(p) → P(Div𝐒 p)) → (∀{y x}{p : f(y) ∣ g x} → P(p))
div-elim-test {f = f}{g = g} z s {y}{x}{p = p} with g(x)
... | 𝟎 = {!p!}
... | 𝐒 a = {!p!}
-- div-elim-test z s {p = Div𝟎} = z
-- div-elim-test{f = f}{P = P} z s {p = Div𝐒 p} = s(div-elim-test{f = f}{P = P} z s {p = p})
-}
{-
Even-mereProposition : ∀{n} → MereProposition(Even(n))
Even-mereProposition = intro proof where
proof : ∀{n}{p q : Even n} → (p ≡ q)
proof {𝟎} {Even0} {Even0} = [≡]-intro
proof {𝐒(𝐒(n))} {Even𝐒 p} {Even𝐒 q} = [≡]-with(Even𝐒) (proof {n} {p} {q})
Odd-mereProposition : ∀{n} → MereProposition(Odd(n))
Odd-mereProposition = intro proof where
proof : ∀{n}{p q : Odd n} → (p ≡ q)
proof {𝐒(𝟎)} {Odd0} {Odd0} = [≡]-intro
proof {𝐒(𝐒(n))} {Odd𝐒 p} {Odd𝐒 q} = [≡]-with(Odd𝐒) (proof {n} {p} {q})
-}
{-
div-elim-test : ∀{f : ℕ → ℕ}{ℓ}{P : ∀{y x} → (f y ∣ x) → Type{ℓ}} → (∀{y} → P(Div𝟎{f y})) → (∀{y x}{p : f y ∣ x} → P(p) → P(Div𝐒 p)) → (∀{y x}{p : f y ∣ x} → P(p))
div-elim-test z s {p = Div𝟎} = z
div-elim-test{f = f}{P = P} z s {p = Div𝐒 p} = s(div-elim-test{f = f}{P = P} z s {p = p})
divides-mereProposition : ∀{d n} → MereProposition(𝐒(d) ∣ n)
divides-mereProposition = intro proof where
proof : ∀{d n}{p q : (𝐒(d) ∣ n)} → (p ≡ q)
proof {d} {.𝟎} {Div𝟎} {Div𝟎} = [≡]-intro
proof {d} {.(𝐒 d + _)} {Div𝐒 p} {q} = {!div-elim-test{P = Div𝐒 p ≡_} ? ? {?}!}
--proof{d}{n}{p}{q} = div-elim {P = \q → ∀{p} → (p ≡ q)} (\{y}{p} → {!div-elim {P = _≡ Div𝟎} ? ? {p = p}!}) {!!} {p = q}
-- div-elim{P = {!!}} (div-elim {!!} {!!} {p = p}) (div-elim {!!} {!!} {p = p}) {p = q}
{-
test : ∀{y x} → (y ∣ x) → ∃{Obj = ℕ ⨯ ℕ}(Tuple.uncurry(_∣_))
test {y}{.𝟎} Div𝟎 = [∃]-intro (y , 𝟎) ⦃ Div𝟎 ⦄
test (Div𝐒 p) = [∃]-intro _ ⦃ p ⦄
-}
-}
DivN : ∀{y : ℕ} → (n : ℕ) → (y ∣ (y ⋅ n))
DivN {y}(𝟎) = Div𝟎
DivN {y}(𝐒(n)) = Div𝐒(DivN{y}(n))
divides-quotient : ∀{x y} → (y ∣ x) → ℕ
divides-quotient = divides-elim 𝟎 𝐒
divides-quotient-correctness : ∀{x y}{yx : (y ∣ x)} → (y ⋅ (divides-quotient yx) ≡ x)
divides-quotient-correctness {yx = Div𝟎} = [≡]-intro
divides-quotient-correctness {_}{y} {yx = Div𝐒 yx} = congruence₂ᵣ(_+_)(y) (divides-quotient-correctness {yx = yx})
divides-[⋅]-existence : ∀{x y} → ∃(n ↦ y ⋅ n ≡ x) ↔ (y ∣ x)
divides-[⋅]-existence = [↔]-intro l r where
l : ∀{x y} → (y ∣ x) → (∃(n ↦ y ⋅ n ≡ x))
l yx = [∃]-intro (divides-quotient yx) ⦃ divides-quotient-correctness {yx = yx} ⦄
r : ∀{x y} → (∃(n ↦ y ⋅ n ≡ x)) → (y ∣ x)
r {x}{y} ([∃]-intro n ⦃ y⋅n≡x ⦄) = [≡]-substitutionᵣ y⋅n≡x {y ∣_} (DivN{y}(n))
divides-[⋅]-existence₊ : ∀{x y} → (y ∣ 𝐒(x)) → ∃(n ↦ y ⋅ 𝐒(n) ≡ 𝐒(x))
divides-[⋅]-existence₊ {x}{y} p with [↔]-to-[←] (divides-[⋅]-existence{𝐒(x)}{y}) p
... | [∃]-intro (𝐒(n)) = [∃]-intro n
instance
divides-transitivity : Transitivity(_∣_)
Transitivity.proof (divides-transitivity) {a}{b}{c} (a-div-b) (b-div-c) with ([↔]-to-[←] divides-[⋅]-existence a-div-b , [↔]-to-[←] divides-[⋅]-existence b-div-c)
... | (([∃]-intro (n₁) ⦃ a⋅n₁≡b ⦄),([∃]-intro (n₂) ⦃ b⋅n₂≡c ⦄)) =
([↔]-to-[→] divides-[⋅]-existence
([∃]-intro
(n₁ ⋅ n₂)
⦃
(symmetry(_≡_) (associativity(_⋅_) {a}{n₁}{n₂}))
🝖 ([≡]-with(expr ↦ expr ⋅ n₂) (a⋅n₁≡b))
🝖 (b⋅n₂≡c)
⦄
)
)
divides-with-[+] : ∀{a b c} → (a ∣ b) → (a ∣ c) → (a ∣ (b + c))
divides-with-[+] {a}{b}{c} (a-div-b) (a-div-c) with ([↔]-to-[←] divides-[⋅]-existence a-div-b , [↔]-to-[←] divides-[⋅]-existence a-div-c)
... | (([∃]-intro (n₁) ⦃ a⋅n₁≡b ⦄),([∃]-intro (n₂) ⦃ a⋅n₂≡c ⦄)) =
([↔]-to-[→] divides-[⋅]-existence
([∃]-intro
(n₁ + n₂)
⦃
(distributivityₗ(_⋅_)(_+_) {a}{n₁}{n₂})
🝖 ([≡]-with-op(_+_)
(a⋅n₁≡b)
(a⋅n₂≡c)
)
⦄
)
)
divides-with-[−₀] : ∀{a b c} → (a ∣ b) → (a ∣ c) → (a ∣ (b −₀ c))
divides-with-[−₀] {a}{b}{c} (a-div-b) (a-div-c) with ([↔]-to-[←] divides-[⋅]-existence a-div-b , [↔]-to-[←] divides-[⋅]-existence a-div-c)
... | (([∃]-intro (n₁) ⦃ a⋅n₁≡b ⦄),([∃]-intro (n₂) ⦃ a⋅n₂≡c ⦄)) =
([↔]-to-[→] divides-[⋅]-existence
([∃]-intro
(n₁ −₀ n₂)
⦃
(distributivityₗ(_⋅_)(_−₀_) {a}{n₁}{n₂})
🝖 ([≡]-with-op(_−₀_)
(a⋅n₁≡b)
(a⋅n₂≡c)
)
⦄
)
)
divides-without-[+] : ∀{a b c} → (a ∣ (b + c)) → ((a ∣ b) ↔ (a ∣ c))
divides-without-[+] {a}{b}{c} abc = [↔]-intro (l abc) (r abc) where
l : ∀{a b c} → (a ∣ (b + c)) → (a ∣ b) ← (a ∣ c)
l{a}{b}{c} abc ac = [≡]-substitutionᵣ ([−₀]ₗ[+]ᵣ-nullify{b}{c}) {expr ↦ (a ∣ expr)} (divides-with-[−₀] {a}{b + c}{c} abc ac)
r : ∀{a b c} → (a ∣ (b + c)) → (a ∣ b) → (a ∣ c)
r{a}{b}{c} abc ab = l {a}{c}{b} ([≡]-substitutionᵣ (commutativity(_+_) {b}{c}) {expr ↦ a ∣ expr} abc) ab
divides-with-[𝄩] : ∀{a b c} → (a ∣ b) → (a ∣ c) → (a ∣ (b 𝄩 c))
divides-with-[𝄩] {a} ab ac
with [∃]-intro n₁ ⦃ p ⦄ ← [↔]-to-[←] divides-[⋅]-existence ab
with [∃]-intro n₂ ⦃ q ⦄ ← [↔]-to-[←] divides-[⋅]-existence ac
= [↔]-to-[→] divides-[⋅]-existence ([∃]-intro (n₁ 𝄩 n₂) ⦃ distributivityₗ(_⋅_)(_𝄩_) {a}{n₁}{n₂} 🝖 congruence₂(_𝄩_) p q ⦄)
-- instance
-- divides-with-fn : ∀{a b} → (a ∣ b) → ∀{f : ℕ → ℕ} → {_ : ∀{x y : ℕ} → ∃{ℕ → ℕ}(\g → f(x ⋅ y) ≡ f(x) ⋅ g(y))} → ((f(a)) ∣ (f(b)))
-- divides-with-fn {a}{b} (a-div-b) {f} ⦃ f-prop ⦄
instance
[1]-divides : ∀{n} → (1 ∣ n)
[1]-divides {𝟎} = Div𝟎
[1]-divides {𝐒(n)} =
[≡]-substitutionₗ
(commutativity(_+_) {n}{1})
{expr ↦ (1 ∣ expr)}
(Div𝐒([1]-divides{n}))
-- TODO: Rename these reflexivity proofs
instance
divides-reflexivity : ∀{n} → (n ∣ n)
divides-reflexivity = Div𝐒(Div𝟎)
instance
divides-reflexivity-instance : Reflexivity(_∣_)
divides-reflexivity-instance = intro divides-reflexivity
instance
[0]-divides-[0] : (0 ∣ 0)
[0]-divides-[0] = Div𝟎
[0]-only-divides-[0] : ∀{n} → (0 ∣ n) → (n ≡ 0)
[0]-only-divides-[0] {𝟎} _ = [≡]-intro
[0]-only-divides-[0] {𝐒(n)} proof with () ← [∃]-proof([↔]-to-[←] divides-[⋅]-existence proof)
[0]-divides-not : ∀{n} → ¬(0 ∣ 𝐒(n))
[0]-divides-not (0divSn) = [𝐒]-not-0([0]-only-divides-[0] 0divSn)
divides-not-[1] : ∀{n} → ¬((n + 2) ∣ 1)
divides-not-[1] ()
[1]-only-divides-[1] : ∀{n} → (n ∣ 1) → (n ≡ 1)
[1]-only-divides-[1] {𝟎} ndiv1 = [⊥]-elim ([0]-divides-not ndiv1)
[1]-only-divides-[1] {𝐒(𝟎)} ndiv1 = [≡]-intro
[1]-only-divides-[1] {𝐒(𝐒(n))} ()
divides-with-[⋅] : ∀{a b c} → ((a ∣ b) ∨ (a ∣ c)) → (a ∣ (b ⋅ c))
divides-with-[⋅] {a}{b}{c} = [∨]-elim (l{a}{b}{c}) (r{a}{b}{c}) where
l : ∀{a b c} → (a ∣ b) → (a ∣ (b ⋅ c))
l Div𝟎 = Div𝟎
l {a}{a}{c} (Div𝐒 Div𝟎) = DivN{a} c
l {a} {.(a + x)} {c} (Div𝐒 {.a} {x} ab@(Div𝐒 _)) = [≡]-substitutionₗ (distributivityᵣ(_⋅_)(_+_) {a}{x}{c}) {a ∣_} (divides-with-[+] (l {a}{a}{c} (Div𝐒 Div𝟎)) (l {a}{x}{c} ab))
r : ∀{a b c} → (a ∣ c) → (a ∣ (b ⋅ c))
r {a}{b}{c} ac = [≡]-substitutionᵣ (commutativity(_⋅_) {c}{b}) {a ∣_} (l {a}{c}{b} ac)
divides-upper-limit : ∀{a b} → (a ∣ 𝐒(b)) → (a ≤ 𝐒(b))
divides-upper-limit {𝟎} {_} (proof) = [⊥]-elim ([0]-divides-not (proof))
divides-upper-limit {𝐒(a)}{b} (proof) = ([↔]-to-[→] [≤]-equivalence) (existence2) where
existence1 : ∃(n ↦ 𝐒(a) + (𝐒(a) ⋅ n) ≡ 𝐒(b))
existence1 = divides-[⋅]-existence₊(proof)
existence2 : ∃(n ↦ 𝐒(a) + n ≡ 𝐒(b))
existence2 = [∃]-intro(𝐒(a) ⋅ [∃]-witness(existence1)) ⦃ [∃]-proof(existence1) ⦄
divides-not-lower-limit : ∀{a b} → (a > 𝐒(b)) → (a ∤ 𝐒(b))
divides-not-lower-limit {a}{b} = (contrapositiveᵣ (divides-upper-limit {a}{b})) ∘ [>]-to-[≰]
Div𝐏 : ∀{x y : ℕ} → (y ∣ (y + x)) → (y ∣ x)
Div𝐏 {x}{y} proof = [↔]-to-[→] (divides-without-[+] {y}{y}{x} proof) (divides-reflexivity)
Div𝐏-monus : ∀{x y : ℕ} → (y ∣ x) → (y ∣ (x −₀ y))
Div𝐏-monus Div𝟎 = Div𝟎
Div𝐏-monus {.(y + x)}{y} (Div𝐒 {_}{x} yx) = [≡]-substitutionₗ ([−₀]ₗ[+]ₗ-nullify {y}{x}) {y ∣_} yx
divides-with-[⋅]ₗ-both : ∀{x y z} → (x ∣ y) → (z ⋅ x ∣ z ⋅ y)
divides-with-[⋅]ₗ-both {x} {.0} {z} Div𝟎 = Div𝟎
divides-with-[⋅]ₗ-both {x} {.(x + _)} {z} (Div𝐒 {_}{y} xy) rewrite distributivityₗ(_⋅_)(_+_) {z}{x}{y} = Div𝐒 (divides-with-[⋅]ₗ-both {x}{y}{z} xy)
divides-with-[⋅]ᵣ-both : ∀{x y z} → (x ∣ y) → (x ⋅ z ∣ y ⋅ z)
divides-with-[⋅]ᵣ-both {x} {.0} {z} Div𝟎 = Div𝟎
divides-with-[⋅]ᵣ-both {x} {.(x + _)} {z} (Div𝐒 {_}{y} xy) rewrite distributivityᵣ(_⋅_)(_+_) {x}{y}{z} = Div𝐒 (divides-with-[⋅]ᵣ-both {x}{y}{z} xy)
divides-with-[⋅]-both : ∀{x₁ y₁ x₂ y₂} → (x₁ ∣ y₁) → (x₂ ∣ y₂) → (x₁ ⋅ x₂ ∣ y₁ ⋅ y₂)
divides-with-[⋅]-both {x₁}{y₁}{x₂}{y₂} xy1 xy2
with [∃]-intro n₁ ⦃ [≡]-intro ⦄ ← [↔]-to-[←] divides-[⋅]-existence xy1
with [∃]-intro n₂ ⦃ [≡]-intro ⦄ ← [↔]-to-[←] divides-[⋅]-existence xy2
= [↔]-to-[→] divides-[⋅]-existence ([∃]-intro (n₁ ⋅ n₂) ⦃ One.associate-commute4 {_▫_ = _⋅_} {a = x₁}{x₂}{n₁}{n₂} (commutativity(_⋅_) {x₂}{n₁}) ⦄)
divides-with-[^] : ∀{a b n} → (a ∣ b) → ((a ^ n) ∣ (b ^ n))
divides-with-[^] {n = 𝟎} _ = Div𝐒 Div𝟎
divides-with-[^] {n = 𝐒 n} ab = divides-with-[⋅]-both ab (divides-with-[^] {n = n} ab)
divides-withᵣ-[^] : ∀{a b n} → ⦃ pos : Positive(n) ⦄ → (a ∣ b) → (a ∣ (b ^ n))
divides-withᵣ-[^] {a}{b}{𝐒 n} ab = divides-with-[⋅] {a}{b}{b ^ n} ([∨]-introₗ ab)
divides-without-[⋅]ᵣ-both : ∀{x y z} → (x ⋅ 𝐒(z) ∣ y ⋅ 𝐒(z)) → (x ∣ y)
divides-without-[⋅]ᵣ-both {x}{y}{z} p
with [∃]-intro n ⦃ peq ⦄ ← [↔]-to-[←] divides-[⋅]-existence p
= [↔]-to-[→] divides-[⋅]-existence ([∃]-intro n ⦃ [⋅]-cancellationᵣ{𝐒(z)} (symmetry(_≡_) (One.commuteᵣ-assocₗ{_▫_ = _⋅_}{x}{𝐒(z)}{n}) 🝖 peq) ⦄)
divides-without-[⋅]ₗ-both : ∀{x y z} → (𝐒(z) ⋅ x ∣ 𝐒(z) ⋅ y) → (x ∣ y)
divides-without-[⋅]ₗ-both {x}{y}{z} p = divides-without-[⋅]ᵣ-both {x}{y}{z} (substitute₂(_∣_) (commutativity(_⋅_) {𝐒(z)}{x}) (commutativity(_⋅_) {𝐒(z)}{y}) p)
divides-without-[⋅]ᵣ-both' : ∀{x y z} → (z > 0) → (x ⋅ z ∣ y ⋅ z) → (x ∣ y)
divides-without-[⋅]ᵣ-both' {x}{y}{𝐒(z)} _ = divides-without-[⋅]ᵣ-both {x}{y}{z}
divides-without-[⋅]ₗ-both' : ∀{x y z} → (z > 0) → (z ⋅ x ∣ z ⋅ y) → (x ∣ y)
divides-without-[⋅]ₗ-both' {x}{y}{𝐒(z)} _ = divides-without-[⋅]ₗ-both {x}{y}{z}
divides-factorial : ∀{n x} → (𝐒(x) ≤ n) → (𝐒(x) ∣ (n !))
divides-factorial {.(𝐒 y)}{.x} (succ {x}{y} xy) with [≥]-or-[<] {x}{y}
... | [∨]-introₗ yx with [≡]-intro ← antisymmetry(_≤_)(_≡_) xy yx = divides-with-[⋅] {𝐒(x)}{𝐒(x)}{x !} ([∨]-introₗ(reflexivity(_∣_)))
... | [∨]-introᵣ sxy = divides-with-[⋅] {𝐒(x)}{𝐒(y)}{y !} ([∨]-introᵣ(divides-factorial{y}{x} sxy))
instance
divides-antisymmetry : Antisymmetry(_∣_)(_≡_)
Antisymmetry.proof divides-antisymmetry {𝟎} {𝟎} ab ba = [≡]-intro
Antisymmetry.proof divides-antisymmetry {𝟎} {𝐒 b} ab ba with () ← [0]-divides-not ab
Antisymmetry.proof divides-antisymmetry {𝐒 a} {𝟎} ab ba with () ← [0]-divides-not ba
Antisymmetry.proof divides-antisymmetry {𝐒 a} {𝐒 b} ab ba = antisymmetry(_≤_)(_≡_) (divides-upper-limit ab) (divides-upper-limit ba)
divides-quotient-positive : ∀{d n}{dn : (d ∣ 𝐒(n))} → (divides-quotient dn ≥ 1)
divides-quotient-positive {𝟎} {n} {dn = dn} with () ← [0]-divides-not dn
divides-quotient-positive {𝐒 d} {.(d + _)} {dn = Div𝐒 dn} = succ _≤_.min
divides-quotient-composite : ∀{d n} → (d ≥ 2) → (d < n) → ∀{dn : (d ∣ n)} → (divides-quotient dn ≥ 2)
divides-quotient-composite l g {Div𝐒 {x = 𝟎} dn} with () ← irreflexivity(_<_) g
divides-quotient-composite l g {Div𝐒 {x = 𝐒 x} dn} = succ (divides-quotient-positive {dn = dn})
|
{
"alphanum_fraction": 0.5244169667,
"avg_line_length": 44.0620689655,
"ext": "agda",
"hexsha": "6774d064db4e7ce1a387103014ff31f466594467",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs.agda",
"max_line_length": 197,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 6425,
"size": 12778
}
|
open import Nat
open import Prelude
open import List
open import contexts
open import judgemental-erase
open import lemmas-matching
open import moveerase
open import sensibility
open import statics-core
open import synth-unicity
module statics-checks where
-- these three judmgements lift the action semantics judgements to relate
-- an expression and a list of pair-wise composable actions to the
-- expression that's produced by tracing through the action semantics for
-- each element in that list.
--
-- we do this just by appealing to the original judgement with
-- constraints on the terms to enforce composability.
--
-- in all three cases, we assert that the empty list of actions
-- constitutes a reflexivity step, so when you run out of actions to
-- preform you have to be where you wanted to be.
--
-- note that the only difference between the types for each judgement and
-- the original action semantics is that the action is now a list of
-- actions.
data runtype : (t : ztyp) (Lα : List action) (t' : ztyp) → Set where
DoRefl : {t : ztyp} →
runtype t [] t
DoType : {t : ztyp} {α : action} {t' t'' : ztyp}
{L : List action} →
t + α +> t' →
runtype t' L t'' →
runtype t (α :: L) t''
data runsynth : (Γ : tctx) (e : zexp) (t1 : htyp) (Lα : List action)
(e' : zexp) (t2 : htyp) → Set where
DoRefl : {Γ : tctx} {e : zexp} {t : htyp} →
runsynth Γ e t [] e t
DoSynth : {Γ : tctx} {e : zexp} {t : htyp} {α : action} {e' e'' : zexp} {t' t'' : htyp}
{L : List action} →
Γ ⊢ e => t ~ α ~> e' => t' →
runsynth Γ e' t' L e'' t'' →
runsynth Γ e t (α :: L) e'' t''
data runana : (Γ : tctx) (e : zexp) (Lα : List action) (e' : zexp) (t : htyp) → Set where
DoRefl : {Γ : tctx} {e : zexp} {t : htyp} →
runana Γ e [] e t
DoAna : {Γ : tctx} {e : zexp} {α : action} {e' e'' : zexp} {t : htyp}
{L : List action} →
Γ ⊢ e ~ α ~> e' ⇐ t →
runana Γ e' L e'' t →
runana Γ e (α :: L) e'' t
-- all three run judgements lift to the list monoid as expected. these
-- theorems are simple because the structure of lists is simple, but they
-- amount a reasoning principle about the composition of action sequences
-- by letting you split lists in (nearly) arbitrary places and argue
-- about the consequences of the splits before composing them together.
runtype++ : ∀{t t' t'' L1 L2 } →
runtype t L1 t' →
runtype t' L2 t'' →
runtype t (L1 ++ L2) t''
runtype++ DoRefl d2 = d2
runtype++ (DoType x d1) d2 = DoType x (runtype++ d1 d2)
runsynth++ : ∀{Γ e t L1 e' t' L2 e'' t''} →
runsynth Γ e t L1 e' t' →
runsynth Γ e' t' L2 e'' t'' →
runsynth Γ e t (L1 ++ L2) e'' t''
runsynth++ DoRefl d2 = d2
runsynth++ (DoSynth x d1) d2 = DoSynth x (runsynth++ d1 d2)
runana++ : ∀{Γ e t L1 e' L2 e''} →
runana Γ e L1 e' t →
runana Γ e' L2 e'' t →
runana Γ e (L1 ++ L2) e'' t
runana++ DoRefl d2 = d2
runana++ (DoAna x d1) d2 = DoAna x (runana++ d1 d2)
-- the following collection of lemmas asserts that the various runs
-- interoperate nicely. in many cases, these amount to observing
-- something like congruence: if a subterm is related to something by one
-- of the judgements, it can be replaced by the thing to which it is
-- related in a larger context without disrupting that larger
-- context.
--
-- taken together, this is a little messier than a proper congruence,
-- because the action semantics demand well-typedness at each step, and
-- therefore there are enough premises to each lemma to supply to the
-- action semantics rules.
--
-- therefore, these amount to a checksum on the zipper actions under the
-- lifing of the action semantics to the list monoid.
--
-- they only check the zipper actions they happen to be include, however,
-- which is driven by the particular lists we use in the proofs of
-- contructability and reachability, which may or may not be all of
-- them. additionally, the lemmas given here are what is needed for these
-- proofs, not anything that's more general.
-- type zippers
ziplem-tmarr1 : ∀{t1 t1' t2 L} →
runtype t1' L t1 →
runtype (t1' ==>₁ t2) L (t1 ==>₁ t2)
ziplem-tmarr1 DoRefl = DoRefl
ziplem-tmarr1 (DoType x L') = DoType (TMArrZip1 x) (ziplem-tmarr1 L')
ziplem-tmarr2 : ∀{t1 t2 t2' L} →
runtype t2' L t2 →
runtype (t1 ==>₂ t2') L (t1 ==>₂ t2)
ziplem-tmarr2 DoRefl = DoRefl
ziplem-tmarr2 (DoType x L') = DoType (TMArrZip2 x) (ziplem-tmarr2 L')
ziplem-tmplus1 : ∀{t1 t1' t2 L} →
runtype t1' L t1 →
runtype (t1' ⊕₁ t2) L (t1 ⊕₁ t2)
ziplem-tmplus1 DoRefl = DoRefl
ziplem-tmplus1 (DoType x L') = DoType (TMPlusZip1 x) (ziplem-tmplus1 L')
ziplem-tmplus2 : ∀{t1 t2 t2' L} →
runtype t2' L t2 →
runtype (t1 ⊕₂ t2') L (t1 ⊕₂ t2)
ziplem-tmplus2 DoRefl = DoRefl
ziplem-tmplus2 (DoType x L') = DoType (TMPlusZip2 x) (ziplem-tmplus2 L')
ziplem-tmprod1 : ∀{t1 t1' t2 L} →
runtype t1' L t1 →
runtype (t1' ⊠₁ t2) L (t1 ⊠₁ t2)
ziplem-tmprod1 DoRefl = DoRefl
ziplem-tmprod1 (DoType x L') = DoType (TMProdZip1 x) (ziplem-tmprod1 L')
ziplem-tmprod2 : ∀{t1 t2 t2' L} →
runtype t2' L t2 →
runtype (t1 ⊠₂ t2') L (t1 ⊠₂ t2)
ziplem-tmprod2 DoRefl = DoRefl
ziplem-tmprod2 (DoType x L') = DoType (TMProdZip2 x) (ziplem-tmprod2 L')
-- expression zippers
ziplem-asc1 : ∀{Γ t L e e'} →
runana Γ e L e' t →
runsynth Γ (e ·:₁ t) t L (e' ·:₁ t) t
ziplem-asc1 DoRefl = DoRefl
ziplem-asc1 (DoAna a r) = DoSynth (SAZipAsc1 a) (ziplem-asc1 r)
ziplem-asc2 : ∀{Γ t L t' t◆ t'◆ u} →
erase-t t t◆ →
erase-t t' t'◆ →
runtype t L t' →
runsynth Γ (⦇-⦈[ u ] ·:₂ t) t◆ L (⦇-⦈[ u ] ·:₂ t') t'◆
ziplem-asc2 {Γ} er er' rt with erase-t◆ er | erase-t◆ er'
... | refl | refl = ziplem-asc2' {Γ = Γ} rt
where
ziplem-asc2' : ∀{t L t' Γ u} →
runtype t L t' →
runsynth Γ (⦇-⦈[ u ] ·:₂ t) (t ◆t) L (⦇-⦈[ u ] ·:₂ t') (t' ◆t)
ziplem-asc2' DoRefl = DoRefl
ziplem-asc2' (DoType x rt) =
DoSynth (SAZipAsc2 x (◆erase-t _ _ refl) (◆erase-t _ _ refl) (ASubsume SEHole TCHole1))
(ziplem-asc2' rt)
ziplem-lam : ∀{Γ x e t t1 t2 L e'} →
x # Γ →
t ▸arr (t1 ==> t2) →
runana (Γ ,, (x , t1)) e L e' t2 →
runana Γ (·λ x e) L (·λ x e') t
ziplem-lam a m DoRefl = DoRefl
ziplem-lam a m (DoAna x₁ d) = DoAna (AAZipLam a m x₁) (ziplem-lam a m d)
ziplem-halflam1 : ∀{Γ u t1 t1' t1◆ t1'◆ x l} →
x # Γ →
erase-t t1 t1◆ →
erase-t t1' t1'◆ →
runtype t1 l t1' →
runsynth Γ (·λ x ·[ t1 ]₁ ⦇-⦈[ u ]) (t1◆ ==> ⦇-⦈) l
(·λ x ·[ t1' ]₁ ⦇-⦈[ u ]) (t1'◆ ==> ⦇-⦈)
ziplem-halflam1 apt et et' DoRefl
with eraset-det et et'
... | refl = DoRefl
ziplem-halflam1 apt et et' (DoType x rt) =
DoSynth (SAZipLam1 apt et (rel◆t _) x SEHole SEHole)
(ziplem-halflam1 apt (rel◆t _) et' rt)
ziplem-halflam2 : ∀{Γ e e' e◆ t1 t2 t2' x L} →
x # Γ →
erase-e e e◆ →
(Γ ,, (x , t1)) ⊢ e◆ => t2 →
runsynth (Γ ,, (x , t1)) e t2 L e' t2' →
runsynth Γ (·λ x ·[ t1 ]₂ e) (t1 ==> t2) L
(·λ x ·[ t1 ]₂ e') (t1 ==> t2')
ziplem-halflam2 apt ee wt DoRefl = DoRefl
ziplem-halflam2 apt ee wt (DoSynth x rs) =
DoSynth (SAZipLam2 apt ee wt x)
(ziplem-halflam2 apt (rel◆ _) (actsense-synth ee (rel◆ _) x wt) rs)
ziplem-plus1 : ∀{Γ e L e' f} →
runana Γ e L e' num →
runsynth Γ (e ·+₁ f) num L (e' ·+₁ f) num
ziplem-plus1 DoRefl = DoRefl
ziplem-plus1 (DoAna x d) = DoSynth (SAZipPlus1 x) (ziplem-plus1 d)
ziplem-plus2 : ∀{Γ e L e' f} →
runana Γ e L e' num →
runsynth Γ (f ·+₂ e) num L (f ·+₂ e') num
ziplem-plus2 DoRefl = DoRefl
ziplem-plus2 (DoAna x d) = DoSynth (SAZipPlus2 x) (ziplem-plus2 d)
ziplem-ap2 : ∀{Γ e L e' t t' f tf} →
Γ ⊢ f => t' →
t' ▸arr (t ==> tf) →
runana Γ e L e' t →
runsynth Γ (f ∘₂ e) tf L (f ∘₂ e') tf
ziplem-ap2 wt m DoRefl = DoRefl
ziplem-ap2 wt m (DoAna x d) = DoSynth (SAZipApAna m wt x) (ziplem-ap2 wt m d)
ziplem-nehole-a : ∀{Γ e e' L t t' u} →
(Γ ⊢ e ◆e => t) →
runsynth Γ e t L e' t' →
runsynth Γ ⦇⌜ e ⌟⦈[ u ] ⦇-⦈ L ⦇⌜ e' ⌟⦈[ u ] ⦇-⦈
ziplem-nehole-a wt DoRefl = DoRefl
ziplem-nehole-a wt (DoSynth {e = e} x d) =
DoSynth (SAZipNEHole (rel◆ e) wt x)
(ziplem-nehole-a (actsense-synth (rel◆ e) (rel◆ _) x wt) d)
ziplem-nehole-b : ∀{Γ e e' L t t' t'' u} →
(Γ ⊢ e ◆e => t) →
(t'' ~ t') →
runsynth Γ e t L e' t' →
runana Γ ⦇⌜ e ⌟⦈[ u ] L ⦇⌜ e' ⌟⦈[ u ] t''
ziplem-nehole-b wt c DoRefl = DoRefl
ziplem-nehole-b wt c (DoSynth x rs) =
DoAna (AASubsume (erase-in-hole (rel◆ _)) (SNEHole wt) (SAZipNEHole (rel◆ _) wt x) TCHole1)
(ziplem-nehole-b (actsense-synth (rel◆ _) (rel◆ _) x wt) c rs)
-- because the point of the reachability theorems is to show that we
-- didn't forget to define any of the action semantic cases, it's
-- important that theorems include the fact that the witness only uses
-- move -- otherwise, you could cheat by just prepending [ del ] to the
-- list produced by constructability. constructability does also use
-- some, but not all, of the possible movements, so this would no longer
-- demonstrate the property we really want. to that end, we define a
-- predicate on lists that they contain only (move _) and that the
-- various things above that produce the lists we use have this property.
-- predicate
data movements : List action → Set where
AM:: : {L : List action} {δ : direction} →
movements L →
movements ((move δ) :: L)
AM[] : movements []
-- movements breaks over the list monoid, as expected
movements++ : {l1 l2 : List action} →
movements l1 →
movements l2 →
movements (l1 ++ l2)
movements++ (AM:: m1) m2 = AM:: (movements++ m1 m2)
movements++ AM[] m2 = m2
-- these are zipper lemmas that are specific to list of movement
-- actions. they are not true for general actions, but because
-- reachability is restricted to movements, we get some milage out of
-- them anyway.
endpoints : ∀{Γ e t L e' t'} →
Γ ⊢ (e ◆e) => t →
runsynth Γ e t L e' t' →
movements L →
t == t'
endpoints _ DoRefl AM[] = refl
endpoints wt (DoSynth x rs) (AM:: mv)
with endpoints (actsense-synth (rel◆ _) (rel◆ _) x wt) rs mv
... | refl = π2 (moveerase-synth (rel◆ _) wt x)
ziplem-moves-asc2 : ∀{ Γ l t t' e t◆} →
movements l →
erase-t t t◆ →
Γ ⊢ e <= t◆ →
runtype t l t' →
runsynth Γ (e ·:₂ t) t◆ l (e ·:₂ t') t◆
ziplem-moves-asc2 _ _ _ DoRefl = DoRefl
ziplem-moves-asc2 (AM:: m) er wt (DoType x rt) with moveeraset' er x
... | er' = DoSynth (SAZipAsc2 x er' er wt) (ziplem-moves-asc2 m er' wt rt)
synthana-moves : ∀{t t' l e e' Γ} →
Γ ⊢ e ◆e => t' →
movements l →
t ~ t' →
runsynth Γ e t' l e' t' →
runana Γ e l e' t
synthana-moves _ _ _ DoRefl = DoRefl
synthana-moves wt (AM:: m) c (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt x)
... | refl =
DoAna (AASubsume (rel◆ _) wt x c)
(synthana-moves (actsense-synth (rel◆ _) (rel◆ _) x wt) m c rs)
ziplem-moves-halflam1 : ∀{Γ e t1 t1' t1◆ t1'◆ t2 t2' x l} →
x # Γ →
erase-t t1 t1◆ →
erase-t t1' t1'◆ →
movements l →
runtype t1 l t1' →
(Γ ,, (x , t1◆)) ⊢ e => t2 →
(Γ ,, (x , t1'◆)) ⊢ e => t2' →
runsynth Γ (·λ x ·[ t1 ]₁ e) (t1◆ ==> t2) l
(·λ x ·[ t1' ]₁ e) (t1'◆ ==> t2')
ziplem-moves-halflam1 apt et et' AM[] DoRefl wt1 wt2
with eraset-det et et'
... | refl with synthunicity wt1 wt2
... | refl = DoRefl
ziplem-moves-halflam1 apt et et' (AM:: mv) (DoType x rt) wt1 wt2
with erase-t◆ et | erase-t◆ et'
... | refl | refl with moveeraset x
... | qq rewrite qq with ziplem-moves-halflam1 apt (rel◆t _) (rel◆t _) mv rt wt1 wt2
... | ww = DoSynth (SAZipLam1 apt et (rel◆t _) x wt1 wt1) ww
ziplem-moves-ap1 : ∀{Γ l e1 e1' e2 t t' tx} →
Γ ⊢ e1 ◆e => t →
t ▸arr (tx ==> t') →
Γ ⊢ e2 <= tx →
movements l →
runsynth Γ e1 t l e1' t →
runsynth Γ (e1 ∘₁ e2) t' l (e1' ∘₁ e2) t'
ziplem-moves-ap1 _ _ _ _ DoRefl = DoRefl
ziplem-moves-ap1 wt1 mch wt2 (AM:: m) (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt1 x)
... | refl =
DoSynth (SAZipApArr mch (rel◆ _) wt1 x wt2)
(ziplem-moves-ap1 (actsense-synth (rel◆ _) (rel◆ _) x wt1) mch wt2 m rs)
-- zip lemmas for sums
ziplem-inl : ∀{t t1 t2 Γ e L e'} →
t ▸sum (t1 ⊕ t2) →
runana Γ e L e' t1 →
runana Γ (inl e) L (inl e') t
ziplem-inl m DoRefl = DoRefl
ziplem-inl m (DoAna x r) = DoAna (AAZipInl m x) (ziplem-inl m r)
ziplem-inr : ∀{t t1 t2 Γ e L e'} →
t ▸sum (t1 ⊕ t2) →
runana Γ e L e' t2 →
runana Γ (inr e) L (inr e') t
ziplem-inr m DoRefl = DoRefl
ziplem-inr m (DoAna x r) = DoAna (AAZipInr m x) (ziplem-inr m r)
ziplem-case1a : ∀{x Γ y e e◆ t0 t+ e' e1 e2 L t1 t2 t} →
x # Γ →
y # Γ →
erase-e e e◆ →
Γ ⊢ e◆ => t0 →
runsynth Γ e t0 L e' t+ →
t+ ▸sum (t1 ⊕ t2) →
(Γ ,, (x , t1)) ⊢ e1 <= t →
(Γ ,, (y , t2)) ⊢ e2 <= t →
movements L →
runana Γ (case₁ e x e1 y e2) L (case₁ e' x e1 y e2) t
ziplem-case1a x# y# er wt0 DoRefl m wt1 wt2 mv = DoRefl
ziplem-case1a x# y# er wt0 (DoSynth α rs) m wt1 wt2 (AM:: mv)
with endpoints (actsense-synth er (rel◆ _) α wt0) rs mv
... | refl with (π2 (moveerase-synth er wt0 α))
... | refl =
DoAna (AAZipCase1 x# y# er wt0 α m wt1 wt2)
(ziplem-case1a x# y# (eq-er-trans (π1 (moveerase-synth er wt0 α)) er)
wt0 rs m wt1 wt2 mv)
ziplem-case1b : ∀{Γ e e' t L t' x y t0 e◆ u u1 u2} →
x # Γ →
y # Γ →
erase-e e e◆ →
Γ ⊢ e◆ => t →
runsynth Γ e t L e' t' →
runana Γ (case₁ ⦇⌜ e ⌟⦈[ u ] x ⦇-⦈[ u1 ] y ⦇-⦈[ u2 ]) L
(case₁ ⦇⌜ e' ⌟⦈[ u ] x ⦇-⦈[ u1 ] y ⦇-⦈[ u2 ]) t0
ziplem-case1b _ _ _ _ DoRefl = DoRefl
ziplem-case1b x# y# er wt (DoSynth x₁ rs) =
DoAna (AAZipCase1 x# y# (erase-in-hole er) (SNEHole wt) (SAZipNEHole er wt x₁)
MSHole (ASubsume SEHole TCHole1) (ASubsume SEHole TCHole1))
(ziplem-case1b x# y# (rel◆ _) (actsense-synth er (rel◆ _) x₁ wt) rs)
ziplem-case2 : ∀{t t+ t1 t2 Γ x y e e1 e1' e2 l} →
x # Γ →
y # Γ →
Γ ⊢ e => t+ →
(Γ ,, (y , t2)) ⊢ e2 <= t →
t+ ▸sum (t1 ⊕ t2) →
runana (Γ ,, (x , t1)) e1 l e1' t →
runana Γ (case₂ e x e1 y e2) l (case₂ e x e1' y e2) t
ziplem-case2 x# y# wt1 wt2 m DoRefl = DoRefl
ziplem-case2 x# y# wt1 wt2 m (DoAna x₁ ra) =
DoAna (AAZipCase2 x# y# wt1 m x₁)
(ziplem-case2 x# y# wt1 wt2 m ra)
ziplem-case3 : ∀{t t+ t1 t2 Γ x y e e1 e2 e2' l} →
x # Γ →
y # Γ →
Γ ⊢ e => t+ →
(Γ ,, (x , t1)) ⊢ e1 <= t →
t+ ▸sum (t1 ⊕ t2) →
runana (Γ ,, (y , t2)) e2 l e2' t →
runana Γ (case₃ e x e1 y e2) l (case₃ e x e1 y e2') t
ziplem-case3 x# y# wt1 wt2 m DoRefl = DoRefl
ziplem-case3 x# y# wt1 wt2 m (DoAna x₁ ra) =
DoAna (AAZipCase3 x# y# wt1 m x₁)
(ziplem-case3 x# y# wt1 wt2 m ra)
-- zip lemma for products
ziplem-pair1 : ∀ {t1 t1' t2 Γ e1 e1◆ l e1' e2} →
erase-e e1 e1◆ →
Γ ⊢ e1◆ => t1 →
runsynth Γ e1 t1 l e1' t1' →
Γ ⊢ e2 => t2 →
runsynth Γ ⟨ e1 , e2 ⟩₁ (t1 ⊠ t2) l ⟨ e1' , e2 ⟩₁ (t1' ⊠ t2)
ziplem-pair1 er wt1 DoRefl wt2 = DoRefl
ziplem-pair1 er wt1 (DoSynth x rs) wt2 =
DoSynth (SAZipPair1 er wt1 x wt2)
(ziplem-pair1 (rel◆ _) (actsense-synth er (rel◆ _) x wt1) rs wt2)
ziplem-pair2 : ∀ {t1 t2 t2' Γ e1 e2 e2◆ l e2'} →
Γ ⊢ e1 => t1 →
erase-e e2 e2◆ →
Γ ⊢ e2◆ => t2 →
runsynth Γ e2 t2 l e2' t2' →
runsynth Γ ⟨ e1 , e2 ⟩₂ (t1 ⊠ t2) l ⟨ e1 , e2' ⟩₂ (t1 ⊠ t2')
ziplem-pair2 wt1 er wt2 DoRefl = DoRefl
ziplem-pair2 wt1 er wt2 (DoSynth x rs) =
DoSynth (SAZipPair2 wt1 er wt2 x)
(ziplem-pair2 wt1 (rel◆ _) (actsense-synth er (rel◆ _) x wt2) rs)
ziplem-moves-fst : ∀ {t× t×' t1 t1' t2 t2' Γ e e◆ l e'} →
t× ▸prod (t1 ⊠ t2) →
t×' ▸prod (t1' ⊠ t2') →
erase-e e e◆ →
Γ ⊢ e◆ => t× →
movements l →
runsynth Γ e t× l e' t×' →
runsynth Γ (fst e) t1 l (fst e') t1'
ziplem-moves-fst pr pr' er wt m DoRefl with ▸prod-unicity pr pr'
... | refl = DoRefl
ziplem-moves-fst pr pr' er wt (AM:: m) (DoSynth x rs)
with endpoints (actsense-synth er (rel◆ _) x wt) rs m
... | refl with moveerase-synth er wt x
... | q , refl with ▸prod-unicity pr pr'
... | refl =
DoSynth (SAZipFst pr pr' er wt x)
(ziplem-moves-fst pr pr' (eq-er-trans q er) wt m rs)
ziplem-moves-snd : ∀ {t× t×' t1 t1' t2 t2' Γ e e◆ l e'} →
t× ▸prod (t1 ⊠ t2) →
t×' ▸prod (t1' ⊠ t2') →
erase-e e e◆ →
Γ ⊢ e◆ => t× →
movements l →
runsynth Γ e t× l e' t×' →
runsynth Γ (snd e) t2 l (snd e') t2'
ziplem-moves-snd pr pr' er wt m DoRefl with ▸prod-unicity pr pr'
... | refl = DoRefl
ziplem-moves-snd pr pr' er wt (AM:: m) (DoSynth x rs)
with endpoints (actsense-synth er (rel◆ _) x wt) rs m
... | refl with moveerase-synth er wt x
... | q , refl with ▸prod-unicity pr pr'
... | refl =
DoSynth (SAZipSnd pr pr' er wt x)
(ziplem-moves-snd pr pr' (eq-er-trans q er) wt m rs)
|
{
"alphanum_fraction": 0.5005376619,
"avg_line_length": 41.9077253219,
"ext": "agda",
"hexsha": "6c4d9de4e3c7d42fa9894ff1531d5b06c9d9268c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "statics-checks.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "statics-checks.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "statics-checks.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7340,
"size": 19529
}
|
module SubstantiveDischargeIsReflexive where
open import HasSubstantiveDischarge
record SubstantiveDischargeIsReflexive (A : Set) ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁
where
field
≽-reflexive : (x : A) → x ≽ x
{-
record SubstantiveDischargeIsReflexive (A : Set) : Set₁
where
field
overlap ⦃ hasSubstantiveDischarge ⦄ : HasSubstantiveDischarge A A
≽-reflexive : (x : A) → x ≽ x
-}
open SubstantiveDischargeIsReflexive ⦃ … ⦄ public
{-
record SubstantiveDischargeIsReflexive (A : Set) ⦃ _ : HasSubstantiveDischarge A A ⦄ : Set₁
where
field
≽-reflexive : {x : A} → x ≽ x
open SubstantiveDischargeIsReflexive ⦃ … ⦄
-}
{-# DISPLAY SubstantiveDischargeIsReflexive.≽-reflexive _ = ≽-reflexive #-}
|
{
"alphanum_fraction": 0.7168508287,
"avg_line_length": 25.8571428571,
"ext": "agda",
"hexsha": "33b167697d1e172e8ff446e550d98878aaf2f3a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/SubstantiveDischargeIsReflexive.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/SubstantiveDischargeIsReflexive.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/SubstantiveDischargeIsReflexive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 279,
"size": 724
}
|
-- Andreas, 2017-10-09, issue #2576
-- Duplicate definition should be reported as such,
-- not as "Missing type signature."
data ⊥ : Set where
data ⊥ where
-- Error was: Missing type signature for ⊥
-- Error was: Duplicate definition of module ⊥ (fixed 2019-07-07)
-- Expected error: Multiple definitions of ⊥
|
{
"alphanum_fraction": 0.7156549521,
"avg_line_length": 26.0833333333,
"ext": "agda",
"hexsha": "61d69dbc7acc497cd1324a0175c9db21f76cd9e2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2576.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2576.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2576.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 86,
"size": 313
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Fin, and operations making use of these
-- properties (or other properties not available in Data.Fin)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Properties where
open import Algebra.FunctionProperties using (Involutive)
open import Category.Applicative using (RawApplicative)
open import Category.Functor using (RawFunctor)
open import Data.Empty using (⊥-elim)
open import Data.Fin.Base
open import Data.Nat as ℕ using (ℕ; zero; suc; s≤s; z≤n; _∸_)
renaming
( _≤_ to _ℕ≤_
; _<_ to _ℕ<_
; _+_ to _ℕ+_
)
import Data.Nat.Properties as ℕₚ
open import Data.Unit using (tt)
open import Data.Product using (∃; ∃₂; ∄; _×_; _,_; map; proj₁)
open import Function using (_∘_; id)
open import Function.Injection using (_↣_)
open import Relation.Binary as B hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; trans; cong; subst; module ≡-Reasoning)
open import Relation.Nullary using (¬_)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Unary as U using (U; Pred; Decidable; _⊆_)
open import Relation.Unary.Properties using (U?)
------------------------------------------------------------------------
-- Fin
¬Fin0 : ¬ Fin 0
¬Fin0 ()
------------------------------------------------------------------------
-- Properties of _≡_
suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n
suc-injective refl = refl
infix 4 _≟_
_≟_ : ∀ {n} → B.Decidable {A = Fin n} _≡_
zero ≟ zero = yes refl
zero ≟ suc y = no λ()
suc x ≟ zero = no λ()
suc x ≟ suc y with x ≟ y
... | yes x≡y = yes (cong suc x≡y)
... | no x≢y = no (x≢y ∘ suc-injective)
preorder : ℕ → Preorder _ _ _
preorder n = P.preorder (Fin n)
setoid : ℕ → Setoid _ _
setoid n = P.setoid (Fin n)
isDecEquivalence : ∀ {n} → IsDecEquivalence (_≡_ {A = Fin n})
isDecEquivalence = record
{ isEquivalence = P.isEquivalence
; _≟_ = _≟_
}
decSetoid : ℕ → DecSetoid _ _
decSetoid n = record
{ Carrier = Fin n
; _≈_ = _≡_
; isDecEquivalence = isDecEquivalence
}
------------------------------------------------------------------------
-- toℕ
toℕ-injective : ∀ {n} {i j : Fin n} → toℕ i ≡ toℕ j → i ≡ j
toℕ-injective {zero} {} {} _
toℕ-injective {suc n} {zero} {zero} eq = refl
toℕ-injective {suc n} {zero} {suc j} ()
toℕ-injective {suc n} {suc i} {zero} ()
toℕ-injective {suc n} {suc i} {suc j} eq =
cong suc (toℕ-injective (cong ℕ.pred eq))
toℕ-strengthen : ∀ {n} (i : Fin n) → toℕ (strengthen i) ≡ toℕ i
toℕ-strengthen zero = refl
toℕ-strengthen (suc i) = cong suc (toℕ-strengthen i)
toℕ-raise : ∀ {m} n (i : Fin m) → toℕ (raise n i) ≡ n ℕ+ toℕ i
toℕ-raise zero i = refl
toℕ-raise (suc n) i = cong suc (toℕ-raise n i)
toℕ<n : ∀ {n} (i : Fin n) → toℕ i ℕ< n
toℕ<n zero = s≤s z≤n
toℕ<n (suc i) = s≤s (toℕ<n i)
toℕ≤pred[n] : ∀ {n} (i : Fin n) → toℕ i ℕ≤ ℕ.pred n
toℕ≤pred[n] zero = z≤n
toℕ≤pred[n] (suc {n = zero} ())
toℕ≤pred[n] (suc {n = suc n} i) = s≤s (toℕ≤pred[n] i)
-- A simpler implementation of toℕ≤pred[n],
-- however, with a different reduction behavior.
-- If no one needs the reduction behavior of toℕ≤pred[n],
-- it can be removed in favor of toℕ≤pred[n]′.
toℕ≤pred[n]′ : ∀ {n} (i : Fin n) → toℕ i ℕ≤ ℕ.pred n
toℕ≤pred[n]′ i = ℕₚ.<⇒≤pred (toℕ<n i)
------------------------------------------------------------------------
-- fromℕ
toℕ-fromℕ : ∀ n → toℕ (fromℕ n) ≡ n
toℕ-fromℕ zero = refl
toℕ-fromℕ (suc n) = cong suc (toℕ-fromℕ n)
fromℕ-toℕ : ∀ {n} (i : Fin n) → fromℕ (toℕ i) ≡ strengthen i
fromℕ-toℕ zero = refl
fromℕ-toℕ (suc i) = cong suc (fromℕ-toℕ i)
------------------------------------------------------------------------
-- fromℕ≤
fromℕ≤-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i ℕ< m) → fromℕ≤ i<m ≡ i
fromℕ≤-toℕ zero (s≤s z≤n) = refl
fromℕ≤-toℕ (suc i) (s≤s (s≤s m≤n)) = cong suc (fromℕ≤-toℕ i (s≤s m≤n))
toℕ-fromℕ≤ : ∀ {m n} (m<n : m ℕ< n) → toℕ (fromℕ≤ m<n) ≡ m
toℕ-fromℕ≤ (s≤s z≤n) = refl
toℕ-fromℕ≤ (s≤s (s≤s m<n)) = cong suc (toℕ-fromℕ≤ (s≤s m<n))
-- fromℕ is a special case of fromℕ≤.
fromℕ-def : ∀ n → fromℕ n ≡ fromℕ≤ ℕₚ.≤-refl
fromℕ-def zero = refl
fromℕ-def (suc n) = cong suc (fromℕ-def n)
------------------------------------------------------------------------
-- fromℕ≤″
fromℕ≤≡fromℕ≤″ : ∀ {m n} (m<n : m ℕ< n) (m<″n : m ℕ.<″ n) →
fromℕ≤ m<n ≡ fromℕ≤″ m m<″n
fromℕ≤≡fromℕ≤″ (s≤s z≤n) (ℕ.less-than-or-equal refl) = refl
fromℕ≤≡fromℕ≤″ (s≤s (s≤s m<n)) (ℕ.less-than-or-equal refl) =
cong suc (fromℕ≤≡fromℕ≤″ (s≤s m<n) (ℕ.less-than-or-equal refl))
toℕ-fromℕ≤″ : ∀ {m n} (m<n : m ℕ.<″ n) → toℕ (fromℕ≤″ m m<n) ≡ m
toℕ-fromℕ≤″ {m} {n} m<n = begin
toℕ (fromℕ≤″ m m<n) ≡⟨ cong toℕ (sym (fromℕ≤≡fromℕ≤″ _ m<n)) ⟩
toℕ (fromℕ≤ _) ≡⟨ toℕ-fromℕ≤ (ℕₚ.≤″⇒≤ m<n) ⟩
m ∎
where open ≡-Reasoning
------------------------------------------------------------------------
-- cast
toℕ-cast : ∀ {m n} .(eq : m ≡ n) (k : Fin m) → toℕ (cast eq k) ≡ toℕ k
toℕ-cast {n = zero} () zero
toℕ-cast {n = suc n} eq zero = refl
toℕ-cast {n = zero} () (suc k)
toℕ-cast {n = suc n} eq (suc k) = cong suc (toℕ-cast (cong ℕ.pred eq) k)
------------------------------------------------------------------------
-- Properties of _≤_
-- Relational properties
≤-reflexive : ∀ {n} → _≡_ ⇒ (_≤_ {n})
≤-reflexive refl = ℕₚ.≤-refl
≤-refl : ∀ {n} → Reflexive (_≤_ {n})
≤-refl = ≤-reflexive refl
≤-trans : ∀ {n} → Transitive (_≤_ {n})
≤-trans = ℕₚ.≤-trans
≤-antisym : ∀ {n} → Antisymmetric _≡_ (_≤_ {n})
≤-antisym x≤y y≤x = toℕ-injective (ℕₚ.≤-antisym x≤y y≤x)
≤-total : ∀ {n} → Total (_≤_ {n})
≤-total x y = ℕₚ.≤-total (toℕ x) (toℕ y)
infix 4 _≤?_ _<?_
_≤?_ : ∀ {n} → B.Decidable (_≤_ {n})
a ≤? b = toℕ a ℕ.≤? toℕ b
_<?_ : ∀ {n} → B.Decidable (_<_ {n})
m <? n = suc (toℕ m) ℕ.≤? toℕ n
≤-isPreorder : ∀ {n} → IsPreorder _≡_ (_≤_ {n})
≤-isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = ≤-reflexive
; trans = ≤-trans
}
≤-preorder : ℕ → Preorder _ _ _
≤-preorder n = record
{ isPreorder = ≤-isPreorder {n}
}
≤-isPartialOrder : ∀ {n} → IsPartialOrder _≡_ (_≤_ {n})
≤-isPartialOrder = record
{ isPreorder = ≤-isPreorder
; antisym = ≤-antisym
}
≤-poset : ℕ → Poset _ _ _
≤-poset n = record
{ isPartialOrder = ≤-isPartialOrder {n}
}
≤-isTotalOrder : ∀ {n} → IsTotalOrder _≡_ (_≤_ {n})
≤-isTotalOrder = record
{ isPartialOrder = ≤-isPartialOrder
; total = ≤-total
}
≤-totalOrder : ℕ → TotalOrder _ _ _
≤-totalOrder n = record
{ isTotalOrder = ≤-isTotalOrder {n}
}
≤-isDecTotalOrder : ∀ {n} → IsDecTotalOrder _≡_ (_≤_ {n})
≤-isDecTotalOrder = record
{ isTotalOrder = ≤-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≤?_
}
≤-decTotalOrder : ℕ → DecTotalOrder _ _ _
≤-decTotalOrder n = record
{ isDecTotalOrder = ≤-isDecTotalOrder {n}
}
-- Other properties
≤-irrelevant : ∀ {n} → Irrelevant (_≤_ {n})
≤-irrelevant = ℕₚ.≤-irrelevant
------------------------------------------------------------------------
-- Properties of _<_
-- Relational properties
<-irrefl : ∀ {n} → Irreflexive _≡_ (_<_ {n})
<-irrefl refl = ℕₚ.<-irrefl refl
<-asym : ∀ {n} → Asymmetric (_<_ {n})
<-asym = ℕₚ.<-asym
<-trans : ∀ {n} → Transitive (_<_ {n})
<-trans = ℕₚ.<-trans
<-cmp : ∀ {n} → Trichotomous _≡_ (_<_ {n})
<-cmp zero zero = tri≈ (λ()) refl (λ())
<-cmp zero (suc j) = tri< (s≤s z≤n) (λ()) (λ())
<-cmp (suc i) zero = tri> (λ()) (λ()) (s≤s z≤n)
<-cmp (suc i) (suc j) with <-cmp i j
... | tri< i<j i≢j j≮i = tri< (s≤s i<j) (i≢j ∘ suc-injective) (j≮i ∘ ℕₚ.≤-pred)
... | tri> i≮j i≢j j<i = tri> (i≮j ∘ ℕₚ.≤-pred) (i≢j ∘ suc-injective) (s≤s j<i)
... | tri≈ i≮j i≡j j≮i = tri≈ (i≮j ∘ ℕₚ.≤-pred) (cong suc i≡j) (j≮i ∘ ℕₚ.≤-pred)
<-respˡ-≡ : ∀ {n} → (_<_ {n}) Respectsˡ _≡_
<-respˡ-≡ refl x≤y = x≤y
<-respʳ-≡ : ∀ {n} → (_<_ {n}) Respectsʳ _≡_
<-respʳ-≡ refl x≤y = x≤y
<-resp₂-≡ : ∀ {n} → (_<_ {n}) Respects₂ _≡_
<-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡
<-isStrictPartialOrder : ∀ {n} → IsStrictPartialOrder _≡_ (_<_ {n})
<-isStrictPartialOrder = record
{ isEquivalence = P.isEquivalence
; irrefl = <-irrefl
; trans = <-trans
; <-resp-≈ = <-resp₂-≡
}
<-strictPartialOrder : ℕ → StrictPartialOrder _ _ _
<-strictPartialOrder n = record
{ isStrictPartialOrder = <-isStrictPartialOrder {n}
}
<-isStrictTotalOrder : ∀ {n} → IsStrictTotalOrder _≡_ (_<_ {n})
<-isStrictTotalOrder = record
{ isEquivalence = P.isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictTotalOrder : ℕ → StrictTotalOrder _ _ _
<-strictTotalOrder n = record
{ isStrictTotalOrder = <-isStrictTotalOrder {n}
}
-- Other properties
<-irrelevant : ∀ {n} → Irrelevant (_<_ {n})
<-irrelevant = ℕₚ.<-irrelevant
<⇒≢ : ∀ {n} {i j : Fin n} → i < j → i ≢ j
<⇒≢ i<i refl = ℕₚ.n≮n _ i<i
≤∧≢⇒< : ∀ {n} {i j : Fin n} → i ≤ j → i ≢ j → i < j
≤∧≢⇒< {i = zero} {zero} _ 0≢0 = contradiction refl 0≢0
≤∧≢⇒< {i = zero} {suc j} _ _ = s≤s z≤n
≤∧≢⇒< {i = suc i} {zero} ()
≤∧≢⇒< {i = suc i} {suc j} (s≤s i≤j) 1+i≢1+j =
s≤s (≤∧≢⇒< i≤j (1+i≢1+j ∘ (cong suc)))
------------------------------------------------------------------------
-- inject
toℕ-inject : ∀ {n} {i : Fin n} (j : Fin′ i) →
toℕ (inject j) ≡ toℕ j
toℕ-inject {i = zero} ()
toℕ-inject {i = suc i} zero = refl
toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j)
------------------------------------------------------------------------
-- inject+
toℕ-inject+ : ∀ {m} n (i : Fin m) → toℕ i ≡ toℕ (inject+ n i)
toℕ-inject+ n zero = refl
toℕ-inject+ n (suc i) = cong suc (toℕ-inject+ n i)
------------------------------------------------------------------------
-- inject₁
inject₁-injective : ∀ {n} {i j : Fin n} → inject₁ i ≡ inject₁ j → i ≡ j
inject₁-injective {i = zero} {zero} i≡j = refl
inject₁-injective {i = zero} {suc j} ()
inject₁-injective {i = suc i} {zero} ()
inject₁-injective {i = suc i} {suc j} i≡j =
cong suc (inject₁-injective (suc-injective i≡j))
toℕ-inject₁ : ∀ {n} (i : Fin n) → toℕ (inject₁ i) ≡ toℕ i
toℕ-inject₁ zero = refl
toℕ-inject₁ (suc i) = cong suc (toℕ-inject₁ i)
toℕ-inject₁-≢ : ∀ {n}(i : Fin n) → n ≢ toℕ (inject₁ i)
toℕ-inject₁-≢ zero = λ ()
toℕ-inject₁-≢ (suc i) = λ p → toℕ-inject₁-≢ i (ℕₚ.suc-injective p)
------------------------------------------------------------------------
-- inject₁ and lower₁
inject₁-lower₁ : ∀ {n} (i : Fin (suc n)) (n≢i : n ≢ toℕ i) →
inject₁ (lower₁ i n≢i) ≡ i
inject₁-lower₁ {zero} zero 0≢0 = contradiction refl 0≢0
inject₁-lower₁ {zero} (suc ()) _
inject₁-lower₁ {suc n} zero _ = refl
inject₁-lower₁ {suc n} (suc i) n+1≢i+1 =
cong suc (inject₁-lower₁ i (n+1≢i+1 ∘ cong suc))
lower₁-inject₁′ : ∀ {n} (i : Fin n) (n≢i : n ≢ toℕ (inject₁ i)) →
lower₁ (inject₁ i) n≢i ≡ i
lower₁-inject₁′ zero _ = refl
lower₁-inject₁′ (suc i) n+1≢i+1 =
cong suc (lower₁-inject₁′ i (n+1≢i+1 ∘ cong suc))
lower₁-inject₁ : ∀ {n} (i : Fin n) →
lower₁ (inject₁ i) (toℕ-inject₁-≢ i) ≡ i
lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i)
lower₁-irrelevant : ∀ {n} (i : Fin (suc n)) n≢i₁ n≢i₂ →
lower₁ {n} i n≢i₁ ≡ lower₁ {n} i n≢i₂
lower₁-irrelevant {zero} zero 0≢0 _ = contradiction refl 0≢0
lower₁-irrelevant {zero} (suc ()) _ _
lower₁-irrelevant {suc n} zero _ _ = refl
lower₁-irrelevant {suc n} (suc i) _ _ =
cong suc (lower₁-irrelevant i _ _)
------------------------------------------------------------------------
-- inject≤
toℕ-inject≤ : ∀ {m n} (i : Fin m) (le : m ℕ≤ n) →
toℕ (inject≤ i le) ≡ toℕ i
toℕ-inject≤ zero (s≤s le) = refl
toℕ-inject≤ (suc i) (s≤s le) = cong suc (toℕ-inject≤ i le)
inject≤-refl : ∀ {n} (i : Fin n) (n≤n : n ℕ≤ n) → inject≤ i n≤n ≡ i
inject≤-refl zero (s≤s _ ) = refl
inject≤-refl (suc i) (s≤s n≤n) = cong suc (inject≤-refl i n≤n)
------------------------------------------------------------------------
-- _≺_
≺⇒<′ : _≺_ ⇒ ℕ._<′_
≺⇒<′ (n ≻toℕ i) = ℕₚ.≤⇒≤′ (toℕ<n i)
<′⇒≺ : ℕ._<′_ ⇒ _≺_
<′⇒≺ {n} ℕ.≤′-refl = subst (_≺ suc n) (toℕ-fromℕ n)
(suc n ≻toℕ fromℕ n)
<′⇒≺ (ℕ.≤′-step m≤′n) with <′⇒≺ m≤′n
... | n ≻toℕ i = subst (_≺ suc n) (toℕ-inject₁ i) (suc n ≻toℕ _)
------------------------------------------------------------------------
-- pred
<⇒≤pred : ∀ {n} {i j : Fin n} → j < i → j ≤ pred i
<⇒≤pred {i = zero} {_} ()
<⇒≤pred {i = suc i} {zero} j<i = z≤n
<⇒≤pred {i = suc i} {suc j} (s≤s j<i) =
subst (_ ℕ≤_) (sym (toℕ-inject₁ i)) j<i
------------------------------------------------------------------------
-- ℕ-
toℕ‿ℕ- : ∀ n i → toℕ (n ℕ- i) ≡ n ∸ toℕ i
toℕ‿ℕ- n zero = toℕ-fromℕ n
toℕ‿ℕ- zero (suc ())
toℕ‿ℕ- (suc n) (suc i) = toℕ‿ℕ- n i
------------------------------------------------------------------------
-- ℕ-ℕ
nℕ-ℕi≤n : ∀ n i → n ℕ-ℕ i ℕ≤ n
nℕ-ℕi≤n n zero = ℕₚ.≤-refl
nℕ-ℕi≤n zero (suc ())
nℕ-ℕi≤n (suc n) (suc i) = begin
n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i ⟩
n ≤⟨ ℕₚ.n≤1+n n ⟩
suc n ∎
where open ℕₚ.≤-Reasoning
------------------------------------------------------------------------
-- punchIn
punchIn-injective : ∀ {m} i (j k : Fin m) →
punchIn i j ≡ punchIn i k → j ≡ k
punchIn-injective zero _ _ refl = refl
punchIn-injective (suc i) zero zero _ = refl
punchIn-injective (suc i) zero (suc k) ()
punchIn-injective (suc i) (suc j) zero ()
punchIn-injective (suc i) (suc j) (suc k) ↑j+1≡↑k+1 =
cong suc (punchIn-injective i j k (suc-injective ↑j+1≡↑k+1))
punchInᵢ≢i : ∀ {m} i (j : Fin m) → punchIn i j ≢ i
punchInᵢ≢i zero _ ()
punchInᵢ≢i (suc i) zero ()
punchInᵢ≢i (suc i) (suc j) = punchInᵢ≢i i j ∘ suc-injective
------------------------------------------------------------------------
-- punchOut
-- A version of 'cong' for 'punchOut' in which the inequality argument can be
-- changed out arbitrarily (reflecting the proof-irrelevance of that argument).
punchOut-cong : ∀ {n} (i : Fin (suc n)) {j k} {i≢j : i ≢ j} {i≢k : i ≢ k} → j ≡ k → punchOut i≢j ≡ punchOut i≢k
punchOut-cong zero {zero} {i≢j = 0≢0} = contradiction refl 0≢0
punchOut-cong zero {suc j} {zero} {i≢k = 0≢0} = contradiction refl 0≢0
punchOut-cong zero {suc j} {suc k} = suc-injective
punchOut-cong {zero} (suc ())
punchOut-cong {suc n} (suc i) {zero} {zero} _ = refl
punchOut-cong {suc n} (suc i) {zero} {suc k} ()
punchOut-cong {suc n} (suc i) {suc j} {zero} ()
punchOut-cong {suc n} (suc i) {suc j} {suc k} = cong suc ∘ punchOut-cong i ∘ suc-injective
-- An alternative to 'punchOut-cong' in the which the new inequality argument is
-- specific. Useful for enabling the omission of that argument during equational
-- reasoning.
punchOut-cong′ : ∀ {n} (i : Fin (suc n)) {j k} {p : i ≢ j} (q : j ≡ k) → punchOut p ≡ punchOut (p ∘ sym ∘ trans q ∘ sym)
punchOut-cong′ i q = punchOut-cong i q
punchOut-injective : ∀ {m} {i j k : Fin (suc m)}
(i≢j : i ≢ j) (i≢k : i ≢ k) →
punchOut i≢j ≡ punchOut i≢k → j ≡ k
punchOut-injective {_} {zero} {zero} {_} 0≢0 _ _ = contradiction refl 0≢0
punchOut-injective {_} {zero} {_} {zero} _ 0≢0 _ = contradiction refl 0≢0
punchOut-injective {_} {zero} {suc j} {suc k} _ _ pⱼ≡pₖ = cong suc pⱼ≡pₖ
punchOut-injective {zero} {suc ()}
punchOut-injective {suc n} {suc i} {zero} {zero} _ _ _ = refl
punchOut-injective {suc n} {suc i} {zero} {suc k} _ _ ()
punchOut-injective {suc n} {suc i} {suc j} {zero} _ _ ()
punchOut-injective {suc n} {suc i} {suc j} {suc k} i≢j i≢k pⱼ≡pₖ =
cong suc (punchOut-injective (i≢j ∘ cong suc) (i≢k ∘ cong suc) (suc-injective pⱼ≡pₖ))
punchIn-punchOut : ∀ {m} {i j : Fin (suc m)} (i≢j : i ≢ j) →
punchIn i (punchOut i≢j) ≡ j
punchIn-punchOut {_} {zero} {zero} 0≢0 = contradiction refl 0≢0
punchIn-punchOut {_} {zero} {suc j} _ = refl
punchIn-punchOut {zero} {suc ()}
punchIn-punchOut {suc m} {suc i} {zero} i≢j = refl
punchIn-punchOut {suc m} {suc i} {suc j} i≢j =
cong suc (punchIn-punchOut (i≢j ∘ cong suc))
punchOut-punchIn : ∀ {n} i {j : Fin n} → punchOut {i = i} {j = punchIn i j} (punchInᵢ≢i i j ∘ sym) ≡ j
punchOut-punchIn zero {j} = refl
punchOut-punchIn (suc i) {zero} = refl
punchOut-punchIn (suc i) {suc j} = cong suc (begin
punchOut (punchInᵢ≢i i j ∘ suc-injective ∘ sym ∘ cong suc) ≡⟨ punchOut-cong i refl ⟩
punchOut (punchInᵢ≢i i j ∘ sym) ≡⟨ punchOut-punchIn i ⟩
j ∎)
where open ≡-Reasoning
------------------------------------------------------------------------
-- _+′_
infixl 6 _+′_
_+′_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (ℕ.pred m ℕ+ n)
i +′ j = inject≤ (i + j) (ℕₚ.+-mono-≤ (toℕ≤pred[n] i) ℕₚ.≤-refl)
------------------------------------------------------------------------
-- Quantification
∀-cons : ∀ {n p} {P : Pred (Fin (suc n)) p} →
P zero → (∀ i → P (suc i)) → (∀ i → P i)
∀-cons z s zero = z
∀-cons z s (suc i) = s i
decFinSubset : ∀ {n p q} {P : Pred (Fin n) p} {Q : Pred (Fin n) q} →
Decidable Q → (∀ {f} → Q f → Dec (P f)) → Dec (Q ⊆ P)
decFinSubset {zero} {_} {_} _ _ = yes λ{}
decFinSubset {suc n} {P = P} {Q} Q? P? with decFinSubset (Q? ∘ suc) P?
... | no ¬q⟶p = no (λ q⟶p → ¬q⟶p (q⟶p))
... | yes q⟶p with Q? zero
... | no ¬q₀ = yes (∀-cons {P = Q U.⇒ P} (⊥-elim ∘ ¬q₀) (λ _ → q⟶p) _)
... | yes q₀ with P? q₀
... | no ¬p₀ = no (λ q⟶p → ¬p₀ (q⟶p q₀))
... | yes p₀ = yes (∀-cons {P = Q U.⇒ P} (λ _ → p₀) (λ _ → q⟶p) _)
any? : ∀ {n p} {P : Fin n → Set p} → Decidable P → Dec (∃ P)
any? {zero} {_} P? = no λ { (() , _) }
any? {suc n} {P} P? with P? zero | any? (P? ∘ suc)
... | yes P₀ | _ = yes (_ , P₀)
... | no _ | yes (_ , P₁₊ᵢ) = yes (_ , P₁₊ᵢ)
... | no ¬P₀ | no ¬P₁₊ᵢ = no λ
{ (zero , P₀) → ¬P₀ P₀
; (suc f , P₁₊ᵢ) → ¬P₁₊ᵢ (_ , P₁₊ᵢ)
}
all? : ∀ {n p} {P : Pred (Fin n) p} →
Decidable P → Dec (∀ f → P f)
all? P? with decFinSubset U? (λ {f} _ → P? f)
... | yes ∀p = yes (λ f → ∀p tt)
... | no ¬∀p = no (λ ∀p → ¬∀p (λ _ → ∀p _))
-- If a decidable predicate P over a finite set is sometimes false,
-- then we can find the smallest value for which this is the case.
¬∀⟶∃¬-smallest : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j))
¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P
¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero
... | no ¬P₀ = (zero , ¬P₀ , λ ())
... | yes P₀ = map suc (map id (∀-cons P₀))
(¬∀⟶∃¬-smallest n (P ∘ suc) (P? ∘ suc) (¬∀P ∘ (∀-cons P₀)))
-- When P is a decidable predicate over a finite set the following
-- lemma can be proved.
¬∀⟶∃¬ : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → (∃ λ i → ¬ P i)
¬∀⟶∃¬ n P P? ¬P = map id proj₁ (¬∀⟶∃¬-smallest n P P? ¬P)
-- The pigeonhole principle.
pigeonhole : ∀ {m n} → m ℕ.< n → (f : Fin n → Fin m) →
∃₂ λ i j → i ≢ j × f i ≡ f j
pigeonhole (s≤s z≤n) f = contradiction (f zero) λ()
pigeonhole (s≤s (s≤s m≤n)) f with any? (λ k → f zero ≟ f (suc k))
... | yes (j , f₀≡fⱼ) = zero , suc j , (λ()) , f₀≡fⱼ
... | no f₀≢fₖ with pigeonhole (s≤s m≤n) (λ j → punchOut (f₀≢fₖ ∘ (j ,_ )))
... | (i , j , i≢j , fᵢ≡fⱼ) =
suc i , suc j , i≢j ∘ suc-injective ,
punchOut-injective (f₀≢fₖ ∘ (i ,_)) _ fᵢ≡fⱼ
------------------------------------------------------------------------
-- Categorical
module _ {f} {F : Set f → Set f} (RA : RawApplicative F) where
open RawApplicative RA
sequence : ∀ {n} {P : Pred (Fin n) f} →
(∀ i → F (P i)) → F (∀ i → P i)
sequence {zero} ∀iPi = pure λ()
sequence {suc n} ∀iPi = ∀-cons <$> ∀iPi zero ⊛ sequence (∀iPi ∘ suc)
module _ {f} {F : Set f → Set f} (RF : RawFunctor F) where
open RawFunctor RF
sequence⁻¹ : ∀ {A : Set f} {P : Pred A f} →
F (∀ i → P i) → (∀ i → F (P i))
sequence⁻¹ F∀iPi i = (λ f → f i) <$> F∀iPi
------------------------------------------------------------------------
-- If there is an injection from a type to a finite set, then the type
-- has decidable equality.
module _ {a} {A : Set a} where
eq? : ∀ {n} → A ↣ Fin n → B.Decidable {A = A} _≡_
eq? inj = Dec.via-injection inj _≟_
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
cmp = <-cmp
{-# WARNING_ON_USAGE cmp
"Warning: cmp was deprecated in v0.15.
Please use <-cmp instead."
#-}
strictTotalOrder = <-strictTotalOrder
{-# WARNING_ON_USAGE strictTotalOrder
"Warning: strictTotalOrder was deprecated in v0.15.
Please use <-strictTotalOrder instead."
#-}
-- Version 0.16
to-from = toℕ-fromℕ
{-# WARNING_ON_USAGE to-from
"Warning: to-from was deprecated in v0.16.
Please use toℕ-fromℕ instead."
#-}
from-to = fromℕ-toℕ
{-# WARNING_ON_USAGE from-to
"Warning: from-to was deprecated in v0.16.
Please use fromℕ-toℕ instead."
#-}
bounded = toℕ<n
{-# WARNING_ON_USAGE bounded
"Warning: bounded was deprecated in v0.16.
Please use toℕ<n instead."
#-}
prop-toℕ-≤ = toℕ≤pred[n]
{-# WARNING_ON_USAGE prop-toℕ-≤
"Warning: prop-toℕ-≤ was deprecated in v0.16.
Please use toℕ≤pred[n] instead."
#-}
prop-toℕ-≤′ = toℕ≤pred[n]′
{-# WARNING_ON_USAGE prop-toℕ-≤′
"Warning: prop-toℕ-≤′ was deprecated in v0.16.
Please use toℕ≤pred[n]′ instead."
#-}
inject-lemma = toℕ-inject
{-# WARNING_ON_USAGE inject-lemma
"Warning: inject-lemma was deprecated in v0.16.
Please use toℕ-inject instead."
#-}
inject+-lemma = toℕ-inject+
{-# WARNING_ON_USAGE inject+-lemma
"Warning: inject+-lemma was deprecated in v0.16.
Please use toℕ-inject+ instead."
#-}
inject₁-lemma = toℕ-inject₁
{-# WARNING_ON_USAGE inject₁-lemma
"Warning: inject₁-lemma was deprecated in v0.16.
Please use toℕ-inject₁ instead."
#-}
inject≤-lemma = toℕ-inject≤
{-# WARNING_ON_USAGE inject≤-lemma
"Warning: inject≤-lemma was deprecated in v0.16.
Please use toℕ-inject≤ instead."
#-}
-- Version 0.17
≤+≢⇒< = ≤∧≢⇒<
{-# WARNING_ON_USAGE ≤+≢⇒<
"Warning: ≤+≢⇒< was deprecated in v0.17.
Please use ≤∧≢⇒< instead."
#-}
-- Version 1.0
≤-irrelevance = ≤-irrelevant
{-# WARNING_ON_USAGE ≤-irrelevance
"Warning: ≤-irrelevance was deprecated in v1.0.
Please use ≤-irrelevant instead."
#-}
<-irrelevance = <-irrelevant
{-# WARNING_ON_USAGE <-irrelevance
"Warning: <-irrelevance was deprecated in v1.0.
Please use <-irrelevant instead."
#-}
|
{
"alphanum_fraction": 0.5131968641,
"avg_line_length": 33.3236574746,
"ext": "agda",
"hexsha": "963c69c98ca8975f834f60644f421dc35f7a79c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Properties.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 9589,
"size": 22960
}
|
{-# OPTIONS --cubical #-}
open import Agda.Primitive.Cubical
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Sigma
data S1 : Set where
base : S1
loop : base ≡ base
data Torus : Set where
point : Torus
line1 : point ≡ point
line2 : point ≡ point
square : PathP (λ i → line1 i ≡ line1 i) line2 line2
t2c : Torus → Σ S1 \ _ → S1
t2c point = ( base , base )
t2c (line1 i) = ( loop i , base )
t2c (line2 i) = ( base , loop i )
t2c (square i1 i2) = ( loop i1 , loop i2 )
|
{
"alphanum_fraction": 0.6404040404,
"avg_line_length": 23.5714285714,
"ext": "agda",
"hexsha": "467af94fa5e2af5a0c2b24434db06b07452b70e7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue5237.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue5237.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue5237.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 189,
"size": 495
}
|
------------------------------------------------------------------------------
-- Issue in the translation
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Issue10 where
postulate
D : Set
P' : D → Set
postulate foo : ∀ d → P' d → P' d
{-# ATP prove foo #-}
|
{
"alphanum_fraction": 0.3473684211,
"avg_line_length": 26.3888888889,
"ext": "agda",
"hexsha": "2b87a90dff2b5d77f13b2db7e8cea9d5fec3eea9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Issue10.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Issue10.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Issue10.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 84,
"size": 475
}
|
open import Agda.Primitive
open import Agda.Builtin.Nat
Type : (i : Level) -> Set (lsuc i)
Type i = Set i
postulate
P : (i : Level) (A : Type i) → A → Type i
postulate
lemma : (a : Nat) -> P _ _ a
|
{
"alphanum_fraction": 0.6078431373,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "e286fd514bf3a651df50cf896305a4b4863d81a0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue4615-missing-reduce.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4615-missing-reduce.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4615-missing-reduce.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 76,
"size": 204
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.ListedFiniteSet.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.ListedFiniteSet.Base
private
variable
A : Type₀
_++_ : ∀ (xs ys : LFSet A) → LFSet A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
---------------------------------------------
dup x xs i ++ ys = proof i
where
proof :
-- Need: (x ∷ x ∷ xs) ++ ys ≡ (x ∷ xs) ++ ys
-- which reduces to:
x ∷ x ∷ (xs ++ ys) ≡ x ∷ (xs ++ ys)
proof = dup x (xs ++ ys)
comm x y xs i ++ ys = comm x y (xs ++ ys) i
trunc xs zs p q i j ++ ys
= trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j
assoc-++ : ∀ (xs : LFSet A) ys zs → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
assoc-++ [] ys zs = refl
assoc-++ (x ∷ xs) ys zs
= cong (x ∷_) (assoc-++ xs ys zs)
------------------------------------
assoc-++ (dup x xs i) ys zs j
= dup x (assoc-++ xs ys zs j) i
assoc-++ (comm x y xs i) ys zs j
= comm x y (assoc-++ xs ys zs j) i
assoc-++ (trunc xs xs' p q i k) ys zs j
= trunc (assoc-++ xs ys zs j) (assoc-++ xs' ys zs j)
(cong (\ xs -> assoc-++ xs ys zs j) p) (cong (\ xs -> assoc-++ xs ys zs j) q) i k
|
{
"alphanum_fraction": 0.46184107,
"avg_line_length": 31.775,
"ext": "agda",
"hexsha": "5739152ac8392426a996d4699e39e8754133cc5b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "69d358f6be7842f77105634712821eda22d9c044",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "aljungstrom/cubical",
"max_forks_repo_path": "Cubical/HITs/ListedFiniteSet/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/cubical",
"max_issues_repo_path": "Cubical/HITs/ListedFiniteSet/Properties.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/cubical",
"max_stars_repo_path": "Cubical/HITs/ListedFiniteSet/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 457,
"size": 1271
}
|
module Data.QuadTree.Implementation.DataLenses where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Lens.Lens
open import Data.Logic
open import Data.QuadTree.Implementation.PropDepthRelation
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.QuadrantLenses
{-# FOREIGN AGDA2HS
{-# LANGUAGE Safe #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE Rank2Types #-}
import Data.Nat
import Data.Lens.Lens
import Data.Logic
import Data.QuadTree.Implementation.Definition
import Data.QuadTree.Implementation.ValidTypes
import Data.QuadTree.Implementation.QuadrantLenses
#-}
---- Functions for whether a coordinate is inside
isInsideQuadTree : {t : Set} -> (Nat × Nat) -> QuadTree t -> Bool
isInsideQuadTree (x , y) (Wrapper (w , h) _) = x < w && y < h
isInsidePow : (Nat × Nat) -> Nat -> Bool
isInsidePow (x , y) deps = x < pow 2 deps && y < pow 2 deps
insideQTtoInsidePow : {t : Set} {{eqT : Eq t}} -> (loc : Nat × Nat) -> {dep : Nat} -> (vqt : VQuadTree t {dep})
-> IsTrue (isInsideQuadTree loc (qtFromSafe vqt))
-> IsTrue (isInsidePow loc dep)
insideQTtoInsidePow (x , y) {dep} (CVQuadTree (Wrapper (w , h) qd) {p} {q}) it =
let
p1 : IsTrue (pow 2 dep >= (max w h))
p1 = log2upPow dep (max w h) (eqToGte dep (log2up (max w h)) q)
p2 : IsTrue ((max w h) <= pow 2 dep)
p2 = gteInvert (pow 2 dep) (max w h) p1
p3 : IsTrue (w <= pow 2 dep && h <= pow 2 dep)
p3 = useEq (sym $ propMaxLte w h (pow 2 dep)) p2
in andCombine
( ltLteTransitive x w (pow 2 dep) (andFst {x < w} it) (andFst p3) )
( ltLteTransitive y h (pow 2 dep) (andSnd {x < w} it) (andSnd p3) )
---- Data access
-- Lens into the leaf quadrant corresponding to a location in a quadrant
go : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {.(IsTrue (isInsidePow loc dep))}
-> Lens (VQuadrant t {dep}) t
go _ Z = lensLeaf
go {t} (x , y) (S deps) =
let
mid = pow 2 deps
gorec = go {t} (mod x mid {pow_not_zero_cv deps} , mod y mid {pow_not_zero_cv deps}) deps
{andCombine (modLt x mid {pow_not_zero_cv deps}) (modLt y mid {pow_not_zero_cv deps})}
in
if (y < mid)
then if x < mid
then (lensA ∘ gorec)
else (lensB ∘ gorec)
else if x < mid
then (lensC ∘ gorec)
else (lensD ∘ gorec)
{-# COMPILE AGDA2HS go #-}
-- Lenses into the root quadrant of a quadtree
lensWrappedTree : {t : Set} {{eqT : Eq t}}
-> {dep : Nat}
-> Lens (VQuadTree t {dep}) (VQuadrant t {dep})
lensWrappedTree fun (CVQuadTree (Wrapper (w , h) qd) {p} {q}) =
fmap
(λ where (CVQuadrant qd {p}) → CVQuadTree (Wrapper (w , h) qd) {p} {q})
(fun (CVQuadrant qd {p}))
{-# COMPILE AGDA2HS lensWrappedTree #-}
-- Lens into the leaf quadrant corresponding to a location in a quadtree
atLocation : {t : Set} {{eqT : Eq t}}
-> (loc : Nat × Nat) -> (dep : Nat)
-> {.(IsTrue (isInsidePow loc dep))}
-> Lens (VQuadTree t {dep}) t
atLocation index dep {p} = lensWrappedTree ∘ (go index dep {p})
{-# COMPILE AGDA2HS atLocation #-}
|
{
"alphanum_fraction": 0.6418246065,
"avg_line_length": 35.375,
"ext": "agda",
"hexsha": "efcaa8a509adb23a0e7253f98d401c364c1e9e7e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/Implementation/DataLenses.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/Implementation/DataLenses.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/Implementation/DataLenses.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 1055,
"size": 3113
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Unit.Base where
open import Cubical.Foundations.Prelude
-- Obtain Unit
open import Agda.Builtin.Unit public
renaming ( ⊤ to Unit )
-- Universe polymorphic version
Unit* : {ℓ : Level} → Type ℓ
Unit* = Lift Unit
pattern tt* = lift tt
-- Universe polymorphic version without definitional equality
-- Allows us to "lock" proofs. See "Locking, unlocking" in
-- https://coq.inria.fr/refman/proof-engine/ssreflect-proof-language.html
data lockUnit {ℓ} : Type ℓ where
unlock : lockUnit
|
{
"alphanum_fraction": 0.7324955117,
"avg_line_length": 27.85,
"ext": "agda",
"hexsha": "a5b64c7431baa78310c1157c9299df15eedb698b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Unit/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Unit/Base.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Unit/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 152,
"size": 557
}
|
{-# OPTIONS --without-K #-}
module PiLevel0 where
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong₂; module ≡-Reasoning)
-- using (_≡_; refl; sym; trans; cong₂; proof-irrelevance; module ≡-Reasoning)
--open import Data.Nat.Properties.Simple
-- using (+-right-identity; +-suc; +-assoc; +-comm;
-- *-assoc; *-comm; *-right-zero; distribʳ-*-+)
--open import Data.Bool using (Bool; false; true; _∧_; _∨_)
open import Data.Nat using (ℕ) -- ; _+_; _*_)
--open import Data.Vec
-- using (Vec; []; _∷_)
-- renaming (_++_ to _++V_; map to mapV; concat to concatV)
--open import Data.Empty using (⊥; ⊥-elim)
--open import Data.Unit using (⊤; tt)
--open import Data.Sum using (_⊎_; inj₁; inj₂)
--open import Data.Product using (_×_; _,_; proj₁; proj₂)
--open import Proofs using (
-- FinNatLemmas
-- distribˡ-*-+; *-right-identity
-- )
open import PiU using (U; ZERO; ONE; PLUS; TIMES; toℕ)
------------------------------------------------------------------------------
-- Level 0 of Pi
--
{--
⟦_⟧ : U → Set
⟦ ZERO ⟧ = ⊥
⟦ ONE ⟧ = ⊤
⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
-- Abbreviations for examples
BOOL : U
BOOL = PLUS ONE ONE
BOOL² : U
BOOL² = TIMES BOOL BOOL
-- false⟷ true⟷ : ⟦ BOOL ⟧
-- false⟷ = inj₁ tt
-- true⟷ = inj₂ tt
-- For any finite type (t : U) there is no non-trivial path structure
-- between the elements of t. All such finite types are discrete
-- groupoids
--
-- For U, there are non-trivial paths between its points. In the
-- conventional HoTT presentation, a path between t₁ and t₂ is
-- postulated by univalence for each equivalence between t₁ and t₂. In
-- the context of finite types, an equivalence corresponds to a
-- permutation as each permutation has a unique inverse
-- permutation. Thus instead of the detour using univalence, we can
-- give an inductive definition of all possible permutations between
-- finite types which naturally induces paths between the points of U,
-- i.e., the finite types. More precisely, two types t₁ and t₂ have a
-- path between them if there is a permutation (c : t₁ ⟷ t₂). The fact
-- that c is a permutation guarantees, by construction, that (c ◎ ! c
-- ∼ id⟷) and (! c ◎ c ∼ id⟷). A complete set of generators for all
-- possible permutations between finite types is given by the
-- following definition. Note that these permutations do not reach
-- inside the types and hence do not generate paths between the points
-- within the types. The paths are just between the types themselves.
--}
size : U → ℕ
size = toℕ
infix 30 _⟷_
infixr 50 _◎_
-- Combinators, permutations, or paths depending on the perspective
data _⟷_ : U → U → Set where
unite₊l : {t : U} → PLUS ZERO t ⟷ t
uniti₊l : {t : U} → t ⟷ PLUS ZERO t
unite₊r : {t : U} → PLUS t ZERO ⟷ t
uniti₊r : {t : U} → t ⟷ PLUS t ZERO
swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁
assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃
assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃)
unite⋆l : {t : U} → TIMES ONE t ⟷ t
uniti⋆l : {t : U} → t ⟷ TIMES ONE t
unite⋆r : {t : U} → TIMES t ONE ⟷ t
uniti⋆r : {t : U} → t ⟷ TIMES t ONE
swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁
assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃
assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃)
absorbr : {t : U} → TIMES ZERO t ⟷ ZERO
absorbl : {t : U} → TIMES t ZERO ⟷ ZERO
factorzr : {t : U} → ZERO ⟷ TIMES t ZERO
factorzl : {t : U} → ZERO ⟷ TIMES ZERO t
dist : {t₁ t₂ t₃ : U} →
TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)
factor : {t₁ t₂ t₃ : U} →
PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃
distl : {t₁ t₂ t₃ : U } →
TIMES t₁ (PLUS t₂ t₃) ⟷ PLUS (TIMES t₁ t₂) (TIMES t₁ t₃)
factorl : {t₁ t₂ t₃ : U } →
PLUS (TIMES t₁ t₂) (TIMES t₁ t₃) ⟷ TIMES t₁ (PLUS t₂ t₃)
id⟷ : {t : U} → t ⟷ t
_◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕_ : {t₁ t₂ t₃ t₄ : U} →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : U} →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄)
{--
-- Syntactic equality of combinators
comb= : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₂) → (t₃ ⟷ t₄) → Bool
comb= unite₊l unite₊l = true
comb= uniti₊l uniti₊l = true
comb= swap₊ swap₊ = true
comb= assocl₊ assocl₊ = true
comb= assocr₊ assocr₊ = true
comb= unite⋆l unite⋆l = true
comb= unite⋆r unite⋆r = true
comb= uniti⋆l uniti⋆l = true
comb= uniti⋆r uniti⋆r = true
comb= swap⋆ swap⋆ = true
comb= assocl⋆ assocl⋆ = true
comb= assocr⋆ assocr⋆ = true
comb= absorbl absorbl = true
comb= absorbr absorbr = true
comb= factorzl factorzl = true
comb= factorzr factorzr = true
comb= dist dist = true
comb= factor factor = true
comb= id⟷ id⟷ = true
comb= (c₁ ◎ c₂) (c₃ ◎ c₄) = comb= c₁ c₃ ∧ comb= c₂ c₄
comb= (c₁ ⊕ c₂) (c₃ ⊕ c₄) = comb= c₁ c₃ ∧ comb= c₂ c₄
comb= (c₁ ⊗ c₂) (c₃ ⊗ c₄) = comb= c₁ c₃ ∧ comb= c₂ c₄
comb= _ _ = false
-- Extensional evaluator for testing: serves as a specification
-- A canonical representation of each type as a vector of values. This
-- fixes a canonical order for the elements of the types: each value
-- has a canonical index.
utoVec : (t : U) → Vec ⟦ t ⟧ (size t)
utoVec ZERO = []
utoVec ONE = tt ∷ []
utoVec (PLUS t₁ t₂) = mapV inj₁ (utoVec t₁) ++V mapV inj₂ (utoVec t₂)
utoVec (TIMES t₁ t₂) =
concatV (mapV (λ v₁ → mapV (λ v₂ → (v₁ , v₂)) (utoVec t₂)) (utoVec t₁))
-- Combinators are always between types of the same size
-- Paths preserve sizes
size≡ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (size t₁ ≡ size t₂)
-- the composition case must be the first one
-- otherwise Agda will not unfold (c ◎ id⟷)
-- See "inconclusive matching" at
-- http://wiki.portal.chalmers.se/agda/
-- pmwiki.php?n=ReferenceManual.PatternMatching
size≡ (c₁ ◎ c₂) = trans (size≡ c₁) (size≡ c₂)
size≡ {PLUS ZERO t} {.t} unite₊l = refl
size≡ {t} {PLUS ZERO .t} uniti₊l = refl
size≡ {PLUS t ZERO} unite₊r = +-right-identity (size t)
size≡ {t} uniti₊r = sym (+-right-identity (size t))
size≡ {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ = +-comm (size t₁) (size t₂)
size≡ {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ =
sym (+-assoc (size t₁) (size t₂) (size t₃))
size≡ {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ =
+-assoc (size t₁) (size t₂) (size t₃)
size≡ {TIMES ONE t} {.t} unite⋆l = +-right-identity (size t)
size≡ {t} {TIMES ONE .t} uniti⋆l = sym (+-right-identity (size t))
size≡ {TIMES t ONE} {.t} unite⋆r = *-right-identity (size t)
size≡ {t} {TIMES .t ONE} uniti⋆r = sym (*-right-identity (size t))
size≡ {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = *-comm (size t₁) (size t₂)
size≡ {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} assocl⋆ =
sym (*-assoc (size t₁) (size t₂) (size t₃))
size≡ {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} assocr⋆ =
*-assoc (size t₁) (size t₂) (size t₃)
size≡ {TIMES .ZERO t} {ZERO} absorbr = refl
size≡ {TIMES t .ZERO} {ZERO} absorbl = *-right-zero (size t)
size≡ {ZERO} {TIMES ZERO t} factorzl = refl
size≡ {ZERO} {TIMES t ZERO} factorzr = sym (*-right-zero (size t))
size≡ {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} dist =
distribʳ-*-+ (size t₃) (size t₁) (size t₂)
size≡ {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} {TIMES (PLUS .t₁ .t₂) .t₃} factor =
sym (distribʳ-*-+ (size t₃) (size t₁) (size t₂))
size≡ {TIMES t₁ (PLUS t₂ t₃)} distl = distribˡ-*-+ (size t₁) (size t₂) (size t₃)
size≡ {PLUS (TIMES t₁ t₂) (TIMES .t₁ t₃)} factorl =
sym (distribˡ-*-+ (size t₁) (size t₂) (size t₃))
size≡ {t} {.t} id⟷ = refl
size≡ {PLUS t₁ t₂} {PLUS t₃ t₄} (c₁ ⊕ c₂) = cong₂ _+_ (size≡ c₁) (size≡ c₂)
size≡ {TIMES t₁ t₂} {TIMES t₃ t₄} (c₁ ⊗ c₂) = cong₂ _*_ (size≡ c₁) (size≡ c₂)
-- All proofs about sizes are "the same"
size∼ : {t₁ t₂ : U} → (c₁ c₂ : t₁ ⟷ t₂) → (size≡ c₁ ≡ size≡ c₂)
size∼ c₁ c₂ = proof-irrelevance (size≡ c₁) (size≡ c₂)
------------------------------------------------------------------------------
-- Examples of Pi programs
-- Nicer syntax that shows intermediate values instead of the above
-- point-free notation of permutations
infixr 2 _⟷⟨_⟩_
infix 2 _□
_⟷⟨_⟩_ : (t₁ : U) {t₂ : U} {t₃ : U} →
(t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_ ⟷⟨ α ⟩ β = α ◎ β
_□ : (t : U) → {t : U} → (t ⟷ t)
_□ t = id⟷
-- calculate and print specification of a combinator
spec : {t₁ t₂ : U} → (t₁ ⟷ t₂) → Vec (⟦ t₁ ⟧ × ⟦ t₂ ⟧) (size t₁)
spec {t₁} {t₂} c = mapV (λ v₁ → (v₁ , eval c v₁)) (utoVec t₁)
-- For easier manipulation of Bool
foldBool unfoldBool : BOOL ⟷ BOOL
foldBool = id⟷
unfoldBool = id⟷
-- Many ways of negating a BOOL. Again, it is absolutely critical that there
-- is NO path between false⟷ and true⟷. These permutations instead are based
-- on paths between x and neg (neg x) which are the trivial paths on each of
-- the two points in BOOL.
NOT : BOOL ⟷ BOOL
NOT = unfoldBool ◎ swap₊ ◎ foldBool
-- spec: (false , true) ∷ (true , false) ∷ []
NEG1 NEG2 NEG3 NEG4 NEG5 : BOOL ⟷ BOOL
NEG1 = unfoldBool ◎ swap₊ ◎ foldBool
-- spec: (false , true) ∷ (true , false) ∷ []
NEG2 = id⟷ ◎ NOT
-- spec: (false , true) ∷ (true , false) ∷ []
NEG3 = NOT ◎ NOT ◎ NOT
-- spec: (false , true) ∷ (true , false) ∷ []
NEG4 = NOT ◎ id⟷
-- spec: (false , true) ∷ (true , false) ∷ []
NEG5 = uniti⋆l ◎ swap⋆ ◎ (NOT ⊗ id⟷) ◎ swap⋆ ◎ unite⋆l
-- spec: (false , true) ∷ (true , false) ∷ []
NEG6 = uniti⋆r ◎ (NOT ⊗ id⟷) ◎ unite⋆r -- same as above, but shorter
-- CNOT
CNOT : BOOL² ⟷ BOOL²
CNOT = TIMES BOOL BOOL
⟷⟨ unfoldBool ⊗ id⟷ ⟩
TIMES (PLUS x y) BOOL
⟷⟨ dist ⟩
PLUS (TIMES x BOOL) (TIMES y BOOL)
⟷⟨ id⟷ ⊕ (id⟷ ⊗ NOT) ⟩
PLUS (TIMES x BOOL) (TIMES y BOOL)
⟷⟨ factor ⟩
TIMES (PLUS x y) BOOL
⟷⟨ foldBool ⊗ id⟷ ⟩
TIMES BOOL BOOL □
where x = ONE; y = ONE
-- spec:
-- ((false , false) , false , false) ∷
-- ((false , true) , false , true) ∷
-- ((true , false) , true , true) ∷
-- ((true , true) , true , false) ∷ []
-- TOFFOLI
TOFFOLI : TIMES BOOL BOOL² ⟷ TIMES BOOL BOOL²
TOFFOLI = TIMES BOOL BOOL²
⟷⟨ unfoldBool ⊗ id⟷ ⟩
TIMES (PLUS x y) BOOL²
⟷⟨ dist ⟩
PLUS (TIMES x BOOL²) (TIMES y BOOL²)
⟷⟨ id⟷ ⊕ (id⟷ ⊗ CNOT) ⟩
PLUS (TIMES x BOOL²) (TIMES y BOOL²)
⟷⟨ factor ⟩
TIMES (PLUS x y) BOOL²
⟷⟨ foldBool ⊗ id⟷ ⟩
TIMES BOOL BOOL² □
where x = ONE; y = ONE
-- spec:
-- ((false , false , false) , false , false , false) ∷
-- ((false , false , true) , false , false , true) ∷
-- ((false , true , false) , false , true , false) ∷
-- ((false , true , true) , false , true , true) ∷
-- ((true , false , false) , true , false , false) ∷
-- ((true , false , true) , true , false , true) ∷
-- ((true , true , false) , true , true , true) ∷
-- ((true , true , true) , true , true , false) ∷ []
-- Swaps for the type 1+(1+1)
-- We have three values in the type 1+(1+1)
-- Let's call them a, b, and c
-- There 6 permutations. Using the swaps below we can express every permutation:
-- a b c id⟷
-- a c b SWAP23
-- b a c SWAP12
-- b c a ROTL
-- c a b ROTR
-- c b a SWAP13
SWAP12 SWAP23 SWAP13 ROTL ROTR :
PLUS ONE (PLUS ONE ONE) ⟷ PLUS ONE (PLUS ONE ONE)
SWAP12 = assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊
-- spec:
-- (inj₁ tt , inj₂ (inj₁ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₁ tt) ∷
-- (inj₂ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ []
SWAP23 = id⟷ ⊕ swap₊
-- spec:
-- (inj₁ tt , inj₁ tt) ∷
-- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ []
SWAP13 = SWAP23 ◎ SWAP12 ◎ SWAP23
-- spec:
-- (inj₁ tt , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₂ (inj₁ tt)) ∷
-- (inj₂ (inj₂ tt) , inj₁ tt) ∷ []
ROTR = SWAP12 ◎ SWAP23
-- spec:
-- (inj₁ tt , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₁ tt) ∷
-- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ []
ROTL = SWAP13 ◎ SWAP23
-- spec:
-- (inj₁ tt , inj₂ (inj₁ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₂ tt) , inj₁ tt) ∷ []
-- The Peres gate is a universal gate: it takes three inputs a, b, and c, and
-- produces a, a xor b, (a and b) xor c
PERES : TIMES (TIMES BOOL BOOL) BOOL ⟷ TIMES (TIMES BOOL BOOL) BOOL
PERES = (id⟷ ⊗ NOT) ◎ assocr⋆ ◎ (id⟷ ⊗ swap⋆) ◎
TOFFOLI ◎
(id⟷ ⊗ (NOT ⊗ id⟷)) ◎
TOFFOLI ◎
(id⟷ ⊗ swap⋆) ◎ (id⟷ ⊗ (NOT ⊗ id⟷)) ◎
TOFFOLI ◎
(id⟷ ⊗ (NOT ⊗ id⟷)) ◎ assocl⋆
-- spec:
-- (((false , false) , false) , (false , false) , false) ∷
-- (((false , false) , true) , (false , false) , true) ∷
-- (((false , true) , false) , (false , true) , false) ∷
-- (((false , true) , true) , (false , true) , true) ∷
-- (((true , false) , false) , (true , true) , false) ∷
-- (((true , false) , true) , (true , true) , true) ∷
-- (((true , true) , false) , (true , false) , true) ∷
-- (((true , true) , true) , (true , false) , false) ∷ []
-- A reversible full adder: See http://arxiv.org/pdf/1008.3533.pdf
-- Input: (z, ((n1, n2), cin)))
-- Output (g1, (g2, (sum, cout)))
-- where sum = n1 xor n2 xor cin
-- and cout = ((n1 xor n2) and cin) xor (n1 and n2) xor z
FULLADDER : TIMES BOOL (TIMES (TIMES BOOL BOOL) BOOL) ⟷
TIMES BOOL (TIMES BOOL (TIMES BOOL BOOL))
FULLADDER =
-- (z,((n1,n2),cin))
swap⋆ ◎
-- (((n1,n2),cin),z)
(swap⋆ ⊗ id⟷) ◎
-- ((cin,(n1,n2)),z)
assocr⋆ ◎
-- (cin,((n1,n2),z))
swap⋆ ◎
-- (((n1,n2),z),cin)
(PERES ⊗ id⟷) ◎
-- (((n1,n1 xor n2),(n1 and n2) xor z),cin)
assocr⋆ ◎
-- ((n1,n1 xor n2),((n1 and n2) xor z,cin))
(id⟷ ⊗ swap⋆) ◎
-- ((n1,n1 xor n2),(cin,(n1 and n2) xor z))
assocr⋆ ◎
-- (n1,(n1 xor n2,(cin,(n1 and n2) xor z)))
(id⟷ ⊗ assocl⋆) ◎
-- (n1,((n1 xor n2,cin),(n1 and n2) xor z))
(id⟷ ⊗ PERES) ◎
-- (n1,((n1 xor n2,n1 xor n2 xor cin),
-- ((n1 xor n2) and cin) xor (n1 and n2) xor z))
(id⟷ ⊗ assocr⋆)
-- (n1,(n1 xor n2,
-- (n1 xor n2 xor cin,((n1 xor n2) and cin) xor (n1 and n2) xor z)))
-- spec:
-- ((false , (false , false) , false) , false , false , false , false) ∷
-- ((false , (false , false) , true) , false , false , true , false) ∷
-- ((false , (false , true) , false) , false , true , true , false) ∷
-- ((false , (false , true) , true) , false , true , false , true) ∷
-- ((false , (true , false) , false) , true , true , true , false) ∷
-- ((false , (true , false) , true) , true , true , false , true) ∷
-- ((false , (true , true) , false) , true , false , false , true) ∷
-- ((false , (true , true) , true) , true , false , true , true) ∷
-- ((true , (false , false) , false) , false , false , false , true) ∷
-- ((true , (false , false) , true) , false , false , true , true) ∷
-- ((true , (false , true) , false) , false , true , true , true) ∷
-- ((true , (false , true) , true) , false , true , false , false) ∷
-- ((true , (true , false) , false) , true , true , true , true) ∷
-- ((true , (true , false) , true) , true , true , false , false) ∷
-- ((true , (true , true) , false) , true , false , false , false) ∷
-- ((true , (true , true) , true) , true , false , true , false) ∷ []
--}
------------------------------------------------------------------------------
-- Every permutation has an inverse. There are actually many syntactically
-- different inverses but they are all equivalent.
-- Alternative view: this corresponds to Lemma 2.1.1 In our notation,
-- for every path t₁ ⟷ t₂, we have a path t₂ ⟷ t₁ such that (! id⟷)
-- reduces to id⟷.
! : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
! unite₊l = uniti₊l
! uniti₊l = unite₊l
! unite₊r = uniti₊r
! uniti₊r = unite₊r
! swap₊ = swap₊
! assocl₊ = assocr₊
! assocr₊ = assocl₊
! unite⋆l = uniti⋆l
! uniti⋆l = unite⋆l
! unite⋆r = uniti⋆r
! uniti⋆r = unite⋆r
! swap⋆ = swap⋆
! assocl⋆ = assocr⋆
! assocr⋆ = assocl⋆
! absorbl = factorzr
! absorbr = factorzl
! factorzl = absorbr
! factorzr = absorbl
! dist = factor
! factor = dist
! distl = factorl
! factorl = distl
! id⟷ = id⟷
! (c₁ ◎ c₂) = ! c₂ ◎ ! c₁
! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂)
! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂)
!! : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! (! c) ≡ c
!! {c = unite₊l} = refl
!! {c = uniti₊l} = refl
!! {c = unite₊r} = refl
!! {c = uniti₊r} = refl
!! {c = swap₊} = refl
!! {c = assocl₊} = refl
!! {c = assocr₊} = refl
!! {c = unite⋆l} = refl
!! {c = uniti⋆l} = refl
!! {c = unite⋆r} = refl
!! {c = uniti⋆r} = refl
!! {c = swap⋆} = refl
!! {c = assocl⋆} = refl
!! {c = assocr⋆} = refl
!! {c = absorbr} = refl
!! {c = absorbl} = refl
!! {c = factorzl} = refl
!! {c = factorzr} = refl
!! {c = dist} = refl
!! {c = factor} = refl
!! {c = distl} = refl
!! {c = factorl} = refl
!! {c = id⟷} = refl
!! {c = c₁ ◎ c₂} =
begin (! (! (c₁ ◎ c₂))
≡⟨ refl ⟩
! (! c₂ ◎ ! c₁)
≡⟨ refl ⟩
! (! c₁) ◎ ! (! c₂)
≡⟨ cong₂ _◎_ (!! {c = c₁}) (!! {c = c₂}) ⟩
c₁ ◎ c₂ ∎)
where open ≡-Reasoning
!! {c = c₁ ⊕ c₂} =
begin (! (! (c₁ ⊕ c₂))
≡⟨ refl ⟩
! (! c₁) ⊕ ! (! c₂)
≡⟨ cong₂ _⊕_ (!! {c = c₁}) (!! {c = c₂}) ⟩
c₁ ⊕ c₂ ∎)
where open ≡-Reasoning
!! {c = c₁ ⊗ c₂} =
begin (! (! (c₁ ⊗ c₂))
≡⟨ refl ⟩
! (! c₁) ⊗ ! (! c₂)
≡⟨ cong₂ _⊗_ (!! {c = c₁}) (!! {c = c₂}) ⟩
c₁ ⊗ c₂ ∎)
where open ≡-Reasoning
{--
-- size≡ and !
size≡! : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (size t₂ ≡ size t₁)
size≡! c = sym (size≡ c)
------------------------------------------------------------------------------
ttt : {t₁ t₂ t₃ t₄ : U} →
(TIMES (PLUS t₁ t₂) (PLUS t₃ t₄)) ⟷
(PLUS (PLUS (PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)) (TIMES t₁ t₄))) (TIMES t₂ t₄)
ttt {t₁} {t₂} {t₃} {t₄} =
(distl ◎ (dist {t₁} {t₂} {t₃} ⊕ dist {t₁} {t₂} {t₄})) ◎ assocl₊
------------------------------------------------------------------------------
-- generalized CNOT
gcnot : {A B C : U} → (TIMES (PLUS A B) (PLUS C C)) ⟷ (TIMES (PLUS A B) (PLUS C C))
gcnot = dist ◎ (id⟷ ⊕ (id⟷ ⊗ swap₊)) ◎ factor
-- Generalized Toffolli gate. See what 'arithmetic' it performs.
GToffoli : {A B C D E : U} → TIMES (PLUS A B) (TIMES (PLUS C D) (PLUS E E)) ⟷ TIMES (PLUS A B) (TIMES (PLUS C D) (PLUS E E))
GToffoli = dist ◎ (id⟷ ⊕ (id⟷ ⊗ gcnot)) ◎ factor
------------------------------------------------------------------------------
--}
|
{
"alphanum_fraction": 0.5345004593,
"avg_line_length": 35.1844106464,
"ext": "agda",
"hexsha": "397e18f416d53b4cd22aff028f81f8e1735ffddc",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/PiLevel0.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/PiLevel0.agda",
"max_line_length": 124,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/PiLevel0.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 7873,
"size": 18507
}
|
module Prelude.Alternative where
open import Agda.Primitive
open import Prelude.Bool
open import Prelude.Maybe
open import Prelude.List
open import Prelude.Sum
open import Prelude.Decidable
open import Prelude.Functor
open import Prelude.Applicative
open import Prelude.Function
open import Prelude.Monoid
module _ {a b} (F : Set a → Set b) where
record FunctorZero : Set (lsuc a ⊔ b) where
field
empty : ∀ {A} → F A
overlap {{super}} : Functor F
record Alternative : Set (lsuc a ⊔ b) where
infixl 3 _<|>_
field
_<|>_ : ∀ {A} → F A → F A → F A
overlap {{super}} : FunctorZero
open FunctorZero {{...}} public
open Alternative {{...}} public
{-# DISPLAY FunctorZero.empty _ = empty #-}
{-# DISPLAY Alternative._<|>_ _ x y = x <|> y #-}
instance
FunctorZeroMaybe : ∀ {a} → FunctorZero (Maybe {a})
empty {{FunctorZeroMaybe}} = nothing
-- Left-biased choice
AlternativeMaybe : ∀ {a} → Alternative (Maybe {a})
_<|>_ {{AlternativeMaybe}} nothing y = y
_<|>_ {{AlternativeMaybe}} x y = x
FunctorZeroList : ∀ {a} → FunctorZero (List {a})
empty {{FunctorZeroList}} = []
AlternativeList : ∀ {a} → Alternative (List {a})
_<|>_ {{AlternativeList}} = _++_
FunctorZeroEither : ∀ {a b} {E : Set b} {{_ : Monoid E}} → FunctorZero (Either {b = a} E)
empty {{FunctorZeroEither}} = left mempty
AlternativeEither : ∀ {a b} {E : Set b} {{_ : Monoid E}} → Alternative (Either {b = a} E)
_<|>_ {{AlternativeEither}} x y = either (const y) right x
module _ {a b} {F : Set a → Set b} {A : Set a} {{_ : FunctorZero F}} where
guard! : Bool → F A → F A
guard! true x = x
guard! false _ = empty
guard : ∀ {p} {P : Set p} (d : Dec P) → ({{_ : P}} → F A) → F A
guard (yes p) x = x {{p}}
guard (no _) _ = empty
module _ {a b} {F : Set a → Set b} {A : Set a} {{_ : Alternative F}} where
choice : List (F A) → F A
choice = foldr _<|>_ empty
maybeA : {{_ : Applicative F}} → F A → F (Maybe A)
maybeA x = just <$> x <|> pure nothing
|
{
"alphanum_fraction": 0.6047548291,
"avg_line_length": 28.8428571429,
"ext": "agda",
"hexsha": "e6905647526638bf2a41fa82895c4c89da2a0d03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Prelude/Alternative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Prelude/Alternative.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Prelude/Alternative.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 659,
"size": 2019
}
|
{-# OPTIONS --allow-unsolved-metas #-}
open import Agda.Builtin.Nat
record R : Set where
field
r₁ : Nat
r₂ : Nat
open R
h : (n : Nat) → R
r₁ (h zero) = {!!}
r₂ (h zero) = {!!}
h (suc n) = {!!}
|
{
"alphanum_fraction": 0.5291262136,
"avg_line_length": 13.7333333333,
"ext": "agda",
"hexsha": "692c9a1ecfbcd4e342a5a4aba99839cfe62f35ae",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2833.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2833.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2833.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 80,
"size": 206
}
|
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Classical Propositional Logic.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.Theorems.Classical ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.PropFormula.Syntax n
------------------------------------------------------------------------------
postulate
PEM : ∀ {Γ} {φ}
→ Γ ⊢ φ ∨ ¬ φ
-- Theorem.
RAA
: ∀ {Γ} {φ}
→ Γ , ¬ φ ⊢ ⊥
→ Γ ⊢ φ
-- Proof.
RAA {φ = φ} Γ¬φ⊢⊥ =
⊃-elim
(⊃-intro
(∨-elim
(assume φ)
(⊥-elim φ Γ¬φ⊢⊥)))
PEM
-------------------------------------------------------------------------- ∎
|
{
"alphanum_fraction": 0.2675709001,
"avg_line_length": 23.1714285714,
"ext": "agda",
"hexsha": "51a89b8f7bdf5fe1b87a8d702060d5cc43a39772",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/Theorems/Classical.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/Theorems/Classical.agda",
"max_line_length": 78,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/Theorems/Classical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 185,
"size": 811
}
|
open import Coinduction using ( ♭ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
open import System.IO.Transducers.Lazy using ()
renaming ( done to doneL ; _⟫_ to _⟫L_ )
open import System.IO.Transducers.Strict using ()
renaming ( done to doneS ; _⟫_ to _⟫S_ )
open import System.IO.Transducers.Session using ( Session ; I ; Σ )
open import System.IO.Transducers.Trace using ( Trace )
module System.IO.Transducers where
open System.IO.Transducers.Lazy public
using ( _⇒_ ; inp ; out ; ⟦_⟧ ; _≃_ )
open System.IO.Transducers.Strict public
using ( _⇛_ )
data Style : Set where
lazy strict : Style
_⇒_is_ : Session → Session → Style → Set₁
S ⇒ T is lazy = S ⇒ T
S ⇒ T is strict = S ⇛ T
done : ∀ {s S} → (S ⇒ S is s)
done {lazy} = doneL
done {strict} = doneS
_⟫_ : ∀ {s S T U} → (S ⇒ T is s) → (T ⇒ U is s) → (S ⇒ U is s)
_⟫_ {lazy} = _⟫L_
_⟫_ {strict} = _⟫S_
|
{
"alphanum_fraction": 0.6508287293,
"avg_line_length": 28.28125,
"ext": "agda",
"hexsha": "dd0a90cae6bf2e0c85d74f40d07a764bd0c8afb3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 314,
"size": 905
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.SigmaQ.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.Ints.QuoInt
import Cubical.HITs.SetQuotients as SetQuotient
open import Cubical.Data.Nat as ℕ hiding (_·_)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.Data.Nat.GCD
open import Cubical.Data.Nat.Coprime
open import Cubical.HITs.Rationals.QuoQ as Quo using (ℕ₊₁→ℤ)
import Cubical.HITs.Rationals.SigmaQ.Base as Sigma
reduce : Quo.ℚ → Sigma.ℚ
reduce = SetQuotient.rec Sigma.isSetℚ Sigma.[_]
(λ { (a , b) (c , d) p → sym (Sigma.[]-cancelʳ (a , b) d)
∙ (λ i → Sigma.[ p i , ·₊₁-comm b d i ])
∙ Sigma.[]-cancelʳ (c , d) b })
private
toCoprime-eq₁ : ∀ s ((a , b) : ℕ × ℕ₊₁)
→ signed s (toCoprime (a , b) .fst) · ℕ₊₁→ℤ b
≡ signed s a · ℕ₊₁→ℤ (toCoprime (a , b) .snd)
toCoprime-eq₁ s (a , b) =
signed s c₁ · ℕ₊₁→ℤ b ≡⟨ ·-signed-pos c₁ (ℕ₊₁→ℕ b) ⟩
signed s (c₁ ℕ.· ℕ₊₁→ℕ b) ≡[ i ]⟨ signed s (c₁ ℕ.· p₂ (~ i)) ⟩
signed s (c₁ ℕ.· (ℕ₊₁→ℕ c₂ ℕ.· d)) ≡[ i ]⟨ signed s (c₁ ℕ.· ℕ.·-comm (ℕ₊₁→ℕ c₂) d i) ⟩
signed s (c₁ ℕ.· (d ℕ.· ℕ₊₁→ℕ c₂)) ≡[ i ]⟨ signed s (ℕ.·-assoc c₁ d (ℕ₊₁→ℕ c₂) i) ⟩
signed s ((c₁ ℕ.· d) ℕ.· ℕ₊₁→ℕ c₂) ≡[ i ]⟨ signed s (p₁ i ℕ.· ℕ₊₁→ℕ c₂) ⟩
signed s (a ℕ.· ℕ₊₁→ℕ c₂) ≡⟨ sym (·-signed-pos a (ℕ₊₁→ℕ c₂)) ⟩
signed s a · ℕ₊₁→ℤ c₂ ∎
where open ToCoprime (a , b)
[]-reduce : ∀ x → Quo.[ reduce x .fst ] ≡ x
[]-reduce = SetQuotient.elimProp (λ _ → Quo.isSetℚ _ _)
(λ { (signed s a , b) → Quo.eq/ _ _ (toCoprime-eq₁ s (a , b))
; (posneg i , b) j → isSet→isSet' Quo.isSetℚ
(Quo.eq/ (fst (reduce Quo.[ pos 0 , b ])) (pos 0 , b) (toCoprime-eq₁ spos (0 , b)))
(Quo.eq/ (fst (reduce Quo.[ neg 0 , b ])) (neg 0 , b) (toCoprime-eq₁ sneg (0 , b)))
(λ i → Quo.[ reduce (Quo.[ posneg i , b ]) .fst ]) (λ i → Quo.[ posneg i , b ]) i j })
private
toCoprime-eq₂ : ∀ s ((a , b) : ℕ × ℕ₊₁) (cp : areCoprime (a , ℕ₊₁→ℕ b))
→ Sigma.signedPair s (toCoprime (a , b)) ≡ Sigma.signedPair s (a , b)
toCoprime-eq₂ s (a , b) cp i = Sigma.signedPair s (toCoprime-idem (a , b) cp i)
reduce-[] : ∀ x → reduce Quo.[ x .fst ] ≡ x
-- equivalent to: Sigma.[ s .fst ] ≡ x
reduce-[] ((signed s a , b) , cp) =
Σ≡Prop (λ _ → isPropIsGCD) (toCoprime-eq₂ s (a , b) cp)
reduce-[] ((posneg i , b) , cp) j =
isSet→isSet' Sigma.isSetℚ
(Σ≡Prop (λ _ → isPropIsGCD) (toCoprime-eq₂ spos (0 , b) cp))
(Σ≡Prop (λ _ → isPropIsGCD) (toCoprime-eq₂ sneg (0 , b) cp))
(λ i → Sigma.[ posneg i , b ]) (λ i → (posneg i , b) , cp) i j
Quoℚ-iso-Sigmaℚ : Iso Quo.ℚ Sigma.ℚ
Iso.fun Quoℚ-iso-Sigmaℚ = reduce
Iso.inv Quoℚ-iso-Sigmaℚ = Quo.[_] ∘ fst
Iso.rightInv Quoℚ-iso-Sigmaℚ = reduce-[]
Iso.leftInv Quoℚ-iso-Sigmaℚ = []-reduce
Quoℚ≃Sigmaℚ : Quo.ℚ ≃ Sigma.ℚ
Quoℚ≃Sigmaℚ = isoToEquiv Quoℚ-iso-Sigmaℚ
Quoℚ≡Sigmaℚ : Quo.ℚ ≡ Sigma.ℚ
Quoℚ≡Sigmaℚ = isoToPath Quoℚ-iso-Sigmaℚ
|
{
"alphanum_fraction": 0.5780525502,
"avg_line_length": 40.9493670886,
"ext": "agda",
"hexsha": "88d34943055ca79fb03b046c45369f46026e97a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Rationals/SigmaQ/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Rationals/SigmaQ/Properties.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Rationals/SigmaQ/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1452,
"size": 3235
}
|
{-# OPTIONS --rewriting #-}
module Luau.RuntimeError.ToString where
open import Agda.Builtin.Float using (primShowFloat)
open import FFI.Data.String using (String; _++_)
open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; bin₁; bin₂)
open import Luau.RuntimeType.ToString using (runtimeTypeToString)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Syntax.ToString using (valueToString; exprToString)
open import Luau.Var.ToString using (varToString)
open import Luau.Syntax using (var; val; addr; binexp; block_is_end; local_←_; return; _∙_; name; _$_; ··)
errToStringᴱ : ∀ {a H} M → RuntimeErrorᴱ {a} H M → String
errToStringᴮ : ∀ {a H} B → RuntimeErrorᴮ {a} H B → String
errToStringᴱ (var x) (UnboundVariable) = "variable " ++ varToString x ++ " is unbound"
errToStringᴱ (val (addr a)) (SEGV p) = "address " ++ addrToString a ++ " is unallocated"
errToStringᴱ (M $ N) (FunctionMismatch v w p) = "value " ++ (valueToString v) ++ " is not a function"
errToStringᴱ (M $ N) (app₁ E) = errToStringᴱ M E
errToStringᴱ (M $ N) (app₂ E) = errToStringᴱ N E
errToStringᴱ (binexp M ·· N) (BinOpMismatch₁ v w p) = "value " ++ (valueToString v) ++ " is not a string"
errToStringᴱ (binexp M ·· N) (BinOpMismatch₂ v w p) = "value " ++ (valueToString w) ++ " is not a string"
errToStringᴱ (binexp M op N) (BinOpMismatch₁ v w p) = "value " ++ (valueToString v) ++ " is not a number"
errToStringᴱ (binexp M op N) (BinOpMismatch₂ v w p) = "value " ++ (valueToString w) ++ " is not a number"
errToStringᴱ (binexp M op N) (bin₁ E) = errToStringᴱ M E
errToStringᴱ (binexp M op N) (bin₂ E) = errToStringᴱ N E
errToStringᴱ (block b is B end) (block E) = errToStringᴮ B E ++ "\n in call of function " ++ varToString (name b)
errToStringᴮ (local x ← M ∙ B) (local E) = errToStringᴱ M E ++ "\n in definition of " ++ varToString (name x)
errToStringᴮ (return M ∙ B) (return E) = errToStringᴱ M E ++ "\n in return statement"
|
{
"alphanum_fraction": 0.7052220595,
"avg_line_length": 64.03125,
"ext": "agda",
"hexsha": "cd5f18f25a14cae719753dd6827bfd193f8ebed6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Luau/RuntimeError/ToString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Luau/RuntimeError/ToString.agda",
"max_line_length": 185,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Luau/RuntimeError/ToString.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 694,
"size": 2049
}
|
module DeadCodePatSyn.Lib where
private
data Hidden : Set where
hidden : Hidden
pattern not-hidden = hidden
|
{
"alphanum_fraction": 0.7435897436,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "6d30589e2dc86497329c37826866a730aaffef26",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/DeadCodePatSyn/Lib.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/DeadCodePatSyn/Lib.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/DeadCodePatSyn/Lib.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 117
}
|
open import Data.Product using (∃; ∃-syntax; _×_; _,_)
open import DeBruijn
open import Parallel
open import Beta
open import Takahashi
par-triangle : ∀ {n} {M N : Term n}
→ M ⇉ N
-------
→ N ⇉ M *
par-triangle {M = # x} ⇉-c = ⇉-c
par-triangle {M = ƛ M} (⇉-ƛ M⇉N) = ⇉-ƛ (par-triangle M⇉N)
par-triangle {M = (ƛ M) · N} (⇉-β M⇉M′ N⇉N′) = sub-par (par-triangle M⇉M′) (par-triangle N⇉N′)
par-triangle {M = # _ · N} (⇉-ξ M⇉M′ N⇉N′) = ⇉-ξ (par-triangle M⇉M′) (par-triangle N⇉N′)
par-triangle {M = _ · _ · N} (⇉-ξ M⇉M′ N⇉N′) = ⇉-ξ (par-triangle M⇉M′) (par-triangle N⇉N′)
par-triangle {M = (ƛ _) · N} (⇉-ξ (⇉-ƛ M⇉M′) N⇉N′) = ⇉-β (par-triangle M⇉M′) (par-triangle N⇉N′)
par-diamond : ∀ {n} {M A B : Term n}
→ M ⇉ A → M ⇉ B
----------------------
→ ∃[ N ] (A ⇉ N × B ⇉ N)
par-diamond {M = M} M⇉A M⇉B = M * , par-triangle M⇉A , par-triangle M⇉B
strip : ∀ {n} {M A B : Term n}
→ M ⇉ A → M ⇉* B
------------------------
→ ∃[ N ] (A ⇉* N × B ⇉ N)
strip {A = A} M⇉A (M ∎) = A , (A ∎) , M⇉A
strip {A = A} M⇉A (M ⇉⟨ M⇉M′ ⟩ M′⇉*B)
with par-diamond M⇉A M⇉M′
... | N , A⇉N , M′⇉N
with strip M′⇉N M′⇉*B
... | N′ , N⇉*N′ , B⇉N′ =
N′ , (A ⇉⟨ A⇉N ⟩ N⇉*N′) , B⇉N′
par-confluence : ∀ {n} {M A B : Term n}
→ M ⇉* A → M ⇉* B
------------------------
→ ∃[ N ] (A ⇉* N × B ⇉* N)
par-confluence {B = B} (M ∎) M⇉*B = B , M⇉*B , (B ∎)
par-confluence {B = B} (M ⇉⟨ M⇉A ⟩ A⇉*A′) M⇉*B
with strip M⇉A M⇉*B
... | N , A⇉*N , B⇉N
with par-confluence A⇉*A′ A⇉*N
... | N′ , A′⇉*N′ , N⇉*N′ =
N′ , A′⇉*N′ , (B ⇉⟨ B⇉N ⟩ N⇉*N′)
confluence : ∀ {n} {M A B : Term n}
→ M —↠ A → M —↠ B
------------------------
→ ∃[ N ] (A —↠ N × B —↠ N)
confluence M—↠A M—↠B
with par-confluence (betas-pars M—↠A) (betas-pars M—↠B)
... | N , A⇉*N , B⇉*N =
N , pars-betas A⇉*N , pars-betas B⇉*N
|
{
"alphanum_fraction": 0.4097406035,
"avg_line_length": 30.4677419355,
"ext": "agda",
"hexsha": "4c7aba39f47a307e7c23263a219650226a149e04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/church-rosser",
"max_forks_repo_path": "ConfluenceParallelTakahashi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/church-rosser",
"max_issues_repo_path": "ConfluenceParallelTakahashi.agda",
"max_line_length": 96,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/church-rosser",
"max_stars_repo_path": "ConfluenceParallelTakahashi.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z",
"num_tokens": 1057,
"size": 1889
}
|
module Issue1258 where
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
data Bool : Set where
true false : Bool
postulate f : (A : Set) -> A -> Bool
Foo : Bool -> Set
Foo true = Bool
Foo false = Bool
Alpha : Bool
Beta : Foo Alpha
test : f (Foo Alpha) Beta == f Bool false
Alpha = _
Beta = Alpha
test = refl
-- Normalizing Alpha yields a metavariable, but normalizing Beta yields
-- false.
|
{
"alphanum_fraction": 0.6414634146,
"avg_line_length": 15.7692307692,
"ext": "agda",
"hexsha": "f7cad896fd3d983b7a76c5cc87985f5b44de308b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1258.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1258.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1258.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 125,
"size": 410
}
|
module non-regular where
open import Data.Nat
open import Data.Empty
open import Data.List
open import Data.Maybe hiding ( map )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import logic
open import automaton
open import automaton-ex
open import finiteSetUtil
open import finiteSet
open import Relation.Nullary
open import regular-language
open import nat
open FiniteSet
inputnn : List In2 → Maybe (List In2)
inputnn [] = just []
inputnn (i1 ∷ t) = just (i1 ∷ t)
inputnn (i0 ∷ t) with inputnn t
... | nothing = nothing
... | just [] = nothing
... | just (i0 ∷ t1) = nothing -- can't happen
... | just (i1 ∷ t1) = just t1 -- remove i1 from later part
inputnn1 : List In2 → Bool
inputnn1 s with inputnn s
... | nothing = false
... | just [] = true
... | just _ = false
t1 = inputnn1 ( i0 ∷ i1 ∷ [] )
t2 = inputnn1 ( i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] )
t3 = inputnn1 ( i0 ∷ i0 ∷ i0 ∷ i1 ∷ i1 ∷ [] )
inputnn0 : ( n : ℕ ) → { Σ : Set } → ( x y : Σ ) → List Σ → List Σ
inputnn0 zero {_} _ _ s = s
inputnn0 (suc n) x y s = x ∷ ( inputnn0 n x y ( y ∷ s ) )
t4 : inputnn1 ( inputnn0 5 i0 i1 [] ) ≡ true
t4 = refl
t5 : ( n : ℕ ) → Set
t5 n = inputnn1 ( inputnn0 n i0 i1 [] ) ≡ true
--
-- if there is an automaton with n states , which accespt inputnn1, it has a trasition function.
-- The function is determinted by inputs,
--
open RegularLanguage
open Automaton
open _∧_
data Trace { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) : (is : List Σ) → Q → Set where
tend : {q : Q} → aend fa q ≡ true → Trace fa [] q
tnext : (q : Q) → {i : Σ} { is : List Σ}
→ Trace fa is (δ fa q i) → Trace fa (i ∷ is) q
tr-len : { Q : Set } { Σ : Set }
→ (fa : Automaton Q Σ )
→ (is : List Σ) → (q : Q) → Trace fa is q → suc (length is) ≡ length (trace fa q is )
tr-len {Q} {Σ} fa .[] q (tend x) = refl
tr-len {Q} {Σ} fa (i ∷ is) q (tnext .q t) = cong suc (tr-len {Q} {Σ} fa is (δ fa q i) t)
tr-accept→ : { Q : Set } { Σ : Set }
→ (fa : Automaton Q Σ )
→ (is : List Σ) → (q : Q) → Trace fa is q → accept fa q is ≡ true
tr-accept→ {Q} {Σ} fa [] q (tend x) = x
tr-accept→ {Q} {Σ} fa (i ∷ is) q (tnext _ tr) = tr-accept→ {Q} {Σ} fa is (δ fa q i) tr
tr-accept← : { Q : Set } { Σ : Set }
→ (fa : Automaton Q Σ )
→ (is : List Σ) → (q : Q) → accept fa q is ≡ true → Trace fa is q
tr-accept← {Q} {Σ} fa [] q ac = tend ac
tr-accept← {Q} {Σ} fa (x ∷ []) q ac = tnext _ (tend ac )
tr-accept← {Q} {Σ} fa (x ∷ x1 ∷ is) q ac = tnext _ (tr-accept← fa (x1 ∷ is) (δ fa q x) ac)
tr→qs : { Q : Set } { Σ : Set }
→ (fa : Automaton Q Σ )
→ (is : List Σ) → (q : Q) → Trace fa is q → List Q
tr→qs fa [] q (tend x) = []
tr→qs fa (i ∷ is) q (tnext q tr) = q ∷ tr→qs fa is (δ fa q i) tr
tr→qs=is : { Q : Set } { Σ : Set }
→ (fa : Automaton Q Σ )
→ (is : List Σ) → (q : Q) → (tr : Trace fa is q ) → length is ≡ length (tr→qs fa is q tr)
tr→qs=is fa .[] q (tend x) = refl
tr→qs=is fa (i ∷ is) q (tnext .q tr) = cong suc (tr→qs=is fa is (δ fa q i) tr)
open Data.Maybe
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
open import Relation.Binary.Definitions
open import Data.Unit using (⊤ ; tt)
open import Data.Nat.Properties
data QDSEQ { Q : Set } { Σ : Set } { fa : Automaton Q Σ} ( finq : FiniteSet Q) (qd : Q) (z1 : List Σ) :
{q : Q} {y2 : List Σ} → Trace fa (y2 ++ z1) q → Set where
qd-nil : (q : Q) → (tr : Trace fa z1 q) → equal? finq qd q ≡ true → QDSEQ finq qd z1 tr
qd-next : {i : Σ} (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) (δ fa q i)) → equal? finq qd q ≡ false
→ QDSEQ finq qd z1 tr
→ QDSEQ finq qd z1 (tnext q tr)
record TA1 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) ( q qd : Q ) (is : List Σ) : Set where
field
y z : List Σ
yz=is : y ++ z ≡ is
trace-z : Trace fa z qd
trace-yz : Trace fa (y ++ z) q
q=qd : QDSEQ finq qd z trace-yz
--
-- using accept ≡ true may simplify the pumping-lemma
-- QDSEQ is too complex, should we generate (lengty y ≡ 0 → equal ) ∧ ...
--
-- like this ...
-- record TA2 { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) ( q qd : Q ) (is : List Σ) : Set where
-- field
-- y z : List Σ
-- yz=is : y ++ z ≡ is
-- trace-z : accpet fa z qd ≡ true
-- trace-yz : accept fa (y ++ z) q ≡ true
-- q=qd : last (tr→qs fa q trace-yz) ≡ just qd
-- ¬q=qd : non-last (tr→qs fa q trace-yz) ≡ just qd
record TA { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) ( q : Q ) (is : List Σ) : Set where
field
x y z : List Σ
xyz=is : x ++ y ++ z ≡ is
trace-xyz : Trace fa (x ++ y ++ z) q
trace-xyyz : Trace fa (x ++ y ++ y ++ z) q
non-nil-y : ¬ (y ≡ [])
pumping-lemma : { Q : Set } { Σ : Set } (fa : Automaton Q Σ ) (finq : FiniteSet Q) (q qd : Q) (is : List Σ)
→ (tr : Trace fa is q )
→ dup-in-list finq qd (tr→qs fa is q tr) ≡ true
→ TA fa q is
pumping-lemma {Q} {Σ} fa finq q qd is tr dup = tra-phase1 q is tr dup where
open TA
tra-phase2 : (q : Q) → (is : List Σ) → (tr : Trace fa is q )
→ phase2 finq qd (tr→qs fa is q tr) ≡ true → TA1 fa finq q qd is
tra-phase2 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect ( equal? finq qd) q
... | true | record { eq = eq } = record { y = [] ; z = i ∷ is ; yz=is = refl ; q=qd = qd-nil q (tnext q tr) eq
; trace-z = subst (λ k → Trace fa (i ∷ is) k ) (sym (equal→refl finq eq)) (tnext q tr) ; trace-yz = tnext q tr }
... | false | record { eq = ne } = record { y = i ∷ TA1.y ta ; z = TA1.z ta ; yz=is = cong (i ∷_ ) (TA1.yz=is ta )
; q=qd = tra-08
; trace-z = TA1.trace-z ta ; trace-yz = tnext q ( TA1.trace-yz ta ) } where
ta : TA1 fa finq (δ fa q i) qd is
ta = tra-phase2 (δ fa q i) is tr p
tra-07 : Trace fa (TA1.y ta ++ TA1.z ta) (δ fa q i)
tra-07 = subst (λ k → Trace fa k (δ fa q i)) (sym (TA1.yz=is ta)) tr
tra-08 : QDSEQ finq qd (TA1.z ta) (tnext q (TA1.trace-yz ta))
tra-08 = qd-next (TA1.y ta) q (TA1.trace-yz (tra-phase2 (δ fa q i) is tr p)) ne (TA1.q=qd ta)
tra-phase1 : (q : Q) → (is : List Σ) → (tr : Trace fa is q ) → phase1 finq qd (tr→qs fa is q tr) ≡ true → TA fa q is
tra-phase1 q (i ∷ is) (tnext q tr) p with equal? finq qd q | inspect (equal? finq qd) q
... | true | record { eq = eq } = record { x = [] ; y = i ∷ TA1.y ta ; z = TA1.z ta ; xyz=is = cong (i ∷_ ) (TA1.yz=is ta)
; non-nil-y = λ ()
; trace-xyz = tnext q (TA1.trace-yz ta)
; trace-xyyz = tnext q tra-05 } where
ta : TA1 fa finq (δ fa q i ) qd is
ta = tra-phase2 (δ fa q i ) is tr p
y1 = TA1.y ta
z1 = TA1.z ta
tryz0 : Trace fa (y1 ++ z1) (δ fa qd i)
tryz0 = subst₂ (λ j k → Trace fa k (δ fa j i) ) (sym (equal→refl finq eq)) (sym (TA1.yz=is ta)) tr
tryz : Trace fa (i ∷ y1 ++ z1) qd
tryz = tnext qd tryz0
-- create Trace (y ++ y ++ z)
tra-04 : (y2 : List Σ) → (q : Q) → (tr : Trace fa (y2 ++ z1) q)
→ QDSEQ finq qd z1 {q} {y2} tr
→ Trace fa (y2 ++ (i ∷ y1) ++ z1) q
tra-04 [] q tr (qd-nil q _ x₁) with equal? finq qd q | inspect (equal? finq qd) q
... | true | record { eq = eq } = subst (λ k → Trace fa (i ∷ y1 ++ z1) k) (equal→refl finq eq) tryz
... | false | record { eq = ne } = ⊥-elim ( ¬-bool refl x₁ )
tra-04 (y0 ∷ y2) q (tnext q tr) (qd-next _ _ _ x₁ qdseq) with equal? finq qd q | inspect (equal? finq qd) q
... | true | record { eq = eq } = ⊥-elim ( ¬-bool x₁ refl )
... | false | record { eq = ne } = tnext q (tra-04 y2 (δ fa q y0) tr qdseq )
tra-05 : Trace fa (TA1.y ta ++ (i ∷ TA1.y ta) ++ TA1.z ta) (δ fa q i)
tra-05 with equal→refl finq eq
... | refl = tra-04 y1 (δ fa qd i) (TA1.trace-yz ta) (TA1.q=qd ta)
... | false | _ = record { x = i ∷ x ta ; y = y ta ; z = z ta ; xyz=is = cong (i ∷_ ) (xyz=is ta)
; non-nil-y = non-nil-y ta
; trace-xyz = tnext q (trace-xyz ta ) ; trace-xyyz = tnext q (trace-xyyz ta )} where
ta : TA fa (δ fa q i ) is
ta = tra-phase1 (δ fa q i ) is tr p
open RegularLanguage
open import Data.Nat.Properties
open import nat
lemmaNN : (r : RegularLanguage In2 ) → ¬ ( (s : List In2) → isRegular inputnn1 s r )
lemmaNN r Rg = tann {TA.x TAnn} (TA.non-nil-y TAnn ) {!!} (tr-accept→ (automaton r) _ (astart r) (TA.trace-xyz TAnn) )
(tr-accept→ (automaton r) _ (astart r) (TA.trace-xyyz TAnn) ) where
n : ℕ
n = suc (finite (afin r))
nn = inputnn0 n i0 i1 []
nn01 : (i : ℕ) → inputnn1 ( inputnn0 i i0 i1 [] ) ≡ true
nn01 zero = refl
nn01 (suc i) = {!!} where
nn02 : (i : ℕ) → ( x : List In2) → inputnn ( inputnn0 i i0 i1 x ) ≡ inputnn x
nn02 zero _ = refl
nn02 (suc i) x with inputnn (inputnn0 (suc i) i0 i1 x)
... | nothing = {!!}
... | just [] = {!!}
... | just (i0 ∷ t1) = {!!}
... | just (i1 ∷ t1) = {!!}
nn03 : accept (automaton r) (astart r) nn ≡ true
nn03 = subst (λ k → k ≡ true ) (Rg nn ) (nn01 n)
nn09 : (n m : ℕ) → n ≤ n + m
nn09 zero m = z≤n
nn09 (suc n) m = s≤s (nn09 n m)
nn04 : Trace (automaton r) nn (astart r)
nn04 = tr-accept← (automaton r) nn (astart r) nn03
nntrace = tr→qs (automaton r) nn (astart r) nn04
nn07 : (n : ℕ) → length (inputnn0 n i0 i1 []) ≡ n + n
nn07 n = subst (λ k → length (inputnn0 n i0 i1 []) ≡ k) (+-comm (n + n) _ ) (nn08 n [] )where
nn08 : (n : ℕ) → (s : List In2) → length (inputnn0 n i0 i1 s) ≡ n + n + length s
nn08 zero s = refl
nn08 (suc n) s = begin
length (inputnn0 (suc n) i0 i1 s) ≡⟨ refl ⟩
suc (length (inputnn0 n i0 i1 (i1 ∷ s))) ≡⟨ cong suc (nn08 n (i1 ∷ s)) ⟩
suc (n + n + suc (length s)) ≡⟨ +-assoc (suc n) n _ ⟩
suc n + (n + suc (length s)) ≡⟨ cong (λ k → suc n + k) (sym (+-assoc n _ _)) ⟩
suc n + ((n + 1) + length s) ≡⟨ cong (λ k → suc n + (k + length s)) (+-comm n _) ⟩
suc n + (suc n + length s) ≡⟨ sym (+-assoc (suc n) _ _) ⟩
suc n + suc n + length s ∎ where open ≡-Reasoning
nn05 : length nntrace > finite (afin r)
nn05 = begin
suc (finite (afin r)) ≤⟨ nn09 _ _ ⟩
n + n ≡⟨ sym (nn07 n) ⟩
length (inputnn0 n i0 i1 []) ≡⟨ tr→qs=is (automaton r) (inputnn0 n i0 i1 []) (astart r) nn04 ⟩
length nntrace ∎ where open ≤-Reasoning
nn06 : Dup-in-list ( afin r) (tr→qs (automaton r) nn (astart r) nn04)
nn06 = dup-in-list>n (afin r) nntrace nn05
TAnn : TA (automaton r) (astart r) nn
TAnn = pumping-lemma (automaton r) (afin r) (astart r) (Dup-in-list.dup nn06) nn nn04 (Dup-in-list.is-dup nn06)
count : In2 → List In2 → ℕ
count _ [] = 0
count i0 (i0 ∷ s) = suc (count i0 s)
count i1 (i1 ∷ s) = suc (count i1 s)
count x (_ ∷ s) = count x s
nn11 : {x : In2} → (s t : List In2) → count x (s ++ t) ≡ count x s + count x t
nn11 {x} [] t = refl
nn11 {i0} (i0 ∷ s) t = cong suc ( nn11 s t )
nn11 {i0} (i1 ∷ s) t = nn11 s t
nn11 {i1} (i0 ∷ s) t = nn11 s t
nn11 {i1} (i1 ∷ s) t = cong suc ( nn11 s t )
nn10 : (s : List In2) → accept (automaton r) (astart r) s ≡ true → count i0 s ≡ count i1 s
nn10 s p = nn101 s (subst (λ k → k ≡ true) (sym (Rg s)) p ) where
nn101 : (s : List In2) → inputnn1 s ≡ true → count i0 s ≡ count i1 s
nn101 [] p = refl
nn101 (x ∷ s) p = {!!}
i1-i0? : List In2 → Bool
i1-i0? [] = false
i1-i0? (i1 ∷ []) = false
i1-i0? (i0 ∷ []) = false
i1-i0? (i1 ∷ i0 ∷ s) = true
i1-i0? (_ ∷ s0 ∷ s1) = i1-i0? (s0 ∷ s1)
nn20 : {s s0 s1 : List In2} → accept (automaton r) (astart r) s ≡ true → ¬ ( s ≡ s0 ++ i1 ∷ i0 ∷ s1 )
nn20 {s} {s0} {s1} p np = {!!}
mono-color : List In2 → Bool
mono-color [] = true
mono-color (i0 ∷ s) = mono-color0 s where
mono-color0 : List In2 → Bool
mono-color0 [] = true
mono-color0 (i1 ∷ s) = false
mono-color0 (i0 ∷ s) = mono-color0 s
mono-color (i1 ∷ s) = mono-color1 s where
mono-color1 : List In2 → Bool
mono-color1 [] = true
mono-color1 (i0 ∷ s) = false
mono-color1 (i1 ∷ s) = mono-color1 s
record Is10 (s : List In2) : Set where
field
s0 s1 : List In2
is-10 : s ≡ s0 ++ i1 ∷ i0 ∷ s1
not-mono : { s : List In2 } → ¬ (mono-color s ≡ true) → Is10 (s ++ s)
not-mono = {!!}
mono-count : { s : List In2 } → mono-color s ≡ true → (length s ≡ count i0 s) ∨ ( length s ≡ count i1 s)
mono-count = {!!}
tann : {x y z : List In2} → ¬ y ≡ []
→ x ++ y ++ z ≡ nn
→ accept (automaton r) (astart r) (x ++ y ++ z) ≡ true → ¬ (accept (automaton r) (astart r) (x ++ y ++ y ++ z) ≡ true )
tann {x} {y} {z} ny eq axyz axyyz with mono-color y
... | true = {!!}
... | false = {!!}
|
{
"alphanum_fraction": 0.5105210804,
"avg_line_length": 44.6040955631,
"ext": "agda",
"hexsha": "653a8f09728b0e77d68d70bc243d63f2996432cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/non-regular.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/non-regular.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/non-regular.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5339,
"size": 13069
}
|
{-# OPTIONS --no-qualified-instances #-}
module CF.Transform.UnCo where
open import Data.Product
open import Data.List
open import Data.List.Relation.Unary.All
open import Data.List.Membership.Propositional
open import Relation.Unary hiding (_∈_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad hiding (unit)
open import Relation.Ternary.Monad.Weakening
open import Relation.Ternary.Data.Bigstar hiding ([_])
open import CF.Types
open import CF.Syntax.Hoisted as Hoisted
open import CF.Contexts.Lexical
open import CF.Transform.Hoist
open import CF.Syntax.DeBruijn as Tgt
open Hoisted
open import Relation.Ternary.Data.Allstar Ty
{-# TERMINATING #-}
mutual
uncoₑ : ∀[ Hoisted.Exp a ⇑ ⇒ Tgt.Exp a ]
uncoₑ (unit ⇈ wk) = unit
uncoₑ (num x ⇈ wk) = num x
uncoₑ (bool x ⇈ wk) = bool x
uncoₑ (Exp.var' vars ⇈ wk) = Tgt.var' (member wk)
uncoₑ (bop f e₁✴e₂ ⇈ wk) with e₁ , e₂ ← unstar (e₁✴e₂ ⇈ wk) = bop f (uncoₑ e₁) (uncoₑ e₂)
uncoₑ (ifthenelse c✴e₁✴e₂ ⇈ wk) = let
c , e₁✴e₂ = unstar (c✴e₁✴e₂ ⇈ wk)
e₁ , e₂ = unstar e₁✴e₂
in ifthenelse (uncoₑ c) (uncoₑ e₁) (uncoₑ e₂)
uncos : ∀[ (Allstar Hoisted.Exp as) ⇑ ⇒ Exps as ]
uncos (nil ⇈ wk) = []
uncos (cons e✴es ⇈ wk) with e , es ← unstar (e✴es ⇈ wk) = uncoₑ e ∷ uncos es
{-# TERMINATING #-}
mutual
uncoₛ : ∀[ Hoisted.Stmt r ⇑ ⇒ Tgt.Stmt r ]
uncoₛ (run x ⇈ wk) = run (uncoₑ (x ⇈ wk))
uncoₛ (asgn v✴e ⇈ wk) with unstar (v✴e ⇈ wk)
... | vars ⇈ wk' , e⇑ = asgn (member wk') (uncoₑ e⇑)
uncoₛ (ifthenelse c✴s₁✴s₂ ⇈ wk) = let
c , s₁✴s₂ = unstar (c✴s₁✴s₂ ⇈ wk)
s₁ , s₂ = unstar s₁✴s₂
in ifthenelse (uncoₑ c) (uncoₛ s₁) (uncoₛ s₂)
uncoₛ (while c✴s ⇈ wk) with c , s ← unstar (c✴s ⇈ wk) = while (uncoₑ c) (uncoₛ s)
uncoₛ (block x ⇈ wk) = block (unco' (x ⇈ wk))
unco' : ∀[ Hoisted.Block r ⇑ ⇒ Tgt.Block r ]
unco' (nil ⇈ wk) = nil
unco' (cons s✴b ⇈ wk) with s , b ← unstar (s✴b ⇈ wk) = uncoₛ s ⍮⍮ unco' b
unco : ∀[ Hoisted.Block r ⇒ Tgt.Block r ]
unco bl = unco' (return bl)
|
{
"alphanum_fraction": 0.647601476,
"avg_line_length": 34.4126984127,
"ext": "agda",
"hexsha": "4368c2d93a82ffb71f189744f0a36e8af85a370d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Transform/UnCo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Transform/UnCo.agda",
"max_line_length": 91,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Transform/UnCo.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 904,
"size": 2168
}
|
-- Andreas, 2014-09-02
-- Up to today, there was no implementation of shadowing local variables
-- (e.g., λ-bound variables) by local imports.
-- {-# OPTIONS -v scope.locals:10 #-}
module _ where
module M where
A = Set1
test : (A : Set) → let open M in A
test A = Set
-- The A exported by M is in competition with the local A.
-- Ambiguous name should be reported.
|
{
"alphanum_fraction": 0.6782841823,
"avg_line_length": 20.7222222222,
"ext": "agda",
"hexsha": "fbd7e480fc6820cc5cb8583e06706e481d86c9d4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1266a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1266a.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1266a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 373
}
|
import Imports.Issue5357-B
import Imports.Issue5357-C
|
{
"alphanum_fraction": 0.8518518519,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "ecfc5210f1cb5d0fe25106c60b7e8757d67acb50",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/interaction/Issue5357.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/interaction/Issue5357.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/interaction/Issue5357.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 16,
"size": 54
}
|
{-# OPTIONS --universe-polymorphism #-}
module WrongMetaLeft where
open import Imports.Level
postulate
∃₂ : ∀ {a c : Level} {A : Set a} {B : Set}
(C : A → B → Set c) → Set (a ⊔ c)
proj₂ : ∀ {a c}{A : Set a}{B : Set}{C : A → B → Set c} → ∃₂ {a}{c}{A}{B} C → B
postulate
Position : Set
Result : Set
_≡_ : Result → Result → Set
postulate
Mono : {p : Level} (P : Position → Position → Set p) → Set p
postulate
Fun : ∀ {a : Level} {A : Set a} →
(A → A → Set) → (A → Result) → Set a
-- The problem is that the "wrong" meta is left unsolved. It's really the
-- level of _<P_ that's not getting solved but it's instantiated to the
-- sort of the type of resultsEqual, so the yellow ends up in a weird place.
postulate
Monad :
(_<P_ : Position → Position → Set _) →
(Key : Mono _<P_ -> Result -> Set)
(_≈_ : ∃₂ Key → ∃₂ Key → Set)
(resultsEqual : Fun {_} {∃₂ {_}{_}{Mono _<P_}{Result} Key}
_≈_ (\(rfk : ∃₂ Key) ->
proj₂ {_}{_}{_}{Result}{_} rfk))
→ Set
|
{
"alphanum_fraction": 0.5347744361,
"avg_line_length": 30.4,
"ext": "agda",
"hexsha": "164b76aaa696394392f766002c9868dbde54d848",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/WrongMetaLeft.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/WrongMetaLeft.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/WrongMetaLeft.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 371,
"size": 1064
}
|
{-# OPTIONS --universe-polymorphism #-}
module LLev where
--****************
-- Universe polymorphism
--****************
data Level : Set where
ze : Level
su : Level -> Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO ze #-}
{-# BUILTIN LEVELSUC su #-}
max : Level -> Level -> Level
max ze m = m
max (su n) ze = su n
max (su n) (su m) = su (max n m)
{-# BUILTIN LEVELMAX max #-}
record Up {l : Level} (A : Set l) : Set (su l) where
constructor up
field down : A
open Up
record Sg {l : Level}(S : Set l)(T : S -> Set l) : Set l where
constructor _,_
field
fst : S
snd : T fst
open Sg
_*_ : {l : Level} -> Set l -> Set l -> Set l
S * T = Sg S \ _ -> T
infixr 4 _*_ _,_
data Zero : Set where
record One {l : Level} : Set l where
constructor <>
data Desc {l : Level}(I : Set l) : Set (su l) where
var : (i : I) -> Desc I
con : (A : Set l) -> Desc I
sg pi : (S : Set l)(T : S -> Desc I) -> Desc I
_**_ : (S T : Desc I) -> Desc I
infixr 4 _**_
[!_!] : {l : Level}{I : Set l} -> Desc I -> (I -> Set l) -> Set l
[! var i !] X = X i
[! con A !] X = A
[! sg S T !] X = Sg S \ s -> [! T s !] X
[! pi S T !] X = (s : S) -> [! T s !] X
[! S ** T !] X = [! S !] X * [! T !] X
{-
data Mu {l : Level}(I : Set l)(F : I -> Desc I)(i : I) : Set l where
<_> : [! F i !] (Mu I F) -> Mu I F i
-}
All : {l : Level}{I : Set l}
(D : Desc I)(X : I -> Set l) -> [! D !] X -> Desc (Sg I X)
All (var i) X x = var (i , x)
All (con A) X d = con One
All (sg S T) X (s , t) = All (T s) X t
All (pi S T) X f = pi S \ s -> All (T s) X (f s)
All (S ** T) X (s , t) = All S X s ** All T X t
all : {l : Level}{I : Set l}
(D : Desc I)(X : I -> Set l)(P : Sg I X -> Set l) ->
((ix : Sg I X) -> P ix) ->
(d : [! D !] X) -> [! All D X d !] P
all (var i) X P p x = p (i , x)
all (con A) X P p d = _
all (sg S T) X P p (s , t) = all (T s) X P p t
all (pi S T) X P p f = \ s -> all (T s) X P p (f s)
all (S ** T) X P p (s , t) = all S X P p s , all T X P p t
{-
induction : {l : Level}{I : Set l}{F : I -> Desc I}
(P : Sg I (Mu I F) -> Set l) ->
((i : I)(d : [! F i !] (Mu I F)) ->
[! All (F i) (Mu I F) d !] P -> P (i , < d >)) ->
(ix : Sg I (Mu I F)) -> P ix
induction {F = F} P p (i , < d >) = p i d (all (F i) (Mu _ F) P (induction P p) d)
-}
{-
mutual
induction : {l : Level}{I : Set l}{F : I -> Desc I}
(P : Sg I (Mu I F) -> Set l) ->
((i : I)(d : [! F i !] (Mu I F)) ->
[! All (F i) (Mu I F) d !] P -> P (i , < d >)) ->
{i : I}(x : Mu I F i) -> P (i , x)
induction {F = F} P p {i} < d > = p i d (allInduction F P p (F i) d)
allInduction : {l : Level}{I : Set l}(F : I -> Desc I)
(P : Sg I (Mu I F) -> Set l) ->
((i : I)(d : [! F i !] (Mu I F)) ->
[! All (F i) (Mu I F) d !] P -> P (i , < d >)) ->
(D : Desc I) ->
(d : [! D !] (Mu I F)) -> [! All D (Mu I F) d !] P
allInduction F P p (var i) d = induction P p d
allInduction F P p (con A) d = _
allInduction F P p (sg S T) (s , t) = allInduction F P p (T s) t
allInduction F P p (pi S T) f = \ s -> allInduction F P p (T s) (f s)
allInduction F P p (S ** T) (s , t) = allInduction F P p S s , allInduction F P p T t
-}
data List {l : Level}(X : Set l) : Set l where
[] : List X
_::_ : X -> List X -> List X
infixr 3 _::_
map : {k l : Level}{X : Set k}{Y : Set l} -> (X -> Y) -> List X -> List Y
map f [] = []
map f (x :: xs) = f x :: map f xs
data UId {l : Level} : Set l where
ze : UId
su : UId {l} -> UId
data # {l : Level} : List {l} UId -> Set l where
ze : forall {x xs} -> # (x :: xs)
su : forall {x xs} -> # xs -> # (x :: xs)
Constrs : {l : Level} -> Set l -> Set (su l)
Constrs I = List (Up UId * Desc I)
Constr : {l : Level}{I : Set l} -> Constrs I -> Set l
Constr uDs = # (map (\ uD -> down (fst uD)) uDs)
ConD : {l : Level}{I : Set l}(uDs : Constrs I) -> Constr uDs -> Desc I
ConD [] ()
ConD (uD :: _) ze = snd uD
ConD (_ :: uDs) (su c) = ConD uDs c
data Data {l : Level}{I : Set l}(F : I -> Constrs I)(i : I) : Set l where
_/_ : (u : Constr (F i))(d : [! ConD (F i) u !] (Data F)) -> Data F i
{-
DataD : {l : Level}{I : Set l} -> Constrs I -> Desc I
DataD uDs = sg (Constr uDs) (ConD uDs)
Data : {l : Level}{I : Set l}(F : I -> Constrs I)(i : I) -> Set l
Data F = Mu _ \ i -> DataD (F i)
-}
MethodD : {l : Level}{I : Set l}(X : I -> Set l)
(uDs : Constrs I)
(P : Sg I X -> Set l)
(i : I) -> ((u : Constr uDs)(d : [! ConD uDs u !] X) -> X i) -> Set l
MethodD X [] P i c = One
MethodD X ((u , D) :: uDs) P i c
= ((d : [! D !] X) -> [! All D X d !] P -> P (i , c ze d))
* MethodD X uDs P i (\ u d -> c (su u) d)
mutual
induction : {l : Level}{I : Set l}{F : I -> Constrs I}{i : I}(x : Data F i)
(P : Sg I (Data F) -> Set l)
(ps : (i : I) -> MethodD (Data F) (F i) P i _/_)
-> P (i , x)
induction {F = F}{i = i}(u / d) P ps = indMethod P ps (F i) _/_ (ps i) u d
indMethod : {l : Level}{I : Set l}{F : I -> Constrs I}{i : I}
(P : Sg I (Data F) -> Set l)
(ps : (i : I) -> MethodD (Data F) (F i) P i _/_)
(uDs : Constrs I)
(c : (u : Constr uDs) -> [! ConD uDs u !] (Data F) -> Data F i)
(ms : MethodD (Data F) uDs P i c)
(u : Constr uDs)
(d : [! ConD uDs u !] (Data F))
-> P (i , c u d)
indMethod P ps [] c ms () d
indMethod P ps ((u , D) :: _) c (p , ms) ze d = p d (indHyps P ps D d)
indMethod P ps ((_ , _) :: uDs) c (m , ms) (su u) d
= indMethod P ps uDs _ ms u d
indHyps : {l : Level}{I : Set l}{F : I -> Constrs I}
(P : Sg I (Data F) -> Set l)
(ps : (i : I) -> MethodD (Data F) (F i) P i _/_)
(D : Desc I)
(d : [! D !] (Data F))
-> [! All D (Data F) d !] P
indHyps P ps (var i) x = induction x P ps
indHyps P ps (con A) a = _
indHyps P ps (sg S T) (s , t) = indHyps P ps (T s) t
indHyps P ps (pi S T) f = \ s -> indHyps P ps (T s) (f s)
indHyps P ps (S ** T) (s , t) = indHyps P ps S s , indHyps P ps T t
zi : {l : Level} -> UId {l}
zi = ze
si : {l : Level} -> UId {l}
si = su ze
data UQ {l : Level}(x : UId {l}) : UId {l} -> Set l where
yes : UQ x x
no : {y : UId {l}} -> UQ x y
uq : {l : Level}(x y : UId {l}) -> UQ x y
uq ze ze = yes
uq ze (su y) = no
uq (su x) ze = no
uq (su x) (su y) with uq x y
uq (su x) (su .x) | yes = yes
uq (su x) (su y) | no = no
UIn : {l : Level}(x : UId {l}) -> List (UId {l}) -> Set
UIn x [] = Zero
UIn x (y :: ys) with uq x y
UIn x (.x :: _) | yes = One
UIn x (_ :: ys) | no = UIn x ys
uin : {l : Level}(x : UId {l})(ys : List (UId {l})) -> UIn x ys -> # ys
uin x [] ()
uin x (y :: ys) p with uq x y
uin x (.x :: _) _ | yes = ze
uin x (_ :: ys) p | no = su (uin x ys p)
_!_ : {l : Level}{I : Set l}{F : I -> Constrs I}{i : I} ->
let us = map (\ uD -> down (fst uD)) (F i) in
(u : UId {l}){p : UIn u us} ->
[! ConD (F i) (uin u us p) !] (Data F) ->
Data F i
_!_ {l}{I}{F}{i} u {p} d = uin u (map (\ uD -> down (fst uD)) (F i)) p / d
infixr 3 _!_
NAT : {l : Level} -> One {l} -> Constrs {l} One
NAT _ = up zi , con One
:: up si , var _ ** con One
:: []
ZE : {l : Level} -> Data {l} NAT <>
ZE = zi ! <>
SU : {l : Level} -> Data {l} NAT <> -> Data {l} NAT <>
SU n = si ! n , <>
vari : {l : Level} -> UId {l}
vari = ze
coni : {l : Level} -> UId {l}
coni = su ze
sgi : {l : Level} -> UId {l}
sgi = su (su ze)
pii : {l : Level} -> UId {l}
pii = su (su (su ze))
asti : {l : Level} -> UId {l}
asti = su (su (su (su ze)))
DESC : {l : Level}(I : Set l) -> One {su l} -> Constrs {su l} One
DESC I _ = up vari , con (Up I) ** con One
:: up coni , con (Set _) ** con One
:: up sgi , (sg (Set _) \ S -> (pi (Up S) \ _ -> var _) ** con One)
:: up pii , (sg (Set _) \ S -> (pi (Up S) \ _ -> var _) ** con One)
:: up asti , var _ ** var _ ** con One
:: []
|
{
"alphanum_fraction": 0.4347398204,
"avg_line_length": 31.3861003861,
"ext": "agda",
"hexsha": "2a737abe9b8a45dc6913fa78fdf87ec9a513cdf0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:51:42.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:51:42.000Z",
"max_forks_repo_head_hexsha": "17b7858f51a35b3becb8433028c3f1ba25fbba9a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dataronio/epigram2",
"max_forks_repo_path": "models/LLev.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "17b7858f51a35b3becb8433028c3f1ba25fbba9a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dataronio/epigram2",
"max_issues_repo_path": "models/LLev.agda",
"max_line_length": 87,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "17b7858f51a35b3becb8433028c3f1ba25fbba9a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dataronio/epigram2",
"max_stars_repo_path": "models/LLev.agda",
"max_stars_repo_stars_event_max_datetime": "2015-11-05T01:06:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-23T15:00:26.000Z",
"num_tokens": 3379,
"size": 8129
}
|
postulate
A : Set
a : A
data D : Set where
d : D
data E : Set where
e₀ : E
e₁ : E → E
e₂ : E → E → E
_[_] : E → E → E
e₀ [ y ] = y
e₁ x [ y ] = e₁ x
e₂ x₁ x₂ [ y ] = e₂ (x₁ [ y ]) (x₂ [ y ])
data P : E → Set where
p₁ : ∀ x₁ x₂ → P x₁ → P x₂ → P (e₂ x₁ x₂)
p₂ : ∀ x → P (x [ e₁ x ]) → P (e₁ x)
p₃ : ∀ x → P (e₁ x)
module M (_ : A) where
record R (A B : Set) : Set where
field f : A → B
instance
r₁ : R D D
R.f r₁ d = d
open M a
open R ⦃ … ⦄ public
r₂ : R D E
R.f r₂ d = e₀
instance
r₃ : {A : Set} ⦃ c : R A D ⦄ → R A E
R.f (r₃ ⦃ c ⦄) x = R.f r₂ (R.f c x)
f′ : {A : Set} ⦃ c : R A D ⦄ → A → E
f′ = f
postulate
p : {A : Set} ⦃ c : R A D ⦄ (x : A) → P (f′ x)
rejected : P (e₂ (e₁ e₀) (f d))
rejected = p₁ _ (f′ d) (p₂ _ (p₃ e₀)) (p d)
|
{
"alphanum_fraction": 0.4240903388,
"avg_line_length": 15.0377358491,
"ext": "agda",
"hexsha": "005ba43879ccd647cff1652a25bf401487055e5c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2296b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2296b.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2296b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 419,
"size": 797
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Semi-heterogeneous vector equality
------------------------------------------------------------------------
module Data.Vec.Equality where
open import Data.Vec
open import Data.Nat using (suc)
open import Function
open import Level using (_⊔_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module Equality {s₁ s₂} (S : Setoid s₁ s₂) where
private
open module SS = Setoid S
using () renaming (_≈_ to _≊_; Carrier to A)
infix 4 _≈_
data _≈_ : ∀ {n¹} → Vec A n¹ →
∀ {n²} → Vec A n² → Set (s₁ ⊔ s₂) where
[]-cong : [] ≈ []
_∷-cong_ : ∀ {x¹ n¹} {xs¹ : Vec A n¹}
{x² n²} {xs² : Vec A n²}
(x¹≈x² : x¹ ≊ x²) (xs¹≈xs² : xs¹ ≈ xs²) →
x¹ ∷ xs¹ ≈ x² ∷ xs²
length-equal : ∀ {n¹} {xs¹ : Vec A n¹}
{n²} {xs² : Vec A n²} →
xs¹ ≈ xs² → n¹ ≡ n²
length-equal []-cong = P.refl
length-equal (_ ∷-cong eq₂) = P.cong suc $ length-equal eq₂
refl : ∀ {n} (xs : Vec A n) → xs ≈ xs
refl [] = []-cong
refl (x ∷ xs) = SS.refl ∷-cong refl xs
sym : ∀ {n m} {xs : Vec A n} {ys : Vec A m} →
xs ≈ ys → ys ≈ xs
sym []-cong = []-cong
sym (x¹≡x² ∷-cong xs¹≈xs²) = SS.sym x¹≡x² ∷-cong sym xs¹≈xs²
trans : ∀ {n m l} {xs : Vec A n} {ys : Vec A m} {zs : Vec A l} →
xs ≈ ys → ys ≈ zs → xs ≈ zs
trans []-cong []-cong = []-cong
trans (x≈y ∷-cong xs≈ys) (y≈z ∷-cong ys≈zs) =
SS.trans x≈y y≈z ∷-cong trans xs≈ys ys≈zs
_++-cong_ : ∀ {n₁¹ n₂¹} {xs₁¹ : Vec A n₁¹} {xs₂¹ : Vec A n₂¹}
{n₁² n₂²} {xs₁² : Vec A n₁²} {xs₂² : Vec A n₂²} →
xs₁¹ ≈ xs₁² → xs₂¹ ≈ xs₂² →
xs₁¹ ++ xs₂¹ ≈ xs₁² ++ xs₂²
[]-cong ++-cong eq₃ = eq₃
(eq₁ ∷-cong eq₂) ++-cong eq₃ = eq₁ ∷-cong (eq₂ ++-cong eq₃)
module DecidableEquality {d₁ d₂} (D : DecSetoid d₁ d₂) where
private module DS = DecSetoid D
open DS using () renaming (_≟_ to _≟′_ ; Carrier to A)
open Equality DS.setoid
open import Relation.Nullary
_≟_ : ∀ {n m} (xs : Vec A n) (ys : Vec A m) → Dec (xs ≈ ys)
_≟_ [] [] = yes []-cong
_≟_ [] (y ∷ ys) = no (λ())
_≟_ (x ∷ xs) [] = no (λ())
_≟_ (x ∷ xs) (y ∷ ys) with xs ≟ ys | x ≟′ y
... | yes xs≈ys | yes x≊y = yes (x≊y ∷-cong xs≈ys)
... | no ¬xs≈ys | _ = no helper
where
helper : ¬ (x ∷ xs ≈ y ∷ ys)
helper (_ ∷-cong xs≈ys) = ¬xs≈ys xs≈ys
... | _ | no ¬x≊y = no helper
where
helper : ¬ (x ∷ xs ≈ y ∷ ys)
helper (x≊y ∷-cong _) = ¬x≊y x≊y
module PropositionalEquality {a} {A : Set a} where
open Equality (P.setoid A) public
to-≡ : ∀ {n} {xs ys : Vec A n} → xs ≈ ys → xs ≡ ys
to-≡ []-cong = P.refl
to-≡ (P.refl ∷-cong xs¹≈xs²) = P.cong (_∷_ _) $ to-≡ xs¹≈xs²
from-≡ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → xs ≈ ys
from-≡ P.refl = refl _
|
{
"alphanum_fraction": 0.4715984148,
"avg_line_length": 32.9130434783,
"ext": "agda",
"hexsha": "04f58b6b09fc89acf8d0456087800d067d1e81fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Vec/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Vec/Equality.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Vec/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1282,
"size": 3028
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Strict
foo : Nat → Nat
foo n = primForce (n + n) (λ _ → 0)
-- Don't get rid of the seq!
|
{
"alphanum_fraction": 0.64,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "01c6495638b5a1c20a455a3e269cc3fc95118c8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2908.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2908.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2908.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 150
}
|
module Lec6 where
open import CS410-Prelude
open import CS410-Functor
open import CS410-Monoid
open import CS410-Nat
data Maybe (X : Set) : Set where
yes : X -> Maybe X
no : Maybe X
maybeFunctor : Functor Maybe
maybeFunctor = record
{ map = \ { f (yes x) -> yes (f x)
; f no -> no
}
; mapid = \ { (yes x) -> refl ; no -> refl }
; mapcomp = \ { f g (yes x) -> refl ; f g no -> refl } }
open Functor maybeFunctor
data List (X : Set) : Set where -- X scopes over the whole declaration...
[] : List X -- ...so you can use it here...
_::_ : X -> List X -> List X -- ...and here.
infixr 3 _::_
may-take : {X : Set} -> Nat -> List X -> Maybe (List X)
may-take zero xs = yes []
may-take (suc n) [] = no
may-take (suc n) (x :: xs) = map (_::_ x) (may-take n xs)
data Hutton : Set where
val : Nat -> Hutton
_+H_ : Hutton -> Hutton -> Hutton
fail : Hutton
maybeApplicative : Applicative Maybe
maybeApplicative = record
{ pure = yes
; _<*>_ = \ { no mx -> no
; (yes f) no -> no
; (yes f) (yes x) -> yes (f x)
}
; identity = \ {(yes x) -> refl ; no -> refl}
; composition = \
{ (yes f) (yes g) (yes x) -> refl
; (yes f) (yes g) no -> refl
; (yes x) no mx -> refl
; no mg mx -> refl
}
; homomorphism = \ f x -> refl
; interchange = \ { (yes f) y -> refl ; no y → refl }
}
module Eval where
open Applicative maybeApplicative public
eval : Hutton -> Maybe Nat
eval (val x) = yes x
eval (h +H h') = pure _+N_ <*> eval h <*> eval h'
eval fail = no
listTrav : forall {F} -> Applicative F -> forall {A B} ->
(A -> F B) -> List A -> F (List B)
listTrav {F} appF = trav where
open Applicative appF
trav : forall {A B} -> (A -> F B) -> List A -> F (List B)
trav f [] = pure []
trav f (a :: as) = pure _::_ <*> f a <*> trav f as
listTraversable : Traversable List
listTraversable = record { traverse = listTrav }
I : Set -> Set
I X = X
iApplicative : Applicative I
iApplicative = record
{ pure = id
; _<*>_ = id
; identity = \ v -> refl
; composition = \ f g v -> refl
; homomorphism = \ f x -> refl
; interchange = \ u y -> refl
}
lmap : forall {A B} -> (A -> B) -> List A -> List B
lmap = traverse iApplicative where
open Traversable listTraversable
MonCon : forall {X} -> Monoid X -> Applicative \_ -> X
MonCon M = record
{ pure = {!!}
; _<*>_ = op
; identity = {!!}
; composition = {!!}
; homomorphism = {!!}
; interchange = {!!}
} where open Monoid M
lCombine : forall {A X} -> Monoid X -> (A -> X) -> List A -> X
lCombine M = traverse (MonCon M) {B = One} where
open Traversable listTraversable
CurryApplicative : forall {E} -> Applicative \X -> E -> X
CurryApplicative = record
{ pure = \ x e -> x -- K
; _<*>_ = \ ef ex e -> ef e (ex e) -- S
; identity = λ {X} v → refl
; composition = λ {X} {Y} {Z} u v w → refl
; homomorphism = λ {X} {Y} f x → refl
; interchange = λ {X} {Y} u y → refl
}
|
{
"alphanum_fraction": 0.459406495,
"avg_line_length": 30.5299145299,
"ext": "agda",
"hexsha": "988884cdb49fe34a5784330fdf08e6de3fa9adfe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Lec6.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Lec6.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Lec6.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1047,
"size": 3572
}
|
module Issue4267.A0 where
record RA0 : Set₁ where
field
A : Set
|
{
"alphanum_fraction": 0.6901408451,
"avg_line_length": 11.8333333333,
"ext": "agda",
"hexsha": "4afa2fbc13e35892d57703c71473c3561d3fa59b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4267/A0.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4267/A0.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4267/A0.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 71
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.InclusionModules where
import Number.Postulates
import Number.Inclusions
-- NOTE: the following takes a very long time to typecheck
-- see https://lists.chalmers.se/pipermail/agda-dev/2015-September/000201.html
-- see https://github.com/agda/agda/issues/1646
-- Exponential module chain leads to infeasible scope checking
module Isℕ↪ℤ = Number.Inclusions.IsROrderedCommSemiringInclusion Number.Postulates.ℕ↪ℤinc
module Isℕ↪ℚ = Number.Inclusions.IsROrderedCommSemiringInclusion Number.Postulates.ℕ↪ℚinc
module Isℕ↪ℂ = Number.Inclusions.Isℕ↪ℂ Number.Postulates.ℕ↪ℂinc
module Isℕ↪ℝ = Number.Inclusions.IsROrderedCommSemiringInclusion Number.Postulates.ℕ↪ℝinc
module Isℤ↪ℚ = Number.Inclusions.IsROrderedCommRingInclusion Number.Postulates.ℤ↪ℚinc
module Isℤ↪ℝ = Number.Inclusions.IsROrderedCommRingInclusion Number.Postulates.ℤ↪ℝinc
module Isℤ↪ℂ = Number.Inclusions.Isℤ↪ℂ Number.Postulates.ℤ↪ℂinc
module Isℚ↪ℝ = Number.Inclusions.IsROrderedFieldInclusion Number.Postulates.ℚ↪ℝinc
module Isℚ↪ℂ = Number.Inclusions.IsRFieldInclusion Number.Postulates.ℚ↪ℂinc
module Isℝ↪ℂ = Number.Inclusions.IsRFieldInclusion Number.Postulates.ℝ↪ℂinc
{-
-- NOTE: the following is a little faster but does not help us
module Isℕ↪ℤ = Number.Inclusions.IsROrderedCommSemiringInclusion
module Isℕ↪ℚ = Number.Inclusions.IsROrderedCommSemiringInclusion
module Isℕ↪ℂ = Number.Inclusions.Isℕ↪ℂ
module Isℕ↪ℝ = Number.Inclusions.IsROrderedCommSemiringInclusion
module Isℤ↪ℚ = Number.Inclusions.IsROrderedCommRingInclusion
module Isℤ↪ℝ = Number.Inclusions.IsROrderedCommRingInclusion
module Isℤ↪ℂ = Number.Inclusions.Isℤ↪ℂ
module Isℚ↪ℝ = Number.Inclusions.IsROrderedFieldInclusion
module Isℚ↪ℂ = Number.Inclusions.IsRFieldInclusion
module Isℝ↪ℂ = Number.Inclusions.IsRFieldInclusion
-}
|
{
"alphanum_fraction": 0.7842215256,
"avg_line_length": 50.3684210526,
"ext": "agda",
"hexsha": "185e4d553236541997fc5b066df92f784b13ded5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/InclusionModules.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/InclusionModules.agda",
"max_line_length": 89,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/InclusionModules.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 653,
"size": 1914
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Conversion of binary operators to binary relations via the right
-- natural order.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
open import Algebra.FunctionProperties using (Op₂)
module Relation.Binary.Construct.NaturalOrder.Right
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_∙_ : Op₂ A) where
open import Data.Product using (_,_; _×_)
open import Data.Sum using (inj₁; inj₂)
open import Relation.Nullary using (¬_)
open import Algebra.FunctionProperties _≈_
open import Algebra.Structures _≈_
import Relation.Binary.Reasoning.Setoid as EqReasoning
------------------------------------------------------------------------
-- Definition
infix 4 _≤_
_≤_ : Rel A ℓ
x ≤ y = x ≈ (y ∙ x)
------------------------------------------------------------------------
-- Relational properties
reflexive : IsMagma _∙_ → Idempotent _∙_ → _≈_ ⇒ _≤_
reflexive magma idem {x} {y} x≈y = begin
x ≈⟨ sym (idem x) ⟩
x ∙ x ≈⟨ ∙-cong x≈y refl ⟩
y ∙ x ∎
where open IsMagma magma; open EqReasoning setoid
refl : Symmetric _≈_ → Idempotent _∙_ → Reflexive _≤_
refl sym idem {x} = sym (idem x)
antisym : IsEquivalence _≈_ → Commutative _∙_ → Antisymmetric _≈_ _≤_
antisym isEq comm {x} {y} x≤y y≤x = begin
x ≈⟨ x≤y ⟩
y ∙ x ≈⟨ comm y x ⟩
x ∙ y ≈⟨ sym y≤x ⟩
y ∎
where open IsEquivalence isEq; open EqReasoning (record { isEquivalence = isEq })
total : Symmetric _≈_ → Transitive _≈_ → Selective _∙_ → Commutative _∙_ → Total _≤_
total sym trans sel comm x y with sel x y
... | inj₁ x∙y≈x = inj₁ (trans (sym x∙y≈x) (comm x y) )
... | inj₂ x∙y≈y = inj₂ (sym x∙y≈y)
trans : IsSemigroup _∙_ → Transitive _≤_
trans semi {x} {y} {z} x≤y y≤z = begin
x ≈⟨ x≤y ⟩
y ∙ x ≈⟨ ∙-cong y≤z S.refl ⟩
(z ∙ y) ∙ x ≈⟨ assoc z y x ⟩
z ∙ (y ∙ x) ≈⟨ ∙-cong S.refl (sym x≤y) ⟩
z ∙ x ∎
where open module S = IsSemigroup semi; open EqReasoning S.setoid
respʳ : IsMagma _∙_ → _≤_ Respectsʳ _≈_
respʳ magma {x} {y} {z} y≈z x≤y = begin
x ≈⟨ x≤y ⟩
y ∙ x ≈⟨ ∙-cong y≈z M.refl ⟩
z ∙ x ∎
where open module M = IsMagma magma; open EqReasoning M.setoid
respˡ : IsMagma _∙_ → _≤_ Respectsˡ _≈_
respˡ magma {x} {y} {z} y≈z y≤x = begin
z ≈⟨ sym y≈z ⟩
y ≈⟨ y≤x ⟩
x ∙ y ≈⟨ ∙-cong M.refl y≈z ⟩
x ∙ z ∎
where open module M = IsMagma magma; open EqReasoning M.setoid
resp₂ : IsMagma _∙_ → _≤_ Respects₂ _≈_
resp₂ magma = respʳ magma , respˡ magma
dec : Decidable _≈_ → Decidable _≤_
dec _≟_ x y = x ≟ (y ∙ x)
------------------------------------------------------------------------
-- Structures
isPreorder : IsBand _∙_ → IsPreorder _≈_ _≤_
isPreorder band = record
{ isEquivalence = isEquivalence
; reflexive = reflexive isMagma idem
; trans = trans isSemigroup
}
where open IsBand band hiding (reflexive; trans)
isPartialOrder : IsSemilattice _∙_ → IsPartialOrder _≈_ _≤_
isPartialOrder semilattice = record
{ isPreorder = isPreorder isBand
; antisym = antisym isEquivalence comm
}
where open IsSemilattice semilattice
isDecPartialOrder : IsSemilattice _∙_ → Decidable _≈_ →
IsDecPartialOrder _≈_ _≤_
isDecPartialOrder semilattice _≟_ = record
{ isPartialOrder = isPartialOrder semilattice
; _≟_ = _≟_
; _≤?_ = dec _≟_
}
isTotalOrder : IsSemilattice _∙_ → Selective _∙_ → IsTotalOrder _≈_ _≤_
isTotalOrder latt sel = record
{ isPartialOrder = isPartialOrder latt
; total = total sym S.trans sel comm
}
where open module S = IsSemilattice latt
isDecTotalOrder : IsSemilattice _∙_ → Selective _∙_ →
Decidable _≈_ → IsDecTotalOrder _≈_ _≤_
isDecTotalOrder latt sel _≟_ = record
{ isTotalOrder = isTotalOrder latt sel
; _≟_ = _≟_
; _≤?_ = dec _≟_
}
------------------------------------------------------------------------
-- Packages
preorder : IsBand _∙_ → Preorder a ℓ ℓ
preorder band = record
{ isPreorder = isPreorder band
}
poset : IsSemilattice _∙_ → Poset a ℓ ℓ
poset latt = record
{ isPartialOrder = isPartialOrder latt
}
decPoset : IsSemilattice _∙_ → Decidable _≈_ → DecPoset a ℓ ℓ
decPoset latt dec = record
{ isDecPartialOrder = isDecPartialOrder latt dec
}
totalOrder : IsSemilattice _∙_ → Selective _∙_ → TotalOrder a ℓ ℓ
totalOrder latt sel = record
{ isTotalOrder = isTotalOrder latt sel
}
decTotalOrder : IsSemilattice _∙_ → Selective _∙_ →
Decidable _≈_ → DecTotalOrder a ℓ ℓ
decTotalOrder latt sel dec = record
{ isDecTotalOrder = isDecTotalOrder latt sel dec
}
|
{
"alphanum_fraction": 0.5888108913,
"avg_line_length": 30.1346153846,
"ext": "agda",
"hexsha": "533771dccc4dfa989c36c7d272f03d89fed9ad1b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NaturalOrder/Right.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NaturalOrder/Right.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NaturalOrder/Right.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1724,
"size": 4701
}
|
-- Andreas, 2011-10-06
module Issue483b where
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
postulate
A : Set
f : .A → A
test : let X : .A → A
X = _
in .(x : A) → X (f x) ≡ f x
test x = refl
-- this gave an internal error before because X _ = f x
-- was solved by X = λ _ → f __IMPOSSIBLE__
--
-- Now one should get an unsolved meta
|
{
"alphanum_fraction": 0.5582655827,
"avg_line_length": 20.5,
"ext": "agda",
"hexsha": "ac70d3a7c1c1678d05faaffdbefa64a3a8338127",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue483b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue483b.agda",
"max_line_length": 55,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue483b.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 139,
"size": 369
}
|
{-
USES WITH
-}
{-
A simple bidirectional type checker for simply typed lambda calculus which is
sound by construction.
-}
module SimpleTypes where
infix 10 _==_
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A -> Maybe A
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (suc n)
fsuc : {n : Nat} -> Fin n -> Fin (suc n)
data List (A : Set) : Set where
ε : List A
_,_ : List A -> A -> List A
length : forall {A} -> List A -> Nat
length ε = zero
length (xs , x) = suc (length xs)
infixl 25 _,_
-- Raw terms
data Expr : Set where
varʳ : Nat -> Expr
_•ʳ_ : Expr -> Expr -> Expr
ƛʳ_ : Expr -> Expr
infixl 90 _•ʳ_
infix 50 ƛʳ_
-- Types
data Type : Set where
ι : Type
_⟶_ : Type -> Type -> Type
infixr 40 _⟶_
-- Typed terms
Ctx = List Type
data Var : Ctx -> Type -> Set where
vz : forall {Γ τ} -> Var (Γ , τ) τ
vs : forall {Γ τ σ} -> Var Γ τ -> Var (Γ , σ) τ
data Term : Ctx -> Type -> Set where
var : forall {Γ τ} -> Var Γ τ -> Term Γ τ
_•_ : forall {Γ τ σ} -> Term Γ (τ ⟶ σ) -> Term Γ τ -> Term Γ σ
ƛ_ : forall {Γ τ σ} -> Term (Γ , σ) τ -> Term Γ (σ ⟶ τ)
infixl 90 _•_
infix 50 ƛ_
-- Type erasure
⌊_⌋ˣ : forall {Γ τ} -> Var Γ τ -> Nat
⌊ vz ⌋ˣ = zero
⌊ vs x ⌋ˣ = suc ⌊ x ⌋ˣ
⌊_⌋ : forall {Γ τ} -> Term Γ τ -> Expr
⌊ var v ⌋ = varʳ ⌊ v ⌋ˣ
⌊ s • t ⌋ = ⌊ s ⌋ •ʳ ⌊ t ⌋
⌊ ƛ t ⌋ = ƛʳ ⌊ t ⌋
-- Type equality
infix 30 _≟_
_≟_ : (σ τ : Type) -> Maybe (σ == τ)
ι ≟ ι = just refl
σ₁ ⟶ τ₁ ≟ σ₂ ⟶ τ₂ with σ₁ ≟ σ₂ | τ₁ ≟ τ₂
σ ⟶ τ ≟ .σ ⟶ .τ | just refl | just refl = just refl
_ ⟶ _ ≟ _ ⟶ _ | _ | _ = nothing
_ ≟ _ = nothing
-- The type checked view
-- ok : forall {Γ τ e} -> Check ⌊ e ⌋ -- unsolved metas with no range!
data Check (Γ : Ctx)(τ : Type) : Expr -> Set where
ok : (t : Term Γ τ) -> Check Γ τ ⌊ t ⌋
bad : {e : Expr} -> Check Γ τ e
data Infer (Γ : Ctx) : Expr -> Set where
yes : (τ : Type)(t : Term Γ τ) -> Infer Γ ⌊ t ⌋
no : {e : Expr} -> Infer Γ e
data Lookup (Γ : Ctx) : Nat -> Set where
found : (τ : Type)(x : Var Γ τ) -> Lookup Γ ⌊ x ⌋ˣ
outofscope : {n : Nat} -> Lookup Γ n
lookup : (Γ : Ctx)(n : Nat) -> Lookup Γ n
lookup ε n = outofscope
lookup (Γ , τ) zero = found τ vz
lookup (Γ , σ) (suc n) with lookup Γ n
lookup (Γ , σ) (suc .(⌊ x ⌋ˣ)) | found τ x = found τ (vs x)
lookup (Γ , σ) (suc n) | outofscope = outofscope
infix 20 _⊢_∋_ _⊢_∈
_⊢_∈ : (Γ : Ctx)(e : Expr) -> Infer Γ e
_⊢_∋_ : (Γ : Ctx)(τ : Type)(e : Expr) -> Check Γ τ e
Γ ⊢ ι ∋ ƛʳ e = bad
Γ ⊢ (σ ⟶ τ) ∋ ƛʳ e with Γ , σ ⊢ τ ∋ e
Γ ⊢ (σ ⟶ τ) ∋ ƛʳ .(⌊ t ⌋) | ok t = ok (ƛ t)
Γ ⊢ (σ ⟶ τ) ∋ ƛʳ _ | bad = bad
Γ ⊢ τ ∋ e with Γ ⊢ e ∈
Γ ⊢ τ ∋ .(⌊ t ⌋) | yes σ t with τ ≟ σ
Γ ⊢ τ ∋ .(⌊ t ⌋) | yes .τ t | just refl = ok t
Γ ⊢ τ ∋ .(⌊ t ⌋) | yes σ t | nothing = bad
Γ ⊢ τ ∋ e | no = bad
Γ ⊢ varʳ i ∈ with lookup Γ i
Γ ⊢ varʳ .(⌊ x ⌋ˣ) ∈ | found τ x = yes τ (var x)
Γ ⊢ varʳ _ ∈ | outofscope = no
Γ ⊢ e₁ •ʳ e₂ ∈ with Γ ⊢ e₁ ∈
Γ ⊢ e₁ •ʳ e₂ ∈ | no = no
Γ ⊢ .(⌊ t₁ ⌋) •ʳ e₂ ∈ | yes ι t₁ = no
Γ ⊢ .(⌊ t₁ ⌋) •ʳ e₂ ∈ | yes (σ ⟶ τ) t₁ with Γ ⊢ σ ∋ e₂
Γ ⊢ .(⌊ t₁ ⌋) •ʳ .(⌊ t₂ ⌋) ∈ | yes (σ ⟶ τ) t₁ | ok t₂ = yes τ (t₁ • t₂)
Γ ⊢ .(⌊ t₁ ⌋) •ʳ _ ∈ | yes (σ ⟶ τ) t₁ | bad = no
Γ ⊢ ƛʳ e ∈ = no
-- Proving completeness (for normal terms)
-- Needs magic with
{-
mutual
data Nf : forall {Γ τ} -> Term Γ τ -> Set where
ƛ-nf : forall {Γ σ τ} -> {t : Term (Γ , σ) τ} -> Nf t -> Nf (ƛ t)
ne-nf : forall {Γ τ} -> {t : Term Γ τ} -> Ne t -> Nf t
data Ne : forall {Γ τ} -> Term Γ τ -> Set where
•-ne : forall {Γ σ τ} ->
{t₁ : Term Γ (σ ⟶ τ)} -> Ne t₁ ->
{t₂ : Term Γ σ} -> Nf t₂ -> Ne (t₁ • t₂)
var-ne : forall {Γ τ} -> {x : Var Γ τ} -> Ne (var x)
mutual
complete-check : forall {Γ τ} -> (t : Term Γ τ) -> Nf t ->
Γ ⊢ τ ∋ ⌊ t ⌋ == ok t
complete-check ._ (ƛ-nf t) = {! !}
complete-check _ (ne-nf n) with complete-infer _ n
complete-check t (ne-nf n) | p = {! !}
complete-infer : forall {Γ τ} -> (t : Term Γ τ) -> Ne t ->
Γ ⊢ ⌊ t ⌋ ∈ == yes τ t
complete-infer t ne = {! !}
-}
-- Testing
test1 = ε ⊢ ι ⟶ ι ∋ ƛʳ varʳ zero
test2 = ε , ι , ι ⟶ ι ⊢ varʳ zero •ʳ varʳ (suc zero) ∈
|
{
"alphanum_fraction": 0.4784885044,
"avg_line_length": 24.8192090395,
"ext": "agda",
"hexsha": "a8f2da37c342148d5072e87f5b6c7c7e8b91c6cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/beyond/SimpleTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/beyond/SimpleTypes.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/beyond/SimpleTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 2086,
"size": 4393
}
|
module Prelude.Applicative.Indexed {i} {I : Set i} where
open import Agda.Primitive
open import Prelude.Unit
open import Prelude.Functor
open import Prelude.Function
open import Prelude.Equality
open import Prelude.Number
open import Prelude.Semiring
open import Prelude.Fractional
record IApplicative {a b} (F : I → I → Set a → Set b) : Set (i ⊔ lsuc a ⊔ b) where
infixl 4 _<*>_ _<*_ _*>_
field
pure : ∀ {A i} → A → F i i A
_<*>_ : ∀ {A B i j k} → F i j (A → B) → F j k A → F i k B
overlap {{super}} : ∀ {i j} → Functor (F i j)
_<*_ : ∀ {A B i j k} → F i j A → F j k B → F i k A
a <* b = ⦇ const a b ⦈
_*>_ : ∀ {A B i j k} → F i j A → F j k B → F i k B
a *> b = ⦇ (const id) a b ⦈
open IApplicative {{...}} public
{-# DISPLAY IApplicative.pure _ = pure #-}
{-# DISPLAY IApplicative._<*>_ _ = _<*>_ #-}
{-# DISPLAY IApplicative._<*_ _ = _<*_ #-}
{-# DISPLAY IApplicative._*>_ _ = _*>_ #-}
-- Level polymorphic functors
record IApplicative′ {a b} (F : ∀ {a} → I → I → Set a → Set a) : Set (i ⊔ lsuc (a ⊔ b)) where
infixl 4 _<*>′_
field
_<*>′_ : {A : Set a} {B : Set b} {i j k : I} → F i j (A → B) → F j k A → F i k B
overlap {{super}} : ∀ {i j} → Functor′ {a} {b} (F i j)
open IApplicative′ {{...}} public
module _ {F : ∀ {a} → I → I → Set a → Set a}
{{_ : ∀ {a} → IApplicative {a = a} F}}
{{_ : ∀ {a b} → IApplicative′ {a = a} {b = b} F}}
{a b} {A : Set a} {B : Set b} {i j k} where
infixl 4 _<*′_ _*>′_
_<*′_ : F i j A → F j k B → F i k A
a <*′ b = pure const <*>′ a <*>′ b
_*>′_ : F i j A → F j k B → F i k B
a *>′ b = pure (const id) <*>′ a <*>′ b
|
{
"alphanum_fraction": 0.5106512477,
"avg_line_length": 31,
"ext": "agda",
"hexsha": "e18439020520e0fe2cd7c139b4439d8498819b1a",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Prelude/Applicative/Indexed.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Prelude/Applicative/Indexed.agda",
"max_line_length": 93,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Prelude/Applicative/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 672,
"size": 1643
}
|
------------------------------------------------------------------------
-- A very brief treatment of different kinds of term equivalences,
-- including contextual equivalence and applicative bisimilarity
------------------------------------------------------------------------
module Lambda.Closure.Equivalences where
open import Category.Monad.Partiality as Partiality
using (_⊥; later⁻¹; laterˡ⁻¹; laterʳ⁻¹)
open import Codata.Musical.Notation
open import Data.Fin using (Fin; zero)
open import Data.Maybe hiding (_>>=_)
open import Data.Maybe.Relation.Binary.Pointwise as Maybe
using (just; nothing)
open import Data.Nat
open import Data.Product as Prod
open import Data.Unit
open import Data.Vec using ([]; _∷_)
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary
open Partiality._⊥
private
open module EP {A : Set} = Partiality.Equality (_≡_ {A = A})
open module RP {A : Set} =
Partiality.Reasoning (P.isEquivalence {A = A})
open module RC {A : Set} =
Partiality.Reasoning {_∼_ = λ (_ _ : A) → ⊤} _
using () renaming (_≈⟨_⟩_ to _≈○⟨_⟩_; _∎ to _∎○)
open import Lambda.Closure.Functional
open PF using (return; _>>=_; fail)
open import Lambda.Syntax
open Closure Tm
------------------------------------------------------------------------
-- Two equivalent notions of equivalence of partial values
-- _≈○_ is a notion of weak bisimilarity which identifies all values.
open module EC {A : Set} = Partiality.Equality (λ (_ _ : A) → ⊤)
using () renaming (_≈_ to _≈○_)
-- _≈○_ is equivalent to "terminates iff terminates".
≈○⇔⇓≈⇓ : {A : Set} {x y : A ⊥} → x ≈○ y ⇔ (x ⇓ ⇔ y ⇓)
≈○⇔⇓≈⇓ {A} = equivalence
(λ x≈y → equivalence (h₁ x≈y) (h₁ (RC.sym x≈y)))
(h₂ _ _)
where
h₁ : {x y : A ⊥} → x ≈○ y → x ⇓ → y ⇓
h₁ (EC.now _) (v , now P.refl) = -, now P.refl
h₁ (EC.later x≈y) (v , laterˡ x⇓v) = Prod.map id laterˡ $ h₁ (♭ x≈y) (v , x⇓v)
h₁ (EC.laterʳ x≈y) (v , x⇓v) = Prod.map id laterˡ $ h₁ x≈y (v , x⇓v)
h₁ (EC.laterˡ x≈y) (v , laterˡ x⇓v) = h₁ x≈y (v , x⇓v)
h₂ : (x y : A ⊥) → x ⇓ ⇔ y ⇓ → x ≈○ y
h₂ (now v) y x⇓⇔y⇓ =
now v ≈○⟨ EC.now _ ⟩
now _ ≈○⟨ Partiality.map _ (sym $ proj₂ $ Equivalence.to x⇓⇔y⇓ ⟨$⟩ (-, now P.refl)) ⟩
y ∎○
h₂ x (now v) x⇓⇔y⇓ =
x ≈○⟨ Partiality.map _ ( proj₂ $ Equivalence.from x⇓⇔y⇓ ⟨$⟩ (-, now P.refl)) ⟩
now _ ≈○⟨ EC.now _ ⟩
now v ∎○
h₂ (later x) (later y) x⇓⇔y⇓ = EC.later (♯
h₂ (♭ x) (♭ y)
(equivalence (lemma (_⟨$⟩_ (Equivalence.to x⇓⇔y⇓)))
(lemma (_⟨$⟩_ (Equivalence.from x⇓⇔y⇓)))))
where
lemma : {A : Set} {x y : ∞ (A ⊥)} →
(later x ⇓ → later y ⇓) → (♭ x ⇓ → ♭ y ⇓)
lemma hyp (v , x⇓) = Prod.map id laterˡ⁻¹ $ hyp (v , laterˡ x⇓)
------------------------------------------------------------------------
-- Two equivalent definitions of contextual equivalence
-- Context m n consists of contexts with zero or more holes. The holes
-- expect terms of type Tm m, and if we fill those holes we get a term
-- of type Tm n.
infixl 9 _·_
data Context (m : ℕ) : ℕ → Set where
• : Context m m
con : ∀ {n} (i : ℕ) → Context m n
var : ∀ {n} (x : Fin n) → Context m n
ƛ : ∀ {n} (C : Context m (suc n)) → Context m n
_·_ : ∀ {n} (C₁ C₂ : Context m n) → Context m n
-- Fills all the holes.
infix 10 _[_]
_[_] : ∀ {m n} → Context m n → Tm m → Tm n
• [ t ] = t
con i [ t ] = con i
var x [ t ] = var x
ƛ C [ t ] = ƛ (C [ t ])
(C₁ · C₂) [ t ] = C₁ [ t ] · C₂ [ t ]
-- Contextual equivalence.
--
-- Termination is the only observation. This is perhaps a bit strange:
-- there is no way to observe the difference between con i and con j
-- for i ≢ j.
infix 4 _≈C_
_≈C_ : ∀ {n} → Tm n → Tm n → Set
t₁ ≈C t₂ = ∀ C → ⟦ C [ t₁ ] ⟧ [] ≈○ ⟦ C [ t₂ ] ⟧ []
-- Alternative definition of contextual equivalence.
infix 4 _≈C′_
_≈C′_ : ∀ {n} → Tm n → Tm n → Set
t₁ ≈C′ t₂ = ∀ C → ⟦ C [ t₁ ] ⟧ [] ⇓ ⇔ ⟦ C [ t₂ ] ⟧ [] ⇓
-- These definitions are equivalent.
≈C⇔≈C′ : ∀ {n} {t₁ t₂ : Tm n} → t₁ ≈C t₂ ⇔ t₁ ≈C′ t₂
≈C⇔≈C′ = equivalence
(λ t₁≈t₂ C → Equivalence.to ≈○⇔⇓≈⇓ ⟨$⟩ t₁≈t₂ C)
(λ t₁≈t₂ C → Equivalence.from ≈○⇔⇓≈⇓ ⟨$⟩ t₁≈t₂ C)
------------------------------------------------------------------------
-- A very strict term equivalence
-- A term equivalence defined directly on top of the semantics.
infix 4 _≈!_
_≈!_ : ∀ {n} → Tm n → Tm n → Set
t₁ ≈! t₂ = ∀ ρ → ⟦ t₁ ⟧ ρ ≈ ⟦ t₂ ⟧ ρ
-- This equivalence is not compatible.
--
-- Note that the proof does not use constants (con).
¬-compatible : ¬ ((t₁ t₂ : Tm 1) → t₁ ≈! t₂ → ƛ t₁ ≈! ƛ t₂)
¬-compatible ƛ-cong with
ƛ-cong (ƛ (vr 1) · ƛ (ƛ (vr 0))) (ƛ (vr 1) · ƛ (vr 0))
(λ _ → later (♯ now P.refl))
[]
... | now ()
------------------------------------------------------------------------
-- Incorrect definition of applicative bisimilarity
-- The difference between this definition and the one below is that in
-- this definition ƛ is inductive rather than coinductive.
module Incorrect where
infix 4 _≈mv_ _≈v_
-- _≈mv_, _≈c_ and _≈v_ are defined mutually (coinductively).
data _≈v_ : Value → Value → Set
-- Equivalence of possibly exceptional values.
_≈mv_ : Maybe Value → Maybe Value → Set
_≈mv_ = Maybe.Pointwise _≈v_
-- Equivalence of computations.
open module EA = Partiality.Equality _≈mv_
using () renaming (_≈_ to _≈c_)
-- Equivalence of values.
data _≈v_ where
con : ∀ {i} → con i ≈v con i
ƛ : ∀ {n₁} {t₁ : Tm (1 + n₁)} {ρ₁} {n₂} {t₂ : Tm (1 + n₂)} {ρ₂}
(t₁≈t₂ : ∀ v → ⟦ t₁ ⟧ (v ∷ ρ₁) ≈c ⟦ t₂ ⟧ (v ∷ ρ₂)) →
ƛ t₁ ρ₁ ≈v ƛ t₂ ρ₂
-- Applicative bisimilarity.
infix 4 _≈t_
_≈t_ : ∀ {n} → Tm n → Tm n → Set
t₁ ≈t t₂ = ∀ ρ → ⟦ t₁ ⟧ ρ ≈c ⟦ t₂ ⟧ ρ
-- This notion of applicative bisimilarity is not reflexive.
--
-- Note that the definition above is a bit strange in Agda: it is
-- subject to the quantifier inversion described by Thorsten
-- Altenkirch and myself in "Termination Checking in the Presence of
-- Nested Inductive and Coinductive Types". However, for this proof
-- it does not matter if _≈c_ is seen as having the form
-- μX.νY.μZ. F X Y Z or νX.μY. F X Y; the ν part is never used.
mutual
distinct-c : ¬ now (just (ƛ (var zero) [])) ≈c
now (just (ƛ (var zero) []))
distinct-c (now eq) = distinct-mv eq
distinct-mv : ¬ just (ƛ (var zero) []) ≈mv
just (ƛ (var zero) [])
distinct-mv (just eq) = distinct-v eq
distinct-v : ¬ ƛ (var zero) [] ≈v ƛ (var zero) []
distinct-v (ƛ eq) = distinct-c (eq (ƛ (var zero) []))
distinct-t : ¬ ƛ (var zero) ≈t (Tm 0 ∋ ƛ (var zero))
distinct-t eq = distinct-c (eq [])
------------------------------------------------------------------------
-- Applicative bisimilarity
infix 4 _≈mv_ _≈v_
-- _≈mv_, _≈c_ and _≈v_ are defined mutually (coinductively).
data _≈v_ : Value → Value → Set
-- Equivalence of possibly exceptional values.
_≈mv_ : Maybe Value → Maybe Value → Set
_≈mv_ = Maybe.Pointwise _≈v_
-- Equivalence of computations.
open module EA = Partiality.Equality _≈mv_
using () renaming (_≈_ to _≈c_)
-- Equivalence of values.
data _≈v_ where
con : ∀ {i} → con i ≈v con i
ƛ : ∀ {n₁} {t₁ : Tm (1 + n₁)} {ρ₁} {n₂} {t₂ : Tm (1 + n₂)} {ρ₂}
(t₁≈t₂ : ∀ v → ∞ (⟦ t₁ ⟧ (v ∷ ρ₁) ≈c ⟦ t₂ ⟧ (v ∷ ρ₂))) →
ƛ t₁ ρ₁ ≈v ƛ t₂ ρ₂
-- Applicative bisimilarity.
infix 4 _≈t_
_≈t_ : ∀ {n} → Tm n → Tm n → Set
t₁ ≈t t₂ = ∀ ρ → ⟦ t₁ ⟧ ρ ≈c ⟦ t₂ ⟧ ρ
-- Applicative bisimilarity is reflexive.
mutual
infix 3 _∎mv _∎c _∎v
_∎mv : (v : Maybe Value) → v ≈mv v
just v ∎mv = just (v ∎v)
nothing ∎mv = nothing
_∎c : (x : Maybe Value ⊥) → x ≈c x
now mv ∎c = EA.now (mv ∎mv)
later x ∎c = EA.later (♯ (♭ x ∎c))
_∎v : (v : Value) → v ≈v v
con i ∎v = con
ƛ t ρ ∎v = ƛ (λ v → ♯ (⟦ t ⟧ (v ∷ ρ) ∎c))
infix 3 _∎t
_∎t : ∀ {n} (t : Tm n) → t ≈t t
t ∎t = λ ρ → ⟦ t ⟧ ρ ∎c
-- Applicative bisimilarity is symmetric.
mutual
sym-mv : ∀ {v₁ v₂} → v₁ ≈mv v₂ → v₂ ≈mv v₁
sym-mv (just v₁≈v₂) = just (sym-v v₁≈v₂)
sym-mv nothing = nothing
sym-c : ∀ {x₁ x₂} → x₁ ≈c x₂ → x₂ ≈c x₁
sym-c (EA.now v₁≈v₂) = EA.now (sym-mv v₁≈v₂)
sym-c (EA.later x₁≈x₂) = EA.later (♯ sym-c (♭ x₁≈x₂))
sym-c (EA.laterˡ x₁≈x₂) = EA.laterʳ (sym-c x₁≈x₂)
sym-c (EA.laterʳ x₁≈x₂) = EA.laterˡ (sym-c x₁≈x₂)
sym-v : ∀ {v₁ v₂} → v₁ ≈v v₂ → v₂ ≈v v₁
sym-v con = con
sym-v (ƛ t₁≈t₂) = ƛ (λ v → ♯ sym-c (♭ (t₁≈t₂ v)))
sym-t : ∀ {n} {t₁ t₂ : Tm n} → t₁ ≈t t₂ → t₂ ≈t t₁
sym-t t₁≈t₂ = λ ρ → sym-c (t₁≈t₂ ρ)
-- Applicative bisimilarity is transitive.
mutual
trans-mv : ∀ {v₁ v₂ v₃} → v₁ ≈mv v₂ → v₂ ≈mv v₃ → v₁ ≈mv v₃
trans-mv (just v₁≈v₂) (just v₂≈v₃) = just (trans-v v₁≈v₂ v₂≈v₃)
trans-mv nothing nothing = nothing
private
now-trans-c : ∀ {x₁ x₂ v₃} → x₁ ≈c x₂ → x₂ ≈c now v₃ → x₁ ≈c now v₃
now-trans-c (EA.now v₁≈v₂) (EA.now v₂≈v₃) = EA.now (trans-mv v₁≈v₂ v₂≈v₃)
now-trans-c (EA.laterˡ x₁≈x₂) x₂≈v₃ = EA.laterˡ (now-trans-c x₁≈x₂ x₂≈v₃)
now-trans-c x₁≈lx₂ (EA.laterˡ x₂≈v₃) = now-trans-c (laterʳ⁻¹ x₁≈lx₂) x₂≈v₃
later-trans-c : ∀ {x₁ x₂ x₃} →
x₁ ≈c x₂ → x₂ ≈c later x₃ → x₁ ≈c later x₃
later-trans-c (EA.later x₁≈x₂) lx₂≈lx₃ = EA.later (♯ trans-c (♭ x₁≈x₂) (later⁻¹ lx₂≈lx₃))
later-trans-c (EA.laterˡ x₁≈x₂) x₂≈lx₃ = EA.later (♯ trans-c x₁≈x₂ (laterʳ⁻¹ x₂≈lx₃))
later-trans-c (EA.laterʳ x₁≈x₂) lx₂≈lx₃ = later-trans-c x₁≈x₂ (laterˡ⁻¹ lx₂≈lx₃)
later-trans-c x₁≈x₂ (EA.laterʳ x₂≈x₃) = EA.laterʳ ( trans-c x₁≈x₂ x₂≈x₃ )
trans-c : ∀ {x₁ x₂ x₃} → x₁ ≈c x₂ → x₂ ≈c x₃ → x₁ ≈c x₃
trans-c {x₃ = now v₃} x₁≈x₂ x₂≈v₃ = now-trans-c x₁≈x₂ x₂≈v₃
trans-c {x₃ = later z₃} x₁≈x₂ x₂≈lx₃ = later-trans-c x₁≈x₂ x₂≈lx₃
trans-v : ∀ {v₁ v₂ v₃} → v₁ ≈v v₂ → v₂ ≈v v₃ → v₁ ≈v v₃
trans-v con con = con
trans-v (ƛ t₁≈t₂) (ƛ t₂≈t₃) =
ƛ (λ v → ♯ trans-c (♭ (t₁≈t₂ v)) (♭ (t₂≈t₃ v)))
trans-t : ∀ {n} {t₁ t₂ t₃ : Tm n} → t₁ ≈t t₂ → t₂ ≈t t₃ → t₁ ≈t t₃
trans-t t₁≈t₂ t₂≈t₃ = λ ρ → trans-c (t₁≈t₂ ρ) (t₂≈t₃ ρ)
-- Bind preserves applicative bisimilarity.
infixl 1 _>>=-cong-c_
_>>=-cong-c_ : ∀ {x₁ x₂ f₁ f₂} →
x₁ ≈c x₂ → (∀ {v₁ v₂} → v₁ ≈v v₂ → f₁ v₁ ≈c f₂ v₂) →
(x₁ >>= f₁) ≈c (x₂ >>= f₂)
_>>=-cong-c_ {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ =
Partiality._>>=-cong_ x₁≈x₂ helper
where
helper : ∀ {mv₁ mv₂} → mv₁ ≈mv mv₂ →
maybe f₁ fail mv₁ ≈c maybe f₂ fail mv₂
helper nothing = EA.now nothing
helper (just v₁≈v₂) = f₁≈f₂ v₁≈v₂
-- _≈!_ is stronger than applicative bisimilarity.
≈!⇒≈t : ∀ {n} {t₁ t₂ : Tm n} → t₁ ≈! t₂ → t₁ ≈t t₂
≈!⇒≈t t₁≈t₂ = λ ρ →
Partiality.map (λ {v₁} v₁≡v₂ → P.subst (_≈mv_ v₁) v₁≡v₂ (v₁ ∎mv))
(t₁≈t₂ ρ)
¬≈t⇒≈! : ¬ ((t₁ t₂ : Tm 0) → t₁ ≈t t₂ → t₁ ≈! t₂)
¬≈t⇒≈! hyp with hyp t₁ t₂ bisimilar []
where
t₁ : Tm 0
t₁ = ƛ (ƛ (vr 0)) · con 0
t₂ : Tm 0
t₂ = ƛ (vr 0)
bisimilar : t₁ ≈t t₂
bisimilar [] =
EA.laterˡ (EA.now (just (ƛ (λ v → ♯ (return v ∎c)))))
... | laterˡ (now ())
|
{
"alphanum_fraction": 0.5307651622,
"avg_line_length": 30.9945355191,
"ext": "agda",
"hexsha": "4b8f1b069d6877c006762621c00a3445df642b09",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Lambda/Closure/Equivalences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Lambda/Closure/Equivalences.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Lambda/Closure/Equivalences.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 5065,
"size": 11344
}
|
open import Data.Product using ( _×_ ; _,_ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.Role using ( Role ; ⟨_⟩ ; ⟨_⟩⁻¹ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox.Interp using ( Interp ; Δ ; rol ; _⊨_≈_ ; rol-≈ ; ≈-refl ; ≈-sym )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( _≲_ ; _≃_ ; ≲-resp-rol ; ≲-image² ; ≃-image ; ≃-image⁻¹ ; ≃-image² ; ≃-image²⁻¹ ; ≃-impl-≲ ; ≃-iso⁻¹ )
open import Web.Semantic.Util using ( Subset ; _⁻¹ )
module Web.Semantic.DL.Role.Model {Σ : Signature} where
_⟦_⟧₂ : ∀ (I : Interp Σ) → Role Σ → Subset (Δ I × Δ I)
I ⟦ ⟨ r ⟩ ⟧₂ = rol I r
I ⟦ ⟨ r ⟩⁻¹ ⟧₂ = (rol I r)⁻¹
⟦⟧₂-resp-≈ : ∀ I R {w x y z} →
(I ⊨ w ≈ x) → ((x , y) ∈ I ⟦ R ⟧₂) → (I ⊨ y ≈ z) → ((w , z) ∈ I ⟦ R ⟧₂)
⟦⟧₂-resp-≈ I ⟨ r ⟩ w≈x xy∈⟦r⟧ y≈z = rol-≈ I r w≈x xy∈⟦r⟧ y≈z
⟦⟧₂-resp-≈ I ⟨ r ⟩⁻¹ w≈x yx∈⟦r⟧ y≈z = rol-≈ I r (≈-sym I y≈z) yx∈⟦r⟧ (≈-sym I w≈x)
⟦⟧₂-resp-≲ : ∀ {I J : Interp Σ} → (I≲J : I ≲ J) → ∀ {xy} R →
(xy ∈ I ⟦ R ⟧₂) → (≲-image² I≲J xy ∈ J ⟦ R ⟧₂)
⟦⟧₂-resp-≲ I≲J {x , y} ⟨ r ⟩ xy∈⟦r⟧ = ≲-resp-rol I≲J xy∈⟦r⟧
⟦⟧₂-resp-≲ I≲J {x , y} ⟨ r ⟩⁻¹ yx∈⟦r⟧ = ≲-resp-rol I≲J yx∈⟦r⟧
⟦⟧₂-resp-≃ : ∀ {I J : Interp Σ} → (I≃J : I ≃ J) → ∀ {xy} R →
(xy ∈ I ⟦ R ⟧₂) → (≃-image² I≃J xy ∈ J ⟦ R ⟧₂)
⟦⟧₂-resp-≃ I≃J = ⟦⟧₂-resp-≲ (≃-impl-≲ I≃J)
⟦⟧₂-refl-≃ : ∀ {I J : Interp Σ} → (I≃J : I ≃ J) → ∀ {xy} R →
(≃-image²⁻¹ I≃J xy ∈ I ⟦ R ⟧₂) → (xy ∈ J ⟦ R ⟧₂)
⟦⟧₂-refl-≃ {I} {J} I≃J {x , y} R xy∈⟦R⟧ =
⟦⟧₂-resp-≈ J R (≈-sym J (≃-iso⁻¹ I≃J x))
(⟦⟧₂-resp-≃ I≃J R xy∈⟦R⟧) (≃-iso⁻¹ I≃J y)
⟦⟧₂-galois : ∀ {I J : Interp Σ} → (I≃J : I ≃ J) → ∀ {x y} R →
((≃-image⁻¹ I≃J x , y) ∈ I ⟦ R ⟧₂) → ((x , ≃-image I≃J y) ∈ J ⟦ R ⟧₂)
⟦⟧₂-galois {I} {J} I≃J {x} R xy∈⟦R⟧ =
⟦⟧₂-resp-≈ J R (≈-sym J (≃-iso⁻¹ I≃J x))
(⟦⟧₂-resp-≲ (≃-impl-≲ I≃J) R xy∈⟦R⟧)
(≈-refl J)
|
{
"alphanum_fraction": 0.460874258,
"avg_line_length": 44.119047619,
"ext": "agda",
"hexsha": "89de66d2d3d7bd734c58ee4e5fd17194d5bc9f20",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Role/Model.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Role/Model.agda",
"max_line_length": 160,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Role/Model.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1179,
"size": 1853
}
|
-- Andreas, 2017-07-13, issue #2645
-- Agda accepted this definition:
record S : Set₁ where
postulate
field
f : Set -- Now: error raised here
s : Set → S
s A = record {f = A }
|
{
"alphanum_fraction": 0.609375,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "60d1d2f75d352433af3ea2b32e37d54cbc5bd1f9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2645.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2645.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2645.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 64,
"size": 192
}
|
-- Σ type (also used as existential) and
-- cartesian product (also used as conjunction).
{-# OPTIONS --without-K --safe #-}
module Tools.Product where
open import Data.Product public using (Σ; ∃; ∃₂; _×_; _,_; proj₁; proj₂)
|
{
"alphanum_fraction": 0.6842105263,
"avg_line_length": 25.3333333333,
"ext": "agda",
"hexsha": "75df7c7281987ec0b658d804aaa0fc559bd1b497",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z",
"max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fhlkfy/logrel-mltt",
"max_forks_repo_path": "Tools/Product.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fhlkfy/logrel-mltt",
"max_issues_repo_path": "Tools/Product.agda",
"max_line_length": 72,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fhlkfy/logrel-mltt",
"max_stars_repo_path": "Tools/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z",
"num_tokens": 62,
"size": 228
}
|
{-# OPTIONS --without-K --exact-split #-}
module 05-identity-types where
import 04-inductive-types
open 04-inductive-types public
-- Section 5.1
-- Definition 5.1.1
{- We introduce the identity type. -}
data Id {i : Level} {A : UU i} (x : A) : A → UU i where
refl : Id x x
{- In the following definition we give a construction of path induction.
However, in the development of this library we will mostly use Agda's
built-in methods to give constructions by path induction. -}
ind-Id :
{i j : Level} {A : UU i} (x : A) (B : (y : A) (p : Id x y) → UU j) →
(B x refl) → (y : A) (p : Id x y) → B y p
ind-Id x B b y refl = b
-- Section 5.2 The groupoid structure of types
-- Definition 5.2.1
_∙_ :
{i : Level} {A : UU i} {x y z : A} → Id x y → Id y z → Id x z
refl ∙ q = q
concat :
{i : Level} {A : UU i} {x y : A} → Id x y → (z : A) → Id y z → Id x z
concat p z q = p ∙ q
-- Definition 5.2.2
inv :
{i : Level} {A : UU i} {x y : A} → Id x y → Id y x
inv refl = refl
-- Definition 5.2.3
assoc :
{i : Level} {A : UU i} {x y z w : A} (p : Id x y) (q : Id y z)
(r : Id z w) → Id ((p ∙ q) ∙ r) (p ∙ (q ∙ r))
assoc refl q r = refl
-- Definition 5.2.4
left-unit :
{i : Level} {A : UU i} {x y : A} {p : Id x y} → Id (refl ∙ p) p
left-unit = refl
right-unit :
{i : Level} {A : UU i} {x y : A} {p : Id x y} → Id (p ∙ refl) p
right-unit {p = refl} = refl
-- Definition 5.2.5
left-inv :
{i : Level} {A : UU i} {x y : A} (p : Id x y) →
Id ((inv p) ∙ p) refl
left-inv refl = refl
right-inv :
{i : Level} {A : UU i} {x y : A} (p : Id x y) →
Id (p ∙ (inv p)) refl
right-inv refl = refl
-- Section 5.3 The action on paths of functions
-- Definition 5.3.1
ap :
{i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A} (p : Id x y) →
Id (f x) (f y)
ap f refl = refl
ap-id :
{i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (ap id p) p
ap-id refl = refl
ap-comp :
{i j k : Level} {A : UU i} {B : UU j} {C : UU k} (g : B → C)
(f : A → B) {x y : A} (p : Id x y) → Id (ap (g ∘ f) p) (ap g (ap f p))
ap-comp g f refl = refl
-- Definition 5.3.2
ap-refl :
{i j : Level} {A : UU i} {B : UU j} (f : A → B) (x : A) →
Id (ap f (refl {_} {_} {x})) refl
ap-refl f x = refl
ap-concat :
{i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y z : A}
(p : Id x y) (q : Id y z) → Id (ap f (p ∙ q)) ((ap f p) ∙ (ap f q))
ap-concat f refl q = refl
ap-inv :
{i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A}
(p : Id x y) → Id (ap f (inv p)) (inv (ap f p))
ap-inv f refl = refl
-- Section 5.4 Transport
-- Definition 5.4.1
tr :
{i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → B x → B y
tr B refl b = b
-- Definition 5.4.2
apd :
{i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) {x y : A}
(p : Id x y) → Id (tr B p (f x)) (f y)
apd f refl = refl
path-over :
{i j : Level} {A : UU i} (B : A → UU j) {x x' : A} (p : Id x x') →
B x → B x' → UU j
path-over B p y y' = Id (tr B p y) y'
refl-path-over :
{i j : Level} {A : UU i} (B : A → UU j) (x : A) (y : B x) →
path-over B refl y y
refl-path-over B x y = refl
-- Exercises
-- Exercise 5.1
-- Exercise 5.2
distributive-inv-concat :
{i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A}
(q : Id y z) → Id (inv (p ∙ q)) ((inv q) ∙ (inv p))
distributive-inv-concat refl refl = refl
-- Exercise 5.3
inv-con :
{i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z)
(r : Id x z) → (Id (p ∙ q) r) → Id q ((inv p) ∙ r)
inv-con refl q r = id
con-inv :
{i : Level} {A : UU i} {x y : A} (p : Id x y) {z : A} (q : Id y z)
(r : Id x z) → (Id (p ∙ q) r) → Id p (r ∙ (inv q))
con-inv p refl r =
( λ α → α ∙ (inv right-unit)) ∘ (concat (inv right-unit) r)
-- Exercise 5.4
lift :
{i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y)
(b : B x) → Id (pair x b) (pair y (tr B p b))
lift refl b = refl
-- Exercise 5.5
-- Exercise 5.5(a)
abstract
right-unit-law-add-ℕ :
(x : ℕ) → Id (add-ℕ x zero-ℕ) x
right-unit-law-add-ℕ x = refl
left-unit-law-add-ℕ :
(x : ℕ) → Id (add-ℕ zero-ℕ x) x
left-unit-law-add-ℕ zero-ℕ = refl
left-unit-law-add-ℕ (succ-ℕ x) = ap succ-ℕ (left-unit-law-add-ℕ x)
left-successor-law-add-ℕ :
(x y : ℕ) → Id (add-ℕ (succ-ℕ x) y) (succ-ℕ (add-ℕ x y))
left-successor-law-add-ℕ x zero-ℕ = refl
left-successor-law-add-ℕ x (succ-ℕ y) =
ap succ-ℕ (left-successor-law-add-ℕ x y)
right-successor-law-add-ℕ :
(x y : ℕ) → Id (add-ℕ x (succ-ℕ y)) (succ-ℕ (add-ℕ x y))
right-successor-law-add-ℕ x y = refl
-- Exercise 5.5(b)
abstract
associative-add-ℕ :
(x y z : ℕ) → Id (add-ℕ (add-ℕ x y) z) (add-ℕ x (add-ℕ y z))
associative-add-ℕ x y zero-ℕ = refl
associative-add-ℕ x y (succ-ℕ z) = ap succ-ℕ (associative-add-ℕ x y z)
abstract
commutative-add-ℕ : (x y : ℕ) → Id (add-ℕ x y) (add-ℕ y x)
commutative-add-ℕ zero-ℕ y = left-unit-law-add-ℕ y
commutative-add-ℕ (succ-ℕ x) y =
(left-successor-law-add-ℕ x y) ∙ (ap succ-ℕ (commutative-add-ℕ x y))
-- Exercise 5.5(c)
abstract
left-zero-law-mul-ℕ :
(x : ℕ) → Id (mul-ℕ zero-ℕ x) zero-ℕ
left-zero-law-mul-ℕ x = refl
right-zero-law-mul-ℕ :
(x : ℕ) → Id (mul-ℕ x zero-ℕ) zero-ℕ
right-zero-law-mul-ℕ zero-ℕ = refl
right-zero-law-mul-ℕ (succ-ℕ x) =
( right-unit-law-add-ℕ (mul-ℕ x zero-ℕ)) ∙ (right-zero-law-mul-ℕ x)
abstract
right-unit-law-mul-ℕ :
(x : ℕ) → Id (mul-ℕ x one-ℕ) x
right-unit-law-mul-ℕ zero-ℕ = refl
right-unit-law-mul-ℕ (succ-ℕ x) = ap succ-ℕ (right-unit-law-mul-ℕ x)
left-unit-law-mul-ℕ :
(x : ℕ) → Id (mul-ℕ one-ℕ x) x
left-unit-law-mul-ℕ zero-ℕ = refl
left-unit-law-mul-ℕ (succ-ℕ x) = ap succ-ℕ (left-unit-law-mul-ℕ x)
abstract
left-successor-law-mul-ℕ :
(x y : ℕ) → Id (mul-ℕ (succ-ℕ x) y) (add-ℕ (mul-ℕ x y) y)
left-successor-law-mul-ℕ x y = refl
right-successor-law-mul-ℕ :
(x y : ℕ) → Id (mul-ℕ x (succ-ℕ y)) (add-ℕ x (mul-ℕ x y))
right-successor-law-mul-ℕ zero-ℕ y = refl
right-successor-law-mul-ℕ (succ-ℕ x) y =
( ( ap (λ t → succ-ℕ (add-ℕ t y)) (right-successor-law-mul-ℕ x y)) ∙
( ap succ-ℕ (associative-add-ℕ x (mul-ℕ x y) y))) ∙
( inv (left-successor-law-add-ℕ x (add-ℕ (mul-ℕ x y) y)))
-- Exercise 5.5(d)
abstract
commutative-mul-ℕ :
(x y : ℕ) → Id (mul-ℕ x y) (mul-ℕ y x)
commutative-mul-ℕ zero-ℕ y = inv (right-zero-law-mul-ℕ y)
commutative-mul-ℕ (succ-ℕ x) y =
( commutative-add-ℕ (mul-ℕ x y) y) ∙
( ( ap (add-ℕ y) (commutative-mul-ℕ x y)) ∙
( inv (right-successor-law-mul-ℕ y x)))
-- Exercise 5.5(e)
abstract
left-distributive-mul-add-ℕ :
(x y z : ℕ) → Id (mul-ℕ x (add-ℕ y z)) (add-ℕ (mul-ℕ x y) (mul-ℕ x z))
left-distributive-mul-add-ℕ zero-ℕ y z = refl
left-distributive-mul-add-ℕ (succ-ℕ x) y z =
( left-successor-law-mul-ℕ x (add-ℕ y z)) ∙
( ( ap (λ t → add-ℕ t (add-ℕ y z)) (left-distributive-mul-add-ℕ x y z)) ∙
( ( associative-add-ℕ (mul-ℕ x y) (mul-ℕ x z) (add-ℕ y z)) ∙
( ( ap ( add-ℕ (mul-ℕ x y))
( ( inv (associative-add-ℕ (mul-ℕ x z) y z)) ∙
( ( ap (λ t → add-ℕ t z) (commutative-add-ℕ (mul-ℕ x z) y)) ∙
( associative-add-ℕ y (mul-ℕ x z) z)))) ∙
( inv (associative-add-ℕ (mul-ℕ x y) y (add-ℕ (mul-ℕ x z) z))))))
abstract
right-distributive-mul-add-ℕ :
(x y z : ℕ) → Id (mul-ℕ (add-ℕ x y) z) (add-ℕ (mul-ℕ x z) (mul-ℕ y z))
right-distributive-mul-add-ℕ x y z =
( commutative-mul-ℕ (add-ℕ x y) z) ∙
( ( left-distributive-mul-add-ℕ z x y) ∙
( ( ap (λ t → add-ℕ t (mul-ℕ z y)) (commutative-mul-ℕ z x)) ∙
( ap (λ t → add-ℕ (mul-ℕ x z) t) (commutative-mul-ℕ z y))))
-- Exercise 5.5(f)
abstract
associative-mul-ℕ :
(x y z : ℕ) → Id (mul-ℕ (mul-ℕ x y) z) (mul-ℕ x (mul-ℕ y z))
associative-mul-ℕ zero-ℕ y z = refl
associative-mul-ℕ (succ-ℕ x) y z =
( right-distributive-mul-add-ℕ (mul-ℕ x y) y z) ∙
( ap (λ t → add-ℕ t (mul-ℕ y z)) (associative-mul-ℕ x y z))
-- Exercise 5.6
Mac-Lane-pentagon :
{i : Level} {A : UU i} {a b c d e : A}
(p : Id a b) (q : Id b c) (r : Id c d) (s : Id d e) →
let α₁ = (ap (λ t → t ∙ s) (assoc p q r))
α₂ = (assoc p (q ∙ r) s)
α₃ = (ap (λ t → p ∙ t) (assoc q r s))
α₄ = (assoc (p ∙ q) r s)
α₅ = (assoc p q (r ∙ s))
in
Id ((α₁ ∙ α₂) ∙ α₃) (α₄ ∙ α₅)
Mac-Lane-pentagon refl refl refl refl = refl
{- The following code is an experiment that shows that constructions in an
abstract environment do remember the specific definitions of previous
definitions in abstract environments. -}
abstract
abstract-concat :
{l : Level} {A : UU l} {x y z : A} → Id x y → Id y z → Id x z
abstract-concat refl q = q
abstract-left-unit-law :
{l : Level} {A : UU l} {x y : A} (q : Id x y) → Id (abstract-concat refl q) q
abstract-left-unit-law q = refl
{- We just make some random definition to make sure that we are not in the
same abstract envirnoment anymore. -}
one : ℕ
one = succ-ℕ zero-ℕ
abstract
abstract-right-unit-law :
{l : Level} {A : UU l} {x y : A} (p : Id x y) →
Id (abstract-concat p refl) p
abstract-right-unit-law refl = refl
{- The term refl should not be accepted if the definition of abstract-concat
were forgotten. A definition that would work under all circumstances is
abstract-left-unit refl. -}
-- The ring axioms for ℤ
abstract
left-inverse-pred-ℤ :
(k : ℤ) → Id (pred-ℤ (succ-ℤ k)) k
left-inverse-pred-ℤ (inl zero-ℕ) = refl
left-inverse-pred-ℤ (inl (succ-ℕ x)) = refl
left-inverse-pred-ℤ (inr (inl star)) = refl
left-inverse-pred-ℤ (inr (inr zero-ℕ)) = refl
left-inverse-pred-ℤ (inr (inr (succ-ℕ x))) = refl
right-inverse-pred-ℤ :
(k : ℤ) → Id (succ-ℤ (pred-ℤ k)) k
right-inverse-pred-ℤ (inl zero-ℕ) = refl
right-inverse-pred-ℤ (inl (succ-ℕ x)) = refl
right-inverse-pred-ℤ (inr (inl star)) = refl
right-inverse-pred-ℤ (inr (inr zero-ℕ)) = refl
right-inverse-pred-ℤ (inr (inr (succ-ℕ x))) = refl
{- Exercise 6.12 (a) simply asks to prove the unit laws. The left unit law
holds by judgmental equality. -}
abstract
left-unit-law-add-ℤ :
(k : ℤ) → Id (add-ℤ zero-ℤ k) k
left-unit-law-add-ℤ k = refl
right-unit-law-add-ℤ :
(k : ℤ) → Id (add-ℤ k zero-ℤ) k
right-unit-law-add-ℤ (inl zero-ℕ) = refl
right-unit-law-add-ℤ (inl (succ-ℕ x)) =
ap pred-ℤ (right-unit-law-add-ℤ (inl x))
right-unit-law-add-ℤ (inr (inl star)) = refl
right-unit-law-add-ℤ (inr (inr zero-ℕ)) = refl
right-unit-law-add-ℤ (inr (inr (succ-ℕ x))) =
ap succ-ℤ (right-unit-law-add-ℤ (inr (inr x)))
{- Exercise 6.12 (b) asks to show the left and right predecessor and successor
laws. These are helpful to give proofs of associativity and commutativity.
-}
abstract
left-predecessor-law-add-ℤ :
(x y : ℤ) → Id (add-ℤ (pred-ℤ x) y) (pred-ℤ (add-ℤ x y))
left-predecessor-law-add-ℤ (inl n) y = refl
left-predecessor-law-add-ℤ (inr (inl star)) y = refl
left-predecessor-law-add-ℤ (inr (inr zero-ℕ)) y =
( ap (λ t → add-ℤ t y) (left-inverse-pred-ℤ zero-ℤ)) ∙
( inv (left-inverse-pred-ℤ y))
left-predecessor-law-add-ℤ (inr (inr (succ-ℕ x))) y =
( ap (λ t → (add-ℤ t y)) (left-inverse-pred-ℤ (inr (inr x)))) ∙
( inv (left-inverse-pred-ℤ (add-ℤ (inr (inr x)) y)))
right-predecessor-law-add-ℤ :
(x y : ℤ) → Id (add-ℤ x (pred-ℤ y)) (pred-ℤ (add-ℤ x y))
right-predecessor-law-add-ℤ (inl zero-ℕ) n = refl
right-predecessor-law-add-ℤ (inl (succ-ℕ m)) n =
ap pred-ℤ (right-predecessor-law-add-ℤ (inl m) n)
right-predecessor-law-add-ℤ (inr (inl star)) n = refl
right-predecessor-law-add-ℤ (inr (inr zero-ℕ)) n =
(right-inverse-pred-ℤ n) ∙ (inv (left-inverse-pred-ℤ n))
right-predecessor-law-add-ℤ (inr (inr (succ-ℕ x))) n =
( ap succ-ℤ (right-predecessor-law-add-ℤ (inr (inr x)) n)) ∙
( ( right-inverse-pred-ℤ (add-ℤ (inr (inr x)) n)) ∙
( inv (left-inverse-pred-ℤ (add-ℤ (inr (inr x)) n))))
abstract
left-successor-law-add-ℤ :
(x y : ℤ) → Id (add-ℤ (succ-ℤ x) y) (succ-ℤ (add-ℤ x y))
left-successor-law-add-ℤ (inl zero-ℕ) y =
( ap (λ t → add-ℤ t y) (right-inverse-pred-ℤ zero-ℤ)) ∙
( inv (right-inverse-pred-ℤ y))
left-successor-law-add-ℤ (inl (succ-ℕ x)) y =
( inv (right-inverse-pred-ℤ (add-ℤ (inl x) y))) ∙
( ap succ-ℤ (inv (left-predecessor-law-add-ℤ (inl x) y)))
left-successor-law-add-ℤ (inr (inl star)) y = refl
left-successor-law-add-ℤ (inr (inr x)) y = refl
right-successor-law-add-ℤ :
(x y : ℤ) → Id (add-ℤ x (succ-ℤ y)) (succ-ℤ (add-ℤ x y))
right-successor-law-add-ℤ (inl zero-ℕ) y =
(left-inverse-pred-ℤ y) ∙ (inv (right-inverse-pred-ℤ y))
right-successor-law-add-ℤ (inl (succ-ℕ x)) y =
( ap pred-ℤ (right-successor-law-add-ℤ (inl x) y)) ∙
( ( left-inverse-pred-ℤ (add-ℤ (inl x) y)) ∙
( inv (right-inverse-pred-ℤ (add-ℤ (inl x) y))))
right-successor-law-add-ℤ (inr (inl star)) y = refl
right-successor-law-add-ℤ (inr (inr zero-ℕ)) y = refl
right-successor-law-add-ℤ (inr (inr (succ-ℕ x))) y =
ap succ-ℤ (right-successor-law-add-ℤ (inr (inr x)) y)
{- Exercise 6.12 (c) asks to prove associativity and commutativity. Note that
we avoid an unwieldy amount of cases by only using induction on the first
argument. The resulting proof term is fairly short, and we don't have to
present ℤ as a certain quotient of ℕ × ℕ. -}
abstract
associative-add-ℤ :
(x y z : ℤ) → Id (add-ℤ (add-ℤ x y) z) (add-ℤ x (add-ℤ y z))
associative-add-ℤ (inl zero-ℕ) y z =
( ap (λ t → add-ℤ t z) (left-predecessor-law-add-ℤ zero-ℤ y)) ∙
( ( left-predecessor-law-add-ℤ y z) ∙
( inv (left-predecessor-law-add-ℤ zero-ℤ (add-ℤ y z))))
associative-add-ℤ (inl (succ-ℕ x)) y z =
( ap (λ t → add-ℤ t z) (left-predecessor-law-add-ℤ (inl x) y)) ∙
( ( left-predecessor-law-add-ℤ (add-ℤ (inl x) y) z) ∙
( ( ap pred-ℤ (associative-add-ℤ (inl x) y z)) ∙
( inv (left-predecessor-law-add-ℤ (inl x) (add-ℤ y z)))))
associative-add-ℤ (inr (inl star)) y z = refl
associative-add-ℤ (inr (inr zero-ℕ)) y z =
( ap (λ t → add-ℤ t z) (left-successor-law-add-ℤ zero-ℤ y)) ∙
( ( left-successor-law-add-ℤ y z) ∙
( inv (left-successor-law-add-ℤ zero-ℤ (add-ℤ y z))))
associative-add-ℤ (inr (inr (succ-ℕ x))) y z =
( ap (λ t → add-ℤ t z) (left-successor-law-add-ℤ (inr (inr x)) y)) ∙
( ( left-successor-law-add-ℤ (add-ℤ (inr (inr x)) y) z) ∙
( ( ap succ-ℤ (associative-add-ℤ (inr (inr x)) y z)) ∙
( inv (left-successor-law-add-ℤ (inr (inr x)) (add-ℤ y z)))))
abstract
commutative-add-ℤ :
(x y : ℤ) → Id (add-ℤ x y) (add-ℤ y x)
commutative-add-ℤ (inl zero-ℕ) y =
( left-predecessor-law-add-ℤ zero-ℤ y) ∙
( inv
( ( right-predecessor-law-add-ℤ y zero-ℤ) ∙
( ap pred-ℤ (right-unit-law-add-ℤ y))))
commutative-add-ℤ (inl (succ-ℕ x)) y =
( ap pred-ℤ (commutative-add-ℤ (inl x) y)) ∙
( inv (right-predecessor-law-add-ℤ y (inl x)))
commutative-add-ℤ (inr (inl star)) y = inv (right-unit-law-add-ℤ y)
commutative-add-ℤ (inr (inr zero-ℕ)) y =
inv
( ( right-successor-law-add-ℤ y zero-ℤ) ∙
( ap succ-ℤ (right-unit-law-add-ℤ y)))
commutative-add-ℤ (inr (inr (succ-ℕ x))) y =
( ap succ-ℤ (commutative-add-ℤ (inr (inr x)) y)) ∙
( inv (right-successor-law-add-ℤ y (inr (inr x))))
{- Exercise 6.12 (d) finally asks to show the inverse laws, completing the
verification of the group laws. Combined with associativity and
commutativity we conclude that (add-ℤ x) and (λ x → add-ℤ x y) are
equivalences, for every x : ℤ and y : ℤ, respectively. -}
abstract
left-inverse-law-add-ℤ :
(x : ℤ) → Id (add-ℤ (neg-ℤ x) x) zero-ℤ
left-inverse-law-add-ℤ (inl zero-ℕ) = refl
left-inverse-law-add-ℤ (inl (succ-ℕ x)) =
( ap succ-ℤ (right-predecessor-law-add-ℤ (inr (inr x)) (inl x))) ∙
( ( right-inverse-pred-ℤ (add-ℤ (inr (inr x)) (inl x))) ∙
( left-inverse-law-add-ℤ (inl x)))
left-inverse-law-add-ℤ (inr (inl star)) = refl
left-inverse-law-add-ℤ (inr (inr x)) =
( commutative-add-ℤ (inl x) (inr (inr x))) ∙
( left-inverse-law-add-ℤ (inl x))
right-inverse-law-add-ℤ :
(x : ℤ) → Id (add-ℤ x (neg-ℤ x)) zero-ℤ
right-inverse-law-add-ℤ x =
( commutative-add-ℤ x (neg-ℤ x)) ∙ (left-inverse-law-add-ℤ x)
-- Similar for multiplication on ℤ
neg-neg-ℤ : (k : ℤ) → Id (neg-ℤ (neg-ℤ k)) k
neg-neg-ℤ (inl n) = refl
neg-neg-ℤ (inr (inl star)) = refl
neg-neg-ℤ (inr (inr n)) = refl
neg-pred-ℤ :
(k : ℤ) → Id (neg-ℤ (pred-ℤ k)) (succ-ℤ (neg-ℤ k))
neg-pred-ℤ (inl x) = refl
neg-pred-ℤ (inr (inl star)) = refl
neg-pred-ℤ (inr (inr zero-ℕ)) = refl
neg-pred-ℤ (inr (inr (succ-ℕ x))) = refl
pred-neg-ℤ :
(k : ℤ) → Id (pred-ℤ (neg-ℤ k)) (neg-ℤ (succ-ℤ k))
pred-neg-ℤ (inl zero-ℕ) = refl
pred-neg-ℤ (inl (succ-ℕ x)) = refl
pred-neg-ℤ (inr (inl star)) = refl
pred-neg-ℤ (inr (inr x)) = refl
right-negative-law-add-ℤ :
(k l : ℤ) → Id (add-ℤ k (neg-ℤ l)) (neg-ℤ (add-ℤ (neg-ℤ k) l))
right-negative-law-add-ℤ (inl zero-ℕ) l =
( left-predecessor-law-add-ℤ zero-ℤ (neg-ℤ l)) ∙
( pred-neg-ℤ l)
right-negative-law-add-ℤ (inl (succ-ℕ x)) l =
( left-predecessor-law-add-ℤ (inl x) (neg-ℤ l)) ∙
( ( ap pred-ℤ (right-negative-law-add-ℤ (inl x) l)) ∙
( pred-neg-ℤ (add-ℤ (inr (inr x)) l)))
right-negative-law-add-ℤ (inr (inl star)) l = refl
right-negative-law-add-ℤ (inr (inr zero-ℕ)) l = inv (neg-pred-ℤ l)
right-negative-law-add-ℤ (inr (inr (succ-ℕ n))) l =
( left-successor-law-add-ℤ (in-pos n) (neg-ℤ l)) ∙
( ( ap succ-ℤ (right-negative-law-add-ℤ (inr (inr n)) l)) ∙
( inv (neg-pred-ℤ (add-ℤ (inl n) l))))
distributive-neg-add-ℤ :
(k l : ℤ) → Id (neg-ℤ (add-ℤ k l)) (add-ℤ (neg-ℤ k) (neg-ℤ l))
distributive-neg-add-ℤ (inl zero-ℕ) l =
( ap neg-ℤ (left-predecessor-law-add-ℤ zero-ℤ l)) ∙
( neg-pred-ℤ l)
distributive-neg-add-ℤ (inl (succ-ℕ n)) l =
( neg-pred-ℤ (add-ℤ (inl n) l)) ∙
( ( ap succ-ℤ (distributive-neg-add-ℤ (inl n) l)) ∙
( ap (λ t → add-ℤ t (neg-ℤ l)) (inv (neg-pred-ℤ (inl n)))))
distributive-neg-add-ℤ (inr (inl star)) l = refl
distributive-neg-add-ℤ (inr (inr zero-ℕ)) l = inv (pred-neg-ℤ l)
distributive-neg-add-ℤ (inr (inr (succ-ℕ n))) l =
( inv (pred-neg-ℤ (add-ℤ (in-pos n) l))) ∙
( ap pred-ℤ (distributive-neg-add-ℤ (inr (inr n)) l))
left-zero-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ zero-ℤ k) zero-ℤ
left-zero-law-mul-ℤ k = refl
right-zero-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k zero-ℤ) zero-ℤ
right-zero-law-mul-ℤ (inl zero-ℕ) = refl
right-zero-law-mul-ℤ (inl (succ-ℕ n)) =
right-zero-law-mul-ℤ (inl n)
right-zero-law-mul-ℤ (inr (inl star)) = refl
right-zero-law-mul-ℤ (inr (inr zero-ℕ)) = refl
right-zero-law-mul-ℤ (inr (inr (succ-ℕ n))) =
right-zero-law-mul-ℤ (inr (inr n))
left-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ one-ℤ k) k
left-unit-law-mul-ℤ k = refl
right-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k one-ℤ) k
right-unit-law-mul-ℤ (inl zero-ℕ) = refl
right-unit-law-mul-ℤ (inl (succ-ℕ n)) =
ap (add-ℤ (neg-one-ℤ)) (right-unit-law-mul-ℤ (inl n))
right-unit-law-mul-ℤ (inr (inl star)) = refl
right-unit-law-mul-ℤ (inr (inr zero-ℕ)) = refl
right-unit-law-mul-ℤ (inr (inr (succ-ℕ n))) =
ap (add-ℤ one-ℤ) (right-unit-law-mul-ℤ (inr (inr n)))
left-neg-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ neg-one-ℤ k) (neg-ℤ k)
left-neg-unit-law-mul-ℤ k = refl
right-neg-unit-law-mul-ℤ : (k : ℤ) → Id (mul-ℤ k neg-one-ℤ) (neg-ℤ k)
right-neg-unit-law-mul-ℤ (inl zero-ℕ) = refl
right-neg-unit-law-mul-ℤ (inl (succ-ℕ n)) =
ap (add-ℤ one-ℤ) (right-neg-unit-law-mul-ℤ (inl n))
right-neg-unit-law-mul-ℤ (inr (inl star)) = refl
right-neg-unit-law-mul-ℤ (inr (inr zero-ℕ)) = refl
right-neg-unit-law-mul-ℤ (inr (inr (succ-ℕ n))) =
ap (add-ℤ neg-one-ℤ) (right-neg-unit-law-mul-ℤ (inr (inr n)))
left-successor-law-mul-ℤ :
(k l : ℤ) → Id (mul-ℤ (succ-ℤ k) l) (add-ℤ l (mul-ℤ k l))
left-successor-law-mul-ℤ (inl zero-ℕ) l =
inv (right-inverse-law-add-ℤ l)
left-successor-law-mul-ℤ (inl (succ-ℕ n)) l =
( ( inv (left-unit-law-add-ℤ (mul-ℤ (inl n) l))) ∙
( ap
( λ x → add-ℤ x (mul-ℤ (inl n) l))
( inv (right-inverse-law-add-ℤ l)))) ∙
( associative-add-ℤ l (neg-ℤ l) (mul-ℤ (inl n) l))
left-successor-law-mul-ℤ (inr (inl star)) l =
inv (right-unit-law-add-ℤ l)
left-successor-law-mul-ℤ (inr (inr n)) l = refl
left-predecessor-law-mul-ℤ :
(k l : ℤ) → Id (mul-ℤ (pred-ℤ k) l) (add-ℤ (neg-ℤ l) (mul-ℤ k l))
left-predecessor-law-mul-ℤ (inl n) l = refl
left-predecessor-law-mul-ℤ (inr (inl star)) l =
( left-neg-unit-law-mul-ℤ l) ∙
( inv (right-unit-law-add-ℤ (neg-ℤ l)))
left-predecessor-law-mul-ℤ (inr (inr zero-ℕ)) l =
inv (left-inverse-law-add-ℤ l)
left-predecessor-law-mul-ℤ (inr (inr (succ-ℕ x))) l =
( ap
( λ t → add-ℤ t (mul-ℤ (in-pos x) l))
( inv (left-inverse-law-add-ℤ l))) ∙
( associative-add-ℤ (neg-ℤ l) l (mul-ℤ (in-pos x) l))
right-successor-law-mul-ℤ :
(k l : ℤ) → Id (mul-ℤ k (succ-ℤ l)) (add-ℤ k (mul-ℤ k l))
right-successor-law-mul-ℤ (inl zero-ℕ) l = inv (pred-neg-ℤ l)
right-successor-law-mul-ℤ (inl (succ-ℕ n)) l =
( left-predecessor-law-mul-ℤ (inl n) (succ-ℤ l)) ∙
( ( ap (add-ℤ (neg-ℤ (succ-ℤ l))) (right-successor-law-mul-ℤ (inl n) l)) ∙
( ( inv (associative-add-ℤ (neg-ℤ (succ-ℤ l)) (inl n) (mul-ℤ (inl n) l))) ∙
( ( ap
( λ t → add-ℤ t (mul-ℤ (inl n) l))
{ x = add-ℤ (neg-ℤ (succ-ℤ l)) (inl n)}
{ y = add-ℤ (inl (succ-ℕ n)) (neg-ℤ l)}
( ( right-successor-law-add-ℤ (neg-ℤ (succ-ℤ l)) (inl (succ-ℕ n))) ∙
( ( ap succ-ℤ
( commutative-add-ℤ (neg-ℤ (succ-ℤ l)) (inl (succ-ℕ n)))) ∙
( ( inv
( right-successor-law-add-ℤ
( inl (succ-ℕ n))
( neg-ℤ (succ-ℤ l)))) ∙
( ap
( add-ℤ (inl (succ-ℕ n)))
( ( ap succ-ℤ (inv (pred-neg-ℤ l))) ∙
( right-inverse-pred-ℤ (neg-ℤ l)))))))) ∙
( associative-add-ℤ (inl (succ-ℕ n)) (neg-ℤ l) (mul-ℤ (inl n) l)))))
right-successor-law-mul-ℤ (inr (inl star)) l = refl
right-successor-law-mul-ℤ (inr (inr zero-ℕ)) l = refl
right-successor-law-mul-ℤ (inr (inr (succ-ℕ n))) l =
( left-successor-law-mul-ℤ (in-pos n) (succ-ℤ l)) ∙
( ( ap (add-ℤ (succ-ℤ l)) (right-successor-law-mul-ℤ (inr (inr n)) l)) ∙
( ( inv (associative-add-ℤ (succ-ℤ l) (in-pos n) (mul-ℤ (in-pos n) l))) ∙
( ( ap
( λ t → add-ℤ t (mul-ℤ (in-pos n) l))
{ x = add-ℤ (succ-ℤ l) (in-pos n)}
{ y = add-ℤ (in-pos (succ-ℕ n)) l}
( ( left-successor-law-add-ℤ l (in-pos n)) ∙
( ( ap succ-ℤ (commutative-add-ℤ l (in-pos n))) ∙
( inv (left-successor-law-add-ℤ (in-pos n) l))))) ∙
( associative-add-ℤ (inr (inr (succ-ℕ n))) l (mul-ℤ (inr (inr n)) l)))))
right-predecessor-law-mul-ℤ :
(k l : ℤ) → Id (mul-ℤ k (pred-ℤ l)) (add-ℤ (neg-ℤ k) (mul-ℤ k l))
right-predecessor-law-mul-ℤ (inl zero-ℕ) l =
( left-neg-unit-law-mul-ℤ (pred-ℤ l)) ∙
( neg-pred-ℤ l)
right-predecessor-law-mul-ℤ (inl (succ-ℕ n)) l =
( left-predecessor-law-mul-ℤ (inl n) (pred-ℤ l)) ∙
( ( ap (add-ℤ (neg-ℤ (pred-ℤ l))) (right-predecessor-law-mul-ℤ (inl n) l)) ∙
( ( inv
( associative-add-ℤ (neg-ℤ (pred-ℤ l)) (in-pos n) (mul-ℤ (inl n) l))) ∙
( ( ap
( λ t → add-ℤ t (mul-ℤ (inl n) l))
{ x = add-ℤ (neg-ℤ (pred-ℤ l)) (inr (inr n))}
{ y = add-ℤ (neg-ℤ (inl (succ-ℕ n))) (neg-ℤ l)}
( ( ap (λ t → add-ℤ t (in-pos n)) (neg-pred-ℤ l)) ∙
( ( left-successor-law-add-ℤ (neg-ℤ l) (in-pos n)) ∙
( ( ap succ-ℤ (commutative-add-ℤ (neg-ℤ l) (in-pos n))) ∙
( inv (left-successor-law-add-ℤ (in-pos n) (neg-ℤ l))))))) ∙
( associative-add-ℤ (in-pos (succ-ℕ n)) (neg-ℤ l) (mul-ℤ (inl n) l)))))
right-predecessor-law-mul-ℤ (inr (inl star)) l = refl
right-predecessor-law-mul-ℤ (inr (inr zero-ℕ)) l = refl
right-predecessor-law-mul-ℤ (inr (inr (succ-ℕ n))) l =
( left-successor-law-mul-ℤ (in-pos n) (pred-ℤ l)) ∙
( ( ap (add-ℤ (pred-ℤ l)) (right-predecessor-law-mul-ℤ (inr (inr n)) l)) ∙
( ( inv (associative-add-ℤ (pred-ℤ l) (inl n) (mul-ℤ (inr (inr n)) l))) ∙
( ( ap
( λ t → add-ℤ t (mul-ℤ (in-pos n) l))
{ x = add-ℤ (pred-ℤ l) (inl n)}
{ y = add-ℤ (neg-ℤ (in-pos (succ-ℕ n))) l}
( ( left-predecessor-law-add-ℤ l (inl n)) ∙
( ( ap pred-ℤ (commutative-add-ℤ l (inl n))) ∙
( inv (left-predecessor-law-add-ℤ (inl n) l))))) ∙
( associative-add-ℤ (inl (succ-ℕ n)) l (mul-ℤ (inr (inr n)) l)))))
right-distributive-mul-add-ℤ :
(k l m : ℤ) → Id (mul-ℤ (add-ℤ k l) m) (add-ℤ (mul-ℤ k m) (mul-ℤ l m))
right-distributive-mul-add-ℤ (inl zero-ℕ) l m =
( left-predecessor-law-mul-ℤ l m) ∙
( ap
( λ t → add-ℤ t (mul-ℤ l m))
( inv
( ( left-predecessor-law-mul-ℤ zero-ℤ m) ∙
( right-unit-law-add-ℤ (neg-ℤ m)))))
right-distributive-mul-add-ℤ (inl (succ-ℕ x)) l m =
( left-predecessor-law-mul-ℤ (add-ℤ (inl x) l) m) ∙
( ( ap (add-ℤ (neg-ℤ m)) (right-distributive-mul-add-ℤ (inl x) l m)) ∙
( inv (associative-add-ℤ (neg-ℤ m) (mul-ℤ (inl x) m) (mul-ℤ l m))))
right-distributive-mul-add-ℤ (inr (inl star)) l m = refl
right-distributive-mul-add-ℤ (inr (inr zero-ℕ)) l m =
left-successor-law-mul-ℤ l m
right-distributive-mul-add-ℤ (inr (inr (succ-ℕ n))) l m =
( left-successor-law-mul-ℤ (add-ℤ (in-pos n) l) m) ∙
( ( ap (add-ℤ m) (right-distributive-mul-add-ℤ (inr (inr n)) l m)) ∙
( inv (associative-add-ℤ m (mul-ℤ (in-pos n) m) (mul-ℤ l m))))
left-negative-law-mul-ℤ :
(k l : ℤ) → Id (mul-ℤ (neg-ℤ k) l) (neg-ℤ (mul-ℤ k l))
left-negative-law-mul-ℤ (inl zero-ℕ) l =
( left-unit-law-mul-ℤ l) ∙
( inv (neg-neg-ℤ l))
left-negative-law-mul-ℤ (inl (succ-ℕ n)) l =
( ap (λ t → mul-ℤ t l) (neg-pred-ℤ (inl n))) ∙
( ( left-successor-law-mul-ℤ (neg-ℤ (inl n)) l) ∙
( ( ap (add-ℤ l) (left-negative-law-mul-ℤ (inl n) l)) ∙
( right-negative-law-add-ℤ l (mul-ℤ (inl n) l))))
left-negative-law-mul-ℤ (inr (inl star)) l = refl
left-negative-law-mul-ℤ (inr (inr zero-ℕ)) l = refl
left-negative-law-mul-ℤ (inr (inr (succ-ℕ n))) l =
( left-predecessor-law-mul-ℤ (inl n) l) ∙
( ( ap (add-ℤ (neg-ℤ l)) (left-negative-law-mul-ℤ (inr (inr n)) l)) ∙
( inv (distributive-neg-add-ℤ l (mul-ℤ (in-pos n) l))))
associative-mul-ℤ :
(k l m : ℤ) → Id (mul-ℤ (mul-ℤ k l) m) (mul-ℤ k (mul-ℤ l m))
associative-mul-ℤ (inl zero-ℕ) l m =
left-negative-law-mul-ℤ l m
associative-mul-ℤ (inl (succ-ℕ n)) l m =
( right-distributive-mul-add-ℤ (neg-ℤ l) (mul-ℤ (inl n) l) m) ∙
( ( ap (add-ℤ (mul-ℤ (neg-ℤ l) m)) (associative-mul-ℤ (inl n) l m)) ∙
( ap
( λ t → add-ℤ t (mul-ℤ (inl n) (mul-ℤ l m)))
( left-negative-law-mul-ℤ l m)))
associative-mul-ℤ (inr (inl star)) l m = refl
associative-mul-ℤ (inr (inr zero-ℕ)) l m = refl
associative-mul-ℤ (inr (inr (succ-ℕ n))) l m =
( right-distributive-mul-add-ℤ l (mul-ℤ (in-pos n) l) m) ∙
( ap (add-ℤ (mul-ℤ l m)) (associative-mul-ℤ (inr (inr n)) l m))
commutative-mul-ℤ :
(k l : ℤ) → Id (mul-ℤ k l) (mul-ℤ l k)
commutative-mul-ℤ (inl zero-ℕ) l = inv (right-neg-unit-law-mul-ℤ l)
commutative-mul-ℤ (inl (succ-ℕ n)) l =
( ap (add-ℤ (neg-ℤ l)) (commutative-mul-ℤ (inl n) l)) ∙
( inv (right-predecessor-law-mul-ℤ l (inl n)))
commutative-mul-ℤ (inr (inl star)) l = inv (right-zero-law-mul-ℤ l)
commutative-mul-ℤ (inr (inr zero-ℕ)) l = inv (right-unit-law-mul-ℤ l)
commutative-mul-ℤ (inr (inr (succ-ℕ n))) l =
( ap (add-ℤ l) (commutative-mul-ℤ (inr (inr n)) l)) ∙
( inv (right-successor-law-mul-ℤ l (in-pos n)))
|
{
"alphanum_fraction": 0.5621999127,
"avg_line_length": 37.001345895,
"ext": "agda",
"hexsha": "38ab03b1d54a573dbe12eac1de6edf820fed992d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/05-identity-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/05-identity-types.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/05-identity-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12417,
"size": 27492
}
|
-- There was a bug when postponing a type checking problem under
-- a non-empty context. Fixed now.
module PostponedTypeChecking where
data Unit : Set where
unit : Unit
record R : Set where
field f : Unit
data *_ (A : Set) : Set where
<_> : A -> * A
get : {A : Set} -> * A -> A
get < x > = x
mk : Unit -> Unit -> * R
mk _ _ = < record { f = unit } >
r : R
r = get (mk unit unit)
data IsUnit : Unit -> Set where
isUnit : IsUnit unit
foo : IsUnit (R.f r)
foo = isUnit
|
{
"alphanum_fraction": 0.602484472,
"avg_line_length": 16.1,
"ext": "agda",
"hexsha": "240de51d2164d501a35c7c46ce45d96027319958",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/PostponedTypeChecking.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/PostponedTypeChecking.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/PostponedTypeChecking.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 158,
"size": 483
}
|
{-# OPTIONS --without-K #-}
-- Lifting the dependent axiom of choice to sums and products
open import Type
open import Function.NP
open import Function.Extensionality
open import Data.Nat
open import Data.Product
open import Data.Fin using (Fin)
open import Explore.Core
open import Explore.Properties
open import Relation.Binary.PropositionalEquality.NP
open import Type.Identities
open import HoTT
open ≡-Reasoning
open Adequacy _≡_
module Explore.BigDistr
{A B : ★₀}
{Πᴬ : Product A}
(adequate-Πᴬ : Adequate-product Πᴬ)
{Σᴮ : Sum B}
(adequate-Σᴮ : Adequate-sum Σᴮ)
{Σᴬᴮ : Sum (A → B)}
(adequate-Σᴬᴮ : Adequate-sum Σᴬᴮ)
(F : A → B → ℕ)
{{_ : UA}}
{{_ : FunExt}}
where
big-distr : Πᴬ (Σᴮ ∘ F) ≡ Σᴬᴮ λ f → Πᴬ (F ˢ f)
big-distr =
Fin-injective
( Fin (Πᴬ (Σᴮ ∘ F))
≡⟨ adequate-Πᴬ (Σᴮ ∘ F) ⟩
Π A (Fin ∘ Σᴮ ∘ F)
≡⟨ Π=′ A (adequate-Σᴮ ∘ F) ⟩
Π A (λ x → Σ B (Fin ∘ F x))
≡⟨ ΠΣ-comm ⟩
Σ (Π A (const B)) (λ f → Π A (λ x → Fin (F x (f x))))
≡⟨ Σ=′ (A → B) (λ f → ! (adequate-Πᴬ (F ˢ f))) ⟩
Σ (A → B) (λ f → Fin (Πᴬ (F ˢ f)))
≡⟨ ! (adequate-Σᴬᴮ (λ f → Πᴬ (F ˢ f))) ⟩
Fin (Σᴬᴮ (λ f → Πᴬ (F ˢ f)))
∎)
|
{
"alphanum_fraction": 0.4952727273,
"avg_line_length": 29.8913043478,
"ext": "agda",
"hexsha": "e24ead9eaf202a2a65c15f96c2ad64f407f0df03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/BigDistr.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/BigDistr.agda",
"max_line_length": 61,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/BigDistr.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 589,
"size": 1375
}
|
module FFI.Data.ByteString where
{-# FOREIGN GHC import qualified Data.ByteString #-}
postulate ByteString : Set
{-# COMPILE GHC ByteString = type Data.ByteString.ByteString #-}
|
{
"alphanum_fraction": 0.7569060773,
"avg_line_length": 22.625,
"ext": "agda",
"hexsha": "670c5234825fdba2a6aca247ad0185ebf8707233",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/FFI/Data/ByteString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/FFI/Data/ByteString.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/FFI/Data/ByteString.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 32,
"size": 181
}
|
module BadRefl where
open import AgdaPrelude
plus =
natElim
( \ _ -> Nat -> Nat ) -- motive
( \ n -> n ) -- case for Zero
( \ p rec n -> Succ (rec n) ) -- case for Succ
-- the other direction requires induction on N:
postulate pNPlus0isN : (n : Nat) -> Eq Nat (plus n Zero) n
-- the other direction requires induction on N:
succPlus : (n : Nat) -> Eq Nat (Succ n) (plus (Succ n) Zero)
succPlus =
(\n -> pNPlus0isN (Succ n))
|
{
"alphanum_fraction": 0.5681341719,
"avg_line_length": 25.1052631579,
"ext": "agda",
"hexsha": "09b6474bfa499cb9055fad4166abacf875289c5a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_forks_repo_path": "thesisExamples/BadRefl.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_issues_repo_path": "thesisExamples/BadRefl.agda",
"max_line_length": 61,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_stars_repo_path": "thesisExamples/BadRefl.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z",
"num_tokens": 150,
"size": 477
}
|
data ⊥ : Set where -- keep this on the first line!!
Type = Set -- This should not be gobbled up under the data declaration
-- Andreas, 2021-04-15, issue #1145
-- Allow stacking of layout keywords on the same line.
-- This files contains tests for the new layout rules
-- and also tests from debugging the original implementation.
--
-- Some original failures where influenced by whether
-- there were comments or black lines, so please don't
-- "clean up" this file.
postulate A : Set; B : Set
C : Set
-- First example
private postulate -- Bar
D : Set
_>>_ : Set → Set → Set
module _ where
private {- this block comment
removes the line breaks
between the layout keywords -} postulate
D1 : Set
E1 : Set
-- Second example
private module PM where -- stack
module PMM where
private module PMPM1 where
module PMPM2 where private -- stack
module PMPM2M where
module PMM2 where
-- Testing whether do-notation still works
test = do A; B
C
let-example =
let X = A
in B
do-example = do
Set
where
Y : Set
Y = A
F = Set
private
doey = do
Set
where postulate poey : Set
E = Set
|
{
"alphanum_fraction": 0.6379310345,
"avg_line_length": 19.3333333333,
"ext": "agda",
"hexsha": "9d049f1a803aff7cb721c35ade1b61ab1ed2b1cb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue1145.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue1145.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue1145.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 327,
"size": 1218
}
|
{-# OPTIONS --copatterns #-}
module examplesPaperJFP.ExampleDrawingProgram where
open import Size
open import Data.Bool.Base
open import Data.Char.Base
open import Data.Nat.Base hiding (_⊓_; _+_; _*_)
open import Data.List.Base hiding (_++_)
open import Data.Integer.Base hiding (suc)
open import Data.String.Base
open import Data.Maybe.Base
open import Agda.Builtin.Char using (primCharEquality)
open import Function
open import SizedIO.Base
open import SizedIO.IOGraphicsLib hiding (translateIOGraphics) renaming (translateIOGraphicsLocal to translateNative)
open import NativeInt --PrimTypeHelpers
open import NativeIO
open import examplesPaperJFP.triangleRightOperator
integerLess : ℤ → ℤ → Bool
integerLess x y with ∣(y - (x ⊓ y))∣
... | zero = true
... | z = false
line : Point → Point → Graphic
line p newpoint = withColor red (polygon
(nativePoint x y
∷ nativePoint a b
∷ nativePoint (a + xAddition) (b + yAddition)
∷ nativePoint (x + xAddition) (y + yAddition)
∷ [] ) )
where
x = nativeProj1Point p
y = nativeProj2Point p
a = nativeProj1Point newpoint
b = nativeProj2Point newpoint
diffx = + ∣ (a - x) ∣
diffy = + ∣ (b - y) ∣
diffx*3 = diffx * (+ 3)
diffy*3 = diffy * (+ 3)
condition = (integerLess diffx diffy*3) ∧ (integerLess diffy diffx*3)
xAddition = if condition then + 2 else + 1
yAddition = if condition then + 2 else + 1
State = Maybe Point
mutual
loop : ∀{i} → Window → State → IOGraphics i Unit
force (loop w s) = exec' (getWindowEvent w) λ e →
winEvtHandler w s e
winEvtHandler : ∀{i} → Window → State → Event → IOGraphics i Unit
winEvtHandler w s (Key c t) = if primCharEquality c 'x'
then (exec (closeWindow w) return)
else loop w s
winEvtHandler w s (MouseMove p₂) = s ▹ λ
{ nothing → loop w (just p₂)
; (just p₁) → exec (drawInWindow w (line p₁ p₂)) λ _ →
loop w (just p₂) }
winEvtHandler w s _ = loop w s
program : ∀{i} → IOGraphics i Unit
program =
exec (openWindow "Drawing Prog" nothing 1000 1000
nativeDrawGraphic nothing) λ win →
loop win nothing
translateIOGraphics : IOGraphics ∞ Unit → NativeIO Unit
translateIOGraphics = translateIO translateNative
main : NativeIO Unit
main = nativeRunGraphics (translateIOGraphics program)
|
{
"alphanum_fraction": 0.6002269289,
"avg_line_length": 31.1058823529,
"ext": "agda",
"hexsha": "35af9b9f4500759fd3d2fc930fe7c5898d6bfbad",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/ExampleDrawingProgram.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/ExampleDrawingProgram.agda",
"max_line_length": 118,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/ExampleDrawingProgram.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 720,
"size": 2644
}
|
-- Andreas, 2015-08-18 Test case for COMPILED_DATA on record
-- open import Common.String
open import Common.IO
infixr 4 _,_
infixr 2 _×_
record _×_ (A B : Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B
open _×_ public
{-# COMPILED_DATA _×_ (,) (,) #-}
-- Note: could not get this to work for Σ.
-- Also, the universe-polymorphic version of _×_ would require more trickery.
swap : ∀{A B : Set} (p : A × B) → B × A
swap (x , y) = y , x
swap' : ∀{A B : Set} (p : A × B) → B × A
swap' p = proj₂ p , proj₁ p
main = putStrLn (proj₁ (swap (swap' (swap ("no" , "yes")))))
|
{
"alphanum_fraction": 0.602006689,
"avg_line_length": 20.6206896552,
"ext": "agda",
"hexsha": "3b96e4cb7feae09f9e74d018b2b34aae68b57510",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Compiler/simple/CompiledRecord.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Compiler/simple/CompiledRecord.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Compiler/simple/CompiledRecord.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 217,
"size": 598
}
|
module TooManyFields where
postulate X : Set
record D : Set where
field x : X
d : X -> D
d x = record {x = x; y = x}
|
{
"alphanum_fraction": 0.5967741935,
"avg_line_length": 10.3333333333,
"ext": "agda",
"hexsha": "df01cb6aff978530ee26aa1d5bc4fbe11d2f1bc4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/TooManyFields.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/TooManyFields.agda",
"max_line_length": 27,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/TooManyFields.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 44,
"size": 124
}
|
module FRP.JS.Level where
infixl 6 _⊔_
postulate
Level : Set
zero : Level
suc : Level → Level
_⊔_ : Level → Level → Level
{-# COMPILED_JS zero 0 #-}
{-# COMPILED_JS suc function(x) { return x + 1; } #-}
{-# COMPILED_JS _⊔_ function(x) { return function(y) { return Math.max(x,y); }; } #-}
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
|
{
"alphanum_fraction": 0.5894495413,
"avg_line_length": 22.9473684211,
"ext": "agda",
"hexsha": "c1b9953dbcad1c2f097f7b6ec69de537d07565af",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Level.agda",
"max_line_length": 86,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Level.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 149,
"size": 436
}
|
module CoPatWith where
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A -> Maybe A
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
record CoList (A : Set) : Set where
constructor inn
field
out : Maybe (A × CoList A)
open CoList
module With where
map : {A B : Set}(f : A -> B)(l : CoList A) -> CoList B
out (map f l) with out l
out (map f l) | nothing = nothing
out (map f l) | just (a , as) = just (f a , map f as)
module NoWith where
map : {A B : Set}(f : A -> B)(l : CoList A) -> CoList B
out (map {A = A}{B = B} f l) = map' f l (out l)
where outmap : (f : A -> B)(l : CoList A)(outl : Maybe (A × CoList A)) -> Maybe (B × CoList B)
outmap f l nothing = nothing
outmap f l (just (a , as)) = just (f a , map f as)
module With2 where
map : {A B : Set}(f : A -> B)(l : CoList A) -> CoList B
out (map f (inn l)) with l
out (map f (inn .nothing)) | nothing = nothing
out (map f (inn .(just (a , as)))) | just (a , as) = just (f a , map f as)
module NoWith2 where
map : {A B : Set}(f : A -> B)(l : CoList A) -> CoList B
out (map {A = A}{B = B} f l) = map' f l (out l)
where outmap : (f : A -> B)(l : CoList A)(outl : Maybe (A × CoList A)) -> Maybe (B × CoList B)
outmap f (inn .nothing) nothing = nothing
outmap f (inn .(just (a , as))) (just (a , as)) = just (f a , map f as)
|
{
"alphanum_fraction": 0.5193253689,
"avg_line_length": 30.9347826087,
"ext": "agda",
"hexsha": "7d2c99631d61f988504ef371bebb5808828bf0a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/features/CoPatWith.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/features/CoPatWith.agda",
"max_line_length": 98,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/features/CoPatWith.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 529,
"size": 1423
}
|
module _ where
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
infix -100 This:_ this:_
data This:_ {a} {A : Set a} : A → Set where
this:_ : ∀ x → This: x
macro
runT : Tactic → Tactic
runT m = m
evalT : ∀ {a} {A : Set a} → TC A → Tactic
evalT m hole = m >>= quoteTC >>= unify hole
-- The context on the rhs of each of the two functions below is the same, a single String
Γ = vArg (def (quote String) []) ∷ []
context-Γ₀ : String → This: Γ
context-Γ₀ s = this: evalT getContext
module _ (S : String) where
context-Γ₁ : This: Γ
context-Γ₁ = this: evalT getContext
replicate : {A : Set} → Nat → A → List A
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
f-type : Term
f-type = def (quote String) []
f-pats : Nat → List (Arg Pattern)
f-pats n = replicate n (vArg (var "_"))
f-term : Nat → Term
f-term n = var n []
defineFresh : Nat → Nat → TC QName
defineFresh #pats #term =
freshName "f" >>= λ f →
define (vArg f) (funDef f-type (clause (f-pats #pats) (f-term #term) ∷ [])) >>= λ _ →
returnTC f
freshFun : Nat → Nat → TC Bool
freshFun #pats #term =
catchTC (defineFresh #pats #term >>= λ _ → returnTC true)
(returnTC false)
-- Check that the pattern list must be of length 0
-- and the context features 1 available variable.
define-Γ₀-0-0 : String → This: true
define-Γ₀-0-0 s = this: evalT (freshFun 0 0)
define-Γ₀-1-0 : String → This: false
define-Γ₀-1-0 s = this: evalT (freshFun 1 0)
define-Γ₀-1-1 : String → This: false
define-Γ₀-1-1 s = this: evalT (freshFun 0 1)
module _ (S : String) where
define-Γ₁-0-0 : This: true
define-Γ₁-0-0 = this: evalT (freshFun 0 0)
define-Γ₁-0-1 : This: false
define-Γ₁-0-1 = this: evalT (freshFun 0 1)
define-Γ₁-1-0 : This: false
define-Γ₁-1-0 = this: evalT (freshFun 1 0)
f₀ : String → String
f₀ s = runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f [])
f₁ : String → String
f₁ = λ s → runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f [])
f₂ : String → String
f₂ s = runT λ hole → defineFresh 0 0 >>= λ f → unify hole (def f [])
where x = 0
|
{
"alphanum_fraction": 0.6303520457,
"avg_line_length": 25.0238095238,
"ext": "agda",
"hexsha": "e0ed097006e690db524deea6bb30ffe866b89d6c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1833.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue1833.agda",
"max_line_length": 89,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue1833.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 779,
"size": 2102
}
|
open import Prelude
open import Level using (_⊔_; Lift; lift) renaming (suc to ls; zero to lz)
open import Data.String using (String)
open import Data.Maybe using (Maybe; nothing; just)
open import Data.Nat using (_≤_)
open import RW.Data.RTrie.Decl
module RW.Data.RTrie.Lookup
where
postulate
trie-err : ∀{a}{A : Set a} → String → A
open import RW.Utils.Monads
open Monad {{...}}
open Eq {{...}}
import RW.Data.PMap (RTermᵢ ⊥) as IdxMap
import RW.Data.PMap ℕ as ℕmap
-------------------------------
-- Some type boilerplate
Label : Set
Label = ℕ ⊎ Name
Lst : Set
Lst = ℕmap.to (RTerm ⊥) × Maybe Label
Lst-empty : Lst
Lst-empty = ℕmap.empty , nothing
Lst-open : Lst → (ℕmap.to (RTerm ⊥) × Maybe Name)
Lst-open (e , l) = (e , lbl-join l)
where
lbl-join : Maybe Label → Maybe Name
lbl-join nothing = nothing
lbl-join (just (i1 _)) = nothing
lbl-join (just (i2 a)) = just a
---------------------------
-- Lookup monad
L : Set → Set
L = Reader (List Lst)
----------------------------
-- Rule application
-- Note how a mismatch erases labels!
applyBRule1 : Rule → Lst → Lst
applyBRule1 (Gr x) (e , _) = e , just (i1 x)
applyBRule1 (Tr x y) (e , just (i1 l))
with x ≟-ℕ l
...| yes _ = e , just (i1 y)
...| no _ = e , nothing
applyBRule1 (Tr x y) (e , just (i2 _)) = e , nothing
applyBRule1 (Fr x y) (e , just (i1 l))
with x ≟-ℕ l
...| yes _ = e , just (i2 y)
...| no _ = e , nothing
applyBRule1 (Fr _ _) (e , just (i2 _)) = e , nothing
applyBRule1 _ (e , nothing) = e , nothing
applyBRule : Rule → L (List Lst)
applyBRule r = reader-ask >>= return ∘ (Prelude.map (applyBRule1 r))
ruleList : List Rule → L (List Lst)
ruleList rs = mapM applyBRule rs >>= return ∘ concat
where
isNothing : ∀{a}{A : Set a} → Maybe A → Bool
isNothing nothing = true
isNothing _ = false
prune : List Lst → List Lst
prune = Prelude.filter (isNothing ∘ p2)
------------------------------
-- Actual Lookup
map-filter : ∀{a}{A B : Set a} → (B → Bool) → (A → B) → List A → List B
map-filter p f = foldr (λ h r → let x = f h in ite (p x) (x ∷ r) r) []
where
ite : ∀{a}{A : Set a} → Bool → A → A → A
ite true t _ = t
ite false _ e = e
mutual
-- TODO: refine this, only apply the rules after validating and adding bindings.
lkup-inst1 : RTerm ⊥ → ℕ × List Rule → L (List Lst)
lkup-inst1 k (s , r)
= ruleList r
>>= return ∘ map-filter (isValid s k) (addUnbound s k)
where
addUnbound : ℕ → RTerm ⊥ → Lst → Lst
addUnbound s k (e , l) = (ℕmap.alter (maybe just (just k)) s e , l)
toBool : ∀{a}{A : Set a} → Dec A → Bool
toBool (yes _) = true
toBool (no _) = false
isValid : ℕ → RTerm ⊥ → Lst → Bool
isValid s k (e , l) = toBool (ℕmap.lkup s e ≟2 just k)
where
_≟2_ : (a₁ a₂ : Maybe (RTerm ⊥)) → Dec (a₁ ≡ a₂)
_≟2_ a b = Eq.cmp eq-Maybe a b
-- Looks up a term given a list of instantiations.
-- This is not, by far, a lookup function. We're just adding all possibilities together.
lkup-inst : RTerm ⊥ → List (ℕ × List Rule) → L (List Lst)
lkup-inst t [] = return []
lkup-inst t rs = mapM (lkup-inst1 t) rs >>= return ∘ concat
-- Looks a list of RTerms in their respecive cells.
{-# TERMINATING #-}
lkup-list : List (RTerm ⊥ × Cell)
→ L (List Lst)
lkup-list [] = return []
lkup-list ((t , (d , mh) , bs) ∷ ts)
= lkup-aux t (Fork (((d , mh) , bs) ∷ []))
>>= λ s₁ → (reader-local (_++_ s₁) $ lkup-list ts)
>>= return ∘ (_++_ s₁)
lkup-aux : RTerm ⊥ → RTrie → L (List Lst)
lkup-aux _ (Leaf r) = ruleList r
lkup-aux k (Fork (((d , rs) , bs) ∷ []))
= let tid , tr = out k
in lkup-inst k bs
-- If tid ∉ mh, we run the lookup again, but in the default branch.
-- Otherwise, we run a lkup-list.
>>= λ r → maybe (lkup≡just tr) (lkup-aux k d) (IdxMap.lkup tid rs)
>>= return ∘ (_++_ r)
where
lkup≡just : List (RTerm ⊥) → RTrie → L (List Lst)
lkup≡just [] (Leaf r) = ruleList r
lkup≡just _ (Leaf _) = return []
lkup≡just tr (Fork ms) = lkup-list (zip tr ms)
lkup-aux _ _ = trie-err "lkup-aux takes 1-cell forks"
-- Interfacing
lookup : RTerm ⊥ → RTrie → List (ℕmap.to (RTerm ⊥) × Name)
lookup t bt = accept (Prelude.map Lst-open (lkup-aux t bt (Lst-empty ∷ [])))
where
accept : ∀{a}{A : Set a} → List (A × Maybe Name) → List (A × Name)
accept [] = []
accept ((a , just b) ∷ hs) = (a , b) ∷ accept hs
accept (_ ∷ hs) = accept hs
|
{
"alphanum_fraction": 0.5326178451,
"avg_line_length": 31.4701986755,
"ext": "agda",
"hexsha": "c4d55d13bcf341be47f723782eaef61516c89f9d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Data/RTrie/Lookup.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Data/RTrie/Lookup.agda",
"max_line_length": 92,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Data/RTrie/Lookup.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 1667,
"size": 4752
}
|
module _ where
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
postulate
A : Set
f : .A → A
g : A → A
mutual
X : Bool → .A → A
X = _
Y : .A → A → A
Y = _ -- should be solved!
foo : .(x : A) {y : A} → X true x ≡ g (Y x y)
foo _ = refl
-- this prunes both x and y from Y,
-- so later Y cannot be solved to \ .x y → f x
bar : .(x : A){y : A} → f x ≡ Y x y
bar _ = refl
|
{
"alphanum_fraction": 0.5228915663,
"avg_line_length": 15.9615384615,
"ext": "agda",
"hexsha": "b02514239137258310806c03b3e52d64f94dd81c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2450.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2450.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2450.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 170,
"size": 415
}
|
------------------------------------------------------------------------
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Props.Ring (r : Ring) where
open Ring r
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Data.Function
open import Data.Product
-‿*-distribˡ : ∀ x y → - x * y ≈ - (x * y)
-‿*-distribˡ x y = begin
- x * y ≈⟨ sym $ proj₂ +-identity _ ⟩
- x * y + 0# ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (proj₂ -‿inverse _) ⟩
- x * y + (x * y + - (x * y)) ≈⟨ sym $ +-assoc _ _ _ ⟩
- x * y + x * y + - (x * y) ≈⟨ sym (proj₂ distrib _ _ _) ⟨ +-pres-≈ ⟩ refl ⟩
(- x + x) * y + - (x * y) ≈⟨ (proj₁ -‿inverse _ ⟨ *-pres-≈ ⟩ refl)
⟨ +-pres-≈ ⟩
refl ⟩
0# * y + - (x * y) ≈⟨ proj₁ zero _ ⟨ +-pres-≈ ⟩ refl ⟩
0# + - (x * y) ≈⟨ proj₁ +-identity _ ⟩
- (x * y) ∎
-‿*-distribʳ : ∀ x y → x * - y ≈ - (x * y)
-‿*-distribʳ x y = begin
x * - y ≈⟨ sym $ proj₁ +-identity _ ⟩
0# + x * - y ≈⟨ sym (proj₁ -‿inverse _) ⟨ +-pres-≈ ⟩ refl ⟩
- (x * y) + x * y + x * - y ≈⟨ +-assoc _ _ _ ⟩
- (x * y) + (x * y + x * - y) ≈⟨ refl ⟨ +-pres-≈ ⟩ sym (proj₁ distrib _ _ _) ⟩
- (x * y) + x * (y + - y) ≈⟨ refl ⟨ +-pres-≈ ⟩ (refl ⟨ *-pres-≈ ⟩ proj₂ -‿inverse _) ⟩
- (x * y) + x * 0# ≈⟨ refl ⟨ +-pres-≈ ⟩ proj₂ zero _ ⟩
- (x * y) + 0# ≈⟨ proj₂ +-identity _ ⟩
- (x * y) ∎
|
{
"alphanum_fraction": 0.3446601942,
"avg_line_length": 44.5405405405,
"ext": "agda",
"hexsha": "4de1f3af998e6a211f94992e2cc7bd22a6308aae",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Algebra/Props/Ring.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Algebra/Props/Ring.agda",
"max_line_length": 93,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Algebra/Props/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 636,
"size": 1648
}
|
module Container.Foldable where
open import Prelude
record Foldable {a b w} (F : Set a → Set b) : Set (lsuc w ⊔ lsuc a ⊔ b) where
field
foldMap : ∀ {A}{W : Set w} {{MonW : Monoid W}} → (A → W) → F A → W
overlap {{super}} : Functor F
open Foldable {{...}} public
fold : ∀ {a w} {W : Set w} {F : Set w → Set a} {{FoldF : Foldable F}} {{MonW : Monoid W}} → F W → W
fold = foldMap id
minimum : ∀ {a w} {W : Set w} {F : Set w → Set a} {{FoldF : Foldable F}} {{OrdW : Ord W}} → F W → Maybe W
minimum = foldMap {{MonW = monoid}} just
where
monoid : Monoid _
Monoid.mempty monoid = nothing
Monoid._<>_ monoid (just x) (just y) = just (min x y)
Monoid._<>_ monoid (just x) nothing = just x
Monoid._<>_ monoid nothing (just y) = just y
Monoid._<>_ monoid nothing nothing = nothing
maximum : ∀ {a w} {W : Set w} {F : Set w → Set a} {{FoldF : Foldable F}} {{OrdW : Ord W}} → F W → Maybe W
maximum = foldMap {{MonW = monoid}} just
where
monoid : Monoid _
Monoid.mempty monoid = nothing
Monoid._<>_ monoid (just x) (just y) = just (max x y)
Monoid._<>_ monoid (just x) nothing = just x
Monoid._<>_ monoid nothing (just y) = just y
Monoid._<>_ monoid nothing nothing = nothing
--- Instances ---
instance
FoldableList : ∀ {a w} → Foldable {a = a} {w = w} List
foldMap {{FoldableList}} f = foldr (λ x w → f x <> w) mempty
FoldableMaybe : ∀ {a w} → Foldable {a = a} {w = w} Maybe
foldMap {{FoldableMaybe}} = maybe mempty
|
{
"alphanum_fraction": 0.5920431558,
"avg_line_length": 33.7045454545,
"ext": "agda",
"hexsha": "f18c88900b3ced19729fdc8112ec9862e95871a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Container/Foldable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Container/Foldable.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Container/Foldable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 537,
"size": 1483
}
|
module Bin where
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Naturals using (ℕ; zero; suc; _+_; _*_)
-- 2進数の表現
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
-- 2進数のインクリメント
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (b O) = b I
inc (b I) = inc b O
_ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O
_ = refl
_ : inc (⟨⟩ O O O O) ≡ ⟨⟩ O O O I
_ = refl
_ : inc (⟨⟩ O O O I) ≡ ⟨⟩ O O I O
_ = refl
_ : inc (⟨⟩ O O I O) ≡ ⟨⟩ O O I I
_ = refl
_ : inc (⟨⟩ O O I I) ≡ ⟨⟩ O I O O
_ = refl
_ : inc (⟨⟩ O I O O) ≡ ⟨⟩ O I O I
_ = refl
-- 自然数から2進数への変換
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc n) = inc (to n)
_ : to 0 ≡ ⟨⟩ O
_ = refl
_ : to 1 ≡ ⟨⟩ I
_ = refl
_ : to 2 ≡ ⟨⟩ I O
_ = refl
_ : to 3 ≡ ⟨⟩ I I
_ = refl
_ : to 4 ≡ ⟨⟩ I O O
_ = refl
-- 2進数から自然数への変換
from : Bin → ℕ
from ⟨⟩ = zero
from (b O) = 2 * (from b)
from (b I) = 2 * (from b) + 1
_ : from (⟨⟩ O) ≡ 0
_ = refl
_ : from (⟨⟩ I) ≡ 1
_ = refl
_ : from (⟨⟩ I O) ≡ 2
_ = refl
_ : from (⟨⟩ I I) ≡ 3
_ = refl
_ : from (⟨⟩ I O O) ≡ 4
_ = refl
|
{
"alphanum_fraction": 0.4773820982,
"avg_line_length": 13.4935064935,
"ext": "agda",
"hexsha": "606ee96b5e3ea2f462c40c80253f2769611efb15",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/naturals/Bin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/naturals/Bin.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/naturals/Bin.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 550,
"size": 1039
}
|
module TypeConstructorsWhichPreserveGuardedness3 where
record ⊤ : Set where
data _⊎_ (A B : Set) : Set where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B
-- This should not be allowed.
ℕ : Set
ℕ = ⊤ ⊎ ℕ
|
{
"alphanum_fraction": 0.635,
"avg_line_length": 15.3846153846,
"ext": "agda",
"hexsha": "249cb7455f47e2d1561b334eec776f14bbba372b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness3.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness3.agda",
"max_line_length": 54,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness3.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 79,
"size": 200
}
|
module plfa.Induction where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_ ;_∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_)
-- @practice: exercise `operators` start
--
-- 1. _+_ _*_: Unit (Zero), Associativity, Commutativity
-- operator _*_ distributes over operator _+_ from the left and right.
--
-- 2. x operator of matrices: Unit (Unit matrix),
-- Associativity (Associativity of the Linear transformation)
-- No Commutativity
-- @practice: exercise `operators` end
_ : (3 + 4) + 5 ≡ 3 + (4 + 5)
_ =
begin
(3 + 4) + 5
≡⟨⟩
7 + 5
≡⟨⟩
12
≡⟨⟩
3 + 9
≡⟨⟩
3 + (4 + 5)
∎
+-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc zero n p =
begin
(zero + n) + p
≡⟨⟩
n + p
≡⟨⟩
zero + (n + p)
∎
+-assoc (suc m) n p =
begin
(suc m + n) + p
≡⟨⟩
suc (m + n) + p
≡⟨⟩
suc ((m + n) + p)
≡⟨ cong suc (+-assoc m n p) ⟩
suc (m + (n + p))
≡⟨⟩
suc m + (n + p)
∎
-- examples start
+-assoc-2 : ∀ (n p : ℕ) → (2 + n) + p ≡ 2 + (n + p)
+-assoc-2 n p =
begin
(2 + n) + p
≡⟨⟩
suc (1 + n) + p
≡⟨⟩
suc ((1 + n) + p)
≡⟨ cong suc (+-assoc-1 n p) ⟩
suc (1 + (n + p))
≡⟨⟩
2 + (n + p)
∎
where
+-assoc-1 : ∀ (n p : ℕ) → (1 + n) + p ≡ 1 + (n + p)
+-assoc-1 n p =
begin
(1 + n) + p
≡⟨⟩
suc (0 + n) + p
≡⟨⟩
suc ((0 + n) + p)
≡⟨ cong suc (+-assoc-0 n p) ⟩
suc (0 + (n + p))
≡⟨⟩
1 + (n + p)
∎
where
+-assoc-0 : ∀ (n p : ℕ) → (0 + n) + p ≡ 0 + (n + p)
+-assoc-0 n p =
begin
(0 + n) + p
≡⟨⟩
n + p
≡⟨⟩
0 + (n + p)
∎
-- examples end
+-identityʳ : ∀ ( m : ℕ ) → m + zero ≡ m
+-identityʳ zero =
begin
zero + zero
≡⟨⟩
zero
∎
+-identityʳ (suc m) =
begin
suc m + zero
≡⟨⟩
suc (m + zero)
≡⟨ cong suc (+-identityʳ m) ⟩
suc m
∎
+-suc : ∀ ( m n : ℕ ) → m + suc n ≡ suc ( m + n )
+-suc zero n =
begin
zero + suc n
≡⟨⟩
suc n
≡⟨⟩
suc (zero + n)
∎
+-suc (suc m) n =
begin
suc m + suc n
≡⟨⟩
suc ( m + suc n )
≡⟨ cong suc (+-suc m n)⟩
suc ( suc ( m + n ))
≡⟨⟩
suc ( suc m + n)
∎
+-comm : ∀ ( m n : ℕ ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identityʳ m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc ( +-comm m n )⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
+-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q
+-rearrange m n p q =
begin
(m + n) + (p + q)
≡⟨ +-assoc m n (p + q) ⟩
m + (n + (p + q))
≡⟨ cong ( m +_ ) (sym (+-assoc n p q)) ⟩
m + ((n + p) + q)
≡⟨ sym (+-assoc m (n + p) q)⟩
(m + (n + p)) + q
∎
-- @stretch: exercise `finite-+-assoc` start
-- Day 0
-- Day 1
-- 0: ℕ
--Day 2
-- 1: ℕ
-- (0 + 0) + 0 ≡ 0 + (0 + 0)
-- Day 3
-- 2: ℕ
-- (0 + 0) + 1 ≡ 0 + (0 + 1)
-- (0 + 1) + 0 ≡ 0 + (1 + 0)
-- (0 + 1) + 1 ≡ 0 + (1 + 1)
-- (1 + 0) + 0 ≡ 1 + (0 + 0)
-- (1 + 0) + 1 ≡ 1 + (0 + 1)
-- (1 + 1) + 0 ≡ 1 + (1 + 0)
-- (1 + 1) + 1 ≡ 1 + (1 + 1)
-- Day 4
-- 3 : ℕ
-- (0 + 0) + 2 ≡ 0 + (0 + 2)
-- (0 + 1) + 2 ≡ 0 + (1 + 2)
-- (0 + 2) + 0 ≡ 0 + (2 + 0)
-- (0 + 2) + 1 ≡ 0 + (2 + 1)
-- (0 + 2) + 2 ≡ 0 + (2 + 2)
-- (1 + 0) + 2 ≡ 1 + (0 + 2)
-- (1 + 1) + 2 ≡ 1 + (1 + 2)
-- (1 + 2) + 0 ≡ 1 + (2 + 0)
-- (1 + 2) + 1 ≡ 1 + (2 + 1)
-- (1 + 2) + 2 ≡ 1 + (2 + 2)
-- (2 + 0) + 0 ≡ 2 + (0 + 0)
-- (2 + 0) + 1 ≡ 2 + (0 + 1)
-- (2 + 0) + 2 ≡ 2 + (0 + 2)
-- (2 + 1) + 0 ≡ 2 + (1 + 0)
-- (2 + 1) + 1 ≡ 2 + (1 + 1)
-- (2 + 1) + 2 ≡ 2 + (1 + 2)
-- (2 + 2) + 0 ≡ 2 + (2 + 0)
-- (2 + 2) + 1 ≡ 2 + (2 + 1)
-- (2 + 2) + 2 ≡ 2 + (2 + 2)
-- @stretch: exercise `finite-+-assoc` end
+-assoc' : ∀ ( m n p : ℕ ) → (m + n) + p ≡ m + (n + p)
+-assoc' zero n p = refl
+-assoc' (suc m) n p rewrite +-assoc' m n p = refl
+-identity' : ∀ ( n : ℕ ) → n + zero ≡ n
+-identity' zero = refl
+-identity' (suc m) rewrite +-identity' m = refl
+-suc' : ∀ ( m n : ℕ ) → m + suc n ≡ suc (m + n)
+-suc' zero n = refl
+-suc' (suc m) n rewrite +-suc' m n = refl
+-comm' : ∀ ( m n : ℕ ) → m + n ≡ n + m
+-comm' m zero rewrite +-identity' m = refl
+-comm' m (suc n) rewrite +-suc' m n | +-comm' m n = refl
-- with hole
+-assoc'' : ∀ (m n p : ℕ ) → ( m + n ) + p ≡ m + (n + p)
+-assoc'' zero n p = refl
+-assoc'' (suc m) n p rewrite +-assoc'' m n p = refl
-- @recommended: exercise `+-swap` start
+-swap : ∀ ( m n p : ℕ ) → m + (n + p) ≡ n + (m + p)
+-swap zero n p = refl
+-swap (suc m) n p rewrite +-swap m n p | +-suc n (m + p) = refl
-- @recommended: exercise `+-swap` end
-- @recommended: exercise `*-distrib-+` start
*-distrib-+ : ∀ ( m n p : ℕ ) → ( m + n ) * p ≡ m * p + n * p
*-distrib-+ zero n p = refl
*-distrib-+ (suc m) n p rewrite *-distrib-+ m n p | +-assoc p (m * p) (n * p) = refl
-- @recommended: exercise `*-distrib-+` end
-- @recommended: exercise `*-assoc` start
*-assoc : ∀ ( m n p : ℕ ) → (m * n) * p ≡ m * ( n * p)
*-assoc zero n p = refl
*-assoc (suc m) n p rewrite *-distrib-+ n (m * n) p | *-assoc m n p = refl
-- @recommended: exercise `*-assoc` end
-- @practice: exercise `*-comm` start
*-zeroʳ : ∀ ( m : ℕ ) → m * zero ≡ zero
*-zeroʳ zero = refl
*-zeroʳ ( suc m ) rewrite *-distrib-+ 1 m zero | *-zeroʳ m = refl
*-suc : ∀ ( n m : ℕ ) → n + n * m ≡ n * suc m
*-suc zero m = refl
*-suc (suc n) m
rewrite
sym (*-suc n m) |
sym (+-assoc m n ( n * m )) | sym ( +-assoc n m ( n * m )) |
+-comm m n = refl
*-comm : ∀ ( m n : ℕ ) → m * n ≡ n * m
*-comm zero n rewrite *-zeroʳ n = refl
*-comm (suc m) n rewrite *-distrib-+ 1 m n | +-identityʳ n | *-comm m n | *-suc n m = refl
-- @practice: exercise `*-comm` end
-- @practice: exercise `0∸n≡0` start
0∸n≡0 : ∀ ( n : ℕ ) → 0 ∸ n ≡ 0
0∸n≡0 zero = refl
0∸n≡0 (suc n) = refl
-- @practice: exercise `0∸n≡0` end
-- @practice: exercise `∸-|-assoc` start
∸-|-assoc : ∀ ( m n p : ℕ ) → m ∸ n ∸ p ≡ m ∸ ( n + p )
∸-|-assoc zero n p rewrite 0∸n≡0 n | 0∸n≡0 p | 0∸n≡0 ( n + p ) = refl
∸-|-assoc (suc m) zero p = refl
∸-|-assoc (suc m) (suc n) p rewrite ∸-|-assoc m n p = refl
-- @practice: exercise `∸-|-assoc` end
-- @stretch: exercise `+*^` start
^-distribʳ-+-* : ∀ ( m n p : ℕ ) → m ^ ( n + p ) ≡ (m ^ n) * (m ^ p)
^-distribʳ-+-* m zero zero = refl
^-distribʳ-+-* m zero (suc p) rewrite +-identityʳ (m * (m ^ p)) = refl
^-distribʳ-+-* m (suc n) p =
begin
m ^ (suc n + p)
≡⟨⟩
m ^ suc ( n + p )
≡⟨⟩
m * ( m ^ ( n + p ) )
≡⟨ cong (_*_ m) ( ^-distribʳ-+-* m n p ) ⟩
m * ( ( m ^ n ) * ( m ^ p ) )
≡⟨ sym (*-assoc m (m ^ n) (m ^ p)) ⟩
m * ( m ^ n ) * (m ^ p)
≡⟨⟩
(m ^ suc n ) * ( m ^ p )
∎
^-sucʳ : ∀ ( n p : ℕ ) → n ^ suc p ≡ n * n ^ p
^-sucʳ n p = refl
^-distribˡ-* : ∀ ( m n p : ℕ ) → (m * n) ^ p ≡ ( m ^ p ) * ( n ^ p)
^-distribˡ-* m n zero = refl
^-distribˡ-* m n (suc p) =
begin
(m * n) ^ ( suc p )
≡⟨ ^-sucʳ (m * n) p ⟩
(m * n) * ((m * n) ^ p)
≡⟨ cong (_*_ (m * n)) (^-distribˡ-* m n p) ⟩
m * n * ((m ^ p) * (n ^ p))
≡⟨ sym (*-assoc (m * n) (m ^ p) (n ^ p)) ⟩
m * n * (m ^ p) * (n ^ p)
≡⟨ *-1234-[13][24] m n (m ^ p) (n ^ p) ⟩
(m * m ^ p ) * (n * n ^ p)
≡⟨ cong (_*_ (m * m ^ p)) (sym (^-sucʳ n p))⟩
(m * m ^ p ) * ( n ^ suc p)
≡⟨ cong (λ {x → x * (n ^ suc p)}) (^-sucʳ m p) ⟩
(m ^ suc p) * (n ^ suc p)
∎
where
*-1234-[13][24] : ∀ ( a b c d : ℕ ) → a * b * c * d ≡ (a * c) * ( b * d )
*-1234-[13][24] a b c d
rewrite
*-assoc a b c |
*-comm b c |
sym (*-assoc a c b) |
*-assoc (a * c) b d = refl
^-oneˡ : ∀ ( p : ℕ ) → 1 ^ p ≡ 1
^-oneˡ zero = refl
^-oneˡ (suc p) rewrite ^-oneˡ p = refl
^-distribʳ-* : ∀ ( m n p : ℕ ) → m ^ (n * p) ≡ (m ^ n) ^ p
^-distribʳ-* m zero p rewrite ^-oneˡ p = refl
^-distribʳ-* m n zero rewrite *-zeroʳ n = refl
^-distribʳ-* m (suc n) (suc p)
rewrite
^-distribʳ-+-* m p ( n * suc p) |
^-distribˡ-* m (m ^ n) p |
^-distribʳ-* m n (suc p) =
begin
m * ((m ^ p) * ((m ^ n) * ((m ^ n) ^ p)))
≡⟨ *-1[2[34]]-13[24] m (m ^ p) (m ^ n) ((m ^ n) ^ p) ⟩
m * (m ^ n) * ((m ^ p) * ((m ^ n) ^ p))
∎
where
*-1[2[34]]-13[24] : ∀ ( a b c d : ℕ ) → a * ( b * ( c * d ) ) ≡ a * c * ( b * d )
*-1[2[34]]-13[24] a b c d
rewrite
sym (*-assoc b c d) |
*-comm b c |
*-assoc c b d |
sym (*-assoc a c (b * d)) = refl
-- @stretch: exercise `+*^` end
-- @stretch: exercise `Bin-laws` start
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
inc : Bin → Bin
inc (m O) = m I
inc (m I) = (inc m) O
inc ⟨⟩ = ⟨⟩ I
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc n) = inc (to n)
from : Bin -> ℕ
from (m O) = 2 * (from m)
from (m I) = 2 * (from m) + 1
from ⟨⟩ = 0
comm-+-from : ∀ ( b : Bin ) → from (inc b) ≡ suc (from b)
comm-+-from ⟨⟩ = refl
comm-+-from (b O)
rewrite
sym ( +-suc' (from b) (from b + zero)) |
+-assoc' (from b) (from b + 0) 1 |
+-identityʳ (from b) |
+-comm' (from b) 1 = refl
comm-+-from (b I)
rewrite
+-identityʳ (from (inc b)) | +-identityʳ ( from b) |
comm-+-from b |
sym (+-comm' (from b) 1) |
+-assoc' (from b) (from b) 1 = refl
identity-to-from : ∀ ( n : ℕ ) → from (to n) ≡ n
identity-to-from zero = refl
identity-to-from (suc n) rewrite comm-+-from (to n) | identity-to-from n = refl
-- ⟨⟩ !== ⟨⟩ O
-- @todo: rewrite with ∃-syntax
-- @stretch: exercise `Bin-laws` end
-- import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm)
|
{
"alphanum_fraction": 0.4192869913,
"avg_line_length": 22.8581730769,
"ext": "agda",
"hexsha": "e3d280d4f5040604de0303f636d36e8821745a60",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-15T01:26:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-15T01:26:23.000Z",
"max_forks_repo_head_hexsha": "2a996af58d6b9be5d608ed040267398bcf72403b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lonelyhentai/workspace",
"max_forks_repo_path": "fp/agda/plfa/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2a996af58d6b9be5d608ed040267398bcf72403b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lonelyhentai/workspace",
"max_issues_repo_path": "fp/agda/plfa/Induction.agda",
"max_line_length": 91,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2a996af58d6b9be5d608ed040267398bcf72403b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lonelyhentai/workspace",
"max_stars_repo_path": "fp/agda/plfa/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-15T01:26:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-26T16:37:38.000Z",
"num_tokens": 4620,
"size": 9509
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Polynomials.UnivariateFun.Base where
open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyFun public
{-
The Univariate Functional Polynomials over a CommRing A is a CommRing.
The base type is define using almost null sequences ie functions.
This definition enables to defined a direct sum indexed by ℕ.
Thus base type and the AbGroup part of the CommRing is define an instance
of the more general Direct Sum one which can be found here :
-}
open import Cubical.Algebra.DirectSum.DirectSumFun.Base
{-
On this definition of the Direct Sum, it is possible to raise a Graded Ring structure.
Then complete it to be a CommRing. Those version of the polynomials are hence
a instance of this graded ring structure.
see : for the details of the constructions
-}
open import Cubical.Algebra.GradedRing.DirectSumFun
|
{
"alphanum_fraction": 0.8,
"avg_line_length": 31.4285714286,
"ext": "agda",
"hexsha": "05b261f580d396bfef96cf7f2f0bda64a2df7459",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/UnivariateFun/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/UnivariateFun/Base.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/UnivariateFun/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 197,
"size": 880
}
|
{-
Part 2: Transport and composition
• Cubical transport
• Subst as a special case of cubical transport
• Path induction from subst
• Homogeneous composition (hcomp)
• Binary composition of paths as special case of hcomp
-}
{-# OPTIONS --cubical #-}
module Part2 where
open import Part1
-- While path types are great for reasoning about equality they don't
-- let us transport along paths between types or even compose paths.
-- Furthermore, as paths are not inductively defined we don't
-- automatically get an induction principle for them. In order to
-- remedy this Cubical Agda also has a built-in (generalized)
-- transport operation and homogeneous composition operation from
-- which the induction principle (and much more!) is derivable.
-- The basic operation is called transp and we will soon explain it,
-- but let's first focus on the special case of cubical transport:
transport : A ≡ B → A → B
transport p a = transp (λ i → p i) i0 a
-- This is a more primitive operation than "transport" in HoTT as it
-- only lets us turn a path into a function. However, the transport of
-- HoTT can easily be proved from cubical transport and in order to
-- avoid a name clash we call it "subst":
subst : (B : A → Type ℓ') {x y : A} (p : x ≡ y) → B x → B y
subst B p pa = transport (λ i → B (p i)) pa
-- The transp operation is a generalized transport in the sense that
-- it lets us specify where the transport is the identity function.
-- The general type of transp is:
--
-- transp : (A : I → Type ℓ) (r : I) (a : A i0) → A i1
--
-- There is an additional side condition which to be satisfied for
-- Cubical Agda to typecheck "transp A r a". This is that A has to be
-- "constant" on r. This means that A should be a constant function
-- whenever r = i1 is satisfied. This side condition is vacuously true
-- when r = i0, so there is nothing to check when writing transport as
-- above. However, when r is equal to i1 the transp function will
-- compute as the identity function.
--
-- transp A i1 a = a
--
-- Having this extra generality is useful for quite technical reasons,
-- for instance we can easily relate a with its transport over p:
transportFill : (p : A ≡ B) (a : A) → PathP (λ i → p i) a (transport p a)
transportFill p a i = transp (λ j → p (i ∧ j)) (~ i) a
-- Another result that follows easily from transp is that transporting
-- in a constant family is the identity function (up to a path). Note
-- that this is *not* proved by refl. This is maybe not surprising as
-- transport is not defined by pattern-matching on p.
transportRefl : (x : A) → transport refl x ≡ x
transportRefl {A = A} x i = transp (λ _ → A) i x
-- Having transp lets us prove many more useful lemmas like this. For
-- details see:
--
-- Cubical.Foundations.Transport
--
-- For experts: the file
--
-- Cubical.Foundations.CartesianKanOps
--
-- contains a reformulation of these operations which might be useful
-- for people familiar with "cartesian" cubical type theory.
-- We can also define the J eliminator (aka path induction)
J : {x : A} (P : (z : A) → x ≡ z → Type ℓ'')
(d : P x refl) {y : A} (p : x ≡ y) → P y p
J {x = x} P d p = subst (λ X → P (fst X) (snd X)) (isContrSingl x .snd (_ , p)) d
-- Unfolded version:
--
-- transport (λ i → P (p i) (λ j → p (i ∧ j))) d
-- So J is provable, but it doesn't satisfy the computation rule of
-- refl definitionally as _≡_ is not inductively defined. See
-- exercises for how to prove it. Not having this hold definitionally
-- is almost never a problem in practice as the cubical primitives
-- satisfy many new definitional equalities (c.f. cong).
-- As we now have J we can define path concatenation and many more
-- things, however this is not the way to do things in Cubical
-- Agda. One of the key features of cubical type theory is that the
-- transp primitive reduces differently for different types formers
-- (see CCHM or the Cubical Agda paper for details). For paths it
-- reduces to another primitive operation called hcomp. This primitive
-- is much better suited for concatenating paths than J as it is much
-- more general. In particular, it lets us compose multiple higher
-- dimensional cubes directly. We will explain it by example.
-- In order to compose two paths we write:
compPath : {x y z : A} → x ≡ y → y ≡ z → x ≡ z
compPath {x = x} p q i = hcomp (λ j → λ { (i = i0) → x
; (i = i1) → q j })
(p i)
-- This is best understood with the following drawing:
--
-- x z
-- ^ ^
-- ¦ ¦
-- x ¦ ¦ q j
-- ¦ ¦
-- x ----------> y
-- p i
--
-- In the drawing the direction i goes left-to-right and j goes
-- bottom-to-top. As we are constructing a path from x to z along i we
-- have i : I in the context already and we put p i as bottom. The
-- direction j that we are doing the composition in is abstracted in
-- the first argument to hcomp.
-- These are related to lifting conditions for Kan cubical sets.
-- A more natural form of composition of paths in Cubical Agda is
-- ternary composition:
--
-- x w
-- ^ ^
-- ¦ ¦
-- p (~ j) ¦ ¦ r j
-- ¦ ¦
-- y ----------> z
-- q i
--
-- This is written p ∙∙ q ∙∙ r in the agda/cubical library (∙ is "\.")
-- and implemented by:
_∙∙_∙∙_ : {x y z w : A} → x ≡ y → y ≡ z → z ≡ w → x ≡ w
(p ∙∙ q ∙∙ r) i = hcomp (λ j → λ { (i = i0) → p (~ j)
; (i = i1) → r j })
(q i)
-- Note that we can easily define mixfix operators with many arguments
-- in Agda.
-- Using this we can define compPath much slicker:
_∙_ : {x y z : A} → x ≡ y → y ≡ z → x ≡ z
p ∙ q = refl ∙∙ p ∙∙ q
-- To prove algebraic properties of this operation (in particular that
-- it's a groupoid) we need to talk about filling using the hfill
-- operation. There is no time for this today, but the interested
-- reader can consult
--
-- Cubical.Foundations.GroupoidLaws
-- In case there is time I might show the following briefly:
doubleCompPath-filler : {x y z w : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w)
→ PathP (λ j → p (~ j) ≡ r j) q (p ∙∙ q ∙∙ r)
doubleCompPath-filler p q r j i =
hfill (λ j → λ { (i = i0) → p (~ j)
; (i = i1) → r j })
(inS (q i)) j
compPath-filler : {x y z : A} (p : x ≡ y) (q : y ≡ z)
→ PathP (λ j → x ≡ q j) p (p ∙ q)
compPath-filler p q = doubleCompPath-filler refl p q
rUnit : {x y : A} (p : x ≡ y) → p ≡ p ∙ refl
rUnit p i j = compPath-filler p refl i j
-- Having hcomp as a primitive operation lets us prove many things
-- very directly. For instance, we can prove that any proposition is
-- also a set using a higher dimensional hcomp.
isProp→isSet : isProp A → isSet A
isProp→isSet h a b p q j i =
hcomp (λ k → λ { (i = i0) → h a a k
; (i = i1) → h a b k
; (j = i0) → h a (p i) k
; (j = i1) → h a (q i) k }) a
-- Geometric picture: start with a square with a everywhere as base,
-- then change its sides so that they connect p with q over refl_a and
-- refl_b.
isPropIsProp : isProp (isProp A)
isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i
isPropIsSet : isProp (isSet A)
isPropIsSet h1 h2 i x y = isPropIsProp (h1 x y) (h2 x y) i
-- In order to understand what the second argument to hcomp is one
-- should read about partial elements. We refer the interested reader
-- to the Cubical Agda documentation:
--
-- https://agda.readthedocs.io/en/v2.6.1.3/language/cubical.html#partial-elements
--
-- However, for beginners one doesn't need to write hcomp to prove
-- thing as the library provide many basic lemmas. In particular, the
-- library provides equational reasoning combinators as in regular
-- Agda which let us write things like:
--
-- inverseUniqueness : (r : R) → isProp (Σ[ r' ∈ R ] r · r' ≡ 1r)
-- inverseUniqueness r (r' , rr'≡1) (r'' , rr''≡1) = Σ≡Prop (λ _ → is-set _ _) path
-- where
-- path : r' ≡ r''
-- path = r' ≡⟨ sym (·Rid _) ⟩
-- r' · 1r ≡⟨ cong (r' ·_) (sym rr''≡1) ⟩
-- r' · (r · r'') ≡⟨ ·Assoc _ _ _ ⟩
-- (r' · r) · r'' ≡⟨ cong (_· r'') (·-comm _ _) ⟩
-- (r · r') · r'' ≡⟨ cong (_· r'') rr'≡1 ⟩
-- 1r · r'' ≡⟨ ·Lid _ ⟩
-- r'' ∎
|
{
"alphanum_fraction": 0.6134722387,
"avg_line_length": 38.3954545455,
"ext": "agda",
"hexsha": "771033f3a4c14f012d0fe6465d7e2a0a4afd7961",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "EgbertRijke/EPIT-2020",
"max_forks_repo_path": "04-cubical-type-theory/material/Part2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "EgbertRijke/EPIT-2020",
"max_issues_repo_path": "04-cubical-type-theory/material/Part2.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "34742c0409818f8fe581ffc92992d1b5f29f6b47",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bafain/EPIT-2020",
"max_stars_repo_path": "04-cubical-type-theory/material/Part2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-03T16:28:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-03T16:28:06.000Z",
"num_tokens": 2581,
"size": 8447
}
|
module GUIgeneric.loadAllRepository where
open import GUIgeneric.GUI
open import GUIgeneric.GUIDefinitions
open import GUIgeneric.GUIExample
open import GUIgeneric.GUIExampleBankAccount
open import GUIgeneric.GUIExampleLib
open import GUIgeneric.GUIFeatures
open import GUIgeneric.GUIFeaturesPart2
open import GUIgeneric.GUIFeaturesPart3
open import GUIgeneric.GUIFeaturesPart4
open import GUIgeneric.GUIFeaturesPart5
open import GUIgeneric.GUIModel
open import GUIgeneric.GUIModelExample
open import GUIgeneric.Prelude
|
{
"alphanum_fraction": 0.8905950096,
"avg_line_length": 32.5625,
"ext": "agda",
"hexsha": "89846f61ce704b911f705d2514cfd46e4e4b4c1e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/loadAllRepository.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/loadAllRepository.agda",
"max_line_length": 44,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/loadAllRepository.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 113,
"size": 521
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.SuspensionLoopSpaceInverse where
{- corollary about inversion in ⊙Trunc k (⊙Ω (⊙Susp (de⊙ X))) -}
private
custom-path-alg : ∀ {l} {A : Type l}
{n s : A} (p q : n == s)
→ ! (p ∙ ! q) == ! (! q) ∙ (! p ∙ q) ∙' ! q
custom-path-alg p q@idp = ap ! (∙-unit-r p) ∙ ! (∙-unit-r (! p))
Ω-!-Susp-flip-seq : ∀ {i} (X : Ptd i) (x : de⊙ X)
→ ! (merid x ∙ ! (merid (pt X)))
=-=
Ω-fmap (⊙Susp-flip X) (σloop X x)
Ω-!-Susp-flip-seq X x =
! (merid x ∙ ! (merid (pt X)))
=⟪ custom-path-alg (merid x) (merid (pt X)) ⟫
! (! (merid (pt X))) ∙ (! (merid x) ∙ merid (pt X)) ∙' ! (merid (pt X))
=⟪ ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(! (Susp-flip-σloop X x)) ⟫
! (! (merid (pt X))) ∙ ap Susp-flip (σloop X x) ∙' ! (merid (pt X))
=⟪ ! (Ω-fmap-β (⊙Susp-flip X) (merid x ∙ ! (merid (pt X)))) ⟫
Ω-fmap (⊙Susp-flip X) (σloop X x) ∎∎
Ω-!-Susp-flip' : ∀ {i} (X : Ptd i)
→ Ω-! ∘ σloop X ∼ Ω-fmap (⊙Susp-flip X) ∘ σloop X
Ω-!-Susp-flip' X x = ↯ (Ω-!-Susp-flip-seq X x)
⊙Ω-!-Susp-flip' : ∀ {i} (X : Ptd i)
→ ⊙Ω-! ◃⊙∘
⊙σloop X ◃⊙idf
=⊙∘
⊙Ω-fmap (⊙Susp-flip X) ◃⊙∘
⊙σloop X ◃⊙idf
⊙Ω-!-Susp-flip' X = ⊙seq-λ= (Ω-!-Susp-flip' X) $ !ₛ $
↯ (Ω-!-Susp-flip-seq X (pt X)) ◃∙
ap (Ω-fmap (⊙Susp-flip X)) (!-inv-r (merid (pt X))) ◃∙
snd (⊙Ω-fmap (⊙Susp-flip X)) ◃∎
=ₛ⟨ 0 & 1 & expand (Ω-!-Susp-flip-seq X (pt X)) ⟩
custom-path-alg (merid (pt X)) (merid (pt X)) ◃∙
ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(! (Susp-flip-σloop X (pt X))) ◃∙
! (Ω-fmap-β (⊙Susp-flip X) (merid (pt X) ∙ ! (merid (pt X)))) ◃∙
ap (Ω-fmap (⊙Susp-flip X)) (!-inv-r (merid (pt X))) ◃∙
snd (⊙Ω-fmap (⊙Susp-flip X)) ◃∎
=ₛ⟨ 2 & 2 & !ₛ $ homotopy-naturality
(λ p → ! (! (merid (pt X))) ∙ ap Susp-flip p ∙' ! (merid (pt X)))
(λ p → Ω-fmap (⊙Susp-flip X) p)
(λ p → ! (Ω-fmap-β (⊙Susp-flip X) p))
(!-inv-r (merid (pt X))) ⟩
custom-path-alg (merid (pt X)) (merid (pt X)) ◃∙
ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(! (Susp-flip-σloop X (pt X))) ◃∙
ap (λ p → ! (! (merid (pt X))) ∙ ap Susp-flip p ∙' ! (merid (pt X)))
(!-inv-r (merid (pt X))) ◃∙
! (Ω-fmap-β (⊙Susp-flip X) idp) ◃∙
snd (⊙Ω-fmap (⊙Susp-flip X)) ◃∎
=ₛ⟨ 3 & 2 & pre-rotate'-in $ Ω-fmap-pt (⊙Susp-flip X) ⟩
custom-path-alg (merid (pt X)) (merid (pt X)) ◃∙
ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(! (Susp-flip-σloop X (pt X))) ◃∙
ap (λ p → ! (! (merid (pt X))) ∙ ap Susp-flip p ∙' ! (merid (pt X)))
(!-inv-r (merid (pt X))) ◃∙
ap (! (! (merid (pt X))) ∙_) (∙'-unit-l (snd (⊙Susp-flip X))) ◃∙
!-inv-l (snd (⊙Susp-flip X)) ◃∎
=ₛ₁⟨ 2 & 1 & ap-∘ (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(ap Susp-flip)
(!-inv-r (merid (pt X))) ⟩
custom-path-alg (merid (pt X)) (merid (pt X)) ◃∙
ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(! (Susp-flip-σloop X (pt X))) ◃∙
ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(ap (ap Susp-flip) (!-inv-r (merid (pt X)))) ◃∙
ap (! (! (merid (pt X))) ∙_) (∙'-unit-l (snd (⊙Susp-flip X))) ◃∙
!-inv-l (snd (⊙Susp-flip X)) ◃∎
=ₛ⟨ 1 & 2 & ap-seq-=ₛ (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X))) $
!ₛ $ post-rotate-out $ pre-rotate-in $ Susp-flip-σloop-pt X ⟩
custom-path-alg (merid (pt X)) (merid (pt X)) ◃∙
ap (λ q → ! (! (merid (pt X))) ∙ q ∙' ! (merid (pt X)))
(!-inv-l (merid (pt X))) ◃∙
ap (! (! (merid (pt X))) ∙_) (∙'-unit-l (! (merid (pt X)))) ◃∙
!-inv-l (! (merid (pt X))) ◃∎
=ₛ⟨ custom-path-alg-coh (merid (pt X)) ⟩
ap ! (!-inv-r (merid (pt X))) ◃∎
=ₛ⟨ 1 & 0 & contract ⟩
ap ! (!-inv-r (merid (pt X))) ◃∙
idp ◃∎ ∎ₛ
where
custom-path-alg-coh : ∀ {l} {A : Type l}
{n s : A} (p : n == s)
→ custom-path-alg p p ◃∙
ap (λ q → ! (! p) ∙ q ∙' ! p) (!-inv-l p) ◃∙
ap (! (! p) ∙_) (∙'-unit-l (! p)) ◃∙
!-inv-l (! p) ◃∎
=ₛ
ap ! (!-inv-r p) ◃∎
custom-path-alg-coh p@idp = =ₛ-in idp
⊙Ω-!-⊙Susp-flip : ∀ {i} (X : Ptd i) (n : ℕ₋₂)
→ is-equiv (Trunc-fmap {n = n} (σloop X))
→ ⊙Trunc-fmap {n = n} ⊙Ω-! == ⊙Trunc-fmap {n = n} (⊙Ω-fmap (⊙Susp-flip X))
⊙Ω-!-⊙Susp-flip X n is-eq =
–>-is-inj
(pre⊙∘-equiv
{Z = ⊙Trunc n (⊙Ω (⊙Susp (de⊙ X)))}
(⊙Trunc-fmap {n = n} (⊙σloop X) , is-eq))
(⊙Trunc-fmap {n = n} ⊙Ω-!)
(⊙Trunc-fmap {n = n} (⊙Ω-fmap (⊙Susp-flip X)))
(=⊙∘-out (⊙Trunc-fmap-seq-=⊙∘ {n = n} (⊙Ω-!-Susp-flip' X)))
|
{
"alphanum_fraction": 0.4232067511,
"avg_line_length": 41.9469026549,
"ext": "agda",
"hexsha": "97aa96dce8fc471bba26472044bcf6b53b4a6736",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/SuspensionLoopSpaceInverse.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/SuspensionLoopSpaceInverse.agda",
"max_line_length": 82,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/SuspensionLoopSpaceInverse.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2423,
"size": 4740
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Structures.Monoid where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_)
open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS)
open import Cubical.Structures.Pointed
open import Cubical.Structures.InftyMagma
private
variable
ℓ : Level
-- Now we're getting serious: Monoids
raw-monoid-structure : Type ℓ → Type ℓ
raw-monoid-structure X = X × (X → X → X)
raw-monoid-iso : StrIso raw-monoid-structure ℓ
raw-monoid-iso (M , e , _·_) (N , d , _∗_) f =
(equivFun f e ≡ d)
× ((x y : M) → equivFun f (x · y) ≡ (equivFun f x) ∗ (equivFun f y))
-- If we ignore the axioms we get something like a "raw" monoid, which
-- essentially is the join of a pointed type and an ∞-magma
raw-monoid-is-SNS : SNS {ℓ} raw-monoid-structure raw-monoid-iso
raw-monoid-is-SNS = join-SNS pointed-structure pointed-iso pointed-is-SNS
∞-magma-structure ∞-magma-iso ∞-magma-is-SNS
-- Now define monoids
monoid-axioms : (X : Type ℓ) → raw-monoid-structure X → Type ℓ
monoid-axioms X (e , _·_ ) = isSet X
× ((x y z : X) → (x · (y · z)) ≡ ((x · y) · z))
× ((x : X) → (x · e) ≡ x)
× ((x : X) → (e · x) ≡ x)
monoid-structure : Type ℓ → Type ℓ
monoid-structure = add-to-structure (raw-monoid-structure) monoid-axioms
Monoids : Type (ℓ-suc ℓ)
Monoids {ℓ} = TypeWithStr ℓ monoid-structure
monoid-iso : StrIso monoid-structure ℓ
monoid-iso = add-to-iso raw-monoid-structure raw-monoid-iso monoid-axioms
-- We have to show that the monoid axioms are indeed propositions
monoid-axioms-are-Props : (X : Type ℓ) (s : raw-monoid-structure X) → isProp (monoid-axioms X s)
monoid-axioms-are-Props X (e , _·_) s = β s
where
α = s .fst
-- TODO: it would be nice to have versions of this lemmas for higher arities
β = isPropΣ isPropIsSet
λ _ → isPropΣ (isPropPi (λ x → isPropPi (λ y → isPropPi (λ z → α (x · (y · z)) ((x · y) · z)))))
λ _ → isPropΣ (isPropPi (λ x → α (x · e) x))
λ _ → isPropPi (λ x → α (e · x) x)
monoid-is-SNS : SNS {ℓ} monoid-structure monoid-iso
monoid-is-SNS = add-axioms-SNS raw-monoid-structure raw-monoid-iso
monoid-axioms monoid-axioms-are-Props raw-monoid-is-SNS
MonoidPath : (M N : Monoids {ℓ}) → (M ≃[ monoid-iso ] N) ≃ (M ≡ N)
MonoidPath M N = SIP monoid-structure monoid-iso monoid-is-SNS M N
-- Added for groups
-- If there exists a inverse of an element it is unique
inv-lemma : (X : Type ℓ) (e : X) (_·_ : X → X → X)
→ monoid-axioms X (e , _·_)
→ (x y z : X)
→ y · x ≡ e
→ x · z ≡ e
→ y ≡ z
inv-lemma X e _·_ (is-set-X , assoc , runit , lunit) x y z left-inverse right-inverse =
y ≡⟨ sym (runit y) ⟩
y · e ≡⟨ cong (y ·_) (sym right-inverse) ⟩
y · (x · z) ≡⟨ assoc y x z ⟩
(y · x) · z ≡⟨ cong (_· z) left-inverse ⟩
e · z ≡⟨ lunit z ⟩
z ∎
|
{
"alphanum_fraction": 0.6014143362,
"avg_line_length": 37.4819277108,
"ext": "agda",
"hexsha": "9ae7d127a7998a3d1ff23c8b7f882c18c9e81fa1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/Structures/Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/Structures/Monoid.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/Structures/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1118,
"size": 3111
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.