Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Minimal implicational modal logic, vector-based de Bruijn approach, initial encoding
module Vi.BoxMp where
open import Lib using (Nat; suc; _+_; Fin; fin; Vec; []; _,_; proj; VMem; mem)
-- Types
infixr 0 _=>_
data Ty : Set where
UNIT : Ty
_=>_ : Ty -> Ty -> Ty
BOX : Ty -> Ty
-- Context and truth/validity judgements
Cx : Nat -> Set
Cx n = Vec Ty n
isTrue : forall {tn} -> Ty -> Fin tn -> Cx tn -> Set
isTrue a i tc = VMem a i tc
isValid : forall {vn} -> Ty -> Fin vn -> Cx vn -> Set
isValid a i vc = VMem a i vc
-- Terms
module BoxMp where
infixl 1 _$_
infixr 0 lam=>_
data Tm {vn tn} (vc : Cx vn) (tc : Cx tn) : Ty -> Set where
var : forall {a i} -> isTrue a i tc -> Tm vc tc a
lam=>_ : forall {a b} -> Tm vc (tc , a) b -> Tm vc tc (a => b)
_$_ : forall {a b} -> Tm vc tc (a => b) -> Tm vc tc a -> Tm vc tc b
var# : forall {a i} -> isValid a i vc -> Tm vc tc a
box : forall {a} -> Tm vc [] a -> Tm vc tc (BOX a)
unbox'' : forall {a b} -> Tm vc tc (BOX a) -> Tm (vc , a) tc b -> Tm vc tc b
syntax unbox'' x' x = unbox x' => x
v : forall {vn tn} {vc : Cx vn} (k : Nat) {tc : Cx (suc (k + tn))} -> Tm vc tc (proj tc (fin k))
v i = var (mem i)
v# : forall {vn tn} (k : Nat) {vc : Cx (suc (k + vn))} {tc : Cx tn} -> Tm vc tc (proj vc (fin k))
v# i = var# (mem i)
Thm : Ty -> Set
Thm a = forall {vn tn} {vc : Cx vn} {tc : Cx tn} -> Tm vc tc a
open BoxMp public
-- Example theorems
rNec : forall {a} -> Thm a -> Thm (BOX a)
rNec x =
box x
aK : forall {a b} -> Thm (BOX (a => b) => BOX a => BOX b)
aK =
lam=>
lam=>
(unbox v 1 =>
unbox v 0 =>
box (v# 1 $ v# 0))
aT : forall {a} -> Thm (BOX a => a)
aT =
lam=>
(unbox v 0 => v# 0)
a4 : forall {a} -> Thm (BOX a => BOX (BOX a))
a4 =
lam=>
(unbox v 0 => box (box (v# 0)))
t1 : forall {a} -> Thm (a => BOX (a => a))
t1 =
lam=> box (lam=> (v 0))
|
{
"alphanum_fraction": 0.4853598015,
"avg_line_length": 24.5731707317,
"ext": "agda",
"hexsha": "d61c068ef2080c711cab80de0fc8f2f76d60ed14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/formal-logic",
"max_forks_repo_path": "src/Vi/BoxMp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/formal-logic",
"max_issues_repo_path": "src/Vi/BoxMp.agda",
"max_line_length": 99,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/formal-logic",
"max_stars_repo_path": "src/Vi/BoxMp.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z",
"num_tokens": 787,
"size": 2015
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Construct.Closure.ReflexiveTransitive module directly
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Star where
open import Relation.Binary.Construct.Closure.ReflexiveTransitive public
{-# WARNING_ON_IMPORT
"Data.Star was deprecated in v0.16.
Use Relation.Binary.Construct.Closure.ReflexiveTransitive instead."
#-}
|
{
"alphanum_fraction": 0.5793226381,
"avg_line_length": 31.1666666667,
"ext": "agda",
"hexsha": "758a4970c8facec793922e902c31203aee18c78a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Star.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Star.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Star.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 101,
"size": 561
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Lex.Core directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Lex.Core where
open import Data.List.Relation.Binary.Lex.Core public
{-# WARNING_ON_IMPORT
"Data.List.Relation.Lex.Core was deprecated in v1.0.
Use Data.List.Relation.Binary.Lex.Core instead."
#-}
|
{
"alphanum_fraction": 0.5387523629,
"avg_line_length": 29.3888888889,
"ext": "agda",
"hexsha": "d965533c3f73da0dd40821ffb3f47df3a153c596",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Lex/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Lex/Core.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Lex/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 98,
"size": 529
}
|
module Issue2487-1 where
postulate get-out-of-jail : {A : Set} -> A
|
{
"alphanum_fraction": 0.6811594203,
"avg_line_length": 17.25,
"ext": "agda",
"hexsha": "76c5ef4dd787eb05f479f2d5dc0e1c260c352b70",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2487-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2487-1.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2487-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 69
}
|
{-# OPTIONS --without-K #-}
module overloading.level where
open import sum
open import equality.core
open import overloading.bundle
open import function.isomorphism
open import hott.level.core
open import sets.unit
open Bundle
bundle-structure-iso : ∀ {i j}{Base : Set i}
(Struct : Base → Set j)
→ Σ Base Struct ≅ Bundle Struct
bundle-structure-iso Struct = record
{ to = λ { (X , s) → bundle X s }
; from = λ { (bundle X s) → X , s }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
bundle-equality-iso : ∀ {i j}{Base : Set i}
(Struct : Base → Set j)
→ ((B : Base) → h 1 (Struct B))
→ {X Y : Bundle Struct}
→ (parent X ≡ parent Y)
≅ (X ≡ Y)
bundle-equality-iso Struct hS {X}{Y} = begin
parent X ≡ parent Y
≅⟨ sym≅ ×-right-unit ⟩
((parent X ≡ parent Y) × ⊤)
≅⟨ Σ-ap-iso refl≅ (λ p → sym≅ (contr-⊤-iso (hS _ _ _))) ⟩
( Σ (parent X ≡ parent Y) λ p
→ (subst Struct p (struct X) ≡ struct Y) )
≅⟨ Σ-split-iso ⟩
(parent X , struct X) ≡ (parent Y , struct Y)
≅⟨ iso≡ (bundle-structure-iso Struct) ⟩
X ≡ Y
∎
where open ≅-Reasoning
|
{
"alphanum_fraction": 0.5276630884,
"avg_line_length": 28.8333333333,
"ext": "agda",
"hexsha": "4e8c8ccd60689a760b08caa6f5488900176ec756",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "overloading/level.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/overloading/level.agda",
"max_line_length": 59,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "overloading/level.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 402,
"size": 1211
}
|
module Data.Fin.Subset.Properties.Cardinality where
open import Data.Nat as ℕ using (ℕ)
open import Data.Nat.Properties as NP
open import Data.Empty using (⊥-elim)
open import Data.Fin
open import Data.Fin.Subset
open import Data.Fin.Subset.Properties
open import Data.Vec using (_∷_; [])
open import Data.Vec.Any using (here ; there)
open import Data.Vec.Properties as VP
open import Data.Product
open import Data.Sum
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as Eq
open import Relation.Nullary.Negation
open import Function
-- some trivial lemma
∣p∣≡0→≡⊥ : ∀ {n}(p : Subset n) → ∣ p ∣ ≡ 0 → p ≡ ⊥
∣p∣≡0→≡⊥ {ℕ.zero} [] refl = refl
∣p∣≡0→≡⊥ {ℕ.suc n} (outside ∷ p) eq = cong (outside ∷_) (∣p∣≡0→≡⊥ p eq)
∣p∣≡0→≡⊥ {ℕ.suc n} (inside ∷ p) ()
∣p∣≡n→≡⊤ : ∀ {n}(p : Subset n) → ∣ p ∣ ≡ n → p ≡ ⊤
∣p∣≡n→≡⊤ {ℕ.zero} [] refl = refl
∣p∣≡n→≡⊤ {ℕ.suc n} (outside ∷ p) eq = ⊥-elim (1+n≰n (≤-respˡ-≈ eq (∣p∣≤n p)))
where
open IsPartialOrder NP.≤-isPartialOrder using (≤-respˡ-≈)
∣p∣≡n→≡⊤ {ℕ.suc n} (inside ∷ p) eq = cong (inside ∷_) (∣p∣≡n→≡⊤ p (NP.suc-injective eq))
∣p∣≡1→≡⁅x⁆ : ∀ {n}(p : Subset n) → ∣ p ∣ ≡ 1 → ∃ λ x → p ≡ ⁅ x ⁆
∣p∣≡1→≡⁅x⁆ {ℕ.zero} [] ()
∣p∣≡1→≡⁅x⁆ {ℕ.suc n} (outside ∷ p) eq with ∣p∣≡1→≡⁅x⁆ p eq
... | x , q = suc x , cong (outside ∷_) q
∣p∣≡1→≡⁅x⁆ {ℕ.suc n} (inside ∷ p) eq rewrite ∣p∣≡0→≡⊥ p (NP.suc-injective eq) = zero , refl
-- union
≤∪ˡ : ∀ {n} {p} (q : Subset n) → ∣ p ∣ ℕ.≤ ∣ p ∪ q ∣
≤∪ˡ {n}{p} q = p⊆q⇒∣p∣<∣q∣ (p⊆p∪q {p = p} q)
≤∪ʳ : ∀ {n} (p q : Subset n) → ∣ q ∣ ℕ.≤ ∣ p ∪ q ∣
≤∪ʳ p q = p⊆q⇒∣p∣<∣q∣ (q⊆p∪q p q)
∪≤ : ∀ {n} (p q : Subset n) → ∣ p ∪ q ∣ ℕ.≤ ∣ p ∣ ℕ.+ ∣ q ∣
∪≤ {ℕ.zero} [] [] = ℕ.z≤n
∪≤ {ℕ.suc n} (outside ∷ p) (outside ∷ q) = ∪≤ p q
∪≤ {ℕ.suc n} (outside ∷ p) (inside ∷ q) rewrite +-suc ∣ p ∣ ∣ q ∣ = ℕ.s≤s (∪≤ p q)
∪≤ {ℕ.suc n} (inside ∷ p) (outside ∷ q) = ℕ.s≤s (∪≤ p q)
∪≤ {ℕ.suc n} (inside ∷ p) (inside ∷ q) = ℕ.s≤s (NP.≤-trans (∪≤ p q) (NP.+-mono-≤ (≤-refl {∣ p ∣}) (n≤1+n _)))
disjoint-∪≡+ : ∀ {n} (p q : Subset n) → p ∩ q ≡ ⊥ → ∣ p ∪ q ∣ ≡ ∣ p ∣ ℕ.+ ∣ q ∣
disjoint-∪≡+ {ℕ.zero} [] [] refl = refl
disjoint-∪≡+ {ℕ.suc n} (outside ∷ p) (outside ∷ q) dis = disjoint-∪≡+ p q (VP.∷-injectiveʳ dis)
disjoint-∪≡+ {ℕ.suc n} (outside ∷ p) (inside ∷ q) dis =
Eq.trans (Eq.cong ℕ.suc (disjoint-∪≡+ p q (VP.∷-injectiveʳ dis))) (Eq.sym (NP.+-suc _ _))
disjoint-∪≡+ {ℕ.suc n} (inside ∷ p) (outside ∷ q) dis = Eq.cong ℕ.suc (disjoint-∪≡+ p q (VP.∷-injectiveʳ dis))
disjoint-∪≡+ {ℕ.suc n} (inside ∷ p) (inside ∷ q) ()
x∈p⇒⁅x⁆∪p≡p : ∀ {n} (x : Fin n)(p : Subset n) → x ∈ p → ⁅ x ⁆ ∪ p ≡ p
x∈p⇒⁅x⁆∪p≡p x p x∈p = ⊆-antisym from to
where
from : ∀ {y} → y ∈ ⁅ x ⁆ ∪ p → y ∈ p
from h with x∈p∪q⁻ ⁅ x ⁆ p h
from h | inj₁ y∈⁅x⁆ rewrite x∈⁅y⁆⇒x≡y _ y∈⁅x⁆ = x∈p
from h | inj₂ y∈p = y∈p
to : ∀ {y} → y ∈ p → y ∈ ⁅ x ⁆ ∪ p
to h = x∈p∪q⁺ (inj₂ h)
∣⁅x⁆∪p∣≡1+∣p∣⇒x∉p : ∀ {n}(x : Fin n)(p : Subset n) → ∣ ⁅ x ⁆ ∪ p ∣ ≡ 1 ℕ.+ ∣ p ∣ → x ∉ p
∣⁅x⁆∪p∣≡1+∣p∣⇒x∉p x p h x∈p rewrite x∈p⇒⁅x⁆∪p≡p x p x∈p = contradiction h lemma
where
lemma : ∀ {n} → n ≢ ℕ.suc n
lemma ()
∣⁅x⁆∪⁅y⁆∣≡2⇒x≢y : ∀ {n}(x y : Fin n) → ∣ ⁅ x ⁆ ∪ ⁅ y ⁆ ∣ ≡ 2 → x ≢ y
∣⁅x⁆∪⁅y⁆∣≡2⇒x≢y x .x h refl with ∣⁅x⁆∪p∣≡1+∣p∣⇒x∉p x ⁅ x ⁆ (trans h (cong ℕ.suc (sym (∣⁅x⁆∣≡1 x))))
... | x∉⁅y⁆ = contradiction (x∈⁅x⁆ _) x∉⁅y⁆
module _ {n : ℕ} where
open import Algebra.Structures {A = Subset n} _≡_
open IsBooleanAlgebra (∪-∩-isBooleanAlgebra n) renaming (∧-complementʳ to ∩-complementʳ; ∨-complementʳ to ∪-complementʳ)
∣p∣+∣∁p∣≡n : ∀ (p : Subset n) → ∣ p ∣ ℕ.+ ∣ ∁ p ∣ ≡ n
∣p∣+∣∁p∣≡n p = ∣ p ∣ ℕ.+ ∣ ∁ p ∣
≡⟨ Eq.sym (disjoint-∪≡+ _ _ (∩-complementʳ p)) ⟩ _
≡⟨ Eq.cong ∣_∣ (∪-complementʳ p) ⟩ _
≡⟨ ∣⊤∣≡n _ ⟩ n ∎
where
open Eq.≡-Reasoning
∩≤ˡ : ∀ {n} (a b : Subset n) → ∣ a ∩ b ∣ ℕ.≤ ∣ a ∣
∩≤ˡ {n} a b = p⊆q⇒∣p∣<∣q∣ (p∩q⊆p a b)
∩≤ʳ : ∀ {n} (a b : Subset n) → ∣ a ∩ b ∣ ℕ.≤ ∣ b ∣
∩≤ʳ {n} a b = p⊆q⇒∣p∣<∣q∣ (p∩q⊆q a b)
∣p∣<∣q∣⇒∣∁q∣<∣∁p∣ : ∀ {n} (p q : Subset n) → ∣ p ∣ ℕ.< ∣ q ∣ → ∣ ∁ q ∣ ℕ.< ∣ ∁ p ∣
∣p∣<∣q∣⇒∣∁q∣<∣∁p∣ p q p<q = NP.+-cancelˡ-< ∣ q ∣
(begin-strict ∣ q ∣ ℕ.+ ∣ ∁ q ∣ ≡⟨ ∣p∣+∣∁p∣≡n q ⟩ _ ≡⟨ sym (∣p∣+∣∁p∣≡n p) ⟩ ∣ p ∣ ℕ.+ ∣ ∁ p ∣ <⟨ NP.+-monoˡ-< _ p<q ⟩ ∣ q ∣ ℕ.+ ∣ ∁ p ∣ ∎)
where
open NP.≤-Reasoning
-- intersection
{-
private
open import Relation.Nullary.Negation using (contraposition)
p∩∁q≡⊥→p⊆q : ∀ {n} {p q : Subset n} → p ∩ ∁ q ≡ ⊥ → p ⊆ q
p∩∁q≡⊥→p⊆q {zero} {[]} {[]} refl ()
p∩∁q≡⊥→p⊆q {suc n} {true ∷ p} {outside ∷ q} () here
p∩∁q≡⊥→p⊆q {suc n} {inside ∷ p} {inside ∷ q} eq here = here
p∩∁q≡⊥→p⊆q {suc n} {true ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq
... | _ , teq = there (p∩∁q≡⊥→p⊆q teq x∈p)
p∩∁q≡⊥→p⊆q {suc n} {outside ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq
... | _ , teq = there (p∩∁q≡⊥→p⊆q teq x∈p)
p∩q≡p→p⊆q : ∀ {n} {p q : Subset n} → p ∩ q ≡ p → p ⊆ q
p∩q≡p→p⊆q {zero} {[]} {[]} refl ()
p∩q≡p→p⊆q {suc n} {inside ∷ p} {x ∷ q} eq here with ∷-injective eq
p∩q≡p→p⊆q {suc n} {inside ∷ p} {.inside ∷ q} eq here | refl , _ = here
p∩q≡p→p⊆q {suc n} {inside ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq
... | _ , teq = there (p∩q≡p→p⊆q teq x∈p)
p∩q≡p→p⊆q {suc n} {outside ∷ p} {_ ∷ q} eq (there x∈p) with ∷-injective eq
... | _ , teq = there (p∩q≡p→p⊆q teq x∈p)
p⊈q→p∩q≢p : ∀ {n} {p q : Subset n} → p ⊈ q → p ∩ q ≢ p
p⊈q→p∩q≢p = contraposition p∩q≡p→p⊆q
split-size : ∀ {n} {a} (b : Subset n) → ∣ a ∣ ≡ ∣ a ∩ b ∣ ℕ.+ ∣ a ∩ ∁ b ∣
split-size {n}{a} b = ∣a∣≡∣a∩b∣+∣a∩∁b∣
where
open P.≡-Reasoning
a∩b∩a∩∁b≡⊥ : (a ∩ b) ∩ (a ∩ ∁ b) ≡ ⊥
a∩b∩a∩∁b≡⊥ = begin
(a ∩ b) ∩ (a ∩ ∁ b) ≡⟨ ∩-assoc _ _ _ ⟩ _
≡⟨ cong (a ∩_ ) (sym (∩-assoc _ _ _)) ⟩ _
≡⟨ cong (a ∩_ ) (cong (_∩ _) (∩-comm _ _)) ⟩ _
≡⟨ cong (a ∩_ ) (∩-assoc _ _ _) ⟩ _
≡⟨ cong (a ∩_ ) (cong (a ∩_) (∩-complementʳ _)) ⟩ _
≡⟨ cong (a ∩_ ) (∩-zeroʳ _) ⟩ _
≡⟨ ∩-zeroʳ _ ⟩ ⊥
∎
a≡a∩b∪a∩∁b : a ≡ (a ∩ b) ∪ (a ∩ ∁ b)
a≡a∩b∪a∩∁b = begin
a ≡⟨ sym (∩-identityʳ _) ⟩ a ∩ ⊤
≡⟨ cong (_ ∩_) (sym (∪-complementʳ _)) ⟩ a ∩ (b ∪ ∁ b)
≡⟨ (proj₁ ∪-∩-distrib) _ _ _ ⟩ (a ∩ b) ∪ (a ∩ ∁ b)
∎
∣a∣≡∣a∩b∣+∣a∩∁b∣ : ∣ a ∣ ≡ ∣ a ∩ b ∣ ℕ.+ ∣ a ∩ ∁ b ∣
∣a∣≡∣a∩b∣+∣a∩∁b∣ = begin
∣ a ∣ ≡⟨ cong size a≡a∩b∪a∩∁b ⟩ ∣ (a ∩ b) ∪ (a ∩ ∁ b) ∣
≡⟨ disjoint-∪≡ a∩b∩a∩∁b≡⊥ ⟩ ∣ a ∩ b ∣ ℕ.+ ∣ a ∩ ∁ b ∣
∎
⊈→∩<ˡ : ∀ {n} {a b : Subset n} → a ⊈ b → ∣ a ∩ b ∣ ℕ.< ∣ a ∣
⊈→∩<ˡ {n}{a}{b} a⊈b = ≤+≢⇒< (∩≤ˡ a b) lemma
where
open P.≡-Reasoning
n+m≡n→m≡0 : ∀ {n m} → n ℕ.+ m ≡ n → m ≡ 0
n+m≡n→m≡0 {n}{m} eq = +-cancelˡ-≡ n (P.trans eq (sym (+-identityʳ n)))
lemma : ∣ a ∩ b ∣ ≢ ∣ a ∣
lemma eq = (contraposition p∩∁q≡⊥→p⊆q a⊈b) (size0 (n+m≡n→m≡0 (sym (P.trans eq (split-size b)))))
-}
|
{
"alphanum_fraction": 0.4249134948,
"avg_line_length": 41.7630057803,
"ext": "agda",
"hexsha": "dff9f50b3ab5808f51b017dda63a1408f284979f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Fin/Subset/Properties/Cardinality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Fin/Subset/Properties/Cardinality.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Fin/Subset/Properties/Cardinality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4301,
"size": 7225
}
|
module _ where
open import Agda.Builtin.Nat
open import Imports.ImportedDisplayForms
postulate
T : Nat → Set
foo : (a : Nat) → T (a + a)
foo a = {!!}
|
{
"alphanum_fraction": 0.6602564103,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "ad8b49778bd94ee29220b037c06ce9e394928a80",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/ImportedDisplayForms.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/ImportedDisplayForms.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/ImportedDisplayForms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 51,
"size": 156
}
|
open import Oscar.Prelude
open import Oscar.Class.HasEquivalence
open import Oscar.Class.Smap
open import Oscar.Class.Surjextensionality
open import Oscar.Class.Symmetry
open import Oscar.Class.Symmetrical
open import Oscar.Class.Transitivity
open import Oscar.Data.ProductIndexEquivalence
open import Oscar.Data.Surjextenscollation
import Oscar.Class.HasEquivalence.ExtensionṖroperty
import Oscar.Class.Surjection.⋆
import Oscar.Data.ExtensionṖroperty
import Oscar.Data.Proposequality
module Oscar.Class.Symmetrical.ExtensionalUnifies where
module _
{𝔵} {𝔛 : Ø 𝔵}
{𝔞} {𝔄 : 𝔛 → Ø 𝔞}
{𝔟} {𝔅 : 𝔛 → Ø 𝔟}
(let _↦_ = Arrow 𝔄 𝔅)
{𝔠} {ℭ : 𝔛 → Ø 𝔠}
{ℓ₁} {_↦̇_ : ∀ {x y} → x ↦ y → x ↦ y → Ø ℓ₁}
{ℓ₂} {_∼₂_ : ∀ {y} → ℭ y → ℭ y → Ø ℓ₂}
⦃ _ : ∀ {y} → Symmetry.class (_∼₂_ {y}) ⦄
⦃ _ : ∀ {y} → Transitivity.class (_∼₂_ {y}) ⦄
⦃ _ : Smap!.class _↦_ (Extension ℭ) ⦄
⦃ _ : Surjextensionality!.class _↦_ _↦̇_ (Extension ℭ) (Pointwise _∼₂_) ⦄
where
instance
𝓢ymmetricalExtensionalUnifies : ∀ {m} → Symmetrical {𝔄 = (ℭ m)} {𝔅 = (LeftExtensionṖroperty ℓ₂ _↦_ _↦̇_ m)} surjextenscollation⟦ _↦̇_ ⟧ _≈_
𝓢ymmetricalExtensionalUnifies .𝓢ymmetrical.symmetrical x y .π₀ = ∁ (symmetry , symmetry)
|
{
"alphanum_fraction": 0.6739659367,
"avg_line_length": 34.25,
"ext": "agda",
"hexsha": "a33bc2f472e1541988777dd52314e2e1156255c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical/ExtensionalUnifies.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical/ExtensionalUnifies.agda",
"max_line_length": 144,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Symmetrical/ExtensionalUnifies.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 508,
"size": 1233
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.AbGroup.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Reflection.StrictEquiv
open import Cubical.Structures.Axioms
open import Cubical.Structures.Macro
open import Cubical.Structures.Pointed
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Group
open Iso
private
variable
ℓ ℓ' : Level
record IsAbGroup {G : Type ℓ}
(0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where
constructor isabgroup
field
isGroup : IsGroup 0g _+_ -_
comm : (x y : G) → x + y ≡ y + x
open IsGroup isGroup public
record AbGroupStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
constructor abgroupstr
field
0g : A
_+_ : A → A → A
-_ : A → A
isAbGroup : IsAbGroup 0g _+_ -_
infix 8 -_
infixr 7 _+_
open IsAbGroup isAbGroup public
AbGroup : Type (ℓ-suc ℓ)
AbGroup = TypeWithStr _ AbGroupStr
makeIsAbGroup : {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G}
(is-setG : isSet G)
(assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z)
(rid : (x : G) → x + 0g ≡ x)
(rinv : (x : G) → x + (- x) ≡ 0g)
(comm : (x y : G) → x + y ≡ y + x)
→ IsAbGroup 0g _+_ -_
makeIsAbGroup is-setG assoc rid rinv comm =
isabgroup (makeIsGroup is-setG assoc rid (λ x → comm _ _ ∙ rid x) rinv (λ x → comm _ _ ∙ rinv x)) comm
makeAbGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G)
(is-setG : isSet G)
(assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z)
(rid : (x : G) → x + 0g ≡ x)
(rinv : (x : G) → x + (- x) ≡ 0g)
(comm : (x y : G) → x + y ≡ y + x)
→ AbGroup
makeAbGroup 0g _+_ -_ is-setG assoc rid rinv comm =
_ , abgroupstr 0g _+_ -_ (makeIsAbGroup is-setG assoc rid rinv comm)
open GroupStr
AbGroup→Group : AbGroup {ℓ} → Group
fst (AbGroup→Group A) = fst A
0g (snd (AbGroup→Group A)) = AbGroupStr.0g (snd A)
_+_ (snd (AbGroup→Group A)) = AbGroupStr._+_ (snd A)
- snd (AbGroup→Group A) = AbGroupStr.- (snd A)
isGroup (snd (AbGroup→Group A)) = IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd A))
Group→AbGroup : (G : Group {ℓ}) → ((x y : fst G) → _+_ (snd G) x y ≡ _+_ (snd G) y x) → AbGroup
fst (Group→AbGroup G comm) = fst G
AbGroupStr.0g (snd (Group→AbGroup G comm)) = 0g (snd G)
AbGroupStr._+_ (snd (Group→AbGroup G comm)) = _+_ (snd G)
AbGroupStr.- snd (Group→AbGroup G comm) = - (snd G)
IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (Group→AbGroup G comm))) = isGroup (snd G)
IsAbGroup.comm (AbGroupStr.isAbGroup (snd (Group→AbGroup G comm))) = comm
isSetAbGroup : (A : AbGroup {ℓ}) → isSet ⟨ A ⟩
isSetAbGroup A = isSetGroup (AbGroup→Group A)
AbGroupHom : (G : AbGroup {ℓ}) (H : AbGroup {ℓ'}) → Type (ℓ-max ℓ ℓ')
AbGroupHom G H = GroupHom (AbGroup→Group G) (AbGroup→Group H)
AbGroupEquiv : (G : AbGroup {ℓ}) (H : AbGroup {ℓ'}) → Type (ℓ-max ℓ ℓ')
AbGroupEquiv G H = GroupEquiv (AbGroup→Group G) (AbGroup→Group H)
module AbGroupΣTheory {ℓ} where
open GroupΣTheory
AbGroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ
AbGroupAxioms G _+_ = GroupAxioms G _+_ × ((x y : G) → x + y ≡ y + x)
AbGroupStructure : Type ℓ → Type ℓ
AbGroupStructure = AxiomsStructure RawGroupStructure AbGroupAxioms
AbGroupΣ : Type (ℓ-suc ℓ)
AbGroupΣ = TypeWithStr ℓ AbGroupStructure
isSetAbGroupΣ : (A : AbGroupΣ) → isSet _
isSetAbGroupΣ (A , _+_ , (isGroup-A , _)) = isSetGroupΣ (A , _+_ , isGroup-A)
AbGroupEquivStr : StrEquiv AbGroupStructure ℓ
AbGroupEquivStr = AxiomsEquivStr RawGroupEquivStr AbGroupAxioms
isPropAbGroupAxioms : (G : Type ℓ) (s : RawGroupStructure G)
→ isProp (AbGroupAxioms G s)
isPropAbGroupAxioms G _+_ =
isPropΣ (isPropGroupAxioms G _+_)
λ { (H , _) → isPropΠ2 λ _ _ → IsSemigroup.is-set H _ _}
AbGroup→AbGroupΣ : AbGroup → AbGroupΣ
AbGroup→AbGroupΣ (_ , abgroupstr _ _ _ (isabgroup G C)) =
_ , _ , Group→GroupΣ (group _ _ _ _ G) .snd .snd , C
AbGroupΣ→AbGroup : AbGroupΣ → AbGroup
AbGroupΣ→AbGroup (_ , _ , G , C) =
_ , abgroupstr _ _ _ (isabgroup (GroupΣ→Group (_ , _ , G) .snd .GroupStr.isGroup) C)
open AbGroupStr
AbGroupIsoAbGroupΣ : Iso AbGroup AbGroupΣ
AbGroupIsoAbGroupΣ = iso AbGroup→AbGroupΣ AbGroupΣ→AbGroup (λ _ → refl) (λ _ → refl)
abGroupUnivalentStr : UnivalentStr AbGroupStructure AbGroupEquivStr
abGroupUnivalentStr = axiomsUnivalentStr _ isPropAbGroupAxioms rawGroupUnivalentStr
AbGroupΣPath : (G H : AbGroupΣ) → (G ≃[ AbGroupEquivStr ] H) ≃ (G ≡ H)
AbGroupΣPath = SIP abGroupUnivalentStr
AbGroupEquivΣ : (G H : AbGroup) → Type ℓ
AbGroupEquivΣ G H = AbGroup→AbGroupΣ G ≃[ AbGroupEquivStr ] AbGroup→AbGroupΣ H
AbGroupPath : (G H : AbGroup) → (AbGroupEquiv G H) ≃ (G ≡ H)
AbGroupPath G H =
AbGroupEquiv G H ≃⟨ strictIsoToEquiv GroupIsoΣPath ⟩
AbGroupEquivΣ G H ≃⟨ AbGroupΣPath _ _ ⟩
AbGroup→AbGroupΣ G ≡ AbGroup→AbGroupΣ H ≃⟨ isoToEquiv (invIso (congIso AbGroupIsoAbGroupΣ)) ⟩
G ≡ H ■
AbGroup→RawGroupΣ : AbGroup {ℓ} → RawGroupΣ
AbGroup→RawGroupΣ (G , abgroupstr _ _+_ _ _) = G , _+_
InducedAbGroup : (G : AbGroup) (H : RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst)
→ RawGroupEquivStr (AbGroup→RawGroupΣ G) H e → AbGroup
InducedAbGroup G H e r =
AbGroupΣ→AbGroup (inducedStructure rawGroupUnivalentStr (AbGroup→AbGroupΣ G) H (e , r))
InducedAbGroupPath : (G : AbGroup {ℓ}) (H : RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst)
(E : RawGroupEquivStr (AbGroup→RawGroupΣ G) H e)
→ G ≡ InducedAbGroup G H e E
InducedAbGroupPath G H e E =
AbGroupPath G (InducedAbGroup G H e E) .fst (groupequiv e E)
-- Extract the characterization of equality of groups
AbGroupPath : (G H : AbGroup {ℓ}) → (AbGroupEquiv G H) ≃ (G ≡ H)
AbGroupPath = AbGroupΣTheory.AbGroupPath
isPropIsAbGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (- : G → G)
→ isProp (IsAbGroup 0g _+_ -)
isPropIsAbGroup 0g _+_ -_ (isabgroup GG GC) (isabgroup HG HC) =
λ i → isabgroup (isPropIsGroup _ _ _ GG HG i) (isPropComm GC HC i)
where
isSetG : isSet _
isSetG = GG .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
isPropComm : isProp ((x y : _) → x + y ≡ y + x)
isPropComm = isPropΠ2 λ _ _ → isSetG _ _
InducedAbGroup : (G : AbGroup {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst)
→ GroupΣTheory.RawGroupEquivStr (AbGroupΣTheory.AbGroup→RawGroupΣ G) H e
→ AbGroup
InducedAbGroup = AbGroupΣTheory.InducedAbGroup
InducedAbGroupPath : (G : AbGroup {ℓ}) (H : GroupΣTheory.RawGroupΣ) (e : ⟨ G ⟩ ≃ H .fst)
(E : GroupΣTheory.RawGroupEquivStr (AbGroupΣTheory.AbGroup→RawGroupΣ G) H e)
→ G ≡ InducedAbGroup G H e E
InducedAbGroupPath = AbGroupΣTheory.InducedAbGroupPath
open IsMonoid
open IsSemigroup
open IsGroup
open AbGroupStr
open IsAbGroup
dirProdAb : AbGroup {ℓ} → AbGroup {ℓ'} → AbGroup
dirProdAb A B =
Group→AbGroup (dirProd (AbGroup→Group A) (AbGroup→Group B))
λ p q → ΣPathP (comm (isAbGroup (snd A)) _ _
, comm (isAbGroup (snd B)) _ _)
trivialAbGroup : ∀ {ℓ} → AbGroup {ℓ}
fst trivialAbGroup = Unit*
0g (snd trivialAbGroup) = tt*
_+_ (snd trivialAbGroup) _ _ = tt*
(- snd trivialAbGroup) _ = tt*
is-set (isSemigroup (isMonoid (isGroup (isAbGroup (snd trivialAbGroup))))) =
isProp→isSet isPropUnit*
assoc (isSemigroup (isMonoid (isGroup (isAbGroup (snd trivialAbGroup))))) _ _ _ = refl
identity (isMonoid (isGroup (isAbGroup (snd trivialAbGroup)))) _ = refl , refl
inverse (isGroup (isAbGroup (snd trivialAbGroup))) _ = refl , refl
comm (isAbGroup (snd trivialAbGroup)) _ _ = refl
|
{
"alphanum_fraction": 0.6391903426,
"avg_line_length": 37.4474885845,
"ext": "agda",
"hexsha": "ee80c20d9bd42baa0cb70b84942cede1cc034792",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Algebra/AbGroup/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Algebra/AbGroup/Base.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Algebra/AbGroup/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3032,
"size": 8201
}
|
{-# OPTIONS --cubical #-}
module Type.Cubical.Path.Category{ℓ} where
open import Data.Tuple as Tuple using (_,_)
open import Data
open import Functional
open import Function.Axioms
open import Logic.Propositional
open import Structure.Category
open import Structure.Categorical.Properties
open import Structure.Operator
open import Structure.Relator.Properties
open import Type
open import Type.Cubical.Path
open import Type.Cubical.Path.Equality
open import Type.Properties.Singleton
-- The type category is a category containing all types of a single universe level in the language.
-- The objects are all sets/types.
-- The morphisms are all functions where the domain/codomain-pair are from these objects.
typeFunctionPathCategory : Category{Obj = Type{ℓ}}(_→ᶠ_)
Category._∘_ typeFunctionPathCategory = _∘_
Category.id typeFunctionPathCategory = id
Morphism.Associativity.proof (Category.associativity typeFunctionPathCategory) = reflexivity(Path)
Morphism.Identityₗ.proof (Tuple.left (Category.identity typeFunctionPathCategory)) = reflexivity(Path)
Morphism.Identityᵣ.proof (Tuple.right (Category.identity typeFunctionPathCategory)) = reflexivity(Path)
typeFunctionPathCategoryObject : CategoryObject
typeFunctionPathCategoryObject = intro typeFunctionPathCategory
Empty-initialObject : Object.Initial{Obj = Type{ℓ}}(_→ᶠ_) (Empty)
IsUnit.unit Empty-initialObject = empty
IsUnit.uniqueness (Empty-initialObject {T}) = functionExtensionality(Empty)(T) \{}
Unit-terminalObject : Object.Terminal{Obj = Type{ℓ}}(_→ᶠ_) (Unit)
IsUnit.unit Unit-terminalObject = const <>
IsUnit.uniqueness Unit-terminalObject = reflexivity(Path)
|
{
"alphanum_fraction": 0.8009650181,
"avg_line_length": 42.5128205128,
"ext": "agda",
"hexsha": "d725a9cb239328bd849ac45ac128ad6e5a9271da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/Path/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/Path/Category.agda",
"max_line_length": 103,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/Path/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 388,
"size": 1658
}
|
open import Agda.Builtin.Bool
f : Bool → Bool
f x = let y = x in {!!}
|
{
"alphanum_fraction": 0.6056338028,
"avg_line_length": 14.2,
"ext": "agda",
"hexsha": "ba6cae6eaef42f7280a809a01c2705cb9635e57a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/SplitLetBound.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/SplitLetBound.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/SplitLetBound.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 71
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Ints.QuoInt where
open import Cubical.HITs.Ints.QuoInt.Base public
-- open import Cubical.HITs.Ints.QuoInt.Properties public
|
{
"alphanum_fraction": 0.7666666667,
"avg_line_length": 25.7142857143,
"ext": "agda",
"hexsha": "1478c4e40129474f1bc01b186ccf34692e270c97",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/QuoInt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/QuoInt.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/QuoInt.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 53,
"size": 180
}
|
{-# OPTIONS --without-K --exact-split #-}
module dn-sheaves where
import rings
open rings public
{- We postulate a propositional resizing axiom -}
raise-UU-Prop :
(l : Level) → UU-Prop lzero → UU-Prop l
raise-UU-Prop l (pair P is-prop-P) =
pair ( raise l P)
( is-prop-is-equiv' P
( map-raise l P)
( is-equiv-map-raise l P)
( is-prop-P))
postulate propositional-resizing : {l : Level} → is-equiv (raise-UU-Prop l)
lower-UU-Prop :
{l : Level} → UU-Prop l → UU-Prop lzero
lower-UU-Prop = inv-is-equiv propositional-resizing
issec-lower-UU-Prop :
{l : Level} (P : UU-Prop l) → Id (raise-UU-Prop l (lower-UU-Prop P)) P
issec-lower-UU-Prop = issec-inv-is-equiv propositional-resizing
isretr-lower-UU-Prop :
{l : Level} (P : UU-Prop lzero) → Id (lower-UU-Prop (raise-UU-Prop l P)) P
isretr-lower-UU-Prop = isretr-inv-is-equiv propositional-resizing
{- We define what it means for a type to be a double-negation-sheaf -}
is-dn-sheaf :
{l : Level} (X : UU l) → UU (l ⊔ (lsuc lzero))
is-dn-sheaf X =
(P : UU-Prop lzero) → is-equiv (λ (f : ¬¬ (type-Prop P) → X) → f ∘ intro-dn)
universal-property-dn-sheafification :
(l : Level) {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) →
is-dn-sheaf Y → UU ((lsuc l) ⊔ l1 ⊔ l2)
universal-property-dn-sheafification l {Y = Y} f is-dn-sheaf-Y =
(Z : UU l) (H : is-dn-sheaf Z) → is-equiv (λ (h : Y → Z) → h ∘ f)
postulate dn-sheafification : {l : Level} → UU l → UU l
postulate unit-dn-sheafification : {l : Level} (X : UU l) → X → dn-sheafification X
postulate is-dn-sheaf-dn-sheafification : {l : Level} (X : UU l) → is-dn-sheaf (dn-sheafification X)
postulate is-dn-sheafification : {l1 l2 : Level} (X : UU l1) → universal-property-dn-sheafification l2 (unit-dn-sheafification X) (is-dn-sheaf-dn-sheafification X)
{- We show that on propositions, dn-sheafification agrees with double negation. -}
is-dn-sheaf-dn : {l : Level} (P : UU l) → is-dn-sheaf (¬¬ P)
is-dn-sheaf-dn P Q =
is-equiv-is-prop
( is-prop-function-type (¬¬ (type-Prop Q)) (¬¬ P) is-prop-neg)
( is-prop-function-type (type-Prop Q) (¬¬ P) is-prop-neg)
( dn-extend)
is-dn-sheafification-intro-dn :
(k : Level) {l : Level} (P : UU l) →
universal-property-dn-sheafification k (intro-dn {P = P}) (is-dn-sheaf-dn P)
is-dn-sheafification-intro-dn k {l} P X is-dn-sheaf-X =
is-equiv-top-is-equiv-bottom-square
( λ f → f ∘ ( functor-dn {!map-raise l ?!}))
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
|
{
"alphanum_fraction": 0.6168261563,
"avg_line_length": 33,
"ext": "agda",
"hexsha": "058c390189274159129041b0c0b3ea34f3d8b0af",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/dn-sheaves.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/dn-sheaves.agda",
"max_line_length": 163,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/dn-sheaves.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 956,
"size": 2508
}
|
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness #-}
open import Data.Empty using (⊥-elim)
open import Data.Unit using (⊤)
open import Data.Product
open import Data.Sum
open import Data.Vec using ([]; _∷_)
open import Data.List as List
import Data.Fin as Fin
open import Data.Nat
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Binary.Definitions
open import Relation.Unary using (_∈_; _∉_; _⊆_; Satisfiable)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; inspect)
open import Common
open import is-lib.InfSys
module FairTermination-IS {𝕋 : Set} (message : Message 𝕋) where
open import SessionType message
open import Trace message
open import Transitions message
open import HasTrace message
open import TraceSet message
U : Set
U = SessionType
data RuleNames : Set where
nil inp out : RuleNames
data CoRuleNames : Set where
inp out : CoRuleNames
nil-r : FinMetaRule U
nil-r .Ctx = ⊤
nil-r .comp _ =
[] ,
----
nil
inp-r : MetaRule U
inp-r .Ctx = Continuation
inp-r .Pos _ = 𝕋
inp-r .prems f p = f p .force
inp-r .conclu f = inp f
out-r : MetaRule U
out-r .Ctx = Continuation
out-r .Pos _ = 𝕋
out-r .prems f p = f p .force
out-r .conclu f = out f
inp-co-r : FinMetaRule U
inp-co-r .Ctx = Σ[ (f , x) ∈ Continuation × 𝕋 ] x ∈ dom f
inp-co-r .comp ((f , x) , _) =
f x .force ∷ [] ,
--------------------
inp f
out-co-r : FinMetaRule U
out-co-r .Ctx = Σ[ (f , x) ∈ Continuation × 𝕋 ] x ∈ dom f
out-co-r .comp ((f , x) , _) =
f x .force ∷ [] ,
--------------------
out f
WeakTerminationS : SessionType → Set
WeakTerminationS T = ∀{φ} → φ ∈ ⟦ T ⟧ → ∃[ ψ ] (φ ++ ψ ∈ Maximal ⟦ T ⟧)
WeakTerminationIS : IS U
Names WeakTerminationIS = RuleNames
rules WeakTerminationIS nil = from nil-r
rules WeakTerminationIS inp = inp-r
rules WeakTerminationIS out = out-r
WeakTerminationCOIS : IS U
WeakTerminationCOIS .Names = CoRuleNames
WeakTerminationCOIS .rules inp = from inp-co-r
WeakTerminationCOIS .rules out = from out-co-r
WeakTermination : SessionType → Set
WeakTermination = FCoInd⟦ WeakTerminationIS , WeakTerminationCOIS ⟧
WeakTerminationI : SessionType → Set
WeakTerminationI = Ind⟦ WeakTerminationIS ∪ WeakTerminationCOIS ⟧
{- Soundness -}
lemma-inp : ∀{f φ x} → φ ∈ Maximal ⟦ f x .force ⟧ → I x ∷ φ ∈ Maximal ⟦ inp f ⟧
lemma-inp (maximal wit F) =
maximal (inp-has-trace wit) λ { (some le) (_ , def , step inp tr) → cong (_ ∷_) (F le (_ , def , tr))}
lemma-out : ∀{f φ x} → φ ∈ Maximal ⟦ f x .force ⟧ → O x ∷ φ ∈ Maximal ⟦ out f ⟧
lemma-out (maximal wit F) =
maximal (out-has-trace wit) λ { (some le) (_ , def , step (out _) tr) → cong (_ ∷_) (F le (_ , def , tr))}
lemma-end : ∀{f} → (∀{x} → x ∉ dom f) → [] ∈ Maximal ⟦ inp f ⟧
lemma-end no-x = maximal (_ , inp , refl)
λ { {[]} none _ → refl
; {O _ ∷ _} none (_ , _ , step () _)
; {I _ ∷ _} none (_ , def , step inp tr) → ⊥-elim (no-x (transitions+defined->defined tr def))}
lemma-win : ∀{f} → (∀{x} → x ∉ dom f) → [] ∈ Maximal ⟦ out f ⟧
lemma-win no-x = maximal (_ , out , refl)
λ { {[]} none _ → refl
; {I _ ∷ _} none (_ , _ , step () _)
; {O _ ∷ _} none (_ , def , step (out ok) _) → ⊥-elim (no-x ok)}
may-terminate : ∀{T} → Defined T → WeakTerminationI T → Satisfiable (Maximal ⟦ T ⟧)
may-terminate _ (fold (inj₁ inp , f , refl , pr)) with Empty? f
... | inj₁ e = _ , lemma-end λ x → e _ x
... | inj₂ (p , def) =
let tr , max = may-terminate def (pr p) in
I p ∷ tr , lemma-inp max
may-terminate _ (fold (inj₁ out , f , refl , pr)) with Empty? f
... | inj₁ e = _ , lemma-win λ x → e _ x
... | inj₂ (p , def) =
let tr , max = may-terminate def (pr p) in
O p ∷ tr , lemma-out max
may-terminate _ (fold (inj₂ inp , ((_ , x) , def) , refl , pr)) =
let tr , max = may-terminate def (pr Fin.zero) in
I x ∷ tr , lemma-inp max
may-terminate _ (fold (inj₂ out , ((_ , x) , def) , refl , pr)) =
let tr , max = may-terminate def (pr Fin.zero) in
O x ∷ tr , lemma-out max
wt-sound : WeakTermination ⊆ WeakTerminationS
wt-sound wt (_ , def , refl) = may-terminate def (fcoind-to-ind wt)
wt-sound wt (_ , def , step t tr) with wt .CoInd⟦_⟧.unfold
wt-sound wt (_ , def , step (inp {_} {p}) tr) | inp , _ , refl , pr =
let tr' , max = wt-sound (pr p) (_ , def , tr) in
tr' , lemma-inp max
wt-sound wt (_ , def , step (out {_} {p} fx) tr) | out , _ , refl , pr =
let tr' , max = wt-sound (pr p) (_ , def , tr) in
tr' , lemma-out max
{- Boundedness -}
undefined→terminates : ∀{T} → ¬ Defined T → WeakTerminationI T
undefined→terminates {nil} _ = apply-ind (inj₁ nil) _ λ ()
undefined→terminates {inp f} und = ⊥-elim (und inp)
undefined→terminates {out f} und = ⊥-elim (und out)
input-maximal→terminates : ∀{f x} → [] ∈ Maximal ⟦ inp f ⟧ → WeakTerminationI (f x .force)
input-maximal→terminates {f} {x} (maximal (_ , inp , refl) F) with x ∈? f
... | no nfx = undefined→terminates nfx
... | yes fx with F none (_ , fx , step inp refl)
... | ()
output-maximal→terminates : ∀{f x} → [] ∈ Maximal ⟦ out f ⟧ → WeakTerminationI (f x .force)
output-maximal→terminates {f} {x} (maximal (_ , out , refl) F) with x ∈? f
... | no nfx = undefined→terminates nfx
... | yes fx with F none (_ , fx , step (out fx) refl)
... | ()
bounded-lemma : ∀{T ϕ} → ϕ ∈ Maximal ⟦ T ⟧ → WeakTerminationI T
bounded-lemma {nil} (maximal _ _) = apply-ind (inj₁ nil) _ λ ()
bounded-lemma {inp f} c[]@(maximal (_ , def , refl) F) =
apply-ind (inj₁ inp) _ λ p → input-maximal→terminates {f} {p} c[]
bounded-lemma {inp f} cϕ@(maximal (_ , def , step inp tr) F) =
apply-ind (inj₂ inp) (_ , (transitions+defined->defined tr def)) λ{Fin.zero → bounded-lemma (input-maximal cϕ)}
bounded-lemma {out f} c[]@(maximal (_ , def , refl) F) =
apply-ind (inj₁ out) _ λ p → output-maximal→terminates {f} {p} c[]
bounded-lemma {out f} cϕ@(maximal (_ , def , step (out x) tr) F) =
apply-ind (inj₂ out) (_ , x) λ{Fin.zero → bounded-lemma (output-maximal cϕ)}
wtS-bounded : WeakTerminationS ⊆ WeakTerminationI
wtS-bounded {nil} _ = apply-ind (inj₁ nil) _ λ ()
wtS-bounded {inp f} s with s (_ , inp , refl)
... | _ , max = bounded-lemma max
wtS-bounded {out f} s with s (_ , out , refl)
... | _ , max = bounded-lemma max
{- Consistency -}
lemma-input-maximal : ∀{f x} → WeakTerminationS (inp f) → WeakTerminationS (f x .force)
lemma-input-maximal {f} {x} spec tφ with x ∈? f
... | no nfx = ⊥-elim (nfx (has-trace->defined tφ))
... | yes fx with spec (inp-has-trace tφ)
... | _ , cψ = _ , input-maximal cψ
lemma-output-maximal : ∀{f x} → WeakTerminationS (out f) → WeakTerminationS (f x .force)
lemma-output-maximal {f} {x} spec tφ with x ∈? f
... | no nfx = ⊥-elim (nfx (has-trace->defined tφ))
... | yes fx with spec (out-has-trace tφ)
... | _ , cψ = _ , output-maximal cψ
wtS-cons : WeakTerminationS ⊆ ISF[ WeakTerminationIS ] WeakTerminationS
wtS-cons {nil} spec = nil , _ , refl , λ ()
wtS-cons {inp f} spec =
inp , f , refl , λ p → lemma-input-maximal {f} {p} spec
wtS-cons {out f} spec =
out , f , refl , λ p → lemma-output-maximal {f} {p} spec
{- Completeness -}
wt-complete : WeakTerminationS ⊆ WeakTermination
wt-complete =
bounded-coind[ WeakTerminationIS , WeakTerminationCOIS ] WeakTerminationS wtS-bounded wtS-cons
|
{
"alphanum_fraction": 0.6231034483,
"avg_line_length": 37.8260869565,
"ext": "agda",
"hexsha": "9e0fae5e0d33a035f462960a0878c81eb9a09440",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/FairTermination-IS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/FairTermination-IS.agda",
"max_line_length": 115,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/FairTermination-IS.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 2940,
"size": 8700
}
|
module Algebra.Dioid.Bool where
open import Algebra.Dioid
data Bool : Set where
true : Bool
false : Bool
data _≡_ : (x y : Bool) -> Set where
reflexivity : ∀ {x : Bool} -> x ≡ x
symmetry : ∀ {x y : Bool} -> x ≡ y -> y ≡ x
transitivity : ∀ {x y z : Bool} -> x ≡ y -> y ≡ z -> x ≡ z
_or_ : Bool -> Bool -> Bool
false or false = false
_ or _ = true
_and_ : Bool -> Bool -> Bool
true and true = true
_ and _ = false
|
{
"alphanum_fraction": 0.5278969957,
"avg_line_length": 22.1904761905,
"ext": "agda",
"hexsha": "05b6e63181d31d24e4d8ec1c9ef844b8c5d856d0",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2019-05-09T23:53:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-17T20:48:20.000Z",
"max_forks_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "snowleopard/alga-proofs",
"max_forks_repo_path": "src/Algebra/Dioid/Bool.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_issues_repo_issues_event_max_datetime": "2018-06-23T13:54:02.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-04-12T16:25:13.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "snowleopard/alga-proofs",
"max_issues_repo_path": "src/Algebra/Dioid/Bool.agda",
"max_line_length": 60,
"max_stars_count": 60,
"max_stars_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "snowleopard/alga-proofs",
"max_stars_repo_path": "src/Algebra/Dioid/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:05:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-12-27T14:57:04.000Z",
"num_tokens": 158,
"size": 466
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Abstract.Types
open import LibraBFT.Abstract.Types.EpochConfig
open WithAbsVote
-- For each desired property (VotesOnce and PreferredRoundRule), we have a
-- module containing a Type that defines a property that an implementation
-- should prove, and a proof that it implies the corresponding rule used by
-- the abstract proofs. Then, we use those proofs to instantiate thmS5,
-- and the use thmS5 to prove a number of correctness conditions.
--
-- TODO-1: refactor this file to separate the definitions and proofs of
-- VotesOnce and PreferredRoundRule from their use in proving the correctness
-- properties.
module LibraBFT.Abstract.Properties
(UID : Set)
(_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁))
(NodeId : Set)
(𝓔 : EpochConfig UID NodeId)
(𝓥 : VoteEvidence UID NodeId 𝓔)
where
open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.RecordChain.Assumptions UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥
open import LibraBFT.Abstract.RecordChain.Properties UID _≟UID_ NodeId 𝓔 𝓥
open EpochConfig 𝓔
module WithAssumptions {ℓ}
(InSys : Record → Set ℓ)
(votes-only-once : VotesOnlyOnceRule InSys)
(preferred-round-rule : PreferredRoundRule InSys)
where
open All-InSys-props InSys
CommitsDoNotConflict : ∀{q q'}
→ {rc : RecordChain (Q q)} → All-InSys rc
→ {rc' : RecordChain (Q q')} → All-InSys rc'
→ {b b' : Block}
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ bId ⊎ ((B b) ∈RC rc' ⊎ (B b') ∈RC rc)
CommitsDoNotConflict = WithInvariants.thmS5 InSys votes-only-once preferred-round-rule
-- When we are dealing with a /Complete/ InSys predicate, we can go a few steps
-- further and prove that commits do not conflict even if we have only partial
-- knowledge about Records represented in the system.
module _ (∈QC⇒AllSent : Complete InSys) where
-- For a /complete/ system we can go even further; if we have evidence that
-- only the tip of the record chains is in the system, we can infer
-- the rest of it is also in the system (or blockIDs are not injective).
CommitsDoNotConflict'
: ∀{q q'}{rc : RecordChain (Q q)}{rc' : RecordChain (Q q')}{b b' : Block}
→ InSys (Q q) → InSys (Q q')
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ bId ⊎ ((B b) ∈RC rc' ⊎ (B b') ∈RC rc)
CommitsDoNotConflict' {q} {q'} {step {r = B bb} rc b←q} {step {r = B bb'} rc' b←q'} {b} {b'} q∈sys q'∈sys cr cr'
with bft-assumption (qVotes-C1 q) (qVotes-C1 q')
...| α , α∈qmem , α∈q'mem , hα
with Any-sym (Any-map⁻ α∈qmem) | Any-sym (Any-map⁻ α∈q'mem)
...| α∈q | α∈q'
with ∈QC⇒AllSent {q = q} hα α∈q q∈sys | ∈QC⇒AllSent {q = q'} hα α∈q' q'∈sys
...| ab , (arc , ais) , ab←q | ab' , (arc' , ais') , ab←q'
with RecordChain-irrelevant (step arc ab←q) (step rc b←q) |
RecordChain-irrelevant (step arc' ab←q') (step rc' b←q')
...| inj₁ hb | _ = inj₁ hb
...| inj₂ _ | inj₁ hb = inj₁ hb
...| inj₂ arc≈rc | inj₂ arc'≈rc'
with CommitsDoNotConflict
(All-InSys-step ais ab←q q∈sys )
(All-InSys-step ais' ab←q' q'∈sys)
(transp-CR (≈RC-sym arc≈rc ) cr )
(transp-CR (≈RC-sym arc'≈rc') cr')
...| inj₁ hb = inj₁ hb
...| inj₂ (inj₁ b∈arc') = inj₂ (inj₁ (transp-B∈RC arc'≈rc' b∈arc'))
...| inj₂ (inj₂ b'∈arc) = inj₂ (inj₂ (transp-B∈RC arc≈rc b'∈arc))
-- The final property is even stronger; it states that even if an observer
-- has access only to suffixes of record chains that match the commit rule,
-- we can still guarantee that b and b' are non-conflicting blocks. This
-- will be important for showing that observers can have confidence in commit
-- messages without participating in the protocol and without having access to
-- all previously sent records.
CommitsDoNotConflict''
: ∀{o o' q q'}
→ {rcf : RecordChainFrom o (Q q)}
→ {rcf' : RecordChainFrom o' (Q q')}
→ {b b' : Block}
→ InSys (Q q)
→ InSys (Q q')
→ CommitRuleFrom rcf b
→ CommitRuleFrom rcf' b'
→ NonInjective-≡ bId ⊎ Σ (RecordChain (Q q')) ((B b) ∈RC_)
⊎ Σ (RecordChain (Q q)) ((B b') ∈RC_)
CommitsDoNotConflict'' {cb} {q = q} {q'} {rcf} {rcf'} q∈sys q'∈sys crf crf'
with bft-assumption (qVotes-C1 q) (qVotes-C1 q')
...| α , α∈qmem , α∈q'mem , hα
with Any-sym (Any-map⁻ α∈qmem) | Any-sym (Any-map⁻ α∈q'mem)
...| α∈q | α∈q'
with ∈QC⇒AllSent {q = q} hα α∈q q∈sys | ∈QC⇒AllSent {q = q'} hα α∈q' q'∈sys
...| ab , (arc , ais) , ab←q | ab' , (arc' , ais') , ab←q'
with step arc ab←q | step arc' ab←q'
...| rcq | rcq'
with crf⇒cr rcf rcq crf | crf⇒cr rcf' rcq' crf'
...| inj₁ hb | _ = inj₁ hb
...| inj₂ _ | inj₁ hb = inj₁ hb
...| inj₂ cr | inj₂ cr'
with CommitsDoNotConflict' q∈sys q'∈sys cr cr'
...| inj₁ hb = inj₁ hb
...| inj₂ (inj₁ b∈arc') = inj₂ (inj₁ (rcq' , b∈arc'))
...| inj₂ (inj₂ b'∈arc) = inj₂ (inj₂ (rcq , b'∈arc))
|
{
"alphanum_fraction": 0.6065516641,
"avg_line_length": 46.2822580645,
"ext": "agda",
"hexsha": "ee14fcbcaa062a2b01f39f7579c1517e43366607",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Abstract/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Abstract/Properties.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Abstract/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2009,
"size": 5739
}
|
module Identity where
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
elim== : {A : Set}(x : A)(C : (y : A) -> x == y -> Set) ->
C x refl -> (y : A) -> (p : x == y) -> C y p
elim== x C Cx .x refl = Cx
elim==₁ : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) ->
C x refl -> (y : A) -> (p : x == y) -> C y p
elim==₁ x C Cx .x refl = Cx
sym : {A : Set}{x y : A} -> x == y -> y == x
sym {A}{x}{y} eq = elim== x (\z _ -> z == x) refl y eq
cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y
cong {A} f {x}{y} eq = elim== x (\z _ -> f x == f z) refl y eq
subst : {A : Set}{x y : A}(P : A -> Set) -> x == y -> P x -> P y
subst P xy px = elim== _ (\z _ -> P z) px _ xy
subst₁ : {A : Set}{x y : A}(P : A -> Set1) -> x == y -> P x -> P y
subst₁ P xy px = elim==₁ _ (\z _ -> P z) px _ xy
symRef : (A : Set)(x : A) -> sym (refl{A}{x}) == refl
symRef A x = refl
symSym : {A : Set}{x y : A}(p : x == y) -> sym (sym p) == p
symSym {A}{x}{y} p = elim== x (\y q -> sym (sym q) == q) refl y p
-- Proving the symmetric elimination rule is not trivial.
elimS : {A : Set}(x : A)(C : (y : A) -> y == x -> Set) ->
C x refl -> (y : A) -> (p : y == x) -> C y p
elimS x C r y p = subst (C y) (symSym p) h
where
h : C y (sym (sym p))
h = elim== x (\y p -> C y (sym p)) r y (sym p)
data _==¹_ {A : Set1}(x : A) : {B : Set1} -> B -> Set where
refl¹ : x ==¹ x
subst¹ : {A : Set1}{x y : A}(P : A -> Set) -> x ==¹ y -> P x -> P y
subst¹ {A} P refl¹ px = px
|
{
"alphanum_fraction": 0.4264705882,
"avg_line_length": 31.829787234,
"ext": "agda",
"hexsha": "df2308b02c0dcc0e57a0c7d0b1d8f00833f0228b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/Identity.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 655,
"size": 1496
}
|
{-# OPTIONS --no-auto-inline #-}
module Haskell.Prim.Num where
open import Agda.Builtin.Nat as Nat hiding (_+_; _-_; _*_; _<_; _==_)
open import Agda.Builtin.Int using (pos; negsuc)
open import Agda.Builtin.FromNat
open import Agda.Builtin.FromNeg
open import Agda.Builtin.Unit
open import Haskell.Prim
open import Haskell.Prim.Word
open import Haskell.Prim.Int
open import Haskell.Prim.Integer
open import Haskell.Prim.Double
open import Haskell.Prim.Eq
open import Haskell.Prim.Ord
open import Haskell.Prim.Monoid
--------------------------------------------------
-- Num
record Num (a : Set) : Set₁ where
infixl 6 _+_ _-_
infixl 7 _*_
field
MinusOK : a → a → Set
NegateOK : a → Set
FromIntegerOK : Integer → Set
_+_ : a → a → a
_-_ : (x y : a) → ⦃ MinusOK x y ⦄ → a
_*_ : a → a → a
negate : (x : a) → ⦃ NegateOK x ⦄ → a
abs : a → a
signum : a → a
fromInteger : (n : Integer) → ⦃ FromIntegerOK n ⦄ → a
overlap ⦃ number ⦄ : Number a
overlap ⦃ numZero ⦄ : number .Number.Constraint 0
overlap ⦃ numOne ⦄ : number .Number.Constraint 1
open Num ⦃ ... ⦄ public hiding (FromIntegerOK; number)
instance
iNumNat : Num Nat
iNumNat .MinusOK n m = IsFalse (n Nat.< m)
iNumNat .NegateOK 0 = ⊤
iNumNat .NegateOK (suc _) = ⊥
iNumNat .Num.FromIntegerOK (negsuc _) = ⊥
iNumNat .Num.FromIntegerOK (pos _) = ⊤
iNumNat ._+_ n m = n Nat.+ m
iNumNat ._-_ n m = n Nat.- m
iNumNat ._*_ n m = n Nat.* m
iNumNat .negate n = n
iNumNat .abs n = n
iNumNat .signum 0 = 0
iNumNat .signum (suc n) = 1
iNumNat .fromInteger (pos n) = n
iNumNat .fromInteger (negsuc _) ⦃ () ⦄
iNumInt : Num Int
iNumInt .MinusOK _ _ = ⊤
iNumInt .NegateOK _ = ⊤
iNumInt .Num.FromIntegerOK _ = ⊤
iNumInt ._+_ x y = addInt x y
iNumInt ._-_ x y = subInt x y
iNumInt ._*_ x y = mulInt x y
iNumInt .negate x = negateInt x
iNumInt .abs x = absInt x
iNumInt .signum x = signInt x
iNumInt .fromInteger n = integerToInt n
iNumInteger : Num Integer
iNumInteger .MinusOK _ _ = ⊤
iNumInteger .NegateOK _ = ⊤
iNumInteger .Num.FromIntegerOK _ = ⊤
iNumInteger ._+_ x y = addInteger x y
iNumInteger ._-_ x y = subInteger x y
iNumInteger ._*_ x y = mulInteger x y
iNumInteger .negate x = negateInteger x
iNumInteger .abs x = absInteger x
iNumInteger .signum x = signInteger x
iNumInteger .fromInteger n = n
iNumWord : Num Word
iNumWord .MinusOK _ _ = ⊤
iNumWord .NegateOK _ = ⊤
iNumWord .Num.FromIntegerOK _ = ⊤
iNumWord ._+_ x y = addWord x y
iNumWord ._-_ x y = subWord x y
iNumWord ._*_ x y = mulWord x y
iNumWord .negate x = negateWord x
iNumWord .abs x = x
iNumWord .signum x = if x == 0 then 0 else 1
iNumWord .fromInteger n = integerToWord n
iNumDouble : Num Double
iNumDouble .MinusOK _ _ = ⊤
iNumDouble .NegateOK _ = ⊤
iNumDouble .Num.FromIntegerOK _ = ⊤
iNumDouble ._+_ x y = primFloatPlus x y
iNumDouble ._-_ x y = primFloatMinus x y
iNumDouble ._*_ x y = primFloatTimes x y
iNumDouble .negate x = primFloatMinus 0.0 x
iNumDouble .abs x = if x < 0.0 then primFloatMinus 0.0 x else x
iNumDouble .signum x = case compare x 0.0 of λ where
LT → -1.0
EQ → x
GT → 1.0
iNumDouble .fromInteger (pos n) = fromNat n
iNumDouble .fromInteger (negsuc n) = fromNeg (suc n)
MonoidSum : ⦃ iNum : Num a ⦄ → Monoid a
MonoidSum .mempty = 0
MonoidSum .super ._<>_ = _+_
MonoidProduct : ⦃ iNum : Num a ⦄ → Monoid a
MonoidProduct .mempty = 1
MonoidProduct .super ._<>_ = _*_
|
{
"alphanum_fraction": 0.5572763029,
"avg_line_length": 34.1848739496,
"ext": "agda",
"hexsha": "b7730b3959ecadd50700cca0a56ca4ce01d59e23",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Num.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Num.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Num.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1381,
"size": 4068
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where
open Lattice L
open import Algebra.Structures
import Algebra.FunctionProperties as P; open P _≈_
open import Relation.Binary
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product
∧-idempotent : Idempotent _∧_
∧-idempotent x = begin
x ∧ x ≈⟨ refl ⟨ ∧-cong ⟩ sym (proj₁ absorptive _ _) ⟩
x ∧ (x ∨ x ∧ x) ≈⟨ proj₂ absorptive _ _ ⟩
x ∎
∨-idempotent : Idempotent _∨_
∨-idempotent x = begin
x ∨ x ≈⟨ refl ⟨ ∨-cong ⟩ sym (∧-idempotent _) ⟩
x ∨ x ∧ x ≈⟨ proj₁ absorptive _ _ ⟩
x ∎
-- The dual construction is also a lattice.
∧-∨-isLattice : IsLattice _≈_ _∧_ _∨_
∧-∨-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∧-comm
; ∨-assoc = ∧-assoc
; ∨-cong = ∧-cong
; ∧-comm = ∨-comm
; ∧-assoc = ∨-assoc
; ∧-cong = ∨-cong
; absorptive = swap absorptive
}
∧-∨-lattice : Lattice _ _
∧-∨-lattice = record
{ _∧_ = _∨_
; _∨_ = _∧_
; isLattice = ∧-∨-isLattice
}
-- Every lattice can be turned into a poset.
poset : Poset _ _ _
poset = record
{ Carrier = Carrier
; _≈_ = _≈_
; _≤_ = λ x y → x ≈ x ∧ y
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = λ {i} {j} i≈j → begin
i ≈⟨ sym $ ∧-idempotent _ ⟩
i ∧ i ≈⟨ ∧-cong refl i≈j ⟩
i ∧ j ∎
; trans = λ {i} {j} {k} i≈i∧j j≈j∧k → begin
i ≈⟨ i≈i∧j ⟩
i ∧ j ≈⟨ ∧-cong refl j≈j∧k ⟩
i ∧ (j ∧ k) ≈⟨ sym (∧-assoc _ _ _) ⟩
(i ∧ j) ∧ k ≈⟨ ∧-cong (sym i≈i∧j) refl ⟩
i ∧ k ∎
}
; antisym = λ {x} {y} x≈x∧y y≈y∧x → begin
x ≈⟨ x≈x∧y ⟩
x ∧ y ≈⟨ ∧-comm _ _ ⟩
y ∧ x ≈⟨ sym y≈y∧x ⟩
y ∎
}
}
-- One can replace the underlying equality with an equivalent one.
replace-equality : {_≈′_ : Rel Carrier l₂} →
(∀ {x y} → x ≈ y ⇔ x ≈′ y) → Lattice _ _
replace-equality {_≈′_} ≈⇔≈′ = record
{ _≈_ = _≈′_
; _∧_ = _∧_
; _∨_ = _∨_
; isLattice = record
{ isEquivalence = record
{ refl = to ⟨$⟩ refl
; sym = λ x≈y → to ⟨$⟩ sym (from ⟨$⟩ x≈y)
; trans = λ x≈y y≈z → to ⟨$⟩ trans (from ⟨$⟩ x≈y) (from ⟨$⟩ y≈z)
}
; ∨-comm = λ x y → to ⟨$⟩ ∨-comm x y
; ∨-assoc = λ x y z → to ⟨$⟩ ∨-assoc x y z
; ∨-cong = λ x≈y u≈v → to ⟨$⟩ ∨-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v)
; ∧-comm = λ x y → to ⟨$⟩ ∧-comm x y
; ∧-assoc = λ x y z → to ⟨$⟩ ∧-assoc x y z
; ∧-cong = λ x≈y u≈v → to ⟨$⟩ ∧-cong (from ⟨$⟩ x≈y) (from ⟨$⟩ u≈v)
; absorptive = (λ x y → to ⟨$⟩ proj₁ absorptive x y)
, (λ x y → to ⟨$⟩ proj₂ absorptive x y)
}
} where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})
|
{
"alphanum_fraction": 0.4404384194,
"avg_line_length": 32.4018691589,
"ext": "agda",
"hexsha": "13d039104419bf020adf0c94637845186e5f5e7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Lattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Lattice.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Lattice.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1347,
"size": 3467
}
|
{-# OPTIONS --without-K --safe #-}
-- Some of the obvious properties of cartesian functors
module Categories.Functor.Cartesian.Properties where
open import Level
open import Data.Product using (Σ ; _,_)
open import Categories.Category
open import Categories.Category.Cartesian.Structure
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.Functor.Cartesian
open import Categories.Functor.Monoidal
open import Categories.NaturalTransformation
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
import Categories.Object.Terminal as ⊤
import Categories.Object.Product as P
private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level
module _ (C : CartesianCategory o ℓ e) where
open CartesianCategory C
open P U
idF-IsCartesianF : IsCartesianF C C idF
idF-IsCartesianF = record
{ F-resp-⊤ = terminal.⊤-is-terminal
; F-resp-× = Product⇒IsProduct product
}
idF-CartesianF : CartesianF C C
idF-CartesianF = record
{ isCartesian = idF-IsCartesianF
}
module _ (A : CartesianCategory o ℓ e) (B : CartesianCategory o′ ℓ′ e′) (C : CartesianCategory o″ ℓ″ e″) where
private
module A = CartesianCategory A
module B = CartesianCategory B
module C = CartesianCategory C
open P C.U
∘-IsCartesianF : ∀ {F : Functor A.U B.U} {G : Functor B.U C.U} →
IsCartesianF B C G → IsCartesianF A B F →
IsCartesianF A C (G ∘F F)
∘-IsCartesianF {F} {G} CG CF = record
{ F-resp-⊤ = ⊤.Terminal.⊤-is-terminal (⊤.transport-by-iso C.U C.terminal
(M.≅.trans C.U (M.≅.sym C.U CG.⊤-iso) ([ G ]-resp-≅ (M.≅.sym B.U CF.⊤-iso))))
; F-resp-× = record
{ ⟨_,_⟩ = λ f g → G.₁ (CF.×-iso.to _ _) C.∘ CG.×-iso.to _ _ C.∘ C.⟨ f , g ⟩
; project₁ = λ {_ f g} → begin
G.₁ (F.₁ A.π₁) C.∘ G.₁ (CF.×-iso.to _ _) C.∘ CG.×-iso.to _ _ C.∘ C.⟨ f , g ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ([ CG.F-prod _ _ ]⟨⟩∘ ○ CG.F-prod.⟨⟩-cong₂ _ _ C.project₁ C.project₂) ⟩
G.₁ (F.₁ A.π₁) C.∘ G.₁ (CF.×-iso.to _ _) C.∘ CG.F-resp-×.⟨ f , g ⟩ ≈⟨ pullˡ ([ G ]-resp-∘ CF.F-resp-×.project₁) ⟩
G.₁ B.π₁ C.∘ CG.F-resp-×.⟨ f , g ⟩ ≈⟨ CG.F-resp-×.project₁ ⟩
f ∎
; project₂ = λ {_ f g} → begin
G.₁ (F.₁ A.π₂) C.∘ G.₁ (CF.×-iso.to _ _) C.∘ CG.×-iso.to _ _ C.∘ C.⟨ f , g ⟩ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ([ CG.F-prod _ _ ]⟨⟩∘ ○ CG.F-prod.⟨⟩-cong₂ _ _ C.project₁ C.project₂) ⟩
G.₁ (F.₁ A.π₂) C.∘ G.₁ (CF.×-iso.to _ _) C.∘ CG.F-resp-×.⟨ f , g ⟩ ≈⟨ pullˡ ([ G ]-resp-∘ CF.F-resp-×.project₂) ⟩
G.₁ B.π₂ C.∘ CG.F-resp-×.⟨ f , g ⟩ ≈⟨ CG.F-resp-×.project₂ ⟩
g ∎
; unique = λ {_ h f g} eq₁ eq₂ → begin
G.₁ (CF.×-iso.to _ _) C.∘ CG.×-iso.to _ _ C.∘ C.⟨ f , g ⟩
≈⟨ refl⟩∘⟨ refl⟩∘⟨ C.unique′ (C.project₁ ○ ⟺ eq₁ ○ pushˡ (⟺ ([ G ]-resp-∘ B.project₁)) ○ pushˡ (⟺ C.project₁))
(C.project₂ ○ ⟺ eq₂ ○ pushˡ (⟺ ([ G ]-resp-∘ B.project₂)) ○ pushˡ (⟺ C.project₂)) ⟩
G.₁ (CF.×-iso.to _ _) C.∘ CG.×-iso.to _ _ C.∘ CG.×-iso.from _ _ C.∘ G.₁ (CF.×-iso.from _ _) C.∘ h
≈⟨ refl⟩∘⟨ cancelˡ (CG.×-iso.isoˡ _ _) ⟩
G.₁ (CF.×-iso.to _ _) C.∘ G.₁ (CF.×-iso.from _ _) C.∘ h
≈⟨ cancelˡ (M._≅_.isoˡ ([ G ]-resp-≅ (CF.×-iso _ _))) ⟩
h
∎
}
}
where module F = Functor F
module G = Functor G
module CG = IsCartesianF CG
module CF = IsCartesianF CF
open C.HomReasoning
open MR C.U
∘-CartesianF : {A : CartesianCategory o ℓ e} {B : CartesianCategory o′ ℓ′ e′} {C : CartesianCategory o″ ℓ″ e″} →
CartesianF B C → CartesianF A B → CartesianF A C
∘-CartesianF G F = record { isCartesian = ∘-IsCartesianF _ _ _ (CartesianF.isCartesian G) (CartesianF.isCartesian F) }
module _ {C : CartesianCategory o ℓ e} {D : CartesianCategory o′ ℓ′ e′} where
private
module C = CartesianCategory C
module D = CartesianCategory D
open D.HomReasoning
open MR D.U
open M D.U
isMonoidalFunctor : CartesianF C D → MonoidalFunctor C.monoidalCategory D.monoidalCategory
isMonoidalFunctor F = record
{ F = F.F
; isMonoidal = record
{ ε = F.⊤-iso.to
; ⊗-homo = ntHelper record
{ η = λ { (X , Y) → F.×-iso.to X Y }
; commute = λ { {X , Y} {Z , W} (f , g) →
F.F-prod.unique′ _ _
(begin
F.₁ C.π₁ D.∘ F.×-iso.to Z W D.∘ (F.₁ f D.⁂ F.₁ g) ≈⟨ pullˡ F.F-resp-×.project₁ ⟩
D.π₁ D.∘ (F.₁ f D.⁂ F.₁ g) ≈⟨ D.project₁ ⟩
F.₁ f D.∘ D.π₁ ≈˘⟨ pullʳ F.F-resp-×.project₁ ⟩
(F.₁ f D.∘ F.₁ C.π₁) D.∘ F.×-iso.to X Y ≈˘⟨ pullˡ ([ F.F ]-resp-square C.project₁) ⟩
F.₁ C.π₁ D.∘ F.₁ (f C.⁂ g) D.∘ F.×-iso.to X Y ∎)
(begin
F.₁ C.π₂ D.∘ F.×-iso.to Z W D.∘ (F.₁ f D.⁂ F.₁ g) ≈⟨ pullˡ F.F-resp-×.project₂ ⟩
D.π₂ D.∘ (F.₁ f D.⁂ F.₁ g) ≈⟨ D.project₂ ⟩
F.₁ g D.∘ D.π₂ ≈˘⟨ pullʳ F.F-resp-×.project₂ ⟩
(F.₁ g D.∘ F.₁ C.π₂) D.∘ F.×-iso.to X Y ≈˘⟨ pullˡ ([ F.F ]-resp-square C.project₂) ⟩
F.₁ C.π₂ D.∘ F.₁ (f C.⁂ g) D.∘ F.×-iso.to X Y ∎)
}
}
; associativity = λ {X Y Z} → let open P D.U in begin
F.₁ C.associator.from D.∘ F.×-iso.to (X C.× Y) Z D.∘ (F.×-iso.to X Y D.⁂ D.id)
≈⟨ F.F-resp-⟨⟩′ _ _ ⟩∘⟨ [ D.product ⇒ D.product ⇒ F.F-prod _ _ ]repack∘× ⟩
F.F-resp-×.⟨ F.₁ (C.π₁ C.∘ C.π₁) , F.₁ C.⟨ C.π₂ C.∘ C.π₁ , C.π₂ ⟩ ⟩ D.∘ F.F-resp-×.⟨ F.×-iso.to X Y D.∘ D.π₁ , D.id D.∘ D.π₂ ⟩
≈⟨ F.F-prod.⟨⟩-cong₂ _ _ F.homomorphism (F.F-resp-⟨⟩′ _ _ ○ F.F-prod.⟨⟩-cong₂ _ _ F.homomorphism D.Equiv.refl) ⟩∘⟨refl ⟩
F.F-resp-×.⟨ F.₁ C.π₁ D.∘ F.₁ C.π₁ , F.F-resp-×.⟨ F.₁ C.π₂ D.∘ F.₁ C.π₁ , F.₁ C.π₂ ⟩ ⟩ D.∘ F.F-resp-×.⟨ F.×-iso.to X Y D.∘ D.π₁ , D.id D.∘ D.π₂ ⟩
≈⟨ [ F.F-prod _ _ ]⟨⟩∘ ⟩
F.F-resp-×.⟨ (F.₁ C.π₁ D.∘ F.₁ C.π₁) D.∘ _ , F.F-resp-×.⟨ F.₁ C.π₂ D.∘ F.₁ C.π₁ , F.₁ C.π₂ ⟩ D.∘ _ ⟩
≈⟨ F.F-prod.⟨⟩-cong₂ _ _ (pullʳ F.F-resp-×.project₁ ○ pullˡ F.F-resp-×.project₁)
[ F.F-prod _ _ ]⟨⟩∘ ⟩
F.F-resp-×.⟨ D.π₁ D.∘ D.π₁ , F.F-resp-×.⟨ (F.₁ C.π₂ D.∘ F.₁ C.π₁) D.∘ _ , F.₁ C.π₂ D.∘ _ ⟩ ⟩
≈⟨ F.F-prod.⟨⟩-cong₂ _ _ D.Equiv.refl
(F.F-prod.⟨⟩-cong₂ _ _ (pullʳ F.F-resp-×.project₁ ○ pullˡ F.F-resp-×.project₂)
(F.F-resp-×.project₂ ○ D.identityˡ)) ⟩
F.F-resp-×.⟨ D.π₁ D.∘ D.π₁ , F.F-resp-×.⟨ D.π₂ D.∘ D.π₁ , D.π₂ ⟩ ⟩
≈˘⟨ F.F-prod.⟨⟩-cong₂ _ _ D.identityˡ ([ F.F-prod _ _ ]⟨⟩∘ ○ (F.F-prod.⟨⟩-cong₂ _ _ D.project₁ D.project₂)) ⟩
F.F-resp-×.⟨ D.id D.∘ D.π₁ D.∘ D.π₁ , F.×-iso.to Y Z D.∘ D.⟨ D.π₂ D.∘ D.π₁ , D.π₂ ⟩ ⟩
≈˘⟨ [ D.product ⇒ (F.F-prod _ _) ]×∘⟨⟩ ⟩
F.F-resp-×.⟨ D.id D.∘ D.π₁ , F.×-iso.to Y Z D.∘ D.π₂ ⟩ D.∘ D.associator.from
≈˘⟨ pullˡ [ D.product ⇒ D.product ⇒ F.F-prod _ _ ]repack∘× ⟩
F.×-iso.to X (Y C.× Z) D.∘ (D.id D.⁂ F.×-iso.to Y Z) D.∘ D.associator.from
∎
; unitaryˡ = begin
F.₁ C.π₂ D.∘ F.F-resp-×.⟨ D.π₁ , D.π₂ ⟩ D.∘ (F.F-resp-⊤.! D.⁂ D.id) ≈⟨ pullˡ F.F-resp-×.project₂ ⟩
D.π₂ D.∘ (F.F-resp-⊤.! D.⁂ D.id) ≈⟨ D.project₂ ⟩
D.id D.∘ D.π₂ ≈⟨ D.identityˡ ⟩
D.π₂ ∎
; unitaryʳ = begin
F.₁ C.π₁ D.∘ F.F-resp-×.⟨ D.π₁ , D.π₂ ⟩ D.∘ (D.id D.⁂ F.F-resp-⊤.!) ≈⟨ pullˡ F.F-resp-×.project₁ ⟩
D.π₁ D.∘ (D.id D.⁂ F.F-resp-⊤.!) ≈⟨ D.project₁ ⟩
D.id D.∘ D.π₁ ≈⟨ D.identityˡ ⟩
D.π₁ ∎
}
}
where module F = CartesianF F
isStrongMonoidalFunctor : CartesianF C D → StrongMonoidalFunctor C.monoidalCategory D.monoidalCategory
isStrongMonoidalFunctor F = record
{ F = F.F
; isStrongMonoidal = record
{ ε = ≅.sym F.⊤-iso
; ⊗-homo = record
{ F⇒G = MF.⊗-homo
; F⇐G = ntHelper record
{ η = λ { (X , Y) → F.×-iso.from X Y }
; commute = λ { {X , Y} {Z , W} (f , g) →
begin
D.⟨ F.₁ C.π₁ , F.₁ C.π₂ ⟩ D.∘ F.₁ (f C.⁂ g) ≈⟨ D.⟨⟩∘ ⟩
D.⟨ F.₁ C.π₁ D.∘ F.₁ (f C.⁂ g) , F.₁ C.π₂ D.∘ F.₁ (f C.⁂ g) ⟩ ≈⟨ D.⟨⟩-cong₂ ([ F.F ]-resp-square C.project₁) ([ F.F ]-resp-square C.project₂) ⟩
D.⟨ F.₁ f D.∘ F.F₁ C.π₁ , F.₁ g D.∘ F.F₁ C.π₂ ⟩ ≈˘⟨ D.⁂∘⟨⟩ ⟩
(F.₁ f D.⁂ F.₁ g) D.∘ D.⟨ F.F₁ C.π₁ , F.F₁ C.π₂ ⟩ ∎ }
}
; iso = λ { (X , Y) → record
{ isoˡ = F.×-iso.isoʳ X Y
; isoʳ = F.×-iso.isoˡ X Y
} }
}
; associativity = MF.associativity
; unitaryˡ = MF.unitaryˡ
; unitaryʳ = MF.unitaryʳ
}
}
where module F = CartesianF F
module MF = MonoidalFunctor (isMonoidalFunctor F)
|
{
"alphanum_fraction": 0.4630865374,
"avg_line_length": 51.3097826087,
"ext": "agda",
"hexsha": "daf13df4a4255e2d3daaffb765a88b573528066a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Cartesian/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Cartesian/Properties.agda",
"max_line_length": 175,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Cartesian/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 4149,
"size": 9441
}
|
-- Andreas, 2012-05-24, issue reported by Nisse
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.meta:50 #-}
module Issue658 where
import Common.Level
postulate
A : Set
P : A → Set
Q : (x : A) → P x → Set
p : (x : A) → P x
record R : Set where
field
a : A
r : R
r = {!!}
postulate
q : Q (R.a r) (p (R.a r))
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/MetaVars.hs:101
-- The internal error was cause by eta-expanding the frozen meta.
-- Eta-expansion of frozen metas is now allowed.
|
{
"alphanum_fraction": 0.6383701188,
"avg_line_length": 20.3103448276,
"ext": "agda",
"hexsha": "50897da48e4aca86bb43f22165320f9975904490",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue658.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue658.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue658.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 191,
"size": 589
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Hash
open import LibraBFT.Abstract.Types
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Concrete.Obligations
import LibraBFT.Concrete.Properties.VotesOnce as VO
import LibraBFT.Concrete.Properties.LockedRound as LR
open import LibraBFT.Yasm.System ConcSysParms
open import LibraBFT.Yasm.Properties ConcSysParms
-- In this module, we assume that the implementation meets its
-- obligations, and use this assumption to prove that the
-- implementatioon enjoys one of the per-epoch correctness conditions
-- proved in Abstract.Properties. It can be extended to other
-- properties later.
module LibraBFT.Concrete.Properties (impl-correct : ImplObligations) where
open ImplObligations impl-correct
-- For any reachable state,
module _ {e}(st : SystemState e)(r : ReachableSystemState st)(eid : Fin e) where
open import LibraBFT.Concrete.System sps-cor
open PerState st r
open PerEpoch eid
import LibraBFT.Abstract.Records 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔) as Abs
open import LibraBFT.Abstract.RecordChain 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔)
open import LibraBFT.Abstract.System 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔)
open import LibraBFT.Abstract.Properties 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔)
open import LibraBFT.Abstract.Obligations.VotesOnce 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔)
open import LibraBFT.Abstract.Obligations.LockedRound 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔)
validState : ValidSysState ConcSystemState
validState = record
{ vss-votes-once = VO.Proof.voo sps-cor vo₁ vo₂ st r eid
; vss-locked-round = LR.Proof.lrr sps-cor lr₁ st r eid
}
open All-InSys-props (AbsSystemState.InSys ConcSystemState)
-- commited blocks do not conflict.
S5 : ∀{q q'}
→ {rc : RecordChain (Abs.Q q)} → All-InSys rc
→ {rc' : RecordChain (Abs.Q q')} → All-InSys rc'
→ {b b' : Abs.Block}
→ CommitRule rc b
→ CommitRule rc' b'
→ NonInjective-≡ Abs.bId ⊎ ((Abs.B b) ∈RC rc' ⊎ (Abs.B b') ∈RC rc)
S5 = CommitsDoNotConflict ConcSystemState validState
|
{
"alphanum_fraction": 0.7509113001,
"avg_line_length": 39.8225806452,
"ext": "agda",
"hexsha": "32b6f679d16522bbfbbf7fb37ecee84889fdcd77",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_forks_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_issues_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_stars_repo_path": "LibraBFT/Concrete/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 727,
"size": 2469
}
|
{-# OPTIONS --without-K --safe #-}
-- Pi combinators inspired by duals and traced monoidal categories
module PiPointedFracTrace where
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import PiPointedFrac
------------------------------------------------------------------
dual : {A B : ∙𝕌} → (f : A ∙⟶ B) → (Recipᵤ B ∙⟶ Recipᵤ A)
dual {A} {B} f = ∙uniti⋆l ∙⊚ (η A ∙⊗ ∙id⟷) ∙⊚ ((∙Singᵤ f ∙⊗ ∙id⟷) ∙⊗ ∙id⟷) ∙⊚
∙assocr⋆ ∙⊚ (∙id⟷ ∙⊗ ∙swap⋆) ∙⊚ ∙assocl⋆ ∙⊚ (ε B ∙⊗ ∙id⟷) ∙⊚ ∙unite⋆l
-- name, coname
name : {A B : ∙𝕌} → (f : A ∙⟶ B) → ∙𝟙 ∙⟶ Singᵤ B ∙×ᵤ Recipᵤ A
name {A} {B} f = η A ∙⊚ (∙Singᵤ f ∙⊗ ∙id⟷)
coname : {A B : ∙𝕌} → (f : A ∙⟶ B) → Singᵤ A ∙×ᵤ Recipᵤ B ∙⟶ ∙𝟙
coname {A} {B} f = (∙Singᵤ f ∙⊗ ∙id⟷) ∙⊚ ε B
-- and 'trace' reveals something neat: we can't choose just any random 'a' and 'c'
-- to start with, but we need that make a coherence choice of a and c !!
trace : {A B C : ∙𝕌} → (f : A ∙×ᵤ C ∙⟶ B ∙×ᵤ C) → A ∙⟶ B
trace {A} {B} {C} f =
∙uniti⋆r ∙⊚ -- A ×ᵤ 1
(return _ ∙⊗ η C) ∙⊚ -- A ×ᵤ (C ×ᵤ 1/C)
∙assocl⋆ ∙⊚ -- (A ×ᵤ C) ×ᵤ 1/C
(tensor ∙⊗ ∙id⟷) ∙⊚ -- bring in the ●
(∙Singᵤ f ∙⊗ ∙id⟷) ∙⊚ -- (B ×ᵤ C) ×ᵤ 1/C
(untensor ∙⊗ ∙id⟷) ∙⊚ -- bring out the ●
∙assocr⋆ ∙⊚ -- B ×ᵤ (C ×ᵤ 1/C)
(extract _ ∙⊗ ε C) ∙⊚
∙unite⋆r
-- Trace terminates! The type C is pointed with point c; trace uses c
-- as the initial value for C. So f gets two values (a,c). It can do
-- whatever to produce (b',c'). But f is reversible so it is limited
-- to essentially either id or swap. Makes sense???
𝔹 : 𝕌
𝔹 = 𝟙 +ᵤ 𝟙
𝔽 𝕋 : ⟦ 𝔹 ⟧
𝔽 = inj₁ tt
𝕋 = inj₂ tt
zz1 : (A : 𝕌) (v : ⟦ A ⟧) → Σ (⟦ A ⟧ → ⟦ A ⟧) (λ f → f v ≡ v)
zz1 A v = ∙eval (trace {A # v} ∙swap⋆)
zz3 : (A : 𝕌) (v : ⟦ A ⟧) (T : ∙𝕌) → Σ (⟦ A ⟧ → ⟦ A ⟧) (λ f → f v ≡ v)
zz3 A v T = ∙eval (trace {A # v} {_} {T} ∙id⟷)
-- There are more thing you can put in trace as long as c is the fixpoint
NOT : 𝔹 ⟷ 𝔹
NOT = swap₊
CONTROLLED : {A : 𝕌} → (A ⟷ A) → 𝔹 ×ᵤ A ⟷ 𝔹 ×ᵤ A
CONTROLLED c = dist ⊚ (id⟷ ⊕ (id⟷ ⊗ c)) ⊚ factor
CNOT : 𝔹 ×ᵤ 𝔹 ⟷ 𝔹 ×ᵤ 𝔹
CNOT = CONTROLLED NOT
ex1 : ∀ {b} → 𝔹 # b ∙⟶ 𝔹 # b
ex1 = trace {C = 𝔹 # 𝔽} (∙swap⋆ ∙⊚ ∙#times ∙⊚ ∙c CNOT ∙⊚ ∙times# ∙⊚ ∙swap⋆)
-- Example in Sec. 4.3 from Abramsky's paper
-- http://www.cs.ox.ac.uk/files/341/calco05.pdf
∙q : {A1 A2 A3 A4 B1 B2 B3 B4 : ∙𝕌}
→ (f1 : A1 ∙⟶ B2)
→ (f2 : A2 ∙⟶ B4)
→ (f3 : A3 ∙⟶ B3)
→ (f4 : A4 ∙⟶ B1)
→ A1 ∙×ᵤ (A2 ∙×ᵤ (A3 ∙×ᵤ A4)) ∙⟶ B1 ∙×ᵤ (B2 ∙×ᵤ (B3 ∙×ᵤ B4))
∙q {A1} {A2} {A3} {A4} {B1} {B2} {B3} {B4} f1 f2 f3 f4 =
(f1 ∙⊗ (f2 ∙⊗ (f3 ∙⊗ f4))) ∙⊚
∙assocl⋆ ∙⊚
∙swap⋆ ∙⊚
∙swap⋆ ∙⊗ ∙id⟷ ∙⊚
∙assocr⋆ ∙⊚ (∙id⟷ ∙⊗ ∙assocl⋆) ∙⊚
∙id⟷ ∙⊗ (∙swap⋆ ∙⊗ ∙id⟷ ∙⊚ ∙assocr⋆)
∙q' : {A1 U2 U3 U4 B1 : ∙𝕌}
→ (f1 : A1 ∙⟶ U2)
→ (f2 : U2 ∙⟶ U4)
→ (f3 : U3 ∙⟶ U3)
→ (f4 : U4 ∙⟶ B1)
→ A1 ∙⟶ B1
∙q' f1 f2 f3 f4 = trace (∙q f1 f2 f3 f4)
_⊸_ : (A B : ∙𝕌) → ∙𝕌
A ⊸ B = Recipᵤ A ∙×ᵤ Singᵤ B
id⊸ : {A : ∙𝕌} → (A ⊸ A) ∙⟶ ∙𝟙
id⊸ {A} = ∙swap⋆ ∙⊚ ε A
comp⊸ : (A B C : ∙𝕌) → (A ⊸ B) ∙×ᵤ (B ⊸ C) ∙⟶ (A ⊸ C)
comp⊸ A B C = ∙assocr⋆ ∙⊚
∙id⟷ ∙⊗ ∙assocl⋆ ∙⊚
∙id⟷ ∙⊗ (ε B ∙⊗ ∙id⟷) ∙⊚
∙id⟷ ∙⊗ ∙unite⋆l
app : (A B : ∙𝕌) → (A ⊸ B) ∙×ᵤ Singᵤ A ∙⟶ Singᵤ B
app A B = ∙swap⋆ ∙⊗ ∙id⟷ ∙⊚
∙assocr⋆ ∙⊚ (∙id⟷ ∙⊗ (∙swap⋆ ∙⊚ ε A)) ∙⊚
∙unite⋆r
-- B/A × D/C ⟷ B × D / A × C
dist×/ : {A B C D : ∙𝕌} → (A ⊸ B) ∙×ᵤ (C ⊸ D) ∙⟶ ((A ∙×ᵤ C) ⊸ (B ∙×ᵤ D))
dist×/ {A} {B} {C} {D} = ∙assocr⋆ ∙⊚
(∙id⟷ ∙⊗ ∙assocl⋆) ∙⊚
∙id⟷ ∙⊗ (∙swap⋆ ∙⊗ ∙id⟷) ∙⊚
(∙id⟷ ∙⊗ ∙assocr⋆) ∙⊚ ∙assocl⋆ ∙⊚
c ∙⊗ tensor
where
c : (Recipᵤ A ∙×ᵤ Recipᵤ C) ∙⟶ Recipᵤ (A ∙×ᵤ C)
c = ∙uniti⋆l ∙⊚
(η (A ∙×ᵤ C) ∙⊗ ∙id⟷) ∙⊚
(∙swap⋆ ∙⊗ ∙id⟷) ∙⊚
∙assocr⋆ ∙⊚
(∙id⟷ ∙⊗ (untensor ∙⊗ ∙id⟷)) ∙⊚
(∙id⟷ ∙⊗ (∙swap⋆ ∙⊗ ∙id⟷)) ∙⊚
(∙id⟷ ∙⊗ ∙assocr⋆) ∙⊚
(∙id⟷ ∙⊗ (∙id⟷ ∙⊗ ∙assocl⋆)) ∙⊚
(∙id⟷ ∙⊗ (∙id⟷ ∙⊗ ((ε A ∙⊗ ∙id⟷) ∙⊚ ∙unite⋆l))) ∙⊚
(∙id⟷ ∙⊗ ε C) ∙⊚
∙unite⋆r
-- 1/A x 1/B <-> 1 / (A x B)
rev× : {A B : ∙𝕌} → (A ⊸ ∙𝟙) ∙×ᵤ (B ⊸ ∙𝟙) ∙⟶ (A ∙×ᵤ B ⊸ ∙𝟙)
rev× {A} {B} = dist×/ ∙⊚ (∙id⟷ ∙⊗ ∙Singᵤ ∙unite⋆l)
-- (A <-> B) -> (1/A <-> 1/B)
rev : {A B : ∙𝕌} → (f : A ∙⟶ B) → Recipᵤ B ∙⟶ Recipᵤ A
rev {A} {B} f = dual f
-- A <-> 1 / (1/A)
revrev : {A : ∙𝕌} → Singᵤ A ∙⟶ Recipᵤ (Recipᵤ A)
revrev {A} = ∙uniti⋆r ∙⊚
∙id⟷ ∙⊗ η (Recipᵤ A) ∙⊚
∙assocl⋆ ∙⊚
((∙id⟷ ∙⊗ extract (Recipᵤ A)) ∙⊗ ∙id⟷) ∙⊚
(ε A ∙⊗ ∙id⟷) ∙⊚
∙unite⋆l
|
{
"alphanum_fraction": 0.4102508651,
"avg_line_length": 30.8266666667,
"ext": "agda",
"hexsha": "875167df3b74d032b986e139637486bfa4b7d773",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/PiPointedFracTrace.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/PiPointedFracTrace.agda",
"max_line_length": 86,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/PiPointedFracTrace.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3034,
"size": 4624
}
|
module McK-B where
open import CS410-Prelude
open import CS410-Nat
open import CS410-Vec
data Bit : Set where O I : Bit
exp2 : Nat -> Nat
exp2 zero = 1
exp2 (suc n) = exp2 n +N exp2 n
WordNZ : Nat -> Set
data Word (n : Nat) : Set where
O : Word n
[_] : WordNZ n -> Word n
WordNZ zero = One
WordNZ (suc n) = (WordNZ n * Word n) + WordNZ n
_!_ : {n : Nat} -> Word n -> Word n -> Word (suc n)
O ! O = O
O ! [ x ] = [ inr x ]
[ x ] ! y = [ inl (x , y) ]
_!+_ : {n : Nat} -> Word n -> WordNZ n -> WordNZ (suc n)
O !+ y = inr y
[ x ] !+ y = inl (x , [ y ])
iNZ : (n : Nat) -> WordNZ n
iNZ zero = <>
iNZ (suc n) = inr (iNZ n)
i : {n : Nat} -> Word n
i {n} = [ iNZ n ] where
data WViewable : {n : Nat} -> Word n -> Set where
O0 : WViewable {zero} O
I0 : WViewable {zero} i
_!!_ : {n : Nat}(x y : Word n) -> WViewable (x ! y)
wView : {n : Nat}(x : Word n) -> WViewable x
wView {zero} O = O0
wView {zero} [ <> ] = I0
wView {suc n} O = O !! O
wView {suc n} [ inl (x , y) ] = [ x ] !! y
wView {suc n} [ inr y ] = O !! [ y ]
expand : {n : Nat} -> Word n -> Vec Bit (exp2 n)
expand x with wView x
expand .O | O0 = O :: []
expand .([ <> ]) | I0 = I :: []
expand .(x ! y) | x !! y = expand x +V expand y
inc : {n : Nat}(x : Word n) -> One + WordNZ n
inc x with wView x
inc .O | O0 = inr (iNZ zero)
inc .([ <> ]) | I0 = inl <>
inc .(x ! y) | x !! y with inc y
inc .(x ! y) | x !! y | inr y' = inr (x !+ y')
inc .(x ! y) | x !! y | inl <> with inc x
inc .(x ! y) | x !! y | inl <> | inr x' = inr (inl (x' , O))
inc .(x ! y) | x !! y | inl <> | inl <> = inl <>
incm : {n : Nat}(x : Word n) -> Word n
incm x with inc x
incm x | inl <> = O
incm x | inr x' = [ x' ]
fiveW2 : Word 2
fiveW2 = incm (incm (incm (incm (incm O))))
adc : {n : Nat} -> Word n -> Word n -> Bit -> Bit * Word n
adc x y c with wView x | wView y
adc .O .O O | O0 | O0 = O , O
adc .O .O I | O0 | O0 = O , i
adc .O .i O | O0 | I0 = O , i
adc .O .i I | O0 | I0 = I , O
adc .i .O O | I0 | O0 = O , i
adc .i .O I | I0 | O0 = I , O
adc .i .i O | I0 | I0 = I , O
adc .i .i I | I0 | I0 = I , i
adc .(xh ! xl) .(yh ! yl) c | xh !! xl | yh !! yl with adc xl yl c
... | cl , zl with adc xh yh cl
... | ch , zh = ch , zh ! zl
|
{
"alphanum_fraction": 0.47275144,
"avg_line_length": 26.869047619,
"ext": "agda",
"hexsha": "af4bfbe9cca463b77e37b3f19ed7e303650305db",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/pigworker/CS410-15/043477e6143af6a78b677bb528c46621da11df00/McK-B.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/pigworker/CS410-15/043477e6143af6a78b677bb528c46621da11df00/McK-B.agda",
"max_line_length": 66,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/pigworker/CS410-15/043477e6143af6a78b677bb528c46621da11df00/McK-B.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z",
"num_tokens": 1026,
"size": 2257
}
|
module IdentP where
data Bool
: Set
where
false
: Bool
true
: Bool
f
: {A : Set}
→ A
→ A
→ A
f x y
= x
g
: Bool
→ Bool
g false
= true
g true
= true
|
{
"alphanum_fraction": 0.4787234043,
"avg_line_length": 6.4827586207,
"ext": "agda",
"hexsha": "60ce1b23817909e32f4574fb7c7293e0cc497f30",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/pattern/IdentP.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/pattern/IdentP.agda",
"max_line_length": 19,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/pattern/IdentP.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 82,
"size": 188
}
|
-- Andreas, 2018-09-03, issue #3207
--
-- Error message for disabled Prop.
{-# OPTIONS --no-prop #-}
test = Prop
|
{
"alphanum_fraction": 0.6260869565,
"avg_line_length": 14.375,
"ext": "agda",
"hexsha": "437410a9de72894de6267d0a268e473c33df4407",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3207.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3207.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3207.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 34,
"size": 115
}
|
module Fin where
open import Prelude
open import Star
open import Modal
open import Nat
Fin : Nat -> Set
Fin = Any (\_ -> True)
fzero : {n : Nat} -> Fin (suc n)
fzero = done _ • ε
fsuc : {n : Nat} -> Fin n -> Fin (suc n)
fsuc i = step • i
|
{
"alphanum_fraction": 0.6106557377,
"avg_line_length": 14.3529411765,
"ext": "agda",
"hexsha": "9e8ff81b08ada8e5db0f1dd7b2b809bd26170388",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM6/Path/Fin.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM6/Path/Fin.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM6/Path/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 244
}
|
module HasDecidableSalvation where
open import OscarPrelude
open import HasSalvation
record HasDecidableSalvation (A : Set) : Set₁
where
field
⦃ hasSalvation ⦄ : HasSalvation A
▷?_ : (x : A) → Dec $ ▷ x
open HasDecidableSalvation ⦃ … ⦄ public
{-# DISPLAY HasDecidableSalvation.▷?_ _ = ▷?_ #-}
|
{
"alphanum_fraction": 0.6957928803,
"avg_line_length": 19.3125,
"ext": "agda",
"hexsha": "c2fad8079e24e749c871c7c608b37e75c3e0ff73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/HasDecidableSalvation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/HasDecidableSalvation.agda",
"max_line_length": 49,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/HasDecidableSalvation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 109,
"size": 309
}
|
{-
A couple of general facts about equivalences:
- if f is an equivalence then (cong f) is an equivalence ([equivCong])
- if f is an equivalence then pre- and postcomposition with f are equivalences ([preCompEquiv], [postCompEquiv])
- if f is an equivalence then (Σ[ g ] section f g) and (Σ[ g ] retract f g) are contractible ([isContr-section], [isContr-retract])
- isHAEquiv is a proposition [isPropIsHAEquiv]
(these are not in 'Equiv.agda' because they need Univalence.agda (which imports Equiv.agda))
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.Equiv.Properties where
open import Cubical.Core.Everything
open import Cubical.Data.Sigma
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.HLevels
open import Cubical.Functions.FunExtEquiv
private
variable
ℓ ℓ′ ℓ′′ : Level
A B C : Type ℓ
isEquivInvEquiv : isEquiv (λ (e : A ≃ B) → invEquiv e)
isEquivInvEquiv = isoToIsEquiv goal where
open Iso
goal : Iso (A ≃ B) (B ≃ A)
goal .fun = invEquiv
goal .inv = invEquiv
goal .rightInv g = equivEq refl
goal .leftInv f = equivEq refl
invEquivEquiv : (A ≃ B) ≃ (B ≃ A)
invEquivEquiv = _ , isEquivInvEquiv
isEquivCong : {x y : A} (e : A ≃ B) → isEquiv (λ (p : x ≡ y) → cong (equivFun e) p)
isEquivCong e = isoToIsEquiv (congIso (equivToIso e))
congEquiv : {x y : A} (e : A ≃ B) → (x ≡ y) ≃ (equivFun e x ≡ equivFun e y)
congEquiv e = isoToEquiv (congIso (equivToIso e))
equivAdjointEquiv : (e : A ≃ B) → ∀ {a b} → (a ≡ invEq e b) ≃ (equivFun e a ≡ b)
equivAdjointEquiv e = compEquiv (congEquiv e) (compPathrEquiv (secEq e _))
invEq≡→equivFun≡ : (e : A ≃ B) → ∀ {a b} → invEq e b ≡ a → equivFun e a ≡ b
invEq≡→equivFun≡ e = equivFun (equivAdjointEquiv e) ∘ sym
isEquivPreComp : (e : A ≃ B) → isEquiv (λ (φ : B → C) → φ ∘ equivFun e)
isEquivPreComp e = snd (equiv→ (invEquiv e) (idEquiv _))
preCompEquiv : (e : A ≃ B) → (B → C) ≃ (A → C)
preCompEquiv e = (λ φ → φ ∘ fst e) , isEquivPreComp e
isEquivPostComp : (e : A ≃ B) → isEquiv (λ (φ : C → A) → e .fst ∘ φ)
isEquivPostComp e = snd (equivΠCod (λ _ → e))
postCompEquiv : (e : A ≃ B) → (C → A) ≃ (C → B)
postCompEquiv e = _ , isEquivPostComp e
-- see also: equivΠCod for a dependent version of postCompEquiv
hasSection : (A → B) → Type _
hasSection {A = A} {B = B} f = Σ[ g ∈ (B → A) ] section f g
hasRetract : (A → B) → Type _
hasRetract {A = A} {B = B} f = Σ[ g ∈ (B → A) ] retract f g
isEquiv→isContrHasSection : {f : A → B} → isEquiv f → isContr (hasSection f)
fst (isEquiv→isContrHasSection isEq) = invIsEq isEq , secIsEq isEq
snd (isEquiv→isContrHasSection isEq) (f , ε) i = (λ b → fst (p b i)) , (λ b → snd (p b i))
where p : ∀ b → (invIsEq isEq b , secIsEq isEq b) ≡ (f b , ε b)
p b = isEq .equiv-proof b .snd (f b , ε b)
isEquiv→hasSection : {f : A → B} → isEquiv f → hasSection f
isEquiv→hasSection = fst ∘ isEquiv→isContrHasSection
isContr-hasSection : (e : A ≃ B) → isContr (hasSection (fst e))
isContr-hasSection e = isEquiv→isContrHasSection (snd e)
isEquiv→isContrHasRetract : {f : A → B} → isEquiv f → isContr (hasRetract f)
fst (isEquiv→isContrHasRetract isEq) = invIsEq isEq , retIsEq isEq
snd (isEquiv→isContrHasRetract {f = f} isEq) (g , η) =
λ i → (λ b → p b i) , (λ a → q a i)
where p : ∀ b → invIsEq isEq b ≡ g b
p b = sym (η (invIsEq isEq b)) ∙' cong g (secIsEq isEq b)
-- one square from the definition of invIsEq
ieSq : ∀ a → Square (cong g (secIsEq isEq (f a)))
refl
(cong (g ∘ f) (retIsEq isEq a))
refl
ieSq a k j = g (commSqIsEq isEq a k j)
-- one square from η
ηSq : ∀ a → Square (η (invIsEq isEq (f a)))
(η a)
(cong (g ∘ f) (retIsEq isEq a))
(retIsEq isEq a)
ηSq a i j = η (retIsEq isEq a i) j
-- and one last square from the definition of p
pSq : ∀ b → Square (η (invIsEq isEq b))
refl
(cong g (secIsEq isEq b))
(p b)
pSq b i j = compPath'-filler (sym (η (invIsEq isEq b))) (cong g (secIsEq isEq b)) j i
q : ∀ a → Square (retIsEq isEq a) (η a) (p (f a)) refl
q a i j = hcomp (λ k → λ { (i = i0) → ηSq a j k
; (i = i1) → η a (j ∧ k)
; (j = i0) → pSq (f a) i k
; (j = i1) → η a k
})
(ieSq a j i)
isEquiv→hasRetract : {f : A → B} → isEquiv f → hasRetract f
isEquiv→hasRetract = fst ∘ isEquiv→isContrHasRetract
isContr-hasRetract : (e : A ≃ B) → isContr (hasRetract (fst e))
isContr-hasRetract e = isEquiv→isContrHasRetract (snd e)
cong≃ : (F : Type ℓ → Type ℓ′) → (A ≃ B) → F A ≃ F B
cong≃ F e = pathToEquiv (cong F (ua e))
cong≃-char : (F : Type ℓ → Type ℓ′) {A B : Type ℓ} (e : A ≃ B) → ua (cong≃ F e) ≡ cong F (ua e)
cong≃-char F e = ua-pathToEquiv (cong F (ua e))
cong≃-idEquiv : (F : Type ℓ → Type ℓ′) (A : Type ℓ) → cong≃ F (idEquiv A) ≡ idEquiv (F A)
cong≃-idEquiv F A = cong≃ F (idEquiv A) ≡⟨ cong (λ p → pathToEquiv (cong F p)) uaIdEquiv ⟩
pathToEquiv refl ≡⟨ pathToEquivRefl ⟩
idEquiv (F A) ∎
isPropIsHAEquiv : {f : A → B} → isProp (isHAEquiv f)
isPropIsHAEquiv {f = f} ishaef = goal ishaef where
equivF : isEquiv f
equivF = isHAEquiv→isEquiv ishaef
rCoh1 : (sec : hasSection f) → Type _
rCoh1 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → cong f (η x) ≡ ε (f x)
rCoh2 : (sec : hasSection f) → Type _
rCoh2 (g , ε) = Σ[ η ∈ retract f g ] ∀ x → Square (ε (f x)) refl (cong f (η x)) refl
rCoh3 : (sec : hasSection f) → Type _
rCoh3 (g , ε) = ∀ x → Σ[ ηx ∈ g (f x) ≡ x ] Square (ε (f x)) refl (cong f ηx) refl
rCoh4 : (sec : hasSection f) → Type _
rCoh4 (g , ε) = ∀ x → Path (fiber f (f x)) (g (f x) , ε (f x)) (x , refl)
characterization : isHAEquiv f ≃ Σ _ rCoh4
characterization =
isHAEquiv f
-- first convert between Σ and record
≃⟨ isoToEquiv (iso (λ e → (e .g , e .rinv) , (e .linv , e .com))
(λ e → record { g = e .fst .fst ; rinv = e .fst .snd
; linv = e .snd .fst ; com = e .snd .snd })
(λ _ → refl) λ _ → refl) ⟩
Σ _ rCoh1
-- secondly, convert the path into a dependent path for later convenience
≃⟨ Σ-cong-equiv-snd (λ s → Σ-cong-equiv-snd
λ η → equivΠCod
λ x → compEquiv (flipSquareEquiv {a₀₀ = f x}) (invEquiv slideSquareEquiv)) ⟩
Σ _ rCoh2
≃⟨ Σ-cong-equiv-snd (λ s → invEquiv Σ-Π-≃) ⟩
Σ _ rCoh3
≃⟨ Σ-cong-equiv-snd (λ s → equivΠCod λ x → ΣPath≃PathΣ) ⟩
Σ _ rCoh4
■
where open isHAEquiv
goal : isProp (isHAEquiv f)
goal = subst isProp (sym (ua characterization))
(isPropΣ (isContr→isProp (isEquiv→isContrHasSection equivF))
λ s → isPropΠ λ x → isProp→isSet (isContr→isProp (equivF .equiv-proof (f x))) _ _)
-- loop spaces connected by a path are equivalent
conjugatePathEquiv : {A : Type ℓ} {a b : A} (p : a ≡ b) → (a ≡ a) ≃ (b ≡ b)
conjugatePathEquiv p = compEquiv (compPathrEquiv p) (compPathlEquiv (sym p))
-- composition on the right induces an equivalence of path types
compr≡Equiv : {A : Type ℓ} {a b c : A} (p q : a ≡ b) (r : b ≡ c) → (p ≡ q) ≃ (p ∙ r ≡ q ∙ r)
compr≡Equiv p q r = congEquiv ((λ s → s ∙ r) , compPathr-isEquiv r)
-- composition on the left induces an equivalence of path types
compl≡Equiv : {A : Type ℓ} {a b c : A} (p : a ≡ b) (q r : b ≡ c) → (q ≡ r) ≃ (p ∙ q ≡ p ∙ r)
compl≡Equiv p q r = congEquiv ((λ s → p ∙ s) , (compPathl-isEquiv p))
isEquivFromIsContr : {A : Type ℓ} {B : Type ℓ′}
→ (f : A → B) → isContr A → isContr B
→ isEquiv f
isEquivFromIsContr f isContrA isContrB =
subst isEquiv (λ i x → isContr→isProp isContrB (fst B≃A x) (f x) i) (snd B≃A)
where B≃A = isContr→Equiv isContrA isContrB
isEquiv[f∘equivFunA≃B]→isEquiv[f] : {A : Type ℓ} {B : Type ℓ′} {C : Type ℓ′′}
→ (f : B → C) (A≃B : A ≃ B)
→ isEquiv (f ∘ equivFun A≃B)
→ isEquiv f
isEquiv[f∘equivFunA≃B]→isEquiv[f] f (g , gIsEquiv) f∘gIsEquiv =
precomposesToId→Equiv f _ w w'
where
w : f ∘ g ∘ equivFun (invEquiv (_ , f∘gIsEquiv)) ≡ idfun _
w = (cong fst (invEquiv-is-linv (_ , f∘gIsEquiv)))
w' : isEquiv (g ∘ equivFun (invEquiv (_ , f∘gIsEquiv)))
w' = (snd (compEquiv (invEquiv (_ , f∘gIsEquiv) ) (_ , gIsEquiv)))
|
{
"alphanum_fraction": 0.5690645052,
"avg_line_length": 41.5093457944,
"ext": "agda",
"hexsha": "a4b4cf59b210f691dce6622f71a4cb31a8247ff7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Foundations/Equiv/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Foundations/Equiv/Properties.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Foundations/Equiv/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3474,
"size": 8883
}
|
module List where
import Prelude
import Equiv
import Datoid
import Nat
open Prelude
open Equiv
open Datoid
open Nat
data List (a : Set) : Set where
nil : List a
_::_ : a -> List a -> List a
map : {a b : Set} -> (a -> b) -> List a -> List b
map f nil = nil
map f (x :: xs) = f x :: map f xs
member : (a : Datoid) -> El a -> List (El a) -> Set
member _ x nil = Absurd
member a x (y :: ys) = Either (rel' (datoidEq a) x y) (member a x ys)
memberPreservesEq
: {a : Datoid}
-> {x y : El a}
-> datoidRel a x y
-> (zs : List (El a))
-> member a x zs
-> member a y zs
memberPreservesEq xy nil abs = abs
memberPreservesEq {a} xy (z :: zs) (left xz) =
left (dTrans a (dSym a xy) xz)
memberPreservesEq {a} xy (z :: zs) (right xzs) =
right (memberPreservesEq {a} xy zs xzs)
private
noCopies' : (a : Datoid) -> (x y : El a) -> Dec (datoidRel a x y)
-> Nat -> Nat
noCopies' _ _ _ (left _) n = suc n
noCopies' _ _ _ (right _) n = n
noCopies : (a : Datoid) -> El a -> List (El a) -> Nat
noCopies a x nil = zero
noCopies a x (y :: ys) =
noCopies' a x y (datoidDecRel a x y) (noCopies a x ys)
NoDuplicates : (a : Datoid) -> List (El a) -> Set
NoDuplicates _ nil = Unit
NoDuplicates a (x :: b) = Pair (Not (member a x b)) (NoDuplicates a b)
private
delete'
: (a : Datoid)
-> (x y : El a)
-> Dec (datoidRel a x y)
-> (ys delXYs : List (El a))
-> List (El a)
delete' _ _ _ (left _) ys _ = ys
delete' _ _ _ (right _) _ delXYs = delXYs
-- Removes first occurrence if any.
delete : (a : Datoid) -> El a -> List (El a) -> List (El a)
delete a x nil = nil
delete a x (y :: ys) = delete' a x y (datoidDecRel a x y) ys (delete a x ys)
private
Perm : (a : Datoid) -> (xs ys : List (El a)) -> Set
Perm a xs ys = forall z -> datoidRel natDatoid (noCopies a z xs)
(noCopies a z ys)
refl' : {a : Datoid} -> (xs : List (El a)) -> Perm a xs xs
refl' {a} xs = \z -> dRefl natDatoid {noCopies a z xs}
sym' : {a : Datoid} -> (xs ys : List (El a))
-> Perm a xs ys -> Perm a ys xs
sym' {a} xs ys xy =
\z -> dSym natDatoid {noCopies a z xs} {noCopies a z ys} (xy z)
trans' : {a : Datoid} -> (xs ys zs : List (El a))
-> Perm a xs ys -> Perm a ys zs -> Perm a xs zs
trans' {a} xs ys zs xy yz =
\z -> dTrans natDatoid
{noCopies a z xs} {noCopies a z ys} {noCopies a z zs}
(xy z) (yz z)
postulate
dec' : {a : Datoid} -> (xs ys : List (El a))
-> Either (Perm a xs ys) (Not (Perm a xs ys))
Permutation : (a : Datoid) -> DecidableEquiv (List (El a))
Permutation a = decEquiv (equiv (Perm a) (refl' {a}) (sym' {a}) (trans' {a})) (dec (dec' {a}))
|
{
"alphanum_fraction": 0.5102249489,
"avg_line_length": 30.5625,
"ext": "agda",
"hexsha": "fa5b916c3a18609f390b1b05950b476e8a1fa970",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/AIM4/bag/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/AIM4/bag/List.agda",
"max_line_length": 96,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/AIM4/bag/List.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1055,
"size": 2934
}
|
interleaved mutual
data CoNat : Set
record ∞CoNat : Set
constructor
zero : CoNat
record ∞CoNat where
coinductive
field force : CoNat
constructor
suc : ∞CoNat → ?
|
{
"alphanum_fraction": 0.6458333333,
"avg_line_length": 12.8,
"ext": "agda",
"hexsha": "2da9588828f6cbd99e26b3f173aa2c91567b34c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue2858-codata.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2858-codata.agda",
"max_line_length": 23,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2858-codata.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 62,
"size": 192
}
|
------------------------------------------------------------------------------
-- Inductive PA properties using the induction principle
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Inductive.PropertiesByInductionI where
open import PA.Inductive.Base
open import PA.Inductive.PropertiesByInduction
open import PA.Inductive.Relation.Binary.EqReasoning
------------------------------------------------------------------------------
+-comm : ∀ m n → m + n ≡ n + m
+-comm m n = ℕ-ind A A0 is m
where
A : ℕ → Set
A i = i + n ≡ n + i
A0 : A zero
A0 = sym (+-rightIdentity n)
is : ∀ i → A i → A (succ i)
is i ih = succ (i + n) ≡⟨ succCong ih ⟩
succ (n + i) ≡⟨ sym (x+Sy≡S[x+y] n i) ⟩
n + succ i ∎
|
{
"alphanum_fraction": 0.4270724029,
"avg_line_length": 29.78125,
"ext": "agda",
"hexsha": "7cd0aae676206d3cde94273c46092926aeb98f4f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/PropertiesByInductionI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/PropertiesByInductionI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/PropertiesByInductionI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 235,
"size": 953
}
|
-- Andreas, 2014-03-27 fixed issue
{-# OPTIONS --copatterns --sized-types #-}
open import Common.Size
record R (i : Size) : Set where
inductive
constructor c
field
j : Size< i
r : R j
data ⊥ : Set where
elim : (i : Size) → R i → ⊥
elim i (c j r) = elim j r
-- elim should be rejected by termination checker.
-- Being accepted, its is translated into
--
-- elim i x = elim (R.j x) (R.r x)
--
-- which is making reduceHead in the injectivity checker
-- produce larger and larger applications of elim.
-- Leading to a stack overflow.
inh : R ∞
R.j inh = ∞
R.r inh = inh
-- inh should also be rejected
|
{
"alphanum_fraction": 0.6426282051,
"avg_line_length": 17.8285714286,
"ext": "agda",
"hexsha": "42cce6ea68a9a1c84fade710b161b5e2a2b65372",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Fail/Issue1015a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/Issue1015a.agda",
"max_line_length": 56,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/Issue1015a.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 188,
"size": 624
}
|
module Rationals.Properties where
open import Nats renaming (_*_ to _:*:_)
open import Rationals
open import Data.Empty
open import Data.Product
open import Equality
------------------------------------------------------------------------
-- internal stuffs
private
a*b÷b=a : ∀ a b → a :*: b ÷ b →ℕ ≡ (a , refl)
a*b÷b=a _ _ = refl
------------------------------------------------------------------------
-- public aliases
times-div-id : ∀ a b → a :*: b ÷ b →ℕ ≡ (a , refl)
times-div-id = a*b÷b=a
|
{
"alphanum_fraction": 0.45256917,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "de1597559b587ef079cc2d0dae7694d0d1568da1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Rationals/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Rationals/Properties.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Rationals/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 131,
"size": 506
}
|
module RandomAccessList.Standard.Core where
open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf)
open import Data.Nat
open import Data.Nat.Etc
-- parameterized by the level of the least significant digit
data 0-1-RAL (A : Set) : ℕ → Set where
[] : ∀ {n} → 0-1-RAL A n
0∷_ : ∀ {n} → 0-1-RAL A (suc n) → 0-1-RAL A n
_1∷_ : ∀ {n} → BinaryLeafTree A n → 0-1-RAL A (suc n) → 0-1-RAL A n
--------------------------------------------------------------------------------
-- to ℕ
⟦_⟧ₙ : ∀ {A n} → 0-1-RAL A n → ℕ
⟦ [] ⟧ₙ = 0
⟦ 0∷ xs ⟧ₙ = 2 * ⟦ xs ⟧ₙ
⟦ x 1∷ xs ⟧ₙ = 1 + 2 * ⟦ xs ⟧ₙ
⟦_⟧ : ∀ {n A} → 0-1-RAL A n → ℕ
⟦_⟧ {n} xs = (2 ^ n) * ⟦ xs ⟧ₙ
|
{
"alphanum_fraction": 0.4395750332,
"avg_line_length": 31.375,
"ext": "agda",
"hexsha": "6b3bb0df18eed111614e22e9556a39db9a1c5713",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/RandomAccessList/Standard/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/RandomAccessList/Standard/Core.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/RandomAccessList/Standard/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 307,
"size": 753
}
|
------------------------------------------------------------------------------
-- Test the consistency of PA.Axiomatic.Standard.Base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- In the module PA.Axiomatic.Standard.Base we declare Agda postulates
-- as first-order logic axioms. We test if it is possible to prove an
-- unprovable theorem from these axioms.
module PA.Axiomatic.Standard.Base.Consistency.Axioms where
open import PA.Axiomatic.Standard.Base
------------------------------------------------------------------------------
postulate impossible : (m n : ℕ) → m ≡ n
{-# ATP prove impossible #-}
|
{
"alphanum_fraction": 0.4761904762,
"avg_line_length": 37.2272727273,
"ext": "agda",
"hexsha": "1c9db04abbaa28623110c1337874ec7005a8135f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Axiomatic/Standard/Base/Consistency/Axioms.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Axiomatic/Standard/Base/Consistency/Axioms.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Axiomatic/Standard/Base/Consistency/Axioms.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 139,
"size": 819
}
|
-- Box modality: cofree presheaf on a family
module SOAS.Abstract.Box {T : Set} where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Sorting
open import SOAS.Variable
open import SOAS.Families.Core {T}
open import SOAS.Families.Isomorphism
open import SOAS.Families.BCCC using (_×ₘ_; _+ₘ_; _⇨_; _⇨̣_)
open import SOAS.Abstract.Hom
open import Categories.Functor.Bifunctor
module Unsorted where
-- Box modality: the skew-closed action of variables on a family
□ : Family → Family
□ X = ⟨ ℐ , X ⟩
-- □ is an endofunctor on families
□F : Functor 𝔽amilies 𝔽amilies
□F = appˡ ⟨-,-⟩F ℐ
-- | Properties of □
private
variable
X Y : Family
-- | □ preserves products of families
□[X×Y]≅□X×□Y : □ (X ×ₘ Y) ≅ₘ (□ X ×ₘ □ Y)
□[X×Y]≅□X×□Y = ⟨𝒳,Y×Z⟩≅⟨𝒳,Y⟩×⟨𝒳,Z⟩
-- □ can be factored out from a sum
□X+□Y⇾□[X+Y] : (□ X +ₘ □ Y) ⇾ □ (X +ₘ Y)
□X+□Y⇾□[X+Y] = ⟨𝒳,Y⟩+⟨𝒳,Z⟩⇾⟨𝒳,Y+Z⟩
module Sorted where
-- Sorted box modality: the skew-closed hom of variables and a family
□ : Familyₛ → Familyₛ
□ X = 〖 ℐ , X 〗
-- □ is an endofunctor on families
□F : Functor 𝔽amiliesₛ 𝔽amiliesₛ
□F = appˡ 〖-,-〗F ℐ
□₁ : {X Y : Familyₛ} → (X ⇾̣ Y) → □ X ⇾̣ □ Y
□₁ f x ρ = f (x ρ)
ζ : (X : Familyₛ) → □ X ⇾̣ □ (□ X)
ζ X b ρ ϱ = b (ϱ ∘ ρ)
|
{
"alphanum_fraction": 0.5934833204,
"avg_line_length": 22.224137931,
"ext": "agda",
"hexsha": "b73ddfd902568bc546b7d0aeedad4f0deeb1111e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Abstract/Box.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Abstract/Box.agda",
"max_line_length": 71,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Abstract/Box.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 621,
"size": 1289
}
|
-- 2011-10-04 Andreas
{-# OPTIONS --experimental-irrelevance #-}
module TerminationOnIrrelevant where
data ⊥ : Set where
data Empty : Set where
c : Empty → Empty
d : Empty → Empty
d (c x) = x
f : .Empty → ⊥
f (c x) = f x
g : .Empty → ⊥
g (c x) = g x
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
-- the following would loop if we evaluated f x to f (d x)
mayloop : .(x y : Empty) → f x ≡ g y
mayloop x y = refl
|
{
"alphanum_fraction": 0.5930232558,
"avg_line_length": 17.9166666667,
"ext": "agda",
"hexsha": "f55a73beaafe3fff560caea260875ad0cb6936b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/fail/TerminationOnIrrelevant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/fail/TerminationOnIrrelevant.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/TerminationOnIrrelevant.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 163,
"size": 430
}
|
module RepeatedVariableInPattern where
K : Set -> Set
K A A = A
|
{
"alphanum_fraction": 0.7014925373,
"avg_line_length": 9.5714285714,
"ext": "agda",
"hexsha": "26d6bc82940de6eef74917cbcc62a4340a3944a5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/RepeatedVariableInPattern.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/RepeatedVariableInPattern.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/RepeatedVariableInPattern.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 21,
"size": 67
}
|
module Categories.Functor.CartesianClosed where
open import Categories.Category using (Category; _[_∘_]; _[_,_])
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Category.CartesianClosed using (CartesianClosed)
open import Categories.Category.CartesianClosed.Bundle using (CartesianClosedCategory)
open import Categories.Functor using (Functor)
open import Categories.Functor.Cartesian using (IsCartesianF)
import Categories.Morphism as Morphism
open import Level
private
variable
o ℓ e o′ ℓ′ e′ : Level
record IsCartesianClosedF
(C : CartesianClosedCategory o ℓ e)
(D : CartesianClosedCategory o′ ℓ′ e′)
(F : Functor (CartesianClosedCategory.U C) (CartesianClosedCategory.U D))
: Set (levelOfTerm C ⊔ levelOfTerm D) where
open Morphism (CartesianClosedCategory.U D) using (IsIso; Iso)
open Functor F
private
CU = CartesianClosedCategory.U C
DU = CartesianClosedCategory.U D
CC₁ = CartesianClosedCategory.cartesianClosed C
CC₂ = CartesianClosedCategory.cartesianClosed D
C₁ = CartesianClosed.cartesian CC₁
C₂ = CartesianClosed.cartesian CC₂
C′ = record { U = CU ; cartesian = C₁ }
D′ = record { U = DU ; cartesian = C₂ }
_^C_ = CartesianClosed._^_ CC₁
_^D_ = CartesianClosed._^_ CC₂
field
isCartesianF : IsCartesianF C′ D′ F
module isCartesianF = IsCartesianF isCartesianF
conv : forall {A B : Category.Obj CU} -> DU [ F₀ (B ^C A) , F₀ B ^D F₀ A ]
conv {A} {B} =
CartesianClosed.λg CC₂
(DU [ F₁ (CartesianClosed.eval′ CC₁) ∘ IsCartesianF.×-iso.to isCartesianF (B ^C A) A ])
field
F-preserve-^ : forall {A B : Category.Obj CU} -> IsIso (conv {A} {B})
module F-preserve-^ {A B : Category.Obj CU} = IsIso (F-preserve-^ {A} {B})
-- Note that F is called strict if `conv` ≈ id.
record CartesianClosedF
(C : CartesianClosedCategory o ℓ e)
(D : CartesianClosedCategory o′ ℓ′ e′)
: Set (levelOfTerm C ⊔ levelOfTerm D) where
field
F : Functor (CartesianClosedCategory.U C) (CartesianClosedCategory.U D)
isCartesianClosed : IsCartesianClosedF C D F
open Functor F public
open IsCartesianClosedF isCartesianClosed public
|
{
"alphanum_fraction": 0.7250445633,
"avg_line_length": 34.5230769231,
"ext": "agda",
"hexsha": "1b269d220d9c4646d4baa65b68dc56902d9d6e35",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/exsub-ccc",
"max_forks_repo_path": "Categories/Functor/CartesianClosed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/exsub-ccc",
"max_issues_repo_path": "Categories/Functor/CartesianClosed.agda",
"max_line_length": 93,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/exsub-ccc",
"max_stars_repo_path": "Categories/Functor/CartesianClosed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z",
"num_tokens": 666,
"size": 2244
}
|
module Issue2937.WithUnicode where
foo : _ → _ → Set
foo bar x = λ x → foo (bar x {!!}) x
|
{
"alphanum_fraction": 0.6086956522,
"avg_line_length": 18.4,
"ext": "agda",
"hexsha": "7e1334632341e05c46dc314d3e2eeacc7e2a6bd9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2937/WithUnicode.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2937/WithUnicode.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2937/WithUnicode.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 92
}
|
-- Left ℤ-multiplication on groups and some of its properties
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Group.ZAction where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Data.Int
renaming (_·_ to _*_ ; _+_ to _+ℤ_ ; _-_ to _-ℤ_)
open import Cubical.Data.Nat
hiding (_·_) renaming (_+_ to _+ℕ_)
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Sum
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int renaming (ℤ to ℤGroup)
open import Cubical.Algebra.Group.DirProd
open import Cubical.Relation.Nullary
private
variable
ℓ ℓ' : Level
open Iso
open GroupStr
open IsGroupHom
_ℤ[_]·_ : ℤ → (G : Group ℓ) → fst G → fst G
pos zero ℤ[ G' ]· g = 1g (snd G')
pos (suc n) ℤ[ G' ]· g = _·_ (snd G') g (pos n ℤ[ G' ]· g)
negsuc zero ℤ[ G' ]· g = inv (snd G') g
negsuc (suc n) ℤ[ G' ]· g =
_·_ (snd G') (inv (snd G') g) (negsuc n ℤ[ G' ]· g)
homPresℤ· : {G : Group ℓ} {H : Group ℓ'}
→ (ϕ : GroupHom G H)
→ (x : fst G) (z : ℤ)
→ fst ϕ (z ℤ[ G ]· x) ≡ (z ℤ[ H ]· fst ϕ x)
homPresℤ· (ϕ , ϕhom) x (pos zero) = pres1 ϕhom
homPresℤ· {H = H} (ϕ , ϕhom) x (pos (suc n)) =
pres· ϕhom _ _
∙ cong (_·_ (snd H) (ϕ x)) (homPresℤ· (ϕ , ϕhom) x (pos n))
homPresℤ· (ϕ , ϕhom) x (negsuc zero) = presinv ϕhom _
homPresℤ· {H = H} (ϕ , ϕhom) x (negsuc (suc n)) =
pres· ϕhom _ _
∙ cong₂ (_·_ (snd H)) (presinv ϕhom x)
(homPresℤ· (ϕ , ϕhom) x (negsuc n))
rUnitℤ· : (G : Group ℓ) (x : ℤ) → (x ℤ[ G ]· 1g (snd G)) ≡ 1g (snd G)
rUnitℤ· G (pos zero) = refl
rUnitℤ· G (pos (suc n)) =
cong (_·_ (snd G) (1g (snd G)))
(rUnitℤ· G (pos n))
∙ lid (snd G) (1g (snd G))
rUnitℤ· G (negsuc zero) = GroupTheory.inv1g G
rUnitℤ· G (negsuc (suc n)) =
cong₂ (_·_ (snd G)) (GroupTheory.inv1g G) (rUnitℤ· G (negsuc n))
∙ lid (snd G) (1g (snd G))
rUnitℤ·ℤ : (x : ℤ) → (x ℤ[ ℤGroup ]· 1) ≡ x
rUnitℤ·ℤ (pos zero) = refl
rUnitℤ·ℤ (pos (suc n)) = cong (pos 1 +ℤ_) (rUnitℤ·ℤ (pos n)) ∙ sym (pos+ 1 n)
rUnitℤ·ℤ (negsuc zero) = refl
rUnitℤ·ℤ (negsuc (suc n)) = cong (-1 +ℤ_) (rUnitℤ·ℤ (negsuc n))
∙ +Comm (negsuc 0) (negsuc n)
private
precommℤ : (G : Group ℓ) (g : fst G) (y : ℤ)
→ (snd G · (y ℤ[ G ]· g)) g ≡ (sucℤ y ℤ[ G ]· g)
precommℤ G g (pos zero) = lid (snd G) g ∙ sym (rid (snd G) g)
precommℤ G g (pos (suc n)) =
sym (assoc (snd G) _ _ _)
∙ cong ((snd G · g)) (precommℤ G g (pos n))
precommℤ G g (negsuc zero) = invl (snd G) g
precommℤ G g (negsuc (suc n)) =
sym (assoc (snd G) _ _ _)
∙ cong ((snd G · inv (snd G) g)) (precommℤ G g (negsuc n))
∙ negsucLem n
where
negsucLem : (n : ℕ) → (snd G · inv (snd G) g)
(sucℤ (negsuc n) ℤ[ G ]· g)
≡ (sucℤ (negsuc (suc n)) ℤ[ G ]· g)
negsucLem zero = (rid (snd G) _)
negsucLem (suc n) = refl
module _ (G : Group ℓ) (g : fst G) where
private
lem : (y : ℤ) → (predℤ y ℤ[ G ]· g)
≡ (snd G · inv (snd G) g) (y ℤ[ G ]· g)
lem (pos zero) = sym (rid (snd G) _)
lem (pos (suc n)) =
sym (lid (snd G) ((pos n ℤ[ G ]· g)))
∙∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g))
(sym (invl (snd G) g))
∙∙ sym (assoc (snd G) _ _ _)
lem (negsuc n) = refl
distrℤ· : (x y : ℤ) → ((x +ℤ y) ℤ[ G ]· g)
≡ _·_ (snd G) (x ℤ[ G ]· g) (y ℤ[ G ]· g)
distrℤ· (pos zero) y = cong (_ℤ[ G ]· g) (+Comm 0 y)
∙ sym (lid (snd G) _)
distrℤ· (pos (suc n)) (pos n₁) =
cong (_ℤ[ G ]· g) (sym (pos+ (suc n) n₁))
∙ cong (_·_ (snd G) g)
(cong (_ℤ[ G ]· g) (pos+ n n₁) ∙ distrℤ· (pos n) (pos n₁))
∙ assoc (snd G) _ _ _
distrℤ· (pos (suc n)) (negsuc zero) =
distrℤ· (pos n) 0
∙ ((rid (snd G) (pos n ℤ[ G ]· g) ∙ sym (lid (snd G) (pos n ℤ[ G ]· g)))
∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g))
(sym (invl (snd G) g)) ∙ sym (assoc (snd G) _ _ _))
∙ (assoc (snd G) _ _ _)
∙ cong (λ x → _·_ (snd G) x (pos n ℤ[ G ]· g)) (invl (snd G) g)
∙ lid (snd G) _
∙ sym (rid (snd G) _)
∙ (cong (_·_ (snd G) (pos n ℤ[ G ]· g)) (sym (invr (snd G) g))
∙ assoc (snd G) _ _ _)
∙ cong (λ x → _·_ (snd G) x (inv (snd G) g))
(precommℤ G g (pos n))
distrℤ· (pos (suc n)) (negsuc (suc n₁)) =
cong (_ℤ[ G ]· g) (predℤ+negsuc n₁ (pos (suc n)))
∙∙ distrℤ· (pos n) (negsuc n₁)
∙∙ (cong (λ x → _·_ (snd G) x (negsuc n₁ ℤ[ G ]· g))
((sym (rid (snd G) (pos n ℤ[ G ]· g))
∙ cong (_·_ (snd G) (pos n ℤ[ G ]· g)) (sym (invr (snd G) g)))
∙∙ assoc (snd G) _ _ _
∙∙ cong (λ x → _·_ (snd G) x (inv (snd G) g)) (precommℤ G g (pos n)))
∙ sym (assoc (snd G) _ _ _))
distrℤ· (negsuc zero) y =
cong (_ℤ[ G ]· g) (+Comm -1 y) ∙ lem y
distrℤ· (negsuc (suc n)) y =
cong (_ℤ[ G ]· g) (+Comm (negsuc (suc n)) y)
∙∙ lem (y +negsuc n)
∙∙ cong (snd G · inv (snd G) g)
(cong (_ℤ[ G ]· g) (+Comm y (negsuc n)) ∙ distrℤ· (negsuc n) y)
∙ (assoc (snd G) _ _ _)
GroupHomℤ→ℤpres- : (e : GroupHom ℤGroup ℤGroup) (a : ℤ)
→ fst e (- a) ≡ - fst e a
GroupHomℤ→ℤpres- e a =
cong (fst e) (minus≡0- a) ∙∙ presinv (snd e) a ∙∙ sym (minus≡0- _)
ℤ·≡· : (a b : ℤ) → a * b ≡ (a ℤ[ ℤGroup ]· b)
ℤ·≡· (pos zero) b = refl
ℤ·≡· (pos (suc n)) b = cong (b +ℤ_) (ℤ·≡· (pos n) b)
ℤ·≡· (negsuc zero) b = minus≡0- b
ℤ·≡· (negsuc (suc n)) b = cong₂ _+ℤ_ (minus≡0- b) (ℤ·≡· (negsuc n) b)
GroupHomℤ→ℤPres· : (e : GroupHom ℤGroup ℤGroup) (a b : ℤ)
→ fst e (a * b) ≡ a * fst e b
GroupHomℤ→ℤPres· e a b =
cong (fst e) (ℤ·≡· a b) ∙∙ homPresℤ· e b a ∙∙ sym (ℤ·≡· a (fst e b))
-- Generators in terms of ℤ-multiplication
-- Todo : generalise
gen₁-by : (G : Group ℓ) → (g : fst G) → Type _
gen₁-by G g = (h : fst G)
→ Σ[ a ∈ ℤ ] h ≡ (a ℤ[ G ]· g)
gen₂-by : ∀ {ℓ} (G : Group ℓ) → (g₁ g₂ : fst G) → Type _
gen₂-by G g₁ g₂ =
(h : fst G) → Σ[ a ∈ ℤ × ℤ ] h ≡ _·_ (snd G) ((fst a) ℤ[ G ]· g₁) ((snd a) ℤ[ G ]· g₂)
Iso-pres-gen₁ : ∀ {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') (g : fst G)
→ gen₁-by G g → (e : GroupIso G H)
→ gen₁-by H (Iso.fun (fst e) g)
Iso-pres-gen₁ G H g genG is h =
(fst (genG (Iso.inv (fst is) h)))
, (sym (Iso.rightInv (fst is) h)
∙∙ cong (Iso.fun (fst is)) (snd (genG (Iso.inv (fst is) h)))
∙∙ (homPresℤ· (_ , snd is) g (fst (genG (Iso.inv (fst is) h)))))
Iso-pres-gen₂ : (G : Group ℓ) (H : Group ℓ') (g₁ g₂ : fst G)
→ gen₂-by G g₁ g₂ → (e : GroupIso G H)
→ gen₂-by H (Iso.fun (fst e) g₁) (Iso.fun (fst e) g₂)
fst (Iso-pres-gen₂ G H g₁ g₂ genG is h) = genG (Iso.inv (fst is) h) .fst
snd (Iso-pres-gen₂ G H g₁ g₂ genG is h) =
sym (Iso.rightInv (fst is) h)
∙∙ cong (fun (fst is)) (snd (genG (Iso.inv (fst is) h)))
∙∙ (pres· (snd is) _ _
∙ cong₂ (_·_ (snd H))
(homPresℤ· (_ , snd is) g₁ (fst (fst (genG (inv (fst is) h)))))
(homPresℤ· (_ , snd is) g₂ (snd (fst (genG (inv (fst is) h))))))
private
intLem₁ : (n m : ℕ) → Σ[ a ∈ ℕ ] (negsuc n * pos (suc m)) ≡ negsuc a
intLem₁ n zero = n , ·Comm (negsuc n) (pos 1)
intLem₁ n (suc m) = lem _ _ .fst ,
(·Comm (negsuc n) (pos (suc (suc m)))
∙∙ cong (negsuc n +ℤ_) (·Comm (pos (suc m)) (negsuc n) ∙ (intLem₁ n m .snd))
∙∙ lem _ _ .snd)
where
lem : (x y : ℕ) → Σ[ a ∈ ℕ ] negsuc x +ℤ negsuc y ≡ negsuc a
lem zero zero = 1 , refl
lem zero (suc y) = (suc (suc y)) , +Comm (negsuc zero) (negsuc (suc y))
lem (suc x) zero = (suc (suc x)) , refl
lem (suc x) (suc y) =
(lem (suc (suc x)) y .fst)
, (predℤ+negsuc y (negsuc (suc x)) ∙ snd ((lem (suc (suc x))) y))
intLem₂ : (n x : ℕ)
→ Σ[ a ∈ ℕ ] ((pos (suc x)) * pos (suc (suc n)) ≡ pos (suc (suc a)))
intLem₂ n zero = n , refl
intLem₂ n (suc x) = lem _ _ (intLem₂ n x)
where
lem : (x : ℤ) (n : ℕ) → Σ[ a ∈ ℕ ] (x ≡ pos (suc (suc a)))
→ Σ[ a ∈ ℕ ] pos n +ℤ x ≡ pos (suc (suc a))
lem x n (a , p) = n +ℕ a
, cong (pos n +ℤ_) p ∙ cong sucℤ (sucℤ+pos a (pos n))
∙ sucℤ+pos a (pos (suc n)) ∙ (sym (pos+ (suc (suc n)) a))
¬1=x·suc-suc : (n : ℕ) (x : ℤ) → ¬ pos 1 ≡ x * pos (suc (suc n))
¬1=x·suc-suc n (pos zero) p = snotz (injPos p)
¬1=x·suc-suc n (pos (suc n₁)) p =
snotz (injPos (sym (cong predℤ (snd (intLem₂ n n₁))) ∙ sym (cong predℤ p)))
¬1=x·suc-suc n (negsuc n₁) p = posNotnegsuc _ _ (p ∙ intLem₁ _ _ .snd)
GroupEquivℤ-pres1 : (e : GroupEquiv ℤGroup ℤGroup) (x : ℤ)
→ (fst (fst e) 1) ≡ x → abs (fst (fst e) 1) ≡ 1
GroupEquivℤ-pres1 e (pos zero) p =
⊥-rec (snotz (injPos (sym (retEq (fst e) 1)
∙∙ (cong (fst (fst (invGroupEquiv e))) p)
∙∙ IsGroupHom.pres1 (snd (invGroupEquiv e)))))
GroupEquivℤ-pres1 e (pos (suc zero)) p = cong abs p
GroupEquivℤ-pres1 e (pos (suc (suc n))) p =
⊥-rec (¬1=x·suc-suc _ _ (h3 ∙ ·Comm (pos (suc (suc n))) (invEq (fst e) 1)))
where
h3 : pos 1 ≡ _
h3 = sym (retEq (fst e) 1)
∙∙ cong (fst (fst (invGroupEquiv e)))
(p ∙ ·Comm 1 (pos (suc (suc n))))
∙∙ GroupHomℤ→ℤPres· (_ , snd (invGroupEquiv e)) (pos (suc (suc n))) 1
GroupEquivℤ-pres1 e (negsuc zero) p = cong abs p
GroupEquivℤ-pres1 e (negsuc (suc n)) p = ⊥-rec (¬1=x·suc-suc _ _ lem₂)
where
lem₁ : fst (fst e) (negsuc zero) ≡ pos (suc (suc n))
lem₁ = GroupHomℤ→ℤpres- (_ , snd e) (pos 1) ∙ cong -_ p
compGroup : GroupEquiv ℤGroup ℤGroup
fst compGroup = isoToEquiv (iso -_ -_ -Involutive -Involutive)
snd compGroup = makeIsGroupHom -Dist+
compHom : GroupEquiv ℤGroup ℤGroup
compHom = compGroupEquiv compGroup e
lem₂ : pos 1 ≡ invEq (fst compHom) (pos 1) * pos (suc (suc n))
lem₂ = sym (retEq (fst compHom) (pos 1))
∙∙ cong (invEq (fst compHom)) lem₁
∙∙ (cong (invEq (fst compHom)) (·Comm (pos 1) (pos (suc (suc n))))
∙ GroupHomℤ→ℤPres· (_ , (snd (invGroupEquiv compHom)))
(pos (suc (suc n))) (pos 1)
∙ ·Comm (pos (suc (suc n))) (invEq (fst compHom) (pos 1)))
groupEquivPresGen : ∀ {ℓ} (G : Group ℓ) (ϕ : GroupEquiv G ℤGroup) (x : fst G)
→ (fst (fst ϕ) x ≡ 1) ⊎ (fst (fst ϕ) x ≡ - 1)
→ (ψ : GroupEquiv G ℤGroup)
→ (fst (fst ψ) x ≡ 1) ⊎ (fst (fst ψ) x ≡ - 1)
groupEquivPresGen G (ϕeq , ϕhom) x (inl r) (ψeq , ψhom) =
abs→⊎ _ _ (cong abs (cong (fst ψeq) (sym (retEq ϕeq x)
∙ cong (invEq ϕeq) r))
∙ GroupEquivℤ-pres1 (compGroupEquiv
(invGroupEquiv (ϕeq , ϕhom)) (ψeq , ψhom)) _ refl)
groupEquivPresGen G (ϕeq , ϕhom) x (inr r) (ψeq , ψhom) =
abs→⊎ _ _
(cong abs (cong (fst ψeq) (sym (retEq ϕeq x) ∙ cong (invEq ϕeq) r))
∙ cong abs (IsGroupHom.presinv
(snd (compGroupEquiv (invGroupEquiv (ϕeq , ϕhom))
(ψeq , ψhom))) 1)
∙ absLem _ (GroupEquivℤ-pres1
(compGroupEquiv (invGroupEquiv (ϕeq , ϕhom)) (ψeq , ψhom))
_ refl))
where
absLem : ∀ x → abs x ≡ 1 → abs (pos 0 -ℤ x) ≡ 1
absLem (pos zero) p = ⊥-rec (snotz (sym p))
absLem (pos (suc zero)) p = refl
absLem (pos (suc (suc n))) p = ⊥-rec (snotz (cong predℕ p))
absLem (negsuc zero) p = refl
absLem (negsuc (suc n)) p = ⊥-rec (snotz (cong predℕ p))
gen₂ℤ×ℤ : gen₂-by (DirProd ℤGroup ℤGroup) (1 , 0) (0 , 1)
fst (gen₂ℤ×ℤ (x , y)) = x , y
snd (gen₂ℤ×ℤ (x , y)) =
ΣPathP ((cong₂ _+ℤ_ ((·Comm 1 x) ∙ cong fst (sym (distrLem 1 0 x)))
((·Comm 0 y) ∙ cong fst (sym (distrLem 0 1 y))))
, +Comm y 0
∙ cong₂ _+ℤ_ (·Comm 0 x ∙ cong snd (sym (distrLem 1 0 x)))
(·Comm 1 y ∙ cong snd (sym (distrLem 0 1 y))))
where
ℤ×ℤ = DirProd ℤGroup ℤGroup
_+''_ = GroupStr._·_ (snd ℤ×ℤ)
-lem : (x : ℤ) → - x ≡ 0 -ℤ x
-lem (pos zero) = refl
-lem (pos (suc zero)) = refl
-lem (pos (suc (suc n))) =
cong predℤ (-lem (pos (suc n)))
-lem (negsuc zero) = refl
-lem (negsuc (suc n)) = cong sucℤ (-lem (negsuc n))
distrLem : (x y : ℤ) (z : ℤ)
→ Path (ℤ × ℤ) (z ℤ[ ℤ×ℤ ]· (x , y)) (z * x , z * y)
distrLem x y (pos zero) = refl
distrLem x y (pos (suc n)) =
(cong ((x , y) +''_) (distrLem x y (pos n)))
distrLem x y (negsuc zero) = ΣPathP (sym (-lem x) , sym (-lem y))
distrLem x y (negsuc (suc n)) =
cong₂ _+''_ (ΣPathP (sym (-lem x) , sym (-lem y)))
(distrLem x y (negsuc n))
|
{
"alphanum_fraction": 0.5193361391,
"avg_line_length": 39.8512658228,
"ext": "agda",
"hexsha": "020248927701f367f1b9ae44e80086881897c672",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ecavallo/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/ZAction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ecavallo/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/ZAction.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ecavallo/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/ZAction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5790,
"size": 12593
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Monad syntax for the TC monad
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.TypeChecking.MonadSyntax where
open import Agda.Builtin.Reflection
open import Level using (Level)
private
variable
a b : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Monad syntax
pure : A → TC A
pure = returnTC
{-# INLINE pure #-}
infixl 3 _<|>_
_<|>_ : TC A → TC A → TC A
_<|>_ = catchTC
{-# INLINE _<|>_ #-}
infixl 1 _>>=_ _>>_ _<&>_
_>>=_ : TC A → (A → TC B) → TC B
_>>=_ = bindTC
{-# INLINE _>>=_ #-}
_>>_ : TC A → TC B → TC B
xs >> ys = bindTC xs (λ _ → ys)
{-# INLINE _>>_ #-}
infixl 4 _<$>_ _<*>_ _<$_
_<*>_ : TC (A → B) → TC A → TC B
fs <*> xs = bindTC fs (λ f → bindTC xs (λ x → returnTC (f x)))
{-# INLINE _<*>_ #-}
_<$>_ : (A → B) → TC A → TC B
f <$> xs = bindTC xs (λ x → returnTC (f x))
{-# INLINE _<$>_ #-}
_<$_ : A → TC B → TC A
x <$ xs = bindTC xs (λ _ → returnTC x)
{-# INLINE _<$_ #-}
_<&>_ : TC A → (A → B) → TC B
xs <&> f = bindTC xs (λ x → returnTC (f x))
{-# INLINE _<&>_ #-}
|
{
"alphanum_fraction": 0.4322373697,
"avg_line_length": 21.8771929825,
"ext": "agda",
"hexsha": "5df23171cd2cd7b04067973631281734575d6e74",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/TypeChecking/MonadSyntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/TypeChecking/MonadSyntax.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/TypeChecking/MonadSyntax.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 387,
"size": 1247
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.HSpace
open import homotopy.EM1HSpace
open import homotopy.EilenbergMacLane1 using (EM₁-level₁)
open import lib.types.TwoSemiCategory
open import lib.two-semi-categories.FundamentalCategory
module homotopy.EM1HSpaceAssoc where
module EM₁HSpaceAssoc {i} (G : AbGroup i) where
private
module G = AbGroup G
open EM₁HSpace G public
private
module H-⊙EM₁ = HSpaceStructure H-⊙EM₁
mult-loop-assoc : (g : G.El) (y z : EM₁ G.grp)
→ mult-loop g (mult y z) == ap (λ x' → mult x' z) (mult-loop g y)
mult-loop-assoc g y z =
EM₁-prop-elim {P = λ y → mult-loop g (mult y z) == ap (λ x' → mult x' z) (mult-loop g y)}
{{λ y → has-level-apply (has-level-apply (EM₁-level₁ G.grp) _ _) _ _}}
base' y
where
base' : mult-loop g (mult embase z) == ap (λ x' → mult x' z) (mult-loop g embase)
base' = ! (mult-emloop-β g z)
H-⊙EM₁-assoc : (x y z : EM₁ G.grp) → mult (mult x y) z == mult x (mult y z)
H-⊙EM₁-assoc x y z =
EM₁-set-elim {P = λ x → mult (mult x y) z == mult x (mult y z)}
{{λ x → has-level-apply (EM₁-level₁ G.grp) _ _}}
idp
comp'
x
where
abstract
comp' : (g : G.El) → idp == idp [ (λ x → mult (mult x y) z == mult x (mult y z)) ↓ emloop g ]
comp' g =
↓-='-in $
idp ∙' ap (λ x → mult x (mult y z)) (emloop g)
=⟨ ∙'-unit-l _ ⟩
ap (λ x → mult x (mult y z)) (emloop g)
=⟨ mult-emloop-β g (mult y z) ⟩
mult-loop g (mult y z)
=⟨ mult-loop-assoc g y z ⟩
ap (λ v → mult v z) (mult-loop g y)
=⟨ ap (ap (λ v → mult v z)) (! (mult-emloop-β g y)) ⟩
ap (λ v → mult v z) (ap (λ x → mult x y) (emloop g))
=⟨ ∘-ap (λ v → mult v z) (λ x → mult x y) (emloop g) ⟩
ap (λ x → mult (mult x y) z) (emloop g)
=⟨ ! (∙-unit-r _) ⟩
ap (λ x → mult (mult x y) z) (emloop g) ∙ idp =∎
H-EM₁-assoc-coh-unit-l : coh-unit-l H-⊙EM₁ H-⊙EM₁-assoc
H-EM₁-assoc-coh-unit-l x y = =ₛ-in idp
H-EM₁-assoc-coh-unit-r : coh-unit-r H-⊙EM₁ H-⊙EM₁-assoc
H-EM₁-assoc-coh-unit-r =
EM₁-prop-elim {P = λ x → ∀ y → P x y} {{λ x → Π-level (P-level x)}}
(EM₁-prop-elim {P = P embase} {{P-level embase}} (=ₛ-in idp))
where
P : EM₁ G.grp → EM₁ G.grp → Type i
P = coh-unit-r-eq H-⊙EM₁ H-⊙EM₁-assoc
P-level : ∀ x y → is-prop (P x y)
P-level x y = =ₛ-level (EM₁-level₁ G.grp)
H-EM₁-assoc-coh-unit-l-r-pentagon : coh-unit-l-r-pentagon H-⊙EM₁ H-⊙EM₁-assoc
H-EM₁-assoc-coh-unit-l-r-pentagon =
coh-unit-l-to-unit-l-r-pentagon H-⊙EM₁ H-⊙EM₁-assoc H-EM₁-assoc-coh-unit-l
import homotopy.Pi2HSuspCompose H-⊙EM₁ H-⊙EM₁-assoc H-EM₁-assoc-coh-unit-l-r-pentagon as Pi2EMSuspCompose
open Pi2EMSuspCompose hiding (comp-functor) public
abstract
H-EM₁-assoc-pentagon : coh-assoc-pentagon H-⊙EM₁ H-⊙EM₁-assoc
H-EM₁-assoc-pentagon w x y z =
EM₁-prop-elim {P = λ w' → P w' x y z} {{λ w' → P-level w' x y z}}
(EM₁-prop-elim {P = λ x' → P embase x' y z} {{λ x' → P-level embase x' y z}} (=ₛ-in idp) x)
w
where
P : (w x y z : EM₁ G.grp) → Type i
P = coh-assoc-pentagon-eq H-⊙EM₁ H-⊙EM₁-assoc
P-level : ∀ w x y z → is-prop (P w x y z)
P-level w x y z = =ₛ-level (EM₁-level₁ G.grp)
EM₁-2-semi-category : TwoSemiCategory lzero i
EM₁-2-semi-category = HSpace-2-semi-category H-⊙EM₁ H-⊙EM₁-assoc H-EM₁-assoc-pentagon
comp-functor :
TwoSemiFunctor
EM₁-2-semi-category
(=ₜ-fundamental-cat (Susp (EM₁ G.grp)))
comp-functor =
record
{ F₀ = λ _ → [ north ]
; F₁ = λ x → [ η x ]
; pres-comp = comp
; pres-comp-coh = comp-coh
}
-- this is *exactly* the same as
-- `Pi2EMSuspCompose.comp-functor H-EM₁-assoc-pentagon`
-- inlined but Agda chokes on this shorter definition
|
{
"alphanum_fraction": 0.5559484718,
"avg_line_length": 37.7047619048,
"ext": "agda",
"hexsha": "8c648234e22cbdad3300f64092da4225f8de5bff",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/EM1HSpaceAssoc.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/EM1HSpaceAssoc.agda",
"max_line_length": 107,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/EM1HSpaceAssoc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1557,
"size": 3959
}
|
module Vec where
open import Basics
open import Ix
open import All
open import Cutting
open import Tensor
data Vec (X : Set) : Nat -> Set where
[] : Vec X zero
_,-_ : forall {n} -> X -> Vec X n -> Vec X (suc n)
_+V_ : forall {X n m} -> Vec X n -> Vec X m -> Vec X (n +N m)
[] +V ys = ys
(x ,- xs) +V ys = x ,- (xs +V ys)
record Applicative (F : Set -> Set) : Set1 where
field
pure : {X : Set} -> X -> F X
_<*>_ : {S T : Set} -> F (S -> T) -> F S -> F T
infixl 2 _<*>_
VecAppl : (n : Nat) -> Applicative \ X -> Vec X n
Applicative.pure (VecAppl zero) x = []
Applicative.pure (VecAppl (suc n)) x = x ,- Applicative.pure (VecAppl n) x
Applicative._<*>_ (VecAppl .zero) [] [] = []
Applicative._<*>_ (VecAppl .(suc _)) (f ,- fs) (s ,- ss) =
f s ,- Applicative._<*>_ (VecAppl _) fs ss
module VTRAVERSE {F}(A : Applicative F) where
open Applicative A
vtraverse : forall {n S T} -> (S -> F T) -> Vec S n -> F (Vec T n)
vtraverse f [] = pure []
vtraverse f (s ,- ss) = pure _,-_ <*> f s <*> vtraverse f ss
Matrix : Set -> Nat * Nat -> Set
Matrix X (i , j) = Vec (Vec X i) j
xpose : forall {X ij} -> Matrix X ij -> Matrix X (swap ij)
xpose = vtraverse id where
open VTRAVERSE (VecAppl _)
module VECALL {I : Set}{P : I -> Set}{n : Nat}where
open Applicative (VecAppl n)
vecAll : {is : List I} ->
All (\ i -> Vec (P i) n) is -> Vec (All P is) n
vecAll {[]} pss = pure <>
vecAll {i ,- is} (ps , pss) = pure _,_ <*> ps <*> vecAll pss
VecLiftAlg : (C : I |> I) ->
Algebra (Cutting C) P ->
Algebra (Cutting C) (\ i -> Vec (P i) n)
VecLiftAlg C alg i (c 8>< pss) = pure (alg i << (c 8><_)) <*> vecAll pss
open VECALL
NatCutVecAlg : {X : Set} -> Algebra (Cutting NatCut) (Vec X)
NatCutVecAlg {X} .(m +N n) (m , n , refl .(m +N n) 8>< xm , xn , <>) = xm +V xn
open RECTANGLE
NatCut2DMatAlg : {X : Set} -> Algebra (Cutting RectCut) (Matrix X)
NatCut2DMatAlg _ (inl c 8>< ms) = VecLiftAlg NatCut NatCutVecAlg _ (c 8>< ms)
NatCut2DMatAlg _ (inr c 8>< ms) = NatCutVecAlg _ (c 8>< ms)
|
{
"alphanum_fraction": 0.5501912046,
"avg_line_length": 29.8857142857,
"ext": "agda",
"hexsha": "36021a5fee36b8b7a58c08dfb540065f391b5421",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pigworker/InteriorDesign",
"max_forks_repo_path": "Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pigworker/InteriorDesign",
"max_issues_repo_path": "Vec.agda",
"max_line_length": 79,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pigworker/InteriorDesign",
"max_stars_repo_path": "Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z",
"num_tokens": 802,
"size": 2092
}
|
------------------------------------------------------------------------------
-- Test the consistency of FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- In the module FOTC.Relation.Binary.Bisimilarity.Type we declare
-- Agda postulates as first-order logic axioms. We test if it is
-- possible to prove unprovable theorems from these axioms.
module FOTC.Relation.Binary.Bisimilarity.Consistency.Axioms where
open import FOTC.Base
open import FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
postulate impossible : ∀ d e → d ≡ e
{-# ATP prove impossible #-}
postulate ≡→≈ : ∀ {xs ys} → xs ≡ ys → xs ≈ ys
{-# ATP prove ≡→≈ #-}
postulate ≈→≡ : ∀ {xs ys} → xs ≈ ys → xs ≡ ys
{-# ATP prove ≈→≡ #-}
postulate ≉→≢ : ∀ {xs ys} → xs ≉ ys → xs ≢ ys
{-# ATP prove ≉→≢ #-}
|
{
"alphanum_fraction": 0.4912442396,
"avg_line_length": 33.90625,
"ext": "agda",
"hexsha": "eeeedb9851e776d83a0a01aefa43bfa958156ac7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Consistency/Axioms.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Consistency/Axioms.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Consistency/Axioms.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 262,
"size": 1085
}
|
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Product.Nat where
-- agda-stdlib
open import Data.Nat.Properties
-- agda-misc
open import Math.NumberTheory.Product.Generic
open MonoidProduct *-1-monoid public
|
{
"alphanum_fraction": 0.76,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "6b8eecc6c44e92eec05e5c51e14d3a2a0f73a0b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Product/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Product/Nat.agda",
"max_line_length": 45,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Product/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 55,
"size": 225
}
|
open import Prelude
module Implicits.Syntax.Context where
open import Implicits.Syntax.Type
open import Data.List.All
open import Data.Vec
open import Data.List
Ctx : ℕ → ℕ → Set
Ctx ν n = Vec (Type ν) n
ICtx : ℕ → Set
ICtx ν = List (Type ν)
-- wellformed implicit contexts
_⊢OK : ∀ {ν} → ICtx ν → Set
Δ ⊢OK = All (λ a → List.[] ⊢unamb a) Δ
Ktx : ℕ → ℕ → Set
Ktx ν n = Ctx ν n × ICtx ν
_∷Γ_ : ∀ {ν n} → Type ν → Ktx ν n → Ktx ν (suc n)
a ∷Γ (Γ , Δ) = (a ∷ Γ) , Δ
_∷Δ_ : ∀ {ν n} → Type ν → Ktx ν n → Ktx ν n
a ∷Δ (Γ , Δ) = Γ , a List.∷ Δ
_∷K_ : ∀ {ν n} → Type ν → Ktx ν n → Ktx ν (suc n)
a ∷K (Γ , Δ) = a ∷ Γ , a List.∷ Δ
nil : ∀ {ν} → Ktx ν 0
nil = [] , List.[]
|
{
"alphanum_fraction": 0.5520833333,
"avg_line_length": 19.7647058824,
"ext": "agda",
"hexsha": "afad3da5e97dfb90c1ea73f57d2b0c8eaf5b2e39",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Syntax/Context.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Syntax/Context.agda",
"max_line_length": 49,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Syntax/Context.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 308,
"size": 672
}
|
------------------------------------------------------------------------------
-- Distributive laws on a binary operation (Stanovský example)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.README where
------------------------------------------------------------------------------
-- Description
-- Let _·_ be a left-associative binary operation which satifies the
-- left and right distributive axioms:
--
-- ∀ x y z → x ∙ (y ∙ z) ≡ (x ∙ y) ∙ (x ∙ z)
-- ∀ x y z → (x ∙ y) ∙ z ≡ (x ∙ z) ∙ (y ∙ z).
-- We prove some properties of Stanovský (2008): Task B, Lemma 3,
-- Lemma 4, Lemma 5 (Task A) and Lemma 6.
------------------------------------------------------------------------------
-- The axioms
open import DistributiveLaws.Base
-- The interactive and combined proofs
open import DistributiveLaws.Lemma3-ATP
open import DistributiveLaws.Lemma4-ATP
open import DistributiveLaws.Lemma5-ATP
open import DistributiveLaws.Lemma6-ATP
open import DistributiveLaws.TaskB-AllStepsATP
open import DistributiveLaws.TaskB-HalvedStepsATP
open import DistributiveLaws.TaskB-I
open import DistributiveLaws.TaskB-TopDownATP
-- Unproven theorem by the ATPs
open import DistributiveLaws.TaskB.UnprovedATP
------------------------------------------------------------------------------
-- References:
--
-- Stanovský, David (2008). Distributive Groupoids are
-- Symmetrical-by-Medial: An Elementary Proof. Commentations
-- Mathematicae Universitatis Carolinae 49.4, pp. 541–546.
|
{
"alphanum_fraction": 0.5488235294,
"avg_line_length": 36.170212766,
"ext": "agda",
"hexsha": "d66c03388c488dfe49c780a7e2985d934253ae67",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/README.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/README.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/README.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 403,
"size": 1700
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Sets.EquivalenceRelations
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Modules.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Lists.Lists
open import Vectors
open import Groups.Definition
open import Orders.Total.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.Homomorphisms.Definition
module Modules.PolynomialModule {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Ring R
open import Groups.Polynomials.Definition additiveGroup
open import Groups.Polynomials.Group additiveGroup
open import Rings.Polynomial.Multiplication R
open import Rings.Polynomial.Evaluation R
open import Rings.Polynomial.Ring R
open import Rings.Lemmas polyRing
polynomialRingModule : Module R abelianUnderlyingGroup (λ a b → _*P_ (polyInjection a) b)
Module.dotWellDefined (polynomialRingModule) r=s t=u = Ring.*WellDefined polyRing (r=s ,, record {}) t=u
Module.dotDistributesLeft (polynomialRingModule) {r} {s} {t} = Ring.*DistributesOver+ polyRing {polyInjection r} {s} {t}
Module.dotDistributesRight (polynomialRingModule) {r} {s} {t} = Ring.*DistributesOver+' polyRing {polyInjection r} {polyInjection s} {t}
Module.dotAssociative (polynomialRingModule) {r} {s} {t} = Equivalence.transitive (Setoid.eq naivePolySetoid) (Ring.*WellDefined polyRing m (Equivalence.reflexive (Setoid.eq naivePolySetoid) {t})) (Equivalence.symmetric (Setoid.eq naivePolySetoid) (Ring.*Associative polyRing {polyInjection r} {polyInjection s} {t}))
where
m : Setoid._∼_ naivePolySetoid ((r * s) :: []) ((r * s) :: (([] +P []) +P (0R :: [])))
m = Equivalence.reflexive (Setoid.eq S) ,, (Equivalence.reflexive (Setoid.eq S) ,, record {})
Module.dotIdentity (polynomialRingModule) = Ring.identIsIdent polyRing
open import Modules.Span polynomialRingModule
polynomialBasis : ℕ → NaivePoly
polynomialBasis zero = polyInjection 1R
polynomialBasis (succ a) = 0R :: polynomialBasis a
count : (n : ℕ) → Vec ℕ n
count zero = []
count (succ n) = 0 ,- vecMap succ (count n)
lemma : {d : _} {D : Set d} → (f : D → List A) → {n : ℕ} → (m : Vec D n) (r : Vec A n) → Setoid._∼_ naivePolySetoid (dot (vecMap (λ i → 0R :: f i) m) r) (0R :: dot (vecMap f m) r)
lemma f [] [] = reflexive ,, record {}
where
open Setoid S
open Equivalence eq
lemma f (m ,- ms) (r ,- rs) rewrite refl {x = 0} = transitive (+WellDefined {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))} {_} {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))} (reflexive {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))}) (lemma f ms rs)) (Equivalence.transitive (Setoid.eq S) (Group.identRight additiveGroup) (Ring.timesZero R) ,, +WellDefined {((map (_*_ r) (f m)) +P []) +P (0R :: [])} {dot (vecMap f ms) rs} {(r :: []) *P f m} {dot (vecMap f ms) rs} t (reflexive {dot (vecMap f ms) rs}))
where
open Setoid naivePolySetoid
open Equivalence eq
open Group polyGroup
lemm : (v : List A) → polysEqual (map (_*_ r) v) ((r :: []) *P v)
lemm [] = record {}
lemm (x :: v) = Equivalence.reflexive (Setoid.eq S) ,, symmetric (transitive (+WellDefined {map (_*_ r) v +P []} {0R :: []} {_} {[]} reflexive (Equivalence.reflexive (Setoid.eq S) ,, record {})) (transitive (identRight {(map (_*_ r) v) +P []}) (identRight {map (_*_ r) v})))
t : ((map (_*_ r) (f m) +P []) +P (0R :: [])) ∼ ((r :: []) *P f m)
t = transitive (+WellDefined {map (_*_ r) (f m) +P []} {0R :: []} {_} {[]} reflexive (Equivalence.reflexive (Setoid.eq S) ,, record {})) (transitive (identRight {map (_*_ r) (f m) +P []}) (transitive (identRight {map (_*_ r) (f m)}) (lemm (f m))))
identityMap : (v : List A) → Setoid._∼_ naivePolySetoid (dot (vecMap polynomialBasis (count (length v))) (listToVec v)) v
identityMap [] = record {}
identityMap (x :: v) rewrite vecMapCompose succ polynomialBasis (count (length v)) = transitive (+WellDefined {(x * 1R) :: Group.0G additiveGroup :: []} {dot (vecMap (λ i → Group.0G additiveGroup :: polynomialBasis i) (count (length v))) (listToVec v)} {(x * 1R) :: 0R :: []} {0R :: dot (vecMap polynomialBasis (count (length v))) (listToVec v)} (reflexive {(x * 1R) :: 0R :: []}) (lemma polynomialBasis (count (length v)) (listToVec v))) (Equivalence.transitive (Setoid.eq S) (Group.identRight additiveGroup) (Equivalence.transitive (Setoid.eq S) *Commutative identIsIdent) ,, transitive (+WellDefined {0R :: []} {dot (vecMap polynomialBasis (count (length v))) (listToVec v)} {[]} (Equivalence.reflexive (Setoid.eq S) ,, record {}) reflexive) (transitive identLeft (identityMap v)))
where
open Group polyGroup
open Setoid naivePolySetoid
open Equivalence eq
polynomialBasisSpans : Spans polynomialBasis
polynomialBasisSpans m = length m , ((count (length m) ,, listToVec m) , identityMap m)
{-
private
indepWithZero : {n : ℕ} (rs : Vec ℕ n) (indicesDistinct : {a b : ℕ} → (a<n : a <N succ n) (b<n : b <N succ n) → vecIndex (0 ,- rs) a a<n ≡ vecIndex (0 ,- rs) b b<n → a ≡ b) (b : A) (bs : Vec A n) (dotZero : Setoid._∼_ naivePolySetoid (((b * 1R) :: 0R :: []) +P (dot (vecMap polynomialBasis rs) bs)) []) → (nonzero : {a : ℕ} → (a<n : a <N n) → 0 <N vecIndex rs a a<n) → Setoid._∼_ S 0R b && _=V_ additiveGroup (vecPure 0R) bs
indepWithZero rs indicesDistinct b bs dotZero indicesNonzero = symmetric b=0 ,, {!!}
where
open Setoid S
open Equivalence eq
open Group additiveGroup
t : (inducedFunction (((b * 1R) :: 0R :: []) +P (dot (vecMap polynomialBasis rs) bs)) 0R) ∼ 0R
t = inducedFunctionWellDefined dotZero 0R
u : ((inducedFunction ((b * 1R) :: 0R :: []) 0R) + inducedFunction (dot (vecMap polynomialBasis rs) bs) 0R) ∼ 0R
u = transitive (symmetric (GroupHom.groupHom (RingHom.groupHom (inducedFunctionIsHom 0R)) {((b * 1R) :: 0R :: [])} {dot (vecMap polynomialBasis rs) bs})) t
b=0 : b ∼ 0R
b=0 = transitive (symmetric (transitive (+WellDefined (transitive (transitive (transitive (+WellDefined reflexive (transitive *Commutative timesZero)) identRight) *Commutative) identIsIdent) {!imageOfIdentityIsIdentity (RingHom.groupHom (inducedFunctionIsHom 0R))!}) (identRight {b}))) u
polynomialBasisIndependent : Independent polynomialBasis
polynomialBasisIndependent [] indicesDistinct [] dotZero = record {}
polynomialBasisIndependent {succ n} (zero ,- rs) indicesDistinct (b ,- bs) dotZero = indepWithZero rs indicesDistinct b bs dotZero t
where
t : {a : ℕ} (a<n : a <N n) → 0 <N vecIndex rs a a<n
t {a} a<n with TotalOrder.totality ℕTotalOrder 0 (vecIndex rs a a<n)
t {a} a<n | inl (inl x) = x
t {a} a<n | inr x with indicesDistinct {succ a} {0} (succPreservesInequality a<n) (succIsPositive n) (equalityCommutative x)
... | ()
polynomialBasisIndependent (succ r ,- rs) indicesDistinct (b ,- bs) dotZero = {!!}
where
rearr : {!!}
rearr = {!!}
-}
|
{
"alphanum_fraction": 0.6617793594,
"avg_line_length": 66.9047619048,
"ext": "agda",
"hexsha": "9a590a214ec53f91574dbe1b08b8f38570e65038",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Modules/PolynomialModule.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Modules/PolynomialModule.agda",
"max_line_length": 784,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Modules/PolynomialModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2344,
"size": 7025
}
|
{-# OPTIONS --rewriting #-}
-- 2014-05-27 Jesper and Andreas
postulate
A B : Set
R : A → B → Set
{-# BUILTIN REWRITE R #-}
|
{
"alphanum_fraction": 0.5681818182,
"avg_line_length": 13.2,
"ext": "agda",
"hexsha": "cd5aeaebde3a8d4b92bfb3031ef49df2caa77830",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/RewriteRelationNotHomogeneous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/RewriteRelationNotHomogeneous.agda",
"max_line_length": 32,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/RewriteRelationNotHomogeneous.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 45,
"size": 132
}
|
{-# OPTIONS --without-K --exact-split --rewriting --overlapping-instances #-}
open import lib.Basics
open import lib.NConnected
open import lib.NType2
open import lib.types.Truncation
open import Coequalizers.Definition
open import Coequalizers.Misc
open import Graphs.Definition
open import Util.Misc
module Groups.Definition where
{- BG has the structure of a type theoretic group if it is pointed, connected and
1-truncated.
-}
record TTGroup {i : ULevel} (BG : Type i) : Type i where
field
base : BG
⦃ gp-conn ⦄ : is-connected 0 BG
⦃ gp-trunc ⦄ : is-gpd BG
open TTGroup ⦃...⦄ public
{- Some functions related to free higher groups (which we never define explicitly). -}
module _ {i : ULevel} {A : Type i} where
instance -- Whenever we need a pair of maps A ⇉ 1 they are defined as follows
gph-fhg : Graph A Unit
gph-fhg = record { π₀ = λ _ → unit ; π₁ = λ _ → unit }
conn-fhg : is-connected 0 (⊤ / A)
conn-fhg = has-level-in ([ c[ unit ] ] , Trunc-elim (λ x → Trunc-rec (λ { (t , p) → ap [_] p}) (quotient-map-is-surj x)))
fhg-base : ⊤ / A
fhg-base = c[ unit ]
{- The definition of a free group. -}
FreeGroup : {i : ULevel} (A : Type i) → Type i
FreeGroup A = ∥ ⊤ / A ∥₁
instance -- free groups are groups
free-gp-str : {i : ULevel} {A : Type i} → TTGroup (FreeGroup A)
free-gp-str = record { base = [ fhg-base ] }
|
{
"alphanum_fraction": 0.6533430233,
"avg_line_length": 28.6666666667,
"ext": "agda",
"hexsha": "4d3cdf3754f8e2105bfa6d42ec05a9425f156875",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "awswan/nielsenschreier-hott",
"max_forks_repo_path": "main/Groups/Definition.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "awswan/nielsenschreier-hott",
"max_issues_repo_path": "main/Groups/Definition.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "awswan/nielsenschreier-hott",
"max_stars_repo_path": "main/Groups/Definition.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 442,
"size": 1376
}
|
module CTL.Proof where
open import CTL.Proof.AG public
open import CTL.Proof.EG public
|
{
"alphanum_fraction": 0.8068181818,
"avg_line_length": 17.6,
"ext": "agda",
"hexsha": "da62d6c1681fcca397d2f16f1811abf0f0996e85",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Proof.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Proof.agda",
"max_line_length": 31,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Proof.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 24,
"size": 88
}
|
module ReflectionExposeConstraints where
open import Agda.Builtin.Reflection
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Unit
open import Agda.Builtin.Equality
_>>=_ : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B
_>>=_ = bindTC
_ifMeta_ : {A : Set} → Term → (Meta → TC A) → TC A
meta x x₁ ifMeta f = f x
_ ifMeta _ = typeError (strErr "Error1" ∷ [])
infixr 0 case_of_
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
foo : Constraint → TC Term
foo (valueCmp cmpEq y t1 (def f args)) = returnTC (def f [])
foo _ = typeError (strErr "Error2" ∷ [])
q : Nat → Nat
q zero = 4
q (suc x) = 4
macro
mfun : Term → TC ⊤
mfun hole
= delayMacro >>= (λ _ →
hole ifMeta (λ x → do
c ← getConstraintsMentioning (x ∷ [])
case c of
λ {[] → typeError (strErr "Error3" ∷ [])
; (c ∷ cs) → do
g ← foo c
unify hole g }
))
postulate
g : (Q : Nat → Nat) → ∀ k → Q k ≡ 4
f : ∀ k → q k ≡ 4
f k = g mfun k
|
{
"alphanum_fraction": 0.4690763052,
"avg_line_length": 27.0652173913,
"ext": "agda",
"hexsha": "b83ab0048b7853a504c07e545817c01049c81eca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75d3f20f94280881ec0a35ed0ae2ab4f1042c8fe",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "xekoukou/agda",
"max_forks_repo_path": "test/Succeed/ReflectionExposeConstraints.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "75d3f20f94280881ec0a35ed0ae2ab4f1042c8fe",
"max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "xekoukou/agda",
"max_issues_repo_path": "test/Succeed/ReflectionExposeConstraints.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75d3f20f94280881ec0a35ed0ae2ab4f1042c8fe",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "xekoukou/agda",
"max_stars_repo_path": "test/Succeed/ReflectionExposeConstraints.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 394,
"size": 1245
}
|
open import Relation.Unary
open import Relation.Ternary.Separation
module Relation.Ternary.Separation.Monad.Free {ℓ} {A : Set ℓ}
{{r : RawSep A}}
(Cmd : Pred A ℓ)
(δ : ∀ {Φ} → Cmd Φ → Pred A ℓ)
where
open import Level
open import Function
open import Data.Unit
open import Data.Product
open import Relation.Unary.PredicateTransformer using (PT)
open import Relation.Ternary.Separation.Morphisms
open import Relation.Ternary.Separation.Monad
open import Relation.Binary.PropositionalEquality
mutual
Cont : ∀ {Δ} → Cmd Δ → Pred A ℓ → Pred A ℓ
Cont c P = δ c ─✴ Free P
data Free : PT A A ℓ ℓ where
pure : ∀ {P} → ∀[ P ⇒ Free P ]
impure : ∀ {P} → ∀[ ∃[ Cmd ]✴ (λ c → Cont c P) ⇒ Free P ]
module _ {u} {{_ : IsUnitalSep r u}} where
open Monads
instance
free-monad : Monad ⊤ ℓ (λ _ _ → Free)
Monad.return free-monad = pure
app (Monad.bind free-monad f) (pure x) σ = app f x σ
app (Monad.bind free-monad f) (impure (cmd ×⟨ σ₁ ⟩ κ)) σ =
let _ , σ₂ , σ₃ = ⊎-assoc σ₁ (⊎-comm σ) in
impure (cmd ×⟨ σ₂ ⟩ wand λ resp σ₄ →
let _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₃) σ₄ in
app (bind f) (app κ resp τ₂) τ₁)
⟪_⟫ : ∀ {Φ} → (c : Cmd Φ) → Free (δ c) Φ
⟪_⟫ c =
impure (c ×⟨ ⊎-idʳ ⟩
wand λ r σ → case ⊎-id⁻ˡ σ of λ where refl → return r )
module _ {B : Set ℓ} {M : PT A B ℓ ℓ} {P : Pred A ℓ}
{{rb : RawSep B}} {u} {{_ : IsUnitalSep r u}}
{{jm : Morphism A B}}
{{_ : IsUnitalSep rb (Morphism.j jm u)}}
{{ monad : Monads.Monad {{jm = jm}} ⊤ ℓ (λ _ _ → M) }}
where
open Morphism jm
open Monads.Monad {{jm = jm}} monad
open Monads {{jm = jm}} using (str; typed-str)
open import Data.Nat
-- Unfolding a command tree one step
step : (cmd : ∀ {Φ} → (c : Cmd Φ) → M (δ c) (j Φ)) → ∀[ Free P ⇒ⱼ M (Free P) ]
step cmd (pure px) = return (pure px)
step cmd (impure (c ×⟨ σ ⟩ κ)) = do
r ×⟨ σ ⟩ κ ← cmd c &⟨ Cont c P ∥ j-⊎ σ ⟩ κ
return (app κ r (⊎-comm σ))
-- A fueled generic interpreter for command trees in Free
interpret : ℕ → ∀[ M P ] → (cmd : ∀ {Φ} → (c : Cmd Φ) → M (δ c) (j Φ)) → ∀[ Free P ⇒ⱼ M P ]
interpret zero def cmd f = def
interpret (suc n) def cmd f = do
impure f ← step cmd f
where
(pure v) → return v
interpret n def cmd (impure f)
|
{
"alphanum_fraction": 0.5713660245,
"avg_line_length": 31.7222222222,
"ext": "agda",
"hexsha": "7385bef34343cb9a4f5046173faa8950a7ee3bd8",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/Free.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/Free.agda",
"max_line_length": 93,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/Free.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 903,
"size": 2284
}
|
module PLRTree.Complete.Correctness.Alternative {A : Set} where
open import BTree.Complete.Alternative {A}
open import BTree.Complete.Alternative.Properties {A}
open import BTree.Equality {A}
open import PLRTree {A}
open import PLRTree.Complete {A} renaming (Complete to Complete' ; _⋗_ to _⋗'_ ; _⋘_ to _⋘'_ ; _⋙_ to _⋙'_)
open import PLRTree.Equality.Correctness {A}
lemma-⋗'-⋗ : {l r : PLRTree} → l ⋗' r → forget l ⋗ forget r
lemma-⋗'-⋗ (⋗lf x) = ⋗lf x
lemma-⋗'-⋗ (⋗nd x x' l≃'r l'≃'r' l⋗'l') = ⋗nd x x' (lemma-≃'-≃ l≃'r) (lemma-≃'-≃ l'≃'r') (lemma-⋗'-⋗ l⋗'l')
mutual
lemma-⋘'-⋘ : {l r : PLRTree} → l ⋘' r → forget l ⋘ forget r
lemma-⋘'-⋘ (x⋘ x y z) = lr⋘ x z (⋙lf y) ≃lf (⋗lf y)
lemma-⋘'-⋘ (l⋘ x x' l'⋘'r' l'≃'r' r≃'l') = ll⋘ x x' (lemma-⋘'-⋘ l'⋘'r') (lemma-≃'-≃ l'≃'r') (lemma-≃'-≃ r≃'l')
lemma-⋘'-⋘ (r⋘ x x' l'⋙'r' l'≃'r' l⋗'l') = lr⋘ x x' (lemma-⋙'-⋙ l'⋙'r') (lemma-≃'-≃ l'≃'r') (lemma-⋗'-⋗ l⋗'l')
lemma-⋙'-⋙ : {l r : PLRTree} → l ⋙' r → forget l ⋙ forget r
lemma-⋙'-⋙ (⋙p l⋗'r) = lemma-⋗-⋙ (lemma-⋗'-⋗ l⋗'r)
lemma-⋙'-⋙ (⋙l x x' l≃'r l'⋘'r' l⋗'r') = ⋙rl x x' (lemma-≃'-≃ l≃'r) (lemma-⋘'-⋘ l'⋘'r') (lemma-⋗'-⋗ l⋗'r')
lemma-⋙'-⋙ (⋙r x x' l≃'r l'⋙'r' l≃'l') = ⋙rr x x' (lemma-≃'-≃ l≃'r) (lemma-⋙'-⋙ l'⋙'r') (lemma-≃'-≃ l≃'l')
lemma-complete'-complete : {t : PLRTree} → Complete' t → Complete (forget t)
lemma-complete'-complete leaf = leaf
lemma-complete'-complete (perfect x c'l c'r l≃'r) = left x cl cr l⋘r
where cl = lemma-complete'-complete c'l ;
cr = lemma-complete'-complete c'r ;
l⋘r = lemma-≃-⋘ (lemma-≃'-≃ l≃'r)
lemma-complete'-complete (left x c'l c'r l⋘'r) = left x cl cr l⋘r
where cl = lemma-complete'-complete c'l ;
cr = lemma-complete'-complete c'r ;
l⋘r = lemma-⋘'-⋘ l⋘'r
lemma-complete'-complete (right x c'l c'r l⋙'r) = right x cl cr l⋙r
where cl = lemma-complete'-complete c'l ;
cr = lemma-complete'-complete c'r ;
l⋙r = lemma-⋙'-⋙ l⋙'r
|
{
"alphanum_fraction": 0.4834653004,
"avg_line_length": 53.675,
"ext": "agda",
"hexsha": "c04dda70b674650b8fe0495a9ca5b08a351d7ae1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Complete/Correctness/Alternative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Complete/Correctness/Alternative.agda",
"max_line_length": 112,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Complete/Correctness/Alternative.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 1072,
"size": 2147
}
|
-- Andreas, 2012-02-13: polarity info must be correct
{-# OPTIONS --sized-types --show-implicit #-}
-- {-# OPTIONS -v tc.size.solve:20 -v tc.conv.size:20 #-}
-- {-# OPTIONS -v tc.polarity.set:10 -v tc.conv.term.shortcut:20 #-}
module WrongPolarity where
open import Common.Size
data ⊥ : Set where
data Sink (A : Set) : Set where
sink : (A → ⊥) → Sink A
postulate
dump : {A : Set} → A → Sink A
-- A sized type
data Nat : {size : Size} → Set where
zero : {size : Size} → Nat {↑ size}
suc : {size : Size} → Nat {size} → Nat {↑ size}
dumpNat : {i : Size} → Nat {i} → Sink (Nat {i})
dumpNat zero = dump zero
dumpNat (suc {i} n) = dumpNat {i} n
-- should fail!
-- i != ↑ i of type Size
-- when checking that the expression dumpNat n has type Sink Nat
|
{
"alphanum_fraction": 0.611183355,
"avg_line_length": 27.4642857143,
"ext": "agda",
"hexsha": "c4abe154e5de6d11725f1ab85c833e7714640677",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/fail/WrongPolarity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/fail/WrongPolarity.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/WrongPolarity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 254,
"size": 769
}
|
module DescStrat where
open import StratSigma
data Desc42 : Set43 where
id42 : Desc42
const42 : Set42 -> Desc42
prod42 : Desc42 -> Desc42 -> Desc42
sigma42 : (S : Set42) -> (S -> Desc42) -> Desc42
pi42 : (S : Set42) -> (S -> Desc42) -> Desc42
[|_|]42_ : Desc42 -> Set42 -> Set42
[| id42 |]42 Z = Z
[| const42 X |]42 Z = X
[| prod42 D D' |]42 Z = [| D |]42 Z *42 [| D' |]42 Z
[| sigma42 S T |]42 Z = Sigma42 S (\s -> [| T s |]42 Z)
[| pi42 S T |]42 Z = (s : S) -> [| T s |]42 Z
data Mu42 (D : Desc42) : Set42 where
con : [| D |]42 (Mu42 D) -> Mu42 D
data DescDef41 : Set42 where
DescId41 : DescDef41
DescConst41 : DescDef41
DescProd41 : DescDef41
DescSigma41 : DescDef41
DescPi41 : DescDef41
data Lift41 (A : Set41) : Set42 where
lifter : A -> Lift41 A
unlift41 : {A : Set41} -> Lift41 A -> A
unlift41 (lifter a) = a
descCases41 : DescDef41 -> Desc42
descCases41 DescId41 = const42 Unit42
descCases41 DescConst41 = sigma42 Set41 (\_ -> const42 Unit42)
descCases41 DescProd41 = prod42 id42 (prod42 id42 (const42 Unit42))
descCases41 DescSigma41 = sigma42 Set41 (\S -> prod42 (pi42 (Lift41 S) (\_ -> id42)) (const42 Unit42))
descCases41 DescPi41 = sigma42 Set41 (\S -> prod42 (pi42 (Lift41 S) (\_ -> id42)) (const42 Unit42))
DescD41 : Desc42
DescD41 = sigma42 DescDef41 descCases41
Desc41 : Set42
Desc41 = Mu42 DescD41
id41 : Desc41
id41 = con (DescId41 , Void)
const41 : Set41 -> Desc41
const41 K = con (DescConst41 , (K , Void))
prod41 : (D D' : Desc41) -> Desc41
prod41 D D' = con (DescProd41 , (D , ( D' , Void )))
sigma41 : (S : Set41)(D : S -> Desc41) -> Desc41
sigma41 S D = con (DescSigma41 , (S , ((\s -> D (unlift41 s)) , Void )))
pi41 : (S : Set41)(D : S -> Desc41) -> Desc41
pi41 S D = con (DescPi41 , (S , ((\s -> D (unlift41 s)) , Void )))
[|_|]41_ : Desc41 -> Set41 -> Set41
[| con (DescId41 , Void) |]41 Z = Z
[| con (DescConst41 , ( S , Void)) |]41 Z = S
[| con (DescProd41 , (D , ( D' , Void ))) |]41 Z = [| D |]41 Z *41 [| D' |]41 Z
[| con (DescSigma41 , (S , (T , Void))) |]41 Z = Sigma41 S (\s -> [| T (lifter s) |]41 Z )
[| con (DescPi41 , (S , (T , Void))) |]41 Z = (s : S) -> [| T (lifter s) |]41 Z
data Mu41 (D : Desc41) : Set41 where
con : [| D |]41 (Mu41 D) -> Mu41 D
data DescDef40 : Set41 where
DescId40 : DescDef40
DescConst40 : DescDef40
DescProd40 : DescDef40
DescSigma40 : DescDef40
DescPi40 : DescDef40
data Lift40 (A : Set40) : Set41 where
lifter : A -> Lift40 A
unlift40 : {A : Set40} -> Lift40 A -> A
unlift40 (lifter a) = a
descCases40 : DescDef40 -> Desc41
descCases40 DescId40 = const41 Unit41
descCases40 DescConst40 = sigma41 Set40 (\_ -> const41 Unit41)
descCases40 DescProd40 = prod41 id41 (prod41 id41 (const41 Unit41))
descCases40 DescSigma40 = sigma41 Set40 (\S -> prod41 (pi41 (Lift40 S) (\_ -> id41)) (const41 Unit41))
descCases40 DescPi40 = sigma41 Set40 (\S -> prod41 (pi41 (Lift40 S) (\_ -> id41)) (const41 Unit41))
DescD40 : Desc41
DescD40 = sigma41 DescDef40 descCases40
Desc40 : Set41
Desc40 = Mu41 DescD40
id40 : Desc40
id40 = con (DescId40 , Void)
const40 : Set40 -> Desc40
const40 K = con (DescConst40 , (K , Void))
prod40 : (D D' : Desc40) -> Desc40
prod40 D D' = con (DescProd40 , (D , ( D' , Void )))
sigma40 : (S : Set40)(D : S -> Desc40) -> Desc40
sigma40 S D = con (DescSigma40 , (S , ((\s -> D (unlift40 s)) , Void )))
pi40 : (S : Set40)(D : S -> Desc40) -> Desc40
pi40 S D = con (DescPi40 , (S , ((\s -> D (unlift40 s)) , Void )))
[|_|]40_ : Desc40 -> Set40 -> Set40
[| con (DescId40 , Void) |]40 Z = Z
[| con (DescConst40 , ( S , Void)) |]40 Z = S
[| con (DescProd40 , (D , ( D' , Void ))) |]40 Z = [| D |]40 Z *40 [| D' |]40 Z
[| con (DescSigma40 , (S , (T , Void))) |]40 Z = Sigma40 S (\s -> [| T (lifter s) |]40 Z )
[| con (DescPi40 , (S , (T , Void))) |]40 Z = (s : S) -> [| T (lifter s) |]40 Z
data Mu40 (D : Desc40) : Set40 where
con : [| D |]40 (Mu40 D) -> Mu40 D
data DescDef39 : Set40 where
DescId39 : DescDef39
DescConst39 : DescDef39
DescProd39 : DescDef39
DescSigma39 : DescDef39
DescPi39 : DescDef39
data Lift39 (A : Set39) : Set40 where
lifter : A -> Lift39 A
unlift39 : {A : Set39} -> Lift39 A -> A
unlift39 (lifter a) = a
descCases39 : DescDef39 -> Desc40
descCases39 DescId39 = const40 Unit40
descCases39 DescConst39 = sigma40 Set39 (\_ -> const40 Unit40)
descCases39 DescProd39 = prod40 id40 (prod40 id40 (const40 Unit40))
descCases39 DescSigma39 = sigma40 Set39 (\S -> prod40 (pi40 (Lift39 S) (\_ -> id40)) (const40 Unit40))
descCases39 DescPi39 = sigma40 Set39 (\S -> prod40 (pi40 (Lift39 S) (\_ -> id40)) (const40 Unit40))
DescD39 : Desc40
DescD39 = sigma40 DescDef39 descCases39
Desc39 : Set40
Desc39 = Mu40 DescD39
id39 : Desc39
id39 = con (DescId39 , Void)
const39 : Set39 -> Desc39
const39 K = con (DescConst39 , (K , Void))
prod39 : (D D' : Desc39) -> Desc39
prod39 D D' = con (DescProd39 , (D , ( D' , Void )))
sigma39 : (S : Set39)(D : S -> Desc39) -> Desc39
sigma39 S D = con (DescSigma39 , (S , ((\s -> D (unlift39 s)) , Void )))
pi39 : (S : Set39)(D : S -> Desc39) -> Desc39
pi39 S D = con (DescPi39 , (S , ((\s -> D (unlift39 s)) , Void )))
[|_|]39_ : Desc39 -> Set39 -> Set39
[| con (DescId39 , Void) |]39 Z = Z
[| con (DescConst39 , ( S , Void)) |]39 Z = S
[| con (DescProd39 , (D , ( D' , Void ))) |]39 Z = [| D |]39 Z *39 [| D' |]39 Z
[| con (DescSigma39 , (S , (T , Void))) |]39 Z = Sigma39 S (\s -> [| T (lifter s) |]39 Z )
[| con (DescPi39 , (S , (T , Void))) |]39 Z = (s : S) -> [| T (lifter s) |]39 Z
data Mu39 (D : Desc39) : Set39 where
con : [| D |]39 (Mu39 D) -> Mu39 D
data DescDef38 : Set39 where
DescId38 : DescDef38
DescConst38 : DescDef38
DescProd38 : DescDef38
DescSigma38 : DescDef38
DescPi38 : DescDef38
data Lift38 (A : Set38) : Set39 where
lifter : A -> Lift38 A
unlift38 : {A : Set38} -> Lift38 A -> A
unlift38 (lifter a) = a
descCases38 : DescDef38 -> Desc39
descCases38 DescId38 = const39 Unit39
descCases38 DescConst38 = sigma39 Set38 (\_ -> const39 Unit39)
descCases38 DescProd38 = prod39 id39 (prod39 id39 (const39 Unit39))
descCases38 DescSigma38 = sigma39 Set38 (\S -> prod39 (pi39 (Lift38 S) (\_ -> id39)) (const39 Unit39))
descCases38 DescPi38 = sigma39 Set38 (\S -> prod39 (pi39 (Lift38 S) (\_ -> id39)) (const39 Unit39))
DescD38 : Desc39
DescD38 = sigma39 DescDef38 descCases38
Desc38 : Set39
Desc38 = Mu39 DescD38
id38 : Desc38
id38 = con (DescId38 , Void)
const38 : Set38 -> Desc38
const38 K = con (DescConst38 , (K , Void))
prod38 : (D D' : Desc38) -> Desc38
prod38 D D' = con (DescProd38 , (D , ( D' , Void )))
sigma38 : (S : Set38)(D : S -> Desc38) -> Desc38
sigma38 S D = con (DescSigma38 , (S , ((\s -> D (unlift38 s)) , Void )))
pi38 : (S : Set38)(D : S -> Desc38) -> Desc38
pi38 S D = con (DescPi38 , (S , ((\s -> D (unlift38 s)) , Void )))
[|_|]38_ : Desc38 -> Set38 -> Set38
[| con (DescId38 , Void) |]38 Z = Z
[| con (DescConst38 , ( S , Void)) |]38 Z = S
[| con (DescProd38 , (D , ( D' , Void ))) |]38 Z = [| D |]38 Z *38 [| D' |]38 Z
[| con (DescSigma38 , (S , (T , Void))) |]38 Z = Sigma38 S (\s -> [| T (lifter s) |]38 Z )
[| con (DescPi38 , (S , (T , Void))) |]38 Z = (s : S) -> [| T (lifter s) |]38 Z
data Mu38 (D : Desc38) : Set38 where
con : [| D |]38 (Mu38 D) -> Mu38 D
data DescDef37 : Set38 where
DescId37 : DescDef37
DescConst37 : DescDef37
DescProd37 : DescDef37
DescSigma37 : DescDef37
DescPi37 : DescDef37
data Lift37 (A : Set37) : Set38 where
lifter : A -> Lift37 A
unlift37 : {A : Set37} -> Lift37 A -> A
unlift37 (lifter a) = a
descCases37 : DescDef37 -> Desc38
descCases37 DescId37 = const38 Unit38
descCases37 DescConst37 = sigma38 Set37 (\_ -> const38 Unit38)
descCases37 DescProd37 = prod38 id38 (prod38 id38 (const38 Unit38))
descCases37 DescSigma37 = sigma38 Set37 (\S -> prod38 (pi38 (Lift37 S) (\_ -> id38)) (const38 Unit38))
descCases37 DescPi37 = sigma38 Set37 (\S -> prod38 (pi38 (Lift37 S) (\_ -> id38)) (const38 Unit38))
DescD37 : Desc38
DescD37 = sigma38 DescDef37 descCases37
Desc37 : Set38
Desc37 = Mu38 DescD37
id37 : Desc37
id37 = con (DescId37 , Void)
const37 : Set37 -> Desc37
const37 K = con (DescConst37 , (K , Void))
prod37 : (D D' : Desc37) -> Desc37
prod37 D D' = con (DescProd37 , (D , ( D' , Void )))
sigma37 : (S : Set37)(D : S -> Desc37) -> Desc37
sigma37 S D = con (DescSigma37 , (S , ((\s -> D (unlift37 s)) , Void )))
pi37 : (S : Set37)(D : S -> Desc37) -> Desc37
pi37 S D = con (DescPi37 , (S , ((\s -> D (unlift37 s)) , Void )))
[|_|]37_ : Desc37 -> Set37 -> Set37
[| con (DescId37 , Void) |]37 Z = Z
[| con (DescConst37 , ( S , Void)) |]37 Z = S
[| con (DescProd37 , (D , ( D' , Void ))) |]37 Z = [| D |]37 Z *37 [| D' |]37 Z
[| con (DescSigma37 , (S , (T , Void))) |]37 Z = Sigma37 S (\s -> [| T (lifter s) |]37 Z )
[| con (DescPi37 , (S , (T , Void))) |]37 Z = (s : S) -> [| T (lifter s) |]37 Z
data Mu37 (D : Desc37) : Set37 where
con : [| D |]37 (Mu37 D) -> Mu37 D
data DescDef36 : Set37 where
DescId36 : DescDef36
DescConst36 : DescDef36
DescProd36 : DescDef36
DescSigma36 : DescDef36
DescPi36 : DescDef36
data Lift36 (A : Set36) : Set37 where
lifter : A -> Lift36 A
unlift36 : {A : Set36} -> Lift36 A -> A
unlift36 (lifter a) = a
descCases36 : DescDef36 -> Desc37
descCases36 DescId36 = const37 Unit37
descCases36 DescConst36 = sigma37 Set36 (\_ -> const37 Unit37)
descCases36 DescProd36 = prod37 id37 (prod37 id37 (const37 Unit37))
descCases36 DescSigma36 = sigma37 Set36 (\S -> prod37 (pi37 (Lift36 S) (\_ -> id37)) (const37 Unit37))
descCases36 DescPi36 = sigma37 Set36 (\S -> prod37 (pi37 (Lift36 S) (\_ -> id37)) (const37 Unit37))
DescD36 : Desc37
DescD36 = sigma37 DescDef36 descCases36
Desc36 : Set37
Desc36 = Mu37 DescD36
id36 : Desc36
id36 = con (DescId36 , Void)
const36 : Set36 -> Desc36
const36 K = con (DescConst36 , (K , Void))
prod36 : (D D' : Desc36) -> Desc36
prod36 D D' = con (DescProd36 , (D , ( D' , Void )))
sigma36 : (S : Set36)(D : S -> Desc36) -> Desc36
sigma36 S D = con (DescSigma36 , (S , ((\s -> D (unlift36 s)) , Void )))
pi36 : (S : Set36)(D : S -> Desc36) -> Desc36
pi36 S D = con (DescPi36 , (S , ((\s -> D (unlift36 s)) , Void )))
[|_|]36_ : Desc36 -> Set36 -> Set36
[| con (DescId36 , Void) |]36 Z = Z
[| con (DescConst36 , ( S , Void)) |]36 Z = S
[| con (DescProd36 , (D , ( D' , Void ))) |]36 Z = [| D |]36 Z *36 [| D' |]36 Z
[| con (DescSigma36 , (S , (T , Void))) |]36 Z = Sigma36 S (\s -> [| T (lifter s) |]36 Z )
[| con (DescPi36 , (S , (T , Void))) |]36 Z = (s : S) -> [| T (lifter s) |]36 Z
data Mu36 (D : Desc36) : Set36 where
con : [| D |]36 (Mu36 D) -> Mu36 D
data DescDef35 : Set36 where
DescId35 : DescDef35
DescConst35 : DescDef35
DescProd35 : DescDef35
DescSigma35 : DescDef35
DescPi35 : DescDef35
data Lift35 (A : Set35) : Set36 where
lifter : A -> Lift35 A
unlift35 : {A : Set35} -> Lift35 A -> A
unlift35 (lifter a) = a
descCases35 : DescDef35 -> Desc36
descCases35 DescId35 = const36 Unit36
descCases35 DescConst35 = sigma36 Set35 (\_ -> const36 Unit36)
descCases35 DescProd35 = prod36 id36 (prod36 id36 (const36 Unit36))
descCases35 DescSigma35 = sigma36 Set35 (\S -> prod36 (pi36 (Lift35 S) (\_ -> id36)) (const36 Unit36))
descCases35 DescPi35 = sigma36 Set35 (\S -> prod36 (pi36 (Lift35 S) (\_ -> id36)) (const36 Unit36))
DescD35 : Desc36
DescD35 = sigma36 DescDef35 descCases35
Desc35 : Set36
Desc35 = Mu36 DescD35
id35 : Desc35
id35 = con (DescId35 , Void)
const35 : Set35 -> Desc35
const35 K = con (DescConst35 , (K , Void))
prod35 : (D D' : Desc35) -> Desc35
prod35 D D' = con (DescProd35 , (D , ( D' , Void )))
sigma35 : (S : Set35)(D : S -> Desc35) -> Desc35
sigma35 S D = con (DescSigma35 , (S , ((\s -> D (unlift35 s)) , Void )))
pi35 : (S : Set35)(D : S -> Desc35) -> Desc35
pi35 S D = con (DescPi35 , (S , ((\s -> D (unlift35 s)) , Void )))
[|_|]35_ : Desc35 -> Set35 -> Set35
[| con (DescId35 , Void) |]35 Z = Z
[| con (DescConst35 , ( S , Void)) |]35 Z = S
[| con (DescProd35 , (D , ( D' , Void ))) |]35 Z = [| D |]35 Z *35 [| D' |]35 Z
[| con (DescSigma35 , (S , (T , Void))) |]35 Z = Sigma35 S (\s -> [| T (lifter s) |]35 Z )
[| con (DescPi35 , (S , (T , Void))) |]35 Z = (s : S) -> [| T (lifter s) |]35 Z
data Mu35 (D : Desc35) : Set35 where
con : [| D |]35 (Mu35 D) -> Mu35 D
data DescDef34 : Set35 where
DescId34 : DescDef34
DescConst34 : DescDef34
DescProd34 : DescDef34
DescSigma34 : DescDef34
DescPi34 : DescDef34
data Lift34 (A : Set34) : Set35 where
lifter : A -> Lift34 A
unlift34 : {A : Set34} -> Lift34 A -> A
unlift34 (lifter a) = a
descCases34 : DescDef34 -> Desc35
descCases34 DescId34 = const35 Unit35
descCases34 DescConst34 = sigma35 Set34 (\_ -> const35 Unit35)
descCases34 DescProd34 = prod35 id35 (prod35 id35 (const35 Unit35))
descCases34 DescSigma34 = sigma35 Set34 (\S -> prod35 (pi35 (Lift34 S) (\_ -> id35)) (const35 Unit35))
descCases34 DescPi34 = sigma35 Set34 (\S -> prod35 (pi35 (Lift34 S) (\_ -> id35)) (const35 Unit35))
DescD34 : Desc35
DescD34 = sigma35 DescDef34 descCases34
Desc34 : Set35
Desc34 = Mu35 DescD34
id34 : Desc34
id34 = con (DescId34 , Void)
const34 : Set34 -> Desc34
const34 K = con (DescConst34 , (K , Void))
prod34 : (D D' : Desc34) -> Desc34
prod34 D D' = con (DescProd34 , (D , ( D' , Void )))
sigma34 : (S : Set34)(D : S -> Desc34) -> Desc34
sigma34 S D = con (DescSigma34 , (S , ((\s -> D (unlift34 s)) , Void )))
pi34 : (S : Set34)(D : S -> Desc34) -> Desc34
pi34 S D = con (DescPi34 , (S , ((\s -> D (unlift34 s)) , Void )))
[|_|]34_ : Desc34 -> Set34 -> Set34
[| con (DescId34 , Void) |]34 Z = Z
[| con (DescConst34 , ( S , Void)) |]34 Z = S
[| con (DescProd34 , (D , ( D' , Void ))) |]34 Z = [| D |]34 Z *34 [| D' |]34 Z
[| con (DescSigma34 , (S , (T , Void))) |]34 Z = Sigma34 S (\s -> [| T (lifter s) |]34 Z )
[| con (DescPi34 , (S , (T , Void))) |]34 Z = (s : S) -> [| T (lifter s) |]34 Z
data Mu34 (D : Desc34) : Set34 where
con : [| D |]34 (Mu34 D) -> Mu34 D
data DescDef33 : Set34 where
DescId33 : DescDef33
DescConst33 : DescDef33
DescProd33 : DescDef33
DescSigma33 : DescDef33
DescPi33 : DescDef33
data Lift33 (A : Set33) : Set34 where
lifter : A -> Lift33 A
unlift33 : {A : Set33} -> Lift33 A -> A
unlift33 (lifter a) = a
descCases33 : DescDef33 -> Desc34
descCases33 DescId33 = const34 Unit34
descCases33 DescConst33 = sigma34 Set33 (\_ -> const34 Unit34)
descCases33 DescProd33 = prod34 id34 (prod34 id34 (const34 Unit34))
descCases33 DescSigma33 = sigma34 Set33 (\S -> prod34 (pi34 (Lift33 S) (\_ -> id34)) (const34 Unit34))
descCases33 DescPi33 = sigma34 Set33 (\S -> prod34 (pi34 (Lift33 S) (\_ -> id34)) (const34 Unit34))
DescD33 : Desc34
DescD33 = sigma34 DescDef33 descCases33
Desc33 : Set34
Desc33 = Mu34 DescD33
id33 : Desc33
id33 = con (DescId33 , Void)
const33 : Set33 -> Desc33
const33 K = con (DescConst33 , (K , Void))
prod33 : (D D' : Desc33) -> Desc33
prod33 D D' = con (DescProd33 , (D , ( D' , Void )))
sigma33 : (S : Set33)(D : S -> Desc33) -> Desc33
sigma33 S D = con (DescSigma33 , (S , ((\s -> D (unlift33 s)) , Void )))
pi33 : (S : Set33)(D : S -> Desc33) -> Desc33
pi33 S D = con (DescPi33 , (S , ((\s -> D (unlift33 s)) , Void )))
[|_|]33_ : Desc33 -> Set33 -> Set33
[| con (DescId33 , Void) |]33 Z = Z
[| con (DescConst33 , ( S , Void)) |]33 Z = S
[| con (DescProd33 , (D , ( D' , Void ))) |]33 Z = [| D |]33 Z *33 [| D' |]33 Z
[| con (DescSigma33 , (S , (T , Void))) |]33 Z = Sigma33 S (\s -> [| T (lifter s) |]33 Z )
[| con (DescPi33 , (S , (T , Void))) |]33 Z = (s : S) -> [| T (lifter s) |]33 Z
data Mu33 (D : Desc33) : Set33 where
con : [| D |]33 (Mu33 D) -> Mu33 D
data DescDef32 : Set33 where
DescId32 : DescDef32
DescConst32 : DescDef32
DescProd32 : DescDef32
DescSigma32 : DescDef32
DescPi32 : DescDef32
data Lift32 (A : Set32) : Set33 where
lifter : A -> Lift32 A
unlift32 : {A : Set32} -> Lift32 A -> A
unlift32 (lifter a) = a
descCases32 : DescDef32 -> Desc33
descCases32 DescId32 = const33 Unit33
descCases32 DescConst32 = sigma33 Set32 (\_ -> const33 Unit33)
descCases32 DescProd32 = prod33 id33 (prod33 id33 (const33 Unit33))
descCases32 DescSigma32 = sigma33 Set32 (\S -> prod33 (pi33 (Lift32 S) (\_ -> id33)) (const33 Unit33))
descCases32 DescPi32 = sigma33 Set32 (\S -> prod33 (pi33 (Lift32 S) (\_ -> id33)) (const33 Unit33))
DescD32 : Desc33
DescD32 = sigma33 DescDef32 descCases32
Desc32 : Set33
Desc32 = Mu33 DescD32
id32 : Desc32
id32 = con (DescId32 , Void)
const32 : Set32 -> Desc32
const32 K = con (DescConst32 , (K , Void))
prod32 : (D D' : Desc32) -> Desc32
prod32 D D' = con (DescProd32 , (D , ( D' , Void )))
sigma32 : (S : Set32)(D : S -> Desc32) -> Desc32
sigma32 S D = con (DescSigma32 , (S , ((\s -> D (unlift32 s)) , Void )))
pi32 : (S : Set32)(D : S -> Desc32) -> Desc32
pi32 S D = con (DescPi32 , (S , ((\s -> D (unlift32 s)) , Void )))
[|_|]32_ : Desc32 -> Set32 -> Set32
[| con (DescId32 , Void) |]32 Z = Z
[| con (DescConst32 , ( S , Void)) |]32 Z = S
[| con (DescProd32 , (D , ( D' , Void ))) |]32 Z = [| D |]32 Z *32 [| D' |]32 Z
[| con (DescSigma32 , (S , (T , Void))) |]32 Z = Sigma32 S (\s -> [| T (lifter s) |]32 Z )
[| con (DescPi32 , (S , (T , Void))) |]32 Z = (s : S) -> [| T (lifter s) |]32 Z
data Mu32 (D : Desc32) : Set32 where
con : [| D |]32 (Mu32 D) -> Mu32 D
data DescDef31 : Set32 where
DescId31 : DescDef31
DescConst31 : DescDef31
DescProd31 : DescDef31
DescSigma31 : DescDef31
DescPi31 : DescDef31
data Lift31 (A : Set31) : Set32 where
lifter : A -> Lift31 A
unlift31 : {A : Set31} -> Lift31 A -> A
unlift31 (lifter a) = a
descCases31 : DescDef31 -> Desc32
descCases31 DescId31 = const32 Unit32
descCases31 DescConst31 = sigma32 Set31 (\_ -> const32 Unit32)
descCases31 DescProd31 = prod32 id32 (prod32 id32 (const32 Unit32))
descCases31 DescSigma31 = sigma32 Set31 (\S -> prod32 (pi32 (Lift31 S) (\_ -> id32)) (const32 Unit32))
descCases31 DescPi31 = sigma32 Set31 (\S -> prod32 (pi32 (Lift31 S) (\_ -> id32)) (const32 Unit32))
DescD31 : Desc32
DescD31 = sigma32 DescDef31 descCases31
Desc31 : Set32
Desc31 = Mu32 DescD31
id31 : Desc31
id31 = con (DescId31 , Void)
const31 : Set31 -> Desc31
const31 K = con (DescConst31 , (K , Void))
prod31 : (D D' : Desc31) -> Desc31
prod31 D D' = con (DescProd31 , (D , ( D' , Void )))
sigma31 : (S : Set31)(D : S -> Desc31) -> Desc31
sigma31 S D = con (DescSigma31 , (S , ((\s -> D (unlift31 s)) , Void )))
pi31 : (S : Set31)(D : S -> Desc31) -> Desc31
pi31 S D = con (DescPi31 , (S , ((\s -> D (unlift31 s)) , Void )))
[|_|]31_ : Desc31 -> Set31 -> Set31
[| con (DescId31 , Void) |]31 Z = Z
[| con (DescConst31 , ( S , Void)) |]31 Z = S
[| con (DescProd31 , (D , ( D' , Void ))) |]31 Z = [| D |]31 Z *31 [| D' |]31 Z
[| con (DescSigma31 , (S , (T , Void))) |]31 Z = Sigma31 S (\s -> [| T (lifter s) |]31 Z )
[| con (DescPi31 , (S , (T , Void))) |]31 Z = (s : S) -> [| T (lifter s) |]31 Z
data Mu31 (D : Desc31) : Set31 where
con : [| D |]31 (Mu31 D) -> Mu31 D
data DescDef30 : Set31 where
DescId30 : DescDef30
DescConst30 : DescDef30
DescProd30 : DescDef30
DescSigma30 : DescDef30
DescPi30 : DescDef30
data Lift30 (A : Set30) : Set31 where
lifter : A -> Lift30 A
unlift30 : {A : Set30} -> Lift30 A -> A
unlift30 (lifter a) = a
descCases30 : DescDef30 -> Desc31
descCases30 DescId30 = const31 Unit31
descCases30 DescConst30 = sigma31 Set30 (\_ -> const31 Unit31)
descCases30 DescProd30 = prod31 id31 (prod31 id31 (const31 Unit31))
descCases30 DescSigma30 = sigma31 Set30 (\S -> prod31 (pi31 (Lift30 S) (\_ -> id31)) (const31 Unit31))
descCases30 DescPi30 = sigma31 Set30 (\S -> prod31 (pi31 (Lift30 S) (\_ -> id31)) (const31 Unit31))
DescD30 : Desc31
DescD30 = sigma31 DescDef30 descCases30
Desc30 : Set31
Desc30 = Mu31 DescD30
id30 : Desc30
id30 = con (DescId30 , Void)
const30 : Set30 -> Desc30
const30 K = con (DescConst30 , (K , Void))
prod30 : (D D' : Desc30) -> Desc30
prod30 D D' = con (DescProd30 , (D , ( D' , Void )))
sigma30 : (S : Set30)(D : S -> Desc30) -> Desc30
sigma30 S D = con (DescSigma30 , (S , ((\s -> D (unlift30 s)) , Void )))
pi30 : (S : Set30)(D : S -> Desc30) -> Desc30
pi30 S D = con (DescPi30 , (S , ((\s -> D (unlift30 s)) , Void )))
[|_|]30_ : Desc30 -> Set30 -> Set30
[| con (DescId30 , Void) |]30 Z = Z
[| con (DescConst30 , ( S , Void)) |]30 Z = S
[| con (DescProd30 , (D , ( D' , Void ))) |]30 Z = [| D |]30 Z *30 [| D' |]30 Z
[| con (DescSigma30 , (S , (T , Void))) |]30 Z = Sigma30 S (\s -> [| T (lifter s) |]30 Z )
[| con (DescPi30 , (S , (T , Void))) |]30 Z = (s : S) -> [| T (lifter s) |]30 Z
data Mu30 (D : Desc30) : Set30 where
con : [| D |]30 (Mu30 D) -> Mu30 D
data DescDef29 : Set30 where
DescId29 : DescDef29
DescConst29 : DescDef29
DescProd29 : DescDef29
DescSigma29 : DescDef29
DescPi29 : DescDef29
data Lift29 (A : Set29) : Set30 where
lifter : A -> Lift29 A
unlift29 : {A : Set29} -> Lift29 A -> A
unlift29 (lifter a) = a
descCases29 : DescDef29 -> Desc30
descCases29 DescId29 = const30 Unit30
descCases29 DescConst29 = sigma30 Set29 (\_ -> const30 Unit30)
descCases29 DescProd29 = prod30 id30 (prod30 id30 (const30 Unit30))
descCases29 DescSigma29 = sigma30 Set29 (\S -> prod30 (pi30 (Lift29 S) (\_ -> id30)) (const30 Unit30))
descCases29 DescPi29 = sigma30 Set29 (\S -> prod30 (pi30 (Lift29 S) (\_ -> id30)) (const30 Unit30))
DescD29 : Desc30
DescD29 = sigma30 DescDef29 descCases29
Desc29 : Set30
Desc29 = Mu30 DescD29
id29 : Desc29
id29 = con (DescId29 , Void)
const29 : Set29 -> Desc29
const29 K = con (DescConst29 , (K , Void))
prod29 : (D D' : Desc29) -> Desc29
prod29 D D' = con (DescProd29 , (D , ( D' , Void )))
sigma29 : (S : Set29)(D : S -> Desc29) -> Desc29
sigma29 S D = con (DescSigma29 , (S , ((\s -> D (unlift29 s)) , Void )))
pi29 : (S : Set29)(D : S -> Desc29) -> Desc29
pi29 S D = con (DescPi29 , (S , ((\s -> D (unlift29 s)) , Void )))
[|_|]29_ : Desc29 -> Set29 -> Set29
[| con (DescId29 , Void) |]29 Z = Z
[| con (DescConst29 , ( S , Void)) |]29 Z = S
[| con (DescProd29 , (D , ( D' , Void ))) |]29 Z = [| D |]29 Z *29 [| D' |]29 Z
[| con (DescSigma29 , (S , (T , Void))) |]29 Z = Sigma29 S (\s -> [| T (lifter s) |]29 Z )
[| con (DescPi29 , (S , (T , Void))) |]29 Z = (s : S) -> [| T (lifter s) |]29 Z
data Mu29 (D : Desc29) : Set29 where
con : [| D |]29 (Mu29 D) -> Mu29 D
data DescDef28 : Set29 where
DescId28 : DescDef28
DescConst28 : DescDef28
DescProd28 : DescDef28
DescSigma28 : DescDef28
DescPi28 : DescDef28
data Lift28 (A : Set28) : Set29 where
lifter : A -> Lift28 A
unlift28 : {A : Set28} -> Lift28 A -> A
unlift28 (lifter a) = a
descCases28 : DescDef28 -> Desc29
descCases28 DescId28 = const29 Unit29
descCases28 DescConst28 = sigma29 Set28 (\_ -> const29 Unit29)
descCases28 DescProd28 = prod29 id29 (prod29 id29 (const29 Unit29))
descCases28 DescSigma28 = sigma29 Set28 (\S -> prod29 (pi29 (Lift28 S) (\_ -> id29)) (const29 Unit29))
descCases28 DescPi28 = sigma29 Set28 (\S -> prod29 (pi29 (Lift28 S) (\_ -> id29)) (const29 Unit29))
DescD28 : Desc29
DescD28 = sigma29 DescDef28 descCases28
Desc28 : Set29
Desc28 = Mu29 DescD28
id28 : Desc28
id28 = con (DescId28 , Void)
const28 : Set28 -> Desc28
const28 K = con (DescConst28 , (K , Void))
prod28 : (D D' : Desc28) -> Desc28
prod28 D D' = con (DescProd28 , (D , ( D' , Void )))
sigma28 : (S : Set28)(D : S -> Desc28) -> Desc28
sigma28 S D = con (DescSigma28 , (S , ((\s -> D (unlift28 s)) , Void )))
pi28 : (S : Set28)(D : S -> Desc28) -> Desc28
pi28 S D = con (DescPi28 , (S , ((\s -> D (unlift28 s)) , Void )))
[|_|]28_ : Desc28 -> Set28 -> Set28
[| con (DescId28 , Void) |]28 Z = Z
[| con (DescConst28 , ( S , Void)) |]28 Z = S
[| con (DescProd28 , (D , ( D' , Void ))) |]28 Z = [| D |]28 Z *28 [| D' |]28 Z
[| con (DescSigma28 , (S , (T , Void))) |]28 Z = Sigma28 S (\s -> [| T (lifter s) |]28 Z )
[| con (DescPi28 , (S , (T , Void))) |]28 Z = (s : S) -> [| T (lifter s) |]28 Z
data Mu28 (D : Desc28) : Set28 where
con : [| D |]28 (Mu28 D) -> Mu28 D
data DescDef27 : Set28 where
DescId27 : DescDef27
DescConst27 : DescDef27
DescProd27 : DescDef27
DescSigma27 : DescDef27
DescPi27 : DescDef27
data Lift27 (A : Set27) : Set28 where
lifter : A -> Lift27 A
unlift27 : {A : Set27} -> Lift27 A -> A
unlift27 (lifter a) = a
descCases27 : DescDef27 -> Desc28
descCases27 DescId27 = const28 Unit28
descCases27 DescConst27 = sigma28 Set27 (\_ -> const28 Unit28)
descCases27 DescProd27 = prod28 id28 (prod28 id28 (const28 Unit28))
descCases27 DescSigma27 = sigma28 Set27 (\S -> prod28 (pi28 (Lift27 S) (\_ -> id28)) (const28 Unit28))
descCases27 DescPi27 = sigma28 Set27 (\S -> prod28 (pi28 (Lift27 S) (\_ -> id28)) (const28 Unit28))
DescD27 : Desc28
DescD27 = sigma28 DescDef27 descCases27
Desc27 : Set28
Desc27 = Mu28 DescD27
id27 : Desc27
id27 = con (DescId27 , Void)
const27 : Set27 -> Desc27
const27 K = con (DescConst27 , (K , Void))
prod27 : (D D' : Desc27) -> Desc27
prod27 D D' = con (DescProd27 , (D , ( D' , Void )))
sigma27 : (S : Set27)(D : S -> Desc27) -> Desc27
sigma27 S D = con (DescSigma27 , (S , ((\s -> D (unlift27 s)) , Void )))
pi27 : (S : Set27)(D : S -> Desc27) -> Desc27
pi27 S D = con (DescPi27 , (S , ((\s -> D (unlift27 s)) , Void )))
[|_|]27_ : Desc27 -> Set27 -> Set27
[| con (DescId27 , Void) |]27 Z = Z
[| con (DescConst27 , ( S , Void)) |]27 Z = S
[| con (DescProd27 , (D , ( D' , Void ))) |]27 Z = [| D |]27 Z *27 [| D' |]27 Z
[| con (DescSigma27 , (S , (T , Void))) |]27 Z = Sigma27 S (\s -> [| T (lifter s) |]27 Z )
[| con (DescPi27 , (S , (T , Void))) |]27 Z = (s : S) -> [| T (lifter s) |]27 Z
data Mu27 (D : Desc27) : Set27 where
con : [| D |]27 (Mu27 D) -> Mu27 D
data DescDef26 : Set27 where
DescId26 : DescDef26
DescConst26 : DescDef26
DescProd26 : DescDef26
DescSigma26 : DescDef26
DescPi26 : DescDef26
data Lift26 (A : Set26) : Set27 where
lifter : A -> Lift26 A
unlift26 : {A : Set26} -> Lift26 A -> A
unlift26 (lifter a) = a
descCases26 : DescDef26 -> Desc27
descCases26 DescId26 = const27 Unit27
descCases26 DescConst26 = sigma27 Set26 (\_ -> const27 Unit27)
descCases26 DescProd26 = prod27 id27 (prod27 id27 (const27 Unit27))
descCases26 DescSigma26 = sigma27 Set26 (\S -> prod27 (pi27 (Lift26 S) (\_ -> id27)) (const27 Unit27))
descCases26 DescPi26 = sigma27 Set26 (\S -> prod27 (pi27 (Lift26 S) (\_ -> id27)) (const27 Unit27))
DescD26 : Desc27
DescD26 = sigma27 DescDef26 descCases26
Desc26 : Set27
Desc26 = Mu27 DescD26
id26 : Desc26
id26 = con (DescId26 , Void)
const26 : Set26 -> Desc26
const26 K = con (DescConst26 , (K , Void))
prod26 : (D D' : Desc26) -> Desc26
prod26 D D' = con (DescProd26 , (D , ( D' , Void )))
sigma26 : (S : Set26)(D : S -> Desc26) -> Desc26
sigma26 S D = con (DescSigma26 , (S , ((\s -> D (unlift26 s)) , Void )))
pi26 : (S : Set26)(D : S -> Desc26) -> Desc26
pi26 S D = con (DescPi26 , (S , ((\s -> D (unlift26 s)) , Void )))
[|_|]26_ : Desc26 -> Set26 -> Set26
[| con (DescId26 , Void) |]26 Z = Z
[| con (DescConst26 , ( S , Void)) |]26 Z = S
[| con (DescProd26 , (D , ( D' , Void ))) |]26 Z = [| D |]26 Z *26 [| D' |]26 Z
[| con (DescSigma26 , (S , (T , Void))) |]26 Z = Sigma26 S (\s -> [| T (lifter s) |]26 Z )
[| con (DescPi26 , (S , (T , Void))) |]26 Z = (s : S) -> [| T (lifter s) |]26 Z
data Mu26 (D : Desc26) : Set26 where
con : [| D |]26 (Mu26 D) -> Mu26 D
data DescDef25 : Set26 where
DescId25 : DescDef25
DescConst25 : DescDef25
DescProd25 : DescDef25
DescSigma25 : DescDef25
DescPi25 : DescDef25
data Lift25 (A : Set25) : Set26 where
lifter : A -> Lift25 A
unlift25 : {A : Set25} -> Lift25 A -> A
unlift25 (lifter a) = a
descCases25 : DescDef25 -> Desc26
descCases25 DescId25 = const26 Unit26
descCases25 DescConst25 = sigma26 Set25 (\_ -> const26 Unit26)
descCases25 DescProd25 = prod26 id26 (prod26 id26 (const26 Unit26))
descCases25 DescSigma25 = sigma26 Set25 (\S -> prod26 (pi26 (Lift25 S) (\_ -> id26)) (const26 Unit26))
descCases25 DescPi25 = sigma26 Set25 (\S -> prod26 (pi26 (Lift25 S) (\_ -> id26)) (const26 Unit26))
DescD25 : Desc26
DescD25 = sigma26 DescDef25 descCases25
Desc25 : Set26
Desc25 = Mu26 DescD25
id25 : Desc25
id25 = con (DescId25 , Void)
const25 : Set25 -> Desc25
const25 K = con (DescConst25 , (K , Void))
prod25 : (D D' : Desc25) -> Desc25
prod25 D D' = con (DescProd25 , (D , ( D' , Void )))
sigma25 : (S : Set25)(D : S -> Desc25) -> Desc25
sigma25 S D = con (DescSigma25 , (S , ((\s -> D (unlift25 s)) , Void )))
pi25 : (S : Set25)(D : S -> Desc25) -> Desc25
pi25 S D = con (DescPi25 , (S , ((\s -> D (unlift25 s)) , Void )))
[|_|]25_ : Desc25 -> Set25 -> Set25
[| con (DescId25 , Void) |]25 Z = Z
[| con (DescConst25 , ( S , Void)) |]25 Z = S
[| con (DescProd25 , (D , ( D' , Void ))) |]25 Z = [| D |]25 Z *25 [| D' |]25 Z
[| con (DescSigma25 , (S , (T , Void))) |]25 Z = Sigma25 S (\s -> [| T (lifter s) |]25 Z )
[| con (DescPi25 , (S , (T , Void))) |]25 Z = (s : S) -> [| T (lifter s) |]25 Z
data Mu25 (D : Desc25) : Set25 where
con : [| D |]25 (Mu25 D) -> Mu25 D
data DescDef24 : Set25 where
DescId24 : DescDef24
DescConst24 : DescDef24
DescProd24 : DescDef24
DescSigma24 : DescDef24
DescPi24 : DescDef24
data Lift24 (A : Set24) : Set25 where
lifter : A -> Lift24 A
unlift24 : {A : Set24} -> Lift24 A -> A
unlift24 (lifter a) = a
descCases24 : DescDef24 -> Desc25
descCases24 DescId24 = const25 Unit25
descCases24 DescConst24 = sigma25 Set24 (\_ -> const25 Unit25)
descCases24 DescProd24 = prod25 id25 (prod25 id25 (const25 Unit25))
descCases24 DescSigma24 = sigma25 Set24 (\S -> prod25 (pi25 (Lift24 S) (\_ -> id25)) (const25 Unit25))
descCases24 DescPi24 = sigma25 Set24 (\S -> prod25 (pi25 (Lift24 S) (\_ -> id25)) (const25 Unit25))
DescD24 : Desc25
DescD24 = sigma25 DescDef24 descCases24
Desc24 : Set25
Desc24 = Mu25 DescD24
id24 : Desc24
id24 = con (DescId24 , Void)
const24 : Set24 -> Desc24
const24 K = con (DescConst24 , (K , Void))
prod24 : (D D' : Desc24) -> Desc24
prod24 D D' = con (DescProd24 , (D , ( D' , Void )))
sigma24 : (S : Set24)(D : S -> Desc24) -> Desc24
sigma24 S D = con (DescSigma24 , (S , ((\s -> D (unlift24 s)) , Void )))
pi24 : (S : Set24)(D : S -> Desc24) -> Desc24
pi24 S D = con (DescPi24 , (S , ((\s -> D (unlift24 s)) , Void )))
[|_|]24_ : Desc24 -> Set24 -> Set24
[| con (DescId24 , Void) |]24 Z = Z
[| con (DescConst24 , ( S , Void)) |]24 Z = S
[| con (DescProd24 , (D , ( D' , Void ))) |]24 Z = [| D |]24 Z *24 [| D' |]24 Z
[| con (DescSigma24 , (S , (T , Void))) |]24 Z = Sigma24 S (\s -> [| T (lifter s) |]24 Z )
[| con (DescPi24 , (S , (T , Void))) |]24 Z = (s : S) -> [| T (lifter s) |]24 Z
data Mu24 (D : Desc24) : Set24 where
con : [| D |]24 (Mu24 D) -> Mu24 D
data DescDef23 : Set24 where
DescId23 : DescDef23
DescConst23 : DescDef23
DescProd23 : DescDef23
DescSigma23 : DescDef23
DescPi23 : DescDef23
data Lift23 (A : Set23) : Set24 where
lifter : A -> Lift23 A
unlift23 : {A : Set23} -> Lift23 A -> A
unlift23 (lifter a) = a
descCases23 : DescDef23 -> Desc24
descCases23 DescId23 = const24 Unit24
descCases23 DescConst23 = sigma24 Set23 (\_ -> const24 Unit24)
descCases23 DescProd23 = prod24 id24 (prod24 id24 (const24 Unit24))
descCases23 DescSigma23 = sigma24 Set23 (\S -> prod24 (pi24 (Lift23 S) (\_ -> id24)) (const24 Unit24))
descCases23 DescPi23 = sigma24 Set23 (\S -> prod24 (pi24 (Lift23 S) (\_ -> id24)) (const24 Unit24))
DescD23 : Desc24
DescD23 = sigma24 DescDef23 descCases23
Desc23 : Set24
Desc23 = Mu24 DescD23
id23 : Desc23
id23 = con (DescId23 , Void)
const23 : Set23 -> Desc23
const23 K = con (DescConst23 , (K , Void))
prod23 : (D D' : Desc23) -> Desc23
prod23 D D' = con (DescProd23 , (D , ( D' , Void )))
sigma23 : (S : Set23)(D : S -> Desc23) -> Desc23
sigma23 S D = con (DescSigma23 , (S , ((\s -> D (unlift23 s)) , Void )))
pi23 : (S : Set23)(D : S -> Desc23) -> Desc23
pi23 S D = con (DescPi23 , (S , ((\s -> D (unlift23 s)) , Void )))
[|_|]23_ : Desc23 -> Set23 -> Set23
[| con (DescId23 , Void) |]23 Z = Z
[| con (DescConst23 , ( S , Void)) |]23 Z = S
[| con (DescProd23 , (D , ( D' , Void ))) |]23 Z = [| D |]23 Z *23 [| D' |]23 Z
[| con (DescSigma23 , (S , (T , Void))) |]23 Z = Sigma23 S (\s -> [| T (lifter s) |]23 Z )
[| con (DescPi23 , (S , (T , Void))) |]23 Z = (s : S) -> [| T (lifter s) |]23 Z
data Mu23 (D : Desc23) : Set23 where
con : [| D |]23 (Mu23 D) -> Mu23 D
data DescDef22 : Set23 where
DescId22 : DescDef22
DescConst22 : DescDef22
DescProd22 : DescDef22
DescSigma22 : DescDef22
DescPi22 : DescDef22
data Lift22 (A : Set22) : Set23 where
lifter : A -> Lift22 A
unlift22 : {A : Set22} -> Lift22 A -> A
unlift22 (lifter a) = a
descCases22 : DescDef22 -> Desc23
descCases22 DescId22 = const23 Unit23
descCases22 DescConst22 = sigma23 Set22 (\_ -> const23 Unit23)
descCases22 DescProd22 = prod23 id23 (prod23 id23 (const23 Unit23))
descCases22 DescSigma22 = sigma23 Set22 (\S -> prod23 (pi23 (Lift22 S) (\_ -> id23)) (const23 Unit23))
descCases22 DescPi22 = sigma23 Set22 (\S -> prod23 (pi23 (Lift22 S) (\_ -> id23)) (const23 Unit23))
DescD22 : Desc23
DescD22 = sigma23 DescDef22 descCases22
Desc22 : Set23
Desc22 = Mu23 DescD22
id22 : Desc22
id22 = con (DescId22 , Void)
const22 : Set22 -> Desc22
const22 K = con (DescConst22 , (K , Void))
prod22 : (D D' : Desc22) -> Desc22
prod22 D D' = con (DescProd22 , (D , ( D' , Void )))
sigma22 : (S : Set22)(D : S -> Desc22) -> Desc22
sigma22 S D = con (DescSigma22 , (S , ((\s -> D (unlift22 s)) , Void )))
pi22 : (S : Set22)(D : S -> Desc22) -> Desc22
pi22 S D = con (DescPi22 , (S , ((\s -> D (unlift22 s)) , Void )))
[|_|]22_ : Desc22 -> Set22 -> Set22
[| con (DescId22 , Void) |]22 Z = Z
[| con (DescConst22 , ( S , Void)) |]22 Z = S
[| con (DescProd22 , (D , ( D' , Void ))) |]22 Z = [| D |]22 Z *22 [| D' |]22 Z
[| con (DescSigma22 , (S , (T , Void))) |]22 Z = Sigma22 S (\s -> [| T (lifter s) |]22 Z )
[| con (DescPi22 , (S , (T , Void))) |]22 Z = (s : S) -> [| T (lifter s) |]22 Z
data Mu22 (D : Desc22) : Set22 where
con : [| D |]22 (Mu22 D) -> Mu22 D
data DescDef21 : Set22 where
DescId21 : DescDef21
DescConst21 : DescDef21
DescProd21 : DescDef21
DescSigma21 : DescDef21
DescPi21 : DescDef21
data Lift21 (A : Set21) : Set22 where
lifter : A -> Lift21 A
unlift21 : {A : Set21} -> Lift21 A -> A
unlift21 (lifter a) = a
descCases21 : DescDef21 -> Desc22
descCases21 DescId21 = const22 Unit22
descCases21 DescConst21 = sigma22 Set21 (\_ -> const22 Unit22)
descCases21 DescProd21 = prod22 id22 (prod22 id22 (const22 Unit22))
descCases21 DescSigma21 = sigma22 Set21 (\S -> prod22 (pi22 (Lift21 S) (\_ -> id22)) (const22 Unit22))
descCases21 DescPi21 = sigma22 Set21 (\S -> prod22 (pi22 (Lift21 S) (\_ -> id22)) (const22 Unit22))
DescD21 : Desc22
DescD21 = sigma22 DescDef21 descCases21
Desc21 : Set22
Desc21 = Mu22 DescD21
id21 : Desc21
id21 = con (DescId21 , Void)
const21 : Set21 -> Desc21
const21 K = con (DescConst21 , (K , Void))
prod21 : (D D' : Desc21) -> Desc21
prod21 D D' = con (DescProd21 , (D , ( D' , Void )))
sigma21 : (S : Set21)(D : S -> Desc21) -> Desc21
sigma21 S D = con (DescSigma21 , (S , ((\s -> D (unlift21 s)) , Void )))
pi21 : (S : Set21)(D : S -> Desc21) -> Desc21
pi21 S D = con (DescPi21 , (S , ((\s -> D (unlift21 s)) , Void )))
[|_|]21_ : Desc21 -> Set21 -> Set21
[| con (DescId21 , Void) |]21 Z = Z
[| con (DescConst21 , ( S , Void)) |]21 Z = S
[| con (DescProd21 , (D , ( D' , Void ))) |]21 Z = [| D |]21 Z *21 [| D' |]21 Z
[| con (DescSigma21 , (S , (T , Void))) |]21 Z = Sigma21 S (\s -> [| T (lifter s) |]21 Z )
[| con (DescPi21 , (S , (T , Void))) |]21 Z = (s : S) -> [| T (lifter s) |]21 Z
data Mu21 (D : Desc21) : Set21 where
con : [| D |]21 (Mu21 D) -> Mu21 D
data DescDef20 : Set21 where
DescId20 : DescDef20
DescConst20 : DescDef20
DescProd20 : DescDef20
DescSigma20 : DescDef20
DescPi20 : DescDef20
data Lift20 (A : Set20) : Set21 where
lifter : A -> Lift20 A
unlift20 : {A : Set20} -> Lift20 A -> A
unlift20 (lifter a) = a
descCases20 : DescDef20 -> Desc21
descCases20 DescId20 = const21 Unit21
descCases20 DescConst20 = sigma21 Set20 (\_ -> const21 Unit21)
descCases20 DescProd20 = prod21 id21 (prod21 id21 (const21 Unit21))
descCases20 DescSigma20 = sigma21 Set20 (\S -> prod21 (pi21 (Lift20 S) (\_ -> id21)) (const21 Unit21))
descCases20 DescPi20 = sigma21 Set20 (\S -> prod21 (pi21 (Lift20 S) (\_ -> id21)) (const21 Unit21))
DescD20 : Desc21
DescD20 = sigma21 DescDef20 descCases20
Desc20 : Set21
Desc20 = Mu21 DescD20
id20 : Desc20
id20 = con (DescId20 , Void)
const20 : Set20 -> Desc20
const20 K = con (DescConst20 , (K , Void))
prod20 : (D D' : Desc20) -> Desc20
prod20 D D' = con (DescProd20 , (D , ( D' , Void )))
sigma20 : (S : Set20)(D : S -> Desc20) -> Desc20
sigma20 S D = con (DescSigma20 , (S , ((\s -> D (unlift20 s)) , Void )))
pi20 : (S : Set20)(D : S -> Desc20) -> Desc20
pi20 S D = con (DescPi20 , (S , ((\s -> D (unlift20 s)) , Void )))
[|_|]20_ : Desc20 -> Set20 -> Set20
[| con (DescId20 , Void) |]20 Z = Z
[| con (DescConst20 , ( S , Void)) |]20 Z = S
[| con (DescProd20 , (D , ( D' , Void ))) |]20 Z = [| D |]20 Z *20 [| D' |]20 Z
[| con (DescSigma20 , (S , (T , Void))) |]20 Z = Sigma20 S (\s -> [| T (lifter s) |]20 Z )
[| con (DescPi20 , (S , (T , Void))) |]20 Z = (s : S) -> [| T (lifter s) |]20 Z
data Mu20 (D : Desc20) : Set20 where
con : [| D |]20 (Mu20 D) -> Mu20 D
data DescDef19 : Set20 where
DescId19 : DescDef19
DescConst19 : DescDef19
DescProd19 : DescDef19
DescSigma19 : DescDef19
DescPi19 : DescDef19
data Lift19 (A : Set19) : Set20 where
lifter : A -> Lift19 A
unlift19 : {A : Set19} -> Lift19 A -> A
unlift19 (lifter a) = a
descCases19 : DescDef19 -> Desc20
descCases19 DescId19 = const20 Unit20
descCases19 DescConst19 = sigma20 Set19 (\_ -> const20 Unit20)
descCases19 DescProd19 = prod20 id20 (prod20 id20 (const20 Unit20))
descCases19 DescSigma19 = sigma20 Set19 (\S -> prod20 (pi20 (Lift19 S) (\_ -> id20)) (const20 Unit20))
descCases19 DescPi19 = sigma20 Set19 (\S -> prod20 (pi20 (Lift19 S) (\_ -> id20)) (const20 Unit20))
DescD19 : Desc20
DescD19 = sigma20 DescDef19 descCases19
Desc19 : Set20
Desc19 = Mu20 DescD19
id19 : Desc19
id19 = con (DescId19 , Void)
const19 : Set19 -> Desc19
const19 K = con (DescConst19 , (K , Void))
prod19 : (D D' : Desc19) -> Desc19
prod19 D D' = con (DescProd19 , (D , ( D' , Void )))
sigma19 : (S : Set19)(D : S -> Desc19) -> Desc19
sigma19 S D = con (DescSigma19 , (S , ((\s -> D (unlift19 s)) , Void )))
pi19 : (S : Set19)(D : S -> Desc19) -> Desc19
pi19 S D = con (DescPi19 , (S , ((\s -> D (unlift19 s)) , Void )))
[|_|]19_ : Desc19 -> Set19 -> Set19
[| con (DescId19 , Void) |]19 Z = Z
[| con (DescConst19 , ( S , Void)) |]19 Z = S
[| con (DescProd19 , (D , ( D' , Void ))) |]19 Z = [| D |]19 Z *19 [| D' |]19 Z
[| con (DescSigma19 , (S , (T , Void))) |]19 Z = Sigma19 S (\s -> [| T (lifter s) |]19 Z )
[| con (DescPi19 , (S , (T , Void))) |]19 Z = (s : S) -> [| T (lifter s) |]19 Z
data Mu19 (D : Desc19) : Set19 where
con : [| D |]19 (Mu19 D) -> Mu19 D
data DescDef18 : Set19 where
DescId18 : DescDef18
DescConst18 : DescDef18
DescProd18 : DescDef18
DescSigma18 : DescDef18
DescPi18 : DescDef18
data Lift18 (A : Set18) : Set19 where
lifter : A -> Lift18 A
unlift18 : {A : Set18} -> Lift18 A -> A
unlift18 (lifter a) = a
descCases18 : DescDef18 -> Desc19
descCases18 DescId18 = const19 Unit19
descCases18 DescConst18 = sigma19 Set18 (\_ -> const19 Unit19)
descCases18 DescProd18 = prod19 id19 (prod19 id19 (const19 Unit19))
descCases18 DescSigma18 = sigma19 Set18 (\S -> prod19 (pi19 (Lift18 S) (\_ -> id19)) (const19 Unit19))
descCases18 DescPi18 = sigma19 Set18 (\S -> prod19 (pi19 (Lift18 S) (\_ -> id19)) (const19 Unit19))
DescD18 : Desc19
DescD18 = sigma19 DescDef18 descCases18
Desc18 : Set19
Desc18 = Mu19 DescD18
id18 : Desc18
id18 = con (DescId18 , Void)
const18 : Set18 -> Desc18
const18 K = con (DescConst18 , (K , Void))
prod18 : (D D' : Desc18) -> Desc18
prod18 D D' = con (DescProd18 , (D , ( D' , Void )))
sigma18 : (S : Set18)(D : S -> Desc18) -> Desc18
sigma18 S D = con (DescSigma18 , (S , ((\s -> D (unlift18 s)) , Void )))
pi18 : (S : Set18)(D : S -> Desc18) -> Desc18
pi18 S D = con (DescPi18 , (S , ((\s -> D (unlift18 s)) , Void )))
[|_|]18_ : Desc18 -> Set18 -> Set18
[| con (DescId18 , Void) |]18 Z = Z
[| con (DescConst18 , ( S , Void)) |]18 Z = S
[| con (DescProd18 , (D , ( D' , Void ))) |]18 Z = [| D |]18 Z *18 [| D' |]18 Z
[| con (DescSigma18 , (S , (T , Void))) |]18 Z = Sigma18 S (\s -> [| T (lifter s) |]18 Z )
[| con (DescPi18 , (S , (T , Void))) |]18 Z = (s : S) -> [| T (lifter s) |]18 Z
data Mu18 (D : Desc18) : Set18 where
con : [| D |]18 (Mu18 D) -> Mu18 D
data DescDef17 : Set18 where
DescId17 : DescDef17
DescConst17 : DescDef17
DescProd17 : DescDef17
DescSigma17 : DescDef17
DescPi17 : DescDef17
data Lift17 (A : Set17) : Set18 where
lifter : A -> Lift17 A
unlift17 : {A : Set17} -> Lift17 A -> A
unlift17 (lifter a) = a
descCases17 : DescDef17 -> Desc18
descCases17 DescId17 = const18 Unit18
descCases17 DescConst17 = sigma18 Set17 (\_ -> const18 Unit18)
descCases17 DescProd17 = prod18 id18 (prod18 id18 (const18 Unit18))
descCases17 DescSigma17 = sigma18 Set17 (\S -> prod18 (pi18 (Lift17 S) (\_ -> id18)) (const18 Unit18))
descCases17 DescPi17 = sigma18 Set17 (\S -> prod18 (pi18 (Lift17 S) (\_ -> id18)) (const18 Unit18))
DescD17 : Desc18
DescD17 = sigma18 DescDef17 descCases17
Desc17 : Set18
Desc17 = Mu18 DescD17
id17 : Desc17
id17 = con (DescId17 , Void)
const17 : Set17 -> Desc17
const17 K = con (DescConst17 , (K , Void))
prod17 : (D D' : Desc17) -> Desc17
prod17 D D' = con (DescProd17 , (D , ( D' , Void )))
sigma17 : (S : Set17)(D : S -> Desc17) -> Desc17
sigma17 S D = con (DescSigma17 , (S , ((\s -> D (unlift17 s)) , Void )))
pi17 : (S : Set17)(D : S -> Desc17) -> Desc17
pi17 S D = con (DescPi17 , (S , ((\s -> D (unlift17 s)) , Void )))
[|_|]17_ : Desc17 -> Set17 -> Set17
[| con (DescId17 , Void) |]17 Z = Z
[| con (DescConst17 , ( S , Void)) |]17 Z = S
[| con (DescProd17 , (D , ( D' , Void ))) |]17 Z = [| D |]17 Z *17 [| D' |]17 Z
[| con (DescSigma17 , (S , (T , Void))) |]17 Z = Sigma17 S (\s -> [| T (lifter s) |]17 Z )
[| con (DescPi17 , (S , (T , Void))) |]17 Z = (s : S) -> [| T (lifter s) |]17 Z
data Mu17 (D : Desc17) : Set17 where
con : [| D |]17 (Mu17 D) -> Mu17 D
data DescDef16 : Set17 where
DescId16 : DescDef16
DescConst16 : DescDef16
DescProd16 : DescDef16
DescSigma16 : DescDef16
DescPi16 : DescDef16
data Lift16 (A : Set16) : Set17 where
lifter : A -> Lift16 A
unlift16 : {A : Set16} -> Lift16 A -> A
unlift16 (lifter a) = a
descCases16 : DescDef16 -> Desc17
descCases16 DescId16 = const17 Unit17
descCases16 DescConst16 = sigma17 Set16 (\_ -> const17 Unit17)
descCases16 DescProd16 = prod17 id17 (prod17 id17 (const17 Unit17))
descCases16 DescSigma16 = sigma17 Set16 (\S -> prod17 (pi17 (Lift16 S) (\_ -> id17)) (const17 Unit17))
descCases16 DescPi16 = sigma17 Set16 (\S -> prod17 (pi17 (Lift16 S) (\_ -> id17)) (const17 Unit17))
DescD16 : Desc17
DescD16 = sigma17 DescDef16 descCases16
Desc16 : Set17
Desc16 = Mu17 DescD16
id16 : Desc16
id16 = con (DescId16 , Void)
const16 : Set16 -> Desc16
const16 K = con (DescConst16 , (K , Void))
prod16 : (D D' : Desc16) -> Desc16
prod16 D D' = con (DescProd16 , (D , ( D' , Void )))
sigma16 : (S : Set16)(D : S -> Desc16) -> Desc16
sigma16 S D = con (DescSigma16 , (S , ((\s -> D (unlift16 s)) , Void )))
pi16 : (S : Set16)(D : S -> Desc16) -> Desc16
pi16 S D = con (DescPi16 , (S , ((\s -> D (unlift16 s)) , Void )))
[|_|]16_ : Desc16 -> Set16 -> Set16
[| con (DescId16 , Void) |]16 Z = Z
[| con (DescConst16 , ( S , Void)) |]16 Z = S
[| con (DescProd16 , (D , ( D' , Void ))) |]16 Z = [| D |]16 Z *16 [| D' |]16 Z
[| con (DescSigma16 , (S , (T , Void))) |]16 Z = Sigma16 S (\s -> [| T (lifter s) |]16 Z )
[| con (DescPi16 , (S , (T , Void))) |]16 Z = (s : S) -> [| T (lifter s) |]16 Z
data Mu16 (D : Desc16) : Set16 where
con : [| D |]16 (Mu16 D) -> Mu16 D
data DescDef15 : Set16 where
DescId15 : DescDef15
DescConst15 : DescDef15
DescProd15 : DescDef15
DescSigma15 : DescDef15
DescPi15 : DescDef15
data Lift15 (A : Set15) : Set16 where
lifter : A -> Lift15 A
unlift15 : {A : Set15} -> Lift15 A -> A
unlift15 (lifter a) = a
descCases15 : DescDef15 -> Desc16
descCases15 DescId15 = const16 Unit16
descCases15 DescConst15 = sigma16 Set15 (\_ -> const16 Unit16)
descCases15 DescProd15 = prod16 id16 (prod16 id16 (const16 Unit16))
descCases15 DescSigma15 = sigma16 Set15 (\S -> prod16 (pi16 (Lift15 S) (\_ -> id16)) (const16 Unit16))
descCases15 DescPi15 = sigma16 Set15 (\S -> prod16 (pi16 (Lift15 S) (\_ -> id16)) (const16 Unit16))
DescD15 : Desc16
DescD15 = sigma16 DescDef15 descCases15
Desc15 : Set16
Desc15 = Mu16 DescD15
id15 : Desc15
id15 = con (DescId15 , Void)
const15 : Set15 -> Desc15
const15 K = con (DescConst15 , (K , Void))
prod15 : (D D' : Desc15) -> Desc15
prod15 D D' = con (DescProd15 , (D , ( D' , Void )))
sigma15 : (S : Set15)(D : S -> Desc15) -> Desc15
sigma15 S D = con (DescSigma15 , (S , ((\s -> D (unlift15 s)) , Void )))
pi15 : (S : Set15)(D : S -> Desc15) -> Desc15
pi15 S D = con (DescPi15 , (S , ((\s -> D (unlift15 s)) , Void )))
[|_|]15_ : Desc15 -> Set15 -> Set15
[| con (DescId15 , Void) |]15 Z = Z
[| con (DescConst15 , ( S , Void)) |]15 Z = S
[| con (DescProd15 , (D , ( D' , Void ))) |]15 Z = [| D |]15 Z *15 [| D' |]15 Z
[| con (DescSigma15 , (S , (T , Void))) |]15 Z = Sigma15 S (\s -> [| T (lifter s) |]15 Z )
[| con (DescPi15 , (S , (T , Void))) |]15 Z = (s : S) -> [| T (lifter s) |]15 Z
data Mu15 (D : Desc15) : Set15 where
con : [| D |]15 (Mu15 D) -> Mu15 D
data DescDef14 : Set15 where
DescId14 : DescDef14
DescConst14 : DescDef14
DescProd14 : DescDef14
DescSigma14 : DescDef14
DescPi14 : DescDef14
data Lift14 (A : Set14) : Set15 where
lifter : A -> Lift14 A
unlift14 : {A : Set14} -> Lift14 A -> A
unlift14 (lifter a) = a
descCases14 : DescDef14 -> Desc15
descCases14 DescId14 = const15 Unit15
descCases14 DescConst14 = sigma15 Set14 (\_ -> const15 Unit15)
descCases14 DescProd14 = prod15 id15 (prod15 id15 (const15 Unit15))
descCases14 DescSigma14 = sigma15 Set14 (\S -> prod15 (pi15 (Lift14 S) (\_ -> id15)) (const15 Unit15))
descCases14 DescPi14 = sigma15 Set14 (\S -> prod15 (pi15 (Lift14 S) (\_ -> id15)) (const15 Unit15))
DescD14 : Desc15
DescD14 = sigma15 DescDef14 descCases14
Desc14 : Set15
Desc14 = Mu15 DescD14
id14 : Desc14
id14 = con (DescId14 , Void)
const14 : Set14 -> Desc14
const14 K = con (DescConst14 , (K , Void))
prod14 : (D D' : Desc14) -> Desc14
prod14 D D' = con (DescProd14 , (D , ( D' , Void )))
sigma14 : (S : Set14)(D : S -> Desc14) -> Desc14
sigma14 S D = con (DescSigma14 , (S , ((\s -> D (unlift14 s)) , Void )))
pi14 : (S : Set14)(D : S -> Desc14) -> Desc14
pi14 S D = con (DescPi14 , (S , ((\s -> D (unlift14 s)) , Void )))
[|_|]14_ : Desc14 -> Set14 -> Set14
[| con (DescId14 , Void) |]14 Z = Z
[| con (DescConst14 , ( S , Void)) |]14 Z = S
[| con (DescProd14 , (D , ( D' , Void ))) |]14 Z = [| D |]14 Z *14 [| D' |]14 Z
[| con (DescSigma14 , (S , (T , Void))) |]14 Z = Sigma14 S (\s -> [| T (lifter s) |]14 Z )
[| con (DescPi14 , (S , (T , Void))) |]14 Z = (s : S) -> [| T (lifter s) |]14 Z
data Mu14 (D : Desc14) : Set14 where
con : [| D |]14 (Mu14 D) -> Mu14 D
data DescDef13 : Set14 where
DescId13 : DescDef13
DescConst13 : DescDef13
DescProd13 : DescDef13
DescSigma13 : DescDef13
DescPi13 : DescDef13
data Lift13 (A : Set13) : Set14 where
lifter : A -> Lift13 A
unlift13 : {A : Set13} -> Lift13 A -> A
unlift13 (lifter a) = a
descCases13 : DescDef13 -> Desc14
descCases13 DescId13 = const14 Unit14
descCases13 DescConst13 = sigma14 Set13 (\_ -> const14 Unit14)
descCases13 DescProd13 = prod14 id14 (prod14 id14 (const14 Unit14))
descCases13 DescSigma13 = sigma14 Set13 (\S -> prod14 (pi14 (Lift13 S) (\_ -> id14)) (const14 Unit14))
descCases13 DescPi13 = sigma14 Set13 (\S -> prod14 (pi14 (Lift13 S) (\_ -> id14)) (const14 Unit14))
DescD13 : Desc14
DescD13 = sigma14 DescDef13 descCases13
Desc13 : Set14
Desc13 = Mu14 DescD13
id13 : Desc13
id13 = con (DescId13 , Void)
const13 : Set13 -> Desc13
const13 K = con (DescConst13 , (K , Void))
prod13 : (D D' : Desc13) -> Desc13
prod13 D D' = con (DescProd13 , (D , ( D' , Void )))
sigma13 : (S : Set13)(D : S -> Desc13) -> Desc13
sigma13 S D = con (DescSigma13 , (S , ((\s -> D (unlift13 s)) , Void )))
pi13 : (S : Set13)(D : S -> Desc13) -> Desc13
pi13 S D = con (DescPi13 , (S , ((\s -> D (unlift13 s)) , Void )))
[|_|]13_ : Desc13 -> Set13 -> Set13
[| con (DescId13 , Void) |]13 Z = Z
[| con (DescConst13 , ( S , Void)) |]13 Z = S
[| con (DescProd13 , (D , ( D' , Void ))) |]13 Z = [| D |]13 Z *13 [| D' |]13 Z
[| con (DescSigma13 , (S , (T , Void))) |]13 Z = Sigma13 S (\s -> [| T (lifter s) |]13 Z )
[| con (DescPi13 , (S , (T , Void))) |]13 Z = (s : S) -> [| T (lifter s) |]13 Z
data Mu13 (D : Desc13) : Set13 where
con : [| D |]13 (Mu13 D) -> Mu13 D
data DescDef12 : Set13 where
DescId12 : DescDef12
DescConst12 : DescDef12
DescProd12 : DescDef12
DescSigma12 : DescDef12
DescPi12 : DescDef12
data Lift12 (A : Set12) : Set13 where
lifter : A -> Lift12 A
unlift12 : {A : Set12} -> Lift12 A -> A
unlift12 (lifter a) = a
descCases12 : DescDef12 -> Desc13
descCases12 DescId12 = const13 Unit13
descCases12 DescConst12 = sigma13 Set12 (\_ -> const13 Unit13)
descCases12 DescProd12 = prod13 id13 (prod13 id13 (const13 Unit13))
descCases12 DescSigma12 = sigma13 Set12 (\S -> prod13 (pi13 (Lift12 S) (\_ -> id13)) (const13 Unit13))
descCases12 DescPi12 = sigma13 Set12 (\S -> prod13 (pi13 (Lift12 S) (\_ -> id13)) (const13 Unit13))
DescD12 : Desc13
DescD12 = sigma13 DescDef12 descCases12
Desc12 : Set13
Desc12 = Mu13 DescD12
id12 : Desc12
id12 = con (DescId12 , Void)
const12 : Set12 -> Desc12
const12 K = con (DescConst12 , (K , Void))
prod12 : (D D' : Desc12) -> Desc12
prod12 D D' = con (DescProd12 , (D , ( D' , Void )))
sigma12 : (S : Set12)(D : S -> Desc12) -> Desc12
sigma12 S D = con (DescSigma12 , (S , ((\s -> D (unlift12 s)) , Void )))
pi12 : (S : Set12)(D : S -> Desc12) -> Desc12
pi12 S D = con (DescPi12 , (S , ((\s -> D (unlift12 s)) , Void )))
[|_|]12_ : Desc12 -> Set12 -> Set12
[| con (DescId12 , Void) |]12 Z = Z
[| con (DescConst12 , ( S , Void)) |]12 Z = S
[| con (DescProd12 , (D , ( D' , Void ))) |]12 Z = [| D |]12 Z *12 [| D' |]12 Z
[| con (DescSigma12 , (S , (T , Void))) |]12 Z = Sigma12 S (\s -> [| T (lifter s) |]12 Z )
[| con (DescPi12 , (S , (T , Void))) |]12 Z = (s : S) -> [| T (lifter s) |]12 Z
data Mu12 (D : Desc12) : Set12 where
con : [| D |]12 (Mu12 D) -> Mu12 D
data DescDef11 : Set12 where
DescId11 : DescDef11
DescConst11 : DescDef11
DescProd11 : DescDef11
DescSigma11 : DescDef11
DescPi11 : DescDef11
data Lift11 (A : Set11) : Set12 where
lifter : A -> Lift11 A
unlift11 : {A : Set11} -> Lift11 A -> A
unlift11 (lifter a) = a
descCases11 : DescDef11 -> Desc12
descCases11 DescId11 = const12 Unit12
descCases11 DescConst11 = sigma12 Set11 (\_ -> const12 Unit12)
descCases11 DescProd11 = prod12 id12 (prod12 id12 (const12 Unit12))
descCases11 DescSigma11 = sigma12 Set11 (\S -> prod12 (pi12 (Lift11 S) (\_ -> id12)) (const12 Unit12))
descCases11 DescPi11 = sigma12 Set11 (\S -> prod12 (pi12 (Lift11 S) (\_ -> id12)) (const12 Unit12))
DescD11 : Desc12
DescD11 = sigma12 DescDef11 descCases11
Desc11 : Set12
Desc11 = Mu12 DescD11
id11 : Desc11
id11 = con (DescId11 , Void)
const11 : Set11 -> Desc11
const11 K = con (DescConst11 , (K , Void))
prod11 : (D D' : Desc11) -> Desc11
prod11 D D' = con (DescProd11 , (D , ( D' , Void )))
sigma11 : (S : Set11)(D : S -> Desc11) -> Desc11
sigma11 S D = con (DescSigma11 , (S , ((\s -> D (unlift11 s)) , Void )))
pi11 : (S : Set11)(D : S -> Desc11) -> Desc11
pi11 S D = con (DescPi11 , (S , ((\s -> D (unlift11 s)) , Void )))
[|_|]11_ : Desc11 -> Set11 -> Set11
[| con (DescId11 , Void) |]11 Z = Z
[| con (DescConst11 , ( S , Void)) |]11 Z = S
[| con (DescProd11 , (D , ( D' , Void ))) |]11 Z = [| D |]11 Z *11 [| D' |]11 Z
[| con (DescSigma11 , (S , (T , Void))) |]11 Z = Sigma11 S (\s -> [| T (lifter s) |]11 Z )
[| con (DescPi11 , (S , (T , Void))) |]11 Z = (s : S) -> [| T (lifter s) |]11 Z
data Mu11 (D : Desc11) : Set11 where
con : [| D |]11 (Mu11 D) -> Mu11 D
data DescDef10 : Set11 where
DescId10 : DescDef10
DescConst10 : DescDef10
DescProd10 : DescDef10
DescSigma10 : DescDef10
DescPi10 : DescDef10
data Lift10 (A : Set10) : Set11 where
lifter : A -> Lift10 A
unlift10 : {A : Set10} -> Lift10 A -> A
unlift10 (lifter a) = a
descCases10 : DescDef10 -> Desc11
descCases10 DescId10 = const11 Unit11
descCases10 DescConst10 = sigma11 Set10 (\_ -> const11 Unit11)
descCases10 DescProd10 = prod11 id11 (prod11 id11 (const11 Unit11))
descCases10 DescSigma10 = sigma11 Set10 (\S -> prod11 (pi11 (Lift10 S) (\_ -> id11)) (const11 Unit11))
descCases10 DescPi10 = sigma11 Set10 (\S -> prod11 (pi11 (Lift10 S) (\_ -> id11)) (const11 Unit11))
DescD10 : Desc11
DescD10 = sigma11 DescDef10 descCases10
Desc10 : Set11
Desc10 = Mu11 DescD10
id10 : Desc10
id10 = con (DescId10 , Void)
const10 : Set10 -> Desc10
const10 K = con (DescConst10 , (K , Void))
prod10 : (D D' : Desc10) -> Desc10
prod10 D D' = con (DescProd10 , (D , ( D' , Void )))
sigma10 : (S : Set10)(D : S -> Desc10) -> Desc10
sigma10 S D = con (DescSigma10 , (S , ((\s -> D (unlift10 s)) , Void )))
pi10 : (S : Set10)(D : S -> Desc10) -> Desc10
pi10 S D = con (DescPi10 , (S , ((\s -> D (unlift10 s)) , Void )))
[|_|]10_ : Desc10 -> Set10 -> Set10
[| con (DescId10 , Void) |]10 Z = Z
[| con (DescConst10 , ( S , Void)) |]10 Z = S
[| con (DescProd10 , (D , ( D' , Void ))) |]10 Z = [| D |]10 Z *10 [| D' |]10 Z
[| con (DescSigma10 , (S , (T , Void))) |]10 Z = Sigma10 S (\s -> [| T (lifter s) |]10 Z )
[| con (DescPi10 , (S , (T , Void))) |]10 Z = (s : S) -> [| T (lifter s) |]10 Z
data Mu10 (D : Desc10) : Set10 where
con : [| D |]10 (Mu10 D) -> Mu10 D
data DescDef9 : Set10 where
DescId9 : DescDef9
DescConst9 : DescDef9
DescProd9 : DescDef9
DescSigma9 : DescDef9
DescPi9 : DescDef9
data Lift9 (A : Set9) : Set10 where
lifter : A -> Lift9 A
unlift9 : {A : Set9} -> Lift9 A -> A
unlift9 (lifter a) = a
descCases9 : DescDef9 -> Desc10
descCases9 DescId9 = const10 Unit10
descCases9 DescConst9 = sigma10 Set9 (\_ -> const10 Unit10)
descCases9 DescProd9 = prod10 id10 (prod10 id10 (const10 Unit10))
descCases9 DescSigma9 = sigma10 Set9 (\S -> prod10 (pi10 (Lift9 S) (\_ -> id10)) (const10 Unit10))
descCases9 DescPi9 = sigma10 Set9 (\S -> prod10 (pi10 (Lift9 S) (\_ -> id10)) (const10 Unit10))
DescD9 : Desc10
DescD9 = sigma10 DescDef9 descCases9
Desc9 : Set10
Desc9 = Mu10 DescD9
id9 : Desc9
id9 = con (DescId9 , Void)
const9 : Set9 -> Desc9
const9 K = con (DescConst9 , (K , Void))
prod9 : (D D' : Desc9) -> Desc9
prod9 D D' = con (DescProd9 , (D , ( D' , Void )))
sigma9 : (S : Set9)(D : S -> Desc9) -> Desc9
sigma9 S D = con (DescSigma9 , (S , ((\s -> D (unlift9 s)) , Void )))
pi9 : (S : Set9)(D : S -> Desc9) -> Desc9
pi9 S D = con (DescPi9 , (S , ((\s -> D (unlift9 s)) , Void )))
[|_|]9_ : Desc9 -> Set9 -> Set9
[| con (DescId9 , Void) |]9 Z = Z
[| con (DescConst9 , ( S , Void)) |]9 Z = S
[| con (DescProd9 , (D , ( D' , Void ))) |]9 Z = [| D |]9 Z *9 [| D' |]9 Z
[| con (DescSigma9 , (S , (T , Void))) |]9 Z = Sigma9 S (\s -> [| T (lifter s) |]9 Z )
[| con (DescPi9 , (S , (T , Void))) |]9 Z = (s : S) -> [| T (lifter s) |]9 Z
data Mu9 (D : Desc9) : Set9 where
con : [| D |]9 (Mu9 D) -> Mu9 D
data DescDef8 : Set9 where
DescId8 : DescDef8
DescConst8 : DescDef8
DescProd8 : DescDef8
DescSigma8 : DescDef8
DescPi8 : DescDef8
data Lift8 (A : Set8) : Set9 where
lifter : A -> Lift8 A
unlift8 : {A : Set8} -> Lift8 A -> A
unlift8 (lifter a) = a
descCases8 : DescDef8 -> Desc9
descCases8 DescId8 = const9 Unit9
descCases8 DescConst8 = sigma9 Set8 (\_ -> const9 Unit9)
descCases8 DescProd8 = prod9 id9 (prod9 id9 (const9 Unit9))
descCases8 DescSigma8 = sigma9 Set8 (\S -> prod9 (pi9 (Lift8 S) (\_ -> id9)) (const9 Unit9))
descCases8 DescPi8 = sigma9 Set8 (\S -> prod9 (pi9 (Lift8 S) (\_ -> id9)) (const9 Unit9))
DescD8 : Desc9
DescD8 = sigma9 DescDef8 descCases8
Desc8 : Set9
Desc8 = Mu9 DescD8
id8 : Desc8
id8 = con (DescId8 , Void)
const8 : Set8 -> Desc8
const8 K = con (DescConst8 , (K , Void))
prod8 : (D D' : Desc8) -> Desc8
prod8 D D' = con (DescProd8 , (D , ( D' , Void )))
sigma8 : (S : Set8)(D : S -> Desc8) -> Desc8
sigma8 S D = con (DescSigma8 , (S , ((\s -> D (unlift8 s)) , Void )))
pi8 : (S : Set8)(D : S -> Desc8) -> Desc8
pi8 S D = con (DescPi8 , (S , ((\s -> D (unlift8 s)) , Void )))
[|_|]8_ : Desc8 -> Set8 -> Set8
[| con (DescId8 , Void) |]8 Z = Z
[| con (DescConst8 , ( S , Void)) |]8 Z = S
[| con (DescProd8 , (D , ( D' , Void ))) |]8 Z = [| D |]8 Z *8 [| D' |]8 Z
[| con (DescSigma8 , (S , (T , Void))) |]8 Z = Sigma8 S (\s -> [| T (lifter s) |]8 Z )
[| con (DescPi8 , (S , (T , Void))) |]8 Z = (s : S) -> [| T (lifter s) |]8 Z
data Mu8 (D : Desc8) : Set8 where
con : [| D |]8 (Mu8 D) -> Mu8 D
data DescDef7 : Set8 where
DescId7 : DescDef7
DescConst7 : DescDef7
DescProd7 : DescDef7
DescSigma7 : DescDef7
DescPi7 : DescDef7
data Lift7 (A : Set7) : Set8 where
lifter : A -> Lift7 A
unlift7 : {A : Set7} -> Lift7 A -> A
unlift7 (lifter a) = a
descCases7 : DescDef7 -> Desc8
descCases7 DescId7 = const8 Unit8
descCases7 DescConst7 = sigma8 Set7 (\_ -> const8 Unit8)
descCases7 DescProd7 = prod8 id8 (prod8 id8 (const8 Unit8))
descCases7 DescSigma7 = sigma8 Set7 (\S -> prod8 (pi8 (Lift7 S) (\_ -> id8)) (const8 Unit8))
descCases7 DescPi7 = sigma8 Set7 (\S -> prod8 (pi8 (Lift7 S) (\_ -> id8)) (const8 Unit8))
DescD7 : Desc8
DescD7 = sigma8 DescDef7 descCases7
Desc7 : Set8
Desc7 = Mu8 DescD7
id7 : Desc7
id7 = con (DescId7 , Void)
const7 : Set7 -> Desc7
const7 K = con (DescConst7 , (K , Void))
prod7 : (D D' : Desc7) -> Desc7
prod7 D D' = con (DescProd7 , (D , ( D' , Void )))
sigma7 : (S : Set7)(D : S -> Desc7) -> Desc7
sigma7 S D = con (DescSigma7 , (S , ((\s -> D (unlift7 s)) , Void )))
pi7 : (S : Set7)(D : S -> Desc7) -> Desc7
pi7 S D = con (DescPi7 , (S , ((\s -> D (unlift7 s)) , Void )))
[|_|]7_ : Desc7 -> Set7 -> Set7
[| con (DescId7 , Void) |]7 Z = Z
[| con (DescConst7 , ( S , Void)) |]7 Z = S
[| con (DescProd7 , (D , ( D' , Void ))) |]7 Z = [| D |]7 Z *7 [| D' |]7 Z
[| con (DescSigma7 , (S , (T , Void))) |]7 Z = Sigma7 S (\s -> [| T (lifter s) |]7 Z )
[| con (DescPi7 , (S , (T , Void))) |]7 Z = (s : S) -> [| T (lifter s) |]7 Z
data Mu7 (D : Desc7) : Set7 where
con : [| D |]7 (Mu7 D) -> Mu7 D
data DescDef6 : Set7 where
DescId6 : DescDef6
DescConst6 : DescDef6
DescProd6 : DescDef6
DescSigma6 : DescDef6
DescPi6 : DescDef6
data Lift6 (A : Set6) : Set7 where
lifter : A -> Lift6 A
unlift6 : {A : Set6} -> Lift6 A -> A
unlift6 (lifter a) = a
descCases6 : DescDef6 -> Desc7
descCases6 DescId6 = const7 Unit7
descCases6 DescConst6 = sigma7 Set6 (\_ -> const7 Unit7)
descCases6 DescProd6 = prod7 id7 (prod7 id7 (const7 Unit7))
descCases6 DescSigma6 = sigma7 Set6 (\S -> prod7 (pi7 (Lift6 S) (\_ -> id7)) (const7 Unit7))
descCases6 DescPi6 = sigma7 Set6 (\S -> prod7 (pi7 (Lift6 S) (\_ -> id7)) (const7 Unit7))
DescD6 : Desc7
DescD6 = sigma7 DescDef6 descCases6
Desc6 : Set7
Desc6 = Mu7 DescD6
id6 : Desc6
id6 = con (DescId6 , Void)
const6 : Set6 -> Desc6
const6 K = con (DescConst6 , (K , Void))
prod6 : (D D' : Desc6) -> Desc6
prod6 D D' = con (DescProd6 , (D , ( D' , Void )))
sigma6 : (S : Set6)(D : S -> Desc6) -> Desc6
sigma6 S D = con (DescSigma6 , (S , ((\s -> D (unlift6 s)) , Void )))
pi6 : (S : Set6)(D : S -> Desc6) -> Desc6
pi6 S D = con (DescPi6 , (S , ((\s -> D (unlift6 s)) , Void )))
[|_|]6_ : Desc6 -> Set6 -> Set6
[| con (DescId6 , Void) |]6 Z = Z
[| con (DescConst6 , ( S , Void)) |]6 Z = S
[| con (DescProd6 , (D , ( D' , Void ))) |]6 Z = [| D |]6 Z *6 [| D' |]6 Z
[| con (DescSigma6 , (S , (T , Void))) |]6 Z = Sigma6 S (\s -> [| T (lifter s) |]6 Z )
[| con (DescPi6 , (S , (T , Void))) |]6 Z = (s : S) -> [| T (lifter s) |]6 Z
data Mu6 (D : Desc6) : Set6 where
con : [| D |]6 (Mu6 D) -> Mu6 D
data DescDef5 : Set6 where
DescId5 : DescDef5
DescConst5 : DescDef5
DescProd5 : DescDef5
DescSigma5 : DescDef5
DescPi5 : DescDef5
data Lift5 (A : Set5) : Set6 where
lifter : A -> Lift5 A
unlift5 : {A : Set5} -> Lift5 A -> A
unlift5 (lifter a) = a
descCases5 : DescDef5 -> Desc6
descCases5 DescId5 = const6 Unit6
descCases5 DescConst5 = sigma6 Set5 (\_ -> const6 Unit6)
descCases5 DescProd5 = prod6 id6 (prod6 id6 (const6 Unit6))
descCases5 DescSigma5 = sigma6 Set5 (\S -> prod6 (pi6 (Lift5 S) (\_ -> id6)) (const6 Unit6))
descCases5 DescPi5 = sigma6 Set5 (\S -> prod6 (pi6 (Lift5 S) (\_ -> id6)) (const6 Unit6))
DescD5 : Desc6
DescD5 = sigma6 DescDef5 descCases5
Desc5 : Set6
Desc5 = Mu6 DescD5
id5 : Desc5
id5 = con (DescId5 , Void)
const5 : Set5 -> Desc5
const5 K = con (DescConst5 , (K , Void))
prod5 : (D D' : Desc5) -> Desc5
prod5 D D' = con (DescProd5 , (D , ( D' , Void )))
sigma5 : (S : Set5)(D : S -> Desc5) -> Desc5
sigma5 S D = con (DescSigma5 , (S , ((\s -> D (unlift5 s)) , Void )))
pi5 : (S : Set5)(D : S -> Desc5) -> Desc5
pi5 S D = con (DescPi5 , (S , ((\s -> D (unlift5 s)) , Void )))
[|_|]5_ : Desc5 -> Set5 -> Set5
[| con (DescId5 , Void) |]5 Z = Z
[| con (DescConst5 , ( S , Void)) |]5 Z = S
[| con (DescProd5 , (D , ( D' , Void ))) |]5 Z = [| D |]5 Z *5 [| D' |]5 Z
[| con (DescSigma5 , (S , (T , Void))) |]5 Z = Sigma5 S (\s -> [| T (lifter s) |]5 Z )
[| con (DescPi5 , (S , (T , Void))) |]5 Z = (s : S) -> [| T (lifter s) |]5 Z
data Mu5 (D : Desc5) : Set5 where
con : [| D |]5 (Mu5 D) -> Mu5 D
data DescDef4 : Set5 where
DescId4 : DescDef4
DescConst4 : DescDef4
DescProd4 : DescDef4
DescSigma4 : DescDef4
DescPi4 : DescDef4
data Lift4 (A : Set4) : Set5 where
lifter : A -> Lift4 A
unlift4 : {A : Set4} -> Lift4 A -> A
unlift4 (lifter a) = a
descCases4 : DescDef4 -> Desc5
descCases4 DescId4 = const5 Unit5
descCases4 DescConst4 = sigma5 Set4 (\_ -> const5 Unit5)
descCases4 DescProd4 = prod5 id5 (prod5 id5 (const5 Unit5))
descCases4 DescSigma4 = sigma5 Set4 (\S -> prod5 (pi5 (Lift4 S) (\_ -> id5)) (const5 Unit5))
descCases4 DescPi4 = sigma5 Set4 (\S -> prod5 (pi5 (Lift4 S) (\_ -> id5)) (const5 Unit5))
DescD4 : Desc5
DescD4 = sigma5 DescDef4 descCases4
Desc4 : Set5
Desc4 = Mu5 DescD4
id4 : Desc4
id4 = con (DescId4 , Void)
const4 : Set4 -> Desc4
const4 K = con (DescConst4 , (K , Void))
prod4 : (D D' : Desc4) -> Desc4
prod4 D D' = con (DescProd4 , (D , ( D' , Void )))
sigma4 : (S : Set4)(D : S -> Desc4) -> Desc4
sigma4 S D = con (DescSigma4 , (S , ((\s -> D (unlift4 s)) , Void )))
pi4 : (S : Set4)(D : S -> Desc4) -> Desc4
pi4 S D = con (DescPi4 , (S , ((\s -> D (unlift4 s)) , Void )))
[|_|]4_ : Desc4 -> Set4 -> Set4
[| con (DescId4 , Void) |]4 Z = Z
[| con (DescConst4 , ( S , Void)) |]4 Z = S
[| con (DescProd4 , (D , ( D' , Void ))) |]4 Z = [| D |]4 Z *4 [| D' |]4 Z
[| con (DescSigma4 , (S , (T , Void))) |]4 Z = Sigma4 S (\s -> [| T (lifter s) |]4 Z )
[| con (DescPi4 , (S , (T , Void))) |]4 Z = (s : S) -> [| T (lifter s) |]4 Z
data Mu4 (D : Desc4) : Set4 where
con : [| D |]4 (Mu4 D) -> Mu4 D
data DescDef3 : Set4 where
DescId3 : DescDef3
DescConst3 : DescDef3
DescProd3 : DescDef3
DescSigma3 : DescDef3
DescPi3 : DescDef3
data Lift3 (A : Set3) : Set4 where
lifter : A -> Lift3 A
unlift3 : {A : Set3} -> Lift3 A -> A
unlift3 (lifter a) = a
descCases3 : DescDef3 -> Desc4
descCases3 DescId3 = const4 Unit4
descCases3 DescConst3 = sigma4 Set3 (\_ -> const4 Unit4)
descCases3 DescProd3 = prod4 id4 (prod4 id4 (const4 Unit4))
descCases3 DescSigma3 = sigma4 Set3 (\S -> prod4 (pi4 (Lift3 S) (\_ -> id4)) (const4 Unit4))
descCases3 DescPi3 = sigma4 Set3 (\S -> prod4 (pi4 (Lift3 S) (\_ -> id4)) (const4 Unit4))
DescD3 : Desc4
DescD3 = sigma4 DescDef3 descCases3
Desc3 : Set4
Desc3 = Mu4 DescD3
id3 : Desc3
id3 = con (DescId3 , Void)
const3 : Set3 -> Desc3
const3 K = con (DescConst3 , (K , Void))
prod3 : (D D' : Desc3) -> Desc3
prod3 D D' = con (DescProd3 , (D , ( D' , Void )))
sigma3 : (S : Set3)(D : S -> Desc3) -> Desc3
sigma3 S D = con (DescSigma3 , (S , ((\s -> D (unlift3 s)) , Void )))
pi3 : (S : Set3)(D : S -> Desc3) -> Desc3
pi3 S D = con (DescPi3 , (S , ((\s -> D (unlift3 s)) , Void )))
[|_|]3_ : Desc3 -> Set3 -> Set3
[| con (DescId3 , Void) |]3 Z = Z
[| con (DescConst3 , ( S , Void)) |]3 Z = S
[| con (DescProd3 , (D , ( D' , Void ))) |]3 Z = [| D |]3 Z *3 [| D' |]3 Z
[| con (DescSigma3 , (S , (T , Void))) |]3 Z = Sigma3 S (\s -> [| T (lifter s) |]3 Z )
[| con (DescPi3 , (S , (T , Void))) |]3 Z = (s : S) -> [| T (lifter s) |]3 Z
data Mu3 (D : Desc3) : Set3 where
con : [| D |]3 (Mu3 D) -> Mu3 D
data DescDef2 : Set3 where
DescId2 : DescDef2
DescConst2 : DescDef2
DescProd2 : DescDef2
DescSigma2 : DescDef2
DescPi2 : DescDef2
data Lift2 (A : Set2) : Set3 where
lifter : A -> Lift2 A
unlift2 : {A : Set2} -> Lift2 A -> A
unlift2 (lifter a) = a
descCases2 : DescDef2 -> Desc3
descCases2 DescId2 = const3 Unit3
descCases2 DescConst2 = sigma3 Set2 (\_ -> const3 Unit3)
descCases2 DescProd2 = prod3 id3 (prod3 id3 (const3 Unit3))
descCases2 DescSigma2 = sigma3 Set2 (\S -> prod3 (pi3 (Lift2 S) (\_ -> id3)) (const3 Unit3))
descCases2 DescPi2 = sigma3 Set2 (\S -> prod3 (pi3 (Lift2 S) (\_ -> id3)) (const3 Unit3))
DescD2 : Desc3
DescD2 = sigma3 DescDef2 descCases2
Desc2 : Set3
Desc2 = Mu3 DescD2
id2 : Desc2
id2 = con (DescId2 , Void)
const2 : Set2 -> Desc2
const2 K = con (DescConst2 , (K , Void))
prod2 : (D D' : Desc2) -> Desc2
prod2 D D' = con (DescProd2 , (D , ( D' , Void )))
sigma2 : (S : Set2)(D : S -> Desc2) -> Desc2
sigma2 S D = con (DescSigma2 , (S , ((\s -> D (unlift2 s)) , Void )))
pi2 : (S : Set2)(D : S -> Desc2) -> Desc2
pi2 S D = con (DescPi2 , (S , ((\s -> D (unlift2 s)) , Void )))
[|_|]2_ : Desc2 -> Set2 -> Set2
[| con (DescId2 , Void) |]2 Z = Z
[| con (DescConst2 , ( S , Void)) |]2 Z = S
[| con (DescProd2 , (D , ( D' , Void ))) |]2 Z = [| D |]2 Z *2 [| D' |]2 Z
[| con (DescSigma2 , (S , (T , Void))) |]2 Z = Sigma2 S (\s -> [| T (lifter s) |]2 Z )
[| con (DescPi2 , (S , (T , Void))) |]2 Z = (s : S) -> [| T (lifter s) |]2 Z
data Mu2 (D : Desc2) : Set2 where
con : [| D |]2 (Mu2 D) -> Mu2 D
data DescDef1 : Set2 where
DescId1 : DescDef1
DescConst1 : DescDef1
DescProd1 : DescDef1
DescSigma1 : DescDef1
DescPi1 : DescDef1
data Lift1 (A : Set1) : Set2 where
lifter : A -> Lift1 A
unlift1 : {A : Set1} -> Lift1 A -> A
unlift1 (lifter a) = a
descCases1 : DescDef1 -> Desc2
descCases1 DescId1 = const2 Unit2
descCases1 DescConst1 = sigma2 Set1 (\_ -> const2 Unit2)
descCases1 DescProd1 = prod2 id2 (prod2 id2 (const2 Unit2))
descCases1 DescSigma1 = sigma2 Set1 (\S -> prod2 (pi2 (Lift1 S) (\_ -> id2)) (const2 Unit2))
descCases1 DescPi1 = sigma2 Set1 (\S -> prod2 (pi2 (Lift1 S) (\_ -> id2)) (const2 Unit2))
DescD1 : Desc2
DescD1 = sigma2 DescDef1 descCases1
Desc1 : Set2
Desc1 = Mu2 DescD1
id1 : Desc1
id1 = con (DescId1 , Void)
const1 : Set1 -> Desc1
const1 K = con (DescConst1 , (K , Void))
prod1 : (D D' : Desc1) -> Desc1
prod1 D D' = con (DescProd1 , (D , ( D' , Void )))
sigma1 : (S : Set1)(D : S -> Desc1) -> Desc1
sigma1 S D = con (DescSigma1 , (S , ((\s -> D (unlift1 s)) , Void )))
pi1 : (S : Set1)(D : S -> Desc1) -> Desc1
pi1 S D = con (DescPi1 , (S , ((\s -> D (unlift1 s)) , Void )))
[|_|]1_ : Desc1 -> Set1 -> Set1
[| con (DescId1 , Void) |]1 Z = Z
[| con (DescConst1 , ( S , Void)) |]1 Z = S
[| con (DescProd1 , (D , ( D' , Void ))) |]1 Z = [| D |]1 Z *1 [| D' |]1 Z
[| con (DescSigma1 , (S , (T , Void))) |]1 Z = Sigma1 S (\s -> [| T (lifter s) |]1 Z )
[| con (DescPi1 , (S , (T , Void))) |]1 Z = (s : S) -> [| T (lifter s) |]1 Z
data Mu1 (D : Desc1) : Set1 where
con : [| D |]1 (Mu1 D) -> Mu1 D
data DescDef0 : Set1 where
DescId0 : DescDef0
DescConst0 : DescDef0
DescProd0 : DescDef0
DescSigma0 : DescDef0
DescPi0 : DescDef0
data Lift0 (A : Set0) : Set1 where
lifter : A -> Lift0 A
unlift0 : {A : Set0} -> Lift0 A -> A
unlift0 (lifter a) = a
descCases0 : DescDef0 -> Desc1
descCases0 DescId0 = const1 Unit1
descCases0 DescConst0 = sigma1 Set0 (\_ -> const1 Unit1)
descCases0 DescProd0 = prod1 id1 (prod1 id1 (const1 Unit1))
descCases0 DescSigma0 = sigma1 Set0 (\S -> prod1 (pi1 (Lift0 S) (\_ -> id1)) (const1 Unit1))
descCases0 DescPi0 = sigma1 Set0 (\S -> prod1 (pi1 (Lift0 S) (\_ -> id1)) (const1 Unit1))
DescD0 : Desc1
DescD0 = sigma1 DescDef0 descCases0
Desc0 : Set1
Desc0 = Mu1 DescD0
id0 : Desc0
id0 = con (DescId0 , Void)
const0 : Set0 -> Desc0
const0 K = con (DescConst0 , (K , Void))
prod0 : (D D' : Desc0) -> Desc0
prod0 D D' = con (DescProd0 , (D , ( D' , Void )))
sigma0 : (S : Set0)(D : S -> Desc0) -> Desc0
sigma0 S D = con (DescSigma0 , (S , ((\s -> D (unlift0 s)) , Void )))
pi0 : (S : Set0)(D : S -> Desc0) -> Desc0
pi0 S D = con (DescPi0 , (S , ((\s -> D (unlift0 s)) , Void )))
[|_|]0_ : Desc0 -> Set0 -> Set0
[| con (DescId0 , Void) |]0 Z = Z
[| con (DescConst0 , ( S , Void)) |]0 Z = S
[| con (DescProd0 , (D , ( D' , Void ))) |]0 Z = [| D |]0 Z *0 [| D' |]0 Z
[| con (DescSigma0 , (S , (T , Void))) |]0 Z = Sigma0 S (\s -> [| T (lifter s) |]0 Z )
[| con (DescPi0 , (S , (T , Void))) |]0 Z = (s : S) -> [| T (lifter s) |]0 Z
data Mu0 (D : Desc0) : Set0 where
con : [| D |]0 (Mu0 D) -> Mu0 D
|
{
"alphanum_fraction": 0.597567402,
"avg_line_length": 32.4609338881,
"ext": "agda",
"hexsha": "7e8034ee96f0af945e7f7bc9dcfd8a643e377afd",
"lang": "Agda",
"max_forks_count": 12,
"max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z",
"max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mietek/epigram",
"max_forks_repo_path": "models/DescStrat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mietek/epigram",
"max_issues_repo_path": "models/DescStrat.agda",
"max_line_length": 103,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mietek/epigram",
"max_stars_repo_path": "models/DescStrat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z",
"num_tokens": 27921,
"size": 70213
}
|
module CombinatoryLogic.Semantics where
open import Relation.Binary using (Rel)
open import CombinatoryLogic.Syntax
-- Kapitel 1, Abschnitt C, §5 (Axiome)
data Axiom : Combinator → Set where
Q : Axiom (Π ∙ (W ∙ (C ∙ Q)))
B : Axiom (C ∙ (B ∙ B ∙ (B ∙ B ∙ B)) ∙ B == B ∙ (B ∙ B) ∙ B)
C : Axiom (C ∙ (B ∙ B ∙ (B ∙ B ∙ B)) ∙ W ∙ C == B ∙ (B ∙ C) ∙ (B ∙ B ∙ B))
W : Axiom (C ∙ (B ∙ B ∙ B) ∙ W == B ∙ (B ∙ W) ∙ (B ∙ B ∙ B))
-- NOTE (Curry): this axiom can be proved from the others.
I₁ : Axiom (C ∙ (B ∙ B ∙ B) ∙ K == B ∙ (B ∙ K) ∙ I)
BC : Axiom (B ∙ B ∙ C == B ∙ (B ∙ (B ∙ C) ∙ C) ∙ (B ∙ B))
BW : Axiom (B ∙ B ∙ W == B ∙ (B ∙ (B ∙ (B ∙ (B ∙ W) ∙ W) ∙ (B ∙ C)) ∙ B ∙ (B ∙ B)) ∙ B)
BK : Axiom (B ∙ B ∙ K == B ∙ K ∙ K)
CC₁ : Axiom (B ∙ C ∙ C ∙ B ∙ (B ∙ I))
CC₂ : Axiom (B ∙ (B ∙ (B ∙ C) ∙ C) ∙ (B ∙ C) == B ∙ (B ∙ C ∙ (B ∙ C)) ∙ C)
CW : Axiom (B ∙ C ∙ W == B ∙ (B ∙ (B ∙ W) ∙ C) ∙ (B ∙ C))
CK : Axiom (B ∙ C ∙ K == B ∙ K)
WC : Axiom (B ∙ W ∙ C == W)
WW : Axiom (B ∙ W ∙ W == B ∙ W ∙ (B ∙ W))
WK : Axiom (B ∙ W ∙ K == B ∙ I)
I₂ : Axiom (B ∙ I == I)
-- Kapitel 1, Abschnitt C, §4 (Symbolische Festsetzungen), Festsetzung 1
infix 4 ⊢_
data ⊢_ : Combinator → Set where
ax : ∀ {X} → Axiom X → ⊢ X
-- Kapitel 1, Abschnitt C, §6 (Regeln)
Q₁ : ∀ {X Y} → ⊢ X → ⊢ X == Y → ⊢ Y
Q₂ : ∀ {X Y Z} → ⊢ X == Y → ⊢ Z ∙ X == Z ∙ Y
Π : ∀ {X Y} → ⊢ Π ∙ X → ⊢ X ∙ Y
B : ∀ {X Y Z} → ⊢ B ∙ X ∙ Y ∙ Z == X ∙ (Y ∙ Z)
C : ∀ {X Y Z} → ⊢ C ∙ X ∙ Y ∙ Z == X ∙ Z ∙ Y
W : ∀ {X Y} → ⊢ W ∙ X ∙ Y == X ∙ Y ∙ Y
K : ∀ {X Y} → ⊢ K ∙ X ∙ Y == X
P : ∀ {X Y} → ⊢ X → ⊢ P ∙ X ∙ Y → ⊢ Y
∧ : ∀ {X Y} → ⊢ X → ⊢ Y → ⊢ ∧ ∙ X ∙ Y
-- We introduce convenience notation for the equality defined in Kapitel 1,
-- Abschnitt C, §4 (Symbolische Festsetzungen), Festsetzung 3 (Gleichheit).
_≈_ : Rel Combinator _
X ≈ Y = ⊢ X == Y
infix 0 _[_]
-- An operator that helps write proofs in the style of Curry. Where Curry writes
-- ⟨statement⟩ (⟨rule⟩)
-- we write
-- ⟨statement⟩ [ ⟨rule⟩ ]
--
-- Later, we can also use the Agda standard library's reasoning combinators
-- (e.g. _≈⟨_⟩_) for proving equalities, but not before it is shown that the
-- equality _≈_ is an equivalence relation, which Curry does in propositions 1,
-- 2 and 3 of Kapitel 1, Abschnitt D (Die Eigenschaften der Gleichheit).
_[_] : ∀ {a} (A : Set a) (x : A) → A
_ [ x ] = x
|
{
"alphanum_fraction": 0.477427598,
"avg_line_length": 38.4918032787,
"ext": "agda",
"hexsha": "0bb3d057fd21df0d9ad27f3891dfc407171a10ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "CombinatoryLogic/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "CombinatoryLogic/Semantics.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "CombinatoryLogic/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 1162,
"size": 2348
}
|
open import Prelude
open import dynamics-core
open import progress-checks
module finality where
finality : Σ[ d ∈ ihexp ] (d final × (Σ[ d' ∈ ihexp ] (d ↦ d'))) → ⊥
finality (π1 , π2 , π3 , π4) = final-not-step π2 (π3 , π4)
-- a slight restatement of the above, generalizing it to the
-- multistep judgement
finality* : ∀{d d'} → d final → d ↦* d' → d == d'
finality* fin MSRefl = refl
finality* fin (MSStep x ms) = abort (final-not-step fin (_ , x))
|
{
"alphanum_fraction": 0.6282051282,
"avg_line_length": 31.2,
"ext": "agda",
"hexsha": "72c359edb843a5f60368092a18932dd22922a4bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "finality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "finality.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "finality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 166,
"size": 468
}
|
postulate A : Set
record R : Set where
constructor c
field f : A
open R {{...}}
works : {{_ : R}} → A
works = f
works' : {{_ : R}} → Set → A
works' B = f
test : {{_ : R}} → A
test {{_}} = f
-- No variable of type R was found in scope.
-- when checking that the expression f has type A
test1 : {{_ : R}} → Set → A
test1 B = f
-- No variable of type R was found in scope.
-- when checking that the expression f has type A
|
{
"alphanum_fraction": 0.5889145497,
"avg_line_length": 16.037037037,
"ext": "agda",
"hexsha": "45c74c2a7af3e357a523456afa978873df082511",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1613.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1613.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1613.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 141,
"size": 433
}
|
module monad where
open import eq
record Monad (M : Set → Set) : Set₁ where
field
return : ∀{A : Set} → A → M A
bind : ∀{A B : Set} → M A → (A → M B) → M B
monad-left-id : ∀{A B : Set}{a : A}{f : A → M B}
→ bind (return a) f ≡ f a
monad-right-id : ∀{A : Set}{c : M A}
→ bind c return ≡ c
monad-assoc : ∀{A B C : Set}{c : M A}{f : A → M B}{g : B → M C}
→ bind (bind c f) g ≡ bind c (λ a → bind (f a) g)
|
{
"alphanum_fraction": 0.4482758621,
"avg_line_length": 24.4210526316,
"ext": "agda",
"hexsha": "ee9d26c8672c84e8b414e84099a5693d02992bdc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "monads.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "monads.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "monads.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 185,
"size": 464
}
|
------------------------------------------------------------------------
-- Higher lenses with erased proofs
------------------------------------------------------------------------
-- At the time of writing there are counterparts in this file of more
-- or less everything in Lens.Non-dependent.Higher, except for parts
-- of the section called "A category". There is also a counterpart to
-- one of the properties related to higher lenses from
-- Lens.Non-dependent.Equivalent-preimages
-- (higher-lens-preserves-h-level-of-domain).
{-# OPTIONS --cubical --safe #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
import Bi-invertibility.Erased
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id; [_,_]) renaming (_∘_ to _⊚_)
open import Bijection equality-with-J as Bijection using (_↔_)
open import Circle eq using (𝕊¹)
open import Equality.Decidable-UIP equality-with-J
open import Equality.Decision-procedures equality-with-J
open import Equality.Path.Isomorphisms eq hiding (univ)
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Equivalence.Erased equality-with-J as EEq
using (_≃ᴱ_; Is-equivalenceᴱ; Contractibleᴱ; _⁻¹ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as PT
open import Preimage equality-with-J using (_⁻¹_)
open import Surjection equality-with-J using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq as Non-dependent
hiding (no-first-projection-lens)
import Lens.Non-dependent.Equivalent-preimages eq as EP
import Lens.Non-dependent.Higher eq as H
import Lens.Non-dependent.Traditional eq as T
import Lens.Non-dependent.Traditional.Erased eq as Traditionalᴱ
private
variable
a b c d p r : Level
A A₁ A₂ B B₁ B₂ : Set a
P : A → Set p
n : ℕ
------------------------------------------------------------------------
-- Higher lenses
private
module Temporarily-private where
-- Higher lenses with erased "proofs".
record Lens (A : Set a) (B : Set b) : Set (lsuc (a ⊔ b)) where
constructor ⟨_,_,_⟩
pattern
no-eta-equality
field
-- Remainder type.
R : Set (a ⊔ b)
-- Equivalence (with erased proofs).
equiv : A ≃ᴱ (R × B)
-- The proof of (mere) inhabitance.
@0 inhabited : R → ∥ B ∥
open Temporarily-private public hiding (module Lens)
-- Lens can be expressed as a nested Σ-type.
Lens-as-Σ :
{A : Set a} {B : Set b} →
Lens A B ≃
∃ λ (R : Set (a ⊔ b)) →
(A ≃ᴱ (R × B)) ×
Erased (R → ∥ B ∥)
Lens-as-Σ = Eq.↔→≃
(λ l → R l , equiv l , [ inhabited l ])
(λ (R , equiv , [ inhabited ]) → record
{ R = R
; equiv = equiv
; inhabited = inhabited
})
refl
(λ { ⟨ _ , _ , _ ⟩ → refl _ })
where
open Temporarily-private.Lens
-- Lenses without erased proofs can be turned into lenses with erased
-- proofs.
Higher-lens→Lens : H.Lens A B → Lens A B
Higher-lens→Lens {A = A} {B = B} l@(H.⟨ _ , _ , _ ⟩) = $⟨ l ⟩
H.Lens A B ↔⟨ H.Lens-as-Σ ⟩
(∃ λ (R : Set _) → (A ≃ (R × B)) × (R → ∥ B ∥)) ↝⟨ Σ-map P.id (Σ-map EEq.≃→≃ᴱ [_]→) ⟩
(∃ λ (R : Set _) → (A ≃ᴱ (R × B)) × Erased (R → ∥ B ∥)) ↔⟨ inverse Lens-as-Σ ⟩□
Lens A B □
-- In erased contexts Lens A B is equivalent to H.Lens A B.
@0 Lens≃Higher-lens : Lens A B ≃ H.Lens A B
Lens≃Higher-lens {A = A} {B = B} =
Eq.with-other-inverse
(Lens A B ↝⟨ Lens-as-Σ ⟩
(∃ λ (R : Set _) → (A ≃ᴱ (R × B)) × Erased (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ →
inverse (EEq.≃≃≃ᴱ ext) ×-cong Eq.↔⇒≃ (erased Erased↔)) ⟩
(∃ λ (R : Set _) → (A ≃ (R × B)) × (R → ∥ B ∥)) ↔⟨ inverse H.Lens-as-Σ ⟩□
H.Lens A B □)
Higher-lens→Lens
(λ { H.⟨ _ , _ , _ ⟩ → refl _ })
private
-- The forward direction of Lens≃Higher-lens.
@0 high : Lens A B → H.Lens A B
high = _≃_.to Lens≃Higher-lens
-- Some derived definitions.
module Lens (l : Lens A B) where
open Temporarily-private.Lens l public
-- Remainder.
remainder : A → R
remainder a = proj₁ (_≃ᴱ_.to equiv a)
-- Getter.
get : A → B
get a = proj₂ (_≃ᴱ_.to equiv a)
-- Setter.
set : A → B → A
set a b = _≃ᴱ_.from equiv (remainder a , b)
-- A combination of get and set.
modify : (B → B) → A → A
modify f x = set x (f (get x))
-- Lens laws.
@0 get-set : ∀ a b → get (set a b) ≡ b
get-set a b =
proj₂ (_≃ᴱ_.to equiv (_≃ᴱ_.from equiv (remainder a , b))) ≡⟨ cong proj₂ (_≃ᴱ_.right-inverse-of equiv _) ⟩∎
proj₂ (remainder a , b) ∎
@0 set-get : ∀ a → set a (get a) ≡ a
set-get a =
_≃ᴱ_.from equiv (_≃ᴱ_.to equiv a) ≡⟨ _≃ᴱ_.left-inverse-of equiv _ ⟩∎
a ∎
@0 set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂
set-set a b₁ b₂ =
let r = remainder a in
_≃ᴱ_.from equiv (remainder (_≃ᴱ_.from equiv (r , b₁)) , b₂) ≡⟨⟩
_≃ᴱ_.from equiv
(proj₁ (_≃ᴱ_.to equiv (_≃ᴱ_.from equiv (r , b₁))) , b₂) ≡⟨ cong (λ p → _≃ᴱ_.from equiv (proj₁ p , b₂)) $
_≃ᴱ_.right-inverse-of equiv _ ⟩∎
_≃ᴱ_.from equiv (r , b₂) ∎
-- Another law.
@0 remainder-set : ∀ a b → remainder (set a b) ≡ remainder a
remainder-set = H.Lens.remainder-set (high l)
-- The remainder function is surjective (in erased contexts).
@0 remainder-surjective : Surjective remainder
remainder-surjective =
H.Lens.remainder-surjective (high l)
-- A traditional lens with erased proofs.
traditional-lens : Traditionalᴱ.Lens A B
traditional-lens = record
{ get = get
; set = set
; get-set = get-set
; set-get = set-get
; set-set = set-set
}
-- The following two coherence laws, which do not necessarily hold
-- for traditional lenses with erased proofs (see
-- Traditionalᴱ.getter-equivalence-but-not-coherent), hold
-- unconditionally for higher lenses (in erased contexts).
@0 get-set-get : ∀ a → cong get (set-get a) ≡ get-set a (get a)
get-set-get a =
cong (proj₂ ⊚ _≃ᴱ_.to equiv) (_≃ᴱ_.left-inverse-of equiv _) ≡⟨ sym $ cong-∘ _ _ (_≃ᴱ_.left-inverse-of equiv _) ⟩
cong proj₂ (cong (_≃ᴱ_.to equiv) (_≃ᴱ_.left-inverse-of equiv _)) ≡⟨ cong (cong proj₂) $ _≃ᴱ_.left-right-lemma equiv _ ⟩∎
cong proj₂ (_≃ᴱ_.right-inverse-of equiv _) ∎
@0 get-set-set :
∀ a b₁ b₂ →
cong get (set-set a b₁ b₂) ≡
trans (get-set (set a b₁) b₂) (sym (get-set a b₂))
get-set-set a b₁ b₂ = elim₁
(λ eq →
cong (proj₂ ⊚ _≃ᴱ_.to equiv)
(cong (λ p → _≃ᴱ_.from equiv (proj₁ p , _)) eq) ≡
trans (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _))
(sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _))))
(cong (proj₂ ⊚ _≃ᴱ_.to equiv)
(cong (λ p → _≃ᴱ_.from equiv (proj₁ p , b₂))
(refl (proj₁ (_≃ᴱ_.to equiv a) , b₁))) ≡⟨ cong (cong (proj₂ ⊚ _≃ᴱ_.to equiv)) $ cong-refl _ ⟩
cong (proj₂ ⊚ _≃ᴱ_.to equiv) (refl _) ≡⟨ cong-refl _ ⟩
refl _ ≡⟨ sym $ trans-symʳ _ ⟩∎
trans (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _))
(sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _))) ∎)
(_≃ᴱ_.right-inverse-of equiv _)
-- A somewhat coherent lens with erased proofs.
coherent-lens : Traditionalᴱ.Coherent-lens A B
coherent-lens = record
{ lens = traditional-lens
; get-set-get = get-set-get
; get-set-set = get-set-set
}
instance
-- Higher lenses have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
------------------------------------------------------------------------
-- Equivalences with erased proofs can be converted to lenses
-- Converts equivalences between a domain and the cartesian product of
-- a type and a codomain to lenses.
≃ᴱ×→Lens :
{A : Set a} {B : Set b} {R : Set (a ⊔ b)} →
A ≃ᴱ (R × B) → Lens A B
≃ᴱ×→Lens {A = A} {B = B} {R = R} A≃R×B = record
{ R = R × Erased ∥ B ∥
; equiv = A ↝⟨ A≃R×B ⟩
R × B ↔⟨ F.id ×-cong inverse Erased-∥∥×≃ ⟩
R × Erased ∥ B ∥ × B ↔⟨ ×-assoc ⟩□
(R × Erased ∥ B ∥) × B □
; inhabited = erased ⊚ proj₂
}
-- Converts equivalences to lenses.
≃ᴱ→Lens :
{A : Set a} {B : Set b} →
A ≃ᴱ B → Lens A B
≃ᴱ→Lens {a = a} {A = A} {B = B} A≃B = record
{ R = Erased ∥ ↑ a B ∥
; equiv = A ↝⟨ A≃B ⟩
B ↔⟨ inverse Erased-∥∥×≃ ⟩
Erased ∥ B ∥ × B ↔⟨ Erased-cong (∥∥-cong (inverse Bijection.↑↔)) ×-cong F.id ⟩□
Erased ∥ ↑ a B ∥ × B □
; inhabited = ∥∥-map lower ⊚ erased
}
-- Converts equivalences between types with the same universe level to
-- lenses.
≃ᴱ→Lens′ :
{A B : Set a} →
A ≃ᴱ B → Lens A B
≃ᴱ→Lens′ {a = a} {A = A} {B = B} A≃B = record
{ R = Erased ∥ B ∥
; equiv = A ↝⟨ A≃B ⟩
B ↔⟨ inverse Erased-∥∥×≃ ⟩□
Erased ∥ B ∥ × B □
; inhabited = erased
}
------------------------------------------------------------------------
-- Equality characterisation lemmas for lenses
-- An equality characterisation lemma.
equality-characterisation₀ :
{l₁ l₂ : Lens A B} →
let open Lens in
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≡ R l₂) →
subst (λ R → A ≃ᴱ (R × B)) eq (equiv l₁) ≡ equiv l₂
equality-characterisation₀ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens-as-Σ ⟩
l₁′ ≡ l₂′ ↝⟨ inverse Bijection.Σ-≡,≡↔≡ ⟩
(∃ λ (eq : R l₁ ≡ R l₂) →
subst (λ R → A ≃ᴱ (R × B) × Erased (R → ∥ B ∥)) eq (proj₂ l₁′) ≡
proj₂ l₂′) ↝⟨ (∃-cong λ _ → inverse $
ignore-propositional-component
(H-level-Erased 1 (
Π-closure ext 1 λ _ →
truncation-is-proposition))) ⟩
(∃ λ (eq : R l₁ ≡ R l₂) →
proj₁ (subst (λ R → A ≃ᴱ (R × B) × Erased (R → ∥ B ∥))
eq (proj₂ l₁′)) ≡
equiv l₂) ↝⟨ (∃-cong λ eq → ≡⇒↝ _ $
cong (λ p → proj₁ p ≡ _) (push-subst-, {y≡z = eq} _ _)) ⟩□
(∃ λ (eq : R l₁ ≡ R l₂) →
subst (λ R → A ≃ᴱ (R × B)) eq (equiv l₁) ≡ equiv l₂) □
where
open Lens
l₁′ = _≃_.to Lens-as-Σ l₁
l₂′ = _≃_.to Lens-as-Σ l₂
-- Another equality characterisation lemma.
@0 equality-characterisation₁ :
{A : Set a} {B : Set b} {l₁ l₂ : Lens A B} →
let open Lens in
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≃ R l₂) →
from-equivalence (eq ×-cong F.id) F.∘ equiv l₁ ≡ equiv l₂
equality-characterisation₁ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} univ =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Higher-lens ⟩
high l₁ ≡ high l₂ ↝⟨ H.equality-characterisation₁ univ ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
(eq ×-cong F.id) F.∘ H.Lens.equiv (high l₁) ≡
H.Lens.equiv (high l₂)) ↔⟨ (∃-cong λ eq → inverse $ Eq.≃-≡ $ EEq.≃≃≃ᴱ ext) ⟩
(∃ λ (eq : R l₁ ≃ R l₂) →
EEq.≃→≃ᴱ ((eq ×-cong F.id) F.∘ H.Lens.equiv (high l₁)) ≡
EEq.≃→≃ᴱ (H.Lens.equiv (high l₂))) ↝⟨ (∃-cong λ _ → ≡⇒↝ _ $ cong₂ _≡_
(EEq.to≡to→≡ ext (refl _))
(EEq.to≡to→≡ ext (refl _))) ⟩□
(∃ λ (eq : R l₁ ≃ R l₂) →
from-equivalence (eq ×-cong F.id) F.∘ equiv l₁ ≡ equiv l₂) □
where
open Lens
-- Yet another equality characterisation lemma.
@0 equality-characterisation₂ :
{A : Set a} {B : Set b} {l₁ l₂ : Lens A B} →
let open Lens in
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≃ R l₂) →
∀ x → (_≃_.to eq (remainder l₁ x) , get l₁ x) ≡
_≃ᴱ_.to (equiv l₂) x
equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} univ =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Higher-lens ⟩
high l₁ ≡ high l₂ ↝⟨ H.equality-characterisation₂ univ ⟩□
(∃ λ (eq : R l₁ ≃ R l₂) →
∀ x → (_≃_.to eq (remainder l₁ x) , get l₁ x) ≡
_≃ᴱ_.to (equiv l₂) x) □
where
open Lens
-- And another one.
@0 equality-characterisation₃ :
{A : Set a} {B : Set b} {l₁ l₂ : Lens A B} →
let open Lens in
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≃ R l₂) →
(∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x)
×
(∀ x → get l₁ x ≡ get l₂ x)
equality-characterisation₃ {l₁ = l₁} {l₂ = l₂} univ =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Higher-lens ⟩
high l₁ ≡ high l₂ ↝⟨ H.equality-characterisation₃ univ ⟩□
(∃ λ (eq : R l₁ ≃ R l₂) →
(∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x)
×
(∀ x → get l₁ x ≡ get l₂ x)) □
where
open Lens
-- And a final one.
@0 equality-characterisation₄ :
{A : Set a} {B : Set b} {l₁ l₂ : Lens A B} →
let open Lens in
Univalence (a ⊔ b) →
l₁ ≡ l₂
↔
∃ λ (eq : R l₁ ≃ R l₂) →
∀ p → _≃ᴱ_.from (equiv l₁) (_≃_.from eq (proj₁ p) , proj₂ p) ≡
_≃ᴱ_.from (equiv l₂) p
equality-characterisation₄ {l₁ = l₁} {l₂} univ =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Higher-lens ⟩
high l₁ ≡ high l₂ ↝⟨ H.equality-characterisation₄ univ ⟩□
(∃ λ (eq : R l₁ ≃ R l₂) →
∀ p → _≃ᴱ_.from (equiv l₁) (_≃_.from eq (proj₁ p) , proj₂ p) ≡
_≃ᴱ_.from (equiv l₂) p) □
where
open Lens
-- ------------------------------------------------------------------------
-- -- More lens equalities
-- If the forward direction of an equivalence with erased proofs is
-- Lens.get l, then the setter of l can be expressed using the other
-- direction of the equivalence (in erased contexts).
@0 from≡set :
∀ (l : Lens A B) is-equiv →
let open Lens
A≃B = EEq.⟨ get l , is-equiv ⟩
in
∀ a b → _≃ᴱ_.from A≃B b ≡ set l a b
from≡set l is-equiv =
H.from≡set (high l) (EEq.Is-equivalenceᴱ→Is-equivalence is-equiv)
-- If two lenses have equal setters, then they also have equal
-- getters (in erased contexts).
@0 getters-equal-if-setters-equal :
let open Lens in
(l₁ l₂ : Lens A B) →
set l₁ ≡ set l₂ →
get l₁ ≡ get l₂
getters-equal-if-setters-equal l₁ l₂ =
Lens.set l₁ ≡ Lens.set l₂ ↔⟨⟩
H.Lens.set (high l₁) ≡ H.Lens.set (high l₂) ↝⟨ H.getters-equal-if-setters-equal (high l₁) (high l₂) ⟩
H.Lens.get (high l₁) ≡ H.Lens.get (high l₂) ↔⟨⟩
Lens.get l₁ ≡ Lens.get l₂ □
-- A generalisation of lenses-equal-if-setters-equal (which is defined
-- below).
@0 lenses-equal-if-setters-equal′ :
let open Lens in
{A : Set a} {B : Set b}
(univ : Univalence (a ⊔ b))
(l₁ l₂ : Lens A B)
(f : R l₁ → R l₂) →
(B → ∀ r →
∃ λ b′ → remainder l₂ (_≃ᴱ_.from (equiv l₁) (r , b′)) ≡ f r) →
(∀ a → f (remainder l₁ a) ≡ remainder l₂ a) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal′
univ l₁ l₂ f ∃≡f f-remainder≡remainder setters-equal =
$⟨ H.lenses-equal-if-setters-equal′
univ (high l₁) (high l₂) f ∃≡f
f-remainder≡remainder setters-equal ⟩
high l₁ ≡ high l₂ ↝⟨ Eq.≃-≡ Lens≃Higher-lens {x = l₁} {y = l₂} ⟩□
l₁ ≡ l₂ □
-- If the codomain of a lens is inhabited when it is merely inhabited
-- and the remainder type is inhabited, then this lens is equal to
-- another lens if their setters are equal (in erased contexts,
-- assuming univalence).
@0 lenses-equal-if-setters-equal :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
(l₁ l₂ : Lens A B) →
(Lens.R l₁ → ∥ B ∥ → B) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal univ l₁ l₂ inh′ setters-equal =
$⟨ H.lenses-equal-if-setters-equal
univ (high l₁) (high l₂) inh′ setters-equal ⟩
high l₁ ≡ high l₂ ↝⟨ Eq.≃-≡ Lens≃Higher-lens {x = l₁} {y = l₂} ⟩□
l₁ ≡ l₂ □
-- If a lens has a propositional remainder type, then this lens is
-- equal to another lens if their setters are equal (in erased
-- contexts, assuming univalence).
@0 lenses-equal-if-setters-equal-and-remainder-propositional :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
(l₁ l₂ : Lens A B) →
Is-proposition (Lens.R l₂) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal-and-remainder-propositional
univ l₁ l₂ R₂-prop setters-equal =
$⟨ H.lenses-equal-if-setters-equal-and-remainder-propositional
univ (high l₁) (high l₂) R₂-prop setters-equal ⟩
high l₁ ≡ high l₂ ↝⟨ Eq.≃-≡ Lens≃Higher-lens {x = l₁} {y = l₂} ⟩□
l₁ ≡ l₂ □
-- The functions ≃ᴱ→Lens and ≃ᴱ→Lens′ are pointwise equal (when
-- applicable, in erased contexts, assuming univalence).
@0 ≃ᴱ→Lens≡≃ᴱ→Lens′ :
{A B : Set a} →
Univalence a →
(A≃B : A ≃ᴱ B) → ≃ᴱ→Lens A≃B ≡ ≃ᴱ→Lens′ A≃B
≃ᴱ→Lens≡≃ᴱ→Lens′ {B = B} univ A≃B =
_↔_.from (equality-characterisation₃ univ)
( (Erased ∥ ↑ _ B ∥ ↔⟨ Erased-cong (∥∥-cong Bijection.↑↔) ⟩□
Erased ∥ B ∥ □)
, (λ _ → refl _)
, (λ _ → refl _)
)
-- If the getter of a lens is an equivalence with erased proofs, then
-- the lens formed using the equivalence (using ≃ᴱ→Lens) is equal to
-- the lens (in erased contexts, assuming univalence).
@0 get-equivalence→≡≃ᴱ→Lens :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
(l : Lens A B) →
(eq : Is-equivalenceᴱ (Lens.get l)) →
l ≡ ≃ᴱ→Lens EEq.⟨ Lens.get l , eq ⟩
get-equivalence→≡≃ᴱ→Lens {A = A} {B = B} univ l eq =
lenses-equal-if-setters-equal-and-remainder-propositional
univ l (≃ᴱ→Lens EEq.⟨ Lens.get l , eq ⟩)
(H-level-Erased 1 truncation-is-proposition)
(⟨ext⟩ λ a → ⟨ext⟩ λ b →
set l a b ≡⟨ sym $ from≡set l eq a b ⟩
_≃ᴱ_.from A≃B b ≡⟨⟩
set (≃ᴱ→Lens A≃B) a b ∎)
where
open Lens
A≃B : A ≃ᴱ B
A≃B = EEq.⟨ _ , eq ⟩
-- A variant of get-equivalence→≡≃ᴱ→Lens.
@0 get-equivalence→≡≃ᴱ→Lens′ :
{A B : Set a} →
Univalence a →
(l : Lens A B) →
(eq : Is-equivalenceᴱ (Lens.get l)) →
l ≡ ≃ᴱ→Lens′ EEq.⟨ Lens.get l , eq ⟩
get-equivalence→≡≃ᴱ→Lens′ {A = A} {B = B} univ l eq =
l ≡⟨ get-equivalence→≡≃ᴱ→Lens univ l eq ⟩
≃ᴱ→Lens A≃B ≡⟨ ≃ᴱ→Lens≡≃ᴱ→Lens′ univ A≃B ⟩∎
≃ᴱ→Lens′ A≃B ∎
where
A≃B = EEq.⟨ Lens.get l , eq ⟩
------------------------------------------------------------------------
-- Some lens isomorphisms
-- A generalised variant of Lens preserves equivalences with erased
-- proofs.
Lens-cong′ :
A₁ ≃ᴱ A₂ → B₁ ≃ᴱ B₂ →
(∃ λ (R : Set r) → A₁ ≃ᴱ (R × B₁) × Erased (R → ∥ B₁ ∥)) ≃ᴱ
(∃ λ (R : Set r) → A₂ ≃ᴱ (R × B₂) × Erased (R → ∥ B₂ ∥))
Lens-cong′ A₁≃A₂ B₁≃B₂ =
∃-cong λ _ →
EEq.≃ᴱ-cong ext A₁≃A₂ (F.id ×-cong B₁≃B₂)
×-cong
Erased-cong (→-cong ext F.id (∥∥-cong B₁≃B₂))
-- Lens preserves level-preserving equivalences with erased proofs.
Lens-cong :
{A₁ A₂ : Set a} {B₁ B₂ : Set b} →
A₁ ≃ᴱ A₂ → B₁ ≃ᴱ B₂ →
Lens A₁ B₁ ≃ᴱ Lens A₂ B₂
Lens-cong {A₁ = A₁} {A₂ = A₂} {B₁ = B₁} {B₂ = B₂} A₁≃A₂ B₁≃B₂ =
Lens A₁ B₁ ↔⟨ Lens-as-Σ ⟩
(∃ λ R → A₁ ≃ᴱ (R × B₁) × Erased (R → ∥ B₁ ∥)) ↝⟨ Lens-cong′ A₁≃A₂ B₁≃B₂ ⟩
(∃ λ R → A₂ ≃ᴱ (R × B₂) × Erased (R → ∥ B₂ ∥)) ↔⟨ inverse Lens-as-Σ ⟩□
Lens A₂ B₂ □
-- If B is a proposition, then Lens A B is equivalent (with erased
-- proofs) to A → B (assuming univalence).
lens-to-proposition≃ᴱget :
{A : Set a} {B : Set b} →
@0 Univalence (a ⊔ b) →
@0 Is-proposition B →
Lens A B ≃ᴱ (A → B)
lens-to-proposition≃ᴱget {b = b} {A = A} {B = B} univ prop = EEq.↔→≃ᴱ
get
from
refl
(λ l →
let lemma =
↑ b A ↔⟨ Bijection.↑↔ ⟩
A ↝⟨ EEq.≃ᴱ→≃ (equiv l) ⟩
R l × B ↝⟨ (EEq.≃ᴱ→≃ $ drop-⊤-right λ r → _⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ $
PT.rec
(EEq.Contractibleᴱ-propositional ext)
(λ b → EEq.inhabited→Is-proposition→Contractibleᴱ b prop)
(inhabited l r)) ⟩□
R l □
in
_↔_.from (equality-characterisation₂ univ)
(lemma , λ _ → refl _))
where
open Lens
from = λ get → record
{ R = ↑ b A
; equiv = A ↔⟨ inverse Bijection.↑↔ ⟩
↑ b A ↝⟨ (inverse $ drop-⊤-right λ (lift a) →
EEq.inhabited→Is-proposition→≃ᴱ⊤ (get a) prop) ⟩□
↑ b A × B □
; inhabited = ∣_∣ ⊚ get ⊚ lower
}
_ :
{A : Set a} {B : Set b}
(@0 univ : Univalence (a ⊔ b))
(@0 prop : Is-proposition B)
(l : Lens A B) →
_≃ᴱ_.to (lens-to-proposition≃ᴱget univ prop) l ≡ Lens.get l
_ = λ _ _ _ → refl _
-- If B is contractible (with an erased proof), then Lens A B is
-- equivalent (with erased proofs) to ⊤ (assuming univalence).
lens-to-contractible≃ᴱ⊤ :
{A : Set a} {B : Set b} →
@0 Univalence (a ⊔ b) →
Contractibleᴱ B →
Lens A B ≃ᴱ ⊤
lens-to-contractible≃ᴱ⊤ {A = A} {B} univ cB =
Lens A B ↝⟨ lens-to-proposition≃ᴱget univ (mono₁ 0 (EEq.Contractibleᴱ→Contractible cB)) ⟩
(A → B) ↝⟨ →-cong ext F.id $ _⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ cB ⟩
(A → ⊤) ↔⟨ →-right-zero ⟩□
⊤ □
-- Lens A ⊥ is equivalent (with erased proofs) to ¬ A (assuming
-- univalence).
lens-to-⊥≃ᴱ¬ :
{A : Set a} →
@0 Univalence (a ⊔ b) →
Lens A (⊥ {ℓ = b}) ≃ᴱ (¬ A)
lens-to-⊥≃ᴱ¬ {A = A} univ =
Lens A ⊥ ↝⟨ lens-to-proposition≃ᴱget univ ⊥-propositional ⟩
(A → ⊥) ↝⟨ inverse $ ¬↔→⊥ ext ⟩□
¬ A □
-- If A is contractible (with an erased proof), then Lens A B is
-- equivalent (with erased proofs) to Contractibleᴱ B (assuming
-- univalence).
lens-from-contractible≃ᴱcodomain-contractible :
{A : Set a} {B : Set b} →
@0 Univalence (a ⊔ b) →
Contractibleᴱ A →
Lens A B ≃ᴱ Contractibleᴱ B
lens-from-contractible≃ᴱcodomain-contractible {A = A} {B} univ cA =
Lens A B ↔⟨ Lens-as-Σ ⟩
(∃ λ R → A ≃ᴱ (R × B) × Erased (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ →
EEq.≃ᴱ-cong ext (_⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ cA) F.id) ⟩
(∃ λ R → ⊤ ≃ᴱ (R × B) × Erased (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ → EEq.inverse-equivalence ext) ⟩
(∃ λ R → (R × B) ≃ᴱ ⊤ × Erased (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ → inverse $ EEq.Contractibleᴱ≃ᴱ≃ᴱ⊤ ext) ⟩
(∃ λ R → Contractibleᴱ (R × B) × Erased (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ _ → EEq.Contractibleᴱ-commutes-with-× ext) ⟩
(∃ λ R → (Contractibleᴱ R × Contractibleᴱ B) × Erased (R → ∥ B ∥)) ↔⟨ (∃-cong λ _ → inverse ×-assoc) ⟩
(∃ λ R → Contractibleᴱ R × Contractibleᴱ B × Erased (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ∃-cong λ cR → ∃-cong λ _ → Erased-cong (
→-cong ext (_⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ cR) F.id)) ⟩
(∃ λ R → Contractibleᴱ R × Contractibleᴱ B × Erased (⊤ → ∥ B ∥)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → Erased-cong Π-left-identity) ⟩
(∃ λ R → Contractibleᴱ R × Contractibleᴱ B × Erased ∥ B ∥) ↔⟨ (∃-cong λ _ → ×-comm) ⟩
(∃ λ R → (Contractibleᴱ B × Erased ∥ B ∥) × Contractibleᴱ R) ↔⟨ ∃-comm ⟩
(Contractibleᴱ B × Erased ∥ B ∥) × (∃ λ R → Contractibleᴱ R) ↝⟨ (drop-⊤-right λ _ → EEq.∃Contractibleᴱ≃ᴱ⊤ ext univ) ⟩
Contractibleᴱ B × Erased ∥ B ∥ ↔⟨ (∃-cong λ cB → Erased-cong (inhabited⇒∥∥↔⊤ ∣ proj₁ cB ∣)) ⟩
Contractibleᴱ B × Erased ⊤ ↔⟨ (drop-⊤-right λ _ → Erased-⊤↔⊤) ⟩□
Contractibleᴱ B □
-- Lens ⊥ B is equivalent (with erased proofs) to the unit type
-- (assuming univalence).
lens-from-⊥↔⊤ :
{B : Set b} →
Univalence (a ⊔ b) →
Lens (⊥ {ℓ = a}) B ≃ᴱ ⊤
lens-from-⊥↔⊤ {B = B} univ =
_⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ $
≃ᴱ×→Lens
(⊥ ↔⟨ inverse ×-left-zero ⟩□
⊥ × B □)
, [ (λ l → _↔_.from (equality-characterisation₂ univ)
( (⊥ × Erased ∥ B ∥ ↔⟨ ×-left-zero ⟩
⊥₀ ↝⟨ lemma l ⟩□
R l □)
, λ x → ⊥-elim x
))
]
where
open Lens
@0 lemma : (l : Lens ⊥ B) → ⊥₀ ≃ R l
lemma l = Eq.↔→≃ ⊥-elim whatever whatever (λ x → ⊥-elim x)
where
whatever : (r : R l) → P r
whatever r = ⊥-elim {ℓ = lzero} $ PT.rec
⊥-propositional
(λ b → ⊥-elim (_≃ᴱ_.from (equiv l) (r , b)))
(inhabited l r)
-- There is an equivalence with erased proofs between A ≃ᴱ B and
-- ∃ λ (l : Lens A B) → Is-equivalenceᴱ (Lens.get l) (assuming
-- univalence).
--
-- See also ≃≃≊ below.
≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalenceᴱ-get :
{A : Set a} {B : Set b} →
@0 Univalence (a ⊔ b) →
(A ≃ᴱ B) ≃ᴱ (∃ λ (l : Lens A B) → Is-equivalenceᴱ (Lens.get l))
≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalenceᴱ-get univ = EEq.↔→≃ᴱ
(λ A≃B → ≃ᴱ→Lens A≃B , _≃ᴱ_.is-equivalence A≃B)
(λ (l , eq) → EEq.⟨ Lens.get l , eq ⟩)
(λ (l , eq) → Σ-≡,≡→≡
(sym $ get-equivalence→≡≃ᴱ→Lens univ l eq)
(EEq.Is-equivalenceᴱ-propositional ext _ _ _))
(λ _ → EEq.to≡to→≡ ext (refl _))
-- The right-to-left direction of ≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalenceᴱ-get
-- returns the lens's getter (and some proof).
to-from-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalenceᴱ-get≡get :
{A : Set a} {B : Set b} →
(@0 univ : Univalence (a ⊔ b))
(p@(l , _) : ∃ λ (l : Lens A B) → Is-equivalenceᴱ (Lens.get l)) →
_≃ᴱ_.to (_≃ᴱ_.from (≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalenceᴱ-get univ) p) ≡
Lens.get l
to-from-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalenceᴱ-get≡get _ _ = refl _
------------------------------------------------------------------------
-- Results relating different kinds of lenses
-- In general there is no split surjection from Lens A B to
-- Traditionalᴱ.Lens A B (assuming univalence).
¬Lens↠Traditional-lens :
@0 Univalence lzero →
@0 Univalence a →
∃ λ (A : Set a) → ¬ (Lens A ⊤ ↠ Traditionalᴱ.Lens A ⊤)
¬Lens↠Traditional-lens {a = a} univ₀ univ =
A′
, Stable-¬ _
[ (Lens A′ ⊤ ↠ Traditionalᴱ.Lens A′ ⊤) ↝⟨ (λ f → from-equivalence Traditionalᴱ.Lens≃Traditional-lens F.∘
f F.∘
from-equivalence (inverse Lens≃Higher-lens)) ⟩
(H.Lens A′ ⊤ ↠ T.Lens A′ ⊤) ↝⟨ proj₂ $ H.¬Lens↠Traditional-lens univ₀ univ ⟩□
⊥ □
]
where
A′ = _
-- In general there is no equivalence with erased proofs between
-- Lens A B and Traditionalᴱ.Lens A B (assuming univalence).
¬Lens≃ᴱTraditional-lens :
@0 Univalence lzero →
@0 Univalence a →
∃ λ (A : Set a) →
¬ (Lens A ⊤ ≃ᴱ Traditionalᴱ.Lens A ⊤)
¬Lens≃ᴱTraditional-lens univ₀ univ =
A′
, Stable-¬ _
[ (Lens A′ ⊤ ≃ᴱ Traditionalᴱ.Lens A′ ⊤) ↝⟨ from-equivalence ⊚ EEq.≃ᴱ→≃ ⟩
(Lens A′ ⊤ ↠ Traditionalᴱ.Lens A′ ⊤) ↝⟨ proj₂ $ ¬Lens↠Traditional-lens univ₀ univ ⟩□
⊥ □
]
where
A′ = _
-- Some lemmas used in Lens↠Traditional-lens and
-- Lens≃ᴱTraditional-lens below.
private
module Lens≃ᴱTraditional-lens
{A : Set a} {B : Set b}
(@0 A-set : Is-set A)
where
from : Block "conversion" → Traditionalᴱ.Lens A B → Lens A B
from ⊠ l = ≃ᴱ×→Lens
{R = ∃ λ (f : B → A) → Erased (∀ b b′ → set (f b) b′ ≡ f b′)}
(EEq.↔→≃ᴱ
(λ a → (set a , [ set-set a ]) , get a)
(λ ((f , _) , b) → f b)
(λ ((f , [ h ]) , b) →
let
irr = {p q : Erased (∀ b b′ → set (f b) b′ ≡ f b′)} →
p ≡ q
irr =
(H-level-Erased 1 (
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
A-set)) _ _
lemma =
get (f b) ≡⟨ cong get (sym (h b b)) ⟩
get (set (f b) b) ≡⟨ get-set (f b) b ⟩∎
b ∎
in
(set (f b) , [ set-set (f b) ]) , get (f b) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ (⟨ext⟩ (h b)) irr) lemma ⟩∎
(f , [ h ]) , b ∎)
(λ a →
set a (get a) ≡⟨ set-get a ⟩∎
a ∎))
where
open Traditionalᴱ.Lens l
to∘from : ∀ bc l → Lens.traditional-lens (from bc l) ≡ l
to∘from ⊠ l = _↔_.from Traditionalᴱ.equality-characterisation₁
( refl _
, refl _
, [ (λ a _ → B-set a _ _)
, (λ _ → A-set _ _)
, (λ _ _ _ → A-set _ _)
]
)
where
open Traditionalᴱ.Lens l
@0 B-set : A → Is-set B
B-set a =
Traditionalᴱ.h-level-respects-lens-from-inhabited 2 l a A-set
@0 from∘to :
Univalence (a ⊔ b) →
∀ bc l → from bc (Lens.traditional-lens l) ≡ l
from∘to univ ⊠ l′ =
_↔_.from (equality-characterisation₄ univ)
( lemma
, λ p →
_≃ᴱ_.from l (subst (λ _ → R) (refl _) (proj₁ p) , proj₂ p) ≡⟨ cong (λ r → _≃ᴱ_.from l (r , proj₂ p)) $ subst-refl _ _ ⟩∎
_≃ᴱ_.from l p ∎
)
where
open Lens l′ renaming (equiv to l)
B-set : (B → R) → ∥ B ∥ → Is-set B
B-set f = PT.rec
(H-level-propositional ext 2)
(λ b → $⟨ (λ {_ _} → A-set) ⟩
Is-set A ↝⟨ H-level-cong _ 2 (EEq.≃ᴱ→≃ l) ⟩
Is-set (R × B) ↝⟨ proj₂-closure (f b) 2 ⟩□
Is-set B □)
R-set : ∥ B ∥ → Is-set R
R-set = PT.rec
(H-level-propositional ext 2)
(λ b → $⟨ (λ {_ _} → A-set) ⟩
Is-set A ↝⟨ H-level-cong _ 2 (EEq.≃ᴱ→≃ l) ⟩
Is-set (R × B) ↝⟨ proj₁-closure (const b) 2 ⟩□
Is-set R □)
lemma′ : (∥ B ∥ × (∥ B ∥ → R)) ≃ R
lemma′ = Eq.↔→≃
(λ (b , f) → f b)
(λ r → inhabited r , λ _ → r)
refl
(λ (b , f) → curry (_↔_.to ≡×≡↔≡)
(PT.truncation-is-proposition _ _)
(⟨ext⟩ λ b′ →
f b ≡⟨ cong f (PT.truncation-is-proposition _ _) ⟩∎
f b′ ∎))
lemma =
(∃ λ (f : B → A) →
Erased (∀ b b′ →
_≃ᴱ_.from l (proj₁ (_≃ᴱ_.to l (f b)) , b′) ≡
f b′)) ×
Erased ∥ B ∥ ↔⟨ (∃-cong λ _ → erased Erased↔) ×-cong erased Erased↔ ⟩
(∃ λ (f : B → A) → ∀ b b′ →
_≃ᴱ_.from l (proj₁ (_≃ᴱ_.to l (f b)) , b′) ≡ f b′) ×
∥ B ∥ ↔⟨ ×-comm ⟩
(∥ B ∥ ×
∃ λ (f : B → A) → ∀ b b′ →
_≃ᴱ_.from l (proj₁ (_≃ᴱ_.to l (f b)) , b′) ≡ f b′) ↝⟨ (∃-cong λ _ →
Σ-cong (→-cong ext F.id (EEq.≃ᴱ→≃ l)) λ f →
∀-cong ext λ b → ∀-cong ext λ b′ →
≡⇒↝ _ $ cong (_≃ᴱ_.from l (proj₁ (_≃ᴱ_.to l (f b)) , b′) ≡_) $ sym $
_≃ᴱ_.left-inverse-of l _) ⟩
(∥ B ∥ ×
∃ λ (f : B → R × B) → ∀ b b′ →
_≃ᴱ_.from l (proj₁ (f b) , b′) ≡ _≃ᴱ_.from l (f b′)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
Eq.≃-≡ (inverse (EEq.≃ᴱ→≃ l))) ⟩
(∥ B ∥ ×
∃ λ (f : B → R × B) → ∀ b b′ → (proj₁ (f b) , b′) ≡ f b′) ↔⟨ (∃-cong λ _ → Σ-cong ΠΣ-comm λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
inverse $ ≡×≡↔≡) ⟩
(∥ B ∥ ×
∃ λ (p : (B → R) × (B → B)) →
∀ b b′ → proj₁ p b ≡ proj₁ p b′ × b′ ≡ proj₂ p b′) ↔⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩
(∥ B ∥ ×
∃ λ (f : B → R) → ∃ λ (g : B → B) →
∀ b b′ → f b ≡ f b′ × b′ ≡ g b′) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ →
ΠΣ-comm) ⟩
(∥ B ∥ ×
∃ λ (f : B → R) → ∃ λ (g : B → B) →
∀ b → (∀ b′ → f b ≡ f b′) × (∀ b′ → b′ ≡ g b′)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ΠΣ-comm) ⟩
(∥ B ∥ ×
∃ λ (f : B → R) → ∃ λ (g : B → B) →
Constant f × (B → ∀ b → b ≡ g b)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩
(∥ B ∥ ×
∃ λ (f : B → R) → Constant f ×
∃ λ (g : B → B) → B → ∀ b → b ≡ g b) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩
(∥ B ∥ ×
(∃ λ (f : B → R) → Constant f) ×
(∃ λ (g : B → B) → B → ∀ b → b ≡ g b)) ↔⟨ (∃-cong λ ∥b∥ → ∃-cong $ uncurry λ f _ → ∃-cong λ _ → inverse $
→-intro ext (λ _ → B-set f ∥b∥)) ⟩
(∥ B ∥ ×
(∃ λ (f : B → R) → Constant f) ×
(∃ λ (g : B → B) → ∀ b → b ≡ g b)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
Eq.extensionality-isomorphism ext) ⟩
(∥ B ∥ ×
(∃ λ (f : B → R) → Constant f) ×
(∃ λ (g : B → B) → F.id ≡ g)) ↔⟨ (∃-cong λ _ → drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
other-singleton-contractible _) ⟩
(∥ B ∥ × ∃ λ (f : B → R) → Constant f) ↝⟨ (∃-cong λ ∥b∥ → PT.constant-function≃∥inhabited∥⇒inhabited (R-set ∥b∥)) ⟩
(∥ B ∥ × (∥ B ∥ → R)) ↔⟨ lemma′ ⟩□
R □
equiv :
Block "conversion" →
@0 Univalence (a ⊔ b) →
Lens A B ≃ᴱ Traditionalᴱ.Lens A B
equiv bc univ = EEq.↔→≃ᴱ
_
(from bc)
(to∘from bc)
(from∘to univ bc)
-- If the domain A is a set, then there is a split surjection from
-- Lens A B to Traditionalᴱ.Lens A B.
Lens↠Traditional-lens :
Block "conversion" →
@0 Is-set A →
Lens A B ↠ Traditionalᴱ.Lens A B
Lens↠Traditional-lens {A = A} {B = B} bc A-set = record
{ logical-equivalence = record
{ to = Lens.traditional-lens
; from = Lens≃ᴱTraditional-lens.from A-set bc
}
; right-inverse-of = Lens≃ᴱTraditional-lens.to∘from A-set bc
}
-- The split surjection above preserves getters and setters.
Lens↠Traditional-lens-preserves-getters-and-setters :
{A : Set a}
(b : Block "conversion")
(@0 s : Is-set A) →
Preserves-getters-and-setters-⇔ A B
(_↠_.logical-equivalence (Lens↠Traditional-lens b s))
Lens↠Traditional-lens-preserves-getters-and-setters ⊠ _ =
(λ _ → refl _ , refl _) , (λ _ → refl _ , refl _)
-- If the domain A is a set, then there is an equivalence with erased
-- proofs between Traditionalᴱ.Lens A B and Lens A B (assuming
-- univalence).
Lens≃ᴱTraditional-lens :
{A : Set a} {B : Set b} →
Block "conversion" →
@0 Univalence (a ⊔ b) →
@0 Is-set A →
Lens A B ≃ᴱ Traditionalᴱ.Lens A B
Lens≃ᴱTraditional-lens bc univ A-set =
Lens≃ᴱTraditional-lens.equiv A-set bc univ
-- The equivalence preserves getters and setters.
Lens≃ᴱTraditional-lens-preserves-getters-and-setters :
{A : Set a} {B : Set b}
(bc : Block "conversion")
(@0 univ : Univalence (a ⊔ b))
(@0 s : Is-set A) →
Preserves-getters-and-setters-⇔ A B
(_≃ᴱ_.logical-equivalence (Lens≃ᴱTraditional-lens bc univ s))
Lens≃ᴱTraditional-lens-preserves-getters-and-setters bc _ =
Lens↠Traditional-lens-preserves-getters-and-setters bc
-- If the codomain B is an inhabited set, then Lens A B and
-- Traditionalᴱ.Lens A B are logically equivalent.
--
-- This definition is inspired by the statement of Corollary 13 from
-- "Algebras and Update Strategies" by Johnson, Rosebrugh and Wood.
Lens⇔Traditional-lens :
@0 Is-set B →
B →
Lens A B ⇔ Traditionalᴱ.Lens A B
Lens⇔Traditional-lens {B = B} {A = A} B-set b₀ = record
{ to = Lens.traditional-lens
; from = from
}
where
from : Traditionalᴱ.Lens A B → Lens A B
from l = ≃ᴱ×→Lens
{R = ∃ λ (a : A) → Erased (get a ≡ b₀)}
(EEq.↔→≃ᴱ
(λ a → (set a b₀ , [ get-set a b₀ ]) , get a)
(λ ((a , _) , b) → set a b)
(λ ((a , [ h ]) , b) →
let lemma =
set (set a b) b₀ ≡⟨ set-set a b b₀ ⟩
set a b₀ ≡⟨ cong (set a) (sym h) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎
in
( (set (set a b) b₀ , [ get-set (set a b) b₀ ])
, get (set a b)
) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma (H-level-Erased 1 B-set _ _)) (get-set a b) ⟩∎
((a , [ h ]) , b) ∎)
(λ a →
set (set a b₀) (get a) ≡⟨ set-set a b₀ (get a) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎))
where
open Traditionalᴱ.Lens l
-- The logical equivalence preserves getters and setters (in an erased
-- context).
@0 Lens⇔Traditional-lens-preserves-getters-and-setters :
{B : Set b}
(s : Is-set B)
(b₀ : B) →
Preserves-getters-and-setters-⇔ A B (Lens⇔Traditional-lens s b₀)
Lens⇔Traditional-lens-preserves-getters-and-setters _ b₀ =
(λ _ → refl _ , refl _)
, (λ l → refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
set l (set l a b₀) b ≡⟨ set-set l _ _ _ ⟩∎
set l a b ∎)
where
open Traditionalᴱ.Lens
------------------------------------------------------------------------
-- Some results related to h-levels
-- If the domain of a lens is inhabited and has h-level n, then the
-- codomain also has h-level n (in erased contexts).
@0 h-level-respects-lens-from-inhabited :
Lens A B → A → H-level n A → H-level n B
h-level-respects-lens-from-inhabited l =
H.h-level-respects-lens-from-inhabited (high l)
-- This is not necessarily true for arbitrary domains (assuming
-- univalence).
¬-h-level-respects-lens :
@0 Univalence (a ⊔ b) →
¬ (∀ n {A : Set a} {B : Set b} →
Lens A B → H-level n A → H-level n B)
¬-h-level-respects-lens univ =
Stable-¬ _
[ (∀ n {A B} → Lens A B → H-level n A → H-level n B) ↝⟨ (λ hyp n l → hyp n (Higher-lens→Lens l)) ⟩
(∀ n {A B} → H.Lens A B → H-level n A → H-level n B) ↝⟨ H.¬-h-level-respects-lens univ ⟩□
⊥ □
]
-- In fact, there is a lens with a proposition as its domain and a
-- non-set as its codomain (assuming univalence).
lens-from-proposition-to-non-set :
@0 Univalence (# 0) →
∃ λ (A : Set a) → ∃ λ (B : Set b) →
Lens A B × Is-proposition A × ¬ Is-set B
lens-from-proposition-to-non-set {a = a} {b = b} univ =
⊥
, ↑ b 𝕊¹
, record
{ R = ⊥
; equiv = ⊥ ↔⟨ inverse ×-left-zero ⟩□
⊥ × ↑ _ 𝕊¹ □
; inhabited = ⊥-elim
}
, ⊥-propositional
, Stable-¬ _
[ Is-set (↑ b 𝕊¹) ↝⟨ proj₂ $ proj₂ $ proj₂ $ proj₂ $ H.lens-from-proposition-to-non-set {a = a} univ ⟩□
⊥₀ □
]
-- Lenses with contractible domains have contractible codomains (in
-- erased contexts).
@0 contractible-to-contractible :
Lens A B → Contractible A → Contractible B
contractible-to-contractible l =
H.contractible-to-contractible (high l)
-- A variant for Contractibleᴱ.
Contractibleᴱ→Contractibleᴱ :
Lens A B → Contractibleᴱ A → Contractibleᴱ B
Contractibleᴱ→Contractibleᴱ =
Traditionalᴱ.Contractibleᴱ→Contractibleᴱ ⊚
Lens.traditional-lens
-- If the domain type of a lens is contractible, then the remainder
-- type is also contractible (in erased contexts).
@0 domain-contractible⇒remainder-contractible :
(l : Lens A B) → Contractible A → Contractible (Lens.R l)
domain-contractible⇒remainder-contractible =
H.domain-contractible⇒remainder-contractible ⊚ high
-- A variant for Contractibleᴱ.
domain-Contractibleᴱ⇒remainder-Contractibleᴱ :
(l : Lens A B) → Contractibleᴱ A → Contractibleᴱ (Lens.R l)
domain-Contractibleᴱ⇒remainder-Contractibleᴱ {A = A} {B = B} l =
Contractibleᴱ A ↝⟨ EEq.Contractibleᴱ-respects-surjection
(_≃ᴱ_.to equiv) (_≃_.split-surjective (EEq.≃ᴱ→≃ equiv)) ⟩
Contractibleᴱ (R × B) ↝⟨ _≃ᴱ_.to (EEq.Contractibleᴱ-commutes-with-× ext) ⟩
Contractibleᴱ R × Contractibleᴱ B ↝⟨ proj₁ ⟩□
Contractibleᴱ R □
where
open Lens l
-- If the domain type of a lens has h-level n, then the remainder type
-- also has h-level n (in erased contexts).
@0 remainder-has-same-h-level-as-domain :
(l : Lens A B) → ∀ n → H-level n A → H-level n (Lens.R l)
remainder-has-same-h-level-as-domain l n =
H.remainder-has-same-h-level-as-domain (high l) n
-- If the getter function is an equivalence, then the remainder type
-- is propositional (in erased contexts).
@0 get-equivalence→remainder-propositional :
(l : Lens A B) →
Is-equivalence (Lens.get l) →
Is-proposition (Lens.R l)
get-equivalence→remainder-propositional =
H.get-equivalence→remainder-propositional ⊚ high
-- If the getter function is pointwise equal to the identity function,
-- then the remainder type is propositional (in erased contexts).
@0 get≡id→remainder-propositional :
(l : Lens A A) →
(∀ a → Lens.get l a ≡ a) →
Is-proposition (Lens.R l)
get≡id→remainder-propositional =
H.get≡id→remainder-propositional ⊚ high
-- It is not necessarily the case that contractibility of A implies
-- contractibility of Lens A B (assuming univalence).
¬-Contractible-closed-domain :
∀ {a b} →
@0 Univalence (a ⊔ b) →
¬ ({A : Set a} {B : Set b} →
Contractible A → Contractible (Lens A B))
¬-Contractible-closed-domain univ =
Stable-¬ _
[ (∀ {A B} → Contractible A → Contractible (Lens A B)) ↝⟨ (λ hyp c → H-level-cong _ 0 Lens≃Higher-lens (hyp c)) ⟩
(∀ {A B} → Contractible A → Contractible (H.Lens A B)) ↝⟨ H.¬-Contractible-closed-domain univ ⟩□
⊥ □
]
-- Contractibleᴱ is closed under Lens A (assuming univalence).
Contractibleᴱ-closed-codomain :
{A : Set a} {B : Set b} →
@0 Univalence (a ⊔ b) →
Contractibleᴱ B → Contractibleᴱ (Lens A B)
Contractibleᴱ-closed-codomain {A = A} {B} univ cB =
$⟨ lens-to-contractible≃ᴱ⊤ univ cB ⟩
Lens A B ≃ᴱ ⊤ ↝⟨ _⇔_.from EEq.Contractibleᴱ⇔≃ᴱ⊤ ⟩□
Contractibleᴱ (Lens A B) □
-- If B is a proposition, then Lens A B is also a proposition
-- (in erased contexts, assuming univalence).
@0 Is-proposition-closed-codomain :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
Is-proposition B → Is-proposition (Lens A B)
Is-proposition-closed-codomain {A = A} {B = B} univ =
Is-proposition B ↝⟨ H.Is-proposition-closed-codomain univ ⟩
Is-proposition (H.Lens A B) ↝⟨ H-level-cong _ 1 (inverse Lens≃Higher-lens) ⟩□
Is-proposition (Lens A B) □
-- If A is a proposition, then Lens A B is also a proposition
-- (in erased contexts, assuming univalence).
@0 Is-proposition-closed-domain :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
Is-proposition A → Is-proposition (Lens A B)
Is-proposition-closed-domain {A = A} {B = B} univ =
Is-proposition A ↝⟨ H.Is-proposition-closed-domain univ ⟩
Is-proposition (H.Lens A B) ↝⟨ H-level-cong _ 1 (inverse Lens≃Higher-lens) ⟩□
Is-proposition (Lens A B) □
-- If A is a set, then Lens A B is also a set (in erased contexts,
-- assuming univalence).
@0 Is-set-closed-domain :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
Is-set A → Is-set (Lens A B)
Is-set-closed-domain {A = A} {B = B} univ =
Is-set A ↝⟨ H.Is-set-closed-domain univ ⟩
Is-set (H.Lens A B) ↝⟨ H-level-cong _ 2 (inverse Lens≃Higher-lens) ⟩□
Is-set (Lens A B) □
-- If A has h-level n, then Lens A B has h-level 1 + n (in erased
-- contexts, assuming univalence).
@0 domain-0+⇒lens-1+ :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
∀ n → H-level n A → H-level (1 + n) (Lens A B)
domain-0+⇒lens-1+ {A = A} {B = B} univ n =
H-level n A ↝⟨ H.domain-0+⇒lens-1+ univ n ⟩
H-level (1 + n) (H.Lens A B) ↝⟨ H-level-cong _ (1 + n) (inverse Lens≃Higher-lens) ⟩□
H-level (1 + n) (Lens A B) □
-- If B is inhabited when it is merely inhabited and A has positive
-- h-level n, then Lens A B also has h-level n (in erased contexts,
-- assuming univalence).
@0 lens-preserves-h-level-of-domain :
{A : Set a} {B : Set b} →
Univalence (a ⊔ b) →
(∥ B ∥ → B) →
∀ n → H-level (1 + n) A → H-level (1 + n) (Lens A B)
lens-preserves-h-level-of-domain {A = A} {B = B} univ ∥B∥→B n =
H-level (1 + n) A ↝⟨ EP.higher-lens-preserves-h-level-of-domain univ ∥B∥→B n ⟩
H-level (1 + n) (H.Lens A B) ↝⟨ H-level-cong _ (1 + n) (inverse Lens≃Higher-lens) ⟩□
H-level (1 + n) (Lens A B) □
------------------------------------------------------------------------
-- An existence result
-- There is, in general, no lens for the first projection from a
-- Σ-type.
no-first-projection-lens :
∃ λ (A : Set a) → ∃ λ (B : A → Set b) →
¬ Lens (Σ A B) A
no-first-projection-lens =
Non-dependent.no-first-projection-lens
Lens contractible-to-contractible
------------------------------------------------------------------------
-- Some results related to the remainder type
-- The remainder type of a lens l : Lens A B is, for every b : B,
-- equivalent (with erased proofs) to the preimage (with an erased
-- proof) of the getter with respect to b.
--
-- The corresponding result in Lens.Non-dependent.Higher was pointed
-- out to me by Andrea Vezzosi.
remainder≃ᴱget⁻¹ᴱ :
(l : Lens A B) (b : B) → Lens.R l ≃ᴱ Lens.get l ⁻¹ᴱ b
remainder≃ᴱget⁻¹ᴱ l b = EEq.↔→≃ᴱ
(λ r → _≃ᴱ_.from equiv (r , b)
, [ get (_≃ᴱ_.from equiv (r , b)) ≡⟨⟩
proj₂ (_≃ᴱ_.to equiv (_≃ᴱ_.from equiv (r , b))) ≡⟨ cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _ ⟩∎
b ∎
])
(λ (a , _) → remainder a)
(λ (a , [ get-a≡b ]) →
let lemma₁ =
cong get
(trans (cong (set a) (sym get-a≡b))
(_≃ᴱ_.left-inverse-of equiv _)) ≡⟨ cong-trans _ _ (_≃ᴱ_.left-inverse-of equiv _) ⟩
trans (cong get (cong (set a) (sym get-a≡b)))
(cong get (_≃ᴱ_.left-inverse-of equiv _)) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym get-a≡b))
(sym $ cong-∘ _ _ (_≃ᴱ_.left-inverse-of equiv _)) ⟩
trans (cong (get ⊚ set a) (sym get-a≡b))
(cong proj₂ (cong (_≃ᴱ_.to equiv)
(_≃ᴱ_.left-inverse-of equiv _))) ≡⟨ cong₂ (λ p q → trans p (cong proj₂ q))
(cong-sym _ get-a≡b)
(_≃ᴱ_.left-right-lemma equiv _) ⟩
trans (sym (cong (get ⊚ set a) get-a≡b))
(cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)) ≡⟨ sym $ sym-sym _ ⟩
sym (sym (trans (sym (cong (get ⊚ set a) get-a≡b))
(cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))) ≡⟨ cong sym $
sym-trans _ (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)) ⟩
sym (trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(sym (sym (cong (get ⊚ set a) get-a≡b)))) ≡⟨ cong (λ eq → sym (trans (sym (cong proj₂
(_≃ᴱ_.right-inverse-of equiv _)))
eq)) $
sym-sym (cong (get ⊚ set a) get-a≡b) ⟩∎
sym (trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(cong (get ⊚ set a) get-a≡b)) ∎
lemma₂ =
subst (λ a → get a ≡ b)
(trans (cong (set a) (sym get-a≡b)) (set-get a))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv (remainder a , b)) ≡⟨⟩
subst (λ a → get a ≡ b)
(trans (cong (set a) (sym get-a≡b))
(_≃ᴱ_.left-inverse-of equiv _))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ subst-∘ _ _ (trans _ (_≃ᴱ_.left-inverse-of equiv _)) ⟩
subst (_≡ b)
(cong get
(trans (cong (set a) (sym get-a≡b))
(_≃ᴱ_.left-inverse-of equiv _)))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ cong (λ eq → subst (_≡ b) eq
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _))
lemma₁ ⟩
subst (_≡ b)
(sym (trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(cong (get ⊚ set a) get-a≡b)))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ subst-trans (trans _ (cong (get ⊚ set a) get-a≡b)) ⟩
trans
(trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(cong (get ⊚ set a) get-a≡b))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ elim¹
(λ eq →
trans
(trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(cong (get ⊚ set a) eq))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡
eq)
(
trans
(trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(cong (get ⊚ set a) (refl _)))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ cong
(λ eq → trans
(trans (sym (cong proj₂
(_≃ᴱ_.right-inverse-of equiv _)))
eq)
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _)) $
cong-refl _ ⟩
trans
(trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(refl _))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩
trans (sym (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv _) ≡⟨ trans-symˡ (cong proj₂ (_≃ᴱ_.right-inverse-of equiv _)) ⟩∎
refl _ ∎)
get-a≡b ⟩∎
get-a≡b ∎
in
Σ-≡,≡→≡
(_≃ᴱ_.from equiv (remainder a , b) ≡⟨⟩
set a b ≡⟨ cong (set a) (sym get-a≡b) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎)
(subst (λ a → Erased (get a ≡ b))
(trans (cong (set a) (sym get-a≡b)) (set-get a))
[ cong proj₂ $ _≃ᴱ_.right-inverse-of equiv (remainder a , b) ] ≡⟨ push-subst-[] ⟩
[ subst (λ a → get a ≡ b)
(trans (cong (set a) (sym get-a≡b)) (set-get a))
(cong proj₂ $ _≃ᴱ_.right-inverse-of equiv (remainder a , b))
] ≡⟨ []-cong [ lemma₂ ] ⟩∎
[ get-a≡b ] ∎))
(λ r →
remainder (_≃ᴱ_.from equiv (r , b)) ≡⟨⟩
proj₁ (_≃ᴱ_.to equiv (_≃ᴱ_.from equiv (r , b))) ≡⟨ cong proj₁ $ _≃ᴱ_.right-inverse-of equiv _ ⟩∎
r ∎)
where
open Lens l
-- A corollary: Lens.get l ⁻¹ᴱ_ is constant (up to _≃ᴱ_).
--
-- Paolo Capriotti discusses this kind of property
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
get⁻¹ᴱ-constant :
(l : Lens A B) (b₁ b₂ : B) → Lens.get l ⁻¹ᴱ b₁ ≃ᴱ Lens.get l ⁻¹ᴱ b₂
get⁻¹ᴱ-constant l b₁ b₂ =
Lens.get l ⁻¹ᴱ b₁ ↝⟨ inverse $ remainder≃ᴱget⁻¹ᴱ l b₁ ⟩
Lens.R l ↝⟨ remainder≃ᴱget⁻¹ᴱ l b₂ ⟩□
Lens.get l ⁻¹ᴱ b₂ □
-- The set function can be expressed using get⁻¹ᴱ-constant and get.
--
-- Paolo Capriotti defines set in a similar way
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
set-in-terms-of-get⁻¹ᴱ-constant :
(l : Lens A B) →
Lens.set l ≡
λ a b → proj₁ (_≃ᴱ_.to (get⁻¹ᴱ-constant l (Lens.get l a) b)
(a , [ refl _ ]))
set-in-terms-of-get⁻¹ᴱ-constant l = refl _
-- The remainder function can be expressed using remainder≃ᴱget⁻¹ᴱ and
-- get.
remainder-in-terms-of-remainder≃ᴱget⁻¹ᴱ :
(l : Lens A B) →
Lens.remainder l ≡
λ a → _≃ᴱ_.from (remainder≃ᴱget⁻¹ᴱ l (Lens.get l a)) (a , [ refl _ ])
remainder-in-terms-of-remainder≃ᴱget⁻¹ᴱ l = refl _
-- The lemma get⁻¹ᴱ-constant satisfies some coherence properties.
--
-- The first and third properties are discussed by Paolo Capriotti
-- (http://homotopytypetheory.org/2014/04/29/higher-lenses/).
@0 get⁻¹ᴱ-constant-∘ :
(l : Lens A B) (b₁ b₂ b₃ : B) (p : Lens.get l ⁻¹ᴱ b₁) →
_≃ᴱ_.to (get⁻¹ᴱ-constant l b₂ b₃)
(_≃ᴱ_.to (get⁻¹ᴱ-constant l b₁ b₂) p) ≡
_≃ᴱ_.to (get⁻¹ᴱ-constant l b₁ b₃) p
get⁻¹ᴱ-constant-∘ l _ b₂ b₃ p =
from (r₂ , b₃) , [ cong proj₂ (right-inverse-of (r₂ , b₃)) ] ≡⟨ cong (λ r → from (r , b₃) , [ cong proj₂ (right-inverse-of (r , b₃)) ]) $
cong proj₁ $ right-inverse-of _ ⟩∎
from (r₁ , b₃) , [ cong proj₂ (right-inverse-of (r₁ , b₃)) ] ∎
where
open Lens l
open _≃ᴱ_ equiv
r₁ r₂ : R
r₁ = proj₁ (to (proj₁ p))
r₂ = proj₁ (to (from (r₁ , b₂)))
get⁻¹ᴱ-constant-inverse :
(l : Lens A B) (b₁ b₂ : B) (p : Lens.get l ⁻¹ᴱ b₁) →
_≃ᴱ_.to (get⁻¹ᴱ-constant l b₁ b₂) p ≡
_≃ᴱ_.from (get⁻¹ᴱ-constant l b₂ b₁) p
get⁻¹ᴱ-constant-inverse _ _ _ _ = refl _
@0 get⁻¹ᴱ-constant-id :
(l : Lens A B) (b : B) (p : Lens.get l ⁻¹ᴱ b) →
_≃ᴱ_.to (get⁻¹ᴱ-constant l b b) p ≡ p
get⁻¹ᴱ-constant-id l b p =
_≃ᴱ_.to (get⁻¹ᴱ-constant l b b) p ≡⟨ sym $ get⁻¹ᴱ-constant-∘ l b _ _ p ⟩
_≃ᴱ_.to (get⁻¹ᴱ-constant l b b) (_≃ᴱ_.to (get⁻¹ᴱ-constant l b b) p) ≡⟨⟩
_≃ᴱ_.from (get⁻¹ᴱ-constant l b b) (_≃ᴱ_.to (get⁻¹ᴱ-constant l b b) p) ≡⟨ _≃ᴱ_.left-inverse-of (get⁻¹ᴱ-constant l b b) _ ⟩∎
p ∎
-- Another kind of coherence property does not hold for
-- get⁻¹ᴱ-constant.
--
-- This kind of property came up in a discussion with Andrea Vezzosi.
get⁻¹ᴱ-constant-not-coherent :
¬ ({A B : Set} (l : Lens A B) (b₁ b₂ : B)
(f : ∀ b → Lens.get l ⁻¹ᴱ b) →
_≃ᴱ_.to (get⁻¹ᴱ-constant l b₁ b₂) (f b₁) ≡ f b₂)
get⁻¹ᴱ-constant-not-coherent =
({A B : Set} (l : Lens A B) (b₁ b₂ : B)
(f : ∀ b → Lens.get l ⁻¹ᴱ b) →
_≃ᴱ_.to (get⁻¹ᴱ-constant l b₁ b₂) (f b₁) ≡ f b₂) ↝⟨ (λ hyp → hyp l true false f) ⟩
_≃ᴱ_.to (get⁻¹ᴱ-constant l true false) (f true) ≡ f false ↝⟨ cong (proj₁ ⊚ proj₁) ⟩
true ≡ false ↝⟨ Bool.true≢false ⟩□
⊥ □
where
l : Lens (Bool × Bool) Bool
l = record
{ R = Bool
; equiv = F.id
; inhabited = ∣_∣
}
f : ∀ b → Lens.get l ⁻¹ᴱ b
f b = (b , b) , [ refl _ ]
-- If B is inhabited whenever it is merely inhabited, then the
-- remainder type of a lens of type Lens A B can be expressed in terms
-- of preimages of the lens's getter (in erased contexts).
--
-- TODO: Perhaps a non-erased variant of this result could be proved
-- if the inhabited field were made non-erased, possibly with ∥_∥
-- replaced by ∥_∥ᴱ.
@0 remainder≃∃get⁻¹ :
(l : Lens A B) (∥B∥→B : ∥ B ∥ → B) →
Lens.R l ≃ ∃ λ (b : ∥ B ∥) → Lens.get l ⁻¹ (∥B∥→B b)
remainder≃∃get⁻¹ = H.remainder≃∃get⁻¹ ⊚ high
------------------------------------------------------------------------
-- Lens combinators
private
module HLC = H.Lens-combinators
module Lens-combinators where
-- The definition of the identity lens is unique (in erased
-- contexts), if the get function is required to be the identity
-- (assuming univalence).
@0 id-unique :
{A : Set a} →
Univalence a →
((l₁ , _) (l₂ , _) :
∃ λ (l : Lens A A) → ∀ a → Lens.get l a ≡ a) →
l₁ ≡ l₂
id-unique {A = A} univ (l₁ , g₁) (l₂ , g₂) =
$⟨ HLC.id-unique univ (high l₁ , g₁) (high l₂ , g₂) ⟩
high l₁ ≡ high l₂ ↝⟨ Eq.≃-≡ Lens≃Higher-lens {x = l₁} {y = l₂} ⟩□
l₁ ≡ l₂ □
-- The result of composing two lenses is unique (in erased contexts)
-- if the codomain type is inhabited whenever it is merely
-- inhabited, and we require that the resulting setter function is
-- defined in a certain way (assuming univalence).
@0 ∘-unique :
let open Lens in
{A : Set a} {C : Set c} →
Univalence (a ⊔ c) →
(∥ C ∥ → C) →
((comp₁ , _) (comp₂ , _) :
∃ λ (comp : Lens B C → Lens A B → Lens A C) →
∀ l₁ l₂ a c →
set (comp l₁ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c)) →
comp₁ ≡ comp₂
∘-unique {A = A} {C = C} univ ∥C∥→C
(comp₁ , set₁) (comp₂ , set₂) =
⟨ext⟩ λ l₁ → ⟨ext⟩ λ l₂ →
lenses-equal-if-setters-equal univ
(comp₁ l₁ l₂) (comp₂ l₁ l₂) (λ _ → ∥C∥→C) $
⟨ext⟩ λ a → ⟨ext⟩ λ c →
set (comp₁ l₁ l₂) a c ≡⟨ set₁ _ _ _ _ ⟩
set l₂ a (set l₁ (get l₂ a) c) ≡⟨ sym $ set₂ _ _ _ _ ⟩∎
set (comp₂ l₁ l₂) a c ∎
where
open Lens
-- Identity lens.
id : Block "id" → Lens A A
id {A = A} ⊠ = record
{ R = Erased ∥ A ∥
; equiv = A ↔⟨ inverse Erased-∥∥×≃ ⟩□
Erased ∥ A ∥ × A □
; inhabited = erased
}
-- The identity lens is equal to the one obtained from the identity
-- lens for higher lenses without erased proofs (in erased
-- contexts, assuming univalence).
@0 Higher-lens-id≡id :
{A : Set a}
(b : Block "id")
(univ : Univalence a) →
Higher-lens→Lens (HLC.id b) ≡ id {A = A} b
Higher-lens-id≡id {A = A} ⊠ univ =
_↔_.from (equality-characterisation₂ univ)
( (∥ A ∥ ↔⟨ inverse $ erased Erased↔ ⟩□
Erased ∥ A ∥ □)
, λ _ → refl _
)
-- Composition of lenses.
--
-- Note that the domains are required to be at least as large as the
-- codomains.
--
-- The composition operation matches on the lenses to ensure that it
-- does not unfold when applied to neutral lenses.
infix 9 ⟨_,_⟩_∘_
⟨_,_⟩_∘_ :
∀ a b {A : Set (a ⊔ b ⊔ c)} {B : Set (b ⊔ c)} {C : Set c} →
Lens B C → Lens A B → Lens A C
⟨_,_⟩_∘_ _ _ {A = A} {B} {C} l₁@(⟨ _ , _ , _ ⟩) l₂@(⟨ _ , _ , _ ⟩) =
record
{ R = R l₂ × R l₁
; equiv = A ↝⟨ equiv l₂ ⟩
R l₂ × B ↝⟨ F.id ×-cong equiv l₁ ⟩
R l₂ × (R l₁ × C) ↔⟨ ×-assoc ⟩□
(R l₂ × R l₁) × C □
; inhabited = ∥∥-map (get l₁) ⊚ inhabited l₂ ⊚ proj₁
}
where
open Lens
-- Higher-lens→Lens commutes with composition (in erased contexts,
-- assuming univalence).
@0 Higher-lens-∘≡∘ :
∀ a b {A : Set (a ⊔ b ⊔ c)} {B : Set (b ⊔ c)} {C : Set c} →
Univalence (a ⊔ b ⊔ c) →
(l₁ : H.Lens B C) (l₂ : H.Lens A B) →
Higher-lens→Lens (HLC.⟨ a , b ⟩ l₁ ∘ l₂) ≡
⟨ a , b ⟩ Higher-lens→Lens l₁ ∘ Higher-lens→Lens l₂
Higher-lens-∘≡∘ _ _ univ (H.⟨ _ , _ , _ ⟩) (H.⟨ _ , _ , _ ⟩) =
_↔_.from (equality-characterisation₂ univ)
( F.id
, λ _ → refl _
)
-- A variant of composition for lenses between types with the same
-- universe level.
infixr 9 _∘_
_∘_ :
{A B C : Set a} →
Lens B C → Lens A B → Lens A C
l₁ ∘ l₂ = ⟨ lzero , lzero ⟩ l₁ ∘ l₂
-- Other definitions of composition match ⟨_,_⟩_∘_ (in erased
-- contexts), if the codomain type is inhabited whenever it is
-- merely inhabited, and the resulting setter function is defined in
-- a certain way (assuming univalence).
@0 composition≡∘ :
let open Lens in
{A : Set (a ⊔ b ⊔ c)} {B : Set (b ⊔ c)} {C : Set c} →
Univalence (a ⊔ b ⊔ c) →
(∥ C ∥ → C) →
(comp : Lens B C → Lens A B → Lens A C) →
(∀ l₁ l₂ a c →
set (comp l₁ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c)) →
comp ≡ ⟨ a , b ⟩_∘_
composition≡∘ univ ∥C∥→C comp set-comp =
∘-unique univ ∥C∥→C (comp , set-comp)
(_ , λ { ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ _ _ → refl _ })
-- Identity and composition form a kind of precategory (in erased
-- contexts, assuming univalence).
@0 associativity :
∀ a b c
{A : Set (a ⊔ b ⊔ c ⊔ d)} {B : Set (b ⊔ c ⊔ d)}
{C : Set (c ⊔ d)} {D : Set d} →
Univalence (a ⊔ b ⊔ c ⊔ d) →
(l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) →
⟨ a ⊔ b , c ⟩ l₁ ∘ (⟨ a , b ⟩ l₂ ∘ l₃) ≡
⟨ a , b ⊔ c ⟩ (⟨ b , c ⟩ l₁ ∘ l₂) ∘ l₃
associativity _ _ _ univ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ =
_↔_.from (equality-characterisation₂ univ)
(Eq.↔⇒≃ (inverse ×-assoc) , λ _ → refl _)
@0 left-identity :
∀ bi a {A : Set (a ⊔ b)} {B : Set b} →
Univalence (a ⊔ b) →
(l : Lens A B) →
⟨ a , lzero ⟩ id bi ∘ l ≡ l
left-identity ⊠ _ {B = B} univ l@(⟨ _ , _ , _ ⟩) =
_↔_.from (equality-characterisation₂ univ)
( (R × Erased ∥ B ∥ ↔⟨ lemma ⟩□
R □)
, λ _ → refl _
)
where
open Lens l
lemma : R × Erased ∥ B ∥ ↔ R
lemma = record
{ surjection = record
{ logical-equivalence = record
{ to = proj₁
; from = λ r → r , [ inhabited r ]
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ (r , _) →
cong (r ,_) $ []-cong [ truncation-is-proposition _ _ ]
}
@0 right-identity :
∀ bi a {A : Set (a ⊔ b)} {B : Set b} →
Univalence (a ⊔ b) →
(l : Lens A B) →
⟨ lzero , a ⟩ l ∘ id bi ≡ l
right-identity ⊠ _ {A = A} univ l@(⟨ _ , _ , _ ⟩) =
_↔_.from (equality-characterisation₂ univ)
( (Erased ∥ A ∥ × R ↔⟨ lemma ⟩□
R □)
, λ _ → refl _
)
where
open Lens l
lemma : Erased ∥ A ∥ × R ↔ R
lemma = record
{ surjection = record
{ logical-equivalence = record
{ to = proj₂
; from = λ r → [ ∥∥-map (λ b → _≃ᴱ_.from equiv (r , b))
(inhabited r)
]
, r
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ (_ , r) →
cong (_, r) $ []-cong [ truncation-is-proposition _ _ ]
}
open Lens-combinators
------------------------------------------------------------------------
-- Isomorphisms expressed using lens quasi-inverses
private
module B {a} (b : Block "id") =
Bi-invertibility.Erased equality-with-J (Set a) Lens (id b) _∘_
module BM {a} (b : Block "id") (@0 univ : Univalence a) = B.More
b
(left-identity b _ univ)
(right-identity b _ univ)
(associativity _ _ _ univ)
-- A form of isomorphism between types, expressed using lenses.
open B public renaming (_≅ᴱ_ to [_]_≅ᴱ_) using (Has-quasi-inverseᴱ)
private
-- Some lemmas used below.
@0 ∘≡id→∘≡id :
{A B : Set a}
(b : Block "id") →
Univalence a →
(l₁ : H.Lens B A) (l₂ : H.Lens A B) →
l₁ HLC.∘ l₂ ≡ HLC.id b →
Higher-lens→Lens l₁ ∘ Higher-lens→Lens l₂ ≡ id b
∘≡id→∘≡id b univ l₁ l₂ hyp =
Higher-lens→Lens l₁ ∘ Higher-lens→Lens l₂ ≡⟨ sym $ Higher-lens-∘≡∘ lzero lzero univ l₁ l₂ ⟩
Higher-lens→Lens (l₁ HLC.∘ l₂) ≡⟨ cong Higher-lens→Lens hyp ⟩
Higher-lens→Lens (HLC.id b) ≡⟨ Higher-lens-id≡id b univ ⟩∎
id b ∎
@0 l∘l⁻¹≡l∘l⁻¹ :
{A B : Set a} →
Univalence a →
(l : H.Lens B A) (l⁻¹ : Lens A B) →
Higher-lens→Lens (l HLC.∘ high l⁻¹) ≡ Higher-lens→Lens l ∘ l⁻¹
l∘l⁻¹≡l∘l⁻¹ univ l l⁻¹ =
Higher-lens→Lens (l HLC.∘ high l⁻¹) ≡⟨ Higher-lens-∘≡∘ lzero lzero univ l (high l⁻¹) ⟩
Higher-lens→Lens l ∘ Higher-lens→Lens (high l⁻¹) ≡⟨ cong (Higher-lens→Lens l ∘_) $
_≃_.left-inverse-of Lens≃Higher-lens l⁻¹ ⟩∎
Higher-lens→Lens l ∘ l⁻¹ ∎
@0 l⁻¹∘l≡l⁻¹∘l :
{A B : Set a} →
Univalence a →
(l⁻¹ : Lens B A) (l : H.Lens A B) →
Higher-lens→Lens (high l⁻¹ HLC.∘ l) ≡ l⁻¹ ∘ Higher-lens→Lens l
l⁻¹∘l≡l⁻¹∘l univ l⁻¹ l =
Higher-lens→Lens (high l⁻¹ HLC.∘ l) ≡⟨ Higher-lens-∘≡∘ lzero lzero univ (high l⁻¹) l ⟩
Higher-lens→Lens (high l⁻¹) ∘ Higher-lens→Lens l ≡⟨ cong (_∘ Higher-lens→Lens l) $
_≃_.left-inverse-of Lens≃Higher-lens l⁻¹ ⟩∎
l⁻¹ ∘ Higher-lens→Lens l ∎
-- H.Has-quasi-inverse b l implies
-- Has-quasi-inverseᴱ b (Higher-lens→Lens l) (assuming univalence).
Has-quasi-inverse→Has-quasi-inverseᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
(l : H.Lens A B) →
H.Has-quasi-inverse b l → Has-quasi-inverseᴱ b (Higher-lens→Lens l)
Has-quasi-inverse→Has-quasi-inverseᴱ {a = a} b univ l =
(∃ λ l⁻¹ → l HLC.∘ l⁻¹ ≡ HLC.id b × l⁻¹ HLC.∘ l ≡ HLC.id b ) ↝⟨ (Σ-map Higher-lens→Lens λ {l⁻¹} (p , q) →
[ ∘≡id→∘≡id b univ l l⁻¹ p
, ∘≡id→∘≡id b univ l⁻¹ l q
]) ⟩
(∃ λ l⁻¹ → Erased (l′ ∘ l⁻¹ ≡ id b × l⁻¹ ∘ l′ ≡ id b)) □
where
l′ = Higher-lens→Lens l
-- In erased contexts Has-quasi-inverseᴱ b (Higher-lens→Lens l) is
-- equivalent to H.Has-quasi-inverse b l (assuming univalence).
@0 Has-quasi-inverseᴱ≃Has-quasi-inverse :
{A B : Set a}
(b : Block "id") →
Univalence a →
(l : H.Lens A B) →
Has-quasi-inverseᴱ b (Higher-lens→Lens l) ≃ H.Has-quasi-inverse b l
Has-quasi-inverseᴱ≃Has-quasi-inverse b univ l =
(∃ λ l⁻¹ → Erased (l′ ∘ l⁻¹ ≡ id b × l⁻¹ ∘ l′ ≡ id b)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ l⁻¹ → l′ ∘ l⁻¹ ≡ id b × l⁻¹ ∘ l′ ≡ id b ) ↝⟨ (inverse $
Σ-cong-contra Lens≃Higher-lens λ l⁻¹ →
(≡⇒↝ _ (cong₂ _≡_ (l∘l⁻¹≡l∘l⁻¹ univ l l⁻¹)
(Higher-lens-id≡id b univ)) F.∘
inverse (Eq.≃-≡ $ inverse Lens≃Higher-lens))
×-cong
(≡⇒↝ _ (cong₂ _≡_ (l⁻¹∘l≡l⁻¹∘l univ l⁻¹ l)
(Higher-lens-id≡id b univ)) F.∘
inverse (Eq.≃-≡ $ inverse Lens≃Higher-lens))) ⟩□
(∃ λ l⁻¹ → l HLC.∘ l⁻¹ ≡ HLC.id b × l⁻¹ HLC.∘ l ≡ HLC.id b ) □
where
l′ = Higher-lens→Lens l
-- H.[ b ] A ≅ B implies [ b ] A ≅ᴱ B (assuming univalence).
≅→≅ᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
H.[ b ] A ≅ B → [ b ] A ≅ᴱ B
≅→≅ᴱ {A = A} {B = B} b univ =
(∃ λ (l : H.Lens A B) → H.Has-quasi-inverse b l) ↝⟨ (Σ-map Higher-lens→Lens λ {l} →
Has-quasi-inverse→Has-quasi-inverseᴱ b univ l) ⟩□
(∃ λ (l : Lens A B) → Has-quasi-inverseᴱ b l) □
-- In erased contexts [ b ] A ≅ᴱ B is equivalent to H.[ b ] A ≅ B
-- (assuming univalence).
@0 ≅ᴱ≃≅ :
{A B : Set a}
(b : Block "id") →
Univalence a →
([ b ] A ≅ᴱ B) ≃ (H.[ b ] A ≅ B)
≅ᴱ≃≅ {A = A} {B = B} b univ =
(∃ λ (l : Lens A B) → Has-quasi-inverseᴱ b l) ↝⟨ Σ-cong-contra (inverse Lens≃Higher-lens) $
Has-quasi-inverseᴱ≃Has-quasi-inverse b univ ⟩□
(∃ λ (l : H.Lens A B) → H.Has-quasi-inverse b l) □
-- Lenses with quasi-inverses can be converted to equivalences with
-- erased proofs.
≅ᴱ→≃ᴱ : ∀ b → [ b ] A ≅ᴱ B → A ≃ᴱ B
≅ᴱ→≃ᴱ
⊠
(l@(⟨ _ , _ , _ ⟩) , l⁻¹@(⟨ _ , _ , _ ⟩) , [ l∘l⁻¹≡id , l⁻¹∘l≡id ]) =
EEq.↔→≃ᴱ
(get l)
(get l⁻¹)
(λ b → cong (λ l → get l b) l∘l⁻¹≡id)
(λ a → cong (λ l → get l a) l⁻¹∘l≡id)
where
open Lens
-- There is a logical equivalence between [ b ] A ≅ᴱ B and A ≃ᴱ B
-- (assuming univalence).
≅ᴱ⇔≃ᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
([ b ] A ≅ᴱ B) ⇔ (A ≃ᴱ B)
≅ᴱ⇔≃ᴱ {A = A} {B = B} b univ = record
{ to = ≅ᴱ→≃ᴱ b
; from = from b
}
where
from : ∀ b → A ≃ᴱ B → [ b ] A ≅ᴱ B
from b A≃B = l , l⁻¹ , [ l∘l⁻¹≡id b , l⁻¹∘l≡id b ]
where
l = ≃ᴱ→Lens′ A≃B
l⁻¹ = ≃ᴱ→Lens′ (inverse A≃B)
@0 l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹ ≡ id b
l∘l⁻¹≡id ⊠ = _↔_.from (equality-characterisation₂ univ)
( (Erased ∥ A ∥ × Erased ∥ B ∥ ↔⟨ inverse Erased-Σ↔Σ ⟩
Erased (∥ A ∥ × ∥ B ∥) ↔⟨ Erased-cong (
drop-⊤-left-× λ b →
inhabited⇒∥∥↔⊤ (∥∥-map (_≃ᴱ_.from A≃B) b)) ⟩□
Erased ∥ B ∥ □)
, λ _ → cong₂ _,_
([]-cong [ truncation-is-proposition _ _ ])
(_≃ᴱ_.right-inverse-of A≃B _)
)
@0 l⁻¹∘l≡id : ∀ b → l⁻¹ ∘ l ≡ id b
l⁻¹∘l≡id ⊠ = _↔_.from (equality-characterisation₂ univ)
( (Erased ∥ B ∥ × Erased ∥ A ∥ ↔⟨ inverse Erased-Σ↔Σ ⟩
Erased (∥ B ∥ × ∥ A ∥) ↔⟨ Erased-cong (
drop-⊤-left-× λ a →
inhabited⇒∥∥↔⊤ (∥∥-map (_≃ᴱ_.to A≃B) a)) ⟩
Erased ∥ A ∥ □)
, λ _ → cong₂ _,_
([]-cong [ truncation-is-proposition _ _ ])
(_≃ᴱ_.left-inverse-of A≃B _)
)
-- In erased contexts the right-to-left direction of ≅ᴱ⇔≃ᴱ is a right
-- inverse of the left-to-right direction.
@0 ≅ᴱ⇔≃ᴱ∘≅ᴱ⇔≃ᴱ :
{A B : Set a}
(b : Block "id")
(@0 univ : Univalence a)
(A≃B : A ≃ᴱ B) →
_⇔_.to (≅ᴱ⇔≃ᴱ b univ) (_⇔_.from (≅ᴱ⇔≃ᴱ b univ) A≃B) ≡ A≃B
≅ᴱ⇔≃ᴱ∘≅ᴱ⇔≃ᴱ ⊠ _ _ = EEq.to≡to→≡ ext (refl _)
-- There is not necessarily a split surjection from
-- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a
-- lens between types in the same universe (assuming univalence).
¬Is-equivalenceᴱ-get↠Has-quasi-inverseᴱ :
(b : Block "id") →
Univalence a →
¬ ({A B : Set a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ b l)
¬Is-equivalenceᴱ-get↠Has-quasi-inverseᴱ {a = a} b univ =
Stable-¬ _
[ ({A B : Set a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ b l) ↝⟨ (λ hyp → lemma hyp) ⟩
({A B : Set a}
(l : H.Lens A B) →
Is-equivalence (H.Lens.get l) ↠ H.Has-quasi-inverse b l) ↝⟨ H.¬Is-equivalence-get↠Has-quasi-inverse b univ ⟩□
⊥ □
]
where
@0 lemma : ∀ {A B : Set a} _ (l : H.Lens A B) → _
lemma hyp l@(H.⟨ _ , _ , _ ⟩) =
Is-equivalence (Lens.get (Higher-lens→Lens l)) ↝⟨ EEq.Is-equivalence≃Is-equivalenceᴱ ext ⟩
Is-equivalenceᴱ (Lens.get (Higher-lens→Lens l)) ↝⟨ hyp (Higher-lens→Lens l) ⟩
Has-quasi-inverseᴱ b (Higher-lens→Lens l) ↔⟨ Has-quasi-inverseᴱ≃Has-quasi-inverse b univ l ⟩□
H.Has-quasi-inverse b l □
-- There is not necessarily an equivalence with erased proofs from
-- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a
-- lens between types in the same universe (assuming univalence).
¬Is-equivalenceᴱ-get≃ᴱHas-quasi-inverseᴱ :
(b : Block "id") →
Univalence a →
¬ ({A B : Set a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ b l)
¬Is-equivalenceᴱ-get≃ᴱHas-quasi-inverseᴱ {a = a} b univ =
Stable-¬ _
[ ({A B : Set a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ b l) ↝⟨ (λ hyp l → _≃_.surjection $ EEq.≃ᴱ→≃ $ hyp l) ⟩
({A B : Set a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ b l) ↝⟨ ¬Is-equivalenceᴱ-get↠Has-quasi-inverseᴱ b univ ⟩□
⊥ □
]
-- See also ≃ᴱ≃ᴱ≅ᴱ below.
------------------------------------------------------------------------
-- Equivalences expressed using bi-invertibility for lenses
-- A form of equivalence between types, expressed using lenses.
open B public
renaming (_≊ᴱ_ to [_]_≊ᴱ_)
using (Has-left-inverseᴱ; Has-right-inverseᴱ; Is-bi-invertibleᴱ)
open BM public using (equality-characterisation-≊ᴱ)
-- H.Has-left-inverse b l implies
-- Has-left-inverseᴱ b (Higher-lens→Lens l) (assuming univalence).
Has-left-inverse→Has-left-inverseᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
(l : H.Lens A B) →
H.Has-left-inverse b l → Has-left-inverseᴱ b (Higher-lens→Lens l)
Has-left-inverse→Has-left-inverseᴱ b univ l =
(∃ λ l⁻¹ → l⁻¹ HLC.∘ l ≡ HLC.id b ) ↝⟨ (Σ-map Higher-lens→Lens λ {l⁻¹} eq →
[ ∘≡id→∘≡id b univ l⁻¹ l eq ]) ⟩□
(∃ λ l⁻¹ → Erased (l⁻¹ ∘ l′ ≡ id b)) □
where
l′ = Higher-lens→Lens l
-- In erased contexts Has-left-inverseᴱ b (Higher-lens→Lens l) is
-- equivalent to H.Has-left-inverse b l (assuming univalence).
@0 Has-left-inverseᴱ≃Has-left-inverse :
{A B : Set a}
(b : Block "id") →
Univalence a →
(l : H.Lens A B) →
Has-left-inverseᴱ b (Higher-lens→Lens l) ≃ H.Has-left-inverse b l
Has-left-inverseᴱ≃Has-left-inverse b univ l =
(∃ λ l⁻¹ → Erased (l⁻¹ ∘ l′ ≡ id b)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ l⁻¹ → l⁻¹ ∘ l′ ≡ id b ) ↝⟨ (inverse $
Σ-cong-contra Lens≃Higher-lens λ l⁻¹ →
≡⇒↝ _ (cong₂ _≡_ (l⁻¹∘l≡l⁻¹∘l univ l⁻¹ l)
(Higher-lens-id≡id b univ)) F.∘
inverse (Eq.≃-≡ $ inverse Lens≃Higher-lens)) ⟩□
(∃ λ l⁻¹ → l⁻¹ HLC.∘ l ≡ HLC.id b ) □
where
l′ = Higher-lens→Lens l
-- H.Has-right-inverse b l implies
-- Has-right-inverseᴱ b (Higher-lens→Lens l) (assuming univalence).
Has-right-inverse→Has-right-inverseᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
(l : H.Lens A B) →
H.Has-right-inverse b l → Has-right-inverseᴱ b (Higher-lens→Lens l)
Has-right-inverse→Has-right-inverseᴱ b univ l =
(∃ λ l⁻¹ → l HLC.∘ l⁻¹ ≡ HLC.id b ) ↝⟨ (Σ-map Higher-lens→Lens λ {l⁻¹} eq →
[ ∘≡id→∘≡id b univ l l⁻¹ eq ]) ⟩□
(∃ λ l⁻¹ → Erased (l′ ∘ l⁻¹ ≡ id b)) □
where
l′ = Higher-lens→Lens l
-- In erased contexts Has-right-inverseᴱ b (Higher-lens→Lens l) is
-- equivalent to H.Has-right-inverse b l (assuming univalence).
@0 Has-right-inverseᴱ≃Has-right-inverse :
{A B : Set a}
(b : Block "id") →
Univalence a →
(l : H.Lens A B) →
Has-right-inverseᴱ b (Higher-lens→Lens l) ≃ H.Has-right-inverse b l
Has-right-inverseᴱ≃Has-right-inverse b univ l =
(∃ λ l⁻¹ → Erased (l′ ∘ l⁻¹ ≡ id b)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ l⁻¹ → l′ ∘ l⁻¹ ≡ id b ) ↝⟨ (inverse $
Σ-cong-contra Lens≃Higher-lens λ l⁻¹ →
≡⇒↝ _ (cong₂ _≡_ (l∘l⁻¹≡l∘l⁻¹ univ l l⁻¹)
(Higher-lens-id≡id b univ)) F.∘
inverse (Eq.≃-≡ $ inverse Lens≃Higher-lens)) ⟩□
(∃ λ l⁻¹ → l HLC.∘ l⁻¹ ≡ HLC.id b ) □
where
l′ = Higher-lens→Lens l
-- H.Is-bi-invertible b l implies
-- Is-bi-invertibleᴱ b (Higher-lens→Lens l) (assuming univalence).
Is-bi-invertible→Is-bi-invertibleᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
(l : H.Lens A B) →
H.Is-bi-invertible b l → Is-bi-invertibleᴱ b (Higher-lens→Lens l)
Is-bi-invertible→Is-bi-invertibleᴱ b univ l =
H.Is-bi-invertible b l ↔⟨⟩
H.Has-left-inverse b l × H.Has-right-inverse b l ↝⟨ Σ-map (Has-left-inverse→Has-left-inverseᴱ b univ l)
(Has-right-inverse→Has-right-inverseᴱ b univ l) ⟩
Has-left-inverseᴱ b l′ × Has-right-inverseᴱ b l′ ↔⟨⟩
Is-bi-invertibleᴱ b l′ □
where
l′ = Higher-lens→Lens l
-- In erased contexts Is-bi-invertibleᴱ b (Higher-lens→Lens l) is
-- equivalent to H.Is-bi-invertible b l (assuming univalence).
@0 Is-bi-invertibleᴱ≃Is-bi-invertible :
{A B : Set a}
(b : Block "id") →
Univalence a →
(l : H.Lens A B) →
Is-bi-invertibleᴱ b (Higher-lens→Lens l) ≃ H.Is-bi-invertible b l
Is-bi-invertibleᴱ≃Is-bi-invertible b univ l =
Is-bi-invertibleᴱ b l′ ↔⟨⟩
Has-left-inverseᴱ b l′ × Has-right-inverseᴱ b l′ ↝⟨ Has-left-inverseᴱ≃Has-left-inverse b univ l
×-cong
Has-right-inverseᴱ≃Has-right-inverse b univ l ⟩
H.Has-left-inverse b l × H.Has-right-inverse b l ↔⟨⟩
H.Is-bi-invertible b l □
where
l′ = Higher-lens→Lens l
-- H.[ b ] A ≊ B implies [ b ] A ≊ᴱ B (assuming univalence).
≊→≊ᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
H.[ b ] A ≊ B → [ b ] A ≊ᴱ B
≊→≊ᴱ {A = A} {B = B} b univ =
(∃ λ (l : H.Lens A B) → H.Is-bi-invertible b l) ↝⟨ (Σ-map Higher-lens→Lens λ {l} →
Is-bi-invertible→Is-bi-invertibleᴱ b univ l) ⟩□
(∃ λ (l : Lens A B) → Is-bi-invertibleᴱ b l) □
-- In erased contexts [ b ] A ≊ᴱ B is equivalent to H.[ b ] A ≊ B
-- (assuming univalence).
@0 ≊ᴱ≃≊ :
{A B : Set a}
(b : Block "id") →
Univalence a →
([ b ] A ≊ᴱ B) ≃ (H.[ b ] A ≊ B)
≊ᴱ≃≊ {A = A} {B = B} b univ =
(∃ λ (l : Lens A B) → Is-bi-invertibleᴱ b l) ↝⟨ Σ-cong-contra (inverse Lens≃Higher-lens) $
Is-bi-invertibleᴱ≃Is-bi-invertible b univ ⟩□
(∃ λ (l : H.Lens A B) → H.Is-bi-invertible b l) □
-- Lenses with left inverses have propositional remainder types (in
-- erased contexts).
@0 Has-left-inverseᴱ→remainder-propositional :
(b : Block "id")
(l : Lens A B) →
Has-left-inverseᴱ b l →
Is-proposition (Lens.R l)
Has-left-inverseᴱ→remainder-propositional
⊠ l@(⟨ _ , _ , _ ⟩) (l⁻¹@(⟨ _ , _ , _ ⟩) , [ l⁻¹∘l≡id ]) =
$⟨ get≡id→remainder-propositional
(l⁻¹ ∘ l)
(λ a → cong (flip get a) l⁻¹∘l≡id) ⟩
Is-proposition (R (l⁻¹ ∘ l)) ↔⟨⟩
Is-proposition (R l × R l⁻¹) ↝⟨ H-level-×₁ (∥∥-map (remainder l⁻¹) ⊚ inhabited l) 1 ⟩□
Is-proposition (R l) □
where
open Lens
-- Lenses with right inverses have propositional remainder types (in
-- erased contexts).
@0 Has-right-inverseᴱ→remainder-propositional :
(b : Block "id")
(l : Lens A B) →
Has-right-inverseᴱ b l →
Is-proposition (Lens.R l)
Has-right-inverseᴱ→remainder-propositional
⊠ l@(⟨ _ , _ , _ ⟩) (l⁻¹@(⟨ _ , _ , _ ⟩) , [ l∘l⁻¹≡id ]) =
$⟨ get≡id→remainder-propositional
(l ∘ l⁻¹)
(λ a → cong (flip get a) l∘l⁻¹≡id) ⟩
Is-proposition (R (l ∘ l⁻¹)) ↔⟨⟩
Is-proposition (R l⁻¹ × R l) ↝⟨ H-level-×₂ (∥∥-map (remainder l⁻¹) ⊚ inhabited l) 1 ⟩□
Is-proposition (R l) □
where
open Lens
-- There is an equivalence with erased proofs between A ≃ᴱ B and
-- [ b ] A ≊ᴱ B (assuming univalence).
≃ᴱ≃ᴱ≊ᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
(A ≃ᴱ B) ≃ᴱ ([ b ] A ≊ᴱ B)
≃ᴱ≃ᴱ≊ᴱ {A = A} {B = B} b univ =
EEq.↔→≃ᴱ (to b) (from b) (to∘from b) (from∘to b)
where
open Lens
to : ∀ b → A ≃ᴱ B → [ b ] A ≊ᴱ B
to b = B.≅ᴱ→≊ᴱ b ⊚ _⇔_.from (≅ᴱ⇔≃ᴱ b univ)
from : ∀ b → [ b ] A ≊ᴱ B → A ≃ᴱ B
from b = _⇔_.to (≅ᴱ⇔≃ᴱ b univ) ⊚ _⇔_.from (BM.≅ᴱ⇔≊ᴱ b univ)
@0 to∘from : ∀ b A≊ᴱB → to b (from b A≊ᴱB) ≡ A≊ᴱB
to∘from b A≊ᴱB =
_≃_.from (equality-characterisation-≊ᴱ b univ _ _) $
_↔_.from (equality-characterisation₃ univ)
( ∥B∥≃R b A≊ᴱB
, lemma₁ b A≊ᴱB
, lemma₂ b A≊ᴱB
)
where
l′ : ∀ b (A≊ᴱB : [ b ] A ≊ᴱ B) → Lens A B
l′ b A≊ᴱB = proj₁ (to b (from b A≊ᴱB))
∥B∥≃R : ∀ b (A≊ᴱB@(l , _) : [ b ] A ≊ᴱ B) → Erased ∥ B ∥ ≃ R l
∥B∥≃R b (l , (l-inv@(l⁻¹ , _) , _)) = Eq.⇔→≃
(H-level-Erased 1 truncation-is-proposition)
R-prop
(PT.rec R-prop (remainder l ⊚ get l⁻¹) ⊚ erased)
(λ r → [ inhabited l r ])
where
R-prop = Has-left-inverseᴱ→remainder-propositional b l l-inv
lemma₁ :
∀ b (A≊ᴱB@(l , _) : [ b ] A ≊ᴱ B) a →
_≃_.to (∥B∥≃R b A≊ᴱB) (remainder (l′ b A≊ᴱB) a) ≡ remainder l a
lemma₁
⊠
( l@(⟨ _ , _ , _ ⟩)
, (l⁻¹@(⟨ _ , _ , _ ⟩) , [ l⁻¹∘l≡id ])
, (⟨ _ , _ , _ ⟩ , _)
) a =
remainder l (get l⁻¹ (get l a)) ≡⟨⟩
remainder l (get (l⁻¹ ∘ l) a) ≡⟨ cong (λ l′ → remainder l (get l′ a)) l⁻¹∘l≡id ⟩
remainder l (get (id ⊠) a) ≡⟨⟩
remainder l a ∎
lemma₂ :
∀ b (A≊ᴱB@(l , _) : [ b ] A ≊ᴱ B) a →
get (l′ b A≊ᴱB) a ≡ get l a
lemma₂ ⊠
(⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) _ =
refl _
@0 from∘to :
∀ b A≃B →
_⇔_.to (≅ᴱ⇔≃ᴱ b univ) (_⇔_.from (BM.≅ᴱ⇔≊ᴱ b univ)
(B.≅ᴱ→≊ᴱ b (_⇔_.from (≅ᴱ⇔≃ᴱ b univ) A≃B))) ≡
A≃B
from∘to ⊠ _ = EEq.to≡to→≡ ext (refl _)
-- The right-to-left direction of ≃ᴱ≃ᴱ≊ᴱ maps bi-invertible lenses to
-- their getter functions.
to-from-≃ᴱ≃ᴱ≊ᴱ≡get :
(b : Block "id")
(@0 univ : Univalence a)
(A≊ᴱB@(l , _) : [ b ] A ≊ᴱ B) →
_≃ᴱ_.to (_≃ᴱ_.from (≃ᴱ≃ᴱ≊ᴱ b univ) A≊ᴱB) ≡ Lens.get l
to-from-≃ᴱ≃ᴱ≊ᴱ≡get
⊠ _ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) =
refl _
-- A variant of ≃ᴱ≃ᴱ≊ᴱ that works even if A and B live in different
-- universes.
--
-- This kind of variant came up in a discussion with Andrea Vezzosi.
≃ᴱ≃ᴱ≊ᴱ′ :
{A : Set a} {B : Set b}
(b-id : Block "id") →
@0 Univalence (a ⊔ b) →
(A ≃ᴱ B) ≃ᴱ ([ b-id ] ↑ b A ≊ᴱ ↑ a B)
≃ᴱ≃ᴱ≊ᴱ′ {a = a} {b = b} {A = A} {B = B} b-id univ =
A ≃ᴱ B ↝⟨ inverse $ EEq.≃ᴱ-cong ext (from-isomorphism Bijection.↑↔)
(from-isomorphism Bijection.↑↔) ⟩
↑ b A ≃ᴱ ↑ a B ↝⟨ ≃ᴱ≃ᴱ≊ᴱ b-id univ ⟩□
[ b-id ] ↑ b A ≊ᴱ ↑ a B □
-- The right-to-left direction of ≃ᴱ≃ᴱ≊ᴱ′ maps bi-invertible lenses to a
-- variant of their getter functions.
to-from-≃ᴱ≃ᴱ≊ᴱ′≡get :
{A : Set a} {B : Set b}
(b-id : Block "id")
(univ : Univalence (a ⊔ b)) →
(A≊ᴱB@(l , _) : [ b-id ] ↑ b A ≊ᴱ ↑ a B) →
_≃ᴱ_.to (_≃ᴱ_.from (≃ᴱ≃ᴱ≊ᴱ′ b-id univ) A≊ᴱB) ≡
lower ⊚ Lens.get l ⊚ lift
to-from-≃ᴱ≃ᴱ≊ᴱ′≡get
⊠ _ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) =
refl _
-- The getter function of a bi-invertible lens is an equivalence with
-- erased proofs (assuming univalence).
Is-bi-invertibleᴱ→Is-equivalenceᴱ-get :
{A : Set a}
(b : Block "id") →
@0 Univalence a →
(l : Lens A B) →
Is-bi-invertibleᴱ b l → Is-equivalenceᴱ (Lens.get l)
Is-bi-invertibleᴱ→Is-equivalenceᴱ-get
b@⊠ univ l@(⟨ _ , _ , _ ⟩)
is-bi-inv@((⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) =
_≃ᴱ_.is-equivalence (_≃ᴱ_.from (≃ᴱ≃ᴱ≊ᴱ b univ) (l , is-bi-inv))
-- If l is a lens between types in the same universe, then there is an
-- equivalence with erased proofs between "l is bi-invertible (with
-- erased proofs)" and "the getter of l is an equivalence (with erased
-- proofs)" (assuming univalence).
Is-bi-invertible≃Is-equivalence-get :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
(l : Lens A B) →
Is-bi-invertibleᴱ b l ≃ᴱ Is-equivalenceᴱ (Lens.get l)
Is-bi-invertible≃Is-equivalence-get b univ l = EEq.⇔→≃ᴱ
(BM.Is-bi-invertibleᴱ-propositional b univ l)
(EEq.Is-equivalenceᴱ-propositional ext _)
(Is-bi-invertibleᴱ→Is-equivalenceᴱ-get b univ l)
(λ is-equiv →
let l′ = ≃ᴱ→Lens′ EEq.⟨ get l , is-equiv ⟩ in
$⟨ proj₂ (_≃ᴱ_.to (≃ᴱ≃ᴱ≊ᴱ b univ) EEq.⟨ _ , is-equiv ⟩) ⟩
Is-bi-invertibleᴱ b l′ ↝⟨ subst (λ ([ l ]) → Is-bi-invertibleᴱ b l) $ sym $
[]-cong [ get-equivalence→≡≃ᴱ→Lens′ univ l is-equiv ] ⟩□
Is-bi-invertibleᴱ b l □)
where
open Lens
-- If A is a set, then there is an equivalence with erased proofs
-- between [ b ] A ≊ᴱ B and [ b ] A ≅ᴱ B (assuming univalence).
≊ᴱ≃ᴱ≅ᴱ :
{A B : Set a}
(b : Block "id") →
@0 Univalence a →
@0 Is-set A →
([ b ] A ≊ᴱ B) ≃ᴱ ([ b ] A ≅ᴱ B)
≊ᴱ≃ᴱ≅ᴱ b univ A-set =
∃-cong λ _ →
BM.Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-domain
b univ
(Is-set-closed-domain univ A-set)
-- If A is a set, then there is an equivalence with erased proofs between A ≃ᴱ B and
-- [ b ] A ≅ᴱ B (assuming univalence).
≃ᴱ≃ᴱ≅ᴱ :
{A B : Set a}
(b : Block "≃ᴱ≃ᴱ≅ᴱ") →
@0 Univalence a →
@0 Is-set A →
(A ≃ᴱ B) ≃ᴱ ([ b ] A ≅ᴱ B)
≃ᴱ≃ᴱ≅ᴱ {A = A} {B = B} b@⊠ univ A-set =
A ≃ᴱ B ↝⟨ ≃ᴱ≃ᴱ≊ᴱ b univ ⟩
[ b ] A ≊ᴱ B ↝⟨ ≊ᴱ≃ᴱ≅ᴱ b univ A-set ⟩□
[ b ] A ≅ᴱ B □
-- In erased contexts one can prove that ≃ᴱ≃ᴱ≅ᴱ maps identity to
-- identity.
@0 ≃ᴱ≃ᴱ≅ᴱ-id≡id :
{A : Set a}
(b : Block "≃ᴱ≃ᴱ≅ᴱ")
(univ : Univalence a)
(A-set : Is-set A) →
proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≅ᴱ b univ A-set) F.id) ≡ id b
≃ᴱ≃ᴱ≅ᴱ-id≡id ⊠ univ _ =
_↔_.from (equality-characterisation₂ univ)
(F.id , λ _ → refl _)
|
{
"alphanum_fraction": 0.4759829242,
"avg_line_length": 37.6578059072,
"ext": "agda",
"hexsha": "ce602a6bc9b80d899389512fe132ed654e4d5ccb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Saizan/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Saizan/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Erased.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Saizan/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Erased.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 34394,
"size": 89249
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Cylinder.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.HITs.PropositionalTruncation
import Cubical.Data.Everything as Data
open Data hiding (inl; inr)
open import Cubical.HITs.Interval
-- Cylinder A is a cylinder object in the category of cubical types.
--
-- https://ncatlab.org/nlab/show/cylinder+object
data Cylinder {ℓ} (A : Type ℓ) : Type ℓ where
inl : A → Cylinder A
inr : A → Cylinder A
cross : ∀ x → inl x ≡ inr x
-- Dual to this is the cocylinder or path space object.
--
-- https://ncatlab.org/nlab/show/path+space+object
Cocylinder : ∀ {ℓ} → Type ℓ → Type ℓ
Cocylinder A = Interval → A
module _ {ℓ} {A : Type ℓ} where
-- The cylinder is part of a factorization of the obvious mapping
-- of type A ⊎ A → A into a pair of mappings:
--
-- A ⊎ A → Cylinder A ≃ A
--
-- include is the first part of the factorization.
include : A ⊎ A → Cylinder A
include (Data.inl x) = inl x
include (Data.inr x) = inr x
-- The above inclusion is surjective
includeSurjective : ∀ c → ∥ Σ[ s ∈ A ⊎ A ] include s ≡ c ∥
includeSurjective (inl x) = ∣ Data.inl x , refl ∣
includeSurjective (inr x) = ∣ Data.inr x , refl ∣
includeSurjective (cross x i) =
squash
∣ Data.inl x , (λ j → cross x (i ∧ j)) ∣
∣ Data.inr x , (λ j → cross x (i ∨ ~ j)) ∣
i
elimCyl
: ∀{ℓ'} {B : Cylinder A → Type ℓ'}
→ (f : (x : A) → B (inl x))
→ (g : (x : A) → B (inr x))
→ (p : ∀ x → PathP (λ i → B (cross x i)) (f x) (g x))
→ (c : Cylinder A) → B c
elimCyl f _ _ (inl x) = f x
elimCyl _ g _ (inr x) = g x
elimCyl _ _ p (cross x i) = p x i
private
out : Cylinder A → A
out (inl x) = x
out (inr x) = x
out (cross x i) = x
inl-out : (c : Cylinder A) → inl (out c) ≡ c
inl-out (inl x) = refl
inl-out (inr x) = cross x
inl-out (cross x i) = λ j → cross x (i ∧ j)
out-inl : ∀(x : A) → out (inl x) ≡ x
out-inl x = refl
-- The second part of the factorization above.
CylinderA≃A : Cylinder A ≃ A
CylinderA≃A = isoToEquiv (iso out inl out-inl inl-out)
-- The cocylinder has a similar equivalence that is part
-- of factorizing the diagonal mapping.
private
inco : A → Cocylinder A
inco x _ = x
outco : Cocylinder A → A
outco f = f zero
A→CocylinderA→A : (x : A) → outco (inco x) ≡ x
A→CocylinderA→A x = refl
CocylinderA→A→CocylinderA : (c : Cocylinder A) → inco (outco c) ≡ c
CocylinderA→A→CocylinderA c j zero = c zero
CocylinderA→A→CocylinderA c j one = c (seg j)
CocylinderA→A→CocylinderA c j (seg i) = c (seg (j ∧ i))
A≃CocylinderA : A ≃ Cocylinder A
A≃CocylinderA =
isoToEquiv (iso inco outco CocylinderA→A→CocylinderA A→CocylinderA→A)
project : Cocylinder A → A × A
project c = c zero , c one
-- Since we can construct cylinders for every type, Cylinder actually
-- constitutes a cylinder functor:
--
-- https://ncatlab.org/nlab/show/cylinder+functor
--
-- e₀ = inl
-- e₁ = inr
-- σ = out
module Functorial where
private
variable
ℓa ℓb ℓc : Level
A : Type ℓa
B : Type ℓb
C : Type ℓc
mapCylinder : (A → B) → Cylinder A → Cylinder B
mapCylinder f (inl x) = inl (f x)
mapCylinder f (inr x) = inr (f x)
mapCylinder f (cross x i) = cross (f x) i
mapCylinderId : mapCylinder (λ(x : A) → x) ≡ (λ x → x)
mapCylinderId i (inl x) = inl x
mapCylinderId i (inr x) = inr x
mapCylinderId i (cross x j) = cross x j
mapCylinder∘
: (f : A → B) → (g : B → C)
→ mapCylinder (λ x → g (f x)) ≡ (λ x → mapCylinder g (mapCylinder f x))
mapCylinder∘ f g i (inl x) = inl (g (f x))
mapCylinder∘ f g i (inr x) = inr (g (f x))
mapCylinder∘ f g i (cross x j) = cross (g (f x)) j
-- There is an adjunction between the cylinder and coyclinder
-- functors.
--
-- Cylinder ⊣ Cocylinder
adj₁ : (Cylinder A → B) → A → Cocylinder B
adj₁ f x zero = f (inl x)
adj₁ f x one = f (inr x)
adj₁ f x (seg i) = f (cross x i)
adj₂ : (A → Cocylinder B) → Cylinder A → B
adj₂ g (inl x) = g x zero
adj₂ g (inr x) = g x one
adj₂ g (cross x i) = g x (seg i)
adj₁₂ : (g : A → Cocylinder B) → adj₁ (adj₂ g) ≡ g
adj₁₂ g _ x zero = g x zero
adj₁₂ g _ x one = g x one
adj₁₂ g _ x (seg i) = g x (seg i)
adj₂₁ : (f : Cylinder A → B) → adj₂ (adj₁ f) ≡ f
adj₂₁ f j (inl x) = f (inl x)
adj₂₁ f j (inr x) = f (inr x)
adj₂₁ f j (cross x i) = f (cross x i)
module IntervalEquiv where
-- There is an equivalence between the interval and the
-- cylinder over the unit type.
Interval→CylinderUnit : Interval → Cylinder Unit
Interval→CylinderUnit zero = inl _
Interval→CylinderUnit one = inr _
Interval→CylinderUnit (seg i) = cross _ i
CylinderUnit→Interval : Cylinder Unit → Interval
CylinderUnit→Interval (inl _) = zero
CylinderUnit→Interval (inr _) = one
CylinderUnit→Interval (cross _ i) = seg i
Interval→CylinderUnit→Interval
: ∀ i → CylinderUnit→Interval (Interval→CylinderUnit i) ≡ i
Interval→CylinderUnit→Interval zero = refl
Interval→CylinderUnit→Interval one = refl
Interval→CylinderUnit→Interval (seg i) = refl
CylinderUnit→Interval→CylinderUnit
: ∀ c → Interval→CylinderUnit (CylinderUnit→Interval c) ≡ c
CylinderUnit→Interval→CylinderUnit (inl _) = refl
CylinderUnit→Interval→CylinderUnit (inr _) = refl
CylinderUnit→Interval→CylinderUnit (cross _ i) = refl
CylinderUnit≃Interval : Cylinder Unit ≃ Interval
CylinderUnit≃Interval =
isoToEquiv (iso CylinderUnit→Interval Interval→CylinderUnit Interval→CylinderUnit→Interval CylinderUnit→Interval→CylinderUnit)
-- More generally, there is an equivalence between the cylinder
-- over any type A and the product of A and the interval.
module _ {ℓ} {A : Type ℓ} where
private
Cyl : Type ℓ
Cyl = A × Interval
CylinderA→A×Interval : Cylinder A → Cyl
CylinderA→A×Interval (inl x) = x , zero
CylinderA→A×Interval (inr x) = x , one
CylinderA→A×Interval (cross x i) = x , seg i
A×Interval→CylinderA : Cyl → Cylinder A
A×Interval→CylinderA (x , zero) = inl x
A×Interval→CylinderA (x , one) = inr x
A×Interval→CylinderA (x , seg i) = cross x i
A×Interval→CylinderA→A×Interval
: ∀ c → CylinderA→A×Interval (A×Interval→CylinderA c) ≡ c
A×Interval→CylinderA→A×Interval (x , zero) = refl
A×Interval→CylinderA→A×Interval (x , one) = refl
A×Interval→CylinderA→A×Interval (x , seg i) = refl
CylinderA→A×Interval→CylinderA
: ∀ c → A×Interval→CylinderA (CylinderA→A×Interval c) ≡ c
CylinderA→A×Interval→CylinderA (inl x) = refl
CylinderA→A×Interval→CylinderA (inr x) = refl
CylinderA→A×Interval→CylinderA (cross x i) = refl
CylinderA≃A×Interval : Cylinder A ≃ Cyl
CylinderA≃A×Interval =
isoToEquiv
(iso CylinderA→A×Interval
A×Interval→CylinderA
A×Interval→CylinderA→A×Interval
CylinderA→A×Interval→CylinderA)
-- The cylinder is also the pushout of the identity on A with itself.
module Push {ℓ} {A : Type ℓ} where
open import Cubical.HITs.Pushout
private
Push : Type ℓ
Push = Pushout (λ(x : A) → x) (λ x → x)
Cyl : Type ℓ
Cyl = Cylinder A
Cylinder→Pushout : Cyl → Push
Cylinder→Pushout (inl x) = inl x
Cylinder→Pushout (inr x) = inr x
Cylinder→Pushout (cross x i) = push x i
Pushout→Cylinder : Push → Cyl
Pushout→Cylinder (inl x) = inl x
Pushout→Cylinder (inr x) = inr x
Pushout→Cylinder (push x i) = cross x i
Pushout→Cylinder→Pushout : ∀ p → Cylinder→Pushout (Pushout→Cylinder p) ≡ p
Pushout→Cylinder→Pushout (inl x) = refl
Pushout→Cylinder→Pushout (inr x) = refl
Pushout→Cylinder→Pushout (push x i) = refl
Cylinder→Pushout→Cylinder : ∀ c → Pushout→Cylinder (Cylinder→Pushout c) ≡ c
Cylinder→Pushout→Cylinder (inl x) = refl
Cylinder→Pushout→Cylinder (inr x) = refl
Cylinder→Pushout→Cylinder (cross x i) = refl
Pushout≃Cylinder : Push ≃ Cyl
Pushout≃Cylinder =
isoToEquiv
(iso Pushout→Cylinder
Cylinder→Pushout
Cylinder→Pushout→Cylinder
Pushout→Cylinder→Pushout)
|
{
"alphanum_fraction": 0.6373424691,
"avg_line_length": 30.6104868914,
"ext": "agda",
"hexsha": "0d1dfc6f0bd0a10b5af550998d07bb75fed46d33",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Cylinder/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Cylinder/Base.agda",
"max_line_length": 130,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Cylinder/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2971,
"size": 8173
}
|
module Editor where
open import Agda.Builtin.FromNat
open import BasicIO
open import Data.Bool
open import Data.Char
open import Data.List hiding (_++_)
open import Data.String
open import Data.Unit
open import Function
open import Int
open import Terminal
readTimeout : Int
readTimeout = 0
readMinChars : Int
readMinChars = 1
attrUpdates : TerminalAttributes → TerminalAttributes
attrUpdates =
(flip withoutMode processInput)
∘ (flip withoutMode enableEcho)
∘ (flip withTime readTimeout)
∘ (flip withMinInput readMinChars)
handleInput : String → IO Bool
handleInput "q" = return false
handleInput cs = termWrite cs >>= const (return true)
parsePath : List (List Char) → IO (List Char)
parsePath (path ∷ []) = return path
parsePath _ = fail (toList "Exactly one file path argument required")
{-# NON_TERMINATING #-}
mainLoop : IO ⊤
mainLoop = do
input ← termRead
continue ← handleInput input
if continue then mainLoop else return tt
setupAndRun : IO ⊤
setupAndRun = do
args ← getArgs
path ← parsePath args
bracket
(termWrite (hideCursor ++ altScreenEnable) >> return tt)
(const (termWrite (altScreenDisable ++ showCursor)))
(const mainLoop)
main : IO ⊤
main = withUpdatedAttributes attrUpdates setupAndRun
|
{
"alphanum_fraction": 0.7489975942,
"avg_line_length": 23.5283018868,
"ext": "agda",
"hexsha": "f651415abb1a2e7ce114557ade0f969f8f336c9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda-editor",
"max_forks_repo_path": "src/Editor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda-editor",
"max_issues_repo_path": "src/Editor.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda-editor",
"max_stars_repo_path": "src/Editor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 327,
"size": 1247
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.UnivalenceId where
open import Cubical.Core.Glue
renaming ( isEquiv to isEquivPath
; _≃_ to EquivPath
; equivFun to equivFunPath )
open import Cubical.Core.Id
open import Cubical.Foundations.Prelude public
hiding ( _≡_ ; _≡⟨_⟩_ ; _∎ )
open import Cubical.Foundations.Id
open import Cubical.Foundations.Equiv
renaming ( isPropIsEquiv to isPropIsEquivPath )
open import Cubical.Foundations.Univalence
renaming ( EquivContr to EquivContrPath )
open import Cubical.Foundations.Isomorphism
path≡Id : ∀ {ℓ} {A B : Type ℓ} → Path _ (Path _ A B) (Id A B)
path≡Id = isoToPath (iso pathToId idToPath idToPathToId pathToIdToPath )
equivPathToEquivPath : ∀ {ℓ} {A : Type ℓ} {B : Type ℓ} → (p : EquivPath A B) →
Path _ (equivToEquivPath (equivPathToEquiv p)) p
equivPathToEquivPath (f , p) i =
( f , isPropIsEquivPath f (equivToEquivPath (equivPathToEquiv (f , p)) .snd) p i )
equivPath≡Equiv : ∀ {ℓ} {A B : Type ℓ} → Path _ (EquivPath A B) (A ≃ B)
equivPath≡Equiv {ℓ} = isoToPath (iso (equivPathToEquiv {ℓ}) equivToEquivPath equivToEquiv equivPathToEquivPath)
univalenceId : ∀ {ℓ} {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B)
univalenceId {ℓ} {A = A} {B = B} = equivPathToEquiv rem
where
rem0 : Path _ (Lift (EquivPath A B)) (Lift (A ≃ B))
rem0 = congPath Lift equivPath≡Equiv
rem1 : Path _ (Id A B) (Lift (A ≃ B))
rem1 i = hcomp (λ j → λ { (i = i0) → path≡Id {A = A} {B = B} j
; (i = i1) → rem0 j })
(univalencePath {A = A} {B = B} i)
rem : EquivPath (Id A B) (A ≃ B)
rem = compEquiv (eqweqmap rem1) (invEquiv LiftEquiv)
|
{
"alphanum_fraction": 0.6358823529,
"avg_line_length": 39.5348837209,
"ext": "agda",
"hexsha": "0d74e1bb2ddf616ce70c1429f79ac02225c9ac70",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/UnivalenceId.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/UnivalenceId.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/UnivalenceId.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 637,
"size": 1700
}
|
module Ual.Void where
data ⊥ : Set where
¬ : Set → Set
¬ p = p → ⊥
|
{
"alphanum_fraction": 0.5507246377,
"avg_line_length": 9.8571428571,
"ext": "agda",
"hexsha": "9d4fcef32b685c92f07b0098a093a689bcb091d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "brunoczim/ual",
"max_forks_repo_path": "Void.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "brunoczim/ual",
"max_issues_repo_path": "Void.agda",
"max_line_length": 21,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "brunoczim/ual",
"max_stars_repo_path": "Void.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 27,
"size": 69
}
|
module Arity where
open import OscarPrelude
record Arity : Set
where
constructor ⟨_⟩
field
arity : Nat
open Arity public
instance EqArity : Eq Arity
Eq._==_ EqArity _ = decEq₁ (cong arity) ∘ (_≟_ on arity $ _)
|
{
"alphanum_fraction": 0.6964285714,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "348a98e0f9a20d600a46cf7afc2ae0963f91eadb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Arity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Arity.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Arity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 76,
"size": 224
}
|
open import Common.Reflect
open import Common.Prelude
data Z : Set where
zero : Z
foo : QName → Bool → Bool
foo (quote Nat.zero) b = {!b!}
foo _ _ = false
|
{
"alphanum_fraction": 0.66875,
"avg_line_length": 14.5454545455,
"ext": "agda",
"hexsha": "0b770b23d6b49038c99f1e4ee4673d0edef3e434",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/interaction/Issue619.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/interaction/Issue619.agda",
"max_line_length": 30,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/interaction/Issue619.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 50,
"size": 160
}
|
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Leftunit
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transitivity
open import Oscar.Class.Transleftidentity
module Oscar.Class.Transleftidentity.ToLeftunit where
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯}
{ℓ} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ}
{ε : Reflexivity.type _∼_}
{transitivity : Transitivity.type _∼_}
where
instance
toLeftunitFromTransleftidentity :
⦃ _ : Transleftidentity.class _∼_ _∼̇_ ε transitivity ⦄
→ ∀ {x y} {f : x ∼ y} → Leftunit.class _∼̇_ ε (flip transitivity) f
toLeftunitFromTransleftidentity .⋆ = transleftidentity
|
{
"alphanum_fraction": 0.690936107,
"avg_line_length": 29.2608695652,
"ext": "agda",
"hexsha": "53aa3d8f69e51d639420f0de3a4ffaa7e636a1d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transleftidentity/ToLeftunit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transleftidentity/ToLeftunit.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transleftidentity/ToLeftunit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 244,
"size": 673
}
|
------------------------------------------------------------------------
-- A map function for the substitutions
------------------------------------------------------------------------
open import Data.Universe.Indexed
module deBruijn.Substitution.Function.Map
{i u e} {Uni : IndexedUniverse i u e} where
import Axiom.Extensionality.Propositional as E
import deBruijn.Context; open deBruijn.Context Uni
open import deBruijn.Substitution.Function.Basics
open import Function using (_$_)
open import Level using (_⊔_)
import Relation.Binary.PropositionalEquality as P
private
module Dummy
{t₁} {T₁ : Term-like t₁}
{t₂} {T₂ : Term-like t₂}
where
open Term-like T₁ using ()
renaming (_⊢_ to _⊢₁_; _≅-⊢_ to _≅-⊢₁_; [_] to [_]₁)
open Term-like T₂ using () renaming (_≅-⊢_ to _≅-⊢₂_)
-- Map.
map : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} →
[ T₁ ⟶ T₂ ] ρ̂₂ → (ρ₁ : Sub T₁ ρ̂₁) → Sub T₂ (ρ̂₁ ∘̂ ρ̂₂)
map f ρ₁ = f [∘] ρ₁
abstract
-- An unfolding lemma.
map-▻ :
E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t₂) →
∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {σ}
(f : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ : Sub T₁ ρ̂₁) t →
map f (ρ ▻⇨[ σ ] t) ≅-⇨ map f ρ ▻⇨[ σ ] f · t
map-▻ ext {Γ} {σ = σ} f ρ t = extensionality ext P.refl lemma
where
lemma : ∀ {τ} (x : Γ ▻ σ ∋ τ) →
f · (x /∋ (ρ ▻⇨ t)) ≅-⊢₂ x /∋ (map f ρ ▻⇨ f · t)
lemma zero = P.refl
lemma (suc x) = P.refl
-- A congruence lemma.
map-cong : ∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁}
{f₁ : [ T₁ ⟶ T₂ ] ρ̂₂₁} {ρ₁ : Sub T₁ ρ̂₁₁}
{Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂}
{f₂ : [ T₁ ⟶ T₂ ] ρ̂₂₂} {ρ₂ : Sub T₁ ρ̂₁₂} →
f₁ ≅-⟶ f₂ → ρ₁ ≅-⇨ ρ₂ → map f₁ ρ₁ ≅-⇨ map f₂ ρ₂
map-cong {f₁ = _ , _} {ρ₁ = _ , _} {f₂ = ._ , _} {ρ₂ = ._ , _}
[ P.refl ] [ P.refl ] = [ P.refl ]
abstract
-- Variants which only require that the functions are
-- extensionally equal.
map-cong-ext₁ : E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t₂) →
∀ {Γ₁ Δ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ} {ρ̂₂₁ : Δ ⇨̂ Ε₁}
{f₁ : [ T₁ ⟶ T₂ ] ρ̂₂₁} {ρ₁ : Sub T₁ ρ̂₁₁}
{Γ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ} {ρ̂₂₂ : Δ ⇨̂ Ε₂}
{f₂ : [ T₁ ⟶ T₂ ] ρ̂₂₂} {ρ₂ : Sub T₁ ρ̂₁₂} →
Ε₁ ≅-Ctxt Ε₂ →
(∀ {σ} (t : Δ ⊢₁ σ) → f₁ · t ≅-⊢₂ f₂ · t) →
ρ₁ ≅-⇨ ρ₂ → map f₁ ρ₁ ≅-⇨ map f₂ ρ₂
map-cong-ext₁ ext {ρ₁ = ρ} {ρ₂ = ._ , _} Ε₁≅Ε₂ f₁≅f₂ [ P.refl ] =
extensionality ext Ε₁≅Ε₂ (λ x → f₁≅f₂ (x /∋ ρ))
map-cong-ext₂ : E.Extensionality (i ⊔ u ⊔ e) (i ⊔ u ⊔ e ⊔ t₂) →
∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁}
{f₁ : [ T₁ ⟶ T₂ ] ρ̂₂₁} {ρ₁ : Sub T₁ ρ̂₁₁}
{Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂}
{f₂ : [ T₁ ⟶ T₂ ] ρ̂₂₂} {ρ₂ : Sub T₁ ρ̂₁₂} →
Δ₁ ≅-Ctxt Δ₂ → Ε₁ ≅-Ctxt Ε₂ →
(∀ {σ₁ σ₂} {t₁ : Δ₁ ⊢₁ σ₁} {t₂ : Δ₂ ⊢₁ σ₂} →
t₁ ≅-⊢₁ t₂ → f₁ · t₁ ≅-⊢₂ f₂ · t₂) →
ρ₁ ≅-⇨ ρ₂ → map f₁ ρ₁ ≅-⇨ map f₂ ρ₂
map-cong-ext₂ ext P.refl Ε₁≅Ε₂ f₁≅f₂ ρ₁≅ρ₂ =
map-cong-ext₁ ext Ε₁≅Ε₂ (λ t → f₁≅f₂ (P.refl {x = [ t ]₁})) ρ₁≅ρ₂
-- Some sort of naturality statement for _/∋_. (Note that this lemma
-- holds definitionally. This is not the case for the corresponding
-- lemma in deBruijn.Substitution.Data.Map.)
/∋-map : ∀ {Γ Δ Ε σ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} →
(x : Γ ∋ σ) (f : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ : Sub T₁ ρ̂₁) →
x /∋ map f ρ ≅-⊢₂ f · (x /∋ ρ)
/∋-map x f ρ = P.refl
open Dummy public
-- Map is functorial.
map-[id] : ∀ {t} {T : Term-like t} {Γ Δ} {ρ̂ : Γ ⇨̂ Δ}
(ρ : Sub T ρ̂) →
map ([id] {T = T}) ρ ≅-⇨ ρ
map-[id] = [id]-[∘]
map-[∘] :
∀ {t₁} {T₁ : Term-like t₁}
{t₂} {T₂ : Term-like t₂}
{t₃} {T₃ : Term-like t₃}
{Γ Δ Ε Ζ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {ρ̂₃ : Ε ⇨̂ Ζ}
(f₂ : [ T₂ ⟶ T₃ ] ρ̂₃) (f₁ : [ T₁ ⟶ T₂ ] ρ̂₂)
(ρ : Sub T₁ ρ̂₁) →
map (f₂ [∘] f₁) ρ ≅-⇨ map f₂ (map f₁ ρ)
map-[∘] f₂ f₁ ρ = sym-⟶ $ [∘]-[∘] f₂ f₁ ρ
|
{
"alphanum_fraction": 0.4264846743,
"avg_line_length": 36.6315789474,
"ext": "agda",
"hexsha": "474d7ae5cecab42ea448a878a4035b304d92f8cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "deBruijn/Substitution/Function/Map.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "deBruijn/Substitution/Function/Map.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "deBruijn/Substitution/Function/Map.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 2104,
"size": 4176
}
|
{-# OPTIONS --sized-types #-}
module SList.Properties (A : Set) where
open import Data.List
open import List.Permutation.Base A
open import SList
lemma-unsize-size : (xs : List A) → xs ∼ unsize A (size A xs)
lemma-unsize-size [] = ∼[]
lemma-unsize-size (x ∷ xs) = ∼x /head /head (lemma-unsize-size xs)
|
{
"alphanum_fraction": 0.6699029126,
"avg_line_length": 22.0714285714,
"ext": "agda",
"hexsha": "c7afcac6214f57a1f3c81c916c07af15e402135b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SList/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SList/Properties.agda",
"max_line_length": 67,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SList/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 95,
"size": 309
}
|
open import Relation.Unary using ( ∅ ; _∪_ )
open import Web.Semantic.DL.Concept using ( Concept )
open import Web.Semantic.DL.Role using ( Role )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.Util using ( Subset ; ⁅_⁆ )
module Web.Semantic.DL.TBox where
infixl 5 _⊑₁_ _⊑₂_
infixr 4 _,_
data TBox (Σ : Signature) : Set where
ε : TBox Σ
_,_ : (T U : TBox Σ) → TBox Σ
_⊑₁_ : (C D : Concept Σ) → TBox Σ
_⊑₂_ : (Q R : Role Σ) → TBox Σ
Ref : (R : Role Σ) → TBox Σ
Irr : (R : Role Σ) → TBox Σ
Tra : (R : Role Σ) → TBox Σ
Dis : (Q R : Role Σ) → TBox Σ
Axioms : ∀ {Σ} → TBox Σ → Subset (TBox Σ)
Axioms ε = ∅
Axioms (T , U) = (Axioms T) ∪ (Axioms U)
Axioms (C ⊑₁ D) = ⁅ C ⊑₁ D ⁆
Axioms (Q ⊑₂ R) = ⁅ Q ⊑₂ R ⁆
Axioms (Ref R) = ⁅ Ref R ⁆
Axioms (Irr R) = ⁅ Irr R ⁆
Axioms (Tra R) = ⁅ Tra R ⁆
Axioms (Dis Q R) = ⁅ Dis Q R ⁆
|
{
"alphanum_fraction": 0.5760992108,
"avg_line_length": 28.6129032258,
"ext": "agda",
"hexsha": "7bb3d281c4e5fca19d512dfd7917d4ae7018752a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/TBox.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/TBox.agda",
"max_line_length": 57,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/TBox.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 422,
"size": 887
}
|
module GUIgeneric.GUIFeatures where
open import GUIgeneric.Prelude
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib
open import StateSizedIO.GUI.WxGraphicsLibLevel3
open Interfaceˢ public
-- Components
--
frameAndOKButton : ComponentEls _
frameAndOKButton = add (create-button "OK button") create-frame notOptimzed
exampleOneButton : Frame
exampleOneButton = frameAndOKButton
exampleTwoButtons : Frame
exampleTwoButtons = add (create-button "Cancel button") frameAndOKButton notOptimzed
exampleThreeButtons : Frame
exampleThreeButtons = add (create-button "Cancel button") (frameAndOKButton) notOptimzed
getFrame : Frame → ComponentEls frame
getFrame (createC tt) = create-frame
getFrame (add' buttonFrame f f₁ _) = f₁
data StateV : Set where
s0 s1 s2 : StateV
data StateTea : Set where
s0 s1 s2 s3 : StateTea
data FeatureTea : Set where
yesTea noTea : FeatureTea
data FeatureFree : Set where
yesFree noFree : FeatureFree
data FeatureCancel : Set where
yesCancel noCancel : FeatureCancel
record FeatureVendingMachine (BaseState : Set) : Set₁ where
field Features : Set
AddState : Set
guiVendingMachine : (f : Features) → BaseState ⊎ AddState → Frame
NewState : Set
NewState = BaseState ⊎ AddState
open FeatureVendingMachine public
base : FeatureVendingMachine StateV
base .Features = ⊤
base .AddState = ⊥
base .guiVendingMachine f (inj₁ s0) = exampleOneButton
base .guiVendingMachine f (inj₁ s1) = exampleOneButton
base .guiVendingMachine f (inj₁ s2) = exampleTwoButtons
base .guiVendingMachine f (inj₂ ())
upgradeFeatureVM : (baseState : Set)(vm : FeatureVendingMachine baseState)
→ FeatureVendingMachine (baseState ⊎ vm .AddState)
upgradeFeatureVM baseState vm .Features = vm .Features
upgradeFeatureVM baseState vm .AddState = ⊥
upgradeFeatureVM baseState vm .guiVendingMachine f (inj₁ (inj₁ s)) = vm .guiVendingMachine f (inj₁ s)
upgradeFeatureVM baseState vm .guiVendingMachine f (inj₁ (inj₂ s)) = vm .guiVendingMachine f (inj₂ s)
upgradeFeatureVM baseState vm .guiVendingMachine f (inj₂ ())
changeBaseState : (baseState : Set)(vm : FeatureVendingMachine baseState)
(newState : Set)
(new2base : newState → baseState)
→ FeatureVendingMachine newState
changeBaseState baseState vm newState new2base .Features = vm .Features
changeBaseState baseState vm newState new2base .AddState = vm .AddState
changeBaseState baseState vm newState new2base .guiVendingMachine f (inj₁ x) = vm .guiVendingMachine f (inj₁ (new2base x))
changeBaseState baseState vm newState new2base .guiVendingMachine f (inj₂ y) = vm .guiVendingMachine f (inj₂ y)
upgradeFeatureVM+ : (baseState : Set)(vm : FeatureVendingMachine baseState)
(newBaseState : Set)
(newAddState : Set)
(new2base : newBaseState ⊎ newAddState → baseState ⊎ vm .AddState)
→ FeatureVendingMachine newBaseState
Features (upgradeFeatureVM+ baseState vm newBaseState newAddState new2Base) = vm .Features
AddState (upgradeFeatureVM+ baseState vm newBaseState newAddState new2Base) = newAddState
guiVendingMachine (upgradeFeatureVM+ baseState vm newBaseState newAddState new2Base) f s = vm .guiVendingMachine f (new2Base s)
tea : FeatureVendingMachine StateV → FeatureVendingMachine StateV
tea otherVM .Features = otherVM .Features × FeatureTea
tea otherVM .AddState = otherVM .AddState ⊎ ⊤
tea otherVM .guiVendingMachine (f , yesTea) (inj₁ s1) = exampleThreeButtons
tea otherVM .guiVendingMachine (f , _) (inj₁ s) = otherVM .guiVendingMachine f (inj₁ s)
tea otherVM .guiVendingMachine (f , _) (inj₂ (inj₁ s)) = otherVM .guiVendingMachine f (inj₂ s)
tea otherVM .guiVendingMachine (f , _) (inj₂ (inj₂ _)) = exampleOneButton -- new state
cancel : FeatureVendingMachine StateV → FeatureVendingMachine StateV
cancel otherVM .Features = otherVM .Features × FeatureCancel
cancel otherVM .AddState = otherVM .AddState ⊎ ⊤
cancel otherVM .guiVendingMachine (f , yesCancel) (inj₁ s1) = exampleThreeButtons
cancel otherVM .guiVendingMachine (f , _) (inj₁ s) = otherVM .guiVendingMachine f (inj₁ s)
cancel otherVM .guiVendingMachine (f , _) (inj₂ (inj₁ s)) = otherVM .guiVendingMachine f (inj₂ s)
cancel otherVM .guiVendingMachine (f , _) (inj₂ (inj₂ _)) = exampleOneButton -- new state
teaBase : FeatureVendingMachine StateV
teaBase = tea base
StateTeaAux : Set
StateTeaAux = StateV ⊎ (⊥ ⊎ ⊤)
teaBaseUnified : FeatureVendingMachine StateTeaAux
teaBaseUnified = upgradeFeatureVM StateV teaBase
stateTeaToPrevState : StateTea → StateTeaAux
stateTeaToPrevState s0 = inj₁ s0
stateTeaToPrevState s1 = inj₁ s1
stateTeaToPrevState s2 = inj₁ s2
stateTeaToPrevState s3 = inj₂ (inj₂ _)
teaBaseImproved : FeatureVendingMachine StateTea
teaBaseImproved = changeBaseState
StateTeaAux
teaBaseUnified StateTea stateTeaToPrevState
teaBaseNewToOld : StateTea ⊎ ⊥ → StateV ⊎ teaBase .AddState
teaBaseNewToOld (inj₁ s0) = inj₁ s0
teaBaseNewToOld (inj₁ s1) = inj₁ s1
teaBaseNewToOld (inj₁ s2) = inj₁ s2
teaBaseNewToOld (inj₁ s3) = inj₂ (inj₂ _)
teaBaseNewToOld (inj₂ ())
teaBaseImproved+ : FeatureVendingMachine StateTea
teaBaseImproved+ = upgradeFeatureVM+ StateV teaBase StateTea ⊥ teaBaseNewToOld
cancelTeaBase = cancel (tea base)
module base' where
NewFeatures' : Set
NewFeatures' = ⊤
guiVendingMachine' : (f : NewFeatures') → StateV → Frame
guiVendingMachine' f s0 = exampleOneButton
guiVendingMachine' f s1 = exampleOneButton
guiVendingMachine' f s2 = exampleTwoButtons
module tea' (OtherFeatures : Set)
(oldV : OtherFeatures → StateV → Frame) where
NewFeatures' : Set
NewFeatures' = OtherFeatures × FeatureTea
guiVendingMachine' : (f : NewFeatures')(s : StateV) → Frame
guiVendingMachine' (f , yesTea) s1 = exampleThreeButtons
guiVendingMachine' (f , _) s = oldV f s
module cancel' (OtherFeatures : Set)
(oldV : OtherFeatures → StateV → Frame) where
NewFeatures' : Set
NewFeatures' = OtherFeatures × FeatureCancel
guiVendingMachine' : (f : NewFeatures')(s : StateV) → Frame
guiVendingMachine' (f , yesCancel) s1 = exampleThreeButtons
guiVendingMachine' (f , _) s = oldV f s
module teaBase' (OtherFeatures : Set) where
open base' renaming (guiVendingMachine' to baseGUIVendingMachine; NewFeatures' to BaseFeatures)
open tea' BaseFeatures baseGUIVendingMachine public
module cancelTeaBase' (OtherFeatures : Set) where
open teaBase' OtherFeatures renaming (guiVendingMachine' to teaBaseGUIVendingMachine; NewFeatures' to TeaBaseFeatures)
open cancel' TeaBaseFeatures teaBaseGUIVendingMachine
|
{
"alphanum_fraction": 0.7480454344,
"avg_line_length": 33.7263681592,
"ext": "agda",
"hexsha": "a749711b4d4260622d51235a48733a4182ea01a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUIFeatures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUIFeatures.agda",
"max_line_length": 128,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUIFeatures.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 2015,
"size": 6779
}
|
{-# OPTIONS --allow-unsolved-metas #-}
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Haskell.Modules.RWS
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.BlockStorage.BlockStore as BlockStore
open import LibraBFT.Impl.Consensus.EpochManagerTypes
import LibraBFT.Impl.Consensus.Liveness.ExponentialTimeInterval as ExponentialTimeInterval
import LibraBFT.Impl.Consensus.Liveness.RoundState as RoundState
import LibraBFT.Impl.Consensus.MetricsSafetyRules as MetricsSafetyRules
import LibraBFT.Impl.Consensus.RoundManager as RoundManager
import LibraBFT.Impl.Consensus.SafetyRules.SafetyRulesManager as SafetyRulesManager
import LibraBFT.Impl.Consensus.TestUtils.MockStorage as MockStorage
open import LibraBFT.Impl.IO.OBM.Messages
import LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-1 as ECP-LBFT-OBM-Diff-1
open import LibraBFT.Impl.OBM.Logging.Logging
import LibraBFT.Impl.OBM.Rust.Duration as Duration
open import LibraBFT.Impl.OBM.Rust.RustTypes
import LibraBFT.Impl.Storage.DiemDB.DiemDB as DiemDB
import LibraBFT.Impl.Types.BlockInfo as BlockInfo
import LibraBFT.Impl.Types.EpochChangeProof as EpochChangeProof
import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier
open import LibraBFT.Impl.Types.Verifier
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Consensus.EpochManager where
------------------------------------------------------------------------------
data RlecState : Set where
RSNothing : RlecState
RSNeedECP : ReconfigEventEpochChange → RlecState
RSNeedRLEC : EpochChangeProof → RlecState
data ProcessMessageAction : Set where
PMContinue : ProcessMessageAction
PMInput : Input → ProcessMessageAction
PMNewEpoch : EpochManager → List Output → ProcessMessageAction
PMSendECP : EpochChangeProof → AccountAddress → Author {-Text-} → Epoch → Round → ProcessMessageAction
PMSendEpochRRq : EpRRqWire → AccountAddress → ProcessMessageAction
data PMOutput : Set where
PMErr : ErrLog → PMOutput
PMInfo : InfoLog → PMOutput
EM : Set → Set₁
EM = RWS Unit PMOutput RlecState
runEM : ∀ {r}
→ EM r
→ RlecState
→ (r × RlecState × List PMOutput)
runEM f = RWS-run f unit
------------------------------------------------------------------------------
expectNewEpoch
: EpochManager → Instant → ReconfigEventEpochChange → LedgerInfoWithSignatures
→ Either ErrLog ProcessMessageAction
startProcessor-ed
: EpochManager → Instant → OnChainConfigPayload
→ ObmNeedFetch → ProposalGenerator → LedgerInfoWithSignatures
→ EitherD ErrLog (EpochManager × List Output)
startRoundManager'-ed-abs
: EpochManager → Instant → RecoveryData → EpochState
→ ObmNeedFetch → ProposalGenerator → Version
→ EitherD ErrLog (EpochManager × List Output)
------------------------------------------------------------------------------
new
: NodeConfig → StateComputer → PersistentLivenessStorage → Author → SK
→ Either ErrLog EpochManager
new nodeConfig stateComputer persistentLivenessStorage obmAuthor obmSK = do
let -- author = node_config.validator_network.as_ref().unwrap().peer_id();
config = nodeConfig ^∙ ncConsensus
safetyRulesManager ← SafetyRulesManager.new (config ^∙ ccSafetyRules) obmAuthor obmSK
pure $ mkEpochManager
obmAuthor
config
stateComputer
persistentLivenessStorage
safetyRulesManager
nothing
epochState : EpochManager → Either ErrLog EpochState
epochState self = case self ^∙ emProcessor of λ where
nothing → Left fakeErr -- ["EpochManager not started yet"]
(just (RoundProcessorNormal p)) → pure (p ^∙ rmEpochState)
(just (RoundProcessorRecovery p)) → pure (p ^∙ rcmEpochState)
epoch : EpochManager → Either ErrLog Epoch
epoch self = (_^∙ esEpoch) <$> epochState self
createRoundState : EpochManager → Instant → RoundState
createRoundState self now =
let timeInterval = ExponentialTimeInterval.new
(Duration.fromMillis (self ^∙ emConfig ∙ ccRoundInitialTimeoutMS))
1.2
6
in RoundState.new timeInterval now
abstract
createRoundState-abs = createRoundState
createRoundState-abs-≡ : createRoundState-abs ≡ createRoundState
createRoundState-abs-≡ = refl
createProposerElection : EpochState → ProposerElection
createProposerElection epochState0 =
ProposerElection∙new
(ValidatorVerifier.getOrderedAccountAddressesObmTODO (epochState0 ^∙ esVerifier))
processEpochRetrieval
: EpochManager {-Text-} → EpRRqWire → AccountAddress → EM ProcessMessageAction
processEpochRetrieval self {-wireOrInternal-} (EpRRqWire∙new {-why fromE fromR-} request) peerAddress = do
tell (PMInfo fakeInfo ∷ [])
-- ["Enter", wireOrInternal, why, lsA peerAddress, lsE fromE, lsR fromR, lsEpochRRq request]))]
case DiemDB.getEpochEndingLedgerInfos
(self ^∙ emStorage ∙ msObmDiemDB) (request ^∙ eprrqStartEpoch) (request ^∙ eprrqEndEpoch) of λ where
(Left e) → do
tell ( (PMErr (withErrCtx (here'
("failed to get epoch proof" {-lsA peerAddress, why, lsEpochRRq request-} ∷ [])) e))
∷ [])
pure PMContinue
(Right (liws , more)) →
eitherSD (self ^∙ emEpoch) (λ err -> do tell (PMErr (withErrCtx (here' []) err) ∷ []); pure PMContinue) $ λ e -> do
let ecp = EpochChangeProof∙new liws more
me = self ^∙ emAuthor
r = eitherS (self ^∙ emObmRoundManager) (const {-Round-} 0) (_^∙ rmRound)
tell (PMInfo fakeInfo {-["Exit", "SendEpochRRp", why, lsA peerAddress, lsECP ecp]-} ∷ [])
pure (PMSendECP ecp peerAddress me {-why-} e r)
where
here' : List String → List String
here' t = "EpochManager" ∷ "processEpochRetrieval" ∷ t
processDifferentEpoch
: EpochManager → Input → AccountAddress → Epoch → Round
→ EM ProcessMessageAction
processDifferentEpoch self obmI peerAddress peerDifferentEpoch obmPeerRound = do
tell (PMInfo fakeInfo -- (here [ "ReceiveMessageFromDifferentEpoch", lsA peerAddress
-- , lsE peerDifferentEpoch, lsR obmPeerRound, logShowI obmI ])
∷ [])
eitherSD (self ^∙ emEpoch) pmerr $ λ epoch' →
eitherSD (self ^∙ emObmRoundManager) pmerr $ λ rm-NotUsedInAgda-OnlyLoggingInHaskell →
case compare peerDifferentEpoch epoch' of λ where
LT → do -- help nodes that have lower epoch
-- LBFT-OBM-DIFF : not sure if this is different, but the message that causes
-- this request will be dropped.
-- await (Rust comment)
processEpochRetrieval
self {-"diffE"-}
(EpRRqWire∙new {-why epoch' (self^.emObmRoundManagerErrExit.rmRound)-}
(EpochRetrievalRequest∙new peerDifferentEpoch epoch'))
peerAddress
GT → do
-- LBFT-OBM-DIFF : message dropped in this case too
let epRrq = EpochRetrievalRequest∙new epoch' peerDifferentEpoch
epprqw = EpRRqWire∙new {-why epoch' (self^.emObmRoundManagerErrExit.rmRound)-} epRrq
tell (PMInfo fakeInfo ∷ [])
-- (here [ "SendEpochRRq", lsA peerAddress, lsEpochRRq epRrq
-- , "request proof to join higher epoch because", logShowI obmI ]))]
-- TODO-1
pure (PMSendEpochRRq epprqw peerAddress)
EQ → do
tell (PMErr fakeErr ∷ []) -- (here ["EQ should not happen"])
pure PMContinue
where
here' : List String → List String
here' t = "EpochManager" ∷ "processDifferentEpoch" ∷ t
pmerr : ErrLog → EM ProcessMessageAction
pmerr err = do tell (PMErr (withErrCtx (here' []) err) ∷ []); pure PMContinue
{-
why = show (msgType obmI) <> "/" <>
peerAddress^.aAuthorName <> "/" <>
show (peerDifferentEpoch^.eEpoch) <> "/" <>
show (obmPeerRound^.rRound)
-}
startNewEpoch
: EpochManager → Instant → Maybe ReconfigEventEpochChange → EpochChangeProof
→ Either ErrLog ProcessMessageAction
startNewEpoch self now mrlec proof = do
es ← epochState self
liws ← withErrCtx' (here' ("invalid EpochChangeProof" ∷ []))
(EpochChangeProof.verify proof es)
-- --------------------------------------------------
-- LBFT-OBM-DIFF: scSyncTo, rather than syncing world state to another node,
-- it just gets the NextEpochState from the given LIWS.
-- --------------------------------------------------
-- Independently, the world state is synced to the Version/LeadCount contained in 'liws'.
-- See 'obmVersion' setting in startRoundManager' below.
rlec ← case mrlec of λ where
(just rlec) → pure rlec
nothing → eitherS (Left "fakeErr") -- TODO-2 ((self^.emStateComputer.scSyncTo) liws)
(λ e → Left fakeErr) -- (ErrL (here (lsLIWS liws ∷ e))))
Right
self' ← ECP-LBFT-OBM-Diff-1.e_EpochManager_startNewEpoch self proof
pure PMContinue
expectNewEpoch self' now rlec liws
where
here' : List String → List String
here' t = "EpochManager" ∷ "startNewEpoch" ∷ t
startRoundManager-ed
: EpochManager → Instant → RecoveryData → EpochState
→ ObmNeedFetch → ProposalGenerator → Version
→ EitherD ErrLog (EpochManager × List Output)
startRoundManager-ed self0 now recoveryData epochState0 obmNeedFetch obmProposalGenerator obmVersion =
let self = case self0 ^∙ emProcessor of λ where
(just (RoundProcessorNormal rm)) →
self0 & emStorage ∙~ rm ^∙ rmBlockStore ∙ bsStorage
& emStorage ∙ msObmDiemDB ∙~ self0 ^∙ emStorage ∙ msObmDiemDB
_ →
self0
-- OBM-DIFF : use the version in the ledger info of the EpochChangeProof
obv = eitherS (self ^∙ emObmRoundManager) (const BlockInfo.gENESIS_VERSION) (const obmVersion)
in startRoundManager'-ed-abs self now recoveryData epochState0 obmNeedFetch
(obmProposalGenerator & pgLastRoundGenerated ∙~ {-Round-} 0)
obv
module startRoundManager'-ed
(self : EpochManager)
(now : Instant)
(recoveryData : RecoveryData)
(epochState0 : EpochState)
(obmNeedFetch : ObmNeedFetch)
(obmProposalGenerator : ProposalGenerator)
(obmVersion : Version)
where
continue2 continue2-abs : Maybe Vote → BlockStore → SafetyRules → EitherD ErrLog (EpochManager × List Output)
continue1 continue1-abs : Maybe Vote → BlockStore → EitherD ErrLog (EpochManager × List Output)
err : ∀ {B} → List String → ErrLog → EitherD ErrLog B
here' : List String → List String
step₀ = do
let lastVote = recoveryData ^∙ rdLastVote
case BlockStore.new-e-abs -- Either version so we only get Left and Right cases
(self ^∙ emStorage)
recoveryData
-- TODO-2 : use real StateComputer when it exists
stateComputer -- (self ^∙ emStateComputer & scObmVersion .~ obv) TODO-2
(self ^∙ emConfig ∙ ccMaxPrunedBlocksInMem) of λ where
(Left e) → err ("BlockStore.new" ∷ []) e
(Right bs) → continue1-abs lastVote bs
err t = withErrCtxD' t ∘ Left
here' t = "EpochManager" ∷ "startRoundManager" ∷ t
continue1 lastVote blockStore = do
--------------------------------------------------
let safetyRules = {-MetricsSafetyRules::new-}
SafetyRulesManager.client (self ^∙ emSafetyRulesManager) -- self.storage.clone());
case MetricsSafetyRules.performInitialize-abs safetyRules (self ^∙ emStorage) of λ where
(Left e) → err (here' ("MetricsSafetyRules.performInitialize" ∷ [])) e
(Right safetyRules') → continue2-abs lastVote blockStore safetyRules'
continue2 lastVote blockStore safetyRules = do
--------------------------------------------------
let proposalGenerator = obmProposalGenerator
--------------------------------------------------
let roundState = createRoundState-abs self now
--------------------------------------------------
let proposerElection = createProposerElection epochState0
--------------------------------------------------
let processor = RoundManager∙new
obmNeedFetch
epochState0
blockStore
roundState
proposerElection
proposalGenerator
(safetyRules & srPersistentStorage ∙ pssSafetyData ∙ sdEpoch ∙~ epochState0 ^∙ esEpoch)
(self ^∙ emConfig ∙ ccSyncOnly)
--------------------------------------------------
let (_ , processor' , output) = LBFT-run (RoundManager.start-abs now lastVote) processor
case find' logErrMB output of λ where
(just e) → err (here' ("RoundManager.start" ∷ [])) e
nothing → pure ( (self & emProcessor ?~ RoundProcessorNormal processor')
, output )
abstract
continue1-abs = continue1
continue1-abs-≡ : continue1-abs ≡ continue1
continue1-abs-≡ = refl
continue2-abs = continue2
continue2-abs-≡ : continue2-abs ≡ continue2
continue2-abs-≡ = refl
abstract
startRoundManager'-ed-abs = startRoundManager'-ed.step₀
startRoundManager'-ed-abs-≡ : startRoundManager'-ed-abs ≡ startRoundManager'-ed.step₀
startRoundManager'-ed-abs-≡ = refl
startProcessor-ed self now payload obmNeedFetch obmProposalGenerator obmLedgerInfoWithSignatures = do
let validatorSet = payload ^∙ occpObmValidatorSet
vv ← ValidatorVerifier.from-ed-abs validatorSet
let epochState0 = EpochState∙new (payload ^∙ occpEpoch) vv
-- OBM TODO case storage.start of RecoveryData | LedgerRecoveryData
(initialData , _pls)
← MockStorage.startForTesting-ed-abs validatorSet
(just obmLedgerInfoWithSignatures)
startRoundManager-ed self now initialData epochState0 obmNeedFetch obmProposalGenerator
(obmLedgerInfoWithSignatures ^∙ liwsLedgerInfo ∙ liVersion)
abstract
startProcessor-e-abs
: EpochManager → Instant → OnChainConfigPayload
→ ObmNeedFetch → ProposalGenerator → LedgerInfoWithSignatures
→ Either ErrLog (EpochManager × List Output)
startProcessor-e-abs em now payload nf pg liws = toEither $
startProcessor-ed em now payload nf pg liws
startProcessor-ed-abs = startProcessor-ed
startProcessor-ed-abs-≡ : startProcessor-ed-abs ≡ startProcessor-ed
startProcessor-ed-abs-≡ = refl
{-
Currently, the implementation is hooked up to the system model in
'LibraBFT.Impl.Handle.InitAndHandlers'
It does so such that
- 'RoundManager' is the top-level state, and
- 'LibraBFT.Impl.IO.OBM.InputOutputHandlers.handle' is the top-level entry into the implementation.
In the future, when epoch changes are taken into account (and proved),
- 'EpochManager' will become the top-level state
- 'EpochManager.processMessage' will become the top-level entry into the implementation.
That said, when that change is made, there will be a new obligation.
Currently, when 'InputOutputHandlers.handle' cases have been covered, a proof is done.
But, in the future, when proving properties of 'EpochManager.processMessage'
(besides covering the epoch change properties) when the output is 'PMInput' it will be necessary
to "pass" that input to the 'RoundManager' level and continue proving from there.
-}
processMessage
: EpochManager → Instant → Input
→ EM ProcessMessageAction
processMessage self now = λ where
a@(IBlockRetrievalRequest _ _) → pure (PMInput a)
a@(IBlockRetrievalResponse _ _) → pure (PMInput a)
(IEpochChangeProof from (ECPWire∙new {-why e r-} ecp))
→ do
tell (PMInfo fakeInfo ∷ [])
--[ "processEpochChangeProof"
-- , why, lsA from, lsE e, lsR r, lsECP ecp ]))]
doECP ecp
(IEpochRetrievalRequest frm a@(EpRRqWire∙new {- _why _e _r -} epRrq))
→ eitherSD (self ^∙ emEpoch)
(λ e -> do tell (PMErr (withErrCtx (here' []) e) ∷ [])
pure PMContinue)
$ λ epoch' →
ifD (epRrq ^∙ eprrqEndEpoch >? epoch')
then (do
tell (PMInfo fakeInfo ∷ [])
--["EpochRRq beyond ours", why, lsE (epRrq^.eprrqEndEpoch)]))]
pure PMContinue)
else processEpochRetrieval self {-"wire"-} a frm
a@(IInit _) → pure (PMInput a)
a@(IProposal _ from pm) → maybeDifferentEpoch a from (pm ^∙ pmEpoch) (pm ^∙ pmRound)
(IReconfigLocalEpochChange rlec) → do
tell (PMInfo fakeInfo ∷ []) --(here ["receive", lsRLEC rlec]))]
doRLEC rlec
a@(ISyncInfo _ from si) → case
ECP-LBFT-OBM-Diff-1.e_EpochManager_processMessage_ISyncInfo
self si of λ where
(Left e) → do tell (PMErr e ∷ [])
pure PMContinue
(Right _) →
maybeDifferentEpoch a from (si ^∙ siEpoch) (si ^∙ siObmRound)
a@(ITimeout _ _ _ _) → pure (PMInput a)
a@(IVote _ from vm) → maybeDifferentEpoch a from (vm ^∙ vmEpoch) (vm ^∙ vmRound)
where
doRlecEcp : Maybe ReconfigEventEpochChange → EpochChangeProof → EM ProcessMessageAction
here' : List String → List String
here' t = "EpochManager" ∷ "processMessage" ∷ t
maybeDifferentEpoch : Input → AccountAddress → Epoch → Round → EM ProcessMessageAction
maybeDifferentEpoch a from e r =
eitherSD (self ^∙ emEpoch) (λ err → do tell (PMErr (withErrCtx (here' []) err) ∷ []); pure PMContinue) $ λ epoch' →
ifD e == epoch'
then pure (PMInput a)
else processDifferentEpoch self a from e r
doECP : EpochChangeProof → EM ProcessMessageAction
doECP ecp = get >>= λ where
RSNothing → case ECP-LBFT-OBM-Diff-1.e_EpochManager_checkEpc self ecp of λ where
(Left e) → do
tell (PMErr e ∷ [])
pure PMContinue
(Right _) → do
eitherSD (ECP-LBFT-OBM-Diff-1.e_EpochManager_doECP_waitForRlec self ecp)
(λ e → do tell (PMErr (withErrCtx (here' []) e) ∷ []); pure PMContinue)
$ λ b →
ifD b
then (do
tell (PMInfo fakeInfo ∷ []) -- [ "doECP", "got ECP", "waiting for RLEC"
-- , "my epoch", lsEE (self^.emEpoch), lsECP ecp])]
put (RSNeedRLEC ecp)
pure PMContinue)
else do
tell (PMInfo fakeInfo ∷ []) -- ["doECP", "got ECP", "NOT waiting for RLEC"
-- , "my epoch", lsEE (self^.emEpoch), lsECP ecp])]
put RSNothing
doRlecEcp nothing ecp
(RSNeedRLEC ecpX) → do
tell (PMInfo fakeInfo ∷ []) -- ["got another ECP while waiting for RLEC", lsECP ecp, lsECP ecpX])]
pure PMContinue -- TODO
(RSNeedECP rlec) → do
put RSNothing
doRlecEcp (just rlec) ecp
doRLEC : ReconfigEventEpochChange → EM ProcessMessageAction
doRLEC rlec = get >>= λ where
RSNothing → do
tell (PMInfo fakeInfo ∷ []) -- ["doRLEC", "got RLEC", "waiting for ECP", lsRLEC rlec])]
put (RSNeedECP rlec)
pure PMContinue
(RSNeedRLEC ecp) → do
put RSNothing
doRlecEcp (just rlec) ecp
(RSNeedECP rlecX) → do
tell (PMInfo fakeInfo ∷ [])
-- ["doRLEC", "got another RLEC while waiting for ECP", lsRLEC rlec, lsRLEC rlecX])]
pure PMContinue -- TODO
doRlecEcp rlec ecp =
case startNewEpoch self now rlec ecp of λ where
(Left err) → do
tell (PMErr err ∷ [])
pure PMContinue
(Right r) → pure r
expectNewEpoch self now (ReconfigEventEpochChange∙new payload) obmLedgerInfoWithSignatures = do
rm ← self ^∙ emObmRoundManager
(em , o) ← startProcessor-e-abs self now payload
(rm ^∙ rmObmNeedFetch)
(rm ^∙ rmProposalGenerator)
obmLedgerInfoWithSignatures
pure (PMNewEpoch em o)
start-ed
: EpochManager → Instant
→ OnChainConfigPayload → ObmNeedFetch → ProposalGenerator → LedgerInfoWithSignatures
→ EitherD ErrLog (EpochManager × List Output)
start-ed self0 now obmPayload obmNeedFetch obmProposalGenerator obmLedgerInfoWithSignatures =
startProcessor-ed self0 now obmPayload obmNeedFetch obmProposalGenerator obmLedgerInfoWithSignatures
------------------------------------------------------------------------------
-- IMPL-DIFF
{-
'obmStartLoop' is the function that
- gets input (e.g., from the network)
- runs that input through the EpochManager in the 'EM' monad
- logs any errors that happen in the EpochManager
- dispatches on the output of the EpochManager
- in some cases it runs the RoundManager in the LBFT monad
- in other cases it sends messages (via 'stps') to other nodes
The following "implementation" compiles, but has lots of TEMPORARY things to get it to compile.
In the proofs, the System Model "handles" input and output.
Therefore 'obmStartLoop' will not be implemented nor "proved".
It is here to show what is done in the Haskell code.
If the Agda code were ever to be extracted to executable Haskell code,
then this code would be completed.
The system model will be instantiated with 'EpochManager.processMessage'
and that will be the system about which properties are proved.
See the comments before that function.
-}
IO : Set → Set₁
IO = RWS Unit Unit Unit
{-# TERMINATING #-}
obmStartLoop
: EpochManager → List Output
{-→ CLI.FakeNetworkDelay → DAR.DispatchConfig a → INPUT_CHANNEL_READ a-}
→ IO Unit
obmStartLoop self initializationOutput
{-(CLI.FakeNetworkDelay fnd)
(DAR.DispatchConfig _rm0 toDAR ih oh lg lc stps m)
lbftInR-} = do
eitherS (self ^∙ emObmRoundManager) ee $ λ rm → do
-- This line roughly corresponds to Rust expect_new_epoch.
-- It processes the output from start/startProcessor above.
-- TODO (rm' , to') ← DAR.runOutputHandler rm toDAR pe initializationOutput oh
rm' ← pure rm -- TEMPORARY for previous line
loop (setProcessor self rm') {-to'-} RSNothing
where
show : ∀ {A : Set} → A → String
show _ = ""
singleShow : ∀ {A : Set} → A → List String
singleShow {A} x = show {A} x ∷ []
errorExit : List String → IO Unit
errorExit _ = pure unit
here' : List String → List String
here' t = "EpochManager" ∷ "obmStartLoop" ∷ t
ee : ErrLog → IO Unit
ee = errorExit ∘ here' ∘ singleShow
setProcessor : EpochManager → RoundManager → EpochManager
setProcessor em p = em & emProcessor ?~ RoundProcessorNormal p
loop : EpochManager {-→ Map ScheduledInputKey ThreadId-} → RlecState → IO Unit
loop em {-to-} rlec0 = do
-- i ← U.readChan lbftInR
i ← pure (IInit 0) -- TEMPORARY for previous line
-- when (fnd > 0) $
-- threadDelay (fnd * oneMillisecond)
-- now ← Time.getCurrentInstant
now ← pure (0) -- TEMPORARY for previous line
let (pma , rlec , pmo) = runEM (processMessage em now i) rlec0
let myName = em ^∙ emAuthor ∙ aAuthorName
forM_ pmo $ λ where
-- (PMErr (ErrInfo (lc', x)) → Logger.log (lg myName) lc (LogInfo lc' x)
(PMErr x) → pure unit -- Logger.log (lg myName) lc (LogErr x)
(PMInfo x) → pure unit -- Logger.log (lg myName) lc (LogInfo lEC x)
case pma of λ where
PMContinue →
loop em {-to-} rlec
(PMInput i') →
eitherSD (em ^∙ emObmRoundManager) ee $ λ rm → do
--(rm' , o) ← DAR.runInputHandler rm to pe i' ih
--(rm'' , to'') ← DAR.runOutputHandler rm' to pe o oh
rm'' ← pure rm -- TEMPORARY for previous two lines
loop (setProcessor em rm'') {-to''-} rlec
(PMNewEpoch em' newEpochInitializationOutput) → do
eitherSD (em' ^∙ emObmRoundManager) ee $ λ rm → do
-- (rm', to') ← DAR.runOutputHandler rm to pe newEpochInitializationOutput oh
rm' ← pure rm -- TEMPORARY for previous line
loop (setProcessor em' rm') {-to'-} RSNothing -- reset RLEC state
(PMSendECP ecp peerAddress me {-why-} e r) → do
-- stps [peerAddress ^∙ aAuthorName] (Messages.mkIEpochChangeProof me why e r ecp)
loop em {-to-} rlec
(PMSendEpochRRq epRrq sendTo) → do
-- stps [sendTo ^∙ aAuthorName] (IEpochRetrievalRequest (em ^∙ emAuthor) epRrq)
loop em {-to-} rlec
{-
pe = PeerEnv
(""::Text)
Map.empty
(RunEnv
(lg (self ^∙ emAuthor.aAuthorName))
lc
(Just stps)
(Just m))
-}
|
{
"alphanum_fraction": 0.6204232968,
"avg_line_length": 45.6649029982,
"ext": "agda",
"hexsha": "b460eb3d52bbcf64a38dd1e69635d6a5d5105d6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/EpochManager.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/EpochManager.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/EpochManager.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6905,
"size": 25892
}
|
------------------------------------------------------------------------
-- From the Agda standard library
--
-- Sizes for Agda's sized types
------------------------------------------------------------------------
module Common.Size where
open import Agda.Builtin.Size public renaming (ω to ∞; SizeU to SizeUniv)
|
{
"alphanum_fraction": 0.4018987342,
"avg_line_length": 31.6,
"ext": "agda",
"hexsha": "235a824b62084edce3febd84b8c52ad2634a5a3e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:39:14.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Common/Size.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": "2017-02-24T19:38:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-02-24T19:27:31.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Common/Size.agda",
"max_line_length": 73,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Common/Size.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-02-24T16:53:22.000Z",
"num_tokens": 49,
"size": 316
}
|
module cfg1 where
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat hiding ( _≟_ )
-- open import Data.Fin
-- open import Data.Product
open import Data.List
open import Data.Maybe
-- open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import logic
--
-- Java → Java Byte Code
--
-- CFG Stack Machine (PDA)
--
data Node (Symbol : Set) : Set where
T : Symbol → Node Symbol
N : Symbol → Node Symbol
data Seq (Symbol : Set) : Set where
_,_ : Symbol → Seq Symbol → Seq Symbol
_. : Symbol → Seq Symbol
Error : Seq Symbol
data Body (Symbol : Set) : Set where
_|_ : Seq Symbol → Body Symbol → Body Symbol
_; : Seq Symbol → Body Symbol
record CFGGrammer (Symbol : Set) : Set where
field
cfg : Symbol → Body Symbol
top : Symbol
eq? : Symbol → Symbol → Bool
typeof : Symbol → Node Symbol
infixr 80 _|_
infixr 90 _;
infixr 100 _,_
infixr 110 _.
open CFGGrammer
-----------------
--
-- CGF language
--
-----------------
split : {Σ : Set} → (List Σ → Bool)
→ ( List Σ → Bool) → List Σ → Bool
split x y [] = x [] /\ y []
split x y (h ∷ t) = (x [] /\ y (h ∷ t)) \/
split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t
cfg-language0 : {Symbol : Set} → CFGGrammer Symbol → Body Symbol → List Symbol → Bool
{-# TERMINATING #-}
cfg-language1 : {Symbol : Set} → CFGGrammer Symbol → Seq Symbol → List Symbol → Bool
cfg-language1 cg Error x = false
cfg-language1 cg (S , seq) x with typeof cg S
cfg-language1 cg (_ , seq) (x' ∷ t) | T x = eq? cg x x' /\ cfg-language1 cg seq t
cfg-language1 cg (_ , seq) [] | T x = false
cfg-language1 cg (_ , seq) x | N nonTerminal = split (cfg-language0 cg (cfg cg nonTerminal) )(cfg-language1 cg seq ) x
cfg-language1 cg (S .) x with typeof cg S
cfg-language1 cg (_ .) (x' ∷ []) | T x = eq? cg x x'
cfg-language1 cg (_ .) _ | T x = false
cfg-language1 cg (_ .) x | N nonTerminal = cfg-language0 cg (cfg cg nonTerminal) x
cfg-language0 cg _ [] = false
cfg-language0 cg (rule | b) x =
cfg-language1 cg rule x \/ cfg-language0 cg b x
cfg-language0 cg (rule ;) x = cfg-language1 cg rule x
cfg-language : {Symbol : Set} → CFGGrammer Symbol → List Symbol → Bool
cfg-language cg = cfg-language0 cg (cfg cg (top cg ))
data IFToken : Set where
EA : IFToken
EB : IFToken
EC : IFToken
IF : IFToken
THEN : IFToken
ELSE : IFToken
SA : IFToken
SB : IFToken
SC : IFToken
expr : IFToken
statement : IFToken
token-eq? : IFToken → IFToken → Bool
token-eq? EA EA = true
token-eq? EB EB = true
token-eq? EC EC = true
token-eq? IF IF = true
token-eq? THEN THEN = true
token-eq? ELSE ELSE = true
token-eq? SA SA = true
token-eq? SB SB = true
token-eq? SC SC = true
token-eq? expr expr = true
token-eq? statement statement = true
token-eq? _ _ = false
typeof-IFG : IFToken → Node IFToken
typeof-IFG expr = N expr
typeof-IFG statement = N statement
typeof-IFG x = T x
IFGrammer : CFGGrammer IFToken
IFGrammer = record {
cfg = cfg'
; top = statement
; eq? = token-eq?
; typeof = typeof-IFG
} where
cfg' : IFToken → Body IFToken
cfg' expr = EA . | EB . | EC . ;
cfg' statement =
SA . | SB . | SC .
| IF , expr , THEN , statement .
| IF , expr , THEN , statement , ELSE , statement .
;
cfg' x = Error ;
cfgtest1 = cfg-language IFGrammer ( SA ∷ [] )
cfgtest2 = cfg-language1 IFGrammer ( SA .) ( SA ∷ [] )
cfgtest3 = cfg-language1 IFGrammer ( SA . ) ( SA ∷ [] )
cfgtest4 = cfg-language IFGrammer (IF ∷ EA ∷ THEN ∷ SA ∷ [] )
cfgtest5 = cfg-language1 IFGrammer ( IF , expr , THEN , statement . ) (IF ∷ EA ∷ THEN ∷ SA ∷ [] )
cfgtest6 = cfg-language1 IFGrammer ( statement .)(IF ∷ EA ∷ SA ∷ [] )
cfgtest7 = cfg-language1 IFGrammer ( IF , expr , THEN , statement , ELSE , statement . )
(IF ∷ EA ∷ THEN ∷ SA ∷ ELSE ∷ SB ∷ [] )
cfgtest8 = cfg-language IFGrammer (IF ∷ EA ∷ THEN ∷ IF ∷ EB ∷ THEN ∷ SA ∷ ELSE ∷ SB ∷ [] )
cfgtest9 = cfg-language IFGrammer (IF ∷ EB ∷ THEN ∷ SA ∷ ELSE ∷ SB ∷ [] )
data E1Token : Set where
e1 : E1Token
e[ : E1Token
e] : E1Token
expr : E1Token
term : E1Token
E1-token-eq? : E1Token → E1Token → Bool
E1-token-eq? e1 e1 = true
E1-token-eq? e[ e] = true
E1-token-eq? e] e] = true
E1-token-eq? expr expr = true
E1-token-eq? term term = true
E1-token-eq? _ _ = false
typeof-E1 : E1Token → Node E1Token
typeof-E1 expr = N expr
typeof-E1 term = N term
typeof-E1 x = T x
E1Grammer : CFGGrammer E1Token
E1Grammer = record {
cfg = cfgE
; top = expr
; eq? = E1-token-eq?
; typeof = typeof-E1
} where
cfgE : E1Token → Body E1Token
cfgE expr = term .
;
cfgE term = e1 .
| e[ , expr , e] .
;
cfgE x = Error ;
ecfgtest1 = cfg-language E1Grammer ( e1 ∷ [] )
ecfgtest2 = cfg-language E1Grammer ( e[ ∷ e1 ∷ e] ∷ [] )
ecfgtest3 = cfg-language E1Grammer ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ [] )
ecfgtest4 = cfg-language E1Grammer ( e[ ∷ e1 ∷ [] )
open import Function
left : {t : Set } → List E1Token → ( fail next : List E1Token → t ) → t
left ( e[ ∷ t ) fail next = next t
left t fail next = fail t
right : {t : Set } → List E1Token → ( fail next : List E1Token → t ) → t
right ( e] ∷ t ) fail next = next t
right t fail next = fail t
{-# TERMINATING #-}
expr1 : {t : Set } → List E1Token → ( fail next : List E1Token → t ) → t
expr1 ( e1 ∷ t ) fail next = next t
expr1 ( expr ∷ t ) fail next = next t
expr1 ( term ∷ t ) fail next = next t
expr1 x fail next = left x fail $ λ x → expr1 x fail $ λ x → right x fail $ next
-- expr1 x fail next = left x fail ( λ x → expr1 x fail ( λ x → right x fail ( next )))
cfgtest01 = expr1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ [] ) (λ x → ⟪ false , x ⟫ ) (λ x → ⟪ true , x ⟫ )
cfgtest02 = expr1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ [] ) (λ x → ⟪ false , x ⟫ ) (λ x → ⟪ true , x ⟫ )
cfgtest03 = expr1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ e] ∷ [] ) (λ x → ⟪ false , x ⟫ ) (λ x → ⟪ true , x ⟫ )
open import pushdown
data CG1 : Set where
ce : CG1
c1 : CG1
pd : CG1 → E1Token → CG1 → CG1 ∧ PushDown CG1
pd c1 e[ s = ⟪ c1 , push c1 ⟫
pd c1 e] c1 = ⟪ c1 , pop ⟫
pd c1 e1 c1 = ⟪ c1 , none ⟫
pd s expr s1 = ⟪ c1 , none ⟫
pd s term s1 = ⟪ c1 , none ⟫
pd s _ s1 = ⟪ ce , none ⟫
pok : CG1 → Bool
pok c1 = true
pok s = false
pnc : PushDownAutomaton CG1 E1Token CG1
pnc = record {
pδ = pd
; pempty = ce
; pok = pok
}
pda-ce-test1 = PushDownAutomaton.paccept pnc c1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ e] ∷ [] ) []
pda-ce-test2 = PushDownAutomaton.paccept pnc c1 ( e[ ∷ e[ ∷ e1 ∷ e] ∷ [] ) []
pda-ce-test3 = PushDownAutomaton.paccept pnc c1 ( e[ ∷ e1 ∷ e] ∷ e1 ∷ [] ) []
record PNC (accept : Bool ) : Set where
field
orig-x : List E1Token
pnc-q : CG1
pnc-st : List CG1
pnc-p : CG1 → List CG1 → Bool
success : accept ≡ true → pnc-p pnc-q pnc-st ≡ true → PushDownAutomaton.paccept pnc c1 orig-x [] ≡ true
failure : accept ≡ false → pnc-p pnc-q pnc-st ≡ false → PushDownAutomaton.paccept pnc c1 orig-x [] ≡ false
open import Data.Unit
{-# TERMINATING #-}
expr1P : {n : Level } {t : Set n } → (x : List E1Token ) → PNC true
→ ( fail : List E1Token → PNC false → t ) → ( next : List E1Token → PNC true → t ) → t
expr1P x _ _ _ = {!!}
expr1P-test : (x : List E1Token ) → ⊤
expr1P-test x = expr1P x record { orig-x = x ; pnc-q = c1 ; pnc-st = []
; pnc-p = λ q st → PushDownAutomaton.paccept pnc q x st ; success = λ _ p → p ; failure = λ _ p → p }
(λ x p → {!!} ) (λ x p → {!!} )
----
--
-- CFG to PDA
--
cfg→pda-state : {Symbol : Set} → CFGGrammer Symbol → Set
cfg→pda-state cfg = {!!}
cfg→pda-start : {Symbol : Set} → (cfg : CFGGrammer Symbol) → cfg→pda-state cfg
cfg→pda-start cfg = {!!}
cfg→pda : {Symbol : Set} → (cfg : CFGGrammer Symbol) → PDA (cfg→pda-state cfg) Symbol (cfg→pda-state cfg)
cfg→pda cfg = {!!}
cfg->pda : {Symbol : Set} → (input : List Symbol)
→ (cfg : CFGGrammer Symbol)
→ PDA.paccept (cfg→pda cfg ) (cfg→pda-start cfg) input [] ≡ cfg-language cfg input
cfg->pda = {!!}
----
--
-- PDA to CFG
--
open import pushdown
pda→cfg : {Symbol : Set} { Q : Set} → (pda : PDA Q Symbol Q) → CFGGrammer Symbol
pda→cfg pda = record {
cfg = {!!}
; top = {!!}
; eq? = {!!}
; typeof = {!!}
}
pda->cfg : {Symbol : Set} { Q : Set} → (start : Q) → (input : List Symbol)
→ (pda : PDA Q Symbol Q)
→ PDA.paccept pda start input [] ≡ cfg-language (pda→cfg pda) input
pda->cfg = {!!}
record CDGGrammer (Symbol : Set) : Set where
field
cdg : Seq Symbol → Body Symbol
top : Symbol
eq? : Symbol → Symbol → Bool
typeof : Symbol → Node Symbol
|
{
"alphanum_fraction": 0.5688381464,
"avg_line_length": 29.2918032787,
"ext": "agda",
"hexsha": "5ac732363ae45c4f9aeb13649a216d54de451115",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/cfg1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/cfg1.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/cfg1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3356,
"size": 8934
}
|
open import Agda.Builtin.Equality
variable
A B : Set
f g : A
postulate
F : Set → Set
map : (A → B) → F A → F B
lemma : (x : F A) → map (λ x → f (g x)) x ≡ map f (map g x) → F A
lemma {A = A} {f = f} {g = g} x _ = x
|
{
"alphanum_fraction": 0.4912280702,
"avg_line_length": 17.5384615385,
"ext": "agda",
"hexsha": "d0e168068c0be7f0c3803fabc2ef853d5517ddf7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3779.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3779.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3779.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 103,
"size": 228
}
|
------------------------------------------------------------------------
-- Coinductive higher lenses with erased "proofs"
------------------------------------------------------------------------
{-# OPTIONS --guardedness #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Coinductive.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude
import Colimit.Sequential.Very-erased eq as CS
open import Equality.Decidable-UIP equality-with-J using (Constant)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_)
open import Equivalence.Erased.Contractible-preimages.Cubical eq
using (_⁻¹ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional.Erased eq as T
using (∥_∥ᴱ; ∣_∣)
import H-level.Truncation.Propositional.Non-recursive.Erased eq as N
open import H-level.Truncation.Propositional.One-step eq as O
using (∣_∣; ∥_∥¹-out-^; ∥_∥¹-in-^; ∣_,_∣-in-^)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher.Erased eq as Higher
import Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant eq
as V
open import Lens.Non-dependent.Higher.Coherently.Coinductive eq
import Lens.Non-dependent.Higher.Coinductive eq as C
import Lens.Non-dependent.Higher.Coinductive.Small eq as S
private
variable
a b p : Level
A B : Type a
n : ℕ
------------------------------------------------------------------------
-- The lemma ∥∥ᴱ→≃
private
-- A lemma used in the implementation of ∥∥ᴱ→≃.
--
-- This definition is erased because its implementation makes use of
-- code related to O.∥_∥¹ (a HIT with a non-erased higher
-- constructor).
@0 ∥∥ᴱ→≃-lemma :
Block "∥∥ᴱ→≃-lemma" →
(f₀ : A → B) →
(∃ λ (f₊ : ∀ n → ∥ A ∥¹-out-^ (1 + n) → B) →
(∀ x → f₊ zero ∣ x ∣ ≡ f₀ x) ×
(∀ n x → f₊ (suc n) ∣ x ∣ ≡ f₊ n x)) ≃
(∃ λ (f₊ : ∀ n → ∥ A ∥¹-in-^ (1 + n) → B) →
(∀ x → f₊ zero ∣ x ∣ ≡ f₀ x) ×
(∀ n x → f₊ (suc n) ∣ n , x ∣-in-^ ≡ f₊ n x))
∥∥ᴱ→≃-lemma ⊠ _ =
inverse $
Σ-cong {k₁ = equivalence}
(∀-cong ext λ n →
→-cong₁ ext (inverse $ O.∥∥¹-out-^≃∥∥¹-in-^ (suc n))) λ f →
∃-cong λ _ → ∀-cong ext λ n →
Π-cong-contra ext (O.∥∥¹-out-^≃∥∥¹-in-^ (suc n)) λ x →
≡⇒≃ $ cong (λ y → f (suc n) y ≡
f n (_≃_.to (O.∥∥¹-out-^≃∥∥¹-in-^ (suc n)) x)) $
sym $ O.∣∣≡∣,∣-in-^ (1 + n)
-- Functions from ∥ A ∥ᴱ can be expressed as coherently constant
-- functions from A with erased "proofs" (assuming univalence).
∥∥ᴱ→≃ :
Block "∥∥ᴱ→≃" →
{A : Type a} {B : Type b} →
@0 Univalence (a ⊔ b) →
(∥ A ∥ᴱ → B)
≃
(∃ λ (f : A → B) → Erased (C.Coherently-constant f))
∥∥ᴱ→≃ bl {A = A} {B = B} univ =
(∥ A ∥ᴱ → B) ↝⟨ →-cong ext T.∥∥ᴱ≃∥∥ᴱ F.id ⟩
(N.∥ A ∥ᴱ → B) ↝⟨ CS.universal-property ⟩
(∃ λ (f₀ : A → B) →
Erased (∃ λ (f₊ : ∀ n → ∥ A ∥¹-out-^ (1 + n) → B) →
(∀ x → f₊ zero ∣ x ∣ ≡ f₀ x) ×
(∀ n x → f₊ (suc n) ∣ x ∣ ≡ f₊ n x))) ↝⟨ ∃-cong (λ f → Erased-cong (∥∥ᴱ→≃-lemma bl f)) ⟩
(∃ λ (f₀ : A → B) →
Erased (∃ λ (f₊ : ∀ n → ∥ A ∥¹-in-^ (1 + n) → B) →
(∀ x → f₊ zero ∣ x ∣ ≡ f₀ x) ×
(∀ n x → f₊ (suc n) ∣ n , x ∣-in-^ ≡ f₊ n x))) ↝⟨ ∃-cong (λ f → Erased-cong (inverse $
C.Coherently-constant′≃ bl)) ⟩
(∃ λ (f : A → B) → Erased (C.Coherently-constant′ f)) ↝⟨ ∃-cong (λ f → Erased-cong (inverse $
C.Coherently-constant≃Coherently-constant′ bl univ)) ⟩□
(∃ λ (f : A → B) → Erased (C.Coherently-constant f)) □
-- A "computation" rule for ∥∥ᴱ→≃.
@0 cong-from-∥∥ᴱ→≃-truncation-is-proposition :
(bl : Block "∥∥ᴱ→≃")
{A : Type a} {B : Type b}
(univ : Univalence (a ⊔ b)) →
{f : A → B} {c : C.Coherently-constant f}
{x y : A} {p : ∣ x ∣ ≡ ∣ y ∣} →
cong (_≃_.from (∥∥ᴱ→≃ bl univ) (f , [ c ])) p ≡
c .property x y
cong-from-∥∥ᴱ→≃-truncation-is-proposition
bl {A = A} univ {f = f} {c = c} {x = x} {y = y} {p = p} =
cong (_≃_.from (∥∥ᴱ→≃ bl univ) (f , [ c ])) p ≡⟨⟩
cong (_≃_.from CS.universal-property (f , [ g bl ]) ∘
_≃_.to T.∥∥ᴱ≃∥∥ᴱ)
p ≡⟨ sym $ cong-∘ _ _ _ ⟩
(cong (_≃_.from CS.universal-property (f , [ g bl ])) $
cong (_≃_.to T.∥∥ᴱ≃∥∥ᴱ) p) ≡⟨ cong (cong _) $ mono₁ 1 N.∥∥ᴱ-proposition _ _ ⟩
cong (_≃_.from CS.universal-property (f , [ g bl ]))
(N.∥∥ᴱ-proposition N.∣ x ∣ N.∣ y ∣) ≡⟨⟩
cong (_≃_.from CS.universal-property (f , [ g bl ]))
(trans (sym (CS.∣∣₊≡∣∣₀ x))
(trans (cong CS.∣_∣₊ (O.∣∣-constant x y))
(CS.∣∣₊≡∣∣₀ y))) ≡⟨ trans (cong-trans _ _ _) $
cong₂ trans
(cong-sym _ _)
(trans (cong-trans _ _ _) $
cong (flip trans _) $
cong-∘ _ _ _) ⟩
trans
(sym $ cong (_≃_.from CS.universal-property (f , [ g bl ]))
(CS.∣∣₊≡∣∣₀ x))
(trans
(cong (_≃_.from CS.universal-property (f , [ g bl ]) ∘ CS.∣_∣₊)
(O.∣∣-constant x y))
(cong (_≃_.from CS.universal-property (f , [ g bl ]))
(CS.∣∣₊≡∣∣₀ y))) ≡⟨ cong₂ trans
(cong sym CS.rec-∣∣₊≡∣∣₀)
(cong (trans _) CS.rec-∣∣₊≡∣∣₀) ⟩
trans (sym $ proj₁ (proj₂ (g bl)) x)
(trans (cong (proj₁ (g bl) 0) (O.∣∣-constant x y))
(proj₁ (proj₂ (g bl)) y)) ≡⟨ lemma bl ⟩∎
c .property x y ∎
where
g : ∀ _ → _
g bl =
_≃_.from (∥∥ᴱ→≃-lemma bl _) $
_≃_.to (C.Coherently-constant′≃ bl) $
_≃_.to (C.Coherently-constant≃Coherently-constant′ bl univ) c
lemma :
∀ bl →
trans (sym $ proj₁ (proj₂ (g bl)) x)
(trans (cong (proj₁ (g bl) 0) (O.∣∣-constant x y))
(proj₁ (proj₂ (g bl)) y)) ≡
c .property x y
lemma bl@⊠ =
trans (sym $ proj₁ (proj₂ (g bl)) x)
(trans (cong (proj₁ (g bl) 0) (O.∣∣-constant x y))
(proj₁ (proj₂ (g bl)) y)) ≡⟨⟩
trans (sym $ refl _)
(trans (cong (O.rec′ f (c .property)) (O.∣∣-constant x y))
(refl _)) ≡⟨ trans (cong₂ trans sym-refl (trans-reflʳ _)) $
trans-reflˡ _ ⟩
cong (O.rec′ f (c .property)) (O.∣∣-constant x y) ≡⟨ O.rec-∣∣-constant ⟩∎
c .property x y ∎
------------------------------------------------------------------------
-- Coherently-constant
-- Coherently constant type-valued functions.
Coherently-constant :
{A : Type a} → (A → Type p) → Type (a ⊔ lsuc p)
Coherently-constant P =
∃ λ (f : ∀ x y → P x → P y) →
Erased (∃ λ (c : C.Coherently-constant P) →
∀ x y → f x y ≡ subst id (c .property x y))
-- Coherently-constant is pointwise equivalent (with erased proofs) to
-- V.Coherently-constant (assuming univalence).
Coherently-constant≃ᴱCoherently-constant :
{A : Type a} {P : A → Type p} →
@0 Univalence (a ⊔ lsuc p) →
@0 Univalence p →
Coherently-constant P ≃ᴱ V.Coherently-constant P
Coherently-constant≃ᴱCoherently-constant
{a = a} {p = p} {A = A} {P = P} univ′ univ =
block λ bl →
Coherently-constant P ↔⟨⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
Erased (
∃ λ (c : C.Coherently-constant P) →
∀ x y →
P-const x y ≡ subst id (c .property x y))) ↔⟨ (∃-cong λ P-const → Erased-cong (
∃-cong λ c → ∀-cong ext λ x → ∀-cong ext λ y →
≡⇒≃ $ cong (P-const x y ≡_) (
subst id (c .property x y) ≡⟨ cong (subst id) $ sym $
cong-from-∥∥ᴱ→≃-truncation-is-proposition bl univ′ ⟩
subst id
(cong (_≃_.from (∥∥ᴱ→≃ bl univ′) (P , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣)) ≡⟨ (⟨ext⟩ λ _ → sym $
subst-∘ _ _ _) ⟩∎
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (P , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∎))) ⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
Erased (
∃ λ (c : C.Coherently-constant P) →
∀ x y →
P-const x y ≡
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (P , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣))) ↔⟨ (∃-cong λ _ → Erased-cong (∃-cong λ _ →
Eq.extensionality-isomorphism bad-ext F.∘
(∀-cong ext λ _ → Eq.extensionality-isomorphism bad-ext))) ⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
Erased (
∃ λ (c : C.Coherently-constant P) →
P-const ≡
λ x y →
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (P , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣))) ↔⟨ (∃-cong λ P-const → Erased-cong (
∃-cong λ c → ≡⇒≃ $ cong (P-const ≡_) $ sym $
⟨ext⟩ λ x → ⟨ext⟩ λ y →
cong₂ (λ (f : P y → P y) (g : P x → P x) →
f ∘
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (P , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∘
g)
(cong _≃_.to $
trans (cong ≡⇒≃ $ cong-refl (_$ y)) $
≡⇒↝-refl)
(cong _≃_.from $
trans (cong ≡⇒≃ $ cong-refl (_$ x)) $
≡⇒↝-refl))) ⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
Erased (
∃ λ (c : C.Coherently-constant P) →
P-const ≡
λ x y →
≡⇒→ (cong (_$ y) (refl P)) ∘
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (P , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∘
_≃_.from (≡⇒≃ (cong (_$ x) (refl P))))) ↝⟨ (∃-cong λ P-const → inverse $
EEq.drop-⊤-left-Σ-≃ᴱ-Erased
(EEq.other-singleton-with-Π-≃ᴱ-≃ᴱ-⊤ ext univ)) ⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
∃ λ ((Q , P≃) : ∃ λ (Q : A → Type p) → ∀ x → P x ≃ᴱ Q x) →
Erased (
∃ λ (c : C.Coherently-constant Q) →
P-const ≡
λ x y →
_≃ᴱ_.from (P≃ y) ∘
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (Q , [ c ]))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∘
_≃ᴱ_.to (P≃ x))) ↔⟨ (∃-cong λ _ →
Σ-assoc F.∘
(∃-cong λ _ → ∃-comm) F.∘
inverse Σ-assoc F.∘
(∃-cong λ _ → Erased-Σ↔Σ)) ⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
∃ λ ((Q , c) : ∃ λ (Q : A → Type p) →
Erased (C.Coherently-constant Q)) →
∃ λ (P≃ : ∀ x → P x ≃ᴱ Q x) →
Erased (P-const ≡
λ x y →
_≃ᴱ_.from (P≃ y) ∘
subst (_≃_.from (∥∥ᴱ→≃ bl univ′) (Q , c))
(T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∘
_≃ᴱ_.to (P≃ x))) ↔⟨ (∃-cong λ _ →
Σ-cong (inverse $ ∥∥ᴱ→≃ bl univ′) λ _ → Eq.id) ⟩
(∃ λ (P-const : ∀ x y → P x → P y) →
∃ λ (Q : ∥ A ∥ᴱ → Type p) →
∃ λ (P≃ : ∀ x → P x ≃ᴱ Q ∣ x ∣) →
Erased (P-const ≡
λ x y →
_≃ᴱ_.from (P≃ y) ∘
subst Q (T.truncation-is-proposition ∣ x ∣ ∣ y ∣) ∘
_≃ᴱ_.to (P≃ x))) ↔⟨⟩
V.Coherently-constant′ P ↝⟨ inverse V.Coherently-constant≃ᴱCoherently-constant′ ⟩□
V.Coherently-constant P □
------------------------------------------------------------------------
-- The lens type family
-- Coinductive lenses.
Lens : Type a → Type b → Type (lsuc (a ⊔ b))
Lens A B = ∃ λ (get : A → B) → Coherently-constant (get ⁻¹ᴱ_)
-- Some derived definitions.
module Lens {A : Type a} {B : Type b} (l : Lens A B) where
-- A getter.
get : A → B
get = proj₁ l
-- One can convert from any "preimage" (with an erased proof) of the
-- getter to any other.
get⁻¹ᴱ-const : (b₁ b₂ : B) → get ⁻¹ᴱ b₁ → get ⁻¹ᴱ b₂
get⁻¹ᴱ-const b₁ b₂ = proj₁ (proj₂ l) b₁ b₂
-- A setter.
set : A → B → A
set a b = $⟨ get⁻¹ᴱ-const (get a) b ⟩
(get ⁻¹ᴱ get a → get ⁻¹ᴱ b) ↝⟨ _$ (a , [ refl _ ]) ⟩
get ⁻¹ᴱ b ↝⟨ proj₁ ⟩□
A □
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
-- Lens A B is equivalent to V.Lens A B (with erased proofs, assuming
-- univalence).
Lens≃ᴱLens :
Block "Lens≃ᴱLens" →
{A : Type a} {B : Type b} →
@0 Univalence (lsuc (a ⊔ b)) →
@0 Univalence (a ⊔ b) →
Lens A B ≃ᴱ V.Lens A B
Lens≃ᴱLens ⊠ {A = A} {B = B} univ′ univ =
(∃ λ (get : A → B) → Coherently-constant (get ⁻¹ᴱ_)) ↝⟨ (∃-cong λ _ →
Coherently-constant≃ᴱCoherently-constant univ′ univ) ⟩□
(∃ λ (get : A → B) → V.Coherently-constant (get ⁻¹ᴱ_)) □
-- The right-to-left direction of the equivalence preserves getters
-- and setters.
from-Lens≃ᴱLens-preserves-getters-and-setters :
(bl : Block "Lens≃ᴱLens")
{A : Type a} {B : Type b}
(@0 univ′ : Univalence (lsuc (a ⊔ b)))
(@0 univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-→ A B
(_≃ᴱ_.from (Lens≃ᴱLens bl univ′ univ))
from-Lens≃ᴱLens-preserves-getters-and-setters ⊠ _ _ l =
refl _
, ⟨ext⟩ λ a → ⟨ext⟩ λ b →
proj₁ (get⁻¹ᴱ-const (get a) b (a , [ refl (get a) ])) ∎
where
open V.Lens l
-- In erased contexts the equivalence preserves getters and setters.
--
-- (I do not know if this result can be proved in non-erased
-- contexts.)
@0 Lens≃ᴱLens-preserves-getters-and-setters :
(bl : Block "Lens≃ᴱLens")
{A : Type a} {B : Type b}
(@0 univ′ : Univalence (lsuc (a ⊔ b)))
(@0 univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃ᴱ_.logical-equivalence (Lens≃ᴱLens bl univ′ univ))
Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ =
Preserves-getters-and-setters-⇔-inverse
{f = _≃ᴱ_.logical-equivalence
(inverse $ Lens≃ᴱLens bl univ′ univ)} $
Preserves-getters-and-setters-→-↠-⇔
(_≃_.surjection (EEq.≃ᴱ→≃ $ inverse $ Lens≃ᴱLens bl univ′ univ))
(from-Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ)
-- Lens A B is equivalent to Higher.Lens A B (with erased proofs,
-- assuming univalence).
Lens≃ᴱHigher-lens :
Block "Lens≃ᴱHigher-Lens" →
{A : Type a} {B : Type b} →
@0 Univalence (lsuc (a ⊔ b)) →
@0 Univalence (a ⊔ b) →
Lens A B ≃ᴱ Higher.Lens A B
Lens≃ᴱHigher-lens bl {A = A} {B = B} univ′ univ =
Lens A B ↝⟨ Lens≃ᴱLens bl univ′ univ ⟩
V.Lens A B ↝⟨ V.Lens≃ᴱHigher-lens bl univ ⟩□
Higher.Lens A B □
-- In erased contexts the equivalence preserves getters and setters.
@0 Lens≃ᴱHigher-lens-preserves-getters-and-setters :
(bl : Block "Lens≃ᴱHigher-lens")
{A : Type a} {B : Type b}
(@0 univ′ : Univalence (lsuc (a ⊔ b)))
(@0 univ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃ᴱ_.logical-equivalence (Lens≃ᴱHigher-lens bl univ′ univ))
Lens≃ᴱHigher-lens-preserves-getters-and-setters bl univ′ univ =
Preserves-getters-and-setters-⇔-∘
{f = _≃ᴱ_.logical-equivalence $ V.Lens≃ᴱHigher-lens bl univ}
{g = _≃ᴱ_.logical-equivalence $ Lens≃ᴱLens bl univ′ univ}
(V.Lens≃ᴱHigher-lens-preserves-getters-and-setters bl univ)
(Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ)
------------------------------------------------------------------------
-- H-levels
-- If P has h-level n (pointwise), then Coherently-constant P has
-- h-level n (assuming univalence).
H-level-Coherently-constant :
{A : Type a} {P : A → Type p} →
@0 Univalence (lsuc (a ⊔ p)) →
@0 Univalence (a ⊔ lsuc p) →
@0 Univalence p →
((a : A) → H-level n (P a)) →
H-level n (Coherently-constant P)
H-level-Coherently-constant {n = n} univ₁ univ₂ univ₃ h =
Σ-closure n
(Π-closure ext n λ _ →
Π-closure ext n λ _ →
Π-closure ext n λ _ →
h _) λ _ →
H-level-Erased n (
Σ-closure n
(S.H-level-Coinductive-Coherently-constant
univ₁ univ₂ univ₃ h) λ _ →
Π-closure ext n λ _ →
Π-closure ext n λ _ →
H-level.⇒≡ n $
Π-closure ext n λ _ →
h _)
-- If A and B have h-level n given the assumption that the other type
-- is inhabited, then Lens A B has h-level n (assuming univalence).
lens-preserves-h-level :
{A : Type a} {B : Type b} →
@0 Univalence (lsuc (a ⊔ b)) →
@0 Univalence (a ⊔ b) →
∀ n → (B → H-level n A) → (A → H-level n B) →
H-level n (Lens A B)
lens-preserves-h-level univ₁ univ₂ n hA hB =
Σ-closure n
(Π-closure ext n λ a →
hB a) λ _ →
H-level-Coherently-constant univ₁ univ₁ univ₂ λ b →
Σ-closure n (hA b) λ a →
H-level-Erased n (
H-level.⇒≡ n (hB a))
-- If the domain of a lens is inhabited and has h-level n, then the
-- codomain also has h-level n (in erased contexts, assuming
-- univalence).
@0 h-level-respects-lens-from-inhabited :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
Univalence (a ⊔ b) →
∀ n → Lens A B → A → H-level n A → H-level n B
h-level-respects-lens-from-inhabited univ′ univ n =
Higher.h-level-respects-lens-from-inhabited n ∘
_≃ᴱ_.to (Lens≃ᴱHigher-lens ⊠ univ′ univ)
-- If A has positive h-level n, then Lens A B also has h-level n (in
-- erased contexts, assuming univalence).
@0 lens-preserves-h-level-of-domain :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
Univalence (a ⊔ b) →
∀ n → H-level (1 + n) A → H-level (1 + n) (Lens A B)
lens-preserves-h-level-of-domain univ′ univ n hA =
H-level.[inhabited⇒+]⇒+ n λ l →
lens-preserves-h-level univ′ univ (1 + n) (λ _ → hA) λ a →
h-level-respects-lens-from-inhabited univ′ univ _ l a hA
|
{
"alphanum_fraction": 0.4397508273,
"avg_line_length": 41.096,
"ext": "agda",
"hexsha": "f7ba0d3a597dbb2a96a84693cc3555d4719aef79",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Erased.agda",
"max_line_length": 136,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 7328,
"size": 20548
}
|
{-# OPTIONS --warning=error --without-K --safe #-}
open import LogicalFormulae
open import Categories.Definition
open import Categories.Functor.Definition
module Categories.Functor.Lemmas where
functorCompose : {a b c d e f : _} {B : Category {a} {b}} {C : Category {c} {d}} {D : Category {e} {f}} → (Functor C D) → (Functor B C) → (Functor B D)
functorCompose G F = record { onObj = λ x → Functor.onObj G (Functor.onObj F x) ; onArrow = λ f → Functor.onArrow G (Functor.onArrow F f) ; mapId = λ {T} → mapIdHelp G F T ; mapCompose = λ r s → mapComposeHelp G F r s }
where
mapIdHelp : {a b c d e f : _} {B : Category {a} {b}} {C : Category {c} {d}} {D : Category {e} {f}} → (G : Functor C D) → (F : Functor B C) → (T : Category.objects B) → Functor.onArrow G (Functor.onArrow F (Category.id B T)) ≡ Category.id D (Functor.onObj G (Functor.onObj F T))
mapIdHelp {B = B} {C} {D} record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } record { onObj = onObj ; onArrow = onArrow ; mapId = mapId ; mapCompose = mapCompose } T rewrite mapId {T} = mapIdG {onObj T}
mapComposeHelp : {a b c d e f : _} {B : Category {a} {b}} {C : Category {c} {d}} {D : Category {e} {f}} → (G : Functor C D) → (F : Functor B C) → {S T U : Category.objects B} → (r : Category.arrows B S T) → (s : Category.arrows B T U) → (Functor.onArrow G (Functor.onArrow F (Category._∘_ B s r))) ≡ (Category._∘_ D (Functor.onArrow G (Functor.onArrow F s)) (Functor.onArrow G (Functor.onArrow F r)))
mapComposeHelp {B = record { objects = objectsB ; arrows = arrowsB ; id = idB ; _∘_ = _∘B_ ; rightId = rightIdB ; leftId = leftIdB ; compositionAssociative = associativeB }} {record { objects = objectsC ; arrows = arrowsC ; id = idC ; _∘_ = _∘C_ ; rightId = rightIdC ; leftId = leftIdC ; compositionAssociative = associativeC }} {record { objects = objectsD ; arrows = arrowsD ; id = idD ; _∘_ = _∘D_ ; rightId = rightIdD ; leftId = leftIdD ; compositionAssociative = associativeD }} record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } record { onObj = onObjF ; onArrow = onArrowF ; mapId = mapIdF ; mapCompose = mapComposeF } {S} {T} {U} r s rewrite mapComposeF r s | mapComposeG (onArrowF r) (onArrowF s) = refl
idFunctor : {a b : _} (C : Category {a} {b}) → Functor C C
Functor.onObj (idFunctor C) = λ x → x
Functor.onArrow (idFunctor C) = λ f → f
Functor.mapId (idFunctor C) = refl
Functor.mapCompose (idFunctor C) = λ f g → refl
|
{
"alphanum_fraction": 0.6532744074,
"avg_line_length": 113.1363636364,
"ext": "agda",
"hexsha": "1c159f3b42974f373c687e0c1e1eec0fc6eb32f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Categories/Functor/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Categories/Functor/Lemmas.agda",
"max_line_length": 756,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Categories/Functor/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 871,
"size": 2489
}
|
{-# OPTIONS --without-K #-}
module Pi0Examples where
open import PiU using (U; ZERO; ONE; PLUS; TIMES)
open import PiLevel0
using (_⟷_;
unite₊l; uniti₊l; unite₊r; uniti₊r; swap₊; assocl₊; assocr₊;
unite⋆l; uniti⋆l; unite⋆r; uniti⋆r; swap⋆; assocl⋆; assocr⋆;
absorbr; absorbl; factorzr; factorzl;
dist; factor; distl; factorl;
id⟷; _◎_; _⊕_; _⊗_)
------------------------------------------------------------------------------
-- Example circuits on booleans
BOOL : U
BOOL = PLUS ONE ONE
BOOL² : U
BOOL² = TIMES BOOL BOOL
-- Nicer syntax that shows intermediate values instead of the above
-- point-free notation of permutations
infixr 2 _⟷⟨_⟩_
infix 3 _□
_⟷⟨_⟩_ : (t₁ : U) {t₂ : U} {t₃ : U} →
(t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_ ⟷⟨ α ⟩ β = α ◎ β
_□ : (t : U) → {t : U} → (t ⟷ t)
_□ t = id⟷
foldBool unfoldBool : BOOL ⟷ BOOL
foldBool = id⟷
unfoldBool = id⟷
------------------------------------------------------------------------------
-- Many ways of negating a BOOL.
NOT : BOOL ⟷ BOOL
NOT = unfoldBool ◎ swap₊ ◎ foldBool
-- spec: (false , true) ∷ (true , false) ∷ []
NEG1 NEG2 NEG3 NEG4 NEG5 : BOOL ⟷ BOOL
NEG1 = unfoldBool ◎ swap₊ ◎ foldBool
-- spec: (false , true) ∷ (true , false) ∷ []
NEG2 = id⟷ ◎ NOT
-- spec: (false , true) ∷ (true , false) ∷ []
NEG3 = NOT ◎ NOT ◎ NOT
-- spec: (false , true) ∷ (true , false) ∷ []
NEG4 = NOT ◎ id⟷
-- spec: (false , true) ∷ (true , false) ∷ []
NEG5 = uniti⋆l ◎ swap⋆ ◎ (NOT ⊗ id⟷) ◎ swap⋆ ◎ unite⋆l
-- spec: (false , true) ∷ (true , false) ∷ []
NEG6 = uniti⋆r ◎ (NOT ⊗ id⟷) ◎ unite⋆r -- same as above, but shorter
-- CNOT
CNOT : BOOL² ⟷ BOOL²
CNOT = TIMES BOOL BOOL
⟷⟨ unfoldBool ⊗ id⟷ ⟩
TIMES (PLUS x y) BOOL
⟷⟨ dist ⟩
PLUS (TIMES x BOOL) (TIMES y BOOL)
⟷⟨ id⟷ ⊕ (id⟷ ⊗ NOT) ⟩
PLUS (TIMES x BOOL) (TIMES y BOOL)
⟷⟨ factor ⟩
TIMES (PLUS x y) BOOL
⟷⟨ foldBool ⊗ id⟷ ⟩
TIMES BOOL BOOL □
where x = ONE; y = ONE
-- spec:
-- ((false , false) , false , false) ∷
-- ((false , true) , false , true) ∷
-- ((true , false) , true , true) ∷
-- ((true , true) , true , false) ∷ []
-- TOFFOLI
TOFFOLI : TIMES BOOL BOOL² ⟷ TIMES BOOL BOOL²
TOFFOLI = TIMES BOOL BOOL²
⟷⟨ unfoldBool ⊗ id⟷ ⟩
TIMES (PLUS x y) BOOL²
⟷⟨ dist ⟩
PLUS (TIMES x BOOL²) (TIMES y BOOL²)
⟷⟨ id⟷ ⊕ (id⟷ ⊗ CNOT) ⟩
PLUS (TIMES x BOOL²) (TIMES y BOOL²)
⟷⟨ factor ⟩
TIMES (PLUS x y) BOOL²
⟷⟨ foldBool ⊗ id⟷ ⟩
TIMES BOOL BOOL² □
where x = ONE; y = ONE
-- spec:
-- ((false , false , false) , false , false , false) ∷
-- ((false , false , true) , false , false , true) ∷
-- ((false , true , false) , false , true , false) ∷
-- ((false , true , true) , false , true , true) ∷
-- ((true , false , false) , true , false , false) ∷
-- ((true , false , true) , true , false , true) ∷
-- ((true , true , false) , true , true , true) ∷
-- ((true , true , true) , true , true , false) ∷ []
-- Swaps for the type 1+(1+1)
-- We have three values in the type 1+(1+1)
-- Let's call them a, b, and c
-- There 6 permutations. Using the swaps below we can express every permutation:
-- a b c id⟷
-- a c b SWAP23
-- b a c SWAP12
-- b c a ROTL
-- c a b ROTR
-- c b a SWAP13
SWAP12 SWAP23 SWAP13 ROTL ROTR :
PLUS ONE (PLUS ONE ONE) ⟷ PLUS ONE (PLUS ONE ONE)
SWAP12 = assocl₊ ◎ (swap₊ ⊕ id⟷) ◎ assocr₊
-- spec:
-- (inj₁ tt , inj₂ (inj₁ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₁ tt) ∷
-- (inj₂ (inj₂ tt) , inj₂ (inj₂ tt)) ∷ []
SWAP23 = id⟷ ⊕ swap₊
-- spec:
-- (inj₁ tt , inj₁ tt) ∷
-- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ []
SWAP13 = SWAP23 ◎ SWAP12 ◎ SWAP23
-- spec:
-- (inj₁ tt , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₂ (inj₁ tt)) ∷
-- (inj₂ (inj₂ tt) , inj₁ tt) ∷ []
ROTR = SWAP12 ◎ SWAP23
-- spec:
-- (inj₁ tt , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₁ tt) ∷
-- (inj₂ (inj₂ tt) , inj₂ (inj₁ tt)) ∷ []
ROTL = SWAP13 ◎ SWAP23
-- spec:
-- (inj₁ tt , inj₂ (inj₁ tt)) ∷
-- (inj₂ (inj₁ tt) , inj₂ (inj₂ tt)) ∷
-- (inj₂ (inj₂ tt) , inj₁ tt) ∷ []
-- The Peres gate is a universal gate: it takes three inputs a, b, and c, and
-- produces a, a xor b, (a and b) xor c
PERES : TIMES (TIMES BOOL BOOL) BOOL ⟷ TIMES (TIMES BOOL BOOL) BOOL
PERES = (id⟷ ⊗ NOT) ◎ assocr⋆ ◎ (id⟷ ⊗ swap⋆) ◎
TOFFOLI ◎
(id⟷ ⊗ (NOT ⊗ id⟷)) ◎
TOFFOLI ◎
(id⟷ ⊗ swap⋆) ◎ (id⟷ ⊗ (NOT ⊗ id⟷)) ◎
TOFFOLI ◎
(id⟷ ⊗ (NOT ⊗ id⟷)) ◎ assocl⋆
-- spec:
-- (((false , false) , false) , (false , false) , false) ∷
-- (((false , false) , true) , (false , false) , true) ∷
-- (((false , true) , false) , (false , true) , false) ∷
-- (((false , true) , true) , (false , true) , true) ∷
-- (((true , false) , false) , (true , true) , false) ∷
-- (((true , false) , true) , (true , true) , true) ∷
-- (((true , true) , false) , (true , false) , true) ∷
-- (((true , true) , true) , (true , false) , false) ∷ []
-- A reversible full adder: See http://arxiv.org/pdf/1008.3533.pdf
-- Input: (z, ((n1, n2), cin)))
-- Output (g1, (g2, (sum, cout)))
-- where sum = n1 xor n2 xor cin
-- and cout = ((n1 xor n2) and cin) xor (n1 and n2) xor z
FULLADDER : TIMES BOOL (TIMES (TIMES BOOL BOOL) BOOL) ⟷
TIMES BOOL (TIMES BOOL (TIMES BOOL BOOL))
FULLADDER =
-- (z,((n1,n2),cin))
swap⋆ ◎
-- (((n1,n2),cin),z)
(swap⋆ ⊗ id⟷) ◎
-- ((cin,(n1,n2)),z)
assocr⋆ ◎
-- (cin,((n1,n2),z))
swap⋆ ◎
-- (((n1,n2),z),cin)
(PERES ⊗ id⟷) ◎
-- (((n1,n1 xor n2),(n1 and n2) xor z),cin)
assocr⋆ ◎
-- ((n1,n1 xor n2),((n1 and n2) xor z,cin))
(id⟷ ⊗ swap⋆) ◎
-- ((n1,n1 xor n2),(cin,(n1 and n2) xor z))
assocr⋆ ◎
-- (n1,(n1 xor n2,(cin,(n1 and n2) xor z)))
(id⟷ ⊗ assocl⋆) ◎
-- (n1,((n1 xor n2,cin),(n1 and n2) xor z))
(id⟷ ⊗ PERES) ◎
-- (n1,((n1 xor n2,n1 xor n2 xor cin),
-- ((n1 xor n2) and cin) xor (n1 and n2) xor z))
(id⟷ ⊗ assocr⋆)
-- (n1,(n1 xor n2,
-- (n1 xor n2 xor cin,((n1 xor n2) and cin) xor (n1 and n2) xor z)))
-- spec:
-- ((false , (false , false) , false) , false , false , false , false) ∷
-- ((false , (false , false) , true) , false , false , true , false) ∷
-- ((false , (false , true) , false) , false , true , true , false) ∷
-- ((false , (false , true) , true) , false , true , false , true) ∷
-- ((false , (true , false) , false) , true , true , true , false) ∷
-- ((false , (true , false) , true) , true , true , false , true) ∷
-- ((false , (true , true) , false) , true , false , false , true) ∷
-- ((false , (true , true) , true) , true , false , true , true) ∷
-- ((true , (false , false) , false) , false , false , false , true) ∷
-- ((true , (false , false) , true) , false , false , true , true) ∷
-- ((true , (false , true) , false) , false , true , true , true) ∷
-- ((true , (false , true) , true) , false , true , false , false) ∷
-- ((true , (true , false) , false) , true , true , true , true) ∷
-- ((true , (true , false) , true) , true , true , false , false) ∷
-- ((true , (true , true) , false) , true , false , false , false) ∷
-- ((true , (true , true) , true) , true , false , true , false) ∷ []
------------------------------------------------------------------------------
-- Generalized CNOT and TOFFOLI
ttt : {t₁ t₂ t₃ t₄ : U} →
(TIMES (PLUS t₁ t₂) (PLUS t₃ t₄)) ⟷
(PLUS (PLUS (PLUS (TIMES t₁ t₃) (TIMES t₂ t₃)) (TIMES t₁ t₄))) (TIMES t₂ t₄)
ttt {t₁} {t₂} {t₃} {t₄} =
(distl ◎ (dist {t₁} {t₂} {t₃} ⊕ dist {t₁} {t₂} {t₄})) ◎ assocl₊
-- generalized CNOT
gcnot : {A B C : U} →
(TIMES (PLUS A B) (PLUS C C)) ⟷ (TIMES (PLUS A B) (PLUS C C))
gcnot = dist ◎ (id⟷ ⊕ (id⟷ ⊗ swap₊)) ◎ factor
-- Generalized Toffolli gate. See what 'arithmetic' it performs.
GToffoli : {A B C D E : U} →
TIMES (PLUS A B) (TIMES (PLUS C D) (PLUS E E)) ⟷
TIMES (PLUS A B) (TIMES (PLUS C D) (PLUS E E))
GToffoli = dist ◎ (id⟷ ⊕ (id⟷ ⊗ gcnot)) ◎ factor
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4940258474,
"avg_line_length": 33.8925619835,
"ext": "agda",
"hexsha": "a97cc6c9524805076f0809ba11847b8e4ebcafb9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Pi0Examples.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Pi0Examples.agda",
"max_line_length": 80,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Pi0Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3449,
"size": 8202
}
|
import Lvl
open import Data.Boolean
open import Type
module Data.List.Sorting.MergeSort {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
open import Data.List
open import Data.List.Functions as List
open import Data.List.Relation.Membership as Membership using (_∈_ ; use ; skip)
open import Data.List.Relation.Membership.Proofs
open import Data.List.Sorting.Functions(_≤?_)
open import Relator.Equals.Proofs
open import Structure.Relator.Ordering
module _
(split : List(T) → List(List(T)))
(_<_ : _)
⦃ well-founded : Strict.Properties.WellFounded{ℓ₂ = ℓ}(_<_) ⦄
⦃ shrinking-proof : ∀{l}{ll} → ⦃ _ : (ll ∈ split(l)) ⦄ → (ll < l) ⦄
where
import Data.List.FunctionsProven as Listₚ
-- Definition without using well-founded recursion:
-- merge-sort = Sorted.concat ∘ List.map merge-sort ∘ split
-- TODO: Correctness requires proof of split(l) being a partition of l
merge-sort : List(T) → List(T)
merge-sort = Strict.Properties.wellfounded-recursion(_<_) f where
f : (l : List(T)) → ((prev : List(T)) → ⦃ _ : prev < l ⦄ → List(T)) → List(T)
f(l) rec = mergeAll(Listₚ.map (\ll p → rec ll ⦃ shrinking-proof ⦃ p ⦄ ⦄) (split l) [∈]-self)
module Proofs where
open import Data.Boolean.Stmt
open import Data.List.Relation.Permutation
open import Data.List.Sorting(_≤?_)
open import Data.List.Sorting.Proofs(_≤?_)
open import Functional using (_∘₂_)
open import Logic.Propositional
open import Relator.Equals
open import Structure.Relator.Properties
open import Syntax.Transitivity
module _ (asym : ∀{x y} → (x ≤? y ≡ not(y ≤? x))) where -- TODO: Use Structure.Relator.Properties.Asymmetry by the relation (IsTrue ∘₂ (_≤?_))
-- module _ (asym : ∀{x y} → (x ≤? y ≡ not(y ≤? x))) (trans : ∀{x y z} → IsTrue(x ≤? y) → IsTrue(y ≤? z) → IsTrue(x ≤? z)) where
{-
merge-sort-sorted-proof : ∀{l} → Sorted(merge-sort l)
merge-sort-sorted-proof {∅} = Sorted.empty
merge-sort-sorted-proof {a ⊰ ∅} = single
merge-sort-sorted-proof l@{_ ⊰ _ ⊰ _} with Tuple.map1 merge-sort (split2 l)
... | (a , b) = Sorted.merge-sorted-proof asym trans (merge-sort-sorted-proof{l = ∅}) (merge-sort-sorted-proof{l = l})
-}
|
{
"alphanum_fraction": 0.6584249084,
"avg_line_length": 42,
"ext": "agda",
"hexsha": "799a478a9bb4a09f927773789f5178dfdb4773aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Sorting/MergeSort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Sorting/MergeSort.agda",
"max_line_length": 144,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Sorting/MergeSort.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 701,
"size": 2184
}
|
{-
This file contains basic theory about subgroups.
The definition is the same as the first definition of subgroups in:
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#subgroups-sip
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Subgroup where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.GroupoidLaws hiding (assoc)
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
private
variable
ℓ : Level
-- We assume an ambient group
module _ (G' : Group ℓ) where
open GroupStr (snd G')
private G = ⟨ G' ⟩
record isSubgroup (H : ℙ G) : Type ℓ where
field
id-closed : (1g ∈ H)
op-closed : {x y : G} → x ∈ H → y ∈ H → x · y ∈ H
inv-closed : {x : G} → x ∈ H → inv x ∈ H
open isSubgroup
Subgroup : Type (ℓ-suc ℓ)
Subgroup = Σ[ H ∈ ℙ G ] isSubgroup H
isPropIsSubgroup : (H : ℙ G) → isProp (isSubgroup H)
id-closed (isPropIsSubgroup H h1 h2 i) =
∈-isProp H 1g (h1 .id-closed) (h2 .id-closed) i
op-closed (isPropIsSubgroup H h1 h2 i) Hx Hy =
∈-isProp H _ (h1 .op-closed Hx Hy) (h2 .op-closed Hx Hy) i
inv-closed (isPropIsSubgroup H h1 h2 i) Hx =
∈-isProp H _ (h1 .inv-closed Hx) (h2 .inv-closed Hx) i
isSetSubgroup : isSet Subgroup
isSetSubgroup = isSetΣ isSetℙ λ x → isProp→isSet (isPropIsSubgroup x)
Subgroup→Group : Subgroup → Group ℓ
Subgroup→Group (H , Hh) = makeGroup-right 1HG _·HG_ invHG isSetHG assocHG ridHG invrHG
where
HG = Σ[ x ∈ G ] ⟨ H x ⟩
isSetHG = isSetΣ is-set (λ x → isProp→isSet (H x .snd))
1HG : HG
1HG = (1g , (id-closed Hh))
_·HG_ : HG → HG → HG
(x , Hx) ·HG (y , Hy) = (x · y) , (op-closed Hh Hx Hy)
invHG : HG → HG
invHG (x , Hx) = inv x , inv-closed Hh Hx
assocHG : (x y z : HG) → x ·HG (y ·HG z) ≡ (x ·HG y) ·HG z
assocHG (x , Hx) (y , Hy) (z , Hz) =
ΣPathP (·Assoc x y z , isProp→PathP (λ i → H (·Assoc x y z i) .snd) _ _)
ridHG : (x : HG) → x ·HG 1HG ≡ x
ridHG (x , Hx) = ΣPathP (·IdR x , isProp→PathP (λ i → H (·IdR x i) .snd) _ _)
invrHG : (x : HG) → x ·HG invHG x ≡ 1HG
invrHG (x , Hx) = ΣPathP (·InvR x , isProp→PathP (λ i → H (·InvR x i) .snd) _ _)
⟪_⟫ : {G' : Group ℓ} → Subgroup G' → ℙ (G' .fst)
⟪ H , _ ⟫ = H
module _ {G' : Group ℓ} where
open GroupStr (snd G')
open isSubgroup
open GroupTheory G'
private G = ⟨ G' ⟩
isNormal : Subgroup G' → Type ℓ
isNormal H = (g h : G) → h ∈ ⟪ H ⟫ → g · h · inv g ∈ ⟪ H ⟫
isPropIsNormal : (H : Subgroup G') → isProp (isNormal H)
isPropIsNormal H = isPropΠ3 λ g h _ → ∈-isProp ⟪ H ⟫ (g · h · inv g)
·CommNormalSubgroup : (H : Subgroup G') (Hnormal : isNormal H) {x y : G}
→ x · y ∈ ⟪ H ⟫ → y · x ∈ ⟪ H ⟫
·CommNormalSubgroup H Hnormal {x = x} {y = y} Hxy =
subst-∈ ⟪ H ⟫ rem (Hnormal (inv x) (x · y) Hxy)
where
rem : inv x · (x · y) · inv (inv x) ≡ y · x
rem = inv x · (x · y) · inv (inv x) ≡⟨ ·Assoc _ _ _ ⟩
(inv x · x · y) · inv (inv x) ≡⟨ (λ i → ·Assoc (inv x) x y i · invInv x i) ⟩
((inv x · x) · y) · x ≡⟨ cong (λ z → (z · y) · x) (·InvL x) ⟩
(1g · y) · x ≡⟨ cong (_· x) (·IdL y) ⟩
y · x ∎
-- Examples of subgroups
-- We can view all of G as a subset of itself
groupSubset : ℙ G
groupSubset x = (x ≡ x) , is-set x x
isSubgroupGroup : isSubgroup G' groupSubset
id-closed isSubgroupGroup = refl
op-closed isSubgroupGroup _ _ = refl
inv-closed isSubgroupGroup _ = refl
groupSubgroup : Subgroup G'
groupSubgroup = groupSubset , isSubgroupGroup
-- The trivial subgroup
trivialSubset : ℙ G
trivialSubset x = (x ≡ 1g) , is-set x 1g
isSubgroupTrivialGroup : isSubgroup G' trivialSubset
id-closed isSubgroupTrivialGroup = refl
op-closed isSubgroupTrivialGroup hx hy = cong (_· _) hx ∙∙ ·IdL _ ∙∙ hy
inv-closed isSubgroupTrivialGroup hx = cong inv hx ∙ inv1g
trivialSubgroup : Subgroup G'
trivialSubgroup = trivialSubset , isSubgroupTrivialGroup
isNormalTrivialSubgroup : isNormal trivialSubgroup
isNormalTrivialSubgroup g h h≡1 =
(g · h · inv g) ≡⟨ (λ i → g · h≡1 i · inv g) ⟩
(g · 1g · inv g) ≡⟨ ·Assoc _ _ _ ∙ cong (_· inv g) (·IdR g) ⟩
(g · inv g) ≡⟨ ·InvR g ⟩
1g ∎
NormalSubgroup : (G : Group ℓ) → Type _
NormalSubgroup G = Σ[ G ∈ Subgroup G ] isNormal G
-- Can one get this to work with different universes for G and H?
module _ {G H : Group ℓ} (ϕ : GroupHom G H) where
open isSubgroup
open GroupTheory
private
module G = GroupStr (snd G)
module H = GroupStr (snd H)
f = ϕ .fst
module ϕ = IsGroupHom (ϕ .snd)
imSubset : ℙ ⟨ H ⟩
imSubset x = isInIm ϕ x , isPropIsInIm ϕ x
isSubgroupIm : isSubgroup H imSubset
id-closed isSubgroupIm = ∣ G.1g , ϕ.pres1 ∣₁
op-closed isSubgroupIm =
map2 λ { (x , hx) (y , hy) → x G.· y , ϕ.pres· x y ∙ λ i → hx i H.· hy i }
inv-closed isSubgroupIm = map λ { (x , hx) → G.inv x , ϕ.presinv x ∙ cong H.inv hx }
imSubgroup : Subgroup H
imSubgroup = imSubset , isSubgroupIm
imGroup : Group ℓ
imGroup = Subgroup→Group _ imSubgroup
isNormalIm : ((x y : ⟨ H ⟩) → x H.· y ≡ y H.· x)
→ isNormal imSubgroup
isNormalIm comm x y =
map λ {(g , p)
→ g ,
(ϕ .fst g ≡⟨ p ⟩
y ≡⟨ sym (H.·IdR y) ⟩
(y H.· H.1g) ≡⟨ cong (y H.·_) (sym (H.·InvR x)) ⟩
(y H.· (x H.· H.inv x)) ≡⟨ H.·Assoc y x (H.inv x) ⟩
((y H.· x) H.· H.inv x) ≡⟨ cong (H._· H.inv x) (comm y x) ⟩
((x H.· y) H.· H.inv x) ≡⟨ sym (H.·Assoc x y (H.inv x)) ⟩
x H.· y H.· H.inv x ∎ )}
kerSubset : ℙ ⟨ G ⟩
kerSubset x = isInKer ϕ x , isPropIsInKer ϕ x
isSubgroupKer : isSubgroup G kerSubset
id-closed isSubgroupKer = ϕ.pres1
op-closed isSubgroupKer {x} {y} hx hy =
ϕ.pres· x y ∙∙ (λ i → hx i H.· hy i) ∙∙ H.·IdR _
inv-closed isSubgroupKer hx = ϕ.presinv _ ∙∙ cong H.inv hx ∙∙ inv1g H
kerSubgroup : Subgroup G
kerSubgroup = kerSubset , isSubgroupKer
isNormalKer : isNormal kerSubgroup
isNormalKer x y hy =
f (x G.· y G.· G.inv x) ≡⟨ ϕ.pres· _ _ ⟩
f x H.· f (y G.· G.inv x) ≡⟨ cong (f x H.·_) (ϕ.pres· _ _) ⟩
f x H.· f y H.· f (G.inv x) ≡⟨ (λ i → f x H.· hy i H.· f (G.inv x)) ⟩
f x H.· (H.1g H.· f (G.inv x)) ≡⟨ cong (f x H.·_) (H.·IdL _) ⟩
f x H.· f (G.inv x) ≡⟨ cong (f x H.·_) (ϕ.presinv x) ⟩
f x H.· H.inv (f x) ≡⟨ H.·InvR _ ⟩
H.1g ∎
|
{
"alphanum_fraction": 0.5703692934,
"avg_line_length": 32.7523809524,
"ext": "agda",
"hexsha": "3e060f289b790f8a05a6152c2a8e754bf53b48c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Subgroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Subgroup.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Subgroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2799,
"size": 6878
}
|
module CompleteSemantics.Iemhoff where
open import Syntax public
-- Introspective brilliant Kripke models.
record Model : Set₁ where
infix 3 _⊩ᵅ_
field
World : Set
_≤_ : World → World → Set
refl≤ : ∀ {w} → w ≤ w
trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″
_R_ : World → World → Set
reflR : ∀ {w} → w R w
transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″
_⊩ᵅ_ : World → Atom → Set
mono⊩ᵅ : ∀ {w w′ P} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P
-- Introspection.
field
peek : World → Context
_R⨾≤_ : World → World → Set
_R⨾≤_ = _R_ ⨾ _≤_
-- Brilliance.
field
R⨾≤→R : ∀ {w v′} → w R⨾≤ v′ → w R v′
-- Vindication, as a consequence of brilliance.
≤→R : ∀ {w v′} → w ≤ v′ → w R v′
≤→R {w} ψ = R⨾≤→R (w , (reflR , ψ))
open Model {{…}} public
-- Forcing in a particular world of a particular model.
module _ {{_ : Model}} where
mutual
infix 3 _⊪_
_⊪_ : World → Type → Set
w ⊪ α P = w ⊩ᵅ P
w ⊪ A ⇒ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B
w ⊪ □ A = ∀ {v′} → w R v′ → ∅ ⁏ π₂ (peek v′) ⊢ A ∧ v′ ⊩ A
w ⊪ A ⩕ B = w ⊩ A ∧ w ⊩ B
w ⊪ ⫪ = ⊤
w ⊪ ⫫ = ⊥
w ⊪ A ⩖ B = w ⊩ A ∨ w ⊩ B
infix 3 _⊩_
_⊩_ : World → Type → Set
w ⊩ A = ∀ {C w′} → w ≤ w′ →
(∀ {w″} → w′ ≤ w″ → w″ ⊪ A → peek w″ ⊢ⁿᶠ C) →
peek w′ ⊢ⁿᶠ C
infix 3 _⊩⋆_
_⊩⋆_ : World → Stack Type → Set
w ⊩⋆ ∅ = ⊤
w ⊩⋆ Ξ , A = w ⊩⋆ Ξ ∧ w ⊩ A
-- Monotonicity of forcing with respect to constructive accessibility.
module _ {{_ : Model}} where
mutual
mono⊪ : ∀ {A w w′} → w ≤ w′ → w ⊪ A → w′ ⊪ A
mono⊪ {α P} ψ s = mono⊩ᵅ ψ s
mono⊪ {A ⇒ B} ψ f = λ ψ′ a → f (trans≤ ψ ψ′) a
mono⊪ {□ A} ψ f = λ ρ → f (transR (≤→R ψ) ρ)
mono⊪ {A ⩕ B} ψ (a , b) = mono⊩ {A} ψ a , mono⊩ {B} ψ b
mono⊪ {⫪} ψ ∙ = ∙
mono⊪ {⫫} ψ ()
mono⊪ {A ⩖ B} ψ (ι₁ a) = ι₁ (mono⊩ {A} ψ a)
mono⊪ {A ⩖ B} ψ (ι₂ b) = ι₂ (mono⊩ {B} ψ b)
mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A
mono⊩ ψ a = λ ψ′ κ → a (trans≤ ψ ψ′) κ
mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ
mono⊩⋆ {∅} ψ ∙ = ∙
mono⊩⋆ {Ξ , A} ψ (ξ , s) = mono⊩⋆ {Ξ} ψ ξ , mono⊩ {A} ψ s
-- Continuation-passing equipment.
module _ {{_ : Model}} where
return : ∀ {A w} → w ⊪ A → w ⊩ A
return {A} a = λ ψ κ → κ refl≤ (mono⊪ {A} ψ a)
bind : ∀ {A B w} → w ⊩ A →
(∀ {w′} → w ≤ w′ → w′ ⊪ A → w′ ⊩ B) →
w ⊩ B
bind a κ = λ ψ κ′ → a ψ
λ ψ′ a′ → κ (trans≤ ψ ψ′) a′ refl≤
λ ψ″ a″ → κ′ (trans≤ ψ′ ψ″) a″
-- Additional equipment.
module _ {{_ : Model}} where
lookup : ∀ {Ξ A w} → A ∈ Ξ → w ⊩⋆ Ξ → w ⊩ A
lookup top (ξ , s) = s
lookup (pop i) (ξ , s) = lookup i ξ
-- Forcing in all worlds of all models, or semantic entailment.
infix 3 _⊨_
_⊨_ : Context → Type → Set₁
Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w} →
w ⊩⋆ Γ →
(∀ {v′} → w R v′ → ∅ ⁏ π₂ (peek v′) ⊢⋆ Δ) →
(∀ {v′} → w R v′ → v′ ⊩⋆ Δ) →
w ⊩ A
-- Soundness of the semantics with respect to the syntax.
reflect : ∀ {Γ Δ A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A
reflect (var i) γ τ δ = lookup i γ
reflect (mvar i) γ τ δ = lookup i (δ reflR)
reflect (lam {A} {B} d) γ τ δ = return {A ⇒ B}
λ ψ a → reflect d (mono⊩⋆ ψ γ , a)
(λ ρ → τ (transR (≤→R ψ) ρ))
(λ ρ → δ (transR (≤→R ψ) ρ))
reflect (app {A} {B} d e) γ τ δ = bind {A ⇒ B} {B} (reflect d γ τ δ)
λ ψ f → f refl≤ (mono⊩ {A} ψ (reflect e γ τ δ))
reflect (box {A} d) γ τ δ = return {□ A}
λ ρ → graft⊢ ∙ (τ ρ) d ,
reflect d ∙
(λ ρ′ → τ (transR ρ ρ′))
(λ ρ′ → δ (transR ρ ρ′))
reflect (unbox {A} {C} d e) γ τ δ = bind {□ A} {C} (reflect d γ τ δ)
λ ψ s → reflect e (mono⊩⋆ ψ γ)
(λ ρ → τ (transR (≤→R ψ) ρ) , π₁ (s ρ))
(λ ρ → δ (transR (≤→R ψ) ρ) , π₂ (s ρ))
reflect (pair {A} {B} d e) γ τ δ = return {A ⩕ B} (reflect d γ τ δ , reflect e γ τ δ)
reflect (fst {A} {B} d) γ τ δ = bind {A ⩕ B} {A} (reflect d γ τ δ)
λ { ψ (a , b) → a }
reflect (snd {A} {B} d) γ τ δ = bind {A ⩕ B} {B} (reflect d γ τ δ)
λ { ψ (a , b) → b }
reflect unit γ τ δ = return {⫪} ∙
reflect (boom {C} d) γ τ δ = bind {⫫} {C} (reflect d γ τ δ)
λ ψ → elim⊥
reflect (left {A} {B} d) γ τ δ = return {A ⩖ B} (ι₁ (reflect d γ τ δ))
reflect (right {A} {B} d) γ τ δ = return {A ⩖ B} (ι₂ (reflect d γ τ δ))
reflect (case {A} {B} {C} d e f) γ τ δ = bind {A ⩖ B} {C} (reflect d γ τ δ)
λ { ψ (ι₁ a) → reflect e (mono⊩⋆ ψ γ , a)
(λ ρ → τ (transR (≤→R ψ) ρ))
(λ ρ → δ (transR (≤→R ψ) ρ))
; ψ (ι₂ b) → reflect f (mono⊩⋆ ψ γ , b)
(λ ρ → τ (transR (≤→R ψ) ρ))
(λ ρ → δ (transR (≤→R ψ) ρ))
}
-- The canonical model.
private
instance
canon : Model
canon = record
{ World = Context
; _≤_ = _⊆²_
; refl≤ = refl⊆²
; trans≤ = trans⊆²
; _R_ = λ { (_ ⁏ Δ) (_ ⁏ Δ′) → Δ ⊆ Δ′ }
; reflR = refl⊆
; transR = trans⊆
; _⊩ᵅ_ = λ { (Γ ⁏ Δ) P → Γ ⁏ Δ ⊢ⁿᵉ α P }
; mono⊩ᵅ = mono⊢ⁿᵉ
; peek = id
; R⨾≤→R = λ { (_ , (ρ , (_ , ρ′))) → trans⊆ ρ ρ′ }
}
-- Soundness and completeness of the canonical model with respect to the syntax.
mutual
reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊩ A
reflectᶜ {α P} d = return {α P} d
reflectᶜ {A ⇒ B} d = return {A ⇒ B}
λ ψ a → reflectᶜ (appⁿᵉ (mono⊢ⁿᵉ ψ d) (reifyᶜ a))
reflectᶜ {□ A} d = λ ψ κ → neⁿᶠ (unboxⁿᵉ (mono⊢ⁿᵉ ψ d)
(κ (refl⊆ , weak⊆)
λ ρ′ → mono⊢ (bot , ρ′) mv₀ ,
reflectᶜ (mono⊢ⁿᵉ (bot , ρ′) mv₀ⁿᵉ)))
reflectᶜ {A ⩕ B} d = return {A ⩕ B} (reflectᶜ (fstⁿᵉ d) , reflectᶜ (sndⁿᵉ d))
reflectᶜ {⫪} d = return {⫪} ∙
reflectᶜ {⫫} d = λ ψ κ → neⁿᶠ (boomⁿᵉ (mono⊢ⁿᵉ ψ d))
reflectᶜ {A ⩖ B} d = λ ψ κ → neⁿᶠ (caseⁿᵉ (mono⊢ⁿᵉ ψ d)
(κ (weak⊆ , refl⊆) (ι₁ (reflectᶜ v₀ⁿᵉ)))
(κ (weak⊆ , refl⊆) (ι₂ (reflectᶜ v₀ⁿᵉ))))
reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ⁿᶠ A
reifyᶜ {α P} κ = κ refl⊆²
λ ψ s → neⁿᶠ s
reifyᶜ {A ⇒ B} κ = κ refl⊆²
λ ψ f → lamⁿᶠ (reifyᶜ (f (weak⊆ , refl⊆) (reflectᶜ v₀ⁿᵉ)))
reifyᶜ {□ A} κ = κ refl⊆²
λ ψ f → boxⁿᶠ (π₁ (f {∅ ⁏ _} refl⊆))
reifyᶜ {A ⩕ B} κ = κ refl⊆²
λ { ψ (a , b) → pairⁿᶠ (reifyᶜ a) (reifyᶜ b) }
reifyᶜ {⫪} κ = κ refl⊆²
λ { ψ ∙ → unitⁿᶠ }
reifyᶜ {⫫} κ = κ refl⊆²
λ ψ ()
reifyᶜ {A ⩖ B} κ = κ refl⊆²
λ { ψ (ι₁ a) → leftⁿᶠ (reifyᶜ a)
; ψ (ι₂ b) → rightⁿᶠ (reifyᶜ b)
}
-- Reflexivity of simultaneous forcing.
refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ
refl⊩⋆ {∅} = ∙
refl⊩⋆ {Γ , A} = mono⊩⋆ (weak⊆ , refl⊆) refl⊩⋆ , reflectᶜ v₀ⁿᵉ
mrefl⊩⋆ : ∀ {Δ Γ} → Γ ⁏ Δ ⊩⋆ Δ
mrefl⊩⋆ {∅} = ∙
mrefl⊩⋆ {Δ , A} = mono⊩⋆ (refl⊆ , weak⊆) mrefl⊩⋆ , reflectᶜ mv₀ⁿᵉ
-- Completeness of the semantics with respect to the syntax.
reify : ∀ {Γ Δ A} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ⁿᶠ A
reify s = reifyᶜ (s refl⊩⋆ (λ ρ → mono⊢⋆ (refl⊆ , ρ) mrefl⊢⋆)
(λ ρ → mono⊩⋆ (refl⊆ , ρ) mrefl⊩⋆))
-- Normalisation by evaluation.
nbe : ∀ {Γ Δ A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ⁿᶠ A
nbe = reify ∘ reflect
|
{
"alphanum_fraction": 0.3620250232,
"avg_line_length": 36.1171548117,
"ext": "agda",
"hexsha": "ff02449ca83473f32d3e3238e86a1456befc206e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/imla2017",
"max_forks_repo_path": "src/CompleteSemantics/Iemhoff.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/imla2017",
"max_issues_repo_path": "src/CompleteSemantics/Iemhoff.agda",
"max_line_length": 101,
"max_stars_count": 17,
"max_stars_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/imla2017",
"max_stars_repo_path": "src/CompleteSemantics/Iemhoff.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-17T13:02:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-02-27T05:04:55.000Z",
"num_tokens": 3872,
"size": 8632
}
|
module sum-thms where
open import eq
open import sum
open import list
open import product
inj₁-inj : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{x : A}{x'} → inj₁{ℓ}{ℓ'}{A}{B} x ≡ inj₁ x' → x ≡ x'
inj₁-inj refl = refl
|
{
"alphanum_fraction": 0.6105769231,
"avg_line_length": 18.9090909091,
"ext": "agda",
"hexsha": "75c084e2c667222edcbfb97ec7c65508628c634a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "logicshan/IAL",
"max_forks_repo_path": "sum-thms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "logicshan/IAL",
"max_issues_repo_path": "sum-thms.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "logicshan/IAL",
"max_stars_repo_path": "sum-thms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 92,
"size": 208
}
|
module MultiSorted.Context {s} (Sort : Set s) where
-- An attempt to define more structured context
-- that directly support the cartesian structure
data Context : Set s where
ctx-empty : Context
ctx-slot : Sort → Context
ctx-concat : Context → Context → Context
-- the variables in a context
data var : Context → Set where
var-var : ∀ {A} → var (ctx-slot A)
var-inl : ∀ {Γ Δ} → var Γ → var (ctx-concat Γ Δ)
var-inr : ∀ {Γ Δ} → var Δ → var (ctx-concat Γ Δ)
sort-of : ∀ (Γ : Context) → var Γ → Sort
sort-of (ctx-slot A) _ = A
sort-of (ctx-concat Γ Δ) (var-inl x) = sort-of Γ x
sort-of (ctx-concat Γ Δ) (var-inr x) = sort-of Δ x
-- It is absurd to have a variable in the empty context
ctx-empty-absurd : ∀ {ℓ} {P : var ctx-empty → Set ℓ} (x : var ctx-empty) → P x
ctx-empty-absurd ()
|
{
"alphanum_fraction": 0.6425902864,
"avg_line_length": 32.12,
"ext": "agda",
"hexsha": "0c0c7f04252d6be2072b6ffe6fcebedd55f8c5b9",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/Context.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/Context.agda",
"max_line_length": 78,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/Context.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 263,
"size": 803
}
|
{-# OPTIONS --prop #-}
open import Agda.Primitive
record LiftP {ℓ ℓ'}(A : Prop ℓ) : Prop (ℓ ⊔ ℓ') where
constructor liftP
field
unliftP : A
open LiftP public
unliftP' : {ℓ ℓ' ℓ'' : Level} {A : Prop ℓ}{B : Set ℓ''}(f : A → B) → LiftP {ℓ}{ℓ'} A → B
unliftP' f (liftP x) = f x
|
{
"alphanum_fraction": 0.5684210526,
"avg_line_length": 21.9230769231,
"ext": "agda",
"hexsha": "b92630ba0529918218732b28fa0ebfd6469f84e3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/SplitPropRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/SplitPropRecord.agda",
"max_line_length": 88,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/SplitPropRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 125,
"size": 285
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
module Cubical.Codata.Everything where
open import Cubical.Codata.EverythingSafe public
--- Modules making assumptions that might be incompatible with other
-- flags or make use of potentially unsafe features.
-- Assumes --guardedness
open import Cubical.Codata.Stream public
open import Cubical.Codata.Conat public
open import Cubical.Codata.M public
-- Also uses {-# TERMINATING #-}.
open import Cubical.Codata.M.Bisimilarity public
{-
-- Alternative M type implemetation, based on
-- https://arxiv.org/pdf/1504.02949.pdf
-- "Non-wellfounded trees in Homotopy Type Theory"
-- Benedikt Ahrens, Paolo Capriotti, Régis Spadotti
-}
open import Cubical.Codata.M.AsLimit.M
open import Cubical.Codata.M.AsLimit.Coalg
open import Cubical.Codata.M.AsLimit.helper
open import Cubical.Codata.M.AsLimit.Container
open import Cubical.Codata.M.AsLimit.itree
open import Cubical.Codata.M.AsLimit.stream
|
{
"alphanum_fraction": 0.7857900318,
"avg_line_length": 29.46875,
"ext": "agda",
"hexsha": "cbe837ff3ae8033f5410a65b0e9fceea26dc43f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/Everything.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 244,
"size": 943
}
|
module Automaton.Pushdown where
|
{
"alphanum_fraction": 0.875,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "bc3187ac2d661584de3fe936123e5e031f659483",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Automaton/Pushdown.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Automaton/Pushdown.agda",
"max_line_length": 31,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Automaton/Pushdown.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 7,
"size": 32
}
|
module Naturals where
open import Library
open import Categories
open import Functors
open Fun
record NatT {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}(F G : Fun C D) :
Set (a ⊔ b ⊔ c ⊔ d) where
constructor natural
open Cat
field cmp : ∀ {X} → Hom D (OMap F X) (OMap G X)
nat : ∀{X Y}{f : Hom C X Y} →
comp D (HMap G f) cmp ≅ comp D cmp (HMap F f)
NatTEq : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{F G : Fun C D}
{α β : NatT F G} →
(λ {X} → NatT.cmp α {X}) ≅ (λ {X} → NatT.cmp β {X}) →
α ≅ β
NatTEq {α = natural cmp _} {natural .cmp _} refl =
cong (natural cmp) (iext λ _ → iext λ _ → iext λ _ → ir _ _)
idNat : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{F : Fun C D} → NatT F F
idNat {D = D}{F} = let open Cat D in record {
cmp = iden;
nat = λ{X}{Y}{f} →
proof
comp (HMap F f) iden
≅⟨ idr ⟩
HMap F f
≅⟨ sym idl ⟩
comp iden (HMap F f) ∎}
compNat : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{F G H : Fun C D} →
NatT G H → NatT F G → NatT F H
compNat {D = D}{F}{G}{H} α β = let open Cat D; open NatT in record {
cmp = comp (cmp α) (cmp β);
nat = λ{X}{Y}{f} →
proof
comp (HMap H f) (comp (cmp α) (cmp β))
≅⟨ sym ass ⟩
comp (comp (HMap H f) (cmp α)) (cmp β)
≅⟨ cong (λ f₁ → comp f₁ (cmp β)) (nat α) ⟩
comp (comp (cmp α) (HMap G f)) (cmp β)
≅⟨ ass ⟩
comp (cmp α) (comp (HMap G f) (cmp β))
≅⟨ cong (comp (cmp α)) (nat β) ⟩
comp (cmp α) (comp (cmp β) (HMap F f))
≅⟨ sym ass ⟩
comp (comp (cmp α) (cmp β)) (HMap F f)
∎}
idlNat : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{F G : Fun C D}
{α : NatT F G} → compNat idNat α ≅ α
idlNat {D = D} = NatTEq (iext λ _ → Cat.idl D)
idrNat : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{F G : Fun C D}
{α : NatT F G} → compNat α idNat ≅ α
idrNat {D = D} = NatTEq (iext λ _ → Cat.idr D)
assNat : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{E F G H : Fun C D}
{α : NatT G H}{β : NatT F G}{η : NatT E F} →
compNat (compNat α β) η ≅ compNat α (compNat β η)
assNat {D = D} = NatTEq (iext λ _ → Cat.ass D)
-- Natural isomorphism
record Iso {l m}(C : Cat {l}{m}){A B}(f : Cat.Hom C A B) : Set (l ⊔ m)
where
constructor iso
open Cat C
field inv : Hom B A
rinv : comp f inv ≅ iden {B}
linv : comp inv f ≅ iden {A}
record NatI {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}(F G : Fun C D) :
Set (a ⊔ b ⊔ c ⊔ d) where
constructor natural
open Cat
field cmp : ∀ {X} → Hom D (OMap F X) (OMap G X)
cmpI : ∀{X} -> Iso D (cmp {X})
nat : ∀{X Y}{f : Hom C X Y} →
comp D (HMap G f) cmp ≅ comp D cmp (HMap F f)
|
{
"alphanum_fraction": 0.4864463424,
"avg_line_length": 30.9540229885,
"ext": "agda",
"hexsha": "5600dc0ae58742db06a99c1fa14f49107643ca07",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Naturals.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Naturals.agda",
"max_line_length": 74,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Naturals.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 1189,
"size": 2693
}
|
module PushProdPull where
open import Categories.Category
open import Categories.Category.Cartesian.Bundle
open import Categories.Category.CartesianClosed.Canonical
open import Categories.Category.Core
open import Categories.Category.Product
open import Categories.Diagram.Pullback
open import Categories.Diagram.Pushout
open import Categories.Functor
open import Categories.Functor.Bifunctor
open import Data.Product
open import Function using (const)
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.≡-Reasoning
postulate
extensionality : ∀ {A B : Set} {f g : A → B} →
(∀ (x : A) → f x ≡ g x) →
f ≡ g
data t : Set where
⊤ : t
!-unique-lemma : ∀ (x : t) → ⊤ ≡ x
!-unique-lemma ⊤ = refl
arrow : Category (suc zero) zero zero
arrow = record
{ Obj = Σ (Set × Set) (λ x → proj₁ x → proj₂ x)
; _⇒_ = arr
; _≈_ = _≡_
; id = (λ z → z) , λ z → z
; _∘_ = λ {A} {B} {C} f g → comp {A} {B} {C} f g
; assoc = refl
; sym-assoc = refl
; identityˡ = refl
; identityʳ = refl
; identity² = refl
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = λ {refl refl → refl}
}
where
arr : Rel (Σ (Set × Set) (λ x → proj₁ x → proj₂ x)) zero
arr ((a , b) , x1) ((c , d) , y1) = (a → c) × (b → d)
comp : {A B C : Σ (Set × Set) (λ x → proj₁ x → proj₂ x)} → arr B C → arr A B → arr A C
comp {A} {B} {C} (f0 , f1) (g0 , g1) = (λ x → f0 (g0 x)) , λ x → f1 (g1 x)
open Category arrow
SetC : Category (suc zero) zero zero
SetC =
record
{ Obj = Set
; _⇒_ = λ x y → x → y
; _≈_ = _≡_
; id = λ x → x
; _∘_ = λ f g a → f (g a)
; assoc = refl
; sym-assoc = refl
; identityˡ = refl
; identityʳ = refl
; identity² = refl
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = λ {refl refl → refl}
}
pushout-prod : (f g : Obj) → Obj
pushout-prod ((A0 , A1) , f) ((B0 , B1) , g) = {! !}
-- Pushout SetC f×1 1×g
-- where
-- f×1 : A0 × B0 → A1 × B0
-- f×1 (a , b) = f a , b
-- 1×g : A0 × B0 → A0 × B1
-- 1×g (a , b) = a , g b
pullback-hom : (f g : Obj) → Obj
pullback-hom ((A0 , A1) , f) ((B0 , B1) , g) = {! !}
-- Pullback SetC [f,1] [1,g]
-- where
-- [f,1] : (A1 → B1) → A0 → B1
-- [f,1] u = λ x → u (f x)
-- [1,g] : (A0 → B0) → A0 → B1
-- [1,g] u = λ x → g (u x)
pp-is-functor : Endobifunctor arrow
pp-is-functor =
record
{ F₀ = F0
; F₁ = {! !}
; identity = {! !}
; homomorphism = {! !}
; F-resp-≈ = {! !}
}
where
F0 : Category.Obj (Categories.Category.Product.Product arrow arrow) → Obj
F0 x = pullback-hom (proj₁ x) (proj₂ x)
F1 : {A B : Obj × Obj} → Product arrow arrow Categories.Category.[ A , B ] → arrow Categories.Category.[ F0 A , F0 B ]
F1 {((A0 , A1) , a) , ((B0 , B1) , b)} {((C0 , C1) , c) , ((D0 , D1) , d)} ((u , v) , s , t) = {! !}
|
{
"alphanum_fraction": 0.5584866366,
"avg_line_length": 28.5247524752,
"ext": "agda",
"hexsha": "c22edf11c15e71da837ae70960890c23c5f30ecf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tetrapharmakon/agda-categories",
"max_forks_repo_path": "src/PushProdPull.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tetrapharmakon/agda-categories",
"max_issues_repo_path": "src/PushProdPull.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tetrapharmakon/agda-categories",
"max_stars_repo_path": "src/PushProdPull.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1172,
"size": 2881
}
|
module Esterel.Lang.Properties where
open import Esterel.Lang
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
open import Relation.Nullary using (¬_ ; Dec ; yes ; no)
open import Esterel.Environment
open import Esterel.Variable.Signal as Signal
open import Esterel.Variable.Shared as SharedVar
open import Esterel.Context
using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ;
Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c)
open import Esterel.Context.Properties
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.Nat
using (ℕ ; zero ; suc) renaming (_⊔_ to _⊔ℕ_)
open import Data.MoreNatProp
using (⊔-sym)
open import Data.Product
using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Data.List
open import Data.Maybe
open import Data.List.Any
open import Data.List.All
open import Data.OrderedListMap
open import Function using (_$_)
import Data.OrderedListMap(Signal)(Signal.unwrap)(Signal.Status) as SigOMap
import Data.OrderedListMap(SharedVar)(SharedVar.unwrap)(SharedVar.Status × ℕ) as ShrOMap
open ≡-Reasoning using (begin_ ; _≡⟨_⟩_ ; _∎)
open EvaluationContext1
open _≐_⟦_⟧e
open Context1
open _≐_⟦_⟧c
data halted : Term → Set where
hnothin : halted nothin
hexit : (n : ℕ) → halted (exit n)
data paused : Term → Set where
ppause : paused pause
pseq : ∀{p q} → paused p → paused (p >> q)
ploopˢ : ∀{p q} → paused p → paused (loopˢ p q)
ppar : ∀{p q} → paused p → paused q → paused (p ∥ q)
psuspend : ∀{p S} → paused p → paused (suspend p S)
ptrap : ∀{p} → paused p → paused (trap p)
data done : Term → Set where
dhalted : ∀{p} → (p/halted : halted p) → done p
dpaused : ∀{p} → (p/paused : paused p) → done p
data complete-θ : Env → Set where
θcomplete : ∀{θ} →
(∀ S → (S∈ : isSig∈ S θ) → ((sig-stats{S} θ S∈ ≡ Signal.absent) ⊎ (sig-stats{S} θ S∈ ≡ Signal.present))) →
(∀ s → (s∈ : isShr∈ s θ) → (shr-stats{s} θ s∈ ≡ SharedVar.ready)) →
---------------
complete-θ θ
data complete : Term → Set where
codone : ∀{p} → done p → complete p
coenv : ∀{θ A p} → complete-θ θ → done p → complete (ρ⟨ θ , A ⟩· p)
-- Halted and paused programs are disjoint
halted-paused-disjoint : ∀{p} → halted p → paused p → ⊥
halted-paused-disjoint hnothin ()
halted-paused-disjoint (hexit _) ()
↓_ : ∀ {p} → halted p → Term
↓ hnothin = nothin
↓ hexit zero = nothin
↓ hexit (suc n) = exit n
↓-well-behaved : ∀ p -> (haltedp : halted p) -> halted (↓ haltedp)
↓-well-behaved .nothin hnothin = hnothin
↓-well-behaved .(exit 0) (hexit zero) = hnothin
↓-well-behaved .(exit (suc n)) (hexit (suc n)) = hexit n
A-max : Ctrl → Ctrl → Ctrl
A-max GO GO = GO
A-max GO WAIT = GO
A-max WAIT GO = GO
A-max WAIT WAIT = WAIT
value-max : ∀{p q} → done p → done q → (halted p ⊎ halted q) → Term
value-max {q = q} (dhalted hnothin) done-q h⊎h = q
value-max {p = p} done-p (dhalted hnothin) h⊎h = p
value-max (dhalted (hexit n)) (dhalted (hexit m)) h⊎h = exit (n ⊔ℕ m)
value-max (dhalted (hexit n)) (dpaused _) h⊎h = exit n
value-max (dpaused _) (dhalted (hexit m)) h⊎h = exit m
value-max (dpaused paused-p) (dpaused paused-q) (inj₁ halted-p) =
⊥-elim (halted-paused-disjoint halted-p paused-p)
value-max (dpaused paused-p) (dpaused paused-q) (inj₂ halted-q) =
⊥-elim (halted-paused-disjoint halted-q paused-q)
value-max-unique : ∀{p q d1 d2 d3 d4 ij1 ij2} → value-max{p}{q} d1 d2 ij1 ≡ value-max{p}{q} d3 d4 ij2
value-max-unique {d1 = dhalted hnothin} {d2} {dhalted hnothin} {d4} {ij1} {ij2} = refl
value-max-unique {d1 = dhalted (hexit n)} {dhalted hnothin} {dhalted (hexit .n)} {dhalted hnothin} {ij1} {ij2} = refl
value-max-unique {d1 = dpaused p/paused} {dhalted hnothin} {dpaused p/paused'} {dhalted hnothin} {ij1} {ij2} = refl
value-max-unique {d1 = dhalted (hexit n)} {dhalted (hexit m)} {dhalted (hexit .n)} {dhalted (hexit .m)} {ij1} {ij2} = refl
value-max-unique {d1 = dhalted (hexit n)} {dpaused q/paused} {dhalted (hexit .n)} {dpaused q/paused'} {ij1} {ij2} = refl
value-max-unique {d1 = dpaused p/paused} {dhalted (hexit n)} {dpaused p/paused'} {dhalted (hexit .n)} {ij1} {ij2} = refl
value-max-unique {d1 = dpaused p/paused} {dpaused q/paused} {dpaused p/paused'} {dpaused q/paused'} {inj₁ p/halted} {ij2} =
⊥-elim (halted-paused-disjoint p/halted p/paused')
value-max-unique {d1 = dpaused p/paused} {dpaused q/paused} {dpaused p/paused'} {dpaused q/paused'} {inj₂ q/halted} {ij2} =
⊥-elim (halted-paused-disjoint q/halted q/paused')
value-max-unique {d1 = dhalted p/halted} {d2} {dpaused p/paused'} {d4} {ij1} {ij2} =
⊥-elim (halted-paused-disjoint p/halted p/paused')
value-max-unique {d1 = dpaused p/paused} {d2} {dhalted p/halted'} {d4} {ij1} {ij2} =
⊥-elim (halted-paused-disjoint p/halted' p/paused)
value-max-unique {d1 = d1} {dhalted q/halted} {d3} {dpaused q/paused} {ij1} {ij2} =
⊥-elim (halted-paused-disjoint q/halted q/paused)
value-max-unique {d1 = d1} {dpaused q/paused} {d3} {dhalted q/halted} {ij1} {ij2} =
⊥-elim (halted-paused-disjoint q/halted q/paused)
value-max-sym : ∀ {p q} ->
(donep : done p) ->
(haltedq : halted q) ->
value-max donep (dhalted haltedq) (inj₂ haltedq) ≡
value-max (dhalted haltedq) donep (inj₁ haltedq)
value-max-sym (dhalted hnothin) hnothin = refl
value-max-sym (dhalted hnothin) (hexit n) = refl
value-max-sym (dhalted (hexit n)) hnothin = refl
value-max-sym (dhalted (hexit n)) (hexit m)
rewrite ⊔-sym n m = refl
value-max-sym (dpaused p/paused) hnothin = refl
value-max-sym (dpaused p/paused) (hexit n) = refl
value-max-done : ∀ {p q} →
(p/done : done p) →
(q/done : done q) →
(p/halted⊎q/halted : halted p ⊎ halted q) →
done (value-max p/done q/done p/halted⊎q/halted)
value-max-done (dhalted hnothin) q/done ⟨p⊎q⟩/halted = q/done
value-max-done (dhalted (hexit n)) (dhalted hnothin) ⟨p⊎q⟩/halted = dhalted (hexit n)
value-max-done (dhalted (hexit n)) (dhalted (hexit m)) ⟨p⊎q⟩/halted = dhalted (hexit (n ⊔ℕ m))
value-max-done (dhalted (hexit n)) (dpaused q/paused) ⟨p⊎q⟩/halted = dhalted (hexit n)
value-max-done (dpaused p/paused) (dhalted hnothin) ⟨p⊎q⟩/halted = dpaused p/paused
value-max-done (dpaused p/paused) (dhalted (hexit m)) ⟨p⊎q⟩/halted = dhalted (hexit m)
value-max-done (dpaused p/paused) (dpaused q/paused) (inj₁ p/halted) =
⊥-elim (halted-paused-disjoint p/halted p/paused)
value-max-done (dpaused p/paused) (dpaused q/paused) (inj₂ q/halted) =
⊥-elim (halted-paused-disjoint q/halted q/paused)
{-
Properties relating halted, paused, done programs and the contexts. There's no way to
decompose halted programs, so the result must remain halted. The decomposition of paused
programs under the evaluation context must result in paused programs.
halted-⟦⟧c : ∀{p p' C} → halted p → p ≐ C ⟦ p' ⟧c → halted p'
paused-⟦⟧e : ∀{p p' E} → paused p → p ≐ E ⟦ p' ⟧e → paused p'
-}
halted-⟦⟧c : ∀{p p' C} → halted p → p ≐ C ⟦ p' ⟧c → halted p'
halted-⟦⟧c hnothin dchole = hnothin
halted-⟦⟧c (hexit n) dchole = hexit n
-- In fact, the only valid case would be E ≡ [] and p ≡ p'
halted-⟦⟧e : ∀{p p' E} → halted p → p ≐ E ⟦ p' ⟧e → halted p'
halted-⟦⟧e p/halted p≐E⟦p'⟧ = halted-⟦⟧c p/halted (⟦⟧e-to-⟦⟧c p≐E⟦p'⟧)
paused-⟦⟧e : ∀{p p' E} → paused p → p ≐ E ⟦ p' ⟧e → paused p'
paused-⟦⟧e ppause dehole = ppause
paused-⟦⟧e (pseq paused) dehole = pseq paused
paused-⟦⟧e (pseq paused) (deseq d) = paused-⟦⟧e paused d
paused-⟦⟧e (ploopˢ paused) dehole = ploopˢ paused
paused-⟦⟧e (ploopˢ paused) (deloopˢ d) = paused-⟦⟧e paused d
paused-⟦⟧e (ppar paused₁ paused₂) dehole = ppar paused₁ paused₂
paused-⟦⟧e (ppar paused₁ paused₂) (depar₁ d) = paused-⟦⟧e paused₁ d
paused-⟦⟧e (ppar paused₁ paused₂) (depar₂ d) = paused-⟦⟧e paused₂ d
paused-⟦⟧e (psuspend paused) dehole = psuspend paused
paused-⟦⟧e (psuspend paused) (desuspend d) = paused-⟦⟧e paused d
paused-⟦⟧e (ptrap paused) dehole = ptrap paused
paused-⟦⟧e (ptrap paused) (detrap d) = paused-⟦⟧e paused d
done-⟦⟧e : ∀ {p p' E} → done p → p ≐ E ⟦ p' ⟧e → done p'
done-⟦⟧e (dhalted p/halted) p≐E⟦p'⟧ = dhalted (halted-⟦⟧e p/halted p≐E⟦p'⟧)
done-⟦⟧e (dpaused p/paused) p≐E⟦p'⟧ = dpaused (paused-⟦⟧e p/paused p≐E⟦p'⟧)
halted-dec : ∀ p -> Dec (halted p)
halted-dec nothin = yes hnothin
halted-dec pause = no (λ ())
halted-dec (signl S p) = no (λ ())
halted-dec (present S ∣⇒ p ∣⇒ p₁) = no (λ ())
halted-dec (emit S) = no (λ ())
halted-dec (p ∥ q) = no (λ ())
halted-dec (loop p) = no (λ ())
halted-dec (loopˢ p q) = no (λ ())
halted-dec (p >> q) = no (λ ())
halted-dec (suspend p S) = no (λ ())
halted-dec (trap p) = no (λ ())
halted-dec (exit x) = yes (hexit x)
halted-dec (shared s ≔ e in: p) = no (λ ())
halted-dec (s ⇐ e) = no (λ ())
halted-dec (var x ≔ e in: p) = no (λ ())
halted-dec (x ≔ e) = no (λ ())
halted-dec (if x ∣⇒ p ∣⇒ q) = no (λ ())
halted-dec (ρ⟨ θ , A ⟩· p) = no (λ ())
paused-dec : ∀ p -> Dec (paused p)
paused-dec nothin = no (λ ())
paused-dec pause = yes ppause
paused-dec (signl S p) = no (λ ())
paused-dec (present S ∣⇒ p ∣⇒ p₁) = no (λ ())
paused-dec (emit S) = no (λ ())
paused-dec (p ∥ q) with paused-dec p | paused-dec q
paused-dec (p ∥ q) | yes pausedp | yes pausedq = yes (ppar pausedp pausedq)
paused-dec (p ∥ q) | _ | no ¬pausedq = no (λ { (ppar _ pausedq) → ¬pausedq pausedq } )
paused-dec (p ∥ q) | no ¬pausedp | _ = no (λ { (ppar pausedp _) → ¬pausedp pausedp } )
paused-dec (loop p) = no (λ ())
paused-dec (loopˢ p q) with paused-dec p
paused-dec (loopˢ p q) | yes pausedp = yes (ploopˢ pausedp)
paused-dec (loopˢ p q) | no ¬pausedp = no (λ { (ploopˢ pausedp) → ¬pausedp pausedp })
paused-dec (p >> q) with paused-dec p
paused-dec (p >> q) | yes pausedp = yes (pseq pausedp)
paused-dec (p >> q) | no ¬pausedp = no (λ { (pseq pausedp) → ¬pausedp pausedp })
paused-dec (suspend p S) with paused-dec p
paused-dec (suspend p S) | yes pausedp = yes (psuspend pausedp)
paused-dec (suspend p S) | no ¬pausedp = no (λ { (psuspend pausedp) → ¬pausedp pausedp })
paused-dec (trap p) with paused-dec p
paused-dec (trap p) | yes pasuedp = yes (ptrap pasuedp)
paused-dec (trap p) | no ¬pausedp = no (λ { (ptrap pausedp) → ¬pausedp pausedp })
paused-dec (exit x) = no (λ ())
paused-dec (shared s ≔ e in: p) = no (λ ())
paused-dec (s ⇐ e) = no (λ ())
paused-dec (var x ≔ e in: p) = no (λ ())
paused-dec (x ≔ e) = no (λ ())
paused-dec (if x ∣⇒ p ∣⇒ q) = no (λ ())
paused-dec (ρ⟨ θ , A ⟩· p) = no (λ ())
done-dec : ∀ p → Dec (done p)
done-dec p with halted-dec p
done-dec p | yes halted-p = yes (dhalted halted-p)
done-dec p | no ¬halted-p with paused-dec p
done-dec p | no _ | yes paused-p = yes (dpaused paused-p)
done-dec p | no ¬halted-p | (no ¬paused-p) = no
(λ { (dhalted p/halted) → ¬halted-p p/halted ;
(dpaused p/paused) → ¬paused-p p/paused})
signal-absent-or-present : Signal.Status → Set
signal-absent-or-present S = S ≡ Signal.absent ⊎ S ≡ Signal.present
signal-absent-or-present-dec : Decidable signal-absent-or-present
signal-absent-or-present-dec present = yes (inj₂ refl)
signal-absent-or-present-dec absent = yes (inj₁ refl)
signal-absent-or-present-dec unknown = no (λ { (inj₁ ()) ; (inj₂ ())})
signals-all-absent-or-present-dec :
(Ss : SigMap.Map Signal.Status) ->
Dec (∀ S → (S∈ : (SigMap.∈Dom S Ss)) →
(signal-absent-or-present (SigMap.lookup{k = S} Ss S∈)))
signals-all-absent-or-present-dec m
with SigOMap.andmap{_}{signal-absent-or-present} signal-absent-or-present-dec m
signals-all-absent-or-present-dec m | yes p = yes (λ S → p (Signal.unwrap S))
signals-all-absent-or-present-dec m | no ¬p = no (λ z → ¬p (λ n → z (n ₛ)))
var-is-ready : SharedVar.Status × ℕ → Set
var-is-ready p = (proj₁ p) ≡ SharedVar.ready
var-is-ready-dec : Decidable var-is-ready
var-is-ready-dec (ready , _) = yes refl
var-is-ready-dec (new , _) = no (λ ())
var-is-ready-dec (old , _) = no (λ ())
vars-all-ready-dec :
(ss : ShrMap.Map (SharedVar.Status × ℕ)) ->
Dec (∀ s → (s∈ : ShrMap.∈Dom s ss) →
var-is-ready (ShrMap.lookup{k = s} ss s∈))
vars-all-ready-dec ss with ShrOMap.andmap{_}{var-is-ready} var-is-ready-dec ss
vars-all-ready-dec ss | yes p = yes (λ s → p (SharedVar.unwrap s))
vars-all-ready-dec ss | no ¬p = no (λ z → ¬p (λ n → z (n ₛₕ)))
complete-θ-dec : ∀ θ → Dec (complete-θ θ)
complete-θ-dec (Θ sigs shr _) with signals-all-absent-or-present-dec sigs
complete-θ-dec (Θ sigs shrs _) | yes p with vars-all-ready-dec shrs
complete-θ-dec (Θ sigs shrs _) | yes p₁ | yes p₂ = yes (θcomplete p₁ p₂)
complete-θ-dec (Θ sigs shrs _) | yes _ | no ¬p = no (λ { (θcomplete _ x) → ¬p x } )
complete-θ-dec (Θ sigs shrs _) | no ¬p = no (λ { (θcomplete x _) → ¬p x } )
complete-dec : ∀ p → Dec (complete p)
complete-dec p with done-dec p
complete-dec p | yes donep = yes (codone donep)
complete-dec nothin | no ¬donep = no (λ _ → ¬donep (dhalted hnothin))
complete-dec pause | no ¬donep = no (λ _ → ¬donep (dpaused ppause))
complete-dec (signl S p) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (present S ∣⇒ p ∣⇒ p₁) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (emit S) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (p ∥ p₁) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (loop p) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (loopˢ p q) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (p >> p₁) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (suspend p S) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (trap p) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (exit x) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (shared s ≔ e in: p) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (s ⇐ e) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (var x ≔ e in: p) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (x ≔ e) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (if x ∣⇒ p ∣⇒ p₁) | no ¬donep = no (λ { (codone x) → ¬donep x } )
complete-dec (ρ⟨ θ , A ⟩· p) | _ with done-dec p
complete-dec (ρ⟨ θ , A ⟩· p) | _ | yes donep with complete-θ-dec θ
complete-dec (ρ⟨ θ , A ⟩· p) | _ | yes donep | (yes complete-θ) = yes (coenv complete-θ donep)
complete-dec (ρ⟨ θ , A ⟩· p) | _ | yes donep | (no ¬complete-θ) = no
(λ { (codone (dhalted ())) ;
(codone (dpaused ())) ;
(coenv complete-θ _) → ¬complete-θ complete-θ })
complete-dec (ρ⟨ θ , A ⟩· p) | _ | no ¬donep = no
(λ { (codone (dhalted ())) ;
(codone (dpaused ())) ;
(coenv _ donep) → ¬donep donep })
A-max-GO-≡-left : ∀ A → A-max GO A ≡ GO
A-max-GO-≡-left GO = refl
A-max-GO-≡-left WAIT = refl
A-max-GO-≡-right : ∀ A → A-max A GO ≡ GO
A-max-GO-≡-right GO = refl
A-max-GO-≡-right WAIT = refl
A-max-comm : ∀ A1 A2 → A-max A1 A2 ≡ A-max A2 A1
A-max-comm GO GO = refl
A-max-comm GO WAIT = refl
A-max-comm WAIT GO = refl
A-max-comm WAIT WAIT = refl
A-max-assoc : ∀ A1 A2 A3 → (A-max A1 $ A-max A2 A3) ≡ A-max (A-max A1 A2) A3
A-max-assoc GO GO GO = refl
A-max-assoc GO GO WAIT = refl
A-max-assoc GO WAIT GO = refl
A-max-assoc GO WAIT WAIT = refl
A-max-assoc WAIT GO GO = refl
A-max-assoc WAIT GO WAIT = refl
A-max-assoc WAIT WAIT GO = refl
A-max-assoc WAIT WAIT WAIT = refl
A-max-swap : ∀ A1 A2 A3
→ (A-max (A-max A1 A2) A3) ≡ (A-max (A-max A1 A3) A2)
A-max-swap A1 A2 A3 = begin
(A-max (A-max A1 A2) A3) ≡⟨ sym (A-max-assoc A1 A2 A3) ⟩
(A-max A1 $ A-max A2 A3) ≡⟨ sym (cong (A-max A1) (A-max-comm A3 A2)) ⟩
(A-max A1 $ A-max A3 A2) ≡⟨ A-max-assoc A1 A3 A2 ⟩
(A-max (A-max A1 A3) A2) ∎
|
{
"alphanum_fraction": 0.6146771654,
"avg_line_length": 45.2279202279,
"ext": "agda",
"hexsha": "4091afc553536dbc359b39a2ef2ba87a5bd3a503",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Lang/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Lang/Properties.agda",
"max_line_length": 126,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Lang/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 6339,
"size": 15875
}
|
------------------------------------------------------------------------
-- Safe modules that use --erased-cubical and --guardedness
------------------------------------------------------------------------
{-# OPTIONS --safe --erased-cubical --guardedness #-}
module README.Safe.Cubical.Erased.Guardedness where
-- M-types for indexed containers, defined coinductively (in Cubical
-- Agda).
import Container.Indexed.Variant.M.Codata
import Container.Indexed.M.Codata
|
{
"alphanum_fraction": 0.5286624204,
"avg_line_length": 33.6428571429,
"ext": "agda",
"hexsha": "37a3a3842669512c07c0cb86108057bf1223e940",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Safe/Cubical/Erased/Guardedness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Safe/Cubical/Erased/Guardedness.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Safe/Cubical/Erased/Guardedness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 88,
"size": 471
}
|
module OpenModule where
module A where
postulate X : Set
-- Both open import and open module applies the directives
-- to the "open" rather than to the module.
open import Nat hiding (zero) renaming (Nat to N)
open module B = A renaming (X to Y)
Test : Set
Test = Y → B.X → N → Nat.Nat
zero : N
zero = Nat.zero
-- If the module isn't opened the directives are applied to
-- the module.
import Nat as N renaming (Nat to N)
module C = A renaming (X to Z)
Test₂ : Set
Test₂ = N.N → C.Z
|
{
"alphanum_fraction": 0.6820925553,
"avg_line_length": 19.88,
"ext": "agda",
"hexsha": "b9bc34242074ed9e5841cfbd45012ff3814e260c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/OpenModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/OpenModule.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/OpenModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 143,
"size": 497
}
|
-- The category of contexts and renamings
module SOAS.ContextMaps.CategoryOfRenamings {T : Set} where
open import SOAS.Common
open import SOAS.Context {T}
open import SOAS.Variable
open import SOAS.ContextMaps.Combinators (ℐ {T})
open import Categories.Functor.Bifunctor
open import Categories.Object.Initial
open import Categories.Object.Coproduct
open import Categories.Category.Cocartesian
import Categories.Morphism
-- The category of contexts and renamings, defined as the Lawvere theory
-- associated with the clone of variables. In elementary terms it has
-- contexts Γ, Δ as objects, and renamings Γ ↝ Δ ≜ Γ ~[ ℐ → ℐ ]↝ Δ as arrows.
𝔽 : Category 0ℓ 0ℓ 0ℓ
𝔽 = categoryHelper (record
{ Obj = Ctx
; _⇒_ = _↝_
; _≈_ = λ {Γ} ρ₁ ρ₂ → ∀{α : T}{v : ℐ α Γ} → ρ₁ v ≡ ρ₂ v
; id = λ x → x
; _∘_ = λ ϱ ρ v → ϱ (ρ v)
; assoc = refl
; identityˡ = refl
; identityʳ = refl
; equiv = record { refl = refl ; sym = λ p → sym p ; trans = λ p q → trans p q }
; ∘-resp-≈ = λ{ {f = ρ₁} p₁ p₂ → trans (cong ρ₁ p₂) p₁ }
})
module 𝔽 = Category 𝔽 using (op) renaming ( _∘_ to _∘ᵣ_
; _≈_ to _≈ᵣ_
; id to idᵣ
; ∘-resp-≈ to ∘-resp-≈ᵣ )
open 𝔽 public
id′ᵣ : (Γ : Ctx) → Γ ↝ Γ
id′ᵣ Γ = idᵣ {Γ}
-- Category of context is co-Cartesian, given by the empty initial context and
-- context concatenation as the monoidal product.
𝔽:Cocartesian : Cocartesian 𝔽
𝔽:Cocartesian = record
{ initial = record
{ ⊥ = ∅
; ⊥-is-initial = record { ! = λ{()} ; !-unique = λ{ f {_} {()}} }
}
; coproducts = record { coproduct = λ {Γ}{Δ} → record
{ A+B = Γ ∔ Δ
; i₁ = expandʳ Δ
; i₂ = expandˡ Γ
; [_,_] = copair
; inject₁ = λ{ {Θ}{ρ}{ϱ} → i₁-commute ρ ϱ _ }
; inject₂ = λ{ {Θ}{ρ}{ϱ} → i₂-commute ρ ϱ _ }
; unique = λ{ p₁ p₂ → unique {Γ}{Δ} _ _ _ p₁ p₂ _ }
} }
}
where
in₁ : (Γ Δ : Ctx) → Γ ↝ Γ ∔ Δ
in₁ (α ∙ Γ) Δ new = new
in₁ (α ∙ Γ) Δ (old v) = old (in₁ Γ Δ v)
in₂ : (Γ Δ : Ctx) → Δ ↝ Γ ∔ Δ
in₂ ∅ Δ v = v
in₂ (α ∙ Γ) Δ v = old (in₂ Γ Δ v)
i₁-commute : {Γ Δ Θ : Ctx}{α : T}(ρ : Γ ↝ Θ)(ϱ : Δ ↝ Θ)(v : ℐ α Γ)
→ copair ρ ϱ (expandʳ Δ v) ≡ ρ v
i₁-commute ρ ϱ new = refl
i₁-commute ρ ϱ (old v) = i₁-commute (ρ ∘ old) ϱ v
i₂-commute : {Γ Δ Θ : Ctx}{α : T}(ρ : Γ ↝ Θ)(ϱ : Δ ↝ Θ)(v : ℐ α Δ)
→ copair ρ ϱ (expandˡ Γ v) ≡ ϱ v
i₂-commute {∅} ρ ϱ v = refl
i₂-commute {α ∙ Γ} ρ ϱ v = i₂-commute (ρ ∘ old) ϱ v
unique : {Γ Δ Θ : Ctx}{α : T}(ρ : Γ ↝ Θ)(ϱ : Δ ↝ Θ)(π : Γ ∔ Δ ↝ Θ)
→ (π ∘ᵣ expandʳ Δ ≈ᵣ ρ)
→ (π ∘ᵣ expandˡ Γ ≈ᵣ ϱ)
→ (v : ℐ α (Γ ∔ Δ)) → copair ρ ϱ v ≡ π v
unique {∅} ρ ϱ π p₁ p₂ v = sym p₂
unique {α ∙ Γ} ρ ϱ π p₁ p₂ new = sym p₁
unique {α ∙ Γ} ρ ϱ π p₁ p₂ (old v) = unique (ρ ∘ old) ϱ (π ∘ old) p₁ p₂ v
module 𝔽:Co = Cocartesian 𝔽:Cocartesian
module ∔ = BinaryCoproducts (Cocartesian.coproducts 𝔽:Cocartesian)
-- | Special operations coming from the coproduct structure
-- Concatenation is a bifunctor
∔:Bifunctor : Bifunctor 𝔽 𝔽 𝔽
∔:Bifunctor = 𝔽:Co.-+-
-- Left context concatenation functor Γ ∔ (-) : 𝔽 ⟶ 𝔽, for any context Γ
_∔F- : Ctx → Functor 𝔽 𝔽
Γ ∔F- = Γ ∔.+-
-- Right context concatenation functor (-) ∔ Δ : 𝔽 ⟶ 𝔽, for any context Δ
-∔F_ : Ctx → Functor 𝔽 𝔽
-∔F Δ = ∔.-+ Δ
-- Functorial mapping and injections
_∣∔∣_ : {Γ₁ Γ₂ Δ₁ Δ₂ : Ctx}(ρ : Γ₁ ↝ Γ₂)(ϱ : Δ₁ ↝ Δ₂) → (Γ₁ ∔ Δ₁) ↝ (Γ₂ ∔ Δ₂)
_∣∔∣_ = ∔._+₁_
_∣∔_ : {Γ₁ Γ₂ : Ctx}(ρ : Γ₁ ↝ Γ₂)(Δ : Ctx) → (Γ₁ ∔ Δ) ↝ (Γ₂ ∔ Δ)
ρ ∣∔ Δ = ρ ∣∔∣ id′ᵣ Δ
_∔∣_ : {Δ₁ Δ₂ : Ctx}(Γ : Ctx)(ϱ : Δ₁ ↝ Δ₂) → (Γ ∔ Δ₁) ↝ (Γ ∔ Δ₂)
Γ ∔∣ ϱ = id′ᵣ Γ ∣∔∣ ϱ
inl : (Γ {Δ} : Ctx) → Γ ↝ Γ ∔ Δ
inl Γ {Δ} v = ∔.i₁ {Γ}{Δ} v
inr : (Γ {Δ} : Ctx) → Δ ↝ Γ ∔ Δ
inr Γ {Δ} v = ∔.i₂ {Γ}{Δ} v
-- Left context concatenation represents weakening a variable in Γ by an
-- arbitrary new context Θ to get a variable in context (Θ ∔ Γ).
module Concatˡ Γ = Functor (Γ ∔F-)
using () renaming ( F₁ to _∔ᵣ_
; identity to ∔identity
; homomorphism to ∔homomorphism
; F-resp-≈ to ∔F-resp-≈)
open Concatˡ public
-- Context extension represents weakening by a single type, and it's a special
-- case of context concatenation with a singleton context.
module Ext τ = Functor (⌊ τ ⌋ ∔F-)
using () renaming ( F₁ to _∙ᵣ_
; identity to ∙identity
; homomorphism to ∙homomorphism
; F-resp-≈ to ∙F-resp-≈)
open Ext public
-- The two coincide (since add is a special case of copair)
-- but not definitionally: ∙ᵣ is the parallel sum of id : ⌊ τ ⌋ ↝ ⌊ τ ⌋ and ρ : Γ ↝ Δ
-- (i.e. the copairing of expandʳ ⌊ τ ⌋ Δ : ⌊ τ ⌋ ↝ τ ∙ Δ and old ∘ ρ : Γ ↝ τ ∙ Δ)
-- while liftᵣ is the copairing of new : ⌊ τ ⌋ ↝ τ ∙ Δ and old ∘ ρ : Γ ↝ τ ∙ Δ
∙ᵣ-as-add : {α τ : T}{Γ Δ : Ctx} → (ρ : Γ ↝ Δ)(v : ℐ α (τ ∙ Γ))
→ add new (old ∘ ρ) v ≡ (τ ∙ᵣ ρ) v
∙ᵣ-as-add ρ new = refl
∙ᵣ-as-add ρ (old v) = refl
-- Making this a definitional equality simplifies things significantly
-- Right context concatenation is possible but rarely needed.
module Concatʳ Δ = Functor (-∔F Δ )
|
{
"alphanum_fraction": 0.5402144772,
"avg_line_length": 33.4743589744,
"ext": "agda",
"hexsha": "ed18dc393846cc7ef78d6d9112460b5883dfa25d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "SOAS/ContextMaps/CategoryOfRenamings.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "SOAS/ContextMaps/CategoryOfRenamings.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "SOAS/ContextMaps/CategoryOfRenamings.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2317,
"size": 5222
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Support.SetoidPi where
open import Level
open import Function as Fun using (_on_)
open import Relation.Binary as B using () renaming (_=[_]⇒_ to _=[_]⇒₀_; _⇒_ to _⊆_)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
open import Relation.Binary.HeterogeneousEquality using (_≅_) renaming (refl to ≅-refl)
open import Relation.Binary.Indexed.Heterogeneous as I using (_=[_]⇒_)
open import Categories.Support.Equivalence
open import Categories.Support.SetoidFunctions as SF using (_⟶_) renaming (_⟨$⟩_ to _⟨$⟩₀_; cong to cong₀)
open Setoid using () renaming (Carrier to Carrier₀; _≈_ to _[_≈_])
_⟶[_,_] : ∀ {cf ℓf} (From : Setoid cf ℓf) (ct ℓt : Level) → Set (cf ⊔ ℓf ⊔ suc (ct ⊔ ℓt))
From ⟶[ ct , ℓt ] = From ⟶ set→setoid (Setoid ct ℓt)
------------------------------------------------------------------------
-- Indexed binary relations
------------------------------------------------------------------------
record IndexedSetoid {i iℓ} (I : Set i) (_∼_ : B.Rel I iℓ) c ℓ : Set (suc (i ⊔ iℓ ⊔ c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : I → Set c
_≈_ : I.IRel Carrier ℓ
.isEquivalence : I.IsIndexedEquivalence Carrier _≈_
-- NOTE one more field, see resp below
-- no irrelevant opens ☹
-- .open I.IsEquivalence isEquivalence public
private
module E = I.IsIndexedEquivalence
.refl : I.Reflexive Carrier _≈_
refl = E.refl isEquivalence
.sym : I.Symmetric Carrier _≈_
sym = E.sym isEquivalence
.trans : I.Transitive Carrier _≈_
trans = E.trans isEquivalence
.reflexive : ∀ {i} → _≡_ ⊆ (_≈_ {i})
reflexive = E.reflexive isEquivalence
-- conversion to regular setoids by evaluating at an index
_at_ : I → Setoid c ℓ
_at_ i = record
{ Carrier = Carrier i
; _≈_ = _≈_
; isEquivalence = record
{ refl = E.refl isEquivalence
; sym = E.sym isEquivalence
; trans = E.trans isEquivalence
}
}
-- XXX ideally i should redo the resp stuff and promotion and everything
-- with the proper setoid of setoids under equivalence, but first i didn't
-- make it yet and second OH MY GOD ─xplat
Resp-Type = _∼_ =[ _at_ ]⇒₀ _≡_ {A = Setoid c ℓ}
field
.resp : Resp-Type
resp-per : ∀ {c ℓ} {C₁ C₂ : Set c} {_≈₁_ : B.Rel C₁ ℓ} {_≈₂_ : B.Rel C₂ ℓ} {equiv₁ : B.IsEquivalence _≈₁_} {equiv₂ : B.IsEquivalence _≈₂_} → C₁ ≡ C₂ → _≈₁_ ≅ _≈₂_ → _≡_ {A = Setoid c ℓ} record {Carrier = C₁; _≈_ = _≈₁_; isEquivalence = equiv₁} record {Carrier = C₂; _≈_ = _≈₂_; isEquivalence = equiv₂}
resp-per _≡_.refl ≅-refl = _≡_.refl
.resp-per′ : ∀ {c ℓ} (S T : Setoid c ℓ) → (Carrier₀ S ≡ Carrier₀ T) → (Setoid._≈_ S ≅ Setoid._≈_ T) → S ≡ T
resp-per′ S T = resp-per {equiv₁ = Setoid.isEquivalence S} {equiv₂ = Setoid.isEquivalence T}
open IndexedSetoid using (_at_)
weaken : ∀ {c ℓ} → Setoid c ℓ → ∀ {i iℓ} {I : Set i} {_∼_ : B.Rel I iℓ} → IndexedSetoid I _∼_ c ℓ
weaken S {I = I} {_∼_} = record
{ Carrier = Fun.const S.Carrier
; _≈_ = S._≈_
; isEquivalence = record { refl = S.refl; sym = S.sym; trans = S.trans }
; resp = Fun.const _≡_.refl
}
where module S = Setoid S
{-
-- this definition is unusable because agda spins in circles trying to infer
-- ct and ℓt before it will extract any information from f's type, but f's
-- type is the only thing it can infer them from... test is below ☹
_[$]_ : ∀ {cf ℓf ct ℓt} {From : Setoid cf ℓf} → (From ⟶[ ct , ℓt ]) → Carrier From → Set ct
f [$] x = Carrier (f ⟨$⟩₀ x)
.test : ∀ {cf ℓf ct ℓt} {From : Setoid cf ℓf} (To : From ⟶[ ct , ℓt ]) (x : Carrier From) → (_[$]_ {ct = ct}{ℓt = ℓt} To x) → Set ℓt
test = {!!}
-}
-- i think this approach would work beautifully with regular setoids, but
-- with irrelevant setoids the type of cong can't depend on localize
-- ─ xplat
-- .localize : ∀ {cf ℓf ct ℓt} {From : Setoid cf ℓf} (To : From ⟶[ ct , ℓt ]) {x y : Carrier₀ From} → From [ x ≈ y ] → B.REL (Carrier₀ (To ⟨$⟩₀ x)) (Carrier₀ (To ⟨$⟩₀ y)) ℓt
-- localize To {x} x≈y with To ⟨$⟩₀ x | cong₀ To x≈y
-- localize To x≈y | ._ | _≡_.refl = Setoid._≈_ (To ⟨$⟩₀ _)
-- ... so it's on to yet another annoying heterogeneous equality type
module SetoidHetero {cf ℓf} (From : Setoid cf ℓf) (ct ℓt : Level) (To : From ⟶[ ct , ℓt ]) where
I = Carrier₀ From
To$ = _⟨$⟩₀_ To
To$C = Fun._∘_ Carrier₀ (_⟨$⟩₀_ To)
localize′ : ∀ {S T : Setoid ct ℓt} → (S ≡ T) → B.REL (Carrier₀ S) (Carrier₀ T) ℓt
-- localize′ {S} {T} S≡T
localize′ {S} _≡_.refl = Setoid._≈_ S
localize : ∀ {x y : I} → (To$ x ≡ To$ y) → B.REL (To$C x) (To$C y) ℓt
localize {x} {y} To$x≡To$y with To$ y
localize {x} _≡_.refl | ._ = Setoid._≈_ (To$ x)
data _≈∗_ {S T : Setoid ct ℓt} (x : Carrier₀ S) : (y : Carrier₀ T) → Set (suc (ct ⊔ ℓt)) where
locally : (S≡T : S ≡ T)
{y : Carrier₀ T} (x≈y : localize′ S≡T x y) →
_≈∗_ {S} {T} x y
_≈⋆_ : {iˣ iʸ : I} → B.REL (To$C iˣ) (To$C iʸ) (suc (ct ⊔ ℓt))
_≈⋆_ {iˣ} {iʸ} = _≈∗_ {To$ iˣ} {To$ iʸ}
asIndexed : ∀ {cf ℓf} ct ℓt {From : Setoid cf ℓf} → (From ⟶[ ct , ℓt ]) → IndexedSetoid (Carrier₀ From) (Setoid._≈_ From) ct (suc (ct ⊔ ℓt))
asIndexed ct ℓt {From} To = record
{ Carrier = To$C
; _≈_ = _≈⋆_
; isEquivalence = record
{ refl = my-refl
; sym = my-sym
; trans = my-trans
}
; resp = λ {i j} i∼j → resp-per′ (fake-at i) (fake-at j) (resp-helper i∼j) (resp-helper₂ i∼j)
}
where
open SetoidHetero _ ct ℓt To
.my-refl : I.Reflexive To$C _≈⋆_
my-refl {i} {x} = locally {To$ i} _≡_.refl ((Setoid.refl (To$ i)))
.sym-helper : ∀ i j (To$i≡To$j : To$ i ≡ To$ j) (x : To$C i) (y : To$C j) (x≈y : localize′ To$i≡To$j x y) → localize′ (PE.sym To$i≡To$j) y x
sym-helper i j To$i≡To$j x y with To$ j
sym-helper i j _≡_.refl x y | ._ = Setoid.sym (To$ i)
.my-sym : I.Symmetric To$C _≈⋆_
my-sym {i} {j} {x} {y} (locally To$i≡To$j x≈y) = locally (PE.sym To$i≡To$j) (sym-helper i j To$i≡To$j x y x≈y)
.trans-helper : ∀ i j k (To$i≡To$j : To$ i ≡ To$ j) (To$j≡To$k : To$ j ≡ To$ k) (x : To$C i) (y : To$C j) (z : To$C k) (x≈y : localize′ To$i≡To$j x y) (y≈z : localize′ To$j≡To$k y z) → localize′ (PE.trans To$i≡To$j To$j≡To$k) x z
trans-helper i j k To$i≡To$j To$j≡To$k x y z with To$ j | To$ k
trans-helper i j k _≡_.refl _≡_.refl x y z | ._ | ._ = Setoid.trans (To$ i)
.my-trans : I.Transitive To$C _≈⋆_
my-trans (locally To$i≡To$j x≈y) (locally To$j≡To$k y≈z) = locally (PE.trans To$i≡To$j To$j≡To$k) (trans-helper _ _ _ To$i≡To$j To$j≡To$k _ _ _ x≈y y≈z)
.resp-helper : ∀ {i j} → From [ i ≈ j ] → To$C i ≡ To$C j
resp-helper i∼j = PE.cong Carrier₀ (cong₀ To i∼j)
.resp-helper₃ : (S T : Setoid ct ℓt) → S ≡ T → _≈∗_ {S} {S} ≅ _≈∗_ {T} {T}
resp-helper₃ S .S _≡_.refl = ≅-refl
.resp-helper₂ : ∀ {i j} → From [ i ≈ j ] → _≈⋆_ {i} {i} ≅ _≈⋆_ {j} {j}
resp-helper₂ {i} {j} i∼j = resp-helper₃ (To$ i) (To$ j) (cong₀ To i∼j)
fake-at : ∀ i → Setoid ct (suc (ct ⊔ ℓt))
fake-at i = record
{ Carrier = To$C i
; _≈_ = _≈⋆_ {i} {i}
; isEquivalence = record
{ refl = my-refl
; sym = my-sym
; trans = my-trans
}
}
------------------------------------------------------------------------
-- Functions which preserve equality
record Π {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂)
(To : IndexedSetoid (Carrier₀ From) (Setoid._≈_ From) t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
open I using (_=[_]⇒_)
infixl 5 _⟨$⟩_
field
_⟨$⟩_ : (x : Carrier₀ From) → IndexedSetoid.Carrier To x
.cong : Setoid._≈_ From =[ _⟨$⟩_ ]⇒ IndexedSetoid._≈_ To
open Π public
Π′ : ∀ {cf ℓf} (ct ℓt : Level) (From : Setoid cf ℓf) (To : From ⟶[ ct , ℓt ]) → Set (cf ⊔ ℓf ⊔ suc (ct ⊔ ℓt))
Π′ ct ℓt From To = Π From (asIndexed ct ℓt To)
-- Pis that 'just happen' to be independent, instead of being necessarily so.
infixr 0 _⟶Π_
_⟶Π_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Set _
From ⟶Π To = Π From (weaken To)
-- Identity and composition.
id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶Π A
id = record { _⟨$⟩_ = Fun.id; cong = Fun.id }
infixr 9 _∙′_
_∙′_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : Setoid c₁ c₂} →
B ⟶Π C → A ⟶Π B → A ⟶Π C
f ∙′ g = record
{ _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g)
; cong = Fun._∘_ (cong f) (cong g)
}
infixr 9 _[_○_]
-- XXX this shouldn't need B, but it can't be inferred from f's type
_[_○_] : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} (B : Setoid b₁ b₂)
{c₁ c₂} (C : IndexedSetoid _ (Setoid._≈_ B) c₁ c₂) →
(A ⟶Π B) → IndexedSetoid _ _ c₁ c₂
B [ C ○ f ] = record
{ Carrier = Fun._∘_ C.Carrier (_⟨$⟩_ f)
; _≈_ = C._≈_
; isEquivalence = record { refl = C.refl; sym = C.sym; trans = C.trans }
; resp = Fun._∘_ C.resp (cong f)
}
where module C = IndexedSetoid C
-- PROPER. well, halfway.
infixr 9 _∙_
_∙_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂}
{c₁ c₂} {C : IndexedSetoid _ _ c₁ c₂} →
(f : Π B C) → (g : A ⟶Π B) → Π A (B [ C ○ g ])
f ∙ g = record
{ _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g)
; cong = Fun._∘_ (cong f) (cong g)
}
-- Constant equality-preserving function.
const : ∀ {a₁ a₂} {A : Setoid a₁ a₂}
{b₁ b₂} {B : Setoid b₁ b₂} →
Carrier₀ B → A ⟶Π B
const {B = B} b = record
{ _⟨$⟩_ = Fun.const b
; cong = Fun.const (Setoid.refl B)
}
------------------------------------------------------------------------
-- Function setoids
-- Dependent.
setoid : ∀ {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) →
IndexedSetoid (Carrier₀ From) (Setoid._≈_ From) t₁ t₂ →
Setoid _ _
setoid From To = record
{ Carrier = Π From To
; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y
; isEquivalence = record
{ refl = λ {f} → cong f
; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y))
; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y)
}
}
where
open module From = Setoid From using () renaming (_≈_ to _≈₁_)
open module To = IndexedSetoid To using () renaming (_≈_ to _≈₂_)
|
{
"alphanum_fraction": 0.5519223147,
"avg_line_length": 37.1029411765,
"ext": "agda",
"hexsha": "506065a875fa7725e9a1b849cedc654e443e0653",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/SetoidPi.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/SetoidPi.agda",
"max_line_length": 301,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Support/SetoidPi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 4258,
"size": 10092
}
|
{-# OPTIONS --without-K --safe #-}
-- This module provides the basic expression type for polynomials.
module Polynomial.Expr where
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
infixl 6 _⊕_
infixl 7 _⊗_
infixr 8 _⊛_
data Expr {ℓ} (A : Set ℓ) (n : ℕ) : Set ℓ where
Κ : A → Expr A n
Ι : Fin n → Expr A n
_⊕_ : Expr A n → Expr A n → Expr A n
_⊗_ : Expr A n → Expr A n → Expr A n
_⊛_ : Expr A n → ℕ → Expr A n
⊝_ : Expr A n → Expr A n
open import Polynomial.Parameters
module Eval {c r₁ r₂ r₃} (homo : Homomorphism c r₁ r₂ r₃) where
open Homomorphism homo
open import Polynomial.Exponentiation rawRing
open import Data.Vec as Vec using (Vec)
⟦_⟧ : ∀ {n} → Expr Raw.Carrier n → Vec Carrier n → Carrier
⟦ Κ x ⟧ ρ = ⟦ x ⟧ᵣ
⟦ Ι x ⟧ ρ = Vec.lookup ρ x
⟦ x ⊕ y ⟧ ρ = ⟦ x ⟧ ρ + ⟦ y ⟧ ρ
⟦ x ⊗ y ⟧ ρ = ⟦ x ⟧ ρ * ⟦ y ⟧ ρ
⟦ ⊝ x ⟧ ρ = - ⟦ x ⟧ ρ
⟦ x ⊛ i ⟧ ρ = ⟦ x ⟧ ρ ^ i
|
{
"alphanum_fraction": 0.5756256801,
"avg_line_length": 25.5277777778,
"ext": "agda",
"hexsha": "d453b9def9169483b03a0bb25d043a0dadb2981a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/Expr.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/Expr.agda",
"max_line_length": 66,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/Expr.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 414,
"size": 919
}
|
-- 2012-09-25 Andreas, reported by Nicolas Pouillard
{-# OPTIONS --sized-types #-}
module Issue700 where
import Common.Level
open import Common.Size
postulate
Size< : Size → Set
{-# BUILTIN SIZELT Size< #-}
postulate
A : Set
data T (i : Size) : Set where
c : (j : Size< i) → T j → T _
bug : ∀ i → T i → A
bug i (c j x) = bug j x
{- WAS: de Bruijn index out of scope
Issue700.bug is projection like in argument 1 for type Issue700.T
Translated clause:
delta = (j : Size< @0) (x : T j)
perm = x0,x1 -> x0,x1
ps = [r(ConP Issue700.T.c Nothing [r(VarP "j"),r(VarP "x")])]
body = Bind (Abs "h1" Bind (Abs "h2" Body (Def Issue700.bug [r(Var 1 []),r(Var 0 [])])))
body = [h1 h2] bug h1 h2
-}
|
{
"alphanum_fraction": 0.6092436975,
"avg_line_length": 23.0322580645,
"ext": "agda",
"hexsha": "6d849c7bca1e3761fd7c1a564f5aeb3ec11b13e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue700.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue700.agda",
"max_line_length": 91,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue700.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 266,
"size": 714
}
|
-- {-# OPTIONS -v term:30 #-}
{-# OPTIONS --copatterns #-}
module ColistMutual where
mutual
data CoList (A : Set) : Set where
[] : CoList A
_∷_ : (x : A)(xs : ∞CoList A) → CoList A
record ∞CoList (A : Set) : Set where
coinductive
field out : CoList A
open ∞CoList
mutual
repeat : {A : Set}(a : A) → CoList A
repeat a = a ∷ ∞repeat a
∞repeat : {A : Set}(a : A) → ∞CoList A
out (∞repeat a) = repeat a
-- example by Thorsten and Nisse, PAR 2010
data Tree : Set where
node : CoList Tree → Tree
mutual
bad : Tree
bad = node (node [] ∷ bads)
bads : ∞CoList Tree
out bads = bad ∷ bads
-- should not termination check
CRASH -- TODO fix termination checker
{-
data Bool : Set where
true false : Bool
mutual
shape : Tree → Bool
shape (node []) = false
shape (node (_ ∷ l)) = shapes (out l)
shapes : CoList Tree → Bool
shapes [] = false
shapes (t ∷ _) = shape t
-- shape/shapes may not termination check
-}
|
{
"alphanum_fraction": 0.6016511868,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "61ec7a2d943e99d804b56f52996815934af54e7d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/ColistMutual.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/ColistMutual.agda",
"max_line_length": 44,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/ColistMutual.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 339,
"size": 969
}
|
-- Saturated sets.
module SAT3 where
open import Library
open import Terms
open import Substitution
open import Reduction
open import SN
open import SN.AntiRename
-- Kripke predicates on well-typed terms.
TmSet : (a : Ty) → Set₁
TmSet a = {Γ : Cxt} (t : Tm Γ a) → Set
_⊆_ : ∀{a} (𝑨 𝑨′ : TmSet a) → Set
𝑨 ⊆ 𝑨′ = ∀{Γ}{t : Tm Γ _} → 𝑨 t → 𝑨′ t
-- Closure by strong head expansion
Closed : ∀ {a} (𝑨 : TmSet a) → Set
Closed 𝑨 = ∀{Γ}{t t' : Tm Γ _} → t ⟨ _ ⟩⇒ t' → 𝑨 t' → 𝑨 t
data Cl {a} (𝑨 : TmSet a) {Γ} (t : Tm Γ a) : Set where
emb : 𝑨 t → Cl 𝑨 t
exp : ∀{t'} → t ⟨ _ ⟩⇒ t' → Cl 𝑨 t' → Cl 𝑨 t
-- Function space.
_[→]_ : ∀{a b} → TmSet a → TmSet b → TmSet (a →̂ b)
(𝓐 [→] 𝓑) {Γ} t = ∀{Δ} (ρ : Δ ≤ Γ) → {u : Tm Δ _} → 𝓐 u → 𝓑 (app (rename ρ t) u)
-- Saturated term sets.
record IsSAT {a} (𝑨 : TmSet a) : Set where
-- constructor isSat
field
satSNe : SNe ⊆ 𝑨
satSN : 𝑨 ⊆ SN
satExp : Closed 𝑨
satRename : ∀ {Γ Δ} → (ρ : Ren Γ Δ) → ∀ {t} → 𝑨 t → 𝑨 (subst ρ t)
--open IsSAT
record SAT (a : Ty) : Set₁ where
-- constructor sat
field
satSet : TmSet a
satProp : IsSAT satSet
open IsSAT satProp public
open SAT public
-- Elementhood for saturated sets.
-- We use a record to instead of just application to help Agda's unifier.
record _∈_ {a Γ} (t : Tm Γ a) (𝓐 : SAT a) : Set where
constructor ↿_
field ⇃_ : satSet 𝓐 t
open _∈_ public
-- Variables inhabit saturated sets.
⟦var⟧ : ∀{a} (𝓐 : SAT a) {Γ} (x : Var Γ a) → var x ∈ 𝓐
⟦var⟧ 𝓐 x = ↿ (satSNe 𝓐 (var x))
-- Smallest semantic type.
⟦⊥⟧ : SAT base
⟦⊥⟧ = record
{ satSet = SN
; satProp = record
{ satSNe = ne
; satSN = id
; satExp = exp
; satRename = renameSN
}
}
-- Semantic function type.
_⟦→⟧_ : ∀ {a b} (𝓐 : SAT a) (𝓑 : SAT b) → SAT (a →̂ b)
𝓐 ⟦→⟧ 𝓑 = record
{ satSet = 𝑪
; satProp = record
{ satSNe = CSNe
; satSN = CSN
; satExp = CExp
; satRename = λ ρ {t} 𝒕 ρ₁ {u} 𝒖 → ≡.subst (λ t₁ → 𝑩 (app t₁ u)) (subst-∙ ρ₁ ρ t) (𝒕 (λ x₂ → ρ₁ (ρ x₂)) 𝒖)
}
}
where
module 𝓐 = SAT 𝓐
module 𝓑 = SAT 𝓑
𝑨 = 𝓐.satSet
𝑩 = 𝓑.satSet
𝑪 : TmSet (_ →̂ _)
𝑪 t = (𝑨 [→] 𝑩) t
CSNe : SNe ⊆ 𝑪
CSNe 𝒏 ρ 𝒖 = 𝓑.satSNe (sneApp (renameSNe ρ 𝒏) (𝓐.satSN 𝒖))
CSN : 𝑪 ⊆ SN
CSN 𝒕 = unRenameSN (prop→Ind suc ≡.refl) (absVarSN (𝓑.satSN (𝒕 _ (𝓐.satSNe (var v₀)))))
CExp : ∀{Γ}{t t' : Tm Γ _} → t ⟨ _ ⟩⇒ t' → 𝑪 t' → 𝑪 t
CExp t⇒ 𝒕 ρ 𝒖 = 𝓑.satExp ((cong (appl _) (appl _) (subst⇒ (renSN ρ) t⇒))) (𝒕 ρ 𝒖)
-- Lemma: If 𝓐, 𝓑 ∈ SAT and t[u] ∈ 𝓑 for all a ∈ 𝓐, then λt ∈ 𝓐 ⟦→⟧ 𝓑
⟦abs⟧ : ∀{a b}{𝓐 : SAT a}{𝓑 : SAT b}{Γ}{t : Tm (a ∷ Γ) b} →
(∀ {Δ} (ρ : Δ ≤ Γ) {u : Tm Δ a} →
u ∈ 𝓐 → (subst0 u (subst (lifts ρ) t)) ∈ 𝓑 ) → abs t ∈ (𝓐 ⟦→⟧ 𝓑)
(⇃ ⟦abs⟧ {𝓐 = 𝓐}{𝓑 = 𝓑} 𝒕) ρ 𝒖 =
SAT.satExp 𝓑 (β (SAT.satSN 𝓐 𝒖)) (⇃ 𝒕 ρ (↿ 𝒖))
-- Lemma: If 𝓐, 𝓑 ∈ SAT and t ∈ 𝓐 ⟦→⟧ 𝓑 and u ∈ 𝓐, then app t u ∈ 𝓑
⟦app⟧ : ∀ {a b} {𝓐 : SAT a} {𝓑 : SAT b} {Γ} {t : Tm Γ (a →̂ b)} {u : Tm Γ a} →
t ∈ (𝓐 ⟦→⟧ 𝓑) → u ∈ 𝓐 → app t u ∈ 𝓑
⟦app⟧ {𝓑 = 𝓑} {u = u} (↿ 𝒕) (↿ 𝒖) = ≡.subst (λ t → app t u ∈ 𝓑) renId (↿ 𝒕 _ 𝒖)
|
{
"alphanum_fraction": 0.4975969241,
"avg_line_length": 25.5819672131,
"ext": "agda",
"hexsha": "c35f407196079386b8e189cc44a420befe86cca7",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z",
"max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "ryanakca/strong-normalization",
"max_forks_repo_path": "agda-aplas14/SAT3.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "ryanakca/strong-normalization",
"max_issues_repo_path": "agda-aplas14/SAT3.agda",
"max_line_length": 110,
"max_stars_count": 32,
"max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "ryanakca/strong-normalization",
"max_stars_repo_path": "agda-aplas14/SAT3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z",
"num_tokens": 1662,
"size": 3121
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.