Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors defined in terms of Data.Star
------------------------------------------------------------------------
module Data.Star.Vec where
open import Data.Star
open import Data.Star.Nat
open import Data.Star.Fin using (Fin)
open import Data.Star.Decoration
open import Data.Star.Pointer as Pointer hiding (lookup)
open import Data.Star.List using (List)
open import Relation.Binary
open import Relation.Binary.Consequences
open import Function
open import Data.Unit
-- The vector type. Vectors are natural numbers decorated with extra
-- information (i.e. elements).
Vec : Set → ℕ → Set
Vec a = All (λ _ → a)
-- Nil and cons.
[] : ∀ {a} → Vec a zero
[] = ε
infixr 5 _∷_
_∷_ : ∀ {a n} → a → Vec a n → Vec a (suc n)
x ∷ xs = ↦ x ◅ xs
-- Projections.
head : ∀ {a n} → Vec a (1# + n) → a
head (↦ x ◅ _) = x
tail : ∀ {a n} → Vec a (1# + n) → Vec a n
tail (↦ _ ◅ xs) = xs
-- Append.
infixr 5 _++_
_++_ : ∀ {a m n} → Vec a m → Vec a n → Vec a (m + n)
_++_ = _◅◅◅_
-- Safe lookup.
lookup : ∀ {a n} → Fin n → Vec a n → a
lookup i xs with Pointer.lookup i xs
... | result _ x = x
------------------------------------------------------------------------
-- Conversions
fromList : ∀ {a} → (xs : List a) → Vec a (length xs)
fromList ε = []
fromList (x ◅ xs) = x ∷ fromList xs
toList : ∀ {a n} → Vec a n → List a
toList = gmap (const tt) decoration
|
{
"alphanum_fraction": 0.5248468346,
"avg_line_length": 22.2575757576,
"ext": "agda",
"hexsha": "e7e0a53450e704d76ff2f9bc664e1be552cf159a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/Vec.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 440,
"size": 1469
}
|
module Nats.Add.Comm where
open import Equality
open import Nats
open import Function
------------------------------------------------------------------------
-- internal stuffs
private
a+0=0+a : ∀ a → a + 0 ≡ a
a+0=0+a zero = refl
a+0=0+a (suc a) = cong suc $ a+0=0+a a
++a+b=a+b++ : ∀ a b → suc (a + b) ≡ a + suc b
++a+b=a+b++ zero b = refl
++a+b=a+b++ (suc a) b = cong suc $ ++a+b=a+b++ a b
a+b=b+a : ∀ a b → a + b ≡ b + a
a+b=b+a zero b = sym (a+0=0+a b)
a+b=b+a (suc a) b = suc (a + b) ≡⟨ cong suc (a+b=b+a a b) ⟩ ++a+b=a+b++ b a
------------------------------------------------------------------------
-- public aliases
nat-add-comm : ∀ a b → a + b ≡ b + a
nat-add-comm = a+b=b+a
|
{
"alphanum_fraction": 0.3997214485,
"avg_line_length": 24.7586206897,
"ext": "agda",
"hexsha": "7b6f1464f23ebfe28254b968d1919ba464ff58a6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Nats/Add/Comm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Nats/Add/Comm.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Nats/Add/Comm.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 262,
"size": 718
}
|
{-# OPTIONS --no-unicode #-}
module Issue2749 where
-- testing ascii only lambda and arrow
id : {A : Set} -> A -> A
id = {!!}
-- testing ascii only double braces
it : {A : Set} {{a : A}} → A → A
it = {!!}
data B : Set where
mkB : B → B → B
-- testing ascii only suffixes
left : B → B
left b1 = {!!}
open import Agda.Builtin.Equality
-- testing ascii only forall
allq : (∀ m n → m ≡ n) ≡ {!!}
allq = refl
|
{
"alphanum_fraction": 0.5762711864,
"avg_line_length": 16.52,
"ext": "agda",
"hexsha": "8be6cf41490b3fdae28a76085b3d77b66dfbeed1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2749.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2749.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2749.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 413
}
|
{-# OPTIONS --copatterns --sized-types #-}
-- {-# OPTIONS -v tc.size:60 #-}
-- {-# OPTIONS -v term:20 -vterm.matrices:40 #-}
module SizedTypesMutual where
open import Common.Size
-- Syntax: Types, terms and contexts.
infixr 6 _⇒_
infixl 1 _,_
-- Types and contexts.
data Ty : Set where
_⇒_ : (a b : Ty) → Ty
data Cxt : Set where
_,_ : (Γ : Cxt) (a : Ty) → Cxt
-- Generic reversed Spines (last application available first).
data RSpine (V : Ty → Set) (a : Ty) : (c : Ty) → Set where
_,_ : ∀ {b c} → RSpine V a (b ⇒ c) → V b → RSpine V a c
-- Functoriality for RSpine
mapRSp : ∀ {V W : Ty → Set} → (∀ {d} → V d → W d) → ∀ {a c} → RSpine V a c → RSpine W a c
mapRSp f (rs , r) = mapRSp f rs , f r
-- Values and environments
mutual
data Env {i : Size} (Δ : Cxt) : Set where
_,_ : ∀ {a} (ρ : Env {i = i} Δ) (v : Val {i = i} Δ a) → Env Δ
data Val {i : Size} (Δ : Cxt) : (a : Ty) → Set where
ne : ∀ {j : Size< i}{a c} (vs : ValSpine {i = j} Δ a c) → Val Δ c
lam : ∀ {a b} (ρ : Env {i = i} Δ) → Val Δ (a ⇒ b)
ValSpine : {i : Size} (Δ : Cxt) (a c : Ty) → Set
ValSpine {i = i} Δ = RSpine (Val {i = i} Δ)
-- Weakening
mutual
weakEnv : ∀ {i Δ a} → Env {i = i} Δ → Env {i = i} (Δ , a)
weakEnv {i = i} (ρ , v) = weakEnv ρ , weakVal v
weakVal : ∀ {i Δ a c} → Val {i = i} Δ c → Val {i = i} (Δ , a) c
weakVal (ne {j = j} vs) = ne (mapRSp (weakVal {i = j}) vs)
weakVal (lam ρ) = lam (weakEnv ρ)
-- This mutual block produces garbage size solutions
-- if solving is not done on a per-definition basis.
-- The reason is that the current solver assumes
-- that all size constraints live in (an extension of)
-- the same context (which is not true here).
|
{
"alphanum_fraction": 0.5492468134,
"avg_line_length": 27.3968253968,
"ext": "agda",
"hexsha": "9bb21542935bf78741719d6299e64e246a44d1af",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/SizedTypesMutual.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/SizedTypesMutual.agda",
"max_line_length": 89,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/SizedTypesMutual.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 672,
"size": 1726
}
|
module Issue402 where
record Unit : Set where
constructor inn
field
out : Unit
data _==_ {A : Set}(a : A) : A -> Set where
refl : a == a
test : (x y : Unit) -> x == y
test x y = refl
-- this used to cause an infinite loop in the conversion checker
-- now it fails, because no eta-laws are generated for the
-- unguarded recursive record Unit
|
{
"alphanum_fraction": 0.6601123596,
"avg_line_length": 20.9411764706,
"ext": "agda",
"hexsha": "1f08f8b2d523c456a4eede6f695c3b48230ba528",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue402.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue402.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue402.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 103,
"size": 356
}
|
{-# OPTIONS --safe #-}
module Generics.Reflection where
open import Function.Base
import Data.Unit as ⊤
import Data.Product as Product
import Relation.Binary.PropositionalEquality as Eq
open import Data.Nat.Base hiding (_⊔_)
open import Data.List.Base as List hiding (_++_)
import Data.Vec.Base as Vec
open import Data.String as S using (String; _++_)
open import Data.Bool.Base
open import Data.Maybe.Base using (Maybe; just; nothing; maybe)
open import Agda.Builtin.Reflection renaming ( primQNameEquality to _Name≈_
)
open import Reflection.Abstraction using (unAbs)
open import Reflection.Argument using (_⟨∷⟩_; _⟅∷⟆_)
open import Reflection.Term hiding (Telescope; var)
open import Relation.Nullary using (yes; no)
open import Category.Monad as Monad
import Data.List.Categorical as List
import Data.Nat.Induction as Nat
import Data.Char as C
open import Reflection.TypeChecking.Monad.Instances using (tcMonad)
open import Reflection.Traversal hiding (_,_)
open import Generics.Prelude
open import Generics.Telescope
open import Generics.Desc renaming (_,_ to _,ω_)
import Generics.Accessibility as Accessibility
open import Generics.HasDesc
import Function.Identity.Categorical as Identity
open List.TraversableM ⦃...⦄
open Monad.RawMonad ⦃...⦄
tErr : Term → TC ⊤
tErr = typeError ∘ [_] ∘ termErr
sErr : String → TC ⊤
sErr = typeError ∘ [_] ∘ strErr
open Actions
-- `liftN n f` maps numbers 0..(n-1) to themselves, and numbers
-- `n + k` to `n + (f k)`
liftN : ℕ → (ℕ → ℕ) → (ℕ → ℕ)
liftN zero f k = f k
liftN (suc n) f zero = zero
liftN (suc n) f (suc k) = suc (liftN n f k)
mapVars : (ℕ → ℕ) → Term → Term
mapVars f = traverseTerm Identity.applicative actions (0 Reflection.Traversal., [])
where
actions : Actions Identity.applicative
actions .onVar ctx = liftN (ctx .Cxt.len) f
actions .onMeta _ = id
actions .onCon _ = id
actions .onDef _ = id
prettyName : Name → String
prettyName f = maybe id "" (List.last (S.wordsBy ('.' C.≟_) (showName f)))
{-
When converting types to telescopes
variables are converted to context lookups:
Given K := [(oₒ : Oₒ) ⋯ (o₁ : O₁)] "forced" arguments (reversed)
P := [A₁ ⋯ Aₙ] parameters
I := [B₁ ⋯ Bₘ] indices,
we want to replace a term in context (Γ , O₁ , ⋯ , Oₒ , A₁ , ⋯ , Aₙ , B₁ , ⋯ , Bₘ , C₁ , ⋯ , Cₚ)
into a term in context (Γ , Σ P I , C₁ , ⋯ , Cₚ)
A term (var k) should be replaced by:
- (var k) if k < p
- (proj₂ (proj₂ (var p))) if p <= k < p + m (inside I)
(proj₂ (proj₁ (proj₂ (var p)))) ...
(proj₂ (proj₁ (proj₁ (proj₂ (var p))))) ...
- (proj₂ (proj₁ (var p)) if p + m <= k < p + m + n (inside P)
- (proj₂ (proj₁ (proj₁ (var p))) ...
- (proj₂ (proj₁ (proj₁ (proj₁ (var p)))) ...
- K[k - (n + m + p)] if p + m + n <= k < p + m + n + o
- var (k + 1 - n - m - o) if p + m + n + o <= k
-}
-- o: position of (PI : Σ P I) in the context
-- (i.e number of locally bound variables)
mkVar : (o k : ℕ) → Name → List (Arg Term) → Term
mkVar o k t args = def (quote proj₂) (aux o k ⟨∷⟩ args)
where
aux : (o k : ℕ) → Term
aux o zero = def t (var o [] ⟨∷⟩ [])
aux o (suc k) = def (quote proj₁) (aux o k ⟨∷⟩ [])
mkPVar : (o k : ℕ) → List (Arg Term) → Term
mkPVar o k = mkVar o k (quote proj₁)
mkIVar : (o k : ℕ) → List (Arg Term) → Term
mkIVar o k = mkVar o k (quote proj₂)
-- TODO: telescopize should account for forced arguments
module _ (fargs : List Term) (nP nI : ℕ) where
telescopize : ℕ → Term → Term
telescopizeSort : ℕ → Sort → Sort
telescopizeArgs : ℕ → List (Arg Term) → List (Arg Term)
telescopizeTel : ℕ → List (String × Arg Type) → List (String × Arg Type)
telescopizeClause : ℕ → List Clause → List Clause
lookupForced : List Term → ℕ → ℕ → List (Arg Term) → Term
lookupForced [] n o = var (suc (n + o))
-- WARN: we ignore args, this should go alright
-- ALSO, we might/should lift everything up, probably
lookupForced (x ∷ xs) zero o = const (mapVars (λ n → n + suc o) x)
lookupForced (x ∷ xs) (suc n) o = lookupForced xs n o
telescopize o (var k args) =
let args′ = telescopizeArgs o args in
if k <ᵇ o then var k args′
else if k ∸ o <ᵇ nI then mkIVar o (k ∸ o ) args′
else if k ∸ o <ᵇ nI + nP then mkPVar o (k ∸ o ∸ nI) args′
else lookupForced fargs (k ∸ (nI + nP + o)) o args
-- else var (k ∸ pred (nP + nI)) args′
telescopize o (con c args) = con c (telescopizeArgs o args)
telescopize o (def f args) = def f (telescopizeArgs o args)
telescopize o (lam v (abs s t)) = lam v (abs s (telescopize (suc o) t))
telescopize o (pat-lam cs args) = pat-lam (telescopizeClause o cs) (telescopizeArgs o args)
telescopize o (Π[ s ∶ arg i a ] b) = Π[ s ∶ arg i (telescopize o a) ] telescopize (suc o) b
telescopize o (sort s) = sort (telescopizeSort o s)
telescopize o (lit l) = lit l
telescopize o (meta x args) = meta x (telescopizeArgs o args)
telescopize o unknown = unknown
telescopizeSort o (set t) = set (telescopize o t)
telescopizeSort o (prop t) = prop (telescopize o t)
telescopizeSort o x = x
telescopizeArgs o [] = []
telescopizeArgs o (arg i x ∷ xs) = arg i (telescopize o x) ∷ telescopizeArgs o xs
telescopizeTel o [] = []
telescopizeTel o ((s , arg i t) ∷ xs) = (s , arg i (telescopize o t))
∷ telescopizeTel (suc o) xs
telescopizeClause o [] = []
telescopizeClause o (clause tel ps t ∷ xs)
-- careful: telescopes bring (length tel) variables in scope
= clause (telescopizeTel o tel) ps (telescopize (o + length tel) t)
∷ telescopizeClause o xs
telescopizeClause o (absurd-clause tel ps ∷ xs) =
absurd-clause (telescopizeTel o tel) ps ∷ telescopizeClause o xs
-- sanity check
private
module TelescopizeTests where
t : Term
t = var 4 []
-- locally bound variable
t₁ : Term
t₁ = telescopize [] 0 0 5 t
t₁-ok : t₁ ≡ var 4 []
t₁-ok = refl
-- retrieving var in index telescope, 4 variable locally-bound
t₂ : Term
t₂ = telescopize [] 2 1 4 t
t₂-ok : t₂ ≡ def (quote proj₂) (def (quote proj₂) (var 4 [] ⟨∷⟩ []) ⟨∷⟩ [])
t₂-ok = refl
-- retrieving var in parameter telescope, 2 variable locally-bound
t₃ : Term
t₃ = telescopize [] 1 2 2 t
t₃-ok : t₃ ≡ def (quote proj₂) (def (quote proj₁) (var 2 [] ⟨∷⟩ []) ⟨∷⟩ [])
t₃-ok = refl
-- retrieving var outside parameter & index telescope
t₄ : Term
t₄ = telescopize [] 1 1 2 t
t₄-ok : t₄ ≡ var 3 []
t₄-ok = refl
-- retrieving 4th var in index telescope
t₅ : Term
t₅ = telescopize [] 0 5 1 t
t₅-ok : t₅ ≡ def (quote proj₂)
(def (quote proj₁)
(def (quote proj₁)
(def (quote proj₁) (def (quote proj₂) (var 1 [] ⟨∷⟩ []) ⟨∷⟩ []) ⟨∷⟩
[])
⟨∷⟩ [])
⟨∷⟩ [])
t₅-ok = refl
-----------------------------
-- Deriving telescopes
getIndexTel : List Term → ℕ → Type → TC Term
getIndexTel fargs nP ty = aux ty 0 (con (quote ε) [])
where aux : Type → ℕ → Term → TC Term
aux (agda-sort s) n I = return I
aux (Π[ s ∶ arg i a ] b) n I = do
i′ ← quoteTC i >>= normalise
aux b (suc n) (con (quote _⊢<_>_)
(I ⟨∷⟩ con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PI" (telescopize fargs nP n 0 a)
⟨∷⟩ []))
aux _ _ _ = typeError [ strErr "ill-formed type signature when deriving index telescope" ]
getTels : List Term → ℕ → Type → TC (Term × Term)
getTels fargs nP ty = aux nP ty 0 (quoteTerm (ε {A = ⊤}))
where aux : ℕ → Type → ℕ → Term → TC (Term × Term)
aux zero ty _ P = (P ,_) <$> getIndexTel fargs nP ty
aux (suc nP) (Π[ s ∶ arg i a ] b) n P = do
i′ ← quoteTC i >>= normalise
aux nP b (suc n) (con (quote _⊢<_>_)
(P ⟨∷⟩ con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PI" (telescopize fargs 0 n 0 a)
⟨∷⟩ []))
aux _ _ _ _ = typeError [ strErr "ill-formed type signature when deriving parameter telescope" ]
-----------------------------
-- Deriving descriptions
-- we cannot unquote things in Setω directly
-- so we can't unquote Terms of type Telescope directly
-- instead we produce skeletons to ease code generation
data Skel : Set where
Cκ : Skel
Cπ : ArgInfo → Skel → Skel
_C⊗_ : Skel → Skel → Skel
dropPis : ℕ → Type → Type
dropPis (suc n) (pi a (abs _ b)) = dropPis n b
dropPis _ t = t
module _ (fargs : List Term) (dt : Name) (nP : ℕ) where
toIndex : ℕ → List (Arg Term) → Term
toIndex nV xs = vLam "PV" $ foldl cons (quoteTerm ⊤.tt) (drop (nP + List.length fargs) xs)
where cons : Term → Arg Term → Term
cons x (arg _ y) =
con (quote Product._,_) ( x
⟨∷⟩ telescopize fargs nP nV 0 y
⟨∷⟩ [])
getRecDesc : ℕ → Type → TC (Maybe (Term × Skel))
getRecDesc n (def nm args) = do
if nm Name≈ dt
then return (just (con (quote ConDesc.var) (toIndex n args ⟨∷⟩ []) , Cκ))
else return nothing
getRecDesc n (Π[ s ∶ arg i a ] b) = do
getRecDesc (suc n) b >>= λ where
(just (right , skright)) → do
i′ ← quoteTC i >>= normalise
return $ just ( con (quote ConDesc.π) (con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PV" (telescopize fargs nP n 0 a) ⟨∷⟩ right ⟨∷⟩ [])
, Cπ i skright
)
nothing → return nothing
getRecDesc n ty = return nothing
getDesc : (ℕ → ℕ) → ℕ → Type → TC (Term × Skel)
getDesc f n (def nm args) =
-- we're gonna assume nm == dt
-- TODO: why does this work???
-- surely args contain parameters
return (con (quote ConDesc.var) (toIndex n (List.map (Arg.map (mapVars f)) args) ⟨∷⟩ []) , Cκ)
getDesc f n (Π[ s ∶ arg i a ] b) =
getRecDesc n (mapVars f a) >>= λ where
-- (possibly higher order) inductive argument
(just (left , skleft)) → do
-- we cannot depend on inductive argument (for now)
-- note: inductive arguments are relevant (for now)
-- /!\ inductive arguments to not bind a variable, so we strengthen the term
(right , skright) ← getDesc ((_- 1) ∘ f) n b
return (con (quote ConDesc._⊗_) (left ⟨∷⟩ right ⟨∷⟩ []) , (skleft C⊗ skright))
-- plain old argument
nothing → do
(right , skright) ← getDesc (liftN 1 f) (suc n) b
i′ ← quoteTC i >>= normalise
return ( con (quote ConDesc.π) (con (quote Product._,_) (lit (string s) ⟨∷⟩ i′ ⟨∷⟩ [])
⟨∷⟩ vLam "PV" (telescopize fargs nP n 0 a)
⟨∷⟩ right
⟨∷⟩ [])
, Cπ i skright
)
getDesc _ _ _ = typeError [ strErr "ill-formed constructor type" ]
-- TODO: the reason we do this is that I've failed to make the PI arguments
-- implicit in the reflection code
record HD {P} {I : ExTele P} {ℓ} (A : Indexed P I ℓ) : Setω where
constructor mkHD
A′ : ⟦ P , I ⟧xtel → Set ℓ
A′ = uncurry P I A
field
{n} : ℕ
D : DataDesc P I n
names : Vec String n
constr : ∀ pi → ⟦ D ⟧Data A′ pi → A′ pi
split : ∀ pi → A′ pi → ⟦ D ⟧Data A′ pi
split∘constr : ∀ pi → (x : ⟦ D ⟧Data A′ pi) → split pi (constr pi x) ≡ω x
constr∘split : ∀ pi → (x : A′ pi ) → constr pi (split pi x) ≡ x
open Accessibility A D (λ {pi} → split pi)
field wf : ∀ pi (x : A′ pi) → Acc x
badconvert : ∀ {P} {I : ExTele P} {ℓ} {A : Indexed P I ℓ}
→ HD {P} {I} {ℓ} A → HasDesc {P} {I} {ℓ} A
badconvert d = record
{ D = HD.D d
; names = HD.names d
; constr = λ {PI} → HD.constr d PI
; split = λ {PI} → HD.split d PI
; split∘constr = λ {PI} → HD.split∘constr d PI
; constr∘split = λ {PI} → HD.constr∘split d PI
; wf = λ {PI} → HD.wf d PI
}
withAI : ArgInfo → Term → Term
withAI i t with relevance i
... | relevant = t
... | irrelevant = con (quote irrv) [ vArg t ]
patAI : ArgInfo → Pattern → Pattern
patAI i t with relevance i
... | relevant = t
... | irrelevant = con (quote irrv) [ vArg t ]
deriveThings : (gargs : List (Arg Term)) (nP : ℕ)
(qconstr qsplit qsplitconstr qconstrsplit qwf : Name)
(cons : List (Name × Skel))
→ TC ⊤
deriveThings gargs nP qconstr qsplit qsplitconstr qconstrsplit qwf cons = do
let clauses = deriveDef cons
-- TODO: use some n-ary magic
let (constr_cls , rest ) = unzip clauses
let (split_cls , rest ) = unzip rest
let (splitconstr_cls , rest ) = unzip rest
let (constrsplit_cls , wf_cls) = unzip rest
defineFun qconstr constr_cls
defineFun qsplit split_cls
defineFun qsplitconstr splitconstr_cls
defineFun qconstrsplit constrsplit_cls
defineFun qwf wf_cls
where
deriveIndArg : Skel → ℕ × List (String × Arg Type) × List (Arg Pattern) × List (Arg Term)
deriveIndArg Cκ = 0 , [] , [] , []
deriveIndArg (Cπ ia C) =
let (o , tel , pat , args) = deriveIndArg C
in suc o
, ("x" , vArg unknown) ∷ tel
, arg ia (var o) ∷ pat
, arg ia (var o []) ∷ args
-- WARNING: intentionally wrong, never used when deriving descriptions
deriveIndArg (A C⊗ B) = 0 , [] , [] , []
deriveCon : Skel → ℕ × List (String × Arg Type) -- variable types
× Pattern -- pattern for ⟦_⟧Data
× List (Arg Pattern) -- pattern for arguments of A′ cons
× List (Arg Term) -- arguments for constructor
× Term -- return value for split
× Term -- body of wf
deriveCon Cκ
= 0 , [] -- we bind zero vars
, con (quote Eq.refl) []
, []
, []
, con (quote Eq.refl) []
, def (quote ttω) []
deriveCon (Cπ ia C) =
let (o , vars , datapat , apat , cargs , sval , wfval) = deriveCon C
in suc o
, ("s" , arg ia unknown) ∷ vars -- TODO: unsure about ia here
, con (quote Product._,_) (patAI ia (var o) ⟨∷⟩ datapat ⟨∷⟩ [])
, arg ia (var o) ∷ apat
, arg ia (var o []) ∷ cargs
, con (quote Product._,_) (withAI ia (var o []) ⟨∷⟩ sval ⟨∷⟩ [])
, wfval
deriveCon (A C⊗ B) =
let (ro , rtel , rpat , rargs) = deriveIndArg A in
let (o , vars , datapat , apat , cargs , sval , wfval) = deriveCon B
in suc o
, ("x" , vArg unknown) ∷ vars -- we only support visible relevant inductive args
, con (quote Product._,_) (var o ⟨∷⟩ datapat ⟨∷⟩ [])
, var o ⟨∷⟩ apat
, var o [] ⟨∷⟩ cargs
, con (quote Product._,_) (var o [] ⟨∷⟩ sval ⟨∷⟩ [])
, def (quote _ω,ω_)
(pat-lam [ clause rtel rpat
(def qwf (unknown -- PI of inductive argument
⟨∷⟩ var (o + ro) rargs
⟨∷⟩ []))
] []
⟨∷⟩ wfval ⟨∷⟩ []) -- TODOOOO
deriveClause : Pattern → Term → Name × Skel
→ Clause × Clause × Clause × Clause × Clause
deriveClause kp kt (consname , shape) =
let (o , vars , datapat , apat , cargs , sval , wfval) = deriveCon shape
in clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con (quote _,ω_) (kp ⟨∷⟩ datapat ⟨∷⟩ []) ⟨∷⟩ [])
(con consname (nP ⋯⟅∷⟆ cargs)) -- TODO: maybe forced args go here
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con consname apat ⟨∷⟩ [])
(con (quote _,ω_) (kt ⟨∷⟩ sval ⟨∷⟩ []))
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con (quote _,ω_) (kp ⟨∷⟩ datapat ⟨∷⟩ []) ⟨∷⟩ [])
(def (quote reflω) [])
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con consname apat ⟨∷⟩ [])
(con (quote Eq.refl) [])
, clause (("pi" , vArg unknown) ∷ vars)
(var o ⟨∷⟩ con consname apat ⟨∷⟩ [])
(con (quote Accessibility.Acc.acc) (wfval ⟨∷⟩ []))
deriveClauses : Pattern -- pattern for index of constructor
→ Term -- term for index constructor
→ List (Name × Skel)
→ List (Clause × Clause × Clause × Clause × Clause)
deriveClauses _ _ [] = []
deriveClauses kp kt (x ∷ xs)
= deriveClause kp kt x
∷ deriveClauses (con (quote Fin.suc) (kp ⟨∷⟩ []))
(con (quote Fin.suc) (kt ⟨∷⟩ []))
xs
deriveDef : List (Name × Skel) → List (Clause × Clause × Clause × Clause × Clause)
deriveDef [] = [ cls , cls , cls , cls , cls ]
where cls = absurd-clause (("PI" , hArg unknown) ∷ ("x" , vArg unknown) ∷ [])
(var 1 ⟨∷⟩ absurd 0 ⟨∷⟩ [] )
deriveDef xs = deriveClauses (con (quote Fin.zero) [])
(con (quote Fin.zero) [])
xs
macro
deriveDesc : Term → Term → TC ⊤
deriveDesc t hole = do
-- Arguments are used for enabling universe-polymorphic defintions
-- these arguments should be prepended to every use of nm as a type
def nm gargs ← return t
where _ → typeError [ strErr "Expected name with arguments." ]
let fargs = reverse (List.map Arg.unArg gargs)
data-type nP cs ← getDefinition nm
where _ → typeError [ strErr "Name given is not a datatype." ]
let nCons = List.length cs
let nArgs = List.length gargs
names ← quoteTC (Vec.fromList (List.map prettyName cs))
-- we get the type of the family, with the provided arguments removed
ty ← getType nm >>= normalise <&> dropPis nArgs >>= normalise
-- (nP - nArgs) is the amount of actual parameters we consider in our encoding
-- the remaining Pi types are indices
(P , I) ← getTels fargs (nP - nArgs) ty
descs&skels ← forM cs λ cn → do
-- get the type of current constructor, with explicit arguments and parameters stripped
conTyp ← getType cn >>= normalise <&> dropPis nP
(desc , skel) ← getDesc fargs nm (nP - nArgs) id 0 conTyp
return $ (cn , skel) , desc
let descs = List.map proj₂ descs&skels
let skels = List.map proj₁ descs&skels
let D = foldr (λ C D → con (quote DataDesc._∷_) (C ⟨∷⟩ D ⟨∷⟩ []))
(con (quote DataDesc.[]) [])
descs
qconstr ← freshName "constr"
qsplit ← freshName "split"
qsplitconstr ← freshName "split∘constr"
qconstrsplit ← freshName "constr∘split"
qwf ← freshName "wf"
declareDef (vArg qconstr)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qsplit)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qconstrsplit)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qsplitconstr)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
declareDef (vArg qwf)
(pi (vArg (def (quote ⟦_,_⟧xtel) (P ⟨∷⟩ I ⟨∷⟩ [])))
(abs "PI" (pi (vArg unknown) (abs "x" unknown))))
deriveThings gargs (nP - nArgs) qconstr qsplit qsplitconstr qconstrsplit qwf skels
unify hole (def (quote badconvert) ((con (quote mkHD)
( P -- P
⟅∷⟆ I -- I
⟅∷⟆ unknown -- ℓ
⟅∷⟆ def nm gargs -- A
⟅∷⟆ lit (nat nCons) -- n
⟅∷⟆ D -- D
⟨∷⟩ names -- names
⟨∷⟩ def qconstr []
⟨∷⟩ def qsplit []
⟨∷⟩ def qsplitconstr []
⟨∷⟩ def qconstrsplit []
⟨∷⟩ def qwf []
⟨∷⟩ [])) ⟨∷⟩ []))
|
{
"alphanum_fraction": 0.5352607931,
"avg_line_length": 37.9888682746,
"ext": "agda",
"hexsha": "22568721623b7f733ff899ee8e0dd1ea178578f5",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Reflection.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Reflection.agda",
"max_line_length": 104,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 6736,
"size": 20476
}
|
{-# OPTIONS --without-K --safe #-}
-- This module shows that D<: subtyping without transitivity, or equivalently, without
-- bad bounds, remains undecidable.
module DsubNoTrans where
open import Data.List as List
open import Data.List.All as All
open import Data.Nat as ℕ
open import Data.Maybe as Maybe
open import Data.Product
open import Data.Sum
open import Data.Empty renaming (⊥ to False)
open import Data.Vec as Vec renaming (_∷_ to _‼_ ; [] to nil) hiding (_++_)
open import Function
open import Data.Maybe.Properties as Maybeₚ
open import Data.Nat.Properties as ℕₚ
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as ≡
open import Induction.Nat
open import DsubDef
open import DsubReduced
open import FsubMinus
open import FsubMinus2
open import Utils
infix 4 _⊢_<:_
data _⊢_<:_ : Env → Typ → Typ → Set where
<:⊤ : ∀ {Γ T} → Γ ⊢ T <: ⊤
⊥<: : ∀ {Γ T} → Γ ⊢ ⊥ <: T
refl : ∀ {Γ T} → Γ ⊢ T <: T
bnd : ∀ {Γ S U S′ U′} →
Γ ⊢ S′ <: S →
Γ ⊢ U <: U′ →
Γ ⊢ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩
Π<: : ∀ {Γ S U S′ U′} →
Γ ⊢ S′ <: S →
Γ ‣ S′ ! ⊢ U <: U′ →
Γ ⊢ Π S ∙ U <: Π S′ ∙ U′
sel₁ : ∀ {Γ n T S} →
env-lookup Γ n ≡ just T →
Γ ⊢ T <: ⟨A: S ⋯ ⊤ ⟩ →
Γ ⊢ S <: n ∙A
sel₂ : ∀ {Γ n T U} →
env-lookup Γ n ≡ just T →
Γ ⊢ T <: ⟨A: ⊥ ⋯ U ⟩ →
Γ ⊢ n ∙A <: U
module Contravariant where
open InvertibleProperties contraInvertible _⊢_<:_ public
D⇒Dᵢ : ∀ {Γ S U} → Γ ⊢ S <: U → ContraEnv Γ → Γ ⊢ᵢ S <: U
D⇒Dᵢ <:⊤ all = ditop
D⇒Dᵢ ⊥<: all = dibot
D⇒Dᵢ refl all = direfl
D⇒Dᵢ (bnd S′<:S U<:U′) all = dibnd (D⇒Dᵢ S′<:S all) (D⇒Dᵢ U<:U′ all)
D⇒Dᵢ (Π<: S′<:S U<:U′) all = diall (D⇒Dᵢ S′<:S all) U<:U′
D⇒Dᵢ (sel₁ T∈Γ S<:U) all with lookupContraEnv T∈Γ all
... | ctt _ with ⟨A:⟩<:⟨A:⟩ (D⇒Dᵢ S<:U all) all
... | S<:⊥ , _ with <:⊥ S<:⊥ all
... | refl = dibot
D⇒Dᵢ (sel₂ T∈Γ S<:U) all with lookupContraEnv T∈Γ all
... | ctt _ with ⟨A:⟩<:⟨A:⟩ (D⇒Dᵢ S<:U all) all
... | _ , U′<:U = ditrans _ (disel T∈Γ) U′<:U
module Undecidability′ where
open FsubMinusToDsubR
open Contravariant hiding (Π<:)
⟨A:⊥⟩<:-lb : ∀ {Γ T S U} → Γ ⊢ ⟨A: ⊥ ⋯ T ⟩ <: ⟨A: S ⋯ U ⟩ → ContraEnv Γ → S ≡ ⊥
⟨A:⊥⟩<:-lb D cΓ with ⟨A:⟩<:⟨A:⟩ (D⇒Dᵢ D cΓ) cΓ
... | S<:⊥ , _ with <:⊥ S<:⊥ cΓ
... | S≡⊥ = S≡⊥
<:⇒<:ᵣ : ∀ {Γ S U} →
Γ ⊢ S <: U →
ContraEnv Γ → Covar S → Covar U →
Γ ⊢ᵣ S <: U
<:⇒<:ᵣ <:⊤ cΓ cS cU = drtop cS
<:⇒<:ᵣ ⊥<: cΓ () cU
<:⇒<:ᵣ refl cΓ cS cU = drrefl cU
<:⇒<:ᵣ (bnd S′<:S U<:U′) cΓ cS ()
<:⇒<:ᵣ (Π<: <:⊤ U<:U′) cΓ () cU
<:⇒<:ᵣ (Π<: ⊥<: U<:U′) cΓ cS ()
<:⇒<:ᵣ (Π<: refl U<:U′) cΓ (cvΠ cS cU) (cvΠ cS′ cU′) = drall cS′ cU cS′ cU′
(drrefl cS′)
(<:⇒<:ᵣ U<:U′ (ctt cS′ ∷ cΓ) cU cU′)
<:⇒<:ᵣ (Π<: (bnd _ S′<:S) U<:U′) cΓ (cvΠ cS cU) (cvΠ cS′ cU′) = drall cS cU cS′ cU′
(<:⇒<:ᵣ S′<:S cΓ cS′ cS)
(<:⇒<:ᵣ U<:U′ (ctt cS′ ∷ cΓ) cU cU′)
<:⇒<:ᵣ (Π<: (Π<: S′<:S S′<:S₁) U<:U′) cΓ () cU
<:⇒<:ᵣ (Π<: (sel₁ x S′<:S) U<:U′) cΓ () cU
<:⇒<:ᵣ (Π<: (sel₂ x S′<:S) U<:U′) cΓ cS ()
<:⇒<:ᵣ (sel₁ T∈Γ T<:B) cΓ cS cU
with lookupContraEnv T∈Γ cΓ
... | ctt _ with ⟨A:⊥⟩<:-lb T<:B cΓ
... | refl = case cS of λ ()
<:⇒<:ᵣ (sel₂ T∈Γ T<:B) cΓ cS cU
with lookupContraEnv T∈Γ cΓ
... | ctt cT = drsel T∈Γ cT (aux T<:B cΓ cT cU)
where aux : ∀ {Γ T S U} → Γ ⊢ ⟨A: ⊥ ⋯ T ⟩ <: ⟨A: S ⋯ U ⟩ → ContraEnv Γ → Covar T → Covar U → Γ ⊢ᵣ T <: U
aux refl cΓ cT cU = drrefl cU
aux (bnd _ T<:U) cΓ cT cU = <:⇒<:ᵣ T<:U cΓ cT cU
<:ᵣ⇒<: : ∀ {Γ S U} → Γ ⊢ᵣ S <: U → Γ ⊢ S <: U
<:ᵣ⇒<: (drtop _) = <:⊤
<:ᵣ⇒<: (drrefl _) = refl
<:ᵣ⇒<: (drall _ _ _ _ S′<:S U<:U′) = Π<: (bnd ⊥<: (<:ᵣ⇒<: S′<:S)) (<:ᵣ⇒<: U<:U′)
<:ᵣ⇒<: (drsel T∈Γ _ T<:B) = sel₂ T∈Γ (bnd ⊥<: (<:ᵣ⇒<: T<:B))
open FsubMinus.FsubMinus
F<:⇒D<: : ∀ {Γ S U} → Γ ⊢F S <: U → ⟪ Γ ⟫ ⊢ ⟦ S ⟧ <: ⟦ U ⟧
F<:⇒D<: = <:ᵣ⇒<: ∘ F<:⇒D<:ᵣ
D<:⇒F<: : ∀ {Γ S U} → ⟪ Γ ⟫ ⊢ ⟦ S ⟧ <: ⟦ U ⟧ → Γ ⊢F S <: U
D<:⇒F<: S<:U = D<:ᵣ⇒F<: (<:⇒<:ᵣ S<:U (⟪⟫-contraEnv _) (⟦⟧-covar _) (⟦⟧-covar _))
refl refl refl
|
{
"alphanum_fraction": 0.3983739837,
"avg_line_length": 39.6446280992,
"ext": "agda",
"hexsha": "cb08e4a6cfc551af9917f5f1776381f484ad9424",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "HuStmpHrrr/popl20-artifact",
"max_forks_repo_path": "agda/DsubNoTrans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "HuStmpHrrr/popl20-artifact",
"max_issues_repo_path": "agda/DsubNoTrans.agda",
"max_line_length": 108,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "HuStmpHrrr/popl20-artifact",
"max_stars_repo_path": "agda/DsubNoTrans.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z",
"num_tokens": 2418,
"size": 4797
}
|
{-
This file contains:
- Properties of set truncations
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.SetTruncation.Properties where
open import Cubical.HITs.SetTruncation.Base
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' : Level
A B C D : Type ℓ
rec : isSet B → (A → B) → ∥ A ∥₂ → B
rec Bset f ∣ x ∣₂ = f x
rec Bset f (squash₂ x y p q i j) =
Bset _ _ (cong (rec Bset f) p) (cong (rec Bset f) q) i j
rec2 : isSet C → (A → B → C) → ∥ A ∥₂ → ∥ B ∥₂ → C
rec2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y
rec2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) =
Cset _ _ (cong (rec2 Cset f ∣ x ∣₂) p) (cong (rec2 Cset f ∣ x ∣₂) q) i j
rec2 Cset f (squash₂ x y p q i j) z =
Cset _ _ (cong (λ a → rec2 Cset f a z) p) (cong (λ a → rec2 Cset f a z) q) i j
-- Old version:
-- rec2 Cset f = rec (isSetΠ λ _ → Cset) λ x → rec Cset (f x)
-- lemma 6.9.1 in HoTT book
elim : {B : ∥ A ∥₂ → Type ℓ}
(Bset : (x : ∥ A ∥₂) → isSet (B x))
(f : (a : A) → B (∣ a ∣₂))
(x : ∥ A ∥₂) → B x
elim Bset f ∣ a ∣₂ = f a
elim Bset f (squash₂ x y p q i j) =
isOfHLevel→isOfHLevelDep 2 Bset _ _
(cong (elim Bset f) p) (cong (elim Bset f) q) (squash₂ x y p q) i j
elim2 : {C : ∥ A ∥₂ → ∥ B ∥₂ → Type ℓ}
(Cset : ((x : ∥ A ∥₂) (y : ∥ B ∥₂) → isSet (C x y)))
(f : (a : A) (b : B) → C ∣ a ∣₂ ∣ b ∣₂)
(x : ∥ A ∥₂) (y : ∥ B ∥₂) → C x y
elim2 Cset f ∣ x ∣₂ ∣ y ∣₂ = f x y
elim2 Cset f ∣ x ∣₂ (squash₂ y z p q i j) =
isOfHLevel→isOfHLevelDep 2 (λ a → Cset ∣ x ∣₂ a) _ _
(cong (elim2 Cset f ∣ x ∣₂) p) (cong (elim2 Cset f ∣ x ∣₂) q) (squash₂ y z p q) i j
elim2 Cset f (squash₂ x y p q i j) z =
isOfHLevel→isOfHLevelDep 2 (λ a → Cset a z) _ _
(cong (λ a → elim2 Cset f a z) p) (cong (λ a → elim2 Cset f a z) q) (squash₂ x y p q) i j
-- Old version:
-- elim2 Cset f = elim (λ _ → isSetΠ (λ _ → Cset _ _))
-- (λ a → elim (λ _ → Cset _ _) (f a))
-- TODO: generalize
elim3 : {B : (x y z : ∥ A ∥₂) → Type ℓ}
(Bset : ((x y z : ∥ A ∥₂) → isSet (B x y z)))
(g : (a b c : A) → B ∣ a ∣₂ ∣ b ∣₂ ∣ c ∣₂)
(x y z : ∥ A ∥₂) → B x y z
elim3 Bset g = elim2 (λ _ _ → isSetΠ (λ _ → Bset _ _ _))
(λ a b → elim (λ _ → Bset _ _ _) (g a b))
map : (A → B) → ∥ A ∥₂ → ∥ B ∥₂
map f = rec squash₂ λ x → ∣ f x ∣₂
setTruncUniversal : isSet B → (∥ A ∥₂ → B) ≃ (A → B)
setTruncUniversal {B = B} Bset =
isoToEquiv (iso (λ h x → h ∣ x ∣₂) (rec Bset) (λ _ → refl) rinv)
where
rinv : (f : ∥ A ∥₂ → B) → rec Bset (λ x → f ∣ x ∣₂) ≡ f
rinv f i x =
elim (λ x → isProp→isSet (Bset (rec Bset (λ x → f ∣ x ∣₂) x) (f x)))
(λ _ → refl) x i
setTruncIsSet : isSet ∥ A ∥₂
setTruncIsSet a b p q = squash₂ a b p q
setTruncIdempotent≃ : isSet A → ∥ A ∥₂ ≃ A
setTruncIdempotent≃ {A = A} hA = isoToEquiv f
where
f : Iso ∥ A ∥₂ A
Iso.fun f = rec hA (idfun A)
Iso.inv f x = ∣ x ∣₂
Iso.rightInv f _ = refl
Iso.leftInv f = elim (λ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ → refl)
setTruncIdempotent : isSet A → ∥ A ∥₂ ≡ A
setTruncIdempotent hA = ua (setTruncIdempotent≃ hA)
isContr→isContrSetTrunc : isContr A → isContr (∥ A ∥₂)
isContr→isContrSetTrunc contr = ∣ fst contr ∣₂
, elim (λ _ → isOfHLevelPath 2 (setTruncIsSet) _ _)
λ a → cong ∣_∣₂ (snd contr a)
setTruncIso : Iso A B → Iso ∥ A ∥₂ ∥ B ∥₂
Iso.fun (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.fun is x ∣₂)
Iso.inv (setTruncIso is) = rec setTruncIsSet (λ x → ∣ Iso.inv is x ∣₂)
Iso.rightInv (setTruncIso is) =
elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ a → cong ∣_∣₂ (Iso.rightInv is a)
Iso.leftInv (setTruncIso is) =
elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ a → cong ∣_∣₂ (Iso.leftInv is a)
setSigmaIso : {B : A → Type ℓ} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
setSigmaIso {A = A} {B = B} = iso fun funinv sect retr
where
{- writing it out explicitly to avoid yellow highlighting -}
fun : ∥ Σ A B ∥₂ → ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
fun = rec setTruncIsSet λ {(a , p) → ∣ a , ∣ p ∣₂ ∣₂}
funinv : ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂ → ∥ Σ A B ∥₂
funinv = rec setTruncIsSet (λ {(a , p) → rec setTruncIsSet (λ p → ∣ a , p ∣₂) p})
sect : section fun funinv
sect = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ { (a , p) → elim {B = λ p → fun (funinv ∣ a , p ∣₂) ≡ ∣ a , p ∣₂}
(λ p → isOfHLevelPath 2 setTruncIsSet _ _) (λ _ → refl) p }
retr : retract fun funinv
retr = elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ { _ → refl }
sigmaElim : {B : ∥ A ∥₂ → Type ℓ} {C : Σ ∥ A ∥₂ B → Type ℓ'}
(Bset : (x : Σ ∥ A ∥₂ B) → isSet (C x))
(g : (a : A) (b : B ∣ a ∣₂) → C (∣ a ∣₂ , b))
(x : Σ ∥ A ∥₂ B) → C x
sigmaElim {B = B} {C = C} set g (x , y) =
elim {B = λ x → (y : B x) → C (x , y)} (λ _ → isSetΠ λ _ → set _) g x y
sigmaProdElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ} {D : Σ (∥ A ∥₂ × ∥ B ∥₂) C → Type ℓ'}
(Bset : (x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → isSet (D x))
(g : (a : A) (b : B) (c : C (∣ a ∣₂ , ∣ b ∣₂)) → D ((∣ a ∣₂ , ∣ b ∣₂) , c))
(x : Σ (∥ A ∥₂ × ∥ B ∥₂) C) → D x
sigmaProdElim {B = B} {C = C} {D = D} set g ((x , y) , c) =
elim {B = λ x → (y : ∥ B ∥₂) (c : C (x , y)) → D ((x , y) , c)}
(λ _ → isSetΠ λ _ → isSetΠ λ _ → set _)
(λ x → elim (λ _ → isSetΠ λ _ → set _) (g x))
x y c
prodElim : {C : ∥ A ∥₂ × ∥ B ∥₂ → Type ℓ}
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) → isSet (C x))
→ ((a : A) (b : B) → C (∣ a ∣₂ , ∣ b ∣₂))
→ (x : ∥ A ∥₂ × ∥ B ∥₂) → C x
prodElim setC f (a , b) = elim2 (λ x y → setC (x , y)) f a b
prodRec : {C : Type ℓ} → isSet C → (A → B → C) → ∥ A ∥₂ × ∥ B ∥₂ → C
prodRec setC f (a , b) = rec2 setC f a b
prodElim2 : {E : (∥ A ∥₂ × ∥ B ∥₂) → (∥ C ∥₂ × ∥ D ∥₂) → Type ℓ}
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → isSet (E x y))
→ ((a : A) (b : B) (c : C) (d : D) → E (∣ a ∣₂ , ∣ b ∣₂) (∣ c ∣₂ , ∣ d ∣₂))
→ ((x : ∥ A ∥₂ × ∥ B ∥₂) (y : ∥ C ∥₂ × ∥ D ∥₂) → (E x y))
prodElim2 isset f = prodElim (λ _ → isSetΠ λ _ → isset _ _)
λ a b → prodElim (λ _ → isset _ _)
λ c d → f a b c d
setTruncOfProdIso : Iso ∥ A × B ∥₂ (∥ A ∥₂ × ∥ B ∥₂)
Iso.fun setTruncOfProdIso = rec (isSet× setTruncIsSet setTruncIsSet) λ { (a , b) → ∣ a ∣₂ , ∣ b ∣₂ }
Iso.inv setTruncOfProdIso = prodRec setTruncIsSet λ a b → ∣ a , b ∣₂
Iso.rightInv setTruncOfProdIso =
prodElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl
Iso.leftInv setTruncOfProdIso =
elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ {(a , b) → refl}
IsoSetTruncateSndΣ : {A : Type ℓ} {B : A → Type ℓ'} → Iso ∥ Σ A B ∥₂ ∥ Σ A (λ x → ∥ B x ∥₂) ∥₂
Iso.fun IsoSetTruncateSndΣ = map λ a → (fst a) , ∣ snd a ∣₂
Iso.inv IsoSetTruncateSndΣ = rec setTruncIsSet (uncurry λ x → map λ b → x , b)
Iso.rightInv IsoSetTruncateSndΣ =
elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(uncurry λ a → elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ _ → refl)
Iso.leftInv IsoSetTruncateSndΣ =
elim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ _ → refl
|
{
"alphanum_fraction": 0.5126726566,
"avg_line_length": 39.8770053476,
"ext": "agda",
"hexsha": "cfed4cf9006434f0d3fd64f6e533325e22e8811d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/HITs/SetTruncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/HITs/SetTruncation/Properties.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/HITs/SetTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3423,
"size": 7457
}
|
open import Relation.Binary using (Rel)
open import Algebra.Bundles using (CommutativeRing)
open import Normed
module Beside
{r ℓr} {CR : CommutativeRing r ℓr}
(open CommutativeRing CR using () renaming (Carrier to X))
{rel} {_≤_ : Rel X rel}
{ma ℓma} (MA : NormedModule CR _≤_ ma ℓma)
{mb ℓmb} (MB : NormedModule CR _≤_ mb ℓmb)
{mc ℓmc} (MC : NormedModule CR _≤_ mc ℓmc)
{md ℓmd} (MD : NormedModule CR _≤_ md ℓmd)
where
open import Data.Product using (_,_; map)
open import Function using (_∘_)
open CommutativeRing CR
open import Limit using (D[_,_][_,_])
open import Assume using (assume)
private
MAC = directProduct MA MC
MBD = directProduct MB MD
module MA = NormedModule MA
module MB = NormedModule MB
module MC = NormedModule MC
module MD = NormedModule MD
module MAC = NormedModule MAC
module MBD = NormedModule MBD
⊗-differentiable-at : ∀ {f g x y} → D[ MA , MB ][ f , x ] → D[ MC , MD ][ g , y ] → D[ MAC , MBD ][ map f g , (x , y) ]
⊗-differentiable-at (f' , _) (g' , _) = (λ (x , y) (dx , dy) → f' x dx , g' y dy) , assume
|
{
"alphanum_fraction": 0.6527001862,
"avg_line_length": 29.8333333333,
"ext": "agda",
"hexsha": "f3c1901d096aeca5c7919e4cf86a3c7eb332601a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/diff",
"max_forks_repo_path": "src/Beside.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/diff",
"max_issues_repo_path": "src/Beside.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/diff",
"max_stars_repo_path": "src/Beside.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 392,
"size": 1074
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by total orders
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.TotalOrder
{t₁ t₂ t₃} (T : TotalOrder t₁ t₂ t₃) where
open TotalOrder T
open import Data.Sum.Base using (inj₁; inj₂)
import Relation.Binary.Construct.Converse as Converse
import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict
import Relation.Binary.Properties.Poset poset as PosetProperties
open import Relation.Binary.Consequences
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
------------------------------------------------------------------------
-- Total orders are almost decidable total orders
decTotalOrder : Decidable _≈_ → DecTotalOrder _ _ _
decTotalOrder ≟ = record
{ isDecTotalOrder = record
{ isTotalOrder = isTotalOrder
; _≟_ = ≟
; _≤?_ = total+dec⟶dec reflexive antisym total ≟
}
}
------------------------------------------------------------------------
-- _≥_ - the flipped relation is also a total order
open PosetProperties public
using
( _≥_
; ≥-refl
; ≥-reflexive
; ≥-trans
; ≥-antisym
; ≥-isPreorder
; ≥-isPartialOrder
; ≥-preorder
; ≥-poset
)
≥-isTotalOrder : IsTotalOrder _≈_ _≥_
≥-isTotalOrder = Converse.isTotalOrder isTotalOrder
≥-totalOrder : TotalOrder _ _ _
≥-totalOrder = record
{ isTotalOrder = ≥-isTotalOrder
}
open TotalOrder ≥-totalOrder public
using () renaming (total to ≥-total)
------------------------------------------------------------------------
-- _<_ - the strict version is a strict partial order
-- Note that total orders can NOT be turned into strict total orders as
-- in order to distinguish between the _≤_ and _<_ cases we must have
-- decidable equality _≈_.
open PosetProperties public
using
( _<_
; <-resp-≈
; <-respʳ-≈
; <-respˡ-≈
; <-irrefl
; <-asym
; <-trans
; <-isStrictPartialOrder
; <-strictPartialOrder
; <⇒≉
; ≤∧≉⇒<
; <⇒≱
; ≤⇒≯
)
≰⇒> : ∀ {x y} → ¬ (x ≤ y) → y < x
≰⇒> = ToStrict.≰⇒> Eq.sym reflexive total
|
{
"alphanum_fraction": 0.5707360071,
"avg_line_length": 25.4943820225,
"ext": "agda",
"hexsha": "377880bd1da9db89db9b253ce537d053f40358bd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Properties/TotalOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Properties/TotalOrder.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Properties/TotalOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 650,
"size": 2269
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.FreeExtension (Θ : Theory) where
open import Fragment.Equational.FreeExtension.Base Θ public
open import Fragment.Equational.FreeExtension.Synthetic Θ using (SynFrex) public
open import Fragment.Equational.FreeExtension.Properties Θ public
|
{
"alphanum_fraction": 0.812849162,
"avg_line_length": 35.8,
"ext": "agda",
"hexsha": "1d30a84b68747d31150e8a12f396f0b5c161fd48",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/FreeExtension.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/FreeExtension.agda",
"max_line_length": 80,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/FreeExtension.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 82,
"size": 358
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The values of terms in Parametric.Change.Term.
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Change.Type as ChangeType
module Parametric.Change.Value
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(ΔBase : ChangeType.Structure Base)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open ChangeType.Structure Base ΔBase
open import Base.Denotation.Notation
-- Extension point 1: The value of ⊕ for base types.
ApplyStructure : Set
ApplyStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Type → ⟦ ι ⟧Base
-- Extension point 2: The value of ⊝ for base types.
DiffStructure : Set
DiffStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Type
NilStructure : Set
NilStructure = ∀ ι → ⟦ ι ⟧Base → ⟦ ΔBase ι ⟧Type
module Structure
(⟦apply-base⟧ : ApplyStructure)
(⟦diff-base⟧ : DiffStructure)
(⟦nil-base⟧ : NilStructure)
where
-- We provide: The value of ⊕ and ⊝ for arbitrary types.
⟦apply⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
⟦diff⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
⟦nil₍_₎⟧ : ∀ τ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
infixl 6 ⟦apply⟧ ⟦diff⟧
syntax ⟦apply⟧ τ v dv = v ⟦⊕₍ τ ₎⟧ dv
syntax ⟦diff⟧ τ u v = u ⟦⊝₍ τ ₎⟧ v
v ⟦⊕₍ base ι ₎⟧ Δv = ⟦apply-base⟧ ι v Δv
f ⟦⊕₍ σ ⇒ τ ₎⟧ Δf = λ v → f v ⟦⊕₍ τ ₎⟧ Δf v (⟦nil₍ σ ₎⟧ v)
u ⟦⊝₍ base ι ₎⟧ v = ⟦diff-base⟧ ι u v
g ⟦⊝₍ σ ⇒ τ ₎⟧ f = λ v Δv → (g (v ⟦⊕₍ σ ₎⟧ Δv)) ⟦⊝₍ τ ₎⟧ (f v)
⟦nil₍ base ι ₎⟧ v = ⟦nil-base⟧ ι v
⟦nil₍ σ ⇒ τ ₎⟧ f = f ⟦⊝₍ σ ⇒ τ ₎⟧ f
_⟦⊕⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧ → ⟦ τ ⟧
_⟦⊕⟧_ {τ} = ⟦apply⟧ τ
_⟦⊝⟧_ : ∀ {τ} → ⟦ τ ⟧ → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
_⟦⊝⟧_ {τ} = ⟦diff⟧ τ
⟦nil⟧ : ∀ {τ} → ⟦ τ ⟧ → ⟦ ΔType τ ⟧
⟦nil⟧ {τ} = ⟦nil₍ τ ₎⟧
alternate : ∀ {Γ} → ⟦ Γ ⟧ → ⟦ mapContext ΔType Γ ⟧ → ⟦ ΔContext Γ ⟧
alternate {∅} ∅ ∅ = ∅
alternate {τ • Γ} (v • ρ) (dv • dρ) = dv • v • alternate ρ dρ
|
{
"alphanum_fraction": 0.5230125523,
"avg_line_length": 29.4657534247,
"ext": "agda",
"hexsha": "b541879d2910508b6c914d9d22804f2e2522b685",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Change/Value.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Change/Value.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Change/Value.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 988,
"size": 2151
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Properties relating Initial and Terminal Objects,
-- and Product / Coproduct via op
module Categories.Object.Duality {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Categories.Morphism C
open import Categories.Object.Terminal op
open import Categories.Object.Initial C
open import Categories.Object.Product op
open import Categories.Object.Coproduct C
IsInitial⇒coIsTerminal : ∀ {X} → IsInitial X → IsTerminal X
IsInitial⇒coIsTerminal is⊥ = record
{ ! = !
; !-unique = !-unique
}
where open IsInitial is⊥
⊥⇒op⊤ : Initial → Terminal
⊥⇒op⊤ i = record
{ ⊤ = ⊥
; ⊤-is-terminal = IsInitial⇒coIsTerminal ⊥-is-initial
}
where open Initial i
coIsTerminal⇒IsInitial : ∀ {X} → IsTerminal X → IsInitial X
coIsTerminal⇒IsInitial is⊤ = record
{ ! = !
; !-unique = !-unique
}
where open IsTerminal is⊤
op⊤⇒⊥ : Terminal → Initial
op⊤⇒⊥ t = record
{ ⊥ = ⊤
; ⊥-is-initial = coIsTerminal⇒IsInitial ⊤-is-terminal
}
where open Terminal t
Coproduct⇒coProduct : ∀ {A B} → Coproduct A B → Product A B
Coproduct⇒coProduct A+B = record
{ A×B = A+B.A+B
; π₁ = A+B.i₁
; π₂ = A+B.i₂
; ⟨_,_⟩ = A+B.[_,_]
; project₁ = A+B.inject₁
; project₂ = A+B.inject₂
; unique = A+B.unique
}
where
module A+B = Coproduct A+B
coProduct⇒Coproduct : ∀ {A B} → Product A B → Coproduct A B
coProduct⇒Coproduct A×B = record
{ A+B = A×B.A×B
; i₁ = A×B.π₁
; i₂ = A×B.π₂
; [_,_] = A×B.⟨_,_⟩
; inject₁ = A×B.project₁
; inject₂ = A×B.project₂
; unique = A×B.unique
}
where
module A×B = Product A×B
|
{
"alphanum_fraction": 0.6203866432,
"avg_line_length": 23.3835616438,
"ext": "agda",
"hexsha": "efc7bdd5fa1bc1a4a6b2d2d7f50c3f9177be5a3e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bond15/agda-categories",
"max_forks_repo_path": "src/Categories/Object/Duality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bond15/agda-categories",
"max_issues_repo_path": "src/Categories/Object/Duality.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bond15/agda-categories",
"max_stars_repo_path": "src/Categories/Object/Duality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 639,
"size": 1707
}
|
{-# OPTIONS --termination-depth=2 #-}
module TerminationWithMerge where
data List (a : Set) : Set where
[] : List a
_∷_ : a -> List a -> List a
open import Agda.Builtin.Bool
postulate
a : Set
_≤?_ : a -> a -> Bool
merge : List a -> List a -> List a
merge xs [] = xs
merge [] ys = ys
merge (x ∷ xs) (y ∷ ys) with x ≤? y
... | true = x ∷ merge xs (y ∷ ys)
... | false = y ∷ merge (x ∷ xs) ys
|
{
"alphanum_fraction": 0.5044843049,
"avg_line_length": 21.2380952381,
"ext": "agda",
"hexsha": "e8c884d50c8b46d83c768e318fcb77280704fbba",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/TerminationWithMerge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/TerminationWithMerge.agda",
"max_line_length": 37,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/TerminationWithMerge.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 155,
"size": 446
}
|
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
@0 m : Name → TC ⊤
m F = defineFun F
(clause
(( "A"
, arg (arg-info visible (modality relevant quantity-0))
(agda-sort (lit 0))) ∷
[])
(arg (arg-info visible (modality relevant quantity-0)) (var 0) ∷
[])
(var 0 []) ∷
[])
F : @0 Set → Set
unquoteDef F = m F
|
{
"alphanum_fraction": 0.5967741935,
"avg_line_length": 21.7,
"ext": "agda",
"hexsha": "e26a1f4c687bd8b68665a75f38ba56a3e5a36495",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/ErasedMacro4.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/ErasedMacro4.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/ErasedMacro4.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 141,
"size": 434
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Function.Base using (_∋_; _$_)
open import MorePropAlgebra.Bundles
import Cubical.Algebra.Ring as Std
module MorePropAlgebra.Properties.Ring {ℓ} (assumptions : Ring {ℓ}) where
open Ring assumptions renaming (Carrier to R)
import MorePropAlgebra.Properties.AbGroup
module AbGroup'Properties = MorePropAlgebra.Properties.AbGroup (record { Ring assumptions renaming (+-AbGroup to is-AbGroup) })
module AbGroup' = AbGroup (record { Ring assumptions renaming (+-AbGroup to is-AbGroup) })
( AbGroup') = AbGroup ∋ (record { Ring assumptions renaming (+-AbGroup to is-AbGroup) })
import MorePropAlgebra.Properties.Monoid
module Monoid'Properties = MorePropAlgebra.Properties.Monoid (record { Ring assumptions renaming (·-Monoid to is-Monoid) })
module Monoid' = Monoid (record { Ring assumptions renaming (·-Monoid to is-Monoid) })
( Monoid') = Monoid ∋ (record { Ring assumptions renaming (·-Monoid to is-Monoid) })
stdIsRing : Std.IsRing 0r 1r _+_ _·_ (-_)
stdIsRing .Std.IsRing.+-isAbGroup = AbGroup'Properties.stdIsAbGroup
stdIsRing .Std.IsRing.·-isMonoid = Monoid'Properties.stdIsMonoid
stdIsRing .Std.IsRing.dist = is-dist
stdRing : Std.Ring {ℓ}
stdRing = record { Ring assumptions ; isRing = stdIsRing }
module RingTheory' = Std.Theory stdRing
{-
-- NOTE: a few facts about rings that might be collected from elsewhere
a+b-b≡a : ∀ a b → a ≡ (a + b) - b
a+b-b≡a a b = let P = sym (fst (+-inv b))
Q = sym (fst (+-identity a))
R = transport (λ i → a ≡ a + P i) Q
S = transport (λ i → a ≡ (+-assoc a b (- b)) i ) R
in S
-- NOTE: this is called `simplL` and `simplL` in `Cubical.Structures.Group.Properties.GroupLemmas`
+-preserves-≡ : ∀{a b} → ∀ c → a ≡ b → a + c ≡ b + c
+-preserves-≡ c a≡b i = a≡b i + c
+-preserves-≡-l : ∀{a b} → ∀ c → a ≡ b → c + a ≡ c + b
+-preserves-≡-l c a≡b i = c + a≡b i
a+b≡0→a≡-b : ∀{a b} → a + b ≡ 0r → a ≡ - b
a+b≡0→a≡-b {a} {b} a+b≡0 = transport
(λ i →
let RHS = snd (+-identity (- b))
LHS₁ : a + (b + - b) ≡ a + 0r
LHS₁ = +-preserves-≡-l a (fst (+-inv b))
LHS₂ : (a + b) - b ≡ a
LHS₂ = transport (λ j → (+-assoc a b (- b)) j ≡ fst (+-identity a) j) LHS₁
in LHS₂ i ≡ RHS i
) (+-preserves-≡ (- b) a+b≡0)
-- NOTE: there is already
-- -commutesWithRight-· : (x y : R) → x · (- y) ≡ - (x · y)
a·-b≡-a·b : ∀ a b → a · (- b) ≡ - (a · b)
a·-b≡-a·b a b =
let P : a · 0r ≡ 0r
P = 0-rightNullifies a
Q : a · (- b + b) ≡ 0r
Q = transport (λ i → a · snd (+-inv b) (~ i) ≡ 0r) P
R : a · (- b) + a · b ≡ 0r
R = transport (λ i → ·-rdist-+ a (- b) b i ≡ 0r) Q
in a+b≡0→a≡-b R
a·b-a·c≡a·[b-c] : ∀ a b c → a · b - (a · c) ≡ a · (b - c)
a·b-a·c≡a·[b-c] a b c =
let P : a · b + a · (- c) ≡ a · (b + - c)
P = sym (·-rdist-+ a b (- c))
Q : a · b - a · c ≡ a · (b + - c)
Q = transport (λ i → a · b + a·-b≡-a·b a c i ≡ a · (b + - c) ) P
in Q
-}
|
{
"alphanum_fraction": 0.5348052745,
"avg_line_length": 38.3647058824,
"ext": "agda",
"hexsha": "ad45aa4dafe31eab50930db6bf478e19fa72b542",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Properties/Ring.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Properties/Ring.agda",
"max_line_length": 129,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Properties/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1239,
"size": 3261
}
|
{- Type class for comonads. -}
module CategoryTheory.Comonad where
open import CategoryTheory.Categories
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
-- A comonad on a category
record Comonad {n} (ℂ : Category n) : Set (lsuc n) where
open Category ℂ
field
-- Underlying endofunctor
W : Endofunctor ℂ
open Functor W
field
-- || Definitions
-- Counit / extract
ε : W ⟹ I
-- Comultiplication / duplicate
δ : W ⟹ (W ²)
module ε = _⟹_ ε
module δ = _⟹_ δ
field
-- || Laws
-- Duplication is cancelled by extraction on both sides (counit)
ε-unit1 : ∀ {A : obj} -> (ε.at (omap A)) ∘ (δ.at A) ≈ id
ε-unit2 : ∀ {A : obj} -> (fmap (ε.at A)) ∘ (δ.at A) ≈ id
-- Duplication can be performed on both sides (coassociativity)
δ-assoc : ∀ {A : obj} -> (δ.at (omap A)) ∘ (δ.at A)
≈ (fmap (δ.at A)) ∘ (δ.at A)
|
{
"alphanum_fraction": 0.5512690355,
"avg_line_length": 28.1428571429,
"ext": "agda",
"hexsha": "eabae152dde6c6bb0befa1ceb738d186f3902152",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/CategoryTheory/Comonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/CategoryTheory/Comonad.agda",
"max_line_length": 72,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/CategoryTheory/Comonad.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 312,
"size": 985
}
|
{-# OPTIONS --without-K --rewriting #-}
module LEM where
open import Basics
open import Flat
open import Bool
open import lib.Basics
open import lib.types.Bool
open import Bool
open import lib.NType2
open import Axiom.LEM public
flat-set-has-dec-eq : {@♭ i : ULevel} (@♭ A : hSet i)
→ has-dec-eq (♭ (∈ A))
flat-set-has-dec-eq A =
λ {(x ^♭) (y ^♭) → LEM (_==ₚ_ {A = ♭ₙ A} (x ^♭) (y ^♭))}
discrete-set-has-dec-eq : {@♭ i : ULevel} (@♭ A : hSet i)
→ (@♭ _ : (∈ A) is-discrete) → has-dec-eq (∈ A)
discrete-set-has-dec-eq A p = transport has-dec-eq (discrete-id p) (flat-set-has-dec-eq A)
_=bool=ₚ_ : {@♭ i : ULevel} {@♭ A : hSet i} {@♭ p : (∈ A) is-discrete} (x y : ∈ A) → Bool
_=bool=ₚ_ {A = A} {p = p} x y = _=bool=_ {_} {∈ A} {discrete-set-has-dec-eq A p} x y
un¬¬-crisp : {@♭ i : ULevel} {@♭ P : PropT i} (nnp : ¬ (¬ (P holds))) → P holds
un¬¬-crisp {P = P} nnp with (LEM P)
... | (inl p) = p
... | (inr np) = quodlibet (nnp np)
♭PropT₀≃Bool : ♭ PropT₀ ≃ Bool
♭PropT₀≃Bool = equiv to fro to-fro fro-to
where
to : ♭ PropT₀ → Bool
to (P ^♭) = Dec-Prop-to-Bool P (LEM P)
fro : Bool → ♭ PropT₀
fro = Bool-to-♭PropT₀
to-fro : (b : Bool) → to (fro b) == b
to-fro true = Dec-Prop-to-Bool-true-id True (LEM True) unit
to-fro false = Dec-Prop-to-Bool-false-id False (LEM False) quodlibet
fro-to : (P : ♭ PropT₀) → fro (to P) == P
fro-to (P ^♭) = case P (LEM P)
where
case₀♭ : (@♭ P : PropT₀) → ♭ (P holds) → fro (to (P ^♭)) == (P ^♭)
case₀♭ P (p ^♭) = fro (to (P ^♭))
=⟨ (ap fro (Dec-Prop-to-Bool-true-id P (LEM P) p)) ⟩
fro true -- Since P holds, it equals true
=⟨ ! (♭-ap _^♭ (P holds-by p implies-=-True)) ⟩
P ^♭
=∎
case₁♭ : (@♭ P : PropT₀) → ♭ (¬ (P holds)) → fro (to (P ^♭)) == (P ^♭)
case₁♭ P (np ^♭) = fro (to (P ^♭))
=⟨ (ap fro (Dec-Prop-to-Bool-false-id P (LEM P) np)) ⟩
fro false
=⟨ ! (♭-ap _^♭ (¬- P holds-by np implies-=-False)) ⟩
P ^♭
=∎
case : (@♭ P : PropT₀) → (@♭ d : Dec (P holds)) → fro (to (P ^♭)) == (P ^♭)
case P (inl p ) = case₀♭ P (p ^♭)
case P (inr np) = case₁♭ P (np ^♭)
{-
-- We prove that this equivalence preserves the relevant logical structure.
module ♭PropT₀≃Bool-properties where
preserves-⇒ : {@♭ P Q : PropT₀} (p : (P ⇒ Q) holds)
→ (((–> ♭PropT₀≃Bool) (P ^♭)) ≤b ((–> ♭PropT₀≃Bool) (Q ^♭))) holds
preserves-⇒ {P} {Q} p = {!!}
-- As a corollary, we find that the points of the upper naturals are the conaturals.
module Points-Of-Upper-Naturals-Are-Conaturals where
open import UpperNaturals
open import Conaturals
theorem : ℕ∞ ≃ ♭ ℕ↑
theorem = {!!}
-}
|
{
"alphanum_fraction": 0.4536977492,
"avg_line_length": 34.5555555556,
"ext": "agda",
"hexsha": "2f2825cdbb0c9095075f55d0665b0659f458592e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/LEM.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/LEM.agda",
"max_line_length": 92,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/LEM.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 1182,
"size": 3110
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Soundness where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Whnf
open import Definition.Typed.Consequences.InverseUniv
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.NeTypeEq
open import Tools.Product
import Tools.PropositionalEquality as PE
mutual
-- Algorithmic equality of neutrals is well-formed.
soundness~↑ : ∀ {k l A Γ} → Γ ⊢ k ~ l ↑ A → Γ ⊢ k ≡ l ∷ A
soundness~↑ (var-refl x x≡y) = PE.subst (λ y → _ ⊢ _ ≡ var y ∷ _) x≡y (refl x)
soundness~↑ (app-cong k~l x₁) = app-cong (soundness~↓ k~l) (soundnessConv↑Term x₁)
soundness~↑ (fst-cong x) =
let p≡ = soundness~↓ x
⊢ΣFG = proj₁ (syntacticEqTerm p≡)
⊢F , ⊢G = syntacticΣ ⊢ΣFG
in fst-cong ⊢F ⊢G p≡
soundness~↑ (snd-cong x) =
let p≡ = soundness~↓ x
⊢ΣFG = proj₁ (syntacticEqTerm p≡)
⊢F , ⊢G = syntacticΣ ⊢ΣFG
in snd-cong ⊢F ⊢G p≡
soundness~↑ (natrec-cong x₁ x₂ x₃ k~l) =
natrec-cong (soundnessConv↑ x₁) (soundnessConv↑Term x₂)
(soundnessConv↑Term x₃) (soundness~↓ k~l)
soundness~↑ (Emptyrec-cong x₁ k~l) =
Emptyrec-cong (soundnessConv↑ x₁) (soundness~↓ k~l)
-- Algorithmic equality of neutrals in WHNF is well-formed.
soundness~↓ : ∀ {k l A Γ} → Γ ⊢ k ~ l ↓ A → Γ ⊢ k ≡ l ∷ A
soundness~↓ ([~] A₁ D whnfA k~l) = conv (soundness~↑ k~l) (subset* D)
-- Algorithmic equality of types is well-formed.
soundnessConv↑ : ∀ {A B Γ} → Γ ⊢ A [conv↑] B → Γ ⊢ A ≡ B
soundnessConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) =
trans (subset* D) (trans (soundnessConv↓ A′<>B′) (sym (subset* D′)))
-- Algorithmic equality of types in WHNF is well-formed.
soundnessConv↓ : ∀ {A B Γ} → Γ ⊢ A [conv↓] B → Γ ⊢ A ≡ B
soundnessConv↓ (U-refl ⊢Γ) = refl (Uⱼ ⊢Γ)
soundnessConv↓ (ℕ-refl ⊢Γ) = refl (ℕⱼ ⊢Γ)
soundnessConv↓ (Empty-refl ⊢Γ) = refl (Emptyⱼ ⊢Γ)
soundnessConv↓ (Unit-refl ⊢Γ) = refl (Unitⱼ ⊢Γ)
soundnessConv↓ (ne x) = univ (soundness~↓ x)
soundnessConv↓ (Π-cong F c c₁) =
Π-cong F (soundnessConv↑ c) (soundnessConv↑ c₁)
soundnessConv↓ (Σ-cong F c c₁) =
Σ-cong F (soundnessConv↑ c) (soundnessConv↑ c₁)
-- Algorithmic equality of terms is well-formed.
soundnessConv↑Term : ∀ {a b A Γ} → Γ ⊢ a [conv↑] b ∷ A → Γ ⊢ a ≡ b ∷ A
soundnessConv↑Term ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) =
conv (trans (subset*Term d)
(trans (soundnessConv↓Term t<>u)
(sym (subset*Term d′))))
(sym (subset* D))
-- Algorithmic equality of terms in WHNF is well-formed.
soundnessConv↓Term : ∀ {a b A Γ} → Γ ⊢ a [conv↓] b ∷ A → Γ ⊢ a ≡ b ∷ A
soundnessConv↓Term (ℕ-ins x) = soundness~↓ x
soundnessConv↓Term (Empty-ins x) = soundness~↓ x
soundnessConv↓Term (Unit-ins x) = soundness~↓ x
soundnessConv↓Term (ne-ins t u x x₁) =
let _ , neA , _ = ne~↓ x₁
_ , t∷M , _ = syntacticEqTerm (soundness~↓ x₁)
M≡A = neTypeEq neA t∷M t
in conv (soundness~↓ x₁) M≡A
soundnessConv↓Term (univ x x₁ x₂) = inverseUnivEq x (soundnessConv↓ x₂)
soundnessConv↓Term (zero-refl ⊢Γ) = refl (zeroⱼ ⊢Γ)
soundnessConv↓Term (suc-cong c) = suc-cong (soundnessConv↑Term c)
soundnessConv↓Term (η-eq x x₁ y y₁ c) =
let ⊢ΠFG = syntacticTerm x
⊢F , _ = syntacticΠ ⊢ΠFG
in η-eq ⊢F x x₁ (soundnessConv↑Term c)
soundnessConv↓Term (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv) =
let ⊢ΣFG = syntacticTerm ⊢p
⊢F , ⊢G = syntacticΣ ⊢ΣFG
fst≡ = soundnessConv↑Term fstConv
snd≡ = soundnessConv↑Term sndConv
in Σ-η ⊢F ⊢G ⊢p ⊢r fst≡ snd≡
soundnessConv↓Term (η-unit [a] [b] aUnit bUnit) = η-unit [a] [b]
|
{
"alphanum_fraction": 0.6226265823,
"avg_line_length": 41.2173913043,
"ext": "agda",
"hexsha": "4bcce2845d9dc6c6386c5905defdfeffedee2f25",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Soundness.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1526,
"size": 3792
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.FunctionOver
{- Flipping the pushout diagram (switching left and right) gives the
- same pushout. -}
module cohomology.FlipPushout where
{- Span-flipping functions -}
flip-span : ∀ {i j k} → Span {i} {j} {k} → Span {j} {i} {k}
flip-span (span A B C f g) = span B A C g f
flip-⊙span : ∀ {i j k} → ⊙Span {i} {j} {k} → ⊙Span {j} {i} {k}
flip-⊙span (⊙span X Y Z f g) = ⊙span Y X Z g f
{- Pushout-flipping function -}
module _ {i j k} {d : Span {i} {j} {k}} where
module FlipPushout = PushoutRec
(right {d = flip-span d})
(left {d = flip-span d})
(λ z → ! (glue {d = flip-span d} z))
flip-pushout : Pushout d → Pushout (flip-span d)
flip-pushout = FlipPushout.f
flip-pushout-involutive : ∀ {i j k} (d : Span {i} {j} {k})
(s : Pushout d) → flip-pushout (flip-pushout s) == s
flip-pushout-involutive d = Pushout-elim
(λ a → idp)
(λ b → idp)
(λ c → ↓-∘=idf-in flip-pushout flip-pushout $
ap flip-pushout (ap flip-pushout (glue c))
=⟨ ap (ap flip-pushout) (FlipPushout.glue-β c) ⟩
ap flip-pushout (! (glue c))
=⟨ ap-! flip-pushout (glue c) ⟩
! (ap flip-pushout (glue c))
=⟨ ap ! (FlipPushout.glue-β c) ⟩
! (! (glue c))
=⟨ !-! (glue c) ⟩
glue c ∎)
{- Equivalence for spans with proofs that the equivalence swaps the
- injections -}
module _ {i j k} (d : Span {i} {j} {k}) where
open Span d
flip-pushout-equiv : Pushout d ≃ Pushout (flip-span d)
flip-pushout-equiv =
equiv flip-pushout flip-pushout
(flip-pushout-involutive (flip-span d))
(flip-pushout-involutive d)
flip-pushout-path : Pushout d == Pushout (flip-span d)
flip-pushout-path = ua flip-pushout-equiv
flip-left : left == right [ (λ D → (A → D)) ↓ flip-pushout-path ]
flip-left = codomain-over-equiv _ _
flip-right : right == left [ (λ D → (B → D)) ↓ flip-pushout-path ]
flip-right = codomain-over-equiv _ _
{- Path for pointed spans with proofs that the path swaps the pointed
- injections -}
module _ {i j k} (ps : ⊙Span {i} {j} {k}) where
open ⊙Span ps
private
s = ⊙span-out ps
preserves : –> (flip-pushout-equiv s) (left (snd X)) == left (snd Y)
preserves = snd (⊙right (flip-⊙span ps))
flip-⊙pushout : fst (⊙Pushout ps ⊙→ ⊙Pushout (flip-⊙span ps))
flip-⊙pushout = (FlipPushout.f , preserves)
flip-⊙pushout-path : ⊙Pushout ps == ⊙Pushout (flip-⊙span ps)
flip-⊙pushout-path = ⊙ua (⊙≃-in (flip-pushout-equiv s) preserves)
{- action of [flip-pushout] on [snd ⊙right] -}
ap-flip-right : ap flip-pushout (snd (⊙right ps))
== ! (snd (⊙right (flip-⊙span ps)))
ap-flip-right = lemma f g
where
lemma : {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(f : fst (Z ⊙→ X)) (g : fst (Z ⊙→ Y))
→ ap (flip-pushout {d = ⊙span-out (⊙span X Y Z f g)})
(ap right (! (snd g)) ∙ ! (glue (snd Z)) ∙' ap left (snd f))
== ! (ap right (! (snd f)) ∙ ! (glue (snd Z)) ∙' ap left (snd g))
lemma {Z = Z} (f , idp) (g , idp) =
ap flip-pushout (! (glue (snd Z)))
=⟨ ap-! flip-pushout (glue (snd Z)) ⟩
! (ap flip-pushout (glue (snd Z)))
=⟨ FlipPushout.glue-β (snd Z) |in-ctx ! ⟩
! (! (glue (snd Z))) ∎
flip-⊙left : ⊙left ps == ⊙right (flip-⊙span ps)
[ (λ W → fst (X ⊙→ W)) ↓ flip-⊙pushout-path ]
flip-⊙left = codomain-over-⊙equiv _ _
flip-⊙right : ⊙right ps == ⊙left (flip-⊙span ps)
[ (λ W → fst (Y ⊙→ W)) ↓ flip-⊙pushout-path ]
flip-⊙right =
codomain-over-⊙equiv _ _
▹ pair= idp (ap (λ w → w ∙ preserves) ap-flip-right ∙ !-inv-l preserves)
flip-⊙pushout-involutive : ∀ {i j k} (ps : ⊙Span {i} {j} {k})
→ flip-⊙pushout (flip-⊙span ps) ⊙∘ flip-⊙pushout ps == ⊙idf _
flip-⊙pushout-involutive ps =
⊙λ= (flip-pushout-involutive _) lemma
where
lemma :
ap flip-pushout (snd (⊙right (flip-⊙span ps))) ∙ snd (⊙right ps)
== idp
lemma =
ap flip-pushout (snd (⊙right (flip-⊙span ps))) ∙ snd (⊙right ps)
=⟨ ap-flip-right (flip-⊙span ps)
|in-ctx (λ w → w ∙ snd (⊙right ps)) ⟩
! (snd (⊙right ps)) ∙ snd (⊙right ps)
=⟨ !-inv-l (snd (⊙right ps)) ⟩
idp
|
{
"alphanum_fraction": 0.5636059302,
"avg_line_length": 33.1904761905,
"ext": "agda",
"hexsha": "8199b73f75f82e9092cd3f675af88c6b2bd61548",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/FlipPushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/FlipPushout.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/FlipPushout.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1631,
"size": 4182
}
|
open import x1-Base
open import x4-Nat
open import x3-PropositionalEquality using (_≡_; refl; cong; equivalence)
open import x2-Sort _≤?_ totalOrder
module x5-Test where
empty : OList ⊥ ⊤
empty = nil ⊥≤̂
l-9 : OList ⊥ ⊤
l-9 = insert 9 empty ⊥≤̂ ≤̂⊤
_ : l-9 ≡ cons 9 (nil ≤̂⊤) ⊥≤̂
_ = refl
l-5-9 : OList ⊥ ⊤
l-5-9 = insert 5 l-9 ⊥≤̂ ≤̂⊤
_ : l-5-9 ≡ cons 5
(cons 9
(nil ≤̂⊤)
(≤-lift (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))
⊥≤̂
_ = refl
l-1-5-9 : OList ⊥ ⊤
l-1-5-9 = insert 1 l-5-9 ⊥≤̂ ≤̂⊤
_ : l-1-5-9 ≡ cons 1
(cons 5
(cons 9
(nil ≤̂⊤)
(≤-lift (s≤s (s≤s (s≤s (s≤s (s≤s z≤n)))))))
(≤-lift (s≤s z≤n))) -- NOTE CHANGE
⊥≤̂
_ = refl
sl : List ℕ
sl = t-sort (12 ∷ 3 ∷ 7 ∷ 4 ∷ 40 ∷ 5 ∷ 0 ∷ [])
_ : sl ≡ (0 ∷ 3 ∷ 4 ∷ 5 ∷ 7 ∷ 12 ∷ 40 ∷ [])
_ = refl
|
{
"alphanum_fraction": 0.3829568789,
"avg_line_length": 22.1363636364,
"ext": "agda",
"hexsha": "883d36b7ea0a845209b06b8931c6a04c8d4bd24f",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x5-Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x5-Test.agda",
"max_line_length": 74,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x5-Test.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 478,
"size": 974
}
|
module io-test where
open import io
open import string
open import unit
main : IO ⊤
main = (readFiniteFile "hello-world.txt") >>= λ x → writeFile "output.txt" x
|
{
"alphanum_fraction": 0.7134146341,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "66bef5e056b1f44359d3646356b255ec00c56f27",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "io-test.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "io-test.agda",
"max_line_length": 76,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "io-test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 45,
"size": 164
}
|
module calculus where
open import utility
open import Esterel.Lang
open import Esterel.Lang.Binding
open import Esterel.Lang.Properties
open import Esterel.Lang.CanFunction
using (Canθₛ ; Canθₛₕ ; [S]-env)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; sig ; []env ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Context
using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ;
Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c)
open import Esterel.Variable.Signal as Signal
using (Signal)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import Esterel.Context.Properties
open import Relation.Nullary
using (¬_)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl)
open import Data.Empty
using (⊥ ; ⊥-elim)
import Data.FiniteMap
open import Data.List
using (List ; _∷_ ; [] ; _++_)
open import Data.List.All as All
using (All ; _∷_ ; [])
open import Data.Nat
using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_)
open import Data.Product
using (Σ-syntax ; Σ ; _,_ ; proj₁ ; proj₂ ; _×_ ; _,′_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Relation.Binary.PropositionalEquality
open import sn-calculus
open _≐_⟦_⟧e
open _≐_⟦_⟧c
open EvaluationContext1
open Context1
infix 4 _⟶₁_
infix 4 _⟶_
infix 4 _⟶*_
data _⟶₁_ : Term → Term → Set where
[par-swap] : ∀{p q} →
(p ∥ q) ⟶₁ (q ∥ p)
[par-nothing] : ∀ {q} ->
done q ->
(nothin ∥ q) ⟶₁ q
[par-1exit] : ∀ {q} -> ∀ n ->
(pausedq : paused q) ->
(exit n ∥ q) ⟶₁ exit n
[par-2exit] : ∀ n m ->
(exit n ∥ exit m) ⟶₁ exit (n ⊔ℕ m)
[is-present] : ∀{θ r p q E A} → ∀ S ->
(S∈ : (Env.isSig∈ S θ)) →
(θ[S]≡present : Env.sig-stats{S} θ S∈ ≡ Signal.present) →
(de : r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e)
[is-absent] : ∀{θ r p q E A} → ∀ S ->
(S∈ : (Env.isSig∈ S θ)) →
(θ[S]≡absent : Env.sig-stats{S} θ S∈ ≡ Signal.absent) →
(de : r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e)
[emit] : ∀{θ r S E} →
(S∈ : (Env.isSig∈ S θ)) →
(¬S≡a : ¬ (Env.sig-stats{S} θ S∈) ≡ Signal.absent) →
(de : r ≐ E ⟦ emit S ⟧e) →
(ρ⟨ θ , GO ⟩· r) ⟶₁
(ρ⟨ (Env.set-sig{S} θ S∈ Signal.present) , GO ⟩·
E ⟦ nothin ⟧e)
[loop-unroll] : ∀{p} →
(loop p)
⟶₁
(loopˢ p p)
[seq-done] : ∀{q} →
(nothin >> q) ⟶₁ q
[seq-exit] : ∀{q n} →
(exit n >> q) ⟶₁ (exit n)
[loopˢ-exit] : ∀{q n} →
(loopˢ (exit n) q) ⟶₁ (exit n)
[suspend-done] : ∀{p S} →
(haltedp : halted p) →
(suspend p S) ⟶₁ p
-- traps
[trap-done] : ∀{p} →
(haltedp : halted p) →
(trap p) ⟶₁ (↓ haltedp)
-- lifting signals
[raise-signal] : ∀{p S} →
(signl S p) ⟶₁
(ρ⟨ (Θ SigMap.[ S ↦ Signal.unknown ] ShrMap.empty VarMap.empty) , WAIT ⟩·
p)
-- shared state
[raise-shared] : ∀{θ r s e p E A} →
(all-readyeθ : all-ready e θ) →
(de : r ≐ E ⟦ shared s ≔ e in: p ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁
(ρ⟨ θ , A ⟩· E ⟦ (ρ⟨ [s,δe]-env s (δ all-readyeθ) , WAIT ⟩· p) ⟧e)
[set-shared-value-old] : ∀{θ r s e E} →
(e' : all-ready e θ) →
(s∈ : (Env.isShr∈ s θ)) →
(θ[s]≡old : Env.shr-stats{s} θ s∈ ≡ SharedVar.old) →
(de : r ≐ E ⟦ s ⇐ e ⟧e) →
(ρ⟨ θ , GO ⟩· r) ⟶₁
(ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.new) (δ e')) , GO ⟩·
E ⟦ nothin ⟧e)
[set-shared-value-new] : ∀{θ r s e E} →
(e' : all-ready e θ) →
(s∈ : (Env.isShr∈ s θ)) →
(θ[s]≡n : Env.shr-stats{s} θ s∈ ≡ SharedVar.new) →
(de : r ≐ E ⟦ s ⇐ e ⟧e) →
(ρ⟨ θ , GO ⟩· r) ⟶₁
(ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.new) (Env.shr-vals{s} θ s∈ + δ e')) , GO ⟩·
E ⟦ nothin ⟧e)
-- unshared state
[raise-var] : ∀{θ r x p e E A} →
(all-readyeθ : all-ready e θ) →
(de : r ≐ E ⟦ var x ≔ e in: p ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁
(ρ⟨ θ , A ⟩·
E ⟦ (ρ⟨ [x,δe]-env x (δ all-readyeθ) , WAIT ⟩· p) ⟧e)
[set-var] : ∀{θ r x e E A} →
(x∈ : (Env.isVar∈ x θ)) →
(all-readyeθ : all-ready e θ) →
(de : r ≐ E ⟦ x ≔ e ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁
(ρ⟨ (Env.set-var{x} θ x∈ (δ all-readyeθ)) , A ⟩·
E ⟦ nothin ⟧e)
-- if
[if-false] : ∀{θ r p q x E A} →
(x∈ : (Env.isVar∈ x θ)) →
(θ[x]≡z : Env.var-vals{x} θ x∈ ≡ zero) →
(de : r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e)
[if-true] : ∀{θ r p q x E n A} →
(x∈ : (Env.isVar∈ x θ)) →
(θ[x]≡s : Env.var-vals{x} θ x∈ ≡ suc n) →
(de : r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e) →
(ρ⟨ θ , A ⟩· r) ⟶₁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e)
-- progression
[absence] : ∀{θ p A} -> ∀ S →
(S∈ : (Env.isSig∈ S θ)) →
(θ[S]≡unknown : Env.sig-stats{S} θ S∈ ≡ Signal.unknown) →
(S∉Canθₛ : (Signal.unwrap S) ∉ Canθₛ (sig θ) 0 p []env) →
(ρ⟨ θ , A ⟩· p) ⟶₁
(ρ⟨ (Env.set-sig{S} θ S∈ (Signal.absent)) , A ⟩·
p)
[readyness] : ∀{θ p A} -> ∀ s →
(s∈ : (Env.isShr∈ s θ)) →
(θ[s]≡old⊎θ[s]≡new : (Env.shr-stats{s} θ s∈ ≡ SharedVar.old) ⊎
(Env.shr-stats{s} θ s∈ ≡ SharedVar.new)) →
(s∉Canθₛₕ : (SharedVar.unwrap s) ∉ Canθₛₕ (sig θ) 0 p []env) →
(ρ⟨ θ , A ⟩· p) ⟶₁
(ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.ready) (Env.shr-vals{s} θ s∈)) , A ⟩·
p)
[merge] : ∀{θ₁ θ₂ r p E A₁ A₂} →
(de : r ≐ E ⟦ ρ⟨ θ₂ , A₂ ⟩· p ⟧e) →
(ρ⟨ θ₁ , A₁ ⟩· r) ⟶₁ (ρ⟨ (θ₁ ← θ₂) , (A-max A₁ A₂) ⟩· E ⟦ p ⟧e)
-- The compatible closure of _⟶₁_.
data _⟶_ : Term → Term → Set where
[context] : ∀{r p p'} →
(C : Context) →
(dc : r ≐ C ⟦ p ⟧c) →
(p⟶₁p' : p ⟶₁ p') →
r ⟶ (C ⟦ p' ⟧c)
-- The reflexive transitive closure of ⟶
data _⟶*_ : Term → Term → Set where
[refl] : ∀{p} → (p ⟶* p)
[step] : ∀{p q r} → (p⟶q : p ⟶ q) → (q⟶*r : q ⟶* r) → (p ⟶* r)
data _≡ₑ_#_ : Term -> Term -> List Context1 -> Set where
≡ₑrefl : ∀ {p C} ->
------------
p ≡ₑ p # C
≡ₑtran : ∀ {p r q C} ->
(p≡ₑr#C : p ≡ₑ r # C) ->
(r≡ₑq#C : r ≡ₑ q # C) ->
-----------------------
p ≡ₑ q # C
≡ₑsymm : ∀ {p q C BVq FVq} ->
(CBq : CorrectBinding (C ⟦ q ⟧c) BVq FVq) ->
(q≡ₑp : q ≡ₑ p # C) ->
-------------------------------------------
p ≡ₑ q # C
≡ₑctxt : ∀ {C C′ p q C′⟦p⟧ C′⟦q⟧ } ->
(C′⟦p⟧≐C′⟦p⟧c : C′⟦p⟧ ≐ C′ ⟦ p ⟧c) ->
(C′⟦q⟧≐C′⟦q⟧c : C′⟦q⟧ ≐ C′ ⟦ q ⟧c) ->
(p≡ₑq : p ≡ₑ q # (C ++ C′)) ->
-----------------------------------
C′⟦p⟧ ≡ₑ C′⟦q⟧ # C
≡ₑstep : ∀ {C p q} ->
(p⟶₁q : p ⟶₁ q) ->
--------------------
p ≡ₑ q # C
|
{
"alphanum_fraction": 0.46589171,
"avg_line_length": 27.1286307054,
"ext": "agda",
"hexsha": "95112fec727f6818b2f9fece1302eba3eed2ce85",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/calculus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/calculus.agda",
"max_line_length": 85,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/calculus.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 3263,
"size": 6538
}
|
data I : Set where
i : I
variable
x : I
abstract
data D : I → Set where
d : D i
accepted : {x : I} → D x → Set₁
accepted {x = i} d = Set
rejected : D x → Set₁
rejected {x = i} d = Set
|
{
"alphanum_fraction": 0.5192307692,
"avg_line_length": 11.5555555556,
"ext": "agda",
"hexsha": "0bf1638b20ea29811aaac2c81688919d45921705",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4006.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4006.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4006.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 82,
"size": 208
}
|
{-# OPTIONS --without-K #-}
module Cham.Molecule where
open import Cham.Agent
open import Cham.Context
open import Cham.Label
open import Cham.Name
open import Data.List
open import Data.Product using (_×_)
data Molecule : Context → Set₁ where
Reagent : ∀ {Γ} → Agent Γ → Molecule Γ
_·ₘ_ : ∀ {Γ}
→ (Valence : Label)
→ Molecule Γ
→ Molecule (Γ ⊢ Valence)
_∣ₘ_ : ∀ {Γ₁ Γ₂}
→ Molecule Γ₁
→ Molecule Γ₂
→ Molecule (Γ₁ , Γ₂)
_/ₘ_ : ∀ {Γ}
→ (Ion : Name)
→ Molecule Γ
→ Molecule (Γ ⊢ Ion ⁻)
⟨_,_⟩ : ∀ {Γ₁ Γ₂}
→ Molecule Γ₁
→ Molecule Γ₂
→ Molecule (Γ₁ , Γ₂)
l∶⟨_,_⟩ : ∀ {Γ₁ Γ₂}
→ Molecule (Γ₁ , Γ₂)
→ Molecule Γ₁
r∶⟨_,_⟩ : ∀ {Γ₁ Γ₂}
→ Molecule (Γ₁ , Γ₂)
→ Molecule Γ₂
-- molecular solutions
Sol : ∀ {Γ₁ Γ₂}
→ Molecule Γ₁
→ Molecule Γ₂
→ Molecule (permeate Γ₁ Γ₂)
|
{
"alphanum_fraction": 0.4884189325,
"avg_line_length": 19.86,
"ext": "agda",
"hexsha": "56d4a74cd9c247677666b79d5fe9eb47249fae14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "riz0id/chemical-abstract-machine",
"max_forks_repo_path": "agda/Cham/Molecule.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "riz0id/chemical-abstract-machine",
"max_issues_repo_path": "agda/Cham/Molecule.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "riz0id/chemical-abstract-machine",
"max_stars_repo_path": "agda/Cham/Molecule.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 355,
"size": 993
}
|
module Using where
module Dummy where
data DummySet1 : Set where ds1 : DummySet1
data DummySet2 : Set where ds2 : DummySet2
open Dummy
using (DummySet1)
open Dummy -- checking that newline + comment is allowed before "using"
using (DummySet2)
|
{
"alphanum_fraction": 0.7480314961,
"avg_line_length": 21.1666666667,
"ext": "agda",
"hexsha": "d844d6d2b9b21a86569caa0bca602888535bde38",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Using.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Using.agda",
"max_line_length": 71,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Using.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 69,
"size": 254
}
|
-- Testcase for #2028 by Ulf
record ⊤ : Set where
constructor tt
data Either (A B : Set) : Set where
inl : A → Either A B
inr : B → Either A B
Subset : Set → Set₁
Subset X = X → Set
U : ∀ {X} → Subset X
U _ = {!⊤!}
_⊆_ : ∀ {X} → Subset X → Subset X → Set
A ⊆ B = ∀ {x} → A x → B x
_∪_ : ∀ {X} → Subset X → Subset X → Subset X
(A ∪ B) x = Either (A x) (B x)
∪-bound : ∀ {X} {A : Subset X} → (A ∪ U) ⊆ U
∪-bound {X} {A} = aux
where
aux : _ → _
aux (inl _) = tt
aux (inr tt) = tt
|
{
"alphanum_fraction": 0.494047619,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "dfae9086da771455508f4d00073d0bb8f8af5b6e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2028-where.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2028-where.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2028-where.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 224,
"size": 504
}
|
open import Coinduction using ( ♯_ )
open import Data.Natural using ( Natural ; # ; _+_ )
open import Data.Strict using ( Strict ; ! )
open import System.IO.Transducers.Session using ( I ; Σ ; ⟨_⟩ )
open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done )
module System.IO.Transducers.Weight where
-- Weight of a trace
weight' : ∀ {S} → (Strict Natural) → S ⇒ ⟨ Natural ⟩
weight' {I} (! n) = out n done
weight' {Σ W F} (! n) = inp (♯ λ a → weight' (! (n + W a)))
weight : ∀ {S} → S ⇒ ⟨ Natural ⟩
weight = weight' (! (# 0))
|
{
"alphanum_fraction": 0.6110091743,
"avg_line_length": 34.0625,
"ext": "agda",
"hexsha": "1f5bb47b7cd0b5abba5862c7d8276f5e142fc865",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Weight.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Weight.agda",
"max_line_length": 71,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Weight.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 174,
"size": 545
}
|
open import Everything
module Test.Thickandthin where
module _ {x a b ℓb c ℓc} ⦃ _ : Thickandthin x a b ℓb c ℓc ⦄ where
open Thickandthin ⦃ … ⦄
test-thin : 𝓽hin A B
test-thin = thin
test-check/thin=1 : 𝓬heck/thin=1 A B C _≈C_
test-check/thin=1 = check/thin=1
test-injectivity : ∀ {m : X} {x : A (⇑₀ m)} → 𝓶ap (_≈B_ on thin x) _≈B_
test-injectivity {x = x} = injectivity₂,₁ x
|
{
"alphanum_fraction": 0.6379746835,
"avg_line_length": 23.2352941176,
"ext": "agda",
"hexsha": "fcfb3486a0fc5240f194373b69c1981982b8e04c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Thickandthin.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Thickandthin.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Thickandthin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 180,
"size": 395
}
|
--{-# OPTIONS --rewriting #-}
module Array.Rewrites where
open import Array.Base
open import Data.Nat
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec
open import Data.Vec.Properties
open import Relation.Binary.PropositionalEquality
open import Function
--{-# BUILTIN REWRITE _≡_ #-}
thm : ∀ {a}{X : Set a}{s : Vec X 1} → head s ∷ [] ≡ s
thm {s = x ∷ []} = refl
expand-s→a∘a→s : ∀ {el}{ar : Ar ℕ 1 (el ∷ [])} → ∀ (iv : Ix 1 (el ∷ []))
→ lookup (a→s ar) (ix-lookup iv zero) ≡ unimap ar iv
expand-s→a∘a→s {ar = imap f} (x ∷ []) rewrite (lookup∘tabulate (f ∘ (_∷ [])) x) = refl
imap∘unimap : ∀ {a}{X : Set a}{d s} → (ar : Ar X d s) → imap (λ iv → unimap ar iv) ≡ ar
imap∘unimap (imap ar) = refl
--{-# REWRITE expand-s→a∘a→s #-}
--{-# REWRITE imap∘unimap #-}
--{-# REWRITE tabulate∘lookup #-}
--{-# REWRITE lookup∘tabulate #-}
n+0≡n : ∀ n → n + 0 ≡ n
n+0≡n zero = refl
n+0≡n (suc n) = cong suc (n+0≡n n)
--{-# REWRITE n+0≡n #-}
test = λ x → x + 0
|
{
"alphanum_fraction": 0.5558852621,
"avg_line_length": 24.6585365854,
"ext": "agda",
"hexsha": "c1065934d3c1bbf48d55b791c5c34db98370a624",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-array",
"max_forks_repo_path": "Array/Rewrites.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-array",
"max_issues_repo_path": "Array/Rewrites.agda",
"max_line_length": 87,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-array",
"max_stars_repo_path": "Array/Rewrites.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z",
"num_tokens": 401,
"size": 1011
}
|
{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Relation.Unary
open import Relation.Binary hiding (Decidable)
module Data.FingerTree.Split.Structures
{r m}
(ℳ : Monoid r m)
{s}
{ℙ : Pred (Monoid.Carrier ℳ) s}
(ℙ-resp : ℙ Respects (Monoid._≈_ ℳ))
(ℙ? : Decidable ℙ)
where
open import Relation.Nullary using (¬_; yes; no; Dec)
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Data.List as List using (List; _∷_; [])
open import Data.FingerTree.Measures ℳ
open import Data.FingerTree.Structures ℳ
open import Data.FingerTree.Reasoning ℳ
open import Data.FingerTree.View ℳ using (deepₗ; deepᵣ)
open import Data.FingerTree.Cons ℳ using (listToTree)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness; False; toWitnessFalse)
open σ ⦃ ... ⦄
open Monoid ℳ renaming (Carrier to 𝓡)
open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid
open import Data.FingerTree.Split.Point ℳ ℙ-resp ℙ?
open import Data.FingerTree.Split.StoredPredicate ℳ ℙ-resp ℙ?
open import Data.FingerTree.Split.Intermediate ℳ ℙ-resp ℙ?
open import Data.Empty.Irrelevant using (⊥-elim)
module _ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ where
splitList : (i : 𝓡) → (xs : List Σ) → .(i ∣ μ xs) → μ⟨ Split′ i (List Σ) Σ ⟩≈ (i ∙ μ xs)
splitList i [] s = ⊥-elim (¬∄ℙ s)
splitList i (x ∷ xs) s with ⟪ℙ?⟫ (i ∙ μ x)
... | yes p ≈ℙ i∙x [ i∙x≈ ] = [] ∷⟨ x ⟩∷ xs [ s ▻ p ≈◄⟅ ℳ ↯ ⟆ ] ⇑[ ℳ ↯ ]
... | no ¬p ≈ℙ i∙x [ i∙x≈ ] with splitList i∙x xs (s ◄ ¬p ≈◄⟅ sym i∙x≈ ⟆) i≈[ i∙x≈ ]
... | ys ∷⟨ y ⟩∷ zs [ s′ ] ⇑[ ys≈ ] = (x ∷ ys) ∷⟨ y ⟩∷ zs [ s′ ≈◄⟅ ℳ ↯ ⟆ ] ⇑[ ℳ ↯ ] ≈[ ys≈ ]′ ≈[ ℳ ↯ ]
splitNode : ∀ i → (xs : Node Σ) → .(i ∣ μ xs) → μ⟨ Split′ i (List Σ) Σ ⟩≈ (i ∙ μ xs)
splitNode i xs s = do
ys ← nodeToList xs [ _ ∙> sz ⟿ sz ]
splitList i ys (s ≈▻⟅ sym (_ ≈? _) ⟆)
splitDigit : ∀ i → (xs : Digit Σ) → .(i ∣ μ xs) → μ⟨ Split′ i (List Σ) Σ ⟩≈ (i ∙ μ xs)
splitDigit i xs s = digitToList xs [ _ ∙> sz ⟿ sz ] >>= λ ys → splitList i ys (s ≈▻⟅ sym (_ ≈? _) ⟆)
splitTree-l : ∀ i → (ls : Digit Σ) → (m : Tree ⟪ Node Σ ⟫) → (rs : Digit Σ) → .(i ∣ μ ls) → μ⟨ Split′ i (Tree Σ) Σ ⟩≈ (i ∙ (μ ls ∙ (μ m ∙ μ rs)))
splitTree-l i ls m rs s with splitDigit i ls s
splitTree-l i ls m rs s | lsₗ ∷⟨ mₗ ⟩∷ rsₗ [ p ] ⇑[ l≈ ] = [ ( ℳ ↯ ⍮′ ≪∙ l≈ ⍮ assoc _ _ _) ]≈ do
ls′ ← listToTree lsₗ [ i ∙> (sz <∙ _) ⟿ sz ]
rs′ ← deepₗ rsₗ m rs [ i ∙> (_ ∙> (_ ∙> sz)) ⟿ sz ]
ls′ ∷⟨ mₗ ⟩∷ rs′ [ p ≈◄⟅ ∙≫ sym (μ ls′ ≈? μ lsₗ) ⟆ ] ⇑
splitTree-r : ∀ i → (ls : Digit Σ) → (m : Tree ⟪ Node Σ ⟫) → (rs : Digit Σ) → ∀ i∙ls∙m → .(i∙ls∙m ≈ (i ∙ μ ls ∙ μ m)) → .((i ∙ μ ls ∙ μ m) ∣ μ rs) → μ⟨ Split′ i (Tree Σ) Σ ⟩≈ (i ∙ (μ ls ∙ (μ m ∙ μ rs)))
splitTree-r i ls m rs i′ i′≈ s with splitDigit i′ rs (s ≈◄⟅ sym i′≈ ⟆)
splitTree-r i ls m rs i′ i′≈ s | lsᵣ ∷⟨ mᵣ ⟩∷ rsᵣ [ p ] ⇑[ r≈ ] = [ lemma r≈ i′≈ ]≈ do
ls′ ← deepᵣ ls m lsᵣ [ i ∙> (sz <∙ _) ⟿ sz ]
rs′ ← listToTree rsᵣ [ i ∙> (_ ∙> (_ ∙> sz)) ⟿ sz ]
ls′ ∷⟨ mᵣ ⟩∷ rs′ [ p ≈◄⟅ ≪∙ i′≈ ⍮ ℳ ↯ ⍮′ ∙≫ sym (μ ls′ ≈? (μ ls ∙ (μ m ∙ μ lsᵣ))) ⟆ ] ⇑
where
lemma = λ r≈ i′≈ → begin
i ∙ (μ ls ∙ (μ m ∙ μ lsᵣ) ∙ (μ mᵣ ∙ μ rsᵣ))
≈⟨ ℳ ↯ ⟩
i ∙ μ ls ∙ μ m ∙ (μ lsᵣ ∙ (μ mᵣ ∙ μ rsᵣ))
≈⟨ ≪∙ sym i′≈ ⟩
i′ ∙ (μ lsᵣ ∙ (μ mᵣ ∙ μ rsᵣ))
≈⟨ r≈ ⟩
i′ ∙ μ rs
≈⟨ ≪∙ i′≈ ⟩
i ∙ μ ls ∙ μ m ∙ μ rs
≈⟨ ℳ ↯ ⟩
i ∙ (μ ls ∙ (μ m ∙ μ rs)) ∎
splitTree : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄
→ ∀ i
→ (xs : Tree Σ)
→ .(i ∣ μ xs)
→ μ⟨ Split′ i (Tree Σ) Σ ⟩≈ (i ∙ μ xs)
splitTree i empty s = ⊥-elim (¬∄ℙ s)
splitTree i (single x) s = empty ∷⟨ x ⟩∷ empty [ s ≈◄⟅ ℳ ↯ ⟆ ] ⇑[ ℳ ↯ ]
splitTree i (deep (𝓂 ↤ ls & m & rs ⇑[ 𝓂≈ ])) s with ⟪ℙ?⟫ (i ∙ μ ls)
... | yes p₁ ≈ℙ i∙ls [ i∙ls≈ ] = splitTree-l i ls m rs ¬[ ¬ℙ s ]ℙ[ p₁ ] ≈[ ∙≫ 𝓂≈ ]
... | no ¬p₁ ≈ℙ i∙ls [ i∙ls≈ ] with ⟪ℙ?⟫ (i∙ls ∙ μ m)
... | no ¬p₂ ≈ℙ i∙ls∙m [ i∙ls∙m≈ ] = splitTree-r i ls m rs i∙ls∙m (i∙ls∙m≈ ⍮ ≪∙ i∙ls≈) (s ≈▻⟅ sym 𝓂≈ ⟆ ◄ ¬p₁ ≈◄⟅ sym i∙ls≈ ⟆ ◄ ¬p₂ ≈◄⟅ ≪∙ i∙ls≈ ⟆) ≈[ ∙≫ 𝓂≈ ]
... | yes p₂ ≈ℙ i∙ls∙m [ i∙ls∙m≈ ] with splitTree i∙ls m (s ≈▻⟅ sym 𝓂≈ ⟆ ◄ ¬p₁ ≈◄⟅ sym i∙ls≈ ⟆ ▻ p₂)
... | lsₘ ∷⟨ μmₘ ↤ mₘ ⇑[ mₘ≈ ] ⟩∷ rsₘ [ sₘ ] ⇑[ m≈ ] with splitNode (i∙ls ∙ μ lsₘ) mₘ (sₘ ≈▻⟅ sym mₘ≈ ⟆)
... | lsₗ ∷⟨ mₗ ⟩∷ rsₗ [ sₗ ] ⇑[ l≈ ] = [ lemma 𝓂≈ m≈ mₘ≈ l≈ ]≈ do
ll ← deepᵣ ls lsₘ lsₗ [ i ∙> (sz <∙ _) ⟿ sz ]
rr ← deepₗ rsₗ rsₘ rs [ i ∙> (_ ∙> (μ mₗ ∙> sz)) ⟿ sz ]
ll ∷⟨ mₗ ⟩∷ rr [ sₗ ≈◄⟅ ≪∙ ≪∙ i∙ls≈ ⍮ ℳ ↯ ⍮′ ∙≫ sym (μ ll ≈? (μ ls ∙ (μ lsₘ ∙ μ lsₗ))) ⟆ ] ⇑
where
lemma = λ 𝓂≈ m≈ mₘ≈ l≈ → begin
i ∙ (μ ls ∙ (μ lsₘ ∙ μ lsₗ) ∙ (μ mₗ ∙ (μ rsₗ ∙ (μ rsₘ ∙ μ rs))))
≈⟨ ℳ ↯ ⟩
i ∙ μ ls ∙ μ lsₘ ∙ (μ lsₗ ∙ (μ mₗ ∙ μ rsₗ)) ∙ (μ rsₘ ∙ μ rs)
≈⟨ ≪∙ ≪∙ ≪∙ sym i∙ls≈ ⍮ l≈ <∙ (μ rsₘ ∙ μ rs) ⟩
i∙ls ∙ μ lsₘ ∙ μ mₘ ∙ (μ rsₘ ∙ μ rs)
≈⟨ ≪∙ ∙≫ mₘ≈ ⟩
i∙ls ∙ μ lsₘ ∙ μmₘ ∙ (μ rsₘ ∙ μ rs)
≈⟨ ℳ ↯ ⟩
i∙ls ∙ (μ lsₘ ∙ (μmₘ ∙ μ rsₘ)) ∙ μ rs
≈⟨ m≈ <∙ μ rs ⟩
i∙ls ∙ μ m ∙ μ rs
≈⟨ ≪∙ ≪∙ i∙ls≈ ⟩
i ∙ μ ls ∙ μ m ∙ μ rs
≈⟨ ℳ ↯ ⟩
i ∙ (μ ls ∙ (μ m ∙ μ rs))
≈⟨ ∙≫ 𝓂≈ ⟩
i ∙ 𝓂 ∎
init-ℙ : ∀ {𝓂} → (¬ℙ⟨ε⟩ : False (ℙ? ε)) → (ℙ⟨xs⟩ : True (ℙ? 𝓂)) → ε ∣ 𝓂
¬ℙ (init-ℙ fl tr) = toWitnessFalse fl
!ℙ (init-ℙ fl tr) = ℙ-resp (sym (identityˡ _)) (toWitness tr)
|
{
"alphanum_fraction": 0.4682048396,
"avg_line_length": 41.9763779528,
"ext": "agda",
"hexsha": "8962b2fbd22fb2b3caa70c443cbad83c0bb1670b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Split/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Split/Structures.agda",
"max_line_length": 205,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Split/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 3033,
"size": 5331
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Orders.Total.Definition
open import Orders.Partial.Definition
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Setoids.Orders where
partialOrderToSetoidPartialOrder : {a b : _} {A : Set a} (P : PartialOrder {a} A {b}) → SetoidPartialOrder (reflSetoid A) (PartialOrder._<_ P)
SetoidPartialOrder.<WellDefined (partialOrderToSetoidPartialOrder P) a=b c=d a<c rewrite a=b | c=d = a<c
SetoidPartialOrder.irreflexive (partialOrderToSetoidPartialOrder P) = PartialOrder.irreflexive P
SetoidPartialOrder.<Transitive (partialOrderToSetoidPartialOrder P) = PartialOrder.<Transitive P
totalOrderToSetoidTotalOrder : {a b : _} {A : Set a} (T : TotalOrder {a} A {b}) → SetoidTotalOrder (partialOrderToSetoidPartialOrder (TotalOrder.order T))
SetoidTotalOrder.totality (totalOrderToSetoidTotalOrder T) = TotalOrder.totality T
|
{
"alphanum_fraction": 0.7876923077,
"avg_line_length": 48.75,
"ext": "agda",
"hexsha": "3a41764a1991cc92fca1a47f212bada32796e191",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Orders/Orders.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Orders/Orders.agda",
"max_line_length": 154,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Orders/Orders.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 282,
"size": 975
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core using (Category)
module Categories.Category.BicartesianClosed {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Category.CartesianClosed 𝒞
open import Categories.Category.Cocartesian 𝒞
record BicartesianClosed : Set (levelOfTerm 𝒞) where
field
cartesianClosed : CartesianClosed
cocartesian : Cocartesian
|
{
"alphanum_fraction": 0.7695961995,
"avg_line_length": 26.3125,
"ext": "agda",
"hexsha": "742e4a774c6e8ead9031b771da3f2aeb68aa3297",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/BicartesianClosed.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/BicartesianClosed.agda",
"max_line_length": 79,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/BicartesianClosed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 109,
"size": 421
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of Any predicate transformer for fresh lists
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Fresh.Relation.Unary.Any.Properties where
open import Level using (Level; _⊔_; Lift)
open import Data.Bool.Base using (true; false)
open import Data.Empty
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Product using (_,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘′_)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary
open import Relation.Unary as U using (Pred)
open import Relation.Binary as B using (Rel)
open import Relation.Nary
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong)
open import Data.List.Fresh
open import Data.List.Fresh.Relation.Unary.All
open import Data.List.Fresh.Relation.Unary.Any
private
variable
a b p q r s : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- NonEmpty
module _ {R : Rel A r} {P : Pred A p} where
Any⇒NonEmpty : {xs : List# A R} → Any P xs → NonEmpty xs
Any⇒NonEmpty {xs = cons x xs pr} p = cons x xs pr
------------------------------------------------------------------------
-- Correspondence between Any and All
module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} (P⇒¬Q : ∀[ P ⇒ ∁ Q ]) where
Any⇒¬All : {xs : List# A R} → Any P xs → ¬ (All Q xs)
Any⇒¬All (here p) (q ∷ _) = P⇒¬Q p q
Any⇒¬All (there ps) (_ ∷ qs) = Any⇒¬All ps qs
All⇒¬Any : {xs : List# A R} → All P xs → ¬ (Any Q xs)
All⇒¬Any (p ∷ _) (here q) = P⇒¬Q p q
All⇒¬Any (_ ∷ ps) (there qs) = All⇒¬Any ps qs
module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} (P? : Decidable P) where
¬All⇒Any : {xs : List# A R} → ¬ (All P xs) → Any (∁ P) xs
¬All⇒Any {xs = []} ¬ps = ⊥-elim (¬ps [])
¬All⇒Any {xs = x ∷# xs} ¬ps with P? x
... | true because [p] = there (¬All⇒Any (¬ps ∘′ (invert [p] ∷_)))
... | false because [¬p] = here (invert [¬p])
¬Any⇒All : {xs : List# A R} → ¬ (Any P xs) → All (∁ P) xs
¬Any⇒All {xs = []} ¬ps = []
¬Any⇒All {xs = x ∷# xs} ¬ps with P? x
... | true because [p] = ⊥-elim (¬ps (here (invert [p])))
... | false because [¬p] = invert [¬p] ∷ ¬Any⇒All (¬ps ∘′ there)
------------------------------------------------------------------------
-- remove
module _ {R : Rel A r} {P : Pred A p} where
length-remove : {xs : List# A R} (k : Any P xs) →
length xs ≡ suc (length (xs ─ k))
length-remove (here _) = refl
length-remove (there p) = cong suc (length-remove p)
------------------------------------------------------------------------
-- append
module _ {R : Rel A r} {P : Pred A p} where
append⁺ˡ : {xs ys : List# A R} {ps : All (_# ys) xs} →
Any P xs → Any P (append xs ys ps)
append⁺ˡ (here px) = here px
append⁺ˡ (there p) = there (append⁺ˡ p)
append⁺ʳ : {xs ys : List# A R} {ps : All (_# ys) xs} →
Any P ys → Any P (append xs ys ps)
append⁺ʳ {xs = []} p = p
append⁺ʳ {xs = x ∷# xs} p = there (append⁺ʳ p)
append⁻ : ∀ xs {ys : List# A R} {ps : All (_# ys) xs} →
Any P (append xs ys ps) → Any P xs ⊎ Any P ys
append⁻ [] p = inj₂ p
append⁻ (x ∷# xs) (here px) = inj₁ (here px)
append⁻ (x ∷# xs) (there p) = Sum.map₁ there (append⁻ xs p)
|
{
"alphanum_fraction": 0.5048543689,
"avg_line_length": 35.02,
"ext": "agda",
"hexsha": "f4d3a8cdf1ef6ff7716051a514baeba4030bdaf1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Fresh/Relation/Unary/Any/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1191,
"size": 3502
}
|
module Web.Semantic.DL.Category.Properties where
open import Web.Semantic.DL.Category.Properties.Equivalence public using
( ≣-refl ; ≣-sym ; ≣-trans )
open import Web.Semantic.DL.Category.Properties.Composition public using
( compose-resp-≣ ; compose-unit₁ ; compose-unit₂ ; compose-assoc )
open import Web.Semantic.DL.Category.Properties.Tensor public using
( tensor-resp-≣ ; tensor-resp-id ; tensor-resp-compose
; symm-iso ; assoc-iso ; assoc⁻¹-iso
; unit₁-iso ; unit₁⁻¹-iso ; unit₂-iso ; unit₂⁻¹-iso
; assoc-unit ; assoc-assoc ; assoc-symm
; unit₁-natural ; unit₂-natural ; symm-natural ; assoc-natural )
|
{
"alphanum_fraction": 0.7277070064,
"avg_line_length": 39.25,
"ext": "agda",
"hexsha": "ba03209ee5665da668fedf4fa31bc2b2dd9c2bae",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties.agda",
"max_line_length": 72,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 194,
"size": 628
}
|
{-# OPTIONS --without-K #-}
module Lecture3 where
import Lecture2
open Lecture2 public
data unit : U where
star : unit
𝟙 = unit
ind-unit : {i : Level} {P : unit → UU i} → P star → ((x : unit) → P x)
ind-unit p star = p
data empty : U where
𝟘 = empty
ind-empty : {i : Level} {P : empty → UU i} → ((x : empty) → P x)
ind-empty ()
¬ : {i : Level} → UU i → UU i
¬ A = A → empty
data bool : U where
true false : bool
not : bool → bool
not true = false
not false = true
ind-bool : {i : Level} {P : bool → UU i} → P true → P false → (x : bool) → P x
ind-bool Pt Pf true = Pt
ind-bool Pt Pf false = Pf
data coprod {i j : Level} (A : UU i) (B : UU j) : UU (i ⊔ j) where
inl : A → coprod A B
inr : B → coprod A B
data Sigma {i j : Level} (A : UU i) (B : A → UU j) : UU (i ⊔ j) where
dpair : (x : A) → (B x → Sigma A B)
Σ = Sigma
ind-Σ : {i j k : Level} {A : UU i} {B : A → UU j} {C : Σ A B → UU k} →
((x : A) (y : B x) → C (dpair x y)) → ((t : Σ A B) → C t)
ind-Σ f (dpair x y) = f x y
pr1 : {i j : Level} {A : UU i} {B : A → UU j} → Sigma A B → A
pr1 (dpair a b) = a
pr2 : {i j : Level} {A : UU i} {B : A → UU j} → (t : Sigma A B) → B (pr1 t)
pr2 (dpair a b) = b
weaken : {i j : Level} (A : UU i) (B : UU j) → (A → UU j)
weaken A B = λ a → B
prod : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j)
prod A B = Sigma A (λ a → B)
_×_ : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j)
A × B = prod A B
-- WARNING, can't use pair in pattern matching as it's not recognized as a ctor
pair : {i j : Level} {A : UU i} {B : UU j} → A → (B → prod A B)
pair a b = dpair a b
-- Pointed types
U-pt : Type
U-pt = Sigma U (λ X → X)
-- Graphs
Gph : Type
Gph = Sigma U (λ X → (X → X → U))
-- Reflexive graphs
rGph : Type
rGph = Sigma U (λ X → Sigma (X → X → U) (λ R → (x : X) → R x x))
-- Finite sets
Fin : ℕ → U
Fin Nzero = empty
Fin (Nsucc n) = coprod (Fin n) unit
-- Observational equality on the natural numbers
EqN : ℕ → (ℕ → U)
EqN Nzero Nzero = 𝟙
EqN Nzero (Nsucc n) = 𝟘
EqN (Nsucc m) Nzero = 𝟘
EqN (Nsucc m) (Nsucc n) = EqN m n
-- The integers
ℤ : U
ℤ = coprod ℕ (coprod unit ℕ)
-- ^ ^^^^ ^
-- (-∞, -1] 0 [1, ∞)
-- -(n+1) n+1
-- Inclusion of the negative integers
in-neg : ℕ → ℤ
in-neg n = inl n
-- Negative one
Zneg-one : ℤ
Zneg-one = in-neg Nzero
-- Zero
Zzero : ℤ
Zzero = inr (inl star)
-- One
Zone : ℤ
Zone = inr (inr Nzero)
-- Inclusion of the positive integers
in-pos : ℕ → ℤ
in-pos n = inr (inr n)
-- Since Agda is already strong with nested induction, I dont think we need this definition.
ind-ℤ : {i : Level} (P : ℤ → UU i) → P Zneg-one → ((n : ℕ) → P (inl n) → P (inl (Nsucc n))) → P Zzero → P Zone → ((n : ℕ) → P (inr (inr (n))) → P (inr (inr (Nsucc n)))) → (k : ℤ) → P k
ind-ℤ P p-1 p-S p0 p1 pS (inl Nzero) = p-1
ind-ℤ P p-1 p-S p0 p1 pS (inl (Nsucc x)) = p-S x (ind-ℤ P p-1 p-S p0 p1 pS (inl x))
ind-ℤ P p-1 p-S p0 p1 pS (inr (inl star)) = p0
ind-ℤ P p-1 p-S p0 p1 pS (inr (inr Nzero)) = p1
ind-ℤ P p-1 p-S p0 p1 pS (inr (inr (Nsucc x))) = pS x (ind-ℤ P p-1 p-S p0 p1 pS (inr (inr (x))))
Zsucc : ℤ → ℤ
Zsucc (inl Nzero) = Zzero
Zsucc (inl (Nsucc x)) = inl x
Zsucc (inr (inl star)) = Zone
Zsucc (inr (inr x)) = inr (inr (Nsucc x))
-- Exercise 3.1
-- In this exercise we were asked to show that (A + ¬A) implies (¬¬A → A).
-- In other words, we get double negation elimination for the types that are decidable
dne-dec : {i : Level} (A : UU i) → (coprod A (¬ A)) → (¬ (¬ A) → A)
dne-dec A (inl x) = λ f → x
dne-dec A (inr x) = λ f → ind-empty (f x)
-- Exercise 3.3
-- In this exercise we were asked to show that the observational equality on ℕ is an equivalence relation.
reflexive-EqN : (n : ℕ) → EqN n n
reflexive-EqN Nzero = star
reflexive-EqN (Nsucc n) = reflexive-EqN n
symmetric-EqN : (m n : ℕ) → EqN m n → EqN n m
symmetric-EqN Nzero Nzero t = t
symmetric-EqN Nzero (Nsucc n) t = t
symmetric-EqN (Nsucc n) Nzero t = t
symmetric-EqN (Nsucc m) (Nsucc n) t = symmetric-EqN m n t
transitive-EqN : (l m n : ℕ) → EqN l m → EqN m n → EqN l n
transitive-EqN Nzero Nzero Nzero s t = star
transitive-EqN (Nsucc n) Nzero Nzero s t = ind-empty s
transitive-EqN Nzero (Nsucc n) Nzero s t = ind-empty s
transitive-EqN Nzero Nzero (Nsucc n) s t = ind-empty t
transitive-EqN (Nsucc l) (Nsucc m) Nzero s t = ind-empty t
transitive-EqN (Nsucc l) Nzero (Nsucc n) s t = ind-empty s
transitive-EqN Nzero (Nsucc m) (Nsucc n) s t = ind-empty s
transitive-EqN (Nsucc l) (Nsucc m) (Nsucc n) s t = transitive-EqN l m n s t
-- Exercise 3.4
-- In this exercise we were asked to show that observational equality on the natural numbers is the least reflexive relation, in the sense that it implies all other reflexive relation. As we will see once we introduce the identity type, it follows that observationally equal natural numbers can be identified.
-- We first make an auxilary construction, where the relation is quantified over inside the scope of the variables n and m. This is to ensure that the inductive hypothesis is strong enough to make the induction go through.
least-reflexive-EqN' : {i : Level} (n m : ℕ)
(R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → EqN n m → R n m
least-reflexive-EqN' Nzero Nzero R ρ p = ρ Nzero
least-reflexive-EqN' Nzero (Nsucc m) R ρ = ind-empty
least-reflexive-EqN' (Nsucc n) Nzero R ρ = ind-empty
least-reflexive-EqN' (Nsucc n) (Nsucc m) R ρ =
least-reflexive-EqN' n m (λ x y → R (Nsucc x) (Nsucc y)) (λ x → ρ (Nsucc x))
-- Now we solve the actual exercise by rearranging the order of the variables.
least-reflexive-EqN : {i : Level} {R : ℕ → ℕ → UU i}
(ρ : (n : ℕ) → R n n) → (n m : ℕ) → EqN n m → R n m
least-reflexive-EqN ρ n m p = least-reflexive-EqN' n m _ ρ p
-- Exercise 3.5
-- In this exercise we were asked to show that any function on the natural numbers preserves observational equality. The quick solution uses the fact that observational equality is the least reflexive relation.
preserve_EqN : (f : ℕ → ℕ) (n m : ℕ) → (EqN n m) → (EqN (f n) (f m))
preserve_EqN f =
least-reflexive-EqN {_} {λ x y → EqN (f x) (f y)}
(λ x → reflexive-EqN (f x))
-- Exercise 3.6
-- In this exercise we were asked to construct the relations ≤ and < on the natural numbers, and show basic properties about them.
-- Definition of ≤
leqN : ℕ → ℕ → U
leqN Nzero Nzero = unit
leqN Nzero (Nsucc m) = unit
leqN (Nsucc n) Nzero = empty
leqN (Nsucc n) (Nsucc m) = leqN n m
_≤_ = leqN
-- Definition of <
leN : ℕ → ℕ → U
leN Nzero Nzero = empty
leN Nzero (Nsucc m) = unit
leN (Nsucc n) Nzero = empty
leN (Nsucc n) (Nsucc m) = leN n m
_<_ = leN
reflexive-leqN : (n : ℕ) → n ≤ n
reflexive-leqN Nzero = star
reflexive-leqN (Nsucc n) = reflexive-leqN n
anti-reflexive-leN : (n : ℕ) → ¬ (n < n)
anti-reflexive-leN Nzero = ind-empty
anti-reflexive-leN (Nsucc n) = anti-reflexive-leN n
transitive-leqN : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l)
transitive-leqN Nzero Nzero Nzero p q = reflexive-leqN Nzero
transitive-leqN Nzero Nzero (Nsucc l) p q = q
transitive-leqN Nzero (Nsucc m) Nzero p q = star
transitive-leqN Nzero (Nsucc m) (Nsucc l) p q = star
transitive-leqN (Nsucc n) Nzero l p q = ind-empty p
transitive-leqN (Nsucc n) (Nsucc m) Nzero p q = ind-empty q
transitive-leqN (Nsucc n) (Nsucc m) (Nsucc l) p q = transitive-leqN n m l p q
transitive-leN : (n m l : ℕ) → (leN n m) → (leN m l) → (leN n l)
transitive-leN Nzero Nzero Nzero p q = p
transitive-leN Nzero Nzero (Nsucc l) p q = q
transitive-leN Nzero (Nsucc m) Nzero p q = ind-empty q
transitive-leN Nzero (Nsucc m) (Nsucc l) p q = star
transitive-leN (Nsucc n) Nzero l p q = ind-empty p
transitive-leN (Nsucc n) (Nsucc m) Nzero p q = ind-empty q
transitive-leN (Nsucc n) (Nsucc m) (Nsucc l) p q = transitive-leN n m l p q
succ-leN : (n : ℕ) → leN n (Nsucc n)
succ-leN Nzero = star
succ-leN (Nsucc n) = succ-leN n
-- Exercise 3.7
-- With the construction of the divisibility relation we open the door to basic number theory.
divides : (d n : ℕ) → U
divides d n = Σ ℕ (λ m → EqN (d ** m) n)
-- Exercise 3.8
-- In this exercise we were asked to construct observational equality on the booleans. This construction is analogous to, but simpler than, the construction of observational equality on the natural numbers.
Eq2 : bool → bool → U
Eq2 true true = unit
Eq2 true false = empty
Eq2 false true = empty
Eq2 false false = unit
reflexive-Eq2 : (x : bool) → Eq2 x x
reflexive-Eq2 true = star
reflexive-Eq2 false = star
least-reflexive-Eq2 : {i : Level}
(R : bool → bool → UU i) (ρ : (x : bool) → R x x)
(x y : bool) → Eq2 x y → R x y
least-reflexive-Eq2 R ρ true true p = ρ true
least-reflexive-Eq2 R ρ true false p = ind-empty p
least-reflexive-Eq2 R ρ false true p = ind-empty p
least-reflexive-Eq2 R ρ false false p = ρ false
-- Exercise 3.9
-- In this exercise we were asked to show that 1 + 1 satisfies the induction principle of the booleans. In other words, type theory cannot distinguish the booleans from the type 1 + 1. We will see later that they are indeed equivalent types.
t0 : coprod unit unit
t0 = inl star
t1 : coprod unit unit
t1 = inr star
ind-coprod-unit-unit : {i : Level} {P : coprod unit unit → UU i} →
P t0 → P t1 → (x : coprod unit unit) → P x
ind-coprod-unit-unit p0 p1 (inl star) = p0
ind-coprod-unit-unit p0 p1 (inr star) = p1
-- Exercise 3.10
-- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers.
-- It turns out that this is a long exercise that requires to develop intermediate properties of the relation ≤, involving long proofs. None of them is really hard, but they are probably unintelligible because induction on the integers splits into so many cases.
leqZ : ℤ → ℤ → U
leqZ (inl Nzero) (inl Nzero) = unit
leqZ (inl Nzero) (inl (Nsucc x)) = empty
leqZ (inl Nzero) (inr l) = unit
leqZ (inl (Nsucc x)) (inl Nzero) = unit
leqZ (inl (Nsucc x)) (inl (Nsucc y)) = leqZ (inl x) (inl y)
leqZ (inl (Nsucc x)) (inr l) = unit
leqZ (inr k) (inl x) = empty
leqZ (inr (inl star)) (inr l) = unit
leqZ (inr (inr x)) (inr (inl star)) = empty
leqZ (inr (inr Nzero)) (inr (inr y)) = unit
leqZ (inr (inr (Nsucc x))) (inr (inr Nzero)) = empty
leqZ (inr (inr (Nsucc x))) (inr (inr (Nsucc y))) =
leqZ (inr (inr (x))) (inr (inr (y)))
reflexive-leqZ : (k : ℤ) → leqZ k k
reflexive-leqZ (inl Nzero) = star
reflexive-leqZ (inl (Nsucc x)) = reflexive-leqZ (inl x)
reflexive-leqZ (inr (inl star)) = star
reflexive-leqZ (inr (inr Nzero)) = star
reflexive-leqZ (inr (inr (Nsucc x))) = reflexive-leqZ (inr (inr x))
transitive-leqZ : (k l m : ℤ) → leqZ k l → leqZ l m → leqZ k m
transitive-leqZ (inl Nzero) (inl Nzero) m p q = q
transitive-leqZ (inl Nzero) (inl (Nsucc x)) m p q = ind-empty p
transitive-leqZ (inl Nzero) (inr (inl star)) (inl Nzero) star q =
reflexive-leqZ (inl Nzero)
transitive-leqZ (inl Nzero) (inr (inl star)) (inl (Nsucc x)) star q =
ind-empty q
transitive-leqZ (inl Nzero) (inr (inl star)) (inr (inl star)) star q = star
transitive-leqZ (inl Nzero) (inr (inl star)) (inr (inr x)) star q = star
transitive-leqZ (inl Nzero) (inr (inr x)) (inl y) star q = ind-empty q
transitive-leqZ (inl Nzero) (inr (inr x)) (inr (inl star)) star q =
ind-empty q
transitive-leqZ (inl Nzero) (inr (inr x)) (inr (inr y)) star q = star
transitive-leqZ (inl (Nsucc x)) (inl Nzero) (inl Nzero) star q = star
transitive-leqZ (inl (Nsucc x)) (inl Nzero) (inl (Nsucc y)) star q =
ind-empty q
transitive-leqZ (inl (Nsucc x)) (inl Nzero) (inr m) star q = star
transitive-leqZ (inl (Nsucc x)) (inl (Nsucc y)) (inl Nzero) p q = star
transitive-leqZ (inl (Nsucc x)) (inl (Nsucc y)) (inl (Nsucc z)) p q =
transitive-leqZ (inl x) (inl y) (inl z) p q
transitive-leqZ (inl (Nsucc x)) (inl (Nsucc y)) (inr m) p q = star
transitive-leqZ (inl (Nsucc x)) (inr y) (inl z) star q = ind-empty q
transitive-leqZ (inl (Nsucc x)) (inr y) (inr z) star q = star
transitive-leqZ (inr k) (inl x) m p q = ind-empty p
transitive-leqZ (inr (inl star)) (inr l) (inl x) star q = ind-empty q
transitive-leqZ (inr (inl star)) (inr l) (inr m) star q = star
transitive-leqZ (inr (inr x)) (inr (inl star)) m p q = ind-empty p
transitive-leqZ (inr (inr Nzero)) (inr (inr Nzero)) m p q = q
transitive-leqZ (inr (inr Nzero)) (inr (inr (Nsucc y))) (inl x) star q =
ind-empty q
transitive-leqZ (inr (inr Nzero)) (inr (inr (Nsucc y))) (inr (inl star))
star q =
ind-empty q
transitive-leqZ (inr (inr Nzero)) (inr (inr (Nsucc y))) (inr (inr z))
star q = star
transitive-leqZ (inr (inr (Nsucc x))) (inr (inr Nzero)) m p q = ind-empty p
transitive-leqZ (inr (inr (Nsucc x))) (inr (inr (Nsucc y))) (inl z) p q =
ind-empty q
transitive-leqZ (inr (inr (Nsucc x))) (inr (inr (Nsucc y)))
(inr (inl star)) p q = ind-empty q
transitive-leqZ (inr (inr (Nsucc x))) (inr (inr (Nsucc y)))
(inr (inr Nzero)) p q = ind-empty q
transitive-leqZ (inr (inr (Nsucc x))) (inr (inr (Nsucc y)))
(inr (inr (Nsucc z))) p q =
transitive-leqZ (inr (inr x)) (inr (inr y)) (inr (inr z)) p q
succ-leqZ : (k : ℤ) → leqZ k (Zsucc k)
succ-leqZ (inl Nzero) = star
succ-leqZ (inl (Nsucc Nzero)) = star
succ-leqZ (inl (Nsucc (Nsucc x))) = succ-leqZ (inl (Nsucc x))
succ-leqZ (inr (inl star)) = star
succ-leqZ (inr (inr Nzero)) = star
succ-leqZ (inr (inr (Nsucc x))) = succ-leqZ (inr (inr x))
leqZ-succ-leqZ : (k l : ℤ) → leqZ k l → leqZ k (Zsucc l)
leqZ-succ-leqZ k l p = transitive-leqZ k l (Zsucc l) p (succ-leqZ l)
leZ : ℤ → ℤ → U
leZ (inl Nzero) (inl x) = empty
leZ (inl Nzero) (inr y) = unit
leZ (inl (Nsucc x)) (inl Nzero) = unit
leZ (inl (Nsucc x)) (inl (Nsucc y)) = leZ (inl x) (inl y)
leZ (inl (Nsucc x)) (inr y) = unit
leZ (inr x) (inl y) = empty
leZ (inr (inl star)) (inr (inl star)) = empty
leZ (inr (inl star)) (inr (inr x)) = unit
leZ (inr (inr x)) (inr (inl star)) = empty
leZ (inr (inr Nzero)) (inr (inr Nzero)) = empty
leZ (inr (inr Nzero)) (inr (inr (Nsucc y))) = unit
leZ (inr (inr (Nsucc x))) (inr (inr Nzero)) = empty
leZ (inr (inr (Nsucc x))) (inr (inr (Nsucc y))) =
leZ (inr (inr x)) (inr (inr y))
fam-shift-leqZ : (k : ℤ) {i : Level} (P : (l : ℤ) → leqZ k l → UU i) → (l : ℤ) → (leqZ (Zsucc k) l) → UU i
fam-shift-leqZ k P l p = P l (transitive-leqZ k (Zsucc k) l (succ-leqZ k) p)
-- ind-Z-leqZ : (k : ℤ) {i : Level} (P : (l : ℤ) → (leqZ k l) → UU i) →
-- P k (reflexive-leqZ k) →
-- ((l : ℤ) (p : leqZ k l) → P l p → P (Zsucc l) (leqZ-succ-leqZ k l p)) →
-- (l : ℤ) (p : leqZ k l) → P l p
-- ind-Z-leqZ (inl Nzero) P pk pS (inl Nzero) star = pk
-- ind-Z-leqZ (inl Nzero) P pk pS (inl (Nsucc x)) ()
-- ind-Z-leqZ (inl Nzero) P pk pS (inr (inl star)) star = pS (inl Nzero) star pk
-- ind-Z-leqZ (inl Nzero) P pk pS (inr (inr Nzero)) star = pS (inr (inl star)) star (pS (inl Nzero) star pk)
-- ind-Z-leqZ (inl Nzero) P pk pS (inr (inr (Nsucc x))) star = pS (inr (inr x)) star (ind-Z-leqZ (inl Nzero) P pk pS (inr (inr x)) star)
-- ind-Z-leqZ (inl (Nsucc Nzero)) {i} P pk pS (inl Nzero) star = pS {!!} {!!} {!!}
-- ind-Z-leqZ (inl (Nsucc (Nsucc x))) {i} P pk pS (inl Nzero) star = {!!}
-- ind-Z-leqZ (inl (Nsucc x)) P pk pS (inl (Nsucc y)) p = {!!}
-- ind-Z-leqZ (inl (Nsucc x)) P pk pS (inr y) p = {!!}
-- ind-Z-leqZ (inr k) P pk pS l p = {!!}
-- Exercise 3.11
Zpred : ℤ → ℤ
Zpred (inl x) = inl (Nsucc x)
Zpred (inr (inl star)) = inl Nzero
Zpred (inr (inr Nzero)) = inr (inl star)
Zpred (inr (inr (Nsucc x))) = inr (inr x)
-- Exercise 3.12
Zadd : ℤ → ℤ → ℤ
Zadd (inl Nzero) l = Zpred l
Zadd (inl (Nsucc x)) l = Zpred (Zadd (inl x) l)
Zadd (inr (inl star)) l = l
Zadd (inr (inr Nzero)) l = Zsucc l
Zadd (inr (inr (Nsucc x))) l = Zsucc (Zadd (inr (inr x)) l)
Zneg : ℤ → ℤ
Zneg (inl x) = inr (inr x)
Zneg (inr (inl star)) = inr (inl star)
Zneg (inr (inr x)) = inl x
|
{
"alphanum_fraction": 0.6227120147,
"avg_line_length": 38.322815534,
"ext": "agda",
"hexsha": "a16826f44c06bdf7148fe15178743ab2af5034eb",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z",
"max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "glangmead/hott_cmu80818",
"max_forks_repo_path": "Lecture3.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "glangmead/hott_cmu80818",
"max_issues_repo_path": "Lecture3.agda",
"max_line_length": 309,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "glangmead/hott_cmu80818",
"max_stars_repo_path": "Lecture3.agda",
"max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z",
"num_tokens": 6597,
"size": 15789
}
|
{-# OPTIONS --without-K #-}
module PathStructure.Product {a b} {A : Set a} {B : Set b} where
open import Equivalence
open import PathOperations
open import Types
split-path : {x y : A × B} → x ≡ y → (π₁ x ≡ π₁ y) × (π₂ x ≡ π₂ y)
split-path p = ap π₁ p , ap π₂ p
merge-path : {x₁ x₂ : A} {y₁ y₂ : B} →
(x₁ ≡ x₂) × (y₁ ≡ y₂) → Id (A × B) (x₁ , y₁) (x₂ , y₂)
merge-path (p , q) = ap₂ _,_ p q
split-merge-eq : {x y : A × B} →
(x ≡ y) ≃ (π₁ x ≡ π₁ y) × (π₂ x ≡ π₂ y)
split-merge-eq
= split-path
, (merge-path , λ pq → J
(λ _ _ p → ∀ {b₁ b₂} (q : b₁ ≡ b₂) →
split-path (merge-path (p , q)) ≡ p , q)
(λ _ q → J
(λ _ _ q →
split-path (merge-path (refl , q)) ≡ refl , q)
(λ _ → refl) _ _ q)
_ _ (π₁ pq) (π₂ pq))
, (merge-path , J (λ _ _ p → merge-path (split-path p) ≡ p)
(λ _ → refl) _ _)
|
{
"alphanum_fraction": 0.49003517,
"avg_line_length": 29.4137931034,
"ext": "agda",
"hexsha": "b564bd0a737a1ff686bd2bccf0e880d3c4b0742e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/PathStructure/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/PathStructure/Product.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/PathStructure/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 372,
"size": 853
}
|
module Data.List.Size where
import Lvl
open import Data.List
open import Logic.Predicate
open import Logic.Propositional
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
open import Type
open import Data.Boolean
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
-- TODO: For general types, not just Bool.
index : (T → ℕ) → (List(T) → ℕ)
index f ∅ = 1
index f (x ⊰ l) = (2 ^ 𝐒(f(x))) ⋅ index f l -- TODO: 2 is temporary. Use unique primes (does not have to include all or even be in order).
{-
index-injective : ∀{f : T → ℕ} → ⦃ Injective(f) ⦄ → Injective(index f)
index-injective = {!!}
-}
|
{
"alphanum_fraction": 0.7046703297,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "6d61bf67f7a16c0922f5f83f72fdfe6621008756",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Size.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Size.agda",
"max_line_length": 138,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Size.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 214,
"size": 728
}
|
{-# OPTIONS --cubical #-}
module all where
import 00-preamble
import 02-pi
import 03-natural-numbers
import 04-inductive-types
import 05-identity-types
import 06-universes
import 07-finite-sets
import 08-equivalences
import 09-contractible-types
import 10-fundamental-theorem
import 11-truncation-levels
import 12-function-extensionality
import 13-propositional-truncation
import 14-univalence
import 15-groups
import 16-sets
import 17-number-theory
import 18-circle
import 19-fundamental-cover
import 20-pullbacks
import 21-pushouts
import 22-cubical-diagrams
-- import 22-descent
-- import 23-id-pushout
-- import 24-sequences
import abelian-groups
import abelian-subgroups
-- import categories
-- import coinductive-types
import combinatorial-objects
import cubical-circle
-- import dn-sheaves
-- import free-group
-- import group-completion
-- import hott-i
import ideals
import integers
-- import lists
-- import localizations-rings
-- import models
-- import mwe
import polynomial-rings
import quotient-groups
-- import rational-numbers
-- import rings
import rings-with-properties
-- import SAT-solver
import subgroups
-- import subrings
-- import subuniverses
|
{
"alphanum_fraction": 0.8076923077,
"avg_line_length": 21.2727272727,
"ext": "agda",
"hexsha": "5676dac8d42b0aa617cf648ec16059d9849e883f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tmoux/HoTT-Intro",
"max_forks_repo_path": "Agda/all.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tmoux/HoTT-Intro",
"max_issues_repo_path": "Agda/all.agda",
"max_line_length": 34,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tmoux/HoTT-Intro",
"max_stars_repo_path": "Agda/all.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 321,
"size": 1170
}
|
{-
This second-order signature was created from the following second-order syntax description:
syntax PDiff | PD
type
* : 0-ary
term
zero : * | 𝟘
add : * * -> * | _⊕_ l20
one : * | 𝟙
mult : * * -> * | _⊗_ l20
neg : * -> * | ⊖_ r50
pd : *.* * -> * | ∂_∣_
theory
(𝟘U⊕ᴸ) a |> add (zero, a) = a
(𝟘U⊕ᴿ) a |> add (a, zero) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊕C) a b |> add(a, b) = add(b, a)
(𝟙U⊗ᴸ) a |> mult (one, a) = a
(𝟙U⊗ᴿ) a |> mult (a, one) = a
(⊗A) a b c |> mult (mult(a, b), c) = mult (a, mult(b, c))
(⊗D⊕ᴸ) a b c |> mult (a, add (b, c)) = add (mult(a, b), mult(a, c))
(⊗D⊕ᴿ) a b c |> mult (add (a, b), c) = add (mult(a, c), mult(b, c))
(𝟘X⊗ᴸ) a |> mult (zero, a) = zero
(𝟘X⊗ᴿ) a |> mult (a, zero) = zero
(⊖N⊕ᴸ) a |> add (neg (a), a) = zero
(⊖N⊕ᴿ) a |> add (a, neg (a)) = zero
(⊗C) a b |> mult(a, b) = mult(b, a)
(∂⊕) a : * |> x : * |- d0 (add (x, a)) = one
(∂⊗) a : * |> x : * |- d0 (mult(a, x)) = a
(∂C) f : (*,*).* |> x : * y : * |- d1 (d0 (f[x,y])) = d0 (d1 (f[x,y]))
(∂Ch₂) f : (*,*).* g h : *.* |> x : * |- d0 (f[g[x], h[x]]) = add (mult(pd(z. f[z, h[x]], g[x]), d0(g[x])), mult(pd(z. f[g[x], z], h[x]), d0(h[x])))
(∂Ch₁) f g : *.* |> x : * |- d0 (f[g[x]]) = mult (pd (z. f[z], g[x]), d0(g[x]))
-}
module PDiff.Signature where
open import SOAS.Context
open import SOAS.Common
open import SOAS.Syntax.Signature *T public
open import SOAS.Syntax.Build *T public
-- Operator symbols
data PDₒ : Set where
zeroₒ addₒ oneₒ multₒ negₒ pdₒ : PDₒ
-- Term signature
PD:Sig : Signature PDₒ
PD:Sig = sig λ
{ zeroₒ → ⟼₀ *
; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; oneₒ → ⟼₀ *
; multₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; negₒ → (⊢₀ *) ⟼₁ *
; pdₒ → (* ⊢₁ *) , (⊢₀ *) ⟼₂ *
}
open Signature PD:Sig public
|
{
"alphanum_fraction": 0.4442613948,
"avg_line_length": 28.0153846154,
"ext": "agda",
"hexsha": "d91de6595d33cd7b66ecdffee2f73fa302418232",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/PDiff/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/PDiff/Signature.agda",
"max_line_length": 151,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/PDiff/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 939,
"size": 1821
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.RedSteps where
open import Definition.Untyped
open import Definition.Typed
-- Concatenation of type reduction closures
_⇨*_ : ∀ {Γ A B C} → Γ ⊢ A ⇒* B → Γ ⊢ B ⇒* C → Γ ⊢ A ⇒* C
id ⊢B ⇨* B⇒C = B⇒C
(A⇒A′ ⇨ A′⇒B) ⇨* B⇒C = A⇒A′ ⇨ (A′⇒B ⇨* B⇒C)
-- Concatenation of term reduction closures
_⇨∷*_ : ∀ {Γ A t u r} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ u ⇒* r ∷ A → Γ ⊢ t ⇒* r ∷ A
id ⊢u ⇨∷* u⇒r = u⇒r
(t⇒t′ ⇨ t′⇒u) ⇨∷* u⇒r = t⇒t′ ⇨ (t′⇒u ⇨∷* u⇒r)
-- Conversion of reduction closures
conv* : ∀ {Γ A B t u} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t ⇒* u ∷ B
conv* (id x) A≡B = id (conv x A≡B)
conv* (x ⇨ d) A≡B = conv x A≡B ⇨ conv* d A≡B
-- Universe of reduction closures
univ* : ∀ {Γ A B} → Γ ⊢ A ⇒* B ∷ U → Γ ⊢ A ⇒* B
univ* (id x) = id (univ x)
univ* (x ⇨ A⇒B) = univ x ⇨ univ* A⇒B
-- Application substitution of reduction closures
app-subst* : ∀ {Γ A B t t′ a} → Γ ⊢ t ⇒* t′ ∷ Π A ▹ B → Γ ⊢ a ∷ A
→ Γ ⊢ t ∘ a ⇒* t′ ∘ a ∷ B [ a ]
app-subst* (id x) a₁ = id (x ∘ⱼ a₁)
app-subst* (x ⇨ t⇒t′) a₁ = app-subst x a₁ ⇨ app-subst* t⇒t′ a₁
|
{
"alphanum_fraction": 0.4990723562,
"avg_line_length": 31.7058823529,
"ext": "agda",
"hexsha": "7e16c6aa2a473328e0c91d4c480cbb8a3444b247",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/RedSteps.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/RedSteps.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/RedSteps.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 584,
"size": 1078
}
|
open import Agda.Primitive
variable
A : Set _
levelOf : A → Level
levelOf {a} _ = a
|
{
"alphanum_fraction": 0.6704545455,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "8bcdf4d14f7c174e0f1416a7c5e8855a3750a2bd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5363.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5363.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5363.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 30,
"size": 88
}
|
open import Structures
open import Data.String using (String; _≈?_)
open import Data.List as L using (List; []; _∷_; [_])
open import Data.List.Categorical
open import Data.Nat as ℕ using (ℕ; zero; suc; _+_)
import Data.Nat.Properties as ℕ
open import Data.Nat.DivMod
open import Agda.Builtin.Nat using (div-helper; mod-helper)
open import Data.Nat.Show using () renaming (show to showNat)
open import Data.Vec as V using (Vec; []; _∷_)
open import Data.Fin as F using (Fin; zero; suc; #_)
open import Category.Monad
open import Category.Monad.State
open import Data.Product as Σ
open import Data.Unit
open import Data.Bool using (Bool; true; false; if_then_else_)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Fin using (Fin; zero; suc; fromℕ<)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; subst)
open import Relation.Nullary
open import Reflection hiding (return; _>>=_; _>>_)
open import Reflection.Term
import Reflection.Name as RN
open import Function
open import Strict
open RawMonad ⦃ ... ⦄
Id = String
data Op : Set where
Plus Minus Times Divide Eq Neq And Gt Lt : Op
data Expr : Set where
Nat : ℕ → Expr
BinOp : Op → Expr → Expr → Expr
Var : String → Expr
Call : Id → List Expr → Expr
Function : Id → List Id → Expr → Expr
Extern : Id → List Id → Expr
Let : Id → Expr → Expr → Expr
Assert : Expr → Expr
If : Expr → Expr → Expr → Expr
op-to-string : Op → String
op-to-string Plus = "+"
op-to-string Minus = "-"
op-to-string Times = "*"
op-to-string Divide = "/"
op-to-string Eq = "=="
op-to-string Neq = "!="
op-to-string And = "&&"
op-to-string Gt = ">"
op-to-string Lt = "<"
indent : ℕ → String
indent n = "" ++/ L.replicate n " "
flatten-lets : List Expr → List (Id × Expr) × List Expr
-- Lift all the assigns from the (potentially) nested let
flatten-let : Expr → List (Id × Expr) × Expr
flatten-let (Let x e e₁) = let a₁ , e = flatten-let e
a₂ , e₁ = flatten-let e₁
in (a₁ ++ [(x , e)] ++ a₂) , e₁
flatten-let e@(Nat _) = [] , e
flatten-let (BinOp x e e₁) = let a , e = flatten-let e
a₁ , e₁ = flatten-let e₁
in (a ++ a₁) , BinOp x e e₁
flatten-let e@(Var _) = [] , e
flatten-let (Call x es) = let as , es' = flatten-lets es
in as , Call x es'
flatten-let (Function x args e) = let a , e = flatten-let e
in [] , (Function x args $ L.foldr (uncurry Let) e a)
flatten-let e@(Extern _ _) = [] , e
flatten-let (Assert e) = let a , e = flatten-let e in a , Assert e
flatten-let (If e e₁ e₂) = let a , e = flatten-let e
a₁ , e₁ = flatten-let e₁
a₂ , e₂ = flatten-let e₂
e₁' = L.foldr (uncurry Let) e₁ a₁
e₂' = L.foldr (uncurry Let) e₂ a₂
in a , (If e e₁' e₂')
flatten-lets [] = [] , []
flatten-lets (e ∷ es) = let a , e = flatten-let e
a₁ , es = flatten-lets es
in (a ++ a₁) , (e ∷ es)
{-# TERMINATING #-}
expr-to-string : ℕ → Expr → String
expr-to-string ind (Nat x) = indent ind
++ showNat x
expr-to-string ind (BinOp op e e₁) = indent ind ++ "(" ++ expr-to-string 0 e ++ ") " ++ op-to-string op ++ " (" ++ expr-to-string 0 e₁ ++ ")"
expr-to-string ind (Var x) = indent ind
++ x
expr-to-string ind (Call f args) = indent ind
++ f ++ " (" ++ (", " ++/ L.map (expr-to-string 0) args) ++ ")"
expr-to-string ind (Function n ids e) = indent ind
++ "def " ++ n ++ "(" ++ (", " ++/ ids) ++ "):\n" ++ expr-to-string (ind + 1) e
expr-to-string ind (Extern n ids) = indent ind
++ "extern def " ++ n ++ " (" ++ (", " ++/ ids) ++ ")"
expr-to-string ind (Let x e@(If _ _ _) e₁) = indent ind
++ "let " ++ x ++ " =\n"
++ expr-to-string (ind + 1) e ++ "\n"
++ expr-to-string ind e₁
expr-to-string ind (Let x e e₁) = indent ind
++ "let " ++ x ++ " = " ++ expr-to-string 0 e ++ "\n"
++ expr-to-string ind e₁
expr-to-string ind (Assert e) = indent ind
++ "assert (" ++ expr-to-string 0 e ++ ")"
expr-to-string ind (If e e₁ e₂) = indent ind
++ "if " ++ expr-to-string 0 e ++ ":\n"
++ expr-to-string (ind + 1) e₁ ++ "\n"
++ indent ind ++ "else:\n"
++ expr-to-string (ind + 1) e₂ ++ "\n"
-- Glorified sigma type for variable-assertion pairs
record Assrt : Set where
constructor mk
field v : Id
a : Expr
Assrts = List Assrt
-- The state used when traversing a Pi type.
record PS : Set where
field
cnt : ℕ -- The source of unique variable names
cur : Id -- Current variable name (used to collect assertions from its type)
ctx : Telescope -- Names in the telscopes to resolve deBruijn indices
ret : Id -- Variable that the function returns as a result.
-- We assume that there is always a single variable and its name
-- is known upfront. We need this to generate assertions from the
-- return type.
assrts : Assrts -- Assertions that we generate per each variable.
kst : KS -- Compilation state (in case we have to extract some functions used in types)
defaultPS : PS
defaultPS = record { cnt = 1
; cur = ""
; ctx = []
; ret = "__ret"
; assrts = []
; kst = defaultKS
}
record PatSt : Set where
constructor mk
field
vars : List (String × ℕ) --Strings
assigns : List (Id × Expr)
conds : List Expr
cnt : ℕ
defaultPatSt : PatSt
defaultPatSt = mk [] [] [] 1
SPS = State PS
kompile-fun : Type → Term → Name → SKS $ Err Expr
kompile-pi : Type → SPS $ Err ⊤
--{-# TERMINATING #-}
kompile-cls : Clauses → (vars : Strings) → (ret : String) → SKS $ Err Expr
kompile-clpats : Telescope → (pats : List $ Arg Pattern) → (exprs : List Expr) → PatSt → Err PatSt
--{-# TERMINATING #-}
kompile-term : Term → Telescope → SKS $ Err Expr
kompile-funp : Type → Term → Name → SKS Prog
kompile-funp ty te n = do
(ok e) ← kompile-fun ty te n where (error x) → return $ error x
let a , e = flatten-let e
e = case a of λ where
[] → e
a → L.foldr (uncurry Let) e a
return $ ok $ expr-to-string 0 e ++ "\n"
private
kf : String → Err Expr
kf x = error $ "kompile-fun: " ++ x
module R = RawMonadState (StateMonadState KS)
kompile-fun ty (pat-lam [] []) n =
return $ kf "got zero clauses in a lambda term"
kompile-fun ty (pat-lam cs []) n = do
kst ← R.get
let (_ , ps) = kompile-pi ty $ record defaultPS{ kst = kst }
rv = PS.ret ps
ns = showName n
vars = L.map proj₁ $ PS.ctx ps
args = ok $ ", " ++/ vars
ret-assrts = list-filter (λ where (mk v _) → v ≈? rv) $ PS.assrts ps
arg-assrts = list-filter (dec-neg λ where (mk v _) → v ≈? rv) $ PS.assrts ps
R.put $ PS.kst ps
(ok b) ← kompile-cls cs vars rv where (error x) → return $ error x
return $! ok $ Function ns vars
$ flip (L.foldr (λ where (mk v a) → Let (v ++ "_assrt") $ Assert a)) arg-assrts
$ Let rv b
$ flip (L.foldr (λ where (mk v a) → Let (v ++ "_assrt") $ Assert a)) ret-assrts
$ Var rv
kompile-fun _ _ _ =
return $ kf "expected pattern-matching lambda"
private
kp : ∀ {X} → String → SPS (Err X)
kp x = return $ error $ "kompile-pi: " ++ x
ke : ∀ {X} → String → SPS (Err X)
ke x = return $ error x
module P = RawMonadState (StateMonadState PS)
infixl 10 _p+=c_ _p+=a_
_p+=c_ : PS → ℕ → PS
ps p+=c n = record ps{ cnt = PS.cnt ps + n }
_p+=a_ : PS → Assrt → PS
ps p+=a a = record ps{ assrts = a ∷ PS.assrts ps }
ps-fresh : String → SPS String
ps-fresh x = do
ps ← P.get
P.modify (_p+=c 1)
return $ x ++ showNat (PS.cnt ps)
lift-ks : ∀ {X} → SKS X → SPS X
lift-ks xf sps = let (x , sks) = xf (PS.kst sps) in x , record sps {kst = sks}
sps-kompile-term : Term → SPS $ Err Expr
sps-kompile-term t = do
ps ← P.get
lift-ks $ kompile-term t (PS.ctx ps)
kompile-ty : Type → (pi-ok : Bool) → SPS (Err ⊤)
kompile-ty (Π[ s ∶ arg i x ] y) false = kp "higher-order functions are not supported"
kompile-ty (Π[ s ∶ ty@(arg i x) ] y) true = do
v ← ps-fresh "x_"
P.modify λ k → record k { cur = v }
(ok t) ← kompile-ty x false
where e → return e
P.modify λ k → record k { cur = PS.ret k -- In case this is a return type
; ctx = PS.ctx k ++ L.[(v , ty)] }
kompile-ty y true
kompile-ty (con c args) pi-ok =
kp $ "don't know how to handle `" ++ showName c ++ "` constructor"
kompile-ty (def (quote ℕ) args) _ = return $ ok tt
kompile-ty (def (quote Bool) args) _ = return $ ok tt
kompile-ty (def (quote Fin) (arg _ x ∷ [])) _ = do
ok p ← sps-kompile-term x where error x → ke x
v ← PS.cur <$> P.get
P.modify $ _p+=a (mk v (BinOp Lt (Var v) p))
return $ ok tt
kompile-ty (def (quote _≡_) (_ ∷ arg _ ty ∷ arg _ x ∷ arg _ y ∷ [])) _ = do
ok x ← sps-kompile-term x where error x → ke x
ok y ← sps-kompile-term y where error x → ke x
v ← PS.cur <$> P.get
P.modify $ _p+=a (mk v (BinOp Eq x y))
return $ ok tt
kompile-ty (def (quote Dec) (_ ∷ arg _ p ∷ [])) _ = do
--_ ← kompile-ty p false
return $ ok tt
kompile-ty (def n _) _ = kp $ "cannot handle `" ++ showName n ++ "` type"
kompile-ty t _ =
kp $ "failed with the term `" ++ showTerm t ++ "`"
kompile-pi x = kompile-ty x true
-- The names in the telescopes very oftern are not unique, which
-- would be pretty disasterous if the code generation relies on them.
-- see https://github.com/agda/agda/issues/5048 for more details.
--
-- This function simply ensures that variable names are unique in
-- in the telescope.
tel-rename : Telescope → (db : List (String × ℕ)) → Telescope
tel-rename [] db = []
tel-rename ((v , ty) ∷ tel) db with list-find-el ((_≈? v) ∘ proj₁) db
... | just (_ , n) = (v ++ "_" ++ showNat n , ty)
∷ tel-rename tel (list-update-fst ((_≈? v) ∘ proj₁) db (Σ.map₂ suc))
... | nothing = (v , ty)
∷ tel-rename tel ((v , 1) ∷ db)
private
kc : String → SKS $ Err Expr
kc x = return $ error $ "kompile-cls: " ++ x
_>>=e_ : ∀ {a}{X : Set a} → Err X → (X → SKS $ Err Expr) → SKS $ Err Expr
(error s) >>=e _ = return $ error s
(ok x) >>=e f = f x
kompile-tel : Telescope → SPS (Err ⊤)
kompile-tel [] = return $ ok tt
kompile-tel ((v , t@(arg i x)) ∷ tel) = do
(ok τ) ← kompile-ty x false where (error x) → return $ error x
P.modify λ k → record k{ ctx = PS.ctx k ++ [( v , t )] }
kompile-tel tel
fold-expr : (Expr → Expr → Expr) → Expr → List Expr → Expr
fold-expr f e [] = e
fold-expr f _ (x ∷ []) = x
fold-expr f e (x ∷ xs) = f x (fold-expr f e xs)
emap : ∀ {a b}{X : Set a}{Y : Set b} → (X → Y) → Err X → Err Y
emap f (error x) = error x
emap f (ok x) = ok $ f x
emap₂ : ∀ {a b c}{X : Set a}{Y : Set b}{Z : Set c}
→ (X → Y → Z) → Err X → Err Y → Err Z
emap₂ f (error x) _ = error x
emap₂ f _ (error x) = error x
emap₂ f (ok x) (ok y) = ok (f x y)
kompile-cls [] ctx ret = kc "zero clauses found"
kompile-cls (clause tel ps t ∷ []) ctx ret =
-- Make telscope names unique.
let tel = (tel-rename $! tel) $! [] in
kompile-clpats tel ps (L.map Var ctx) defaultPatSt >>=e λ pst → do
let (mk vars assgns _ _) = pst --in
ok t ← kompile-term t $! tel where (error x) → kc x
let as = flip (L.foldr (uncurry Let)) assgns
return $ ok $ as
$ t
--Let ret t
--$ Var ret
kompile-cls (absurd-clause tel ps ∷ []) ctx ret =
-- Exactly the same as above
-- We don't really need to make this call, but we keep it
-- for sanity checks. I.e. if we'll get an error in the
-- patterns, it will bubble up to the caller.
kompile-clpats ((tel-rename $! tel) $! []) ps (L.map Var ctx) defaultPatSt >>=e λ pst → do
return $ ok $ Assert (Nat 0)
kompile-cls (absurd-clause tel ps ∷ ts@(_ ∷ _)) ctx ret =
kompile-clpats ((tel-rename $! tel) $! []) ps (L.map Var ctx) defaultPatSt >>=e λ pst → do
let (mk vars _ conds _) = pst
cs = fold-expr (BinOp And) (Nat 1) conds
ok r ← kompile-cls ts ctx ret where (error x) → kc x
return $ ok $ If cs (Assert (Nat 0)) r
kompile-cls (clause tel ps t ∷ ts@(_ ∷ _)) ctx ret =
kompile-clpats ((tel-rename $! tel) $! []) ps (L.map Var ctx) defaultPatSt >>=e λ pst → do
let (mk vars assgns conds _) = pst
cs = fold-expr (BinOp And) (Nat 1) conds
as = flip (L.foldr (uncurry Let)) assgns
--ok t ← kompile-term t tel where (error x) → kc x
--ok r ← kompile-cls ts ctx ret where (error x) → kc x
--return $ ok $ If cs (as t) r
t ← kompile-term t tel
r ← kompile-cls ts ctx ret
return $ emap₂ (If cs) (emap as t) r
tel-lookup-name : Telescope → ℕ → Prog
tel-lookup-name tel n with n ℕ.<? L.length (L.reverse tel)
... | yes n<l = ok $ proj₁ $ L.lookup (L.reverse tel) $ fromℕ< n<l
... | no _ = error "Variable lookup in telescope failed"
private
kcp : String → Err PatSt
kcp x = error $ "kompile-clpats: " ++ x
infixl 10 _+=c_ _+=a_ _+=v_ _+=n_
_+=c_ : PatSt → Expr → PatSt
p +=c c = record p { conds = PatSt.conds p ++ [ c ] }
_+=a_ : PatSt → _ → PatSt
p +=a a = record p { assigns = PatSt.assigns p ++ [ a ] }
_+=v_ : PatSt → String × ℕ → PatSt
p +=v v = record p { vars = PatSt.vars p ++ [ v ] }
_+=n_ : PatSt → ℕ → PatSt
p +=n n = record p { cnt = PatSt.cnt p + 1 }
pst-fresh : PatSt → String → Err $ String × PatSt
pst-fresh pst x =
return $ x ++ showNat (PatSt.cnt pst) , pst +=n 1
sz : List $ Arg Pattern → ℕ
sz [] = 0
sz (arg i (con c ps) ∷ l) = 1 + sz ps + sz l
sz (arg i _ ∷ l) = 1 + sz l
sz++ : ∀ (a b : List $ Arg Pattern) → sz (a L.++ b) ≡ sz a + sz b
sz++ [] b = refl
sz++ (arg i (con c ps) ∷ a) b rewrite ℕ.+-assoc (sz ps) (sz a) (sz b)
= cong suc (cong (sz ps +_) (sz++ a b))
sz++ (arg i (dot t) ∷ a) b = cong suc $ sz++ a b
sz++ (arg i (var x₁) ∷ a) b = cong suc $ sz++ a b
sz++ (arg i (lit l) ∷ a) b = cong suc $ sz++ a b
sz++ (arg i (proj f) ∷ a) b = cong suc $ sz++ a b
sz++ (arg i (absurd x₁) ∷ a) b = cong suc $ sz++ a b
++-strict : ∀ {X : Set} (a b : List X) → a ++ b ≡ a L.++ b
++-strict a b rewrite force′-≡ a L._++_ | force′-≡ b (L._++_ a) = refl
ps++l<m : ∀ {m} ps l → suc (sz ps + sz l) ℕ.< suc m → sz (ps ++ l) ℕ.< m
ps++l<m {m} ps l sz<m rewrite ++-strict ps l = subst (ℕ._< m) (sym $ sz++ ps l) (ℕ.≤-pred sz<m)
a<b⇒a<1+b : ∀ {a b} → a ℕ.< b → a ℕ.< 1 + b
a<b⇒a<1+b {a} {b} a<b = ℕ.s≤s (ℕ.<⇒≤ a<b)
a+b<c⇒b<c : ∀ {a b c} → a + b ℕ.< c → b ℕ.< c
a+b<c⇒b<c {zero} {b} {c} a+b<c = a+b<c
a+b<c⇒b<c {suc a} {b} {suc c} a+b<c = a<b⇒a<1+b $ a+b<c⇒b<c (ℕ.≤-pred a+b<c)
sz[l]<m : ∀ {m} ps l → suc (sz ps + sz l) ℕ.< suc m → sz l ℕ.< m
sz[l]<m {m} ps l sz<m = a+b<c⇒b<c $ ℕ.≤-pred sz<m
--kompile-cls : Clauses → (vars : Strings) → (ret : String) → SKS $ Err String
kompile-clpats′ : ∀ {m} → Telescope → (pats : List $ Arg Pattern) → .(sz pats ℕ.< m)
→ (exprs : List Expr) → PatSt → Err PatSt
kompile-clpats′ {suc m} tel (arg i (con (quote true) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel l (sz[l]<m ps l sz<m) ctx $ pst +=c v {- != 0 -} --is true
kompile-clpats′ {suc m} tel (arg i (con (quote false) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel l (sz[l]<m ps l sz<m) ctx $ pst +=c BinOp Eq v (Nat 0)
kompile-clpats′ {suc m} tel (arg i (con (quote ℕ.zero) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel l (sz[l]<m ps l sz<m) ctx $ pst +=c BinOp Eq v (Nat 0) --(v == 0)
kompile-clpats′ {suc m} tel (arg i (con (quote ℕ.suc) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel (ps ++ l) (ps++l<m ps l sz<m) (BinOp Minus v (Nat 1) ∷ ctx) $ pst +=c BinOp Gt v (Nat 0) --(v > 0)
kompile-clpats′ {suc m} tel (arg i (con (quote F.zero) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel l (sz[l]<m ps l sz<m) ctx $ pst +=c BinOp Eq v (Nat 0) --(v ++ " == 0")
kompile-clpats′ {suc m} tel (arg i (con (quote F.suc) ps@(_ ∷ _ ∷ [])) ∷ l) sz<m (v ∷ ctx) pst = do
(ub , pst) ← pst-fresh pst "ub_"
-- XXX here we are not using `ub` in conds. For two reasons:
-- 1) as we have assertions, we should check the upper bound on function entry
-- 2) typically, the value of this argument would be Pat.dot, which we ignore
-- right now. It is possible to capture the value of the dot-patterns, as
-- they carry the value when reconstructed.
kompile-clpats′ tel (ps ++ l) (ps++l<m ps l sz<m) (Var ub ∷ (BinOp Minus v (Nat 1)) ∷ ctx) $ pst +=c BinOp Gt v (Nat 0) --(v ++ " > 0")
-- For refl we don't need to generate a predicate, as refl is an element of a singleton type.
kompile-clpats′ {suc m} tel (arg i (con (quote refl) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel l (sz[l]<m ps l sz<m) ctx pst
kompile-clpats′ {suc m} tel (arg i (con (quote _because_) ps) ∷ l) sz<m (v ∷ ctx) pst = do
pf , pst ← pst-fresh pst $ "pf_"
kompile-clpats′ tel (ps ++ l) (ps++l<m ps l sz<m) (v ∷ Var pf ∷ ctx) pst
kompile-clpats′ {suc m} tel (arg i (con (quote Reflects.ofʸ) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel (ps ++ l) (ps++l<m ps l sz<m) (Nat 1 ∷ ctx) pst
kompile-clpats′ {suc m} tel (arg i (con (quote Reflects.ofⁿ) ps) ∷ l) sz<m (v ∷ ctx) pst =
kompile-clpats′ tel (ps ++ l) (ps++l<m ps l sz<m) (Nat 0 ∷ ctx) pst
kompile-clpats′ {suc m} tel (arg (arg-info _ r) (var i) ∷ l) sz<m (v ∷ vars) pst = do
s ← tel-lookup-name tel i
let pst = pst +=v (s , i)
let pst = if does (s ≈? "_")
then pst
else pst +=a (s , v)
kompile-clpats′ tel l (ℕ.≤-pred sz<m) vars pst
kompile-clpats′ {suc m} tel (arg i (dot t) ∷ l) sz<m (v ∷ vars) pst =
-- For now we just skip dot patterns.
kompile-clpats′ tel l (ℕ.≤-pred sz<m) vars pst
kompile-clpats′ {suc m} tel (arg i (absurd _) ∷ l) sz<m (v ∷ ctx) pst =
-- If have met the absurd pattern, we'd still have to
-- accumulate remaining conditions, as patterns are not
-- linear :( For example, see test4-f in examples.
kompile-clpats′ tel l (ℕ.≤-pred sz<m) ctx pst
kompile-clpats′ _ [] _ [] pst = ok pst
kompile-clpats′ tel ps _ ctx patst = kcp $ "failed on pattern: ["
++ (", " ++/ L.map (λ where (arg _ x) → showPattern x) ps)
++ "], ctx: [" ++ (", " ++/ (L.map (expr-to-string 0) ctx)) ++ "]"
kompile-clpats tel pats ctx pst = kompile-clpats′ {m = suc (sz pats)} tel pats ℕ.≤-refl ctx pst
private
kt : ∀ {X} → String → SKS $ Err X
kt x = return $ error $ "kompile-term: " ++ x
mk-mask : (n : ℕ) → List $ Fin n
mk-mask zero = []
mk-mask (suc n) = L.reverse $ go n (suc n) ℕ.≤-refl
where
sa<b⇒a<b : ∀ a b → suc a ℕ.< b → a ℕ.< b
sa<b⇒a<b zero (suc b) _ = ℕ.s≤s ℕ.z≤n
sa<b⇒a<b (suc a) (suc n) (ℕ.s≤s pf) = ℕ.s≤s $ sa<b⇒a<b a n pf
go : (m n : ℕ) → m ℕ.< n → List $ Fin n
go 0 (suc _) _ = zero ∷ []
go (suc m) n pf = F.fromℕ< pf ∷ go m n (sa<b⇒a<b m n pf)
le-to-el : ∀ {a}{X : Set a} → List (Err X) → Err (List X)
le-to-el [] = ok []
le-to-el (x ∷ l) = _∷_ <$> x ⊛ le-to-el l
mk-iota-mask : ℕ → List ℕ
mk-iota-mask n = L.reverse $! go n []
where
go : ℕ → List ℕ → List ℕ
go zero l = l
go (suc n) l = n ∷ go n l
{-
kompile-arglist : (n : ℕ) → List $ Arg Term → List $ Fin n → Telescope → SKS $ Err (List Expr)
kompile-arglist n args mask varctx with L.length args ℕ.≟ n | V.fromList args
... | yes p | vargs rewrite p = do
l ← mapM (λ where (arg _ x) → kompile-term x varctx)
$ L.map (V.lookup vargs) mask
return $ le-to-el l
where open TraversableM (StateMonad KS)
... | no ¬p | _ = kt "Incorrect argument mask"
-}
kompile-arglist-idx : List $ Arg Term → (idx : ℕ) → Telescope → SKS $ Err Expr
kompile-arglist-idx [] _ tel = return $ error "incorrect arglist index"
kompile-arglist-idx (arg _ x ∷ args) zero tel = kompile-term x tel
kompile-arglist-idx (x ∷ args) (suc n) tel = kompile-arglist-idx args n tel
kompile-arglist : List $ Arg Term → List ℕ → Telescope → SKS $ Err (List Expr)
kompile-arglist args [] tel = return $ ok []
kompile-arglist args (x ∷ idxs) tel = do
ok t ← kompile-arglist-idx args x tel where (error x) → return $ error x
ok ts ← kompile-arglist args idxs tel where (error x) → return $ error x
return $ ok $ t ∷ ts
kompile-term (var x []) vars =
return $ Var <$> tel-lookup-name vars x
kompile-term (var x args@(_ ∷ _)) vars = do
let f = tel-lookup-name vars x
l = L.length args
--args ← kompile-arglist l args (mk-mask l) vars
args ← kompile-arglist args (mk-iota-mask l) vars
return $ Call <$> f ⊛ args
kompile-term (lit l@(nat x)) vars = return $ ok $ Nat x
kompile-term (con (quote ℕ.zero) _) _ =
return $ ok $ Nat 0
kompile-term (con (quote ℕ.suc) (arg _ a ∷ [])) vars = do
a ← kompile-term a vars
return $ BinOp <$> ok Plus ⊛ ok (Nat 1) ⊛ a
kompile-term (con (quote F.zero) _) _ =
return $ ok $ Nat 0
kompile-term (con (quote F.suc) (_ ∷ arg _ a ∷ [])) vars = do
a ← kompile-term a vars
return $ BinOp <$> ok Plus ⊛ ok (Nat 1) ⊛ a
kompile-term (con (quote refl) _) _ =
return $ ok $ Nat 1
kompile-term (con c _) vars = kt $ "don't know constructor " ++ (showName c)
-- From Agda.Builtin.Nat: div-helper k m n j = k + (n + m - j) div (1 + m)
kompile-term (def (quote div-helper) (arg _ k ∷ arg _ m ∷ arg _ n ∷ arg _ j ∷ [])) vars = do
k ← kompile-term k vars
m ← kompile-term m vars
n ← kompile-term n vars
j ← kompile-term j vars
let n+m = BinOp <$> ok Plus ⊛ n ⊛ m
n+m-j = BinOp <$> ok Minus ⊛ n+m ⊛ j
k+[n+m-j] = BinOp <$> ok Plus ⊛ k ⊛ n+m-j
1+m = BinOp <$> ok Plus ⊛ ok (Nat 1) ⊛ m
return $ BinOp <$> ok Divide ⊛ k+[n+m-j] ⊛ 1+m
kompile-term (def (quote ℕ._≟_) (arg _ a ∷ arg _ b ∷ [])) vars = do
a ← kompile-term a vars
b ← kompile-term b vars
return $ BinOp <$> ok Eq ⊛ a ⊛ b
kompile-term (def (quote _+_) args@(arg _ a ∷ arg _ b ∷ [])) vars = do
a ← kompile-term a vars
b ← kompile-term b vars
return $ BinOp <$> ok Plus ⊛ a ⊛ b
kompile-term (def (quote ℕ._*_) args@(arg _ a ∷ arg _ b ∷ [])) vars = do
a ← kompile-term a vars
b ← kompile-term b vars
return $ BinOp <$> ok Times ⊛ a ⊛ b
kompile-term (def (quote F.fromℕ<) args) vars = do
ok (x ∷ []) ← kompile-arglist args (0 ∷ []) vars
where _ → kt "kopmile-arglist is broken"
return $ ok x
-- The last pattern in the list of `def` matches
kompile-term (def n []) _ =
kt $ "attempting to compile `" ++ showName n ++ "` as function with 0 arguments"
kompile-term (def n args@(_ ∷ _)) vars = do
R.modify λ k → record k { funs = KS.funs k ++ [ n ] }
let n = {-nnorm $-} showName n
l = L.length args
--args ← kompile-arglist l args (mk-mask l) vars
args ← kompile-arglist args (mk-iota-mask l) vars
return $ Call <$> ok n ⊛ args
kompile-term t vctx = kt $ "failed to compile term `" ++ showTerm t ++ "`"
|
{
"alphanum_fraction": 0.5501656614,
"avg_line_length": 36.2184615385,
"ext": "agda",
"hexsha": "c899d6134b1f2815cbf39ef75cd8aa804c8fbf25",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-extractor",
"max_forks_repo_path": "Kaleid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-extractor",
"max_issues_repo_path": "Kaleid.agda",
"max_line_length": 141,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-extractor",
"max_stars_repo_path": "Kaleid.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z",
"num_tokens": 8291,
"size": 23542
}
|
F : {_ : Set₁} → Set₁
F {A} = A
|
{
"alphanum_fraction": 0.40625,
"avg_line_length": 10.6666666667,
"ext": "agda",
"hexsha": "4acdfbf4bdb7fa829ed701d6eb8ad00e06224b59",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2728-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2728-2.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2728-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 18,
"size": 32
}
|
module Jumble where
open import Basics
swap : {I J : Set} -> I * J -> J * I
swap (i , j) = j , i
_+L_ : {X : Set} -> List X -> List X -> List X
[] +L ys = ys
(x ,- xs) +L ys = x ,- (xs +L ys)
infixr 4 _+L_
catNatural : {X Y : Set}(f : X -> Y)(xs xs' : List X) ->
(list f xs +L list f xs') == list f (xs +L xs')
catNatural f [] xs' = refl (list f xs')
catNatural f (x ,- xs) xs' = refl (f x ,-_) =$= catNatural f xs xs'
listlist : {X Y Z : Set}(f : Y -> Z)(g : X -> Y)(h : X -> Z)
(q : (x : X) -> f (g x) == h x) ->
(xs : List X) -> list f (list g xs) == list h xs
listlist f g h q [] = refl []
listlist f g h q (x ,- xs) = refl (_,-_) =$= q x =$= listlist f g h q xs
_-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set)
(S -:> T) i = S i -> T i
infixr 4 _-:>_
[_] : {I : Set} -> (I -> Set) -> Set
[ P ] = forall i -> P i
All : {X : Set} -> (X -> Set) -> (List X -> Set)
All P [] = One
All P (x ,- xs) = P x * All P xs
allPu : forall {X}{T : X -> Set} -> [ T ] -> [ All T ]
allPu t [] = <>
allPu t (x ,- xs) = t x , allPu t xs
allAp : forall {X}{S T : X -> Set} -> [ All (S -:> T) -:> All S -:> All T ]
allAp [] <> <> = <>
allAp (x ,- xs) (f , fs) (s , ss) = f s , allAp xs fs ss
all : {X : Set}{S T : X -> Set} ->
[ S -:> T ] -> [ All S -:> All T ]
all f xs = allAp xs (allPu f xs)
allRe : forall {X Y}(f : X -> Y){P : Y -> Set}
(xs : List X) -> All (\ x -> P (f x)) xs -> All P (list f xs)
allRe f [] <> = <>
allRe f (x ,- xs) (p , ps) = p , allRe f xs ps
collect : {I J : Set}(is : List I) -> All (\ i -> List J) is -> List J
collect [] <> = []
collect (i ,- is) (js , jss) = js +L collect is jss
allRePu : forall {X Y}(f : X -> Y){P : Y -> Set}(xs : List X)(g : [ P ]) ->
allRe f xs (allPu (\ x -> g (f x)) xs) == allPu g (list f xs)
allRePu f [] g = refl <>
allRePu f (x ,- xs) g = refl (g (f x) ,_) =$= allRePu f xs g
all-Pu : forall {X}{S T : X -> Set}(f : [ S -:> T ])(s : [ S ])(xs : List X) ->
all f xs (allPu s xs) == allPu (\ x -> f x (s x)) xs
all-Pu f s [] = refl <>
all-Pu f s (x ,- xs) = refl (f x (s x) ,_) =$= all-Pu f s xs
cart : forall {I J} -> List I -> List J -> List (I * J)
cart [] js = []
cart (i ,- is) js = list (i ,_) js +L cart is js
{-
all-grr : forall {X Y}{S : X -> Set}{T : Y -> Set}
(f : X -> Y)(xs : List X)(g : [ S -:> (\ x -> T (f x)) ])(h : [ S ]) ->
allAp (list f xs) (allPu g ?) (allRe f xs (allPu h xs)) ==
?
all-grr = ?
-}
data _<[_]>_ {X : Set} : List X -> List X -> List X -> Set where
sz : [] <[ [] ]> []
sl : forall {l ls ms rs} -> ls <[ ms ]> rs -> (l ,- ls) <[ l ,- ms ]> rs
sr : forall {r ls ms rs} -> ls <[ ms ]> rs -> ls <[ r ,- ms ]> (r ,- rs)
riffle : {X : Set}{ls ms rs : List X} -> ls <[ ms ]> rs ->
{P : X -> Set} -> All P ls -> All P rs -> All P ms
riffle sz <> <> = <>
riffle (sl x) (p , lp) rp = p , riffle x lp rp
riffle (sr x) lp (p , rp) = p , riffle x lp rp
srs : forall {X : Set}(xs : List X) -> [] <[ xs ]> xs
srs [] = sz
srs (x ,- xs) = sr (srs xs)
slrs : forall {X : Set}(xs ys : List X) -> xs <[ xs +L ys ]> ys
slrs [] ys = srs ys
slrs (x ,- xs) ys = sl (slrs xs ys)
cat : forall {X}{P : X -> Set}(xs ys : List X) -> All P xs -> All P ys -> All P (xs +L ys)
cat xs ys ps qs = riffle (slrs xs ys) ps qs
data IsRiffle {X : Set}{ls ms rs : List X}(i : ls <[ ms ]> rs){P : X -> Set}
: All P ms -> Set where
mkRiffle : (lp : All P ls)(rp : All P rs) -> IsRiffle i (riffle i lp rp)
isRiffle : {X : Set}{ls ms rs : List X}(i : ls <[ ms ]> rs){P : X -> Set}(mp : All P ms) -> IsRiffle i mp
isRiffle sz <> = mkRiffle <> <>
isRiffle (sl i) (p , mp) with isRiffle i mp
isRiffle (sl i) (p , .(riffle i lp rp)) | mkRiffle lp rp = mkRiffle (p , lp) rp
isRiffle (sr i) (p , mp) with isRiffle i mp
isRiffle (sr i) (p , .(riffle i lp rp)) | mkRiffle lp rp = mkRiffle lp (p , rp)
data _~_ {X : Set} : List X -> List X -> Set where
[] : [] ~ []
_,-_ : forall {x xs ys zs} -> (x ,- []) <[ ys ]> zs -> xs ~ zs -> (x ,- xs) ~ ys
permute : {X : Set}{xs ys : List X} -> xs ~ ys ->
{P : X -> Set} -> All P xs -> All P ys
permute [] <> = <>
permute (i ,- is) (p , ps) = riffle i (p , <>) (permute is ps)
data SRS {X : Set}(ms : List X) : (xs : List X) -> [] <[ ms ]> xs -> Set where
mkSRS : SRS ms ms (srs ms)
isSRS : {X : Set}{ms xs : List X}(i : [] <[ ms ]> xs) -> SRS ms xs i
isSRS sz = mkSRS
isSRS (sr i) with isSRS i
isSRS (sr .(srs _)) | mkSRS = mkSRS
mirror : {X : Set}{ls ms rs : List X} -> ls <[ ms ]> rs -> rs <[ ms ]> ls
mirror sz = sz
mirror (sl x) = sr (mirror x)
mirror (sr x) = sl (mirror x)
rotatel : {X : Set}{ls ms rs lrs rrs : List X} -> ls <[ ms ]> rs -> lrs <[ rs ]> rrs ->
Sg (List X) \ ns -> (ls <[ ns ]> lrs) * (ns <[ ms ]> rrs)
rotatel sz sz = [] , sz , sz
rotatel (sl x) y with rotatel x y
... | _ , a , b = _ , sl a , sl b
rotatel (sr x) (sl y) with rotatel x y
... | _ , a , b = _ , sr a , sl b
rotatel (sr x) (sr y) with rotatel x y
... | _ , a , b = _ , a , sr b
rotater : {X : Set}{lls rls ls ms rs : List X} -> lls <[ ls ]> rls -> ls <[ ms ]> rs ->
Sg (List X) \ ns -> (lls <[ ms ]> ns) * (rls <[ ns ]> rs)
rotater x y with rotatel (mirror y) (mirror x)
... | _ , a , b = _ , mirror b , mirror a
llswap : {X : Set}{ls ms lrs rrs : List X} ->
(Sg (List X) \ rs -> (ls <[ ms ]> rs) * (lrs <[ rs ]> rrs)) ->
Sg (List X) \ ns -> (lrs <[ ms ]> ns) * (ls <[ ns ]> rrs)
llswap (_ , x , y) with rotatel x y
... | _ , a , b = rotater (mirror a) b
reflP : {X : Set}(xs : List X) -> xs ~ xs
reflP [] = []
reflP (x ,- xs) = sl (srs xs) ,- reflP xs
insP : forall {X : Set}{x : X}{xs xs' ys ys'} -> (x ,- []) <[ xs' ]> xs -> (x ,- []) <[ ys' ]> ys
-> xs ~ ys -> xs' ~ ys'
insP (sl i) j p with isSRS i
insP (sl .(srs _)) j p | mkSRS = j ,- p
insP (sr i) j (k ,- p) =
let _ , k' , j' = llswap (_ , j , k)
in k' ,- insP i j' p
l2r : forall {X : Set}{x : X}{xs xs' ys'}(i : (x ,- []) <[ xs' ]> xs)(p' : xs' ~ ys') ->
Sg (List X) \ ys -> Sg ((x ,- []) <[ ys' ]> ys) \ j -> xs ~ ys
l2r (sl i) (j ,- p) with isSRS i
l2r (sl .(srs _)) (j ,- p) | mkSRS = _ , j , p
l2r (sr i) (k' ,- p') with l2r i p'
... | _ , j' , p with llswap (_ , k' , j')
... | _ , j , k = _ , j , (k ,- p)
transP : {X : Set}{xs ys zs : List X} -> xs ~ ys -> ys ~ zs -> xs ~ zs
transP [] [] = []
transP (i ,- p) q' with l2r i q'
... | _ , j , q = j ,- transP p q
symP : {X : Set}{xs ys : List X} -> xs ~ ys -> ys ~ xs
symP [] = []
symP (i ,- p) = insP i (sl (srs _)) (symP p)
_+L[] : {X : Set}(xs : List X) -> (xs +L []) == xs
[] +L[] = refl []
(x ,- xs) +L[] = refl (x ,-_) =$= (xs +L[])
assoc : {X : Set}(xs ys zs : List X) -> ((xs +L ys) +L zs) == (xs +L ys +L zs)
assoc [] ys zs = refl (ys +L zs)
assoc (x ,- xs) ys zs = refl (x ,-_) =$= assoc xs ys zs
insS : {X : Set}(xs : List X)(y : X)(zs : List X) -> (y ,- []) <[ (xs +L y ,- zs) ]> (xs +L zs)
insS [] y zs = sl (srs zs)
insS (x ,- xs) y zs = sr (insS xs y zs)
swapP : {X : Set}(xs ys : List X) -> (xs +L ys) ~ (ys +L xs)
swapP [] ys rewrite ys +L[] = reflP ys
swapP (x ,- xs) ys = insS ys x xs ,- swapP xs ys
catS : forall {X}{as abs bs cs cds ds : List X} ->
as <[ abs ]> bs -> cs <[ cds ]> ds ->
(as +L cs) <[ (abs +L cds) ]> (bs +L ds)
catS sz y = y
catS (sl x) y = sl (catS x y)
catS (sr x) y = sr (catS x y)
catP : forall {X : Set}{as bs cs ds : List X} -> as ~ cs -> bs ~ ds -> (as +L bs) ~ (cs +L ds)
catP [] q = q
catP (x ,- p) q = catS x (srs _) ,- catP p q
splimap : forall {X Y}(f : X -> Y){xs xys ys} -> xs <[ xys ]> ys ->
list f xs <[ list f xys ]> list f ys
splimap f sz = sz
splimap f (sl s) = sl (splimap f s)
splimap f (sr s) = sr (splimap f s)
permap : forall {X Y}(f : X -> Y){xs xs' : List X} -> xs ~ xs' -> list f xs ~ list f xs'
permap f [] = []
permap f (x ,- p) = splimap f x ,- permap f p
cartNil : forall {I}(is : List I){J} -> cart {J = J} is [] == []
cartNil [] = refl []
cartNil (i ,- is) = cartNil is
cartCons : forall {I J}(is : List I)(j : J)(js : List J) ->
cart is (j ,- js) ~ (list (_, j) is +L cart is js)
cartCons [] j js = []
cartCons (i ,- is) j js with catP (swapP (list (i ,_) js) (list (_, j) is)) (reflP (cart is js))
... | z rewrite assoc (list (i ,_) js) (list (_, j) is) (cart is js)
| assoc (list (_, j) is) (list (i ,_) js) (cart is js)
=
(sl (srs (list (_, j) is +L cart (i ,- is) js))) ,-
transP (catP (reflP (list (i ,_) js)) (cartCons is j js))
z
cartLemma : forall {I J}(is : List I)(js : List J) ->
cart is js ~ list swap (cart js is)
cartLemma {I}{J} [] js rewrite cartNil js {I} = []
cartLemma {I}{J} (i ,- is) js with catP (reflP (list (i ,_) js)) (cartLemma is js)
... | z rewrite sym (listlist swap (_, i) (i ,_) (\ j -> refl (i , j)) js)
| catNatural swap (list (_, i) js) (cart js is)
= transP
z
(symP (permap (\ ji -> snd ji , fst ji) (cartCons js i is)))
record _|>_ (I O : Set) : Set1 where
field
Cuts : O -> Set
inners : {o : O} -> Cuts o -> List I
NatCut : Nat |> Nat
NatCut = record
{ Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn
; inners = \ { (m , n , _) -> m ,- n ,- [] }
}
module TENSOR where
open _|>_
_><_ : forall {I J} -> (I |> I) -> (J |> J) -> (I * J) |> (I * J)
Cuts (C >< D) (i , j) = Cuts C i + Cuts D j
inners (C >< D) {i , j} (inl c) = list (_, j) (inners C c)
inners (C >< D) {i , j} (inr d) = list (i ,_) (inners D d)
open TENSOR
record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where
constructor _8><_
open _|>_ C
field
cut : Cuts o
pieces : All P (inners cut)
infixr 3 _8><_
open Cutting public
module INTERIOR {I}(C : I |> I) where
open _|>_ C
data Interior (P : I -> Set)(i : I) : Set where
tile : P i -> Interior P i
<_> : Cutting C (Interior P) i -> Interior P i
ifold : forall {P Q} ->
[ P -:> Q ] ->
[ Cutting C Q -:> Q ] ->
[ Interior P -:> Q ]
ifolds : forall {P Q} ->
[ P -:> Q ] ->
[ Cutting C Q -:> Q ] ->
[ All (Interior P) -:> All Q ]
ifold pq cq i (tile p) = pq i p
ifold pq cq i < c 8>< ps > = cq i (c 8>< ifolds pq cq _ ps)
ifolds pq cq [] <> = <>
ifolds pq cq (i ,- is) (x , xs) = ifold pq cq i x , ifolds pq cq is xs
extend : forall {P Q} ->
[ P -:> Interior Q ] ->
[ Interior P -:> Interior Q ]
extend k = ifold k (\ i x -> < x >)
SubCut : (i : I)(c : Cuts i) -> Set
SubCut i c = All (\ i -> One + Cuts i) (inners c)
subCollect : (is : List I) -> All (\ i -> One + Cuts i) is -> List I
subCollect is ds = collect is (all (\ i -> (\ _ -> i ,- []) <+> inners) is ds)
subPieces : (i : I)(c : Cuts i) -> SubCut i c -> List I
subPieces i c cs = subCollect (inners c) cs
Recutter : Set
Recutter = (i : I)(c c' : Cuts i) ->
Sg (SubCut i c) \ d -> Sg (SubCut i c') \ d' ->
subPieces i c d ~ subPieces i c' d'
CutKit : (I -> Set) -> Set
CutKit P = (i : I)(c : Cuts i) -> P i -> All P (inners c)
module CHOP {P}(pc : CutKit P)(rec : Recutter) where
glue : (is : List I) -> (d : All (\ i -> One + Cuts i) is) ->
All (Interior P) (subCollect is d) -> All (Interior P) is
glue [] <> <> = <>
glue (i ,- is) (inl <> , ds) (p , ps) = p , glue is ds ps
glue (i ,- is) (inr c , ds) ps with isRiffle (slrs (inners c) (subCollect is ds)) ps
glue (i ,- is) (inr c , ds) .(riffle (slrs (inners c) (subCollect is ds)) lp rp)
| mkRiffle lp rp = < c 8>< lp > , glue is ds rp
chop : (i : I)(c c' : Cuts i)(ps : All (Interior P) (inners c)) -> All (Interior P) (inners c')
chops : (is : List I) -> All (Interior P) is -> (d : All (\ i -> One + Cuts i) is) ->
All (Interior P) (subCollect is d)
chop i c c' ps with rec i c c'
... | d , d' , m with chops (inners c) ps d
... | qs = glue (inners c') d' (permute m qs)
chops [] <> <> = <>
chops (i ,- is) (p , ps) (inl <> , ds) = p , chops is ps ds
chops (i ,- is) (tile p , ps) (inr c' , ds) =
cat (inners c') (subCollect is ds) (all (\ _ -> tile) _ (pc i c' p)) (chops is ps ds)
chops (i ,- is) (< c 8>< ps' > , ps) (inr c' , ds) = cat (inners c') (subCollect is ds)
(chop i c c' ps')
(chops is ps ds)
mash : forall {Q} -> [ Interior (Interior P -:> Interior Q) -:> Interior P -:> Interior Q ]
mash {Q} = ifold (\ i f -> f) help where
help : [ Cutting C (Interior P -:> Interior Q) -:> Interior P -:> Interior Q ]
help i (c 8>< fs) (tile p) with pc i c p
... | ps = < c 8>< allAp (inners c) fs (all (\ _ -> tile) _ ps) >
help i (c 8>< fs) < c' 8>< ps > = < c 8>< allAp (inners c) fs (chop i c' c ps) >
mask : forall {O Q} -> [ O -:> Interior P -:> Interior Q ]
-> [ Interior O -:> Interior P -:> Interior Q ]
mask {O}{Q} f = ifold f help where
help : [ Cutting C (Interior P -:> Interior Q) -:> Interior P -:> Interior Q ]
help i (c 8>< fs) (tile p) with pc i c p
... | ps = < c 8>< allAp (inners c) fs (all (\ _ -> tile) _ ps) >
help i (c 8>< fs) < c' 8>< ps > = < c 8>< allAp (inners c) fs (chop i c' c ps) >
open CHOP public
data Holey {I : Set}(P : I -> Set)(i : I) : Set where
hole : Holey P i
fill : P i -> Holey P i
cutHole : forall {P : I -> Set} -> CutKit P -> CutKit (Holey P)
cutHole f i c hole = allPu (\ i -> hole) (inners c)
cutHole f i c (fill p) = all (\ _ -> fill) (inners c) (f i c p)
superimpose : forall {P} -> CutKit P -> Recutter ->
[ Interior (Holey P) -:> Interior (Holey P) -:> Interior (Holey P) ]
superimpose pc rec = mask (cutHole pc) rec \
{ i hole y -> y
; i (fill x) y -> tile (fill x)
}
open INTERIOR
module SUBCOLLECTLEMMA where
open _|>_
subCollectLemma : forall {I J}(C : I |> I)(D : J |> J)
(f : I -> J)(g : (i : I) -> Cuts C i -> Cuts D (f i)) ->
(q : (i : I)(c : Cuts C i) -> inners D (g i c) == list f (inners C c)) ->
(is : List I)(ps : All (\ i -> One + Cuts C i) is) ->
subCollect D (list f is) (allRe f is (all (\ i -> id +map g i) is ps)) ==
list f (subCollect C is ps)
subCollectLemma C D f g q [] <> = refl []
subCollectLemma C D f g q (i ,- is) (inl <> , ps) =
refl (f i ,-_) =$= subCollectLemma C D f g q is ps
subCollectLemma C D f g q (i ,- is) (inr c , ps) =
(inners D (g i c) +L
subCollect D (list f is) (allRe f is (allAp is (allPu (\ i -> id +map g i) is) ps)))
=[ refl _+L_ =$= q i c =$= subCollectLemma C D f g q is ps >=
(list f (inners C c) +L list f (subCollect C is ps))
=[ catNatural f (inners C c) (subCollect C is ps) >=
list f (inners C c +L subCollect C is ps)
[QED]
open SUBCOLLECTLEMMA
data CutCompare (x x' y y' n : Nat) : Set where
cutLt : (d : Nat) -> (x +N suc d) == y -> (suc d +N y') == x' ->
CutCompare x x' y y' n
cutEq : x == y -> x' == y' ->
CutCompare x x' y y' n
cutGt : (d : Nat) -> (y +N suc d) == x -> (suc d +N x') == y' ->
CutCompare x x' y y' n
sucInj : {x y : Nat} -> suc x == suc y -> x == y
sucInj (refl (suc _)) = refl _
cutCompare : (x x' y y' n : Nat) -> (x +N x') == n -> (y +N y') == n ->
CutCompare x x' y y' n
cutCompare zero .n zero .n n (refl _) (refl _)
= cutEq (refl _) (refl _)
cutCompare zero .(suc (y +N y')) (suc y) y' .(suc (y +N y')) (refl _) (refl _)
= cutLt y (refl _) (refl _)
cutCompare (suc x) x' zero .(suc (x +N x')) .(suc (x +N x')) (refl _) (refl _)
= cutGt x (refl _) (refl _)
cutCompare (suc x) x' (suc y) y' zero () ()
cutCompare (suc x) x' (suc y) y' (suc n) xq yq
with cutCompare x x' y y' n (sucInj xq) (sucInj yq)
cutCompare (suc x) x' (suc .(x +N suc d)) y' (suc n) xq yq | cutLt d (refl _) bq
= cutLt d (refl _) bq
cutCompare (suc x) x' (suc .x) y' (suc n) xq yq | cutEq (refl _) bq = cutEq (refl _) bq
cutCompare (suc .(y +N suc d)) x' (suc y) y' (suc n) xq yq | cutGt d (refl _) bq = cutGt d (refl _) bq
NatRecut : Recutter NatCut
NatRecut n (a , b , qab) (c , d , qcd) with cutCompare a b c d n qab qcd
NatRecut n (a , b , qab) (c , d , qcd) | cutLt e q0 q1 =
(inl <> , inr (suc e , d , q1) , <>) , (inr (a , suc e , q0) , inl <> , <>) , reflP _
NatRecut n (a , b , qab) (.a , .b , qcd) | cutEq (refl .a) (refl .b) =
(inl <> , inl <> , <>) , (inl <> , inl <> , <>) , reflP _
NatRecut n (a , b , qab) (c , d , qcd) | cutGt e q0 q1 =
(inr (c , suc e , q0) , inl <> , <>) , (inl <> , inr (suc e , b , q1) , <>) , reflP _
module TENSORRECUT {I J}(C : I |> I)(D : J |> J)(rec : Recutter C)(red : Recutter D) where
open _|>_
cartLeftLemma : (is : List I)(j : J)(d : Cuts D j) -> subCollect (C >< D) (list (_, j) is)
(allRe (_, j) is
(allPu (\ _ -> inr (inr d)) is)) == cart is (inners D d)
cartLeftLemma [] j d = refl []
cartLeftLemma (i ,- is) j d = refl (list (i ,_) (inners D d) +L_) =$= cartLeftLemma is j d
cartRightLemma : (i : I)(c : Cuts C i)(js : List J) ->
subCollect (C >< D) (list (i ,_) js)
(allRe (i ,_) js (allPu (\ _ -> inr (inl c)) js)) ==
list swap (cart js (inners C c))
cartRightLemma i c [] = refl []
cartRightLemma i c (j ,- js)
rewrite sym (catNatural swap (list (j ,_) (inners C c)) (cart js (inners C c)))
| listlist swap (j ,_) (_, j) (\ i -> refl (i , j)) (inners C c)
= refl (list (_, j) (inners C c) +L_) =$= cartRightLemma i c js
TensorRecut : Recutter (C >< D)
TensorRecut (i , j) (inl c) (inl c') with rec i c c'
... | x , y , m
= allRe (_, j) (inners C c) (all (\ _ -> id +map inl) _ x)
, allRe (_, j) (inners C c') (all (\ _ -> id +map inl) _ y)
, lemma where
lemma : subCollect (C >< D) (list (_, j) (inners C c))
(allRe (_, j) (inners C c) (all (\ _ -> id +map inl) (inners C c) x))
~
subCollect (C >< D) (list (_, j) (inners C c'))
(allRe (_, j) (inners C c') (all (\ _ -> id +map inl) (inners C c') y))
lemma rewrite subCollectLemma C (C >< D) (_, j) (\ _ -> inl) (\ i c -> refl _)
(inners C c) x
| subCollectLemma C (C >< D) (_, j) (\ _ -> inl) (\ i c -> refl _)
(inners C c') y
= permap (_, j) m
fst (TensorRecut (i , j) (inl c) (inr d)) =
allRe (_, j) (inners C c) (allPu (\ i -> inr (inr d)) (inners C c))
fst (snd (TensorRecut (i , j) (inl c) (inr d))) =
allRe (i ,_) (inners D d) (allPu (\ i -> inr (inl c)) (inners D d))
snd (snd (TensorRecut (i , j) (inl c) (inr d)))
rewrite cartLeftLemma (inners C c) j d
| cartRightLemma i c (inners D d)
= cartLemma (inners C c) (inners D d)
fst (TensorRecut (i , j) (inr d) (inl c)) =
allRe (i ,_) (inners D d) (allPu (\ i -> inr (inl c)) (inners D d))
fst (snd (TensorRecut (i , j) (inr d) (inl c))) =
allRe (_, j) (inners C c) (allPu (\ i -> inr (inr d)) (inners C c))
snd (snd (TensorRecut (i , j) (inr d) (inl c)))
rewrite cartLeftLemma (inners C c) j d
| cartRightLemma i c (inners D d)
= symP (cartLemma (inners C c) (inners D d))
TensorRecut (i , j) (inr d) (inr d') with red j d d'
... | x , y , m
= allRe (i ,_) (inners D d) (all (\ _ -> id +map inr) _ x)
, allRe (i ,_) (inners D d') (all (\ _ -> id +map inr) _ y)
, lemma where
lemma : subCollect (C >< D) (list (i ,_) (inners D d))
(allRe (i ,_) (inners D d) (all (\ _ -> id +map inr) (inners D d) x))
~
subCollect (C >< D) (list (i ,_) (inners D d'))
(allRe (i ,_) (inners D d') (all (\ _ -> id +map inr) (inners D d') y))
lemma rewrite subCollectLemma D (C >< D) (i ,_) (\ _ -> inr) (\ i d -> refl _)
(inners D d) x
| subCollectLemma D (C >< D) (i ,_) (\ _ -> inr) (\ i d -> refl _)
(inners D d') y
= permap (i ,_) m
open TENSORRECUT public
RectangleRecut : Recutter (NatCut >< NatCut)
RectangleRecut = TensorRecut NatCut NatCut NatRecut NatRecut
|
{
"alphanum_fraction": 0.4755795522,
"avg_line_length": 39.6620825147,
"ext": "agda",
"hexsha": "253350f2a5bbef8b917e979559b2e6c04eb2c9c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pigworker/InteriorDesign",
"max_forks_repo_path": "Jumble.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pigworker/InteriorDesign",
"max_issues_repo_path": "Jumble.agda",
"max_line_length": 105,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pigworker/InteriorDesign",
"max_stars_repo_path": "Jumble.agda",
"max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z",
"num_tokens": 8072,
"size": 20188
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Strict2Group.Explicit.Path where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Group.Base
open import Cubical.Data.Strict2Group.Explicit.Base
open import Cubical.Data.Strict2Group.Explicit.Notation
S2G : (ℓ : Level) → Type (ℓ-suc ℓ)
S2G ℓ = Strict2GroupExp ℓ
S2GΣBase : (ℓ : Level) → Type (ℓ-suc ℓ)
S2GΣBase ℓ =
Σ[ C₀ ∈ Group ℓ ]
Σ[ C₁ ∈ Group ℓ ]
Σ[ s ∈ morph C₁ C₀ ]
Σ[ t ∈ morph C₁ C₀ ]
Σ[ i ∈ morph C₀ C₁ ]
((g f : Group.type C₁) → s .fst g ≡ t .fst f → Group.type C₁) -- ∘
S2GΣRest : {ℓ : Level} → (S2GΣBase ℓ) → Type ℓ
S2GΣRest (C₀ , C₁ , s , t , i , ∘)
= Σ[ si ∈ ((x : TC₀) → src (id x) ≡ x) ]
Σ[ ti ∈ ((x : TC₀) → tar (id x) ≡ x) ]
Σ[ s∘ ∈ ((g f : TC₁) → (coh : CohCond g f) → src (∘ g f coh) ≡ src f) ]
Σ[ t∘ ∈ ((g f : TC₁) → (coh : CohCond g f) → tar (∘ g f coh) ≡ tar g) ]
Σ[ isMorph∘ ∈ ({g f g' f' : TC₁} (c : CohCond g f) (c' : CohCond g' f') → ∘ (g ∙₁ g') (f ∙₁ f') (∙c c c') ≡ (∘ g f c) ∙₁ (∘ g' f' c')) ]
Σ[ assoc∘ ∈ ({h g f : TC₁} → (c1 : CohCond g f) → (c2 : CohCond h g) → ∘ (∘ h g c2) f ((s∘ h g c2) ∙ c1) ≡ ∘ h (∘ g f c1) (c2 ∙ (sym (t∘ g f c1)))) ]
Σ[ lUnit∘ ∈ ((f : TC₁) → ∘ (id (tar f)) f (si (tar f)) ≡ f) ]
((f : TC₁) → ∘ f (id (src f)) (sym (ti (src f))) ≡ f) -- rUnit∘
where open S2GBaseNotation C₀ C₁ s t i ∘
S2GΣ : (ℓ : Level) → Type (ℓ-suc ℓ)
S2GΣ ℓ = Σ[ X ∈ S2GΣBase ℓ ] (S2GΣRest X)
S2GΣ→S2G : {ℓ : Level} → S2GΣ ℓ → S2G ℓ
S2GΣ→S2G ((C₀ , C₁ , s , t , i , ∘) , (si , ti , s∘ , t∘ , isMorph∘ , assoc∘ , lUnit∘ , rUnit∘)) = strict2groupexp C₀ C₁ s t i ∘ si ti s∘ t∘ isMorph∘ assoc∘ lUnit∘ rUnit∘
-- Σ-type of data needed to define the type of PathPs between the base data for an S2G
S2GΣBase≡ : {ℓ : Level} → (SB SB' : S2GΣBase ℓ) → Type (ℓ-suc ℓ)
S2GΣBase≡
(C₀ , C₁ , s , t , i , ∘ )
(C₀' , C₁' , s' , t' , i' , ∘')
= Σ[ p-C₀ ∈ (C₀ ≡ C₀') ]
Σ[ p-C₁ ∈ (C₁ ≡ C₁') ]
Σ[ p-s ∈ (PathP (λ j → morph (p-C₁ j) (p-C₀ j)) s s') ]
Σ[ p-t ∈ (PathP (λ j → morph (p-C₁ j) (p-C₀ j)) t t') ]
Σ[ p-i ∈ (PathP (λ j → morph (p-C₀ j) (p-C₁ j)) i i') ]
(PathP (λ j → (g f : Group.type (p-C₁ j)) → (fst (p-s j)) g ≡ (fst (p-t j)) f → Group.type (p-C₁ j)) ∘ ∘') -- p∘
S2GΣRest≡ : {ℓ : Level} {SB SB' : S2GΣBase ℓ} (SR : S2GΣRest {ℓ = ℓ} SB) (SR' : S2GΣRest {ℓ = ℓ} SB') (pSB : S2GΣBase≡ {ℓ = ℓ} SB SB') → Type ℓ
S2GΣRest≡ {ℓ}
{C₀ , C₁ , s , t , i , ∘}
{C₀' , C₁' , s' , t' , i' , ∘'}
(si , ti , s∘ , t∘ , isMorph∘ , assoc∘ , lUnit∘ , rUnit∘)
(si' , ti' , s∘' , t∘' , isMorph∘' , assoc∘' , lUnit∘' , rUnit∘')
(p-C₀ , p-C₁ , p-s , p-t , p-i , p∘)
= Σ[ p-si ∈ (PathP (λ j → (x : Group.type (p-C₀ j)) → ((p-s j) .fst) (((p-i j) .fst) x) ≡ x) si si') ]
Σ[ p-ti ∈ (PathP (λ j → (x : Group.type (p-C₀ j)) → ((p-t j) .fst) (((p-i j) .fst) x) ≡ x) ti ti') ]
Σ[ p-s∘ ∈ (PathP (λ j → (g f : Group.type (p-C₁ j)) → (coh : (p-s j) .fst g ≡ (p-t j) .fst f) → (p-s j) .fst ((p∘ j) g f coh) ≡ (p-s j) .fst f) s∘ s∘') ]
Σ[ p-t∘ ∈ (PathP (λ j → (g f : Group.type (p-C₁ j)) → (coh : (p-s j) .fst g ≡ (p-t j) .fst f) → (p-t j) .fst ((p∘ j) g f coh) ≡ (p-t j) .fst g) t∘ t∘') ]
Σ[ p-isMorph∘ ∈ PathP
(λ j → {g f g' f' : TC₁j j}
(coh1 : CohCondj j g f)
(coh2 : CohCondj j g' f')
→ (p∘ j) (∙₁j j g g') (∙₁j j f f') (∙cj j coh1 coh2) ≡ ∙₁j j (p∘ j g f coh1) (p∘ j g' f' coh2))
isMorph∘ isMorph∘' ]
Σ[ p-assococ∘ ∈ (PathP
(λ j → {h g f : TC₁j j}
(coh1 : CohCondj j g f)
(coh2 : CohCondj j h g)
→ (p∘ j (p∘ j h g coh2) f (p-s∘ j h g coh2 ∙ coh1)) ≡ (p∘ j h (p∘ j g f coh1) (coh2 ∙ (sym (p-t∘ j g f coh1)))))
assoc∘ assoc∘') ]
Σ[ p-lUnit∘ ∈ (PathP
(λ j → (f : TC₁j j)
→ p∘ j (idj j (tarj j f)) f (p-si j (tarj j f)) ≡ f)
lUnit∘ lUnit∘') ]
(PathP (λ j → (f : TC₁j j)
→ p∘ j f (idj j (srcj j f)) (sym (p-ti j (srcj j f))) ≡ f)
rUnit∘ rUnit∘') -- p-rUnit∘
where
TC₁j = λ (j : I) → Group.type (p-C₁ j)
TC₀j = λ (j : I) → Group.type (p-C₀ j)
CohCondj : (j : I) (g f : TC₁j j) → Type ℓ
CohCondj j g f = (p-s j) .fst g ≡ (p-t j) .fst f
∙₁j = λ (j : I) → isGroup.comp (Group.groupStruc (p-C₁ j))
∙₀j = λ (j : I) → isGroup.comp (Group.groupStruc (p-C₀ j))
idj = λ (j : I) → fst (p-i j)
srcj = λ (j : I) → fst (p-s j)
tarj = λ (j : I) → fst (p-t j)
src∙₁j = λ (j : I) → snd (p-s j)
tar∙₁j = λ (j : I) → snd (p-t j)
∙cj : (j : I) → {g f g' f' : TC₁j j} → (c1 : CohCondj j g f) → (c2 : CohCondj j g' f') → (p-s j) .fst (∙₁j j g g') ≡ (p-t j) .fst (∙₁j j f f')
∙cj j {g} {f} {g'} {f'} c1 c2 =
src∙₁j j g g' ∙
cong (λ z → ∙₀j j z (srcj j g')) c1 ∙
cong (λ z → ∙₀j j (tarj j f) z) c2 ∙
sym (tar∙₁j j f f')
S2GR≡ : {ℓ : Level}
{SB SB' : S2GΣBase ℓ} {SR : S2GΣRest {ℓ = ℓ} SB} {SR' : S2GΣRest {ℓ = ℓ} SB'}
{pSB : S2GΣBase≡ {ℓ = ℓ} SB SB'} (pSR : S2GΣRest≡ {ℓ = ℓ} {SB = SB} {SB' = SB'} SR SR' pSB)
→ S2GΣ→S2G (SB , SR) ≡ S2GΣ→S2G (SB' , SR')
S2GR≡ {ℓ}
{C₀ , C₁ , s , t , i , ∘} -- SB
{C₀' , C₁' , s' , t' , i' , ∘'} --SB'
{si , ti , s∘ , t∘} -- SR
{si' , ti' , s∘' , t∘'} -- SR'
{p-C₀ , p-C₁ , p-s , p-t , p-i , p∘} -- pSB
(p-si , p-ti , p-s∘ , p-t∘ , p-isMorph∘ , p-assococ∘ , p-lUnit∘ , p-rUnit∘) j
= strict2groupexp (p-C₀ j) (p-C₁ j) (p-s j) (p-t j) (p-i j) (p∘ j) (p-si j) (p-ti j) (p-s∘ j) (p-t∘ j) (p-isMorph∘ j) (p-assococ∘ j) (p-lUnit∘ j) (p-rUnit∘ j)
|
{
"alphanum_fraction": 0.4535201019,
"avg_line_length": 46.1932773109,
"ext": "agda",
"hexsha": "0cd32fe94418914e0ef50e70dd44d1126d36bcf2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Data/Strict2Group/Explicit/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Data/Strict2Group/Explicit/Path.agda",
"max_line_length": 170,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Data/Strict2Group/Explicit/Path.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2905,
"size": 5497
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
-- Idempotents and Split Idempotents
module Categories.Morphism.Idempotent {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Morphism 𝒞
open import Categories.Morphism.Reasoning 𝒞
open Category 𝒞
open HomReasoning
record Idempotent (A : Obj) : Set (ℓ ⊔ e) where
field
idem : A ⇒ A
idempotent : idem ∘ idem ≈ idem
record IsSplitIdempotent {A : Obj} (i : A ⇒ A) : Set (o ⊔ ℓ ⊔ e) where
field
{obj} : Obj
retract : A ⇒ obj
section : obj ⇒ A
retracts : retract ∘ section ≈ id
splits : section ∘ retract ≈ i
retract-absorb : retract ∘ i ≈ retract
retract-absorb = begin
retract ∘ i ≈˘⟨ refl⟩∘⟨ splits ⟩
retract ∘ section ∘ retract ≈⟨ cancelˡ retracts ⟩
retract ∎
section-absorb : i ∘ section ≈ section
section-absorb = begin
i ∘ section ≈˘⟨ splits ⟩∘⟨refl ⟩
(section ∘ retract) ∘ section ≈⟨ cancelʳ retracts ⟩
section ∎
idempotent : i ∘ i ≈ i
idempotent = begin
i ∘ i ≈˘⟨ splits ⟩∘⟨ splits ⟩
(section ∘ retract) ∘ (section ∘ retract) ≈⟨ cancelInner retracts ⟩
section ∘ retract ≈⟨ splits ⟩
i ∎
record SplitIdempotent (A : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
idem : A ⇒ A
isSplitIdempotent : IsSplitIdempotent idem
open IsSplitIdempotent isSplitIdempotent public
-- All split idempotents are idempotent
SplitIdempotent⇒Idempotent : ∀ {A} → SplitIdempotent A → Idempotent A
SplitIdempotent⇒Idempotent Split = record { Split }
where
module Split = SplitIdempotent Split
module _ {A} {f : A ⇒ A} (S T : IsSplitIdempotent f) where
private
module S = IsSplitIdempotent S
module T = IsSplitIdempotent T
split-idempotent-unique : S.obj ≅ T.obj
split-idempotent-unique = record
{ from = T.retract ∘ S.section
; to = S.retract ∘ T.section
; iso = record
{ isoˡ = begin
(S.retract ∘ T.section) ∘ (T.retract ∘ S.section) ≈⟨ center T.splits ⟩
S.retract ∘ f ∘ S.section ≈⟨ pullˡ S.retract-absorb ⟩
S.retract ∘ S.section ≈⟨ S.retracts ⟩
id ∎
; isoʳ = begin
(T.retract ∘ S.section) ∘ (S.retract ∘ T.section) ≈⟨ center S.splits ⟩
T.retract ∘ f ∘ T.section ≈⟨ pullˡ T.retract-absorb ⟩
T.retract ∘ T.section ≈⟨ T.retracts ⟩
id ∎
}
}
|
{
"alphanum_fraction": 0.5409474844,
"avg_line_length": 32.8072289157,
"ext": "agda",
"hexsha": "f550cb7bfb2d0d8a79a6ec81e55d59606c782507",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Idempotent.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Idempotent.agda",
"max_line_length": 85,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Idempotent.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 873,
"size": 2723
}
|
-- {-# OPTIONS --verbose tc.proj.like:100 #-}
-- Apparently, there can be projection like functions working on arguments of type Axiom.
module Issue558c where
data ⊤ : Set where
tt : ⊤
data V : Set where
aV : ⊤ → V
postulate D : ⊤ → Set
zero : D tt
suc : ∀ {t} → D t → V
test : {{v : V}} → ⊤
test {{v}} = tt
module test {t : ⊤} {d : D t} where
inst : V
inst = aV tt
someT : ⊤
someT = test
|
{
"alphanum_fraction": 0.5490654206,
"avg_line_length": 17.12,
"ext": "agda",
"hexsha": "82ff271d85ec0fdb10a1393327b552e1f491bdb6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue558c.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue558c.agda",
"max_line_length": 89,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue558c.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 151,
"size": 428
}
|
module _ where
module M where
data D : Set where
c : D
pattern c′ = c
open M hiding (c′)
x : D
x = c′
|
{
"alphanum_fraction": 0.5565217391,
"avg_line_length": 8.2142857143,
"ext": "agda",
"hexsha": "b3ec5614e649d86ccda3081785e4465700604a3c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4121-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4121-2.agda",
"max_line_length": 20,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4121-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 115
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sums of binary relations
------------------------------------------------------------------------
module Relation.Binary.Sum where
open import Data.Sum as Sum
open import Data.Product
open import Data.Unit using (⊤)
open import Data.Empty
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
open import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂} where
----------------------------------------------------------------------
-- Sums of relations
infixr 1 _⊎-Rel_ _⊎-<_
-- Generalised sum.
data ⊎ʳ {ℓ₁ ℓ₂} (P : Set) (_∼₁_ : Rel A₁ ℓ₁) (_∼₂_ : Rel A₂ ℓ₂) :
A₁ ⊎ A₂ → A₁ ⊎ A₂ → Set (a₁ ⊔ a₂ ⊔ ℓ₁ ⊔ ℓ₂) where
₁∼₂ : ∀ {x y} (p : P) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₂ y)
₁∼₁ : ∀ {x y} (x∼₁y : x ∼₁ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₁ x) (inj₁ y)
₂∼₂ : ∀ {x y} (x∼₂y : x ∼₂ y) → ⊎ʳ P _∼₁_ _∼₂_ (inj₂ x) (inj₂ y)
-- Pointwise sum.
_⊎-Rel_ : ∀ {ℓ₁ ℓ₂} → Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ ⊎ A₂) _
_⊎-Rel_ = ⊎ʳ ⊥
-- All things to the left are "smaller than" all things to the
-- right.
_⊎-<_ : ∀ {ℓ₁ ℓ₂} → Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ ⊎ A₂) _
_⊎-<_ = ⊎ʳ ⊤
----------------------------------------------------------------------
-- Helpers
private
₁≁₂ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
∀ {x y} → ¬ (inj₁ x ⟨ ∼₁ ⊎-Rel ∼₂ ⟩ inj₂ y)
₁≁₂ (₁∼₂ ())
drop-inj₁ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
∀ {P x y} → inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₁ y → ∼₁ x y
drop-inj₁ (₁∼₁ x∼y) = x∼y
drop-inj₂ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
∀ {P x y} → inj₂ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₂ y → ∼₂ x y
drop-inj₂ (₂∼₂ x∼y) = x∼y
----------------------------------------------------------------------
-- Some properties which are preserved by the relation formers above
_⊎-reflexive_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
≈₁ ⇒ ∼₁ → ≈₂ ⇒ ∼₂ →
∀ {P} → (≈₁ ⊎-Rel ≈₂) ⇒ (⊎ʳ P ∼₁ ∼₂)
refl₁ ⊎-reflexive refl₂ = refl
where
refl : (_ ⊎-Rel _) ⇒ (⊎ʳ _ _ _)
refl (₁∼₁ x₁≈y₁) = ₁∼₁ (refl₁ x₁≈y₁)
refl (₂∼₂ x₂≈y₂) = ₂∼₂ (refl₂ x₂≈y₂)
refl (₁∼₂ ())
_⊎-refl_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Reflexive ∼₁ → Reflexive ∼₂ → Reflexive (∼₁ ⊎-Rel ∼₂)
refl₁ ⊎-refl refl₂ = refl
where
refl : Reflexive (_ ⊎-Rel _)
refl {x = inj₁ _} = ₁∼₁ refl₁
refl {x = inj₂ _} = ₂∼₂ refl₂
_⊎-irreflexive_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
Irreflexive ≈₁ <₁ → Irreflexive ≈₂ <₂ →
∀ {P} → Irreflexive (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂)
irrefl₁ ⊎-irreflexive irrefl₂ = irrefl
where
irrefl : Irreflexive (_ ⊎-Rel _) (⊎ʳ _ _ _)
irrefl (₁∼₁ x₁≈y₁) (₁∼₁ x₁<y₁) = irrefl₁ x₁≈y₁ x₁<y₁
irrefl (₂∼₂ x₂≈y₂) (₂∼₂ x₂<y₂) = irrefl₂ x₂≈y₂ x₂<y₂
irrefl (₁∼₂ ()) _
_⊎-symmetric_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Symmetric ∼₁ → Symmetric ∼₂ → Symmetric (∼₁ ⊎-Rel ∼₂)
sym₁ ⊎-symmetric sym₂ = sym
where
sym : Symmetric (_ ⊎-Rel _)
sym (₁∼₁ x₁∼y₁) = ₁∼₁ (sym₁ x₁∼y₁)
sym (₂∼₂ x₂∼y₂) = ₂∼₂ (sym₂ x₂∼y₂)
sym (₁∼₂ ())
_⊎-transitive_ : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Transitive ∼₁ → Transitive ∼₂ →
∀ {P} → Transitive (⊎ʳ P ∼₁ ∼₂)
trans₁ ⊎-transitive trans₂ = trans
where
trans : Transitive (⊎ʳ _ _ _)
trans (₁∼₁ x∼y) (₁∼₁ y∼z) = ₁∼₁ (trans₁ x∼y y∼z)
trans (₂∼₂ x∼y) (₂∼₂ y∼z) = ₂∼₂ (trans₂ x∼y y∼z)
trans (₁∼₂ p) (₂∼₂ _) = ₁∼₂ p
trans (₁∼₁ _) (₁∼₂ p) = ₁∼₂ p
_⊎-antisymmetric_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
Antisymmetric ≈₁ ≤₁ → Antisymmetric ≈₂ ≤₂ →
∀ {P} → Antisymmetric (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂)
antisym₁ ⊎-antisymmetric antisym₂ = antisym
where
antisym : Antisymmetric (_ ⊎-Rel _) (⊎ʳ _ _ _)
antisym (₁∼₁ x≤y) (₁∼₁ y≤x) = ₁∼₁ (antisym₁ x≤y y≤x)
antisym (₂∼₂ x≤y) (₂∼₂ y≤x) = ₂∼₂ (antisym₂ x≤y y≤x)
antisym (₁∼₂ _) ()
_⊎-asymmetric_ : ∀ {ℓ₁ ℓ₂} {<₁ : Rel A₁ ℓ₁} {<₂ : Rel A₂ ℓ₂} →
Asymmetric <₁ → Asymmetric <₂ →
∀ {P} → Asymmetric (⊎ʳ P <₁ <₂)
asym₁ ⊎-asymmetric asym₂ = asym
where
asym : Asymmetric (⊎ʳ _ _ _)
asym (₁∼₁ x<y) (₁∼₁ y<x) = asym₁ x<y y<x
asym (₂∼₂ x<y) (₂∼₂ y<x) = asym₂ x<y y<x
asym (₁∼₂ _) ()
_⊎-≈-respects₂_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
∼₁ Respects₂ ≈₁ → ∼₂ Respects₂ ≈₂ →
∀ {P} → (⊎ʳ P ∼₁ ∼₂) Respects₂ (≈₁ ⊎-Rel ≈₂)
_⊎-≈-respects₂_ {≈₁ = ≈₁} {∼₁ = ∼₁}{≈₂ = ≈₂} {∼₂ = ∼₂}
resp₁ resp₂ {P} =
(λ {_ _ _} → resp¹) ,
(λ {_ _ _} → resp²)
where
resp¹ : ∀ {x} → ((⊎ʳ P ∼₁ ∼₂) x) Respects (≈₁ ⊎-Rel ≈₂)
resp¹ (₁∼₁ y≈y') (₁∼₁ x∼y) = ₁∼₁ (proj₁ resp₁ y≈y' x∼y)
resp¹ (₂∼₂ y≈y') (₂∼₂ x∼y) = ₂∼₂ (proj₁ resp₂ y≈y' x∼y)
resp¹ (₂∼₂ y≈y') (₁∼₂ p) = (₁∼₂ p)
resp¹ (₁∼₂ ()) _
resp² : ∀ {y}
→ (flip (⊎ʳ P ∼₁ ∼₂) y) Respects (≈₁ ⊎-Rel ≈₂)
resp² (₁∼₁ x≈x') (₁∼₁ x∼y) = ₁∼₁ (proj₂ resp₁ x≈x' x∼y)
resp² (₂∼₂ x≈x') (₂∼₂ x∼y) = ₂∼₂ (proj₂ resp₂ x≈x' x∼y)
resp² (₁∼₁ x≈x') (₁∼₂ p) = (₁∼₂ p)
resp² (₁∼₂ ()) _
_⊎-substitutive_ : ∀ {ℓ₁ ℓ₂ ℓ₃} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Substitutive ∼₁ ℓ₃ → Substitutive ∼₂ ℓ₃ →
Substitutive (∼₁ ⊎-Rel ∼₂) ℓ₃
subst₁ ⊎-substitutive subst₂ = subst
where
subst : Substitutive (_ ⊎-Rel _) _
subst P (₁∼₁ x∼y) Px = subst₁ (λ z → P (inj₁ z)) x∼y Px
subst P (₂∼₂ x∼y) Px = subst₂ (λ z → P (inj₂ z)) x∼y Px
subst P (₁∼₂ ()) Px
⊎-decidable : ∀ {ℓ₁ ℓ₂} {∼₁ : Rel A₁ ℓ₁} {∼₂ : Rel A₂ ℓ₂} →
Decidable ∼₁ → Decidable ∼₂ →
∀ {P} → (∀ {x y} → Dec (inj₁ x ⟨ ⊎ʳ P ∼₁ ∼₂ ⟩ inj₂ y)) →
Decidable (⊎ʳ P ∼₁ ∼₂)
⊎-decidable {∼₁ = ∼₁} {∼₂ = ∼₂} dec₁ dec₂ {P} dec₁₂ = dec
where
dec : Decidable (⊎ʳ P ∼₁ ∼₂)
dec (inj₁ x) (inj₁ y) with dec₁ x y
... | yes x∼y = yes (₁∼₁ x∼y)
... | no x≁y = no (x≁y ∘ drop-inj₁)
dec (inj₂ x) (inj₂ y) with dec₂ x y
... | yes x∼y = yes (₂∼₂ x∼y)
... | no x≁y = no (x≁y ∘ drop-inj₂)
dec (inj₁ x) (inj₂ y) = dec₁₂
dec (inj₂ x) (inj₁ y) = no (λ())
_⊎-<-total_ : ∀ {ℓ₁ ℓ₂} {≤₁ : Rel A₁ ℓ₁} {≤₂ : Rel A₂ ℓ₂} →
Total ≤₁ → Total ≤₂ → Total (≤₁ ⊎-< ≤₂)
total₁ ⊎-<-total total₂ = total
where
total : Total (_ ⊎-< _)
total (inj₁ x) (inj₁ y) = Sum.map ₁∼₁ ₁∼₁ $ total₁ x y
total (inj₂ x) (inj₂ y) = Sum.map ₂∼₂ ₂∼₂ $ total₂ x y
total (inj₁ x) (inj₂ y) = inj₁ (₁∼₂ _)
total (inj₂ x) (inj₁ y) = inj₂ (₁∼₂ _)
_⊎-<-trichotomous_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
Trichotomous ≈₁ <₁ → Trichotomous ≈₂ <₂ →
Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
_⊎-<-trichotomous_ {≈₁ = ≈₁} {<₁ = <₁} {≈₂ = ≈₂} {<₂ = <₂}
tri₁ tri₂ = tri
where
tri : Trichotomous (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
tri (inj₁ x) (inj₂ y) = tri< (₁∼₂ _) ₁≁₂ (λ())
tri (inj₂ x) (inj₁ y) = tri> (λ()) (λ()) (₁∼₂ _)
tri (inj₁ x) (inj₁ y) with tri₁ x y
... | tri< x<y x≉y x≯y =
tri< (₁∼₁ x<y) (x≉y ∘ drop-inj₁) (x≯y ∘ drop-inj₁)
... | tri≈ x≮y x≈y x≯y =
tri≈ (x≮y ∘ drop-inj₁) (₁∼₁ x≈y) (x≯y ∘ drop-inj₁)
... | tri> x≮y x≉y x>y =
tri> (x≮y ∘ drop-inj₁) (x≉y ∘ drop-inj₁) (₁∼₁ x>y)
tri (inj₂ x) (inj₂ y) with tri₂ x y
... | tri< x<y x≉y x≯y =
tri< (₂∼₂ x<y) (x≉y ∘ drop-inj₂) (x≯y ∘ drop-inj₂)
... | tri≈ x≮y x≈y x≯y =
tri≈ (x≮y ∘ drop-inj₂) (₂∼₂ x≈y) (x≯y ∘ drop-inj₂)
... | tri> x≮y x≉y x>y =
tri> (x≮y ∘ drop-inj₂) (x≉y ∘ drop-inj₂) (₂∼₂ x>y)
----------------------------------------------------------------------
-- Some collections of properties which are preserved
_⊎-isEquivalence_ : ∀ {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂} →
IsEquivalence ≈₁ → IsEquivalence ≈₂ →
IsEquivalence (≈₁ ⊎-Rel ≈₂)
eq₁ ⊎-isEquivalence eq₂ = record
{ refl = refl eq₁ ⊎-refl refl eq₂
; sym = sym eq₁ ⊎-symmetric sym eq₂
; trans = trans eq₁ ⊎-transitive trans eq₂
}
where open IsEquivalence
_⊎-isPreorder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {∼₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {∼₂ : Rel A₂ ℓ₂′} →
IsPreorder ≈₁ ∼₁ → IsPreorder ≈₂ ∼₂ →
∀ {P} → IsPreorder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ∼₁ ∼₂)
pre₁ ⊎-isPreorder pre₂ = record
{ isEquivalence = isEquivalence pre₁ ⊎-isEquivalence
isEquivalence pre₂
; reflexive = reflexive pre₁ ⊎-reflexive reflexive pre₂
; trans = trans pre₁ ⊎-transitive trans pre₂
}
where open IsPreorder
_⊎-isDecEquivalence_ : ∀ {ℓ₁ ℓ₂} {≈₁ : Rel A₁ ℓ₁} {≈₂ : Rel A₂ ℓ₂} →
IsDecEquivalence ≈₁ → IsDecEquivalence ≈₂ →
IsDecEquivalence (≈₁ ⊎-Rel ≈₂)
eq₁ ⊎-isDecEquivalence eq₂ = record
{ isEquivalence = isEquivalence eq₁ ⊎-isEquivalence
isEquivalence eq₂
; _≟_ = ⊎-decidable (_≟_ eq₁) (_≟_ eq₂) (no ₁≁₂)
}
where open IsDecEquivalence
_⊎-isPartialOrder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
IsPartialOrder ≈₁ ≤₁ → IsPartialOrder ≈₂ ≤₂ →
∀ {P} → IsPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P ≤₁ ≤₂)
po₁ ⊎-isPartialOrder po₂ = record
{ isPreorder = isPreorder po₁ ⊎-isPreorder isPreorder po₂
; antisym = antisym po₁ ⊎-antisymmetric antisym po₂
}
where open IsPartialOrder
_⊎-isStrictPartialOrder_ :
∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
IsStrictPartialOrder ≈₁ <₁ → IsStrictPartialOrder ≈₂ <₂ →
∀ {P} → IsStrictPartialOrder (≈₁ ⊎-Rel ≈₂) (⊎ʳ P <₁ <₂)
spo₁ ⊎-isStrictPartialOrder spo₂ = record
{ isEquivalence = isEquivalence spo₁ ⊎-isEquivalence
isEquivalence spo₂
; irrefl = irrefl spo₁ ⊎-irreflexive irrefl spo₂
; trans = trans spo₁ ⊎-transitive trans spo₂
; <-resp-≈ = <-resp-≈ spo₁ ⊎-≈-respects₂ <-resp-≈ spo₂
}
where open IsStrictPartialOrder
_⊎-<-isTotalOrder_ : ∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
IsTotalOrder ≈₁ ≤₁ → IsTotalOrder ≈₂ ≤₂ →
IsTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂)
to₁ ⊎-<-isTotalOrder to₂ = record
{ isPartialOrder = isPartialOrder to₁ ⊎-isPartialOrder
isPartialOrder to₂
; total = total to₁ ⊎-<-total total to₂
}
where open IsTotalOrder
_⊎-<-isDecTotalOrder_ :
∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {≤₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {≤₂ : Rel A₂ ℓ₂′} →
IsDecTotalOrder ≈₁ ≤₁ → IsDecTotalOrder ≈₂ ≤₂ →
IsDecTotalOrder (≈₁ ⊎-Rel ≈₂) (≤₁ ⊎-< ≤₂)
to₁ ⊎-<-isDecTotalOrder to₂ = record
{ isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂
; _≟_ = ⊎-decidable (_≟_ to₁) (_≟_ to₂) (no ₁≁₂)
; _≤?_ = ⊎-decidable (_≤?_ to₁) (_≤?_ to₂) (yes (₁∼₂ _))
}
where open IsDecTotalOrder
_⊎-<-isStrictTotalOrder_ :
∀ {ℓ₁ ℓ₁′} {≈₁ : Rel A₁ ℓ₁} {<₁ : Rel A₁ ℓ₁′}
{ℓ₂ ℓ₂′} {≈₂ : Rel A₂ ℓ₂} {<₂ : Rel A₂ ℓ₂′} →
IsStrictTotalOrder ≈₁ <₁ → IsStrictTotalOrder ≈₂ <₂ →
IsStrictTotalOrder (≈₁ ⊎-Rel ≈₂) (<₁ ⊎-< <₂)
sto₁ ⊎-<-isStrictTotalOrder sto₂ = record
{ isEquivalence = isEquivalence sto₁ ⊎-isEquivalence
isEquivalence sto₂
; trans = trans sto₁ ⊎-transitive trans sto₂
; compare = compare sto₁ ⊎-<-trichotomous compare sto₂
; <-resp-≈ = <-resp-≈ sto₁ ⊎-≈-respects₂ <-resp-≈ sto₂
}
where open IsStrictTotalOrder
------------------------------------------------------------------------
-- The game can be taken even further...
_⊎-setoid_ : ∀ {s₁ s₂ s₃ s₄} →
Setoid s₁ s₂ → Setoid s₃ s₄ → Setoid _ _
s₁ ⊎-setoid s₂ = record
{ isEquivalence = isEquivalence s₁ ⊎-isEquivalence isEquivalence s₂
} where open Setoid
_⊎-preorder_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
Preorder p₁ p₂ p₃ → Preorder p₄ p₅ p₆ → Preorder _ _ _
p₁ ⊎-preorder p₂ = record
{ _∼_ = _∼_ p₁ ⊎-Rel _∼_ p₂
; isPreorder = isPreorder p₁ ⊎-isPreorder isPreorder p₂
} where open Preorder
_⊎-decSetoid_ : ∀ {s₁ s₂ s₃ s₄} →
DecSetoid s₁ s₂ → DecSetoid s₃ s₄ → DecSetoid _ _
ds₁ ⊎-decSetoid ds₂ = record
{ isDecEquivalence = isDecEquivalence ds₁ ⊎-isDecEquivalence
isDecEquivalence ds₂
} where open DecSetoid
_⊎-poset_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
Poset p₁ p₂ p₃ → Poset p₄ p₅ p₆ → Poset _ _ _
po₁ ⊎-poset po₂ = record
{ _≤_ = _≤_ po₁ ⊎-Rel _≤_ po₂
; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder
isPartialOrder po₂
} where open Poset
_⊎-<-poset_ : ∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
Poset p₁ p₂ p₃ → Poset p₄ p₅ p₆ → Poset _ _ _
po₁ ⊎-<-poset po₂ = record
{ _≤_ = _≤_ po₁ ⊎-< _≤_ po₂
; isPartialOrder = isPartialOrder po₁ ⊎-isPartialOrder
isPartialOrder po₂
} where open Poset
_⊎-<-strictPartialOrder_ :
∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
StrictPartialOrder p₁ p₂ p₃ → StrictPartialOrder p₄ p₅ p₆ →
StrictPartialOrder _ _ _
spo₁ ⊎-<-strictPartialOrder spo₂ = record
{ _<_ = _<_ spo₁ ⊎-< _<_ spo₂
; isStrictPartialOrder = isStrictPartialOrder spo₁
⊎-isStrictPartialOrder
isStrictPartialOrder spo₂
} where open StrictPartialOrder
_⊎-<-totalOrder_ :
∀ {t₁ t₂ t₃ t₄ t₅ t₆} →
TotalOrder t₁ t₂ t₃ → TotalOrder t₄ t₅ t₆ → TotalOrder _ _ _
to₁ ⊎-<-totalOrder to₂ = record
{ isTotalOrder = isTotalOrder to₁ ⊎-<-isTotalOrder isTotalOrder to₂
} where open TotalOrder
_⊎-<-decTotalOrder_ :
∀ {t₁ t₂ t₃ t₄ t₅ t₆} →
DecTotalOrder t₁ t₂ t₃ → DecTotalOrder t₄ t₅ t₆ → DecTotalOrder _ _ _
to₁ ⊎-<-decTotalOrder to₂ = record
{ isDecTotalOrder = isDecTotalOrder to₁ ⊎-<-isDecTotalOrder
isDecTotalOrder to₂
} where open DecTotalOrder
_⊎-<-strictTotalOrder_ :
∀ {p₁ p₂ p₃ p₄ p₅ p₆} →
StrictTotalOrder p₁ p₂ p₃ → StrictTotalOrder p₄ p₅ p₆ →
StrictTotalOrder _ _ _
sto₁ ⊎-<-strictTotalOrder sto₂ = record
{ _<_ = _<_ sto₁ ⊎-< _<_ sto₂
; isStrictTotalOrder = isStrictTotalOrder sto₁
⊎-<-isStrictTotalOrder
isStrictTotalOrder sto₂
} where open StrictTotalOrder
------------------------------------------------------------------------
-- Some properties related to "relatedness"
private
to-cong : ∀ {a b} {A : Set a} {B : Set b} →
(_≡_ ⊎-Rel _≡_) ⇒ _≡_ {A = A ⊎ B}
to-cong (₁∼₂ ())
to-cong (₁∼₁ P.refl) = P.refl
to-cong (₂∼₂ P.refl) = P.refl
from-cong : ∀ {a b} {A : Set a} {B : Set b} →
_≡_ {A = A ⊎ B} ⇒ (_≡_ ⊎-Rel _≡_)
from-cong P.refl = P.refl ⊎-refl P.refl
⊎-Rel↔≡ : ∀ {a b} (A : Set a) (B : Set b) →
Inverse (P.setoid A ⊎-setoid P.setoid B) (P.setoid (A ⊎ B))
⊎-Rel↔≡ _ _ = record
{ to = record { _⟨$⟩_ = id; cong = to-cong }
; from = record { _⟨$⟩_ = id; cong = from-cong }
; inverse-of = record
{ left-inverse-of = λ _ → P.refl ⊎-refl P.refl
; right-inverse-of = λ _ → P.refl
}
}
_⊎-≟_ : ∀ {a b} {A : Set a} {B : Set b} →
Decidable {A = A} _≡_ → Decidable {A = B} _≡_ →
Decidable {A = A ⊎ B} _≡_
(dec₁ ⊎-≟ dec₂) s₁ s₂ = Dec.map′ to-cong from-cong (s₁ ≟ s₂)
where
open DecSetoid (P.decSetoid dec₁ ⊎-decSetoid P.decSetoid dec₂)
_⊎-⟶_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
A ⟶ B → C ⟶ D → (A ⊎-setoid C) ⟶ (B ⊎-setoid D)
_⊎-⟶_ {A = A} {B} {C} {D} f g = record
{ _⟨$⟩_ = fg
; cong = fg-cong
}
where
open Setoid (A ⊎-setoid C) using () renaming (_≈_ to _≈AC_)
open Setoid (B ⊎-setoid D) using () renaming (_≈_ to _≈BD_)
fg = Sum.map (_⟨$⟩_ f) (_⟨$⟩_ g)
fg-cong : _≈AC_ =[ fg ]⇒ _≈BD_
fg-cong (₁∼₂ ())
fg-cong (₁∼₁ x∼₁y) = ₁∼₁ $ F.cong f x∼₁y
fg-cong (₂∼₂ x∼₂y) = ₂∼₂ $ F.cong g x∼₂y
_⊎-equivalence_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Equivalence A B → Equivalence C D →
Equivalence (A ⊎-setoid C) (B ⊎-setoid D)
A⇔B ⊎-equivalence C⇔D = record
{ to = to A⇔B ⊎-⟶ to C⇔D
; from = from A⇔B ⊎-⟶ from C⇔D
} where open Equivalence
_⊎-⇔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ⇔ B → C ⇔ D → (A ⊎ C) ⇔ (B ⊎ D)
_⊎-⇔_ {A = A} {B} {C} {D} A⇔B C⇔D =
Inverse.equivalence (⊎-Rel↔≡ B D) ⟨∘⟩
A⇔B ⊎-equivalence C⇔D ⟨∘⟩
Eq.sym (Inverse.equivalence (⊎-Rel↔≡ A C))
where open Eq using () renaming (_∘_ to _⟨∘⟩_)
_⊎-injection_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Injection A B → Injection C D →
Injection (A ⊎-setoid C) (B ⊎-setoid D)
_⊎-injection_ {A = A} {B} {C} {D} A↣B C↣D = record
{ to = to A↣B ⊎-⟶ to C↣D
; injective = inj _ _
}
where
open Injection
open Setoid (A ⊎-setoid C) using () renaming (_≈_ to _≈AC_)
open Setoid (B ⊎-setoid D) using () renaming (_≈_ to _≈BD_)
inj : ∀ x y →
(to A↣B ⊎-⟶ to C↣D) ⟨$⟩ x ≈BD (to A↣B ⊎-⟶ to C↣D) ⟨$⟩ y →
x ≈AC y
inj (inj₁ x) (inj₁ y) (₁∼₁ x∼₁y) = ₁∼₁ (injective A↣B x∼₁y)
inj (inj₂ x) (inj₂ y) (₂∼₂ x∼₂y) = ₂∼₂ (injective C↣D x∼₂y)
inj (inj₁ x) (inj₂ y) (₁∼₂ ())
inj (inj₂ x) (inj₁ y) ()
_⊎-↣_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↣ B → C ↣ D → (A ⊎ C) ↣ (B ⊎ D)
_⊎-↣_ {A = A} {B} {C} {D} A↣B C↣D =
Inverse.injection (⊎-Rel↔≡ B D) ⟨∘⟩
A↣B ⊎-injection C↣D ⟨∘⟩
Inverse.injection (Inv.sym (⊎-Rel↔≡ A C))
where open Inj using () renaming (_∘_ to _⟨∘⟩_)
_⊎-left-inverse_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
LeftInverse A B → LeftInverse C D →
LeftInverse (A ⊎-setoid C) (B ⊎-setoid D)
A↞B ⊎-left-inverse C↞D = record
{ to = Equivalence.to eq
; from = Equivalence.from eq
; left-inverse-of = [ ₁∼₁ ∘ left-inverse-of A↞B
, ₂∼₂ ∘ left-inverse-of C↞D
]
}
where
open LeftInverse
eq = LeftInverse.equivalence A↞B ⊎-equivalence
LeftInverse.equivalence C↞D
_⊎-↞_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↞ B → C ↞ D → (A ⊎ C) ↞ (B ⊎ D)
_⊎-↞_ {A = A} {B} {C} {D} A↞B C↞D =
Inverse.left-inverse (⊎-Rel↔≡ B D) ⟨∘⟩
A↞B ⊎-left-inverse C↞D ⟨∘⟩
Inverse.left-inverse (Inv.sym (⊎-Rel↔≡ A C))
where open LeftInv using () renaming (_∘_ to _⟨∘⟩_)
_⊎-surjection_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Surjection A B → Surjection C D →
Surjection (A ⊎-setoid C) (B ⊎-setoid D)
A↠B ⊎-surjection C↠D = record
{ to = LeftInverse.from inv
; surjective = record
{ from = LeftInverse.to inv
; right-inverse-of = LeftInverse.left-inverse-of inv
}
}
where
open Surjection
inv = right-inverse A↠B ⊎-left-inverse right-inverse C↠D
_⊎-↠_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↠ B → C ↠ D → (A ⊎ C) ↠ (B ⊎ D)
_⊎-↠_ {A = A} {B} {C} {D} A↠B C↠D =
Inverse.surjection (⊎-Rel↔≡ B D) ⟨∘⟩
A↠B ⊎-surjection C↠D ⟨∘⟩
Inverse.surjection (Inv.sym (⊎-Rel↔≡ A C))
where open Surj using () renaming (_∘_ to _⟨∘⟩_)
_⊎-inverse_ :
∀ {s₁ s₂ s₃ s₄ s₅ s₆ s₇ s₈}
{A : Setoid s₁ s₂} {B : Setoid s₃ s₄}
{C : Setoid s₅ s₆} {D : Setoid s₇ s₈} →
Inverse A B → Inverse C D → Inverse (A ⊎-setoid C) (B ⊎-setoid D)
A↔B ⊎-inverse C↔D = record
{ to = Surjection.to surj
; from = Surjection.from surj
; inverse-of = record
{ left-inverse-of = LeftInverse.left-inverse-of inv
; right-inverse-of = Surjection.right-inverse-of surj
}
}
where
open Inverse
surj = Inverse.surjection A↔B ⊎-surjection
Inverse.surjection C↔D
inv = Inverse.left-inverse A↔B ⊎-left-inverse
Inverse.left-inverse C↔D
_⊎-↔_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ↔ B → C ↔ D → (A ⊎ C) ↔ (B ⊎ D)
_⊎-↔_ {A = A} {B} {C} {D} A↔B C↔D =
⊎-Rel↔≡ B D ⟨∘⟩ A↔B ⊎-inverse C↔D ⟨∘⟩ Inv.sym (⊎-Rel↔≡ A C)
where open Inv using () renaming (_∘_ to _⟨∘⟩_)
_⊎-cong_ : ∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ∼[ k ] B → C ∼[ k ] D → (A ⊎ C) ∼[ k ] (B ⊎ D)
_⊎-cong_ {implication} = Sum.map
_⊎-cong_ {reverse-implication} = λ f g → lam (Sum.map (app-← f) (app-← g))
_⊎-cong_ {equivalence} = _⊎-⇔_
_⊎-cong_ {injection} = _⊎-↣_
_⊎-cong_ {reverse-injection} = λ f g → lam (app-↢ f ⊎-↣ app-↢ g)
_⊎-cong_ {left-inverse} = _⊎-↞_
_⊎-cong_ {surjection} = _⊎-↠_
_⊎-cong_ {bijection} = _⊎-↔_
|
{
"alphanum_fraction": 0.4979105539,
"avg_line_length": 37.8686868687,
"ext": "agda",
"hexsha": "8a84e63a6e3aac9f3b58309b8a6205e7d1da5126",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Sum.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 10580,
"size": 22494
}
|
module Eq where
open import Prelude
open import T
open import Contexts
open import Eq.Defs
import Eq.KleeneTheory
import Eq.ObsTheory
import Eq.LogicalTheory
import Eq.Theory
open Eq.Defs public
open Eq.KleeneTheory public using (kleene-is-equivalence ; nats-halt)
open Eq.ObsTheory public using (obs-is-coarsest ; obs-is-con-congruence)
open Eq.LogicalTheory public using (log-is-con-congruence)
open Eq.Theory public
|
{
"alphanum_fraction": 0.8123515439,
"avg_line_length": 24.7647058824,
"ext": "agda",
"hexsha": "06b1d21487c59a58803fd36e4e40bef2c3735b55",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z",
"max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msullivan/godels-t",
"max_forks_repo_path": "Eq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msullivan/godels-t",
"max_issues_repo_path": "Eq.agda",
"max_line_length": 72,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msullivan/godels-t",
"max_stars_repo_path": "Eq.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z",
"num_tokens": 117,
"size": 421
}
|
-- Andreas, 2014-09-01 restored this test case
module ClashingModuleImport where
module M where
open import Imports.Module public
|
{
"alphanum_fraction": 0.8045112782,
"avg_line_length": 16.625,
"ext": "agda",
"hexsha": "93911bdba44f9e230c7bef0efa7faf7eeefe263d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/ClashingModuleImport.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/ClashingModuleImport.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/ClashingModuleImport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 133
}
|
{-# OPTIONS --without-K #-}
{-# OPTIONS --type-in-type #-}
module pisearch where
open import Type hiding (★_)
open import Function.NP
open import Data.Product
open import Data.Sum
open import Data.Bool.NP
open import Search.Type
open import Search.Searchable.Product
open import Search.Searchable
open import sum
fromFun-searchInd : ∀ {A} {sA : Search A} → SearchInd sA → FromFun sA
fromFun-searchInd indA = indA (λ s → Data s _) _,_
open import Relation.Binary.PropositionalEquality hiding ([_])
ToFrom : ∀ {A} (sA : Search A)
(toFunA : ToFun sA)
(fromFunA : FromFun sA)
→ ★
ToFrom {A} sA toFunA fromFunA = ∀ {B} (f : Π A B) x → toFunA (fromFunA f) x ≡ f x
FromTo : ∀ {A} (sA : Search A)
(toFunA : ToFun sA)
(fromFunA : FromFun sA)
→ ★
FromTo sA toFunA fromFunA = ∀ {B} (d : Data sA B) → fromFunA (toFunA d) ≡ d
module Σ-props {A} {B : A → ★}
(μA : Searchable A) (μB : ∀ {x} → Searchable (B x)) where
sA = search μA
sB : ∀ {x} → Search (B x)
sB {x} = search (μB {x})
fromFunA : FromFun sA
fromFunA = fromFun-searchInd (search-ind μA)
fromFunB : ∀ {x} → FromFun (sB {x})
fromFunB {x} = fromFun-searchInd (search-ind (μB {x}))
module ToFrom
(toFunA : ToFun sA)
(toFunB : ∀ {x} → ToFun (sB {x}))
(toFromA : ToFrom sA toFunA fromFunA)
(toFromB : ∀ {x} → ToFrom (sB {x}) toFunB fromFunB) where
toFrom-Σ : ToFrom (ΣSearch sA (λ {x} → sB {x})) (toFun-Σ sA sB toFunA toFunB) (fromFun-Σ sA sB fromFunA fromFunB)
toFrom-Σ f (x , y) rewrite toFromA (fromFunB ∘ curry f) x = toFromB (curry f x) y
{- we need a search-ind-ext...
module FromTo
(toFunA : ToFun sA)
(toFunB : ∀ {x} → ToFun (sB {x}))
(toFromA : FromTo sA toFunA fromFunA)
(toFromB : ∀ {x} → FromTo (sB {x}) toFunB fromFunB) where
toFrom-Σ : FromTo (ΣSearch sA (λ {x} → sB {x})) (toFun-Σ sA sB toFunA toFunB) (fromFun-Σ sA sB fromFunA fromFunB)
toFrom-Σ t = {!toFromA!} -- {!(λ x → toFromB (toFunA t x))!}
-}
toFun-× : ∀ {A B} (sA : Search A) (sB : Search B) → ToFun sA → ToFun sB → ToFun (sA ×Search sB)
toFun-× sA sB toFunA toFunB = toFun-Σ sA sB toFunA toFunB
fromFun-× : ∀ {A B} (sA : Search A) (sB : Search B) → FromFun sA → FromFun sB → FromFun (sA ×Search sB)
fromFun-× sA sB fromFunA fromFunB = fromFun-Σ sA sB fromFunA fromFunB
toFun-Bit : ToFun (search μBit)
toFun-Bit (f , t) false = f
toFun-Bit (f , t) true = t
fromFun-Bit : FromFun (search μBit)
fromFun-Bit f = f false , f true
toFun-⊎ : ∀ {A B} (sA : Search A) (sB : Search B) → ToFun sA → ToFun sB → ToFun (sA +Search sB)
toFun-⊎ sA sB toFunA toFunB (x , y) = [ toFunA x , toFunB y ]
fromFun-⊎ : ∀ {A B} (sA : Search A) (sB : Search B) → FromFun sA → FromFun sB → FromFun (sA +Search sB)
fromFun-⊎ sA sB fromFunA fromFunB f = fromFunA (f ∘ inj₁) , fromFunB (f ∘ inj₂)
toPair-searchInd : ∀ {A} {sA : Search A} → SearchInd sA → ToPair sA
toPair-searchInd indA = indA ToPair (λ P0 P1 → [ P0 , P1 ]) (λ η → _,_ η)
-- toFun-searchInd : ∀ {A} {sA : Search A} → SearchInd sA → ToFun sA
-- toFun-searchInd {A} {sA} indA {B} t = ?
|
{
"alphanum_fraction": 0.5869228385,
"avg_line_length": 39.8395061728,
"ext": "agda",
"hexsha": "94f5b70087dc7a801c3de5ca8874180bbd086b36",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Experimental/pisearch.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Experimental/pisearch.agda",
"max_line_length": 121,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Experimental/pisearch.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 1281,
"size": 3227
}
|
{-# OPTIONS --without-K --safe #-}
module Math.NumberTheory.Summation.Generic.Properties where
-- agda-stdlib
open import Algebra
import Algebra.Operations.CommutativeMonoid as CommutativeMonoidOperations
open import Data.Nat as ℕ hiding (_+_; _*_)
import Data.Fin as Fin
import Data.Nat.Properties as ℕₚ
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open import Function.Base
-- agda-misc
open import Math.NumberTheory.Summation.Generic
import Math.NumberTheory.Summation.Generic.Properties.Lemma as Lemma
module MonoidSummationProperties {c e} (M : Monoid c e) where
open MonoidSummation M
open Monoid M
open SetoidReasoning setoid
-- Congruence
Σ<-cong : ∀ {m n f g} → m ≡ n → (∀ x → f x ≈ g x) → Σ< m f ≈ Σ< n g
Σ<-cong {0} {.0} {f} {g} ≡.refl f≈g = refl
Σ<-cong {suc m} {.(suc m)} {f} {g} ≡.refl f≈g = begin
Σ< m f ∙ f m ≈⟨ ∙-cong (Σ<-cong {m = m} {n = m} ≡.refl f≈g) (f≈g m) ⟩
Σ< m g ∙ g m ∎
Σ<-congˡ : ∀ n {f g} → (∀ x → f x ≈ g x) → Σ< n f ≈ Σ< n g
Σ<-congˡ n f≈g = Σ<-cong {m = n} ≡.refl f≈g
Σ<-congʳ : ∀ {m n} f → m ≡ n → Σ< m f ≈ Σ< n f
Σ<-congʳ f m≡n = Σ<-cong {f = f} m≡n (λ _ → refl)
Σ≤-cong : ∀ {m n f g} → m ≡ n → (∀ x → f x ≈ g x) → Σ≤ m f ≈ Σ≤ n g
Σ≤-cong m≡n f≈g = Σ<-cong (≡.cong suc m≡n) f≈g
Σ≤-congˡ : ∀ n {f g} → (∀ x → f x ≈ g x) → Σ≤ n f ≈ Σ≤ n g
Σ≤-congˡ n = Σ<-congˡ (suc n)
Σ≤-congʳ : ∀ {m n} f → m ≡ n → Σ≤ m f ≈ Σ≤ n f
Σ≤-congʳ f m≡n = Σ<-congʳ f (≡.cong suc m≡n)
Σ<range-cong : ∀ {m n o p} {f g : ℕ → Carrier} → m ≡ n → o ≡ p →
(∀ x → f x ≈ g x) → Σ<range m o f ≈ Σ<range n p g
Σ<range-cong {m} {.m} {o} {.o} {f} {g} ≡.refl ≡.refl f≈g = begin
Σ< (o ∸ m) (λ k → f (m ℕ.+ k)) ≈⟨ Σ<-congˡ (o ∸ m) (λ x → f≈g (m ℕ.+ x)) ⟩
Σ< (o ∸ m) (λ k → g (m ℕ.+ k)) ∎
Σ<range-cong₃ : ∀ m n {f g : ℕ → Carrier} →
(∀ x → f x ≈ g x) → Σ<range m n f ≈ Σ<range m n g
Σ<range-cong₃ m n f≈g = Σ<range-cong {m = m} {o = n} ≡.refl ≡.refl f≈g
Σ<range-cong₁₂ : ∀ {m n o p} (f : ℕ → Carrier) →
m ≡ n → o ≡ p → Σ<range m o f ≈ Σ<range n p f
Σ<range-cong₁₂ f ≡.refl ≡.refl = refl
Σ<range-cong₁ : ∀ {m n} o (f : ℕ → Carrier)→
m ≡ n → Σ<range m o f ≈ Σ<range n o f
Σ<range-cong₁ o f m≡n = Σ<range-cong₁₂ {o = o} f m≡n ≡.refl
Σ<range-cong₂ : ∀ m {n o} (f : ℕ → Carrier) →
n ≡ o → Σ<range m n f ≈ Σ<range m o f
Σ<range-cong₂ m f n≡o = Σ<range-cong₁₂ {m = m} f ≡.refl n≡o
Σ≤range-cong : ∀ {m n o p} {f g : ℕ → Carrier} →
m ≡ n → o ≡ p → (∀ x → f x ≈ g x) → Σ≤range m o f ≈ Σ≤range n p g
Σ≤range-cong m≡n o≡p f≈g = Σ<range-cong m≡n (≡.cong suc o≡p) f≈g
Σ<-congˡ-with-< : ∀ n {f g} → (∀ i → i < n → f i ≈ g i) → Σ< n f ≈ Σ< n g
Σ<-congˡ-with-< 0 {f} {g} f≈g = refl
Σ<-congˡ-with-< (suc n) {f} {g} f≈g =
∙-cong (Σ<-congˡ-with-< n (λ i i<n → f≈g i (ℕₚ.≤-step i<n))) (f≈g n ℕₚ.≤-refl)
Σ≤-congˡ-with-≤ : ∀ n {f g} → (∀ i → i ≤ n → f i ≈ g i) → Σ≤ n f ≈ Σ≤ n g
Σ≤-congˡ-with-≤ n f≈g = Σ<-congˡ-with-< (suc n) λ i 1+i≤1+n → f≈g i (ℕₚ.≤-pred 1+i≤1+n)
Σ<-0 : ∀ n → Σ< n (λ _ → ε) ≈ ε
Σ<-0 zero = refl
Σ<-0 (suc n) = begin
Σ< n (λ _ → ε) ∙ ε ≈⟨ ∙-congʳ $ Σ<-0 n ⟩
ε ∙ ε ≈⟨ identityʳ ε ⟩
ε ∎
Σ≤-0 : ∀ n → Σ≤ n (λ _ → ε) ≈ ε
Σ≤-0 n = Σ<-0 (suc n)
Σ<[1,f]≈f[0] : ∀ f → Σ< 1 f ≈ f 0
Σ<[1,f]≈f[0] f = identityˡ (f 0)
Σ≤[0,f]≈f[0] : ∀ f → Σ≤ 0 f ≈ f 0
Σ≤[0,f]≈f[0] f = Σ<[1,f]≈f[0] f
n≤m⇒Σ<range[m,n,f]≈0 : ∀ {m n} f → n ≤ m → Σ<range m n f ≈ ε
n≤m⇒Σ<range[m,n,f]≈0 {m} {n} f n≤m = begin
Σ< (n ∸ m) (λ k → f (m ℕ.+ k)) ≈⟨ Σ<-congʳ (λ k → f (m ℕ.+ k)) $ ℕₚ.m≤n⇒m∸n≡0 n≤m ⟩
Σ< 0 (λ k → f (m ℕ.+ k)) ∎
n<m⇒Σ≤range[m,n,f]≈0 : ∀ {m n} f → n < m → Σ≤range m n f ≈ ε
n<m⇒Σ≤range[m,n,f]≈0 {m} {n} f n<m = n≤m⇒Σ<range[m,n,f]≈0 f n<m
Σ<range[n,n,f]≈0 : ∀ n f → Σ<range n n f ≈ ε
Σ<range[n,n,f]≈0 n f = n≤m⇒Σ<range[m,n,f]≈0 {n} {n} f ℕₚ.≤-refl
Σ<range-cong₃-with-< : ∀ m n {f g} →
(∀ i → m ≤ i → i < n → f i ≈ g i) → Σ<range m n f ≈ Σ<range m n g
Σ<range-cong₃-with-< m n {f} {g} f≈g with m ℕₚ.≤? n
... | yes m≤n =
Σ<-congˡ-with-< (n ∸ m) {λ i → f (m ℕ.+ i)} {λ i → g (m ℕ.+ i)}
λ i i<n∸m → f≈g (m ℕ.+ i) (ℕₚ.m≤m+n m i) (≤R.begin
1 ℕ.+ (m ℕ.+ i) ≤R.≡⟨ ≡.cong (1 ℕ.+_) $ ℕₚ.+-comm m i ⟩
suc i ℕ.+ m ≤R.≤⟨ ℕₚ.+-monoˡ-≤ m i<n∸m ⟩
o ℕ.+ m ≤R.≡⟨ ≡.sym n≡o+m ⟩
n ≤R.∎ )
where o = n ∸ m
n≡o+m : n ≡ o ℕ.+ m
n≡o+m = ≡.sym $ ℕₚ.m∸n+n≡m m≤n
module ≤R = ℕₚ.≤-Reasoning
... | no m≰n = trans (n≤m⇒Σ<range[m,n,f]≈0 f n≤m) (sym $ n≤m⇒Σ<range[m,n,f]≈0 g n≤m)
where n≤m = ℕₚ.<⇒≤ $ ℕₚ.≰⇒> m≰n
Σ≤range-cong₃-with-≤ : ∀ m n {f g} →
(∀ i → m ≤ i → i ≤ n → f i ≈ g i) → Σ≤range m n f ≈ Σ≤range m n g
Σ≤range-cong₃-with-≤ m n {f} {g} f≈g = Σ<range-cong₃-with-< m (suc n)
λ i i≤n 1+i≤1+n → f≈g i i≤n (ℕₚ.≤-pred 1+i≤1+n)
Σ<range[n,1+n,f]≈f[n] : ∀ n f → Σ<range n (suc n) f ≈ f n
Σ<range[n,1+n,f]≈f[n] n f = begin
Σ< (suc n ∸ n) (λ k → f (n ℕ.+ k))
≈⟨ Σ<-congʳ (λ k → f (n ℕ.+ k)) $ ℕₚ.m+n∸n≡m 1 n ⟩
Σ< 1 (λ k → f (n ℕ.+ k))
≈⟨ Σ<[1,f]≈f[0] (λ k → f (n ℕ.+ k)) ⟩
f (n ℕ.+ 0)
≈⟨ reflexive (≡.cong f (ℕₚ.+-identityʳ n)) ⟩
f n
∎
Σ≤range[n,n,f]≈f[n] : ∀ n f → Σ≤range n n f ≈ f n
Σ≤range[n,n,f]≈f[n] = Σ<range[n,1+n,f]≈f[n]
Σ<-+ : ∀ m n f → Σ< (m ℕ.+ n) f ≈ Σ< m f ∙ Σ< n (λ k → f (m ℕ.+ k))
Σ<-+ m zero f = begin
Σ< (m ℕ.+ 0) f ≈⟨ Σ<-congʳ f $ ℕₚ.+-identityʳ m ⟩
Σ< m f ≈⟨ sym $ identityʳ (Σ< m f) ⟩
Σ< m f ∙ ε ∎
Σ<-+ m (suc n) f = begin
Σ< (m ℕ.+ suc n) f
≈⟨ Σ<-congʳ f $ ℕₚ.+-suc m n ⟩
Σ< (suc m ℕ.+ n) f
≡⟨⟩
Σ< (m ℕ.+ n) f ∙ f (m ℕ.+ n)
≈⟨ ∙-congʳ $ Σ<-+ m n f ⟩
Σ< m f ∙ Σ< n (λ k → f (m ℕ.+ k)) ∙ f (m ℕ.+ n)
≈⟨ assoc (Σ< m f) (Σ< n (λ k → f (m ℕ.+ k))) (f (m ℕ.+ n)) ⟩
Σ< m f ∙ Σ< (suc n) (λ k → f (m ℕ.+ k))
∎
Σ≤-Σ<-+ : ∀ m n f →
Σ≤ (m ℕ.+ n) f ≈ Σ≤ m f ∙ Σ< n (λ k → f (1 ℕ.+ m ℕ.+ k))
Σ≤-Σ<-+ m n f = Σ<-+ (suc m) n f
Σ≤-+ : ∀ m n f →
Σ≤ (1 ℕ.+ m ℕ.+ n) f ≈ Σ≤ m f ∙ Σ≤ n (λ k → f (1 ℕ.+ m ℕ.+ k))
Σ≤-+ m n f = begin
Σ< (2 ℕ.+ m ℕ.+ n) f
≈⟨ Σ<-congʳ f $ Lemma.lemma₁ m n ⟩
Σ< (suc m ℕ.+ suc n) f
≈⟨ Σ<-+ (suc m) (suc n) f ⟩
Σ< (suc m) f ∙ Σ< (suc n) (λ k → f (1 ℕ.+ m ℕ.+ k))
∎
Σ<-push-suc : ∀ n f → Σ< (suc n) f ≈ f 0 ∙ Σ< n (λ k → f (suc k))
Σ<-push-suc n f = begin
Σ< (suc n) f ≈⟨ Σ<-+ 1 n f ⟩
Σ< 1 f ∙ Σ< n (λ k → f (suc k)) ≈⟨ ∙-congʳ $ Σ<[1,f]≈f[0] f ⟩
f 0 ∙ Σ< n (λ k → f (suc k)) ∎
Σ≤-push-suc : ∀ n f → Σ≤ (suc n) f ≈ f 0 ∙ Σ≤ n (λ k → f (suc k))
Σ≤-push-suc n f = Σ<-push-suc (suc n) f
Σ<range[0,n,f]≈Σ<[n,f] : ∀ n f → Σ<range 0 n f ≈ Σ< n f
Σ<range[0,n,f]≈Σ<[n,f] n f = refl
Σ≤range[0,n,f]≈Σ≤[n,f] : ∀ n f → Σ≤range 0 n f ≈ Σ≤ n f
Σ≤range[0,n,f]≈Σ≤[n,f] n f = refl
Σ<range[m,m+n+o,f]≈Σ<range[m,m+n,f]+Σ<range[m+n,m+n+o,f] : ∀ m n o f →
Σ<range m (m ℕ.+ n ℕ.+ o) f ≈
Σ<range m (m ℕ.+ n) f ∙ Σ<range (m ℕ.+ n) (m ℕ.+ n ℕ.+ o) f
Σ<range[m,m+n+o,f]≈Σ<range[m,m+n,f]+Σ<range[m+n,m+n+o,f] m n o f = begin
Σ< (m+n+o ∸ m) f′
≈⟨ Σ<-congʳ f′ (≡.cong (_∸ m) $ ℕₚ.+-assoc m n o) ⟩
Σ< (m ℕ.+ n+o ∸ m) f′
≈⟨ Σ<-congʳ f′ (ℕₚ.m+n∸m≡n m n+o) ⟩
Σ< n+o f′
≈⟨ Σ<-+ n o f′ ⟩
Σ< n f′ ∙ Σ< o (λ k → f (m ℕ.+ (n ℕ.+ k)))
≈⟨ ∙-cong (sym $ Σ<-congʳ f′ $ ℕₚ.m+n∸m≡n m n)
(sym $ Σ<-cong (ℕₚ.m+n∸m≡n m+n o)
(λ x → reflexive (≡.cong f (ℕₚ.+-assoc m n x)))) ⟩
Σ< (m+n ∸ m) f′ ∙ Σ< (m+n+o ∸ m+n) (λ k → f (m+n ℕ.+ k))
∎
where
m+n = m ℕ.+ n
n+o = n ℕ.+ o
m+n+o = m+n ℕ.+ o
f′ = λ k → f (m ℕ.+ k)
Σ<range[m,n,f]≈Σ<range[m,o,f]+Σ<range[o,n,f] : ∀ {m n o} f →
m ≤ o → o ≤ n →
Σ<range m n f ≈ Σ<range m o f ∙ Σ<range o n f
Σ<range[m,n,f]≈Σ<range[m,o,f]+Σ<range[o,n,f] {m} {n} {o} f m≤o o≤n = begin
Σ<range m n f
≈⟨ reflexive (≡.cong (λ v → Σ<range m v f) n≡m+p+q) ⟩
Σ<range m m+p+q f
≈⟨ Σ<range[m,m+n+o,f]≈Σ<range[m,m+n,f]+Σ<range[m+n,m+n+o,f] m p q f ⟩
Σ<range m m+p f ∙ Σ<range m+p m+p+q f
≈⟨ sym $ ∙-cong (Σ<range-cong₂ m f o≡m+p) (Σ<range-cong₁₂ f o≡m+p n≡m+p+q) ⟩
Σ<range m o f ∙ Σ<range o n f
∎
where
p = o ∸ m
q = n ∸ o
m+p = m ℕ.+ p
m+p+q = m+p ℕ.+ q
o≡m+p : o ≡ m+p
o≡m+p = ≡.sym $ ℕₚ.m+[n∸m]≡n m≤o
n≡m+p+q : n ≡ m+p+q
n≡m+p+q = ≡.sym ( ≡R.begin
m ℕ.+ p ℕ.+ q ≡R.≡⟨ ≡.cong (ℕ._+ q) $ ≡.sym o≡m+p ⟩
o ℕ.+ (n ∸ o) ≡R.≡⟨ ℕₚ.m+[n∸m]≡n o≤n ⟩
n ≡R.∎ )
where module ≡R = ≡.≡-Reasoning
-- Reindex
Σ<range[m,n,f]≈Σ<range[o+m,o+n,i→f[i∸o]] : ∀ m n o f →
Σ<range m n f ≈ Σ<range (o ℕ.+ m) (o ℕ.+ n) (λ i → f (i ∸ o))
Σ<range[m,n,f]≈Σ<range[o+m,o+n,i→f[i∸o]] m n o f = begin
Σ< (n ∸ m) (λ k → f (m ℕ.+ k))
≈⟨ Σ<-cong (≡.sym $ ℕₚ.[m+n]∸[m+o]≡n∸o o n m)
(λ x → reflexive $ ≡.cong f $ ≡.sym $ (≡R.begin
o ℕ.+ m ℕ.+ x ∸ o ≡R.≡⟨ ≡.cong (_∸ o) $ ℕₚ.+-assoc o m x ⟩
o ℕ.+ (m ℕ.+ x) ∸ o ≡R.≡⟨ ℕₚ.m+n∸m≡n o (m ℕ.+ x) ⟩
m ℕ.+ x ≡R.∎ )) ⟩
Σ< ((o ℕ.+ n) ∸ (o ℕ.+ m)) (λ k → f ((o ℕ.+ m ℕ.+ k) ∸ o))
∎
where module ≡R = ≡.≡-Reasoning
Σ≤range[m,n,f]≈Σ≤range[o+m,o+n,i→f[i∸o]] : ∀ m n o f →
Σ≤range m n f ≈ Σ≤range (o ℕ.+ m) (o ℕ.+ n) (λ i → f (i ∸ o))
Σ≤range[m,n,f]≈Σ≤range[o+m,o+n,i→f[i∸o]] m n o f = begin
Σ<range m (suc n) f
≈⟨ Σ<range[m,n,f]≈Σ<range[o+m,o+n,i→f[i∸o]] m (suc n) o f ⟩
Σ<range (o ℕ.+ m) (o ℕ.+ suc n) (λ i → f (i ∸ o))
≈⟨ Σ<range-cong₂ (o ℕ.+ m) (λ i → f (i ∸ o)) $ ℕₚ.+-suc o n ⟩
Σ<range (o ℕ.+ m) (suc o ℕ.+ n) (λ i → f (i ∸ o))
∎
module CommutativeMonoidSummationProperties
{c e} (CM : CommutativeMonoid c e) where
open CommutativeMonoid CM
open MonoidSummation monoid
open MonoidSummationProperties monoid public
open CommutativeMonoidOperations CM
open SetoidReasoning setoid
private
n×x+x≈x+n×x : ∀ n x → n × x ∙ x ≈ x ∙ n × x
n×x+x≈x+n×x zero x = trans (identityˡ x) (sym $ identityʳ x)
n×x+x≈x+n×x (suc n) x = begin
x ∙ n × x ∙ x ≈⟨ assoc x (n × x) x ⟩
x ∙ (n × x ∙ x) ≈⟨ ∙-congˡ $ n×x+x≈x+n×x n x ⟩
x ∙ (x ∙ n × x) ∎
Σ<-const : ∀ n x → Σ< n (const x) ≈ n × x
Σ<-const zero x = refl
Σ<-const (suc n) x = begin
Σ< n (const x) ∙ x ≈⟨ ∙-congʳ $ Σ<-const n x ⟩
n × x ∙ x ≈⟨ n×x+x≈x+n×x n x ⟩
x ∙ n × x ∎
Σ≤-const : ∀ n x → Σ≤ n (const x) ≈ suc n × x
Σ≤-const n x = Σ<-const (suc n) x
Σ<range-const : ∀ m n x → Σ<range m n (const x) ≈ (n ∸ m) × x
Σ<range-const m n x = Σ<-const (n ∸ m) x
Σ≤range-const : ∀ m n x → Σ≤range m n (const x) ≈ (suc n ∸ m) × x
Σ≤range-const m n x = Σ<range-const m (suc n) x
private
lemma : ∀ a b c d → a ∙ b ∙ (c ∙ d) ≈ a ∙ c ∙ (b ∙ d)
lemma a b c d = begin
(a ∙ b) ∙ (c ∙ d) ≈⟨ assoc a b (c ∙ d) ⟩
a ∙ (b ∙ (c ∙ d)) ≈⟨ sym $ ∙-congˡ $ assoc b c d ⟩
a ∙ ((b ∙ c) ∙ d) ≈⟨ ∙-congˡ $ ∙-congʳ $ comm b c ⟩
a ∙ ((c ∙ b) ∙ d) ≈⟨ ∙-congˡ $ assoc c b d ⟩
a ∙ (c ∙ (b ∙ d)) ≈⟨ sym $ assoc a c (b ∙ d) ⟩
(a ∙ c) ∙ (b ∙ d) ∎
Σ<-distrib-+ : ∀ n f g → Σ< n (λ k → f k ∙ g k) ≈ Σ< n f ∙ Σ< n g
Σ<-distrib-+ zero f g = sym $ identityʳ ε
Σ<-distrib-+ (suc n) f g = begin
Σ< n (λ k → f k ∙ g k) ∙ (f n ∙ g n) ≈⟨ ∙-congʳ $ Σ<-distrib-+ n f g ⟩
(Σ< n f ∙ Σ< n g) ∙ (f n ∙ g n) ≈⟨ lemma (Σ< n f) (Σ< n g) (f n) (g n) ⟩
(Σ< n f ∙ f n) ∙ (Σ< n g ∙ g n) ∎
Σ≤-distrib-+ : ∀ n f g → Σ≤ n (λ k → f k ∙ g k) ≈ Σ≤ n f ∙ Σ≤ n g
Σ≤-distrib-+ n f g = Σ<-distrib-+ (suc n) f g
Σ<range-distrib-+ : ∀ m n f g →
Σ<range m n (λ k → f k ∙ g k) ≈ Σ<range m n f ∙ Σ<range m n g
Σ<range-distrib-+ m n f g =
Σ<-distrib-+ (n ∸ m) (λ k → f (m ℕ.+ k)) (λ k → g (m ℕ.+ k))
Σ≤range-distrib-+ : ∀ m n f g →
Σ≤range m n (λ k → f k ∙ g k) ≈ Σ≤range m n f ∙ Σ≤range m n g
Σ≤range-distrib-+ m n f g = Σ<range-distrib-+ m (suc n) f g
Σ<-comm : ∀ m n (f : ℕ → ℕ → Carrier) →
Σ< m (λ i → Σ< n (λ j → f i j)) ≈ Σ< n (λ j → Σ< m (λ i → f i j))
Σ<-comm zero n f = sym $ Σ<-0 n
Σ<-comm (suc m) n f = begin
Σ< (suc m) (λ i → Σ< n (f i))
≡⟨⟩
Σ< m (λ i → Σ< n (f i)) ∙ Σ< n (f m)
≈⟨ ∙-congʳ $ Σ<-comm m n f ⟩
Σ< n (λ j → Σ< m (λ i → f i j)) ∙ Σ< n (λ j → f m j)
≈⟨ sym $ Σ<-distrib-+ n (λ j → Σ< m (λ i → f i j)) (λ j → f m j) ⟩
Σ< n (λ j → Σ< m (λ i → f i j) ∙ f m j)
≡⟨⟩
Σ< n (λ j → Σ< (suc m) (λ i → f i j))
∎
Σ≤-comm : ∀ m n (f : ℕ → ℕ → Carrier) →
Σ≤ m (λ i → Σ≤ n (λ j → f i j)) ≈ Σ≤ n (λ j → Σ≤ m (λ i → f i j))
Σ≤-comm m n f = Σ<-comm (suc m) (suc n) f
Σ<range-comm : ∀ m n o p (f : ℕ → ℕ → Carrier) →
Σ<range m n (λ i → Σ<range o p (λ j → f i j)) ≈
Σ<range o p (λ j → Σ<range m n (λ i → f i j))
Σ<range-comm m n o p f =
Σ<-comm (n ∸ m) (p ∸ o) (λ i j → f (m ℕ.+ i) (o ℕ.+ j))
Σ≤range-comm : ∀ m n o p (f : ℕ → ℕ → Carrier) →
Σ≤range m n (λ i → Σ≤range o p (λ j → f i j)) ≈
Σ≤range o p (λ j → Σ≤range m n (λ i → f i j))
Σ≤range-comm m n o p f = Σ<range-comm m (suc n) o (suc p) f
Σ<-sumₜ-syntax : ∀ n f → Σ< n f ≈ sumₜ-syntax n (λ i → f (Fin.toℕ i))
Σ<-sumₜ-syntax 0 f = refl
Σ<-sumₜ-syntax (suc n) f = begin
Σ< (suc n) f
≈⟨ Σ<-push-suc n f ⟩
f 0 ∙ Σ< n (λ k → f (suc k))
≈⟨ ∙-congˡ $ Σ<-sumₜ-syntax n (λ k → f (suc k)) ⟩
f 0 ∙ sumₜ-syntax n (λ i → f (Fin.toℕ (Fin.suc i)))
∎
Σ<-reverse : ∀ n f → Σ< n f ≈ Σ< n (λ i → f (n ∸ suc i))
Σ<-reverse 0 f = refl
Σ<-reverse (suc n) f = begin
Σ< (suc n) f
≈⟨ Σ<-push-suc n f ⟩
f 0 ∙ Σ< n (λ i → f (suc i))
≈⟨ comm (f 0) (Σ< n (λ i → f (suc i))) ⟩
Σ< n (λ i → f (suc i)) ∙ f 0
≈⟨ ∙-congʳ $ Σ<-reverse n (λ i → f (suc i)) ⟩
Σ< n (λ i → f (suc (n ∸ suc i))) ∙ f 0
≈⟨ ∙-congʳ $ Σ<-congˡ-with-< n $ (λ i i<n → reflexive $ ≡.cong f $ ≡.sym $ ℕₚ.+-∸-assoc 1 i<n) ⟩
Σ< n (λ i → f (suc n ∸ suc i)) ∙ f 0
≈⟨ ∙-congˡ $ reflexive $ ≡.cong f $ ≡.sym $ ℕₚ.n∸n≡0 (suc n) ⟩
Σ< n (λ i → f (suc n ∸ suc i)) ∙ f (suc n ∸ suc n)
≡⟨⟩
Σ< (suc n) (λ i → f (suc n ∸ suc i))
∎
Σ≤-reverse : ∀ n f → Σ≤ n f ≈ Σ≤ n (λ i → f (n ∸ i))
Σ≤-reverse n f = Σ<-reverse (suc n) f
Σ<range-reverse : ∀ m n f → Σ<range m n f ≈ Σ<range m n (λ i → f (m ℕ.+ (n ∸ suc i)))
Σ<range-reverse m n f = begin
Σ< (n ∸ m) (λ i → f (m ℕ.+ i))
≈⟨ Σ<-reverse (n ∸ m) (λ i → f (m ℕ.+ i)) ⟩
Σ< (n ∸ m) (λ i → f (m ℕ.+ ((n ∸ m) ∸ suc i)))
≈⟨ Σ<-congˡ (n ∸ m) $ (λ i → reflexive $ ≡.cong f $ ≡.cong (m ℕ.+_) $ (≤R.begin-equality
n ∸ m ∸ suc i ≤R.≡⟨ ℕₚ.∸-+-assoc n m (suc i) ⟩
n ∸ (m ℕ.+ suc i) ≤R.≡⟨ ≡.cong (n ∸_) $ ℕₚ.+-suc m i ⟩
n ∸ suc (m ℕ.+ i) ≤R.∎) ) ⟩
Σ< (n ∸ m) (λ i → f (m ℕ.+ (n ∸ suc (m ℕ.+ i))))
≡⟨⟩
Σ<range m n (λ i → f (m ℕ.+ (n ∸ suc i))) ∎
where module ≤R = ℕₚ.≤-Reasoning
Σ≤range-reverse : ∀ m n f → Σ≤range m n f ≈ Σ≤range m n (λ i → f (m ℕ.+ (n ∸ i)))
Σ≤range-reverse m n f = Σ<range-reverse m (suc n) f
Σ<-split-even : ∀ n f →
Σ< (2 ℕ.* n) f ≈ Σ< n (λ i → f (2 ℕ.* i)) ∙ Σ< n (λ i → f (1 ℕ.+ 2 ℕ.* i))
Σ<-split-even 0 f = sym $ identityʳ ε
Σ<-split-even (suc n) f = begin
Σ< (2 ℕ.* suc n) f
≈⟨ Σ<-congʳ f $ ℕₚ.*-distribˡ-+ 2 1 n ⟩
Σ< (2 ℕ.+ 2 ℕ.* n) f
≡⟨⟩
Σ< (2 ℕ.* n) f ∙ f[2n] ∙ f[1+2n]
≈⟨ ∙-congʳ $ ∙-congʳ $ Σ<-split-even n f ⟩
Σ< n ev ∙ Σ< n od ∙ f[2n] ∙ f[1+2n]
≈⟨ assoc (Σ< n ev ∙ Σ< n od) f[2n] f[1+2n] ⟩
Σ< n ev ∙ Σ< n od ∙ (f[2n] ∙ f[1+2n])
≈⟨ lemma (Σ< n ev) (Σ< n od) f[2n] f[1+2n] ⟩
Σ< (suc n) ev ∙ Σ< (suc n) od
∎
where
f[2n] = f (2 ℕ.* n)
f[1+2n] = f (1 ℕ.+ 2 ℕ.* n)
ev = λ i → f (2 ℕ.* i)
od = λ i → f (1 ℕ.+ 2 ℕ.* i)
Σ<-split-odd : ∀ n f →
Σ< (1 ℕ.+ 2 ℕ.* n) f ≈ Σ< (suc n) (λ i → f (2 ℕ.* i)) ∙ Σ< n (λ i → f (1 ℕ.+ 2 ℕ.* i))
Σ<-split-odd n f = begin
Σ< (2 ℕ.* n) f ∙ f[2n]
≈⟨ ∙-congʳ $ Σ<-split-even n f ⟩
Σ< n ev ∙ Σ< n od ∙ f[2n]
≈⟨ trans (assoc (Σ< n ev) (Σ< n od) f[2n]) (∙-congˡ $ comm (Σ< n od) f[2n]) ⟩
Σ< n ev ∙ (f[2n] ∙ Σ< n od)
≈⟨ sym $ assoc (Σ< n ev) f[2n] (Σ< n od) ⟩
Σ< n ev ∙ f[2n] ∙ Σ< n od
∎
where
f[2n] = f (2 ℕ.* n)
ev = λ i → f (2 ℕ.* i)
od = λ i → f (1 ℕ.+ 2 ℕ.* i)
-- Σ<-comm-triangle : ∀ n f → Σ n (λ i → Σ< i (λ j → f i j)) ≈
module SemiringSummationProperties {c e} (SR : Semiring c e) where
open Semiring SR
open MonoidSummation +-monoid
open CommutativeMonoidSummationProperties +-commutativeMonoid public
open SetoidReasoning setoid
Σ<-*-commute : ∀ n c f → Σ< n (λ k → c * f k) ≈ c * Σ< n f
Σ<-*-commute ℕ.zero c f = sym $ zeroʳ c
Σ<-*-commute (suc n) c f = begin
Σ< n (λ k → c * f k) + c * f n ≈⟨ +-congʳ $ Σ<-*-commute n c f ⟩
c * Σ< n f + c * f n ≈⟨ sym $ distribˡ c (Σ< n f) (f n) ⟩
c * (Σ< n f + f n) ∎
Σ≤-*-commute : ∀ n c f → Σ≤ n (λ k → c * f k) ≈ c * Σ≤ n f
Σ≤-*-commute n c f = Σ<-*-commute (suc n) c f
Σ<range-*-commute : ∀ m n c f →
Σ<range m n (λ k → c * f k) ≈ c * Σ<range m n f
Σ<range-*-commute m n c f = Σ<-*-commute (n ∸ m) c (λ k → f (m ℕ.+ k))
Σ≤range-*-commute : ∀ m n c f →
Σ≤range m n (λ k → c * f k) ≈ c * Σ≤range m n f
Σ≤range-*-commute m n c f = Σ<range-*-commute m (suc n) c f
Σ<-distrib-* : ∀ m n f g →
Σ< m f * Σ< n g ≈ Σ< m (λ i → Σ< n (λ j → f i * g j))
Σ<-distrib-* 0 n f g = zeroˡ (Σ< n g)
Σ<-distrib-* (suc m) n f g = begin
Σ< (suc m) f * Σ< n g
≡⟨⟩
(Σ< m f + f m) * Σ< n g
≈⟨ distribʳ (Σ< n g) (Σ< m f) (f m) ⟩
Σ< m f * Σ< n g + f m * Σ< n g
≈⟨ +-cong (Σ<-distrib-* m n f g) (sym $ Σ<-*-commute n (f m) g) ⟩
Σ< m (λ i → Σ< n (λ j → f i * g j)) + Σ< n (λ j → f m * g j)
≡⟨⟩
Σ< (suc m) (λ i → Σ< n (λ j → f i * g j))
∎
Σ≤-distrib-* : ∀ m n f g →
Σ≤ m f * Σ≤ n g ≈ Σ≤ m (λ i → Σ≤ n (λ j → f i * g j))
Σ≤-distrib-* m n f g = Σ<-distrib-* (suc m) (suc n) f g
Σ<range-distrib-* : ∀ m n o p f g →
Σ<range m n f * Σ<range o p g ≈ Σ<range m n (λ i → Σ<range o p (λ j → f i * g j))
Σ<range-distrib-* m n o p f g =
Σ<-distrib-* (n ∸ m) (p ∸ o) (λ i → f (m ℕ.+ i)) λ j → g (o ℕ.+ j)
Σ≤range-distrib-* : ∀ m n o p f g →
Σ≤range m n f * Σ≤range o p g ≈ Σ≤range m n (λ i → Σ≤range o p (λ j → f i * g j))
Σ≤range-distrib-* m n o p = Σ<range-distrib-* m (suc n) o (suc p)
module GroupSummationProperties {c e} (G : Group c e) where
open Group G
open MonoidSummation monoid
open MonoidSummationProperties monoid
open SetoidReasoning setoid
Σ<-telescope : ∀ n (f : ℕ → Carrier) →
Σ< n (λ i → f i - f (suc i)) ≈ f 0 - f n
Σ<-telescope 0 f = sym $ inverseʳ (f 0)
Σ<-telescope (suc n) f = begin
Σ< n (λ i → f i - f (suc i)) ∙ (f n - f (suc n))
≈⟨ ∙-congʳ $ Σ<-telescope n f ⟩
(f 0 - f n) ∙ (f n - f (suc n))
≈⟨ assoc (f 0) (f n ⁻¹) (f n - f (suc n)) ⟩
f 0 ∙ (f n ⁻¹ ∙ (f n - f (suc n)))
≈⟨ ∙-congˡ $ sym $ assoc (f n ⁻¹) (f n) (f (suc n) ⁻¹) ⟩
f 0 ∙ ((f n ⁻¹ ∙ f n) - f (suc n))
≈⟨ ∙-congˡ $ ∙-congʳ $ inverseˡ (f n) ⟩
f 0 ∙ (ε - f (suc n))
≈⟨ ∙-congˡ $ identityˡ (f (suc n) ⁻¹) ⟩
f 0 - f (suc n)
∎
Σ≤-telescope : ∀ n (f : ℕ → Carrier) →
Σ≤ n (λ i → f i - f (suc i)) ≈ f 0 - f (suc n)
Σ≤-telescope n f = Σ<-telescope (suc n) f
Σ<range-telescope : ∀ {m n} (f : ℕ → Carrier) → m ≤ n →
Σ<range m n (λ i → f i - f (suc i)) ≈ f m - f n
Σ<range-telescope {m} {n} f m≤n = begin
Σ< (n ∸ m) (λ i → f (m ℕ.+ i) - f (suc (m ℕ.+ i)))
≈⟨ Σ<-congˡ (n ∸ m) $ (λ i → ∙-congˡ $ ⁻¹-cong $ reflexive $ ≡.cong f $ ≡.sym $ ℕₚ.+-suc m i) ⟩
Σ< (n ∸ m) (λ i → f (m ℕ.+ i) - f (m ℕ.+ suc i))
≈⟨ Σ<-telescope (n ∸ m) (λ i → f (m ℕ.+ i)) ⟩
f (m ℕ.+ 0) - f (m ℕ.+ (n ∸ m))
≈⟨ ∙-cong (reflexive $ ≡.cong f $ ℕₚ.+-identityʳ m) (⁻¹-cong $ reflexive $ ≡.cong f $ ℕₚ.m+[n∸m]≡n m≤n) ⟩
f m - f n
∎
Σ≤range-telescope : ∀ {m n} (f : ℕ → Carrier) → m ≤ suc n →
Σ≤range m n (λ i → f i - f (suc i)) ≈ f m - f (suc n)
Σ≤range-telescope {m} {n} f m≤1+n = Σ<range-telescope {m} {suc n} f m≤1+n
-- module AbelianGroupSummationProperties
-- Σ<-minus-commute : ∀ n f → Σ< n (λ i → f i ⁻¹) ≈ Σ< n f ⁻¹
|
{
"alphanum_fraction": 0.430816066,
"avg_line_length": 37.8550185874,
"ext": "agda",
"hexsha": "6a884eac2e39c67eb164aa717868b084d0872114",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/NumberTheory/Summation/Generic/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/NumberTheory/Summation/Generic/Properties.agda",
"max_line_length": 111,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/NumberTheory/Summation/Generic/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 11638,
"size": 20366
}
|
-- Andreas, 2013-03-22
module Issue473a where
data D : Set where
d : D
data P : D → Set where
p : P d
record Rc : Set where
constructor c
field f : D
works : {r : Rc} → P (Rc.f r) → Set
works p = D
works' : (r : Rc) → P (Rc.f r) → Set
works' (c .d) p = D
-- If we remove the constructor, the example fails:
record R : Set where
field f : D
fails : {r : R} → P (R.f r) → Set
fails p = D
-- d != R.f r of type D
-- when checking that the pattern p has type P (R.f r)
-- The error is justified since there is no pattern we could write down
-- for r. It would have to look like
--
-- record { f = .d }
--
-- but anonymous record patterns are not supported.
|
{
"alphanum_fraction": 0.6079881657,
"avg_line_length": 18.2702702703,
"ext": "agda",
"hexsha": "e3e8fee8b3f78d035db1b2615e54013cbfa95bf9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue473a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue473a.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue473a.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 228,
"size": 676
}
|
module Data.List.Relation.Quantification where
import Lvl
open import Data.List
open import Logic
open import Type
private variable ℓ ℓₑ : Lvl.Level
private variable T A B : Type{ℓ}
private variable l l₁ l₂ : List(T)
private variable x y px py : T
private variable P : T → Stmt{ℓ}
-- TODO: How about this as an alternative definition?
-- module _ (P : T → Type{ℓ}) where
-- open import Type.Dependent
-- open Data.IndexedList(Σ T P){List(T)} using (IndexedList ; intro)
--
-- AllElements : List(T) → Stmt{Lvl.of(T) Lvl.⊔ ℓ}
-- AllElements = IndexedList(intro ∅ ((_⊰_) ∘ Σ.left))
data AllElements (P : T → Stmt{ℓ}) : List(T) → Stmt{Lvl.of(T) Lvl.⊔ ℓ} where
∅ : AllElements(P)(∅)
_⊰_ : P(x) → AllElements(P)(l) → AllElements(P)(x ⊰ l)
data ExistsElement (P : T → Stmt{ℓ}) : List(T) → Stmt{Lvl.of(T) Lvl.⊔ ℓ} where
•_ : P(x) → ExistsElement(P)(x ⊰ l)
⊰_ : ExistsElement(P)(l) → ExistsElement(P)(x ⊰ l)
-- TODO: Maybe remove this and use AllElements with map₂ instead
data AllElements₂ (P : A → B → Stmt{ℓ}) : List(A) → List(B) → Stmt{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓ} where
∅ : AllElements₂(P)(∅)(∅)
_⊰_ : P(x)(y) → AllElements₂(P)(l₁)(l₂) → AllElements₂(P)(x ⊰ l₁)(y ⊰ l₂)
∀ₗᵢₛₜ : List(T) → (T → Stmt{ℓ}) → Stmt
∀ₗᵢₛₜ(l) P = AllElements P l
∃ₗᵢₛₜ : List(T) → (T → Stmt{ℓ}) → Stmt
∃ₗᵢₛₜ(l) P = ExistsElement P l
module _ {P : T → Type{ℓ}} where
open import Logic.Propositional
open import Structure.Relator.Equivalence
import Structure.Relator.Names as Names
open import Structure.Relator.Properties
open import Structure.Setoid
data ExistsElementEquivalence : ExistsElement(P)(l) → ExistsElement(P)(l) → Stmt{Lvl.of(T) Lvl.⊔ ℓ} where
use : ExistsElementEquivalence{l = x ⊰ l}(• px)(• py)
skip : ExistsElementEquivalence(px)(py) → ExistsElementEquivalence{l = x ⊰ l}(⊰ px)(⊰ py)
instance
ExistsElementEquivalence-equiv : Equiv(ExistsElement(P)(l))
Equiv._≡_ ExistsElementEquivalence-equiv = ExistsElementEquivalence
Equiv.equivalence ExistsElementEquivalence-equiv = intro ⦃ intro refl ⦄ ⦃ intro sym ⦄ ⦃ intro trans ⦄ where
refl : Names.Reflexivity(ExistsElementEquivalence{l = l})
refl{x = • _} = use
refl{x = ⊰ p} = skip(refl{x = p})
sym : Names.Symmetry(ExistsElementEquivalence{l = l})
sym {x = • px} {y = • py} use = use
sym {x = ⊰ px} {y = ⊰ py} (skip p) = skip(sym{x = px}{y = py} p)
trans : Names.Transitivity(ExistsElementEquivalence{l = l})
trans {x = • px} {y = • py} {z = • pz} use use = use
trans {x = ⊰ px} {y = ⊰ py} {z = ⊰ pz} (skip p) (skip q) = skip(trans {x = px} {y = py} {z = pz} p q)
module _ where
open import Type.Properties.Singleton
ExistsUniqueElement : (T → Stmt{ℓ}) → List(T) → Stmt
ExistsUniqueElement P l = IsUnit(ExistsElement(P)(l)) ⦃ ExistsElementEquivalence-equiv ⦄
∃!ₗᵢₛₜ : List(T) → (T → Stmt{ℓ}) → Stmt
∃!ₗᵢₛₜ(l) P = ExistsUniqueElement P l
|
{
"alphanum_fraction": 0.6301184433,
"avg_line_length": 39.4,
"ext": "agda",
"hexsha": "fecbc52a14f59e56ac90e539f3b055907a01e766",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation/Quantification.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation/Quantification.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation/Quantification.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1099,
"size": 2955
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Semigroup.MorphismProperties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Function using (_∘_; id)
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Functions.Embedding
open import Cubical.Data.Sigma
open import Cubical.Algebra
open import Cubical.Algebra.Properties
open import Cubical.Algebra.Semigroup.Morphism
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Pointed
open import Cubical.Algebra.Magma.Properties using (isPropIsMagma)
open import Cubical.Relation.Binary.Reasoning.Equality
open Iso
private
variable
ℓ ℓ′ ℓ′′ : Level
R : Semigroup ℓ
S : Semigroup ℓ′
T : Semigroup ℓ′′
isPropIsSemigroupHom : ∀ (S : Semigroup ℓ) (T : Semigroup ℓ′) f → isProp (IsSemigroupHom S T f)
isPropIsSemigroupHom S T f = isPropHomomorphic₂ (Semigroup.is-set T) f (Semigroup._•_ S) (Semigroup._•_ T)
isSetSemigroupHom : isSet (S ⟶ᴴ T)
isSetSemigroupHom {S = S} {T = T} = isOfHLevelRespectEquiv 2 equiv
(isSetΣ (isSetΠ λ _ → is-set T)
(λ f → isProp→isSet (isPropIsSemigroupHom S T f)))
where
open Semigroup
equiv : (Σ[ g ∈ (⟨ S ⟩ → ⟨ T ⟩) ] IsSemigroupHom S T g) ≃ SemigroupHom S T
equiv = isoToEquiv (iso (λ (g , m) → semigrouphom g m)
(λ (semigrouphom g m) → g , m)
(λ _ → refl) λ _ → refl)
isSemigroupHomComp : {f : ⟨ R ⟩ → ⟨ S ⟩} {g : ⟨ S ⟩ → ⟨ T ⟩}
→ IsSemigroupHom R S f → IsSemigroupHom S T g
→ IsSemigroupHom R T (g ∘ f)
isSemigroupHomComp {g = g} fHom gHom _ _ = cong g (fHom _ _) ∙ gHom _ _
private
isSemigroupHomComp′ : (f : R ⟶ᴴ S) (g : S ⟶ᴴ T)
→ IsSemigroupHom R T (SemigroupHom.fun g ∘ SemigroupHom.fun f)
isSemigroupHomComp′ (semigrouphom f fHom) (semigrouphom g gHom) _ _ =
cong g (fHom _ _) ∙ gHom _ _
compSemigroupHom : (R ⟶ᴴ S) → (S ⟶ᴴ T) → (R ⟶ᴴ T)
compSemigroupHom f g =
semigrouphom _ (isSemigroupHomComp′ f g)
compSemigroupEquiv : R ≃ᴴ S → S ≃ᴴ T → R ≃ᴴ T
compSemigroupEquiv f g =
semigroupequiv (compEquiv f.eq g.eq) (isSemigroupHomComp′ f.hom g.hom)
where
module f = SemigroupEquiv f
module g = SemigroupEquiv g
isSemigroupHomId : (S : Semigroup ℓ) → IsSemigroupHom S S id
isSemigroupHomId S _ _ = refl
idSemigroupHom : (S : Semigroup ℓ) → (S ⟶ᴴ S)
idSemigroupHom S = record
{ fun = id
; isHom = isSemigroupHomId S
}
idSemigroupEquiv : (S : Semigroup ℓ) → S ≃ᴴ S
idSemigroupEquiv S = record
{ eq = idEquiv ⟨ S ⟩
; isHom = isSemigroupHomId S
}
-- Isomorphism inversion
isSemigroupHomInv : (eqv : S ≃ᴴ T) → IsSemigroupHom T S (invEq (SemigroupEquiv.eq eqv))
isSemigroupHomInv {S = S} {T = T} (semigroupequiv eq isHom) x y = isInj-f _ _ (
f (f⁻¹ (x •ᵀ y)) ≡⟨ retEq eq _ ⟩
x •ᵀ y ≡˘⟨ cong₂ _•ᵀ_ (retEq eq x) (retEq eq y) ⟩
f (f⁻¹ x) •ᵀ f (f⁻¹ y) ≡˘⟨ isHom (f⁻¹ x) (f⁻¹ y) ⟩
f (f⁻¹ x • f⁻¹ y) ∎)
where
_•_ = Semigroup._•_ S -- superscript S isn't available for some reason
_•ᵀ_ = Semigroup._•_ T
f = equivFun eq
f⁻¹ = invEq eq
isInj-f : (x y : ⟨ S ⟩) → f x ≡ f y → x ≡ y
isInj-f x y = invEq (_ , isEquiv→isEmbedding (eq .snd) x y)
invSemigroupHom : S ≃ᴴ T → (T ⟶ᴴ S)
invSemigroupHom eq = record { isHom = isSemigroupHomInv eq }
invSemigroupEquiv : S ≃ᴴ T → T ≃ᴴ S
invSemigroupEquiv eq = record
{ eq = invEquiv (SemigroupEquiv.eq eq)
; isHom = isSemigroupHomInv eq
}
semigroupHomEq : {f g : S ⟶ᴴ T} → (SemigroupHom.fun f ≡ SemigroupHom.fun g) → f ≡ g
semigroupHomEq {S = S} {T = T} {semigrouphom f fm} {semigrouphom g gm} p i =
semigrouphom (p i) (p-hom i)
where
p-hom : PathP (λ i → IsSemigroupHom S T (p i)) fm gm
p-hom = toPathP (isPropIsSemigroupHom S T _ _ _)
semigroupEquivEq : {f g : S ≃ᴴ T} → (SemigroupEquiv.eq f ≡ SemigroupEquiv.eq g) → f ≡ g
semigroupEquivEq {S = S} {T = T} {semigroupequiv f fm} {semigroupequiv g gm} p i =
semigroupequiv (p i) (p-hom i)
where
p-hom : PathP (λ i → IsSemigroupHom S T (p i .fst)) fm gm
p-hom = toPathP (isPropIsSemigroupHom S T _ _ _)
module SemigroupΣTheory {ℓ} where
RawSemigroupStructure : Type ℓ → Type ℓ
RawSemigroupStructure X = X → X → X
RawSemigroupEquivStr = AutoEquivStr RawSemigroupStructure
rawSemigroupUnivalentStr : UnivalentStr _ RawSemigroupEquivStr
rawSemigroupUnivalentStr = autoUnivalentStr RawSemigroupStructure
SemigroupAxioms : (A : Type ℓ) → RawSemigroupStructure A → Type ℓ
SemigroupAxioms A _•_ = IsMagma A _•_ × Associative _•_
SemigroupStructure : Type ℓ → Type ℓ
SemigroupStructure = AxiomsStructure RawSemigroupStructure SemigroupAxioms
SemigroupΣ : Type (ℓ-suc ℓ)
SemigroupΣ = TypeWithStr ℓ SemigroupStructure
isPropSemigroupAxioms : (A : Type ℓ) (_•_ : RawSemigroupStructure A) →
isProp (SemigroupAxioms A _•_)
isPropSemigroupAxioms A _•_ = isPropΣ isPropIsMagma λ isMagmaA → isPropAssociative (IsMagma.is-set isMagmaA) _•_
SemigroupEquivStr : StrEquiv SemigroupStructure ℓ
SemigroupEquivStr = AxiomsEquivStr RawSemigroupEquivStr SemigroupAxioms
SemigroupAxiomsIsoIsSemigroup : {A : Type ℓ} {_•_ : RawSemigroupStructure A} →
Iso (SemigroupAxioms A _•_) (IsSemigroup A _•_)
fun SemigroupAxiomsIsoIsSemigroup (x , y) = issemigroup x y
inv SemigroupAxiomsIsoIsSemigroup (issemigroup x y) = (x , y)
rightInv SemigroupAxiomsIsoIsSemigroup _ = refl
leftInv SemigroupAxiomsIsoIsSemigroup _ = refl
SemigroupAxioms≡IsSemigroup : {A : Type ℓ} {_•_ : RawSemigroupStructure A} →
SemigroupAxioms _ _•_ ≡ IsSemigroup A _•_
SemigroupAxioms≡IsSemigroup = isoToPath SemigroupAxiomsIsoIsSemigroup
Semigroup→SemigroupΣ : Semigroup ℓ → SemigroupΣ
Semigroup→SemigroupΣ (mksemigroup A _•_ isSemigroupA) =
A , _•_ , SemigroupAxiomsIsoIsSemigroup .inv isSemigroupA
SemigroupΣ→Semigroup : SemigroupΣ → Semigroup ℓ
SemigroupΣ→Semigroup (A , _•_ , isSemigroupA) =
mksemigroup A _•_ (SemigroupAxiomsIsoIsSemigroup .fun isSemigroupA)
SemigroupIsoSemigroupΣ : Iso (Semigroup ℓ) SemigroupΣ
SemigroupIsoSemigroupΣ =
iso Semigroup→SemigroupΣ SemigroupΣ→Semigroup (λ _ → refl) (λ _ → refl)
semigroupUnivalentStr : UnivalentStr SemigroupStructure SemigroupEquivStr
semigroupUnivalentStr = axiomsUnivalentStr _ isPropSemigroupAxioms rawSemigroupUnivalentStr
SemigroupΣPath : (S T : SemigroupΣ) → (S ≃[ SemigroupEquivStr ] T) ≃ (S ≡ T)
SemigroupΣPath = SIP semigroupUnivalentStr
SemigroupEquivΣ : (S T : Semigroup ℓ) → Type ℓ
SemigroupEquivΣ S T = Semigroup→SemigroupΣ S ≃[ SemigroupEquivStr ] Semigroup→SemigroupΣ T
SemigroupIsoΣPath : {S T : Semigroup ℓ} → Iso (SemigroupEquiv S T) (SemigroupEquivΣ S T)
fun SemigroupIsoΣPath (semigroupequiv e h) = (e , h)
inv SemigroupIsoΣPath (e , h) = semigroupequiv e h
rightInv SemigroupIsoΣPath _ = refl
leftInv SemigroupIsoΣPath _ = refl
SemigroupPath : (S T : Semigroup ℓ) → (SemigroupEquiv S T) ≃ (S ≡ T)
SemigroupPath S T =
SemigroupEquiv S T ≃⟨ isoToEquiv SemigroupIsoΣPath ⟩
SemigroupEquivΣ S T ≃⟨ SemigroupΣPath _ _ ⟩
Semigroup→SemigroupΣ S ≡ Semigroup→SemigroupΣ T ≃⟨ isoToEquiv (invIso (congIso SemigroupIsoSemigroupΣ)) ⟩
S ≡ T ■
RawSemigroupΣ : Type (ℓ-suc ℓ)
RawSemigroupΣ = TypeWithStr ℓ RawSemigroupStructure
Semigroup→RawSemigroupΣ : Semigroup ℓ → RawSemigroupΣ
Semigroup→RawSemigroupΣ S = (⟨ S ⟩ , Semigroup._•_ S)
InducedSemigroup : (S : Semigroup ℓ) (T : RawSemigroupΣ) (e : ⟨ S ⟩ ≃ ⟨ T ⟩) →
RawSemigroupEquivStr (Semigroup→RawSemigroupΣ S) T e → Semigroup ℓ
InducedSemigroup S T e r =
SemigroupΣ→Semigroup (inducedStructure rawSemigroupUnivalentStr (Semigroup→SemigroupΣ S) T (e , r))
InducedSemigroupPath : (S : Semigroup ℓ) (T : RawSemigroupΣ) (e : ⟨ S ⟩ ≃ ⟨ T ⟩)
(E : RawSemigroupEquivStr (Semigroup→RawSemigroupΣ S) T e) →
S ≡ InducedSemigroup S T e E
InducedSemigroupPath S T e E =
SemigroupPath S (InducedSemigroup S T e E) .fst (semigroupequiv e E)
-- We now extract the important results from the above module
open SemigroupΣTheory public using (InducedSemigroup; InducedSemigroupPath)
SemigroupPath : (S ≃ᴴ T) ≃ (S ≡ T)
SemigroupPath = SemigroupΣTheory.SemigroupPath _ _
isPropIsSemigroup : {A : Type ℓ} {_•_ : Op₂ A} → isProp (IsSemigroup A _•_)
isPropIsSemigroup =
subst isProp SemigroupΣTheory.SemigroupAxioms≡IsSemigroup
(SemigroupΣTheory.isPropSemigroupAxioms _ _)
open Semigroup
uaSemigroup : S ≃ᴴ T → S ≡ T
uaSemigroup = equivFun SemigroupPath
carac-uaSemigroup : {S T : Semigroup ℓ} (f : S ≃ᴴ T)
→ cong Carrier (uaSemigroup f) ≡ ua (SemigroupEquiv.eq f)
carac-uaSemigroup (semigroupequiv f m) =
(refl ∙∙ ua f ∙∙ refl)
≡˘⟨ rUnit (ua f) ⟩
ua f ∎
Semigroup≡ : (S T : Semigroup ℓ) → (
Σ[ p ∈ ⟨ S ⟩ ≡ ⟨ T ⟩ ]
Σ[ q ∈ PathP (λ i → p i → p i → p i) (_•_ S) (_•_ T) ]
PathP (λ i → IsSemigroup (p i) (q i)) (isSemigroup S) (isSemigroup T))
≃ (S ≡ T)
Semigroup≡ S T = isoToEquiv (iso
(λ (p , q , r) i → mksemigroup (p i) (q i) (r i))
(λ p → cong Carrier p , cong _•_ p , cong isSemigroup p)
(λ _ → refl) (λ _ → refl))
caracSemigroup≡ : {S T : Semigroup ℓ} (p q : S ≡ T) → cong Carrier p ≡ cong Carrier q → p ≡ q
caracSemigroup≡ {S = S} {T} p q t = cong (fst (Semigroup≡ S T)) (Σ≡Prop (λ _ →
isPropΣ
(isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set T) _ _) λ _ →
isOfHLevelPathP 1 isPropIsSemigroup _ _)
t)
uaSemigroupId : (S : Semigroup ℓ) → uaSemigroup (idSemigroupEquiv S) ≡ refl
uaSemigroupId S = caracSemigroup≡ _ _ (carac-uaSemigroup (idSemigroupEquiv S) ∙ uaIdEquiv)
uaCompSemigroupEquiv : {R S T : Semigroup ℓ} (f : R ≃ᴴ S) (g : S ≃ᴴ T)
→ uaSemigroup (compSemigroupEquiv f g) ≡ uaSemigroup f ∙ uaSemigroup g
uaCompSemigroupEquiv f g = caracSemigroup≡ _ _ (
cong Carrier (uaSemigroup (compSemigroupEquiv f g))
≡⟨ carac-uaSemigroup (compSemigroupEquiv f g) ⟩
ua (eq (compSemigroupEquiv f g))
≡⟨ uaCompEquiv _ _ ⟩
ua (eq f) ∙ ua (eq g)
≡˘⟨ cong (_∙ ua (eq g)) (carac-uaSemigroup f) ⟩
cong Carrier (uaSemigroup f) ∙ ua (eq g)
≡˘⟨ cong (cong Carrier (uaSemigroup f) ∙_) (carac-uaSemigroup g) ⟩
cong Carrier (uaSemigroup f) ∙ cong Carrier (uaSemigroup g)
≡˘⟨ cong-∙ Carrier (uaSemigroup f) (uaSemigroup g) ⟩
cong Carrier (uaSemigroup f ∙ uaSemigroup g) ∎)
where open SemigroupEquiv
|
{
"alphanum_fraction": 0.6618392469,
"avg_line_length": 40.4688644689,
"ext": "agda",
"hexsha": "085eadbe472f2705da7870a0ffe434b29af05e34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/MorphismProperties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/MorphismProperties.agda",
"max_line_length": 114,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/MorphismProperties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4116,
"size": 11048
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Unary.Any.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Any.Properties where
open import Data.List.Relation.Unary.Any.Properties public
{-# WARNING_ON_IMPORT
"Data.List.Any.Properties was deprecated in v1.0.
Use Data.List.Relation.Unary.Any.Properties instead."
#-}
|
{
"alphanum_fraction": 0.5501858736,
"avg_line_length": 29.8888888889,
"ext": "agda",
"hexsha": "0b6ea86a4ee0ddbe1a933299b9b4fb0697ce211f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Any/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Any/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Any/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 92,
"size": 538
}
|
module Thesis.ANormalDTerm where
open import Thesis.ANormal public
open import Thesis.Changes public
open import Thesis.LangChanges public
ΔΔ : Context → Context
ΔΔ ∅ = ∅
ΔΔ (τ • Γ) = Δt τ • ΔΔ Γ
-- Because the standard name is so irregular.
Δτ = Δt
ChΔ : ∀ (Δ : Context) → Set
ChΔ Δ = ⟦ ΔΔ Δ ⟧Context
-- [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set
-- [ ∅ ]Δ ∅ from ∅ to ∅ = ⊤
-- [ τ • Δ ]Δ dv • dρ from v1 • ρ1 to (v2 • ρ2) = [ τ ]τ dv from v1 to v2 × [ Δ ]Δ dρ from ρ1 to ρ2
data [_]Δ_from_to_ : ∀ Δ → ChΔ Δ → (ρ1 ρ2 : ⟦ Δ ⟧Context) → Set where
v∅ : [ ∅ ]Δ ∅ from ∅ to ∅
_v•_ : ∀ {τ Δ dv v1 v2 dρ ρ1 ρ2} →
(dvv : [ τ ]τ dv from v1 to v2) →
(dρρ : [ Δ ]Δ dρ from ρ1 to ρ2) →
[ τ • Δ ]Δ (dv • dρ) from (v1 • ρ1) to (v2 • ρ2)
derive-dvar : ∀ {Δ σ} → (x : Var Δ σ) → Var (ΔΔ Δ) (Δτ σ)
derive-dvar this = this
derive-dvar (that x) = that (derive-dvar x)
fromtoDeriveDVar : ∀ {Δ τ} → (x : Var Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dvar x ⟧Var dρ) from (⟦ x ⟧Var ρ1) to (⟦ x ⟧Var ρ2)
fromtoDeriveDVar this (dvv v• dρρ) = dvv
fromtoDeriveDVar (that x) (dvv v• dρρ) = fromtoDeriveDVar x dρρ
-- A DTerm evaluates in normal context Δ, change context (ΔΔ Δ), and produces
-- a result of type (Δt τ).
data DTerm : (Δ : Context) (τ : Type) → Set where
dvar : ∀ {Δ τ} (x : Var (ΔΔ Δ) (Δt τ)) →
DTerm Δ τ
dlett : ∀ {Δ τ σ τ₁} →
(f : Var Δ (σ ⇒ τ₁)) →
(x : Var Δ σ) →
(t : Term (τ₁ • Δ) τ) →
(df : Var (ΔΔ Δ) (Δτ (σ ⇒ τ₁))) →
(dx : Var (ΔΔ Δ) (Δτ σ)) →
(dt : DTerm (τ₁ • Δ) τ) →
DTerm Δ τ
data DFun (Δ : Context) : (τ : Type) → Set where
dterm : ∀ {τ} → DTerm Δ τ → DFun Δ τ
dabs : ∀ {σ τ} → DFun (σ • Δ) τ → DFun Δ (σ ⇒ τ)
derive-dterm : ∀ {Δ σ} → (t : Term Δ σ) → DTerm Δ σ
derive-dterm (var x) = dvar (derive-dvar x)
derive-dterm (lett f x t) =
dlett f x t (derive-dvar f) (derive-dvar x) (derive-dterm t)
⟦_⟧DTerm : ∀ {Δ τ} → DTerm Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dvar x ⟧DTerm ρ dρ = ⟦ x ⟧Var dρ
⟦ dlett f x t df dx dt ⟧DTerm ρ dρ =
let v = (⟦ x ⟧Var ρ)
in
⟦ dt ⟧DTerm
(⟦ f ⟧Var ρ v • ρ)
(⟦ df ⟧Var dρ v (⟦ dx ⟧Var dρ) • dρ)
fromtoDeriveDTerm : ∀ {Δ τ} → (t : Term Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dterm t ⟧DTerm ρ1 dρ) from (⟦ t ⟧Term ρ1) to (⟦ t ⟧Term ρ2)
fromtoDeriveDTerm (var x) dρρ = fromtoDeriveDVar x dρρ
fromtoDeriveDTerm (lett f x t) dρρ =
let fromToF = fromtoDeriveDVar f dρρ
fromToX = fromtoDeriveDVar x dρρ
fromToFX = fromToF _ _ _ fromToX
in fromtoDeriveDTerm t (fromToFX v• dρρ)
derive-dfun : ∀ {Δ σ} → (t : Fun Δ σ) → DFun Δ σ
derive-dfun (term t) = dterm (derive-dterm t)
derive-dfun (abs f) = dabs (derive-dfun f)
⟦_⟧DFun : ∀ {Δ τ} → DFun Δ τ → ⟦ Δ ⟧Context → ⟦ ΔΔ Δ ⟧Context → ⟦ Δt τ ⟧Type
⟦ dterm t ⟧DFun = ⟦ t ⟧DTerm
⟦ dabs df ⟧DFun ρ dρ = λ v dv → ⟦ df ⟧DFun (v • ρ) (dv • dρ)
fromtoDeriveDFun : ∀ {Δ τ} → (f : Fun Δ τ) →
∀ {dρ ρ1 ρ2} → [ Δ ]Δ dρ from ρ1 to ρ2 →
[ τ ]τ (⟦ derive-dfun f ⟧DFun ρ1 dρ) from (⟦ f ⟧Fun ρ1) to (⟦ f ⟧Fun ρ2)
fromtoDeriveDFun (term t) = fromtoDeriveDTerm t
fromtoDeriveDFun (abs f) dρρ = λ dv v1 v2 dvv → fromtoDeriveDFun f (dvv v• dρρ)
|
{
"alphanum_fraction": 0.5591734502,
"avg_line_length": 34.3440860215,
"ext": "agda",
"hexsha": "5c2ed5920bcb395c8b0a61060a5d75bb440670a6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/ANormalDTerm.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/ANormalDTerm.agda",
"max_line_length": 99,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/ANormalDTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 1598,
"size": 3194
}
|
module _ where
postulate
A B C D E F : Set
a : A
b : B
c : C
d : D
e : E
f : F
T : {A : Set} → A → Set
module M1 (a : A) where
module M2 (b : B) where
postulate g : T a → T b
module M3 (c : C) where
postulate h : T a → T b → T c
module M4 (d : D) where
module M5 (e : E) (f : F) where
open M2 public
open M2.M3 public
open M3 public renaming (h to h')
module M = M1.M4 a d
module M' = M.M5 e f
M'g : (x : B) → T a → T x
M'g = M'.g
M'M3h M'h M'h' : (x : B) (y : C) → T a → T x → T y
M'M3h = M'.M3.h
M'h = M'.h
M'h' = M'.h'
|
{
"alphanum_fraction": 0.4769230769,
"avg_line_length": 16.7142857143,
"ext": "agda",
"hexsha": "8536df9a673d2f47442f3975e7d1be1880918cef",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1985b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1985b.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1985b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 271,
"size": 585
}
|
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Identity
open import HoTT.Homotopy
module HoTT.Equivalence where
open variables
private variable C : 𝒰 i
module _ (f : A → B) where
qinv = Σ[ g ∶ (B → A) ] (g ∘ f ~ id) × (f ∘ g ~ id)
-- Bi-invertible map
linv = Σ[ g ∶ (B → A) ] g ∘ f ~ id
rinv = Σ[ g ∶ (B → A) ] f ∘ g ~ id
-- The book uses a flipped version rinv × linv for the definition in §2.4.
biinv = linv × rinv
-- Half-adjoint equivalence
ishae = Σ[ g ∶ (B → A) ] Σ[ η ∶ g ∘ f ~ id ] Σ[ ε ∶ f ∘ g ~ id ] ap f ∘ η ~ ε ∘ f
module _ {f : A → B} where
module qinv (e : qinv f) where
g = pr₁ e
η = pr₁ (pr₂ e)
ε = pr₂ (pr₂ e)
qinv→linv : qinv f → linv f
qinv→linv e = g , η
where open qinv e
qinv→rinv : qinv f → rinv f
qinv→rinv e = g , ε
where open qinv e
module ishae (e : ishae f) where
g = pr₁ e
η = pr₁ (pr₂ e)
ε = pr₁ (pr₂ (pr₂ e))
τ = pr₂ (pr₂ (pr₂ e))
ishae→qinv : ishae f → qinv f
ishae→qinv e = g , η , ε
where open ishae e
qinv→ishae : qinv f → ishae f
qinv→ishae e = g , η , ε' , τ
where
open qinv e
ε' : f ∘ g ~ id
ε' b = ε (f (g b)) ⁻¹ ∙ (ap f (η (g b)) ∙ ε b)
τ : ap f ∘ η ~ ε' ∘ f
τ a =
ap f (η a) =⟨ unitₗ ⟩
refl ∙ ap f (η a) =⟨ invₗ ⁻¹ ∙ᵣ _ ⟩
_ ∙ ε (f (g (f a))) ∙ ap f (η a) =⟨ assoc ⁻¹ ⟩
_ ∙ (_ ∙ ap f (η a)) =⟨ _ ∙ₗ (_ ∙ₗ ap-id (ap f (η a)) ⁻¹) ⟩
_ ∙ (ε (f (g (f a))) ∙ ap id _) =⟨ _ ∙ₗ ~-natural ε (ap f (η a)) ⟩
_ ∙ (ap (f ∘ g) (ap f (η a)) ∙ _) =⟨ _ ∙ₗ (ap-∘ (f ∘ g) f (η a) ⁻¹ ∙ᵣ _) ⟩
_ ∙ (ap (f ∘ g ∘ f) (η a) ∙ _) =⟨ _ ∙ₗ (ap-∘ f (g ∘ f) (η a) ∙ᵣ _) ⟩
_ ∙ (ap f (ap (g ∘ f) (η a)) ∙ _) =⟨ _ ∙ₗ (ap (ap f) (~-natural-comm η a ⁻¹) ∙ᵣ _) ⟩
ε' (f a) ∎
where open =-Reasoning
module biinv (e : biinv f) where
h = pr₁ (pr₁ e)
β = pr₂ (pr₁ e)
g = pr₁ (pr₂ e)
α = pr₂ (pr₂ e)
biinv→qinv : biinv f → qinv f
biinv→qinv e = g , β' , α
where
open biinv e
γ : g ~ h
γ x = β (g x) ⁻¹ ∙ ap h (α x)
β' : g ∘ f ~ id
β' x = γ (f x) ∙ β x
qinv→biinv : qinv f → biinv f
qinv→biinv e = (g , η) , (g , ε)
where open qinv e
module _ {f₁ : B → C} {f₂ : A → B} where
ishae-∘ : ishae f₁ → ishae f₂ → ishae (f₁ ∘ f₂)
ishae-∘ e₁ e₂ = g , η , ε , τ
where
open ishae e₁ renaming (g to g₁ ; η to η₁ ; ε to ε₁ ; τ to τ₁)
open ishae e₂ renaming (g to g₂ ; η to η₂ ; ε to ε₂ ; τ to τ₂)
f = f₁ ∘ f₂
g = g₂ ∘ g₁
η : g ∘ f ~ id
η x = ap g₂ (η₁ (f₂ x)) ∙ η₂ x
ε : f ∘ g ~ id
ε x = ap f₁ (ε₂ (g₁ x)) ∙ ε₁ x
τ : ap f ∘ η ~ ε ∘ f
τ x =
ap f (η x) =⟨ ap-∘ f₁ f₂ (ap g₂ (η₁ (f₂ x)) ∙ η₂ x) ⟩
ap f₁ (ap f₂ (η x)) =⟨ ap (ap f₁) (ap-∙ f₂ (ap g₂ (η₁ (f₂ x))) (η₂ x)) ⟩
ap f₁ (ap f₂ (ap g₂ (η₁ (f₂ x))) ∙ ap f₂ (η₂ x)) =⟨ ap (ap f₁) (ap f₂ _ ∙ₗ τ₂ x) ⟩
ap f₁ (ap f₂ (ap g₂ (η₁ (f₂ x))) ∙ ε₂ (f₂ x)) =⟨ ap (ap f₁) (ap-∘ f₂ g₂ _ ⁻¹ ∙ᵣ ε₂ (f₂ x)) ⟩
ap f₁ (ap (f₂ ∘ g₂) (η₁ (f₂ x)) ∙ ε₂ (f₂ x)) =⟨ ap (ap f₁) (~-natural ε₂ (η₁ (f₂ x))) ⁻¹ ⟩
ap f₁ (ε₂ (g₁ (f x)) ∙ ap id (η₁ (f₂ x))) =⟨ ap (ap f₁) (ε₂ (g₁ (f x)) ∙ₗ ap-id (η₁ (f₂ x))) ⟩
ap f₁ (ε₂ (g₁ (f x)) ∙ η₁ (f₂ x)) =⟨ ap-∙ f₁ (ε₂ (g₁ (f x))) (η₁ (f₂ x)) ⟩
ap f₁ (ε₂ (g₁ (f x))) ∙ ap f₁ (η₁ (f₂ x)) =⟨ _ ∙ₗ τ₁ (f₂ x) ⟩
ε (f x) ∎
where open =-Reasoning
biinv-∘ : biinv f₁ → biinv f₂ → biinv (f₁ ∘ f₂)
biinv-∘ e₁ e₂ = (h , β) , (g , α)
where
open biinv e₁ renaming (h to h₁ ; β to β₁ ; g to g₁ ; α to α₁)
open biinv e₂ renaming (h to h₂ ; β to β₂ ; g to g₂ ; α to α₂)
f = f₁ ∘ f₂
h = h₂ ∘ h₁
β : h ∘ f ~ id
β x = ap h₂ (β₁ (f₂ x)) ∙ β₂ x
g = g₂ ∘ g₁
α : f ∘ g ~ id
α x = ap f₁ (α₂ (g₁ x)) ∙ α₁ x
-- Choose isequiv :≡ biinv since it is quicker to compute.
isequiv = biinv
qinv→isequiv = qinv→biinv
isequiv→qinv = biinv→qinv
isequiv-∘ = biinv-∘
_≃_ : 𝒰 i → 𝒰 j → 𝒰 (i ⊔ j)
A ≃ B = Σ (A → B) isequiv
infixr 5 _≃_
record Iso (A : 𝒰 i) (B : 𝒰 j) : 𝒰 (i ⊔ j) where
field
f : A → B
g : B → A
η : g ∘ f ~ id
ε : f ∘ g ~ id
iso→eqv : Iso A B → A ≃ B
iso→eqv iso = f , qinv→isequiv (g , η , ε)
where open Iso iso
eqv→iso : A ≃ B → Iso A B
eqv→iso e = record { f = pr₁ e ; g = g ; η = η ; ε = ε }
where open qinv (isequiv→qinv (pr₂ e))
module Eqv {i} {j} {A : 𝒰 i} {B : 𝒰 j} (e : A ≃ B) = Iso (eqv→iso e)
-- Lemma 2.4.12
-- (i)
reflₑ : A ≃ A
reflₑ = id , qinv→isequiv (id , (λ _ → refl) , (λ _ → refl))
-- (ii)
_⁻¹ₑ : A ≃ B → B ≃ A
e ⁻¹ₑ = g , qinv→isequiv (pr₁ e , ε , η)
where
open qinv (isequiv→qinv (pr₂ e))
infix 30 _⁻¹ₑ
-- (iii)
_∙ₑ_ : A ≃ B → B ≃ C → A ≃ C
e₁ ∙ₑ e₂ = pr₁ e₂ ∘ pr₁ e₁ , isequiv-∘ (pr₂ e₂) (pr₂ e₁)
infixl 20 _∙ₑ_
idtoeqv : A == B → A ≃ B
idtoeqv p = transport id p , e
where
e : isequiv (transport id p)
e rewrite p = pr₂ reflₑ
module ≃-Reasoning
where
_≃⟨_⟩_ : (A : 𝒰 i) → A ≃ B → B ≃ C → A ≃ C
x ≃⟨ e₁ ⟩ e₂ = e₁ ∙ₑ e₂
infixr 2 _≃⟨_⟩_
_∎ : (A : 𝒰 i) → A ≃ A
_ ∎ = reflₑ
infix 3 _∎
|
{
"alphanum_fraction": 0.4467676961,
"avg_line_length": 28.6428571429,
"ext": "agda",
"hexsha": "de6d702c54ae34b7b9373e8dbcde54da9e1d481b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Equivalence.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2683,
"size": 5213
}
|
module CTL.Modalities.EU where
-- TODO
|
{
"alphanum_fraction": 0.75,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "e82008d8c67d1363d1b2c4adb3f7963581a21fcc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Modalities/EU.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Modalities/EU.agda",
"max_line_length": 30,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Modalities/EU.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 12,
"size": 40
}
|
module BBHeap.Last {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import BBHeap.Compound _≤_
open import BBHeap.DropLast _≤_
open import Bound.Lower A
open import Data.Sum
last : {b : Bound}(h : BBHeap b) → Compound h → A
last (left {b} {x} {l} {r} b≤x l⋘r) (cl .b≤x .l⋘r)
with l | r | l⋘r | lemma-dropLast⋘ l⋘r
... | leaf | leaf | lf⋘ | _ = x
... | left x≤y₁ l₁⋘r₁ | left x≤y₂ l₂⋘r₂ | ll⋘ .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₂≃r₂ r₁≃l₂ | inj₁ l≃r = last (left x≤y₂ l₂⋘r₂) (cl x≤y₂ l₂⋘r₂)
... | left x≤y₁ l₁⋘r₁ | left x≤y₂ l₂⋘r₂ | ll⋘ .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₂≃r₂ r₁≃l₂ | inj₂ dl⋘r = last (left x≤y₁ l₁⋘r₁) (cl x≤y₁ l₁⋘r₁)
... | right x≤y₁ l₁⋙r₁ | left x≤y₂ l₂⋘r₂ | lr⋘ .x≤y₁ .x≤y₂ .l₁⋙r₁ .l₂⋘r₂ l₂≃r₂ l₁⋗l₂ | inj₁ ()
... | right x≤y₁ l₁⋙r₁ | left x≤y₂ l₂⋘r₂ | lr⋘ .x≤y₁ .x≤y₂ .l₁⋙r₁ .l₂⋘r₂ l₂≃r₂ l₁⋗l₂ | inj₂ dl⋘r = last (right x≤y₁ l₁⋙r₁) (cr x≤y₁ l₁⋙r₁)
last (right {b} {x} {l} {r} b≤x l⋙r) (cr .b≤x .l⋙r)
with l | r | l⋙r | lemma-dropLast⋙ l⋙r
... | left x≤y lf⋘ | leaf | ⋙lf {x = y} .x≤y | _ = y
... | left x≤y₁ l₁⋘r₁ | left x≤y₂ l₂⋘r₂ | ⋙rl .x≤y₁ .x≤y₂ .l₁⋘r₁ l₁≃r₁ .l₂⋘r₂ l₁⋗r₂ | inj₁ l⋗r = last (left x≤y₁ l₁⋘r₁) (cl x≤y₁ l₁⋘r₁)
... | left x≤y₁ l₁⋘r₁ | left x≤y₂ l₂⋘r₂ | ⋙rl .x≤y₁ .x≤y₂ .l₁⋘r₁ l₁≃r₁ .l₂⋘r₂ l₁⋗r₂ | inj₂ l⋙dr = last (left x≤y₂ l₂⋘r₂) (cl x≤y₂ l₂⋘r₂)
... | left x≤y₁ l₁⋘r₁ | right x≤y₂ l₂⋙r₂ | ⋙rr .x≤y₁ .x≤y₂ .l₁⋘r₁ l₁≃r₁ .l₂⋙r₂ l₁≃l₂ | inj₁ ()
... | left x≤y₁ l₁⋘r₁ | right x≤y₂ l₂⋙r₂ | ⋙rr .x≤y₁ .x≤y₂ .l₁⋘r₁ l₁≃r₁ .l₂⋙r₂ l₁≃l₂ | inj₂ l⋙dr = last (right x≤y₂ l₂⋙r₂) (cr x≤y₂ l₂⋙r₂)
|
{
"alphanum_fraction": 0.560130719,
"avg_line_length": 63.75,
"ext": "agda",
"hexsha": "6d22bce572648cdd1789d10a5a096e0ac3b151ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Last.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Last.agda",
"max_line_length": 138,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Last.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 1098,
"size": 1530
}
|
module Categories.Functor.Discrete where
open import Categories.Category
open import Categories.Functor
open import Categories.Agda
open import Categories.Categories
open import Categories.Support.PropositionalEquality
import Categories.Discrete as D
Discrete : ∀ {o} -> Functor (Sets o) (Categories o o _)
Discrete {o} = record {
F₀ = D.Discrete;
F₁ = F₁;
identity = λ f → Heterogeneous.≡⇒∼ _;
homomorphism = λ f → Heterogeneous.≡⇒∼ _;
F-resp-≡ = F-resp-≡}
where
F₁ : {A B : Category.Obj (Sets o)} → Sets o [ A , B ] →
Categories o o _ [ D.Discrete A , D.Discrete B ]
F₁ f = record {
F₀ = f;
F₁ = ≣-cong f;
identity = _;
homomorphism = _;
F-resp-≡ = _ }
F-resp-≡ : {A B : Set o} {F G : Sets o [ A , B ]} →
Sets o [ F ≡ G ] → Categories o o _ [ F₁ F ≡ F₁ G ]
F-resp-≡ F≡G {a} ≣-refl rewrite F≡G {a} = Heterogeneous.≡⇒∼ _
|
{
"alphanum_fraction": 0.531496063,
"avg_line_length": 33.8666666667,
"ext": "agda",
"hexsha": "7f6e9dd815b71b6bf3a7726fd0779844a4af83a6",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Discrete.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Discrete.agda",
"max_line_length": 72,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Discrete.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 328,
"size": 1016
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Queue where
open import Cubical.Data.Queue.Base public
|
{
"alphanum_fraction": 0.7297297297,
"avg_line_length": 15.8571428571,
"ext": "agda",
"hexsha": "09eec2b0ddd17bce8d844e7368acb83010e28e90",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Data/Queue.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Data/Queue.agda",
"max_line_length": 42,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Data/Queue.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 26,
"size": 111
}
|
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.Proof.Soundness(x : X) where
open import Data.Vec hiding (map; _>>=_)
open X(x)
import OutsideIn.Environments as EV
import OutsideIn.Expressions as E
import OutsideIn.TypeSchema as TS
import OutsideIn.TopLevel as TL
import OutsideIn.Constraints as CN
import OutsideIn.Inference as I
import OutsideIn.Inference.Separator as S
import OutsideIn.Inference.Prenexer as P
import OutsideIn.Inference.ConstraintGen as CG
import OutsideIn.Inference.Solver as SL
open EV(x)
open E(x)
open CN(x)
open TS(x)
open TL(x)
open I(x)
open CG(x)
open S(x)
open SL(x)
open P(x)
open import Relation.Binary.PropositionalEquality renaming ([_] to inspectC)
module Ax-f = Functor(axiomscheme-is-functor)
module QC-f = Functor(qconstraint-is-functor)
module Exp-f {r}{s} = Functor(expression-is-functor₂ {r}{s})
module TS-f {n} = Functor(type-schema-is-functor {n})
module pn-m {n} = Monad(PlusN-is-monad{n})
module Vec-f {n} = Functor(vec-is-functor {n})
open Monad(type-is-monad)
open Functor(is-functor)
type-substitute : ∀{a b} → (a → Type b) → Type a → Type b
type-substitute f t = (join ∘ map f) t
applyAll : ∀{tv}(n : ℕ) → Type tv → Type (tv ⨁ n)
applyAll zero x = x
applyAll (suc n) x = applyAll n (appType (map suc x) (unit zero))
constraint-substitute : ∀{a b} → (a → Type b) → QConstraint a → QConstraint b
constraint-substitute f t = constraint-types (type-substitute f) t
mutual
data _,_,_⊢_∶_ {ev tv : Set}(Q : AxiomScheme tv)(Qg : QConstraint tv)(Γ : Environment ev tv): {r : Shape} → Expression ev tv r → Type tv → Set where
TyEq : ∀ {τ₁ τ₂}{r}{e : Expression ev tv r}
→ Q , Qg , Γ ⊢ e ∶ τ₁
→ Q , Qg ⊩ (τ₁ ∼ τ₂)
→ Q , Qg , Γ ⊢ e ∶ τ₂
Abst : ∀ {τ₁ τ₂}{r}{e : Expression (Ⓢ ev) tv r}
→ Q , Qg , (⟨ ∀′ 0 · ε ⇒ τ₁ ⟩, Γ) ⊢ e ∶ τ₂
→ Q , Qg , Γ ⊢ λ′ e ∶ funType τ₁ τ₂
Appl : ∀ {τ₁ τ₂}{r₁ r₂}{e₁ : Expression ev tv r₁}{e₂ : Expression ev tv r₂}
→ Q , Qg , Γ ⊢ e₁ ∶ funType τ₁ τ₂
→ Q , Qg , Γ ⊢ e₂ ∶ τ₁
→ Q , Qg , Γ ⊢ (e₁ · e₂) ∶ τ₂
Let1 : ∀ {τ₁ τ₂}{r₁ r₂}{e₁ : Expression ev tv r₁}{e₂ : Expression (Ⓢ ev) tv r₂}
→ Q , Qg , Γ ⊢ e₁ ∶ τ₁
→ Q , Qg , (⟨ ∀′ 0 · ε ⇒ τ₁ ⟩, Γ) ⊢ e₂ ∶ τ₂
→ Q , Qg , Γ ⊢ (let₁ e₁ in′ e₂) ∶ τ₂
Let2 : ∀ {τ₁ τ₂}{r₁ r₂}{e₁ : Expression ev tv r₁}{e₂ : Expression (Ⓢ ev) tv r₂}
→ Q , Qg , Γ ⊢ e₁ ∶ τ₁
→ Q , Qg , (⟨ ∀′ 0 · ε ⇒ τ₁ ⟩, Γ) ⊢ e₂ ∶ τ₂
→ Q , Qg , Γ ⊢ (let₂ e₁ ∷ τ₁ in′ e₂) ∶ τ₂
Let3 : ∀ {n}{τ₁ τ₂}{r₁ r₂}{Qv}{e₁ : Expression ev (tv ⨁ n) r₁}{e₂ : Expression (Ⓢ ev) tv r₂}
→ Ax-f.map (pn-m.unit {n}) Q , QC-f.map (pn-m.unit {n}) Qg ∧ Qv , TS-f.map (pn-m.unit {n}) ∘ Γ ⊢ e₁ ∶ τ₁
→ Q , Qg , (⟨ ∀′ n · Qv ⇒ τ₁ ⟩, Γ) ⊢ e₂ ∶ τ₂
→ Q , Qg , Γ ⊢ (let₃ n · e₁ ∷ Qv ⇒ τ₁ in′ e₂) ∶ τ₂
VarN : ∀ {n}{v}{τ}{Qv}
→ (θ : (tv ⨁ n) → Type tv)
→ Γ v ≡ ∀′ n · Qv ⇒ τ
→ Q , Qg ⊩ constraint-substitute θ Qv
→ Q , Qg , Γ ⊢ (Var {_}{_}{Regular} v) ∶ (τ >>= θ )
DCn1 : ∀ {n}{l}{v}{K}{args}
→ (θ : (tv ⨁ n) → Type tv)
→ Γ v ≡ (DC∀ n · args ⟶ K)
→ Q , Qg , Γ ⊢ (Var {_}{_}{Datacon l} v) ∶ (applyAll n (unit K) >>= θ)
DCn2 : ∀ {a b}{l}{v}{K}{args}{Qv}
→ (θ : (tv ⨁ a) ⨁ b → Type tv)
→ Γ v ≡ (DC∀′ a , b · Qv ⇒ args ⟶ K)
→ Q , Qg ⊩ constraint-substitute θ Qv
→ Q , Qg , Γ ⊢ (Var {_}{_}{Datacon l} v) ∶ (map (pn-m.unit {b}) (applyAll a (unit K)) >>= θ)
Case : ∀ {τ}{r r′}{e : Expression ev tv r}{alts : Alternatives ev tv r′} {n : ℕ}
→ (T : tv)
→ (θ : (tv ⨁ n) → Type tv)
→ Q , Qg , Γ ⊢ e ∶ (applyAll n (unit T) >>= θ)
→ AltsType {n = n} Q Qg Γ θ T alts τ
→ Q , Qg , Γ ⊢ case e of alts ∶ τ
data AltsType {ev tv : Set}{n : ℕ}(Q : AxiomScheme tv)(Qg : QConstraint tv)(Γ : Environment ev tv)( θ : (tv ⨁ n) → Type tv)(T : tv)
: {r : Shape} → Alternatives ev tv r → Type tv → Set where
NoAlts : ∀ {τ} → AltsType Q Qg Γ θ T esac τ
OneAlt : ∀ {τ}{a}{r₁ r₂}{p : Name ev (Datacon a)}{e : Expression (ev ⨁ a) tv r₁}{as : Alternatives ev tv r₂}{vs}
→ AltsType {n = n} Q Qg Γ θ T as τ
→ Γ p ≡ DC∀ n · vs ⟶ T
→ Q , Qg , addAll (Vec-f.map (λ x → x >>= θ) vs) Γ ⊢ e ∶ τ
→ AltsType Q Qg Γ θ T ((p →′ e) ∣ as) τ
GATAlt : ∀ {x}{τ}{a}{r₁ r₂}{p : Name ev (Datacon a)}{e : Expression (ev ⨁ a) tv r₁}{as : Alternatives ev tv r₂}{vs}{Qv}
→ let θ′ : PlusN x (PlusN n tv) → Type (PlusN x tv)
θ′ v = sequence-PlusN {Type}{x} ⦃ type-is-monad ⦄ (Functor.map (pn-m.is-functor {x}) θ v)
Q′ = Ax-f.map (pn-m.unit {x}) Q
Qg′ = QC-f.map (pn-m.unit {x}) Qg
in AltsType {n = n} Q Qg Γ θ T as τ
→ Γ p ≡ DC∀′ n , x · Qv ⇒ vs ⟶ T
→ Q′ , Qg′ ∧ (constraint-substitute θ′ Qv) , addAll (Vec-f.map (λ x → x >>= θ′) vs) (TS-f.map (pn-m.unit {x}) ∘ Γ)
⊢ Exp-f.map (pn-m.unit {x}) e ∶ map (pn-m.unit {x}) τ
→ AltsType Q Qg Γ θ T ((p →′ e) ∣ as) τ
data _,_,_⊢′_ {ev tv : Set}(Q : AxiomScheme tv)(Qg : QConstraint tv)(Γ : Environment ev tv): Program ev tv → Set where
Empty : Q , Qg , Γ ⊢′ end
Bind : {r : Shape}{n : ℕ}{e : Expression ev tv r}{p : Program (Ⓢ ev) tv}{Qv Q₁ : QConstraint (tv ⨁ n)}{τ : Type (tv ⨁ n)}
→ let Q′ = Ax-f.map (pn-m.unit {n}) Q
Qg′ = QC-f.map (pn-m.unit {n}) Qg
e′ = Exp-f.map (pn-m.unit {n}) e
in Q′ , Qv ∧ Qg′ ⊩ Q₁
→ Q′ , Q₁ , (TS-f.map (pn-m.unit {n}) ∘ Γ) ⊢ e′ ∶ τ
→ Q , Qg , (⟨ ∀′ n · Qv ⇒ τ ⟩, Γ) ⊢′ p
→ Q , Qg , Γ ⊢′ bind₁ e , p
BindA : {r : Shape}{n : ℕ}{e : Expression ev (tv ⨁ n) r}{p : Program (Ⓢ ev) tv}{Qv Q₁ : QConstraint (tv ⨁ n)}{τ : Type (tv ⨁ n)}
→ let Q′ = Ax-f.map (pn-m.unit {n}) Q
Qg′ = QC-f.map (pn-m.unit {n}) Qg
in Q′ , Qv ∧ Qg′ ⊩ Q₁
→ Q′ , Q₁ , (TS-f.map (pn-m.unit {n}) ∘ Γ) ⊢ e ∶ τ
→ Q , Qg , (⟨ ∀′ n · Qv ⇒ τ ⟩, Γ) ⊢′ p
→ Q , Qg , Γ ⊢′ bind₂ n · e ∷ Qv ⇒ τ , p
open import Data.Empty
-- I know that Γ (N v) == ∀′ α · q₁ ⇒ τ₁
-- I know that gen≡
soundness-lemma : ∀{r}{n}{ev}{tv}{Γ : Environment ev tv}{e : Expression ev tv r}{r′}{τ}{C}{C′}{C′′}{n′}{Q}{Qg}{Qr}{θ}{eq : Eq (tv ⨁ n)}{Cext}
→ Γ ► e ∶ τ ↝ C → C prenex: n , C′ → C′ separate: r′ , C′′ → Q , Qg , n solv► C′′ ↝ n′ , Qr , θ
→ let Q′ = Ax-f.map (pn-m.unit {n′}) Q
Qg′ = QC-f.map (pn-m.unit {n′}) Qg
e′ = Exp-f.map (pn-m.unit {n′}) e
in ∃ (λ Qe → (Q′ , Qe , TS-f.map (pn-m.unit {n′}) ∘ Γ ⊢ e′ ∶ map (pn-m.unit {n′}) τ)
× Q′ , (Qg′ ∧ Qr) ⊩ Qe )
{- soundness-lemma (VarCon₁ Γv≡∀n·q⇒t) pnx sep sol = {!_ , VarN ? ? ? , ?!} -}
{- soundness-lemma (App {C₁ = C₁}{C₂} Pe₁ Pe₂) pnx sep sol with prenex (C₁ ∧′ C₂) | prenex (C₂ ∧′ C₁)
... | f₁ , C₁′ , p₁ | f₂ , C₂′ , p₂ with separate C₁′ | separate C₂′
... | r₁ , C₁′′ , p₁′ | r₂ , C₂′′ , p₂′ with soundness-lemma Pe₁ p₁ p₁′ {!!} | soundness-lemma Pe₂ p₂ p₂′ {!!}
... | Q₁ , P₁ , P₁′ | Q₂ , P₂ , P₂′ = Q₁ ∧ (Q₂ ∧ {!!}) , Appl P₁ P₂ , {!!} -}
soundness-lemma {n = suc (suc .(na + nb))} {e = λ′ e′} {τ = τ}
(Abs {C = Ⅎ Ⅎ (C ∧′ rest)} p)
(PN-Ext (PN-Ext (PN-∧ {._}{._}{na}{nb} p₁ p₂)))
(Separate (Simpl-∧ p₁s p₂s) (Implic-∧ p₁i p₂i)) (SOLVE simpl impls) with soundness-lemma {e = Exp-f.map (suc ∘ suc) e′} p p₁ (Separate {!p₁s!} {!!}) {!!}
... | Q₁ , t , e = {!!}
soundness-lemma (_) pnx sep sol = {!!}
{-
soundness-proof : ∀ {ev}{tv}{eq : Eq tv}{Q}{Γ : Environment ev tv}{p} → Q , Γ ► p → Q , ε , Γ ⊢′ p
soundness-proof (Empty) = Empty
soundness-proof (Bind _ _ _ _ _) = Bind {!!} {!!} {!!}
soundness-proof (BindA _ _ _ _ _) = BindA {!!} {!!} {!!}
-}
|
{
"alphanum_fraction": 0.4647972809,
"avg_line_length": 47.8953488372,
"ext": "agda",
"hexsha": "093fade6d7a0656c6dd2ad166011a82d8cfcd4be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/Proof/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/Proof/Soundness.agda",
"max_line_length": 171,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/Proof/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 3408,
"size": 8238
}
|
open import SOAS.Common
open import SOAS.Families.Core
-- Algebras for a signature endofunctor
module SOAS.Metatheory.Algebra {T : Set} (⅀F : Functor (𝔽amiliesₛ {T}) (𝔽amiliesₛ {T})) where
module ⅀ = Functor ⅀F
⅀ : Familyₛ → Familyₛ
⅀ = ⅀.₀
⅀₁ : {𝒳 𝒴 : Familyₛ} → 𝒳 ⇾̣ 𝒴 → ⅀ 𝒳 ⇾̣ ⅀ 𝒴
⅀₁ = Functor.₁ ⅀F
|
{
"alphanum_fraction": 0.6310679612,
"avg_line_length": 18.1764705882,
"ext": "agda",
"hexsha": "43b2358713e0f3ecaa8c921343e6650a064b5d20",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Metatheory/Algebra.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Metatheory/Algebra.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Metatheory/Algebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 157,
"size": 309
}
|
-- Jesper, 2017-08-13: This test case now fails since instantiation
-- of metavariables during case splitting was disabled (see #2621).
{-# OPTIONS --allow-unsolved-metas #-}
record ⊤ : Set where
constructor tt
data I : Set where
i : ⊤ → I
data D : I → Set where
d : D (i tt)
postulate
P : (x : I) → D x → Set
foo : (y : _) → P _ y
foo d = {!!}
|
{
"alphanum_fraction": 0.6100278552,
"avg_line_length": 17.95,
"ext": "agda",
"hexsha": "889299ab4a0b2da8340a01c1bd268d0e12423a37",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1863.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/Issue1863.agda",
"max_line_length": 67,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/Issue1863.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 120,
"size": 359
}
|
{-
Day 2 task of https://adventofcode.com/
-}
module a2 where
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.Unit using (⊤)
open import Agda.Builtin.String using (String; primShowNat; primStringAppend)
open import Agda.Builtin.Equality
open import Data.Nat
open import Data.Bool using (if_then_else_)
open import Data.List
open import Data.Maybe renaming (map to maybeMap)
postulate putStrLn : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text as T #-}
{-# COMPILE GHC putStrLn = putStrLn . T.unpack #-}
-- helper
shopMaybeNat : Maybe ℕ → String
shopMaybeNat (just n) = primShowNat n
shopMaybeNat nothing = "nothing"
data Command : Set where
forward : ℕ → Command
up : ℕ → Command
down : ℕ → Command
record Position : Set where
constructor pos
field
h : ℕ
d : ℕ
open Position
apply : Command → Position → Maybe Position
apply (forward x) (pos h d) = just (pos (h + x) d)
apply (up x) (pos h d) = if d <ᵇ x
then nothing
else just (pos h ∣ d - x ∣)
apply (down x) (pos h d) = just (pos h (d + x))
iterate : List Command → Position → Maybe Position
iterate [] p = just p
iterate (command ∷ list) p with apply command p
... | just q = iterate list q
... | nothing = nothing
doTask : List Command → Maybe ℕ
doTask list = let maybeResult = iterate list (pos 0 0)
in maybeMap multiplyComponents maybeResult
where multiplyComponents : Position → ℕ
multiplyComponents (pos h d) = h * d
input : List Command
input =
forward 2 ∷
forward 3 ∷
forward 5 ∷
forward 6 ∷
down 7 ∷
forward 8 ∷
forward 4 ∷
forward 7 ∷
forward 5 ∷
forward 5 ∷
down 4 ∷
down 9 ∷
forward 8 ∷
forward 5 ∷
up 5 ∷
down 5 ∷
forward 3 ∷
down 4 ∷
down 8 ∷
forward 9 ∷
down 1 ∷
up 9 ∷
down 7 ∷
up 7 ∷
up 1 ∷
forward 1 ∷
down 1 ∷
down 4 ∷
down 4 ∷
down 8 ∷
down 4 ∷
up 3 ∷
down 1 ∷
down 3 ∷
forward 7 ∷
down 6 ∷
forward 3 ∷
forward 5 ∷
forward 2 ∷
up 9 ∷
forward 7 ∷
up 5 ∷
down 3 ∷
forward 1 ∷
forward 2 ∷
down 3 ∷
down 8 ∷
down 3 ∷
forward 8 ∷
up 5 ∷
down 5 ∷
forward 3 ∷
down 5 ∷
forward 9 ∷
down 3 ∷
down 4 ∷
down 9 ∷
down 7 ∷
up 3 ∷
down 9 ∷
up 9 ∷
up 1 ∷
forward 3 ∷
up 4 ∷
down 3 ∷
forward 7 ∷
forward 7 ∷
up 7 ∷
forward 6 ∷
down 7 ∷
down 6 ∷
forward 2 ∷
forward 9 ∷
down 5 ∷
forward 4 ∷
up 6 ∷
down 1 ∷
down 9 ∷
down 9 ∷
forward 4 ∷
down 1 ∷
forward 6 ∷
down 1 ∷
down 5 ∷
down 4 ∷
down 4 ∷
forward 4 ∷
forward 9 ∷
up 1 ∷
down 2 ∷
down 8 ∷
down 5 ∷
down 8 ∷
down 8 ∷
up 2 ∷
forward 8 ∷
up 1 ∷
forward 4 ∷
down 5 ∷
down 1 ∷
up 2 ∷
forward 6 ∷
forward 9 ∷
forward 2 ∷
forward 6 ∷
forward 9 ∷
up 6 ∷
forward 9 ∷
up 4 ∷
down 7 ∷
up 6 ∷
forward 2 ∷
down 1 ∷
up 3 ∷
forward 1 ∷
forward 8 ∷
down 6 ∷
down 8 ∷
down 8 ∷
forward 8 ∷
forward 2 ∷
forward 2 ∷
down 2 ∷
up 1 ∷
down 9 ∷
up 9 ∷
down 9 ∷
up 3 ∷
forward 9 ∷
up 4 ∷
up 7 ∷
up 6 ∷
down 9 ∷
forward 1 ∷
down 3 ∷
down 4 ∷
forward 8 ∷
down 3 ∷
down 9 ∷
up 3 ∷
forward 2 ∷
up 5 ∷
down 3 ∷
forward 8 ∷
up 3 ∷
down 3 ∷
forward 2 ∷
forward 9 ∷
down 1 ∷
down 9 ∷
down 4 ∷
up 7 ∷
down 4 ∷
up 6 ∷
forward 5 ∷
down 6 ∷
forward 3 ∷
down 2 ∷
forward 1 ∷
forward 8 ∷
down 4 ∷
forward 1 ∷
up 7 ∷
forward 6 ∷
up 9 ∷
forward 6 ∷
down 3 ∷
forward 2 ∷
down 4 ∷
forward 6 ∷
down 3 ∷
down 6 ∷
down 1 ∷
down 1 ∷
down 5 ∷
forward 3 ∷
forward 9 ∷
forward 8 ∷
down 3 ∷
forward 7 ∷
up 9 ∷
forward 9 ∷
up 2 ∷
forward 4 ∷
up 3 ∷
forward 1 ∷
up 6 ∷
up 8 ∷
down 5 ∷
down 6 ∷
up 9 ∷
down 6 ∷
down 9 ∷
up 9 ∷
down 4 ∷
forward 5 ∷
up 2 ∷
down 3 ∷
up 3 ∷
down 1 ∷
forward 3 ∷
down 5 ∷
forward 7 ∷
down 6 ∷
down 7 ∷
down 5 ∷
forward 2 ∷
up 6 ∷
down 9 ∷
down 4 ∷
down 3 ∷
forward 9 ∷
up 8 ∷
forward 2 ∷
down 2 ∷
forward 4 ∷
up 6 ∷
down 4 ∷
up 8 ∷
down 7 ∷
down 2 ∷
up 6 ∷
up 4 ∷
down 2 ∷
forward 5 ∷
up 4 ∷
down 8 ∷
forward 3 ∷
forward 1 ∷
down 7 ∷
forward 8 ∷
forward 7 ∷
down 7 ∷
up 4 ∷
forward 8 ∷
down 5 ∷
up 9 ∷
forward 1 ∷
forward 4 ∷
forward 9 ∷
forward 7 ∷
down 9 ∷
up 9 ∷
down 1 ∷
down 7 ∷
forward 7 ∷
down 7 ∷
down 7 ∷
down 3 ∷
down 5 ∷
forward 3 ∷
down 2 ∷
forward 6 ∷
down 9 ∷
up 5 ∷
up 3 ∷
forward 5 ∷
down 6 ∷
down 1 ∷
forward 4 ∷
down 3 ∷
forward 8 ∷
down 7 ∷
forward 7 ∷
forward 7 ∷
up 7 ∷
up 2 ∷
up 3 ∷
forward 9 ∷
down 5 ∷
up 2 ∷
forward 5 ∷
up 5 ∷
forward 2 ∷
forward 2 ∷
down 8 ∷
forward 2 ∷
up 4 ∷
forward 1 ∷
forward 3 ∷
up 8 ∷
up 9 ∷
forward 5 ∷
down 1 ∷
up 8 ∷
down 4 ∷
down 8 ∷
up 4 ∷
forward 9 ∷
down 6 ∷
down 8 ∷
up 2 ∷
up 3 ∷
down 7 ∷
down 4 ∷
forward 5 ∷
down 6 ∷
forward 3 ∷
forward 3 ∷
forward 8 ∷
down 1 ∷
down 7 ∷
down 9 ∷
down 2 ∷
down 7 ∷
forward 7 ∷
down 7 ∷
down 6 ∷
up 6 ∷
forward 8 ∷
forward 5 ∷
up 5 ∷
down 2 ∷
up 8 ∷
up 4 ∷
down 9 ∷
up 2 ∷
forward 5 ∷
up 2 ∷
down 4 ∷
up 4 ∷
forward 2 ∷
forward 4 ∷
forward 9 ∷
forward 9 ∷
up 4 ∷
up 5 ∷
down 1 ∷
down 6 ∷
down 1 ∷
down 4 ∷
down 5 ∷
down 3 ∷
forward 3 ∷
down 9 ∷
forward 6 ∷
down 3 ∷
down 9 ∷
down 2 ∷
up 2 ∷
down 2 ∷
down 7 ∷
forward 9 ∷
down 3 ∷
down 3 ∷
down 2 ∷
down 3 ∷
forward 2 ∷
down 9 ∷
down 9 ∷
up 5 ∷
up 3 ∷
forward 4 ∷
up 7 ∷
forward 8 ∷
up 6 ∷
forward 7 ∷
down 7 ∷
down 1 ∷
forward 5 ∷
down 2 ∷
up 1 ∷
down 8 ∷
up 3 ∷
forward 2 ∷
up 9 ∷
down 1 ∷
down 3 ∷
down 6 ∷
down 2 ∷
down 7 ∷
up 2 ∷
forward 5 ∷
forward 7 ∷
down 2 ∷
forward 5 ∷
forward 4 ∷
forward 5 ∷
down 3 ∷
forward 7 ∷
down 7 ∷
forward 8 ∷
down 3 ∷
down 2 ∷
up 1 ∷
forward 6 ∷
down 4 ∷
down 2 ∷
forward 7 ∷
up 3 ∷
down 4 ∷
forward 2 ∷
up 6 ∷
down 3 ∷
up 6 ∷
up 8 ∷
down 9 ∷
up 6 ∷
forward 8 ∷
forward 9 ∷
forward 4 ∷
forward 7 ∷
down 2 ∷
forward 9 ∷
down 7 ∷
up 9 ∷
down 5 ∷
down 6 ∷
up 5 ∷
down 4 ∷
forward 8 ∷
forward 4 ∷
forward 4 ∷
down 6 ∷
forward 3 ∷
forward 6 ∷
down 9 ∷
down 9 ∷
up 2 ∷
forward 7 ∷
down 8 ∷
down 9 ∷
down 9 ∷
forward 7 ∷
forward 3 ∷
down 7 ∷
down 8 ∷
forward 8 ∷
down 6 ∷
down 5 ∷
down 9 ∷
down 3 ∷
forward 1 ∷
down 5 ∷
forward 2 ∷
forward 8 ∷
down 2 ∷
forward 6 ∷
forward 3 ∷
down 7 ∷
down 4 ∷
forward 8 ∷
forward 1 ∷
down 6 ∷
forward 9 ∷
forward 6 ∷
up 1 ∷
up 3 ∷
down 8 ∷
forward 1 ∷
up 5 ∷
down 4 ∷
forward 7 ∷
up 3 ∷
down 2 ∷
forward 1 ∷
forward 9 ∷
down 9 ∷
down 7 ∷
forward 8 ∷
down 4 ∷
up 3 ∷
down 4 ∷
forward 2 ∷
forward 6 ∷
down 7 ∷
forward 6 ∷
down 6 ∷
down 4 ∷
down 1 ∷
up 9 ∷
down 4 ∷
down 7 ∷
up 4 ∷
down 9 ∷
forward 6 ∷
down 3 ∷
forward 2 ∷
down 4 ∷
forward 3 ∷
down 5 ∷
up 9 ∷
forward 8 ∷
up 7 ∷
up 6 ∷
up 4 ∷
forward 1 ∷
down 1 ∷
forward 4 ∷
up 6 ∷
forward 5 ∷
forward 4 ∷
forward 5 ∷
up 6 ∷
down 1 ∷
forward 3 ∷
up 7 ∷
down 9 ∷
up 9 ∷
down 5 ∷
forward 6 ∷
forward 4 ∷
up 1 ∷
down 4 ∷
up 1 ∷
forward 3 ∷
forward 1 ∷
down 3 ∷
forward 7 ∷
down 2 ∷
forward 3 ∷
up 2 ∷
forward 8 ∷
down 3 ∷
up 9 ∷
down 5 ∷
forward 6 ∷
down 1 ∷
down 8 ∷
down 5 ∷
forward 1 ∷
down 6 ∷
up 2 ∷
forward 6 ∷
down 2 ∷
down 1 ∷
up 6 ∷
up 7 ∷
down 5 ∷
forward 7 ∷
forward 6 ∷
forward 6 ∷
down 7 ∷
forward 4 ∷
down 5 ∷
up 5 ∷
down 1 ∷
up 8 ∷
down 8 ∷
down 2 ∷
down 2 ∷
down 9 ∷
up 9 ∷
forward 2 ∷
forward 7 ∷
down 7 ∷
down 4 ∷
down 4 ∷
down 8 ∷
forward 5 ∷
forward 2 ∷
up 9 ∷
down 9 ∷
forward 7 ∷
up 9 ∷
down 2 ∷
down 7 ∷
up 2 ∷
up 8 ∷
forward 8 ∷
down 4 ∷
forward 3 ∷
forward 4 ∷
forward 6 ∷
forward 2 ∷
down 1 ∷
down 2 ∷
forward 2 ∷
up 1 ∷
down 1 ∷
forward 5 ∷
up 3 ∷
up 3 ∷
down 3 ∷
down 1 ∷
down 4 ∷
up 5 ∷
up 6 ∷
forward 5 ∷
up 7 ∷
forward 6 ∷
down 4 ∷
down 7 ∷
up 8 ∷
forward 1 ∷
down 5 ∷
up 4 ∷
up 3 ∷
up 5 ∷
down 1 ∷
up 5 ∷
forward 3 ∷
up 5 ∷
forward 2 ∷
forward 2 ∷
forward 5 ∷
forward 2 ∷
up 9 ∷
forward 4 ∷
down 1 ∷
down 3 ∷
down 5 ∷
up 2 ∷
down 8 ∷
forward 8 ∷
forward 9 ∷
down 1 ∷
down 3 ∷
forward 8 ∷
forward 2 ∷
down 2 ∷
down 1 ∷
up 7 ∷
forward 2 ∷
forward 8 ∷
down 9 ∷
forward 1 ∷
forward 4 ∷
down 7 ∷
down 4 ∷
up 7 ∷
down 3 ∷
down 1 ∷
down 4 ∷
up 7 ∷
down 6 ∷
forward 7 ∷
down 8 ∷
up 2 ∷
up 4 ∷
up 6 ∷
down 9 ∷
down 9 ∷
down 8 ∷
forward 6 ∷
up 3 ∷
up 1 ∷
forward 9 ∷
forward 6 ∷
up 4 ∷
up 2 ∷
up 7 ∷
forward 5 ∷
up 9 ∷
up 9 ∷
forward 9 ∷
up 6 ∷
down 1 ∷
down 3 ∷
forward 3 ∷
down 2 ∷
down 2 ∷
down 6 ∷
down 9 ∷
forward 3 ∷
forward 7 ∷
up 3 ∷
forward 3 ∷
down 5 ∷
forward 9 ∷
up 6 ∷
down 2 ∷
forward 8 ∷
down 3 ∷
up 5 ∷
down 6 ∷
forward 9 ∷
down 5 ∷
down 2 ∷
down 6 ∷
forward 8 ∷
forward 6 ∷
down 1 ∷
forward 6 ∷
up 1 ∷
up 7 ∷
down 4 ∷
down 7 ∷
forward 4 ∷
forward 7 ∷
down 4 ∷
forward 8 ∷
down 8 ∷
down 7 ∷
forward 9 ∷
down 1 ∷
down 3 ∷
down 6 ∷
forward 7 ∷
forward 6 ∷
forward 3 ∷
forward 8 ∷
down 5 ∷
down 3 ∷
up 1 ∷
down 9 ∷
down 8 ∷
forward 3 ∷
down 6 ∷
down 1 ∷
forward 5 ∷
forward 5 ∷
forward 9 ∷
up 5 ∷
down 6 ∷
up 9 ∷
down 7 ∷
down 6 ∷
up 1 ∷
forward 5 ∷
forward 7 ∷
forward 8 ∷
forward 7 ∷
forward 6 ∷
forward 3 ∷
forward 1 ∷
forward 2 ∷
up 4 ∷
forward 3 ∷
forward 4 ∷
forward 5 ∷
up 2 ∷
up 3 ∷
forward 4 ∷
down 9 ∷
up 4 ∷
forward 7 ∷
down 6 ∷
down 6 ∷
down 1 ∷
forward 2 ∷
down 2 ∷
forward 2 ∷
down 3 ∷
forward 7 ∷
forward 8 ∷
down 4 ∷
up 7 ∷
forward 7 ∷
down 7 ∷
forward 7 ∷
forward 9 ∷
down 7 ∷
up 2 ∷
down 3 ∷
forward 7 ∷
down 1 ∷
forward 8 ∷
forward 2 ∷
up 9 ∷
down 3 ∷
forward 2 ∷
up 4 ∷
forward 9 ∷
down 4 ∷
down 4 ∷
forward 4 ∷
down 2 ∷
down 9 ∷
forward 4 ∷
down 2 ∷
down 6 ∷
forward 9 ∷
forward 2 ∷
up 1 ∷
forward 2 ∷
forward 3 ∷
down 5 ∷
up 8 ∷
down 4 ∷
down 4 ∷
forward 7 ∷
down 2 ∷
up 6 ∷
down 9 ∷
forward 9 ∷
up 1 ∷
forward 3 ∷
down 5 ∷
forward 3 ∷
down 3 ∷
forward 4 ∷
up 3 ∷
down 6 ∷
down 7 ∷
down 4 ∷
down 8 ∷
down 4 ∷
down 5 ∷
up 9 ∷
up 1 ∷
down 7 ∷
up 3 ∷
up 3 ∷
down 3 ∷
up 4 ∷
up 6 ∷
forward 8 ∷
down 1 ∷
forward 7 ∷
forward 4 ∷
down 9 ∷
down 1 ∷
forward 7 ∷
forward 9 ∷
forward 1 ∷
down 3 ∷
down 2 ∷
forward 3 ∷
forward 2 ∷
down 7 ∷
forward 9 ∷
forward 6 ∷
up 9 ∷
down 2 ∷
forward 9 ∷
up 6 ∷
forward 8 ∷
up 1 ∷
down 5 ∷
down 8 ∷
forward 1 ∷
down 1 ∷
forward 9 ∷
up 1 ∷
forward 9 ∷
forward 1 ∷
forward 1 ∷
down 7 ∷
forward 3 ∷
forward 6 ∷
down 5 ∷
forward 7 ∷
forward 1 ∷
down 7 ∷
down 6 ∷
down 6 ∷
forward 5 ∷
up 6 ∷
down 6 ∷
forward 8 ∷
up 2 ∷
down 8 ∷
down 3 ∷
up 5 ∷
up 8 ∷
down 6 ∷
forward 4 ∷
forward 2 ∷
up 3 ∷
forward 5 ∷
forward 3 ∷
up 8 ∷
forward 6 ∷
up 8 ∷
forward 1 ∷
up 8 ∷
up 7 ∷
up 6 ∷
forward 2 ∷
down 9 ∷
down 9 ∷
forward 3 ∷
down 7 ∷
forward 3 ∷
down 6 ∷
forward 9 ∷
up 5 ∷
down 1 ∷
forward 7 ∷
down 1 ∷
down 5 ∷
down 9 ∷
forward 8 ∷
forward 9 ∷
forward 7 ∷
down 9 ∷
up 4 ∷
forward 5 ∷
down 5 ∷
forward 5 ∷
down 9 ∷
forward 9 ∷
forward 3 ∷
up 5 ∷
forward 8 ∷
up 5 ∷
down 1 ∷
forward 8 ∷
down 3 ∷
forward 6 ∷
up 9 ∷
forward 8 ∷
down 4 ∷
forward 3 ∷
down 5 ∷
forward 8 ∷
forward 9 ∷
forward 2 ∷
down 1 ∷
down 6 ∷
down 4 ∷
forward 9 ∷
up 2 ∷
down 3 ∷
down 6 ∷
down 3 ∷
down 9 ∷
down 1 ∷
up 6 ∷
down 2 ∷
down 7 ∷
up 5 ∷
forward 5 ∷
up 1 ∷
down 7 ∷
forward 6 ∷
up 6 ∷
down 2 ∷
down 3 ∷
forward 3 ∷
down 5 ∷
forward 8 ∷
down 9 ∷
down 7 ∷
down 8 ∷
up 7 ∷
down 1 ∷
forward 1 ∷
forward 1 ∷
down 2 ∷
up 4 ∷
forward 2 ∷
down 3 ∷
up 2 ∷
down 3 ∷
down 2 ∷
forward 7 ∷
down 1 ∷
up 7 ∷
down 2 ∷
down 1 ∷
forward 6 ∷
down 9 ∷
up 9 ∷
down 4 ∷
down 6 ∷
up 9 ∷
forward 7 ∷
forward 9 ∷
forward 7 ∷
down 4 ∷
down 1 ∷
forward 7 ∷
down 4 ∷
down 7 ∷
down 3 ∷
down 5 ∷
forward 3 ∷
down 8 ∷
forward 8 ∷
forward 7 ∷
forward 8 ∷
down 4 ∷
down 9 ∷
forward 2 ∷
forward 7 ∷
up 8 ∷
forward 4 ∷
down 6 ∷
up 8 ∷
down 2 ∷
forward 3 ∷
down 6 ∷
down 8 ∷
forward 8 ∷
forward 2 ∷
forward 9 ∷
up 6 ∷
forward 7 ∷
down 3 ∷
down 5 ∷
forward 8 ∷
forward 9 ∷
down 3 ∷
forward 3 ∷
forward 2 ∷
forward 3 ∷
down 8 ∷
up 9 ∷
up 5 ∷
up 2 ∷
up 6 ∷
up 1 ∷
up 1 ∷
up 5 ∷
forward 3 ∷
forward 2 ∷
down 3 ∷
forward 4 ∷
[]
main : IO ⊤
main = putStrLn (shopMaybeNat (doTask input))
private
-- checks from the exercise text
_ : apply (forward 5) (pos 0 0) ≡ just (pos 5 0)
_ = refl
_ : apply (down 5) (pos 5 0) ≡ just (pos 5 5)
_ = refl
_ : apply (forward 8) (pos 5 5) ≡ just (pos 13 5)
_ = refl
_ : apply (up 3) (pos 13 5) ≡ just (pos 13 2)
_ = refl
_ : apply (down 8) (pos 13 2) ≡ just (pos 13 10)
_ = refl
_ : apply (forward 2) (pos 13 10) ≡ just (pos 15 10)
_ = refl
-- submarine does not 'fly'
_ : apply (up 7) (pos 13 2) ≡ nothing
_ = refl
|
{
"alphanum_fraction": 0.5060293162,
"avg_line_length": 12.6822344322,
"ext": "agda",
"hexsha": "d21e839a97e9cafdbbd3ec44f6c16ac395904304",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felixwellen/adventOfCode",
"max_forks_repo_path": "a2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felixwellen/adventOfCode",
"max_issues_repo_path": "a2.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felixwellen/adventOfCode",
"max_stars_repo_path": "a2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7676,
"size": 13849
}
|
{-# OPTIONS --prop #-}
module Miscellaneous.ClassicalWitness where
open import Agda.Primitive using (Prop)
open import Data
open import Data.Either
open import Functional
import Lvl
open import Type.Dependent
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable T A B Obj : Type{ℓ}
private variable P Q R : Prop(ℓ)
private variable Pred : T → Prop(ℓ)
private variable x y z : T
empty-prop : Empty{ℓ} → P
empty-prop ()
data Proof(P : Prop(ℓ)) : Type{ℓ} where
intro : P → Proof(P)
data ⊥ : Prop(Lvl.𝟎) where
[⊥]-elim : ⊥ → P
[⊥]-elim ()
[⊥]-elim-type : ⊥ → T
[⊥]-elim-type ()
¬_ : Prop(ℓ) → Prop(ℓ)
¬ P = P → ⊥
data _∧_ (P : Prop(ℓ₁)) (Q : Prop(ℓ₂)) : Prop(ℓ₁ Lvl.⊔ ℓ₂) where
[∧]-intro : P → Q → (P ∧ Q)
data _∨_ (P : Prop(ℓ₁)) (Q : Prop(ℓ₂)) : Prop(ℓ₁ Lvl.⊔ ℓ₂) where
[∨]-introₗ : P → (P ∨ Q)
[∨]-introᵣ : Q → (P ∨ Q)
[∨]-elim : (P → R) → (Q → R) → (P ∨ Q) → R
[∨]-elim pr qr ([∨]-introₗ p) = pr p
[∨]-elim pr qr ([∨]-introᵣ q) = qr q
data ∃ {Obj : Type{ℓ₁}} (P : Obj → Prop(ℓ₂)) : Prop(ℓ₁ Lvl.⊔ ℓ₂) where
[∃]-intro : (witness : Obj) → ⦃ proof : P(witness) ⦄ → ∃(P)
[∃]-elim : (∀{x} → Pred(x) → P) → (∃ Pred) → P
[∃]-elim pr ([∃]-intro _ ⦃ p ⦄) = pr p
∃-empty-type : (∀{x : Obj} → Pred(x) → Empty{ℓ}) → ¬(∃{Obj = Obj} Pred)
∃-empty-type empty-p ep = [∃]-elim (\px → empty-prop (empty-p px)) ep
data Inhabited(T : Type{ℓ}) : Prop(Lvl.𝐒(ℓ)) where
intro : T → Inhabited(T)
Inhabited-elim : (T → P) → (Inhabited(T) → P)
Inhabited-elim f (intro obj) = f(obj)
Inhabited-empty-type : (T → Empty{ℓ}) → (¬ Inhabited(T))
Inhabited-empty-type empty-T inhab-T = Inhabited-elim (\t → empty-prop(empty-T t)) inhab-T
∃-to-Inhabited : (∃{Obj = Obj} Pred) → Inhabited(Obj)
∃-to-Inhabited = [∃]-elim (\{x} _ → intro x)
data _≡_ {T : Type{ℓ}} : T → T → Prop(Lvl.of(T)) where
refl : ∀{x} → (x ≡ x)
sym : ∀{x y : T} → (x ≡ y) → (y ≡ x)
sym refl = refl
subst : (P : T → Prop(ℓ)) → ∀{x y : T} → (x ≡ y) → (P(x) → P(y))
subst P refl = (\x → x)
data Singleton(T : Type{ℓ}) : Prop(Lvl.𝐒(ℓ)) where
intro : (x : T) → (∀{y} → (x ≡ y)) → Singleton(T)
data ∃! {Obj : Type{ℓ₁}} (P : Obj → Prop(ℓ₂)) : Prop(ℓ₁ Lvl.⊔ ℓ₂) where
[∃!]-intro : (witness : Obj) → ⦃ proof : P(witness) ⦄ → (∀{x} → P(x) → (witness ≡ x)) → ∃!(P)
[∃!]-elim : (∀{x} → Pred(x) → (∀{y} → (Pred(y)) → (x ≡ y)) → P) → (∃! Pred) → P
[∃!]-elim pr ([∃!]-intro _ ⦃ p ⦄ eq) = pr p eq
∃!-to-∃ : (∃!{Obj = Obj} Pred) → (∃{Obj = Obj} Pred)
∃!-to-∃ = [∃!]-elim (\{x} p _ → [∃]-intro x ⦃ p ⦄)
∃!-empty-type : (∀{x : Obj} → Pred(x) → Empty{ℓ}) → ¬(∃!{Obj = Obj} Pred)
∃!-empty-type empty-p ep = [∃!]-elim (\px → empty-prop (empty-p px)) ep
module WhenExcludedMiddle (excluded-middle : ∀{ℓ}(P : Prop(ℓ)) → (P ∨ (¬ P))) where
{-[¬¬]-elim-type : ((T → ⊥) → ⊥) → T
[¬¬]-elim-type {T = T} nnt with excluded-middle(T)
... | p = ?-}
{-
decidable : ∀{ℓ ℓₑ}(T : Type{ℓ}) → (T ‖ (T → Empty{ℓₑ}))
decidable(T) = {!excluded-middle!}
-}
{-
singleton-witness : Singleton(T) → T
singleton-witness x = {!!}
-}
module WhenDNEType ([¬¬]-elim-type : ∀{ℓ}{T : Type{ℓ}} → ((T → ⊥) → ⊥) → T) where
inhabited-witness : Inhabited(T) → T
inhabited-witness p = [¬¬]-elim-type (\nt → Inhabited-elim nt p)
module WhenDecidable {ℓₑ} (decidable : ∀{ℓ}(T : Type{ℓ}) → (T ‖ (T → Empty{ℓₑ}))) where
excluded-middle : ∀{ℓ}(P : Prop(ℓ)) → (P ∨ (¬ P))
excluded-middle(P) with decidable(Proof P)
... | Left (intro p) = [∨]-introₗ p
... | Right np = [∨]-introᵣ (\p → empty-prop(np(intro p)))
inhabited-witness : Inhabited(T) → T -- TODO: Are there any other ways (with weaker assumptions) of doing this?
inhabited-witness{T = T} x with decidable(T)
... | Left t = t
... | Right nt = [⊥]-elim-type (Inhabited-empty-type nt x)
∃-to-Σ : (∃{Obj = Obj} Pred) → (Σ Obj (\p → Proof(Pred p)))
∃-to-Σ {Obj = Obj}{Pred = Pred} ep with decidable(Σ Obj (\p → Proof(Pred p)))
... | Left s = s
... | Right ns = [⊥]-elim-type (∃-empty-type (\{x} px → ns (intro x (intro px))) ep)
[∃]-witness : (∃{Obj = Obj} Pred) → Obj
[∃]-witness {Obj = Obj}{Pred = Pred} ep = Σ.left (∃-to-Σ ep)
-- inhabited-witness(∃-to-Inhabited(∃!-to-∃ ep))
[∃]-proof : (ep : ∃{Obj = Obj} Pred) → Pred([∃]-witness ep)
[∃]-proof {Obj = Obj}{Pred = Pred} ep with intro p ← Σ.right (∃-to-Σ ep) = p
-- [∃!]-elim (\p eq → subst(Pred) {!eq p!} p) ep
module WhenInhabitedWitness (inhabited-witness : ∀{ℓ}{T : Type{ℓ}} → Inhabited(T) → T) where
[∨]-elim-type : (P → T) → (Q → T) → (P ∨ Q) → T
[∨]-elim-type pt qt pq = inhabited-witness([∨]-elim (\t → intro(pt t)) (\t → intro(qt t)) pq)
{-
[∃]-witness : ∀{P : T → Prop(ℓ)} → (∃ P) → T -- TODO: Not really the witness. See TODO in [∃]-proof below
[∃]-witness ep = inhabited-witness(∃-to-Inhabited ep)
[∃]-proof : ∀{P : T → Prop(ℓ)} → (ep : ∃ P) → P([∃]-witness ep) -- TODO: Will not work because the witness obtained from `inhabited-witness` (this one is from `decidable`) can obviously be different from the one provided to prove (∃ P) (this one is from `[∃]-intro`). Though, a correct witness _is_ obtainable from (∃! P) as usual in classical logic.
[∃]-proof{T = T} ep with decidable(T)
... | Left t = {!!}
... | Right nt = {!!}
-}
|
{
"alphanum_fraction": 0.5393799345,
"avg_line_length": 34.8523489933,
"ext": "agda",
"hexsha": "25bc3a99b4b5c491d092942be417691c7e3eec19",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Miscellaneous/ClassicalWitness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Miscellaneous/ClassicalWitness.agda",
"max_line_length": 352,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Miscellaneous/ClassicalWitness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2255,
"size": 5193
}
|
{-# OPTIONS --warning=error --safe --without-K #-}
open import Orders.Total.Definition
open import LogicalFormulae
open import Maybe
module KeyValue.LinearStore.Definition {a b : _} (keySet : Set a) (valueSet : Set b) {c : _} (keyOrder : TotalOrder keySet {c}) where
open import KeyValue.KeyValue keySet valueSet
open import KeyValue.LinearStore.Implementation keySet valueSet keyOrder
LinearStore : KeyValue Map
KeyValue.tryFind LinearStore = lookup
KeyValue.add LinearStore = addMap
KeyValue.empty LinearStore = empty
KeyValue.count LinearStore = count
KeyValue.lookupAfterAdd LinearStore empty k v with TotalOrder.totality keyOrder k k
KeyValue.lookupAfterAdd LinearStore empty k v | inl (inl x) = exFalso (TotalOrder.irreflexive keyOrder x)
KeyValue.lookupAfterAdd LinearStore empty k v | inl (inr x) = exFalso (TotalOrder.irreflexive keyOrder x)
KeyValue.lookupAfterAdd LinearStore empty k v | inr x = refl
KeyValue.lookupAfterAdd LinearStore (nonempty x) k v = lookupReducedSucceedsAfterAdd k v x
KeyValue.lookupAfterAdd' LinearStore empty k1 v k2 with TotalOrder.totality keyOrder k1 k2
KeyValue.lookupAfterAdd' LinearStore empty k1 v k2 | inl (inl x) = inr refl
KeyValue.lookupAfterAdd' LinearStore empty k1 v k2 | inl (inr x) = inr refl
KeyValue.lookupAfterAdd' LinearStore empty k1 v k2 | inr x = inl x
KeyValue.lookupAfterAdd' LinearStore (nonempty x) k1 v k2 with TotalOrder.totality keyOrder k1 k2
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inl (inl x) with inspect (lookupReduced map k2)
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inl (inl x) | no with≡ pr rewrite pr = inr (lookupReducedFailsAfterUnrelatedAdd k1 v k2 (inl x) map pr)
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inl (inl x) | (yes lookedUp) with≡ pr rewrite pr = inr (lookupReducedSucceedsAfterUnrelatedAdd k1 v k2 lookedUp (inl x) map pr)
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inl (inr x) with inspect (lookupReduced map k2)
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inl (inr x) | no with≡ pr rewrite pr = inr (lookupReducedFailsAfterUnrelatedAdd k1 v k2 (inr x) map pr)
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inl (inr x) | yes lookedUp with≡ pr rewrite pr = inr (lookupReducedSucceedsAfterUnrelatedAdd k1 v k2 lookedUp (inr x) map pr)
KeyValue.lookupAfterAdd' LinearStore (nonempty map) k1 v k2 | inr x = inl x
KeyValue.countAfterAdd' LinearStore empty _ _ _ = refl
KeyValue.countAfterAdd' LinearStore (nonempty x) k v = countReducedBehavesWhenAddingNotPresent k v x
KeyValue.countAfterAdd LinearStore empty _ _ _ ()
KeyValue.countAfterAdd LinearStore (nonempty map) k v1 v2 = countReducedBehavesWhenAddingPresent k v1 v2 map
|
{
"alphanum_fraction": 0.7872807018,
"avg_line_length": 72,
"ext": "agda",
"hexsha": "6b6c43f569311342e570d8bd46608c11b778dac6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "KeyValue/LinearStore/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "KeyValue/LinearStore/Definition.agda",
"max_line_length": 189,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "KeyValue/LinearStore/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 815,
"size": 2736
}
|
{-# OPTIONS --without-K --safe #-}
module Algebra.Linear.Construct where
import Algebra.Linear.Construct.Vector
import Algebra.Linear.Construct.Matrix
|
{
"alphanum_fraction": 0.7843137255,
"avg_line_length": 21.8571428571,
"ext": "agda",
"hexsha": "907ed8a26ab62c5012deab6f6a3a270431a862a2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Construct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Construct.agda",
"max_line_length": 38,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Construct.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 29,
"size": 153
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace
module homotopy.CircleHSpace where
S¹-hSpace : HSpaceStructure S¹
S¹-hSpace = hSpaceStructure base μ μ-e-l μ-e-r μ-coh where
turn-around : (x : S¹) → x == x
turn-around = S¹-elim loop (↓-idf=idf-in (∙=∙' loop loop))
module Mu = S¹Rec (idf S¹) (λ= turn-around)
μ : S¹ → S¹ → S¹
μ = Mu.f
μ-e-l : (x : S¹) → μ base x == x
μ-e-l x = idp
μ-e-r : (x : S¹) → μ x base == x
μ-e-r = S¹-elim idp (↓-app=idf-in
(idp ∙' loop =⟨ ∙'-unit-l loop ⟩
loop =⟨ idp ⟩
turn-around base =⟨ ! (app=-β turn-around base) ⟩
ap (λ z → z base) (λ= turn-around) =⟨ ! (Mu.loop-β |in-ctx (ap (λ z → z base))) ⟩
ap (λ z → z base) (ap μ loop) =⟨ ! (ap-∘ (λ z → z base) μ loop) ⟩
ap (λ z → μ z base) loop =⟨ ! (∙-unit-r _) ⟩
ap (λ z → μ z base) loop ∙ idp ∎))
μ-coh = idp
|
{
"alphanum_fraction": 0.4799176107,
"avg_line_length": 29.4242424242,
"ext": "agda",
"hexsha": "f5060097312d68a1d8e36265ed3bbfab98bba26c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/CircleHSpace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/CircleHSpace.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/CircleHSpace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 381,
"size": 971
}
|
open import Agda.Builtin.Nat
-- splitting on a 'with' argument should not expand the ellipsis
foo : Nat → Nat
foo m with 0
... | n = {!n!}
-- splitting on variable hidden by ellipsis should expand the ellipsis
bar : Nat → Nat
bar m with 0
... | n = {!m!}
-- test case with nested with
baz : Nat → Nat
baz m with m
... | n with n
... | p = {!p!}
|
{
"alphanum_fraction": 0.6303724928,
"avg_line_length": 18.3684210526,
"ext": "agda",
"hexsha": "c5bbd51599da7b39add0b090611ab0144138b759",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2589.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2589.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2589.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 111,
"size": 349
}
|
-- Andreas, 2017-11-01, issue #2824
-- Don't allow built-ins defined in parametrized modules
module _ {a} {A : Set a} where
data _≡_ (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
-- This is forbidden, could maybe allowed using lambda-lifting.
|
{
"alphanum_fraction": 0.642599278,
"avg_line_length": 23.0833333333,
"ext": "agda",
"hexsha": "dba4f7db3d70087ba2f28125afdc9c7e10d60f53",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2824EqualityParametrized.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2824EqualityParametrized.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2824EqualityParametrized.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 277
}
|
import Common
import Global
import Local
import Projection
import Soundness
import Completeness
import Example
|
{
"alphanum_fraction": 0.8584070796,
"avg_line_length": 11.3,
"ext": "agda",
"hexsha": "0e76dd38ddd72aaf0d0117659386c518084820db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fangyi-zhou/mpst-in-agda",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fangyi-zhou/mpst-in-agda",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 19,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fangyi-zhou/mpst-in-agda",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z",
"num_tokens": 23,
"size": 113
}
|
{-# OPTIONS --show-implicit #-}
open import Agda.Builtin.Nat renaming (Nat to ℕ)
open import Agda.Builtin.Equality
postulate
funext : {X : Set} {Y : X → Set} {f g : (x : X) → Y x} → (∀ x → f x ≡ g x) → f ≡ g
_::_ : {X : ℕ → Set} → X 0 → ((n : ℕ) → X (suc n)) → ((n : ℕ) → X n)
(x :: α) 0 = x
(x :: α) (suc n) = α n
hd : {X : ℕ → Set} → ((n : ℕ) → X n) → X 0
hd α = α 0
tl : {X : ℕ → Set} → ((n : ℕ) → X n) → ((n : ℕ) → X (suc n))
tl α n = α(suc n)
-- Needed to add the implicit arguments for funext in Agda 2.5.2:
hd-tl-eta : (X : ℕ → Set) {α : (n : ℕ) → X n} → (hd α :: tl α) ≡ α
hd-tl-eta X {α} = funext {Y = _} lemma
where
lemma : ∀ {α} → ∀ i → _::_ {_} (hd α) (tl α) i ≡ α i
lemma 0 = refl
lemma (suc i) = refl
|
{
"alphanum_fraction": 0.4684931507,
"avg_line_length": 28.0769230769,
"ext": "agda",
"hexsha": "3904f5ce86bb956ba9ff41aeddeca02e73c174df",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2384.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2384.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2384.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 335,
"size": 730
}
|
module Haskell.RangedSets.Ranges where
open import Haskell.Prim
open import Haskell.Prim.Ord
open import Haskell.Prim.Bool
open import Haskell.Prim.Maybe
open import Haskell.Prim.Enum
open import Haskell.Prim.Num
open import Haskell.Prim.Eq
open import Haskell.Prim.Functor
open import Haskell.Prim.Foldable
open import Haskell.Prim.Monoid
open import Haskell.Prim.Monad
open import Haskell.Prim.Applicative
open import Haskell.Prim.Int
open import Haskell.Prim.List
open import Haskell.Prim.Integer
open import Haskell.Prim.Real
open import Haskell.Prim.Show
open import Haskell.Prim.String
open import Haskell.Prim.Tuple
open import Haskell.RangedSets.Boundaries
{-# FOREIGN AGDA2HS
import Haskell.RangedSets.Boundaries
#-}
data Range (a : Set) ⦃ o : Ord a ⦄ ⦃ dio : DiscreteOrdered a ⦄ : Set where
Rg : Boundary a → Boundary a → Range a
{-# COMPILE AGDA2HS Range #-}
rangeLower : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Boundary a
rangeUpper : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Boundary a
rangeIsEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Bool
emptyRange : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a
rangeHas : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → a → Bool
rangeListHas : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → a → Bool
fullRange : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a
singletonRange : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → a → Range a
rangeIsFull : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Bool
rangeOverlap : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → Bool
rangeEncloses : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → Bool
rangeUnion : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → List (Range a)
rangeIntersection : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → Range a
rangeDifference : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → List (Range a)
rangeSingletonValue : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Maybe a
instance
isRangeEq : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Eq (Range a)
isRangeEq . _==_ r1 r2 = (rangeIsEmpty r1 && rangeIsEmpty r2) || (rangeLower r1 == rangeLower r2 && rangeUpper r1 == rangeUpper r2)
{-# COMPILE AGDA2HS isRangeEq #-}
instance
isRangeOrd : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Ord (Range a)
isRangeOrd . compare r1 r2 = if_then_else_ (r1 == r2) EQ
(if_then_else_ (rangeIsEmpty r1) LT (if_then_else_ (rangeIsEmpty r2) GT
(compare (rangeLower r1) (rangeUpper r1) <> compare (rangeLower r2) (rangeUpper r2))))
isRangeOrd ._<_ x y = compare x y == LT
isRangeOrd ._>_ x y = compare x y == GT
isRangeOrd ._<=_ x y = (compare x y == LT) || (compare x y == EQ)
isRangeOrd ._>=_ x y = (compare x y == GT) || (compare x y == EQ)
isRangeOrd .max x y = if (compare x y == GT) then x else y
isRangeOrd .min x y = if (compare x y == LT) then x else y
{-# COMPILE AGDA2HS isRangeOrd #-}
h : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → ⦃ Show a ⦄ → Boundary a → String
h BoundaryBelowAll = ""
h (BoundaryBelow x) = show x ++ " <= "
h (BoundaryAbove x) = show x ++ " < "
h BoundaryAboveAll = "show Range: lower bound is BoundaryAboveAll"
{-# COMPILE AGDA2HS h #-}
h2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → ⦃ Show a ⦄ → Boundary a → String
h2 BoundaryBelowAll = "show Range: upper bound is BoundaryBelowAll"
h2 (BoundaryBelow x) = " < " ++ show x
h2 (BoundaryAbove x) = " <= " ++ show x
h2 BoundaryAboveAll = ""
{-# COMPILE AGDA2HS h2 #-}
showHelper : ⦃ Show a ⦄ → ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Maybe a → String
showHelper r (Just v) = "x == " ++ show v
showHelper r Nothing = lowerBound ++ "x" ++ upperBound
where
lowerBound = h (rangeLower r)
upperBound = h2 (rangeUpper r)
showHelper2 : ⦃ Show a ⦄ → ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → String
showHelper2 r = if_then_else_ (rangeIsEmpty r) "Empty" (if_then_else_ (rangeIsFull r) "All x" (showHelper r (rangeSingletonValue r)))
{-# COMPILE AGDA2HS showHelper #-}
{-# COMPILE AGDA2HS showHelper2 #-}
instance
isRangeShow : ⦃ Show a ⦄ → ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Show (Range a)
isRangeShow .showsPrec _ = showString ∘ showHelper2
isRangeShow .showList = defaultShowList (showString ∘ showHelper2)
{-# COMPILE AGDA2HS isRangeShow #-}
rangeLower ⦃ o ⦄ ⦃ dio ⦄ (Rg x y) = x
{-# COMPILE AGDA2HS rangeLower #-}
rangeUpper ⦃ o ⦄ ⦃ dio ⦄ (Rg x y) = y
{-# COMPILE AGDA2HS rangeUpper #-}
rangeIsEmpty r@(Rg lower upper) = upper <= lower
{-# COMPILE AGDA2HS rangeIsEmpty #-}
emptyRange = Rg BoundaryAboveAll BoundaryBelowAll
{-# COMPILE AGDA2HS emptyRange #-}
rangeHas r@(Rg b1 b2) v = (v />/ b1) && not (v />/ b2)
{-# COMPILE AGDA2HS rangeHas #-}
rangeHas1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → a → Range a → Bool
rangeHas1 v r@(Rg b1 b2) = (v />/ b1) && not (v />/ b2)
rangeListHas (r@(Rg _ _) ∷ []) v = rangeHas r v
rangeListHas (r1@(Rg _ _) ∷ r2@(Rg _ _) ∷ []) v = (rangeHas r1 v) || (rangeHas r2 v)
rangeListHas ls v = or $ map (\r → rangeHas r v) ls
{-# COMPILE AGDA2HS rangeListHas #-}
rangeListHas1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → a → List (Range a) → Bool
rangeListHas1 v (r@(Rg _ _) ∷ []) = rangeHas r v
rangeListHas1 v (r1@(Rg _ _) ∷ r2@(Rg _ _) ∷ []) = (rangeHas r1 v) || (rangeHas r2 v)
rangeListHas1 v ls = or $ map (\r → rangeHas r v) ls
fullRange ⦃ o ⦄ ⦃ dio ⦄ = Rg BoundaryBelowAll BoundaryAboveAll
{-# COMPILE AGDA2HS fullRange #-}
singletonRange v = Rg (BoundaryBelow v) (BoundaryAbove v)
{-# COMPILE AGDA2HS singletonRange #-}
rangeIsFull range = (range == fullRange)
{-# COMPILE AGDA2HS rangeIsFull #-}
rangeOverlap r1 r2 =
not (rangeIsEmpty r1) && not (rangeIsEmpty r2) && not (rangeUpper r1 <= rangeLower r2 || rangeUpper r2 <= rangeLower r1)
{-# COMPILE AGDA2HS rangeOverlap #-}
rangeEncloses r1 r2 =
(rangeLower r1 <= rangeLower r2 && rangeUpper r2 <= rangeUpper r1)
|| rangeIsEmpty r2
{-# COMPILE AGDA2HS rangeEncloses #-}
rangeIntersection r1@(Rg l1 u1) r2@(Rg l2 u2) = if_then_else_ (rangeIsEmpty r1 || rangeIsEmpty r2) emptyRange (Rg (max l1 l2) (min u1 u2))
{-# COMPILE AGDA2HS rangeIntersection #-}
rangeU2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → List (Range a)
rangeU2 r1@(Rg l1 u1) r2@(Rg l2 u2) = (if_then_else_ touching ((Rg lower upper) ∷ []) (r1 ∷ r2 ∷ []))
where
touching = (max l1 l2) <= (min u1 u2)
lower = min l1 l2
upper = max u1 u2
{-# COMPILE AGDA2HS rangeU2 #-}
rangeU1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → Range a → Range a → List (Range a)
rangeU1 r1@(Rg l1 u1) r2@(Rg l2 u2) = if_then_else_ (rangeIsEmpty r2) (r1 ∷ []) (rangeU2 r1 r2)
{-# COMPILE AGDA2HS rangeU1 #-}
rangeUnion r1@(Rg l1 u1) r2@(Rg l2 u2) = if_then_else_ (rangeIsEmpty r1) (r2 ∷ []) (rangeU1 r1 r2)
{-# COMPILE AGDA2HS rangeUnion #-}
rangeDifference (Rg lower1 upper1) (Rg lower2 upper2) = if_then_else_ intersects filtered (r1 ∷ [])
where
intersects = ((max lower1 lower2) < (min upper1 upper2))
r1 = Rg lower1 upper1
list = ((Rg lower1 lower2) ∷ (Rg upper2 upper1) ∷ [])
filtered = filter (λ x → (rangeIsEmpty x) == false) list
{-# COMPILE AGDA2HS rangeDifference #-}
rangeSingletonValue (Rg (BoundaryBelow v1) (BoundaryBelow v2)) = if_then_else_ (adjacent v1 v2) (Just v1) Nothing
rangeSingletonValue (Rg (BoundaryBelow v1) (BoundaryAbove v2)) = if_then_else_ (v1 == v2) (Just v1) Nothing
rangeSingletonValue (Rg (BoundaryAbove v1) (BoundaryBelow v2)) = adjacentBelow v2 >>= λ x → adjacentBelow x >>= λ y → if_then_else_ (v1 == y) (return x) Nothing
rangeSingletonValue (Rg (BoundaryAbove v1) (BoundaryAbove v2)) = if_then_else_ (adjacent v1 v2) (Just v2) Nothing
rangeSingletonValue (Rg _ _) = Nothing
{-# COMPILE AGDA2HS rangeSingletonValue #-}
|
{
"alphanum_fraction": 0.6452092102,
"avg_line_length": 42.5157894737,
"ext": "agda",
"hexsha": "55e85688fbc1223669c3347d95110f37bc2a7843",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ioanasv/agda2hs",
"max_forks_repo_path": "lib/Haskell/RangedSets/Ranges.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ioanasv/agda2hs",
"max_issues_repo_path": "lib/Haskell/RangedSets/Ranges.agda",
"max_line_length": 160,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ioanasv/agda2hs",
"max_stars_repo_path": "lib/Haskell/RangedSets/Ranges.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z",
"num_tokens": 2947,
"size": 8078
}
|
open import Common.Prelude
open import Common.Reflect
id : Nat → Nat
id x = x
-- Used to give error:
-- unquote must be applied to a term
-- when checking that the expression unquote has type _3 x
i : Nat → Nat
i x = unquote (def (quote id) []) x
|
{
"alphanum_fraction": 0.692,
"avg_line_length": 19.2307692308,
"ext": "agda",
"hexsha": "936bdebf354136b60f8b4470d53774da9bc8bed5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/succeed/Issue1210.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/succeed/Issue1210.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue1210.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 74,
"size": 250
}
|
{-# OPTIONS --without-K #-}
module hott.types.coproduct where
open import hott.core.universe
data _∐_ {ℓ₀ ℓ₁ : Level}
(A : Type ℓ₀)
(B : Type ℓ₁) : Type (ℓ₀ ⊔ ℓ₁) where
inl : (a : A) → A ∐ B -- left introduction
inr : (b : B) → A ∐ B -- right introduction
-- A more suggestive way of building elements of nested co-product
-- types. For example if we have a : A, b : B and c : C then the
-- expressions, a ∣∙, ∙∣ b ∣∙ and ∙∣ ∙∣ c are elements inl a, inr (inl
-- b) and inr (inr c) of A ∐ B ∐ C respectively.
_∣∙ : {ℓ₀ ℓ₁ : Level}{A : Type ℓ₀}{B : Type ℓ₁}
→ A → A ∐ B
_∣∙ = inl
∙∣_ : {ℓ₀ ℓ₁ : Level}{A : Type ℓ₀}{B : Type ℓ₁}
→ B → A ∐ B
∙∣_ = inr
infixr 0 ∙∣_
infixr 0 _∣∙
-- A more suggestive way of building a case by case analysis.
-- For example, one can just write f1 ∣ f2 ∣ f3
_∣_ : {a b c : Level}
{A : Type a}
{B : Type b}
{C : Type c}
→ (A → C)
→ (B → C)
→ (A ∐ B → C)
(f ∣ g) (inl a) = f a
(f ∣ g) (inr b) = g b
infixr 0 _∐_
infixr 0 _∣_
-- Case by case analysis.
either : {ℓ₀ ℓ₁ ℓ₃ : Level}
{A : Type ℓ₀}{B : Type ℓ₁}{C : Type ℓ₃}
→ (A → C) → (B → C) → (A ∐ B → C)
either f g (inl a) = f a
either f g (inr b) = g b
|
{
"alphanum_fraction": 0.517579722,
"avg_line_length": 23.0754716981,
"ext": "agda",
"hexsha": "392ccdff6016bc66ec0028558d639ef55de62c9d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/types/coproduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/types/coproduct.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/types/coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 547,
"size": 1223
}
|
{-# OPTIONS --safe #-}
open import Generics.Prelude
open import Generics.Telescope
open import Generics.Desc
open import Generics.Mu
open import Generics.Mu.All
open import Data.Fin.Properties as Fin
open import Data.Product.Properties
open import Data.Empty
open import Relation.Nullary
module Generics.Mu.NoConfusion {P I n} {D : DataDesc P I n} where
private
variable
V : ExTele P
p : ⟦ P ⟧tel tt
v : ⟦ V ⟧tel p
i : ⟦ I ⟧tel p
NoConfusionCon : (C : ConDesc P V I)
→ ⟦ C ⟧Conω (μ D) (p , v , i)
→ ⟦ C ⟧Conω (μ D) (p , v , i)
→ Setω
NoConfusionCon (var f) _ _ = ⊤ω
NoConfusionCon (π ai S C) (s₁ , x) (s₂ , y) =
Σω (s₁ ≡ s₂) {!!}
NoConfusionCon (A ⊗ B) x y = {!!}
{-
module NoConfusion {P} {I : ExTele P} {n ℓ} (D : DataDesc P I ℓ n) where
NoConfusionIndArg : ∀ {ℓ} (C : ConDesc P V I ℓ) {ℓ₂} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ₂)}
→ ∀ {pv} → (x y : ⟦ C ⟧IndArg ℓ₂ X pv) → Set (ℓ ⊔ ℓ₂)
NoConfusionIndArgᵇ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (e : ℓ₁ ≡ ℓ₂ ⊔ ℓ₃) (i : ArgInfo)
{X : ⟦ P , I ⟧xtel → Set (ℓ₃ ⊔ ℓ₄)}
(S : ⟦ P , V ⟧xtel → Set ℓ₂)
(C : ConDesc P (V ⊢< i > S) I ℓ₃)
→ ∀ {pv} (x y : IndArgᵇ ℓ₄ e i X S C pv) → Set (ℓ₁ ⊔ ℓ₄)
NoConfusionIndArg (var i) x y = x ≡ y
NoConfusionIndArg (A ⊗ B) (xa , xb) (ya , yb) = NoConfusionIndArg A xa ya × NoConfusionIndArg B xb yb
NoConfusionIndArg (π p i S C) x y = NoConfusionIndArgᵇ p i S C x y
NoConfusionIndArgᵇ refl i S C {pv} x y = x ≡ y
NoConfusionConᵇ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (e : ℓ₁ ≡ ℓ₂ ⊔ ℓ₃) (i : ArgInfo)
{X : ⟦ P , I ⟧xtel → Set (ℓ₃ ⊔ ℓ₄)}
(S : ⟦ P , V ⟧xtel → Set ℓ₂)
(C : ConDesc P (V ⊢< i > S) I ℓ₃)
→ ∀ {pvi} (x y : Conᵇ ℓ₄ e i X S C pvi) → Set (ℓ₁ ⊔ ℓ₄)
NoConfusionCon (var i) x y = Lift _ ⊤
NoConfusionCon (π p i S C) x y = NoConfusionConᵇ p i S C x y
NoConfusionCon (A ⊗ B) (xa , xb) (ya , yb) = NoConfusionIndArg A xa ya × NoConfusionCon B xb yb
NoConfusionConᵇ refl i S C (xs , xd) (ys , yd) = Σ (xs ≡ ys) λ { refl → NoConfusionCon C xd yd }
NoConf : ∀ {ℓ′} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ′)}
→ ∀ {pi} (x y : ⟦ D ⟧Data ℓ′ X pi) → Set (ℓ ⊔ ℓ′)
NoConf (kx , x) (ky , y) with kx Fin.≟ ky
... | yes refl = NoConfusionCon (lookupCon D kx) x y
... | no _ = Lift _ ⊥
noConfIndArg-refl : ∀ {ℓ} (C : ConDesc P V I ℓ) {ℓ₂} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ₂)}
→ ∀ {pvi} → (x : ⟦ C ⟧IndArg ℓ₂ X pvi) → NoConfusionIndArg C x x
noConfIndArgᵇ-refl : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (e : ℓ₁ ≡ ℓ₂ ⊔ ℓ₃) (i : ArgInfo)
{X : ⟦ P , I ⟧xtel → Set (ℓ₃ ⊔ ℓ₄)}
(S : ⟦ P , V ⟧xtel → Set ℓ₂)
(C : ConDesc P (V ⊢< i > S) I ℓ₃)
→ ∀ {pvi} (x : IndArgᵇ ℓ₄ e i X S C pvi) → NoConfusionIndArgᵇ e i S C x x
noConfIndArg-refl (var i) x = refl
noConfIndArg-refl (A ⊗ B) (xa , xb) = noConfIndArg-refl A xa , noConfIndArg-refl B xb
noConfIndArg-refl (π p i S C) x = noConfIndArgᵇ-refl p i S C x
noConfIndArgᵇ-refl refl i S C x = refl
noConfCon-refl : ∀ {ℓ} (C : ConDesc P V I ℓ) {ℓ₂} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ₂)}
→ ∀ {pvi} → (x : ⟦_⟧Con C ℓ₂ X pvi) → NoConfusionCon C x x
noConfConᵇ-refl : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (e : ℓ₁ ≡ ℓ₂ ⊔ ℓ₃) (i : ArgInfo)
{X : ⟦ P , I ⟧xtel → Set (ℓ₃ ⊔ ℓ₄)}
(S : ⟦ P , V ⟧xtel → Set ℓ₂)
(C : ConDesc P (V ⊢< i > S) I ℓ₃)
→ ∀ {pvi} (x : Conᵇ ℓ₄ e i X S C pvi) → NoConfusionConᵇ e i S C x x
noConfCon-refl (var i) x = lift tt
noConfCon-refl (A ⊗ B) (xa , xb) = noConfIndArg-refl A xa , noConfCon-refl B xb
noConfCon-refl (π p i S C) x = noConfConᵇ-refl p i S C x
noConfConᵇ-refl refl i S C (_ , x) = refl , noConfCon-refl C x
noConfIndArg : ∀ {ℓ} (C : ConDesc P V I ℓ) {ℓ₂} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ₂)}
→ ∀ {pvi} {x y : ⟦ C ⟧IndArg ℓ₂ X pvi} → NoConfusionIndArg C x y → x ≡ y
noConfIndArgᵇ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (e : ℓ₁ ≡ ℓ₂ ⊔ ℓ₃) (i : ArgInfo)
{X : ⟦ P , I ⟧xtel → Set (ℓ₃ ⊔ ℓ₄)}
(S : ⟦ P , V ⟧xtel → Set ℓ₂)
(C : ConDesc P (V ⊢< i > S) I ℓ₃)
→ ∀ {pvi} {x y : IndArgᵇ ℓ₄ e i X S C pvi} → NoConfusionIndArgᵇ e i S C x y → x ≡ y
noConfIndArg (var i) nc = nc
noConfIndArg (A ⊗ B) (nca , ncb) = cong₂ _,_ (noConfIndArg A nca) (noConfIndArg B ncb)
noConfIndArg (π p i S C) nc = noConfIndArgᵇ p i S C nc
noConfIndArgᵇ refl i S C nc = nc
noConfCon : ∀ {ℓ} (C : ConDesc P V I ℓ) {ℓ₂} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ₂)}
→ ∀ {pvi} → {x y : ⟦_⟧Con C ℓ₂ X pvi} → NoConfusionCon C x y → x ≡ y
noConfConᵇ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} (e : ℓ₁ ≡ ℓ₂ ⊔ ℓ₃) (i : ArgInfo)
{X : ⟦ P , I ⟧xtel → Set (ℓ₃ ⊔ ℓ₄)}
(S : ⟦ P , V ⟧xtel → Set ℓ₂)
(C : ConDesc P (V ⊢< i > S) I ℓ₃)
→ ∀ {pvi} {x y : Conᵇ ℓ₄ e i X S C pvi} → NoConfusionConᵇ e i S C x y → x ≡ y
noConfCon (var i) {x = lift refl} {lift refl} nc = refl
noConfCon (A ⊗ B) (nca , ncb) = cong₂ _,_ (noConfIndArg A nca) (noConfCon B ncb)
noConfCon (π p i S C) nc = noConfConᵇ p i S C nc
noConfConᵇ refl i S C (refl , nc) = cong (_ ,_) (noConfCon C nc)
noConf : ∀ {ℓ′} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ′)}
→ ∀ {pi} {x y : ⟦ D ⟧Data ℓ′ X pi} → x ≡ y → NoConf x y
noConf {x = kx , x} {ky , _} refl with kx Fin.≟ ky
... | yes refl = noConfCon-refl (lookupCon D kx) x
... | no kx≢kx = lift (kx≢kx refl)
noConf₂ : ∀ {ℓ′} {X : ⟦ P , I ⟧xtel → Set (ℓ ⊔ ℓ′)}
→ ∀ {pi} {x y : ⟦ D ⟧Data ℓ′ X pi} → NoConf x y → x ≡ y
noConf₂ {x = kx , x} {ky , y} nc with kx Fin.≟ ky
... | yes refl = cong (kx ,_) (noConfCon (lookupCon D kx) nc)
... | no kx≢ky = ⊥-elim (Lift.lower nc)
-}
|
{
"alphanum_fraction": 0.4928547125,
"avg_line_length": 38.6710526316,
"ext": "agda",
"hexsha": "5322829f2d6cd7f4cb934d548f530165865e6cde",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Mu/NoConfusion.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Mu/NoConfusion.agda",
"max_line_length": 103,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Mu/NoConfusion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 2765,
"size": 5878
}
|
module Numeral.Real where
import Lvl
open import Syntax.Number
open import Data
open import Functional
open import Logic.Propositional{Lvl.𝟎}
open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎}
open import Numeral.Integer hiding (𝟎)
open import Numeral.Natural
open import Sets.PredicateSet.Filter{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Setoid{Lvl.𝟎}
open import Structure.Operator.Field{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Operator.Group{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Operator.Properties{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Real{Lvl.𝟎}{Lvl.𝟎}
open import Structure.Relator.Ordering{Lvl.𝟎}{Lvl.𝟎}
-- TODO: Write it properly (maybe with a "construction of the reals"?). The following in this file is something to get this started
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [The set]
postulate ℝ : Set
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Relations]
-- infixr 100 _≡_ _≢_ _<_ _>_ _≤_ _≥_ _<_<_
-- Equals
instance postulate [≡]-equiv : Equiv(ℝ)
-- Lesser than
postulate _<_ : ℝ → ℝ → Stmt
open From-[<][≡] (_<_) (_≡_) public
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Conversions]
record [ℝ]-conversion (T : Set) : Set where
infixl 10000 #_
field
#_ : T → ℝ
open [ℝ]-conversion ⦃ ... ⦄ public
instance postulate [ℤ]-to-[ℝ] : [ℝ]-conversion(ℤ)
instance postulate [ℕ]-to-[ℝ] : [ℝ]-conversion(ℕ)
instance
postulate ℝ-InfiniteNumeral : InfiniteNumeral (ℝ)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Subsets]
instance
subset-to-[ℝ] : ∀{P} → [ℝ]-conversion(Filter{ℝ}(P))
subset-to-[ℝ] {P} = record{#_ = f} where
f : Filter{ℝ}(P) → ℝ
f(subelem x) = x
-- Positive real numbers
ℝ₊ = Filter{ℝ}(x ↦ (x > 0))
-- Negative real numbers
ℝ₋ = Filter{ℝ}(x ↦ (x < 0))
-- Non-zero real numbers
ℝ₊₋ = Filter{ℝ}(x ↦ (x ≢ 0))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Elements]
postulate e : ℝ
postulate π : ℝ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Operators]
infixl 1000 _+_ _−_
infixl 1001 _⋅_ _/_
infixl 1002 _^_ _√_
postulate _+_ : ℝ → ℝ → ℝ
postulate _−_ : ℝ → ℝ → ℝ
postulate _⋅_ : ℝ → ℝ → ℝ
postulate _/_ : ℝ → ℝ → ℝ -- TODO: Some of these are partial functions/have smaller domains
postulate _^_ : ℝ → ℝ → ℝ
postulate log : ℝ → ℝ → ℝ
postulate _√_ : ℝ → ℝ → ℝ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Functions]
abs : ℝ → ℝ
abs(x) = 2 √ (x ^ 2)
postulate sin : ℝ → ℝ
cos : ℝ → ℝ
cos(x) = sin(x − (π / 2))
tan : ℝ → ℝ
tan(x) = sin(x) / cos(x)
postulate asin : ℝ → ℝ
postulate acos : ℝ → ℝ
postulate atan : ℝ → ℝ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Stuctures]
instance
postulate [ℝ]-realTheory : RealTheory(_+_)(_⋅_)(_≤_)
instance
postulate [ℝ][<]-strictPartialOrder : Strict.Order {ℝ} (_<_)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Properties of functions in ℝ]
instance postulate abs-positive : ∀{x} → (abs(x) ≥ 0)
instance postulate cos-periodicity : ∀{v}{n : ℕ} → (cos(v) ≡ cos(v + 2 ⋅ π ⋅ #(n)))
instance postulate sin-periodicity : ∀{v}{n : ℕ} → (sin(v) ≡ sin(v + 2 ⋅ π ⋅ #(n)))
instance postulate cos-even : ∀{v} → (cos(v) ≡ cos(0 − v))
instance postulate sin-odd : ∀{v} → (sin(v) ≡ 0 − sin(0 − v))
instance postulate circle : ∀{v} → (cos(v) ^ 2 + sin(v) ^ 2 ≡ 1)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- [Properties on functions of ℝ]
-- postulate Axiom1 : {x y : ℝ} → (x < y) → ¬ (y < x)
-- postulate Axiom2 : {x z : ℝ} → (x < z) → ∃(y ↦ (x < y) ∧ (y < z))
-- postulate Axiom4 : {x y z : ℝ} → ((x + y) + z) ≡ (x + (y + z))
-- postulate Axiom5 : {x y : ℝ} → ∃(z ↦ (x + z) ≡ y)
|
{
"alphanum_fraction": 0.534916596,
"avg_line_length": 25.2642857143,
"ext": "agda",
"hexsha": "bd404d55ea0ad0b0c5f3ef5978b8d9352c92a497",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Numeral/Real.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Numeral/Real.agda",
"max_line_length": 131,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Numeral/Real.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1382,
"size": 3537
}
|
-- An ATP type must be used with data-types or postulates.
-- This error is detected by TypeChecking.Rules.Decl.
module ATPBadType2 where
foo : Set → Set
foo A = A
{-# ATP type foo #-}
|
{
"alphanum_fraction": 0.6984126984,
"avg_line_length": 17.1818181818,
"ext": "agda",
"hexsha": "53d94024e7384fba141c7a2a0b51c276dacd8ed5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadType2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadType2.agda",
"max_line_length": 58,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadType2.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 50,
"size": 189
}
|
{-# OPTIONS --without-K --safe --exact-split #-}
module Constructive.Common where
open import Level
open import Data.Product
open import Data.Sum
open import Function.Base
open import Relation.Nullary
infix 2 _<=>_
-- Logical equivalence
_<=>_ : ∀ {a b} → Set a → Set b → Set (a ⊔ b)
A <=> B = (A → B) × (B → A)
module _ {a b} {A : Set a} {B : Set b} where
mk<=> : (A → B) → (B → A) → A <=> B
mk<=> = _,_
fwd : A <=> B → A → B
fwd = proj₁
bwd : A <=> B → B → A
bwd = proj₂
_∘<=>_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
B <=> C → A <=> B → A <=> C
(f , g) ∘<=> (h , i) = f ∘ h , i ∘ g
Stable : ∀ {a} → Set a → Set a
Stable A = ¬ ¬ A → A
Dec⊎ : ∀ {a} → Set a → Set a
Dec⊎ A = A ⊎ ¬ A
-- Unary decidable predicate
DecU : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p)
DecU P = ∀ x → P x ⊎ ¬ P x
Inhabited : ∀ {a} → Set a → Set a
Inhabited A = A
|
{
"alphanum_fraction": 0.4870349493,
"avg_line_length": 20.6279069767,
"ext": "agda",
"hexsha": "067c6c94975379ddebb37c740e31c212b3efddf9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Constructive/Common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Constructive/Common.agda",
"max_line_length": 56,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Constructive/Common.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 370,
"size": 887
}
|
{-# OPTIONS --without-K #-}
module Agda.Builtin.List where
infixr 5 _∷_
data List {a} (A : Set a) : Set a where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
{-# FOREIGN GHC type AgdaList a b = [b] #-}
{-# COMPILE GHC List = data MAlonzo.Code.Agda.Builtin.List.AgdaList ([] | (:)) #-}
{-# COMPILE UHC List = data __LIST__ (__NIL__ | __CONS__) #-}
{-# COMPILE JS List = function(x,v) {
if (x.length < 1) { return v["[]"](); } else { return v["_∷_"](x[0], x.slice(1)); }
} #-}
{-# COMPILE JS [] = Array() #-}
{-# COMPILE JS _∷_ = function (x) { return function(y) { return Array(x).concat(y); }; } #-}
|
{
"alphanum_fraction": 0.5475504323,
"avg_line_length": 30.1739130435,
"ext": "agda",
"hexsha": "d3df015645ba0c927ff7cc76b8b545f5778bf876",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Blaisorblade/Agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Blaisorblade/Agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda",
"max_line_length": 92,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Blaisorblade/Agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 237,
"size": 694
}
|
module Issue215 where
open import Imports.Bool
{-# COMPILED_DATA Bool Bool True False #-}
|
{
"alphanum_fraction": 0.752688172,
"avg_line_length": 13.2857142857,
"ext": "agda",
"hexsha": "cc02bf734213fdd740c9ba2fcc8ab09c8a289a45",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue215.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue215.agda",
"max_line_length": 42,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue215.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 21,
"size": 93
}
|
{-# OPTIONS --rewriting #-}
module Luau.VarCtxt where
open import Agda.Builtin.Equality using (_≡_)
open import Luau.Type using (Type; _∪_; _∩_)
open import Luau.Var using (Var)
open import FFI.Data.Aeson using (KeyMap; Key; empty; unionWith; singleton; insert; delete; lookup; toString; fromString; lookup-insert; lookup-insert-not; lookup-empty; to-from; insert-swap; insert-over)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Equality using (_≢_; cong; sym; trans)
VarCtxt : Set
VarCtxt = KeyMap Type
∅ : VarCtxt
∅ = empty
_⋒_ : VarCtxt → VarCtxt → VarCtxt
_⋒_ = unionWith _∩_
_⋓_ : VarCtxt → VarCtxt → VarCtxt
_⋓_ = unionWith _∪_
_[_] : VarCtxt → Var → Maybe Type
Γ [ x ] = lookup (fromString x) Γ
_⊝_ : VarCtxt → Var → VarCtxt
Γ ⊝ x = delete (fromString x) Γ
_↦_ : Var → Type → VarCtxt
x ↦ T = singleton (fromString x) T
_⊕_↦_ : VarCtxt → Var → Type → VarCtxt
Γ ⊕ x ↦ T = insert (fromString x) T Γ
⊕-over : ∀ {Γ x y T U} → (x ≡ y) → ((Γ ⊕ x ↦ T) ⊕ y ↦ U) ≡ (Γ ⊕ y ↦ U)
⊕-over p = insert-over _ _ _ _ _ (cong fromString (sym p))
⊕-swap : ∀ {Γ x y T U} → (x ≢ y) → ((Γ ⊕ x ↦ T) ⊕ y ↦ U) ≡ ((Γ ⊕ y ↦ U) ⊕ x ↦ T)
⊕-swap p = insert-swap _ _ _ _ _ (λ q → p (trans (sym (to-from _)) (trans (cong toString (sym q) ) (to-from _))) )
⊕-lookup-miss : ∀ x y T Γ → (x ≢ y) → (Γ [ y ] ≡ (Γ ⊕ x ↦ T) [ y ])
⊕-lookup-miss x y T Γ p = lookup-insert-not (fromString x) (fromString y) T Γ λ q → p (trans (sym (to-from x)) (trans (cong toString q) (to-from y)))
|
{
"alphanum_fraction": 0.6148693905,
"avg_line_length": 33.9318181818,
"ext": "agda",
"hexsha": "76f64dfe3e4c5c17b8b4004bb4a1d58289868346",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Luau/VarCtxt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Luau/VarCtxt.agda",
"max_line_length": 204,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Luau/VarCtxt.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 618,
"size": 1493
}
|
{-# OPTIONS --allow-unsolved-metas #-}
import cedille-options
module elaboration-helpers (options : cedille-options.options) where
open import lib
open import monad-instances
open import general-util
open import cedille-types
open import syntax-util
open import ctxt
open import conversion
open import constants
open import to-string options
open import subst
open import rename
open import is-free
open import toplevel-state options {id}
open import spans options {id}
uncurry' : ∀ {A B C D : Set} → (A → B → C → D) → (A × B × C) → D
uncurry' f (a , b , c) = f a b c
uncurry'' : ∀ {A B C D E : Set} → (A → B → C → D → E) → (A × B × C × D) → E
uncurry'' f (a , b , c , d) = f a b c d
uncurry''' : ∀ {A B C D E F : Set} → (A → B → C → D → E → F) → (A × B × C × D × E) → F
uncurry''' f (a , b , c , d , e) = f a b c d e
ctxt-term-decl' : posinfo → var → type → ctxt → ctxt
ctxt-term-decl' pi x T (mk-ctxt (fn , mn , ps , q) ss is os d) =
mk-ctxt (fn , mn , ps , trie-insert q x (x , ArgsNil)) ss
(trie-insert is x (term-decl T , fn , pi)) os d
ctxt-type-decl' : posinfo → var → kind → ctxt → ctxt
ctxt-type-decl' pi x k (mk-ctxt (fn , mn , ps , q) ss is os d) =
mk-ctxt (fn , mn , ps , trie-insert q x (x , ArgsNil)) ss
(trie-insert is x (type-decl k , fn , pi)) os d
ctxt-tk-decl' : posinfo → var → tk → ctxt → ctxt
ctxt-tk-decl' pi x (Tkt T) = ctxt-term-decl' pi x T
ctxt-tk-decl' pi x (Tkk k) = ctxt-type-decl' pi x k
ctxt-param-decl : var → var → tk → ctxt → ctxt
ctxt-param-decl x x' atk Γ @ (mk-ctxt (fn , mn , ps , q) ss is os ds) =
let d = case atk of λ {(Tkt T) → term-decl T; (Tkk k) → type-decl k} in
mk-ctxt
(fn , mn , ps , trie-insert q x (x , ArgsNil)) ss
(trie-insert is x' (d , fn , posinfo-gen)) os ds
ctxt-term-def' : var → var → term → type → opacity → ctxt → ctxt
ctxt-term-def' x x' t T op Γ @ (mk-ctxt (fn , mn , ps , q) ss is os d) = mk-ctxt
(fn , mn , ps , qualif-insert-params q (mn # x) x ps) ss
(trie-insert is x' (term-def (just ps) op (hnf Γ unfold-head t tt) T , fn , x)) os d
ctxt-type-def' : var → var → type → kind → opacity → ctxt → ctxt
ctxt-type-def' x x' T k op Γ @ (mk-ctxt (fn , mn , ps , q) ss is os d) = mk-ctxt
(fn , mn , ps , qualif-insert-params q (mn # x) x ps) ss
(trie-insert is x' (type-def (just ps) op (hnf Γ (unfolding-elab unfold-head) T tt) k , fn , x)) os d
ctxt-let-term-def : posinfo → var → term → type → ctxt → ctxt
ctxt-let-term-def pi x t T (mk-ctxt (fn , mn , ps , q) ss is os d) =
mk-ctxt (fn , mn , ps , trie-insert q x (x , ArgsNil)) ss
(trie-insert is x (term-def nothing OpacTrans t T , fn , pi)) os d
ctxt-let-type-def : posinfo → var → type → kind → ctxt → ctxt
ctxt-let-type-def pi x T k (mk-ctxt (fn , mn , ps , q) ss is os d) =
mk-ctxt (fn , mn , ps , trie-insert q x (x , ArgsNil)) ss
(trie-insert is x (type-def nothing OpacTrans T k , fn , pi)) os d
ctxt-kind-def' : var → var → params → kind → ctxt → ctxt
ctxt-kind-def' x x' ps2 k Γ @ (mk-ctxt (fn , mn , ps1 , q) ss is os d) = mk-ctxt
(fn , mn , ps1 , qualif-insert-params q (mn # x) x ps1) ss
(trie-insert is x' (kind-def (append-params ps1 $ qualif-params Γ ps2) k' , fn , posinfo-gen)) os d
where
k' = hnf Γ unfold-head k tt
ctxt-lookup-term-var' : ctxt → var → maybe type
ctxt-lookup-term-var' Γ @ (mk-ctxt (fn , mn , ps , q) ss is os d) x =
env-lookup Γ x ≫=maybe λ where
(term-decl T , _) → just T
(term-def ps _ _ T , _ , x') →
let ps = maybe-else ParamsNil id ps in
just $ abs-expand-type ps T
_ → nothing
-- TODO: Could there be parameter/argument clashes if the same parameter variable is defined multiple times?
-- TODO: Could variables be parameter-expanded multiple times?
ctxt-lookup-type-var' : ctxt → var → maybe kind
ctxt-lookup-type-var' Γ @ (mk-ctxt (fn , mn , ps , q) ss is os d) x =
env-lookup Γ x ≫=maybe λ where
(type-decl k , _) → just k
(type-def ps _ _ k , _ , x') →
let ps = maybe-else ParamsNil id ps in
just $ abs-expand-kind ps k
_ → nothing
subst-qualif : ∀ {ed : exprd} → ctxt → renamectxt → ⟦ ed ⟧ → ⟦ ed ⟧
subst-qualif{TERM} Γ ρ = subst-renamectxt Γ ρ ∘ qualif-term Γ
subst-qualif{TYPE} Γ ρ = subst-renamectxt Γ ρ ∘ qualif-type Γ
subst-qualif{KIND} Γ ρ = subst-renamectxt Γ ρ ∘ qualif-kind Γ
subst-qualif Γ ρ = id
rename-validify : string → string
rename-validify = 𝕃char-to-string ∘ (h ∘ string-to-𝕃char) where
validify-char : char → 𝕃 char
validify-char c with
(c =char 'a') ||
(c =char 'z') ||
(c =char 'A') ||
(c =char 'Z') ||
(c =char '\'') ||
(c =char '-') ||
(c =char '_') ||
is-digit c ||
(('a' <char c) && (c <char 'z')) ||
(('A' <char c) && (c <char 'Z'))
...| tt = [ c ]
...| ff = 'Z' :: string-to-𝕃char (ℕ-to-string (toNat c)) ++ [ 'Z' ]
h : 𝕃 char → 𝕃 char
h [] = []
h (c :: cs) = validify-char c ++ h cs
-- Returns a fresh variable name by adding primes and replacing invalid characters
fresh-var' : string → (string → 𝔹) → renamectxt → string
fresh-var' = fresh-var ∘ rename-validify
rename-new_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X
rename-new "_" from Γ for f = f $ fresh-var' "x" (ctxt-binds-var Γ) empty-renamectxt
rename-new x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ) empty-renamectxt
rename_from_for_ : ∀ {X : Set} → var → ctxt → (var → X) → X
rename "_" from Γ for f = f "_"
rename x from Γ for f = f $ fresh-var' x (ctxt-binds-var Γ) empty-renamectxt
fresh-id-term : ctxt → term
fresh-id-term Γ = rename "x" from Γ for λ x → mlam x $ mvar x
get-renaming : renamectxt → var → var → var × renamectxt
get-renaming ρ xₒ x = let x' = fresh-var' x (renamectxt-in-range ρ) ρ in x' , renamectxt-insert ρ xₒ x'
rename_-_from_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X
rename xₒ - "_" from ρ for f = f "_" ρ
rename xₒ - x from ρ for f = uncurry f $ get-renaming ρ xₒ x
rename_-_lookup_for_ : ∀ {X : Set} → var → var → renamectxt → (var → renamectxt → X) → X
rename xₒ - x lookup ρ for f with renamectxt-lookup ρ xₒ
...| nothing = rename xₒ - x from ρ for f
...| just x' = f x' ρ
qualif-new-var : ctxt → var → var
qualif-new-var Γ x = ctxt-get-current-modname Γ # x
mbeta : term → term → term
mrho : term → var → type → term → term
mtpeq : term → term → type
mbeta t t' = Beta posinfo-gen (SomeTerm t posinfo-gen) (SomeTerm t' posinfo-gen)
mrho t x T t' = Rho posinfo-gen RhoPlain NoNums t (Guide posinfo-gen x T) t'
mtpeq t1 t2 = TpEq posinfo-gen t1 t2 posinfo-gen
subst-args-params : ctxt → args → params → kind → kind
subst-args-params Γ (ArgsCons (TermArg _ t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k =
subst-args-params Γ ys ps $ subst Γ t x k
subst-args-params Γ (ArgsCons (TypeArg t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k =
subst-args-params Γ ys ps $ subst Γ t x k
subst-args-params Γ ys ps k = k
data indx : Set where
Index : var → tk → indx
data ctr : Set where
Ctr : var → type → ctr
parameters = 𝕃 decl
indices = 𝕃 indx
constructors = 𝕃 ctr
data datatype : Set where
Data : var → parameters → indices → constructors → datatype
params-to-parameters : params → parameters
params-to-parameters ParamsNil = []
params-to-parameters (ParamsCons p ps) = p :: params-to-parameters ps
{-# TERMINATING #-}
decompose-arrows : ctxt → type → parameters × type
decompose-arrows Γ (Abs pi me pi' x atk T) =
rename-new x from Γ for λ x' →
case decompose-arrows (ctxt-var-decl x' Γ) (rename-var Γ x x' T) of λ where
(ps , T') → Decl posinfo-gen posinfo-gen me x' atk posinfo-gen :: ps , T'
decompose-arrows Γ (TpArrow T me T') =
rename-new "_" from Γ for λ x →
case decompose-arrows (ctxt-var-decl x Γ) T' of λ where
(ps , T'') → Decl posinfo-gen posinfo-gen me x (Tkt T) posinfo-gen :: ps , T''
decompose-arrows Γ (TpParens pi T pi') = decompose-arrows Γ T
decompose-arrows Γ T = [] , T
decompose-ctr-type : ctxt → type → type × parameters × 𝕃 tty
decompose-ctr-type Γ T with decompose-arrows Γ T
...| ps , Tᵣ with decompose-tpapps Tᵣ
...| Tₕ , as = Tₕ , ps , as
{-# TERMINATING #-}
kind-to-indices : ctxt → kind → indices
kind-to-indices Γ (KndArrow k k') =
rename "x" from Γ for λ x' →
Index x' (Tkk k) :: kind-to-indices (ctxt-var-decl x' Γ) k'
kind-to-indices Γ (KndParens pi k pi') = kind-to-indices Γ k
kind-to-indices Γ (KndPi pi pi' x atk k) =
rename x from Γ for λ x' →
Index x' atk :: kind-to-indices (ctxt-var-decl x' Γ) k
kind-to-indices Γ (KndTpArrow T k) =
rename "x" from Γ for λ x' →
Index x' (Tkt T) :: kind-to-indices (ctxt-var-decl x' Γ) k
kind-to-indices Γ (KndVar pi x as) with ctxt-lookup-kind-var-def Γ x
...| nothing = []
...| just (ps , k) = kind-to-indices Γ $ subst-args-params Γ as ps k
kind-to-indices Γ (Star pi) = []
dataConsts-to-ctrs : dataConsts → constructors
dataConsts-to-ctrs DataNull = []
dataConsts-to-ctrs (DataCons (DataConst _ x T) cs) = Ctr x T :: dataConsts-to-ctrs cs
defDatatype-to-datatype : ctxt → defDatatype → datatype
defDatatype-to-datatype Γ (Datatype _ _ x ps k dcs _) =
Data x (params-to-parameters ps) (kind-to-indices Γ k) (dataConsts-to-ctrs dcs)
indices-to-kind : indices → kind → kind
indices-to-kind = flip $ foldr λ {(Index x atk) → KndPi posinfo-gen posinfo-gen x atk}
parameters-to-kind : parameters → kind → kind
parameters-to-kind = flip $ foldr λ {(Decl pi pi' me x atk pi'') → KndPi pi pi' x atk}
indices-to-tplams : indices → (body : type) → type
indices-to-tplams = flip $ foldr λ where
(Index x atk) → TpLambda posinfo-gen posinfo-gen x atk
parameters-to-tplams : parameters → (body : type) → type
parameters-to-tplams = flip $ foldr λ where
(Decl pi pi' me x atk pi'') → TpLambda pi pi' x atk
indices-to-alls : indices → (body : type) → type
indices-to-alls = flip $ foldr λ where
(Index x atk) → Abs posinfo-gen Erased posinfo-gen x atk
parameters-to-alls : parameters → (body : type) → type
parameters-to-alls = flip $ foldr λ where
(Decl pi pi' me x atk pi'') → Abs pi me pi' x atk
indices-to-lams : indices → (body : term) → term
indices-to-lams = flip $ foldr λ where
(Index x atk) → Lam posinfo-gen Erased posinfo-gen x (SomeClass atk)
indices-to-lams' : indices → (body : term) → term
indices-to-lams' = flip $ foldr λ where
(Index x atk) → Lam posinfo-gen Erased posinfo-gen x NoClass
parameters-to-lams : parameters → (body : term) → term
parameters-to-lams = flip $ foldr λ where
(Decl pi pi' me x atk pi'') → Lam pi me pi' x (SomeClass atk)
parameters-to-lams' : parameters → (body : term) → term
parameters-to-lams' = flip $ foldr λ where
(Decl pi pi' me x atk pi'') → Lam pi me pi' x NoClass
indices-to-apps : indices → (body : term) → term
indices-to-apps = flip $ foldl λ where
(Index x (Tkt T)) t → App t Erased (mvar x)
(Index x (Tkk k)) t → AppTp t (mtpvar x)
parameters-to-apps : parameters → (body : term) → term
parameters-to-apps = flip $ foldl λ where
(Decl pi pi' me x (Tkt T) pi'') t → App t me (mvar x)
(Decl pi pi' me x (Tkk k) pi'') t → AppTp t (mtpvar x)
indices-to-tpapps : indices → (body : type) → type
indices-to-tpapps = flip $ foldl λ where
(Index x (Tkt T)) T' → TpAppt T' (mvar x)
(Index x (Tkk k)) T → TpApp T (mtpvar x)
parameters-to-tpapps : parameters → (body : type) → type
parameters-to-tpapps = flip $ foldl λ where
(Decl pi pi' me x (Tkt T) pi'') T' → TpAppt T' (mvar x)
(Decl pi pi' me x (Tkk k) pi'') T → TpApp T (mtpvar x)
constructors-to-lams' : constructors → (body : term) → term
constructors-to-lams' = flip $ foldr λ where
(Ctr x T) → Lam posinfo-gen NotErased posinfo-gen x NoClass
constructors-to-lams : ctxt → var → parameters → constructors → (body : term) → term
constructors-to-lams Γ x ps cs t = foldr
(λ {(Ctr y T) f Γ → Lam posinfo-gen NotErased posinfo-gen y
(SomeClass $ Tkt $ subst Γ (parameters-to-tpapps ps $ mtpvar y) y T)
$ f $ ctxt-var-decl y Γ})
(λ Γ → t) cs Γ
add-indices-to-ctxt : indices → ctxt → ctxt
add-indices-to-ctxt = flip $ foldr λ {(Index x atk) → ctxt-var-decl x}
add-parameters-to-ctxt : parameters → ctxt → ctxt
add-parameters-to-ctxt = flip $ foldr λ {(Decl _ _ _ x'' _ _) → ctxt-var-decl x''}
add-constructors-to-ctxt : constructors → ctxt → ctxt
add-constructors-to-ctxt = flip $ foldr λ where
(Ctr x T) → ctxt-var-decl x
module reindexing (Γ : ctxt) (isₒ : indices) where
reindex-fresh-var : renamectxt → trie indices → var → var
reindex-fresh-var ρ is "_" = "_"
reindex-fresh-var ρ is x =
fresh-var x (λ x' → ctxt-binds-var Γ x' || trie-contains is x') ρ
rename-indices : renamectxt → trie indices → indices
rename-indices ρ is = foldr {B = renamectxt → indices}
(λ {(Index x atk) f ρ →
let x' = reindex-fresh-var ρ is x in
Index x' (substh-tk {TERM} Γ ρ empty-trie atk) :: f (renamectxt-insert ρ x x')})
(λ ρ → []) isₒ ρ
reindex-t : Set → Set
reindex-t X = renamectxt → trie indices → X → X
reindex : ∀ {ed} → reindex-t ⟦ ed ⟧
reindex-term : reindex-t term
reindex-type : reindex-t type
reindex-kind : reindex-t kind
reindex-tk : reindex-t tk
reindex-liftingType : reindex-t liftingType
reindex-optTerm : reindex-t optTerm
reindex-optType : reindex-t optType
reindex-optGuide : reindex-t optGuide
reindex-optClass : reindex-t optClass
reindex-lterms : reindex-t lterms
reindex-args : reindex-t args
reindex-arg : reindex-t arg
reindex-theta : reindex-t theta
reindex-vars : reindex-t (maybe vars)
reindex-defTermOrType : renamectxt → trie indices → defTermOrType → defTermOrType × renamectxt
reindex{TERM} = reindex-term
reindex{TYPE} = reindex-type
reindex{KIND} = reindex-kind
reindex{TK} = reindex-tk
reindex = λ ρ is x → x
rc-is : renamectxt → indices → renamectxt
rc-is = foldr λ {(Index x atk) ρ → renamectxt-insert ρ x x}
index-var = "indices"
index-type-var = "Indices"
is-index-var = isJust ∘ is-pfx index-var
is-index-type-var = isJust ∘ is-pfx index-type-var
reindex-term ρ is (App t me (Var pi x)) with trie-lookup is x
...| nothing = App (reindex-term ρ is t) me (reindex-term ρ is (Var pi x))
...| just is' = indices-to-apps is' $ reindex-term ρ is t
reindex-term ρ is (App t me t') =
App (reindex-term ρ is t) me (reindex-term ρ is t')
reindex-term ρ is (AppTp t T) =
AppTp (reindex-term ρ is t) (reindex-type ρ is T)
reindex-term ρ is (Beta pi ot ot') =
Beta pi (reindex-optTerm ρ is ot) (reindex-optTerm ρ is ot')
reindex-term ρ is (Chi pi oT t) =
Chi pi (reindex-optType ρ is oT) (reindex-term ρ is t)
reindex-term ρ is (Delta pi oT t) =
Delta pi (reindex-optType ρ is oT) (reindex-term ρ is t)
reindex-term ρ is (Epsilon pi lr m t) =
Epsilon pi lr m (reindex-term ρ is t)
reindex-term ρ is (Hole pi) =
Hole pi
reindex-term ρ is (IotaPair pi t t' g pi') =
IotaPair pi (reindex-term ρ is t) (reindex-term ρ is t') (reindex-optGuide ρ is g) pi'
reindex-term ρ is (IotaProj t n pi) =
IotaProj (reindex-term ρ is t) n pi
reindex-term ρ is (Lam pi me pi' x oc t) with is-index-var x
...| ff = let x' = reindex-fresh-var ρ is x in
Lam pi me pi' x' (reindex-optClass ρ is oc) (reindex-term (renamectxt-insert ρ x x') is t)
...| tt with rename-indices ρ is | oc
...| isₙ | NoClass = indices-to-lams' isₙ $ reindex-term (rc-is ρ isₙ) (trie-insert is x isₙ) t
...| isₙ | SomeClass atk = indices-to-lams isₙ $ reindex-term (rc-is ρ isₙ) (trie-insert is x isₙ) t
reindex-term ρ is (Let pi d t) =
elim-pair (reindex-defTermOrType ρ is d) λ d' ρ' → Let pi d' (reindex-term ρ' is t)
reindex-term ρ is (Open pi x t) =
Open pi x (reindex-term ρ is t)
reindex-term ρ is (Parens pi t pi') =
reindex-term ρ is t
reindex-term ρ is (Phi pi t₌ t₁ t₂ pi') =
Phi pi (reindex-term ρ is t₌) (reindex-term ρ is t₁) (reindex-term ρ is t₂) pi'
reindex-term ρ is (Rho pi op on t og t') =
Rho pi op on (reindex-term ρ is t) (reindex-optGuide ρ is og) (reindex-term ρ is t')
reindex-term ρ is (Sigma pi t) =
Sigma pi (reindex-term ρ is t)
reindex-term ρ is (Theta pi θ t ts) =
Theta pi (reindex-theta ρ is θ) (reindex-term ρ is t) (reindex-lterms ρ is ts)
reindex-term ρ is (Var pi x) =
Var pi $ renamectxt-rep ρ x
reindex-term ρ is (Mu pi x t oT pi' cs pi'') = Var posinfo-gen "template-mu-not-allowed"
reindex-term ρ is (Mu' pi t oT pi' cs pi'') = Var posinfo-gen "template-mu-not-allowed"
reindex-type ρ is (Abs pi me pi' x atk T) with is-index-var x
...| ff = let x' = reindex-fresh-var ρ is x in
Abs pi me pi' x' (reindex-tk ρ is atk) (reindex-type (renamectxt-insert ρ x x') is T)
...| tt = let isₙ = rename-indices ρ is in
indices-to-alls isₙ $ reindex-type (rc-is ρ isₙ) (trie-insert is x isₙ) T
reindex-type ρ is (Iota pi pi' x T T') =
let x' = reindex-fresh-var ρ is x in
Iota pi pi' x' (reindex-type ρ is T) (reindex-type (renamectxt-insert ρ x x') is T')
reindex-type ρ is (Lft pi pi' x t lT) =
let x' = reindex-fresh-var ρ is x in
Lft pi pi' x' (reindex-term (renamectxt-insert ρ x x') is t) (reindex-liftingType ρ is lT)
reindex-type ρ is (NoSpans T pi) =
NoSpans (reindex-type ρ is T) pi
reindex-type ρ is (TpLet pi d T) =
elim-pair (reindex-defTermOrType ρ is d) λ d' ρ' → TpLet pi d' (reindex-type ρ' is T)
reindex-type ρ is (TpApp T T') =
TpApp (reindex-type ρ is T) (reindex-type ρ is T')
reindex-type ρ is (TpAppt T (Var pi x)) with trie-lookup is x
...| nothing = TpAppt (reindex-type ρ is T) (reindex-term ρ is (Var pi x))
...| just is' = indices-to-tpapps is' $ reindex-type ρ is T
reindex-type ρ is (TpAppt T t) =
TpAppt (reindex-type ρ is T) (reindex-term ρ is t)
reindex-type ρ is (TpArrow (TpVar pi x) Erased T) with is-index-type-var x
...| ff = TpArrow (reindex-type ρ is (TpVar pi x)) Erased (reindex-type ρ is T)
...| tt = let isₙ = rename-indices ρ is in
indices-to-alls isₙ $ reindex-type (rc-is ρ isₙ) (trie-insert is x isₙ) T
reindex-type ρ is (TpArrow T me T') =
TpArrow (reindex-type ρ is T) me (reindex-type ρ is T')
reindex-type ρ is (TpEq pi t t' pi') =
TpEq pi (reindex-term ρ is t) (reindex-term ρ is t') pi'
reindex-type ρ is (TpHole pi) =
TpHole pi
reindex-type ρ is (TpLambda pi pi' x atk T) with is-index-var x
...| ff = let x' = reindex-fresh-var ρ is x in
TpLambda pi pi' x' (reindex-tk ρ is atk) (reindex-type (renamectxt-insert ρ x x') is T)
...| tt = let isₙ = rename-indices ρ is in
indices-to-tplams isₙ $ reindex-type (rc-is ρ isₙ) (trie-insert is x isₙ) T
reindex-type ρ is (TpParens pi T pi') =
reindex-type ρ is T
reindex-type ρ is (TpVar pi x) =
TpVar pi $ renamectxt-rep ρ x
reindex-kind ρ is (KndParens pi k pi') =
reindex-kind ρ is k
reindex-kind ρ is (KndArrow k k') =
KndArrow (reindex-kind ρ is k) (reindex-kind ρ is k')
reindex-kind ρ is (KndPi pi pi' x atk k) with is-index-var x
...| ff = let x' = reindex-fresh-var ρ is x in
KndPi pi pi' x' (reindex-tk ρ is atk) (reindex-kind (renamectxt-insert ρ x x') is k)
...| tt = let isₙ = rename-indices ρ is in
indices-to-kind isₙ $ reindex-kind (rc-is ρ isₙ) (trie-insert is x isₙ) k
reindex-kind ρ is (KndTpArrow (TpVar pi x) k) with is-index-type-var x
...| ff = KndTpArrow (reindex-type ρ is (TpVar pi x)) (reindex-kind ρ is k)
...| tt = let isₙ = rename-indices ρ is in
indices-to-kind isₙ $ reindex-kind (rc-is ρ isₙ) is k
reindex-kind ρ is (KndTpArrow T k) =
KndTpArrow (reindex-type ρ is T) (reindex-kind ρ is k)
reindex-kind ρ is (KndVar pi x as) =
KndVar pi (renamectxt-rep ρ x) (reindex-args ρ is as)
reindex-kind ρ is (Star pi) =
Star pi
reindex-tk ρ is (Tkt T) = Tkt $ reindex-type ρ is T
reindex-tk ρ is (Tkk k) = Tkk $ reindex-kind ρ is k
-- Can't reindex large indices in a lifting type (LiftPi requires a type, not a tk),
-- so for now we will just ignore reindexing lifting types.
-- Types withing lifting types will still be reindexed, though.
reindex-liftingType ρ is (LiftArrow lT lT') =
LiftArrow (reindex-liftingType ρ is lT) (reindex-liftingType ρ is lT')
reindex-liftingType ρ is (LiftParens pi lT pi') =
reindex-liftingType ρ is lT
reindex-liftingType ρ is (LiftPi pi x T lT) =
let x' = reindex-fresh-var ρ is x in
LiftPi pi x' (reindex-type ρ is T) (reindex-liftingType (renamectxt-insert ρ x x') is lT)
reindex-liftingType ρ is (LiftStar pi) =
LiftStar pi
reindex-liftingType ρ is (LiftTpArrow T lT) =
LiftTpArrow (reindex-type ρ is T) (reindex-liftingType ρ is lT)
reindex-optTerm ρ is NoTerm = NoTerm
reindex-optTerm ρ is (SomeTerm t pi) = SomeTerm (reindex-term ρ is t) pi
reindex-optType ρ is NoType = NoType
reindex-optType ρ is (SomeType T) = SomeType (reindex-type ρ is T)
reindex-optClass ρ is NoClass = NoClass
reindex-optClass ρ is (SomeClass atk) = SomeClass (reindex-tk ρ is atk)
reindex-optGuide ρ is NoGuide = NoGuide
reindex-optGuide ρ is (Guide pi x T) =
let x' = reindex-fresh-var ρ is x in
Guide pi x' (reindex-type (renamectxt-insert ρ x x') is T)
reindex-lterms ρ is (LtermsNil pi) = LtermsNil pi
reindex-lterms ρ is (LtermsCons me t ts) =
LtermsCons me (reindex-term ρ is t) (reindex-lterms ρ is ts)
reindex-theta ρ is (AbstractVars xs) = maybe-else Abstract AbstractVars $ reindex-vars ρ is $ just xs
reindex-theta ρ is θ = θ
reindex-vars''' : vars → vars → vars
reindex-vars''' (VarsNext x xs) xs' = VarsNext x $ reindex-vars''' xs xs'
reindex-vars''' (VarsStart x) xs = VarsNext x xs
reindex-vars'' : vars → maybe vars
reindex-vars'' (VarsNext x (VarsStart x')) = just $ VarsStart x
reindex-vars'' (VarsNext x xs) = maybe-map (VarsNext x) $ reindex-vars'' xs
reindex-vars'' (VarsStart x) = nothing
reindex-vars' : renamectxt → trie indices → var → maybe vars
reindex-vars' ρ is x = maybe-else (just $ VarsStart $ renamectxt-rep ρ x)
(reindex-vars'' ∘ flip foldr (VarsStart "") λ {(Index x atk) → VarsNext x}) (trie-lookup is x)
reindex-vars ρ is (just (VarsStart x)) = reindex-vars' ρ is x
reindex-vars ρ is (just (VarsNext x xs)) = maybe-else (reindex-vars ρ is $ just xs)
(λ xs' → maybe-map (reindex-vars''' xs') $ reindex-vars ρ is $ just xs) $ reindex-vars' ρ is x
reindex-vars ρ is nothing = nothing
reindex-arg ρ is (TermArg me t) = TermArg me (reindex-term ρ is t)
reindex-arg ρ is (TypeArg T) = TypeArg (reindex-type ρ is T)
reindex-args ρ is ArgsNil = ArgsNil
reindex-args ρ is (ArgsCons a as) = ArgsCons (reindex-arg ρ is a) (reindex-args ρ is as)
reindex-defTermOrType ρ is (DefTerm pi x oT t) =
let x' = reindex-fresh-var ρ is x in
DefTerm pi x' (reindex-optType ρ is oT) (reindex-term ρ is t) , renamectxt-insert ρ x x'
reindex-defTermOrType ρ is (DefType pi x k T) =
let x' = reindex-fresh-var ρ is x in
DefType pi x' (reindex-kind ρ is k) (reindex-type ρ is T) , renamectxt-insert ρ x x'
reindex-cmds : renamectxt → trie indices → cmds → cmds × renamectxt
reindex-cmds ρ is CmdsStart = CmdsStart , ρ
reindex-cmds ρ is (CmdsNext (ImportCmd i) cs) =
elim-pair (reindex-cmds ρ is cs) $ _,_ ∘ CmdsNext (ImportCmd i)
reindex-cmds ρ is (CmdsNext (DefTermOrType op d pi) cs) =
elim-pair (reindex-defTermOrType ρ is d) λ d' ρ' →
elim-pair (reindex-cmds ρ' is cs) $ _,_ ∘ CmdsNext (DefTermOrType op d' pi)
reindex-cmds ρ is (CmdsNext (DefKind pi x ps k pi') cs) =
let x' = reindex-fresh-var ρ is x in
elim-pair (reindex-cmds (renamectxt-insert ρ x x') is cs) $ _,_ ∘ CmdsNext
(DefKind pi x' ps (reindex-kind ρ is k) pi')
reindex-cmds ρ is (CmdsNext (DefDatatype dt pi) cs) =
reindex-cmds ρ is cs -- Templates can't use datatypes!
reindex-file : ctxt → indices → start → cmds × renamectxt
reindex-file Γ is (File pi csᵢ pi' pi'' x ps cs pi''') =
reindex-cmds empty-renamectxt empty-trie cs
where open reindexing Γ is
mk-ctr-term : maybeErased → (x X : var) → constructors → parameters → term
mk-ctr-term me x X cs ps =
let t = Mlam X $ constructors-to-lams' cs $ parameters-to-apps ps $ mvar x in
case me of λ where
Erased → Beta posinfo-gen NoTerm $ SomeTerm t posinfo-gen
NotErased → IotaPair posinfo-gen (Beta posinfo-gen NoTerm $ SomeTerm t posinfo-gen)
t NoGuide posinfo-gen
mk-ctr-type : maybeErased → ctxt → ctr → constructors → var → type
mk-ctr-type me Γ (Ctr x T) cs Tₕ with decompose-ctr-type (ctxt-var-decl Tₕ Γ) T
...| Tₓ , ps , is =
parameters-to-alls ps $
TpAppt (curry recompose-tpapps (mtpvar Tₕ) is) $
rename "X" from add-parameters-to-ctxt ps (ctxt-var-decl Tₕ Γ) for λ X →
mk-ctr-term me x X cs ps
record encoded-datatype-names : Set where
constructor mk-encoded-datatype-names
field
data-functor : var
data-fmap : var
data-functor-ind : var
cast : var
fixpoint-type : var
fixpoint-in : var
fixpoint-ind : var
record elab-mus : Set where
field
elab-check-mu : var → type → maybe term
elab-synth-mu : var → maybe (term × type)
elab-check-mu' : type → maybe term
elab-synth-mu' : maybe (term × type)
record encoded-datatype : Set where
constructor mk-encoded-datatype
field
data-def : datatype
names : encoded-datatype-names
elab-mu : datatype → encoded-datatype-names → ctxt → term → optType → cases → elab-mus
elab-check-mu = λ Γ t oT ms → elab-mus.elab-check-mu $ elab-mu data-def names Γ t oT ms
elab-synth-mu = λ Γ t oT ms → elab-mus.elab-synth-mu $ elab-mu data-def names Γ t oT ms
elab-check-mu' = λ Γ t oT ms → elab-mus.elab-check-mu' $ elab-mu data-def names Γ t oT ms
elab-synth-mu' = λ Γ t oT ms → elab-mus.elab-synth-mu' $ elab-mu data-def names Γ t oT ms
record datatype-encoding : Set where
constructor mk-datatype-encoding
field
template : start
functor : var
cast : var
fixpoint-type : var
fixpoint-in : var
fixpoint-ind : var
elab-mu : datatype → encoded-datatype-names → ctxt → term → optType → cases → elab-mus
mk-defs : ctxt → datatype → cmds × encoded-datatype
mk-defs Γ'' (Data x ps is cs) =
append-cmds tcs
(csn functor-cmd $
csn functor-ind-cmd $
csn fmap-cmd $
csn type-cmd $
foldr (csn ∘ ctr-cmd) CmdsStart cs) ,
record {
elab-mu = elab-mu;
data-def = Data x ps is cs;
names = record {
data-functor = data-functorₓ;
data-fmap = data-fmapₓ;
data-functor-ind = data-functor-indₓ;
cast = castₓ;
fixpoint-type = fixpoint-typeₓ;
fixpoint-in = fixpoint-inₓ;
fixpoint-ind = fixpoint-indₓ}}
where
csn = CmdsNext ∘ flip (DefTermOrType OpacTrans) posinfo-gen
k = indices-to-kind is $ Star posinfo-gen
Γ' = add-parameters-to-ctxt ps $ add-constructors-to-ctxt cs $ ctxt-var-decl x Γ''
tcs-ρ = reindex-file Γ' is template
tcs = fst tcs-ρ
ρ = snd tcs-ρ
data-functorₓ = fresh-var (x ^ "F") (ctxt-binds-var Γ') ρ
data-fmapₓ = fresh-var (x ^ "Fmap") (ctxt-binds-var Γ') ρ
data-functor-indₓ = fresh-var (x ^ "IndF") (ctxt-binds-var Γ') ρ
functorₓ = renamectxt-rep ρ functor
castₓ = renamectxt-rep ρ cast
fixpoint-typeₓ = renamectxt-rep ρ fixpoint-type
fixpoint-inₓ = renamectxt-rep ρ fixpoint-in
fixpoint-indₓ = renamectxt-rep ρ fixpoint-ind
Γ = add-indices-to-ctxt is $ ctxt-var-decl data-functorₓ $ ctxt-var-decl data-fmapₓ $ ctxt-var-decl data-functor-indₓ Γ'
new-var : ∀ {ℓ} {X : Set ℓ} → var → (var → X) → X
new-var x f = f $ fresh-var x (ctxt-binds-var Γ) ρ
functor-cmd = DefType posinfo-gen data-functorₓ (parameters-to-kind ps $ KndArrow k k) $
parameters-to-tplams ps $
TpLambda posinfo-gen posinfo-gen x (Tkk $ k) $
indices-to-tplams is $
new-var "x" λ xₓ → new-var "X" λ Xₓ →
Iota posinfo-gen posinfo-gen xₓ (mtpeq id-term id-term) $
Abs posinfo-gen Erased posinfo-gen Xₓ
(Tkk $ indices-to-kind is $ KndTpArrow (mtpeq id-term id-term) star) $
foldr (λ c → flip TpArrow NotErased $ mk-ctr-type Erased Γ c cs Xₓ)
(TpAppt (indices-to-tpapps is $ mtpvar Xₓ) (mvar xₓ)) cs
functor-ind-cmd = DefTerm posinfo-gen data-functor-indₓ NoType $
parameters-to-lams ps $
Lam posinfo-gen Erased posinfo-gen x (SomeClass $ Tkk k) $
indices-to-lams is $
new-var "x" λ xₓ → new-var "y" λ yₓ → new-var "e" λ eₓ → new-var "X" λ Xₓ →
let T = indices-to-tpapps is $ TpApp (parameters-to-tpapps ps $ mtpvar data-functorₓ) (mtpvar x) in
Lam posinfo-gen NotErased posinfo-gen xₓ (SomeClass $ Tkt T) $
Lam posinfo-gen Erased posinfo-gen Xₓ
(SomeClass $ Tkk $ indices-to-kind is $ KndTpArrow T star) $
flip (foldr λ {c @ (Ctr x' _) → Lam posinfo-gen NotErased posinfo-gen x' $ SomeClass $
Tkt $ mk-ctr-type NotErased Γ c cs Xₓ}) cs $
flip mappe (Beta posinfo-gen NoTerm NoTerm) $
flip mappe (mvar xₓ) $
let Γ' = ctxt-var-decl xₓ $ ctxt-var-decl yₓ $ ctxt-var-decl eₓ $ ctxt-var-decl Xₓ Γ in
flip (foldl λ {(Ctr x' T) → flip mapp $
elim-pair (decompose-arrows Γ T) λ ps' Tₕ →
parameters-to-lams' ps' $
Mlam yₓ $ Mlam eₓ $
parameters-to-apps ps' $ mvar x'}) cs $
AppTp (IotaProj (mvar xₓ) "2" posinfo-gen) $
indices-to-tplams is $
TpLambda posinfo-gen posinfo-gen xₓ (Tkt $ mtpeq id-term id-term) $
Abs posinfo-gen Erased posinfo-gen yₓ (Tkt T) $
Abs posinfo-gen Erased posinfo-gen eₓ (Tkt $ mtpeq (mvar yₓ) (mvar xₓ)) $
TpAppt (indices-to-tpapps is $ mtpvar Xₓ) $
Phi posinfo-gen (mvar eₓ) (mvar yₓ) (mvar xₓ) posinfo-gen
fmap-cmd : defTermOrType
fmap-cmd with new-var "A" id | new-var "B" id | new-var "c" id
...| Aₓ | Bₓ | cₓ = DefTerm posinfo-gen data-fmapₓ (SomeType $
parameters-to-alls ps $
TpApp (mtpvar functorₓ) $
parameters-to-tpapps ps $
mtpvar data-functorₓ) $
parameters-to-lams ps $
Mlam Aₓ $ Mlam Bₓ $ Mlam cₓ $
IotaPair posinfo-gen
(indices-to-lams is $
new-var "x" λ xₓ → mlam xₓ $
IotaPair posinfo-gen (IotaProj (mvar xₓ) "1" posinfo-gen)
(new-var "X" λ Xₓ → Mlam Xₓ $
constructors-to-lams' cs $
foldl
(flip mapp ∘ eta-expand-fmap)
(AppTp (IotaProj (mvar xₓ) "2" posinfo-gen) $ mtpvar Xₓ) cs)
NoGuide posinfo-gen)
(Beta posinfo-gen NoTerm NoTerm) NoGuide posinfo-gen
where
eta-expand-fmaph-type : ctxt → var → type → term
eta-expand-fmaph-type Γ x' T with decompose-ctr-type Γ T
...| Tₕ , ps , as with add-parameters-to-ctxt ps Γ
...| Γ' =
parameters-to-lams' ps $
flip mapp (parameters-to-apps ps $ mvar x') $
recompose-apps Erased as $
flip mappe (mvar cₓ) $
flip AppTp (mtpvar Bₓ) $
AppTp (mvar castₓ) (mtpvar Aₓ)
eta-expand-fmap : ctr → term
eta-expand-fmap (Ctr x' T) with
ctxt-var-decl Aₓ $ ctxt-var-decl Bₓ $ ctxt-var-decl cₓ Γ
...| Γ' with decompose-ctr-type Γ' T
...| Tₕ , ps , as with foldr (λ {(Decl _ _ _ x'' _ _) → ctxt-var-decl x''}) Γ' ps
...| Γ'' = parameters-to-lams' ps $ foldl
(λ {(Decl pi pi' me x'' (Tkt T) pi'') t → App t me $
if ~ is-free-in tt x T then mvar x'' else eta-expand-fmaph-type Γ'' x'' T;
(Decl pi pi' me x'' (Tkk k) pi'') t → AppTp t $ mtpvar x''})
(mvar x') $ ps
type-cmd = DefType posinfo-gen x (parameters-to-kind ps $ k) $
parameters-to-tplams ps $ TpAppt
(TpApp (mtpvar fixpoint-typeₓ) $ parameters-to-tpapps ps $ mtpvar data-functorₓ)
(parameters-to-apps ps $ mvar data-fmapₓ)
ctr-cmd : ctr → defTermOrType
ctr-cmd (Ctr x' T) with
decompose-ctr-type Γ (subst Γ (parameters-to-tpapps ps $ mtpvar x) x T)
...| Tₕ , ps' , as' = DefTerm posinfo-gen x' NoType $
parameters-to-lams ps $
parameters-to-lams ps' $
mapp (recompose-apps Erased (take (length as' ∸ length ps) as') $
mappe (AppTp (mvar fixpoint-inₓ) $
parameters-to-tpapps ps $ mtpvar data-functorₓ) $
parameters-to-apps ps $ mvar data-fmapₓ) $
rename "X" from add-parameters-to-ctxt ps' Γ for λ Xₓ →
mk-ctr-term NotErased x' Xₓ cs ps'
|
{
"alphanum_fraction": 0.6321583179,
"avg_line_length": 43.2352941176,
"ext": "agda",
"hexsha": "5d12fbf8d2056eb1b52522e6d6ae3e6c2a46ba7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/elaboration-helpers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/elaboration-helpers.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/elaboration-helpers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11541,
"size": 32340
}
|
open import Function using (const; id)
open import Auto.Core using (IsHintDB; simpleHintDB; Rules; Rule; name2rule)
open import Data.List using ([]; [_]; _++_)
open import Data.Nat using (ℕ)
open import Data.Product using (_,_)
open import Data.Sum using (inj₁; inj₂)
open import Reflection using (Name; Term; TC)
module Auto where
open import Auto.Extensible simpleHintDB public renaming (auto to auto′)
auto : ℕ → HintDB → Term → TC Term
auto = auto′ dfs
macro
autoMacro = auto
|
{
"alphanum_fraction": 0.7075098814,
"avg_line_length": 28.1111111111,
"ext": "agda",
"hexsha": "1afb832a9857e1dcc9fdb6381c6eb24d0e74368e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z",
"max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/AutoInAgda",
"max_forks_repo_path": "src/Auto.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/AutoInAgda",
"max_issues_repo_path": "src/Auto.agda",
"max_line_length": 79,
"max_stars_count": 22,
"max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/AutoInAgda",
"max_stars_repo_path": "src/Auto.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z",
"num_tokens": 137,
"size": 506
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module Term where
open import OscarPrelude
open import VariableName
open import FunctionName
open import Arity
open import Vector
mutual
data Term : Set
where
variable : VariableName → Term
function : FunctionName → Terms → Term
record Terms : Set
where
constructor ⟨_⟩
inductive
field
{arity} : Arity
terms : Vector Term arity
open Terms public
termVariable-inj : ∀ {𝑥₁ 𝑥₂} → Term.variable 𝑥₁ ≡ variable 𝑥₂ → 𝑥₁ ≡ 𝑥₂
termVariable-inj refl = refl
termFunction-inj₁ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → 𝑓₁ ≡ 𝑓₂
termFunction-inj₁ refl = refl
termFunction-inj₂ : ∀ {𝑓₁ 𝑓₂ τ₁s τ₂s} → Term.function 𝑓₁ τ₁s ≡ function 𝑓₂ τ₂s → τ₁s ≡ τ₂s
termFunction-inj₂ refl = refl
terms-inj : ∀ {𝑎} → {τs₁ τs₂ : Vector Term 𝑎} → (τs₁≡τs₂ : (Terms.⟨_⟩ {𝑎} τs₁) ≡ ⟨ τs₂ ⟩) → τs₁ ≡ τs₂
terms-inj refl = refl
module _ where
open import TermByFunctionNames
mutual
termToTermByFunctionNames : Term → Σ Nat TermByFunctionNames
termToTermByFunctionNames (variable x) = _ , (variable x)
termToTermByFunctionNames (function x x₁) = {!!}
termsToVec : Terms → Σ Nat (λ arity → Σ (Vec (Σ Nat TermByFunctionNames) arity) λ τs → Σ Nat λ n → n ≡ sum (vecToList $ (fst <$> τs)))
termsToVec (⟨_⟩ {arity = arity₁} ⟨ vector₁ ⟩) = {!!}
iTermToTerm : Σ Nat TermByFunctionNames → Term
iTermToTerm = {!!}
eq-term-round : ∀ τ → iTermToTerm (termToTermByFunctionNames τ) ≡ τ
eq-term-round = {!!}
eq-iterm-round : ∀ τ → termToTermByFunctionNames (iTermToTerm τ) ≡ τ
eq-iterm-round = {!!}
instance EqTerm : Eq Term
Eq._==_ EqTerm x y with termToTermByFunctionNames x | graphAt termToTermByFunctionNames x | termToTermByFunctionNames y | graphAt termToTermByFunctionNames y
Eq._==_ EqTerm x y | ix | ingraph eqx | iy | ingraph eqy with ix ≟ iy
Eq._==_ EqTerm x y | ix | ingraph eqx | .ix | ingraph eqy | yes refl = yes $ ((cong iTermToTerm eqy ⟨≡⟩ʳ cong iTermToTerm eqx) ⟨≡⟩ eq-term-round x) ʳ⟨≡⟩ eq-term-round y
Eq._==_ EqTerm x y | ix | ingraph eqx | iy | ingraph eqy | no neq = {!!}
instance EqTerms : Eq Terms
EqTerms = {!!}
{-
module _ {i : Size}
where
mutual
EqTerm⇑ : (x y : Term) → Delay i ∘ Dec $ x ≡ y
EqTerm⇑ (variable _) (variable _) = now (decEq₁ termVariable-inj $ _≟_ _ _)
EqTerm⇑ (function 𝑓₁ τ₁s) (function 𝑓₂ τ₂s) =
{-
τ₁s≟τ₂s ← EqTerms⇑ τ₁s τ₂s -|
(now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s)
-}
EqTerms⇑ τ₁s τ₂s >>= λ
τ₁s≟τ₂s → now $ decEq₂ termFunction-inj₁ termFunction-inj₂ (𝑓₁ ≟ 𝑓₂) τ₁s≟τ₂s
EqTerm⇑ (variable _) (function _ _) = now $ no λ ()
EqTerm⇑ (function _ _) (variable _) = now $ no λ ()
EqTerms⇑ : (x y : Terms) → Delay i ∘ Dec $ x ≡ y
EqTerms⇑ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s)
with 𝑎₁ ≟ 𝑎₂
… | no 𝑎₁≢𝑎₂ = now $ no λ {τ₁≡τ₂ → 𝑎₁≢𝑎₂ (cong arity τ₁≡τ₂)}
… | yes refl =
EqVectorTerm⇑ τ₁s τ₂s >>= λ
{ (yes refl) → now $ yes refl
; (no τ₁s≢τ₂s) → now $ no (λ ⟨τ₁s⟩≡⟨τ₂s⟩ → τ₁s≢τ₂s (terms-inj ⟨τ₁s⟩≡⟨τ₂s⟩)) }
EqVectorTerm⇑ : ∀ {n} → (x y : Vector Term n) → Delay i ∘ Dec $ x ≡ y
EqVectorTerm⇑ ⟨ [] ⟩ ⟨ [] ⟩ = now (yes refl)
EqVectorTerm⇑ ⟨ τ₁ ∷ τ₁s ⟩ ⟨ τ₂ ∷ τ₂s ⟩ =
EqTerm⇑ τ₁ τ₂ >>= λ
{ (yes refl) → EqVectorTerm⇑ ⟨ τ₁s ⟩ ⟨ τ₂s ⟩ >>= λ
{ (yes refl) → now $ yes refl
; (no τ₁s≢τ₂s) → now $ no λ τ₁₁s≡τ₁₂s → τ₁s≢τ₂s $ cong ⟨_⟩ ((vcons-inj-tail (cong vector τ₁₁s≡τ₁₂s))) }
; (no τ₁≢τ₂) → now $ no λ τ₁₁s≡τ₂₂s → τ₁≢τ₂ $ vcons-inj-head (cong vector τ₁₁s≡τ₂₂s) }
EqVectorTerm⇓ : ∀ {n} → (x y : Vector Term n) → EqVectorTerm⇑ x y ⇓
EqVectorTerm⇓ ⟨ [] ⟩ ⟨ [] ⟩ = _ , now⇓
EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable 𝑥₂ ∷ τ₂s ⟩
with 𝑥₁ ≟ 𝑥₂
… | yes refl with EqVectorTerm⇓ ⟨ τ₁s ⟩ ⟨ τ₂s ⟩
EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable .𝑥₁ ∷ .τ₁s ⟩ | yes refl | (yes refl , snd₁) = _ , snd₁ >>=⇓ now⇓
EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable .𝑥₁ ∷ τ₂s ⟩ | yes refl | (no x , snd₁) = _ , snd₁ >>=⇓ now⇓
EqVectorTerm⇓ ⟨ variable 𝑥₁ ∷ τ₁s ⟩ ⟨ variable 𝑥₂ ∷ τ₂s ⟩ | no 𝑥₁≢𝑥₂ = _ , now⇓
EqVectorTerm⇓ ⟨ variable x ∷ τ₁s ⟩ ⟨ function x₁ x₂ ∷ τ₂s ⟩ = _ , now⇓
EqVectorTerm⇓ ⟨ function x x₁ ∷ τ₁s ⟩ ⟨ variable x₂ ∷ τ₂s ⟩ = _ , now⇓
EqVectorTerm⇓ ⟨ function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s ⟩ ⟨ function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s ⟩
with 𝑎₁ ≟ 𝑎₂ | 𝑓₁ ≟ 𝑓₂
… | no 𝑎₁≢𝑎₂ | no 𝑓₁≢𝑓₂ = _ , now⇓
… | no 𝑎₁≢𝑎₂ | yes refl = _ , now⇓
… | yes refl | no 𝑓₁≢𝑓₂
with EqVectorTerm⇓ τ₁s τ₂s
… | (no τ₁s≢τ₂s , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
… | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
EqVectorTerm⇓ ⟨ function 𝑓₁ (⟨_⟩ {𝑎₁} τ₁s) ∷ τ₁₂s ⟩ ⟨ function 𝑓₂ (⟨_⟩ {𝑎₂} τ₂s) ∷ τ₂₂s ⟩ | yes refl | yes refl
with EqVectorTerm⇓ τ₁s τ₂s | EqVectorTerm⇓ ⟨ τ₁₂s ⟩ ⟨ τ₂₂s ⟩
… | (no τ₁s≢τ₂s , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
… | (yes refl , τ⇓) | (no τ₁₂s≢τ₂₂s , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓)
… | (no τ₁s≢τ₂s , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ now⇓
… | (yes refl , τ⇓) | (yes refl , τs⇓) = _ , τ⇓ >>=⇓ now⇓ >>=⇓ now⇓ >>=⇓ (τs⇓ >>=⇓ now⇓)
EqTerms⇓ : (x y : Terms) → EqTerms⇑ x y ⇓
EqTerms⇓ (⟨_⟩ {𝑎₁} τ₁s) (⟨_⟩ {𝑎₂} τ₂s)
with 𝑎₁ ≟ 𝑎₂
… | no 𝑎₁≢𝑎₂ = _ , now⇓
… | yes refl
with EqVectorTerm⇓ τ₁s τ₂s
… | (yes refl , τ⇓) = _ , τ⇓ >>=⇓ now⇓
… | (no _ , τ⇓) = _ , τ⇓ >>=⇓ now⇓
EqTerm⇓ : (x y : Term) → EqTerm⇑ x y ⇓
EqTerm⇓ (variable x) (variable x₁) = _ , now⇓
EqTerm⇓ (function _ τ₁s) (function _ τ₂s)
with EqTerms⇓ τ₁s τ₂s
… | (_ , τ⇓) = _ , τ⇓ >>=⇓ now⇓
EqTerm⇓ (variable x) (function x₁ x₂) = _ , now⇓
EqTerm⇓ (function x x₁) (variable x₂) = _ , now⇓
instance EqTerm : Eq Term
EqTerm = record { _==_ = λ x y → fst (EqTerm⇓ x y) }
instance EqTerms : Eq Terms
Eq._==_ EqTerms x y = fst (EqTerms⇓ x y)
-}
module _ where
open import Membership
instance MembershipTermTerms : Membership Term Terms
Membership._∈_ MembershipTermTerms = _ᵗ∈ᵗˢ_ where
data _ᵗ∈ᵗˢ_ (τ : Term) : Terms → Set
where
zero : τ ᵗ∈ᵗˢ ⟨ ⟨ τ ∷ [] ⟩ ⟩
suc : ∀ {τs} → τ ᵗ∈ᵗˢ τs → τ ᵗ∈ᵗˢ ⟨ ⟨ τ ∷ vector (terms τs) ⟩ ⟩
Membership._∉_ MembershipTermTerms x X = ¬ x ∈ X
fst (Membership.xor-membership MembershipTermTerms) x₁ x₂ = x₂ x₁
snd (Membership.xor-membership MembershipTermTerms) x₁ x₂ = x₁ x₂
instance MembershipVariableNameTerm : Membership VariableName Term
Membership._∈_ MembershipVariableNameTerm = _ᵛ∈ᵗ_ where
data _ᵛ∈ᵗ_ (𝑥 : VariableName) : Term → Set
where
variable : 𝑥 ᵛ∈ᵗ variable 𝑥
function : ∀ 𝑓 {τ : Term} {τs} → {_ : 𝑥 ∈ τ} → τ ∈ τs → 𝑥 ᵛ∈ᵗ function 𝑓 τs
Membership._∉_ MembershipVariableNameTerm x X = ¬ x ∈ X
fst (Membership.xor-membership MembershipVariableNameTerm) x₁ x₂ = x₂ x₁
snd (Membership.xor-membership MembershipVariableNameTerm) x₁ x₂ = x₁ x₂
module _ where
import UnifyTermL
import UnifyMguCorrectL
module L where
open UnifyTermL (Maybe FunctionName) public
open UnifyMguCorrectL (Maybe FunctionName) public
mutual
TermLtoTerm : ∃ L.Term → Term
TermLtoTerm (fst₁ , UnifyTermL.i x) = {!!}
TermLtoTerm (fst₁ , UnifyTermL.leaf nothing) = {!!}
TermLtoTerm (fst₁ , UnifyTermL.leaf (just x)) = {!!}
TermLtoTerm (fst₁ , (snd₁ UnifyTermL.fork snd₂)) = {!!}
TermtoTermL : Term → ∃ L.Term
TermtoTermL (variable x) = {!!} , (L.i {!!})
TermtoTermL (function x ⟨ ⟨ [] ⟩ ⟩) = {!!} , L.leaf (just x) L.fork L.leaf nothing
TermtoTermL (function x ⟨ ⟨ x₁ ∷ vector₁ ⟩ ⟩) = {!!} , {!!} L.fork {!!}
|
{
"alphanum_fraction": 0.5955804047,
"avg_line_length": 37.56,
"ext": "agda",
"hexsha": "ffb1119f06386846e8b7cf3750b7a0e8ec03acc4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Term.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Term.agda",
"max_line_length": 168,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Term.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3567,
"size": 7512
}
|
module PLRTree.Equality.Properties {A : Set} where
open import PLRTree {A}
open import PLRTree.Equality {A}
open import Relation.Binary.Core
sym≃ : Symmetric _≃_
sym≃ ≃lf = ≃lf
sym≃ (≃nd x x' l≃r l'≃r' l≃l') = ≃nd x' x l'≃r' l≃r (sym≃ l≃l')
trans≃ : Transitive _≃_
trans≃ ≃lf t≃t'' = t≃t''
trans≃ (≃nd x x' l≃r l'≃r' l≃l') (≃nd .x' x'' _ l''≃r'' l'≃r'') = ≃nd x x'' l≃r l''≃r'' (trans≃ l≃l' l'≃r'')
lemma-≃-≃ : {t t' : PLRTree} → t ≃ t' → t ≃ t
lemma-≃-≃ ≃lf = ≃lf
lemma-≃-≃ (≃nd x x' l≃r l≃r' l≃l') = ≃nd x x l≃r l≃r (lemma-≃-≃ l≃l')
|
{
"alphanum_fraction": 0.5277777778,
"avg_line_length": 28.4210526316,
"ext": "agda",
"hexsha": "5b72d481d8113fe34451fb4d5ee38fe67d30c746",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Equality/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Equality/Properties.agda",
"max_line_length": 108,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Equality/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 317,
"size": 540
}
|
module Generic.Test.Data.Fin where
open import Generic.Main
import Data.Fin as Fin
Fin : ℕ -> Set
Fin = readData Fin.Fin
pattern fzero {n} = #₀ (relv n , lrefl)
pattern fsuc {n} i = !#₁ (relv n , i , lrefl)
elimFin : ∀ {n π}
-> (P : ∀ {n} -> Fin n -> Set π)
-> (∀ {n} {i : Fin n} -> P i -> P (fsuc i))
-> (∀ {n} -> P {suc n} fzero)
-> (i : Fin n)
-> P i
elimFin P f x fzero = x
elimFin P f x (fsuc i) = f (elimFin P f x i)
|
{
"alphanum_fraction": 0.4947368421,
"avg_line_length": 22.619047619,
"ext": "agda",
"hexsha": "6d634387d59ec696c957d2a17f400e44aaffe1ad",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/Data/Fin.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/Data/Fin.agda",
"max_line_length": 51,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/Data/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 186,
"size": 475
}
|
module Data.Nat.Literal where
open import Data.Nat using (ℕ; suc; zero)
open import Data.Fin using (Fin; suc; zero)
open import Data.Unit using (⊤)
open import Data.Empty using (⊥)
open import Agda.Builtin.FromNat using (Number; fromNat) public
_≤_ : ℕ → ℕ → Set
zero ≤ n = ⊤
suc m ≤ zero = ⊥
suc m ≤ suc n = m ≤ n
instance
ℕ-num : Number ℕ
ℕ-num .Number.Constraint _ = ⊤
ℕ-num .Number.fromNat n = n
instance
Fin-num : {n : ℕ} → Number (Fin (suc n))
Fin-num {n} .Number.Constraint m = m ≤ n
Fin-num {n} .Number.fromNat m ⦃ p ⦄ = from m n p where
from : (m n : ℕ) → m ≤ n → Fin (suc n)
from zero _ _ = zero
from (suc _) zero ()
from (suc m) (suc n) p = suc (from m n p)
|
{
"alphanum_fraction": 0.6067892504,
"avg_line_length": 26.1851851852,
"ext": "agda",
"hexsha": "df010b3202fe630f912cd06312b3416397d508af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "brunoczim/Celeste",
"max_forks_repo_path": "formalization/Data/Nat/Literal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "brunoczim/Celeste",
"max_issues_repo_path": "formalization/Data/Nat/Literal.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "brunoczim/Celeste",
"max_stars_repo_path": "formalization/Data/Nat/Literal.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-16T17:31:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-16T17:31:57.000Z",
"num_tokens": 261,
"size": 707
}
|
{-# OPTIONS --without-K #-}
module higher where
open import higher.circle public
|
{
"alphanum_fraction": 0.7228915663,
"avg_line_length": 13.8333333333,
"ext": "agda",
"hexsha": "edf922c966d7704dafcdd9f95425a4e95130fd06",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/higher.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/higher.agda",
"max_line_length": 32,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/higher.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 16,
"size": 83
}
|
open import Prelude hiding (All; module All; _>>=_; ⊥; sym)
module Implicits.Resolution.Infinite.Algorithm.Completeness where
open import Data.Bool
open import Data.Unit.Base
open import Data.Maybe as Maybe using (Is-just; to-witness)
open import Coinduction
open import Data.Fin.Substitution
open import Data.List.Any hiding (tail)
open Membership-≡
open import Data.Fin.Substitution
open import Relation.Binary.HeterogeneousEquality as H using ()
open import Induction.WellFounded
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas.MetaType
open import Implicits.Syntax.Type.Unification
open import Implicits.Syntax.Type.Unification.Lemmas as Unification hiding (complete)
open import Implicits.Resolution.Infinite.Resolution
open import Implicits.Resolution.Infinite.Algorithm
open import Implicits.Resolution.Termination
private
module HR = H.≅-Reasoning
open import Category.Monad.Partiality as P
open Workaround
open Workaround.Correct
open import Category.Monad.Partiality.All using (All; module Alternative)
open Alternative renaming (sound to AllP-sound) hiding (complete)
open import Category.Functor
private module MaybeFunctor {f} = RawFunctor (Maybe.functor {f})
private
module M = MetaTypeMetaSubst
module Lemmas where
private
open import Relation.Binary.PropositionalEquality as PEq using (_≡_)
open module PartialEq = P.Equality {A = Bool} _≡_
open Lemmas
mutual
{-# NO_TERMINATION_CHECK #-}
delayed-resolve-complete : ∀ {ν} (Δ : ICtx ν) r → Δ ⊢ᵣ r → AllP (_≡_ true) (delayed-resolve Δ r)
delayed-resolve-complete Δ r p = later (♯ (complete' Δ r p))
resolve-context-complete : ∀ {ν m} (Δ : ICtx ν) a (u : Maybe (Sub (flip MetaType ν) m zero)) →
(p : Is-just u) →
Δ ⊢ᵣ (from-meta (a M./ (to-witness p))) →
AllP Is-just (resolve-context Δ a u)
resolve-context-complete Δ a ._ (just {x = u} px) x =
_ ≅⟨ resolve-context-comp Δ a u ⟩P
delayed-resolve-complete Δ (from-meta (M._/_ a u)) x >>=-congP lem
where
lem : ∀ {b} → true ≡ b → AllP Is-just (map-bool u b)
lem refl = now (just tt)
lemx : ∀ {ν m} {Δ : ICtx ν} r c τ (u : M.MetaSub MetaType ν m zero) →
Δ ⊢ from-meta (r M./ u M.↑tp) tp[/tp c ] ↓ τ →
Δ ⊢ from-meta (open-meta r M./ (to-meta c ∷ u)) ↓ τ
lemx r c τ u p = {!!}
a/u-↓-unique : ∀ {ν m} {Δ} (a : MetaType m ν) {τ} u v →
Δ ⊢ from-meta (a M./ u) ↓ τ → Δ ⊢ from-meta (a M./ v) ↓ τ →
(a M./ u) ≡ (a M./ v)
a/u-↓-unique (a ⇒ b) u v (i-iabs _ p) (i-iabs _ q) = {!a/u-↓-unique b u v p q!}
a/u-↓-unique (∀' a) u v p q = {!!}
a/u-↓-unique (simpl x) u v p q = {!!}
match-u-complete' : ∀ {ν m} (Δ : ICtx ν) → (τ : SimpleType ν) → (r : MetaType m ν) → (ac : m<-Acc r) →
∀ u → Δ ⊢ from-meta (r M./ u) ↓ τ →
AllP Is-just (match-u Δ τ r ac)
match-u-complete' Δ τ (a ⇒ b) (acc f) u (i-iabs q p) =
_
≅⟨ match-u-iabs-comp Δ τ a b f ⟩P
match-u-complete' Δ τ b (f _ (b-m<-a⇒b a b)) u p >>=-congP lem
where
lem : ∀ {v : Maybe (Sub (flip MetaType _) _ zero)} → Is-just v →
AllP Is-just (resolve-context Δ a v)
lem x = resolve-context-complete Δ a _ x q'
where
-- from q : Δ ⊢ᵣ a / u
-- we derive q' : Δ ⊢ᵣ a / x
-- based on the idea that we have Δ ⊢ b / u ↓ τ and
-- soundness gives us Δ ⊢ b / (to-witness x) ↓ τ.
-- And assuming ⊢unamb b, we should have u ≡ (to-witness x)
q' : Δ ⊢ᵣ from-meta (a M./ to-witness x )
q' = subst (_⊢ᵣ_ Δ) {!!} q
match-u-complete' {m = m} Δ τ (∀' r) (acc f) u (i-tabs c p) =
_
≅⟨ match-u-tabs-comp Δ τ r f ⟩P
(match-u-complete' Δ τ (open-meta r) (f _ _) (to-meta {zero} c ∷ u) (lemx r c τ u p))
>>=-congP now∘tail-compl
where
now∘tail-compl : ∀ {ν} {v : Maybe (Sub (flip MetaType ν) (suc m) zero)} →
Is-just v →
AllP Is-just ((now ∘ (MaybeFunctor._<$>_ tail)) v)
now∘tail-compl (just px) = now (just tt)
-- Maybe surprisingly 'u' is ignored in the proofs below.
-- But if you think about it, it makes sense: mgu doesn't necessarily find the same unifier.
-- All we need to know is that there is a unifier u; the structure of Δ ⊢ (a / u) ↓ τ does the rest
match-u-complete' Δ .(tvar x) (simpl (tvar x)) ac u (i-simp .(tvar x)) =
now (Unification.complete (simpl (tvar x)) (tvar x) u refl)
match-u-complete' Δ .(tc x) (simpl (tc x)) ac u (i-simp .(tc x)) =
now (Unification.complete (simpl (tc x)) (tc x) u refl)
match-u-complete' Δ τ (simpl (mvar x)) ac u p =
let (u' , u'-uni) = mvar-unifiable x τ in
now (Unification.complete (simpl (mvar x)) τ u' u'-uni)
match-u-complete' Δ ._ (simpl (a →' b)) ac u (i-simp ._) =
now (Unification.complete (simpl (a →' b)) _ u refl)
-- the trivial predicate holds for all terminating problems
trivial-allP : ∀ {a} {A : Set a} (a : A ⊥) → AllP (const ⊤) a
trivial-allP (now x) = now tt
trivial-allP (later x) = later (♯ (trivial-allP (♭ x)))
-- Match succeeds if we have a proof Δ ⊢ r ↓ τ
match-complete : ∀ {ν} (Δ : ICtx ν) → (τ : SimpleType ν) → (r : Type ν) → Δ ⊢ r ↓ τ →
AllP (_≡_ true) (match Δ τ r)
match-complete Δ τ r p = _
≅⟨ match-comp Δ τ r ⟩P
match-u-complete' Δ τ (to-meta {zero} r) (m<-well-founded _) []
(subst (λ z → Δ ⊢ z ↓ τ) (Prelude.sym $ from-to-meta-/-vanishes) p)
>>=-congP lem
where
lem : ∀ {ν} {v : Maybe (Sub (flip MetaType ν) zero zero)} →
(Is-just v) → AllP (_≡_ true) (⟦ (now ∘ Maybe.is-just) v ⟧P)
lem (just tt) = now refl
-- 'recovery' of a non failed match succeeds
recover-true-complete : ∀ {ν} {Δ : ICtx ν} {ρs τ v} → v ≡ true →
AllP (_≡_ true) (match1st-recover Δ ρs τ v)
recover-true-complete refl = now refl
-- recovery of a failed match succeeds if we know that the recursive match1st succeeds
recover-false-complete : ∀ {ν} (Δ : ICtx ν) ρs τ v → AllP (_≡_ true) (match1st Δ ρs τ) →
AllP (_≡_ true) (match1st-recover Δ ρs τ v)
recover-false-complete Δ ρs τ true p = now refl
recover-false-complete Δ ρs τ false p = p
-- match1st succeeds if we have a proof that some r from the context
-- should be a match
match1st-complete : ∀ {ν} (Δ : ICtx ν) {r} →
(ρs : ICtx ν) → (τ : SimpleType ν) →
r List.∈ ρs → Δ ⊢ r ↓ τ →
AllP (_≡_ true) (match1st Δ ρs τ)
match1st-complete Δ List.[] τ () r↓τ
match1st-complete Δ (x List.∷ ρs) τ (here refl) r↓τ =
_
≅⟨ match1st-comp Δ x ρs τ ⟩P
match-complete Δ τ x r↓τ >>=-congP (λ{ v → recover-true-complete (Prelude.sym v)})
match1st-complete Δ (x List.∷ ρs) τ (there r∈Δ) r↓τ =
_
≅⟨ match1st-comp Δ x ρs τ ⟩P
((trivial-allP (match Δ τ x)) >>=-congP
(λ {v} _ → recover-false-complete Δ ρs τ v (match1st-complete Δ ρs τ r∈Δ r↓τ)))
-- Mirroring Abel & Altenkirch's work on partial type checking, we say:
-- Because resolution without an additional termination condition
-- seems to be undecidable, an appropriate completeness result would be:
-- if Δ resolves r, then the resolution algorithm searching for a proof of that fact,
-- will not fail finetely. I.e. the algorithm might diverge or succeed, but not report an error.
-- We can make this formal using the *coinductive* resolution rules
-- (Together with soundness we have a 'minimal' completeness result, because the rules allow
-- for many derivations, while the algorithm will only find *one*.)
complete' : ∀ {ν} (Δ : ICtx ν) r → Δ ⊢ᵣ r → AllP (_≡_ true) (resolve Δ r)
complete' Δ (simpl x) (r-simp r∈Δ r↓τ) = (match1st-complete Δ Δ x r∈Δ r↓τ)
complete' Δ (a ⇒ b) (r-iabs p) = complete' (a List.∷ Δ) b p
complete' Δ (∀' r) (r-tabs p) = complete' (ictx-weaken Δ) r p
complete : ∀ {ν} (Δ : ICtx ν) r → Δ ⊢ᵣ r → All (_≡_ true) (resolve Δ r)
complete Δ r p = AllP-sound (complete' Δ r p)
module Test where
open import Category.Monad.Partiality.All
trivial-all : ∀ {a p} {A : Set a} (P : A → Set p) → All P never
trivial-all p = later (♯ (trivial-all p))
|
{
"alphanum_fraction": 0.5971084337,
"avg_line_length": 44.385026738,
"ext": "agda",
"hexsha": "faa9e9d0ab1a87569f59097855540ebb44a403d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Infinite/Algorithm/Completeness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Infinite/Algorithm/Completeness.agda",
"max_line_length": 104,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Infinite/Algorithm/Completeness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 2856,
"size": 8300
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Support.Equivalence where
open import Level
open import Relation.Binary using (Rel; IsEquivalence; module IsEquivalence; IsPreorder; Preorder; Reflexive; Transitive; Symmetric; _⇒_) renaming (Setoid to RSetoid; module Setoid to RSetoid)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.Product.Pointwise using (×-isEquivalence)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
------------------------------------------------------------------------
-- Setoids
-- Equivalence relations are defined in Relation.Binary.Core.
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
.isEquivalence : IsEquivalence _≈_
.refl : Reflexive _≈_
refl = IsEquivalence.refl isEquivalence
.trans : Transitive _≈_
trans = IsEquivalence.trans isEquivalence
.sym : Symmetric _≈_
sym = IsEquivalence.sym isEquivalence
.reflexive : _≡_ ⇒ _≈_
reflexive = IsEquivalence.reflexive isEquivalence
.isPreorder : IsPreorder _≡_ _≈_
isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = reflexive
; trans = trans
}
.preorder : Preorder c c ℓ
preorder = record { isPreorder = isPreorder }
-- A trivially indexed setoid.
{-
indexedSetoid : ∀ {i} {I : Set i} → I.Setoid I c _
indexedSetoid = record
{ Carrier = λ _ → Carrier
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
-}
setoid-r→i : ∀ {c ℓ} → RSetoid c ℓ → Setoid c ℓ
setoid-r→i Base = record
{ Carrier = Base.Carrier
; _≈_ = Base._≈_
; isEquivalence = Base.isEquivalence
}
where module Base = RSetoid Base
record I→R-Wrapper {c ℓ} {Carrier : Set c} (Base : Rel Carrier ℓ) (x y : Carrier) : Set ℓ where
constructor squash
field
.anonymous-witness : Base x y
setoid-i→r : ∀ {c ℓ} → Setoid c ℓ → RSetoid c ℓ
setoid-i→r Base = record
{ Carrier = Base.Carrier
; _≈_ = I→R-Wrapper Base._≈_
; isEquivalence = record
{ refl = squash Base.refl
; sym = λ pf → squash (Base.sym (anonymous-witness pf))
; trans = λ i≈j j≈k → squash (Base.trans (anonymous-witness i≈j) (anonymous-witness j≈k))
}
}
where
module Base = Setoid Base
open I→R-Wrapper
set→setoid : ∀ {ℓ} → Set ℓ → Setoid ℓ ℓ
set→setoid Base = record
{ Carrier = Base
; _≈_ = _≡_
; isEquivalence = PropEq.isEquivalence
}
_×-setoid_ : ∀ {s₁ s₂ s₃ s₄} → Setoid s₁ s₂ → Setoid s₃ s₄ → Setoid _ _
S₁ ×-setoid S₂ = record
{ isEquivalence = ×-isEquivalence (isEquivalence S₁) (isEquivalence S₂)
} where open Setoid
Lift-setoid : ∀ {c ℓ a b} -> Setoid c ℓ -> Setoid (c ⊔ a) (ℓ ⊔ b)
Lift-setoid {c} {ℓ} {a} {b} s = record {
Carrier = Lift {c} a Carrier;
_≈_ = λ x₁ x₂ → Lift {ℓ} b (lower x₁ ≈ lower x₂);
isEquivalence = record {
refl = lift refl;
sym = λ x₁ → lift (sym (lower x₁));
trans = λ x₁ x₂ → lift (trans (lower x₁) (lower x₂))}}
where
open Setoid s
∀[_]-setoid_ : ∀ {ℓ s₁ s₂} → (A : Set ℓ) → (A → Setoid s₁ s₂) → Setoid _ _
∀[ A ]-setoid B = record
{ Carrier = ∀ a → B.Carrier a
; _≈_ = λ f g → ∀ a → B._≈_ a (f a) (g a)
; isEquivalence = record
{ refl = λ a → B.refl a
; sym = λ f≈g a → B.sym a (f≈g a)
; trans = λ f≈g g≈h a → B.trans a (f≈g a) (g≈h a)
}
}
where
module B a = Setoid (B a)
Fam-setoid : ∀ {ℓ s₁ s₂} → (A : Set ℓ) → (B : Setoid s₁ s₂) → (A → Setoid.Carrier B) → Setoid _ _
Fam-setoid A B p = record
{ Carrier = A
; _≈_ = λ a₁ a₂ → p a₁ ≈ p a₂
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
open Setoid B
|
{
"alphanum_fraction": 0.5989901674,
"avg_line_length": 28.7251908397,
"ext": "agda",
"hexsha": "4f30c8abeed60d03a5a18115cf2d7bad5786377c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/Equivalence.agda",
"max_line_length": 192,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/Support/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 1362,
"size": 3763
}
|
-- Andreas, 2015-06-24
open import Common.Equality
open import Common.Product
Sing : {A : Set} (a : A) → Set
Sing a = ∃ λ b → a ≡ b
works : {A : Set} (f : ∀{a : A} → Sing a) (a : A) → Sing a
works f a = let b , p = f {_} in b , p
test : {A : Set} (f : ∀{a : A} → Sing a) (a : A) → Sing a
test f a = let b , p = f in b , p
-- ERROR WAS:
-- Type mismatch
-- when checking that the pattern b , p has type
-- {a = a₁ : .A} → Sing a₁
-- should work now
|
{
"alphanum_fraction": 0.5352422907,
"avg_line_length": 21.619047619,
"ext": "agda",
"hexsha": "0e53000a716987c45387117c5f4d1b8e68f90007",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1584.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1584.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1584.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 180,
"size": 454
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Pair type which calls out to Haskell via the FFI
------------------------------------------------------------------------
{-# OPTIONS --without-K #-}
module Foreign.Haskell.Pair where
open import Level
open import Data.Product using (_×_; _,_)
private
variable
a b : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Definition
record Pair (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field fst : A
snd : B
open Pair public
{-# FOREIGN GHC type AgdaPair l1 l2 a b = (a , b) #-}
{-# COMPILE GHC Pair = data MAlonzo.Code.Foreign.Haskell.Pair.AgdaPair ((,)) #-}
------------------------------------------------------------------------
-- Conversion
toForeign : A × B → Pair A B
toForeign (a , b) = (a , b)
fromForeign : Pair A B → A × B
fromForeign (a , b) = (a , b)
|
{
"alphanum_fraction": 0.4322120285,
"avg_line_length": 24.525,
"ext": "agda",
"hexsha": "078e02db5baa3e1410623a124d3bebcca2214a77",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Foreign/Haskell/Pair.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Foreign/Haskell/Pair.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Foreign/Haskell/Pair.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 225,
"size": 981
}
|
{-# OPTIONS --cubical-compatible #-}
module Common.String where
open import Agda.Builtin.String public
open import Common.Bool
open import Common.Char
open import Common.List
open import Common.Nat
open import Common.Integer
strEq : (x y : String) -> Bool
strEq = primStringEquality
infixr 30 _+S+_
_+S+_ : (x y : String) -> String
_+S+_ = primStringAppend
fromList : List Char -> String
fromList = primStringFromList
stringToList : String -> List Char
stringToList = primStringToList
charToStr : Char → String
charToStr c = primStringFromList (c ∷ [])
intToString : Integer → String
intToString = primShowInteger
natToString : Nat -> String
natToString n = intToString (pos n)
|
{
"alphanum_fraction": 0.7510917031,
"avg_line_length": 20.8181818182,
"ext": "agda",
"hexsha": "04fae8237fdf64d45838c89ebeaacaba30948b04",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/String.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/String.agda",
"max_line_length": 41,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/String.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 182,
"size": 687
}
|
------------------------------------------------------------------------
-- Generic support for reduction relations.
------------------------------------------------------------------------
module Relation.Binary.Reduction where
open import Data.Fin using (Fin)
open import Data.Fin.Substitution
open import Data.Star as Star using (Star; ε; _◅_)
import Data.Star.Properties as StarProp
open import Data.Nat using (ℕ; _+_)
open import Function using (_∘_)
open import Relation.Binary
open import Relation.Binary.EquivalenceClosure
open import Relation.Binary.SymmetricClosure using (fwd)
import Relation.Binary.PropositionalEquality as PropEq
import Relation.Binary.EqReasoning as EqReasoning
----------------------------------------------------------------------
-- Generic reduction and equivalence relations
record Reduction (T : ℕ → Set) : Set₁ where
infix 5 _→1_ _→*_ _↔_
-- One-step reduction.
field _→1_ : ∀ {n} → T n → T n → Set
-- The reflexive transitive closure of _→1_, i.e. finite sequences
-- of reduction steps.
_→*_ : ∀ {n} → T n → T n → Set
_→*_ = Star _→1_
-- The reflexive, transitive and symmetric closure (aka the
-- equivalence closure) of _→1_.
_↔_ : ∀ {n} → T n → T n → Set
_↔_ = EqClosure _→1_
-- All remaining submodules are parametrized by a given reduction.
module _ {T} (reduction : Reduction T) where
open Reduction reduction
----------------------------------------------------------------------
-- Properties of the reductions/equivalence
-- Inclusions.
→1⇒→* : ∀ {n} {a b : T n} → a →1 b → a →* b
→1⇒→* a→b = a→b ◅ ε
→*⇒↔ : ∀ {n} {a b : T n} → a →* b → a ↔ b
→*⇒↔ a→*b = Star.map fwd a→*b
→1⇒↔ : ∀ {n} {a b : T n} → a →1 b → a ↔ b
→1⇒↔ = →*⇒↔ ∘ →1⇒→*
-- Reductions are preorders.
→*-predorder : ∀ {n : ℕ} → Preorder _ _ _
→*-predorder {n} = StarProp.preorder (_→1_ {n})
-- Preorder reasoning for reductions.
module →*-Reasoning {n} = StarProp.StarReasoning (_→1_ {n})
-- Terms together with equivalence form a setoid.
↔-setoid : ∀ {n : ℕ} → Setoid _ _
↔-setoid {n} = setoid (_→1_ {n})
-- Equational reasoning for ↔-equivalence.
module ↔-Reasoning {n : ℕ} where
open EqReasoning (↔-setoid {n}) public
open Setoid (↔-setoid {n}) using (sym)
infixr 2 _→⟨_⟩_ _←⟨_⟩_ _→*⟨_⟩_ _←*⟨_⟩_
_→⟨_⟩_ : ∀ a {b c} → a →1 b → b IsRelatedTo c → a IsRelatedTo c
a →⟨ a→b ⟩ b≡c = a ≈⟨ →1⇒↔ a→b ⟩ b≡c
_←⟨_⟩_ : ∀ a {b c} → b →1 a → b IsRelatedTo c → a IsRelatedTo c
a ←⟨ a←b ⟩ b≡c = a ≈⟨ sym (→1⇒↔ a←b) ⟩ b≡c
_→*⟨_⟩_ : ∀ a {b c} → a →* b → b IsRelatedTo c → a IsRelatedTo c
a →*⟨ a→*b ⟩ b≡c = a ≈⟨ →*⇒↔ a→*b ⟩ b≡c
_←*⟨_⟩_ : ∀ a {b c} → b →* a → b IsRelatedTo c → a IsRelatedTo c
a ←*⟨ a←*b ⟩ b≡c = a ≈⟨ sym (→*⇒↔ a←*b) ⟩ b≡c
----------------------------------------------------------------------
-- Substitutions in reductions/equivalence
--
-- The applications _/→1_, _/→*_ and _/↔_ below may be considered
-- substitution lemmas, i.e. they establish the commutativity of the
-- respective reductions/equivalence with substitutions.
record RedSubstApp {T′} (app : Application T T′) : Set where
open Application app
open PropEq
infixl 8 _/→1_ _/→*_ _/↔_
field
-- Substitution commutes with one-step reduction.
_/→1_ : ∀ {m n a b} → a →1 b → (σ : Sub T′ m n) → a / σ →1 b / σ
-- Substitution commutes with β-reduction.
_/→*_ : ∀ {m n a b} → a →* b → (σ : Sub T′ m n) → a / σ →* b / σ
a→*b /→* σ = Star.gmap (λ a → a / σ) (λ a→b → a→b /→1 σ) a→*b
-- Substitution commutes with β-equivalence.
_/↔_ : ∀ {m n a b} → a ↔ b → (σ : Sub T′ m n) → a / σ ↔ b / σ
a≡b /↔ σ = gmap (λ a → a / σ) (λ a→b → a→b /→1 σ) a≡b
|
{
"alphanum_fraction": 0.5283525934,
"avg_line_length": 32.9292035398,
"ext": "agda",
"hexsha": "30720693d7873ffc3d79bcd810c4d834b0ba7a63",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z",
"max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/pts-agda",
"max_forks_repo_path": "src/Relation/Binary/Reduction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/pts-agda",
"max_issues_repo_path": "src/Relation/Binary/Reduction.agda",
"max_line_length": 72,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/pts-agda",
"max_stars_repo_path": "src/Relation/Binary/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z",
"num_tokens": 1368,
"size": 3721
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.