Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe #-} module Generics.Constructions.Show where open import Generics.Prelude hiding (lookup) open import Generics.Telescope open import Generics.Desc open import Generics.All open import Generics.HasDesc import Generics.Helpers as Helpers import Data.Vec.Base as Vec import Data.String as String open import Data.Maybe as Maybe open import Data.These hiding (alignWith) open String hiding (show) record Show {l} (A : Set l) : Set l where field show : A → String open Show ⦃...⦄ public private dummyShow : ∀ {l} (A : Set l) → Show A dummyShow A .show _ = "" join : These String String → String join (this x) = x join (that x) = x join (these x y) = x ++ " , " ++ y module _ {P I ℓ} {A : Indexed P I ℓ} (H : HasDesc A) (open HasDesc H) (open Helpers P I Show (const ⊤) (λ _ → Liftω ⊤)) where ShowHelpers : ∀ p → Setω ShowHelpers p = Helpers p D module _ {p} (helpers : ShowHelpers p) where variable V : ExTele P v : ⟦ V ⟧tel p i : ⟦ I ⟧tel p showData-wf : (x : ⟦ D ⟧Data A′ (p , i)) → AllDataω Acc D x → Maybe String show-wf : (x : A′ (p , i)) → Acc x → Maybe String show-wf x (acc a) = showData-wf (split x) a showData-wf (k , x) a = just $ Vec.lookup names k ++ fromMaybe "" (Maybe.map (λ x → " (" ++ x ++ ")") (showCon (lookupCon D k) (lookupHelper helpers k) x a)) where showIndArg : (C : ConDesc P V I) (x : ⟦ C ⟧IndArg A′ (p , v)) → AllIndArgω Acc C x → Maybe String showIndArg (var _) x a = show-wf x a showIndArg (π ia S C) x a = just "?f" showIndArg (A ⊗ B) (xa , xb) (aa , ab) = alignWith join (showIndArg A xa aa) (showIndArg B xb ab) showCon : (C : ConDesc P V I) (H : ConHelper p C) (x : ⟦ C ⟧Con A′ (p , v , i)) → AllConω Acc C x → Maybe String showCon ._ var refl tt = nothing showCon ._ (pi-irr ⦃ _ ⦄ ⦃ H ⦄) (s , x) a = alignWith join (just "._") (showCon _ H x a) showCon ._ (pi-rel ⦃ S ⦄ ⦃ H ⦄) (s , x) a = alignWith join (just (show ⦃ S ⦄ s)) (showCon _ H x a) showCon ._ (prod {A} {B} ⦃ HA ⦄ ⦃ HB ⦄) (xa , xb) (aa , ab) = alignWith join (showIndArg A xa aa) (showCon B HB xb ab) show′ : (x : A′ (p , i)) → Maybe String show′ x = show-wf x (wf x) deriveShow : ∀ {p} ⦃ SH : ShowHelpers p ⦄ {i} → Show (A′ (p , i)) deriveShow ⦃ SH ⦄ .show = fromMaybe "" ∘ show′ SH
{ "alphanum_fraction": 0.5261950287, "avg_line_length": 29.7159090909, "ext": "agda", "hexsha": "07197116c32a8febfaefeef2fd39aec6d193e1c3", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Constructions/Show.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Constructions/Show.agda", "max_line_length": 88, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Constructions/Show.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 893, "size": 2615 }
------------------------------------------------------------------------------ -- Natural numbers (added for the Collatz function example) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- We don't want populate the FOTC library with more first-order logic -- axioms. module FOTC.Program.Collatz.Data.Nat where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.UnaryNumbers infixr 8 _^_ ------------------------------------------------------------------------------ postulate div : D → D → D div-x<y : ∀ {m n} → n ≢ 0' → m < n → div m n ≡ zero div-x≥y : ∀ {m n} → n ≢ 0' → m ≥ n → div m n ≡ succ₁ (div (m ∸ n) n) {-# ATP axioms div-x<y div-x≥y #-} postulate _^_ : D → D → D ^-0 : ∀ n → n ^ zero ≡ 1' ^-S : ∀ m n → m ^ succ₁ n ≡ m * m ^ n {-# ATP axioms ^-0 ^-S #-} postulate even : D → D odd : D → D even-0 : even zero ≡ true even-S : ∀ n → even (succ₁ n) ≡ odd n odd-0 : odd zero ≡ false odd-S : ∀ n → odd (succ₁ n) ≡ even n {-# ATP axioms even-0 even-S odd-0 odd-S #-} Even : D → Set Even n = even n ≡ true {-# ATP definition Even #-} NotEven : D → Set NotEven n = even n ≡ false {-# ATP definition NotEven #-} Odd : D → Set Odd n = odd n ≡ true {-# ATP definition Odd #-}
{ "alphanum_fraction": 0.4675925926, "avg_line_length": 26.0689655172, "ext": "agda", "hexsha": "61d7bbc88d3fbd81b177b4d42200ad10786b8bec", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 448, "size": 1512 }
module plfa-code.Equality where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x infix 4 _≡_ sym : ∀ {A : Set} {x y : A} → x ≡ y ------- → y ≡ x sym refl = refl trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z ------- → x ≡ z trans refl refl = refl cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y ----------- → f x ≡ f y cong f refl = refl cong₂ : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B} → u ≡ x → v ≡ y --------------- → f u v ≡ f x y cong₂ _ refl refl = refl cong-app : ∀ {A B : Set} {f g : A → B} → f ≡ g ------------------------ → ∀ (x : A) → f x ≡ g x cong-app refl _ = refl subst : ∀ {A : Set} {x y : A} (P : A → Set) → x ≡ y ----------- → P x → P y subst _ refl px = px module ≡-Reasoning {A : Set} where infix 1 begin_ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infix 3 _∎ begin_ : ∀ {x y : A} → x ≡ y ------- → x ≡ y begin x≡y = x≡y _≡⟨⟩_ : ∀ (x : A) {y : A} → x ≡ y ------- → x ≡ y x ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : ∀ (x : A) {y z : A} → x ≡ y → y ≡ z ------- → x ≡ z x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : ∀ (x : A) ------ → x ≡ x x ∎ = refl open ≡-Reasoning trans′ : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z ------- → x ≡ z trans′ {A} {x} {y} {z} x≡y y≡z = begin x ≡⟨ x≡y ⟩ y ≡⟨ y≡z ⟩ z ∎ data ℕ : Set where zero : ℕ suc : ℕ → ℕ infixl 6 _+_ _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) -- use postulate postulate +-identity : ∀ (m : ℕ) → m + zero ≡ m +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m zero = begin m + zero ≡⟨ +-identity m ⟩ m ≡⟨⟩ zero + m ∎ +-comm m (suc n) = begin m + suc n ≡⟨ +-suc m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ suc (n + m) ≡⟨⟩ suc n + m ∎ data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} --------- → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n -------------- → suc m ≤ suc n infix 4 _≤_ postulate ≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p → m ≤ p ≤-refl : ∀ {n : ℕ} → n ≤ n ≡→≤ : ∀ {x y} → x ≡ y → x ≤ y ≡→≤ refl = ≤-refl module ≤-Reasoning where infix 1 ≤begin_ infixr 2 _≤⟨⟩_ _≤⟨_⟩_ _≤[_]_ infix 3 _≤∎ ≤begin_ : ∀ {x y} → x ≤ y → x ≤ y ≤begin x≤y = x≤y _≤⟨⟩_ : ∀ (x) {y : ℕ} → x ≤ y → x ≤ y _ ≤⟨⟩ x≤y = x≤y _≤⟨_⟩_ : ∀ (x) {y z : ℕ} → x ≤ y → y ≤ z → x ≤ z x ≤⟨ x≤y ⟩ y≤z = ≤-trans x≤y y≤z _≤[_]_ : ∀ (x) {y z : ℕ} → x ≡ y → y ≤ z → x ≤ z x ≤[ x≡y ] y≤z = ≤-trans (≡→≤ x≡y) y≤z _≤∎ : ∀ x → x ≤ x _ ≤∎ = ≤-refl open ≤-Reasoning +-monoʳ-≤ : ∀ (n p q : ℕ) → p ≤ q → (n + p) ≤ (n + q) +-monoʳ-≤ zero p q p≤q = ≤begin (zero + p) ≤⟨⟩ p ≤⟨ p≤q ⟩ q ≤⟨⟩ zero + q ≤∎ +-monoʳ-≤ (suc n) p q p≤q = ≤begin suc n + p ≤⟨⟩ suc (n + p) ≤⟨ s≤s (+-monoʳ-≤ _ _ _ p≤q) ⟩ suc (n + q) ≤⟨⟩ suc n + q ≤∎ +-monoˡ-≤ : ∀ (m n p : ℕ) → m ≤ n → (m + p) ≤ (n + p) +-monoˡ-≤ m n p m≤n = ≤begin m + p ≤[ +-comm m p ] p + m ≤⟨ +-monoʳ-≤ p _ _ m≤n ⟩ p + n ≤[ +-comm p n ] n + p ≤∎ +-mono-≤ : ∀ (m n p q : ℕ) → m ≤ n → p ≤ q → m + p ≤ n + q +-mono-≤ m n p q m≤n p≤q = ≤begin m + p ≤⟨ +-monoˡ-≤ _ _ _ m≤n ⟩ n + p ≤⟨ +-monoʳ-≤ _ _ _ p≤q ⟩ n + q ≤∎ data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n ------------- → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n ------------ → odd (suc n) {-# BUILTIN EQUALITY _≡_ #-} even-comm : ∀ (m n : ℕ) → even (m + n) ------------- → even (n + m) even-comm m n ev rewrite +-comm n m = ev +-comm′ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm′ zero n rewrite +-identity n = refl +-comm′ (suc m) n rewrite +-suc n m | +-comm′ m n = refl even-comm′ : ∀ (m n : ℕ) → even (m + n) ------------ → even (n + m) even-comm′ m n ev with m + n | +-comm m n ... | .(n + m) | refl = ev _≐_ : ∀ {A : Set} (x y : A) → Set₁ _≐_ {A} x y = ∀ (P : A → Set) → P x → P y refl-≐ : ∀ {A : Set} {x : A} → x ≐ x refl-≐ P Px = Px trans-≐ : ∀ {A : Set} {x y z : A} → x ≐ y → y ≐ z ------ → x ≐ z trans-≐ x≐y y≐z P Px = y≐z P (x≐y P Px) sym-≐ : ∀ {A : Set} {x y : A} → x ≐ y ------ → y ≐ x sym-≐ {A} {x} {y} x≐y P = Qy where Q : A → Set Q z = P z → P x Qx : Q x Qx = refl-≐ P Qy : Q y Qy = x≐y Q Qx ≡-implies-≐ : ∀ {A : Set} {x y : A} → x ≡ y ------- → x ≐ y ≡-implies-≐ x≡y P = subst P x≡y ≐-implies-≡ : ∀ {A : Set} {x y : A} → x ≐ y ------- → x ≡ y ≐-implies-≡ {A} {x} {y} x≐y = Qy where Q : A → Set Q z = x ≡ z Qx : Q x Qx = refl Qy : Q y Qy = x≐y Q Qx open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) data _≡′_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set ℓ where refl′ : x ≡′ x sym′ : ∀ {ℓ : Level} {A : Set ℓ} {x y : A} → x ≡′ y -------- → y ≡′ x sym′ refl′ = refl′ _≐′_ : ∀ {ℓ : Level} {A : Set ℓ} (x y : A) → Set (lsuc ℓ) _≐′_ {ℓ} {A} x y = ∀ (P : A → Set ℓ) → P x → P y
{ "alphanum_fraction": 0.3604336043, "avg_line_length": 16.5576923077, "ext": "agda", "hexsha": "9d72125f440bfdc1c8cc7e5782d6cc1bd8bb2f96", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Equality.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2696, "size": 5166 }
{-# OPTIONS --cubical --safe #-} module Test where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; I; i0; i1) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Univalence using (ua) open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract) open import Data.Bool.Base using (Bool; true; false; _∧_) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Product using (_×_; proj₁; proj₂) natrec : (P : ℕ → Type) → P 0 → ((n : ℕ) → P n → P (suc n)) → (n : ℕ) → P n natrec P z s zero = z natrec P z s (suc n) = s n (natrec P z s n) _+_ : ℕ → ℕ → ℕ _+_ = λ m → λ n → natrec (λ _ → ℕ) n (λ _ → suc) m 0=0 : 0 ≡ 0 0=0 = refl suc=suc : (m n : ℕ) → m ≡ n → suc m ≡ suc n suc=suc m n e = cong suc e 0+n=n : (n : ℕ) → 0 + n ≡ n 0+n=n = natrec (λ k → 0 + k ≡ k) 0=0 (λ n e → suc=suc n n e) n=0+n : (n : ℕ) → n + 0 ≡ n n=0+n = natrec (λ k → k + 0 ≡ k) 0=0 λ n e → suc=suc (n + 0) n e
{ "alphanum_fraction": 0.5903829029, "avg_line_length": 33.0294117647, "ext": "agda", "hexsha": "56544ef5e4f87f87cc0014bf940970668ae5c16a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b22f5cb073dc2508ad158959a096df7763c57c4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/Alae", "max_forks_repo_path": "agda/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b22f5cb073dc2508ad158959a096df7763c57c4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/Alae", "max_issues_repo_path": "agda/Test.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b22f5cb073dc2508ad158959a096df7763c57c4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/Alae", "max_stars_repo_path": "agda/Test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 456, "size": 1123 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A generalisation of the arithmetic operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GeneralisedArithmetic where open import Data.Nat open import Data.Nat.Properties open import Function using (_∘′_; _∘_; id) open import Relation.Binary.PropositionalEquality open ≡-Reasoning module _ {a} {A : Set a} where fold : A → (A → A) → ℕ → A fold z s zero = z fold z s (suc n) = s (fold z s n) add : (0# : A) (1+ : A → A) → ℕ → A → A add 0# 1+ n z = fold z 1+ n mul : (0# : A) (1+ : A → A) → (+ : A → A → A) → (ℕ → A → A) mul 0# 1+ _+_ n x = fold 0# (λ s → x + s) n -- Properties module _ {a} {A : Set a} where fold-+ : ∀ {s : A → A} {z : A} → ∀ m {n} → fold z s (m + n) ≡ fold (fold z s n) s m fold-+ zero = refl fold-+ {s = s} (suc m) = cong s (fold-+ m) fold-k : ∀ {s : A → A} {z : A} {k} m → fold k (s ∘′_) m z ≡ fold (k z) s m fold-k zero = refl fold-k {s = s} (suc m) = cong s (fold-k m) fold-* : ∀ {s : A → A} {z : A} m {n} → fold z s (m * n) ≡ fold z (fold id (s ∘_) n) m fold-* zero = refl fold-* {s = s} {z} (suc m) {n} = let +n = fold id (s ∘′_) n in begin fold z s (n + m * n) ≡⟨ fold-+ n ⟩ fold (fold z s (m * n)) s n ≡⟨ cong (λ z → fold z s n) (fold-* m) ⟩ fold (fold z +n m) s n ≡⟨ sym (fold-k n) ⟩ fold z +n (suc m) ∎ fold-pull : ∀ {s : A → A} {z : A} (g : A → A → A) (p : A) (eqz : g z p ≡ p) (eqs : ∀ l → s (g l p) ≡ g (s l) p) → ∀ m → fold p s m ≡ g (fold z s m) p fold-pull _ _ eqz _ zero = sym eqz fold-pull {s = s} {z} g p eqz eqs (suc m) = begin s (fold p s m) ≡⟨ cong s (fold-pull g p eqz eqs m) ⟩ s (g (fold z s m) p) ≡⟨ eqs (fold z s m) ⟩ g (s (fold z s m)) p ∎ id-is-fold : ∀ m → fold zero suc m ≡ m id-is-fold zero = refl id-is-fold (suc m) = cong suc (id-is-fold m) +-is-fold : ∀ m {n} → fold n suc m ≡ m + n +-is-fold zero = refl +-is-fold (suc m) = cong suc (+-is-fold m) *-is-fold : ∀ m {n} → fold zero (n +_) m ≡ m * n *-is-fold zero = refl *-is-fold (suc m) {n} = cong (n +_) (*-is-fold m) ^-is-fold : ∀ {m} n → fold 1 (m *_) n ≡ m ^ n ^-is-fold zero = refl ^-is-fold {m} (suc n) = cong (m *_) (^-is-fold n) *+-is-fold : ∀ m n {p} → fold p (n +_) m ≡ m * n + p *+-is-fold m n {p} = begin fold p (n +_) m ≡⟨ fold-pull _+_ p refl (λ l → sym (+-assoc n l p)) m ⟩ fold 0 (n +_) m + p ≡⟨ cong (_+ p) (*-is-fold m) ⟩ m * n + p ∎ ^*-is-fold : ∀ m n {p} → fold p (m *_) n ≡ m ^ n * p ^*-is-fold m n {p} = begin fold p (m *_) n ≡⟨ fold-pull _*_ p (*-identityˡ p) (λ l → sym (*-assoc m l p)) n ⟩ fold 1 (m *_) n * p ≡⟨ cong (_* p) (^-is-fold n) ⟩ m ^ n * p ∎
{ "alphanum_fraction": 0.4286671132, "avg_line_length": 32.8131868132, "ext": "agda", "hexsha": "1c08acd0c6c817ac34d1f755abb12b7e783c7b83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GeneralisedArithmetic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GeneralisedArithmetic.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/GeneralisedArithmetic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1232, "size": 2986 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- About the group structure of integers and bags for Nehemiah plugin. ------------------------------------------------------------------------ module Theorem.Groups-Nehemiah where open import Structure.Bag.Nehemiah public open import Relation.Binary.PropositionalEquality open import Algebra.Structures 4-way-shuffle : ∀ {A : Set} {f} {z a b c d : A} {{comm-monoid : IsCommutativeMonoid _≡_ f z}} → f (f a b) (f c d) ≡ f (f a c) (f b d) 4-way-shuffle {f = f} {z = z} {a} {b} {c} {d} {{comm-monoid}} = let assoc = associative comm-monoid cmute = commutative comm-monoid in begin f (f a b) (f c d) ≡⟨ assoc a b (f c d) ⟩ f a (f b (f c d)) ≡⟨ cong (f a) (sym (assoc b c d)) ⟩ f a (f (f b c) d) ≡⟨ cong (λ hole → f a (f hole d)) (cmute b c) ⟩ f a (f (f c b) d) ≡⟨ cong (f a) (assoc c b d) ⟩ f a (f c (f b d)) ≡⟨ sym (assoc a c (f b d)) ⟩ f (f a c) (f b d) ∎ where open ≡-Reasoning module _ where open import Data.Nat -- Apologies for irregular name. ℕ-mn·pq=mp·nq : ∀ {m n p q : ℕ} → (m + n) + (p + q) ≡ (m + p) + (n + q) ℕ-mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-nat}} open import Data.Integer n+[m-n]=m : ∀ {n m} → n + (m - n) ≡ m n+[m-n]=m {n} {m} = begin n + (m - n) ≡⟨ cong (λ hole → n + hole) (commutative-int m (- n)) ⟩ n + (- n + m) ≡⟨ sym (associative-int n (- n) m) ⟩ (n - n) + m ≡⟨ cong (λ hole → hole + m) (right-inv-int n) ⟩ (+ 0) + m ≡⟨ left-id-int m ⟩ m ∎ where open ≡-Reasoning a++[b\\a]=b : ∀ {a b} → a ++ (b \\ a) ≡ b a++[b\\a]=b {b} {d} = trans (cong (λ hole → b ++ hole) (commutative-bag d (negateBag b))) (trans (sym (associative-bag b (negateBag b) d)) (trans (cong (λ hole → hole ++ d) (right-inv-bag b)) (left-id-bag d))) ab·cd=ac·bd : ∀ {a b c d : Bag} → (a ++ b) ++ (c ++ d) ≡ (a ++ c) ++ (b ++ d) ab·cd=ac·bd {a} {b} {c} {d} = 4-way-shuffle {a = a} {b} {c} {d} {{comm-monoid-bag}} mn·pq=mp·nq : ∀ {m n p q : ℤ} → (m + n) + (p + q) ≡ (m + p) + (n + q) mn·pq=mp·nq {m} {n} {p} {q} = 4-way-shuffle {a = m} {n} {p} {q} {{comm-monoid-int}} inverse-unique : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f a b ≡ z → b ≡ neg a inverse-unique {f = f} {neg} {z} {a} {b} {{abelian}} ab=z = let assoc = associative (IsAbelianGroup.isCommutativeMonoid abelian) cmute = commutative (IsAbelianGroup.isCommutativeMonoid abelian) in begin b ≡⟨ sym (left-identity abelian b) ⟩ f z b ≡⟨ cong (λ hole → f hole b) (sym (left-inverse abelian a)) ⟩ f (f (neg a) a) b ≡⟨ assoc (neg a) a b ⟩ f (neg a) (f a b) ≡⟨ cong (f (neg a)) ab=z ⟩ f (neg a) z ≡⟨ right-identity abelian (neg a) ⟩ neg a ∎ where open ≡-Reasoning eq1 : f (neg a) (f a b) ≡ f (neg a) z eq1 rewrite ab=z = cong (f (neg a)) refl distribute-neg : ∀ {A : Set} {f neg} {z a b : A} {{abelian : IsAbelianGroup _≡_ f z neg}} → f (neg a) (neg b) ≡ neg (f a b) distribute-neg {f = f} {neg} {z} {a} {b} {{abelian}} = inverse-unique {{abelian}} (begin f (f a b) (f (neg a) (neg b)) ≡⟨ 4-way-shuffle {{IsAbelianGroup.isCommutativeMonoid abelian}} ⟩ f (f a (neg a)) (f b (neg b)) ≡⟨ cong₂ f (inverse a) (inverse b) ⟩ f z z ≡⟨ left-identity abelian z ⟩ z ∎) where open ≡-Reasoning inverse = right-inverse abelian -a·-b=-ab : ∀ {a b : Bag} → negateBag a ++ negateBag b ≡ negateBag (a ++ b) -a·-b=-ab {a} {b} = distribute-neg {a = a} {b} {{abelian-bag}} -m·-n=-mn : ∀ {m n : ℤ} → (- m) + (- n) ≡ - (m + n) -m·-n=-mn {m} {n} = distribute-neg {a = m} {n} {{abelian-int}} [a++b]\\a=b : ∀ {a b} → (a ++ b) \\ a ≡ b [a++b]\\a=b {b} {d} = begin (b ++ d) \\ b ≡⟨ cong (λ hole → hole \\ b) (commutative-bag b d) ⟩ (d ++ b) \\ b ≡⟨ associative-bag d b (negateBag b) ⟩ d ++ (b \\ b) ≡⟨ cong (_++_ d) (right-inv-bag b) ⟩ d ++ emptyBag ≡⟨ right-id-bag d ⟩ d ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.4872788951, "avg_line_length": 29.2695035461, "ext": "agda", "hexsha": "73dbd184ade1dcefb6e2e2466c4da4524bb9e70b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Theorem/Groups-Nehemiah.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Theorem/Groups-Nehemiah.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Theorem/Groups-Nehemiah.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1793, "size": 4127 }
------------------------------------------------------------------------------ -- Properties related with the forest type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.Forest.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Base.List.PropertiesI open import FOTC.Data.List open import FOTC.Data.List.PropertiesI using ( ++-leftCong ; ++-leftIdentity ; ++-rightCong ; mapCong₂ ; revCong₁ ; reverseCong ; reverse-[x]≡[x] ) open import FOTC.Program.Mirror.Forest.TotalityI open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ ++-rightIdentity : ∀ {xs} → Forest xs → xs ++ [] ≡ xs ++-rightIdentity fnil = ++-leftIdentity [] ++-rightIdentity (fcons {x} {xs} Tx Fxs) = (x ∷ xs) ++ [] ≡⟨ ++-∷ x xs [] ⟩ x ∷ (xs ++ []) ≡⟨ ∷-rightCong (++-rightIdentity Fxs) ⟩ x ∷ xs ∎ ++-assoc : ∀ {xs} → Forest xs → ∀ ys zs → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc fnil ys zs = ([] ++ ys) ++ zs ≡⟨ ++-leftCong (++-leftIdentity ys) ⟩ ys ++ zs ≡⟨ sym (++-leftIdentity (ys ++ zs)) ⟩ [] ++ ys ++ zs ∎ ++-assoc (fcons {x} {xs} Tx Fxs) ys zs = ((x ∷ xs) ++ ys) ++ zs ≡⟨ ++-leftCong (++-∷ x xs ys) ⟩ (x ∷ (xs ++ ys)) ++ zs ≡⟨ ++-∷ x (xs ++ ys) zs ⟩ x ∷ ((xs ++ ys) ++ zs) ≡⟨ ∷-rightCong (++-assoc Fxs ys zs) ⟩ x ∷ (xs ++ ys ++ zs) ≡⟨ sym (++-∷ x xs (ys ++ zs)) ⟩ (x ∷ xs) ++ ys ++ zs ∎ map-++ : ∀ f {xs} → (∀ {x} → Tree x → Tree (f · x)) → Forest xs → ∀ ys → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++ f h fnil ys = map f ([] ++ ys) ≡⟨ mapCong₂ (++-leftIdentity ys) ⟩ map f ys ≡⟨ sym (++-leftIdentity (map f ys)) ⟩ [] ++ map f ys ≡⟨ ++-leftCong (sym (map-[] f)) ⟩ map f [] ++ map f ys ∎ map-++ f h (fcons {x} {xs} Tx Fxs) ys = map f ((x ∷ xs) ++ ys) ≡⟨ mapCong₂ (++-∷ x xs ys) ⟩ map f (x ∷ xs ++ ys) ≡⟨ map-∷ f x (xs ++ ys) ⟩ f · x ∷ map f (xs ++ ys) ≡⟨ ∷-rightCong (map-++ f h Fxs ys) ⟩ f · x ∷ (map f xs ++ map f ys) ≡⟨ sym (++-∷ (f · x) (map f xs) (map f ys)) ⟩ (f · x ∷ map f xs) ++ map f ys ≡⟨ ++-leftCong (sym (map-∷ f x xs)) ⟩ map f (x ∷ xs) ++ map f ys ∎ rev-++ : ∀ {xs} → Forest xs → ∀ ys → rev xs ys ≡ rev xs [] ++ ys rev-++ fnil ys = rev [] ys ≡⟨ rev-[] ys ⟩ ys ≡⟨ sym (++-leftIdentity ys) ⟩ [] ++ ys ≡⟨ ++-leftCong (sym (rev-[] [])) ⟩ rev [] [] ++ ys ∎ rev-++ (fcons {x} {xs} Tx Fxs) ys = rev (x ∷ xs) ys ≡⟨ rev-∷ x xs ys ⟩ rev xs (x ∷ ys) ≡⟨ rev-++ Fxs (x ∷ ys) ⟩ rev xs [] ++ x ∷ ys ≡⟨ ++-rightCong prf ⟩ rev xs [] ++ (x ∷ []) ++ ys ≡⟨ sym (++-assoc (rev-Forest Fxs fnil) (x ∷ []) ys) ⟩ (rev xs [] ++ (x ∷ [])) ++ ys ≡⟨ ++-leftCong (sym (rev-++ Fxs (x ∷ []))) ⟩ rev xs (x ∷ []) ++ ys ≡⟨ ++-leftCong (sym (rev-∷ x xs [])) ⟩ rev (x ∷ xs) [] ++ ys ∎ where prf : x ∷ ys ≡ (x ∷ []) ++ ys prf = x ∷ ys ≡⟨ ∷-rightCong (sym (++-leftIdentity ys)) ⟩ x ∷ ([] ++ ys) ≡⟨ sym (++-∷ x [] ys) ⟩ (x ∷ []) ++ ys ∎ reverse-++ : ∀ {xs ys} → Forest xs → Forest ys → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++ {ys = ys} fnil Fys = reverse ([] ++ ys) ≡⟨ reverseCong (++-leftIdentity ys) ⟩ reverse ys ≡⟨ sym (++-rightIdentity (reverse-Forest Fys)) ⟩ reverse ys ++ [] ≡⟨ ++-rightCong (sym (rev-[] [])) ⟩ reverse ys ++ reverse [] ∎ reverse-++ (fcons {x} {xs} Tx Fxs) fnil = reverse ((x ∷ xs) ++ []) ≡⟨ reverseCong (++-rightIdentity (fcons Tx Fxs)) ⟩ reverse (x ∷ xs) ≡⟨ sym (++-leftIdentity (reverse (x ∷ xs))) ⟩ [] ++ reverse (x ∷ xs) ≡⟨ ++-leftCong (sym (rev-[] [])) ⟩ reverse [] ++ reverse (x ∷ xs) ∎ reverse-++ (fcons {x} {xs} Tx Fxs) (fcons {y} {ys} Ty Fys) = rev ((x ∷ xs) ++ y ∷ ys) [] ≡⟨ revCong₁ (++-∷ x xs (y ∷ ys)) ⟩ rev (x ∷ (xs ++ y ∷ ys)) [] ≡⟨ rev-∷ x (xs ++ y ∷ ys) [] ⟩ rev (xs ++ y ∷ ys) (x ∷ []) ≡⟨ rev-++ (++-Forest Fxs (fcons Ty Fys)) (x ∷ []) ⟩ rev (xs ++ y ∷ ys) [] ++ (x ∷ []) ≡⟨ ++-leftCong refl ⟩ reverse (xs ++ y ∷ ys) ++ (x ∷ []) ≡⟨ ++-leftCong (reverse-++ Fxs (fcons Ty Fys)) ⟩ (reverse (y ∷ ys) ++ reverse xs) ++ x ∷ [] ≡⟨ ++-assoc (reverse-Forest (fcons Ty Fys)) (reverse xs) (x ∷ []) ⟩ reverse (y ∷ ys) ++ rev xs [] ++ x ∷ [] ≡⟨ ++-rightCong (sym (rev-++ Fxs (x ∷ []))) ⟩ reverse (y ∷ ys) ++ rev xs (x ∷ []) ≡⟨ ++-rightCong (sym (rev-∷ x xs [])) ⟩ reverse (y ∷ ys) ++ reverse (x ∷ xs) ∎ reverse-∷ : ∀ {x ys} → Tree x → Forest ys → reverse (x ∷ ys) ≡ reverse ys ++ (x ∷ []) reverse-∷ {x} Tx fnil = rev (x ∷ []) [] ≡⟨ rev-∷ x [] [] ⟩ rev [] (x ∷ []) ≡⟨ rev-[] (x ∷ []) ⟩ x ∷ [] ≡⟨ sym (++-leftIdentity (x ∷ [])) ⟩ [] ++ x ∷ [] ≡⟨ ++-leftCong (sym (rev-[] [])) ⟩ rev [] [] ++ x ∷ [] ∎ reverse-∷ {x} Tx (fcons {y} {ys} Ty Fys) = sym ( reverse (y ∷ ys) ++ x ∷ [] ≡⟨ ++-rightCong (sym (reverse-[x]≡[x] x)) ⟩ (reverse (y ∷ ys) ++ reverse (x ∷ [])) ≡⟨ sym (reverse-++ (fcons Tx fnil) (fcons Ty Fys)) ⟩ reverse ((x ∷ []) ++ (y ∷ ys)) ≡⟨ reverseCong (++-∷ x [] (y ∷ ys)) ⟩ reverse (x ∷ ([] ++ (y ∷ ys))) ≡⟨ reverseCong (∷-rightCong (++-leftIdentity (y ∷ ys))) ⟩ reverse (x ∷ y ∷ ys) ∎ )
{ "alphanum_fraction": 0.4203516249, "avg_line_length": 31.813559322, "ext": "agda", "hexsha": "a9cb805becc2ee24b339486e870c7ec5cf016412", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Forest/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Forest/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Forest/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2306, "size": 5631 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.AbGroup.TensorProduct where open import Cubical.Algebra.AbGroup.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function hiding (flip) open import Cubical.Foundations.Isomorphism open import Cubical.Relation.Binary open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Data.Nat as ℕ open import Cubical.Foundations.HLevels open import Cubical.Data.Int open import Cubical.Data.Sum hiding (map) open import Cubical.HITs.PropositionalTruncation renaming (map to pMap ; rec to pRec ; elim to pElim ; elim2 to pElim2) open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup private variable ℓ ℓ' : Level module _ (AGr : AbGroup ℓ) (BGr : AbGroup ℓ') where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G_) strA = snd AGr strB = snd BGr A = fst AGr B = fst BGr 0A = 0g strA 0B = 0g strB _+A_ = _+G_ strA _+B_ = _+G_ strB -A_ = -G_ strA -B_ = -G_ strB data _⨂₁_ : Type (ℓ-max ℓ ℓ') where _⊗_ : (a : A) → (b : B) → _⨂₁_ _+⊗_ : (w : _⨂₁_) → (u : _⨂₁_) → _⨂₁_ ⊗comm : (x y : _) → x +⊗ y ≡ y +⊗ x ⊗assoc : (x y z : _) → x +⊗ (y +⊗ z) ≡ (x +⊗ y) +⊗ z ⊗lUnit : (x : _) → (0A ⊗ 0B) +⊗ x ≡ x linl : (x y : A) (z : B) → (x +A y) ⊗ z ≡ ((x ⊗ z) +⊗ (y ⊗ z)) linr : (x : A) (y z : B) → x ⊗ (y +B z) ≡ ((x ⊗ y) +⊗ (x ⊗ z)) ⊗squash : isSet _⨂₁_ module _ {AGr : AbGroup ℓ} {BGr : AbGroup ℓ'} where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G_) strA = snd AGr strB = snd BGr A = fst AGr B = fst BGr 0A = 0g strA 0B = 0g strB _+A_ = _+G_ strA _+B_ = _+G_ strB -A_ = -G_ strA -B_ = -G_ strB A⊗B = AGr ⨂₁ BGr ⊗elimProp : ∀ {ℓ} {C : AGr ⨂₁ BGr → Type ℓ} → ((x : _) → isProp (C x)) → (f : (x : A) (b : B) → C (x ⊗ b)) → (g : ((x y : _) → C x → C y → C (x +⊗ y))) → (x : _) → C x ⊗elimProp p f g (a ⊗ b) = f a b ⊗elimProp p f g (x +⊗ y) = g x y (⊗elimProp p f g x) (⊗elimProp p f g y) ⊗elimProp {C = C} p f g (⊗comm x y j) = isOfHLevel→isOfHLevelDep 1 {B = C} p (g x y (⊗elimProp p f g x) (⊗elimProp p f g y)) (g y x (⊗elimProp p f g y) (⊗elimProp p f g x)) (⊗comm x y) j ⊗elimProp {C = C} p f g (⊗assoc x y z j) = isOfHLevel→isOfHLevelDep 1 {B = C} p (g x (y +⊗ z) (⊗elimProp p f g x) (g y z (⊗elimProp p f g y) (⊗elimProp p f g z))) (g (x +⊗ y) z (g x y (⊗elimProp p f g x) (⊗elimProp p f g y)) (⊗elimProp p f g z)) (⊗assoc x y z) j ⊗elimProp {C = C} p f g (⊗lUnit x i) = isOfHLevel→isOfHLevelDep 1 {B = C} p (g (0A ⊗ 0B) x (f 0A 0B) (⊗elimProp p f g x)) (⊗elimProp p f g x) (⊗lUnit x) i ⊗elimProp {C = C} p f g (linl x y z i) = isOfHLevel→isOfHLevelDep 1 {B = C} p (f (x +A y) z) (g (x ⊗ z) (y ⊗ z) (f x z) (f y z)) (linl x y z) i ⊗elimProp {C = C} p f g (linr x y z i) = isOfHLevel→isOfHLevelDep 1 {B = C} p (f x (y +B z)) (g (x ⊗ y) (x ⊗ z) (f x y) (f x z)) (linr x y z) i ⊗elimProp {C = C} p f g (⊗squash x y q r i j) = isOfHLevel→isOfHLevelDep 2 {B = C} (λ x → isProp→isSet (p x)) _ _ (λ j → ⊗elimProp p f g (q j)) (λ j → ⊗elimProp p f g (r j)) (⊗squash x y q r) i j -- Group structure 0⊗ : AGr ⨂₁ BGr 0⊗ = 0A ⊗ 0B -⊗ : AGr ⨂₁ BGr → AGr ⨂₁ BGr -⊗ (a ⊗ b) = (-A a) ⊗ b -⊗ (x +⊗ x₁) = -⊗ x +⊗ -⊗ x₁ -⊗ (⊗comm x y i) = ⊗comm (-⊗ x) (-⊗ y) i -⊗ (⊗assoc x y z i) = ⊗assoc (-⊗ x) (-⊗ y) (-⊗ z) i -⊗ (⊗lUnit x i) = ((λ i → (GroupTheory.inv1g (AbGroup→Group AGr) i ⊗ 0B) +⊗ -⊗ x) ∙ ⊗lUnit (-⊗ x)) i -⊗ (linl x y z i) = ((λ i → (GroupTheory.invDistr (AbGroup→Group AGr) x y ∙ comm strA (-A y) (-A x)) i ⊗ z) ∙ linl (-A x) (-A y) z) i -⊗ (linr x y z i) = linr (-A x) y z i -⊗ (⊗squash x y p q i j) = ⊗squash _ _ (λ j → -⊗ (p j)) (λ j → -⊗ (q j)) i j ⊗rUnit : (x : A⊗B) → x +⊗ 0⊗ ≡ x ⊗rUnit x = ⊗comm x 0⊗ ∙ ⊗lUnit x ------------------------------------------------------------------------------- -- Useful induction principle, which lets us view elements of A ⨂ B as lists -- over (A × B). Used for the right cancellation law unlist : List (A × B) → AGr ⨂₁ BGr unlist [] = 0A ⊗ 0B unlist (x ∷ x₁) = (fst x ⊗ snd x) +⊗ unlist x₁ unlist++ : (x y : List (A × B)) → unlist (x ++ y) ≡ (unlist x +⊗ unlist y) unlist++ [] y = sym (⊗lUnit (unlist y)) unlist++ (x ∷ x₁) y = (λ i → (fst x ⊗ snd x) +⊗ (unlist++ x₁ y i)) ∙ ⊗assoc (fst x ⊗ snd x) (unlist x₁) (unlist y) ∃List : (x : AGr ⨂₁ BGr) → ∃[ l ∈ List (A × B) ] (unlist l ≡ x) ∃List = ⊗elimProp (λ _ → squash₁) (λ a b → ∣ [ a , b ] , ⊗rUnit (a ⊗ b) ∣₁) λ x y → rec2 squash₁ λ {(l1 , p) (l2 , q) → ∣ (l1 ++ l2) , unlist++ l1 l2 ∙ cong₂ _+⊗_ p q ∣₁} ⊗elimPropUnlist : ∀ {ℓ} {C : AGr ⨂₁ BGr → Type ℓ} → ((x : _) → isProp (C x)) → ((x : _) → C (unlist x)) → (x : _) → C x ⊗elimPropUnlist {C = C} p f = ⊗elimProp p (λ x y → subst C (⊗rUnit (x ⊗ y)) (f [ x , y ])) λ x y → pRec (isPropΠ2 λ _ _ → p _) (pRec (isPropΠ3 λ _ _ _ → p _) (λ {(l1 , p) (l2 , q) ind1 ind2 → subst C (unlist++ l2 l1 ∙ cong₂ _+⊗_ q p) (f (l2 ++ l1))}) (∃List y)) (∃List x) ----------------------------------------------------------------------------------- lCancelPrim : (x : B) → (0A ⊗ x) ≡ 0⊗ lCancelPrim x = sym (⊗rUnit _) ∙∙ cong ((0A ⊗ x) +⊗_) (sym cancelLem) ∙∙ ⊗assoc (0A ⊗ x) (0A ⊗ x) (0A ⊗ (-B x)) ∙∙ cong (_+⊗ (0A ⊗ (-B x))) inner ∙∙ cancelLem where cancelLem : (0A ⊗ x) +⊗ (0A ⊗ (-B x)) ≡ 0⊗ cancelLem = sym (linr 0A x (-B x)) ∙ (λ i → 0A ⊗ invr strB x i) inner : (0A ⊗ x) +⊗ (0A ⊗ x) ≡ 0A ⊗ x inner = sym (linl 0A 0A x) ∙ (λ i → rid strA 0A i ⊗ x) rCancelPrim : (x : A) → (x ⊗ 0B) ≡ 0⊗ rCancelPrim x = sym (⊗rUnit _) ∙∙ cong ((x ⊗ 0B) +⊗_) (sym cancelLem) ∙∙ ⊗assoc (x ⊗ 0B) (x ⊗ 0B) ((-A x) ⊗ 0B) ∙∙ cong (_+⊗ ((-A x) ⊗ 0B)) inner ∙∙ cancelLem where cancelLem : (x ⊗ 0B) +⊗ ((-A x) ⊗ 0B) ≡ 0⊗ cancelLem = sym (linl x (-A x) 0B) ∙ (λ i → invr strA x i ⊗ 0B) inner : (x ⊗ 0B) +⊗ (x ⊗ 0B) ≡ x ⊗ 0B inner = sym (linr x 0B 0B) ∙ (λ i → x ⊗ rid strB 0B i) flip : (x : A) (b : B) → x ⊗ (-B b) ≡ ((-A x) ⊗ b) flip x b = sym (⊗rUnit _) ∙ cong ((x ⊗ (-B b)) +⊗_) (sym cancelLemA) ∙ ⊗assoc (x ⊗ (-B b)) (x ⊗ b) ((-A x) ⊗ b) ∙ cong (_+⊗ ((-A x) ⊗ b)) cancelLemB ∙ ⊗lUnit _ where cancelLemA : (x ⊗ b) +⊗ ((-A x) ⊗ b) ≡ 0⊗ cancelLemA = sym (linl x (-A x) b) ∙ (λ i → invr strA x i ⊗ b) ∙ lCancelPrim b cancelLemB : (x ⊗ (-B b)) +⊗ (x ⊗ b) ≡ 0⊗ cancelLemB = sym (linr x (-B b) b) ∙ (λ i → x ⊗ invl strB b i) ∙ rCancelPrim x ⊗rCancel : (x : AGr ⨂₁ BGr) → (x +⊗ -⊗ x) ≡ 0⊗ ⊗rCancel = ⊗elimPropUnlist (λ _ → ⊗squash _ _) h where h : (x : List (A × B)) → (unlist x +⊗ -⊗ (unlist x)) ≡ 0⊗ h [] = sym (linl 0A (-A 0A) (0B)) ∙ cong (λ x → _⊗_ {AGr = AGr} {BGr = BGr} x 0B) (invr strA 0A) h (x ∷ x₁) = move4 (fst x ⊗ snd x) (unlist x₁) ((-A fst x) ⊗ snd x) (-⊗ (unlist x₁)) _+⊗_ ⊗assoc ⊗comm ∙∙ cong₂ _+⊗_ (sym (linl (fst x) (-A (fst x)) (snd x)) ∙∙ (λ i → invr strA (fst x) i ⊗ (snd x)) ∙∙ lCancelPrim (snd x)) (h x₁) ∙∙ ⊗rUnit 0⊗ ⊗lCancel : (x : AGr ⨂₁ BGr) → (-⊗ x +⊗ x) ≡ 0⊗ ⊗lCancel x = ⊗comm _ _ ∙ ⊗rCancel x module _ where open AbGroupStr open IsAbGroup open IsGroup open IsMonoid open IsSemigroup _⨂_ : AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ') fst (A ⨂ B) = A ⨂₁ B 0g (snd (A ⨂ B)) = 0⊗ AbGroupStr._+_ (snd (A ⨂ B)) = _+⊗_ AbGroupStr.- snd (A ⨂ B) = -⊗ is-set (isSemigroup (isMonoid (isGroup (isAbGroup (snd (A ⨂ B)))))) = ⊗squash assoc (isSemigroup (isMonoid (isGroup (isAbGroup (snd (A ⨂ B)))))) = ⊗assoc fst (identity (isMonoid (isGroup (isAbGroup (snd (A ⨂ B))))) x) = ⊗rUnit x snd (identity (isMonoid (isGroup (isAbGroup (snd (A ⨂ B))))) x) = ⊗lUnit x fst (inverse (isGroup (isAbGroup (snd (A ⨂ B)))) x) = ⊗rCancel x snd (inverse (isGroup (isAbGroup (snd (A ⨂ B)))) x) = ⊗lCancel x comm (isAbGroup (snd (A ⨂ B))) = ⊗comm -------------- Elimination principle into AbGroups -------------- module _ {ℓ ℓ' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G) _+A_ = _+G_ (snd A) _+B_ = _+G_ (snd B) 0A = 0g (snd A) 0B = 0g (snd B) ⨂→AbGroup-elim : ∀ {ℓ} (C : AbGroup ℓ) → (f : (fst A × fst B) → fst C) → (f (0A , 0B) ≡ 0g (snd C)) → (linL : (x y : fst A) (b : fst B) → f (x +A y , b) ≡ _+G_ (snd C) (f (x , b)) (f (y , b))) → (linR : (a : fst A) (x y : fst B) → f (a , x +B y) ≡ _+G_ (snd C) (f (a , x)) (f (a , y))) → A ⨂₁ B → fst C ⨂→AbGroup-elim C f p linL linR (a ⊗ b) = f (a , b) ⨂→AbGroup-elim C f p linL linR (x +⊗ x₁) = _+G_ (snd C) (⨂→AbGroup-elim C f p linL linR x) (⨂→AbGroup-elim C f p linL linR x₁) ⨂→AbGroup-elim C f p linL linR (⊗comm x x₁ i) = comm (snd C) (⨂→AbGroup-elim C f p linL linR x) (⨂→AbGroup-elim C f p linL linR x₁) i ⨂→AbGroup-elim C f p linL linR (⊗assoc x x₁ x₂ i) = assoc (snd C) (⨂→AbGroup-elim C f p linL linR x) (⨂→AbGroup-elim C f p linL linR x₁) (⨂→AbGroup-elim C f p linL linR x₂) i ⨂→AbGroup-elim C f p linL linR (⊗lUnit x i) = (cong (λ y → (snd C +G y) (⨂→AbGroup-elim C f p linL linR x)) p ∙ (lid (snd C) (⨂→AbGroup-elim C f p linL linR x))) i ⨂→AbGroup-elim C f p linL linR (linl x y z i) = linL x y z i ⨂→AbGroup-elim C f p linL linR (linr x y z i) = linR x y z i ⨂→AbGroup-elim C f p linL linR (⊗squash x x₁ x₂ y i i₁) = is-set (snd C) _ _ (λ i → ⨂→AbGroup-elim C f p linL linR (x₂ i)) (λ i → ⨂→AbGroup-elim C f p linL linR (y i)) i i₁ ⨂→AbGroup-elim-hom : ∀ {ℓ} (C : AbGroup ℓ) → (f : (fst A × fst B) → fst C) (linL : _) (linR : _) (p : _) → AbGroupHom (A ⨂ B) C fst (⨂→AbGroup-elim-hom C f linL linR p) = ⨂→AbGroup-elim C f p linL linR snd (⨂→AbGroup-elim-hom C f linL linR p) = makeIsGroupHom (λ x y → refl) private _* = AbGroup→Group ----------- Definition of universal property ------------ tensorFun : (A : Group ℓ) (B : Group ℓ') (T C : AbGroup (ℓ-max ℓ ℓ')) (f : GroupHom A (HomGroup B T *)) → GroupHom (T *) (C *) → GroupHom A (HomGroup B C *) fst (fst (tensorFun A B T C (f , p) (g , q)) a) b = g (fst (f a) b) snd (fst (tensorFun A B T C (f , p) (g , q)) a) = makeIsGroupHom λ x y → cong g (IsGroupHom.pres· (snd (f a)) x y) ∙ IsGroupHom.pres· q _ _ snd (tensorFun A B T C (f , p) (g , q)) = makeIsGroupHom λ x y → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ b → cong g (funExt⁻ (cong fst (IsGroupHom.pres· p x y)) b) ∙ IsGroupHom.pres· q _ _) isTensorProductOf_and_ : AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ')→ Type _ isTensorProductOf_and_ {ℓ} {ℓ'} A B T = Σ[ f ∈ GroupHom (A *) ((HomGroup (B *) T) *) ] ((C : AbGroup (ℓ-max ℓ ℓ')) → isEquiv {A = GroupHom (T *) (C *)} {B = GroupHom (A *) ((HomGroup (B *) C) *)} (tensorFun (A *) (B *) T C f)) ------ _⨂_ satisfies the universal property -------- module UP (AGr : AbGroup ℓ) (BGr : AbGroup ℓ') where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G_) strA = snd AGr strB = snd BGr A = fst AGr B = fst BGr 0A = 0g strA 0B = 0g strB _+A_ = _+G_ strA _+B_ = _+G_ strB -A_ = -G_ strA -B_ = -G_ strB mainF : GroupHom (AGr *) (HomGroup (BGr *) (AGr ⨂ BGr) *) fst (fst mainF a) b = a ⊗ b snd (fst mainF a) = makeIsGroupHom (linr a) snd mainF = makeIsGroupHom λ x y → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt (linl x y)) isTensorProduct⨂ : (isTensorProductOf AGr and BGr) (AGr ⨂ BGr) fst isTensorProduct⨂ = mainF snd isTensorProduct⨂ C = isoToIsEquiv mainIso where invF : GroupHom (AGr *) (HomGroup (BGr *) C *) → GroupHom ((AGr ⨂ BGr) *) (C *) fst (invF (f , p)) = F where lem : f (0g (snd AGr)) .fst (0g (snd BGr)) ≡ 0g (snd C) lem = funExt⁻ (cong fst (IsGroupHom.pres1 p)) (0g (snd BGr)) F : ((AGr ⨂ BGr) *) .fst → (C *) .fst F (a ⊗ b) = f a .fst b F (x +⊗ x₁) = _+G_ (snd C) (F x) (F x₁) F (⊗comm x x₁ i) = comm (snd C) (F x) (F x₁) i F (⊗assoc x y z i) = assoc (snd C) (F x) (F y) (F z) i F (⊗lUnit x i) = (cong (λ y → _+G_ (snd C) y (F x)) lem ∙ lid (snd C) (F x)) i F (linl x y z i) = fst (IsGroupHom.pres· p x y i) z F (linr x y z i) = IsGroupHom.pres· (f x .snd) y z i F (⊗squash x x₁ x₂ y i i₁) = is-set (snd C) (F x) (F x₁) (λ i → F (x₂ i)) (λ i → F (y i)) i i₁ snd (invF (f , p)) = makeIsGroupHom λ x y → refl mainIso : Iso (GroupHom ((AGr ⨂ BGr) *) (C *)) (GroupHom (AGr *) (HomGroup (BGr *) C *)) Iso.fun mainIso = _ Iso.inv mainIso = invF Iso.rightInv mainIso (f , p) = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ a → Σ≡Prop (λ _ → isPropIsGroupHom _ _) refl) Iso.leftInv mainIso (f , p) = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt (⊗elimProp (λ _ → is-set (snd C) _ _) (λ _ _ → refl) λ x y ind1 ind2 → cong₂ (_+G_ (snd C)) ind1 ind2 ∙ sym (IsGroupHom.pres· p x y))) -------------------- Commutativity ------------------------ commFun : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → A ⨂₁ B → B ⨂₁ A commFun (a ⊗ b) = b ⊗ a commFun (x +⊗ x₁) = commFun x +⊗ commFun x₁ commFun (⊗comm x x₁ i) = ⊗comm (commFun x) (commFun x₁) i commFun (⊗assoc x x₁ x₂ i) = ⊗assoc (commFun x) (commFun x₁) (commFun x₂) i commFun (⊗lUnit x i) = ⊗lUnit (commFun x) i commFun (linl x y z i) = linr z x y i commFun (linr x y z i) = linl y z x i commFun (⊗squash x x₁ x₂ y i i₁) = ⊗squash (commFun x) (commFun x₁) (λ i → commFun (x₂ i)) (λ i → commFun (y i)) i i₁ commFun²≡id : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} (x : A ⨂₁ B) → commFun (commFun x) ≡ x commFun²≡id = ⊗elimProp (λ _ → ⊗squash _ _) (λ _ _ → refl) λ _ _ p q → cong₂ _+⊗_ p q ⨂-commIso : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → GroupIso ((A ⨂ B) *) ((B ⨂ A) *) Iso.fun (fst ⨂-commIso) = commFun Iso.inv (fst ⨂-commIso) = commFun Iso.rightInv (fst ⨂-commIso) = commFun²≡id Iso.leftInv (fst ⨂-commIso) = commFun²≡id snd ⨂-commIso = makeIsGroupHom λ x y → refl ⨂-comm : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → AbGroupEquiv (A ⨂ B) (B ⨂ A) fst ⨂-comm = isoToEquiv (fst (⨂-commIso)) snd ⨂-comm = snd ⨂-commIso open AbGroupStr -------------------- Associativity ------------------------ module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGroup ℓ''} where private f : (c : fst C) → AbGroupHom (A ⨂ B) (A ⨂ (B ⨂ C)) f c = ⨂→AbGroup-elim-hom (A ⨂ (B ⨂ C)) ((λ ab → fst ab ⊗ (snd ab ⊗ c))) (λ x y b → linl x y (b ⊗ c)) (λ x y b → (λ i → x ⊗ (linl y b c i)) ∙ linr x (y ⊗ c) (b ⊗ c)) (λ i → 0g (snd A) ⊗ (lCancelPrim c i)) assocHom : AbGroupHom ((A ⨂ B) ⨂ C) (A ⨂ (B ⨂ C)) assocHom = ⨂→AbGroup-elim-hom _ (λ x → f (snd x) .fst (fst x)) (λ x y b → IsGroupHom.pres· (snd (f b)) x y) (⊗elimProp (λ _ → isPropΠ2 λ _ _ → ⊗squash _ _) (λ a b x y → (λ i → a ⊗ (linr b x y i)) ∙∙ linr a (b ⊗ x) (b ⊗ y) ∙∙ refl) λ a b ind1 ind2 x y → cong₂ _+⊗_ (ind1 x y) (ind2 x y) ∙∙ move4 (f x .fst a) (f y .fst a) (f x .fst b) (f y .fst b) _+⊗_ ⊗assoc ⊗comm ∙∙ cong₂ _+⊗_ (sym (IsGroupHom.pres· (snd (f x)) a b)) (IsGroupHom.pres· (snd (f y)) a b)) refl module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGroup ℓ''} where private f' : (a : fst A) → AbGroupHom (B ⨂ C) ((A ⨂ B) ⨂ C) f' a = ⨂→AbGroup-elim-hom ((A ⨂ B) ⨂ C) (λ bc → (a ⊗ fst bc) ⊗ snd bc) (λ x y b → (λ i → (linr a x y i) ⊗ b) ∙ linl (a ⊗ x) (a ⊗ y) b) (λ x y b → linr (a ⊗ x) y b) λ i → rCancelPrim a i ⊗ (0g (snd C)) assocHom⁻ : AbGroupHom (A ⨂ (B ⨂ C)) ((A ⨂ B) ⨂ C) assocHom⁻ = ⨂→AbGroup-elim-hom _ (λ abc → f' (fst abc) .fst (snd abc)) (λ x y → ⊗elimProp (λ _ → ⊗squash _ _) (λ b c → (λ i → linl x y b i ⊗ c) ∙ linl (x ⊗ b) (y ⊗ b) c) λ a b ind1 ind2 → cong₂ _+⊗_ ind1 ind2 ∙∙ move4 _ _ _ _ _+⊗_ ⊗assoc ⊗comm ∙∙ cong₂ _+⊗_ (IsGroupHom.pres· (snd (f' x)) a b) (IsGroupHom.pres· (snd (f' y)) a b)) (λ a → IsGroupHom.pres· (snd (f' a))) refl ⨂assocIso : Iso (A ⨂₁ (B ⨂ C)) ((A ⨂ B) ⨂₁ C) Iso.fun ⨂assocIso = fst assocHom⁻ Iso.inv ⨂assocIso = fst assocHom Iso.rightInv ⨂assocIso = ⊗elimProp (λ _ → ⊗squash _ _) (⊗elimProp (λ _ → isPropΠ (λ _ → ⊗squash _ _)) (λ a b c → refl) λ a b ind1 ind2 c → cong₂ _+⊗_ (ind1 c) (ind2 c) ∙ sym (linl a b c)) λ x y p q → cong (fst assocHom⁻) (IsGroupHom.pres· (snd assocHom) x y) ∙∙ IsGroupHom.pres· (snd assocHom⁻) (fst assocHom x) (fst assocHom y) ∙∙ cong₂ _+⊗_ p q Iso.leftInv ⨂assocIso = ⊗elimProp (λ _ → ⊗squash _ _) (λ a → ⊗elimProp (λ _ → ⊗squash _ _) (λ b c → refl) λ x y ind1 ind2 → cong (fst assocHom ∘ fst assocHom⁻) (linr a x y) ∙∙ cong (fst assocHom) (IsGroupHom.pres· (snd assocHom⁻) (a ⊗ x) (a ⊗ y)) ∙∙ IsGroupHom.pres· (snd assocHom) (fst assocHom⁻ (a ⊗ x)) (fst assocHom⁻ (a ⊗ y)) ∙∙ cong₂ _+⊗_ ind1 ind2 ∙∙ sym (linr a x y)) λ x y p q → cong (fst assocHom) (IsGroupHom.pres· (snd assocHom⁻) x y) ∙∙ IsGroupHom.pres· (snd assocHom) (fst assocHom⁻ x) (fst assocHom⁻ y) ∙∙ cong₂ _+⊗_ p q ⨂assoc : AbGroupEquiv (A ⨂ (B ⨂ C)) ((A ⨂ B) ⨂ C) fst ⨂assoc = isoToEquiv ⨂assocIso snd ⨂assoc = snd assocHom⁻
{ "alphanum_fraction": 0.4819225861, "avg_line_length": 37.0236220472, "ext": "agda", "hexsha": "94a1f6a2049178c0d99114c15b1ff8a0bf3294e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/TensorProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/TensorProduct.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/TensorProduct.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 8607, "size": 18808 }
open import Preliminaries module Preorder where record Preorder-str (A : Set) : Set1 where constructor preorder field ≤ : A → A → Set refl : ∀ x → ≤ x x trans : ∀ x y z → ≤ x y → ≤ y z → ≤ x z prop : ∀ x y → (p q : ≤ x y) → p == q ------------------------------------------ -- Task 1: Show that the Natural numbers with ≤ form a preorder -- the ≤ relation on Natural numbers ≤nat : Nat → Nat → Set ≤nat Z Z = Unit ≤nat Z (S y) = Unit ≤nat (S x) Z = Void ≤nat (S x) (S y) = ≤nat x y -- proof that Nat is reflexive under ≤ nat-refl : ∀ (x : Nat) → ≤nat x x nat-refl Z = <> nat-refl (S x) = nat-refl x -- proof that Nat is transitive under ≤ nat-trans : ∀ (x y z : Nat) → ≤nat x y → ≤nat y z → ≤nat x z nat-trans Z Z Z p q = <> nat-trans Z Z (S z) p q = <> nat-trans Z (S y) Z p q = abort q nat-trans Z (S y) (S z) p q = <> nat-trans (S x) Z Z () q nat-trans (S x) Z (S z) () q nat-trans (S x) (S y) Z p () nat-trans (S x) (S y) (S z) p q = nat-trans x y z p q nat-prop : ∀ (x y : Nat) → (p q : ≤nat x y) → p == q nat-prop Z Z <> <> = Refl nat-prop Z (S y) <> <> = Refl nat-prop (S x) Z () q nat-prop (S x) (S y) p q = nat-prop x y p q -- proof that Nat and ≤ (the ≤ relation defined on the natural numbers) form a preorder nat-p : Preorder-str Nat nat-p = preorder ≤nat nat-refl nat-trans nat-prop --discrete nat nat-eq : Nat → Nat → Set nat-eq Z Z = Unit nat-eq Z (S n) = Void nat-eq (S m) Z = Void nat-eq (S m) (S n) = nat-eq m n ♭nat-refl : (x : Nat) → nat-eq x x ♭nat-refl Z = <> ♭nat-refl (S x) = ♭nat-refl x ♭nat-trans : (x y z : Nat) → nat-eq x y → nat-eq y z → nat-eq x z ♭nat-trans Z Z Z x x₁ = <> ♭nat-trans Z Z (S z) x () ♭nat-trans Z (S y) z () x₁ ♭nat-trans (S x) Z z () x₂ ♭nat-trans (S x) (S y) Z x₁ x₂ = x₂ ♭nat-trans (S x) (S y) (S z) x₁ x₂ = ♭nat-trans x y z x₁ x₂ ♭nat-prop : ∀ (x y : Nat) → (p q : nat-eq x y) → p == q ♭nat-prop Z Z <> <> = Refl ♭nat-prop Z (S y) () q ♭nat-prop (S x) Z () q ♭nat-prop (S x) (S y) p q = ♭nat-prop x y p q ♭nat-p : Preorder-str Nat ♭nat-p = preorder nat-eq ♭nat-refl ♭nat-trans ♭nat-prop --bools ≤b : Bool → Bool → Set ≤b True True = Unit ≤b True False = Void ≤b False True = Void ≤b False False = Unit b-refl : (x : Bool) → ≤b x x b-refl True = <> b-refl False = <> b-trans : (x y z : Bool) → ≤b x y → ≤b y z → ≤b x z b-trans True True True x x₁ = <> b-trans True True False x () b-trans True False z () x₁ b-trans False True z () x₁ b-trans False False True x () b-trans False False False x x₁ = <> b-prop : ∀ (x y : Bool) → (p q : ≤b x y) → p == q b-prop True True <> <> = Refl b-prop True False () q b-prop False True () q b-prop False False <> <> = Refl bool-p : Preorder-str Bool bool-p = preorder ≤b b-refl b-trans b-prop --list ≤list : ∀ {A : Set} → Preorder-str A → List A → List A → Set ≤list PA [] [] = Unit ≤list PA [] (x :: l2) = Void ≤list PA (x :: l1) [] = Void ≤list PA (x :: l1) (x₁ :: l2) = Preorder-str.≤ PA x x₁ × ≤list PA l1 l2 l-refl : ∀ {A : Set} → (PA : Preorder-str A) → (l : List A) → ≤list PA l l l-refl PA [] = <> l-refl PA (x :: l) = (Preorder-str.refl PA x) , (l-refl PA l) l-trans : ∀ {A : Set} → (PA : Preorder-str A) → (l1 l2 l3 : List A) → ≤list PA l1 l2 → ≤list PA l2 l3 → ≤list PA l1 l3 l-trans PA [] [] [] p q = <> l-trans PA [] [] (x :: l3) p () l-trans PA [] (x :: l2) l3 () q l-trans PA (x :: l1) [] l3 () q l-trans PA (x :: l1) (x₁ :: l2) [] p () l-trans PA (x :: l1) (x₁ :: l2) (x₂ :: l3) p q = (Preorder-str.trans PA x x₁ x₂ (fst p) (fst q)) , (l-trans PA l1 l2 l3 (snd p) (snd q)) l-prop : ∀ {A : Set} → (PA : Preorder-str A) → (x y : List A) → (p q : ≤list PA x y) → p == q l-prop PA [] [] <> <> = Refl l-prop PA [] (x :: y) () q l-prop PA (x :: x₁) [] () q l-prop PA (x :: x₁) (x₂ :: y) (p1 , p2) (q1 , q2) = ap2 (λ x₃ x₄ → x₃ , x₄) (Preorder-str.prop PA x x₂ p1 q1) (l-prop PA x₁ y p2 q2) list-p : ∀ {A : Set} (PA : Preorder-str A) → Preorder-str (List A) list-p PA = preorder (≤list PA) (l-refl PA) (l-trans PA) (l-prop PA) ------------------------------------------ -- Task 2: Show that the product of two preorders is a preorder {- defining the relation: when is one cartesian product 'less than' another? if A and B are preorders and we have cartesian products (a1,b1) and (a2,b2) such that a1,a2 ∈ A and b1,b2 ∈ B, then (a1,b1)≤(a2,b2) iff a1≤a2 and b1≤b2 -} ≤axb : ∀ {A B : Set} → Preorder-str A → Preorder-str B → (A × B) → (A × B) → Set ≤axb PA PB (a1 , b1) (a2 , b2) = Preorder-str.≤ PA a1 a2 × Preorder-str.≤ PB b1 b2 {- a cartesian product (a,b) is 'less than' itself if each component of the product is reflexive, i.e. just show that a is reflexive and b is reflexive -} axb-refl : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (x : (A × B)) → ≤axb PA PB x x axb-refl PA PB (a , b) = Preorder-str.refl PA a , Preorder-str.refl PB b -- same idea for transitivity... axb-trans : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (x y z : (A × B)) → ≤axb PA PB x y → ≤axb PA PB y z → ≤axb PA PB x z axb-trans PA PB (a1 , b1) (a2 , b2) (a3 , b3) (a1<a2 , b1<b2) (a2<a3 , b2<b3) = Preorder-str.trans PA a1 a2 a3 a1<a2 a2<a3 , Preorder-str.trans PB b1 b2 b3 b1<b2 b2<b3 axb-prop : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (x y : (A × B)) → (p q : ≤axb PA PB x y) → p == q axb-prop PA PB (x1 , x2) (y1 , y2) (p1 , p2) (q1 , q2) = ap2 (λ x x₁ → x , x₁) (Preorder-str.prop PA x1 y1 p1 q1) (Preorder-str.prop PB x2 y2 p2 q2) -- proof that AxB is a preorder axb-p : ∀ (A B : Set) → Preorder-str A → Preorder-str B → Preorder-str (A × B) axb-p A B pre-a pre-b = record { ≤ = ≤axb pre-a pre-b; refl = axb-refl pre-a pre-b; trans = axb-trans pre-a pre-b; prop = axb-prop pre-a pre-b} ------------------------------------------ -- Task 4: Show that given a Preorder A and Preorder B, Preorder (Monotone A B) -- the type of monotone functions from A to B -- i.e. functions which give you bigger outputs when you give them bigger inputs record Monotone (A : Set) (B : Set) (PA : Preorder-str A) (PB : Preorder-str B) : Set where constructor monotone field f : A → B is-monotone : ∀ (x y : A) → Preorder-str.≤ PA x y → Preorder-str.≤ PB (f x) (f y) -- the order on monotone functions is just the -- pointwise order on the underlying functions ≤mono : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (Monotone A B PA PB) → (Monotone A B PA PB) → Set ≤mono {A} PA PB f g = (x : A) → Preorder-str.≤ PB (Monotone.f f x) (Monotone.f g x) mono-refl : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (x : (Monotone A B PA PB)) → ≤mono PA PB x x mono-refl PA PB f = λ x → Preorder-str.refl PB (Monotone.f f x) mono-trans : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (x y z : (Monotone A B PA PB)) → ≤mono PA PB x y → ≤mono PA PB y z → ≤mono PA PB x z mono-trans PA PB f g h p q = λ x → Preorder-str.trans PB (Monotone.f f x) (Monotone.f g x) (Monotone.f h x) (p x) (q x) mono-prop : ∀ {A B : Set} → (PA : Preorder-str A) → (PB : Preorder-str B) → (x y : (Monotone A B PA PB)) → (p q : ≤mono PA PB x y) → p == q mono-prop PA PB x y p q = λ= (λ x₁ → Preorder-str.prop PB (Monotone.f x x₁) (Monotone.f y x₁) (p x₁) (q x₁)) mono-p : ∀ (A B : Set) → (PA : Preorder-str A) → (PB : Preorder-str B) → Preorder-str (Monotone A B PA PB) mono-p A B PA PB = preorder (≤mono PA PB) (mono-refl PA PB) (mono-trans PA PB) (mono-prop PA PB) ------------------------------------------ -- New stuff: Interpreting types as preorders -- repackaging preorder as a type together with a Preorder structure on that type PREORDER = Σ (λ (A : Set) → Preorder-str A) MONOTONE : (PΓ PA : PREORDER) → Set MONOTONE (Γ , PΓ) (A , PA) = Monotone Γ A PΓ PA PN : PREORDER PN = Nat , nat-p PL : PREORDER → PREORDER PL (A , PA) = (List A) , list-p PA -- some operations _×p_ : PREORDER → PREORDER → PREORDER (A , PA) ×p (B , PB) = A × B , axb-p A B PA PB _->p_ : PREORDER → PREORDER → PREORDER (A , PA) ->p (B , PB) = Monotone A B PA PB , mono-p A B PA PB -- Unit is a preorder unit-p : PREORDER unit-p = Unit , preorder (λ x x₁ → Unit) (λ x → <>) (λ x y z _ _ → <>) (λ x y p q → Refl) -- identity preserves monotonicity id : ∀ {Γ} → MONOTONE Γ Γ id = λ {Γ} → monotone (λ x → x) (λ x y x₁ → x₁) -- composition preserves monotonicity comp : ∀ {PA PB PC} → MONOTONE PA PB → MONOTONE PB PC → MONOTONE PA PC comp (monotone f f-ismono) (monotone g g-ismono) = monotone (λ x → g (f x)) (λ x y x₁ → g-ismono (f x) (f y) (f-ismono x y x₁)) -- proofs that types like pairs etc. with preorders are monotone pair' : ∀ {PΓ PA PB} → MONOTONE PΓ PA → MONOTONE PΓ PB → MONOTONE PΓ (PA ×p PB) pair' (monotone f f-ismono) (monotone g g-ismono) = monotone (λ x → f x , g x) (λ x y z → f-ismono x y z , g-ismono x y z) fst' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ×p PB) → MONOTONE PΓ PA fst' (monotone f f-ismono) = monotone (λ x → fst (f x)) (λ x y z → fst (f-ismono x y z)) snd' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ×p PB) → MONOTONE PΓ PB snd' (monotone f f-ismono) = monotone (λ x → snd (f x)) (λ x y z → snd (f-ismono x y z)) lam' : ∀ {PΓ PA PB} → MONOTONE (PΓ ×p PA) PB → MONOTONE PΓ (PA ->p PB) lam' {Γ , preorder ≤Γ reflΓ transΓ pΓ} {a , preorder ≤a refla transa pa} {b , _} (monotone f f-ismono) = monotone (λ x → monotone (λ p → f (x , p)) (λ a b c → f-ismono (x , a) (x , b) (reflΓ x , c))) (λ x y z w → f-ismono (x , w) (y , w) (z , refla w)) app' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ->p PB) → MONOTONE PΓ PA → MONOTONE PΓ PB app' {Γ , preorder ≤Γ reflΓ transΓ pΓ} {a , preorder ≤a refla transa pa} {b , preorder ≤b reflb transb pb} (monotone f f-ismono) (monotone g g-ismono) = monotone (λ x → Monotone.f (f x) (g x)) (λ x y z → transb (Monotone.f (f x) (g x)) (Monotone.f (f y) (g x)) (Monotone.f (f y) (g y)) (f-ismono x y z (g x)) (Monotone.is-monotone (f y) (g x) (g y) (g-ismono x y z))) unlam' : ∀ {PΓ PA PB} → MONOTONE PΓ (PA ->p PB) → MONOTONE (PΓ ×p PA) PB unlam' {Γ , preorder ≤Γ reflΓ transΓ pΓ} {a , preorder ≤a refla transa pa} {b , preorder ≤b reflb transb pb} (monotone f f-ismono) = monotone (λ x → Monotone.f (f (fst x)) (snd x)) (λ x y x₁ → transb (Monotone.f (f (fst x)) (snd x)) (Monotone.f (f (fst x)) (snd y)) (Monotone.f (f (fst y)) (snd y)) (Monotone.is-monotone (f (fst x)) (snd x) (snd y) (snd x₁)) (f-ismono (fst x) (fst y) (fst x₁) (snd y))) z' : ∀ {PΓ} → MONOTONE PΓ PN z' = monotone (λ x → Z) (λ x y x₁ → <>) suc' : ∀ {PΓ} → MONOTONE PΓ PN → MONOTONE PΓ PN suc' {Γ , preorder ≤ refl trans pΓ} (monotone f f-is-monotone) = monotone (λ x → S (f x)) (λ x y x₁ → f-is-monotone x y x₁) nil' : ∀ {PΓ PA} → MONOTONE PΓ (PL PA) nil' = monotone (λ x → []) (λ x y x₁ → <>) cons' : ∀ {PΓ PA} → MONOTONE PΓ PA → MONOTONE PΓ (PL PA) → MONOTONE PΓ (PL PA) cons' (monotone f is-monotone) (monotone f₁ is-monotone₁) = monotone (λ x → f x :: f₁ x) (λ x y x₁ → (is-monotone x y x₁) , (is-monotone₁ x y x₁)) lrec : ∀ {A C : Set} → (l : List A) → (nil : C) → (cons : A → List A → C → C) → C lrec [] nil cons = nil lrec (x :: l) nil cons = cons x l (lrec l nil cons) listrec-fix-args : ∀ {PΓ PA PC} → (enil : MONOTONE PΓ PC) → (econs : MONOTONE (((PΓ ×p PC) ×p PL PA) ×p PA) PC) → (x y : fst (PΓ ×p PL PA)) → (Preorder-str.≤ (snd (PΓ ×p PL PA)) x y) → Preorder-str.≤ (snd PC) (lrec (snd x) (Monotone.f enil (fst x)) (λ x₁ x₂ x₃ → Monotone.f econs (((fst x , x₃) , x₂) , x₁))) (lrec (snd y) (Monotone.f enil (fst x)) (λ x₁ x₂ x₃ → Monotone.f econs (((fst x , x₃) , x₂) , x₁))) listrec-fix-args {_} {_} {fst₂ , preorder ≤₂ refl₂ trans₂ p₂} enil _ (x , []) (y , []) p = refl₂ (Monotone.f enil x) listrec-fix-args _ _ (_ , []) (_ , x₁ :: ys) (_ , ()) listrec-fix-args _ _ (_ , x₁ :: xs) (_ , []) (_ , ()) listrec-fix-args {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} {fst₂ , preorder ≤₂ refl₂ trans₂ p3} enil (monotone f is-monotone) (x , x₁ :: xs) (y , x₂ :: ys) (x≤y , (hlt , tlt)) = is-monotone (((x , (lrec xs (Monotone.f enil x) (λ x₃ x₄ x₅ → f (((x , x₅) , x₄) , x₃)))) , xs) , x₁) (((x , lrec ys (Monotone.f enil x) (λ x₃ x₄ x₅ → f (((x , x₅) , x₄) , x₃))) , ys) , x₂) ((((refl x) , (listrec-fix-args enil (monotone f is-monotone) (x , xs) (y , ys) (x≤y , tlt))) , tlt) , hlt) listrec-fix-el : ∀ {PΓ PA PC} → (enil : MONOTONE PΓ PC) → (econs : MONOTONE (((PΓ ×p PC) ×p PL PA) ×p PA) PC) → (x y : fst (PΓ ×p PL PA)) → (Preorder-str.≤ (snd (PΓ ×p PL PA)) x y) → Preorder-str.≤ (snd PC) (lrec (snd y) (Monotone.f enil (fst x)) (λ x₁ x₂ x₃ → Monotone.f econs (((fst x , x₃) , x₂) , x₁))) (lrec (snd y) (Monotone.f enil (fst y)) (λ x₁ x₂ x₃ → Monotone.f econs (((fst y , x₃) , x₂) , x₁))) listrec-fix-el (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₃ , []) (fst₄ , []) (x≤y , <>) = is-monotone fst₃ fst₄ x≤y listrec-fix-el _ _ (_ , []) (_ , x₁ :: ys) (_ , ()) listrec-fix-el _ _ (_ , x₁ :: xs) (_ , []) (_ , ()) listrec-fix-el {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} {fst₂ , preorder ≤₂ refl₂ trans₂ p3} (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₃ , x :: xs) (fst₄ , y :: ys) (x≤y , hlt , tlt) = is-monotone₁ (((fst₃ , (lrec ys (f fst₃) (λ x₁ x₂ x₃ → f₁ (((fst₃ , x₃) , x₂) , x₁)))) , ys) , y) (((fst₄ , (lrec ys (f fst₄) (λ x₁ x₂ x₃ → f₁ (((fst₄ , x₃) , x₂) , x₁)))) , ys) , y) (((x≤y , listrec-fix-el {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} {fst₂ , preorder ≤₂ refl₂ trans₂ p3} (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₃ , xs) (fst₄ , ys) (x≤y , tlt)) , l-refl (preorder ≤₁ refl₁ trans₁ p2) ys) , (refl₁ y)) lrec-cong : ∀ {PΓ PA PC} → (enil enil' : MONOTONE PΓ PC) → (econs econs' : MONOTONE (((PΓ ×p PC) ×p PL PA) ×p PA) PC) → (x : fst (PΓ ×p PL PA)) → Preorder-str.≤ (snd (PΓ ->p PC)) enil enil' → Preorder-str.≤ (snd ((((PΓ ×p PC) ×p PL PA) ×p PA) ->p PC)) econs econs' → Preorder-str.≤ (snd PC) (lrec (snd x) (Monotone.f enil (fst x)) (λ x₁ x₂ x₃ → Monotone.f econs (((fst x , x₃) , x₂) , x₁))) (lrec (snd x) (Monotone.f enil' (fst x)) (λ x₁ x₂ x₃ → Monotone.f econs' (((fst x , x₃) , x₂) , x₁))) lrec-cong _ _ _ _ (x , []) p q = p x lrec-cong {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} {fst₂ , preorder ≤₂ refl₂ trans₂ p3} en en' ec ec' (x , x₁ :: l) p q = trans₂ (lrec (x₁ :: l) (Monotone.f en x) (λ x₂ x₃ x₄ → Monotone.f ec (((x , x₄) , x₃) , x₂))) (Monotone.f ec' (((x , lrec l (Monotone.f en x) (λ x₂ x₃ x₄ → Monotone.f ec (((x , x₄) , x₃) , x₂))) , l) , x₁)) (lrec (x₁ :: l) (Monotone.f en' x) (λ x₂ x₃ x₄ → Monotone.f ec' (((x , x₄) , x₃) , x₂))) (q (((x , lrec l (Monotone.f en x) (λ x₂ x₃ x₄ → Monotone.f ec (((x , x₄) , x₃) , x₂))) , l) , x₁)) (Monotone.is-monotone ec' (((x , lrec l (Monotone.f en x) (λ x₂ x₃ x₄ → Monotone.f ec (((x , x₄) , x₃) , x₂))) , l) , x₁) (((x , lrec l (Monotone.f en' x) (λ x₂ x₃ x₄ → Monotone.f ec' (((x , x₄) , x₃) , x₂))) , l) , x₁) ((((refl x) , (lrec-cong {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} {fst₂ , preorder ≤₂ refl₂ trans₂ p3} en en' ec ec' (x , l) p q)) , (l-refl (preorder ≤₁ refl₁ trans₁ p2) l)) , refl₁ x₁)) lrec' : ∀ {PΓ PA PC} → (enil : MONOTONE PΓ PC) → (econs : MONOTONE (((PΓ ×p PC) ×p PL PA) ×p PA) PC) → MONOTONE (PΓ ×p PL PA) PC lrec' {Γ , preorder ≤Γ reflΓ transΓ pΓ} {A , preorder ≤A reflA transA pa} {C , preorder ≤C reflC transC pc} (monotone enil is-monotone) (monotone econs is-monotone₁) = monotone (λ x → lrec (snd x) (enil (fst x)) (λ x₁ x₂ x₃ → econs ((((fst x) , x₃) , x₂) , x₁))) (λ x y x₁ → transC (lrec (snd x) (enil (fst x)) (λ x₂ x₃ x₄ → econs (((fst x , x₄) , x₃) , x₂))) (lrec (snd y) (enil (fst x)) (λ x₂ x₃ x₄ → econs (((fst x , x₄) , x₃) , x₂))) (lrec (snd y) (enil (fst y)) (λ x₂ x₃ x₄ → econs (((fst y , x₄) , x₃) , x₂))) (listrec-fix-args {Γ , preorder ≤Γ reflΓ transΓ pΓ} {A , preorder ≤A reflA transA pa} {C , preorder ≤C reflC transC pc} (monotone enil is-monotone) (monotone econs is-monotone₁) x y x₁) (listrec-fix-el {Γ , preorder ≤Γ reflΓ transΓ pΓ} {A , preorder ≤A reflA transA pa} {C , preorder ≤C reflC transC pc} (monotone enil is-monotone) (monotone econs is-monotone₁) x y x₁)) natrec : ∀{C : Set} → (base : C) → (step : Nat → C → C) → (n : Nat) → C natrec base step Z = base natrec base step (S n) = step n (natrec base step n) h-lem : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PN) ×p PC) PC) → (x y : fst (PΓ ×p PN)) → (∀ x → Preorder-str.≤ (snd PC) (Monotone.f e0 x) (Monotone.f e1 ((x , 0) , Monotone.f e0 x))) → Preorder-str.≤ (snd PΓ) (fst x) (fst y) → Preorder-str.≤ (snd PC) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , n) , x₂)) (snd x)) (natrec (Monotone.f e0 (fst y)) (λ n x₂ → Monotone.f e1 ((fst y , n) , x₂)) (snd x)) h-lem (monotone e0 e0-is-monotone) _ (x , Z) (y , m) p q = e0-is-monotone x y q h-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , S n) (y , m) p q = e1-is-monotone ((x , n) , natrec (e0 x) (λ n₁ x₂ → e1 ((x , n₁) , x₂)) n) ((y , n) , natrec (e0 y) (λ n₁ x₂ → e1 ((y , n₁) , x₂)) n) ((q , (Preorder-str.refl nat-p n)) , (h-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , n) (y , m) p q)) h-lem2-lem : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PN) ×p PC) PC) → (x : fst (PΓ ×p PN)) → (∀ x → Preorder-str.≤ (snd PC) (Monotone.f e0 x) (Monotone.f e1 ((x , 0) , Monotone.f e0 x))) → Preorder-str.≤ (snd PC) (Monotone.f e0 (fst x)) (Monotone.f e1 (((fst x) , (snd x)) , (natrec (Monotone.f e0 (fst x)) (λ x₁ x₂ → Monotone.f e1 (((fst x) , x₁) , x₂)) (snd x)))) h-lem2-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , Z) p = p x h-lem2-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , S n) p = transc (e0 x) (e1 ((x , 0) , e0 x)) (e1 ((x , (S n)) , (natrec (e0 x) (λ n₁ x₂ → e1 ((x , n₁) , x₂)) (S n)))) (p x) (e1-is-monotone ((x , 0) , e0 x) ((x , (S n)) , (natrec (e0 x) (λ x₁ x₂ → e1 ((x , x₁) , x₂)) (S n))) (((refl x) , <>) , h-lem2-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , n) p)) h-lem2 : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PN) ×p PC) PC) → (x y : fst (PΓ ×p PN)) → (∀ x → Preorder-str.≤ (snd PC) (Monotone.f e0 x) (Monotone.f e1 ((x , 0) , Monotone.f e0 x))) → Preorder-str.≤ (snd PN) (snd x) (snd y) → Preorder-str.≤ (snd PC) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , n) , x₂)) (snd x)) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , n) , x₂)) (snd y)) h-lem2 {_} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , Z) (y , Z) p q = reflc (e0 x) h-lem2 {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , Z) (y , S n) p q = h-lem2-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , n) (λ x₁ → p x₁) h-lem2 _ _ (x , S m) (y , Z) p () h-lem2 {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , S m) (y , S n) p q = e1-is-monotone ((x , m) , (natrec (e0 x) (λ x₁ x₂ → e1 ((x , x₁) , x₂)) m)) ((x , n) , natrec (e0 x) (λ x₁ x₂ → e1 ((x , x₁) , x₂)) n) (((refl x) , q) , (h-lem2 {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (x , m) (y , n) p q)) h-cong : ∀ {PΓ PC} → (e0 e0' : MONOTONE PΓ PC) → (e1 e1' : MONOTONE ((PΓ ×p PN) ×p PC) PC) → (x : fst (PΓ ×p PN)) → Preorder-str.≤ (snd (PΓ ->p PC)) e0 e0' → Preorder-str.≤ (snd (((PΓ ×p PN) ×p PC) ->p PC)) e1 e1' → Preorder-str.≤ (snd PC) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , n) , x₂)) (snd x)) (natrec (Monotone.f e0' (fst x)) (λ n x₂ → Monotone.f e1' ((fst x , n) , x₂)) (snd x)) h-cong {_} {_} e0 e0' e1 e1' (x , Z) p q = p x h-cong {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} e0 e0' (monotone e1 e1-is-monotone) (monotone e1' e1'-is-monotone) (x , S n) p q = trans₁ (natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , n₁) , x₂)) (S n)) (e1' ((x , n) , natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , n₁) , x₂)) n)) (natrec (Monotone.f e0' x) (λ n₁ x₂ → e1' ((x , n₁) , x₂)) (S n)) (q ((x , n) , natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , n₁) , x₂)) n)) (e1'-is-monotone ((x , n) , natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , n₁) , x₂)) n) ((x , n) , natrec (Monotone.f e0' x) (λ n₁ x₂ → e1' ((x , n₁) , x₂)) n) (((refl x) , (nat-refl n)) , h-cong {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} e0 e0' (monotone e1 e1-is-monotone) (monotone e1' e1'-is-monotone) (x , n) p q)) rec' : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PN) ×p PC) PC) → (∀ x → Preorder-str.≤ (snd PC) (Monotone.f e0 x) (Monotone.f e1 ((x , 0) , Monotone.f e0 x))) → MONOTONE (PΓ ×p PN) PC rec' {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) p = monotone (λ x → natrec (e0 (fst x)) (λ n x₂ → e1 ((fst x , n) , x₂)) (snd x)) (λ x y x₁ → transc (natrec (e0 (fst x)) (λ n x₂ → e1 ((fst x , n) , x₂)) (snd x)) (natrec (e0 (fst y)) (λ n x₂ → e1 ((fst y , n) , x₂)) (snd x)) (natrec (e0 (fst y)) (λ n x₂ → e1 ((fst y , n) , x₂)) (snd y)) (h-lem {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (fst x , snd x) (fst y , snd x) (λ x₂ → p x₂) (fst x₁)) (h-lem2 {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) (fst y , snd x) (fst y , snd y) (λ x₂ → p x₂) (snd x₁))) h-cong2 : ∀ {PΓ PC} → (e0 e0' : MONOTONE PΓ PC) → (e1 e1' : MONOTONE ((PΓ ×p PN) ×p PC) PC) → Preorder-str.≤ (snd (PΓ ->p PC)) e0 e0' → Preorder-str.≤ (snd (((PΓ ×p PN) ×p PC) ->p PC)) e1 e1' → (x : ∀ x₁ → Preorder-str.≤ (snd PC) (Monotone.f e0 x₁) (Monotone.f e1 ((x₁ , 0) , Monotone.f e0 x₁))) → (y : ∀ x₁ → Preorder-str.≤ (snd PC) (Monotone.f e0' x₁) (Monotone.f e1' ((x₁ , 0) , Monotone.f e0' x₁))) → Preorder-str.≤ (snd ((PΓ ×p PN) ->p PC)) (rec' e0 e1 x) (rec' e0' e1' y) h-cong2 {_} {_} _ _ _ _ d1 d2 p q (el , Z) = d1 el h-cong2 {_} {_} e0 e0' e1 e1' d1 d2 p q (el , S n) = h-cong e0 e0' e1 e1' (el , (S n)) d1 d2 ♭h-fix-args : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PC) ×p (Nat , ♭nat-p)) PC) → (x y : fst (PΓ ×p (Nat , ♭nat-p))) → nat-eq (snd x) (snd y) → Preorder-str.≤ (snd PC) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , x₂) , n)) (snd x)) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , x₂) , n)) (snd y)) ♭h-fix-args {_} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} (monotone f is-monotone) (monotone g is-monotone₁) (x , Z) (y , Z) p = refl₁ (f x) ♭h-fix-args (monotone f is-monotone) (monotone g is-monotone₁) (x , Z) (y , S n) () ♭h-fix-args (monotone f is-monotone) (monotone g is-monotone₁) (x , S m) (y , Z) () ♭h-fix-args {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} (monotone f is-monotone) (monotone g is-monotone₁) (x , S m) (y , S n) p = is-monotone₁ ((x , (natrec (f x) (λ n₁ x₂ → g ((x , x₂) , n₁)) m)) , m) ((x , (natrec (f x) (λ n₁ x₂ → g ((x , x₂) , n₁)) n)) , n) (((refl x) , (♭h-fix-args {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} (monotone f is-monotone) (monotone g is-monotone₁) (x , m) (y , n) p)) , p) ♭h-fix-el : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PC) ×p (Nat , ♭nat-p)) PC) → (x y : fst (PΓ ×p (Nat , ♭nat-p))) → Preorder-str.≤ (snd (PΓ ×p (Nat , ♭nat-p))) x y → Preorder-str.≤ (snd PC) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , x₂) , n)) (snd y)) (natrec (Monotone.f e0 (fst y)) (λ n x₂ → Monotone.f e1 ((fst y , x₂) , n)) (snd y)) ♭h-fix-el {fst , preorder ≤ refl trans p≤} {_} (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₂ , Z) (fst₃ , Z) (p1 , p2) = is-monotone fst₂ fst₃ p1 ♭h-fix-el (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₂ , Z) (fst₃ , S n) (fst₄ , ()) ♭h-fix-el (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₂ , S m) (fst₃ , Z) (fst₄ , ()) ♭h-fix-el {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₂ , S m) (fst₃ , S n) (fst₄ , snd) = is-monotone₁ ((fst₂ , (natrec (f fst₂) (λ n₁ x₂ → f₁ ((fst₂ , x₂) , n₁)) n)) , n) ((fst₃ , (natrec (f fst₃) (λ n₁ x₂ → f₁ ((fst₃ , x₂) , n₁)) n)) , n) ((fst₄ , (♭h-fix-el {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} (monotone f is-monotone) (monotone f₁ is-monotone₁) (fst₂ , m) (fst₃ , n) (fst₄ , snd))) , (♭nat-refl n)) ♭h-cong : ∀ {PΓ PC} → (e0 e0' : MONOTONE PΓ PC) → (e1 e1' : MONOTONE ((PΓ ×p PC) ×p (Nat , ♭nat-p)) PC) → (x : fst (PΓ ×p (Nat , ♭nat-p))) → Preorder-str.≤ (snd (PΓ ->p PC)) e0 e0' → Preorder-str.≤ (snd (((PΓ ×p PC) ×p (Nat , ♭nat-p)) ->p PC)) e1 e1' → Preorder-str.≤ (snd PC) (natrec (Monotone.f e0 (fst x)) (λ n x₂ → Monotone.f e1 ((fst x , x₂) , n)) (snd x)) (natrec (Monotone.f e0' (fst x)) (λ n x₂ → Monotone.f e1' ((fst x , x₂) , n)) (snd x)) ♭h-cong {_} {_} e0 e0' e1 e1' (x , Z) p q = p x ♭h-cong {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} e0 e0' (monotone e1 e1-is-monotone) (monotone e1' e1'-is-monotone) (x , S n) p q = trans₁ (natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , x₂) , n₁)) (S n)) (e1' ((x , natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , x₂) , n₁)) n) , n)) (natrec (Monotone.f e0' x) (λ n₁ x₂ → e1' ((x , x₂) , n₁)) (S n)) (q ((x , natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , x₂) , n₁)) n) , n)) (e1'-is-monotone ((x , natrec (Monotone.f e0 x) (λ n₁ x₂ → e1 ((x , x₂) , n₁)) n) , n) ((x , natrec (Monotone.f e0' x) (λ n₁ x₂ → e1' ((x , x₂) , n₁)) n) , n) (((refl x) , ♭h-cong {fst , preorder ≤ refl trans p1} {fst₁ , preorder ≤₁ refl₁ trans₁ p2} e0 e0' (monotone e1 e1-is-monotone) (monotone e1' e1'-is-monotone) (x , n) p q) , ♭nat-refl n)) ♭rec' : ∀ {PΓ PC} → (e0 : MONOTONE PΓ PC) → (e1 : MONOTONE ((PΓ ×p PC) ×p (Nat , ♭nat-p)) PC) → MONOTONE (PΓ ×p (Nat , ♭nat-p)) PC ♭rec' {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) = monotone (λ x → natrec (e0 (fst x)) (λ n x₂ → e1 (((fst x) , x₂) , n)) (snd x)) (λ x y x₁ → transc (natrec (e0 (fst x)) (λ n x₂ → e1 ((fst x , x₂) , n)) (snd x)) (natrec (e0 (fst x)) (λ n x₂ → e1 ((fst x , x₂) , n)) (snd y)) (natrec (e0 (fst y)) (λ n x₂ → e1 ((fst y , x₂) , n)) (snd y)) (♭h-fix-args {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) x y (snd x₁)) (♭h-fix-el {Γ , preorder ≤ refl trans p1} {C , preorder ≤c reflc transc p2} (monotone e0 e0-is-monotone) (monotone e1 e1-is-monotone) x y x₁)) --- extend Preorders so you can impose max on them if type has maximums record Preorder-max-str {A : Set} (PA : Preorder-str A) : Set where constructor preorder-max field max : A → A → A max-l : ∀ l r → Preorder-str.≤ PA l (max l r) max-r : ∀ l r → Preorder-str.≤ PA r (max l r) max-lub : ∀ k l r → Preorder-str.≤ PA l k → Preorder-str.≤ PA r k → Preorder-str.≤ PA (max l r) k nat-max : Nat → Nat → Nat nat-max Z n = n nat-max (S m) Z = S m nat-max (S m) (S n) = S (nat-max m n) nat-max-l : ∀ (l r : Nat) → ≤nat l (nat-max l r) nat-max-l Z Z = <> nat-max-l Z (S n) = <> nat-max-l (S m) Z = nat-refl m nat-max-l (S m) (S n) = nat-max-l m n nat-max-r : ∀ (l r : Nat) → ≤nat r (nat-max l r) nat-max-r Z Z = <> nat-max-r Z (S n) = nat-refl n nat-max-r (S m) Z = <> nat-max-r (S m) (S n) = nat-max-r m n nat-max-lub : ∀ (k l r : Nat) → ≤nat l k → ≤nat r k → ≤nat (nat-max l r) k nat-max-lub Z Z Z p q = <> nat-max-lub Z Z (S r) p () nat-max-lub Z (S l) Z () q nat-max-lub Z (S l) (S r) () q nat-max-lub (S k) Z Z p q = <> nat-max-lub (S k) Z (S r) p q = q nat-max-lub (S k) (S l) Z p q = p nat-max-lub (S k) (S l) (S r) p q = nat-max-lub k l r p q nat-pM : Preorder-max-str nat-p nat-pM = preorder-max nat-max nat-max-l nat-max-r nat-max-lub unit-pM : Preorder-max-str (snd unit-p) unit-pM = preorder-max (λ x x₁ → <>) (λ l r → <>) (λ l r → <>) (λ k l r x x₁ → <>) axb-max : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → Preorder-max-str PA → Preorder-max-str PB → (A × B) → (A × B) → (A × B) axb-max PA PB (a1 , b1) (a2 , b2) = Preorder-max-str.max PA a1 a2 , Preorder-max-str.max PB b1 b2 axb-max-l : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → (PMA : Preorder-max-str PA) → (PMB : Preorder-max-str PB) → (l r : (A × B)) → ≤axb PA PB l (axb-max PMA PMB l r) axb-max-l PMA PMB (a1 , b1) (a2 , b2) = Preorder-max-str.max-l PMA a1 a2 , Preorder-max-str.max-l PMB b1 b2 axb-max-r : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → (PMA : Preorder-max-str PA) → (PMB : Preorder-max-str PB) → (l r : (A × B)) → ≤axb PA PB r (axb-max PMA PMB l r) axb-max-r PMA PMB (a1 , b1) (a2 , b2) = Preorder-max-str.max-r PMA a1 a2 , Preorder-max-str.max-r PMB b1 b2 axb-max-lub : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → (PMA : Preorder-max-str PA) → (PMB : Preorder-max-str PB) → (k l r : (A × B)) → ≤axb PA PB l k → ≤axb PA PB r k → ≤axb PA PB (axb-max PMA PMB l r) k axb-max-lub PMA PMB (k1 , k2) (l1 , l2) (r1 , r2) (l1<k1 , l2<k2) (r1<k1 , r2<k2) = Preorder-max-str.max-lub PMA k1 l1 r1 l1<k1 r1<k1 , Preorder-max-str.max-lub PMB k2 l2 r2 l2<k2 r2<k2 axb-pM : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → Preorder-max-str PA → Preorder-max-str PB → Preorder-max-str (axb-p A B PA PB) axb-pM PMA PMB = preorder-max (axb-max PMA PMB) (axb-max-l PMA PMB) (axb-max-r PMA PMB) (axb-max-lub PMA PMB) mono-max : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → Preorder-max-str PB → (Monotone A B PA PB) → (Monotone A B PA PB) → (Monotone A B PA PB) mono-max {A} {B} {PA} {PB} PMB (monotone f f-ismono) (monotone g g-ismono) = monotone (λ x → Preorder-max-str.max PMB (f x) (g x)) (λ x y x₁ → Preorder-max-str.max-lub PMB (Preorder-max-str.max PMB (f y) (g y)) (f x) (g x) (Preorder-str.trans PB (f x) (f y) (Preorder-max-str.max PMB (f y) (g y)) (f-ismono x y x₁) (Preorder-max-str.max-l PMB (f y) (g y))) (Preorder-str.trans PB (g x) (g y) (Preorder-max-str.max PMB (f y) (g y)) (g-ismono x y x₁) (Preorder-max-str.max-r PMB (f y) (g y)))) mono-max-l : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → (PMB : Preorder-max-str PB) → (l r : Monotone A B PA PB) → ≤mono PA PB l (mono-max PMB l r) mono-max-l PMB f g = λ x → Preorder-max-str.max-l PMB (Monotone.f f x) (Monotone.f g x) mono-max-r : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → (PMB : Preorder-max-str PB) → (l r : Monotone A B PA PB) → ≤mono PA PB r (mono-max PMB l r) mono-max-r PMB f g = λ x → Preorder-max-str.max-r PMB (Monotone.f f x) (Monotone.f g x) mono-max-lub : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → (PMB : Preorder-max-str PB) → (k l r : Monotone A B PA PB) → ≤mono PA PB l k → ≤mono PA PB r k → ≤mono PA PB (mono-max PMB l r) k mono-max-lub PMB f g h p q = λ x → Preorder-max-str.max-lub PMB (Monotone.f f x) (Monotone.f g x) (Monotone.f h x) (p x) (q x) mono-pM : ∀ {A B : Set} {PA : Preorder-str A} {PB : Preorder-str B} → Preorder-max-str PB → Preorder-max-str (mono-p A B PA PB) mono-pM PMB = preorder-max (mono-max PMB) (mono-max-l PMB) (mono-max-r PMB) (mono-max-lub PMB) --??? PREORDER-MAX = (Σ (λ (A : Set) → (PA : Preorder-str A) → Preorder-max-str PA)) -- stuff I need for monotonicity of plus nat-lemma3 : ∀ (x : Nat) → ≤nat x (S x) nat-lemma3 Z = <> nat-lemma3 (S x) = nat-lemma3 x plus-lem' : ∀ (a b c : Nat) → ≤nat a b → ≤nat a (b + c) plus-lem' Z Z Z <> = <> plus-lem' Z Z (S c) <> = <> plus-lem' Z (S b) c x = <> plus-lem' (S a) Z c () plus-lem' (S a) (S b) c x = plus-lem' a b c x plus-rh-S : (n m : Nat) → ≤nat (S (n + m)) (n + S m) plus-rh-S Z m = nat-refl m plus-rh-S (S n) m = plus-rh-S n m +-unit : ∀ (a : Nat) → ≤nat (a + 0) a +-unit Z = <> +-unit (S a) = +-unit a +-comm : ∀ (a b : Nat) → ≤nat (a + b) (b + a) +-comm Z b = plus-lem' b b Z (nat-refl b) +-comm (S a) b = nat-trans (S (a + b)) (S (b + a)) (b + S a) (+-comm a b) (plus-rh-S b a) plus-assoc : ∀ (a b c : Nat) → ≤nat (a + (b + c)) ((a + b) + c) plus-assoc Z b c = nat-refl (b + c) plus-assoc (S a) b c = plus-assoc a b c plus-assoc' : ∀ (a b c : Nat) → ≤nat ((a + b) + c) (a + (b + c)) plus-assoc' Z b c = nat-refl (b + c) plus-assoc' (S a) b c = plus-assoc' a b c mutual plus-lem'' : ∀ (a b : Nat) → ≤nat a (b + a) plus-lem'' a Z = nat-refl a plus-lem'' Z (S b) = <> plus-lem'' (S a) (S b) = nat-trans a (b + a) (b + S a) (plus-lem'' a b) (plus-lem b a b (S a) (nat-refl b) (nat-lemma3 a)) plus-lem : ∀ (a b c d : Nat) → ≤nat a c → ≤nat b d → ≤nat (a + b) (c + d) plus-lem Z b Z d p q = q plus-lem Z Z (S c) Z p q = <> plus-lem Z (S b) (S c) Z p () plus-lem Z Z (S c) (S d) p q = <> plus-lem Z (S b) (S c) (S d) p q = nat-trans b d (c + S d) q (nat-trans d (S d) (c + S d) (nat-lemma3 d) (plus-lem'' (S d) c)) plus-lem (S a) b Z d () q plus-lem (S a) b (S c) d p q = plus-lem a b c d p q el : PREORDER → Set el = fst PREORDER≤ : (PA : PREORDER) → el PA → el PA → Set PREORDER≤ PA = Preorder-str.≤ (snd PA)
{ "alphanum_fraction": 0.5173930865, "avg_line_length": 55.8702290076, "ext": "agda", "hexsha": "7663d326673d538f6c1192125584cb8f4b16bc33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/complexity-final/Preorder.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/Preorder.agda", "max_line_length": 177, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/complexity-final/Preorder.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 15510, "size": 36595 }
module Common.Level where open import Agda.Primitive public
{ "alphanum_fraction": 0.8360655738, "avg_line_length": 15.25, "ext": "agda", "hexsha": "854dcb3fa39f4d1d0e18091d8e87e370ecad8aa9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Termination/Common/Level.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Termination/Common/Level.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Termination/Common/Level.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 61 }
open import Relation.Binary.Core module PLRTree.Drop.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List hiding (drop) open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Equivalence A open import PLRTree {A} open import PLRTree.Complete {A} open import PLRTree.Compound {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.Drop.Complete _≤_ tot≤ open import PLRTree.DropLast.Complete _≤_ tot≤ open import PLRTree.DropLast.Permutation _≤_ tot≤ open import PLRTree.Equality {A} open import PLRTree.Order.Properties {A} open import PLRTree.Push.Permutation _≤_ tot≤ lemma-drop-++ : {t : Tag}{x : A}{l r : PLRTree} → Complete (node t x l r) → flatten (drop (node t x l r)) ∼ (flatten l ++ flatten r) lemma-drop-++ (perfect {leaf} {leaf} x leaf leaf ≃lf) = ∼[] lemma-drop-++ (perfect {node perfect x' l' r'} {node perfect x'' l'' r''} x cl cr (≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'')) = let _l = node perfect x' l' r' ; _r = node perfect x'' l'' r'' ; _l≃r = ≃nd x' x'' l'≃r' l''≃r'' l'≃l'' ; cxlr = perfect x cl cr _l≃r ; z = last (node perfect x _l _r) compound ; t' = dropLast (node perfect x _l _r) ; ct' = right x cl (lemma-dropLast-complete cr) (lemma-dropLast-≃ _l≃r compound) in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) (lemma-dropLast-∼ cxlr) lemma-drop-++ (left {l} {r} x cl cr l⋘r) with l | r | l⋘r | lemma-dropLast-⋘ l⋘r ... | leaf | _ | () | _ ... | node perfect x' l' r' | _ | () | _ ... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₁ ld⋘r with dropLast (node left x' l' r') | ld⋘r | lemma-dropLast-complete cl | lemma-dropLast-∼ (left x cl cr (l⋘ x' x'' l'⋘r' l''≃r'' r'≃l'')) ... | leaf | () | _ | _ ... | node perfect _ _ _ | () | _ | _ ... | node left x''' l''' r''' | ld⋘r' | cld | fzt'∼flfr = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node left x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node right x''' l''' r''' | ld⋘r' | cld | fzt'∼flfr = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node right x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr lemma-drop-++ (left x cl cr l⋘r) | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₂ ld≃r with dropLast (node left x' l' r') | ld≃r | lemma-dropLast-complete cl | lemma-dropLast-∼ (left x cl cr (l⋘ x' x'' l'⋘r' l''≃r'' r'≃l'')) ... | leaf | () | _ | _ ... | node perfect x''' l''' r''' | ld≃r' | cld | fzt'∼flfr = let z = last (node left x (node left x' l' r') (node perfect x'' l'' r'')) compound ; t' = node perfect x (node perfect x''' l''' r''') (node perfect x'' l'' r'') ; ct' = perfect x cld cr ld≃r' in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node left _ _ _ | () | _ | _ ... | node right _ _ _ | () | _ | _ lemma-drop-++ (left x cl cr l⋘r) | node right x' l' r' | leaf | () | _ lemma-drop-++ (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₁ () lemma-drop-++ (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₂ x'≃x''' = let z = last (node left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) compound ; t' = dropLast (node left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) ; ct' = perfect x (perfect x' leaf leaf ≃lf) cr x'≃x''' ; fzt'∼flfr = lemma-dropLast-∼ (left x cl cr (x⋘ x' x'' x''')) in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr lemma-drop-++ (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₁ ld⋘r with dropLast (node right x' l' r') | ld⋘r | lemma-dropLast-complete cl | lemma-dropLast-∼ (left x cl cr (r⋘ x' x'' l⋙r l''≃r'' l'⋗l'')) ... | leaf | () | _ | _ ... | node perfect _ _ _ | () | _ | _ ... | node left x''' l''' r''' | ld⋘r' | cld | fzt'∼flfr = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node left x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node right x''' l''' r''' | ld⋘r' | cld | fzt'∼flfr = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node left x (node right x''' l''' r''') (node perfect x'' l'' r'') ; ct' = left x cld cr ld⋘r' in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr lemma-drop-++ (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₂ ld≃r with dropLast (node right x' l' r') | ld≃r | lemma-dropLast-complete cl | lemma-dropLast-∼ (left x cl cr (r⋘ x' x'' l⋙r l''≃r'' l'⋗l'')) ... | leaf | () | _ | _ ... | node perfect x''' l''' r''' | ld≃r' | cld | fzt'∼flfr = let z = last (node left x (node right x' l' r') (node perfect x'' l'' r'')) compound ; t' = node perfect x (node perfect x''' l''' r''') (node perfect x'' l'' r'') ; ct' = perfect x cld cr ld≃r' in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node left _ _ _ | () | _ | _ ... | node right _ _ _ | () | _ | _ lemma-drop-++ (left x cl cr l⋘r) | node right x' l' r' | node left x'' l'' r'' | () | _ lemma-drop-++ (left x cl cr l⋘r) | node right x' l' r' | node right x'' l'' r'' | () | _ lemma-drop-++ (right {l} {r} x cl cr l⋙r) with l | r | l⋙r | lemma-dropLast-⋙ l⋙r ... | leaf | leaf | ⋙p () | _ ... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') | _ = ∼x /head /head ∼[] ... | node perfect _ _ (node _ _ _ _) | leaf | ⋙p () | _ ... | node perfect _ (node _ _ _ _) _ | leaf | ⋙p () | _ ... | node left _ _ _ | leaf | ⋙p () | _ ... | node right _ _ _ | leaf | ⋙p () | _ ... | leaf | node perfect _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') | _ = let z = last (node right x (node perfect x' l' r') (node perfect x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; ct' = left x (lemma-dropLast-complete cl) cr (lemma-dropLast-⋗ (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l'') compound) ; fzt'∼flfr = lemma-dropLast-∼ (right x cl cr (⋙p (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l''))) in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node left _ _ _ | node perfect _ _ _ | ⋙p () | _ ... | node right _ _ _ | node perfect _ _ _ | ⋙p () | _ ... | leaf | node left _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node left x'' l'' r'' | _l⋙r | inj₁ l⋙rd = let z = last (node right x (node perfect x' l' r') (node left x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node left x'' l'' r'')) ; ct' = right x cl (lemma-dropLast-complete cr) l⋙rd ; fzt'∼flfr = lemma-dropLast-∼ (right x cl cr _l⋙r) in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node perfect _ _ _ | node left _ _ _ | _ | inj₂ () ... | node left _ _ _ | node left _ _ _ | ⋙p () | _ ... | node right _ _ _ | node left _ _ _ | ⋙p () | _ ... | leaf | node right _ _ _ | ⋙p () | _ ... | node perfect x' l' r' | node right x'' l'' r'' | _l⋙r | inj₁ l⋙rd = let z = last (node right x (node perfect x' l' r') (node right x'' l'' r'')) compound ; t' = dropLast (node right x (node perfect x' l' r') (node right x'' l'' r'')) ; ct' = right x cl (lemma-dropLast-complete cr) l⋙rd ; fzt'∼flfr = lemma-dropLast-∼ (right x cl cr _l⋙r) in trans∼ (lemma-push-∼ (lemma-setRoot-complete z ct') (≺-wf (setRoot z t'))) fzt'∼flfr ... | node perfect _ _ _ | node right _ _ _ | _ | inj₂ () ... | node left _ _ _ | node right _ _ _ | ⋙p () | _ ... | node right _ _ _ | node right _ _ _ | ⋙p () | _ lemma-drop-∼ : {t : Tag}{x : A}{l r : PLRTree} → Complete (node t x l r) → (x ∷ flatten (drop (node t x l r))) ∼ flatten (node t x l r) lemma-drop-∼ (perfect x cl cr l≃r) = ∼x /head /head (lemma-drop-++ (perfect x cl cr l≃r)) lemma-drop-∼ (left x cl cr l⋘r) = ∼x /head /head (lemma-drop-++ (left x cl cr l⋘r)) lemma-drop-∼ (right x cl cr l⋙r) = ∼x /head /head (lemma-drop-++ (right x cl cr l⋙r))
{ "alphanum_fraction": 0.4941622286, "avg_line_length": 70.2446043165, "ext": "agda", "hexsha": "9f374395c93282a9504837149336149145dfe36d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Drop/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Drop/Permutation.agda", "max_line_length": 149, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Drop/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 3661, "size": 9764 }
-- Classical propositional logic, PHOAS approach, initial encoding module Pi.Cp where -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set1 Cx = Ty -> Set isTrue : Ty -> Cx -> Set isTrue a tc = tc a -- Terms module Cp where infixl 1 _$_ data Tm (tc : Cx) : Ty -> Set where var : forall {a} -> isTrue a tc -> Tm tc a lam' : forall {a b} -> (isTrue a tc -> Tm tc b) -> Tm tc (a => b) _$_ : forall {a b} -> Tm tc (a => b) -> Tm tc a -> Tm tc b pair' : forall {a b} -> Tm tc a -> Tm tc b -> Tm tc (a && b) fst : forall {a b} -> Tm tc (a && b) -> Tm tc a snd : forall {a b} -> Tm tc (a && b) -> Tm tc b left : forall {a b} -> Tm tc a -> Tm tc (a || b) right : forall {a b} -> Tm tc b -> Tm tc (a || b) case' : forall {a b c} -> Tm tc (a || b) -> (isTrue a tc -> Tm tc c) -> (isTrue b tc -> Tm tc c) -> Tm tc c abort' : forall {a} -> (isTrue (NOT a) tc -> Tm tc FALSE) -> Tm tc a lam'' : forall {tc a b} -> (Tm tc a -> Tm tc b) -> Tm tc (a => b) lam'' f = lam' \x -> f (var x) case'' : forall {tc a b c} -> Tm tc (a || b) -> (Tm tc a -> Tm tc c) -> (Tm tc b -> Tm tc c) -> Tm tc c case'' xy f g = case' xy (\x -> f (var x)) (\y -> g (var y)) abort'' : forall {tc a} -> (Tm tc (NOT a) -> Tm tc FALSE) -> Tm tc a abort'' f = abort' \na -> f (var na) syntax lam'' (\a -> b) = lam a => b syntax pair' x y = [ x , y ] syntax case'' xy (\x -> z1) (\y -> z2) = case xy of x => z1 or y => z2 syntax abort'' (\x -> y) = abort x => y Thm : Ty -> Set1 Thm a = forall {tc} -> Tm tc a open Cp public
{ "alphanum_fraction": 0.4476945959, "avg_line_length": 28.4084507042, "ext": "agda", "hexsha": "c5bd9ccd980af47bc784043723660fc586eb24a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Pi/Cp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Pi/Cp.agda", "max_line_length": 112, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Pi/Cp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 795, "size": 2017 }
module Inductions where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_) open import Data.Nat using (ℕ; _+_; _*_; _∸_) hiding (zero) renaming (suc to succ)
{ "alphanum_fraction": 0.6970684039, "avg_line_length": 38.375, "ext": "agda", "hexsha": "60786ece9e1395653ad5637bf4619be503005df7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z", "max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "dubinsky/intellij-dtlc", "max_forks_repo_path": "testData/parse/agda/open using.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "dubinsky/intellij-dtlc", "max_issues_repo_path": "testData/parse/agda/open using.agda", "max_line_length": 82, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "dubinsky/intellij-dtlc", "max_stars_repo_path": "testData/parse/agda/open using.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z", "num_tokens": 114, "size": 307 }
------------------------------------------------------------------------ -- Properties satisfied by decidable total orders ------------------------------------------------------------------------ open import Relation.Binary module Relation.Binary.Props.DecTotalOrder (dt : DecTotalOrder) where open Relation.Binary.DecTotalOrder dt hiding (trans) import Relation.Binary.NonStrictToStrict as Conv open Conv _≈_ _≤_ strictTotalOrder : StrictTotalOrder strictTotalOrder = record { isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = trans isPartialOrder ; compare = trichotomous Eq.sym _≟_ antisym total ; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈ } } open StrictTotalOrder strictTotalOrder public
{ "alphanum_fraction": 0.5893782383, "avg_line_length": 32.1666666667, "ext": "agda", "hexsha": "8e320cc25651c3c652994286668fee89adf616f0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Props/DecTotalOrder.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Props/DecTotalOrder.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Props/DecTotalOrder.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 166, "size": 772 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Free.Evaluation (Σ : Signature) where open import Fragment.Algebra.Free.Monad Σ open import Fragment.Algebra.Algebra Σ open import Fragment.Algebra.Free.Base Σ open import Fragment.Algebra.Homomorphism Σ open import Fragment.Setoid.Morphism as Morphism open import Level using (Level) open import Data.Empty using (⊥) open import Data.Nat using (ℕ; suc) open import Data.Fin using (Fin; zero; suc) open import Data.Vec using (Vec; []; _∷_; map) open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise; []; _∷_) open import Relation.Binary using (Setoid) import Relation.Binary.PropositionalEquality as PE private variable a b ℓ₁ ℓ₂ : Level module _ (A : Algebra {a} {ℓ₁}) where private open Setoid ∥ A ∥/≈ open import Relation.Binary.Reasoning.Setoid ∥ A ∥/≈ mutual map-∣eval∣ : ∀ {n} → Vec (Term ∥ A ∥) n → Vec ∥ A ∥ n map-∣eval∣ [] = [] map-∣eval∣ (x ∷ xs) = ∣eval∣ x ∷ map-∣eval∣ xs ∣eval∣ : Term ∥ A ∥ → ∥ A ∥ ∣eval∣ (atom x) = x ∣eval∣ (term f xs) = A ⟦ f ⟧ (map-∣eval∣ xs) mutual map-∣eval∣-cong : ∀ {n} {xs ys : Vec (Term ∥ A ∥) n} → Pointwise (_~_ ∥ A ∥/≈) xs ys → Pointwise ≈[ A ] (map-∣eval∣ xs) (map-∣eval∣ ys) map-∣eval∣-cong [] = [] map-∣eval∣-cong (p ∷ ps) = ∣eval∣-cong p ∷ map-∣eval∣-cong ps ∣eval∣-cong : Congruent (_~_ ∥ A ∥/≈) ≈[ A ] ∣eval∣ ∣eval∣-cong (atom p) = p ∣eval∣-cong {x = term op _} (term p) = (A ⟦ op ⟧-cong) (map-∣eval∣-cong p) ∣eval∣⃗ : Herbrand ∥ A ∥/≈ ↝ ∥ A ∥/≈ ∣eval∣⃗ = record { ∣_∣ = ∣eval∣ ; ∣_∣-cong = ∣eval∣-cong } ∣eval∣-args≡map : ∀ {n} {xs : Vec (Term ∥ A ∥) n} → Pointwise _≈_ (map-∣eval∣ xs) (map ∣eval∣ xs) ∣eval∣-args≡map {xs = []} = [] ∣eval∣-args≡map {xs = x ∷ xs} = refl ∷ ∣eval∣-args≡map ∣eval∣-hom : Homomorphic (Free ∥ A ∥/≈) A ∣eval∣ ∣eval∣-hom f [] = refl ∣eval∣-hom f (x ∷ xs) = sym ((A ⟦ f ⟧-cong) (∣eval∣-args≡map {xs = x ∷ xs})) eval : Free ∥ A ∥/≈ ⟿ A eval = record { ∣_∣⃗ = ∣eval∣⃗ ; ∣_∣-hom = ∣eval∣-hom } fold : ∀ {A : Setoid a ℓ₁} (B : Algebra {b} {ℓ₂}) → (A ↝ ∥ B ∥/≈) → Free A ⟿ B fold B f = (eval B) ⊙ bind (unit · f) Env : (A : Algebra {a} {ℓ₁}) → ℕ → Set _ Env A n = Fin n → ∥ A ∥ env : ∀ {A : Algebra {a} {ℓ₁}} {n} → (Γ : Vec ∥ A ∥ n) → Env A n env {A = _} {suc n} (x ∷ _) zero = x env {A = A} {suc n} (_ ∷ xs) (suc i) = env {A = A} xs i module _ {n} {S : Setoid a ℓ₁} (T : Setoid b ℓ₂) (f : S ↝ T) (g : Fin n → Setoid.Carrier T) where private open Setoid S renaming (Carrier to A) using () open Setoid T renaming (Carrier to B) ∣sub∣ : BT A n → B ∣sub∣ (sta x) = Morphism.∣ f ∣ x ∣sub∣ (dyn x) = g x ∣sub∣-cong : Congruent (_≍_ S n) _≈_ ∣sub∣ ∣sub∣-cong (sta p) = Morphism.∣ f ∣-cong p ∣sub∣-cong (dyn q) = reflexive (PE.cong g q) sub : Atoms S n ↝ T sub = record { ∣_∣ = ∣sub∣ ; ∣_∣-cong = ∣sub∣-cong } module _ {n} {A : Setoid a ℓ₁} (B : Algebra {b} {ℓ₂}) (f : A ↝ ∥ B ∥/≈) (g : Fin n → ∥ B ∥) where subst : Free (Atoms A n) ⟿ B subst = fold B (sub ∥ B ∥/≈ f g) ignore : ∀ (A : Setoid a ℓ₁) → PE.setoid ⊥ ↝ A ignore _ = record { ∣_∣ = λ () ; ∣_∣-cong = λ {} } inst : ∀ {n} (A : Algebra {a} {ℓ₁}) → Env A n → F n ⟿ A inst {n = n} A θ = subst A (ignore ∥ A ∥/≈) θ
{ "alphanum_fraction": 0.4890139335, "avg_line_length": 28.4885496183, "ext": "agda", "hexsha": "3af2b9aeb6b582421e1db568618dd2459ad8f680", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Algebra/Free/Evaluation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Algebra/Free/Evaluation.agda", "max_line_length": 80, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Algebra/Free/Evaluation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 1617, "size": 3732 }
{-# OPTIONS --safe #-} module Definition.Typed.EqualityRelation where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Weakening using (_∷_⊆_) -- Generic equality relation used with the logical relation record EqRelSet : Set₁ where constructor eqRel field --------------- -- Relations -- --------------- -- Equality of types _⊢_≅_^_ : Con Term → (A B : Term) → TypeInfo → Set -- Equality of terms _⊢_≅_∷_^_ : Con Term → (t u A : Term) → TypeInfo → Set -- Equality of neutral terms _⊢_~_∷_^_ : Con Term → (t u A : Term) → TypeInfo → Set ---------------- -- Properties -- ---------------- -- Generic equality compatibility ~-to-≅ₜ : ∀ {k l A r Γ} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ k ≅ l ∷ A ^ r -- Judgmental conversion compatibility ≅-eq : ∀ {A B r Γ} → Γ ⊢ A ≅ B ^ r → Γ ⊢ A ≡ B ^ r ≅ₜ-eq : ∀ {t u A r Γ} → Γ ⊢ t ≅ u ∷ A ^ r → Γ ⊢ t ≡ u ∷ A ^ r -- Universe ≅-univ : ∀ {A B r l Γ} → Γ ⊢ A ≅ B ∷ (Univ r l) ^ [ ! , next l ] → Γ ⊢ A ≅ B ^ [ r , ι l ] ≅-un-univ : ∀ {A B r l Γ} → Γ ⊢ A ≅ B ^ [ r , ι l ] → Γ ⊢ A ≅ B ∷ (Univ r l) ^ [ ! , next l ] -- Symmetry ≅-sym : ∀ {A B Γ r} → Γ ⊢ A ≅ B ^ r → Γ ⊢ B ≅ A ^ r ≅ₜ-sym : ∀ {t u A r Γ} → Γ ⊢ t ≅ u ∷ A ^ r → Γ ⊢ u ≅ t ∷ A ^ r ~-sym : ∀ {k l A Γ r} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ l ~ k ∷ A ^ r -- Transitivity ≅-trans : ∀ {A B C r Γ} → Γ ⊢ A ≅ B ^ r → Γ ⊢ B ≅ C ^ r → Γ ⊢ A ≅ C ^ r ≅ₜ-trans : ∀ {t u v A r Γ} → Γ ⊢ t ≅ u ∷ A ^ r → Γ ⊢ u ≅ v ∷ A ^ r → Γ ⊢ t ≅ v ∷ A ^ r ~-trans : ∀ {k l m A r Γ} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ l ~ m ∷ A ^ r → Γ ⊢ k ~ m ∷ A ^ r -- Conversion ≅-conv : ∀ {t u A B r Γ} → Γ ⊢ t ≅ u ∷ A ^ r → Γ ⊢ A ≡ B ^ r → Γ ⊢ t ≅ u ∷ B ^ r ~-conv : ∀ {k l A B r Γ} → Γ ⊢ k ~ l ∷ A ^ r → Γ ⊢ A ≡ B ^ r → Γ ⊢ k ~ l ∷ B ^ r -- Weakening ≅-wk : ∀ {A B r ρ Γ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ A ≅ B ^ r → Δ ⊢ wk ρ A ≅ wk ρ B ^ r ≅ₜ-wk : ∀ {t u A r ρ Γ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ t ≅ u ∷ A ^ r → Δ ⊢ wk ρ t ≅ wk ρ u ∷ wk ρ A ^ r ~-wk : ∀ {k l A r ρ Γ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊢ k ~ l ∷ A ^ r → Δ ⊢ wk ρ k ~ wk ρ l ∷ wk ρ A ^ r -- Weak head expansion ≅-red : ∀ {A A′ B B′ r Γ} → Γ ⊢ A ⇒* A′ ^ r → Γ ⊢ B ⇒* B′ ^ r → Whnf A′ → Whnf B′ → Γ ⊢ A′ ≅ B′ ^ r → Γ ⊢ A ≅ B ^ r ≅ₜ-red : ∀ {a a′ b b′ A B l Γ} → Γ ⊢ A ⇒* B ^ [ ! , l ] → Γ ⊢ a ⇒* a′ ∷ B ^ l → Γ ⊢ b ⇒* b′ ∷ B ^ l → Whnf B → Whnf a′ → Whnf b′ → Γ ⊢ a′ ≅ b′ ∷ B ^ [ ! , l ] → Γ ⊢ a ≅ b ∷ A ^ [ ! , l ] -- Large universe type reflexivity ≅-U¹refl : ∀ {r Γ} → ⊢ Γ → Γ ⊢ (Univ r ¹) ≅ (Univ r ¹) ^ [ ! , ∞ ] -- Small universe type reflexivity ≅-U⁰refl : ∀ {r Γ} → ⊢ Γ → Γ ⊢ (Univ r ⁰) ≅ (Univ r ⁰) ∷ U ¹ ^ [ ! , ∞ ] -- Natural number type reflexivity ≅ₜ-ℕrefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ ℕ ≅ ℕ ∷ U ⁰ ^ [ ! , next ⁰ ] -- Empty type reflexivity ≅ₜ-Emptyrefl : ∀ {Γ l} → ⊢ Γ → Γ ⊢ Empty l ≅ Empty l ∷ SProp l ^ [ ! , next l ] -- Π-congruence ≅ₜ-Π-cong : ∀ {F G H E rF lF r lG l Γ} → lF ≤ l → lG ≤ l → Γ ⊢ F ^ [ rF , ι lF ] → Γ ⊢ F ≅ H ∷ (Univ rF lF) ^ [ ! , next lF ] → Γ ∙ F ^ [ rF , ι lF ] ⊢ G ≅ E ∷ (Univ r lG) ^ [ ! , next lG ] → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° l ≅ Π H ^ rF ° lF ▹ E ° lG ° l ∷ (Univ r l) ^ [ ! , next l ] -- ∃-congruence -- Since ∃ types are always small, no need for a type-level rule ≅ₜ-∃-cong : ∀ {F G H E l Γ} → Γ ⊢ F ^ [ % , ι l ] → Γ ⊢ F ≅ H ∷ SProp l ^ [ ! , next l ] → Γ ∙ F ^ [ % , ι l ] ⊢ G ≅ E ∷ SProp l ^ [ ! , next l ] → Γ ⊢ ∃ F ▹ G ≅ ∃ H ▹ E ∷ SProp l ^ [ ! , next l ] -- Zero reflexivity ≅ₜ-zerorefl : ∀ {Γ} → ⊢ Γ → Γ ⊢ zero ≅ zero ∷ ℕ ^ [ ! , ι ⁰ ] -- Successor congruence ≅-suc-cong : ∀ {m n Γ} → Γ ⊢ m ≅ n ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ suc m ≅ suc n ∷ ℕ ^ [ ! , ι ⁰ ] -- η-equality ≅-η-eq : ∀ {f g F G rF lF lG l Γ} → lF ≤ l → lG ≤ l → Γ ⊢ F ^ [ rF , ι lF ] → Γ ⊢ f ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] → Γ ⊢ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] → Function f → Function g → Γ ∙ F ^ [ rF , ι lF ] ⊢ wk1 f ∘ var 0 ^ l ≅ wk1 g ∘ var 0 ^ l ∷ G ^ [ ! , ι lG ] → Γ ⊢ f ≅ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] -- Variable reflexivity ~-var : ∀ {x A Γ r} → Γ ⊢ var x ∷ A ^ r → Γ ⊢ var x ~ var x ∷ A ^ r -- Application congurence ~-app : ∀ {a b f g F G rF lF lG l Γ} → Γ ⊢ f ~ g ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , ι l ] → Γ ⊢ a ≅ b ∷ F ^ [ rF , ι lF ] → Γ ⊢ f ∘ a ^ l ~ g ∘ b ^ l ∷ G [ a ] ^ [ ! , ι lG ] -- Natural recursion congurence ~-natrec : ∀ {z z′ s s′ n n′ F F′ l Γ} → Γ ∙ ℕ ^ [ ! , ι ⁰ ] ⊢ F ≅ F′ ^ [ ! , ι l ] → Γ ⊢ z ≅ z′ ∷ F [ zero ] ^ [ ! , ι l ] → Γ ⊢ s ≅ s′ ∷ Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° l ▹▹ F [ suc (var 0) ]↑ ° l ° l ) ° l ° l ^ [ ! , ι l ] → Γ ⊢ n ~ n′ ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ natrec l F z s n ~ natrec l F′ z′ s′ n′ ∷ F [ n ] ^ [ ! , ι l ] -- Empty recursion congurence ~-Emptyrec : ∀ {e e′ F F′ l lEmpty Γ} → Γ ⊢ F ≅ F′ ^ [ ! , ι l ] → Γ ⊢ e ∷ Empty lEmpty ^ [ % , ι lEmpty ] → Γ ⊢ e′ ∷ Empty lEmpty ^ [ % , ι lEmpty ] → Γ ⊢ Emptyrec l lEmpty F e ~ Emptyrec l lEmpty F′ e′ ∷ F ^ [ ! , ι l ] -- Id congruences ~-Id : ∀ {A A' l t t' u u' Γ} → Γ ⊢ A ~ A' ∷ Univ ! l ^ [ ! , next l ] → Γ ⊢ t ≅ t' ∷ A ^ [ ! , ι l ] → Γ ⊢ u ≅ u' ∷ A ^ [ ! , ι l ] → Γ ⊢ Id A t u ~ Id A' t' u' ∷ SProp l ^ [ ! , next l ] ~-Idℕ : ∀ {t t' u u' Γ} → ⊢ Γ → Γ ⊢ t ~ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ u ≅ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ t u ~ Id ℕ t' u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-Idℕ0 : ∀ {u u' Γ} → ⊢ Γ → Γ ⊢ u ~ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ zero u ~ Id ℕ zero u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-IdℕS : ∀ {t t' u u' Γ} → ⊢ Γ → Γ ⊢ t ≅ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ u ~ u' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ Id ℕ (suc t) u ~ Id ℕ (suc t') u' ∷ SProp ⁰ ^ [ ! , next ⁰ ] ~-IdU : ∀ {t t' u u' Γ} → let l = ⁰ in let l' = ¹ in ⊢ Γ → Γ ⊢ t ~ t' ∷ U l ^ [ ! , next l ] → Γ ⊢ u ≅ u' ∷ U l ^ [ ! , next l ] → Γ ⊢ Id (U l) t u ~ Id (U l) t' u' ∷ SProp l' ^ [ ! , next l' ] ~-IdUℕ : ∀ {u u' Γ} → ⊢ Γ → Γ ⊢ u ~ u' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Id (U ⁰) ℕ u ~ Id (U ⁰) ℕ u' ∷ SProp ¹ ^ [ ! , next ¹ ] ~-IdUΠ : ∀ {A rA B A' B' u u' Γ} → let l = ⁰ in let l' = ¹ in Γ ⊢ Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ ≅ Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ u ~ u' ∷ U l ^ [ ! , next l ] → Γ ⊢ Id (U l) (Π A ^ rA ° l ▹ B ° l ° ⁰ ) u ~ Id (U l) (Π A' ^ rA ° l ▹ B' ° l ° ⁰) u' ∷ SProp l' ^ [ ! , next l' ] -- cast congruences ~-cast : ∀ {A A' B B' e e' t t' Γ} → let l = ⁰ in Γ ⊢ A ~ A' ∷ U l ^ [ ! , next l ] → Γ ⊢ B ≅ B' ∷ U l ^ [ ! , next l ] → Γ ⊢ t ≅ t' ∷ A ^ [ ! , ι l ] → Γ ⊢ e ∷ (Id (U ⁰) A B) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) A' B') ^ [ % , next ⁰ ] → Γ ⊢ cast l A B e t ~ cast l A' B' e' t' ∷ B ^ [ ! , ι l ] ~-castℕ : ∀ {B B' e e' t t' Γ} → ⊢ Γ → Γ ⊢ B ~ B' ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t ≅ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ (Id (U ⁰) ℕ B) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) ℕ B') ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ B e t ~ cast ⁰ ℕ B' e' t' ∷ B ^ [ ! , ι ⁰ ] ~-castℕℕ : ∀ {e e' t t' Γ} → ⊢ Γ → Γ ⊢ t ~ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ (Id (U ⁰) ℕ ℕ) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) ℕ ℕ) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ ℕ e t ~ cast ⁰ ℕ ℕ e' t' ∷ ℕ ^ [ ! , ι ⁰ ] ~-castΠ : ∀ {A A' rA P P' B B' e e' t t' Γ} → let l = ⁰ in Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ≅ Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ~ B' ∷ U l ^ [ ! , next l ] → Γ ⊢ t ≅ t' ∷ Π A ^ rA ° l ▹ P ° l ° l ^ [ ! , ι l ] → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ rA ° l ▹ P ° l ° l) B) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ rA ° l ▹ P' ° l ° l) B') ^ [ % , next ⁰ ] → Γ ⊢ cast l (Π A ^ rA ° l ▹ P ° l ° l) B e t ~ cast l (Π A' ^ rA ° l ▹ P' ° l ° l) B' e' t' ∷ B ^ [ ! , ι l ] ~-castℕΠ : ∀ {A A' rA P P' e e' t t' Γ} → Γ ⊢ A ∷ Univ rA ⁰ ^ [ ! , next ⁰ ] → Γ ∙ A ^ [ rA , ι ⁰ ] ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ≅ Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t ≅ t' ∷ ℕ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ (Id (U ⁰) ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰)) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰)) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ ℕ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) e t ~ cast ⁰ ℕ (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) e' t' ∷ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ^ [ ! , ι ⁰ ] ~-castΠℕ : ∀ {A A' rA P P' e e' t t' Γ} → let l = ⁰ in Γ ⊢ A ∷ Univ rA l ^ [ ! , next l ] → Γ ∙ A ^ [ rA , ι l ] ⊢ P ∷ U l ^ [ ! , next l ] → Γ ⊢ Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰ ≅ Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t ≅ t' ∷ (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ^ [ ! , ι l ] → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ rA ° l ▹ P ° l ° ⁰) ℕ) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ rA ° l ▹ P' ° l ° ⁰) ℕ) ^ [ % , next ⁰ ] → Γ ⊢ cast l (Π A ^ rA ° ⁰ ▹ P ° ⁰ ° ⁰) ℕ e t ~ cast l (Π A' ^ rA ° ⁰ ▹ P' ° ⁰ ° ⁰) ℕ e' t' ∷ ℕ ^ [ ! , ι ⁰ ] ~-castΠΠ%! : ∀ {A A' P P' B B' Q Q' e e' t t' Γ} → Γ ⊢ A ∷ Univ % ⁰ ^ [ ! , next ⁰ ] → Γ ∙ A ^ [ % , ι ⁰ ] ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ≅ Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ∷ Univ ! ⁰ ^ [ ! , next ⁰ ] → Γ ∙ B ^ [ ! , ι ⁰ ] ⊢ Q ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ≅ Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t ≅ t' ∷ Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰)) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰)) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ % ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ (Π A' ^ % ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ ! ° ⁰ ▹ Q' ° ⁰ ° ⁰) e' t' ∷ Π B ^ ! ° ⁰ ▹ Q ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-castΠΠ!% : ∀ {A A' P P' B B' Q Q' e e' t t' Γ} → Γ ⊢ A ∷ Univ ! ⁰ ^ [ ! , next ⁰ ] → Γ ∙ A ^ [ ! , ι ⁰ ] ⊢ P ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ≅ Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ B ∷ Univ % ⁰ ^ [ ! , next ⁰ ] → Γ ∙ B ^ [ % , ι ⁰ ] ⊢ Q ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ≅ Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰ ∷ U ⁰ ^ [ ! , next ⁰ ] → Γ ⊢ t ≅ t' ∷ Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] → Γ ⊢ e ∷ (Id (U ⁰) (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰)) ^ [ % , next ⁰ ] → Γ ⊢ e' ∷ (Id (U ⁰) (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰)) ^ [ % , next ⁰ ] → Γ ⊢ cast ⁰ (Π A ^ ! ° ⁰ ▹ P ° ⁰ ° ⁰) (Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰) e t ~ cast ⁰ (Π A' ^ ! ° ⁰ ▹ P' ° ⁰ ° ⁰) (Π B' ^ % ° ⁰ ▹ Q' ° ⁰ ° ⁰) e' t' ∷ Π B ^ % ° ⁰ ▹ Q ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] ~-irrelevance : ∀ {n n′ A l Γ} → Γ ⊢ n ∷ A ^ [ % , l ] → Γ ⊢ n′ ∷ A ^ [ % , l ] → Γ ⊢ n ~ n′ ∷ A ^ [ % , l ] -- Composition of universe and generic equality compatibility ~-to-≅ : ∀ {t u r l Γ} → Γ ⊢ t ~ u ∷ (Univ r l) ^ [ ! , next l ] → Γ ⊢ t ≅ u ^ [ r , ι l ] ~-to-≅ t~u = ≅-univ (~-to-≅ₜ t~u)
{ "alphanum_fraction": 0.2944239705, "avg_line_length": 41.1947194719, "ext": "agda", "hexsha": "b891f4b16434d38e082b8131a19f591d3d5df087", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Typed/EqualityRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Typed/EqualityRelation.agda", "max_line_length": 193, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Typed/EqualityRelation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 6374, "size": 12482 }
{-# OPTIONS --without-K #-} open import container.core module container.m.coalgebra {li la lb} (c : Container li la lb) where open import level open import sum open import function as F hiding (_∘_ ; module _≅_ ; _≅_ ; iso ; ≅⇒≡) open import equality open import hott ------------------------------------------------------------------------------ open Container c -- Definition 3 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) Coalg : ∀ ℓ → Set _ Coalg ℓ = Σ (I → Set ℓ) λ X → X →ⁱ F X carrier : ∀ {ℓ} → Coalg ℓ → I → Set ℓ carrier (X , _) = X IsMor : ∀ {ℓ₁ ℓ₂}(𝓧 : Coalg ℓ₁)(𝓨 : Coalg ℓ₂) → (carrier 𝓧 →ⁱ carrier 𝓨) → Set _ IsMor (X , θ) (Y , ψ) f = ψ ∘ⁱ f ≡ imap f ∘ⁱ θ _⇒_ : ∀ {ℓ₁ ℓ₂} → Coalg ℓ₁ → Coalg ℓ₂ → Set _ 𝓧 ⇒ 𝓨 = Σ (carrier 𝓧 →ⁱ carrier 𝓨) (IsMor 𝓧 𝓨) idf : ∀ {ℓ} → (𝓧 : Coalg ℓ) → 𝓧 ⇒ 𝓧 idf 𝓧 = (λ i x → x) , refl _∘_ : ∀ {ℓ} → ⦃ 𝓧 𝓨 𝓩 : Coalg ℓ ⦄ → 𝓨 ⇒ 𝓩 → 𝓧 ⇒ 𝓨 → 𝓧 ⇒ 𝓩 (g , coh₁) ∘ (f , coh₂) = g ∘ⁱ f , funextⁱ (λ i x → funext-invⁱ coh₁ i (f i x) · ap (imap g i) (funext-invⁱ coh₂ i x)) private subst-coerce : ∀ {a b} {A : Set a} {B : A → Set b} {x y : A} (p : x ≡ y) {u : B x} → subst B p u ≡ coerce (ap B p) u subst-coerce refl = refl app= : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → f ≡ g →(x : A) → f x ≡ g x app= p x = ap (λ u → u x) p app=-β : ∀ {a b} {A : Set a} {B : A → Set b} {f g : (x : A) → B x} (p : ∀ x → f x ≡ g x) (x : A) → app= (funext p) x ≡ p x app=-β {B = B} p x = helper (funext p) x · app= (F._≅_.iso₁ strong-funext-iso p) x where helper : ∀ {f g : ∀ x → B x} (p : f ≡ g) x → app= p x ≡ funext-inv p x helper refl x = refl abstract ua : ∀ {i}{X Y : Set i} → X F.≅ Y → X ≡ Y ua = F.≅⇒≡ coerce-β : ∀ {a} {X Y : Set a} → (e : X F.≅ Y) → ∀ x → coerce (ua e) x ≡ apply e x coerce-β e x = app= (uni-coherence (≅⇒≈ e)) x substⁱ-lemma : ∀ {ℓ} {X Y : I → Set ℓ} {f : X →ⁱ F X} {g : Y →ⁱ F Y} → (p : X ≡ Y) → (∀ i x → subst (λ Z → F Z i) p (f i x) ≡ g i (subst (λ Z → Z i) p x)) → subst (λ Z → Z →ⁱ F Z) p f ≡ g substⁱ-lemma refl = funextⁱ imap-subst : ∀ {ℓ} {X Y : I → Set ℓ} (p : X ≡ Y) → imap (λ i → subst (λ Z → Z i) p) ≡ (λ i → subst (λ Z → F Z i) p) imap-subst refl = refl record _≅_ {ℓ} (𝓧 𝓨 : Coalg ℓ) : Set (lsuc $ ℓ ⊔ li ⊔ la ⊔ lb) where constructor iso field f : 𝓧 ⇒ 𝓨 g : 𝓨 ⇒ 𝓧 f-g : f ∘ g ≡ idf 𝓨 g-f : g ∘ f ≡ idf 𝓧 ≅⇒≡ : ∀ {ℓ} {𝓧 𝓨 : Coalg ℓ} → 𝓧 ≅ 𝓨 → 𝓧 ≡ 𝓨 ≅⇒≡ {𝓧 = X , θ} {𝓨 = Y , ψ} 𝓧≅𝓨 = unapΣ (π₁≡ , π₂≡) where open _≅_ 𝓧≅𝓨 X≅Y : ∀ i → X i F.≅ Y i X≅Y i = F.iso (proj₁ f i) (proj₁ g i) (funext-invⁱ (ap proj₁ g-f) i) (funext-invⁱ (ap proj₁ f-g) i) π₁≡ : X ≡ Y π₁≡ = funext λ i → ua (X≅Y i) π₂≡ : subst (λ Z → Z →ⁱ F Z) π₁≡ θ ≡ ψ π₂≡ = substⁱ-lemma π₁≡ λ i x → app= (lemma₂ i) _ · sym (funext-invⁱ (proj₂ f) i x) · ap (ψ i) (sym (lemma₁ i x)) where lemma₁ : ∀ i x → subst (λ Z → Z i) π₁≡ x ≡ proj₁ f i x lemma₁ i x = subst-coerce π₁≡ · ap (λ u → coerce u x) (app=-β _ i) · coerce-β (X≅Y i) _ lemma₂ : ∀ i → subst (λ Z → F Z i) π₁≡ ≡ imap (proj₁ f) i lemma₂ i = sym $ funext (hmap (λ i x → sym (lemma₁ i x)) i) · app= (imap-subst π₁≡) i IsFinal : ∀ {ℓ} → Coalg ℓ → Set _ IsFinal {ℓ} 𝓧 = ∀ (𝓨 : Coalg ℓ) → contr (𝓨 ⇒ 𝓧) Final : ∀ ℓ → Set _ Final ℓ = Σ (Coalg ℓ) IsFinal prop-IsFinal : ∀ {ℓ} (𝓧 : Coalg ℓ) → prop (IsFinal 𝓧) prop-IsFinal 𝓧 = h1⇒prop (Π-level (λ 𝓨 → contr-h1 _)) -- Lemma 5 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) Final-prop : ∀ {ℓ} → prop (Final ℓ) Final-prop (𝓧 , IsFinal-𝓧) (𝓨 , IsFinal-𝓨) = unapΣ (𝓧≡𝓨 , prop-IsFinal 𝓨 _ _) where 𝓧≡𝓨 : 𝓧 ≡ 𝓨 𝓧≡𝓨 = ≅⇒≡ $ iso (proj₁ (IsFinal-𝓨 𝓧)) (proj₁ (IsFinal-𝓧 𝓨)) (contr⇒prop (IsFinal-𝓨 𝓨) _ _) (contr⇒prop (IsFinal-𝓧 𝓧) _ _)
{ "alphanum_fraction": 0.4401709402, "avg_line_length": 35.1, "ext": "agda", "hexsha": "a9153a2b35487fa076f15bc28a686bee3e6864a2", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/coalgebra.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/coalgebra.agda", "max_line_length": 80, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/coalgebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1982, "size": 4212 }
{-# OPTIONS --without-K --safe #-} -- https://personal.cis.strath.ac.uk/conor.mcbride/pub/DepRep/DepRep.pdf module Experiment.Outrageous.#01 where open import Data.Unit using (⊤) open import Data.Product using (_×_) renaming (_,_ to _,,_) open import Data.Nat using (ℕ) infixl 30 _,_ infixr 40 _:→_ -- Star data St : Set where :ℕ : St _:→_ : St → St → St data Cx : Set where ε : Cx _,_ : Cx → St → Cx data _∈_ : St → Cx → Set where top : ∀ {Γ τ} → τ ∈ Γ , τ pop : ∀ {Γ σ τ} → τ ∈ Γ → τ ∈ Γ , σ data _⊢_ : Cx → St → Set where var : ∀ {Γ τ} → τ ∈ Γ → Γ ⊢ τ lam : ∀ {Γ σ τ} → Γ , σ ⊢ τ → Γ ⊢ σ :→ τ app : ∀ {Γ σ τ} → Γ ⊢ σ :→ τ → Γ ⊢ σ → Γ ⊢ τ ⟦_⟧St : St → Set ⟦ :ℕ ⟧St = ℕ ⟦ σ :→ τ ⟧St = ⟦ σ ⟧St → ⟦ τ ⟧St ⟦_⟧Cx : Cx → Set ⟦ ε ⟧Cx = ⊤ ⟦ Γ , σ ⟧Cx = ⟦ Γ ⟧Cx × ⟦ σ ⟧St ⟦_⟧∈ : ∀ {Γ τ} → τ ∈ Γ → ⟦ Γ ⟧Cx → ⟦ τ ⟧St ⟦ top ⟧∈ (γ ,, t) = t ⟦ pop i ⟧∈ (γ ,, s) = ⟦ i ⟧∈ γ ⟦_⟧⊢ : ∀ {Γ τ} → Γ ⊢ τ → ⟦ Γ ⟧Cx → ⟦ τ ⟧St ⟦ var i ⟧⊢ γ = ⟦ i ⟧∈ γ ⟦ lam t ⟧⊢ γ = λ s → ⟦ t ⟧⊢ (γ ,, s) ⟦ app f a ⟧⊢ γ = ⟦ f ⟧⊢ γ (⟦ a ⟧⊢ γ)
{ "alphanum_fraction": 0.4437022901, "avg_line_length": 21.8333333333, "ext": "agda", "hexsha": "b4ac295c1488c9c4855c6ed0f4df777ccd6a9df1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Outrageous/#01.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Outrageous/#01.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Outrageous/#01.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 565, "size": 1048 }
------------------------------------------------------------------------ -- Alternative functional semantics for an untyped λ-calculus with -- constants ------------------------------------------------------------------------ -- I noted that the compiler correctness proof in -- Lambda.Closure.Functional might be easier if the semantics was -- defined using continuation-passing style, so I decided to try this -- out. The proof at the end of this module /is/ slightly shorter, but -- the continuation-passing definition of the semantics is quite -- awkward (due to the limitations imposed by Agda). Furthermore it -- seemed to me as if the soundness proofs in -- Lambda.Closure.Equivalence would be harder to prove using this -- formulation of the semantics. module Lambda.Closure.Functional.Alternative where open import Category.Monad open import Category.Monad.Partiality as Partiality using (_⊥; never; Kind; OtherKind) open import Codata.Musical.Notation open import Data.List hiding (lookup) open import Data.Maybe import Data.Maybe.Categorical as Maybe open import Data.Vec using (Vec; []; _∷_; lookup) open import Function open import Level open import Relation.Binary using (module Preorder) open import Relation.Binary.PropositionalEquality as P using (_≡_) open Partiality._⊥ open Partiality.Kind private open module E {A : Set} = Partiality.Equality (_≡_ {A = A}) open module R {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) open import Lambda.Syntax open Closure Tm open import Lambda.VirtualMachine open Functional private module VM = Closure Code ------------------------------------------------------------------------ -- A monad with partiality and failure PF : RawMonad {f = zero} (_⊥ ∘ Maybe) PF = Maybe.monadT Partiality.monad module PF where open RawMonad PF public fail : {A : Set} → Maybe A ⊥ fail = now nothing open PF ------------------------------------------------------------------------ -- Semantics module Workaround₁ where -- This module provides a workaround for the limitations of -- guardedness. mutual data Maybe_⊥P (A : Set) : Set where ⌈_⌉ : (x : Maybe A ⊥) → Maybe A ⊥P later : (x : ∞ (Maybe A ⊥P)) → Maybe A ⊥P ⟦_⟧P : ∀ {n} (t : Tm n) (ρ : Env n) (k : Value → Maybe A ⊥W) → Maybe A ⊥P data Maybe_⊥W (A : Set) : Set where ⌈_⌉ : (x : Maybe A ⊥) → Maybe A ⊥W later : (x : Maybe A ⊥P) → Maybe A ⊥W mutual -- The semantics, in slightly scrambled form. infix 5 _∙W_ ⟦_⟧W : ∀ {A n} → Tm n → Env n → (Value → Maybe A ⊥W) → Maybe A ⊥W ⟦ con i ⟧W ρ k = k (con i) ⟦ var x ⟧W ρ k = k (lookup ρ x) ⟦ ƛ t ⟧W ρ k = k (ƛ t ρ) ⟦ t₁ · t₂ ⟧W ρ k = ⟦ t₁ ⟧W ρ (λ v₁ → ⟦ t₂ ⟧W ρ (λ v₂ → (v₁ ∙W v₂) k)) _∙W_ : ∀ {A} → Value → Value → (Value → Maybe A ⊥W) → Maybe A ⊥W (con i ∙W v₂) k = ⌈ fail ⌉ (ƛ t₁ ρ ∙W v₂) k = later (⟦ t₁ ⟧P (v₂ ∷ ρ) k) -- Interpretation of the definitions above. whnf : ∀ {A} → Maybe A ⊥P → Maybe A ⊥W whnf ⌈ x ⌉ = ⌈ x ⌉ whnf (later x) = later (♭ x) whnf (⟦ t ⟧P ρ k) = ⟦ t ⟧W ρ k mutual ⟪_⟫W : ∀ {A} → Maybe A ⊥W → Maybe A ⊥ ⟪ ⌈ x ⌉ ⟫W = x ⟪ later x ⟫W = later (♯ ⟪ x ⟫P) ⟪_⟫P : ∀ {A} → Maybe A ⊥P → Maybe A ⊥ ⟪ x ⟫P = ⟪ whnf x ⟫W -- The actual semantics. Note that this definition gives us -- determinism "for free". infix 5 _∙_ ⟦_⟧ : ∀ {A n} → Tm n → Env n → (Value → Maybe A ⊥) → Maybe A ⊥ ⟦ t ⟧ ρ k = ⟪ ⟦ t ⟧P ρ (λ v → ⌈ k v ⌉) ⟫P where open Workaround₁ _∙_ : ∀ {A} → Value → Value → (Value → Maybe A ⊥) → Maybe A ⊥ (v₁ ∙ v₂) k = ⟪ (v₁ ∙W v₂) (λ v → ⌈ k v ⌉) ⟫W where open Workaround₁ -- ⟦_⟧ and _∙_ preserve equality of their continuations. module Workaround₂ {k : Kind} where open Workaround₁ mutual infix 4 _≈P_ _≈W_ data _≈P_ {A : Set} : Maybe A ⊥ → Maybe A ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel k x y) → x ≈P y later : ∀ {x y} (x≈y : ∞ (♭ x ≈P ♭ y)) → later x ≈P later y ⟦_⟧W-congP : ∀ {n} t (ρ : Env n) {k₁ k₂ : Value → Maybe A ⊥W} (k₁≈k₂ : ∀ v → ⟪ k₁ v ⟫W ≈W ⟪ k₂ v ⟫W) → ⟪ ⟦ t ⟧W ρ k₁ ⟫W ≈P ⟪ ⟦ t ⟧W ρ k₂ ⟫W data _≈W_ {A : Set} : Maybe A ⊥ → Maybe A ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel k x y) → x ≈W y later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y mutual ⟦_⟧W-congW : ∀ {A n} t (ρ : Env n) {k₁ k₂ : Value → Maybe A ⊥W} → (∀ v → ⟪ k₁ v ⟫W ≈W ⟪ k₂ v ⟫W) → ⟪ ⟦ t ⟧W ρ k₁ ⟫W ≈W ⟪ ⟦ t ⟧W ρ k₂ ⟫W ⟦ con i ⟧W-congW ρ k₁≈k₂ = k₁≈k₂ (con i) ⟦ var x ⟧W-congW ρ k₁≈k₂ = k₁≈k₂ (lookup ρ x) ⟦ ƛ t ⟧W-congW ρ k₁≈k₂ = k₁≈k₂ (ƛ t ρ) ⟦ t₁ · t₂ ⟧W-congW ρ k₁≈k₂ = ⟦ t₁ ⟧W-congW ρ (λ v₁ → ⟦ t₂ ⟧W-congW ρ (λ v₂ → (v₁ ∙W v₂ -congW) k₁≈k₂)) _∙W_-congW : ∀ {A} v₁ v₂ {k₁ k₂ : Value → Maybe A ⊥W} → (∀ v → ⟪ k₁ v ⟫W ≈W ⟪ k₂ v ⟫W) → ⟪ (v₁ ∙W v₂) k₁ ⟫W ≈W ⟪ (v₁ ∙W v₂) k₂ ⟫W (con i ∙W v₂ -congW) k₁≈k₂ = ⌈ fail ∎ ⌉ (ƛ t₁ ρ ∙W v₂ -congW) k₁≈k₂ = later (⟦ t₁ ⟧W-congP (v₂ ∷ ρ) k₁≈k₂) whnf≈ : ∀ {A} {x y : Maybe A ⊥} → x ≈P y → x ≈W y whnf≈ ⌈ x≈y ⌉ = ⌈ x≈y ⌉ whnf≈ (later x≈y) = later (♭ x≈y) whnf≈ (⟦ t ⟧W-congP ρ k₁≈k₂) = ⟦ t ⟧W-congW ρ k₁≈k₂ mutual soundW : ∀ {A} {x y : Maybe A ⊥} → x ≈W y → Rel k x y soundW ⌈ x≈y ⌉ = x≈y soundW (later x≈y) = later (♯ soundP x≈y) soundP : ∀ {A} {x y : Maybe A ⊥} → x ≈P y → Rel k x y soundP x≈y = soundW (whnf≈ x≈y) ⟦_⟧-cong : ∀ {k A n} t (ρ : Env n) {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → Rel k (k₁ v) (k₂ v)) → Rel k (⟦ t ⟧ ρ k₁) (⟦ t ⟧ ρ k₂) ⟦ t ⟧-cong ρ k₁≈k₂ = soundW (⟦ t ⟧W-congW ρ (λ v → ⌈ k₁≈k₂ v ⌉)) where open Workaround₂ _∙_-cong : ∀ {k A} v₁ v₂ {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → Rel k (k₁ v) (k₂ v)) → Rel k ((v₁ ∙ v₂) k₁) ((v₁ ∙ v₂) k₂) (v₁ ∙ v₂ -cong) k₁≈k₂ = soundW ((v₁ ∙W v₂ -congW) (λ v → ⌈ k₁≈k₂ v ⌉)) where open Workaround₂ -- ⟦_⟧ and _∙_ satisfy their intended defining equations. sem-con : ∀ {A n} i {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ con i ⟧ ρ k ≅ k (con i) sem-con i {k = k} = k (con i) ∎ sem-var : ∀ {A n} x {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ var x ⟧ ρ k ≅ k (lookup ρ x) sem-var x {ρ} {k} = k (lookup ρ x) ∎ sem-ƛ : ∀ {A n} t {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ ƛ t ⟧ ρ k ≅ k (ƛ t ρ) sem-ƛ t {ρ} {k} = k (ƛ t ρ) ∎ sem-· : ∀ {A n} t₁ t₂ {ρ : Env n} {k : Value → Maybe A ⊥} → ⟦ t₁ · t₂ ⟧ ρ k ≅ (⟦ t₁ ⟧ ρ λ v₁ → ⟦ t₂ ⟧ ρ λ v₂ → (v₁ ∙ v₂) k) sem-· t₁ t₂ {ρ} {k} = soundW $ ⟦ t₁ ⟧W-congW ρ λ v₁ → ⟦ t₂ ⟧W-congW ρ λ v₂ → ⌈ (v₁ ∙ v₂) k ∎ ⌉ where open Workaround₂ app-con : ∀ {A} i v₂ {k : Value → Maybe A ⊥} → (con i ∙ v₂) k ≅ fail app-con i v₂ = fail ∎ app-ƛ : ∀ {A n} t₁ (ρ : Env n) v₂ {k : Value → Maybe A ⊥} → (ƛ t₁ ρ ∙ v₂) k ≅ later (♯ ⟦ t₁ ⟧ (v₂ ∷ ρ) k) app-ƛ t₁ ρ v₂ {k} = later (♯ (⟦ t₁ ⟧ (v₂ ∷ ρ) k ∎)) -- ⟦_⟧ and _∙_ are the unique solutions to the system of equations -- which is intended to define them. I have stated this result using -- strong equality, which is (more or less) the kind of equality you -- get from a definition. I tried using weak equality instead, but -- this turned out to make the proof tricky (due to the lack of -- transitivity). module Unique {A : Set} (⟪_⟫ : ∀ {n} t (ρ : Env n) (k : Value → Maybe A ⊥) → Maybe A ⊥) (_○_ : Value → Value → (Value → Maybe A ⊥) → Maybe A ⊥) (⟪con⟫ : ∀ {n} i {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ con i ⟫ ρ k ≅ k (con i)) (⟪var⟫ : ∀ {n} x {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ var x ⟫ ρ k ≅ k (lookup ρ x)) (⟪ƛ⟫ : ∀ {n} t {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ ƛ t ⟫ ρ k ≅ k (ƛ t ρ)) (⟪·⟫ : ∀ {n} t₁ t₂ {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ t₁ · t₂ ⟫ ρ k ≅ (⟪ t₁ ⟫ ρ λ v₁ → ⟪ t₂ ⟫ ρ λ v₂ → (v₁ ○ v₂) k)) (con○ : ∀ i v₂ {k : Value → Maybe A ⊥} → (con i ○ v₂) k ≅ fail) (ƛ○ : ∀ {n} t₁ (ρ : Env n) v₂ {k : Value → Maybe A ⊥} → (ƛ t₁ ρ ○ v₂) k ≅ later (♯ ⟪ t₁ ⟫ (v₂ ∷ ρ) k)) where infix 4 _≅P_ _≅W_ infixr 2 _≅⟨_⟩P_ _≅⟨_⟩W_ _≅⟪_⟫P_ _≅⟪_⟫W_ mutual data _≅P_ : Maybe A ⊥ → Maybe A ⊥ → Set where _≅⟨_⟩P_ : ∀ x {y z} (x≅y : x ≅ y) (y≅z : y ≅P z) → x ≅P z _≅⟪_⟫P_ : ∀ x {y z} (x≅y : x ≅P y) (y≅z : y ≅ z) → x ≅P z semP : ∀ {n} t {ρ : Env n} {k₁ k₂ : Value → Maybe A ⊥} → (k₁≅k₂ : ∀ v → k₁ v ≅W k₂ v) → ⟪ t ⟫ ρ k₁ ≅P ⟦ t ⟧ ρ k₂ data _≅W_ : Maybe A ⊥ → Maybe A ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≅y : x ≅ y) → x ≅W y later : ∀ {x y} (x≅y : ♭ x ≅P ♭ y) → later x ≅W later y _≅⟨_⟩W_ : ∀ x {y z} → x ≅ y → y ≅W z → x ≅W z _ ≅⟨ x≅y ⟩W ⌈ y≅z ⌉ = ⌈ _ ≅⟨ x≅y ⟩ y≅z ⌉ ._ ≅⟨ later x≅y ⟩W later y≅z = later (_ ≅⟨ ♭ x≅y ⟩P y≅z) _≅⟪_⟫W_ : ∀ x {y z} → x ≅W y → y ≅ z → x ≅W z _ ≅⟪ ⌈ x≅y ⌉ ⟫W y≅z = ⌈ _ ≅⟨ x≅y ⟩ y≅z ⌉ ._ ≅⟪ later x≅y ⟫W later y≅z = later (_ ≅⟪ x≅y ⟫P ♭ y≅z) mutual semW : ∀ {n} t {ρ : Env n} {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → k₁ v ≅W k₂ v) → ⟪ t ⟫ ρ k₁ ≅W ⟦ t ⟧ ρ k₂ semW (con i) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ con i ⟫ ρ k₁ ≅⟨ ⟪con⟫ i ⟩W k₁ (con i) ≅⟪ k₁≅k₂ _ ⟫W k₂ (con i) ∎ semW (var x) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ var x ⟫ ρ k₁ ≅⟨ ⟪var⟫ x ⟩W k₁ (lookup ρ x) ≅⟪ k₁≅k₂ _ ⟫W k₂ (lookup ρ x) ∎ semW (ƛ t) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ ƛ t ⟫ ρ k₁ ≅⟨ ⟪ƛ⟫ t ⟩W k₁ (ƛ t ρ) ≅⟪ k₁≅k₂ _ ⟫W k₂ (ƛ t ρ) ∎ semW (t₁ · t₂) {ρ} {k₁} {k₂} k₁≅k₂ = ⟪ t₁ · t₂ ⟫ ρ k₁ ≅⟨ ⟪·⟫ t₁ t₂ ⟩W (⟪ t₁ ⟫ ρ λ v₁ → ⟪ t₂ ⟫ ρ λ v₂ → (v₁ ○ v₂) k₁) ≅⟪ semW t₁ (λ v₁ → semW t₂ (λ v₂ → appW v₁ v₂ k₁≅k₂)) ⟫W (⟦ t₁ ⟧ ρ λ v₁ → ⟦ t₂ ⟧ ρ λ v₂ → (v₁ ∙ v₂) k₂) ≅⟨ sym $ sem-· t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ k₂ ∎ appW : ∀ v₁ v₂ {k₁ k₂ : Value → Maybe A ⊥} → (∀ v → k₁ v ≅W k₂ v) → (v₁ ○ v₂) k₁ ≅W (v₁ ∙ v₂) k₂ appW (con i) v₂ {k₁} {k₂} k₁≅k₂ = ⌈ (con i ○ v₂) k₁ ≅⟨ con○ i v₂ ⟩ fail ∎ ⌉ appW (ƛ t₁ ρ) v₂ {k₁} {k₂} k₁≅k₂ = (ƛ t₁ ρ ○ v₂) k₁ ≅⟨ ƛ○ t₁ ρ v₂ ⟩W later _ ≅⟪ later (semP t₁ k₁≅k₂) ⟫W (ƛ t₁ ρ ∙ v₂) k₂ ∎ whnf : ∀ {x y} → x ≅P y → x ≅W y whnf (x ≅⟨ x≅y ⟩P y≅z) = x ≅⟨ x≅y ⟩W whnf y≅z whnf (x ≅⟪ x≅y ⟫P y≅z) = x ≅⟪ whnf x≅y ⟫W y≅z whnf (semP t k₁≅k₂) = semW t k₁≅k₂ mutual soundW : ∀ {x y} → x ≅W y → x ≅ y soundW ⌈ x≅y ⌉ = x≅y soundW (later x≅y) = later (♯ soundP x≅y) soundP : ∀ {x y} → x ≅P y → x ≅ y soundP x≅y = soundW (whnf x≅y) sem : ∀ {n} t {ρ : Env n} {k : Value → Maybe A ⊥} → ⟪ t ⟫ ρ k ≅ ⟦ t ⟧ ρ k sem t {k = k} = soundW (semW t (λ v → ⌈ k v ∎ ⌉)) dot : ∀ v₁ v₂ {k : Value → Maybe A ⊥} → (v₁ ○ v₂) k ≅ (v₁ ∙ v₂) k dot v₁ v₂ {k} = soundW (appW v₁ v₂ (λ v → ⌈ k v ∎ ⌉)) ------------------------------------------------------------------------ -- Example Ω-loops : ⟦ Ω ⟧ [] return ≈ never Ω-loops = later (♯ Ω-loops) ------------------------------------------------------------------------ -- Compiler correctness module Correctness {k : OtherKind} where infix 4 _≈P_ _≈W_ infixr 2 _≡⟨_⟩W_ _≈⟨_⟩P_ _≈⟨_⟩W_ mutual data _≈P_ : Maybe VM.Value ⊥ → Maybe VM.Value ⊥ → Set where _≈⟨_⟩P_ : ∀ x {y z} (x≈y : x ≈P y) (y≅z : y ≅ z) → x ≈P z correct : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (hyp : ∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈P ⟦ t ⟧ ρ k data _≈W_ : Maybe VM.Value ⊥ → Maybe VM.Value ⊥ → Set where ⌈_⌉ : ∀ {x y} (x≈y : Rel (other k) x y) → x ≈W y later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈W y) → later x ≈W y _≡⟨_⟩W_ : ∀ x {y z} → x ≡ y → y ≈W z → x ≈W z _ ≡⟨ P.refl ⟩W y≈z = y≈z _≈⟨_⟩W_ : ∀ x {y z} → x ≈W y → y ≅ z → x ≈W z ._ ≈⟨ later x≈y ⟩W later y≅z = later (_ ≈⟨ x≈y ⟩P ♭ y≅z) ._ ≈⟨ laterˡ x≈y ⟩W y≅z = laterˡ (_ ≈⟨ x≈y ⟩W y≅z) _ ≈⟨ ⌈ x≈y ⌉ ⟩W y≅z = ⌈ trans x≈y (Partiality.≅⇒ y≅z) ⌉ where trans = Preorder.trans (Partiality.preorder P.isPreorder _) mutual correctW : ∀ {n} t {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ comp t c , s , comp-env ρ ⟩ ≈W ⟦ t ⟧ ρ k correctW (con i) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (Lambda.Syntax.Closure.con i) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (con i) ⟩W k (con i) ∎) correctW (var x) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (lookup (comp-env ρ) x) ∷ s , comp-env ρ ⟩ ≡⟨ P.cong (λ v → exec ⟨ c , val v ∷ s , comp-env ρ ⟩) $ lookup-hom x ρ ⟩W exec ⟨ c , val (comp-val (lookup ρ x)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (lookup ρ x) ⟩W k (lookup ρ x) ∎) correctW (ƛ t) {ρ} {c} {s} {k} hyp = laterˡ ( exec ⟨ c , val (comp-val (ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≈⟨ hyp (ƛ t ρ) ⟩W k (ƛ t ρ) ∎) correctW (t₁ · t₂) {ρ} {c} {s} {k} hyp = exec ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≈⟨ correctW t₁ (λ v₁ → correctW t₂ (λ v₂ → ∙-correctW v₁ v₂ hyp)) ⟩W (⟦ t₁ ⟧ ρ λ v₁ → ⟦ t₂ ⟧ ρ λ v₂ → (v₁ ∙ v₂) k) ≅⟨ sym $ sem-· t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ k ∎ ∙-correctW : ∀ {n} v₁ v₂ {ρ : Env n} {c s} {k : Value → Maybe VM.Value ⊥} → (∀ v → exec ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≈W k v) → exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val v₁) ∷ s , comp-env ρ ⟩ ≈W (v₁ ∙ v₂) k ∙-correctW (con i) v₂ _ = ⌈ fail ∎ ⌉ ∙-correctW (ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} hyp = exec ⟨ app ∷ c , val (comp-val v₂) ∷ val (comp-val (ƛ t₁ ρ₁)) ∷ s , comp-env ρ ⟩ ≈⟨ later ( exec ⟨ comp t₁ [ ret ] , ret c (comp-env ρ) ∷ s , comp-env (v₂ ∷ ρ₁) ⟩ ≈⟨ correct t₁ (λ v → laterˡ (hyp v)) ⟩P (⟦ t₁ ⟧ (v₂ ∷ ρ₁) k) ∎) ⟩W (ƛ t₁ ρ₁ ∙ v₂) k ∎ whnf : ∀ {x y} → x ≈P y → x ≈W y whnf (x ≈⟨ x≈y ⟩P y≅z) = x ≈⟨ whnf x≈y ⟩W y≅z whnf (correct t hyp) = correctW t hyp mutual soundW : ∀ {x y} → x ≈W y → Rel (other k) x y soundW ⌈ x≈y ⌉ = x≈y soundW (later x≈y) = later (♯ soundP x≈y) soundW (laterˡ x≈y) = laterˡ (soundW x≈y) soundP : ∀ {x y} → x ≈P y → Rel (other k) x y soundP x≈y = soundW (whnf x≈y) correct : ∀ t → exec ⟨ comp t [] , [] , [] ⟩ ≈ ⟦ t ⟧ [] (λ v → return (comp-val v)) correct t = soundP $ Correctness.correct t (λ v → ⌈ return (comp-val v) ∎ ⌉) where open Correctness
{ "alphanum_fraction": 0.4459396443, "avg_line_length": 35.8257756563, "ext": "agda", "hexsha": "39b2850b3005cf04adbab228a64c8570768bd3d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Functional/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Functional/Alternative.agda", "max_line_length": 138, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Functional/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 7208, "size": 15011 }
{- Reported by sattler.christian, Oct 10 (3 days ago) This is a funny one. The below code snippet produces the following error under the current Agda development version: An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Eliminators.hs:85 Note the spurious Tm datatype that isn't used anywhere? Remove it, move its declaration forward, or its definition backward, and the internal error vanishes, leaving a few yellow spots. Now uncomment the two implicit arguments at the bottom of the code. All metavars are now resolved. Now put the Tm datatype back in - yellow spots reappear, but different from before! -} {-# OPTIONS --cubical-compatible #-} module Issue918 where record ⊤ : Set where constructor tt record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ data ℕ : Set where zero : ℕ suc : ℕ → ℕ _∘_ : {A B C : Set} → (B → C) → (A → B) → A → C g ∘ f = λ x → g (f x) _+'_ : ℕ → ℕ → ℕ i +' zero = i i +' suc j = suc i +' j U : ℕ → Set U zero = ⊤ U (suc n) = Σ (U n) (λ _ → ⊤) V : ℕ → Set V zero = ⊤ V (suc m) = Σ ⊤ (λ _ → V m) combine : {i j : ℕ} → Σ (U i) (λ _ → V j) → U (i +' j) combine {j = zero} = λ {(A , _) → A} combine {j = suc j} = combine {j = j} ∘ (λ {(Γ , (A , T)) → ((Γ , A) , T)}) data Tm : Set ctx-hom : (m : ℕ) → U m → Set ctx-hom zero _ = ⊤ ctx-hom (suc m) (Δ , _) = Σ (ctx-hom m Δ) (λ _ → ⊤) ctx-hom-split-iso : {m k : ℕ} {Δ : U m} {T : V k} → ctx-hom (m +' k) (combine (Δ , T)) → Σ (ctx-hom m Δ) (λ _ → V k) ctx-hom-split-iso {k = zero} = λ Δ → (Δ , tt) ctx-hom-split-iso {m} {k = suc k} {Δ} {(A , T)} = ((λ {((Γ , A) , T) → (Γ , (A , T))})) ∘ ctx-hom-split-iso {m = suc m} --{Δ = (Δ , A)} data Tm where {- Project Member #1 andreas.m.abel That was quite a riddle to solve. 1. The internal error is actually triggered in the termination checking phase. I fixed this, will push soon. A workaround is --no-termination-check 2. The data-Tm-brace puts ctx-hom and ctx-hom-split-iso into a mutual block. This prevents ctx-hom to be unfolded during checking the -split-iso. You can achieve the same by explicitely putting the two defs into a mutual block. If the mutual block is removed, the yellow stuff appears. HO-unification is sensitive to reduction, at this moment I do not see an easy fix for this behavior. 3. "yellow spots reappear, but in different places" I could not replay this. For me, the yellow only disappeared if I also gave {T = T}, but then it consistently disappears and reappears when putting in and out of a mutual block. -}
{ "alphanum_fraction": 0.6219015908, "avg_line_length": 29.7032967033, "ext": "agda", "hexsha": "72a6bc5072d48f1aa48df89dc367bfd65aca7d8d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue918.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue918.agda", "max_line_length": 185, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue918.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 894, "size": 2703 }
{-# OPTIONS --rewriting #-} module Luau.RuntimeError where open import Agda.Builtin.Equality using (_≡_) open import Luau.Heap using (Heap; _[_]) open import FFI.Data.Maybe using (just; nothing) open import FFI.Data.String using (String) open import Luau.Syntax using (BinaryOperator; Block; Expr; nil; var; val; addr; block_is_end; _$_; local_←_; return; done; _∙_; number; string; binexp; +; -; *; /; <; >; <=; >=; ··) open import Luau.RuntimeType using (RuntimeType; valueType; function; number; string) open import Properties.Equality using (_≢_) data BinOpError : BinaryOperator → RuntimeType → Set where + : ∀ {t} → (t ≢ number) → BinOpError + t - : ∀ {t} → (t ≢ number) → BinOpError - t * : ∀ {t} → (t ≢ number) → BinOpError * t / : ∀ {t} → (t ≢ number) → BinOpError / t < : ∀ {t} → (t ≢ number) → BinOpError < t > : ∀ {t} → (t ≢ number) → BinOpError > t <= : ∀ {t} → (t ≢ number) → BinOpError <= t >= : ∀ {t} → (t ≢ number) → BinOpError >= t ·· : ∀ {t} → (t ≢ string) → BinOpError ·· t data RuntimeErrorᴮ {a} (H : Heap a) : Block a → Set data RuntimeErrorᴱ {a} (H : Heap a) : Expr a → Set data RuntimeErrorᴱ H where FunctionMismatch : ∀ v w → (valueType v ≢ function) → RuntimeErrorᴱ H (val v $ val w) BinOpMismatch₁ : ∀ v w {op} → (BinOpError op (valueType v)) → RuntimeErrorᴱ H (binexp (val v) op (val w)) BinOpMismatch₂ : ∀ v w {op} → (BinOpError op (valueType w)) → RuntimeErrorᴱ H (binexp (val v) op (val w)) UnboundVariable : ∀ {x} → RuntimeErrorᴱ H (var x) SEGV : ∀ {a} → (H [ a ] ≡ nothing) → RuntimeErrorᴱ H (val (addr a)) app₁ : ∀ {M N} → RuntimeErrorᴱ H M → RuntimeErrorᴱ H (M $ N) app₂ : ∀ {M N} → RuntimeErrorᴱ H N → RuntimeErrorᴱ H (M $ N) block : ∀ {b B} → RuntimeErrorᴮ H B → RuntimeErrorᴱ H (block b is B end) bin₁ : ∀ {M N op} → RuntimeErrorᴱ H M → RuntimeErrorᴱ H (binexp M op N) bin₂ : ∀ {M N op} → RuntimeErrorᴱ H N → RuntimeErrorᴱ H (binexp M op N) data RuntimeErrorᴮ H where local : ∀ {x M B} → RuntimeErrorᴱ H M → RuntimeErrorᴮ H (local x ← M ∙ B) return : ∀ {M B} → RuntimeErrorᴱ H M → RuntimeErrorᴮ H (return M ∙ B)
{ "alphanum_fraction": 0.619047619, "avg_line_length": 50, "ext": "agda", "hexsha": "b9b305c9e105699062334be616bf4183a89caf70", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TheGreatSageEqualToHeaven/luau", "max_forks_repo_path": "prototyping/Luau/RuntimeError.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TheGreatSageEqualToHeaven/luau", "max_issues_repo_path": "prototyping/Luau/RuntimeError.agda", "max_line_length": 182, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Luau/RuntimeError.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 780, "size": 2100 }
module Numeral.Natural.Oper.Modulo.Proofs.DivisibilityWithRemainder where open import Data open import Functional open import Numeral.Finite import Numeral.Finite.Proofs as 𝕟 open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs.Algorithm open import Numeral.Natural.Relation.DivisibilityWithRemainder hiding (base₀ ; base₊ ; step) open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator open import Syntax.Transitivity -- The remainder of the divisibility relation is given by the modulo operation. [mod][∣ᵣₑₘ]-remainder-equality : ∀{x y r}{p : (𝐒(y) ∣ᵣₑₘ x)(r)} → ((x mod 𝐒(y)) ≡ 𝕟-to-ℕ ([∣ᵣₑₘ]-remainder p)) [mod][∣ᵣₑₘ]-remainder-equality {𝟎} {_} {𝟎} {DivRem𝟎} = [≡]-intro [mod][∣ᵣₑₘ]-remainder-equality {𝐒 .(𝕟-to-ℕ r)} {𝐒 y} {𝐒 r} {DivRem𝟎} = mod'-lesser-dividend {1}{𝐒(y)}{𝕟-to-ℕ r}{y} ([≤]-without-[𝐒] 𝕟.bounded) [mod][∣ᵣₑₘ]-remainder-equality {𝐒 x} {𝟎} {𝟎} {DivRem𝐒 p} = mod'-zero-all-except-dividend {x} {-# CATCHALL #-} [mod][∣ᵣₑₘ]-remainder-equality {𝐒 .(x + y)} {y} {r} {DivRem𝐒 {x = x} p} = ([ 𝟎 , y ] 𝐒(x + y) mod' y) 🝖[ _≡_ ]-[] ([ 𝟎 , y ] (𝐒(x) + y) mod' y) 🝖[ _≡_ ]-[ mod'-sumᵣ-modulo {0}{y}{x}{y} ] ([ 𝟎 , y ] x mod' y) 🝖[ _≡_ ]-[ [mod][∣ᵣₑₘ]-remainder-equality {p = p} ] 𝕟-to-ℕ ([∣ᵣₑₘ]-remainder p) 🝖[ _≡_ ]-[] 𝕟-to-ℕ ([∣ᵣₑₘ]-remainder (DivRem𝐒 p)) 🝖-end
{ "alphanum_fraction": 0.6335927367, "avg_line_length": 51.4, "ext": "agda", "hexsha": "0a3cfee32acdb18126f0021fef6846a1a4907937", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/DivisibilityWithRemainder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/DivisibilityWithRemainder.agda", "max_line_length": 142, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/DivisibilityWithRemainder.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 686, "size": 1542 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Rings.Definition open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.Fields where record Field {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) : Set (lsuc m ⊔ n) where open Ring R open Group additiveGroup open Setoid S field allInvertible : (a : A) → ((a ∼ Group.0G (Ring.additiveGroup R)) → False) → Sg A (λ t → t * a ∼ 1R) nontrivial : (0R ∼ 1R) → False 0F : A 0F = Ring.0R R record Field' {m n : _} : Set (lsuc m ⊔ lsuc n) where field A : Set m S : Setoid {m} {n} A _+_ : A → A → A _*_ : A → A → A R : Ring S _+_ _*_ isField : Field R encapsulateField : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → Field' encapsulateField {A = A} {S = S} {_+_} {_*_} {R} F = record { A = A ; S = S ; _+_ = _+_ ; _*_ = _*_ ; R = R ; isField = F } {- record OrderedField {n} {A : Set n} {R : Ring A} (F : Field R) : Set (lsuc n) where open Field F field ord : TotalOrder A open TotalOrder ord open Ring R field productPos : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b)) orderRespectsAddition : {a b c : A} → (a < b) → (a + c) < (b + c) -}
{ "alphanum_fraction": 0.5446109921, "avg_line_length": 29.8085106383, "ext": "agda", "hexsha": "d902f3e403bd38210ed1a5df3e24231a866eb9d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Fields.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Fields.agda", "max_line_length": 143, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Fields.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 573, "size": 1401 }
{-# OPTIONS --without-K #-} module PiEquiv where open import Data.Empty open import Data.Unit open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂) open import Function using (_∘_; id) open import Equiv open import EquivEquiv open _≋_ open import TypeEquiv as TE open import TypeEquivEquiv -- open import TypeEquivCat open import PiU open import PiLevel0 open import PiLevel1 open import Data.Sum.Properties2 open import Data.SumProd.Properties ------------------------------------------------------------------------------ -- A combinator t₁ ⟷ t₂ denotes an equivalence to types -- note how we don't have to look at the types at all. ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ eval : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧ eval unite₊l (inj₁ ()) eval unite₊l (inj₂ v) = v eval uniti₊l v = inj₂ v eval unite₊r (inj₁ x) = x eval unite₊r (inj₂ ()) eval uniti₊r v = inj₁ v eval swap₊ (inj₁ v) = inj₂ v eval swap₊ (inj₂ v) = inj₁ v eval assocl₊ (inj₁ v) = inj₁ (inj₁ v) eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) eval assocr₊ (inj₂ v) = inj₂ (inj₂ v) eval unite⋆l (tt , v) = v eval uniti⋆l v = (tt , v) eval unite⋆r (v , tt) = v eval uniti⋆r v = v , tt eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) eval assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) eval absorbr (x , _) = x eval absorbl (_ , y) = y eval factorzl () eval factorzr () eval dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) eval dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) eval factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) eval factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) eval distl (v , inj₁ x) = inj₁ (v , x) eval distl (v , inj₂ y) = inj₂ (v , y) eval factorl (inj₁ (x , y)) = x , inj₁ y eval factorl (inj₂ (x , y)) = x , inj₂ y eval id⟷ v = v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v) eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂) -- useful to have the backwards eval too evalB : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₂ ⟧ → ⟦ t₁ ⟧ evalB unite₊l x = inj₂ x evalB uniti₊l (inj₁ ()) evalB uniti₊l (inj₂ y) = y evalB unite₊r v = inj₁ v evalB uniti₊r (inj₁ x) = x evalB uniti₊r (inj₂ ()) evalB swap₊ (inj₁ x) = inj₂ x evalB swap₊ (inj₂ y) = inj₁ y evalB assocl₊ (inj₁ (inj₁ x)) = inj₁ x evalB assocl₊ (inj₁ (inj₂ y)) = inj₂ (inj₁ y) evalB assocl₊ (inj₂ y) = inj₂ (inj₂ y) evalB assocr₊ (inj₁ x) = inj₁ (inj₁ x) evalB assocr₊ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) evalB assocr₊ (inj₂ (inj₂ y)) = inj₂ y evalB unite⋆l x = tt , x evalB uniti⋆l (tt , x) = x evalB unite⋆r v = v , tt evalB uniti⋆r (v , tt) = v evalB swap⋆ (x , y) = y , x evalB assocl⋆ ((x , y) , z) = x , y , z evalB assocr⋆ (x , y , z) = (x , y) , z evalB absorbr () evalB absorbl () evalB factorzr (_ , x) = x evalB factorzl (x , _) = x evalB dist (inj₁ (x , y)) = inj₁ x , y evalB dist (inj₂ (x , y)) = inj₂ x , y evalB factor (inj₁ x , z) = inj₁ (x , z) evalB factor (inj₂ y , z) = inj₂ (y , z) evalB distl (inj₁ (x , y)) = x , inj₁ y evalB distl (inj₂ (x , y)) = x , inj₂ y evalB factorl (v , inj₁ x) = inj₁ (v , x) evalB factorl (v , inj₂ y) = inj₂ (v , y) evalB id⟷ x = x evalB (c₀ ◎ c₁) x = evalB c₀ (evalB c₁ x) evalB (c₀ ⊕ c₁) (inj₁ x) = inj₁ (evalB c₀ x) evalB (c₀ ⊕ c₁) (inj₂ y) = inj₂ (evalB c₁ y) evalB (c₀ ⊗ c₁) (x , y) = evalB c₀ x , evalB c₁ y -- should probably prove that these are inverses! -- to a certain extent, no need, because here's -- the right way to do it: c2equiv : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → ⟦ t₁ ⟧ ≃ ⟦ t₂ ⟧ c2equiv unite₊l = TE.unite₊equiv c2equiv uniti₊l = TE.uniti₊equiv c2equiv unite₊r = TE.unite₊′equiv c2equiv uniti₊r = TE.uniti₊′equiv c2equiv swap₊ = TE.swap₊equiv c2equiv assocl₊ = TE.assocl₊equiv c2equiv assocr₊ = TE.assocr₊equiv c2equiv unite⋆l = TE.unite⋆equiv c2equiv uniti⋆l = TE.uniti⋆equiv c2equiv unite⋆r = TE.unite⋆′equiv c2equiv uniti⋆r = TE.uniti⋆′equiv c2equiv swap⋆ = TE.swap⋆equiv c2equiv assocl⋆ = TE.assocl⋆equiv c2equiv assocr⋆ = TE.assocr⋆equiv c2equiv absorbr = TE.distzequiv c2equiv absorbl = TE.distzrequiv c2equiv factorzr = TE.factorzrequiv c2equiv factorzl = TE.factorzequiv c2equiv dist = TE.distequiv c2equiv factor = TE.factorequiv c2equiv distl = TE.distlequiv c2equiv factorl = TE.factorlequiv c2equiv id⟷ = id≃ c2equiv (c ◎ c₁) = c2equiv c₁ ● c2equiv c c2equiv (c ⊕ c₁) = (c2equiv c) ⊎≃ (c2equiv c₁) c2equiv (c ⊗ c₁) = (c2equiv c) ×≃ (c2equiv c₁) -- and these are 'coherent' -- first with evaluation: lemma0 : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (v : ⟦ t₁ ⟧) → eval c v ≡ proj₁ (c2equiv c) v lemma0 unite₊l (inj₁ ()) lemma0 unite₊l (inj₂ y) = refl lemma0 uniti₊l v = refl lemma0 unite₊r (inj₁ x) = refl lemma0 unite₊r (inj₂ ()) lemma0 uniti₊r v = refl lemma0 PiLevel0.swap₊ (inj₁ x) = refl lemma0 PiLevel0.swap₊ (inj₂ y) = refl lemma0 PiLevel0.assocl₊ (inj₁ x) = refl lemma0 PiLevel0.assocl₊ (inj₂ (inj₁ x)) = refl lemma0 PiLevel0.assocl₊ (inj₂ (inj₂ y)) = refl lemma0 PiLevel0.assocr₊ (inj₁ (inj₁ x)) = refl lemma0 PiLevel0.assocr₊ (inj₁ (inj₂ y)) = refl lemma0 PiLevel0.assocr₊ (inj₂ y) = refl lemma0 unite⋆l v = refl -- yay for η ! lemma0 uniti⋆l v = refl lemma0 unite⋆r v = refl lemma0 uniti⋆r v = refl lemma0 PiLevel0.swap⋆ v = refl lemma0 PiLevel0.assocl⋆ v = refl lemma0 PiLevel0.assocr⋆ v = refl lemma0 absorbr v = refl lemma0 absorbl v = refl lemma0 factorzr () lemma0 factorzl () lemma0 PiLevel0.dist (inj₁ x , proj₂) = refl lemma0 PiLevel0.dist (inj₂ y , proj₂) = refl lemma0 PiLevel0.factor (inj₁ x) = refl lemma0 PiLevel0.factor (inj₂ y) = refl lemma0 PiLevel0.distl (proj₁ , inj₁ x) = refl lemma0 PiLevel0.distl (proj₁ , inj₂ y) = refl lemma0 PiLevel0.factorl (inj₁ x) = refl lemma0 PiLevel0.factorl (inj₂ y) = refl lemma0 id⟷ v = refl lemma0 (c ◎ c₁) v = trans (cong (eval c₁) (lemma0 c v)) ( trans (lemma0 c₁ (proj₁ (c2equiv c) v)) (sym (β₁ v))) lemma0 (c ⊕ c₁) (inj₁ x) = trans (cong inj₁ (lemma0 c x)) (sym (β⊎₁ (inj₁ x))) lemma0 (c ⊕ c₁) (inj₂ y) = trans (cong inj₂ (lemma0 c₁ y)) (sym (β⊎₁ (inj₂ y))) lemma0 (c ⊗ c₁) (x , y) = trans (cong₂ _,_ (lemma0 c x) (lemma0 c₁ y)) (sym (β×₁ (x , y))) lemma1 : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (v : ⟦ t₂ ⟧) → evalB c v ≡ proj₁ (sym≃ (c2equiv c)) v lemma1 PiLevel0.unite₊l v = refl lemma1 PiLevel0.uniti₊l (inj₁ ()) lemma1 PiLevel0.uniti₊l (inj₂ y) = refl lemma1 PiLevel0.unite₊r v = refl lemma1 uniti₊r (inj₁ x) = refl lemma1 uniti₊r (inj₂ ()) lemma1 PiLevel0.swap₊ (inj₁ x) = refl lemma1 PiLevel0.swap₊ (inj₂ y) = refl lemma1 PiLevel0.assocl₊ (inj₁ (inj₁ x)) = refl lemma1 PiLevel0.assocl₊ (inj₁ (inj₂ y)) = refl lemma1 PiLevel0.assocl₊ (inj₂ y) = refl lemma1 PiLevel0.assocr₊ (inj₁ x) = refl lemma1 PiLevel0.assocr₊ (inj₂ (inj₁ x)) = refl lemma1 PiLevel0.assocr₊ (inj₂ (inj₂ y)) = refl lemma1 PiLevel0.unite⋆l v = refl lemma1 PiLevel0.uniti⋆l (tt , x) = refl lemma1 PiLevel0.unite⋆r v = refl lemma1 uniti⋆r (x , tt) = refl lemma1 PiLevel0.swap⋆ (x , y) = refl lemma1 PiLevel0.assocl⋆ ((x , y) , z) = refl lemma1 PiLevel0.assocr⋆ (x , y , z) = refl lemma1 absorbr () lemma1 absorbl () lemma1 PiLevel0.factorzr (_ , ()) lemma1 factorzl (() , v) lemma1 PiLevel0.dist (inj₁ (proj₁ , proj₂)) = refl lemma1 PiLevel0.dist (inj₂ (proj₁ , proj₂)) = refl lemma1 PiLevel0.factor (inj₁ x , proj₂) = refl lemma1 PiLevel0.factor (inj₂ y , proj₂) = refl lemma1 PiLevel0.distl (inj₁ (proj₁ , proj₂)) = refl lemma1 PiLevel0.distl (inj₂ (proj₁ , proj₂)) = refl lemma1 PiLevel0.factorl (v , inj₁ x) = refl lemma1 PiLevel0.factorl (v , inj₂ y) = refl lemma1 id⟷ v = refl lemma1 (c₀ ◎ c₁) v = trans ( trans (cong (evalB c₀) (lemma1 c₁ v)) (lemma1 c₀ (gg (c2equiv c₁) v)) ) (sym (β₂ v)) lemma1 (c₀ ⊕ c₁) (inj₁ x) = trans (cong inj₁ (lemma1 c₀ x)) (sym (β⊎₂ (inj₁ x))) -- cong inj₁ (lemma1 c₀ x) lemma1 (c₀ ⊕ c₁) (inj₂ y) = trans (cong inj₂ (lemma1 c₁ y)) (sym (β⊎₂ (inj₂ y))) lemma1 (c₀ ⊗ c₁) (x , y) = trans (cong₂ _,_ (lemma1 c₀ x) (lemma1 c₁ y)) (sym (β×₂ (x , y))) -- and with reverse !≡sym≃ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → c2equiv (! c) ≋ sym≃ (c2equiv c) !≡sym≃ unite₊l = id≋ !≡sym≃ uniti₊l = id≋ !≡sym≃ unite₊r = id≋ !≡sym≃ uniti₊r = id≋ !≡sym≃ PiLevel0.swap₊ = id≋ !≡sym≃ PiLevel0.assocl₊ = id≋ !≡sym≃ PiLevel0.assocr₊ = id≋ !≡sym≃ unite⋆l = id≋ !≡sym≃ uniti⋆l = id≋ !≡sym≃ unite⋆r = id≋ !≡sym≃ uniti⋆r = id≋ !≡sym≃ PiLevel0.swap⋆ = id≋ !≡sym≃ PiLevel0.assocl⋆ = id≋ !≡sym≃ PiLevel0.assocr⋆ = id≋ !≡sym≃ absorbr = id≋ !≡sym≃ absorbl = id≋ !≡sym≃ PiLevel0.factorzr = id≋ !≡sym≃ factorzl = id≋ !≡sym≃ PiLevel0.dist = id≋ !≡sym≃ PiLevel0.factor = id≋ !≡sym≃ PiLevel0.distl = id≋ !≡sym≃ PiLevel0.factorl = id≋ !≡sym≃ id⟷ = id≋ !≡sym≃ (c ◎ c₁) = trans≋ (EquivEquiv._◎_ (!≡sym≃ c) (!≡sym≃ c₁)) (sym≋ sym≃●) !≡sym≃ (c ⊕ c₁) = trans≋ ((!≡sym≃ c) ⊎≋ (!≡sym≃ c₁)) (sym≋ sym≃-distrib⊎) !≡sym≃ (c ⊗ c₁) = trans≋ ((!≡sym≃ c) ×≋ (!≡sym≃ c₁)) (sym≋ sym≃-distrib×) left-inv : {t₁ t₂ : U} (c : t₁ ⟷ t₂) → (c2equiv (! c) ● c2equiv c) ≋ id≃ left-inv c = let p = c2equiv c in trans≋ (!≡sym≃ c EquivEquiv.◎ id≋) (linv≋ p) right-inv : {t₁ t₂ : U} (c : t₁ ⟷ t₂) → (c2equiv c ● c2equiv (! c)) ≋ id≃ right-inv c = let p = c2equiv c in trans≋ (id≋ EquivEquiv.◎ (!≡sym≃ c)) (rinv≋ p) ---------------------------------------------------------- cc2equiv : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} (ce : c₁ ⇔ c₂) → c2equiv c₁ ≋ c2equiv c₂ cc2equiv assoc◎l = ●-assoc cc2equiv assoc◎r = ●-assocl cc2equiv assocl⊕l = assocl₊-nat cc2equiv assocl⊕r = sym≋ assocl₊-nat cc2equiv assocl⊗l = assocl⋆-nat cc2equiv assocl⊗r = sym≋ assocl⋆-nat cc2equiv assocr⊕r = assocr₊-nat cc2equiv assocr⊗l = sym≋ assocr⋆-nat cc2equiv assocr⊗r = assocr⋆-nat cc2equiv assocr⊕l = sym≋ assocr₊-nat cc2equiv dist⇔l = dist-nat cc2equiv dist⇔r = sym≋ dist-nat cc2equiv distl⇔l = distl-nat cc2equiv distl⇔r = sym≋ distl-nat cc2equiv factor⇔l = factor-nat cc2equiv factor⇔r = sym≋ factor-nat cc2equiv factorl⇔l = factorl-nat cc2equiv factorl⇔r = sym≋ factorl-nat cc2equiv idl◎l = rid≋ cc2equiv idl◎r = sym≋ rid≋ cc2equiv idr◎l = lid≋ cc2equiv idr◎r = sym≋ lid≋ cc2equiv (linv◎l {c = c}) = left-inv c cc2equiv (linv◎r {c = c}) = sym≋ (left-inv c) cc2equiv (rinv◎l {c = c}) = right-inv c cc2equiv (rinv◎r {c = c}) = sym≋ (right-inv c) cc2equiv (unite₊l⇔l {c₁ = c₁} {c₂}) = sym≋ (unite₊-nat {f = c2equiv c₂}) cc2equiv unite₊l⇔r = unite₊-nat cc2equiv uniti₊l⇔l = sym≋ uniti₊-nat cc2equiv uniti₊l⇔r = uniti₊-nat cc2equiv unite₊r⇔l = sym≋ unite₊′-nat cc2equiv unite₊r⇔r = unite₊′-nat cc2equiv uniti₊r⇔l = sym≋ uniti₊′-nat cc2equiv uniti₊r⇔r = uniti₊′-nat cc2equiv swapl₊⇔ = sym≋ swap₊-nat cc2equiv swapr₊⇔ = swap₊-nat cc2equiv unitel⋆⇔l = sym≋ unite⋆-nat cc2equiv uniter⋆⇔l = unite⋆-nat cc2equiv unitil⋆⇔l = sym≋ uniti⋆-nat cc2equiv unitir⋆⇔l = uniti⋆-nat cc2equiv unitel⋆⇔r = sym≋ unite⋆′-nat cc2equiv uniter⋆⇔r = unite⋆′-nat cc2equiv unitil⋆⇔r = sym≋ uniti⋆′-nat cc2equiv unitir⋆⇔r = uniti⋆′-nat cc2equiv swapl⋆⇔ = sym≋ swap⋆-nat cc2equiv swapr⋆⇔ = swap⋆-nat cc2equiv id⇔ = id≋ cc2equiv (trans⇔ ce ce₁) = trans≋ (cc2equiv ce) (cc2equiv ce₁) cc2equiv (ce ⊡ ce₁) = (cc2equiv ce₁) EquivEquiv.◎ (cc2equiv ce) cc2equiv (resp⊕⇔ ce ce₁) = cc2equiv ce ⊎≋ cc2equiv ce₁ cc2equiv (resp⊗⇔ ce ce₁) = cc2equiv ce ×≋ cc2equiv ce₁ cc2equiv id⟷⊕id⟷⇔ = [id,id]≋id cc2equiv split⊕-id⟷ = sym≋ [id,id]≋id cc2equiv hom⊕◎⇔ = ⊎●≋●⊎ cc2equiv hom◎⊕⇔ = sym≋ ⊎●≋●⊎ cc2equiv id⟷⊗id⟷⇔ = id×id≋id cc2equiv split⊗-id⟷ = sym≋ id×id≋id cc2equiv hom⊗◎⇔ = ×●≋●× cc2equiv hom◎⊗⇔ = sym≋ ×●≋●× cc2equiv triangle⊕l = unite-assocr₊-coh cc2equiv triangle⊕r = sym≋ unite-assocr₊-coh cc2equiv triangle⊗l = unite-assocr⋆-coh cc2equiv triangle⊗r = sym≋ unite-assocr⋆-coh cc2equiv unite₊l-coh-l = unite₊l-coh cc2equiv unite₊l-coh-r = sym≋ unite₊l-coh cc2equiv unite⋆l-coh-l = unite⋆l-coh cc2equiv unite⋆l-coh-r = sym≋ unite⋆l-coh cc2equiv pentagon⊕l = assocr₊-coh cc2equiv pentagon⊕r = sym≋ assocr₊-coh cc2equiv pentagon⊗l = assocr⋆-coh cc2equiv pentagon⊗r = sym≋ assocr⋆-coh cc2equiv hexagonr⊕l = assocr₊-swap₊-coh cc2equiv hexagonr⊕r = sym≋ assocr₊-swap₊-coh cc2equiv hexagonl⊕l = assocl₊-swap₊-coh cc2equiv hexagonl⊕r = sym≋ assocl₊-swap₊-coh cc2equiv hexagonr⊗l = assocr⋆-swap⋆-coh cc2equiv hexagonr⊗r = sym≋ assocr⋆-swap⋆-coh cc2equiv hexagonl⊗l = assocl⋆-swap⋆-coh cc2equiv hexagonl⊗r = sym≋ assocl⋆-swap⋆-coh cc2equiv absorbl⇔l = distzr-nat cc2equiv absorbl⇔r = sym≋ distzr-nat cc2equiv absorbr⇔l = distz-nat cc2equiv absorbr⇔r = sym≋ distz-nat cc2equiv factorzl⇔l = factorz-nat cc2equiv factorzl⇔r = sym≋ factorz-nat cc2equiv factorzr⇔l = factorzr-nat cc2equiv factorzr⇔r = sym≋ factorzr-nat cc2equiv swap₊distl⇔l = A×[B⊎C]≃[A×C]⊎[A×B] cc2equiv swap₊distl⇔r = sym≋ A×[B⊎C]≃[A×C]⊎[A×B] cc2equiv dist-swap⋆⇔l = [A⊎B]×C≃[C×A]⊎[C×B] cc2equiv dist-swap⋆⇔r = sym≋ [A⊎B]×C≃[C×A]⊎[C×B] cc2equiv assocl₊-dist-dist⇔l = [A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D cc2equiv assocl₊-dist-dist⇔r = sym≋ [A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D cc2equiv assocl⋆-distl⇔l = A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D cc2equiv assocl⋆-distl⇔r = sym≋ A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D cc2equiv absorbr0-absorbl0⇔ = 0×0≃0 cc2equiv absorbl0-absorbr0⇔ = sym≋ 0×0≃0 cc2equiv absorbr⇔distl-absorb-unite = 0×[A⊎B]≃0 cc2equiv distl-absorb-unite⇔absorbr = sym≋ 0×[A⊎B]≃0 cc2equiv unite⋆r0-absorbr1⇔ = 0×1≃0 cc2equiv absorbr1-unite⋆r-⇔ = sym≋ 0×1≃0 cc2equiv absorbl≡swap⋆◎absorbr = A×0≃0 cc2equiv swap⋆◎absorbr≡absorbl = sym≋ A×0≃0 cc2equiv absorbr⇔[assocl⋆◎[absorbr⊗id⟷]]◎absorbr = 0×A×B≃0 cc2equiv [assocl⋆◎[absorbr⊗id⟷]]◎absorbr⇔absorbr = sym≋ 0×A×B≃0 cc2equiv [id⟷⊗absorbr]◎absorbl⇔assocl⋆◎[absorbl⊗id⟷]◎absorbr = A×0×B≃0 cc2equiv assocl⋆◎[absorbl⊗id⟷]◎absorbr⇔[id⟷⊗absorbr]◎absorbl = sym≋ A×0×B≃0 cc2equiv elim⊥-A[0⊕B]⇔l = A×[0+B]≃A×B cc2equiv elim⊥-A[0⊕B]⇔r = sym≋ A×[0+B]≃A×B cc2equiv elim⊥-1[A⊕B]⇔l = 1×[A⊎B]≃A⊎B cc2equiv elim⊥-1[A⊕B]⇔r = sym≋ 1×[A⊎B]≃A⊎B cc2equiv fully-distribute⇔l = [A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D cc2equiv fully-distribute⇔r = sym≋ [A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D -- -- These programs really are equivalent. Here's two ways to see that: -- 1. they give the same results as programs: ≋⇒≡ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} (ce : c₁ ⇔ c₂) → eval c₁ ∼ eval c₂ ≋⇒≡ {c₁ = c₁} {c₂} ce = trans∼ (lemma0 c₁) ( trans∼ (_≋_.f≡ (cc2equiv ce)) (sym∼ (lemma0 c₂))) -- 2. in fact, you can run one forward, then the other -- backward, and that's the identity ping-pong : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} (ce : c₁ ⇔ c₂) → evalB c₂ ∘ eval c₁ ∼ id ping-pong {c₁ = c₁} {c₂} ce = trans∼ (cong₂∘ (lemma1 c₂) (lemma0 c₁)) ( trans∼ (cong∘r (proj₁ (c2equiv c₁)) (_≋_.f≡ (flip≋ (cc2equiv (2! ce))) )) ( trans∼(sym∼ β₁) (_≋_.f≡ (linv≋ (c2equiv c₁)))))
{ "alphanum_fraction": 0.6348742352, "avg_line_length": 34.6117647059, "ext": "agda", "hexsha": "3225b1e52016e3c315ea5b29935a4450e70e9687", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PiEquiv.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PiEquiv.agda", "max_line_length": 107, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PiEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 7690, "size": 14710 }
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Equality data ⊥ : Set where T : Nat → Set T zero = ⊥ T (suc n) = Nat module M (n : Nat) where foo : n ≡ 0 → T n → Nat foo refl t = 0 module M' where bar : ⊥ bar = t bad : ⊥ bad = M'.bar loop : ⊥ loop = M.bad 0
{ "alphanum_fraction": 0.5541401274, "avg_line_length": 12.0769230769, "ext": "agda", "hexsha": "37aa1d6f7549fcf271f01ce198900bdde405c6e2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2897.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2897.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2897.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 125, "size": 314 }
module PigeonHole where open import Prelude open import Data.Nat hiding (_==_; _<_) open import Data.Fin open import Data.Vec as Vec open import Logic.Base open import Logic.Identity open Vec.Elem tooManyPigeons : {n : Nat}(xs : Vec (Fin (suc n)) n) -> ∃ \p -> p ∉ xs tooManyPigeons {zero} [] = ∃-I fzero nl tooManyPigeons {suc n} zs = aux zs (find _==_ fzero zs) where -- We start by checking whether or not fzero is an element of the list aux : {n : Nat}(xs : Vec (Fin (suc (suc n))) (suc n)) -> fzero ∈ xs \/ fzero ∉ xs -> ∃ \p -> p ∉ xs -- If it's not then we're done aux xs (\/-IR z∉xs) = ∃-I fzero z∉xs -- If it is we have to find another element aux xs (\/-IL z∈xs) = lem₂ ih where -- Let's remove the occurrence of fzero from the list and strip a fsuc -- from each of the other elements (i.e. map pred $ delete fzero xs) -- We can apply the induction hypothesis, giving us a p which is not in -- this list. ih : ∃ \p -> p ∉ map pred (delete fzero xs z∈xs) ih = tooManyPigeons (map pred $ delete _ xs z∈xs) -- First observe that if i ∉ map pred xs then fsuc i ∉ xs. Using this -- lemma we conclude that fsuc p ∉ delete fzero xs. lem₀ : {n m : Nat}(i : Fin (suc n))(xs : Vec (Fin (suc (suc n))) m) -> i ∉ map pred xs -> fsuc i ∉ xs lem₀ i [] nl = nl lem₀ i (x :: xs) (cns h t) = cns (rem₀ h) (lem₀ i xs t) where rem₀ : {n : Nat}{i : Fin (suc n)}{j : Fin (suc (suc n))} -> i ≢ pred j -> fsuc i ≢ j rem₀ i≠i refl = i≠i refl -- Furthermore, if i ∉ delete j xs and i ≠ j then i ∉ xs. lem₁ : {n m : Nat}{i : Fin (suc n)}{j : Fin n} (xs : Vec (Fin (suc n)) (suc m))(p : i ∈ xs) -> thin i j ∉ delete i xs p -> thin i j ∉ xs lem₁ (x :: xs) hd el = cns (thin-ij≠i _ _) el lem₁ {m = zero } (x :: xs) (tl ()) _ lem₁ {m = suc _} (x :: xs) (tl p) (cns h t) = cns h (lem₁ xs p t) -- So we get fsuc p ∉ xs and we're done. lem₂ : (∃ \p -> p ∉ map pred (delete fzero xs z∈xs)) -> (∃ \p -> p ∉ xs) lem₂ (∃-I p h) = ∃-I (fsuc p) (lem₁ xs z∈xs $ lem₀ _ _ h) -- tooManyHoles : {n : Nat}(xs : Vec (Fin n) (suc n)) -> -- ∃ \p -> ∃ \i -> ∃ \j -> xs ! i ≡ p /\ xs ! thin i j ≡ p -- tooManyHoles = ?
{ "alphanum_fraction": 0.5547016275, "avg_line_length": 34.5625, "ext": "agda", "hexsha": "cdc82109fe70fa7d1c721190c9ede098b25bb803", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/PigeonHole.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/PigeonHole.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/PigeonHole.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 881, "size": 2212 }
module Data.Vec.Extra where open import Data.Product hiding (map; zip) open import Data.Nat open import Data.Fin open import Data.Vec open import Relation.Binary.PropositionalEquality open import Function map-with-∈ : ∀ {a}{A : Set a}{b n}{B : Set b} (xs : Vec A n) → (∀ i {x} → lookup i xs ≡ x → B) → Vec B n map-with-∈ [] f = [] map-with-∈ (x ∷ xs) f = f zero refl ∷ map-with-∈ xs (λ i x → f (suc i) refl)
{ "alphanum_fraction": 0.6153846154, "avg_line_length": 30.6428571429, "ext": "agda", "hexsha": "677734b1d26b0ec36c862f9b940ce17bf7179d87", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Data/Vec/Extra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Data/Vec/Extra.agda", "max_line_length": 76, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Data/Vec/Extra.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 149, "size": 429 }
record R : Set₁ where field X : Set data Δ (A : Set) : Set where _,_ : A → A → Δ A foo : (A : Set) → R → Δ A → Set foo A = λ { r (x , y) → let open R r in X } -- (y₁ : r) → Set !=< Set of type Set₁ -- when checking that the expression .Foo.X has type Set
{ "alphanum_fraction": 0.5296296296, "avg_line_length": 20.7692307692, "ext": "agda", "hexsha": "f4d0cdc0093111b4a956b53075e03337613d7180", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2883b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2883b.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2883b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 104, "size": 270 }
-- Andreas, 2017-12-01, issue #2859 introduced by parameter-refinement -- In Agda 2.5.2 any definition by pattern matching in a module -- with a parameter that shadows a constructor will complain -- about pattern variables with the same name as a constructor. -- These are pattern variables added by the parameter-refinement -- machinery, not user written ones. Thus, no reason to complain here. -- {-# OPTIONS -v scope.pat:60 #-} -- {-# OPTIONS -v tc.lhs.shadow:30 #-} data D : Set where c : D module M (c : D) where data DD : Set where cc : DD should-work : DD → Set should-work cc = DD should-fail : D → D should-fail c = c -- Expected error: -- The pattern variable c has the same name as the constructor c -- when checking the clause test c = c
{ "alphanum_fraction": 0.6920103093, "avg_line_length": 25.8666666667, "ext": "agda", "hexsha": "8df89e2817dc5dffa6698359d6bc455728745c21", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2859.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2859.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2859.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 208, "size": 776 }
{-# OPTIONS --without-K --safe #-} -- | Functions for the composition of binary relations. module Dodo.Binary.Composition where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Product using (_,_; _×_; ∃-syntax) open import Function.Base using (flip) open import Relation.Binary using (Rel; REL) open import Relation.Binary using (Transitive; Symmetric) -- Local imports open import Dodo.Binary.Equality -- # Definitions infixl 10 _⨾_ ⨾: -- | Composition of binary relations. -- -- The composition of two relations P and Q, is mathematically denoted as `P⨾Q`. It is -- inhabited as `(P⨾Q) x y`, iff `P x z` and `Q z y` are inhabited, for some `z`. -- -- The notation used here is: -- > Pxz ⨾[ z ]⨾ Qzy : (P ⨾ Q) x y -- -- Where the corresponding types are: -- > Pxz : P x z -- > Qzy : Q z y -- -- That notation is syntactic sugar for the constructor below: -- > ⨾: z Pxz Qzy -- -- -- # Design decision: Syntactic sugar with explicit `z` -- -- The syntactic sugar /cannot/ be the actual constructor, as `Pxz` depends on `z`; Meaning -- that Agda requires to know `z` before `Pxz`. Alternatively, `z` could be /implicit/ -- (as it is in the standard library). For instance: -- > Pxz ⨾ Qzy : (P ⨾ Q) x y -- -- The disadvantage of that approach is that `z` may not always be inferred from `Pxz` and `Qzy`. -- After all, `Pxz` and `Qzy` may be beta-reduced, for which different types of `P`, `Q`, `x`, `y`, -- and `z` hold; Which introduces ambiguity during type checking. This, in turn, requires making -- the implicit argument /explicit/ in practice; namely: -- > _⨾_ {z} Pxz Qzy -- -- Which is syntactically even less desirable. Hence, in the definition below, `z` is represented -- explicitly. data _⨾_ {a b c ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {C : Set c} (L : REL A B ℓ₁) (R : REL B C ℓ₂) (i : A) (j : C) : Set (a ⊔ b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where ⨾: : (k : B) → L i k → R k j → (L ⨾ R) i j syntax ⨾: k Pik Qkj = Pik ⨾[ k ]⨾ Qkj -- # Properties module _ {a b c d ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {P : REL A B ℓ₁} {Q : REL B C ℓ₂} {R : REL C D ℓ₃} where -- | Composition of binary relations is associative. ⨾-assoc : (P ⨾ Q) ⨾ R ⇔₂ P ⨾ (Q ⨾ R) ⨾-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : (P ⨾ Q) ⨾ R ⊆₂' P ⨾ (Q ⨾ R) ⊆-proof _ _ ((Pxb ⨾[ b ]⨾ Qbc) ⨾[ c ]⨾ Rcy) = Pxb ⨾[ b ]⨾ (Qbc ⨾[ c ]⨾ Rcy) ⊇-proof : P ⨾ (Q ⨾ R) ⊆₂' (P ⨾ Q) ⨾ R ⊇-proof _ _ (Pxb ⨾[ b ]⨾ (Qbc ⨾[ c ]⨾ Rcy)) = (Pxb ⨾[ b ]⨾ Qbc) ⨾[ c ]⨾ Rcy module _ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} where -- | The composition of a transitive relation with itself is a subset of itself. ⨾-trans-⊆₂ : Transitive R → (R ⨾ R) ⊆₂ R ⨾-trans-⊆₂ transR = ⊆: lemma where lemma : (R ⨾ R) ⊆₂' R lemma _ _ (Rxz ⨾[ z ]⨾ Rzy) = transR Rxz Rzy -- # Operations module _ {a b c ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {C : Set c} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL B C ℓ₃} where ⨾-substˡ-⊆₂ : P ⊆₂ Q → (P ⨾ R) ⊆₂ (Q ⨾ R) ⨾-substˡ-⊆₂ (⊆: P⊆Q) = ⊆: ⊆-proof where ⊆-proof : (P ⨾ R) ⊆₂' (Q ⨾ R) ⊆-proof x y (Pxz ⨾[ z ]⨾ Rzy) = P⊆Q x z Pxz ⨾[ z ]⨾ Rzy module _ {a b c ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {C : Set c} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL B C ℓ₃} where ⨾-substˡ : P ⇔₂ Q → (P ⨾ R) ⇔₂ (Q ⨾ R) ⨾-substˡ = ⇔₂-compose ⨾-substˡ-⊆₂ ⨾-substˡ-⊆₂ module _ {a b c ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {C : Set c} {P : REL B C ℓ₁} {Q : REL B C ℓ₂} {R : REL A B ℓ₃} where ⨾-substʳ-⊆₂ : P ⊆₂ Q → (R ⨾ P) ⊆₂ (R ⨾ Q) ⨾-substʳ-⊆₂ (⊆: P⊆Q) = ⊆: ⊆-proof where ⊆-proof : (R ⨾ P) ⊆₂' (R ⨾ Q) ⊆-proof x y (Rxz ⨾[ z ]⨾ Pzy) = Rxz ⨾[ z ]⨾ P⊆Q z y Pzy module _ {a b c ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {C : Set c} {P : REL B C ℓ₁} {Q : REL B C ℓ₂} {R : REL A B ℓ₃} where ⨾-substʳ : P ⇔₂ Q → (R ⨾ P) ⇔₂ (R ⨾ Q) ⨾-substʳ = ⇔₂-compose ⨾-substʳ-⊆₂ ⨾-substʳ-⊆₂ module _ {a b c ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {C : Set c} {P : REL A B ℓ₁} {Q : REL B C ℓ₂} where -- | Expanded definition of flipping the composition of two relations. ⨾-flip : flip (P ⨾ Q) ⇔₂ flip Q ⨾ flip P ⨾-flip = ⇔: ⊆-proof ⊇-proof where ⊆-proof : flip (P ⨾ Q) ⊆₂' flip Q ⨾ flip P ⊆-proof x y (Pyz ⨾[ z ]⨾ Qzx) = (Qzx ⨾[ z ]⨾ Pyz) ⊇-proof : flip Q ⨾ flip P ⊆₂' flip (P ⨾ Q) ⊇-proof x y (Qzy ⨾[ z ]⨾ Pxz) = (Pxz ⨾[ z ]⨾ Qzy)
{ "alphanum_fraction": 0.5332005312, "avg_line_length": 34.7538461538, "ext": "agda", "hexsha": "49fcb37c6e2b0146dd7a9c67213df2c5a32732da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Composition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Composition.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Composition.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2084, "size": 4518 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Unit open import Agda.Builtin.Equality postulate A : Set u₁ u₂ : ⊤ mutual X : (⊤ → ⊤) → A X = _ test : X (λ x → u₁) ≡ X (λ x → u₂) test = refl
{ "alphanum_fraction": 0.5739910314, "avg_line_length": 13.9375, "ext": "agda", "hexsha": "1905c814e5e165b69b2bdbda29609847a8d4746a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3785.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3785.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3785.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 91, "size": 223 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- RWS monad implementation, and functionality for proving properties about -- programs written using this RWS monad. -- It includes constructors for branching code, to aid in the verification. module Haskell.Modules.RWS where open import Haskell.Prelude ------------------------------------------------------------------------------ open import Data.Product using (_×_; _,_) -- (free) RWS : the AST of computations with state `St` reading from an environment -- `Ev` and producing a list of outputs of type `Wr` data RWS (Ev Wr St : Set) : Set → Set₁ where -- Primitive combinators RWS-return : ∀ {A} → A → RWS Ev Wr St A RWS-bind : ∀ {A B} → RWS Ev Wr St A → (A → RWS Ev Wr St B) → RWS Ev Wr St B RWS-gets : ∀ {A} → (St → A) → RWS Ev Wr St A RWS-put : St → RWS Ev Wr St Unit RWS-ask : RWS Ev Wr St Ev RWS-tell : List Wr → RWS Ev Wr St Unit -- Branching combinators (used for creating more convenient contracts) RWS-if : ∀ {A} → Guards (RWS Ev Wr St A) → RWS Ev Wr St A RWS-either : ∀ {A B C} → (B → RWS Ev Wr St A) → (C → RWS Ev Wr St A) → Either B C → RWS Ev Wr St A RWS-ebind : ∀ {A B C} → RWS Ev Wr St (Either C A) → (A → RWS Ev Wr St (Either C B)) → RWS Ev Wr St (Either C B) RWS-maybe : ∀ {A B} → (RWS Ev Wr St A) → (B → RWS Ev Wr St A) → Maybe B → RWS Ev Wr St A private variable Ev Wr St : Set A B C : Set -- From this instance declaration, we get _<$>_, pure, and _<*>_ also. instance RWS-Monad : Monad (RWS Ev Wr St) Monad.return RWS-Monad = RWS-return Monad._>>=_ RWS-Monad = RWS-bind gets : (St → A) → RWS Ev Wr St A gets = RWS-gets get : RWS Ev Wr St St get = gets id put : St → RWS Ev Wr St Unit put = RWS-put modify : (St → St) → RWS Ev Wr St Unit modify f = do st ← get put (f st) ask : RWS Ev Wr St Ev ask = RWS-ask tell : List Wr → RWS Ev Wr St Unit tell = RWS-tell void : RWS Ev Wr St A → RWS Ev Wr St Unit void m = do _ ← m pure unit -- To execute an RWS program, you provide an environment and prestate. -- This produces a result value, poststate, and list of outputs. RWS-run : RWS Ev Wr St A → Ev → St → A × St × List Wr RWS-run (RWS-return x) ev st = x , st , [] RWS-run (RWS-bind m f) ev st with RWS-run m ev st ...| x₁ , st₁ , outs₁ with RWS-run (f x₁) ev st₁ ...| x₂ , st₂ , outs₂ = x₂ , st₂ , outs₁ ++ outs₂ RWS-run (RWS-gets f) ev st = f st , st , [] RWS-run (RWS-put st) ev _ = unit , st , [] RWS-run RWS-ask ev st = ev , st , [] RWS-run (RWS-tell outs) ev st = unit , st , outs RWS-run (RWS-if (clause (b ≔ c) gs)) ev st = if toBool b then RWS-run c ev st else RWS-run (RWS-if gs) ev st RWS-run (RWS-if (otherwise≔ c)) ev st = RWS-run c ev st RWS-run (RWS-either f₁ f₂ (Left x) ) ev st = RWS-run (f₁ x) ev st RWS-run (RWS-either f₁ f₂ (Right y)) ev st = RWS-run (f₂ y) ev st RWS-run (RWS-ebind m f) ev st with RWS-run m ev st ...| Left c , st₁ , outs₁ = Left c , st₁ , outs₁ ...| Right a , st₁ , outs₁ with RWS-run (f a) ev st₁ ...| r , st₂ , outs₂ = r , st₂ , outs₁ ++ outs₂ RWS-run (RWS-maybe f₁ f₂ nothing ) ev st = RWS-run f₁ ev st RWS-run (RWS-maybe f₁ f₂ (just x)) ev st = RWS-run (f₂ x) ev st -- Accessors for the result, poststate, and outputs. RWS-result : RWS Ev Wr St A → Ev → St → A RWS-result m ev st = fst (RWS-run m ev st) RWS-post : RWS Ev Wr St A → Ev → St → St RWS-post m ev st = fst (snd (RWS-run m ev st)) RWS-outs : RWS Ev Wr St A → Ev → St → List Wr RWS-outs m ev st = snd (snd (RWS-run m ev st))
{ "alphanum_fraction": 0.5375886525, "avg_line_length": 38.4545454545, "ext": "agda", "hexsha": "27db2bfaac3f8aee196e3268cf9c3cf59402a62a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Modules/RWS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Modules/RWS.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Modules/RWS.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1371, "size": 4230 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Functions.Definition module Orders.Total.Definition {a : _} (carrier : Set a) where open import Orders.Partial.Definition carrier record TotalOrder {b : _} : Set (a ⊔ lsuc b) where field order : PartialOrder {b} _<_ : Rel carrier _<_ = PartialOrder._<_ order _≤_ : Rel carrier _≤_ a b = (a < b) || (a ≡ b) field totality : (a b : carrier) → ((a < b) || (b < a)) || (a ≡ b) min : carrier → carrier → carrier min a b with totality a b min a b | inl (inl a<b) = a min a b | inl (inr b<a) = b min a b | inr a=b = a max : carrier → carrier → carrier max a b with totality a b max a b | inl (inl a<b) = b max a b | inl (inr b<a) = a max a b | inr a=b = b irreflexive = PartialOrder.irreflexive order <Transitive = PartialOrder.<Transitive order <WellDefined = PartialOrder.<WellDefined order
{ "alphanum_fraction": 0.6353535354, "avg_line_length": 26.7567567568, "ext": "agda", "hexsha": "35238ab26e40f8c0daf597005a42d356076cbb06", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Orders/Total/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Orders/Total/Definition.agda", "max_line_length": 64, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Orders/Total/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 346, "size": 990 }
{-# OPTIONS --safe #-} open import Generics.Prelude open import Generics.Telescope open import Generics.Desc open import Generics.HasDesc open import Generics.All module Generics.Constructions.Mu {P I ℓ} (A : Indexed P I ℓ) (H : HasDesc A) (open HasDesc H) {p} where private variable V : ExTele P i : ⟦ I ⟧tel p v : ⟦ V ⟧tel p open import Generics.Mu public toData : (x : ⟦ D ⟧Data A′ (p , i)) → AllDataω Acc D x → μ D (p , i) to-wf : (x : A′ (p , i)) → Acc x → μ D (p , i) to-wf x (acc a) = toData (split x) a toData (k , x) a = ⟨ k , toCon (lookupCon D k) x a ⟩ where toIndArg : (C : ConDesc P V I) (x : ⟦ C ⟧IndArg A′ (p , v)) → AllIndArgω Acc C x → ⟦ C ⟧IndArgω (μ D) (p , v) toIndArg (var _) x a = to-wf x a toIndArg (π ai _ C) x a s = toIndArg C (app< ai > x s) (a s) toIndArg (A ⊗ B) (xa , xb) (aa , ab) = toIndArg A xa aa , toIndArg B xb ab toCon : (C : ConDesc P V I) (x : ⟦ C ⟧Con A′ (p , v , i)) → AllConω Acc C x → ⟦ C ⟧Conω (μ D) (p , v , i) toCon (var _) refl _ = liftω refl toCon (π _ _ C) (s , x) a = s , toCon C x a toCon (A ⊗ B) (xa , xb) (aa , ab) = toIndArg A xa aa , toCon B xb ab to : A′ (p , i) → μ D (p , i) to x = to-wf x (wf x) from : μ D (p , i) → A′ (p , i) fromIndArg : (C : ConDesc P V I) → ⟦ C ⟧IndArgω (μ D) (p , v) → ⟦ C ⟧IndArg A′ (p , v) fromIndArg (var _) x = from x fromIndArg (π ai S C) x = fun< ai > λ s → fromIndArg C (x s) fromIndArg (A ⊗ B) (xa , xb) = fromIndArg A xa , fromIndArg B xb fromCon : (C : ConDesc P V I) → ⟦ C ⟧Conω (μ D) (p , v , i) → ⟦ C ⟧Con A′ (p , v , i) fromCon (var _) (liftω refl) = refl fromCon (π _ S C) (s , x) = s , fromCon C x fromCon (A ⊗ B) (xa , xb) = fromIndArg A xa , fromCon B xb from ⟨ k , x ⟩ = constr (k , fromCon (lookupCon D k) x)
{ "alphanum_fraction": 0.5113098369, "avg_line_length": 27.9558823529, "ext": "agda", "hexsha": "264b4d77b85dddc84f2b698eec009a3af17ff95a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Constructions/Mu.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Constructions/Mu.agda", "max_line_length": 68, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Constructions/Mu.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 790, "size": 1901 }
------------------------------------------------------------------------------ -- A simple network using the Agda standard library ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From (Sander, 1992, pp. 68-69). module FOT.FOTC.Program.ABP.SimpleNetwork-SL where open import Codata.Musical.Stream open import Data.Bool.Base ------------------------------------------------------------------------------ postulate f₁ : {A : Set} → Stream A → Stream A → Stream A f₂ : {A : Set} → Stream A → Stream A {-# TERMINATING #-} trans : {A : Set} → Stream A → Stream A trans {A} is = os where ys os : Stream A ys = f₁ os is os = f₂ ys Ty : Set → Set Ty A = (Stream A → Stream A → Stream A) → (Stream A → Stream A) → Stream A → Stream A {-# TERMINATING #-} trans' hys : {A : Set} → Ty A trans' f₁ f₂ is = f₂ (hys f₁ f₂ is) hys f₁ f₂ is = f₁ (trans' f₁ f₂ is) is ------------------------------------------------------------------------------ -- References -- -- Sander, Herbert P. (1992). A Logic of Functional Programs with an -- Application to Concurrency. PhD thesis. Department of Computer -- Sciences: Chalmers University of Technology and University of -- Gothenburg.
{ "alphanum_fraction": 0.4810578985, "avg_line_length": 28.5510204082, "ext": "agda", "hexsha": "de23cea9cec55b0cb508cae09d19590075cdd5ab", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/SimpleNetwork-SL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/SimpleNetwork-SL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/SimpleNetwork-SL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 336, "size": 1399 }
postulate F : Set₂ → Set₃ #_ : Set₁ → Set₂ !_ : Set₀ → Set₁ infix 1 F infix 2 #_ infix 3 !_ syntax F x = ! x ok₁ : Set₁ → Set₃ ok₁ X = ! # X ok₂ : Set₀ → Set₂ ok₂ X = # ! X
{ "alphanum_fraction": 0.4711538462, "avg_line_length": 12.2352941176, "ext": "agda", "hexsha": "d8f41dfcf5ec4412922a58a0162cfd3aecfc01a3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1436-7.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1436-7.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1436-7.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 99, "size": 208 }
{- Category of sets -} module CategoryTheory.Instances.Sets where open import CategoryTheory.Categories open import CategoryTheory.BCCCs import Function as F using (_∘_) open import Data.Unit using () renaming (⊤ to top) public open import Data.Product public open import Data.Empty using (⊥-elim) renaming (⊥ to bot) public open import Data.Sum -- Category of sets. 𝕊et : Category lzero 𝕊et = record { obj = Set ; _~>_ = λ a b -> (a -> b) ; id = λ a -> a ; _∘_ = λ g f a -> g (f a) ; _≈_ = λ f g -> ∀ {a} -> f a ≡ g a ; id-left = refl ; id-right = refl ; ∘-assoc = refl ; ≈-equiv = record { refl = refl ; sym = λ p → sym p ; trans = λ p q → trans p q } ; ≈-cong = ≈-cong-𝕊 } where ≈-cong-𝕊 : ∀{A B C : Set} {f f′ : A -> B} {g g′ : B -> C} -> (∀ {a} -> f a ≡ f′ a) -> (∀ {b} -> g b ≡ g′ b) -> (∀ {a} -> g (f a) ≡ g′ (f′ a)) ≈-cong-𝕊 {f′ = f′} fe ge {a′} rewrite fe {a′} | ge {f′ a′} = refl -- Bicartesian closed structure 𝕊et-BCCC : BicartesianClosed 𝕊et 𝕊et-BCCC = record { cart = record { term = record { ⊤ = top ; ! = λ {A} _ → top.tt ; !-unique = λ m → refl } ; prod = λ A B → record { A⊗B = A × B ; π₁ = proj₁ ; π₂ = proj₂ ; ⟨_,_⟩ = <_,_> ; π₁-comm = refl ; π₂-comm = refl ; ⊗-unique = λ pr1 pr2 → unique-cart (ext λ x → pr1 {x}) (ext λ x → pr2 {x}) } } ; cocart = record { init = record { ⊥ = bot ; ¡ = ⊥-elim ; ¡-unique = λ {A} m → λ {} } ; sum = λ A B → record { A⊕B = A ⊎ B ; ι₁ = inj₁ ; ι₂ = inj₂ ; [_⁏_] = [_,_] ; ι₁-comm = λ {S} {i₁} {i₂} {a} → refl ; ι₂-comm = λ {S} {i₁} {i₂} {a} → refl ; ⊕-unique = λ {S} {i₁} {i₂} {m} pr1 pr2 -> unique-cocart {m = m} (ext λ x → pr1 {x}) (ext λ x → pr2 {x}) } } ; closed = record { exp = λ A B → record { A⇒B = A -> B ; eval = λ fa → proj₁ fa (proj₂ fa) ; Λ = λ f a b → f (a , b) ; Λ-comm = refl ; Λ-unique = λ pr → λ {a} -> unique-closed (ext λ x → pr {x}) ; Λ-cong = λ pr → ext (λ _ → pr) } } } where unique-cart : ∀{A B P : Set}{a} -> {p₁ : P -> A} {p₂ : P -> B} {m : P -> A × B} -> proj₁ F.∘ m ≡ p₁ -> proj₂ F.∘ m ≡ p₂ -> < p₁ , p₂ > a ≡ m a unique-cart refl refl = refl unique-cocart : ∀{A B S : Set}{a} -> {i₁ : A -> S} {i₂ : B -> S} {m : A ⊎ B -> S} -> m F.∘ inj₁ ≡ i₁ -> m F.∘ inj₂ ≡ i₂ -> [ i₁ , i₂ ] a ≡ m a unique-cocart {a = inj₁ x} refl refl = refl unique-cocart {a = inj₂ y} refl refl = refl open Category 𝕊et unique-closed : ∀{A B E : Set}{a} -> {e : E × A -> B} {m : E -> (A -> B)} -> (λ fa → proj₁ fa (proj₂ fa)) ∘ < m ∘ proj₁ , proj₂ > ≡ e -> (λ b → e (a , b)) ≡ m a unique-closed refl = refl
{ "alphanum_fraction": 0.3865853659, "avg_line_length": 32.1568627451, "ext": "agda", "hexsha": "2009ff54798b7f4277f8f910ede7df1b769279ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/Instances/Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/Instances/Sets.agda", "max_line_length": 88, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/Instances/Sets.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1224, "size": 3280 }
------------------------------------------------------------------------------ -- First-order Peano arithmetic ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Axiomatic.Standard.README where -- Formalization of first-order Peano arithmetic using Agda postulates -- for the non-logical constants and the Peano's axioms, and using -- axioms based on the propositional equality (see, for example, -- (Machover 1996, p. 263), (Hájek and Pudlák 1998, p. 28). ------------------------------------------------------------------------------ -- The axioms open import PA.Axiomatic.Standard.Base -- Some properties open import PA.Axiomatic.Standard.PropertiesATP open import PA.Axiomatic.Standard.PropertiesI ------------------------------------------------------------------------------ -- References -- -- Machover, Moshé (1996). Set theory, Logic and their -- Limitations. Cambridge University Press. -- Hájek, Petr and Pudlák, Pavel (1998). Metamathematics of -- First-Order Arithmetic. 2nd printing. Springer.
{ "alphanum_fraction": 0.5248979592, "avg_line_length": 37.1212121212, "ext": "agda", "hexsha": "30af30eb4ba21e494972196eacfc0305d30c8310", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Standard/README.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Standard/README.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Standard/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 244, "size": 1225 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Parameters where data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A -- Error: The type of the constructor does not fit in the sort of the -- datatype, since Set₁ is not less or equal than Set when checking -- the constructor [] in the declaration of List₁ -- -- data List₁ : Set → Set where -- [] : {A : Set} → List₁ A -- _∷_ : {A : Set} → A → List₁ A → List₁ A data List₁ : Set → Set₁ where [] : {A : Set} → List₁ A _∷_ : {A : Set} → A → List₁ A → List₁ A
{ "alphanum_fraction": 0.5623145401, "avg_line_length": 29.3043478261, "ext": "agda", "hexsha": "f7fb48a465d960166e872a84c13cb9e0f9c24849", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/Parameters.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/Parameters.agda", "max_line_length": 69, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/Parameters.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 207, "size": 674 }
open import Agda.Builtin.Reflection open import Agda.Builtin.String open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Equality open import Agda.Builtin.Sigma data Wrap (A : Set) : Set where [_] : A → Wrap A macro give : Wrap Term → Term → TC ⊤ give [ t ] hole = unify hole t pattern vArg x = arg (arg-info visible relevant) x pattern hArg x = arg (arg-info hidden relevant) x -- Naming the variable "_" doesn't affect the deBruijn indices for lambda and pi `id : Term `id = lam visible (abs "_" (var 0 [])) `IdType : Term `IdType = pi (hArg (agda-sort (lit 0))) (abs "_" (pi (vArg (var 0 [])) (abs "_" (var 1 [])))) id : give [ `IdType ] id = give [ `id ] id-ok : (λ {A : Set} (x : A) → x) ≡ id id-ok = refl -- Underscores should behave the same for clauses as for lambda and pi idClause : Clause idClause = clause (("_" , vArg unknown) ∷ ("_" , hArg unknown) ∷ []) (hArg (var 1) ∷ vArg (var 0) ∷ []) (var 0 []) infixr 4 _>>=_ _>>=_ = bindTC unquoteDecl id₂ = declareDef (vArg id₂) `IdType >>= λ _ → defineFun id₂ (idClause ∷ []) id₂-ok : (λ {A : Set} (x : A) → x) ≡ id₂ id₂-ok = refl
{ "alphanum_fraction": 0.615004122, "avg_line_length": 23.7843137255, "ext": "agda", "hexsha": "d4da3d57daeff99384d9803a391006bff60d07ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue2129.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2129.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2129.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 414, "size": 1213 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.CommutativeMonoid {g₁ g₂} (M : CommutativeMonoid g₁ g₂) where open import Algebra.Operations.CommutativeMonoid M open import Algebra.Solver.CommutativeMonoid M open import Relation.Binary as B using (_Preserves_⟶_) open import Function open import Function.Equality using (_⟨$⟩_) open import Data.Product open import Data.Nat using (ℕ; zero; suc) open import Data.Fin using (Fin; zero; suc) open import Data.List as List using ([]; _∷_) import Data.Fin.Properties as FP open import Data.Fin.Permutation as Perm using (Permutation; Permutation′; _⟨$⟩ˡ_; _⟨$⟩ʳ_) open import Data.Fin.Permutation.Components as PermC open import Data.Table as Table open import Data.Table.Relation.Binary.Equality as TE using (_≗_) open import Data.Unit using (tt) import Data.Table.Properties as TP open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Nullary.Decidable using (⌊_⌋) open CommutativeMonoid M renaming ( ε to 0# ; _∙_ to _+_ ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; assoc to +-assoc ; comm to +-comm ) open import Algebra.FunctionProperties _≈_ open import Relation.Binary.Reasoning.Setoid setoid module _ {n} where open B.Setoid (TE.setoid setoid n) public using () renaming (_≈_ to _≋_) -- When summing over a function from a finite set, we can pull out any value and move it to the front. sumₜ-remove : ∀ {n} {i : Fin (suc n)} t → sumₜ t ≈ lookup t i + sumₜ (remove i t) sumₜ-remove {_} {zero} t = refl sumₜ-remove {zero} {suc ()} t sumₜ-remove {suc n} {suc i} t′ = begin t₀ + ∑t ≈⟨ +-congˡ (sumₜ-remove t) ⟩ t₀ + (tᵢ + ∑t′) ≈⟨ solve 3 (λ x y z → x ⊕ (y ⊕ z) ⊜ y ⊕ (x ⊕ z)) refl t₀ tᵢ ∑t′ ⟩ tᵢ + (t₀ + ∑t′) ∎ where t = tail t′ t₀ = head t′ tᵢ = lookup t i ∑t = sumₜ t ∑t′ = sumₜ (remove i t) -- '_≈_' is a congruence over 'sumTable n'. sumₜ-cong-≈ : ∀ {n} → sumₜ {n} Preserves _≋_ ⟶ _≈_ sumₜ-cong-≈ {zero} p = refl sumₜ-cong-≈ {suc n} p = +-cong (p _) (sumₜ-cong-≈ (p ∘ suc)) -- '_≡_' is a congruence over 'sum n'. sumₜ-cong-≡ : ∀ {n} → sumₜ {n} Preserves _≗_ ⟶ _≡_ sumₜ-cong-≡ {zero} p = P.refl sumₜ-cong-≡ {suc n} p = P.cong₂ _+_ (p _) (sumₜ-cong-≡ (p ∘ suc)) -- If addition is idempotent on a particular value 'x', then summing over a -- nonzero number of copies of 'x' gives back 'x'. sumₜ-idem-replicate : ∀ n {x} → _+_ IdempotentOn x → sumₜ (replicate {n = suc n} x) ≈ x sumₜ-idem-replicate zero idem = +-identityʳ _ sumₜ-idem-replicate (suc n) {x} idem = begin x + (x + sumₜ (replicate {n = n} x)) ≈⟨ sym (+-assoc _ _ _) ⟩ (x + x) + sumₜ (replicate {n = n} x) ≈⟨ +-congʳ idem ⟩ x + sumₜ (replicate {n = n} x) ≈⟨ sumₜ-idem-replicate n idem ⟩ x ∎ -- The sum over the constantly zero function is zero. sumₜ-zero : ∀ n → sumₜ (replicate {n = n} 0#) ≈ 0# sumₜ-zero n = begin sumₜ (replicate {n = n} 0#) ≈⟨ sym (+-identityˡ _) ⟩ 0# + sumₜ (replicate {n = n} 0#) ≈⟨ sumₜ-idem-replicate n (+-identityˡ 0#) ⟩ 0# ∎ -- The '∑' operator distributes over addition. ∑-distrib-+ : ∀ n (f g : Fin n → Carrier) → ∑[ i < n ] (f i + g i) ≈ ∑[ i < n ] f i + ∑[ i < n ] g i ∑-distrib-+ zero f g = sym (+-identityˡ _) ∑-distrib-+ (suc n) f g = begin f₀ + g₀ + ∑fg ≈⟨ +-assoc _ _ _ ⟩ f₀ + (g₀ + ∑fg) ≈⟨ +-congˡ (+-congˡ (∑-distrib-+ n _ _)) ⟩ f₀ + (g₀ + (∑f + ∑g)) ≈⟨ solve 4 (λ a b c d → a ⊕ (c ⊕ (b ⊕ d)) ⊜ (a ⊕ b) ⊕ (c ⊕ d)) refl f₀ ∑f g₀ ∑g ⟩ (f₀ + ∑f) + (g₀ + ∑g) ∎ where f₀ = f zero g₀ = g zero ∑f = ∑[ i < n ] f (suc i) ∑g = ∑[ i < n ] g (suc i) ∑fg = ∑[ i < n ] (f (suc i) + g (suc i)) -- The '∑' operator commutes with itself. ∑-comm : ∀ n m (f : Fin n → Fin m → Carrier) → ∑[ i < n ] ∑[ j < m ] f i j ≈ ∑[ j < m ] ∑[ i < n ] f i j ∑-comm zero m f = sym (sumₜ-zero m) ∑-comm (suc n) m f = begin ∑[ j < m ] f zero j + ∑[ i < n ] ∑[ j < m ] f (suc i) j ≈⟨ +-congˡ (∑-comm n m _) ⟩ ∑[ j < m ] f zero j + ∑[ j < m ] ∑[ i < n ] f (suc i) j ≈⟨ sym (∑-distrib-+ m _ _) ⟩ ∑[ j < m ] (f zero j + ∑[ i < n ] f (suc i) j) ∎ -- Any permutation of a table has the same sum as the original. sumₜ-permute : ∀ {m n} t (π : Permutation m n) → sumₜ t ≈ sumₜ (permute π t) sumₜ-permute {zero} {zero} t π = refl sumₜ-permute {zero} {suc n} t π = contradiction π (Perm.refute λ()) sumₜ-permute {suc m} {zero} t π = contradiction π (Perm.refute λ()) sumₜ-permute {suc m} {suc n} t π = begin sumₜ t ≡⟨⟩ lookup t 0i + sumₜ (remove 0i t) ≡⟨ P.cong₂ _+_ (P.cong (lookup t) (P.sym (Perm.inverseʳ π))) P.refl ⟩ lookup πt (π ⟨$⟩ˡ 0i) + sumₜ (remove 0i t) ≈⟨ +-congˡ (sumₜ-permute (remove 0i t) (Perm.remove (π ⟨$⟩ˡ 0i) π)) ⟩ lookup πt (π ⟨$⟩ˡ 0i) + sumₜ (permute (Perm.remove (π ⟨$⟩ˡ 0i) π) (remove 0i t)) ≡⟨ P.cong₂ _+_ P.refl (sumₜ-cong-≡ (P.sym ∘ TP.remove-permute π 0i t)) ⟩ lookup πt (π ⟨$⟩ˡ 0i) + sumₜ (remove (π ⟨$⟩ˡ 0i) πt) ≈⟨ sym (sumₜ-remove (permute π t)) ⟩ sumₜ πt ∎ where 0i = zero πt = permute π t ∑-permute : ∀ {m n} f (π : Permutation m n) → ∑[ i < n ] f i ≈ ∑[ i < m ] f (π ⟨$⟩ʳ i) ∑-permute = sumₜ-permute ∘ tabulate -- If the function takes the same value at 'i' and 'j', then transposing 'i' and -- 'j' then selecting 'j' is the same as selecting 'i'. select-transpose : ∀ {n} t (i j : Fin n) → lookup t i ≈ lookup t j → ∀ k → (lookup (select 0# j t) ∘ PermC.transpose i j) k ≈ lookup (select 0# i t) k select-transpose _ i j e k with k FP.≟ i ... | yes p rewrite P.≡-≟-identity FP._≟_ {j} P.refl = sym e ... | no ¬p with k FP.≟ j ... | no ¬q rewrite proj₂ (P.≢-≟-identity FP._≟_ ¬q) = refl ... | yes q rewrite proj₂ (P.≢-≟-identity FP._≟_ (¬p ∘ P.trans q ∘ P.sym)) = refl -- Summing over a pulse gives you the single value picked out by the pulse. sumₜ-select : ∀ {n i} (t : Table Carrier n) → sumₜ (select 0# i t) ≈ lookup t i sumₜ-select {zero} {()} sumₜ-select {suc n} {i} t = begin sumₜ (select 0# i t) ≈⟨ sumₜ-remove {i = i} (select 0# i t) ⟩ lookup (select 0# i t) i + sumₜ (remove i (select 0# i t)) ≡⟨ P.cong₂ _+_ (TP.select-lookup t) (sumₜ-cong-≡ (TP.select-remove i t)) ⟩ lookup t i + sumₜ (replicate {n = n} 0#) ≈⟨ +-congˡ (sumₜ-zero n) ⟩ lookup t i + 0# ≈⟨ +-identityʳ _ ⟩ lookup t i ∎ -- Converting to a table then summing is the same as summing the original list sumₜ-fromList : ∀ xs → sumₜ (fromList xs) ≡ sumₗ xs sumₜ-fromList [] = P.refl sumₜ-fromList (x ∷ xs) = P.cong (_ +_) (sumₜ-fromList xs) -- Converting to a list then summing is the same as summing the original table sumₜ-toList : ∀ {n} (t : Table Carrier n) → sumₜ t ≡ sumₗ (toList t) sumₜ-toList {zero} _ = P.refl sumₜ-toList {suc n} _ = P.cong (_ +_) (sumₜ-toList {n} _)
{ "alphanum_fraction": 0.539166885, "avg_line_length": 42.4111111111, "ext": "agda", "hexsha": "c1eee5255809c804193aa28828bd450a18b5d786", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/CommutativeMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/CommutativeMonoid.agda", "max_line_length": 156, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/CommutativeMonoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3059, "size": 7634 }
{-# OPTIONS --without-K #-} module Cauchy where -- Definitions for permutations in the Cauchy representation open import Relation.Binary.PropositionalEquality using (subst) open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; *-assoc; *-comm; *-right-zero; distribʳ-*-+; +-*-suc) open import Data.Bool using (Bool; false; true) open import Data.Nat using (ℕ; suc; _+_; _*_) open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ; raise; inject+; inject₁; inject≤; _≻toℕ_) open import Data.Vec using (Vec; tabulate; []; _∷_; lookup; allFin) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Function using (id) open import Proofs using (i*n+k≤m*n; trans≤; refl′; splitVOp+) ------------------------------------------------------------------------------ -- Semantic representations of permutations -- One possibility of course is to represent them as functions but -- this is a poor representation and eventually requires function -- extensionality. -- Representation III -- This is the 2 line Cauchy representation. The first line is in -- canonical order and implicit in the indices of the vector Cauchy : ℕ → Set Cauchy n = Vec (Fin n) n ------------------------------------------------------------------------------ -- Elementary permutations in the Cauchy representation emptycauchy : Cauchy 0 emptycauchy = [] idcauchy : (n : ℕ) → Cauchy n idcauchy = allFin -- Sequential composition scompcauchy : ∀ {n} → Cauchy n → Cauchy n → Cauchy n scompcauchy {n} perm₁ perm₂ = tabulate (λ i → lookup (lookup i perm₁) perm₂) -- swap the first m elements with the last n elements -- [ v₀ , v₁ , v₂ , ... , vm-1 , vm , vm₊₁ , ... , vm+n-1 ] -- ==> -- [ vm , vm₊₁ , ... , vm+n-1 , v₀ , v₁ , v₂ , ... , vm-1 ] id+ : ∀ {m n} → Fin (n + m) → Fin (m + n) id+ {m} {n} x = subst Fin (+-comm n m) x swap+cauchy : (m n : ℕ) → Cauchy (m + n) swap+cauchy m n = splitVOp+ {m} {n} {f = id+ {m} {n}} -- Parallel additive composition -- append both permutations but adjust the indices in the second -- permutation by the size of the first type so that it acts on the -- second part of the vector pcompcauchy : ∀ {m n} → Cauchy m → Cauchy n → Cauchy (m + n) pcompcauchy {m} {n} α β = mapV (inject+ n) α ++V mapV (raise m) β -- Tensor multiplicative composition -- Transpositions in α correspond to swapping entire rows -- Transpositions in β correspond to swapping entire columns tcompcauchy : ∀ {m n} → Cauchy m → Cauchy n → Cauchy (m * n) tcompcauchy {m} {n} α β = concatV (mapV (λ b → mapV (λ d → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) β) α) -- swap⋆ -- -- This is essentially the classical problem of in-place matrix transpose: -- "http://en.wikipedia.org/wiki/In-place_matrix_transposition" -- Given m and n, the desired permutation in Cauchy representation is: -- P(i) = m*n-1 if i=m*n-1 -- = m*i mod m*n-1 otherwise transposeIndex : (m n : ℕ) → (b : Fin m) → (d : Fin n) → Fin (m * n) transposeIndex m n b d = inject≤ (fromℕ (toℕ d * m + toℕ b)) (trans≤ (i*n+k≤m*n d b) (refl′ (*-comm n m))) swap⋆cauchy : (m n : ℕ) → Cauchy (m * n) swap⋆cauchy m n = concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin n)) (allFin m)) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5891291642, "avg_line_length": 32.2830188679, "ext": "agda", "hexsha": "9d00d9b2f2c49e52d5be209345d8607b9d7d73c0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/Cauchy.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Cauchy.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/Cauchy.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1091, "size": 3422 }
module Issue329c where private infixl 0 D Undeclared data D : Set where
{ "alphanum_fraction": 0.7435897436, "avg_line_length": 11.1428571429, "ext": "agda", "hexsha": "8bcb815f1137058d1c5cf02b594b6b3a2e0d164a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue329c.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue329c.agda", "max_line_length": 23, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue329c.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 26, "size": 78 }
{-# OPTIONS --cubical --safe --guardedness --postfix-projections #-} module Codata.Stream where open import Prelude open import Data.List using (List; _∷_; []) open import Data.List.Kleene import Data.List.Kleene.Membership as Kleene open import Data.Fin infixr 5 _◃_ record Stream (A : Type a) : Type a where constructor _◃_ coinductive field head : A tail : Stream A open Stream public Stream′ : Type a → Type a Stream′ A = ℕ → A _!_ : Stream A → Stream′ A xs ! zero = xs .head xs ! suc n = xs .tail ! n tabulate : Stream′ A → Stream A tabulate xs .head = xs zero tabulate xs .tail = tabulate (xs ∘ suc) linv : (xs : Stream A) → tabulate (xs !_) ≡ xs linv xs i .head = xs .head linv xs i .tail = linv (xs .tail) i rinv : (xs : Stream′ A) → (tabulate xs !_) ≡ xs rinv xs i zero = xs zero rinv xs i (suc n) = rinv (xs ∘ suc) i n stream : Stream A ⇔ Stream′ A stream .fun = _!_ stream .inv = tabulate stream .rightInv = rinv stream .leftInv = linv -- infixr 5 _∈_ -- _∈_ : A → Stream A → Type _ -- x ∈ xs = fiber xs x -- toList : ℕ → Stream A → List A -- toList zero xs = [] -- toList (suc n) xs = xs zero ∷ toList n (xs ∘ suc) -- mutual -- concat⋆ : A ⋆ → Stream (A ⁺) → Stream A -- concat⋆ [] xs = concat⁺ (xs zero) (xs ∘ suc) -- concat⋆ (∹ x) xs = concat⁺ x xs -- concat⁺ : A ⁺ → Stream (A ⁺) → Stream A -- concat⁺ x xs zero = x .head -- concat⁺ x xs (suc n) = concat⋆ (x .tail) xs n -- concat : Stream (A ⁺) → Stream A -- concat xs = concat⁺ (xs zero) (xs ∘ suc) -- infixr 5 _∈²_ -- _∈²_ : A → Stream (A ⁺) → Type _ -- x ∈² xs = ∃ n x Kleene.∈⁺ xs n -- mutual -- ◇++⋆ : ∀ (x : A) y ys → x Kleene.∈⋆ y → x ∈ concat⋆ y ys -- ◇++⋆ x (∹ y) ys x∈y = ◇++⁺ x y ys x∈y -- ◇++⁺ : ∀ (x : A) y ys → x Kleene.∈⁺ y → x ∈ concat⁺ y ys -- ◇++⁺ x y ys (f0 , x∈y) = zero , x∈y -- ◇++⁺ x y ys (fs n , x∈y) = let m , p = ◇++⋆ x (y .tail) ys (n , x∈y) in suc m , p -- mutual -- ++◇⋆ : ∀ (x : A) y ys → x ∈ concat ys → x ∈ concat⋆ y ys -- ++◇⋆ x [] ys x∈ys = x∈ys -- ++◇⋆ x (∹ y) ys x∈ys = ++◇⁺ x y ys x∈ys -- ++◇⁺ : ∀ (x : A) y ys → x ∈ concat ys → x ∈ concat⁺ y ys -- ++◇⁺ x y ys x∈ys = let n , p = ++◇⋆ x (y .tail) ys x∈ys in suc n , p -- concat-∈ : ∀ (x : A) xs → x ∈² xs → x ∈ concat xs -- concat-∈ x xs (zero , x∈xs) = ◇++⁺ x (xs zero) (xs ∘ suc) x∈xs -- concat-∈ x xs (suc n , x∈xs) = ++◇⁺ x (xs zero) (xs ∘ suc) (concat-∈ x (xs ∘ suc) (n , x∈xs))
{ "alphanum_fraction": 0.5268817204, "avg_line_length": 26.8666666667, "ext": "agda", "hexsha": "9edd981047315f3f75a1e9c40c282a43747f0968", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Codata/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Codata/Stream.agda", "max_line_length": 96, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Codata/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1079, "size": 2418 }
------------------------------------------------------------------------------ -- Axiomatic Peano arithmetic base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Mendelson's axioms for first-order Peano arithmetic [Mendelson, -- 1977, p. 155]. -- Elliott Mendelson. Introduction to mathematical logic. Chapman & -- Hall, 4th edition, 1997, p. 155. -- NB. These axioms formalize the propositional equality. module PA.Axiomatic.Mendelson.Base where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ _≉_ ------------------------------------------------------------------------------ -- First-order logic (without equality) open import Common.FOL.FOL public renaming ( D to ℕ ) -- Non-logical constants postulate zero : ℕ succ : ℕ → ℕ _+_ _*_ : ℕ → ℕ → ℕ -- The PA equality. -- -- N.B. We use the symbol _≈_ for avoiding to use the -- --no-internal-equality Apia option. postulate _≈_ : ℕ → ℕ → Set -- Inequality. _≉_ : ℕ → ℕ → Set x ≉ y = ¬ x ≈ y {-# ATP definition _≉_ #-} -- Proper axioms -- S₁. m = n → m = o → n = o -- S₂. m = n → succ m = succ n -- S₃. 0 ≠ succ n -- S₄. succ m = succ n → m = n -- S₅. 0 + n = n -- S₆. succ m + n = succ (m + n) -- S₇. 0 * n = 0 -- S₈. succ m * n = (m * n) + n -- S₉. P(0) → (∀n.P(n) → P(succ n)) → ∀n.P(n), for any wff P(n) of PA. postulate S₁ : ∀ {m n o} → m ≈ n → m ≈ o → n ≈ o S₂ : ∀ {m n} → m ≈ n → succ m ≈ succ n S₃ : ∀ {n} → zero ≉ succ n S₄ : ∀ {m n} → succ m ≈ succ n → m ≈ n S₅ : ∀ n → zero + n ≈ n S₆ : ∀ m n → succ m + n ≈ succ (m + n) S₇ : ∀ n → zero * n ≈ zero S₈ : ∀ m n → succ m * n ≈ n + m * n {-# ATP axioms S₁ S₂ S₃ S₄ S₅ S₆ S₇ S₈ #-} -- S₉ is an axiom schema, therefore we do not translate it to TPTP. postulate S₉ : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n
{ "alphanum_fraction": 0.4787018256, "avg_line_length": 28.1714285714, "ext": "agda", "hexsha": "8d9d1fc4527596a2501bdb3703d19d84003326d9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Mendelson/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Mendelson/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Mendelson/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 698, "size": 1972 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Bool.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Empty open import Cubical.Data.Sum.Base open import Cubical.Data.Unit.Base open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq -- Obtain the booleans open import Agda.Builtin.Bool public private variable ℓ : Level A : Type ℓ infixr 6 _and_ infixr 5 _or_ infix 0 if_then_else_ not : Bool → Bool not true = false not false = true _or_ : Bool → Bool → Bool false or false = false false or true = true true or false = true true or true = true _and_ : Bool → Bool → Bool false and false = false false and true = false true and false = false true and true = true -- xor / mod-2 addition _⊕_ : Bool → Bool → Bool false ⊕ x = x true ⊕ x = not x if_then_else_ : Bool → A → A → A if true then x else y = x if false then x else y = y _≟_ : Discrete Bool false ≟ false = yes refl false ≟ true = no λ p → subst (λ b → if b then ⊥ else Bool) p true true ≟ false = no λ p → subst (λ b → if b then Bool else ⊥) p true true ≟ true = yes refl Dec→Bool : Dec A → Bool Dec→Bool (yes p) = true Dec→Bool (no ¬p) = false -- Helpers for automatic proof Bool→Type : Bool → Type₀ Bool→Type true = Unit Bool→Type false = ⊥ True : Dec A → Type₀ True Q = Bool→Type (Dec→Bool Q) False : Dec A → Type₀ False Q = Bool→Type (not (Dec→Bool Q)) toWitness : {Q : Dec A} → True Q → A toWitness {Q = yes p} _ = p toWitnessFalse : {Q : Dec A} → False Q → ¬ A toWitnessFalse {Q = no ¬p} _ = ¬p dichotomyBool : (x : Bool) → (x ≡ true) ⊎ (x ≡ false) dichotomyBool true = inl refl dichotomyBool false = inr refl -- TODO: this should be uncommented and implemented using instance arguments -- _==_ : {dA : Discrete A} → A → A → Bool -- _==_ {dA = dA} x y = Dec→Bool (dA x y)
{ "alphanum_fraction": 0.67, "avg_line_length": 22.0930232558, "ext": "agda", "hexsha": "998b6a1a09ba05e1594fa3a48f1e65969aeddc6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Bool/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Bool/Base.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Bool/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 644, "size": 1900 }
{-# OPTIONS --without-K #-} module #1 where open import Relation.Binary.PropositionalEquality {- Exercise 2.1. Show that the three obvious proofs of Lemma 2.1.2 are pairwise equal. -} ind₌ : ∀{a b}{A : Set a} → (C : (x y : A) → (x ≡ y) → Set b) → ((x : A) → C x x refl) → {x y : A} → (p : x ≡ y) → C x y p ind₌ C c {x}{y} p rewrite p = c y composite : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) composite {i} {A} {_}{_}{z} p = ind₌ D d p where D : (x y : A) → (p : x ≡ y) → Set i D x y _ = y ≡ z → x ≡ z d : (x₁ : A) → D x₁ x₁ refl d _ = λ x → x composite' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) composite' {i} {A} {_}{_}{z} = ind₌ D d where D : (x y : A) → (p : x ≡ y) → Set i D x y _ = y ≡ z → x ≡ z d : (x : A) → D x x refl d x = ind₌ E e where E : (x z : A) → (q : x ≡ z) → Set i E x z _ = x ≡ z e : (x : A) → E x x refl e x = refl composite'' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) composite'' refl refl = refl composite=composite' : ∀ {i} {A : Set i}{x y z : A} → (p : x ≡ y)(q : y ≡ z) → composite p q ≡ composite' p q composite=composite' refl refl = refl composite=composite'' : ∀ {i} {A : Set i}{x y z : A} → (p : x ≡ y)(q : y ≡ z) → composite p q ≡ composite'' p q composite=composite'' refl refl = refl composite'=composite'' : ∀ {i} {A : Set i}{x y z : A} → (p : x ≡ y)(q : y ≡ z) → composite' p q ≡ composite'' p q composite'=composite'' refl refl = refl
{ "alphanum_fraction": 0.4800270819, "avg_line_length": 30.1428571429, "ext": "agda", "hexsha": "ab919f6a70eee7944680fceb49eee3fa64007b31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter2/#1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter2/#1.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter2/#1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 657, "size": 1477 }
module Pi-2 where open import Data.Unit open import Data.Product open import Relation.Binary.PropositionalEquality open import Groupoid infixr 10 _◎_ infixr 30 _⟷_ ------------------------------------------------------------------------------ -- Level -2 -- Types are -2 groupoids or equivalently all types are contractible or -- equivalently all types have exactly one point -- There is no interesting path structure but we have the trivial paths -- explicitly below. -- Types and values are defined mutually without reference to programs Types -- always include PATHs in addition to the usual types. mutual data U : Set where ONE : U TIMES : U → U → U PATH : {t : U} → ⟦ t ⟧ → ⟦ t ⟧ → U ⟦_⟧ : U → Set ⟦ ONE ⟧ = ⊤ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ ⟦ PATH v₁ v₂ ⟧ = (v₁ ≡ v₂) -- Proof that all types are contractible. Def. 3.11.1 in the HoTT book isContr : (t : U) → Σ[ v ∈ ⟦ t ⟧ ] ((v' : ⟦ t ⟧) → (v ≡ v')) isContr ONE = (tt , λ v → refl) isContr (TIMES t₁ t₂) with isContr t₁ | isContr t₂ ... | (v₁ , f₁) | (v₂ , f₂) = ((v₁ , v₂) , f) where f : (vv : ⟦ t₁ ⟧ × ⟦ t₂ ⟧) → (v₁ , v₂) ≡ vv f (v₁' , v₂') = cong₂ _,′_ (f₁ v₁') (f₂ v₂') isContr (PATH {t} v₁ v₂) with isContr t isContr (PATH {t} v₁ v₂) | (v' , f') = (p , λ q → proof-irrelevance p q) where p = trans (sym (f' v₁)) (f' v₂) -- Proof that every type is a groupoid; this does not depend on the -- definition of programs isGroupoid : U → 1Groupoid isGroupoid ONE = discrete ⊤ isGroupoid (TIMES t₁ t₂) = isGroupoid t₁ ×G isGroupoid t₂ isGroupoid (PATH {t} v₁ v₂) = discrete (v₁ ≡ v₂) -- Programs -- We use pointed types; programs map a pointed type to another -- In other words, each program takes one particular value to another; if we -- want to work on another value, we generally use another program record U• : Set where constructor •[_,_] field ∣_∣ : U • : ⟦ ∣_∣ ⟧ open U• Space : (t• : U•) → Set Space •[ t , v ] = ⟦ t ⟧ point : (t• : U•) → Space t• point •[ t , v ] = v data _⟷_ : U• → U• → Set where id⟷ : {t : U•} → t ⟷ t sym⟷ : {t₁ t₂ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) _◎_ : {t₁ t₂ t₃ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) unite⋆ : {t : U•} → •[ TIMES ONE ∣ t ∣ , (tt , • t) ] ⟷ t uniti⋆ : {t : U•} → t ⟷ •[ TIMES ONE ∣ t ∣ , (tt , • t) ] swap⋆ : {t₁ t₂ : U•} → •[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂) ] ⟷ •[ TIMES ∣ t₂ ∣ ∣ t₁ ∣ , (• t₂ , • t₁) ] assocl⋆ : {t₁ t₂ t₃ : U•} → •[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ] ⟷ •[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ] assocr⋆ : {t₁ t₂ t₃ : U•} → •[ TIMES (TIMES ∣ t₁ ∣ ∣ t₂ ∣) ∣ t₃ ∣ , ((• t₁ , • t₂) , • t₃) ] ⟷ •[ TIMES ∣ t₁ ∣ (TIMES ∣ t₂ ∣ ∣ t₃ ∣) , (• t₁ , (• t₂ , • t₃)) ] _⊗_ : {t₁ t₂ t₃ t₄ : U•} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (•[ TIMES ∣ t₁ ∣ ∣ t₂ ∣ , (• t₁ , • t₂ ) ] ⟷ •[ TIMES ∣ t₃ ∣ ∣ t₄ ∣ , (• t₃ , • t₄ ) ]) -- Proof that the universe is itself a groupoid; this DOES depend on the -- definition of programs; the morphisms between types ARE the programs; all -- programs between the same types are forced to be the same using a -- degenerate observational equivalence relation. _obs≅_ : {t₁ t₂ : U•} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ obs≅ c₂ = ⊤ UG : 1Groupoid UG = record { set = U• ; _↝_ = _⟷_ ; _≈_ = _obs≅_ ; id = id⟷ ; _∘_ = λ y⟷z x⟷y → x⟷y ◎ y⟷z ; _⁻¹ = sym⟷ ; lneutr = λ _ → tt ; rneutr = λ _ → tt ; assoc = λ _ _ _ → tt ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; linv = λ _ → tt ; rinv = λ _ → tt ; ∘-resp-≈ = λ _ _ → tt } -- Examples ONE• ONE×ONE• : U• ONE• = •[ ONE , tt ] ONE×ONE• = •[ TIMES ONE ONE , (tt , tt) ] PathSpace : {t : U•} → ⟦ ∣ t ∣ ⟧ → U• PathSpace v = •[ PATH v v , refl ] c₁ c₂ c₃ : ONE• ⟷ ONE• c₁ = id⟷ c₂ = uniti⋆ ◎ swap⋆ ◎ unite⋆ c₃ = uniti⋆ ◎ uniti⋆ ◎ assocl⋆ ◎ (swap⋆ ⊗ (sym⟷ id⟷)) ◎ assocr⋆ ◎ unite⋆ ◎ unite⋆ -- The evaluation of a program like c₁, c₂, c₃ above is not done in order to -- figure out the output value. Both the input and output values are encoded -- in the type of the program; what the evaluation does is follow the path to -- constructively reach the ouput value from the input value. Even though the -- programs are observationally equivalent, they follow different paths. The -- next level will allow us to reason about which of these paths are -- connected by 2paths etc. In general, one write programs at level i, and -- reasons about their (observational) equivalence at levels i+1 and -- higher. It is always possible to stop this game and use extensional -- equality at some level, i.e., to equate all programs that connect the same -- input and output values. c₄ : ONE×ONE• ⟷ ONE• c₄ = unite⋆ c₅ : PathSpace tt ⟷ PathSpace tt c₅ = id⟷ c₁≅c₂ : c₁ obs≅ c₂ c₁≅c₂ = tt -- the following does not typecheck -- c₁≅c₄ : c₁ obs≅ c₄ -- it is not possible to equate programs that go between different types/values. ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5257186082, "avg_line_length": 32.6419753086, "ext": "agda", "hexsha": "2d37b71cbb57a63f6ab1d59168ce4c747c1022b5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PiWithLevels/Pi-2.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PiWithLevels/Pi-2.agda", "max_line_length": 80, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PiWithLevels/Pi-2.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2080, "size": 5288 }
{-# OPTIONS --allow-unsolved-metas #-} module Imports.Issue3730 where X : _ X = _
{ "alphanum_fraction": 0.6829268293, "avg_line_length": 16.4, "ext": "agda", "hexsha": "7b2a5130ec2bf1c01e7d0dc091dbf6b61f430c88", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Imports/Issue3730.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Imports/Issue3730.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Imports/Issue3730.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 24, "size": 82 }
---------------------------------------------------------------------- -- Copyright: 2013, Jan Stolarek, Lodz University of Technology -- -- -- -- License: See LICENSE file in root of the repo -- -- Repo address: https://github.com/jstolarek/dep-typed-wbl-heaps -- -- -- -- Weight biased leftist tree that proves both priority and rank -- -- invariants. Uses a two-pass merging algorithm. -- ---------------------------------------------------------------------- {-# OPTIONS --sized-types #-} module TwoPassMerge.CombinedProofs where open import Basics open import Sized open import TwoPassMerge.RankProof using ( makeT-lemma; proof-1; proof-2 ) -- Now that we have separate proofs of priority and rank invariants we -- can combine them into one proof. We index Heap with two indices: -- one for Priority and one for Rank. data Heap : {i : Size} → Priority → Rank → Set where empty : {i : Size} {b : Priority} → Heap {↑ i} b zero node : {i : Size} {b : Priority} → (p : Priority) → p ≥ b → {l r : Rank} → l ≥ r → Heap {i} p l → Heap {i} p r → Heap {↑ i} b (suc (l + r)) -- Now we will combine functions that prove priority invariant and -- functions that prove rank invariant into functions that prove both -- invariants. -- Let's begin with singleton. Note the type of created Heap. We set -- first index to zero, because it proves the priority invariant and -- second index to one because it proves rank invariant. The node now -- needs two ge0 evidence. singleton : Priority → Heap zero one singleton p = node p ge0 ge0 empty empty -- makeT function requires that we supply evidence that priority -- invariant holds (value of type p ≥ b), guarantees that resulting -- heap has correct size and maintains rank invariant by using Order -- type to supply evidence of rank correctness to node constructor. makeT : {b : Priority} {l r : Rank} → (p : Priority) → p ≥ b → Heap p l → Heap p r → Heap b (suc (l + r)) makeT {b} {l-rank} {r-rank} p p≥n l r with order l-rank r-rank makeT {b} {l-rank} {r-rank} p p≥n l r | ge l≥r = node p p≥n l≥r l r makeT {b} {l-rank} {r-rank} p p≥n l r | le r≥l = subst (Heap b) (makeT-lemma r-rank l-rank) (node p p≥n r≥l r l) -- merge combines previous proofs: -- -- 1) it enforces priority invariant by comparing priorities using -- order function. Recall that this function returns value of -- Order datatype that not only gives a result of comparison but -- also supplies evidence that result is true. That evidence is -- given to makeT which uses it to construct a new node. -- -- 2) it proves size invariant of merge by reusing proofs from -- TwoPassMerge.RankProof -- -- 3) it delegates the proof of rank invariant to makeT merge : {i j : Size} {b : Priority} {l r : Rank} → Heap {i} b l → Heap {j} b r → Heap b (l + r) merge empty h2 = h2 -- See [merge, proof 0a] merge {_} .{_} {b} {suc l} {zero} h1 empty = subst (Heap b) (sym (+0 (suc l))) -- See [merge, proof 0b] h1 merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) with order p1 p2 merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | le p1≤p2 = subst (Heap b) (proof-1 l1-rank r1-rank l2-rank r2-rank) -- See [merge, proof 1] (makeT p1 p1≥b l1 (merge {i} {↑ j} r1 (node p2 p1≤p2 l2≥r2 l2 r2))) merge .{↑ i} .{↑ j} .{b} {suc .(l1-rank + r1-rank)} {suc .(l2-rank + r2-rank)} (node {i} .{b} p1 p1≥b {l1-rank} {r1-rank} l1≥r1 l1 r1) (node {j} {b} p2 p2≥b {l2-rank} {r2-rank} l2≥r2 l2 r2) | ge p1≥p2 = subst (Heap b) (proof-2 l1-rank r1-rank l2-rank r2-rank) -- See [merge, proof 2] (makeT p2 p2≥b l2 (merge {j} {↑ i} r2 (node p1 p1≥p2 l1≥r1 l1 r1))) -- Implementations of insert and findMin are the same as -- previously. We only need to update the type signature accordingly. insert : {b : Priority} {r : Rank} → Priority → Heap zero r → Heap zero (suc r) insert p h = merge (singleton p) h findMin : {b : Priority} {r : Rank} → Heap b (suc r) → Priority findMin (node p _ _ _ _) = p -- To define deleteMin we will need to update definition of -- liftBound. We need to redefine ≥trans because Agda won't let us -- import it from a module that has unfinished implementation (recall -- that we left definitions of findMin and deleteMin incomplete in -- TwoPassMerge.PriorityProof). ≥trans : {a b c : Nat} → a ≥ b → b ≥ c → a ≥ c ≥trans a≥b ge0 = ge0 ≥trans (geS a≥b) (geS b≥c) = geS (≥trans a≥b b≥c) liftBound : {p b : Priority} → b ≥ p → {r : Rank} → Heap b r → Heap p r liftBound b≥n empty = empty liftBound b≥n (node p p≥b l≥r l r) = node p (≥trans p≥b b≥n) l≥r l r -- With the new definition of liftBound we can now define deleteMin. -- Implementation is identical to the one in TwoPassMerge.RankProof - -- we only had to update type signature. deleteMin : {b : Priority} {r : Rank} → Heap b (suc r) → Heap b r deleteMin (node _ p≥b _ l r) = merge (liftBound p≥b l) (liftBound p≥b r)
{ "alphanum_fraction": 0.6029194383, "avg_line_length": 47.8938053097, "ext": "agda", "hexsha": "412f6bb857fed6454424514aa49d7f1daa1dcb5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_forks_repo_path": "src/TwoPassMerge/CombinedProofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_issues_repo_path": "src/TwoPassMerge/CombinedProofs.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57db566cb840dc70331c29eb7bf3a0c849f8b27e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "jstolarek/dep-typed-wbl-heaps", "max_stars_repo_path": "src/TwoPassMerge/CombinedProofs.agda", "max_stars_repo_stars_event_max_datetime": "2018-05-02T21:48:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-02T21:48:43.000Z", "num_tokens": 1838, "size": 5412 }
-- This was accepted, since we didn't fail on mismatched sorts when -- comparing types. module Issue485 where ap : ((A : Set) → A → A) → Set → Set ap f A = f _ A
{ "alphanum_fraction": 0.6503067485, "avg_line_length": 23.2857142857, "ext": "agda", "hexsha": "0712df7f4759ff8dd7985146be26452201c296d8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue485.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue485.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue485.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 50, "size": 163 }
{-# OPTIONS --without-K --safe #-} module Data.Nat.Reasoning where open import Data.Nat import Data.Nat.Properties as ℕ-Prop open import Relation.Binary.PropositionalEquality infixr 3 _*≫_ _≪*_ _+≫_ _≪+_ _*≫_ : ∀ {x y} z → x ≡ y → z * x ≡ z * y _*≫_ _ = cong _ _+≫_ : ∀ {x y} z → x ≡ y → z + x ≡ z + y _+≫_ _ = cong _ _≪*_ : ∀ {x y} z → x ≡ y → x * z ≡ y * z _≪*_ _ = cong _ _≪+_ : ∀ {x y} z → x ≡ y → x + z ≡ y + z _≪+_ _ = cong _
{ "alphanum_fraction": 0.5228310502, "avg_line_length": 20.8571428571, "ext": "agda", "hexsha": "ecbfabe4a6a65fa77178b60b4540a5d0ed95fa2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Nat/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Nat/Reasoning.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Nat/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 204, "size": 438 }
------------------------------------------------------------------------ -- The state monad transformer ------------------------------------------------------------------------ -- The interface is based on that used by the "mtl" package on -- Hackage. {-# OPTIONS --without-K --safe #-} open import Equality module Monad.State {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Prelude open Derived-definitions-and-properties eq open import Monad eq -- The state monad transformer, defined using a wrapper type to make -- instance resolution easier. record StateT {s} (S : Type s) (M : Type s → Type s) (A : Type s) : Type s where constructor wrap field run : S → M (A × S) open StateT public instance -- StateT is a "raw monad" transformer. raw-monad-transformer : ∀ {s} {S : Type s} → Raw-monad-transformer (StateT S) run (Raw-monad.return (Raw-monad-transformer.transform raw-monad-transformer) x) = λ s → return (x , s) run (Raw-monad._>>=_ (Raw-monad-transformer.transform raw-monad-transformer) x f) = λ s → run x s >>= λ { (x , s) → run (f x) s } run (Raw-monad-transformer.liftʳ raw-monad-transformer m) = λ s → map (_, s) m transform : ∀ {s} {S : Type s} {M} ⦃ is-raw-monad : Raw-monad M ⦄ → Raw-monad (StateT S M) transform = Raw-monad-transformer.transform raw-monad-transformer -- StateT is a monad transformer (assuming extensionality). monad-transformer : ∀ {s} {S : Type s} → Extensionality s s → Monad-transformer (StateT S) Monad.raw-monad (Monad-transformer.transform (monad-transformer _)) = Raw-monad-transformer.transform raw-monad-transformer Monad.left-identity (Monad-transformer.transform (monad-transformer ext)) x f = cong wrap (apply-ext ext λ s → (return (x , s) >>= λ { (x , s) → run (f x) s }) ≡⟨ left-identity _ _ ⟩∎ run (f x) s ∎) Monad.right-identity (Monad-transformer.transform (monad-transformer ext)) x = cong wrap (apply-ext ext λ s → run x s >>= (λ { (x , s) → return (x , s) }) ≡⟨ right-identity _ ⟩∎ run x s ∎) Monad.associativity (Monad-transformer.transform (monad-transformer ext)) x f g = cong wrap (apply-ext ext λ s → (run x s >>= λ { (x , s) → run (f x) s >>= λ { (x , s) → run (g x) s } }) ≡⟨ associativity _ _ _ ⟩∎ ((run x s >>= λ { (x , s) → run (f x) s }) >>= λ { (x , s) → run (g x) s }) ∎) Monad-transformer.liftᵐ (monad-transformer _) = liftʳ Monad-transformer.lift-return (monad-transformer ext) x = cong wrap (apply-ext ext λ s → map (_, s) (return x) ≡⟨ map-return _ _ ⟩∎ return (x , s) ∎) Monad-transformer.lift->>= (monad-transformer ext) x f = cong wrap (apply-ext ext λ s → map (_, s) (x >>= f) ≡⟨ map->>= _ _ _ ⟩ (x >>= λ x → map (_, s) (f x)) ≡⟨ sym $ >>=-map ext _ _ _ ⟩∎ (map (_, s) x >>= λ { (x , s) → map (_, s) (f x) }) ∎) -- Returns the state. get : ∀ {s} {S : Type s} {M} ⦃ is-monad : Raw-monad M ⦄ → StateT S M S run get = λ s → return (s , s) -- Types the state. set : ∀ {s} {S : Type s} {M} ⦃ is-monad : Raw-monad M ⦄ → S → StateT S M (↑ _ ⊤) run (set s) = λ _ → return (_ , s) -- Modifies the state. modify : ∀ {s} {S : Type s} {M} ⦃ is-monad : Raw-monad M ⦄ → (S → S) → StateT S M (↑ _ ⊤) modify f = get >>= set ∘ f
{ "alphanum_fraction": 0.5084193373, "avg_line_length": 32.0173913043, "ext": "agda", "hexsha": "bfd885e96955f552a2aec23843c0dc8b45f76c18", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Monad/State.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Monad/State.agda", "max_line_length": 91, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Monad/State.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1126, "size": 3682 }
module Records where variable a b : Set -- parametrized record type exported as an Haskell record record Pair (a b : Set) : Set where constructor MkPair field proj₁ : a proj₂ : b open Pair public {-# COMPILE AGDA2HS Pair #-} -- no named constructor means we reuse the record name record Wrap (a : Set) : Set where field unwrap : a open Wrap public {-# COMPILE AGDA2HS Wrap #-} -- record type exported as an Haskell class definition record MyMonoid (a : Set) : Set where field mempty : a mappend : a → a → a {-# COMPILE AGDA2HS MyMonoid class #-} swap : Pair a b → Pair b a swap (MkPair x y) = MkPair y x swap₂ : Wrap (Pair a b) → Wrap (Pair b a) swap₂ (record {unwrap = p}) = record {unwrap = record { proj₁ = proj₂ p; proj₂ = p .proj₁ } } {-# COMPILE AGDA2HS swap #-} {-# COMPILE AGDA2HS swap₂ #-}
{ "alphanum_fraction": 0.6536180308, "avg_line_length": 19.6046511628, "ext": "agda", "hexsha": "141e754c3586eeaa2f573c8db1f1a5f6da22403f", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Records.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Records.agda", "max_line_length": 93, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Records.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 258, "size": 843 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.ZariskiLattice.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Powerset using (⊆-refl-consequence) import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm ; ·-identityʳ to ·ℕ-rid) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.BinomialThm open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.RingSolver.ReflectionSolving open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.DistLattice.BigOps open import Cubical.Algebra.Matrix open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module ZarLat (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open BinomialThm R' open CommIdeal R' open RadicalIdeal R' open isCommIdeal open ProdFin R' private R = fst R' A = Σ[ n ∈ ℕ ] (FinVec R n) ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] _∼_ : A → A → Type (ℓ-suc ℓ) (_ , α) ∼ (_ , β) = √ ⟨ α ⟩ ≡ √ ⟨ β ⟩ ∼EquivRel : isEquivRel (_∼_) reflexive ∼EquivRel _ = refl symmetric ∼EquivRel _ _ = sym transitive ∼EquivRel _ _ _ = _∙_ ZL : Type (ℓ-suc ℓ) ZL = A / _∼_ 0z : ZL 0z = [ 0 , (λ ()) ] 1z : ZL 1z = [ 1 , (replicateFinVec 1 1r) ] _∨z_ : ZL → ZL → ZL _∨z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel) (λ (_ , α) (_ , β) → (_ , α ++Fin β)) (λ (_ , α) (_ , β) → cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))) λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∨γ ∼ β∨γ √ ⟨ α ++Fin γ ⟩ ≡⟨ cong √ (FGIdealAddLemma _ α γ) ⟩ √ (⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ sym (√+LContr _ _) ⟩ √ (√ ⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I +i ⟨ γ ⟩)) α∼β ⟩ √ (√ ⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ √+LContr _ _ ⟩ √ (⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ β γ)) ⟩ √ ⟨ β ++Fin γ ⟩ ∎ _∧z_ : ZL → ZL → ZL _∧z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel) (λ (_ , α) (_ , β) → (_ , α ··Fin β)) (λ (_ , α) (_ , β) → cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))) λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∧γ ∼ β∧γ √ ⟨ α ··Fin γ ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α γ) ⟩ √ (⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ sym (√·LContr _ _) ⟩ √ (√ ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I ·i ⟨ γ ⟩)) α∼β ⟩ √ (√ ⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ √·LContr _ _ ⟩ √ (⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ β γ)) ⟩ √ ⟨ β ··Fin γ ⟩ ∎ -- join axioms ∨zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∨z (𝔟 ∨z 𝔠) ≡ (𝔞 ∨z 𝔟) ∨z 𝔠 ∨zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (cong √ (IdealAddAssoc _ _ _ _)) ∨zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∨z 𝔟 ≡ 𝔟 ∨z 𝔞 ∨zComm = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))) ∨zLid : ∀ (𝔞 : ZL) → 0z ∨z 𝔞 ≡ 𝔞 ∨zLid = SQ.elimProp (λ _ → squash/ _ _) λ _ → eq/ _ _ refl ∨zRid : ∀ (𝔞 : ZL) → 𝔞 ∨z 0z ≡ 𝔞 ∨zRid _ = ∨zComm _ _ ∙ ∨zLid _ -- -- meet axioms ∧zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∧z 𝔠) ≡ (𝔞 ∧z 𝔟) ∧z 𝔠 ∧zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (√ ⟨ α ··Fin (β ··Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i ⟨ β ··Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i (⟨ β ⟩ ·i ⟨ γ ⟩)) ≡⟨ cong √ (·iAssoc _ _ _) ⟩ √ ((⟨ α ⟩ ·i ⟨ β ⟩) ·i ⟨ γ ⟩) ≡⟨ cong (λ x → √ (x ·i ⟨ γ ⟩)) (sym (FGIdealMultLemma _ _ _)) ⟩ √ (⟨ α ··Fin β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ _ _)) ⟩ √ ⟨ (α ··Fin β) ··Fin γ ⟩ ∎) ∧zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z 𝔟 ≡ 𝔟 ∧z 𝔞 ∧zComm = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))) ∧zRid : ∀ (𝔞 : ZL) → 𝔞 ∧z 1z ≡ 𝔞 ∧zRid = SQ.elimProp (λ _ → squash/ _ _) λ (_ , α) → eq/ _ _ (cong √ (⟨ α ··Fin (replicateFinVec 1 1r) ⟩ ≡⟨ FGIdealMultLemma _ _ _ ⟩ ⟨ α ⟩ ·i ⟨ (replicateFinVec 1 1r) ⟩ ≡⟨ cong (⟨ α ⟩ ·i_) (contains1Is1 _ (indInIdeal _ _ zero)) ⟩ ⟨ α ⟩ ·i 1Ideal ≡⟨ ·iRid _ ⟩ ⟨ α ⟩ ∎)) -- absorption and distributivity ∧zAbsorb∨z : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z (𝔞 ∨z 𝔟) ≡ 𝔞 ∧zAbsorb∨z = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (√ ⟨ α ··Fin (α ++Fin β) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α (α ++Fin β)) ⟩ √ (⟨ α ⟩ ·i ⟨ α ++Fin β ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ α β) ⟩ √ (⟨ α ⟩ ·i (⟨ α ⟩ +i ⟨ β ⟩)) ≡⟨ √·Absorb+ _ _ ⟩ √ ⟨ α ⟩ ∎) ∧zLDist∨z : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∨z 𝔠) ≡ (𝔞 ∧z 𝔟) ∨z (𝔞 ∧z 𝔠) ∧zLDist∨z = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (√ ⟨ α ··Fin (β ++Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i ⟨ β ++Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i (⟨ β ⟩ +i ⟨ γ ⟩)) ≡⟨ cong √ (·iRdist+i _ _ _) ⟩ -- L/R-dist are swapped -- in Lattices vs Rings √ (⟨ α ⟩ ·i ⟨ β ⟩ +i ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong₂ (λ x y → √ (x +i y)) (sym (FGIdealMultLemma _ _ _)) (sym (FGIdealMultLemma _ _ _)) ⟩ √ (⟨ α ··Fin β ⟩ +i ⟨ α ··Fin γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ _ _)) ⟩ √ ⟨ (α ··Fin β) ++Fin (α ··Fin γ) ⟩ ∎) ZariskiLattice : DistLattice (ℓ-suc ℓ) fst ZariskiLattice = ZL DistLatticeStr.0l (snd ZariskiLattice) = 0z DistLatticeStr.1l (snd ZariskiLattice) = 1z DistLatticeStr._∨l_ (snd ZariskiLattice) = _∨z_ DistLatticeStr._∧l_ (snd ZariskiLattice) = _∧z_ DistLatticeStr.isDistLattice (snd ZariskiLattice) = makeIsDistLattice∧lOver∨l squash/ ∨zAssoc ∨zRid ∨zComm ∧zAssoc ∧zRid ∧zComm ∧zAbsorb∨z ∧zLDist∨z module _ (R' : CommRing ℓ) (L' : DistLattice ℓ') where open CommRingStr (R' .snd) open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open DistLatticeStr (L' .snd) renaming (is-set to isSetL) open Join L' open LatticeTheory (DistLattice→Lattice L') open Order (DistLattice→Lattice L') open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L')) open PosetReasoning IndPoset open PosetStr (IndPoset .snd) hiding (_≤_) private R = fst R' L = fst L' record IsZarMap (d : R → L) : Type (ℓ-max ℓ ℓ') where constructor iszarmap field pres0 : d 0r ≡ 0l pres1 : d 1r ≡ 1l ·≡∧ : ∀ x y → d (x · y) ≡ d x ∧l d y +≤∨ : ∀ x y → d (x + y) ≤ d x ∨l d y ∑≤⋁ : {n : ℕ} (U : FinVec R n) → d (∑ U) ≤ ⋁ λ i → d (U i) ∑≤⋁ {n = zero} U = ∨lRid _ ∙ pres0 ∑≤⋁ {n = suc n} U = d (∑ U) ≤⟨ ∨lIdem _ ⟩ d (U zero + ∑ (U ∘ suc)) ≤⟨ +≤∨ _ _ ⟩ d (U zero) ∨l d (∑ (U ∘ suc)) ≤⟨ ≤-∨LPres _ _ _ (∑≤⋁ (U ∘ suc)) ⟩ d (U zero) ∨l ⋁ (d ∘ U ∘ suc) ≤⟨ ∨lIdem _ ⟩ ⋁ (d ∘ U) ◾ d·LCancel : ∀ x y → d (x · y) ≤ d y d·LCancel x y = subst (λ a → a ≤ d y) (sym (·≡∧ x y)) (∧≤LCancelJoin _ _) linearCombination≤LCancel : {n : ℕ} (α β : FinVec R n) → d (linearCombination R' α β) ≤ ⋁ (d ∘ β) linearCombination≤LCancel α β = is-trans _ _ _ (∑≤⋁ (λ i → α i · β i)) (≤-⋁Ext _ _ λ i → d·LCancel (α i) (β i)) ZarMapIdem : ∀ (n : ℕ) (x : R) → d (x ^ (suc n)) ≡ d x ZarMapIdem zero x = ·≡∧ _ _ ∙∙ cong (d x ∧l_) pres1 ∙∙ ∧lRid _ ZarMapIdem (suc n) x = ·≡∧ _ _ ∙∙ cong (d x ∧l_) (ZarMapIdem n x) ∙∙ ∧lIdem _ ZarMapExpIneq : ∀ (n : ℕ) (x : R) → d x ≤ d (x ^ n) ZarMapExpIneq zero x = cong (d x ∨l_) pres1 ∙∙ 1lRightAnnihilates∨l _ ∙∙ sym pres1 ZarMapExpIneq (suc n) x = subst (λ y → d x ≤ y) (sym (ZarMapIdem _ x)) (∨lIdem _) -- the crucial lemma about "Zariski maps" open CommIdeal R' open RadicalIdeal R' open isCommIdeal private ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] ZarMapRadicalIneq : ∀ {n : ℕ} (α : FinVec R n) (x : R) → x ∈ √ ⟨ α ⟩ → d x ≤ ⋁ (d ∘ α) ZarMapRadicalIneq α x = PT.elim (λ _ → isSetL _ _) (uncurry (λ n → (PT.elim (λ _ → isSetL _ _) (uncurry (curriedHelper n))))) where curriedHelper : (n : ℕ) (β : FinVec R _) → x ^ n ≡ linearCombination R' β α → d x ≤ ⋁ (d ∘ α) curriedHelper n β xⁿ≡∑βα = d x ≤⟨ ZarMapExpIneq n x ⟩ d (x ^ n) ≤⟨ subst (λ y → y ≤ ⋁ (d ∘ α)) (sym (cong d xⁿ≡∑βα)) (linearCombination≤LCancel β α) ⟩ ⋁ (d ∘ α) ◾ module ZarLatUniversalProp (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open BinomialThm R' open CommIdeal R' open RadicalIdeal R' open isCommIdeal open ProdFin R' open ZarLat R' open IsZarMap private R = fst R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] D : R → ZL D x = [ 1 , replicateFinVec 1 x ] -- λ x → √⟨x⟩ isZarMapD : IsZarMap R' ZariskiLattice D pres0 isZarMapD = eq/ _ _ (cong √ (0FGIdeal _ ∙ sym (emptyFGIdeal _ _))) pres1 isZarMapD = refl ·≡∧ isZarMapD x y = cong {B = λ _ → ZL} (λ U → [ 1 , U ]) (Length1··Fin x y) +≤∨ isZarMapD x y = eq/ _ _ (cong √ (CommIdeal≡Char (inclOfFGIdeal _ 3Vec ⟨ 2Vec ⟩ 3Vec⊆2Vec) (inclOfFGIdeal _ 2Vec ⟨ 3Vec ⟩ 2Vec⊆3Vec))) where 2Vec = replicateFinVec 1 x ++Fin replicateFinVec 1 y 3Vec = replicateFinVec 1 (x + y) ++Fin (replicateFinVec 1 x ++Fin replicateFinVec 1 y) 3Vec⊆2Vec : ∀ (i : Fin 3) → 3Vec i ∈ ⟨ 2Vec ⟩ 3Vec⊆2Vec zero = ⟨ 2Vec ⟩ .snd .+Closed (indInIdeal _ _ zero) (indInIdeal _ _ (suc zero)) 3Vec⊆2Vec (suc zero) = indInIdeal _ _ zero 3Vec⊆2Vec (suc (suc zero)) = indInIdeal _ _ (suc zero) 2Vec⊆3Vec : ∀ (i : Fin 2) → 2Vec i ∈ ⟨ 3Vec ⟩ 2Vec⊆3Vec zero = indInIdeal _ _ (suc zero) 2Vec⊆3Vec (suc zero) = indInIdeal _ _ (suc (suc zero)) -- defintion of the universal property hasZarLatUniversalProp : (L : DistLattice ℓ') (D : R → fst L) → IsZarMap R' L D → Type _ hasZarLatUniversalProp {ℓ' = ℓ'} L D _ = ∀ (L' : DistLattice ℓ') (d : R → fst L') → IsZarMap R' L' d → ∃![ χ ∈ DistLatticeHom L L' ] (fst χ) ∘ D ≡ d isPropZarLatUniversalProp : (L : DistLattice ℓ') (D : R → fst L) (isZarMapD : IsZarMap R' L D) → isProp (hasZarLatUniversalProp L D isZarMapD) isPropZarLatUniversalProp L D isZarMapD = isPropΠ3 (λ _ _ _ → isPropIsContr) ZLHasUniversalProp : hasZarLatUniversalProp ZariskiLattice D isZarMapD ZLHasUniversalProp L' d isZarMapd = (χ , funExt χcomp) , χunique where open DistLatticeStr (snd L') renaming (is-set to isSetL) open LatticeTheory (DistLattice→Lattice L') open Join L' open IsLatticeHom L = fst L' χ : DistLatticeHom ZariskiLattice L' fst χ = SQ.rec isSetL (λ (_ , α) → ⋁ (d ∘ α)) λ (_ , α) (_ , β) → curriedHelper α β where curriedHelper : {n m : ℕ} (α : FinVec R n) (β : FinVec R m) → √ ⟨ α ⟩ ≡ √ ⟨ β ⟩ → ⋁ (d ∘ α) ≡ ⋁ (d ∘ β) curriedHelper α β √⟨α⟩≡√⟨β⟩ = is-antisym _ _ ineq1 ineq2 where open Order (DistLattice→Lattice L') open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L')) open PosetReasoning IndPoset open PosetStr (IndPoset .snd) hiding (_≤_) incl1 : √ ⟨ α ⟩ ⊆ √ ⟨ β ⟩ incl1 = ⊆-refl-consequence _ _ (cong fst √⟨α⟩≡√⟨β⟩) .fst ineq1 : ⋁ (d ∘ α) ≤ ⋁ (d ∘ β) ineq1 = ⋁IsMax (d ∘ α) (⋁ (d ∘ β)) λ i → ZarMapRadicalIneq isZarMapd β (α i) (√FGIdealCharLImpl α ⟨ β ⟩ incl1 i) incl2 : √ ⟨ β ⟩ ⊆ √ ⟨ α ⟩ incl2 = ⊆-refl-consequence _ _ (cong fst √⟨α⟩≡√⟨β⟩) .snd ineq2 : ⋁ (d ∘ β) ≤ ⋁ (d ∘ α) ineq2 = ⋁IsMax (d ∘ β) (⋁ (d ∘ α)) λ i → ZarMapRadicalIneq isZarMapd α (β i) (√FGIdealCharLImpl β ⟨ α ⟩ incl2 i) pres0 (snd χ) = refl pres1 (snd χ) = ∨lRid _ ∙ isZarMapd .pres1 pres∨l (snd χ) = elimProp2 (λ _ _ → isSetL _ _) (uncurry (λ n α → uncurry (curriedHelper n α))) where curriedHelper : (n : ℕ) (α : FinVec R n) (m : ℕ) (β : FinVec R m) → ⋁ (d ∘ (α ++Fin β)) ≡ ⋁ (d ∘ α) ∨l ⋁ (d ∘ β) curriedHelper zero α _ β = sym (∨lLid _) curriedHelper (suc n) α _ β = ⋁ (d ∘ (α ++Fin β)) ≡⟨ refl ⟩ d (α zero) ∨l ⋁ (d ∘ ((α ∘ suc) ++Fin β)) ≡⟨ cong (d (α zero) ∨l_) (curriedHelper _ (α ∘ suc) _ β) ⟩ d (α zero) ∨l (⋁ (d ∘ α ∘ suc) ∨l ⋁ (d ∘ β)) ≡⟨ ∨lAssoc _ _ _ ⟩ ⋁ (d ∘ α) ∨l ⋁ (d ∘ β) ∎ pres∧l (snd χ) = elimProp2 (λ _ _ → isSetL _ _) (uncurry (λ n α → uncurry (curriedHelper n α))) where -- have to repeat this one here so the termination checker won't complain oldHelper : (n : ℕ) (α : FinVec R n) (m : ℕ) (β : FinVec R m) → ⋁ (d ∘ (α ++Fin β)) ≡ ⋁ (d ∘ α) ∨l ⋁ (d ∘ β) oldHelper zero α _ β = sym (∨lLid _) oldHelper (suc n) α _ β = cong (d (α zero) ∨l_) (oldHelper _ (α ∘ suc) _ β) ∙ ∨lAssoc _ _ _ curriedHelper : (n : ℕ) (α : FinVec R n) (m : ℕ) (β : FinVec R m) → ⋁ (d ∘ (α ··Fin β)) ≡ ⋁ (d ∘ α) ∧l ⋁ (d ∘ β) curriedHelper zero α _ β = sym (0lLeftAnnihilates∧l _) curriedHelper (suc n) α _ β = ⋁ (d ∘ (α ··Fin β)) ≡⟨ refl ⟩ ⋁ (d ∘ ((λ j → α zero · β j) ++Fin ((α ∘ suc) ··Fin β))) ≡⟨ oldHelper _ (λ j → α zero · β j) _ ((α ∘ suc) ··Fin β) ⟩ ⋁ (d ∘ (λ j → α zero · β j)) ∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β)) ≡⟨ cong (_∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β))) (⋁Ext (λ j → isZarMapd .·≡∧ (α zero) (β j))) ⟩ ⋁ (λ j → d (α zero) ∧l d (β j)) ∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β)) ≡⟨ cong (_∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β))) (sym (⋁Meetrdist _ _)) ⟩ (d (α zero) ∧l ⋁ (d ∘ β)) ∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β)) ≡⟨ cong ((d (α zero) ∧l ⋁ (d ∘ β)) ∨l_) (curriedHelper _ (α ∘ suc) _ β) ⟩ (d (α zero) ∧l ⋁ (d ∘ β)) ∨l (⋁ (d ∘ α ∘ suc) ∧l ⋁ (d ∘ β)) ≡⟨ sym (∧lRdist∨l _ _ _) ⟩ ⋁ (d ∘ α) ∧l ⋁ (d ∘ β) ∎ χcomp : ∀ (f : R) → χ .fst (D f) ≡ d f χcomp f = ∨lRid (d f) χunique : (y : Σ[ χ' ∈ DistLatticeHom ZariskiLattice L' ] fst χ' ∘ D ≡ d) → (χ , funExt χcomp) ≡ y χunique (χ' , χ'∘D≡d) = Σ≡Prop (λ _ → isSetΠ (λ _ → isSetL) _ _) (LatticeHom≡f _ _ (funExt (elimProp (λ _ → isSetL _ _) (uncurry uniqHelper)))) where uniqHelper : (n : ℕ) (α : FinVec R n) → fst χ [ n , α ] ≡ fst χ' [ n , α ] uniqHelper zero _ = sym (cong (λ α → fst χ' [ 0 , α ]) (funExt (λ ())) ∙ χ' .snd .pres0) uniqHelper (suc n) α = ⋁ (d ∘ α) ≡⟨ refl ⟩ d (α zero) ∨l ⋁ (d ∘ α ∘ suc) ≡⟨ cong (d (α zero) ∨l_) (uniqHelper n (α ∘ suc)) ⟩ -- the inductive step d (α zero) ∨l fst χ' [ n , α ∘ suc ] ≡⟨ cong (_∨l fst χ' [ n , α ∘ suc ]) (sym (funExt⁻ χ'∘D≡d (α zero))) ⟩ fst χ' (D (α zero)) ∨l fst χ' [ n , α ∘ suc ] ≡⟨ sym (χ' .snd .pres∨l _ _) ⟩ fst χ' (D (α zero) ∨z [ n , α ∘ suc ]) ≡⟨ cong (λ β → fst χ' [ suc n , β ]) (funExt (λ { zero → refl ; (suc i) → refl })) ⟩ fst χ' [ suc n , α ] ∎ -- An equivalent definition that doesn't bump up the unviverse level module SmallZarLat (R' : CommRing ℓ) where open CommRingStr (snd R') open CommIdeal R' open RadicalIdeal R' open ZarLat R' open Iso private R = fst R' A = Σ[ n ∈ ℕ ] (FinVec R n) ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] -- This is small! _≼_ : A → A → Type ℓ (_ , α) ≼ (_ , β) = ∀ i → α i ∈ √ ⟨ β ⟩ _∼'_ : A → A → Type ℓ α ∼' β = (α ≼ β) × (β ≼ α) -- lives in the same universe as R ZL' : Type ℓ ZL' = A / (_∼'_) IsoLarLatSmall : Iso ZL ZL' IsoLarLatSmall = relBiimpl→TruncIso ~→∼' ~'→∼ where ~→∼' : ∀ {a b : A} → a ∼ b → a ∼' b ~→∼' r = √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) r h) , √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) (sym r) h) ~'→∼ : ∀ {a b : A} → a ∼' b → a ∼ b ~'→∼ r = CommIdeal≡Char (√FGIdealCharRImpl _ ⟨ _ ⟩ (fst r)) (√FGIdealCharRImpl _ ⟨ _ ⟩ (snd r)) ZL≃ZL' : ZL ≃ ZL' ZL≃ZL' = isoToEquiv IsoLarLatSmall
{ "alphanum_fraction": 0.5179111869, "avg_line_length": 37.2397540984, "ext": "agda", "hexsha": "51dfbb2db5b1816a68171d5f591e54cff469244e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dolio/cubical", "max_forks_repo_path": "Cubical/Algebra/ZariskiLattice/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dolio/cubical", "max_issues_repo_path": "Cubical/Algebra/ZariskiLattice/Base.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dolio/cubical", "max_stars_repo_path": "Cubical/Algebra/ZariskiLattice/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8022, "size": 18173 }
------------------------------------------------------------------------ -- The semantics in Lambda.Closure.Relational and -- Lambda.Closure.Functional are equivalent ------------------------------------------------------------------------ module Lambda.Closure.Equivalence where open import Axiom.ExcludedMiddle open import Category.Monad.Partiality as Partiality using (_⊥; never; steps; module Steps) open import Codata.Musical.Notation open import Data.Empty using (⊥-elim) open import Data.Maybe hiding (_>>=_) open import Data.Nat open import Data.Nat.Induction import Data.Nat.Properties as ℕ import Data.Nat.Solver as ℕ open import Data.Product open import Data.Sum open import Data.Vec using (Vec; []; _∷_) open import Function import Level open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Nullary.Negation open ℕ.+-*-Solver using (solve; _:=_; _:+_; con) open Partiality._⊥ private open module PE {A : Set} = Partiality.Equality (_≡_ {A = A}) open module PR {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) hiding (_≡⟨_⟩_) renaming (_∎ to _□) open import Lambda.Syntax open Closure Tm open import Lambda.Closure.Relational as R open import Lambda.Closure.Functional as F hiding (module Workaround) open PF ------------------------------------------------------------------------ -- Successful, terminating computations -- The functional semantics is complete with respect to the relational -- one. complete⇓ : ∀ {n} {t : Tm n} {ρ v} → ρ ⊢ t ⇓ v → ⟦ t ⟧ ρ ≈ return v complete⇓ var = _ □ complete⇓ con = _ □ complete⇓ ƛ = _ □ complete⇓ {ρ = ρ} {v} (app {t₁} {t₂} {t = t} {ρ′} {v′ = v′} t₁⇓ t₂⇓ t₁t₂⇓) = ⟦ t₁ · t₂ ⟧ ρ ≅⟨ ·-comp t₁ t₂ ⟩ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≈⟨ complete⇓ t₁⇓ ⟦·⟧-cong complete⇓ t₂⇓ ⟩ return (ƛ t ρ′) ⟦·⟧ return v′ ≳⟨ laterˡ (_ □) ⟩ ⟦ t ⟧ (v′ ∷ ρ′) ≈⟨ complete⇓ t₁t₂⇓ ⟩ return v □ -- The functional semantics is sound with respect to the relational -- one. sound⇓ : ∀ {n} (t : Tm n) {ρ : Env n} {v} → ⟦ t ⟧ ρ ≈ return v → ρ ⊢ t ⇓ v sound⇓ t t⇓ = <′-rec P sound⇓′ (steps t⇓) t t⇓ P.refl where P : ℕ → Set P s = ∀ {n} (t : Tm n) {ρ : Env n} {v} (t⇓ : ⟦ t ⟧ ρ ≈ return v) → steps t⇓ ≡ s → ρ ⊢ t ⇓ v sound⇓′ : ∀ s → <′-Rec P s → P s sound⇓′ s rec (con i) (now P.refl) _ = con sound⇓′ s rec (var x) (now P.refl) _ = var sound⇓′ s rec (ƛ t) (now P.refl) _ = ƛ sound⇓′ s rec (t₁ · t₂) {ρ} {v} t₁t₂⇓ eq with >>=-inversion-⇓ (⟦ t₁ ⟧ ρ) ( ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≅⟨ sym $ ·-comp t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ ≈⟨ t₁t₂⇓ ⟩ return v □) sound⇓′ s rec (t₁ · t₂) {ρ} t₁t₂⇓ eq | (v₁ , t₁⇓ , t₂∙⇓ , eq₁) with >>=-inversion-⇓ (⟦ t₂ ⟧ ρ) t₂∙⇓ sound⇓′ s rec (t₁ · t₂) t₁t₂⇓ eq | (con i , t₁⇓ , t₂∙⇓ , eq₁) | (v₂ , t₂⇓ , now () , _ ) sound⇓′ s rec (t₁ · t₂) {ρ} {v} t₁t₂⇓ eq | (ƛ t _ , t₁⇓ , t₂∙⇓ , eq₁) | (v₂ , t₂⇓ , laterˡ ∙⇓ , eq₂) = app (rec (steps t₁⇓) ₁< t₁ t₁⇓ P.refl) (rec (steps t₂⇓) ₂< t₂ t₂⇓ P.refl) (rec (steps ∙⇓) ∙< t ∙⇓ P.refl) where open ℕ.≤-Reasoning ₁₂∙< = begin 1 + steps t₁⇓ + (steps t₂⇓ + steps ∙⇓) ≡⟨ solve 3 (λ x y z → con 1 :+ x :+ (y :+ z) := x :+ (y :+ (con 1 :+ z))) P.refl (steps t₁⇓) (steps t₂⇓) _ ⟩ steps t₁⇓ + (steps t₂⇓ + (1 + steps ∙⇓)) ≡⟨ P.cong (_+_ (steps t₁⇓)) eq₂ ⟩ steps t₁⇓ + steps t₂∙⇓ ≡⟨ eq₁ ⟩ steps (⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≅⟨ sym $ ·-comp t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ ≈⟨ t₁t₂⇓ ⟩ return v □) ≡⟨ Steps.left-identity (sym $ ·-comp t₁ t₂) _ ⟩ steps (⟦ t₁ · t₂ ⟧ ρ ≈⟨ t₁t₂⇓ ⟩ return v □) ≡⟨ Steps.right-identity t₁t₂⇓ (return v □) ⟩ steps t₁t₂⇓ ≡⟨ eq ⟩ s ∎ ₁< = ℕ.≤⇒≤′ (begin 1 + steps t₁⇓ ≤⟨ ℕ.m≤m+n (1 + steps t₁⇓) _ ⟩ 1 + steps t₁⇓ + (steps t₂⇓ + steps ∙⇓) ≤⟨ ₁₂∙< ⟩ s ∎) ₂∙< = begin 1 + steps t₂⇓ + steps ∙⇓ ≤⟨ s≤s (ℕ.m≤n+m _ (steps t₁⇓)) ⟩ 1 + steps t₁⇓ + (steps t₂⇓ + steps ∙⇓) ≤⟨ ₁₂∙< ⟩ s ∎ ₂< = ℕ.≤⇒≤′ (begin 1 + steps t₂⇓ ≤⟨ ℕ.m≤m+n (1 + steps t₂⇓) _ ⟩ 1 + steps t₂⇓ + steps ∙⇓ ≤⟨ ₂∙< ⟩ s ∎) ∙< = ℕ.≤⇒≤′ (begin 1 + steps ∙⇓ ≤⟨ s≤s (ℕ.m≤n+m _ (steps t₂⇓)) ⟩ 1 + steps t₂⇓ + steps ∙⇓ ≤⟨ ₂∙< ⟩ s ∎) ------------------------------------------------------------------------ -- Non-terminating computations -- The functional semantics is complete for non-terminating computations. module Complete⇑ where infix 4 _≈P_ _≈W_ infixr 2 _≅⟪_⟫_ _≳⟪_⟫_ _≈⟪_⟫_ data _≈P_ : Maybe Value ⊥ → Maybe Value ⊥ → Set₁ where ⌈_⌉ : ∀ {x y} (x≳y : x ≳ y) → x ≈P y later : ∀ {x y} (x≈y : ∞ (♭ x ≈P ♭ y)) → later x ≈P later y _>>=P_ : ∀ {x₁ x₂ f₁ f₂} → (x₁≈x₂ : x₁ ≈P x₂) (f₁≈f₂ : ∀ x → f₁ x ≈P f₂ x) → (x₁ >>= f₁) ≈P (x₂ >>= f₂) _⟦·⟧P_ : ∀ {v₁₁ v₁₂ v₂₁ v₂₂} → (v₁₁≈v₂₁ : v₁₁ ≈P v₂₁) (v₁₂≈v₂₂ : v₁₂ ≈P v₂₂) → v₁₁ ⟦·⟧ v₁₂ ≈P v₂₁ ⟦·⟧ v₂₂ _≅⟪_⟫_ : ∀ x {y z} (x≅y : x ≅ y) (y≈z : y ≈P z) → x ≈P z _≳⟪_⟫_ : ∀ x {y z} (x≳y : x ≳ y) (y≈z : y ≈P z) → x ≈P z _≈⟪_⟫_ : ∀ x {y z} (x≈y : x ≈P y) (y≅z : y ≅ z) → x ≈P z private data _≈W_ : Maybe Value ⊥ → Maybe Value ⊥ → Set₁ where now : ∀ {v} → now v ≈W now v later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈W y) → later x ≈W y ⌈_⌉W : ∀ {x y} → x ≳ y → x ≈W y ⌈ now P.refl ⌉W = now ⌈ later x≳y ⌉W = later ⌈ ♭ x≳y ⌉ ⌈ laterˡ x≳y ⌉W = laterˡ ⌈ x≳y ⌉W program : ∀ {x y} → x ≈W y → x ≈P y program now = ⌈ now P.refl ⌉ program (later x≈y) = later (♯ x≈y) program (laterˡ x≈y) = _ ≳⟪ laterˡ (_ □) ⟫ program x≈y _>>=W_ : ∀ {x₁ x₂ f₁ f₂} → x₁ ≈W x₂ → (∀ x → f₁ x ≈W f₂ x) → (x₁ >>= f₁) ≈W (x₂ >>= f₂) now {v = nothing} >>=W f₁≈f₂ = now now {v = just v } >>=W f₁≈f₂ = f₁≈f₂ v later x≈y >>=W f₁≈f₂ = later (x≈y >>=P (program ∘ f₁≈f₂)) laterˡ x≈y >>=W f₁≈f₂ = laterˡ (x≈y >>=W f₁≈f₂) _⟦·⟧W_ : ∀ {v₁₁ v₁₂ v₂₁ v₂₂} → v₁₁ ≈W v₂₁ → v₁₂ ≈W v₂₂ → v₁₁ ⟦·⟧ v₁₂ ≈W v₂₁ ⟦·⟧ v₂₂ v₁₁≈v₂₁ ⟦·⟧W v₁₂≈v₂₂ = v₁₁≈v₂₁ >>=W λ v₁ → v₁₂≈v₂₂ >>=W λ v₂ → ⌈ ⟪ v₁ ∙ v₂ ⟫P □ ⌉W where open F.Workaround trans≅≈W : ∀ {x y z} → x ≅ y → y ≈W z → x ≈W z trans≅≈W (now P.refl) now = now trans≅≈W (later x≅y) (later y≈z) = later (_ ≅⟪ ♭ x≅y ⟫ y≈z) trans≅≈W (later x≅y) (laterˡ y≈z) = laterˡ (trans≅≈W (♭ x≅y) y≈z) trans≳≈W : ∀ {x y z} → x ≳ y → y ≈W z → x ≈W z trans≳≈W (now P.refl) now = now trans≳≈W (later x≳y) (later y≈z) = later (_ ≳⟪ ♭ x≳y ⟫ y≈z) trans≳≈W (later x≳y) (laterˡ y≈z) = laterˡ (trans≳≈W (♭ x≳y) y≈z) trans≳≈W (laterˡ x≳y) y≈z = laterˡ (trans≳≈W x≳y y≈z) trans≈W≅ : ∀ {x y z} → x ≈W y → y ≅ z → x ≈W z trans≈W≅ now (now P.refl) = now trans≈W≅ (later x≈y) (later y≅z) = later (_ ≈⟪ x≈y ⟫ ♭ y≅z) trans≈W≅ (laterˡ x≈y) y≅z = laterˡ (trans≈W≅ x≈y y≅z) whnf : ∀ {x y} → x ≈P y → x ≈W y whnf ⌈ x≳y ⌉ = ⌈ x≳y ⌉W whnf (later x≈y) = later (♭ x≈y) whnf (x₁≈x₂ >>=P f₁≈f₂) = whnf x₁≈x₂ >>=W λ v → whnf (f₁≈f₂ v) whnf (v₁₁≈v₂₁ ⟦·⟧P v₁₂≈v₂₂) = whnf v₁₁≈v₂₁ ⟦·⟧W whnf v₁₂≈v₂₂ whnf (x ≅⟪ x≅y ⟫ y≈z) = trans≅≈W x≅y (whnf y≈z) whnf (x ≳⟪ x≳y ⟫ y≈z) = trans≳≈W x≳y (whnf y≈z) whnf (x ≈⟪ x≈y ⟫ y≅z) = trans≈W≅ (whnf x≈y) y≅z mutual -- Note that the types of soundW and soundP could be strengthened: -- laterʳ is not used. private soundW : ∀ {x y} → x ≈W y → x ≈ y soundW now = now P.refl soundW (later x≈y) = later (♯ soundP x≈y) soundW (laterˡ x≈y) = laterˡ (soundW x≈y) soundP : ∀ {x y} → x ≈P y → x ≈ y soundP x≈y = soundW (whnf x≈y) -- The language _≈P_ does not include transitivity for weak -- equality, as this would be unsound. Instead some limited notions -- of transitivity are used: -- -- • Weak equality can be combined with strong equality on both -- sides. -- -- • The _≳_ order can be "prepended" to a weak equality. Note that -- results of the form "x ≈ return v" can be turned into -- "x ≳ return v", as in the first case below. complete⇑ : ∀ {n} {t : Tm n} {ρ : Env n} → ρ ⊢ t ⇑ → ⟦ t ⟧ ρ ≈P never complete⇑ {ρ = ρ} (app {t₁} {t₂} {t = t} {ρ′} {v} t₁⇓ t₂⇓ t₁t₂⇑) = ⟦ t₁ · t₂ ⟧ ρ ≅⟪ ·-comp t₁ t₂ ⟫ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≳⟪ Partiality.now⇒now (complete⇓ t₁⇓) ⟦·⟧-cong Partiality.now⇒now (complete⇓ t₂⇓) ⟫ return (ƛ t ρ′) ⟦·⟧ return v ≅⟪ later (♯ (_ □)) ⟫ later (♯ ⟦ t ⟧ (v ∷ ρ′)) ≈⟪ later (♯ complete⇑ (♭ t₁t₂⇑)) ⟫ never □ complete⇑ {ρ = ρ} (·ˡ {t₁} {t₂} t₁⇑) = ⟦ t₁ · t₂ ⟧ ρ ≅⟪ ·-comp t₁ t₂ ⟫ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≈⟪ complete⇑ (♭ t₁⇑) ⟦·⟧P ⌈ ⟦ t₂ ⟧ ρ □ ⌉ ⟫ never ⟦·⟧ ⟦ t₂ ⟧ ρ ≅⟨ Partiality.left-zero _ ⟩ never □ complete⇑ {ρ = ρ} (·ʳ {t₁} {t₂} {v} t₁⇓ t₂⇑) = ⟦ t₁ · t₂ ⟧ ρ ≅⟪ ·-comp t₁ t₂ ⟫ ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≈⟪ ⌈ Partiality.now⇒now (complete⇓ t₁⇓) ⌉ ⟦·⟧P complete⇑ (♭ t₂⇑) ⟫ return v ⟦·⟧ never ≅⟨ Partiality.left-zero _ ⟩ never □ complete⇑ : ∀ {n} {t : Tm n} {ρ : Env n} → ρ ⊢ t ⇑ → ⟦ t ⟧ ρ ≈ never complete⇑ = Complete⇑.soundP ∘ Complete⇑.complete⇑ -- The functional semantics is sound for non-terminating computations. -- I assume excluded middle here because double-negation elimination -- is used "infinitely often". sound⇑ : ExcludedMiddle Level.zero → ∀ {n} (t : Tm n) {ρ : Env n} → ⟦ t ⟧ ρ ≈ never → ρ ⊢ t ⇑ sound⇑ em (con i) i⇑ = ⊥-elim (Partiality.now≉never i⇑) sound⇑ em (var x) x⇑ = ⊥-elim (Partiality.now≉never x⇑) sound⇑ em (ƛ t) ƛ⇑ = ⊥-elim (Partiality.now≉never ƛ⇑) sound⇑ em (t₁ · t₂) {ρ} t₁t₂⇑ with decidable-stable em $ >>=-inversion-⇑ (⟦ t₁ ⟧ ρ) ( ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ≅⟨ sym $ ·-comp t₁ t₂ ⟩ ⟦ t₁ · t₂ ⟧ ρ ≈⟨ t₁t₂⇑ ⟩ never □) sound⇑ em (t₁ · t₂) ⇑ | inj₁ t₁⇑ = ·ˡ (♯ sound⇑ em t₁ t₁⇑) sound⇑ em (t₁ · t₂) {ρ} ⇑ | inj₂ (v₁ , t₁⇓ , t₂∙⇑) with decidable-stable em $ >>=-inversion-⇑ (⟦ t₂ ⟧ ρ) t₂∙⇑ sound⇑ em (t₁ · t₂) ⇑ | inj₂ (v₁ , t₁⇓ , t₂∙⇑) | inj₁ t₂⇑ = ·ʳ (sound⇓ t₁ t₁⇓) (♯ sound⇑ em t₂ t₂⇑) sound⇑ em (t₁ · t₂) ⇑ | inj₂ (con i , t₁⇓ , t₂∙⇑) | inj₂ (v₂ , t₂⇓ , ∙⇑) = ⊥-elim (Partiality.now≉never ∙⇑) sound⇑ em (t₁ · t₂) ⇑ | inj₂ (ƛ t _ , t₁⇓ , t₂∙⇑) | inj₂ (v₂ , t₂⇓ , ∙⇑) = app (sound⇓ t₁ t₁⇓) (sound⇓ t₂ t₂⇓) (♯ sound⇑ em t (Partiality.later⁻¹ ∙⇑)) ------------------------------------------------------------------------ -- Crashing computations -- The functional semantics is complete for crashing computations. complete↯ : ExcludedMiddle Level.zero → ∀ {n} (t : Tm n) (ρ : Env n) → ρ ⊢ t ↯ → ⟦ t ⟧ ρ ≈ fail complete↯ em t ρ ¬⇒ with decidable-stable em $ Partiality.now-or-never {_∼_ = _≡_} P.refl {k = Partiality.weak} (⟦ t ⟧ ρ) ... | inj₂ t⇑ = ⊥-elim (proj₂ ¬⇒ (sound⇑ em t t⇑)) ... | inj₁ (nothing , t↯) = t↯ ... | inj₁ (just v , t⇓) = ⊥-elim (proj₁ ¬⇒ (-, sound⇓ t t⇓)) -- The functional semantics is sound for crashing computations. sound↯ : ∀ {n} {t : Tm n} {ρ : Env n} → ⟦ t ⟧ ρ ≈ fail → ρ ⊢ t ↯ sound↯ {t = t} {ρ} t↯ = (¬⇓ , ¬⇑) where ¬⇓ : ¬ (∃ λ v → ρ ⊢ t ⇓ v) ¬⇓ (v , t⇓) with fail ≈⟨ sym t↯ ⟩ ⟦ t ⟧ ρ ≈⟨ complete⇓ t⇓ ⟩ return v □ ... | now () ¬⇑ : ¬ (ρ ⊢ t ⇑) ¬⇑ t⇑ = Partiality.now≉never ( fail ≈⟨ sym t↯ ⟩ ⟦ t ⟧ ρ ≈⟨ complete⇑ t⇑ ⟩ never □)
{ "alphanum_fraction": 0.436521878, "avg_line_length": 40.0127795527, "ext": "agda", "hexsha": "c4dcb48bac13bef45990635ddad197df4e25f080", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Equivalence.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 6052, "size": 12524 }
module sn-calculus-compatconf.eview where open import sn-calculus-compatconf.base open import sn-calculus-compatconf.in-lift using (1-steplρ-E-view-ecin-lift) open import sn-calculus-compatconf.split using (1-steplρ-E-view-ecsplit) open import sn-calculus-compatconf.same using (1-steplρ-E-view-ecsame) open import sn-calculus open import utility renaming (_U̬_ to _∪_) open import context-properties using (get-view ; ->E-view ; ->pot-view) open import sn-calculus-confluence using (R-confluent) open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction using (Can ; Canₛ ; Canₛₕ ; Canₖ ; module CodeSet) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties using (plugc) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning) open import Data.Bool using (Bool ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming ( ++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ ) open import Data.Maybe using (Maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _+_) renaming (_⊔_ to _⊔ℕ_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃ ; map) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ->E-view open ->pot-view open EvaluationContext1 open _≐_⟦_⟧e open Context1 open _≐_⟦_⟧c open ListSet Data.Nat._≟_ {- p ρθ. E⟦qin⟧ -- sn⟶₁ -> ρθq. E⟦qo⟧ (ρθ) C⟦rin⟧ -- sn⟶ -> (ρθ) C⟦ro⟧ -} 1-steplρ-E-view : ∀{E C p qin q qo rin ro θ θq BV FV A Aq} → {ρθ·psn⟶₁ρθq·q : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θq , Aq ⟩· q} → CorrectBinding (ρ⟨ θ , A ⟩· p) BV FV → (p≐E⟦qin⟧ : p ≐ E ⟦ qin ⟧e) → (q≐E⟦qo⟧ : q ≐ E ⟦ qo ⟧e) → ->E-view ρθ·psn⟶₁ρθq·q p≐E⟦qin⟧ q≐E⟦qo⟧ → (p≐E⟦rin⟧ : p ≐ C ⟦ rin ⟧c) → (rinsn⟶₁ro : rin sn⟶₁ ro) → ∃ λ { (θo , Ao , po) → (ρ⟨ θq , Aq ⟩· q sn⟶* ρ⟨ θo , Ao ⟩· po) × (ρ⟨ θ , A ⟩· C ⟦ ro ⟧c sn⟶* ρ⟨ θo , Ao ⟩· po) } 1-steplρ-E-view (CBρ cb) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ rinsn⟶₁ro with get-context-prefix p≐E⟦qin⟧ p≐C⟦rin⟧ 1-steplρ-E-view (CBρ cb) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ rinsn⟶₁ro | ecsame = map proj₁ (map (sn⟶*-inclusion ∘ sn⟶-inclusion) (sn⟶*-inclusion ∘ sn⟶-inclusion ∘ proj₁)) (1-steplρ-E-view-ecsame cb p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ (plugc refl) rinsn⟶₁ro) 1-steplρ-E-view (CBρ cb) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ rinsn⟶₁ro | ecin-lift = ⊥-elim (1-steplρ-E-view-ecin-lift cb p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ (plugc refl) rinsn⟶₁ro) 1-steplρ-E-view (CBρ cb) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ rinsn⟶₁ro | ecsplit div with 1-steplρ-E-view-ecsplit cb div p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐C⟦rin⟧ (plugc refl) rinsn⟶₁ro ... | po , inj₁ refl , _ , _ , _ , ρθ·rsn⟶₁ρθq·po , e-view' = _ , rrefl ,′ sn⟶*-inclusion (sn⟶-inclusion ρθ·rsn⟶₁ρθq·po) ... | po , inj₂ qsn⟶po , _ , _ , _ , ρθ·rsn⟶₁ρθq·po , e-view' = _ , sn⟶*-inclusion (Context1-sn⟶ (cenv _ _) qsn⟶po) ,′ sn⟶*-inclusion (sn⟶-inclusion ρθ·rsn⟶₁ρθq·po)
{ "alphanum_fraction": 0.6449029126, "avg_line_length": 36.4601769912, "ext": "agda", "hexsha": "6e90333118cd2cf84eb9f353d57848e49f26c1d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-compatconf/eview.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-compatconf/eview.agda", "max_line_length": 104, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-compatconf/eview.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 1807, "size": 4120 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Union of two binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Construct.Union where open import Data.Product open import Data.Sum open import Function using (_∘_) open import Level using (_⊔_) open import Relation.Binary open import Relation.Nullary using (yes; no) ------------------------------------------------------------------------ -- Definition _∪_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂) L ∪ R = λ i j → L i j ⊎ R i j ------------------------------------------------------------------------ -- Properties module _ {a ℓ} {A : Set a} (L : Rel A ℓ) (R : Rel A ℓ) where reflexive : Reflexive L ⊎ Reflexive R → Reflexive (L ∪ R) reflexive (inj₁ L-refl) = inj₁ L-refl reflexive (inj₂ R-refl) = inj₂ R-refl total : Total L ⊎ Total R → Total (L ∪ R) total (inj₁ L-total) x y = [ inj₁ ∘ inj₁ , inj₂ ∘ inj₁ ] (L-total x y) total (inj₂ R-total) x y = [ inj₁ ∘ inj₂ , inj₂ ∘ inj₂ ] (R-total x y) min : ∀ {⊤} → Minimum L ⊤ ⊎ Minimum R ⊤ → Minimum (L ∪ R) ⊤ min = [ inj₁ ∘_ , inj₂ ∘_ ] max : ∀ {⊥} → Maximum L ⊥ ⊎ Maximum R ⊥ → Maximum (L ∪ R) ⊥ max = [ inj₁ ∘_ , inj₂ ∘_ ] module _ {a ℓ} {A : Set a} {L : Rel A ℓ} {R : Rel A ℓ} where symmetric : Symmetric L → Symmetric R → Symmetric (L ∪ R) symmetric L-sym R-sym = [ inj₁ ∘ L-sym , inj₂ ∘ R-sym ] respects : ∀ {p} {P : A → Set p} → P Respects L → P Respects R → P Respects (L ∪ R) respects resp-L resp-R = [ resp-L , resp-R ] module _ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} (≈ : REL A B ℓ₁) (L : REL A B ℓ₂) (R : REL A B ℓ₃) where implies : (≈ ⇒ L) ⊎ (≈ ⇒ R) → ≈ ⇒ (L ∪ R) implies = [ inj₁ ∘_ , inj₂ ∘_ ] irreflexive : Irreflexive ≈ L → Irreflexive ≈ R → Irreflexive ≈ (L ∪ R) irreflexive L-irrefl R-irrefl x≈y = [ L-irrefl x≈y , R-irrefl x≈y ] module _ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} {L : REL A B ℓ₁} {R : REL A B ℓ₂} where decidable : Decidable L → Decidable R → Decidable (L ∪ R) decidable L? R? x y with L? x y | R? x y ... | yes Lxy | _ = yes (inj₁ Lxy) ... | no _ | yes Rxy = yes (inj₂ Rxy) ... | no ¬Lxy | no ¬Rxy = no [ ¬Lxy , ¬Rxy ]
{ "alphanum_fraction": 0.4882928906, "avg_line_length": 34.0434782609, "ext": "agda", "hexsha": "5e25f3e54879f6528f8f8e093f4e4c720f31bfdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Union.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Union.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Union.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 885, "size": 2349 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Core algebraic definitions ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Algebra`. {-# OPTIONS --without-K --safe #-} module Algebra.Core where open import Level using (_⊔_) ------------------------------------------------------------------------ -- Unary and binary operations Op₁ : ∀ {ℓ} → Set ℓ → Set ℓ Op₁ A = A → A Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ Op₂ A = A → A → A ------------------------------------------------------------------------ -- Left and right actions Opₗ : ∀ {a b} → Set a → Set b → Set (a ⊔ b) Opₗ A B = A → B → B Opᵣ : ∀ {a b} → Set a → Set b → Set (a ⊔ b) Opᵣ A B = B → A → B
{ "alphanum_fraction": 0.3656998739, "avg_line_length": 24.78125, "ext": "agda", "hexsha": "9256d011e962eb38f4d3b2e450d32e149c9dc64a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Core.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 195, "size": 793 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to AllPairs ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.AllPairs.Properties where open import Data.List hiding (any) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) import Data.List.Relation.Unary.All.Properties as All open import Data.List.Relation.Unary.AllPairs as AllPairs using (AllPairs; []; _∷_) open import Data.Bool.Base using (true; false) open import Data.Fin.Base using (Fin) open import Data.Fin.Properties using (suc-injective) open import Data.Nat.Base using (zero; suc; _<_; z≤n; s≤s) open import Data.Nat.Properties using (≤-refl; ≤-step) open import Function using (_∘_; flip) open import Relation.Binary using (Rel; DecSetoid) open import Relation.Binary.PropositionalEquality using (_≢_) open import Relation.Unary using (Pred; Decidable) open import Relation.Nullary using (does) ------------------------------------------------------------------------ -- Introduction (⁺) and elimination (⁻) rules for list operations ------------------------------------------------------------------------ -- map module _ {a b ℓ} {A : Set a} {B : Set b} {R : Rel A ℓ} {f : B → A} where map⁺ : ∀ {xs} → AllPairs (λ x y → R (f x) (f y)) xs → AllPairs R (map f xs) map⁺ [] = [] map⁺ (x∉xs ∷ xs!) = All.map⁺ x∉xs ∷ map⁺ xs! ------------------------------------------------------------------------ -- ++ module _ {a ℓ} {A : Set a} {R : Rel A ℓ} where ++⁺ : ∀ {xs ys} → AllPairs R xs → AllPairs R ys → All (λ x → All (R x) ys) xs → AllPairs R (xs ++ ys) ++⁺ [] Rys _ = Rys ++⁺ (px ∷ Rxs) Rys (Rxys ∷ Rxsys) = All.++⁺ px Rxys ∷ ++⁺ Rxs Rys Rxsys ------------------------------------------------------------------------ -- concat module _ {a ℓ} {A : Set a} {R : Rel A ℓ} where concat⁺ : ∀ {xss} → All (AllPairs R) xss → AllPairs (λ xs ys → All (λ x → All (R x) ys) xs) xss → AllPairs R (concat xss) concat⁺ [] [] = [] concat⁺ (pxs ∷ pxss) (Rxsxss ∷ Rxss) = ++⁺ pxs (concat⁺ pxss Rxss) (All.map All.concat⁺ (All.All-swap Rxsxss)) ------------------------------------------------------------------------ -- take and drop module _ {a ℓ} {A : Set a} {R : Rel A ℓ} where take⁺ : ∀ {xs} n → AllPairs R xs → AllPairs R (take n xs) take⁺ zero pxs = [] take⁺ (suc n) [] = [] take⁺ (suc n) (px ∷ pxs) = All.take⁺ n px ∷ take⁺ n pxs drop⁺ : ∀ {xs} n → AllPairs R xs → AllPairs R (drop n xs) drop⁺ zero pxs = pxs drop⁺ (suc n) [] = [] drop⁺ (suc n) (_ ∷ pxs) = drop⁺ n pxs ------------------------------------------------------------------------ -- applyUpTo module _ {a ℓ} {A : Set a} {R : Rel A ℓ} where applyUpTo⁺₁ : ∀ f n → (∀ {i j} → i < j → j < n → R (f i) (f j)) → AllPairs R (applyUpTo f n) applyUpTo⁺₁ f zero Rf = [] applyUpTo⁺₁ f (suc n) Rf = All.applyUpTo⁺₁ _ n (Rf (s≤s z≤n) ∘ s≤s) ∷ applyUpTo⁺₁ _ n (λ i≤j j<n → Rf (s≤s i≤j) (s≤s j<n)) applyUpTo⁺₂ : ∀ f n → (∀ i j → R (f i) (f j)) → AllPairs R (applyUpTo f n) applyUpTo⁺₂ f n Rf = applyUpTo⁺₁ f n (λ _ _ → Rf _ _) ------------------------------------------------------------------------ -- applyDownFrom module _ {a ℓ} {A : Set a} {R : Rel A ℓ} where applyDownFrom⁺₁ : ∀ f n → (∀ {i j} → j < i → i < n → R (f i) (f j)) → AllPairs R (applyDownFrom f n) applyDownFrom⁺₁ f zero Rf = [] applyDownFrom⁺₁ f (suc n) Rf = All.applyDownFrom⁺₁ _ n (flip Rf ≤-refl) ∷ applyDownFrom⁺₁ f n (λ j<i i<n → Rf j<i (≤-step i<n)) applyDownFrom⁺₂ : ∀ f n → (∀ i j → R (f i) (f j)) → AllPairs R (applyDownFrom f n) applyDownFrom⁺₂ f n Rf = applyDownFrom⁺₁ f n (λ _ _ → Rf _ _) ------------------------------------------------------------------------ -- tabulate module _ {a ℓ} {A : Set a} {R : Rel A ℓ} where tabulate⁺ : ∀ {n} {f : Fin n → A} → (∀ {i j} → i ≢ j → R (f i) (f j)) → AllPairs R (tabulate f) tabulate⁺ {zero} fᵢ~fⱼ = [] tabulate⁺ {suc n} fᵢ~fⱼ = All.tabulate⁺ (λ j → fᵢ~fⱼ λ()) ∷ tabulate⁺ (fᵢ~fⱼ ∘ (_∘ suc-injective)) ------------------------------------------------------------------------ -- filter module _ {a ℓ p} {A : Set a} {R : Rel A ℓ} {P : Pred A p} (P? : Decidable P) where filter⁺ : ∀ {xs} → AllPairs R xs → AllPairs R (filter P? xs) filter⁺ {_} [] = [] filter⁺ {x ∷ xs} (x∉xs ∷ xs!) with does (P? x) ... | false = filter⁺ xs! ... | true = All.filter⁺ P? x∉xs ∷ filter⁺ xs!
{ "alphanum_fraction": 0.458164786, "avg_line_length": 36.9842519685, "ext": "agda", "hexsha": "0aeeb7bb89a0d1cd15746300ad8b326adfc50b7d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs/Properties.agda", "max_line_length": 94, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1611, "size": 4697 }
record R₁ (M : Set → Set) : Set₁ where field return : ∀ {A} → A → M A map : ∀ {A B} → (A → B) → M A → M B open R₁ ⦃ … ⦄ public record R₂ (M : Set → Set) : Set₁ where field instance r₁ : R₁ M data Wrap₁ (A : Set) : Set where box : A → Wrap₁ A instance r₁ : R₁ Wrap₁ R₁.return r₁ x = box x R₁.map r₁ f (box x) = box (f x) record Wrap₂ (A : Set) : Set where field run : A postulate instance r₂ : R₂ Wrap₂ A : Set f : A → A g : A → Wrap₁ A _≡_ : {A : Set} → A → A → Set refl : {A : Set} (x : A) → x ≡ x trans : {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z id : {A : Set} (x : A) {y : A} → x ≡ y → x ≡ y h : ∀ x → map f (g x) ≡ map f (return x) → map f (g x) ≡ return (f x) h x eq = trans (map f (g x)) eq (id (map f (return x)) (refl (return (f x))))
{ "alphanum_fraction": 0.4471264368, "avg_line_length": 19.3333333333, "ext": "agda", "hexsha": "ecd14461ccfe43227ed92935cdb9cbd1f4e23c46", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2296.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2296.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2296.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 389, "size": 870 }
open import Algebra open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ open import Data.List as L using (List; []; _∷_; _++_) open import Data.List.Any as LA using (Any; here; there) open import Data.List.Any.BagAndSetEquality as B open import Data.Product as PR using (∃; _×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_$_; flip) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as I using () open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Data.Environment open import nodcap.Base open import nodcap.NF.Typing module nodcap.NF.Expand where open I.Inverse using (to; from) private module ++ {a} {A : Set a} = Monoid (L.monoid A) {-# TERMINATING #-} -- Lemma: -- We can expand an instance of ?[ n ] A into n repetitions of A, -- by induction on n. -- -- Problematic calls: -- * in the recursive call under cont, the index n is split as -- n₁ + n₂, for which we have n₁, n₂ < n, but not definitionally. mutual expand : {Γ : Environment} {A : Type} {n : ℕ⁺} → ⊢ⁿᶠ ?[ n ] A ∷ Γ → -------------------- ⊢ⁿᶠ replicate⁺ n A ++ Γ expand (mk?₁ x) = x expand (cont {Γ} {A} {m} {n} x) = P.subst (λ Δ → ⊢ⁿᶠ Δ ++ Γ) (replicate⁺-++-commute m n) $ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (replicate⁺ m A) (replicate⁺ n A) Γ)) $ exch (swp [] (replicate⁺ m A) (replicate⁺ n A)) $ expand {n = n} $ exch (fwd [] (replicate⁺ m A)) $ expand {n = m} x expand {Γ} {A} {n} (exch b x) = exch (B.++-cong {xs₁ = replicate⁺ n A} I.id (del-from b (here P.refl))) $ expandIn (from b ⟨$⟩ here P.refl) x expandIn : {Γ : Environment} {A : Type} {n : ℕ⁺} (i : ?[ n ] A ∈ Γ) → ⊢ⁿᶠ Γ → ---------------------------- ⊢ⁿᶠ replicate⁺ n A ++ Γ - i expandIn (here P.refl) x = expand x expandIn {_} {A} {n} (there i) (send {Γ} {Δ} x h) with split Γ i ... | inj₁ (j , p) rewrite p = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ replicate⁺ n A) (Γ - j) Δ) $ flip send h $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there j) x ... | inj₂ (j , p) rewrite p = exch (swp [] (replicate⁺ n A) (_ ∷ Γ)) $ send x $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there j) h expandIn {Γ} {A} {n} (there i) (recv x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ recv $ exch (swp [] (_ ∷ _ ∷ []) (replicate⁺ n A)) $ expandIn (there (there i)) x expandIn {Γ} {A} {n} (there i) (sel₁ x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ sel₁ $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there i) x expandIn {Γ} {A} {n} (there i) (sel₂ x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ sel₂ $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there i) x expandIn {Γ} {A} {n} (there i) (case x h) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ case ( exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there i) x ) ( exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there i) h ) expandIn (there ()) halt expandIn {Γ} {A} {n} (there i) (wait x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ wait $ expandIn i x expandIn {Γ} {A} {n} (there i) loop = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ loop expandIn {Γ} {A} {n} (there i) (mk?₁ x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ mk?₁ $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there i) x expandIn {Γ} {A} {n} (there i) (mk!₁ x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ mk!₁ $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there i) x expandIn {Γ} {A} {n} (there i) (cont x) = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ cont $ exch (swp [] (_ ∷ _ ∷ []) (replicate⁺ n A)) $ expandIn (there (there i)) x expandIn {_} {A} {n} (there i) (pool {Γ} {Δ} x y) with split Γ i ... | inj₁ (j , p) rewrite p = exch (swp [] (replicate⁺ n A) (_ ∷ [])) $ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ replicate⁺ n A) (Γ - j) Δ) $ flip pool y $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there j) x ... | inj₂ (j , p) rewrite p = exch (swp [] (replicate⁺ n A) (_ ∷ Γ)) $ pool x $ exch (swp [] (_ ∷ []) (replicate⁺ n A)) $ expandIn (there j) y expandIn {Γ} {A} {n} i (exch b x) = exch (B.++-cong {xs₁ = replicate⁺ n A} I.id (del-from b i)) $ expandIn (from b ⟨$⟩ i) x
{ "alphanum_fraction": 0.5145458583, "avg_line_length": 34.3740458015, "ext": "agda", "hexsha": "a054bd4333c22e7d1f46c0eec9eadcbe4373bad5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/NF/Expand.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/NF/Expand.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/NF/Expand.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 1838, "size": 4503 }
open import Type module Graph {ℓ₁ ℓ₂} (V : Type{ℓ₁}) where -- A graph is represented by a binary relation which states whether there is an edge from one vertex to another. -- In other words, a graph is here defined by only its adjacency relation. -- This is by default (without any assumptions) a directed multigraph which is possibly infinite. -- -- An object of type Graph is the adjacency relation. -- For (_⟶_ : Graph), (a b : V), an object of type (a ⟶ b) is an edge from vertices a to b, and its existence means that there is an edge from a to b. Graph : Type Graph = (V → V → Type{ℓ₂}) module _ (_⟶_ : Graph) where -- Two vertices are adjacent when there is an edge from the first one to the second one. Adjacent = _⟶_
{ "alphanum_fraction": 0.7135061392, "avg_line_length": 43.1176470588, "ext": "agda", "hexsha": "0e0aec86c63521d6419d820930d962a56bfb94ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Graph.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Graph.agda", "max_line_length": 150, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Graph.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 198, "size": 733 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Definition of Terminal object and some properties module Categories.Object.Terminal {o ℓ e} (C : Category o ℓ e) where open import Level open import Relation.Binary using (IsEquivalence; Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Categories.Morphism C open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟) open import Categories.Morphism.Reasoning C open Category C open HomReasoning record Terminal : Set (o ⊔ ℓ ⊔ e) where field ⊤ : Obj ! : {A : Obj} → (A ⇒ ⊤) !-unique : ∀ {A} → (f : A ⇒ ⊤) → ! ≈ f !-unique₂ : ∀ {A} {f g : A ⇒ ⊤} → f ≈ g !-unique₂ {A} {f} {g} = begin f ≈˘⟨ !-unique f ⟩ ! ≈⟨ !-unique g ⟩ g ∎ where open HomReasoning ⊤-id : (f : ⊤ ⇒ ⊤) → f ≈ id ⊤-id _ = !-unique₂ open Terminal from-⊤-is-Mono : ∀ {A : Obj} {t : Terminal} → (f : ⊤ t ⇒ A) → Mono f from-⊤-is-Mono {_} {t} _ = λ _ _ _ → !-unique₂ t up-to-iso : (t₁ t₂ : Terminal) → ⊤ t₁ ≅ ⊤ t₂ up-to-iso t₁ t₂ = record { from = ! t₂ ; to = ! t₁ ; iso = record { isoˡ = ⊤-id t₁ _; isoʳ = ⊤-id t₂ _ } } transport-by-iso : (t : Terminal) → ∀ {X} → ⊤ t ≅ X → Terminal transport-by-iso t {X} t≅X = record { ⊤ = X ; ! = from ∘ ! t ; !-unique = λ h → begin from ∘ ! t ≈⟨ refl⟩∘⟨ !-unique t (to ∘ h) ⟩ from ∘ to ∘ h ≈⟨ cancelˡ isoʳ ⟩ h ∎ } where open _≅_ t≅X up-to-iso-unique : ∀ t t′ → (i : ⊤ t ≅ ⊤ t′) → up-to-iso t t′ ≃ i up-to-iso-unique t t′ i = ⌞ !-unique t′ _ ⌟ up-to-iso-invˡ : ∀ {t X} {i : ⊤ t ≅ X} → up-to-iso t (transport-by-iso t i) ≃ i up-to-iso-invˡ {t} {i = i} = up-to-iso-unique t (transport-by-iso t i) i up-to-iso-invʳ : ∀ {t t′} → ⊤ (transport-by-iso t (up-to-iso t t′)) ≡ ⊤ t′ up-to-iso-invʳ {t} {t′} = ≡.refl
{ "alphanum_fraction": 0.5432166302, "avg_line_length": 27.2835820896, "ext": "agda", "hexsha": "c9b75edd60560df7d09e7ce90da262e79387a5f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Object/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Object/Terminal.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Object/Terminal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 795, "size": 1828 }
------------------------------------------------------------------------ -- Non-empty lists ------------------------------------------------------------------------ module Data.List.NonEmpty where open import Data.Product hiding (map) open import Data.Nat open import Data.Function open import Data.Vec as Vec using (Vec; []; _∷_) open import Data.List as List using (List; []; _∷_) open import Category.Monad open import Relation.Binary.PropositionalEquality infixr 5 _∷_ _∷ʳ_ _⁺++⁺_ _++⁺_ _⁺++_ data List⁺ (A : Set) : Set where [_] : (x : A) → List⁺ A _∷_ : (x : A) (xs : List⁺ A) → List⁺ A length_-1 : ∀ {A} → List⁺ A → ℕ length [ x ] -1 = 0 length x ∷ xs -1 = 1 + length xs -1 ------------------------------------------------------------------------ -- Conversion fromVec : ∀ {n A} → Vec A (suc n) → List⁺ A fromVec {zero} (x ∷ _) = [ x ] fromVec {suc n} (x ∷ xs) = x ∷ fromVec xs toVec : ∀ {A} (xs : List⁺ A) → Vec A (suc (length xs -1)) toVec [ x ] = Vec.[_] x toVec (x ∷ xs) = x ∷ toVec xs lift : ∀ {A B} → (∀ {m} → Vec A (suc m) → ∃ λ n → Vec B (suc n)) → List⁺ A → List⁺ B lift f xs = fromVec (proj₂ (f (toVec xs))) fromList : ∀ {A} → A → List A → List⁺ A fromList x xs = fromVec (Vec.fromList (x ∷ xs)) toList : ∀ {A} → List⁺ A → List A toList = Vec.toList ∘ toVec ------------------------------------------------------------------------ -- Other operations head : ∀ {A} → List⁺ A → A head = Vec.head ∘ toVec tail : ∀ {A} → List⁺ A → List A tail = Vec.toList ∘ Vec.tail ∘ toVec map : ∀ {A B} → (A → B) → List⁺ A → List⁺ B map f = lift (λ xs → (, Vec.map f xs)) -- Right fold. Note that s is only applied to the last element (see -- the examples below). foldr : {A B : Set} → (A → B → B) → (A → B) → List⁺ A → B foldr c s [ x ] = s x foldr c s (x ∷ xs) = c x (foldr c s xs) -- Left fold. Note that s is only applied to the first element (see -- the examples below). foldl : {A B : Set} → (B → A → B) → (A → B) → List⁺ A → B foldl c s [ x ] = s x foldl c s (x ∷ xs) = foldl c (c (s x)) xs -- Append (several variants). _⁺++⁺_ : ∀ {A} → List⁺ A → List⁺ A → List⁺ A xs ⁺++⁺ ys = foldr _∷_ (λ x → x ∷ ys) xs _⁺++_ : ∀ {A} → List⁺ A → List A → List⁺ A xs ⁺++ ys = foldr _∷_ (λ x → fromList x ys) xs _++⁺_ : ∀ {A} → List A → List⁺ A → List⁺ A xs ++⁺ ys = List.foldr _∷_ ys xs concat : ∀ {A} → List⁺ (List⁺ A) → List⁺ A concat [ xs ] = xs concat (xs ∷ xss) = xs ⁺++⁺ concat xss monad : RawMonad List⁺ monad = record { return = [_] ; _>>=_ = λ xs f → concat (map f xs) } reverse : ∀ {A} → List⁺ A → List⁺ A reverse = lift (,_ ∘′ Vec.reverse) -- Snoc. _∷ʳ_ : ∀ {A} → List⁺ A → A → List⁺ A xs ∷ʳ x = foldr _∷_ (λ y → y ∷ [ x ]) xs ------------------------------------------------------------------------ -- Examples -- Note that these examples are simple unit tests, because the type -- checker verifies them. private module Examples {A B : Set} (_⊕_ : A → B → B) (_⊗_ : B → A → B) (f : A → B) (a b c : A) where hd : head (a ∷ b ∷ [ c ]) ≡ a hd = refl tl : tail (a ∷ b ∷ [ c ]) ≡ b ∷ c ∷ [] tl = refl mp : map f (a ∷ b ∷ [ c ]) ≡ f a ∷ f b ∷ [ f c ] mp = refl right : foldr _⊕_ f (a ∷ b ∷ [ c ]) ≡ a ⊕ (b ⊕ f c) right = refl left : foldl _⊗_ f (a ∷ b ∷ [ c ]) ≡ (f a ⊗ b) ⊗ c left = refl ⁺app⁺ : (a ∷ b ∷ [ c ]) ⁺++⁺ (b ∷ [ c ]) ≡ a ∷ b ∷ c ∷ b ∷ [ c ] ⁺app⁺ = refl ⁺app : (a ∷ b ∷ [ c ]) ⁺++ (b ∷ c ∷ []) ≡ a ∷ b ∷ c ∷ b ∷ [ c ] ⁺app = refl app⁺ : (a ∷ b ∷ c ∷ []) ++⁺ (b ∷ [ c ]) ≡ a ∷ b ∷ c ∷ b ∷ [ c ] app⁺ = refl conc : concat ((a ∷ b ∷ [ c ]) ∷ [ b ∷ [ c ] ]) ≡ a ∷ b ∷ c ∷ b ∷ [ c ] conc = refl rev : reverse (a ∷ b ∷ [ c ]) ≡ c ∷ b ∷ [ a ] rev = refl snoc : (a ∷ b ∷ [ c ]) ∷ʳ a ≡ a ∷ b ∷ c ∷ [ a ] snoc = refl
{ "alphanum_fraction": 0.4320413437, "avg_line_length": 25.4605263158, "ext": "agda", "hexsha": "e859c435eba5e9a493e9421c02676ad70e3b84dc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/List/NonEmpty.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/List/NonEmpty.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/List/NonEmpty.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1554, "size": 3870 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of terms (Fig. 1a and 1b). ------------------------------------------------------------------------ -- The syntax of terms depends on the syntax of simple types -- (because terms are indexed by types in order to rule out -- ill-typed terms). But we are in the Parametric.* hierarchy, so -- we don't know the full syntax of types, only how to lift the -- syntax of base types into the syntax of simple types. This -- means that we have to be parametric in the syntax of base -- types, too. -- -- In such parametric modules that depend on other parametric -- modules, we first import our dependencies under a more -- convenient name. import Parametric.Syntax.Type as Type -- Then we start the module proper, with parameters for all -- extension points of our dependencies. Note that here, the -- "Structure" naming convenion makes some sense, because we can -- say that we need some "Type.Structure" in order to define the -- "Term.Structure". module Parametric.Syntax.Term (Base : Type.Structure) where -- Now inside the module, we can open our dependencies with the -- parameters for their extension points. Again, here the name -- "Structure" makes some sense, because we can say that we want -- to access the "Type.Structure" that is induced by Base. open Type.Structure Base -- At this point, we have dealt with the extension points of our -- dependencies, and we have all the definitions about simple -- types, contexts, variables, and variable sets in scope that we -- provided in Parametric.Syntax.Type. Now we can proceed to -- define our own extension point, following the pattern -- explained in Parametric.Syntax.Type. open import Relation.Binary.PropositionalEquality hiding ([_]) open import Function using (_∘_) open import Data.Unit open import Data.Sum -- Our extension point is a set of primitives, indexed by the -- types of their arguments and their return type. In general, if -- you're confused about what an extension point means, you might -- want to open the corresponding module in the Nehemiah -- hierarchy to see how it is implemented in the example -- plugin. In this case, that would be the Nehemiah.Syntax.Term -- module. Structure : Set₁ Structure = Type → Set module Structure (Const : Structure) where -- Declarations of Term and Terms to enable mutual recursion. -- -- Note that terms are indexed by contexts and types. In the -- paper, we define the abstract syntax of terms in Fig 1a and -- then define a type system in Fig 1b. All lemmas and theorems -- then explicitly specify that they only hold for well-typed -- terms. Here, we use the indices to define a type that can -- only hold well-typed terms in the first place. data Term (Γ : Context) : (τ : Type) → Set open import Base.Data.DependentList public -- (Terms Γ Σ) represents a list of terms with types from Σ -- with free variables bound in Γ. Terms : Context → Context → Set Terms Γ = DependentList (Term Γ) -- (Term Γ τ) represents a term of type τ -- with free variables bound in Γ. data Term Γ where -- constants aka. primitives const : ∀ {τ} → (c : Const τ) → Term Γ τ var : ∀ {τ} → (x : Var Γ τ) → Term Γ τ app : ∀ {σ τ} (s : Term Γ (σ ⇒ τ)) → (t : Term Γ σ) → Term Γ τ -- we use de Bruijn indices, so we don't need binding occurrences. abs : ∀ {σ τ} (t : Term (σ • Γ) τ) → Term Γ (σ ⇒ τ) -- Free variables FV : ∀ {τ Γ} → Term Γ τ → Vars Γ FV (const ι) = none FV (var x) = singleton x FV (abs t) = tail (FV t) FV (app s t) = FV s ∪ FV t closed? : ∀ {τ Γ} → (t : Term Γ τ) → (FV t ≡ none) ⊎ ⊤ closed? t = empty? (FV t) -- Weakening weaken : ∀ {Γ₁ Γ₂ τ} → (Γ₁≼Γ₂ : Γ₁ ≼ Γ₂) → Term Γ₁ τ → Term Γ₂ τ weaken Γ₁≼Γ₂ (const c) = const c weaken Γ₁≼Γ₂ (var x) = var (weaken-var Γ₁≼Γ₂ x) weaken Γ₁≼Γ₂ (app s t) = app (weaken Γ₁≼Γ₂ s) (weaken Γ₁≼Γ₂ t) weaken Γ₁≼Γ₂ (abs {σ} t) = abs (weaken (keep σ • Γ₁≼Γ₂) t) -- Specialized weakening weaken₁ : ∀ {Γ σ τ} → Term Γ τ → Term (σ • Γ) τ weaken₁ t = weaken (drop _ • ≼-refl) t weaken₂ : ∀ {Γ α β τ} → Term Γ τ → Term (α • β • Γ) τ weaken₂ t = weaken (drop _ • drop _ • ≼-refl) t weaken₃ : ∀ {Γ α β γ τ} → Term Γ τ → Term (α • β • γ • Γ) τ weaken₃ t = weaken (drop _ • drop _ • drop _ • ≼-refl) t -- Shorthands for nested applications app₂ : ∀ {Γ α β γ} → Term Γ (α ⇒ β ⇒ γ) → Term Γ α → Term Γ β → Term Γ γ app₂ f x = app (app f x) app₃ : ∀ {Γ α β γ δ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ app₃ f x = app₂ (app f x) app₄ : ∀ {Γ α β γ δ ε} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε app₄ f x = app₃ (app f x) app₅ : ∀ {Γ α β γ δ ε ζ} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ app₅ f x = app₄ (app f x) app₆ : ∀ {Γ α β γ δ ε ζ η} → Term Γ (α ⇒ β ⇒ γ ⇒ δ ⇒ ε ⇒ ζ ⇒ η) → Term Γ α → Term Γ β → Term Γ γ → Term Γ δ → Term Γ ε → Term Γ ζ → Term Γ η app₆ f x = app₅ (app f x) -- HOAS-like smart constructors for lambdas, for different arities. -- We could also write this: module NamespaceForBadAbs₁ where abs₁′ : ∀ {Γ τ₁ τ} → (Term (τ₁ • Γ) τ₁ → Term (τ₁ • Γ) τ) → (Term Γ (τ₁ ⇒ τ)) abs₁′ {Γ} {τ₁} = λ f → abs (f (var this)) -- However, this is less general, and it is harder to reuse. In particular, -- this cannot be used inside abs₂, ..., abs₆. -- Now, let's write other variants with a loop! open import Data.Vec using (_∷_; []; Vec; foldr; [_]; reverse) open import Data.Nat module AbsNHelpers where open import Function hoasArgType : ∀ {n} → Context → Type → Vec Type n → Set hoasArgType Γ τres = foldr _ (λ a b → a → b) (Term Γ τres) ∘ Data.Vec.map (Term Γ) -- That is, --hoasArgType Γ τres [] = Term Γ τres --hoasArgType Γ τres (τ₀ ∷ τs) = Term Γ τ₀ → hoasArgType Γ τres τs hoasResType : ∀ {n} → Type → Vec Type n → Type hoasResType τres = foldr _ _⇒_ τres absNType : {n : ℕ} → Vec _ n → Set absNType τs = ∀ {Γ τres} → (f : ∀ {Γ′} → {Γ≼Γ′ : Γ ≼ Γ′} → hoasArgType Γ′ τres τs) → Term Γ (hoasResType τres τs) drop-≼-l : ∀ {Γ Γ′ τ} → (τ • Γ ≼ Γ′) → Γ ≼ Γ′ drop-≼-l Γ′≼Γ′₁ = ≼-trans (drop _ • ≼-refl) Γ′≼Γ′₁ absN : {n : ℕ} → (τs : Vec _ n) → absNType τs absN [] f = f {Γ≼Γ′ = ≼-refl} absN (τ₁ ∷ τs) f = abs (absN τs (λ {_} {Γ′≼Γ′₁} → f {Γ≼Γ′ = drop-≼-l Γ′≼Γ′₁} (weaken Γ′≼Γ′₁ (var this)))) -- Using a similar trick, we can declare absV (where V stands for variadic), -- which takes the N implicit type arguments individually, collects them and -- passes them on to absN. This is inspired by the example in the Agda 2.4.0 -- release notes about support for varying arity. To collect them, we need -- to use an accumulator argument. absVType : ∀ n {m} (τs : Vec Type m) → Set absVType zero τs = absNType (reverse τs) absVType (suc n) τs = {τ₁ : Type} → absVType n (τ₁ ∷ τs) absVAux : ∀ {m} → (τs : Vec Type m) → ∀ n → absVType n τs absVAux τs zero = absN (reverse τs) -- (Support for varying arity does not work here, so {τ₁} must be bound in -- the right-hand side). absVAux τs (suc n) {τ₁} = absVAux (τ₁ ∷ τs) n --λ {τ₁} → absVAux (τ₁ ∷ τs) n -- "Initialize" accumulator to the empty list. absV = absVAux [] -- We could maybe define absV directly, without going through absN, by -- making hoasArgType and hoasResType also variadic, but I don't see a clear -- advantage. open AbsNHelpers using (absV) public {- Example types: absV 1: {τ₁ : Type} {Γ : Context} {τres : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τres) → Term Γ (τ₁ ⇒ τres) absV 2: {τ₁ : Type} {τ₁ = τ₂ : Type} {Γ : Context} {τres : Type} → ({Γ′ : Context} {Γ≼Γ′ : Γ ≼ Γ′} → Term Γ′ τ₁ → Term Γ′ τ₂ → Term Γ′ τres) → Term Γ (τ₁ ⇒ τ₂ ⇒ τres) -}
{ "alphanum_fraction": 0.5933357655, "avg_line_length": 33.2914979757, "ext": "agda", "hexsha": "8d911730945e948230127e4e5107f1f3c5f49613", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Syntax/Term.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Syntax/Term.agda", "max_line_length": 86, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Syntax/Term.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 2860, "size": 8223 }
{-# OPTIONS --type-in-type --no-pattern-matching #-} open import Spire.IDarkwingDuck.Primitive open import Spire.IDarkwingDuck.Derived module Spire.IDarkwingDuck.Examples where ---------------------------------------------------------------------- ℕR : Data ℕR = Decl End End ("zero" ∷ "suc" ∷ []) (End tt , Rec tt (End tt) , tt) ℕ : Set ℕ = Form ℕR zero : ℕ zero = inj ℕR here suc : ℕ → ℕ suc = inj ℕR (there here) VecR : Data VecR = Decl (Arg Set λ _ → End) (λ _ → Arg ℕ λ _ → End) ("nil" ∷ "cons" ∷ []) (λ A → End (zero , tt) , IArg ℕ (λ n → Arg A λ _ → Rec (n , tt) (End (suc n , tt))) , tt ) Vec : (A : Set) → ℕ → Set Vec = Form VecR nil : {A : Set} → Vec A zero nil = inj VecR here cons : {A : Set} {n : ℕ} (x : A) (xs : Vec A n) → Vec A (suc n) cons = inj VecR (there here) ---------------------------------------------------------------------- add : ℕ → ℕ → ℕ add = elim ℕR (λ n → ℕ → ℕ) (λ n → n) (λ m ih n → suc (ih n)) mult : ℕ → ℕ → ℕ mult = elim ℕR (λ n → ℕ → ℕ) (λ n → zero) (λ m ih n → add n (ih n)) append : {A : Set} {m n : ℕ} (xs : Vec A m) (ys : Vec A n) → Vec A (add m n) append {A} {m} {n} = elim VecR (λ m xs → (ys : Vec A n) → Vec A (add m n)) (λ ys → ys) (λ x xs ih ys → cons x (ih ys)) m concat : {A : Set} {m n : ℕ} (xss : Vec (Vec A m) n) → Vec A (mult n m) concat {A} {m} {n} = elim VecR (λ n xss → Vec A (mult n m)) nil (λ xs xss ih → append xs ih) n ---------------------------------------------------------------------- one : ℕ one = suc zero two : ℕ two = suc one three : ℕ three = suc two [1,2] : Vec ℕ two [1,2] = cons one (cons two nil) [3] : Vec ℕ one [3] = cons three nil [1,2,3] : Vec ℕ three [1,2,3] = cons one (cons two (cons three nil)) test-append : [1,2,3] ≡ append [1,2] [3] test-append = refl ----------------------------------------------------------------------
{ "alphanum_fraction": 0.450053135, "avg_line_length": 20.0212765957, "ext": "agda", "hexsha": "e797ace97ad6b5646d251d4ef83cb0568a80fd7e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z", "max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "spire/spire", "max_forks_repo_path": "formalization/agda/Spire/IDarkwingDuck/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "spire/spire", "max_issues_repo_path": "formalization/agda/Spire/IDarkwingDuck/Examples.agda", "max_line_length": 76, "max_stars_count": 43, "max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "spire/spire", "max_stars_repo_path": "formalization/agda/Spire/IDarkwingDuck/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z", "num_tokens": 688, "size": 1882 }
module 08-higherOrder where explicitize : ∀ {A : Set} {B : A → Set} → ({{x : A}} → B x) → (x : A) → B x explicitize f x = f {{x}} implicitize : ∀ {A : Set} {B : A → Set} → ((x : A) → B x) → {{x : A}} → B x implicitize f {{x}} = f x data T : Set where tt : T test = explicitize (λ {{t : T}} → t)
{ "alphanum_fraction": 0.4817275748, "avg_line_length": 23.1538461538, "ext": "agda", "hexsha": "e8092d8a71aac482a8df6d5ae4d065913474c335", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/instance-arguments/08-higherOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/instance-arguments/08-higherOrder.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/instance-arguments/08-higherOrder.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 125, "size": 301 }
-- Andreas, 2018-11-23, issue #3404, regression in Agda 2.5.4 -- -- The positivity checker judged postulates in mutual blocks -- as constants, since it found no uses of its arguments. -- -- The natural cure is to not unleash the positivity checker -- onto things that do not have a definition, such as postulates. open import Agda.Builtin.Nat open import Agda.Builtin.Equality cong : ∀{A B : Set} (f : A → B) {x y : A} (eq : x ≡ y) → f x ≡ f y cong f refl = refl trans : {A : Set} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl refl = refl module UnsolvedMeta where postulate A : Set mutual postulate B : A → Set -- Problem WAS: B is judged constant postulate f : (a : A) → B a g : (a : A) → B a g a = f _ -- WAS: yellow -- Should solve. -- False golfing: module Word64 where {-# BUILTIN WORD64 Word64 #-} primitive primWord64ToNat : Word64 → Nat mutual primitive primWord64FromNat : Nat → Word64 -- Before fix of #3404, positivity checker judged -- a primitive in a mutual block as constant. fromNatConst : ∀ x y → primWord64FromNat x ≡ primWord64FromNat y fromNatConst x y = refl -- Should fail with error like: -- -- x != y of type Nat -- when checking that the expression refl has type -- primWord64FromNat x ≡ primWord64FromNat y 0≡1 : 0 ≡ 1 0≡1 = cong primWord64ToNat (fromNatConst 0 1) -- Guillaume Brunerie's original example: mutual postulate 2^ : Nat → Nat -- If this function is deemed constant, 2^0 : 1 ≡ 2^ 0 -- then these equalities can be composed. 2^1 : 2^ 1 ≡ 2 bad : 1 ≡ 2 bad = trans 2^0 2^1 -- Should fail with error like: -- -- 1 != 0 of type Nat -- when checking that the expression 2^1 has type 2^ 0 ≡ 2
{ "alphanum_fraction": 0.6419113414, "avg_line_length": 25.9253731343, "ext": "agda", "hexsha": "f5d53cd1f7804ead1afd139c19ec3abd25d07ee5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "test/Fail/Issue3404.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "test/Fail/Issue3404.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "test/Fail/Issue3404.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 582, "size": 1737 }
-- Andreas, 2014-09-02, reported by Nisse -- {-# OPTIONS -v scope.mod.inst:30 #-} record R : Set₁ where field A : Set -- works : (A : R) → let open R A renaming (A to B) in B → B -- works _ a = a test : (A : R) → let open R A in A → A test _ a = a -- WAS: -- Either the A introduced by the let should shadow the outer A, or an -- ambiguity error should be raised. Current error message: -- -- R !=< Set of type Set₁ -- when checking that the expression A has type Set -- NOW: ambiguity error.
{ "alphanum_fraction": 0.6277227723, "avg_line_length": 21.9565217391, "ext": "agda", "hexsha": "f4a4115185afd79c23b9a28d6420b5a50a3bb7ed", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1266.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1266.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1266.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 156, "size": 505 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Monoid.BigOp where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.SIP open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.FinData open import Cubical.Algebra.Monoid.Base private variable ℓ ℓ' : Level module MonoidBigOp (M' : Monoid ℓ) where private M = ⟨ M' ⟩ open MonoidStr (snd M') bigOp : {n : ℕ} → FinVec M n → M bigOp = foldrFin _·_ ε bigOpExt : ∀ {n} {V W : FinVec M n} → ((i : Fin n) → V i ≡ W i) → bigOp V ≡ bigOp W bigOpExt h = cong bigOp (funExt h) bigOpε : ∀ n → bigOp (replicateFinVec n ε) ≡ ε bigOpε zero = refl bigOpε (suc n) = cong (ε ·_) (bigOpε n) ∙ ·IdR _ bigOpLast : ∀ {n} (V : FinVec M (suc n)) → bigOp V ≡ bigOp (V ∘ weakenFin) · V (fromℕ n) bigOpLast {n = zero} V = ·IdR _ ∙ sym (·IdL _) bigOpLast {n = suc n} V = cong (V zero ·_) (bigOpLast (V ∘ suc)) ∙ ·Assoc _ _ _ -- requires a commutative monoid: bigOpSplit : (∀ x y → x · y ≡ y · x) → {n : ℕ} → (V W : FinVec M n) → bigOp (λ i → V i · W i) ≡ bigOp V · bigOp W bigOpSplit _ {n = zero} _ _ = sym (·IdR _) bigOpSplit comm {n = suc n} V W = V zero · W zero · bigOp (λ i → V (suc i) · W (suc i)) ≡⟨ (λ i → V zero · W zero · bigOpSplit comm (V ∘ suc) (W ∘ suc) i) ⟩ V zero · W zero · (bigOp (V ∘ suc) · bigOp (W ∘ suc)) ≡⟨ sym (·Assoc _ _ _) ⟩ V zero · (W zero · (bigOp (V ∘ suc) · bigOp (W ∘ suc))) ≡⟨ cong (V zero ·_) (·Assoc _ _ _) ⟩ V zero · ((W zero · bigOp (V ∘ suc)) · bigOp (W ∘ suc)) ≡⟨ cong (λ x → V zero · (x · bigOp (W ∘ suc))) (comm _ _) ⟩ V zero · ((bigOp (V ∘ suc) · W zero) · bigOp (W ∘ suc)) ≡⟨ cong (V zero ·_) (sym (·Assoc _ _ _)) ⟩ V zero · (bigOp (V ∘ suc) · (W zero · bigOp (W ∘ suc))) ≡⟨ ·Assoc _ _ _ ⟩ V zero · bigOp (V ∘ suc) · (W zero · bigOp (W ∘ suc)) ∎ bigOpSplit++ : (∀ x y → x · y ≡ y · x) → {n m : ℕ} → (V : FinVec M n) → (W : FinVec M m) → bigOp (V ++Fin W) ≡ bigOp V · bigOp W bigOpSplit++ comm {n = zero} V W = sym (·IdL _) bigOpSplit++ comm {n = suc n} V W = cong (V zero ·_) (bigOpSplit++ comm (V ∘ suc) W) ∙ ·Assoc _ _ _
{ "alphanum_fraction": 0.5484903934, "avg_line_length": 35.8360655738, "ext": "agda", "hexsha": "c63b8ce67ec0c5bef0779dc5f7c82812670eed6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Monoid/BigOp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Monoid/BigOp.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Monoid/BigOp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 908, "size": 2186 }
module _ {A : Set} (P : A → Set) where postulate bla : {x : A} {{_ : P x}} → Set → Set test : {x : A} {{_ : P x}} → Set → Set test B = bla B
{ "alphanum_fraction": 0.4415584416, "avg_line_length": 19.25, "ext": "agda", "hexsha": "f710b93e1ddf072164525e42c7e1d7b0476f6a4e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1452.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1452.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1452.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 154 }
module Issue4408 where comp : (A : Set) (B : A → Set) (C : (x : A) → B x → Set) → ((x : A) (y : B x) → C x y) → (g : (x : A) → B x) → ((x : A) → C x (g x)) comp _ _ _ f g x = f x (g x) data Unit : Set where unit : Unit P : Unit → Set P unit = Unit Q : Unit → Set → Set Q unit = λ _ → Unit f : (x : Unit) → P x → P x f unit x = x g : (A : Set) → ((x : Unit) → Q x A → P x) → ((x : Unit) → Q x A → P x) g A h x = comp _ _ _ (λ _ → f _) (h _)
{ "alphanum_fraction": 0.4206008584, "avg_line_length": 16.0689655172, "ext": "agda", "hexsha": "db31fd979ebe0e15e05f8dca5014f3e74a10d52d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4408.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4408.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4408.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 217, "size": 466 }
import Lvl open import Type module Type.Functions {ℓₗ : Lvl.Level}{ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where open import Function.Domains open import Type.Properties.Empty open import Type.Properties.Singleton record Bijective (f : X → Y) : Type{ℓₗ Lvl.⊔ ℓₒ₁ Lvl.⊔ ℓₒ₂} where constructor intro field proof : ∀{y} → IsUnit{ℓₗ Lvl.⊔ ℓₒ₁} (Unapply {ℓₗ}{X = X}{Y = Y} f(y)) record Injective (f : X → Y) : Type{ℓₗ Lvl.⊔ ℓₒ₁ Lvl.⊔ ℓₒ₂} where constructor intro field proof : ∀{y} → MereProposition{ℓₗ Lvl.⊔ ℓₒ₁} (Unapply {ℓₗ}{X = X}{Y = Y} f(y)) record Surjective (f : X → Y) : Type{ℓₗ Lvl.⊔ ℓₒ₁ Lvl.⊔ ℓₒ₂} where constructor intro field proof : ∀{y} → ◊(Unapply {ℓₗ}{X = X}{Y = Y} f(y))
{ "alphanum_fraction": 0.6291666667, "avg_line_length": 30, "ext": "agda", "hexsha": "b4f95170e416d4184c813dc2dbfb96d42f343efe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Type/Functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Type/Functions.agda", "max_line_length": 86, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Type/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 350, "size": 720 }
------------------------------------------------------------------------ -- Parallel substitutions (defined using an inductive family) ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Data.Basics {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import Function using (id; _∘_; _$_) open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality as P using (_≡_) private module Dummy₁ {t} (T : Term-like t) where open Term-like T infixl 5 _▻_ -- Substitutions, represented as sequences of terms. data Sub : ∀ {Γ Δ} → Γ ⇨̂ Δ → Set (i ⊔ u ⊔ e ⊔ t) where ε : ∀ {Δ} → Sub ε̂[ Δ ] _▻_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub ρ̂) (t : Δ ⊢ σ /̂ ρ̂) → Sub (ρ̂ ▻̂[ σ ] ⟦ t ⟧) -- A sequence of matching substitutions. (The reflexive transitive -- closure of Sub.) data Subs {Γ} : ∀ {Δ} → Γ ⇨̂ Δ → Set (i ⊔ u ⊔ e ⊔ t) where ε : Subs îd[ Γ ] _▻_ : ∀ {Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρs : Subs ρ̂₁) (ρ : Sub ρ̂₂) → Subs (ρ̂₁ ∘̂ ρ̂₂) open Dummy₁ public -- Originally these substitutions were defined without the context -- morphism index, but this led to the need to prove lots of lemmas -- which hold by definition in the current setting. As an example the -- map function (in deBruijn.Substitution.Data.Map) is currently -- defined as follows: -- -- -- Map. -- -- map : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} → -- [ T₁ ⟶ T₂ ] ρ̂₂ → Sub T₁ ρ̂₁ → Sub T₂ (ρ̂₁ ∘̂ ρ̂₂) -- map f ε = ε -- map {ρ̂₂ = ρ̂₂} f (ρ₁ ▻ t) = -- P.subst (λ v → Sub T₂ (⟦ ρ₁ ⟧⇨ ∘̂ ρ̂₂ ▻̂ v)) -- (≅-Value-⇒-≡ $ P.sym $ corresponds f t) -- (map f ρ₁ ▻ f · t) -- -- Previously it was defined roughly as follows (the code below is -- untested and has been adapted to the current version of the -- library, as it was at the time of writing, with some imagined -- changes): -- -- mutual -- -- -- Map. -- -- map : ∀ {Γ Δ Ε} {ρ̂₂ : Δ ⇨̂ Ε} → -- [ T₁ ⟶ T₂ ] ρ̂₂ → (ρ₁ : Γ ⇨₁ Δ) → Γ ⇨₂ Ε -- map f ε = ε -- map f (_▻_ {σ = σ} ρ t) = -- map f ρ ▻ -- P.subst (λ ρ̂ → _ ⊢₂ σ /̂ ρ̂) -- (≅-⇨̂-⇒-≡ $ P.sym $ map-lemma f ρ) -- (f · t) -- -- abstract -- -- map-lemma : -- ∀ {Γ Δ Ε} {ρ̂₂ : Δ ⇨̂ Ε} → -- (f : [ T₁ ⟶ T₂ ] ρ̂₂) (ρ₁ : Γ ⇨₁ Δ) → -- ⟦ map f ρ₁ ⟧₂⇨ ≅-⇨̂ ⟦ ρ₁ ⟧₁⇨ ∘̂ ρ₂ -- map-lemma f ε = P.refl -- map-lemma {ρ₂ = ρ₂} f (_▻_ {σ = σ} ρ t) = -- ▻̂-cong P.refl (map-lemma f ρ) (begin -- [ ⟦ P.subst (λ ρ̂ → _ ⊢₂ σ /̂ ρ̂) -- (≅-⇨̂-⇒-≡ $ P.sym (map-lemma f ρ)) -- (f · t) ⟧₂ ] ≡⟨ Term-like.⟦⟧-cong T₂ -- (Term-like.drop-subst-⊢ T₂ -- (λ ρ̂ → σ /̂ ρ̂) -- (≅-⇨̂-⇒-≡ $ P.sym (map-lemma f ρ))) ⟩ -- [ ⟦ f · t ⟧₂ ] ≡⟨ P.sym $ corresponds f t ⟩ -- [ ⟦ t ⟧₁ /̂Val ρ₂ ] ∎) private module Dummy₂ {t} {T : Term-like t} where open Term-like T -- Some variants. ε⇨[_] : ∀ Δ → Sub T ε̂[ Δ ] ε⇨[ _ ] = ε infixl 5 _▻⇨[_]_ _▻⇨[_]_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → ∀ σ (t : Δ ⊢ σ /̂ ρ̂) → Sub T (ρ̂ ▻̂[ σ ] ⟦ t ⟧) ρ ▻⇨[ _ ] t = ρ ▻ t ε⇨⋆[_] : ∀ Γ → Subs T îd[ Γ ] ε⇨⋆[ _ ] = ε -- Equality of substitutions. record [⇨] : Set (i ⊔ u ⊔ e ⊔ t) where constructor [_] field {Γ Δ} : Ctxt {ρ̂} : Γ ⇨̂ Δ ρ : Sub T ρ̂ infix 4 _≅-⇨_ _≅-⇨_ : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} (ρ₁ : Sub T ρ̂₁) {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} (ρ₂ : Sub T ρ̂₂) → Set _ ρ₁ ≅-⇨ ρ₂ = _≡_ {A = [⇨]} [ ρ₁ ] [ ρ₂ ] ≅-⇨-⇒-≡ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} {ρ₁ ρ₂ : Sub T ρ̂} → ρ₁ ≅-⇨ ρ₂ → ρ₁ ≡ ρ₂ ≅-⇨-⇒-≡ P.refl = P.refl -- Certain uses of substitutivity can be removed. drop-subst-Sub : ∀ {a} {A : Set a} {x₁ x₂ : A} {Γ Δ} (f : A → Γ ⇨̂ Δ) {ρ} (eq : x₁ ≡ x₂) → P.subst (λ x → Sub T (f x)) eq ρ ≅-⇨ ρ drop-subst-Sub f P.refl = P.refl -- Equality of sequences of substitutions. record [⇨⋆] : Set (i ⊔ u ⊔ e ⊔ t) where constructor [_] field {Γ Δ} : Ctxt {ρ̂} : Γ ⇨̂ Δ ρs : Subs T ρ̂ infix 4 _≅-⇨⋆_ _≅-⇨⋆_ : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} (ρs₁ : Subs T ρ̂₁) {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} (ρs₂ : Subs T ρ̂₂) → Set _ ρs₁ ≅-⇨⋆ ρs₂ = _≡_ {A = [⇨⋆]} [ ρs₁ ] [ ρs₂ ] ≅-⇨⋆-⇒-≡ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} {ρs₁ ρs₂ : Subs T ρ̂} → ρs₁ ≅-⇨⋆ ρs₂ → ρs₁ ≡ ρs₂ ≅-⇨⋆-⇒-≡ P.refl = P.refl -- Interpretation of substitutions: context morphisms. ⟦_⟧⇨ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → Γ ⇨̂ Δ ⟦_⟧⇨ {ρ̂ = ρ̂} _ = ρ̂ ⟦_⟧⇨⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → Γ ⇨̂ Δ ⟦_⟧⇨⋆ {ρ̂ = ρ̂} _ = ρ̂ -- Application of substitutions to types. infixl 8 _/I_ _/_ _/⋆_ _/I_ : ∀ {Γ Δ i} {ρ̂ : Γ ⇨̂ Δ} → IType Γ i → Sub T ρ̂ → IType Δ i σ /I ρ = σ /̂I ⟦ ρ ⟧⇨ _/_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Type Γ → Sub T ρ̂ → Type Δ σ / ρ = σ /̂ ⟦ ρ ⟧⇨ _/⋆_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Type Γ → Subs T ρ̂ → Type Δ σ /⋆ ρs = σ /̂ ⟦ ρs ⟧⇨⋆ -- Application of substitutions to values. infixl 8 _/Val_ _/Val_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Value Γ σ → Sub T ρ̂ → Value Δ (σ /̂ ρ̂) v /Val ρ = v /̂Val ⟦ ρ ⟧⇨ -- Application of substitutions to context extensions. infixl 8 _/⁺_ _/⁺⋆_ _/₊_ _/₊⋆_ _/⁺_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Ctxt⁺ Γ → Sub T ρ̂ → Ctxt⁺ Δ Γ⁺ /⁺ ρ = Γ⁺ /̂⁺ ⟦ ρ ⟧⇨ _/⁺⋆_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Ctxt⁺ Γ → Subs T ρ̂ → Ctxt⁺ Δ Γ⁺ /⁺⋆ ρs = Γ⁺ /̂⁺ ⟦ ρs ⟧⇨⋆ _/₊_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Ctxt₊ Γ → Sub T ρ̂ → Ctxt₊ Δ Γ₊ /₊ ρ = Γ₊ /̂₊ ⟦ ρ ⟧⇨ _/₊⋆_ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Ctxt₊ Γ → Subs T ρ̂ → Ctxt₊ Δ Γ₊ /₊⋆ ρs = Γ₊ /̂₊ ⟦ ρs ⟧⇨⋆ -- Application of substitutions to variables. infixl 8 _/∋_ _/∋-lemma_ _/∋_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} → Γ ∋ σ → (ρ : Sub T ρ̂) → Δ ⊢ σ / ρ zero /∋ (ρ ▻ y) = y suc x /∋ (ρ ▻ y) = x /∋ ρ abstract _/∋-lemma_ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρ : Sub T ρ̂) → x /̂∋ ⟦ ρ ⟧⇨ ≅-Value ⟦ x /∋ ρ ⟧ zero /∋-lemma (ρ ▻ y) = P.refl suc x /∋-lemma (ρ ▻ y) = x /∋-lemma ρ app∋ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T ρ̂ → [ Var ⟶ T ] ρ̂ app∋ ρ = record { function = λ _ x → x /∋ ρ ; corresponds = λ _ x → x /∋-lemma ρ } -- The tail of a nonempty substitution. tail : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} → Sub T ρ̂ → Sub T (t̂ail ρ̂) tail (ρ ▻ t) = ρ -- The head of a nonempty substitution. head : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : Sub T ρ̂) → Δ ⊢ σ / tail ρ head (ρ ▻ t) = t head-lemma : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : Sub T ρ̂) → ĥead ⟦ ρ ⟧⇨ ≅-Value ⟦ head ρ ⟧ head-lemma (ρ ▻ t) = P.refl -- Fold for sequences of substitutions. fold : ∀ {f} (F : ∀ {Γ Δ} → Γ ⇨̂ Δ → Set f) {Γ} → F (îd {Γ = Γ}) → (∀ {Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} → F ρ̂₁ → Sub T ρ̂₂ → F (ρ̂₁ ∘̂ ρ̂₂)) → ∀ {Δ} {ρ̂ : Γ ⇨̂ Δ} → Subs T ρ̂ → F ρ̂ fold F nil cons ε = nil fold F nil cons (ρs ▻ ρ) = cons (fold F nil cons ρs) ρ -- Some congruence lemmas. ε⇨-cong : ∀ {Δ₁ Δ₂} → Δ₁ ≅-Ctxt Δ₂ → ε⇨[ Δ₁ ] ≅-⇨ ε⇨[ Δ₂ ] ε⇨-cong P.refl = P.refl ▻⇨-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {t₁ : Δ₁ ⊢ σ₁ / ρ₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} {t₂ : Δ₂ ⊢ σ₂ / ρ₂} → σ₁ ≅-Type σ₂ → ρ₁ ≅-⇨ ρ₂ → t₁ ≅-⊢ t₂ → ρ₁ ▻⇨[ σ₁ ] t₁ ≅-⇨ ρ₂ ▻⇨[ σ₂ ] t₂ ▻⇨-cong P.refl P.refl P.refl = P.refl ε⇨⋆-cong : ∀ {Γ₁ Γ₂} → Γ₁ ≡ Γ₂ → ε⇨⋆[ Γ₁ ] ≅-⇨⋆ ε⇨⋆[ Γ₂ ] ε⇨⋆-cong P.refl = P.refl ▻⇨⋆-cong : ∀ {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁} {ρs₁ : Subs T ρ̂₁₁} {ρ₁ : Sub T ρ̂₂₁} {Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂} {ρs₂ : Subs T ρ̂₁₂} {ρ₂ : Sub T ρ̂₂₂} → ρs₁ ≅-⇨⋆ ρs₂ → ρ₁ ≅-⇨ ρ₂ → ρs₁ ▻ ρ₁ ≅-⇨⋆ ρs₂ ▻ ρ₂ ▻⇨⋆-cong P.refl P.refl = P.refl ⟦⟧⇨-cong : ∀ {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → ρ₁ ≅-⇨ ρ₂ → ⟦ ρ₁ ⟧⇨ ≅-⇨̂ ⟦ ρ₂ ⟧⇨ ⟦⟧⇨-cong P.refl = P.refl /I-cong : ∀ {i} {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {σ₁ : IType Γ₁ i} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {σ₂ : IType Γ₂ i} {ρ₂ : Sub T ρ̂₂} → σ₁ ≅-IType σ₂ → ρ₁ ≅-⇨ ρ₂ → σ₁ /I ρ₁ ≅-IType σ₂ /I ρ₂ /I-cong P.refl P.refl = P.refl /-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → σ₁ ≅-Type σ₂ → ρ₁ ≅-⇨ ρ₂ → σ₁ / ρ₁ ≅-Type σ₂ / ρ₂ /-cong P.refl P.refl = P.refl /⁺-cong : ∀ {Γ₁ Δ₁ Γ⁺₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ Γ⁺₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ρ₁ ≅-⇨ ρ₂ → Γ⁺₁ /⁺ ρ₁ ≅-Ctxt⁺ Γ⁺₂ /⁺ ρ₂ /⁺-cong P.refl P.refl = P.refl /⁺⋆-cong : ∀ {Γ₁ Δ₁ Γ⁺₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {Γ₂ Δ₂ Γ⁺₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} → Γ⁺₁ ≅-Ctxt⁺ Γ⁺₂ → ρs₁ ≅-⇨⋆ ρs₂ → Γ⁺₁ /⁺⋆ ρs₁ ≅-Ctxt⁺ Γ⁺₂ /⁺⋆ ρs₂ /⁺⋆-cong P.refl P.refl = P.refl /₊-cong : ∀ {Γ₁ Δ₁ Γ₊₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ Γ₊₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρ₁ ≅-⇨ ρ₂ → Γ₊₁ /₊ ρ₁ ≅-Ctxt₊ Γ₊₂ /₊ ρ₂ /₊-cong P.refl P.refl = P.refl /₊⋆-cong : ∀ {Γ₁ Δ₁ Γ₊₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρs₁ : Subs T ρ̂₁} {Γ₂ Δ₂ Γ₊₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρs₂ : Subs T ρ̂₂} → Γ₊₁ ≅-Ctxt₊ Γ₊₂ → ρs₁ ≅-⇨⋆ ρs₂ → Γ₊₁ /₊⋆ ρs₁ ≅-Ctxt₊ Γ₊₂ /₊⋆ ρs₂ /₊⋆-cong P.refl P.refl = P.refl /∋-cong : ∀ {Γ₁ Δ₁ σ₁} {x₁ : Γ₁ ∋ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → x₁ ≅-∋ x₂ → ρ₁ ≅-⇨ ρ₂ → x₁ /∋ ρ₁ ≅-⊢ x₂ /∋ ρ₂ /∋-cong P.refl P.refl = P.refl tail-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ▻ σ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ▻ σ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → ρ₁ ≅-⇨ ρ₂ → tail ρ₁ ≅-⇨ tail ρ₂ tail-cong P.refl = P.refl head-cong : ∀ {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ▻ σ₁ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ▻ σ₂ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → ρ₁ ≅-⇨ ρ₂ → head ρ₁ ≅-⊢ head ρ₂ head-cong P.refl = P.refl abstract -- Some eta-laws. ηε : ∀ {Δ} {ρ̂ : ε ⇨̂ Δ} (ρ : Sub T ρ̂) → ρ ≅-⇨ ε⇨[ Δ ] ηε ε = P.refl η▻ : ∀ {Γ Δ σ} {ρ̂ : Γ ▻ σ ⇨̂ Δ} (ρ : Sub T ρ̂) → ρ ≅-⇨ tail ρ ▻⇨[ σ ] head ρ η▻ (ρ ▻ t) = P.refl -- Two substitutions are equal if their indices are equal and -- their projections are pairwise equal. extensionality : ∀ {Γ Δ₁} {ρ̂₁ : Γ ⇨̂ Δ₁} {ρ₁ : Sub T ρ̂₁} {Δ₂} {ρ̂₂ : Γ ⇨̂ Δ₂} {ρ₂ : Sub T ρ̂₂} → Δ₁ ≅-Ctxt Δ₂ → (∀ {σ} (x : Γ ∋ σ) → x /∋ ρ₁ ≅-⊢ x /∋ ρ₂) → ρ₁ ≅-⇨ ρ₂ extensionality {ρ₁ = ε} {ρ₂ = ε} Δ₁≅Δ₂ hyp = ε⇨-cong Δ₁≅Δ₂ extensionality {ρ₁ = ρ₁ ▻ t₁} {ρ₂ = ρ₂ ▻ t₂} Δ₁≅Δ₂ hyp = ▻⇨-cong P.refl (extensionality Δ₁≅Δ₂ (hyp ∘ suc)) (hyp zero) open Dummy₂ public
{ "alphanum_fraction": 0.4056174766, "avg_line_length": 32.1346704871, "ext": "agda", "hexsha": "915f0c6ee080f29bf90306215cd27a3290327b53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Data/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Data/Basics.agda", "max_line_length": 107, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Data/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 6405, "size": 11215 }
-- Andreas, 2019-08-19, issue #4007 reported by nad -- The scope checker was not run in the TCEnv of the interaction meta. -- Thus, the extended lambda was not inheriting the IsAbstract from -- the AbstractMode of the meta, leading to checking the -- extended lambda in the wrong ConcreteMode. -- {-# OPTIONS -v interaction.give:20 #-} -- {-# OPTIONS -v scope.extendedLambda:10 #-} -- {-# OPTIONS -v tc.term.exlam:20 #-} -- -- {-# OPTIONS -v tc.decl:10 #-} -- {-# OPTIONS -v tc.interaction:20 #-} -- {-# OPTIONS -v tc.decl.abstract:25 #-} -- {-# OPTIONS -v tc.meta.check:20 #-} -- {-# OPTIONS -v tc.meta.new:50 #-} abstract data D : Set where c : D works : D → D works = λ { c → c } test : D → D test = {!λ { c → c }!} -- give -- Giving should succeed.
{ "alphanum_fraction": 0.6162790698, "avg_line_length": 26.6896551724, "ext": "agda", "hexsha": "9b6e4f3a19a1074b7b9135e230a75d9d799d59cc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue4007.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue4007.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue4007.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 229, "size": 774 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Rings.Lemmas open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Rings.IntegralDomains.Definition open import Functions.Definition open import Sets.EquivalenceRelations open import Fields.Fields open import Fields.Orders.Total.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Fields.Orders.Lemmas {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {o} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {F : Field R} {pRing : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F pRing) where abstract open import Rings.InitialRing R open Ring R open PartiallyOrderedRing pRing open Group additiveGroup open TotallyOrderedRing (TotallyOrderedField.oRing oF) open SetoidTotalOrder total open import Rings.Orders.Partial.Lemmas pRing open import Rings.Orders.Total.Lemmas (TotallyOrderedField.oRing oF) open import Fields.Lemmas F open Setoid S open SetoidPartialOrder pOrder open Equivalence eq open Field F clearDenominatorHalf : (x y 1/2 : A) → (1/2 + 1/2 ∼ 1R) → x < (y * 1/2) → (x + x) < y clearDenominatorHalf x y 1/2 pr1/2 x<1/2y = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq *DistributesOver+) (Equivalence.transitive eq *Commutative (*WellDefined pr1/2 (Equivalence.reflexive eq)))) identIsIdent) (ringAddInequalities x<1/2y x<1/2y) clearDenominatorHalf' : (x y 1/2 : A) → (1/2 + 1/2 ∼ 1R) → (x * 1/2) < y → x < (y + y) clearDenominatorHalf' x y 1/2 pr1/2 1/2x<y = <WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq *DistributesOver+) (Equivalence.transitive eq (Equivalence.transitive eq *Commutative (*WellDefined pr1/2 (Equivalence.reflexive eq))) identIsIdent)) (Equivalence.reflexive eq) (ringAddInequalities 1/2x<y 1/2x<y) halveInequality : (x y 1/2 : A) → (1/2 + 1/2 ∼ 1R) → (x + x) < y → x < (y * 1/2) halveInequality x y 1/2 pr1/2 2x<y with totality 0R 1R ... | inl (inl 0<1') = <WellDefined (halfHalves 1/2 pr1/2) (Equivalence.reflexive eq) (ringCanMultiplyByPositive {_} {_} {1/2} (halvePositive 1/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr1/2) (0<1 λ bad → irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq bad) 0<1')))) 2x<y) ... | inl (inr 1<0) = <WellDefined (halfHalves 1/2 pr1/2) (Equivalence.reflexive eq) (ringCanMultiplyByPositive {_} {_} {1/2} (halvePositive 1/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr1/2) (0<1 λ bad → irreflexive {0R} (<WellDefined (Equivalence.symmetric eq bad) (Equivalence.reflexive eq) 1<0)))) 2x<y) ... | inr 0=1 = exFalso (irreflexive {0R} (<WellDefined (oneZeroImpliesAllZero R 0=1) (oneZeroImpliesAllZero R 0=1) 2x<y)) halveInequality' : (x y 1/2 : A) → (1/2 + 1/2 ∼ 1R) → x < (y + y) → (x * 1/2) < y halveInequality' x y 1/2 pr1/2 x<2y with halveInequality (inverse y) (inverse x) 1/2 pr1/2 (<WellDefined (invContravariant additiveGroup) (Equivalence.reflexive eq) (ringSwapNegatives' x<2y)) ... | bl = ringSwapNegatives (<WellDefined (Equivalence.reflexive eq) (ringMinusExtracts' R) bl) dense : (charNot2 : ((1R + 1R) ∼ 0R) → False) {x y : A} → (x < y) → Sg A (λ i → (x < i) && (i < y)) dense charNot2 {x} {y} x<y with halve charNot2 1R dense charNot2 {x} {y} x<y | 1/2 , pr1/2 = ((x + y) * 1/2) , (halveInequality x (x + y) 1/2 pr1/2 (<WellDefined (Equivalence.reflexive eq) groupIsAbelian (orderRespectsAddition x<y x)) ,, halveInequality' (x + y) y 1/2 pr1/2 (orderRespectsAddition x<y y)) halfLess : (e/2 e : A) → (0<e : 0G < e) → (pr : e/2 + e/2 ∼ e) → e/2 < e halfLess e/2 e 0<e pr with halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr) 0<e) ... | 0<e/2 = <WellDefined identLeft pr (orderRespectsAddition 0<e/2 e/2) inversePositiveIsPositive : {a b : A} → (a * b) ∼ 1R → 0R < b → 0R < a inversePositiveIsPositive {a} {b} ab=1 0<b with totality 0R a inversePositiveIsPositive {a} {b} ab=1 0<b | inl (inl 0<a) = 0<a inversePositiveIsPositive {a} {b} ab=1 0<b | inl (inr a<0) with <WellDefined *Commutative (Equivalence.reflexive eq) (posTimesNeg _ _ 0<b a<0) ... | ab<0 = exFalso (1<0False (<WellDefined ab=1 (Equivalence.reflexive eq) ab<0)) inversePositiveIsPositive {a} {b} ab=1 0<b | inr 0=a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (oneZeroImpliesAllZero R 0=1) 0<b)) where 0=1 : 0R ∼ 1R 0=1 = Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) ab=1 halvesEqual : ((1R + 1R ∼ 0R) → False) → (1/2 1/2' : A) → (1/2 + 1/2) ∼ 1R → (1/2' + 1/2') ∼ 1R → 1/2 ∼ 1/2' halvesEqual charNot2 1/2 1/2' pr1 pr2 = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identIsIdent) (Equivalence.transitive eq *Commutative (*WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq p1) *Commutative)))) (Equivalence.transitive eq r (Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq *Commutative p1)) *Commutative) (identIsIdent))) where p : 1/2 * (1R + 1R) ∼ 1/2' * (1R + 1R) p = Equivalence.transitive eq *DistributesOver+ (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq *Commutative identIsIdent) (Equivalence.transitive eq *Commutative identIsIdent)) pr1) (Equivalence.transitive eq (Equivalence.symmetric eq pr2) (+WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent)) (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent))))) (Equivalence.symmetric eq *DistributesOver+)) x : A x with Field.allInvertible F (1R + 1R) charNot2 ... | y , _ = y p1 : (x * (1R + 1R)) ∼ 1R p1 with Field.allInvertible F (1R + 1R) charNot2 ... | _ , pr = pr q : ((1/2 * (1R + 1R)) * x) ∼ ((1/2' * (1R + 1R)) * x) q = *WellDefined p (Equivalence.reflexive eq) r : (1/2 * ((1R + 1R) * x)) ∼ (1/2' * ((1R + 1R) * x)) r = Equivalence.transitive eq *Associative (Equivalence.transitive eq q (Equivalence.symmetric eq *Associative)) private orderedFieldIntDom : {a b : A} → (a * b ∼ 0R) → (a ∼ 0R) || (b ∼ 0R) orderedFieldIntDom {a} {b} ab=0 with totality 0R a ... | inl (inl x) = inr (Equivalence.transitive eq (Equivalence.transitive eq (symmetric identIsIdent) (*WellDefined q reflexive)) p') where a!=0 : (a ∼ Group.0G additiveGroup) → False a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (symmetric pr) reflexive x) invA : A invA = underlying (Field.allInvertible F a a!=0) q : 1R ∼ (invA * a) q with Field.allInvertible F a a!=0 ... | invA , pr = symmetric pr p : invA * (a * b) ∼ invA * Group.0G additiveGroup p = *WellDefined reflexive ab=0 p' : (invA * a) * b ∼ Group.0G additiveGroup p' = Equivalence.transitive eq (symmetric *Associative) (Equivalence.transitive eq p (Ring.timesZero R)) orderedFieldIntDom {a} {b} ab=0 | inl (inr x) = inr (Equivalence.transitive eq (Equivalence.transitive eq (symmetric identIsIdent) (*WellDefined q reflexive)) p') where a!=0 : (a ∼ Group.0G additiveGroup) → False a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (symmetric pr) x) invA : A invA = underlying (Field.allInvertible F a a!=0) q : 1R ∼ (invA * a) q with Field.allInvertible F a a!=0 ... | invA , pr = symmetric pr p : invA * (a * b) ∼ invA * Group.0G additiveGroup p = *WellDefined reflexive ab=0 p' : (invA * a) * b ∼ Group.0G additiveGroup p' = Equivalence.transitive eq (symmetric *Associative) (Equivalence.transitive eq p (Ring.timesZero R)) orderedFieldIntDom {a} {b} ab=0 | inr x = inl (Equivalence.symmetric (Setoid.eq S) x) orderedFieldIsIntDom : IntegralDomain R IntegralDomain.intDom orderedFieldIsIntDom = decidedIntDom R orderedFieldIntDom IntegralDomain.nontrivial orderedFieldIsIntDom pr = Field.nontrivial F (Equivalence.symmetric (Setoid.eq S) pr) charZero : (n : ℕ) → (0R ∼ (fromN (succ n))) → False charZero n 0=sn = irreflexive (<WellDefined 0=sn reflexive (fromNPreservesOrder (0<1 (Field.nontrivial F)) (succIsPositive n))) charZero' : (n : ℕ) → ((fromN (succ n)) ∼ 0R) → False charZero' n pr = charZero n (symmetric pr)
{ "alphanum_fraction": 0.6848005275, "avg_line_length": 71.0859375, "ext": "agda", "hexsha": "b04d4450b31c1d273a6fac06cc4e78bea568b378", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Orders/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Orders/Lemmas.agda", "max_line_length": 545, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Orders/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 3222, "size": 9099 }
{-# OPTIONS --allow-unsolved-metas #-} open import Tutorials.Monday-Complete open import Tutorials.Tuesday open List using (List; []; _∷_; _++_) open Vec using (Vec; []; _∷_; _!_) open Fin using (Fin; zero; suc) module Tutorials.Wednesday where ----------- -- Interfaces, isomorphisms ----------- module Isomorphism where -- Why can we import _,_ from both modules without resulting in a nameclash? open Simple using (_⊎_; _×_; _,_; inl; inr) open Product using (Σ-syntax; Σ-⊎; Σ-×; Π-×; Π-→; _,_) infix 2 _≅_ record _≅_ (A B : Set) : Set where constructor Mk≅ field to : A → B from : B → A from∘to : ∀ a → from (to a) ≡ a to∘from : ∀ b → to (from b) ≡ b open _≅_ -- We can use copattern matching to construct a record by defining how to construct each of its fields Σ-⊎-≅ : Σ-⊎ A B ≅ A ⊎ B Σ-⊎-≅ = {!!} Σ-×-≅ : Σ-× A B ≅ A × B Σ-×-≅ = {!!} Π-→-≅ : Π-→ A B ≅ (A → B) to Π-→-≅ = {!!} from Π-→-≅ = {!!} -- Needs η laws for functions (∀ x → f x) ≡ f from∘to Π-→-≅ = {!!} to∘from Π-→-≅ = {!!} -- The following isomorphism needs of function extensionality -- Function extensionality claims that if two functions give the same output on the same input, then they are equal -- This does not hold internally in Agda and we therefore need to postulate it as an axiom postulate extensionality : {P : A → Set} {f g : (a : A) → P a} → (∀ x → f x ≡ g x) → f ≡ g Π-×-≅ : Π-× A B ≅ A × B Π-×-≅ = {!!} curry : Π-→ A (Π-→ B C) → Π-→ (Σ-× A B) C curry f (a , b) = f a b uncurry : Π-→ (Σ-× A B) C → Π-→ A (Π-→ B C) uncurry f a b = f (a , b) curry-uncurry : Π-→ A (Π-→ B C) ≅ Π-→ (Σ-× A B) C curry-uncurry = {!!} Fin-≤-≅ : Fin m ≅ Σ[ n ∈ ℕ ] n < m Fin-≤-≅ = {!!} _iso-∘_ : B ≅ C → A ≅ B → A ≅ C x iso-∘ y = {!!} ----------- -- Decidability ----------- module Dec where open Product using (_×_; _,_; fst; snd) open Simple using (¬_) data Dec (A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A DecEq : Set → Set DecEq A = (x y : A) → Dec (x ≡ y) map : (A → B) → (¬ A → B) → Dec A → B map f g (yes x) = f x map f g (no x) = g x infix 5 _×-dec_ _×-dec_ : Dec A → Dec B → Dec (A × B) yes x ×-dec yes y = yes (x , y) yes x ×-dec no ¬y = no (¬y ∘ snd) no ¬x ×-dec B? = no (¬x ∘ fst) _ℕ-≟_ : (n m : ℕ) → Dec (n ≡ m) n ℕ-≟ m = {!!} suc-injective : {i j : Fin n} → _≡_ {A = Fin (suc n)} (suc i) (suc j) → i ≡ j suc-injective refl = refl _Fin-≟_ : (i j : Fin n) → Dec (i ≡ j) zero Fin-≟ zero = yes refl zero Fin-≟ suc j = no λ () suc i Fin-≟ zero = no λ () suc i Fin-≟ suc j = map (yes ∘ cong suc) (no ∘ (λ neq → neq ∘ suc-injective)) (i Fin-≟ j) ∷-injective : {x y : A} {xs ys : List A} → _≡_ {A = List A} (x ∷ xs) (y ∷ ys) → x ≡ y × xs ≡ ys ∷-injective refl = refl , refl List-≟ : (_A-≟_ : (x y : A) → Dec (x ≡ y)) → (xs ys : List A) → Dec (xs ≡ ys) List-≟ _A-≟_ [] [] = yes refl List-≟ _A-≟_ [] (y ∷ ys) = no λ () List-≟ _A-≟_ (x ∷ xs) [] = no λ () List-≟ _A-≟_ (x ∷ xs) (y ∷ ys) = map (yes ∘ Isomorphism.curry (cong₂ _∷_)) (no ∘ (λ neq → neq ∘ ∷-injective)) (x A-≟ y ×-dec List-≟ _A-≟_ xs ys) ----------- -- Interfaces ----------- -- We define what it is to be a monoid on a carrier set C record Monoid (C : Set) : Set where constructor MkMonoid field ε : C _∙_ : C → C → C -- Including the algebraic laws idˡ : (x : C) → ε ∙ x ≡ x idʳ : (x : C) → x ∙ ε ≡ x assoc : (x y z : C) → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) module MonoidSolver (Symbol : Set) (symbol-≟ : Dec.DecEq Symbol) where -- The syntax for an expression tree of symbolic monoidal operations infixl 20 _‵∙_ infix 25 ‵_ data Expr : Set where ‵ε : Expr ‵_ : Symbol → Expr _‵∙_ : Expr → Expr → Expr -- And define equations on monoids infix 10 _‵≡_ record Eqn : Set where constructor _‵≡_ field lhs : Expr rhs : Expr -- The canonical normal form for expression trees NormalForm : Set NormalForm = List Symbol normalise : Expr → NormalForm normalise ‵ε = [] normalise (‵ x) = x ∷ [] normalise (xs ‵∙ ys) = normalise xs ++ normalise ys module Eval (M : Monoid C) where open Monoid M -- An environment maps symbols to values in the carrier set Env : Set Env = Symbol → C -- Evaluate the syntax in a given environment ⟦_⟧ : Expr → Env → C ⟦ ‵ε ⟧ Γ = ε ⟦ ‵ x ⟧ Γ = Γ x ⟦ x ‵∙ y ⟧ Γ = ⟦ x ⟧ Γ ∙ ⟦ y ⟧ Γ -- Evaluate the normal form in a given environment ⟦_⟧⇓ : NormalForm → Env → C ⟦ [] ⟧⇓ Γ = ε ⟦ x ∷ xs ⟧⇓ Γ = Γ x ∙ ⟦ xs ⟧⇓ Γ -- The evaluation of normal forms distributes over list concatenation ++-homo : ∀ Γ (xs ys : NormalForm) → ⟦ xs ++ ys ⟧⇓ Γ ≡ ⟦ xs ⟧⇓ Γ ∙ ⟦ ys ⟧⇓ Γ ++-homo Γ [] ys = sym (idˡ _) ++-homo Γ (x ∷ xs) ys = begin Γ x ∙ ⟦ xs ++ ys ⟧⇓ Γ ≡⟨ cong (_ ∙_) (++-homo Γ xs ys) ⟩ Γ x ∙ (⟦ xs ⟧⇓ Γ ∙ ⟦ ys ⟧⇓ Γ) ≡⟨ sym (assoc _ _ _) ⟩ (Γ x ∙ ⟦ xs ⟧⇓ Γ) ∙ ⟦ ys ⟧⇓ Γ ∎ -- Normalising and then evaluating the normal form is equal to evaluating the original expression correct : ∀ Γ (expr : Expr) → ⟦ normalise expr ⟧⇓ Γ ≡ ⟦ expr ⟧ Γ correct Γ ‵ε = refl correct Γ (‵ x) = idʳ _ correct Γ (le ‵∙ re) = begin ⟦ normalise le ++ normalise re ⟧⇓ Γ ≡⟨ ++-homo Γ (normalise le) (normalise re) ⟩ ⟦ normalise le ⟧⇓ Γ ∙ ⟦ normalise re ⟧⇓ Γ ≡⟨ cong₂ _∙_ (correct Γ le) (correct Γ re) ⟩ ⟦ le ⟧ Γ ∙ ⟦ re ⟧ Γ ∎ -- We describe what it is to be a solution to an equation -- If both sides normalise to the same symbols in the same order, -- we claim that the monoid laws make the equations hold in any environment Solution : Eqn → Set Solution (lhs ‵≡ rhs) = Dec.map -- Both sides normalise to a common list of symbols, we must now show that the equation holds under any environment (λ _ → ∀ (Γ : Env) → ⟦ lhs ⟧ Γ ≡ ⟦ rhs ⟧ Γ) -- Both sides do *not* normalise to a common list of symbols, we claim only the trivial (λ _ → ⊤) (Dec.List-≟ symbol-≟ (normalise lhs) (normalise rhs)) -- Now that we have described what a solution is, we show that we can provide one solve : (eqn : Eqn) → Solution eqn -- Pattern matching using with makes the goal type compute solve (lhs ‵≡ rhs) with Dec.List-≟ symbol-≟ (normalise lhs) (normalise rhs) solve (lhs ‵≡ rhs) | Dec.no _ = tt solve (lhs ‵≡ rhs) | Dec.yes lhs⇓≡rhs⇓ = λ Γ → begin ⟦ lhs ⟧ Γ ≡⟨ sym (correct Γ lhs) ⟩ ⟦ normalise lhs ⟧⇓ Γ ≡⟨ cong (λ ● → ⟦ ● ⟧⇓ Γ) lhs⇓≡rhs⇓ ⟩ ⟦ normalise rhs ⟧⇓ Γ ≡⟨ correct Γ rhs ⟩ ⟦ rhs ⟧ Γ ∎ open MonoidSolver -- An example instance of a monoid: natural numbers with addition NAT-MONOID : Monoid ℕ Monoid.ε NAT-MONOID = zero Monoid._∙_ NAT-MONOID = _+_ Monoid.idˡ NAT-MONOID = +-idˡ Monoid.idʳ NAT-MONOID = +-idʳ Monoid.assoc NAT-MONOID = +-assoc -- An example usage of the monoid solver -- We first need to "quote" the goal, i.e. describe it in terms of the expression language / syntax -- NAT-MONOID describes how to interpret the syntax back and evaluate the expression into a value of the carrier set eqn₁-auto : (x y z : ℕ) → (0 + x) + y + (y + z) ≡ x + (0 + y + 0) + (y + z + 0) eqn₁-auto x y z = let ‵x = zero ‵y = suc zero ‵z = suc (suc zero) lhs = (‵ε ‵∙ ‵ ‵x) ‵∙ ‵ ‵y ‵∙ (‵ ‵y ‵∙ ‵ ‵z) rhs = ‵ ‵x ‵∙ (‵ε ‵∙ ‵ ‵y ‵∙ ‵ε) ‵∙ (‵ ‵y ‵∙ ‵ ‵z ‵∙ ‵ε) in Eval.solve (Fin 3) Dec._Fin-≟_ NAT-MONOID (lhs ‵≡ rhs) λ where zero → x (suc zero) → y (suc (suc zero)) → z
{ "alphanum_fraction": 0.5305053679, "avg_line_length": 30.7983870968, "ext": "agda", "hexsha": "2e99df9de532ca0021bdb82c2ac3f6543e323c99", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-24T10:50:55.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-23T08:50:13.000Z", "max_forks_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "poncev/agda-bcam", "max_forks_repo_path": "Tutorials/Wednesday.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "poncev/agda-bcam", "max_issues_repo_path": "Tutorials/Wednesday.agda", "max_line_length": 123, "max_stars_count": 27, "max_stars_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "poncev/agda-bcam", "max_stars_repo_path": "Tutorials/Wednesday.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-03T22:53:51.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T17:59:21.000Z", "num_tokens": 3181, "size": 7638 }
------------------------------------------------------------------------ -- The Agda standard library -- -- List-related properties ------------------------------------------------------------------------ -- Note that the lemmas below could be generalised to work with other -- equalities than _≡_. module Data.List.Properties where open import Algebra import Algebra.Monoid-solver open import Category.Monad open import Data.Bool open import Data.List as List open import Data.List.All using (All; []; _∷_) open import Data.Maybe using (Maybe; just; nothing) open import Data.Nat open import Data.Nat.Properties open import Data.Product as Prod hiding (map) open import Function import Algebra.FunctionProperties import Relation.Binary.EqReasoning as EqR open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; _≗_; refl) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Unary using (Decidable) private open module FP {a} {A : Set a} = Algebra.FunctionProperties (_≡_ {A = A}) open module LMP {ℓ} = RawMonadPlus (List.monadPlus {ℓ = ℓ}) module LM {a} {A : Set a} = Monoid (List.monoid A) module List-solver {a} {A : Set a} = Algebra.Monoid-solver (monoid A) renaming (id to nil) ∷-injective : ∀ {a} {A : Set a} {x y : A} {xs ys} → x ∷ xs ≡ y List.∷ ys → x ≡ y × xs ≡ ys ∷-injective refl = (refl , refl) ∷ʳ-injective : ∀ {a} {A : Set a} {x y : A} xs ys → xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y ∷ʳ-injective [] [] refl = (refl , refl) ∷ʳ-injective (x ∷ xs) (y ∷ ys) eq with ∷-injective eq ∷ʳ-injective (x ∷ xs) (.x ∷ ys) eq | (refl , eq′) = Prod.map (P.cong (_∷_ x)) id $ ∷ʳ-injective xs ys eq′ ∷ʳ-injective [] (_ ∷ []) () ∷ʳ-injective [] (_ ∷ _ ∷ _) () ∷ʳ-injective (_ ∷ []) [] () ∷ʳ-injective (_ ∷ _ ∷ _) [] () right-identity-unique : ∀ {a} {A : Set a} (xs : List A) {ys} → xs ≡ xs ++ ys → ys ≡ [] right-identity-unique [] refl = refl right-identity-unique (x ∷ xs) eq = right-identity-unique xs (proj₂ (∷-injective eq)) left-identity-unique : ∀ {a} {A : Set a} {xs} (ys : List A) → xs ≡ ys ++ xs → ys ≡ [] left-identity-unique [] _ = refl left-identity-unique {xs = []} (y ∷ ys) () left-identity-unique {xs = x ∷ xs} (y ∷ ys) eq with left-identity-unique (ys ++ [ x ]) (begin xs ≡⟨ proj₂ (∷-injective eq) ⟩ ys ++ x ∷ xs ≡⟨ P.sym (LM.assoc ys [ x ] xs) ⟩ (ys ++ [ x ]) ++ xs ∎) where open P.≡-Reasoning left-identity-unique {xs = x ∷ xs} (y ∷ [] ) eq | () left-identity-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | () -- Map, sum, and append. map-++-commute : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) xs ys → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-commute f [] ys = refl map-++-commute f (x ∷ xs) ys = P.cong (_∷_ (f x)) (map-++-commute f xs ys) sum-++-commute : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys sum-++-commute [] ys = refl sum-++-commute (x ∷ xs) ys = begin x + sum (xs ++ ys) ≡⟨ P.cong (_+_ x) (sum-++-commute xs ys) ⟩ x + (sum xs + sum ys) ≡⟨ P.sym $ +-assoc x _ _ ⟩ (x + sum xs) + sum ys ∎ where open CommutativeSemiring commutativeSemiring hiding (_+_) open P.≡-Reasoning -- Various properties about folds. foldr-universal : ∀ {a b} {A : Set a} {B : Set b} (h : List A → B) f e → (h [] ≡ e) → (∀ x xs → h (x ∷ xs) ≡ f x (h xs)) → h ≗ foldr f e foldr-universal h f e base step [] = base foldr-universal h f e base step (x ∷ xs) = begin h (x ∷ xs) ≡⟨ step x xs ⟩ f x (h xs) ≡⟨ P.cong (f x) (foldr-universal h f e base step xs) ⟩ f x (foldr f e xs) ∎ where open P.≡-Reasoning foldr-fusion : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (h : B → C) {f : A → B → B} {g : A → C → C} (e : B) → (∀ x y → h (f x y) ≡ g x (h y)) → h ∘ foldr f e ≗ foldr g (h e) foldr-fusion h {f} {g} e fuse = foldr-universal (h ∘ foldr f e) g (h e) refl (λ x xs → fuse x (foldr f e xs)) idIsFold : ∀ {a} {A : Set a} → id {A = List A} ≗ foldr _∷_ [] idIsFold = foldr-universal id _∷_ [] refl (λ _ _ → refl) ++IsFold : ∀ {a} {A : Set a} (xs ys : List A) → xs ++ ys ≡ foldr _∷_ ys xs ++IsFold xs ys = begin xs ++ ys ≡⟨ P.cong (λ xs → xs ++ ys) (idIsFold xs) ⟩ foldr _∷_ [] xs ++ ys ≡⟨ foldr-fusion (λ xs → xs ++ ys) [] (λ _ _ → refl) xs ⟩ foldr _∷_ ([] ++ ys) xs ≡⟨ refl ⟩ foldr _∷_ ys xs ∎ where open P.≡-Reasoning mapIsFold : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} → map f ≗ foldr (λ x ys → f x ∷ ys) [] mapIsFold {f = f} = begin map f ≈⟨ P.cong (map f) ∘ idIsFold ⟩ map f ∘ foldr _∷_ [] ≈⟨ foldr-fusion (map f) [] (λ _ _ → refl) ⟩ foldr (λ x ys → f x ∷ ys) [] ∎ where open EqR (P._→-setoid_ _ _) concat-map : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} → concat ∘ map (map f) ≗ map f ∘ concat concat-map {b = b} {f = f} = begin concat ∘ map (map f) ≈⟨ P.cong concat ∘ mapIsFold {b = b} ⟩ concat ∘ foldr (λ xs ys → map f xs ∷ ys) [] ≈⟨ foldr-fusion {b = b} concat [] (λ _ _ → refl) ⟩ foldr (λ ys zs → map f ys ++ zs) [] ≈⟨ P.sym ∘ foldr-fusion (map f) [] (λ ys zs → map-++-commute f ys zs) ⟩ map f ∘ concat ∎ where open EqR (P._→-setoid_ _ _) map-id : ∀ {a} {A : Set a} → map id ≗ id {A = List A} map-id {A = A} = begin map id ≈⟨ mapIsFold ⟩ foldr _∷_ [] ≈⟨ P.sym ∘ idIsFold {A = A} ⟩ id ∎ where open EqR (P._→-setoid_ _ _) map-compose : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f map-compose {A = A} {B} {g = g} {f} = begin map (g ∘ f) ≈⟨ P.cong (map (g ∘ f)) ∘ idIsFold ⟩ map (g ∘ f) ∘ foldr _∷_ [] ≈⟨ foldr-fusion (map (g ∘ f)) [] (λ _ _ → refl) ⟩ foldr (λ a y → g (f a) ∷ y) [] ≈⟨ P.sym ∘ foldr-fusion (map g) [] (λ _ _ → refl) ⟩ map g ∘ foldr (λ a y → f a ∷ y) [] ≈⟨ P.cong (map g) ∘ P.sym ∘ mapIsFold {A = A} {B = B} ⟩ map g ∘ map f ∎ where open EqR (P._→-setoid_ _ _) foldr-cong : ∀ {a b} {A : Set a} {B : Set b} {f₁ f₂ : A → B → B} {e₁ e₂ : B} → (∀ x y → f₁ x y ≡ f₂ x y) → e₁ ≡ e₂ → foldr f₁ e₁ ≗ foldr f₂ e₂ foldr-cong {f₁ = f₁} {f₂} {e} f₁≗₂f₂ refl = begin foldr f₁ e ≈⟨ P.cong (foldr f₁ e) ∘ idIsFold ⟩ foldr f₁ e ∘ foldr _∷_ [] ≈⟨ foldr-fusion (foldr f₁ e) [] (λ x xs → f₁≗₂f₂ x (foldr f₁ e xs)) ⟩ foldr f₂ e ∎ where open EqR (P._→-setoid_ _ _) map-cong : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} → f ≗ g → map f ≗ map g map-cong {A = A} {B} {f} {g} f≗g = begin map f ≈⟨ mapIsFold ⟩ foldr (λ x ys → f x ∷ ys) [] ≈⟨ foldr-cong (λ x ys → P.cong₂ _∷_ (f≗g x) refl) refl ⟩ foldr (λ x ys → g x ∷ ys) [] ≈⟨ P.sym ∘ mapIsFold {A = A} {B = B} ⟩ map g ∎ where open EqR (P._→-setoid_ _ _) -- Take, drop, and splitAt. take++drop : ∀ {a} {A : Set a} n (xs : List A) → take n xs ++ drop n xs ≡ xs take++drop zero xs = refl take++drop (suc n) [] = refl take++drop (suc n) (x ∷ xs) = P.cong (λ xs → x ∷ xs) (take++drop n xs) splitAt-defn : ∀ {a} {A : Set a} n → splitAt {A = A} n ≗ < take n , drop n > splitAt-defn zero xs = refl splitAt-defn (suc n) [] = refl splitAt-defn (suc n) (x ∷ xs) with splitAt n xs | splitAt-defn n xs ... | (ys , zs) | ih = P.cong (Prod.map (_∷_ x) id) ih -- TakeWhile, dropWhile, and span. takeWhile++dropWhile : ∀ {a} {A : Set a} (p : A → Bool) (xs : List A) → takeWhile p xs ++ dropWhile p xs ≡ xs takeWhile++dropWhile p [] = refl takeWhile++dropWhile p (x ∷ xs) with p x ... | true = P.cong (_∷_ x) (takeWhile++dropWhile p xs) ... | false = refl span-defn : ∀ {a} {A : Set a} (p : A → Bool) → span p ≗ < takeWhile p , dropWhile p > span-defn p [] = refl span-defn p (x ∷ xs) with p x ... | true = P.cong (Prod.map (_∷_ x) id) (span-defn p xs) ... | false = refl -- Partition, filter. partition-defn : ∀ {a} {A : Set a} (p : A → Bool) → partition p ≗ < filter p , filter (not ∘ p) > partition-defn p [] = refl partition-defn p (x ∷ xs) with p x | partition p xs | partition-defn p xs ... | true | (ys , zs) | eq = P.cong (Prod.map (_∷_ x) id) eq ... | false | (ys , zs) | eq = P.cong (Prod.map id (_∷_ x)) eq filter-filters : ∀ {a p} {A : Set a} → (P : A → Set p) (dec : Decidable P) (xs : List A) → All P (filter (⌊_⌋ ∘ dec) xs) filter-filters P dec [] = [] filter-filters P dec (x ∷ xs) with dec x filter-filters P dec (x ∷ xs) | yes px = px ∷ filter-filters P dec xs filter-filters P dec (x ∷ xs) | no ¬px = filter-filters P dec xs -- Inits, tails, and scanr. scanr-defn : ∀ {a b} {A : Set a} {B : Set b} (f : A → B → B) (e : B) → scanr f e ≗ map (foldr f e) ∘ tails scanr-defn f e [] = refl scanr-defn f e (x ∷ []) = refl scanr-defn f e (x₁ ∷ x₂ ∷ xs) with scanr f e (x₂ ∷ xs) | scanr-defn f e (x₂ ∷ xs) ... | [] | () ... | y ∷ ys | eq with ∷-injective eq ... | y≡fx₂⦇f⦈xs , _ = P.cong₂ (λ z zs → f x₁ z ∷ zs) y≡fx₂⦇f⦈xs eq scanl-defn : ∀ {a b} {A : Set a} {B : Set b} (f : A → B → A) (e : A) → scanl f e ≗ map (foldl f e) ∘ inits scanl-defn f e [] = refl scanl-defn f e (x ∷ xs) = P.cong (_∷_ e) (begin scanl f (f e x) xs ≡⟨ scanl-defn f (f e x) xs ⟩ map (foldl f (f e x)) (inits xs) ≡⟨ refl ⟩ map (foldl f e ∘ (_∷_ x)) (inits xs) ≡⟨ map-compose (inits xs) ⟩ map (foldl f e) (map (_∷_ x) (inits xs)) ∎) where open P.≡-Reasoning -- Length. length-map : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) xs → length (map f xs) ≡ length xs length-map f [] = refl length-map f (x ∷ xs) = P.cong suc (length-map f xs) length-++ : ∀ {a} {A : Set a} (xs : List A) {ys} → length (xs ++ ys) ≡ length xs + length ys length-++ [] = refl length-++ (x ∷ xs) = P.cong suc (length-++ xs) length-replicate : ∀ {a} {A : Set a} n {x : A} → length (replicate n x) ≡ n length-replicate zero = refl length-replicate (suc n) = P.cong suc (length-replicate n) length-gfilter : ∀ {a b} {A : Set a} {B : Set b} (p : A → Maybe B) xs → length (gfilter p xs) ≤ length xs length-gfilter p [] = z≤n length-gfilter p (x ∷ xs) with p x length-gfilter p (x ∷ xs) | just y = s≤s (length-gfilter p xs) length-gfilter p (x ∷ xs) | nothing = ≤-step (length-gfilter p xs) -- Reverse. unfold-reverse : ∀ {a} {A : Set a} (x : A) (xs : List A) → reverse (x ∷ xs) ≡ reverse xs ∷ʳ x unfold-reverse x xs = begin foldl (flip _∷_) [ x ] xs ≡⟨ helper [ x ] xs ⟩ reverse xs ∷ʳ x ∎ where open P.≡-Reasoning helper : ∀ {a} {A : Set a} (xs ys : List A) → foldl (flip _∷_) xs ys ≡ reverse ys ++ xs helper xs [] = P.refl helper xs (y ∷ ys) = begin foldl (flip _∷_) (y ∷ xs) ys ≡⟨ helper (y ∷ xs) ys ⟩ reverse ys ++ y ∷ xs ≡⟨ P.sym $ LM.assoc (reverse ys) _ _ ⟩ (reverse ys ∷ʳ y) ++ xs ≡⟨ P.sym $ P.cong (λ zs → zs ++ xs) (unfold-reverse y ys) ⟩ reverse (y ∷ ys) ++ xs ∎ reverse-++-commute : ∀ {a} {A : Set a} (xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++-commute {a} [] ys = begin reverse ys ≡⟨ P.sym $ proj₂ {a = a} {b = a} LM.identity _ ⟩ reverse ys ++ [] ≡⟨ P.refl ⟩ reverse ys ++ reverse [] ∎ where open P.≡-Reasoning reverse-++-commute (x ∷ xs) ys = begin reverse (x ∷ xs ++ ys) ≡⟨ unfold-reverse x (xs ++ ys) ⟩ reverse (xs ++ ys) ++ [ x ] ≡⟨ P.cong (λ zs → zs ++ [ x ]) (reverse-++-commute xs ys) ⟩ (reverse ys ++ reverse xs) ++ [ x ] ≡⟨ LM.assoc (reverse ys) _ _ ⟩ reverse ys ++ (reverse xs ++ [ x ]) ≡⟨ P.sym $ P.cong (λ zs → reverse ys ++ zs) (unfold-reverse x xs) ⟩ reverse ys ++ reverse (x ∷ xs) ∎ where open P.≡-Reasoning reverse-map-commute : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → (xs : List A) → map f (reverse xs) ≡ reverse (map f xs) reverse-map-commute f [] = refl reverse-map-commute f (x ∷ xs) = begin map f (reverse (x ∷ xs)) ≡⟨ P.cong (map f) $ unfold-reverse x xs ⟩ map f (reverse xs ∷ʳ x) ≡⟨ map-++-commute f (reverse xs) ([ x ]) ⟩ map f (reverse xs) ∷ʳ f x ≡⟨ P.cong (λ y → y ∷ʳ f x) $ reverse-map-commute f xs ⟩ reverse (map f xs) ∷ʳ f x ≡⟨ P.sym $ unfold-reverse (f x) (map f xs) ⟩ reverse (map f (x ∷ xs)) ∎ where open P.≡-Reasoning reverse-involutive : ∀ {a} {A : Set a} → Involutive (reverse {A = A}) reverse-involutive [] = refl reverse-involutive (x ∷ xs) = begin reverse (reverse (x ∷ xs)) ≡⟨ P.cong reverse $ unfold-reverse x xs ⟩ reverse (reverse xs ∷ʳ x) ≡⟨ reverse-++-commute (reverse xs) ([ x ]) ⟩ x ∷ reverse (reverse (xs)) ≡⟨ P.cong (λ y → x ∷ y) $ reverse-involutive xs ⟩ x ∷ xs ∎ where open P.≡-Reasoning -- The list monad. module Monad where left-zero : ∀ {ℓ} {A B : Set ℓ} (f : A → List B) → (∅ >>= f) ≡ ∅ left-zero f = refl right-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → (xs >>= const ∅) ≡ ∅ {A = B} right-zero [] = refl right-zero (x ∷ xs) = right-zero xs private not-left-distributive : let xs = true ∷ false ∷ []; f = return; g = return in (xs >>= λ x → f x ∣ g x) ≢ ((xs >>= f) ∣ (xs >>= g)) not-left-distributive () right-distributive : ∀ {ℓ} {A B : Set ℓ} (xs ys : List A) (f : A → List B) → (xs ∣ ys >>= f) ≡ ((xs >>= f) ∣ (ys >>= f)) right-distributive [] ys f = refl right-distributive (x ∷ xs) ys f = begin f x ∣ (xs ∣ ys >>= f) ≡⟨ P.cong (_∣_ (f x)) $ right-distributive xs ys f ⟩ f x ∣ ((xs >>= f) ∣ (ys >>= f)) ≡⟨ P.sym $ LM.assoc (f x) _ _ ⟩ (f x ∣ (xs >>= f)) ∣ (ys >>= f) ∎ where open P.≡-Reasoning left-identity : ∀ {ℓ} {A B : Set ℓ} (x : A) (f : A → List B) → (return x >>= f) ≡ f x left-identity {ℓ} x f = proj₂ (LM.identity {a = ℓ}) (f x) right-identity : ∀ {a} {A : Set a} (xs : List A) → (xs >>= return) ≡ xs right-identity [] = refl right-identity (x ∷ xs) = P.cong (_∷_ x) (right-identity xs) associative : ∀ {ℓ} {A B C : Set ℓ} (xs : List A) (f : A → List B) (g : B → List C) → (xs >>= λ x → f x >>= g) ≡ (xs >>= f >>= g) associative [] f g = refl associative (x ∷ xs) f g = begin (f x >>= g) ∣ (xs >>= λ x → f x >>= g) ≡⟨ P.cong (_∣_ (f x >>= g)) $ associative xs f g ⟩ (f x >>= g) ∣ (xs >>= f >>= g) ≡⟨ P.sym $ right-distributive (f x) (xs >>= f) g ⟩ (f x ∣ (xs >>= f) >>= g) ∎ where open P.≡-Reasoning cong : ∀ {ℓ} {A B : Set ℓ} {xs₁ xs₂} {f₁ f₂ : A → List B} → xs₁ ≡ xs₂ → f₁ ≗ f₂ → (xs₁ >>= f₁) ≡ (xs₂ >>= f₂) cong {xs₁ = xs} refl f₁≗f₂ = P.cong concat (map-cong f₁≗f₂ xs) -- The applicative functor derived from the list monad. -- Note that these proofs (almost) show that RawIMonad.rawIApplicative -- is correctly defined. The proofs can be reused if proof components -- are ever added to RawIMonad and RawIApplicative. module Applicative where open P.≡-Reasoning private -- A variant of flip map. pam : ∀ {ℓ} {A B : Set ℓ} → List A → (A → B) → List B pam xs f = xs >>= return ∘ f -- ∅ is a left zero for _⊛_. left-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → ∅ ⊛ xs ≡ ∅ {A = B} left-zero xs = begin ∅ ⊛ xs ≡⟨ refl ⟩ (∅ >>= pam xs) ≡⟨ Monad.left-zero (pam xs) ⟩ ∅ ∎ -- ∅ is a right zero for _⊛_. right-zero : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) → fs ⊛ ∅ ≡ ∅ right-zero {ℓ} fs = begin fs ⊛ ∅ ≡⟨ refl ⟩ (fs >>= pam ∅) ≡⟨ (Monad.cong (refl {x = fs}) λ f → Monad.left-zero (return {ℓ = ℓ} ∘ f)) ⟩ (fs >>= λ _ → ∅) ≡⟨ Monad.right-zero fs ⟩ ∅ ∎ -- _⊛_ distributes over _∣_ from the right. right-distributive : ∀ {ℓ} {A B : Set ℓ} (fs₁ fs₂ : List (A → B)) xs → (fs₁ ∣ fs₂) ⊛ xs ≡ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs) right-distributive fs₁ fs₂ xs = begin (fs₁ ∣ fs₂) ⊛ xs ≡⟨ refl ⟩ (fs₁ ∣ fs₂ >>= pam xs) ≡⟨ Monad.right-distributive fs₁ fs₂ (pam xs) ⟩ (fs₁ >>= pam xs) ∣ (fs₂ >>= pam xs) ≡⟨ refl ⟩ fs₁ ⊛ xs ∣ fs₂ ⊛ xs ∎ -- _⊛_ does not distribute over _∣_ from the left. private not-left-distributive : let fs = id ∷ id ∷ []; xs₁ = true ∷ []; xs₂ = true ∷ false ∷ [] in fs ⊛ (xs₁ ∣ xs₂) ≢ (fs ⊛ xs₁ ∣ fs ⊛ xs₂) not-left-distributive () -- Applicative functor laws. identity : ∀ {a} {A : Set a} (xs : List A) → return id ⊛ xs ≡ xs identity xs = begin return id ⊛ xs ≡⟨ refl ⟩ (return id >>= pam xs) ≡⟨ Monad.left-identity id (pam xs) ⟩ (xs >>= return) ≡⟨ Monad.right-identity xs ⟩ xs ∎ private pam-lemma : ∀ {ℓ} {A B C : Set ℓ} (xs : List A) (f : A → B) (fs : B → List C) → (pam xs f >>= fs) ≡ (xs >>= λ x → fs (f x)) pam-lemma xs f fs = begin (pam xs f >>= fs) ≡⟨ P.sym $ Monad.associative xs (return ∘ f) fs ⟩ (xs >>= λ x → return (f x) >>= fs) ≡⟨ Monad.cong (refl {x = xs}) (λ x → Monad.left-identity (f x) fs) ⟩ (xs >>= λ x → fs (f x)) ∎ composition : ∀ {ℓ} {A B C : Set ℓ} (fs : List (B → C)) (gs : List (A → B)) xs → return _∘′_ ⊛ fs ⊛ gs ⊛ xs ≡ fs ⊛ (gs ⊛ xs) composition {ℓ} fs gs xs = begin return _∘′_ ⊛ fs ⊛ gs ⊛ xs ≡⟨ refl ⟩ (return _∘′_ >>= pam fs >>= pam gs >>= pam xs) ≡⟨ Monad.cong (Monad.cong (Monad.left-identity _∘′_ (pam fs)) (λ f → refl {x = pam gs f})) (λ fg → refl {x = pam xs fg}) ⟩ (pam fs _∘′_ >>= pam gs >>= pam xs) ≡⟨ Monad.cong (pam-lemma fs _∘′_ (pam gs)) (λ _ → refl) ⟩ ((fs >>= λ f → pam gs (_∘′_ f)) >>= pam xs) ≡⟨ P.sym $ Monad.associative fs (λ f → pam gs (_∘′_ f)) (pam xs) ⟩ (fs >>= λ f → pam gs (_∘′_ f) >>= pam xs) ≡⟨ (Monad.cong (refl {x = fs}) λ f → pam-lemma gs (_∘′_ f) (pam xs)) ⟩ (fs >>= λ f → gs >>= λ g → pam xs (f ∘′ g)) ≡⟨ (Monad.cong (refl {x = fs}) λ f → Monad.cong (refl {x = gs}) λ g → P.sym $ pam-lemma xs g (return ∘ f)) ⟩ (fs >>= λ f → gs >>= λ g → pam (pam xs g) f) ≡⟨ (Monad.cong (refl {x = fs}) λ f → Monad.associative gs (pam xs) (return ∘ f)) ⟩ (fs >>= pam (gs >>= pam xs)) ≡⟨ refl ⟩ fs ⊛ (gs ⊛ xs) ∎ homomorphism : ∀ {ℓ} {A B : Set ℓ} (f : A → B) x → return f ⊛ return x ≡ return (f x) homomorphism f x = begin return f ⊛ return x ≡⟨ refl ⟩ (return f >>= pam (return x)) ≡⟨ Monad.left-identity f (pam (return x)) ⟩ pam (return x) f ≡⟨ Monad.left-identity x (return ∘ f) ⟩ return (f x) ∎ interchange : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {x} → fs ⊛ return x ≡ return (λ f → f x) ⊛ fs interchange fs {x} = begin fs ⊛ return x ≡⟨ refl ⟩ (fs >>= pam (return x)) ≡⟨ (Monad.cong (refl {x = fs}) λ f → Monad.left-identity x (return ∘ f)) ⟩ (fs >>= λ f → return (f x)) ≡⟨ refl ⟩ (pam fs (λ f → f x)) ≡⟨ P.sym $ Monad.left-identity (λ f → f x) (pam fs) ⟩ (return (λ f → f x) >>= pam fs) ≡⟨ refl ⟩ return (λ f → f x) ⊛ fs ∎
{ "alphanum_fraction": 0.4701183432, "avg_line_length": 37.5555555556, "ext": "agda", "hexsha": "2280e04d6be5d149e5888abcf167674878d56ddc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/Properties.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 8006, "size": 20280 }
module container.m.extensionality where open import sum open import equality open import container.core open import container.fixpoint open import container.equality open import container.m.core module Extensionality {li la lb}(c : Container li la lb) where private module C where open Definition c public fp : Fixpoint c _ fp = fix M fixpoint open Fixpoint fp public using (head; tail) module S where open Equality c C.fp using (equality) open Equality c C.fp public using (substX) open Definition equality public fp : Fixpoint equality _ fp = fix M fixpoint open Fixpoint fp public using (head; tail) open C -- bisimilarity relation _≡M_ : ∀ {i}(u v : M i) → Set _ u ≡M v = S.M (_ , u , v) reflM : ∀ {i}{u : M i} → u ≡M u reflM = S.inf refl (λ b → ♯ reflM) private -- total space of bisimilarity E : ∀ i → Set _ E i = Σ (M i × M i) (uncurry _≡M_) f : E →ⁱ F E f i ((xs , ys) , bisim) = head xs , (λ b → (( tail xs b , S.substX (S.head bisim) b (tail ys (subst B (S.head bisim) b))) , S.tail bisim b)) π₁ : E →ⁱ M π₁ i ((xs , _), _) = xs π₁-mor : ∀ {i} (e : E i) → out i (π₁ i e) ≡ imap π₁ i (f i e) π₁-mor ((xs , ys) , p) = refl π₂ : E →ⁱ M π₂ _ ((_ , ys), _) = ys π₂-mor : ∀ {i} (e : E i) → out i (π₂ i e) ≡ imap π₂ i (f i e) π₂-mor {i} ((xs , ys) , bisim) = lem (S.head bisim) (tail ys) where lem : {a a' : A i}(p : a ≡ a') → (f : (b' : B a') → M (r b')) → _≡_ {A = F M i} (a' , f) (a , λ b → S.substX p b (f (subst B p b))) lem refl f = refl equal-π : ∀ {i}(e : E i) → π₁ i e ≡ π₂ i e equal-π e = unfold-η f π₁ π₁-mor e · sym (unfold-η f π₂ π₂-mor e) abstract mext₀ : ∀ {i} {xs ys : M i} → xs ≡M ys → xs ≡ ys mext₀ p = equal-π (_ , p) mext-inv : ∀ {i}{xs ys : M i} → xs ≡ ys → xs ≡M ys mext-inv refl = reflM mext : ∀ {i} {xs ys : M i} → xs ≡M ys → xs ≡ ys mext p = mext₀ p · sym (mext₀ reflM) mext-id : ∀ {i}{u : M i} → mext (reflM {u = u}) ≡ refl mext-id = left-inverse (mext₀ reflM) mext-retraction : ∀ {i}{xs ys : M i}(p : xs ≡ ys) → mext (mext-inv p) ≡ p mext-retraction refl = left-inverse (mext₀ reflM)
{ "alphanum_fraction": 0.499792445, "avg_line_length": 25.6276595745, "ext": "agda", "hexsha": "3117120599021e1e8a249c22b785f6f122f102b7", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/extensionality.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/container/m/extensionality.agda", "max_line_length": 69, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/extensionality.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 892, "size": 2409 }
{-# OPTIONS --allow-unsolved-metas #-} module fin where open import Data.Fin hiding (_<_ ; _≤_ ; _>_ ; _+_ ) open import Data.Fin.Properties hiding (≤-trans ; <-trans ; ≤-refl ) renaming ( <-cmp to <-fcmp ) open import Data.Nat open import Data.Nat.Properties open import logic open import nat open import Relation.Binary.PropositionalEquality -- toℕ<n fin<n : {n : ℕ} {f : Fin n} → toℕ f < n fin<n {_} {zero} = s≤s z≤n fin<n {suc n} {suc f} = s≤s (fin<n {n} {f}) -- toℕ≤n fin≤n : {n : ℕ} (f : Fin (suc n)) → toℕ f ≤ n fin≤n {_} zero = z≤n fin≤n {suc n} (suc f) = s≤s (fin≤n {n} f) pred<n : {n : ℕ} {f : Fin (suc n)} → n > 0 → Data.Nat.pred (toℕ f) < n pred<n {suc n} {zero} (s≤s z≤n) = s≤s z≤n pred<n {suc n} {suc f} (s≤s z≤n) = fin<n fin<asa : {n : ℕ} → toℕ (fromℕ< {n} a<sa) ≡ n fin<asa = toℕ-fromℕ< nat.a<sa -- fromℕ<-toℕ toℕ→from : {n : ℕ} {x : Fin (suc n)} → toℕ x ≡ n → fromℕ n ≡ x toℕ→from {0} {zero} refl = refl toℕ→from {suc n} {suc x} eq = cong (λ k → suc k ) ( toℕ→from {n} {x} (cong (λ k → Data.Nat.pred k ) eq )) 0≤fmax : {n : ℕ } → (# 0) Data.Fin.≤ fromℕ< {n} a<sa 0≤fmax = subst (λ k → 0 ≤ k ) (sym (toℕ-fromℕ< a<sa)) z≤n 0<fmax : {n : ℕ } → (# 0) Data.Fin.< fromℕ< {suc n} a<sa 0<fmax = subst (λ k → 0 < k ) (sym (toℕ-fromℕ< a<sa)) (s≤s z≤n) -- toℕ-injective i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j i=j {suc n} zero zero refl = refl i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) ) -- raise 1 fin+1 : { n : ℕ } → Fin n → Fin (suc n) fin+1 zero = zero fin+1 (suc x) = suc (fin+1 x) open import Data.Nat.Properties as NatP hiding ( _≟_ ) fin+1≤ : { i n : ℕ } → (a : i < n) → fin+1 (fromℕ< a) ≡ fromℕ< (<-trans a a<sa) fin+1≤ {0} {suc i} (s≤s z≤n) = refl fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) ) fin+1-toℕ : { n : ℕ } → { x : Fin n} → toℕ (fin+1 x) ≡ toℕ x fin+1-toℕ {suc n} {zero} = refl fin+1-toℕ {suc n} {suc x} = cong (λ k → suc k ) (fin+1-toℕ {n} {x}) open import Relation.Nullary open import Data.Empty fin-1 : { n : ℕ } → (x : Fin (suc n)) → ¬ (x ≡ zero ) → Fin n fin-1 zero ne = ⊥-elim (ne refl ) fin-1 {n} (suc x) ne = x fin-1-sx : { n : ℕ } → (x : Fin n) → fin-1 (suc x) (λ ()) ≡ x fin-1-sx zero = refl fin-1-sx (suc x) = refl fin-1-xs : { n : ℕ } → (x : Fin (suc n)) → (ne : ¬ (x ≡ zero )) → suc (fin-1 x ne ) ≡ x fin-1-xs zero ne = ⊥-elim ( ne refl ) fin-1-xs (suc x) ne = refl -- suc-injective -- suc-eq : {n : ℕ } {x y : Fin n} → Fin.suc x ≡ Fin.suc y → x ≡ y -- suc-eq {n} {x} {y} eq = subst₂ (λ j k → j ≡ k ) {!!} {!!} (cong (λ k → Data.Fin.pred k ) eq ) -- this is refl lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) lemma3 (s≤s lt) = refl -- fromℕ<-toℕ lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = cong suc ( lemma12 {n} {m} n<m f refl ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- <-irrelevant <-nat=irr : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n <-nat=irr {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl <-nat=irr {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( <-nat=irr {i} {i} {n} refl ) lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl ) -- fromℕ<-irrelevant lemma10 : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n lemma10 {n} refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8 refl )) lemma31 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c lemma31 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl) -- toℕ-fromℕ< lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x lemma11 {n} {m} {x} n<m = begin toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡⟨ toℕ-fromℕ< _ ⟩ toℕ x ∎ where open ≡-Reasoning x<y→fin-1 : {n : ℕ } → { x y : Fin (suc n)} → toℕ x < toℕ y → Fin n x<y→fin-1 {n} {x} {y} lt = fromℕ< (≤-trans lt (fin≤n _ )) x<y→fin-1-eq : {n : ℕ } → { x y : Fin (suc n)} → (lt : toℕ x < toℕ y ) → toℕ x ≡ toℕ (x<y→fin-1 lt ) x<y→fin-1-eq {n} {x} {y} lt = sym ( begin toℕ (fromℕ< (≤-trans lt (fin≤n y)) ) ≡⟨ toℕ-fromℕ< _ ⟩ toℕ x ∎ ) where open ≡-Reasoning f<→< : {n : ℕ } → { x y : Fin n} → x Data.Fin.< y → toℕ x < toℕ y f<→< {_} {zero} {suc y} (s≤s lt) = s≤s z≤n f<→< {_} {suc x} {suc y} (s≤s lt) = s≤s (f<→< {_} {x} {y} lt) f≡→≡ : {n : ℕ } → { x y : Fin n} → x ≡ y → toℕ x ≡ toℕ y f≡→≡ refl = refl open import Data.List open import Relation.Binary.Definitions -- fin-count : { n : ℕ } (q : Fin n) (qs : List (Fin n) ) → ℕ -- fin-count q p[ = 0 -- fin-count q (q0 ∷ qs ) with <-fcmp q q0 -- ... | tri-e = suc (fin-count q qs) -- ... | false = fin-count q qs -- fin-not-dup-in-list : { n : ℕ} (qs : List (Fin n) ) → Set -- fin-not-dup-in-list {n} qs = (q : Fin n) → fin-count q ≤ 1 -- this is far easier -- fin-not-dup-in-list→len<n : { n : ℕ} (qs : List (Fin n) ) → ( (q : Fin n) → fin-not-dup-in-list qs q) → length qs ≤ n -- fin-not-dup-in-list→len<n = ? fin-phase2 : { n : ℕ } (q : Fin n) (qs : List (Fin n) ) → Bool fin-phase2 q [] = false fin-phase2 q (x ∷ qs) with <-fcmp q x ... | tri< a ¬b ¬c = fin-phase2 q qs ... | tri≈ ¬a b ¬c = true ... | tri> ¬a ¬b c = fin-phase2 q qs fin-phase1 : { n : ℕ } (q : Fin n) (qs : List (Fin n) ) → Bool fin-phase1 q [] = false fin-phase1 q (x ∷ qs) with <-fcmp q x ... | tri< a ¬b ¬c = fin-phase1 q qs ... | tri≈ ¬a b ¬c = fin-phase2 q qs ... | tri> ¬a ¬b c = fin-phase1 q qs fin-dup-in-list : { n : ℕ} (q : Fin n) (qs : List (Fin n) ) → Bool fin-dup-in-list {n} q qs = fin-phase1 q qs record FDup-in-list (n : ℕ ) (qs : List (Fin n)) : Set where field dup : Fin n is-dup : fin-dup-in-list dup qs ≡ true list-less : {n : ℕ } → List (Fin (suc n)) → List (Fin n) list-less [] = [] list-less {n} (i ∷ ls) with <-fcmp (fromℕ< a<sa) i ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ i < suc k ) (sym fin<asa) (fin≤n _ ))) ... | tri≈ ¬a b ¬c = list-less ls ... | tri> ¬a ¬b c = x<y→fin-1 c ∷ list-less ls fin010 : {n m : ℕ } {x : Fin n} (c : suc (toℕ x) ≤ toℕ (fromℕ< {m} a<sa) ) → toℕ (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) ≡ toℕ x fin010 {_} {_} {x} c = begin toℕ (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) ≡⟨ toℕ-fromℕ< _ ⟩ toℕ x ∎ where open ≡-Reasoning --- --- if List (Fin n) is longer than n, there is at most one duplication --- fin-dup-in-list>n : {n : ℕ } → (qs : List (Fin n)) → (len> : length qs > n ) → FDup-in-list n qs fin-dup-in-list>n {zero} [] () fin-dup-in-list>n {zero} (() ∷ qs) lt fin-dup-in-list>n {suc n} qs lt = fdup-phase0 where open import Level using ( Level ) -- make a dup from one level below fdup+1 : (qs : List (Fin (suc n))) (i : Fin n) → fin-dup-in-list (fromℕ< a<sa ) qs ≡ false → fin-dup-in-list i (list-less qs) ≡ true → FDup-in-list (suc n) qs fdup+1 qs i ne p = record { dup = fin+1 i ; is-dup = f1-phase1 qs p (case1 ne) } where -- we have two loops on the max element and the current level. The disjuction means the phases may differ. f1-phase2 : (qs : List (Fin (suc n)) ) → fin-phase2 i (list-less qs) ≡ true → (fin-phase1 (fromℕ< a<sa) qs ≡ false ) ∨ (fin-phase2 (fromℕ< a<sa) qs ≡ false) → fin-phase2 (fin+1 i) qs ≡ true f1-phase2 (x ∷ qs) p (case1 q1) with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) f1-phase2 (x ∷ qs) p (case1 q1) | tri≈ ¬a b ¬c with <-fcmp (fin+1 i) x ... | tri< a ¬b ¬c₁ = f1-phase2 qs p (case2 q1) ... | tri≈ ¬a₁ b₁ ¬c₁ = refl ... | tri> ¬a₁ ¬b c = f1-phase2 qs p (case2 q1) -- two fcmp is only different in the size of Fin, but to develop both f1-phase and list-less both fcmps are required f1-phase2 (x ∷ qs) p (case1 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase2 qs p (case1 q1) ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) fin+1-toℕ (sym (toℕ-fromℕ< _)) a )) ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = refl ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) fin+1-toℕ (sym (toℕ-fromℕ< _)) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ = f1-phase2 qs p (case1 q1) f1-phase2 (x ∷ qs) p (case2 q1) with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) f1-phase2 (x ∷ qs) p (case2 q1) | tri≈ ¬a b ¬c with <-fcmp (fin+1 i) x ... | tri< a ¬b ¬c₁ = ⊥-elim ( ¬-bool q1 refl ) ... | tri≈ ¬a₁ b₁ ¬c₁ = refl ... | tri> ¬a₁ ¬b c = ⊥-elim ( ¬-bool q1 refl ) f1-phase2 (x ∷ qs) p (case2 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase2 qs p (case2 q1) ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) fin+1-toℕ (sym (toℕ-fromℕ< _)) a )) ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = refl ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) fin+1-toℕ (sym (toℕ-fromℕ< _)) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ = f1-phase2 qs p (case2 q1 ) f1-phase1 : (qs : List (Fin (suc n)) ) → fin-phase1 i (list-less qs) ≡ true → (fin-phase1 (fromℕ< a<sa) qs ≡ false ) ∨ (fin-phase2 (fromℕ< a<sa) qs ≡ false) → fin-phase1 (fin+1 i) qs ≡ true f1-phase1 (x ∷ qs) p (case1 q1) with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) f1-phase1 (x ∷ qs) p (case1 q1) | tri≈ ¬a b ¬c with <-fcmp (fin+1 i) x ... | tri< a ¬b ¬c₁ = f1-phase1 qs p (case2 q1) ... | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (fdup-10 b b₁) where fdup-10 : fromℕ< a<sa ≡ x → fin+1 i ≡ x → ⊥ fdup-10 eq eq1 = nat-≡< (cong toℕ (trans eq1 (sym eq))) (subst₂ (λ j k → j < k ) (sym fin+1-toℕ) (sym fin<asa) fin<n ) ... | tri> ¬a₁ ¬b c = f1-phase1 qs p (case2 q1) f1-phase1 (x ∷ qs) p (case1 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase1 qs p (case1 q1) ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) fin+1-toℕ (sym (toℕ-fromℕ< _)) a )) ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = f1-phase2 qs p (case1 q1) ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) fin+1-toℕ (sym (toℕ-fromℕ< _)) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ = f1-phase1 qs p (case1 q1) f1-phase1 (x ∷ qs) p (case2 q1) with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) f1-phase1 (x ∷ qs) p (case2 q1) | tri≈ ¬a b ¬c = ⊥-elim ( ¬-bool q1 refl ) f1-phase1 (x ∷ qs) p (case2 q1) | tri> ¬a ¬b c with <-fcmp i (fromℕ< (≤-trans c (fin≤n (fromℕ< a<sa)))) | <-fcmp (fin+1 i) x ... | tri< a ¬b₁ ¬c | tri< a₁ ¬b₂ ¬c₁ = f1-phase1 qs p (case2 q1) ... | tri< a ¬b₁ ¬c | tri≈ ¬a₁ b ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri< a ¬b₁ ¬c | tri> ¬a₁ ¬b₂ c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) (sym fin+1-toℕ) (toℕ-fromℕ< _) a )) ... | tri≈ ¬a₁ b ¬c | tri< a ¬b₁ ¬c₁ = ⊥-elim ( ¬a₁ (subst₂ (λ j k → j < k) fin+1-toℕ (sym (toℕ-fromℕ< _)) a )) ... | tri≈ ¬a₁ b ¬c | tri≈ ¬a₂ b₁ ¬c₁ = f1-phase2 qs p (case2 q1) ... | tri≈ ¬a₁ b ¬c | tri> ¬a₂ ¬b₁ c₁ = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) fin+1-toℕ (sym (toℕ-fromℕ< _)) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri< a ¬b₂ ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri≈ ¬a₂ b ¬c = ⊥-elim ( ¬c (subst₂ (λ j k → j > k) (sym fin+1-toℕ) (toℕ-fromℕ< _) c₁ )) ... | tri> ¬a₁ ¬b₁ c₁ | tri> ¬a₂ ¬b₂ c₂ = f1-phase1 qs p (case2 q1) fdup-phase0 : FDup-in-list (suc n) qs fdup-phase0 with fin-dup-in-list (fromℕ< a<sa) qs | inspect (fin-dup-in-list (fromℕ< a<sa)) qs ... | true | record { eq = eq } = record { dup = fromℕ< a<sa ; is-dup = eq } ... | false | record { eq = ne } = fdup+1 qs (FDup-in-list.dup fdup) ne (FDup-in-list.is-dup fdup) where -- if no dup in the max element, the list without the element is only one length shorter fless : (qs : List (Fin (suc n))) → length qs > suc n → fin-dup-in-list (fromℕ< a<sa) qs ≡ false → n < length (list-less qs) fless qs lt p = fl-phase1 n qs lt p where fl-phase2 : (n1 : ℕ) (qs : List (Fin (suc n))) → length qs > n1 → fin-phase2 (fromℕ< a<sa) qs ≡ false → n1 < length (list-less qs) fl-phase2 zero (x ∷ qs) (s≤s lt) p with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) ... | tri> ¬a ¬b c = s≤s z≤n fl-phase2 (suc n1) (x ∷ qs) (s≤s lt) p with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) ... | tri> ¬a ¬b c = s≤s ( fl-phase2 n1 qs lt p ) fl-phase1 : (n1 : ℕ) (qs : List (Fin (suc n))) → length qs > suc n1 → fin-phase1 (fromℕ< a<sa) qs ≡ false → n1 < length (list-less qs) fl-phase1 zero (x ∷ qs) (s≤s lt) p with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) ... | tri≈ ¬a b ¬c = fl-phase2 0 qs lt p ... | tri> ¬a ¬b c = s≤s z≤n fl-phase1 (suc n1) (x ∷ qs) (s≤s lt) p with <-fcmp (fromℕ< a<sa) x ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (subst (λ k → toℕ x < suc k ) (sym fin<asa) (fin≤n _ ))) ... | tri≈ ¬a b ¬c = fl-phase2 (suc n1) qs lt p ... | tri> ¬a ¬b c = s≤s ( fl-phase1 n1 qs lt p ) -- if the list without the max element is only one length shorter, we can recurse fdup : FDup-in-list n (list-less qs) fdup = fin-dup-in-list>n (list-less qs) (fless qs lt ne)
{ "alphanum_fraction": 0.4784482759, "avg_line_length": 56.8, "ext": "agda", "hexsha": "00718934399ad12be87558781600828b061375f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/fin.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7671, "size": 16472 }
open import Level using (Level; suc; zero; _⊔_) open import Function using (const) open import Algebra open import Algebra.Structures open import Algebra.OrderedMonoid open import Algebra.FunctionProperties as FunctionProperties using (Op₁; Op₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Binary open import Relation.Binary.PartialOrderReasoning as ≤-Reasoning using () module Algebra.Pregroup where -- Definition of the properties of left and right contraction and -- expansion for usage in the below definition of pregroups. module AdjointProperties {a ℓ} {A : Set a} (_≤_ : Rel A ℓ) (_∙_ : Op₂ A) (ε : A) where LeftContract : Op₁ A → Set _ LeftContract _ˡ = ∀ x → (x ˡ ∙ x) ≤ ε LeftExpand : Op₁ A → Set _ LeftExpand _ˡ = ∀ x → ε ≤ (x ∙ x ˡ) RightContract : Op₁ A → Set _ RightContract _ʳ = ∀ x → (x ∙ x ʳ) ≤ ε RightExpand : Op₁ A → Set _ RightExpand _ʳ = ∀ x → ε ≤ (x ʳ ∙ x) -- define shorthand notation for a term being the left/right adjoint -- of another term, which can be proven to be unique. _LeftAdjointOf_ : ∀ y x → Set _ _LeftAdjointOf_ y x = (y ∙ x) ≤ ε × ε ≤ (x ∙ y) _RightAdjointOf_ : ∀ y x → Set _ _RightAdjointOf_ y x = (x ∙ y) ≤ ε × ε ≤ (y ∙ x) -- Definition of a pregroup, which adds a left and a right adjoint to -- an ordered monoid. record IsPregroup {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) (∙ : Op₂ A) (ε : A) (ˡ : Op₁ A) (ʳ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where open AdjointProperties ≤ ∙ ε field isOrderedMonoid : IsOrderedMonoid ≈ ≤ ∙ ε ˡ-cong : ˡ Preserves ≈ ⟶ ≈ ʳ-cong : ʳ Preserves ≈ ⟶ ≈ ˡ-contract : LeftContract ˡ ˡ-expand : LeftExpand ˡ ʳ-contract : RightContract ʳ ʳ-expand : RightExpand ʳ open IsOrderedMonoid isOrderedMonoid public open AdjointProperties ≤ ∙ ε public record Pregroup c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infixl 7 _∙_ infix 4 _≈_ infix 4 _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ _∙_ : Op₂ Carrier _ˡ : Op₁ Carrier _ʳ : Op₁ Carrier ε : Carrier isPregroup : IsPregroup _≈_ _≤_ _∙_ ε _ˡ _ʳ open IsPregroup isPregroup public private -- for usage with ≤-Reasoning poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open ≤-Reasoning poset -- for usage of substitutivity (which is not defined in IsPregroup) orderedMonoid : OrderedMonoid _ _ _ orderedMonoid = record { isOrderedMonoid = isOrderedMonoid } open OrderedMonoid orderedMonoid public using (substitutivity) ˡ-unique : ∀ {x y} → y LeftAdjointOf x → y ≈ x ˡ ˡ-unique {x} {y} (y-contract , y-expand) = antisym y≤xˡ xˡ≤y where y≤xˡ : y ≤ x ˡ y≤xˡ = begin y ≈⟨ sym (proj₂ identity y) ⟩ y ∙ ε ≤⟨ compatibility ≤-refl (ˡ-expand x) ⟩ y ∙ (x ∙ x ˡ) ≈⟨ sym (assoc y x (x ˡ)) ⟩ (y ∙ x) ∙ x ˡ ≤⟨ compatibility y-contract ≤-refl ⟩ ε ∙ x ˡ ≈⟨ proj₁ identity (x ˡ) ⟩ x ˡ ∎ xˡ≤y : x ˡ ≤ y xˡ≤y = begin x ˡ ≈⟨ sym (proj₂ identity (x ˡ)) ⟩ x ˡ ∙ ε ≤⟨ compatibility ≤-refl y-expand ⟩ x ˡ ∙ (x ∙ y) ≈⟨ sym (assoc (x ˡ) x y) ⟩ (x ˡ ∙ x) ∙ y ≤⟨ compatibility (ˡ-contract x) ≤-refl ⟩ ε ∙ y ≈⟨ proj₁ identity y ⟩ y ∎ ʳ-unique : ∀ {x y} → y RightAdjointOf x → y ≈ x ʳ ʳ-unique {x} {y} (y-contract , y-expand) = antisym y≤xʳ xʳ≤y where xʳ≤y : x ʳ ≤ y xʳ≤y = begin x ʳ ≈⟨ sym (proj₁ identity (x ʳ)) ⟩ ε ∙ x ʳ ≤⟨ compatibility y-expand ≤-refl ⟩ (y ∙ x) ∙ x ʳ ≈⟨ assoc y x (x ʳ) ⟩ y ∙ (x ∙ x ʳ) ≤⟨ compatibility ≤-refl (ʳ-contract x) ⟩ y ∙ ε ≈⟨ proj₂ identity y ⟩ y ∎ y≤xʳ : y ≤ x ʳ y≤xʳ = begin y ≈⟨ sym (proj₁ identity y) ⟩ ε ∙ y ≤⟨ compatibility (ʳ-expand x) ≤-refl ⟩ (x ʳ ∙ x) ∙ y ≈⟨ assoc (x ʳ) x y ⟩ x ʳ ∙ (x ∙ y) ≤⟨ compatibility ≤-refl y-contract ⟩ x ʳ ∙ ε ≈⟨ proj₂ identity (x ʳ) ⟩ x ʳ ∎ ˡ-identity : ε ˡ ≈ ε ˡ-identity = antisym εˡ≤ε ε≤εˡ where εˡ≤ε : ε ˡ ≤ ε εˡ≤ε = begin ε ˡ ≈⟨ sym (proj₂ identity (ε ˡ)) ⟩ ε ˡ ∙ ε ≤⟨ ˡ-contract ε ⟩ ε ∎ ε≤εˡ : ε ≤ ε ˡ ε≤εˡ = begin ε ≤⟨ ˡ-expand ε ⟩ ε ∙ ε ˡ ≈⟨ proj₁ identity (ε ˡ) ⟩ ε ˡ ∎ ʳ-identity : ε ʳ ≈ ε ʳ-identity = antisym εʳ≤ε ε≤εʳ where εʳ≤ε : ε ʳ ≤ ε εʳ≤ε = begin ε ʳ ≈⟨ sym (proj₁ identity (ε ʳ)) ⟩ ε ∙ ε ʳ ≤⟨ ʳ-contract ε ⟩ ε ∎ ε≤εʳ : ε ≤ ε ʳ ε≤εʳ = begin ε ≤⟨ ʳ-expand ε ⟩ ε ʳ ∙ ε ≈⟨ proj₂ identity (ε ʳ) ⟩ ε ʳ ∎ ˡ-distrib : ∀ x y → y ˡ ∙ x ˡ ≈ (x ∙ y) ˡ ˡ-distrib x y = ˡ-unique ([yˡxˡ][xy]≤ε , ε≤[xy][yˡxˡ]) where [yˡxˡ][xy]≤ε : (y ˡ ∙ x ˡ) ∙ (x ∙ y) ≤ ε [yˡxˡ][xy]≤ε = begin (y ˡ ∙ x ˡ) ∙ (x ∙ y) ≈⟨ sym (assoc (y ˡ ∙ x ˡ) x y) ⟩ ((y ˡ ∙ x ˡ) ∙ x) ∙ y ≈⟨ ∙-cong (assoc (y ˡ) (x ˡ) x) refl ⟩ (y ˡ ∙ (x ˡ ∙ x)) ∙ y ≤⟨ compatibility (compatibility ≤-refl (ˡ-contract x)) ≤-refl ⟩ y ˡ ∙ ε ∙ y ≈⟨ ∙-cong (proj₂ identity (y ˡ)) refl ⟩ y ˡ ∙ y ≤⟨ ˡ-contract y ⟩ ε ∎ ε≤[xy][yˡxˡ] : ε ≤ (x ∙ y) ∙ (y ˡ ∙ x ˡ) ε≤[xy][yˡxˡ] = begin ε ≤⟨ ˡ-expand x ⟩ x ∙ x ˡ ≈⟨ ∙-cong (sym (proj₂ identity x)) refl ⟩ x ∙ ε ∙ x ˡ ≤⟨ compatibility (compatibility ≤-refl (ˡ-expand y)) ≤-refl ⟩ (x ∙ (y ∙ y ˡ) ∙ x ˡ) ≈⟨ ∙-cong (sym (assoc x y (y ˡ))) refl ⟩ ((x ∙ y) ∙ y ˡ) ∙ x ˡ ≈⟨ assoc (x ∙ y) (y ˡ) (x ˡ) ⟩ (x ∙ y) ∙ (y ˡ ∙ x ˡ) ∎ ʳ-distrib : ∀ x y → y ʳ ∙ x ʳ ≈ (x ∙ y) ʳ ʳ-distrib x y = ʳ-unique ([xy][yʳxʳ]≤ε , ε≤[xy][yʳxʳ]) where [xy][yʳxʳ]≤ε : (x ∙ y) ∙ (y ʳ ∙ x ʳ) ≤ ε [xy][yʳxʳ]≤ε = begin (x ∙ y) ∙ (y ʳ ∙ x ʳ) ≈⟨ sym (assoc (x ∙ y) (y ʳ) (x ʳ)) ⟩ ((x ∙ y) ∙ y ʳ) ∙ x ʳ ≈⟨ ∙-cong (assoc x y (y ʳ)) refl ⟩ (x ∙ (y ∙ y ʳ) ∙ x ʳ) ≤⟨ compatibility (compatibility ≤-refl (ʳ-contract y)) ≤-refl ⟩ x ∙ ε ∙ x ʳ ≈⟨ ∙-cong (proj₂ identity x) refl ⟩ x ∙ x ʳ ≤⟨ ʳ-contract x ⟩ ε ∎ ε≤[xy][yʳxʳ] : ε ≤ (y ʳ ∙ x ʳ) ∙ (x ∙ y) ε≤[xy][yʳxʳ] = begin ε ≤⟨ ʳ-expand y ⟩ y ʳ ∙ y ≈⟨ ∙-cong refl (sym (proj₁ identity y)) ⟩ y ʳ ∙ (ε ∙ y) ≤⟨ compatibility ≤-refl (compatibility (ʳ-expand x) ≤-refl) ⟩ y ʳ ∙ ((x ʳ ∙ x) ∙ y) ≈⟨ ∙-cong refl (assoc (x ʳ) x y) ⟩ y ʳ ∙ (x ʳ ∙ (x ∙ y)) ≈⟨ sym (assoc (y ʳ) (x ʳ) (x ∙ y)) ⟩ (y ʳ ∙ x ʳ) ∙ (x ∙ y) ∎ ˡ-contra : ∀ {x y} → x ≤ y → y ˡ ≤ x ˡ ˡ-contra {x} {y} x≤y = begin y ˡ ≈⟨ sym (proj₂ identity (y ˡ)) ⟩ y ˡ ∙ ε ≤⟨ compatibility ≤-refl (ˡ-expand x) ⟩ y ˡ ∙ (x ∙ x ˡ) ≈⟨ sym (assoc (y ˡ) x (x ˡ)) ⟩ (y ˡ ∙ x) ∙ x ˡ ≤⟨ substitutivity x≤y ⟩ (y ˡ ∙ y) ∙ x ˡ ≤⟨ compatibility (ˡ-contract y) ≤-refl ⟩ ε ∙ x ˡ ≈⟨ proj₁ identity (x ˡ) ⟩ x ˡ ∎ ʳ-contra : ∀ {x y} → x ≤ y → y ʳ ≤ x ʳ ʳ-contra {x} {y} x≤y = begin y ʳ ≈⟨ sym (proj₁ identity (y ʳ)) ⟩ ε ∙ y ʳ ≤⟨ compatibility (ʳ-expand x) ≤-refl ⟩ (x ʳ ∙ x) ∙ y ʳ ≤⟨ substitutivity x≤y ⟩ (x ʳ ∙ y) ∙ y ʳ ≈⟨ assoc (x ʳ) y (y ʳ) ⟩ x ʳ ∙ (y ∙ y ʳ) ≤⟨ compatibility ≤-refl (ʳ-contract y) ⟩ x ʳ ∙ ε ≈⟨ proj₂ identity (x ʳ) ⟩ x ʳ ∎ ʳˡ-cancel : ∀ x → x ʳ ˡ ≈ x ʳˡ-cancel x = sym (ˡ-unique (ʳ-contract x , ʳ-expand x)) ˡʳ-cancel : ∀ x → x ˡ ʳ ≈ x ˡʳ-cancel x = sym (ʳ-unique (ˡ-contract x , ˡ-expand x))
{ "alphanum_fraction": 0.4631398482, "avg_line_length": 33.1951219512, "ext": "agda", "hexsha": "37b2806292719dc215f5e6e6d7ad5d17c0f77719", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2cc4f28f23cc369d2582ad065739cabfa46ce799", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/agda-pregroup", "max_forks_repo_path": "Algebra/Pregroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2cc4f28f23cc369d2582ad065739cabfa46ce799", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/agda-pregroup", "max_issues_repo_path": "Algebra/Pregroup.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2cc4f28f23cc369d2582ad065739cabfa46ce799", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/agda-pregroup", "max_stars_repo_path": "Algebra/Pregroup.agda", "max_stars_repo_stars_event_max_datetime": "2017-03-02T01:23:52.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-02T01:23:52.000Z", "num_tokens": 3836, "size": 8166 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types --guardedness #-} open import Data.Nat open import Data.Vec open import Data.Product open import Data.Sum open import Data.Fin open import Relation.Binary.PropositionalEquality open import Data.Unit open import Data.Bool open import Data.Empty open import Codata.Colist open import Codata.Thunk open import Size open import Examples.Colists.Auxiliary.Colist_member open import Examples.Colists.Auxiliary.MaxOf open import is-lib.InfSys module Examples.Colists.Max where U = ℕ × Colist ℕ ∞ data maxElemRN : Set where max-h max-t : maxElemRN data maxElemCoRN : Set where co-max-h : maxElemCoRN max-h-r : FinMetaRule U max-h-r .Ctx = Σ[ (_ , xs) ∈ ℕ × Thunk (Colist ℕ) ∞ ] xs .force ≡ [] max-h-r .comp ((x , xs) , _) = [] , -------------- (x , x ∷ xs) max-t-r : FinMetaRule U max-t-r .Ctx = Σ[ (x , y , z , _) ∈ ℕ × ℕ × ℕ × Thunk (Colist ℕ) ∞ ] z ≡ max x y max-t-r .comp ((x , y , z , xs) , _) = (x , xs .force) ∷ [] , -------------- (z , y ∷ xs) co-max-h-r : FinMetaRule U co-max-h-r .Ctx = ℕ × Thunk (Colist ℕ) ∞ co-max-h-r .comp (x , xs) = [] , -------------- (x , x ∷ xs) maxElemIS : IS U maxElemIS .Names = maxElemRN maxElemIS .rules max-h = from max-h-r maxElemIS .rules max-t = from max-t-r maxElemCoIS : IS U maxElemCoIS .Names = maxElemCoRN maxElemCoIS .rules co-max-h = from co-max-h-r _maxElem_ : ℕ → Colist ℕ ∞ → Set x maxElem xs = FCoInd⟦ maxElemIS , maxElemCoIS ⟧ (x , xs) _maxElemᵢ_ : ℕ → Colist ℕ ∞ → Set x maxElemᵢ xs = Ind⟦ maxElemIS ∪ maxElemCoIS ⟧ (x , xs) maxSpec inSpec geqSpec : U → Set inSpec (x , xs) = x ∈ xs geqSpec (x , xs) = ∀{n} → n ∈ xs → x ≡ max x n maxSpec u = inSpec u × geqSpec u maxElemSound-in-ind : ∀{x xs} → x maxElemᵢ xs → inSpec (x , xs) maxElemSound-in-ind (fold (inj₁ max-h , _ , refl , _)) = here maxElemSound-in-ind (fold (inj₁ max-t , (_ , eq) , refl , prem)) with max-refl-eq eq maxElemSound-in-ind (fold (inj₁ max-t , (_ , eq) , refl , prem)) | inj₁ refl = there (maxElemSound-in-ind (prem zero)) maxElemSound-in-ind (fold (inj₁ max-t , (_ , eq) , refl , prem)) | inj₂ refl = here maxElemSound-in-ind (fold (inj₂ co-max-h , _ , refl , _)) = here maxElemSound-in : ∀{x xs} → x maxElem xs → inSpec (x , xs) maxElemSound-in max = maxElemSound-in-ind (fcoind-to-ind max) maxElemSound-gr : ∀{x xs} → x maxElem xs → geqSpec (x , xs) maxElemSound-gr max here with max .CoInd⟦_⟧.unfold maxElemSound-gr max here | max-h , _ , refl , _ = max-self maxElemSound-gr max here | max-t , ((_ , eq) , _) , refl , _ with max-refl-eq eq ... | inj₁ refl = eq ... | inj₂ refl = max-self maxElemSound-gr max (there mem) with max .CoInd⟦_⟧.unfold maxElemSound-gr max (there mem) | max-h , ((_ , eq) , _) , refl , _ = ⊥-elim (mem-abs mem eq) maxElemSound-gr max (there mem) | max-t , ((_ , eq) , _) , refl , pr with max-refl-eq eq ... | inj₁ refl = maxElemSound-gr (pr zero) mem ... | inj₂ refl = let rec = maxElemSound-gr (pr zero) mem in max-trans rec (max-comm eq) maxElemSound : ∀{x xs} → x maxElem xs → maxSpec (x , xs) maxElemSound max = maxElemSound-in max , maxElemSound-gr max maxSpecBounded : ∀{x xs} → inSpec (x , xs) → geqSpec (x , xs) → x maxElemᵢ xs maxSpecBounded here _ = apply-ind (inj₂ co-max-h) _ λ () maxSpecBounded (there mem) gr = apply-ind (inj₁ max-t) (_ , gr here) λ{zero → maxSpecBounded mem λ m → gr (there m)} postulate old-max : ∀{n x y xs ys} → Thunk.force xs ≡ (y ∷ ys) → maxSpec (n , (x ∷ xs)) → Σ[ m ∈ ℕ ] maxSpec (m , (y ∷ ys)) maxSpecCons : ∀{x xs} → inSpec (x , xs) → geqSpec (x , xs) → ISF[ maxElemIS ] maxSpec (x , xs) maxSpecCons {x} {x ∷ xs} here gr with xs .force | inspect (λ t → t .force) xs maxSpecCons {x} {x ∷ xs} here gr | [] | [ eq ] = max-h , (_ , eq) , refl , λ () maxSpecCons {x} {x ∷ xs} here gr | _ ∷ _ | [ eq ] = let old , mem , gr' = old-max eq (here , gr) in let mem-xs = subst (λ xs → old ∈ xs) (sym eq) mem in max-t , (_ , max-comm (gr (there mem-xs))) , refl , λ{zero → mem-xs , λ m → gr' (subst (λ xs → _ ∈ xs) eq m)} maxSpecCons {x} {.(_ ∷ _)} (there mem) gr = max-t , (_ , gr here) , refl , λ{zero → mem , λ m → gr (there m)} maxElemComplete : ∀{x xs} → maxSpec (x , xs) → x maxElem xs maxElemComplete = bounded-coind[ maxElemIS , maxElemCoIS ] maxSpec (λ{(x , xs) → maxSpecBounded x xs}) λ{(x , xs) → maxSpecCons x xs}
{ "alphanum_fraction": 0.5857485291, "avg_line_length": 37.6147540984, "ext": "agda", "hexsha": "f2479bdb9e134cca8567b6d07c01612a3c5db120", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "LcicC/inference-systems-agda", "max_forks_repo_path": "Examples/Colists/Max.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "LcicC/inference-systems-agda", "max_issues_repo_path": "Examples/Colists/Max.agda", "max_line_length": 120, "max_stars_count": 3, "max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "LcicC/inference-systems-agda", "max_stars_repo_path": "Examples/Colists/Max.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z", "num_tokens": 1658, "size": 4589 }
------------------------------------------------------------------------ -- A stream equality universe ------------------------------------------------------------------------ module Stream.Equality where open import Codata.Musical.Notation open import Stream hiding (_⋎_) open import Stream.Programs open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.Vec using (Vec; []; _∷_) infixr 5 _≺_ infix 3 _≃_ _≅_ _≊_ _∎ infixr 2 _≊⟨_⟩_ _≡⟨_⟩_ mutual _≊_ : ∀ {A} (xs ys : Prog A) → Set1 xs ≊ ys = ⟦ xs ⟧ ≅ ⟦ ys ⟧ data _≅_ {A} : (xs ys : Stream A) → Set1 where _≺_ : ∀ {x y xs ys} (x≡ : x ≡ y) (xs≈ : ∞ (♭ xs ≅ ♭ ys)) → x ≺ xs ≅ y ≺ ys _≊⟨_⟩_ : ∀ xs {ys zs} (xs≈ys : ⟦ xs ⟧ ≅ ys) (ys≈zs : ys ≅ zs) → ⟦ xs ⟧ ≅ zs _≡⟨_⟩_ : ∀ xs {ys zs} (xs≡ys : ⟦ xs ⟧ ≡ ys) (ys≈zs : ys ≅ zs) → ⟦ xs ⟧ ≅ zs ≅-sym : ∀ {xs ys} (xs≈ys : xs ≅ ys) → ys ≅ xs ·-cong : ∀ {B} (f : B → A) xs ys (xs≈ys : xs ≊ ys) → f · xs ≊ f · ys ⟨_⟩-cong : ∀ {B C} (_∙_ : B → C → A) xs xs′ (xs≈xs′ : xs ≊ xs′) ys ys′ (ys≈ys′ : ys ≊ ys′) → xs ⟨ _∙_ ⟩ ys ≊ xs′ ⟨ _∙_ ⟩ ys′ ⋎-cong : ∀ xs xs′ (xs≈xs′ : xs ≊ xs′) ys ys′ (ys≈ys′ : ys ≊ ys′) → xs ⋎ ys ≊ xs′ ⋎ ys′ ≺≺-cong : ∀ {n} (xs xs′ : Vec A n) (xs≡xs′ : xs ≡ xs′) ys ys′ (ys≈ys′ : ys ≊ ys′) → xs ≺≺ ys ≊ xs′ ≺≺ ys′ data _≃_ {A} : (xs ys : Stream A) → Set1 where _≺_ : ∀ {x y xs ys} (x≡ : x ≡ y) (xs≈ : ♭ xs ≅ ♭ ys) → x ≺ xs ≃ y ≺ ys ≅⇒≃ : ∀ {A} {xs ys : Stream A} → xs ≅ ys → xs ≃ ys ≅⇒≃ (x≡ ≺ xs≈) = x≡ ≺ ♭ xs≈ ≅⇒≃ (xs ≊⟨ xs≈ys ⟩ ys≈zs) with whnf xs | ≅⇒≃ xs≈ys | ≅⇒≃ ys≈zs ≅⇒≃ (xs ≊⟨ xs≈ys ⟩ ys≈zs) | x ≺ xs′ | x≡y ≺ xs≈ys′ | y≡z ≺ ys≈zs′ = trans x≡y y≡z ≺ (xs′ ≊⟨ xs≈ys′ ⟩ ys≈zs′) ≅⇒≃ (xs ≡⟨ refl ⟩ ys≈zs) = ≅⇒≃ ys≈zs ≅⇒≃ (≅-sym xs≈ys) with ≅⇒≃ xs≈ys ≅⇒≃ (≅-sym xs≈ys) | x≡y ≺ xs≈ys′ = sym x≡y ≺ ≅-sym xs≈ys′ ≅⇒≃ (·-cong f xs ys xs≈ys) with whnf xs | whnf ys | ≅⇒≃ xs≈ys ≅⇒≃ (·-cong f xs ys xs≈ys) | x ≺ xs′ | y ≺ ys′ | x≡y ≺ xs≈ys′ = cong f x≡y ≺ ·-cong f xs′ ys′ xs≈ys′ ≅⇒≃ (⟨ ∙ ⟩-cong xs xs′ xs≈xs′ ys ys′ ys≈ys′) with whnf xs | whnf xs′ | ≅⇒≃ xs≈xs′ | whnf ys | whnf ys′ | ≅⇒≃ ys≈ys′ ≅⇒≃ (⟨ ∙ ⟩-cong xs xs′ xs≈xs′ ys ys′ ys≈ys′) | _ ≺ txs | _ ≺ txs′ | x≡y ≺ txs≈txs′ | _ ≺ tys | _ ≺ tys′ | x≡y′ ≺ tys≈tys′ = cong₂ ∙ x≡y x≡y′ ≺ ⟨ ∙ ⟩-cong txs txs′ txs≈txs′ tys tys′ tys≈tys′ ≅⇒≃ (⋎-cong xs xs′ xs≈xs′ ys ys′ ys≈ys′) with whnf xs | whnf xs′ | ≅⇒≃ xs≈xs′ ≅⇒≃ (⋎-cong xs xs′ xs≈xs′ ys ys′ ys≈ys′) | _ ≺ txs | _ ≺ txs′ | x≡y ≺ txs≈txs′ = x≡y ≺ ⋎-cong ys ys′ ys≈ys′ txs txs′ txs≈txs′ ≅⇒≃ (≺≺-cong [] [] refl ys ys′ ys≈ys′) = ≅⇒≃ ys≈ys′ ≅⇒≃ (≺≺-cong (x ∷ xs) .(_ ∷ _) refl ys ys′ ys≈ys′) = refl ≺ ≺≺-cong xs xs refl ys ys′ ys≈ys′ mutual ≃⇒≈ : ∀ {A} {xs ys : Stream A} → xs ≃ ys → xs ≈ ys ≃⇒≈ (refl ≺ xs≈) = refl ≺ ♯ ≅⇒≈ xs≈ ≅⇒≈ : ∀ {A} {xs ys : Stream A} → xs ≅ ys → xs ≈ ys ≅⇒≈ xs≈ = ≃⇒≈ (≅⇒≃ xs≈) ≊⇒≈ : ∀ {A} {xs ys : Prog A} → xs ≊ ys → ⟦ xs ⟧ ≈ ⟦ ys ⟧ ≊⇒≈ = ≅⇒≈ ≈⇒≅ : ∀ {A} {xs ys : Stream A} → xs ≈ ys → xs ≅ ys ≈⇒≅ (refl ≺ xs≈) = refl ≺ ♯ ≈⇒≅ (♭ xs≈) _∎ : ∀ {A} (xs : Prog A) → xs ≊ xs xs ∎ = ≈⇒≅ (Setoid.refl (Stream.setoid _)) ≊-η : ∀ {A} (xs : Prog A) → xs ≊ headP xs ≺ ♯ tailP xs ≊-η xs with whnf xs ≊-η xs | x ≺ xs′ = refl ≺ ♯ (xs′ ∎)
{ "alphanum_fraction": 0.3421450151, "avg_line_length": 38.5631067961, "ext": "agda", "hexsha": "b25970043ba1439b501a70c3e612e90b7d48ca69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Stream/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Stream/Equality.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Stream/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1991, "size": 3972 }
module sbconst2 where open import Level renaming ( suc to succ ; zero to Zero ) open import Data.Nat open import Data.Fin open import Data.List open import automaton open import nfa open import logic open NAutomaton open Automaton open import Relation.Binary.PropositionalEquality hiding ( [_] ) open Bool δconv : { Q : Set } { Σ : Set } → ( ( Q → Bool ) → Bool ) → ( nδ : Q → Σ → Q → Bool ) → (f : Q → Bool) → (i : Σ) → (Q → Bool) δconv {Q} { Σ} exists nδ f i q = exists ( λ r → f r /\ nδ r i q ) subset-construction : { Q : Set } { Σ : Set } → ( ( Q → Bool ) → Bool ) → (NAutomaton Q Σ ) → (Automaton (Q → Bool) Σ ) subset-construction {Q} { Σ} exists NFA = record { δ = λ q x → δconv exists ( Nδ NFA ) q x ; aend = λ f → exists ( λ q → f q /\ Nend NFA q ) } test4 = subset-construction existsS1 am2 test51 = accept test4 start1 ( i0 ∷ i1 ∷ i0 ∷ [] ) test61 = accept test4 start1 ( i1 ∷ i1 ∷ i1 ∷ [] ) subset-construction-lemma→ : { Q : Set } { Σ : Set } → (exists : ( Q → Bool ) → Bool ) → (NFA : NAutomaton Q Σ ) → (astart : Q → Bool ) → (x : List Σ) → Naccept NFA exists astart x ≡ true → accept ( subset-construction exists NFA ) astart x ≡ true subset-construction-lemma→ {Q} {Σ} exists NFA astart x naccept = lemma1 x astart naccept where lemma1 : (x : List Σ) → ( states : Q → Bool ) → Naccept NFA exists states x ≡ true → accept ( subset-construction exists NFA ) states x ≡ true lemma1 [] states naccept = naccept lemma1 (h ∷ t ) states naccept = lemma1 t (δconv exists (Nδ NFA) states h) naccept subset-construction-lemma← : { Q : Set } { Σ : Set } → (exists : ( Q → Bool ) → Bool ) → (NFA : NAutomaton Q Σ ) → (astart : Q → Bool ) → (x : List Σ) → accept ( subset-construction exists NFA ) astart x ≡ true → Naccept NFA exists astart x ≡ true subset-construction-lemma← {Q} {Σ} exists NFA astart x saccept = lemma2 x astart saccept where lemma2 : (x : List Σ) → ( states : Q → Bool ) → accept ( subset-construction exists NFA ) states x ≡ true → Naccept NFA exists states x ≡ true lemma2 [] states saccept = saccept lemma2 (h ∷ t ) states saccept = lemma2 t (δconv exists (Nδ NFA) states h) saccept
{ "alphanum_fraction": 0.5997352162, "avg_line_length": 40.4642857143, "ext": "agda", "hexsha": "d0918b929c485657077be8602d90e41040604ae7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/sbconst2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/sbconst2.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/sbconst2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 798, "size": 2266 }
{-# OPTIONS --without-K #-} module function where open import function.core public open import function.overloading public open import function.isomorphism public open import function.extensionality public open import function.fibration public
{ "alphanum_fraction": 0.8285714286, "avg_line_length": 27.2222222222, "ext": "agda", "hexsha": "9e773336d04e0abed8939d70d29b286a4cf69ad5", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "function.agda", "max_line_length": 42, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 45, "size": 245 }
{-# OPTIONS --copatterns #-} {-# IMPORT Ex4Haskell #-} {-# IMPORT System.IO #-} module Ex4 where -- Conor: 8/20 {- I'm sorry I haven't quite finished setting this exercise yet, but by the joy of version control, the rest of it can be merged in later (quite soon). At least you can get cracking: I promise not to break anything, just to add a bit more on the end. The deadline for this is Friday of Week 12 (11 Dec). It'd be good to get the marks in before Christmas, but if the end of term is looking deadlinetastic, please open negotiations. UPDATE: I had to work around a bug in Agda to get this finished, so it took longer than I had hoped. I apologise, and will be flexible with deadlines, consequently. Also, I had to tweak the setup for cp a little, asking you to abstract out your definition of the FinalState of cp. I need to refer to it in the later code. That may cause a wee merge conflict, easily rectified with cut and paste. -} open import CS410-Prelude open import CS410-Indexed {- data List (X : Set) : Set where -- X scopes over the whole declaration... [] : List X -- ...so you can use it here... _::_ : X -> List X -> List X -- ...and here. infixr 3 _::_ {-# BUILTIN BOOL Two #-} {-# BUILTIN TRUE tt #-} {-# BUILTIN FALSE ff #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} {-# COMPILED_DATA List [] [] (:) #-} postulate -- this means that we just suppose the following things exist... Char : Set String : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} primitive -- these are baked in; they even work! primCharEquality : Char -> Char -> Two primStringAppend : String -> String -> String primStringToList : String -> List Char primStringFromList : List Char -> String -} --------------------------------------------------------------------------- -- WRITING FILES, AN INTERFACE --------------------------------------------------------------------------- {- If you possess the ability to open a file for writing, you might have the following interface. -} -- States data WriteState : Set where opened closed : WriteState -- do you currently have a file open or not? -- Commands data WriteC : WriteState -> Set where openWrite : (fileName : String) -> WriteC closed writeChar : Char -> WriteC opened closeWrite : WriteC opened -- Responses WriteR : (j : WriteState)(c : WriteC j) -> Set WriteR .closed (openWrite fileName) = WriteState -- we get told whether it worked WriteR .opened (writeChar x) = One -- always works WriteR .opened closeWrite = One -- always works {- 4.1 Implement the following operation which determines the next state. You should ensure that you can write characters only to a successfully opened file, and that you can write as many as you want. It should also be possible to insist that a process closes its file. -} -- Conor: 1/1 writeNext : (j : WriteState)(c : WriteC j) -> WriteR j c -> WriteState writeNext .closed (openWrite fileName) r = r writeNext .opened (writeChar x) r = opened writeNext .opened closeWrite r = closed -- the file writing interface, assembled as an indexed container WRITE : WriteState => WriteState WRITE = WriteC <! WriteR / writeNext --------------------------------------------------------------------------- -- READING FILES, AN INTERFACE --------------------------------------------------------------------------- {- To read from a file, it should be open, and you shouldn't be at the end of it. -} -- States data ReadState : Set where opened : (eof : Two) -> ReadState -- eof is tt if we're at end of file closed : ReadState {- 4.2 Finish the READ implementation, in accordance with the description. -} -- Conor: 2.5/3 -- Commands data ReadC : ReadState -> Set where openRead : (fileName : String) -> ReadC closed -- needs a filename; might not open successfully; -- might open an empty file readChar : ReadC (opened ff) -- makes sense only if we're not at end of file -- and might take us to end of file closeRead : (eof : Two) -> ReadC (opened eof) -- makes sense only if the file is open -- Responses ReadR : (j : ReadState)(c : ReadC j) -> Set ReadR .closed (openRead fileName) = ReadState ReadR .(opened ff) readChar = Two -- Conor: the character read should also be given ReadR .(opened eof) (closeRead eof) = One -- next State; you need to make sure the response gives enough info readNext : (j : ReadState)(c : ReadC j) -> ReadR j c -> ReadState readNext .closed (openRead fileName) r = r readNext .(opened ff) readChar r = opened r readNext .(opened eof) (closeRead eof) r = closed READ : ReadState => ReadState READ = ReadC <! ReadR / readNext --------------------------------------------------------------------------- -- COMBINING TWO INTERFACES WITH SHARED STATE --------------------------------------------------------------------------- {- 4.3 Let's suppose we have two command-response interfaces which offer different functionality for the same system. Correspondingly, we'll have two indexed containers for the same index set. Show that you can combine them into one indexed container which lets you choose a command from either menu and evolves the state as specified by whichever interface offered the chosen command. -} -- Conor: 1/1 _=+=_ : {I : Set} -> I => I -> I => I -> I => I (Shape <! Position / index) =+= (Shape1 <! Position1 / index1) = (Shape +: Shape1) <! (λ j → λ {(inl x) → Position j x; (inr x) -> Position1 j x }) / (λ j → \{(inl x) → index j x ; (inr x) -> index1 j x}) -- {!λ {(inl x) Position → index j x Position ;(inl x) Position → index1 j x Position1 }!}) --_=+=_ : {I : Set} -> I => I -> I => I -> I => I --(Shape <! Position / index) =+= (Shape1 <! Position1 / index1) -- = (Shape +: Shape1) <! -- (λ j → λ {(inl x) → Position j x; (inr x) -> Position1 j x }) / -- (λ j x y → {! λ {?}!}) -- --(λ j x y → {!λ {(inl x) y → index j x y ;(inl x) y → index1 j x y }!}) --record _=>_ (I J : Set) : Set1 where -- constructor _<!_/_ -- field -- Shape : J -> Set -- Position : (j : J) -> Shape j -> Set -- index : (j : J)(s : Shape j) -> Position j s -> I --------------------------------------------------------------------------- -- WHEN IGNORANCE IS BLISS, BIS --------------------------------------------------------------------------- {- 4.4 If we have a command-response interface with index I representing states of the system, show that we can index basically the same commands and responses over a state, I * J, where the J is just useless information which never changes. (This operation isn't super-useful on its own, but it's handy in combination with other things. -} -- Conor: 2/2 GrowR : {I J : Set} -> I => I -> (I * J) => (I * J) GrowR (Shape <! Position / index) = (λ z → Shape (fst z)) <! (λ j z → Position (fst j) z ) / (λ j s x → index (fst j) s x , snd j) -- do the same for "growing the index on the left" GrowL : {I J : Set} -> I => I -> (J * I) => (J * I) GrowL (Shape <! Position / index) = (λ z → Shape (snd z)) <! (λ j z → Position (snd j) z) / (λ j s x → fst j , index (snd j) s x) --------------------------------------------------------------------------- -- COMBINING TWO INTERFACES WITH SEPARATE STATE --------------------------------------------------------------------------- {- 4.5 Making use of 4.3 and 4.4, show how to combine two interfaces which operate independently on separate state: commands from one should not affect the state of the other. -} -- Conor: 1/1 _<+>_ : {I0 I1 : Set} -> I0 => I0 -> I1 => I1 -> (I0 * I1) => (I0 * I1) CRn0 <+> CRn1 = GrowR CRn0 =+= GrowL CRn1 --------------------------------------------------------------------------- -- ERROR REPORTING, AN INTERFACE --------------------------------------------------------------------------- {- I'm building the next bit for you. When things go wrong, we need to trigger an error condition and abort mission. However, if we have other stuff going on (open files, etc), it may not always be ok to drop everything and run away. There will be some states in which it is safe to escape (and deliver a suitable error message, perhaps) and other states in which escape should be impossible. If it is safe to issue an error message, we should be able to do so without fear of any response from the environment that would oblige us to carry on. -} data ErrorC {I : Set}(SafeMessage : I -> Set)(i : I) : Set where error : SafeMessage i -> ErrorC SafeMessage i -- the SafeMessage parameter tells us what is an acceptable -- error message in any given state; in states where this gives -- Zero, it will be impossible to trigger an error! ErrorR : {I : Set}{SafeMessage : I -> Set}(i : I)(c : ErrorC SafeMessage i) -> Set ErrorR _ _ = Zero -- there's no comeback errorNext : {I : Set}{SafeMessage : I -> Set} (i : I)(c : ErrorC SafeMessage i) -> ErrorR i c -> I errorNext i c () -- so we don't have to say how the state will evolve ERROR : {I : Set}(SafeMessage : I -> Set) -> I => I ERROR SafeMessage = ErrorC SafeMessage <! ErrorR / errorNext --------------------------------------------------------------------------- -- COPY A FILE --------------------------------------------------------------------------- {- 4.6 Implement a process which, given access to suitable interfaces, will give the process for copying a named source file to a named target file. This goes in two phases. -} {- 4.6.1 Firstly, you should identify the command-reponse interface within which you need to work. You will need to be able to read and write files, but also to signal errors (in case a file fails to open for some reason). You must ensure that it is impossible for any process using your interface to escape with an error leaving a file open. You must also make it possible to guarantee that your copying process will, error or not, leave all files closed. -} -- Conor: 0.5/1 CPState : Set CPState = ReadState * WriteState CPInterface : CPState => CPState CPInterface = (READ <+> WRITE) -- Conor: good start but, yes --ERROR -- Conor: is the question {- ReadState WriteState -} {- 4.6.2 Secondly, you should implement your copying process, working to your interface. -} -- Conor: 0/3 FinalState : CPState -> Set FinalState c = {!!} cp : (sourceFile targetFile : String) -> IterIx CPInterface FinalState {!!} cp sourceFile targetFile = {!!} {- HINTS You will certainly need to build some extra bits and pieces. You have the components for reading, writing and error handling, and suitable kit with which to combine them. Reading and writing don't interfere with each other, but it's important to make sure that you can't bomb out with an error, so some shared state seems important. There are really two phases to the process: (1) getting the files open -- this may go wrong (2) copying from one to the other -- this will work if we reach it You might want to split these phases apart. -} --------------------------------------------------------------- -- TO BE CONTINUED... --------------------------------------------------------------- -- The rest of the exercise is to fill selected gaps in code that -- gets your cp process to the stage where it actually compiles. -- Agda version 2.4.2.4 is needed t compile the "copatterns" involved -- in the code, but you should be able to complete the exercise -- without upgrading, if you are currently using an earlier version. -- It is only the business of generating a standalone executable that -- needs the upgrade. Still, it'd be nice to see it go, wouldn't it? -- The key is to build a device driver between your carefully -- designed command-response system and "scripts" built from -- low-level Haskell commands, maintaining the file handles -- involved as you go. -- Then you'll need to explain how to run the low-level script. --------------------------------------------------------------- -- What's a Device Driver? (My bit. Do read.) --------------------------------------------------------------- open _=>_ public Driver : {I J : Set} -- I is "high-level state" ; J, "low" (Sync : I -> J -> Set) -- when are states "in sync"? (Hi : I => I) -- high-level command-response system (Lo : J => J) -- low-level command-response system -> Set Driver {I}{J} Sync Hi Lo = forall i j -> Sync i j -> -- whenever we're in sync, (c : Shape Hi i) -> -- we can take a high-level command Sg (Shape Lo j) \ c' -> -- and give the low-level version, (r' : Position Lo j c') -> -- then take the low-level response Sg (Position Hi i c) \ r -> -- and give the high-level version, Sync (index Hi i c r) (index Lo j c' r') -- and stay in sync! drive : forall {I J}{Sync : I -> J -> Set} {Hi : I => I}{Lo : J => J} (D : Driver Sync Hi Lo) {X : I -> Set} (i : I)(j : J) (ij : Sync i j) -> -- if we're in sync and have IC Hi X i -> -- a high-level way to get an X IC Lo (\ j -> Sg I \ i -> Sync i j * X i) j -- then we have a low-level plan to -- stay in sync and get an X drive D i j ij (c , k) = let x = D i j ij c ; c' = fst x ; D' = snd x in c' , \ r' -> -- issue low-level command c', get response r' let y = D' r' ; r = fst y ; s = snd y in _ , s , k r -- choose sync state from driver, call continuation --------------------------------------------------------------- -- SCRIPTING COMMANDS (your bit) --------------------------------------------------------------- {- 4.7 Complete the definition of the command response system for scripting commands built from another command response system, C. A scripted command is a whole strategy for interacting with C, the way you can write shell scripts which give strategies for issuing commands at a terminal. Your job is to give the type for responses (which should pack up all the responses to the commands) and compute the next state (which should be the state the system reaches when the script stops). Then you should construct the function which translates one SCRIPT C interaction to many C interactions. That's to say, implement the "script interpreter". -} -- Conor: 0/2 SCRIPT : forall {I} -> (I => I) -> (I => I) SCRIPT {I} C = FreeIx C (\ _ -> One) <! ScriptR / ScriptN where ScriptR : (i : I) -> FreeIx C (\ _ -> One) i -> Set ScriptR i cs = {!!} ScriptN : (i : I)(c : FreeIx C (\ _ -> One) i) -> ScriptR i c -> I ScriptN i cs rs = {!!} unscript : forall {I}{X : I -> Set}(C : I => I) -> [ IC (SCRIPT C) X -:> FreeIx C X ] unscript {I}{X} C (c , k) = help c k where help : {i : I}(c : FreeIx C (\ _ -> One) i) (k : (p : Position (SCRIPT C) i c) -> X (index (SCRIPT C) i c p)) -> FreeIx C X i help cs k = {!!} --------------------------------------------------------------- -- An Interface to Haskell IO (also my bit) --------------------------------------------------------------- -- an Agda Maybe-type which connects to Haskell's data Maybe (X : Set) : Set where yes : X -> Maybe X no : Maybe X {-# COMPILED_DATA Maybe Maybe Just Nothing #-} -- an Agda Either-type which connects to Haskell's data Either (S T : Set) : Set where left : S -> Either S T right : T -> Either S T {-# COMPILED_DATA Either Either Left Right #-} -- a copy of Haskell's file access more datatype data IOMode : Set where readMode writeMode appendMode readWriteMode : IOMode {-# COMPILED_DATA IOMode System.IO.IOMode System.IO.ReadMode System.IO.WriteMode System.IO.AppendMode System.IO.ReadWriteMode #-} -- Haskell's file handles imported abstractly postulate Handle : Set {-# COMPILED_TYPE Handle System.IO.Handle #-} -- The Low-Level Haskell Command-Response System. Please use wisely. data HaskellIOCommand : Set where hOpen : String -> IOMode -> HaskellIOCommand hClose hIsEOF hGetChar : Handle -> HaskellIOCommand hPutChar : Handle -> Char -> HaskellIOCommand hError : String -> HaskellIOCommand HaskellIOResponse : HaskellIOCommand -> Set HaskellIOResponse (hOpen f m) = Maybe Handle HaskellIOResponse (hClose h) = One HaskellIOResponse (hIsEOF h) = Two HaskellIOResponse (hGetChar h) = Char HaskellIOResponse (hPutChar h c) = One HaskellIOResponse (hError e) = Zero HASKELLIO : One => One HASKELLIO = (\ _ -> HaskellIOCommand) <! (\ _ -> HaskellIOResponse) / _ postulate -- Haskell has a monad for doing IO, which we use at the top level IO : Set -> Set return : {A : Set} -> A -> IO A _>>=_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B hOpenIO : String -> IOMode -> IO (Maybe Handle) hCloseIO : Handle -> IO One hIsEOFIO : Handle -> IO Two hGetCharIO : Handle -> IO Char hPutCharIO : Handle -> Char -> IO One hErrorIO : {X : Set} -> String -> IO X mainLoop : {S : Set} -> (S -> Either String (IO S)) -> (String -> String -> S) -> IO One infixl 1 _>>=_ {-# BUILTIN IO IO #-} {-# COMPILED_TYPE IO IO #-} {-# COMPILED return (\ _ -> return) #-} {-# COMPILED _>>=_ (\ _ _ -> (>>=)) #-} {-# COMPILED hOpenIO Ex4Haskell.hOpenIO #-} {-# COMPILED hCloseIO Ex4Haskell.hCloseIO #-} {-# COMPILED hIsEOFIO Ex4Haskell.hIsEOFIO #-} {-# COMPILED hGetCharIO Ex4Haskell.hGetCharIO #-} {-# COMPILED hPutCharIO Ex4Haskell.hPutCharIO #-} {-# COMPILED hErrorIO (\ _ -> Ex4Haskell.hErrorIO) #-} {-# COMPILED mainLoop (\ _ -> Ex4Haskell.mainLoop) #-} -- We explain how to do one command. doHaskellCommand : (c : HaskellIOCommand) -> IO (HaskellIOResponse c) doHaskellCommand (hOpen n m) = hOpenIO n m doHaskellCommand (hClose h) = hCloseIO h doHaskellCommand (hIsEOF h) = hIsEOFIO h doHaskellCommand (hGetChar h) = hGetCharIO h doHaskellCommand (hPutChar h c) = hPutCharIO h c doHaskellCommand (hError e) = hErrorIO e -- We need a MONAD MORPHISM to translate our HASKELLIO monad to -- Haskell's IO Monad. A monad morphism is a function between monads -- which respects return and >>=. Every monad morphism from a FREE -- monad is given by explaining how to do one command. haskellIO : forall {X} -> FreeIx HASKELLIO (\ _ -> X) <> -> IO X haskellIO (ret x) = return x haskellIO (do (c , k)) = doHaskellCommand c >>= \ v -> haskellIO (k v) --------------------------------------------------------------- -- The Driver (your bit) --------------------------------------------------------------- -- Due to an annoying bug in Agda (which I reported and which has -- been fixed in the head version), I had to resort to making -- a rubbish version of One, called Dull. postulate Dull : Set -- it's a unit type dull : Dull -- see? it has one thing in it? -- you can't pattern match on it -- For read and write states, we can say which handles we need to -- know. We should know handles only when files are open. RH : ReadState -> Set RH (opened eof) = Handle RH closed = Dull WH : WriteState -> Set WH opened = Handle WH closed = Dull {- 4.8 Define the appropriate notion of Sync for your notion of CPState. It should be a collection of the handles appropriate for the files currently open, built using RH and WH. Then build the driver, carefully. Remember, when reading, to check the end-of-file status as required. -} -- Conor: 0/4 HANDLES : CPState -> One -> Set HANDLES cps = {!!} haskellDriver : Driver HANDLES CPInterface (SCRIPT HASKELLIO) haskellDriver i j s c = {!!} --------------------------------------------------------------- -- Putting it all together --------------------------------------------------------------- -- A concrete STATE is some CPState for which we have -- (i) the right handles, and -- (ii) a plan for how to make progress with copying. STATE : Set STATE = Sg CPState \ i -> HANDLES i <> * IterIx CPInterface FinalState i {- 4.9 For your chosen final state, you need to explain how to issue a message signalling successful completion. The empty string will do, but perhaps you want more. -} -- Conor: 0/1 finalMessage : (i : CPState) -> FinalState i -> String finalMessage i x = {!!} -- Now, in each state, we will either discover we're done, or -- we'll learn the next bunch of Haskell commands to do. runCP : STATE -> Either String (IO STATE) runCP (i , h , cp) with force cp runCP (i , h , cp) | ret x = left (finalMessage i x) runCP (i , h , cp) | do c = right (haskellIO (unscript HASKELLIO (drive haskellDriver {IterIx CPInterface FinalState} i <> h c))) {- 4.10 To complete the main program, fill in the starting CPState and its associated handle information. -} -- Conor: 0/1 main : IO One main = mainLoop runCP \ src trg -> {!!} , {!!} , cp src trg -- Now, to compile this (using Agda 2.4.2.4), grab a terminal and -- issue the command -- -- agda --compile Ex4.agda -- -- and if you're very lucky, you should be able to issue commands -- -- ./Ex4 <sourceFile> <targetFile> -- -- Be careful not to overwrite your homework. -- -- PS if in doubt about Agda versions, try -- -- agda -V
{ "alphanum_fraction": 0.5914346499, "avg_line_length": 37.5381944444, "ext": "agda", "hexsha": "96683a1f1f1bffd507c341c50d6540f682cf8b32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Ex4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Ex4.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Ex4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5715, "size": 21622 }
------------------------------------------------------------------------------ -- The gcd program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the gcd program using -- the Euclid's algorithm. module LTC-PCF.Program.GCD.Total.CorrectnessProof where open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Type open import LTC-PCF.Program.GCD.Total.CommonDivisor using ( gcdCD ) open import LTC-PCF.Program.GCD.Total.Definitions using ( gcdSpec ) open import LTC-PCF.Program.GCD.Total.Divisible using ( gcdDivisible ) open import LTC-PCF.Program.GCD.Total.GCD using ( gcd ) ------------------------------------------------------------------------------ -- The gcd is correct. gcdCorrect : ∀ {m n} → N m → N n → gcdSpec m n (gcd m n) gcdCorrect Nm Nn = gcdCD Nm Nn , gcdDivisible Nm Nn
{ "alphanum_fraction": 0.5335249042, "avg_line_length": 40.1538461538, "ext": "agda", "hexsha": "e937f8c198b881b716544700e07e70dc2439222f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Total/CorrectnessProof.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Total/CorrectnessProof.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Total/CorrectnessProof.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 220, "size": 1044 }
-- When checking pattern coverage we might end up having to split -- on a dot pattern (if the individual clauses split differently). -- This is fine as long as the dot pattern is on constructor form. module SplitOnDotPattern where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : forall {n} -> A -> Vec A n -> Vec A (suc n) rev : forall {A n m} -> Vec A n -> Vec A m -> Vec A m rev [] ys = ys rev {n = suc n} (x :: xs) ys = ys
{ "alphanum_fraction": 0.6003824092, "avg_line_length": 27.5263157895, "ext": "agda", "hexsha": "dac619dcb574855b41fd7f95e76b413ee8f8deb3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/SplitOnDotPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/SplitOnDotPattern.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/SplitOnDotPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 156, "size": 523 }
{-# OPTIONS --safe #-} module Issue2487-3 where import Issue2487.B
{ "alphanum_fraction": 0.7058823529, "avg_line_length": 13.6, "ext": "agda", "hexsha": "c120b5fae470da4822ddfee47a9130ff30b1fc8e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2487-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2487-3.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2487-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 19, "size": 68 }
{-# OPTIONS --without-K #-} module Common.Unit where open import Agda.Builtin.Unit public renaming (⊤ to Unit; tt to unit)
{ "alphanum_fraction": 0.712, "avg_line_length": 20.8333333333, "ext": "agda", "hexsha": "a34f955cb3f5e14160d33d7a6128ffdc5ca486f9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Common/Unit.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Common/Unit.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Common/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 31, "size": 125 }
-- Andreas, 2017-03-01 issue #2480, reported by nad, discovered by simonhu -- Exploit by Jesper Cockx -- {-# OPTIONS -v tc.lhs.split:60 #-} open import Agda.Builtin.Equality data Bool : Set where tt ff : Bool const : Bool → (Bool → Bool) const = λ x _ → x ap : {A : Set} {B : Set} (f : A → B) {a b : A} (p : a ≡ b) → f a ≡ f b ap f refl = refl mutual -- Type of constant boolean functions, using @UnusedArg@ Bool→cBool : Set Bool→cBool = _ accepted : (p : const tt ≡ const ff) → ap (λ f → f tt) p ≡ ap (λ f → f ff) p accepted p = refl {x = ap {A = Bool→cBool} (λ f → f tt) p} constant : (f : Bool→cBool) (x y : Bool) → f x ≡ f y constant f x y = refl swap : Bool→cBool swap tt = ff swap ff = tt -- swap is definitely not constant, should be rejected BOOM : tt ≡ ff BOOM = constant swap ff tt
{ "alphanum_fraction": 0.6081081081, "avg_line_length": 23.2571428571, "ext": "agda", "hexsha": "4e52b42c49dcdea0d70e3cf214bcf710bef0be9c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2480false.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2480false.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2480false.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 299, "size": 814 }
-- Andreas, 2014-05-02 -- Epic issue by Nisse and Andrea Vezzosi record R : Set₁ where field A : Set postulate X : R x : R.A X Y : R Y = X record S : Set where field G : R.A Y -- Works if Y is replaced by X. s : S s = record { G = x } -- This crashed epic with an internal error. -- Expected behavior now: crash because main is missing.
{ "alphanum_fraction": 0.6232686981, "avg_line_length": 14.44, "ext": "agda", "hexsha": "a03001c95db306a1ddca393eb6bde015a03bf5a3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue1117.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue1117.agda", "max_line_length": 56, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue1117.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 119, "size": 361 }
{-# OPTIONS --safe #-} module Cubical.Categories.Abelian.Instances.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Categories.Abelian.Base open import Cubical.Categories.Additive.Instances.Terminal open import Cubical.Data.Unit private variable ℓ : Level private open PreAbCategory open PreAbCategoryStr terminalPreAbCategory : PreAbCategory ℓ ℓ PreAbCategory.additive terminalPreAbCategory = terminalAdditiveCategory Kernel.k (hasKernels (preAbStr terminalPreAbCategory) f) = tt* Kernel.ker (hasKernels (preAbStr terminalPreAbCategory) f) = refl IsKernel.ker⋆f (Kernel.isKer (hasKernels (preAbStr terminalPreAbCategory) f)) = refl IsKernel.univ (Kernel.isKer (hasKernels (preAbStr terminalPreAbCategory) f)) = λ _ _ _ → (refl , refl) , λ _ → refl Cokernel.c (hasCokernels (preAbStr terminalPreAbCategory) f) = tt* Cokernel.coker (hasCokernels (preAbStr terminalPreAbCategory) f) = refl IsCokernel.f⋆coker (Cokernel.isCoker (hasCokernels (preAbStr terminalPreAbCategory) f)) = refl IsCokernel.univ (Cokernel.isCoker (hasCokernels (preAbStr terminalPreAbCategory) f)) = λ _ _ _ → (refl , refl) , λ _ → refl open AbelianCategory open AbelianCategoryStr terminalAbelianCategory : AbelianCategory ℓ ℓ preAb terminalAbelianCategory = terminalPreAbCategory fst (monNormal (abelianStr terminalAbelianCategory) m _) = tt* fst (snd (monNormal (abelianStr terminalAbelianCategory) m _)) = m IsKernel.ker⋆f (snd (snd (monNormal (abelianStr terminalAbelianCategory) m _))) = refl IsKernel.univ (snd (snd (monNormal (abelianStr terminalAbelianCategory) m _))) = λ _ _ _ → (refl , refl) , (λ _ → refl) fst (epiNormal (abelianStr terminalAbelianCategory) e _) = tt* fst (snd (epiNormal (abelianStr terminalAbelianCategory) e _)) = e IsCokernel.f⋆coker (snd (snd (epiNormal (abelianStr terminalAbelianCategory) e _))) = refl IsCokernel.univ (snd (snd (epiNormal (abelianStr terminalAbelianCategory) e _))) = λ _ _ _ → (refl , refl) , (λ _ → refl)
{ "alphanum_fraction": 0.768, "avg_line_length": 42.5531914894, "ext": "agda", "hexsha": "b897f2df2abdb50ca0dfe32bf0a296834b10cdb3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Abelian/Instances/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Abelian/Instances/Terminal.agda", "max_line_length": 125, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Abelian/Instances/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 631, "size": 2000 }
{-# OPTIONS --safe --warning=error #-} open import Sets.EquivalenceRelations open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω) open import Setoids.Setoids open import Groups.Definition open import LogicalFormulae open import Orders.WellFounded.Definition open import Numbers.Naturals.Semiring open import Groups.Lemmas module Groups.FreeProduct.Group {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) {a b : _} {A : I → Set a} {S : (i : I) → Setoid {a} {b} (A i)} {_+_ : (i : I) → (A i) → (A i) → A i} (decidableGroups : (i : I) → (x y : A i) → ((Setoid._∼_ (S i) x y)) || ((Setoid._∼_ (S i) x y) → False)) (G : (i : I) → Group (S i) (_+_ i)) where open import Groups.FreeProduct.Definition decidableIndex decidableGroups G open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G open import Groups.FreeProduct.Addition decidableIndex decidableGroups G private plus'WDlemm : {i : I} (x1 x2 : ReducedSequenceBeginningWith i) (y : ReducedSequence) → (=RP' x1 x2) → plus' x1 y =RP plus' x2 y plus'WDlemm (ofEmpty i g nonZero) (ofEmpty .i g₁ nonZero₁) y x1=x2 with decidableIndex i i plus'WDlemm (ofEmpty i g nonZero) (ofEmpty .i h nonZero2) y x1=x2 | inl refl = prependWD g h nonZero nonZero2 y x1=x2 plus'WDlemm (prependLetter i g nonZero {j} x1 x) (prependLetter .i h nonZero2 {j2} x2 pr) y x1=x2 with decidableIndex i i ... | inl refl with decidableIndex j j2 plus'WDlemm (prependLetter i g nonZero {j} x1 x) (prependLetter .i h nonZero2 {.j} x2 pr) y x1=x2 | inl refl | inl refl = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend i g nonZero (plus' x1 y)} {prepend i h nonZero2 (plus' x1 y)} {plus' (prependLetter i h nonZero2 x2 pr) y} (prependWD g h nonZero nonZero2 (plus' x1 y) (_&&_.fst x1=x2)) (prependWD' h nonZero2 (plus' x1 y) (plus' x2 y) (plus'WDlemm x1 x2 y (_&&_.snd x1=x2))) ... | inr j!=j2 = exFalso (notEqualIfStartDifferent j!=j2 x1 x2 (_&&_.snd x1=x2)) plus'WDlemm _ _ _ _ | inr bad = exFalso (bad refl) plus'WD : {i j : I} (x1 : ReducedSequenceBeginningWith i) (x2 : ReducedSequenceBeginningWith j) (y : ReducedSequence) → (=RP' x1 x2) → plus' x1 y =RP plus' x2 y plus'WD {i} {j} x1 x2 y x1=x2 with decidableIndex i j plus'WD {i} {.i} x1 x2 y x1=x2 | inl refl = plus'WDlemm x1 x2 y x1=x2 plus'WD {i} {j} x1 x2 y x1=x2 | inr x = exFalso (notEqualIfStartDifferent x x1 x2 x1=x2) plusWD : (m n o p : ReducedSequence) → (m =RP o) → (n =RP p) → (m +RP n) =RP (o +RP p) plusWD empty empty empty empty m=o n=p = record {} plusWD empty (nonempty i x) empty (nonempty i₁ x₁) m=o n=p = n=p plusWD (nonempty i x) empty (nonempty j y) empty m=o record {} = Equivalence.transitive (Setoid.eq freeProductSetoid) {plus' x empty} {nonempty i x} {plus' y empty} (plusEmptyRight x) (Equivalence.transitive (Setoid.eq freeProductSetoid) {nonempty i x} {nonempty j y} {plus' y empty} m=o (Equivalence.symmetric (Setoid.eq freeProductSetoid) {plus' y empty} {nonempty j y} (plusEmptyRight y))) plusWD (nonempty i1 x1) (nonempty i2 x2) (nonempty i3 x3) (nonempty i4 x4) m=o n=p = (Equivalence.transitive (Setoid.eq freeProductSetoid)) {plus' x1 (nonempty i2 x2)} {plus' x3 (nonempty i2 x2)} {plus' x3 (nonempty i4 x4)} (plus'WD x1 x3 (nonempty i2 x2) m=o) (plus'WD' x3 (nonempty i2 x2) (nonempty i4 x4) n=p) prependAssocLemma' : {i : I} {g : A i} .(nz : Setoid._∼_ (S i) g (Group.0G (G i)) → False) (b c : ReducedSequence) → (prepend i g nz b +RP c) =RP prepend i g nz (b +RP c) prependAssocLemma' {i} {g} nz empty c = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ c} prependAssocLemma' {i} nz (nonempty k x) c with decidableIndex i k prependAssocLemma' {.k} {g1} nz (nonempty k (ofEmpty .k g nonZero)) c | inl refl with decidableGroups k ((k + g1) g) (Group.0G (G k)) prependAssocLemma' {.k} {g1} nz (nonempty k (ofEmpty .k g nonZero)) c | inl refl | inl eq1 = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend k g1 _ (prepend k g _ c)} {c} (prependFrom' g1 g eq1 c nz nonZero) prependAssocLemma' {.k} {g1} nz (nonempty k (ofEmpty .k g nonZero)) c | inl refl | inr neq1 = (prependFrom g1 g neq1 c nz nonZero) prependAssocLemma' {.k} {g1} nz (nonempty k (prependLetter .k g nonZero x x₁)) c | inl refl with decidableGroups k ((k + g1) g) (Group.0G (G k)) prependAssocLemma' {.k} {g1} nz (nonempty k (prependLetter .k g nonZero x x₁)) c | inl refl | inl eq1 = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend k g1 _ (prepend k g _ (plus' x c))} {plus' x c} (prependFrom' g1 g eq1 (plus' x c) nz nonZero) prependAssocLemma' {.k} {g1} nz (nonempty k (prependLetter .k g nonZero x x₁)) c | inl refl | inr neq1 = prependFrom g1 g neq1 (plus' x c) nz nonZero prependAssocLemma' {i} {g} nz (nonempty k x) c | inr i!=k = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ (plus' x c)} plusAssocLemma : {i : I} (x : ReducedSequenceBeginningWith i) (b c : ReducedSequence) → (plus' x b +RP c) =RP plus' x (b +RP c) plusAssocLemma (ofEmpty i g nonZero) empty c = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ c} plusAssocLemma (ofEmpty i g nonZero) (nonempty j b) c with decidableIndex i j plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i g₁ nonZero₁)) c | inl refl with decidableIndex i i plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i h nonZero₁)) c | inl refl | inl refl with decidableGroups i ((i + g) h) (Group.0G (G i)) plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i h nonZero₁)) c | inl refl | inl refl | inl t = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend i g _ (prepend i h _ c)} {c} (prependFrom' g h t c _ _) plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i h nonZero₁)) c | inl refl | inl refl | inr t = prependFrom g h t c _ _ plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (ofEmpty .i g₁ nonZero₁)) c | inl refl | inr bad = exFalso (bad refl) plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (prependLetter .i h nonZero₁ b x)) c | inl refl with decidableGroups i ((i + g) h) (Group.0G (G i)) plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (prependLetter .i h nonZero₁ b x)) c | inl refl | inl eq1 = Equivalence.symmetric (Setoid.eq freeProductSetoid) {prepend i g _ (prepend i h _ (plus' b c))} {plus' b c} (prependFrom' g h eq1 (plus' b c) _ _) plusAssocLemma (ofEmpty i g nonZero) (nonempty .i (prependLetter .i h nonZero₁ b x)) c | inl refl | inr neq1 = prependFrom g h neq1 (plus' b c) nonZero _ plusAssocLemma (ofEmpty i g nonZero) (nonempty j b) c | inr i!=j = Equivalence.reflexive (Setoid.eq freeProductSetoid) {prepend i g _ (plus' b c)} plusAssocLemma (prependLetter i g nonZero {j} w i!=j) b c = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend i g _ (plus' w b) +RP c} {prepend i g _ (plus' w b +RP c)} {prepend i g _ (plus' w (b +RP c))} (prependAssocLemma' nonZero (plus' w b) c) (prependWD' g nonZero (plus' w b +RP c) (plus' w (b +RP c)) (plusAssocLemma w b c)) plusAssoc : (a b c : ReducedSequence) → ((a +RP b) +RP c) =RP (a +RP (b +RP c)) plusAssoc empty b c = Equivalence.reflexive (Setoid.eq freeProductSetoid) {b +RP c} plusAssoc (nonempty i x) b c = plusAssocLemma x b c private inv' : {i : I} (x : ReducedSequenceBeginningWith i) → ReducedSequence inv' (ofEmpty i g nonZero) = nonempty i (ofEmpty i (Group.inverse (G i) g) (λ pr → nonZero (Equivalence.transitive (Setoid.eq (S i)) (swapInv (G i) pr) (invIdent (G i))))) inv' (prependLetter i g nonZero {j} w i!=j) = (inv' w) +RP injection (Group.inverse (G i) g) (λ pr → nonZero (Equivalence.transitive (Setoid.eq (S i)) (swapInv (G i) pr) (invIdent (G i)))) inv : (x : ReducedSequence) → ReducedSequence inv empty = empty inv (nonempty i w) = inv' w private abstract lemma1 : {i j k : I} (i!=j : (i ≡ j) → False) (g : A i) (h : A j) (w : ReducedSequenceBeginningWith k) (j!=k : (j ≡ k) → False) → .(pr : _) .(pr2 : _) .(pr3 : _) → (prepend i (Group.inverse (G i) g) pr (nonempty i (prependLetter i g pr2 (prependLetter j h pr3 w j!=k) i!=j))) =RP nonempty j (prependLetter j h pr3 w j!=k) lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 with decidableIndex i i ... | inr x = exFalso (x refl) lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i)) ... | inr bad = exFalso (bad (Group.invLeft (G i))) lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 | inl refl | inl eq1 with decidableIndex j j ... | inr bad = exFalso (bad refl) ... | inl refl = Equivalence.reflexive (Setoid.eq (S j)) ,, =RP'reflex r abstract lemma2 : {j k : I} (j!=k : (j ≡ k) → False) (h : A j) (w : ReducedSequenceBeginningWith k) .(pr : _) .(pr2 : _) → (prepend j (Group.inverse (G j) h) pr (nonempty j (prependLetter j h pr2 w j!=k))) =RP (nonempty k w) lemma2 {j} {k} j!=k h r pr pr2 with decidableIndex j j ... | inr bad = exFalso (bad refl) lemma2 {j} {k} j!=k h r pr pr2 | inl refl with decidableGroups j ((j + Group.inverse (G j) h) h) (Group.0G (G j)) ... | inr bad = exFalso (bad (Group.invLeft (G j))) ... | inl x = =RP'reflex r abstract unpeel : (k : ReducedSequence) {j : I} (g : A j) .(pr : _) .(pr2 : _) → k =RP empty → (prepend j g pr (k +RP (nonempty j (ofEmpty j (Group.inverse (G j) g) pr2)))) =RP empty unpeel empty {j} g pr pr2 x with decidableIndex j j ... | inr bad = exFalso (bad refl) unpeel empty {j} g pr pr2 x | inl refl with decidableGroups j ((j + g) (Group.inverse (G j) g)) (Group.0G (G j)) ... | inl _ = record {} ... | inr bad = exFalso (bad (Group.invRight (G j))) abstract invRight' : {i : I} (x : ReducedSequenceBeginningWith i) → ((nonempty i x) +RP inv (nonempty i x)) =RP empty invRight' {i} (ofEmpty _ g nonZero) with decidableIndex i i ... | inr x = exFalso (x refl) invRight' {i} (ofEmpty _ g nonZero) | inl refl with decidableGroups i ((i + g) (Group.inverse (G i) g)) (Group.0G (G i)) ... | inr x = exFalso (x (Group.invRight (G i))) ... | inl x = record {} invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) with decidableIndex k j ... | inl x = exFalso (j!=k (equalityCommutative x)) invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ with decidableIndex k k ... | inr x = exFalso (x refl) invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl with decidableGroups k ((k + h) (Group.inverse (G k) h)) (Group.0G (G k)) ... | inr x = exFalso (x (Group.invRight (G k))) invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl | inl _ with decidableIndex j j ... | inr x = exFalso (x refl) invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl | inl _ | inl refl with decidableGroups j ((j + g) (Group.inverse (G j) g)) (Group.0G (G j)) ... | inr bad = exFalso (bad (Group.invRight (G j))) ... | inl r = record {} invRight' {j} (prependLetter _ g nonZero {k} (prependLetter .k h nonZero1 {i} x k!=i) j!=k) rewrite refl {x = 0} = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend j g _ (prepend k h _ (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _))))} {prepend j g nonZero (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t)))) +RP (nonempty j (ofEmpty j (Group.inverse (G j) g) λ t → nonZero (invZeroImpliesZero (G j) t))))} {empty} (prependWD' g nonZero (prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t → nonZero (invZeroImpliesZero (G j) t))))) (prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ i → nonZero (invZeroImpliesZero (G j) i))) (Equivalence.symmetric (Setoid.eq freeProductSetoid) {(prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _))} {prepend k h _ (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _)))} t)) (unpeel (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)))) g nonZero (λ t → nonZero (invZeroImpliesZero (G j) t)) (Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t))))} {prepend k h nonZero1 ((plus' x (inv' x)) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t)))} {empty} (prependWD' h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t)))) (plus' x (inv' x) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t))) (Equivalence.symmetric (Setoid.eq freeProductSetoid) {plus' x (inv' x) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G k) t))} (plusAssoc (nonempty _ x) (inv' x) (nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t → nonZero1 (invZeroImpliesZero (G k) t))))))) (unpeel (plus' x (inv' x)) h nonZero1 (λ t → nonZero1 (invZeroImpliesZero (G k) t)) (invRight' x)))) where t : (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t → nonZero1 (invZeroImpliesZero (G _) t))))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t → nonZero (invZeroImpliesZero (G j) t)))) =RP (prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t → nonZero1 (invZeroImpliesZero (G _) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t → nonZero (invZeroImpliesZero (G j) t)))))) t = Equivalence.transitive (Setoid.eq freeProductSetoid) {(prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t → nonZero1 (invZeroImpliesZero (G _) t))))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t → nonZero (invZeroImpliesZero (G j) t))))} {prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t → nonZero (invZeroImpliesZero (G _) t)))} {(prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t → nonZero1 (invZeroImpliesZero (G _) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t → nonZero (invZeroImpliesZero (G j) t))))))} (prependAssocLemma' {k} {h} nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _))) (nonempty j (ofEmpty j (Group.inverse (G j) g) _))) (prependWD' h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t → nonZero (invZeroImpliesZero (G _) t))) (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t → nonZero (invZeroImpliesZero (G _) t)))) (plusAssocLemma x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t → nonZero1 (invZeroImpliesZero (G _) t))) (nonempty j (ofEmpty j (Group.inverse (G j) g) λ t → nonZero (invZeroImpliesZero (G _) t))))) abstract invRight : (x : ReducedSequence) → (x +RP (inv x)) =RP empty invRight empty = record {} invRight (nonempty i w) = invRight' {i} w abstract invLeft' : {i : I} (x : ReducedSequenceBeginningWith i) → (inv (nonempty i x) +RP (nonempty i x)) =RP empty invLeft' {i} (ofEmpty .i g nonZero) with decidableIndex i i invLeft' {i} (ofEmpty .i g nonZero) | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i)) ... | inl good = record {} ... | inr bad = exFalso (bad (Group.invLeft (G i) {g})) invLeft' {i} (ofEmpty .i g nonZero) | inr x = exFalso (x refl) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) with decidableIndex j i ... | inl pr = exFalso (i!=j (equalityCommutative pr)) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr with decidableIndex i i invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i)) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inl k with decidableIndex j j invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl with decidableGroups j ((j + Group.inverse (G j) h) h) (Group.0G (G j)) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl | inl good = record {} invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl | inr bad = exFalso (bad (Group.invLeft (G j))) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inl k | inr bad = exFalso (bad refl) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inr k = exFalso (k (Group.invLeft (G i) {g})) invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inr bad = exFalso (bad refl) invLeft' {i} (prependLetter .i g nonZero {.j} (prependLetter j h nonZero1 {k} w x) i!=j) = Equivalence.transitive (Setoid.eq freeProductSetoid) {(((inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP nonempty i (ofEmpty i (Group.inverse (G i) g) _)) +RP nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))} {_} {empty} (plusAssoc (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty i (ofEmpty i (Group.inverse (G i) g) _)) (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))) (Equivalence.transitive (Setoid.eq freeProductSetoid) {((inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP (prepend i (Group.inverse (G i) g) _ (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))))} {(inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP (nonempty j (prependLetter j h nonZero1 w x))} {empty} (plusWD (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (prepend i (Group.inverse (G i) g) _ (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))) (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty j (prependLetter j h _ w x)) (Equivalence.reflexive (Setoid.eq freeProductSetoid) {inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)}) (lemma1 {i} {j} {k} i!=j g h w x (λ p → nonZero (invZeroImpliesZero (G i) p)) nonZero nonZero1)) (Equivalence.transitive (Setoid.eq freeProductSetoid) {(inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP nonempty j (prependLetter j h _ w x)} {inv' w +RP (nonempty j (ofEmpty j (Group.inverse (G j) h) λ p → nonZero1 (invZeroImpliesZero (G j) p)) +RP nonempty j (prependLetter j h nonZero1 w x))} {empty} (plusAssoc (inv' w) (nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty j (prependLetter j h _ w x))) (Equivalence.transitive (Setoid.eq freeProductSetoid) {inv' w +RP (prepend j (Group.inverse (G j) h) _ (nonempty j (prependLetter j h nonZero1 w x)))} {inv' w +RP (nonempty k w)} {empty} (plusWD (inv' w) (prepend j (Group.inverse (G j) h) _ (nonempty j (prependLetter j h nonZero1 w x))) (inv' w) (nonempty k w) (Equivalence.reflexive (Setoid.eq freeProductSetoid) {inv' w}) (lemma2 {j} {k} x h w (λ p → nonZero1 (invZeroImpliesZero (G j) p)) nonZero1)) (invLeft' {k} w)))) abstract invLeft : (x : ReducedSequence) → ((inv x) +RP x) =RP empty invLeft empty = record {} invLeft (nonempty i w) = invLeft' {i} w FreeProductGroup : Group freeProductSetoid _+RP_ Group.+WellDefined FreeProductGroup {m} {n} {x} {y} m=x n=y = plusWD m n x y m=x n=y Group.0G FreeProductGroup = empty Group.inverse FreeProductGroup = inv Group.+Associative FreeProductGroup {a} {b} {c} = Equivalence.symmetric (Setoid.eq freeProductSetoid) {(a +RP b) +RP c} {a +RP (b +RP c)} (plusAssoc a b c) Group.identRight FreeProductGroup {empty} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {empty} Group.identRight FreeProductGroup {nonempty i x} rewrite refl {x = 0} = plusEmptyRight x Group.identLeft FreeProductGroup {empty} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {empty} Group.identLeft FreeProductGroup {nonempty i x} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {nonempty i x} Group.invLeft FreeProductGroup {x} = invLeft x Group.invRight FreeProductGroup {x} = invRight x
{ "alphanum_fraction": 0.6586936958, "avg_line_length": 124.9289940828, "ext": "agda", "hexsha": "ec90a32d5e8b011008311b3feaec2a30d980795a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FreeProduct/Group.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FreeProduct/Group.agda", "max_line_length": 2521, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FreeProduct/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 7774, "size": 21113 }
------------------------------------------------------------------------------ -- Conversion rules for the greatest common divisor ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.GCD.Total.ConversionRules where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Program.GCD.Total.GCD ------------------------------------------------------------------------------ private -- Before to prove some properties for the gcd it is convenient to -- descompose the behavior of the function step by step. -- Initially, we define the possible states (gcd-s₁, gcd-s₂, -- ...). Then we write down the proof for the execution step from -- the state p to the state q, e.g. -- -- proof₂₋₃ : ∀ m n → gcd-s₂ m n → gcd-s₃ m n. -- The functions gcd-00, gcd-S0, gcd-0S, gcd-Sm>Sn and gcd-Sm≯Sn -- show the use of the states gcd-s₁, gcd-s₂, ..., and the proofs -- associated with the execution steps. ---------------------------------------------------------------------------- -- The steps -- Initially, the conversion rule fix-eq is applied. gcd-s₁ : D → D → D gcd-s₁ m n = gcdh (fix gcdh) · m · n -- First argument application. gcd-s₂ : D → D gcd-s₂ m = lam (λ n → if (iszero₁ n) then m else (if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m)))) -- Second argument application. gcd-s₃ : D → D → D gcd-s₃ m n = if (iszero₁ n) then m else (if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m))) -- First if_then_else_ iszero₁ n = b. gcd-s₄ : D → D → D → D gcd-s₄ m n b = if b then m else (if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m))) -- First if_then_else_ when if true ... gcd-s₅ : D → D gcd-s₅ m = m -- First if_then_else_ when if false ... gcd-s₆ : D → D → D gcd-s₆ m n = if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m)) -- Second if_then_else_ iszero₁ m = b. gcd-s₇ : D → D → D → D gcd-s₇ m n b = if b then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m)) -- Second if_then_else_ when if false ... gcd-s₈ : D → D → D gcd-s₈ m n = if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m) -- Third if_then_else_ gt m n = b. gcd-s₉ : D → D → D → D gcd-s₉ m n b = if b then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m) ---------------------------------------------------------------------------- -- Congruence properties gcd-s₉Cong₃ : ∀ {m n b b'} → b ≡ b' → gcd-s₉ m n b ≡ gcd-s₉ m n b' gcd-s₉Cong₃ refl = refl ---------------------------------------------------------------------------- -- The execution steps {- To prove the execution steps, e.g. proof₃₋₄ : ∀ m n → gcd-s₃ m n → gcd_s₄ m n, we usually need to prove that C [m] ≡ C [n] (1) given that m ≡ n, (2) where (2) is a conversion rule usually. We prove (1) using subst : ∀ {x y} (D : A → Set) → x ≡ y → P x → P y where • P is given by λ m → C [m ] ≡ C [n], • x ≡ y is given n ≡ m (actually, we use sym (m ≡ n)) and • P x is given by C [n] ≡ C [n] (i.e. refl). -} proof₀₋₁ : ∀ m n → fix gcdh · m · n ≡ gcd-s₁ m n proof₀₋₁ m n = subst (λ x → x · m · n ≡ gcdh (fix gcdh) · m · n) (sym (fix-eq gcdh)) refl proof₁₋₂ : ∀ m n → gcd-s₁ m n ≡ gcd-s₂ m · n proof₁₋₂ m n = subst (λ x → x · n ≡ gcd-s₂ m · n) (sym (beta gcd-s₂ m)) refl proof₂₋₃ : ∀ m n → gcd-s₂ m · n ≡ gcd-s₃ m n proof₂₋₃ m n = beta (gcd-s₃ m) n -- 25 April 2014. Failed with Andreas' --without-K. proof₃₋₄ : ∀ m n b → iszero₁ n ≡ b → gcd-s₃ m n ≡ gcd-s₄ m n b proof₃₋₄ m n .(iszero₁ n) refl = refl proof₄₊ : ∀ m n → gcd-s₄ m n true ≡ gcd-s₅ m proof₄₊ m _ = if-true (gcd-s₅ m) proof₄₋₆ : ∀ m n → gcd-s₄ m n false ≡ gcd-s₆ m n proof₄₋₆ m n = if-false (gcd-s₆ m n) proof₆₋₇ : ∀ m n b → iszero₁ m ≡ b → gcd-s₆ m n ≡ gcd-s₇ m n b proof₆₋₇ m n .(iszero₁ m) refl = refl proof₇₊ : ∀ m n → gcd-s₇ m n true ≡ n proof₇₊ _ n = if-true n proof₇₋₈ : ∀ m n → gcd-s₇ m n false ≡ gcd-s₈ m n proof₇₋₈ m n = if-false (gcd-s₈ m n) proof₈₋₉ : ∀ m n b → gt m n ≡ b → gcd-s₈ m n ≡ gcd-s₉ m n b proof₈₋₉ m n b = gcd-s₉Cong₃ proof₉₊ : ∀ m n → gcd-s₉ m n true ≡ fix gcdh · (m ∸ n) · n proof₉₊ m n = if-true (fix gcdh · (m ∸ n) · n) proof₉₋ : ∀ m n → gcd-s₉ m n false ≡ fix gcdh · m · (n ∸ m) proof₉₋ m n = if-false (fix gcdh · m · (n ∸ m)) ------------------------------------------------------------------------------ -- The five equations for gcd -- First equation. gcd-00 : gcd zero zero ≡ zero gcd-00 = gcd zero zero ≡⟨ proof₀₋₁ zero zero ⟩ gcd-s₁ zero zero ≡⟨ proof₁₋₂ zero zero ⟩ gcd-s₂ zero · zero ≡⟨ proof₂₋₃ zero zero ⟩ gcd-s₃ zero zero ≡⟨ proof₃₋₄ zero zero true iszero-0 ⟩ gcd-s₄ zero zero true ≡⟨ proof₄₊ zero zero ⟩ zero ∎ -- Second equation. gcd-S0 : ∀ n → gcd (succ₁ n) zero ≡ succ₁ n gcd-S0 n = gcd (succ₁ n) zero ≡⟨ proof₀₋₁ (succ₁ n) zero ⟩ gcd-s₁ (succ₁ n) zero ≡⟨ proof₁₋₂ (succ₁ n) zero ⟩ gcd-s₂ (succ₁ n) · zero ≡⟨ proof₂₋₃ (succ₁ n) zero ⟩ gcd-s₃ (succ₁ n) zero ≡⟨ proof₃₋₄ (succ₁ n) zero true iszero-0 ⟩ gcd-s₄ (succ₁ n) zero true ≡⟨ proof₄₊ (succ₁ n) zero ⟩ succ₁ n ∎ -- Third equation. gcd-0S : ∀ n → gcd zero (succ₁ n) ≡ succ₁ n gcd-0S n = gcd zero (succ₁ n) ≡⟨ proof₀₋₁ zero (succ₁ n) ⟩ gcd-s₁ zero (succ₁ n) ≡⟨ proof₁₋₂ zero (succ₁ n) ⟩ gcd-s₂ zero · (succ₁ n) ≡⟨ proof₂₋₃ zero (succ₁ n) ⟩ gcd-s₃ zero (succ₁ n) ≡⟨ proof₃₋₄ zero (succ₁ n) false (iszero-S n) ⟩ gcd-s₄ zero (succ₁ n) false ≡⟨ proof₄₋₆ zero (succ₁ n) ⟩ gcd-s₆ zero (succ₁ n) ≡⟨ proof₆₋₇ zero (succ₁ n) true iszero-0 ⟩ gcd-s₇ zero (succ₁ n) true ≡⟨ proof₇₊ zero (succ₁ n) ⟩ succ₁ n ∎ -- Fourth equation. gcd-S>S : ∀ m n → succ₁ m > succ₁ n → gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m ∸ succ₁ n) (succ₁ n) gcd-S>S m n Sm>Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ gcd-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ gcd-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ gcd-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ gcd-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₆ (succ₁ m) (succ₁ n) ⟩ gcd-s₆ (succ₁ m) (succ₁ n) ≡⟨ proof₆₋₇ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ gcd-s₇ (succ₁ m) (succ₁ n) false ≡⟨ proof₇₋₈ (succ₁ m) (succ₁ n) ⟩ gcd-s₈ (succ₁ m) (succ₁ n) ≡⟨ proof₈₋₉ (succ₁ m) (succ₁ n) true Sm>Sn ⟩ gcd-s₉ (succ₁ m) (succ₁ n) true ≡⟨ proof₉₊ (succ₁ m) (succ₁ n) ⟩ fix gcdh · (succ₁ m ∸ succ₁ n) · succ₁ n ∎ -- Fifth equation. gcd-S≯S : ∀ m n → succ₁ m ≯ succ₁ n → gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m) (succ₁ n ∸ succ₁ m) gcd-S≯S m n Sm≯Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ gcd-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ gcd-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ gcd-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ gcd-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₆ (succ₁ m) (succ₁ n) ⟩ gcd-s₆ (succ₁ m) (succ₁ n) ≡⟨ proof₆₋₇ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ gcd-s₇ (succ₁ m) (succ₁ n) false ≡⟨ proof₇₋₈ (succ₁ m) (succ₁ n) ⟩ gcd-s₈ (succ₁ m) (succ₁ n) ≡⟨ proof₈₋₉ (succ₁ m) (succ₁ n) false Sm≯Sn ⟩ gcd-s₉ (succ₁ m) (succ₁ n) false ≡⟨ proof₉₋ (succ₁ m) (succ₁ n) ⟩ fix gcdh · succ₁ m · (succ₁ n ∸ succ₁ m) ∎
{ "alphanum_fraction": 0.4755807365, "avg_line_length": 33.8122605364, "ext": "agda", "hexsha": "e2f1f4ccaed30562bc4e17ed94ed2153a16b8b53", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Total/ConversionRules.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Total/ConversionRules.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Total/ConversionRules.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 3406, "size": 8825 }
module sortedLists where open import lib {- we use internal verification to define a datatype of sorted lists of natural numbers, where typing ensures that the lists are truly sorted in non-decreasing order. A list of type (sortedList n) is sorted and guaranteed to have all its data greater than or equal to n; so n is a lower bound on the data in the list. Keeping this lower bound explicit in the type enables us to require a proof of a constant-time check, namely d ≤ n, when insert d into a list with lower-bound n. For cons nodes, we allow the lower-bound to be less than the head of the list. This is needed for merge below. There are three constructors: -- nil, as usual (empty list) -- cons, as usual (build a new list from head and tail) -- weaken, decrease the lower bound (this was missing in my first attempt, which led to nasty problems in the case of merge below) -} data sortedList : ℕ → Set where nil : ∀ (n : ℕ) → sortedList n -- empty lists can have any lower bound you like cons : ∀ (d : ℕ) → -- the head of the list {n : ℕ} → -- the lower-bound for the tail sortedList n → -- the tail of the list, with lower bound n on its data d ≤ n ≡ tt → {- proof that d is less than or equal to that lower bound, and hence less than or equal to all data in the tail -} sortedList d -- d is the lower bound for the new list created by the cons weaken : ∀ (n : ℕ) {n' : ℕ} → sortedList n' → n ≤ n' ≡ tt → sortedList n -- fill in the holes below, just to help you get a feel for how the sortedList datatype works -- [5 points] simple : sortedList 1 simple = weaken 1 (cons 2 (nil 3) refl)refl {- glb stands for greatest lower bound. min d n is the greatest lower bound of d and n, in the sense that if any other d' is a lower bound of both d and n, then it is also a lower bound of min d n. (Ideas from basic lattice theory.) To prove this, you will run into a mess if you case split on d', d, or n. Instead, you should consider cases for whether or not d < n. You can use "with" for this, as discussed in Section 4.3.3 (page 86) of the book. -} -- [10 points] glb : ∀ d' d n → d' ≤ d ≡ tt → d' ≤ n ≡ tt → d' ≤ min d n ≡ tt glb d' d n x y with keep (d < n) ... | tt , p rewrite p = x ... | ff , p rewrite p = y {- insert d xs should insert d into xs as the right position to keep the list sorted. So you will case split on xs (the sortedList), and in the cons case, consider whether the data you are inserting is ≤ the data at the head of the list. I found I needed to use the "with keep" idiom; see Section 4.3.3 (page 90). Another hint: I also needed a few theorems from nat-thms.agda in the IAL: <≤, min-mono2, <ff Note that you can pattern match on implicit arguments, for example for a cons, like this: (cons d' {n} xs x) The {n} is used to match on that implicit lower-bound for the sortedList xs. [15 points] -} insert : ∀ (d : ℕ) → {n : ℕ} → sortedList n → sortedList (min d n) insert d (nil n) with keep ( d < n ) ... | tt , p rewrite p = cons d (nil n) (<≤ {d} p) ... | ff , p rewrite p = weaken n (cons d (nil d) (≤-refl d)) (<ff {d} p) insert d (cons d1 {n} xs x) with keep ( d < d1 ) ... | tt , p rewrite p = cons d ( cons d1 {n} xs x ) ( <≤ {d} {d1} p ) ... | ff , p rewrite p = cons d1 (nil d) (<ff {d} {d1} p ) insert d (weaken d1 {n} xs x) with keep ( d < d1 ) ... | tt , p rewrite p = cons d ( weaken d1 xs x ) ( <≤ {d} p ) ... | ff , p rewrite p = weaken d1 (insert d xs) (glb d1 d n (<ff {d} p) x) {- Write code to merge two sorted lists. I found I needed these lemmas from the IAL: min-<1, min-<2, <ff, <≤ Additionally, I found I could save myself some cases by considering these cases for two input lists: nil and ys xs and nil weaken and ys xs and weaken cons and cons This is just five cases, instead of the nine that would be required if you considered the three cases for the first list simultaneously with the three for the second (3 * 3 gives 9 cases). You will see light gray highlighting on the patterns in the cases if you do this, but that is ok (it is just Agda warning you that you are not breaking out all the cases explicitly). [20 points] -} merge : ∀ {n : ℕ} → sortedList n → {m : ℕ} → sortedList m → sortedList (min n m) merge (nil d) (nil d1) with keep ( d < d1 ) ... | tt , p rewrite p = weaken d (nil d1) (<≤ {d} p) ... | ff , p rewrite p = weaken d1 (nil d) (<ff {d} p) merge (nil d) (cons d1 d1s pd1) with keep ( d < d1 ) ... | tt , p rewrite p = weaken d (cons d1 d1s pd1 ) ( <≤ {d} p) ... | ff , p rewrite p = cons d1 d1s pd1 merge ( nil d ) ( weaken d1 d1s pd1 ) with keep ( d < d1 ) ... | tt , p rewrite p = weaken d ( weaken d1 d1s pd1 ) ( <≤ {d} p ) ... | ff , p rewrite p = weaken d1 d1s pd1 merge ( cons d ds pd ) ( nil d1 ) with keep ( d < d1 ) ... | tt , p rewrite p = cons d ds pd ... | ff , p rewrite p = weaken d1 ( cons d ds pd ) ( <ff {d} p ) merge ( cons d {dn} ds pd ) ( cons d1 {d1n} d1s pd1 ) with keep ( d < d1 ) ... | tt , p rewrite p = cons d ( merge ds ( cons d1 d1s pd1 ) ) ( glb d dn d1 pd ( <≤ {d} p ) ) ... | ff , p rewrite p = cons d1 ( merge d1s ( cons d ds pd) ) ( glb d1 d1n d pd1 ( <ff {d} p ) ) merge ( cons d {dn} ds pd ) ( weaken d1 {d1n} d1s pd1 ) with keep ( d < d1 ) ... | tt , p rewrite p = cons d ( merge ds ( weaken d1 d1s pd1 ) ) ( glb d dn d1 pd ( <≤ {d} p ) ) ... | ff , p rewrite p = weaken d1 ( merge d1s ( cons d ds pd ) ) ( glb d1 d1n d pd1 ( <ff {d} p ) ) merge ( weaken d ds pd ) ( nil d1 ) with keep ( d < d1 ) ... | tt , p rewrite p = weaken d ds pd ... | ff , p rewrite p = weaken d1 ( weaken d ds pd ) ( <ff {d} p ) merge ( weaken d {dn} ds pd ) ( cons d1 {d1n} d1s pd1 ) with keep ( d < d1 ) ... | tt , p rewrite p = weaken d ( merge ds ( cons d1 d1s pd1 ) ) ( glb d dn d1 pd ( <≤ {d} p ) ) ... | ff , p rewrite p = cons d1 ( merge d1s ( weaken d ds pd ) ) ( glb d1 d1n d pd1 ( <ff {d} p ) ) merge ( weaken d {dn} ds pd ) ( weaken d1 {d1n} d1s pd1 ) with keep ( d < d1 ) ... | tt , p rewrite p = weaken d ( merge ds ( weaken d1 d1s pd1 ) ) ( glb d dn d1 pd ( <≤ {d} p ) ) ... | ff , p rewrite p = weaken d1 ( merge d1s ( weaken d ds pd ) ) ( glb d1 d1n d pd1 ( <ff {d} p ) )
{ "alphanum_fraction": 0.5939664461, "avg_line_length": 45.7535211268, "ext": "agda", "hexsha": "f212eb188119d0acadae463363780beb15df7180", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2da60d7becdbb809aae20e7a6df6ea509b991c5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout8", "max_forks_repo_path": "sortedLists.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2da60d7becdbb809aae20e7a6df6ea509b991c5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout8", "max_issues_repo_path": "sortedLists.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "c2da60d7becdbb809aae20e7a6df6ea509b991c5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout8", "max_stars_repo_path": "sortedLists.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2112, "size": 6497 }
-- Andreas, 2016-06-01, issue 1997 reported by Andres {-# OPTIONS --rewriting #-} infix 4 _≡_ infixl 6 _+_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x {-# BUILTIN REWRITE _≡_ #-} cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ _+_ : ℕ → ℕ → ℕ zero + m = m suc n + m = suc (n + m) plus0 : (x : ℕ) → x + zero ≡ x plus0 zero = refl plus0 (suc x) = cong suc (plus0 x) {-# REWRITE plus0 #-} {-# REWRITE plus0 #-} -- Should complain about duplicate rewrite rule
{ "alphanum_fraction": 0.5258764608, "avg_line_length": 18.1515151515, "ext": "agda", "hexsha": "e01f9afc9bd9bc35a097c2d07bcc7c2257efe559", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1997.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1997.agda", "max_line_length": 53, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1997.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 247, "size": 599 }
open import Relation.Binary.Core module Mergesort.Impl2.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Function using (_∘_) open import List.Sorted _≤_ open import Mergesort.Impl2 _≤_ tot≤ open import OList _≤_ open import OList.Properties _≤_ theorem-mergesort-sorted : (xs : List A) → Sorted (forget (mergesort xs)) theorem-mergesort-sorted = lemma-olist-sorted ∘ mergesort
{ "alphanum_fraction": 0.6855345912, "avg_line_length": 29.8125, "ext": "agda", "hexsha": "3b4c63dc6a55cdbcdba75f82b296a4a0586389f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Mergesort/Impl2/Correctness/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Mergesort/Impl2/Correctness/Order.agda", "max_line_length": 73, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Mergesort/Impl2/Correctness/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 148, "size": 477 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor module Categories.Diagram.Limit.Properties {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} where open import Function.Equality using (Π) open import Relation.Binary using (Setoid) open import Categories.Category.Instance.Setoids open import Categories.Diagram.Cone.Properties open import Categories.Functor.Hom open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; module ≃) open import Categories.Morphism.Reasoning C open import Categories.Morphism C import Categories.Category.Construction.Cones as Con import Categories.Diagram.Limit as Lim open Π open Hom C private module J = Category J module C = Category C open C variable X Y Z : Obj f g h : X ⇒ Y open HomReasoning -- Hom functor preserves limits in C module _ (W : Obj) {F : Functor J C} (lim : Lim.Limit F) where private module F = Functor F module LF = Lim F module CF = Con F module lim = LF.Limit lim open lim HomF : Functor J (Setoids ℓ e) HomF = Hom[ W ,-] ∘F F module LHomF = Lim HomF module CHomF = Con HomF hom-resp-limit : LHomF.Limit hom-resp-limit = record { terminal = record { ⊤ = ⊤ ; ! = ! ; !-unique = !-unique } } where ⊤ : CHomF.Cone ⊤ = record { N = hom-setoid {W} {apex} ; apex = record { ψ = λ X → record { _⟨$⟩_ = λ f → proj X ∘ f ; cong = ∘-resp-≈ʳ } ; commute = λ {X Y} f {h i} eq → begin F.F₁ f ∘ (proj X ∘ h) ∘ C.id ≈⟨ center⁻¹ (limit-commute f) identityʳ ⟩ proj Y ∘ h ≈⟨ refl⟩∘⟨ eq ⟩ proj Y ∘ i ∎ } } KW : (K : CHomF.Cone) → Setoid.Carrier (CHomF.Cone.N K) → CF.Cone KW K x = record { N = W ; apex = record { ψ = λ X → K.ψ X ⟨$⟩ x ; commute = λ f → sym (∘-resp-≈ʳ identityʳ) ○ K.commute f (Setoid.refl K.N) } } where module K = CHomF.Cone K ! : ∀ {K : CHomF.Cone} → CHomF.Cones [ K , ⊤ ] ! {K} = record { arr = record { _⟨$⟩_ = λ x → rep (KW K x) ; cong = λ {x y} eq → LF.ψ-≈⇒rep-≈ W (CF.Cone.apex (KW K x)) (CF.Cone.apex (KW K y)) lim (λ A → cong (K.ψ A) eq) } ; commute = λ {X} {x y} eq → begin proj X ∘ rep (KW K x) ≈⟨ lim.commute ⟩ K.ψ X ⟨$⟩ x ≈⟨ cong (K.ψ X) eq ⟩ K.ψ X ⟨$⟩ y ∎ } where module K = CHomF.Cone K !-unique : ∀ {K : CHomF.Cone} (f : CHomF.Cones [ K , ⊤ ]) → CHomF.Cones [ ! ≈ f ] !-unique {K} f {x} {y} x≈y = begin rep (KW K x) ≈⟨ terminal.!-unique f′ ⟩ f.arr ⟨$⟩ x ≈⟨ cong f.arr x≈y ⟩ f.arr ⟨$⟩ y ∎ where module K = CHomF.Cone K module f = CHomF.Cone⇒ f f′ : CF.Cones [ KW K x , limit ] f′ = record { arr = f.arr ⟨$⟩ x ; commute = f.commute (Setoid.refl K.N) } -- natural isomorphisms respects limits module _ {F G : Functor J C} (F≃G : F ≃ G) where private module F = Functor F module G = Functor G module LF = Lim F module LG = Lim G open NaturalIsomorphism F≃G ≃-resp-lim : LF.Limit → LG.Limit ≃-resp-lim L = record { terminal = record { ⊤ = record { apex = record { ψ = λ j → ⇒.η j ∘ proj j ; commute = λ {X Y} f → begin G.F₁ f ∘ ⇒.η X ∘ proj X ≈⟨ pullˡ (⇒.sym-commute f) ⟩ (⇒.η Y ∘ F.F₁ f) ∘ proj X ≈⟨ pullʳ (limit-commute f) ⟩ ⇒.η Y ∘ proj Y ∎ } } ; ! = λ {A} → record { arr = rep (nat-map-Cone F⇐G A) ; commute = λ {j} → assoc ○ ⟺ (switch-tofromˡ (record { iso = iso j }) (⟺ commute)) } ; !-unique = λ {K} f → let module f = Con.Cone⇒ G f in terminal.!-unique record { arr = f.arr ; commute = λ {j} → switch-fromtoˡ (record { iso = iso j }) (sym-assoc ○ f.commute) } } } where open LF.Limit L ≃⇒Cone⇒ : ∀ (Lf : LF.Limit) (Lg : LG.Limit) → Con.Cones G [ LG.Limit.limit (≃-resp-lim Lf) , LG.Limit.limit Lg ] ≃⇒Cone⇒ Lf Lg = rep-cone (LG.Limit.limit (≃-resp-lim Lf)) where open LG.Limit Lg ≃⇒lim≅ : ∀ {F G : Functor J C} (F≃G : F ≃ G) (Lf : Lim.Limit F) (Lg : Lim.Limit G) → Lim.Limit.apex Lf ≅ Lim.Limit.apex Lg ≃⇒lim≅ {F = F} {G} F≃G Lf Lg = record { from = arr (≃⇒Cone⇒ F≃G Lf Lg) ; to = arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ; iso = record { isoˡ = Lf.terminal.⊤-id record { commute = λ {j} → begin Lf.proj j ∘ arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ∘ arr (≃⇒Cone⇒ F≃G Lf Lg) ≈⟨ pullˡ (⇒-commute (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf)) ⟩ (⇐.η j ∘ Lg.proj j) ∘ arr (≃⇒Cone⇒ F≃G Lf Lg) ≈⟨ pullʳ (⇒-commute (≃⇒Cone⇒ F≃G Lf Lg)) ⟩ ⇐.η j ∘ ⇒.η j ∘ Lf.proj j ≈⟨ cancelˡ (iso.isoˡ j) ⟩ Lf.proj j ∎ } ; isoʳ = Lg.terminal.⊤-id record { commute = λ {j} → begin Lg.proj j ∘ arr (≃⇒Cone⇒ F≃G Lf Lg) ∘ arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ≈⟨ pullˡ (⇒-commute (≃⇒Cone⇒ F≃G Lf Lg)) ⟩ (⇒.η j ∘ Lf.proj j) ∘ arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ≈⟨ pullʳ (⇒-commute (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf)) ⟩ ⇒.η j ∘ ⇐.η j ∘ Lg.proj j ≈⟨ cancelˡ (iso.isoʳ j) ⟩ Lg.proj j ∎ } } } where open Con.Cone⇒ renaming (commute to ⇒-commute) module Lf = Lim.Limit Lf module Lg = Lim.Limit Lg open NaturalIsomorphism F≃G
{ "alphanum_fraction": 0.4535882067, "avg_line_length": 35.0738636364, "ext": "agda", "hexsha": "c68386cc02155766d00ff5a6e8de6c7c290725f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Limit/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Limit/Properties.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Limit/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2320, "size": 6173 }