Search is not available for this dataset
text
string | meta
dict |
---|---|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec where
open import Data.Nat
open import Data.Fin using (Fin; zero; suc)
open import Data.List.Base as List using (List)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_)
open import Data.These as These using (These; this; that; these)
open import Function
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary using (yes; no)
open import Relation.Unary using (Pred; Decidable)
------------------------------------------------------------------------
-- Types
infixr 5 _∷_
data Vec {a} (A : Set a) : ℕ → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
infix 4 _[_]=_
data _[_]=_ {a} {A : Set a} :
{n : ℕ} → Vec A n → Fin n → A → Set a where
here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ zero ]= x
there : ∀ {n} {i} {x y} {xs : Vec A n}
(xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x
------------------------------------------------------------------------
-- Basic operations
module _ {a} {A : Set a} where
head : ∀ {n} → Vec A (1 + n) → A
head (x ∷ xs) = x
tail : ∀ {n} → Vec A (1 + n) → Vec A n
tail (x ∷ xs) = xs
lookup : ∀ {n} → Vec A n → Fin n → A
lookup (x ∷ xs) zero = x
lookup (x ∷ xs) (suc i) = lookup xs i
insert : ∀ {n} → Vec A n → Fin (suc n) → A → Vec A (suc n)
insert xs zero v = v ∷ xs
insert [] (suc ()) v
insert (x ∷ xs) (suc i) v = x ∷ insert xs i v
remove : ∀ {n} → Vec A (suc n) → Fin (suc n) → Vec A n
remove (_ ∷ xs) zero = xs
remove (x ∷ []) (suc ())
remove (x ∷ y ∷ xs) (suc i) = x ∷ remove (y ∷ xs) i
updateAt : ∀ {n} → Fin n → (A → A) → Vec A n → Vec A n
updateAt zero f (x ∷ xs) = f x ∷ xs
updateAt (suc i) f (x ∷ xs) = x ∷ updateAt i f xs
-- xs [ i ]%= f modifies the i-th element of xs according to f
infixl 6 _[_]%=_
_[_]%=_ : ∀ {n} → Vec A n → Fin n → (A → A) → Vec A n
xs [ i ]%= f = updateAt i f xs
-- xs [ i ]≔ y overwrites the i-th element of xs with y
infixl 6 _[_]≔_
_[_]≔_ : ∀ {n} → Vec A n → Fin n → A → Vec A n
xs [ i ]≔ y = xs [ i ]%= const y
------------------------------------------------------------------------
-- Operations for transforming vectors
map : ∀ {a b n} {A : Set a} {B : Set b} →
(A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
-- Concatenation.
infixr 5 _++_
_++_ : ∀ {a m n} {A : Set a} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
concat : ∀ {a m n} {A : Set a} →
Vec (Vec A m) n → Vec A (n * m)
concat [] = []
concat (xs ∷ xss) = xs ++ concat xss
-- Align and Zip.
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
alignWith : ∀ {m n} → (These A B → C) → Vec A m → Vec B n → Vec C (m ⊔ n)
alignWith f [] bs = map (f ∘′ that) bs
alignWith f as@(_ ∷ _) [] = map (f ∘′ this) as
alignWith f (a ∷ as) (b ∷ bs) = f (these a b) ∷ alignWith f as bs
zipWith : ∀ {n} → (A → B → C) → Vec A n → Vec B n → Vec C n
zipWith f [] [] = []
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
unzipWith : ∀ {n} → (A → B × C) → Vec A n → Vec B n × Vec C n
unzipWith f [] = [] , []
unzipWith f (a ∷ as) = Prod.zip _∷_ _∷_ (f a) (unzipWith f as)
module _ {a b} {A : Set a} {B : Set b} where
align : ∀ {m n} → Vec A m → Vec B n → Vec (These A B) (m ⊔ n)
align = alignWith id
zip : ∀ {n} → Vec A n → Vec B n → Vec (A × B) n
zip = zipWith _,_
unzip : ∀ {n} → Vec (A × B) n → Vec A n × Vec B n
unzip = unzipWith id
-- Interleaving.
infixr 5 _⋎_
_⋎_ : ∀ {a m n} {A : Set a} →
Vec A m → Vec A n → Vec A (m +⋎ n)
[] ⋎ ys = ys
(x ∷ xs) ⋎ ys = x ∷ (ys ⋎ xs)
-- Pointwise application
infixl 4 _⊛_
_⊛_ : ∀ {a b n} {A : Set a} {B : Set b} →
Vec (A → B) n → Vec A n → Vec B n
[] ⊛ _ = []
(f ∷ fs) ⊛ (x ∷ xs) = f x ∷ (fs ⊛ xs)
-- Multiplication
infixl 1 _>>=_
_>>=_ : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec A m → (A → Vec B n) → Vec B (m * n)
xs >>= f = concat (map f xs)
infixl 4 _⊛*_
_⊛*_ : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec (A → B) m → Vec A n → Vec B (m * n)
fs ⊛* xs = fs >>= λ f → map f xs
allPairs : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec A m → Vec B n → Vec (A × B) (m * n)
allPairs xs ys = map _,_ xs ⊛* ys
------------------------------------------------------------------------
-- Operations for reducing vectors
foldr : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → A → B n → B (suc n)) →
B zero →
Vec A m → B m
foldr b _⊕_ n [] = n
foldr b _⊕_ n (x ∷ xs) = x ⊕ foldr b _⊕_ n xs
foldr₁ : ∀ {a} {A : Set a} {m} →
(A → A → A) → Vec A (suc m) → A
foldr₁ _⊕_ (x ∷ []) = x
foldr₁ _⊕_ (x ∷ y ∷ ys) = x ⊕ foldr₁ _⊕_ (y ∷ ys)
foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → B n → A → B (suc n)) →
B zero →
Vec A m → B m
foldl b _⊕_ n [] = n
foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs
foldl₁ : ∀ {a} {A : Set a} {m} →
(A → A → A) → Vec A (suc m) → A
foldl₁ _⊕_ (x ∷ xs) = foldl _ _⊕_ x xs
-- Special folds
sum : ∀ {n} → Vec ℕ n → ℕ
sum = foldr _ _+_ 0
count : ∀ {a p} {A : Set a} {P : Pred A p} → Decidable P →
∀ {n} → Vec A n → ℕ
count P? [] = zero
count P? (x ∷ xs) with P? x
... | yes _ = suc (count P? xs)
... | no _ = count P? xs
------------------------------------------------------------------------
-- Operations for building vectors
[_] : ∀ {a} {A : Set a} → A → Vec A 1
[ x ] = x ∷ []
replicate : ∀ {a n} {A : Set a} → A → Vec A n
replicate {n = zero} x = []
replicate {n = suc n} x = x ∷ replicate x
tabulate : ∀ {n a} {A : Set a} → (Fin n → A) → Vec A n
tabulate {zero} f = []
tabulate {suc n} f = f zero ∷ tabulate (f ∘ suc)
allFin : ∀ n → Vec (Fin n) n
allFin _ = tabulate id
------------------------------------------------------------------------
-- Operations for dividing vectors
splitAt : ∀ {a} {A : Set a} m {n} (xs : Vec A (m + n)) →
∃₂ λ (ys : Vec A m) (zs : Vec A n) → xs ≡ ys ++ zs
splitAt zero xs = ([] , xs , refl)
splitAt (suc m) (x ∷ xs) with splitAt m xs
splitAt (suc m) (x ∷ .(ys ++ zs)) | (ys , zs , refl) =
((x ∷ ys) , zs , refl)
take : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A m
take m xs with splitAt m xs
take m .(ys ++ zs) | (ys , zs , refl) = ys
drop : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A n
drop m xs with splitAt m xs
drop m .(ys ++ zs) | (ys , zs , refl) = zs
group : ∀ {a} {A : Set a} n k (xs : Vec A (n * k)) →
∃ λ (xss : Vec (Vec A k) n) → xs ≡ concat xss
group zero k [] = ([] , refl)
group (suc n) k xs with splitAt k xs
group (suc n) k .(ys ++ zs) | (ys , zs , refl) with group n k zs
group (suc n) k .(ys ++ concat zss) | (ys , ._ , refl) | (zss , refl) =
((ys ∷ zss) , refl)
split : ∀ {a n} {A : Set a} → Vec A n → Vec A ⌈ n /2⌉ × Vec A ⌊ n /2⌋
split [] = ([] , [])
split (x ∷ []) = (x ∷ [] , [])
split (x ∷ y ∷ xs) = Prod.map (x ∷_) (y ∷_) (split xs)
------------------------------------------------------------------------
-- Operations for converting between lists
toList : ∀ {a n} {A : Set a} → Vec A n → List A
toList [] = List.[]
toList (x ∷ xs) = List._∷_ x (toList xs)
fromList : ∀ {a} {A : Set a} → (xs : List A) → Vec A (List.length xs)
fromList List.[] = []
fromList (List._∷_ x xs) = x ∷ fromList xs
------------------------------------------------------------------------
-- Operations for reversing vectors
reverse : ∀ {a n} {A : Set a} → Vec A n → Vec A n
reverse {A = A} = foldl (Vec A) (λ rev x → x ∷ rev) []
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a n} {A : Set a} → Vec A n → A → Vec A (1 + n)
[] ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs ∷ʳ y)
initLast : ∀ {a n} {A : Set a} (xs : Vec A (1 + n)) →
∃₂ λ (ys : Vec A n) (y : A) → xs ≡ ys ∷ʳ y
initLast {n = zero} (x ∷ []) = ([] , x , refl)
initLast {n = suc n} (x ∷ xs) with initLast xs
initLast {n = suc n} (x ∷ .(ys ∷ʳ y)) | (ys , y , refl) =
((x ∷ ys) , y , refl)
init : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
init xs with initLast xs
init .(ys ∷ʳ y) | (ys , y , refl) = ys
last : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
last xs with initLast xs
last .(ys ∷ʳ y) | (ys , y , refl) = y
|
{
"alphanum_fraction": 0.4265386395,
"avg_line_length": 29.9100346021,
"ext": "agda",
"hexsha": "373f8dbedec17fe9c103bde8f60f86b64f8495a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3414,
"size": 8644
}
|
open import Prelude hiding (abs)
open import Container.List
open import Container.Traversable
open import Tactic.Reflection hiding (substArgs) renaming (unify to unifyTC)
open import Tactic.Reflection.Equality
open import Tactic.Deriving
module Tactic.Deriving.Eq where
_∋_ : ∀ {a} (A : Set a) → A → A
A ∋ x = x
private
-- Pattern synonyms --
infix 5 _`≡_
pattern _`≡_ x y = def₂ (quote _≡_) x y
pattern `subst x y z = def₃ (quote transport) x y z
pattern `refl = con (quote refl) []
pattern `Eq a = def (quote Eq) (vArg a ∷ [])
pattern vLam s t = lam visible (abs s t)
-- Helper functions --
nLam : ∀ {A} → List (Arg A) → Term → Term
nLam [] t = t
nLam (arg (arg-info v _) s ∷ tel) t = lam v (abs "x" (nLam tel t))
nPi : ∀ {A} → List (Arg A) → Term → Term
nPi [] t = t
nPi (arg i _ ∷ tel) t = pi (arg i unknown) (abs "x" (nPi tel t))
newArgs : ∀ {A} → List (Arg A) → List (Arg Term)
newArgs {A} tel = newArgsFrom (length tel) tel
where
newArgsFrom : Nat → List (Arg A) → List (Arg Term)
newArgsFrom (suc n) (arg i _ ∷ tel) = arg i (var n []) ∷ newArgsFrom n tel
newArgsFrom _ _ = []
hideTel : ∀ {A} → List (Arg A) → List (Arg A)
hideTel [] = []
hideTel (arg (arg-info _ r) t ∷ tel) = arg (arg-info hidden r) t ∷ hideTel tel
weakenTelFrom : (from n : Nat) → Telescope → Telescope
weakenTelFrom from n [] = []
weakenTelFrom from n (t ∷ tel) = weakenFrom from n t ∷ weakenTelFrom (suc from) n tel
weakenTel : (n : Nat) → Telescope → Telescope
weakenTel 0 = id
weakenTel n = weakenTelFrom 0 n
#pars : (d : Name) → TC Nat
#pars = getParameters
argsTel : (c : Name) → TC Telescope
argsTel c = caseM telView <$> getType c of λ
{ (tel , def d ixs) → flip drop tel <$> #pars d
; (tel , _ ) → pure tel
}
#args : (c : Name) → TC Nat
#args c = length <$> argsTel c
params : (c : Name) → TC (List (Arg Type))
params c = telView <$> getType c >>= λ
{ (tel , def d ixs) → flip take tel <$> #pars d
; _ → pure []
}
-- Parallel substitution --
Substitution : Set
Substitution = List (Nat × Term)
underLambda : Substitution → Substitution
underLambda = map (λ { (i , t) → suc i , weaken 1 t })
{-# TERMINATING #-}
subst : Substitution → Term → Term
apply : Term → List (Arg Term) → Term
substArgs : Substitution → List (Arg Term) → List (Arg Term)
subst sub (var x args) = case (lookup sub x) of λ
{ (just s) → apply s (substArgs sub args)
; nothing → var x (substArgs sub args)
}
subst sub (con c args) = con c (substArgs sub args)
subst sub (def f args) = def f (substArgs sub args)
subst sub (lam v t) = lam v (fmap (subst (underLambda sub)) t)
subst sub (lit l) = lit l
subst sub _ = unknown -- TODO
apply f [] = f
apply (var x args) xs = var x (args ++ xs)
apply (con c args) xs = con c (args ++ xs)
apply (def f args) xs = def f (args ++ xs)
apply (lam _ (abs _ t)) (arg _ x ∷ xs) = case (strengthen 1 (subst ((0 , weaken 1 x) ∷ []) t)) of λ
{ (just f) → apply f xs
; nothing → unknown
}
apply _ _ = unknown -- TODO
substArgs sub = map (fmap (subst sub))
-- Unification of datatype indices --
data Unify : Set where
positive : List (Nat × Term) → Unify
negative : Unify
failure : ∀ {a} {A : Set a} → String → TC A
failure s = typeErrorS ("Unification error when deriving Eq: " & s)
_&U_ : Unify → Unify → Unify
(positive xs) &U (positive ys) = positive (xs ++ ys)
(positive _) &U negative = negative
negative &U (positive _) = negative
negative &U negative = negative
{-# TERMINATING #-}
unify : Term → Term → TC Unify
unifyArgs : List (Arg Term) → List (Arg Term) → TC Unify
unify s t with s == t
unify s t | yes _ = pure (positive [])
unify (var x []) (var y []) | no _ =
if (x <? y) -- In var-var case, instantiate the one that is bound the closest to us.
then pure (positive ((x , var y []) ∷ []))
else pure (positive ((y , var x []) ∷ []))
unify (var x []) t | no _ =
if (elem x (freeVars t))
then failure "cyclic occurrence" -- We don't currently know if the occurrence is rigid or not
else pure (positive ((x , t) ∷ []))
unify t (var x []) | no _ =
if (elem x (freeVars t))
then failure "cyclic occurrence"
else pure (positive ((x , t) ∷ []))
unify (con c₁ xs₁) (con c₂ xs₂) | no _ =
if (isYes (c₁ == c₂))
then unifyArgs xs₁ xs₂
else pure negative
unify _ _ | no _ = failure "not a constructor or a variable"
unifyArgs [] [] = pure (positive [])
unifyArgs [] (_ ∷ _) = failure "panic: different number of arguments"
unifyArgs (_ ∷ _) [] = failure "panic: different number of arguments"
unifyArgs (arg v₁ x ∷ xs) (arg v₂ y ∷ ys) =
if isYes (_==_ {{EqArgInfo}} v₁ v₂)
then (unify x y >>= λ
{ (positive sub) → (positive sub &U_) <$> unifyArgs (substArgs sub xs) (substArgs sub ys)
; negative → pure negative
})
else failure "panic: hiding mismatch"
unifyIndices : (c₁ c₂ : Name) → TC Unify
unifyIndices c₁ c₂ = do
let panic = failure "panic: constructor type doesn't end in a def"
tel₁ , def d₁ xs₁ ← telView <$> getType c₁ where _ → panic
tel₂ , def d₂ xs₂ ← telView <$> getType c₂ where _ → panic
n₁ ← #pars d₁
n₂ ← #pars d₂
let ixs₁ = drop n₁ xs₁
ixs₂ = drop n₂ xs₂
unifyArgs (weaken (length tel₂ - n₂) ixs₁)
-- weaken all variables of first constructor by number of arguments of second constructor
(weakenFrom (length tel₂ - n₂) (length tel₁ - n₁) ixs₂)
-- weaken parameters of second constructor by number of arguments of first constructor
-- Analysing constructor types --
forcedArgs : (c : Name) → TC (List Nat)
forcedArgs c = caseM (unifyIndices c c) of λ
{ (positive xs) → pure (map fst xs)
; _ → pure []
}
data Forced : Set where forced free : Forced
instance
DeBruijnForced : DeBruijn Forced
strengthenFrom {{DeBruijnForced}} _ _ = just
weakenFrom {{DeBruijnForced}} _ _ = id
DeBruijnProd : {A B : Set} {{_ : DeBruijn A}} {{_ : DeBruijn B}} → DeBruijn (A × B)
strengthenFrom {{DeBruijnProd}} m n (x , y) = ⦇ strengthenFrom m n x , strengthenFrom m n y ⦈
weakenFrom {{DeBruijnProd}} m n (x , y) = weakenFrom m n x , weakenFrom m n y
RemainingArgs : Nat → Set
RemainingArgs = Vec (Arg (Forced × Term × Term))
leftArgs : ∀ {n} → RemainingArgs n → List (Arg Term)
leftArgs = map (fmap (fst ∘ snd)) ∘ vecToList
rightArgs : ∀ {n} → RemainingArgs n → List (Arg Term)
rightArgs = map (fmap (snd ∘ snd)) ∘ vecToList
classifyArgs : (c : Name) → TC (Σ Nat RemainingArgs)
classifyArgs c = do
#argsc ← #args c
forcedc ← forcedArgs c
let #freec = #argsc - length forcedc
_,_ _ ∘ classify #freec forcedc (#argsc - 1) (#freec - 1) <$> argsTel c
-- The final argument should be (weakenTel (#argsc + #freec) (argsTel c)),
-- but we don't really care about the types of the arguments anyway.
where
classify : Nat → List Nat → (m n : Nat) (tel : List (Arg Type)) → RemainingArgs (length tel)
classify _ _ m n [] = []
classify #freec forcedc m n (arg i ty ∷ tel) =
if (elem m forcedc)
then arg i (forced , var (#freec + m) [] , var (#freec + m) []) ∷
classify #freec forcedc (m - 1) n tel
else arg i (free , var (#freec + m) [] , var n []) ∷
classify #freec forcedc (m - 1) (n - 1) tel
rightArgsFree : ∀ {n} → RemainingArgs n → List (Arg Term)
rightArgsFree [] = []
rightArgsFree (arg _ (forced , _ , _) ∷ xs) = rightArgsFree xs
rightArgsFree (arg i (free , _ , x) ∷ xs) = arg i x ∷ rightArgsFree xs
countFree : ∀ {n} → RemainingArgs n → Nat
countFree xs = length (rightArgsFree xs)
refreshArgs : ∀ {n} → RemainingArgs n → RemainingArgs n
refreshArgs xs = refresh (nfree - 1) xs
where
nfree = countFree xs
refresh : ∀ {n} → Nat → RemainingArgs n → RemainingArgs n
refresh n [] = []
refresh n (arg i (forced , x , y) ∷ xs) = arg i (forced , x , y) ∷ refresh n xs
refresh n (arg i (free , x , y) ∷ xs) = arg i (free , x , var n []) ∷ refresh (n - 1) xs
-- Matching constructor case --
caseDec : ∀ {a b} {A : Set a} {B : Set b} → Dec A → (A → B) → (¬ A → B) → B
caseDec (yes x) y n = y x
caseDec (no x) y n = n x
checkEqArgs : ∀ {n} (c : Name) (xs : List (Arg Term)) (ys : RemainingArgs n) → Term
checkEqArgs c xs (arg i (forced , y , z) ∷ args) =
checkEqArgs c (xs ++ [ arg i y ]) args
checkEqArgs {suc remainingArgs} c xs (arg i (free , y , z) ∷ args) =
def₃ (quote caseDec)
(def₂ (quote _==_) y z)
(vLam "x≡y" checkEqArgsYes)
(vLam "x≢y" checkEqArgsNo)
where
remainingFree = countFree args
wk : {A : Set} {{_ : DeBruijn A}} → Nat → A → A
wk k = weaken (k + remainingFree)
checkEqArgsYes : Term
checkEqArgsYes =
def (quote transport) (
(vArg (vLam "x" (nPi (rightArgsFree args) (def₁ (quote Dec)
(wk 2
(con c (xs ++ arg i y ∷ (leftArgs args)))
`≡
con c (wk 2 xs ++
arg i (var remainingFree []) ∷
rightArgs (refreshArgs (wk 2 args)))))))) ∷
(vArg (var 0 [])) ∷
(vArg (nLam (rightArgsFree args)
(checkEqArgs c
(wk 1 (xs ++ [ arg i y ]))
(refreshArgs (wk 1 args))))) ∷
weaken 1 (rightArgsFree args))
checkEqArgsNo : Term
checkEqArgsNo =
con₁ (quote no) (vLam "eq" (var 1 (vArg (def₃ (quote _∋_)
(nPi (hideTel (arg i z ∷ rightArgsFree args))
(weaken (3 + remainingFree) (con c (xs ++ arg i y ∷ leftArgs args))
`≡ con c (wk 3 xs ++
arg i (var remainingFree []) ∷
rightArgs (refreshArgs (wk 3 args)))
`→
wk 4 y `≡ var (1 + remainingFree) []))
(pat-lam (clause
(replicate (1 + remainingFree) (hArg dot) ++ vArg `refl ∷ [])
`refl ∷ []) [])
(var 0 [])) ∷ [])))
checkEqArgs _ _ _ = con₁ (quote yes) (con₀ (quote refl))
matchingClause : (c : Name) → TC Clause
matchingClause c = do
_ , args ← classifyArgs c
paramPats ← map (fmap λ _ → var "A") ∘ hideTel <$> params c
params ← makeParams args
pure (clause (paramPats ++
vArg (con c (makeLeftPattern args)) ∷
vArg (con c (makeRightPattern args)) ∷ [])
(checkEqArgs c params args))
where
args = classifyArgs c
makeParamsPats : TC (List (Arg Pattern))
makeParamsPats = map (fmap λ _ → var "A") ∘ hideTel <$> params c
makeParams : ∀ {n} → RemainingArgs n → TC (List (Arg Term))
makeParams args = do
ps ← params c
pure (weaken (length (vecToList args) + countFree args) (newArgs ps))
makeLeftPattern : ∀ {n} → RemainingArgs n → List (Arg Pattern)
makeLeftPattern [] = []
makeLeftPattern (arg i _ ∷ xs) = arg i (var "x") ∷ makeLeftPattern xs
makeRightPattern : ∀ {n} → RemainingArgs n → List (Arg Pattern)
makeRightPattern [] = []
makeRightPattern (arg i (forced , _ , _) ∷ xs) = arg i dot ∷ makeRightPattern xs
makeRightPattern (arg i (free , _ , _) ∷ xs) = arg i (var "y") ∷ makeRightPattern xs
-- Mismatching constructor case --
mismatchingClause : (c₁ c₂ : Name) (fs : List Nat) → TC Clause
mismatchingClause c₁ c₂ fs = do
args₁ ← argsTel c₁
args₂ ← argsTel c₂
let #args₁ = length args₁
#args₂ = length args₂
pure (clause (vArg (con c₁ (makePattern (#args₁ + #args₂ - 1) args₁)) ∷
vArg (con c₂ (makePattern (#args₂ - 1) args₂)) ∷ [])
(con (quote no) ([ vArg (pat-lam ([ absurd-clause ([ vArg absurd ]) ]) []) ])))
where
makePattern : (k : Nat) (args : List (Arg Type)) → List (Arg Pattern)
makePattern k [] = []
makePattern k (arg i _ ∷ args) = (if (elem k fs) then (arg i dot) else arg i (var "x"))
∷ makePattern (k - 1) args
-- Clauses --
makeClause : (c₁ c₂ : Name) → TC (List Clause)
makeClause c₁ c₂ = case (c₁ == c₂) of λ
{ (yes _) → _∷ [] <$> matchingClause c₁
; (no _) → caseM (unifyIndices c₁ c₂) of λ
{ (positive fs) → _∷ [] <$> mismatchingClause c₁ c₂ (map fst fs)
; _ → pure []
}
}
constructorPairs : (d : Name) → TC (List (Name × Name))
constructorPairs d = caseM getDefinition d of λ
{ (data-type _ cs) → pure $ concat (map (λ c₁ → map (_,_ c₁) cs) cs)
; _ → pure []
}
eqDefinition : (d : Name) → TC (List Clause)
eqDefinition d = concat <$> (mapM (uncurry makeClause) =<< constructorPairs d)
makeArgs : Nat → List (Arg Nat) → List (Arg Term)
makeArgs n xs = reverse $ map (fmap (λ i → var (n - i - 1) [])) xs
computeInstanceType : Nat → List (Arg Nat) → Type → Maybe Term
computeInstanceType n xs (agda-sort _) =
just (`Eq (var n (makeArgs n xs)))
computeInstanceType n xs (pi a (abs s b)) =
pi (hArg (unArg a)) ∘ abs s <$> computeInstanceType (suc n) ((n <$ a) ∷ xs) b
computeInstanceType _ _ _ = nothing
computeType : Name → Nat → List (Arg Nat) → Telescope → Telescope → Term
computeType d n xs is [] =
telPi (reverse is) $
def d (makeArgs (n + k) xs) `→ def d (makeArgs (n + k + 1) xs) `→
def₁ (quote Dec) (var 1 [] `≡ var 0 [])
where k = length is
computeType d n xs is (a ∷ tel) =
unArg a `→ʰ
(case computeInstanceType 0 [] (weaken 1 $ unArg a) of
λ { (just i) → computeType d (1 + n) ((n <$ a) ∷ xs) (iArg (weaken (length is) i) ∷ weaken 1 is) tel
; nothing → computeType d (1 + n) ((n <$ a) ∷ xs) (weaken 1 is) tel })
eqType : Name → TC Type
eqType d = computeType d 0 [] [] ∘ fst ∘ telView <$> getType d
macro
deriveEqType : Name → Tactic
deriveEqType d hole = unifyTC hole =<< (computeType d 0 [] [] ∘ fst ∘ telView <$> getType d)
deriveEqDef : Name → Name → TC ⊤
deriveEqDef i d = defineFun i =<< eqDefinition d
declareEqInstance : Name → Name → TC ⊤
declareEqInstance iname d =
declareDef (iArg iname) =<< instanceType d (quote Eq)
defineEqInstance : Name → Name → TC ⊤
defineEqInstance iname d = do
fname ← freshName ("_==[" & show d & "]_")
declareDef (vArg fname) =<< eqType d
dictCon ← recordConstructor (quote Eq)
defineFun iname (clause [] (con₁ dictCon (def₀ fname)) ∷ [])
defineFun fname =<< eqDefinition d
return _
deriveEq : Name → Name → TC ⊤
deriveEq iname d =
declareEqInstance iname d >>
defineEqInstance iname d
|
{
"alphanum_fraction": 0.5672663802,
"avg_line_length": 36.7802469136,
"ext": "agda",
"hexsha": "a20827fcbbac35ec65b290533c441469449980ed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Deriving/Eq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Deriving/Eq.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Deriving/Eq.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4846,
"size": 14896
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Rust.RustTypes
open import Optics.All
open import Util.Encode
open import Util.KVMap as KVMap
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
-- This module defines types for an out-of-date implementation, based
-- on a previous version of LibraBFT. It will be updated to model a
-- more recent version in future.
--
-- One important trick here is that the RoundManager type separayes
-- types that /define/ the EpochConfig and types that /use/ the
-- /EpochConfig/. The advantage of doing this separation can be seen
-- in Util.Util.liftEC, where we define a lifting of a function that
-- does not change the bits that define the EpochConfig into the whole
-- state. This enables a more elegant approach for reasoning about
-- functions that do not change parts of the state responsible for
-- defining the epoch config. However, the separation is not perfect,
-- so sometimes fields may be modified in EpochIndep even though there
-- is no epoch change.
module LibraBFT.ImplShared.Consensus.Types where
open import LibraBFT.ImplShared.NetworkMsg public
open import LibraBFT.ImplShared.Base.Types public
open import LibraBFT.ImplShared.Consensus.Types.EpochIndep public
open import LibraBFT.ImplShared.Util.Crypto public
record ExponentialTimeInterval : Set where
constructor mkExponentialTimeInterval
field
_etiBaseMs : U64
_etiExponentBase : F64
_etiMaxExponent : Usize
unquoteDecl etiBaseMs etiExponentBase etiMaxExponent = mkLens (quote ExponentialTimeInterval)
(etiBaseMs ∷ etiExponentBase ∷ etiMaxExponent ∷ [])
RoundStateTimeInterval = ExponentialTimeInterval
record RoundState : Set where
constructor mkRoundState
field
_rsTimeInterval : RoundStateTimeInterval
_rsHighestCommittedRound : Round
_rsCurrentRound : Round
_rsCurrentRoundDeadline : Instant
_rsPendingVotes : PendingVotes
_rsVoteSent : Maybe Vote
open RoundState public
unquoteDecl rsTimeInterval rsHighestCommittedRound rsCurrentRound
rsCurrentRoundDeadline rsPendingVotes rsVoteSent = mkLens (quote RoundState)
(rsTimeInterval ∷ rsHighestCommittedRound ∷ rsCurrentRound ∷
rsCurrentRoundDeadline ∷ rsPendingVotes ∷ rsVoteSent ∷ [])
record ObmNeedFetch : Set where
constructor ObmNeedFetch∙new
-- The parts of the state of a peer that are used to
-- define the EpochConfig are the SafetyRules and ValidatorVerifier:
record RoundManager : Set where
constructor RoundManager∙new
field
_rmObmNeedFetch : ObmNeedFetch
-------------------------
_rmEpochState : EpochState
_rmBlockStore : BlockStore
_rmRoundState : RoundState
_rmProposerElection : ProposerElection
_rmProposalGenerator : ProposalGenerator
_rmSafetyRules : SafetyRules
_rmSyncOnly : Bool
open RoundManager public
unquoteDecl rmObmNeedFetch
rmEpochState rmBlockStore rmRoundState rmProposerElection
rmProposalGenerator rmSafetyRules rmSyncOnly = mkLens (quote RoundManager)
(rmObmNeedFetch ∷
rmEpochState ∷ rmBlockStore ∷ rmRoundState ∷ rmProposerElection ∷
rmProposalGenerator ∷ rmSafetyRules ∷ rmSyncOnly ∷ [])
-- IMPL-DIFF: this is RoundManager field/lens in Haskell; and it is implemented completely different
rmObmAllAuthors : Lens RoundManager (List Author)
rmObmAllAuthors = mkLens'
(λ rm → List-map proj₁ (kvm-toList (rm ^∙ rmEpochState ∙ esVerifier ∙ vvAddressToValidatorInfo)))
(λ rm _ → rm) -- TODO-1 cannot be written
-- IMPL-DIFF : In places that do "set"
-- e.g., RoundState.processCertificates
-- the Haskell code is : rsVoteSent .= Nothing
-- the Agda code is : lRoundState ∙ rsVoteSent ∙= nothing
--
-- The Haskell code leverages the "RW" constraints (e.g., RWRoundState)
-- to enable not specifying where something is contained (i.e., in the round manager).
-- The Agda code does not model that, therefore it needs `lRoundState`.
lRoundManager : Lens RoundManager RoundManager
lRoundManager = lens (λ _ _ f rm → f rm)
lBlockStore : Lens RoundManager BlockStore
lBlockStore = rmBlockStore
lBlockTree : Lens RoundManager BlockTree
lBlockTree = lBlockStore ∙ bsInner
lPendingVotes : Lens RoundManager PendingVotes
lPendingVotes = rmRoundState ∙ rsPendingVotes
lRoundState : Lens RoundManager RoundState
lRoundState = rmRoundState
lProposerElection : Lens RoundManager ProposerElection
lProposerElection = rmProposerElection
lProposalGenerator : Lens RoundManager ProposalGenerator
lProposalGenerator = rmProposalGenerator
lSafetyRules : Lens RoundManager SafetyRules
lSafetyRules = rmSafetyRules
lPersistentSafetyStorage : Lens RoundManager PersistentSafetyStorage
lPersistentSafetyStorage = lSafetyRules ∙ srPersistentStorage
lObmNeedFetch : Lens RoundManager ObmNeedFetch
lObmNeedFetch = rmObmNeedFetch
-- getter only in Haskell
pgAuthor : Lens RoundManager (Maybe Author)
pgAuthor = mkLens' g s
where
g : RoundManager → Maybe Author
g rm = maybeS (rm ^∙ rmSafetyRules ∙ srValidatorSigner) nothing (just ∘ (_^∙ vsAuthor))
s : RoundManager → Maybe Author → RoundManager
s rm _ma = rm -- TODO-1 cannot be written
-- getter only in Haskell
srValidatorVerifier : Lens RoundManager ValidatorVerifier
srValidatorVerifier = rmEpochState ∙ esVerifier
-- getter only in Haskell
-- IMPL-DIFF : this returns Author OR does an errorExit
rmObmMe : Lens RoundManager (Maybe Author)
rmObmMe = mkLens' g s
where
g : RoundManager → Maybe Author
g rm = case rm ^∙ rmSafetyRules ∙ srValidatorSigner of λ where
(just vs) → just (vs ^∙ vsAuthor)
nothing → nothing
s : RoundManager → Maybe Author → RoundManager
s s _ = s
-- getter only in Haskell
rmEpoch : Lens RoundManager Epoch
rmEpoch = rmEpochState ∙ esEpoch
-- not defined in Haskell, only used for proofs
rmValidatorVerifer : Lens RoundManager ValidatorVerifier
rmValidatorVerifer = rmEpochState ∙ esVerifier
-- getter only in Haskell
rmRound : Lens RoundManager Round
rmRound = rmRoundState ∙ rsCurrentRound
-- not defined in Haskell
rmLastVotedRound : Lens RoundManager Round
rmLastVotedRound = rmSafetyRules ∙ srPersistentStorage ∙ pssSafetyData ∙ sdLastVotedRound
-- BEGIN : lens mimicking Haskell/LBFT RW* setters.
-- IN THE MODEL OF THE HASKELL CODE, THESE SHOULD ONLY BE USED FOR SETTING.
-- THEY CAN BE USED AS GETTERS IN PROPERTIES/PROOFS.
rsVoteSent-rm : Lens RoundManager (Maybe Vote)
rsVoteSent-rm = lRoundState ∙ rsVoteSent
pssSafetyData-rm : Lens RoundManager SafetyData
pssSafetyData-rm = lPersistentSafetyStorage ∙ pssSafetyData
-- END : lens mimicking Haskell/LBFT RW* setters.
record BootstrapInfo : Set where
constructor mkBootstrapInfo
field
_bsiNumFaults : ℕ
_bsiLIWS : LedgerInfoWithSignatures
_bsiVSS : List ValidatorSigner
_bsiVV : ValidatorVerifier
_bsiPE : ProposerElection
open BootstrapInfo public
unquoteDecl bsiNumFaults bsiLIWS bsiVSS bsiVV bsiPE = mkLens (quote BootstrapInfo)
(bsiNumFaults ∷ bsiLIWS ∷ bsiVSS ∷ bsiVV ∷ bsiPE ∷ [])
postulate -- valid assumption
-- We postulate the existence of BootstrapInfo known to all
-- TODO: construct one or write a function that generates one from some parameters.
fakeBootstrapInfo : BootstrapInfo
data ∈BootstrapInfo-impl (bi : BootstrapInfo) : Signature → Set where
inBootstrapQC : ∀ {sig} → sig ∈ (KVMap.elems (bi ^∙ bsiLIWS ∙ liwsSignatures))
→ ∈BootstrapInfo-impl bi sig
postulate -- TODO-1 : prove
∈BootstrapInfo?-impl : (bi : BootstrapInfo) (sig : Signature)
→ Dec (∈BootstrapInfo-impl bi sig)
postulate -- TODO-1: prove after defining bootstrapInfo
bootstrapVotesRound≡0
: ∀ {pk v}
→ (wvs : WithVerSig pk v)
→ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature wvs)
→ v ^∙ vRound ≡ 0
bootstrapVotesConsistent
: (v1 v2 : Vote)
→ ∈BootstrapInfo-impl fakeBootstrapInfo (_vSignature v1)
→ ∈BootstrapInfo-impl fakeBootstrapInfo (_vSignature v2)
→ v1 ^∙ vProposedId ≡ v2 ^∙ vProposedId
-- To enable modeling of logging info that has not been added yet,
-- InfoLog and an inhabitant is postulated.
postulate -- Valid assumption: InfoLog type
InfoLog : Set
fakeInfo : InfoLog
-- The Haskell implementation has many more constructors.
-- Constructors are being added incrementally as needed for the verification effort.
data ErrLog : Set where
-- full name of following field : Consensus_BlockNotFound
ErrCBlockNotFound : HashValue → ErrLog
-- full name of following field : ExecutionCorrectnessClient_BlockNotFound
ErrECCBlockNotFound : HashValue → ErrLog
ErrInfo : InfoLog → ErrLog -- to exit early, but not an error
ErrVerify : VerifyError → ErrLog
-- To enable modeling of logging errors that have not been added yet,
-- an inhabitant of ErrLog is postulated.
postulate -- Valid assumption: ErrLog type
fakeErr : ErrLog
record TxTypeDependentStuffForNetwork : Set where
constructor TxTypeDependentStuffForNetwork∙new
field
_ttdsnProposalGenerator : ProposalGenerator
_ttdsnStateComputer : StateComputer
open TxTypeDependentStuffForNetwork public
unquoteDecl ttdsnProposalGenerator ttdsnStateComputer = mkLens (quote TxTypeDependentStuffForNetwork)
(ttdsnProposalGenerator ∷ ttdsnStateComputer ∷ [])
|
{
"alphanum_fraction": 0.7089074326,
"avg_line_length": 40.8968253968,
"ext": "agda",
"hexsha": "a2e8aaf9911c4bea0261e6952a868da6f7a0b430",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/ImplShared/Consensus/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/ImplShared/Consensus/Types.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/ImplShared/Consensus/Types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2685,
"size": 10306
}
|
------------------------------------------------------------------------
-- An implementation of "A Unifying Approach to Recursive and
-- Co-recursive Definitions" by Pietro Di Gianantonio and Marino
-- Miculan
------------------------------------------------------------------------
-- See the paper for more explanations.
module Contractive where
open import Relation.Unary
open import Relation.Binary
import Relation.Binary.Reasoning.Setoid as EqR
open import Induction.WellFounded
open import Function
open import Level hiding (lift)
-- Well-founded orders.
record IsWellFoundedOrder {A} (_<_ : Rel A zero) : Set where
field
trans : Transitive _<_
isWellFounded : WellFounded _<_
-- Ordered families of equivalences.
record OFE : Set1 where
field
Carrier : Set
Domain : Set
_<_ : Rel Carrier zero
isWellFoundedOrder : IsWellFoundedOrder _<_
Eq : Carrier → Rel Domain zero
isEquivalence : ∀ a → IsEquivalence (Eq a)
open IsWellFoundedOrder isWellFoundedOrder public
open All isWellFounded public
setoid : Carrier → Setoid _ _
setoid a = record { Carrier = Domain
; _≈_ = Eq a
; isEquivalence = isEquivalence a
}
module EqReasoning {a : Carrier} where
open EqR (setoid a) public
open Setoid (setoid a) public using (refl; sym)
-- The set of predecessors of a.
↓ : Carrier → Carrier → Set
↓ a = λ a' → a' < a
-- The intersection of all the equivalences.
_≅_ : Rel Domain zero
x ≅ y = ∀ a → Eq a x y
Family : (Carrier → Set) → Set
Family I = ∀ x → x ∈ I → Domain
lift : ∀ {I} → (Carrier → Domain) → Family I
lift P = λ x _ → P x
IsCoherent : ∀ {I} → Family I → Set
IsCoherent {I} fam = ∀ {a' a}
(a'∈I : a' ∈ I) (a∈I : a ∈ I) → a' < a →
Eq a' (fam a' a'∈I) (fam a a∈I)
IsLimit : ∀ {I} → Family I → Domain → Set
IsLimit {I} fam y = ∀ {a'}
(a'∈I : a' ∈ I) → Eq a' (fam a' a'∈I) y
IsContractive : (Domain → Domain) → Set
IsContractive F = ∀ {x y a} →
(∀ {a'} → a' < a → Eq a' x y) → Eq a (F x) (F y)
-- Complete ordered families of equivalences.
record COFE : Set1 where
field
ofe : OFE
open OFE ofe
field
limU : (Carrier → Domain) → Domain
isLimitU : ∀ {fam} →
IsCoherent {U} (lift fam) →
IsLimit {U} (lift fam) (limU fam)
lim↓ : ∀ a → Family (↓ a) → Domain
isLimit↓ : ∀ a {fam : Family (↓ a)} →
IsCoherent fam → IsLimit fam (lim↓ a fam)
open OFE ofe public
-- Contractive functions over complete ordered families have
-- fixpoints.
record ContractiveFun (cofe : COFE) : Set where
open COFE cofe
field
F : Domain → Domain
isContractive : IsContractive F
open EqReasoning
-- The fixpoint is the limit of the following family.
fam : Carrier → Domain
fam = wfRec _ (const Domain) (λ a rec → F (lim↓ a rec))
fixpoint : Domain
fixpoint = limU fam
-- I am not sure if this lemma can be proved without assuming some
-- kind of proof irrelevance and/or extensionality. It is not
-- central to the ideas developed here, though, so I leave it as a
-- postulate.
postulate unfold : ∀ a → fam a ≅ F (lim↓ a (lift fam))
-- The family is coherent in several ways.
fam-isCoherent-↓ : ∀ a → IsCoherent {↓ a} (lift fam)
fam-isCoherent-↓ = wfRec _ P step
where
P : Carrier → Set
P a = IsCoherent {↓ a} (lift fam)
step : ∀ a → WfRec _<_ P a → P a
step a rec {c} {b} c<a b<a c<b = begin
fam c ≈⟨ unfold c c ⟩
F (lim↓ c (lift fam)) ≈⟨ isContractive (λ {d} d<c → begin
lim↓ c (lift fam) ≈⟨ sym $ isLimit↓ c (rec c c<a) d<c ⟩
lift {↓ a} fam d
(trans d<c c<a) ≈⟨ isLimit↓ b (rec b b<a) (trans d<c c<b) ⟩
lim↓ b (lift fam) ∎) ⟩
F (lim↓ b (lift fam)) ≈⟨ sym $ unfold b c ⟩
fam b ∎
fam-isCoherent-U : IsCoherent {U} (lift fam)
fam-isCoherent-U {a'} {a} _ _ = wfRec _ P step a a'
where
P : Carrier → Set
P a = ∀ a' → a' < a → Eq a' (fam a') (fam a)
step : ∀ a → WfRec _<_ P a → P a
step a rec a' a'<a = begin
fam a' ≈⟨ unfold a' a' ⟩
F (lim↓ a' (lift fam)) ≈⟨ isContractive (λ {b} b<a' → begin
lim↓ a' (lift fam) ≈⟨ sym $ isLimit↓ a' (fam-isCoherent-↓ a') b<a' ⟩
fam b ≈⟨ isLimit↓ a (fam-isCoherent-↓ a) (trans b<a' a'<a) ⟩
lim↓ a (lift fam) ∎) ⟩
F (lim↓ a (lift fam)) ≈⟨ sym $ unfold a a' ⟩
fam a ∎
-- The fixpoint is a fixpoint.
isFixpoint : fixpoint ≅ F fixpoint
isFixpoint a = begin
fixpoint ≈⟨ sym $ isLimitU fam-isCoherent-U _ ⟩
fam a ≈⟨ unfold a a ⟩
F (lim↓ a (lift fam)) ≈⟨ isContractive (λ {a'} a'<a → begin
lim↓ a (lift fam) ≈⟨ sym $ isLimit↓ a (fam-isCoherent-↓ a) a'<a ⟩
fam a' ≈⟨ isLimitU fam-isCoherent-U _ ⟩
limU fam ∎) ⟩
F (limU fam) ≈⟨ refl ⟩
F fixpoint ∎
-- And it is unique.
unique : ∀ x → x ≅ F x → x ≅ fixpoint
unique x isFix = wfRec _ P step
where
P = λ a → Eq a x fixpoint
step : ∀ a → WfRec _<_ P a → P a
step a rec = begin
x ≈⟨ isFix a ⟩
F x ≈⟨ isContractive (λ {a'} a'<a → rec a' a'<a) ⟩
F fixpoint ≈⟨ sym $ isFixpoint a ⟩
fixpoint ∎
|
{
"alphanum_fraction": 0.5251265365,
"avg_line_length": 29.9027027027,
"ext": "agda",
"hexsha": "46ca5cf641e878c00730da6602cb70cc075daeab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "Contractive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "Contractive.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "Contractive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1848,
"size": 5532
}
|
-- Problem 2: Multiplication for matrices (from the matrix algebra DSL).
module P2 where
-- 2a: Type the variables in the text.
-- (This answer uses Agda syntax, but that is not required.)
postulate Nat : Set
postulate V : Nat -> Set -> Set
postulate Fin : Nat -> Set
Op : Set -> Set
Op a = a -> a -> a
postulate sum : {n : Nat} {a : Set} -> Op a -> V n a -> a
postulate zipWith : {n : Nat} {a : Set} -> Op a -> V n a -> V n a -> V n a
data M (m n : Nat) (a : Set) : Set where
matrix : (Fin m -> Fin n -> a) -> M m n a
record Dummy (a : Set) : Set where
field
m : Nat
n : Nat
A : M m n a
p : Nat
B : M n p a
i : Fin m
j : Fin p
-- 2b: Type |mul| and |proj|
postulate
proj : {m n : Nat} {a : Set} -> Fin m -> Fin n -> M m n a -> a
mul : {m n p : Nat} {a : Set} -> Op a -> Op a ->
M m n a -> M n p a -> M m p a
-- 2c: Implement |mul|.
postulate
row : {m n : Nat} {a : Set} -> Fin m -> M m n a -> V n a
col : {m n : Nat} {a : Set} -> Fin n -> M m n a -> V m a
mul addE mulE A B = matrix (\i j ->
sum addE (zipWith mulE (row i A) (col j B)))
|
{
"alphanum_fraction": 0.509383378,
"avg_line_length": 23.8085106383,
"ext": "agda",
"hexsha": "a395c6965783bd8562f725b13bf96a9d3ca1c82d",
"lang": "Agda",
"max_forks_count": 47,
"max_forks_repo_forks_event_max_datetime": "2022-03-03T23:57:42.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-11-16T08:41:04.000Z",
"max_forks_repo_head_hexsha": "ce764c9bbff5a726d5cf1699a433d9921a1d6a60",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "nicolabotta/DSLsofMath",
"max_forks_repo_path": "Exam/2017-08/P2.agda",
"max_issues_count": 51,
"max_issues_repo_head_hexsha": "ce764c9bbff5a726d5cf1699a433d9921a1d6a60",
"max_issues_repo_issues_event_max_datetime": "2022-03-03T20:06:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-01-30T15:59:39.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "nicolabotta/DSLsofMath",
"max_issues_repo_path": "Exam/2017-08/P2.agda",
"max_line_length": 74,
"max_stars_count": 248,
"max_stars_repo_head_hexsha": "ce764c9bbff5a726d5cf1699a433d9921a1d6a60",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "nicolabotta/DSLsofMath",
"max_stars_repo_path": "Exam/2017-08/P2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-29T11:12:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-27T21:04:02.000Z",
"num_tokens": 415,
"size": 1119
}
|
{-# OPTIONS --without-K --safe #-}
module C where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Singleton
infixr 70 _×ᵤ_
infixr 60 _+ᵤₗ_
infixr 60 _+ᵤᵣ_
infixr 50 _⊚_
------------------------------------------------------------------------------
-- Pi
data 𝕌 : Set
⟦_⟧ : 𝕌 → Σ[ A ∈ Set ] A
data _⟷_ : 𝕌 → 𝕌 → Set
data 𝕌 where
𝟙 : 𝕌
_+ᵤₗ_ : 𝕌 → 𝕌 → 𝕌
_+ᵤᵣ_ : 𝕌 → 𝕌 → 𝕌
_×ᵤ_ : 𝕌 → 𝕌 → 𝕌
Singᵤ : 𝕌 → 𝕌
Recipᵤ : 𝕌 → 𝕌
⟦ 𝟙 ⟧ = ⊤ , tt
⟦ T₁ ×ᵤ T₂ ⟧ = zip _×_ _,_ ⟦ T₁ ⟧ ⟦ T₂ ⟧
⟦ T₁ +ᵤₗ T₂ ⟧ = zip _⊎_ (λ x _ → inj₁ x) ⟦ T₁ ⟧ ⟦ T₂ ⟧
⟦ T₁ +ᵤᵣ T₂ ⟧ = zip _⊎_ (λ _ y → inj₂ y) ⟦ T₁ ⟧ ⟦ T₂ ⟧
⟦ Singᵤ T ⟧ = < uncurry Singleton , (λ y → proj₂ y , refl) > ⟦ T ⟧
⟦ Recipᵤ T ⟧ = < uncurry Recip , (λ _ _ → tt) > ⟦ T ⟧
data _⟷_ where
swap₊₁ : {t₁ t₂ : 𝕌} → t₁ +ᵤₗ t₂ ⟷ t₂ +ᵤᵣ t₁
swap₊₂ : {t₁ t₂ : 𝕌} → t₁ +ᵤᵣ t₂ ⟷ t₂ +ᵤₗ t₁
assocl₊₁ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤₗ (t₂ +ᵤₗ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤₗ t₃
assocl₊₂ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤₗ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤₗ t₃
assocl₊₃ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤₗ t₃) ⟷ (t₁ +ᵤᵣ t₂) +ᵤₗ t₃
assocl₊₄ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤₗ t₂) +ᵤᵣ t₃
assocl₊₅ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃) ⟷ (t₁ +ᵤᵣ t₂) +ᵤᵣ t₃
assocr₊₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤₗ (t₂ +ᵤᵣ t₃)
assocr₊₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤₗ (t₂ +ᵤₗ t₃)
assocr₊₃ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) +ᵤₗ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤₗ t₃)
assocr₊₄ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) +ᵤᵣ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃)
assocr₊₅ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) +ᵤᵣ t₃ ⟷ t₁ +ᵤᵣ (t₂ +ᵤᵣ t₃)
unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t
uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t
unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t
uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙
swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁
assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃
assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃)
dist₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤₗ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤₗ (t₂ ×ᵤ t₃)
dist₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤᵣ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤᵣ (t₂ ×ᵤ t₃)
factor₁ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤₗ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤₗ t₂) ×ᵤ t₃
factor₂ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤᵣ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤᵣ t₂) ×ᵤ t₃
distl₁ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤₗ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤₗ (t₁ ×ᵤ t₃)
distl₂ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤᵣ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤᵣ (t₁ ×ᵤ t₃)
factorl₁ : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤₗ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤₗ t₃)
factorl₂ : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤᵣ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤᵣ t₃)
id⟷ : {t : 𝕌} → t ⟷ t
_⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕₁_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤₗ t₂ ⟷ t₃ +ᵤₗ t₄)
_⊕₂_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤᵣ t₂ ⟷ t₃ +ᵤᵣ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄)
-- monad
return : (T : 𝕌) → T ⟷ Singᵤ T
join : (T : 𝕌) → Singᵤ (Singᵤ T) ⟷ Singᵤ T
unjoin : (T : 𝕌) → Singᵤ T ⟷ Singᵤ (Singᵤ T)
tensorl : (T₁ T₂ : 𝕌) → (Singᵤ T₁ ×ᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂)
tensorr : (T₁ T₂ : 𝕌) → (T₁ ×ᵤ Singᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂)
tensor : (T₁ T₂ : 𝕌) → (Singᵤ T₁ ×ᵤ Singᵤ T₂) ⟷ Singᵤ (T₁ ×ᵤ T₂)
untensor : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (Singᵤ T₁ ×ᵤ Singᵤ T₂)
plusl : (T₁ T₂ : 𝕌) → (Singᵤ T₁ +ᵤₗ T₂) ⟷ Singᵤ (T₁ +ᵤₗ T₂)
plusr : (T₁ T₂ : 𝕌) → (T₁ +ᵤᵣ Singᵤ T₂) ⟷ Singᵤ (T₁ +ᵤᵣ T₂)
-- comonad
extract : (T : 𝕌) → Singᵤ T ⟷ T
cojoin : (T : 𝕌) → Singᵤ T ⟷ Singᵤ (Singᵤ T)
counjoin : (T : 𝕌) → Singᵤ (Singᵤ T) ⟷ Singᵤ T
cotensorl : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (Singᵤ T₁ ×ᵤ T₂)
cotensorr : (T₁ T₂ : 𝕌) → Singᵤ (T₁ ×ᵤ T₂) ⟷ (T₁ ×ᵤ Singᵤ T₂)
coplusl : (T₁ T₂ : 𝕌) → Singᵤ (T₁ +ᵤₗ T₂) ⟷ (Singᵤ T₁ +ᵤₗ T₂)
coplusr : (T₁ T₂ : 𝕌) → Singᵤ (T₁ +ᵤᵣ T₂) ⟷ (T₁ +ᵤᵣ Singᵤ T₂)
-- both?
Singᵤ : (T₁ T₂ : 𝕌) → (T₁ ⟷ T₂) → (Singᵤ T₁ ⟷ Singᵤ T₂)
-- eta/epsilon
η : (T : 𝕌) → 𝟙 ⟷ (Singᵤ T ×ᵤ Recipᵤ T)
ε : (T : 𝕌) → (Singᵤ T ×ᵤ Recipᵤ T) ⟷ 𝟙
!_ : {t₁ t₂ : 𝕌} → t₁ ⟷ t₂ → t₂ ⟷ t₁
! swap₊₁ = swap₊₂
! swap₊₂ = swap₊₁
! assocl₊₁ = assocr₊₂
! assocl₊₂ = assocr₊₁
! assocl₊₃ = assocr₊₃
! assocl₊₄ = assocr₊₄
! assocl₊₅ = assocr₊₅
! assocr₊₁ = assocl₊₂
! assocr₊₂ = assocl₊₁
! assocr₊₃ = assocl₊₃
! assocr₊₄ = assocl₊₄
! assocr₊₅ = assocl₊₅
! unite⋆l = uniti⋆l
! uniti⋆l = unite⋆l
! unite⋆r = uniti⋆r
! uniti⋆r = unite⋆r
! swap⋆ = swap⋆
! assocl⋆ = assocr⋆
! assocr⋆ = assocl⋆
! dist₁ = factor₁
! dist₂ = factor₂
! factor₁ = dist₁
! factor₂ = dist₂
! distl₁ = factorl₁
! distl₂ = factorl₂
! factorl₁ = distl₁
! factorl₂ = distl₂
! id⟷ = id⟷
! (c ⊚ c₁) = (! c₁) ⊚ (! c)
! (c ⊕₁ c₁) = (! c) ⊕₁ (! c₁)
! (c ⊕₂ c₁) = (! c) ⊕₂ (! c₁)
! (c ⊗ c₁) = (! c) ⊗ (! c₁)
! return T = extract T
! join T = return (Singᵤ T)
! unjoin T = join T
! tensorl T₁ T₂ = cotensorl T₁ T₂
! tensorr T₁ T₂ = cotensorr T₁ T₂
! tensor T₁ T₂ = untensor T₁ T₂
! untensor T₁ T₂ = tensor T₁ T₂
! plusl T₁ T₂ = coplusl T₁ T₂
! plusr T₁ T₂ = coplusr T₁ T₂
! extract T = return T
! cojoin T = join T
! counjoin T = return (Singᵤ T)
! cotensorl T₁ T₂ = tensorl T₁ T₂
! cotensorr T₁ T₂ = tensorr T₁ T₂
! coplusl T₁ T₂ = plusl T₁ T₂
! coplusr T₁ T₂ = plusr T₁ T₂
! Singᵤ T₁ T₂ c = Singᵤ T₂ T₁ (! c)
! η T = ε T
! ε T = η T
|
{
"alphanum_fraction": 0.5010514242,
"avg_line_length": 35.1073825503,
"ext": "agda",
"hexsha": "edeb91b42d3bbf5160189ce0e7e5c9f529990b8e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/C.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/C.agda",
"max_line_length": 80,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/C.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3711,
"size": 5231
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Product where
open import Level
open import Function using () renaming (_∘_ to _∙_)
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap)
open import Categories.Category
private
map⁎ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : A → Set p} {Q : {x : A} → P x → B x → Set q} → (f : (x : A) → B x) → (∀ {x} → (y : P x) → Q y (f x)) → (v : Σ A P) → Σ (B (proj₁ v)) (Q (proj₂ v))
map⁎ f g (x , y) = (f x , g y)
map⁎′ : ∀ {a b p q} {A : Set a} {B : A → Set b} {P : Set p} {Q : P → Set q} → (f : (x : A) → B x) → ((x : P) → Q x) → (v : A × P) → B (proj₁ v) × Q (proj₂ v)
map⁎′ f g (x , y) = (f x , g y)
zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y)
zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q)
syntax zipWith f g h = f -< h >- g
Product : ∀ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′)
Product C D = record
{ Obj = C.Obj × D.Obj
; _⇒_ = C._⇒_ -< _×_ >- D._⇒_
; _≡_ = C._≡_ -< _×_ >- D._≡_
; _∘_ = zip C._∘_ D._∘_
; id = C.id , D.id
; assoc = C.assoc , D.assoc
; identityˡ = C.identityˡ , D.identityˡ
; identityʳ = C.identityʳ , D.identityʳ
; equiv = record
{ refl = C.Equiv.refl , D.Equiv.refl
; sym = map C.Equiv.sym D.Equiv.sym
; trans = zip C.Equiv.trans D.Equiv.trans
}
; ∘-resp-≡ = zip C.∘-resp-≡ D.∘-resp-≡
}
where
module C = Category C
module D = Category D
open import Categories.Functor using (Functor; module Functor)
infixr 2 _※_
_※_ : ∀ {o ℓ e o′₁ ℓ′₁ e′₁ o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} → (F : Functor C D₁) → (G : Functor C D₂) → Functor C (Product D₁ D₂)
F ※ G = record
{ F₀ = < F.F₀ , G.F₀ >
; F₁ = < F.F₁ , G.F₁ >
; identity = F.identity , G.identity
; homomorphism = F.homomorphism , G.homomorphism
; F-resp-≡ = < F.F-resp-≡ , G.F-resp-≡ >
}
where
module F = Functor F
module G = Functor G
infixr 2 _⁂_
_⁂_ : ∀ {o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂} {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} → {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} → (F₁ : Functor C₁ D₁) → (F₂ : Functor C₂ D₂) → Functor (Product C₁ C₂) (Product D₁ D₂)
F ⁂ G = record
{ F₀ = map F.F₀ G.F₀
; F₁ = map F.F₁ G.F₁
; identity = F.identity , G.identity
; homomorphism = F.homomorphism , G.homomorphism
; F-resp-≡ = map F.F-resp-≡ G.F-resp-≡
}
where
module F = Functor F
module G = Functor G
open import Categories.NaturalTransformation using (NaturalTransformation; module NaturalTransformation)
infixr 2 _⁂ⁿ_
_⁂ⁿ_ : ∀ {o₁ ℓ₁ e₁ o′₁ ℓ′₁ e′₁ o₂ ℓ₂ e₂ o′₂ ℓ′₂ e′₂} {C₁ : Category o₁ ℓ₁ e₁} {D₁ : Category o′₁ ℓ′₁ e′₁} → {C₂ : Category o₂ ℓ₂ e₂} {D₂ : Category o′₂ ℓ′₂ e′₂} → {F₁ G₁ : Functor C₁ D₁} {F₂ G₂ : Functor C₂ D₂} → (α : NaturalTransformation F₁ G₁) → (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ⁂ F₂) (G₁ ⁂ G₂)
α ⁂ⁿ β = record { η = map⁎′ α.η β.η; commute = map⁎′ α.commute β.commute }
where
module α = NaturalTransformation α
module β = NaturalTransformation β
infixr 2 _※ⁿ_
_※ⁿ_ : ∀ {o ℓ e o′₁ ℓ′₁ e′₁} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {F₁ G₁ : Functor C D₁} (α : NaturalTransformation F₁ G₁) → ∀ {o′₂ ℓ′₂ e′₂} {D₂ : Category o′₂ ℓ′₂ e′₂} {F₂ G₂ : Functor C D₂} (β : NaturalTransformation F₂ G₂) → NaturalTransformation (F₁ ※ F₂) (G₁ ※ G₂)
α ※ⁿ β = record { η = < α.η , β.η >; commute = < α.commute , β.commute > }
where
module α = NaturalTransformation α
module β = NaturalTransformation β
assocˡ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → (C₁ : Category o₁ ℓ₁ e₁) (C₂ : Category o₂ ℓ₂ e₂) (C₃ : Category o₃ ℓ₃ e₃) → Functor (Product (Product C₁ C₂) C₃) (Product C₁ (Product C₂ C₃))
assocˡ C₁ C₂ C₃ = record
{ F₀ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > >
; F₁ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > >
; identity = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl
; homomorphism = C₁.Equiv.refl , C₂.Equiv.refl , C₃.Equiv.refl
; F-resp-≡ = < proj₁ ∙ proj₁ , < proj₂ ∙ proj₁ , proj₂ > >
}
where
module C₁ = Category C₁
module C₂ = Category C₂
module C₃ = Category C₃
assocʳ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} → (C₁ : Category o₁ ℓ₁ e₁) (C₂ : Category o₂ ℓ₂ e₂) (C₃ : Category o₃ ℓ₃ e₃) → Functor (Product C₁ (Product C₂ C₃)) (Product (Product C₁ C₂) C₃)
assocʳ C₁ C₂ C₃ = record
{ F₀ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ >
; F₁ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ >
; identity = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl
; homomorphism = (C₁.Equiv.refl , C₂.Equiv.refl) , C₃.Equiv.refl
; F-resp-≡ = < < proj₁ , proj₁ ∙ proj₂ > , proj₂ ∙ proj₂ >
}
where
module C₁ = Category C₁
module C₂ = Category C₂
module C₃ = Category C₃
πˡ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product C D) C
πˡ {C = C} = record { F₀ = proj₁; F₁ = proj₁; identity = refl
; homomorphism = refl; F-resp-≡ = proj₁ }
where open Category.Equiv C using (refl)
πʳ : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product C D) D
πʳ {D = D} = record { F₀ = proj₂; F₁ = proj₂; identity = refl
; homomorphism = refl; F-resp-≡ = proj₂ }
where open Category.Equiv D using (refl)
Swap : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → Functor (Product D C) (Product C D)
Swap {C = C} {D = D} = (record
{ F₀ = swap
; F₁ = swap
; identity = C.Equiv.refl , D.Equiv.refl
; homomorphism = C.Equiv.refl , D.Equiv.refl
; F-resp-≡ = swap
})
where
module C = Category C
module D = Category D
|
{
"alphanum_fraction": 0.5504042237,
"avg_line_length": 45.5714285714,
"ext": "agda",
"hexsha": "65d6c1b3b336078d3520f67522355e729c93739b",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Product.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Product.agda",
"max_line_length": 326,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2676,
"size": 6061
}
|
open import Nat
open import Prelude
open import List
open import core
open import judgemental-erase
open import sensibility
open import moveerase
module checks where
-- these three judmgements lift the action semantics judgements to relate
-- an expression and a list of pair-wise composable actions to the
-- expression that's produced by tracing through the action semantics for
-- each element in that list.
--
-- we do this just by appealing to the original judgement with
-- constraints on the terms to enforce composability.
--
-- in all three cases, we assert that the empty list of actions
-- constitutes a reflexivity step, so when you run out of actions to
-- preform you have to be where you wanted to be.
--
-- note that the only difference between the types for each judgement and
-- the original action semantics is that the action is now a list of
-- actions.
data runtype : (t : τ̂) (Lα : List action) (t' : τ̂) → Set where
DoRefl : {t : τ̂} → runtype t [] t
DoType : {t : τ̂} {α : action} {t' t'' : τ̂}
{L : List action} →
t + α +> t' →
runtype t' L t'' →
runtype t (α :: L) t''
data runsynth :
(Γ : ·ctx) (e : ê) (t1 : τ̇) (Lα : List action) (e' : ê) (t2 : τ̇) → Set where
DoRefl : {Γ : ·ctx} {e : ê} {t : τ̇} → runsynth Γ e t [] e t
DoSynth : {Γ : ·ctx} {e : ê} {t : τ̇} {α : action} {e' e'' : ê} {t' t'' : τ̇}
{L : List action} →
Γ ⊢ e => t ~ α ~> e' => t' →
runsynth Γ e' t' L e'' t'' →
runsynth Γ e t (α :: L) e'' t''
data runana : (Γ : ·ctx) (e : ê) (Lα : List action) (e' : ê) (t : τ̇) → Set where
DoRefl : {Γ : ·ctx} {e : ê} {t : τ̇} → runana Γ e [] e t
DoAna : {Γ : ·ctx} {e : ê} {α : action} {e' e'' : ê} {t : τ̇}
{L : List action} →
Γ ⊢ e ~ α ~> e' ⇐ t →
runana Γ e' L e'' t →
runana Γ e (α :: L) e'' t
-- all three run judgements lift to the list monoid as expected. these
-- theorems are simple because the structure of lists is simple, but they
-- amount a reasoning principle about the composition of action sequences
-- by letting you split lists in (nearly) arbitrary places and argue
-- about the consequences of the splits before composing them together.
runtype++ : ∀{t t' t'' L1 L2 }
→ runtype t L1 t'
→ runtype t' L2 t''
→ runtype t (L1 ++ L2) t''
runtype++ DoRefl d2 = d2
runtype++ (DoType x d1) d2 = DoType x (runtype++ d1 d2)
runsynth++ : ∀{Γ e t L1 e' t' L2 e'' t''}
→ runsynth Γ e t L1 e' t'
→ runsynth Γ e' t' L2 e'' t''
→ runsynth Γ e t (L1 ++ L2) e'' t''
runsynth++ DoRefl d2 = d2
runsynth++ (DoSynth x d1) d2 = DoSynth x (runsynth++ d1 d2)
runana++ : ∀{Γ e t L1 e' L2 e''}
→ runana Γ e L1 e' t
→ runana Γ e' L2 e'' t
→ runana Γ e (L1 ++ L2) e'' t
runana++ DoRefl d2 = d2
runana++ (DoAna x d1) d2 = DoAna x (runana++ d1 d2)
-- the following collection of lemmas asserts that the various runs
-- interoperate nicely. in many cases, these amount to observing
-- something like congruence: if a subterm is related to something by one
-- of the judgements, it can be replaced by the thing to which it is
-- related in a larger context without disrupting that larger
-- context.
--
-- taken together, this is a little messier than a proper congruence,
-- because the action semantics demand well-typedness at each step, and
-- therefore there are enough premises to each lemma to supply to the
-- action semantics rules.
--
-- therefore, these amount to a checksum on the zipper actions under the
-- lifing of the action semantics to the list monoid.
--
-- they only check the zipper actions they happen to be include, however,
-- which is driven by the particular lists we use in the proofs of
-- contructability and reachability, which may or may not be all of
-- them. additionally, the lemmas given here are what is needed for these
-- proofs, not anything that's more general.
-- type zippers
ziplem-tmarr1 : ∀ {t1 t1' t2 L } →
runtype t1' L t1 →
runtype (t1' ==>₁ t2) L (t1 ==>₁ t2)
ziplem-tmarr1 DoRefl = DoRefl
ziplem-tmarr1 (DoType x L') = DoType (TMArrZip1 x) (ziplem-tmarr1 L')
ziplem-tmarr2 : ∀ {t1 t2 t2' L } →
runtype t2' L t2 →
runtype (t1 ==>₂ t2') L (t1 ==>₂ t2)
ziplem-tmarr2 DoRefl = DoRefl
ziplem-tmarr2 (DoType x L') = DoType (TMArrZip2 x) (ziplem-tmarr2 L')
-- expression zippers
ziplem-asc1 : ∀{Γ t L e e'} →
runana Γ e L e' t →
runsynth Γ (e ·:₁ t) t L (e' ·:₁ t) t
ziplem-asc1 DoRefl = DoRefl
ziplem-asc1 (DoAna a r) = DoSynth (SAZipAsc1 a) (ziplem-asc1 r)
ziplem-asc2 : ∀{Γ t L t' t◆ t'◆} →
erase-t t t◆ →
erase-t t' t'◆ →
runtype t L t' →
runsynth Γ (⦇-⦈ ·:₂ t) t◆ L (⦇-⦈ ·:₂ t') t'◆
ziplem-asc2 {Γ} er er' rt with erase-t◆ er | erase-t◆ er'
... | refl | refl = ziplem-asc2' {Γ = Γ} rt
where
ziplem-asc2' : ∀{t L t' Γ } →
runtype t L t' →
runsynth Γ (⦇-⦈ ·:₂ t) (t ◆t) L (⦇-⦈ ·:₂ t') (t' ◆t)
ziplem-asc2' DoRefl = DoRefl
ziplem-asc2' (DoType x rt) = DoSynth
(SAZipAsc2 x (◆erase-t _ _ refl) (◆erase-t _ _ refl)
(ASubsume SEHole TCHole1)) (ziplem-asc2' rt)
ziplem-lam : ∀ {Γ x e t t1 t2 L e'} →
x # Γ →
t ▸arr (t1 ==> t2) →
runana (Γ ,, (x , t1)) e L e' t2 →
runana Γ (·λ x e) L (·λ x e') t
ziplem-lam a m DoRefl = DoRefl
ziplem-lam a m (DoAna x₁ d) = DoAna (AAZipLam a m x₁) (ziplem-lam a m d)
ziplem-plus1 : ∀{ Γ e L e' f} →
runana Γ e L e' num →
runsynth Γ (e ·+₁ f) num L (e' ·+₁ f) num
ziplem-plus1 DoRefl = DoRefl
ziplem-plus1 (DoAna x d) = DoSynth (SAZipPlus1 x) (ziplem-plus1 d)
ziplem-plus2 : ∀{ Γ e L e' f} →
runana Γ e L e' num →
runsynth Γ (f ·+₂ e) num L (f ·+₂ e') num
ziplem-plus2 DoRefl = DoRefl
ziplem-plus2 (DoAna x d) = DoSynth (SAZipPlus2 x) (ziplem-plus2 d)
ziplem-ap2 : ∀{ Γ e L e' t t' f tf} →
Γ ⊢ f => t' →
t' ▸arr (t ==> tf) →
runana Γ e L e' t →
runsynth Γ (f ∘₂ e) tf L (f ∘₂ e') tf
ziplem-ap2 wt m DoRefl = DoRefl
ziplem-ap2 wt m (DoAna x d) = DoSynth (SAZipApAna m wt x) (ziplem-ap2 wt m d)
ziplem-nehole-a : ∀{Γ e e' L t t'} →
(Γ ⊢ e ◆e => t) →
runsynth Γ e t L e' t' →
runsynth Γ ⦇⌜ e ⌟⦈ ⦇-⦈ L ⦇⌜ e' ⌟⦈ ⦇-⦈
ziplem-nehole-a wt DoRefl = DoRefl
ziplem-nehole-a wt (DoSynth {e = e} x d) =
DoSynth (SAZipHole (rel◆ e) wt x) (ziplem-nehole-a (actsense-synth (rel◆ e) (rel◆ _) x wt) d)
ziplem-nehole-b : ∀{Γ e e' L t t' t''} →
(Γ ⊢ e ◆e => t) →
(t'' ~ t') →
runsynth Γ e t L e' t' →
runana Γ ⦇⌜ e ⌟⦈ L ⦇⌜ e' ⌟⦈ t''
ziplem-nehole-b wt c DoRefl = DoRefl
ziplem-nehole-b wt c (DoSynth x rs) =
DoAna (AASubsume (erase-in-hole (rel◆ _)) (SNEHole wt) (SAZipHole (rel◆ _) wt x) TCHole1)
(ziplem-nehole-b (actsense-synth (rel◆ _) (rel◆ _) x wt) c rs)
-- because the point of the reachability theorems is to show that we
-- didn't forget to define any of the action semantic cases, it's
-- important that theorems include the fact that the witness only uses
-- move -- otherwise, you could cheat by just prepending [ del ] to the
-- list produced by constructability. constructability does also use
-- some, but not all, of the possible movements, so this would no longer
-- demonstrate the property we really want. to that end, we define a
-- predicate on lists that they contain only (move _) and that the
-- various things above that produce the lists we use have this property.
-- predicate
data movements : List action → Set where
AM:: : {L : List action} {δ : direction}
→ movements L
→ movements ((move δ) :: L)
AM[] : movements []
-- movements breaks over the list monoid, as expected
movements++ : {l1 l2 : List action} →
movements l1 → movements l2 → movements (l1 ++ l2)
movements++ (AM:: m1) m2 = AM:: (movements++ m1 m2)
movements++ AM[] m2 = m2
-- these are zipper lemmas that are specific to list of movement
-- actions. they are not true for general actions, but because
-- reachability is restricted to movements, we get some milage out of
-- them anyway.
endpoints : ∀{ Γ e t L e' t'} →
Γ ⊢ (e ◆e) => t →
runsynth Γ e t L e' t' →
movements L →
t == t'
endpoints _ DoRefl AM[] = refl
endpoints wt (DoSynth x rs) (AM:: mv)
with endpoints (actsense-synth (rel◆ _) (rel◆ _) x wt) rs mv
... | refl = π2 (moveerase-synth (rel◆ _) wt x)
ziplem-moves-asc2 : ∀{ Γ l t t' e t◆ } →
movements l →
erase-t t t◆ →
Γ ⊢ e <= t◆ →
runtype t l t' →
runsynth Γ (e ·:₂ t) t◆ l (e ·:₂ t') t◆
ziplem-moves-asc2 _ _ _ DoRefl = DoRefl
ziplem-moves-asc2 (AM:: m) er wt (DoType x rt) with moveeraset' er x
... | er' = DoSynth (SAZipAsc2 x er' er wt) (ziplem-moves-asc2 m er' wt rt)
synthana-moves : ∀{t t' l e e' Γ} →
Γ ⊢ e ◆e => t' →
movements l →
t ~ t' →
runsynth Γ e t' l e' t' →
runana Γ e l e' t
synthana-moves _ _ _ DoRefl = DoRefl
synthana-moves wt (AM:: m) c (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt x)
... | refl = DoAna (AASubsume (rel◆ _) wt x c)
(synthana-moves (actsense-synth (rel◆ _) (rel◆ _) x wt) m c rs)
ziplem-moves-ap1 : ∀{Γ l e1 e1' e2 t t' tx} →
Γ ⊢ e1 ◆e => t →
t ▸arr (tx ==> t') →
Γ ⊢ e2 <= tx →
movements l →
runsynth Γ e1 t l e1' t →
runsynth Γ (e1 ∘₁ e2) t' l (e1' ∘₁ e2) t'
ziplem-moves-ap1 _ _ _ _ DoRefl = DoRefl
ziplem-moves-ap1 wt1 mch wt2 (AM:: m) (DoSynth x rs) with π2 (moveerase-synth (rel◆ _) wt1 x)
... | refl = DoSynth (SAZipApArr mch (rel◆ _) wt1 x wt2)
(ziplem-moves-ap1 (actsense-synth (rel◆ _) (rel◆ _) x wt1)
mch wt2 m rs)
|
{
"alphanum_fraction": 0.5325915624,
"avg_line_length": 42.7976190476,
"ext": "agda",
"hexsha": "9f671da7c1ce7fc505c903116ebd33f6de23960d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "checks.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "checks.agda",
"max_line_length": 110,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "checks.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 3770,
"size": 10785
}
|
{-# OPTIONS --no-import-sorts #-}
open import Agda.Primitive renaming (Set to _X_X_)
test : _X_X₁_
test = _X_X_
|
{
"alphanum_fraction": 0.701754386,
"avg_line_length": 16.2857142857,
"ext": "agda",
"hexsha": "969f4e6626d3c936cc4caff5c78f1d0a4a2a9514",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/RenameSetToMixfix.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/RenameSetToMixfix.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/RenameSetToMixfix.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 36,
"size": 114
}
|
{-# OPTIONS --without-K #-}
open import Agda.Primitive using (Level; lsuc)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (proj₁; proj₂; Σ-syntax; _,_)
open import Function.Base using (_∘_)
variable
ℓ ℓ′ : Level
A C : Set ℓ
B : A → Set ℓ
{- Sizes
Defining sizes as a generalized form of Brouwer ordinals,
with an order (see https://arxiv.org/abs/2104.02549)
-}
infix 30 ↑_
infix 30 ⊔_
data Size {ℓ} : Set (lsuc ℓ) where
↑_ : Size {ℓ} → Size
⊔_ : {A : Set ℓ} → (A → Size {ℓ}) → Size
data _≤_ {ℓ} : Size {ℓ} → Size {ℓ} → Set (lsuc ℓ) where
↑s≤↑s : ∀ {r s} → r ≤ s → ↑ r ≤ ↑ s
s≤⊔f : ∀ {s} f (a : A) → s ≤ f a → s ≤ ⊔ f
⊔f≤s : ∀ {s} f → (∀ (a : A) → f a ≤ s) → ⊔ f ≤ s
-- A possible definition of the smallest size
◯ : Size
◯ = ⊔ ⊥-elim
◯≤s : ∀ {s} → ◯ ≤ s
◯≤s = ⊔f≤s ⊥-elim λ ()
-- Reflexivity of ≤
s≤s : ∀ {s : Size {ℓ}} → s ≤ s
s≤s {s = ↑ s} = ↑s≤↑s s≤s
s≤s {s = ⊔ f} = ⊔f≤s f (λ a → s≤⊔f f a s≤s)
-- Transitivity of ≤
s≤s≤s : ∀ {r s t : Size {ℓ}} → r ≤ s → s ≤ t → r ≤ t
s≤s≤s (↑s≤↑s r≤s) (↑s≤↑s s≤t) = ↑s≤↑s (s≤s≤s r≤s s≤t)
s≤s≤s r≤s (s≤⊔f f a s≤fa) = s≤⊔f f a (s≤s≤s r≤s s≤fa)
s≤s≤s (⊔f≤s f fa≤s) s≤t = ⊔f≤s f (λ a → s≤s≤s (fa≤s a) s≤t)
s≤s≤s (s≤⊔f f a s≤fa) (⊔f≤s f fa≤t) = s≤s≤s s≤fa (fa≤t a)
-- Successor behaves as expected wrt ≤
s≤↑s : ∀ {s : Size {ℓ}} → s ≤ ↑ s
s≤↑s {s = ↑ s} = ↑s≤↑s s≤↑s
s≤↑s {s = ⊔ f} = ⊔f≤s f (λ a → s≤s≤s s≤↑s (↑s≤↑s (s≤⊔f f a s≤s)))
-- Strict order
_<_ : Size {ℓ} → Size {ℓ} → Set (lsuc ℓ)
r < s = ↑ r ≤ s
{- Well-founded induction for Sizes via an
accessibility predicate based on strict order
-}
record Acc (s : Size {ℓ}) : Set (lsuc ℓ) where
inductive
pattern
constructor acc
field acc< : (∀ r → r < s → Acc r)
open Acc
-- The accessibility predicate is a mere proposition
accIsProp : ∀ {s : Size {ℓ}} → (acc1 acc2 : Acc s) → acc1 ≡ acc2
accIsProp (acc p) (acc q) =
cong acc (funext p q (λ r → funext (p r) (q r) (λ r<s → accIsProp (p r r<s) (q r r<s))))
where postulate funext : ∀ (p q : ∀ x → B x) → (∀ x → p x ≡ q x) → p ≡ q
-- A size smaller or equal to an accessible size is still accessible
acc≤ : ∀ {r s : Size {ℓ}} → r ≤ s → Acc s → Acc r
acc≤ r≤s (acc p) = acc (λ t t<r → p t (s≤s≤s t<r r≤s))
-- All sizes are accessible
wf : ∀ (s : Size {ℓ}) → Acc s
wf (↑ s) = acc (λ { _ (↑s≤↑s r≤s) → acc≤ r≤s (wf s) })
wf (⊔ f) = acc (λ { r (s≤⊔f f a r<fa) → (wf (f a)).acc< r r<fa })
-- Well-founded induction:
-- If P holds on every smaller size, then P holds on this size
-- Recursion occurs structurally on the accessbility of sizes
wfInd : ∀ (P : Size {ℓ} → Set ℓ′) → (∀ s → (∀ r → r < s → P r) → P s) → ∀ s → P s
wfInd P f s = wfAcc s (wf s)
where
wfAcc : ∀ s → Acc s → P s
wfAcc s (acc p) = f s (λ r r<s → wfAcc r (p r r<s))
{- W types
W∞ is the full or "infinite" form, where there are no sizes;
W is the bounded-sized form, parameterized by some Size,
where constructors take a proof of smaller-sizedness
-}
data W∞ (A : Set ℓ) (B : A → Set ℓ) : Set ℓ where
sup∞ : ∀ a → (B a → W∞ A B) → W∞ A B
data W (A : Set ℓ) (B : A → Set ℓ) (s : Size {ℓ}) : Set (lsuc ℓ) where
sup : ∀ r → r < s → (a : A) → (B a → W A B r) → W A B s
-- Eliminator for the W type based on wellfoundedness of sizes
elimW : (P : ∀ s → W A B s → Set ℓ′) →
(p : ∀ s → (∀ r → r < s → (w : W A B r) → P r w) → (w : W A B s) → P s w) →
∀ s → (w : W A B s) → P s w
elimW P = wfInd (λ s → (w : W _ _ s) → P s w)
-- A full W∞ to a size-paired bounded-sized W form
findW : W∞ {ℓ} A B → Σ[ s ∈ Size ] W A B s
findW (sup∞ a f) =
let s = ⊔ (proj₁ ∘ findW ∘ f)
in ↑ s , sup s s≤s a ⊔f
where
⊔f : _
⊔f b with proj₂ (findW (f b))
... | sup r r<s a g = sup r (s≤s≤s r<s (s≤⊔f (proj₁ ∘ findW ∘ f) b s≤s)) a g
-- The axiom of choice specialized to sized W types, "choosing" a size
ac : ∀ a → (B a → Σ[ s ∈ Size ] W A B s) → Σ[ s ∈ Size ] (B a → W A B s)
ac a f = ⊔ (proj₁ ∘ f) , f′
where
f′ : _
f′ b with proj₂ (f b)
... | sup r r<s a f = sup r (s≤s≤s r<s (s≤⊔f _ b s≤s)) a f
-- Constructing a bounded-sized W out of the necessary pieces
mkW : ∀ a → (B a → Σ[ s ∈ Size ] W A B s) → Σ[ s ∈ Size ] W A B s
mkW a f =
let sf = ac a f
in sup (proj₁ sf) ? a (proj₂ f)
|
{
"alphanum_fraction": 0.5256109023,
"avg_line_length": 31.5259259259,
"ext": "agda",
"hexsha": "babfedcba36b4cc9539d108b167d1a3f17458fda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "ionathanch/msc-thesis",
"max_forks_repo_path": "code/SizeOrd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "ionathanch/msc-thesis",
"max_issues_repo_path": "code/SizeOrd.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "ionathanch/msc-thesis",
"max_stars_repo_path": "code/SizeOrd.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2043,
"size": 4256
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Homotopy.Loopspace where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.GroupoidLaws
{- loop space of a pointed type -}
Ω : {ℓ : Level} → Pointed ℓ → Pointed ℓ
Ω (_ , a) = ((a ≡ a) , refl)
{- n-fold loop space of a pointed type -}
Ω^_ : ∀ {ℓ} → ℕ → Pointed ℓ → Pointed ℓ
(Ω^ 0) p = p
(Ω^ (suc n)) p = Ω ((Ω^ n) p)
{- loop space map -}
Ω→ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → (Ω A →∙ Ω B)
Ω→ (f , f∙) = (λ p → (sym f∙ ∙ cong f p) ∙ f∙) , cong (λ q → q ∙ f∙) (sym (rUnit (sym f∙))) ∙ lCancel f∙
|
{
"alphanum_fraction": 0.6025641026,
"avg_line_length": 28.08,
"ext": "agda",
"hexsha": "1ede1968ee02968ea84858b0162f60ef74fe6757",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Loopspace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Loopspace.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Loopspace.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 303,
"size": 702
}
|
module Sets.ImageSet.Oper where
open import Data
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Sets.ImageSet
open import Structure.Function
open import Structure.Setoid renaming (_≡_ to _≡ₛ_)
open import Type
open import Type.Dependent
private variable ℓ ℓₑ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓᵢₑ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level
private variable T X Y Z : Type{ℓ}
module _ where
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.Either as Either using (_‖_)
open import Function.Domains
∅ : ImageSet{ℓᵢ}(T)
∅ = intro empty
𝐔 : ImageSet{Lvl.of(T)}(T)
𝐔 = intro id
singleton : T → ImageSet{ℓᵢ}(T)
singleton(x) = intro{Index = Unit} \{<> → x}
pair : T → T → ImageSet{ℓᵢ}(T)
pair x y = intro{Index = Lvl.Up(Bool)} \{(Lvl.up 𝐹) → x ; (Lvl.up 𝑇) → y}
_∪_ : ImageSet{ℓᵢ₁}(T) → ImageSet{ℓᵢ₂}(T) → ImageSet{ℓᵢ₁ Lvl.⊔ ℓᵢ₂}(T)
A ∪ B = intro{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B)))
⋃ : ImageSet{ℓᵢ}(ImageSet{ℓᵢ}(T)) → ImageSet{ℓᵢ}(T)
⋃ A = intro{Index = Σ(Index(A)) (Index ∘ elem(A))} \{(intro ia i) → elem(elem(A)(ia))(i)}
indexFilter : (A : ImageSet{ℓᵢ}(T)) → (Index(A) → Stmt{ℓ}) → ImageSet{ℓᵢ Lvl.⊔ ℓ}(T)
indexFilter A P = intro {Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left)
filter : (T → Stmt{ℓ}) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ Lvl.⊔ ℓ}(T)
filter P(A) = indexFilter A (P ∘ elem(A))
indexFilterBool : (A : ImageSet{ℓᵢ}(T)) → (Index(A) → Bool) → ImageSet{ℓᵢ}(T)
indexFilterBool A f = indexFilter A (IsTrue ∘ f)
filterBool : (T → Bool) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T)
filterBool f(A) = indexFilterBool A (f ∘ elem(A))
map : (X → Y) → (ImageSet{ℓᵢ}(X) → ImageSet{ℓᵢ}(Y))
map f(A) = intro{Index = Index(A)} (f ∘ elem(A))
unapply : (X → Y) → ⦃ _ : Equiv{ℓₑ}(Y)⦄ → (Y → ImageSet{Lvl.of(X) Lvl.⊔ ℓₑ}(X))
unapply f(y) = intro{Index = ∃(x ↦ f(x) ≡ₛ y)} [∃]-witness
-- unmap : (X → Y) → ⦃ _ : Equiv{ℓₑ}(Y)⦄ → (ImageSet{{!Lvl.of(T) Lvl.⊔ ℓₑ!}}(Y) → ImageSet{Lvl.of(T) Lvl.⊔ ℓₑ}(X))
-- unmap f(B) = intro{Index = ∃(x ↦ f(x) ∈ B)} [∃]-witness
℘ : ImageSet{ℓᵢ}(T) → ImageSet{Lvl.𝐒(ℓᵢ)}(ImageSet{ℓᵢ}(T))
℘(A) = intro{Index = Index(A) → Stmt} (indexFilter A)
_∩_ : ⦃ _ : Equiv{ℓᵢ}(T) ⦄ → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T) → ImageSet{ℓᵢ}(T)
A ∩ B = indexFilter(A) (iA ↦ elem(A) iA ∈ B)
⋂ : ⦃ _ : Equiv{ℓᵢ}(T) ⦄ → ImageSet{Lvl.of(T)}(ImageSet{Lvl.of(T)}(T)) → ImageSet{ℓᵢ Lvl.⊔ Lvl.of(T)}(T)
-- ⋂ As = intro{Index = Σ((iAs : Index(As)) → Index(elem(As) iAs)) (f ↦ (∀{iAs₁ iAs₂} → (elem(elem(As) iAs₁)(f iAs₁) ≡ₛ elem(elem(As) iAs₂)(f iAs₂))))} {!!} (TODO: I think this definition only works with excluded middle because one must determine if an A from AS is empty or not and if it is not, then one can apply its index to the function in the Σ)
⋂ As = indexFilter(⋃ As) (iUAs ↦ ∃{Obj = (iAs : Index(As)) → Index(elem(As) iAs)}(f ↦ ∀{iAs} → (elem(⋃ As) iUAs ≡ₛ elem(elem(As) iAs) (f iAs))))
-- ⋂ As = indexFilter(⋃ As) (iUAs ↦ ∀{iAs} → (elem(⋃ As) iUAs ∈ elem(As) iAs))
{-
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
open import Data.Boolean
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
import Structure.Container.SetLike as Sets
open import Structure.Function.Domain
open import Structure.Operator.Properties
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
private variable A B C : ImageSet{ℓₑ}(T)
private variable x y a b : T
[∈]-of-elem : ∀{ia : Index(A)} → (elem(A)(ia) ∈ A)
∃.witness ([∈]-of-elem {ia = ia}) = ia
∃.proof [∈]-of-elem = reflexivity(_≡ₛ_)
instance
∅-membership : Sets.EmptySet(_∈_ {T = T}{ℓ})
Sets.EmptySet.∅ ∅-membership = ∅
Sets.EmptySet.membership ∅-membership ()
instance
𝐔-membership : Sets.UniversalSet(_∈_ {T = T})
Sets.UniversalSet.𝐔 𝐔-membership = 𝐔
Sets.UniversalSet.membership 𝐔-membership {x = x} = [∃]-intro x ⦃ reflexivity(_≡ₛ_) ⦄
instance
singleton-membership : Sets.SingletonSet(_∈_ {T = T}{ℓ})
Sets.SingletonSet.singleton singleton-membership = singleton
Sets.SingletonSet.membership singleton-membership = proof where
proof : (x ∈ singleton{ℓᵢ = ℓᵢ}(a)) ↔ (x ≡ₛ a)
Tuple.left proof xin = [∃]-intro <> ⦃ xin ⦄
Tuple.right proof ([∃]-intro i ⦃ eq ⦄ ) = eq
instance
pair-membership : Sets.PairSet(_∈_ {T = T}{ℓ})
Sets.PairSet.pair pair-membership = pair
Sets.PairSet.membership pair-membership = proof where
proof : (x ∈ pair a b) ↔ (x ≡ₛ a)∨(x ≡ₛ b)
Tuple.left proof ([∨]-introₗ p) = [∃]-intro (Lvl.up 𝐹) ⦃ p ⦄
Tuple.left proof ([∨]-introᵣ p) = [∃]-intro (Lvl.up 𝑇) ⦃ p ⦄
Tuple.right proof ([∃]-intro (Lvl.up 𝐹) ⦃ eq ⦄) = [∨]-introₗ eq
Tuple.right proof ([∃]-intro (Lvl.up 𝑇) ⦃ eq ⦄) = [∨]-introᵣ eq
instance
[∪]-membership : Sets.UnionOperator(_∈_ {T = T})
Sets.UnionOperator._∪_ [∪]-membership = _∪_
Sets.UnionOperator.membership [∪]-membership = proof where
proof : (x ∈ (A ∪ B)) ↔ (x ∈ A)∨(x ∈ B)
Tuple.left proof ([∨]-introₗ ([∃]-intro ia)) = [∃]-intro (Either.Left ia)
Tuple.left proof ([∨]-introᵣ ([∃]-intro ib)) = [∃]-intro (Either.Right ib)
Tuple.right proof ([∃]-intro ([∨]-introₗ ia)) = [∨]-introₗ ([∃]-intro ia)
Tuple.right proof ([∃]-intro ([∨]-introᵣ ib)) = [∨]-introᵣ ([∃]-intro ib)
instance
[∩]-membership : Sets.IntersectionOperator(_∈_ {T = T})
Sets.IntersectionOperator._∩_ [∩]-membership = _∩_
Sets.IntersectionOperator.membership [∩]-membership = proof where
proof : (x ∈ (A ∩ B)) ↔ (x ∈ A)∧(x ∈ B)
_⨯_.left proof ([↔]-intro ([∃]-intro iA ⦃ pA ⦄) ([∃]-intro iB ⦃ pB ⦄)) = [∃]-intro (intro iA ([∃]-intro iB ⦃ symmetry(_≡ₛ_) pA 🝖 pB ⦄))
_⨯_.right proof ([∃]-intro (intro iA ([∃]-intro iB ⦃ pAB ⦄)) ⦃ pxAB ⦄) = [∧]-intro ([∃]-intro iA) ([∃]-intro iB ⦃ pxAB 🝖 pAB ⦄)
instance
map-membership : Sets.MapFunction(_∈_ {T = T})(_∈_ {T = T})
Sets.MapFunction.map map-membership f = map f
Sets.MapFunction.membership map-membership {f = f} ⦃ function ⦄ = proof where
proof : (y ∈ map f(A)) ↔ ∃(x ↦ (x ∈ A) ∧ (f(x) ≡ₛ y))
∃.witness (Tuple.left (proof) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) = [∃]-witness xA
∃.proof (Tuple.left (proof {y = y} {A = A}) ([∃]-intro x ⦃ [∧]-intro xA fxy ⦄)) =
y 🝖[ _≡ₛ_ ]-[ fxy ]-sym
f(x) 🝖[ _≡ₛ_ ]-[ congruence₁(f) ⦃ function ⦄ ([∃]-proof xA) ]
f(elem(A) ([∃]-witness xA)) 🝖[ _≡ₛ_ ]-[]
elem (map f(A)) ([∃]-witness xA) 🝖[ _≡ₛ_ ]-end
∃.witness (Tuple.right (proof {A = A}) ([∃]-intro iA)) = elem(A) iA
∃.proof (Tuple.right proof ([∃]-intro iA ⦃ p ⦄)) = [∧]-intro ([∈]-of-elem {ia = iA}) (symmetry(_≡ₛ_) p)
indexFilter-membership : ∀{P : Index(A) → Stmt{ℓ}} → (x ∈ indexFilter A P) ↔ ∃(i ↦ (x ≡ₛ elem(A) i) ∧ P(i))
_⨯_.left indexFilter-membership ([∃]-intro iA ⦃ [∧]-intro xe p ⦄) = [∃]-intro (intro iA p) ⦃ xe ⦄
_⨯_.right indexFilter-membership ([∃]-intro (intro iA p) ⦃ xe ⦄) = [∃]-intro iA ⦃ [∧]-intro xe p ⦄
indexFilter-subset : ∀{P : Index(A) → Stmt{ℓₑ}} → (indexFilter{ℓₑ} A P ⊆ A)
indexFilter-subset = [∃]-map-proof [∧]-elimₗ ∘ [↔]-to-[→] indexFilter-membership
indexFilter-elem-membershipₗ : ∀{P : Index(A) → Stmt{ℓ}}{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) ← P(i)
indexFilter-elem-membershipₗ {i = i} pi = [∃]-intro (intro i pi) ⦃ reflexivity _ ⦄
indexFilter-elem-membershipᵣ : ⦃ _ : Equiv{ℓₑ}(Index(A)) ⦄ ⦃ _ : Injective(elem A) ⦄ → ∀{P : Index(A) → Stmt{ℓ}} ⦃ _ : UnaryRelator(P) ⦄{i : Index(A)} → (elem(A)(i) ∈ indexFilter A P) → P(i)
indexFilter-elem-membershipᵣ {A = A}{P = P} {i = i} ([∃]-intro (intro iA PiA) ⦃ p ⦄) = substitute₁ₗ(P) (injective(elem A) p) PiA
instance
filter-membership : Sets.FilterFunction(_∈_ {T = T})
Sets.FilterFunction.filter filter-membership f = filter{ℓ = ℓₑ} f
Sets.FilterFunction.membership filter-membership {P = P} = proof where
proof : (x ∈ filter P(A)) ↔ ((x ∈ A) ∧ P(x))
Tuple.left proof ([∧]-intro ([∃]-intro i ⦃ p ⦄) pb) = [∃]-intro (intro i (substitute₁(P) p pb)) ⦃ p ⦄
Tuple.left (Tuple.right proof ([∃]-intro (intro iA PiA))) = [∃]-intro iA
Tuple.right (Tuple.right proof ([∃]-intro (intro iA PiA) ⦃ pp ⦄)) = substitute₁ₗ(P) pp PiA
filter-subset : ∀{P : T → Stmt{ℓₑ}} → (filter P(A) ⊆ A)
filter-subset ([∃]-intro (intro i p) ⦃ xf ⦄) = [∃]-intro i ⦃ xf ⦄
instance
postulate [∩]-commutativity : Commutativity(_∩_ {T = T})
-- TODO: These should come from Structure.Container.SetLike, which in turn should come from Structure.Operator.Lattice, which in turn should come from Structure.Relator.Ordering.Lattice
postulate [∩]-subset-of-right : (A ⊆ B) → (A ∩ B ≡ₛ B)
postulate [∩]-subset-of-left : (B ⊆ A) → (A ∩ B ≡ₛ A)
postulate [∩]-subsetₗ : (A ∩ B) ⊆ A
[∩]-subsetᵣ : (A ∩ B) ⊆ B
[∩]-subsetᵣ {A} {B} {x} xAB = indexFilter-subset ([↔]-to-[→] (commutativity(_∩_) ⦃ [∩]-commutativity ⦄ {A} {B} {x}) xAB)
instance
℘-membership : Sets.PowerFunction(_∈_)(_∈_)
Sets.PowerFunction.℘ ℘-membership = ℘
Sets.PowerFunction.membership ℘-membership = [↔]-intro l r where
l : (B ∈ ℘(A)) ← (B ⊆ A)
∃.witness (l {B} {A} BA) iA = elem(A) iA ∈ B
_⨯_.left (∃.proof (l {B}{A} BA) {x}) a = apply a $
A ∩ B 🝖[ _⊆_ ]-[ [∩]-subsetᵣ ]
B 🝖[ _⊆_ ]-end
_⨯_.right (∃.proof (l {B}{A} BA) {x}) b = apply b $
B 🝖[ _⊆_ ]-[ BA ]
A 🝖[ _⊆_ ]-[ sub₂(_≡_)(_⊇_) ([∩]-subset-of-left BA) ]
A ∩ B 🝖[ _⊆_ ]-end
r : (B ∈ ℘(A)) → (B ⊆ A)
r ([∃]-intro _ ⦃ BA ⦄) xB with [↔]-to-[→] BA xB
... | [∃]-intro (intro iA _) ⦃ xe ⦄ = [∃]-intro iA ⦃ xe ⦄
-}
|
{
"alphanum_fraction": 0.567044764,
"avg_line_length": 47.932038835,
"ext": "agda",
"hexsha": "daaa406e1383befcf7e9065abcd1b9325b813f59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/ImageSet/Oper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/ImageSet/Oper.agda",
"max_line_length": 353,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/ImageSet/Oper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4284,
"size": 9874
}
|
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.String using (String)
open import Agda.Builtin.Unit using (⊤)
data D : Set where
c₁ c₂ : D
f : D → Set → String
f c₁ = λ _ → "OK"
f c₂ = λ _ → "OK"
-- The following pragma should refer to the generated Haskell name
-- for f.
{-# FOREIGN GHC {-# NOINLINE d_f_8 #-} #-}
x : String
x = f c₁ ⊤
postulate
putStrLn : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-}
main : IO ⊤
main = putStrLn x
|
{
"alphanum_fraction": 0.6516853933,
"avg_line_length": 19.0714285714,
"ext": "agda",
"hexsha": "32e21bab9816aaef2420eeacf7041dad34fab83e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue5441.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue5441.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue5441.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 164,
"size": 534
}
|
{-# OPTIONS --no-unreachable-check #-}
module Issue424 where
data _≡_ {A : Set₁} (x : A) : A → Set where
refl : x ≡ x
f : Set → Set
f A = A
f A = A
fails : (A : Set) → f A ≡ A
fails A = refl
-- The case tree compiler used to treat f as a definition with an
-- absurd pattern.
|
{
"alphanum_fraction": 0.6007067138,
"avg_line_length": 16.6470588235,
"ext": "agda",
"hexsha": "fe106892d4389a36d96ed3411f2e192e6bd0058b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue424.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue424.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue424.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 283
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Function.Base using (_∋_; _$_)
open import MorePropAlgebra.Bundles
import Cubical.Structures.CommRing as Std
module MorePropAlgebra.Properties.CommRing {ℓ} (assumptions : CommRing {ℓ}) where
open CommRing assumptions renaming (Carrier to R)
import MorePropAlgebra.Properties.Ring
module Ring'Properties = MorePropAlgebra.Properties.Ring (record { CommRing assumptions })
module Ring' = Ring (record { CommRing assumptions })
( Ring') = Ring ∋ (record { CommRing assumptions })
stdIsCommRing : Std.IsCommRing 0r 1r _+_ _·_ (-_)
stdIsCommRing .Std.IsCommRing.isRing = Ring'Properties.stdIsRing
stdIsCommRing .Std.IsCommRing.·-comm = ·-comm
stdCommRing : Std.CommRing {ℓ}
stdCommRing = record { CommRing assumptions ; isCommRing = stdIsCommRing }
--
-- module RingTheory' = Std.Theory stdRing
|
{
"alphanum_fraction": 0.7019607843,
"avg_line_length": 39.2307692308,
"ext": "agda",
"hexsha": "b112c7b14de2f4d57f5fda6f5021bef812330651",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Properties/CommRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Properties/CommRing.agda",
"max_line_length": 92,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Properties/CommRing.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 273,
"size": 1020
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Trie, basic type and operations
------------------------------------------------------------------------
-- See README.Data.Trie.NonDependent for an example of using a trie to
-- build a lexer.
{-# OPTIONS --without-K --safe --sized-types #-}
open import Relation.Binary using (Rel; StrictTotalOrder)
module Data.Trie {k e r} (S : StrictTotalOrder k e r) where
open import Level
open import Size
open import Data.List.Base using (List; []; _∷_; _++_)
import Data.List.NonEmpty as List⁺
open import Data.Maybe.Base as Maybe using (Maybe; just; nothing; maybe′)
open import Data.Product as Prod using (∃)
open import Data.These.Base as These using (These)
open import Function
open import Relation.Unary using (IUniversal; _⇒_)
open StrictTotalOrder S
using (module Eq)
renaming (Carrier to Key)
open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid
open import Data.AVL.Value ≋-setoid using (Value)
------------------------------------------------------------------------
-- Definition
-- Trie is defined in terms of Trie⁺, the type of non-empty trie. This
-- guarantees that the trie is minimal: each path in the tree leads to
-- either a value or a number of non-empty sub-tries.
open import Data.Trie.NonEmpty S as Trie⁺ public
using (Trie⁺; Tries⁺; Word; eat)
Trie : ∀ {v} (V : Value v) → Size → Set (v ⊔ k ⊔ e ⊔ r)
Trie V i = Maybe (Trie⁺ V i)
------------------------------------------------------------------------
-- Operations
-- Functions acting on Trie are wrappers for functions acting on Tries.
-- Sometimes the empty case is handled in a special way (e.g. insertWith
-- calls singleton when faced with an empty Trie).
module _ {v} {V : Value v} where
private Val = Value.family V
------------------------------------------------------------------------
-- Lookup
lookup : ∀ ks → Trie V ∞ → Maybe (These (Val ks) (Tries⁺ (eat V ks) ∞))
lookup ks t = t Maybe.>>= Trie⁺.lookup ks
lookupValue : ∀ ks → Trie V ∞ → Maybe (Val ks)
lookupValue ks t = t Maybe.>>= Trie⁺.lookupValue ks
lookupTries⁺ : ∀ ks → Trie V ∞ → Maybe (Tries⁺ (eat V ks) ∞)
lookupTries⁺ ks t = t Maybe.>>= Trie⁺.lookupTries⁺ ks
lookupTrie : ∀ k → Trie V ∞ → Trie (eat V (k ∷ [])) ∞
lookupTrie k t = t Maybe.>>= Trie⁺.lookupTrie⁺ k
------------------------------------------------------------------------
-- Construction
empty : Trie V ∞
empty = nothing
singleton : ∀ ks → Val ks → Trie V ∞
singleton ks v = just (Trie⁺.singleton ks v)
insertWith : ∀ ks → (Maybe (Val ks) → Val ks) → Trie V ∞ → Trie V ∞
insertWith ks f (just t) = just (Trie⁺.insertWith ks f t)
insertWith ks f nothing = singleton ks (f nothing)
insert : ∀ ks → Val ks → Trie V ∞ → Trie V ∞
insert ks = insertWith ks ∘′ const
fromList : List (∃ Val) → Trie V ∞
fromList = Maybe.map Trie⁺.fromList⁺ ∘′ List⁺.fromList
toList : Trie V ∞ → List (∃ Val)
toList (just t) = List⁺.toList (Trie⁺.toList⁺ t)
toList nothing = []
------------------------------------------------------------------------
-- Modification
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
map : ∀ {i} → ∀[ Val ⇒ Wal ] → Trie V i → Trie W i
map = Maybe.map ∘′ Trie⁺.map V W
-- Deletion
module _ {v} {V : Value v} where
-- Use a function to decide how to modify the sub-Trie⁺ whose root is
-- at the end of path ks.
deleteWith : ∀ {i} (ks : Word) →
(∀ {i} → Trie⁺ (eat V ks) i → Maybe (Trie⁺ (eat V ks) i)) →
Trie V i → Trie V i
deleteWith ks f t = t Maybe.>>= Trie⁺.deleteWith ks f
-- Remove the whole node
deleteTrie⁺ : ∀ {i} (ks : Word) → Trie V i → Trie V i
deleteTrie⁺ ks t = t Maybe.>>= Trie⁺.deleteTrie⁺ ks
-- Remove the value and keep the sub-Tries (if any)
deleteValue : ∀ {i} (ks : Word) → Trie V i → Trie V i
deleteValue ks t = t Maybe.>>= Trie⁺.deleteValue ks
-- Remove the sub-Tries and keep the value (if any)
deleteTries⁺ : ∀ {i} (ks : Word) → Trie V i → Trie V i
deleteTries⁺ ks t = t Maybe.>>= Trie⁺.deleteTries⁺ ks
|
{
"alphanum_fraction": 0.5668835864,
"avg_line_length": 32.1627906977,
"ext": "agda",
"hexsha": "442efc84b5dca21dc6668699faf723d8c2d6abff",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Trie.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Trie.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Trie.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1231,
"size": 4149
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Logical relation for erasure (Def. 3.8 and Lemma 3.9)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
import Parametric.Change.Specification as Specification
import Parametric.Change.Type as ChangeType
import Parametric.Change.Value as ChangeValue
import Parametric.Change.Derive as Derive
module Parametric.Change.Implementation
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
(ΔBase : ChangeType.Structure Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
(⟦apply-base⟧ : ChangeValue.ApplyStructure Const ⟦_⟧Base ΔBase)
(⟦diff-base⟧ : ChangeValue.DiffStructure Const ⟦_⟧Base ΔBase)
(⟦nil-base⟧ : ChangeValue.NilStructure Const ⟦_⟧Base ΔBase)
(derive-const : Derive.Structure Const ΔBase)
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base {{validity-structure}}
open ChangeType.Structure Base ΔBase
open ChangeValue.Structure Const ⟦_⟧Base ΔBase ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧
open Derive.Structure Const ΔBase derive-const
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Postulate.Extensionality
record Structure : Set₁ where
----------------
-- Parameters --
----------------
field
-- Extension point 1: Logical relation on base types.
--
-- In the paper, we assume that the logical relation is equality on base types
-- (see Def. 3.8a). Here, we only require that plugins define what the logical
-- relation is on base types, and provide proofs for the two extension points
-- below.
implements-base : ∀ ι {v : ⟦ ι ⟧Base} → Δ₍ ι ₎ v → ⟦ ΔBase ι ⟧Type → Set
-- Extension point 2: Differences on base types are logically related.
u⊟v≈u⊝v-base : ∀ ι {u v : ⟦ ι ⟧Base} →
implements-base ι (u ⊟₍ ι ₎ v) (⟦diff-base⟧ ι u v)
nil-v≈⟦nil⟧-v-base : ∀ ι {v : ⟦ ι ⟧Base} →
implements-base ι (nil₍ ι ₎ v) (⟦nil-base⟧ ι v)
-- Extension point 3: Lemma 3.1 for base types.
carry-over-base : ∀ {ι}
{v : ⟦ ι ⟧Base}
(Δv : Δ₍ ι ₎ v)
{Δv′ : ⟦ ΔBase ι ⟧Type} (Δv≈Δv′ : implements-base ι Δv Δv′) →
v ⊞₍ base ι ₎ Δv ≡ v ⟦⊕₍ base ι ₎⟧ Δv′
------------------------
-- Logical relation ≈ --
------------------------
infix 4 implements
syntax implements τ u v = u ≈₍ τ ₎ v
implements : ∀ τ {v} → Δ₍ τ ₎ v → ⟦ ΔType τ ⟧ → Set
implements (base ι) Δf Δf′ = implements-base ι Δf Δf′
implements (σ ⇒ τ) {f} Δf Δf′ =
(w : ⟦ σ ⟧) (Δw : Δ₍ σ ₎ w)
(Δw′ : ⟦ ΔType σ ⟧) (Δw≈Δw′ : implements σ {w} Δw Δw′) →
implements τ {f w} (call-change {σ} {τ} Δf w Δw) (Δf′ w Δw′)
infix 4 _≈_
_≈_ : ∀ {τ v} → Δ₍ τ ₎ v → ⟦ ΔType τ ⟧ → Set
_≈_ {τ} {v} = implements τ {v}
data implements-env : ∀ Γ → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ mapContext ΔType Γ ⟧ → Set where
∅ : implements-env ∅ {∅} ∅ ∅
_•_ : ∀ {τ Γ v ρ dv dρ v′ ρ′} →
(dv≈v′ : implements τ {v} dv v′) →
(dρ≈ρ′ : implements-env Γ {ρ} dρ ρ′) →
implements-env (τ • Γ) {v • ρ} (dv • dρ) (v′ • ρ′)
----------------
-- carry-over --
----------------
-- This is lemma 3.10.
carry-over : ∀ {τ}
{v : ⟦ τ ⟧}
(Δv : Δ₍ τ ₎ v)
{Δv′ : ⟦ ΔType τ ⟧} (Δv≈Δv′ : Δv ≈₍ τ ₎ Δv′) →
after₍ τ ₎ Δv ≡ before₍ τ ₎ Δv ⟦⊕₍ τ ₎⟧ Δv′
u⊟v≈u⊝v : ∀ {τ : Type} {u v : ⟦ τ ⟧} →
u ⊟₍ τ ₎ v ≈₍ τ ₎ u ⟦⊝₍ τ ₎⟧ v
u⊟v≈u⊝v {base ι} {u} {v} = u⊟v≈u⊝v-base ι {u} {v}
u⊟v≈u⊝v {σ ⇒ τ} {g} {f} w Δw Δw′ Δw≈Δw′ =
subst
(λ □ → (g □ ⊟₍ τ ₎ f (before₍ σ ₎ Δw)) ≈₍ τ ₎ g (before₍ σ ₎ Δw ⟦⊕₍ σ ₎⟧ Δw′) ⟦⊝₍ τ ₎⟧ f (before₍ σ ₎ Δw))
(sym (carry-over {σ} Δw Δw≈Δw′))
(u⊟v≈u⊝v {τ} {g (before₍ σ ₎ Δw ⟦⊕₍ σ ₎⟧ Δw′)} {f (before₍ σ ₎ Δw)})
nil-v≈⟦nil⟧-v : ∀ {τ : Type} {v : ⟦ τ ⟧} →
nil₍ τ ₎ v ≈₍ τ ₎ (⟦nil₍ τ ₎⟧ v)
nil-v≈⟦nil⟧-v {base ι} = nil-v≈⟦nil⟧-v-base ι
nil-v≈⟦nil⟧-v {σ ⇒ τ} {f} = u⊟v≈u⊝v {σ ⇒ τ} {f} {f}
carry-over {base ι} Δv Δv≈Δv′ = carry-over-base Δv Δv≈Δv′
carry-over {σ ⇒ τ} {f} Δf {Δf′} Δf≈Δf′ =
ext (λ v →
carry-over {τ} {f v} (call-change {σ} {τ} Δf v (nil₍ σ ₎ v))
{Δf′ v (⟦nil₍ σ ₎⟧ v)}
(Δf≈Δf′ v (nil₍ σ ₎ v) (⟦nil₍ σ ₎⟧ v) (nil-v≈⟦nil⟧-v {σ} {v})))
-- A property relating `alternate` and the subcontext relation Γ≼ΔΓ
⟦Γ≼ΔΓ⟧ : ∀ {Γ} (ρ : ⟦ Γ ⟧) (dρ : ⟦ mapContext ΔType Γ ⟧) →
ρ ≡ ⟦ Γ≼ΔΓ ⟧≼ (alternate ρ dρ)
⟦Γ≼ΔΓ⟧ ∅ ∅ = refl
⟦Γ≼ΔΓ⟧ (v • ρ) (dv • dρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ ρ dρ)
-- A specialization of the soundness of weakening
⟦fit⟧ : ∀ {τ Γ} (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : ⟦ mapContext ΔType Γ ⟧) →
⟦ t ⟧ ρ ≡ ⟦ fit t ⟧ (alternate ρ dρ)
⟦fit⟧ t ρ dρ =
trans (cong ⟦ t ⟧ (⟦Γ≼ΔΓ⟧ ρ dρ)) (sym (weaken-sound t _))
|
{
"alphanum_fraction": 0.545225644,
"avg_line_length": 36.6170212766,
"ext": "agda",
"hexsha": "d2ab9a895df58fd61f0883fb9d3fef4256ece404",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Change/Implementation.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Change/Implementation.agda",
"max_line_length": 112,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Change/Implementation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2308,
"size": 5163
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Sigma
open import Agda.Builtin.Equality
data I : Set where
it : I
data D : I → Set where
d : D it
data Box : Set where
[_] : Nat → Box
mutual
data Code : Set where
d : I → Code
box : Code
sg : (a : Code) → (El a → Code) → Code
El : Code → Set
El (d i) = D i
El box = Box
El (sg a f) = Σ (El a) λ x → El (f x)
foo : (i : I) → Code
foo i = sg (d i) aux
where
aux : D i → Code
aux d = sg box λ { [ a ] → box }
crash : ∀ i → El (foo i) → Nat
crash i (d , p) = p
|
{
"alphanum_fraction": 0.525483304,
"avg_line_length": 16.7352941176,
"ext": "agda",
"hexsha": "cecf7379cff1d021d295a319cc85b69abcb7f69e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2883.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2883.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2883.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 226,
"size": 569
}
|
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
module _ (Form : Set) where -- FAILS
-- postulate Form : Set -- WORKS
data Cxt : Set where
ε : Cxt
_∙_ : (Γ : Cxt) (A : Form) → Cxt
data _≤_ : (Γ Δ : Cxt) → Set where
id≤ : ∀{Γ} → Γ ≤ Γ
weak : ∀{A Γ Δ} (τ : Γ ≤ Δ) → (Γ ∙ A) ≤ Δ
lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → (Γ ∙ A) ≤ (Δ ∙ A)
postulate lift-id≤ : ∀{Γ A} → lift id≤ ≡ id≤ {Γ ∙ A}
{-# REWRITE lift-id≤ #-}
|
{
"alphanum_fraction": 0.5,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "580427716fc8f33b4193a2e1f6d9086fa74c42fa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3538.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3538.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3538.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 213,
"size": 460
}
|
open import Agda.Builtin.Nat
record R : Set where
field
x : Nat
open R {{...}}
f₁ : R
-- This is fine.
x ⦃ f₁ ⦄ = 0
-- WAS: THIS WORKS BUT MAKES NO SENSE!!!
_ : Nat
_ = f₁ {{ .x }}
-- Should raise an error.
-- Illegal hiding in postfix projection ⦃ .x ⦄
-- when scope checking f₁ ⦃ .x ⦄
|
{
"alphanum_fraction": 0.584717608,
"avg_line_length": 13.6818181818,
"ext": "agda",
"hexsha": "63bdc1c79742d24dfbfa6443f305f661e84e5542",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3289-rhs.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3289-rhs.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3289-rhs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 113,
"size": 301
}
|
{-# OPTIONS --without-K #-}
module homotopy.3x3.Common where
open import HoTT public hiding (↓-='-in; ↓-='-out; ↓-=-in; ↓-=-out; ↓-∘=idf-in)
!-∘-ap-inv : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A}
(p : a == b)
→ ap-∘ f g p == ! (∘-ap f g p)
!-∘-ap-inv f g idp = idp
!-ap-∘-inv : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A}
(p : a == b)
→ ∘-ap f g p == ! (ap-∘ f g p)
!-ap-∘-inv f g idp = idp
!-∘-ap : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A}
(p : a == b)
→ ! (∘-ap f g p) == ap-∘ f g p
!-∘-ap f g idp = idp
!-ap-∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : B → C) (g : A → B) {a b : A}
(p : a == b)
→ ! (ap-∘ f g p) == ∘-ap f g p
!-ap-∘ f g idp = idp
module _ {i} {A : Type i} where
_,_=□_,_ : {a b b' c : A} (p : a == b) (q : b == c)
(r : a == b') (s : b' == c) → Type i
(idp , q =□ r , idp) = (q == r)
idp□ : {a b : A} {p : a == b} → idp , p =□ idp , p
idp□ {p = idp} = idp
idp□-i : {a b : A} {p : a == b} → p , idp =□ idp , p
idp□-i {p = idp} = idp
idp,=□idp,-in : {a b : A} {p q : a == b}
→ p == q → idp , p =□ idp , q
idp,=□idp,-in {q = idp} α = α
idp,=□idp,-out : {a b : A} {p q : a == b}
→ idp , p =□ idp , q → p == q
idp,=□idp,-out {q = idp} α = α
idp,=□idp,-β : {a b : A} {p q : a == b}
(α : p == q) → idp,=□idp,-out (idp,=□idp,-in α) == α
idp,=□idp,-β {q = idp} α = idp
idp,=□idp,-η : {a b : A} {p q : a == b}
(α : idp , p =□ idp , q) → idp,=□idp,-in (idp,=□idp,-out α) == α
idp,=□idp,-η {q = idp} α = idp
,idp=□,idp-in : {a b : A} {p q : a == b}
→ p == q → p , idp =□ q , idp
,idp=□,idp-in {p = idp} α = α
,idp=□,idp-out : {a b : A} {p q : a == b}
→ p , idp =□ q , idp → p == q
,idp=□,idp-out {p = idp} α = α
,idp=□,idp-β : {a b : A} {p q : a == b}
(α : p == q) → ,idp=□,idp-out (,idp=□,idp-in α) == α
,idp=□,idp-β {p = idp} α = idp
,idp=□,idp-η : {a b : A} {p q : a == b}
(α : p , idp =□ q , idp) → ,idp=□,idp-in (,idp=□,idp-out α) == α
,idp=□,idp-η {p = idp} α = idp
,idp=□idp,-in : {a b : A} {p q : a == b}
→ p == q → p , idp =□ idp , q
,idp=□idp,-in {p = idp} = idp,=□idp,-in
,idp=□idp,-out : {a b : A} {p q : a == b}
→ p , idp =□ idp , q → p == q
,idp=□idp,-out {p = idp} {q} α = idp,=□idp,-out α
,idp=□idp,-β : {a b : A} {p q : a == b}
(α : p == q) → ,idp=□idp,-out (,idp=□idp,-in α) == α
,idp=□idp,-β {p = idp} α = idp,=□idp,-β α
,idp=□idp,-η : {a b : A} {p q : a == b}
(α : p , idp =□ idp , q) → ,idp=□idp,-in (,idp=□idp,-out α) == α
,idp=□idp,-η {p = idp} α = idp,=□idp,-η α
_∙□-i/_/_/ : {a b b' c : A} {p : a == b} {q q' : b == c}
{r r' : a == b'} {s : b' == c}
→ (p , q =□ r , s) → (q' == q) → (r == r')
→ (p , q' =□ r' , s)
α ∙□-i/ idp / idp / = α
_∙□-o/_/_/ : {a b b' c : A} {p p' : a == b} {q : b == c}
{r : a == b'} {s s' : b' == c}
→ (p , q =□ r , s) → (p' == p) → (s == s')
→ (p' , q =□ r , s')
α ∙□-o/ idp / idp / = α
_∙□h_ : {a b b' c c' d : A} {p : a == b} {q : b == c} {r : a == b'}
{s : b' == c} {t : c == d} {u : b' == c'} {v : c' == d}
→ (p , q =□ r , s) → (s , t =□ u , v) → (p , q ∙ t =□ r ∙ u , v)
_∙□h_ {p = idp} {s = idp} {v = idp} idp idp = idp
module _ {i j} {A : Type i} {B : Type j} (f : A → B) where
ap□ : {a b b' c : A} {p : a == b} {q : b == c} {r : a == b'} {s : b' == c}
→ (p , q =□ r , s) → (ap f p , ap f q =□ ap f r , ap f s)
ap□ {p = idp} {s = idp} α = ap (ap f) α
module _ {i j} {A : Type i} {B : Type j} (f : A → B) where
ap□-,idp=□idp,-in : {a b : A} {p q : a == b}
(α : p == q) → ap□ f (,idp=□idp,-in α) == ,idp=□idp,-in (ap (ap f) α)
ap□-,idp=□idp,-in {p = idp} idp = idp
module _ {i j} {A : Type i} {B : A → Type j} where
_,_=□d-i_,_ : {a b : A} {p : a == b} {u v : B a} {w x : B b}
→ (u == v) → (v == w [ B ↓ p ])
→ (u == x [ B ↓ p ]) → (x == w)
→ Type j
_,_=□d-i_,_ idp α β idp = (α == β)
-- _,_=□d-i_,_ {p = idp} = _,_=□_,_
idp,=□d-iidp,-out : {a : A} {u w : B a} {α β : u == w}
→ (idp , α =□d-i idp , β) → α == β
idp,=□d-iidp,-out {β = idp} x = x
,idp=□d-iidp,-out : {a : A} {u w : B a} {α β : u == w}
→ (α , idp =□d-i idp , β) → α == β
,idp=□d-iidp,-out {α = idp} x = idp,=□d-iidp,-out x
idp,=□d-iidp,-in : {a : A} {u w : B a} {α β : u == w}
→ α == β → (idp , α =□d-i idp , β)
idp,=□d-iidp,-in {β = idp} x = x
,idp=□d-iidp,-in : {a : A} {u w : B a} {α β : u == w}
→ α == β → (α , idp =□d-i idp , β)
,idp=□d-iidp,-in {α = idp} x = idp,=□d-iidp,-in x
_◃/_/_/ : {a b : A} {p : a == b} {u v : B a} {w x : B b}
→ (v == w [ B ↓ p ]) → (u == v) → (w == x)
→ (u == x [ B ↓ p ])
α ◃/ idp / idp / = α
module _ {i} {A : Type i} where
_,_,_=□□_,_,_ : {a0 b0 b'0 c0 a1 b1 b'1 c1 : A}
{p0 : a0 == b0} {q0 : b0 == c0} {r0 : a0 == b'0} {s0 : b'0 == c0}
{p1 : a1 == b1} {q1 : b1 == c1} {r1 : a1 == b'1} {s1 : b'1 == c1}
{a* : a0 == a1} {b* : b0 == b1} {b'* : b'0 == b'1} {c* : c0 == c1}
→ (p0 , q0 =□ r0 , s0) → (s0 , c* =□ b'* , s1) → (r0 , b'* =□ a* , r1)
→ (q0 , c* =□ b* , q1) → (p0 , b* =□ a* , p1) → (p1 , q1 =□ r1 , s1)
→ Type i
_,_,_=□□_,_,_ {p0 = idp} {s0 = idp} {p1 = idp} {s1 = idp} idp idp β γ idp idp = β == γ
{- Nondependent identity type -}
module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where
↓-='-in : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ (u , ap g p =□ ap f p , v)
→ (u == v [ (λ x → f x == g x) ↓ p ])
↓-='-in {p = idp} α = ,idp=□idp,-out α
↓-='-out : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ (u == v [ (λ x → f x == g x) ↓ p ])
→ (u , ap g p =□ ap f p , v)
↓-='-out {p = idp} α = ,idp=□idp,-in α
↓-='-β : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B}
{x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
(α : (u , ap g p =□ ap f p , v))
→ ↓-='-out (↓-='-in α) == α
↓-='-β {p = idp} α = ,idp=□idp,-η α
module _ {i j k} {A : Type i} {B : Type j} (C : Type k) {g h : B → C} (f : A → B) where
lemma-a : {x y : A} (p : x == y) {u : g (f x) == h (f x)} {v : g (f y) == h (f y)} {q : f x == f y} (r : ap f p == q)
(α : u == v [ (λ z → g z == h z) ↓ q ])
→ ↓-='-out (↓-ap-out= (λ z → g z == h z) f p r α) == ↓-='-out α ∙□-i/ ap-∘ h f p ∙ ap (ap h) r / ! (ap (ap g) r) ∙ ∘-ap g f p /
lemma-a idp idp idp = idp
{- Dependent identity type -}
↓-=-in : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B}
{x y : A} {p : x == y} {u : g x == f x} {v : g y == f y}
→ (u , apd f p =□d-i apd g p , v)
→ (u == v [ (λ x → g x == f x) ↓ p ])
↓-=-in {B = B} {p = idp} {u} {v} α = ,idp=□d-iidp,-out α
↓-=-out : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B}
{x y : A} {p : x == y} {u : g x == f x} {v : g y == f y}
→ (u == v [ (λ x → g x == f x) ↓ p ])
→ (u , apd f p =□d-i apd g p , v)
↓-=-out {B = B} {p = idp} {u} {v} α = ,idp=□d-iidp,-in α
↓-=□-in : ∀ {i j} {A : Type i} {B : Type j} {f g g' h : A → B}
{x y : A} {α : x == y} {p : (x : A) → f x == g x} {q : (x : A) → g x == h x}
{r : (x : A) → f x == g' x} {s : (x : A) → g' x == h x}
{u : (p x , q x =□ r x , s x)} {v : (p y , q y =□ r y , s y)}
→ (u , ↓-='-out (apd s α) , ↓-='-out (apd r α) =□□ ↓-='-out (apd q α) , ↓-='-out (apd p α) , v)
→ (u == v [ (λ x → (p x , q x =□ r x , s x)) ↓ α ])
↓-=□-in {α = idp} = ch _ _ where
ch : ∀ {j} {B : Type j} {f g g' h : B} {p : f == g} {q : g == h}
{r : f == g'} {s : g' == h} (u v : p , q =□ r , s)
→ u , ,idp=□idp,-in idp , ,idp=□idp,-in idp =□□ ,idp=□idp,-in idp , ,idp=□idp,-in idp , v
→ u == v
ch {p = idp} {s = idp} u v = ,idp=□idp,-out ∘ ch2 u idp idp v where
ch2 : ∀ {i} {A : Type i} {a b : A}
{q q' r r' : a == b}
(p : q == r) (p' : r == r')
(s' : q == q') (s : q' == r')
→ (p , idp , ,idp=□idp,-in p' =□□ ,idp=□idp,-in s' , idp , s) → (p , p' =□ s' , s)
ch2 idp p' s' idp α = ! (,idp=□idp,-β p') ∙ ap ,idp=□idp,-out α ∙ ,idp=□idp,-β s'
-- Dependent path in a type of the form [λ x → x ≡ g (f x)]
module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where
↓-idf=∘-in : {x y : A} {p : x == y} {u : x == g (f x)} {v : y == g (f y)}
→ (u , ap g (ap f p) =□ p , v)
→ (u == v [ (λ x → x == g (f x)) ↓ p ])
↓-idf=∘-in {p = idp} q = ,idp=□idp,-out q
↓-∘=idf-in : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y}
→ (u , p =□ ap g (ap f p) , v)
→ (u == v [ (λ x → g (f x) == x) ↓ p ])
↓-∘=idf-in {p = idp} q = ,idp=□idp,-out q
module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k}
(f : B → C) (g : A → B) (h : A' → B) where
ap-∙∙`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d)
→ ap f (ap g p ∙ q ∙ ap h r) == ap (f ∘ g) p ∙ ap f q ∙ ap (f ∘ h) r
ap-∙∙`∘`∘ idp q idp = ap-∙ f q idp
ap-∙∙!`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : d == c)
→ ap f (ap g p ∙ q ∙ ap h (! r)) == ap (f ∘ g) p ∙ ap f q ∙ ! (ap (f ∘ h) r)
ap-∙∙!`∘`∘ idp q idp = ap-∙ f q idp
ap-∙∙!'`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : d == c)
→ ap f (ap g p ∙ q ∙ ! (ap h r)) == ap (f ∘ g) p ∙ ap f q ∙ ! (ap (f ∘ h) r)
ap-∙∙!'`∘`∘ idp q idp = ap-∙ f q idp
ap-!∙∙`∘`∘ : {a b : A} {c d : A'} (p : b == a) (q : g b == h c) (r : c == d)
→ ap f (ap g (! p) ∙ q ∙ ap h r) == ! (ap (f ∘ g) p) ∙ ap f q ∙ ap (f ∘ h) r
ap-!∙∙`∘`∘ idp q idp = ap-∙ f q idp
ap-!'∙∙`∘`∘ : {a b : A} {c d : A'} (p : b == a) (q : g b == h c) (r : c == d)
→ ap f (! (ap g p) ∙ q ∙ ap h r) == ! (ap (f ∘ g) p) ∙ ap f q ∙ ap (f ∘ h) r
ap-!'∙∙`∘`∘ idp q idp = ap-∙ f q idp
module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : B → Type k}
(f : Π B C) (g : A → B) (h : A' → B) where
apd-∙∙`∘`∘ : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d)
→ apd f (ap g p ∙ q ∙ ap h r) == ↓-ap-in _ _ (apd (f ∘ g) p) ∙ᵈ apd f q ∙ᵈ ↓-ap-in _ _ (apd (f ∘ h) r)
apd-∙∙`∘`∘ idp q idp = ch q where
ch : {a b : B} (q : a == b)
→ apd f (q ∙ idp) == idp ∙ᵈ apd f q ∙ᵈ idp
ch idp = idp
module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k} {f : A → B} {f' : A' → B} {g h : B → C} where
lemma-b : {x y : A} {z t : A'} {p : x == y} {q : z == t} (r : f y == f' z)
{a : g (f x) == h (f x)} {b : g (f y) == h (f y)}
{c : g (f' z) == h (f' z)} {d : g (f' t) == h (f' t)}
(u : a == b [ (λ x → g (f x) == h (f x)) ↓ p ]) (v : (b , ap h r =□ ap g r , c))
(w : c == d [ (λ x → g (f' x) == h (f' x)) ↓ q ])
→ ↓-='-out (↓-ap-in _ f u ∙ᵈ ↓-='-in v ∙ᵈ ↓-ap-in _ f' w) == (↓-='-out u ∙□h (v ∙□h ↓-='-out w)) ∙□-i/ ap-∙∙`∘`∘ h f f' p r q / ! (ap-∙∙`∘`∘ g f f' p r q) /
lemma-b {p = idp} {q = idp} r idp v idp = ch r v where
ch : ∀ {a b : B} (r : a == b) {p : g a == h a} {q : g b == h b} (v : (p , ap h r =□ ap g r , q))
→ ↓-='-out (idp ∙ᵈ ↓-='-in v ∙ᵈ idp)
== (,idp=□idp,-in idp ∙□h (v ∙□h ,idp=□idp,-in idp))
∙□-i/ ap-∙ h r idp / ! (ap-∙ g r idp) /
ch idp v = ch2 (,idp=□idp,-out v) ∙ (,idp=□idp,-η v |in-ctx (λ u → ,idp=□idp,-in idp ∙□h (u ∙□h ,idp=□idp,-in idp))) where
ch2 : ∀ {i} {A : Type i} {a b : A} {p q : a == b} (v' : p == q)
→ ,idp=□idp,-in (v' ∙ idp) == ,idp=□idp,-in idp ∙□h (,idp=□idp,-in v' ∙□h ,idp=□idp,-in idp)
ch2 {p = idp} v' = ch3 v' where
ch3 : ∀ {i} {A : Type i} {a : A} {q : a == a} (v' : idp == q)
→ idp,=□idp,-in (v' ∙ idp) == (,idp=□idp,-in idp ∙□h (idp,=□idp,-in v' ∙□h ,idp=□idp,-in idp))
ch3 idp = idp
module _ {i} {A : Type i} where
pp-coh : {a b b' c c' d d' e : A}
{p : a == b} {q : b == c} {r : c == d} {s : e == d}
{t : b' == a} {u : b' == c'} {v : c' == d'} {w : d' == e}
→ (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w) → (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r)
pp-coh {p = idp} {q} {idp} {idp} {idp} {idp} {idp} {idp} α = (! α) ∙ (∙-unit-r q)
pp-coh! : {a b b' c c' d d' e : A}
{u : b' == c'} {v : c' == d'} {w : d' == e} {s : e == d}
{t : b' == a} {p : a == b} {q : b == c} {r : c == d}
→ (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r) → (p , (q ∙ r ∙ (! s)) =□ ((! t) ∙ u ∙ v) , w)
pp-coh! {u = idp} {idp} {idp} {idp} {idp} {idp} {q} {idp} α = ∙-unit-r q ∙ (! α)
pp-coh-β : {a b b' c c' d d' e : A}
{u : b' == c'} {v : c' == d'} {w : d' == e} {s : e == d}
{t : b' == a} {p : a == b} {q : b == c} {r : c == d}
(α : (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r))
→ pp-coh {p = p} {q = q} {r = r} {s = s} {t = t} {u = u} {v = v} {w = w}
(pp-coh! {u = u} {v = v} {w = w} {s = s} {t = t} {p = p} {q = q} {r = r} α) == α
pp-coh-β {u = idp} {idp} {idp} {idp} {idp} {idp} {.idp} {idp} idp = idp
pp-coh!-β : {a b b' c c' d d' e : A}
{p : a == b} {q : b == c} {r : c == d} {s : e == d}
{t : b' == a} {u : b' == c'} {v : c' == d'} {w : d' == e}
(α : (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w))
→ pp-coh! {u = u} {v} {w} {s} {t} {p} {q} {r}
(pp-coh {p = p} {q} {r} {s} {t} {u} {v} {w} α) == α
pp-coh!-β {p = idp} {idp} {idp} {idp} {idp} {idp} {.idp} {idp} idp = idp
module _ {i j} {A : Type i} {B : Type j} where
ap-∙∙ : (f : A → B) {x y z t : A} (p : x == y) (q : y == z) (r : z == t) → ap f (p ∙ q ∙ r) == ap f p ∙ ap f q ∙ ap f r
ap-∙∙ f idp q idp = ap-∙ f q idp
ap-∙∙! : (f : A → B) {x y z t : A} (p : x == y) (q : y == z) (r : t == z) → ap f (p ∙ q ∙ ! r) == ap f p ∙ ap f q ∙ ! (ap f r)
ap-∙∙! f idp q idp = ap-∙ f q idp
ap-!∙∙ : (f : A → B) {x y z t : A} (p : y == x) (q : y == z) (r : z == t) → ap f (! p ∙ q ∙ r) == ! (ap f p) ∙ ap f q ∙ ap f r
ap-!∙∙ f idp q idp = ap-∙ f q idp
module _ {i j k} {A : Type i} {B : Type j} {C₁ C₂ C₃ C₄ : Type k} {g₁ : C₁ → A} {g₂ : C₂ → A} {g₃ : C₃ → A} {g₄ : C₄ → A} (f : A → B) where
ap□-pp-coh : {a b b' c c' d d' e : A}
{p : a == b} {q : b == c} {r : c == d} {s : e == d}
{t : b' == a} {u : b' == c'} {v : c' == d'} {w : d' == e}
(α : (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w))
→ ap□ f (pp-coh {p = p} {q} {r} {s} {t} {u} {v} {w} α) ==
pp-coh {p = ap f p} {ap f q} {ap f r} {ap f s} {ap f t} {ap f u} {ap f v} {ap f w}
(ap□ f α ∙□-i/ ! (ap-∙∙! f q r s) / ap-!∙∙ f t u v /)
∙□-i/ ap-∙∙ f v w s / ! (ap-∙∙ f t p q) /
ap□-pp-coh {p = idp} {q} {idp} {idp} {idp} {idp} {idp} {idp} α = c q idp α where
c : {a b : A} (q q' : a == b) (α : q ∙ idp == q')
→ ap (ap f) (! α ∙ ∙-unit-r q) ==
(! (ap (ap f) α ∙□-i/ ! (ap-∙∙! f q idp idp) / idp /) ∙
∙-unit-r (ap f q))
∙□-i/ idp / ! (ap-∙∙ f idp idp q) /
c idp q' α = d α where
d : {a b : A} {q q' : a == b} (α : q == q')
→ ap (ap f) (! α ∙ idp) == ! (ap (ap f) α) ∙ idp
d idp = idp
ap□-coh : {a₁ b₁ : C₁} {a₂ b₂ : C₂} {a₃ b₃ : C₃} {a₄ b₄ : C₄}
{p : g₃ b₃ == g₁ a₁} {q : a₁ == b₁} {r : g₁ b₁ == g₂ b₂} {s : a₂ == b₂}
{t : a₃ == b₃} {u : g₃ a₃ == g₄ a₄} {v : a₄ == b₄} {w : g₄ b₄ == g₂ a₂}
(α : (p , (ap g₁ q ∙ r ∙ (! (ap g₂ s))) =□ (! (ap g₃ t) ∙ u ∙ ap g₄ v) , w))
→ ap□ f (pp-coh {p = p} {ap g₁ q} {r} {ap g₂ s} {ap g₃ t} {u} {ap g₄ v} {w} α) ==
pp-coh {p = ap f p} {ap (f ∘ g₁) q} {ap f r} {ap (f ∘ g₂) s} {ap (f ∘ g₃) t} {ap f u} {ap (f ∘ g₄) v} {ap f w}
(ap□ f α ∙□-i/ ! (ap-∙∙!'`∘`∘ f g₁ g₂ q r s) / ap-!'∙∙`∘`∘ f g₃ g₄ t u v /)
∙□-i/ ap-∙∙`∘`∘ f g₄ g₂ v w s / ! (ap-∙∙`∘`∘ f g₃ g₁ t p q) /
ap□-coh {p = p} {idp} {r} {idp} {idp} {u} {idp} {w} α = ap□-pp-coh {p = p} {idp} {r} {idp} {idp} {u} {idp} {w} α
module _ {i j k} {A : Type i} {B : Type j} {C₁ C₂ C₃ C₄ : Type k} {g₁ : C₁ → A} {g₂ : C₂ → A} {g₃ : C₃ → A} {g₄ : C₄ → A} (f : A → B) where
ap□-pp-coh! : {a b b' c c' d d' e : A}
{u : b' == c'} {v : c' == d'} {w : d' == e} {s : e == d}
{t : b' == a} {p : a == b} {q : b == c} {r : c == d}
(α : (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r))
→ ap□ f (pp-coh! {u = u} {v} {w} {s} {t} {p} {q} {r} α) ==
pp-coh! {u = ap f u} {ap f v} {ap f w} {ap f s} {ap f t} {ap f p} {ap f q} {ap f r}
(ap□ f α ∙□-i/ ! (ap-∙∙ f v w s) / ap-∙∙ f t p q /)
∙□-i/ ap-∙∙! f q r s / ! (ap-!∙∙ f t u v) /
ap□-pp-coh! {u = idp} {idp} {idp} {idp} {idp} {idp} {.idp} {idp} idp = idp
ap□-coh! : {a₁ b₁ : C₁} {a₂ b₂ : C₂} {a₃ b₃ : C₃} {a₄ b₄ : C₄}
{u : g₃ a₃ == g₄ a₄} {v : a₄ == b₄} {w : g₄ b₄ == g₂ a₂} {s : a₂ == b₂}
{t : a₃ == b₃} {p : g₃ b₃ == g₁ a₁} {q : a₁ == b₁} {r : g₁ b₁ == g₂ b₂}
(α : (u , (ap g₄ v ∙ w ∙ ap g₂ s) =□ (ap g₃ t ∙ p ∙ ap g₁ q) , r))
→ ap□ f (pp-coh! {u = u} {ap g₄ v} {w} {ap g₂ s} {ap g₃ t} {p} {ap g₁ q} {r} α) ==
pp-coh! {u = ap f u} {ap (f ∘ g₄) v} {ap f w} {ap (f ∘ g₂) s} {ap (f ∘ g₃) t} {ap f p} {ap (f ∘ g₁) q} {ap f r}
(ap□ f α ∙□-i/ ! (ap-∙∙`∘`∘ f g₄ g₂ v w s) / ap-∙∙`∘`∘ f g₃ g₁ t p q /)
∙□-i/ ap-∙∙!'`∘`∘ f g₁ g₂ q r s / ! (ap-!'∙∙`∘`∘ f g₃ g₄ t u v) /
ap□-coh! {u = u} {idp} {w} {idp} {idp} {p} {idp} {r} α = ap□-pp-coh! {u = u} {idp} {w} {idp} {idp} {p} {idp} {r} α
module _ {i} {A : Type i} where
lemma : {a b b' c c' d d' e : A}
{u u' : b' == c'} {v : c' == d'} {w w' : d' == e} {s : e == d}
{t : b' == a} {p p' : a == b} {q : b == c} {r r' : c == d}
(β : u' == u) (γ : w' == w) (δ : p' == p) (ε : r' == r)
(α : (u , (v ∙ w ∙ s) =□ (t ∙ p ∙ q) , r))
→ pp-coh {p = p'} {q} {r'} {s} {t} {u'} {v} {w'}
(pp-coh! {u = u} {v} {w} {s} {t} {p} {q} {r} α
∙□-o/ δ / ! γ /
∙□-i/ ε |in-ctx (λ x → q ∙ x ∙ ! s) / (! β) |in-ctx (λ x → ! t ∙ x ∙ v) /) == α ∙□-o/ β / ! ε / ∙□-i/ γ |in-ctx (λ x → v ∙ x ∙ s) / (! δ) |in-ctx (λ x → t ∙ x ∙ q) /
lemma {u = u} {v = v} {w = w} {s = s} {t = t} {p = p} {q = q} {r = r} idp idp idp idp α = pp-coh-β {u = u} {v = v} {w = w} {s = s} {t = t} {p = p} {q = q} {r = r} α
lemma! : {a b b' c c' d d' e : A}
{p p' : a == b} {q : b == c} {r r' : c == d} {s : e == d}
{t : b' == a} {u u' : b' == c'} {v : c' == d'} {w w' : d' == e}
(β : p' == p) (γ : r' == r) (δ : u' == u) (ε : w' == w)
(α : (p , (q ∙ r ∙ (! s)) =□ (! t ∙ u ∙ v) , w))
→ pp-coh! {u = u'} {v} {w'} {s} {t} {p'} {q} {r'}
(pp-coh {p = p} {q} {r} {s} {t} {u} {v} {w} α
∙□-o/ δ / ! γ /
∙□-i/ ε |in-ctx (λ w → v ∙ w ∙ s) / (! β) |in-ctx (λ p → t ∙ p ∙ q) /) == α ∙□-o/ β / ! ε / ∙□-i/ γ |in-ctx (λ r → q ∙ r ∙ ! s) / (! δ) |in-ctx (λ u → ! t ∙ u ∙ v) /
lemma! {p = p} {q = q} {r = r} {s = s} {t = t} {u = u} {v = v} {w = w} idp idp idp idp α = pp-coh!-β {p = p} {q} {r} {s} {t} {u} {v} {w} α
module _ {i j} {A : Type i} {B : A → Type j} where
coh1 : {a b : A} {α : a == b} {u v : B a} {w x : B b}
{p : u == w [ B ↓ α ]} {q : w == x} {r : u == v} {s : v == x [ B ↓ α ]}
→ (r , s =□d-i p , q) → p == s ◃/ r / ! q /
coh1 {α = idp} {p = idp} {idp} {idp} {s} β = ! β
module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f g : A → B) (h : B → C) where
ap↓-↓-='-in-β : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
(α : (u , ap g p =□ ap f p , v))
→ ap↓ (ap h) {p = p} {u = u} {v = v} (↓-='-in {p = p} α)
== ↓-='-in ((ap□ h α) ∙□-i/ (ap-∘ h g p) / (∘-ap h f p) /)
ap↓-↓-='-in-β {p = idp} = t where
t : {x y : B} {u v : x == y} (α : (u , idp =□ idp , v))
→ ap (ap h) (,idp=□idp,-out α) == ,idp=□idp,-out (ap□ h α)
t {u = idp} {v} = t' where
t' : {x y : B} {u v : x == y} (α : (idp , u =□ idp , v))
→ ap (ap h) (idp,=□idp,-out α) == idp,=□idp,-out (ap□ h α)
t' {u} {v = idp} α = idp
ap□-↓-='-out-β : {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
(α : u == v [ (λ x → f x == g x) ↓ p ])
→ ap□ h (↓-='-out α) == ↓-='-out (ap↓ (ap h) α) ∙□-i/ ∘-ap h g p / ap-∘ h f p /
ap□-↓-='-out-β {p = idp} idp = ap□-,idp=□idp,-in h idp
thing : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B}
{x y : A} {p : x == y} {u u' : f x == g x} {v v' : f y == g y}
(α : (u , ap g p =□ ap f p , v)) (r : u' == u) (s : v == v')
→ ↓-='-out (↓-='-in α ◃/ r / s /) == α ∙□-o/ r / s /
thing α idp idp = ↓-='-β α
ap↓-∘ : ∀ {i j k l} {A : Type i} {B : A → Type j} {C : A → Type k} {D : A → Type l}
(f : {a : A} → C a → D a) (g : {a : A} → B a → C a)
{x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ ap↓ (f ∘ g) q == ap↓ f (ap↓ g q)
ap↓-∘ f g {p = idp} idp = idp
ap↓-◃/ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(f : {a : A} → B a → C a) {x y : A} {p : x == y} {u u' : B x} {v v' : B y}
(q : u == v [ B ↓ p ]) (r : u' == u) (s : v == v')
→ ap↓ f (q ◃/ r / s /) == ap↓ f q ◃/ ap f r / ap f s /
ap↓-◃/ f {p = idp} idp idp idp = idp
ap□-∙□-i/ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a b b' c : A} {p : a == b} {q q' : b == c} {r r' : a == b'} {s : b' == c}
(α : (p , q =□ r , s)) (t : q' == q) (u : r == r')
→ ap□ f (α ∙□-i/ t / u /) == ap□ f α ∙□-i/ ap (ap f) t / ap (ap f) u /
ap□-∙□-i/ f {p = idp} {s = idp} idp idp idp = idp
ap-∘^3-coh : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l}
(h : C → D) (g : B → C) (f : A → B) {a b : A} (p : a == b)
→ ap (ap h) (∘-ap g f p) ∙ ∘-ap h (g ∘ f) p ∙ ap-∘ (h ∘ g) f p == ∘-ap h g (ap f p)
ap-∘^3-coh h g f idp = idp
ap-∘^3-coh' : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l}
(h : C → D) (g : B → C) (f : A → B) {a b : A} (p : a == b)
→ ∘-ap (h ∘ g) f p ∙ ap-∘ h (g ∘ f) p ∙ ap (ap h) (ap-∘ g f p) == ap-∘ h g (ap f p)
ap-∘^3-coh' h g f idp = idp
ap-∘-ap-coh : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
(g : B → C) (f : A → B) {a b : A} {p q : a == b} (α : p == q)
→ ap (ap g) (! α |in-ctx (ap f)) ∙ ∘-ap g f p ∙ (α |in-ctx (ap (g ∘ f)))
== ∘-ap g f q
ap-∘-ap-coh g f idp = ∙-unit-r _
ap-∘-ap-coh' : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
(g : B → C) (f : A → B) {a b : A} {p q : a == b} (α : p == q)
→ (! α |in-ctx (ap (g ∘ f))) ∙ ap-∘ g f p ∙ ap (ap g) (α |in-ctx (ap f))
== ap-∘ g f q
ap-∘-ap-coh' g f idp = ∙-unit-r _
ap-∘-ap-coh'2 : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k}
(g : B → C) (f : A → B) {a b : A} {p q : a == b} (α : p == q)
→ (! (α |in-ctx (ap (g ∘ f)))) ∙ ap-∘ g f p ∙ ap (ap g) (α |in-ctx (ap f))
== ap-∘ g f q
ap-∘-ap-coh'2 g f {p = idp} idp = idp
module _ {i i' j k l} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k} {D : Type l}
(f2 : C → D) (f1 : B → C) (g : A → B) (h : A' → B) where
ap-∘-ap-∙∙!`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : d == c)
→ ! (ap-∙∙!'`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r)
∙ ap (ap f2) (! (ap-∙∙!`∘`∘ f1 g h p q r))
∙ ∘-ap f2 f1 (ap g p ∙ q ∙ ap h (! r))
∙ ap-∙∙!`∘`∘ (f2 ∘ f1) g h p q r
== ((∘-ap f2 f1 q) |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ! (ap (f2 ∘ f1 ∘ h) r)))
ap-∘-ap-∙∙!`∘`∘-coh idp q idp = coh q where
coh : {a b : B} (q : a == b) →
! (ap-∙ f2 (ap f1 q) idp)
∙ ap (ap f2) (! (ap-∙ f1 q idp))
∙ ∘-ap f2 f1 (q ∙ idp)
∙ ap-∙ (f2 ∘ f1) q idp
== ap (λ u → u ∙ idp) (∘-ap f2 f1 q)
coh idp = idp
ap-∘-ap-!∙∙`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g a == h c) (r : c == d)
→ ! (ap-!∙∙`∘`∘ (f2 ∘ f1) g h p q r)
∙ ap-∘ f2 f1 (ap g (! p) ∙ q ∙ ap h r)
∙ ap (ap f2) (ap-!∙∙`∘`∘ f1 g h p q r)
∙ ap-!'∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r
== ((ap-∘ f2 f1 q) |in-ctx (λ u → ! (ap (f2 ∘ f1 ∘ g) p) ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
ap-∘-ap-!∙∙`∘`∘-coh idp q idp = coh q where
coh : {a b : B} (q : a == b)
→ ! (ap-∙ (f2 ∘ f1) q idp) ∙ ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp
== ap (λ u → u ∙ idp) (ap-∘ f2 f1 q)
coh idp = idp
ap-∘-ap-∙∙2`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d)
→ ! (ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r)
∙ ap-∘ f2 f1 (ap g p ∙ q ∙ ap h r)
∙ ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q r)
∙ ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r
== ((ap-∘ f2 f1 q) |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
ap-∘-ap-∙∙2`∘`∘-coh idp q idp = coh q where
coh : {a b : B} (q : a == b)
→ ! (ap-∙ (f2 ∘ f1) q idp) ∙ ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp
== ap (λ u → u ∙ idp) (ap-∘ f2 f1 q)
coh idp = idp
ap-∘-ap-∙∙3`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) (q : g b == h c) (r : c == d)
→ ! (ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p (ap f1 q) r)
∙ ap (ap f2) (! (ap-∙∙`∘`∘ f1 g h p q r))
∙ ∘-ap f2 f1 (ap g p ∙ q ∙ ap h r)
∙ ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r
== ((∘-ap f2 f1 q) |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
ap-∘-ap-∙∙3`∘`∘-coh idp q idp = coh q where
coh : {a b : B} (q : a == b) →
! (ap-∙ f2 (ap f1 q) idp)
∙ ap (ap f2) (! (ap-∙ f1 q idp))
∙ ∘-ap f2 f1 (q ∙ idp)
∙ ap-∙ (f2 ∘ f1) q idp
== ap (λ u → u ∙ idp) (∘-ap f2 f1 q)
coh idp = idp
ap-∘-ap-∙∙4`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : c == d)
→ ap-∘ f2 f1 (ap g p ∙ q ∙ ap h r)
∙ ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q r)
∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ap (f1 ∘ h) r))
∙ ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r
==
ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r
∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
ap-∘-ap-∙∙4`∘`∘-coh idp {q = q} idp idp = coh q where
coh : {a b : B} (q : a == b)
→ ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp
== ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp
coh idp = idp
ap-∘-ap-∙∙5`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g a == h c} {q' : f1 (g a) == f1 (h c)} (α : ap f1 q == q') (r : c == d)
→ ap-∘ f2 f1 (ap g (! p) ∙ q ∙ ap h r)
∙ ap (ap f2) (ap-!∙∙`∘`∘ f1 g h p q r)
∙ ap (ap f2) (α |in-ctx (λ u → ! (ap (f1 ∘ g) p) ∙ u ∙ ap (f1 ∘ h) r))
∙ ap-!'∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r
==
ap-∙∙`∘`∘ (f2 ∘ f1) g h (! p) q r
∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) (! p) ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) (! p) ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
∙ (ap-! (f2 ∘ f1 ∘ g) p |in-ctx (λ u → u ∙ ap f2 q' ∙ ap (f2 ∘ f1 ∘ h) r))
ap-∘-ap-∙∙5`∘`∘-coh idp {q = q} idp idp = coh q where
coh : {a b : B} (q : a == b)
→ ap-∘ f2 f1 (q ∙ idp) ∙ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp
== ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp
coh idp = idp
ap-∘-ap-∙∙`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : c == d)
→ ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q r)
∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ap (f1 ∘ h) r))
∙ ap-∙∙`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r
==
∘-ap f2 f1 (ap g p ∙ q ∙ ap h r)
∙ ap-∙∙`∘`∘ (f2 ∘ f1) g h p q r
∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ap (f2 ∘ f1 ∘ h) r))
ap-∘-ap-∙∙`∘`∘-coh idp {q = q} idp idp = coh q where
coh : {a b : B} (q : a == b)
→ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp
== ∘-ap f2 f1 (q ∙ idp) ∙ ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp
coh idp = idp
ap-∘-ap-∙∙!'`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : d == c)
→ ap (ap f2) (ap-∙∙!`∘`∘ f1 g h p q r)
∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ! (ap (f1 ∘ h) r)))
∙ ap-∙∙!'`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r
==
∘-ap f2 f1 (ap g p ∙ q ∙ ap h (! r))
∙ ap-∙∙!`∘`∘ (f2 ∘ f1) g h p q r
∙ (ap-∘ f2 f1 q |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ! (ap (f2 ∘ f1 ∘ h) r)))
∙ (ap (ap f2) α |in-ctx (λ u → ap (f2 ∘ f1 ∘ g) p ∙ u ∙ ! (ap (f2 ∘ f1 ∘ h) r)))
ap-∘-ap-∙∙!'`∘`∘-coh idp {q = q} idp idp = coh q where
coh : {a b : B} (q : a == b)
→ ap (ap f2) (ap-∙ f1 q idp) ∙ ap-∙ f2 (ap f1 q) idp
== ∘-ap f2 f1 (q ∙ idp) ∙ ap-∙ (f2 ∘ f1) q idp ∙ ap (λ u → u ∙ idp) (ap-∘ f2 f1 q) ∙ idp
coh idp = idp
ap-∘-ap-∙∙!'2`∘`∘-coh : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f1 (g b) == f1 (h c)} (α : ap f1 q == q') (r : d == c)
→ ap (ap f2) (ap-∙∙!`∘`∘ f1 g h p q r)
∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ! (ap (f1 ∘ h) r)))
∙ ap-∙∙!'`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r
==
ap (ap f2) (ap-∙∙`∘`∘ f1 g h p q (! r))
∙ ap (ap f2) (α |in-ctx (λ u → ap (f1 ∘ g) p ∙ u ∙ ap (f1 ∘ h) (! r)))
∙ ap-∙∙!`∘`∘ f2 (f1 ∘ g) (f1 ∘ h) p q' r
ap-∘-ap-∙∙!'2`∘`∘-coh idp {q = q} idp idp = idp
module _ {i i' j k} {A : Type i} {A' : Type i'} {B : Type j} {C : Type k}
(f : B → C) (g : A → B) (h : A' → B) where
ap-!∙∙`∘`∘-coh : {a b : A} {c d : A'} (p : b == a) {q : g b == h c} {q' : f (g b) == f (h c)} (α : ap f q == q') (r : c == d)
→ ap-!∙∙`∘`∘ f g h p q r
∙ ap (λ u → ! (ap (f ∘ g) p) ∙ u ∙ ap (f ∘ h) r) α
∙ ! (ap-! (f ∘ g) p |in-ctx (λ u → u ∙ q' ∙ ap (f ∘ h) r))
==
ap-∙∙`∘`∘ f g h (! p) q r
∙' ap (λ u → ap (f ∘ g) (! p) ∙ u ∙ ap (f ∘ h) r) α
ap-!∙∙`∘`∘-coh idp {q = q} idp idp = ∙-unit-r (ap-∙ f q idp)
ap-∙∙!`∘`∘-coh1 : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} {q' : f (g b) == f (h c)} (α : ap f q == q') (r : d == c)
→ ap-∙∙!`∘`∘ f g h p q r
∙ ap (λ u → ap (f ∘ g) p ∙ u ∙ ! (ap (f ∘ h) r)) α
==
ap-∙∙`∘`∘ f g h p q (! r)
∙ ap (λ u → ap (f ∘ g) p ∙ u ∙ ap (f ∘ h) (! r)) α
∙ (ap-! (f ∘ h) r |in-ctx (λ u → ap (f ∘ g) p ∙ q' ∙ u))
ap-∙∙!`∘`∘-coh1 idp {q = q} idp idp = idp
ap-∙∙!`∘`∘-coh2 : {a b : A} {c d : A'} (p : a == b) {q : g b == h c} (r : d == c)
→ (ap-! (f ∘ h) r |in-ctx (λ u → ap (f ∘ g) p ∙ ap f q ∙ u))
∙ ! (ap-∙∙!`∘`∘ f g h p q r)
==
! (ap-∙∙`∘`∘ f g h p q (! r))
ap-∙∙!`∘`∘-coh2 idp {q} idp = idp
ap-∘-coh : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l}
(f : C → D) (g : B → C) (h : A → B) {a b : A} (p : a == b) {p' : h a == h b} (α : ap h p == p')
→ ap-∘ f (g ∘ h) p ∙ ap (ap f) (ap-∘ g h p) ∙ ap (ap f) (α |in-ctx (ap g)) ∙ ∘-ap f g p'
== ap-∘ (f ∘ g) h p ∙ ap (ap (f ∘ g)) α
ap-∘-coh f g h idp idp = idp
ap-∘-coh2 : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l}
(f : C → D) (g : B → C) (h : A → B) {a b : A} (p : a == b) {p' : h a == h b} (α : ap h p == p')
→ ap-∘ f (g ∘ h) p ∙ ap (ap f) (ap-∘ g h p) ∙ ap (ap f) (α |in-ctx (ap g))
== ap-∘ (f ∘ g) h p ∙ ap (ap (f ∘ g)) α ∙ ap-∘ f g p'
ap-∘-coh2 f g h idp idp = idp
∙-|in-ctx : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a b c : A}
(p : a == b) (q : b == c)
→ (p |in-ctx f) ∙ (q |in-ctx f) == ((p ∙ q) |in-ctx f)
∙-|in-ctx f idp idp = idp
∙□-i/-rewrite : ∀ {i} {A : Type i} {a b b' c : A} {p : a == b} {q q' : b == c}
{r r' : a == b'} {s : b' == c}
(α : (p , q =□ r , s)) {β β' : q' == q} (eqβ : β == β') {γ γ' : r == r'}
(eqγ : γ == γ')
→ (α ∙□-i/ β / γ / == α ∙□-i/ β' / γ' /)
∙□-i/-rewrite α idp idp = idp
|
{
"alphanum_fraction": 0.3304336981,
"avg_line_length": 47.1661764706,
"ext": "agda",
"hexsha": "5666204cf7ea21f4701010df3749b888e38cfaa0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "homotopy/3x3/Common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "homotopy/3x3/Common.agda",
"max_line_length": 181,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/3x3/Common.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 18373,
"size": 32073
}
|
------------------------------------------------------------------------
-- Monotone functions
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Partiality-algebra.Monotone where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Bijection equality-with-J using (_↔_)
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J hiding (id; _∘_)
open import H-level.Closure equality-with-J
open import Partiality-algebra as PA hiding (id; _∘_)
import Partiality-algebra.Properties as PAP
-- Definition of monotone functions.
record [_⟶_]⊑
{a₁ p₁ q₁} {A₁ : Type a₁} (P₁ : Partiality-algebra p₁ q₁ A₁)
{a₂ p₂ q₂} {A₂ : Type a₂} (P₂ : Partiality-algebra p₂ q₂ A₂) :
Type (p₁ ⊔ p₂ ⊔ q₁ ⊔ q₂) where
private
module P₁ = Partiality-algebra P₁
module P₂ = Partiality-algebra P₂
field
function : P₁.T → P₂.T
monotone : ∀ {x y} → x P₁.⊑ y → function x P₂.⊑ function y
open [_⟶_]⊑
-- Identity.
id⊑ : ∀ {a p q} {A : Type a} {P : Partiality-algebra p q A} →
[ P ⟶ P ]⊑
function id⊑ = id
monotone id⊑ = id
-- Composition.
infixr 40 _∘⊑_
_∘⊑_ :
∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂}
{a₃ p₃ q₃} {A₃ : Type a₃} {P₃ : Partiality-algebra p₃ q₃ A₃} →
[ P₂ ⟶ P₃ ]⊑ → [ P₁ ⟶ P₂ ]⊑ → [ P₁ ⟶ P₃ ]⊑
function (f ∘⊑ g) = function f ∘ function g
monotone (f ∘⊑ g) = monotone f ∘ monotone g
-- Equality characterisation lemma for monotone functions.
equality-characterisation-monotone :
∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂}
{f g : [ P₁ ⟶ P₂ ]⊑} →
(∀ x → function f x ≡ function g x) ↔ f ≡ g
equality-characterisation-monotone {P₁ = P₁} {P₂ = P₂} {f} {g} =
(∀ x → function f x ≡ function g x) ↔⟨ Eq.extensionality-isomorphism ext ⟩
function f ≡ function g ↝⟨ ignore-propositional-component
(implicit-Π-closure ext 1 λ _ →
implicit-Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
P₂.⊑-propositional) ⟩
_↔_.to rearrange f ≡ _↔_.to rearrange g ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□
f ≡ g □
where
module P₁ = Partiality-algebra P₁
module P₂ = Partiality-algebra P₂
rearrange :
[ P₁ ⟶ P₂ ]⊑
↔
∃ λ (h : P₁.T → P₂.T) →
∀ {x y} → x P₁.⊑ y → h x P₂.⊑ h y
rearrange = record
{ surjection = record
{ logical-equivalence = record
{ to = λ f → function f , monotone f
; from = uncurry λ f m → record { function = f; monotone = m }
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
}
where
open Partiality-algebra
-- Composition is associative.
∘⊑-assoc :
∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂}
{a₃ p₃ q₃} {A₃ : Type a₃} {P₃ : Partiality-algebra p₃ q₃ A₃}
{a₄ p₄ q₄} {A₄ : Type a₄} {P₄ : Partiality-algebra p₄ q₄ A₄}
(f : [ P₃ ⟶ P₄ ]⊑) (g : [ P₂ ⟶ P₃ ]⊑) {h : [ P₁ ⟶ P₂ ]⊑} →
f ∘⊑ (g ∘⊑ h) ≡ (f ∘⊑ g) ∘⊑ h
∘⊑-assoc _ _ =
_↔_.to equality-characterisation-monotone λ _ → refl
module _
{a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂} where
private
module P₁ = Partiality-algebra P₁
module P₂ = Partiality-algebra P₂
module PAP₁ = PAP P₁
module PAP₂ = PAP P₂
-- If a monotone function is applied to an increasing sequence,
-- then the result is another increasing sequence.
[_$_]-inc :
[ P₁ ⟶ P₂ ]⊑ → P₁.Increasing-sequence → P₂.Increasing-sequence
[ f $ s ]-inc = (λ n → function f (s P₁.[ n ]))
, (λ n → monotone f (P₁.increasing s n))
-- A lemma relating monotone functions and least upper bounds.
⨆$⊑$⨆ : (f : [ P₁ ⟶ P₂ ]⊑) →
∀ s → P₂.⨆ [ f $ s ]-inc P₂.⊑ function f (P₁.⨆ s)
⨆$⊑$⨆ f s = P₂.least-upper-bound _ _ λ n →
[ f $ s ]-inc P₂.[ n ] PAP₂.⊑⟨ monotone f (
s P₁.[ n ] PAP₁.⊑⟨ P₁.upper-bound _ _ ⟩■
P₁.⨆ s ■) ⟩■
function f (P₁.⨆ s) ■
|
{
"alphanum_fraction": 0.5062381053,
"avg_line_length": 34.5182481752,
"ext": "agda",
"hexsha": "d0e2b4a0949415b4f3d399c6f29bda63382029a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-algebra/Monotone.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-algebra/Monotone.agda",
"max_line_length": 110,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-algebra/Monotone.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 1746,
"size": 4729
}
|
-- Exercises for session 3
--
-- If unsure which exercises to do start with those marked with *
--
{-# OPTIONS --cubical --allow-unsolved-metas #-}
module ExerciseSession3 where
open import Part1
open import Part2
open import Part3
open import Part4
open import ExerciseSession1 hiding (B)
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Int hiding (neg)
-- Exercise* 1: prove associativity of _++_ for FMSet.
-- (hint: mimic the proof of unitr-++)
-- Exercise 2: define the integers as a HIT with a pos and neg
-- constructor each taking a natural number as well as a path
-- constructor equating pos 0 and neg 0.
-- Exercise 3 (a little longer, but not very hard): prove that the
-- above definition of the integers is equal to the ones in
-- Cubical.Data.Int. Deduce that they form a set.
-- Exercise* 4: we can define the notion of a surjection as:
isSurjection : (A → B) → Type _
isSurjection {A = A} {B = B} f = (b : B) → ∃ A (λ a → f a ≡ b)
-- The exercise is now to:
--
-- a) prove that being a surjection is a proposition
--
-- b) prove that the inclusion ∣_∣ : A → ∥ A ∥ is surjective
-- (hint: use rec for ∥_∥)
-- Exercise* 5: define
intLoop : Int → ΩS¹
intLoop = {!!}
-- which given +n return loop^n and given -n returns loop^-n. Then
-- prove that:
windingIntLoop : (n : Int) → winding (intLoop n) ≡ n
windingIntLoop = {!!}
-- (The other direction is much more difficult and relies on the
-- encode-decode method. See Egbert's course on Friday!)
-- Exercise 6 (harder): the suspension of a type can be defined as
data Susp (A : Type ℓ) : Type ℓ where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south
-- Prove that the circle is equal to the suspension of Bool
S¹≡SuspBool : S¹ ≡ Susp Bool
S¹≡SuspBool = {!!}
-- Hint: define maps back and forth and prove that they cancel.
|
{
"alphanum_fraction": 0.6917333333,
"avg_line_length": 27.5735294118,
"ext": "agda",
"hexsha": "5816c41ad06765f1a267b366803a612b09c7eb14",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "EgbertRijke/EPIT-2020",
"max_forks_repo_path": "04-cubical-type-theory/material/ExerciseSession3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a510959fb0e6da9bcc6b0faa0dea76a2821bbdb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "EgbertRijke/EPIT-2020",
"max_issues_repo_path": "04-cubical-type-theory/material/ExerciseSession3.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "williamdemeo/EPIT-2020",
"max_stars_repo_path": "04-cubical-type-theory/material/ExerciseSession3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-03T16:28:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-03T16:28:06.000Z",
"num_tokens": 554,
"size": 1875
}
|
------------------------------------------------------------------------------
-- In the Agda standard library zero divides zero
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.Divisibility.ZeroDividesZero where
open import Data.Nat.Divisibility
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
0∣0 : 0 ∣ 0
0∣0 = divides 0 refl
|
{
"alphanum_fraction": 0.4102964119,
"avg_line_length": 33.7368421053,
"ext": "agda",
"hexsha": "e2b7b88711b32863481a415492eeaf225c938bba",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Divisibility/ZeroDividesZero.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Divisibility/ZeroDividesZero.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Divisibility/ZeroDividesZero.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 107,
"size": 641
}
|
module Inductive.Examples.BinTree where
open import Inductive
open import Tuple
open import Data.Fin
open import Data.Product hiding (map)
open import Data.List hiding (map)
open import Data.Vec hiding (map)
BinTree : Set → Set
BinTree A = Inductive (([] , []) ∷ (((A ∷ []) , ([] ∷ ([] ∷ []))) ∷ []))
leaf : {A : Set} → BinTree A
leaf = construct zero [] []
node : {A : Set} → A → BinTree A → BinTree A → BinTree A
node a lt rt = construct (suc zero) (a ∷ []) ((λ _ → lt) ∷ ((λ _ → rt) ∷ []))
map : {A B : Set} → (A → B) → BinTree A → BinTree B
map f = rec (leaf ∷ ((λ a lt rlt rt rrt → node (f a) rlt rrt) ∷ []))
import Inductive.Examples.List as List
dfs : {A : Set} → BinTree A → List.List A
dfs = rec ( List.nil
∷ (λ a lt rlt rt rrt → List.cons a (rlt List.++ rrt))
∷ [])
|
{
"alphanum_fraction": 0.5746268657,
"avg_line_length": 27.724137931,
"ext": "agda",
"hexsha": "f9359aa4f2a1ec4827b966aa3f042e67c0c7f9ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mr-ohman/general-induction",
"max_forks_repo_path": "Inductive/Examples/BinTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mr-ohman/general-induction",
"max_issues_repo_path": "Inductive/Examples/BinTree.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mr-ohman/general-induction",
"max_stars_repo_path": "Inductive/Examples/BinTree.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 277,
"size": 804
}
|
{-
This second-order equational theory was created from the following second-order syntax description:
syntax Group | G
type
* : 0-ary
term
unit : * | ε
add : * * -> * | _⊕_ l20
neg : * -> * | ⊖_ r40
theory
(εU⊕ᴸ) a |> add (unit, a) = a
(εU⊕ᴿ) a |> add (a, unit) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊖N⊕ᴸ) a |> add (neg (a), a) = unit
(⊖N⊕ᴿ) a |> add (a, neg (a)) = unit
-}
module Group.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import Group.Signature
open import Group.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution G:Syn
open import SOAS.Metatheory.SecondOrder.Equality G:Syn
private
variable
α β γ τ : *T
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ G) α Γ → (𝔐 ▷ G) α Γ → Set where
εU⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ε ⊕ 𝔞 ≋ₐ 𝔞
εU⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ ε ≋ₐ 𝔞
⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠)
⊖N⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (⊖ 𝔞) ⊕ 𝔞 ≋ₐ ε
⊖N⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ (⊖ 𝔞) ≋ₐ ε
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
|
{
"alphanum_fraction": 0.5338582677,
"avg_line_length": 23.5185185185,
"ext": "agda",
"hexsha": "57086400ce456eb25f6753b1323c0ed712a458bd",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Group/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Group/Equality.agda",
"max_line_length": 99,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Group/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 653,
"size": 1270
}
|
module Issue561.Core where
postulate
Char : Set
{-# BUILTIN CHAR Char #-}
open import Agda.Builtin.IO public
postulate
return : ∀ {a} {A : Set a} → A → IO A
{-# COMPILE GHC return = \_ _ -> return #-}
{-# COMPILE UHC return = \_ _ x -> UHC.Agda.Builtins.primReturn x #-}
{-# COMPILE JS return =
function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-}
{-# FOREIGN OCaml
let ioReturn _ _ x world = Lwt.return x
let ioBind _ _ _ _ x f world = Lwt.bind (x world) (fun x -> f x world)
#-}
{-# COMPILE OCaml return = ioReturn #-}
|
{
"alphanum_fraction": 0.6162988115,
"avg_line_length": 25.6086956522,
"ext": "agda",
"hexsha": "0f1c155a45c6954bdaa9766a270ff6b69fdf655e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "xekoukou/agda-ocaml",
"max_forks_repo_path": "test/Compiler/simple/Issue561/Core.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "xekoukou/agda-ocaml",
"max_issues_repo_path": "test/Compiler/simple/Issue561/Core.agda",
"max_line_length": 105,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "xekoukou/agda-ocaml",
"max_stars_repo_path": "test/Compiler/simple/Issue561/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 183,
"size": 589
}
|
module Logic.Base where
infix 60 ¬_
infix 30 _/\_
infix 20 _\/_
data True : Set where
tt : True
data False : Set where
elim-False : {A : Set} -> False -> A
elim-False ()
data _/\_ (P Q : Set) : Set where
/\-I : P -> Q -> P /\ Q
data _\/_ (P Q : Set) : Set where
\/-IL : P -> P \/ Q
\/-IR : Q -> P \/ Q
elimD-\/ : {P Q : Set}(C : P \/ Q -> Set) ->
((p : P) -> C (\/-IL p)) ->
((q : Q) -> C (\/-IR q)) ->
(pq : P \/ Q) -> C pq
elimD-\/ C left right (\/-IL p) = left p
elimD-\/ C left right (\/-IR q) = right q
elim-\/ : {P Q R : Set} -> (P -> R) -> (Q -> R) -> P \/ Q -> R
elim-\/ = elimD-\/ (\_ -> _)
¬_ : Set -> Set
¬ P = P -> False
data ∃ {A : Set}(P : A -> Set) : Set where
∃-I : (w : A) -> P w -> ∃ P
∏ : {A : Set}(P : A -> Set) -> Set
∏ {A} P = (x : A) -> P x
|
{
"alphanum_fraction": 0.4192740926,
"avg_line_length": 19.0238095238,
"ext": "agda",
"hexsha": "a99b8574e4136d624833deeba61dfb610c547e43",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Base.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 347,
"size": 799
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Classes where
open import Cubical.Core.Everything
------------------------------------------------------------------------
-- Conversion typeclasses
-- | A typeclass to coerce values of A to some other type. The coercion used is
-- | only dependent on the input type, so the output type does not need to be inferable.
-- |
-- | Coersion should mainly be used for any case where there is only one
-- | unambiguous possible conversion that can happen to some object, such as
-- | the coersions of algebras to their carrier types.
record Coerce {a} (A : Type a) : Typeω where
field
b : Level
Target : Type b
coerce : A → Target
open Coerce {{...}} using (coerce)
-- | An operator synonym for the typeclass method `coerce`.
⟨_⟩ = coerce
instance
-- Used for any case where sigma types are used to encode types with structure
ΣCoerce : ∀ {ℓ ℓ′} {A : Type ℓ} {P : A → Type ℓ′} → Coerce (Σ A P)
ΣCoerce = record { coerce = fst }
-- | A typeclass used to cast values of A to values of B. The cast performed is
-- | based on both the input and output types, so both need to be inferable.
record Cast {a b} (A : Type a) (B : Type b) : Type (ℓ-max a b) where
field
cast : A → B
open Cast {{...}}
-- | An operator synonym for the typeclass method `coerce`.
[_] = cast
------------------------------------------------------------------------
-- Homomorphism typeclasses
-- | A typeclass for function/equivalence types that respect
-- | some structure. The input types are different to allow for
-- | universe polymorphism.
record HomOperators {a b} (A : Type a) (B : Type b) ℓ
: Type (ℓ-max (ℓ-max a b) (ℓ-suc ℓ)) where
field
_⟶ᴴ_ : A → B → Type ℓ
_≃ᴴ_ : A → B → Type ℓ
open HomOperators {{...}} public
|
{
"alphanum_fraction": 0.6113249038,
"avg_line_length": 30.3166666667,
"ext": "agda",
"hexsha": "eb44245bddb26e165c910cfc669f5c97188b19da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Classes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Classes.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Classes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 504,
"size": 1819
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.LawvereTheories where
-- Category of Lawvere Theories
open import Level
open import Categories.Category
open import Categories.Functor.Cartesian.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Theory.Lawvere
LawvereTheories : (o ℓ e : Level) → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
LawvereTheories o ℓ e = record
{ Obj = FiniteProduct o ℓ e
; _⇒_ = LT-Hom
; _≈_ = λ H₁ H₂ → F H₁ ≃ F H₂
; id = LT-id
; _∘_ = LT-∘
; assoc = λ { {f = f} {g} {h} → associator (F f) (F g) (F h)}
; sym-assoc = λ { {f = f} {g} {h} → sym-associator (F f) (F g) (F h)}
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = _ⓘₕ_
}
where open LT-Hom
|
{
"alphanum_fraction": 0.6342857143,
"avg_line_length": 30.1724137931,
"ext": "agda",
"hexsha": "f00c7609cd98e65bcd7c01f133f2bd8b7db014b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bond15/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/LawvereTheories.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bond15/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/LawvereTheories.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bond15/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/LawvereTheories.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 332,
"size": 875
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Bits.Order where
open import Data.Bits
open import Data.Bool
open import Level
infix 4 _≤ᴮ_ _<ᴮ_
_≤ᴮ_ _<ᴮ_ : Bits → Bits → Bool
[] ≤ᴮ ys = true
0∷ xs ≤ᴮ [] = false
0∷ xs ≤ᴮ 0∷ ys = xs ≤ᴮ ys
0∷ xs ≤ᴮ 1∷ ys = true
1∷ xs ≤ᴮ [] = false
1∷ xs ≤ᴮ 0∷ ys = false
1∷ xs ≤ᴮ 1∷ ys = xs ≤ᴮ ys
xs <ᴮ [] = false
[] <ᴮ 0∷ ys = true
0∷ xs <ᴮ 0∷ ys = xs <ᴮ ys
1∷ xs <ᴮ 0∷ ys = false
[] <ᴮ 1∷ ys = true
0∷ xs <ᴮ 1∷ ys = true
1∷ xs <ᴮ 1∷ ys = xs <ᴮ ys
infix 4 _≤_ _<_
_≤_ _<_ : Bits → Bits → Type
xs ≤ ys = T (xs ≤ᴮ ys)
xs < ys = T (xs <ᴮ ys)
|
{
"alphanum_fraction": 0.5217391304,
"avg_line_length": 19.2903225806,
"ext": "agda",
"hexsha": "f45678892512e334a9f5e8f5aedbd6492852fc82",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Bits/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Bits/Order.agda",
"max_line_length": 32,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Bits/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 342,
"size": 598
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Empty.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Empty.Base
isProp⊥ : isProp ⊥
isProp⊥ ()
isContr⊥→A : ∀ {ℓ} {A : Type ℓ} → isContr (⊥ → A)
fst isContr⊥→A ()
snd isContr⊥→A f i ()
uninhabEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'}
→ (A → ⊥) → (B → ⊥) → A ≃ B
uninhabEquiv ¬a ¬b = isoToEquiv isom
where
open Iso
isom : Iso _ _
isom .fun a = rec (¬a a)
isom .inv b = rec (¬b b)
isom .rightInv b = rec (¬b b)
isom .leftInv a = rec (¬a a)
|
{
"alphanum_fraction": 0.6306027821,
"avg_line_length": 23.1071428571,
"ext": "agda",
"hexsha": "1f64d9f831e0f5be4ee73305a327dd4f6afd5876",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Empty/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Empty/Properties.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Empty/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 260,
"size": 647
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.PullbackDef
{- In this file we prove that if two diagrams are equivalent (there are
equivalences between the types and the squares are commutative), then the
natural map between the pullbacks is also an equivalence -}
module Homotopy.PullbackInvariantEquiv {i}
(d d' : pullback-diag i) where
private
pullback-to-pullback : ∀ {i} {A A' : Set i} (p : A ≡ A')
{B B' : Set i} (q : B ≡ B') {C C' : Set i} (r : C ≡ C')
{f : A → C} {f' : A' → C'}
(s : (a : A) → f' ((transport _ p) a) ≡ transport _ r (f a))
{g : B → C} {g' : B' → C'}
(t : (b : B) → transport _ r (g b) ≡ g' ((transport _ q) b))
→ pullback (diag A , B , C , f , g) → pullback (diag A' , B' , C' , f' , g')
pullback-to-pullback p q r s t (a , b , e) =
(transport _ p a , transport _ q b , (s a ∘ (ap (transport _ r) e ∘ t b)))
transport-pullback : ∀ {i} {A A' : Set i} (p : A ≡ A')
{B B' : Set i} (q : B ≡ B') {C C' : Set i} (r : C ≡ C')
{f : A → C} {f' : A' → C'} (s : f' ◯ (transport _ p) ≡ transport _ r ◯ f)
{g : B → C} {g' : B' → C'} (t : transport _ r ◯ g ≡ g' ◯ (transport _ q))
→ transport pullback (pullback-diag-raw-eq p q r {f' = f'} s {g' = g'} t)
≡ pullback-to-pullback p q r (happly s) (happly t)
transport-pullback refl refl refl refl refl =
funext (λ r → ap (λ u → _ , _ , u)
(! (ap-id _) ∘ ! (refl-right-unit _)))
transport-pullback-funext : ∀ {i} {A A' : Set i} (p : A ≡ A')
{B B' : Set i} (q : B ≡ B') {C C' : Set i} (r : C ≡ C')
{f : A → C} {f' : A' → C'}
(s : (a : A) → f' ((transport _ p) a) ≡ transport _ r (f a))
{g : B → C} {g' : B' → C'}
(t : (b : B) → transport _ r (g b) ≡ g' ((transport _ q) b))
→ transport pullback (pullback-diag-raw-eq p q r {f' = f'} (funext s)
{g' = g'} (funext t))
≡ pullback-to-pullback p q r s t
transport-pullback-funext p q r s t =
transport-pullback p q r (funext s) (funext t)
∘ (ap (λ u → pullback-to-pullback p q r u (happly (funext t)))
(happly-funext s)
∘ ap (λ u → pullback-to-pullback p q r s u) (happly-funext t))
path-to-eq-ap : ∀ {i j} {A : Set i} (P : A → Set j) {x y : A} (p : x ≡ y)
→ π₁ (path-to-eq (ap P p)) ≡ transport P p
path-to-eq-ap P refl = refl
open pullback-diag d
open pullback-diag d' renaming (A to A'; B to B'; C to C'; f to f'; g to g')
module PullbackInvariantEquiv (eqA : A ≃ A') (eqB : B ≃ B') (eqC : C ≃ C')
(p : (a : A) → f' (eqA ☆ a) ≡ eqC ☆ (f a))
(q : (b : B) → eqC ☆ (g b) ≡ g' (eqB ☆ b)) where
private
d≡d' : d ≡ d'
d≡d' = pullback-diag-eq eqA eqB eqC p q
pullback-equiv-pullback : pullback d ≃ pullback d'
pullback-equiv-pullback = path-to-eq (ap pullback d≡d')
h : (a : A) → f' ((transport (λ v → v) (eq-to-path eqA) a))
≡ transport (λ v → v) (eq-to-path eqC) (f a)
h a = ap f' (trans-id-eq-to-path eqA a)
∘ (p a ∘ (! (trans-id-eq-to-path eqC (f a))))
h' : (b : B) → transport (λ v → v) (eq-to-path eqC) (g b)
≡ g' ((transport (λ v → v) (eq-to-path eqB) b))
h' b = trans-id-eq-to-path eqC (g b)
∘ (q b ∘ ap g' (! (trans-id-eq-to-path eqB b)))
pullback-to-equiv-pullback : pullback d → pullback d'
pullback-to-equiv-pullback (a , b , e) =
((eqA ☆ a) , (eqB ☆ b) , (p a ∘ (ap (π₁ eqC) e ∘ q b)))
private
pb-to-pb-equal-pb-to-equiv-pb : (x : pullback d)
→ pullback-to-pullback (eq-to-path eqA) (eq-to-path eqB) (eq-to-path eqC)
h h' x
≡ pullback-to-equiv-pullback x
pb-to-pb-equal-pb-to-equiv-pb (a , b , h) =
pullback-eq d' (trans-id-eq-to-path eqA a)
(trans-id-eq-to-path eqB b)
(concat-assoc (ap f' (trans-id (eq-to-path eqA) a ∘ _) ∘ _) _ _
∘ (concat-assoc (ap f' (trans-id (eq-to-path eqA) a ∘ _)) _ _
∘ whisker-left (ap f' (trans-id (eq-to-path eqA) a ∘ _))
(concat-assoc (p a) _ _
∘ whisker-left (p a)
(whisker-left (! (trans-id (eq-to-path eqC) (f a) ∘ _))
(concat-assoc (ap (transport (λ v → v) (eq-to-path eqC)) h) _ _
∘ whisker-left (ap (transport (λ v → v) (eq-to-path eqC)) h)
(concat-assoc (trans-id (eq-to-path eqC) (g b) ∘ _) _ _
∘ whisker-left (trans-id (eq-to-path eqC) (g b) ∘ _)
(concat-assoc (q b) _ _
∘ (whisker-left (q b)
(concat-ap g' (! (trans-id (eq-to-path eqB) b ∘ _)) _
∘ ap (ap g')
(opposite-left-inverse (trans-id (eq-to-path eqB) b ∘ _)))
∘ refl-right-unit (q b)))))
∘ move!-right-on-left (trans-id (eq-to-path eqC) (f a) ∘ _) _ _
(! (concat-assoc (ap (transport (λ v → v) (eq-to-path eqC)) h)
(trans-id (eq-to-path eqC) (g b) ∘ _) _)
∘ ((whisker-right (q b)
(homotopy-naturality (transport (λ v → v) (eq-to-path eqC))
(π₁ eqC)
(λ t → trans-id (eq-to-path eqC) t
∘ ap (λ u → π₁ u t) (eq-to-path-right-inverse eqC))
h))
∘ concat-assoc (trans-id (eq-to-path eqC) (f a) ∘ _) (ap (π₁ eqC) h)
(q b)))))))
pb-equiv-pb-equal-pb-to-equiv-pb
: π₁ pullback-equiv-pullback ≡ pullback-to-equiv-pullback
pb-equiv-pb-equal-pb-to-equiv-pb =
path-to-eq-ap pullback d≡d'
∘ (transport-pullback-funext (eq-to-path eqA) (eq-to-path eqB)
(eq-to-path eqC) h h'
∘ funext pb-to-pb-equal-pb-to-equiv-pb)
abstract
pullback-invariant-is-equiv : is-equiv pullback-to-equiv-pullback
pullback-invariant-is-equiv =
transport is-equiv pb-equiv-pb-equal-pb-to-equiv-pb
(π₂ pullback-equiv-pullback)
pullback-invariant-equiv : pullback d ≃ pullback d'
pullback-invariant-equiv =
(pullback-to-equiv-pullback , pullback-invariant-is-equiv)
open PullbackInvariantEquiv public
|
{
"alphanum_fraction": 0.5113466954,
"avg_line_length": 44.3897058824,
"ext": "agda",
"hexsha": "1cc15e4eacce802ad878fea14b5f2fe657c31311",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/PullbackInvariantEquiv.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/PullbackInvariantEquiv.agda",
"max_line_length": 80,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/PullbackInvariantEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2230,
"size": 6037
}
|
module Formalization.FunctionML where
import Lvl
open import Numeral.Finite
open import Numeral.Natural
open import Type{Lvl.𝟎}
data Value : ℕ → Type
data Expression : ℕ → Type
data Value where
const : ∀{n} → ℕ → Value n
var : ∀{n} → 𝕟(n) → Value n
y-combinator : ∀{n} → Value n
func : ∀{n} → Value(𝐒 n) → Value n
data Expression where
val : ∀{n} → Value n → Expression n
apply : ∀{n} → Expression n → Expression n
|
{
"alphanum_fraction": 0.6498855835,
"avg_line_length": 20.8095238095,
"ext": "agda",
"hexsha": "b0540ced55447fbe5c5263c1506f41ecb638a573",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/FunctionalML.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/FunctionalML.agda",
"max_line_length": 44,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/FunctionalML.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 150,
"size": 437
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Containers core
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Container.Core where
open import Level
open import Data.Product as Prod using (Σ-syntax)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse)
open import Relation.Unary using (Pred; _⊆_)
-- Definition of Containers
infix 5 _▷_
record Container (s p : Level) : Set (suc (s ⊔ p)) where
constructor _▷_
field
Shape : Set s
Position : Shape → Set p
open Container public
-- The semantics ("extension") of a container.
⟦_⟧ : ∀ {s p ℓ} → Container s p → Set ℓ → Set (s ⊔ p ⊔ ℓ)
⟦ S ▷ P ⟧ X = Σ[ s ∈ S ] (P s → X)
-- The extension is a functor
map : ∀ {s p x y} {C : Container s p} {X : Set x} {Y : Set y} →
(X → Y) → ⟦ C ⟧ X → ⟦ C ⟧ Y
map f = Prod.map₂ (f ∘_)
-- Representation of container morphisms.
record _⇒_ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂)
: Set (s₁ ⊔ s₂ ⊔ p₁ ⊔ p₂) where
constructor _▷_
field
shape : Shape C₁ → Shape C₂
position : ∀ {s} → Position C₂ (shape s) → Position C₁ s
⟪_⟫ : ∀ {x} {X : Set x} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X
⟪_⟫ = Prod.map shape (_∘′ position)
open _⇒_ public
-- Linear container morphisms
record _⊸_ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂)
: Set (s₁ ⊔ s₂ ⊔ p₁ ⊔ p₂) where
field
shape⊸ : Shape C₁ → Shape C₂
position⊸ : ∀ {s} → Position C₂ (shape⊸ s) ↔ Position C₁ s
morphism : C₁ ⇒ C₂
morphism = record
{ shape = shape⊸
; position = _⟨$⟩_ (Inverse.to position⊸)
}
⟪_⟫⊸ : ∀ {x} {X : Set x} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X
⟪_⟫⊸ = ⟪ morphism ⟫
open _⊸_ public using (shape⊸; position⊸; ⟪_⟫⊸)
|
{
"alphanum_fraction": 0.5423819742,
"avg_line_length": 26.2535211268,
"ext": "agda",
"hexsha": "933dc01384bc0205a00ffc06c068b967241654ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Core.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 689,
"size": 1864
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- A categorical view of N-ary products
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.N-ary.Categorical where
open import Agda.Builtin.Nat
open import Data.Product hiding (map)
open import Data.Product.N-ary
open import Function
open import Category.Functor
open import Category.Applicative
open import Category.Monad
------------------------------------------------------------------------
-- Functor and applicative
functor : ∀ {ℓ} n → RawFunctor {ℓ} (_^ n)
functor n = record { _<$>_ = λ f → map f n }
applicative : ∀ {ℓ} n → RawApplicative {ℓ} (_^ n)
applicative n = record
{ pure = replicate n
; _⊛_ = ap n
}
------------------------------------------------------------------------
-- Get access to other monadic functions
module _ {f F} (App : RawApplicative {f} F) where
open RawApplicative App
sequenceA : ∀ {n A} → F A ^ n → F (A ^ n)
sequenceA {0} _ = pure _
sequenceA {1} fa = fa
sequenceA {2+ n} (fa , fas) = _,_ <$> fa ⊛ sequenceA fas
mapA : ∀ {n a} {A : Set a} {B} → (A → F B) → A ^ n → F (B ^ n)
mapA f = sequenceA ∘ map f _
forA : ∀ {n a} {A : Set a} {B} → A ^ n → (A → F B) → F (B ^ n)
forA = flip mapA
module _ {m M} (Mon : RawMonad {m} M) where
private App = RawMonad.rawIApplicative Mon
sequenceM : ∀ {n A} → M A ^ n → M (A ^ n)
sequenceM = sequenceA App
mapM : ∀ {n a} {A : Set a} {B} → (A → M B) → A ^ n → M (B ^ n)
mapM = mapA App
forM : ∀ {n a} {A : Set a} {B} → A ^ n → (A → M B) → M (B ^ n)
forM = forA App
|
{
"alphanum_fraction": 0.4788235294,
"avg_line_length": 27.4193548387,
"ext": "agda",
"hexsha": "ba9448972d099fa706d04e02e5efb0b323203107",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/N-ary/Categorical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/N-ary/Categorical.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/N-ary/Categorical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 526,
"size": 1700
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Connected
module Homotopy.Extensions.ProductPushoutToProductToConnected
{i j} {A A′ B B′ : Set i} (f : A → A′) (g : B → B′) (P : A′ → B′ → Set j)
{n₁ n₂} ⦃ P-is-trunc : ∀ a′ b′ → is-truncated (n₁ +2+ n₂) (P a′ b′) ⦄
(f-is-conn : has-connected-fibers n₁ f)
(g-is-conn : has-connected-fibers n₂ g)
(left* : ∀ a′ b → P a′ (g b))
(right* : ∀ a b′ → P (f a) b′)
(glue* : ∀ a b → left* (f a) b ≡ right* a (g b))
where
open import Homotopy.Truncation
open import Homotopy.Extensions.ProductPushoutToProductToConnected.Magic
{-
-- The pushout diagram you should have in your mind.
connected-extend-diag : pushout-diag i
connected-extend-diag = record
{ A = A′ × B
; B = A × B′
; C = A × B
; f = λ{(a , b) → f a , b}
; g = λ{(a , b) → a , g b}
}
-}
private
-- The first part: The extension for a fixed [a] is n₁-truncated.
extension₁ : ∀ a′ → Set (max i j)
extension₁ a′ = extension g (P a′) (left* a′)
extend-magic₁ : ∀ a′ → is-truncated n₁ (extension₁ a′)
extend-magic₁ a′ = extension-is-truncated
g g-is-conn (P a′) ⦃ P-is-trunc a′ ⦄ (left* a′)
-- The second part: The extension of extensions is contractible.
extension₂ : Set (max i j)
extension₂ = extension f extension₁ (λ a → right* a , glue* a)
abstract
extend-magic₂ : is-truncated ⟨-2⟩ extension₂
extend-magic₂ = extension-is-truncated
f f-is-conn extension₁ ⦃ extend-magic₁ ⦄ (λ a → right* a , glue* a)
extend-magic₃ : extension₂
extend-magic₃ = π₁ extend-magic₂
abstract
-- Get the buried function.
connected-extend : ∀ a′ b′ → P a′ b′
connected-extend a′ b′ = π₁ (π₁ extend-magic₃ a′) b′
-- β rules
connected-extend-β-left : ∀ a′ b → connected-extend a′ (g b) ≡ left* a′ b
connected-extend-β-left a′ b = ! $ π₂ (π₁ extend-magic₃ a′) b
connected-extend-β-right : ∀ a b′ → connected-extend (f a) b′ ≡ right* a b′
connected-extend-β-right a b′ = ! $ happly (base-path (π₂ extend-magic₃ a)) b′
private
-- This is a combination of 2~3 basic rules.
lemma₁ : ∀ a (k : ∀ b → P (f a) (g b))
{l₁ l₂ : ∀ b′ → P (f a) b′} (p : l₁ ≡ l₂) (q : ∀ b → k b ≡ l₁ (g b)) c
→ transport (λ l → ∀ b → k b ≡ l (g b)) p q c
≡ q c ∘ happly p (g c)
lemma₁ a k refl q c = ! $ refl-right-unit _
connected-extend-triangle : ∀ a b
→ connected-extend-β-left (f a) b ∘ glue* a b
≡ connected-extend-β-right a (g b)
connected-extend-triangle a b =
! (π₂ (π₁ extend-magic₃ (f a)) b) ∘ glue* a b
≡⟨ ap (λ p → ! p ∘ glue* a b) $ ! $ happly (fiber-path (π₂ extend-magic₃ a)) b ⟩
! (transport (λ l → ∀ b → left* (f a) b ≡ l (g b)) (base-path (π₂ extend-magic₃ a)) (glue* a) b) ∘ glue* a b
≡⟨ ap (λ p → ! p ∘ glue* a b)
$ lemma₁ a (left* (f a)) (base-path (π₂ extend-magic₃ a)) (glue* a) b ⟩
! (glue* a b ∘ happly (base-path (π₂ extend-magic₃ a)) (g b)) ∘ glue* a b
≡⟨ ap (λ p → p ∘ glue* a b) $ opposite-concat (glue* a b) (happly (base-path (π₂ extend-magic₃ a)) (g b)) ⟩
(connected-extend-β-right a (g b) ∘ ! (glue* a b)) ∘ glue* a b
≡⟨ concat-assoc (connected-extend-β-right a (g b)) (! (glue* a b)) (glue* a b) ⟩
connected-extend-β-right a (g b) ∘ ! (glue* a b) ∘ glue* a b
≡⟨ ap (λ p → connected-extend-β-right a (g b) ∘ p) $ opposite-left-inverse (glue* a b) ⟩
connected-extend-β-right a (g b) ∘ refl
≡⟨ refl-right-unit _ ⟩∎
connected-extend-β-right a (g b)
∎
|
{
"alphanum_fraction": 0.5503726194,
"avg_line_length": 39.3804347826,
"ext": "agda",
"hexsha": "bd29fe45ae5a5da40bf99d096ad6210cdacb55ea",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Extensions/ProductPushoutToProductToConnected.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Extensions/ProductPushoutToProductToConnected.agda",
"max_line_length": 115,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Extensions/ProductPushoutToProductToConnected.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1402,
"size": 3623
}
|
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with contexts as concrete worlds, and glueing for □ only.
-- Gentzen-style syntax.
module BasicIS4.Semantics.TarskiGluedGentzen where
open import BasicIS4.Syntax.Common public
open import Common.Semantics public
-- Intuitionistic Tarski models.
record Model : Set₁ where
infix 3 _⊩ᵅ_ _[⊢]_ _[⊢⋆]_
field
-- Forcing for atomic propositions; monotonic.
_⊩ᵅ_ : Cx Ty → Atom → Set
mono⊩ᵅ : ∀ {P Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ᵅ P → Γ′ ⊩ᵅ P
-- Gentzen-style syntax representation; monotonic.
_[⊢]_ : Cx Ty → Ty → Set
_[⊢⋆]_ : Cx Ty → Cx Ty → Set
mono[⊢] : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ [⊢] A → Γ′ [⊢] A
[var] : ∀ {A Γ} → A ∈ Γ → Γ [⊢] A
[lam] : ∀ {A B Γ} → Γ , A [⊢] B → Γ [⊢] A ▻ B
[app] : ∀ {A B Γ} → Γ [⊢] A ▻ B → Γ [⊢] A → Γ [⊢] B
[multibox] : ∀ {A Δ Γ} → Γ [⊢⋆] □⋆ Δ → □⋆ Δ [⊢] A → Γ [⊢] □ A
[down] : ∀ {A Γ} → Γ [⊢] □ A → Γ [⊢] A
[pair] : ∀ {A B Γ} → Γ [⊢] A → Γ [⊢] B → Γ [⊢] A ∧ B
[fst] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] A
[snd] : ∀ {A B Γ} → Γ [⊢] A ∧ B → Γ [⊢] B
[unit] : ∀ {Γ} → Γ [⊢] ⊤
-- TODO: Workarounds for Agda bug #2143.
top[⊢⋆] : ∀ {Γ} → (Γ [⊢⋆] ∅) ≡ 𝟙
pop[⊢⋆] : ∀ {Ξ A Γ} → (Γ [⊢⋆] Ξ , A) ≡ (Γ [⊢⋆] Ξ × Γ [⊢] A)
infix 3 _[⊢]⋆_
_[⊢]⋆_ : Cx Ty → Cx Ty → Set
Γ [⊢]⋆ ∅ = 𝟙
Γ [⊢]⋆ Ξ , A = Γ [⊢]⋆ Ξ × Γ [⊢] A
[⊢⋆]→[⊢]⋆ : ∀ {Ξ Γ} → Γ [⊢⋆] Ξ → Γ [⊢]⋆ Ξ
[⊢⋆]→[⊢]⋆ {∅} {Γ} ts = ∙
[⊢⋆]→[⊢]⋆ {Ξ , A} {Γ} ts rewrite pop[⊢⋆] {Ξ} {A} {Γ} = [⊢⋆]→[⊢]⋆ (π₁ ts) , π₂ ts
[⊢]⋆→[⊢⋆] : ∀ {Ξ Γ} → Γ [⊢]⋆ Ξ → Γ [⊢⋆] Ξ
[⊢]⋆→[⊢⋆] {∅} {Γ} ∙ rewrite top[⊢⋆] {Γ} = ∙
[⊢]⋆→[⊢⋆] {Ξ , A} {Γ} (ts , t) rewrite pop[⊢⋆] {Ξ} {A} {Γ} = [⊢]⋆→[⊢⋆] ts , t
open Model {{…}} public
-- Forcing in a particular model.
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : Cx Ty → Ty → Set
Γ ⊩ α P = Γ ⊩ᵅ P
Γ ⊩ A ▻ B = ∀ {Γ′} → Γ ⊆ Γ′ → Γ′ ⊩ A → Γ′ ⊩ B
Γ ⊩ □ A = ∀ {Γ′} → Γ ⊆ Γ′ → Glue (Γ′ [⊢] □ A) (Γ′ ⊩ A)
Γ ⊩ A ∧ B = Γ ⊩ A × Γ ⊩ B
Γ ⊩ ⊤ = 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : Cx Ty → Cx Ty → Set
Γ ⊩⋆ ∅ = 𝟙
Γ ⊩⋆ Ξ , A = Γ ⊩⋆ Ξ × Γ ⊩ A
-- Monotonicity with respect to context inclusion.
module _ {{_ : Model}} where
mono⊩ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩ A → Γ′ ⊩ A
mono⊩ {α P} η s = mono⊩ᵅ η s
mono⊩ {A ▻ B} η s = λ η′ → s (trans⊆ η η′)
mono⊩ {□ A} η s = λ η′ → s (trans⊆ η η′)
mono⊩ {A ∧ B} η s = mono⊩ {A} η (π₁ s) , mono⊩ {B} η (π₂ s)
mono⊩ {⊤} η s = ∙
mono⊩⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊩⋆ Ξ → Γ′ ⊩⋆ Ξ
mono⊩⋆ {∅} η ∙ = ∙
mono⊩⋆ {Ξ , A} η (ts , t) = mono⊩⋆ {Ξ} η ts , mono⊩ {A} η t
-- Shorthand for variables.
module _ {{_ : Model}} where
[v₀] : ∀ {A Γ} → Γ , A [⊢] A
[v₀] = [var] i₀
[v₁] : ∀ {A B Γ} → Γ , A , B [⊢] A
[v₁] = [var] i₁
[v₂] : ∀ {A B C Γ} → Γ , A , B , C [⊢] A
[v₂] = [var] i₂
-- Useful theorems in functional form.
module _ {{_ : Model}} where
[multicut] : ∀ {Ξ A Γ} → Γ [⊢]⋆ Ξ → Ξ [⊢] A → Γ [⊢] A
[multicut] {∅} ∙ u = mono[⊢] bot⊆ u
[multicut] {Ξ , B} (ts , t) u = [app] ([multicut] ts ([lam] u)) t
[dist] : ∀ {A B Γ} → Γ [⊢] □ (A ▻ B) → Γ [⊢] □ A → Γ [⊢] □ B
[dist] t u = [multibox] ([⊢]⋆→[⊢⋆] ((∙ , t) , u)) ([app] ([down] [v₁]) ([down] [v₀]))
[up] : ∀ {A Γ} → Γ [⊢] □ A → Γ [⊢] □ □ A
[up] t = [multibox] ([⊢]⋆→[⊢⋆] ((∙ , t))) [v₀]
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B Γ} → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ B
s ⟪$⟫ a = s refl⊆ a
⟪K⟫ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A
⟪K⟫ {A} a η = K (mono⊩ {A} η a)
⟪S⟫ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ A ▻ B → Γ ⊩ A → Γ ⊩ C
⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a)
⟪S⟫′ : ∀ {A B C Γ} → Γ ⊩ A ▻ B ▻ C → Γ ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ η s₂ η′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans⊆ η η′) s₁
s₂′ = mono⊩ {A ▻ B} η′ s₂
in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a
_⟪D⟫_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A → Γ ⊩ □ B
_⟪D⟫_ {A} {B} s₁ s₂ η = let t ⅋ s₁′ = s₁ η
u ⅋ a = s₂ η
in [dist] t u ⅋ _⟪$⟫_ {A} {B} s₁′ a
_⟪D⟫′_ : ∀ {A B Γ} → Γ ⊩ □ (A ▻ B) → Γ ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ η = _⟪D⟫_ (mono⊩ {□ (A ▻ B)} η s₁)
⟪↑⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ □ □ A
⟪↑⟫ s η = [up] (syn (s η)) ⅋ λ η′ → s (trans⊆ η η′)
⟪↓⟫ : ∀ {A Γ} → Γ ⊩ □ A → Γ ⊩ A
⟪↓⟫ s = sem (s refl⊆)
_⟪,⟫′_ : ∀ {A B Γ} → Γ ⊩ A → Γ ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} {B} a η = _,_ (mono⊩ {A} η a)
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : Cx Ty → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : Cx Ty → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
-- Entailment, or forcing in all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx Ty} → w ⊩ Γ ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
_⟦$⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B
_⟦$⟧_ {A} {B} s₁ s₂ γ = _⟪$⟫_ {A} {B} (s₁ γ) (s₂ γ)
⟦K⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B ▻ A
⟦K⟧ {A} {B} a γ = ⟪K⟫ {A} {B} (a γ)
⟦S⟧ : ∀ {A B C Γ w} → w ⊩ Γ ⇒ A ▻ B ▻ C → w ⊩ Γ ⇒ A ▻ B → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ C
⟦S⟧ {A} {B} {C} s₁ s₂ a γ = ⟪S⟫ {A} {B} {C} (s₁ γ) (s₂ γ) (a γ)
_⟦D⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ □ (A ▻ B) → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ B
(s₁ ⟦D⟧ s₂) γ = (s₁ γ) ⟪D⟫ (s₂ γ)
⟦↑⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ □ □ A
⟦↑⟧ s γ = ⟪↑⟫ (s γ)
⟦↓⟧ : ∀ {A Γ w} → w ⊩ Γ ⇒ □ A → w ⊩ Γ ⇒ A
⟦↓⟧ s γ = ⟪↓⟫ (s γ)
_⟦,⟧_ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A → w ⊩ Γ ⇒ B → w ⊩ Γ ⇒ A ∧ B
(a ⟦,⟧ b) γ = a γ , b γ
⟦π₁⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ A
⟦π₁⟧ s γ = π₁ (s γ)
⟦π₂⟧ : ∀ {A B Γ w} → w ⊩ Γ ⇒ A ∧ B → w ⊩ Γ ⇒ B
⟦π₂⟧ s γ = π₂ (s γ)
|
{
"alphanum_fraction": 0.3654381654,
"avg_line_length": 29.7804878049,
"ext": "agda",
"hexsha": "3764795b031cb6e80968ac5f37d217f7842c9928",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Semantics/TarskiGluedGentzen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Semantics/TarskiGluedGentzen.agda",
"max_line_length": 87,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Semantics/TarskiGluedGentzen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 3816,
"size": 6105
}
|
module Category where
open import Prelude
--------------------------------------------------------------------------------
record Category {ℓ ℓ′}
(𝒪 : Set ℓ) (_▹_ : 𝒪 → 𝒪 → Set ℓ′)
: Set (ℓ ⊔ ℓ′) where
field
idₓ : ∀ {x} → x ▹ x
_⋄_ : ∀ {x y z} → y ▹ x → z ▹ y → z ▹ x
lid⋄ : ∀ {x y} → (f : y ▹ x)
→ idₓ ⋄ f ≡ f
rid⋄ : ∀ {x y} → (f : y ▹ x)
→ f ⋄ idₓ ≡ f
assoc⋄ : ∀ {x y z a} → (h : a ▹ z) (g : z ▹ y) (f : y ▹ x)
→ (f ⋄ g) ⋄ h ≡ f ⋄ (g ⋄ h)
𝗦𝗲𝘁 : (ℓ : Level) → Category (Set ℓ) Π
𝗦𝗲𝘁 ℓ =
record
{ idₓ = id
; _⋄_ = _∘_
; lid⋄ = λ f → refl
; rid⋄ = λ f → refl
; assoc⋄ = λ h g f → refl
}
𝗦𝗲𝘁₀ : Category (Set ℓ₀) Π
𝗦𝗲𝘁₀ = 𝗦𝗲𝘁 ℓ₀
record Functor {ℓ₁ ℓ₁′ ℓ₂ ℓ₂′}
{𝒪₁ : Set ℓ₁} {_▹₁_ : 𝒪₁ → 𝒪₁ → Set ℓ₁′}
{𝒪₂ : Set ℓ₂} {_▹₂_ : 𝒪₂ → 𝒪₂ → Set ℓ₂′}
(𝗖 : Category 𝒪₁ _▹₁_) (𝗗 : Category 𝒪₂ _▹₂_)
: Set (ℓ₁ ⊔ ℓ₁′ ⊔ ℓ₂ ⊔ ℓ₂′) where
private
module C = Category 𝗖
module D = Category 𝗗
field
Fₓ : 𝒪₁ → 𝒪₂
F : ∀ {x y} → y ▹₁ x → Fₓ y ▹₂ Fₓ x
idF : ∀ {x} → F (C.idₓ {x = x}) ≡ D.idₓ
F⋄ : ∀ {x y z} → (g : z ▹₁ y) (f : y ▹₁ x)
→ F (f C.⋄ g) ≡ F f D.⋄ F g
record NaturalTransformation {ℓ₁ ℓ₁′ ℓ₂ ℓ₂′}
{𝒪₁ : Set ℓ₁} {_▹₁_ : 𝒪₁ → 𝒪₁ → Set ℓ₁′}
{𝒪₂ : Set ℓ₂} {_▹₂_ : 𝒪₂ → 𝒪₂ → Set ℓ₂′}
{𝗖 : Category 𝒪₁ _▹₁_} {𝗗 : Category 𝒪₂ _▹₂_}
(𝗙 𝗚 : Functor 𝗖 𝗗)
: Set (ℓ₁ ⊔ ℓ₁′ ⊔ ℓ₂ ⊔ ℓ₂′) where
private
open module D = Category 𝗗 using (_⋄_)
open module F = Functor 𝗙 using (Fₓ ; F)
open module G = Functor 𝗚 using () renaming (Fₓ to Gₓ ; F to G)
field
N : ∀ {x} → Fₓ x ▹₂ Gₓ x
natN : ∀ {x y} → (f : y ▹₁ x)
→ (N ⋄ F f) ≡ (G f ⋄ N)
Opposite : ∀ {ℓ ℓ′} → {𝒪 : Set ℓ} {_▹_ : 𝒪 → 𝒪 → Set ℓ′}
→ Category 𝒪 _▹_
→ Category 𝒪 (flip _▹_)
Opposite 𝗖 =
record
{ idₓ = C.idₓ
; _⋄_ = flip C._⋄_
; lid⋄ = C.rid⋄
; rid⋄ = C.lid⋄
; assoc⋄ = λ f g h → C.assoc⋄ h g f ⁻¹
}
where
module C = Category 𝗖
Presheaf : ∀ ℓ {ℓ′ ℓ″} → {𝒪 : Set ℓ′} {_▹_ : 𝒪 → 𝒪 → Set ℓ″}
→ (𝗖 : Category 𝒪 _▹_)
→ Set _
Presheaf ℓ 𝗖 = Functor (Opposite 𝗖) (𝗦𝗲𝘁 ℓ)
Presheaf₀ : ∀ {ℓ ℓ′} → {𝒪 : Set ℓ} {_▹_ : 𝒪 → 𝒪 → Set ℓ′}
→ (𝗖 : Category 𝒪 _▹_)
→ Set _
Presheaf₀ 𝗖 = Presheaf ℓ₀ 𝗖
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.3540530716,
"avg_line_length": 25.9528301887,
"ext": "agda",
"hexsha": "946249b7085fc821b87c3e4558243264073db331",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/Category.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1314,
"size": 2751
}
|
------------------------------------------------------------------------
-- Utility methods
------------------------------------------------------------------------
-- Should be pushed to the standard library
{-# OPTIONS --allow-exec #-}
open import Algebra.Core using (Op₂)
open import Level using (Level)
open import Data.Bool.Base using (T; Bool; if_then_else_; not; _∨_)
open import Data.Char.Properties using (_≟_)
open import Data.String using (String; _++_; lines; toList)
open import Data.Nat.Base using (ℕ; suc)
open import Data.Vec.Base using (Vec; []; _∷_)
open import Data.Vec.Functional using (Vector)
open import Data.Vec.Recursive using (_^_; toVec)
open import Data.Product using (_,_)
open import Data.Float.Base using (Float; _≤ᵇ_)
open import Data.List.Base using ([]; _∷_)
open import Data.List.Relation.Binary.Infix.Heterogeneous.Properties using (infix?)
open import Data.Unit.Base using (⊤; tt)
open import Relation.Nullary using (does)
open import Relation.Binary.Core using (Rel)
module Vehicle.Utils where
_⇒_ : Op₂ Bool
x ⇒ y = not x ∨ y
_≤_ : Rel Float _
x ≤ y = T (x ≤ᵇ y)
_⊆_ : String → String → Bool
s ⊆ t = does (infix? _≟_ (toList s) (toList t))
|
{
"alphanum_fraction": 0.6303797468,
"avg_line_length": 34.8529411765,
"ext": "agda",
"hexsha": "454799a3cb022a65ce288a45979c4ebf7716e6e5",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vehicle-lang/vehicle",
"max_forks_repo_path": "src/agda/Vehicle/Utils.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "src/agda/Vehicle/Utils.agda",
"max_line_length": 83,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "src/agda/Vehicle/Utils.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 305,
"size": 1185
}
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Word.Properties where
open import Agda.Builtin.Word
open import Agda.Builtin.Equality
primitive
primWord64ToNatInjective : ∀ a b → primWord64ToNat a ≡ primWord64ToNat b → a ≡ b
|
{
"alphanum_fraction": 0.7157190635,
"avg_line_length": 24.9166666667,
"ext": "agda",
"hexsha": "d51f3322f2a91a8e21dcef58599cad5251e619d7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Word/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Word/Properties.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Word/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-14T11:08:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-14T11:08:59.000Z",
"num_tokens": 84,
"size": 299
}
|
{-
This file contains:
- Definition of set quotients
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.SetQuotients.Base where
open import Cubical.Core.Primitives
-- Set quotients as a higher inductive type:
data _/_ {ℓ ℓ'} (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where
[_] : (a : A) → A / R
eq/ : (a b : A) → (r : R a b) → [ a ] ≡ [ b ]
squash/ : (x y : A / R) → (p q : x ≡ y) → p ≡ q
|
{
"alphanum_fraction": 0.5573394495,
"avg_line_length": 24.2222222222,
"ext": "agda",
"hexsha": "202ba845295e52dce13a39588e81f56a3cdfcb15",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/SetQuotients/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/SetQuotients/Base.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/SetQuotients/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 170,
"size": 436
}
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution {{eqrel : EqRelSet}} where
open import Definition.Untyped hiding (_∷_)
open import Definition.Typed
open import Definition.LogicalRelation
open import Tools.Nat
open import Tools.Product
open import Tools.Unit
private
variable
k ℓ m n l : Nat
Γ : Con Term n
-- The validity judgements:
-- We consider expressions that satisfy these judgments valid
mutual
-- Validity of contexts
data ⊩ᵛ_ : Con Term n → Set where
ε : ⊩ᵛ ε
_∙_ : ∀ {A l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ ⊩ᵛ Γ ∙ A
-- Validity of types
_⊩ᵛ⟨_⟩_/_ : {n : Nat} (Γ : Con Term n) (l : TypeLevel) (A : Term n) → ⊩ᵛ Γ → Set
_⊩ᵛ⟨_⟩_/_ {n} Γ l A [Γ] =
∀ {k : Nat} {Δ : Con Term k} {σ : Subst k n} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Σ (Δ ⊩⟨ l ⟩ subst σ A) (λ [Aσ]
→ ∀ {σ′} ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ)
([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ])
→ Δ ⊩⟨ l ⟩ subst σ A ≡ subst σ′ A / [Aσ])
-- Logical relation for substitutions from a valid context
_⊩ˢ_∷_/_/_ : (Δ : Con Term n) (σ : Subst n m) (Γ : Con Term m) ([Γ] : ⊩ᵛ Γ) (⊢Δ : ⊢ Δ)
→ Set
Δ ⊩ˢ σ ∷ .ε / ε / ⊢Δ = ⊤
Δ ⊩ˢ σ ∷ .(Γ ∙ A) / (_∙_ {Γ = Γ} {A} {l} [Γ] [A]) / ⊢Δ =
Σ (Δ ⊩ˢ tail σ ∷ Γ / [Γ] / ⊢Δ) λ [tailσ] →
(Δ ⊩⟨ l ⟩ head σ ∷ subst (tail σ) A / proj₁ ([A] ⊢Δ [tailσ]))
-- Logical relation for equality of substitutions from a valid context
_⊩ˢ_≡_∷_/_/_/_ : (Δ : Con Term n) (σ σ′ : Subst n m) (Γ : Con Term m) ([Γ] : ⊩ᵛ Γ)
(⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) → Set
--Δ ⊩ˢ σ ≡ σ′ ∷ Γ / x / y / z = {! !}
Δ ⊩ˢ σ ≡ σ′ ∷ .ε / ε / ⊢Δ / [σ] = ⊤
Δ ⊩ˢ σ ≡ σ′ ∷ .(Γ ∙ A) / (_∙_ {Γ = Γ} {A} {l} [Γ] [A]) / ⊢Δ / [σ] =
(Δ ⊩ˢ tail σ ≡ tail σ′ ∷ Γ / [Γ] / ⊢Δ / proj₁ [σ]) ×
(Δ ⊩⟨ l ⟩ head σ ≡ head σ′ ∷ subst (tail σ) A / proj₁ ([A] ⊢Δ (proj₁ [σ])))
-- Validity of terms
_⊩ᵛ⟨_⟩_∷_/_/_ : (Γ : Con Term n) (l : TypeLevel) (t A : Term n) ([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Set
Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] =
∀ {k} {Δ : Con Term k} {σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) →
Σ (Δ ⊩⟨ l ⟩ subst σ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])) λ [tσ] →
∀ {σ′} → Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]
→ Δ ⊩⟨ l ⟩ subst σ t ≡ subst σ′ t ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])
-- Validity of type equality
_⊩ᵛ⟨_⟩_≡_/_/_ : (Γ : Con Term n) (l : TypeLevel) (A B : Term n) ([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Set
Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] =
∀ {k} {Δ : Con Term k} {σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ A ≡ subst σ B / proj₁ ([A] ⊢Δ [σ])
-- Validity of term equality
_⊩ᵛ⟨_⟩_≡_∷_/_/_ : (Γ : Con Term n) (l : TypeLevel) (t u A : Term n) ([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Set
Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] =
∀ {k} {Δ : Con Term k} {σ} → (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ t ≡ subst σ u ∷ subst σ A / proj₁ ([A] ⊢Δ [σ])
-- Valid term equality with validity of its type and terms
record [_⊩ᵛ⟨_⟩_≡_∷_/_] (Γ : Con Term n) (l : TypeLevel)
(t u A : Term n) ([Γ] : ⊩ᵛ Γ) : Set where
constructor modelsTermEq
field
[A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
[t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]
[u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ A / [Γ] / [A]
[t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A]
-- Validity of reduction of terms
_⊩ᵛ_⇒_∷_/_ : (Γ : Con Term n) (t u A : Term n) ([Γ] : ⊩ᵛ Γ) → Set
Γ ⊩ᵛ t ⇒ u ∷ A / [Γ] = ∀ {k} {Δ : Con Term k} {σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊢ subst σ t ⇒ subst σ u ∷ subst σ A
|
{
"alphanum_fraction": 0.4308724832,
"avg_line_length": 39.6276595745,
"ext": "agda",
"hexsha": "951a6be1c3e6826758e39b3f54a2b61da5621f77",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z",
"max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "fhlkfy/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "fhlkfy/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution.agda",
"max_line_length": 90,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "fhlkfy/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z",
"num_tokens": 2005,
"size": 3725
}
|
module Extra where
open import Prelude
fromTo : Nat -> List Nat
fromTo n = f n
where
f : Nat -> List Nat
f 0 = []
f (suc i) = n - i ∷ f i
downFrom : Nat -> List Nat
downFrom 0 = []
downFrom (suc n) = (suc n) ∷ downFrom n
fromTo' : Nat -> List Nat
fromTo' = f []
where
f : List Nat -> Nat -> List Nat
f xs 0 = xs
f xs (suc x) = seq xs (f ( suc x ∷ xs ) x)
downFrom' : Nat -> List Nat
downFrom' n = f [] n
where
f : List Nat -> Nat -> List Nat
f xs 0 = xs
f xs (suc x) = seq xs (f ((n - x) ∷ xs) x)
blumblumshub : Nat -> (m : Nat) -> {{ nz : NonZero m }} -> Nat
blumblumshub xn M = natMod M (xn ^ 2)
downFromBbs' : Nat -> Nat -> List Nat
downFromBbs' seed = f seed []
where
f : Nat -> List Nat -> Nat -> List Nat
f _ acc 0 = acc
f x acc (suc l) = seq acc $ f (blumblumshub x M) ( x ∷ acc ) l
where
M M17 M31 : Nat
M = M17 * M31
M17 = 2971
M31 = 4111
fromToBbs : Nat -> Nat -> List Nat
fromToBbs _ 0 = []
fromToBbs xi (suc n) = xi ∷ fromToBbs (blumblumshub xi m) n
where
p = 2971
q = 4111
m = p * q
|
{
"alphanum_fraction": 0.5181576616,
"avg_line_length": 21.3018867925,
"ext": "agda",
"hexsha": "ea88f2b8f8369ca4ad4ff1a5f35483a595d7059f",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z",
"max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "xekoukou/agda-ocaml",
"max_forks_repo_path": "benchmark/agda-ocaml/Extra.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "xekoukou/agda-ocaml",
"max_issues_repo_path": "benchmark/agda-ocaml/Extra.agda",
"max_line_length": 64,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-ocaml",
"max_stars_repo_path": "benchmark/agda-ocaml/Extra.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z",
"num_tokens": 451,
"size": 1129
}
|
open import Data.Product using ( ∃ ; _×_ )
open import FRP.LTL.RSet.Core using ( RSet )
open import FRP.LTL.Time using ( _≤_ )
module FRP.LTL.RSet.Future where
◇ : RSet → RSet
◇ A t = ∃ λ u → (t ≤ u) × A u
|
{
"alphanum_fraction": 0.6267942584,
"avg_line_length": 20.9,
"ext": "agda",
"hexsha": "8473aa19cc82c29297a60dde2f640dc90d5bcb5e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Future.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Future.agda",
"max_line_length": 44,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Future.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 79,
"size": 209
}
|
{-# OPTIONS --sized-types #-}
module SList.Order.Properties {A : Set}(_≤_ : A → A → Set) where
open import List.Sorted _≤_
open import Size
open import SList
open import SList.Order _≤_
lemma-slist-sorted : {ι : Size}{x : A}{xs : SList A {ι}} → x *≤ xs → Sorted (unsize A xs) → Sorted (unsize A (x ∙ xs))
lemma-slist-sorted {x = x} genx nils = singls x
lemma-slist-sorted (gecx x≤y genx) (singls y) = conss x≤y (singls y)
lemma-slist-sorted (gecx x≤y x*≤zys ) syzys = conss x≤y syzys
lemma-sorted⊕ : {ι : Size}{x : A}{xs : SList A {ι}} → xs ≤* x → Sorted (unsize A xs) → Sorted (unsize A (_⊕_ A xs (x ∙ snil)))
lemma-sorted⊕ {x = x} {xs = snil} _ nils = singls x
lemma-sorted⊕ {x = x} {xs = y ∙ snil} (lecx y≤x _) (singls .y) = conss y≤x (singls x)
lemma-sorted⊕ {xs = y ∙ (z ∙ ys)} (lecx y≤x zys≤*x) (conss y≤z szys) = conss y≤z (lemma-sorted⊕ zys≤*x szys)
lemma-⊕≤* : {ι : Size}{x t : A}{xs : SList A {ι}} → x ≤ t → xs ≤* t → (_⊕_ A xs (x ∙ snil)) ≤* t
lemma-⊕≤* x≤t lenx = lecx x≤t lenx
lemma-⊕≤* x≤t (lecx y≤t ys≤*t) = lecx y≤t (lemma-⊕≤* x≤t ys≤*t)
|
{
"alphanum_fraction": 0.5877358491,
"avg_line_length": 48.1818181818,
"ext": "agda",
"hexsha": "1df392bffeeea716d5f3343cbeb06f3fc8b7da65",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SList/Order/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SList/Order/Properties.agda",
"max_line_length": 126,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SList/Order/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 515,
"size": 1060
}
|
-- Andreas, 2016-06-17, issue #2018 reported by Nisse
-- Shadowing a module parameter with a record parameter
-- caused the record parameter to be renamed
-- {-# OPTIONS -v tc.rec:20 #-}
module _ {A : Set} where
data D {A : Set} : Set where
c : D
record R {A : Set} : Set where
constructor rc
postulate
B : Set
test-c : (B : Set) → D {A = B}
test-c B = c {A = B}
test-rc : (B : Set) → R {A = B}
test-rc B = rc {A = B}
-- Error WAS:
-- Function does not accept argument {A = _}
-- when checking that {A = B} is a valid argument to a function of
-- type {A₁ : Set} → Set
-- Should work now.
|
{
"alphanum_fraction": 0.6115702479,
"avg_line_length": 19.5161290323,
"ext": "agda",
"hexsha": "9969821dd9dfabd4db5f624d444e9e395be5139e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2018.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2018.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2018.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 200,
"size": 605
}
|
module Cats.Category.Constructions.CCC where
open import Level
open import Cats.Category.Base
open import Cats.Category.Constructions.Exponential using
(HasExponentials)
open import Cats.Category.Constructions.Product using
(HasFiniteProducts)
record IsCCC {lo la l≈} (Cat : Category lo la l≈)
: Set (lo ⊔ la ⊔ l≈) where
field
{{hasFiniteProducts}} : HasFiniteProducts Cat
{{hasExponentials}} : HasExponentials Cat
|
{
"alphanum_fraction": 0.7586206897,
"avg_line_length": 25.5882352941,
"ext": "agda",
"hexsha": "1f3ca30c8ebd347176839fe16e7b529a10620887",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/CCC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/CCC.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/CCC.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 116,
"size": 435
}
|
module PLRTree.Heap.Correctness {A : Set}(_≤_ : A → A → Set) where
open import BTree.Heap _≤_
open import PLRTree {A}
open import PLRTree.Heap _≤_ renaming (Heap to Heap')
lemma-heap'-heap : {t : PLRTree} → Heap' t → Heap (forget t)
lemma-heap'-heap leaf = leaf
lemma-heap'-heap (node {t} {x} (lf≤* .x) (lf≤* .x) _ _) = single x
lemma-heap'-heap (node {t} {x} (lf≤* .x) (nd≤* x≤y _ _) _ h'r) = right x≤y (lemma-heap'-heap h'r)
lemma-heap'-heap (node {t} {x} (nd≤* x≤y _ _) (lf≤* .x) h'l _) = left x≤y (lemma-heap'-heap h'l)
lemma-heap'-heap (node (nd≤* x≤y _ _) (nd≤* x≤y' _ _) h'l h'r) = both x≤y x≤y' (lemma-heap'-heap h'l) (lemma-heap'-heap h'r)
|
{
"alphanum_fraction": 0.6003062787,
"avg_line_length": 50.2307692308,
"ext": "agda",
"hexsha": "ca2977cb7e67b292511f108c576c3eed97da1a3e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Heap/Correctness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Heap/Correctness.agda",
"max_line_length": 125,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Heap/Correctness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 296,
"size": 653
}
|
-- Andreas, 2018-10-16, runtime erasure
--
-- Should not be able to extract erased constructor field.
open import Agda.Builtin.Nat
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : {@0 n : Nat} (x : A) (xs : Vec A n) → Vec A (suc n)
length : ∀{A} {@0 n} (x : Vec A n) → Nat
length [] = zero
length (_∷_ {n} _ _) = suc n
-- Expected error:
--
-- Variable n is declared erased, so it cannot be used here
-- when checking that the expression n has type Nat
|
{
"alphanum_fraction": 0.6242038217,
"avg_line_length": 24.7894736842,
"ext": "agda",
"hexsha": "2831c2d699e29b9e79de071154adc4c3543d13a4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Erasure-No-Project-Erased-ConArg.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Erasure-No-Project-Erased-ConArg.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Erasure-No-Project-Erased-ConArg.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 157,
"size": 471
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.FunctionOver
{- The cofiber space of [winl : X → X ∨ Y] is equivalent to [Y],
- and the cofiber space of [winr : Y → X ∨ Y] is equivalent to [X]. -}
module cohomology.WedgeCofiber where
module WedgeCofiber {i} (X Y : Ptd i) where
module CofWinl where
module Into = CofiberRec {f = winl} (snd Y) (projr X Y) (λ _ → idp)
into = Into.f
out : fst Y → Cofiber (winl {X = X} {Y = Y})
out = cfcod ∘ winr
out-into : (κ : Cofiber (winl {X = X} {Y = Y})) → out (into κ) == κ
out-into = Cofiber-elim
(! (cfglue (snd X) ∙ ap cfcod wglue))
(Wedge-elim
(λ x → ! (cfglue (snd X) ∙ ap cfcod wglue) ∙ cfglue x)
(λ y → idp)
(↓-='-from-square $
(lemma (cfglue (snd X)) (ap cfcod wglue)
∙h⊡ (ap-∘ out (projr X Y) wglue ∙ ap (ap out) (Projr.glue-β X Y))
∙v⊡ bl-square (ap cfcod wglue))))
(λ x → ↓-∘=idf-from-square out into $
! (∙-unit-r _) ∙h⊡
ap (ap out) (Into.glue-β x) ∙v⊡
hid-square {p = (! (cfglue' winl (snd X) ∙ ap cfcod wglue))}
⊡v connection {q = cfglue x})
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z)
→ ! (p ∙ q) ∙ p == ! q
lemma idp idp = idp
⊙path : ⊙Cof (⊙winl {X = X} {Y = Y}) == Y
⊙path = ⊙ua (⊙≃-in (equiv into out (λ _ → idp) out-into) idp)
cfcod-over : ⊙cfcod' ⊙winl == ⊙projr X Y
[ (λ U → fst (X ⊙∨ Y ⊙→ U)) ↓ ⊙path ]
cfcod-over = codomain-over-⊙equiv (⊙cfcod' ⊙winl) _
▹ pair= idp (∙-unit-r _ ∙ ap-! into (cfglue (snd X))
∙ ap ! (Into.glue-β (snd X)))
module CofWinr where
module Into = CofiberRec {f = winr} (snd X) (projl X Y) (λ _ → idp)
into = Into.f
out : fst X → Cofiber (winr {X = X} {Y = Y})
out = cfcod ∘ winl
out-into : ∀ κ → out (into κ) == κ
out-into = Cofiber-elim
(ap cfcod wglue ∙ ! (cfglue (snd Y)))
(Wedge-elim
(λ x → idp)
(λ y → (ap cfcod wglue ∙ ! (cfglue (snd Y))) ∙ cfglue y)
(↓-='-from-square $
(ap-∘ out (projl X Y) wglue ∙ ap (ap out) (Projl.glue-β X Y)) ∙v⊡
connection
⊡h∙ ! (lemma (ap (cfcod' winr) wglue) (cfglue (snd Y)))))
(λ y → ↓-∘=idf-from-square out into $
! (∙-unit-r _) ∙h⊡
ap (ap out) (Into.glue-β y) ∙v⊡
hid-square {p = (ap (cfcod' winr) wglue ∙ ! (cfglue (snd Y)))}
⊡v connection {q = cfglue y})
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y)
→ (p ∙ ! q) ∙ q == p
lemma idp idp = idp
⊙path : ⊙Cof ⊙winr == X
⊙path = ⊙ua (⊙≃-in (equiv into out (λ _ → idp) out-into) idp)
cfcod-over : ⊙cfcod' ⊙winr == ⊙projl X Y
[ (λ U → fst (X ⊙∨ Y ⊙→ U)) ↓ ⊙path ]
cfcod-over = codomain-over-⊙equiv (⊙cfcod' ⊙winr) _
▹ pair= idp lemma
where
lemma : ap into (ap cfcod (! (! wglue)) ∙ ! (cfglue (snd Y))) ∙ idp
== idp
lemma =
ap into (ap cfcod (! (! wglue)) ∙ ! (cfglue (snd Y))) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap into (ap cfcod (! (! wglue)) ∙ ! (cfglue (snd Y)))
=⟨ !-! wglue
|in-ctx (λ w → ap into (ap cfcod w ∙ ! (cfglue (snd Y)))) ⟩
ap into (ap cfcod wglue ∙ ! (cfglue (snd Y)))
=⟨ ap-∙ into (ap cfcod wglue) (! (cfglue (snd Y))) ⟩
ap into (ap cfcod wglue) ∙ ap into (! (cfglue (snd Y)))
=⟨ ∘-ap into cfcod wglue
|in-ctx (_∙ ap into (! (cfglue (snd Y)))) ⟩
ap (projl X Y) wglue ∙ ap into (! (cfglue (snd Y)))
=⟨ Projl.glue-β X Y
|in-ctx (_∙ ap into (! (cfglue (snd Y)))) ⟩
ap into (! (cfglue (snd Y)))
=⟨ ap-! into (cfglue (snd Y)) ⟩
! (ap into (cfglue (snd Y)))
=⟨ ap ! (Into.glue-β (snd Y)) ⟩
idp ∎
|
{
"alphanum_fraction": 0.4618126273,
"avg_line_length": 36.0366972477,
"ext": "agda",
"hexsha": "bdce24d875335ef16860dc4f2524e74761315cc4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/WedgeCofiber.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/WedgeCofiber.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/WedgeCofiber.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1649,
"size": 3928
}
|
open import Relation.Binary.Core
module PLRTree.Insert.Complete {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Data.Empty
open import Data.Sum renaming (_⊎_ to _∨_)
open import PLRTree {A}
open import PLRTree.Compound {A}
open import PLRTree.Insert _≤_ tot≤
open import PLRTree.Insert.Properties _≤_ tot≤
open import PLRTree.Complete {A}
open import PLRTree.Complete.Properties {A}
open import PLRTree.Equality {A}
open import PLRTree.Equality.Properties {A}
lemma-≃-⊥ : {l : PLRTree}(x : A) → l ≃ insert x l → ⊥
lemma-≃-⊥ {leaf} _ ()
lemma-≃-⊥ {node perfect x' l' r'} x l≃lᵢ
with tot≤ x x' | l' | r' | l≃lᵢ
... | inj₁ x≤x' | leaf | leaf | ()
... | inj₁ x≤x' | leaf | node _ _ _ _ | ()
... | inj₁ x≤x' | node _ _ _ _ | leaf | ()
... | inj₁ x≤x' | node _ _ _ _ | node _ _ _ _ | ()
... | inj₂ x'≤x | leaf | leaf | ()
... | inj₂ x'≤x | leaf | node _ _ _ _ | ()
... | inj₂ x'≤x | node _ _ _ _ | leaf | ()
... | inj₂ x'≤x | node _ _ _ _ | node _ _ _ _ | ()
lemma-≃-⊥ {node left _ _ _} _ ()
lemma-≃-⊥ {node right _ _ _} _ ()
lemma-⋗-⊥ : {l : PLRTree}(x : A) → l ⋗ insert x l → ⊥
lemma-⋗-⊥ {leaf} _ ()
lemma-⋗-⊥ {node perfect x' l' r'} x l⋗lᵢ
with tot≤ x x' | l' | r' | l⋗lᵢ
... | inj₁ x≤x' | leaf | leaf | ()
... | inj₁ x≤x' | leaf | node _ _ _ _ | ()
... | inj₁ x≤x' | node _ _ _ _ | leaf | ()
... | inj₁ x≤x' | node _ _ _ _ | node _ _ _ _ | ()
... | inj₂ x'≤x | leaf | leaf | ()
... | inj₂ x'≤x | leaf | node _ _ _ _ | ()
... | inj₂ x'≤x | node _ _ _ _ | leaf | ()
... | inj₂ x'≤x | node _ _ _ _ | node _ _ _ _ | ()
lemma-⋗-⊥ {node left _ _ _} _ ()
lemma-⋗-⊥ {node right _ _ _} _ ()
lemma-⋙-⊥ : {l r : PLRTree}(x : A) → l ⋙ r → l ⋗ insert x r → ⊥
lemma-⋙-⊥ x (⋙p l⋗r) l⋗rᵢ = lemma-≃-⊥ x (lemma-⋗* l⋗r l⋗rᵢ)
lemma-⋙-⊥ x (⋙l {l' = l''} y' y'' l'≃r' l''⋘r'' l'⋗r'') l⋗rᵢ
with tot≤ x y''
... | inj₁ x≤y''
with insert y'' l'' | lemma-insert-compound y'' l'' | l⋗rᵢ
... | node perfect _ _ _ | compound | ()
... | node left _ _ _ | compound | ()
... | node right _ _ _ | compound | ()
lemma-⋙-⊥ x (⋙l {l' = l''} y' y'' l'≃r' l''⋘r'' l'⋗r'') l⋗rᵢ | inj₂ y''≤x
with insert x l'' | lemma-insert-compound x l'' | l⋗rᵢ
... | node perfect _ _ _ | compound | ()
... | node left _ _ _ | compound | ()
... | node right _ _ _ | compound | ()
lemma-⋙-⊥ x (⋙r {r' = r''} y' y'' l'≃r' l''⋙r'' l'≃l'') l⋗rᵢ
with tot≤ x y''
... | inj₁ x≤y''
with insert y'' r'' | lemma-insert-compound y'' r'' | l⋗rᵢ
... | node perfect _ _ _ | compound | ⋗nd .y' .x _ l''≃r''ᵢ l'⋗l'' = lemma-⋗refl-⊥ (lemma-⋗-≃ l'⋗l'' (sym≃ l'≃l''))
... | node left _ _ _ | compound | ()
... | node right _ _ _ | compound | ()
lemma-⋙-⊥ x (⋙r {r' = r''} y' y'' l'≃r' l''⋙r'' l'≃l'') l⋗rᵢ | inj₂ y''≤x
with insert x r'' | lemma-insert-compound x r'' | l⋗rᵢ
... | node perfect _ _ _ | compound | ⋗nd .y' .y'' _ l''≃r''ᵢ l'⋗l'' = lemma-⋗refl-⊥ (lemma-⋗-≃ l'⋗l'' (sym≃ l'≃l''))
... | node left _ _ _ | compound | ()
... | node right _ _ _ | compound | ()
lemma-insert-≃ : {l r : PLRTree}{x : A} → Compound l → l ≃ r → insert x l ⋘ r
lemma-insert-≃ {node perfect y l r} {node perfect y' l' r'} {x} compound (≃nd .y .y' l≃r l'≃r' l≃l')
with tot≤ x y | l | r | l≃r | l' | l≃l'
... | inj₁ x≤y | leaf | leaf | ≃lf | leaf | ≃lf = r⋘ x y' (⋙p (⋗lf y)) l'≃r' (⋗lf y)
... | inj₁ x≤y | node perfect z₁ _ _ | node perfect z₂ _ _ | ≃nd .z₁ .z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ | node perfect z₃ _ _ | ≃nd .z₁ .z₃ _ l₃≃r₃ l₁≃l₃
= l⋘ x y' (lemma-insert-≃ compound (≃nd z₁ z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂)) l'≃r' (≃nd z₂ z₃ l₂≃r₂ l₃≃r₃ (trans≃ (sym≃ l₁≃l₂) l₁≃l₃))
... | inj₂ y≤x | leaf | leaf | ≃lf | leaf | ≃lf = r⋘ y y' (⋙p (⋗lf x)) l'≃r' (⋗lf x)
... | inj₂ y≤x | node perfect z₁ _ _ | node perfect z₂ _ _ | ≃nd .z₁ .z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ | node perfect z₃ _ _ | ≃nd .z₁ .z₃ _ l₃≃r₃ l₁≃l₃
= l⋘ y y' (lemma-insert-≃ compound (≃nd z₁ z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂)) l'≃r' (≃nd z₂ z₃ l₂≃r₂ l₃≃r₃ (trans≃ (sym≃ l₁≃l₂) l₁≃l₃))
lemma-insert-⋗' : {l r : PLRTree}(x : A) → l ⋗ r → Compound r → l ⋙ (insert x r)
lemma-insert-⋗' x (⋗nd {l} {r} {l'} {r'} y y' l≃r l'≃r' l⋗l') compound
with tot≤ x y' | l' | r' | l'≃r' | l | l⋗l'
... | inj₁ x≤y' | leaf | leaf | ≃lf | node perfect x₁ leaf leaf | ⋗lf .x₁ = ⋙r y x l≃r (⋙p (⋗lf y')) (≃nd x₁ y' ≃lf ≃lf ≃lf)
... | inj₁ x≤y' | node perfect x₃ l₃ r₃ | node perfect x₄ l₄ r₄ | ≃nd .x₃ .x₄ l₃≃r₃ l₄≃r₄ l₃≃l₄ | node perfect x₁ l₁ r₁ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃
with tot≤ y' x₃ | l₃ | r₃ | l₃≃r₃ | l₁ | l₁⋗l₃
... | inj₁ y'≤x₃ | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁
with l₄ | l₃≃l₄
... | leaf | ≃lf =
let _l'ᵢ⋘r' = r⋘ y' x₄ (⋙p (⋗lf x₃)) l₄≃r₄ (⋗lf x₃) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ y' l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd y' x₄ ≃lf l₄≃r₄ ≃lf)
in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r'
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₁ x≤y' | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₁ y'≤x₃ | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅
with lemma-⋙-⋗ (lemma-insert-⋗' x₃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆))
... | inj₁ _l₃ᵢ⋘r₃ =
let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ;
_l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ;
_l'ᵢ⋘r' = l⋘ y' x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄)
in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r'
... | inj₂ _l₃ᵢ≃r₃
with lemma-≃-⊥ x₃ (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ) (sym≃ _l₃ᵢ≃r₃))
... | ()
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₁ x≤y' | node perfect x₃ _ _ | node perfect x₄ l₄ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃ | inj₂ x₃≤y' | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁
with l₄ | l₃≃l₄
... | leaf | ≃lf =
let _l'ᵢ⋘r' = r⋘ x₃ x₄ (⋙p (⋗lf y')) l₄≃r₄ (⋗lf y') ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd x₃ x₄ ≃lf l₄≃r₄ ≃lf)
in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r'
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₁ x≤y' | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ l₃≃r₃ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃ | inj₂ x₃≤y' | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅
with lemma-⋙-⋗ (lemma-insert-⋗' y' (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆))
... | inj₁ _l₃ᵢ⋘r₃ =
let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ;
_l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ;
_l'ᵢ⋘r' = l⋘ x₃ x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄)
in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r'
... | inj₂ _l₃ᵢ≃r₃
with lemma-≃-⊥ y' (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ) (sym≃ _l₃ᵢ≃r₃))
... | ()
lemma-insert-⋗' x (⋗nd y y' l≃r l'≃r' l⋗l') compound | inj₂ y'≤x | leaf | leaf | ≃lf | node perfect x₁ leaf leaf | ⋗lf .x₁ = ⋙r y y' l≃r (⋙p (⋗lf x)) (≃nd x₁ x ≃lf ≃lf ≃lf)
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ l₃ r₃ | node perfect x₄ l₄ _ | ≃nd .x₃ .x₄ l₃≃r₃ l₄≃r₄ l₃≃l₄ | node perfect x₁ l₁ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃
with tot≤ x x₃ | l₃ | r₃ | l₃≃r₃ | l₁ | l₁⋗l₃
... | inj₁ x≤x₃ | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁
with l₄ | l₃≃l₄
... | leaf | ≃lf =
let _l'ᵢ⋘r' = r⋘ x x₄ (⋙p (⋗lf x₃)) l₄≃r₄ (⋗lf x₃) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd x x₄ ≃lf l₄≃r₄ ≃lf)
in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r'
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₁ x≤x₃ | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅
with lemma-⋙-⋗ (lemma-insert-⋗' x₃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆))
... | inj₁ _l₃ᵢ⋘r₃ =
let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ;
_l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ;
_l'ᵢ⋘r' = l⋘ x x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄)
in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r'
... | inj₂ _l₃ᵢ≃r₃
with lemma-≃-⊥ x₃ (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ) (sym≃ _l₃ᵢ≃r₃))
... | ()
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ _ _ | node perfect x₄ l₄ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₂ x₃≤x | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁
with l₄ | l₃≃l₄
... | leaf | ≃lf =
let _l'ᵢ⋘r' = r⋘ x₃ x₄ (⋙p (⋗lf x)) l₄≃r₄ (⋗lf x) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd x₃ x₄ ≃lf l₄≃r₄ ≃lf)
in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r'
lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₂ x₃≤x | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅
with lemma-⋙-⋗ (lemma-insert-⋗' x (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆))
... | inj₁ _l₃ᵢ⋘r₃ =
let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ;
_l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ;
_l'ᵢ⋘r' = l⋘ x₃ x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ;
_l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄)
in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r'
... | inj₂ _l₃ᵢ≃r₃
with lemma-≃-⊥ x (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆) (sym≃ _l₃ᵢ≃r₃))
... | ()
lemma-insert-⋗ : {l r : PLRTree}(x : A) → l ⋗ r → l ⋙ (insert x r) ∨ l ≃ (insert x r)
lemma-insert-⋗ x (⋗lf y) = inj₂ (≃nd y x ≃lf ≃lf ≃lf)
lemma-insert-⋗ x (⋗nd y y' l≃r l'≃r' l⋗l') = inj₁ (lemma-insert-⋗' x (⋗nd y y' l≃r l'≃r' l⋗l') compound)
mutual
lemma-insert-⋘ : {l r : PLRTree}(x : A) → l ⋘ r → (insert x l) ⋘ r ∨ (insert x l) ⋗ r
lemma-insert-⋘ x (x⋘ u v w)
with tot≤ x u
... | inj₁ x≤u = inj₂ (⋗nd x w (≃nd v u ≃lf ≃lf ≃lf) ≃lf (⋗lf v))
... | inj₂ u≤x = inj₂ (⋗nd u w (≃nd v x ≃lf ≃lf ≃lf) ≃lf (⋗lf v))
lemma-insert-⋘ x (l⋘ {l = l} y y' l⋘r l'≃r' r≃l')
with tot≤ x y
... | inj₁ x≤y
with insert y l | lemma-insert-compound y l | lemma-insert-⋘ y l⋘r
... | node left _ _ _ | compound | inj₁ lᵢ⋘r = inj₁ (l⋘ x y' lᵢ⋘r l'≃r' r≃l')
... | node left _ _ _ | compound | inj₂ ()
... | node right _ _ _ | compound | inj₁ lᵢ⋙r = inj₁ (l⋘ x y' lᵢ⋙r l'≃r' r≃l')
... | node right _ _ _ | compound | inj₂ ()
... | node perfect _ _ _ | compound | inj₂ lᵢ⋗r = inj₁ (r⋘ x y' (⋙p lᵢ⋗r) l'≃r' (lemma-⋗-≃ lᵢ⋗r r≃l'))
... | node perfect _ _ _ | compound | inj₁ ()
lemma-insert-⋘ x (l⋘ {l = l} y y' l⋘r l'≃r' r≃l') | inj₂ y≤x
with insert x l | lemma-insert-compound x l | lemma-insert-⋘ x l⋘r
... | node left _ _ _ | compound | inj₁ lᵢ⋘r = inj₁ (l⋘ y y' lᵢ⋘r l'≃r' r≃l')
... | node left _ _ _ | compound | inj₂ ()
... | node right _ _ _ | compound | inj₁ lᵢ⋘r = inj₁ (l⋘ y y' lᵢ⋘r l'≃r' r≃l')
... | node right _ _ _ | compound | inj₂ ()
... | node perfect _ _ _ | compound | inj₂ lᵢ⋗r = inj₁ (r⋘ y y' (⋙p lᵢ⋗r) l'≃r' (lemma-⋗-≃ lᵢ⋗r r≃l'))
... | node perfect _ _ _ | compound | inj₁ ()
lemma-insert-⋘ x (r⋘ {r = r} y y' l⋙r l'≃r' l⋗l')
with tot≤ x y
... | inj₁ x≤y
with insert y r | lemma-insert-compound y r | lemma-insert-⋙ y l⋙r | lemma-⋙-⊥ y l⋙r
... | node left _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ x y' l⋙rᵢ l'≃r' l⋗l')
... | node left _ _ _ | compound | inj₂ () | _
... | node right _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ x y' l⋙rᵢ l'≃r' l⋗l')
... | node right _ _ _ | compound | inj₂ () | _
... | node perfect _ _ _ | compound | inj₂ l≃rᵢ | _ = inj₂ (⋗nd x y' l≃rᵢ l'≃r' l⋗l')
... | node perfect _ _ _ | compound | inj₁ (⋙p l⋗rᵢ) | lemma-⋙-⊥'
with lemma-⋙-⊥' l⋗rᵢ
... | ()
lemma-insert-⋘ x (r⋘ {r = r} y y' l⋙r l'≃r' l⋗l') | inj₂ y'≤x
with insert x r | lemma-insert-compound x r | lemma-insert-⋙ x l⋙r | lemma-⋙-⊥ x l⋙r
... | node left _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ y y' l⋙rᵢ l'≃r' l⋗l')
... | node left _ _ _ | compound | inj₂ () | _
... | node right _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ y y' l⋙rᵢ l'≃r' l⋗l')
... | node right _ _ _ | compound | inj₂ () | _
... | node perfect _ _ _ | compound | inj₂ l≃rᵢ | _ = inj₂ (⋗nd y y' l≃rᵢ l'≃r' l⋗l')
... | node perfect _ _ _ | compound | inj₁ (⋙p l⋗rᵢ) | lemma-⋙-⊥'
with lemma-⋙-⊥' l⋗rᵢ
... | ()
lemma-insert-⋙ : {l r : PLRTree}(x : A) → l ⋙ r → l ⋙ (insert x r) ∨ l ≃ (insert x r)
lemma-insert-⋙ x (⋙p l⋗r) = lemma-insert-⋗ x l⋗r
lemma-insert-⋙ x (⋙l {l' = l'} y y' l≃r l'⋘r' l⋗r')
with tot≤ x y'
... | inj₁ x≤y'
with insert y' l' | lemma-insert-compound y' l' | lemma-insert-⋘ y' l'⋘r'
... | node left _ _ _ | compound | inj₁ l'ᵢ⋘r' = inj₁ (⋙l y x l≃r l'ᵢ⋘r' l⋗r')
... | node left _ _ _ | compound | inj₂ ()
... | node right _ _ _ | compound | inj₁ l'ᵢ⋙r' = inj₁ (⋙l y x l≃r l'ᵢ⋙r' l⋗r')
... | node right _ _ _ | compound | inj₂ ()
... | node perfect _ _ _ | compound | inj₂ l'ᵢ⋗r' = inj₁ (⋙r y x l≃r (⋙p l'ᵢ⋗r') (lemma-*⋗ l⋗r' l'ᵢ⋗r'))
... | node perfect _ _ _ | compound | inj₁ ()
lemma-insert-⋙ x (⋙l {l' = l'} y y' l≃r l'⋘r' l⋗r') | inj₂ y'≤x
with insert x l' | lemma-insert-compound x l' | lemma-insert-⋘ x l'⋘r'
... | node left _ _ _ | compound | inj₁ l'ᵢ⋘r' = inj₁ (⋙l y y' l≃r l'ᵢ⋘r' l⋗r')
... | node left _ _ _ | compound | inj₂ ()
... | node right _ _ _ | compound | inj₁ l'ᵢ⋘r' = inj₁ (⋙l y y' l≃r l'ᵢ⋘r' l⋗r')
... | node right _ _ _ | compound | inj₂ ()
... | node perfect _ _ _ | compound | inj₂ l'ᵢ⋗r' = inj₁ (⋙r y y' l≃r (⋙p l'ᵢ⋗r') (lemma-*⋗ l⋗r' l'ᵢ⋗r'))
... | node perfect _ _ _ | compound | inj₁ ()
lemma-insert-⋙ x (⋙r {r' = r'} y y' l≃r l'⋙r' l≃l')
with tot≤ x y'
... | inj₁ x≤y'
with insert y' r' | lemma-insert-compound y' r' | lemma-insert-⋙ y' l'⋙r' | lemma-⋙-⊥ y' l'⋙r'
... | node left _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y x l≃r l'⋙r'ᵢ l≃l')
... | node left _ _ _ | compound | inj₂ () | _
... | node right _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y x l≃r l'⋙r'ᵢ l≃l')
... | node right _ _ _ | compound | inj₂ () | _
... | node perfect _ _ _ | compound | inj₂ l'≃r'ᵢ | _ = inj₂ (≃nd y x l≃r l'≃r'ᵢ l≃l')
... | node perfect _ _ _ | compound | inj₁ (⋙p l'⋗r'ᵢ) | lemma-⋙-⊥'
with lemma-⋙-⊥' l'⋗r'ᵢ
... | ()
lemma-insert-⋙ x (⋙r {r' = r'} y y' l≃r l'⋙r' l≃l') | inj₂ y'≤x
with insert x r' | lemma-insert-compound x r' | lemma-insert-⋙ x l'⋙r' | lemma-⋙-⊥ x l'⋙r'
... | node left _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y y' l≃r l'⋙r'ᵢ l≃l')
... | node left _ _ _ | compound | inj₂ () | _
... | node right _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y y' l≃r l'⋙r'ᵢ l≃l')
... | node right _ _ _ | compound | inj₂ () | _
... | node perfect _ _ _ | compound | inj₂ l'≃r'ᵢ | _ = inj₂ (≃nd y y' l≃r l'≃r'ᵢ l≃l')
... | node perfect _ _ _ | compound | inj₁ (⋙p l'⋗r'ᵢ) | lemma-⋙-⊥'
with lemma-⋙-⊥' l'⋗r'ᵢ
... | ()
lemma-insert-complete : {t : PLRTree}(x : A) → Complete t → Complete (insert x t)
lemma-insert-complete x leaf = perfect x leaf leaf ≃lf
lemma-insert-complete x (perfect {l} {r} y cl cr l≃r)
with tot≤ x y | l | r | l≃r | lemma-insert-complete y cl | lemma-insert-complete x cl
... | inj₁ x≤y | leaf | leaf | ≃lf | _ | _ = right x (perfect y cr cr ≃lf) cr (⋙p (⋗lf y))
... | inj₁ x≤y | node perfect z' _ _ | node perfect z'' _ _ | ≃nd .z' .z'' l'≃r' l''≃r'' l'≃l'' | clᵢ | _ = left x clᵢ cr (lemma-insert-≃ compound (≃nd z' z'' l'≃r' l''≃r'' l'≃l''))
... | inj₂ y≤x | leaf | leaf | ≃lf | _ | _ = right y (perfect x cr cr ≃lf) cr (⋙p (⋗lf x))
... | inj₂ y≤x | node perfect z' _ _ | node perfect z'' _ _ | ≃nd .z' .z'' l'≃r' l''≃r'' l'≃l'' | _ | clᵢ = left y clᵢ cr (lemma-insert-≃ compound (≃nd z' z'' l'≃r' l''≃r'' l'≃l''))
lemma-insert-complete x (left {l} {r} y cl cr l⋘r)
with tot≤ x y
... | inj₁ x≤y
with insert y l | lemma-insert-complete y cl | lemma-insert-⋘ y l⋘r | lemma-insert-compound y l
... | node left _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left x clᵢ cr lᵢ⋘r
... | node right _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left x clᵢ cr lᵢ⋘r
... | node left _ _ _ | _ | inj₂ () | compound
... | node right _ _ _ | _ | inj₂ () | compound
... | node perfect _ _ _ | clᵢ | inj₂ lᵢ⋗r | compound = right x clᵢ cr (⋙p lᵢ⋗r)
... | node perfect x' l' r' | perfect .x' cl' cr' l'≃r' | inj₁ () | compound
lemma-insert-complete x (left {l} {r} y cl cr l⋘r) | inj₂ y≤x
with insert x l | lemma-insert-complete x cl | lemma-insert-⋘ x l⋘r | lemma-insert-compound x l
... | node left _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left y clᵢ cr lᵢ⋘r
... | node right _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left y clᵢ cr lᵢ⋘r
... | node left _ _ _ | _ | inj₂ () | compound
... | node right _ _ _ | _ | inj₂ () | compound
... | node perfect _ _ _ | clᵢ | inj₂ lᵢ⋗r | compound = right y clᵢ cr (⋙p lᵢ⋗r)
... | node perfect x' l' r' | perfect .x' cl' cr' l'≃r' | inj₁ () | compound
lemma-insert-complete x (right {l} {r} y cl cr l⋙r)
with tot≤ x y
... | inj₁ x≤y
with insert y r | lemma-insert-complete y cr | lemma-insert-⋙ y l⋙r | lemma-insert-compound y r | lemma-⋙-⊥ y l⋙r
... | node left _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right x cl crᵢ l⋙rᵢ
... | node right _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right x cl crᵢ l⋙rᵢ
... | node left _ _ _ | _ | inj₂ () | compound | _
... | node right _ _ _ | _ | inj₂ () | compound | _
... | node perfect _ _ _ | crᵢ | inj₂ l≃rᵢ | compound | _ = perfect x cl crᵢ l≃rᵢ
... | node perfect x'' l'' r'' | perfect .x'' cl'' cr'' l''≃r'' | inj₁ (⋙p l⋗rᵢ) | compound | lemma-⋙-⊥'
with lemma-⋙-⊥' l⋗rᵢ
... | ()
lemma-insert-complete x (right {l} {r} y cl cr l⋙r) | inj₂ y≤x
with insert x r | lemma-insert-complete x cr | lemma-insert-⋙ x l⋙r | lemma-insert-compound x r | lemma-⋙-⊥ x l⋙r
... | node left _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right y cl crᵢ l⋙rᵢ
... | node right _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right y cl crᵢ l⋙rᵢ
... | node left _ _ _ | _ | inj₂ () | compound | _
... | node right _ _ _ | _ | inj₂ () | compound | _
... | node perfect _ _ _ | crᵢ | inj₂ l≃rᵢ | compound | _ = perfect y cl crᵢ l≃rᵢ
... | node perfect x'' l'' r'' | perfect .x'' cl'' cr'' l''≃r'' | inj₁ (⋙p l⋗rᵢ) | compound | lemma-⋙-⊥'
with lemma-⋙-⊥' l⋗rᵢ
... | ()
|
{
"alphanum_fraction": 0.5004095423,
"avg_line_length": 63.8366013072,
"ext": "agda",
"hexsha": "a0375ce7d7ac4e68781ff42b29dba42d6fe441d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Insert/Complete.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Insert/Complete.agda",
"max_line_length": 340,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Insert/Complete.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 11481,
"size": 19534
}
|
data Bool : Set where
true false : Bool
postulate
and : Bool → Bool → Bool
-- WAS: splitting on y removes the x@ as-pattern
test : Bool → Bool → Bool
test x@true y = {!y!}
test x@false y = and x {!y!} -- x will go out of scope if we split on y
-- Multiple as-patterns on the same pattern should be preserved in the
-- right order.
test₂ : Bool → Bool → Bool
test₂ x@y@true z = {!z!}
test₂ x@y z = {!!}
open import Agda.Builtin.String
-- As bindings on literals should also be preserved
test₃ : String → Bool → Bool
test₃ x@"foo" z = {!z!}
test₃ _ _ = {!!}
|
{
"alphanum_fraction": 0.6507936508,
"avg_line_length": 23.625,
"ext": "agda",
"hexsha": "9ca75d4e4e56bde1c9dc0d8db25411c55f34199e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2414.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2414.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2414.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 181,
"size": 567
}
|
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-}
module 12-univalence where
import 11-function-extensionality
open 11-function-extensionality public
-- Section 10.1 Type extensionality
equiv-eq : {i : Level} {A : UU i} {B : UU i} → Id A B → A ≃ B
equiv-eq {A = A} refl = equiv-id A
UNIVALENCE : {i : Level} (A B : UU i) → UU (lsuc i)
UNIVALENCE A B = is-equiv (equiv-eq {A = A} {B = B})
is-contr-total-equiv-UNIVALENCE : {i : Level} (A : UU i) →
((B : UU i) → UNIVALENCE A B) → is-contr (Σ (UU i) (λ X → A ≃ X))
is-contr-total-equiv-UNIVALENCE A UA =
fundamental-theorem-id' A
( equiv-id A)
( λ B → equiv-eq {B = B})
( UA)
UNIVALENCE-is-contr-total-equiv : {i : Level} (A : UU i) →
is-contr (Σ (UU i) (λ X → A ≃ X)) → (B : UU i) → UNIVALENCE A B
UNIVALENCE-is-contr-total-equiv A c =
fundamental-theorem-id A
( equiv-id A)
( c)
( λ B → equiv-eq {B = B})
ev-id : {i j : Level} {A : UU i} (P : (B : UU i) → (A ≃ B) → UU j) →
((B : UU i) (e : A ≃ B) → P B e) → P A (equiv-id A)
ev-id {A = A} P f = f A (equiv-id A)
IND-EQUIV : {i j : Level} {A : UU i} → ((B : UU i) (e : A ≃ B) → UU j) → UU _
IND-EQUIV P = sec (ev-id P)
triangle-ev-id : {i j : Level} {A : UU i}
(P : (Σ (UU i) (λ X → A ≃ X)) → UU j) →
(ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (equiv-id A)) P)
~ ((ev-id (λ X e → P (pair X e))) ∘ (ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P}))
triangle-ev-id P f = refl
abstract
IND-EQUIV-is-contr-total-equiv : {i j : Level} (A : UU i) →
is-contr (Σ (UU i) (λ X → A ≃ X)) →
(P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → IND-EQUIV (λ B e → P (pair B e))
IND-EQUIV-is-contr-total-equiv {i} {j} A c P =
section-comp
( ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (equiv-id A)) P)
( ev-id (λ X e → P (pair X e)))
( ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P})
( triangle-ev-id P)
( sec-ev-pair (UU i) (λ X → A ≃ X) P)
( is-sing-is-contr (Σ (UU i) (λ X → A ≃ X))
( pair
( pair A (equiv-id A))
( λ t →
( inv (contraction c (pair A (equiv-id A)))) ∙
( contraction c t)))
( P)
( pair A (equiv-id A)))
abstract
is-contr-total-equiv-IND-EQUIV : {i : Level} (A : UU i) →
( {j : Level} (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) →
IND-EQUIV (λ B e → P (pair B e))) →
is-contr (Σ (UU i) (λ X → A ≃ X))
is-contr-total-equiv-IND-EQUIV {i} A ind =
is-contr-is-sing
( Σ (UU i) (λ X → A ≃ X))
( pair A (equiv-id A))
( λ P → section-comp'
( ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (equiv-id A)) P)
( ev-id (λ X e → P (pair X e)))
( ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P})
( triangle-ev-id P)
( sec-ev-pair (UU i) (λ X → A ≃ X) P)
( ind P))
-- The univalence axiom
postulate univalence : {i : Level} (A B : UU i) → UNIVALENCE A B
eq-equiv : {i : Level} (A B : UU i) → (A ≃ B) → Id A B
eq-equiv A B = inv-is-equiv (univalence A B)
abstract
is-contr-total-equiv : {i : Level} (A : UU i) →
is-contr (Σ (UU i) (λ X → A ≃ X))
is-contr-total-equiv A = is-contr-total-equiv-UNIVALENCE A (univalence A)
inv-inv-equiv :
{i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) →
Id (inv-equiv (inv-equiv e)) e
inv-inv-equiv (pair f (pair (pair g G) (pair h H))) = eq-htpy-equiv refl-htpy
is-equiv-inv-equiv :
{i j : Level} {A : UU i} {B : UU j} → is-equiv (inv-equiv {A = A} {B = B})
is-equiv-inv-equiv =
is-equiv-has-inverse
( inv-equiv)
( inv-inv-equiv)
( inv-inv-equiv)
equiv-inv-equiv :
{i j : Level} {A : UU i} {B : UU j} → (A ≃ B) ≃ (B ≃ A)
equiv-inv-equiv = pair inv-equiv is-equiv-inv-equiv
is-contr-total-equiv' : {i : Level} (A : UU i) →
is-contr (Σ (UU i) (λ X → X ≃ A))
is-contr-total-equiv' A =
is-contr-equiv
( Σ (UU _) (λ X → A ≃ X))
( equiv-tot (λ X → equiv-inv-equiv))
( is-contr-total-equiv A)
abstract
Ind-equiv : {i j : Level} (A : UU i) (P : (B : UU i) (e : A ≃ B) → UU j) →
sec (ev-id P)
Ind-equiv A P =
IND-EQUIV-is-contr-total-equiv A
( is-contr-total-equiv A)
( λ t → P (pr1 t) (pr2 t))
ind-equiv : {i j : Level} (A : UU i) (P : (B : UU i) (e : A ≃ B) → UU j) →
P A (equiv-id A) → {B : UU i} (e : A ≃ B) → P B e
ind-equiv A P p {B} = pr1 (Ind-equiv A P) p B
-- Subuniverses
is-subuniverse :
{l1 l2 : Level} (P : UU l1 → UU l2) → UU ((lsuc l1) ⊔ l2)
is-subuniverse P = is-subtype P
subuniverse :
(l1 l2 : Level) → UU ((lsuc l1) ⊔ (lsuc l2))
subuniverse l1 l2 = Σ (UU l1 → UU l2) is-subuniverse
{- By univalence, subuniverses are closed under equivalences. -}
in-subuniverse-equiv :
{l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P X → P Y
in-subuniverse-equiv P e = tr P (eq-equiv _ _ e)
in-subuniverse-equiv' :
{l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P Y → P X
in-subuniverse-equiv' P e = tr P (inv (eq-equiv _ _ e))
total-subuniverse :
{l1 l2 : Level} (P : subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2)
total-subuniverse {l1} P = Σ (UU l1) (pr1 P)
{- We also introduce the notion of 'global subuniverse'. The handling of
universe levels is a bit more complicated here, since (l : Level) → A l are
kinds but not types. -}
is-global-subuniverse :
(α : Level → Level) (P : (l : Level) → subuniverse l (α l)) →
(l1 l2 : Level) → UU _
is-global-subuniverse α P l1 l2 =
(X : UU l1) (Y : UU l2) → X ≃ Y → (pr1 (P l1)) X → (pr1 (P l2)) Y
{- Next we characterize the identity type of a subuniverse. -}
Eq-total-subuniverse :
{l1 l2 : Level} (P : subuniverse l1 l2) →
(s t : total-subuniverse P) → UU l1
Eq-total-subuniverse (pair P H) (pair X p) t = X ≃ (pr1 t)
Eq-total-subuniverse-eq :
{l1 l2 : Level} (P : subuniverse l1 l2) →
(s t : total-subuniverse P) → Id s t → Eq-total-subuniverse P s t
Eq-total-subuniverse-eq (pair P H) (pair X p) .(pair X p) refl = equiv-id X
abstract
is-contr-total-Eq-total-subuniverse :
{l1 l2 : Level} (P : subuniverse l1 l2)
(s : total-subuniverse P) →
is-contr (Σ (total-subuniverse P) (λ t → Eq-total-subuniverse P s t))
is-contr-total-Eq-total-subuniverse (pair P H) (pair X p) =
is-contr-total-Eq-substructure (is-contr-total-equiv X) H X (equiv-id X) p
abstract
is-equiv-Eq-total-subuniverse-eq :
{l1 l2 : Level} (P : subuniverse l1 l2)
(s t : total-subuniverse P) → is-equiv (Eq-total-subuniverse-eq P s t)
is-equiv-Eq-total-subuniverse-eq (pair P H) (pair X p) =
fundamental-theorem-id
( pair X p)
( equiv-id X)
( is-contr-total-Eq-total-subuniverse (pair P H) (pair X p))
( Eq-total-subuniverse-eq (pair P H) (pair X p))
eq-Eq-total-subuniverse :
{l1 l2 : Level} (P : subuniverse l1 l2) →
{s t : total-subuniverse P} → Eq-total-subuniverse P s t → Id s t
eq-Eq-total-subuniverse P {s} {t} =
inv-is-equiv (is-equiv-Eq-total-subuniverse-eq P s t)
-- Section 12.2 Univalence implies function extensionality
is-equiv-postcomp-univalence :
{l1 l2 : Level} {X Y : UU l1} (A : UU l2) (e : X ≃ Y) →
is-equiv (postcomp A (map-equiv e))
is-equiv-postcomp-univalence {X = X} A =
ind-equiv X
( λ Y e → is-equiv (postcomp A (map-equiv e)))
( is-equiv-id (A → X))
weak-funext-univalence :
{l : Level} {A : UU l} {B : A → UU l} → WEAK-FUNEXT A B
weak-funext-univalence {A = A} {B} is-contr-B =
is-contr-retract-of
( fib (postcomp A (pr1 {B = B})) id)
( pair
( λ f → pair (λ x → pair x (f x)) refl)
( pair
( λ h x → tr B (htpy-eq (pr2 h) x) (pr2 (pr1 h x)))
( refl-htpy)))
( is-contr-map-is-equiv
( is-equiv-postcomp-univalence A (equiv-pr1 is-contr-B))
( id))
funext-univalence :
{l : Level} {A : UU l} {B : A → UU l} (f : (x : A) → B x) → FUNEXT f
funext-univalence {A = A} {B} f =
FUNEXT-WEAK-FUNEXT (λ A B → weak-funext-univalence) A B f
-- Exercises
-- Exercise 10.1
tr-equiv-eq-ap : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {x y : A}
(p : Id x y) → (map-equiv (equiv-eq (ap B p))) ~ tr B p
tr-equiv-eq-ap refl = refl-htpy
-- Exercise 10.2
subuniverse-is-contr :
{i : Level} → subuniverse i i
subuniverse-is-contr {i} = pair is-contr is-subtype-is-contr
unit' :
(i : Level) → UU i
unit' i = pr1 (Raise i unit)
abstract
is-contr-unit' :
(i : Level) → is-contr (unit' i)
is-contr-unit' i =
is-contr-equiv' unit (pr2 (Raise i unit)) is-contr-unit
abstract
center-UU-contr :
(i : Level) → total-subuniverse (subuniverse-is-contr {i})
center-UU-contr i =
pair (unit' i) (is-contr-unit' i)
contraction-UU-contr :
{i : Level} (A : Σ (UU i) is-contr) →
Id (center-UU-contr i) A
contraction-UU-contr (pair A is-contr-A) =
eq-Eq-total-subuniverse subuniverse-is-contr
( equiv-is-contr (is-contr-unit' _) is-contr-A)
abstract
is-contr-UU-contr : (i : Level) → is-contr (Σ (UU i) is-contr)
is-contr-UU-contr i =
pair (center-UU-contr i) (contraction-UU-contr)
is-trunc-UU-trunc :
(k : 𝕋) (i : Level) → is-trunc (succ-𝕋 k) (Σ (UU i) (is-trunc k))
is-trunc-UU-trunc k i X Y =
is-trunc-is-equiv k
( Id (pr1 X) (pr1 Y))
( ap pr1)
( is-emb-pr1-is-subtype
( is-prop-is-trunc k) X Y)
( is-trunc-is-equiv k
( (pr1 X) ≃ (pr1 Y))
( equiv-eq)
( univalence (pr1 X) (pr1 Y))
( is-trunc-equiv-is-trunc k (pr2 X) (pr2 Y)))
ev-true-false :
{l : Level} (A : UU l) → (f : bool → A) → A × A
ev-true-false A f = pair (f true) (f false)
map-universal-property-bool :
{l : Level} {A : UU l} →
A × A → (bool → A)
map-universal-property-bool (pair x y) true = x
map-universal-property-bool (pair x y) false = y
issec-map-universal-property-bool :
{l : Level} {A : UU l} →
((ev-true-false A) ∘ map-universal-property-bool) ~ id
issec-map-universal-property-bool (pair x y) =
eq-pair-triv (pair refl refl)
isretr-map-universal-property-bool' :
{l : Level} {A : UU l} (f : bool → A) →
(map-universal-property-bool (ev-true-false A f)) ~ f
isretr-map-universal-property-bool' f true = refl
isretr-map-universal-property-bool' f false = refl
isretr-map-universal-property-bool :
{l : Level} {A : UU l} →
(map-universal-property-bool ∘ (ev-true-false A)) ~ id
isretr-map-universal-property-bool f =
eq-htpy (isretr-map-universal-property-bool' f)
universal-property-bool :
{l : Level} (A : UU l) →
is-equiv (λ (f : bool → A) → pair (f true) (f false))
universal-property-bool A =
is-equiv-has-inverse
map-universal-property-bool
issec-map-universal-property-bool
isretr-map-universal-property-bool
ev-true :
{l : Level} {A : UU l} → (bool → A) → A
ev-true f = f true
triangle-ev-true :
{l : Level} (A : UU l) →
(ev-true) ~ (pr1 ∘ (ev-true-false A))
triangle-ev-true A = refl-htpy
aut-bool-bool :
bool → (bool ≃ bool)
aut-bool-bool true = equiv-id bool
aut-bool-bool false = equiv-neg-𝟚
bool-aut-bool :
(bool ≃ bool) → bool
bool-aut-bool e = map-equiv e true
decide-true-false :
(b : bool) → coprod (Id b true) (Id b false)
decide-true-false true = inl refl
decide-true-false false = inr refl
eq-false :
(b : bool) → (¬ (Id b true)) → (Id b false)
eq-false true p = ind-empty (p refl)
eq-false false p = refl
eq-true :
(b : bool) → (¬ (Id b false)) → Id b true
eq-true true p = refl
eq-true false p = ind-empty (p refl)
Eq-𝟚-eq : (x y : bool) → Id x y → Eq-𝟚 x y
Eq-𝟚-eq x .x refl = reflexive-Eq-𝟚 x
eq-false-equiv' :
(e : bool ≃ bool) → Id (map-equiv e true) true →
is-decidable (Id (map-equiv e false) false) → Id (map-equiv e false) false
eq-false-equiv' e p (inl q) = q
eq-false-equiv' e p (inr x) =
ind-empty
( Eq-𝟚-eq true false
( ap pr1
( is-prop-is-contr'
( is-contr-map-is-equiv (is-equiv-map-equiv e) true)
( pair true p)
( pair false (eq-true (map-equiv e false) x)))))
{-
eq-false-equiv :
(e : bool ≃ bool) → Id (map-equiv e true) true → Id (map-equiv e false) false
eq-false-equiv e p =
eq-false-equiv' e p (has-decidable-equality-𝟚 (map-equiv e false) false)
-}
{-
eq-true-equiv :
(e : bool ≃ bool) →
¬ (Id (map-equiv e true) true) → Id (map-equiv e false) true
eq-true-equiv e f = {!!}
issec-bool-aut-bool' :
( e : bool ≃ bool) (d : is-decidable (Id (map-equiv e true) true)) →
htpy-equiv (aut-bool-bool (bool-aut-bool e)) e
issec-bool-aut-bool' e (inl p) true =
( htpy-equiv-eq (ap aut-bool-bool p) true) ∙ (inv p)
issec-bool-aut-bool' e (inl p) false =
( htpy-equiv-eq (ap aut-bool-bool p) false) ∙
( inv (eq-false-equiv e p))
issec-bool-aut-bool' e (inr f) true =
( htpy-equiv-eq
( ap aut-bool-bool (eq-false (map-equiv e true) f)) true) ∙
( inv (eq-false (map-equiv e true) f))
issec-bool-aut-bool' e (inr f) false =
( htpy-equiv-eq (ap aut-bool-bool {!eq-true-equiv e ?!}) {!!}) ∙
( inv {!!})
issec-bool-aut-bool :
(aut-bool-bool ∘ bool-aut-bool) ~ id
issec-bool-aut-bool e =
eq-htpy-equiv
( issec-bool-aut-bool' e
( has-decidable-equality-𝟚 (map-equiv e true) true))
-}
|
{
"alphanum_fraction": 0.5734520124,
"avg_line_length": 31.6666666667,
"ext": "agda",
"hexsha": "7153bfad9c70b0a1f5a6d45a77f57e52e5289b36",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/12-univalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/12-univalence.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/12-univalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5120,
"size": 12920
}
|
{-# OPTIONS --no-qualified-instances #-}
module NoQualifiedInstances-Import where
open import NoQualifiedInstances.Import.A as A
postulate
f : {{A.I}} → A.I
test : A.I
test = f
|
{
"alphanum_fraction": 0.7049180328,
"avg_line_length": 15.25,
"ext": "agda",
"hexsha": "d40f3855fe91568a9dbda1ad57218c840625d6bf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/NoQualifiedInstances-Import.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/NoQualifiedInstances-Import.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/NoQualifiedInstances-Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 50,
"size": 183
}
|
{-
This file contains:
- Elementary properties of homomorphisms
- H-level results for the properties of morphisms
- Special homomorphisms and operations (id, composition, inversion)
- Conversion functions between different notions of group morphisms
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.MorphismProperties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Functions.Embedding
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.HITs.PropositionalTruncation renaming (map to pMap)
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
E F G H : Group ℓ
open Iso
open GroupStr
open IsGroupHom
open BijectionIso
-- Elementary properties of homomorphisms
module _ {A : Type ℓ} {B : Type ℓ'} (G : GroupStr A) (f : A → B) (H : GroupStr B)
(pres : (x y : A) → f (G ._·_ x y) ≡ H ._·_ (f x) (f y))
where
private
module G = GroupStr G
module H = GroupStr H
-- ϕ(1g) ≡ 1g
hom1g : f G.1g ≡ H.1g
hom1g =
f G.1g ≡⟨ sym (H.rid _) ⟩
f G.1g H.· H.1g ≡⟨ (λ i → f G.1g H.· H.invr (f G.1g) (~ i)) ⟩
f G.1g H.· (f G.1g H.· H.inv (f G.1g)) ≡⟨ H.assoc _ _ _ ⟩
(f G.1g H.· f G.1g) H.· H.inv (f G.1g) ≡⟨ sym (cong (λ x → x H.· _)
(sym (cong f (G.lid _)) ∙ pres G.1g G.1g)) ⟩
f G.1g H.· H.inv (f G.1g) ≡⟨ H.invr _ ⟩
H.1g ∎
-- ϕ(- x) = - ϕ(x)
homInv : ∀ g → f (G.inv g) ≡ H.inv (f g)
homInv g =
f (G.inv g) ≡⟨ sym (H.rid _) ⟩
f (G.inv g) H.· H.1g ≡⟨ cong (_ H.·_) (sym (H.invr _)) ⟩
f (G.inv g) H.· (f g H.· H.inv (f g)) ≡⟨ H.assoc _ _ _ ⟩
(f (G.inv g) H.· f g) H.· H.inv (f g) ≡⟨ cong (H._· _) (sym (pres _ g) ∙∙ cong f (G.invl g) ∙∙ hom1g) ⟩
H.1g H.· H.inv (f g) ≡⟨ H.lid _ ⟩
H.inv (f g) ∎
module _ {A : Type ℓ} {B : Type ℓ'} {G : GroupStr A} {f : A → B} {H : GroupStr B}
(pres : (x y : A) → f (G ._·_ x y) ≡ H ._·_ (f x) (f y))
where
makeIsGroupHom : IsGroupHom G f H
makeIsGroupHom .pres· = pres
makeIsGroupHom .pres1 = hom1g G f H pres
makeIsGroupHom .presinv = homInv G f H pres
isGroupHomInv : (f : GroupEquiv G H) → IsGroupHom (H .snd) (invEq (fst f)) (G .snd)
isGroupHomInv {G = G} {H = H} f = makeIsGroupHom λ h h' →
isInj-f _ _
(f' (g (h ⋆² h')) ≡⟨ secEq (fst f) _ ⟩
(h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (secEq (fst f) h) (secEq (fst f) h')) ⟩
(f' (g h) ⋆² f' (g h')) ≡⟨ sym (pres· (snd f) _ _) ⟩
f' (g h ⋆¹ g h') ∎)
where
f' = fst (fst f)
_⋆¹_ = _·_ (snd G)
_⋆²_ = _·_ (snd H)
g = invEq (fst f)
isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y
isInj-f x y = invEq (_ , isEquiv→isEmbedding (snd (fst f)) x y)
-- H-level results
isPropIsGroupHom : (G : Group ℓ) (H : Group ℓ') {f : ⟨ G ⟩ → ⟨ H ⟩}
→ isProp (IsGroupHom (G .snd) f (H .snd))
isPropIsGroupHom G H =
isOfHLevelRetractFromIso 1 IsGroupHomIsoΣ
(isProp×
(isPropΠ2 λ _ _ → GroupStr.is-set (snd H) _ _)
(isProp×
(GroupStr.is-set (snd H) _ _)
(isPropΠ λ _ → GroupStr.is-set (snd H) _ _)))
isSetGroupHom : isSet (GroupHom G H)
isSetGroupHom {G = G} {H = H} =
isSetΣ (isSetΠ λ _ → is-set (snd H)) λ _ → isProp→isSet (isPropIsGroupHom G H)
isPropIsInIm : (f : GroupHom G H) (x : ⟨ H ⟩) → isProp (isInIm f x)
isPropIsInIm f x = squash₁
isSetIm : (f : GroupHom G H) → isSet (Im f)
isSetIm {H = H} f = isSetΣ (is-set (snd H)) λ x → isProp→isSet (isPropIsInIm f x)
isPropIsInKer : (f : GroupHom G H) (x : ⟨ G ⟩) → isProp (isInKer f x)
isPropIsInKer {H = H} f x = is-set (snd H) _ _
isSetKer : (f : GroupHom G H) → isSet (Ker f)
isSetKer {G = G} f = isSetΣ (is-set (snd G)) λ x → isProp→isSet (isPropIsInKer f x)
isPropIsSurjective : (f : GroupHom G H) → isProp (isSurjective f)
isPropIsSurjective f = isPropΠ (λ x → isPropIsInIm f x)
isPropIsInjective : (f : GroupHom G H) → isProp (isInjective f)
isPropIsInjective {G = G} _ = isPropΠ2 (λ _ _ → is-set (snd G) _ _)
isPropIsMono : (f : GroupHom G H) → isProp (isMono f)
isPropIsMono {G = G} f = isPropImplicitΠ2 λ _ _ → isPropΠ (λ _ → is-set (snd G) _ _)
-- Logically equivalent versions of isInjective
isMono→isInjective : (f : GroupHom G H) → isMono f → isInjective f
isMono→isInjective f h x p = h (p ∙ sym (f .snd .pres1))
isInjective→isMono : (f : GroupHom G H) → isInjective f → isMono f
isInjective→isMono {G = G} {H = H} f h {x = x} {y = y} p =
x ≡⟨ sym (G.rid _) ⟩
x G.· G.1g ≡⟨ cong (x G.·_) (sym (G.invl _)) ⟩
x G.· (G.inv y G.· y) ≡⟨ G.assoc _ _ _ ⟩
(x G.· G.inv y) G.· y ≡⟨ cong (G._· y) idHelper ⟩
G.1g G.· y ≡⟨ G.lid _ ⟩
y ∎
where
module G = GroupStr (snd G)
module H = GroupStr (snd H)
idHelper : x G.· G.inv y ≡ G.1g
idHelper = h _ (f .snd .pres· _ _ ∙
cong (λ a → f .fst x H.· a) (f .snd .presinv y) ∙
cong (H._· H.inv (f .fst y)) p ∙
H.invr _)
-- TODO: maybe it would be better to take this as the definition of isInjective?
isInjective→isContrKer : (f : GroupHom G H) → isInjective f → isContr (Ker f)
fst (isInjective→isContrKer {G = G} f hf) = 1g (snd G) , f .snd .pres1
snd (isInjective→isContrKer {G = G} f hf) k =
Σ≡Prop (isPropIsInKer f) (sym (isInjective→isMono f hf (k .snd ∙ sym (f .snd .pres1))))
isContrKer→isInjective : (f : GroupHom G H) → isContr (Ker f) → isInjective f
isContrKer→isInjective {G = G} f ((a , b) , c) x y = cong fst (sym (c (x , y)) ∙ rem)
where
rem : (a , b) ≡ (1g (snd G) , pres1 (snd f))
rem = c (1g (snd G) , pres1 (snd f))
-- Special homomorphisms and operations (id, composition...)
idGroupHom : GroupHom G G
idGroupHom .fst x = x
idGroupHom .snd = makeIsGroupHom λ _ _ → refl
isGroupHomComp : (f : GroupHom F G) → (g : GroupHom G H) → IsGroupHom (F .snd) (fst g ∘ fst f) (H .snd)
isGroupHomComp f g = makeIsGroupHom λ _ _ → cong (fst g) (f .snd .pres· _ _) ∙ (g .snd .pres· _ _)
compGroupHom : GroupHom F G → GroupHom G H → GroupHom F H
fst (compGroupHom f g) = fst g ∘ fst f
snd (compGroupHom f g) = isGroupHomComp f g
GroupHomDirProd : {A : Group ℓ} {B : Group ℓ'} {C : Group ℓ''} {D : Group ℓ'''}
→ GroupHom A C → GroupHom B D → GroupHom (DirProd A B) (DirProd C D)
fst (GroupHomDirProd mf1 mf2) = map-× (fst mf1) (fst mf2)
snd (GroupHomDirProd mf1 mf2) = makeIsGroupHom λ _ _ → ≡-× (mf1 .snd .pres· _ _) (mf2 .snd .pres· _ _)
GroupHom≡ : {f g : GroupHom G H} → (fst f ≡ fst g) → f ≡ g
fst (GroupHom≡ p i) = p i
snd (GroupHom≡ {G = G} {H = H} {f = f} {g = g} p i) = p-hom i
where
p-hom : PathP (λ i → IsGroupHom (G .snd) (p i) (H .snd)) (f .snd) (g .snd)
p-hom = toPathP (isPropIsGroupHom G H _ _)
compGroupHomAssoc : (e : GroupHom E F) → (f : GroupHom F G) → (g : GroupHom G H)
→ compGroupHom (compGroupHom e f) g ≡ compGroupHom e (compGroupHom f g)
compGroupHomAssoc e f g = GroupHom≡ refl
compGroupHomId : (f : GroupHom F G) → compGroupHom f idGroupHom ≡ f
compGroupHomId f = GroupHom≡ refl
-- The composition of surjective maps is surjective
compSurjective : ∀ {ℓ ℓ' ℓ''} {G : Group ℓ} {H : Group ℓ'} {L : Group ℓ''}
→ (G→H : GroupHom G H) (H→L : GroupHom H L)
→ isSurjective G→H → isSurjective H→L
→ isSurjective (compGroupHom G→H H→L)
compSurjective G→H H→L surj1 surj2 l =
rec squash₁
(λ {(h , p)
→ pMap (λ {(g , q) → g , (cong (fst H→L) q ∙ p)})
(surj1 h)})
(surj2 l)
-- GroupEquiv identity, composition and inversion
idGroupEquiv : GroupEquiv G G
fst (idGroupEquiv {G = G}) = idEquiv ⟨ G ⟩
snd idGroupEquiv = makeIsGroupHom λ _ _ → refl
compGroupEquiv : GroupEquiv F G → GroupEquiv G H → GroupEquiv F H
fst (compGroupEquiv f g) = compEquiv (fst f) (fst g)
snd (compGroupEquiv f g) = isGroupHomComp (_ , f .snd) (_ , g .snd)
invGroupEquiv : GroupEquiv G H → GroupEquiv H G
fst (invGroupEquiv f) = invEquiv (fst f)
snd (invGroupEquiv f) = isGroupHomInv f
GroupEquivDirProd : {A : Group ℓ} {B : Group ℓ'} {C : Group ℓ''} {D : Group ℓ'''}
→ GroupEquiv A C → GroupEquiv B D
→ GroupEquiv (DirProd A B) (DirProd C D)
fst (GroupEquivDirProd eq1 eq2) = ≃-× (fst eq1) (fst eq2)
snd (GroupEquivDirProd eq1 eq2) = GroupHomDirProd (_ , eq1 .snd) (_ , eq2 .snd) .snd
GroupEquiv≡ : {f g : GroupEquiv G H} → fst f ≡ fst g → f ≡ g
fst (GroupEquiv≡ p i) = p i
snd (GroupEquiv≡ {G = G} {H = H} {f} {g} p i) = p-hom i
where
p-hom : PathP (λ i → IsGroupHom (G .snd) (p i .fst) (H .snd)) (snd f) (snd g)
p-hom = toPathP (isPropIsGroupHom G H _ _)
-- GroupIso identity, composition and inversion
idGroupIso : GroupIso G G
fst idGroupIso = idIso
snd idGroupIso = makeIsGroupHom λ _ _ → refl
compGroupIso : GroupIso G H → GroupIso H F → GroupIso G F
fst (compGroupIso iso1 iso2) = compIso (fst iso1) (fst iso2)
snd (compGroupIso iso1 iso2) = isGroupHomComp (_ , snd iso1) (_ , snd iso2)
invGroupIso : GroupIso G H → GroupIso H G
fst (invGroupIso iso1) = invIso (fst iso1)
snd (invGroupIso iso1) = isGroupHomInv (isoToEquiv (fst iso1) , snd iso1)
GroupIsoDirProd : {G : Group ℓ} {H : Group ℓ'} {A : Group ℓ''} {B : Group ℓ'''}
→ GroupIso G H → GroupIso A B → GroupIso (DirProd G A) (DirProd H B)
fun (fst (GroupIsoDirProd iso1 iso2)) prod =
fun (fst iso1) (fst prod) , fun (fst iso2) (snd prod)
inv (fst (GroupIsoDirProd iso1 iso2)) prod =
inv (fst iso1) (fst prod) , inv (fst iso2) (snd prod)
rightInv (fst (GroupIsoDirProd iso1 iso2)) a =
ΣPathP (rightInv (fst iso1) (fst a) , (rightInv (fst iso2) (snd a)))
leftInv (fst (GroupIsoDirProd iso1 iso2)) a =
ΣPathP (leftInv (fst iso1) (fst a) , (leftInv (fst iso2) (snd a)))
snd (GroupIsoDirProd iso1 iso2) = makeIsGroupHom λ a b →
ΣPathP (pres· (snd iso1) (fst a) (fst b) , pres· (snd iso2) (snd a) (snd b))
GroupIso≡ : {f g : GroupIso G H} → f .fst ≡ g .fst → f ≡ g
fst (GroupIso≡ {G = G} {H = H} {f} {g} p i) = p i
snd (GroupIso≡ {G = G} {H = H} {f} {g} p i) = p-hom i
where
p-hom : PathP (λ i → IsGroupHom (G .snd) (p i .fun) (H .snd)) (snd f) (snd g)
p-hom = toPathP (isPropIsGroupHom G H _ _)
-- Conversion functions between different notions of group morphisms
GroupEquiv→GroupHom : GroupEquiv G H → GroupHom G H
fst (GroupEquiv→GroupHom ((f , _) , _)) = f
snd (GroupEquiv→GroupHom (_ , isHom)) = isHom
GroupIso→GroupEquiv : GroupIso G H → GroupEquiv G H
fst (GroupIso→GroupEquiv i) = isoToEquiv (fst i)
snd (GroupIso→GroupEquiv i) = snd i
GroupEquiv→GroupIso : GroupEquiv G H → GroupIso G H
fst (GroupEquiv→GroupIso e) = equivToIso (fst e)
snd (GroupEquiv→GroupIso e) = snd e
GroupIso→GroupHom : GroupIso G H → GroupHom G H
GroupIso→GroupHom i = GroupEquiv→GroupHom (GroupIso→GroupEquiv i)
-- TODO: prove the converse
BijectionIso→GroupIso : BijectionIso G H → GroupIso G H
BijectionIso→GroupIso {G = G} {H = H} i = grIso
where
f = fst (fun i)
helper : (b : _) → isProp (Σ[ a ∈ ⟨ G ⟩ ] f a ≡ b)
helper _ (a , ha) (b , hb) =
Σ≡Prop (λ _ → is-set (snd H) _ _)
(isInjective→isMono (fun i) (inj i) (ha ∙ sym hb) )
grIso : GroupIso G H
fun (fst grIso) = f
inv (fst grIso) b = rec (helper b) (λ a → a) (surj i b) .fst
rightInv (fst grIso) b = rec (helper b) (λ a → a) (surj i b) .snd
leftInv (fst grIso) b j = rec (helper (f b)) (λ a → a)
(isPropPropTrunc (surj i (f b)) ∣ b , refl ∣₁ j) .fst
snd grIso = snd (fun i)
BijectionIsoToGroupEquiv : BijectionIso G H → GroupEquiv G H
BijectionIsoToGroupEquiv i = GroupIso→GroupEquiv (BijectionIso→GroupIso i)
|
{
"alphanum_fraction": 0.5991292699,
"avg_line_length": 38.6537216828,
"ext": "agda",
"hexsha": "00ade5bdcd6a5c3152032108420c77cf5f313be9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "gmagaf/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "gmagaf/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "gmagaf/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4790,
"size": 11944
}
|
-----------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the setoid sublist relation
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid; _⇒_; _Preserves_⟶_)
module Data.List.Relation.Binary.Sublist.Setoid.Properties
{c ℓ} (S : Setoid c ℓ) where
open import Data.List.Base hiding (_∷ʳ_)
import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality
import Data.List.Relation.Binary.Sublist.Setoid as SetoidSublist
import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties
as HeteroProperties
import Data.List.Membership.Setoid as SetoidMembership
open import Data.List.Relation.Unary.Any using (Any)
open import Data.Nat using (_≤_; _≥_; z≤n; s≤s)
import Data.Nat.Properties as ℕₚ
import Data.Maybe.Relation.Unary.All as Maybe
open import Function
open import Function.Bijection using (_⤖_)
open import Function.Equivalence using (_⇔_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Unary using (Pred; Decidable; Irrelevant)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (¬?)
open Setoid S using (_≈_) renaming (Carrier to A)
open SetoidEquality S using (_≋_; ≋-refl)
open SetoidSublist S hiding (map)
open SetoidMembership S using (_∈_)
------------------------------------------------------------------------
-- Injectivity of constructors
------------------------------------------------------------------------
module _ {xs ys : List A} where
∷-injectiveˡ : ∀ {x y} {px qx : x ≈ y} {pxs qxs : xs ⊆ ys} →
((x ∷ xs) ⊆ (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → px ≡ qx
∷-injectiveˡ refl = refl
∷-injectiveʳ : ∀ {x y} {px qx : x ≈ y} {pxs qxs : xs ⊆ ys} →
((x ∷ xs) ⊆ (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → pxs ≡ qxs
∷-injectiveʳ refl = refl
∷ʳ-injective : ∀ {y} {pxs qxs : xs ⊆ ys} → y ∷ʳ pxs ≡ y ∷ʳ qxs → pxs ≡ qxs
∷ʳ-injective refl = refl
------------------------------------------------------------------------
-- Various functions' outputs are sublists
------------------------------------------------------------------------
tail-⊆ : ∀ xs → Maybe.All (_⊆ xs) (tail xs)
tail-⊆ xs = HeteroProperties.tail-Sublist ⊆-refl
take-⊆ : ∀ n xs → take n xs ⊆ xs
take-⊆ n xs = HeteroProperties.take-Sublist n ⊆-refl
drop-⊆ : ∀ n xs → drop n xs ⊆ xs
drop-⊆ n xs = HeteroProperties.drop-Sublist n ⊆-refl
module _ {p} {P : Pred A p} (P? : Decidable P) where
takeWhile-⊆ : ∀ xs → takeWhile P? xs ⊆ xs
takeWhile-⊆ xs = HeteroProperties.takeWhile-Sublist P? ⊆-refl
dropWhile-⊆ : ∀ xs → dropWhile P? xs ⊆ xs
dropWhile-⊆ xs = HeteroProperties.dropWhile-Sublist P? ⊆-refl
filter-⊆ : ∀ xs → filter P? xs ⊆ xs
filter-⊆ xs = HeteroProperties.filter-Sublist P? ⊆-refl
module _ {p} {P : Pred A p} (P? : Decidable P) where
takeWhile⊆filter : ∀ xs → takeWhile P? xs ⊆ filter P? xs
takeWhile⊆filter xs = HeteroProperties.takeWhile-filter P? {xs} ≋-refl
filter⊆dropWhile : ∀ xs → filter P? xs ⊆ dropWhile (¬? ∘ P?) xs
filter⊆dropWhile xs = HeteroProperties.filter-dropWhile P? {xs} ≋-refl
------------------------------------------------------------------------
-- Various list functions are increasing wrt _⊆_
------------------------------------------------------------------------
-- We write f⁺ for the proof that `xs ⊆ ys → f xs ⊆ f ys`
-- and f⁻ for the one that `f xs ⊆ f ys → xs ⊆ ys`.
module _ {as bs : List A} where
∷ˡ⁻ : ∀ {a} → a ∷ as ⊆ bs → as ⊆ bs
∷ˡ⁻ = HeteroProperties.∷ˡ⁻
∷ʳ⁻ : ∀ {a b} → ¬ (a ≈ b) → a ∷ as ⊆ b ∷ bs → a ∷ as ⊆ bs
∷ʳ⁻ = HeteroProperties.∷ʳ⁻
∷⁻ : ∀ {a b} → a ∷ as ⊆ b ∷ bs → as ⊆ bs
∷⁻ = HeteroProperties.∷⁻
------------------------------------------------------------------------
-- map
module _ {b ℓ} (R : Setoid b ℓ) where
open Setoid R using () renaming (Carrier to B; _≈_ to _≈′_)
open SetoidSublist R using () renaming (_⊆_ to _⊆′_)
map⁺ : ∀ {as bs} {f : A → B} → f Preserves _≈_ ⟶ _≈′_ →
as ⊆ bs → map f as ⊆′ map f bs
map⁺ {f = f} f-resp as⊆bs =
HeteroProperties.map⁺ f f (SetoidSublist.map S f-resp as⊆bs)
------------------------------------------------------------------------
-- _++_
module _ {as bs : List A} where
++⁺ˡ : ∀ cs → as ⊆ bs → as ⊆ cs ++ bs
++⁺ˡ = HeteroProperties.++ˡ
++⁺ʳ : ∀ cs → as ⊆ bs → as ⊆ bs ++ cs
++⁺ʳ = HeteroProperties.++ʳ
++⁺ : ∀ {cs ds} → as ⊆ bs → cs ⊆ ds → as ++ cs ⊆ bs ++ ds
++⁺ = HeteroProperties.++⁺
++⁻ : ∀ {cs ds} → length as ≡ length bs → as ++ cs ⊆ bs ++ ds → cs ⊆ ds
++⁻ = HeteroProperties.++⁻
------------------------------------------------------------------------
-- take
module _ where
take⁺ : ∀ {m n} {xs} → m ≤ n → take m xs ⊆ take n xs
take⁺ m≤n = HeteroProperties.take⁺ m≤n ≋-refl
------------------------------------------------------------------------
-- drop
module _ {m n} {xs ys : List A} where
drop⁺ : m ≥ n → xs ⊆ ys → drop m xs ⊆ drop n ys
drop⁺ = HeteroProperties.drop⁺
module _ {m n} {xs : List A} where
drop⁺-≥ : m ≥ n → drop m xs ⊆ drop n xs
drop⁺-≥ m≥n = drop⁺ m≥n ⊆-refl
module _ {xs ys : List A} where
drop⁺-⊆ : ∀ n → xs ⊆ ys → drop n xs ⊆ drop n ys
drop⁺-⊆ n xs⊆ys = drop⁺ {n} ℕₚ.≤-refl xs⊆ys
------------------------------------------------------------------------
-- takeWhile / dropWhile
module _ {p q} {P : Pred A p} {Q : Pred A q}
(P? : Decidable P) (Q? : Decidable Q) where
takeWhile⁺ : ∀ {xs} → (∀ {a b} → a ≈ b → P a → Q b) →
takeWhile P? xs ⊆ takeWhile Q? xs
takeWhile⁺ {xs} P⇒Q = HeteroProperties.⊆-takeWhile-Sublist P? Q? {xs} P⇒Q ≋-refl
dropWhile⁺ : ∀ {xs} → (∀ {a b} → a ≈ b → Q b → P a) →
dropWhile P? xs ⊆ dropWhile Q? xs
dropWhile⁺ {xs} P⇒Q = HeteroProperties.⊇-dropWhile-Sublist P? Q? {xs} P⇒Q ≋-refl
------------------------------------------------------------------------
-- filter
module _ {p q} {P : Pred A p} {Q : Pred A q}
(P? : Decidable P) (Q? : Decidable Q) where
filter⁺ : ∀ {as bs} → (∀ {a b} → a ≈ b → P a → Q b) →
as ⊆ bs → filter P? as ⊆ filter Q? bs
filter⁺ = HeteroProperties.⊆-filter-Sublist P? Q?
------------------------------------------------------------------------
-- reverse
module _ {as bs : List A} where
reverseAcc⁺ : ∀ {cs ds} → as ⊆ bs → cs ⊆ ds →
reverseAcc cs as ⊆ reverseAcc ds bs
reverseAcc⁺ = HeteroProperties.reverseAcc⁺
reverse⁺ : as ⊆ bs → reverse as ⊆ reverse bs
reverse⁺ = HeteroProperties.reverse⁺
reverse⁻ : reverse as ⊆ reverse bs → as ⊆ bs
reverse⁻ = HeteroProperties.reverse⁻
------------------------------------------------------------------------
-- Inversion lemmas
------------------------------------------------------------------------
module _ {a b} {A : Set a} {B : Set b} {a as b bs} where
∷⁻¹ : a ≈ b → as ⊆ bs ⇔ a ∷ as ⊆ b ∷ bs
∷⁻¹ = HeteroProperties.∷⁻¹
∷ʳ⁻¹ : ¬ (a ≈ b) → a ∷ as ⊆ bs ⇔ a ∷ as ⊆ b ∷ bs
∷ʳ⁻¹ = HeteroProperties.∷ʳ⁻¹
------------------------------------------------------------------------
-- Other
------------------------------------------------------------------------
module _ where
length-mono-≤ : ∀ {as bs} → as ⊆ bs → length as ≤ length bs
length-mono-≤ = HeteroProperties.length-mono-≤
------------------------------------------------------------------------
-- Conversion to and from list equality
to-≋ : ∀ {as bs} → length as ≡ length bs → as ⊆ bs → as ≋ bs
to-≋ = HeteroProperties.toPointwise
------------------------------------------------------------------------
-- Irrelevant special case
module _ {a b} {A : Set a} {B : Set b} where
[]⊆-irrelevant : Irrelevant ([] ⊆_)
[]⊆-irrelevant = HeteroProperties.Sublist-[]-irrelevant
------------------------------------------------------------------------
-- (to/from)∈ is a bijection
module _ {x xs} where
to∈-injective : ∀ {p q : [ x ] ⊆ xs} → to∈ p ≡ to∈ q → p ≡ q
to∈-injective = HeteroProperties.toAny-injective
from∈-injective : ∀ {p q : x ∈ xs} → from∈ p ≡ from∈ q → p ≡ q
from∈-injective = HeteroProperties.fromAny-injective
to∈∘from∈≗id : ∀ (p : x ∈ xs) → to∈ (from∈ p) ≡ p
to∈∘from∈≗id = HeteroProperties.toAny∘fromAny≗id
[x]⊆xs⤖x∈xs : ([ x ] ⊆ xs) ⤖ (x ∈ xs)
[x]⊆xs⤖x∈xs = HeteroProperties.Sublist-[x]-bijection
|
{
"alphanum_fraction": 0.4840100611,
"avg_line_length": 33.396,
"ext": "agda",
"hexsha": "417d7f075654a0c2f793b1c9ad530df411345ae3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Setoid/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Setoid/Properties.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Setoid/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2873,
"size": 8349
}
|
module Fail.TupleTerm where
open import Haskell.Prelude
pair2trip : a → b × c → a × b × c
pair2trip x xs = x ∷ xs
{-# COMPILE AGDA2HS pair2trip #-}
|
{
"alphanum_fraction": 0.6644736842,
"avg_line_length": 15.2,
"ext": "agda",
"hexsha": "387e27e1928d21c0eee73943e8dce18c06d74a0b",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Fail/TupleTerm.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Fail/TupleTerm.agda",
"max_line_length": 33,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Fail/TupleTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 52,
"size": 152
}
|
open import Level using () renaming (_⊔_ to _⊔ˡ_)
open import Relation.Binary.Morphism.Structures using (IsRelHomomorphism)
open import Algebra.Bundles using (RawMonoid; RawGroup; RawRing)
open import Algebra.Morphism.Structures using (IsMonoidHomomorphism; IsMonoidMonomorphism)
module AKS.Algebra.Morphism.Structures where
module GroupMorphisms {c₁ c₂ ℓ₁ ℓ₂} (G₁ : RawGroup c₁ ℓ₁) (G₂ : RawGroup c₂ ℓ₂) where
open RawGroup G₁ using () renaming (Carrier to C₁; _∙_ to _+₁_; _⁻¹ to -₁_; ε to ε₁; _≈_ to _≈₁_; rawMonoid to +₁-rawMonoid)
open RawGroup G₂ using () renaming (Carrier to C₂; _∙_ to _+₂_; _⁻¹ to -₂_; ε to ε₂; _≈_ to _≈₂_; rawMonoid to +₂-rawMonoid)
open import Algebra.Morphism.Definitions C₁ C₂ _≈₂_ using (Homomorphic₂; Homomorphic₁; Homomorphic₀)
open import Function.Definitions _≈₁_ _≈₂_ using (Injective)
record IsGroupHomomorphism (⟦_⟧ : C₁ → C₂) : Set (c₁ ⊔ˡ ℓ₁ ⊔ˡ ℓ₂) where
field
isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧
+-homo : Homomorphic₂ ⟦_⟧ _+₁_ _+₂_
-‿homo : Homomorphic₁ ⟦_⟧ -₁_ -₂_
ε-homo : Homomorphic₀ ⟦_⟧ ε₁ ε₂
open IsRelHomomorphism isRelHomomorphism public renaming (cong to ⟦⟧-cong)
+-isMonoidHomomorphism : IsMonoidHomomorphism +₁-rawMonoid +₂-rawMonoid ⟦_⟧
+-isMonoidHomomorphism = record
{ isMagmaHomomorphism = record
{ isRelHomomorphism = isRelHomomorphism
; homo = +-homo
}
; ε-homo = ε-homo
}
record IsGroupMonomorphism (⟦_⟧ : C₁ → C₂) : Set (c₁ ⊔ˡ ℓ₁ ⊔ˡ ℓ₂) where
field
isGroupHomomorphism : IsGroupHomomorphism ⟦_⟧
injective : Injective ⟦_⟧
open IsGroupHomomorphism isGroupHomomorphism public
+-isMonoidMonomorphism : IsMonoidMonomorphism +₁-rawMonoid +₂-rawMonoid ⟦_⟧
+-isMonoidMonomorphism = record
{ isMonoidHomomorphism = +-isMonoidHomomorphism
; injective = injective
}
open GroupMorphisms public
module RingMorphisms {c₁ c₂ ℓ₁ ℓ₂} (R₁ : RawRing c₁ ℓ₁) (R₂ : RawRing c₂ ℓ₂) where
open RawRing R₁ using () renaming (Carrier to C₁; _+_ to _+₁_; _*_ to _*₁_; -_ to -₁_; 0# to 0#₁; 1# to 1#₁; _≈_ to _≈₁_)
open RawRing R₂ using () renaming (Carrier to C₂; _+_ to _+₂_; _*_ to _*₂_; -_ to -₂_; 0# to 0#₂; 1# to 1#₂; _≈_ to _≈₂_)
open import Algebra.Morphism.Definitions C₁ C₂ _≈₂_ using (Homomorphic₂; Homomorphic₁; Homomorphic₀)
open import Function.Definitions _≈₁_ _≈₂_ using (Injective)
+₁-rawGroup : RawGroup c₁ ℓ₁
+₁-rawGroup = record { Carrier = C₁ ; _≈_ = _≈₁_ ; _∙_ = _+₁_ ; _⁻¹ = -₁_ ; ε = 0#₁ }
+₂-rawGroup : RawGroup c₂ ℓ₂
+₂-rawGroup = record { Carrier = C₂ ; _≈_ = _≈₂_ ; _∙_ = _+₂_ ; _⁻¹ = -₂_ ; ε = 0#₂ }
*₁-rawMonoid : RawMonoid c₁ ℓ₁
*₁-rawMonoid = record { Carrier = C₁ ; _≈_ = _≈₁_ ; _∙_ = _*₁_ ; ε = 1#₁ }
*₂-rawMonoid : RawMonoid c₂ ℓ₂
*₂-rawMonoid = record { Carrier = C₂ ; _≈_ = _≈₂_ ; _∙_ = _*₂_ ; ε = 1#₂ }
record IsRingHomomorphism (⟦_⟧ : C₁ → C₂) : Set (c₁ ⊔ˡ ℓ₁ ⊔ˡ ℓ₂) where
field
isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧
+-homo : Homomorphic₂ ⟦_⟧ _+₁_ _+₂_
*-homo : Homomorphic₂ ⟦_⟧ _*₁_ _*₂_
-‿homo : Homomorphic₁ ⟦_⟧ -₁_ -₂_
0#-homo : Homomorphic₀ ⟦_⟧ 0#₁ 0#₂
1#-homo : Homomorphic₀ ⟦_⟧ 1#₁ 1#₂
open IsRelHomomorphism isRelHomomorphism public renaming (cong to ⟦⟧-cong)
+-isGroupHomomorphism : IsGroupHomomorphism +₁-rawGroup +₂-rawGroup ⟦_⟧
+-isGroupHomomorphism = record
{ isRelHomomorphism = isRelHomomorphism
; +-homo = +-homo
; -‿homo = -‿homo
; ε-homo = 0#-homo
}
*-isMonoidHomomorphism : IsMonoidHomomorphism *₁-rawMonoid *₂-rawMonoid ⟦_⟧
*-isMonoidHomomorphism = record
{ isMagmaHomomorphism = record
{ isRelHomomorphism = isRelHomomorphism
; homo = *-homo
}
; ε-homo = 1#-homo
}
record IsRingMonomorphism (⟦_⟧ : C₁ → C₂) : Set (c₁ ⊔ˡ ℓ₁ ⊔ˡ ℓ₂) where
field
isRingHomomorphism : IsRingHomomorphism ⟦_⟧
injective : Injective ⟦_⟧
open IsRingHomomorphism isRingHomomorphism public
+-isGroupMonomorphism : IsGroupMonomorphism +₁-rawGroup +₂-rawGroup ⟦_⟧
+-isGroupMonomorphism = record
{ isGroupHomomorphism = +-isGroupHomomorphism
; injective = injective
}
*-isMonoidMonomorphism : IsMonoidMonomorphism *₁-rawMonoid *₂-rawMonoid ⟦_⟧
*-isMonoidMonomorphism = record
{ isMonoidHomomorphism = *-isMonoidHomomorphism
; injective = injective
}
open RingMorphisms public
|
{
"alphanum_fraction": 0.6602592758,
"avg_line_length": 38.5689655172,
"ext": "agda",
"hexsha": "156baffc4bb3314d247372bb10a05299e0e2103e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Algebra/Morphism/Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Algebra/Morphism/Structures.agda",
"max_line_length": 126,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Algebra/Morphism/Structures.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 1834,
"size": 4474
}
|
-- Andreas, 2016-07-19 issue #382, duplicate of #278
-- report and test case by Nisse, 2011-01-30
module Issue382 {A : Set} where
data _≡_ (x : A) : A → Set where
refl : x ≡ x
abstract
id : A → A
id x = y
where y = x
lemma : ∀ x → id x ≡ x
lemma x = refl
-- should succeed
|
{
"alphanum_fraction": 0.5836177474,
"avg_line_length": 15.4210526316,
"ext": "agda",
"hexsha": "ef16125f1d8612f93e65516890c02f4093301526",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue382.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue382.agda",
"max_line_length": 52,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue382.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 113,
"size": 293
}
|
-- Andreas, 2015-09-12, issue reported by F Mazzoli
-- {-# OPTIONS -v tc.meta.assign.proj:85 #-}
open import Common.Product
open import Common.Equality
module _ (A : Set) where
mutual
X : A × A → A
X = _
test : (x y : A × A) → X (proj₁ x , proj₁ y) ≡ proj₁ x
test x y = refl
-- In order to solve X, record variables x and y
-- have to be expanded.
-- Previously, this happend only if projections were
-- direct argument to the meta-variable.
-- Now, we also accept them inside record constructors.
verify : ∀{p} → X p ≡ proj₁ p
verify = refl
|
{
"alphanum_fraction": 0.6606822262,
"avg_line_length": 22.28,
"ext": "agda",
"hexsha": "0cf9e82c8f8ea08d55822a62ffcd186cf28ade42",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1316.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1316.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1316.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 171,
"size": 557
}
|
import Lvl
open import Type
module FormalLanguage.RegularExpression {ℓ} (Σ : Type{ℓ}) where
open import Data.Boolean
open import Data.Boolean.Stmt.Proofs
open import Data.List as List using (List)
open import FormalLanguage
open import FormalLanguage.Proofs
open import Functional
open import Logic
open import Logic.Propositional
open import Numeral.Natural
open import Relator.Equals
data RegExp : Type{ℓ} where
∅ : RegExp -- Empty language (Consisting of no words).
ε : RegExp -- Empty word language (Consisting of a single empty word).
• : Σ → RegExp -- Singleton language (Consisting of a single one letter word).
_++_ : RegExp → RegExp → RegExp -- Concatenation language (Consisting of the words concatenated pairwise).
_‖_ : RegExp → RegExp → RegExp -- Union language (Consisting of the words in both languages).
_* : RegExp → RegExp -- Infinite concatenations language (Consisting of the words concatenated with themselves any number of times).
-- Non-empty infinite concatenations language.
_+ : RegExp → RegExp
e + = e ++ (e *)
-- Optional expression language
_?? : RegExp → RegExp
e ?? = ε ‖ e
-- Finitely repeated expression language
exactly : ℕ → RegExp → RegExp
exactly 𝟎 e = ε
exactly (𝐒(n)) e = e ++ (exactly n e)
-- Minimum repetitions of an expression language
at-least : ℕ → RegExp → RegExp
at-least 𝟎 e = e *
at-least (𝐒(n)) e = e ++ (at-least n e)
-- Maximum repetitions of an expression language
at-most : ℕ → RegExp → RegExp
at-most 𝟎 e = ε
at-most (𝐒(n)) e = ε ‖ (e ++ (at-most n e))
-- Relation for whether a pattern/expression matches a word (whether the word is in the language that the pattern/expression describes).
data _matches_ : RegExp → List(Σ) → Stmt{ℓ} where
empty-word : ε matches List.∅
concatenation : ∀{r₁ r₂}{l₁ l₂} → (r₁ matches l₁) → (r₂ matches l₂) → ((r₁ ++ r₂) matches (l₁ List.++ l₂))
disjunctionₗ : ∀{rₗ rᵣ}{l} → (rₗ matches l) → ((rₗ ‖ rᵣ) matches l)
disjunctionᵣ : ∀{rₗ rᵣ}{l} → (rᵣ matches l) → ((rₗ ‖ rᵣ) matches l)
iteration : ∀{r}{l₁ l₂} → (r matches l₁) → ((r *) matches l₂) → ((r *) matches (l₁ List.++ l₂))
literal : ∀{a} → ((• a) matches List.singleton(a))
-- optional-empty : ∀{e} → ((e ??) matches List.∅)
pattern optional-empty = disjunctionₗ empty-word
optional-self : ∀{e}{l} → (e matches l) → ((e ??) matches l)
optional-self = disjunctionᵣ
empty-none : ∀{l} → ¬(∅ matches l)
empty-none ()
module _ ⦃ _ : ComputablyDecidable(_≡_) ⦄ where
language : RegExp → Language(Σ)
language ∅ = Oper.∅
language ε = Oper.ε
language (• x) = Oper.single x
language (x ++ y) = language(x) Oper.𝁼 language(y)
language (x ‖ y) = language(x) Oper.∪ language(y)
language (x *) = language(x) Oper.*
postulate matches-language : ∀{e}{l} → (e matches l) → (l Oper.∈ language(e))
{-matches-language {ε} {List.∅} empty-word = [⊤]-intro
matches-language {• a} {.a List.⊰ .List.∅} literal = {!!}
matches-language {e₁ ++ e₂} {List.∅} p = {!!}
matches-language {e₁ ++ e₂} {x List.⊰ l} p = {!!}
matches-language {e₁ ‖ e₂} {List.∅} (disjunctionₗ p) = IsTrue.[∨]-introₗ(matches-language {e₁} p)
matches-language {e₁ ‖ e₂} {List.∅} (disjunctionᵣ p) = IsTrue.[∨]-introᵣ(matches-language {e₂} p)
matches-language {e₁ ‖ e₂} {x List.⊰ l} (disjunctionₗ p) = [↔]-to-[←] ([∪]-containment {x = x List.⊰ l}{A = language(e₁)}{B = language(e₂)}) ([∨]-introₗ (matches-language {e₁} p))
matches-language {e₁ ‖ e₂} {x List.⊰ l} (disjunctionᵣ p) = [↔]-to-[←] ([∪]-containment {x = x List.⊰ l}{A = language(e₁)}{B = language(e₂)}) ([∨]-introᵣ (matches-language {e₂} p))
matches-language {e *} {List.∅} p = {!!}
matches-language {e *} {x List.⊰ l} p = {!!}
-}
postulate language-matches : ∀{e}{l} → (l Oper.∈ language(e)) → (e matches l)
{-language-matches {∅} {x List.⊰ l} p with () ← language-matches {∅} {l} p
language-matches {ε} {List.∅} [⊤]-intro = empty-word
language-matches {ε} {x List.⊰ l} p with () ← [↔]-to-[→] ([ε]-containment {x = x List.⊰ l}) p
language-matches {• a} {x List.⊰ l} p with [≡]-intro ← [↔]-to-[→] (single-containment {x = x List.⊰ l}) p = literal
language-matches {e₁ ++ e₂} {List.∅} p = {!!}
language-matches {e₁ ++ e₂} {x List.⊰ l} p = {!!}
language-matches {e₁ ‖ e₂} {l} p = [∨]-elim (disjunctionₗ ∘ language-matches) (disjunctionᵣ ∘ language-matches) ([↔]-to-[→] ([∪]-containment {x = l} {A = language(e₁)} {B = language(e₂)}) p)
language-matches {e *} {List.∅} [⊤]-intro = {![*]-containment!}
language-matches {e *} {x List.⊰ l} p = {!!}
-}
|
{
"alphanum_fraction": 0.6161528441,
"avg_line_length": 46.5252525253,
"ext": "agda",
"hexsha": "502fb37d337b615833b8b2d4389a5f1e41b3b0e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "FormalLanguage/RegularExpression.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "FormalLanguage/RegularExpression.agda",
"max_line_length": 193,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "FormalLanguage/RegularExpression.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1643,
"size": 4606
}
|
-- Currently primitive functions are not allowed in mutual blocks.
-- This might change.
module PrimitiveInMutual where
postulate String : Set
{-# BUILTIN STRING String #-}
mutual
primitive primStringAppend : String -> String -> String
_++_ : String -> String -> String
x ++ y = primStringAppend x y
|
{
"alphanum_fraction": 0.7170418006,
"avg_line_length": 20.7333333333,
"ext": "agda",
"hexsha": "a2f4deb75ae6afe55b960f245684bf5753c09c4f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/PrimitiveInMutual.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/PrimitiveInMutual.agda",
"max_line_length": 66,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/PrimitiveInMutual.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 73,
"size": 311
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definitions for morphisms between algebraic structures
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Core
module Algebra.Morphism.Definitions
{a} (A : Set a) -- The domain of the morphism
{b} (B : Set b) -- The codomain of the morphism
{ℓ} (_≈_ : Rel B ℓ) -- The equality relation over the codomain
where
open import Algebra.Core
open import Function.Core
------------------------------------------------------------------------
-- Basic definitions
Homomorphic₀ : (A → B) → A → B → Set _
Homomorphic₀ ⟦_⟧ ∙ ∘ = ⟦ ∙ ⟧ ≈ ∘
Homomorphic₁ : (A → B) → Op₁ A → Op₁ B → Set _
Homomorphic₁ ⟦_⟧ ∙_ ∘_ = ∀ x → ⟦ ∙ x ⟧ ≈ (∘ ⟦ x ⟧)
Homomorphic₂ : (A → B) → Op₂ A → Op₂ B → Set _
Homomorphic₂ ⟦_⟧ _∙_ _∘_ = ∀ x y → ⟦ x ∙ y ⟧ ≈ (⟦ x ⟧ ∘ ⟦ y ⟧)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.3
Morphism : Set _
Morphism = A → B
{-# WARNING_ON_USAGE Morphism
"Warning: Morphism was deprecated in v1.3.
Please use the standard function notation (e.g. A → B) instead."
#-}
|
{
"alphanum_fraction": 0.4695467422,
"avg_line_length": 28.8163265306,
"ext": "agda",
"hexsha": "e953d033cc65645cd0b57b77624f4f6472195d27",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Morphism/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Morphism/Definitions.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Morphism/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 375,
"size": 1412
}
|
module 842Isomorphism where
-- Library
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; cong-app; sym) -- added last
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm; +-suc; +-identityʳ) -- added last
-- Function composition.
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
(g ∘ f) x = g (f x)
_∘′_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
g ∘′ f = λ x → g (f x)
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
-- Another definition of addition.
_+′_ : ℕ → ℕ → ℕ -- split on n instead, get different code
m +′ zero = m
m +′ suc n = suc (m +′ n)
same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n
same-app m zero = sym (+-identityʳ m)
same-app m (suc n) rewrite +-suc m n | same-app m n = refl
same : _+′_ ≡ _+_ -- this requires extensionality
same = extensionality λ x → extensionality λ x₁ → same-app x x₁
-- Isomorphism.
infix 0 _≃_
record _≃_ (A B : Set) : Set where
constructor mk-≃ -- This has been added, not in PLFA
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
-- Equivalent to the following:
data _≃′_ (A B : Set): Set where
mk-≃′ : ∀ (to : A → B) →
∀ (from : B → A) →
∀ (from∘to : (∀ (x : A) → from (to x) ≡ x)) →
∀ (to∘from : (∀ (y : B) → to (from y) ≡ y)) →
A ≃′ B
to′ : ∀ {A B : Set} → (A ≃′ B) → (A → B)
to′ (mk-≃′ f g g∘f f∘g) = f
from′ : ∀ {A B : Set} → (A ≃′ B) → (B → A)
from′ (mk-≃′ f g g∘f f∘g) = g
from∘to′ : ∀ {A B : Set} → (A≃B : A ≃′ B)
→ (∀ (x : A)
→ from′ A≃B (to′ A≃B x) ≡ x)
from∘to′ (mk-≃′ f g g∘f f∘g) = g∘f
to∘from′ : ∀ {A B : Set} → (A≃B : A ≃′ B)
→ (∀ (y : B)
→ to′ A≃B (from′ A≃B y) ≡ y)
to∘from′ (mk-≃′ f g g∘f f∘g) = f∘g
-- End of equivalent formulation (records are faster!)
-- Properties of isomorphism.
-- Reflexivity.
≃-refl : ∀ {A : Set}
-----
→ A ≃ A
-- in empty hole, split on result, get copatterns (not in PLFA)
to ≃-refl x = x
from ≃-refl x = x
from∘to ≃-refl x = refl
to∘from ≃-refl x = refl
-- Symmetry.
≃-sym : ∀ {A B : Set}
→ A ≃ B
-----
→ B ≃ A
to (≃-sym A≃B) = from A≃B
from (≃-sym A≃B) = to A≃B
from∘to (≃-sym A≃B) = to∘from A≃B
to∘from (≃-sym A≃B) = from∘to A≃B
-- Transitivity.
≃-trans : ∀ {A B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
to (≃-trans A≃B B≃C) = to B≃C ∘ to A≃B
from (≃-trans A≃B B≃C) = from A≃B ∘ from B≃C
from∘to (≃-trans A≃B B≃C) x rewrite from∘to B≃C (to A≃B x) = from∘to A≃B x
to∘from (≃-trans A≃B B≃C) x rewrite to∘from A≃B (from B≃C x) = to∘from B≃C x
-- Isomorphism is an equivalence relation.
-- We can create syntax for equational reasoning.
module ≃-Reasoning where
infix 1 ≃-begin_
infixr 2 _≃⟨_⟩_
infix 3 _≃-∎
≃-begin_ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≃ B
≃-begin A≃B = A≃B
_≃⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C
_≃-∎ : ∀ (A : Set)
-----
→ A ≃ A
A ≃-∎ = ≃-refl
open ≃-Reasoning
-- Embedding (weaker than isomorphism)
infix 0 _≲_
record _≲_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
open _≲_
≲-refl : ∀ {A : Set} → A ≲ A
to ≲-refl x = x
from ≲-refl x = x
from∘to ≲-refl x = refl
≲-trans : ∀ {A B C : Set} → A ≲ B → B ≲ C → A ≲ C
to (≲-trans A≲B B≲C) = to B≲C ∘ to A≲B
from (≲-trans A≲B B≲C) = from A≲B ∘ from B≲C
from∘to (≲-trans A≲B B≲C) x rewrite from∘to B≲C (to A≲B x) = from∘to A≲B x
≲-antisym : ∀ {A B : Set}
→ (A≲B : A ≲ B)
→ (B≲A : B ≲ A)
→ (to A≲B ≡ from B≲A)
→ (from A≲B ≡ to B≲A)
-------------------
→ A ≃ B
to (≲-antisym A≲B B≲A to≡from from≡to) = to A≲B
from (≲-antisym A≲B B≲A to≡from from≡to) = from A≲B
from∘to (≲-antisym A≲B B≲A to≡from from≡to) x = from∘to A≲B x
to∘from (≲-antisym A≲B B≲A to≡from from≡to) y
rewrite from≡to | to≡from = from∘to B≲A y
-- Tabular reasoning for embedding.
module ≲-Reasoning where
infix 1 ≲-begin_
infixr 2 _≲⟨_⟩_
infix 3 _≲-∎
≲-begin_ : ∀ {A B : Set}
→ A ≲ B
-----
→ A ≲ B
≲-begin A≲B = A≲B
_≲⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≲ B
→ B ≲ C
-----
→ A ≲ C
A ≲⟨ A≲B ⟩ B≲C = ≲-trans A≲B B≲C
_≲-∎ : ∀ (A : Set)
-----
→ A ≲ A
A ≲-∎ = ≲-refl
open ≲-Reasoning
-- PLFA exercise: Isomorphism implies embedding.
≃-implies-≲ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≲ B
to (≃-implies-≲ a≃b) = to a≃b
from (≃-implies-≲ a≃b) = from a≃b
from∘to (≃-implies-≲ a≃b) = from∘to a≃b
-- PLFA exercise: propositional equivalence (weaker than embedding).
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_ -- added
-- This is also an equivalence relation.
⇔-refl : ∀ {A : Set}
-----
→ A ⇔ A
_⇔_.to ⇔-refl x = x
_⇔_.from ⇔-refl x = x
⇔-sym : ∀ {A B : Set}
→ A ⇔ B
-----
→ B ⇔ A
_⇔_.to (⇔-sym A⇔B) = from A⇔B
_⇔_.from (⇔-sym A⇔B) = to A⇔B
⇔-trans : ∀ {A B C : Set}
→ A ⇔ B
→ B ⇔ C
-----
→ A ⇔ C
to (⇔-trans A⇔B B⇔C) = to B⇔C ∘ to A⇔B
from (⇔-trans A⇔B B⇔C) = from A⇔B ∘ from B⇔C
-- 842 extended exercise: Canonical bitstrings.
-- Modified and extended from Bin-predicates exercise in PLFA Relations.
-- Copied from 842Naturals.
data Bin-ℕ : Set where
bits : Bin-ℕ
_x0 : Bin-ℕ → Bin-ℕ
_x1 : Bin-ℕ → Bin-ℕ
dbl : ℕ → ℕ
dbl zero = zero
dbl (suc n) = suc (suc (dbl n))
-- Copy your versions of 'inc', 'tob', and 'fromb' over from earlier files.
-- You may choose to change the definitions here to make proofs easier.
-- But make sure to test them if you do!
-- You may also copy over any theorems that prove useful.
inc : Bin-ℕ → Bin-ℕ
inc n = {!!}
tob : ℕ → Bin-ℕ
tob n = {!!}
dblb : Bin-ℕ → Bin-ℕ
dblb n = {!!}
fromb : Bin-ℕ → ℕ
fromb n = {!!}
-- The reason that we couldn't prove ∀ {n : Bin-ℕ} → tob (fromb n) ≡ n
-- is because of the possibility of leading zeroes in a Bin-ℕ value.
-- 'bits x0 x0 x1' is such a value that gives a counterexample.
-- However, the theorem is true is true for n without leading zeroes.
-- We define a predicate to be able to state this in a theorem.
-- A value of type One n is evidence that n has a leading one.
data One : Bin-ℕ → Set where
[bitsx1] : One (bits x1)
_[x0] : ∀ {n : Bin-ℕ} → One n → One (n x0)
_[x1] : ∀ {n : Bin-ℕ} → One n → One (n x1)
-- Here's a proof that 'bits x1 x0 x0' has a leading one.
_ : One (bits x1 x0 x0)
_ = [bitsx1] [x0] [x0]
-- There is no value of type One (bits x0 x0 x1).
-- But we can't state and prove this yet, because we don't know
-- how to express negation. That comes in the Connectives chapter.
-- A canonical binary representation is either zero or has a leading one.
data Can : Bin-ℕ → Set where
[zero] : Can bits
[pos] : ∀ {n : Bin-ℕ} → One n → Can n
-- Some obvious examples:
_ : Can bits
_ = [zero]
_ : Can (bits x1 x0)
_ = [pos] ([bitsx1] [x0])
-- The Bin-predicates exercise in PLFA Relations gives three properties of canonicity.
-- The first is that the increment of a canonical number is canonical.
-- Most of the work is done in the following lemma.
-- 842 exercise: IncCanOne (2 points)
-- The increment of a canonical number has a leading one.
one-inc : ∀ {n : Bin-ℕ} → Can n → One (inc n)
one-inc cn = {!!}
-- The first canonicity property is now an easy corollary.
-- 842 exercise: OneInc (1 point)
can-inc : ∀ {n : Bin-ℕ} → Can n → Can (inc n)
can-inc cn = {!!}
-- The second canonicity property is that converting a unary number
-- to binary produces a canonical number.
-- 842 exercise: CanToB (1 point)
to-can : ∀ (n : ℕ) → Can (tob n)
to-can n = {!!}
-- The third canonicity property is that converting a canonical number
-- from binary and back to unary produces the same number.
-- This takes more work, and some helper lemmas from 842Induction.
-- You will need to discover which ones.
-- 842 exercise: OneDblbX0 (1 point)
-- This helper function relates binary double to the x0 constructor,
-- for numbers with a leading one.
dblb-x0 : ∀ {n : Bin-ℕ} → One n → dblb n ≡ n x0
dblb-x0 on = {!!}
-- We can now prove the third property for numbers with a leading one.
-- 842 exercise: OneToFrom (3 points)
one-to∘from : ∀ {n : Bin-ℕ} → One n → tob (fromb n) ≡ n
one-to∘from on = {!!}
-- The third property is now an easy corollary.
-- 842 exercise: CanToFrom (1 point)
can-to∘from : ∀ {n : Bin-ℕ} → Can n → tob (fromb n) ≡ n
can-to∘from cn = {!!}
-- 842 exercise: OneUnique (2 points)
-- Proofs of positivity are unique.
one-unique : ∀ {n : Bin-ℕ} → (x y : One n) → x ≡ y
one-unique x y = {!!}
-- 842 exercise: CanUnique (1 point)
-- Proofs of canonicity are unique.
can-unique : ∀ {n : Bin-ℕ} → (x y : Can n) → x ≡ y
can-unique x y = {!!}
-- Do we have an isomorphism between ℕ (unary) and canonical binary representations?
-- Can is not a set, but a family of sets, so it doesn't quite fit
-- into our framework for isomorphism.
-- But we can roll all the values into one set which is isomorphic to ℕ.
-- A CanR value wraps up a Bin-ℕ and proof it has a canonical representation.
data CanR : Set where
wrap : ∀ (n : Bin-ℕ) → Can n → CanR
-- We can show that there is an isomorphism between ℕ and CanR.
-- 842 exercise: IsoNCanR (3 points)
iso-ℕ-CanR : ℕ ≃ CanR
iso-ℕ-CanR = {!!}
-- Can we get an isomorphism between ℕ and some binary encoding,
-- without the awkwardness of non-canonical values?
-- Yes: we use digits 1 and 2, instead of 0 and 1 (multiplier/base is still 2).
-- This is known as bijective binary numbering.
-- The counting sequence goes <empty>, 1, 2, 11, 12, 21, 22, 111...
data Bij-ℕ : Set where
bits : Bij-ℕ
_x1 : Bij-ℕ → Bij-ℕ
_x2 : Bij-ℕ → Bij-ℕ
-- There is an isomorphism between ℕ and Bij-ℕ.
-- The proof largely follows the outline of what we did above,
-- and is left as an optional exercise.
-- See PLFA for remarks on standard library definitions similar to those here.
-- Unicode introduced in this chapter:
{-
∘ U+2218 RING OPERATOR (\o, \circ, \comp)
λ U+03BB GREEK SMALL LETTER LAMBDA (\lambda, \Gl)
≃ U+2243 ASYMPTOTICALLY EQUAL TO (\~-)
≲ U+2272 LESS-THAN OR EQUIVALENT TO (\<~)
⇔ U+21D4 LEFT RIGHT DOUBLE ARROW (\<=>)
-}
|
{
"alphanum_fraction": 0.5667115903,
"avg_line_length": 24.1020881671,
"ext": "agda",
"hexsha": "ac716b16c1985fae07b50ba2209dab9901a63f14",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x05-842Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x05-842Isomorphism.agda",
"max_line_length": 87,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x05-842Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 4278,
"size": 10388
}
|
module Pi.AuxLemmas where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Pi.Syntax
open import Pi.Opsem
Lemma₁ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ ⟨ c ∣ v ∣ κ ⟩ ↦ [ c' ∣ v' ∣ κ' ]
→ A ≡ C × B ≡ D
Lemma₁ ↦₁ = refl , refl
Lemma₁ ↦₂ = refl , refl
Lemma₂ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ ⟨ c ∣ v ∣ κ ⟩ ↦ [ c' ∣ v' ∣ κ' ]
→ c ≡ c' × κ ≡ κ'
Lemma₂ ↦₁ = refl , refl
Lemma₂ ↦₂ = refl , refl
Lemma₃ : ∀ {A B v v' κ} {c : A ↔ B}
→ (r : ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ v' ∣ κ ])
→ base c ⊎ A ≡ B
Lemma₃ (↦₁ {b = b}) = inj₁ b
Lemma₃ ↦₂ = inj₂ refl
Lemma₄ : ∀ {A v v' κ} {c : A ↔ A}
→ (r : ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ v' ∣ κ ])
→ base c ⊎ c ≡ id↔
Lemma₄ {c = swap₊} ↦₁ = inj₁ tt
Lemma₄ {c = swap⋆} ↦₁ = inj₁ tt
Lemma₄ ↦₂ = inj₂ refl
|
{
"alphanum_fraction": 0.4657980456,
"avg_line_length": 27.0882352941,
"ext": "agda",
"hexsha": "058369b751660c841bade8cc0f8c93a99a794599",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi/AuxLemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi/AuxLemmas.agda",
"max_line_length": 55,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi/AuxLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 423,
"size": 921
}
|
{-# OPTIONS --sized-types #-}
module SBList {A : Set}(_≤_ : A → A → Set) where
open import Bound.Total A
open import Bound.Total.Order _≤_
open import Data.List
open import Data.Product
open import Size
data SBList : {ι : Size} → Bound → Bound → Set where
nil : {ι : Size}{b t : Bound}
→ LeB b t
→ SBList {↑ ι} b t
cons : {ι : Size}{b t : Bound}
(x : A)
→ LeB b (val x)
→ LeB (val x) t
→ SBList {ι} b t
→ SBList {↑ ι} b t
bound : List A → SBList bot top
bound [] = nil lebx
bound (x ∷ xs) = cons x lebx lext (bound xs)
unbound : {b t : Bound} → SBList b t → List A
unbound (nil _) = []
unbound (cons x _ _ xs) = x ∷ unbound xs
unbound× : {ι : Size}{b t b' t' : Bound} → SBList {ι} b t × SBList {ι} b' t' → List A × List A
unbound× (xs , ys) = (unbound xs , unbound ys)
|
{
"alphanum_fraction": 0.502708559,
"avg_line_length": 26.3714285714,
"ext": "agda",
"hexsha": "110292939c56df05aa900fd12b2926a72c1a449c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SBList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SBList.agda",
"max_line_length": 94,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SBList.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 309,
"size": 923
}
|
module EqProof
{ A : Set }
( _==_ : A -> A -> Set )
(refl : {x : A} -> x == x)
(trans : {x y z : A} -> x == y -> y == z -> x == z)
where
infix 2 eqProof>_
infixl 2 _===_
infix 3 _by_
eqProof>_ : (x : A) -> x == x
eqProof> x = refl
_===_ : {x y z : A} -> x == y -> y == z -> x == z
xy === yz = trans xy yz
_by_ : {x : A}(y : A) -> x == y -> x == y
y by eq = eq
|
{
"alphanum_fraction": 0.3873417722,
"avg_line_length": 17.9545454545,
"ext": "agda",
"hexsha": "a6c7c2d30720d7dd2ecfd00bd3b930ae2fe07798",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/tactics/ac/EqProof.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/tactics/ac/EqProof.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/tactics/ac/EqProof.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 178,
"size": 395
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import homotopy.DisjointlyPointedSet
module cohomology.DisjointlyPointedSet {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
module _ (n : ℤ) (X : Ptd i)
(X-is-set : is-set (de⊙ X)) (dec : is-separable X)
(ac : has-choice 0 (de⊙ X) i) where
private
lemma : BigWedge {A = MinusPoint X} (λ _ → ⊙Bool) ≃ de⊙ X
lemma = equiv to from to-from from-to where
from : de⊙ X → BigWedge {A = MinusPoint X} (λ _ → ⊙Bool)
from x with dec x
from x | inl p = bwbase
from x | inr ¬p = bwin (x , ¬p) false
module From = BigWedgeRec {A = MinusPoint X} {X = λ _ → ⊙Bool}
(pt X) (λ{_ true → pt X; (x , _) false → x}) (λ _ → idp)
to = From.f
abstract
from-to : ∀ x → from (to x) == x
from-to = BigWedge-elim base* in* glue* where
base* : from (pt X) == bwbase
base* with dec (pt X)
base* | inl _ = idp
base* | inr ¬p = ⊥-rec (¬p idp)
in* : (wp : MinusPoint X) (b : Bool)
→ from (to (bwin wp b)) == bwin wp b
in* wp true with dec (pt X)
in* wp true | inl _ = bwglue wp
in* wp true | inr pt≠pt = ⊥-rec (pt≠pt idp)
in* (x , pt≠x) false with dec x
in* (x , pt≠x) false | inl pt=x = ⊥-rec (pt≠x pt=x)
in* (x , pt≠x) false | inr pt≠'x =
ap (λ ¬p → bwin (x , ¬p) false) $ prop-has-all-paths ¬-is-prop pt≠'x pt≠x
glue* : (wp : MinusPoint X)
→ base* == in* wp true [ (λ x → from (to x) == x) ↓ bwglue wp ]
glue* wp = ↓-∘=idf-from-square from to $ ap (ap from) (From.glue-β wp) ∙v⊡ square where
square : Square base* idp (bwglue wp) (in* wp true)
square with dec (pt X)
square | inl _ = br-square (bwglue wp)
square | inr ¬p = ⊥-rec (¬p idp)
to-from : ∀ x → to (from x) == x
to-from x with dec x
to-from x | inl pt=x = pt=x
to-from x | inr pt≠x = idp
C-set : C n X ≃ᴳ Πᴳ (MinusPoint X) (λ _ → C n (⊙Lift ⊙Bool))
C-set =
C n X
≃ᴳ⟨ C-emap n (≃-to-⊙≃ lemma idp) ⟩
C n (⊙BigWedge {A = MinusPoint X} (λ _ → ⊙Bool))
≃ᴳ⟨ C-emap n (⊙BigWedge-emap-r λ _ → ⊙lower-equiv) ⟩
C n (⊙BigWedge {A = MinusPoint X} (λ _ → ⊙Lift ⊙Bool))
≃ᴳ⟨ C-additive-iso n (λ _ → ⊙Lift ⊙Bool)
(MinusPoint-has-choice 0 (separable-has-disjoint-pt dec) ac) ⟩
Πᴳ (MinusPoint X) (λ _ → C n (⊙Lift ⊙Bool))
≃ᴳ∎
module _ {n : ℤ} (n≠0 : n ≠ 0) (X : Ptd i)
(X-is-set : is-set (de⊙ X)) (dec : is-separable X)
(ac : has-choice 0 (de⊙ X) i) where
C-set-≠-is-trivial : is-trivialᴳ (C n X)
C-set-≠-is-trivial = iso-preserves'-trivial
(C-set n X X-is-set dec ac)
(Πᴳ-is-trivial (MinusPoint X)
(λ _ → C n (⊙Lift ⊙Bool))
(λ _ → C-dimension n≠0))
|
{
"alphanum_fraction": 0.4943521595,
"avg_line_length": 37.1604938272,
"ext": "agda",
"hexsha": "44079398d3bd130fc4ebb7f6474e945b4a7e16c2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/DisjointlyPointedSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/DisjointlyPointedSet.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/DisjointlyPointedSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1174,
"size": 3010
}
|
-- Data: init commit
--{-# OPTIONS --show-implicit #-}
--{-# OPTIONS --rewriting #-}
module Oscar.Data0 where
data ⟦⟧ : Set where
∅ : ⟦⟧
! : ⟦⟧ → ⟦⟧
data ⟦_⟧ {a} (A : Set a) : Set a where
∅ : ⟦ A ⟧
_∷_ : A → ⟦ A ⟧ → ⟦ A ⟧
data ⟦⟧[_] : ⟦⟧ → Set where
∅ : ∀ {n} → ⟦⟧[ ! n ]
! : ∀ {n} → ⟦⟧[ n ] → ⟦⟧[ ! n ]
data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ! n ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ] → ⟦ A ⟧[ ! n ]
data ⟦⟧[_≤↓_] (m : ⟦⟧) : ⟦⟧ → Set where
∅ : ⟦⟧[ m ≤↓ m ]
! : ∀ {n} → ⟦⟧[ m ≤↓ n ] → ⟦⟧[ m ≤↓ ! n ]
data ⟦_⟧[_≤↓_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ≤↓ m ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ m ≤↓ n ] → ⟦ A ⟧[ m ≤↓ ! n ]
data ⟦⟧[_↑≤_] (m : ⟦⟧) : ⟦⟧ → Set where
∅ : ⟦⟧[ m ↑≤ m ]
! : ∀ {n} → ⟦⟧[ ! m ↑≤ n ] → ⟦⟧[ m ↑≤ n ]
data ⟦_⟧[_↑≤_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ↑≤ m ]
_∷_ : ∀ {n} → A m → ⟦ A ⟧[ ! m ↑≤ n ] → ⟦ A ⟧[ m ↑≤ n ]
data ⟦⟧[_↓≤↓_] : ⟦⟧ → ⟦⟧ → Set where
∅ : ∀ {n} → ⟦⟧[ ∅ ↓≤↓ n ]
! : ∀ {m n} → ⟦⟧[ m ↓≤↓ n ] → ⟦⟧[ ! m ↓≤↓ ! n ]
data ⟦_⟧[_↓≤↓_] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ∅ ↓≤↓ n ]
! : ∀ {m n} → A m n → ⟦ A ⟧[ m ↓≤↓ n ] → ⟦ A ⟧[ ! m ↓≤↓ ! n ]
-- open import Oscar.Data.Unit
-- open import Oscar.Level
-- open import Data.Empty
-- 𝕋 : ∀ {a} {A : Set a} → A → Set
-- 𝕋 = λ _ → ⊤
-- postulate
-- ℓ : Level
-- Term : Set ℓ
-- -- module _ where -- second constructor is recursive
-- -- -- Nat
-- -- data ⟦⟧ : Set where
-- -- ∅ : ⟦⟧
-- -- ! : ⟦⟧ → ⟦⟧
-- -- -- List
-- -- data ⟦_⟧ {a} (A : Set a) : Set a where
-- -- ∅ : ⟦ A ⟧
-- -- _∷_ : A → ⟦ A ⟧ → ⟦ A ⟧
-- -- -- ⋆⋆ m, size: m
-- -- -- [ 0 ] = nothing
-- -- -- [ 1 ] = ∅0
-- -- -- [ 4 ] = ∅3 or !2∅3 or !1!2∅3 or !0!1!2∅3
-- -- data ⟦⟧[_] : ⟦⟧ → Set where
-- -- ∅ : ∀ {n} → ⟦⟧[ ! n ]
-- -- ! : ∀ {n} → ⟦⟧[ n ] → ⟦⟧[ ! n ]
-- -- data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
-- -- ∅ : ∀ {n} → ⟦ A ⟧[ ! n ]
-- -- _∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ] → ⟦ A ⟧[ ! n ]
-- -- -- 0 : ∅ (only)
-- -- -- 1 : ∅ or ! ∅
-- -- -- 2 : ∅ or ! ∅
-- -- -- 5 : ∅ or !
-- -- -- size: m + 1
-- -- -- ⋆⋆'' 0 = ∅0
-- -- -- ⋆⋆'' 4 = ∅(m=4) or !3∅4 or !2!3∅4 or !1!2!3∅4 or !0!1!2!3∅4
-- -- data ⋆⋆'' (m : ⟦⟧) : Set where
-- -- ∅ : ⋆⋆'' m
-- -- ! : ⋆⋆'' (! m) → ⋆⋆'' m
-- -- -- ⋆⋆'' ⊂ ⋆⋆
-- -- -- m ≤ n == n - 1 ⋱ m
-- -- -- m ↙ n
-- -- -- size = n - m
-- -- -- AList
-- -- -- 4≤↓2 = nothing
-- -- -- 2≤↓4 = !23!22∅22
-- -- data ⟦⟧[_≤↓_] (m : ⟦⟧) : ⟦⟧ → Set where
-- -- ∅ : ⟦⟧[ m ≤↓ m ]
-- -- ! : ∀ {n} → ⟦⟧[ m ≤↓ n ] → ⟦⟧[ m ≤↓ ! n ]
-- -- -- A n
-- -- (_⋱_] : ⟦⟧ → ⟦⟧ → Set
-- -- ( n ⋱ m ] = ⟦⟧[ m ≤↓ n ]
-- -- data ⟦_⟧[_≤↓_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set where
-- -- ∅ : ⟦ A ⟧[ m ≤↓ m ]
-- -- ! : ∀ {n} → A n → ⟦ A ⟧[ m ≤↓ n ] → ⟦⟧[ m ≤↓ ! n ]
-- -- -- m ≤ n = m ⋰ n - 1
-- -- -- m ↗ n
-- -- -- size = n - m (+1?)
-- -- -- 2↑≤4 = !24!34∅44
-- -- data _↑≤_ (m : ⟦⟧) : ⟦⟧ → Set where
-- -- ∅ : m ↑≤ m
-- -- ! : ∀ {n} → ! m ↑≤ n → m ↑≤ n
-- -- -- A m
-- -- [_⋰_) : ⟦⟧ → ⟦⟧ → Set
-- -- [ m ⋰ n ) = m ↑≤ n
-- -- -- m ≤ n == n - 1 ⋱ n - m && m - 1 ⋱ 0
-- -- -- size = m (+1?)
-- -- -- Inj
-- -- -- 2↓≤↓4 = !13!02∅02
-- -- data _↓≤↓_ : ⟦⟧ → ⟦⟧ → Set where
-- -- ∅ : ∀ {n} → ∅ ↓≤↓ n
-- -- ! : ∀ {m n} → m ↓≤↓ n → ! m ↓≤↓ ! n -- A m n
-- -- -- Fin
-- -- -- P 0 = ∅0 or !0∅1 or !0!1∅2 or ...
-- -- -- P 3 = ∅3 or !3∅4 or !3!4∅5 or ... (infinite)
-- -- data P (n : ⋆) : Set where
-- -- ∅ : P n
-- -- ! : P (! n) → P n
-- -- {-
-- -- 3 <= 5 = ! (4 <= 5) = ! ! (5 <= 5) = ! ! ∅
-- -- 3≤5 witnesses
-- -- n=3,m=5
-- -- 4 5
-- -- -}
-- -- -- m ≤ n == m ... n - 1 (this is the same as the two-indexed version)
-- -- data _≤_ (n : ⋆) : ⋆ → Set where
-- -- ∅ : n ≤ n
-- -- ! : ∀ {m} → ! n ≤ m → n ≤ m
-- -- -- or
-- -- -- m ≤ n == n - 1 ... m
-- -- three : ⋆
-- -- three = ! (! (! ∅))
-- -- five : ⋆
-- -- five = ! (! three)
-- -- foo : three ≤ five
-- -- foo = ! {n = {!!}} (! {n = {!!}} ∅)
-- -- -- {-
-- -- -- 3 <= 5 = 3 <= ! 4 = ! (3 <= 4) = ! (! (3 <= 3)) = ! ! ∅
-- -- -- 3 ≤ 5 witnesses
-- -- -- n=3,m=4
-- -- -- n=3,m=3
-- -- --
-- -- -- -}
-- -- -- data _≤_ (n : ⋆) : ⋆ → Set where
-- -- -- ∅ : n ≤ n
-- -- -- ! : ∀ {m} → n ≤ m → n ≤ ! m -- A m
-- -- -- {-
-- -- -- 3 <= 5
-- -- -- m=2,n=4
-- -- -- m=1,n=3
-- -- -- m=0,n=2
-- -- -- -}
-- -- -- data _≤_ : ⋆ → ⋆ → Set where
-- -- -- ∅ : ∀ {n} → ∅ ≤ n
-- -- -- ! : ∀ {m n} → m ≤ n → ! m ≤ ! n
-- -- -- -- data # (n : ⋆) : Set where
-- -- -- -- ∅ : # n
-- -- -- -- ! : # (
-- -- -- -- data # : ⋆ → Set where
-- -- -- -- ∅ : # n
-- -- -- -- ! : ⋆
-- -- -- -- data ⋆[_] {a} (A : Set a) : Set a where
-- -- -- -- ∅ : ⋆[ A ]
-- -- -- -- _∷_ : A → ⋆[ A ] → ⋆[ A ]
-- -- -- -- data _≥_ (n : ⋆) : ⋆ → Set where
-- -- -- -- ∅ : n ≥ n
-- -- -- -- ! : ∀ {m} → n ≥ ¹⁺ m → n ≥ m
-- -- -- -- {-
-- -- -- -- data _≤_ (n : ⋆) : ⋆ → Set where
-- -- -- -- ∅ : n ≤ n
-- -- -- -- ! : ∀ {m} → n ≤ m → n ≤ ¹⁺ m
-- -- -- -- -}
-- -- -- -- data _≥_ : ⋆ → ⋆ → Set where
-- -- -- -- ∅ : ∀ {n} → n ≥ ∅
-- -- -- -- ! : ∀ {m n} → n ≥ m → ¹⁺ m ≤ ¹⁺ n
-- -- -- -- _≱_ : ⋆ → ⋆ → Set
-- -- -- -- n ≱ m = n ≥ m → ⊥
-- -- -- -- ε : ∀ {m} → m ≥ m
-- -- -- -- ε = ≥∅
-- -- -- -- ¹⁺≥ : ∀ {n m} → n ≥ m → ¹⁺ n ≥ m
-- -- -- -- ¹⁺≥ ≥∅ = ≥⁻¹ ≥∅
-- -- -- -- ¹⁺≥ (≥⁻¹ n≥m) = ≥⁻¹ (¹⁺≥ n≥m)
-- -- -- -- ∅≱¹⁺ : ∀ {n} → ∅ ≱ ¹⁺ n
-- -- -- -- ∅≱¹⁺ (≥⁻¹ ∅≥²⁺n) = ∅≱¹⁺ ∅≥²⁺n
-- -- -- -- _∙_ : ∀ {n m} → n ≥ m → ∀ {l} → m ≥ l → n ≥ l
-- -- -- -- ≥∅ ∙ ≥∅ = ≥∅
-- -- -- -- ≥∅ ∙ ≥⁻¹ x₁ = ⊥-elim ({!∅≱¹⁺ !})
-- -- -- -- ≥⁻¹ x ∙ ≥∅ = {!!}
-- -- -- -- _∙_ {n} {m} (≥⁻¹ x) {l} (≥⁻¹ x₁) = ≥⁻¹ (x ∙ ¹⁺≥ x₁)
-- -- -- -- stop≥ : ∀ {n} → n ≱ ¹⁺ n
-- -- -- -- stop≥ {∅} (≥⁻¹ x) = ∅≱¹⁺ x
-- -- -- -- stop≥ {¹⁺ n} (≥⁻¹ (≥⁻¹ x)) = {!stop≥ x!}
-- -- -- -- ¹⁺≥¹⁺ : ∀ {n m} → n ≥ m → ¹⁺ n ≥ ¹⁺ m
-- -- -- -- ¹⁺≥¹⁺ {∅} ≥∅ = ≥⁻¹ {¹⁺ ∅} {!!}
-- -- -- -- ¹⁺≥¹⁺ {¹⁺ n} ≥∅ = {!!}
-- -- -- -- ¹⁺≥¹⁺ (≥⁻¹ x) = {!!}
-- -- -- -- ⁻¹≥⁻¹ : ∀ {n m} → ¹⁺ n ≥ ¹⁺ m → n ≥ m
-- -- -- -- ⁻¹≥⁻¹ {n} {∅} (≥⁻¹ x) = {!!}
-- -- -- -- ⁻¹≥⁻¹ {∅} {¹⁺ m} (≥⁻¹ x) = ⊥-elim (∅≱¹⁺ (⁻¹≥⁻¹ x))
-- -- -- -- ⁻¹≥⁻¹ {¹⁺ n} {¹⁺ m} (≥⁻¹ x) = (⁻¹≥⁻¹ x) ∙ ¹⁺≥ {!!}
-- -- -- -- -- 1>=1 : ¹⁺ ∅ ≥ ¹⁺ ∅
-- -- -- -- -- 1>=1 = ¹⁺ {!!}
-- -- -- -- -- {- ⋮↓ -}
-- -- -- -- -- {- h { A ∣ 7 ≥ 4 } = { A 7 4 , A 7 5 , A 7 6 , A 7 7 } -}
-- -- -- -- -- {- g { A ∣ 4 ≥ 2 } = { A 4 2 , A 4 3 , A 4 4 } -}
-- -- -- -- -- {- h∘g{ A ∣ 7 ≥ 2 } = { A 7 2 , A 7 3 , A 7 4 , A 7 5 , A 7 6 , A 7 7 } -}
-- -- -- -- -- {- f { A ∣ 2 ≥ 0 } = { } -}
-- -- -- -- -- {- g∘f{ A ∣ 4 ≥ 0 } = { A 4 0 , A 4 1 , A 4 2 , A 4 3 , A 4 4 } -}
-- -- -- -- -- data ⋆[_/_≥_] {a} (A : ⋆ → ⋆ → Set a) (m : ⋆) : ⋆ → Set a where
-- -- -- -- -- ∅ : ⋆[ A / m ≥ ∅ ]
-- -- -- -- -- _∷_ : ∀ {n} → A m n → ⋆[ A / m ≥ ¹⁺ n ] → ⋆[ A / m ≥ n ]
-- -- -- -- -- _≥'_ : ⋆ → ⋆ → Set
-- -- -- -- -- m ≥' n = ⋆[ (λ _ _ → ⊤) / m ≥ n ]
-- -- -- -- -- data _≤_ : ⋆ → ⋆ → Set where
-- -- -- -- -- ∅ : ∀ {n} → ∅ ≤ n
-- -- -- -- -- ¹⁺_ : ∀ {m n} → m ≤ n → ¹⁺ m ≤ ¹⁺ n
-- -- -- -- -- {- ⃔⋱ -}
-- -- -- -- -- {- { A ∣ 4 ≤ 7 } = { A 3 6 , A 2 5 , A 1 4 , A 0 3 } -}
-- -- -- -- -- {- { A ∣ 2 ≤ 4 } = { A 1 3 , A 0 2 } -}
-- -- -- -- -- data ⋆[_/_≤_] {a} (A : ⋆ → ⋆ → Set a) : ⋆ → ⋆ → Set a where
-- -- -- -- -- ∅ : ∀ {n} → ⋆[ A / ∅ ≤ n ]
-- -- -- -- -- _∷_ : ∀ {m n} → A m n → ⋆[ A / m ≤ n ] → ⋆[ A / ¹⁺ m ≤ ¹⁺ n ]
-- -- -- -- -- -- ---- indices on first and second constructors: 1 and 2
-- -- -- -- -- -- data ⋆[_,_] : ⋆ → ⋆ → Set where
-- -- -- -- -- -- ∅ : ∀ {n} → ⋆[ n , n ]
-- -- -- -- -- -- ! : ∀ {m n} → ⋆[ m , n ] → ⋆[ m , ! n ]
-- -- -- -- -- -- data ⋆[_,_] : ⋆ → ⋆ → Set where
-- -- -- -- -- -- ∅ : ∀ {m n} → ⋆[ m , n ]
-- -- -- -- -- -- ! : ∀ {m n} → ⋆[ m , n ] → ⋆[ ! m , ! n ]
-- -- -- -- -- -- -- ?
-- -- -- -- -- -- data _≛_ : ⋆ → ⋆ → Set where
-- -- -- -- -- -- ∅ : ∅ ≛ ∅
-- -- -- -- -- -- ! : ∀ {m} → ⋆[ m , m ] → ⋆[ ! m , ! m ]
-- -- -- -- -- -- data [_/_↦_] {a} (A : ⋆ → ⋆ → Set a) : ⋆ → ⋆ → Set a where
-- -- -- -- -- -- ∅ : ∀ {n} → [ A / ∅ ↦ n ]
-- -- -- -- -- -- ! : ∀ {m n} → A m n → [ A / ! m ↦ ! n ]
-- -- -- -- -- -- module _ where -- Two constructors, where the second constructor adds a payload and a recursive element
-- -- -- -- -- -- -- List
-- -- -- -- -- -- data [_] {a} (A : Set a) : Set a where
-- -- -- -- -- -- ∅ : [ A ]
-- -- -- -- -- -- _,_ : A → [ A ] → [ A ]
-- -- -- -- -- -- -- Fin
-- -- -- -- -- -- ⋆[_] = ⋆[ ∅ ,_]
-- -- -- -- -- -- record ⊤ : Set where
-- -- -- -- -- -- record ∃ {a} {A : Set a} {b} (B : A → Set b) : Set (a ⊔ b) where
-- -- -- -- -- -- field
-- -- -- -- -- -- ⟱ : A
-- -- -- -- -- -- ⟰ : B ⟱
-- -- -- -- -- -- syntax ∃ (λ x → f) = ∃[ x ] f
-- -- -- -- -- -- _×_ : ∀ {a} (A : Set a) {b} (B : Set b) → Set (a ⊔ b)
-- -- -- -- -- -- A × B = ∃ {A = A} (λ _ → B)
-- -- -- -- -- -- --
-- -- -- -- -- -- [_↦_] : ⋆ → ⋆ → Set
-- -- -- -- -- -- [_↦_] = [ (λ m n → ⋆[ ! m ] × {![ m ↦ n ]!}) /_↦_]
-- -- -- -- -- -- open import Agda.Builtin.Equality
-- -- -- -- -- -- open import Data.Empty
|
{
"alphanum_fraction": 0.220886951,
"avg_line_length": 29.201863354,
"ext": "agda",
"hexsha": "056b52c233d34d81b350e0c3dbb0ca7ca6660736",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data0.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data0.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data0.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5280,
"size": 9403
}
|
{-# OPTIONS --universe-polymorphism #-}
module Issue464 where
open import Common.Level
data _×_ {a b}(A : Set a)(B : Set b) : Set (a ⊔ b) where
_,_ : A → B → A × B
data ⊥ : Set where
record ⊤ : Set where
-----------------------------------
data nonSP : Set1 where
ι : nonSP
δ : (A : Set) -> nonSP -> nonSP
⟦_⟧ : nonSP -> (Set × ⊤) -> Set
⟦ ι ⟧ UT = ⊤
⟦ (δ A γ) ⟧ (U , T) = (U -> A) × ⟦ γ ⟧ (U , T)
data U (γ : nonSP) : Set where
intro : ⟦ γ ⟧ (U γ , _) -> U γ
-- the positivity checker objects (as it should) if "(Set × ⊤)" is changed to "Set"
-- in the type of ⟦_⟧ and "(U γ , _)" is changed accordingly to "U γ".
bad : Set
bad = U (δ ⊥ ι) -- constructor in : (bad -> ⊥) -> bad
p : bad -> ⊥
p (intro (x , _)) = x (intro (x , _))
absurd : ⊥
absurd = p (intro (p , _))
|
{
"alphanum_fraction": 0.4955527319,
"avg_line_length": 21.8611111111,
"ext": "agda",
"hexsha": "63da430bf944eaf2017531547d961d62c95b50a4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue464.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue464.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue464.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 310,
"size": 787
}
|
module PropositionalFormula where
open import HasNegation
open import IsPropositionalFormula
open import Formula
open import HasNeitherNor
record PropositionalFormula : Set
where
constructor ⟨_⟩
field
{formula} : Formula
isPropositionalFormula : IsPropositionalFormula formula
open PropositionalFormula
instance HasNegationPropositionalFormula : HasNegation PropositionalFormula
HasNegation.~ HasNegationPropositionalFormula ⟨ φ ⟩ = ⟨ logical φ φ ⟩
instance HasNeitherNorPropositionalFormula : HasNeitherNor PropositionalFormula
HasNeitherNor._⊗_ HasNeitherNorPropositionalFormula ⟨ φ₁ ⟩ ⟨ φ₂ ⟩ = ⟨ logical φ₁ φ₂ ⟩
{-# DISPLAY IsPropositionalFormula.logical = _⊗_ #-}
|
{
"alphanum_fraction": 0.8154069767,
"avg_line_length": 27.52,
"ext": "agda",
"hexsha": "32cafab66e7053e9880c1229e2e1b900a0003461",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/PropositionalFormula.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/PropositionalFormula.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/PropositionalFormula.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 181,
"size": 688
}
|
------------------------------------------------------------------------
-- List equality
------------------------------------------------------------------------
module Data.List.Equality where
open import Data.List
open import Relation.Nullary
open import Relation.Binary
module Equality (S : Setoid) where
open Setoid S renaming (_≈_ to _≊_)
infixr 5 _∷_
infix 4 _≈_
data _≈_ : List carrier → List carrier → Set where
[] : [] ≈ []
_∷_ : ∀ {x xs y ys} (x≈y : x ≊ y) (xs≈ys : xs ≈ ys) →
x ∷ xs ≈ y ∷ ys
setoid : Setoid
setoid = record
{ carrier = List carrier
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl'
; sym = sym'
; trans = trans'
}
}
where
refl' : Reflexive _≈_
refl' {[]} = []
refl' {x ∷ xs} = refl ∷ refl' {xs}
sym' : Symmetric _≈_
sym' [] = []
sym' (x≈y ∷ xs≈ys) = sym x≈y ∷ sym' xs≈ys
trans' : Transitive _≈_
trans' [] [] = []
trans' (x≈y ∷ xs≈ys) (y≈z ∷ ys≈zs) =
trans x≈y y≈z ∷ trans' xs≈ys ys≈zs
open Setoid setoid public hiding (_≈_)
module DecidableEquality (D : DecSetoid) where
open DecSetoid D hiding (_≈_)
open Equality setoid renaming (setoid to List-setoid)
decSetoid : DecSetoid
decSetoid = record
{ isDecEquivalence = record
{ isEquivalence = Setoid.isEquivalence List-setoid
; _≟_ = dec
}
}
where
dec : Decidable _≈_
dec [] [] = yes []
dec (x ∷ xs) (y ∷ ys) with x ≟ y | dec xs ys
... | yes x≈y | yes xs≈ys = yes (x≈y ∷ xs≈ys)
... | no ¬x≈y | _ = no helper
where
helper : ¬ _≈_ (x ∷ xs) (y ∷ ys)
helper (x≈y ∷ _) = ¬x≈y x≈y
... | _ | no ¬xs≈ys = no helper
where
helper : ¬ _≈_ (x ∷ xs) (y ∷ ys)
helper (_ ∷ xs≈ys) = ¬xs≈ys xs≈ys
dec [] (y ∷ ys) = no λ()
dec (x ∷ xs) [] = no λ()
open DecSetoid decSetoid public
module PropositionalEquality {A : Set} where
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_) renaming (refl to ≡-refl)
open Equality (PropEq.setoid A) public
≈⇒≡ : _≈_ ⇒ _≡_
≈⇒≡ [] = ≡-refl
≈⇒≡ (≡-refl ∷ xs≈ys) with ≈⇒≡ xs≈ys
≈⇒≡ (≡-refl ∷ xs≈ys) | ≡-refl = ≡-refl
|
{
"alphanum_fraction": 0.4778067885,
"avg_line_length": 25.8202247191,
"ext": "agda",
"hexsha": "0e6e6d4c1efa85657fc648cb181a7103dce2b49a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/List/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/List/Equality.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/List/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 860,
"size": 2298
}
|
open import Everything
module Test.ProblemWithDerivation where
postulate
A : Set
B : Set
_~A~_ : A → A → Set
_~B~_ : B → B → Set
s1 : A → B
f1 : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
module _ {𝔭} (𝔓 : Ø 𝔭) where
open Substitunction 𝔓
test-before : ∀ {m n ℓ} {f : Substitunction m n} (P : LeftExtensionṖroperty ℓ Substitunction Proposextensequality m) (let P₀ = π₀ (π₀ P)) → P₀ f → P₀ (ε ∙ f)
test-before P pf = hmap _ P pf -- needs Oscar.Class.Hmap.Transleftidentity.Relprop'idFromTransleftidentity
instance
𝓢urjectivity1 : Smap.class _~A~_ _~B~_ s1 s1
𝓢urjectivity1 .⋆ _ _ = f1
test : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
test {x} {y} = smap
test-after : ∀ {m n ℓ} {f : Substitunction m n} (P : LeftExtensionṖroperty ℓ Substitunction Proposextensequality m) (let P₀ = π₀ (π₀ P)) → P₀ f → P₀ (ε ∙ f)
test-after P pf = hmap _ P pf
|
{
"alphanum_fraction": 0.6211251435,
"avg_line_length": 28.0967741935,
"ext": "agda",
"hexsha": "d7a2e644ef75c56ed5a7f3bf8fb35d62e229d8eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation.agda",
"max_line_length": 160,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 372,
"size": 871
}
|
module Examples where
open import Data.List hiding (reverse)
open import Data.List.All
open import Data.Nat
open import Typing
open import Syntax
ex1 : Expr [] TUnit
ex1 =
letbind [] (new [] (delay send!))
(letpair (left []) (here [])
(letbind (rght (left []))
(fork (wait (here [])))
(close (there UUnit (here [])))))
ex1dual : Expr [] TUnit
ex1dual =
letbind [] (new [] (delay send!))
(letpair (left []) (here [])
(letbind (left (rght []))
(fork (close (here [])))
(wait (there UUnit (here [])))))
-- sending and receiving
ex2 : Expr [] TUnit
ex2 =
letbind [] (new [] (delay (Typing.send TInt (delay send!))))
(letpair (left []) (here [])
(letbind (left (rght []))
(fork (letbind (rght []) (nat [] 42)
(letbind (left (left [])) (Expr.send (rght (left [])) (here []) (here []))
(letbind (left []) (close (here []))
(var (here []))))))
(letbind (rght (left [])) (Expr.recv (here []))
(letpair (left (rght [])) (here [])
(letbind (left (left (rght []))) (wait (here (UInt ∷ [])))
(var (here (UUnit ∷ []))))))))
-- higher order sending and receiving
ex3 : Expr [] TUnit
ex3 =
letbind [] (new [] (delay (Typing.send (TChan send!) (delay send!))))
(letbind (rght []) (new [] (delay send!))
(letpair (left (rght [])) (here [])
(letpair (rght (rght (left []))) (here [])
(letbind (left (rght (left (left []))))
(fork (letbind (left (left (rght []))) (Expr.send (left (rght [])) (here []) (here []))
(letbind (left (rght [])) (close (here []))
(wait (there UUnit (here []))))))
(letbind (left (left [])) (Expr.recv (there UUnit (here [])))
(letpair (left []) (here [])
(letbind (left (rght [])) (wait (here []))
(letbind (left (left [])) (close (there UUnit (here [])))
(var (here []))))))))))
-- branching
ex4 : Expr [] TUnit
ex4 =
letbind [] (new [] (delay (sintern (delay send!) (delay send?))))
(letpair (left []) (here [])
(letbind (left (rght []))
(fork (letbind (left []) (select Left (here []))
(close (here []))))
(branch (left (left [])) (there UUnit (here []))
(wait (here []))
(close (here [])))))
-- simple lambda: (λx.x)()
ex5 : Expr [] TUnit
ex5 = letbind [] (llambda [] [] (var (here [])))
(letbind (rght []) (unit [])
(app (rght (left [])) (here []) (here [])))
-- lambda app: (λfx.fx) (λx.x)()
ex6 : Expr [] TUnit
ex6 = letbind [] (llambda [] [] (llambda (left []) [] (app (rght (left [])) (here []) (here []))))
(letbind (rght []) (llambda [] [] (var (here [])))
(letbind (rght (rght [])) (unit [])
(letbind (rght (left (left []))) (app (rght (left [])) (here []) (here []))
(app (left (rght [])) (here []) (here [])))))
|
{
"alphanum_fraction": 0.503021685,
"avg_line_length": 33.8915662651,
"ext": "agda",
"hexsha": "e7e1a3fe3355e7c5488f246cd3313280b70bdbe8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Examples.agda",
"max_line_length": 98,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 915,
"size": 2813
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise products of binary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Relation.Binary.Pointwise.NonDependent where
open import Data.Product as Prod
open import Data.Sum
open import Data.Unit.Base using (⊤)
open import Function
open import Function.Equality as F using (_⟶_; _⟨$⟩_)
open import Function.Equivalence as Eq
using (Equivalence; _⇔_; module Equivalence)
open import Function.Injection as Inj
using (Injection; _↣_; module Injection)
open import Function.Inverse as Inv
using (Inverse; _↔_; module Inverse)
open import Function.LeftInverse as LeftInv
using (LeftInverse; _↞_; _LeftInverseOf_; module LeftInverse)
open import Function.Related
open import Function.Surjection as Surj
using (Surjection; _↠_; module Surjection)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where
------------------------------------------------------------------------
-- Pointwise lifting
Pointwise : Rel A₁ ℓ₁ → Rel A₂ ℓ₂ → Rel (A₁ × A₂) _
Pointwise _∼₁_ _∼₂_ = (_∼₁_ on proj₁) -×- (_∼₂_ on proj₂)
------------------------------------------------------------------------
-- Pointwise preserves many relational properties
×-reflexive : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
_≈₁_ ⇒ _∼₁_ → _≈₂_ ⇒ _∼₂_ →
(Pointwise _≈₁_ _≈₂_) ⇒ (Pointwise _∼₁_ _∼₂_)
×-reflexive refl₁ refl₂ (x∼y₁ , x∼y₂) = refl₁ x∼y₁ , refl₂ x∼y₂
×-refl : ∀ {_∼₁_ _∼₂_} →
Reflexive _∼₁_ → Reflexive _∼₂_ →
Reflexive (Pointwise _∼₁_ _∼₂_)
×-refl refl₁ refl₂ = refl₁ , refl₂
×-irreflexive₁ : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
Irreflexive _≈₁_ _<₁_ →
Irreflexive (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_)
×-irreflexive₁ ir x≈y x<y = ir (proj₁ x≈y) (proj₁ x<y)
×-irreflexive₂ : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
Irreflexive _≈₂_ _<₂_ →
Irreflexive (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_)
×-irreflexive₂ ir x≈y x<y = ir (proj₂ x≈y) (proj₂ x<y)
×-symmetric : ∀ {_∼₁_ _∼₂_} → Symmetric _∼₁_ → Symmetric _∼₂_ →
Symmetric (Pointwise _∼₁_ _∼₂_)
×-symmetric sym₁ sym₂ (x∼y₁ , x∼y₂) = sym₁ x∼y₁ , sym₂ x∼y₂
×-transitive : ∀ {_∼₁_ _∼₂_} → Transitive _∼₁_ → Transitive _∼₂_ →
Transitive (Pointwise _∼₁_ _∼₂_)
×-transitive trans₁ trans₂ x∼y y∼z =
trans₁ (proj₁ x∼y) (proj₁ y∼z) ,
trans₂ (proj₂ x∼y) (proj₂ y∼z)
×-antisymmetric : ∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} →
Antisymmetric _≈₁_ _≤₁_ → Antisymmetric _≈₂_ _≤₂_ →
Antisymmetric (Pointwise _≈₁_ _≈₂_) (Pointwise _≤₁_ _≤₂_)
×-antisymmetric antisym₁ antisym₂ (x≤y₁ , x≤y₂) (y≤x₁ , y≤x₂) =
(antisym₁ x≤y₁ y≤x₁ , antisym₂ x≤y₂ y≤x₂)
×-asymmetric₁ : ∀ {_<₁_ _∼₂_} → Asymmetric _<₁_ →
Asymmetric (Pointwise _<₁_ _∼₂_)
×-asymmetric₁ asym₁ x<y y<x = asym₁ (proj₁ x<y) (proj₁ y<x)
×-asymmetric₂ : ∀ {_∼₁_ _<₂_} → Asymmetric _<₂_ →
Asymmetric (Pointwise _∼₁_ _<₂_)
×-asymmetric₂ asym₂ x<y y<x = asym₂ (proj₂ x<y) (proj₂ y<x)
×-respects₂ : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
_∼₁_ Respects₂ _≈₁_ → _∼₂_ Respects₂ _≈₂_ →
(Pointwise _∼₁_ _∼₂_) Respects₂ (Pointwise _≈₁_ _≈₂_)
×-respects₂ {_≈₁_} {_∼₁_} {_≈₂_} {_∼₂_} resp₁ resp₂ = resp¹ , resp²
where
_∼_ = Pointwise _∼₁_ _∼₂_
_≈_ = Pointwise _≈₁_ _≈₂_
resp¹ : ∀ {x} → (x ∼_) Respects _≈_
resp¹ y≈y' x∼y = proj₁ resp₁ (proj₁ y≈y') (proj₁ x∼y) ,
proj₁ resp₂ (proj₂ y≈y') (proj₂ x∼y)
resp² : ∀ {y} → (_∼ y) Respects _≈_
resp² x≈x' x∼y = proj₂ resp₁ (proj₁ x≈x') (proj₁ x∼y) ,
proj₂ resp₂ (proj₂ x≈x') (proj₂ x∼y)
×-total : ∀ {_∼₁_ _∼₂_} → Symmetric _∼₁_ →
Total _∼₁_ → Total _∼₂_ →
Total (Pointwise _∼₁_ _∼₂_)
×-total sym₁ total₁ total₂ (x₁ , x₂) (y₁ , y₂)
with total₁ x₁ y₁ | total₂ x₂ y₂
... | inj₁ x₁∼y₁ | inj₁ x₂∼y₂ = inj₁ ( x₁∼y₁ , x₂∼y₂)
... | inj₁ x₁∼y₁ | inj₂ y₂∼x₂ = inj₂ (sym₁ x₁∼y₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₂ y₂∼x₂ = inj₂ ( y₁∼x₁ , y₂∼x₂)
... | inj₂ y₁∼x₁ | inj₁ x₂∼y₂ = inj₁ (sym₁ y₁∼x₁ , x₂∼y₂)
×-decidable : ∀ {_∼₁_ _∼₂_} →
Decidable _∼₁_ → Decidable _∼₂_ →
Decidable (Pointwise _∼₁_ _∼₂_)
×-decidable _≟₁_ _≟₂_ (x₁ , x₂) (y₁ , y₂) =
(x₁ ≟₁ y₁) ×-dec (x₂ ≟₂ y₂)
-- Some collections of properties which are preserved by ×-Rel.
×-isEquivalence : ∀ {_≈₁_ _≈₂_} →
IsEquivalence _≈₁_ → IsEquivalence _≈₂_ →
IsEquivalence (Pointwise _≈₁_ _≈₂_)
×-isEquivalence {_≈₁_ = _≈₁_} {_≈₂_ = _≈₂_} eq₁ eq₂ = record
{ refl = ×-refl {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(refl eq₁) (refl eq₂)
; sym = ×-symmetric {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(sym eq₁) (sym eq₂)
; trans = ×-transitive {_∼₁_ = _≈₁_} {_∼₂_ = _≈₂_}
(trans eq₁) (trans eq₂)
}
where open IsEquivalence
×-isDecEquivalence : ∀ {_≈₁_ _≈₂_} →
IsDecEquivalence _≈₁_ → IsDecEquivalence _≈₂_ →
IsDecEquivalence (Pointwise _≈₁_ _≈₂_)
×-isDecEquivalence eq₁ eq₂ = record
{ isEquivalence = ×-isEquivalence
(isEquivalence eq₁) (isEquivalence eq₂)
; _≟_ = ×-decidable (_≟_ eq₁) (_≟_ eq₂)
}
where open IsDecEquivalence
×-isPreorder : ∀ {_≈₁_ _∼₁_ _≈₂_ _∼₂_} →
IsPreorder _≈₁_ _∼₁_ → IsPreorder _≈₂_ _∼₂_ →
IsPreorder (Pointwise _≈₁_ _≈₂_) (Pointwise _∼₁_ _∼₂_)
×-isPreorder {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_} pre₁ pre₂ = record
{ isEquivalence = ×-isEquivalence
(isEquivalence pre₁) (isEquivalence pre₂)
; reflexive = ×-reflexive {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_}
(reflexive pre₁) (reflexive pre₂)
; trans = ×-transitive {_∼₁_ = _∼₁_} {_∼₂_ = _∼₂_}
(trans pre₁) (trans pre₂)
}
where open IsPreorder
×-isPartialOrder : ∀ {_≈₁_ _≤₁_ _≈₂_ _≤₂_} →
IsPartialOrder _≈₁_ _≤₁_ → IsPartialOrder _≈₂_ _≤₂_ →
IsPartialOrder (Pointwise _≈₁_ _≈₂_) (Pointwise _≤₁_ _≤₂_)
×-isPartialOrder {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_} po₁ po₂ = record
{ isPreorder = ×-isPreorder (isPreorder po₁) (isPreorder po₂)
; antisym = ×-antisymmetric {_≤₁_ = _≤₁_} {_≤₂_ = _≤₂_}
(antisym po₁) (antisym po₂)
}
where open IsPartialOrder
×-isStrictPartialOrder : ∀ {_≈₁_ _<₁_ _≈₂_ _<₂_} →
IsStrictPartialOrder _≈₁_ _<₁_ → IsStrictPartialOrder _≈₂_ _<₂_ →
IsStrictPartialOrder (Pointwise _≈₁_ _≈₂_) (Pointwise _<₁_ _<₂_)
×-isStrictPartialOrder {_<₁_ = _<₁_} {_≈₂_ = _≈₂_} {_<₂_ = _<₂_}
spo₁ spo₂ =
record
{ isEquivalence = ×-isEquivalence
(isEquivalence spo₁) (isEquivalence spo₂)
; irrefl = ×-irreflexive₁ {_<₁_ = _<₁_} {_≈₂_} {_<₂_}
(irrefl spo₁)
; trans = ×-transitive {_∼₁_ = _<₁_} {_<₂_}
(trans spo₁) (trans spo₂)
; <-resp-≈ = ×-respects₂ (<-resp-≈ spo₁) (<-resp-≈ spo₂)
}
where open IsStrictPartialOrder
------------------------------------------------------------------------
-- "Packages" can also be combined.
module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where
×-preorder : Preorder ℓ₁ ℓ₂ _ → Preorder ℓ₃ ℓ₄ _ → Preorder _ _ _
×-preorder p₁ p₂ = record
{ isPreorder = ×-isPreorder (isPreorder p₁) (isPreorder p₂)
} where open Preorder
×-setoid : Setoid ℓ₁ ℓ₂ → Setoid ℓ₃ ℓ₄ → Setoid _ _
×-setoid s₁ s₂ = record
{ isEquivalence =
×-isEquivalence (isEquivalence s₁) (isEquivalence s₂)
} where open Setoid
×-decSetoid : DecSetoid ℓ₁ ℓ₂ → DecSetoid ℓ₃ ℓ₄ → DecSetoid _ _
×-decSetoid s₁ s₂ = record
{ isDecEquivalence =
×-isDecEquivalence (isDecEquivalence s₁) (isDecEquivalence s₂)
} where open DecSetoid
×-poset : Poset ℓ₁ ℓ₂ _ → Poset ℓ₃ ℓ₄ _ → Poset _ _ _
×-poset s₁ s₂ = record
{ isPartialOrder = ×-isPartialOrder (isPartialOrder s₁)
(isPartialOrder s₂)
} where open Poset
×-strictPartialOrder :
StrictPartialOrder ℓ₁ ℓ₂ _ → StrictPartialOrder ℓ₃ ℓ₄ _ →
StrictPartialOrder _ _ _
×-strictPartialOrder s₁ s₂ = record
{ isStrictPartialOrder = ×-isStrictPartialOrder
(isStrictPartialOrder s₁)
(isStrictPartialOrder s₂)
} where open StrictPartialOrder
-- A piece of infix notation for combining setoids
infix 4 _×ₛ_
_×ₛ_ : Setoid ℓ₁ ℓ₂ → Setoid ℓ₃ ℓ₄ → Setoid _ _
_×ₛ_ = ×-setoid
------------------------------------------------------------------------
-- The propositional equality setoid over products can be
-- decomposed using ×-Rel
module _ {a b} {A : Set a} {B : Set b} where
≡×≡⇒≡ : Pointwise _≡_ _≡_ ⇒ _≡_ {A = A × B}
≡×≡⇒≡ (P.refl , P.refl) = P.refl
≡⇒≡×≡ : _≡_ {A = A × B} ⇒ Pointwise _≡_ _≡_
≡⇒≡×≡ P.refl = (P.refl , P.refl)
Pointwise-≡↔≡ : Inverse (P.setoid A ×ₛ P.setoid B) (P.setoid (A × B))
Pointwise-≡↔≡ = record
{ to = record { _⟨$⟩_ = id; cong = ≡×≡⇒≡ }
; from = record { _⟨$⟩_ = id; cong = ≡⇒≡×≡ }
; inverse-of = record
{ left-inverse-of = λ _ → (P.refl , P.refl)
; right-inverse-of = λ _ → P.refl
}
}
≡?×≡?⇒≡? : Decidable {A = A} _≡_ → Decidable {A = B} _≡_ →
Decidable {A = A × B} _≡_
≡?×≡?⇒≡? ≟₁ ≟₂ p q = Dec.map′ ≡×≡⇒≡ ≡⇒≡×≡ (×-decidable ≟₁ ≟₂ p q)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
infixr 2 _×-Rel_
_×-Rel_ = Pointwise
{-# WARNING_ON_USAGE _×-Rel_
"Warning: _×-Rel_ was deprecated in v0.15.
Please use Pointwise instead."
#-}
Rel↔≡ = Pointwise-≡↔≡
{-# WARNING_ON_USAGE Rel↔≡
"Warning: Rel↔≡ was deprecated in v0.15.
Please use Pointwise-≡↔≡ instead."
#-}
_×-reflexive_ = ×-reflexive
{-# WARNING_ON_USAGE _×-reflexive_
"Warning: _×-reflexive_ was deprecated in v0.15.
Please use ×-reflexive instead."
#-}
_×-refl_ = ×-refl
{-# WARNING_ON_USAGE _×-refl_
"Warning: _×-refl_ was deprecated in v0.15.
Please use ×-refl instead."
#-}
_×-symmetric_ = ×-symmetric
{-# WARNING_ON_USAGE _×-symmetric_
"Warning: _×-symmetric_ was deprecated in v0.15.
Please use ×-symmetric instead."
#-}
_×-transitive_ = ×-transitive
{-# WARNING_ON_USAGE _×-transitive_
"Warning: _×-transitive_ was deprecated in v0.15.
Please use ×-transitive instead."
#-}
_×-antisymmetric_ = ×-antisymmetric
{-# WARNING_ON_USAGE _×-antisymmetric_
"Warning: _×-antisymmetric_ was deprecated in v0.15.
Please use ×-antisymmetric instead."
#-}
_×-≈-respects₂_ = ×-respects₂
{-# WARNING_ON_USAGE _×-≈-respects₂_
"Warning: _×-≈-respects₂_ was deprecated in v0.15.
Please use ×-respects₂ instead."
#-}
_×-decidable_ = ×-decidable
{-# WARNING_ON_USAGE _×-decidable_
"Warning: _×-decidable_ was deprecated in v0.15.
Please use ×-decidable instead."
#-}
_×-isEquivalence_ = ×-isEquivalence
{-# WARNING_ON_USAGE _×-isEquivalence_
"Warning: _×-isEquivalence_ was deprecated in v0.15.
Please use ×-isEquivalence instead."
#-}
_×-isDecEquivalence_ = ×-isDecEquivalence
{-# WARNING_ON_USAGE _×-isDecEquivalence_
"Warning: _×-isDecEquivalence_ was deprecated in v0.15.
Please use ×-isDecEquivalence instead."
#-}
_×-isPreorder_ = ×-isPreorder
{-# WARNING_ON_USAGE _×-isPreorder_
"Warning: _×-isPreorder_ was deprecated in v0.15.
Please use ×-isPreorder instead."
#-}
_×-isPartialOrder_ = ×-isPartialOrder
{-# WARNING_ON_USAGE _×-isPartialOrder_
"Warning: _×-isPartialOrder_ was deprecated in v0.15.
Please use ×-isPartialOrder instead."
#-}
_×-isStrictPartialOrder_ = ×-isStrictPartialOrder
{-# WARNING_ON_USAGE _×-isStrictPartialOrder_
"Warning: _×-isStrictPartialOrder_ was deprecated in v0.15.
Please use ×-isStrictPartialOrder instead."
#-}
_×-preorder_ = ×-preorder
{-# WARNING_ON_USAGE _×-preorder_
"Warning: _×-preorder_ was deprecated in v0.15.
Please use ×-preorder instead."
#-}
_×-setoid_ = ×-setoid
{-# WARNING_ON_USAGE _×-setoid_
"Warning: _×-setoid_ was deprecated in v0.15.
Please use ×-setoid instead."
#-}
_×-decSetoid_ = ×-decSetoid
{-# WARNING_ON_USAGE _×-decSetoid_
"Warning: _×-decSetoid_ was deprecated in v0.15.
Please use ×-decSetoid instead."
#-}
_×-poset_ = ×-poset
{-# WARNING_ON_USAGE _×-poset_
"Warning: _×-poset_ was deprecated in v0.15.
Please use ×-poset instead."
#-}
_×-strictPartialOrder_ = ×-strictPartialOrder
{-# WARNING_ON_USAGE _×-strictPartialOrder_
"Warning: _×-strictPartialOrder_ was deprecated in v0.15.
Please use ×-strictPartialOrder instead."
#-}
_×-≟_ = ≡?×≡?⇒≡?
{-# WARNING_ON_USAGE _×-≟_
"Warning: _×-≟_ was deprecated in v0.15.
Please use ≡?×≡?⇒≡? instead."
#-}
|
{
"alphanum_fraction": 0.5877441593,
"avg_line_length": 36.2638888889,
"ext": "agda",
"hexsha": "13880ea752bf3453125af2bb6d8bbb7328a46cdb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/NonDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/NonDependent.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Pointwise/NonDependent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5166,
"size": 13055
}
|
-- Andreas, 2013-10-25 issue reported by Jesper Cockx
-- simplified test case by Nisse
-- {-# OPTIONS -v tc.meta:30 #-}
module Issue920 where
import Common.Level
postulate
Eq : (A : Set) (x : A) → A → Set
cast : (A B : Set) → A → B
magic : (P : Set → Set) (A : Set) → P A
bad : (A : Set) (x : A) → Eq A (cast A A x) x
bad A x = magic (λ B → Eq B (cast A B x) {!x!}) A
-- Should produce yellow, since there is no solution for ?0
-- Handling of linearity in constraint solver was buggy:
-- ?0 : (A : Set) (x : A) (B : Set) -> B
-- ?0 A x A := x
-- was simply solved by ?0 := λ A x B → x
-- since the non-linear variable did not appear on the rhs.
-- However, this solution is ill-typed.
-- Instead, we now only attempt pruning in case of non-linearity,
-- which fails here: B cannot be pruned since its the return type,
-- and A cannot be pruned since its the type of argument x.
|
{
"alphanum_fraction": 0.6215316315,
"avg_line_length": 29.064516129,
"ext": "agda",
"hexsha": "f2eb61fb62ae1004da9e6db91f1f81895dd915f7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue920.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue920.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue920.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 290,
"size": 901
}
|
-- Andreas, 2015-12-29
record ⊤ : Set where
data P : ⊤ → Set where
c : P record{}
d : P record{}
test : (x : ⊤) (p : P x) → Set
test _ c with Set
test _ d | z = ⊤
-- Expected error: with-clause pattern mismatch.
-- The error should be printed nicely, like:
--
-- With clause pattern d is not an instance of its parent pattern c
-- when checking that the clause
-- test _ c with Set
-- test _ d | z = ⊤
-- has type (x : ⊤) → P x → Set
|
{
"alphanum_fraction": 0.6108597285,
"avg_line_length": 21.0476190476,
"ext": "agda",
"hexsha": "4ad8d6368987a67f703747de159893b8fe5a6556",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/WithClausePatternMismatch.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/WithClausePatternMismatch.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/WithClausePatternMismatch.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 146,
"size": 442
}
|
{-# OPTIONS --without-K --safe #-}
-- A Category enriched over Setoids is... a Category!
module Categories.Enriched.Over.Setoids where
open import Level
open import Data.Product using (uncurry; proj₁; proj₂; Σ; _,_)
open import Data.Unit using (tt)
open import Function.Equality using (_⟨$⟩_; cong)
open import Relation.Binary.Bundles using (Setoid)
open import Categories.Category.Core using () renaming (Category to SCategory)
open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.Category.Monoidal.Instance.Setoids
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Categories.Enriched.Category
import Categories.Morphism.Reasoning as MR
Category′ : (o ℓ t : Level) → Set (suc (o ⊔ ℓ ⊔ t))
Category′ o ℓ t = Category (Setoids-Monoidal {t} {ℓ}) o
-- Start with the translation functions
Cat→Cat′ : {o ℓ t : Level} → SCategory o ℓ t → Category′ o t ℓ
Cat→Cat′ C = record
{ Obj = Obj
; hom = λ a b → record
{ Carrier = a ⇒ b
; _≈_ = _≈_
; isEquivalence = equiv
}
; id = record
{ _⟨$⟩_ = λ _ → id
; cong = λ _ → Equiv.refl
}
; ⊚ = record
{ _⟨$⟩_ = uncurry _∘_
; cong = uncurry ∘-resp-≈
}
; ⊚-assoc = λ { {x = (x₁ , x₂) , x₃} {(y₁ , y₂) , y₃} ((x₁≈y₁ , x₂≈y₂) , x₃≈y₃) → begin
(x₁ ∘ x₂) ∘ x₃ ≈⟨ assoc {h = x₁} ⟩
x₁ ∘ x₂ ∘ x₃ ≈⟨ (x₁≈y₁ ⟩∘⟨ x₂≈y₂ ⟩∘⟨ x₃≈y₃) ⟩
y₁ ∘ y₂ ∘ y₃ ∎ }
; unitˡ = λ { {_} {_} {_ , x} {_ , y} (_ , x≈y) → Equiv.trans (identityˡ {f = x}) x≈y }
; unitʳ = λ z → Equiv.trans identityʳ (proj₁ z)
}
where
open SCategory C
open HomReasoning
Cat′→Cat : {o ℓ t : Level} → Category′ o ℓ t → SCategory o t ℓ
Cat′→Cat 𝓒 = record
{ Obj = Obj
; _⇒_ = λ a b → Carrier (hom a b)
; _≈_ = λ {a} {b} f g → _≈_ (hom a b) f g
; id = id ⟨$⟩ lift tt
; _∘_ = λ f g → ⊚ ⟨$⟩ (f , g)
; assoc = λ {A} {B} {C} {D} → ⊚-assoc ((refl (hom C D) , refl (hom B C)) , refl (hom A B))
; sym-assoc = λ {A} {B} {C} {D} → sym (hom A D) (⊚-assoc ((refl (hom C D) , refl (hom B C)) , refl (hom A B)))
; identityˡ = λ {A} {B} → unitˡ (lift tt , refl (hom A B))
; identityʳ = λ {A} {B} → unitʳ (refl (hom A B) , lift tt)
; identity² = λ {A} → unitˡ (lift tt , refl (hom A A)) -- Enriched doesn't have a unit²
; equiv = λ {A} {B} → record
{ refl = refl (hom A B)
; sym = sym (hom A B)
; trans = trans (hom A B)
}
; ∘-resp-≈ = λ f≈h g≈i → cong ⊚ (f≈h , g≈i)
}
where
open Category 𝓒
open Setoid
-- Back-and-forth gives the same thing, SCat version
-- the details are trivial, but have to be spelled out
SCat-Equiv : {o ℓ t : Level} → (C : SCategory o ℓ t) → StrongEquivalence C (Cat′→Cat (Cat→Cat′ C))
SCat-Equiv C = record
{ F = fwd
; G = bwd
; weak-inverse = record
{ F∘G≈id = f∘b≃id
; G∘F≈id = b∘f≃id
}
}
where
open SCategory C
open MR C
fwd : Functor C (Cat′→Cat (Cat→Cat′ C))
fwd = record
{ F₀ = λ x → x
; F₁ = λ f → f
; identity = Equiv.refl
; homomorphism = Equiv.refl
; F-resp-≈ = λ ≈ → ≈
}
bwd : Functor (Cat′→Cat (Cat→Cat′ C)) C
bwd = record
{ F₀ = λ x → x
; F₁ = λ f → f
; identity = Equiv.refl
; homomorphism = Equiv.refl
; F-resp-≈ = λ ≈ → ≈
}
f∘b≃id : fwd ∘F bwd ≃ idF
f∘b≃id = record
{ F⇒G = record { η = λ A → id {A} ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm }
; F⇐G = record { η = λ A → id {A} ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm }
; iso = λ X → record { isoˡ = identity² ; isoʳ = identity² }
}
b∘f≃id : bwd ∘F fwd ≃ idF
b∘f≃id = record
{ F⇒G = record { η = λ A → id {A} ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm }
; F⇐G = record { η = λ A → id {A} ; commute = λ _ → id-comm-sym ; sym-commute = λ _ → id-comm }
; iso = λ X → record { isoˡ = identity² ; isoʳ = identity² }
}
|
{
"alphanum_fraction": 0.5613316261,
"avg_line_length": 33.6637931034,
"ext": "agda",
"hexsha": "a9dc633b8e1970b22c93925269d5d0503d84c896",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Enriched/Over/Setoids.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Enriched/Over/Setoids.agda",
"max_line_length": 112,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Enriched/Over/Setoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1624,
"size": 3905
}
|
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
data D : Set₁ where
c : Set → D
unD : D → Set
unD (c X) = X
id : unD (c (Nat → Nat))
id x = x
postulate rew : c (Nat → Nat) ≡ c (Nat → Bool)
{-# REWRITE rew #-}
0' : Bool
0' = id 0
|
{
"alphanum_fraction": 0.6117318436,
"avg_line_length": 15.5652173913,
"ext": "agda",
"hexsha": "81e9618def7d312159760ee3db2a6ac6719b6ea3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3538-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3538-2.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3538-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 127,
"size": 358
}
|
module _ where
module LocalSetoidCalc (Node : Set) where
module _ (A : Node) where
module _IsRelatedTo_ where
module SGFunctorSetup (Obj₁ Obj₂ : Set) where
open LocalSetoidCalc Obj₁ public renaming (module _IsRelatedTo_ to _IsRelatedTo₁_)
open LocalSetoidCalc Obj₂ public renaming (module _IsRelatedTo_ to _IsRelatedTo₂_)
postulate X Y : Set
open SGFunctorSetup X Y
|
{
"alphanum_fraction": 0.7894736842,
"avg_line_length": 27.1428571429,
"ext": "agda",
"hexsha": "4550973d0efadafada4f09f3cba4c9f299faba55",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1874.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1874.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1874.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 115,
"size": 380
}
|
------------------------------------------------------------------------------
-- Exclusive disjunction base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.ExclusiveDisjunction.Base where
open import FOL.Base
infixr 1 _⊻_
------------------------------------------------------------------------------
-- Exclusive disjunction.
_⊻_ : Set → Set → Set
P ⊻ Q = (P ∨ Q) ∧ ¬ (P ∧ Q)
|
{
"alphanum_fraction": 0.3433835846,
"avg_line_length": 29.85,
"ext": "agda",
"hexsha": "cfc7aa8b6ccd7b3868c102ffcf62480aca2ac621",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/ExclusiveDisjunction/Base.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/ExclusiveDisjunction/Base.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/ExclusiveDisjunction/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 105,
"size": 597
}
|
-- Partly based on code due to Andrea Vezzosi.
{-# OPTIONS --without-K --safe #-}
open import Agda.Builtin.Bool
data D : Set where
run-time : Bool → D
@0 compile-time : Bool → D
l : @0 D → D
l (run-time true) = run-time true
l (run-time false) = run-time false
l (compile-time x) = compile-time x
|
{
"alphanum_fraction": 0.6325878594,
"avg_line_length": 20.8666666667,
"ext": "agda",
"hexsha": "a2f79e6ee1b21723a7f6c434106cba522086a0b8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "guilhermehas/agda",
"max_forks_repo_path": "test/Fail/Issue5079-1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "guilhermehas/agda",
"max_issues_repo_path": "test/Fail/Issue5079-1.agda",
"max_line_length": 46,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "guilhermehas/agda",
"max_stars_repo_path": "test/Fail/Issue5079-1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 97,
"size": 313
}
|
-- Product of two categories
{-# OPTIONS --safe #-}
module Cubical.Categories.Constructions.BinProduct where
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Functor.Base
open import Cubical.Data.Sigma renaming (_×_ to _×'_)
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
private
variable
ℓC ℓC' ℓD ℓD' ℓE ℓE' : Level
open Category
_×_ : (C : Category ℓC ℓC') → (D : Category ℓD ℓD')
→ Category (ℓ-max ℓC ℓD) (ℓ-max ℓC' ℓD')
(C × D) .ob = (ob C) ×' (ob D)
(C × D) .Hom[_,_] (c , d) (c' , d') = (C [ c , c' ]) ×' (D [ d , d' ])
(C × D) .id = (id C , id D)
(C × D) ._⋆_ _ _ = (_ ⋆⟨ C ⟩ _ , _ ⋆⟨ D ⟩ _)
(C × D) .⋆IdL _ = ≡-× (⋆IdL C _) (⋆IdL D _)
(C × D) .⋆IdR _ = ≡-× (⋆IdR C _) (⋆IdR D _)
(C × D) .⋆Assoc _ _ _ = ≡-× (⋆Assoc C _ _ _) (⋆Assoc D _ _ _)
(C × D) .isSetHom = isSet× (isSetHom C) (isSetHom D)
infixr 5 _×_
-- Some useful functors
module _ (C : Category ℓC ℓC')
(D : Category ℓD ℓD') where
open Functor
module _ (E : Category ℓE ℓE') where
-- Associativity of product
×C-assoc : Functor (C × (D × E)) ((C × D) × E)
×C-assoc .F-ob (c , (d , e)) = ((c , d), e)
×C-assoc .F-hom (f , (g , h)) = ((f , g), h)
×C-assoc .F-id = refl
×C-assoc .F-seq _ _ = refl
-- Left/right injections into product
linj : (d : ob D) → Functor C (C × D)
linj d .F-ob c = (c , d)
linj d .F-hom f = (f , id D)
linj d .F-id = refl
linj d .F-seq f g = ≡-× refl (sym (⋆IdL D _))
rinj : (c : ob C) → Functor D (C × D)
rinj c .F-ob d = (c , d)
rinj c .F-hom f = (id C , f)
rinj c .F-id = refl
rinj c .F-seq f g = ≡-× (sym (⋆IdL C _)) refl
{-
TODO:
- define inverse to `assoc`, prove isomorphism
- prove product is commutative up to isomorphism
-}
|
{
"alphanum_fraction": 0.5498030388,
"avg_line_length": 27.3384615385,
"ext": "agda",
"hexsha": "c6498dc2d3cbf8e3e56210c732a65a17ff6259bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Categories/Constructions/BinProduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Categories/Constructions/BinProduct.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Categories/Constructions/BinProduct.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 771,
"size": 1777
}
|
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Gentzen-style formalisation of syntax with context pairs, after Pfenning-Davies.
module BasicIS4.Syntax.DyadicGentzen where
open import BasicIS4.Syntax.Common public
-- Derivations.
infix 3 _⊢_
data _⊢_ : Cx² Ty Ty → Ty → Set where
var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A
lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ▻ B
app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B
mvar : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ A
box : ∀ {A Γ Δ} → ∅ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ □ A
unbox : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ C → Γ ⁏ Δ ⊢ C
pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ∧ B
fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ A
snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B → Γ ⁏ Δ ⊢ B
unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx² Ty Ty → Cx Ty → Set
Γ ⁏ Δ ⊢⋆ ∅ = 𝟙
Γ ⁏ Δ ⊢⋆ Ξ , A = Γ ⁏ Δ ⊢⋆ Ξ × Γ ⁏ Δ ⊢ A
-- Monotonicity with respect to context inclusion.
mono⊢ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (mvar i) = mvar i
mono⊢ η (box t) = box t
mono⊢ η (unbox t u) = unbox (mono⊢ η t) (mono⊢ η u)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
-- Monotonicity with respect to modal context inclusion.
mmono⊢ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ′ ⊢ A
mmono⊢ θ (var i) = var i
mmono⊢ θ (lam t) = lam (mmono⊢ θ t)
mmono⊢ θ (app t u) = app (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ (mvar i) = mvar (mono∈ θ i)
mmono⊢ θ (box t) = box (mmono⊢ θ t)
mmono⊢ θ (unbox t u) = unbox (mmono⊢ θ t) (mmono⊢ (keep θ) u)
mmono⊢ θ (pair t u) = pair (mmono⊢ θ t) (mmono⊢ θ u)
mmono⊢ θ (fst t) = fst (mmono⊢ θ t)
mmono⊢ θ (snd t) = snd (mmono⊢ θ t)
mmono⊢ θ unit = unit
mmono⊢⋆ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ′ ⊢⋆ Ξ
mmono⊢⋆ {∅} θ ∙ = ∙
mmono⊢⋆ {Ξ , A} θ (ts , t) = mmono⊢⋆ θ ts , mmono⊢ θ t
-- Monotonicity using context pairs.
mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A
mono²⊢ (η , θ) = mono⊢ η ∘ mmono⊢ θ
-- Shorthand for variables.
v₀ : ∀ {A Γ Δ} → Γ , A ⁏ Δ ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ Δ} → Γ , A , B ⁏ Δ ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ Δ} → Γ , A , B , C ⁏ Δ ⊢ A
v₂ = var i₂
mv₀ : ∀ {A Γ Δ} → Γ ⁏ Δ , A ⊢ A
mv₀ = mvar i₀
mv₁ : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , B ⊢ A
mv₁ = mvar i₁
mv₂ : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B , C ⊢ A
mv₂ = mvar i₂
-- Reflexivity.
refl⊢⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
mrefl⊢⋆ : ∀ {Δ Γ} → Γ ⁏ Δ ⊢⋆ □⋆ Δ
mrefl⊢⋆ {∅} = ∙
mrefl⊢⋆ {Δ , A} = mmono⊢⋆ weak⊆ mrefl⊢⋆ , box mv₀
mrefl⊢⋆′ : ∀ {Δ Δ′ Γ Γ′} → (∀ {A} → Γ ⁏ Δ ⊢ □ A → Γ′ ⁏ Δ′ ⊢ A) → Γ′ ⁏ Δ′ ⊢⋆ Δ
mrefl⊢⋆′ {∅} f = ∙
mrefl⊢⋆′ {Δ , B} f = mrefl⊢⋆′ (f ∘ mmono⊢ weak⊆) , f (box mv₀)
-- Deduction theorem is built-in.
lam⋆ : ∀ {Ξ A Γ Δ} → Γ ⧺ Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ Ξ ▻⋯▻ A
lam⋆ {∅} = I
lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam
lam⋆₀ : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A
lam⋆₀ {∅} = I
lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam
-- Modal deduction theorem.
mlam : ∀ {A B Γ Δ} → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ ⊢ □ A ▻ B
mlam t = lam (unbox v₀ (mono⊢ weak⊆ t))
mlam⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⧺ Ξ ⊢ A → Γ ⁏ Δ ⊢ □⋆ Ξ ▻⋯▻ A
mlam⋆ {∅} = I
mlam⋆ {Ξ , B} = mlam⋆ {Ξ} ∘ mlam
mlam⋆₀ : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A
mlam⋆₀ {∅} = I
mlam⋆₀ {Δ , B} = mlam⋆₀ ∘ mlam
-- Detachment theorems.
det : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ , A ⁏ Δ ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
det⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⁏ Δ ⊢ A
det⋆ {∅} = I
det⋆ {Ξ , B} = det ∘ det⋆ {Ξ}
det⋆₀ : ∀ {Γ A Δ} → ∅ ⁏ Δ ⊢ Γ ▻⋯▻ A → Γ ⁏ Δ ⊢ A
det⋆₀ {∅} = I
det⋆₀ {Γ , B} = det ∘ det⋆₀
mdet : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ B → Γ ⁏ Δ , A ⊢ B
mdet t = app (mmono⊢ weak⊆ t) (box mv₀)
mdet⋆ : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢ □⋆ Ξ ▻⋯▻ A → Γ ⁏ Δ ⧺ Ξ ⊢ A
mdet⋆ {∅} = I
mdet⋆ {Ξ , B} = mdet ∘ mdet⋆ {Ξ}
mdet⋆₀ : ∀ {Δ A Γ} → Γ ⁏ ∅ ⊢ □⋆ Δ ▻⋯▻ A → Γ ⁏ Δ ⊢ A
mdet⋆₀ {∅} = I
mdet⋆₀ {Δ , B} = mdet ∘ mdet⋆₀
-- Context manipulation.
merge : ∀ {Δ A Γ} → Γ ⁏ Δ ⊢ A → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A
merge {Δ} = det⋆ {□⋆ Δ} ∘ mlam⋆₀
mmerge : ∀ {Γ A Δ} → □⋆ Γ ⁏ Δ ⊢ A → ∅ ⁏ Δ ⧺ Γ ⊢ A
mmerge {Γ} = mdet⋆ {Γ} ∘ lam⋆₀
split : ∀ {Δ A Γ} → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢ A → Γ ⁏ Δ ⊢ A
split {Δ} = mdet⋆₀ ∘ lam⋆ {□⋆ Δ}
msplit : ∀ {Γ A Δ} → ∅ ⁏ Δ ⧺ Γ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
msplit {Γ} = det⋆₀ ∘ mlam⋆ {Γ}
merge⋆ : ∀ {Ξ Δ Γ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢⋆ Ξ
merge⋆ {∅} ∙ = ∙
merge⋆ {Ξ , A} (ts , t) = merge⋆ ts , merge t
split⋆ : ∀ {Ξ Δ Γ} → Γ ⧺ (□⋆ Δ) ⁏ ∅ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
split⋆ {∅} ∙ = ∙
split⋆ {Ξ , A} (ts , t) = split⋆ ts , split t
-- Cut and multicut.
cut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ B
cut t u = app (lam u) t
mcut : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ ⊢ B
mcut t u = app (mlam u) t
multicut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Ξ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
mmulticut : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Ξ ⊢ A → Γ ⁏ Δ ⊢ A
mmulticut {∅} ∙ u = mmono⊢ bot⊆ u
mmulticut {Ξ , B} (ts , t) u = app (mmulticut ts (mlam u)) t
multicut² : ∀ {Ξ Ξ′ A Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ Ξ′ → Ξ ⁏ Ξ′ ⊢ A → Γ ⁏ Δ ⊢ A
multicut² {∅} ∙ us v = mmulticut us (mono⊢ bot⊆ v)
multicut² {Ξ , B} (ts , t) us v = app (multicut² ts us (lam v)) t
-- Transitivity.
trans⊢⋆₀ : ∀ {Γ″ Γ′ Γ} → Γ ⁏ ∅ ⊢⋆ Γ′ → Γ′ ⁏ ∅ ⊢⋆ Γ″ → Γ ⁏ ∅ ⊢⋆ Γ″
trans⊢⋆₀ {∅} ts ∙ = ∙
trans⊢⋆₀ {Γ″ , A} ts (us , u) = trans⊢⋆₀ ts us , multicut ts u
trans⊢⋆ : ∀ {Ξ Γ Γ′ Δ Δ′} → Γ ⁏ Δ ⊢⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
trans⊢⋆ ts us = split⋆ (trans⊢⋆₀ (merge⋆ ts) (merge⋆ us))
-- Contraction.
ccont : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ Δ} → Γ , A , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ B
cont t = det (app ccont (lam (lam t)))
mcont : ∀ {A B Γ Δ} → Γ ⁏ Δ , A , A ⊢ B → Γ ⁏ Δ , A ⊢ B
mcont t = mdet (app ccont (mlam (mlam t)))
-- Exchange, or Schönfinkel’s C combinator.
cexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ Δ} → Γ , A , B ⁏ Δ ⊢ C → Γ , B , A ⁏ Δ ⊢ C
exch t = det (det (app cexch (lam (lam t))))
mexch : ∀ {A B C Γ Δ} → Γ ⁏ Δ , A , B ⊢ C → Γ ⁏ Δ , B , A ⊢ C
mexch t = mdet (mdet (app cexch (mlam (mlam t))))
-- Composition, or Schönfinkel’s B combinator.
ccomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ Δ} → Γ , B ⁏ Δ ⊢ C → Γ , A ⁏ Δ ⊢ B → Γ , A ⁏ Δ ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
mcomp : ∀ {A B C Γ Δ} → Γ ⁏ Δ , B ⊢ □ C → Γ ⁏ Δ , A ⊢ □ B → Γ ⁏ Δ , A ⊢ □ C
mcomp t u = mdet (app (app ccomp (mlam t)) (mlam u))
-- Useful theorems in functional form.
dist : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B
dist t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (app mv₁ mv₀)))
up : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ □ A
up t = unbox t (box (box mv₀))
down : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ A
down t = unbox t mv₀
distup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (□ A ▻ B) → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B
distup t u = dist t (up u)
-- Useful theorems in combinatory form.
ci : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cdist : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) ▻ □ A ▻ □ B
cdist = lam (lam (dist v₁ v₀))
cup : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ □ □ A
cup = lam (up v₀)
cdown : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ A
cdown = lam (down v₀)
cdistup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (□ A ▻ B) ▻ □ A ▻ □ B
cdistup = lam (lam (dist v₁ (up v₀)))
cunbox : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ □ A ▻ (□ A ▻ C) ▻ C
cunbox = lam (lam (app v₀ v₁))
cpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
-- Internalisation, or lifting, and additional theorems.
lift : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ □ A
lift {∅} t = box t
lift {Γ , B} t = det (app cdist (lift (lam t)))
hypup : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ▻ B → Γ ⁏ Δ ⊢ □ A ▻ B
hypup t = lam (app (mono⊢ weak⊆ t) (down v₀))
hypdown : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ □ A ▻ B → Γ ⁏ Δ ⊢ □ A ▻ B
hypdown t = lam (app (mono⊢ weak⊆ t) (up v₀))
cxup : ∀ {Γ A Δ} → Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
cxup {∅} t = t
cxup {Γ , B} t = det (hypup (cxup (lam t)))
cxdown : ∀ {Γ A Δ} → □⋆ □⋆ Γ ⁏ Δ ⊢ A → □⋆ Γ ⁏ Δ ⊢ A
cxdown {∅} t = t
cxdown {Γ , B} t = det (hypdown (cxdown (lam t)))
box⋆ : ∀ {Ξ Γ Δ} → ∅ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ Ξ
box⋆ {∅} ∙ = ∙
box⋆ {Ξ , A} (ts , t) = box⋆ ts , box t
lift⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → □⋆ Γ ⁏ Δ ⊢⋆ □⋆ Ξ
lift⋆ {∅} ∙ = ∙
lift⋆ {Ξ , A} (ts , t) = lift⋆ ts , lift t
up⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Δ ⊢⋆ □⋆ □⋆ Ξ
up⋆ {∅} ∙ = ∙
up⋆ {Ξ , A} (ts , t) = up⋆ ts , up t
down⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ
down⋆ {∅} ∙ = ∙
down⋆ {Ξ , A} (ts , t) = down⋆ ts , down t
multibox : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ ⊢⋆ □⋆ Ξ → □⋆ Ξ ⁏ ∅ ⊢ A → Γ ⁏ Δ ⊢ □ A
multibox ts u = multicut (up⋆ ts) (mmono⊢ bot⊆ (lift u))
dist′ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ▻ B) → Γ ⁏ Δ ⊢ □ A ▻ □ B
dist′ t = lam (dist (mono⊢ weak⊆ t) v₀)
mpair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ ⊢ □ B → Γ ⁏ Δ ⊢ □ (A ∧ B)
mpair t u = unbox t (unbox (mmono⊢ weak⊆ u) (box (pair mv₁ mv₀)))
mfst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ∧ B) → Γ ⁏ Δ ⊢ □ A
mfst t = unbox t (box (fst mv₀))
msnd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ □ (A ∧ B) → Γ ⁏ Δ ⊢ □ B
msnd t = unbox t (box (snd mv₀))
-- Closure under context concatenation.
concat : ∀ {A B Γ} Γ′ {Δ} → Γ , A ⁏ Δ ⊢ B → Γ′ ⁏ Δ ⊢ A → Γ ⧺ Γ′ ⁏ Δ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
mconcat : ∀ {A B Γ Δ} Δ′ → Γ ⁏ Δ , A ⊢ B → Γ ⁏ Δ′ ⊢ □ A → Γ ⁏ Δ ⧺ Δ′ ⊢ B
mconcat Δ′ t u = app (mmono⊢ (weak⊆⧺₁ Δ′) (mlam t)) (mmono⊢ weak⊆⧺₂ u)
-- Substitution.
[_≔_]_ : ∀ {A B Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ∖ i ⁏ Δ ⊢ B
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] mvar j = mvar j
[ i ≔ s ] box t = box t
[ i ≔ s ] unbox t u = unbox ([ i ≔ s ] t) ([ i ≔ mmono⊢ weak⊆ s ] u)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ∖ i ⁏ Δ ⊢⋆ Ξ
[_≔_]⋆_ {∅} i s ∙ = ∙
[_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
-- Modal substitution.
m[_≔_]_ : ∀ {A B Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ∖ i ⊢ B
m[ i ≔ s ] var j = var j
m[ i ≔ s ] lam t = lam (m[ i ≔ s ] t)
m[ i ≔ s ] app t u = app (m[ i ≔ s ] t) (m[ i ≔ s ] u)
m[ i ≔ s ] mvar j with i ≟∈ j
m[ i ≔ s ] mvar .i | same = mono⊢ bot⊆ s
m[ i ≔ s ] mvar ._ | diff j = mvar j
m[ i ≔ s ] box t = box (m[ i ≔ s ] t)
m[ i ≔ s ] unbox t u = unbox (m[ i ≔ s ] t) (m[ pop i ≔ mmono⊢ weak⊆ s ] u)
m[ i ≔ s ] pair t u = pair (m[ i ≔ s ] t) (m[ i ≔ s ] u)
m[ i ≔ s ] fst t = fst (m[ i ≔ s ] t)
m[ i ≔ s ] snd t = snd (m[ i ≔ s ] t)
m[ i ≔ s ] unit = unit
m[_≔_]⋆_ : ∀ {Ξ A Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ A → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ∖ i ⊢⋆ Ξ
m[_≔_]⋆_ {∅} i s ∙ = ∙
m[_≔_]⋆_ {Ξ , B} i s (ts , t) = m[ i ≔ s ]⋆ ts , m[ i ≔ s ] t
-- Convertibility.
data _⋙_ {Γ Δ : Cx Ty} : ∀ {A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A → Set where
refl⋙ : ∀ {A} → {t : Γ ⁏ Δ ⊢ A}
→ t ⋙ t
trans⋙ : ∀ {A} → {t t′ t″ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → t′ ⋙ t″
→ t ⋙ t″
sym⋙ : ∀ {A} → {t t′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′
→ t′ ⋙ t
conglam⋙ : ∀ {A B} → {t t′ : Γ , A ⁏ Δ ⊢ B}
→ t ⋙ t′
→ lam t ⋙ lam t′
congapp⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ▻ B} → {u u′ : Γ ⁏ Δ ⊢ A}
→ t ⋙ t′ → u ⋙ u′
→ app t u ⋙ app t′ u′
-- NOTE: Rejected by Pfenning and Davies.
-- congbox⋙ : ∀ {A} → {t t′ : ∅ ⁏ Δ ⊢ A}
-- → t ⋙ t′
-- → box {Γ} t ⋙ box {Γ} t′
congunbox⋙ : ∀ {A C} → {t t′ : Γ ⁏ Δ ⊢ □ A} → {u u′ : Γ ⁏ Δ , A ⊢ C}
→ t ⋙ t′ → u ⋙ u′
→ unbox t u ⋙ unbox t′ u′
congpair⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A} → {u u′ : Γ ⁏ Δ ⊢ B}
→ t ⋙ t′ → u ⋙ u′
→ pair t u ⋙ pair t′ u′
congfst⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ t′
→ fst t ⋙ fst t′
congsnd⋙ : ∀ {A B} → {t t′ : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ t′
→ snd t ⋙ snd t′
beta▻⋙ : ∀ {A B} → {t : Γ , A ⁏ Δ ⊢ B} → {u : Γ ⁏ Δ ⊢ A}
→ app (lam t) u ⋙ ([ top ≔ u ] t)
eta▻⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ▻ B}
→ t ⋙ lam (app (mono⊢ weak⊆ t) v₀)
beta□⋙ : ∀ {A C} → {t : ∅ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ , A ⊢ C}
→ unbox (box t) u ⋙ (m[ top ≔ t ] u)
eta□⋙ : ∀ {A} → {t : Γ ⁏ Δ ⊢ □ A}
→ t ⋙ unbox t (box mv₀)
-- TODO: What about commuting conversions for □?
beta∧₁⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ fst (pair t u) ⋙ t
beta∧₂⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A} → {u : Γ ⁏ Δ ⊢ B}
→ snd (pair t u) ⋙ u
eta∧⋙ : ∀ {A B} → {t : Γ ⁏ Δ ⊢ A ∧ B}
→ t ⋙ pair (fst t) (snd t)
eta⊤⋙ : ∀ {t : Γ ⁏ Δ ⊢ ⊤} → t ⋙ unit
|
{
"alphanum_fraction": 0.3837333523,
"avg_line_length": 29.8110403397,
"ext": "agda",
"hexsha": "4c3ec9703b8f21b3993fd5ad595d5da2204211c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Syntax/DyadicGentzen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Syntax/DyadicGentzen.agda",
"max_line_length": 83,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Syntax/DyadicGentzen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 8126,
"size": 14041
}
|
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness #-}
open import Data.Empty
open import Data.Product
open import Data.List using ([]; _∷_; _∷ʳ_; _++_)
open import Relation.Nullary
open import Relation.Unary using (_∈_; _⊆_;_∉_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
import Relation.Binary.HeterogeneousEquality as Het
open import Common
module HasTrace {ℙ : Set} (message : Message ℙ)
where
open import Trace message
open import SessionType message
open import Transitions message
_HasTrace_ : SessionType -> Trace -> Set
_HasTrace_ T φ = ∃[ S ] (Defined S × Transitions T φ S)
after : ∀{T φ} -> T HasTrace φ -> SessionType
after (S , _ , _) = S
-- data _HasTrace_ : SessionType -> Trace -> Set where
-- does : ∀{T φ S} (tr : Transitions T φ S) (def : Defined S) -> T Does φ
_HasTrace?_ : (T : SessionType) (φ : Trace) -> Dec (T HasTrace φ)
nil HasTrace? _ = no λ { (_ , () , refl)
; (_ , _ , step () _) }
inp f HasTrace? [] = yes (_ , inp , refl)
inp f HasTrace? (I x ∷ φ) with x ∈? f
... | no nfx = no λ { (_ , def , step inp tr) → nfx (transitions+defined->defined tr def) }
... | yes fx with f x .force HasTrace? φ
... | yes (_ , def , tr) = yes (_ , def , step inp tr)
... | no ntφ = no λ { (_ , def , step inp tr) → ntφ (_ , def , tr) }
inp f HasTrace? (O x ∷ φ) = no λ { (_ , _ , step () _) }
out f HasTrace? [] = yes (_ , out , refl)
out f HasTrace? (I x ∷ φ) = no λ { (_ , _ , step () _) }
out f HasTrace? (O x ∷ φ) with x ∈? f
... | no nfx = no λ { (_ , _ , step (out fx) _) → nfx fx }
... | yes fx with f x .force HasTrace? φ
... | yes (_ , def , tr) = yes (_ , def , step (out fx) tr)
... | no ntφ = no λ { (_ , def , step (out fx) tr) → ntφ (_ , def , tr) }
has-trace->defined : ∀{T φ} -> T HasTrace φ -> Defined T
has-trace->defined (_ , tdef , tr) = transitions+defined->defined tr tdef
inp-has-trace : ∀{f x φ} -> f x .force HasTrace φ -> inp f HasTrace (I x ∷ φ)
inp-has-trace (_ , def , tr) = _ , def , step inp tr
inp-has-no-trace : ∀{f x φ} -> ¬ f x .force HasTrace φ -> ¬ inp f HasTrace (I x ∷ φ)
inp-has-no-trace nφ (_ , def , step inp tr) = nφ (_ , def , tr)
out-has-trace : ∀{f x φ} -> f x .force HasTrace φ -> out f HasTrace (O x ∷ φ)
out-has-trace (_ , def , tr) = _ , def , step (out (transitions+defined->defined tr def)) tr
out-has-no-trace : ∀{f x φ} -> ¬ f x .force HasTrace φ -> ¬ out f HasTrace (O x ∷ φ)
out-has-no-trace nφ (_ , def , step (out fx) tr) = nφ (_ , def , tr)
out-has-no-trace->undefined : ∀{f x} -> ¬ out f HasTrace (O x ∷ []) -> ¬ Defined (f x .force)
out-has-no-trace->undefined {f} {x} nt with x ∈? f
... | yes fx = ⊥-elim (nt (_ , fx , step (out fx) refl))
... | no nfx = nfx
unprefix-some : ∀{α φ ψ} -> (α ∷ ψ) ⊑ (α ∷ φ) -> ψ ⊑ φ
unprefix-some (some pre) = pre
⊑-has-trace : ∀{T φ ψ} -> ψ ⊑ φ -> T HasTrace φ -> T HasTrace ψ
⊑-has-trace none (_ , tdef , tr) = _ , transitions+defined->defined tr tdef , refl
⊑-has-trace (some pre) (_ , tdef , step t tr) =
let _ , sdef , sr = ⊑-has-trace pre (_ , tdef , tr) in
_ , sdef , step t sr
split-trace : ∀{T φ ψ} (tφ : T HasTrace φ) -> T HasTrace (φ ++ ψ) -> after tφ HasTrace ψ
split-trace (_ , tdef , refl) tφψ = tφψ
split-trace (_ , tdef , step inp tr) (_ , sdef , step inp sr) = split-trace (_ , tdef , tr) (_ , sdef , sr)
split-trace (_ , tdef , step (out _) tr) (_ , sdef , step (out _) sr) = split-trace (_ , tdef , tr) (_ , sdef , sr)
join-trace : ∀{T φ ψ} (tφ : T HasTrace φ) -> after tφ HasTrace ψ -> T HasTrace (φ ++ ψ)
join-trace (_ , _ , refl) tφ/ψ = tφ/ψ
join-trace (_ , tdef , step t tr) tφ/ψ =
let (_ , sdef , sr) = join-trace (_ , tdef , tr) tφ/ψ in
_ , sdef , step t sr
⊑-has-co-trace : ∀{T φ ψ} -> φ ⊑ ψ -> T HasTrace (co-trace ψ) -> T HasTrace (co-trace φ)
⊑-has-co-trace le tψ = ⊑-has-trace (⊑-co-trace le) tψ
⊑-tran-has-trace : ∀{T φ ψ χ} (pre1 : φ ⊑ ψ) (pre2 : ψ ⊑ χ) ->
(tχ : T HasTrace χ) ->
⊑-has-trace pre1 (⊑-has-trace pre2 tχ) ≡ ⊑-has-trace (⊑-tran pre1 pre2) tχ
⊑-tran-has-trace none none tχ = refl
⊑-tran-has-trace none (some pre2) (fst , fst₁ , step t snd) = refl
⊑-tran-has-trace (some pre1) (some pre2) (_ , def , step _ tr) rewrite ⊑-tran-has-trace pre1 pre2 (_ , def , tr) = refl
⊑-has-trace-after : ∀{T φ} (tφ : T HasTrace φ) -> ⊑-has-trace (⊑-refl φ) tφ ≡ tφ
⊑-has-trace-after (_ , _ , refl) = refl
⊑-has-trace-after (_ , tdef , step inp tr) rewrite ⊑-has-trace-after (_ , tdef , tr) = refl
⊑-has-trace-after (_ , tdef , step (out _) tr) rewrite ⊑-has-trace-after (_ , tdef , tr) = refl
nil-has-no-trace : ∀{φ} -> ¬ nil HasTrace φ
nil-has-no-trace (_ , () , refl)
nil-has-no-trace (_ , _ , step () _)
end-has-empty-trace : ∀{φ T} -> End T -> T HasTrace φ -> φ ≡ []
end-has-empty-trace (inp U) (_ , _ , refl) = refl
end-has-empty-trace (inp U) (_ , def , step inp refl) = ⊥-elim (U _ def)
end-has-empty-trace (inp U) (_ , def , step inp (step t _)) = ⊥-elim (U _ (transition->defined t))
end-has-empty-trace (out U) (_ , _ , refl) = refl
end-has-empty-trace (out U) (_ , _ , step (out !x) _) = ⊥-elim (U _ !x)
has-trace-++ : ∀{T φ ψ} -> T HasTrace (φ ++ ψ) -> T HasTrace φ
has-trace-++ tφψ = ⊑-has-trace ⊑-++ tφψ
trace-coherence : ∀{T φ ψ₁ ψ₂ x y} -> T HasTrace (φ ++ I x ∷ ψ₁) -> T HasTrace (φ ++ O y ∷ ψ₂) -> ⊥
trace-coherence {_} {[]} (_ , _ , step inp _) (_ , _ , step () _)
trace-coherence {_} {I _ ∷ _} (_ , tdef , step inp tr) (_ , sdef , step inp sr) = trace-coherence (_ , tdef , tr) (_ , sdef , sr)
trace-coherence {_} {O _ ∷ _} (_ , tdef , step (out _) tr) (_ , sdef , step (out _) sr) = trace-coherence (_ , tdef , tr) (_ , sdef , sr)
defined->has-empty-trace : ∀{T} -> Defined T -> T HasTrace []
defined->has-empty-trace inp = _ , inp , refl
defined->has-empty-trace out = _ , out , refl
has-trace-double-negation : ∀{T φ} -> ¬ ¬ T HasTrace φ -> T HasTrace φ
has-trace-double-negation {T} {φ} p with T HasTrace? φ
... | yes tφ = tφ
... | no ntφ = ⊥-elim (p ntφ)
{- New -}
not-nil-has-trace : ∀{ϕ} → ¬ (nil HasTrace ϕ)
not-nil-has-trace (.(inp _) , inp , step () _)
not-nil-has-trace (.(out _) , out , step () _)
trace-after-in : ∀{f x ϕ} → (inp f) HasTrace (I x ∷ ϕ) → (f x .force) HasTrace ϕ
trace-after-in (_ , def , step inp red) = _ , def , red
trace-after-out : ∀{f x ϕ} → (out f) HasTrace (O x ∷ ϕ) → (f x .force) HasTrace ϕ
trace-after-out (_ , def , step (out _) red) = _ , def , red
inp-hastrace->defined : ∀{f x tr} → (inp f) HasTrace (I x ∷ tr) → x ∈ dom f
inp-hastrace->defined (_ , def , step inp refl) = def
inp-hastrace->defined (_ , def , step inp (step red _)) = transition->defined red
empty-inp-has-empty-trace : ∀{f ϕ} → EmptyContinuation f → (inp f) HasTrace ϕ → ϕ ≡ []
empty-inp-has-empty-trace e (_ , _ , refl) = refl
empty-inp-has-empty-trace {f} e (_ , _ , step (inp {x = x}) reds) with Defined? (f x .force)
empty-inp-has-empty-trace {f} e (_ , def , step (inp {x = _}) refl) | no ¬def = ⊥-elim (¬def def)
empty-inp-has-empty-trace {f} e (_ , _ , step (inp {x = _}) (step t _)) | no ¬def = ⊥-elim (¬def (transition->defined t))
... | yes def = ⊥-elim (e _ def)
empty-out-has-empty-trace : ∀{f ϕ} → EmptyContinuation f → (out f) HasTrace ϕ → ϕ ≡ []
empty-out-has-empty-trace e (_ , _ , refl) = refl
empty-out-has-empty-trace e (_ , _ , step (out def) _) = ⊥-elim (e _ def)
|
{
"alphanum_fraction": 0.6048984468,
"avg_line_length": 46.5,
"ext": "agda",
"hexsha": "e5546ddbbc33eaf9134d78f596b340fbca8c13e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/HasTrace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/HasTrace.agda",
"max_line_length": 137,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/HasTrace.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 3032,
"size": 8370
}
|
-- This module introduces parameterised modules.
module Introduction.Modules.Parameterised where
-- First some familiar datatypes.
data Bool : Set where
false : Bool
true : Bool
data List (A : Set) : Set where
nil : List A
_::_ : A -> List A -> List A
infixr 15 _::_ -- see 'Introduction.Operators' for information on infix
-- declarations
-- Agda supports parameterised modules. A parameterised module is declared by
-- giving the parameters after the module name.
module Sorting {A : Set}(_<_ : A -> A -> Bool) where
insert : A -> List A -> List A
insert x nil = x :: nil
insert x (y :: ys) = ins (x < y)
where
ins : Bool -> List A -- local functions can do pattern matching and
ins true = x :: y :: ys -- be recursive
ins false = y :: insert x ys
sort : List A -> List A
sort nil = nil
sort (x :: xs) = insert x (sort xs)
-- Before a parameterised module can be used it has to be instantiated. So, we
-- need something to instantiate it with.
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_<_ : Nat -> Nat -> Bool
zero < zero = false
zero < suc _ = true
suc _ < zero = false
suc n < suc m = n < m
-- To instantiate a module you define a new module in terms of the
-- parameterised module. Module instantiation also supports the using, hiding
-- and renaming modifiers.
module SortNat = Sorting _<_
sort' : {A : Set}(_<_ : A -> A -> Bool) -> List A -> List A
sort' less = Sort'.sort
where
module Sort' = Sorting less
-- Now the instantiated module can be opened and we can use the sorting
-- function.
open SortNat
test = sort (suc zero :: zero :: suc (suc zero) :: nil)
|
{
"alphanum_fraction": 0.6379208506,
"avg_line_length": 26.0461538462,
"ext": "agda",
"hexsha": "429c22d08153c4ad77f2cad194fe0c08589d8f2d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/Introduction/Modules/Parameterised.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/Introduction/Modules/Parameterised.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/Introduction/Modules/Parameterised.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 467,
"size": 1693
}
|
module MessageClosure where
open import Data.Fin using (Fin; zero; suc; toℕ)
open import Data.Nat
open import Function
open import Types.IND1 as IND
import Types.Tail1 as Tail
private
variable
m n : ℕ
-- message closure guarantees that the type of each message in a session type is closed
upS : SType m → SType (suc m)
upG : GType m → GType (suc m)
upT : Type m → Type (suc m)
upS (gdd G) = gdd (upG G)
upS (rec G) = rec (upG G)
upS (var x) = var (suc x)
upG (transmit d T S) = transmit d (upT T) (upS S)
upG (choice d m alt) = choice d m (upS ∘ alt)
upG end = end
upT TUnit = TUnit
upT TInt = TInt
upT (TPair t t₁) = TPair (upT t) (upT t₁)
upT (TChan S) = TChan (upS S)
shift : (Fin (m + n) → SType m) → (Fin (suc m + n) → SType (suc m))
shift σ zero = var zero
shift σ (suc x) = upS (σ x)
applyT : (Fin (m + n) → SType m) → TType (m + n) → TType m
applyS : (Fin (m + n) → SType m) → SType (m + n) → SType m
applyG : (Fin (m + n) → SType m) → GType (m + n) → GType m
applyT σ TUnit = TUnit
applyT σ TInt = TInt
applyT σ (TPair T T₁) = TPair (applyT σ T) (applyT σ T₁)
applyT σ (TChan x) = TChan (applyS σ x)
applyS σ (gdd gst) = gdd (applyG σ gst)
applyS σ (rec gst) = rec (applyG (shift σ) gst)
applyS σ (var x) = σ x
applyG σ (transmit d t s) = transmit d (applyT σ t) (applyS σ s)
applyG σ (choice d m alt) = choice d m (applyS σ ∘ alt)
applyG σ end = end
injectT : TType 0 → Tail.Type
injectT TUnit = Tail.TUnit
injectT TInt = Tail.TInt
injectT (TPair t t₁) = Tail.TPair (injectT t) (injectT t₁)
injectT (TChan S) = Tail.TChan S
ext : (Fin n → SType 0) → SType n → (Fin (suc n) → SType 0)
ext σ S zero = applyS σ S
ext σ S (suc i) = σ i
mcloS : (Fin n → SType 0) → SType n → Tail.SType n
mcloG : (Fin n → SType 0) → GType n → Tail.GType n
mcloS σ (gdd gst) = Tail.gdd (mcloG σ gst)
mcloS σ (rec gst) = Tail.rec (mcloG (ext σ (rec gst)) gst)
mcloS σ (var x) = Tail.var x
mcloG σ (transmit d t s) = Tail.transmit d (injectT (applyT σ t)) (mcloS σ s)
mcloG σ (choice d m alt) = Tail.choice d m (mcloS σ ∘ alt)
mcloG σ end = Tail.end
mclosureS : SType 0 → Tail.SType 0
mclosureS = mcloS IND.var
mclosureG : GType 0 → Tail.GType 0
mclosureG = mcloG IND.var
|
{
"alphanum_fraction": 0.6386093321,
"avg_line_length": 26.6585365854,
"ext": "agda",
"hexsha": "c1207bb25652dfcccb2d35c3c57be75a6d8ff11f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-07T16:12:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-07T16:12:50.000Z",
"max_forks_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "peterthiemann/dual-session",
"max_forks_repo_path": "src/MessageClosure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "peterthiemann/dual-session",
"max_issues_repo_path": "src/MessageClosure.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "peterthiemann/dual-session",
"max_stars_repo_path": "src/MessageClosure.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:43:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-13T05:43:25.000Z",
"num_tokens": 886,
"size": 2186
}
|
module main where
import string-format
-- for parser for Cedille
open import cedille-types
-- for parser for options files
import options-types
import cedille-options
-- for parser for Cedille comments & whitespace
import cws-types
import io
open import constants
open import general-util
open import json
record cedille-args : Set where
constructor mk-cedille-args
field
opts-file : maybe filepath
file-to-process : maybe filepath
about : 𝔹
help : 𝔹
do-elab : maybe filepath
confirm-read-stdin : 𝔹
default-cedille-args =
record { opts-file = nothing ;
file-to-process = nothing ;
about = ff ;
help = ff ;
do-elab = nothing ;
confirm-read-stdin = ff}
-- get $HOME/.cedille, creating it if it does not exist
getHomeCedilleDirectory : IO filepath
getHomeCedilleDirectory =
getHomeDirectory >>= λ home →
let d = dot-cedille-directory home in
io.createDirectoryIfMissing ff d >>
return d
postulate
initializeStdinToUTF8 : IO ⊤
setStdinNewlineMode : IO ⊤
compileTime : UTC
templatesDir : filepath
die : {A : Set} → 𝕃 char → IO A
{-# FOREIGN GHC {-# LANGUAGE TemplateHaskell #-} #-}
{-# FOREIGN GHC import qualified System.IO #-}
{-# FOREIGN GHC import qualified System.Exit #-}
{-# FOREIGN GHC import qualified Data.Time.Clock #-}
{-# FOREIGN GHC import qualified Data.Time.Format #-}
{-# FOREIGN GHC import qualified Data.Time.Clock.POSIX #-}
{-# FOREIGN GHC import qualified Language.Haskell.TH.Syntax #-}
{-# COMPILE GHC die = \ _ -> System.Exit.die #-}
{-# COMPILE GHC initializeStdinToUTF8 = System.IO.hSetEncoding System.IO.stdin System.IO.utf8 #-}
{-# COMPILE GHC setStdinNewlineMode = System.IO.hSetNewlineMode System.IO.stdin System.IO.universalNewlineMode #-}
{-# COMPILE GHC compileTime =
maybe (Data.Time.Clock.POSIX.posixSecondsToUTCTime (fromIntegral 0)) id
(Data.Time.Format.parseTimeM True Data.Time.Format.defaultTimeLocale "%s"
$(Language.Haskell.TH.Syntax.runIO
(Data.Time.Clock.getCurrentTime >>= \ t ->
return (Language.Haskell.TH.Syntax.LitE
(Language.Haskell.TH.Syntax.StringL
(Data.Time.Format.formatTime Data.Time.Format.defaultTimeLocale "%s" t)))))
:: Maybe Data.Time.Clock.UTCTime) #-}
say-about : filepath → IO ⊤
say-about optfp =
putStrLn $ "Compiled: " ^ (utcToString compileTime) ^ "\n" ^
"Options file: " ^ optfp ^ "\n"
createOptionsFile : (dot-ced-dir : string) → IO ⊤
createOptionsFile dot-ced-dir =
let ops-fp = combineFileNames dot-ced-dir options-file-name in
createDirectoryIfMissing ff (takeDirectory ops-fp) >>
withFile ops-fp WriteMode (flip hPutRope (cedille-options.options-to-rope cedille-options.default-options))
options-absolute-path : (options-fp some-fp : filepath) → IO filepath
options-absolute-path ofp fp =
(filepath-replace-tilde fp >>= flip maybe-else return
(doesFileExist fp >>=r λ fpₑ →
if fpₑ then fp else combineFileNames (takeDirectory (takeDirectory ofp)) fp))
>>= canonicalizePath
opts-to-options : filepath → options-types.opts → IO cedille-options.options
opts-to-options ofp (options-types.OptsCons (options-types.Lib fps) ops) =
opts-to-options ofp ops >>= λ ops → paths-to-stringset fps >>=r λ ip → record ops { include-path = ip }
where paths-to-stringset : options-types.paths → IO (𝕃 string × stringset)
paths-to-stringset (options-types.PathsCons fp fps) =
let rfp = combineFileNames (takeDirectory (takeDirectory ofp)) fp in
paths-to-stringset fps >>= λ ps →
doesDirectoryExist rfp >>= λ rfpₑ →
doesDirectoryExist fp >>= λ fpₑ →
(if rfpₑ
then (canonicalizePath rfp >>= λ rfp →
return (cedille-options.include-path-insert rfp ps))
else return ps) >>= λ ps →
if fpₑ
then (canonicalizePath fp >>= λ fp →
return (cedille-options.include-path-insert fp ps))
else return ps
paths-to-stringset options-types.PathsNil = return ([] , empty-stringset)
opts-to-options ofp (options-types.OptsCons (options-types.UseCedeFiles b) ops) =
opts-to-options ofp ops >>=r λ ops → record ops { use-cede-files = b }
opts-to-options ofp (options-types.OptsCons (options-types.MakeRktFiles b) ops) =
opts-to-options ofp ops >>=r λ ops → record ops { make-rkt-files = b }
opts-to-options ofp (options-types.OptsCons (options-types.GenerateLogs b) ops) =
opts-to-options ofp ops >>=r λ ops → record ops { generate-logs = b }
opts-to-options ofp (options-types.OptsCons (options-types.ShowQualifiedVars b) ops) =
opts-to-options ofp ops >>=r λ ops → record ops { show-qualified-vars = b }
opts-to-options ofp (options-types.OptsCons (options-types.EraseTypes b) ops) =
opts-to-options ofp ops >>=r λ ops → record ops { erase-types = b }
opts-to-options ofp (options-types.OptsCons (options-types.PrettyPrintColumns b) ops) =
opts-to-options ofp ops >>=r λ ops → record ops { pretty-print-columns = string-to-ℕ0 b }
opts-to-options ofp (options-types.OptsCons (options-types.DatatypeEncoding fp?) ops) =
maybe-map (options-absolute-path ofp) fp? >>=? λ fp? →
opts-to-options ofp ops >>=r λ ops → record ops { datatype-encoding = (_, nothing) <$> fp? }
opts-to-options ofp options-types.OptsNil = return cedille-options.default-options
-- helper function to try to parse the options file
processOptions : filepath → string → IO (string ⊎ cedille-options.options)
processOptions filename s with options-types.scanOptions s
...| options-types.Left cs = return (inj₁ ("Parse error in file " ^ filename ^ " " ^ cs ^ "."))
...| options-types.Right (options-types.File oo) =
opts-to-options filename oo
>>= λ opts → if cedille-options.options.make-rkt-files opts
then return ∘ inj₁ $ "Racket compilation disabled, please set to false in " ^ filename ^ "."
else (return ∘ inj₂ $ opts)
getOptionsFile : (filepath : string) → string
getOptionsFile fp = combineFileNames (dot-cedille-directory fp) options-file-name
findOptionsFile' : (filepath : string) → IO (maybe string)
findOptionsFile' fp =
traverseParents fp (fp-fuel fp)
>>= λ where
fpc?@(just fpc) → return fpc?
nothing → getHomeDirectory >>= getOptions?
where
getOptions? : (filepath : string) → IO ∘ maybe $ string
getOptions? fp =
let fpc = getOptionsFile fp in
doesFileExist fpc >>= λ where
ff → return nothing
tt → return ∘ just $ fpc
traverseParents : string → ℕ → IO (maybe string)
traverseParents fp 0 = return nothing
traverseParents fp (suc n) =
getOptions? fp >>= λ where
nothing → traverseParents (takeDirectory fp) n
fpc?@(just fpc) → return fpc?
fp-fuel : (filepath : string) → ℕ
fp-fuel fp = pred ∘' length ∘' splitPath $ fp
findOptionsFile : IO (maybe string)
findOptionsFile =
(getCurrentDirectory >>= canonicalizePath) >>= findOptionsFile'
readOptions : maybe filepath → IO (filepath × cedille-options.options)
readOptions nothing =
getHomeCedilleDirectory >>= λ home →
createOptionsFile home >>r
dot-cedille-directory home , cedille-options.default-options
readOptions (just fp) = readFiniteFile fp >>= λ fc →
processOptions fp fc >>= λ where
(inj₁ err) →
putStrLn (global-error-string err) >>r
fp , cedille-options.default-options
(inj₂ ops) → return (fp , ops)
showCedilleUsage : IO ⊤
showCedilleUsage =
putStrLn ("Command-line usage: cedille [--e elab-dir | --options options-file | --about ] file-to-check\n"
^ "With no arguments, read commands from the front-end on stdin.")
module main-with-options
(compileTime : UTC)
(options-filepath : filepath)
(options : cedille-options.options)
(die : {A : Set} → 𝕃 char → IO A) where
open import ctxt
--open import instances
open import process-cmd options {IO}
open import parser
open import spans options {IO}
open import syntax-util
open import to-string options
open import toplevel-state options {IO}
open import interactive-cmds options
open import rkt options
open import elab-util options
open import communication-util options
logFilePathIO : IO filepath
logFilePathIO = getHomeCedilleDirectory >>=r (flip combineFileNames $ "log")
maybeClearLogFile : IO filepath
maybeClearLogFile =
logFilePathIO >>=
λ logFilePath →
ifM (cedille-options.options.generate-logs options) (clearFile logFilePath) >>
return logFilePath
fileBaseName : filepath → string
fileBaseName fn = base-filename (takeFileName fn)
fileSuffix : filepath → string
fileSuffix = maybe-else cedille-extension id ∘ var-suffix
{-------------------------------------------------------------------------------
.cede support
-------------------------------------------------------------------------------}
cede-suffix = ".cede"
rkt-suffix = ".rkt"
ced-aux-filename : (suffix ced-path : filepath) → filepath
ced-aux-filename sfx ced-path =
let dir = takeDirectory ced-path in
combineFileNames (dot-cedille-directory dir) (fileBaseName ced-path ^ sfx)
cede-filename = ced-aux-filename cede-suffix
rkt-filename = ced-aux-filename rkt-suffix
maybe-write-aux-file : toplevel-state → include-elt → (create-dot-ced-if-missing : IO ⊤) →
(filename file-suffix : filepath) → (cedille-options.options → 𝔹) → (include-elt → 𝔹) → rope → IO ⊤
maybe-write-aux-file s ie mk-dot-ced fn sfx f f' r with f options && ~ f' ie
...| ff = return triv
...| tt = mk-dot-ced >>
logMsg s ("Starting writing " ^ sfx ^ " file " ^ fn) >>
writeRopeToFile fn r >>
logMsg s ("Finished writing " ^ sfx ^ " file " ^ fn)
write-aux-files : toplevel-state → filepath → IO ⊤
write-aux-files s filename with get-include-elt-if s filename
...| nothing = return triv
...| just ie =
let dot-ced = createDirectoryIfMissing ff (dot-cedille-directory (takeDirectory filename)) in
maybe-write-aux-file s ie dot-ced (cede-filename filename) cede-suffix
cedille-options.options.use-cede-files
include-elt.cede-up-to-date
((if include-elt.err ie then [[ "e" ]] else [[]]) ⊹⊹ json-to-rope (include-elt-spans-to-json ie)) >>
maybe-write-aux-file s ie dot-ced (rkt-filename filename) rkt-suffix
cedille-options.options.make-rkt-files
include-elt.rkt-up-to-date
(to-rkt-file filename (toplevel-state.Γ s) ie rkt-filename)
-- we assume the cede file is known to exist at this point
read-cede-file : toplevel-state → (ced-path : filepath) → IO (𝔹 × string)
read-cede-file s ced-path =
let cede = cede-filename ced-path in
logMsg s ("Started reading .cede file " ^ cede) >>
(get-file-contents cede >>= finish) >≯
logMsg s ("Finished reading .cede file " ^ cede)
where finish : maybe string → IO (𝔹 × string)
finish nothing = return (tt , global-error-string ("Could not read the file " ^ cede-filename ced-path ^ "."))
finish (just ss) with string-to-𝕃char ss
finish (just ss) | ('e' :: ss') = forceFileRead ss >>r tt , 𝕃char-to-string ss'
finish (just ss) | _ = forceFileRead ss >>r ff , ss
--add-cedille-extension : string → string
--add-cedille-extension x = x ^ "." ^ cedille-extension
--add-cdle-extension : string → string
--add-cdle-extension x = x ^ "." ^ cdle-extension
-- Allows you to say "import FOO.BAR.BAZ" rather than "import FOO/BAR/BAZ"
replace-dots : filepath → filepath
replace-dots s = 𝕃char-to-string (h (string-to-𝕃char s)) where
h : 𝕃 char → 𝕃 char
h ('.' :: '.' :: cs) = '.' :: '.' :: h cs
h ('.' :: cs) = pathSeparator :: h cs
h (c :: cs) = c :: h cs
h [] = []
find-imported-file : (sfx : string) → (dirs : 𝕃 filepath) → (unit-name : string) → IO (maybe filepath)
find-imported-file sfx [] unit-name = return nothing
find-imported-file sfx (dir :: dirs) unit-name =
let e = combineFileNames dir (unit-name ^ "." ^ sfx) in
doesFileExist e >>= λ where
tt → canonicalizePath e >>=r just
ff → find-imported-file sfx dirs unit-name
{-
find-imported-file sfx (dir :: dirs) unit-name =
let e₁ = combineFileNames dir (add-cedille-extension unit-name)
e₂ = combineFileNames dir (add-cdle-extension unit-name)
e? = λ e → doesFileExist e >>=r λ e? → ifMaybej e? e in
(e? e₁ >>= λ e₁ → e? e₂ >>=r λ e₂ → e₁ maybe-or e₂) >>= λ where
nothing → find-imported-file sfx dirs unit-name
(just e) → canonicalizePath e >>=r just
-}
find-imported-files : toplevel-state → (sfx : string) → (dirs : 𝕃 filepath) → (imports : 𝕃 string) → IO (𝕃 (string × filepath))
find-imported-files s sfx dirs (u :: us) =
find-imported-file sfx dirs (replace-dots u) >>= λ where
nothing → logMsg s ("Error finding file: " ^ replace-dots u) >> find-imported-files s sfx dirs us
(just fp) → logMsg s ("Found import: " ^ fp) >> find-imported-files s sfx dirs us >>=r (u , fp) ::_
find-imported-files s sfx dirs [] = return []
get-imports : ex-file → 𝕃 string
get-imports (ExModule is _ _ mn _ cs _) =
map (λ {(ExImport _ _ _ x _ _ _) → x}) (is ++ ex-cmds-to-imps cs)
{- new parser test integration -}
reparse : toplevel-state → filepath → IO toplevel-state
reparse st filename =
doesFileExist filename >>= λ fileExists →
(if fileExists then
(readFiniteFile filename >>= λ source →
getCurrentTime >>= λ time →
processText source >>= λ ie →
return (set-last-parse-time-include-elt ie time) >>=r λ ie ->
set-source-include-elt ie source)
else return (error-include-elt ("The file " ^ filename ^ " could not be opened for reading.")))
>>=r set-include-elt st filename
where processText : string → IO include-elt
processText x with parseStart x
processText x | Left (Left cs) = return (error-span-include-elt ("Error in file " ^ filename ^ ".") "Lexical error." cs)
processText x | Left (Right cs) = return (error-span-include-elt ("Error in file " ^ filename ^ ".") "Parsing error." cs)
processText x | Right t with cws-types.scanComments x
processText x | Right t | t2 =
find-imported-files st (fileSuffix filename)
(fst (cedille-options.include-path-insert (takeDirectory filename) (toplevel-state.include-path st)))
(get-imports t) >>= λ deps →
logMsg st ("deps for file " ^ filename ^ ": " ^ 𝕃-to-string (λ {(a , b) → "short: " ^ a ^ ", long: " ^ b}) ", " deps) >>r
new-include-elt filename deps t t2 nothing
reparse-file : filepath → toplevel-state → IO toplevel-state
reparse-file filename s =
reparse s filename >>=r λ s →
set-include-elt s filename
(set-cede-file-up-to-date-include-elt
(set-do-type-check-include-elt
(get-include-elt s filename) tt) ff)
infixl 2 _&&>>_
_&&>>_ : IO 𝔹 → IO 𝔹 → IO 𝔹
(a &&>> b) = a >>= λ a → if a then b else return ff
aux-up-to-date : filepath → toplevel-state → IO toplevel-state
aux-up-to-date filename s =
let rkt = rkt-filename filename in
(doesFileExist rkt &&>> fileIsOlder filename rkt) >>=r
(set-include-elt s filename ∘ (set-rkt-file-up-to-date-include-elt (get-include-elt s filename)))
ie-up-to-date : filepath → include-elt → IO 𝔹
ie-up-to-date filename ie =
getModificationTime filename >>=r λ mt →
maybe-else ff (λ lpt → lpt utc-after mt) (include-elt.last-parse-time ie)
import-changed : toplevel-state → filepath → (import-file : string) → IO 𝔹
import-changed s filename import-file =
let dtc = include-elt.do-type-check (get-include-elt s import-file)
cede = cede-filename filename
cede' = cede-filename import-file in
case cedille-options.options.use-cede-files options of λ where
ff → return dtc
tt → (doesFileExist cede &&>> doesFileExist cede') >>= λ where
ff → return ff
tt → fileIsOlder cede cede' >>=r λ fio → dtc || fio
any-imports-changed : toplevel-state → filepath → (imports : 𝕃 string) → IO 𝔹
any-imports-changed s filename [] = return ff
any-imports-changed s filename (h :: t) =
import-changed s filename h >>= λ where
tt → return tt
ff → any-imports-changed s filename t
file-after-compile : filepath → IO 𝔹
file-after-compile fn =
getModificationTime fn >>= λ mt →
case mt utc-after compileTime of λ where
tt → doesFileExist options-filepath &&>> fileIsOlder options-filepath fn
ff → return ff
ensure-ast-depsh : filepath → toplevel-state → IO toplevel-state
ensure-ast-depsh filename s with get-include-elt-if s filename
...| just ie = ie-up-to-date filename ie >>= λ where
ff → reparse-file filename s
tt → return s
...| nothing =
let cede = cede-filename filename in
(return (cedille-options.options.use-cede-files options) &&>>
doesFileExist cede &&>>
fileIsOlder filename cede &&>>
file-after-compile cede) >>= λ where
ff → reparse-file filename s
tt → reparse s filename >>= λ s →
read-cede-file s filename >>= λ where
(err , ss) → return
(set-include-elt s filename
(set-do-type-check-include-elt
(set-need-to-add-symbols-to-context-include-elt
(set-spans-string-include-elt
(get-include-elt s filename) err ss) tt) ff))
{- helper function for update-asts, which keeps track of the files we have seen so
we avoid importing the same file twice, and also avoid following cycles in the import
graph. -}
{-# TERMINATING #-}
update-astsh : stringset {- seen already -} → toplevel-state → filepath →
IO (stringset {- seen already -} × toplevel-state)
update-astsh seen s filename =
if stringset-contains seen filename then return (seen , s)
else ((ensure-ast-depsh filename s >>= aux-up-to-date filename) >>= cont (stringset-insert seen filename))
where cont : stringset → toplevel-state → IO (stringset × toplevel-state)
cont seen s with get-include-elt s filename
cont seen s | ie with include-elt.deps ie
cont seen s | ie | ds =
proc seen s ds
where proc : stringset → toplevel-state → 𝕃 string → IO (stringset × toplevel-state)
proc seen s [] = any-imports-changed s filename ds >>=r λ changed →
seen , set-include-elt s filename (set-do-type-check-include-elt ie (include-elt.do-type-check ie || changed))
proc seen s (d :: ds) = update-astsh seen s d >>= λ p →
proc (fst p) (snd p) ds
{- this function updates the ast associated with the given filename in the toplevel state.
So if we do not have an up-to-date .cede file (i.e., there is no such file at all,
or it is older than the given file), reparse the file. We do this recursively for all
dependencies (i.e., imports) of the file. -}
update-asts : toplevel-state → filepath → IO toplevel-state
update-asts s filename = update-astsh empty-stringset s filename >>=r snd
log-files-to-check : toplevel-state → IO ⊤
log-files-to-check s = logRope s ([[ "\n" ]] ⊹⊹ (h (trie-mappings (toplevel-state.is s)))) where
h : 𝕃 (string × include-elt) → rope
h [] = [[]]
h ((fn , ie) :: t) = [[ "file: " ]] ⊹⊹ [[ fn ]] ⊹⊹ [[ "\nadd-symbols: " ]] ⊹⊹ [[ 𝔹-to-string (include-elt.need-to-add-symbols-to-context ie) ]] ⊹⊹ [[ "\ndo-type-check: " ]] ⊹⊹ [[ 𝔹-to-string (include-elt.do-type-check ie) ]] ⊹⊹ [[ "\n\n" ]] ⊹⊹ h t
{- this function checks the given file (if necessary), updates .cede and .rkt files (again, if necessary), and replies on stdout if appropriate -}
checkFile : (string → IO ⊤) → toplevel-state → filepath → (should-print-spans : 𝔹) → IO toplevel-state
checkFile progressUpdate s filename should-print-spans =
update-asts s filename >>= λ s →
log-files-to-check s >>
logMsg s (𝕃-to-string (λ {(im , fn) → "im: " ^ im ^ ", fn: " ^ fn})
"; "
(trie-mappings (include-elt.import-to-dep (get-include-elt s filename)))) >>
process-file progressUpdate (logMsg s) s filename (fileBaseName filename) >>= finish
where
reply : toplevel-state → IO ⊤
reply s with get-include-elt-if s filename
reply s | nothing = putStrLn (global-error-string ("Internal error looking up information for file " ^ filename ^ "."))
reply s | just ie =
if should-print-spans then
putJson (include-elt-spans-to-json ie)
else return triv
finish : (toplevel-state × file × string × string × params × qualif) → IO toplevel-state
finish (s @ (mk-toplevel-state ip mod is Γ logFilePath) , f , ret-mod) =
logMsg s ("Started reply for file " ^ filename) >> -- Lazy, so checking has not been calculated yet?
reply s >>
logMsg s ("Finished reply for file " ^ filename) >>
logMsg s ("Files with updated spans:\n" ^ 𝕃-to-string (λ x → x) "\n" mod) >>
let Γ = ctxt-set-current-mod Γ ret-mod in
writeo mod >>r -- Should process-file now always add files to the list of modified ones because now the cede-/rkt-up-to-date fields take care of whether to rewrite them?
mk-toplevel-state ip [] is Γ logFilePath -- Reset files with updated spans
where
writeo : 𝕃 string → IO ⊤
writeo [] = return triv
writeo (f :: us) =
writeo us >>
--let ie = get-include-elt s f in
write-aux-files s f
-- (if cedille-options.options.make-rkt-files options && ~ include-elt.rkt-up-to-date ie then (write-rkt-file f (toplevel-state.Γ s) ie rkt-filename) else return triv)
-- this is the function that handles requests (from the frontend) on standard input
{-# TERMINATING #-}
readCommandsFromFrontend : toplevel-state → IO ⊤
readCommandsFromFrontend s =
getLine >>= λ input →
logMsg s ("Frontend input: " ^ input) >>
let input-list : 𝕃 string
input-list = string-split (undo-escape-string input) delimiter in
handleCommands input-list s >>= readCommandsFromFrontend
where
errorCommand : 𝕃 string → toplevel-state → IO ⊤
errorCommand ls s = putStrLn (global-error-string "Invalid command sequence \\\\\"" ^ (𝕃-to-string (λ x → x) ", " ls) ^ "\\\\\".")
debugCommand : toplevel-state → IO ⊤
debugCommand s = putStrLn (escape-string (toplevel-state-to-string s))
checkCommand : 𝕃 string → toplevel-state → IO toplevel-state
checkCommand (input :: []) s =
canonicalizePath input >>= λ input-filename →
checkFile progressUpdate (set-include-path s (cedille-options.include-path-insert (takeDirectory input-filename) (toplevel-state.include-path s))) input-filename tt {- should-print-spans -}
checkCommand ls s = errorCommand ls s >>r s
createArchive-h : toplevel-state → trie json → 𝕃 string → json
createArchive-h s t (filename :: filenames) with trie-contains t filename | get-include-elt-if s filename
...| ff | just ie = createArchive-h s (trie-insert t filename $ include-elt-to-archive ie) (filenames ++ include-elt.deps ie)
...| _ | _ = createArchive-h s t filenames
createArchive-h s t [] = json-object $ trie-mappings t
createArchive : toplevel-state → string → json
createArchive s filename = createArchive-h s empty-trie (filename :: [])
archiveCommand : 𝕃 string → toplevel-state → IO toplevel-state
archiveCommand (input :: []) s =
canonicalizePath input >>= λ filename →
update-asts s filename >>= λ s →
process-file (λ _ → return triv) (λ _ → return triv) s
filename (fileBaseName filename) >>=c λ s _ →
putRopeLn (json-to-rope (createArchive s filename)) >>r s
archiveCommand ls s = errorCommand ls s >>r s
handleCommands : 𝕃 string → toplevel-state → IO toplevel-state
handleCommands ("progress stub" :: xs) = return
handleCommands ("status ping" :: xs) s = putStrLn "idle" >> return s
handleCommands ("check" :: xs) s = checkCommand xs s
handleCommands ("debug" :: []) s = debugCommand s >>r s
handleCommands ("elaborate" :: fm :: to :: []) s = elab-all s fm to >>r s
handleCommands ("interactive" :: xs) s = interactive-cmd xs s >>r s
handleCommands ("archive" :: xs) s = archiveCommand xs s
handleCommands ("br" :: xs) s = putJson interactive-not-br-cmd-msg >>r s
-- handleCommands ("find" :: xs) s = findCommand xs s
handleCommands xs s = errorCommand xs s >>r s
{-
mk-new-toplevel-state : IO toplevel-state
mk-new-toplevel-state =
let s = new-toplevel-state (cedille-options.options.include-path options) in
maybe-else' (cedille-options.options.datatype-encoding options) (return s)
λ fp → readFiniteFile fp >>= λ de → case parseStart de of λ where
(Left (Left e)) → putStrLn ("Lexical error in datatype encoding at position " ^ e) >>r s
(Left (Right e)) → putStrLn ("Parse error in datatype encoding at position " ^ e) >>r s
(Right de) → {!!}
-}
processFile : (logFilePath : filepath) → string → IO toplevel-state
processFile logFilePath input-filename =
checkFile progressUpdate (new-toplevel-state logFilePath (cedille-options.include-path-insert (takeDirectory input-filename)
(cedille-options.options.include-path options))) input-filename ff
typecheckFile : (logFilePath : filepath) → string → IO toplevel-state
typecheckFile logFilePath f =
processFile logFilePath f >>= λ s →
let ie = get-include-elt s f in
if include-elt.err ie
then die (string-to-𝕃char ("Type Checking Failed"))
else return s
-- function to process command-line arguments
processArgs : (logFilePath : filepath) → cedille-args → IO ⊤
-- this is the case for when we are called with a single command-line argument, the name of the file to process
processArgs logFilePath (mk-cedille-args _ minput-filename about help do-elab confirm-read-stdin) =
if help then
showCedilleUsage
else if about then
say-about options-filepath
else
maybe-else' minput-filename
(ifM confirm-read-stdin
$ readCommandsFromFrontend (new-toplevel-state logFilePath (cedille-options.options.include-path options)))
(λ input-filename →
canonicalizePath input-filename >>= λ input-filename' →
typecheckFile logFilePath input-filename' >>= λ s →
whenM do-elab (λ target-dir → elab-all s input-filename' target-dir))
main' : cedille-args → IO ⊤
main' args =
maybeClearLogFile >>= λ logFilePath →
logMsg' logFilePath ("Started Cedille process (compiled at: " ^ utcToString compileTime ^ ")") >>
processArgs logFilePath args
getCedilleArgs : IO cedille-args
getCedilleArgs = getArgs >>= λ where
-- only read from stdin if there are no args at all
[] → return $ record default-cedille-args {confirm-read-stdin = tt}
args → getCedilleArgsH args default-cedille-args
where
bad-opts-flag : IO ⊤
bad-opts-flag = putStrLn "warning: flag --options should be followed by a Cedille options file"
unknown-flag : string → IO ⊤
unknown-flag f = putStrLn $ "warning: unknown flag " ^ f
-- allow for later --options to override earlier. This is a bash idiom
getCedilleArgsH : 𝕃 string → cedille-args → IO cedille-args
getCedilleArgsH ("--options" :: y :: xs) args =
getCedilleArgsH xs (record args { opts-file = just y})
getCedilleArgsH ("--options" :: []) args =
bad-opts-flag >> return args
getCedilleArgsH ("--about" :: xs) args =
getCedilleArgsH xs (record args { about = tt })
getCedilleArgsH ("--help" :: xs) args =
getCedilleArgsH xs (record args { help = tt })
getCedilleArgsH ("--elab" :: to :: xs) args =
getCedilleArgsH xs (record args { do-elab = just to})
getCedilleArgsH (x :: []) args =
-- assume it is a .ced file to check
return $ record args {file-to-process = just x}
getCedilleArgsH (x :: y :: xs) args =
unknown-flag x >> return args
getCedilleArgsH [] args = return args
process-encoding : filepath → cedille-options.options → IO cedille-options.options
process-encoding ofp ops @ (cedille-options.mk-options ip _ _ _ _ _ de _ _ _ _) =
maybe-else' de (return ops) λ de-f →
let de = fst de-f
s = new-toplevel-state "no logfile path" (cedille-options.include-path-insert (takeDirectory de) ip) in
update-asts s de >>= λ s →
process-encoding-file s de >>= λ f? →
maybe-else' f? (return ops) λ ast~ →
return (record ops {datatype-encoding = just (de , just ast~)})
where
ops' = record ops {datatype-encoding = nothing; use-cede-files = ff}
open main-with-options compileTime ofp ops' die
open import spans ops' {IO}
open import toplevel-state ops' {IO}
open import process-cmd ops' {IO} (λ _ → return triv) (λ _ → return triv)
open import syntax-util
open import ctxt
process-encoding-file : toplevel-state → filepath → IO (maybe file)
process-encoding-file s fp with get-include-elt-if s fp >>= include-elt.ast
...| nothing = putStrLn ("Error looking up datatype encoding information from file " ^ fp) >> return nothing
...| just (ExModule is pi1 pi2 mn ps cs pi3) =
(process-cmds (record s {Γ = ctxt-initiate-file (toplevel-state.Γ s) fp mn}) (map ExCmdImport is) >>=c λ s is' →
process-params s first-position [] >>=c λ s _ →
check-and-add-params (toplevel-state.Γ s) (params-end-pos first-position ps) ps >>=c λ Γₚₛ ps~ →
process-cmds (record s {Γ = Γₚₛ}) cs >>=c λ s cs →
return2 ps~ (is' ++ cs)) empty-spans >>=c uncurry λ ps cs _ →
return (just (Module mn ps cs))
-- main entrypoint for the backend
main : IO ⊤
main = initializeStdoutToUTF8 >>
initializeStdinToUTF8 >>
setStdoutNewlineMode >>
setStdinNewlineMode >>
setToLineBuffering >>
getCedilleArgs >>= λ args →
maybe-else' (cedille-args.opts-file args)
(findOptionsFile >>= readOptions) (readOptions ∘ just) >>=c λ ofp ops →
let log = cedille-options.options.generate-logs ops in
process-encoding ofp (record ops {generate-logs = ff}) >>= λ ops →
let args = record args { opts-file = just ofp } in
let ops = record ops { generate-logs = log ;
show-progress-updates = ~ (cedille-args.confirm-read-stdin args) } in
main-with-options.main' compileTime ofp ops die args
|
{
"alphanum_fraction": 0.6441305407,
"avg_line_length": 47.231595092,
"ext": "agda",
"hexsha": "992bceb044cc52a16a474f1658c7f990c077c809",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ice1k/cedille",
"max_forks_repo_path": "src/main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ice1k/cedille",
"max_issues_repo_path": "src/main.agda",
"max_line_length": 251,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ice1k/cedille",
"max_stars_repo_path": "src/main.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8464,
"size": 30795
}
|
------------------------------------------------------------------------------
-- The inductive PA universe
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This file contains some core definitions which are reexported by
-- PA.Inductive.Base.
module PA.Inductive.Base.Core where
-- PA universe.
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
|
{
"alphanum_fraction": 0.4259927798,
"avg_line_length": 29.1578947368,
"ext": "agda",
"hexsha": "44fa74a15681802757d5bed8e0cdb5a4da45e2fd",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/Base/Core.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/Base/Core.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/Base/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 96,
"size": 554
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Commutative semirings with some additional structure ("almost"
-- commutative rings), used by the ring solver
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Algebra.Solver.Ring.AlmostCommutativeRing where
open import Algebra
open import Algebra.Structures
open import Algebra.Definitions
import Algebra.Morphism as Morphism
import Algebra.Morphism.Definitions as MorphismDefinitions
open import Function
open import Level
open import Relation.Binary
record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ)
(_+_ _*_ : Op₂ A) (-_ : Op₁ A)
(0# 1# : A) : Set (a ⊔ ℓ) where
field
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
-‿cong : Congruent₁ _≈_ -_
-‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y))
-‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y))
open IsCommutativeSemiring isCommutativeSemiring public
record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsAlmostCommutativeRing isAlmostCommutativeRing public
commutativeSemiring : CommutativeSemiring _ _
commutativeSemiring = record
{ isCommutativeSemiring = isCommutativeSemiring
}
open CommutativeSemiring commutativeSemiring public
using
( +-magma; +-semigroup
; *-magma; *-semigroup; *-commutativeSemigroup
; +-monoid; +-commutativeMonoid
; *-monoid; *-commutativeMonoid
; semiring
)
rawRing : RawRing _ _
rawRing = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
------------------------------------------------------------------------
-- Homomorphisms
record _-Raw-AlmostCommutative⟶_
{r₁ r₂ r₃ r₄}
(From : RawRing r₁ r₄)
(To : AlmostCommutativeRing r₂ r₃) : Set (r₁ ⊔ r₂ ⊔ r₃) where
private
module F = RawRing From
module T = AlmostCommutativeRing To
open MorphismDefinitions F.Carrier T.Carrier T._≈_
field
⟦_⟧ : Morphism
+-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_
*-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_
-‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_
0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0#
1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1#
-raw-almostCommutative⟶ :
∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) →
AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R
-raw-almostCommutative⟶ R = record
{ ⟦_⟧ = id
; +-homo = λ _ _ → refl
; *-homo = λ _ _ → refl
; -‿homo = λ _ → refl
; 0-homo = refl
; 1-homo = refl
}
where open AlmostCommutativeRing R
Induced-equivalence : ∀ {c₁ c₂ ℓ₁ ℓ₂} {Coeff : RawRing c₁ ℓ₁}
{R : AlmostCommutativeRing c₂ ℓ₂} →
Coeff -Raw-AlmostCommutative⟶ R →
Rel (RawRing.Carrier Coeff) ℓ₂
Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧
where
open AlmostCommutativeRing R
open _-Raw-AlmostCommutative⟶_ morphism
------------------------------------------------------------------------
-- Conversions
-- Commutative rings are almost commutative rings.
fromCommutativeRing : ∀ {r₁ r₂} → CommutativeRing r₁ r₂ → AlmostCommutativeRing r₁ r₂
fromCommutativeRing CR = record
{ isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = -‿cong
; -‿*-distribˡ = -‿*-distribˡ
; -‿+-comm = ⁻¹-∙-comm
}
}
where
open CommutativeRing CR
open import Algebra.Properties.Ring ring
open import Algebra.Properties.AbelianGroup +-abelianGroup
-- Commutative semirings can be viewed as almost commutative rings by
-- using identity as the "almost negation".
fromCommutativeSemiring : ∀ {r₁ r₂} → CommutativeSemiring r₁ r₂ → AlmostCommutativeRing _ _
fromCommutativeSemiring CS = record
{ -_ = id
; isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = id
; -‿*-distribˡ = λ _ _ → refl
; -‿+-comm = λ _ _ → refl
}
}
where open CommutativeSemiring CS
|
{
"alphanum_fraction": 0.5621656324,
"avg_line_length": 31.1533333333,
"ext": "agda",
"hexsha": "20a01ef9cc23f176aa52df98acf2480cd4316d72",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Solver/Ring/AlmostCommutativeRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Solver/Ring/AlmostCommutativeRing.agda",
"max_line_length": 91,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Solver/Ring/AlmostCommutativeRing.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1515,
"size": 4673
}
|
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
{-# NON_TERMINATING #-}
loop : Nat → Nat
loop n = loop n
thm : ∀ n → loop n ≡ 42
thm n = refl
|
{
"alphanum_fraction": 0.5420168067,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "59dec94f304a0ebcc557c96ca53eb8b19b428010",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NonTerminatingReduce.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NonTerminatingReduce.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NonTerminatingReduce.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 92,
"size": 238
}
|
module ParseTreeOperations where
open import ParseTree
open import Data.List.NonEmpty
open import Data.Bool
open import Data.List hiding ([_])
open import Data.Nat
open import Relation.Nullary
open import Data.String
-- go from ((f a) b) representation to f [a, b]
expressionToList : Expr -> List⁺ Expr
expressionToList (functionApp e e₁ {false}) = expressionToList e ⁺∷ʳ e₁
expressionToList x = [ x ]
typeToList : Expr -> List⁺ Expr
typeToList (functionApp e e₁ {true}) = e ∷⁺ typeToList e₁
typeToList x = [ x ]
-- go from f [a, b] representation to ((f a) b)
{-# TERMINATING #-}
listToExpression : List⁺ Expr -> Expr
listToExpression (head₁ ∷ []) = head₁
listToExpression (head₁ ∷ x ∷ tail₁) =
listToExpression (functionApp head₁ x {false} ∷ tail₁)
{-# TERMINATING #-}
listToType : List⁺ Expr -> Expr
listToType (head₁ ∷ []) = head₁
listToType (head₁ ∷ y ∷ tail) =
functionApp head₁ (listToType (y ∷ tail)) {true}
emptyRange : Range
emptyRange = range 0 0
newHole : Expr
newHole = hole {""} {emptyRange} {[]} {[]}
newUnderscore : Expr
newUnderscore = underscore {emptyRange} {[]} {[]}
sameId : Identifier -> Identifier -> Bool
sameId (identifier name isInRange scope declaration) (identifier name₁ isInRange₁ scope₁ declaration₁)
with declaration Data.Nat.≟ declaration₁
sameId (identifier name isInRange scope declaration) (identifier name₁ isInRange₁ scope₁ declaration₁) | yes p = true
sameId (identifier name isInRange scope declaration) (identifier name₁ isInRange₁ scope₁ declaration₁) | no ¬p = false
sameName : Identifier -> Identifier -> Bool
sameName (identifier name isInRange scope declaration) (identifier name₁ isInRange₁ scope₁ declaration₁) = name₁ == name
_doesNotAppearInExp_ : Identifier -> Expr -> Bool
x doesNotAppearInExp numLit = true
identifier name₁ isInRange₁ scope₁ declaration₁ doesNotAppearInExp ident
(identifier name isInRange scope declaration) with compare declaration₁ declaration
(identifier name₁ isInRange₁ scope₁ declaration₁) doesNotAppearInExp (ident (identifier name isInRange scope .declaration₁)) | equal .declaration₁ = false
... | _ = true
x doesNotAppearInExp hole = true
x doesNotAppearInExp namedArgument (typeSignature funcName funcType) = x doesNotAppearInExp funcType
x doesNotAppearInExp functionApp y y₁ =
(x doesNotAppearInExp y) ∧
(x doesNotAppearInExp y₁)
x doesNotAppearInExp implicit x1 = x doesNotAppearInExp x1
x doesNotAppearInExp underscore = true
isImplicit : Expr -> Bool
isImplicit (implicit e) = true
isImplicit (namedArgument arg {explicit}) = not explicit
isImplicit x = false
|
{
"alphanum_fraction": 0.7591155935,
"avg_line_length": 37.9117647059,
"ext": "agda",
"hexsha": "d3f9a99d2a0fc621e5137fd86b6270fe639a4608",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/ParseTreeOperations.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/ParseTreeOperations.agda",
"max_line_length": 154,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/ParseTreeOperations.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 712,
"size": 2578
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cw.CW
open import homotopy.PinSn
module cw.Degree
{i} {n : ℕ} (skel : Skeleton {i} (S (S n)))
(skel-has-dec-cells : has-dec-cells skel)
(skel-is-aligned : is-aligned skel)
-- the cells at the upper and lower dimensions
(upper : cells-last skel)
(lower : cells-nth (inr ltS) skel)
where
private
lower-skel = cw-take (inr ltS) skel
lower-cells = cells-last lower-skel
lower-cells-has-dec-eq = snd (fst skel-has-dec-cells)
-- squash the lower CW complex except one of its cells [lower]
cw-squash-lower-to-Sphere : ⟦ lower-skel ⟧ → Sphere (S n)
cw-squash-lower-to-Sphere = Attached-rec (λ _ → north) squash-hubs squash-spokes where
-- squash cells except [lower]
squash-hubs : lower-cells → Sphere (S n)
squash-hubs c with lower-cells-has-dec-eq c lower
... | (inl _) = south
... | (inr _) = north
-- squash cells except [lower]
squash-spokes : (c : lower-cells) → Sphere n
→ north == squash-hubs c
squash-spokes c s with lower-cells-has-dec-eq c lower
... | (inl _) = merid s
... | (inr _) = idp
degree-map : Sphere (S n) → Sphere (S n)
degree-map = cw-squash-lower-to-Sphere ∘ attaching-last skel upper
degree-⊙map : fst (⊙Sphere (S n) ⊙→ ⊙Sphere (S n))
degree-⊙map = degree-map , ap cw-squash-lower-to-Sphere (! (snd (snd skel-is-aligned upper)))
degree' : ℤ → ℤ
degree' = transport Group.El (πₙ₊₁Sⁿ⁺¹ n)
∘ GroupHom.f (πS-fmap n degree-⊙map)
∘ transport! Group.El (πₙ₊₁Sⁿ⁺¹ n)
degree : ℤ
degree = degree' 1
|
{
"alphanum_fraction": 0.6505551927,
"avg_line_length": 31.2448979592,
"ext": "agda",
"hexsha": "39569708c11c34c18312220c15c5ec3c51dceaa6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/Degree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/Degree.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/Degree.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 544,
"size": 1531
}
|
{-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-}
module 22-descent where
import 21-cubical-diagrams
open 21-cubical-diagrams public
-- Section 18.1 Five equivalent characterizations of pushouts
dep-cocone :
{ l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
( f : S → A) (g : S → B) (c : cocone f g X) (P : X → UU l5) →
UU (l1 ⊔ l2 ⊔ l3 ⊔ l5)
dep-cocone {S = S} {A} {B} f g c P =
Σ ((a : A) → P ((pr1 c) a)) (λ hA →
Σ ((b : B) → P (pr1 (pr2 c) b)) (λ hB →
(s : S) → Id (tr P (pr2 (pr2 c) s) (hA (f s))) (hB (g s))))
dep-cocone-map :
{ l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
( f : S → A) (g : S → B) (c : cocone f g X) (P : X → UU l5) →
( (x : X) → P x) → dep-cocone f g c P
dep-cocone-map f g c P h =
pair (λ a → h (pr1 c a)) (pair (λ b → h (pr1 (pr2 c) b)) (λ s → apd h (pr2 (pr2 c) s)))
{- Definition 18.1.1 The induction principle of pushouts -}
Ind-pushout :
{ l1 l2 l3 l4 : Level} (l : Level) →
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4)
Ind-pushout l {X = X} f g c =
(P : X → UU l) → sec (dep-cocone-map f g c P)
{- Definition 18.1.2 The dependent universal property of pushouts -}
dependent-universal-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UU _
dependent-universal-property-pushout l f g {X} c =
(P : X → UU l) → is-equiv (dep-cocone-map f g c P)
{- Remark 18.1.3. We compute the identity type of dep-cocone in order to
express the computation rules of the induction principle for pushouts. -}
coherence-htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X)
(P : X → UU l5) (c' c'' : dep-cocone f g c P)
(K : (pr1 c') ~ (pr1 c'')) (L : (pr1 (pr2 c')) ~ (pr1 (pr2 c''))) →
UU (l1 ⊔ l5)
coherence-htpy-dep-cocone {S = S} f g c P
h h' K L =
(s : S) →
Id ( ((pr2 (pr2 h)) s) ∙ (L (g s)))
( (ap (tr P (pr2 (pr2 c) s)) (K (f s))) ∙ ((pr2 (pr2 h')) s))
htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s t : dep-cocone f g c P) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l5)))
htpy-dep-cocone {S = S} f g c P h h' =
Σ ( (pr1 h) ~ (pr1 h')) (λ K →
Σ ( (pr1 (pr2 h)) ~ (pr1 (pr2 h')))
( coherence-htpy-dep-cocone f g c P h h' K))
reflexive-htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s : dep-cocone f g c P) →
htpy-dep-cocone f g c P s s
reflexive-htpy-dep-cocone f g (pair i (pair j H)) P
(pair hA (pair hB hS)) =
pair htpy-refl (pair htpy-refl htpy-right-unit)
htpy-dep-cocone-eq :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
{s t : dep-cocone f g c P} →
Id s t → htpy-dep-cocone f g c P s t
htpy-dep-cocone-eq f g c P {s} {.s} refl =
reflexive-htpy-dep-cocone f g c P s
abstract
is-contr-total-htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s : dep-cocone f g c P) →
is-contr
( Σ (dep-cocone f g c P)
( htpy-dep-cocone f g c P s))
is-contr-total-htpy-dep-cocone
{S = S} {A} {B} f g {X} (pair i (pair j H)) P (pair hA (pair hB hS)) =
is-contr-total-Eq-structure
( λ α βγ K →
Σ (hB ~ (pr1 βγ)) (λ L →
coherence-htpy-dep-cocone f g
( pair i (pair j H)) P (pair hA (pair hB hS)) (pair α βγ) K L))
( is-contr-total-htpy hA)
( pair hA htpy-refl)
( is-contr-total-Eq-structure
( λ β γ L →
coherence-htpy-dep-cocone f g
( pair i (pair j H))
( P)
( pair hA (pair hB hS))
( pair hA (pair β γ))
( htpy-refl)
( L))
( is-contr-total-htpy hB)
( pair hB htpy-refl)
( is-contr-is-equiv
( Σ ((s : S) → Id (tr P (H s) (hA (f s))) (hB (g s))) (λ γ → hS ~ γ))
( tot (htpy-concat (htpy-inv htpy-right-unit)))
( is-equiv-tot-is-fiberwise-equiv
( is-equiv-htpy-concat (htpy-inv htpy-right-unit)))
( is-contr-total-htpy hS)))
abstract
is-equiv-htpy-dep-cocone-eq :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s t : dep-cocone f g c P) → is-equiv (htpy-dep-cocone-eq f g c P {s} {t})
is-equiv-htpy-dep-cocone-eq f g c P s =
fundamental-theorem-id s
( reflexive-htpy-dep-cocone f g c P s)
( is-contr-total-htpy-dep-cocone f g c P s)
( λ t → htpy-dep-cocone-eq f g c P {s} {t})
eq-htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s t : dep-cocone f g c P) →
htpy-dep-cocone f g c P s t → Id s t
eq-htpy-dep-cocone f g c P s t =
inv-is-equiv (is-equiv-htpy-dep-cocone-eq f g c P s t)
issec-eq-htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s t : dep-cocone f g c P) →
( ( htpy-dep-cocone-eq f g c P {s} {t}) ∘
( eq-htpy-dep-cocone f g c P s t)) ~ id
issec-eq-htpy-dep-cocone f g c P s t =
issec-inv-is-equiv
( is-equiv-htpy-dep-cocone-eq f g c P s t)
isretr-eq-htpy-dep-cocone :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
(s t : dep-cocone f g c P) →
( ( eq-htpy-dep-cocone f g c P s t) ∘
( htpy-dep-cocone-eq f g c P {s} {t})) ~ id
isretr-eq-htpy-dep-cocone f g c P s t =
isretr-inv-is-equiv
( is-equiv-htpy-dep-cocone-eq f g c P s t)
ind-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X) →
Ind-pushout l f g c → (P : X → UU l) →
dep-cocone f g c P → (x : X) → P x
ind-pushout f g c ind-c P =
pr1 (ind-c P)
comp-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X) →
( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) →
htpy-dep-cocone f g c P
( dep-cocone-map f g c P (ind-pushout f g c ind-c P h))
( h)
comp-pushout f g c ind-c P h =
htpy-dep-cocone-eq f g c P (pr2 (ind-c P) h)
left-comp-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X) →
( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) →
( a : A) → Id (ind-pushout f g c ind-c P h (pr1 c a)) (pr1 h a)
left-comp-pushout f g c ind-c P h =
pr1 (comp-pushout f g c ind-c P h)
right-comp-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X) →
( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) →
( b : B) → Id (ind-pushout f g c ind-c P h (pr1 (pr2 c) b)) (pr1 (pr2 h) b)
right-comp-pushout f g c ind-c P h =
pr1 (pr2 (comp-pushout f g c ind-c P h))
path-comp-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X) →
( ind-c : Ind-pushout l f g c) (P : X → UU l) (h : dep-cocone f g c P) →
coherence-htpy-dep-cocone f g c P
( dep-cocone-map f g c P (ind-pushout f g c ind-c P h))
( h)
( left-comp-pushout f g c ind-c P h)
( right-comp-pushout f g c ind-c P h)
path-comp-pushout f g c ind-c P h =
pr2 (pr2 (comp-pushout f g c ind-c P h))
abstract
uniqueness-dependent-universal-property-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4} →
( f : S → A) (g : S → B) (c : cocone f g X)
( dup-c : dependent-universal-property-pushout l f g c) →
( P : X → UU l) ( h : dep-cocone f g c P) →
is-contr
( Σ ((x : X) → P x) (λ k →
htpy-dep-cocone f g c P (dep-cocone-map f g c P k) h))
uniqueness-dependent-universal-property-pushout f g c dup-c P h =
is-contr-is-equiv'
( fib (dep-cocone-map f g c P) h)
( tot (λ k → htpy-dep-cocone-eq f g c P))
( is-equiv-tot-is-fiberwise-equiv
( λ k → is-equiv-htpy-dep-cocone-eq f g c P
( dep-cocone-map f g c P k) h))
( is-contr-map-is-equiv (dup-c P) h)
{- This finishes the formalization of remark 18.1.3. -}
{- Before we state the main theorem of this section, we also state a dependent
version of the pullback property of pushouts. -}
cone-dependent-pullback-property-pushout :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
let i = pr1 c
j = pr1 (pr2 c)
H = pr2 (pr2 c)
in
cone
( λ (h : (a : A) → P (i a)) → λ (s : S) → tr P (H s) (h (f s)))
( λ (h : (b : B) → P (j b)) → λ s → h (g s))
( (x : X) → P x)
cone-dependent-pullback-property-pushout f g (pair i (pair j H)) P =
pair
( λ h → λ a → h (i a))
( pair
( λ h → λ b → h (j b))
( λ h → eq-htpy (λ s → apd h (H s))))
dependent-pullback-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
UU (l1 ⊔ (l2 ⊔ (l3 ⊔ (l4 ⊔ lsuc l))))
dependent-pullback-property-pushout l {S} {A} {B} f g {X}
(pair i (pair j H)) =
(P : X → UU l) →
is-pullback
( λ (h : (a : A) → P (i a)) → λ s → tr P (H s) (h (f s)))
( λ (h : (b : B) → P (j b)) → λ s → h (g s))
( cone-dependent-pullback-property-pushout f g (pair i (pair j H)) P)
{- Theorem 18.1.4 The following properties are all equivalent:
1. universal-property-pushout
2. pullback-property-pushout
3. dependent-pullback-property-pushout
4. dependent-universal-property-pushout
5. Ind-pushout
We have already shown that 1 ↔ 2. Therefore we will first show that
3 ↔ 4 ↔ 5. Finally, we will show that 2 ↔ 3. Here are the precise references
to the proofs of those parts:
Proof of 1 → 2.
pullback-property-pushout-universal-property-pushout
Proof of 2 → 1
universal-property-pushout-pullback-property-pushout
Proof of 2 → 3
dependent-pullback-property-pullback-property-pushout
Proof of 3 → 2
pullback-property-dependent-pullback-property-pushout
Proof of 3 → 4
dependent-universal-property-dependent-pullback-property-pushout
Proof of 4 → 3
dependent-pullback-property-dependent-universal-property-pushout
Proof of 4 → 5
Ind-pushout-dependent-universal-property-pushout
Proof of 5 → 4
dependent-universal-property-pushout-Ind-pushout
-}
{- Proof of Theorem 18.1.4, (v) implies (iv). -}
dependent-naturality-square :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f f' : (x : A) → B x)
{x x' : A} (p : Id x x') {q : Id (f x) (f' x)} {q' : Id (f x') (f' x')} →
Id ((apd f p) ∙ q') ((ap (tr B p) q) ∙ (apd f' p)) →
Id (tr (λ y → Id (f y) (f' y)) p q) q'
dependent-naturality-square f f' refl {q} {q'} s =
inv (s ∙ (right-unit ∙ (ap-id q)))
htpy-eq-dep-cocone-map :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
( f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
( H : Ind-pushout l f g c) { P : X → UU l} (h h' : (x : X) → P x) →
Id (dep-cocone-map f g c P h) (dep-cocone-map f g c P h') → h ~ h'
htpy-eq-dep-cocone-map f g c ind-c {P} h h' p =
ind-pushout f g c ind-c
( λ x → Id (h x) (h' x))
( pair
( pr1 (htpy-dep-cocone-eq f g c P p))
( pair
( pr1 (pr2 (htpy-dep-cocone-eq f g c P p)))
( λ s →
dependent-naturality-square h h' (pr2 (pr2 c) s)
( pr2 (pr2 (htpy-dep-cocone-eq f g c P p)) s))))
dependent-universal-property-pushout-Ind-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
((l : Level) → Ind-pushout l f g c) →
((l : Level) → dependent-universal-property-pushout l f g c)
dependent-universal-property-pushout-Ind-pushout f g c ind-c l P =
is-equiv-has-inverse
( ind-pushout f g c (ind-c l) P)
( pr2 (ind-c l P))
( λ h → eq-htpy (htpy-eq-dep-cocone-map f g c (ind-c l)
( ind-pushout f g c (ind-c l) P (dep-cocone-map f g c P h))
( h)
( pr2 (ind-c l P) (dep-cocone-map f g c P h))))
{- Proof of Theorem 18.1.4, (iv) implies (v). -}
Ind-pushout-dependent-universal-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
((l : Level) → dependent-universal-property-pushout l f g c) →
((l : Level) → Ind-pushout l f g c)
Ind-pushout-dependent-universal-property-pushout f g c dup-c l P =
pr1 (dup-c l P)
{- Proof of Theorem 18.1.4, (iv) implies (iii). -}
triangle-dependent-pullback-property-pushout :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) →
let i = pr1 c
j = pr1 (pr2 c)
H = pr2 (pr2 c)
in
( dep-cocone-map f g c P) ~
( ( tot (λ h → tot (λ h' → htpy-eq))) ∘
( gap
( λ (h : (a : A) → P (i a)) → λ s → tr P (H s) (h (f s)))
( λ (h : (b : B) → P (j b)) → λ s → h (g s))
( cone-dependent-pullback-property-pushout f g c P)))
triangle-dependent-pullback-property-pushout f g (pair i (pair j H)) P h =
eq-pair refl (eq-pair refl (inv (issec-eq-htpy (λ x → apd h (H x)))))
dependent-pullback-property-dependent-universal-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
((l : Level) → dependent-universal-property-pushout l f g c) →
((l : Level) → dependent-pullback-property-pushout l f g c)
dependent-pullback-property-dependent-universal-property-pushout
f g (pair i (pair j H)) I l P =
let c = (pair i (pair j H)) in
is-equiv-right-factor
( dep-cocone-map f g c P)
( tot (λ h → tot λ h' → htpy-eq))
( gap
( λ h x → tr P (H x) (h (f x)))
( λ h x → h (g x))
( cone-dependent-pullback-property-pushout f g c P))
( triangle-dependent-pullback-property-pushout f g c P)
( is-equiv-tot-is-fiberwise-equiv
( λ h → is-equiv-tot-is-fiberwise-equiv
( λ h' → funext (λ x → tr P (H x) (h (f x))) (λ x → h' (g x)))))
( I l P)
{- Proof of Theorem 18.1.4, (iv) implies (iii). -}
dependent-universal-property-dependent-pullback-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
((l : Level) → dependent-pullback-property-pushout l f g c) →
((l : Level) → dependent-universal-property-pushout l f g c)
dependent-universal-property-dependent-pullback-property-pushout
f g (pair i (pair j H)) dpullback-c l P =
let c = (pair i (pair j H)) in
is-equiv-comp
( dep-cocone-map f g c P)
( tot (λ h → tot λ h' → htpy-eq))
( gap
( λ h x → tr P (H x) (h (f x)))
( λ h x → h (g x))
( cone-dependent-pullback-property-pushout f g c P))
( triangle-dependent-pullback-property-pushout f g c P)
( dpullback-c l P)
( is-equiv-tot-is-fiberwise-equiv
( λ h → is-equiv-tot-is-fiberwise-equiv
( λ h' → funext (λ x → tr P (H x) (h (f x))) (λ x → h' (g x)))))
{- Proof of Theorem 18.1.4, (iii) implies (ii). -}
concat-eq-htpy :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x}
(H : f ~ g) (K : g ~ h) → Id (eq-htpy (H ∙h K)) ((eq-htpy H) ∙ (eq-htpy K))
concat-eq-htpy {A = A} {B} {f} H K =
ind-htpy f
( λ g H →
( h : (x : A) → B x) (K : g ~ h) →
Id (eq-htpy (H ∙h K)) ((eq-htpy H) ∙ (eq-htpy K)))
( λ h K → ap (concat' f (eq-htpy K)) (inv (eq-htpy-htpy-refl _))) H _ K
pullback-property-dependent-pullback-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) →
dependent-pullback-property-pushout l f g c →
pullback-property-pushout l f g c
pullback-property-dependent-pullback-property-pushout
l f g (pair i (pair j H)) dpb Y =
is-pullback-htpy
( λ h s → tr (λ x → Y) (H s) (h (f s)))
( λ h → eq-htpy (λ s → inv (tr-triv (H s) (h (f s)))))
( λ h s → h (g s))
( htpy-refl)
{ c = pair
( λ h a → h (i a))
( pair (λ h b → h (j b)) (λ h → eq-htpy (h ·l H)))}
( cone-dependent-pullback-property-pushout
f g (pair i (pair j H)) (λ x → Y))
( pair
( λ h → refl)
( pair
( λ h → refl)
( λ h → right-unit ∙
( ( ap eq-htpy
( eq-htpy (λ s →
inv-con
( tr-triv (H s) (h (i (f s))))
( ap h (H s))
( apd h (H s))
( inv (apd-triv h (H s)))))) ∙
( concat-eq-htpy
( λ s → inv (tr-triv (H s) (h (i (f s)))))
( λ s → apd h (H s)))))))
( dpb (λ x → Y))
{- Proof of Theorem 18.1.4, (ii) implies (iii). -}
{- We first define the family of lifts, which is indexed by maps Y → X. -}
fam-lifts :
{l1 l2 l3 : Level} (Y : UU l1) {X : UU l2} (P : X → UU l3) →
(Y → X) → UU (l1 ⊔ l3)
fam-lifts Y P h = (y : Y) → P (h y)
tr-fam-lifts' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) →
(h : B → X) {f g : A → B} (H : f ~ g) →
fam-lifts A P (h ∘ f) → fam-lifts A P (h ∘ g)
tr-fam-lifts' P h {f} {g} H k s = tr (P ∘ h) (H s) (k s)
TR-EQ-HTPY-FAM-LIFTS :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) →
(h : B → X) {f g : A → B} (H : f ~ g) → UU (l1 ⊔ l4)
TR-EQ-HTPY-FAM-LIFTS {A = A} P h H =
tr (fam-lifts A P) (eq-htpy (h ·l H)) ~ (tr-fam-lifts' P h H)
tr-eq-htpy-fam-lifts-htpy-refl :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) →
(h : B → X) (f : A → B) → TR-EQ-HTPY-FAM-LIFTS P h (htpy-refl' f)
tr-eq-htpy-fam-lifts-htpy-refl P h f k =
ap (λ t → tr (fam-lifts _ P) t k) (eq-htpy-htpy-refl (h ∘ f))
abstract
tr-eq-htpy-fam-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) →
(h : B → X) {f g : A → B} (H : f ~ g) →
TR-EQ-HTPY-FAM-LIFTS P h H
tr-eq-htpy-fam-lifts P h {f} =
ind-htpy f
( λ g H → TR-EQ-HTPY-FAM-LIFTS P h H)
( tr-eq-htpy-fam-lifts-htpy-refl P h f)
compute-tr-eq-htpy-fam-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4) →
(h : B → X) (f : A → B) →
Id ( tr-eq-htpy-fam-lifts P h (htpy-refl' f))
( tr-eq-htpy-fam-lifts-htpy-refl P h f)
compute-tr-eq-htpy-fam-lifts P h f =
comp-htpy f
( λ g H → TR-EQ-HTPY-FAM-LIFTS P h H)
( tr-eq-htpy-fam-lifts-htpy-refl P h f)
{- One of the basic operations on lifts is precomposition by an ordinary
function. -}
precompose-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) → (f : A → B) → (h : B → X) →
(fam-lifts B P h) → (fam-lifts A P (h ∘ f))
precompose-lifts P f h h' a = h' (f a)
{- Given two homotopic maps, their precomposition functions have different
codomains. However, there is a commuting triangle. We obtain this triangle
by homotopy induction. -}
TRIANGLE-PRECOMPOSE-LIFTS :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
( P : X → UU l4) {f g : A → B} (H : f ~ g) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4)))
TRIANGLE-PRECOMPOSE-LIFTS {A = A} {B} {X} P {f} {g} H =
(h : B → X) →
( (tr (fam-lifts A P) (eq-htpy (h ·l H))) ∘ (precompose-lifts P f h)) ~
( precompose-lifts P g h)
triangle-precompose-lifts-htpy-refl :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) (f : A → B) → TRIANGLE-PRECOMPOSE-LIFTS P (htpy-refl' f)
triangle-precompose-lifts-htpy-refl {A = A} P f h h' =
tr-eq-htpy-fam-lifts-htpy-refl P h f (λ a → h' (f a))
abstract
triangle-precompose-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) {f g : A → B} (H : f ~ g) →
TRIANGLE-PRECOMPOSE-LIFTS P H
triangle-precompose-lifts {A = A} P {f} =
ind-htpy f
( λ g H → TRIANGLE-PRECOMPOSE-LIFTS P H)
( triangle-precompose-lifts-htpy-refl P f)
compute-triangle-precompose-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) (f : A → B) →
Id
( triangle-precompose-lifts P (htpy-refl' f))
( triangle-precompose-lifts-htpy-refl P f)
compute-triangle-precompose-lifts P f =
comp-htpy f
( λ g H → TRIANGLE-PRECOMPOSE-LIFTS P H)
( triangle-precompose-lifts-htpy-refl P f)
{- There is a similar commuting triangle with the computed transport function.
This time we don't use homotopy induction to construct the homotopy. We
give an explicit definition instead. -}
triangle-precompose-lifts' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) {f g : A → B} (H : f ~ g) → (h : B → X) →
( (tr-fam-lifts' P h H) ∘ (precompose-lifts P f h)) ~
( precompose-lifts P g h)
triangle-precompose-lifts' P H h k = eq-htpy (λ a → apd k (H a))
compute-triangle-precompose-lifts' :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) (f : A → B) → (h : B → X) →
( triangle-precompose-lifts' P (htpy-refl' f) h) ~
( htpy-refl' ( precompose-lifts P f h))
compute-triangle-precompose-lifts' P f h k = eq-htpy-htpy-refl _
{- There is a coherence between the two commuting triangles. This coherence
is again constructed by homotopy induction. -}
COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
{f g : A → B} (H : f ~ g) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4)))
COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS {A = A} {B} {X} P {f} {g} H =
(h : B → X) →
( triangle-precompose-lifts P H h) ~
( ( ( tr-eq-htpy-fam-lifts P h H) ·r (precompose-lifts P f h)) ∙h
( triangle-precompose-lifts' P H h))
coherence-triangle-precompose-lifts-htpy-refl :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
(f : A → B) → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P (htpy-refl' f)
coherence-triangle-precompose-lifts-htpy-refl P f h =
( htpy-eq (htpy-eq (compute-triangle-precompose-lifts P f) h)) ∙h
( ( ( htpy-inv htpy-right-unit) ∙h
( htpy-ap-concat
( λ h' → tr-eq-htpy-fam-lifts-htpy-refl P h f (λ a → h' (f a)))
( htpy-refl)
( triangle-precompose-lifts' P htpy-refl h)
( htpy-inv (compute-triangle-precompose-lifts' P f h)))) ∙h
( htpy-eq
( ap
( λ t →
( t ·r (precompose-lifts P f h)) ∙h
( triangle-precompose-lifts' P htpy-refl h))
( inv (compute-tr-eq-htpy-fam-lifts P h f)))))
abstract
coherence-triangle-precompose-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
{f g : A → B} (H : f ~ g) → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P H
coherence-triangle-precompose-lifts P {f} =
ind-htpy f
( λ g H → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P H)
( coherence-triangle-precompose-lifts-htpy-refl P f)
compute-coherence-triangle-precompose-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
(f : A → B) →
Id ( coherence-triangle-precompose-lifts P (htpy-refl' f))
( coherence-triangle-precompose-lifts-htpy-refl P f)
compute-coherence-triangle-precompose-lifts P f =
comp-htpy f
( λ g H → COHERENCE-TRIANGLE-PRECOMPOSE-LIFTS P H)
( coherence-triangle-precompose-lifts-htpy-refl P f)
total-lifts :
{l1 l2 l3 : Level} (A : UU l1) {X : UU l2} (P : X → UU l3) →
UU _
total-lifts A {X} P = type-choice-∞ {A = A} {B = λ a → X} (λ a → P)
precompose-total-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) → (A → B) →
total-lifts B P → total-lifts A P
precompose-total-lifts {A = A} P f =
toto
( λ h → (a : A) → P (h a))
( λ h → h ∘ f)
( precompose-lifts P f)
coherence-square-inv-choice-∞ :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) (f : A → B) →
coherence-square
( precompose-total-lifts P f)
( inv-choice-∞ {A = B} {B = λ x → X} {C = λ x y → P y})
( inv-choice-∞)
( λ h → h ∘ f)
coherence-square-inv-choice-∞ P f = htpy-refl
{- Our goal is now to produce a homotopy between (precompose-total-lifts P f)
and (precompose-total-lifts P g) for homotopic maps f and g, and a coherence
filling a cilinder. -}
HTPY-PRECOMPOSE-TOTAL-LIFTS :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(P : X → UU l4) {f g : A → B} (H : f ~ g) →
UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4)))
HTPY-PRECOMPOSE-TOTAL-LIFTS P {f} {g} H =
(precompose-total-lifts P f) ~ (precompose-total-lifts P g)
htpy-precompose-total-lifts :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
{f g : A → B} (H : f ~ g) → HTPY-PRECOMPOSE-TOTAL-LIFTS P H
htpy-precompose-total-lifts {A = A} {B} P {f} {g} H =
htpy-toto
{ P = fam-lifts B P}
( fam-lifts A P)
( λ h → eq-htpy (h ·l H))
( precompose-lifts P f)
( triangle-precompose-lifts P H)
{- We show that when htpy-precompose-total-lifts is applied to htpy-refl, it
computes to htpy-refl. -}
tr-id-left-subst :
{i j : Level} {A : UU i} {B : UU j} {f : A → B} {x y : A}
(p : Id x y) (b : B) → (q : Id (f x) b) →
Id (tr (λ (a : A) → Id (f a) b) p q) ((inv (ap f p)) ∙ q)
tr-id-left-subst refl b q = refl
compute-htpy-precompose-total-lifts :
{ l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
( f : A → B) →
( htpy-precompose-total-lifts P (htpy-refl' f)) ~
( htpy-refl' (toto (fam-lifts A P) (λ h → h ∘ f) (precompose-lifts P f)))
compute-htpy-precompose-total-lifts {A = A} P f (pair h h') =
let α = λ (t : Id (h ∘ f) (h ∘ f)) → tr (fam-lifts A P) t (λ a → h' (f a))
in
ap eq-pair'
( eq-pair
( eq-htpy-htpy-refl (h ∘ f))
( ( tr-id-left-subst
{ f = α}
( eq-htpy-htpy-refl (h ∘ f))
( λ a → h' (f a))
( triangle-precompose-lifts P htpy-refl h h')) ∙
( ( ap
( λ t → inv (ap α (eq-htpy-htpy-refl (λ a → h (f a)))) ∙ t)
( htpy-eq
( htpy-eq (compute-triangle-precompose-lifts P f) h) h')) ∙
( left-inv (triangle-precompose-lifts-htpy-refl P f h h')))))
COHERENCE-HTPY-INV-CHOICE-∞ :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
{f g : A → B} (H : f ~ g) → UU _
COHERENCE-HTPY-INV-CHOICE-∞ P {f} {g} H =
( ( coherence-square-inv-choice-∞ P f) ∙h
( inv-choice-∞ ·l ( htpy-precompose-total-lifts P H))) ~
( ( ( λ h → eq-htpy (h ·l H)) ·r inv-choice-∞) ∙h
( coherence-square-inv-choice-∞ P g))
coherence-htpy-inv-choice-∞-htpy-refl :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
(f : A → B) → COHERENCE-HTPY-INV-CHOICE-∞ P (htpy-refl' f)
coherence-htpy-inv-choice-∞-htpy-refl {X = X} P f =
( htpy-ap-concat
( coherence-square-inv-choice-∞ P f)
( inv-choice-∞ ·l ( htpy-precompose-total-lifts P htpy-refl))
( htpy-refl)
( λ h →
ap (ap inv-choice-∞) (compute-htpy-precompose-total-lifts P f h))) ∙h
( htpy-inv
( htpy-ap-concat'
( ( htpy-precomp htpy-refl (Σ X P)) ·r inv-choice-∞)
( htpy-refl)
( htpy-refl)
( λ h → compute-htpy-precomp f (Σ X P) (inv-choice-∞ h))))
abstract
coherence-htpy-inv-choice-∞ :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (P : X → UU l4)
{f g : A → B} (H : f ~ g) → COHERENCE-HTPY-INV-CHOICE-∞ P H
coherence-htpy-inv-choice-∞ P {f} =
ind-htpy f
( λ g H → COHERENCE-HTPY-INV-CHOICE-∞ P H)
( coherence-htpy-inv-choice-∞-htpy-refl P f)
cone-family-dependent-pullback-property :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S → A) (g : S → B) (c : cocone f g X) (P : X → UU l) →
cone-family
( fam-lifts S P)
( precompose-lifts P f)
( precompose-lifts P g)
( cone-pullback-property-pushout f g c X)
( fam-lifts X P)
cone-family-dependent-pullback-property f g c P γ =
pair
( precompose-lifts P (pr1 c) γ)
( pair
( precompose-lifts P (pr1 (pr2 c)) γ)
( triangle-precompose-lifts P (pr2 (pr2 c)) γ))
is-pullback-cone-family-dependent-pullback-property :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S → A) (g : S → B) (c : cocone f g X) →
((l : Level) → pullback-property-pushout l f g c) →
{l : Level} (P : X → UU l) (γ : X → X) →
is-pullback
( ( tr (fam-lifts S P) (eq-htpy (γ ·l (pr2 (pr2 c))))) ∘
( precompose-lifts P f (γ ∘ (pr1 c))))
( precompose-lifts P g (γ ∘ (pr1 (pr2 c))))
( cone-family-dependent-pullback-property f g c P γ)
is-pullback-cone-family-dependent-pullback-property {S = S} {A} {B} {X}
f g (pair i (pair j H)) pb-c P =
let c = pair i (pair j H) in
is-pullback-family-is-pullback-tot
( fam-lifts S P)
( precompose-lifts P f)
( precompose-lifts P g)
( cone-pullback-property-pushout f g c X)
( cone-family-dependent-pullback-property f g c P)
( pb-c _ X)
( is-pullback-top-is-pullback-bottom-cube-is-equiv
( precomp i (Σ X P))
( precomp j (Σ X P))
( precomp f (Σ X P))
( precomp g (Σ X P))
( toto (fam-lifts A P) (precomp i X) (precompose-lifts P i))
( toto (fam-lifts B P) (precomp j X) (precompose-lifts P j))
( toto (fam-lifts S P) (precomp f X) (precompose-lifts P f))
( toto (fam-lifts S P) (precomp g X) (precompose-lifts P g))
( inv-choice-∞)
( inv-choice-∞)
( inv-choice-∞)
( inv-choice-∞)
( htpy-precompose-total-lifts P H)
( htpy-refl)
( htpy-refl)
( htpy-refl)
( htpy-refl)
( htpy-precomp H (Σ X P))
( coherence-htpy-inv-choice-∞ P H)
( is-equiv-inv-choice-∞)
( is-equiv-inv-choice-∞)
( is-equiv-inv-choice-∞)
( is-equiv-inv-choice-∞)
( pb-c _ (Σ X P)))
dependent-pullback-property-pullback-property-pushout :
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S → A) (g : S → B) (c : cocone f g X) →
((l : Level) → pullback-property-pushout l f g c) →
((l : Level) → dependent-pullback-property-pushout l f g c)
dependent-pullback-property-pullback-property-pushout
{S = S} {A} {B} {X}
f g (pair i (pair j H)) pullback-c l P =
let c = pair i (pair j H) in
is-pullback-htpy'
( (tr (fam-lifts S P) (eq-htpy (id ·l H))) ∘ (precompose-lifts P f i))
( (tr-eq-htpy-fam-lifts P id H) ·r (precompose-lifts P f i))
( precompose-lifts P g j)
( htpy-refl)
( cone-family-dependent-pullback-property f g c P id)
{ c' = cone-dependent-pullback-property-pushout f g c P}
( pair htpy-refl
( pair htpy-refl
( htpy-right-unit ∙h (coherence-triangle-precompose-lifts P H id))))
( is-pullback-cone-family-dependent-pullback-property f g c pullback-c P id)
{- This concludes the proof of Theorem 18.1.4. -}
{- We give some further useful implications -}
dependent-universal-property-universal-property-pushout :
{ l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
( f : S → A) (g : S → B) (c : cocone f g X) →
( (l : Level) → universal-property-pushout l f g c) →
( (l : Level) → dependent-universal-property-pushout l f g c)
dependent-universal-property-universal-property-pushout f g c up-X =
dependent-universal-property-dependent-pullback-property-pushout f g c
( dependent-pullback-property-pullback-property-pushout f g c
( λ l → pullback-property-pushout-universal-property-pushout l f g c
( up-X l)))
-- Section 16.2 Families over pushouts
{- Definition 18.2.1 -}
Fam-pushout :
{l1 l2 l3 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
(f : S → A) (g : S → B) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ lsuc l)))
Fam-pushout l {S} {A} {B} f g =
Σ ( A → UU l)
( λ PA → Σ (B → UU l)
( λ PB → (s : S) → PA (f s) ≃ PB (g s)))
{- We characterize the identity type of Fam-pushout. -}
coherence-equiv-Fam-pushout :
{ l1 l2 l3 l l' : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{ f : S → A} {g : S → B}
( P : Fam-pushout l f g) (Q : Fam-pushout l' f g) →
( eA : (a : A) → (pr1 P a) ≃ (pr1 Q a))
( eB : (b : B) → (pr1 (pr2 P) b) ≃ (pr1 (pr2 Q) b)) →
UU (l1 ⊔ l ⊔ l')
coherence-equiv-Fam-pushout {S = S} {f = f} {g} P Q eA eB =
( s : S) →
( (map-equiv (eB (g s))) ∘ (map-equiv (pr2 (pr2 P) s))) ~
( (map-equiv (pr2 (pr2 Q) s)) ∘ (map-equiv (eA (f s))))
equiv-Fam-pushout :
{l1 l2 l3 l l' : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} →
Fam-pushout l f g → Fam-pushout l' f g → UU (l1 ⊔ l2 ⊔ l3 ⊔ l ⊔ l')
equiv-Fam-pushout {S = S} {A} {B} {f} {g} P Q =
Σ ( (a : A) → (pr1 P a) ≃ (pr1 Q a)) ( λ eA →
Σ ( (b : B) → (pr1 (pr2 P) b) ≃ (pr1 (pr2 Q) b))
( coherence-equiv-Fam-pushout P Q eA))
reflexive-equiv-Fam-pushout :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} (P : Fam-pushout l f g) →
equiv-Fam-pushout P P
reflexive-equiv-Fam-pushout (pair PA (pair PB PS)) =
pair (λ a → equiv-id (PA a))
( pair
( λ b → equiv-id (PB b))
( λ s → htpy-refl))
equiv-Fam-pushout-eq :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} {P Q : Fam-pushout l f g} →
Id P Q → equiv-Fam-pushout P Q
equiv-Fam-pushout-eq {P = P} {.P} refl =
reflexive-equiv-Fam-pushout P
is-contr-total-equiv-Fam-pushout :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} (P : Fam-pushout l f g) →
is-contr (Σ (Fam-pushout l f g) (equiv-Fam-pushout P))
is-contr-total-equiv-Fam-pushout {S = S} {A} {B} {f} {g} P =
is-contr-total-Eq-structure
( λ PA' t eA →
Σ ( (b : B) → (pr1 (pr2 P) b) ≃ (pr1 t b))
( coherence-equiv-Fam-pushout P (pair PA' t) eA))
( is-contr-total-Eq-Π
( λ a X → (pr1 P a) ≃ X)
( λ a → is-contr-total-equiv (pr1 P a))
( pr1 P))
( pair (pr1 P) (λ a → equiv-id (pr1 P a)))
( is-contr-total-Eq-structure
( λ PB' PS' eB →
coherence-equiv-Fam-pushout
P (pair (pr1 P) (pair PB' PS'))
(λ a → equiv-id (pr1 P a)) eB)
( is-contr-total-Eq-Π
( λ b Y → (pr1 (pr2 P) b) ≃ Y)
( λ b → is-contr-total-equiv (pr1 (pr2 P) b))
( pr1 (pr2 P)))
( pair (pr1 (pr2 P)) (λ b → equiv-id (pr1 (pr2 P) b)))
( is-contr-total-Eq-Π
( λ s e → (map-equiv (pr2 (pr2 P) s)) ~ (map-equiv e))
( λ s → is-contr-total-htpy-equiv (pr2 (pr2 P) s))
( pr2 (pr2 P))))
is-equiv-equiv-Fam-pushout-eq :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} (P Q : Fam-pushout l f g) →
is-equiv (equiv-Fam-pushout-eq {P = P} {Q})
is-equiv-equiv-Fam-pushout-eq P =
fundamental-theorem-id P
( reflexive-equiv-Fam-pushout P)
( is-contr-total-equiv-Fam-pushout P)
( λ Q → equiv-Fam-pushout-eq {P = P} {Q})
equiv-equiv-Fam-pushout :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} (P Q : Fam-pushout l f g) →
Id P Q ≃ equiv-Fam-pushout P Q
equiv-equiv-Fam-pushout P Q =
pair
( equiv-Fam-pushout-eq)
( is-equiv-equiv-Fam-pushout-eq P Q)
eq-equiv-Fam-pushout :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} {P Q : Fam-pushout l f g} →
(equiv-Fam-pushout P Q) → Id P Q
eq-equiv-Fam-pushout {P = P} {Q} =
inv-is-equiv (is-equiv-equiv-Fam-pushout-eq P Q)
issec-eq-equiv-Fam-pushout :
{ l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{ f : S → A} {g : S → B} {P Q : Fam-pushout l f g} →
( ( equiv-Fam-pushout-eq {P = P} {Q}) ∘
( eq-equiv-Fam-pushout {P = P} {Q})) ~ id
issec-eq-equiv-Fam-pushout {P = P} {Q} =
issec-inv-is-equiv (is-equiv-equiv-Fam-pushout-eq P Q)
isretr-eq-equiv-Fam-pushout :
{l1 l2 l3 l : Level} {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} {P Q : Fam-pushout l f g} →
( ( eq-equiv-Fam-pushout {P = P} {Q}) ∘
( equiv-Fam-pushout-eq {P = P} {Q})) ~ id
isretr-eq-equiv-Fam-pushout {P = P} {Q} =
isretr-inv-is-equiv (is-equiv-equiv-Fam-pushout-eq P Q)
{- This concludes the characterization of the identity type of Fam-pushout. -}
{- Definition 18.2.2 -}
desc-fam :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S → A} {g : S → B} (c : cocone f g X) →
(P : X → UU l) → Fam-pushout l f g
desc-fam c P =
pair
( P ∘ (pr1 c))
( pair
( P ∘ (pr1 (pr2 c)))
( λ s → (pair (tr P (pr2 (pr2 c) s)) (is-equiv-tr P (pr2 (pr2 c) s)))))
{- Theorem 18.2.3 -}
Fam-pushout-cocone-UU :
{l1 l2 l3 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} → cocone f g (UU l) → Fam-pushout l f g
Fam-pushout-cocone-UU l =
tot (λ PA → (tot (λ PB H s → equiv-eq (H s))))
is-equiv-Fam-pushout-cocone-UU :
{l1 l2 l3 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
{f : S → A} {g : S → B} →
is-equiv (Fam-pushout-cocone-UU l {f = f} {g})
is-equiv-Fam-pushout-cocone-UU l {f = f} {g} =
is-equiv-tot-is-fiberwise-equiv
( λ PA → is-equiv-tot-is-fiberwise-equiv
( λ PB → is-equiv-postcomp-Π
( λ s → equiv-eq)
( λ s → univalence (PA (f s)) (PB (g s)))))
htpy-equiv-eq-ap-fam :
{l1 l2 : Level} {A : UU l1} (B : A → UU l2) {x y : A} (p : Id x y) →
htpy-equiv (equiv-tr B p) (equiv-eq (ap B p))
htpy-equiv-eq-ap-fam B {x} {.x} refl =
reflexive-htpy-equiv (equiv-id (B x))
triangle-desc-fam :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S → A} {g : S → B} (c : cocone f g X) →
( desc-fam {l = l} c) ~
( ( Fam-pushout-cocone-UU l {f = f} {g}) ∘ ( cocone-map f g {Y = UU l} c))
triangle-desc-fam {l = l} {S} {A} {B} {X} (pair i (pair j H)) P =
eq-equiv-Fam-pushout
( pair
( λ a → equiv-id (P (i a)))
( pair
( λ b → equiv-id (P (j b)))
( λ s → htpy-equiv-eq-ap-fam P (H s))))
is-equiv-desc-fam :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S → A} {g : S → B} (c : cocone f g X) →
((l' : Level) → universal-property-pushout l' f g c) →
is-equiv (desc-fam {l = l} {f = f} {g} c)
is-equiv-desc-fam {l = l} {f = f} {g} c up-c =
is-equiv-comp
( desc-fam c)
( Fam-pushout-cocone-UU l)
( cocone-map f g c)
( triangle-desc-fam c)
( up-c (lsuc l) (UU l))
( is-equiv-Fam-pushout-cocone-UU l)
equiv-desc-fam :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S → A} {g : S → B} (c : cocone f g X) →
((l' : Level) → universal-property-pushout l' f g c) →
(X → UU l) ≃ Fam-pushout l f g
equiv-desc-fam c up-c =
pair
( desc-fam c)
( is-equiv-desc-fam c up-c)
{- Corollary 18.2.4 -}
uniqueness-Fam-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S → A) (g : S → B) (c : cocone f g X) →
((l' : Level) → universal-property-pushout l' f g c) →
( P : Fam-pushout l f g) →
is-contr
( Σ (X → UU l) (λ Q →
equiv-Fam-pushout P (desc-fam c Q)))
uniqueness-Fam-pushout {l = l} f g c up-c P =
is-contr-equiv'
( fib (desc-fam c) P)
( equiv-tot (λ Q →
( equiv-equiv-Fam-pushout P (desc-fam c Q)) ∘e
( equiv-inv (desc-fam c Q) P)))
( is-contr-map-is-equiv (is-equiv-desc-fam c up-c) P)
fam-Fam-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S → A} {g : S → B} (c : cocone f g X) →
(up-X : (l' : Level) → universal-property-pushout l' f g c) →
Fam-pushout l f g → (X → UU l)
fam-Fam-pushout {f = f} {g} c up-X P =
pr1 (center (uniqueness-Fam-pushout f g c up-X P))
issec-fam-Fam-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S → A} {g : S → B} (c : cocone f g X) →
(up-X : (l' : Level) → universal-property-pushout l' f g c) →
((desc-fam {l = l} c) ∘ (fam-Fam-pushout c up-X)) ~ id
issec-fam-Fam-pushout {f = f} {g} c up-X P =
inv (eq-equiv-Fam-pushout (pr2 (center (uniqueness-Fam-pushout f g c up-X P))))
comp-left-fam-Fam-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S → A} {g : S → B} (c : cocone f g X) →
( up-X : (l' : Level) → universal-property-pushout l' f g c) →
( P : Fam-pushout l f g) →
( a : A) → (pr1 P a) ≃ (fam-Fam-pushout c up-X P (pr1 c a))
comp-left-fam-Fam-pushout {f = f} {g} c up-X P =
pr1 (pr2 (center (uniqueness-Fam-pushout f g c up-X P)))
comp-right-fam-Fam-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S → A} {g : S → B} (c : cocone f g X) →
( up-X : (l' : Level) → universal-property-pushout l' f g c) →
( P : Fam-pushout l f g) →
( b : B) → (pr1 (pr2 P) b) ≃ (fam-Fam-pushout c up-X P (pr1 (pr2 c) b))
comp-right-fam-Fam-pushout {f = f} {g} c up-X P =
pr1 (pr2 (pr2 (center (uniqueness-Fam-pushout f g c up-X P))))
comp-path-fam-Fam-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S → A} {g : S → B} (c : cocone f g X) →
( up-X : (l' : Level) → universal-property-pushout l' f g c) →
( P : Fam-pushout l f g) →
( s : S) →
( ( map-equiv (comp-right-fam-Fam-pushout c up-X P (g s))) ∘
( map-equiv (pr2 (pr2 P) s))) ~
( ( tr (fam-Fam-pushout c up-X P) (pr2 (pr2 c) s)) ∘
( map-equiv (comp-left-fam-Fam-pushout c up-X P (f s))))
comp-path-fam-Fam-pushout {f = f} {g} c up-X P =
pr2 (pr2 (pr2 (center (uniqueness-Fam-pushout f g c up-X P))))
{-
-- Section 18.3 The Flattening lemma for pushouts
{- Definition 18.3.1 -}
cocone-flattening-pushout :
{ l1 l2 l3 l4 l5 : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
( f : S → A) (g : S → B) (c : cocone f g X)
( P : Fam-pushout l5 f g)
( Q : X → UU l5)
( e : equiv-Fam-pushout P (desc-fam f g c Q)) →
cocone
( toto (pr1 P) f (λ s → id))
( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s)))
( Σ X Q)
cocone-flattening-pushout f g c P Q e =
pair
( toto Q
( pr1 c)
( λ a → map-equiv (pr1 e a)))
( pair
( toto Q
( pr1 (pr2 c))
( λ b → map-equiv (pr1 (pr2 e) b)))
( htpy-toto Q
( pr2 (pr2 c))
( λ s → map-equiv (pr1 e (f s)))
( λ s → htpy-inv (pr2 (pr2 e) s))))
{- Theorem 18.3.2 The flattening lemma -}
coherence-bottom-flattening-lemma' :
{l1 l2 l3 : Level} {B : UU l1} {Q : B → UU l2} {T : UU l3}
{b b' : B} (α : Id b b') {y : Q b} {y' : Q b'} (β : Id (tr Q α y) y')
(h : (b : B) → Q b → T) → Id (h b y) (h b' y')
coherence-bottom-flattening-lemma' refl refl h = refl
coherence-bottom-flattening-lemma :
{l1 l2 l3 l4 l5 : Level}
{A : UU l1} {B : UU l2} {P : A → UU l3} {Q : B → UU l4} {T : UU l5}
{f f' : A → B} (H : f ~ f')
{g : (a : A) → P a → Q (f a)}
{g' : (a : A) → P a → Q (f' a)}
(K : (a : A) → ((tr Q (H a)) ∘ (g a)) ~ (g' a))
(h : (b : B) → Q b → T) → (a : A) (p : P a) →
Id (h (f a) (g a p)) (h (f' a) (g' a p))
coherence-bottom-flattening-lemma H K h a p =
coherence-bottom-flattening-lemma' (H a) (K a p) h
coherence-cube-flattening-lemma :
{l1 l2 l3 l4 l5 : Level}
{A : UU l1} {B : UU l2} {P : A → UU l3} {Q : B → UU l4} {T : UU l5}
{f f' : A → B} (H : f ~ f')
{g : (a : A) → P a → Q (f a)}
{g' : (a : A) → P a → Q (f' a)}
(K : (a : A) → ((tr Q (H a)) ∘ (g a)) ~ (g' a))
(h : Σ B Q → T) →
Id ( eq-htpy
( λ a → eq-htpy
( coherence-bottom-flattening-lemma H K (ev-pair h) a)))
( ap ev-pair
( htpy-precomp (htpy-toto Q H g K) T h))
coherence-cube-flattening-lemma {A = A} {B} {P} {Q} {T} {f = f} {f'} H {g} {g'} K = ind-htpy f
( λ f' H' →
(g : (a : A) → P a → Q (f a)) (g' : (a : A) → P a → Q (f' a))
(K : (a : A) → ((tr Q (H' a)) ∘ (g a)) ~ (g' a)) (h : Σ B Q → T) →
Id ( eq-htpy
( λ a → eq-htpy
( coherence-bottom-flattening-lemma H' K (ev-pair h) a)))
( ap ev-pair
( htpy-precomp (htpy-toto Q H' g K) T h)))
( λ g g' K h → {!ind-htpy g (λ g' K' → (h : Σ B Q → T) →
Id ( eq-htpy
( λ a → eq-htpy
( coherence-bottom-flattening-lemma htpy-refl (λ a → htpy-eq (K' a)) (ev-pair h) a)))
( ap ev-pair
( htpy-precomp (htpy-toto Q htpy-refl g (λ a → htpy-eq (K' a))) T h))) ? (λ a → eq-htpy (K a)) h!})
H g g' K
flattening-pushout' :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S → A) (g : S → B) (c : cocone f g X) →
( P : Fam-pushout l5 f g)
( Q : X → UU l5)
( e : equiv-Fam-pushout P (desc-fam f g c Q)) →
(l : Level) →
pullback-property-pushout l
( toto (pr1 P) f (λ s → id))
( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s)))
( cocone-flattening-pushout f g c P Q e)
flattening-pushout' f g c P Q e l T =
is-pullback-top-is-pullback-bottom-cube-is-equiv
( ( postcomp-Π (λ x → precomp-Π (map-equiv (pr1 e x)) (λ q → T))) ∘
( precomp-Π (pr1 c) (λ x → (Q x) → T)))
( ( postcomp-Π (λ x → precomp-Π (map-equiv (pr1 (pr2 e) x)) (λ q → T))) ∘
( precomp-Π (pr1 (pr2 c)) (λ x → (Q x) → T)))
( precomp-Π f (λ a → (pr1 P a) → T))
( ( postcomp-Π (λ s → precomp (map-equiv (pr2 (pr2 P) s)) T)) ∘
( precomp-Π g (λ b → (pr1 (pr2 P) b) → T)))
( precomp (toto Q (pr1 c) (λ a → map-equiv (pr1 e a))) T)
( precomp (toto Q (pr1 (pr2 c)) (λ b → map-equiv (pr1 (pr2 e) b))) T)
( precomp (toto (pr1 P) f (λ s → id)) T)
( precomp (toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s))) T)
ev-pair
ev-pair
ev-pair
ev-pair
( htpy-precomp
( htpy-toto Q
( pr2 (pr2 c))
( λ s → map-equiv (pr1 e (f s)))
( λ s → htpy-inv (pr2 (pr2 e) s)))
( T))
htpy-refl
htpy-refl
htpy-refl
htpy-refl
( λ h → eq-htpy (λ s → eq-htpy
( coherence-bottom-flattening-lemma
( pr2 (pr2 c))
( λ s → htpy-inv (pr2 (pr2 e) s))
( h)
( s))))
{!!}
is-equiv-ev-pair
is-equiv-ev-pair
is-equiv-ev-pair
is-equiv-ev-pair
{!!}
flattening-pushout :
{l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S → A) (g : S → B) (c : cocone f g X) →
( P : Fam-pushout l5 f g)
( Q : X → UU l5)
( e : equiv-Fam-pushout P (desc-fam f g c Q)) →
(l : Level) →
universal-property-pushout l
( toto (pr1 P) f (λ s → id))
( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s)))
( cocone-flattening-pushout f g c P Q e)
flattening-pushout f g c P Q e l =
universal-property-pushout-pullback-property-pushout l
( toto (pr1 P) f (λ s → id))
( toto (pr1 (pr2 P)) g (λ s → map-equiv (pr2 (pr2 P) s)))
( cocone-flattening-pushout f g c P Q e)
( flattening-pushout' f g c P Q e l)
-}
|
{
"alphanum_fraction": 0.5287387921,
"avg_line_length": 38.135483871,
"ext": "agda",
"hexsha": "4a843eefe7ad4b663c1939b3725cba18567a08fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/22-descent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/22-descent.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/22-descent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 20667,
"size": 47288
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Sigma
record Monad (M : Set → Set) : Set₁ where
field
return : {A : Set} → A → M A
_>>=_ : {A B : Set} → M A → (A → M B) → M B
open Monad ⦃ … ⦄
postulate
F G : Set → Set
instance
postulate
G-monad : Monad G
F-monad : Monad F
f : Σ Nat (λ _ → Nat) → F Nat
f p = do
m , n ← return p
return (m n)
-- Should jump to `m n` and list the F-monad candidate error first.
|
{
"alphanum_fraction": 0.5764966741,
"avg_line_length": 16.7037037037,
"ext": "agda",
"hexsha": "3b4b32599837d52bf36dccc958a8e4fd8f9a4c93",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3676.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3676.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3676.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 171,
"size": 451
}
|
{-# OPTIONS --without-K #-}
module Model.Nat where
open import Model.Size as MS using
( Size ; Sizes ; _≤_ ; _<_ ; ≤-IsProp ; nat )
open import Model.Type.Core
open import Util.HoTT.HLevel
open import Util.Prelude
open import Util.Relation.Binary.PropositionalEquality using (Σ-≡⁺)
import Data.Nat.Properties as ℕ
open Size
ℕ≤ : Size → Set
ℕ≤ n = ∃[ m ] (nat m ≤ n)
ℕ≤-IsSet : ∀ {n} → IsSet (ℕ≤ n)
ℕ≤-IsSet = Σ-IsSet ℕ.≡-irrelevant λ m → IsOfHLevel-suc 1 ≤-IsProp
abstract
ℕ≤-≡⁺ : ∀ {n} {m m′} (m≤n : nat m ≤ n) (m′≤n : nat m′ ≤ n)
→ m ≡ m′
→ (m , m≤n) ≡ (m′ , m′≤n)
ℕ≤-≡⁺ _ _ m≡m′ = Σ-≡⁺ (m≡m′ , ≤-IsProp _ _)
Nat : ⟦Type⟧ Sizes
Nat = record
{ ObjHSet = λ n → HLevel⁺ (ℕ≤ n) ℕ≤-IsSet
; eqHProp = λ { _ (n , _) (m , _) → HLevel⁺ (n ≡ m) ℕ.≡-irrelevant }
; eq-refl = λ _ → refl
}
castℕ≤ : ∀ {n m} → n ≤ m → ℕ≤ n → ℕ≤ m
castℕ≤ n≤m (k , k≤n) = k , go
where abstract go = MS.≤-trans k≤n n≤m
zero≤ : ∀ n → ℕ≤ n
zero≤ n = 0 , MS.0≤n
suc≤ : ∀ n m → m < n → ℕ≤ m → ℕ≤ n
suc≤ n m m<n (x , x≤m) = suc x , MS.n<m→Sn≤m (MS.≤→<→< x≤m m<n)
caseℕ≤ : ∀ {α} {A : Set α} {n}
→ ℕ≤ n
→ A
→ (∀ m → m < n → ℕ≤ m → A)
→ A
caseℕ≤ (zero , _) z s = z
caseℕ≤ (suc x , Sx≤n) z s = s (nat x) (MS.Sn≤m→n<m Sx≤n) (x , MS.≤-refl)
caseℕ≤-pres : ∀ {α β γ} {A : Set α} {A′ : Set β} {n n′}
→ (R : A → A′ → Set γ)
→ (i : ℕ≤ n) (i′ : ℕ≤ n′)
→ (z : A) (z′ : A′)
→ (s : ∀ m → m < n → ℕ≤ m → A) (s′ : ∀ m → m < n′ → ℕ≤ m → A′)
→ proj₁ i ≡ proj₁ i′
→ R z z′
→ (∀ m m<n m′ m′<n′ j j′
→ proj₁ j ≡ proj₁ j′
→ R (s m m<n j) (s′ m′ m′<n′ j′))
→ R (caseℕ≤ i z s) (caseℕ≤ i′ z′ s′)
caseℕ≤-pres R (zero , _) (_ , _) z z′ s s′ refl zRz′ sRs′ = zRz′
caseℕ≤-pres R (suc i , _) (_ , _) z z′ s s′ refl zRz′ sRs′
= sRs′ _ _ _ _ _ _ refl
|
{
"alphanum_fraction": 0.4693877551,
"avg_line_length": 23.52,
"ext": "agda",
"hexsha": "71fb991fc3b8af18477a3b10f51f854e3a8c5e30",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Model/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Model/Nat.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Model/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 952,
"size": 1764
}
|
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Data.Nat.Properties using (+-assoc; +-comm)
module Exercises.One where
_*_ : ℕ → ℕ → ℕ
zero * y = zero
suc x * y = y + (x * y)
-- Prove that multiplication is commutative
*-idʳ : ∀ x → x * 0 ≡ 0
*-idʳ zero = refl
*-idʳ (suc x) = *-idʳ x
*-suc : ∀ x y → x + (x * y) ≡ (x * suc y)
*-suc zero y = refl
*-suc (suc x) y
rewrite sym (+-assoc x y (x * y)) | +-comm x y |
+-assoc y x (x * y) | *-suc x y = refl
*-comm : ∀ x y → x * y ≡ y * x
*-comm zero y rewrite *-idʳ y = refl
*-comm (suc x) y rewrite *-comm x y | *-suc y x = refl
-- Prove that if x + x ≡ y + y then x ≡ y (taken from CodeWars)
suc-injective : ∀ x y → suc x ≡ suc y → x ≡ y
suc-injective zero zero p = refl
suc-injective (suc x) (suc .x) refl = refl
xxyy : ∀ x y → x + x ≡ y + y → x ≡ y
xxyy zero zero refl = refl
xxyy (suc x) (suc y) p rewrite +-comm x (suc x) | +-comm y (suc y) =
cong suc (xxyy x y (suc-injective _ _ (suc-injective _ _ p)))
|
{
"alphanum_fraction": 0.5772511848,
"avg_line_length": 29.3055555556,
"ext": "agda",
"hexsha": "66ae97b0751728a78b1792092b2e3d296b12c3a3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "UoG-Agda/Agda101",
"max_forks_repo_path": "Exercises/One.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "UoG-Agda/Agda101",
"max_issues_repo_path": "Exercises/One.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UoG-Agda/Agda101",
"max_stars_repo_path": "Exercises/One.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 429,
"size": 1055
}
|
{-# OPTIONS --cubical --safe #-}
open import Prelude
open import Categories
module Categories.Pullback {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where
open Category C
record Pullback (f : X ⟶ Z) (g : Y ⟶ Z) : Type (ℓ₁ ℓ⊔ ℓ₂) where
field
{P} : Ob
p₁ : P ⟶ X
p₂ : P ⟶ Y
commute : f · p₁ ≡ g · p₂
ump : ∀ {A : Ob} (h₁ : A ⟶ X) (h₂ : A ⟶ Y) → f · h₁ ≡ g · h₂ →
∃![ u ] ((p₁ · u ≡ h₁) × (p₂ · u ≡ h₂))
HasPullbacks : Type (ℓ₁ ℓ⊔ ℓ₂)
HasPullbacks = ∀ {X Y Z} (f : X ⟶ Z) (g : Y ⟶ Z) → Pullback f g
|
{
"alphanum_fraction": 0.4990403071,
"avg_line_length": 23.6818181818,
"ext": "agda",
"hexsha": "cc107d1c71f61dd307cabab22cd25ceef2906a65",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Categories/Pullback.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Categories/Pullback.agda",
"max_line_length": 66,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Categories/Pullback.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 241,
"size": 521
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Instances.Pointwise where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Algebra.CommRing.Base
private
variable
ℓ : Level
pointwiseRing : (X : Type ℓ) (R : CommRing ℓ) → CommRing ℓ
pointwiseRing X R = (X → fst R) , str
where
open CommRingStr (snd R)
isSetX→R = isOfHLevelΠ 2 (λ _ → isSetCommRing R)
str : CommRingStr (X → fst R)
CommRingStr.0r str = λ _ → 0r
CommRingStr.1r str = λ _ → 1r
CommRingStr._+_ str = λ f g → (λ x → f x + g x)
CommRingStr._·_ str = λ f g → (λ x → f x · g x)
CommRingStr.- str = λ f → (λ x → - f x)
CommRingStr.isCommRing str =
makeIsCommRing
isSetX→R
(λ f g h i x → +Assoc (f x) (g x) (h x) i)
(λ f i x → +IdR (f x) i)
(λ f i x → +InvR (f x) i)
(λ f g i x → +Comm (f x) (g x) i)
(λ f g h i x → ·Assoc (f x) (g x) (h x) i)
(λ f i x → ·IdR (f x) i)
(λ f g h i x → ·DistR+ (f x) (g x) (h x) i)
λ f g i x → ·Comm (f x) (g x) i
|
{
"alphanum_fraction": 0.5251101322,
"avg_line_length": 30.6756756757,
"ext": "agda",
"hexsha": "f47804ccc030def3a52db832270fcfc882654077",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Pointwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Pointwise.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Pointwise.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 429,
"size": 1135
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.