Search is not available for this dataset
text
string
meta
dict
module Issue152 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} f : ℕ → ℕ f 0 with zero f 0 | n = n f 1 with zero f 1 | n = n f n = n g : ℕ → ℕ g 0 with zero g zero | n = n g 1 with zero g (suc zero) | n = n g n = n h : ℕ → ℕ h zero with zero h 0 | n = n h (suc zero) with zero h 1 | n = n h n = n
{ "alphanum_fraction": 0.5074257426, "avg_line_length": 12.2424242424, "ext": "agda", "hexsha": "3d9a1dc882daf6666acd8d6ec21af235ded28e4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Issue152.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Issue152.agda", "max_line_length": 28, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue152.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 173, "size": 404 }
module Structure.Operator.Vector where open import Functional using (swap) import Lvl open import Logic open import Logic.Propositional open import Structure.Setoid open import Structure.Operator.Field open import Structure.Operator.Group open import Structure.Operator.Monoid import Structure.Operator.Names as Names open import Structure.Operator.Properties open import Structure.Operator open import Type record VectorSpace {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ _ : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ _ : Equiv{ℓₛₑ}(S) ⦄ (_+ᵥ_ : V → V → V) (_⋅ₛᵥ_ : S → V → V) (_+ₛ_ : S → S → S) (_⋅ₛ_ : S → S → S) : Stmt{ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ ℓᵥₑ Lvl.⊔ ℓᵥ} where constructor intro field ⦃ scalarField ⦄ : Field(_+ₛ_)(_⋅ₛ_) ⦃ vectorCommutativeGroup ⦄ : CommutativeGroup(_+ᵥ_) open Field(scalarField) renaming ( 𝟎 to 𝟎ₛ ; 𝟏 to 𝟏ₛ ; _−_ to _−ₛ_ ; _/_ to _/ₛ_ ; −_ to −ₛ_ ; ⅟ to ⅟ₛ ; [+]-group to [+ₛ]-group ; [+]-commutativity to [+ₛ]-commutativity ; [+]-monoid to [+ₛ]-monoid ; [+]-binary-operator to [+ₛ]-binary-operator ; [+]-associativity to [+ₛ]-associativity ; [+]-identity-existence to [+ₛ]-identity-existence ; [+]-identity to [+ₛ]-identity ; [+]-identityₗ to [+ₛ]-identityₗ ; [+]-identityᵣ to [+ₛ]-identityᵣ ; [+]-inverse-existence to [+ₛ]-inverse-existence ; [+]-inverse to [+ₛ]-inverse ; [+]-inverseₗ to [+ₛ]-inverseₗ ; [+]-inverseᵣ to [+ₛ]-inverseᵣ ; [−]-function to [−ₛ]-function ; [⋅]-binary-operator to [⋅ₛ]-binary-operator ; [⋅]-associativity to [⋅ₛ]-associativity ; [⋅]-identity-existence to [⋅ₛ]-identity-existence ; [⋅]-identity to [⋅ₛ]-identity ; [⋅]-identityₗ to [⋅ₛ]-identityₗ ; [⋅]-identityᵣ to [⋅ₛ]-identityᵣ ; [⋅]-inverseₗ to [⋅ₛ]-inverseₗ ; [⋅]-inverseᵣ to [⋅ₛ]-inverseᵣ ; distinct-identities to distinct-identitiesₛ ) public open CommutativeGroup(vectorCommutativeGroup) renaming ( id to 𝟎ᵥ ; inv to −ᵥ_ ; inv-op to _−ᵥ_ ; group to [+ᵥ]-group; commutativity to [+ᵥ]-commutativity; monoid to [+ᵥ]-monoid ; binary-operator to [+ᵥ]-binary-operator ; associativity to [+ᵥ]-associativity ; identity-existence to [+ᵥ]-identity-existence ; identity to [+ᵥ]-identity ; identityₗ to [+ᵥ]-identityₗ ; identityᵣ to [+ᵥ]-identityᵣ ; inverse-existence to [+ᵥ]-inverse-existence ; inverse to [+ᵥ]-inverse ; inverseₗ to [+ᵥ]-inverseₗ ; inverseᵣ to [+ᵥ]-inverseᵣ ; inv-function to [−ᵥ]-function ) public field ⦃ [⋅ₛᵥ]-binaryOperator ⦄ : BinaryOperator(_⋅ₛᵥ_) [⋅ₛ][⋅ₛᵥ]-compatibility : Names.Compatibility(_⋅ₛ_)(_⋅ₛᵥ_) -- TODO: This is semigroup action ⦃ [⋅ₛᵥ]-identity ⦄ : Identityₗ(_⋅ₛᵥ_)(𝟏ₛ) ⦃ [⋅ₛᵥ][+ᵥ]-distributivityₗ ⦄ : Distributivityₗ(_⋅ₛᵥ_)(_+ᵥ_) [⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ : Names.DistributivityPatternᵣ(_⋅ₛᵥ_)(_+ₛ_)(_+ᵥ_) -- TODO: This is ∀? → Preserving₂ _⋅ᵥₛ_ = swap(_⋅ₛᵥ_) record VectorSpaceVObject {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (_+ₛ_ : S → S → S) (_⋅ₛ_ : S → S → S) : Stmt{ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ Lvl.𝐒(ℓᵥₑ Lvl.⊔ ℓᵥ)} where constructor intro field {Vector} : Type{ℓᵥ} ⦃ Vector-equiv ⦄ : Equiv{ℓᵥₑ}(Vector) _+ᵥ_ : Vector → Vector → Vector _⋅ₛᵥ_ : S → Vector → Vector ⦃ vectorSpace ⦄ : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) open VectorSpace(vectorSpace) public record VectorSpaceObject {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} : Stmt{Lvl.𝐒(ℓₛₑ Lvl.⊔ ℓₛ Lvl.⊔ ℓᵥₑ Lvl.⊔ ℓᵥ)} where constructor intro field {Vector} : Type{ℓᵥ} ⦃ equiv-Vector ⦄ : Equiv{ℓᵥₑ}(Vector) {Scalar} : Type{ℓₛ} ⦃ equiv-Scalar ⦄ : Equiv{ℓₛₑ}(Scalar) _+ᵥ_ : Vector → Vector → Vector _⋅ₛᵥ_ : Scalar → Vector → Vector _+ₛ_ : Scalar → Scalar → Scalar _⋅ₛ_ : Scalar → Scalar → Scalar ⦃ vectorSpace ⦄ : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) open VectorSpace(vectorSpace) public
{ "alphanum_fraction": 0.5466274332, "avg_line_length": 36.8166666667, "ext": "agda", "hexsha": "df1114e11e271e0265439a20afa30477173d3311", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector.agda", "max_line_length": 117, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1859, "size": 4418 }
module Data.Char.Ranges where open import Data.Char open import Data.List open import Data.Nat open import Function charRange : ℕ -> ℕ -> List Char charRange start amount = applyUpTo (λ x -> fromℕ $ x + start) amount UCletters : List Char UCletters = charRange 65 26 LCletters : List Char LCletters = charRange 97 26 greekLCletters : List Char greekLCletters = charRange 945 25 greekUCletters : List Char greekUCletters = charRange 913 25 symbols : List Char symbols = applyUpTo (λ x -> fromℕ $ x + 33) 15 ++ applyUpTo (λ x -> fromℕ $ x + 58) 7 ++ applyUpTo (λ x -> fromℕ $ x + 91) 6 ++ applyUpTo (λ x -> fromℕ $ x + 123) 4 digits : List Char digits = charRange 48 10 letters : List Char letters = UCletters ++ LCletters
{ "alphanum_fraction": 0.701897019, "avg_line_length": 21.0857142857, "ext": "agda", "hexsha": "e0cac015c993a9919abccab7b72ecd40d4732979", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Char/Ranges.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Char/Ranges.agda", "max_line_length": 68, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Char/Ranges.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 248, "size": 738 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Complete.Properties {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Product open import Relation.Binary open import Categories.Category.Complete open import Categories.Category.Complete.Finitely open import Categories.Category.Construction.Functors open import Categories.Diagram.Limit as Lim open import Categories.Diagram.Limit.Properties open import Categories.Diagram.Equalizer.Limit C open import Categories.Diagram.Cone.Properties open import Categories.Object.Product.Limit C open import Categories.Object.Terminal.Limit C open import Categories.Functor open import Categories.Functor.Continuous open import Categories.Functor.Properties open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) import Categories.Category.Construction.Cones as Co import Categories.Morphism.Reasoning as MR import Categories.Morphism as Mor import Categories.Morphism.Properties as Morₚ private variable o′ ℓ′ e′ o″ ℓ″ e″ : Level module C = Category C module _ (Com : Complete o′ ℓ′ e′ C) where Complete⇒FinitelyComplete : FinitelyComplete C Complete⇒FinitelyComplete = record { cartesian = record { terminal = limit⇒⊥ (Com (⊥⇒limit-F _ _ _)) ; products = record { product = λ {A B} → limit⇒product (Com (product⇒limit-F _ _ _ A B)) } } ; equalizer = λ f g → limit⇒equalizer (Com (equalizer⇒limit-F _ _ _ f g)) } module _ {D : Category o′ ℓ′ e′} (Com : Complete o″ ℓ″ e″ D) where private D^C = Functors C D module D^C = Category D^C module D = Category D module _ {J : Category o″ ℓ″ e″} (F : Functor J D^C) where private module J = Category J module F = Functor F open F module F₀ j = Functor (F₀ j) module F₁ {a b} (f : a J.⇒ b) = NaturalTransformation (F₁ f) F[-,_] : C.Obj → Functor J D F[-, X ] = record { F₀ = λ j → F₀.₀ j X ; F₁ = λ f → F₁.η f X ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = λ eq → F-resp-≈ eq -- this application cannot be eta reduced } F[-,-] : Functor C (Functors J D) F[-,-] = record { F₀ = F[-,_] ; F₁ = λ f → ntHelper record { η = λ j → F₀.₁ j f ; commute = λ g → F₁.sym-commute g f } ; identity = F₀.identity _ ; homomorphism = F₀.homomorphism _ ; F-resp-≈ = λ eq → F₀.F-resp-≈ _ eq } module F[-,-] = Functor F[-,-] module LimFX X = Limit (Com F[-, X ]) open LimFX hiding (commute) K⇒lim : ∀ {X Y} (f : X C.⇒ Y) K → Co.Cones F[-, Y ] [ nat-map-Cone (F[-,-].₁ f) K , limit Y ] K⇒lim f K = rep-cone _ (nat-map-Cone (F[-,-].₁ f) K) lim⇒lim : ∀ {X Y} (f : X C.⇒ Y) → Co.Cones F[-, Y ] [ nat-map-Cone (F[-,-].₁ f) (limit X) , limit Y ] lim⇒lim f = K⇒lim f (limit _) module lim⇒lim {X Y} (f : X C.⇒ Y) = Co.Cone⇒ F[-, Y ] (lim⇒lim f) module FCone (K : Co.Cone F) where open Co.Cone F K public module N = Functor N module ψ j = NaturalTransformation (ψ j) module FCone⇒ {K K′ : Co.Cone F} (K⇒K′ : Co.Cone⇒ F K K′) where open Co.Cone⇒ F K⇒K′ public module arr = NaturalTransformation arr FXcone : ∀ X → (K : Co.Cone F) → Co.Cone F[-, X ] FXcone X K = record { N = N.₀ X ; apex = record { ψ = λ j → ψ.η j X ; commute = λ f → commute f -- this application cannot be eta reduced } } where open FCone K ⊤ : Co.Cone F ⊤ = record { N = record { F₀ = λ X → apex X ; F₁ = λ {A B} f → lim⇒lim.arr f ; identity = λ {X} → terminal.!-unique X record { arr = D.id ; commute = D.identityʳ ○ ⟺ (elimˡ (F₀.identity _)) } ; homomorphism = λ {X Y Z} {f g} → terminal.!-unique₂ Z {nat-map-Cone (F[-,-].₁ (g C.∘ f)) (limit X)} {terminal.! Z} {record { commute = λ {j} → begin proj Z j ∘ lim⇒lim.arr g ∘ lim⇒lim.arr f ≈⟨ pullˡ (lim⇒lim.commute g) ⟩ (F₀.₁ j g ∘ proj Y j) ∘ lim⇒lim.arr f ≈⟨ pullʳ (lim⇒lim.commute f) ⟩ F₀.₁ j g ∘ F₀.₁ j f ∘ proj X j ≈˘⟨ pushˡ (F₀.homomorphism j) ⟩ F₀.₁ j (g C.∘ f) ∘ proj X j ∎ }} ; F-resp-≈ = λ {A B} {f g} eq → terminal.!-unique B record { commute = lim⇒lim.commute g ○ ∘-resp-≈ˡ (F₀.F-resp-≈ _ (C.Equiv.sym eq)) } } ; apex = record { ψ = λ j → ntHelper record { η = λ X → proj X j ; commute = λ _ → LimFX.commute _ } ; commute = λ f {X} → limit-commute X f } } where open D open D.HomReasoning open MR D K⇒⊤′ : ∀ X {K} → Co.Cones F [ K , ⊤ ] → Co.Cones F[-, X ] [ FXcone X K , LimFX.limit X ] K⇒⊤′ X {K} K⇒⊤ = record { arr = arr.η X ; commute = comm } where open FCone⇒ K⇒⊤ renaming (commute to comm) complete : Limit F complete = record { terminal = record { ⊤ = ⊤ ; ! = λ {K} → let module K = FCone K in record { arr = ntHelper record { η = λ X → rep X (FXcone X K) ; commute = λ {X Y} f → terminal.!-unique₂ Y {nat-map-Cone (F[-,-].₁ f) (FXcone X K)} {record { commute = λ {j} → begin proj Y j ∘ rep Y (FXcone Y K) ∘ K.N.₁ f ≈⟨ pullˡ (LimFX.commute Y) ⟩ K.ψ.η j Y ∘ K.N.F₁ f ≈⟨ K.ψ.commute j f ⟩ F₀.₁ j f ∘ K.ψ.η j X ∎ }} {record { commute = λ {j} → begin proj Y j ∘ lim⇒lim.arr f ∘ rep X (FXcone X K) ≈⟨ pullˡ (lim⇒lim.commute f) ⟩ (F₀.₁ j f ∘ proj X j) ∘ rep X (FXcone X K) ≈⟨ pullʳ (LimFX.commute X) ⟩ F₀.₁ j f ∘ K.ψ.η j X ∎ }} } ; commute = λ {_} {X} → LimFX.commute X } ; !-unique = λ K⇒⊤ {X} → terminal.!-unique X (K⇒⊤′ X K⇒⊤) } } where open D open D.HomReasoning open MR D ev : C.Obj → Functor D^C D ev = evalF C D module _ (L : Limit F) (X : C.Obj) where private module ev = Functor (ev X) open Mor D^C module DM = Mor D open Morₚ D open D.HomReasoning open MR D L′ : Limit (ev X ∘F F) L′ = Com (ev X ∘F F) Fiso : F[-, X ] ≃ ev X ∘F F Fiso = record { F⇒G = ntHelper record { η = λ _ → D.id ; commute = λ _ → id-comm-sym ○ D.∘-resp-≈ˡ (introʳ (F₀.identity _)) } ; F⇐G = ntHelper record { η = λ _ → D.id ; commute = λ _ → D.∘-resp-≈ʳ (elimʳ (F₀.identity _)) ○ id-comm-sym } ; iso = λ _ → record { isoˡ = D.identity² ; isoʳ = D.identity² } } apex-iso : Limit.apex L ≅ Limit.apex complete apex-iso = up-to-iso F L complete apex-iso′ : Limit.apex (Com F[-, X ]) DM.≅ Limit.apex L′ apex-iso′ = ≃⇒lim≅ Fiso (Com F[-, X ]) L′ project-iso : Functor.F₀ (Limit.apex L) X DM.≅ Limit.apex L′ project-iso = record { from = ai.from D.∘ from.η X ; to = to.η X D.∘ ai.to ; iso = Iso-∘ (record { isoˡ = isoˡ ; isoʳ = isoʳ }) ai.iso } where open _≅_ apex-iso module from = NaturalTransformation from module to = NaturalTransformation to module ai = DM._≅_ apex-iso′ Functors-Complete : Complete o″ ℓ″ e″ D^C Functors-Complete F = complete F evalF-Continuous : ∀ X → Continuous o″ ℓ″ e″ (evalF C D X) evalF-Continuous X {J} {F} L = Com (evalF C D X ∘F F) , project-iso F L X
{ "alphanum_fraction": 0.4815907482, "avg_line_length": 34.3076923077, "ext": "agda", "hexsha": "5e6b420205cef42344186a2b5a0bfd0a5f20226d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Category/Complete/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Category/Complete/Properties.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Category/Complete/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2810, "size": 8474 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Wedge.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.HITs.Pushout.Base open import Cubical.Data.Unit _⋁_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Type (ℓ-max ℓ ℓ') _⋁_ (A , ptA) (B , ptB) = Pushout {A = Unit} {B = A} {C = B} (λ _ → ptA) (λ _ → ptB) -- pointed versions _⋁∙ₗ_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ') A ⋁∙ₗ B = (A ⋁ B) , (inl (snd A)) _⋁∙ᵣ_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ') A ⋁∙ᵣ B = (A ⋁ B) , (inr (snd B)) -- Wedge sum of Units is contractible isContr-Unit⋁Unit : isContr ((Unit , tt) ⋁ (Unit , tt)) fst isContr-Unit⋁Unit = inl tt snd isContr-Unit⋁Unit (inl tt) = refl snd isContr-Unit⋁Unit (inr tt) = push tt snd isContr-Unit⋁Unit (push tt i) j = push tt (i ∧ j)
{ "alphanum_fraction": 0.6226851852, "avg_line_length": 32, "ext": "agda", "hexsha": "4c35559e3bd2ef6990ae291831a10e7a990ef2e8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Wedge/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Wedge/Base.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Wedge/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 389, "size": 864 }
open import Agda.Builtin.Nat data Tm : Nat → Set where UP : ∀ {n} → Tm n → Tm n !_ : ∀ {n} → Tm n → Tm (suc n) ! UP t = UP (! t) data Ty : Nat → Set where ⊥ : ∀ {n} → Ty n _∶_ : ∀ {n} → Tm n → Ty n → Ty (suc n) data Cx : Set where ∅ : Cx _,_ : ∀ {n} → Cx → Ty n → Cx data _⊇_ : Cx → Cx → Set where base : ∅ ⊇ ∅ weak : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ Γ lift : ∀ {Γ Γ′ n} {A : Ty n} → Γ′ ⊇ Γ → (Γ′ , A) ⊇ (Γ , A) data True (Γ : Cx) : ∀ {n} → Ty n → Set where up : ∀ {n} {t : Tm n} {A : Ty n} → True Γ (t ∶ A) → True Γ ((! t) ∶ (t ∶ A)) ren-true--pass : ∀ {n Γ Γ′} {A : Ty n} → Γ′ ⊇ Γ → True Γ A → True Γ′ A ren-true--pass η (up j) = up (ren-true--pass η j) ren-true--fail : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → True Γ A → True Γ′ A ren-true--fail η (up j) = up (ren-true--fail η j)
{ "alphanum_fraction": 0.4396014944, "avg_line_length": 26.7666666667, "ext": "agda", "hexsha": "fae21973f9d6f515b6699c88aa4437fb8518b50d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1982.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1982.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1982.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 412, "size": 803 }
-- {-# OPTIONS --allow-unsolved-metas #-} module Issue2369.OpenIP where test : Set test = {!!} -- unsolved interaction point -- postulate A : {!!}
{ "alphanum_fraction": 0.6315789474, "avg_line_length": 15.2, "ext": "agda", "hexsha": "e5a54e046edada1e975f19fd667de7df8f5ec006", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2369/OpenIP.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2369/OpenIP.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2369/OpenIP.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 152 }
module Generic.Lib.Equality.Coerce where open import Generic.Lib.Intro open import Generic.Lib.Equality.Propositional open import Generic.Lib.Decidable open import Generic.Lib.Data.Product Coerce′ : ∀ {α β} -> α ≡ β -> Set α -> Set β Coerce′ refl = id coerce′ : ∀ {α β} {A : Set α} -> (q : α ≡ β) -> A -> Coerce′ q A coerce′ refl = id uncoerce′ : ∀ {α β} {A : Set α} -> (q : α ≡ β) -> Coerce′ q A -> A uncoerce′ refl = id inspectUncoerce′ : ∀ {α β} {A : Set α} -> (q : α ≡ β) -> (p : Coerce′ q A) -> ∃ λ x -> p ≡ coerce′ q x inspectUncoerce′ refl x = x , refl split : ∀ {α β γ δ} {A : Set α} {B : A -> Set β} {C : Set γ} -> (q : α ⊔ β ≡ δ) -> Coerce′ q (Σ A B) -> (∀ x -> B x -> C) -> C split q p g = uncurry g (uncoerce′ q p) decCoerce′ : ∀ {α β} {A : Set α} -> (q : α ≡ β) -> IsSet A -> IsSet (Coerce′ q A) decCoerce′ refl = id data Coerce {β} : ∀ {α} -> α ≡ β -> Set α -> Set β where coerce : ∀ {A} -> A -> Coerce refl A qcoerce : ∀ {α β} {A : Set α} {q : α ≡ β} -> A -> Coerce q A qcoerce {q = refl} = coerce
{ "alphanum_fraction": 0.5272206304, "avg_line_length": 31.7272727273, "ext": "agda", "hexsha": "db8e9fca435ac642408830fa94125050bc08981d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Equality/Coerce.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Equality/Coerce.agda", "max_line_length": 81, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Equality/Coerce.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 424, "size": 1047 }
module Function.Equals where import Lvl open import Functional import Function.Names as Names open import Logic open import Logic.Propositional open import Structure.Setoid open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Type module Dependent {ℓ₁ ℓ₂ ℓₑ₂} {A : Type{ℓ₁}} {B : A → Type{ℓ₂}} ⦃ equiv-B : ∀{a} → Equiv{ℓₑ₂}(B(a)) ⦄ where infixl 15 _⊜_ -- Function equivalence. When the types and all their values are shared/equivalent. record _⊜_ (f : (a : A) → B(a)) (g : (a : A) → B(a)) : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓₑ₂} where constructor intro field proof : (f Names.⊜ g) instance [⊜]-reflexivity : Reflexivity(_⊜_) Reflexivity.proof([⊜]-reflexivity) = intro(reflexivity(_≡_) ⦃ Equiv.reflexivity(equiv-B) ⦄) instance [⊜]-symmetry : Symmetry(_⊜_) Symmetry.proof([⊜]-symmetry) (intro fg) = intro(symmetry(_≡_) ⦃ Equiv.symmetry(equiv-B) ⦄ fg) instance [⊜]-transitivity : Transitivity(_⊜_) Transitivity.proof([⊜]-transitivity) (intro fg) (intro gh) = intro(transitivity(_≡_) ⦃ Equiv.transitivity(equiv-B) ⦄ fg gh) instance [⊜]-equivalence : Equivalence(_⊜_) [⊜]-equivalence = record{} instance [⊜]-equiv : Equiv((a : A) → B(a)) [⊜]-equiv = intro(_⊜_) ⦃ [⊜]-equivalence ⦄ instance [⊜]-sub : (_≡_) ⊆₂ (_⊜_) _⊆₂_.proof [⊜]-sub (intro proof) = intro proof module _ {ℓ₁ ℓ₂ ℓₑ₂} {A : Type{ℓ₁}} {B : Type{ℓ₂}} ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ where private module D = Dependent {A = A} {B = const B} ⦃ equiv-B ⦄ open D using (module _⊜_ ; intro) public _⊜_ = D._⊜_ [⊜]-reflexivity = D.[⊜]-reflexivity [⊜]-symmetry = D.[⊜]-symmetry [⊜]-transitivity = D.[⊜]-transitivity [⊜]-equivalence = D.[⊜]-equivalence [⊜]-equiv = D.[⊜]-equiv [⊜]-sub = D.[⊜]-sub
{ "alphanum_fraction": 0.614668856, "avg_line_length": 32.625, "ext": "agda", "hexsha": "c83a8952163633a19bb5d3028b827c80ee6e137a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Equals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Equals.agda", "max_line_length": 127, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Equals.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 761, "size": 1827 }
------------------------------------------------------------------------------ -- Proving mirror (mirror t) = t using a list of trees ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.MirrorListSL where open import Algebra open import Function open import Data.List hiding ( reverse ) open import Data.List.Properties open import Data.Product hiding ( map ) open import Relation.Binary.PropositionalEquality open ≡-Reasoning module LM {A : Set} = Monoid (++-monoid A) ------------------------------------------------------------------------------ -- Auxiliary functions reverse : {A : Set} → List A → List A reverse [] = [] reverse (x ∷ xs) = reverse xs ++ x ∷ [] ++-rightIdentity : {A : Set}(xs : List A) → xs ++ [] ≡ xs ++-rightIdentity = proj₂ LM.identity reverse-++ : {A : Set}(xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++ [] ys = sym (++-rightIdentity (reverse ys)) reverse-++ (x ∷ xs) [] = cong (λ x' → reverse x' ++ x ∷ []) (++-rightIdentity xs) reverse-++ (x ∷ xs) (y ∷ ys) = begin reverse (xs ++ y ∷ ys) ++ x ∷ [] ≡⟨ cong (λ x' → x' ++ x ∷ []) (reverse-++ xs (y ∷ ys)) ⟩ (reverse (y ∷ ys) ++ reverse xs) ++ x ∷ [] ≡⟨ LM.assoc (reverse (y ∷ ys)) (reverse xs) (x ∷ []) ⟩ reverse (y ∷ ys) ++ reverse (x ∷ xs) ∎ ------------------------------------------------------------------------------ -- The rose tree type. data Tree (A : Set) : Set where tree : A → List (Tree A) → Tree A ------------------------------------------------------------------------------ -- The mirror function. {-# TERMINATING #-} mirror : {A : Set} → Tree A → Tree A mirror (tree a ts) = tree a (reverse (map mirror ts)) -- The proof of the property. mirror-involutive : {A : Set} → (t : Tree A) → mirror (mirror t) ≡ t helper : {A : Set} → (ts : List (Tree A)) → reverse (map mirror (reverse (map mirror ts))) ≡ ts mirror-involutive (tree a []) = refl mirror-involutive (tree a (t ∷ ts)) = begin tree a (reverse (map mirror (reverse (map mirror ts) ++ mirror t ∷ []))) ≡⟨ cong (tree a) (helper (t ∷ ts)) ⟩ tree a (t ∷ ts) ∎ helper [] = refl helper (t ∷ ts) = begin reverse (map mirror (reverse (map mirror ts) ++ mirror t ∷ [])) ≡⟨ cong reverse (map-++-commute mirror (reverse (map mirror ts)) (mirror t ∷ [])) ⟩ reverse (map mirror (reverse (map mirror ts)) ++ (map mirror (mirror t ∷ []))) ≡⟨ subst (λ x → (reverse (map mirror (reverse (map mirror ts)) ++ (map mirror (mirror t ∷ [])))) ≡ x) (reverse-++ (map mirror (reverse (map mirror ts))) (map mirror (mirror t ∷ []))) refl ⟩ reverse (map mirror (mirror t ∷ [])) ++ reverse (map mirror (reverse (map mirror ts))) ≡⟨ refl ⟩ mirror (mirror t) ∷ reverse (map mirror (reverse (map mirror ts))) ≡⟨ cong (flip _∷_ (reverse (map mirror (reverse (map mirror ts))))) (mirror-involutive t) ⟩ t ∷ reverse (map mirror (reverse (map mirror ts))) ≡⟨ cong (_∷_ t) (helper ts) ⟩ t ∷ ts ∎
{ "alphanum_fraction": 0.4708284714, "avg_line_length": 34.9795918367, "ext": "agda", "hexsha": "51117904898c9ca06aded5613817fff7298b3bbf", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorListSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorListSL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/MirrorListSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 939, "size": 3428 }
module NativeIO where open import Unit public open import Data.List open import Data.Nat open import Data.String.Base using (String) public {-# FOREIGN GHC import qualified Data.Text #-} {-# FOREIGN GHC import qualified System.Environment #-} postulate NativeIO : Set → Set nativeReturn : {A : Set} → A → NativeIO A _native>>=_ : {A B : Set} → NativeIO A → (A → NativeIO B) → NativeIO B {-# BUILTIN IO NativeIO #-} {-# COMPILE GHC NativeIO = type IO #-} {-# COMPILE GHC nativeReturn = (\_ -> return :: a -> IO a) #-} {-# COMPILE GHC _native>>=_ = (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-} postulate nativeGetLine : NativeIO String nativePutStrLn : String → NativeIO Unit {-# COMPILE GHC nativePutStrLn = (\ s -> putStrLn (Data.Text.unpack s)) #-} {-# COMPILE GHC nativeGetLine = (fmap Data.Text.pack getLine) #-} postulate getArgs : NativeIO (List String) primShowNat : ℕ → String {-# COMPILE GHC primShowNat = Data.Text.pack . show #-} {-# COMPILE GHC getArgs = fmap (map Data.Text.pack) System.Environment.getArgs #-} -- -- Debug function -- {-# FOREIGN GHC import qualified Debug.Trace as Trace #-} {-# FOREIGN GHC debug = flip Trace.trace debug' :: c -> Data.Text.Text -> c debug' c txt = debug c (Data.Text.unpack txt) #-} postulate debug : {A : Set} → A → String → A --debug {A} a s = a {-# COMPILE GHC debug = (\x -> debug') #-} postulate debug₁ : {A : Set₁} → A → String → A -- debug₁ {A} a s = a {-# COMPILE GHC debug₁ = (\x -> debug') #-}
{ "alphanum_fraction": 0.6273209549, "avg_line_length": 23.9365079365, "ext": "agda", "hexsha": "e57efaf93b2cbdbf0e5791bcdf73c2b0d127c9f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "src/NativeIO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "src/NativeIO.agda", "max_line_length": 86, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "src/NativeIO.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 430, "size": 1508 }
-- {-# OPTIONS -v tc.lhs.top:15 #-} -- {-# OPTIONS -v term:20 #-} -- Andreas, 2014-11-08, following a complaint by Francesco Mazzoli open import Common.Prelude data Subst : (d : Nat) → Set where c₁ : ∀ {d} → Subst d → Subst d c₂ : ∀ d₁ d₂ → Subst d₁ → Subst d₂ → Subst (suc d₁ + d₂) postulate comp : ∀ {d₁ d₂} → Subst d₁ → Subst d₂ → Subst (d₁ + d₂) lookup : ∀ d → Nat → Subst d → Set₁ lookup d zero (c₁ ρ) = Set lookup d (suc v) (c₁ ρ) = lookup d v ρ lookup .(suc d₁ + d₂) v (c₂ d₁ d₂ ρ σ) = lookup (d₁ + d₂) v (comp ρ σ) -- The dot pattern here is actually normalized, so it is -- -- suc (d₁ + d₂) -- -- the recursive call it with (d₁ + d₂). -- In such simple cases, Agda can now recognize that the pattern is -- constructor applied to call argument, which is valid descent. -- This should termination check now. -- Note however, that Agda only looks for syntactic equality, -- since it is not allowed to normalize terms on the rhs (yet). hidden : ∀{d} → Nat → Subst d → Set₁ hidden zero (c₁ ρ) = Set hidden (suc v) (c₁ ρ) = hidden v ρ hidden v (c₂ d₁ d₂ ρ σ) = hidden v (comp ρ σ) -- This should also termination check, and looks pretty magical... ;-)
{ "alphanum_fraction": 0.5982498011, "avg_line_length": 32.2307692308, "ext": "agda", "hexsha": "a970e2a252d00ef82b803c4835e035f909a6de0b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/SubTermination.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/SubTermination.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/SubTermination.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 423, "size": 1257 }
-- Evidence producing divmod. module Numeric.Nat.DivMod where open import Prelude open import Control.WellFounded open import Tactic.Nat open import Tactic.Nat.Reflect open import Tactic.Nat.Exp open import Numeric.Nat.Properties private lemModAux′ : ∀ k m b j → modAux k m (suc j + b) j ≡ modAux 0 m b m lemModAux′ k m b zero = refl lemModAux′ k m b (suc j) = lemModAux′ (suc k) m b j lemModAux : ∀ k m b j → modAux k m (suc b + j) j ≡ modAux 0 m b m lemModAux k m b j = (λ z → modAux k m (suc z) j) $≡ auto ⟨≡⟩ lemModAux′ k m b j lemDivAux′ : ∀ k m b j → divAux k m (suc j + b) j ≡ divAux (suc k) m b m lemDivAux′ k m b zero = refl lemDivAux′ k m b (suc j) = lemDivAux′ k m b j lemDivAux : ∀ k m b j → divAux k m (suc b + j) j ≡ divAux (suc k) m b m lemDivAux k m b j = (λ z → divAux k m (suc z) j) $≡ auto ⟨≡⟩ lemDivAux′ k m b j modLessAux : ∀ k m n j → k + j < suc m → modAux k m n j < suc m modLessAux k m zero j lt = by lt modLessAux k m (suc n) zero _ = modLessAux 0 m n m auto modLessAux k m (suc n) (suc j) lt = modLessAux (suc k) m n j (by lt) modLess : ∀ a b → a mod suc b < suc b modLess a b = fast-diff $ modLessAux 0 b a b auto divAuxGt : ∀ k a b j → a ≤ j → divAux k b a j ≡ k divAuxGt k zero b j lt = refl divAuxGt k (suc a) b zero lt = refute lt divAuxGt k (suc a) b (suc j) lt = divAuxGt k a b j (by lt) modAuxGt : ∀ k a b j → a ≤ j → modAux k b a j ≡ k + a modAuxGt k zero b j lt = auto modAuxGt k (suc a) b zero lt = refute lt modAuxGt k (suc a) b (suc j) lt = by (modAuxGt (suc k) a b j (by lt)) qr-mul : (b q r : Nat) → Nat qr-mul b q r = q * suc b + r divmodAux : ∀ k a b → Acc _<_ a → qr-mul b (divAux k b a b) (modAux 0 b a b) ≡ qr-mul b k a divmodAux k a b wf with compare b a divmodAux k a b wf | greater lt = let leq : a ≤ b leq = by lt in qr-mul b $≡ divAuxGt k a b b leq *≡ modAuxGt 0 a b b leq divmodAux k a .a wf | equal refl = qr-mul a $≡ divAuxGt k a a a (diff! 0) *≡ modAuxGt 0 a a a (diff! 0) divmodAux k ._ b (acc wf) | less (diff! j) = qr-mul b $≡ lemDivAux k b j b *≡ lemModAux 0 b j b ⟨≡⟩ by (divmodAux (suc k) j b (wf j auto)) divmod-spec : ∀ a b′ → let b = suc b′ in a div b * b + a mod b ≡ a divmod-spec a b = eraseEquality (divmodAux 0 a b (wfNat a)) --- Public definitions --- data DivMod (a b : Nat) : Set where qr : ∀ q r → r < b → q * b + r ≡ a → DivMod a b quot : ∀ {a b} → DivMod a b → Nat quot (qr q _ _ _) = q rem : ∀ {a b} → DivMod a b → Nat rem (qr _ r _ _) = r rem-less : ∀ {a b} (d : DivMod a b) → rem d < b rem-less (qr _ _ lt _) = lt quot-rem-sound : ∀ {a b} (d : DivMod a b) → quot d * b + rem d ≡ a quot-rem-sound (qr _ _ _ eq) = eq syntax divMod b a = a divmod b divMod : ∀ b {{_ : NonZero b}} a → DivMod a b divMod zero {{}} a divMod (suc b) a = qr (a div suc b) (a mod suc b) (modLess a b) (divmod-spec a b) {-# INLINE divMod #-} --- Properties --- mod-less : ∀ b {{_ : NonZero b}} a → a mod b < b mod-less zero {{}} _ mod-less (suc b) a = rem-less (a divmod suc b) divmod-sound : ∀ b {{_ : NonZero b}} a → (a div b) * b + a mod b ≡ a divmod-sound zero {{}} _ divmod-sound (suc b) a = quot-rem-sound (a divmod suc b) private divmod-unique′ : (b q₁ q₂ r₁ r₂ : Nat) → r₁ < b → r₂ < b → q₁ * b + r₁ ≡ q₂ * b + r₂ → q₁ ≡ q₂ × r₁ ≡ r₂ divmod-unique′ b zero zero r₁ r₂ lt₁ lt₂ eq = refl , eq divmod-unique′ b zero (suc q₂) ._ r₂ lt₁ lt₂ refl = refute lt₁ divmod-unique′ b (suc q₁) zero r₁ ._ lt₁ lt₂ refl = refute lt₂ divmod-unique′ b (suc q₁) (suc q₂) r₁ r₂ lt₁ lt₂ eq = first (cong suc) $ divmod-unique′ b q₁ q₂ r₁ r₂ lt₁ lt₂ (by eq) divmod-unique : ∀ {a b} (d₁ d₂ : DivMod a b) → quot d₁ ≡ quot d₂ × rem d₁ ≡ rem d₂ divmod-unique (qr q₁ r₁ lt₁ eq₁) (qr q₂ r₂ lt₂ eq₂) = case divmod-unique′ _ q₁ q₂ r₁ r₂ lt₁ lt₂ (eq₁ ⟨≡⟩ʳ eq₂) of λ p → eraseEquality (fst p) , eraseEquality (snd p) quot-unique : ∀ {a b} (d₁ d₂ : DivMod a b) → quot d₁ ≡ quot d₂ quot-unique d₁ d₂ = fst (divmod-unique d₁ d₂) rem-unique : ∀ {a b} (d₁ d₂ : DivMod a b) → rem d₁ ≡ rem d₂ rem-unique d₁ d₂ = snd (divmod-unique d₁ d₂) instance ShowDivMod : ∀ {a b} → Show (DivMod a b) showsPrec {{ShowDivMod {a} {b}}} p (qr q r _ _) = showParen (p >? 0) $ shows a ∘ showString " == " ∘ shows q ∘ showString " * " ∘ shows b ∘ showString " + " ∘ shows r
{ "alphanum_fraction": 0.5700179533, "avg_line_length": 36.5245901639, "ext": "agda", "hexsha": "a852fe5f593182d0c34b584bcdf2cfec5f4ead2c", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/DivMod.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/DivMod.agda", "max_line_length": 106, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/DivMod.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1898, "size": 4456 }
-- Positivity for functions in instantiated parameterised modules. module Issue421 where module Foo (_ : Set₁) where Id : Set → Set Id n = n module FooApp = Foo Set data ⊤ : Set where tt : ⊤ ⟦_⟧₁ : ⊤ → Set → Set ⟦ tt ⟧₁ x = FooApp.Id x -- works: ⟦ tt ⟧ x = Foo.Id Set x data μ₁ x : Set where fix : ⟦ x ⟧₁ (μ₁ x) -> μ₁ x -- Instantiating the module in another parameterised module: module Matrices (J : Set) where Id : (J → Set) → J → Set Id m i = m i data Poly : Set where id : (D : Poly) -> Poly module Dim (I : Set) where module M = Matrices I ⟦_⟧₂ : Poly → (I → Set) → (I → Set) ⟦ id D ⟧₂ x i = M.Id x i data μ₂ (p : Poly) (i : I) : Set where fix : ⟦ p ⟧₂ (μ₂ p) i -> μ₂ p i
{ "alphanum_fraction": 0.5724233983, "avg_line_length": 18.8947368421, "ext": "agda", "hexsha": "d8a19b95114ada432dd4a0fb86222fd6c4981663", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue421.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue421.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue421.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 279, "size": 718 }
module ObsEq2 where data Nat : Set where zero : Nat suc : Nat -> Nat data Fin : Nat -> Set where fz : {n : Nat} -> Fin (suc n) fs : {n : Nat} -> Fin n -> Fin (suc n) infixr 40 _::_ _,_ data List (X : Set) : Set where ε : List X _::_ : X -> List X -> List X record One : Set where Π : (S : Set)(T : S -> Set) -> Set Π S T = (x : S) -> T x data Σ (S : Set)(T : S -> Set) : Set where _,_ : (s : S) -> T s -> Σ S T split : {S : Set}{T : S -> Set}{P : Σ S T -> Set} (p : (s : S)(t : T s) -> P (s , t)) -> (x : Σ S T) -> P x split p (s , t) = p s t fst : {S : Set}{T : S -> Set}(x : Σ S T) -> S fst = split \s t -> s snd : {S : Set}{T : S -> Set}(x : Σ S T) -> T (fst x) snd = split \s t -> t mutual data ∗ : Set where /Π/ : (S : ∗)(T : [ S ] -> ∗) -> ∗ /Σ/ : (S : ∗)(T : [ S ] -> ∗) -> ∗ /Fin/ : Nat -> ∗ /D/ : (I : ∗)(A : [ I ] -> ∗)(R : (i : [ I ]) -> [ A i ] -> List [ I ]) -> [ I ] -> ∗ [_] : ∗ -> Set [ /Π/ S T ] = Π [ S ] \s -> [ T s ] [ /Σ/ S T ] = Σ [ S ] \s -> [ T s ] [ /Fin/ n ] = Fin n [ /D/ I A R i ] = Σ [ A i ] \a -> [ Kids I (/D/ I A R) (R i a) ] Kids : (I : ∗)(P : [ I ] -> ∗) -> List [ I ] -> ∗ Kids I P ε = /Fin/ (suc zero) Kids I P (i :: is) = /Σ/ (P i) \_ -> Kids I P is /0/ : ∗ /0/ = /Fin/ zero /1/ : ∗ /1/ = /Fin/ (suc zero) /2/ : ∗ /2/ = /Fin/ (suc (suc zero)) Branches : {n : Nat}(P : Fin n -> Set) -> Set Branches {zero} P = One Branches {suc n} P = Σ (P fz) \_ -> Branches {n} \x -> P (fs x) case : {n : Nat}{P : Fin n -> Set} -> Branches P -> (x : Fin n) -> P x case pps fz = fst pps case pps (fs x) = case (snd pps) x infixr 40 _⟶_ infixr 60 _×_ _⟶_ : ∗ -> ∗ -> ∗ S ⟶ T = /Π/ S \_ -> T _×_ : ∗ -> ∗ -> ∗ S × T = /Σ/ S \_ -> T NatR : [ /1/ ] -> [ /2/ ] -> List [ /1/ ] NatR _ fz = ε NatR _ (fs fz) = fz :: ε NatR _ (fs (fs ())) /Nat/ : ∗ /Nat/ = /D/ /1/ (\_ -> /2/) NatR fz /zero/ : [ /Nat/ ] /zero/ = fz , fz /suc/ : [ /Nat/ ⟶ /Nat/ ] /suc/ n = fs fz , n , fz Hyps : (I : ∗)(K : [ I ] -> ∗) (P : (i : [ I ]) -> [ K i ] -> ∗) (is : List [ I ]) -> [ Kids I K is ] -> ∗ Hyps I K P ε _ = /1/ Hyps I K P (i :: is) (k , ks) = /Σ/ (P i k) \_ -> Hyps I K P is ks recs : (I : ∗)(K : [ I ] -> ∗) (P : (i : [ I ]) -> [ K i ] -> ∗) (e : (i : [ I ])(k : [ K i ]) -> [ P i k ]) (is : List [ I ])(ks : [ Kids I K is ]) -> [ Hyps I K P is ks ] recs I K P e ε _ = fz recs I K P e (i :: is) (k , ks) = ( e i k , recs I K P e is ks ) elim : (I : ∗)(A : [ I ] -> ∗)(R : (i : [ I ]) -> [ A i ] -> List [ I ]) (P : (i : [ I ]) -> [ /D/ I A R i ] -> ∗) -> [( (/Π/ I \i -> /Π/ (A i) \a -> /Π/ (Kids I (/D/ I A R) (R i a)) \ks -> Hyps I (/D/ I A R) P (R i a) ks ⟶ P i (a , ks)) ⟶ /Π/ I \i -> /Π/ (/D/ I A R i) \x -> P i x )] elim I A R P p i (a , ks) = p i a ks (recs I (/D/ I A R) P (elim I A R P p) (R i a) ks) natElim : (P : [ /Nat/ ] -> ∗) -> [( P /zero/ ⟶ (/Π/ /Nat/ \n -> P n ⟶ P (/suc/ n)) ⟶ /Π/ /Nat/ P )] natElim P pz ps = elim /1/ (\_ -> /2/) NatR (case (P , _)) (case ( case (case ((\_ -> pz ) , _ ) , (split \n -> case (split (\h _ -> ps n h) , _ )) , _ ) , _ )) fz plus : [ /Nat/ ⟶ /Nat/ ⟶ /Nat/ ] plus x y = natElim (\_ -> /Nat/) y (\_ -> /suc/) x {- elim /1/ (\_ -> /2/) NatR (\_ _ -> /Nat/) (\_ -> case ((\_ _ -> y ) , split (\_ _ -> split (\n _ -> /suc/ n ) ) , _ ) ) fz x -} mutual _⇔_ : ∗ -> ∗ -> ∗ /Π/ S0 T0 ⇔ /Π/ S1 T1 = (S1 ⇔ S0) × /Π/ S1 \s1 -> /Π/ S0 \s0 -> (S1 > s1 ≅ S0 > s0) ⟶ (T0 s0 ⇔ T1 s1) /Σ/ S0 T0 ⇔ /Σ/ S1 T1 = (S0 ⇔ S1) × /Π/ S0 \s0 -> /Π/ S1 \s1 -> (S0 > s0 ≅ S1 > s1) ⟶ (T0 s0 ⇔ T1 s1) /Fin/ _ ⇔ /Π/ _ _ = /0/ /Fin/ _ ⇔ /Σ/ _ _ = /0/ /Fin/ _ ⇔ /D/ _ _ _ _ = /0/ /Π/ _ _ ⇔ /Fin/ _ = /0/ /Σ/ _ _ ⇔ /Fin/ _ = /0/ /D/ _ _ _ _ ⇔ /Fin/ _ = /0/ /Fin/ zero ⇔ /Fin/ zero = /1/ /Fin/ (suc m) ⇔ /Fin/ (suc n) = /Fin/ m ⇔ /Fin/ n /D/ I0 A0 R0 i0 ⇔ /D/ I1 A1 R1 i1 = (I0 ⇔ I1) × (/Π/ I0 \i0 -> /Π/ I1 \i1 -> (I0 > i0 ≅ I1 > i1) ⟶ (A0 i0 ⇔ A1 i1)) × (/Π/ I0 \i0 -> /Π/ I1 \i1 -> (I0 > i0 ≅ I1 > i1) ⟶ /Π/ (A0 i0) \a0 -> /Π/ (A1 i1) \a1 -> (A0 i0 > a0 ≅ A1 i1 > a1) ⟶ Eqs I0 (R0 i0 a0) I1 (R1 i1 a1)) × (I0 > i0 ≅ I1 > i1) _ ⇔ _ = /0/ Eqs : (I0 : ∗) -> List [ I0 ] -> (I1 : ∗) -> List [ I1 ] -> ∗ Eqs _ ε _ ε = /1/ Eqs I0 (i0 :: is0) I1 (i1 :: is1) = (I0 > i0 ≅ I1 > i1) × Eqs I0 is0 I1 is1 Eqs _ _ _ _ = /0/ _>_≅_>_ : (S : ∗) -> [ S ] -> (T : ∗) -> [ T ] -> ∗ /Π/ S0 T0 > f0 ≅ /Π/ S1 T1 > f1 = /Π/ S0 \s0 -> /Π/ S1 \s1 -> (S0 > s0 ≅ S1 > s1) ⟶ (T0 s0 > f0 s0 ≅ T1 s1 > f1 s1) /Σ/ S0 T0 > p0 ≅ /Σ/ S1 T1 > p1 = let s0 : [ S0 ] ; s0 = fst p0 s1 : [ S1 ] ; s1 = fst p1 in (S0 > s0 ≅ S1 > s1) × (T0 s0 > snd p0 ≅ T1 s1 > snd p1) /Fin/ (suc n0) > fz ≅ /Fin/ (suc n1) > fz = /1/ /Fin/ (suc n0) > fs x0 ≅ /Fin/ (suc n1) > fs x1 = /Fin/ n0 > x0 ≅ /Fin/ n1 > x1 /D/ I0 A0 R0 i0 > (a0 , ks0) ≅ /D/ I1 A1 R1 i1 > (a1 , ks1) = (A0 i0 > a0 ≅ A1 i1 > a1) × (Kids I0 (/D/ I0 A0 R0) (R0 i0 a0) > ks0 ≅ Kids I1 (/D/ I1 A1 R1) (R1 i1 a1) > ks1) _ > _ ≅ _ > _ = /0/ Resp : (S : ∗)(P : [ S ] -> ∗) {s0 s1 : [ S ]} -> [ (S > s0 ≅ S > s1) ⟶ (P s0 ⇔ P s1) ] Resp = {! !} [_>_] : (S : ∗)(s : [ S ]) -> [ S > s ≅ S > s ] [_>_] = {! !} KidsResp : (I0 : ∗)(I1 : ∗) -> [ I0 ⇔ I1 ] -> (P0 : [ I0 ] -> ∗)(P1 : [ I1 ] -> ∗) -> [( /Π/ I0 \i0 -> /Π/ I1 \i1 -> (I0 > i0 ≅ I1 > i1) ⟶ (P0 i0 ⇔ P1 i1) )] -> (is0 : List [ I0 ])(is1 : List [ I1 ]) -> [ Eqs I0 is0 I1 is1 ] -> [ Kids I0 P0 is0 ⇔ Kids I1 P1 is1 ] KidsResp = {! !} mutual _>_<_!_ : (S : ∗) -> [ S ] -> (T : ∗) -> [ S ⇔ T ] -> [ T ] /Π/ S0 T0 > f0 < /Π/ S1 T1 ! Q = let S1S0 : [ S1 ⇔ S0 ] S1S0 = fst Q T0T1 : [( /Π/ S1 \s1 -> /Π/ S0 \s0 -> (S1 > s1 ≅ S0 > s0) ⟶ (T0 s0 ⇔ T1 s1) )] T0T1 = snd Q in \s1 -> let s0 : [ S0 ] s0 = S1 > s1 < S0 ! S1S0 s1s0 : [( S1 > s1 ≅ S0 > s0 )] s1s0 = [| S1 > s1 < S0 ! S1S0 |] in T0 s0 > f0 s0 < T1 s1 ! T0T1 s1 s0 s1s0 /Σ/ S0 T0 > p0 < /Σ/ S1 T1 ! Q = let S0S1 : [ S0 ⇔ S1 ] S0S1 = fst Q T0T1 : [( /Π/ S0 \s0 -> /Π/ S1 \s1 -> (S0 > s0 ≅ S1 > s1) ⟶ (T0 s0 ⇔ T1 s1) )] T0T1 = snd Q s0 : [ S0 ] s0 = fst p0 s1 : [ S1 ] s1 = S0 > s0 < S1 ! S0S1 s0s1 : [ S0 > s0 ≅ S1 > s1 ] s0s1 = [| S0 > s0 < S1 ! S0S1 |] t0 : [ T0 s0 ] t0 = snd p0 t1 : [ T1 s1 ] t1 = T0 s0 > t0 < T1 s1 ! T0T1 s0 s1 s0s1 in s1 , t1 /Fin/ (suc n0) > fz < /Fin/ (suc n1) ! Q = fz /Fin/ (suc n0) > fs x < /Fin/ (suc n1) ! Q = fs (/Fin/ n0 > x < /Fin/ n1 ! Q) /D/ I0 A0 R0 i0 > (a0 , ks0) < /D/ I1 A1 R1 i1 ! Q = let I01 : [ I0 ⇔ I1 ] ; I01 = fst Q A01 : [( /Π/ I0 \i0 -> /Π/ I1 \i1 -> (I0 > i0 ≅ I1 > i1) ⟶ (A0 i0 ⇔ A1 i1) )] A01 = fst (snd Q) R01 : [( /Π/ I0 \i0 -> /Π/ I1 \i1 -> (I0 > i0 ≅ I1 > i1) ⟶ /Π/ (A0 i0) \a0 -> /Π/ (A1 i1) \a1 -> (A0 i0 > a0 ≅ A1 i1 > a1) ⟶ Eqs I0 (R0 i0 a0) I1 (R1 i1 a1) )] R01 = fst (snd (snd Q)) i01 : [ I0 > i0 ≅ I1 > i1 ] ; i01 = snd (snd (snd Q)) in (/Σ/ (A0 i0) \a0 -> Kids I0 (/D/ I0 A0 R0) (R0 i0 a0)) > (a0 , ks0) < (/Σ/ (A1 i1) \a1 -> Kids I1 (/D/ I1 A1 R1) (R1 i1 a1)) ! A01 i0 i1 i01 , \x0 x1 x01 -> KidsResp I0 I1 I01 (/D/ I0 A0 R0) (/D/ I1 A1 R1) (\j0 j1 j01 -> I01 , A01 , R01 , j01 ) (R0 i0 x0) (R1 i1 x1) (R01 i0 i1 i01 x0 x1 x01) /Π/ _ _ > _ < /Σ/ _ _ ! () /Π/ _ _ > _ < /Fin/ _ ! () /Π/ _ _ > _ < /D/ _ _ _ _ ! () /Σ/ _ _ > _ < /Π/ _ _ ! () /Σ/ _ _ > _ < /Fin/ _ ! () /Σ/ _ _ > _ < /D/ _ _ _ _ ! () /D/ _ _ _ _ > _ < /Π/ _ _ ! () /D/ _ _ _ _ > _ < /Σ/ _ _ ! () /D/ _ _ _ _ > _ < /Fin/ _ ! () /Fin/ _ > _ < /Π/ _ _ ! () /Fin/ _ > _ < /Σ/ _ _ ! () /Fin/ zero > () < /Fin/ zero ! _ /Fin/ zero > _ < /Fin/ (suc n) ! () /Fin/ (suc n) > _ < /Fin/ zero ! () /Fin/ _ > _ < /D/ _ _ _ _ ! () [|_>_<_!_|] : (S : ∗)(s : [ S ])(T : ∗)(q : [ S ⇔ T ]) -> [ S > s ≅ T > (S > s < T ! q) ] [| S > s < T ! q |] = {! !} ext : (S : ∗)(T : [ S ] -> ∗)(f g : [ /Π/ S T ]) -> [( /Π/ S \x -> T x > f x ≅ T x > g x )] -> [ /Π/ S T > f ≅ /Π/ S T > g ] ext S T f g h s0 s1 s01 = (T s0 > f s0 ≅ T s0 > g s0) > h s0 < (T s0 > f s0 ≅ T s1 > g s1) ! Resp S (\s1 -> T s0 > f s0 ≅ T s1 > g s1) s01 plusZeroLemma : [ (/Nat/ ⟶ /Nat/) > (\x -> plus x /zero/) ≅ (/Nat/ ⟶ /Nat/) > (\x -> plus /zero/ x) ] plusZeroLemma = ext /Nat/ (\_ -> /Nat/) (\x -> plus x /zero/) (\x -> plus /zero/ x) (natElim (\x -> /Nat/ > plus x /zero/ ≅ /Nat/ > plus /zero/ x) (fz , fz) (\n h -> [ (/Nat/ ⟶ /Nat/) > /suc/ ] (plus n /zero/) n h ))
{ "alphanum_fraction": 0.3495575221, "avg_line_length": 30.5405405405, "ext": "agda", "hexsha": "cc46487518c7958fdb4b2fb355295f18d8d24509", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/OTT/ObsEq2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/OTT/ObsEq2.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/OTT/ObsEq2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 4694, "size": 9040 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.Properties where open import Cubical.Algebra.Group.EilenbergMacLane.Base renaming (elim to EM-elim) open import Cubical.Algebra.Group.EilenbergMacLane.WedgeConnectivity open import Cubical.Algebra.Group.EilenbergMacLane.GroupStructure open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.AbGroup.TensorProduct open import Cubical.Algebra.AbGroup.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Loopspace open import Cubical.Functions.Morphism open import Cubical.Data.Sigma open import Cubical.Data.Nat hiding (_·_) open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec; elim to trElim) open import Cubical.HITs.EilenbergMacLane1 renaming (rec to EMrec) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; rec2 to trRec2) open import Cubical.HITs.Susp private variable ℓ ℓ' ℓ'' : Level isConnectedEM₁ : (G : Group ℓ) → isConnected 2 (EM₁ G) isConnectedEM₁ G = ∣ embase ∣ , h where h : (y : hLevelTrunc 2 (EM₁ G)) → ∣ embase ∣ ≡ y h = trElim (λ y → isOfHLevelSuc 1 (isOfHLevelTrunc 2 ∣ embase ∣ y)) (elimProp G (λ x → isOfHLevelTrunc 2 ∣ embase ∣ ∣ x ∣) refl) module _ {G' : AbGroup ℓ} where private G = fst G' open AbGroupStr (snd G') renaming (_+_ to _+G_) isConnectedEM : (n : ℕ) → isConnected (suc n) (EM G' n) fst (isConnectedEM zero) = ∣ 0g ∣ snd (isConnectedEM zero) y = isOfHLevelTrunc 1 _ _ isConnectedEM (suc zero) = isConnectedEM₁ (AbGroup→Group G') fst (isConnectedEM (suc (suc n))) = ∣ 0ₖ _ ∣ snd (isConnectedEM (suc (suc n))) = trElim (λ _ → isOfHLevelTruncPath) (trElim (λ _ → isOfHLevelSuc (3 + n) (isOfHLevelTruncPath {n = (3 + n)})) (raw-elim G' (suc n) (λ _ → isOfHLevelTrunc (3 + n) _ _) refl)) module _ (Ĝ : Group ℓ) where private G = fst Ĝ open GroupStr (snd Ĝ) emloop-id : emloop 1g ≡ refl emloop-id = emloop 1g ≡⟨ rUnit (emloop 1g) ⟩ emloop 1g ∙ refl ≡⟨ cong (emloop 1g ∙_) (rCancel (emloop 1g) ⁻¹) ⟩ emloop 1g ∙ (emloop 1g ∙ (emloop 1g) ⁻¹) ≡⟨ ∙assoc _ _ _ ⟩ (emloop 1g ∙ emloop 1g) ∙ (emloop 1g) ⁻¹ ≡⟨ cong (_∙ emloop 1g ⁻¹) ((emloop-comp Ĝ 1g 1g) ⁻¹) ⟩ emloop (1g · 1g) ∙ (emloop 1g) ⁻¹ ≡⟨ cong (λ g → emloop {Group = Ĝ} g ∙ (emloop 1g) ⁻¹) (·IdR 1g) ⟩ emloop 1g ∙ (emloop 1g) ⁻¹ ≡⟨ rCancel (emloop 1g) ⟩ refl ∎ emloop-inv : (g : G) → emloop (inv g) ≡ (emloop g) ⁻¹ emloop-inv g = emloop (inv g) ≡⟨ rUnit (emloop (inv g)) ⟩ emloop (inv g) ∙ refl ≡⟨ cong (emloop (inv g) ∙_) (rCancel (emloop g) ⁻¹) ⟩ emloop (inv g) ∙ (emloop g ∙ (emloop g) ⁻¹) ≡⟨ ∙assoc _ _ _ ⟩ (emloop (inv g) ∙ emloop g) ∙ (emloop g) ⁻¹ ≡⟨ cong (_∙ emloop g ⁻¹) ((emloop-comp Ĝ (inv g) g) ⁻¹) ⟩ emloop (inv g · g) ∙ (emloop g) ⁻¹ ≡⟨ cong (λ h → emloop {Group = Ĝ} h ∙ (emloop g) ⁻¹) (·InvL g) ⟩ emloop 1g ∙ (emloop g) ⁻¹ ≡⟨ cong (_∙ (emloop g) ⁻¹) emloop-id ⟩ refl ∙ (emloop g) ⁻¹ ≡⟨ (lUnit ((emloop g) ⁻¹)) ⁻¹ ⟩ (emloop g) ⁻¹ ∎ isGroupoidEM₁ : isGroupoid (EM₁ Ĝ) isGroupoidEM₁ = emsquash --------- Ω (EM₁ G) ≃ G --------- {- since we write composition in diagrammatic order, and function composition in the other order, we need right multiplication here -} rightEquiv : (g : G) → G ≃ G rightEquiv g = isoToEquiv isom where isom : Iso G G isom .Iso.fun = _· g isom .Iso.inv = _· inv g isom .Iso.rightInv h = (h · inv g) · g ≡⟨ (·Assoc h (inv g) g) ⁻¹ ⟩ h · inv g · g ≡⟨ cong (h ·_) (·InvL g) ⟩ h · 1g ≡⟨ ·IdR h ⟩ h ∎ isom .Iso.leftInv h = (h · g) · inv g ≡⟨ (·Assoc h g (inv g)) ⁻¹ ⟩ h · g · inv g ≡⟨ cong (h ·_) (·InvR g) ⟩ h · 1g ≡⟨ ·IdR h ⟩ h ∎ compRightEquiv : (g h : G) → compEquiv (rightEquiv g) (rightEquiv h) ≡ rightEquiv (g · h) compRightEquiv g h = equivEq (funExt (λ x → (·Assoc x g h) ⁻¹)) CodesSet : EM₁ Ĝ → hSet ℓ CodesSet = EMrec Ĝ (isOfHLevelTypeOfHLevel 2) (G , is-set) RE REComp where RE : (g : G) → Path (hSet ℓ) (G , is-set) (G , is-set) RE g = Σ≡Prop (λ X → isPropIsOfHLevel {A = X} 2) (ua (rightEquiv g)) lemma₁ : (g h : G) → Square (ua (rightEquiv g)) (ua (rightEquiv (g · h))) refl (ua (rightEquiv h)) lemma₁ g h = invEq (Square≃doubleComp (ua (rightEquiv g)) (ua (rightEquiv (g · h))) refl (ua (rightEquiv h))) (ua (rightEquiv g) ∙ ua (rightEquiv h) ≡⟨ (uaCompEquiv (rightEquiv g) (rightEquiv h)) ⁻¹ ⟩ ua (compEquiv (rightEquiv g) (rightEquiv h)) ≡⟨ cong ua (compRightEquiv g h) ⟩ ua (rightEquiv (g · h)) ∎) REComp : (g h : G) → Square (RE g) (RE (g · h)) refl (RE h) REComp g h = ΣSquareSet (λ _ → isProp→isSet isPropIsSet) (lemma₁ g h) Codes : EM₁ Ĝ → Type ℓ Codes x = CodesSet x .fst encode : (x : EM₁ Ĝ) → embase ≡ x → Codes x encode x p = subst Codes p 1g decode : (x : EM₁ Ĝ) → Codes x → embase ≡ x decode = elimSet Ĝ (λ x → isOfHLevelΠ 2 (λ c → isGroupoidEM₁ (embase) x)) emloop λ g → ua→ λ h → emcomp h g decode-encode : (x : EM₁ Ĝ) (p : embase ≡ x) → decode x (encode x p) ≡ p decode-encode x p = J (λ y q → decode y (encode y q) ≡ q) (emloop (transport refl 1g) ≡⟨ cong emloop (transportRefl 1g) ⟩ emloop 1g ≡⟨ emloop-id ⟩ refl ∎) p encode-decode : (x : EM₁ Ĝ) (c : Codes x) → encode x (decode x c) ≡ c encode-decode = elimProp Ĝ (λ x → isOfHLevelΠ 1 (λ c → CodesSet x .snd _ _)) λ g → encode embase (decode embase g) ≡⟨ refl ⟩ encode embase (emloop g) ≡⟨ refl ⟩ transport (ua (rightEquiv g)) 1g ≡⟨ uaβ (rightEquiv g) 1g ⟩ 1g · g ≡⟨ ·IdL g ⟩ g ∎ ΩEM₁Iso : Iso (Path (EM₁ Ĝ) embase embase) G Iso.fun ΩEM₁Iso = encode embase Iso.inv ΩEM₁Iso = emloop Iso.rightInv ΩEM₁Iso = encode-decode embase Iso.leftInv ΩEM₁Iso = decode-encode embase ΩEM₁≡ : (Path (EM₁ Ĝ) embase embase) ≡ G ΩEM₁≡ = isoToPath ΩEM₁Iso --------- Ω (EMₙ₊₁ G) ≃ EMₙ G --------- module _ {G : AbGroup ℓ} where open AbGroupStr (snd G) renaming (_+_ to _+G_ ; -_ to -G_ ; +Assoc to +AssocG) CODE : (n : ℕ) → EM G (suc (suc n)) → TypeOfHLevel ℓ (3 + n) CODE n = trElim (λ _ → isOfHLevelTypeOfHLevel (3 + n)) λ { north → EM G (suc n) , hLevelEM G (suc n) ; south → EM G (suc n) , hLevelEM G (suc n) ; (merid a i) → fib n a i} where fib : (n : ℕ) → (a : EM-raw G (suc n)) → Path (TypeOfHLevel _ (3 + n)) (EM G (suc n) , hLevelEM G (suc n)) (EM G (suc n) , hLevelEM G (suc n)) fib zero a = Σ≡Prop (λ _ → isPropIsOfHLevel 3) (isoToPath (addIso 1 a)) fib (suc n) a = Σ≡Prop (λ _ → isPropIsOfHLevel (4 + n)) (isoToPath (addIso (suc (suc n)) ∣ a ∣)) decode' : (n : ℕ) (x : EM G (suc (suc n))) → CODE n x .fst → 0ₖ (suc (suc n)) ≡ x decode' n = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ { north → f n ; south → g n ; (merid a i) → main a i} where f : (n : ℕ) → _ f n = σ-EM' n g : (n : ℕ) → EM G (suc n) → ∣ ptEM-raw ∣ ≡ ∣ south ∣ g n x = σ-EM' n x ∙ cong ∣_∣ₕ (merid ptEM-raw) lem₂ : (n : ℕ) (a x : _) → Path (Path (EM G (suc (suc n))) _ _) ((λ i → cong ∣_∣ₕ (σ-EM n x) i) ∙ sym (cong ∣_∣ₕ (σ-EM n a)) ∙ (λ i → ∣ merid a i ∣ₕ)) (g n (EM-raw→EM G (suc n) x)) lem₂ zero a x = cong (f zero x ∙_) (cong (_∙ cong ∣_∣ₕ (merid a)) (cong (cong ∣_∣ₕ) (symDistr (merid a) (sym (merid embase))) ∙ cong-∙ ∣_∣ₕ (merid embase) (sym (merid a))) ∙∙ sym (∙assoc _ _ _) ∙∙ cong (cong ∣_∣ₕ (merid embase) ∙_) (lCancel (cong ∣_∣ₕ (merid a))) ∙ sym (rUnit _)) lem₂ (suc n) a x = cong (f (suc n) ∣ x ∣ ∙_) ((cong (_∙ cong ∣_∣ₕ (merid a)) (cong (cong ∣_∣ₕ) (symDistr (merid a) (sym (merid north))) ∙ cong-∙ ∣_∣ₕ (merid north) (sym (merid a))) ∙∙ sym (∙assoc _ _ _) ∙∙ cong (cong ∣_∣ₕ (merid north) ∙_) (lCancel (cong ∣_∣ₕ (merid a))) ∙ sym (rUnit _))) lem : (n : ℕ) (x a : EM-raw G (suc n)) → f n (transport (sym (cong (λ x → CODE n x .fst) (cong ∣_∣ₕ (merid a)))) (EM-raw→EM G (suc n) x)) ≡ cong ∣_∣ₕ (σ-EM n x) ∙ sym (cong ∣_∣ₕ (σ-EM n a)) lem zero x a = (λ i → cong ∣_∣ₕ (merid (transportRefl x i -[ 1 ]ₖ a) ∙ sym (merid embase))) ∙∙ σ-EM'-hom zero x (-ₖ a) ∙∙ cong (f zero x ∙_) (σ-EM'-ₖ zero a) lem (suc n) x a = cong (f (suc n)) (λ i → transportRefl ∣ x ∣ i -[ 2 + n ]ₖ ∣ a ∣) ∙∙ σ-EM'-hom (suc n) ∣ x ∣ (-ₖ ∣ a ∣) ∙∙ cong (f (suc n) ∣ x ∣ ∙_) (σ-EM'-ₖ (suc n) ∣ a ∣) main : (a : _) → PathP (λ i → CODE n ∣ merid a i ∣ₕ .fst → 0ₖ (suc (suc n)) ≡ ∣ merid a i ∣ₕ) (f n) (g n) main a = toPathP (funExt (EM-elim _ (λ _ → isOfHLevelPathP (2 + (suc n)) (isOfHLevelTrunc (4 + n) _ _) _ _) λ x → ((λ i → transp (λ j → Path (EM G (2 + n)) ∣ ptEM-raw ∣ ∣ merid a (i ∨ j) ∣) i (compPath-filler (lem n x a i) (cong ∣_∣ₕ (merid a)) i) )) ∙∙ sym (∙assoc _ _ _) ∙∙ lem₂ n a x)) encode' : (n : ℕ) (x : EM G (suc (suc n))) → 0ₖ (suc (suc n)) ≡ x → CODE n x .fst encode' n x p = subst (λ x → CODE n x .fst) p (0ₖ (suc n)) decode'-encode' : (n : ℕ) (x : EM G (2 + n)) (p : 0ₖ (2 + n) ≡ x) → decode' n x (encode' n x p) ≡ p decode'-encode' zero x = J (λ x p → decode' 0 x (encode' 0 x p) ≡ p) (σ-EM'-0ₖ 0) decode'-encode' (suc n) x = J (λ x p → decode' (suc n) x (encode' (suc n) x p) ≡ p) (σ-EM'-0ₖ (suc n)) encode'-decode' : (n : ℕ) (x : _) → encode' n (0ₖ (suc (suc n))) (decode' n (0ₖ (suc (suc n))) x) ≡ x encode'-decode' zero x = cong (encode' zero (0ₖ 2)) (cong-∙ ∣_∣ₕ (merid x) (sym (merid embase))) ∙∙ substComposite (λ x → CODE zero x .fst) (cong ∣_∣ₕ (merid x)) (sym (cong ∣_∣ₕ (merid ptEM-raw))) embase ∙∙ (cong (subst (λ x₁ → CODE zero x₁ .fst) (λ i → ∣ merid embase (~ i) ∣ₕ)) (λ i → lUnitₖ 1 (transportRefl x i) i) ∙ (λ i → rUnitₖ 1 (transportRefl x i) i)) encode'-decode' (suc n) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) λ x → cong (encode' (suc n) (0ₖ (3 + n))) (cong-∙ ∣_∣ₕ (merid x) (sym (merid north))) ∙∙ substComposite (λ x → CODE (suc n) x .fst) (cong ∣_∣ₕ (merid x)) (sym (cong ∣_∣ₕ (merid ptEM-raw))) (0ₖ (2 + n)) ∙∙ cong (subst (λ x₁ → CODE (suc n) x₁ .fst) (λ i → ∣ merid ptEM-raw (~ i) ∣ₕ)) (λ i → lUnitₖ (2 + n) (transportRefl ∣ x ∣ₕ i) i) ∙ (λ i → rUnitₖ (2 + n) (transportRefl ∣ x ∣ₕ i) i) Iso-EM-ΩEM+1 : (n : ℕ) → Iso (EM G n) (typ (Ω (EM∙ G (suc n)))) Iso-EM-ΩEM+1 zero = invIso (ΩEM₁Iso (AbGroup→Group G)) Iso.fun (Iso-EM-ΩEM+1 (suc zero)) = decode' 0 (0ₖ 2) Iso.inv (Iso-EM-ΩEM+1 (suc zero)) = encode' 0 (0ₖ 2) Iso.rightInv (Iso-EM-ΩEM+1 (suc zero)) = decode'-encode' 0 (0ₖ 2) Iso.leftInv (Iso-EM-ΩEM+1 (suc zero)) = encode'-decode' 0 Iso.fun (Iso-EM-ΩEM+1 (suc (suc n))) = decode' (suc n) (0ₖ (3 + n)) Iso.inv (Iso-EM-ΩEM+1 (suc (suc n))) = encode' (suc n) (0ₖ (3 + n)) Iso.rightInv (Iso-EM-ΩEM+1 (suc (suc n))) = decode'-encode' (suc n) (0ₖ (3 + n)) Iso.leftInv (Iso-EM-ΩEM+1 (suc (suc n))) = encode'-decode' (suc n) EM≃ΩEM+1 : (n : ℕ) → EM G n ≃ typ (Ω (EM∙ G (suc n))) EM≃ΩEM+1 n = isoToEquiv (Iso-EM-ΩEM+1 n) -- Some properties of the isomorphism EM→ΩEM+1 : (n : ℕ) → EM G n → typ (Ω (EM∙ G (suc n))) EM→ΩEM+1 n = Iso.fun (Iso-EM-ΩEM+1 n) ΩEM+1→EM : (n : ℕ) → typ (Ω (EM∙ G (suc n))) → EM G n ΩEM+1→EM n = Iso.inv (Iso-EM-ΩEM+1 n) EM→ΩEM+1-0ₖ : (n : ℕ) → EM→ΩEM+1 n (0ₖ n) ≡ refl EM→ΩEM+1-0ₖ zero = emloop-1g _ EM→ΩEM+1-0ₖ (suc zero) = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) EM→ΩEM+1-0ₖ (suc (suc n)) = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) EM→ΩEM+1-hom : (n : ℕ) (x y : EM G n) → EM→ΩEM+1 n (x +[ n ]ₖ y) ≡ EM→ΩEM+1 n x ∙ EM→ΩEM+1 n y EM→ΩEM+1-hom zero x y = emloop-comp _ x y EM→ΩEM+1-hom (suc zero) x y = σ-EM'-hom zero x y EM→ΩEM+1-hom (suc (suc n)) x y = σ-EM'-hom (suc n) x y ΩEM+1→EM-hom : (n : ℕ) → (p q : typ (Ω (EM∙ G (suc n)))) → ΩEM+1→EM n (p ∙ q) ≡ (ΩEM+1→EM n p) +[ n ]ₖ (ΩEM+1→EM n q) ΩEM+1→EM-hom n = morphLemmas.isMorphInv (λ x y → x +[ n ]ₖ y) (_∙_) (EM→ΩEM+1 n) (EM→ΩEM+1-hom n) (ΩEM+1→EM n) (Iso.rightInv (Iso-EM-ΩEM+1 n)) (Iso.leftInv (Iso-EM-ΩEM+1 n)) ΩEM+1→EM-refl : (n : ℕ) → ΩEM+1→EM n refl ≡ 0ₖ n ΩEM+1→EM-refl zero = transportRefl 0g ΩEM+1→EM-refl (suc zero) = refl ΩEM+1→EM-refl (suc (suc n)) = refl EM→ΩEM+1∙ : (n : ℕ) → EM∙ G n →∙ Ω (EM∙ G (suc n)) EM→ΩEM+1∙ n .fst = EM→ΩEM+1 n EM→ΩEM+1∙ zero .snd = emloop-1g (AbGroup→Group G) EM→ΩEM+1∙ (suc zero) .snd = cong (cong ∣_∣ₕ) (rCancel (merid embase)) EM→ΩEM+1∙ (suc (suc n)) .snd = cong (cong ∣_∣ₕ) (rCancel (merid north)) EM≃ΩEM+1∙ : (n : ℕ) → EM∙ G n ≡ Ω (EM∙ G (suc n)) EM≃ΩEM+1∙ n = ua∙ (EM≃ΩEM+1 n) (EM→ΩEM+1-0ₖ n) isHomogeneousEM : (n : ℕ) → isHomogeneous (EM∙ G n) isHomogeneousEM n x = ua∙ (isoToEquiv (addIso n x)) (lUnitₖ n x) -- Some HLevel lemmas about function spaces (EM∙ G n →∙ EM∙ H m), mainly used for -- the cup product module _ where open AbGroupStr renaming (_+_ to comp) isContr-↓∙ : {G : AbGroup ℓ} {H : AbGroup ℓ'} (n : ℕ) → isContr (EM∙ G (suc n) →∙ EM∙ H n) fst (isContr-↓∙ {G = G} {H = H} zero) = (λ _ → 0g (snd H)) , refl snd (isContr-↓∙{G = G} {H = H} zero) (f , p) = Σ≡Prop (λ x → is-set (snd H) _ _) (funExt (raw-elim G 0 (λ _ → is-set (snd H) _ _) (sym p))) fst (isContr-↓∙ {G = G} {H = H} (suc n)) = (λ _ → 0ₖ (suc n)) , refl fst (snd (isContr-↓∙ {G = G} {H = H} (suc n)) f i) x = trElim {B = λ x → 0ₖ (suc n) ≡ fst f x} (λ _ → isOfHLevelPath (4 + n) (isOfHLevelSuc (3 + n) (hLevelEM H (suc n))) _ _) (raw-elim _ _ (λ _ → hLevelEM H (suc n) _ _) (sym (snd f))) x i snd (snd (isContr-↓∙ (suc n)) f i) j = snd f (~ i ∨ j) isContr-↓∙' : {G : AbGroup ℓ} {H : AbGroup ℓ'} (n : ℕ) → isContr ((EM-raw G (suc n) , ptEM-raw) →∙ EM∙ H n) isContr-↓∙' zero = isContr-↓∙ zero fst (isContr-↓∙' (suc n)) = (λ _ → 0ₖ (suc n)) , refl fst (snd (isContr-↓∙' {H = H} (suc n)) f i) x = raw-elim _ _ {A = λ x → 0ₖ (suc n) ≡ fst f x} (λ _ → hLevelEM H (suc n) _ _) (sym (snd f)) x i snd (snd (isContr-↓∙' (suc n)) f i) j = snd f (~ i ∨ j) isOfHLevel→∙EM : ∀ {ℓ} {A : Pointed ℓ} {G : AbGroup ℓ'} (n m : ℕ) → isOfHLevel (suc m) (A →∙ EM∙ G n) → isOfHLevel (suc (suc m)) (A →∙ EM∙ G (suc n)) isOfHLevel→∙EM {A = A} {G = G} n m hlev = step₃ where step₁ : isOfHLevel (suc m) (A →∙ Ω (EM∙ G (suc n))) step₁ = subst (isOfHLevel (suc m)) (λ i → A →∙ ua∙ {A = Ω (EM∙ G (suc n))} {B = EM∙ G n} (invEquiv (EM≃ΩEM+1 n)) (ΩEM+1→EM-refl n) (~ i)) hlev step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ EM∙ G (suc n) ∙))) step₂ = isOfHLevelRetractFromIso (suc m) (invIso (invIso (ΩfunExtIso _ _))) step₁ step₃ : isOfHLevel (suc (suc m)) (A →∙ EM∙ G (suc n)) step₃ = isOfHLevelΩ→isOfHLevel m λ f → subst (λ x → isOfHLevel (suc m) (typ (Ω x))) (isHomogeneous→∙ (isHomogeneousEM (suc n)) f) step₂ isOfHLevel↑∙ : {G : AbGroup ℓ} {H : AbGroup ℓ'} → ∀ n m → isOfHLevel (2 + n) (EM∙ G (suc m) →∙ EM∙ H (suc (n + m))) isOfHLevel↑∙ zero m = isOfHLevel→∙EM m 0 (isContr→isProp (isContr-↓∙ m)) isOfHLevel↑∙ (suc n) m = isOfHLevel→∙EM (suc (n + m)) (suc n) (isOfHLevel↑∙ n m) isOfHLevel↑∙' : {G : AbGroup ℓ} {H : AbGroup ℓ'} → ∀ n m → isOfHLevel (2 + n) (EM-raw∙ G (suc m) →∙ EM∙ H (suc (n + m))) isOfHLevel↑∙' zero m = isOfHLevel→∙EM m 0 (isContr→isProp (isContr-↓∙' m)) isOfHLevel↑∙' (suc n) m = isOfHLevel→∙EM (suc (n + m)) (suc n) (isOfHLevel↑∙' n m) →∙EMPath : ∀ {ℓ} {G : AbGroup ℓ} (A : Pointed ℓ') (n : ℕ) → Ω (A →∙ EM∙ G (suc n) ∙) ≡ (A →∙ EM∙ G n ∙) →∙EMPath {G = G} A n = ua∙ (isoToEquiv (ΩfunExtIso A (EM∙ G (suc n)))) refl ∙ (λ i → (A →∙ EM≃ΩEM+1∙ {G = G} n (~ i) ∙)) private contr∙-lem : {G : AbGroup ℓ} {H : AbGroup ℓ'} {L : AbGroup ℓ''} (n m : ℕ) → isContr (EM∙ G (suc n) →∙ (EM∙ H (suc m) →∙ EM∙ L (suc (n + m)) ∙)) fst (contr∙-lem n m) = (λ _ → (λ _ → 0ₖ _) , refl), refl snd (contr∙-lem {G = G} {H = H} {L = L} n m) (f , p) = →∙Homogeneous≡ (isHomogeneous→∙ (isHomogeneousEM _)) (sym (funExt (help n f p))) where help : (n : ℕ) → (f : EM G (suc n) → EM∙ H (suc m) →∙ EM∙ L (suc (n + m))) → f (snd (EM∙ G (suc n))) ≡ snd (EM∙ H (suc m) →∙ EM∙ L (suc (n + m)) ∙) → (x : _) → (f x) ≡ ((λ _ → 0ₖ _) , refl) help zero f p = raw-elim G zero (λ _ → isOfHLevel↑∙ zero m _ _) p help (suc n) f p = trElim (λ _ → isOfHLevelPath (4 + n) (subst (λ x → isOfHLevel x (EM∙ H (suc m) →∙ EM∙ L (suc ((suc n) + m)))) (λ i → suc (suc (+-comm (suc n) 1 i))) (isOfHLevelPlus' {n = 1} (3 + n) (isOfHLevel↑∙ (suc n) m))) _ _) (raw-elim G (suc n) (λ _ → isOfHLevel↑∙ (suc n) m _ _) p) isOfHLevel↑∙∙ : {G : AbGroup ℓ} {H : AbGroup ℓ'} {L : AbGroup ℓ''} → ∀ n m l → isOfHLevel (2 + l) (EM∙ G (suc n) →∙ (EM∙ H (suc m) →∙ EM∙ L (suc (suc (l + n + m))) ∙)) isOfHLevel↑∙∙ {G = G} {H = H} {L = L} n m zero = isOfHLevelΩ→isOfHLevel 0 λ f → subst isProp (cong (λ x → typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) h) where h : isProp (EM∙ G (suc n) →∙ (Ω (EM∙ H (suc m) →∙ EM∙ L (suc (suc (n + m))) ∙))) h = subst isProp (λ i → EM∙ G (suc n) →∙ (→∙EMPath {G = L} (EM∙ H (suc m)) (suc (n + m)) (~ i))) (isContr→isProp (contr∙-lem n m)) isOfHLevel↑∙∙ {G = G} {H = H} {L = L} n m (suc l) = isOfHLevelΩ→isOfHLevel (suc l) λ f → subst (isOfHLevel (2 + l)) (cong (λ x → typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) h) where h : isOfHLevel (2 + l) (EM∙ G (suc n) →∙ (Ω (EM∙ H (suc m) →∙ EM∙ L (suc (suc (suc (l + n + m)))) ∙))) h = subst (isOfHLevel (2 + l)) (λ i → EM∙ G (suc n) →∙ →∙EMPath {G = L} (EM∙ H (suc m)) (suc (suc (l + n + m))) (~ i)) (isOfHLevel↑∙∙ n m l) -- A homomorphism φ : G → H of AbGroups induces a homomorphism -- φ' : K(G,n) → K(H,n) inducedFun-EM-raw : {G' : AbGroup ℓ} {H' : AbGroup ℓ'} → AbGroupHom G' H' → ∀ n → EM-raw G' n → EM-raw H' n inducedFun-EM-raw f = elim+2 (fst f) (EMrec _ emsquash embase (λ g → emloop (fst f g)) λ g h → compPathR→PathP (sym (sym (lUnit _) ∙∙ cong (_∙ (sym (emloop (fst f h)))) (cong emloop (IsGroupHom.pres· (snd f) g h) ∙ emloop-comp _ (fst f g) (fst f h)) ∙∙ sym (∙assoc _ _ _) ∙∙ cong (emloop (fst f g) ∙_) (rCancel _) ∙∙ sym (rUnit _)))) (λ n ind → λ { north → north ; south → south ; (merid a i) → merid (ind a) i} ) inducedFun-EM-rawIso : {G' : AbGroup ℓ} {H' : AbGroup ℓ'} → AbGroupEquiv G' H' → ∀ n → Iso (EM-raw G' n) (EM-raw H' n) Iso.fun (inducedFun-EM-rawIso e n) = inducedFun-EM-raw (_ , (snd e)) n Iso.inv (inducedFun-EM-rawIso e n) = inducedFun-EM-raw (_ , isGroupHomInv e) n Iso.rightInv (inducedFun-EM-rawIso e n) = h n where h : (n : ℕ) → section (inducedFun-EM-raw (fst e .fst , snd e) n) (inducedFun-EM-raw (invEq (fst e) , isGroupHomInv e) n) h = elim+2 (secEq (fst e)) (elimSet _ (λ _ → emsquash _ _) refl (λ g → compPathR→PathP ((sym (cong₂ _∙_ (cong emloop (secEq (fst e) g)) (sym (lUnit _)) ∙ rCancel _))))) λ n p → λ { north → refl ; south → refl ; (merid a i) k → merid (p a k) i} Iso.leftInv (inducedFun-EM-rawIso e n) = h n where h : (n : ℕ) → retract (Iso.fun (inducedFun-EM-rawIso e n)) (Iso.inv (inducedFun-EM-rawIso e n)) h = elim+2 (retEq (fst e)) (elimSet _ (λ _ → emsquash _ _) refl (λ g → compPathR→PathP ((sym (cong₂ _∙_ (cong emloop (retEq (fst e) g)) (sym (lUnit _)) ∙ rCancel _))))) λ n p → λ { north → refl ; south → refl ; (merid a i) k → merid (p a k) i} Iso→EMIso : {G : AbGroup ℓ} {H : AbGroup ℓ'} → AbGroupEquiv G H → ∀ n → Iso (EM G n) (EM H n) Iso→EMIso is zero = inducedFun-EM-rawIso is zero Iso→EMIso is (suc zero) = inducedFun-EM-rawIso is 1 Iso→EMIso is (suc (suc n)) = mapCompIso (inducedFun-EM-rawIso is (suc (suc n))) EM⊗-commIso : {G : AbGroup ℓ} {H : AbGroup ℓ'} → ∀ n → Iso (EM (G ⨂ H) n) (EM (H ⨂ G) n) EM⊗-commIso {G = G} {H = H} = Iso→EMIso (GroupIso→GroupEquiv ⨂-commIso) EM⊗-assocIso : {G : AbGroup ℓ} {H : AbGroup ℓ'} {L : AbGroup ℓ''} → ∀ n → Iso (EM (G ⨂ (H ⨂ L)) n) (EM ((G ⨂ H) ⨂ L) n) EM⊗-assocIso = Iso→EMIso (GroupIso→GroupEquiv (GroupEquiv→GroupIso ⨂assoc))
{ "alphanum_fraction": 0.5015569587, "avg_line_length": 42.8185185185, "ext": "agda", "hexsha": "bdaf181663420eb381663995bab9ea7f0c7b7d34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Properties.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10008, "size": 23122 }
------------------------------------------------------------------------ -- Representation-independent results for non-dependent lenses ------------------------------------------------------------------------ import Equality.Path as P module Lens.Non-dependent {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J as Bij using (module _↔_) open import Equality.Decision-procedures equality-with-J open import Equivalence equality-with-J using (_≃_) open import Erased.Cubical eq open import Function-universe equality-with-J as F hiding (_∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥) open import Surjection equality-with-J using (_↠_) private variable a b c c₁ c₂ c₃ l : Level A B : Type a Lens₁ Lens₂ Lens₃ : Type a → Type b → Type c ------------------------------------------------------------------------ -- Some existence results -- There is, in general, no lens for the first projection from a -- Σ-type, assuming that lenses with contractible domains have -- contractible codomains. no-first-projection-lens : (Lens : Type → Type → Type a) → @0 (∀ {A B} → Lens A B → Contractible A → Contractible B) → ¬ Lens (∃ λ (b : Bool) → b ≡ true) Bool no-first-projection-lens _ contractible-to-contractible l = _↔_.to Erased-⊥↔⊥ [ $⟨ singleton-contractible _ ⟩ Contractible (Singleton true) ↝⟨ contractible-to-contractible l ⟩ Contractible Bool ↝⟨ mono₁ 0 ⟩ Is-proposition Bool ↝⟨ ¬-Bool-propositional ⟩□ ⊥ □ ] -- A variant of the previous result: If A is merely inhabited, and one -- can "project" out a boolean from a value of type A, but this -- boolean is necessarily true, then there is no lens corresponding to -- this projection (if the get-set law holds). no-singleton-projection-lens : {Lens : Type l} (get : Lens → A → Bool) (set : Lens → A → Bool → A) (get-set : ∀ l a b → get l (set l a b) ≡ b) → ∥ A ∥ → (bool : A → Bool) → (∀ x → bool x ≡ true) → ¬ ∃ λ (l : Lens) → ∀ x → get l x ≡ bool x no-singleton-projection-lens get set get-set x bool is-true (l , get≡bool) = _↔_.to Erased-⊥↔⊥ [ (flip (T.rec ⊥-propositional) x λ x → Bool.true≢false (true ≡⟨ sym $ is-true _ ⟩ bool (set l x false) ≡⟨ sym $ get≡bool _ ⟩ get l (set l x false) ≡⟨ get-set _ _ _ ⟩∎ false ∎)) ] ------------------------------------------------------------------------ -- Statements of preservation results, and some related lemmas -- Lens-like things with getters and setters. record Has-getter-and-setter (Lens : Type a → Type b → Type c) : Type (lsuc (a ⊔ b ⊔ c)) where field -- Getter. get : {A : Type a} {B : Type b} → Lens A B → A → B -- Typeter. set : {A : Type a} {B : Type b} → Lens A B → A → B → A -- A statement of what it means for two lenses to have the same getter -- and setter. Same-getter-and-setter : {Lens₁ : Type a → Type b → Type c₁} {Lens₂ : Type a → Type b → Type c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ {A : Type a} {B : Type b} → Lens₁ A B → Lens₂ A B → Type (a ⊔ b) Same-getter-and-setter ⦃ L₁ = L₁ ⦄ ⦃ L₂ = L₂ ⦄ l₁ l₂ = get L₁ l₁ ≡ get L₂ l₂ × set L₁ l₁ ≡ set L₂ l₂ where open Has-getter-and-setter -- A statement of what it means for a function to preserve getters and -- setters for all inputs. Preserves-getters-and-setters-→ : {Lens₁ : Type a → Type b → Type c₁} {Lens₂ : Type a → Type b → Type c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ (A : Type a) (B : Type b) → (Lens₁ A B → Lens₂ A B) → Type (a ⊔ b ⊔ c₁) Preserves-getters-and-setters-→ {Lens₁ = Lens₁} A B f = (l : Lens₁ A B) → Same-getter-and-setter (f l) l -- A statement of what it means for a logical equivalence to preserve -- getters and setters. Preserves-getters-and-setters-⇔ : {Lens₁ : Type a → Type b → Type c₁} {Lens₂ : Type a → Type b → Type c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ (A : Type a) (B : Type b) → (Lens₁ A B ⇔ Lens₂ A B) → Type (a ⊔ b ⊔ c₁ ⊔ c₂) Preserves-getters-and-setters-⇔ A B eq = Preserves-getters-and-setters-→ A B (_⇔_.to eq) × Preserves-getters-and-setters-→ A B (_⇔_.from eq) -- Composition preserves Preserves-getters-and-setters-→. Preserves-getters-and-setters-→-∘ : ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ ⦃ L₃ : Has-getter-and-setter Lens₃ ⦄ {f : Lens₂ A B → Lens₃ A B} {g : Lens₁ A B → Lens₂ A B} → Preserves-getters-and-setters-→ A B f → Preserves-getters-and-setters-→ A B g → Preserves-getters-and-setters-→ A B (f ∘ g) Preserves-getters-and-setters-→-∘ p-f p-g _ = trans (proj₁ (p-f _)) (proj₁ (p-g _)) , trans (proj₂ (p-f _)) (proj₂ (p-g _)) -- Composition preserves Preserves-getters-and-setters-⇔. Preserves-getters-and-setters-⇔-∘ : {Lens₁ : Type a → Type b → Type c₁} {Lens₂ : Type a → Type b → Type c₂} {Lens₃ : Type a → Type b → Type c₃} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ ⦃ L₃ : Has-getter-and-setter Lens₃ ⦄ {f : Lens₂ A B ⇔ Lens₃ A B} {g : Lens₁ A B ⇔ Lens₂ A B} → Preserves-getters-and-setters-⇔ A B f → Preserves-getters-and-setters-⇔ A B g → Preserves-getters-and-setters-⇔ A B (f F.∘ g) Preserves-getters-and-setters-⇔-∘ p-f p-g = Preserves-getters-and-setters-→-∘ (proj₁ p-f) (proj₁ p-g) , Preserves-getters-and-setters-→-∘ (proj₂ p-g) (proj₂ p-f) -- The function inverse preserves Preserves-getters-and-setters-⇔. Preserves-getters-and-setters-⇔-inverse : {Lens₁ : Type a → Type b → Type c₁} {Lens₂ : Type a → Type b → Type c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ {f : Lens₁ A B ⇔ Lens₂ A B} → Preserves-getters-and-setters-⇔ A B f → Preserves-getters-and-setters-⇔ A B (inverse f) Preserves-getters-and-setters-⇔-inverse = swap -- If the forward direction of a split surjection preserves getters -- and setters, then both directions do. Preserves-getters-and-setters-→-↠-⇔ : {Lens₁ : Type a → Type b → Type c₁} {Lens₂ : Type a → Type b → Type c₂} ⦃ L₁ : Has-getter-and-setter Lens₁ ⦄ ⦃ L₂ : Has-getter-and-setter Lens₂ ⦄ (f : Lens₁ A B ↠ Lens₂ A B) → Preserves-getters-and-setters-→ A B (_↠_.to f) → Preserves-getters-and-setters-⇔ A B (_↠_.logical-equivalence f) Preserves-getters-and-setters-→-↠-⇔ ⦃ L₁ = L₁ ⦄ ⦃ L₂ = L₂ ⦄ f p = p , λ l → (get L₁ (_↠_.from f l) ≡⟨ sym $ proj₁ $ p (_↠_.from f l) ⟩ get L₂ (_↠_.to f (_↠_.from f l)) ≡⟨ cong (get L₂) $ _↠_.right-inverse-of f _ ⟩∎ get L₂ l ∎) , (set L₁ (_↠_.from f l) ≡⟨ sym $ proj₂ $ p (_↠_.from f l) ⟩ set L₂ (_↠_.to f (_↠_.from f l)) ≡⟨ cong (set L₂) $ _↠_.right-inverse-of f _ ⟩∎ set L₂ l ∎) where open Has-getter-and-setter
{ "alphanum_fraction": 0.5858668858, "avg_line_length": 35.7941176471, "ext": "agda", "hexsha": "00d5a56a3bc6a335b883ec9aef68bd97f01ffe78", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent.agda", "max_line_length": 89, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 2581, "size": 7302 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Concrete.System open import LibraBFT.Impl.Consensus.Types import LibraBFT.Concrete.Properties.VotesOnce as VO import LibraBFT.Concrete.Properties.PreferredRound as PR open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) -- This module collects in one place the obligations an -- implementation must meet in order to enjoy the properties -- proved in Abstract.Properties. module LibraBFT.Concrete.Obligations where record ImplObligations : Set (ℓ+1 ℓ-RoundManager) where field -- Structural obligations: sps-cor : StepPeerState-AllValidParts -- Semantic obligations: -- -- VotesOnce: vo₁ : VO.ImplObligation₁ vo₂ : VO.ImplObligation₂ -- PreferredRound: pr₁ : PR.ImplObligation₁
{ "alphanum_fraction": 0.7437395659, "avg_line_length": 35.2352941176, "ext": "agda", "hexsha": "7b2653e7c035342d5dbd1dfdbd015a70cdeb9188", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/Obligations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/Obligations.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/Obligations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 332, "size": 1198 }
-- Andreas, 2018-05-11, issue #3051 -- Allow pattern synonyms in mutual blocks open import Agda.Builtin.Sigma open import Agda.Builtin.Equality id : ∀ {a} {A : Set a} → A → A id x = x _∘′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → (A → C) f ∘′ g = λ x → f (g x) _×̇_ : ∀{A C : Set} {B : A → Set} {D : C → Set} (f : A → C) (g : ∀{a} → B a → D (f a)) → Σ A B → Σ C D (f ×̇ g) (x , y) = f x , g y mutual data Cxt : Set₁ where _▷_ : (Γ : Cxt) (A : C⦅ Γ ⦆ → Set) → Cxt C⦅_⦆ : Cxt → Set C⦅ Γ ▷ A ⦆ = Σ C⦅ Γ ⦆ A mutual data _≤_ : (Δ Γ : Cxt) → Set₁ where id≤ : ∀{Γ} → Γ ≤ Γ weak : ∀{Γ Δ A} (τ : Δ ≤ Γ) → (Δ ▷ A) ≤ Γ lift' : ∀{Γ Δ A A'} (τ : Δ ≤ Γ) (p : A' ≡ (A ∘′ τ⦅ τ ⦆)) → (Δ ▷ A') ≤ (Γ ▷ A) pattern lift τ = lift' τ refl τ⦅_⦆ : ∀{Γ Δ} (τ : Δ ≤ Γ) → C⦅ Δ ⦆ → C⦅ Γ ⦆ τ⦅ id≤ ⦆ = id τ⦅ weak τ ⦆ = τ⦅ τ ⦆ ∘′ fst τ⦅ lift τ ⦆ = τ⦅ τ ⦆ ×̇ id -- Should pass.
{ "alphanum_fraction": 0.4126473741, "avg_line_length": 23.9230769231, "ext": "agda", "hexsha": "247f90893de7f1fd57b5324bd55036db94866c9f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3051.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3051.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3051.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 532, "size": 933 }
{-# OPTIONS --without-K #-} module Everything where open import AC open import Equivalence open import Fiber open import Functoriality open import FunExt open import GroupoidStructure open import HIT.Interval open import Homotopy open import J open import K open import NTypes open import NTypes.Contractible open import NTypes.Coproduct open import NTypes.Empty open import NTypes.HedbergsTheorem open import NTypes.Id open import NTypes.Nat open import NTypes.Negation open import NTypes.Product open import NTypes.Sigma open import NTypes.Unit open import NTypes.Universe open import PathOperations open import PathStructure.Coproduct open import PathStructure.Empty open import PathStructure.Id.Ap open import PathStructure.Id.Tr open import PathStructure.Nat open import PathStructure.Product open import PathStructure.Sigma open import PathStructure.Unit open import PathStructure.UnitNoEta open import Sigma open import Transport open import Types open import Univalence
{ "alphanum_fraction": 0.848825332, "avg_line_length": 24.475, "ext": "agda", "hexsha": "f0c2bd8c32638be38ef79705175a75074f472cfe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/Everything.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 227, "size": 979 }
-- Jesper, 2019-07-27. Cut down this example from a latent bug in -- @antiUnify@, which was using @unAbs@ instead of @absBody@. {-# OPTIONS --double-check #-} open import Agda.Primitive postulate I : Set T : ∀ {p} → Set (lsuc p) → Set (lsuc p) t : ∀ {p} → (B : Set (lsuc p)) → (I → I → Set) → B → T B x0 : I R0 : I → I → Set P0 : ∀ p → R0 x0 x0 → Set p d0 : R0 x0 x0 C : ∀ {p} (X : Set) (x : (T (X → Set p))) → Set f : ∀ {p} (R : I → I → Set) (P : R x0 x0 → Set p) → {{_ : C (R x0 x0) (t (R x0 x0 → Set p) R P)}} → (d : R x0 x0) → P d instance iDP : ∀ {p} → C (R0 x0 x0) (t (R0 x0 x0 → Set p) R0 (P0 p)) fails : ∀ p → P0 p d0 fails p = f _ (P0 p) d0
{ "alphanum_fraction": 0.4826086957, "avg_line_length": 23.7931034483, "ext": "agda", "hexsha": "1ade97167ba6feca9f5fa9d8ccc7bb5c6df8c255", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/AntiUnifyBug.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/AntiUnifyBug.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/AntiUnifyBug.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 323, "size": 690 }
module UnknownNameInFixityDecl where infix 40 _+_ infixr 60 _*_
{ "alphanum_fraction": 0.7910447761, "avg_line_length": 9.5714285714, "ext": "agda", "hexsha": "398be791f0e705877464bf352e83caf8fc168743", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/UnknownNameInFixityDecl.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/UnknownNameInFixityDecl.agda", "max_line_length": 36, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/UnknownNameInFixityDecl.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 25, "size": 67 }
open import Nat open import Prelude open import List open import contexts open import core open import lemmas-env module lemmas-progress where typ-inhabitance-pres : ∀{Δ Σ' Γ E e τ} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → Σ[ r ∈ result ] (Δ , Σ' ⊢ r ·: τ) typ-inhabitance-pres Γ⊢E ta@(TAFix e-ta) = _ , (TAFix Γ⊢E ta) typ-inhabitance-pres Γ⊢E (TAVar x∈Γ) with env-all-Γ Γ⊢E x∈Γ ... | _ , x∈E , r-ta = _ , r-ta typ-inhabitance-pres Γ⊢E (TAApp _ f-ta arg-ta) with typ-inhabitance-pres Γ⊢E f-ta | typ-inhabitance-pres Γ⊢E arg-ta ... | _ , rf-ta | _ , rarg-ta = _ , TAApp rf-ta rarg-ta typ-inhabitance-pres Γ⊢E TAUnit = _ , TAUnit typ-inhabitance-pres Γ⊢E (TAPair _ ta1 ta2) with typ-inhabitance-pres Γ⊢E ta1 | typ-inhabitance-pres Γ⊢E ta2 ... | _ , r-ta1 | _ , r-ta2 = _ , TAPair r-ta1 r-ta2 typ-inhabitance-pres Γ⊢E (TAFst ta) with typ-inhabitance-pres Γ⊢E ta ... | _ , r-ta = _ , TAFst r-ta typ-inhabitance-pres Γ⊢E (TASnd ta) with typ-inhabitance-pres Γ⊢E ta ... | _ , r-ta = _ , TASnd r-ta typ-inhabitance-pres Γ⊢E (TACtor d∈Σ' c∈d e-ta) with typ-inhabitance-pres Γ⊢E e-ta ... | _ , r-ta = _ , TACtor d∈Σ' c∈d r-ta typ-inhabitance-pres Γ⊢E (TACase d∈Σ' e-ta h1 h2) with typ-inhabitance-pres Γ⊢E e-ta ... | _ , r-ta = _ , TACase d∈Σ' Γ⊢E r-ta h1 λ form → let _ , _ , _ , h5 , h6 = h2 form in _ , h5 , h6 typ-inhabitance-pres Γ⊢E (TAHole u∈Δ) = _ , TAHole u∈Δ Γ⊢E typ-inhabitance-pres Γ⊢E (TAAsrt _ e-ta1 e-ta2) = _ , TAUnit
{ "alphanum_fraction": 0.5628853268, "avg_line_length": 37.7209302326, "ext": "agda", "hexsha": "7ee71d63b6168465b2d9cf6b4116b3025b40abf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "lemmas-progress.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "lemmas-progress.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "lemmas-progress.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 720, "size": 1622 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Crypto.Crypto.Hash as Hash import LibraBFT.Impl.OBM.Crypto as Crypto import LibraBFT.Impl.Types.OnChainConfig.ValidatorSet as ValidatorSet import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.Prelude module LibraBFT.Impl.Types.BlockInfo where gENESIS_EPOCH : Epoch gENESIS_EPOCH = {-Epoch-} 0 gENESIS_ROUND : Round gENESIS_ROUND = {-Round-} 0 gENESIS_VERSION : Version gENESIS_VERSION = Version∙new 0 0 empty : BlockInfo empty = BlockInfo∙new gENESIS_EPOCH gENESIS_ROUND Hash.valueZero Hash.valueZero gENESIS_VERSION nothing genesis : HashValue → ValidatorSet → Either ErrLog BlockInfo genesis genesisStateRootHash validatorSet = do vv ← ValidatorVerifier.from-e-abs validatorSet pure $ BlockInfo∙new gENESIS_EPOCH gENESIS_ROUND Hash.valueZero genesisStateRootHash gENESIS_VERSION --gENESIS_TIMESTAMP_USECS (just (EpochState∙new {-Epoch-} 1 vv)) mockGenesis : Maybe ValidatorSet → Either ErrLog BlockInfo mockGenesis = genesis (Crypto.obmHashVersion gENESIS_VERSION) -- OBM-LBFT-DIFF : Crypto.aCCUMULATOR_PLACEHOLDER_HASH ∘ fromMaybe ValidatorSet.empty hasReconfiguration : BlockInfo → Bool hasReconfiguration = is-just ∘ (_^∙ biNextEpochState)
{ "alphanum_fraction": 0.7573221757, "avg_line_length": 29.875, "ext": "agda", "hexsha": "8f81e7f4d91c09a7a4cd1a42d8af02ad5bb13b25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Types/BlockInfo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Types/BlockInfo.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Types/BlockInfo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 473, "size": 1673 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas -- TODO-2: The following import should be eliminated and replaced -- with the necessary module parameters (PK and MetaHonestPK) open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Abstract.Types.EpochConfig -- This module brings in the base types used through libra -- and those necessary for the abstract model. module LibraBFT.Abstract.Types (UID : Set) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) where open EpochConfig 𝓔 -- A member of an epoch is considered "honest" iff its public key is honest. Meta-Honest-Member : EpochConfig.Member 𝓔 → Set Meta-Honest-Member α = Meta-Honest-PK (getPubKey α) -- Naturally, if two witnesses that two authors belong -- in the epoch are the same, then the authors are also the same. -- -- This proof is very Galois-like, because of the way we structured -- our partial isos. It's actually pretty nice! :) member≡⇒author≡ : ∀{α β} → (authorα : Is-just (isMember? α)) → (authorβ : Is-just (isMember? β)) → to-witness authorα ≡ to-witness authorβ → α ≡ β member≡⇒author≡ {α} {β} a b prf with isMember? α | inspect isMember? α ...| nothing | [ _ ] = ⊥-elim (maybe-any-⊥ a) member≡⇒author≡ {α} {β} (just _) b prf | just ra | [ RA ] with isMember? β | inspect isMember? β ...| nothing | [ _ ] = ⊥-elim (maybe-any-⊥ b) member≡⇒author≡ {α} {β} (just _) (just _) prf | just ra | [ RA ] | just rb | [ RB ] = trans (sym (author-nodeid-id RA)) (trans (cong toNodeId prf) (author-nodeid-id RB))
{ "alphanum_fraction": 0.6474226804, "avg_line_length": 38.8, "ext": "agda", "hexsha": "ec3a18f0fe33bd2d573b7e5fee97c38818ebc3ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Abstract/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Abstract/Types.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Abstract/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 591, "size": 1940 }
import Categories.2-Category import Categories.2-Functor import Categories.Adjoint import Categories.Adjoint.Construction.EilenbergMoore import Categories.Adjoint.Construction.Kleisli import Categories.Adjoint.Equivalence import Categories.Adjoint.Instance.0-Truncation import Categories.Adjoint.Instance.01-Truncation import Categories.Adjoint.Instance.Core import Categories.Adjoint.Instance.Discrete import Categories.Adjoint.Instance.PosetCore import Categories.Adjoint.Instance.StrictCore import Categories.Adjoint.Mate import Categories.Adjoint.Properties import Categories.Adjoint.RAPL import Categories.Bicategory import Categories.Bicategory.Bigroupoid import Categories.Bicategory.Construction.1-Category import Categories.Bicategory.Instance.Cats import Categories.Bicategory.Instance.EnrichedCats import Categories.Category import Categories.Category.BicartesianClosed import Categories.Category.Cartesian import Categories.Category.Cartesian.Properties import Categories.Category.CartesianClosed import Categories.Category.CartesianClosed.Canonical import Categories.Category.CartesianClosed.Locally import Categories.Category.CartesianClosed.Locally.Properties import Categories.Category.Closed import Categories.Category.Cocartesian import Categories.Category.Cocomplete import Categories.Category.Cocomplete.Finitely import Categories.Category.Complete import Categories.Category.Complete.Finitely import Categories.Category.Construction.0-Groupoid import Categories.Category.Construction.Arrow import Categories.Category.Construction.Cocones import Categories.Category.Construction.Comma import Categories.Category.Construction.Cones import Categories.Category.Construction.Coproduct import Categories.Category.Construction.Core import Categories.Category.Construction.EilenbergMoore import Categories.Category.Construction.Elements import Categories.Category.Construction.EnrichedFunctors import Categories.Category.Construction.F-Algebras import Categories.Category.Construction.Fin import Categories.Category.Construction.Functors import Categories.Category.Construction.Graphs import Categories.Category.Construction.Grothendieck import Categories.Category.Construction.Kleisli import Categories.Category.Construction.Path import Categories.Category.Construction.Presheaves import Categories.Category.Construction.Properties.Comma import Categories.Category.Construction.Pullbacks import Categories.Category.Construction.Thin import Categories.Category.Core import Categories.Category.Discrete import Categories.Category.Equivalence import Categories.Category.Finite import Categories.Category.Groupoid import Categories.Category.Groupoid.Properties import Categories.Category.Indiscrete import Categories.Category.Instance.Cats import Categories.Category.Instance.EmptySet import Categories.Category.Instance.FamilyOfSets import Categories.Category.Instance.Globe import Categories.Category.Instance.Groupoids import Categories.Category.Instance.One import Categories.Category.Instance.PointedSets import Categories.Category.Instance.Posets import Categories.Category.Instance.Properties.Cats import Categories.Category.Instance.Properties.Posets import Categories.Category.Instance.Properties.Setoids import Categories.Category.Instance.Setoids import Categories.Category.Instance.Sets import Categories.Category.Instance.Simplex import Categories.Category.Instance.SimplicialSet import Categories.Category.Instance.SingletonSet import Categories.Category.Instance.Span import Categories.Category.Instance.StrictCats import Categories.Category.Instance.StrictGroupoids import Categories.Category.Instance.Zero import Categories.Category.Monoidal import Categories.Category.Monoidal.Braided import Categories.Category.Monoidal.Braided.Properties import Categories.Category.Monoidal.Closed import Categories.Category.Monoidal.Closed.IsClosed import Categories.Category.Monoidal.Closed.IsClosed.Diagonal import Categories.Category.Monoidal.Closed.IsClosed.Dinatural import Categories.Category.Monoidal.Closed.IsClosed.Identity import Categories.Category.Monoidal.Closed.IsClosed.L import Categories.Category.Monoidal.Closed.IsClosed.Pentagon import Categories.Category.Monoidal.Construction.Minus2 import Categories.Category.Monoidal.Core import Categories.Category.Monoidal.Instance.Cats import Categories.Category.Monoidal.Instance.One import Categories.Category.Monoidal.Instance.Setoids import Categories.Category.Monoidal.Instance.Sets import Categories.Category.Monoidal.Instance.StrictCats import Categories.Category.Monoidal.Properties import Categories.Category.Monoidal.Reasoning import Categories.Category.Monoidal.Symmetric import Categories.Category.Monoidal.Traced import Categories.Category.Monoidal.Utilities import Categories.Category.Product import Categories.Category.Product.Properties import Categories.Category.RigCategory import Categories.Category.SetoidDiscrete import Categories.Category.Site import Categories.Category.Slice import Categories.Category.Slice.Properties import Categories.Category.SubCategory import Categories.Category.Topos import Categories.Category.WithFamilies import Categories.Comonad import Categories.Diagram.Cocone import Categories.Diagram.Cocone.Properties import Categories.Diagram.Coend import Categories.Diagram.Coequalizer import Categories.Diagram.Coequalizer.Properties import Categories.Diagram.Colimit import Categories.Diagram.Colimit.DualProperties import Categories.Diagram.Colimit.Lan import Categories.Diagram.Colimit.Properties import Categories.Diagram.Cone import Categories.Diagram.Cone.Properties import Categories.Diagram.Duality import Categories.Diagram.End import Categories.Diagram.End.Properties import Categories.Diagram.Equalizer import Categories.Diagram.Finite import Categories.Diagram.Limit import Categories.Diagram.Limit.Properties import Categories.Diagram.Limit.Ran import Categories.Diagram.Pullback import Categories.Diagram.Pullback.Limit import Categories.Diagram.Pullback.Properties import Categories.Diagram.Pushout import Categories.Diagram.Pushout.Properties import Categories.Diagram.SubobjectClassifier import Categories.Enriched.Category import Categories.Enriched.Functor import Categories.Enriched.NaturalTransformation import Categories.Enriched.NaturalTransformation.NaturalIsomorphism import Categories.Enriched.Over.One import Categories.Functor import Categories.Functor.Algebra import Categories.Functor.Bifunctor import Categories.Functor.Bifunctor.Properties import Categories.Functor.Coalgebra import Categories.Functor.Cocontinuous import Categories.Functor.Construction.Constant import Categories.Functor.Construction.Diagonal import Categories.Functor.Construction.LiftSetoids import Categories.Functor.Construction.Limit import Categories.Functor.Construction.Zero import Categories.Functor.Continuous import Categories.Functor.Core import Categories.Functor.Equivalence import Categories.Functor.Fibration import Categories.Functor.Groupoid import Categories.Functor.Hom import Categories.Functor.Instance.0-Truncation import Categories.Functor.Instance.01-Truncation import Categories.Functor.Instance.Core import Categories.Functor.Instance.Discrete import Categories.Functor.Instance.SetoidDiscrete import Categories.Functor.Instance.StrictCore import Categories.Functor.Monoidal import Categories.Functor.Power import Categories.Functor.Power.Functorial import Categories.Functor.Power.NaturalTransformation import Categories.Functor.Presheaf import Categories.Functor.Profunctor import Categories.Functor.Properties import Categories.Functor.Representable import Categories.Functor.Slice import Categories.GlobularSet import Categories.Kan import Categories.Kan.Duality import Categories.Minus2-Category import Categories.Minus2-Category.Construction.Indiscrete import Categories.Minus2-Category.Instance.One import Categories.Minus2-Category.Properties import Categories.Monad import Categories.Monad.Duality import Categories.Monad.Idempotent import Categories.Monad.Strong import Categories.Morphism import Categories.Morphism.Cartesian import Categories.Morphism.Duality import Categories.Morphism.HeterogeneousIdentity import Categories.Morphism.HeterogeneousIdentity.Properties import Categories.Morphism.IsoEquiv import Categories.Morphism.Isomorphism import Categories.Morphism.Properties import Categories.Morphism.Reasoning import Categories.Morphism.Reasoning.Core import Categories.Morphism.Reasoning.Iso import Categories.Morphism.Universal import Categories.NaturalTransformation import Categories.NaturalTransformation.Core import Categories.NaturalTransformation.Dinatural import Categories.NaturalTransformation.Equivalence import Categories.NaturalTransformation.Hom import Categories.NaturalTransformation.NaturalIsomorphism import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence import Categories.NaturalTransformation.NaturalIsomorphism.Functors import Categories.NaturalTransformation.NaturalIsomorphism.Properties import Categories.NaturalTransformation.Properties import Categories.Object.Coproduct import Categories.Object.Duality import Categories.Object.Exponential import Categories.Object.Initial import Categories.Object.Product import Categories.Object.Product.Construction import Categories.Object.Product.Core import Categories.Object.Product.Morphisms import Categories.Object.Terminal import Categories.Object.Zero import Categories.Pseudofunctor import Categories.Pseudofunctor.Instance.EnrichedUnderlying import Categories.Utils.EqReasoning import Categories.Utils.Product import Categories.Yoneda import Categories.Yoneda.Properties import Relation.Binary.Construct.Symmetrize
{ "alphanum_fraction": 0.8912211767, "avg_line_length": 42.4166666667, "ext": "agda", "hexsha": "2f30f271df46533d1b5574e1c6bf8ac088408770", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Everything.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1850, "size": 9671 }
module Membership where open import Data.Sum open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.List.Any as Any open Any.Membership-≡ -- _∈_ ∈-++-pos : ∀ {A : Set} {x : A} xs ys → x ∈ xs ++ ys → (x ∈ xs) ⊎ (x ∈ ys) ∈-++-pos [] ys x∈ = inj₂ x∈ ∈-++-pos (x ∷ xs) ys (here refl) = inj₁ (here refl) ∈-++-pos (x ∷ xs) ys (there x∈) with ∈-++-pos xs ys x∈ ... | inj₁ x∈xs = inj₁ (there x∈xs) ... | inj₂ x∈ys = inj₂ x∈ys ∈-++-r : ∀ {A : Set} {x : A} xs {ys} → x ∈ ys → x ∈ (xs ++ ys) ∈-++-r [] x∈ = x∈ ∈-++-r (y ∷ xs) x∈ = there (∈-++-r xs x∈) ∈-++-l : ∀ {A : Set} {x : A} {xs} ys → x ∈ xs → x ∈ (xs ++ ys) ∈-++-l ys (here refl) = here refl ∈-++-l ys (there x∈) = there (∈-++-l ys x∈) ∈-++-weaken : ∀ {A : Set} {x : A} xs ys zs → x ∈ (xs ++ zs) → x ∈ (xs ++ ys ++ zs) ∈-++-weaken [] ys zs x∈ = ∈-++-r ys x∈ ∈-++-weaken (x ∷ xs) ys zs (here refl) = here refl ∈-++-weaken (_ ∷ xs) ys zs (there x∈) = there (∈-++-weaken xs ys zs x∈) -- _∉_ ∉-++-l : ∀ {A : Set} {x : A} xs ys → x ∉ xs ++ ys → x ∉ xs ∉-++-l ._ ys x∉xs++ys (here eq) = x∉xs++ys (here eq) ∉-++-l .(x' ∷ xs) ys x∉xs++ys (there {x'} {xs} pxs) = ∉-++-l xs ys (λ p → x∉xs++ys (there p)) pxs ∉-++-r : ∀ {A : Set} {x : A} xs ys → x ∉ xs ++ ys → x ∉ ys ∉-++-r [] ys x∉xs++ys x∈ys = x∉xs++ys x∈ys ∉-++-r (x' ∷ xs) ys x∉xs++ys x∈ys = ∉-++-r xs ys (λ p → x∉xs++ys (there p)) x∈ys postulate ∉-∷ : ∀ {A : Set} {y x : A} {xs} → ¬ (y ≡ x) → y ∉ xs → y ∉ (x ∷ xs) ∉-++-join : ∀ {A : Set} {x : A} → ∀ xs ys → x ∉ xs → x ∉ ys → x ∉ xs ++ ys ∉-++-join [] ys x∉xs x∉ys x∈ys = x∉ys x∈ys ∉-++-join (_ ∷ xs) ys x∉xs x∉ys (here refl) = x∉xs (here refl) ∉-++-join (_ ∷ xs) ys x∉xxs x∉ys (there pxs) = ∉-++-join xs ys (λ x∉xs → x∉xxs (there x∉xs)) x∉ys pxs ∉-++-weaken : ∀ {A : Set} {x : A} xs ys zs → x ∉ (xs ++ ys ++ zs) → x ∉ (xs ++ zs) ∉-++-weaken xs ys zs x∉xyz x∈xz = x∉xyz (∈-++-weaken xs ys zs x∈xz) ∉-∷-hd : ∀ {A : Set} {x y : A} xs → x ∉ (y ∷ xs) → ¬ (x ≡ y) ∉-∷-hd {x} {._} xs x∉ refl = x∉ (here refl) ∉-∷-tl : ∀ {A : Set} {x y : A} xs → x ∉ (y ∷ xs) → x ∉ xs ∉-∷-tl {x} {y} xs x∉ x∈ = x∉ (there x∈)
{ "alphanum_fraction": 0.4338768116, "avg_line_length": 32.9552238806, "ext": "agda", "hexsha": "ca9c959e679dc6a96a0a6b990dd18c359a489311", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/scmu/foundations-harper/63f170677b07f78ce19cee228e98fc9abbdb19e7/08.LNumStr->/Membership.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/scmu/foundations-harper/63f170677b07f78ce19cee228e98fc9abbdb19e7/08.LNumStr->/Membership.agda", "max_line_length": 101, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/scmu/foundations-harper/63f170677b07f78ce19cee228e98fc9abbdb19e7/08.LNumStr->/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 1149, "size": 2208 }
{-# OPTIONS --without-K #-} module hott.loop where open import hott.loop.core public open import hott.loop.properties public open import hott.loop.level public open import hott.loop.sum public
{ "alphanum_fraction": 0.7835051546, "avg_line_length": 24.25, "ext": "agda", "hexsha": "28a52cd64f0dc56e45111f1a907bd58442e4b80e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/loop.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/loop.agda", "max_line_length": 39, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott/loop.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 39, "size": 194 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.DiffInt.Base where open import Cubical.Foundations.Prelude open import Cubical.HITs.SetQuotients.Base open import Cubical.Data.Sigma open import Cubical.Data.Nat rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀ rel (a₀ , b₀) (a₁ , b₁) = x ≡ y where x = a₀ + b₁ y = a₁ + b₀ ℤ = (ℕ × ℕ) / rel open import Cubical.Data.Nat.Literals public instance fromNatDiffInt : HasFromNat ℤ fromNatDiffInt = record { Constraint = λ _ → Unit ; fromNat = λ n → [ n , 0 ] } instance fromNegDiffInt : HasFromNeg ℤ fromNegDiffInt = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ 0 , n ] }
{ "alphanum_fraction": 0.6574923547, "avg_line_length": 23.3571428571, "ext": "agda", "hexsha": "a09f28bf24274dc3a3e3360e37746058d97fee64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/cubical", "max_forks_repo_path": "Cubical/Data/DiffInt/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/cubical", "max_issues_repo_path": "Cubical/Data/DiffInt/Base.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "cc6ad25d5ffbe4f20ea7020474f266d24b97caa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/cubical", "max_stars_repo_path": "Cubical/Data/DiffInt/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 230, "size": 654 }
module Structure.Category.Functor.Contravariant where open import Logic.Predicate import Lvl open import Structure.Category.Functor open import Structure.Category.Dual open import Structure.Category open import Structure.Setoid open import Type private variable ℓ ℓₒ ℓₘ ℓₗₒ ℓₗₘ ℓᵣₒ ℓᵣₘ ℓₑ ℓₗₑ ℓᵣₑ : Lvl.Level private variable Obj Objₗ Objᵣ : Type{ℓ} private variable Morphism Morphismₗ Morphismᵣ : Objₗ → Objᵣ → Type{ℓ} module _ ⦃ morphism-equivₗ : ∀{x y : Objₗ} → Equiv{ℓₗₑ}(Morphismₗ x y) ⦄ ⦃ morphism-equivᵣ : ∀{x y : Objᵣ} → Equiv{ℓᵣₑ}(Morphismᵣ x y) ⦄ (Categoryₗ : Category(Morphismₗ)) (Categoryᵣ : Category(Morphismᵣ)) where ContravariantFunctor : (Objₗ → Objᵣ) → Type ContravariantFunctor = Functor (dualCategory Categoryₗ) Categoryᵣ module ContravariantFunctor = Functor{Categoryₗ = dualCategory Categoryₗ}{Categoryᵣ = Categoryᵣ} module _ ⦃ morphism-equiv : ∀{x y : Obj} → Equiv{ℓₑ}(Morphism x y) ⦄ (Category : Category(Morphism)) where ContravariantEndofunctor = ContravariantFunctor(Category)(Category) module ContravariantEndofunctor = ContravariantFunctor(Category)(Category) _→ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ_ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ} → CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ} → Type catₗ →ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ catᵣ = ∃(ContravariantFunctor (CategoryObject.category(catₗ)) ((CategoryObject.category(catᵣ)))) ⟲ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ_ : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ} → Type ⟲ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ cat = cat →ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ cat module _ (C₁ C₂ : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}) where open import Logic.Propositional open import Structure.Relator.Equivalence open CategoryObject ⦃ … ⦄ open Category ⦃ … ⦄ open ArrowNotation open Functor ⦃ … ⦄ private open module MorphismEquiv₁ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv ⦃ C₁ ⦄ {x}{y} ⦄) using () private open module MorphismEquiv₂ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv ⦃ C₂ ⦄ {x}{y} ⦄) using () instance _ = C₁ instance _ = C₂ contravariant-functor-def-dual : (dual(C₁) →ᶠᵘⁿᶜᵗᵒʳ C₂) ↔ (C₁ →ᶠᵘⁿᶜᵗᵒʳ dual(C₂)) contravariant-functor-def-dual = [↔]-intro l r where l : (dual(C₁) →ᶠᵘⁿᶜᵗᵒʳ C₂) ← (C₁ →ᶠᵘⁿᶜᵗᵒʳ dual(C₂)) ∃.witness (l ([∃]-intro F)) = F Functor.map (∃.proof (l _)) = map Functor.map-function (∃.proof (l _)) = map-function Functor.op-preserving (∃.proof (l _)) = op-preserving Functor.id-preserving (∃.proof (l _)) = id-preserving r : (dual(C₁) →ᶠᵘⁿᶜᵗᵒʳ C₂) → (C₁ →ᶠᵘⁿᶜᵗᵒʳ dual(C₂)) ∃.witness (r ([∃]-intro F)) = F Functor.map (∃.proof (r _)) = map Functor.map-function (∃.proof (r _)) = map-function Functor.op-preserving (∃.proof (r _)) = op-preserving Functor.id-preserving (∃.proof (r _)) = id-preserving
{ "alphanum_fraction": 0.7019406811, "avg_line_length": 39.0142857143, "ext": "agda", "hexsha": "c00c5ff13553050462245849baf0496ccff5cae7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Functor/Contravariant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Functor/Contravariant.agda", "max_line_length": 123, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Functor/Contravariant.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1392, "size": 2731 }
{-# OPTIONS --rewriting --allow-unsolved-metas #-} postulate _↦_ : Set → Set → Set {-# BUILTIN REWRITE _↦_ #-} postulate X : Set P : Set → Set → Set P-rewr : (A : Set) → (P A A ↦ X) {-# REWRITE P-rewr #-} f : (B : Set → Set) {x y : Set} → P (B x) (B y) f = {!!}
{ "alphanum_fraction": 0.5018315018, "avg_line_length": 19.5, "ext": "agda", "hexsha": "ecbd29e52abbf57f99248172fa4903dbc7054d02", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3774.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3774.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3774.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 273 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sublist-related properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Sublist.Propositional.Properties {a} {A : Set a} where open import Data.List using (map) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any.Properties using (here-injective; there-injective) open import Data.List.Relation.Binary.Sublist.Propositional hiding (map) import Data.List.Relation.Binary.Sublist.Setoid.Properties as SetoidProperties open import Function open import Relation.Binary.PropositionalEquality as P hiding ([_]) open import Relation.Unary as U using (Pred) ------------------------------------------------------------------------ -- Re-exporting setoid properties open SetoidProperties (P.setoid A) public hiding (map⁺) ------------------------------------------------------------------------ -- map module _ {b} {B : Set b} where map⁺ : ∀ {as bs} (f : A → B) → as ⊆ bs → map f as ⊆ map f bs map⁺ f = SetoidProperties.map⁺ (setoid A) (setoid B) (cong f) ------------------------------------------------------------------------ -- The `lookup` function induced by a proof that `xs ⊆ ys` is injective module _ {p} {P : Pred A p} where lookup-injective : ∀ {xs ys} {p : xs ⊆ ys} {v w : Any P xs} → lookup p v ≡ lookup p w → v ≡ w lookup-injective {p = []} {} lookup-injective {p = _ ∷ʳ _} {v} {w} = lookup-injective ∘′ there-injective lookup-injective {p = x≡y ∷ _} {here pv} {here pw} = cong here ∘′ subst-injective x≡y ∘′ here-injective lookup-injective {p = _ ∷ _} {there v} {there w} = cong there ∘′ lookup-injective ∘′ there-injective lookup-injective {p = _ ∷ _} {here _} {there _} () lookup-injective {p = _ ∷ _} {there _} {here _} ()
{ "alphanum_fraction": 0.5349070819, "avg_line_length": 38.2884615385, "ext": "agda", "hexsha": "9916d43b6c0f92e468076f3ec59063f7c8226ce9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Propositional/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Propositional/Properties.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Propositional/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 520, "size": 1991 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function using (_∘_; _$_; flip; id) open import Cubical.Foundations.Logic hiding (_⇒_; _⇔_) renaming (⇔toPath to hProp⇔toPath) open import Cubical.Relation.Binary.Base open import Cubical.Relation.Binary.Definitions open import Cubical.Relation.Nullary.Decidable hiding (¬_) open import Cubical.Data.Maybe using (just; nothing; Dec→Maybe; map-Maybe) open import Cubical.Data.Sum.Base as Sum using (inl; inr) open import Cubical.Data.Empty using (⊥; isProp⊥) renaming (elim to ⊥-elim) open import Cubical.HITs.PropositionalTruncation private variable a b ℓ ℓ₁ ℓ₂ ℓ₃ p : Level A : Type a B : Type b ------------------------------------------------------------------------ -- Equality properties ≡ₚReflexive : Reflexive (_≡ₚ_ {A = A}) ≡ₚReflexive = ∣ refl ∣ ≡ₚSymmetric : Symmetric (_≡ₚ_ {A = A}) ≡ₚSymmetric = map sym ≡ₚTransitive : Transitive (_≡ₚ_ {A = A}) ≡ₚTransitive = map2 _∙_ ≡ₚSubstitutive : Substitutive (_≡ₚ_ {A = A}) ℓ ≡ₚSubstitutive P = elim (λ _ → isPropΠ λ _ → P _ .snd) (subst (λ x → P x .fst)) ------------------------------------------------------------------------ -- Substitutive properties module _ (_∼_ : Rel A ℓ₁) (P : Rel A p) where subst→respˡ : Substitutive _∼_ p → P Respectsˡ _∼_ subst→respˡ subst {y} x′∼x Px′y = subst (flip P y) x′∼x Px′y subst→respʳ : Substitutive _∼_ p → P Respectsʳ _∼_ subst→respʳ subst {x} y′∼y Pxy′ = subst (P x) y′∼y Pxy′ subst→resp₂ : Substitutive _∼_ p → P Respects₂ _∼_ subst→resp₂ subst = subst→respʳ subst , subst→respˡ subst module _ (_∼_ : Rel A ℓ) (P : A → hProp p) where P-resp→¬P-resp : Symmetric _∼_ → P Respects _∼_ → (¬_ ∘ P) Respects _∼_ P-resp→¬P-resp sym resp x∼y ¬Px Py = ¬Px (resp (sym x∼y) Py) Respectsʳ≡ₚ : (_∼_ : Rel A ℓ) → _∼_ Respectsʳ _≡ₚ_ Respectsʳ≡ₚ _∼_ = subst→respʳ _≡ₚ_ _∼_ ≡ₚSubstitutive Respectsˡ≡ₚ : (_∼_ : Rel A ℓ) → _∼_ Respectsˡ _≡ₚ_ Respectsˡ≡ₚ _∼_ = subst→respˡ _≡ₚ_ _∼_ ≡ₚSubstitutive Respects₂≡ₚ : (_∼_ : Rel A ℓ) → _∼_ Respects₂ _≡ₚ_ Respects₂≡ₚ _∼_ = subst→resp₂ _≡ₚ_ _∼_ ≡ₚSubstitutive ------------------------------------------------------------------------ -- Proofs for non-strict orders module _ (_≤_ : Rel A ℓ) where rawtotal→FromEq : RawTotal _≤_ → FromEq _≤_ rawtotal→FromEq total {x} {y} x≡y with total x y ... | inl x∼y = x∼y ... | inr y∼x = Respectsʳ≡ₚ _≤_ x≡y (Respectsˡ≡ₚ _≤_ (≡ₚSymmetric x≡y) y∼x) total→FromEq : Total _≤_ → FromEq _≤_ total→FromEq total {x} {y} x≡y = elim (λ _ → (x ≤ y) .snd) (λ { (inl x∼y) → x∼y ; (inr y∼x) → Respectsʳ≡ₚ _≤_ x≡y (Respectsˡ≡ₚ _≤_ (≡ₚSymmetric x≡y) y∼x) }) (total x y) ------------------------------------------------------------------------ -- Proofs for strict orders module _ (_<_ : Rel A ℓ) where trans∧irr→asym : Transitive _<_ → Irreflexive _<_ → Asymmetric _<_ trans∧irr→asym transitive irrefl x<y y<x = irrefl (transitive x<y y<x) irr∧antisym→asym : Irreflexive _<_ → Antisymmetric _<_ → Asymmetric _<_ irr∧antisym→asym irrefl antisym x<y y<x = irrefl→tonoteq irrefl x<y (antisym x<y y<x) where irrefl→tonoteq : Irreflexive _<_ → ToNotEq _<_ irrefl→tonoteq irrefl {x} {y} x<y x≡y = irrefl (substₚ (λ z → x < z) (≡ₚSymmetric x≡y) x<y) asym→antisym : Asymmetric _<_ → Antisymmetric _<_ asym→antisym asym x<y y<x = ⊥-elim (asym x<y y<x) asym→irr : Asymmetric _<_ → Irreflexive _<_ asym→irr asym {x} x<x = asym x<x x<x tri→asym : Trichotomous _<_ → Asymmetric _<_ tri→asym compare {x} {y} x<y x>y with compare x y ... | tri< _ _ x≯y = x≯y x>y ... | tri≡ _ _ x≯y = x≯y x>y ... | tri> x≮y _ _ = x≮y x<y tri→irr : Trichotomous _<_ → Irreflexive _<_ tri→irr compare {x} x<x with compare x x ... | tri< _ _ x≮x = x≮x x<x ... | tri≡ _ _ x≮x = x≮x x<x ... | tri> x≮x _ _ = x≮x x<x tri→dec≡ : Trichotomous _<_ → Discrete A tri→dec≡ compare x y with compare x y ... | tri< _ x≢y _ = no x≢y ... | tri≡ _ x≡y _ = yes x≡y ... | tri> _ x≢y _ = no x≢y tri→dec< : Trichotomous _<_ → Decidable _<_ tri→dec< compare x y with compare x y ... | tri< x<y _ _ = yes x<y ... | tri≡ x≮y _ _ = no x≮y ... | tri> x≮y _ _ = no x≮y ------------------------------------------------------------------------ -- Without Loss of Generality module _ {R : Rel A ℓ₁} {Q : Rel A ℓ₂} where wlog : Total R → Symmetric Q → R ⇒ Q → Universal Q wlog r-total q-sym prf a b = elim (λ _ → Q a b .snd) (λ { (inl Rab) → prf Rab ; (inr Rba) → q-sym (prf Rba) }) (r-total a b) ------------------------------------------------------------------------ -- Other proofs module _ {P : REL A B p} where dec→weaklyDec : Decidable P → WeaklyDecidable P dec→weaklyDec dec x y = Dec→Maybe (dec x y) module _ {P : Rel A ℓ₁} {Q : Rel A ℓ₂} (f : P ⇒ Q) where map-Reflexive : Reflexive P → Reflexive Q map-Reflexive reflx = f reflx map-FromEq : FromEq P → FromEq Q map-FromEq fromEq p = f (fromEq p) cmap-Irreflexive : Irreflexive Q → Irreflexive P cmap-Irreflexive irrefl x≡x = irrefl (f x≡x) cmap-ToNotEq : ToNotEq Q → ToNotEq P cmap-ToNotEq toNotEq x = toNotEq (f x) module _ {P : REL A B ℓ₁} {Q : REL A B ℓ₂} (f : P ⇒ Q) where map-Universal : Universal P → Universal Q map-Universal u x y = f (u x y) map-NonEmpty : NonEmpty P → NonEmpty Q map-NonEmpty = map (λ (x , p) → x , map (λ (y , q) → y , f q) p) module _ {P : REL A B ℓ₁} {Q : REL B A ℓ₂} where flip-RawConnex : RawConnex P Q → RawConnex Q P flip-RawConnex f x y = Sum.swap (f y x) flip-Connex : Connex P Q → Connex Q P flip-Connex f x y = map Sum.swap (f y x) module _ (_∼_ : Rel A ℓ) where reflx→fromeq : Reflexive _∼_ → FromEq _∼_ reflx→fromeq reflx {x} p = substₚ (x ∼_) p reflx fromeq→reflx : FromEq _∼_ → Reflexive _∼_ fromeq→reflx fromEq = fromEq ∣ refl ∣ irrefl→tonoteq : Irreflexive _∼_ → ToNotEq _∼_ irrefl→tonoteq irrefl {x} {y} x<y x≡y = irrefl (substₚ (x ∼_) (≡ₚSymmetric x≡y) x<y) tonoteq→irrefl : ToNotEq _∼_ → Irreflexive _∼_ tonoteq→irrefl toNotEq x<x = toNotEq x<x ∣ refl ∣ ------------------------------------------------------------------------ -- Proofs for propositional relations only isPropIsPropValued : {R : RawREL A B ℓ} → isProp (isPropValued R) isPropIsPropValued a b i x y = isPropIsProp (a x y) (b x y) i module _ (R : Rel A ℓ) where isPropReflexive : isProp (Reflexive R) isPropReflexive a b i {x} = R x x .snd a b i isPropFromEq : isProp (FromEq R) isPropFromEq a b i {x} {y} p = R x y .snd (a p) (b p) i isPropIrreflexive : isProp (Irreflexive R) isPropIrreflexive a b i {x} xRx = isProp⊥ (a xRx) (b xRx) i isPropToNotEq : isProp (ToNotEq R) isPropToNotEq a b i {x} {y} xRy x≡y = isProp⊥ (a xRy x≡y) (b xRy x≡y) i isPropAsymmetric : isProp (Asymmetric R) isPropAsymmetric a b i {x} {y} xRy yRx = isProp⊥ (a xRy yRx) (b xRy yRx) i isProp⇒ : (R : REL A B ℓ₁) (Q : REL A B ℓ₂) → isProp (R ⇒ Q) isProp⇒ R Q a b i {x} {y} xRy = Q x y .snd (a xRy) (b xRy) i isPropSym : (R : REL A B ℓ₁) (Q : REL B A ℓ₂) → isProp (Sym R Q) isPropSym R Q = isProp⇒ R (flip Q) isPropTrans : ∀ {c} {C : Type c} (P : REL A B ℓ₁) (Q : REL B C ℓ₂) (R : REL A C ℓ₃) → isProp (Trans P Q R) isPropTrans P Q R a b i {x} {_} {z} xPy yQz = R x z .snd (a xPy yQz) (b xPy yQz) i isPropAntisym : (R : REL A B ℓ₁) (Q : REL B A ℓ₂) (E : REL A B ℓ₃) → isProp (Antisym R Q E) isPropAntisym R Q E a b i {x} {y} xRy yQx = E x y .snd (a xRy yQx) (b xRy yQx) i module _ (R : REL A B ℓ) where Universal→isContrValued : Universal R → ∀ {a b} → isContr ⟨ R a b ⟩ Universal→isContrValued univr {a} {b} = univr a b , R a b .snd _ ------------------------------------------------------------------------ -- Bidirectional implication and equality ⇔toPath : {R : REL A B ℓ} {Q : REL A B ℓ} → R ⇔ Q → R ≡ Q ⇔toPath (R⇒Q , Q⇒R) = funExt (λ x → funExt (λ y → hProp⇔toPath R⇒Q Q⇒R))
{ "alphanum_fraction": 0.5763236022, "avg_line_length": 32.7287449393, "ext": "agda", "hexsha": "856b0149b74f4375c8c06365eb91b7126a1e277c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Properties.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3404, "size": 8084 }
------------------------------------------------------------------------ -- The Agda standard library -- -- "Finite" sets indexed on coinductive "natural" numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types --guardedness #-} module Codata.Musical.Cofin where open import Codata.Musical.Notation open import Codata.Musical.Conat as Conat using (Coℕ; suc; ∞ℕ) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Fin using (Fin; zero; suc) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Function ------------------------------------------------------------------------ -- The type -- Note that Cofin ∞ℕ is /not/ finite. Note also that this is not a -- coinductive type, but it is indexed on a coinductive type. data Cofin : Coℕ → Set where zero : ∀ {n} → Cofin (suc n) suc : ∀ {n} (i : Cofin (♭ n)) → Cofin (suc n) suc-injective : ∀ {m} {p q : Cofin (♭ m)} → (Cofin (suc m) ∋ suc p) ≡ suc q → p ≡ q suc-injective refl = refl ------------------------------------------------------------------------ -- Some operations fromℕ : ℕ → Cofin ∞ℕ fromℕ zero = zero fromℕ (suc n) = suc (fromℕ n) toℕ : ∀ {n} → Cofin n → ℕ toℕ zero = zero toℕ (suc i) = suc (toℕ i) fromFin : ∀ {n} → Fin n → Cofin (Conat.fromℕ n) fromFin zero = zero fromFin (suc i) = suc (fromFin i) toFin : ∀ n → Cofin (Conat.fromℕ n) → Fin n toFin zero () toFin (suc n) zero = zero toFin (suc n) (suc i) = suc (toFin n i) import Codata.Cofin as C fromMusical : ∀ {n} → Cofin n → C.Cofin (Conat.fromMusical n) fromMusical zero = C.zero fromMusical (suc n) = C.suc (fromMusical n) toMusical : ∀ {n} → C.Cofin n → Cofin (Conat.toMusical n) toMusical C.zero = zero toMusical (C.suc n) = suc (toMusical n)
{ "alphanum_fraction": 0.5475138122, "avg_line_length": 30.1666666667, "ext": "agda", "hexsha": "cb278711777ab9a701ad37e40b1878d9cc836744", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Cofin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Cofin.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Cofin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 590, "size": 1810 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Coercions where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Data.Unit.Base -- Unit open import Cubical.Data.Empty -- ⊥ open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` open import Number.Postulates open import Number.Inclusions open import Number.Base open import MoreNatProperties open ℕⁿ open ℤᶻ open ℚᶠ open ℝʳ open ℂᶜ open PatternsProp module Coerce-ℕ↪ℤ where open ℤ open IsROrderedCommSemiringInclusion -- ℕ↪ℤinc private f = ℕ↪ℤ abstract coerce-ℕ↪ℤ : ∀{p} → (x : Number (isNat , p)) → PositivityKindInterpretation isInt (coerce-PositivityKind isNat isInt p) (ℕ↪ℤ (num x)) coerce-ℕ↪ℤ {⁇x⁇} (x ,, q) = lift tt coerce-ℕ↪ℤ {x#0} (x ,, q) = preserves-#0 ℕ↪ℤinc _ q -- transport (λ i → f x # preserves-0 i) (preserves-# _ _ q) coerce-ℕ↪ℤ {0≤x} (x ,, q) = preserves-0≤ ℕ↪ℤinc _ q -- transport (λ i → preserves-0 i ≤ f x) (preserves-≤ _ _ q) coerce-ℕ↪ℤ {0<x} (x ,, q) = preserves-0< ℕ↪ℤinc _ q -- transport (λ i → preserves-0 i < f x) (preserves-< _ _ q) coerce-ℕ↪ℤ {x≤0} (x ,, q) = preserves-≤0 ℕ↪ℤinc _ q -- transport (λ i → f x ≤ preserves-0 i) (preserves-≤ _ _ q) module Coerce-ℕ↪ℚ where open ℚ open IsROrderedCommSemiringInclusion -- ℕ↪ℚinc private f = ℕ↪ℚ abstract coerce-ℕ↪ℚ : ∀{p} → (x : Number (isNat , p)) → PositivityKindInterpretation isRat (coerce-PositivityKind isNat isRat p) (ℕ↪ℚ (num x)) coerce-ℕ↪ℚ {⁇x⁇} (x ,, q) = lift tt coerce-ℕ↪ℚ {x#0} (x ,, q) = preserves-#0 ℕ↪ℚinc _ q -- transport (λ i → f x # preserves-0 i) (preserves-# _ _ q) coerce-ℕ↪ℚ {0≤x} (x ,, q) = preserves-0≤ ℕ↪ℚinc _ q -- transport (λ i → preserves-0 i ≤ f x) (preserves-≤ _ _ q) coerce-ℕ↪ℚ {0<x} (x ,, q) = preserves-0< ℕ↪ℚinc _ q -- transport (λ i → preserves-0 i < f x) (preserves-< _ _ q) coerce-ℕ↪ℚ {x≤0} (x ,, q) = preserves-≤0 ℕ↪ℚinc _ q -- transport (λ i → f x ≤ preserves-0 i) (preserves-≤ _ _ q) module Coerce-ℕ↪ℝ where open ℝ open IsROrderedCommSemiringInclusion -- ℕ↪ℝinc private f = ℕ↪ℝ abstract coerce-ℕ↪ℝ : ∀{p} → (x : Number (isNat , p)) → PositivityKindInterpretation isReal (coerce-PositivityKind isNat isReal p) (ℕ↪ℝ (num x)) coerce-ℕ↪ℝ {⁇x⁇} (x ,, q) = lift tt coerce-ℕ↪ℝ {x#0} (x ,, q) = preserves-#0 ℕ↪ℝinc _ q -- transport (λ i → f x # preserves-0 i) (preserves-# _ _ q) coerce-ℕ↪ℝ {0≤x} (x ,, q) = preserves-0≤ ℕ↪ℝinc _ q -- transport (λ i → preserves-0 i ≤ f x) (preserves-≤ _ _ q) coerce-ℕ↪ℝ {0<x} (x ,, q) = preserves-0< ℕ↪ℝinc _ q -- transport (λ i → preserves-0 i < f x) (preserves-< _ _ q) coerce-ℕ↪ℝ {x≤0} (x ,, q) = preserves-≤0 ℕ↪ℝinc _ q -- transport (λ i → f x ≤ preserves-0 i) (preserves-≤ _ _ q) module Coerce-ℕ↪ℂ where open ℂ open Isℕ↪ℂ -- ℕ↪ℂinc private f = ℕ↪ℂ abstract coerce-ℕ↪ℂ : ∀{p} → (x : Number (isNat , p)) → PositivityKindInterpretation isComplex (coerce-PositivityKind isNat isComplex p) (ℕ↪ℂ (num x)) coerce-ℕ↪ℂ {⁇x⁇} (x ,, q) = lift tt coerce-ℕ↪ℂ {x#0} (x ,, q) = transport (λ i → f x # preserves-0 ℕ↪ℂinc i) (preserves-# ℕ↪ℂinc _ _ q) coerce-ℕ↪ℂ {0≤x} (x ,, q) = lift tt coerce-ℕ↪ℂ {0<x} (x ,, q) = transport (λ i → f x # preserves-0 ℕ↪ℂinc i) (preserves-# ℕ↪ℂinc _ _ (ℕ.#-sym _ _ (ℕ.<-implies-# _ _ q))) coerce-ℕ↪ℂ {x≤0} (x ,, q) = lift tt module Coerce-ℤ↪ℚ where open ℚ open IsROrderedCommRingInclusion -- ℤ↪ℚinc private f = ℤ↪ℚ abstract coerce-ℤ↪ℚ : ∀{p} → (x : Number (isInt , p)) → PositivityKindInterpretation isRat (coerce-PositivityKind isInt isRat p) (ℤ↪ℚ (num x)) coerce-ℤ↪ℚ {⁇x⁇} (x ,, q) = lift tt coerce-ℤ↪ℚ {x#0} (x ,, q) = preserves-#0 ℤ↪ℚinc _ q -- transport (λ i → f x # preserves-0 i) (preserves-# _ _ q) coerce-ℤ↪ℚ {0≤x} (x ,, q) = preserves-0≤ ℤ↪ℚinc _ q -- transport (λ i → preserves-0 i ≤ f x) (preserves-≤ _ _ q) coerce-ℤ↪ℚ {0<x} (x ,, q) = preserves-0< ℤ↪ℚinc _ q -- transport (λ i → preserves-0 i < f x) (preserves-< _ _ q) coerce-ℤ↪ℚ {x<0} (x ,, q) = preserves-<0 ℤ↪ℚinc _ q -- transport (λ i → f x < preserves-0 i) (preserves-< _ _ q) coerce-ℤ↪ℚ {x≤0} (x ,, q) = preserves-≤0 ℤ↪ℚinc _ q -- transport (λ i → f x ≤ preserves-0 i) (preserves-≤ _ _ q) module Coerce-ℤ↪ℝ where open ℝ open IsROrderedCommRingInclusion -- ℤ↪ℝinc private f = ℤ↪ℝ abstract coerce-ℤ↪ℝ : ∀{p} → (x : Number (isInt , p)) → PositivityKindInterpretation isReal (coerce-PositivityKind isInt isReal p) (ℤ↪ℝ (num x)) coerce-ℤ↪ℝ {⁇x⁇} (x ,, q) = lift tt coerce-ℤ↪ℝ {x#0} (x ,, q) = preserves-#0 ℤ↪ℝinc _ q -- transport (λ i → f x # preserves-0 i) (preserves-# _ _ q) coerce-ℤ↪ℝ {0≤x} (x ,, q) = preserves-0≤ ℤ↪ℝinc _ q -- transport (λ i → preserves-0 i ≤ f x) (preserves-≤ _ _ q) coerce-ℤ↪ℝ {0<x} (x ,, q) = preserves-0< ℤ↪ℝinc _ q -- transport (λ i → preserves-0 i < f x) (preserves-< _ _ q) coerce-ℤ↪ℝ {x<0} (x ,, q) = preserves-<0 ℤ↪ℝinc _ q -- transport (λ i → f x < preserves-0 i) (preserves-< _ _ q) coerce-ℤ↪ℝ {x≤0} (x ,, q) = preserves-≤0 ℤ↪ℝinc _ q -- transport (λ i → f x ≤ preserves-0 i) (preserves-≤ _ _ q) module Coerce-ℤ↪ℂ where open ℂ open Isℤ↪ℂ -- ℤ↪ℂinc private f = ℤ↪ℂ abstract coerce-ℤ↪ℂ : ∀{p} → (x : Number (isInt , p)) → PositivityKindInterpretation isComplex (coerce-PositivityKind isInt isComplex p) (ℤ↪ℂ (num x)) coerce-ℤ↪ℂ {⁇x⁇} (x ,, q) = lift tt coerce-ℤ↪ℂ {x#0} (x ,, q) = transport (λ i → f x # preserves-0 ℤ↪ℂinc i) (preserves-# ℤ↪ℂinc _ _ q) coerce-ℤ↪ℂ {0≤x} (x ,, q) = lift tt coerce-ℤ↪ℂ {0<x} (x ,, q) = transport (λ i → f x # preserves-0 ℤ↪ℂinc i) (preserves-# ℤ↪ℂinc _ _ (ℤ.#-sym _ _ (ℤ.<-implies-# _ _ q))) coerce-ℤ↪ℂ {x<0} (x ,, q) = transport (λ i → f x # preserves-0 ℤ↪ℂinc i) (preserves-# ℤ↪ℂinc _ _ (ℤ.<-implies-# _ _ q) ) coerce-ℤ↪ℂ {x≤0} (x ,, q) = lift tt module Coerce-ℚ↪ℝ where open ℝ open IsROrderedFieldInclusion -- ℚ↪ℝinc private f = ℚ↪ℝ abstract coerce-ℚ↪ℝ : ∀{p} → (x : Number (isRat , p)) → PositivityKindInterpretation isReal (coerce-PositivityKind isRat isReal p) (ℚ↪ℝ (num x)) coerce-ℚ↪ℝ {⁇x⁇} (x ,, q) = lift tt coerce-ℚ↪ℝ {x#0} (x ,, q) = preserves-#0 ℚ↪ℝinc _ q -- transport (λ i → f x # preserves-0 i) (preserves-# _ _ q) coerce-ℚ↪ℝ {0≤x} (x ,, q) = preserves-0≤ ℚ↪ℝinc _ q -- transport (λ i → preserves-0 i ≤ f x) (preserves-≤ _ _ q) coerce-ℚ↪ℝ {0<x} (x ,, q) = preserves-0< ℚ↪ℝinc _ q -- transport (λ i → preserves-0 i < f x) (preserves-< _ _ q) coerce-ℚ↪ℝ {x<0} (x ,, q) = preserves-<0 ℚ↪ℝinc _ q -- transport (λ i → f x < preserves-0 i) (preserves-< _ _ q) coerce-ℚ↪ℝ {x≤0} (x ,, q) = preserves-≤0 ℚ↪ℝinc _ q -- transport (λ i → f x ≤ preserves-0 i) (preserves-≤ _ _ q) module Coerce-ℚ↪ℂ where open ℂ open IsRFieldInclusion -- ℚ↪ℂinc private f = ℚ↪ℂ abstract coerce-ℚ↪ℂ : ∀{p} → (x : Number (isRat , p)) → PositivityKindInterpretation isComplex (coerce-PositivityKind isRat isComplex p) (ℚ↪ℂ (num x)) coerce-ℚ↪ℂ {⁇x⁇} (x ,, q) = lift tt coerce-ℚ↪ℂ {x#0} (x ,, q) = preserves-#0 ℚ↪ℂinc _ q -- transport (λ i → f x # preserves-0 ℚ↪ℂinc i) (preserves-# ℚ↪ℂinc _ _ q) coerce-ℚ↪ℂ {0≤x} (x ,, q) = lift tt coerce-ℚ↪ℂ {0<x} (x ,, q) = transport (λ i → f x # preserves-0 ℚ↪ℂinc i) (preserves-# ℚ↪ℂinc _ _ (ℚ.#-sym _ _ (ℚ.<-implies-# _ _ q))) coerce-ℚ↪ℂ {x<0} (x ,, q) = transport (λ i → f x # preserves-0 ℚ↪ℂinc i) (preserves-# ℚ↪ℂinc _ _ (ℚ.<-implies-# _ _ q) ) coerce-ℚ↪ℂ {x≤0} (x ,, q) = lift tt module Coerce-ℝ↪ℂ where -- open ℂ open IsRFieldInclusion -- ℝ↪ℂinc private f = ℝ↪ℂ abstract coerce-ℝ↪ℂ : ∀{p} → (x : Number (isReal , p)) → PositivityKindInterpretation isComplex (coerce-PositivityKind isReal isComplex p) (ℝ↪ℂ (num x)) coerce-ℝ↪ℂ {⁇x⁇} (x ,, q) = lift tt coerce-ℝ↪ℂ {x#0} (x ,, q) = preserves-#0 ℝ↪ℂinc _ q -- transport (λ i → f x # preserves-0 ℝ↪ℂinc i) (preserves-# ℝ↪ℂinc _ _ q) coerce-ℝ↪ℂ {0≤x} (x ,, q) = lift tt coerce-ℝ↪ℂ {0<x} (x ,, q) = transport (λ i → f x ℂ.# preserves-0 ℝ↪ℂinc i) (preserves-# ℝ↪ℂinc _ _ (ℝ.#-sym _ _ (ℝ.<-implies-# _ _ q))) coerce-ℝ↪ℂ {x<0} (x ,, q) = transport (λ i → f x ℂ.# preserves-0 ℝ↪ℂinc i) (preserves-# ℝ↪ℂinc _ _ (ℝ.<-implies-# _ _ q) ) coerce-ℝ↪ℂ {x≤0} (x ,, q) = lift tt -- NOTE: typechecking of this module is very slow -- the cause might be opening of the ten `IsXInclusion` instances -- it could be related to https://github.com/agda/agda/issues/1646 (Exponential module chain leads to infeasible scope checking) -- YES: this is the case. After shifting the module arguments from `open` into the code, checking became instant again -- does this make anything faster? open Coerce-ℕ↪ℤ public open Coerce-ℕ↪ℚ public open Coerce-ℕ↪ℝ public open Coerce-ℕ↪ℂ public open Coerce-ℤ↪ℚ public open Coerce-ℤ↪ℝ public open Coerce-ℤ↪ℂ public open Coerce-ℚ↪ℝ public open Coerce-ℚ↪ℂ public open Coerce-ℝ↪ℂ public coerce : (from : NumberKind) → (to : NumberKind) → from ≤ₙₗ to → ∀{p} → Number (from , p) → Number (to , coerce-PositivityKind from to p) coerce isNat isNat q {p} x = x coerce isInt isInt q {p} x = x coerce isRat isRat q {p} x = x coerce isReal isReal q {p} x = x coerce isComplex isComplex q {p} x = x coerce isNat isInt q {p} x = (ℕ↪ℤ (num x) ,, coerce-ℕ↪ℤ x) coerce isNat isRat q {p} x = (ℕ↪ℚ (num x) ,, coerce-ℕ↪ℚ x) coerce isNat isReal q {p} x = (ℕ↪ℝ (num x) ,, coerce-ℕ↪ℝ x) coerce isNat isComplex q {p} x = (ℕ↪ℂ (num x) ,, coerce-ℕ↪ℂ x) coerce isInt isRat q {p} x = (ℤ↪ℚ (num x) ,, coerce-ℤ↪ℚ x) coerce isInt isReal q {p} x = (ℤ↪ℝ (num x) ,, coerce-ℤ↪ℝ x) coerce isInt isComplex q {p} x = (ℤ↪ℂ (num x) ,, coerce-ℤ↪ℂ x) coerce isRat isReal q {p} x = (ℚ↪ℝ (num x) ,, coerce-ℚ↪ℝ x) coerce isRat isComplex q {p} x = (ℚ↪ℂ (num x) ,, coerce-ℚ↪ℂ x) coerce isReal isComplex q {p} x = (ℝ↪ℂ (num x) ,, coerce-ℝ↪ℂ x) --coerce x y = nothing coerce isInt isNat r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isNat , p)} (k+x+sy≢x _ _ _ q) coerce isRat isNat r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isNat , p)} (k+x+sy≢x _ _ _ q) coerce isRat isInt r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isInt , p)} (k+x+sy≢x _ _ _ q) coerce isReal isNat r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isNat , p)} (k+x+sy≢x _ _ _ q) coerce isReal isInt r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isInt , p)} (k+x+sy≢x _ _ _ q) coerce isReal isRat r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isRat , p)} (k+x+sy≢x _ _ _ q) coerce isComplex isNat r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isNat , coerce-PositivityKind isComplex isNat p)} (k+x+sy≢x _ _ _ q) coerce isComplex isInt r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isInt , coerce-PositivityKind isComplex isInt p)} (k+x+sy≢x _ _ _ q) coerce isComplex isRat r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isRat , coerce-PositivityKind isComplex isRat p)} (k+x+sy≢x _ _ _ q) coerce isComplex isReal r@(k , q) {p} x = ⊥-elim {A = λ _ → Number (isReal , coerce-PositivityKind isComplex isReal p)} (k+x+sy≢x _ _ _ q)
{ "alphanum_fraction": 0.5912078153, "avg_line_length": 56.3, "ext": "agda", "hexsha": "974e07c80bb74ed4a3ea37c3e7454f43bb488075", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Coercions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Coercions.agda", "max_line_length": 147, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Coercions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 5246, "size": 11260 }
module Control.Exception where open import IO import Control.Exception.Primitive as Prim bracket : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → IO A → (A → IO B) → (A → IO C) → IO C bracket io final body = lift (Prim.bracket (run io) (λ a1 → run (final a1)) (λ a2 → run (body a2)))
{ "alphanum_fraction": 0.6202090592, "avg_line_length": 35.875, "ext": "agda", "hexsha": "723eede5206a6a4fd1e5a03709e96b62de31596d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c710fde0b0904cb3c02c54142a938d12a4463b0a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ilya-fiveisky/agda-exceptions", "max_forks_repo_path": "src/Control/Exception.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c710fde0b0904cb3c02c54142a938d12a4463b0a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ilya-fiveisky/agda-exceptions", "max_issues_repo_path": "src/Control/Exception.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "c710fde0b0904cb3c02c54142a938d12a4463b0a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ilya-fiveisky/agda-exceptions", "max_stars_repo_path": "src/Control/Exception.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 102, "size": 287 }
open import Oscar.Prelude module Oscar.Class.Bind where module _ (𝔉 : ∀ {𝔣} → Ø 𝔣 → Ø 𝔣) 𝔬₁ 𝔬₂ where 𝓫ind = ∀ {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂} → 𝔉 𝔒₁ → (𝔒₁ → 𝔉 𝔒₂) → 𝔉 𝔒₂ record 𝓑ind : Ø ↑̂ (𝔬₁ ∙̂ 𝔬₂) where infixl 6 bind field bind : 𝓫ind syntax bind m f = f =<< m open 𝓑ind ⦃ … ⦄ public
{ "alphanum_fraction": 0.5424836601, "avg_line_length": 19.125, "ext": "agda", "hexsha": "4dd0098ee2d33ca69e56eb1bce168863ec0c4c17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Bind.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Bind.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Bind.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 183, "size": 306 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Concrete.Obligations open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import Util.Prelude open EpochConfig open import Yasm.Base open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms -- In this module, we assume that the implementation meets its -- obligations, and use this assumption to prove that, in any reachable -- state, the implementatioon enjoys one of the per-epoch correctness -- conditions proved in Abstract.Properties. It can be extended to other -- properties later. module LibraBFT.Concrete.Properties (iiah : SystemInitAndHandlers ℓ-RoundManager ConcSysParms) (st : SystemState) (r : WithInitAndHandlers.ReachableSystemState iiah st) (𝓔 : EpochConfig) (𝓔-∈sys : ParamsWithInitAndHandlers.EpochConfig∈Sys iiah st 𝓔) (impl-correct : ImplObligations iiah 𝓔) where open WithEC open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) as Abs open import LibraBFT.Concrete.Intermediate 𝓔 (ConcreteVoteEvidence 𝓔) import LibraBFT.Concrete.Obligations.VotesOnce 𝓔 (ConcreteVoteEvidence 𝓔) as VO-obl import LibraBFT.Concrete.Obligations.PreferredRound 𝓔 (ConcreteVoteEvidence 𝓔) as PR-obl open import LibraBFT.Concrete.Properties.VotesOnce as VO open import LibraBFT.Concrete.Properties.PreferredRound as PR open import LibraBFT.ImplShared.Util.HashCollisions iiah open ImplObligations impl-correct open PerEpoch 𝓔 open PerState st open PerReachableState r {- Although the `Concrete` modules are currently specified in terms of the implementation types used by the implementation we are proving correct, the important aspect of the `Concrete` modules is to reduce implementation obligations specified in the `Abstract` modules to being about `Vote`s sent. These properties are stated in terms of an `IntermediateSystemState`, which is derived from a `ReachableSystemState` for an implementation-specific system configuration. The `Concrete` modules could be refactored to enable verifying a broader range of implementations, including those that use entirely different implementation types. In more detail, the `Concrete` modules would be parameterized by (at least): - `SystemTypeParameters`; - `SystemInitAndHandlers`; - a predicate to satisy the requirements of PeerCanSignForPK, and a proof that it is stable - a function from a `ReachableSystemState` of a system instantiated with the provided `SystemTypeParameters` to an `IntermediateSystemState`; - proof that the `InSys` predicate is stable for the given types (i.e., if a Record is InSys according to the IntermediateSystemState for the prestate of a transition, then it is also InSys according to the IntermediateSystemState for the poststate of that transition. - an implementation Vote type - machinery for accessing signatures of Votes, and for deriving abstract Votes from them - proof that two Votes with the same signature represent the same abstract vote - ... This will also break existing proofs and require them to be reworked in terms of these module parameters. TODO-NOT-DO: Refactor Concrete so that it is independent of implementation types, thus making it more general for a wider range of implementations. As our main motivation is verifying an implementation (and perhaps variations on it) that use the same types, we do not consider it worthwhile at this time. -} open IntermediateSystemState intSystemState -- This module parameter asserts that there are no hash collisions between Blocks *in the system*, -- allowing us to eliminate that case when the abstract properties claim it is the case. module _ (no-collisions-InSys : NoCollisions InSys) where -------------------------------------------------------------------------------------------- -- * A /ValidSysState/ is one in which both peer obligations are obeyed by honest peers * -- -------------------------------------------------------------------------------------------- record ValidSysState {ℓ}(𝓢 : IntermediateSystemState ℓ) : Set (ℓ+1 ℓ0 ℓ⊔ ℓ) where field vss-votes-once : VO-obl.Type 𝓢 vss-preferred-round : PR-obl.Type 𝓢 open ValidSysState public validState : ValidSysState intSystemState validState = record { vss-votes-once = VO.Proof.voo iiah 𝓔 sps-cor bsvc bsvr v≢0 ∈BI? iro vo₂ r ; vss-preferred-round = PR.Proof.prr iiah 𝓔 sps-cor bsvr v≢0 ∈BI? v4rc iro pr₁ pr₂ r 𝓔-∈sys } open All-InSys-props InSys open WithAssumptions InSys no-collisions-InSys -- We can now invoke the various abstract correctness properties. Note that the arguments are -- expressed in Abstract terms (RecordChain, CommitRule). Proving the corresponding properties -- for the actual implementation will involve proving that the implementation decides to commit -- only if it has evidence of the required RecordChains and CommitRules such that the records in -- the RecordChains are all "InSys" according to the implementation's notion thereof (defined in -- Concrete.System.intSystemState). ConcCommitsDoNotConflict : ∀{q q'} → {rc : RecordChain (Abs.Q q)} → All-InSys rc → {rc' : RecordChain (Abs.Q q')} → All-InSys rc' → {b b' : Abs.Block} → CommitRule rc b → CommitRule rc' b' → (Abs.B b) ∈RC rc' ⊎ (Abs.B b') ∈RC rc ConcCommitsDoNotConflict = CommitsDoNotConflict (VO-obl.proof intSystemState (vss-votes-once validState)) (PR-obl.proof intSystemState (vss-preferred-round validState)) module _ (∈QC⇒AllSent : Complete InSys) where ConcCommitsDoNotConflict' : ∀{o o' q q'} → {rcf : RecordChainFrom o (Abs.Q q)} → All-InSys rcf → {rcf' : RecordChainFrom o' (Abs.Q q')} → All-InSys rcf' → {b b' : Abs.Block} → CommitRuleFrom rcf b → CommitRuleFrom rcf' b' → Σ (RecordChain (Abs.Q q')) ((Abs.B b) ∈RC_) ⊎ Σ (RecordChain (Abs.Q q)) ((Abs.B b') ∈RC_) ConcCommitsDoNotConflict' = CommitsDoNotConflict' (VO-obl.proof intSystemState (vss-votes-once validState)) (PR-obl.proof intSystemState (vss-preferred-round validState)) ∈QC⇒AllSent
{ "alphanum_fraction": 0.6806958474, "avg_line_length": 50.5531914894, "ext": "agda", "hexsha": "e073a55647c3deb63bd2ef89780da6375d48ee0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Concrete/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Concrete/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Concrete/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1805, "size": 7128 }
open import Agda.Builtin.Equality open import Agda.Builtin.Nat data ⊥ : Set where data Zero : Set where zero : Zero data One : Set where suc : Zero → One data _≤_ : One → Zero → Set where _≤?_ : ∀ m n → m ≤ n → ⊥ suc m ≤? zero = λ () thm : (f : suc zero ≤ zero → ⊥) → suc zero ≤? zero ≡ f thm f = refl -- (λ ()) zero x != f x of type ⊥ -- ^^^^
{ "alphanum_fraction": 0.543715847, "avg_line_length": 16.6363636364, "ext": "agda", "hexsha": "874d3313ffa5215d542cad4bed9740060230997c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3002.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3002.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3002.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 141, "size": 366 }
{-# OPTIONS --without-K --safe #-} module Categories.Diagram.End.Properties where open import Level open import Data.Product using (Σ; _,_) open import Function using (_$_) open import Categories.Category open import Categories.Category.Product open import Categories.Category.Construction.Functors open import Categories.Category.Construction.TwistedArrow open import Categories.Category.Equivalence open import Categories.Category.Equivalence.Preserves open import Categories.Diagram.Cone open import Categories.Diagram.End as ∫ open import Categories.Diagram.Limit open import Categories.Diagram.Wedge open import Categories.Diagram.Wedge.Properties open import Categories.Functor hiding (id) open import Categories.Functor.Bifunctor open import Categories.Functor.Instance.Twisted import Categories.Morphism as M open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural open import Categories.Object.Terminal as Terminal import Categories.Category.Construction.Wedges as Wedges open import Categories.Object.Terminal import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D E : Category o ℓ e module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where open Wedges F -- Being an End is the same as being a Terminal object in the category of Wedges End⇒Terminal : End F → Terminal Wedges End⇒Terminal c = record { ⊤ = wedge ; ⊤-is-terminal = record { ! = λ {A} → record { u = factor A ; commute = universal } ; !-unique = λ {A} f → unique {A} (Wedge-Morphism.commute f) } } where open End c Terminal⇒End : Terminal Wedges → End F Terminal⇒End i = record { wedge = ⊤ ; factor = λ W → u {W₁ = W} ! ; universal = commute ! ; unique = λ {_} {g} x → !-unique (record { u = g ; commute = x }) } where open Terminal.Terminal i open Wedge-Morphism module _ {C : Category o ℓ e} (F : Functor E (Functors (Product (Category.op C) C) D)) where private module C = Category C module D = Category D module E = Category E module NT = NaturalTransformation open D open HomReasoning open MR D open Functor F open End hiding (E) open NT using (η) EndF : (∀ X → End (F₀ X)) → Functor E D EndF end = record { F₀ = λ X → End.E (end X) ; F₁ = F₁′ ; identity = λ {A} → unique (end A) (id-comm ○ ∘-resp-≈ˡ (⟺ identity)) ; homomorphism = λ {A B C} {f g} → unique (end C) $ λ {Z} → begin dinatural.α (end C) Z ∘ F₁′ g ∘ F₁′ f ≈⟨ pullˡ (universal (end C)) ⟩ (η (F₁ g) (Z , Z) ∘ dinatural.α (end B) Z) ∘ F₁′ f ≈⟨ pullʳ (universal (end B)) ⟩ η (F₁ g) (Z , Z) ∘ η (F₁ f) (Z , Z) ∘ dinatural.α (end A) Z ≈˘⟨ pushˡ homomorphism ⟩ η (F₁ (g E.∘ f)) (Z , Z) ∘ dinatural.α (end A) Z ∎ ; F-resp-≈ = λ {A B f g} eq → unique (end B) $ λ {Z} → begin dinatural.α (end B) Z ∘ F₁′ g ≈⟨ universal (end B) ⟩ η (F₁ g) (Z , Z) ∘ dinatural.α (end A) Z ≈˘⟨ F-resp-≈ eq ⟩∘⟨refl ⟩ η (F₁ f) (Z , Z) ∘ dinatural.α (end A) Z ∎ } where F₁′ : ∀ {X Y} → X E.⇒ Y → End.E (end X) ⇒ End.E (end Y) F₁′ {X} {Y} f = factor (end Y) $ record { E = End.E (end X) ; dinatural = F₁ f <∘ dinatural (end X) } -- A Natural Transformation between two functors induces an arrow between the -- (object part of) the respective ends. module _ {P Q : Functor (Product (Category.op C) C) D} (P⇒Q : NaturalTransformation P Q) where open End renaming (E to end) open Category D end-η : {ep : End P} {eq : End Q} → end ep ⇒ end eq end-η {ep} {eq} = factor eq (record { E = End.E ep ; dinatural = dtHelper record { α = λ c → η (c , c) ∘ dinatural.α ep c ; commute = λ {C} {C′} f → begin Q.₁ (C.id , f) ∘ (η (C , C) ∘ αp C) ∘ D.id ≈⟨ pullˡ sym-assoc ⟩ ((Q.₁ (C.id , f) ∘ η (C , C)) ∘ αp C) ∘ D.id ≈⟨ (nt.sym-commute (C.id , f) ⟩∘⟨refl ⟩∘⟨refl) ⟩ ((η (C , C′) ∘ P.₁ (C.id , f)) ∘ αp C) ∘ D.id ≈⟨ assoc² ⟩ η (C , C′) ∘ (P.₁ (C.id , f) ∘ αp C ∘ D.id) ≈⟨ (refl⟩∘⟨ αp-comm f) ⟩ η (C , C′) ∘ P.₁ (f , C.id) ∘ αp C′ ∘ D.id ≈˘⟨ assoc² ⟩ ((η (C , C′) ∘ P.₁ (f , C.id)) ∘ αp C′) ∘ D.id ≈⟨ (nt.commute (f , C.id) ⟩∘⟨refl ⟩∘⟨refl) ⟩ ((Q.₁ (f , C.id) ∘ η (C′ , C′)) ∘ αp C′) ∘ D.id ≈⟨ pushˡ assoc ⟩ Q.₁ (f , C.id) ∘ (η (C′ , C′) ∘ αp C′) ∘ D.id ∎ } }) where module nt = NaturalTransformation P⇒Q open nt using (η) open HomReasoning module C = Category C module D = Category D module P = Functor P module Q = Functor Q open DinaturalTransformation (dinatural ep) renaming (α to αp; commute to αp-comm) open DinaturalTransformation (dinatural eq) renaming (α to αq; commute to αq-comm) open Wedge open MR D -- The real start of the End Calculus. Maybe need to move such properties elsewhere? -- This is an unpacking of the lhs of Eq. (25) of Loregian's book. module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Bifunctor (Category.op C) C D) where private Eq = ConesTwist≅Wedges F module O = M D open M (Wedges.Wedges F) open Functor open StrongEquivalence Eq renaming (F to F⇒) -- Ends and Limits are equivalent, in the category Wedge F End-as-Limit : (end : End F) → (l : Limit (Twist C D F)) → End.wedge end ≅ F₀ F⇒ (Limit.terminal.⊤ l) End-as-Limit end l = Terminal.up-to-iso (Wedges.Wedges F) (End⇒Terminal F end) (pres-Terminal Eq terminal) where open Limit l -- Which then induces that the objects, in D, are also equivalent. End-as-Limit-on-Obj : (end : End F) → (l : Limit (Twist C D F)) → End.E end O.≅ Limit.apex l End-as-Limit-on-Obj end l = record { from = Wedge-Morphism.u (M._≅_.from X≅Y) ; to = Wedge-Morphism.u (M._≅_.to X≅Y) ; iso = record { isoˡ = M._≅_.isoˡ X≅Y ; isoʳ = M._≅_.isoʳ X≅Y } } where X≅Y = End-as-Limit end l open Category D
{ "alphanum_fraction": 0.5842606031, "avg_line_length": 37.1317365269, "ext": "agda", "hexsha": "af793ead165f97c7406efa7abc2e83c23f53b48f", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/End/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/End/Properties.agda", "max_line_length": 108, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/End/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2243, "size": 6201 }
{-# OPTIONS --cubical --safe #-} open import Relation.Binary open import Prelude hiding (Decidable) module Data.List.Relation.Binary.Lexicographic {e ℓ₁ ℓ₂} {E : Type e} (ord : TotalOrder E ℓ₁ ℓ₂) where open import Data.List import Path as ≡ open TotalOrder ord renaming (refl to ≤-refl) import Data.Empty.UniversePolymorphic as Poly import Data.Unit.UniversePolymorphic as Poly infix 4 _<′_ _<′_ : List E → List E → Type (e ℓ⊔ ℓ₁ ℓ⊔ ℓ₂) xs <′ [] = Poly.⊥ [] <′ y ∷ ys = Poly.⊤ x ∷ xs <′ y ∷ ys = (x < y) ⊎ ((x ≡ y) × (xs <′ ys)) infix 4 _≤′_ _≤′_ : List E → List E → Type (e ℓ⊔ ℓ₁ ℓ⊔ ℓ₂) [] ≤′ ys = Poly.⊤ x ∷ xs ≤′ [] = Poly.⊥ x ∷ xs ≤′ y ∷ ys = (x < y) ⊎ ((x ≡ y) × (xs ≤′ ys)) <′-trans : Transitive _<′_ <′-trans {[]} {y ∷ ys} {z ∷ zs} p q = Poly.tt <′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inl q) = inl (<-trans p q) <′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inr q) = inl (subst (_ <_) (fst q) p) <′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr p) (inl q) = inl (subst (_< _) (sym (fst p)) q) <′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr (p , ps)) (inr (q , qs)) = inr (p ; q , <′-trans ps qs) ≤′-trans : Transitive _≤′_ ≤′-trans {[]} {ys} {zs} p q = Poly.tt ≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inl q) = inl (<-trans p q) ≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inl p) (inr q) = inl (subst (_ <_) (fst q) p) ≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr p) (inl q) = inl (subst (_< _) (sym (fst p)) q) ≤′-trans {x ∷ xs} {y ∷ ys} {z ∷ zs} (inr (p , ps)) (inr (q , qs)) = inr (p ; q , ≤′-trans ps qs) ≤′-antisym : Antisymmetric _≤′_ ≤′-antisym {[]} {[]} p q = refl ≤′-antisym {x ∷ xs} {y ∷ ys} (inl p) (inl q) = ⊥-elim (asym p q) ≤′-antisym {x ∷ xs} {y ∷ ys} (inl p) (inr q) = ⊥-elim (irrefl (subst (_< _) (sym (fst q)) p)) ≤′-antisym {x ∷ xs} {y ∷ ys} (inr p) (inl q) = ⊥-elim (irrefl (subst (_< _) (sym (fst p)) q)) ≤′-antisym {x ∷ xs} {y ∷ ys} (inr (p , ps)) (inr (_ , qs)) = cong₂ _∷_ p (≤′-antisym ps qs) ≤′-refl : Reflexive _≤′_ ≤′-refl {[]} = Poly.tt ≤′-refl {x ∷ xs} = inr (refl , ≤′-refl) <′-asym : Asymmetric _<′_ <′-asym {x ∷ xs} {y ∷ ys} (inl p) (inl q) = asym p q <′-asym {x ∷ xs} {y ∷ ys} (inl p) (inr q) = irrefl (subst (_< _) (sym (fst q)) p) <′-asym {x ∷ xs} {y ∷ ys} (inr p) (inl q) = irrefl (subst (_< _) (sym (fst p)) q) <′-asym {x ∷ xs} {y ∷ ys} (inr p) (inr q) = <′-asym (snd p) (snd q) ≮′⇒≥′ : ∀ {xs ys} → ¬ (xs <′ ys) → ys ≤′ xs ≮′⇒≥′ {xs} {[]} p = Poly.tt ≮′⇒≥′ {[]} {y ∷ ys} p = ⊥-elim (p _) ≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys with compare x y ≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys | lt x<y = ⊥-elim (xs≮ys (inl x<y)) ≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys | eq x≡y = inr (sym x≡y , ≮′⇒≥′ (xs≮ys ∘ inr ∘ _,_ x≡y)) ≮′⇒≥′ {x ∷ xs} {y ∷ ys} xs≮ys | gt x>y = inl x>y <′-conn : Connected _<′_ <′-conn xs≮ys ys≮xs = ≤′-antisym (≮′⇒≥′ ys≮xs) (≮′⇒≥′ xs≮ys) <′-irrefl : Irreflexive _<′_ <′-irrefl {x ∷ xs} (inl x<x) = irrefl x<x <′-irrefl {x ∷ xs} (inr xs<xs) = <′-irrefl (snd xs<xs) ≰′⇒>′ : ∀ {xs ys} → ¬ (xs ≤′ ys) → ys <′ xs ≰′⇒>′ {[]} xs≰ys = ⊥-elim (xs≰ys _) ≰′⇒>′ {x ∷ xs} {[]} xs≰ys = Poly.tt ≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys with compare x y ≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys | lt x<y = ⊥-elim (xs≰ys (inl x<y)) ≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys | eq x≡y = inr (sym x≡y , ≰′⇒>′ (xs≰ys ∘ inr ∘ _,_ x≡y)) ≰′⇒>′ {x ∷ xs} {y ∷ ys} xs≰ys | gt x>y = inl x>y ≮′-cons : ∀ {x y xs ys} → x ≡ y → ¬ (xs <′ ys) → ¬ (x ∷ xs <′ y ∷ ys) ≮′-cons x≡y xs≮ys (inl x<y) = irrefl (subst (_< _) x≡y x<y) ≮′-cons x≡y xs≮ys (inr (x≡y₁ , x∷xs<y∷ys)) = xs≮ys x∷xs<y∷ys _<′?_ : Decidable _<′_ xs <′? [] = no (λ ()) [] <′? (y ∷ ys) = yes Poly.tt (x ∷ xs) <′? (y ∷ ys) with compare x y ((x ∷ xs) <′? (y ∷ ys)) | lt x<y = yes (inl x<y) ((x ∷ xs) <′? (y ∷ ys)) | eq x≡y = map-dec (inr ∘ _,_ x≡y) (≮′-cons x≡y) (xs <′? ys) ((x ∷ xs) <′? (y ∷ ys)) | gt x>y = no (<′-asym (inl x>y)) listOrd : TotalOrder (List E) _ _ StrictPreorder._<_ (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder listOrd)) = _<′_ StrictPreorder.trans (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder listOrd)) = <′-trans StrictPreorder.irrefl (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder listOrd)) = <′-irrefl StrictPartialOrder.conn (TotalOrder.strictPartialOrder listOrd) = <′-conn Preorder._≤_ (PartialOrder.preorder (TotalOrder.partialOrder listOrd)) = _≤′_ Preorder.refl (PartialOrder.preorder (TotalOrder.partialOrder listOrd)) = ≤′-refl Preorder.trans (PartialOrder.preorder (TotalOrder.partialOrder listOrd)) = ≤′-trans PartialOrder.antisym (TotalOrder.partialOrder listOrd) = ≤′-antisym TotalOrder._<?_ listOrd = _<′?_ TotalOrder.≰⇒> listOrd = ≰′⇒>′ TotalOrder.≮⇒≥ listOrd = ≮′⇒≥′
{ "alphanum_fraction": 0.523366508, "avg_line_length": 42.7962962963, "ext": "agda", "hexsha": "29560794ce492e865b0e2fa733a16e398586cc59", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/List/Relation/Binary/Lexicographic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/List/Relation/Binary/Lexicographic.agda", "max_line_length": 110, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/List/Relation/Binary/Lexicographic.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 2388, "size": 4622 }
------------------------------------------------------------------------ -- Equivalence between omniscience principles ------------------------------------------------------------------------ -- http://math.fau.edu/lubarsky/Separating%20LLPO.pdf -- https://pdfs.semanticscholar.org/deb5/23b6078032c845d8041ee6a5383fec41191c.pdf -- http://www.math.lmu.de/~schwicht/pc16transparencies/ishihara/lecture1.pdf -- https://ncatlab.org/nlab/show/weak+excluded+middle ------------------------------------------------------------------------ -- -> : implication -- <=> : equivalence -- ∧ : conjunction {- EM <=> DNE <=> Peirce <=> MI <=> DEM₁ <=> DEM₂-----┐ | | | | v | | v v EM⁻¹ <=> DNE⁻¹ | | DGP ¬ ¬ EM <=> DNS | | | | | v | | WEM <=> DEM₃ <=> DN-distrib-⊎ v v | LPO KS-------------┐ / \ | \ / \ | \ v v v v Σ-Call/CC <=> MP WLPO <=> Σ-Π-DGP -> PFP -> WPFP |\ | | \ v | \ LLPO <=> Σ-DGP <=> Π-DGP | \ | v v v WMP MP∨ -} -- WLPO ∧ MP -> LPO -- WLPO ∧ WMP -> LPO -- WMP ∧ MP∨ -> MP -- WPFP ∧ MP -> LPO -- WPFP ∧ MP∨ -> WLPO -- WPFP ∧ LLPO -> WLPO -- Inhabited ∧ LPO <=> Searchable -- MR <=> Σ-Σ-Peirce ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Axiom.Properties.Base where -- agda-stdlib open import Axiom.Extensionality.Propositional open import Level renaming (suc to lsuc; zero to lzero) open import Data.Bool using (Bool; true; false; not) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum as Sum open import Data.Product as Prod open import Data.Nat as ℕ using (ℕ; zero; suc; _≤_; s≤s; z≤n; _≤?_; _+_; _*_) import Data.Nat.Properties as ℕₚ import Data.Nat.Induction as ℕInd open import Data.Fin using (Fin) import Data.Fin.Properties as Finₚ open import Function.Base import Function.Equality as Eq import Function.Equivalence as Eqv import Function.LeftInverse as LInv -- TODO use new packages import Induction.WellFounded as Ind open import Relation.Binary using (tri≈; tri<; tri>; Rel; Trichotomous) open import Relation.Binary.PropositionalEquality hiding (Extensionality) -- TODO remove open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) -- agda-misc open import Constructive.Axiom import Constructive.Axiom.Properties.Base.Lemma as Lemma open import Constructive.Combinators open import Constructive.Common open import TypeTheory.HoTT.Data.Sum.Properties using (isProp-⊎) open import TypeTheory.HoTT.Relation.Nullary.Negation.Properties using (isProp-¬) -- Properties aclt : ∀ {a b p} {A : Set a} {B : Set b} → ACLT A B p aclt f = (λ x → proj₁ (f x)) , (λ x → proj₂ (f x)) lower-dne : ∀ a b → DNE (a ⊔ b) → DNE a lower-dne a b dne = lower ∘′ dne ∘′ DN-map (lift {ℓ = b}) lower-wem : ∀ a b → WEM (a ⊔ b) → WEM a lower-wem a b wem with wem ... | inj₁ ¬Lx = inj₁ λ x → ¬Lx (lift {ℓ = b} x) ... | inj₂ ¬¬Lx = inj₂ λ ¬A → ¬¬Lx λ LA → ¬A (lower LA) -- LPO for finite set lpo-Fin : ∀ {n p} → LPO (Fin n) p lpo-Fin = dec⇒dec⊎ ∘ Finₚ.any? ∘ DecU⇒decidable dec-dns-i : ∀ {a p} {A : Set a} {P : A → Set p} → DecU P → DNS-i P dec-dns-i P? ∀¬¬P = DN-intro (P?⇒∀¬¬P→∀P P? ∀¬¬P) -- TODO -- dns-Fin : ∀ {n p} → DNS (Fin n) p ------------------------------------------------------------------------ -- Equivalence between classical proposition ------------------------------------------------------------------------ -- DNE <=> EM dne⇒em : ∀ {a} → DNE a → EM a dne⇒em dne = dne DN-Dec⊎ em⇒dne : ∀ {a} → EM a → DNE a em⇒dne em = A⊎B→¬B→A em -- Peirce => DNE, EM => Peirce peirce⇒dne : ∀ {a b} → Peirce a b → DNE a peirce⇒dne peirce ¬¬A = peirce {B = Lift _ ⊥} λ A→B → ⊥-elim (¬¬A λ x → lower $ A→B x) em⇒peirce : ∀ {a b} → EM a → Peirce a b em⇒peirce em f = Sum.[ id , [[A→B]→A]→¬A→A f ] em -- DEM₁ => EM, DNE => DEM₁ dem₁⇒em : ∀ {a} → DEM₁ a a → EM a dem₁⇒em dem₁ = dem₁ (uncurry (flip _$_)) dne⇒dem₁ : ∀ {a b} → DNE (a ⊔ b) → DEM₁ a b dne⇒dem₁ dne g = dne (g ∘ ¬[A⊎B]→¬A׬B) -- DNE <=> DEM₂ dne⇒dem₂ : ∀ {a} → DNE a → DEM₂ a a dne⇒dem₂ dne f = Prod.map dne dne $ ¬[A⊎B]→¬A׬B f dem₂⇒dne : ∀ {a} → DEM₂ a lzero → DNE a dem₂⇒dne dem₂ ¬¬A = uncurry id (dem₂ Sum.[ (λ f → ¬¬A (f ∘′ const)) , _$ tt ]) -- DNE => DEM₃ dne⇒dem₃ : ∀ {a b} → DNE (a ⊔ b) → DEM₃ a b dne⇒dem₃ dne ¬[A×B] = dne (¬[A×B]→¬¬[¬A⊎¬B] ¬[A×B]) -- Converse of contraposition dne⇒contraposition-converse : ∀ {a b} → DNE a → {A : Set a} {B : Set b} → (¬ A → ¬ B) → B → A dne⇒contraposition-converse dne ¬A→¬B b = dne $ contraposition ¬A→¬B (DN-intro b) contraposition-converse⇒dne : ∀ {a} → ({A B : Set a} → (¬ A → ¬ B) → B → A) → DNE a contraposition-converse⇒dne f = f DN-intro -- MI <=> EM mi⇒em : ∀ {a} → MI a a → EM a mi⇒em f = Sum.swap $ f id em⇒mi : ∀ {a b} → EM a → MI a b em⇒mi em f = Sum.swap $ Sum.map₁ f em -- EM <=> [¬A→B]→A⊎B em⇒[¬A→B]→A⊎B : ∀ {a b} → EM a → {A : Set a} {B : Set b} → (¬ A → B) → A ⊎ B em⇒[¬A→B]→A⊎B em f = Sum.map₂ f em [¬A→B]→A⊎B⇒em : ∀ {a} → ({A B : Set a} → (¬ A → B) → A ⊎ B) → EM a [¬A→B]→A⊎B⇒em f = f id -- Properties of WEM em⇒wem : ∀ {a} → EM a → WEM a em⇒wem em {A = A} = em {A = ¬ A} -- WEM <=> DEM₃ wem⇒dem₃ : ∀ {a} → WEM a → DEM₃ a a wem⇒dem₃ wem ¬[A×B] with wem | wem ... | inj₁ ¬A | _ = inj₁ ¬A ... | inj₂ ¬¬A | inj₁ ¬B = inj₂ ¬B ... | inj₂ ¬¬A | inj₂ ¬¬B = ⊥-elim $ DN-undistrib-× (¬¬A , ¬¬B) ¬[A×B] dem₃⇒wem : ∀ {a} → DEM₃ a a → WEM a dem₃⇒wem dem₃ = dem₃ ¬[A׬A] dgp-i⇒DN-distrib-⊎-i : ∀ {a b} {A : Set a} {B : Set b} → DGP-i A B → ¬ ¬ (A ⊎ B) → ¬ ¬ A ⊎ ¬ ¬ B dgp-i⇒DN-distrib-⊎-i dgp-i ¬¬[A⊎B] = Sum.map (λ B→A ¬A → ¬¬[A⊎B] Sum.[ ¬A , contraposition B→A ¬A ]) (λ A→B ¬B → ¬¬[A⊎B] Sum.[ contraposition A→B ¬B , ¬B ]) (Sum.swap dgp-i) -- WEM <=> DN-distrib-⊎ wem⇒DN-distrib-⊎ : ∀ {a b} → WEM (a ⊔ b) → {A : Set a} {B : Set b} → ¬ ¬ (A ⊎ B) → ¬ ¬ A ⊎ ¬ ¬ B wem⇒DN-distrib-⊎ {a} {b} wem ¬¬[A⊎B] with lower-wem a b wem | lower-wem b a wem ... | inj₁ ¬A | inj₁ ¬B = ⊥-elim $ ¬¬[A⊎B] (¬A׬B→¬[A⊎B] (¬A , ¬B)) ... | inj₁ ¬A | inj₂ ¬¬B = inj₂ ¬¬B ... | inj₂ ¬¬A | _ = inj₁ ¬¬A DN-distrib-⊎⇒wem : ∀ {a} → ({A B : Set a} → ¬ ¬ (A ⊎ B) → ¬ ¬ A ⊎ ¬ ¬ B) → WEM a DN-distrib-⊎⇒wem DN-distrib-⊎ = Sum.swap $ Sum.map₂ TN-to-N $ DN-distrib-⊎ DN-Dec⊎ -- WEM-i ∧ Stable => Dec⊎ wem-i∧stable⇒dec⊎ : ∀ {a} {A : Set a} → WEM-i A → Stable A → Dec⊎ A wem-i∧stable⇒dec⊎ (inj₁ x) stable = inj₂ x wem-i∧stable⇒dec⊎ (inj₂ y) stable = inj₁ (stable y) -- EM => DGP => WEM em⇒dgp : ∀ {a b} → EM (a ⊔ b) → DGP a b em⇒dgp em = em⇒[¬A→B]→A⊎B em ¬[A→B]→B→A dgp-i⇒dem₃-i : ∀ {a b} {A : Set a} {B : Set b} → DGP-i A B → DEM₃-i A B dgp-i⇒dem₃-i dgp-i ¬[A×B] = Sum.map (λ A→B → contraposition (λ x → x , A→B x) ¬[A×B]) (λ B→A → contraposition (λ y → B→A y , y) ¬[A×B]) dgp-i dgp⇒dem₃ : ∀ {a b} → DGP a b → DEM₃ a b dgp⇒dem₃ dgp ¬[A×B] = dgp-i⇒dem₃-i dgp ¬[A×B] dgp⇒wem : ∀ {a} → DGP a a → WEM a dgp⇒wem dgp = dem₃⇒wem $ dgp⇒dem₃ dgp -- Properties of DNS -- DNE => DNS dne⇒dns : ∀ {a p} {A : Set a} → DNE (a ⊔ p) → DNS A (a ⊔ p) dne⇒dns dne f = λ x → x λ y → dne (f y) -- DNS <=> ¬ ¬ EM dns⇒¬¬em : ∀ {a} → ({A : Set (lsuc a)} → DNS A a) → ¬ ¬ EM a dns⇒¬¬em dns = DN-map (λ x {A} → x A) $ dns (λ _ → DN-Dec⊎) ¬¬em⇒dns : ∀ {a} → ¬ ¬ EM a → ({A : Set a} → DNS A a) ¬¬em⇒dns ¬¬em = λ ∀x→¬¬Px ¬[∀x→Px] → ¬¬em λ em → ¬[∀x→Px] (λ x → em⇒dne em (∀x→¬¬Px x)) -- call/cc is classical call/cc⇒dne : ∀ {a} → Call/CC a → DNE a call/cc⇒dne call/cc ¬¬A = call/cc λ ¬A → ⊥-elim (¬¬A ¬A) em⇒call/cc : ∀ {a} → EM a → Call/CC a em⇒call/cc em ¬A→A = Sum.[ id , ¬A→A ] em -- DNE <=> ¬[A׬B]→A→B dne⇒¬[A׬B]→A→B : ∀ {a b} → DNE (a ⊔ b) → {A : Set a} {B : Set b} → ¬ (A × ¬ B) → A → B dne⇒¬[A׬B]→A→B dne = dne λ x → x λ y z → ⊥-elim (y (z , (λ w → x λ u v → w))) ¬[A׬B]→A→B⇒dne : ∀ {a} → ({A B : Set a} → ¬ (A × ¬ B) → A → B) → DNE a ¬[A׬B]→A→B⇒dne f ¬¬A = f (uncurry id) ¬¬A -- EM <=> [A→B]→¬A⊎B em⇒[A→B]→¬A⊎B : ∀ {a b} → EM b → {A : Set a} {B : Set b} → (A → B) → ¬ A ⊎ B em⇒[A→B]→¬A⊎B em f = Sum.swap (Sum.map₂ (contraposition f) em) [A→B]→¬A⊎B⇒em : ∀ {a} → ({A B : Set a} → (A → B) → ¬ A ⊎ B) → EM a [A→B]→¬A⊎B⇒em f = Sum.swap (f id) dne⇒¬[A→¬B]→A×B : ∀ {a b} → DNE (a ⊔ b) → {A : Set a} {B : Set b} → ¬ (A → ¬ B) → A × B dne⇒¬[A→¬B]→A×B dne f = dne λ ¬[A×B] → f λ x y → ¬[A×B] (x , y) -- the counterexample principle dne⇒¬[A→B]→A׬B : ∀ {a b} → DNE (a ⊔ b) → {A B : Set a} {B : Set b} → ¬ (A → B) → A × ¬ B dne⇒¬[A→B]→A׬B dne f = dne λ ¬[A׬B] → f λ x → ⊥-elim (¬[A׬B] (x , (λ y → f (const y)))) ¬[A→B]→A׬B⇒dne : ∀ {a} → ({A B : Set a} → ¬ (A → B) → A × ¬ B) → DNE a ¬[A→B]→A׬B⇒dne {a} f ¬¬A with f {B = Lift a ⊥} λ A→L⊥ → ¬¬A λ x → lower $ A→L⊥ x ... | x , _ = x dne⇒ip : ∀ {a b c} → DNE (a ⊔ b ⊔ c) → IP a b c dne⇒ip dne q f = dne (DN-ip q f) -- Properties of DNE⁻¹ and EM⁻¹ em⇒em⁻¹ : ∀ {a} → EM a → EM⁻¹ a em⇒em⁻¹ em _ = em -- DNE⁻¹ <=> EM⁻¹ dne⁻¹⇒em⁻¹ : ∀ {a} → Extensionality a lzero → DNE⁻¹ a → EM⁻¹ a dne⁻¹⇒em⁻¹ ext dne⁻¹ isP = dne⁻¹ isP′ DN-Dec⊎ where isP′ : ∀ x y → x ≡ y isP′ = isProp-⊎ ¬[A׬A] isP (isProp-¬ ext) em⁻¹⇒dne⁻¹ : ∀ {a} → EM⁻¹ a → DNE⁻¹ a em⁻¹⇒dne⁻¹ em⁻¹ isP = dec⊎⇒stable (em⁻¹ isP) ----------------------------------------------------------------------- -- Properties of LPO, LLPO, WLPO, MP, MP⊎, WMP, KS, PFP, WPFP, Σ-DGP, -- Π-DGP, Σ-Π-DGP, Σ-Call/CC ----------------------------------------------------------------------- ----------------------------------------------------------------------- -- Convert between alternative forms -- MP <=> MR mp⇒mr : ∀ {a p} {A : Set a} → MP A p → MR A p mp⇒mr mp P? ¬¬∃P = P?⇒∃¬¬P→∃P P? $ mp (¬-DecU P?) (¬¬∃P→¬∀¬P ¬¬∃P) mr⇒mp : ∀ {a p} {A : Set a} → MR A p → MP A p mr⇒mp mr P? ¬∀P = mr (¬-DecU P?) (P?⇒¬∀P→¬¬∃¬P P? ¬∀P) -- WLPO <=> WLPO-Alt wlpo⇒wlpo-Alt : ∀ {a p} {A : Set a} → WLPO A p → WLPO-Alt A p wlpo⇒wlpo-Alt wlpo P? = Sum.map ∀¬P→¬∃P ¬∀¬P→¬¬∃P (wlpo (¬-DecU P?)) wlpo-Alt⇒wlpo : ∀ {a p} {A : Set a} → WLPO-Alt A p → WLPO A p wlpo-Alt⇒wlpo wlpo-Alt P? = Sum.map (P?⇒¬∃¬P→∀P P?) ¬¬∃¬P→¬∀P (wlpo-Alt (¬-DecU P?)) -- MP⊎ <=> MP⊎-Alt mp⊎⇒mp⊎-Alt : ∀ {a p} {A : Set a} → MP⊎ A p → MP⊎-Alt A p mp⊎⇒mp⊎-Alt mp⊎ P? Q? = Sum.map (contraposition ∀P→¬∃¬P) (contraposition ∀P→¬∃¬P) ∘′ mp⊎ (¬-DecU P?) (¬-DecU Q?) ∘′ contraposition (Prod.map (P?⇒¬∃¬P→∀P P?) (P?⇒¬∃¬P→∀P Q?)) mp⊎-Alt⇒mp⊎ : ∀ {a p} {A : Set a} → MP⊎-Alt A p → MP⊎ A p mp⊎-Alt⇒mp⊎ mp⊎-Alt P? Q? = Sum.map (contraposition ¬∃P→∀¬P) (contraposition ¬∃P→∀¬P) ∘′ mp⊎-Alt (¬-DecU P?) (¬-DecU Q?) ∘′ contraposition (Prod.map ∀¬P→¬∃P ∀¬P→¬∃P) -- MP⊎ <=> MP∨ mp⊎⇒mp∨ : ∀ {a p} {A : Set a} → MP⊎ A p → MP∨ A p mp⊎⇒mp∨ mp⊎ P? Q? ¬¬∃x→Px⊎Qx = mp⊎ P? Q? ([¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] ¬¬∃x→Px⊎Qx) mp∨⇒mp⊎ : ∀ {a p} {A : Set a} → MP∨ A p → MP⊎ A p mp∨⇒mp⊎ mp∨ P? Q? ¬[¬∃P׬∃Q] = mp∨ P? Q? (¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx ¬[¬∃P׬∃Q]) -- LLPO <=> LLPO-Alt llpo⇒llpo-Alt : ∀ {a p} {A : Set a} → LLPO A p → LLPO-Alt A p llpo⇒llpo-Alt llpo P? Q? = Sum.map (P?⇒¬∃¬P→∀P P?) (P?⇒¬∃¬P→∀P Q?) ∘′ llpo (¬-DecU P?) (¬-DecU Q?) ∘′ contraposition (¬A׬B→¬[A⊎B] ∘ Prod.map ∃¬P→¬∀P ∃¬P→¬∀P) llpo-Alt⇒llpo : ∀ {a p} {A : Set a} → LLPO-Alt A p → LLPO A p llpo-Alt⇒llpo llpo-Alt P? Q? = Sum.map ∀¬P→¬∃P ∀¬P→¬∃P ∘′ llpo-Alt (¬-DecU P?) (¬-DecU Q?) ∘′ DN-map (Sum.map ¬∃P→∀¬P ¬∃P→∀¬P) ∘′ ¬[A×B]→¬¬[¬A⊎¬B] -- LLPO <=> LLPO-ℕ llpo⇒llpo-ℕ : ∀ {p} → LLPO ℕ p → LLPO-ℕ p llpo⇒llpo-ℕ llpo P? ∀mn→m≢n→Pm⊎Pn with llpo (λ n → ¬-DecU P? (2 * n)) (λ n → ¬-DecU P? (1 + 2 * n)) (uncurry (Lemma.lemma₁ ∀mn→m≢n→Pm⊎Pn)) ... | inj₁ ¬∃n→¬P2n = inj₁ (P?⇒¬∃¬P→∀P (λ n → P? (2 * n)) ¬∃n→¬P2n) ... | inj₂ ¬∃n→¬P1+2n = inj₂ (P?⇒¬∃¬P→∀P (λ n → P? (suc (2 * n))) ¬∃n→¬P1+2n) private module _ {p} {P Q : ℕ → Set p} (P? : DecU P) (Q? : DecU Q) where combine : DecU (λ n → Sum.[ P , Q ] (Lemma.parity n)) combine n with Lemma.parity n ... | inj₁ m = P? m ... | inj₂ m = Q? m {- lemma : ¬ (∃ P × ∃ Q) → ∀ m n → m ≢ n → Sum.[ (λ o → ¬ P o) , (λ o → ¬ Q o) ] (Lemma.parity m) ⊎ Sum.[ (λ o → ¬ P o) , (λ o → ¬ Q o) ] (Lemma.parity n) lemma _ m n m≢n with Lemma.parity n | inspect Lemma.parity n | Lemma.parity m | inspect Lemma.parity m ... | inj₁ o | [ eq₁ ] | inj₁ p | [ eq₂ ] = {! !} ... | inj₁ o | [ eq₁ ] | inj₂ p | [ eq₂ ] = {! !} ... | inj₂ o | [ eq₁ ] | inj₁ p | [ eq₂ ] = {! !} ... | inj₂ o | [ eq₁ ] | inj₂ p | [ eq₂ ] = {! !} llpo-ℕ⇒llpo-Alt : ∀ {p} → LLPO-ℕ p → LLPO-Alt ℕ p llpo-ℕ⇒llpo-Alt llpo-ℕ P? Q? ¬¬[∀P⊎∀Q] with llpo-ℕ (combine P? Q?) {! !} ... | inj₁ ∀n→[P,Q]parity[2*n] = inj₁ λ n → subst Sum.[ _ , _ ] (Lemma.parity-even n) (∀n→[P,Q]parity[2*n] n) ... | inj₂ ∀n→[P,Q]parity[1+2*n] = inj₂ λ n → subst Sum.[ _ , _ ] (Lemma.parity-odd n) (∀n→[P,Q]parity[1+2*n] n) -} ----------------------------------------------------------------------- -- Implications -- EM => LPO em⇒lpo : ∀ {a p} {A : Set a} → EM (a ⊔ p) → LPO A p em⇒lpo em _ = em -- LPO => LLPO lpo⇒llpo : ∀ {a p} {A : Set a} → LPO A p → LLPO A p lpo⇒llpo lpo P? Q? ¬[∃P×∃Q] with lpo P? | lpo Q? ... | inj₁ ∃P | inj₁ ∃Q = contradiction (∃P , ∃Q) ¬[∃P×∃Q] ... | inj₁ ∃P | inj₂ ¬∃Q = inj₂ ¬∃Q ... | inj₂ ¬∃P | _ = inj₁ ¬∃P -- LPO <=> WLPO-Alt ∧ MR lpo⇒wlpo-Alt : ∀ {a p} {A : Set a} → LPO A p → WLPO-Alt A p lpo⇒wlpo-Alt lpo P? = ¬-dec⊎ (lpo P?) lpo⇒mr : ∀ {a p} {A : Set a} → LPO A p → MR A p lpo⇒mr lpo P? = dec⊎⇒stable (lpo P?) wlpo-Alt∧mr⇒lpo : ∀ {a p} {A : Set a} → WLPO-Alt A p → MR A p → LPO A p wlpo-Alt∧mr⇒lpo wlpo-Alt mr P? = wem-i∧stable⇒dec⊎ (wlpo-Alt P?) (mr P?) -- WLPO => LLPO-Alt wlpo⇒llpo-Alt : ∀ {a p} {A : Set a} → WLPO A p → LLPO-Alt A p wlpo⇒llpo-Alt wlpo P? Q? ¬¬[∀P⊎∀Q] with wlpo P? | wlpo Q? ... | inj₁ ∀P | _ = inj₁ ∀P ... | inj₂ ¬∀P | inj₁ ∀Q = inj₂ ∀Q ... | inj₂ ¬∀P | inj₂ ¬∀Q = contradiction (¬A׬B→¬[A⊎B] (¬∀P , ¬∀Q)) ¬¬[∀P⊎∀Q] -- WEM => WLPO-Alt wem⇒wlpo-Alt : ∀ {a p} {A : Set a} → WEM (a ⊔ p) → WLPO-Alt A p wem⇒wlpo-Alt wem P? = wem -- (WMP ∧ MP∨) <=> MR mr⇒wmp : ∀ {a p} {A : Set a} → MR A p → WMP A p mr⇒wmp mr {P = P} P? pp = mr P? $ Sum.[ id , (λ ¬¬∃x→Px׬Px _ → f ¬¬∃x→Px׬Px) ] (pp P?) where f : ¬ ¬ ∃ (λ x → P x × ¬ P x) → ⊥ f ¬¬∃x→Px׬Px = ⊥-stable $ DN-map (¬[A׬A] ∘ proj₂) ¬¬∃x→Px׬Px -- MR => MP∨ mr⇒mp∨ : ∀ {a p} {A : Set a} → MR A p → MP∨ A p mr⇒mp∨ mr {P = P} {Q = Q} P? Q? ¬¬∃x→Px⊎Qx = Sum.map DN-intro DN-intro $ ∃-distrib-⊎ $ mr {P = λ x → P x ⊎ Q x} (DecU-⊎ P? Q?) ¬¬∃x→Px⊎Qx -- WMP ∧ MP∨ => MR -- α = P, β = Q, γ = R in [2] wmp∧mp∨⇒mr : ∀ {a p} {A : Set a} → WMP A p → MP∨ A p → MR A p wmp∧mp∨⇒mr {a} {p} {A} wmp mp∨ {P = P} P? ¬¬∃P = wmp P? Lem.¬¬∃Q⊎¬¬∃R where module Lem {Q : A → Set p} (Q? : DecU Q) where R : A → Set p R x = P x × ¬ Q x ¬¬∃x→Qx⊎Rx : ¬ ¬ ∃ λ x → Q x ⊎ R x ¬¬∃x→Qx⊎Rx = DN-map f ¬¬∃P where f : ∃ P → ∃ (λ x → Q x ⊎ (P x × ¬ Q x)) f (x , Px) = x , Sum.map₂ (Px ,_) (Q? x) R? : DecU R R? = DecU-× P? (¬-DecU Q?) ¬¬∃Q⊎¬¬∃R : ¬ ¬ ∃ Q ⊎ ¬ ¬ ∃ R ¬¬∃Q⊎¬¬∃R = mp∨ Q? R? ¬¬∃x→Qx⊎Rx -- Properties that required to prove `llpo⇒Σ-dgp` record HasProperties {a} r p (A : Set a) : Set (a ⊔ lsuc r ⊔ lsuc p) where field _<_ : Rel A r <-cmp : Trichotomous _≡_ _<_ <-any-dec : {P : A → Set p} → DecU P → DecU (λ n → ∃ λ m → (m < n) × P m) <-wf : Ind.WellFounded _<_ private ¬∃¬→∀ : ∀ {P : A → Set p} {x} → DecU P → ¬ (∃ λ y → y < x × ¬ P y) → ∀ y → y < x → P y ¬∃¬→∀ {x} P? ¬∃y→y<x׬Py y y<x = DecU⇒stable P? y λ ¬Py → ¬∃y→y<x׬Py (y , (y<x , ¬Py)) <-all-dec : {P : A → Set p} → DecU P → DecU (λ n → ∀ i → i < n → P i) <-all-dec P? n with <-any-dec (¬-DecU P?) n ... | inj₁ (m , m<n , ¬Pm) = inj₂ λ ∀i→i<n→Pi → ¬Pm (∀i→i<n→Pi m m<n) ... | inj₂ ¬∃m→m<n׬Pm = inj₁ (¬∃¬→∀ P? ¬∃m→m<n׬Pm) First : (A → Set p) → A → Set (a ⊔ p ⊔ r) First P x = (∀ y → y < x → ¬ P y) × P x First? : {P : A → Set p} → DecU P → DecU (First P) First? P? = DecU-× (<-all-dec (¬-DecU P?)) P? None : (A → Set p) → A → Set (a ⊔ p ⊔ r) None P x = (∀ y → y < x → ¬ P y) × ¬ P x None? : {P : A → Set p} → DecU P → DecU (None P) None? P? = DecU-× (<-all-dec (¬-DecU P?)) (¬-DecU P?) ∃⊎None : {P : A → Set p} → DecU P → ∀ x → ∃ P ⊎ None P x ∃⊎None P? x with P? x | <-any-dec P? x ... | inj₁ Px | _ = inj₁ (x , Px) ... | inj₂ ¬Px | inj₁ (y , _ , Py) = inj₁ (y , Py) ... | inj₂ ¬Px | inj₂ ¬∃ = inj₂ ((λ y y<x Py → ¬∃ (y , (y<x , Py))) , ¬Px) findFirst : {P : A → Set p} → DecU P → ∃ P → ∃ (First P) findFirst {P} P? (x , Px) = go x (<-wf x) Px where go : ∀ x → Ind.Acc _<_ x → P x → ∃ λ y → (∀ i → i < y → ¬ P i) × P y go x (Ind.acc rs) Px with <-any-dec P? x ... | inj₁ (y , y<x , Py) = go y (rs y y<x) Py ... | inj₂ ¬∃y→y<x×Py = x , (λ i i<x Pi → ¬∃y→y<x×Py (i , (i<x , Pi))) , Px First-unique : ∀ {P : A → Set p} {x y} → First P x → First P y → x ≡ y First-unique {P} {x} {y} (∀i→i<x→¬Pi , Px) (∀i→i<y→¬Pi , Py) with <-cmp x y ... | tri< x<y _ _ = contradiction Px (∀i→i<y→¬Pi x x<y) ... | tri≈ _ x≡y _ = x≡y ... | tri> _ _ x>y = contradiction Py (∀i→i<x→¬Pi y x>y) module HasPropertiesLemma {P Q : A → Set p} (P? : DecU P) (Q? : DecU Q) where R S : A → Set (r ⊔ p ⊔ a) R x = First P x × None Q x S x = First Q x × None P x R? : DecU R R? = DecU-× (First? P?) (None? Q?) S? : DecU S S? = DecU-× (First? Q?) (None? P?) ¬[∃R×∃S] : ¬ (∃ R × ∃ S) ¬[∃R×∃S] ((x , (∀i→i<x→¬Pi , Px) , ∀i→i<x→¬Qi , ¬Qx) , (y , (∀i→i<y→¬Qi , Qy) , ∀i→i<y→¬Pi , ¬Py )) with <-cmp x y ... | tri< x<y _ _ = ∀i→i<y→¬Pi x x<y Px ... | tri≈ _ x≡y _ = ¬Py (subst P x≡y Px) ... | tri> _ _ y<x = ∀i→i<x→¬Qi y y<x Qy ¬∃R→∃P→∃Q : ¬ ∃ R → ∃ P → ∃ Q ¬∃R→∃P→∃Q ¬∃R ∃P with findFirst P? ∃P ¬∃R→∃P→∃Q ¬∃R ∃P | x , firstP with ∃⊎None Q? x ¬∃R→∃P→∃Q ¬∃R ∃P | x , firstP | inj₁ ∃Q = ∃Q ¬∃R→∃P→∃Q ¬∃R ∃P | x , firstP | inj₂ noneQ = contradiction (x , firstP , noneQ) ¬∃R ¬∃S→∃Q→∃P : ¬ ∃ S → ∃ Q → ∃ P ¬∃S→∃Q→∃P ¬∃S ∃Q with findFirst Q? ∃Q ¬∃S→∃Q→∃P ¬∃S ∃Q | x , firstQ with ∃⊎None P? x ¬∃S→∃Q→∃P ¬∃S ∃Q | x , firstQ | inj₁ ∃P = ∃P ¬∃S→∃Q→∃P ¬∃S ∃Q | x , firstQ | inj₂ noneP = contradiction (x , firstQ , noneP) ¬∃S -- Proposition 8.6.1. [1] -- Σ-DGP <=> LLPO llpo⇒Σ-dgp : ∀ {r p a} {A : Set a} → HasProperties r p A → LLPO A (p ⊔ a ⊔ r) → Σ-DGP A p llpo⇒Σ-dgp has llpo {P = P} {Q} P? Q? = Sum.map ¬∃R→∃P→∃Q ¬∃S→∃Q→∃P ¬∃R⊎¬∃S where open HasProperties has open HasPropertiesLemma P? Q? ¬∃R⊎¬∃S : ¬ ∃ R ⊎ ¬ ∃ S ¬∃R⊎¬∃S = llpo R? S? ¬[∃R×∃S] Σ-dgp⇒llpo : ∀ {a p} {A : Set a} → Σ-DGP A p → LLPO A p Σ-dgp⇒llpo Σ-dgp P? Q? ¬[∃P×∃Q] = dgp-i⇒dem₃-i (Σ-dgp P? Q?) ¬[∃P×∃Q] -- Σ-DGP => MP∨ Σ-dgp⇒mp∨ : ∀ {p a} {A : Set a} → Σ-DGP A p → MP∨ A p Σ-dgp⇒mp∨ Σ-dgp {P = P} {Q} P? Q? ¬¬[∃x→Px⊎Qx] = ¬¬∃P⊎¬¬∃Q where ¬¬[∃P⊎∃Q] : ¬ ¬ (∃ P ⊎ ∃ Q) ¬¬[∃P⊎∃Q] = DN-map ∃-distrib-⊎ ¬¬[∃x→Px⊎Qx] ¬¬∃P⊎¬¬∃Q : ¬ ¬ ∃ P ⊎ ¬ ¬ ∃ Q ¬¬∃P⊎¬¬∃Q = dgp-i⇒DN-distrib-⊎-i (Σ-dgp P? Q?) ¬¬[∃P⊎∃Q] -- Σ-DGP => Π-DGP Σ-dgp⇒Π-dgp : ∀ {p a} {A : Set a} → Σ-DGP A p → Π-DGP A p Σ-dgp⇒Π-dgp Σ-dgp P? Q? = Sum.map (P?⇒[∃¬P→∃¬Q]→∀Q→∀P Q?) (P?⇒[∃¬P→∃¬Q]→∀Q→∀P P?) (Σ-dgp (¬-DecU Q?) (¬-DecU P?)) -- Π-DGP => LLPO-Alt Π-dgp⇒llpo-Alt : ∀ {a p} {A : Set a} → Π-DGP A p → LLPO-Alt A p Π-dgp⇒llpo-Alt Π-dgp P? Q? = Sum.map (P?⇒¬¬∀P→∀P P?) (P?⇒¬¬∀P→∀P Q?) ∘′ dgp-i⇒DN-distrib-⊎-i (Π-dgp P? Q?) -- LLPO => MP∨ llpo⇒mp∨ : ∀ {r p a} {A : Set a} → HasProperties r p A → LLPO A (p ⊔ a ⊔ r) → MP∨ A p llpo⇒mp∨ has llpo = Σ-dgp⇒mp∨ (llpo⇒Σ-dgp has llpo) ℕ-hasProperties : ∀ p → HasProperties lzero p ℕ ℕ-hasProperties _ = record { _<_ = ℕ._<_ ; <-cmp = ℕₚ.<-cmp ; <-any-dec = Lemma.ℕ<-any-dec ; <-wf = ℕInd.<-wellFounded } ℕ-llpo⇒mp∨ : ∀ {p} → LLPO ℕ p → MP∨ ℕ p ℕ-llpo⇒mp∨ = llpo⇒mp∨ (ℕ-hasProperties _) ℕ-llpo⇒Σ-dgp : ∀ {p} → LLPO ℕ p → Σ-DGP ℕ p ℕ-llpo⇒Σ-dgp = llpo⇒Σ-dgp (ℕ-hasProperties _) -- Proposition 8.6.1. [1] -- WLPO <=> Σ-Π-DGP wlpo⇒Σ-Π-dgp : ∀ {a p} {A : Set a} → WLPO A p → Σ-Π-DGP A p wlpo⇒Σ-Π-dgp wlpo P? Q? with wlpo Q? ... | inj₁ ∀Q = inj₁ λ _ → ∀Q ... | inj₂ ¬∀Q = inj₂ λ ∀Q → ⊥-elim $ ¬∀Q ∀Q Σ-Π-dgp⇒wlpo : ∀ {a p} {A : Set a} → Σ-Π-DGP A p → WLPO A p Σ-Π-dgp⇒wlpo Σ-Π-dgp P? with Σ-Π-dgp (¬-DecU P?) P? ... | inj₁ ∃¬P→∀P = inj₁ (P?⇒[∃¬P→∀P]→∀P P? ∃¬P→∀P) ... | inj₂ ∀P→∃¬P = inj₂ λ ∀P → ∃¬P→¬∀P (∀P→∃¬P ∀P) ∀P -- Question 15 [1] -- MR <=> Σ-Call/CC mr⇒Σ-call/cc : ∀ {a p} {A : Set a} → MR A p → Σ-Call/CC A p mr⇒Σ-call/cc mr P? = mr P? ∘′ [¬A→A]→¬¬A Σ-call/cc⇒mr : ∀ {a p} {A : Set a} → Σ-Call/CC A p → MR A p Σ-call/cc⇒mr Σ-call/cc P? ¬¬∃P = Σ-call/cc P? λ ¬∃P → ⊥-elim $ ¬¬∃P ¬∃P -- Question 15 [1] -- MR <=> Σ-Σ-Peirce mr⇒Σ-Σ-peirce : ∀ {a p} {A : Set a} → MR A p → Σ-Σ-Peirce A p mr⇒Σ-Σ-peirce mr P? Q? [∃P→∃Q]→∃P = mr P? ([[A→B]→A]→¬¬A [∃P→∃Q]→∃P) Σ-Σ-peirce⇒mr : ∀ {a p} {A : Set a} → Σ-Σ-Peirce A p → MR A p Σ-Σ-peirce⇒mr {A = A} Σ-Σ-peirce P? = [[[A→B]→A]→A]→¬B→¬¬A→A (Σ-Σ-peirce {Q = λ _ → Lift _ ⊥} P? (λ _ → inj₂ lower)) f where f : Σ A (λ _ → Lift _ ⊥) → ⊥ f (_ , ()) -- MR => Σ-Π-Peirce mr⇒Σ-Π-peirce : ∀ {a p} {A : Set a} → MR A p → Σ-Π-Peirce A p mr⇒Σ-Π-peirce mr P? Q? [∃P→∀Q]→∃P = mr P? ([[A→B]→A]→¬¬A [∃P→∀Q]→∃P) -- Inhabited ∧ Σ-Π-peirce => MR inhabited∧Σ-Π-peirce⇒mr : ∀ {a p} {A : Set a} → Inhabited A → Σ-Π-Peirce A p → MR A p inhabited∧Σ-Π-peirce⇒mr {p = p} {A} inhabited Σ-Π-peirce P? = [[[A→B]→A]→A]→¬B→¬¬A→A (Σ-Π-peirce {Q = λ _ → Lift _ ⊥} P? (λ _ → inj₂ lower)) f where f : ¬ ((x : A) → Lift p ⊥) f ∀x→L⊥ = lower (∀x→L⊥ inhabited) -- Proposition 6.4.1. [1] -- WMP ∧ WLPO-Alt => LPO wmp∧wlpo-Alt⇒lpo : ∀ {a p} {A : Set a} → WMP A p → WLPO-Alt A p → LPO A p wmp∧wlpo-Alt⇒lpo {a} {p} {A} wmp wlpo-Alt {P = P} P? with wlpo-Alt P? ... | inj₁ ¬∃P = inj₂ ¬∃P ... | inj₂ ¬¬∃P = inj₁ (wmp P? Lem.res) where module Lem {Q : A → Set p} (Q? : DecU Q) where R : A → Set p R x = P x × ¬ Q x R? : DecU R R? = DecU-× P? (¬-DecU Q?) ¬∃R⊎¬¬∃R : ¬ ∃ R ⊎ ¬ ¬ ∃ R ¬∃R⊎¬¬∃R = wlpo-Alt R? res : ¬ ¬ ∃ Q ⊎ (¬ ¬ ∃ λ x → P x × ¬ Q x) res = Sum.map₁ (λ ¬∃R ¬∃Q → ¬¬∃P (f ¬∃R ¬∃Q)) ¬∃R⊎¬¬∃R where f : ¬ ∃ R → ¬ ∃ Q → ¬ ∃ P f ¬∃R ¬∃Q (x , Px) = ¬∃R (x , (Px , ¬∃P→∀¬P ¬∃Q x)) -- direct proof of WLPO => MP⊎ wlpo-Alt⇒mp⊎ : ∀ {a p} {A : Set a} → WLPO-Alt A p → MP⊎ A p wlpo-Alt⇒mp⊎ wlpo-Alt P? Q? ¬[¬∃P׬∃Q] with wlpo-Alt P? | wlpo-Alt Q? ... | inj₁ ¬∃P | inj₁ ¬∃Q = ⊥-elim $ ¬[¬∃P׬∃Q] (¬∃P , ¬∃Q) ... | inj₁ ¬∃P | inj₂ ¬¬∃Q = inj₂ ¬¬∃Q ... | inj₂ ¬¬∃P | _ = inj₁ ¬¬∃P -- EM => KS em⇒ks : ∀ {a p} q {A : Set a} (x : A) → EM p → KS A p q em⇒ks q x em P with em {A = P} em⇒ks q x em P | inj₁ xP = (λ _ → Lift q ⊤) , (λ _ → inj₁ (lift tt)) , ((λ _ → x , lift tt) , (λ _ → xP)) em⇒ks q x em P | inj₂ ¬P = (λ _ → Lift q ⊥) , (λ _ → inj₂ lower) , ((λ xP → ⊥-elim $ ¬P xP) , (λ A×L⊥ → ⊥-elim $ lower $ proj₂ A×L⊥)) -- KS => PFP ks⇒pfp : ∀ {a p q} {A : Set a} → KS A (a ⊔ p) q → PFP A p q ks⇒pfp ks {P = P} P? = ks (∀ x → P x) -- PFP => WPFP pfp⇒wpfp : ∀ {a p q} {A : Set a} → PFP A p q → WPFP A p q pfp⇒wpfp pfp {P = P} P? with pfp P? ... | Q , Q? , ∀P→∃Q , ∃Q→∀P = (λ x → ¬ Q x) , (¬-DecU Q? , (f , g)) where f : (∀ x → P x) → ¬ (∀ x → ¬ Q x) f ∀P = ∃P→¬∀¬P (∀P→∃Q ∀P) g : (¬ (∀ x → ¬ Q x)) → ∀ x → P x g = P?⇒[∃Q→∀P]→¬∀¬Q→∀P P? ∃Q→∀P -- WLPO => PFP wlpo⇒pfp : ∀ {a p} q {A : Set a} → Inhabited A → WLPO A p → PFP A p q wlpo⇒pfp {p = p} q xA wlpo {P = P} P? with wlpo P? ... | inj₁ ∀P = (λ _ → Lift q ⊤) , (λ _ → inj₁ (lift tt)) , (f , g) where f : (∀ x → P x) → ∃ λ x → Lift q ⊤ f _ = xA , lift tt g : (∃ λ x → Lift q ⊤) → (∀ x → P x) g _ = ∀P ... | inj₂ ¬∀P = (λ _ → Lift q ⊥) , (λ _ → inj₂ lower) , f , g where f : (∀ x → P x) → ∃ (λ x → Lift q ⊥) f ∀P = ⊥-elim $ ¬∀P ∀P g : ∃ (λ x → Lift q ⊥) → ∀ x → P x g (x , L⊥) = ⊥-elim $ lower L⊥ -- WLPO => WPFP wlpo⇒wpfp : ∀ {a p} q {A : Set a} → Inhabited A → WLPO A p → WPFP A p q wlpo⇒wpfp q xA wlpo = pfp⇒wpfp (wlpo⇒pfp q xA wlpo) -- Proposition 6.2.3 [1] -- WPFP ∧ MP⊎-Alt => WLPO wpfp∧mp⊎-Alt⇒wlpo : ∀ {a p} {A : Set a} → WPFP A p p → MP⊎-Alt A p → WLPO A p wpfp∧mp⊎-Alt⇒wlpo wpfp mp⊎-Alt {P = P} P? with wpfp P? ... | Q , Q? , ∀P→¬∀Q , ¬∀Q→∀P = Sum.map₁ ¬∀Q→∀P (Sum.swap ¬∀P⊎¬∀Q) where ¬[∀P×∀Q] : ¬ ((∀ x → P x) × (∀ x → Q x)) ¬[∀P×∀Q] (∀P , ∀Q) = ∀P→¬∀Q ∀P ∀Q ¬∀P⊎¬∀Q : ¬ (∀ x → P x) ⊎ ¬ (∀ x → Q x) ¬∀P⊎¬∀Q = mp⊎-Alt P? Q? ¬[∀P×∀Q] -- WPFP ∧ LLPO-Alt => WLPO wpfp∧llpo-Alt⇒wlpo : ∀ {a p} {A : Set a} → WPFP A p p → LLPO-Alt A p → WLPO A p wpfp∧llpo-Alt⇒wlpo wpfp llpo-Alt {P = P} P? with wpfp P? ... | Q , Q? , ∀P→¬∀Q , ¬∀Q→∀P = Sum.map₂ (λ ∀Q ∀P → ∀P→¬∀Q ∀P ∀Q) ∀P⊎∀Q where ∀P⊎∀Q : (∀ x → P x) ⊎ (∀ x → Q x) ∀P⊎∀Q = llpo-Alt P? Q? (DN-map (Sum.swap ∘′ Sum.map₂ ¬∀Q→∀P) DN-Dec⊎) -- WPFP ∧ MR <=> LPO wpfp∧mr⇒lpo : ∀ {a p} {A : Set a} → WPFP A p p → MR A p → LPO A p wpfp∧mr⇒lpo wpfp mr = wlpo-Alt∧mr⇒lpo (wlpo⇒wlpo-Alt (wpfp∧mp⊎-Alt⇒wlpo wpfp (mp⊎⇒mp⊎-Alt (mp∨⇒mp⊎ (mr⇒mp∨ mr))))) mr -- Proposition 1.2.1.2 in [1] {- lpo⇒P1212 : ∀ {p} → LPO ℕ p → {P : ℕ → Set p} → DecU P → (∃ λ N → ∀ n → N ≤ n → ¬ P n) ⊎ (Σ (ℕ → ℕ) λ k → ∀ n → P (k n)) lpo⇒P1212 {p} lpo {P} P? = {! !} where R : ℕ → Set p R k = ∀ n → k ≤ n → ¬ P n -- use lpo R? : DecU R R? k = ? -} -- Searchable set -- Searchable <=> Inhabited ∧ LPO searchable⇒lpo : ∀ {a p} {A : Set a} → Searchable A p → LPO A p searchable⇒lpo searchable P? with searchable (¬-DecU P?) ... | x₀ , ¬Px₀→∀¬P = Sum.[ (λ Px₀ → inj₁ (x₀ , Px₀)) , (λ ¬Px₀ → inj₂ (∀¬P→¬∃P (¬Px₀→∀¬P ¬Px₀))) ]′ (P? x₀) searchable⇒inhabited : ∀ {a p} {A : Set a} → Searchable A p → Inhabited A searchable⇒inhabited {p = p} searchable = proj₁ (searchable {P = λ _ → Lift p ⊤} λ _ → inj₁ (lift tt)) inhabited∧lpo⇒searchable : ∀ {a p} {A : Set a} → Inhabited A → LPO A p → Searchable A p inhabited∧lpo⇒searchable inhabited lpo P? with lpo (¬-DecU P?) ... | inj₁ (x , ¬Px) = x , (λ Px → contradiction Px ¬Px) ... | inj₂ ¬∃¬P = inhabited , (λ _ → P?⇒¬∃¬P→∀P P? ¬∃¬P) -- [1] Hannes Diener "Constructive Reverse Mathematics" -- [2] Hajime lshihara "Markov’s principle, Church’s thesis and LindeUf’s theorem"
{ "alphanum_fraction": 0.4437779999, "avg_line_length": 34.6269230769, "ext": "agda", "hexsha": "cb19637a9f5179415875ccc4391a9b8ff29f8c6e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Axiom/Properties/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Axiom/Properties/Base.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Axiom/Properties/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 14283, "size": 27009 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} {- This file shows that the property of the natural numbers being a homotopy-initial algebra of the functor (1 + _) is equivalent to fulfilling a closely related inductive elimination principle. Proofing the latter is trivial, since the typechecker does the work for us. For details see the paper [Homotopy-initial algebras in type theory](https://arxiv.org/abs/1504.05531) by Steve Awodey, Nicola Gambino and Kristina Sojakova. -} module Cubical.Data.Nat.Algebra where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism hiding (section) open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Reflection.StrictEquiv open import Cubical.Data.Nat.Base private variable ℓ ℓ' : Level record NatAlgebra ℓ : Type (ℓ-suc ℓ) where field Carrier : Type ℓ alg-zero : Carrier alg-suc : Carrier → Carrier record NatMorphism (A : NatAlgebra ℓ) (B : NatAlgebra ℓ') : Type (ℓ-max ℓ ℓ') where open NatAlgebra field morph : A .Carrier → B .Carrier comm-zero : morph (A .alg-zero) ≡ B .alg-zero comm-suc : morph ∘ A .alg-suc ≡ B .alg-suc ∘ morph record NatFiber (N : NatAlgebra ℓ') ℓ : Type (ℓ-max ℓ' (ℓ-suc ℓ)) where open NatAlgebra N field Fiber : Carrier → Type ℓ fib-zero : Fiber alg-zero fib-suc : ∀ {n} → Fiber n → Fiber (alg-suc n) record NatSection {N : NatAlgebra ℓ'} (F : NatFiber N ℓ) : Type (ℓ-max ℓ' ℓ) where open NatAlgebra N open NatFiber F field section : ∀ n → Fiber n sec-comm-zero : section alg-zero ≡ fib-zero sec-comm-suc : ∀ n → section (alg-suc n) ≡ fib-suc (section n) isNatHInitial : NatAlgebra ℓ' → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ)) isNatHInitial N ℓ = (M : NatAlgebra ℓ) → isContr (NatMorphism N M) isNatInductive : NatAlgebra ℓ' → (ℓ : Level) → Type (ℓ-max ℓ' (ℓ-suc ℓ)) isNatInductive N ℓ = (S : NatFiber N ℓ) → NatSection S module AlgebraPropositionality {N : NatAlgebra ℓ'} where open NatAlgebra N isPropIsNatHInitial : isProp (isNatHInitial N ℓ) isPropIsNatHInitial = isPropΠ (λ _ → isPropIsContr) -- under the assumption that some shape is nat-inductive, the type of sections over any fiber -- is propositional module SectionProp (ind : isNatInductive N ℓ) {F : NatFiber N ℓ} (S T : NatSection F) where open NatFiber open NatSection ConnectingFiber : NatFiber N ℓ Fiber ConnectingFiber n = S .section n ≡ T .section n fib-zero ConnectingFiber = S .sec-comm-zero ∙∙ refl ∙∙ sym (T .sec-comm-zero) fib-suc ConnectingFiber {n} sntn = S .sec-comm-suc n ∙∙ (λ i → F .fib-suc (sntn i)) ∙∙ sym (T .sec-comm-suc n) open NatSection (ind ConnectingFiber) renaming (section to α ; sec-comm-zero to ζ ; sec-comm-suc to σ) squeezeSquare : ∀{a}{A : Type a}{w x y z : A} (p : w ≡ x) {q : x ≡ y} (r : z ≡ y) → (P : w ≡ z) → (sq : P ≡ p ∙∙ q ∙∙ sym r) → I → I → A squeezeSquare p {q} r P sq i j = transport (sym (PathP≡doubleCompPathʳ p P q r)) sq i j S≡T : S ≡ T section (S≡T i) n = α n i sec-comm-zero (S≡T i) j = squeezeSquare (S .sec-comm-zero) (T .sec-comm-zero) (α alg-zero) ζ j i sec-comm-suc (S≡T i) n j = squeezeSquare (S .sec-comm-suc n) (T .sec-comm-suc n) (α (alg-suc n)) (σ n) j i isPropIsNatInductive : isProp (isNatInductive N ℓ) isPropIsNatInductive a b i F = SectionProp.S≡T a (a F) (b F) i module AlgebraHInd→HInit {N : NatAlgebra ℓ'} (ind : isNatInductive N ℓ) (M : NatAlgebra ℓ) where open NatAlgebra open NatFiber ConstFiberM : NatFiber N ℓ Fiber ConstFiberM _ = M .Carrier fib-zero ConstFiberM = M .alg-zero fib-suc ConstFiberM = M .alg-suc morph→section : NatMorphism N M → NatSection ConstFiberM morph→section x = record { section = morph ; sec-comm-zero = comm-zero ; sec-comm-suc = λ i n → comm-suc n i } where open NatMorphism x section→morph : NatSection ConstFiberM → NatMorphism N M section→morph x = record { morph = section ; comm-zero = sec-comm-zero ; comm-suc = λ n i → sec-comm-suc i n } where open NatSection x Morph≡Section : NatSection ConstFiberM ≡ NatMorphism N M Morph≡Section = ua e where unquoteDecl e = declStrictEquiv e section→morph morph→section isContrMorph : isContr (NatMorphism N M) isContrMorph = subst isContr Morph≡Section (inhProp→isContr (ind ConstFiberM) (AlgebraPropositionality.SectionProp.S≡T ind)) open NatAlgebra open NatFiber open NatSection open NatMorphism module AlgebraHInit→Ind (N : NatAlgebra ℓ') ℓ (hinit : isNatHInitial N (ℓ-max ℓ' ℓ)) (F : NatFiber N (ℓ-max ℓ' ℓ)) where ΣAlgebra : NatAlgebra (ℓ-max ℓ' ℓ) Carrier ΣAlgebra = Σ (N .Carrier) (F .Fiber) alg-zero ΣAlgebra = N .alg-zero , F .fib-zero alg-suc ΣAlgebra (n , fn) = N .alg-suc n , F .fib-suc fn -- the fact that we have to lift the Carrier obstructs readability a bit -- this is the same algebra as N, but lifted into the correct universe LiftN : NatAlgebra (ℓ-max ℓ' ℓ) Carrier LiftN = Lift {_} {ℓ} (N .Carrier) alg-zero LiftN = lift (N .alg-zero) alg-suc LiftN = lift ∘ N .alg-suc ∘ lower _!_ : ∀ {x y} → x ≡ y → F .Fiber x → F .Fiber y _!_ = subst (F .Fiber) -- from homotopy initiality of N we get -- 1) an algebra morphism μ from N → Σ N F together with proofs of commutativity with the algebras -- 2) projecting out the first component after μ, called α, will turn out to be the identity function -- 3) witnesses that μ respects the definitions given in ΣAlgebra -- a) at zero the witnesses are ζ and ζ-h -- b) at suc the witnesses are σ and σ-h open NatMorphism (hinit ΣAlgebra .fst) renaming (morph to μ ; comm-zero to μ-zc ; comm-suc to μ-sc) module _ n where open Σ (μ n) public renaming (fst to α ; snd to α-h) -- module _ i where open Σ (μ-zc i) public renaming (fst to ζ ; snd to ζ-h) ζ : α (N .alg-zero) ≡ N .alg-zero ζ i = μ-zc i .fst ζ-h : PathP (λ i → F .Fiber (ζ i)) (α-h (N .alg-zero)) (F .fib-zero) ζ-h i = μ-zc i .snd -- module _ n i where open Σ (μ-sc i n) public renaming (fst to σ ; snd to σ-h) σ : ∀ n → α (N .alg-suc n) ≡ N .alg-suc (α n) σ n i = μ-sc i n .fst σ-h : ∀ n → PathP (λ i → F .Fiber (σ n i)) (α-h (N .alg-suc n)) (F .fib-suc (α-h n)) σ-h n i = μ-sc i n .snd -- liftMorph would be the identity morphism if it weren't for size issues liftMorph : NatMorphism N LiftN liftMorph = record { morph = lift ; comm-zero = refl ; comm-suc = refl } -- instead of abstractly defining morphism composition and a projection algebra morphism -- from Σ N F → N, define the composite directly. comm-zero and comm-suc thus are -- defined without path composition fst∘μ : NatMorphism N LiftN morph fst∘μ = lift ∘ α comm-zero fst∘μ i = lift (ζ i) comm-suc fst∘μ i n = lift (σ n i) fst∘μ≡id : fst∘μ ≡ liftMorph fst∘μ≡id = isContr→isProp (hinit LiftN) _ _ -- we get a proof that the index is preserved uniformly P : ∀ n → α n ≡ n P n i = lower (fst∘μ≡id i .morph n) -- we also have proofs that α cancels after the algebra of N Q-zero : α (N .alg-zero) ≡ N .alg-zero Q-zero = ζ Q-suc : ∀ n → α (N .alg-suc n) ≡ N .alg-suc n Q-suc n = σ n ∙ cong (N .alg-suc) (P n) -- but P and Q are the same up to homotopy P-zero : P (N .alg-zero) ≡ Q-zero P-zero i j = hcomp (λ k → λ where (i = i0) → lower (fst∘μ≡id j .comm-zero (~ k)) (i = i1) → ζ (j ∨ ~ k) (j = i0) → ζ (~ k) (j = i1) → N .alg-zero ) (N .alg-zero) P-suc : ∀ n → P (N .alg-suc n) ≡ Q-suc n P-suc n i j = hcomp (λ k → λ where (i = i0) → lower (fst∘μ≡id j .comm-suc (~ k) n) (i = i1) → compPath-filler' (σ n) (cong (N .alg-suc) (P n)) k j (j = i0) → σ n (~ k) (j = i1) → N .alg-suc n ) (N .alg-suc (P n j)) Fsection : NatSection F section Fsection n = P n ! α-h n sec-comm-zero Fsection = P (N .alg-zero) ! α-h (N .alg-zero) ≡[ i ]⟨ P-zero i ! α-h _ ⟩ Q-zero ! α-h (N .alg-zero) ≡⟨ fromPathP ζ-h ⟩ F .fib-zero ∎ sec-comm-suc Fsection n = P (N .alg-suc n) ! α-h (N .alg-suc n) ≡[ i ]⟨ P-suc n i ! α-h _ ⟩ Q-suc n ! α-h (N .alg-suc n) ≡⟨ substComposite (F .Fiber) (σ n) (cong (N .alg-suc) (P n)) _ ⟩ cong (N .alg-suc) (P n) ! (σ n ! α-h (N .alg-suc n)) ≡[ i ]⟨ cong (N .alg-suc) (P n) ! fromPathP (σ-h n) i ⟩ cong (N .alg-suc) (P n) ! (F .fib-suc (α-h n)) ≡⟨ substCommSlice (F .Fiber) (F .Fiber ∘ N .alg-suc) (λ _ → F .fib-suc) (P n) (α-h n) ⟩ F .fib-suc (P n ! α-h n) ∎ isNatInductive≡isNatHInitial : {N : NatAlgebra ℓ'} (ℓ : Level) → isNatInductive N (ℓ-max ℓ' ℓ) ≡ isNatHInitial N (ℓ-max ℓ' ℓ) isNatInductive≡isNatHInitial {_} {N} ℓ = hPropExt isPropIsNatInductive isPropIsNatHInitial ind→init init→ind where open AlgebraPropositionality open AlgebraHInit→Ind N ℓ renaming (Fsection to init→ind) open AlgebraHInd→HInit renaming (isContrMorph to ind→init) -- given two homotopy initial algebras there is a path between the algebras -- this implies moreover that the carrier types are isomorphic -- according to 5.16 in the paper this could be strengthened to isContr (N ≡ M) isNatHInitial→algebraPath : {N M : NatAlgebra ℓ} → (hinitN : isNatHInitial N ℓ) (hinitM : isNatHInitial M ℓ) → N ≡ M isNatHInitial→algebraPath {N = N} {M} hinitN hinitM = N≡M where open Σ (hinitN M) renaming (fst to N→M) open Σ (hinitM N) renaming (fst to M→N) idN : NatMorphism N N idN = record { morph = λ x → x ; comm-zero = refl ; comm-suc = refl } idM : NatMorphism M M idM = record { morph = λ x → x ; comm-zero = refl ; comm-suc = refl } N→M→N : NatMorphism N N morph N→M→N = morph M→N ∘ morph N→M comm-zero N→M→N = (λ i → morph M→N (comm-zero N→M i)) ∙ comm-zero M→N comm-suc N→M→N = (λ i → morph M→N ∘ comm-suc N→M i) ∙ (λ i → comm-suc M→N i ∘ morph N→M) nmn≡idn : N→M→N ≡ idN nmn≡idn = isContr→isProp (hinitN N) _ _ M→N→M : NatMorphism M M morph M→N→M = morph N→M ∘ morph M→N comm-zero M→N→M = (λ i → morph N→M (comm-zero M→N i)) ∙ comm-zero N→M comm-suc M→N→M = (λ i → morph N→M ∘ comm-suc M→N i) ∙ (λ i → comm-suc N→M i ∘ morph M→N) mnm≡idm : M→N→M ≡ idM mnm≡idm = isContr→isProp (hinitM M) _ _ carrier≡ : N .Carrier ≡ M .Carrier carrier≡ = isoToPath (iso (N→M .morph) (M→N .morph) (λ x i → mnm≡idm i .morph x) (λ x i → nmn≡idn i .morph x)) zero≡ : PathP (λ i → carrier≡ i) (N .alg-zero) (M .alg-zero) zero≡ = toPathP λ i → transportRefl (N→M .comm-zero i) i suc≡ : PathP (λ i → carrier≡ i → carrier≡ i) (N .alg-suc) (M .alg-suc) suc≡ = toPathP ( transport refl ∘ N→M .morph ∘ N .alg-suc ∘ M→N .morph ∘ transport refl ≡[ i ]⟨ transportReflF i ∘ N→M .morph ∘ N .alg-suc ∘ M→N .morph ∘ transportReflF i ⟩ N→M .morph ∘ N .alg-suc ∘ M→N .morph ≡[ i ]⟨ N→M .comm-suc i ∘ M→N .morph ⟩ M .alg-suc ∘ N→M .morph ∘ M→N .morph ≡[ i ]⟨ M .alg-suc ∘ mnm≡idm i .morph ⟩ M .alg-suc ∎) where transportReflF : transport refl ≡ (λ x → x) transportReflF = funExt transportRefl N≡M : N ≡ M Carrier (N≡M i) = carrier≡ i alg-zero (N≡M i) = zero≡ i alg-suc (N≡M i) = suc≡ i -- the payoff, it is straight forward to define the algebra and show inductiveness of ℕ NatAlgebraℕ : NatAlgebra ℓ-zero Carrier NatAlgebraℕ = ℕ alg-zero NatAlgebraℕ = zero alg-suc NatAlgebraℕ = suc isNatInductiveℕ : isNatInductive NatAlgebraℕ ℓ section (isNatInductiveℕ F) = nat-sec where nat-sec : ∀ n → F .Fiber n nat-sec zero = F .fib-zero nat-sec (suc n) = F .fib-suc (nat-sec n) sec-comm-zero (isNatInductiveℕ F) = refl sec-comm-suc (isNatInductiveℕ F) n = refl isNatHInitialℕ : isNatHInitial NatAlgebraℕ ℓ isNatHInitialℕ = transport (isNatInductive≡isNatHInitial _) isNatInductiveℕ
{ "alphanum_fraction": 0.6330762213, "avg_line_length": 40.19, "ext": "agda", "hexsha": "26b424e98ca018a0284cc40e2076c09b69d58b40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Data/Nat/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Data/Nat/Algebra.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Data/Nat/Algebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4607, "size": 12057 }
------------------------------------------------------------------------ -- A variant of Paolo Capriotti's variant of higher lenses ------------------------------------------------------------------------ {-# OPTIONS --cubical #-} import Equality.Path as P module Lens.Non-dependent.Higher.Capriotti.Variant {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id) open import Bijection equality-with-J as B using (_↔_) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣) open import Preimage equality-with-J as Preimage open import Univalence-axiom equality-with-J open import Lens.Non-dependent eq import Lens.Non-dependent.Higher eq as Higher private variable a b p : Level A B : Type a P Q : A → Type p ------------------------------------------------------------------------ -- Coherently-constant -- Coherently constant type-valued functions. -- -- This definition is based on Paolo Capriotti's definition of higher -- lenses, but uses a family of equivalences instead of an equality. Coherently-constant : {A : Type a} → (A → Type p) → Type (a ⊔ lsuc p) Coherently-constant {p = p} {A = A} P = ∃ λ (Q : ∥ A ∥ → Type p) → ∀ x → P x ≃ Q ∣ x ∣ -- A preservation lemma for Coherently-constant. -- -- Note that P and Q must target the same universe. Coherently-constant-map : {P : A → Type p} {Q : B → Type p} (f : B → A) → (∀ x → P (f x) ≃ Q x) → Coherently-constant P → Coherently-constant Q Coherently-constant-map {P = P} {Q = Q} f P≃Q (R , P≃R) = R ∘ T.∥∥-map f , λ x → Q x ↝⟨ inverse $ P≃Q x ⟩ P (f x) ↝⟨ P≃R (f x) ⟩□ R ∣ f x ∣ □ -- Coherently-constant is, in a certain sense, closed under Σ. -- -- This lemma is due to Paolo Capriotti. Coherently-constant-Σ : Coherently-constant P → Coherently-constant Q → Coherently-constant (λ x → ∃ λ (y : P x) → Q (x , y)) Coherently-constant-Σ {P = P} {Q = Q} (P′ , p) (Q′ , q) = (λ x → ∃ λ (y : P′ x) → Q′ (T.elim (λ x → P′ x → ∥ ∃ P ∥) (λ _ → Π-closure ext 1 λ _ → T.truncation-is-proposition) (λ x y → ∣ x , _≃_.from (p x) y ∣) x y)) , (λ x → (∃ λ (y : P x) → Q (x , y)) ↝⟨ (Σ-cong (p x) λ y → Q (x , y) ↝⟨ q (x , y) ⟩ Q′ ∣ x , y ∣ ↝⟨ ≡⇒≃ $ cong Q′ $ T.truncation-is-proposition _ _ ⟩□ Q′ ∣ x , _≃_.from (p x) (_≃_.to (p x) y) ∣ □) ⟩□ (∃ λ (y : P′ ∣ x ∣) → Q′ ∣ x , _≃_.from (p x) y ∣) □) ------------------------------------------------------------------------ -- The lens type family -- Paolo Capriotti's variant of higher lenses, but with a family of -- equivalences instead of an equality. Lens : Type a → Type b → Type (lsuc (a ⊔ b)) Lens A B = ∃ λ (get : A → B) → Coherently-constant (get ⁻¹_) -- Some derived definitions (based on Capriotti's). module Lens {A : Type a} {B : Type b} (l : Lens A B) where -- A getter. get : A → B get = proj₁ l -- A predicate. H : Pow a ∥ B ∥ H = proj₁ (proj₂ l) -- An equivalence. get⁻¹-≃ : ∀ b → get ⁻¹ b ≃ H ∣ b ∣ get⁻¹-≃ = proj₂ (proj₂ l) -- All the getter's "preimages" are equivalent. get⁻¹-constant : (b₁ b₂ : B) → get ⁻¹ b₁ ≃ get ⁻¹ b₂ get⁻¹-constant b₁ b₂ = get ⁻¹ b₁ ↝⟨ get⁻¹-≃ b₁ ⟩ H ∣ b₁ ∣ ↝⟨ ≡⇒≃ $ cong H $ T.truncation-is-proposition _ _ ⟩ H ∣ b₂ ∣ ↝⟨ inverse $ get⁻¹-≃ b₂ ⟩□ get ⁻¹ b₂ □ -- The two directions of get⁻¹-constant. get⁻¹-const : (b₁ b₂ : B) → get ⁻¹ b₁ → get ⁻¹ b₂ get⁻¹-const b₁ b₂ = _≃_.to (get⁻¹-constant b₁ b₂) get⁻¹-const⁻¹ : (b₁ b₂ : B) → get ⁻¹ b₂ → get ⁻¹ b₁ get⁻¹-const⁻¹ b₁ b₂ = _≃_.from (get⁻¹-constant b₁ b₂) -- Some coherence properties. get⁻¹-const-∘ : (b₁ b₂ b₃ : B) (p : get ⁻¹ b₁) → get⁻¹-const b₂ b₃ (get⁻¹-const b₁ b₂ p) ≡ get⁻¹-const b₁ b₃ p get⁻¹-const-∘ b₁ b₂ b₃ p = _≃_.from (get⁻¹-≃ b₃) (≡⇒→ (cong H $ T.truncation-is-proposition _ _) (_≃_.to (get⁻¹-≃ b₂) (_≃_.from (get⁻¹-≃ b₂) (≡⇒→ (cong H $ T.truncation-is-proposition _ _) (_≃_.to (get⁻¹-≃ b₁) p))))) ≡⟨ cong (_≃_.from (get⁻¹-≃ _) ∘ ≡⇒→ _) $ _≃_.right-inverse-of (get⁻¹-≃ _) _ ⟩ _≃_.from (get⁻¹-≃ b₃) (≡⇒→ (cong H $ T.truncation-is-proposition _ _) (≡⇒→ (cong H $ T.truncation-is-proposition _ _) (_≃_.to (get⁻¹-≃ b₁) p))) ≡⟨ cong (λ eq → _≃_.from (get⁻¹-≃ _) (_≃_.to eq (_≃_.to (get⁻¹-≃ _) _))) $ sym $ ≡⇒≃-trans ext _ _ ⟩ _≃_.from (get⁻¹-≃ b₃) (≡⇒→ (trans (cong H $ T.truncation-is-proposition _ _) (cong H $ T.truncation-is-proposition _ _)) (_≃_.to (get⁻¹-≃ b₁) p)) ≡⟨ cong (λ eq → _≃_.from (get⁻¹-≃ b₃) (≡⇒→ eq _)) $ trans (sym $ cong-trans _ _ _) $ cong (cong H) $ mono₁ 1 T.truncation-is-proposition _ _ ⟩∎ _≃_.from (get⁻¹-≃ b₃) (≡⇒→ (cong H $ T.truncation-is-proposition _ _) (_≃_.to (get⁻¹-≃ b₁) p)) ∎ get⁻¹-const-id : (b : B) (p : get ⁻¹ b) → get⁻¹-const b b p ≡ p get⁻¹-const-id b p = get⁻¹-const b b p ≡⟨ sym $ _≃_.left-inverse-of (get⁻¹-constant _ _) _ ⟩ get⁻¹-const⁻¹ b b (get⁻¹-const b b (get⁻¹-const b b p)) ≡⟨ cong (get⁻¹-const⁻¹ b b) $ get⁻¹-const-∘ _ _ _ _ ⟩ get⁻¹-const⁻¹ b b (get⁻¹-const b b p) ≡⟨ _≃_.left-inverse-of (get⁻¹-constant _ _) _ ⟩∎ p ∎ get⁻¹-const-inverse : (b₁ b₂ : B) (p : get ⁻¹ b₁) → get⁻¹-const b₁ b₂ p ≡ get⁻¹-const⁻¹ b₂ b₁ p get⁻¹-const-inverse b₁ b₂ p = sym $ _≃_.to-from (get⁻¹-constant _ _) ( get⁻¹-const b₂ b₁ (get⁻¹-const b₁ b₂ p) ≡⟨ get⁻¹-const-∘ _ _ _ _ ⟩ get⁻¹-const b₁ b₁ p ≡⟨ get⁻¹-const-id _ _ ⟩∎ p ∎) -- A setter. set : A → B → A set a b = $⟨ get⁻¹-const _ _ ⟩ (get ⁻¹ get a → get ⁻¹ b) ↝⟨ _$ (a , refl _) ⟩ get ⁻¹ b ↝⟨ proj₁ ⟩□ A □ -- Lens laws. get-set : ∀ a b → get (set a b) ≡ b get-set a b = get (proj₁ (get⁻¹-const (get a) b (a , refl _))) ≡⟨ proj₂ (get⁻¹-const (get a) b (a , refl _)) ⟩∎ b ∎ set-get : ∀ a → set a (get a) ≡ a set-get a = proj₁ (get⁻¹-const (get a) (get a) (a , refl _)) ≡⟨ cong proj₁ $ get⁻¹-const-id _ _ ⟩∎ a ∎ set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ set-set a b₁ b₂ = proj₁ (get⁻¹-const (get (set a b₁)) b₂ (set a b₁ , refl _)) ≡⟨ elim¹ (λ {b} eq → proj₁ (get⁻¹-const (get (set a b₁)) b₂ (set a b₁ , refl _)) ≡ proj₁ (get⁻¹-const b b₂ (set a b₁ , eq))) (refl _) (get-set a b₁) ⟩ proj₁ (get⁻¹-const b₁ b₂ (set a b₁ , get-set a b₁)) ≡⟨⟩ proj₁ (get⁻¹-const b₁ b₂ (get⁻¹-const (get a) b₁ (a , refl _))) ≡⟨ cong proj₁ $ get⁻¹-const-∘ _ _ _ _ ⟩∎ proj₁ (get⁻¹-const (get a) b₂ (a , refl _)) ∎ -- TODO: Can get-set-get and get-set-set be proved for the lens laws -- given above? instance -- The lenses defined above have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = Lens.get ; set = Lens.set } ------------------------------------------------------------------------ -- Equality characterisation lemmas -- An equality characterisation lemma. equality-characterisation₁ : {A : Type a} {B : Type b} {l₁ l₂ : Lens A B} → Block "equality-characterisation" → let open Lens in (l₁ ≡ l₂) ≃ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → ∀ b p → subst (_$ ∣ b ∣) h (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym g) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) equality-characterisation₁ {a = a} {l₁ = l₁} {l₂ = l₂} ⊠ = l₁ ≡ l₂ ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Σ-assoc ⟩ ((get l₁ , H l₁) , get⁻¹-≃ l₁) ≡ ((get l₂ , H l₂) , get⁻¹-≃ l₂) ↔⟨ inverse B.Σ-≡,≡↔≡ ⟩ (∃ λ (eq : (get l₁ , H l₁) ≡ (get l₂ , H l₂)) → subst (λ (g , H) → ∀ b → g ⁻¹ b ≃ H ∣ b ∣) eq (get⁻¹-≃ l₁) ≡ get⁻¹-≃ l₂) ↝⟨ (Σ-cong-contra ≡×≡↔≡ λ _ → F.id) ⟩ (∃ λ ((g , h) : get l₁ ≡ get l₂ × H l₁ ≡ H l₂) → subst (λ (g , H) → ∀ b → g ⁻¹ b ≃ H ∣ b ∣) (cong₂ _,_ g h) (get⁻¹-≃ l₁) ≡ get⁻¹-≃ l₂) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → subst (λ (g , H) → ∀ b → g ⁻¹ b ≃ H ∣ b ∣) (cong₂ _,_ g h) (get⁻¹-≃ l₁) ≡ get⁻¹-≃ l₂) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → inverse $ Eq.extensionality-isomorphism ext) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → ∀ b → subst (λ (g , H) → ∀ b → g ⁻¹ b ≃ H ∣ b ∣) (cong₂ _,_ g h) (get⁻¹-≃ l₁) b ≡ get⁻¹-≃ l₂ b) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ _) $ sym $ push-subst-application _ _) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → ∀ b → subst (λ (g , H) → g ⁻¹ b ≃ H ∣ b ∣) (cong₂ _,_ g h) (get⁻¹-≃ l₁ b) ≡ get⁻¹-≃ l₂ b) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → inverse $ ≃-to-≡↔≡ ext) ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → ∀ b p → _≃_.to (subst (λ (g , H) → g ⁻¹ b ≃ H ∣ b ∣) (cong₂ _,_ g h) (get⁻¹-≃ l₁ b)) p ≡ _≃_.to (get⁻¹-≃ l₂ b) p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ _) $ lemma _ _ _ _) ⟩□ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → ∀ b p → subst (_$ ∣ b ∣) h (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym g) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) □ where open Lens lemma : ∀ _ _ _ _ → _ ≡ _ lemma g h b p = _≃_.to (subst (λ (g , H) → g ⁻¹ b ≃ H ∣ b ∣) (cong₂ _,_ g h) (get⁻¹-≃ l₁ b)) p ≡⟨ cong (_$ p) Eq.to-subst ⟩ subst (λ (g , H) → g ⁻¹ b → H ∣ b ∣) (cong₂ _,_ g h) (_≃_.to (get⁻¹-≃ l₁ b)) p ≡⟨ subst-→ ⟩ subst (λ (g , H) → H ∣ b ∣) (cong₂ _,_ g h) (_≃_.to (get⁻¹-≃ l₁ b) (subst (λ (g , H) → g ⁻¹ b) (sym $ cong₂ _,_ g h) p)) ≡⟨ subst-∘ _ _ _ ⟩ subst (_$ ∣ b ∣) (cong proj₂ $ cong₂ _,_ g h) (_≃_.to (get⁻¹-≃ l₁ b) (subst (λ (g , H) → g ⁻¹ b) (sym $ cong₂ _,_ g h) p)) ≡⟨ cong₂ (λ p q → subst (λ (H : Pow a _) → H ∣ b ∣) p (_≃_.to (get⁻¹-≃ l₁ b) q)) (cong-proj₂-cong₂-, _ _) (subst-∘ _ _ _) ⟩ subst (_$ ∣ b ∣) h (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (cong proj₁ $ sym $ cong₂ _,_ g h) p)) ≡⟨ cong (λ eq → subst (_$ ∣ b ∣) h (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) eq p))) $ trans (cong-sym _ _) $ cong sym $ cong-proj₁-cong₂-, _ _ ⟩∎ subst (_$ ∣ b ∣) h (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym g) p)) ∎ -- Another equality characterisation lemma. equality-characterisation₂ : {l₁ l₂ : Lens A B} → Block "equality-characterisation" → let open Lens in (l₁ ≡ l₂) ≃ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} ⊠ = l₁ ≡ l₂ ↝⟨ equality-characterisation₁ ⊠ ⟩ (∃ λ (g : get l₁ ≡ get l₂) → ∃ λ (h : H l₁ ≡ H l₂) → ∀ b p → subst (_$ ∣ b ∣) h (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym g) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) ↝⟨ (Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ → Σ-cong-contra (Eq.extensionality-isomorphism bad-ext) λ _ → F.id) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∀ b p → subst (_$ ∣ b ∣) (⟨ext⟩ h) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ _) $ subst-ext _ _) ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) □ where open Lens -- Yet another equality characterisation lemma. equality-characterisation₃ : {A : Type a} {B : Type b} {l₁ l₂ : Lens A B} → Block "equality-characterisation" → Univalence (a ⊔ b) → let open Lens in (l₁ ≡ l₂) ≃ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) → ∀ b p → _≃_.to (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) equality-characterisation₃ {l₁ = l₁} {l₂ = l₂} ⊠ univ = l₁ ≡ l₂ ↝⟨ equality-characterisation₂ ⊠ ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) ↝⟨ (∃-cong λ _ → Σ-cong-contra (∀-cong ext λ _ → inverse $ ≡≃≃ univ) λ _ → F.id) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) → ∀ b p → subst P.id (≃⇒≡ univ (h ∣ b ∣)) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ≡⇒↝ _ $ cong (_≡ _) $ trans (subst-id-in-terms-of-≡⇒↝ equivalence) $ cong (λ eq → _≃_.to eq _) $ _≃_.right-inverse-of (≡≃≃ univ) _) ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≃ H l₂ b) → ∀ b p → _≃_.to (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) □ where open Lens ------------------------------------------------------------------------ -- Conversion functions -- The lenses defined above can be converted to and from the lenses -- defined in Higher. Lens⇔Higher-lens : Lens A B ⇔ Higher.Lens A B Lens⇔Higher-lens {A = A} {B = B} = record { to = λ (g , H , eq) → record { R = Σ ∥ B ∥ H ; equiv = A ↔⟨ (inverse $ drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩ (∃ λ (a : A) → ∃ λ (b : B) → g a ≡ b) ↔⟨ ∃-comm ⟩ (∃ λ (b : B) → g ⁻¹ b) ↝⟨ ∃-cong eq ⟩ (∃ λ (b : B) → H ∣ b ∣) ↝⟨ (Σ-cong (inverse T.∥∥×≃) λ _ → ≡⇒↝ _ $ cong H $ T.truncation-is-proposition _ _) ⟩ (∃ λ ((b , _) : ∥ B ∥ × B) → H b) ↔⟨ Σ-assoc F.∘ (∃-cong λ _ → ×-comm) F.∘ inverse Σ-assoc ⟩□ Σ ∥ B ∥ H × B □ ; inhabited = proj₁ } ; from = λ l → Higher.Lens.get l , (λ _ → Higher.Lens.R l) , (λ b → inverse (Higher.remainder≃get⁻¹ l b)) } -- The conversion preserves getters and setters. Lens⇔Higher-lens-preserves-getters-and-setters : Preserves-getters-and-setters-⇔ A B Lens⇔Higher-lens Lens⇔Higher-lens-preserves-getters-and-setters = (λ l@(g , H , eq) → refl _ , ⟨ext⟩ λ a → ⟨ext⟩ λ b → let h₁ = _≃_.to (eq (g a)) (a , refl _) h₂ = _≃_.from (≡⇒≃ (cong H _)) (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ _)) (≡⇒→ (cong H _) h₁)) h₃ = ≡⇒→ (cong H _) h₁ lemma = h₂ ≡⟨ sym $ subst-in-terms-of-inverse∘≡⇒↝ equivalence _ _ _ ⟩ subst H _ (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ _)) (≡⇒→ (cong H _) h₁)) ≡⟨ cong (λ x → subst H (sym $ T.truncation-is-proposition _ _) (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ (∣ g a ∣ , b))) x)) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ subst H _ (subst (H ∘ proj₁) (sym (_≃_.left-inverse-of T.∥∥×≃ _)) (subst H _ h₁)) ≡⟨ cong (λ x → subst H (sym $ T.truncation-is-proposition _ _) x) $ subst-∘ _ _ _ ⟩ subst H _ (subst H _ (subst H _ h₁)) ≡⟨ cong (λ x → subst H (sym $ T.truncation-is-proposition _ _) x) $ subst-subst _ _ _ _ ⟩ subst H _ (subst H _ h₁) ≡⟨ subst-subst _ _ _ _ ⟩ subst H _ h₁ ≡⟨ cong (λ eq → subst H eq h₁) $ mono₁ 1 T.truncation-is-proposition _ _ ⟩ subst H _ h₁ ≡⟨ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩∎ ≡⇒→ (cong H _) h₁ ∎ in Higher.Lens.set (_⇔_.to Lens⇔Higher-lens l) a b ≡⟨⟩ proj₁ (_≃_.from (eq b) h₂) ≡⟨ cong (λ h → proj₁ (_≃_.from (eq b) h)) lemma ⟩ proj₁ (_≃_.from (eq b) h₃) ≡⟨⟩ Lens.set l a b ∎) , (λ l → refl _ , ⟨ext⟩ λ a → ⟨ext⟩ λ b → Lens.set (_⇔_.from Lens⇔Higher-lens l) a b ≡⟨⟩ _≃_.from (Higher.Lens.equiv l) ( ≡⇒→ (cong (λ _ → Higher.Lens.R l) _) (Higher.Lens.remainder l a) , b ) ≡⟨ cong (λ eq → _≃_.from (Higher.Lens.equiv l) (≡⇒→ eq _ , b)) $ cong-const _ ⟩ _≃_.from (Higher.Lens.equiv l) (≡⇒→ (refl _) (Higher.Lens.remainder l a) , b) ≡⟨ cong (λ f → _≃_.from (Higher.Lens.equiv l) (f _ , b)) $ ≡⇒→-refl ⟩ _≃_.from (Higher.Lens.equiv l) (Higher.Lens.remainder l a , b) ≡⟨⟩ Higher.Lens.set l a b ∎) -- Lens A B is equivalent to Higher.Lens A B (assuming univalence). Lens≃Higher-lens : {A : Type a} {B : Type b} → Block "conversion" → Univalence (a ⊔ b) → Lens A B ≃ Higher.Lens A B Lens≃Higher-lens {A = A} {B = B} ⊠ univ = Eq.↔→≃ to from to∘from from∘to where to = _⇔_.to Lens⇔Higher-lens from = _⇔_.from Lens⇔Higher-lens to∘from : ∀ l → to (from l) ≡ l to∘from l = _↔_.from (Higher.equality-characterisation₂ ⊠ univ) ( (∥ B ∥ × R ↔⟨ (drop-⊤-left-× λ r → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible T.truncation-is-proposition (inhabited r)) ⟩□ R □) , (λ a → ≡⇒→ (cong (λ _ → R) (T.truncation-is-proposition _ _)) (remainder a) ≡⟨ cong (λ eq → ≡⇒→ eq _) $ cong-const _ ⟩ ≡⇒→ (refl _) (remainder a) ≡⟨ cong (_$ _) ≡⇒→-refl ⟩∎ remainder a ∎) , (λ _ → refl _) ) where open Higher.Lens l from∘to : ∀ l → from (to l) ≡ l from∘to l = _≃_.from (equality-characterisation₃ ⊠ univ) ( (λ _ → refl _) , Σ∥B∥H≃H , (λ b p@(a , get-a≡b) → _≃_.to (Σ∥B∥H≃H ∣ b ∣) (_≃_.from (Higher.remainder≃get⁻¹ (to l) b) (subst (_⁻¹ b) (sym (⟨ext⟩ λ _ → refl _)) p)) ≡⟨ cong (_≃_.to (Σ∥B∥H≃H ∣ b ∣) ∘ _≃_.from (Higher.remainder≃get⁻¹ (to l) b)) $ trans (cong (flip (subst (_⁻¹ b)) p) $ trans (cong sym ext-refl) $ sym-refl) $ subst-refl _ _ ⟩ _≃_.to (Σ∥B∥H≃H ∣ b ∣) (_≃_.from (Higher.remainder≃get⁻¹ (to l) b) p) ≡⟨⟩ _≃_.to (Σ∥B∥H≃H ∣ b ∣) (Higher.Lens.remainder (to l) a) ≡⟨⟩ subst H _ (≡⇒→ (cong H _) (_≃_.to (get⁻¹-≃ (get a)) (a , refl _))) ≡⟨ cong (subst H _) $ sym $ subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩ subst H _ (subst H _ (_≃_.to (get⁻¹-≃ (get a)) (a , refl _))) ≡⟨ subst-subst _ _ _ _ ⟩ subst H _ (_≃_.to (get⁻¹-≃ (get a)) (a , refl _)) ≡⟨ cong (λ eq → subst H eq (_≃_.to (get⁻¹-≃ (get a)) (a , refl _))) $ mono₁ 1 T.truncation-is-proposition _ _ ⟩ subst H (cong ∣_∣ get-a≡b) (_≃_.to (get⁻¹-≃ (get a)) (a , refl _)) ≡⟨ elim¹ (λ {b} eq → subst H (cong ∣_∣ eq) (_≃_.to (get⁻¹-≃ (get a)) (a , refl _)) ≡ _≃_.to (get⁻¹-≃ b) (a , eq)) ( subst H (cong ∣_∣ (refl _)) (_≃_.to (get⁻¹-≃ (get a)) (a , refl _)) ≡⟨ trans (cong (flip (subst H) _) $ cong-refl _) $ subst-refl _ _ ⟩ _≃_.to (get⁻¹-≃ (get a)) (a , refl _) ∎) _ ⟩∎ _≃_.to (get⁻¹-≃ b) p ∎) ) where open Lens l Σ∥B∥H≃H = λ b → Σ ∥ B ∥ H ↔⟨ (drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible T.truncation-is-proposition b) ⟩□ H b □ -- The equivalence preserves getters and setters. Lens≃Higher-lens-preserves-getters-and-setters : {A : Type a} {B : Type b} (bl : Block "conversion") (univ : Univalence (a ⊔ b)) → Preserves-getters-and-setters-⇔ A B (_≃_.logical-equivalence (Lens≃Higher-lens bl univ)) Lens≃Higher-lens-preserves-getters-and-setters ⊠ _ = Lens⇔Higher-lens-preserves-getters-and-setters ------------------------------------------------------------------------ -- Identity -- An identity lens. id : {A : Type a} → Lens A A id = P.id , (λ _ → ↑ _ ⊤) , (λ a → P.id ⁻¹ a ↔⟨ _⇔_.to contractible⇔↔⊤ $ Preimage.id⁻¹-contractible _ ⟩ ⊤ ↔⟨ inverse B.↑↔ ⟩□ ↑ _ ⊤ □) ------------------------------------------------------------------------ -- Some results related to fibres of Lens.set -- When proving that Lens.set ⁻¹ s is a proposition, for -- s : A → B → A, one can assume that B is inhabited. -- -- This result is due to Andrea Vezzosi. [codomain-inhabited→proposition]→proposition : {s : A → B → A} → (B → Is-proposition (Lens.set ⁻¹ s)) ≃ Is-proposition (Lens.set ⁻¹ s) [codomain-inhabited→proposition]→proposition {B = B} {s = s} = block λ b → (B → Is-proposition (Lens.set ⁻¹ s)) ↝⟨ inverse $ T.universal-property (H-level-propositional ext 1) ⟩ (∥ B ∥ → Is-proposition (Lens.set ⁻¹ s)) ↔⟨⟩ (∥ B ∥ → (p q : Lens.set ⁻¹ s) → p ≡ q) ↔⟨ (∀-cong ext λ _ → Π-comm) F.∘ Π-comm ⟩ ((p q : Lens.set ⁻¹ s) → ∥ B ∥ → p ≡ q) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → lemma b _ _) ⟩ ((p q : Lens.set ⁻¹ s) → p ≡ q) ↔⟨⟩ Is-proposition (Lens.set ⁻¹ s) □ where open Lens lemma : (b : Block "equality-characterisation") → (p₁ p₂ : Lens.set ⁻¹ s) → (∥ B ∥ → p₁ ≡ p₂) ≃ (p₁ ≡ p₂) lemma b p₁@(l₁ , eq₁) p₂@(l₂ , eq₂) = (∥ B ∥ → p₁ ≡ p₂) ↝⟨ (∀-cong ext λ _ → ec) ⟩ (∥ B ∥ → ∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∃ λ (f : ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) (g , h , f)) eq₁) a ≡ ext⁻¹ eq₂ a) ↝⟨ T.push-∥∥ (∣_∣ ∘ get l₁) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∥ B ∥ → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∃ λ (f : ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) (g , h , f)) eq₁) a ≡ ext⁻¹ eq₂ a) ↝⟨ (∃-cong λ _ → T.push-∥∥ P.id) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∥ B ∥ → ∃ λ (f : ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) (g , h , f)) eq₁) a ≡ ext⁻¹ eq₂ a) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → T.push-∥∥ ∣_∣) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∃ λ (f : ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∥ B ∥ → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) (g , h , f)) eq₁) a ≡ ext⁻¹ eq₂ a) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → T.drop-∥∥ (∣_∣ ∘ get l₁)) ⟩ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∃ λ (f : ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) (g , h , f)) eq₁) a ≡ ext⁻¹ eq₂ a) ↝⟨ inverse ec ⟩□ p₁ ≡ p₂ □ where ec = p₁ ≡ p₂ ↔⟨ inverse B.Σ-≡,≡↔≡ ⟩ (∃ λ (l : l₁ ≡ l₂) → subst (λ l → Lens.set l ≡ s) l eq₁ ≡ eq₂) ↝⟨ (∃-cong λ _ → inverse $ Eq.≃-≡ $ inverse $ Eq.extensionality-isomorphism ext) ⟩ (∃ λ (l : l₁ ≡ l₂) → ext⁻¹ (subst (λ l → Lens.set l ≡ s) l eq₁) ≡ ext⁻¹ eq₂) ↝⟨ (∃-cong λ _ → inverse $ Eq.extensionality-isomorphism ext) ⟩ (∃ λ (l : l₁ ≡ l₂) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) l eq₁) a ≡ ext⁻¹ eq₂ a) ↝⟨ (Σ-cong-contra (inverse $ equality-characterisation₂ b) λ _ → F.id) ⟩ (∃ λ (l : ∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) l) eq₁) a ≡ ext⁻¹ eq₂ a) ↔⟨ (∃-cong λ _ → inverse Σ-assoc) F.∘ inverse Σ-assoc ⟩□ (∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) → ∃ λ (h : ∀ b → H l₁ b ≡ H l₂ b) → ∃ λ (f : ∀ b p → subst P.id (h ∣ b ∣) (_≃_.to (get⁻¹-≃ l₁ b) (subst (_⁻¹ b) (sym (⟨ext⟩ g)) p)) ≡ _≃_.to (get⁻¹-≃ l₂ b) p) → ∀ a → ext⁻¹ (subst (λ l → Lens.set l ≡ s) (_≃_.from (equality-characterisation₂ b) (g , h , f)) eq₁) a ≡ ext⁻¹ eq₂ a) □ -- The previous result holds also for the lenses in Higher (assuming -- univalence). [codomain-inhabited→proposition]→proposition-for-higher : {A : Type a} {B : Type b} {s : A → B → A} → Univalence (a ⊔ b) → (B → Is-proposition (Higher.Lens.set ⁻¹ s)) ≃ Is-proposition (Higher.Lens.set ⁻¹ s) [codomain-inhabited→proposition]→proposition-for-higher {A = A} {B = B} {s = s} univ = (B → Is-proposition (Higher.Lens.set ⁻¹ s)) ↝⟨ (∀-cong ext λ _ → H-level-cong ext 1 lemma) ⟩ (B → Is-proposition (Lens.set ⁻¹ s)) ↝⟨ [codomain-inhabited→proposition]→proposition ⟩ Is-proposition (Lens.set ⁻¹ s) ↝⟨ inverse $ H-level-cong ext 1 lemma ⟩□ Is-proposition (Higher.Lens.set ⁻¹ s) □ where lemma : Higher.Lens.set ⁻¹ s ≃ Lens.set ⁻¹ s lemma = block λ b → (∃ λ (l : Higher.Lens A B) → Higher.Lens.set l ≡ s) ↝⟨ (Σ-cong (inverse $ Lens≃Higher-lens b univ) λ l → ≡⇒↝ _ $ cong (_≡ s) $ sym $ proj₂ $ proj₂ (Lens≃Higher-lens-preserves-getters-and-setters b univ) l) ⟩□ (∃ λ (l : Lens A B) → Lens.set l ≡ s) □ -- If a certain variant of Higher.lenses-equal-if-setters-equal can be -- proved, then Higher.Lens.set ⁻¹ s is a proposition (assuming -- univalence). lenses-equal-if-setters-equal→set⁻¹-proposition : {A : Type a} {B : Type b} (univ : Univalence (a ⊔ b)) → ((l₁ l₂ : Higher.Lens A B) → B → (s : Higher.Lens.set l₁ ≡ Higher.Lens.set l₂) → ∃ λ (l : l₁ ≡ l₂) → cong Higher.Lens.set l ≡ s) → (s : A → B → A) → Is-proposition (Higher.Lens.set ⁻¹ s) lenses-equal-if-setters-equal→set⁻¹-proposition {B = B} univ lenses-equal-if-setters-equal s = $⟨ lemma ⟩ (B → Is-proposition (Higher.Lens.set ⁻¹ s)) ↝⟨ [codomain-inhabited→proposition]→proposition-for-higher univ ⟩□ Is-proposition (Higher.Lens.set ⁻¹ s) □ where lemma : B → Is-proposition (Higher.Lens.set ⁻¹ s) lemma b (l₁ , set-l₁≡s) (l₂ , set-l₂≡s) = Σ-≡,≡→≡ lemma₁ (subst (λ l → set l ≡ s) lemma₁ set-l₁≡s ≡⟨ subst-∘ _ _ _ ⟩ subst (_≡ s) (cong set lemma₁) set-l₁≡s ≡⟨ subst-trans-sym ⟩ trans (sym (cong set lemma₁)) set-l₁≡s ≡⟨ cong (λ eq → trans (sym eq) set-l₁≡s) lemma₂ ⟩ trans (sym (trans set-l₁≡s (sym set-l₂≡s))) set-l₁≡s ≡⟨ cong (λ eq → trans eq set-l₁≡s) $ sym-trans _ _ ⟩ trans (trans (sym (sym set-l₂≡s)) (sym set-l₁≡s)) set-l₁≡s ≡⟨ trans-[trans-sym]- _ _ ⟩ sym (sym set-l₂≡s) ≡⟨ sym-sym _ ⟩∎ set-l₂≡s ∎) where open Higher.Lens lemma′ = lenses-equal-if-setters-equal l₁ l₂ b (set l₁ ≡⟨ set-l₁≡s ⟩ s ≡⟨ sym set-l₂≡s ⟩∎ set l₂ ∎) lemma₁ = proj₁ lemma′ lemma₂ = proj₂ lemma′ -- If a certain variant of Higher.lenses-equal-if-setters-equal can be -- proved, then lenses with equal setters are equal (assuming -- univalence). lenses-equal-if-setters-equal→lenses-equal-if-setters-equal : {A : Type a} {B : Type b} → Univalence (a ⊔ b) → ((l₁ l₂ : Higher.Lens A B) → B → (s : Higher.Lens.set l₁ ≡ Higher.Lens.set l₂) → ∃ λ (l : l₁ ≡ l₂) → cong Higher.Lens.set l ≡ s) → (l₁ l₂ : Higher.Lens A B) → Higher.Lens.set l₁ ≡ Higher.Lens.set l₂ → l₁ ≡ l₂ lenses-equal-if-setters-equal→lenses-equal-if-setters-equal univ lenses-equal-if-setters-equal l₁ l₂ s = cong proj₁ ( (l₁ , s) ≡⟨ lenses-equal-if-setters-equal→set⁻¹-proposition univ lenses-equal-if-setters-equal (Higher.Lens.set l₂) _ _ ⟩∎ (l₂ , refl _) ∎)
{ "alphanum_fraction": 0.3809158002, "avg_line_length": 43.7038369305, "ext": "agda", "hexsha": "0fb63f8925659b1f6e4d92fd34486bd8d5901bc7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher/Capriotti/Variant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher/Capriotti/Variant.agda", "max_line_length": 144, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher/Capriotti/Variant.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 13164, "size": 36449 }
module README where ------------------------------------------------------------------------ -- The Agda standard library, version 1.3 -- -- Authors: Nils Anders Danielsson, Matthew Daggitt, Guillaume Allais -- with contributions from Andreas Abel, Stevan Andjelkovic, -- Jean-Philippe Bernardy, Peter Berry, Bradley Hardy Joachim Breitner, -- Samuel Bronson, Daniel Brown, Jacques Carette, James Chapman, -- Liang-Ting Chen, Dominique Devriese, Dan Doel, Érdi Gergő, -- Zack Grannan, Helmut Grohne, Simon Foster, Liyang Hu, Jason Hu, -- Patrik Jansson, Alan Jeffrey, Wen Kokke, Evgeny Kotelnikov, -- Sergei Meshveliani, Eric Mertens, Darin Morrison, Guilhem Moulin, -- Shin-Cheng Mu, Ulf Norell, Noriyuki Ohkawa, Nicolas Pouillard, -- Andrés Sicard-Ramírez, Lex van der Stoep, Sandro Stucki, Milo Turner, -- Noam Zeilberger and other anonymous contributors. ------------------------------------------------------------------------ -- This version of the library has been tested using Agda 2.6.1. -- The library comes with a .agda-lib file, for use with the library -- management system. -- Currently the library does not support the JavaScript compiler -- backend. ------------------------------------------------------------------------ -- Module hierarchy ------------------------------------------------------------------------ -- The top-level module names of the library are currently allocated -- as follows: -- -- • Algebra -- Abstract algebra (monoids, groups, rings etc.), along with -- properties needed to specify these structures (associativity, -- commutativity, etc.), and operations on and proofs about the -- structures. -- • Axiom -- Types and consequences of various additional axioms not -- necessarily included in Agda, e.g. uniqueness of identity -- proofs, function extensionality and excluded middle. import README.Axiom -- • Category -- Category theory-inspired idioms used to structure functional -- programs (functors and monads, for instance). -- • Codata -- Coinductive data types and properties. There are two different -- approaches taken. The `Codata` folder contains the new more -- standard approach using sized types. The `Codata.Musical` -- folder contains modules using the old musical notation. -- • Data -- Data types and properties. import README.Data -- • Function -- Combinators and properties related to functions. -- • Foreign -- Related to the foreign function interface. -- • Induction -- A general framework for induction (includes lexicographic and -- well-founded induction). -- • IO -- Input/output-related functions. -- • Level -- Universe levels. -- • Reflection -- Support for reflection. -- • Relation -- Properties of and proofs about relations. -- • Size -- Sizes used by the sized types mechanism. -- • Strict -- Provides access to the builtins relating to strictness. -- • Tactic -- Tactics for automatic proof generation ------------------------------------------------------------------------ -- A selection of useful library modules ------------------------------------------------------------------------ -- Note that module names in source code are often hyperlinked to the -- corresponding module. In the Emacs mode you can follow these -- hyperlinks by typing M-. or clicking with the middle mouse button. -- • Some data types import Data.Bool -- Booleans. import Data.Char -- Characters. import Data.Empty -- The empty type. import Data.Fin -- Finite sets. import Data.List -- Lists. import Data.Maybe -- The maybe type. import Data.Nat -- Natural numbers. import Data.Product -- Products. import Data.String -- Strings. import Data.Sum -- Disjoint sums. import Data.Unit -- The unit type. import Data.Vec -- Fixed-length vectors. -- • Some co-inductive data types import Codata.Stream -- Streams. import Codata.Colist -- Colists. -- • Some types used to structure computations import Category.Functor -- Functors. import Category.Applicative -- Applicative functors. import Category.Monad -- Monads. -- • Equality -- Propositional equality: import Relation.Binary.PropositionalEquality -- Convenient syntax for "equational reasoning" using a preorder: import Relation.Binary.Reasoning.Preorder -- Solver for commutative ring or semiring equalities: import Algebra.Solver.Ring -- • Properties of functions, sets and relations -- Monoids, rings and similar algebraic structures: import Algebra -- Negation, decidability, and similar operations on sets: import Relation.Nullary -- Properties of homogeneous binary relations: import Relation.Binary -- • Induction -- An abstraction of various forms of recursion/induction: import Induction -- Well-founded induction: import Induction.WellFounded -- Various forms of induction for natural numbers: import Data.Nat.Induction -- • Support for coinduction import Codata.Musical.Notation import Codata.Thunk -- • IO import IO ------------------------------------------------------------------------ -- Record hierarchies ------------------------------------------------------------------------ -- When an abstract hierarchy of some sort (for instance semigroup → -- monoid → group) is included in the library the basic approach is to -- specify the properties of every concept in terms of a record -- containing just properties, parameterised on the underlying -- operations, sets etc.: -- -- record IsSemigroup {A} (≈ : Rel A) (∙ : Op₂ A) : Set where -- open FunctionProperties ≈ -- field -- isEquivalence : IsEquivalence ≈ -- assoc : Associative ∙ -- ∙-cong : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈ -- -- More specific concepts are then specified in terms of the simpler -- ones: -- -- record IsMonoid {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) : Set where -- open FunctionProperties ≈ -- field -- isSemigroup : IsSemigroup ≈ ∙ -- identity : Identity ε ∙ -- -- open IsSemigroup isSemigroup public -- -- Note here that `open IsSemigroup isSemigroup public` ensures that the -- fields of the isSemigroup record can be accessed directly; this -- technique enables the user of an IsMonoid record to use underlying -- records without having to manually open an entire record hierarchy. -- This is not always possible, though. Consider the following definition -- of preorders: -- -- record IsPreorder {A : Set} -- (_≈_ : Rel A) -- The underlying equality. -- (_∼_ : Rel A) -- The relation. -- : Set where -- field -- isEquivalence : IsEquivalence _≈_ -- -- Reflexivity is expressed in terms of an underlying equality: -- reflexive : _≈_ ⇒ _∼_ -- trans : Transitive _∼_ -- -- module Eq = IsEquivalence isEquivalence -- -- ... -- -- The Eq module in IsPreorder is not opened publicly, because it -- contains some fields which clash with fields or other definitions -- in IsPreorder. -- Records packing up properties with the corresponding operations, -- sets, etc. are also defined: -- -- record Semigroup : Set₁ where -- infixl 7 _∙_ -- infix 4 _≈_ -- field -- Carrier : Set -- _≈_ : Rel Carrier -- _∙_ : Op₂ Carrier -- isSemigroup : IsSemigroup _≈_ _∙_ -- -- open IsSemigroup isSemigroup public -- -- setoid : Setoid -- setoid = record { isEquivalence = isEquivalence } -- -- record Monoid : Set₁ where -- infixl 7 _∙_ -- infix 4 _≈_ -- field -- Carrier : Set -- _≈_ : Rel Carrier -- _∙_ : Op₂ Carrier -- ε : Carrier -- isMonoid : IsMonoid _≈_ _∙_ ε -- -- open IsMonoid isMonoid public -- -- semigroup : Semigroup -- semigroup = record { isSemigroup = isSemigroup } -- -- open Semigroup semigroup public using (setoid) -- -- Note that the Monoid record does not include a Semigroup field. -- Instead the Monoid /module/ includes a "repackaging function" -- semigroup which converts a Monoid to a Semigroup. -- The above setup may seem a bit complicated, but we think it makes the -- library quite easy to work with, while also providing enough -- flexibility. ------------------------------------------------------------------------ -- More documentation ------------------------------------------------------------------------ -- Examples of how decidability is handled in the library. import README.Decidability -- Some examples showing how the case expression can be used. import README.Case -- Some examples showing how combinators can be used to emulate -- "functional reasoning" import README.Function.Reasoning -- An example showing how to use the debug tracing mechanism to inspect -- the behaviour of compiled Agda programs. import README.Debug.Trace -- An exploration of the generic programs acting on n-ary functions and -- n-ary heterogeneous products import README.Nary -- Explaining the inspect idiom: use case, equivalent handwritten -- auxiliary definitions, and implementation details. import README.Inspect -- Explaining string formats and the behaviour of printf import README.Text.Printf -- Showcasing the pretty printing module import README.Text.Pretty -- Explaining how to display tables of strings: import README.Text.Tabular -- Explaining how to display a tree: import README.Text.Tree -- Explaining how to use the automatic solvers import README.Tactic.MonoidSolver import README.Tactic.RingSolver -- Explaining how the Haskell FFI works import README.Foreign.Haskell ------------------------------------------------------------------------ -- Core modules ------------------------------------------------------------------------ -- Some modules have names ending in ".Core". These modules are -- internal, and have (mostly) been created to avoid mutual recursion -- between modules. They should not be imported directly; their -- contents are reexported by other modules. ------------------------------------------------------------------------ -- All library modules ------------------------------------------------------------------------ -- For short descriptions of every library module, see Everything; -- to exclude unsafe modules, see EverythingSafe: import Everything import EverythingSafe -- Note that the Everything* modules are generated automatically. If -- you have downloaded the library from its Git repository and want -- to type check README then you can (try to) construct Everything by -- running "cabal install && GenerateEverything". -- Note that all library sources are located under src or ffi. The -- modules README, README.* and Everything are not really part of the -- library, so these modules are located in the top-level directory -- instead.
{ "alphanum_fraction": 0.6399116348, "avg_line_length": 31.04, "ext": "agda", "hexsha": "9b7feba893425a97f52cbd564bce3e19e23969bf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2385, "size": 10864 }
-- Note: out of order true and false. Confuses the -- values if we mess up and compile it to a fresh -- datatype instead of Haskell Bool. data Two : Set where tt ff : Two {-# BUILTIN BOOL Two #-} {-# BUILTIN FALSE ff #-} {-# BUILTIN TRUE tt #-} -- Note: out of order nil and cons. Causes segfault -- if we mess up and compile it to a fresh datatype -- instead of Haskell lists. data List {a} (A : Set a) : Set a where _∷_ : A → List A → List A [] : List A {-# BUILTIN LIST List #-} postulate String : Set Char : Set {-# BUILTIN STRING String #-} {-# BUILTIN CHAR Char #-} primitive primStringToList : String → List Char primStringFromList : List Char → String primStringEquality : String → String → Two drop1 : {A : Set} → List A → List A drop1 (x ∷ xs) = xs drop1 [] = [] postulate drop1' : List Char → List Char {-# COMPILE GHC drop1' = drop 1 #-} onList : (List Char → List Char) → String → String onList f s = primStringFromList (f (primStringToList s)) postulate _==_ : String → String → Two {-# COMPILE GHC _==_ = (==) #-} show : Two → String show tt = onList drop1 "TRUE" show ff = onList drop1' "FALSE" record One : Set where {-# COMPILE GHC One = data () (()) #-} postulate IO : Set → Set {-# BUILTIN IO IO #-} {-# COMPILE GHC IO = type IO #-} {-# FOREIGN GHC import qualified Data.Text.IO #-} postulate putStrLn : String → IO One {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} postulate _>>_ : IO One → IO One → IO One {-# COMPILE GHC _>>_ = (>>) #-} main : IO One main = do putStrLn (show ("foo" == "bar")) putStrLn (show ("foo" == "foo"))
{ "alphanum_fraction": 0.6259351621, "avg_line_length": 22.9142857143, "ext": "agda", "hexsha": "2ea3d39da1cb8f97d098087b01917ca7fe270fb3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2821.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2821.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2821.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 471, "size": 1604 }
module ch1 where data 𝔹 : Set where tt : 𝔹 ff : 𝔹 _||_ : 𝔹 -> 𝔹 -> 𝔹 tt || _ = tt ff || b = b data day : Set where monday : day tuesday : day wednesday : day thursday : day friday : day saturday : day sunday : day nextday : day -> day nextday monday = tuesday nextday tuesday = wednesday nextday wednesday = thursday nextday thursday = friday nextday friday = saturday nextday saturday = sunday nextday sunday = monday data suit : Set where hearts : suit spades : suit diamonds : suit clubs : suit is-red : suit -> 𝔹 is-red hearts = tt is-red spades = ff is-red diamonds = tt is-red clubs = ff
{ "alphanum_fraction": 0.6608280255, "avg_line_length": 14.2727272727, "ext": "agda", "hexsha": "79495aeff0bc37206f71290df1e9df7161c993ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8593e7ea70e95c145b2d8911a9a5f29f3016dafe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "razvan-panda/Verified-Functional-Programming-in-Agda", "max_forks_repo_path": "ch1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8593e7ea70e95c145b2d8911a9a5f29f3016dafe", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "razvan-panda/Verified-Functional-Programming-in-Agda", "max_issues_repo_path": "ch1.agda", "max_line_length": 28, "max_stars_count": null, "max_stars_repo_head_hexsha": "8593e7ea70e95c145b2d8911a9a5f29f3016dafe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "razvan-panda/Verified-Functional-Programming-in-Agda", "max_stars_repo_path": "ch1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 216, "size": 628 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic products of binary relations ------------------------------------------------------------------------ -- The definition of lexicographic product used here is suitable if -- the left-hand relation is a (non-strict) partial order. {-# OPTIONS --without-K --safe #-} module Data.Product.Relation.Binary.Lex.NonStrict where open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Relation.Binary open import Relation.Binary.Consequences import Relation.Binary.Construct.NonStrictToStrict as Conv open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise using (Pointwise) import Data.Product.Relation.Binary.Lex.Strict as Strict module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where ------------------------------------------------------------------------ -- A lexicographic ordering over products ×-Lex : (_≈₁_ _≤₁_ : Rel A₁ ℓ₁) (_≤₂_ : Rel A₂ ℓ₂) → Rel (A₁ × A₂) _ ×-Lex _≈₁_ _≤₁_ _≤₂_ = Strict.×-Lex _≈₁_ (Conv._<_ _≈₁_ _≤₁_) _≤₂_ ------------------------------------------------------------------------ -- Some properties which are preserved by ×-Lex (under certain -- assumptions). ×-reflexive : ∀ _≈₁_ _≤₁_ {_≈₂_} _≤₂_ → _≈₂_ ⇒ _≤₂_ → (Pointwise _≈₁_ _≈₂_) ⇒ (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-reflexive _≈₁_ _≤₁_ _≤₂_ refl₂ = Strict.×-reflexive _≈₁_ (Conv._<_ _≈₁_ _≤₁_) _≤₂_ refl₂ ×-transitive : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≤₂_} → Transitive _≤₂_ → Transitive (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-transitive {_≈₁_} {_≤₁_} po₁ {_≤₂_} trans₂ = Strict.×-transitive {_<₁_ = Conv._<_ _≈₁_ _≤₁_} isEquivalence (Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈) (Conv.<-trans _ _ po₁) {_≤₂_} trans₂ where open IsPartialOrder po₁ ×-antisymmetric : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → Antisymmetric _≈₂_ _≤₂_ → Antisymmetric (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-antisymmetric {_≈₁_} {_≤₁_} po₁ {_≤₂_ = _≤₂_} antisym₂ = Strict.×-antisymmetric {_<₁_ = Conv._<_ _≈₁_ _≤₁_} ≈-sym₁ irrefl₁ asym₁ {_≤₂_ = _≤₂_} antisym₂ where open IsPartialOrder po₁ open Eq renaming (refl to ≈-refl₁; sym to ≈-sym₁) irrefl₁ : Irreflexive _≈₁_ (Conv._<_ _≈₁_ _≤₁_) irrefl₁ = Conv.<-irrefl _≈₁_ _≤₁_ asym₁ : Asymmetric (Conv._<_ _≈₁_ _≤₁_) asym₁ = trans∧irr⟶asym {_≈_ = _≈₁_} ≈-refl₁ (Conv.<-trans _ _ po₁) irrefl₁ ×-respects₂ : ∀ {_≈₁_ _≤₁_} → IsEquivalence _≈₁_ → _≤₁_ Respects₂ _≈₁_ → ∀ {_≈₂_ _≤₂_ : Rel A₂ ℓ₂} → _≤₂_ Respects₂ _≈₂_ → (×-Lex _≈₁_ _≤₁_ _≤₂_) Respects₂ (Pointwise _≈₁_ _≈₂_) ×-respects₂ eq₁ resp₁ resp₂ = Strict.×-respects₂ eq₁ (Conv.<-resp-≈ _ _ eq₁ resp₁) resp₂ ×-decidable : ∀ {_≈₁_ _≤₁_} → Decidable _≈₁_ → Decidable _≤₁_ → ∀ {_≤₂_} → Decidable _≤₂_ → Decidable (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-decidable dec-≈₁ dec-≤₁ dec-≤₂ = Strict.×-decidable dec-≈₁ (Conv.<-decidable _ _ dec-≈₁ dec-≤₁) dec-≤₂ ×-total : ∀ {_≈₁_ _≤₁_} → Symmetric _≈₁_ → Decidable _≈₁_ → Antisymmetric _≈₁_ _≤₁_ → Total _≤₁_ → ∀ {_≤₂_} → Total _≤₂_ → Total (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-total {_≈₁_} {_≤₁_} sym₁ dec₁ antisym₁ total₁ {_≤₂_} total₂ = total where tri₁ : Trichotomous _≈₁_ (Conv._<_ _≈₁_ _≤₁_) tri₁ = Conv.<-trichotomous _ _ sym₁ dec₁ antisym₁ total₁ total : Total (×-Lex _≈₁_ _≤₁_ _≤₂_) total x y with tri₁ (proj₁ x) (proj₁ y) ... | tri< x₁<y₁ x₁≉y₁ x₁≯y₁ = inj₁ (inj₁ x₁<y₁) ... | tri> x₁≮y₁ x₁≉y₁ x₁>y₁ = inj₂ (inj₁ x₁>y₁) ... | tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁ with total₂ (proj₂ x) (proj₂ y) ... | inj₁ x₂≤y₂ = inj₁ (inj₂ (x₁≈y₁ , x₂≤y₂)) ... | inj₂ x₂≥y₂ = inj₂ (inj₂ (sym₁ x₁≈y₁ , x₂≥y₂)) -- Some collections of properties which are preserved by ×-Lex -- (under certain assumptions). ×-isPartialOrder : ∀ {_≈₁_ _≤₁_} → IsPartialOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsPartialOrder _≈₂_ _≤₂_ → IsPartialOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isPartialOrder {_≈₁_} {_≤₁_} po₁ {_≤₂_ = _≤₂_} po₂ = record { isPreorder = record { isEquivalence = Pointwise.×-isEquivalence (isEquivalence po₁) (isEquivalence po₂) ; reflexive = ×-reflexive _≈₁_ _≤₁_ _≤₂_ (reflexive po₂) ; trans = ×-transitive po₁ {_≤₂_ = _≤₂_} (trans po₂) } ; antisym = ×-antisymmetric {_≤₁_ = _≤₁_} po₁ {_≤₂_ = _≤₂_} (antisym po₂) } where open IsPartialOrder ×-isTotalOrder : ∀ {_≈₁_ _≤₁_} → Decidable _≈₁_ → IsTotalOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsTotalOrder _≈₂_ _≤₂_ → IsTotalOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isTotalOrder {_≤₁_ = _≤₁_} ≈₁-dec to₁ {_≤₂_ = _≤₂_} to₂ = record { isPartialOrder = ×-isPartialOrder (isPartialOrder to₁) (isPartialOrder to₂) ; total = ×-total {_≤₁_ = _≤₁_} (Eq.sym to₁) ≈₁-dec (antisym to₁) (total to₁) {_≤₂_ = _≤₂_} (total to₂) } where open IsTotalOrder ×-isDecTotalOrder : ∀ {_≈₁_ _≤₁_} → IsDecTotalOrder _≈₁_ _≤₁_ → ∀ {_≈₂_ _≤₂_} → IsDecTotalOrder _≈₂_ _≤₂_ → IsDecTotalOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _≤₁_ _≤₂_) ×-isDecTotalOrder {_≤₁_ = _≤₁_} to₁ {_≤₂_ = _≤₂_} to₂ = record { isTotalOrder = ×-isTotalOrder (_≟_ to₁) (isTotalOrder to₁) (isTotalOrder to₂) ; _≟_ = Pointwise.×-decidable (_≟_ to₁) (_≟_ to₂) ; _≤?_ = ×-decidable (_≟_ to₁) (_≤?_ to₁) (_≤?_ to₂) } where open IsDecTotalOrder ------------------------------------------------------------------------ -- "Packages" can also be combined. module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where ×-poset : Poset ℓ₁ ℓ₂ _ → Poset ℓ₃ ℓ₄ _ → Poset _ _ _ ×-poset p₁ p₂ = record { isPartialOrder = ×-isPartialOrder (isPartialOrder p₁) (isPartialOrder p₂) } where open Poset ×-totalOrder : DecTotalOrder ℓ₁ ℓ₂ _ → TotalOrder ℓ₃ ℓ₄ _ → TotalOrder _ _ _ ×-totalOrder t₁ t₂ = record { isTotalOrder = ×-isTotalOrder T₁._≟_ T₁.isTotalOrder T₂.isTotalOrder } where module T₁ = DecTotalOrder t₁ module T₂ = TotalOrder t₂ ×-decTotalOrder : DecTotalOrder ℓ₁ ℓ₂ _ → DecTotalOrder ℓ₃ ℓ₄ _ → DecTotalOrder _ _ _ ×-decTotalOrder t₁ t₂ = record { isDecTotalOrder = ×-isDecTotalOrder (isDecTotalOrder t₁) (isDecTotalOrder t₂) } where open DecTotalOrder ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 _×-isPartialOrder_ = ×-isPartialOrder {-# WARNING_ON_USAGE _×-isPartialOrder_ "Warning: _×-isPartialOrder_ was deprecated in v0.15. Please use ×-isPartialOrder instead." #-} _×-isDecTotalOrder_ = ×-isDecTotalOrder {-# WARNING_ON_USAGE _×-isDecTotalOrder_ "Warning: _×-isDecTotalOrder_ was deprecated in v0.15. Please use ×-isDecTotalOrder instead." #-} _×-poset_ = ×-poset {-# WARNING_ON_USAGE _×-poset_ "Warning: _×-poset_ was deprecated in v0.15. Please use ×-poset instead." #-} _×-totalOrder_ = ×-totalOrder {-# WARNING_ON_USAGE _×-totalOrder_ "Warning: _×-totalOrder_ was deprecated in v0.15. Please use ×-totalOrder instead." #-} _×-decTotalOrder_ = ×-decTotalOrder {-# WARNING_ON_USAGE _×-decTotalOrder_ "Warning: _×-decTotalOrder_ was deprecated in v0.15. Please use ×-decTotalOrder instead." #-} ×-≈-respects₂ = ×-respects₂ {-# WARNING_ON_USAGE ×-≈-respects₂ "Warning: ×-≈-respects₂ was deprecated in v0.15. Please use ×-respects₂ instead." #-}
{ "alphanum_fraction": 0.5544554455, "avg_line_length": 37.875, "ext": "agda", "hexsha": "a1f6f46ecd6fd03c588834a85c90a84751640b37", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/NonStrict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/NonStrict.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/NonStrict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3162, "size": 8181 }
-- Andreas, 2013-03-22 -- {-# OPTIONS -v tc.lhs:40 #-} module Issue279-3 where module M (X : Set) where data R : Set where r : X → R postulate P Q : Set open M P shouldn't-check : M.R Q → Q shouldn't-check (r q) = q -- Agda uses the type of the original constructor -- -- M.r {X : Set} : X → R X -- -- instead of the type of the copied constructor -- -- r : P → R -- -- If one changes the domain to _, it will be resolved to -- R, which is M.R P, and q gets assigned type P, leading -- to expected failure. -- Fixed this issue by comparing the parameter reconstructed -- from the domain, Q, to the parameter of the unambiguous -- constructor r, which is P.
{ "alphanum_fraction": 0.6449704142, "avg_line_length": 20.4848484848, "ext": "agda", "hexsha": "7022d4e3472de17fbfce998aa50647961946500c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue279-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue279-3.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue279-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 206, "size": 676 }
module BasicIS4.Metatheory.DyadicHilbert-TarskiOvergluedDyadicImplicit where open import BasicIS4.Syntax.DyadicHilbert public open import BasicIS4.Semantics.TarskiOvergluedDyadicImplicit public open ImplicitSyntax (_⊢_) (mono²⊢) public -- Completeness with respect to a particular model. module _ {{_ : Model}} where reify : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A reify {α P} s = syn s reify {A ▻ B} s = syn (s refl⊆²) reify {□ A} s = syn (s refl⊆²) reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s)) reify {⊤} s = unit reify⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ reify⋆ {∅} ∙ = ∙ reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t -- Additional useful equipment. module _ {{_ : Model}} where ⟪K⟫ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊩ B ▻ A ⟪K⟫ {A} a ψ = let a′ = mono²⊩ {A} ψ a in app ck (reify a′) ⅋ K a′ ⟪S⟫′ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊩ A ▻ B ▻ C → Γ ⁏ Δ ⊩ (A ▻ B) ▻ A ▻ C ⟪S⟫′ {A} {B} {C} s₁ ψ = let s₁′ = mono²⊩ {A ▻ B ▻ C} ψ s₁ t = syn (s₁′ refl⊆²) in app cs t ⅋ λ s₂ ψ′ → let s₁″ = mono²⊩ {A ▻ B ▻ C} (trans⊆² ψ ψ′) s₁ s₂′ = mono²⊩ {A ▻ B} ψ′ s₂ t′ = syn (s₁″ refl⊆²) u = syn (s₂′ refl⊆²) in app (app cs t′) u ⅋ ⟪S⟫ s₁″ s₂′ _⟪D⟫_ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊩ □ (A ▻ B) → Γ ⁏ Δ ⊩ □ A → Γ ⁏ Δ ⊩ □ B (s₁ ⟪D⟫ s₂) ψ = let t ⅋ s₁′ = s₁ ψ u ⅋ a = s₂ ψ in app (app cdist t) u ⅋ s₁′ ⟪$⟫ a _⟪D⟫′_ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊩ □ (A ▻ B) → Γ ⁏ Δ ⊩ □ A ▻ □ B _⟪D⟫′_ {A} {B} s₁ ψ = let s₁′ = mono²⊩ {□ (A ▻ B)} ψ s₁ in app cdist (reify (λ {_} ψ′ → s₁′ ψ′)) ⅋ _⟪D⟫_ s₁′ ⟪↑⟫ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ □ A → Γ ⁏ Δ ⊩ □ □ A ⟪↑⟫ {A} s ψ = app cup (syn (s ψ)) ⅋ λ ψ′ → s (trans⊆² ψ ψ′) _⟪,⟫′_ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊩ B ▻ A ∧ B _⟪,⟫′_ {A} a ψ = let a′ = mono²⊩ {A} ψ a in app cpair (reify a′) ⅋ _,_ a′ -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A eval (var i) γ δ = lookup i γ eval (app t u) γ δ = eval t γ δ ⟪$⟫ eval u γ δ eval ci γ δ = K (ci ⅋ I) eval ck γ δ = K (ck ⅋ ⟪K⟫) eval cs γ δ = K (cs ⅋ ⟪S⟫′) eval (mvar i) γ δ = mlookup i δ eval (box t) γ δ = λ ψ → let δ′ = mono²⊩⋆ ψ δ in mmulticut (reify⋆ δ′) (box t) ⅋ eval t ∙ δ′ eval cdist γ δ = K (cdist ⅋ _⟪D⟫′_) eval cup γ δ = K (cup ⅋ ⟪↑⟫) eval cdown γ δ = K (cdown ⅋ ⟪↓⟫) eval cpair γ δ = K (cpair ⅋ _⟪,⟫′_) eval cfst γ δ = K (cfst ⅋ π₁) eval csnd γ δ = K (csnd ⅋ π₂) eval unit γ δ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ Π P → Π ⊢ α P ; mono²⊩ᵅ = mono²⊢ } -- Soundness with respect to the canonical model. reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A reflectᶜ {α P} t = t ⅋ t reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t in t′ ⅋ λ a → reflectᶜ (app t′ (reify a)) reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t in t′ ⅋ reflectᶜ (down t′) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆ trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A quot s = reify (s refl⊩⋆ mrefl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.4419942474, "avg_line_length": 31.1343283582, "ext": "agda", "hexsha": "9b8458090690a56c0ca60e5cc5912d4a73b9f06b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIS4/Metatheory/DyadicHilbert-TarskiOvergluedDyadicImplicit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIS4/Metatheory/DyadicHilbert-TarskiOvergluedDyadicImplicit.agda", "max_line_length": 78, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIS4/Metatheory/DyadicHilbert-TarskiOvergluedDyadicImplicit.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2087, "size": 4172 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to bag and set equality ------------------------------------------------------------------------ -- Bag and set equality are defined in Data.List.Any. module Data.List.Any.BagAndSetEquality where open import Algebra open import Algebra.FunctionProperties open import Category.Monad open import Data.List as List import Data.List.Properties as LP open import Data.List.Any as Any using (Any); open Any.Any open import Data.List.Any.Properties open import Data.Product open import Data.Sum open import Function open import Function.Equality using (_⟨$⟩_) import Function.Equivalence as FE open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Related as Related using (↔⇒; ⌊_⌋; ⌊_⌋→; ⇒→) open import Function.Related.TypeIsomorphisms open import Relation.Binary import Relation.Binary.EqReasoning as EqR open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_) open import Relation.Binary.Sum open import Relation.Nullary open Any.Membership-≡ private module Eq {k a} {A : Set a} = Setoid ([ k ]-Equality A) module Ord {k a} {A : Set a} = Preorder ([ k ]-Order A) module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ) open module ListMonad {ℓ} = RawMonad (List.monad {ℓ = ℓ}) module ListMonoid {a} {A : Set a} = Monoid (List.monoid A) ------------------------------------------------------------------------ -- Congruence lemmas -- _∷_ is a congruence. ∷-cong : ∀ {a k} {A : Set a} {x₁ x₂ : A} {xs₁ xs₂} → x₁ ≡ x₂ → xs₁ ∼[ k ] xs₂ → x₁ ∷ xs₁ ∼[ k ] x₂ ∷ xs₂ ∷-cong {x₂ = x} {xs₁} {xs₂} P.refl xs₁≈xs₂ {y} = y ∈ x ∷ xs₁ ↔⟨ sym $ ∷↔ (_≡_ y) ⟩ (y ≡ x ⊎ y ∈ xs₁) ∼⟨ (y ≡ x ∎) ⊎-cong xs₁≈xs₂ ⟩ (y ≡ x ⊎ y ∈ xs₂) ↔⟨ ∷↔ (_≡_ y) ⟩ y ∈ x ∷ xs₂ ∎ where open Related.EquationalReasoning -- List.map is a congruence. map-cong : ∀ {ℓ k} {A B : Set ℓ} {f₁ f₂ : A → B} {xs₁ xs₂} → f₁ ≗ f₂ → xs₁ ∼[ k ] xs₂ → List.map f₁ xs₁ ∼[ k ] List.map f₂ xs₂ map-cong {ℓ} {f₁ = f₁} {f₂} {xs₁} {xs₂} f₁≗f₂ xs₁≈xs₂ {x} = x ∈ List.map f₁ xs₁ ↔⟨ sym $ map↔ {a = ℓ} {b = ℓ} {p = ℓ} ⟩ Any (λ y → x ≡ f₁ y) xs₁ ∼⟨ Any-cong (↔⇒ ∘ helper) xs₁≈xs₂ ⟩ Any (λ y → x ≡ f₂ y) xs₂ ↔⟨ map↔ {a = ℓ} {b = ℓ} {p = ℓ} ⟩ x ∈ List.map f₂ xs₂ ∎ where open Related.EquationalReasoning helper : ∀ y → x ≡ f₁ y ↔ x ≡ f₂ y helper y = record { to = P.→-to-⟶ (λ x≡f₁y → P.trans x≡f₁y ( f₁≗f₂ y)) ; from = P.→-to-⟶ (λ x≡f₂y → P.trans x≡f₂y (P.sym $ f₁≗f₂ y)) ; inverse-of = record { left-inverse-of = λ _ → P.proof-irrelevance _ _ ; right-inverse-of = λ _ → P.proof-irrelevance _ _ } } -- _++_ is a congruence. ++-cong : ∀ {a k} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} → xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ → xs₁ ++ ys₁ ∼[ k ] xs₂ ++ ys₂ ++-cong {a} {xs₁ = xs₁} {xs₂} {ys₁} {ys₂} xs₁≈xs₂ ys₁≈ys₂ {x} = x ∈ xs₁ ++ ys₁ ↔⟨ sym $ ++↔ {a = a} {p = a} ⟩ (x ∈ xs₁ ⊎ x ∈ ys₁) ∼⟨ xs₁≈xs₂ ⊎-cong ys₁≈ys₂ ⟩ (x ∈ xs₂ ⊎ x ∈ ys₂) ↔⟨ ++↔ {a = a} {p = a} ⟩ x ∈ xs₂ ++ ys₂ ∎ where open Related.EquationalReasoning -- concat is a congruence. concat-cong : ∀ {a k} {A : Set a} {xss₁ xss₂ : List (List A)} → xss₁ ∼[ k ] xss₂ → concat xss₁ ∼[ k ] concat xss₂ concat-cong {a} {xss₁ = xss₁} {xss₂} xss₁≈xss₂ {x} = x ∈ concat xss₁ ↔⟨ sym $ concat↔ {a = a} {p = a} ⟩ Any (Any (_≡_ x)) xss₁ ∼⟨ Any-cong (λ _ → _ ∎) xss₁≈xss₂ ⟩ Any (Any (_≡_ x)) xss₂ ↔⟨ concat↔ {a = a} {p = a} ⟩ x ∈ concat xss₂ ∎ where open Related.EquationalReasoning -- The list monad's bind is a congruence. >>=-cong : ∀ {ℓ k} {A B : Set ℓ} {xs₁ xs₂} {f₁ f₂ : A → List B} → xs₁ ∼[ k ] xs₂ → (∀ x → f₁ x ∼[ k ] f₂ x) → (xs₁ >>= f₁) ∼[ k ] (xs₂ >>= f₂) >>=-cong {ℓ} {xs₁ = xs₁} {xs₂} {f₁} {f₂} xs₁≈xs₂ f₁≈f₂ {x} = x ∈ (xs₁ >>= f₁) ↔⟨ sym $ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩ Any (λ y → x ∈ f₁ y) xs₁ ∼⟨ Any-cong (λ x → f₁≈f₂ x) xs₁≈xs₂ ⟩ Any (λ y → x ∈ f₂ y) xs₂ ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩ x ∈ (xs₂ >>= f₂) ∎ where open Related.EquationalReasoning -- _⊛_ is a congruence. ⊛-cong : ∀ {ℓ k} {A B : Set ℓ} {fs₁ fs₂ : List (A → B)} {xs₁ xs₂} → fs₁ ∼[ k ] fs₂ → xs₁ ∼[ k ] xs₂ → fs₁ ⊛ xs₁ ∼[ k ] fs₂ ⊛ xs₂ ⊛-cong fs₁≈fs₂ xs₁≈xs₂ = >>=-cong fs₁≈fs₂ λ f → >>=-cong xs₁≈xs₂ λ x → _ ∎ where open Related.EquationalReasoning -- _⊗_ is a congruence. ⊗-cong : ∀ {ℓ k} {A B : Set ℓ} {xs₁ xs₂ : List A} {ys₁ ys₂ : List B} → xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ → (xs₁ ⊗ ys₁) ∼[ k ] (xs₂ ⊗ ys₂) ⊗-cong {ℓ} xs₁≈xs₂ ys₁≈ys₂ = ⊛-cong (⊛-cong (Ord.refl {x = [ _,_ {a = ℓ} {b = ℓ} ]}) xs₁≈xs₂) ys₁≈ys₂ ------------------------------------------------------------------------ -- Other properties -- _++_ and [] form a commutative monoid, with either bag or set -- equality as the underlying equality. commutativeMonoid : ∀ {a} → Symmetric-kind → Set a → CommutativeMonoid _ _ commutativeMonoid {a} k A = record { Carrier = List A ; _≈_ = λ xs ys → xs ∼[ ⌊ k ⌋ ] ys ; _∙_ = _++_ ; ε = [] ; isCommutativeMonoid = record { isSemigroup = record { isEquivalence = Eq.isEquivalence ; assoc = λ xs ys zs → Eq.reflexive (ListMonoid.assoc xs ys zs) ; ∙-cong = ++-cong } ; identityˡ = λ xs {x} → x ∈ xs ∎ ; comm = λ xs ys {x} → x ∈ xs ++ ys ↔⟨ ++↔++ {a = a} {p = a} xs ys ⟩ x ∈ ys ++ xs ∎ } } where open Related.EquationalReasoning -- The only list which is bag or set equal to the empty list (or a -- subset or subbag of the list) is the empty list itself. empty-unique : ∀ {k a} {A : Set a} {xs : List A} → xs ∼[ ⌊ k ⌋→ ] [] → xs ≡ [] empty-unique {xs = []} _ = P.refl empty-unique {xs = _ ∷ _} ∷∼[] with ⇒→ ∷∼[] (here P.refl) ... | () -- _++_ is idempotent (under set equality). ++-idempotent : ∀ {a} {A : Set a} → Idempotent (λ (xs ys : List A) → xs ∼[ set ] ys) _++_ ++-idempotent {a} xs {x} = x ∈ xs ++ xs ∼⟨ FE.equivalence ([ id , id ]′ ∘ _⟨$⟩_ (Inverse.from $ ++↔ {a = a} {p = a})) (_⟨$⟩_ (Inverse.to $ ++↔ {a = a} {p = a}) ∘ inj₁) ⟩ x ∈ xs ∎ where open Related.EquationalReasoning -- The list monad's bind distributes from the left over _++_. >>=-left-distributive : ∀ {ℓ} {A B : Set ℓ} (xs : List A) {f g : A → List B} → (xs >>= λ x → f x ++ g x) ∼[ bag ] (xs >>= f) ++ (xs >>= g) >>=-left-distributive {ℓ} xs {f} {g} {y} = y ∈ (xs >>= λ x → f x ++ g x) ↔⟨ sym $ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩ Any (λ x → y ∈ f x ++ g x) xs ↔⟨ sym (Any-cong (λ _ → ++↔ {a = ℓ} {p = ℓ}) (_ ∎)) ⟩ Any (λ x → y ∈ f x ⊎ y ∈ g x) xs ↔⟨ sym $ ⊎↔ {a = ℓ} {p = ℓ} {q = ℓ} ⟩ (Any (λ x → y ∈ f x) xs ⊎ Any (λ x → y ∈ g x) xs) ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟨ ×⊎.+-cong {ℓ = ℓ} ⟩ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩ (y ∈ (xs >>= f) ⊎ y ∈ (xs >>= g)) ↔⟨ ++↔ {a = ℓ} {p = ℓ} ⟩ y ∈ (xs >>= f) ++ (xs >>= g) ∎ where open Related.EquationalReasoning -- The same applies to _⊛_. ⊛-left-distributive : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) xs₁ xs₂ → fs ⊛ (xs₁ ++ xs₂) ∼[ bag ] (fs ⊛ xs₁) ++ (fs ⊛ xs₂) ⊛-left-distributive {B = B} fs xs₁ xs₂ = begin fs ⊛ (xs₁ ++ xs₂) ≡⟨ P.refl ⟩ (fs >>= λ f → xs₁ ++ xs₂ >>= return ∘ f) ≡⟨ (LP.Monad.cong (P.refl {x = fs}) λ f → LP.Monad.right-distributive xs₁ xs₂ (return ∘ f)) ⟩ (fs >>= λ f → (xs₁ >>= return ∘ f) ++ (xs₂ >>= return ∘ f)) ≈⟨ >>=-left-distributive fs ⟩ (fs >>= λ f → xs₁ >>= return ∘ f) ++ (fs >>= λ f → xs₂ >>= return ∘ f) ≡⟨ P.refl ⟩ (fs ⊛ xs₁) ++ (fs ⊛ xs₂) ∎ where open EqR ([ bag ]-Equality B) private -- If x ∷ xs is set equal to x ∷ ys, then xs and ys are not -- necessarily set equal. ¬-drop-cons : ∀ {a} {A : Set a} {x : A} → ¬ (∀ {xs ys} → x ∷ xs ∼[ set ] x ∷ ys → xs ∼[ set ] ys) ¬-drop-cons {x = x} drop-cons with FE.Equivalence.to x∼[] ⟨$⟩ here P.refl where x,x≈x : (x ∷ x ∷ []) ∼[ set ] [ x ] x,x≈x = ++-idempotent [ x ] x∼[] : [ x ] ∼[ set ] [] x∼[] = drop-cons x,x≈x ... | () -- However, the corresponding property does hold for bag equality. drop-cons : ∀ {a} {A : Set a} {x : A} {xs ys} → x ∷ xs ∼[ bag ] x ∷ ys → xs ∼[ bag ] ys drop-cons {A = A} {x} {xs} {ys} x∷xs≈x∷ys {z} = record { to = P.→-to-⟶ $ f x∷xs≈x∷ys ; from = P.→-to-⟶ $ f $ Inv.sym x∷xs≈x∷ys ; inverse-of = record { left-inverse-of = f∘f x∷xs≈x∷ys ; right-inverse-of = f∘f $ Inv.sym x∷xs≈x∷ys } } where open Inverse open P.≡-Reasoning f : ∀ {xs ys z} → (z ∈ x ∷ xs) ↔ (z ∈ x ∷ ys) → z ∈ xs → z ∈ ys f inv z∈xs with to inv ⟨$⟩ there z∈xs | left-inverse-of inv (there z∈xs) f inv z∈xs | there z∈ys | left⁺ = z∈ys f inv z∈xs | here z≡x | left⁺ with to inv ⟨$⟩ here z≡x | left-inverse-of inv (here z≡x) f inv z∈xs | here z≡x | left⁺ | there z∈ys | left⁰ = z∈ys f inv z∈xs | here P.refl | left⁺ | here P.refl | left⁰ with begin here P.refl ≡⟨ P.sym left⁰ ⟩ from inv ⟨$⟩ here P.refl ≡⟨ left⁺ ⟩ there z∈xs ∎ ... | () f∘f : ∀ {xs ys z} (inv : (z ∈ x ∷ xs) ↔ (z ∈ x ∷ ys)) (p : z ∈ xs) → f (Inv.sym inv) (f inv p) ≡ p f∘f inv z∈xs with to inv ⟨$⟩ there z∈xs | left-inverse-of inv (there z∈xs) f∘f inv z∈xs | there z∈ys | left⁺ with from inv ⟨$⟩ there z∈ys | right-inverse-of inv (there z∈ys) f∘f inv z∈xs | there z∈ys | P.refl | .(there z∈xs) | _ = P.refl f∘f inv z∈xs | here z≡x | left⁺ with to inv ⟨$⟩ here z≡x | left-inverse-of inv (here z≡x) f∘f inv z∈xs | here z≡x | left⁺ | there z∈ys | left⁰ with from inv ⟨$⟩ there z∈ys | right-inverse-of inv (there z∈ys) f∘f inv z∈xs | here z≡x | left⁺ | there z∈ys | P.refl | .(here z≡x) | _ with from inv ⟨$⟩ here z≡x | right-inverse-of inv (here z≡x) f∘f inv z∈xs | here z≡x | P.refl | there z∈ys | P.refl | .(here z≡x) | _ | .(there z∈xs) | _ = P.refl f∘f inv z∈xs | here P.refl | left⁺ | here P.refl | left⁰ with begin here P.refl ≡⟨ P.sym left⁰ ⟩ from inv ⟨$⟩ here P.refl ≡⟨ left⁺ ⟩ there z∈xs ∎ ... | ()
{ "alphanum_fraction": 0.4731615925, "avg_line_length": 39.1025641026, "ext": "agda", "hexsha": "bbda405f93ddd2daa596a0214097db43f8951040", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/Any/BagAndSetEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/Any/BagAndSetEquality.agda", "max_line_length": 125, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/Any/BagAndSetEquality.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 4543, "size": 10675 }
-- Issue 3536 reported by Malin Altenmüller -- The problem was that the Treeless compiler reruns the clause -- compiler, but without the split tree from the coverage -- checker. However, the split tree is necessary to direct the clause -- compiler. data Unit : Set where true : Unit record R : Set where coinductive field f1 : R f2 : R open R public foo : Unit -> R f1 (foo true) = foo true f2 (foo b) = foo b
{ "alphanum_fraction": 0.706855792, "avg_line_length": 20.1428571429, "ext": "agda", "hexsha": "697666a247367872da5abe338424f0ba16bd1ab5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3536.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3536.agda", "max_line_length": 69, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3536.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 123, "size": 423 }
{-# OPTIONS --termination-depth=2 #-} module TerminationWithMerge where data List (a : Set) : Set where [] : List a _∷_ : a -> List a -> List a -- infix postulate a : Set Bool : Set _≤?_ : a -> a -> Bool merge : List a -> List a -> List a merge xs [] = xs merge [] ys = ys merge (x ∷ xs) (y ∷ ys) with x ≤? y ... | true = x ∷ merge xs (y ∷ ys) ... | false = y ∷ merge (x ∷ xs) ys {- still cannot pass the termination checker, since size(x :: xs) <= 1 + max(size(x),size(xs)) but the termination checker does not have maximum, and no type information that tells it to ignore x in this caculation. Solution: sized types! -}
{ "alphanum_fraction": 0.5691411936, "avg_line_length": 21.46875, "ext": "agda", "hexsha": "11688388e3005fa71fb700875364d993920a7cfe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/TerminationWithMerge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/TerminationWithMerge.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/TerminationWithMerge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 214, "size": 687 }
postulate F : Set → Set {-# POLARITY F ⚄ #-}
{ "alphanum_fraction": 0.5208333333, "avg_line_length": 9.6, "ext": "agda", "hexsha": "b52f6a1171716d42ae1d3efdb7047814f6e11eb8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Invalid-polarity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Invalid-polarity.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Invalid-polarity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 19, "size": 48 }
data ⊥ : Set where record ⊤ : Set where constructor unit data T : ⊥ → Set where con : (i : ⊥) → T i module M (x : ⊤) where bar : (i : ⊥) → T i → ⊥ bar .i (con i) = i module N where foo : ⊥ foo = i -- Should not be accepted. -- Type signature should be `test : ⊥ → ⊥` test : ⊥ → ⊥ test = N.foo false : ⊥ false = M.test unit unit
{ "alphanum_fraction": 0.5081967213, "avg_line_length": 15.25, "ext": "agda", "hexsha": "9c1f9b9470428399247e1794fb51580e7a0575dc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue4163.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4163.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4163.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 366 }
module sn-calculus-confluence.potrec where open import utility open import sn-calculus open import context-properties using (->pot-view ; ->E-view) open import sn-calculus-confluence.helper open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Properties using (canθₛ-subset ; canθₛₕ-subset ; canθₛ-membership ; canθₛₕ-membership ; canθₛ-mergeˡ ; canθₛₕ-mergeˡ ; canθ-is-present ; canθ-is-absent ; canθₛₕ-emit ; canθₛ-emit ; term-raise ; canₛ-raise ; canₛₕ-raise ; term-nothin ; canₛ-term-nothin ; canₛₕ-term-nothin ; canₛ-if-true ; canₛ-if-false ; canₛₕ-if-true ; canₛₕ-if-false ; canₛ-capture-emit-signal ; canₛₕ-capture-set-shared) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Data.Bool using (Bool ; true ; false ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; [_]) open import Data.List.Any using (Any ; here ; there ; any) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; _≟_ ; zero ; suc ; _+_) open import Data.Product using (Σ ; Σ-syntax ; _,_ ; proj₁ ; proj₂ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; trans ; cong ; subst ; module ≡-Reasoning) open ->pot-view open ->E-view open term-nothin open term-raise open ≡-Reasoning using (begin_ ; _∎ ; _≡⟨_⟩_ ; _≡⟨⟩_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM ρ-pot-conf-rec : ∀{p θ ql θl qr θr p≡ql E pin qin FV₀ BV₀ A Al Ar A≡Al} → {ρθ·psn⟶₁ρθl·ql : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· ql)} → {ρθ·psn⟶₁ρθr·qr : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θr , Ar ⟩· qr)} → {p≐E⟦pin⟧ : p ≐ E ⟦ pin ⟧e} → {qr≐E⟦qin⟧ : qr ≐ E ⟦ qin ⟧e} → CorrectBinding (ρ⟨ θ , A ⟩· p) FV₀ BV₀ → ->pot-view ρθ·psn⟶₁ρθl·ql p≡ql A≡Al → ->E-view ρθ·psn⟶₁ρθr·qr p≐E⟦pin⟧ qr≐E⟦qin⟧ → (ρ⟨ θl , Al ⟩· ql sn⟶₁ ρ⟨ θr , Ar ⟩· qr) ⊎ (Σ[ s ∈ Term ] Σ[ θo ∈ Env.Env ] Σ[ Ao ∈ Ctrl ] (ρ⟨ θl , Al ⟩· ql) sn⟶₁ (ρ⟨ θo , Ao ⟩· s) × (ρ⟨ θr , Ar ⟩· qr) sn⟶₁ (ρ⟨ θo , Ao ⟩· s)) ρ-pot-conf-rec {p} {θ} {ql} {θl} {.(E ⟦ qin ⟧e)} {θr} {_} {E} {(ρ⟨ .θin , Ain ⟩· .qin)} {qin} {_} {_} {A} {.A} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rmerge {θ} {θin} p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vmerge {.θ} {θin} {.p} {.qin} {.E}) with Env.Sig∈ S θin ... | yes S∈Domθin rewrite SigMap.update-union-union S Signal.absent (Env.sig θ) (Env.sig θin) S∈ S∈Domθin = inj₁ (ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ (θl ← θin) , A-max A Ain ⟩· E ⟦ qin  ⟧e ∋ rmerge {θl} {θin} p≐E⟦pin⟧) ... | no S∉Domθin with Env.sig-←-irr-get {θ} {θin} {S} S∈ S∉Domθin -- θr ≡ (θ ← θin) ... | S∈Domθ←θin , θS≡⟨θ←θin⟩S = inj₂ (_ , _ , A-max A Ain , subst (λ { θ* → ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ θ* , A-max A Ain ⟩· E ⟦ qin ⟧e}) ((Env.set-sig {S} θ S∈ Signal.absent) ← θin ≡ Env.set-sig {S} (θ ← θin) S∈Domθ←θin Signal.absent ∋ cong (λ sig* → Θ sig* (Env.shr (θ ← θin)) (Env.var (θ ← θin))) (SigMap.put-union-comm S Signal.absent (Env.sig θ) (Env.sig θin) S∉Domθin)) (ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ (θl ← θin) , A-max A Ain ⟩· E ⟦ qin ⟧e ∋ rmerge {θl} {θin} p≐E⟦pin⟧) ,′ (ρ⟨ (θ ← θin) , A-max A Ain ⟩· E ⟦ qin ⟧e sn⟶₁ ρ⟨ (Env.set-sig {S} (θ ← θin) S∈Domθ←θin Signal.absent) , A-max A Ain ⟩· E ⟦ qin ⟧e ∋ (rabsence {θr} {_} {S} S∈Domθ←θin (trans (sym θS≡⟨θ←θin⟩S) θS≡unknown) (λ S∈can-E⟦qin⟧-θ←θin → S∉can-p-θ (canθₛ-mergeˡ (Env.sig θ) Env.[]env cbp p≐E⟦pin⟧ S S∉Domθin S∈can-E⟦qin⟧-θ←θin))))) ρ-pot-conf-rec {p} {θ} {ql} {θl} {.(E ⟦ qin ⟧e)} {θr} {_} {E} {(ρ⟨ .θin , Ain ⟩· qin)} {qin} {_} {_} {A} {Al} {Ar} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rmerge p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vmerge {.θ} {θin} {.p} {.qin} {.E}) with Env.Shr∈ s θin ... | yes s∈Domθin rewrite ShrMap.update-union-union s (SharedVar.ready , Env.shr-vals {s} θ s∈) (Env.shr θ) (Env.shr θin) s∈ s∈Domθin = inj₁ (rmerge {θl} {θin} p≐E⟦pin⟧) ... | no s∉Domθin with Env.shr-←-irr-get {θ} {θin} {s} s∈ s∉Domθin ... | s∈Domθ←θin , θs≡⟨θ←θin⟩s = inj₂ (_ , _ , _ , subst (λ { θ* → ρ⟨ θl , A ⟩· ql sn⟶₁ ρ⟨ θ* , A-max A Ain ⟩· E ⟦ qin ⟧e }) (cong (λ shr* → Θ (Env.sig (θ ← θin)) shr* (Env.var (θ ← θin))) (trans (cong (λ shrval* → ShrMap.union (ShrMap.update (Env.shr θ) s (SharedVar.ready , proj₂ shrval*)) (Env.shr θin)) (ShrMap.U-∉-irr-get-help-m {_} {Env.shr θ} {Env.shr θin} {s} s∈ s∉Domθin s∈Domθ←θin )) (ShrMap.put-union-comm s (SharedVar.ready , Env.shr-vals {s} (θ ← θin) s∈Domθ←θin) (Env.shr θ) (Env.shr θin) s∉Domθin))) (rmerge {θl} {θin} p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈Domθ←θin (Data.Sum.map (trans (sym θs≡⟨θ←θin⟩s)) (trans (sym θs≡⟨θ←θin⟩s)) θs≡old⊎θs≡new) (λ s∈can-E⟦qin⟧-θ←θin → s∉can-p-θ (canθₛₕ-mergeˡ (Env.sig θ) Env.[]env cbp p≐E⟦pin⟧ s s∉Domθin s∈can-E⟦qin⟧-θ←θin))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ qin ∣⇒ _)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(ris-present {θ} {S'} S'∈ θS'≡present p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vis-present {.θ} {S'} {S∈ = S'∈} {θS'≡present} {.p≐E⟦pin⟧}) with S' Signal.≟ S ... | yes refl = ((Signal.unknown ≡ Signal.present → _) ∋ λ ()) (trans (trans (sym θS≡unknown) (Env.sig-stats-∈-irr {S} {θ} S∈ S'∈)) θS'≡present) ... | no S'≠S = inj₂ (_ , _ , _ , ris-present {θl} {S'} (Env.sig-set-mono' {S'} {S} {θ} {_} {S∈} S'∈) (Env.sig-putputget {S'} {S} {θ} S'≠S S'∈ S∈ _ θS'≡present) p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧-θ → S∉can-p-θ (subst (Signal.unwrap S ∈_) (cong proj₁ (sym (canθ-is-present (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡present)) ) S∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ _ ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(ris-absent {θ} {S'} S'∈ θS'≡absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vis-absent {.θ} {S'} {S∈ = S'∈} {θS'≡absent} {.p≐E⟦pin⟧}) with S' Signal.≟ S ... | yes refl = ((Signal.unknown ≡ Signal.absent → _) ∋ λ ()) (trans (trans (sym θS≡unknown) (Env.sig-stats-∈-irr {S} {θ} S∈ S'∈)) θS'≡absent) ... | no S'≠S = inj₂ (_ , _ , _ , ris-absent {θl} {S'} (Env.sig-set-mono' {S'} {S} {θ} {_} {S∈} S'∈) (Env.sig-putputget {S'} {S} {θ} S'≠S S'∈ S∈ _ θS'≡absent) p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧-θ → S∉can-p-θ (subst (Signal.unwrap S ∈_) (cong proj₁ (sym (canθ-is-absent (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡absent))) S∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ qin ∣⇒ _)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(ris-present {θ} {S'} S'∈ θS'≡present p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vis-present {.θ} {S'} {S∈ = S'∈} {θS'≡present} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , ris-present {θl} {S'} S'∈ θS'≡present p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧-θ → s∉can-p-θ (subst (SharedVar.unwrap s ∈_) (cong (proj₂ ∘ proj₂) (sym (canθ-is-present (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡present))) s∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(present _ ∣⇒ _ ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(ris-absent {θ} {S'} S'∈ θS'≡absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vis-absent {.θ} {S'} {S∈ = S'∈} {θS'≡absent} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , ris-absent {θl} {S'} S'∈ θS'≡absent p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧-θ → s∉can-p-θ (subst (SharedVar.unwrap s ∈_) (cong (proj₂ ∘ proj₂) (sym (canθ-is-absent (Env.sig θ) S'∈ Env.[]env p≐E⟦pin⟧ θS'≡absent))) s∈can-E⟦qin⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(emit S')} {.nothin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(remit {θ} {p} {S'} S'∈ θS'≢absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vemit {.θ} {.p} {S'} {.E} {S'∈} {θS'≢absent} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , remit {θl} {_} {S'} S'∈ θS'≢absent p≐E⟦pin⟧ ,′ rreadyness {θr} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦nothin⟧-θr → s∉can-p-θ (canθₛₕ-emit θ S'∈ Env.[]env p≐E⟦pin⟧ θS'≢absent (canθₛ-membership (Env.sig θ) 0 p Env.[]env S' (λ θ* → canₛ-capture-emit-signal θ* p≐E⟦pin⟧)) s s∈can-E⟦nothin⟧-θr))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(emit S')} {.nothin} {_} {_} {A} {Al} {Ar} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(remit {θ} {p} {S'} S'∈ θS'≢absent p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vemit {.θ} {.p} {S'} {.E} {S'∈} {θS'≢absent} {.p≐E⟦pin⟧}) with S' Signal.≟ S ... | yes refl = ⊥-elim (S∉can-p-θ (canθₛ-membership (Env.sig θ) 0 p Env.[]env S' (λ θ* → canₛ-capture-emit-signal θ* p≐E⟦pin⟧))) ... | no S'≢S = inj₂ (_ , _ , _ , remit {θl} {_} {S'} (SigMap.insert-mono {_} {S'} {Env.sig θ} {S} {Signal.absent} S'∈) (θS'≢absent ∘ trans (sym (SigMap.putputget {_} {Env.sig θ} {S'} {S} {_} {Signal.absent} S'≢S S'∈ S'∈Domθl refl))) p≐E⟦pin⟧ ,′ subst (λ sig* → ρ⟨ θr , Ar ⟩· E ⟦ nothin ⟧e sn⟶₁ ρ⟨ (Θ sig* (Env.shr θ) (Env.var θ)) , Ar ⟩· E ⟦ nothin ⟧e) (SigMap.put-comm {_} {Env.sig θ} {_} {_} {Signal.present} {Signal.absent} S'≢S) (rabsence {θr} {_} {S} S∈Domθr (SigMap.putputget {_} {Env.sig θ} {S} {S'} {_} {Signal.present} (S'≢S ∘ sym) S∈ S∈Domθr θS≡unknown) (λ S''∈can-E⟦nothin⟧-θr → S∉can-p-θ (canθₛ-emit θ S'∈ Env.[]env p≐E⟦pin⟧ θS'≢absent (canθₛ-membership (Env.sig θ) 0 p Env.[]env S' (λ θ* → canₛ-capture-emit-signal θ* p≐E⟦pin⟧)) S S''∈can-E⟦nothin⟧-θr)))) where S∈Domθr = SigMap.insert-mono {_} {S} {Env.sig θ} {S'} {Signal.present} S∈ S'∈Domθl = SigMap.insert-mono {_} {S'} {Env.sig θ} {S} {Signal.absent} S'∈ ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(shared s' ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p')} {_} {_} {A} {Al} {Ar} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rraise-shared e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vraise-shared {.θ} {.p} {s'} {e} {p'} {.E} {e'} {.p≐E⟦pin⟧}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , Al ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· E ⟦ ρ⟨ ([s,δe]-env s' δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-shared e'' p≐E⟦pin⟧) ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦ρΘp'⟧-θ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ ([s,δe]-env s' (δ e')) , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tshared (δ e') s' e p') p≐E⟦pin⟧ S*) S S∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(shared s' ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.[ s' ↦ (SharedVar.old , δ e') ] VarMap.empty) , WAIT ⟩· p')} {_} {_} {A} {Al} {Ar} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rraise-shared e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vraise-shared {.θ} {.p} {s'} {e} {p'} {.E} {e'} {.p≐E⟦pin⟧}) with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , Al ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· E ⟦ ρ⟨ ([s,δe]-env s' δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-shared e'' p≐E⟦pin⟧) ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦ρΘp'⟧-θ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ ([s,δe]-env s' (δ e')) , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tshared (δ e') s' e p') p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-raise θ* (tshared (δ e') s' e p') p≐E⟦pin⟧ s*) s s∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rset-shared-value-old {θ} {p} {s'} e' s'∈ θs'≡old p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vset-shared-value-old {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡old}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (θl-set-shr δe*) , GO ⟩· E ⟦ nothin ⟧e) (sym δe'≡δe'') (rset-shared-value-old {θl} {_} {s'} e'' s'∈ θs'≡old p≐E⟦pin⟧) ,′ rabsence {θr} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦nothin⟧-θr → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) S S∈can-E⟦nothin⟧-θr))) where θl-set-shr : ℕ → Env θl-set-shr n = Env.set-shr {s'} θl s'∈ SharedVar.new n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rset-shared-value-old {θ} {p} {s'} e' s'∈ θs'≡old p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vset-shared-value-old {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡old}) with s SharedVar.≟ s' ... | yes refl = ⊥-elim (s∉can-p-θ (canθₛₕ-membership (Env.sig θ) 0 p Env.[]env s (λ θ* → canₛₕ-capture-set-shared θ* p≐E⟦pin⟧))) ... | no s≢s' with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ shr* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (Θ (Env.sig θl) shr* (Env.var θl)) , GO ⟩· E ⟦ nothin ⟧e) (cong Env.shr (begin Env.set-shr {s'} θl s'∈Domθl SharedVar.new (δ e'') ≡⟨ cong (Env.set-shr {s'} θl s'∈Domθl SharedVar.new) (sym δe'≡δe'') ⟩ Env.set-shr {s'} θl s'∈Domθl SharedVar.new (δ e') ≡⟨ cong (λ sig* → Θ (Env.sig θ) sig* (Env.var θ)) (ShrMap.put-comm {_} {Env.shr θ} {_} {_} {SharedVar.ready ,′ θs} {SharedVar.new ,′ δ e'} s≢s') ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready θs ≡⟨ cong (Env.set-shr {s} θr s∈Domθr SharedVar.ready ∘ proj₂) (sym θrs≡θs) ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready (Env.shr-vals {s} θr s∈Domθr) ∎)) (rset-shared-value-old {θl} {_} {s'} e'' s'∈Domθl (trans (cong proj₁ θls'≡θs') θs'≡old) p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈Domθr (Data.Sum.map (trans (cong proj₁ θrs≡θs)) (trans (cong proj₁ θrs≡θs)) θs≡old⊎θs≡new) (λ s∈can-E⟦nothin⟧-θr → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ s*) s s∈can-E⟦nothin⟧-θr))) where θs = Env.shr-vals {s} θ s∈ s∈Domθr = Env.shr-set-mono' {s} {s'} {θ} {SharedVar.new} {δ e'} {s'∈} s∈ θrs≡θs = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.new ,′ δ e'} s≢s' s∈ s∈Domθr refl s'∈Domθl = Env.shr-set-mono' {s'} {s} {θ} {SharedVar.ready} {θs} {s∈} s'∈ θls'≡θs' = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.ready ,′ θs} (s≢s' ∘ sym) s'∈ s'∈Domθl refl ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rset-shared-value-new {θ} {p} {s'} e' s'∈ θs'≡new p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vset-shared-value-new {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡new}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (θl-set-shr δe*) , GO ⟩· E ⟦ nothin ⟧e) (cong (Env.shr-vals {s'} θ s'∈ +_) (sym δe'≡δe'')) (rset-shared-value-new {θl} {_} {s'} e'' s'∈ θs'≡new p≐E⟦pin⟧) ,′ rabsence {θr} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦nothin⟧-θr → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) S S∈can-E⟦nothin⟧-θr))) where θl-set-shr : ℕ → Env θl-set-shr n = Env.set-shr {s'} θl s'∈ SharedVar.new n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(s' ⇐ e)} {.nothin} {_} {_} {GO} {GO} {GO} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rset-shared-value-new {θ} {p} {s'} e' s'∈ θs'≡new p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vset-shared-value-new {.θ} {.p} {s'} {e} {.E} {e'} {s'∈} {θs'≡new}) with s SharedVar.≟ s' ... | yes refl = ⊥-elim (s∉can-p-θ (canθₛₕ-membership (Env.sig θ) 0 p Env.[]env s (λ θ* → canₛₕ-capture-set-shared θ* p≐E⟦pin⟧))) ... | no s≢s' with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ shr* → ρ⟨ θl , GO ⟩· p sn⟶₁ ρ⟨ (Θ (Env.sig θl) shr* (Env.var θl)) , GO ⟩· E ⟦ nothin ⟧e) (cong Env.shr (begin Env.set-shr {s'} θl s'∈Domθl SharedVar.new (Env.shr-vals {s'} θl s'∈Domθl + δ e'') ≡⟨ cong (λ v* → Env.set-shr {s'} θl s'∈Domθl SharedVar.new (v* + δ e'')) (cong proj₂ θls'≡θs') ⟩ Env.set-shr {s'} θl s'∈Domθl SharedVar.new (θs' + δ e'') ≡⟨ cong (λ v* → Env.set-shr {s'} θl s'∈Domθl SharedVar.new (θs' + v*)) (sym δe'≡δe'') ⟩ Env.set-shr {s'} θl s'∈Domθl SharedVar.new (θs' + δ e') ≡⟨ cong (λ sig* → Θ (Env.sig θ) sig* (Env.var θ)) (ShrMap.put-comm {_} {Env.shr θ} {_} {_} {SharedVar.ready ,′ θs} {SharedVar.new ,′ θs' + δ e'} s≢s') ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready θs ≡⟨ cong (Env.set-shr {s} θr s∈Domθr SharedVar.ready ∘ proj₂) (sym θrs≡θs) ⟩ Env.set-shr {s} θr s∈Domθr SharedVar.ready (Env.shr-vals {s} θr s∈Domθr) ∎)) (rset-shared-value-new {θl} {_} {s'} e'' s'∈Domθl (trans (cong proj₁ θls'≡θs') θs'≡new) p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈Domθr (Data.Sum.map (trans (cong proj₁ θrs≡θs)) (trans (cong proj₁ θrs≡θs)) θs≡old⊎θs≡new) (λ s∈can-E⟦nothin⟧-θr → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-shr s' e) p≐E⟦pin⟧ s*) s s∈can-E⟦nothin⟧-θr))) where θs' = Env.shr-vals {s'} θ s'∈ θs = Env.shr-vals {s} θ s∈ s∈Domθr = Env.shr-set-mono' {s} {s'} {θ} {SharedVar.new} {θs' + δ e'} {s'∈} s∈ θrs≡θs = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.new ,′ θs' + δ e'} s≢s' s∈ s∈Domθr refl s'∈Domθl = Env.shr-set-mono' {s'} {s} {θ} {SharedVar.ready} {θs} {s∈} s'∈ θls'≡θs' = ShrMap.putputget {_} {Env.shr θ} {_} {_} {_} {SharedVar.ready ,′ θs} (s≢s' ∘ sym) s'∈ s'∈Domθl refl ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(var x ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p')} {_} {_} {A} {.A} {.A} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rraise-var {θ} {p} {x} {p'} {e} e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vraise-var {.θ} {.p} {x} {p'} {e} {.E} {e'} {.p≐E⟦pin⟧}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , A ⟩· p) sn⟶₁ (ρ⟨ θl , A ⟩· E ⟦ ρ⟨ ([x,δe]-env x δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-var {θl} {_} {x} {p'} {e} e'' p≐E⟦pin⟧) ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦ρΘp'⟧-θ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tvar (δ e') x e p') p≐E⟦pin⟧ S*) S S∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p' ⟧e)} {.θ} {_} {E} {.(var x ≔ e in: p')} {.(ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p')} {_} {_} {A} {.A} {.A} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rraise-var {θ} {p} {x} {p'} {e} e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vraise-var {.θ} {.p} {x} {p'} {e} {.E} {e'} {.p≐E⟦pin⟧}) with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → (ρ⟨ θl , A ⟩· p) sn⟶₁ (ρ⟨ θl , A ⟩· E ⟦ ρ⟨ ([x,δe]-env x δe*) , WAIT ⟩· p' ⟧e)) (sym δe'≡δe'') (rraise-var {θl} {_} {x} {p'} {e} e'' p≐E⟦pin⟧) ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦ρΘp'⟧-θ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p' ⟧e) p Env.[]env (λ θ* S* → canₛ-raise θ* (tvar (δ e') x e p') p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-raise θ* (tvar (δ e') x e p') p≐E⟦pin⟧ s*) s s∈can-E⟦ρΘp'⟧-θ))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(x ≔ e)} {.nothin} {_} {_} {A} {.A} {.A} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rset-var {θ} {p} {x} {e} x∈ e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vset-var {.θ} {.p} {x} {e} {.E} {x∈} {e'} {.p≐E⟦pin⟧}) with ready-maint/irr S S∈ Signal.absent e' ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , A ⟩· p sn⟶₁ ρ⟨ (θl-set-var δe*) , A ⟩· E ⟦ nothin ⟧e) (sym δe'≡δe'') (rset-var {θl} {_} {x} {e} x∈ e'' p≐E⟦pin⟧) ,′ rabsence {θr} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦nothin⟧-θ' → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-var x e) p≐E⟦pin⟧ S*) S S∈can-E⟦nothin⟧-θ'))) where θl-set-var : ℕ → Env θl-set-var n = Env.set-var {x} θl x∈ n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ nothin ⟧e)} {θr} {_} {E} {.(x ≔ e)} {.nothin} {_} {_} {A} {.A} {.A} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rset-var {θ} {p} {x} {e} x∈ e' p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vset-var {.θ} {.p} {x} {e} {.E} {x∈} {e'} {.p≐E⟦pin⟧}) with ready-irr-on-irr-s/ready {θ} {e} s (Env.shr-vals {s} θ s∈) s∈ (θs≢ready θs≡old⊎θs≡new) e' where θs≢ready : typeof θs≡old⊎θs≡new → ¬ (Env.shr-stats {s} θ s∈ ≡ SharedVar.ready) θs≢ready (inj₁ θs≡old) θs≡ready with trans (sym θs≡old) θs≡ready ... | () θs≢ready (inj₂ θs≡new) θs≡ready with trans (sym θs≡new) θs≡ready ... | () ... | e'' , δe'≡δe'' = inj₂ (_ , _ , _ , subst (λ δe* → ρ⟨ θl , A ⟩· p sn⟶₁ ρ⟨ (θl-set-var δe*) , A ⟩· E ⟦ nothin ⟧e) (sym δe'≡δe'') (rset-var {θl} {_} {x} {e} x∈ e'' p≐E⟦pin⟧) ,′ rreadyness {θr} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦nothin⟧-θ' → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ nothin ⟧e) p Env.[]env (λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-var x e) p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-var x e) p≐E⟦pin⟧ s*) s s∈can-E⟦nothin⟧-θ'))) where θl-set-var : ℕ → Env θl-set-var n = Env.set-var {x} θl x∈ n ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ th ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vif-false {.θ} {.p} {th} {.qin} {x} {.E} {x∈} {θx≡zero} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-false θ* p≐E⟦pin⟧ S*) S S∈can-E⟦qin⟧))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ th ∣⇒ qin)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vif-false {.θ} {.p} {th} {.qin} {x} {.E} {x∈} {θx≡zero} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-false {x = x} x∈ θx≡zero p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-false θ* p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-if-false θ* p≐E⟦pin⟧ s*) s s∈can-E⟦qin⟧))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ qin ∣⇒ els)} {qin} {_} {_} {_} {_} {_} {_} {.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)} {.(rif-true {x = x} {E} {n} x∈ θx≡suc p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vabsence S S∈ θS≡unknown S∉can-p-θ) (vif-true {.θ} {.p} {.qin} {els} {x} {.E} {n} {x∈} {θx≡suc} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-true {x = x} x∈ θx≡suc p≐E⟦pin⟧ ,′ rabsence {θ} {_} {S} S∈ θS≡unknown (λ S∈can-E⟦qin⟧ → S∉can-p-θ (canθₛ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-true θ* p≐E⟦pin⟧ S*) S S∈can-E⟦qin⟧))) ρ-pot-conf-rec {p} {θ} {.p} {θl} {.(E ⟦ qin ⟧e)} {.θ} {_} {E} {.(if x ∣⇒ qin ∣⇒ els)} {qin} {_} {_} {_} {_} {_} {_} {.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)} {.(rif-true {x = x} {E} {n} x∈ θx≡suc p≐E⟦pin⟧)} {p≐E⟦pin⟧} {qr≐E⟦qin⟧} (CBρ cbp) (vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) (vif-true {.θ} {.p} {.qin} {els} {x} {.E} {n} {x∈} {θx≡suc} {.p≐E⟦pin⟧}) = inj₂ (_ , _ , _ , rif-true {x = x} x∈ θx≡suc p≐E⟦pin⟧ ,′ rreadyness {θ} {_} {s} s∈ θs≡old⊎θs≡new (λ s∈can-E⟦qin⟧ → s∉can-p-θ (canθₛₕ-subset (Env.sig θ) 0 (E ⟦ qin ⟧e) p Env.[]env (λ θ* S* → canₛ-if-true θ* p≐E⟦pin⟧ S*) (λ θ* s* → canₛₕ-if-true θ* p≐E⟦pin⟧ s*) s s∈can-E⟦qin⟧)))
{ "alphanum_fraction": 0.4525395891, "avg_line_length": 42.740397351, "ext": "agda", "hexsha": "3d58a993f4c6bc86cd5491e4665afdb5df87c7d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-confluence/potrec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-confluence/potrec.agda", "max_line_length": 137, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-confluence/potrec.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 16297, "size": 32269 }
open import Agda.Builtin.Equality open import Agda.Builtin.Sigma module _ {X : Set} {x : X} where test : (p q : Σ X (x ≡_)) → p ≡ q test (.x , refl) (z , q) = {!q!} -- C-c C-c q RET: -- WAS: test (_ , refl) (_ , refl) -- WANT: preserved user-written pattern -- test (.x , refl) (_ , refl) test' : (p q : Σ X (x ≡_)) → p ≡ q test' (x , refl) (z , q) = {!q!} -- here it's fine! -- C-c C-c q RET gives us: -- test' (x , refl) (.x , refl) = {!!}
{ "alphanum_fraction": 0.4989200864, "avg_line_length": 21.0454545455, "ext": "agda", "hexsha": "ba04725c981787f0f1fd29757c0ff4df31b32327", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3964.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3964.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3964.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 185, "size": 463 }
open import Agda.Builtin.Unit open import Agda.Builtin.List open import Agda.Builtin.Reflection id : ∀ {a} {A : Set a} → A → A id x = x macro my-macro : Term → TC ⊤ my-macro goal = bindTC (getType (quote id)) λ idType → bindTC (reduce idType) λ _ → returnTC _ fails? : ⊤ fails? = my-macro
{ "alphanum_fraction": 0.6234177215, "avg_line_length": 17.5555555556, "ext": "agda", "hexsha": "b5fb158af015480cd1cb25ce8d6416ddcc10f588", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4585.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4585.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4585.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 316 }
----------------------------------------------------------------------- -- The Agda standard library -- -- Properties of the heterogeneous sublist relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Sublist.Heterogeneous.Properties where open import Level open import Data.Bool.Base using (true; false) open import Data.Empty open import Data.List.Relation.Unary.All using (Null; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Base as List hiding (map; _∷ʳ_) import Data.List.Properties as Lₚ open import Data.List.Relation.Unary.Any.Properties using (here-injective; there-injective) open import Data.List.Relation.Binary.Pointwise as Pw using (Pointwise; []; _∷_) open import Data.List.Relation.Binary.Sublist.Heterogeneous open import Data.Maybe.Relation.Unary.All as MAll using (nothing; just) open import Data.Nat.Base using (ℕ; _≤_; _≥_); open ℕ; open _≤_ import Data.Nat.Properties as ℕₚ open import Data.Product using (∃₂; _×_; _,_; proj₂; uncurry) open import Function.Base open import Function.Bijection using (_⤖_; bijection) open import Function.Equivalence using (_⇔_ ; equivalence) open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary using (Dec; does; _because_; yes; no; ¬_) open import Relation.Nullary.Negation using (¬?) import Relation.Nullary.Decidable as Dec open import Relation.Unary as U using (Pred) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Injectivity of constructors module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where ∷-injectiveˡ : ∀ {x y xs ys} {px qx : R x y} {pxs qxs : Sublist R xs ys} → (Sublist R (x ∷ xs) (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → px ≡ qx ∷-injectiveˡ P.refl = P.refl ∷-injectiveʳ : ∀ {x y xs ys} {px qx : R x y} {pxs qxs : Sublist R xs ys} → (Sublist R (x ∷ xs) (y ∷ ys) ∋ px ∷ pxs) ≡ (qx ∷ qxs) → pxs ≡ qxs ∷-injectiveʳ P.refl = P.refl ∷ʳ-injective : ∀ {y xs ys} {pxs qxs : Sublist R xs ys} → (Sublist R xs (y ∷ ys) ∋ y ∷ʳ pxs) ≡ (y ∷ʳ qxs) → pxs ≡ qxs ∷ʳ-injective P.refl = P.refl module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where length-mono-≤ : ∀ {as bs} → Sublist R as bs → length as ≤ length bs length-mono-≤ [] = z≤n length-mono-≤ (y ∷ʳ rs) = ℕₚ.≤-step (length-mono-≤ rs) length-mono-≤ (r ∷ rs) = s≤s (length-mono-≤ rs) ------------------------------------------------------------------------ -- Conversion to and from Pointwise (proto-reflexivity) fromPointwise : Pointwise R ⇒ Sublist R fromPointwise [] = [] fromPointwise (p ∷ ps) = p ∷ fromPointwise ps toPointwise : ∀ {as bs} → length as ≡ length bs → Sublist R as bs → Pointwise R as bs toPointwise {bs = []} eq [] = [] toPointwise {bs = b ∷ bs} eq (r ∷ rs) = r ∷ toPointwise (ℕₚ.suc-injective eq) rs toPointwise {bs = b ∷ bs} eq (b ∷ʳ rs) = ⊥-elim $ ℕₚ.<-irrefl eq (s≤s (length-mono-≤ rs)) ------------------------------------------------------------------------ -- Various functions' outputs are sublists -- These lemmas are generalisations of results of the form `f xs ⊆ xs`. -- (where _⊆_ stands for Sublist R). If R is reflexive then we can indeed -- obtain `f xs ⊆ xs` from `xs ⊆ ys → f xs ⊆ ys`. The other direction is -- only true if R is both reflexive and transitive. module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where tail-Sublist : ∀ {as bs} → Sublist R as bs → MAll.All (λ as → Sublist R as bs) (tail as) tail-Sublist [] = nothing tail-Sublist (b ∷ʳ ps) = MAll.map (b ∷ʳ_) (tail-Sublist ps) tail-Sublist (p ∷ ps) = just (_ ∷ʳ ps) take-Sublist : ∀ {as bs} n → Sublist R as bs → Sublist R (take n as) bs take-Sublist n (y ∷ʳ rs) = y ∷ʳ take-Sublist n rs take-Sublist zero rs = minimum _ take-Sublist (suc n) [] = [] take-Sublist (suc n) (r ∷ rs) = r ∷ take-Sublist n rs drop-Sublist : ∀ n → Sublist R ⇒ (Sublist R ∘′ drop n) drop-Sublist n (y ∷ʳ rs) = y ∷ʳ drop-Sublist n rs drop-Sublist zero rs = rs drop-Sublist (suc n) [] = [] drop-Sublist (suc n) (r ∷ rs) = _ ∷ʳ drop-Sublist n rs module _ {a b r p} {A : Set a} {B : Set b} {R : REL A B r} {P : Pred A p} (P? : U.Decidable P) where takeWhile-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (takeWhile P? as) bs takeWhile-Sublist [] = [] takeWhile-Sublist (y ∷ʳ rs) = y ∷ʳ takeWhile-Sublist rs takeWhile-Sublist {a ∷ as} (r ∷ rs) with does (P? a) ... | true = r ∷ takeWhile-Sublist rs ... | false = minimum _ dropWhile-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (dropWhile P? as) bs dropWhile-Sublist [] = [] dropWhile-Sublist (y ∷ʳ rs) = y ∷ʳ dropWhile-Sublist rs dropWhile-Sublist {a ∷ as} (r ∷ rs) with does (P? a) ... | true = _ ∷ʳ dropWhile-Sublist rs ... | false = r ∷ rs filter-Sublist : ∀ {as bs} → Sublist R as bs → Sublist R (filter P? as) bs filter-Sublist [] = [] filter-Sublist (y ∷ʳ rs) = y ∷ʳ filter-Sublist rs filter-Sublist {a ∷ as} (r ∷ rs) with does (P? a) ... | true = r ∷ filter-Sublist rs ... | false = _ ∷ʳ filter-Sublist rs ------------------------------------------------------------------------ -- Various functions are increasing wrt _⊆_ -- We write f⁺ for the proof that `xs ⊆ ys → f xs ⊆ f ys` -- and f⁻ for the one that `f xs ⊆ f ys → xs ⊆ ys`. module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where ------------------------------------------------------------------------ -- _∷_ ∷ˡ⁻ : ∀ {a as bs} → Sublist R (a ∷ as) bs → Sublist R as bs ∷ˡ⁻ (y ∷ʳ rs) = y ∷ʳ ∷ˡ⁻ rs ∷ˡ⁻ (r ∷ rs) = _ ∷ʳ rs ∷ʳ⁻ : ∀ {a as b bs} → ¬ R a b → Sublist R (a ∷ as) (b ∷ bs) → Sublist R (a ∷ as) bs ∷ʳ⁻ ¬r (y ∷ʳ rs) = rs ∷ʳ⁻ ¬r (r ∷ rs) = ⊥-elim (¬r r) ∷⁻ : ∀ {a as b bs} → Sublist R (a ∷ as) (b ∷ bs) → Sublist R as bs ∷⁻ (y ∷ʳ rs) = ∷ˡ⁻ rs ∷⁻ (x ∷ rs) = rs module _ {a b c d r} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {R : REL C D r} where ------------------------------------------------------------------------ -- map map⁺ : ∀ {as bs} (f : A → C) (g : B → D) → Sublist (λ a b → R (f a) (g b)) as bs → Sublist R (List.map f as) (List.map g bs) map⁺ f g [] = [] map⁺ f g (y ∷ʳ rs) = g y ∷ʳ map⁺ f g rs map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs map⁻ : ∀ {as bs} (f : A → C) (g : B → D) → Sublist R (List.map f as) (List.map g bs) → Sublist (λ a b → R (f a) (g b)) as bs map⁻ {[]} {bs} f g rs = minimum _ map⁻ {a ∷ as} {b ∷ bs} f g (_ ∷ʳ rs) = b ∷ʳ map⁻ f g rs map⁻ {a ∷ as} {b ∷ bs} f g (r ∷ rs) = r ∷ map⁻ f g rs module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where ------------------------------------------------------------------------ -- _++_ ++⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds → Sublist R (as ++ cs) (bs ++ ds) ++⁺ [] cds = cds ++⁺ (y ∷ʳ abs) cds = y ∷ʳ ++⁺ abs cds ++⁺ (ab ∷ abs) cds = ab ∷ ++⁺ abs cds ++⁻ : ∀ {as bs cs ds} → length as ≡ length bs → Sublist R (as ++ cs) (bs ++ ds) → Sublist R cs ds ++⁻ {[]} {[]} eq rs = rs ++⁻ {a ∷ as} {b ∷ bs} eq rs = ++⁻ (ℕₚ.suc-injective eq) (∷⁻ rs) ++ˡ : ∀ {as bs} (cs : List B) → Sublist R as bs → Sublist R as (cs ++ bs) ++ˡ zs = ++⁺ (minimum zs) ++ʳ : ∀ {as bs} (cs : List B) → Sublist R as bs → Sublist R as (bs ++ cs) ++ʳ cs [] = minimum cs ++ʳ cs (y ∷ʳ rs) = y ∷ʳ ++ʳ cs rs ++ʳ cs (r ∷ rs) = r ∷ ++ʳ cs rs ------------------------------------------------------------------------ -- concat concat⁺ : ∀ {ass bss} → Sublist (Sublist R) ass bss → Sublist R (concat ass) (concat bss) concat⁺ [] = [] concat⁺ (y ∷ʳ rss) = ++ˡ y (concat⁺ rss) concat⁺ (rs ∷ rss) = ++⁺ rs (concat⁺ rss) ------------------------------------------------------------------------ -- take / drop take⁺ : ∀ {m n as bs} → m ≤ n → Pointwise R as bs → Sublist R (take m as) (take n bs) take⁺ z≤n ps = minimum _ take⁺ (s≤s m≤n) [] = [] take⁺ (s≤s m≤n) (p ∷ ps) = p ∷ take⁺ m≤n ps drop⁺ : ∀ {m n as bs} → m ≥ n → Sublist R as bs → Sublist R (drop m as) (drop n bs) drop⁺ {m} z≤n rs = drop-Sublist m rs drop⁺ (s≤s m≥n) [] = [] drop⁺ (s≤s m≥n) (y ∷ʳ rs) = drop⁺ (ℕₚ.≤-step m≥n) rs drop⁺ (s≤s m≥n) (r ∷ rs) = drop⁺ m≥n rs drop⁺-≥ : ∀ {m n as bs} → m ≥ n → Pointwise R as bs → Sublist R (drop m as) (drop n bs) drop⁺-≥ m≥n pw = drop⁺ m≥n (fromPointwise pw) drop⁺-⊆ : ∀ {as bs} m → Sublist R as bs → Sublist R (drop m as) (drop m bs) drop⁺-⊆ m = drop⁺ (ℕₚ.≤-refl {m}) module _ {a b r p q} {A : Set a} {B : Set b} {R : REL A B r} {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q) where ⊆-takeWhile-Sublist : ∀ {as bs} → (∀ {a b} → R a b → P a → Q b) → Pointwise R as bs → Sublist R (takeWhile P? as) (takeWhile Q? bs) ⊆-takeWhile-Sublist rp⇒q [] = [] ⊆-takeWhile-Sublist {a ∷ as} {b ∷ bs} rp⇒q (p ∷ ps) with P? a | Q? b ... | false because _ | _ = minimum _ ... | true because _ | true because _ = p ∷ ⊆-takeWhile-Sublist rp⇒q ps ... | yes pa | no ¬qb = ⊥-elim $ ¬qb $ rp⇒q p pa ⊇-dropWhile-Sublist : ∀ {as bs} → (∀ {a b} → R a b → Q b → P a) → Pointwise R as bs → Sublist R (dropWhile P? as) (dropWhile Q? bs) ⊇-dropWhile-Sublist rq⇒p [] = [] ⊇-dropWhile-Sublist {a ∷ as} {b ∷ bs} rq⇒p (p ∷ ps) with P? a | Q? b ... | true because _ | true because _ = ⊇-dropWhile-Sublist rq⇒p ps ... | true because _ | false because _ = b ∷ʳ dropWhile-Sublist P? (fromPointwise ps) ... | false because _ | false because _ = p ∷ fromPointwise ps ... | no ¬pa | yes qb = ⊥-elim $ ¬pa $ rq⇒p p qb ⊆-filter-Sublist : ∀ {as bs} → (∀ {a b} → R a b → P a → Q b) → Sublist R as bs → Sublist R (filter P? as) (filter Q? bs) ⊆-filter-Sublist rp⇒q [] = [] ⊆-filter-Sublist rp⇒q (y ∷ʳ rs) with does (Q? y) ... | true = y ∷ʳ ⊆-filter-Sublist rp⇒q rs ... | false = ⊆-filter-Sublist rp⇒q rs ⊆-filter-Sublist {a ∷ as} {b ∷ bs} rp⇒q (r ∷ rs) with P? a | Q? b ... | true because _ | true because _ = r ∷ ⊆-filter-Sublist rp⇒q rs ... | false because _ | true because _ = _ ∷ʳ ⊆-filter-Sublist rp⇒q rs ... | false because _ | false because _ = ⊆-filter-Sublist rp⇒q rs ... | yes pa | no ¬qb = ⊥-elim $ ¬qb $ rp⇒q r pa module _ {a r p} {A : Set a} {R : Rel A r} {P : Pred A p} (P? : U.Decidable P) where takeWhile-filter : ∀ {as} → Pointwise R as as → Sublist R (takeWhile P? as) (filter P? as) takeWhile-filter [] = [] takeWhile-filter {a ∷ as} (p ∷ ps) with does (P? a) ... | true = p ∷ takeWhile-filter ps ... | false = minimum _ filter-dropWhile : ∀ {as} → Pointwise R as as → Sublist R (filter P? as) (dropWhile (¬? ∘ P?) as) filter-dropWhile [] = [] filter-dropWhile {a ∷ as} (p ∷ ps) with does (P? a) ... | true = p ∷ filter-Sublist P? (fromPointwise ps) ... | false = filter-dropWhile ps ------------------------------------------------------------------------ -- reverse module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where reverseAcc⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds → Sublist R (reverseAcc cs as) (reverseAcc ds bs) reverseAcc⁺ [] cds = cds reverseAcc⁺ (y ∷ʳ abs) cds = reverseAcc⁺ abs (y ∷ʳ cds) reverseAcc⁺ (r ∷ abs) cds = reverseAcc⁺ abs (r ∷ cds) ʳ++⁺ : ∀ {as bs cs ds} → Sublist R as bs → Sublist R cs ds → Sublist R (as ʳ++ cs) (bs ʳ++ ds) ʳ++⁺ = reverseAcc⁺ reverse⁺ : ∀ {as bs} → Sublist R as bs → Sublist R (reverse as) (reverse bs) reverse⁺ rs = reverseAcc⁺ rs [] reverse⁻ : ∀ {as bs} → Sublist R (reverse as) (reverse bs) → Sublist R as bs reverse⁻ {as} {bs} p = cast (reverse⁺ p) where cast = P.subst₂ (Sublist R) (Lₚ.reverse-involutive as) (Lₚ.reverse-involutive bs) ------------------------------------------------------------------------ -- Inversion lemmas module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} {a as b bs} where ∷⁻¹ : R a b → Sublist R as bs ⇔ Sublist R (a ∷ as) (b ∷ bs) ∷⁻¹ r = equivalence (r ∷_) ∷⁻ ∷ʳ⁻¹ : ¬ R a b → Sublist R (a ∷ as) bs ⇔ Sublist R (a ∷ as) (b ∷ bs) ∷ʳ⁻¹ ¬r = equivalence (_ ∷ʳ_) (∷ʳ⁻ ¬r) ------------------------------------------------------------------------ -- Irrelevant special case module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} where Sublist-[]-irrelevant : U.Irrelevant (Sublist R []) Sublist-[]-irrelevant [] [] = P.refl Sublist-[]-irrelevant (y ∷ʳ p) (.y ∷ʳ q) = P.cong (y ∷ʳ_) (Sublist-[]-irrelevant p q) ------------------------------------------------------------------------ -- (to/from)Any is a bijection toAny-injective : ∀ {xs x} {p q : Sublist R [ x ] xs} → toAny p ≡ toAny q → p ≡ q toAny-injective {p = y ∷ʳ p} {y ∷ʳ q} = P.cong (y ∷ʳ_) ∘′ toAny-injective ∘′ there-injective toAny-injective {p = _ ∷ p} {_ ∷ q} = P.cong₂ (flip _∷_) (Sublist-[]-irrelevant p q) ∘′ here-injective fromAny-injective : ∀ {xs x} {p q : Any (R x) xs} → fromAny {R = R} p ≡ fromAny q → p ≡ q fromAny-injective {p = here px} {here qx} = P.cong here ∘′ ∷-injectiveˡ fromAny-injective {p = there p} {there q} = P.cong there ∘′ fromAny-injective ∘′ ∷ʳ-injective toAny∘fromAny≗id : ∀ {xs x} (p : Any (R x) xs) → toAny (fromAny {R = R} p) ≡ p toAny∘fromAny≗id (here px) = P.refl toAny∘fromAny≗id (there p) = P.cong there (toAny∘fromAny≗id p) Sublist-[x]-bijection : ∀ {x xs} → (Sublist R [ x ] xs) ⤖ (Any (R x) xs) Sublist-[x]-bijection = bijection toAny fromAny toAny-injective toAny∘fromAny≗id ------------------------------------------------------------------------ -- Relational properties module Reflexivity {a r} {A : Set a} {R : Rel A r} (R-refl : Reflexive R) where reflexive : _≡_ ⇒ Sublist R reflexive P.refl = fromPointwise (Pw.refl R-refl) refl : Reflexive (Sublist R) refl = reflexive P.refl open Reflexivity public module Transitivity {a b c r s t} {A : Set a} {B : Set b} {C : Set c} {R : REL A B r} {S : REL B C s} {T : REL A C t} (rs⇒t : Trans R S T) where trans : Trans (Sublist R) (Sublist S) (Sublist T) trans rs (y ∷ʳ ss) = y ∷ʳ trans rs ss trans (y ∷ʳ rs) (s ∷ ss) = _ ∷ʳ trans rs ss trans (r ∷ rs) (s ∷ ss) = rs⇒t r s ∷ trans rs ss trans [] [] = [] open Transitivity public module Antisymmetry {a b r s e} {A : Set a} {B : Set b} {R : REL A B r} {S : REL B A s} {E : REL A B e} (rs⇒e : Antisym R S E) where open ℕₚ.≤-Reasoning antisym : Antisym (Sublist R) (Sublist S) (Pointwise E) antisym [] [] = [] antisym (r ∷ rs) (s ∷ ss) = rs⇒e r s ∷ antisym rs ss -- impossible cases antisym (_∷ʳ_ {xs} {ys₁} y rs) (_∷ʳ_ {ys₂} {zs} z ss) = ⊥-elim $ ℕₚ.<-irrefl P.refl $ begin length (y ∷ ys₁) ≤⟨ length-mono-≤ ss ⟩ length zs ≤⟨ ℕₚ.n≤1+n (length zs) ⟩ length (z ∷ zs) ≤⟨ length-mono-≤ rs ⟩ length ys₁ ∎ antisym (_∷ʳ_ {xs} {ys₁} y rs) (_∷_ {y} {ys₂} {z} {zs} s ss) = ⊥-elim $ ℕₚ.<-irrefl P.refl $ begin length (z ∷ zs) ≤⟨ length-mono-≤ rs ⟩ length ys₁ ≤⟨ length-mono-≤ ss ⟩ length zs ∎ antisym (_∷_ {x} {xs} {y} {ys₁} r rs) (_∷ʳ_ {ys₂} {zs} z ss) = ⊥-elim $ ℕₚ.<-irrefl P.refl $ begin length (y ∷ ys₁) ≤⟨ length-mono-≤ ss ⟩ length xs ≤⟨ length-mono-≤ rs ⟩ length ys₁ ∎ open Antisymmetry public module _ {a b r} {A : Set a} {B : Set b} {R : REL A B r} (R? : Decidable R) where sublist? : Decidable (Sublist R) sublist? [] ys = yes (minimum ys) sublist? (x ∷ xs) [] = no λ () sublist? (x ∷ xs) (y ∷ ys) with R? x y ... | true because [r] = Dec.map (∷⁻¹ (invert [r])) (sublist? xs ys) ... | false because [¬r] = Dec.map (∷ʳ⁻¹ (invert [¬r])) (sublist? (x ∷ xs) ys) module _ {a e r} {A : Set a} {E : Rel A e} {R : Rel A r} where isPreorder : IsPreorder E R → IsPreorder (Pointwise E) (Sublist R) isPreorder ER-isPreorder = record { isEquivalence = Pw.isEquivalence ER.isEquivalence ; reflexive = fromPointwise ∘ Pw.map ER.reflexive ; trans = trans ER.trans } where module ER = IsPreorder ER-isPreorder isPartialOrder : IsPartialOrder E R → IsPartialOrder (Pointwise E) (Sublist R) isPartialOrder ER-isPartialOrder = record { isPreorder = isPreorder ER.isPreorder ; antisym = antisym ER.antisym } where module ER = IsPartialOrder ER-isPartialOrder isDecPartialOrder : IsDecPartialOrder E R → IsDecPartialOrder (Pointwise E) (Sublist R) isDecPartialOrder ER-isDecPartialOrder = record { isPartialOrder = isPartialOrder ER.isPartialOrder ; _≟_ = Pw.decidable ER._≟_ ; _≤?_ = sublist? ER._≤?_ } where module ER = IsDecPartialOrder ER-isDecPartialOrder module _ {a e r} where preorder : Preorder a e r → Preorder _ _ _ preorder ER-preorder = record { isPreorder = isPreorder ER.isPreorder } where module ER = Preorder ER-preorder poset : Poset a e r → Poset _ _ _ poset ER-poset = record { isPartialOrder = isPartialOrder ER.isPartialOrder } where module ER = Poset ER-poset decPoset : DecPoset a e r → DecPoset _ _ _ decPoset ER-poset = record { isDecPartialOrder = isDecPartialOrder ER.isDecPartialOrder } where module ER = DecPoset ER-poset ------------------------------------------------------------------------ -- Properties of disjoint sublists module Disjointness {a b r} {A : Set a} {B : Set b} {R : REL A B r} where private infix 4 _⊆_ _⊆_ = Sublist R -- Forgetting the union DisjointUnion→Disjoint : ∀ {xs ys zs us} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} {τ : us ⊆ zs} → DisjointUnion τ₁ τ₂ τ → Disjoint τ₁ τ₂ DisjointUnion→Disjoint [] = [] DisjointUnion→Disjoint (y ∷ₙ u) = y ∷ₙ DisjointUnion→Disjoint u DisjointUnion→Disjoint (x≈y ∷ₗ u) = x≈y ∷ₗ DisjointUnion→Disjoint u DisjointUnion→Disjoint (x≈y ∷ᵣ u) = x≈y ∷ᵣ DisjointUnion→Disjoint u -- Reconstructing the union Disjoint→DisjointUnion : ∀ {xs ys zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} → Disjoint τ₁ τ₂ → ∃₂ λ us (τ : us ⊆ zs) → DisjointUnion τ₁ τ₂ τ Disjoint→DisjointUnion [] = _ , _ , [] Disjoint→DisjointUnion (y ∷ₙ u) = _ , _ , y ∷ₙ proj₂ (proj₂ (Disjoint→DisjointUnion u)) Disjoint→DisjointUnion (x≈y ∷ₗ u) = _ , _ , x≈y ∷ₗ proj₂ (proj₂ (Disjoint→DisjointUnion u)) Disjoint→DisjointUnion (x≈y ∷ᵣ u) = _ , _ , x≈y ∷ᵣ proj₂ (proj₂ (Disjoint→DisjointUnion u)) -- Disjoint is decidable ⊆-disjoint? : ∀ {xs ys zs} (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) → Dec (Disjoint τ₁ τ₂) ⊆-disjoint? [] [] = yes [] -- Present in both sublists: not disjoint. ⊆-disjoint? (x≈z ∷ τ₁) (y≈z ∷ τ₂) = no λ() -- Present in either sublist: ok. ⊆-disjoint? (y ∷ʳ τ₁) (x≈y ∷ τ₂) = Dec.map′ (x≈y ∷ᵣ_) (λ{ (_ ∷ᵣ d) → d }) (⊆-disjoint? τ₁ τ₂) ⊆-disjoint? (x≈y ∷ τ₁) (y ∷ʳ τ₂) = Dec.map′ (x≈y ∷ₗ_) (λ{ (_ ∷ₗ d) → d }) (⊆-disjoint? τ₁ τ₂) -- Present in neither sublist: ok. ⊆-disjoint? (y ∷ʳ τ₁) (.y ∷ʳ τ₂) = Dec.map′ (y ∷ₙ_) (λ{ (_ ∷ₙ d) → d }) (⊆-disjoint? τ₁ τ₂) -- Disjoint is proof-irrelevant Disjoint-irrelevant : ∀{xs ys zs} → Irrelevant (Disjoint {R = R} {xs} {ys} {zs}) Disjoint-irrelevant [] [] = P.refl Disjoint-irrelevant (y ∷ₙ d₁) (.y ∷ₙ d₂) = P.cong (y ∷ₙ_) (Disjoint-irrelevant d₁ d₂) Disjoint-irrelevant (x≈y ∷ₗ d₁) (.x≈y ∷ₗ d₂) = P.cong (x≈y ∷ₗ_) (Disjoint-irrelevant d₁ d₂) Disjoint-irrelevant (x≈y ∷ᵣ d₁) (.x≈y ∷ᵣ d₂) = P.cong (x≈y ∷ᵣ_) (Disjoint-irrelevant d₁ d₂) -- Note: DisjointUnion is not proof-irrelevant unless the underlying relation R is. -- The proof is not entirely trivial, thus, we leave it for future work: -- -- DisjointUnion-irrelevant : Irrelevant R → -- ∀{xs ys us zs} {τ : us ⊆ zs} → -- Irrelevant (λ (τ₁ : xs ⊆ zs) (τ₂ : ys ⊆ zs) → DisjointUnion τ₁ τ₂ τ) -- Irreflexivity Disjoint-irrefl′ : ∀{xs ys} {τ : xs ⊆ ys} → Disjoint τ τ → Null xs Disjoint-irrefl′ [] = [] Disjoint-irrefl′ (y ∷ₙ d) = Disjoint-irrefl′ d Disjoint-irrefl : ∀{x xs ys} → Irreflexive {A = x ∷ xs ⊆ ys } _≡_ Disjoint Disjoint-irrefl P.refl x with Disjoint-irrefl′ x ... | () ∷ _ -- Symmetry DisjointUnion-sym : ∀ {xs ys xys} {zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} {τ : xys ⊆ zs} → DisjointUnion τ₁ τ₂ τ → DisjointUnion τ₂ τ₁ τ DisjointUnion-sym [] = [] DisjointUnion-sym (y ∷ₙ d) = y ∷ₙ DisjointUnion-sym d DisjointUnion-sym (x≈y ∷ₗ d) = x≈y ∷ᵣ DisjointUnion-sym d DisjointUnion-sym (x≈y ∷ᵣ d) = x≈y ∷ₗ DisjointUnion-sym d Disjoint-sym : ∀ {xs ys} {zs} {τ₁ : xs ⊆ zs} {τ₂ : ys ⊆ zs} → Disjoint τ₁ τ₂ → Disjoint τ₂ τ₁ Disjoint-sym [] = [] Disjoint-sym (y ∷ₙ d) = y ∷ₙ Disjoint-sym d Disjoint-sym (x≈y ∷ₗ d) = x≈y ∷ᵣ Disjoint-sym d Disjoint-sym (x≈y ∷ᵣ d) = x≈y ∷ₗ Disjoint-sym d -- Empty sublist DisjointUnion-[]ˡ : ∀{xs ys} {ε : [] ⊆ ys} {τ : xs ⊆ ys} → DisjointUnion ε τ τ DisjointUnion-[]ˡ {ε = []} {τ = []} = [] DisjointUnion-[]ˡ {ε = y ∷ʳ ε} {τ = y ∷ʳ τ} = y ∷ₙ DisjointUnion-[]ˡ DisjointUnion-[]ˡ {ε = y ∷ʳ ε} {τ = x≈y ∷ τ} = x≈y ∷ᵣ DisjointUnion-[]ˡ DisjointUnion-[]ʳ : ∀{xs ys} {ε : [] ⊆ ys} {τ : xs ⊆ ys} → DisjointUnion τ ε τ DisjointUnion-[]ʳ {ε = []} {τ = []} = [] DisjointUnion-[]ʳ {ε = y ∷ʳ ε} {τ = y ∷ʳ τ} = y ∷ₙ DisjointUnion-[]ʳ DisjointUnion-[]ʳ {ε = y ∷ʳ ε} {τ = x≈y ∷ τ} = x≈y ∷ₗ DisjointUnion-[]ʳ -- A sublist τ : x∷xs ⊆ ys can be split into two disjoint sublists -- [x] ⊆ ys (canonical choice) and (∷ˡ⁻ τ) : xs ⊆ ys. DisjointUnion-fromAny∘toAny-∷ˡ⁻ : ∀ {x xs ys} (τ : (x ∷ xs) ⊆ ys) → DisjointUnion (fromAny (toAny τ)) (∷ˡ⁻ τ) τ DisjointUnion-fromAny∘toAny-∷ˡ⁻ (y ∷ʳ τ) = y ∷ₙ DisjointUnion-fromAny∘toAny-∷ˡ⁻ τ DisjointUnion-fromAny∘toAny-∷ˡ⁻ (xRy ∷ τ) = xRy ∷ₗ DisjointUnion-[]ˡ -- Disjoint union of three mutually disjoint lists. -- -- τᵢⱼ denotes the disjoint union of τᵢ and τⱼ: DisjointUnion τᵢ τⱼ τᵢⱼ record DisjointUnion³ {xs ys zs ts} (τ₁ : xs ⊆ ts) (τ₂ : ys ⊆ ts) (τ₃ : zs ⊆ ts) {xys xzs yzs} (τ₁₂ : xys ⊆ ts) (τ₁₃ : xzs ⊆ ts) (τ₂₃ : yzs ⊆ ts) : Set (a ⊔ b ⊔ r) where field {union³} : List A sub³ : union³ ⊆ ts join₁ : DisjointUnion τ₁ τ₂₃ sub³ join₂ : DisjointUnion τ₂ τ₁₃ sub³ join₃ : DisjointUnion τ₃ τ₁₂ sub³ infixr 5 _∷ʳ-DisjointUnion³_ _∷₁-DisjointUnion³_ _∷₂-DisjointUnion³_ _∷₃-DisjointUnion³_ -- Weakening the target list ts of a disjoint union. _∷ʳ-DisjointUnion³_ : ∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} → ∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} → ∀ y → DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ → DisjointUnion³ (y ∷ʳ τ₁) (y ∷ʳ τ₂) (y ∷ʳ τ₃) (y ∷ʳ τ₁₂) (y ∷ʳ τ₁₃) (y ∷ʳ τ₂₃) y ∷ʳ-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record { sub³ = y ∷ʳ σ ; join₁ = y ∷ₙ d₁ ; join₂ = y ∷ₙ d₂ ; join₃ = y ∷ₙ d₃ } -- Adding an element to the first list. _∷₁-DisjointUnion³_ : ∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} → ∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} → ∀ {x y} (xRy : R x y) → DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ → DisjointUnion³ (xRy ∷ τ₁) (y ∷ʳ τ₂) (y ∷ʳ τ₃) (xRy ∷ τ₁₂) (xRy ∷ τ₁₃) (y ∷ʳ τ₂₃) xRy ∷₁-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record { sub³ = xRy ∷ σ ; join₁ = xRy ∷ₗ d₁ ; join₂ = xRy ∷ᵣ d₂ ; join₃ = xRy ∷ᵣ d₃ } -- Adding an element to the second list. _∷₂-DisjointUnion³_ : ∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} → ∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} → ∀ {x y} (xRy : R x y) → DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ → DisjointUnion³ (y ∷ʳ τ₁) (xRy ∷ τ₂) (y ∷ʳ τ₃) (xRy ∷ τ₁₂) (y ∷ʳ τ₁₃) (xRy ∷ τ₂₃) xRy ∷₂-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record { sub³ = xRy ∷ σ ; join₁ = xRy ∷ᵣ d₁ ; join₂ = xRy ∷ₗ d₂ ; join₃ = xRy ∷ᵣ d₃ } -- Adding an element to the third list. _∷₃-DisjointUnion³_ : ∀ {xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} → ∀ {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} → ∀ {x y} (xRy : R x y) → DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ → DisjointUnion³ (y ∷ʳ τ₁) (y ∷ʳ τ₂) (xRy ∷ τ₃) (y ∷ʳ τ₁₂) (xRy ∷ τ₁₃) (xRy ∷ τ₂₃) xRy ∷₃-DisjointUnion³ record{ sub³ = σ ; join₁ = d₁ ; join₂ = d₂ ; join₃ = d₃ } = record { sub³ = xRy ∷ σ ; join₁ = xRy ∷ᵣ d₁ ; join₂ = xRy ∷ᵣ d₂ ; join₃ = xRy ∷ₗ d₃ } -- Computing the disjoint union of three disjoint lists. disjointUnion³ : ∀{xs ys zs ts} {τ₁ : xs ⊆ ts} {τ₂ : ys ⊆ ts} {τ₃ : zs ⊆ ts} {xys xzs yzs} {τ₁₂ : xys ⊆ ts} {τ₁₃ : xzs ⊆ ts} {τ₂₃ : yzs ⊆ ts} → DisjointUnion τ₁ τ₂ τ₁₂ → DisjointUnion τ₁ τ₃ τ₁₃ → DisjointUnion τ₂ τ₃ τ₂₃ → DisjointUnion³ τ₁ τ₂ τ₃ τ₁₂ τ₁₃ τ₂₃ disjointUnion³ [] [] [] = record { sub³ = [] ; join₁ = [] ; join₂ = [] ; join₃ = [] } disjointUnion³ (y ∷ₙ d₁₂) (.y ∷ₙ d₁₃) (.y ∷ₙ d₂₃) = y ∷ʳ-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃ disjointUnion³ (y ∷ₙ d₁₂) (xRy ∷ᵣ d₁₃) (.xRy ∷ᵣ d₂₃) = xRy ∷₃-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃ disjointUnion³ (xRy ∷ᵣ d₁₂) (y ∷ₙ d₁₃) (.xRy ∷ₗ d₂₃) = xRy ∷₂-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃ disjointUnion³ (xRy ∷ₗ d₁₂) (.xRy ∷ₗ d₁₃) (y ∷ₙ d₂₃) = xRy ∷₁-DisjointUnion³ disjointUnion³ d₁₂ d₁₃ d₂₃ disjointUnion³ (xRy ∷ᵣ d₁₂) (xRy′ ∷ᵣ d₁₃) () -- If a sublist τ is disjoint to two lists σ₁ and σ₂, -- then also to their disjoint union σ. disjoint⇒disjoint-to-union : ∀{xs ys zs yzs ts} {τ : xs ⊆ ts} {σ₁ : ys ⊆ ts} {σ₂ : zs ⊆ ts} {σ : yzs ⊆ ts} → Disjoint τ σ₁ → Disjoint τ σ₂ → DisjointUnion σ₁ σ₂ σ → Disjoint τ σ disjoint⇒disjoint-to-union d₁ d₂ u = let _ , _ , u₁ = Disjoint→DisjointUnion d₁ _ , _ , u₂ = Disjoint→DisjointUnion d₂ in DisjointUnion→Disjoint (DisjointUnion³.join₁ (disjointUnion³ u₁ u₂ u)) open Disjointness public -- Monotonicity of disjointness. module DisjointnessMonotonicity {a b c r s t} {A : Set a} {B : Set b} {C : Set c} {R : REL A B r} {S : REL B C s} {T : REL A C t} (rs⇒t : Trans R S T) where -- We can enlarge and convert the target list of a disjoint union. weakenDisjointUnion : ∀ {xs ys xys zs ws} {τ₁ : Sublist R xs zs} {τ₂ : Sublist R ys zs} {τ : Sublist R xys zs} (σ : Sublist S zs ws) → DisjointUnion τ₁ τ₂ τ → DisjointUnion (trans rs⇒t τ₁ σ) (trans rs⇒t τ₂ σ) (trans rs⇒t τ σ) weakenDisjointUnion [] [] = [] weakenDisjointUnion (w ∷ʳ σ) d = w ∷ₙ weakenDisjointUnion σ d weakenDisjointUnion (_ ∷ σ) (y ∷ₙ d) = _ ∷ₙ weakenDisjointUnion σ d weakenDisjointUnion (zSw ∷ σ) (xRz ∷ₗ d) = rs⇒t xRz zSw ∷ₗ weakenDisjointUnion σ d weakenDisjointUnion (zSw ∷ σ) (yRz ∷ᵣ d) = rs⇒t yRz zSw ∷ᵣ weakenDisjointUnion σ d weakenDisjoint : ∀ {xs ys zs ws} {τ₁ : Sublist R xs zs} {τ₂ : Sublist R ys zs} (σ : Sublist S zs ws) → Disjoint τ₁ τ₂ → Disjoint (trans rs⇒t τ₁ σ) (trans rs⇒t τ₂ σ) weakenDisjoint [] [] = [] weakenDisjoint (w ∷ʳ σ) d = w ∷ₙ weakenDisjoint σ d weakenDisjoint (_ ∷ σ) (y ∷ₙ d) = _ ∷ₙ weakenDisjoint σ d weakenDisjoint (zSw ∷ σ) (xRz ∷ₗ d) = rs⇒t xRz zSw ∷ₗ weakenDisjoint σ d weakenDisjoint (zSw ∷ σ) (yRz ∷ᵣ d) = rs⇒t yRz zSw ∷ᵣ weakenDisjoint σ d -- Lists remain disjoint when elements are removed. shrinkDisjoint : ∀ {us vs xs ys zs} (σ₁ : Sublist R us xs) {τ₁ : Sublist S xs zs} (σ₂ : Sublist R vs ys) {τ₂ : Sublist S ys zs} → Disjoint τ₁ τ₂ → Disjoint (trans rs⇒t σ₁ τ₁) (trans rs⇒t σ₂ τ₂) shrinkDisjoint σ₁ σ₂ (y ∷ₙ d) = y ∷ₙ shrinkDisjoint σ₁ σ₂ d shrinkDisjoint (x ∷ʳ σ₁) σ₂ (xSz ∷ₗ d) = _ ∷ₙ shrinkDisjoint σ₁ σ₂ d shrinkDisjoint (uRx ∷ σ₁) σ₂ (xSz ∷ₗ d) = rs⇒t uRx xSz ∷ₗ shrinkDisjoint σ₁ σ₂ d shrinkDisjoint σ₁ (y ∷ʳ σ₂) (ySz ∷ᵣ d) = _ ∷ₙ shrinkDisjoint σ₁ σ₂ d shrinkDisjoint σ₁ (vRy ∷ σ₂) (ySz ∷ᵣ d) = rs⇒t vRy ySz ∷ᵣ shrinkDisjoint σ₁ σ₂ d shrinkDisjoint [] [] [] = [] open DisjointnessMonotonicity public
{ "alphanum_fraction": 0.5376075493, "avg_line_length": 40.3697478992, "ext": "agda", "hexsha": "3e5957a6e4efc7edcc6757e0f22b3de264b77fed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Heterogeneous/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Heterogeneous/Properties.agda", "max_line_length": 113, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Heterogeneous/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 12095, "size": 28824 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.JoinComm open import homotopy.JoinAssocCubical module homotopy.JoinSusp where module _ {i} {A : Type i} where private module Into = PushoutRec {d = *-span (Lift {j = i} Bool) A} {D = Suspension A} (λ {(lift true) → north _; (lift false) → south _}) (λ _ → south _) (λ {(lift true , a) → merid _ a; (lift false , a) → idp}) into = Into.f module Out = SuspensionRec A {C = Lift {j = i} Bool * A} (left (lift true)) (left (lift false)) (λ a → glue (lift true , a) ∙ ! (glue (lift false , a))) out = Out.f into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim _ idp idp (↓-∘=idf-from-square into out ∘ λ a → vert-degen-square $ ap (ap into) (Out.glue-β a) ∙ ap-∙ into (glue (lift true , a)) (! (glue (lift false , a))) ∙ (Into.glue-β (lift true , a) ∙2 (ap-! into (glue (lift false , a)) ∙ ap ! (Into.glue-β (lift false , a)))) ∙ ∙-unit-r _) out-into : ∀ j → out (into j) == j out-into = Pushout-elim (λ {(lift true) → idp; (lift false) → idp}) (λ a → glue (lift false , a)) (↓-∘=idf-from-square out into ∘ λ {(lift true , a) → (ap (ap out) (Into.glue-β (lift true , a)) ∙ Out.glue-β a) ∙v⊡ (vid-square {p = glue (lift true , a)} ⊡h rt-square (glue (lift false , a))) ⊡v∙ ∙-unit-r _; (lift false , a) → ap (ap out) (Into.glue-β (lift false , a)) ∙v⊡ connection}) join-S⁰-equiv : Lift {j = i} Bool * A ≃ Suspension A join-S⁰-equiv = equiv into out into-out out-into join-S⁰-path = ua join-S⁰-equiv module _ {i} (X : Ptd i) where join-S⁰-⊙path : ⊙Sphere {i} 0 ⊙* X == ⊙Susp X join-S⁰-⊙path = ⊙ua join-S⁰-equiv idp module _ {i} {A B : Type i} where join-susp-shift : Suspension A * B == Suspension (A * B) join-susp-shift = ap (λ C → C * B) (! join-S⁰-path) ∙ join-rearrange-path ∙ ua swap-equiv ∙ join-S⁰-path ∙ ap Suspension (ua swap-equiv) module _ {i} (X Y : Ptd i) where ⊙join-susp-shift : ⊙Susp X ⊙* Y == ⊙Susp (X ⊙* Y) ⊙join-susp-shift = ap (λ Z → Z ⊙* Y) (! (join-S⁰-⊙path X)) ∙ join-rearrange-⊙path (⊙Sphere 0) X Y ∙ ⊙ua swap-equiv (! (glue _)) ∙ join-S⁰-⊙path (Y ⊙* X) ∙ ap (λ A → (Suspension A , north _)) (ua swap-equiv) module _ {i} (X : Ptd i) where ⊙join-sphere : (m : ℕ) → ⊙Sphere {i} m ⊙* X == ⊙Susp^ (S m) X ⊙join-sphere O = join-S⁰-⊙path X ⊙join-sphere (S m) = ⊙join-susp-shift (⊙Sphere m) X ∙ ap ⊙Susp (⊙join-sphere m)
{ "alphanum_fraction": 0.4969544966, "avg_line_length": 30.0107526882, "ext": "agda", "hexsha": "9e8c82c73f6f9a3a3ee882052389dcc4234e4d82", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "homotopy/JoinSusp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "homotopy/JoinSusp.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "homotopy/JoinSusp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1025, "size": 2791 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Simple implementation of sets of ℕ. -- -- Since ℕ is represented as unary numbers, simply having an ordered list of -- numbers to represent a set is quite inefficient. For instance, to see if -- 6 is in the set {1, 3, 4}, we have to do a comparison with 1, then 3, and -- then 4. But 4 is equal to suc 3, so we should be able to share the work -- accross those two comparisons. -- -- This module defines a type that represents {1, 3, 4} as: -- -- 1 ∷ 1 ∷ 0 ∷ [] -- -- i.e. we only store the gaps. When checking if a number (the needle) is in the -- set (the haystack), we subtract each successive member of the haystack from the -- needle as we go. For example, to check if 6 is in the above set, we do the -- following: -- -- start: 6 ∈? (1 ∷ 1 ∷ 0 ∷ []) -- test head: 6 ≟ 1 -- not equal, so continue: (6 - 1 - 1) ∈? (1 ∷ 0 ∷ []) -- compute: 4 ∈? (1 ∷ 0 ∷ []) -- test head: 4 ≟ 1 -- not equal, so continue: (4 - 1 - 1) ∈? (0 ∷ []) -- compute: 2 ∈? (0 ∷ []) -- test head: 2 ≟ 0 -- not equal, so continue: (2 - 1 - 1) ∈? [] -- empty list: false -- -- In this way, we change the membership test from O(n²) to O(n). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Tactic.RingSolver.Core.NatSet where open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.List as List using (List; _∷_; []) open import Data.Maybe.Base as Maybe using (Maybe; just; nothing) open import Data.Bool as Bool using (Bool) open import Function open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Helper methods para : ∀ {a b} {A : Set a} {B : Set b} → (A → List A → B → B) → B → List A → B para f b [] = b para f b (x ∷ xs) = f x xs (para f b xs) ------------------------------------------------------------------------ -- Definition NatSet : Set NatSet = List ℕ ------------------------------------------------------------------------ -- Functions insert : ℕ → NatSet → NatSet insert x xs = para f (_∷ []) xs x where f : ℕ → NatSet → (ℕ → NatSet) → ℕ → NatSet f y ys c x with ℕ.compare x y ... | ℕ.less x k = x ∷ k ∷ ys ... | ℕ.equal x = x ∷ ys ... | ℕ.greater y k = y ∷ c k delete : ℕ → NatSet → NatSet delete x xs = para f (const []) xs x where f : ℕ → NatSet → (ℕ → NatSet) → ℕ → NatSet f y ys c x with ℕ.compare x y f y ys c x | ℕ.less x k = y ∷ ys f y [] c x | ℕ.equal x = [] f y₁ (y₂ ∷ ys) c x | ℕ.equal x = suc x ℕ.+ y₂ ∷ ys f y ys c x | ℕ.greater y k = y ∷ c k -- Returns the position of the element, if it's present. lookup : ℕ → NatSet → Maybe ℕ lookup x xs = List.foldr f (const (const nothing)) xs x 0 where f : ℕ → (ℕ → ℕ → Maybe ℕ) → ℕ → ℕ → Maybe ℕ f y ys x i with ℕ.compare x y ... | ℕ.less x k = nothing ... | ℕ.equal y = just i ... | ℕ.greater y k = ys k (suc i) member : ℕ → NatSet → Bool member x = Maybe.is-just ∘ lookup x fromList : List ℕ → NatSet fromList = List.foldr insert [] toList : NatSet → List ℕ toList = List.drop 1 ∘ List.map ℕ.pred ∘ List.scanl (λ x y → suc (y ℕ.+ x)) 0 ------------------------------------------------------------------------ -- Tests private example₁ : fromList (4 ∷ 3 ∷ 1 ∷ 0 ∷ 2 ∷ []) ≡ (0 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) example₁ = refl example₂ : lookup 3 (fromList (4 ∷ 3 ∷ 1 ∷ 0 ∷ 2 ∷ [])) ≡ just 3 example₂ = refl example₃ : toList (fromList (4 ∷ 3 ∷ 1 ∷ 0 ∷ 2 ∷ [])) ≡ (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []) example₃ = refl example₄ : delete 3 (fromList (4 ∷ 3 ∷ 1 ∷ 2 ∷ [])) ≡ fromList (4 ∷ 1 ∷ 2 ∷ []) example₄ = refl example₅ : delete 3 (fromList (4 ∷ 1 ∷ 2 ∷ [])) ≡ fromList (4 ∷ 1 ∷ 2 ∷ []) example₅ = refl
{ "alphanum_fraction": 0.489635996, "avg_line_length": 32.9666666667, "ext": "agda", "hexsha": "d23c5e3d46bd6d7b014e30209566d311d652fc0b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/NatSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/NatSet.agda", "max_line_length": 82, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/NatSet.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1319, "size": 3956 }
module Numeral.Natural.Relation.DivisibilityWithRemainder where import Lvl open import Logic open import Logic.Propositional open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Oper open import Type -- Divisibility with a remainder. -- `(y ∣ x)(r)` means that `y` is divisible by `x − r`. -- Note: `(0 ∣ᵣₑₘ _)(_)` is impossible to construct (0 is never a divisor by this definition). data _∣ᵣₑₘ_ : (y : ℕ) → ℕ → 𝕟(y) → Stmt{Lvl.𝟎} where DivRem𝟎 : ∀{y : ℕ} {r : 𝕟(y)} → (y ∣ᵣₑₘ 𝕟-to-ℕ(r))(r) DivRem𝐒 : ∀{y x : ℕ}{r : 𝕟(y)} → (y ∣ᵣₑₘ x)(r) → (y ∣ᵣₑₘ (x + y))(r) _∣₊_ : ℕ → ℕ → Stmt 𝟎 ∣₊ x = ⊥ 𝐒(y) ∣₊ x = (𝐒(y) ∣ᵣₑₘ x)(𝟎) -- The quotient extracted from the proof of divisibility. [∣ᵣₑₘ]-quotient : ∀{y x}{r} → (y ∣ᵣₑₘ x)(r) → ℕ [∣ᵣₑₘ]-quotient DivRem𝟎 = 𝟎 [∣ᵣₑₘ]-quotient (DivRem𝐒 p) = 𝐒([∣ᵣₑₘ]-quotient p) -- The remainder extracted from the proof of divisibility. [∣ᵣₑₘ]-remainder : ∀{y x}{r} → (y ∣ᵣₑₘ x)(r) → 𝕟(y) [∣ᵣₑₘ]-remainder{r = r} _ = r data _∣ᵣₑₘ₀_ : (y : ℕ) → ℕ → ℕ → Stmt{Lvl.𝟎} where base₀ : ∀{y} → (y ∣ᵣₑₘ₀ 𝟎)(𝟎) base₊ : ∀{y r} → (y ∣ᵣₑₘ₀ r)(r) → (𝐒(y) ∣ᵣₑₘ₀ 𝐒(r))(𝐒(r)) step : ∀{y x r} → (y ∣ᵣₑₘ₀ x)(r) → (y ∣ᵣₑₘ₀ (x + y))(r)
{ "alphanum_fraction": 0.5825726141, "avg_line_length": 34.4285714286, "ext": "agda", "hexsha": "54b193be0f6f479eb4eacb1c1fc2321b19a674b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/DivisibilityWithRemainder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/DivisibilityWithRemainder.agda", "max_line_length": 94, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/DivisibilityWithRemainder.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 675, "size": 1205 }
open import Type open import Logic.Classical as Logic using (Classical) open import Logic.Predicate as Logic using () module Formalization.ClassicalPropositionalLogic.NaturalDeduction.Tree ⦃ classical : ∀{ℓ} → Logic.∀ₗ(Classical{ℓ}) ⦄ where import Lvl open import Logic open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_) private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level open import Formalization.ClassicalPropositionalLogic.Syntax module _ {ℓₚ} {P : Type{ℓₚ}} where {-# NO_POSITIVITY_CHECK #-} data Tree : Formula(P) → Stmt{Lvl.𝐒(ℓₚ)} where [⊤]-intro : Tree(⊤) [⊥]-intro : ∀{φ} → Tree(φ) → Tree(¬ φ) → Tree(⊥) [⊥]-elim : ∀{φ} → Tree(⊥) → Tree(φ) [¬]-intro : ∀{φ} → (Tree(φ) → Tree(⊥)) → Tree(¬ φ) [¬]-elim : ∀{φ} → (Tree(¬ φ) → Tree(⊥)) → Tree(φ) [∧]-intro : ∀{φ ψ} → Tree(φ) → Tree(ψ) → Tree(φ ∧ ψ) [∧]-elimₗ : ∀{φ ψ} → Tree(φ ∧ ψ) → Tree(φ) [∧]-elimᵣ : ∀{φ ψ} → Tree(φ ∧ ψ) → Tree(ψ) [∨]-introₗ : ∀{φ ψ} → Tree(φ) → Tree(φ ∨ ψ) [∨]-introᵣ : ∀{φ ψ} → Tree(ψ) → Tree(φ ∨ ψ) [∨]-elim : ∀{φ ψ χ} → (Tree(φ) → Tree(χ)) → (Tree(ψ) → Tree(χ)) → Tree(φ ∨ ψ) → Tree(χ) [⟶]-intro : ∀{φ ψ} → (Tree(φ) → Tree(ψ)) → Tree(φ ⟶ ψ) [⟶]-elim : ∀{φ ψ} → Tree(φ) → Tree(φ ⟶ ψ) → Tree(ψ) [⟷]-intro : ∀{φ ψ} → (Tree(ψ) → Tree(φ)) → (Tree(φ) → Tree(ψ)) → Tree(ψ ⟷ φ) [⟷]-elimₗ : ∀{φ ψ} → Tree(φ) → Tree(ψ ⟷ φ) → Tree(ψ) [⟷]-elimᵣ : ∀{φ ψ} → Tree(ψ) → Tree(ψ ⟷ φ) → Tree(φ) open import Formalization.ClassicalPropositionalLogic.NaturalDeduction module _ {ℓ} where Tree-to-[⊢]-tautologies : ∀{φ} → Tree(φ) → (∅{ℓ} ⊢ φ) Tree-to-[⊢]-tautologies {.⊤} [⊤]-intro = [⊤]-intro Tree-to-[⊢]-tautologies {.⊥} ([⊥]-intro tφ tφ₁) = ([⊥]-intro (Tree-to-[⊢]-tautologies tφ) (Tree-to-[⊢]-tautologies tφ₁) ) Tree-to-[⊢]-tautologies {φ} ([⊥]-elim tφ) = ([⊥]-elim (Tree-to-[⊢]-tautologies tφ) ) Tree-to-[⊢]-tautologies {.(¬ _)} ([¬]-intro x) = [¬]-intro {!!} Tree-to-[⊢]-tautologies {φ} ([¬]-elim x) = {!!} Tree-to-[⊢]-tautologies {.(_ ∧ _)} ([∧]-intro tφ tφ₁) = ([∧]-intro (Tree-to-[⊢]-tautologies tφ) (Tree-to-[⊢]-tautologies tφ₁) ) Tree-to-[⊢]-tautologies {φ} ([∧]-elimₗ tφ) = ([∧]-elimₗ (Tree-to-[⊢]-tautologies tφ) ) Tree-to-[⊢]-tautologies {φ} ([∧]-elimᵣ tφ) = ([∧]-elimᵣ (Tree-to-[⊢]-tautologies tφ) ) Tree-to-[⊢]-tautologies {.(_ ∨ _)} ([∨]-introₗ tφ) = ([∨]-introₗ (Tree-to-[⊢]-tautologies tφ) ) Tree-to-[⊢]-tautologies {.(_ ∨ _)} ([∨]-introᵣ tφ) = ([∨]-introᵣ (Tree-to-[⊢]-tautologies tφ) ) Tree-to-[⊢]-tautologies {φ} ([∨]-elim x x₁ tφ) = {!!} Tree-to-[⊢]-tautologies {.(_ ⟶ _)} ([⟶]-intro x) = {!!} Tree-to-[⊢]-tautologies {φ} ([⟶]-elim tφ tφ₁) = ([⟶]-elim (Tree-to-[⊢]-tautologies tφ) (Tree-to-[⊢]-tautologies tφ₁) ) Tree-to-[⊢]-tautologies {.(_ ⟷ _)} ([⟷]-intro x x₁) = {!!} Tree-to-[⊢]-tautologies {φ} ([⟷]-elimₗ tφ tφ₁) = ([⟷]-elimₗ (Tree-to-[⊢]-tautologies tφ) (Tree-to-[⊢]-tautologies tφ₁) ) Tree-to-[⊢]-tautologies {φ} ([⟷]-elimᵣ tφ tφ₁) = ([⟷]-elimᵣ (Tree-to-[⊢]-tautologies tφ) (Tree-to-[⊢]-tautologies tφ₁) ) --Tree-to-[⊢] : ∀{P : Type{ℓₚ}}{Γ : Formulas(P)}{φ} → ((Γ ⊆ Tree) → Tree(φ)) → (Γ ⊢ φ) --Tree-to-[⊢] {Γ} {φ} t = {!!}
{ "alphanum_fraction": 0.486632537, "avg_line_length": 35.5151515152, "ext": "agda", "hexsha": "d88395adda86886969c9b94de15eb7727120214c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Tree.agda", "max_line_length": 159, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1673, "size": 3516 }
record R (A : Set) : Set where field f : A → A open module R′ (@0 A : Set) (r : R A) = R {A = A} r
{ "alphanum_fraction": 0.4716981132, "avg_line_length": 17.6666666667, "ext": "agda", "hexsha": "e68a900232f01d445c9104cae6e74c56d9507371", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue4786c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue4786c.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue4786c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 106 }
module Impure.LFRef.Properties.Confluence where open import Prelude open import Data.List open import Extensions.List open import Extensions.Nat open import Impure.LFRef.Syntax open import Impure.LFRef.Eval private val-lemma : ∀ {t} → (v v₁ : Val t) → v ≡ v₁ val-lemma loc loc = refl val-lemma unit unit = refl val-lemma con con = refl -- A stronger property than Church-Rosser deterministic : ∀ {𝕊 e e' e'' μ μ' μ''} → 𝕊 ⊢ e , μ ≻ e' , μ' → 𝕊 ⊢ e , μ ≻ e'' , μ'' → --------------------------------------------- e' ≡ e'' × μ' ≡ μ'' deterministic (funapp-β x p₁) (funapp-β x' p) with []=-functional _ _ x x' deterministic (funapp-β x refl) (funapp-β x' refl) | refl = refl , refl deterministic {μ = μ} (ref-val p) (ref-val q) = refl , cong (λ v → μ ∷ʳ (, v)) (val-lemma p q) deterministic (ref-val v) (ref-clos ()) deterministic (≔-val p v) (≔-val q w) with <-unique p q | val-lemma v w ... | refl | refl = refl , refl deterministic (≔-val p v) (≔-clos₁ ()) deterministic (≔-val p v) (≔-clos₂ _ ()) deterministic {μ = μ} (!-val p) (!-val q) = (cong (λ v → tm (!load μ v)) (<-unique p q)) , refl deterministic (!-val p) (!-clos ()) deterministic (ref-clos ()) (ref-val v) deterministic (ref-clos p) (ref-clos q) with deterministic p q ... | refl , refl = refl , refl deterministic (!-clos ()) (!-val p) deterministic (!-clos p) (!-clos q) with deterministic p q ... | refl , refl = refl , refl deterministic (≔-clos₁ ()) (≔-val p v) deterministic (≔-clos₁ p) (≔-clos₁ q) with deterministic p q ... | refl , refl = refl , refl deterministic (≔-clos₁ ()) (≔-clos₂ (tm x) q) deterministic (≔-clos₂ (tm x) p) (≔-clos₁ ()) deterministic (≔-clos₂ _ ()) (≔-val p v) deterministic (≔-clos₂ _ p) (≔-clos₂ _ q) with deterministic p q ... | refl , refl = refl , refl deterministic-seq : ∀ {𝕊 e e' e'' μ μ' μ''} → 𝕊 ⊢ e , μ ≻ₛ e' , μ' → 𝕊 ⊢ e , μ ≻ₛ e'' , μ'' → --------------------------------------------- e' ≡ e'' × μ' ≡ μ'' deterministic-seq lett-β lett-β = refl , refl deterministic-seq lett-β (lett-clos ()) deterministic-seq (lett-clos ()) lett-β deterministic-seq (lett-clos p) (lett-clos q) with deterministic p q ... | refl , refl = refl , refl deterministic-seq (ret-clos x) (ret-clos x') with deterministic x x' ... | refl , refl = refl , refl open import Data.Star confluence : ∀ {𝕊 e e' e'' μ μ' μ''} → 𝕊 ⊢ e , μ ≻⋆ e' , μ' → 𝕊 ⊢ e , μ ≻⋆ e'' , μ'' → SeqExpVal e' → SeqExpVal e'' → ----------------------------------------------- e' ≡ e'' × μ' ≡ μ'' confluence ε ε z y = refl , refl confluence ε (ret-clos () ◅ _) (ret-tm _) _ confluence (ret-clos () ◅ _) ε _ (ret-tm _) confluence (lett-β ◅ _) ε _ () confluence (lett-clos _ ◅ _) ε _ () confluence (x ◅ p) (x' ◅ p') v w with deterministic-seq x x' ... | refl , refl with confluence p p' v w ... | refl , refl = refl , refl
{ "alphanum_fraction": 0.5431764307, "avg_line_length": 39.9054054054, "ext": "agda", "hexsha": "5f3742c1a6aecdc458f0dfc22785c5e7d0a6f740", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Impure/LFRef/Properties/Confluence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Impure/LFRef/Properties/Confluence.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Impure/LFRef/Properties/Confluence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1084, "size": 2953 }
{- Basic theory about transport: - transport is invertible - transport is an equivalence ([transportEquiv]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Transport where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.GroupoidLaws -- Direct definition of transport filler, note that we have to -- explicitly tell Agda that the type is constant (like in CHM) transpFill : ∀ {ℓ} {A : Type ℓ} (φ : I) (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ]) (u0 : outS (A i0)) → -------------------------------------- PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0) transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0 transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A transport⁻ p = transport (λ i → p (~ i)) subst⁻ : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (B : A → Type ℓ') (p : x ≡ y) → B y → B x subst⁻ B p pa = transport⁻ (λ i → B (p i)) pa transport-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → A → p i) (λ x → x) (transport p) transport-fillerExt p i x = transport-filler p x i transport⁻-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → A) (λ x → x) (transport⁻ p) transport⁻-fillerExt p i x = transp (λ j → p (i ∧ ~ j)) (~ i) x transport-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → B) (transport p) (λ x → x) transport-fillerExt⁻ p = symP (transport⁻-fillerExt (sym p)) transport⁻-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → B → p i) (transport⁻ p) (λ x → x) transport⁻-fillerExt⁻ p = symP (transport-fillerExt (sym p)) transport⁻-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : B) → PathP (λ i → p (~ i)) x (transport⁻ p x) transport⁻-filler p x = transport-filler (λ i → p (~ i)) x transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) → transport⁻ p (transport p a) ≡ a transport⁻Transport p a j = transport⁻-fillerExt p (~ j) (transport-fillerExt p (~ j) a) transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) → transport p (transport⁻ p b) ≡ b transportTransport⁻ p b j = transport-fillerExt⁻ p j (transport⁻-fillerExt⁻ p j b) -- Transport is an equivalence isEquivTransport : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → isEquiv (transport p) isEquivTransport {A = A} {B = B} p = transport (λ i → isEquiv (transport-fillerExt p i)) (idIsEquiv A) transportEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B transportEquiv p = (transport p , isEquivTransport p) substEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (p : A ≡ B) → P A ≃ P B substEquiv P p = (subst P p , isEquivTransport (λ i → P (p i))) liftEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : A ≃ B) → P A ≃ P B liftEquiv P e = substEquiv P (ua e) transpEquiv : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → ∀ i → p i ≃ B transpEquiv P i .fst = transp (λ j → P (i ∨ j)) i transpEquiv P i .snd = transp (λ k → isEquiv (transp (λ j → P (i ∨ (j ∧ k))) (i ∨ ~ k))) i (idIsEquiv (P i)) uaTransportη : ∀ {ℓ} {A B : Type ℓ} (P : A ≡ B) → ua (transportEquiv P) ≡ P uaTransportη P i j = Glue (P i1) λ where (j = i0) → P i0 , transportEquiv P (i = i1) → P j , transpEquiv P j (j = i1) → P i1 , idEquiv (P i1) pathToIso : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → Iso A B pathToIso x = iso (transport x) (transport⁻ x) (transportTransport⁻ x) (transport⁻Transport x) isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B} → transport p ≡ transport q → p ≡ q isInjectiveTransport {p = p} {q} α i = hcomp (λ j → λ { (i = i0) → secEq univalence p j ; (i = i1) → secEq univalence q j }) (invEq univalence ((λ a → α i a) , t i)) where t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd) t = isProp→PathP (λ i → isPropIsEquiv (λ a → α i a)) _ _ transportUaInv : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → transport (ua (invEquiv e)) ≡ transport (sym (ua e)) transportUaInv e = cong transport (uaInvEquiv e) -- notice that transport (ua e) would reduce, thus an alternative definition using EquivJ can give -- refl for the case of idEquiv: -- transportUaInv e = EquivJ (λ _ e → transport (ua (invEquiv e)) ≡ transport (sym (ua e))) refl e isSet-subst : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′} → (isSet-A : isSet A) → ∀ {a : A} → (p : a ≡ a) → (x : B a) → subst B p x ≡ x isSet-subst {B = B} isSet-A p x = subst (λ p′ → subst B p′ x ≡ x) (isSet-A _ _ refl p) (substRefl {B = B} x) -- substituting along a composite path is equivalent to substituting twice substComposite : ∀ {ℓ ℓ′} {A : Type ℓ} → (B : A → Type ℓ′) → {x y z : A} (p : x ≡ y) (q : y ≡ z) (u : B x) → subst B (p ∙ q) u ≡ subst B q (subst B p u) substComposite B p q Bx i = transport (cong B (compPath-filler' p q (~ i))) (transport-fillerExt (cong B p) i Bx) -- substitution commutes with morphisms in slices substCommSlice : ∀ {ℓ ℓ′} {A : Type ℓ} → (B C : A → Type ℓ′) → (F : ∀ i → B i → C i) → {x y : A} (p : x ≡ y) (u : B x) → subst C p (F x u) ≡ F y (subst B p u) substCommSlice B C F p Bx i = transport-fillerExt⁻ (cong C p) i (F _ (transport-fillerExt (cong B p) i Bx)) -- transports between loop spaces preserve path composition overPathFunct : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ x) (P : x ≡ y) → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q overPathFunct p q = J (λ y P → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q) (transportRefl (p ∙ q) ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)))
{ "alphanum_fraction": 0.5398874545, "avg_line_length": 43.1571428571, "ext": "agda", "hexsha": "a75a4567cada5177657be9e518c89eaad25febdb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Foundations/Transport.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Foundations/Transport.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Foundations/Transport.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2352, "size": 6042 }
module TestVec where open import PreludeNatType open import PreludeShow infixr 40 _::_ data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) head : {A : Set}{n : Nat} -> Vec A (suc n) -> A head (x :: _) = x -- no need for a [] case length : {A : Set}{n : Nat} -> Vec A n -> Nat length {A} {n} v = n three : Vec Nat 3 three = 1 :: 2 :: 3 :: [] mainS = showNat (length three)
{ "alphanum_fraction": 0.5442176871, "avg_line_length": 22.05, "ext": "agda", "hexsha": "aa159c7cfd74a63487046b0f8303921d129eb729", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/TestVec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/TestVec.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/TestVec.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 164, "size": 441 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω) open import Boolean.Definition open import Setoids.Setoids open import Setoids.Subset open import Setoids.Functions.Definition open import LogicalFormulae open import Functions.Definition open import Lists.Lists module LectureNotes.MetAndTop.Chapter1 where PowerSet : {a : _} (A : Set a) → {b : _} → Set (a ⊔ lsuc b) PowerSet A {b} = A → Set b equality : {a b c : _} (A : Set a) → PowerSet A {b} → PowerSet A {c} → Set (a ⊔ b ⊔ c) equality A x y = (z : A) → (x z → y z) && (y z → x z) trans : {a b c d : _} {A : Set a} → {x : PowerSet A {b}} {y : PowerSet A {c}} {z : PowerSet A {d}} → equality A x y → equality A y z → equality A x z trans {x} {y} {z} x=y y=z i with x=y i ... | r ,, s with y=z i ... | t ,, u = (λ z → t (r z)) ,, λ z → s (r (_&&_.snd (x=y i) (u z))) symm : {a b c : _} {A : Set a} → {x : PowerSet A {b}} {y : PowerSet A {c}} → equality A x y → equality A y x symm x=y i with x=y i ... | r ,, s = s ,, r reflex : {a b : _} {A : Set a} → (x : PowerSet A {b}) → equality A x x reflex x i = (λ z → z) ,, λ z → z mapPower : {a b c : _} {A : Set a} {B : Set b} (f : A → B) → PowerSet B {c} → PowerSet A {c} mapPower f p a = p (f a) mapF : {a b c : _} {A : Set a} {B : Set b} (f : A → B) → PowerSet A {c} → PowerSet B {_} mapF {A = A} f p b = Sg A (λ a → (p a) && (f a ≡ b)) singleton : {a b : _} {A : Set a} → (decidableEquality : (x y : A) → (x ≡ y) || ((x ≡ y) → False)) → A → PowerSet A {b} singleton decidable a n with decidable a n singleton decidable a n | inl x = True' singleton decidable a n | inr x = False' intersection : {a b c : _} {A : Set a} {B : Set b} (sets : A → PowerSet B {c}) → PowerSet B {a ⊔ c} intersection {A = A} sets x = (a : A) → (sets a) x union : {a b c : _} {A : Set a} {B : Set b} (sets : A → PowerSet B {c}) → PowerSet B {a ⊔ c} union {A = A} sets x = Sg A λ i → sets i x complement : {a b : _} {A : Set a} → (x : PowerSet A {b}) → PowerSet A complement x t = x t → False emptySet : {a b : _} (A : Set a) → PowerSet A {b} emptySet A x = False' decideIt : {a b : _} {A : Set a} → {f : A → Set b} → ((x : A) → (f x) || ((f x) → False)) → A → Set _ decideIt decide a with decide a decideIt decide a | inl x = True decideIt decide a | inr x = False fromExtension : {a : _} {A : Set a} → ((x y : A) → (x ≡ y) || ((x ≡ y) → False)) → List A → PowerSet A fromExtension decideEquality l = decideIt {f = contains l} (containsDecidable decideEquality l) private data !1234 : Set where !1 : !1234 !2 : !1234 !3 : !1234 !4 : !1234 decidable1234 : (x y : !1234) → (x ≡ y) || ((x ≡ y) → False) decidable1234 !1 !1 = inl refl decidable1234 !1 !2 = inr (λ ()) decidable1234 !1 !3 = inr (λ ()) decidable1234 !1 !4 = inr (λ ()) decidable1234 !2 !1 = inr (λ ()) decidable1234 !2 !2 = inl refl decidable1234 !2 !3 = inr (λ ()) decidable1234 !2 !4 = inr (λ ()) decidable1234 !3 !1 = inr (λ ()) decidable1234 !3 !2 = inr (λ ()) decidable1234 !3 !3 = inl refl decidable1234 !3 !4 = inr (λ ()) decidable1234 !4 !1 = inr (λ ()) decidable1234 !4 !2 = inr (λ ()) decidable1234 !4 !3 = inr (λ ()) decidable1234 !4 !4 = inl refl f : !1234 → !1234 f !1 = !1 f !2 = !1 f !3 = !4 f !4 = !3 exercise1'1i1 : {b : _} → equality {b = b} !1234 (mapPower f (singleton decidable1234 !1)) (fromExtension decidable1234 (!1 :: !2 :: [])) exercise1'1i1 !1 = (λ x → record {}) ,, (λ x → record {}) exercise1'1i1 !2 = (λ x → record {}) ,, (λ x → record {}) exercise1'1i1 !3 = (λ ()) ,, (λ ()) exercise1'1i1 !4 = (λ ()) ,, λ () exercise1'1i2 : {b : _} → equality {b = b} !1234 (mapPower f (singleton decidable1234 !2)) (λ _ → False) exercise1'1i2 !1 = (λ ()) ,, λ () exercise1'1i2 !2 = (λ ()) ,, (λ ()) exercise1'1i2 !3 = (λ ()) ,, (λ ()) exercise1'1i2 !4 = (λ ()) ,, (λ ()) exercise1'1i3 : equality !1234 (mapPower f (fromExtension decidable1234 (!3 :: !4 :: []))) (fromExtension decidable1234 (!3 :: !4 :: [])) exercise1'1i3 !1 = (λ x → x) ,, (λ x → x) exercise1'1i3 !2 = (λ x → x) ,, (λ x → x) exercise1'1i3 !3 = (λ x → record {}) ,, (λ x → record {}) exercise1'1i3 !4 = (λ x → record {}) ,, (λ x → record {}) exercise1'1ii1 : {a b c t : _} {A : Set a} {B : Set b} {T : Set t} → (f : A → B) → (sets : T → PowerSet B {c}) → equality A (mapPower f (union sets)) (union λ x → mapPower f (sets x)) exercise1'1ii1 f sets i = (λ x → x) ,, (λ x → x) exercise1'1ii2 : {a b c t : _} {A : Set a} {B : Set b} {T : Set t} → (f : A → B) → (sets : T → PowerSet B {c}) → equality A (mapPower f (intersection sets)) (intersection λ x → mapPower f (sets x)) exercise1'1ii2 f sets i = (λ x → x) ,, (λ x → x) exercise1'1ii3 : {a b : _} {A : Set a} {B : Set b} → (f : A → B) → equality A (mapPower f (λ i → True)) (λ i → True) exercise1'1ii3 f = λ z → (λ x → record {}) ,, (λ x → record {}) exercise1'1ii4 : {a b c : _} {A : Set a} {B : Set b} → (f : A → B) → equality A (mapPower f (emptySet {b = c} B)) (emptySet A) exercise1'1ii4 f = λ z → (λ x → x) ,, (λ x → x) exercise1'1ii5 : {a b c : _} {A : Set a} {B : Set b} → (f : A → B) → (u : PowerSet B {c}) → equality A (mapPower f (complement u)) (complement (mapPower f u)) exercise1'1ii5 f u z = (λ x → x) ,, (λ x → x) exercise1'1iii1 : {a b c t : _} {A : Set a} {B : Set b} {T : Set t} → (f : A → B) (sets : T → PowerSet A {c}) → equality B (mapF f (union sets)) (union λ t → mapF f (sets t)) exercise1'1iii1 {A = A} {T = T} f sets z = x ,, y where x : mapF f (union sets) z → union (λ t → mapF f (sets t)) z x (a , ((t , isIn) ,, snd)) = t , (a , (isIn ,, snd)) y : union (λ t → mapF f (sets t)) z → mapF f (union sets) z y (t , (r , s)) = r , ((t , _&&_.fst s) ,, _&&_.snd s) exercise1'1iii2 : {a b c d : _} {A : Set a} {B : Set b} → (f : A → B) → equality B (mapF f (emptySet {b = c} A)) (emptySet {b = d} B) exercise1'1iii2 {A = A} {B = B} f z = x ,, λ () where x : mapF f (emptySet A) z → emptySet B z x (a , ()) ex4F : !1234 → !1234 ex4F !1 = !1 ex4F !2 = !2 ex4F !3 = !1 ex4F !4 = !4 v1 : PowerSet !1234 v1 !1 = True v1 !2 = True v1 !3 = False v1 !4 = False v2 : PowerSet !1234 v2 !1 = False v2 !2 = True v2 !3 = True v2 !4 = False v1AndV2 : Bool → !1234 → Set v1AndV2 BoolTrue = v1 v1AndV2 BoolFalse = v2 lhs : equality {c = lzero} !1234 (mapF ex4F (intersection v1AndV2)) (singleton decidable1234 !2) lhs !1 = ans ,, λ () where ans : mapF ex4F (intersection v1AndV2) !1 → False' ans (!1 , (fst ,, refl)) with fst BoolFalse ans (!1 , (fst ,, refl)) | () ans (!3 , (fst ,, refl)) with fst BoolTrue ans (!3 , (fst ,, refl)) | () lhs !2 = (λ _ → record {}) ,, ans where u : intersection v1AndV2 !2 u BoolTrue = record {} u BoolFalse = record {} ans : singleton decidable1234 !2 !2 → mapF ex4F (intersection v1AndV2) !2 ans _ = !2 , (u ,, refl) lhs !3 = ans ,, λ () where ans : mapF ex4F (intersection v1AndV2) !3 → False' ans (!3 , (fst ,, ())) lhs !4 = ans ,, λ () where ans : mapF ex4F (intersection v1AndV2) !4 → False' ans (!4 , (fst ,, refl)) with fst BoolTrue ans (!4 , (fst ,, refl)) | () fv1AndV2 : Bool → !1234 → Set fv1AndV2 BoolTrue = mapF ex4F v1 fv1AndV2 BoolFalse = mapF ex4F v2 rhs : equality {c = lzero} !1234 (intersection fv1AndV2) (fromExtension decidable1234 (!2 :: !1 :: [])) rhs !1 = (λ _ → record {}) ,, λ _ → a where a : intersection fv1AndV2 !1 a BoolTrue = !1 , (record {} ,, refl) a BoolFalse = !3 , (record {} ,, refl) rhs !2 = (λ _ → record {}) ,, λ _ → a where a : intersection fv1AndV2 !2 a BoolTrue = !2 , (record {} ,, refl) a BoolFalse = !2 , (record {} ,, refl) rhs !3 = a ,, λ () where a : intersection fv1AndV2 !3 → fromExtension decidable1234 (!2 :: !1 :: []) !4 a pr with pr BoolTrue a pr | !1 , (fst ,, ()) a pr | !2 , (fst ,, ()) a pr | !3 , (fst ,, snd) = fst a pr | !4 , (fst ,, snd) = fst rhs !4 = a ,, λ () where a : intersection fv1AndV2 !4 → fromExtension decidable1234 (!2 :: !1 :: []) !4 a pr with pr BoolTrue a pr | !1 , (x ,, ()) a pr | !2 , (x ,, ()) a pr | !3 , (x ,, ()) a pr | !4 , (x ,, _) = x exercise1'1iv1 : (equality !1234 (mapF ex4F (intersection v1AndV2)) (intersection fv1AndV2)) → False exercise1'1iv1 pr = ohno where bad : equality !1234 (fromExtension decidable1234 (!2 :: !1 :: [])) (singleton decidable1234 !2) bad = trans (symm rhs) (trans (symm pr) lhs) ohno : False ohno with bad !1 ohno | fst ,, snd with fst record {} ... | () exercise1'1iv2 : (equality !1234 (mapF ex4F (λ _ → True)) (λ _ → True)) → False exercise1'1iv2 pr with pr !3 exercise1'1iv2 pr | fst ,, snd with snd _ exercise1'1iv2 pr | fst ,, snd | !1 , () exercise1'1iv2 pr | fst ,, snd | !2 , () exercise1'1iv2 pr | fst ,, snd | !3 , () exercise1'1iv2 pr | fst ,, snd | !4 , () exercise1'1iv3 : equality !1234 (mapF ex4F (complement v1)) (complement v1) → False exercise1'1iv3 pr with pr !1 exercise1'1iv3 pr | fst ,, snd with fst (!3 , ((λ i → i) ,, refl)) (record {}) ... | ()
{ "alphanum_fraction": 0.5299410819, "avg_line_length": 38.4156378601, "ext": "agda", "hexsha": "d89d12ce260511a46268b77d9d2068e05362e794", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "LectureNotes/MetAndTop/Chapter1.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "LectureNotes/MetAndTop/Chapter1.agda", "max_line_length": 199, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "LectureNotes/MetAndTop/Chapter1.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3734, "size": 9335 }
------------------------------------------------------------------------ -- Truncated queues: any two queues representing the same sequence are -- equal, and things are set up so that at compile-time (but not at -- run-time) some queue operations compute in roughly the same way as -- the corresponding list operations ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Queue.Truncated {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Path.Isomorphisms eq open import Erased.Cubical eq hiding (map) open import Function-universe equality-with-J as F hiding (id; _∘_) open import List equality-with-J as L hiding (map) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as Trunc import Queue equality-with-J as Q open import Sum equality-with-J open import Surjection equality-with-J using (_↠_) private variable a b : Level A B : Type a p q x : A f : A → B xs : List A s s₁ s₂ : Very-stableᴱ-≡ A ------------------------------------------------------------------------ -- Queues -- The queue type family is parametrised. module _ -- The underlying queue type family. (Q : ∀ {ℓ} → Type ℓ → Type ℓ) -- Note that the predicate is required to be trivial. Perhaps the -- code could be made more general, but I have not found a use for -- such generality. ⦃ is-queue : ∀ {ℓ} → Q.Is-queue (λ A → Q A) (λ _ → ↑ _ ⊤) ℓ ⦄ where abstract -- Queues indexed by corresponding lists, and truncated so that -- any two queues that stand for the same list are seen as equal. -- -- The type is abstract to ensure that a change to a different -- underlying queue type family does not break code that uses this -- module. -- -- Ulf Norell suggested to me that I could use parametrisation -- instead of abstract. (Because if the underlying queue type -- family is a parameter, then the underlying queues do not -- compute.) I decided to use both. (Because I want to have the -- flexibility that comes with parametrisation, but I do not want -- to force users to work in a parametrised setting.) Queue_⟪_⟫ : {A : Type a} → @0 List A → Type a Queue_⟪_⟫ {A = A} xs = ∥ (∃ λ (q : Q A) → Erased (Q.to-List _ q ≡ xs)) ∥ -- Queues. Queue : Type a → Type a Queue A = ∃ λ (xs : Erased (List A)) → Queue_⟪_⟫ (erased xs) -- The remainder of the code uses an implicit underlying queue type -- family parameter, and an extra instance argument. module _ {Q : ∀ {ℓ} → Type ℓ → Type ℓ} ⦃ is-queue : ∀ {ℓ} → Q.Is-queue (λ A → Q A) (λ _ → ↑ _ ⊤) ℓ ⦄ ⦃ is-queue-with-map : ∀ {ℓ₁ ℓ₂} → Q.Is-queue-with-map (λ A → Q A) ℓ₁ ℓ₂ ⦄ where abstract -- Queue Q ⟪ xs ⟫ is a proposition. Queue-⟪⟫-propositional : {@0 xs : List A} → Is-proposition (Queue Q ⟪ xs ⟫) Queue-⟪⟫-propositional = truncation-is-proposition -- Returns the (erased) index. @0 ⌊_⌋ : Queue Q A → List A ⌊_⌋ = erased ∘ proj₁ -- There is a bijection between equality of two values of type -- Queue Q A and erased equality of the corresponding list indices. ≡-for-indices↔≡ : {xs ys : Queue Q A} → Erased (⌊ xs ⌋ ≡ ⌊ ys ⌋) ↔ xs ≡ ys ≡-for-indices↔≡ {xs = xs} {ys = ys} = Erased (⌊ xs ⌋ ≡ ⌊ ys ⌋) ↝⟨ Erased-≡↔[]≡[] ⟩ proj₁ xs ≡ proj₁ ys ↝⟨ ignore-propositional-component Queue-⟪⟫-propositional ⟩□ xs ≡ ys □ -- If a queue equality holds under the (non-dependent) assumption -- that equality is very stable for the carrier type, then it also -- holds without this assumption. -- -- For an example of a lemma which has this kind of assumption, see -- Queue.from-List≡foldl-enqueue-empty. strengthen-queue-equality : {q₁ q₂ : Queue Q A} → (Very-stable-≡ A → q₁ ≡ q₂) → q₁ ≡ q₂ strengthen-queue-equality {q₁ = q₁} {q₂ = q₂} eq = _↔_.to ≡-for-indices↔≡ [ ⌊ q₁ ⌋ ≡⟨ cong ⌊_⌋ (eq (Very-stable→Very-stable-≡ 0 (erased Erased-Very-stable))) ⟩∎ ⌊ q₂ ⌋ ∎ ] ------------------------------------------------------------------------ -- Conversion functions mutual abstract -- The right-to-left direction of Queue-⟪⟫↔Σ-List (defined -- below). Note that there is no assumption of stability. Σ-List→Queue-⟪⟫ : {@0 ys : List A} → (∃ λ xs → Erased (xs ≡ ys)) → Queue Q ⟪ ys ⟫ Σ-List→Queue-⟪⟫ = _ -- Agda can infer the definition. -- If ys : List A and equality is very stable (with erased proofs) -- for A, then Queue Q ⟪ ys ⟫ is isomorphic to the type of lists -- equal (with erased equality proofs) to ys. -- -- Note that equality is very stable for A if A has decidable -- equality. Queue-⟪⟫↔Σ-List : {@0 ys : List A} → Very-stableᴱ-≡ A → Queue Q ⟪ ys ⟫ ↔ ∃ λ xs → Erased (xs ≡ ys) Queue-⟪⟫↔Σ-List {ys = ys} s = Bijection.with-other-inverse Queue-⟪⟫↔Σ-List′ Σ-List→Queue-⟪⟫ (λ _ → from-Queue-⟪⟫↔Σ-List′) where abstract Queue-⟪⟫↔Σ-List′ : Queue Q ⟪ ys ⟫ ↔ ∃ λ xs → Erased (xs ≡ ys) Queue-⟪⟫↔Σ-List′ = ↠→↔Erased-singleton (Q.Queue↠List _) (Very-stableᴱ-≡-List 0 s) from-Queue-⟪⟫↔Σ-List′ : _≡_ {A = Queue Q ⟪ ys ⟫} (_↔_.from Queue-⟪⟫↔Σ-List′ p) (Σ-List→Queue-⟪⟫ p) from-Queue-⟪⟫↔Σ-List′ = refl _ -- If equality is very stable (with erased proofs) for A, then -- Queue Q A is isomorphic to List A. Queue↔List : Very-stableᴱ-≡ A → Queue Q A ↔ List A Queue↔List {A = A} s = Queue Q A ↔⟨⟩ (∃ λ (xs : Erased (List A)) → Queue Q ⟪ erased xs ⟫) ↝⟨ (∃-cong λ _ → Queue-⟪⟫↔Σ-List s) ⟩ (∃ λ (xs : Erased (List A)) → ∃ λ ys → Erased (ys ≡ erased xs)) ↝⟨ Σ-Erased-Erased-singleton↔ ⟩□ List A □ mutual -- The right-to-left direction of Queue↔List. (Note that equality -- is not required to be very stable with erased proofs for the -- carrier type.) from-List : List A → Queue Q A from-List = _ -- Agda can infer the definition. _ : _↔_.from (Queue↔List s) ≡ from-List _ = refl _ -- The forward direction of Queue↔List s. to-List : Very-stableᴱ-≡ A → Queue Q A → List A to-List s = _↔_.to (Queue↔List s) abstract -- The function to-List returns the index. @0 ≡⌊⌋ : to-List s q ≡ ⌊ q ⌋ ≡⌊⌋ {s = s} {q = q} = to-Σ-Erased-∥-Σ-Erased-≡-∥↔≡ (Q.Queue↠List _) (Very-stableᴱ-≡-List 0 s) q -- Queue Q A is isomorphic to List A in an erased context. The -- forward direction of this isomorphism returns the index directly. @0 Queue↔Listⁱ : Queue Q A ↔ List A Queue↔Listⁱ {A = A} = Queue Q A ↔⟨⟩ (∃ λ (xs : Erased (List A)) → Queue Q ⟪ erased xs ⟫) ↝⟨ drop-⊤-right (λ _ → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible Queue-⟪⟫-propositional $ _↔_.from (Queue-⟪⟫↔Σ-List (Very-stable→Very-stableᴱ 1 $ Very-stable→Very-stable-≡ 0 $ erased Erased-Very-stable)) (_ , [ refl _ ])) ⟩ Erased (List A) ↝⟨ Very-stable→Stable 0 $ erased Erased-Very-stable ⟩□ List A □ private @0 to-Queue↔Listⁱ-, : _↔_.to Queue↔Listⁱ q ≡ ⌊ q ⌋ to-Queue↔Listⁱ-, = refl _ -- The forward directions of Queue↔List and Queue↔Listⁱ match. @0 to-Queue↔List : _↔_.to (Queue↔List s) q ≡ _↔_.to Queue↔Listⁱ q to-Queue↔List = ≡⌊⌋ -- Variants of Queue↔List and Queue↔Listⁱ. Maybe[×Queue]↔List : Very-stableᴱ-≡ A → Maybe (A × Queue Q A) ↔ List A Maybe[×Queue]↔List {A = A} s = Maybe (A × Queue Q A) ↝⟨ F.id ⊎-cong F.id ×-cong Queue↔List s ⟩ Maybe (A × List A) ↝⟨ inverse List↔Maybe[×List] ⟩□ List A □ @0 Maybe[×Queue]↔Listⁱ : Maybe (A × Queue Q A) ↔ List A Maybe[×Queue]↔Listⁱ {A = A} = Maybe (A × Queue Q A) ↝⟨ F.id ⊎-cong F.id ×-cong Queue↔Listⁱ ⟩ Maybe (A × List A) ↝⟨ inverse List↔Maybe[×List] ⟩□ List A □ @0 to-Maybe[×Queue]↔List : ∀ xs → _↔_.to (Maybe[×Queue]↔List s) xs ≡ _↔_.to Maybe[×Queue]↔Listⁱ xs to-Maybe[×Queue]↔List {s = s} xs = _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (_↔_.to (Queue↔List s))) xs) ≡⟨ cong (λ f → _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id f) xs)) (⟨ext⟩ λ _ → to-Queue↔List) ⟩∎ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (_↔_.to Queue↔Listⁱ)) xs) ∎ -- A lemma that can be used to prove "to-List lemmas". ⌊⌋≡→to-List≡ : Erased (⌊ q ⌋ ≡ xs) → to-List s q ≡ xs ⌊⌋≡→to-List≡ {q = q} {xs = xs} {s = s} eq = to-List s q ≡⟨ cong (to-List _) (_↔_.to ≡-for-indices↔≡ eq) ⟩ to-List s (from-List xs) ≡⟨ _↔_.right-inverse-of (Queue↔List _) _ ⟩∎ xs ∎ ------------------------------------------------------------------------ -- Some queue operations, implemented for Queue ⟪_⟫ module Indexed where abstract private -- A helper function that can be used to define unary -- functions on queues. unary : {A : Type a} {B : Type b} {@0 xs : List A} {@0 f : List A → List B} (g : Q A → Q B) → @0 (∀ {q} → Q.to-List _ (g q) ≡ f (Q.to-List _ q)) → Queue Q ⟪ xs ⟫ → Queue Q ⟪ f xs ⟫ unary {xs = xs} {f = f} g hyp = Trunc.rec truncation-is-proposition (uncurry λ q p → ∣ g q , [ Q.to-List _ (g q) ≡⟨ hyp ⟩ f (Q.to-List _ q) ≡⟨ cong f (erased p) ⟩∎ f xs ∎ ] ∣) -- Enqueues an element. enqueue : {@0 xs : List A} (x : A) → Queue Q ⟪ xs ⟫ → Queue Q ⟪ xs ++ x ∷ [] ⟫ enqueue x = unary (Q.enqueue x) Q.to-List-enqueue -- A map function. map : {@0 xs : List A} → (f : A → B) → Queue Q ⟪ xs ⟫ → Queue Q ⟪ L.map f xs ⟫ map f = unary (Q.map f) Q.to-List-map -- The result of trying to dequeue an element from an indexed -- queue. -- -- TODO: Perhaps it makes sense to make Q an explicit argument of -- this definition. Result-⟪_⟫ : {A : Type a} → @0 List A → Type a Result-⟪_⟫ {A = A} xs = ∃ λ (q : Maybe (A × Queue Q A)) → Erased (_↔_.to Maybe[×Queue]↔Listⁱ q ≡ xs) -- If equality is very stable (with erased proofs) for A, then -- Result-⟪ xs ⟫ is a proposition for lists xs of type List A. Result-⟪⟫-propositional : {@0 xs : List A} → Very-stableᴱ-≡ A → Is-proposition Result-⟪ xs ⟫ Result-⟪⟫-propositional {A = A} {xs = xs} s = $⟨ erased-singleton-with-erased-center-propositional (Very-stableᴱ-≡-List 0 s) ⟩ Is-proposition (Erased-singleton xs) ↝⟨ H-level-cong _ 1 (inverse lemma) ⦂ (_ → _) ⟩□ Is-proposition Result-⟪ xs ⟫ □ where lemma : _ ↔ _ lemma = Result-⟪ xs ⟫ ↔⟨⟩ (∃ λ (ys : Maybe (A × Queue Q A)) → Erased (_↔_.to Maybe[×Queue]↔Listⁱ ys ≡ xs)) ↝⟨ ∃-cong (λ ys → Erased-cong (≡⇒↝ _ $ cong (_≡ xs) $ sym $ to-Maybe[×Queue]↔List ys)) ⟩ (∃ λ (ys : Maybe (A × Queue Q A)) → Erased (_↔_.to (Maybe[×Queue]↔List s) ys ≡ xs)) ↝⟨ Σ-cong (Maybe[×Queue]↔List s) (λ _ → F.id) ⟩ (∃ λ (ys : List A) → Erased (ys ≡ xs)) ↔⟨⟩ Erased-singleton xs □ abstract -- Dequeuing. dequeue : {@0 xs : List A} → Very-stableᴱ-≡ A → Queue Q ⟪ xs ⟫ → Result-⟪ xs ⟫ dequeue {xs = xs} s = Trunc.rec (Result-⟪⟫-propositional s) (λ (q , [ eq ]) → ⊎-map id (Σ-map id λ q → _ , ∣ q , [ refl _ ] ∣) (Q.dequeue _ q) , [ _↔_.to Maybe[×Queue]↔Listⁱ (⊎-map id (Σ-map id (λ q → _ , ∣ q , [ refl _ ] ∣)) (Q.dequeue _ q)) ≡⟨⟩ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (_↔_.to Queue↔Listⁱ)) (⊎-map id (Σ-map id (λ q → _ , ∣ q , [ refl _ ] ∣)) (Q.dequeue _ q))) ≡⟨ cong (_↔_.from List↔Maybe[×List]) $ sym $ ⊎-map-∘ (Q.dequeue _ q) ⟩ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (Q.to-List _)) (Q.dequeue _ q)) ≡⟨ cong (_↔_.from List↔Maybe[×List]) $ Q.to-List-dequeue {q = q} ⟩ _↔_.from List↔Maybe[×List] (_↔_.to List↔Maybe[×List] (Q.to-List _ q)) ≡⟨ _↔_.left-inverse-of List↔Maybe[×List] _ ⟩ Q.to-List _ q ≡⟨ eq ⟩∎ xs ∎ ]) -- The inverse of the dequeue operation. This operation does not -- depend on stability. dequeue⁻¹ : {@0 xs : List A} → Result-⟪ xs ⟫ → Queue Q ⟪ xs ⟫ dequeue⁻¹ {xs = xs} (nothing , eq) = ∣ Q.empty , [ Q.to-List _ (Q.empty ⦂ Q _) ≡⟨ Q.to-List-empty ⟩ [] ≡⟨ erased eq ⟩∎ xs ∎ ] ∣ dequeue⁻¹ {xs = xs} (just (x , ys , q) , eq) = ∥∥-map (Σ-map (Q.cons x) (λ {q′} → Erased-cong λ eq′ → Q.to-List _ (Q.cons x q′) ≡⟨ Q.to-List-cons ⟩ x ∷ Q.to-List _ q′ ≡⟨ cong (x ∷_) eq′ ⟩ x ∷ erased ys ≡⟨ erased eq ⟩∎ xs ∎)) q -- The dequeue and dequeue⁻¹ operations are inverses. Queue-⟪⟫↔Result-⟪⟫ : {@0 xs : List A} → Very-stableᴱ-≡ A → Queue Q ⟪ xs ⟫ ↔ Result-⟪ xs ⟫ Queue-⟪⟫↔Result-⟪⟫ s = record { surjection = record { logical-equivalence = record { to = dequeue s ; from = dequeue⁻¹ } ; right-inverse-of = λ _ → Result-⟪⟫-propositional s _ _ } ; left-inverse-of = λ _ → Queue-⟪⟫-propositional _ _ } ------------------------------------------------------------------------ -- Some queue operations, implemented for Queue -- Note that none of these operations are abstract. module Non-indexed where -- Enqueues an element. enqueue : A → Queue Q A → Queue Q A enqueue x = Σ-map _ (Indexed.enqueue x) to-List-enqueue : to-List s (enqueue x q) ≡ to-List s q ++ x ∷ [] to-List-enqueue {s = s} {x = x} {q = q} = ⌊⌋≡→to-List≡ [ ⌊ q ⌋ ++ x ∷ [] ≡⟨ cong (_++ _) $ sym ≡⌊⌋ ⟩∎ to-List s q ++ x ∷ [] ∎ ] -- A map function. map : (A → B) → Queue Q A → Queue Q B map f = Σ-map _ (Indexed.map f) to-List-map : to-List s₁ (map f q) ≡ L.map f (to-List s₂ q) to-List-map {f = f} {q = q} {s₂ = s₂} = ⌊⌋≡→to-List≡ [ L.map f ⌊ q ⌋ ≡⟨ cong (L.map f) $ sym ≡⌊⌋ ⟩∎ L.map f (to-List s₂ q) ∎ ] private -- A variant of the result of the dequeue operation. Result : Type a → Type a Result A = ∃ λ (xs : Erased (List A)) → Indexed.Result-⟪ erased xs ⟫ -- Conversion lemmas for Result. Result↠Maybe[×Queue] : Result A ↠ Maybe (A × Queue Q A) Result↠Maybe[×Queue] = record { logical-equivalence = record { to = proj₁ ∘ proj₂ ; from = λ q → _ , q , [ refl _ ] } ; right-inverse-of = refl } Result↔Maybe[×Queue] : Very-stableᴱ-≡ A → Result A ↔ Maybe (A × Queue Q A) Result↔Maybe[×Queue] s = record { surjection = Result↠Maybe[×Queue] ; left-inverse-of = λ r → $⟨ from∘to r ⟩ Erased (⌊ from (to r) ⌋ʳ ≡ ⌊ r ⌋ʳ) ↝⟨ Erased-≡↔[]≡[] ⟩ proj₁ (from (to r)) ≡ proj₁ r ↝⟨ ignore-propositional-component (Indexed.Result-⟪⟫-propositional s) ⟩□ from (to r) ≡ r □ } where open _↠_ Result↠Maybe[×Queue] @0 ⌊_⌋ʳ : Result A → List A ⌊_⌋ʳ = erased ∘ proj₁ from∘to : ∀ r → Erased (⌊ from (to r) ⌋ʳ ≡ ⌊ r ⌋ʳ) from∘to (_ , _ , eq) = eq -- Queue Q A is isomorphic to Maybe (A × Queue Q A), assuming that -- equality is very stable (with erased proofs) for A. Queue↔Maybe[×Queue] : Very-stableᴱ-≡ A → Queue Q A ↔ Maybe (A × Queue Q A) Queue↔Maybe[×Queue] {A = A} s = Queue Q A ↝⟨ ∃-cong (λ _ → Indexed.Queue-⟪⟫↔Result-⟪⟫ s) ⟩ Result A ↝⟨ Result↔Maybe[×Queue] s ⟩□ Maybe (A × Queue Q A) □ mutual -- The inverse of the dequeue operation. This operation does not -- depend on stability. dequeue⁻¹ : Maybe (A × Queue Q A) → Queue Q A dequeue⁻¹ q = _ -- Agda can infer the definition. _ : _↔_.from (Queue↔Maybe[×Queue] s) ≡ dequeue⁻¹ _ = refl _ to-List-dequeue⁻¹ : to-List s (dequeue⁻¹ x) ≡ _↔_.from List↔Maybe[×List] (⊎-map id (Σ-map id (to-List s)) x) to-List-dequeue⁻¹ {x = nothing} = ⌊⌋≡→to-List≡ [ refl _ ] to-List-dequeue⁻¹ {s = s} {x = just (x , q)} = ⌊⌋≡→to-List≡ [ x ∷ ⌊ q ⌋ ≡⟨ cong (_ ∷_) $ sym ≡⌊⌋ ⟩∎ x ∷ to-List s q ∎ ] -- Dequeues an element, if possible. dequeue : Very-stableᴱ-≡ A → Queue Q A → Maybe (A × Queue Q A) dequeue s = _↔_.to (Queue↔Maybe[×Queue] s) to-List-dequeue : ⊎-map id (Σ-map id (to-List s)) (dequeue s q) ≡ _↔_.to List↔Maybe[×List] (to-List s q) to-List-dequeue {s = s} {q = q} = ⊎-map id (Σ-map id (to-List s)) (dequeue s q) ≡⟨ _↔_.to (from≡↔≡to (from-isomorphism List↔Maybe[×List])) $ sym to-List-dequeue⁻¹ ⟩ _↔_.to List↔Maybe[×List] (to-List s (dequeue⁻¹ (dequeue s q))) ≡⟨ cong (_↔_.to List↔Maybe[×List] ∘ to-List s) $ _↔_.left-inverse-of (Queue↔Maybe[×Queue] _) _ ⟩∎ _↔_.to List↔Maybe[×List] (to-List s q) ∎
{ "alphanum_fraction": 0.4804443054, "avg_line_length": 35.4454713494, "ext": "agda", "hexsha": "1637032c5f3a63e2c48fe79a49efaa5dc7398561", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Queue/Truncated.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Queue/Truncated.agda", "max_line_length": 143, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Queue/Truncated.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6700, "size": 19176 }
{-# OPTIONS --without-K #-} {- INDEX: Some constructions with non-recursive HITs, and related results. This formalization covers the hardest results of my paper titled "Constructions with non-recursive HITs". To be precise: I have formalized the result that all functions in the sequence of approximations (see Section 6) are weakly constant, and that the colimit is thus propositional. This requires a lot of lemmas. Some of these lemmas are trivial on paper and only tedious in Agda, but many lemmas are (at least for me) even on paper far from trivial. Formalized are Section 2, Section 3 (without the example applications), especially the first main result; all of Section 4 except Lemma 4.9, the definitions and principles of Section 5, all of Section 6 expect the last corollaries. The parts of the paper that are not formalized are (A) the examples in Section 3 (B) the statements of remarks (C) Lemma 4.9, 5.4, 5.5, and 5.6 (D) Theorem 5.7, Corollary 5.8, Theorem 6.2 (E) the discussions and results in the concluding Section 7 All of these are relatively easy compared with the results that are formalized. The items in (C) could be implemented easily, but are not very interesting on their own. The same is true for the second and third item in (D), which however depend on Theorem 5.7. Theorem 5.7 itself could be interesting to formalize. However, it relies on the main result of Capriotti, Kraus, Vezzosi, "Functions out of Higher Truncations". This result is formalized, but unfortunately in another library; thus, we omit Theorem 5.7 (for now) in the current formalization. (E) would require (D) first. This development type-checks with Agda 2.4.2.5 and similar versions (I assume with 2.4.2.x in general; same as the HoTT library). -} module nicolai.pseudotruncations.NONRECURSIVE-INDEX where {- Some preliminary definitions/lemmas, and an explanation why we need to work with the spheres defined by suspension- iteration of the form Σ¹⁺ⁿ :≡ Σⁿ ∘ Σ -} open import nicolai.pseudotruncations.Preliminary-definitions open import nicolai.pseudotruncations.Liblemmas {- SECTION 2 The Sequential colimit. I am aware that there is some overlap with lib/types/NatColim.agda -} open import nicolai.pseudotruncations.SeqColim {- Here is some prepartion for Section 3 -} open import nicolai.pseudotruncations.wconst-preparation {- The rather lengthy argument that some heptagon commutes; very tedious; this is still preparation for Section 3 -} open import nicolai.pseudotruncations.heptagon {- SECTION 3 (without the sample applications) One result of the paper: If we have a sequence of weakly constant functions, then the colimit is propositional -} open import nicolai.pseudotruncations.wconstSequence {- SECTION 4 The correspondance between loops and maps from spheres: a lot of tedious technical content. This was hard work for me! The results are in two files; first, essentially the fact that the 'pointed' 0-sphere [i.e. (bool, true)] is "as good as" the unit type if we consider pointed maps out of it. Second, the main lemmas. -} open import nicolai.pseudotruncations.pointed-O-Sphere open import nicolai.pseudotruncations.LoopsAndSpheres {- SECTION 5 (mainly the definition and some auxiliary lemmas) Definition of pseudo-truncations -} open import nicolai.pseudotruncations.PseudoTruncs {- SECTION 6 The sequence of approximations with increasing "connectedness- level", and the proof that every map is weakly constant, and the corollary that its colimit is propositional. -} open import nicolai.pseudotruncations.PseudoTruncs-wconst-seq
{ "alphanum_fraction": 0.750798722, "avg_line_length": 41.2747252747, "ext": "agda", "hexsha": "dcb57803e14ef537fa3506cb16d058334f9a353e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/NONRECURSIVE-INDEX.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/NONRECURSIVE-INDEX.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/NONRECURSIVE-INDEX.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1018, "size": 3756 }
{-# OPTIONS --cubical --safe #-} open import Prelude hiding (A; B) open import Categories module Categories.Pushout {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where open Category C private variable A B : Ob h₁ h₂ j : A ⟶ B record Pushout (f : X ⟶ Y) (g : X ⟶ Z) : Type (ℓ₁ ℓ⊔ ℓ₂) where field {Q} : Ob i₁ : Y ⟶ Q i₂ : Z ⟶ Q commute : i₁ · f ≡ i₂ · g universal : h₁ · f ≡ h₂ · g → Q ⟶ Codomain h₁ unique : ∀ {eq : h₁ · f ≡ h₂ · g} → j · i₁ ≡ h₁ → j · i₂ ≡ h₂ → j ≡ universal eq universal·i₁≡h₁ : ∀ {eq : h₁ · f ≡ h₂ · g} → universal eq · i₁ ≡ h₁ universal·i₂≡h₂ : ∀ {eq : h₁ · f ≡ h₂ · g} → universal eq · i₂ ≡ h₂ HasPushouts : Type (ℓ₁ ℓ⊔ ℓ₂) HasPushouts = ∀ {X Y Z} → (f : X ⟶ Y) → (g : X ⟶ Z) → Pushout f g
{ "alphanum_fraction": 0.4763061968, "avg_line_length": 24.9393939394, "ext": "agda", "hexsha": "c5942ce6c1238af1d4aab88608cc8b5b07af1e27", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Categories/Pushout.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Categories/Pushout.agda", "max_line_length": 65, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Categories/Pushout.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 351, "size": 823 }
-- Andreas, 2016-02-02 module _ where data Q : Set where a : Q data Overlap : Set where a : Overlap postulate helper : ∀ {T : Set} → (T → T) → Set test₃ : Set test₃ = helper λ { a → a } -- Does not succeed, as the type of the extended lambda is ambiguous. -- It should fail with an error or unsolved metas instead of -- looping the type checker.
{ "alphanum_fraction": 0.6378378378, "avg_line_length": 19.4736842105, "ext": "agda", "hexsha": "ce85f6a1e670d258f4ff436afebe647264d795fd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue480.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue480.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue480.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 116, "size": 370 }
module Issue756a where data Nat : Set where zero : Nat suc : Nat → Nat data T : Nat → Set where [_] : ∀ n → T n bad : ∀ n → T n → Nat bad .zero [ zero ] = zero bad .(suc (let x = n in x)) [ suc n ] = zero
{ "alphanum_fraction": 0.4978723404, "avg_line_length": 16.7857142857, "ext": "agda", "hexsha": "8ebfa597b3086f551ff9dce042f48826478e4a34", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue756a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue756a.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue756a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 85, "size": 235 }
{-# OPTIONS --without-K #-} module Agda.Builtin.List where infixr 5 _∷_ data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} {-# HASKELL type AgdaList a b = [b] #-} {-# COMPILED_DATA List MAlonzo.Code.Agda.Builtin.List.AgdaList [] (:) #-} {-# COMPILED_DATA_UHC List __LIST__ __NIL__ __CONS__ #-} {-# COMPILED_JS List function(x,v) { if (x.length < 1) { return v["[]"](); } else { return v["_∷_"](x[0], x.slice(1)); } } #-} {-# COMPILED_JS [] Array() #-} {-# COMPILED_JS _∷_ function (x) { return function(y) { return Array(x).concat(y); }; } #-}
{ "alphanum_fraction": 0.5729166667, "avg_line_length": 29.2173913043, "ext": "agda", "hexsha": "d5d594628754488f7bf1b39212f7de92794a7156", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 234, "size": 672 }
-- Andreas, 2015-07-07 continuation of issue 665 {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.with.strip:60 -v tc.lhs:10 #-} postulate C : Set anything : C record I : Set where constructor c field f : C data Wrap : (j : I) → Set where wrap : ∀ {j} → Wrap j works1 : ∀ {j} → Wrap j → C works1 {c ._} (wrap {c x}) with anything ... | z = z works2 : ∀ {j} → Wrap j → C works2 (wrap {_}) with anything ... | z = z works3 : ∀ {j} → Wrap j → C works3 wrap with anything ... | z = z works : ∀ {j} → Wrap j → C works {c _} (wrap {c ._}) with anything works {c _} (wrap .{c _}) | z = z -- The following should not pass, but issue 142 is hard to fix -- with the current infrastructure for with-clauses. -- Not many attempts have been made since 2009, and none succeeded. issue142 : ∀ {j} → Wrap j → C issue142 {c _} (wrap {c ._}) with anything issue142 {c _} (wrap .{c anything}) | z = z test : ∀ {j} → Wrap j → C test {c _} (wrap {c ._}) with anything test {c _} (wrap {c ._}) | z = z test' : ∀ {j} → Wrap j → C test' {c _} (wrap {c ._}) with anything ... | z = z -- ERROR WAS:: -- Inaccessible (dotted) patterns from the parent clause must also be -- inaccessible in the with clause, when checking the pattern {c ._}, -- when checking that the clause -- test {c _} (wrap {c ._}) with anything -- test {c _} (wrap {c ._}) | z = z -- has type {j : I} → Wrap j → C works1a : ∀ {j} → Wrap j → C works1a {c ._} (wrap {c x}) with anything works1a {c ._} (wrap {c x}) | z = z works1b : ∀ {j} → Wrap j → C works1b {c ._} (wrap {c x}) with anything works1b .{c _} (wrap {c x}) | z = z -- ERROR WAS: -- With clause pattern .(c _) is not an instance of its parent pattern -- (c .(Var 0 []) : {I}) -- when checking that the clause -- works1b {c ._} (wrap {c _}) with anything -- works1b {.(c _)} (wrap {c _}) | z = z -- has type {j : I} → Wrap j → C -- should pass
{ "alphanum_fraction": 0.5841741901, "avg_line_length": 25.4459459459, "ext": "agda", "hexsha": "040932de07207c23764a135ee41ff80587a1da0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1606.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1606.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1606.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 671, "size": 1883 }
open import Prelude hiding (begin_; step-≡; _∎) module MJ.Classtable.Core (c : ℕ) where open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×-≟_) open import Data.List open import Data.List.Membership.Propositional open import Data.List.Relation.Binary.Pointwise using (decidable-≡) open import Relation.Binary open import Data.Vec open import Data.Maybe open import Data.String open import Relation.Binary using (Decidable) open import MJ.Types as Types {- To model that a class may define both field and methods in a uniform manner, we choose to introduce two namespaces. -} data NS : Set where METHOD : NS FIELD : NS typing : NS → Set typing METHOD = Sig c typing FIELD = Ty c -- decidable equality on typings _typing-≟_ : ∀ {ns} → Decidable (_≡_ {A = typing ns}) _typing-≟_ {METHOD} = (decidable-≡ Types._≟_) ×-≟ Types._≟_ _typing-≟_ {FIELD} = Types._≟_ {- We choose to make parent declarations obligatory and have a distinguished class identifier Object in which inheritance chains find their foundation. The field constr of this record provides access to the constructor parameter types. The field decls returns a list of named members for each namespace, where the type of the member is namespace-dependent. The uniformity of member definitions permits a notion of membership that works for both fields and methods: -} record Class : Set where constructor class field parent : Cid c constr : List (Ty c) -- argument types decls : (ns : NS) → List (String × typing ns) ObjectClass = class Object [] (λ _ → []) {- Conceptually a class table stores the types of all members of all classes. It is modeled by a total function from class identifiers to instances of a record Class. -} PreClasstable = Cid c → Class {- We can define inheritance as the transitive closure of a step relation between class identifiers under a given classtable Σ: -} data _⊢_<:ₛ_ (Σ : PreClasstable) : Cid c → Cid c → Set where super : ∀ {cid} → Σ ⊢ cls cid <:ₛ (Class.parent (Σ (cls cid))) open import Data.Star _⊢_<:_ : (Σ : PreClasstable)(cid : Cid c) → (pid : Cid c) → Set _⊢_<:_ Σ = Star (_⊢_<:ₛ_ Σ) {- We'll restrict classtables to those that satisfy three properties: - founded: says that Object is at the base of sub-typing - rooted: says that every class inherits from Object - Σ-object: gives meaning to the distinguished Object class identifier -} record Classtable : Set where field Σ : PreClasstable founded : Class.parent (Σ Object) ≡ Object rooted : ∀ C → Σ ⊢ C <: Object Σ-Object : Σ Object ≡ ObjectClass _<∶_ : ∀ (cid pid : Cid c) → Set a <∶ b = Σ ⊢ a <: b open import Relation.Binary open import Data.Nat.Properties {- We can show that the subtyping relation is indeed reflexive and transitive -} <:-reflexive : Reflexive (_⊢_<:_ Σ) <:-reflexive = ε <:-transitive : Transitive (_⊢_<:_ Σ) <:-transitive = _◅◅_ {- From the axioms of the classtable we can derive the important properties that cyclic inheritance is impossible and that consequently inheritance proofs are unique. The proof is slightly involved because we have to make sure that Agda believes that it is total. -} private len : ∀ {c p} → Σ ⊢ c <: p → ℕ len ε = 0 len (x ◅ px) = suc $ len px len-◅◅ : ∀ {c p p'}(s : Σ ⊢ c <: p)(s' : Σ ⊢ p <: p') → len (s ◅◅ s') ≡ len s + len s' len-◅◅ ε _ = refl len-◅◅ (x ◅ s) s' rewrite len-◅◅ s s' = refl lem-len : ∀ {c p}(px : Σ ⊢ c <: p)(qx : Σ ⊢ c <: Object) → len px ≤ len qx lem-len ε ε = z≤n lem-len ε (x ◅ qx) = z≤n lem-len (() ◅ px) ε lem-len (super ◅ px) (super ◅ qx) = s≤s (lem-len px qx) open ≤-Reasoning -- generate an inheritance proof of arbitrary length, -- given an inheritance proof from a parent to a child lem-inf : ∀ c → Σ ⊢ Class.parent (Σ (cls c)) <: (cls c) → ∀ n → ∃ λ (px : Σ ⊢ (cls c) <: (cls c)) → len px > n lem-inf c px n with helper px n where helper : (p : Σ ⊢ Class.parent (Σ (cls c)) <: (cls c)) → ∀ gap → ∃ λ (px : Σ ⊢ (cls c) <: (cls c)) → len px ≥ gap + len p helper p zero = (super ◅ p) , ≤-step ≤-refl helper p (suc gap) with gap ≤? len p ... | yes q = (super ◅ p ◅◅ (super ◅ p)) , s≤s (begin (gap + len p) ≤⟨ +-mono-≤ q (≤-step ≤-refl) ⟩ len p + (suc (len p)) ≡⟨ sym (len-◅◅ p (super ◅ p)) ⟩ len (p ◅◅ super ◅ p) ∎) ... | no ¬q with helper (p ◅◅ (super ◅ p)) gap ... | z , q = z , (begin suc (gap + len p) ≡⟨ sym $ m+n+o≡n+m+o gap 1 (len p) ⟩ gap + (len (super ◅ p)) ≤⟨ +-mono-≤ { gap } ≤-refl (≤-stepsˡ (len p) ≤-refl) ⟩ gap + (len p + len (super ◅ p)) ≡⟨ cong (_+_ gap) (sym $ len-◅◅ p (super ◅ p)) ⟩ gap + (len (p ◅◅ (super ◅ p))) ≤⟨ q ⟩ len z ∎) where open import Data.Nat.Properties.Extra ... | py , z = super ◅ px ◅◅ py , s≤s (subst (_≤_ n) (sym $ len-◅◅ px py) (≤-stepsˡ (len px) (m+n≤o⇒m≤o n z))) -- Proves that a parent can't inherit from it's children, Σ-acyclic : ∀ c → ¬ Σ ⊢ Class.parent (Σ (cls c)) <: (cls c) Σ-acyclic c px with lem-inf c px (len $ rooted (cls c)) ... | qx , impossible with lem-len qx (rooted (cls c)) ... | z = ⊥-elim (<⇒≱ impossible z) -- Trivially we have that Object cannot inherit from any class ¬Object<:x : ∀ {cid} → ¬ Σ ⊢ Object <: cls cid ¬Object<:x (() ◅ p) -- Using acyclicity we can show that inheritance proofs are unique <:-unique : ∀ {c p} → (l r : Σ ⊢ c <: p) → l ≡ r <:-unique ε ε = refl <:-unique ε ch@(super ◅ r) = ⊥-elim (Σ-acyclic _ r) <:-unique ch@(super ◅ l) ε = ⊥-elim (Σ-acyclic _ l) <:-unique (super ◅ l) (super ◅ r) with <:-unique l r ... | refl = refl
{ "alphanum_fraction": 0.5983915127, "avg_line_length": 33.976744186, "ext": "agda", "hexsha": "f96b9b9f5cc35eddf991109634c6058b94f3d2c2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Classtable/Core.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Classtable/Core.agda", "max_line_length": 129, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Classtable/Core.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 2006, "size": 5844 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Homogeneously-indexed binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Homogeneous where ------------------------------------------------------------------------ -- Publicly export core definitions open import Relation.Binary.Indexed.Homogeneous.Core public open import Relation.Binary.Indexed.Homogeneous.Definitions public open import Relation.Binary.Indexed.Homogeneous.Structures public open import Relation.Binary.Indexed.Homogeneous.Bundles public ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.17 REL = IREL {-# WARNING_ON_USAGE REL "Warning: REL was deprecated in v0.17. Please use IREL instead." #-} Rel = IRel {-# WARNING_ON_USAGE Rel "Warning: Rel was deprecated in v0.17. Please use IRel instead." #-}
{ "alphanum_fraction": 0.5306298533, "avg_line_length": 30.5, "ext": "agda", "hexsha": "b1bc8fcb06a4502b8596d2fd1f82717cb2bea6c8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Indexed/Homogeneous.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 199, "size": 1159 }
{-# OPTIONS --without-K #-} open import HoTT {- The pseudo-adjoint functors F,G : Ptd → Ptd - It stops at composition and ignores - all the higher associahedrons. -} module homotopy.PtdAdjoint where record PtdFunctor i j : Type (lsucc (lmax i j)) where field obj : Ptd i → Ptd j arr : {X Y : Ptd i} → fst (X ⊙→ Y) → fst (obj X ⊙→ obj Y) id : (X : Ptd i) → arr (⊙idf X) == ⊙idf (obj X) comp : {X Y Z : Ptd i} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → arr (g ⊙∘ f) == arr g ⊙∘ arr f {- counit-unit description of F ⊣ G -} record CounitUnitAdjoint {i j} (F : PtdFunctor i j) (G : PtdFunctor j i) : Type (lsucc (lmax i j)) where private module F = PtdFunctor F module G = PtdFunctor G field η : (X : Ptd i) → fst (X ⊙→ G.obj (F.obj X)) ε : (U : Ptd j) → fst (F.obj (G.obj U) ⊙→ U) η-natural : {X Y : Ptd i} (h : fst (X ⊙→ Y)) → η Y ⊙∘ h == G.arr (F.arr h) ⊙∘ η X ε-natural : {U V : Ptd j} (k : fst (U ⊙→ V)) → ε V ⊙∘ F.arr (G.arr k) == k ⊙∘ ε U εF-Fη : (X : Ptd i) → ε (F.obj X) ⊙∘ F.arr (η X) == ⊙idf (F.obj X) Gε-ηG : (U : Ptd j) → G.arr (ε U) ⊙∘ η (G.obj U) == ⊙idf (G.obj U) {- hom-set isomorphism description of F ⊣ G -} record HomAdjoint {i j} (F : PtdFunctor i j) (G : PtdFunctor j i) : Type (lsucc (lmax i j)) where private module F = PtdFunctor F module G = PtdFunctor G field eq : (X : Ptd i) (U : Ptd j) → fst (F.obj X ⊙→ U) ≃ fst (X ⊙→ G.obj U) nat-dom : {X Y : Ptd i} (h : fst (X ⊙→ Y)) (U : Ptd j) (r : fst (F.obj Y ⊙→ U)) → –> (eq Y U) r ⊙∘ h == –> (eq X U) (r ⊙∘ F.arr h) nat-cod : (X : Ptd i) {U V : Ptd j} (k : fst (U ⊙→ V)) (r : fst (F.obj X ⊙→ U)) → G.arr k ⊙∘ –> (eq X U) r == –> (eq X V) (k ⊙∘ r) nat!-dom : {X Y : Ptd i} (h : fst (X ⊙→ Y)) (U : Ptd j) (s : fst (Y ⊙→ G.obj U)) → <– (eq Y U) s ⊙∘ F.arr h == <– (eq X U) (s ⊙∘ h) nat!-dom {X} {Y} h U s = ! (<–-inv-l (eq X U) (<– (eq Y U) s ⊙∘ F.arr h)) ∙ ap (<– (eq X U)) (! (nat-dom h U (<– (eq Y U) s))) ∙ ap (λ w → <– (eq X U) (w ⊙∘ h)) (<–-inv-r (eq Y U) s) nat!-cod : (X : Ptd i) {U V : Ptd j} (k : fst (U ⊙→ V)) (s : fst (X ⊙→ G.obj U)) → k ⊙∘ <– (eq X U) s == <– (eq X V) (G.arr k ⊙∘ s) nat!-cod X {U} {V} k s = ! (<–-inv-l (eq X V) (k ⊙∘ <– (eq X U) s)) ∙ ap (<– (eq X V)) (! (nat-cod X k (<– (eq X U) s))) ∙ ap (λ w → <– (eq X V) (G.arr k ⊙∘ w)) (<–-inv-r (eq X U) s) counit-unit-to-hom : ∀ {i j} {F : PtdFunctor i j} {G : PtdFunctor j i} → CounitUnitAdjoint F G → HomAdjoint F G counit-unit-to-hom {i} {j} {F} {G} adj = record { eq = eq; nat-dom = nat-dom; nat-cod = nat-cod} where module F = PtdFunctor F module G = PtdFunctor G open CounitUnitAdjoint adj module _ (X : Ptd i) (U : Ptd j) where into : fst (F.obj X ⊙→ U) → fst (X ⊙→ G.obj U) into r = G.arr r ⊙∘ η X out : fst (X ⊙→ G.obj U) → fst (F.obj X ⊙→ U) out s = ε U ⊙∘ F.arr s into-out : (s : fst (X ⊙→ G.obj U)) → into (out s) == s into-out s = G.arr (ε U ⊙∘ F.arr s) ⊙∘ η X =⟨ G.comp (ε U) (F.arr s) |in-ctx (λ w → w ⊙∘ η X) ⟩ (G.arr (ε U) ⊙∘ G.arr (F.arr s)) ⊙∘ η X =⟨ ⊙∘-assoc (G.arr (ε U)) (G.arr (F.arr s)) (η X) ⟩ G.arr (ε U) ⊙∘ G.arr (F.arr s) ⊙∘ η X =⟨ ! (η-natural s) |in-ctx (λ w → G.arr (ε U) ⊙∘ w) ⟩ G.arr (ε U) ⊙∘ η (G.obj U) ⊙∘ s =⟨ ! (⊙∘-assoc (G.arr (ε U)) (η (G.obj U)) s) ⟩ (G.arr (ε U) ⊙∘ η (G.obj U)) ⊙∘ s =⟨ Gε-ηG U |in-ctx (λ w → w ⊙∘ s) ⟩ ⊙idf (G.obj U) ⊙∘ s =⟨ ⊙∘-unit-l s ⟩ s ∎ out-into : (r : fst (F.obj X ⊙→ U)) → out (into r) == r out-into r = ε U ⊙∘ F.arr (G.arr r ⊙∘ η X) =⟨ F.comp (G.arr r) (η X) |in-ctx (λ w → ε U ⊙∘ w) ⟩ ε U ⊙∘ F.arr (G.arr r) ⊙∘ F.arr (η X) =⟨ ! (⊙∘-assoc (ε U) (F.arr (G.arr r)) (F.arr (η X))) ⟩ (ε U ⊙∘ F.arr (G.arr r)) ⊙∘ F.arr (η X) =⟨ ε-natural r |in-ctx (λ w → w ⊙∘ F.arr (η X)) ⟩ (r ⊙∘ ε (F.obj X)) ⊙∘ F.arr (η X) =⟨ ⊙∘-assoc r (ε (F.obj X)) (F.arr (η X)) ⟩ r ⊙∘ ε (F.obj X) ⊙∘ F.arr (η X) =⟨ εF-Fη X |in-ctx (λ w → r ⊙∘ w) ⟩ r ∎ eq : fst (F.obj X ⊙→ U) ≃ fst (X ⊙→ G.obj U) eq = equiv into out into-out out-into nat-dom : {X Y : Ptd i} (h : fst (X ⊙→ Y)) (U : Ptd j) (r : fst (F.obj Y ⊙→ U)) → –> (eq Y U) r ⊙∘ h == –> (eq X U) (r ⊙∘ F.arr h) nat-dom {X} {Y} h U r = (G.arr r ⊙∘ η Y) ⊙∘ h =⟨ ⊙∘-assoc (G.arr r) (η Y) h ⟩ G.arr r ⊙∘ η Y ⊙∘ h =⟨ η-natural h |in-ctx (λ w → G.arr r ⊙∘ w) ⟩ G.arr r ⊙∘ G.arr (F.arr h) ⊙∘ η X =⟨ ! (⊙∘-assoc (G.arr r) (G.arr (F.arr h)) (η X)) ⟩ (G.arr r ⊙∘ G.arr (F.arr h)) ⊙∘ η X =⟨ ! (G.comp r (F.arr h)) |in-ctx (λ w → w ⊙∘ η X) ⟩ G.arr (r ⊙∘ F.arr h) ⊙∘ η X ∎ nat-cod : (X : Ptd i) {U V : Ptd j} (k : fst (U ⊙→ V)) (r : fst (F.obj X ⊙→ U)) → G.arr k ⊙∘ –> (eq X U) r == –> (eq X V) (k ⊙∘ r) nat-cod X k r = G.arr k ⊙∘ (G.arr r ⊙∘ η X) =⟨ ! (⊙∘-assoc (G.arr k) (G.arr r) (η X)) ⟩ (G.arr k ⊙∘ G.arr r) ⊙∘ η X =⟨ ! (G.comp k r) |in-ctx (λ w → w ⊙∘ η X) ⟩ G.arr (k ⊙∘ r) ⊙∘ η X ∎ {- a right adjoint preserves products -} module RightAdjoint× {i j} {F : PtdFunctor i j} {G : PtdFunctor j i} (adj : HomAdjoint F G) (U V : Ptd j) where private module F = PtdFunctor F module G = PtdFunctor G module A = HomAdjoint adj ⊙into : fst (G.obj (U ⊙× V) ⊙→ G.obj U ⊙× G.obj V) ⊙into = ⊙×-in (G.arr ⊙fst) (G.arr ⊙snd) ⊙out : fst (G.obj U ⊙× G.obj V ⊙→ G.obj (U ⊙× V)) ⊙out = –> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ⊙into-out : ⊙into ⊙∘ ⊙out == ⊙idf _ ⊙into-out = ⊙×-in (G.arr ⊙fst) (G.arr ⊙snd) ⊙∘ ⊙out =⟨ ⊙×-in-pre∘ (G.arr ⊙fst) (G.arr ⊙snd) ⊙out ⟩ ⊙×-in (G.arr ⊙fst ⊙∘ ⊙out) (G.arr ⊙snd ⊙∘ ⊙out) =⟨ ap2 ⊙×-in (A.nat-cod _ ⊙fst (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ∙ ap (–> (A.eq _ _)) (⊙fst-⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ∙ <–-inv-r (A.eq _ _) ⊙fst) (A.nat-cod _ ⊙snd (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ∙ ap (–> (A.eq _ _)) (⊙snd-⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ∙ <–-inv-r (A.eq _ _) ⊙snd) ⟩ ⊙×-in ⊙fst ⊙snd ∎ ⊙out-into : ⊙out ⊙∘ ⊙into == ⊙idf _ ⊙out-into = –> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ⊙∘ ⊙×-in (G.arr ⊙fst) (G.arr ⊙snd) =⟨ A.nat-dom (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) _ (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd)) ⟩ –> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd) ⊙∘ F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd))) =⟨ ⊙×-in-pre∘ (<– (A.eq _ _) ⊙fst) (<– (A.eq _ _) ⊙snd) (F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd))) |in-ctx –> (A.eq _ _) ⟩ –> (A.eq _ _) (⊙×-in (<– (A.eq _ _) ⊙fst ⊙∘ F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd))) (<– (A.eq _ _) ⊙snd ⊙∘ F.arr (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)))) =⟨ ap2 (λ f g → –> (A.eq _ _) (⊙×-in f g)) (A.nat!-dom (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) _ ⊙fst ∙ ap (<– (A.eq _ _)) (⊙fst-⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) ∙ ! (A.nat!-cod _ ⊙fst (⊙idf _))) (A.nat!-dom (⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) _ ⊙snd ∙ ap (<– (A.eq _ _)) (⊙snd-⊙×-in (G.arr ⊙fst) (G.arr ⊙snd)) ∙ ! (A.nat!-cod _ ⊙snd (⊙idf _))) ⟩ –> (A.eq _ _) (⊙×-in (⊙fst ⊙∘ <– (A.eq _ _) (⊙idf _)) (⊙snd ⊙∘ <– (A.eq _ _) (⊙idf _))) =⟨ ap (–> (A.eq _ _)) (! (⊙×-in-pre∘ ⊙fst ⊙snd (<– (A.eq _ _) (⊙idf _)))) ⟩ –> (A.eq _ _) (⊙×-in ⊙fst ⊙snd ⊙∘ <– (A.eq _ _) (⊙idf _)) =⟨ ⊙∘-unit-l _ |in-ctx –> (A.eq _ _) ⟩ –> (A.eq _ _) (<– (A.eq _ _) (⊙idf _)) =⟨ <–-inv-r (A.eq _ _) (⊙idf _) ⟩ ⊙idf _ ∎ ⊙eq : G.obj (U ⊙× V) ⊙≃ G.obj U ⊙× G.obj V ⊙eq = ⊙≃-in (equiv (fst ⊙into) (fst ⊙out) (app= (ap fst ⊙into-out)) (app= (ap fst ⊙out-into))) (snd ⊙into) ⊙path = ⊙ua ⊙eq {- Using the equivalence in RightAdjoint× we get a binary - "G.arr2" : (X × Y → Z) → (G X × G Y → G Z) - and there is some kind of naturality wrt the (FX→Y)≃(X→GY) equivalence - (use case: from ⊙ap we get ⊙ap2) -} module RightAdjointBinary {i j} {F : PtdFunctor i j} {G : PtdFunctor j i} (adj : HomAdjoint F G) where private module F = PtdFunctor F module G = PtdFunctor G module A = HomAdjoint adj module A× = RightAdjoint× adj arr2 : {X Y Z : Ptd j} → fst (X ⊙× Y ⊙→ Z) → fst (G.obj X ⊙× G.obj Y ⊙→ G.obj Z) arr2 {X} {Y} {Z} f = G.arr f ⊙∘ A×.⊙out X Y nat-cod : {X : Ptd i} {Y Z W : Ptd j} (r₁ : fst (F.obj X ⊙→ Y)) (r₂ : fst (F.obj X ⊙→ Z)) (o : fst (Y ⊙× Z ⊙→ W)) → –> (A.eq X W) (o ⊙∘ ⊙×-in r₁ r₂) == arr2 o ⊙∘ ⊙×-in (–> (A.eq X Y) r₁) (–> (A.eq X Z) r₂) nat-cod {X} {Y} {Z} {W} r₁ r₂ o = –> (A.eq X W) (o ⊙∘ ⊙×-in r₁ r₂) =⟨ ! (A.nat-cod X o (⊙×-in r₁ r₂)) ⟩ G.arr o ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂) =⟨ ! (A×.⊙out-into Y Z) |in-ctx (λ w → (G.arr o ⊙∘ w) ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) ⟩ (G.arr o ⊙∘ (A×.⊙out Y Z ⊙∘ A×.⊙into Y Z)) ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂) =⟨ ⊙∘-assoc-lemma (G.arr o) (A×.⊙out Y Z) (A×.⊙into Y Z) (–> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) ⟩ arr2 o ⊙∘ A×.⊙into Y Z ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂) =⟨ ⊙×-in-pre∘ (G.arr ⊙fst) (G.arr ⊙snd) (–> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) |in-ctx (λ w → arr2 o ⊙∘ w) ⟩ arr2 o ⊙∘ ⊙×-in (G.arr ⊙fst ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) (G.arr ⊙snd ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙×-in r₁ r₂)) =⟨ ap2 (λ w₁ w₂ → arr2 o ⊙∘ ⊙×-in w₁ w₂) (A.nat-cod X ⊙fst (⊙×-in r₁ r₂) ∙ ap (–> (A.eq X Y)) (⊙fst-⊙×-in r₁ r₂)) (A.nat-cod X ⊙snd (⊙×-in r₁ r₂) ∙ ap (–> (A.eq X Z)) (⊙snd-⊙×-in r₁ r₂)) ⟩ arr2 o ⊙∘ ⊙×-in (–> (A.eq X Y) r₁) (–> (A.eq X Z) r₂) ∎ where ⊙∘-assoc-lemma : ∀ {i j k l m} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {U : Ptd l} {V : Ptd m} (k : fst (U ⊙→ V)) (h : fst (Z ⊙→ U)) (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → (k ⊙∘ (h ⊙∘ g)) ⊙∘ f == (k ⊙∘ h) ⊙∘ g ⊙∘ f ⊙∘-assoc-lemma (k , idp) (h , idp) (g , idp) (f , idp) = idp {- a left adjoint preserves wedges -} module LeftAdjoint∨ {i j} {F : PtdFunctor i j} {G : PtdFunctor j i} (adj : HomAdjoint F G) (U V : Ptd i) where private module F = PtdFunctor F module G = PtdFunctor G module A = HomAdjoint adj module Into = ⊙WedgeRec (F.arr ⊙winl) (F.arr ⊙winr) ⊙into : fst (F.obj U ⊙∨ F.obj V ⊙→ F.obj (U ⊙∨ V)) ⊙into = Into.⊙f module OutHelp = ⊙WedgeRec (–> (A.eq _ _) ⊙winl) (–> (A.eq _ _) ⊙winr) ⊙out : fst (F.obj (U ⊙∨ V) ⊙→ F.obj U ⊙∨ F.obj V) ⊙out = <– (A.eq _ _) OutHelp.⊙f ⊙into-out : ⊙into ⊙∘ ⊙out == ⊙idf _ ⊙into-out = ⊙into ⊙∘ ⊙out =⟨ A.nat!-cod _ ⊙into (⊙wedge-rec (–> (A.eq _ _) ⊙winl) (–> (A.eq _ _) ⊙winr)) ⟩ <– (A.eq _ _) (G.arr ⊙into ⊙∘ ⊙wedge-rec (–> (A.eq _ _) ⊙winl) (–> (A.eq _ _) ⊙winr)) =⟨ ap (<– (A.eq _ _)) (⊙wedge-rec-post∘ (G.arr ⊙into) (–> (A.eq _ _) ⊙winl) (–> (A.eq _ _) ⊙winr)) ⟩ <– (A.eq _ _) (⊙wedge-rec (G.arr ⊙into ⊙∘ –> (A.eq _ _) ⊙winl) (G.arr ⊙into ⊙∘ –> (A.eq _ _) ⊙winr)) =⟨ ap2 (λ w₁ w₂ → <– (A.eq _ _) (⊙wedge-rec w₁ w₂)) (A.nat-cod _ ⊙into ⊙winl ∙ ap (–> (A.eq _ _)) (Into.⊙winl-β ∙ ! (⊙∘-unit-l _)) ∙ ! (A.nat-dom ⊙winl _ (⊙idf _))) (A.nat-cod _ ⊙into ⊙winr ∙ ap (–> (A.eq _ _)) (Into.⊙winr-β ∙ ! (⊙∘-unit-l _)) ∙ ! (A.nat-dom ⊙winr _ (⊙idf _))) ⟩ <– (A.eq _ _) (⊙wedge-rec (–> (A.eq _ _) (⊙idf _) ⊙∘ ⊙winl) (–> (A.eq _ _) (⊙idf _) ⊙∘ ⊙winr)) =⟨ ap (<– (A.eq _ _)) (! (⊙wedge-rec-post∘ (–> (A.eq _ _) (⊙idf _)) ⊙winl ⊙winr)) ⟩ <– (A.eq _ _) (–> (A.eq _ _) (⊙idf _) ⊙∘ ⊙wedge-rec ⊙winl ⊙winr) =⟨ ap (λ w → <– (A.eq _ _) (–> (A.eq _ _) (⊙idf _) ⊙∘ w)) ⊙wedge-rec-η ⟩ <– (A.eq _ _) (–> (A.eq _ _) (⊙idf _)) =⟨ <–-inv-l (A.eq _ _) (⊙idf _) ⟩ ⊙idf _ ∎ ⊙out-into : ⊙out ⊙∘ ⊙into == ⊙idf _ ⊙out-into = ⊙out ⊙∘ ⊙wedge-rec (F.arr ⊙winl) (F.arr ⊙winr) =⟨ ⊙wedge-rec-post∘ ⊙out (F.arr ⊙winl) (F.arr ⊙winr) ⟩ ⊙wedge-rec (⊙out ⊙∘ F.arr ⊙winl) (⊙out ⊙∘ F.arr ⊙winr) =⟨ ap2 ⊙wedge-rec (A.nat!-dom ⊙winl _ (⊙wedge-rec _ _) ∙ ap (<– (A.eq _ _)) OutHelp.⊙winl-β ∙ <–-inv-l (A.eq _ _) ⊙winl) (A.nat!-dom ⊙winr _ (⊙wedge-rec _ _) ∙ ap (<– (A.eq _ _)) OutHelp.⊙winr-β ∙ <–-inv-l (A.eq _ _) ⊙winr) ⟩ ⊙wedge-rec ⊙winl ⊙winr =⟨ ⊙wedge-rec-η ⟩ ⊙idf _ ∎ ⊙eq : F.obj U ⊙∨ F.obj V ⊙≃ F.obj (U ⊙∨ V) ⊙eq = ⊙≃-in (equiv (fst ⊙into) (fst ⊙out) (app= (ap fst ⊙into-out)) (app= (ap fst ⊙out-into))) (snd ⊙into) ⊙path = ⊙ua ⊙eq
{ "alphanum_fraction": 0.4090249675, "avg_line_length": 38.2953216374, "ext": "agda", "hexsha": "41718b3fbf52c79534f4fcef2287040285ce0761", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PtdAdjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PtdAdjoint.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PtdAdjoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6699, "size": 13097 }
module test.IntegerLiteral where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ open import Agda.Builtin.Sigma open import Data.Integer open import Data.Nat -- zerepoch/zerepoch-core/test/data/integerLiteral.plc intLit : ∀{Γ} → Γ ⊢ con integer (size⋆ 100) intLit = con (integer 100 (ℤ.pos 102341) (-≤+ Σ., +≤+ (gen _ _ _)))
{ "alphanum_fraction": 0.7420091324, "avg_line_length": 27.375, "ext": "agda", "hexsha": "b24aa571b0c801ebc1452fc8bcbec84fe831dcb8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-21T16:38:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-13T21:25:19.000Z", "max_forks_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Quantum-One-DLT/zerepoch", "max_forks_repo_path": "zerepoch-metatheory/test/IntegerLiteral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Quantum-One-DLT/zerepoch", "max_issues_repo_path": "zerepoch-metatheory/test/IntegerLiteral.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Quantum-One-DLT/zerepoch", "max_stars_repo_path": "zerepoch-metatheory/test/IntegerLiteral.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 149, "size": 438 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function using (_on_) open import Cubical.Foundations.HLevels open import Cubical.Classes using (Cast; [_]) public private variable a b ℓ : Level A : Type a B : Type b RawREL : Type a → Type b → (ℓ : Level) → Type _ RawREL A B ℓ = A → B → Type ℓ RawRel : Type a → (ℓ : Level) → Type _ RawRel A ℓ = RawREL A A ℓ REL : Type a → Type b → (ℓ : Level) → Type _ REL A B ℓ = A → B → hProp ℓ Rel : Type a → (ℓ : Level) → Type _ Rel A ℓ = REL A A ℓ isPropValued : RawREL A B ℓ → Type _ isPropValued R = ∀ a b → isProp (R a b) instance RelCast : Cast (REL A B ℓ) (RawREL A B ℓ) RelCast = record { cast = λ R a b → R a b .fst } isProp[_] : (R : REL A B ℓ) → isPropValued [ R ] isProp[ R ] a b = R a b .snd fromRaw : (R : RawREL A B ℓ) → isPropValued R → REL A B ℓ fromRaw R isPropR a b .fst = R a b fromRaw R isPropR a b .snd = isPropR a b
{ "alphanum_fraction": 0.6387582314, "avg_line_length": 23.1086956522, "ext": "agda", "hexsha": "130caa516b59267666f27e043625c5499b650efe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Base.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 386, "size": 1063 }
------------------------------------------------------------------------ -- Some results/examples related to CCS, implemented using the -- coinductive definition of bisimilarity ------------------------------------------------------------------------ -- Unless anything else is stated the results (or statements, in the -- case of exercises) below are taken from "Enhancements of the -- bisimulation proof method" by Pous and Sangiorgi. {-# OPTIONS --sized-types #-} open import Prelude module Bisimilarity.CCS.Examples {ℓ} {Name : Type ℓ} where open import Equality.Propositional open import Prelude.Size open import Bisimilarity.CCS import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning open import Labelled-transition-system.CCS Name open import Bisimilarity CCS ------------------------------------------------------------------------ -- A result mentioned in "Enhancements of the bisimulation proof -- method" mutual -- For a more general result, see 6-2-14 below. !∙⊕∙∼!∙∣!∙ : ∀ {i a b} → [ i ] ! (a ∙ ⊕ b ∙) ∼ ! a ∙ ∣ ! b ∙ !∙⊕∙∼!∙∣!∙ {i} {a} {b} = ⟨ lr , rl ⟩ where lemma = ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ ∣-right-identity ⟩ ! (a ∙ ⊕ b ∙) ∼⟨ !∙⊕∙∼′!∙∣!∙ {i = i} ⟩■ ! a ∙ ∣ ! b ∙ left-lemma = ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ lemma ⟩ ! a ∙ ∣ ! b ∙ ∼⟨ symmetric ∣-right-identity ∣-cong reflexive ⟩■ (! a ∙ ∣ ∅) ∣ ! b ∙ right-lemma = ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ lemma ⟩ ! a ∙ ∣ ! b ∙ ∼⟨ reflexive ∣-cong symmetric ∣-right-identity ⟩■ ! a ∙ ∣ (! b ∙ ∣ ∅) τ-lemma = (! (a ∙ ⊕ b ∙) ∣ ∅) ∣ ∅ ∼⟨ ∣-right-identity ⟩ ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ lemma ⟩ ! a ∙ ∣ ! b ∙ ∼⟨ symmetric (∣-right-identity ∣-cong ∣-right-identity) ⟩■ (! a ∙ ∣ ∅) ∣ (! b ∙ ∣ ∅) lr : ∀ {P μ} → ! (a ∙ ⊕ b ∙) [ μ ]⟶ P → ∃ λ Q → ! a ∙ ∣ ! b ∙ [ μ ]⟶ Q × [ i ] P ∼′ Q lr {P} tr = case 6-1-3-2 tr of λ where (inj₁ (.∅ , sum-left action , P∼![a⊕b]∣∅)) → P ∼⟨ P∼![a⊕b]∣∅ ⟩ ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ left-lemma ⟩■ (! a ∙ ∣ ∅) ∣ ! b ∙ [ name a ]⟵⟨ par-left (replication (par-right action)) ⟩ ! a ∙ ∣ ! b ∙ (inj₁ (.∅ , sum-right action , P∼![a⊕b]∣∅)) → P ∼⟨ P∼![a⊕b]∣∅ ⟩ ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ right-lemma ⟩■ ! a ∙ ∣ (! b ∙ ∣ ∅) [ name b ]⟵⟨ par-right (replication (par-right action)) ⟩ ! a ∙ ∣ ! b ∙ (inj₂ (refl , P′ , P″ , c , a⊕b⟶P′ , a⊕b⟶P″ , P∼![a⊕b]∣P′∣P″)) → let b≡co-a , P′≡∅ , P″≡∅ = Σ-map id [ id , id ] (·⊕·-co a⊕b⟶P′ a⊕b⟶P″) in P ∼⟨ P∼![a⊕b]∣P′∣P″ ⟩ (! (a ∙ ⊕ b ∙) ∣ P′) ∣ P″ ∼⟨ (reflexive ∣-cong ≡⇒∼ P′≡∅) ∣-cong ≡⇒∼ P″≡∅ ⟩ (! (a ∙ ⊕ b ∙) ∣ ∅) ∣ ∅ ∼⟨ τ-lemma ⟩■ (! a ∙ ∣ ∅) ∣ (! b ∙ ∣ ∅) [ τ ]⟵⟨ par-τ′ b≡co-a (replication (par-right action)) (replication (par-right action)) ⟩ ! a ∙ ∣ ! b ∙ rl : ∀ {Q μ} → ! a ∙ ∣ ! b ∙ [ μ ]⟶ Q → ∃ λ P → ! (a ∙ ⊕ b ∙) [ μ ]⟶ P × [ i ] P ∼′ Q rl (par-left {P′ = P′} tr) = case 6-1-3-2 tr of λ where (inj₁ (.∅ , action , P′∼!a∣∅)) → ! (a ∙ ⊕ b ∙) [ name a ]⟶⟨ replication (par-right (sum-left action)) ⟩ʳˡ ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ left-lemma ⟩ (! a ∙ ∣ ∅) ∣ ! b ∙ ∼⟨ symmetric P′∼!a∣∅ ∣-cong reflexive ⟩■ P′ ∣ ! b ∙ (inj₂ (refl , .∅ , P″ , .a , action , a⟶P″ , P′∼!a∣∅∣P″)) → ⊥-elim (names-are-not-inverted a⟶P″) rl (par-right {Q′ = Q′} tr) = case 6-1-3-2 tr of λ where (inj₁ (.∅ , action , Q′∼!b∣∅)) → ! (a ∙ ⊕ b ∙) [ name b ]⟶⟨ replication (par-right (sum-right action)) ⟩ʳˡ ! (a ∙ ⊕ b ∙) ∣ ∅ ∼⟨ right-lemma ⟩ ! a ∙ ∣ (! b ∙ ∣ ∅) ∼⟨ reflexive ∣-cong symmetric Q′∼!b∣∅ ⟩■ ! a ∙ ∣ Q′ (inj₂ (refl , .∅ , Q″ , .b , action , b⟶Q″ , Q′∼!b∣∅∣Q″)) → ⊥-elim (names-are-not-inverted b⟶Q″) rl (par-τ {P′ = P′} {Q′ = Q′} tr₁ tr₂) = case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where (inj₁ (.∅ , action , P′∼!a∣∅) , inj₁ (.∅ , action , Q′∼!co-a∣∅)) → ! (a ∙ ⊕ co a ∙) [ τ ]⟶⟨ replication (par-τ (replication (par-right (sum-left action))) (sum-right action)) ⟩ʳˡ (! (a ∙ ⊕ co a ∙) ∣ ∅) ∣ ∅ ∼⟨ τ-lemma ⟩ (! a ∙ ∣ ∅) ∣ (! co a ∙ ∣ ∅) ∼⟨ symmetric (P′∼!a∣∅ ∣-cong Q′∼!co-a∣∅) ⟩■ P′ ∣ Q′ (inj₁ _ , inj₂ (() , _)) (inj₂ (() , _) , _) !∙⊕∙∼′!∙∣!∙ : ∀ {a b i} → [ i ] ! (a ∙ ⊕ b ∙) ∼′ ! a ∙ ∣ ! b ∙ force !∙⊕∙∼′!∙∣!∙ = !∙⊕∙∼!∙∣!∙ ------------------------------------------------------------------------ -- Exercise 6.2.4 mutual -- For a more general result, see 6-2-17-4 below. 6-2-4 : ∀ {a i} → [ i ] ! ! a ∙ ∼ ! a ∙ 6-2-4 {a} {i} = ⟨ lr , rl ⟩ where impossible : ∀ {μ P q} {Q : Type q} → ! ! a ∙ [ μ ]⟶ P → μ ≡ τ → Q impossible {μ} !!a⟶P μ≡τ = ⊥-elim $ name≢τ (name a ≡⟨ !-only (!-only ·-only) !!a⟶P ⟩ μ ≡⟨ μ≡τ ⟩∎ τ ∎) lemma : ∀ {P} → P ∼ ! a ∙ ∣ ∅ → _ lemma {P} P∼!a∣∅ = ! ! a ∙ ∣ P ∼⟨ reflexive ∣-cong P∼!a∣∅ ⟩ ! ! a ∙ ∣ (! a ∙ ∣ ∅) ∼⟨ reflexive ∣-cong ∣-right-identity ⟩ ! ! a ∙ ∣ ! a ∙ ∼⟨ 6-1-2 ⟩ ! ! a ∙ ∼⟨ 6-2-4′ {i = i} ⟩ ! a ∙ ∼⟨ symmetric ∣-right-identity ⟩■ ! a ∙ ∣ ∅ lr : ∀ {P μ} → ! ! a ∙ [ μ ]⟶ P → ∃ λ P′ → ! a ∙ [ μ ]⟶ P′ × [ i ] P ∼′ P′ lr {P = P} !!a⟶P = case 6-1-3-2 !!a⟶P of λ where (inj₂ (μ≡τ , _)) → impossible !!a⟶P μ≡τ (inj₁ (P′ , !a⟶P′ , P∼!!a∣P′)) → case 6-1-3-2 !a⟶P′ of λ where (inj₂ (μ≡τ , _)) → impossible !!a⟶P μ≡τ (inj₁ (.∅ , action , P′∼!a∣∅)) → P ∼⟨ P∼!!a∣P′ ⟩ ! ! a ∙ ∣ P′ ∼⟨ lemma P′∼!a∣∅ ⟩■ ! a ∙ ∣ ∅ [ name a ]⟵⟨ replication (par-right action) ⟩ ! a ∙ rl : ∀ {P μ} → ! a ∙ [ μ ]⟶ P → ∃ λ P′ → ! ! a ∙ [ μ ]⟶ P′ × [ i ] P′ ∼′ P rl {P = P} !a⟶P = case 6-1-3-2 !a⟶P of λ where (inj₂ (refl , .∅ , Q″ , .a , action , a⟶Q″ , _)) → ⊥-elim (names-are-not-inverted a⟶Q″) (inj₁ (.∅ , action , P∼!a∣∅)) → ! ! a ∙ [ name a ]⟶⟨ replication (par-right !a⟶P) ⟩ʳˡ ! ! a ∙ ∣ P ∼⟨ lemma P∼!a∣∅ ⟩ ! a ∙ ∣ ∅ ∼⟨ symmetric P∼!a∣∅ ⟩■ P 6-2-4′ : ∀ {a i} → [ i ] ! ! a ∙ ∼′ ! a ∙ force 6-2-4′ = 6-2-4 ------------------------------------------------------------------------ -- A result mentioned in "Enhancements of the bisimulation proof -- method" ∙∣∙∼∙∙ : ∀ {a} → a ∙ ∣ a ∙ ∼ name a ∙ (a ∙) ∙∣∙∼∙∙ {a} = ⟨ lr , rl ⟩ where lr : ∀ {P μ} → a ∙ ∣ a ∙ [ μ ]⟶ P → ∃ λ P′ → name a ∙ (a ∙) [ μ ]⟶ P′ × P ∼′ P′ lr (par-left action) = ∅ ∣ a ∙ ∼⟨ ∣-left-identity ⟩■ a ∙ [ name a ]⟵⟨ action ⟩ name a ∙ (a ∙) lr (par-right action) = a ∙ ∣ ∅ ∼⟨ ∣-right-identity ⟩■ a ∙ [ name a ]⟵⟨ action ⟩ name a ∙ (a ∙) lr (par-τ action tr) = ⊥-elim (names-are-not-inverted tr) rl : ∀ {P μ} → name a ∙ (a ∙) [ μ ]⟶ P → ∃ λ P′ → a ∙ ∣ a ∙ [ μ ]⟶ P′ × P′ ∼′ P rl action = a ∙ ∣ a ∙ [ name a ]⟶⟨ par-right action ⟩ʳˡ a ∙ ∣ ∅ ∼⟨ ∣-right-identity ⟩■ a ∙ ------------------------------------------------------------------------ -- Lemma 6.2.14 mutual -- A more general variant of !∙⊕∙∼!∙∣!∙. For an even more general -- variant, see 6-2-17-2 below. 6-2-14 : ∀ {i a b P Q} → [ i ] ! (name a ∙ P ⊕ name b ∙ Q) ∼ ! name a ∙ P ∣ ! name b ∙ Q 6-2-14 {i} {a} {b} {P} {Q} = ⟨ lr , rl ⟩ where left-lemma = ! (name a ∙ P ⊕ name b ∙ Q) ∣ P ∼⟨ 6-2-14′ {i = i} ∣-cong′ reflexive ⟩ (! name a ∙ P ∣ ! name b ∙ Q) ∣ P ∼⟨ swap-rightmost ⟩■ (! name a ∙ P ∣ P) ∣ ! name b ∙ Q right-lemma = ! (name a ∙ P ⊕ name b ∙ Q) ∣ Q ∼⟨ 6-2-14′ {i = i} ∣-cong′ reflexive ⟩ (! name a ∙ P ∣ ! name b ∙ Q) ∣ Q ∼⟨ symmetric ∣-assoc ⟩■ ! name a ∙ P ∣ (! name b ∙ Q ∣ Q) τ-lemma = (! (name a ∙ P ⊕ name b ∙ Q) ∣ P) ∣ Q ∼⟨ left-lemma ∣-cong′ reflexive ⟩ ((! name a ∙ P ∣ P) ∣ ! name b ∙ Q) ∣ Q ∼⟨ symmetric ∣-assoc ⟩■ (! name a ∙ P ∣ P) ∣ (! name b ∙ Q ∣ Q) lr : ∀ {R μ} → ! (name a ∙ P ⊕ name b ∙ Q) [ μ ]⟶ R → ∃ λ S → ! name a ∙ P ∣ ! name b ∙ Q [ μ ]⟶ S × [ i ] R ∼′ S lr {R} tr = case 6-1-3-2 tr of λ where (inj₁ (.P , sum-left action , R∼![aP⊕bQ]∣P)) → R ∼⟨ R∼![aP⊕bQ]∣P ⟩ ! (name a ∙ P ⊕ name b ∙ Q) ∣ P ∼⟨ left-lemma ⟩■ (! name a ∙ P ∣ P) ∣ ! name b ∙ Q [ name a ]⟵⟨ par-left (replication (par-right action)) ⟩ ! name a ∙ P ∣ ! name b ∙ Q (inj₁ (.Q , sum-right action , R∼![aP⊕bQ]∣Q)) → R ∼⟨ R∼![aP⊕bQ]∣Q ⟩ ! (name a ∙ P ⊕ name b ∙ Q) ∣ Q ∼⟨ right-lemma ⟩■ ! name a ∙ P ∣ (! name b ∙ Q ∣ Q) [ name b ]⟵⟨ par-right (replication (par-right action)) ⟩ ! name a ∙ P ∣ ! name b ∙ Q (inj₂ ( refl , R′ , R″ , c , aP⊕bQ⟶R′ , aP⊕bQ⟶R″ , R∼![aP⊕bQ]∣R′∣R″ )) → let b≡co-a , R′≡,R″≡ = ·⊕·-co aP⊕bQ⟶R′ aP⊕bQ⟶R″ lemma : _ → [ _ ] _ ∼ _ lemma = λ where (inj₁ (R′≡P , R″≡Q)) → (! (name a ∙ P ⊕ name b ∙ Q) ∣ R′) ∣ R″ ∼⟨ (reflexive ∣-cong ≡⇒∼ R′≡P) ∣-cong ≡⇒∼ R″≡Q ⟩■ (! (name a ∙ P ⊕ name b ∙ Q) ∣ P) ∣ Q (inj₂ (R′≡Q , R″≡P)) → (! (name a ∙ P ⊕ name b ∙ Q) ∣ R′) ∣ R″ ∼⟨ (reflexive ∣-cong ≡⇒∼ R′≡Q) ∣-cong ≡⇒∼ R″≡P ⟩ (! (name a ∙ P ⊕ name b ∙ Q) ∣ Q) ∣ P ∼⟨ swap-rightmost ⟩■ (! (name a ∙ P ⊕ name b ∙ Q) ∣ P) ∣ Q in R ∼⟨ R∼![aP⊕bQ]∣R′∣R″ ⟩ (! (name a ∙ P ⊕ name b ∙ Q) ∣ R′) ∣ R″ ∼⟨ lemma R′≡,R″≡ ⟩ (! (name a ∙ P ⊕ name b ∙ Q) ∣ P) ∣ Q ∼⟨ τ-lemma ⟩■ (! name a ∙ P ∣ P) ∣ (! name b ∙ Q ∣ Q) [ τ ]⟵⟨ par-τ′ b≡co-a (replication (par-right action)) (replication (par-right action)) ⟩ ! name a ∙ P ∣ ! name b ∙ Q rl : ∀ {S μ} → ! name a ∙ P ∣ ! name b ∙ Q [ μ ]⟶ S → ∃ λ R → ! (name a ∙ P ⊕ name b ∙ Q) [ μ ]⟶ R × [ i ] R ∼′ S rl (par-left {P′ = S} tr) = case 6-1-3-2 tr of λ where (inj₁ (.P , action , S∼!aP∣P)) → ! (name a ∙ P ⊕ name b ∙ Q) [ name a ]⟶⟨ replication (par-right (sum-left action)) ⟩ʳˡ ! (name a ∙ P ⊕ name b ∙ Q) ∣ P ∼⟨ left-lemma ⟩ (! name a ∙ P ∣ P) ∣ ! name b ∙ Q ∼⟨ symmetric S∼!aP∣P ∣-cong reflexive ⟩■ S ∣ ! name b ∙ Q (inj₂ (refl , .P , S′ , .a , action , aP⟶S′ , S∼!aP∣P∣S′)) → ⊥-elim (names-are-not-inverted aP⟶S′) rl (par-right {Q′ = S} tr) = case 6-1-3-2 tr of λ where (inj₁ (.Q , action , S∼!bQ∣Q)) → ! (name a ∙ P ⊕ name b ∙ Q) [ name b ]⟶⟨ replication (par-right (sum-right action)) ⟩ʳˡ ! (name a ∙ P ⊕ name b ∙ Q) ∣ Q ∼⟨ right-lemma ⟩ ! name a ∙ P ∣ (! name b ∙ Q ∣ Q) ∼⟨ reflexive ∣-cong symmetric S∼!bQ∣Q ⟩■ ! name a ∙ P ∣ S (inj₂ (refl , .Q , S′ , .b , action , bQ⟶S′ , S∼!bQ∣Q∣S′)) → ⊥-elim (names-are-not-inverted bQ⟶S′) rl (par-τ {P′ = S} {Q′ = S′} tr₁ tr₂) = case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where (inj₁ (.P , action , S∼!aP∣P) , inj₁ (.Q , action , S′∼!co-aQ∣Q)) → ! (name a ∙ P ⊕ name (co a) ∙ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (sum-left action))) (sum-right action)) ⟩ʳˡ (! (name a ∙ P ⊕ name (co a) ∙ Q) ∣ P) ∣ Q ∼⟨ τ-lemma ⟩ (! name a ∙ P ∣ P) ∣ (! name (co a) ∙ Q ∣ Q) ∼⟨ symmetric (S∼!aP∣P ∣-cong S′∼!co-aQ∣Q) ⟩■ S ∣ S′ (inj₁ _ , inj₂ (() , _)) (inj₂ (() , _) , _) 6-2-14′ : ∀ {i a b P Q} → [ i ] ! (name a ∙ P ⊕ name b ∙ Q) ∼′ ! name a ∙ P ∣ ! name b ∙ Q force 6-2-14′ = 6-2-14 ------------------------------------------------------------------------ -- Lemma 6.2.17 -- Some results mentioned in the proof of 6.2.17 (1) in -- "Enhancements of the bisimulation proof method". 6-2-17-1-lemma₁ : ∀ {P Q} → (! P ∣ ! Q) ∣ (P ∣ Q) ∼ ! P ∣ ! Q 6-2-17-1-lemma₁ {P} {Q} = (! P ∣ ! Q) ∣ (P ∣ Q) ∼⟨ swap-in-the-middle ⟩ (! P ∣ P) ∣ (! Q ∣ Q) ∼⟨ 6-1-2 ∣-cong 6-1-2 ⟩■ ! P ∣ ! Q abstract 6-2-17-1-lemma₂ : ∀ {P Q R μ} → ! (P ∣ Q) [ μ ]⟶ R → ∃ λ S → R ∼ ! (P ∣ Q) ∣ S × ∃ λ T → ! P ∣ ! Q [ μ ]⟶ T × (! P ∣ ! Q) ∣ S ∼′ T 6-2-17-1-lemma₂ {P} {Q} {R} tr = case 6-1-3-2 tr of λ where (inj₁ (R′ , P∣Q⟶R′ , R∼![P∣Q]∣R′)) → let R″ , !P∣!Q⟶R″ , !P∣!Q∣R′∼R″ = left-to-right ((! P ∣ ! Q) ∣ (P ∣ Q) ∼⟨ 6-2-17-1-lemma₁ ⟩■ ! P ∣ ! Q) ((! P ∣ ! Q) ∣ (P ∣ Q) ⟶⟨ par-right P∣Q⟶R′ ⟩ (! P ∣ ! Q) ∣ R′) in _ , R∼![P∣Q]∣R′ , _ , !P∣!Q⟶R″ , !P∣!Q∣R′∼R″ (inj₂ (refl , R′ , R″ , a , P∣Q⟶R′ , P∣Q⟶R″ , R∼![P∣Q]∣R′∣R″)) → let T , !P∣!Q⟶T , !P∣!Q∣[R′∣R″]∼T = left-to-right ((! P ∣ ! Q) ∣ ((P ∣ Q) ∣ (P ∣ Q)) ∼⟨ ∣-assoc ⟩ ((! P ∣ ! Q) ∣ (P ∣ Q)) ∣ (P ∣ Q) ∼⟨ 6-2-17-1-lemma₁ ∣-cong reflexive ⟩ (! P ∣ ! Q) ∣ (P ∣ Q) ∼⟨ 6-2-17-1-lemma₁ ⟩■ ! P ∣ ! Q) ((! P ∣ ! Q) ∣ ((P ∣ Q) ∣ (P ∣ Q)) ⟶⟨ par-right (par-τ P∣Q⟶R′ P∣Q⟶R″) ⟩ (! P ∣ ! Q) ∣ (R′ ∣ R″)) in _ , (R ∼⟨ R∼![P∣Q]∣R′∣R″ ⟩ (! (P ∣ Q) ∣ R′) ∣ R″ ∼⟨ symmetric ∣-assoc ⟩■ ! (P ∣ Q) ∣ (R′ ∣ R″)) , _ , !P∣!Q⟶T , !P∣!Q∣[R′∣R″]∼T mutual 6-2-17-1 : ∀ {i P Q} → [ i ] ! (P ∣ Q) ∼ ! P ∣ ! Q 6-2-17-1 {i} {P} {Q} = ⟨ lr , rl ⟩ where lr : ∀ {R μ} → ! (P ∣ Q) [ μ ]⟶ R → ∃ λ S → ! P ∣ ! Q [ μ ]⟶ S × [ i ] R ∼′ S lr {R} tr = let S , R∼![P∣Q]∣S , T , !P∣!Q⟶T , !P∣!Q∣S∼T = 6-2-17-1-lemma₂ tr in R ∼⟨ R∼![P∣Q]∣S ⟩ ! (P ∣ Q) ∣ S ∼⟨ 6-2-17-1′ ∣-cong′ reflexive ⟩ (! P ∣ ! Q) ∣ S ∼⟨ !P∣!Q∣S∼T ⟩■ T ⟵⟨ !P∣!Q⟶T ⟩ ! P ∣ ! Q lemma = λ {R S : Proc ∞} → ! (P ∣ Q) ∣ (R ∣ S) ∼⟨ 6-2-17-1′ {i = i} ∣-cong′ reflexive ⟩ (! P ∣ ! Q) ∣ (R ∣ S) ∼⟨ swap-in-the-middle ⟩■ (! P ∣ R) ∣ (! Q ∣ S) left-lemma = λ {R : Proc ∞} → ! (P ∣ Q) ∣ (R ∣ Q) ∼⟨ lemma ⟩ (! P ∣ R) ∣ (! Q ∣ Q) ∼⟨ reflexive ∣-cong 6-1-2 ⟩■ (! P ∣ R) ∣ ! Q right-lemma = λ {R : Proc ∞} → ! (P ∣ Q) ∣ (P ∣ R) ∼⟨ lemma ⟩ (! P ∣ P) ∣ (! Q ∣ R) ∼⟨ 6-1-2 ∣-cong reflexive ⟩■ ! P ∣ (! Q ∣ R) rl : ∀ {S μ} → ! P ∣ ! Q [ μ ]⟶ S → ∃ λ R → ! (P ∣ Q) [ μ ]⟶ R × [ i ] R ∼′ S rl (par-left {P′ = S} !P⟶S) = case 6-1-3-2 !P⟶S return (const $ ∃ λ _ → _ × [ i ] _ ∼′ _) of λ where (inj₁ (P′ , P⟶P′ , S∼!P∣P′)) → ! (P ∣ Q) ⟶⟨ replication (par-right (par-left P⟶P′)) ⟩ʳˡ ! (P ∣ Q) ∣ (P′ ∣ Q) ∼⟨ left-lemma ⟩ (! P ∣ P′) ∣ ! Q ∼⟨ symmetric S∼!P∣P′ ∣-cong reflexive ⟩■ S ∣ ! Q (inj₂ (refl , P′ , P″ , a , P⟶P′ , P⟶P″ , S∼!P∣P′∣P″)) → ! (P ∣ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (par-left P⟶P′))) (par-left P⟶P″)) ⟩ʳˡ (! (P ∣ Q) ∣ (P′ ∣ Q)) ∣ (P″ ∣ Q) ∼⟨ left-lemma ∣-cong′ reflexive ⟩ ((! P ∣ P′) ∣ ! Q) ∣ (P″ ∣ Q) ∼⟨ swap-in-the-middle ⟩ ((! P ∣ P′) ∣ P″) ∣ (! Q ∣ Q) ∼⟨ reflexive ∣-cong 6-1-2 ⟩ ((! P ∣ P′) ∣ P″) ∣ ! Q ∼⟨ symmetric S∼!P∣P′∣P″ ∣-cong reflexive ⟩■ S ∣ ! Q rl (par-right {Q′ = S} !Q⟶S) = case 6-1-3-2 !Q⟶S return (const $ ∃ λ _ → _ × [ i ] _ ∼′ _) of λ where (inj₁ (Q′ , Q⟶Q′ , S∼!Q∣Q′)) → ! (P ∣ Q) ⟶⟨ replication (par-right (par-right Q⟶Q′)) ⟩ʳˡ ! (P ∣ Q) ∣ (P ∣ Q′) ∼⟨ right-lemma ⟩ ! P ∣ (! Q ∣ Q′) ∼⟨ reflexive ∣-cong symmetric S∼!Q∣Q′ ⟩■ ! P ∣ S (inj₂ (refl , Q′ , Q″ , a , Q⟶Q′ , Q⟶Q″ , S∼!Q∣Q′∣Q″)) → ! (P ∣ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (par-right Q⟶Q′))) (par-right Q⟶Q″)) ⟩ʳˡ (! (P ∣ Q) ∣ (P ∣ Q′)) ∣ (P ∣ Q″) ∼⟨ right-lemma ∣-cong′ reflexive ⟩ (! P ∣ (! Q ∣ Q′)) ∣ (P ∣ Q″) ∼⟨ swap-in-the-middle ⟩ (! P ∣ P) ∣ ((! Q ∣ Q′) ∣ Q″) ∼⟨ 6-1-2 ∣-cong reflexive ⟩ ! P ∣ ((! Q ∣ Q′) ∣ Q″) ∼⟨ reflexive ∣-cong symmetric S∼!Q∣Q′∣Q″ ⟩■ ! P ∣ S rl (par-τ {P′ = S} {Q′ = S′} !P⟶S !Q⟶S′) = case 6-1-3-2 !P⟶S ,′ 6-1-3-2 !Q⟶S′ of λ where (inj₁ (P′ , P⟶P′ , S∼!P∣P′) , inj₁ (Q′ , Q⟶Q′ , S′∼!Q∣Q′)) → ! (P ∣ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (par-left P⟶P′))) (par-right Q⟶Q′)) ⟩ʳˡ (! (P ∣ Q) ∣ (P′ ∣ Q)) ∣ (P ∣ Q′) ∼⟨ left-lemma ∣-cong′ reflexive ⟩ ((! P ∣ P′) ∣ ! Q) ∣ (P ∣ Q′) ∼⟨ swap-in-the-middle ⟩ ((! P ∣ P′) ∣ P) ∣ (! Q ∣ Q′) ∼⟨ swap-rightmost ∣-cong reflexive ⟩ ((! P ∣ P) ∣ P′) ∣ (! Q ∣ Q′) ∼⟨ (6-1-2 ∣-cong reflexive) ∣-cong reflexive ⟩ (! P ∣ P′) ∣ (! Q ∣ Q′) ∼⟨ symmetric (S∼!P∣P′ ∣-cong S′∼!Q∣Q′) ⟩■ S ∣ S′ (inj₁ _ , inj₂ (() , _)) (inj₂ (() , _) , _) 6-2-17-1′ : ∀ {i P Q} → [ i ] ! (P ∣ Q) ∼′ ! P ∣ ! Q force 6-2-17-1′ = 6-2-17-1 mutual 6-2-17-2 : ∀ {i P Q} → [ i ] ! (P ⊕ Q) ∼ ! P ∣ ! Q 6-2-17-2 {i} {P} {Q} = ⟨ lr , rl ⟩ where left-lemma = λ {R : Proc ∞} → ! (P ⊕ Q) ∣ R ∼⟨ 6-2-17-2′ {i = i} ∣-cong′ reflexive ⟩ (! P ∣ ! Q) ∣ R ∼⟨ swap-rightmost ⟩■ (! P ∣ R) ∣ ! Q right-lemma = λ {R : Proc ∞} → ! (P ⊕ Q) ∣ R ∼⟨ 6-2-17-2′ {i = i} ∣-cong′ reflexive ⟩ (! P ∣ ! Q) ∣ R ∼⟨ symmetric ∣-assoc ⟩■ ! P ∣ (! Q ∣ R) τ-lemma₁ = λ {P′ P″ : Proc ∞} → (! (P ⊕ Q) ∣ P′) ∣ P″ ∼⟨ left-lemma ∣-cong′ reflexive ⟩ ((! P ∣ P′) ∣ ! Q) ∣ P″ ∼⟨ swap-rightmost ⟩■ ((! P ∣ P′) ∣ P″) ∣ ! Q τ-lemma₂ = λ {P′ Q′ : Proc ∞} → (! (P ⊕ Q) ∣ P′) ∣ Q′ ∼⟨ left-lemma ∣-cong′ reflexive ⟩ ((! P ∣ P′) ∣ ! Q) ∣ Q′ ∼⟨ symmetric ∣-assoc ⟩■ (! P ∣ P′) ∣ (! Q ∣ Q′) τ-lemma₃ = λ {Q′ Q″ : Proc ∞} → (! (P ⊕ Q) ∣ Q′) ∣ Q″ ∼⟨ right-lemma ∣-cong′ reflexive ⟩ (! P ∣ (! Q ∣ Q′)) ∣ Q″ ∼⟨ symmetric ∣-assoc ⟩■ ! P ∣ ((! Q ∣ Q′) ∣ Q″) lr : ∀ {R μ} → ! (P ⊕ Q) [ μ ]⟶ R → ∃ λ S → ! P ∣ ! Q [ μ ]⟶ S × [ i ] R ∼′ S lr {R} tr = case 6-1-3-2 tr return (const $ ∃ λ _ → _ × [ i ] _ ∼′ _) of λ where (inj₁ (P′ , sum-left P⟶P′ , R∼![P⊕Q]∣P′)) → R ∼⟨ R∼![P⊕Q]∣P′ ⟩ ! (P ⊕ Q) ∣ P′ ∼⟨ left-lemma ⟩■ (! P ∣ P′) ∣ ! Q ⟵⟨ par-left (replication (par-right P⟶P′)) ⟩ ! P ∣ ! Q (inj₁ (Q′ , sum-right Q⟶Q′ , R∼![P⊕Q]∣Q′)) → R ∼⟨ R∼![P⊕Q]∣Q′ ⟩ ! (P ⊕ Q) ∣ Q′ ∼⟨ right-lemma ⟩■ ! P ∣ (! Q ∣ Q′) ⟵⟨ par-right (replication (par-right Q⟶Q′)) ⟩ ! P ∣ ! Q (inj₂ ( refl , P′ , P″ , c , sum-left P⟶P′ , sum-left P⟶P″ , R∼![P⊕Q]∣P′∣P″ )) → R ∼⟨ R∼![P⊕Q]∣P′∣P″ ⟩ (! (P ⊕ Q) ∣ P′) ∣ P″ ∼⟨ τ-lemma₁ ⟩■ ((! P ∣ P′) ∣ P″) ∣ ! Q [ τ ]⟵⟨ par-left (replication (par-τ (replication (par-right P⟶P′)) P⟶P″)) ⟩ ! P ∣ ! Q (inj₂ ( refl , P′ , Q′ , c , sum-left P⟶P′ , sum-right Q⟶Q′ , R∼![P⊕Q]∣P′∣Q′ )) → R ∼⟨ R∼![P⊕Q]∣P′∣Q′ ⟩ (! (P ⊕ Q) ∣ P′) ∣ Q′ ∼⟨ τ-lemma₂ ⟩■ (! P ∣ P′) ∣ (! Q ∣ Q′) [ τ ]⟵⟨ par-τ (replication (par-right P⟶P′)) (replication (par-right Q⟶Q′)) ⟩ ! P ∣ ! Q (inj₂ ( refl , Q′ , P′ , c , sum-right Q⟶Q′ , sum-left P⟶P′ , R∼![P⊕Q]∣Q′∣P′ )) → R ∼⟨ R∼![P⊕Q]∣Q′∣P′ ⟩ (! (P ⊕ Q) ∣ Q′) ∣ P′ ∼⟨ right-lemma ∣-cong′ reflexive ⟩ (! P ∣ (! Q ∣ Q′)) ∣ P′ ∼⟨ swap-rightmost ⟩■ (! P ∣ P′) ∣ (! Q ∣ Q′) [ τ ]⟵⟨ par-τ′ (sym $ co-involutive c) (replication (par-right P⟶P′)) (replication (par-right Q⟶Q′)) ⟩ ! P ∣ ! Q (inj₂ ( refl , Q′ , Q″ , c , sum-right Q⟶Q′ , sum-right Q⟶Q″ , R∼![P⊕Q]∣Q′∣Q″ )) → R ∼⟨ R∼![P⊕Q]∣Q′∣Q″ ⟩ (! (P ⊕ Q) ∣ Q′) ∣ Q″ ∼⟨ τ-lemma₃ ⟩■ ! P ∣ ((! Q ∣ Q′) ∣ Q″) [ τ ]⟵⟨ par-right (replication (par-τ (replication (par-right Q⟶Q′)) Q⟶Q″)) ⟩ ! P ∣ ! Q rl : ∀ {S μ} → ! P ∣ ! Q [ μ ]⟶ S → ∃ λ R → ! (P ⊕ Q) [ μ ]⟶ R × [ i ] R ∼′ S rl (par-left {P′ = S} !P⟶S) = case 6-1-3-2 !P⟶S return (const $ ∃ λ _ → _ × [ i ] _ ∼′ _) of λ where (inj₁ (P′ , P⟶P′ , S∼!P∣P′)) → ! (P ⊕ Q) ⟶⟨ replication (par-right (sum-left P⟶P′)) ⟩ʳˡ ! (P ⊕ Q) ∣ P′ ∼⟨ left-lemma ⟩ (! P ∣ P′) ∣ ! Q ∼⟨ symmetric S∼!P∣P′ ∣-cong reflexive ⟩■ S ∣ ! Q (inj₂ (refl , P′ , P″ , a , P⟶P′ , P⟶P″ , S∼!P∣P′∣P″)) → ! (P ⊕ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (sum-left P⟶P′))) (sum-left P⟶P″)) ⟩ʳˡ (! (P ⊕ Q) ∣ P′) ∣ P″ ∼⟨ τ-lemma₁ ⟩ ((! P ∣ P′) ∣ P″) ∣ ! Q ∼⟨ symmetric S∼!P∣P′∣P″ ∣-cong reflexive ⟩■ S ∣ ! Q rl (par-right {Q′ = S} !Q⟶S) = case 6-1-3-2 !Q⟶S return (const $ ∃ λ _ → _ × [ i ] _ ∼′ _) of λ where (inj₁ (Q′ , Q⟶Q′ , S∼!Q∣Q′)) → ! (P ⊕ Q) ⟶⟨ replication (par-right (sum-right Q⟶Q′)) ⟩ʳˡ ! (P ⊕ Q) ∣ Q′ ∼⟨ right-lemma ⟩ ! P ∣ (! Q ∣ Q′) ∼⟨ reflexive ∣-cong symmetric S∼!Q∣Q′ ⟩■ ! P ∣ S (inj₂ (refl , Q′ , Q″ , a , Q⟶Q′ , Q⟶Q″ , S∼!Q∣Q′∣Q″)) → ! (P ⊕ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (sum-right Q⟶Q′))) (sum-right Q⟶Q″)) ⟩ʳˡ (! (P ⊕ Q) ∣ Q′) ∣ Q″ ∼⟨ τ-lemma₃ ⟩ ! P ∣ ((! Q ∣ Q′) ∣ Q″) ∼⟨ reflexive ∣-cong symmetric S∼!Q∣Q′∣Q″ ⟩■ ! P ∣ S rl (par-τ {P′ = S} {Q′ = S′} !P⟶S !Q⟶S′) = case 6-1-3-2 !P⟶S ,′ 6-1-3-2 !Q⟶S′ of λ where (inj₁ (P′ , P⟶P′ , S∼!P∣P′) , inj₁ (Q′ , Q⟶Q′ , S′∼!Q∣Q′)) → ! (P ⊕ Q) [ τ ]⟶⟨ replication (par-τ (replication (par-right (sum-left P⟶P′))) (sum-right Q⟶Q′)) ⟩ʳˡ (! (P ⊕ Q) ∣ P′) ∣ Q′ ∼⟨ τ-lemma₂ ⟩ (! P ∣ P′) ∣ (! Q ∣ Q′) ∼⟨ symmetric (S∼!P∣P′ ∣-cong S′∼!Q∣Q′) ⟩■ S ∣ S′ (inj₁ _ , inj₂ (() , _)) (inj₂ (() , _) , _) 6-2-17-2′ : ∀ {i P Q} → [ i ] ! (P ⊕ Q) ∼′ ! P ∣ ! Q force 6-2-17-2′ = 6-2-17-2 6-2-17-3 : ∀ {P} → ! P ∣ ! P ∼ ! P 6-2-17-3 {P} = ! P ∣ ! P ∼⟨ symmetric 6-2-17-2 ⟩ ! (P ⊕ P) ∼⟨ !-cong ⊕-idempotent ⟩■ ! P -- A result mentioned in the proof of 6.2.17 (4) in "Enhancements of -- the bisimulation proof method". 6-2-17-4-lemma : ∀ {P Q μ} → ! P [ μ ]⟶ Q → Q ∼ ! P ∣ Q 6-2-17-4-lemma {P} {Q} !P⟶Q = case 6-1-3-2 !P⟶Q of λ where (inj₁ (P′ , P⟶P′ , Q∼!P∣P′)) → Q ∼⟨ Q∼!P∣P′ ⟩ ! P ∣ P′ ∼⟨ symmetric 6-2-17-3 ∣-cong reflexive ⟩ (! P ∣ ! P) ∣ P′ ∼⟨ symmetric ∣-assoc ⟩ ! P ∣ (! P ∣ P′) ∼⟨ reflexive ∣-cong symmetric Q∼!P∣P′ ⟩■ ! P ∣ Q (inj₂ (_ , P′ , P″ , _ , P⟶P′ , P⟶P″ , Q∼!P∣P′∣P″)) → Q ∼⟨ Q∼!P∣P′∣P″ ⟩ (! P ∣ P′) ∣ P″ ∼⟨ symmetric ∣-assoc ⟩ ! P ∣ (P′ ∣ P″) ∼⟨ symmetric 6-2-17-3 ∣-cong reflexive ⟩ (! P ∣ ! P) ∣ (P′ ∣ P″) ∼⟨ symmetric ∣-assoc ⟩ ! P ∣ (! P ∣ (P′ ∣ P″)) ∼⟨ reflexive ∣-cong ∣-assoc ⟩ ! P ∣ ((! P ∣ P′) ∣ P″) ∼⟨ reflexive ∣-cong symmetric Q∼!P∣P′∣P″ ⟩■ ! P ∣ Q mutual 6-2-17-4 : ∀ {P i} → [ i ] ! ! P ∼ ! P 6-2-17-4 {P} {i} = ⟨ lr , rl ⟩ where lemma = λ {Q μ} (!P⟶Q : ! P [ μ ]⟶ Q) → ! ! P ∣ Q ∼⟨ 6-2-17-4′ {i = i} ∣-cong′ reflexive ⟩ ! P ∣ Q ∼⟨ symmetric (6-2-17-4-lemma !P⟶Q) ⟩■ Q lr : ∀ {Q μ} → ! ! P [ μ ]⟶ Q → ∃ λ Q′ → ! P [ μ ]⟶ Q′ × [ i ] Q ∼′ Q′ lr {Q} !!P⟶Q = case 6-1-3-2 !!P⟶Q of λ where (inj₁ (Q′ , !P⟶Q′ , Q∼!!P∣Q′)) → _ , !P⟶Q′ , (Q ∼⟨ Q∼!!P∣Q′ ⟩ ! ! P ∣ Q′ ∼⟨ lemma !P⟶Q′ ⟩■ Q′) (inj₂ (refl , Q′ , Q″ , a , !P⟶Q′ , !P⟶Q″ , Q∼!!P∣Q′∣Q″)) → case 6-1-3-2 !P⟶Q″ of λ where (inj₂ (() , _)) (inj₁ (Q‴ , P⟶Q‴ , Q″∼!P∣Q‴)) → let !P⟶Q′∣Q″ = ! P [ τ ]⟶⟨ replication (par-τ !P⟶Q′ P⟶Q‴) ⟩ Q′ ∣ Q‴ in Q ∼⟨ Q∼!!P∣Q′∣Q″ ⟩ (! ! P ∣ Q′) ∣ Q″ ∼⟨ reflexive ∣-cong Q″∼!P∣Q‴ ⟩ (! ! P ∣ Q′) ∣ (! P ∣ Q‴) ∼⟨ swap-in-the-middle ⟩ (! ! P ∣ ! P) ∣ (Q′ ∣ Q‴) ∼⟨ 6-1-2 ∣-cong reflexive ⟩ ! ! P ∣ (Q′ ∣ Q‴) ∼⟨ lemma !P⟶Q′∣Q″ ⟩■ Q′ ∣ Q‴ [ τ ]⟵⟨ !P⟶Q′∣Q″ ⟩ ! P rl : ∀ {Q μ} → ! P [ μ ]⟶ Q → ∃ λ Q′ → ! ! P [ μ ]⟶ Q′ × [ i ] Q′ ∼′ Q rl {Q} !P⟶Q = ! ! P ⟶⟨ replication (par-right !P⟶Q) ⟩ʳˡ ! ! P ∣ Q ∼⟨ lemma !P⟶Q ⟩■ Q 6-2-17-4′ : ∀ {P i} → [ i ] ! ! P ∼′ ! P force 6-2-17-4′ = 6-2-17-4 ------------------------------------------------------------------------ -- An example from "Coinduction All the Way Up" by Pous module _ (a b : Name-with-kind) where A B C D : ∀ {i} → Proc i A = name a ∙ name b ∙ D B = name a ∙ name b ∙ C C = name (co a) · λ { .force → A ∣ C } D = name (co a) · λ { .force → B ∣ D } mutual A∼B : ∀ {i} → [ i ] A ∼ B A∼B = refl ∙-cong (refl ∙-cong symmetric C∼D) C∼D : ∀ {i} → [ i ] C ∼ D C∼D = refl ·-cong λ { .force → A∼B ∣-cong C∼D } ------------------------------------------------------------------------ -- Another example (not taken from Pous and Sangiorgi) Restricted : Name → Proc ∞ Restricted a = ⟨ν a ⟩ (name (a , true) · λ { .force → ∅ }) Restricted∼∅ : ∀ {a} → Restricted a ∼ ∅ Restricted∼∅ = ⟨ (λ { (restriction x≢x action) → ⊥-elim (x≢x refl) }) , (λ ()) ⟩
{ "alphanum_fraction": 0.3288268484, "avg_line_length": 38.1734265734, "ext": "agda", "hexsha": "d59c19550eaecec3240b6196a3139f5759f81c46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/CCS/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/CCS/Examples.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/CCS/Examples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13493, "size": 27294 }
{-# OPTIONS --verbose tc.constr.findInScope:15 #-} module InstanceArguments.03-classes where open import Algebra open import Algebra.Structures open import Algebra.FunctionProperties open import Data.Nat.Properties as NatProps open import Data.Nat open import Data.Bool.Properties using (isCommutativeSemiring-∧-∨) open import Data.Product using (proj₁) open import Relation.Binary.PropositionalEquality open import Relation.Binary open import Level renaming (zero to lzero; suc to lsuc) open CommutativeSemiring NatProps.commutativeSemiring using (semiring) open IsCommutativeSemiring isCommutativeSemiring using (isSemiring) open IsCommutativeSemiring isCommutativeSemiring-∧-∨ using () renaming (isSemiring to Bool-isSemiring) record S (A : Set) : Set₁ where field z : A o : A _≈_ : Rel A lzero _⟨+⟩_ : Op₂ A _⟨*⟩_ : Op₂ A instance isSemiring' : IsSemiring _≈_ _⟨+⟩_ _⟨*⟩_ z o instance ℕ-S : S ℕ ℕ-S = record { z = 0; o = 1; _≈_ = _≡_; _⟨+⟩_ = _+_; _⟨*⟩_ = _*_; isSemiring' = isSemiring } zero' : {A : Set} → {{aRing : S A}} → A zero' {{ARing}} = S.z ARing zero-nat : ℕ zero-nat = zero' isZero : {A : Set} {{r : S A}} (let open S r) → Zero _≈_ z _⟨*⟩_ isZero {{r}} = IsSemiring.zero (S.isSemiring' r) useIsZero : 0 * 5 ≡ 0 useIsZero = proj₁ isZero 5
{ "alphanum_fraction": 0.6758982036, "avg_line_length": 27.8333333333, "ext": "agda", "hexsha": "5a4095fd9bfa3676f3aff315e7f5104750b436bd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/LibSucceed/InstanceArguments/03-classes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/LibSucceed/InstanceArguments/03-classes.agda", "max_line_length": 102, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/LibSucceed/InstanceArguments/03-classes.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 456, "size": 1336 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Yoneda where open import Level open import Data.Product open import Categories.Support.Equivalence open import Categories.Support.EqReasoning open import Categories.Category import Categories.Functor as Cat open import Categories.Functor using (Functor; module Functor) open import Categories.Functor.Hom import Categories.Morphisms as Mor open import Categories.NaturalTransformation using (NaturalTransformation; module NaturalTransformation) open import Categories.NaturalIsomorphism open import Categories.Product open import Categories.FunctorCategory open import Categories.Presheaves open import Categories.Agda Embed : ∀ {o ℓ e} → (C : Category o ℓ e) → Functor C (Presheaves C) Embed C = record { F₀ = λ x → Hom[ C ][-, x ] ; F₁ = λ f → record { η = λ X → record { _⟨$⟩_ = λ g → f ∘ g ; cong = λ x → ∘-resp-≡ʳ x } ; commute = commute′ f } ; identity = λ x≡y → trans identityˡ x≡y ; homomorphism = λ x≡y → trans (∘-resp-≡ʳ x≡y) assoc ; F-resp-≡ = λ f≡g h≡i → ∘-resp-≡ f≡g h≡i } where open Category C open Equiv .commute′ : {A B X Y : Obj} (f : A ⇒ B) (g : Y ⇒ X) {x y : X ⇒ A} → x ≡ y → f ∘ id ∘ x ∘ g ≡ id ∘ (f ∘ y) ∘ g commute′ f g {x} {y} x≡y = begin f ∘ id ∘ x ∘ g ↑⟨ assoc ⟩ (f ∘ id) ∘ x ∘ g ≈⟨ ∘-resp-≡ˡ id-comm ⟩ (id ∘ f) ∘ x ∘ g ≈⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩ (id ∘ f) ∘ y ∘ g ≈⟨ assoc ⟩ id ∘ f ∘ y ∘ g ↑⟨ ∘-resp-≡ʳ assoc ⟩ id ∘ (f ∘ y) ∘ g ∎ where open HomReasoning module Embed {o ℓ e} C = Functor (Embed {o} {ℓ} {e} C) Nat[Embed[_][c],F] : ∀ {o ℓ e} → (C : Category o ℓ e) -> Functor (Product (Presheaves C) (Category.op C)) (ISetoids _ _) Nat[Embed[ C ][c],F] = Hom[ Presheaves C ][-,-] Cat.∘ ((Embed.op C Cat.∘ snd) ※ fst) where fst = πˡ {C = Presheaves C} {D = Category.op C} snd = πʳ {C = Presheaves C} {D = Category.op C} F[c∈_] : ∀ {o ℓ e} → (C : Category o ℓ e) -> Functor (Product (Presheaves C) (Category.op C)) (ISetoids _ _) F[c∈_] {o} {ℓ} {e} C = Lift-IS (suc e ⊔ suc ℓ ⊔ o) (o ⊔ ℓ) Cat.∘ eval {C = Category.op C} {D = ISetoids ℓ e} yoneda : ∀ {o ℓ e} → (C : Category o ℓ e) -> NaturalIsomorphism Nat[Embed[ C ][c],F] F[c∈ C ] yoneda C = record { F⇒G = F⇒G; F⇐G = F⇐G; iso = iso } where open NaturalTransformation open Categories.Functor.Functor open import Categories.Support.SetoidFunctions module C = Category C open C.Equiv module M = Mor (ISetoids _ _) F⇒G : NaturalTransformation Nat[Embed[ C ][c],F] F[c∈ C ] F⇒G = record { η = λ {(F , c) → record { _⟨$⟩_ = λ ε → lift (η ε c ⟨$⟩ C.id); cong = λ x → lift (x refl) }}; commute = λ { {F , c₁} {G , c₂} (ε , f) {φ} {ψ} φ≡ψ → lift (let module s = Setoid (F₀ G c₂) module sr = SetoidReasoning (F₀ G c₂) module t = Setoid (F₀ F c₂) module tr = SetoidReasoning (F₀ F c₂) in s.sym (sr.begin F₁ G f ⟨$⟩ (η ε c₁ ⟨$⟩ (η ψ c₁ ⟨$⟩ C.id)) sr.↑⟨ commute ε f (Setoid.refl (F₀ F c₁)) ⟩ η ε c₂ ⟨$⟩ (F₁ F f ⟨$⟩ (η ψ c₁ ⟨$⟩ C.id)) sr.↓⟨ cong (η ε c₂) (tr.begin F₁ F f ⟨$⟩ (η ψ c₁ ⟨$⟩ C.id) tr.↑⟨ commute ψ f (refl {x = C.id}) ⟩ η ψ c₂ ⟨$⟩ C.id C.∘ C.id C.∘ f tr.↑⟨ φ≡ψ (trans C.identityʳ (trans (sym C.identityˡ) (sym C.identityˡ))) ⟩ η φ c₂ ⟨$⟩ f C.∘ C.id tr.∎) ⟩ η ε c₂ ⟨$⟩ (η φ c₂ ⟨$⟩ f C.∘ C.id) sr.∎ )) }} F⇐G : NaturalTransformation F[c∈ C ] Nat[Embed[ C ][c],F] F⇐G = record { η = λ {(F , c) → record { _⟨$⟩_ = λ Fc → record { η = λ X → record { _⟨$⟩_ = λ f → F₁ F f ⟨$⟩ lower Fc; cong = λ eq → F-resp-≡ F eq (Setoid.refl (F₀ F c)) }; commute = λ {X} {Y} h {f} {g} f≡g → let module s = Setoid (F₀ F Y) module sr = SetoidReasoning (F₀ F Y) in sr.begin F₁ F (C.id C.∘ f C.∘ h) ⟨$⟩ lower Fc sr.↓⟨ F-resp-≡ F (trans C.identityˡ (C.∘-resp-≡ˡ f≡g)) (Setoid.refl (F₀ F c)) ⟩ F₁ F (g C.∘ h) ⟨$⟩ lower Fc sr.↓⟨ homomorphism F (Setoid.refl (F₀ F c)) ⟩ F₁ F h ⟨$⟩ (F₁ F g ⟨$⟩ lower Fc) sr.∎ }; cong = λ i≡j {X} {f} {g} f≡g → F-resp-≡ F f≡g (lower i≡j) }}; commute = λ { {F , c₁} {G , c₂} (ε , e) {lift i} {lift j} i≡j {X} {f} {g} f≡g → let module s = Setoid (F₀ G X) module sr = SetoidReasoning (F₀ G X) in sr.begin F₁ G f ⟨$⟩ (F₁ G e ⟨$⟩ (η ε c₁ ⟨$⟩ i)) sr.↑⟨ homomorphism G {f = e} {g = f} (Setoid.refl (F₀ G c₁)) ⟩ F₁ G (e C.∘ f) ⟨$⟩ (η ε c₁ ⟨$⟩ i) sr.↑⟨ commute ε (e C.∘ f) (Setoid.refl (F₀ F c₁)) ⟩ η ε X ⟨$⟩ (F₁ F (e C.∘ f) ⟨$⟩ i) sr.↓⟨ cong (η ε X) (F-resp-≡ F (C.∘-resp-≡ʳ f≡g) (lower i≡j)) ⟩ η ε X ⟨$⟩ (F₁ F (e C.∘ g) ⟨$⟩ j) sr.∎}} module F⇐G = NaturalTransformation F⇐G module F⇒G = NaturalTransformation F⇒G iso : (X : Category.Obj (Product (Presheaves C) C.op)) → M.Iso (F⇒G.η X) (F⇐G.η X) iso (F , c) = record { isoˡ = λ { {ε₁} {ε₂} ε₁≡ε₂ {X} {f} {g} f≡g → let module s = Setoid (F₀ F X) open SetoidReasoning (F₀ F X) in begin F₁ F f ⟨$⟩ (η ε₁ c ⟨$⟩ C.id) ↑⟨ commute ε₁ f {C.id} {C.id} refl ⟩ η ε₁ X ⟨$⟩ C.id C.∘ C.id C.∘ f ↓⟨ ε₁≡ε₂ (trans C.identityˡ (trans C.identityˡ f≡g)) ⟩ η ε₂ X ⟨$⟩ g ∎ }; isoʳ = λ eq → lift (identity F (lower eq)) } yoneda-iso : ∀ {o ℓ e} → (C : Category o ℓ e) (c d : Category.Obj C) -> let open Mor (ISetoids _ _) in Functor.F₀ Hom[ Presheaves C ][ Embed.F₀ C c ,-] (Embed.F₀ C d) ≅ Functor.F₀ (Lift-IS (suc e ⊔ suc ℓ ⊔ o) (o ⊔ ℓ)) (Functor.F₀ (Embed.F₀ C d) c) yoneda-iso C c d = record { f = ⇒.η X; g = ⇐.η X; iso = iso X } where open NaturalIsomorphism (yoneda C) module iso F,c = Mor.Iso (iso F,c) X = ((Embed.F₀ C d) , c) yoneda-inj : ∀ {o ℓ e} → (C : Category o ℓ e) (c d : Category.Obj C) -> NaturalIsomorphism (Embed.F₀ C c) (Embed.F₀ C d) -> Mor._≅_ C c d yoneda-inj C c d ηiso = record { f = ⇒.η c ⟨$⟩ C.id; g = ⇐.η d ⟨$⟩ C.id; iso = record { isoˡ = Lemma.lemma c d ηiso; isoʳ = Lemma.lemma d c (IsEquivalence.sym Categories.NaturalIsomorphism.equiv ηiso) } } where open import Categories.Support.SetoidFunctions open import Relation.Binary module C = Category C open C.HomReasoning module Lemma (c d : C.Obj) (ηiso : NaturalIsomorphism (Embed.F₀ C c) (Embed.F₀ C d)) where open NaturalIsomorphism ηiso module iso c = Mor.Iso (iso c) .lemma : (⇐.η d ⟨$⟩ C.id) C.∘ (⇒.η c ⟨$⟩ C.id) C.≡ C.id lemma = begin (⇐.η d ⟨$⟩ C.id) C.∘ (⇒.η c ⟨$⟩ C.id) ↑⟨ C.identityˡ ⟩ C.id C.∘ (⇐.η d ⟨$⟩ C.id) C.∘ (⇒.η c ⟨$⟩ C.id) ↑⟨ ⇐.commute (⇒.η c ⟨$⟩ C.id) {C.id} C.Equiv.refl ⟩ ⇐.η c ⟨$⟩ C.id C.∘ C.id C.∘ (⇒.η c ⟨$⟩ C.id) ↓⟨ cong (⇐.η c) (C.Equiv.trans C.identityˡ C.identityˡ) ⟩ ⇐.η c ⟨$⟩ (⇒.η c ⟨$⟩ C.id) ↓⟨ iso.isoˡ c C.Equiv.refl ⟩ C.id ∎ open NaturalIsomorphism ηiso
{ "alphanum_fraction": 0.4745895231, "avg_line_length": 40.6031746032, "ext": "agda", "hexsha": "cf44ad0f0f7e0399f0f7823cada4b33c9a3d2b21", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Yoneda.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Yoneda.agda", "max_line_length": 120, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Yoneda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 3104, "size": 7674 }
module Common where open import Data.String using (String) -- Basic sorts ----------------------------------------------------------------- Id : Set Id = String
{ "alphanum_fraction": 0.4176470588, "avg_line_length": 15.4545454545, "ext": "agda", "hexsha": "712407e24a6d8162f6bf50c8d9db1e05b609decd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "d-plaindoux/colca", "max_forks_repo_path": "src/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "d-plaindoux/colca", "max_issues_repo_path": "src/Common.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "d-plaindoux/colca", "max_stars_repo_path": "src/Common.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z", "num_tokens": 27, "size": 170 }
{-# OPTIONS --cubical #-} module Multidimensional.Data.DirNum where open import Multidimensional.Data.DirNum.Base public open import Multidimensional.Data.DirNum.Properties public
{ "alphanum_fraction": 0.8186813187, "avg_line_length": 26, "ext": "agda", "hexsha": "26fe6122e3e656b9188d00984cfc22601dcc0758", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/Data/DirNum.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/Data/DirNum.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/Data/DirNum.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 38, "size": 182 }
module Data.List.Equiv.Id where import Lvl open import Functional open import Function.Names as Names using (_⊜_) import Function.Equals as Fn open import Data.Boolean open import Data.Option open import Data.Option.Equiv.Id open import Data.Option.Proofs using () open import Data.List open import Data.List.Equiv open import Data.List.Functions open import Logic open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Oper open import Relator.Equals open import Structure.Function open import Structure.Function.Domain import Structure.Function.Names as Names open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Properties open import Structure.Setoid using (Equiv) renaming (_≡_ to _≡ₛ_) open import Syntax.Transitivity open import Type private variable ℓ ℓₑ ℓₑₗ ℓₑₒ ℓₑ₁ ℓₑ₂ ℓₑₗ₁ ℓₑₗ₂ : Lvl.Level private variable T A B : Type{ℓ} private variable n : ℕ open import Relator.Equals open import Relator.Equals.Proofs private variable l l₁ l₂ : List(T) private variable a b x : T private variable f : A → B private variable P : List(T) → Stmt{ℓ} [⊰]-general-cancellation : ((a ⊰ l₁) ≡ (b ⊰ l₂)) → (a ≡ b) ∧ (l₁ ≡ l₂) [⊰]-general-cancellation p = [∧]-intro (L p) (R p) where R : ((a ⊰ l₁) ≡ (b ⊰ l₂)) → (l₁ ≡ l₂) R p = congruence₁(tail) p L : ((a ⊰ l₁) ≡ (b ⊰ l₂)) → (a ≡ b) L {l₁ = ∅} {l₂ = ∅} [≡]-intro = [≡]-intro L {l₁ = ∅} {l₂ = _ ⊰ _} p with () ← R p L {l₁ = _ ⊰ _} {l₂ = _ ⊰ _} p = injective(Some) (congruence₁(first) p) instance List-Id-extensionality : Extensionality([≡]-equiv {T = List(T)}) Extensionality.generalized-cancellationᵣ List-Id-extensionality = [∧]-elimₗ ∘ [⊰]-general-cancellation Extensionality.generalized-cancellationₗ List-Id-extensionality = [∧]-elimᵣ ∘ [⊰]-general-cancellation Extensionality.case-unequality List-Id-extensionality () open import Data.List.Proofs initial-0-length : (initial(0)(l) ≡ ∅) initial-0-length {l = ∅} = reflexivity(_≡_) initial-0-length {l = x ⊰ l} = reflexivity(_≡_) {-# REWRITE initial-0-length #-} multiply-singleton-repeat : (singleton(l) ++^ n ≡ repeat(l)(n)) multiply-singleton-repeat {l = l} {n = 𝟎} = reflexivity(_≡_) multiply-singleton-repeat {l = l} {n = 𝐒 n} = congruence₁(l ⊰_) (multiply-singleton-repeat {l = l} {n = n}) module _ {f g : A → B} where map-function-raw : (f ⊜ g) → (map f ⊜ map g) map-function-raw p {∅} = reflexivity(_≡_) map-function-raw p {x ⊰ l} rewrite p{x} = congruence₁(g(x) ⊰_) (map-function-raw p {l}) module _ {f g : A → List(B)} where concatMap-function-raw : (f ⊜ g) → (concatMap f ⊜ concatMap g) concatMap-function-raw p {∅} = reflexivity(_≡_) concatMap-function-raw p {x ⊰ l} rewrite p{x} = congruence₁(g(x) ++_) (concatMap-function-raw p {l}) module _ {ℓ₁ ℓ₂ ℓ₃} {A : Type{ℓ₁}} {B : Type{ℓ₂}} {C : Type{ℓ₃}} {f : B → C}{g : A → B} where map-preserves-[∘] : (map(f ∘ g) ⊜ (map f ∘ map g)) map-preserves-[∘] {x = ∅} = reflexivity(_≡_) map-preserves-[∘] {x = x ⊰ l} = congruence₁(f(g(x)) ⊰_) (map-preserves-[∘] {x = l}) map-preserves-id : (map id ⊜ id{T = List(T)}) map-preserves-id {x = ∅} = reflexivity(_≡_) map-preserves-id {x = x ⊰ l} = congruence₁(x ⊰_) (map-preserves-id {x = l}) {-# REWRITE map-preserves-id #-} concatMap-[++] : (concatMap f (l₁ ++ l₂) ≡ (concatMap f l₁ ++ concatMap f l₂)) concatMap-[++] {f = f} {∅} {l₂} = reflexivity(_≡_) concatMap-[++] {f = f} {x ⊰ l₁} {l₂} = (f(x) ++ concatMap f (l₁ ++ l₂)) 🝖-[ congruence₁(f(x) ++_) (concatMap-[++] {f = f} {l₁} {l₂}) ] (f(x) ++ (concatMap f l₁ ++ concatMap f l₂)) 🝖-[ associativity(_++_) {x = f(x)}{y = concatMap f l₁}{z = concatMap f l₂} ]-sym (f(x) ++ concatMap f l₁ ++ concatMap f l₂) 🝖-end module _ {ℓ₁ ℓ₂ ℓ₃} {A : Type{ℓ₁}} {B : Type{ℓ₂}} {C : Type{ℓ₃}} {f : B → List(C)}{g : A → List(B)} where concatMap-[∘] : (concatMap(concatMap f ∘ g)) ⊜ (concatMap f ∘ concatMap g) concatMap-[∘] {∅} = reflexivity(_≡_) concatMap-[∘] {x ⊰ l} = (concatMap(concatMap f ∘ g)) (x ⊰ l) 🝖[ _≡_ ]-[] (concatMap f ∘ g) x ++ concatMap(concatMap f ∘ g) l 🝖-[ congruence₁((concatMap f ∘ g) x ++_) (concatMap-[∘] {l}) ] (concatMap f ∘ g) x ++ (concatMap f ∘ concatMap g) l 🝖[ _≡_ ]-[] (concatMap f (g(x))) ++ (concatMap f (concatMap g l)) 🝖-[ concatMap-[++] {f = f}{l₁ = g(x)}{l₂ = concatMap g l} ]-sym concatMap f (g(x) ++ concatMap g l) 🝖[ _≡_ ]-[] concatMap f (concatMap g (x ⊰ l)) 🝖[ _≡_ ]-[] (concatMap f ∘ concatMap g) (x ⊰ l) 🝖-end concatMap-singleton : (concatMap{A = T} singleton) ⊜ id concatMap-singleton {x = ∅} = reflexivity(_≡_) concatMap-singleton {x = x ⊰ l} = congruence₁(x ⊰_) (concatMap-singleton {x = l}) concatMap-concat-map : (concatMap f l ≡ concat(map f l)) concatMap-concat-map {l = ∅} = reflexivity(_≡_) concatMap-concat-map {f = f}{l = x ⊰ l} = concatMap f (x ⊰ l) 🝖[ _≡_ ]-[] f(x) ++ concatMap f l 🝖[ _≡_ ]-[ congruence₂ᵣ(_++_)(f(x)) (concatMap-concat-map {l = l}) ] f(x) ++ concat(map f l) 🝖[ _≡_ ]-[] concat(f(x) ⊰ map f l) 🝖[ _≡_ ]-[] concat(map f (x ⊰ l)) 🝖-end foldₗ-lastElem-equivalence : (last{T = T} ⊜ foldₗ (const Option.Some) Option.None) foldₗ-lastElem-equivalence {x = ∅} = reflexivity(_≡_) foldₗ-lastElem-equivalence {x = x ⊰ ∅} = reflexivity(_≡_) foldₗ-lastElem-equivalence {x = x ⊰ y ⊰ l} = foldₗ-lastElem-equivalence {x = y ⊰ l} {- foldₗ-reverse-equivalence : (reverse{T = T} ⊜ foldₗ (Functional.swap(_⊰_)) ∅) foldₗ-reverse-equivalence {x = ∅} = reflexivity(_≡_) foldₗ-reverse-equivalence {x = x ⊰ l} = reverse (x ⊰ l) 🝖[ _≡_ ]-[] (postpend x ∘ reverse) l 🝖[ _≡_ ]-[ congruence₁(postpend x) (foldₗ-reverse-equivalence {x = l}) ] (postpend x ∘ foldₗ (Functional.swap(_⊰_)) ∅) l 🝖[ _≡_ ]-[ {!!} ] foldₗ (Functional.swap(_⊰_)) (Functional.swap(_⊰_) ∅ x) l 🝖[ _≡_ ]-[] foldₗ (Functional.swap(_⊰_)) (singleton(x)) l 🝖[ _≡_ ]-[] foldₗ (Functional.swap(_⊰_)) ∅ (x ⊰ l) 🝖-end -} foldᵣ-function : ⦃ equiv : Equiv{ℓₑ}(B) ⦄ → ∀{_▫_ : A → B → B} ⦃ oper : BinaryOperator(_▫_) ⦄ → Function ⦃ equiv-B = equiv ⦄ (foldᵣ(_▫_) a) foldᵣ-function {a = a} ⦃ equiv ⦄ {_▫_ = _▫_} ⦃ oper ⦄ = intro p where p : Names.Congruence₁ ⦃ equiv-B = equiv ⦄ (foldᵣ(_▫_) a) p {∅} {∅} xy = reflexivity(Equiv._≡_ equiv) p {x₁ ⊰ l₁} {x₂ ⊰ l₂} xy = foldᵣ(_▫_) a (x₁ ⊰ l₁) 🝖[ Equiv._≡_ equiv ]-[] x₁ ▫ (foldᵣ(_▫_) a l₁) 🝖[ Equiv._≡_ equiv ]-[ congruence₂(_▫_) ⦃ oper ⦄ ([∧]-elimₗ([⊰]-general-cancellation xy)) (p {l₁} {l₂} ([∧]-elimᵣ([⊰]-general-cancellation xy))) ] x₂ ▫ (foldᵣ(_▫_) a l₂) 🝖[ Equiv._≡_ equiv ]-[] foldᵣ(_▫_) a (x₂ ⊰ l₂) 🝖-end foldᵣ-function₊-raw : ∀{l₁ l₂ : List(A)} ⦃ equiv : Equiv{ℓₑ}(B) ⦄ {_▫₁_ _▫₂_ : A → B → B} ⦃ oper₁ : BinaryOperator(_▫₁_) ⦄ ⦃ oper₂ : BinaryOperator ⦃ [≡]-equiv ⦄ ⦃ equiv ⦄ ⦃ equiv ⦄ (_▫₂_) ⦄ {a₁ a₂ : B} → (∀{x y} → (_≡ₛ_ ⦃ equiv ⦄ (x ▫₁ y) (x ▫₂ y))) → (_≡ₛ_ ⦃ equiv ⦄ a₁ a₂) → (l₁ ≡ l₂) → (foldᵣ(_▫₁_) a₁ l₁ ≡ₛ foldᵣ(_▫₂_) a₂ l₂) foldᵣ-function₊-raw {l₁ = ∅} {∅} ⦃ equiv ⦄ {_▫₁_} {_▫₂_} ⦃ oper₁ ⦄ ⦃ oper₂ ⦄ {a₁} {a₂} opeq aeq leq = aeq foldᵣ-function₊-raw {l₁ = x₁ ⊰ l₁} {x₂ ⊰ l₂} ⦃ equiv ⦄ {_▫₁_} {_▫₂_} ⦃ oper₁ ⦄ ⦃ oper₂ ⦄ {a₁} {a₂} opeq aeq leq = foldᵣ(_▫₁_) a₁ (x₁ ⊰ l₁) 🝖[ Equiv._≡_ equiv ]-[] x₁ ▫₁ (foldᵣ(_▫₁_) a₁ l₁) 🝖[ Equiv._≡_ equiv ]-[ congruence₂(_▫₁_) ⦃ oper₁ ⦄ ([∧]-elimₗ([⊰]-general-cancellation leq)) (foldᵣ-function₊-raw {l₁ = l₁} {l₂} ⦃ equiv ⦄ {_▫₁_}{_▫₂_} ⦃ oper₁ ⦄ ⦃ oper₂ ⦄ {a₁}{a₂} opeq aeq ([∧]-elimᵣ([⊰]-general-cancellation leq))) ] x₂ ▫₁ (foldᵣ(_▫₂_) a₂ l₂) 🝖[ Equiv._≡_ equiv ]-[ opeq{x₂}{foldᵣ(_▫₂_) a₂ l₂} ] x₂ ▫₂ (foldᵣ(_▫₂_) a₂ l₂) 🝖[ Equiv._≡_ equiv ]-[] foldᵣ(_▫₂_) a₂ (x₂ ⊰ l₂) 🝖[ Equiv._≡_ equiv ]-end map-binaryOperator : BinaryOperator {A₁ = A → B} ⦃ equiv-A₁ = Fn.[⊜]-equiv ⦃ [≡]-equiv ⦄ ⦄ ⦃ equiv-A₂ = [≡]-equiv ⦄ (map) map-binaryOperator = intro p where p : Names.Congruence₂(map) p {f} {g} {∅} {∅} fg xy = reflexivity(_≡_) p {f} {g} {x₁ ⊰ l₁} {x₂ ⊰ l₂} fg xy = congruence₂(_⊰_) ba rec where ba : f(x₁) ≡ g(x₂) ba = f(x₁) 🝖[ _≡_ ]-[ Fn._⊜_.proof fg {x₁} ] g(x₁) 🝖[ _≡_ ]-[ congruence₁(g) ([∧]-elimₗ([⊰]-general-cancellation xy)) ] g(x₂) 🝖-end rec : map f(l₁) ≡ map g(l₂) rec = map f(l₁) 🝖[ _≡_ ]-[ p fg ([∧]-elimᵣ([⊰]-general-cancellation xy)) ] map g(l₂) 🝖-end count-of-[++] : ∀{P} → (count P (l₁ ++ l₂) ≡ count P l₁ + count P l₂) count-of-[++] {l₁ = ∅} {l₂ = l₂} {P = P} = reflexivity(_≡_) count-of-[++] {l₁ = x₁ ⊰ l₁} {l₂ = l₂} {P = P} with P(x₁) | count-of-[++] {l₁ = l₁} {l₂ = l₂} {P = P} ... | 𝑇 | p = congruence₁ 𝐒(p) ... | 𝐹 | p = p -- TODO Is this true?: count-single-equality-equivalence : (∀{P} → count P l₁ ≡ count P l₂) ↔ (∀{x} → (count (x ≡?_) l₁ ≡ count (x ≡?_) l₂))
{ "alphanum_fraction": 0.5701499217, "avg_line_length": 49.9329608939, "ext": "agda", "hexsha": "6ce2609cc44bc9cb556f200faa79674d7de78d57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Equiv/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Equiv/Id.agda", "max_line_length": 330, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Equiv/Id.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3922, "size": 8938 }
{-# OPTIONS --rewriting #-} -- {-# OPTIONS -v rewriting:30 #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality renaming (_≡_ to _≡≡_) record Eq (t : Set) : Set₁ where field _≡_ : t → t → Set open Eq {{...}} {-# BUILTIN REWRITE _≡_ #-} instance eqN : Eq Nat eqN = record { _≡_ = _≡≡_ } postulate plus0p : ∀{x} → (x + zero) ≡ x {-# REWRITE plus0p #-} -- Error: -- plus0p does not target rewrite relation -- when checking the pragma REWRITE plus0p -- The type of the postulate ends in _≡≡_ (after reduction) -- but the rewrite relation is _≡_
{ "alphanum_fraction": 0.6252158895, "avg_line_length": 18.6774193548, "ext": "agda", "hexsha": "182364c922291ffbc1dd6dea09c10dd0bb3e4932", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2451.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2451.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2451.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 199, "size": 579 }
module MLib.Algebra.PropertyCode.RawStruct where open import MLib.Prelude open import MLib.Fin.Parts open import MLib.Finite open import Relation.Binary as B using (Setoid) open import Data.List.Any using (Any; here; there) open import Data.List.Membership.Propositional using (_∈_) open import Data.Vec.N-ary open import Data.Product.Relation.SigmaPropositional as OverΣ using (OverΣ) open import Data.Bool using (T) open import Category.Applicative module _ {c ℓ} {A : Set c} (_≈_ : Rel A ℓ) where open Algebra.FunctionProperties _≈_ Congruentₙ : ∀ {n} → (Vec A n → A) → Set (c ⊔ˡ ℓ) Congruentₙ f = ∀ {xs ys} → Vec.Pointwise _≈_ xs ys → f xs ≈ f ys fromRefl : Reflexive _≈_ → (f : Vec A 0 → A) → Congruentₙ f fromRefl refl f [] = refl fromCongruent₂ : (f : Vec A 2 → A) → Congruent₂ (curryⁿ f) → Congruentₙ f fromCongruent₂ f cong₂ (x≈u ∷ y≈v ∷ []) = cong₂ x≈u y≈v PointwiseFunc : ∀ {n} {a b ℓ r} {A : Set a} {B : Set b} (_∼_ : A → B → Set ℓ) (xs : Vec A n) (ys : Vec B n) (R : Set r) → Set (N-ary-level ℓ r n) PointwiseFunc _∼_ [] [] R = R PointwiseFunc _∼_ (x ∷ xs) (y ∷ ys) R = x ∼ y → PointwiseFunc _∼_ xs ys R appPW : ∀ {n} {a b ℓ r} {A : Set a} {B : Set b} {_∼_ : A → B → Set ℓ} {xs : Vec A n} {ys : Vec B n} {R : Set r} → PointwiseFunc _∼_ xs ys R → Vec.Pointwise _∼_ xs ys → R appPW f [] = f appPW f (x∼y ∷ pw) = appPW (f x∼y) pw curryPW : ∀ {n} {a b ℓ r} {A : Set a} {B : Set b} {_∼_ : A → B → Set ℓ} {xs : Vec A n} {ys : Vec B n} {R : Set r} → (Vec.Pointwise _∼_ xs ys → R) → PointwiseFunc _∼_ xs ys R curryPW {xs = []} {[]} f = f [] curryPW {xs = x ∷ xs} {y ∷ ys} f x∼y = curryPW {xs = xs} {ys} λ pw → f (x∼y ∷ pw) -------------------------------------------------------------------------------- -- Raw structures implementing a set of operators, i.e. interpretations of the -- operators which are each congruent under an equivalence, but do not -- necessarily have any other properties. -------------------------------------------------------------------------------- record IsRawStruct {c ℓ} {A : Set c} (_≈_ : Rel A ℓ) {k} {K : ℕ → Set k} (appOp : ∀ {n} → K n → Vec A n → A) : Set (c ⊔ˡ ℓ ⊔ˡ k) where open Algebra.FunctionProperties _≈_ field isEquivalence : IsEquivalence _≈_ congⁿ : ∀ {n} (κ : K n) → Congruentₙ _≈_ (appOp κ) cong : ∀ {n} (κ : K n) {xs ys} → PointwiseFunc _≈_ xs ys (appOp κ xs ≈ appOp κ ys) cong κ {xs} = curryPW {xs = xs} (congⁿ κ) setoid : Setoid _ _ setoid = record { isEquivalence = isEquivalence } ⟦_⟧ : ∀ {n} → K n → N-ary n A A ⟦ κ ⟧ = curryⁿ (appOp κ) _⟨_⟩_ : A → K 2 → A → A x ⟨ κ ⟩ y = ⟦ κ ⟧ x y open IsEquivalence isEquivalence public record RawStruct {k} (K : ℕ → Set k) c ℓ : Set (sucˡ (c ⊔ˡ ℓ ⊔ˡ k)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ appOp : ∀ {n} → K n → Vec Carrier n → Carrier isRawStruct : IsRawStruct _≈_ appOp open IsRawStruct isRawStruct public -- Form a structure over a new kind of operator by injecting from it. subRawStruct : ∀ {k′} {K′ : ℕ → Set k′} → (∀ {n} → K′ n → K n) → RawStruct K′ c ℓ subRawStruct liftK = record { Carrier = Carrier ; _≈_ = _≈_ ; appOp = appOp ∘ liftK ; isRawStruct = record { isEquivalence = isEquivalence ; congⁿ = congⁿ ∘ liftK } }
{ "alphanum_fraction": 0.571211199, "avg_line_length": 35.3333333333, "ext": "agda", "hexsha": "2d0abaae487f7fbdab111f2d801748defe4c7681", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Algebra/PropertyCode/RawStruct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Algebra/PropertyCode/RawStruct.agda", "max_line_length": 173, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Algebra/PropertyCode/RawStruct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1284, "size": 3286 }
{-# OPTIONS --universe-polymorphism #-} module Issue293a where open import Agda.Primitive using (Level; _⊔_) renaming (lzero to zero; lsuc to suc) ------------------------------------------------------------------------ record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Carrier → Carrier → Set ℓ _∙_ : Carrier → Carrier → Carrier ε : Carrier module M (rm : RawMonoid zero zero) where open RawMonoid rm thm : ∀ x → x ∙ ε ≈ x thm = {!!} -- Previous agda2-goal-and-context: -- rm : RawMonoid zero zero -- ------------------------ -- Goal: (x : RawMonoid.Carrier rm) → -- RawMonoid._≈_ rm (RawMonoid._∙_ rm x (RawMonoid.ε rm)) x -- Current agda2-goal-and-context: -- rm : RawMonoid zero zero -- ------------------------ -- Goal: (x : Carrier) → x ∙ ε ≈ x ------------------------------------------------------------------------ record RawMonoid′ : Set₁ where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set _≈_ : Carrier → Carrier → Set _∙_ : Carrier → Carrier → Carrier ε : Carrier module M′ (rm : RawMonoid′) where open RawMonoid′ rm thm′ : ∀ x → x ∙ ε ≈ x thm′ = {!!} -- Previous and current agda2-goal-and-context: -- rm : RawMonoid′ -- --------------- -- Goal: (x : Carrier) → x ∙ ε ≈ x ------------------------------------------------------------------------ -- UP isn't relevant. record RawMonoid″ (Carrier : Set) : Set₁ where infixl 7 _∙_ infix 4 _≈_ field _≈_ : Carrier → Carrier → Set _∙_ : Carrier → Carrier → Carrier ε : Carrier data Bool : Set where true false : Bool data List (A : Set) : Set where [] : List A _∷_ : (x : A)(xs : List A) → List A module M″ (rm : RawMonoid″ (List Bool)) where open RawMonoid″ rm thm″ : ∀ x → x ∙ ε ≈ x thm″ = {!!} -- Previous agda2-goal-and-context: -- rm : RawMonoid″ (List Bool) -- --------------------------- -- Goal: (x : List Bool) → -- RawMonoid″._≈_ rm (RawMonoid″._∙_ rm x (RawMonoid″.ε rm)) x -- Current agda2-goal-and-context: -- rm : RawMonoid″ (List Bool) -- --------------------------- -- Goal: (x : List Bool) → x ∙ ε ≈ x
{ "alphanum_fraction": 0.472246696, "avg_line_length": 22.2549019608, "ext": "agda", "hexsha": "f02756b86292d976cb2261ecefc08fa9e768e4e7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue293a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue293a.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue293a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 730, "size": 2270 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist heap that proves to maintain priority -- -- invariant and uses a single-pass merging algorithm. -- ---------------------------------------------------------------------- {-# OPTIONS --sized-types #-} module SinglePassMerge.PriorityProof where open import Basics.Nat renaming (_≥_ to _≥ℕ_) open import Basics open import Sized data Heap : {i : Size} → Priority → Set where empty : {i : Size} {n : Priority} → Heap {↑ i} n node : {i : Size} {n : Priority} → (p : Priority) → Rank → p ≥ n → Heap {i} p → Heap {i} p → Heap {↑ i} n rank : {b : Priority} → Heap b → Rank rank empty = zero rank (node _ r _ _ _) = r -- This implementation is derived in the same way as merge in -- SinglePassMerge.NoProofs: depending on the size of new children we -- swap parameters passed to node. Nothing really interesting. merge : {i j : Size} {p : Nat} → Heap {i} p → Heap {j} p → Heap p merge empty h2 = h2 merge h1 empty = h1 merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) with order p1 p2 | rank l1 ≥ℕ rank r1 + r-rank | rank l2 ≥ℕ rank r2 + l-rank merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) | le p1≤p2 | true | _ = node p1 (l-rank + r-rank) p1≥p l1 (merge {i} {↑ j} r1 (node p2 r-rank p1≤p2 l2 r2)) merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) | le p1≤p2 | false | _ = node p1 (l-rank + r-rank) p1≥p (merge {i} {↑ j} r1 (node p2 r-rank p1≤p2 l2 r2)) l1 merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) | ge p2≤p1 | _ | true = node p2 ((l-rank + r-rank)) p2≥p l2 (merge {↑ i} {j} (node p1 l-rank p2≤p1 l1 r1) r2) merge .{↑ i} .{↑ j} (node {i} p1 l-rank p1≥p l1 r1) (node {j} p2 r-rank p2≥p l2 r2) | ge p2≤p1 | _ | false = node p2 ((l-rank + r-rank)) p2≥p (merge {↑ i} {j} (node p1 l-rank p2≤p1 l1 r1) r2) l2
{ "alphanum_fraction": 0.51738584, "avg_line_length": 40.4576271186, "ext": "agda", "hexsha": "8cc71f7589383c30fd595ad31128f6c6fa07ed8e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/SinglePassMerge/PriorityProof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/SinglePassMerge/PriorityProof.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/SinglePassMerge/PriorityProof.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 889, "size": 2387 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathGroupoid module lib.PathFunctor where {- Nondependent stuff -} module _ {i j} {A : Type i} {B : Type j} (f : A → B) where !-ap : {x y : A} (p : x == y) → ! (ap f p) == ap f (! p) !-ap idp = idp ap-! : {x y : A} (p : x == y) → ap f (! p) == ! (ap f p) ap-! idp = idp ∙-ap : {x y z : A} (p : x == y) (q : y == z) → ap f p ∙ ap f q == ap f (p ∙ q) ∙-ap idp q = idp ap-∙ : {x y z : A} (p : x == y) (q : y == z) → ap f (p ∙ q) == ap f p ∙ ap f q ap-∙ idp q = idp !ap-∙=∙-ap : {x y z : A} (p : x == y) (q : y == z) → ! (ap-∙ p q) == ∙-ap p q !ap-∙=∙-ap idp q = idp ∙∙-ap : {x y z w : A} (p : x == y) (q : y == z) (r : z == w) → ap f p ∙ ap f q ∙ ap f r == ap f (p ∙ q ∙ r) ∙∙-ap idp idp r = idp ap-∙∙ : {x y z w : A} (p : x == y) (q : y == z) (r : z == w) → ap f (p ∙ q ∙ r) == ap f p ∙ ap f q ∙ ap f r ap-∙∙ idp idp r = idp ap-∙∙∙ : {x y z w t : A} (p : x == y) (q : y == z) (r : z == w) (s : w == t) → ap f (p ∙ q ∙ r ∙ s) == ap f p ∙ ap f q ∙ ap f r ∙ ap f s ap-∙∙∙ idp idp idp s = idp ∙'-ap : {x y z : A} (p : x == y) (q : y == z) → ap f p ∙' ap f q == ap f (p ∙' q) ∙'-ap p idp = idp -- note: ap-∙' is defined in PathGroupoid {- Dependent stuff -} module _ {i j} {A : Type i} {B : A → Type j} (f : Π A B) where apd-∙ : {x y z : A} (p : x == y) (q : y == z) → apd f (p ∙ q) == apd f p ∙ᵈ apd f q apd-∙ idp idp = idp apd-∙' : {x y z : A} (p : x == y) (q : y == z) → apd f (p ∙' q) == apd f p ∙'ᵈ apd f q apd-∙' idp idp = idp apd-! : {x y : A} (p : x == y) → apd f (! p) == !ᵈ (apd f p) apd-! idp = idp {- Over stuff -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (f : {a : A} → B a → C a) where ap↓-◃ : {x y z : A} {u : B x} {v : B y} {w : B z} {p : x == y} {p' : y == z} (q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ]) → ap↓ f (q ◃ r) == ap↓ f q ◃ ap↓ f r ap↓-◃ {p = idp} {p' = idp} idp idp = idp ap↓-▹! : {x y z : A} {u : B x} {v : B y} {w : B z} {p : x == y} {p' : z == y} (q : u == v [ B ↓ p ]) (r : w == v [ B ↓ p' ]) → ap↓ f (q ▹! r) == ap↓ f q ▹! ap↓ f r ap↓-▹! {p = idp} {p' = idp} idp idp = idp {- Fuse and unfuse -} module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) where ∘-ap : {x y : A} (p : x == y) → ap g (ap f p) == ap (g ∘ f) p ∘-ap idp = idp ap-∘ : {x y : A} (p : x == y) → ap (g ∘ f) p == ap g (ap f p) ap-∘ idp = idp !ap-∘=∘-ap : {x y : A} (p : x == y) → ! (ap-∘ p) == ∘-ap p !ap-∘=∘-ap idp = idp ap-idf : ∀ {i} {A : Type i} {u v : A} (p : u == v) → ap (idf A) p == p ap-idf idp = idp {- Functoriality of [coe] -} coe-∙ : ∀ {i} {A B C : Type i} (p : A == B) (q : B == C) (a : A) → coe (p ∙ q) a == coe q (coe p a) coe-∙ idp q a = idp coe-! : ∀ {i} {A B : Type i} (p : A == B) (b : B) → coe (! p) b == coe! p b coe-! idp b = idp coe!-inv-r : ∀ {i} {A B : Type i} (p : A == B) (b : B) → coe p (coe! p b) == b coe!-inv-r idp b = idp coe!-inv-l : ∀ {i} {A B : Type i} (p : A == B) (a : A) → coe! p (coe p a) == a coe!-inv-l idp a = idp coe-inv-adj : ∀ {i} {A B : Type i} (p : A == B) (a : A) → ap (coe p) (coe!-inv-l p a) == coe!-inv-r p (coe p a) coe-inv-adj idp a = idp coe!-inv-adj : ∀ {i} {A B : Type i} (p : A == B) (b : B) → ap (coe! p) (coe!-inv-r p b) == coe!-inv-l p (coe! p b) coe!-inv-adj idp b = idp coe-ap-! : ∀ {i j} {A : Type i} (P : A → Type j) {a b : A} (p : a == b) (x : P b) → coe (ap P (! p)) x == coe! (ap P p) x coe-ap-! P idp x = idp {- Functoriality of transport -} transp-∙ : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} (p : x == y) (q : y == z) (b : B x) → transport B (p ∙ q) b == transport B q (transport B p b) transp-∙ idp _ _ = idp transp-∙' : ∀ {i j} {A : Type i} {B : A → Type j} {x y z : A} (p : x == y) (q : y == z) (b : B x) → transport B (p ∙' q) b == transport B q (transport B p b) transp-∙' _ idp _ = idp {- Naturality of transport -} transp-naturality : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (u : {a : A} → B a → C a) {a₀ a₁ : A} (p : a₀ == a₁) → u ∘ transport B p == transport C p ∘ u transp-naturality f idp = idp transp-idp : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} (p : x == y) → transport (λ a → f a == f a) p idp == idp transp-idp f idp = idp module _ {i j} {A : Type i} {B : Type j} where ap-transp : (f g : A → B) {a₀ a₁ : A} (p : a₀ == a₁) (h : f a₀ == g a₀) → h ∙ ap g p == ap f p ∙ transport (λ a → f a == g a) p h ap-transp f g p@idp h = ∙-unit-r h ap-transp-idp : (f : A → B) {a₀ a₁ : A} (p : a₀ == a₁) → ap-transp f f p idp ◃∙ ap (ap f p ∙_) (transp-idp f p) ◃∙ ∙-unit-r (ap f p) ◃∎ =ₛ [] ap-transp-idp f p@idp = =ₛ-in idp {- for functions with two arguments -} module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B → C) where ap2 : {x y : A} {w z : B} → (x == y) → (w == z) → f x w == f y z ap2 idp idp = idp ap2-out : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 p q ◃∎ =ₛ ap (λ u → f u w) p ◃∙ ap (λ v → f y v) q ◃∎ ap2-out idp idp = =ₛ-in idp ap2-out' : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 p q ◃∎ =ₛ ap (λ u → f x u) q ◃∙ ap (λ v → f v z) p ◃∎ ap2-out' idp idp = =ₛ-in idp ap2-idp-l : {x : A} {w z : B} (q : w == z) → ap2 (idp {a = x}) q == ap (f x) q ap2-idp-l idp = idp ap2-idp-r : {x y : A} {w : B} (p : x == y) → ap2 p (idp {a = w}) == ap (λ z → f z w) p ap2-idp-r idp = idp ap2-! : {a a' : A} {b b' : B} (p : a == a') (q : b == b') → ap2 (! p) (! q) == ! (ap2 p q) ap2-! idp idp = idp !-ap2 : {a a' : A} {b b' : B} (p : a == a') (q : b == b') → ! (ap2 p q) == ap2 (! p) (! q) !-ap2 idp idp = idp ap2-∙ : {a a' a'' : A} {b b' b'' : B} (p : a == a') (p' : a' == a'') (q : b == b') (q' : b' == b'') → ap2 (p ∙ p') (q ∙ q') == ap2 p q ∙ ap2 p' q' ap2-∙ idp p' idp q' = idp ∙-ap2 : {a a' a'' : A} {b b' b'' : B} (p : a == a') (p' : a' == a'') (q : b == b') (q' : b' == b'') → ap2 p q ∙ ap2 p' q' == ap2 (p ∙ p') (q ∙ q') ∙-ap2 idp p' idp q' = idp {- ap2 lemmas -} module _ {i j} {A : Type i} {B : Type j} where ap2-fst : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 (curry fst) p q == p ap2-fst idp idp = idp ap2-snd : {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 (curry snd) p q == q ap2-snd idp idp = idp ap-ap2 : ∀ {k l} {C : Type k} {D : Type l} (g : C → D) (f : A → B → C) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap g (ap2 f p q) == ap2 (λ a b → g (f a b)) p q ap-ap2 g f idp idp = idp ap2-ap-l : ∀ {k l} {C : Type k} {D : Type l} (g : B → C → D) (f : A → B) {x y : A} {w z : C} (p : x == y) (q : w == z) → ap2 g (ap f p) q == ap2 (λ a c → g (f a) c) p q ap2-ap-l g f idp idp = idp ap2-ap-r : ∀ {k l} {C : Type k} {D : Type l} (g : A → C → D) (f : B → C) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 g p (ap f q) == ap2 (λ a b → g a (f b)) p q ap2-ap-r g f idp idp = idp ap2-ap-lr : ∀ {k l m} {C : Type k} {D : Type l} {E : Type m} (g : C → D → E) (f : A → C) (h : B → D) {x y : A} {w z : B} (p : x == y) (q : w == z) → ap2 g (ap f p) (ap h q) == ap2 (λ a b → g (f a) (h b)) p q ap2-ap-lr g f h idp idp = idp ap2-diag : (f : A → A → B) {x y : A} (p : x == y) → ap2 f p p == ap (λ x → f x x) p ap2-diag f idp = idp module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) where module _ {a a' a'' : A} (p : a == a') (p' : a' == a'') where ap-∘-∙-coh-seq₁ : ap (g ∘ f) (p ∙ p') =-= ap g (ap f p) ∙ ap g (ap f p') ap-∘-∙-coh-seq₁ = ap (g ∘ f) (p ∙ p') =⟪ ap-∙ (g ∘ f) p p' ⟫ ap (g ∘ f) p ∙ ap (g ∘ f) p' =⟪ ap2 _∙_ (ap-∘ g f p) (ap-∘ g f p') ⟫ ap g (ap f p) ∙ ap g (ap f p') ∎∎ ap-∘-∙-coh-seq₂ : ap (g ∘ f) (p ∙ p') =-= ap g (ap f p) ∙ ap g (ap f p') ap-∘-∙-coh-seq₂ = ap (g ∘ f) (p ∙ p') =⟪ ap-∘ g f (p ∙ p') ⟫ ap g (ap f (p ∙ p')) =⟪ ap (ap g) (ap-∙ f p p') ⟫ ap g (ap f p ∙ ap f p') =⟪ ap-∙ g (ap f p) (ap f p') ⟫ ap g (ap f p) ∙ ap g (ap f p') ∎∎ ap-∘-∙-coh : {a a' a'' : A} (p : a == a') (p' : a' == a'') → ap-∘-∙-coh-seq₁ p p' =ₛ ap-∘-∙-coh-seq₂ p p' ap-∘-∙-coh idp idp = =ₛ-in idp module _ {i} {A : Type i} where ap-null-homotopic : ∀ {k} {B : Type k} (f : A → B) {b : B} (h : (x : A) → f x == b) {x y : A} (p : x == y) → ap f p == h x ∙ ! (h y) ap-null-homotopic f h {x} p@idp = ! (!-inv-r (h x)) module _ {i j} {A : Type i} {B : Type j} (b : B) where ap-cst : {x y : A} (p : x == y) → ap (cst b) p == idp ap-cst = ap-null-homotopic (cst b) (cst idp) ap-cst-coh : {x y z : A} (p : x == y) (q : y == z) → ap-cst (p ∙ q) ◃∎ =ₛ ap-∙ (cst b) p q ◃∙ ap2 _∙_ (ap-cst p) (ap-cst q) ◃∎ ap-cst-coh idp idp = =ₛ-in idp ap-∘-cst-coh : ∀ {i} {j} {k} {A : Type i} {B : Type j} {C : Type k} (g : B → C) (b : B) {x y : A} (p : x == y) → ∘-ap g (λ _ → b) p ◃∙ ap-cst (g b) p ◃∎ =ₛ ap (ap g) (ap-cst b p) ◃∎ ap-∘-cst-coh g b p@idp = =ₛ-in idp {- Naturality of homotopies -} module _ {i} {A : Type i} where homotopy-naturality : ∀ {k} {B : Type k} (f g : A → B) (h : (x : A) → f x == g x) {x y : A} (p : x == y) → ap f p ◃∙ h y ◃∎ =ₛ h x ◃∙ ap g p ◃∎ homotopy-naturality f g h {x} idp = =ₛ-in (! (∙-unit-r (h x))) homotopy-naturality-to-idf : (f : A → A) (h : (x : A) → f x == x) {x y : A} (p : x == y) → ap f p ◃∙ h y ◃∎ =ₛ h x ◃∙ p ◃∎ homotopy-naturality-to-idf f h {x} p = =ₛ-in $ =ₛ-out (homotopy-naturality f (λ a → a) h p) ∙ ap (λ w → h x ∙ w) (ap-idf p) homotopy-naturality-from-idf : (g : A → A) (h : (x : A) → x == g x) {x y : A} (p : x == y) → p ◃∙ h y ◃∎ =ₛ h x ◃∙ ap g p ◃∎ homotopy-naturality-from-idf g h {y = y} p = =ₛ-in $ ap (λ w → w ∙ h y) (! (ap-idf p)) ∙ =ₛ-out (homotopy-naturality (λ a → a) g h p) homotopy-naturality-to-cst : ∀ {k} {B : Type k} (f : A → B) (b : B) (h : (x : A) → f x == b) {x y : A} (p : x == y) → ap f p ◃∙ h y ◃∎ =ₛ h x ◃∎ homotopy-naturality-to-cst f b h p@idp = =ₛ-in idp ap-null-homotopic-cst : ∀ {k} {B : Type k} (b₀ b₁ : B) (h : A → b₀ == b₁) {x y : A} (p : x == y) → ap-null-homotopic (cst b₀) h p ◃∙ ap (λ v → h v ∙ ! (h y)) p ◃∙ !-inv-r (h y) ◃∎ =ₛ ap-cst b₀ p ◃∎ ap-null-homotopic-cst b₀ b₁ h {x} p@idp = =ₛ-in (!-inv-l (!-inv-r (h x))) module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f g : A → B → C) (h : ∀ a b → f a b == g a b) where homotopy-naturality2 : {a₀ a₁ : A} {b₀ b₁ : B} (p : a₀ == a₁) (q : b₀ == b₁) → ap2 f p q ◃∙ h a₁ b₁ ◃∎ =ₛ h a₀ b₀ ◃∙ ap2 g p q ◃∎ homotopy-naturality2 {a₀ = a} {b₀ = b} idp idp = =ₛ-in (! (∙-unit-r (h a b))) module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B → C) where ap-comm : {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) → ap (λ a → f a b₀) p ∙ ap (λ z → f a₁ z) q == ap (λ z → f a₀ z) q ∙ ap (λ a → f a b₁) p ap-comm p q = ! (=ₛ-out (ap2-out f p q)) ∙ =ₛ-out (ap2-out' f p q) ap-comm-=ₛ : {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) → ap (λ a → f a b₀) p ◃∙ ap (λ z → f a₁ z) q ◃∎ =ₛ ap (λ z → f a₀ z) q ◃∙ ap (λ a → f a b₁) p ◃∎ ap-comm-=ₛ p q = =ₛ-in (ap-comm p q) ap-comm' : {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) → ap (λ a → f a b₀) p ∙' ap (λ z → f a₁ z) q == ap (λ z → f a₀ z) q ∙ ap (λ a → f a b₁) p ap-comm' p idp = idp ap-comm-cst-seq : {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) (c : C) (h₀ : ∀ b → f a₀ b == c) → ap (λ a → f a b₀) p ∙ ap (λ b → f a₁ b) q =-= ap (λ z → f a₀ z) q ∙ ap (λ a → f a b₁) p ap-comm-cst-seq {a₀} {a₁} p {b₀} {b₁} q c h₀ = ap (λ a → f a b₀) p ∙ ap (λ b → f a₁ b) q =⟪ ap (ap (λ a → f a b₀) p ∙_) $ ap-null-homotopic (λ b → f a₁ b) h₁ q ⟫ ap (λ a → f a b₀) p ∙ h₁ b₀ ∙ ! (h₁ b₁) =⟪ ap (ap (λ a → f a b₀) p ∙_) $ ap (λ k → k h₀) $ transp-naturality {B = λ a → ∀ b → f a b == c} (λ h → h b₀ ∙ ! (h b₁)) p ⟫ ap (λ a → f a b₀) p ∙ transport (λ a → f a b₀ == f a b₁) p (h₀ b₀ ∙ ! (h₀ b₁)) =⟪ ! (ap-transp (λ a → f a b₀) (λ a → f a b₁) p (h₀ b₀ ∙ ! (h₀ b₁))) ⟫ (h₀ b₀ ∙ ! (h₀ b₁)) ∙ ap (λ a → f a b₁) p =⟪ ! (ap (_∙ ap (λ a → f a b₁) p) $ (ap-null-homotopic (λ b → f a₀ b) h₀ q)) ⟫ ap (λ z → f a₀ z) q ∙ ap (λ a → f a b₁) p ∎∎ where h₁ : ∀ b → f a₁ b == c h₁ = transport (λ a → ∀ b → f a b == c) p h₀ ap-comm-cst-coh : {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) (c : C) (h₀ : ∀ b → f a₀ b == c) → ap-comm p q ◃∎ =ₛ ap-comm-cst-seq p q c h₀ ap-comm-cst-coh p@idp {b₀} q@idp c h₀ = =ₛ-in $ ! $ ap (idp ∙_) (! (!-inv-r (h₀ b₀))) ∙ ! (∙-unit-r (h₀ b₀ ∙ ! (h₀ b₀))) ∙ ! (ap (_∙ idp) (! (!-inv-r (h₀ b₀)))) =⟨ ap (_∙ ! (∙-unit-r (h₀ b₀ ∙ ! (h₀ b₀))) ∙ ! (ap (_∙ idp) (! (!-inv-r (h₀ b₀))))) (ap-idf (! (!-inv-r (h₀ b₀)))) ⟩ ! (!-inv-r (h₀ b₀)) ∙ ! (∙-unit-r (h₀ b₀ ∙ ! (h₀ b₀))) ∙ ! (ap (_∙ idp) (! (!-inv-r (h₀ b₀)))) =⟨ ap (λ v → ! (!-inv-r (h₀ b₀)) ∙ ! (∙-unit-r (h₀ b₀ ∙ ! (h₀ b₀))) ∙ v) (!-ap (_∙ idp) (! (!-inv-r (h₀ b₀)))) ⟩ ! (!-inv-r (h₀ b₀)) ∙ ! (∙-unit-r (h₀ b₀ ∙ ! (h₀ b₀))) ∙ ap (_∙ idp) (! (! (!-inv-r (h₀ b₀)))) =⟨ ap (! (!-inv-r (h₀ b₀)) ∙_) $ ! $ =ₛ-out $ homotopy-naturality-from-idf (_∙ idp) (λ p → ! (∙-unit-r p)) (! (! (!-inv-r (h₀ b₀)))) ⟩ ! (!-inv-r (h₀ b₀)) ∙ ! (! (!-inv-r (h₀ b₀))) ∙ idp =⟨ ap (! (!-inv-r (h₀ b₀)) ∙_) (∙-unit-r (! (! (!-inv-r (h₀ b₀))))) ⟩ ! (!-inv-r (h₀ b₀)) ∙ ! (! (!-inv-r (h₀ b₀))) =⟨ !-inv-r (! (!-inv-r (h₀ b₀))) ⟩ idp =∎ module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where ap-comm-comm : (f : A → B → C) {a₀ a₁ : A} (p : a₀ == a₁) {b₀ b₁ : B} (q : b₀ == b₁) → ap-comm f p q == ! (ap-comm (λ x y → f y x) q p) ap-comm-comm f p@idp q@idp = idp module _ {i} {A : Type i} where -- unsure where this belongs transp-cst=idf : {a x y : A} (p : x == y) (q : a == x) → transport (λ x → a == x) p q == q ∙ p transp-cst=idf idp q = ! (∙-unit-r q) transp-cst=idf-pentagon : {a x y z : A} (p : x == y) (q : y == z) (r : a == x) → transp-cst=idf (p ∙ q) r ◃∎ =ₛ transp-∙ p q r ◃∙ ap (transport (λ x → a == x) q) (transp-cst=idf p r) ◃∙ transp-cst=idf q (r ∙ p) ◃∙ ∙-assoc r p q ◃∎ transp-cst=idf-pentagon idp q idp = =ₛ-in (! (∙-unit-r (transp-cst=idf q idp))) {- for functions with more arguments -} module _ {i₀ i₁ i₂ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {B : Type j} (f : A₀ → A₁ → A₂ → B) where ap3 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → f x₀ x₁ x₂ == f y₀ y₁ y₂ ap3 idp idp idp = idp module _ {i₀ i₁ i₂ i₃ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {A₃ : Type i₃} {B : Type j} (f : A₀ → A₁ → A₂ → A₃ → B) where ap4 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} {x₃ y₃ : A₃} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → (x₃ == y₃) → f x₀ x₁ x₂ x₃ == f y₀ y₁ y₂ y₃ ap4 idp idp idp idp = idp module _ {i₀ i₁ i₂ i₃ i₄ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {A₃ : Type i₃} {A₄ : Type i₄} {B : Type j} (f : A₀ → A₁ → A₂ → A₃ → A₄ → B) where ap5 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} {x₃ y₃ : A₃} {x₄ y₄ : A₄} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → (x₃ == y₃) → (x₄ == y₄) → f x₀ x₁ x₂ x₃ x₄ == f y₀ y₁ y₂ y₃ y₄ ap5 idp idp idp idp idp = idp module _ {i₀ i₁ i₂ i₃ i₄ i₅ j} {A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂} {A₃ : Type i₃} {A₄ : Type i₄} {A₅ : Type i₅} {B : Type j} (f : A₀ → A₁ → A₂ → A₃ → A₄ → A₅ → B) where ap6 : {x₀ y₀ : A₀} {x₁ y₁ : A₁} {x₂ y₂ : A₂} {x₃ y₃ : A₃} {x₄ y₄ : A₄} {x₅ y₅ : A₅} → (x₀ == y₀) → (x₁ == y₁) → (x₂ == y₂) → (x₃ == y₃) → (x₄ == y₄) → (x₅ == y₅) → f x₀ x₁ x₂ x₃ x₄ x₅ == f y₀ y₁ y₂ y₃ y₄ y₅ ap6 idp idp idp idp idp idp = idp
{ "alphanum_fraction": 0.4021678538, "avg_line_length": 34.9458874459, "ext": "agda", "hexsha": "da25a4496cd94bcc17a3b30a19da199d45d462a1", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/PathFunctor.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/PathFunctor.agda", "max_line_length": 90, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/PathFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 8557, "size": 16145 }
{-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.constr.findInScope:10 #-} -- -v tc.conv.elim:25 #-} -- Andreas, 2012-07-01 module Issue670a where import Common.Level open import Common.Equality findRefl : {A : Set}(a : A){{p : a ≡ a}} → a ≡ a findRefl a {{p}} = p uip : {A : Set}{a : A} → findRefl a ≡ refl uip = refl -- this should work. Used to throw an internal error in Conversion, -- because the solution for p was refl applied to parameters, instead of just refl.
{ "alphanum_fraction": 0.6534446764, "avg_line_length": 29.9375, "ext": "agda", "hexsha": "5505e07cdda3de0dd1498e448c2d45056dffb599", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue670a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue670a.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue670a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 155, "size": 479 }
module BasicIO where open import Agda.Builtin.IO public open import Data.Char open import Data.List {-# FOREIGN GHC import Control.Exception #-} {-# FOREIGN GHC import System.Environment #-} -- This is easier than using the IO functions in the standard library, -- but it's technically not as type-safe. And it bypasses the -- termination checker. postulate return : {A : Set} → A → IO A _>>_ : {A B : Set} → IO A → IO B → IO B _>>=_ : {A B : Set} → IO A → (A → IO B) → IO B fail : {A : Set} → List Char → IO A bracket : {A B C : Set} → IO A → (A → IO B) → (A → IO C) → IO C getArgs : IO (List (List Char)) {-# COMPILE GHC return = \_ -> return #-} {-# COMPILE GHC _>>_ = \_ _ -> (>>) #-} {-# COMPILE GHC _>>=_ = \_ _ -> (>>=) #-} {-# COMPILE GHC fail = \_ -> fail #-} {-# COMPILE GHC bracket = \ _ _ _ -> bracket #-} {-# COMPILE GHC getArgs = getArgs #-}
{ "alphanum_fraction": 0.5860091743, "avg_line_length": 32.2962962963, "ext": "agda", "hexsha": "521b24b60368f68bea4ee11eb0926f0d8aa14d1a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda-editor", "max_forks_repo_path": "src/BasicIO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda-editor", "max_issues_repo_path": "src/BasicIO.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda-editor", "max_stars_repo_path": "src/BasicIO.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 269, "size": 872 }
-- Andreas, 2016-12-20, issue #2350 -- Agda ignores a wrong instance parameter to a constructor data D {{a}} (A : Set a) : Set a where c : A → D A test : ∀ ℓ {ℓ'} (A : Set ℓ') {B : Set ℓ} (a : A) → D A test ℓ A a = c {{ℓ}} a -- Expected Error: -- .ℓ' != ℓ of type .Agda.Primitive.Level -- when checking that the expression a has type A
{ "alphanum_fraction": 0.5953079179, "avg_line_length": 26.2307692308, "ext": "agda", "hexsha": "cd9e533fc4087f39920fe8868237bec492a7731c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue2350-constructor-parameter-ignored.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue2350-constructor-parameter-ignored.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue2350-constructor-parameter-ignored.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 129, "size": 341 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Free where open import Categories.Category open import Categories.Free.Core open import Categories.Free.Functor open import Categories.Graphs.Underlying open import Categories.Functor using (Functor) open import Graphs.Graph open import Graphs.GraphMorphism using (GraphMorphism; module GraphMorphism) open import Data.Star -- Exports from other modules: -- Free₀, Free₁ and Free open Categories.Free.Core public using (Free₀) open Categories.Free.Functor public using (Free) -- TODO: -- Prove Free⊣Underlying : Adjunction Free Underlying -- Define Adjunction.left and Adjunction.right as conveniences -- (or whatever other names make sense for the hom-set maps -- C [ F _ , _ ] → D [ _ , G _ ] and inverse, respectively) -- Let Cata = Adjunction.left Free⊣Underlying Cata : ∀{o₁ ℓ₁ e₁}{G : Graph o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂}{C : Category o₂ ℓ₂ e₂} → (F : GraphMorphism G (Underlying₀ C)) → Functor (Free₀ G) C Cata {G = G} {C = C} F = record { F₀ = F₀ ; F₁ = F₁* ; identity = refl ; homomorphism = λ{X}{Y}{Z}{f}{g} → homomorphism {X}{Y}{Z}{f}{g} ; F-resp-≡ = F₁*-resp-≡ } where open Category C open GraphMorphism F open Equiv open HomReasoning open PathEquality using (ε-cong; _◅-cong_) F₁* : ∀ {A B} → Free₀ G [ A , B ] → C [ F₀ A , F₀ B ] F₁* ε = id F₁* (f ◅ fs) = F₁* fs ∘ F₁ f .homomorphism : ∀ {X Y Z} {f : Free₀ G [ X , Y ]} {g : Free₀ G [ Y , Z ]} → C [ F₁* (Free₀ G [ g ∘ f ]) ≡ C [ F₁* g ∘ F₁* f ] ] homomorphism {f = ε} = sym identityʳ homomorphism {f = f ◅ fs}{gs} = begin F₁* (fs ◅◅ gs) ∘ F₁ f ↓⟨ homomorphism {f = fs}{gs} ⟩∘⟨ refl ⟩ (F₁* gs ∘ F₁* fs) ∘ F₁ f ↓⟨ assoc ⟩ F₁* gs ∘ F₁* fs ∘ F₁ f ∎ .F₁*-resp-≡ : ∀ {A B} {f g : Free₀ G [ A , B ]} → Free₀ G [ f ≡ g ] → C [ F₁* f ≡ F₁* g ] F₁*-resp-≡ {f = ε}{.ε} ε-cong = refl F₁*-resp-≡ {f = f ◅ fs}{g ◅ gs} (f≈g ◅-cong fs≈gs) = begin F₁* fs ∘ F₁ f ↓⟨ F₁*-resp-≡ fs≈gs ⟩∘⟨ F-resp-≈ f≈g ⟩ F₁* gs ∘ F₁ g ∎ F₁*-resp-≡ {f = f ◅ fs}{ε} ()
{ "alphanum_fraction": 0.5523809524, "avg_line_length": 30.625, "ext": "agda", "hexsha": "acd1abd5288a6e060bb1dd458367fb0ca822a1ba", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Free.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Free.agda", "max_line_length": 93, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Free.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 870, "size": 2205 }
{-# OPTIONS --rewriting #-} module DualContractive where open import Data.Fin open import Data.Maybe open import Data.Nat hiding (_≤_ ; compare) renaming (_+_ to _+ℕ_) open import Data.Nat.Properties open import Data.Sum hiding (map) open import Data.Product open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Function open import Types.Direction open import Auxiliary.Extensionality open import Max hiding (n) ---------------------------------------------------------------------- -- see also https://github.com/zmthy/recursive-types/tree/ftfjp16 -- for encoding of recursive types variable m n : ℕ i i' j : Fin n ---------------------------------------------------------------------- -- lemmas for rewriting n+1=suc-n : n +ℕ 1 ≡ suc n n+1=suc-n {zero} = refl n+1=suc-n {suc n} = cong suc (n+1=suc-n {n}) n+0=n : n +ℕ 0 ≡ n n+0=n {zero} = refl n+0=n {suc n} = cong suc (n+0=n {n}) n+sucm=sucn+m : ∀ n m → n +ℕ suc m ≡ suc (n +ℕ m) n+sucm=sucn+m zero m = refl n+sucm=sucn+m (suc n) m = cong suc (n+sucm=sucn+m n m) {-# REWRITE n+sucm=sucn+m #-} open import Agda.Builtin.Equality.Rewrite ---------------------------------------------------------------------- -- auxiliaries for automatic rewriting {- REWRITE n+1=suc-n #-} {-# REWRITE n+0=n #-} -- inject+0-x=x : {x : Fin m} → inject+ 0 x ≡ x -- inject+0-x=x {x = zero} = refl -- inject+0-x=x {x = suc x} = cong suc inject+0-x=x {- REWRITE inject+0-x=x #-} ---------------------------------------------------------------------- -- types and session types data TType (n : ℕ) : Set data SType (n : ℕ) : Set data TType n where TInt : TType n TChn : (S : SType n) → TType n data SType n where xmt : (d : Dir) (T : TType n) (S : SType n) → SType n end : SType n rec : (S : SType (suc n)) → SType n var : (x : Fin n) → SType n variable t T : TType n s s₀ S S₀ : SType n ---------------------------------------------------------------------- module Examples-Types where sint : SType n → SType n sint = xmt SND TInt -- μ X. !Int. X s1 : SType 0 s1 = rec (sint (var zero)) -- μ X. μ Y. !Int. Y s2 : SType 0 s2 = rec (rec (sint (var zero))) -- μ X. μ Y. !Int. X s2a : SType 0 s2a = rec (rec (sint (var (suc zero)))) -- μ X. !Int. μ Y. X s3 : SType 0 s3 = rec (sint (rec (var (suc zero)))) module Alternative-Substitution where -- analogous to https://plfa.github.io/DeBruijn/ -- extending a map by an identity segment extV : (Fin m → Fin n) → (Fin (suc m) → Fin (suc n)) extV ρ zero = zero extV ρ (suc i) = suc (ρ i) -- renaming / can be used for weakening one binding as @rename suc@ renameT : (Fin m → Fin n) → TType m → TType n renameS : (Fin m → Fin n) → SType m → SType n renameT ρ TInt = TInt renameT ρ (TChn S) = TChn (renameS ρ S) renameS ρ (xmt d T S) = xmt d (renameT ρ T) (renameS ρ S) renameS ρ end = end renameS ρ (rec S) = rec (renameS (extV ρ) S) renameS ρ (var x) = var (ρ x) -- extending a map from variables to terms extS : (Fin m → SType n) → (Fin (suc m) → SType (suc n)) extS σ zero = var zero extS σ (suc i) = renameS suc (σ i) -- simultaneous substitution substT : (Fin m → SType n) → TType m → TType n substS : (Fin m → SType n) → SType m → SType n substT σ TInt = TInt substT σ (TChn S) = TChn (substS σ S) substS σ (xmt d T S) = xmt d (substT σ T) (substS σ S) substS σ end = end substS σ (rec S) = rec (substS (extS σ) S) substS σ (var x) = σ x -- single substitution mk-σ : SType n → Fin (suc n) → SType n mk-σ S' zero = S' mk-σ S' (suc x) = var x substT1 : SType n → TType (suc n) → TType n substT1 S' T = substT (mk-σ S') T substS1 : SType n → SType (suc n) → SType n substS1 S' S = substS (mk-σ S') S ---------------------------------------------------------------------- -- weakening increase : ∀ m → (x : Fin n) → Fin (n +ℕ m) increase zero x = x increase (suc m) x = suc (increase m x) increaseS : ∀ m → SType n → SType (n +ℕ m) increaseT : ∀ m → TType n → TType (n +ℕ m) increaseS m (xmt d t s) = xmt d (increaseT m t) (increaseS m s) increaseS m (rec s) = rec (increaseS m s) increaseS m (var x) = var (inject+ m x) -- should say increase here increaseS m end = end increaseT m TInt = TInt increaseT m (TChn s) = TChn (increaseS m s) -- weaken m is used to push a (closed) term under m new binders weakenS : ∀ m → SType n → SType (n +ℕ m) weakenT : ∀ m → TType n → TType (n +ℕ m) weakenS m (xmt d t s) = xmt d (weakenT m t) (weakenS m s) weakenS m (rec s) = rec (weakenS m s) weakenS m (var x) = var (inject+ m x) weakenS m end = end weakenT m TInt = TInt weakenT m (TChn s) = TChn (weakenS m s) weaken1S : SType n → SType (suc n) weaken1S s = weakenS 1 s -- this one behaves correctly weaken'S : ∀ m → Fin (suc n) → SType n → SType (n +ℕ m) weaken'T : ∀ m → Fin (suc n) → TType n → TType (n +ℕ m) weaken'S m i (xmt d T S) = xmt d (weaken'T m i T) (weaken'S m i S) weaken'S m i end = end weaken'S m i (rec S) = rec (weaken'S m (suc i) S) weaken'S {suc n} m zero (var x) = var (increase m x) weaken'S {suc n} m (suc i) (var x) with compare i x weaken'S {suc n} m (suc .(inject least)) (var x) | less .x least = var (increase m x) weaken'S {suc n} m (suc i) (var .i) | equal .i = var (inject+ m i) weaken'S {suc n} m (suc i) (var .(inject least)) | greater .i least = var (inject+ m (inject least)) weaken'T m i TInt = TInt weaken'T m i (TChn S) = TChn (weaken'S m i S) weaken'S0 : ∀ m → SType n → SType (n +ℕ m) weaken'S0 m S = weaken'S m (fromℕ _) S ---------------------------------------------------------------------- -- examples module Examples-Weakening where sv0 sv1 : SType 1 sv0 = rec (var zero) sv1 = rec (var (suc zero)) sv0-w : SType 2 sv0-w = weaken'S 1 zero sv0 step0 : weaken'S{2} 1 zero (var zero) ≡ var (suc zero) × weaken'S{2} 1 zero (var (suc zero)) ≡ var (suc (suc zero)) step0 = refl , refl step1 : weaken'S{2} 1 (suc zero) (var zero) ≡ var zero × weaken'S{2} 1 (suc zero) (var (suc zero)) ≡ var (suc (suc zero)) step1 = refl , refl stepr1 : weaken'S 1 zero sv0 ≡ rec (var zero) × weaken'S 1 zero sv1 ≡ rec (var (suc (suc zero))) stepr1 = refl , refl stepr2 : weaken'S{3} 1 zero (rec (rec (var zero))) ≡ rec (rec (var zero)) × weaken'S{3} 1 zero (rec (rec (var (suc zero)))) ≡ rec (rec (var (suc zero))) × weaken'S{3} 1 zero (rec (rec (var (suc (suc zero))))) ≡ rec (rec (var (suc (suc (suc zero))))) stepr2 = refl , refl , refl sx1 : SType 0 sx1 = rec (xmt SND TInt (var zero)) sx1-w : SType 1 sx1-w = rec (xmt SND TInt (var zero)) sx1=sx1-w : sx1-w ≡ weaken'S 1 zero sx1 sx1=sx1-w = refl sx2 : SType 1 sx2 = xmt SND TInt (var zero) sx2-w1 : SType 2 sx2-w1 = xmt SND TInt (var (suc zero)) sx2-w0 : SType 2 sx2-w0 = xmt SND TInt (var zero) sx2=w : sx2-w1 ≡ weaken'S 1 zero sx2 × sx2-w0 ≡ weaken'S 1 (suc zero) sx2 sx2=w = refl , refl open Alternative-Substitution step0-r : renameS suc sv0 ≡ rec (var zero) × renameS suc sv1 ≡ rec (var (suc (suc zero))) step0-r = refl , refl step1-r : renameS{1} suc (rec (rec (var zero))) ≡ (rec (rec (var zero))) × renameS{1} suc (rec (rec (var (suc zero)))) ≡ (rec (rec (var (suc zero)))) × renameS{1} suc (rec (rec (var (suc (suc zero))))) ≡ (rec (rec (var (suc (suc (suc zero)))))) step1-r = refl , refl , refl ---------------------------------------------------------------------- -- contractivity mutual data ContractiveT {n} : TType n → Set where con-int : ContractiveT TInt con-chn : Contractive zero S → ContractiveT (TChn S) data Contractive (i : Fin (suc n)) : SType n → Set where con-xmt : ContractiveT t → Contractive zero s → Contractive i (xmt d t s) con-end : Contractive i end con-rec : Contractive (suc i) S → Contractive i (rec S) con-var : i ≤ inject₁ j → Contractive i (var j) ---------------------------------------------------------------------- module Examples-Contractivity where open Examples-Types cn1 : ¬ Contractive {2} (suc zero) (var zero) cn1 (con-var ()) cp1 : Contractive {2} zero (var (suc zero)) cp1 = con-var z≤n cp0 : Contractive {2} zero (var zero) cp0 = con-var z≤n cs1 : Contractive zero s1 cs1 = con-rec (con-xmt con-int (con-var z≤n)) cs2 : Contractive zero s2 cs2 = con-rec (con-rec (con-xmt con-int (con-var z≤n))) cs2a : Contractive zero s2a cs2a = con-rec (con-rec (con-xmt con-int (con-var z≤n))) sp2 : SType 0 sp2 = s3 cp2 : Contractive zero sp2 cp2 = con-rec (con-xmt con-int (con-rec (con-var (s≤s z≤n)))) sn2 : SType 0 sn2 = (rec (xmt SND TInt (rec (var zero)))) cn2 : ¬ Contractive zero sn2 cn2 (con-rec (con-xmt con-int (con-rec (con-var ())))) module Alternative-Unfolding where open Alternative-Substitution -- one top-level unfolding if possible unfold₁ : SType n → SType n unfold₁ (rec S) = substS1 (rec S) S unfold₁ S@(xmt d T x) = S unfold₁ S@end = S unfold₁ S@(var x) = S -- unfold all the way unfold : (S : SType n) (σ : SType n → SType m) → SType m unfold S@(xmt d T S') σ = σ S unfold end σ = end unfold (rec S) σ = unfold S (σ ∘ substS1 (rec S)) unfold S@(var x) σ = σ S unfold₀ : SType n → SType n unfold₀ S = unfold S id ---------------------------------------------------------------------- -- substitution ssubst : SType (suc n) → Fin (suc n) → SType 0 → SType n tsubst : TType (suc n) → Fin (suc n) → SType 0 → TType n ssubst (xmt d t s) i s0 = xmt d (tsubst t i s0) (ssubst s i s0) ssubst (rec s) i s0 = rec (ssubst s (suc i) s0) ssubst {n} (var zero) zero s0 = increaseS n s0 ssubst {suc n} (var zero) (suc i) s0 = var zero ssubst (var (suc x)) zero s0 = var x ssubst {suc n} (var (suc x)) (suc i) s0 = increaseS 1 (ssubst (var x) i s0) ssubst end i s0 = end tsubst TInt i s₀ = TInt tsubst (TChn s) i s₀ = TChn (ssubst s i s₀) ---------------------------------------------------------------------- -- unfolding to first non-rec constructor unfold : (s : SType n) (c : Contractive i s) (σ : SType n → SType 0) → SType 0 unfold (xmt d t s) (con-xmt ct c) σ = σ (xmt d t s) unfold end con-end σ = end unfold (rec s) (con-rec c) σ = unfold s c (σ ∘ λ sn' → ssubst sn' zero (σ (rec s))) unfold {i = zero} (var x) (con-var z≤n) σ = σ (var x) unfold {i = suc i} (var zero) (con-var ()) σ unfold {i = suc i} (var (suc x)) (con-var (s≤s x₁)) σ = unfold (var x) (con-var x₁) (σ ∘ increaseS 1) unfold₀ : (S : SType 0) (c : Contractive zero S) → SType 0 unfold₀ S c = unfold S c id ---------------------------------------------------------------------- module Examples-Unfold where open Examples-Types c1 : Contractive zero s1 c1 = con-rec (con-xmt con-int (con-var z≤n)) s11 : SType 0 s11 = xmt SND TInt s1 u-s1=s11 : unfold s1 c1 id ≡ s11 u-s1=s11 = refl c2 : Contractive zero s2 c2 = con-rec (con-rec (con-xmt con-int (con-var z≤n))) u-s2=s11 : unfold s2 c2 id ≡ s11 u-s2=s11 = cong (xmt SND TInt) (cong rec (cong (xmt SND TInt) refl)) ---------------------------------------------------------------------- -- contractivity is decidable infer-contractiveT : (t : TType n) → Dec (ContractiveT t) infer-contractive : (s : SType n) (i : Fin (suc n)) → Dec (Contractive i s) infer-contractiveT TInt = yes con-int infer-contractiveT (TChn s) with infer-contractive s zero infer-contractiveT (TChn s) | yes p = yes (con-chn p) infer-contractiveT (TChn s) | no ¬p = no (λ { (con-chn cs) → ¬p cs }) infer-contractive (xmt d t s) i with infer-contractiveT t | infer-contractive s zero infer-contractive (xmt d t s) i | yes p | yes p₁ = yes (con-xmt p p₁) infer-contractive (xmt d t s) i | yes p | no ¬p = no (λ { (con-xmt ct cs) → ¬p cs }) infer-contractive (xmt d t s) i | no ¬p | yes p = no (λ { (con-xmt ct cs) → ¬p ct }) infer-contractive (xmt d t s) i | no ¬p | no ¬p₁ = no (λ { (con-xmt ct cs) → ¬p₁ cs}) infer-contractive end i = yes con-end infer-contractive (rec s) i with infer-contractive s (suc i) infer-contractive (rec s) i | yes p = yes (con-rec p) infer-contractive (rec s) i | no ¬p = no (λ { (con-rec c) → ¬p c }) infer-contractive (var x) zero = yes (con-var z≤n) infer-contractive (var zero) (suc i) = no (λ { (con-var ()) }) infer-contractive (var (suc x)) (suc i) with infer-contractive (var x) i infer-contractive (var (suc x)) (suc i) | yes (con-var x₁) = yes (con-var (s≤s x₁)) infer-contractive (var (suc x)) (suc i) | no ¬p = no (λ { (con-var (s≤s y)) → ¬p (con-var y) }) ---------------------------------------------------------------------- module Examples-Inference where open Examples-Contractivity infer-p2 : infer-contractive sp2 zero ≡ yes cp2 infer-p2 = refl infer-n2 : infer-contractive sn2 zero ≡ no cn2 infer-n2 = cong no (ext (λ { (con-rec (con-xmt con-int (con-rec (con-var ())))) })) ---------------------------------------------------------------------- -- RT: if a type is contractive at level i, then it is also contractive at any smaller level c-weakenS : {S : SType n} (i' : Fin′ i) → Contractive i S → Contractive (inject i') S c-weakenS i' (con-rec cis) = con-rec (c-weakenS (suc i') cis) c-weakenS i' (con-xmt x cis) = con-xmt x cis c-weakenS i' con-end = con-end c-weakenS {i = suc i} i' (con-var {zero} ()) c-weakenS {i = suc i} zero (con-var {suc n} (s≤s x)) = con-var z≤n c-weakenS {i = suc i} (suc i') (con-var {suc n} (s≤s x)) = con-var (s≤s (trans-< x)) c-weakenS₁ : {S : SType n} → Contractive (suc i) S → Contractive (inject₁ i) S c-weakenS₁ (con-rec cis) = con-rec (c-weakenS₁ cis) c-weakenS₁ (con-xmt x cis) = con-xmt x cis c-weakenS₁ con-end = con-end c-weakenS₁ {zero} {()} (con-var x) c-weakenS₁ {suc n} {zero} (con-var x) = con-var z≤n c-weakenS₁ {suc n} {suc i} (con-var x) = con-var (pred-≤ x) c-weakenS! : {S : SType n} → Contractive i S → Contractive zero S c-weakenS! {i = zero} (con-rec cis) = con-rec cis c-weakenS! {i = suc i} (con-rec cis) = con-rec (c-weakenS (suc zero) cis) c-weakenS! {n} {i} (con-xmt x cis) = con-xmt x cis c-weakenS! {n} {i} con-end = con-end c-weakenS! {n} {i} (con-var x) = con-var z≤n ct-weaken+ : {T : TType n} → ContractiveT T → ContractiveT (weaken'T 1 zero T) c-weaken+ : {S : SType n} → Contractive i S → Contractive (suc i) (weaken'S 1 zero S) ct-weaken+ con-int = con-int ct-weaken+ (con-chn x) = con-chn (c-weakenS! (c-weaken+ x)) c-weaken+ (con-xmt x cis) = con-xmt (ct-weaken+ x) (c-weakenS! (c-weaken+ cis)) c-weaken+ con-end = con-end c-weaken+ (con-rec cis) = con-rec {!!} -- gives a problem: (c-weaken+ {!cis!}) c-weaken+ {suc n} {i} {var j} (con-var i≤j) = con-var (s≤s i≤j) module Alternative-Multiple-Substitution-Preserves where open Alternative-Substitution subst-contr-T : {T : TType m} (σ : Fin m → SType n) (γ : (j : Fin m) → Contractive i (σ j)) (ct : ContractiveT T) → ContractiveT (substT σ T) subst-contr-S : ∀ {k} → (σ : Fin m → SType n) (γ : (j : Fin m) → Contractive k (σ j)) (c : Contractive zero S) → Contractive k (substS σ S) subst-contr-T σ γ con-int = con-int subst-contr-T σ γ (con-chn cs) = con-chn (subst-contr-S σ (c-weakenS! ∘ γ) cs) subst-contr-S σ γ (con-xmt ct cs) = con-xmt (subst-contr-T σ γ ct) (subst-contr-S σ (c-weakenS! ∘ γ) cs) subst-contr-S σ γ con-end = con-end subst-contr-S σ γ (con-rec cs) = con-rec (subst-contr-S (extS σ) {!extS!} (c-weakenS₁ cs)) subst-contr-S σ γ (con-var{j} x) = γ j module Alternative-Substitution-Preserves where open Alternative-Substitution subst-contr-T : {S' : SType n} (c' : Contractive i S') {T : TType (suc n)} (c : ContractiveT T) → ContractiveT (substT1 S' T) subst-contr-S : {S' : SType n} (c' : Contractive i S') {S : SType (suc n)} (c : Contractive (inject₁ i) S) → Contractive i (substS1 S' S) subst-contr-T c' con-int = con-int subst-contr-T c' (con-chn x) = con-chn (subst-contr-S (c-weakenS! c') x) subst-contr-S c' (con-xmt ct cs) = con-xmt (subst-contr-T c' ct) (subst-contr-S (c-weakenS! c') cs) subst-contr-S c' con-end = con-end subst-contr-S c' (con-rec c) = con-rec {!!} -- (subst-contr-S {!!} {!c!}) subst-contr-S c' (con-var x) = {!!} module Alternative-SingleSubstitution where ---------------------------------------------------------------------- -- single substitution of j ↦ Sj subst1T : (T : TType (suc n)) (j : Fin (suc n)) (Sj : SType n) → TType n subst1S : (S : SType (suc n)) (j : Fin (suc n)) (Sj : SType n) → SType n subst1T TInt j Sj = TInt subst1T (TChn S) j Sj = TChn (subst1S S j Sj) subst1S (xmt d T S) j Sj = xmt d (subst1T T j Sj) (subst1S S j Sj) subst1S end j Sj = end subst1S (rec S) j Sj = rec (subst1S S (suc j) (weaken'S 1 zero Sj)) subst1S (var x) j Sj with compare x j subst1S (var .(inject least)) j Sj | less .j least = var (inject! least) subst1S (var x) .x Sj | equal .x = Sj subst1S (var (suc x)) .(inject least) Sj | greater .(suc x) least = var x {- the termination checker doesnt like this: subst1S (var zero) zero Sj = Sj subst1S {suc n} (var zero) (suc j) Sj = var zero subst1S (var (suc x)) zero Sj = var x subst1S (var (suc x)) (suc j) Sj = subst1S (var (inject₁ x)) (inject₁ j) Sj -} unfold1S : (S : SType 0) → SType 0 unfold1S (xmt d T S) = xmt d T S unfold1S end = end unfold1S (rec S) = subst1S S zero (rec S) unfoldSS : (S : SType n) → SType n unfoldSS (xmt d T S) = xmt d T S unfoldSS end = end unfoldSS (rec S) with unfoldSS S ... | ih = subst1S ih zero (rec ih) unfoldSS (var x) = var x ---------------------------------------------------------------------- -- max index substitution subst-maxT : (Sm : SType n) (T : TType (suc n)) → TType n subst-maxS : (Sm : SType n) (S : SType (suc n)) → SType n subst-maxT Sm TInt = TInt subst-maxT Sm (TChn S) = TChn (subst-maxS Sm S) subst-maxS Sm (xmt d T S) = xmt d (subst-maxT Sm T) (subst-maxS Sm S) subst-maxS Sm end = end subst-maxS Sm (rec S) = rec (subst-maxS (weaken'S 1 zero Sm) S) subst-maxS Sm (var x) with max? x subst-maxS Sm (var x) | yes p = Sm subst-maxS Sm (var x) | no ¬p = var (reduce ¬p) unfoldmS : (S : SType n) → SType n unfoldmS (xmt d T S) = xmt d T S unfoldmS end = end unfoldmS (rec S) = subst-maxS (rec S) S unfoldmS {suc n} (var x) = var x ---------------------------------------------------------------------- -- max substitution preserves contractivity subst-contr-mT : {T : TType (suc n)} (c : ContractiveT T) {S' : SType n} (c' : Contractive i S') → ContractiveT (subst-maxT S' T) subst-contr-mS : -- {i : Fin (suc (suc n))} {S : SType (suc n)} (c : Contractive (inject₁ i) S) {S' : SType n} (c' : Contractive i S') → Contractive i (subst-maxS S' S) subst-contr-mT con-int csm = con-int subst-contr-mT (con-chn x) csm = con-chn (c-weakenS! (subst-contr-mS x (c-weakenS! csm))) subst-contr-mS (con-xmt x cs) csm = con-xmt (subst-contr-mT x csm) (subst-contr-mS cs (c-weakenS! csm)) subst-contr-mS con-end csm = con-end subst-contr-mS (con-rec cs) csm = con-rec (subst-contr-mS cs (c-weaken+ csm)) subst-contr-mS {S = var j} (con-var x) csm with max? j subst-contr-mS {i = _} {var j} (con-var x) csm | yes p = csm subst-contr-mS {i = _} {var j} (con-var x) csm | no ¬p = con-var (lemma-reduce x ¬p) -- one step unfolding preserves contractivity unfold-contr : Contractive i S → Contractive i (unfoldmS S) unfold-contr (con-xmt x c) = con-xmt x c unfold-contr con-end = con-end unfold-contr (con-rec c) = subst-contr-mS (c-weakenS₁ c) (con-rec c) unfold-contr (con-var x) = {!!} -- multiple unfolding -- terminates even for non-contractive types because it delays the substitution unfold! : (S : SType n) (σ : SType n → SType 0) → SType 0 unfold! (xmt d T S) σ = σ (xmt d T S) unfold! end σ = end unfold! (rec S) σ = unfold! S (σ ∘ subst-maxS (rec S)) unfold! (var x) σ = σ (var x) -- unclear how this could be completed -- unfold!-contr : Contractive i S → Contractive i (unfold! S id) -- unfold!-contr (con-xmt x cs) = con-xmt x cs -- unfold!-contr con-end = con-end -- unfold!-contr (con-rec cs) = {!!} -- multiple unfolding preserves contractivity TCType : (n : ℕ) → Set TCType n = Σ (TType n) ContractiveT SCType : (n : ℕ) → Fin (suc n) → Set SCType n i = Σ (SType n) (Contractive i) unfold!! : (SC : SCType n i) → (SCType n i → SCType 0 zero) → SCType 0 zero unfold!! SC@(xmt d T S , con-xmt x cs) σ = σ SC unfold!! (end , con-end) σ = end , con-end unfold!! (rec S , con-rec cs) σ = unfold!! (S , cs) (σ ∘ λ{ (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) }) unfold!! SC@(var x , con-var x₁) σ = σ SC {-# TERMINATING #-} unfold!!! : ∀ {m n : ℕ} → SCType (n +ℕ m) zero → (SCType (n +ℕ m) zero → SCType m zero) → SCType m zero unfold!!! SC@(xmt d T S , con-xmt x cs) σ = σ SC unfold!!! (end , con-end) σ = end , con-end unfold!!! (rec S , con-rec cs) σ = unfold!!! (S , c-weakenS₁ cs) (σ ∘ λ SC → (subst-maxS (rec S) (proj₁ SC)) , (subst-contr-mS (proj₂ SC) (con-rec cs))) unfold!!! SC@(var x , con-var x₁) σ = σ SC ---------------------------------------------------------------------- -- equivalence requires multiple unfolding variable T₁ T₂ : TCType n S₁ S₂ : SCType n i data EquivT (R : SCType n zero → SCType n zero → Set) : TCType n → TCType n → Set where eq-int : EquivT R (TInt , con-int) (TInt , con-int) eq-chn : R S₁ S₂ → EquivT R (TChn (proj₁ S₁) , con-chn (proj₂ S₁)) (TChn (proj₁ S₂) , con-chn (proj₂ S₂)) data EquivS (R : SCType n zero → SCType n zero → Set) : (S₁ S₂ : SCType n zero) → Set where eq-end : EquivS R (end , con-end) (end , con-end) eq-xmt : (d : Dir) → EquivT R T₁ T₂ → R S₁ S₂ → EquivS R (xmt d (proj₁ T₁) (proj₁ S₁) , con-xmt (proj₂ T₁) (proj₂ S₁)) (xmt d (proj₁ T₂) (proj₁ S₂) , con-xmt (proj₂ T₂) (proj₂ S₂)) eq-rec-l : let S = proj₁ S₁ in let cs = proj₂ S₁ in EquivS R (subst-maxS (rec S) S , subst-contr-mS (c-weakenS₁ cs) (con-rec cs)) S₂ → EquivS R (rec S , con-rec cs) S₂ eq-rec-r : let S = proj₁ S₂ in let cs = proj₂ S₂ in EquivS R S₁ (subst-maxS (rec S) S , subst-contr-mS (c-weakenS₁ cs) (con-rec cs)) → EquivS R S₁ (rec S , con-rec cs) record Equiv (S₁ S₂ : SCType 0 zero) : Set where coinductive field force : EquivS Equiv (unfold!! S₁ id) (unfold!! S₂ id) record Equiv' (S₁ S₂ : SCType n zero) : Set where coinductive field force : EquivS Equiv' (unfold!!!{n = 0} S₁ id) (unfold!!!{n = 0} S₂ id) {-# TERMINATING #-} equivt-refl : ∀ T → EquivT Equiv T T equivs-refl : ∀ S → EquivS Equiv S S equiv-refl : ∀ S → Equiv S S equivt-refl (TInt , con-int) = eq-int equivt-refl (TChn S , con-chn x) = eq-chn (equiv-refl (S , x)) equivs-refl (xmt d t s , con-xmt ct cs) = eq-xmt d (equivt-refl (t , ct)) (equiv-refl (s , cs)) equivs-refl (end , con-end) = eq-end equivs-refl (rec s , con-rec cs) = eq-rec-l (eq-rec-r (equivs-refl ((subst-maxS (rec s) s) , (subst-contr-mS (c-weakenS₁ cs) (con-rec cs))))) Equiv.force (equiv-refl S) = equivs-refl (unfold!! S id) ---------------------------------------------------------------------- -- prove equivalence of one-level unrolling -- μX S ≈ S [μX S / X] module μ-unrolling where unfold-≡ : ∀ S cs → unfold!! (S , cs) (λ { (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) }) ≡ (unfold!! (subst-maxS (rec S) S , subst-contr-mS (c-weakenS₁ cs) (con-rec cs)) id) unfold-≡ (xmt d T S) (con-xmt x cs) = refl unfold-≡ end con-end = refl unfold-≡ (rec S) (con-rec cs) = {!!} unfold-≡ (var x) (con-var x₁) with max? x unfold-≡ (var x) (con-var x₁) | yes p = {!!} unfold-≡ (var x) (con-var x₁) | no ¬p = refl unroll : SCType n i → SCType n i unroll SC@(xmt d T S , con-xmt x cs) = SC unroll SC@(end , con-end) = SC unroll (rec S , cs@(con-rec cs')) = (subst-maxS (rec S) S) , (subst-contr-mS (c-weakenS₁ cs') cs) unroll SC@(var x , con-var x₁) = SC unroll-equiv : (SC : SCType 0 zero) → Equiv SC (unroll SC) Equiv.force (unroll-equiv SC@(xmt d T S , con-xmt x cs)) with unroll SC ... | SC' = equivs-refl SC' Equiv.force (unroll-equiv (end , con-end)) = eq-end Equiv.force (unroll-equiv (rec S , con-rec cs)) rewrite unfold-≡ S cs = let S₁ = unfold!! (S , cs) (λ { (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) }) in let eqx = equivs-refl S₁ in {!S₁!} ---------------------------------------------------------------------- -- prove the folk theorem -- μX μY S = μY [Y/X]S module μ-examples where r1 : SType 0 r1 = rec (rec (xmt SND (TChn (var zero)) (var (suc zero)))) r2 : SType n r2 = rec (xmt SND (TChn (var zero)) (var zero)) r2a : SType 0 r2a = rec r2 r2b : SType n r2b = rec (rec (xmt SND (TChn (var zero)) (var (suc zero)))) r2-unfolded : SType 0 r2-unfolded = xmt SND (TChn r2) r2 r2-unf : SType 0 r2-unf = rec (xmt SND (TChn (var zero)) r2b) rc2-unf : SCType 0 zero rc2-unf = r2-unf , (con-rec (con-xmt (con-chn (con-var z≤n)) (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))))) rc1 : SCType 0 zero rc1 = r1 , (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) rc2 : SCType n zero rc2 = r2 , (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))) rc2a : SCType 0 zero rc2a = r2a , con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))) rc2b : SCType n zero rc2b = r2b , con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))) rc2-unfolded : SCType 0 zero rc2-unfolded = r2-unfolded , (con-xmt (con-chn (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) rc2=rc2 : Equiv rc2 rc2 Equiv.force rc2=rc2 = eq-xmt SND (eq-chn rc2=rc2) rc2=rc2 rc2=rc2-unfolded : Equiv rc2 rc2-unfolded Equiv.force rc2=rc2-unfolded = eq-xmt SND (eq-chn rc2=rc2) rc2=rc2 weak-r2 : SType 0 weak-r2 = rec (weaken'S 1 zero r2) weak-rc2 : SCType 0 zero weak-rc2 = weak-r2 , (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) r2-weak : SType n r2-weak = rec (xmt SND ((TChn (weaken'S 1 zero (rec (rec (xmt SND (TChn (var (suc zero))) (var (suc zero)))))))) ((weaken'S 1 zero (rec (rec (xmt SND (TChn (var (suc zero))) (var (suc zero)))))))) rc2-weak : SCType 0 zero rc2-weak = r2-weak , con-rec (con-xmt (con-chn (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))))) (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))))) rc2=rc2a : Equiv rc2 rc2a Equiv.force rc2=rc2a = eq-xmt SND (eq-chn rc2=rc2a) rc2=rc2a rc2=xxxrc2b : Equiv' rc2 rc2-unf rc2=rc2b : Equiv' rc2 rc2b Equiv'.force rc2=xxxrc2b = eq-xmt SND (eq-chn rc2=xxxrc2b) rc2=rc2b Equiv'.force rc2=rc2b = eq-xmt SND (eq-chn rc2=rc2b) rc2=xxxrc2b rc2=rc2-weak : Equiv' rc2 rc2-weak Equiv'.force rc2=rc2-weak = eq-xmt SND (eq-chn {!rc2=rc2b!}) {!!} rc2=weak-rc2 : Equiv rc2 weak-rc2 Equiv.force rc2=weak-rc2 = eq-xmt SND (eq-chn rc2=rc2a) rc2=rc2a r3 : SType 0 r3 = rec (xmt SND (TChn (var zero)) (weaken'S 1 zero r1)) rc3 : SCType 0 zero rc3 = r3 , con-rec (con-xmt (con-chn (con-var z≤n)) (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))))) rc1=rc2 : Equiv rc1 rc2 rc3=rc2 : Equiv rc3 rc2 Equiv.force rc1=rc2 = eq-xmt SND (eq-chn rc1=rc2) rc3=rc2 Equiv.force rc3=rc2 = eq-xmt SND (eq-chn rc3=rc2) rc1=rc2 -- end examples ---------------------------------------------------------------------- recrec : SType 2 → SType 0 × SType 0 recrec S = rec (rec S) , rec (subst-maxS (var zero) S) recrec2 : SType 2 → SType 1 recrec2 S = rec S conrr1 : {S : SType 2} → Contractive (suc (suc zero)) S → Contractive zero (rec (rec S)) conrr1 cs = con-rec (con-rec cs) conrr2 : {S : SType 2} → Contractive (suc (suc zero)) S → Contractive (suc zero) (subst-maxS (var zero) S) conrr2 cs = subst-contr-mS {!subst-contr-mS!} (con-var (s≤s z≤n)) sc-rec : SCType (suc n) (suc i) → SCType n i sc-rec (S , cs) = (rec S , con-rec cs) ¬fromN≤x : (x : Fin n) → ¬ (fromℕ n ≤ inject₁ x) ¬fromN≤x {suc n} zero () ¬fromN≤x {suc n} (suc x) (s≤s n≤x) = ¬fromN≤x x n≤x μμ-lem-gen : {n : ℕ} → (S : SType (suc (suc n))) → Contractive (suc (suc (fromℕ n))) S → Contractive (suc (fromℕ n)) (subst-maxS (var (fromℕ n)) S) μμ-lem-gen (xmt d T S) (con-xmt x cs) = con-xmt (subst-contr-mT x (con-var z≤n)) (subst-contr-mS cs (con-var z≤n)) μμ-lem-gen end con-end = con-end μμ-lem-gen (rec S) (con-rec cs) = con-rec (μμ-lem-gen S cs) μμ-lem-gen (var zero) (con-var ()) μμ-lem-gen (var (suc zero)) (con-var (s≤s ())) μμ-lem-gen (var (suc (suc x))) (con-var (s≤s (s≤s x₁))) with ¬fromN≤x x x₁ μμ-lem-gen (var (suc (suc x))) (con-var (s≤s (s≤s x₁))) | () μμ-lemma : (S : SType 2) → Contractive (suc (suc zero)) S → Contractive (suc zero) (subst-maxS (var zero) S) μμ-lemma S cs = μμ-lem-gen S cs μμ-gen : (S : SType (suc (suc n))) (cs : Contractive (suc (suc (fromℕ n))) S) → Equiv' (sc-rec (sc-rec (S , {!!}))) (sc-rec ((subst-maxS (var zero) S) , {!!})) μμ-gen S cs = {!!} μμ1 : (S : SType 2) (cs : Contractive (suc (suc zero)) S) → Equiv (sc-rec (sc-rec (S , cs))) (sc-rec ((subst-maxS (var zero) S) , μμ-lemma S cs)) Equiv.force (μμ1 (xmt d T S) (con-xmt x cs)) = {!!} Equiv.force (μμ1 end con-end) = eq-end Equiv.force (μμ1 (rec S) (con-rec cs)) = {!!} Equiv.force (μμ1 (var x) (con-var x₁)) = {!!} -- or μX μY S = μX [X/Y]S μμ2 : (S : SType 2) (cs : Contractive (suc (suc zero)) S) → Equiv (sc-rec (sc-rec (S , cs))) let xxx = subst-maxS {!sc-rec!} (rec S) in (sc-rec ((subst-maxS (var zero) S) , (subst-contr-mS (c-weakenS₁ cs) (con-var {!!})))) μμ2 S cs = {!!}
{ "alphanum_fraction": 0.5745780343, "avg_line_length": 33.2972067039, "ext": "agda", "hexsha": "1b396aefcda2e04fe6bbc5a71140cb3c753e1f6e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-07T16:12:50.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-07T16:12:50.000Z", "max_forks_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "peterthiemann/dual-session", "max_forks_repo_path": "src/DualContractive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "peterthiemann/dual-session", "max_issues_repo_path": "src/DualContractive.agda", "max_line_length": 198, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "peterthiemann/dual-session", "max_stars_repo_path": "src/DualContractive.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:43:25.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-13T05:43:25.000Z", "num_tokens": 11502, "size": 29801 }
{- In this file we apply the cubical machinery to Martin Hötzel-Escardó's structure identity principle: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.SIP where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence renaming (ua-pathToEquiv to ua-pathToEquiv') open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Foundations.Structure public private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level S : Type ℓ₁ → Type ℓ₂ -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure or SNS. -- We will use a different definition, but the two definitions are interchangeable. SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) SNS {ℓ₁} S ι = ∀ {X : Type ℓ₁} (s t : S X) → ι (X , s) (X , t) (idEquiv X) ≃ (s ≡ t) -- We introduce the notation for structure preserving equivalences a -- bit differently, but this definition doesn't actually change from -- Escardó's notes. _≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrEquiv S ℓ₂) (B : TypeWithStr ℓ₁ S) → Type (ℓ-max ℓ₁ ℓ₂) A ≃[ ι ] B = Σ[ e ∈ typ A ≃ typ B ] (ι A B e) -- The following PathP version of SNS is a bit easier to work with -- for the proof of the SIP UnivalentStr : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) UnivalentStr {ℓ₁} S ι = {A B : TypeWithStr ℓ₁ S} (e : typ A ≃ typ B) → ι A B e ≃ PathP (λ i → S (ua e i)) (str A) (str B) -- A quick sanity-check that our definition is interchangeable with -- Escardó's. The direction SNS→UnivalentStr corresponds more or less -- to a dependent EquivJ formulation of Escardó's homomorphism-lemma. UnivalentStr→SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → UnivalentStr S ι → SNS S ι UnivalentStr→SNS S ι θ {X = X} s t = ι (X , s) (X , t) (idEquiv X) ≃⟨ θ (idEquiv X) ⟩ PathP (λ i → S (ua (idEquiv X) i)) s t ≃⟨ transportEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = X} j i)) s t) ⟩ s ≡ t ■ SNS→UnivalentStr : (ι : StrEquiv S ℓ₃) → SNS S ι → UnivalentStr S ι SNS→UnivalentStr {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B) where Y = typ B P : (X : Type _) → X ≃ Y → Type _ P X e' = (s : S X) (t : S Y) → ι (X , s) (Y , t) e' ≃ PathP (λ i → S (ua e' i)) s t C : (s t : S Y) → ι (Y , s) (Y , t) (idEquiv Y) ≃ PathP (λ i → S (ua (idEquiv Y) i)) s t C s t = ι (Y , s) (Y , t) (idEquiv Y) ≃⟨ θ s t ⟩ s ≡ t ≃⟨ transportEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = Y} (~ j) i)) s t) ⟩ PathP (λ i → S (ua (idEquiv Y) i)) s t ■ TransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → Type (ℓ-max (ℓ-suc ℓ) ℓ₁) TransportStr {ℓ} {S = S} α = {X Y : Type ℓ} (e : X ≃ Y) (s : S X) → equivFun (α e) s ≡ subst S (ua e) s TransportStr→UnivalentStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → TransportStr α → UnivalentStr S (EquivAction→StrEquiv α) TransportStr→UnivalentStr {S = S} α τ {X , s} {Y , t} e = equivFun (α e) s ≡ t ≃⟨ pathToEquiv (cong (_≡ t) (τ e s)) ⟩ subst S (ua e) s ≡ t ≃⟨ invEquiv (PathP≃Path _ _ _) ⟩ PathP (λ i → S (ua e i)) s t ■ UnivalentStr→TransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → UnivalentStr S (EquivAction→StrEquiv α) → TransportStr α UnivalentStr→TransportStr {S = S} α θ e s = invEq (θ e) (transport-filler (cong S (ua e)) s) invTransportStr : {S : Type ℓ → Type ℓ₂} (α : EquivAction S) (τ : TransportStr α) {X Y : Type ℓ} (e : X ≃ Y) (t : S Y) → invEq (α e) t ≡ subst⁻ S (ua e) t invTransportStr {S = S} α τ e t = sym (transport⁻Transport (cong S (ua e)) (invEq (α e) t)) ∙∙ sym (cong (subst⁻ S (ua e)) (τ e (invEq (α e) t))) ∙∙ cong (subst⁻ S (ua e)) (retEq (α e) t) --- We can now define an invertible function --- --- sip : A ≃[ ι ] B → A ≡ B module _ {S : Type ℓ₁ → Type ℓ₂} {ι : StrEquiv S ℓ₃} (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ₁ S) where sip : A ≃[ ι ] B → A ≡ B sip (e , p) i = ua e i , θ e .fst p i SIP : A ≃[ ι ] B ≃ (A ≡ B) SIP = sip , isoToIsEquiv (compIso (Σ-cong-iso (invIso univalenceIso) (equivToIso ∘ θ)) ΣPathIsoPathΣ) sip⁻ : A ≡ B → A ≃[ ι ] B sip⁻ = invEq SIP
{ "alphanum_fraction": 0.6117877338, "avg_line_length": 36.784, "ext": "agda", "hexsha": "15c2c1a1df74806c8440118003bd69a720287005", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Foundations/SIP.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Foundations/SIP.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Foundations/SIP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1935, "size": 4598 }
-- Andreas, 2016-07-25, issue #2108 -- test case and report by Jesper {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.pos.occ:70 #-} open import Agda.Primitive open import Agda.Builtin.Equality lone = lsuc lzero record Level-zero-or-one : Set where field level : Level is-lower : (level ⊔ lone) ≡ lone open Level-zero-or-one public Coerce : ∀ {a} → a ≡ lone → Set₁ Coerce refl = Set data Test : Set₁ where test : Coerce (is-lower _) → Test -- WAS: -- Meta variable here triggers internal error. -- Should succeed with unsolved metas.
{ "alphanum_fraction": 0.6725352113, "avg_line_length": 18.9333333333, "ext": "agda", "hexsha": "2f54d639d4022c03d839e9ed5213420afa2c3ac9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2108.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2108.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2108.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 173, "size": 568 }
module Base.Prelude where open import Base.Prelude.Bool public open import Base.Prelude.Integer public open import Base.Prelude.List public open import Base.Prelude.Pair public open import Base.Prelude.Unit public
{ "alphanum_fraction": 0.7929515419, "avg_line_length": 28.375, "ext": "agda", "hexsha": "43677e8ab235078ba00a19e0c73da0c203bb01a7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Prelude.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Prelude.agda", "max_line_length": 39, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 51, "size": 227 }
module Holes.Test.Limited where open import Holes.Prelude hiding (_⊛_) open import Holes.Util open import Holes.Term open import Holes.Cong.Limited open import Agda.Builtin.Equality using (_≡_; refl) module Contrived where infixl 5 _⊕_ infixl 6 _⊛_ infix 4 _≈_ -- A type of expression trees for natural number calculations data Expr : Set where zero : Expr succ : Expr → Expr _⊕_ _⊛_ : Expr → Expr → Expr -- An unsophisticated 'equality' relation on the expression trees. Doesn't try -- to make the operations associative. data _≈_ : Expr → Expr → Set where zero-cong : zero ≈ zero succ-cong : ∀ {m n} → m ≈ n → succ m ≈ succ n ⊕-cong : ∀ {a a′ b b′} → a ≈ a′ → b ≈ b′ → a ⊕ b ≈ a′ ⊕ b′ ⊛-cong : ∀ {a a′ b b′} → a ≈ a′ → b ≈ b′ → a ⊛ b ≈ a′ ⊛ b′ ⊕-comm : ∀ a b → a ⊕ b ≈ b ⊕ a -- Some lemmas that are necessary to proceed ≈-refl : ∀ {n} → n ≈ n ≈-refl {zero} = zero-cong ≈-refl {succ n} = succ-cong ≈-refl ≈-refl {m ⊕ n} = ⊕-cong ≈-refl ≈-refl ≈-refl {m ⊛ n} = ⊛-cong ≈-refl ≈-refl {- Each congruence in the database must have a type with the same shape as the below, following these rules: - A congruence `c` is for a single _top-level_ function `f` - `c` may only be a congruence for _one_ of `f`'s arguments - Each explicit argument to `f` must be an explicit argument to `c` - The 'rewritten' version of the changing argument must follow as an implicit argument to `c` - The equation to do the local rewriting must be the next explicit argument -} open CongSplit _≈_ ≈-refl ⊕-cong₁ = two→one₁ ⊕-cong ⊕-cong₂ = two→one₂ ⊕-cong ⊛-cong₁ = two→one₁ ⊛-cong ⊛-cong₂ = two→one₂ ⊛-cong succ-cong′ : ∀ n {n′} → n ≈ n′ → succ n ≈ succ n′ succ-cong′ _ = succ-cong {- Create the database of congruences. - This is a list of (Name × ArgPlace × Congruence) triples. - The `Name` is the (reflected) name of the function to which the congruence applies. - The `ArgPlace` is the index of the argument place that the congruence can rewrite at. Make sure you take into account implicit and instance arguments as well! - The `Congruence` is a reflected copy of the congruence function, of type `Term` -} database = (quote _⊕_ , 0 , quote ⊕-cong₁) ∷ (quote _⊕_ , 1 , quote ⊕-cong₂) ∷ (quote _⊛_ , 0 , quote ⊛-cong₁) ∷ (quote _⊛_ , 1 , quote ⊛-cong₂) ∷ (quote succ , 0 , quote succ-cong′) ∷ [] open AutoCong database test1 : ∀ a b → succ ⌞ a ⊕ b ⌟ ≈ succ (b ⊕ a) test1 a b = cong! (⊕-comm a b) test2 : ∀ a b c → succ (⌞ a ⊕ b ⌟ ⊕ c) ≈ succ (b ⊕ a ⊕ c) test2 a b c = cong! (⊕-comm a b) test3 : ∀ a b c → succ (a ⊕ ⌞ b ⊕ c ⌟) ≈ succ (a ⊕ (c ⊕ b)) test3 a b c = cong! (⊕-comm b c) -- We can use a proof obtained by pattern matching for `cong!` test5 : ∀ a b c → a ≈ b ⊕ c × b ≈ succ c → succ (⌞ b ⌟ ⊕ c ⊛ a) ≈ succ (succ c ⊕ c ⊛ a) test5 a b c (eq1 , eq2) = cong! eq2 record ∃ {a p} {A : Set a} (P : A → Set p) : Set (a ⊔ p) where constructor _,_ field evidence : A proof : P evidence -- We can use `cong!` to prove some part of the result even when it depends on -- other parts of the result test6 : ∀ a b c → b ⊕ c ≈ a × b ≈ succ c → ∃ λ x → succ (⌞ b ⊕ x ⌟ ⊕ a) ≈ succ (a ⊕ a) test6 a b c (eq1 , eq2) = c , cong! eq1 -- Deep nesting test7 : ∀ a b c → succ (a ⊕ succ (b ⊕ succ (c ⊕ succ (succ ⌞ b ⊕ c ⌟ ⊕ (a ⊕ b))))) ≈ succ (a ⊕ succ (b ⊕ succ (c ⊕ succ (succ ⌞ c ⊕ b ⌟ ⊕ (a ⊕ b))))) test7 _ b c = cong! (⊕-comm b c) module Propositional (+-comm : ∀ a b → a + b ≡ b + a) where +-cong₁ : ∀ a b {a′} → a ≡ a′ → a + b ≡ a′ + b +-cong₁ _ _ refl = refl +-cong₂ : ∀ a b {b′} → b ≡ b′ → a + b ≡ a + b′ +-cong₂ _ _ refl = refl suc-cong : ∀ n {n′} → n ≡ n′ → suc n ≡ suc n′ suc-cong _ refl = refl database = (quote _+_ , 0 , quote +-cong₁) ∷ (quote _+_ , 1 , quote +-cong₂) ∷ (quote suc , 0 , quote suc-cong) ∷ [] open AutoCong database test1 : ∀ a b → suc ⌞ a + b ⌟ ≡ suc (b + a) test1 a b = cong! (+-comm a b) test2 : ∀ a b c → suc (⌞ a + b ⌟ + c) ≡ suc (b + a + c) test2 a b c = cong! (+-comm a b) test3 : ∀ a b c → suc (a + ⌞ b + c ⌟) ≡ suc (a + (c + b)) test3 a b c = cong! (+-comm b c) test4 : ∀ a b c a′ → a ≡ a′ → suc (⌞ a ⌟ + b + c) ≡ suc (a′ + b + c) test4 _ _ _ _ eq = cong! eq
{ "alphanum_fraction": 0.5548668503, "avg_line_length": 30.25, "ext": "agda", "hexsha": "5d01eb8162a9d91eb91ed619e860054f6bc0225e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-02T18:57:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-01-27T14:57:39.000Z", "max_forks_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-holes", "max_forks_repo_path": "src/Holes/Test/Limited.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_issues_repo_issues_event_max_datetime": "2020-08-31T20:58:33.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-16T10:47:58.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-holes", "max_issues_repo_path": "src/Holes/Test/Limited.agda", "max_line_length": 89, "max_stars_count": 24, "max_stars_repo_head_hexsha": "b5537c29e69febd7e89580398fac38d619aab3b4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-holes", "max_stars_repo_path": "src/Holes/Test/Limited.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-03T15:02:41.000Z", "max_stars_repo_stars_event_min_datetime": "2017-01-28T10:56:46.000Z", "num_tokens": 1837, "size": 4356 }