Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- Infinite merge operation for coinductive lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --guardedness #-} module Codata.Musical.Colist.Infinite-merge where open import Codata.Musical.Notation open import Codata.Musical.Colist as Colist hiding (_⋎_) open import Data.Nat open import Data.Nat.Properties open import Data.Product as Prod open import Data.Sum open import Data.Sum.Properties open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; Inverse; inverse) import Function.Related as Related open import Function.Related.TypeIsomorphisms open import Induction.Nat using (<′-wellFounded) import Induction.WellFounded as WF open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Some code that is used to work around Agda's syntactic guardedness -- checker. private infixr 5 _∷_ _⋎_ data ColistP {a} (A : Set a) : Set a where [] : ColistP A _∷_ : A → ∞ (ColistP A) → ColistP A _⋎_ : ColistP A → ColistP A → ColistP A data ColistW {a} (A : Set a) : Set a where [] : ColistW A _∷_ : A → ColistP A → ColistW A program : ∀ {a} {A : Set a} → Colist A → ColistP A program [] = [] program (x ∷ xs) = x ∷ ♯ program (♭ xs) mutual _⋎W_ : ∀ {a} {A : Set a} → ColistW A → ColistP A → ColistW A [] ⋎W ys = whnf ys (x ∷ xs) ⋎W ys = x ∷ (ys ⋎ xs) whnf : ∀ {a} {A : Set a} → ColistP A → ColistW A whnf [] = [] whnf (x ∷ xs) = x ∷ ♭ xs whnf (xs ⋎ ys) = whnf xs ⋎W ys mutual ⟦_⟧P : ∀ {a} {A : Set a} → ColistP A → Colist A ⟦ xs ⟧P = ⟦ whnf xs ⟧W ⟦_⟧W : ∀ {a} {A : Set a} → ColistW A → Colist A ⟦ [] ⟧W = [] ⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧P mutual ⋎-homP : ∀ {a} {A : Set a} (xs : ColistP A) {ys} → ⟦ xs ⋎ ys ⟧P ≈ ⟦ xs ⟧P Colist.⋎ ⟦ ys ⟧P ⋎-homP xs = ⋎-homW (whnf xs) _ ⋎-homW : ∀ {a} {A : Set a} (xs : ColistW A) ys → ⟦ xs ⋎W ys ⟧W ≈ ⟦ xs ⟧W Colist.⋎ ⟦ ys ⟧P ⋎-homW (x ∷ xs) ys = x ∷ ♯ ⋎-homP ys ⋎-homW [] ys = begin ⟦ ys ⟧P ∎ where open ≈-Reasoning ⟦program⟧P : ∀ {a} {A : Set a} (xs : Colist A) → ⟦ program xs ⟧P ≈ xs ⟦program⟧P [] = [] ⟦program⟧P (x ∷ xs) = x ∷ ♯ ⟦program⟧P (♭ xs) Any-⋎P : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} → Any P ⟦ program xs ⋎ ys ⟧P ↔ (Any P xs ⊎ Any P ⟦ ys ⟧P) Any-⋎P {P = P} xs {ys} = Any P ⟦ program xs ⋎ ys ⟧P ↔⟨ Any-cong Inv.id (⋎-homP (program xs)) ⟩ Any P (⟦ program xs ⟧P Colist.⋎ ⟦ ys ⟧P) ↔⟨ Any-⋎ _ ⟩ (Any P ⟦ program xs ⟧P ⊎ Any P ⟦ ys ⟧P) ↔⟨ Any-cong Inv.id (⟦program⟧P _) ⊎-cong (_ ∎) ⟩ (Any P xs ⊎ Any P ⟦ ys ⟧P) ∎ where open Related.EquationalReasoning index-Any-⋎P : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P ⟦ program xs ⋎ ys ⟧P) → index p ≥′ [ index , index ]′ (Inverse.to (Any-⋎P xs) ⟨$⟩ p) index-Any-⋎P xs p with Any-resp id (⋎-homW (whnf (program xs)) _) p | index-Any-resp {f = id} (⋎-homW (whnf (program xs)) _) p index-Any-⋎P xs p | q | q≡p with Inverse.to (Any-⋎ ⟦ program xs ⟧P) ⟨$⟩ q | index-Any-⋎ ⟦ program xs ⟧P q index-Any-⋎P xs p | q | q≡p | inj₂ r | r≤q rewrite q≡p = r≤q index-Any-⋎P xs p | q | q≡p | inj₁ r | r≤q with Any-resp id (⟦program⟧P xs) r | index-Any-resp {f = id} (⟦program⟧P xs) r index-Any-⋎P xs p | q | q≡p | inj₁ r | r≤q | s | s≡r rewrite s≡r | q≡p = r≤q ------------------------------------------------------------------------ -- Infinite variant of _⋎_. private merge′ : ∀ {a} {A : Set a} → Colist (A × Colist A) → ColistP A merge′ [] = [] merge′ ((x , xs) ∷ xss) = x ∷ ♯ (program xs ⋎ merge′ (♭ xss)) merge : ∀ {a} {A : Set a} → Colist (A × Colist A) → Colist A merge xss = ⟦ merge′ xss ⟧P ------------------------------------------------------------------------ -- Any lemma for merge. module _ {a p} {A : Set a} {P : A → Set p} where Any-merge : ∀ xss → Any P (merge xss) ↔ Any (λ { (x , xs) → P x ⊎ Any P xs }) xss Any-merge xss = inverse (proj₁ ∘ to xss) from (proj₂ ∘ to xss) to∘from where open P.≡-Reasoning -- The from function. Q = λ { (x , xs) → P x ⊎ Any P xs } from : ∀ {xss} → Any Q xss → Any P (merge xss) from (here (inj₁ p)) = here p from (here (inj₂ p)) = there (Inverse.from (Any-⋎P _) ⟨$⟩ inj₁ p) from (there {x = _ , xs} p) = there (Inverse.from (Any-⋎P xs) ⟨$⟩ inj₂ (from p)) -- The from function is injective. from-injective : ∀ {xss} (p₁ p₂ : Any Q xss) → from p₁ ≡ from p₂ → p₁ ≡ p₂ from-injective (here (inj₁ p)) (here (inj₁ .p)) P.refl = P.refl from-injective (here (inj₁ _)) (here (inj₂ _)) () from-injective (here (inj₂ _)) (here (inj₁ _)) () from-injective (here (inj₂ p₁)) (here (inj₂ p₂)) eq = P.cong (here ∘ inj₂) $ inj₁-injective $ Inverse.injective (Inv.sym (Any-⋎P _)) {x = inj₁ p₁} {y = inj₁ p₂} $ there-injective eq from-injective (here (inj₁ _)) (there _) () from-injective (here (inj₂ p₁)) (there p₂) eq with Inverse.injective (Inv.sym (Any-⋎P _)) {x = inj₁ p₁} {y = inj₂ (from p₂)} (there-injective eq) ... | () from-injective (there _) (here (inj₁ _)) () from-injective (there p₁) (here (inj₂ p₂)) eq with Inverse.injective (Inv.sym (Any-⋎P _)) {x = inj₂ (from p₁)} {y = inj₁ p₂} (there-injective eq) ... | () from-injective (there {x = _ , xs} p₁) (there p₂) eq = P.cong there $ from-injective p₁ p₂ $ inj₂-injective $ Inverse.injective (Inv.sym (Any-⋎P xs)) {x = inj₂ (from p₁)} {y = inj₂ (from p₂)} $ there-injective eq -- The to function (defined as a right inverse of from). Input = ∃ λ xss → Any P (merge xss) Pred : Input → Set _ Pred (xss , p) = ∃ λ (q : Any Q xss) → from q ≡ p to : ∀ xss p → Pred (xss , p) to = λ xss p → WF.All.wfRec (WF.InverseImage.wellFounded size <′-wellFounded) _ Pred step (xss , p) where size : Input → ℕ size (_ , p) = index p step : ∀ p → WF.WfRec (_<′_ on size) Pred p → Pred p step ([] , ()) rec step ((x , xs) ∷ xss , here p) rec = here (inj₁ p) , P.refl step ((x , xs) ∷ xss , there p) rec with Inverse.to (Any-⋎P xs) ⟨$⟩ p | Inverse.left-inverse-of (Any-⋎P xs) p | index-Any-⋎P xs p ... | inj₁ q | P.refl | _ = here (inj₂ q) , P.refl ... | inj₂ q | P.refl | q≤p = Prod.map there (P.cong (there ∘ _⟨$⟩_ (Inverse.from (Any-⋎P xs)) ∘ inj₂)) (rec (♭ xss , q) (s≤′s q≤p)) to∘from = λ p → from-injective _ _ (proj₂ (to xss (from p))) -- Every member of xss is a member of merge xss, and vice versa (with -- equal multiplicities). ∈-merge : ∀ {a} {A : Set a} {y : A} xss → y ∈ merge xss ↔ ∃₂ λ x xs → (x , xs) ∈ xss × (y ≡ x ⊎ y ∈ xs) ∈-merge {y = y} xss = y ∈ merge xss ↔⟨ Any-merge _ ⟩ Any (λ { (x , xs) → y ≡ x ⊎ y ∈ xs }) xss ↔⟨ Any-∈ ⟩ (∃ λ { (x , xs) → (x , xs) ∈ xss × (y ≡ x ⊎ y ∈ xs) }) ↔⟨ Σ-assoc ⟩ (∃₂ λ x xs → (x , xs) ∈ xss × (y ≡ x ⊎ y ∈ xs)) ∎ where open Related.EquationalReasoning
{ "alphanum_fraction": 0.4837837838, "avg_line_length": 35.9722222222, "ext": "agda", "hexsha": "c06870cd3b96b5aedbb8e889a2e6fe5b7d2b065a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Colist/Infinite-merge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Colist/Infinite-merge.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Colist/Infinite-merge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3024, "size": 7770 }
------------------------------------------------------------------------ -- Order morphisms ------------------------------------------------------------------------ module Relation.Binary.OrderMorphism where open import Relation.Binary open Poset import Data.Function as F record _⇒-Poset_ (po₁ po₂ : Poset) : Set where field fun : carrier po₁ → carrier po₂ monotone : _≤_ po₁ =[ fun ]⇒ _≤_ po₂ _⇒-DTO_ : (dto₁ dto₂ : DecTotalOrder) → Set dto₁ ⇒-DTO dto₂ = poset dto₁ ⇒-Poset poset dto₂ where open DecTotalOrder open _⇒-Poset_ id : ∀ {po} → po ⇒-Poset po id = record { fun = F.id ; monotone = F.id } _∘_ : ∀ {po₁ po₂ po₃} → po₂ ⇒-Poset po₃ → po₁ ⇒-Poset po₂ → po₁ ⇒-Poset po₃ f ∘ g = record { fun = F._∘_ (fun f) (fun g) ; monotone = F._∘_ (monotone f) (monotone g) } const : ∀ {po₁ po₂} → carrier po₂ → po₁ ⇒-Poset po₂ const {po₂ = po₂} x = record { fun = F.const x ; monotone = F.const (refl po₂) }
{ "alphanum_fraction": 0.512371134, "avg_line_length": 24.25, "ext": "agda", "hexsha": "598381959c948e7e2c1596f5d482f52e562b4896", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/OrderMorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/OrderMorphism.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/OrderMorphism.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 342, "size": 970 }
------------------------------------------------------------------------ -- An example: A non-terminating program that runs in bounded stack -- space ------------------------------------------------------------------------ module Lambda.Interpreter.Stack-sizes.Example where open import Equality.Propositional as E using (refl) open import Prelude open import Prelude.Size open import Colist E.equality-with-J as C open import Conat E.equality-with-J as Conat hiding (pred) open import Function-universe E.equality-with-J hiding (id; _∘_) open import Monad E.equality-with-J open import Nat E.equality-with-J open import Vec.Data E.equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity as D using (later; force) open import Upper-bounds import Lambda.Delay-crash-trace as DCT import Lambda.Interpreter import Lambda.Interpreter.Stack-sizes open DCT.Delay-crash-trace -- This module uses a name type with a single inhabitant, allowing -- (and requiring) the definition and use of one named definition. open import Lambda.Syntax ⊤ open Closure Tm -- A definition that calls itself repeatedly using a tail call. def : ⊤ → Tm 1 def tt = call tt (con true) -- The two interpreters are instantiated with this definition. open Lambda.Interpreter def module I = Lambda.Interpreter.Stack-sizes def -- A top-level term to get things going. go : Tm 0 go = call tt (con true) -- The semantics of go is the non-terminating computation never. go-loops : ∀ {i} → D.[ i ] ⟦ go ⟧ [] ∼ never go-loops = later λ { .force → go-loops } -- Colists used to analyse the stack space usage of go. loop-sizes : ∀ {i} → Colist ℕ i loop-sizes = 1 ∷′ 2 ∷ λ { .force → loop-sizes } go-sizes : Colist ℕ ∞ go-sizes = 0 ∷′ 1 ∷′ loop-sizes -- When go is interpreted (starting with an empty stack) the stack -- sizes that are encountered match the sizes in go-sizes. stack-sizes-go∼go-sizes : ∀ {i} → C.[ i ] I.stack-sizes go ∼ go-sizes stack-sizes-go∼go-sizes = I.numbers (I.⟦ go ⟧ [] false) 0 C.∼⟨ ∷∼∷′ ⟩ 0 ∷′ I.numbers (I.[ id , pred ] lam (def tt) [] ∙ con true) 1 C.∼⟨ (refl ∷ λ { .force → ∷∼∷′ }) ⟩ 0 ∷′ 1 ∷′ I.numbers (I.⟦ def tt ⟧ ρ true >>= tell pred ∘ return) 1 C.∼⟨ (refl ∷ λ { .force → refl ∷ λ { .force → numbers-loop∼loop-sizes _ }}) ⟩ 0 ∷′ 1 ∷′ loop-sizes C.∼⟨⟩ go-sizes C.∎ where ρ = con true ∷ [] numbers-loop∼loop-sizes : ∀ {i} k → C.[ i ] I.numbers (I.⟦ def tt ⟧ ρ true >>= k) 1 ∼ loop-sizes numbers-loop∼loop-sizes k = I.numbers (I.⟦ def tt ⟧ ρ true >>= k) 1 C.∼⟨ ∷∼∷′ ⟩ 1 ∷′ I.numbers (I.[ pred , id ] lam (def tt) [] ∙ con true >>= k) 2 C.∼⟨ (refl ∷ λ { .force → ∷∼∷′ }) ⟩ 1 ∷′ 2 ∷′ I.numbers (I.⟦ def tt ⟧ ρ true >>= tell id ∘ return >>= k) 1 C.∼⟨ (refl ∷ λ { .force → refl ∷ λ { .force → I.numbers-cong ( DCT.symmetric (DCT.associativity (I.⟦ def tt ⟧ ρ true) _ _)) }}) ⟩ 1 ∷′ 2 ∷′ I.numbers (I.⟦ def tt ⟧ ρ true >>= tell id ∘ k) 1 C.∼⟨ (refl ∷ λ { .force → refl ∷ λ { .force → numbers-loop∼loop-sizes _ }}) ⟩ 1 ∷′ 2 ∷′ loop-sizes C.∼⟨ (refl ∷ λ { .force → C.symmetric-∼ ∷∼∷′ }) ⟩ loop-sizes C.∎ -- The least upper bound of go-sizes is 2. lub-go-sizes-2 : LUB go-sizes ⌜ 2 ⌝ lub-go-sizes-2 = lub-∷ʳ zero (lub-∷ʳ 1≤2 lub-loop-sizes-2) where 1≤2 = suc λ { .force → zero } 2∷[] = λ { .force → 2 ∷′ [] } cycle-1-2∷[]∼loop-sizes : ∀ {i} → C.[ i ] cycle 1 2∷[] ∼ loop-sizes cycle-1-2∷[]∼loop-sizes = refl ∷ λ { .force → refl ∷ λ { .force → cycle-1-2∷[]∼loop-sizes }} lub-loop-sizes-2 : LUB loop-sizes ⌜ 2 ⌝ lub-loop-sizes-2 = $⟨ lub-∷ʳ 1≤2 (lub-∷ˡ zero lub-[]) ⟩ LUB (1 ∷ 2∷[]) ⌜ 2 ⌝ ↝⟨ lub-cycle ⟩ LUB (cycle 1 2∷[]) ⌜ 2 ⌝ ↝⟨ LUB-∼ cycle-1-2∷[]∼loop-sizes (Conat.reflexive-∼ _) ⟩□ LUB loop-sizes ⌜ 2 ⌝ □ -- The maximum stack size encountered when running go (starting with -- an empty stack) is 2. go-bounded-stack : LUB (I.stack-sizes go) ⌜ 2 ⌝ go-bounded-stack = LUB-∼ (C.symmetric-∼ stack-sizes-go∼go-sizes) (Conat.reflexive-∼ _) lub-go-sizes-2
{ "alphanum_fraction": 0.5320384014, "avg_line_length": 37.6386554622, "ext": "agda", "hexsha": "3bcf14137c836b3a15b914e39ecf093004705f91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Interpreter/Stack-sizes/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Interpreter/Stack-sizes/Example.agda", "max_line_length": 148, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Interpreter/Stack-sizes/Example.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1557, "size": 4479 }
module Conway where open import Data.Bool renaming (_≟_ to _B≟_) open import Data.Nat renaming (_+_ to _ℕ+_ ; _*_ to _ℕ*_ ; _≟_ to _ℕ≟_) open import Data.Integer renaming (_+_ to _ℤ+_ ; _*_ to _ℤ*_ ; -_ to ℤ-_ ; _≟_ to _ℤ≟_) open import Data.Rational renaming (_≟_ to _ℚ≟_) open import Relation.Nullary.Core open import Relation.Nullary.Decidable open import Rat -- operations on rationals ------------------------------------------------------------------------------ -- Universe of games data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U NEG : U → U RECIP : U → U -- Conversion from the rationals to the universe of games n2U : ℕ → U n2U 0 = ZERO n2U (suc n) = PLUS ONE (n2U n) z2U : ℤ → U z2U -[1+ n ] = NEG (n2U (ℕ.suc n)) z2U (+ n) = n2U n q2U : ℚ → U q2U p = TIMES (z2U (ℚ.numerator p)) (RECIP (n2U (ℕ.suc (ℚ.denominator-1 p)))) -- Conversion from the universe of games to the rationals -- use meadows? mutual u2q : U → ℚ u2q ZERO = 0ℚ u2q ONE = 1ℚ u2q (PLUS g h) = (u2q g) + (u2q h) u2q (TIMES g h) = (u2q g) * (u2q h) u2q (NEG g) = - (u2q g) u2q (RECIP g) = 1/_ (u2q g) {{!!}} -- need to know that | numerator (u2q g) | is not 0 u2q≢0 : (u : U) → {u≢0 : False (u2q u ℚ≟ 0ℚ)} → ℚ u2q≢0 u {u≢0} with (u2q u ℚ≟ 0ℚ) u2q≢0 u {()} | yes _ u2q≢0 u {_} | no _ = u2q u ------------------------------------------------------------------------------ -- Small tests private test₁ = q2U (- (+ 1 ÷ 3)) {-- TIMES (NEG (PLUS ONE ZERO)) (RECIP (PLUS ONE (PLUS ONE (PLUS ONE ZERO)))) --} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4858490566, "avg_line_length": 24.2285714286, "ext": "agda", "hexsha": "3c73f2642c9c73ad60ad3a40ad069ba4fa7ad4a9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Conway.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Conway.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Conway.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 653, "size": 1696 }
module puzzle where ---- 仮定 -- 猫か犬を飼っている人は山羊を飼ってない -- 猫を飼ってない人は、犬かウサギを飼っている -- 猫も山羊も飼っていない人は、ウサギを飼っている -- ---- 問題 -- 山羊を飼っている人は、犬を飼っていない -- 山羊を飼っている人は、ウサギを飼っている -- ウサギを飼っていない人は、猫を飼っている module pet-research where open import logic open import Relation.Nullary open import Data.Empty postulate lem : (a : Set) → a ∨ ( ¬ a ) record PetResearch ( Cat Dog Goat Rabbit : Set ) : Set where field fact1 : ( Cat ∨ Dog ) → ¬ Goat fact2 : ¬ Cat → ( Dog ∨ Rabbit ) fact3 : ¬ ( Cat ∨ Goat ) → Rabbit module tmp ( Cat Dog Goat Rabbit : Set ) (p : PetResearch Cat Dog Goat Rabbit ) where open PetResearch problem0 : Cat ∨ Dog ∨ Goat ∨ Rabbit problem0 with lem Cat | lem Goat ... | case1 c | g = case1 c ... | c | case1 g = case2 ( case2 ( case1 g ) ) ... | case2 ¬c | case2 ¬g = case2 ( case2 ( case2 ( fact3 p lemma1 ))) where lemma1 : ¬ ( Cat ∨ Goat ) lemma1 (case1 c) = ¬c c lemma1 (case2 g) = ¬g g problem1 : Goat → ¬ Dog problem1 g d = fact1 p (case2 d) g problem2 : Goat → Rabbit problem2 g with lem Cat | lem Dog problem2 g | case1 c | d = ⊥-elim ( fact1 p (case1 c ) g ) problem2 g | case2 ¬c | case1 d = ⊥-elim ( fact1 p (case2 d ) g ) problem2 g | case2 ¬c | case2 ¬d with lem Rabbit ... | case1 r = r ... | case2 ¬r = fact3 p lemma2 where lemma2 : ¬ ( Cat ∨ Goat ) lemma2 (case1 c) = ¬c c lemma2 (case2 g) with fact2 p ¬c lemma2 (case2 g) | case1 d = ¬d d lemma2 (case2 g) | case2 r = ¬r r problem3 : (¬ Rabbit ) → Cat problem3 ¬r with lem Cat | lem Goat problem3 ¬r | case1 c | g = c problem3 ¬r | case2 ¬c | g = ⊥-elim ( ¬r ( fact3 p lemma3 )) where lemma3 : ¬ ( Cat ∨ Goat ) lemma3 (case1 c) = ¬c c lemma3 (case2 g) with fact2 p ¬c lemma3 (case2 g) | case1 d = fact1 p (case2 d ) g lemma3 (case2 g) | case2 r = ¬r r module pet-research1 ( Cat Dog Goat Rabbit : Set ) where open import Data.Bool open import Relation.Binary open import Relation.Binary.PropositionalEquality _=>_ : Bool → Bool → Bool _ => true = true false => _ = true true => false = false ¬_ : Bool → Bool ¬ p = not p problem0 : ( Cat Dog Goat Rabbit : Bool ) → ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) => (Cat ∨ Dog ∨ Goat ∨ Rabbit) ≡ true problem0 true d g r = refl problem0 false true g r = refl problem0 false false true r = refl problem0 false false false true = refl problem0 false false false false = refl problem1 : ( Cat Dog Goat Rabbit : Bool ) → ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) => ( Goat => ( ¬ Dog )) ≡ true problem1 c false false r = refl problem1 c true false r = refl problem1 c false true r = refl problem1 false true true r = refl problem1 true true true r = refl problem2 : ( Cat Dog Goat Rabbit : Bool ) → ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) => ( Goat => Rabbit ) ≡ true problem2 c d false false = refl problem2 c d false true = refl problem2 c d true true = refl problem2 true d true false = refl problem2 false false true false = refl problem2 false true true false = refl problem3 : ( Cat Dog Goat Rabbit : Bool ) → ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) => ( (¬ Rabbit ) => Cat ) ≡ true problem3 false d g true = refl problem3 true d g true = refl problem3 true d g false = refl problem3 false false false false = refl problem3 false false true false = refl problem3 false true false false = refl problem3 false true true false = refl -- module pet-research2 ( Cat Dog Goat Rabbit : Set ) where -- -- open import Data.Bool hiding ( _∨_ ) -- open import Relation.Binary -- open import Relation.Binary.PropositionalEquality -- -- ¬_ : Bool → Bool -- ¬ p = p xor true -- -- infixr 5 _∨_ -- _∨_ : Bool → Bool → Bool -- a ∨ b = ¬ ( (¬ a) ∧ (¬ b ) ) -- -- _=>_ : Bool → Bool → Bool -- a => b = (¬ a ) ∨ b -- -- open import Data.Bool.Solver using (module xor-∧-Solver) -- open xor-∧-Solver -- -- problem0' : ( Cat : Bool ) → (Cat xor Cat ) ≡ false -- problem0' = solve 1 (λ c → (c :+ c ) := con false ) refl -- -- problem1' : ( Cat : Bool ) → (Cat ∧ (Cat xor true )) ≡ false -- problem1' = solve 1 (λ c → ((c :* (c :+ con true )) ) := con false ) {!!} -- -- open import Data.Nat -- :¬_ : {n : ℕ} → Polynomial n → Polynomial n -- :¬ p = p :+ con true -- -- _:∨_ : {n : ℕ} → Polynomial n → Polynomial n → Polynomial n -- a :∨ b = :¬ ( ( :¬ a ) :* ( :¬ b )) -- -- _:=>_ : {n : ℕ} → Polynomial n → Polynomial n → Polynomial n -- a :=> b = ( :¬ a ) :∨ b -- -- _:∧_ = _:*_ -- -- infixr 6 _:∧_ -- infixr 5 _:∨_ -- -- problem0 : ( Cat Dog Goat Rabbit : Bool ) → -- ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) -- => (Cat ∨ Dog ∨ Goat ∨ Rabbit) ≡ true -- problem0 = solve 4 ( λ Cat Dog Goat Rabbit → ( -- ( ((Cat :∨ Dog ) :=> (:¬ Goat)) :∧ ( ((:¬ Cat ) :=> ( Dog :∨ Rabbit )) :∧ (( :¬ ( Cat :∨ Goat ) ) :=> Rabbit) )) -- :=> ( Cat :∨ (Dog :∨ ( Goat :∨ Rabbit))) ) := con true ) {!!} -- -- problem1 : ( Cat Dog Goat Rabbit : Bool ) → -- ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) -- => ( Goat => ( ¬ Dog )) ≡ true -- problem1 c false false r = {!!} -- problem1 c true false r = {!!} -- problem1 c false true r = {!!} -- problem1 false true true r = refl -- problem1 true true true r = refl -- -- problem2 : ( Cat Dog Goat Rabbit : Bool ) → -- ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) -- => ( Goat => Rabbit ) ≡ true -- problem2 c d false false = {!!} -- problem2 c d false true = {!!} -- problem2 c d true true = {!!} -- problem2 true d true false = refl -- problem2 false false true false = refl -- problem2 false true true false = refl -- -- problem3 : ( Cat Dog Goat Rabbit : Bool ) → -- ((( Cat ∨ Dog ) => (¬ Goat) ) ∧ ( (¬ Cat ) => ( Dog ∨ Rabbit ) ) ∧ ( ( ¬ ( Cat ∨ Goat ) ) => Rabbit ) ) -- => ( (¬ Rabbit ) => Cat ) ≡ true -- problem3 false d g true = {!!} -- problem3 true d g true = {!!} -- problem3 true d g false = {!!} -- problem3 false false false false = refl -- problem3 false false true false = refl -- problem3 false true false false = refl -- problem3 false true true false = refl
{ "alphanum_fraction": 0.5247860726, "avg_line_length": 34.758974359, "ext": "agda", "hexsha": "96ce9153deef6a941ac421d21c7918ec289a178c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/puzzle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/puzzle.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/puzzle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2460, "size": 6778 }
{-# OPTIONS --without-K --safe #-} module Data.Binary where open import Data.Binary.Definitions using (𝔹) public open import Data.Binary.Operations.Semantics using (⟦_⇑⟧; ⟦_⇓⟧) public open import Data.Binary.Operations.Addition using (_+_) public open import Data.Binary.Operations.Multiplication using (_*_) public open import Data.Binary.Operations.Unary using (inc; dec) public
{ "alphanum_fraction": 0.7074340528, "avg_line_length": 41.7, "ext": "agda", "hexsha": "735756bbe4e9f76e1969e0b0ee2592cf5bcdb0fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 108, "size": 417 }
{-# OPTIONS --without-K #-} module hott.level.closure.extra where open import level open import decidable open import sum open import level using (lsuc; ↑; lift) open import equality.core open import equality.calculus open import function.core using (_∘_; const) open import function.extensionality open import function.isomorphism open import sets.bool open import sets.unit open import sets.nat.core -- open import sets.nat.ordering.leq.core open import hott.level.core open import hott.level.sets open import hott.level.closure.core open import hott.equivalence.core using (weak-equiv; _≈_) open import hott.univalence open import sets.empty abstract -- Π preserves h-levels Π-level : ∀ {i j n} {X : Set i}{Y : X → Set j} → ((x : X) → h n (Y x)) → h n ((x : X) → Y x) Π-level {n = 0} c = Π-contr c Π-level {n = suc n} {X = X}{Y} hn = λ f g → subst (h n) strong-funext (Π-level (λ x → hn x (f x) (g x))) -- Σ preserves h-levels Σ-level : ∀ {i j n} {X : Set i}{Y : X → Set j} → h n X → ((x : X) → h n (Y x)) → h n (Σ X Y) Σ-level {n = 0}{X = X}{Y} (x₀ , cx) hy = (x₀ , proj₁ (hy x₀)) , λ { (x , y) → c x y } where c : (x : X)(y : Y x) → (x₀ , proj₁ (hy x₀)) ≡ (x , y) c x y = ap (λ x → (x , proj₁ (hy x))) (cx x) · ap (_,_ x) (proj₂ (hy x) y) Σ-level {n = suc n} hx hy = λ a b → iso-level Σ-split-iso (Σ-level (hx _ _) (λ p → hy (proj₁ b) _ _)) -- × preserves h-levels ×-level : ∀ {i j n}{X : Set i}{Y : Set j} → h n X → h n Y → h n (X × Y) ×-level hx hy = Σ-level hx (λ _ → hy) -- ⊎ preserves h-levels -- ⊎-level : ∀ {i j n}{X : Set i}{Y : Set j} -- → 2 ≤ n → h n X → h n Y → h n (X ⊎ Y) -- ⊎-level {i}{j}{n} {X}{Y} p hx hy = iso-level lem -- (Σ-level (h! {p = decide p} bool-set) P-level) -- where -- P : Bool → Set (i ⊔ j) -- P true = ↑ j X -- P false = ↑ i Y -- -- P-level : (b : Bool) → h n (P b) -- P-level true = iso-level (lift-iso j X) hx -- P-level false = iso-level (lift-iso i Y) hy -- -- lem : Σ Bool P ≅ (X ⊎ Y) -- lem = iso f g H K -- where -- f : (Σ Bool P) → (X ⊎ Y) -- f (true , lift x) = inj₁ x -- f (false , lift y) = inj₂ y -- -- g : (X ⊎ Y) → (Σ Bool P) -- g (inj₁ x) = (true , lift x) -- g (inj₂ y) = (false , lift y) -- -- H : (x : Σ Bool P) → g (f x) ≡ x -- H (true , lift x) = refl -- H (false , lift y) = refl -- -- K : (x : X ⊎ Y) → f (g x) ≡ x -- K (inj₁ x) = refl -- K (inj₂ y) = refl Π-level-impl : ∀ {i j n} {X : Set i}{Y : X → Set j} → ((x : X) → h n (Y x)) → h n ({x : X} → Y x) Π-level-impl {X = X}{Y} hY = iso-level impl-iso (Π-level hY) -- being contractible is a proposition contr-h1 : ∀ {i}(X : Set i) → h 1 (contr X) contr-h1 X = prop⇒h1 λ { (x₀ , c₀) (x₁ , c₁) → unapΣ (c₀ x₁ , contr⇒prop (lem (x₀ , c₀) x₁) _ _) } where lem : ∀ {i}{A : Set i} → contr A → (x : A) → contr ((x' : A) → x ≡ x') lem c x = Π-level (λ x' → h↑ c x x') -- being of h-level n is a proposition hn-h1 : ∀ {i} n (X : Set i) → h 1 (h n X) hn-h1 0 X = contr-h1 X hn-h1 (suc n) X = Π-level λ x → Π-level λ y → hn-h1 n (x ≡ y) -- being a weak equivalence is a proposition weak-equiv-h1 : ∀ {i j}{X : Set i}{Y : Set j} → (f : X → Y) → h 1 (weak-equiv f) weak-equiv-h1 f = Π-level λ y → contr-h1 _ ⊎-h1 : ∀ {i j}{A : Set i}{B : Set j} → h 1 A → h 1 B → ¬ (A × B) → h 1 (A ⊎ B) ⊎-h1 {A = A}{B = B} hA hB u = prop⇒h1 ⊎-prop where ⊎-prop : prop (A ⊎ B) ⊎-prop (inj₁ a) (inj₁ a') = ap inj₁ (h1⇒prop hA a a') ⊎-prop (inj₁ a) (inj₂ b') = ⊥-elim (u (a , b')) ⊎-prop (inj₂ b) (inj₁ a') = ⊥-elim (u (a' , b)) ⊎-prop (inj₂ b) (inj₂ b') = ap inj₂ (h1⇒prop hB b b') inj-level : ∀ {i j n}{A : Set i}{B : Set j} → (f : A → B) → h (suc n) A → h n (injective f) inj-level f hA = Π-level-impl λ x → Π-level-impl λ x' → Π-level λ p → hA x x' ↣-level : ∀ {i j n}{A : Set i}{B : Set j} → h (suc n) A → h n B → h n (A ↣ B) ↣-level hA hB = Σ-level (Π-level λ _ → hB) λ f → inj-level f hA ¬-h1 : ∀ {i}{X : Set i} → h 1 (¬ X) ¬-h1 = Π-level λ _ → ⊥-prop
{ "alphanum_fraction": 0.4663483402, "avg_line_length": 31.8695652174, "ext": "agda", "hexsha": "80310eb7c994e9625597657065302078b295fdcf", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/level/closure/extra.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "hott/level/closure/extra.agda", "max_line_length": 76, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/level/closure/extra.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1801, "size": 4398 }
module Cats.Category.Zero where open import Data.Empty using (⊥ ; ⊥-elim) open import Level open import Cats.Category Zero : ∀ lo la l≈ → Category lo la l≈ Zero lo la l≈ = record { Obj = Lift lo ⊥ ; _⇒_ = λ() ; _≈_ = λ {} ; id = λ{} ; _∘_ = λ{} ; equiv = λ{} ; ∘-resp = λ{} ; id-r = λ{} ; id-l = λ{} ; assoc = λ{} }
{ "alphanum_fraction": 0.4807692308, "avg_line_length": 16.5454545455, "ext": "agda", "hexsha": "c21ee7c85374cee4171850c95bde2e959eda0c17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Zero.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Zero.agda", "max_line_length": 41, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Zero.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 135, "size": 364 }
{- Some theory about Bi-Invertible Equivalences - BiInvEquiv to Iso - BiInvEquiv to Equiv - BiInvEquiv to HAEquiv - Iso to BiInvEquiv -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.BiInvEquiv where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HAEquiv record BiInvEquiv {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where constructor biInvEquiv field fun : A → B invr : B → A invr-rightInv : section fun invr invl : B → A invl-leftInv : retract fun invl invr≡invl : ∀ b → invr b ≡ invl b invr≡invl b = invr b ≡⟨ sym (invl-leftInv (invr b)) ⟩ invl (fun (invr b)) ≡⟨ cong invl (invr-rightInv b) ⟩ invl b ∎ invr-leftInv : retract fun invr invr-leftInv a = invr≡invl (fun a) □ (invl-leftInv a) invr≡invl-leftInv : ∀ a → PathP (λ j → invr≡invl (fun a) j ≡ a) (invr-leftInv a) (invl-leftInv a) invr≡invl-leftInv a j i = compPath'-filler (invr≡invl (fun a)) (invl-leftInv a) (~ j) i invl-rightInv : section fun invl invl-rightInv a = sym (cong fun (invr≡invl a)) □ (invr-rightInv a) invr≡invl-rightInv : ∀ a → PathP (λ j → fun (invr≡invl a j) ≡ a) (invr-rightInv a) (invl-rightInv a) invr≡invl-rightInv a j i = compPath'-filler (sym (cong fun (invr≡invl a))) (invr-rightInv a) j i module _ {ℓ} {A B : Type ℓ} (e : BiInvEquiv A B) where open BiInvEquiv e biInvEquiv→Iso-right : Iso A B Iso.fun biInvEquiv→Iso-right = fun Iso.inv biInvEquiv→Iso-right = invr Iso.rightInv biInvEquiv→Iso-right = invr-rightInv Iso.leftInv biInvEquiv→Iso-right = invr-leftInv biInvEquiv→Iso-left : Iso A B Iso.fun biInvEquiv→Iso-left = fun Iso.inv biInvEquiv→Iso-left = invl Iso.rightInv biInvEquiv→Iso-left = invl-rightInv Iso.leftInv biInvEquiv→Iso-left = invl-leftInv biInvEquiv→Equiv-right biInvEquiv→Equiv-left : A ≃ B biInvEquiv→Equiv-right = fun , isoToIsEquiv biInvEquiv→Iso-right biInvEquiv→Equiv-left = fun , isoToIsEquiv biInvEquiv→Iso-left -- since Iso.rightInv ends up getting modified during iso→HAEquiv, in some sense biInvEquiv→Iso-left -- is the most natural choice for forming a HAEquiv from a BiInvEquiv biInvEquiv→HAEquiv : HAEquiv A B biInvEquiv→HAEquiv = iso→HAEquiv biInvEquiv→Iso-left module _ {ℓ} {A B : Type ℓ} (i : Iso A B) where open Iso i iso→BiInvEquiv : BiInvEquiv A B BiInvEquiv.fun iso→BiInvEquiv = fun BiInvEquiv.invr iso→BiInvEquiv = inv BiInvEquiv.invr-rightInv iso→BiInvEquiv = rightInv BiInvEquiv.invl iso→BiInvEquiv = inv BiInvEquiv.invl-leftInv iso→BiInvEquiv = leftInv
{ "alphanum_fraction": 0.6823194593, "avg_line_length": 33.0705882353, "ext": "agda", "hexsha": "082ad5be861c82063fca67db3b99b751b895f101", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/BiInvEquiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/BiInvEquiv.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/BiInvEquiv.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1052, "size": 2811 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where every consecutative pair of elements is related. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Linked {a} {A : Set a} where open import Data.List.Base using (List; []; _∷_) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.Product as Prod using (_,_; _×_; uncurry; <_,_>) open import Function using (id; _∘_) open import Level using (Level; _⊔_) open import Relation.Binary as B using (Rel; _⇒_) open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_) open import Relation.Binary.PropositionalEquality open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable as Dec using (map′) open import Relation.Nullary.Product using (_×-dec_) private variable p q r ℓ : Level ------------------------------------------------------------------------ -- Definition -- Linked R xs means that every consecutative pair of elements -- in xs is a member of relation R. infixr 5 _∷_ data Linked (R : Rel A ℓ) : List A → Set (a ⊔ ℓ) where [] : Linked R [] [-] : ∀ {x} → Linked R (x ∷ []) _∷_ : ∀ {x y xs} → R x y → Linked R (y ∷ xs) → Linked R (x ∷ y ∷ xs) ------------------------------------------------------------------------ -- Operations module _ {R : Rel A p} {x y xs} where head : Linked R (x ∷ y ∷ xs) → R x y head (Rxy ∷ Rxs) = Rxy tail : Linked R (x ∷ y ∷ xs) → Linked R (y ∷ xs) tail (Rxy ∷ Rxs) = Rxs module _ {R : Rel A p} {S : Rel A q} where map : R ⇒ S → Linked R ⊆ Linked S map R⇒S [] = [] map R⇒S [-] = [-] map R⇒S (x~xs ∷ pxs) = R⇒S x~xs ∷ map R⇒S pxs module _ {P : Rel A p} {Q : Rel A q} {R : Rel A r} where zipWith : P ∩ᵇ Q ⇒ R → Linked P ∩ᵘ Linked Q ⊆ Linked R zipWith f ([] , []) = [] zipWith f ([-] , [-]) = [-] zipWith f (px ∷ pxs , qx ∷ qxs) = f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : R ⇒ P ∩ᵇ Q → Linked R ⊆ Linked P ∩ᵘ Linked Q unzipWith f [] = [] , [] unzipWith f [-] = [-] , [-] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (f rx) (unzipWith f rxs) module _ {P : Rel A p} {Q : Rel A q} where zip : Linked P ∩ᵘ Linked Q ⊆ Linked (P ∩ᵇ Q) zip = zipWith id unzip : Linked (P ∩ᵇ Q) ⊆ Linked P ∩ᵘ Linked Q unzip = unzipWith id ------------------------------------------------------------------------ -- Properties of predicates preserved by Linked module _ {R : Rel A ℓ} where linked? : B.Decidable R → U.Decidable (Linked R) linked? R? [] = yes [] linked? R? (x ∷ []) = yes [-] linked? R? (x ∷ y ∷ xs) = map′ (uncurry _∷_) < head , tail > (R? x y ×-dec linked? R? (y ∷ xs)) irrelevant : B.Irrelevant R → U.Irrelevant (Linked R) irrelevant irr [] [] = refl irrelevant irr [-] [-] = refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = cong₂ _∷_ (irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : U.Satisfiable (Linked R) satisfiable = [] , []
{ "alphanum_fraction": 0.5151796778, "avg_line_length": 32.9387755102, "ext": "agda", "hexsha": "173de514b7166cf5626bd75c43b16dd514dab80f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Linked.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Linked.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Linked.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1054, "size": 3228 }
{-# OPTIONS --cubical --safe --postfix-projections #-} -- This file contains an implementation of the stack-based compiler for Hutton's -- razor, as from: -- -- P. Bahr and G. Hutton, “Calculating correct compilers,” Journal of -- Functional Programming, vol. 25, no. e14, Sep. 2015, -- doi: 10.1017/S0956796815000180. -- -- The compiler is total and the evaluator is stack-safe, and furthermore we have -- proven a full isomorphism between the code representation and the AST. module Data.Dyck.Prog where open import Prelude open import Data.Nat using (_+_) private variable n : ℕ -------------------------------------------------------------------------------- -- We have 2 forms that we want to convert between: an AST and a flat code. -------------------------------------------------------------------------------- data Expr : Type where [_] : ℕ → Expr _⊕_ : Expr → Expr → Expr -------------------------------------------------------------------------------- -- We do the conversion with cayley forms of the dyck monoids -------------------------------------------------------------------------------- ⟨_⟩_↝_ : (ℕ → Type) → ℕ → ℕ → Type ⟨ C ⟩ n ↝ m = ∀ {i} → C (n + i) → C (m + i) -------------------------------------------------------------------------------- -- An encoding of an AST -------------------------------------------------------------------------------- data Code : ℕ → Type where HALT : Code 1 PUSH : ℕ → ⟨ Code ⟩ 1 ↝ 0 ADD : ⟨ Code ⟩ 1 ↝ 2 -------------------------------------------------------------------------------- -- We will need a stack (a snoc-list) -------------------------------------------------------------------------------- Stack : Type → ℕ → Type Stack A zero = ⊤ Stack A (suc n) = Stack A n × A infixl 5 _∷_ pattern _∷_ xs x = xs , x foldl : (P : ℕ → Type) → (A → ⟨ P ⟩ 1 ↝ 0) → Stack A n → P n → P zero foldl {n = zero} P f tt = id foldl {n = suc n} P f (xs ∷ x) = foldl P f xs ∘ f x private variable st : Stack Expr n -------------------------------------------------------------------------------- -- Conversion to and from code -------------------------------------------------------------------------------- -- Code n → ⟨ Stack Expr ⟩ n ↝ 1 code→expr⊙ : Code n → Stack Expr n → Expr code→expr⊙ HALT (tt ∷ e) = e code→expr⊙ (PUSH v is) st = code→expr⊙ is (st ∷ [ v ]) code→expr⊙ (ADD is) (st ∷ xs ∷ ys) = code→expr⊙ is (st ∷ xs ⊕ ys) code→expr : Code 0 → Expr code→expr ds = code→expr⊙ ds tt expr→code⊙ : Expr → ⟨ Code ⟩ 1 ↝ 0 expr→code⊙ [ x ] = PUSH x expr→code⊙ (xs ⊕ ys) = expr→code⊙ xs ∘ expr→code⊙ ys ∘ ADD expr→code : Expr → Code 0 expr→code xs = expr→code⊙ xs HALT -------------------------------------------------------------------------------- -- Proof of isomorphism -------------------------------------------------------------------------------- expr→code→expr⊙ : {is : Code (1 + n)} (e : Expr) → code→expr⊙ (expr→code⊙ e is) st ≡ code→expr⊙ is (st ∷ e) expr→code→expr⊙ [ x ] = refl expr→code→expr⊙ (xs ⊕ ys) = expr→code→expr⊙ xs ; expr→code→expr⊙ ys code→expr→code⊙ : (is : Code n) → expr→code (code→expr⊙ is st) ≡ foldl Code expr→code⊙ st is code→expr→code⊙ HALT = refl code→expr→code⊙ (PUSH i is) = code→expr→code⊙ is code→expr→code⊙ (ADD is) = code→expr→code⊙ is prog-iso : Code 0 ⇔ Expr prog-iso .fun = code→expr prog-iso .inv = expr→code prog-iso .rightInv = expr→code→expr⊙ prog-iso .leftInv = code→expr→code⊙
{ "alphanum_fraction": 0.4383600917, "avg_line_length": 34.5346534653, "ext": "agda", "hexsha": "17143778f05fc5cd421a873c7a906d247ffacaed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Dyck/Prog.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Dyck/Prog.agda", "max_line_length": 81, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Dyck/Prog.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1028, "size": 3488 }
open import Agda.Builtin.Equality postulate foo : (A : Set) → A ≡ A helper : {W : Set} (A : Set) → W → W ≡ A → (A → Set) → Set helper A w refl f = f w bar : (A : Set) → A → Set bar A a = let A≡A = foo A in helper A a (foo A) {!!} -- A≡A : A ≡ A baz : (A : Set) → A → Set baz A a = let A≡A = foo A in helper A a (foo A) λ a' → {!!} -- A≡A : a ≡ a f : (A : Set) → A → Set → Set f A x = let y = x in λ B → {!!} -- y : x
{ "alphanum_fraction": 0.4705882353, "avg_line_length": 23.6111111111, "ext": "agda", "hexsha": "00a376e8b590918688fd9983c237b1e2350ba224", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1878.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1878.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1878.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 425 }
module cedille-syntax where open import lib open import ctxt open import syntax-util open import general-util open import is-free open import cedille-types -- App, AppTp infixl 10 _`_ _-_ _·_ -- Pattern and constructor pattern _`_ t t' = App t NotErased t' pattern _-_ t t' = App t Erased t' pattern _·_ t T = AppTp t T -- Beta infix 9 β<_> β[_] β<_>[_] `β<_> `β[_] `β<_>[_] pattern β = Beta _ NoTerm NoTerm pattern β<_> t = Beta _ (SomeTerm t _) NoTerm pattern β[_] t = Beta _ NoTerm (SomeTerm t _) pattern β<_>[_] t t' = Beta _ (SomeTerm t _) (SomeTerm t' _) `β = Beta pi-gen NoTerm NoTerm `β<_> = λ t → Beta pi-gen (SomeTerm t pi-gen) NoTerm `β[_] = λ t → Beta pi-gen NoTerm (SomeTerm t pi-gen) `β<_>[_] = λ t t' → Beta pi-gen (SomeTerm t pi-gen) (SomeTerm t' pi-gen) -- Chi infixr 8 χ-_ χ_-_ `χ-_ `χ_-_ pattern χ-_ t = Chi _ NoType t pattern χ_-_ T t = Chi _ (SomeType T) t `χ-_ = Chi pi-gen NoType `χ_-_ = λ T t → Chi pi-gen (SomeType T) t -- Delta infixr 8 δ-_ δ_-_ `δ-_ `δ_-_ pattern δ-_ t = Delta _ NoType t pattern δ_-_ T t = Delta _ (SomeType T) t `δ-_ = Delta pi-gen NoType `δ_-_ = λ T t → Delta pi-gen (SomeType T) t -- Epsilon infixr 8 ε_ εl_ εr_ ε-_ εl-_ εr-_ `ε_ `εl_ `εr_ `ε-_ `εl-_ `εr-_ pattern ε_ t = Epsilon _ Both ff t pattern εl_ t = Epsilon _ Left ff t pattern εr_ t = Epsilon _ Right ff t pattern ε-_ t = Epsilon _ Both tt t pattern εl-_ t = Epsilon _ Left tt t pattern εr-_ t = Epsilon _ Right tt t `ε_ = Epsilon pi-gen Both ff `εl_ = Epsilon pi-gen Left ff `εr_ = Epsilon pi-gen Right ff `ε-_ = Epsilon pi-gen Both tt `εl-_ = Epsilon pi-gen Left tt `εr-_ = Epsilon pi-gen Right tt -- Hole pattern ● = Hole _ `● = Hole pi-gen -- IotaPair pattern [_`,_] t₁ t₂ = IotaPair _ t₁ t₂ NoGuide _ pattern [_`,_*_₊_] t₁ t₂ x T = IotaPair _ t₁ t₂ (Guide _ x T) _ -- "₊" = "\_+" `[_`,_] = λ t₁ t₂ → IotaPair pi-gen t₁ t₂ NoGuide pi-gen `[_`,_*_₊_] = λ t₁ t₂ x T → IotaPair pi-gen t₁ t₂ (Guide pi-gen x T) pi-gen -- IotaProj infixl 5 _₊1 _₊2 _₊#_ _`₊1 _`₊2 _`₊#_ pattern _₊1 t = IotaProj t "1" _ pattern _₊2 t = IotaProj t "2" _ pattern _₊#_ t n = IotaProj t n _ _`₊1 = λ t → IotaProj t "1" pi-gen _`₊2 = λ t → IotaProj t "2" pi-gen _`₊#_ = λ t n → IotaProj t n pi-gen -- Lam infixr 4 λ`_₊_ λ`_:ₜ_₊_ λ`_:ₖ_₊_ Λ_₊_ Λ_:ₜ_₊_ Λ_:ₖ_₊_ `λ_₊_ `λ_:ₜ_₊_ `λ_:ₖ_₊_ `Λ_₊_ `Λ_:ₜ_₊_ `Λ_:ₖ_₊_ pattern λ`_₊_ x t = Lam _ NotErased _ x NoClass t pattern λ`_:ₜ_₊_ x T t = Lam _ NotErased _ x (SomeClass (Tkt T)) t pattern λ`_:ₖ_₊_ x k t = Lam _ NotErased _ x (SomeClass (Tkk k)) t pattern Λ_₊_ x t = Lam _ Erased _ x NoClass t pattern Λ_:ₜ_₊_ x T t = Lam _ Erased _ x (SomeClass (Tkt T)) t pattern Λ_:ₖ_₊_ x k t = Lam _ Erased _ x (SomeClass (Tkk k)) t `λ_₊_ = λ x t → Lam pi-gen NotErased pi-gen x NoClass t `λ_:ₜ_₊_ = λ x T t → Lam pi-gen NotErased pi-gen x (SomeClass (Tkt T)) t `λ_:ₖ_₊_ = λ x k t → Lam pi-gen NotErased pi-gen x (SomeClass (Tkk k)) t `Λ_₊_ = λ x t → Lam pi-gen Erased pi-gen x NoClass t `Λ_:ₜ_₊_ = λ x T t → Lam pi-gen Erased pi-gen x (SomeClass (Tkt T)) t `Λ_:ₖ_₊_ = λ x k t → Lam pi-gen Erased pi-gen x (SomeClass (Tkk k)) t -- Let infixr 8 [_`=_]-_ [_:ₜ_`=_]-_ [_:ₖ_`=_]-_ -[_`=_]-_ -[_:ₜ_`=_]-_ -[_:ₖ_`=_]-_ `[_`=_]-_ `[_:ₜ_`=_]-_ `[_:ₖ_`=_]-_ `-[_`=_]-_ `-[_:ₜ_`=_]-_ `-[_:ₖ_`=_]-_ pattern [_`=_]-_ x t t' = Let _ NotErased (DefTerm _ x NoType t _) t' pattern [_:ₜ_`=_]-_ x T t t' = Let _ NotErased (DefTerm _ x (SomeType T) t _) t' pattern [_:ₖ_`=_]-_ x k T t' = Let _ NotErased (DefType _ x k T _) t' pattern -[_`=_]-_ x t t' = Let _ Erased (DefTerm _ x NoType t _) t' pattern -[_:ₜ_`=_]-_ x T t t' = Let _ Erased (DefTerm _ x (SomeType T) t _) t' pattern -[_:ₖ_`=_]-_ x k T t' = Let _ Erased (DefType _ x k T _) t' `[_`=_]-_ = λ x t t' → Let pi-gen NotErased (DefTerm pi-gen x NoType t) t' `[_:ₜ_`=_]-_ = λ x T t t' → Let pi-gen NotErased (DefTerm pi-gen x (SomeType T) t) t' `[_:ₖ_`=_]-_ = λ x k T t' → Let pi-gen NotErased (DefType pi-gen x k T) t' `-[_`=_]-_ = λ x t t' → Let pi-gen Erased (DefTerm pi-gen x NoType t) t' `-[_:ₜ_`=_]-_ = λ x T t t' → Let pi-gen Erased (DefTerm pi-gen x (SomeType T) t) t' `-[_:ₖ_`=_]-_ = λ x k T t' → Let pi-gen Erased (DefType pi-gen x k T) t' -- Open infixr 8 open`_-_ `open_-_ close`_-_ `close_-_ pattern open`_-_ x t = Open _ OpacTrans _ x t pattern close`_-_ x t = Open _ OpacOpaque _ x t `open_-_ = Open pi-gen OpacTrans pi-gen `close_-_ = Open pi-gen OpacOpaque pi-gen --Parens infix 4 ⦅_⦆ `⦅_⦆ pattern ⦅_⦆ t = Parens _ t _ `⦅_⦆ = λ t → Parens pi-gen t pi-gen -- Phi infix 8 φ_-_[_] `φ_-_[_] pattern φ_-_[_] eq t₁ t₂ = Phi _ eq t₁ t₂ _ `φ_-_[_] = λ eq t₁ t₂ → Phi pi-gen eq t₁ t₂ pi-gen -- Rho infixr 8 ρ_-_ ρ<_>_-_ ρ_*_₊_-_ ρ<_>_*_₊_-_ ρ+_-_ ρ+<_>_-_ ρ+_*_₊_-_ ρ+<_>_*_₊_-_ `ρ_-_ `ρ<_>_-_ `ρ_*_₊_-_ `ρ<_>_*_₊_-_ `ρ+_-_ `ρ+<_>_-_ `ρ+_*_₊_-_ `ρ+<_>_*_₊_-_ pattern ρ_-_ t t' = Rho _ ff NoNums t NoGuide t' pattern ρ<_>_-_ ns t t' = Rho _ ff (SomeNums ns) t NoGuide t' pattern ρ_*_₊_-_ t x T t' = Rho _ ff NoNums t (Guide _ x T) t' pattern ρ<_>_*_₊_-_ ns t x T t' = Rho _ ff (SomeNums ns) t (Guide _ x T) t' pattern ρ+_-_ t t' = Rho _ tt NoNums t NoGuide t' pattern ρ+<_>_-_ ns t t' = Rho _ tt (SomeNums ns) t NoGuide t' pattern ρ+_*_₊_-_ t x T t' = Rho _ tt NoNums t (Guide _ x T) t' pattern ρ+<_>_*_₊_-_ ns t x T t' = Rho _ tt (SomeNums ns) t (Guide _ x T) t' `ρ_-_ = λ t t' → Rho pi-gen ff NoNums t NoGuide t' `ρ<_>_-_ = λ ns t t' → Rho pi-gen ff (SomeNums ns) t NoGuide t' `ρ_*_₊_-_ = λ t x T t' → Rho pi-gen ff NoNums t (Guide pi-gen x T) t' `ρ<_>_*_₊_-_ = λ ns t x T t' → Rho pi-gen ff (SomeNums ns) t (Guide pi-gen x T) t' `ρ+_-_ = λ t t' → Rho pi-gen tt NoNums t NoGuide t' `ρ+<_>_-_ = λ ns t t' → Rho pi-gen tt (SomeNums ns) t NoGuide t' `ρ+_*_₊_-_ = λ t x T t' → Rho pi-gen tt NoNums t (Guide pi-gen x T) t' `ρ+<_>_*_₊_-_ = λ ns t x T t' → Rho pi-gen tt (SomeNums ns) t (Guide pi-gen x T) t' -- Sigma infixr 9 ς_ `ς_ pattern ς_ t = Sigma _ t `ς_ = Sigma pi-gen -- Theta infix 9 θ_`_ θ+_`_ θ<_>_`_ `θ_`_ `θ+_`_ `θ<_>_`_ pattern θ_`_ t ts = Theta _ Abstract t ts pattern θ+_`_ t ts = Theta _ AbstractEq t ts pattern θ<_>_`_ vs t ts = Theta _ (AbstractVars vs) t ts `θ_`_ = λ t ts → Theta pi-gen Abstract t ts `θ+_`_ = λ t ts → Theta pi-gen AbstractEq t ts `θ<_>_`_ = λ vs t ts → Theta pi-gen (AbstractVars vs) t ts -- Mu infix 9 μ_₊_[_] μ_₊_*_[_] `μ_₊_[_] `μ_₊_*_[_] pattern μ_₊_[_] x t ms = Mu _ _ x t NoType _ ms _ pattern μ_₊_*_[_] x t T ms = Mu _ _ x t (SomeType T) _ ms _ `μ_₊_[_] = λ x t ms → Mu pi-gen pi-gen x t NoType pi-gen ms pi-gen `μ_₊_*_[_] = λ x t T ms → Mu pi-gen pi-gen x t (SomeType T) pi-gen ms pi-gen -- Mu' infix 9 μ'_[_] μ'_*_[_] μ'<_>_[_] μ'<_>_*_[_] `μ'_[_] `μ'_*_[_] `μ'_[_] `μ'_*_[_] pattern μ'_[_] t ms = Mu' _ NoTerm t NoType _ ms _ pattern μ'_*_[_] t T ms = Mu' _ NoTerm t (SomeType T) _ ms _ pattern μ'<_>_[_] t t' ms = Mu' _ (SomeTerm t) t' NoType _ ms _ pattern μ'<_>_*_[_] t t' T ms = Mu' _ (SomeTerm t) t' (SomeType T) _ ms _ `μ'_[_] = λ t ms → Mu' pi-gen NoTerm t NoType pi-gen ms pi-gen `μ'_*_[_] = λ t T ms → Mu' pi-gen NoTerm t (SomeType T) pi-gen ms pi-gen `μ'<_>_[_] = λ t t' ms → Mu' pi-gen (SomeTerm t pi-gen) t' NoType pi-gen ms pi-gen `μ'<_>_*_[_] = λ t t' T ms → Mu' pi-gen (SomeTerm t pi-gen) t' (SomeType T) pi-gen ms pi-gen -- Var infixr 11 vₓ_ `vₓ_ pattern vₓ_ x = Var _ x `vₓ_ = Var pi-gen -- Abs infixr 5 ∀`_:ₜ_₊_ ∀`_:ₖ_₊_ Π_:ₜ_₊_ Π_:ₖ_₊_ `∀_:ₜ_₊_ `∀_:ₖ_₊_ `Π_:ₜ_₊_ `Π_:ₖ_₊_ pattern ∀`_:ₜ_₊_ x T T' = Abs _ All _ x (Tkt T) T' pattern ∀`_:ₖ_₊_ x k T = Abs _ All _ x (Tkk k) T pattern Π_:ₜ_₊_ x T T' = Abs _ Pi _ x (Tkt T) T' pattern Π_:ₖ_₊_ x k T = Abs _ Pi _ x (Tkk k) T `∀_:ₜ_₊_ = λ x T T' → Abs pi-gen All pi-gen x (Tkt T) T' `∀_:ₖ_₊_ = λ x k T → Abs pi-gen All pi-gen x (Tkk k) T `Π_:ₜ_₊_ = λ x T T' → Abs pi-gen Pi pi-gen x (Tkt T) T' `Π_:ₖ_₊_ = λ x k T → Abs pi-gen Pi pi-gen x (Tkk k) T -- Iota infix 4 ι_:ₜ_₊_ `ι_:ₜ_₊_ pattern ι_:ₜ_₊_ x T T' = Iota _ _ x T T' `ι_:ₜ_₊_ = Iota pi-gen pi-gen -- Lft infix 4 ↑_₊_:ₗ_ `↑_₊_:ₗ_ pattern ↑_₊_:ₗ_ X t lT = Lft _ _ X t lT `↑_₊_:ₗ_ = Lft pi-gen pi-gen -- NoSpans infix 4 [^_^] `[^_^] pattern [^_^] T = NoSpans T _ `[^_^] = λ T → NoSpans T pi-gen -- TpLet infixr 5 [_`=_]ₜ-_ [_:ₜ_`=_]ₜ-_ [_:ₖ_`=_]ₜ-_ `[_`=_]ₜ-_ `[_:ₜ_`=_]ₜ-_ `[_:ₖ_`=_]ₜ-_ pattern [_`=_]ₜ-_ x t t' = TpLet _ (DefTerm _ x NoType t _) t' pattern [_:ₜ_`=_]ₜ-_ x T t t' = TpLet _ (DefTerm _ x (SomeType T) t _) t' pattern [_:ₖ_`=_]ₜ-_ x k T t' = TpLet _ (DefType _ x k T _) t' `[_`=_]ₜ-_ = λ x t t' → TpLet pi-gen (DefTerm pi-gen x NoType t) t' `[_:ₜ_`=_]ₜ-_ = λ x T t t' → TpLet pi-gen (DefTerm pi-gen x (SomeType T) t) t' `[_:ₖ_`=_]ₜ-_ = λ x k T t' → TpLet pi-gen (DefType pi-gen x k T) t' -- TpApp, TpAppt infixl 10 _·ₜ_ _`ₜ_ -- Pattern and constructor pattern _·ₜ_ T T' = TpApp T T' pattern _`ₜ_ T t = TpAppt T t -- TpArrow infixr 5 _➔_ _➾_ -- "➔" = "\r" (↕ 5, ↔ 1), "➾" = "\r" (↕ 7, ↔ 8) pattern _➔_ T T' = TpArrow T NotErased T' pattern _➾_ T T' = TpArrow T Erased T' -- TpEq infix 4 [_≃_] `[_≃_] pattern [_≃_] t₁ t₂ = TpEq _ t₁ t₂ _ `[_≃_] = λ t₁ t₂ → TpEq pi-gen t₁ t₂ pi-gen -- TpHole pattern ●ₜ = TpHole _ `●ₜ = TpHole pi-gen -- TpLambda infixr 4 λₜ_:ₜ_₊_ λₜ_:ₖ_₊_ `λₜ_:ₜ_₊_ `λₜ_:ₖ_₊_ pattern λₜ_:ₜ_₊_ x T T' = TpLambda _ _ x (Tkt T) T' pattern λₜ_:ₖ_₊_ x k T = TpLambda _ _ x (Tkk k) T `λₜ_:ₜ_₊_ = λ x T T' → TpLambda pi-gen pi-gen x (Tkt T) T' `λₜ_:ₖ_₊_ = λ x k T → TpLambda pi-gen pi-gen x (Tkk k) T -- TpParens infix 4 ⦅_⦆ₜ `⦅_⦆ₜ pattern ⦅_⦆ₜ T = TpParens _ T _ `⦅_⦆ₜ = λ T → TpParens pi-gen T pi-gen -- TpVar infix 11 Vₓ_ `Vₓ_ pattern Vₓ_ x = TpVar _ x `Vₓ_ = TpVar pi-gen -- KndArrow : kind → kind → kind -- KndParens : posinfo → kind → posinfo → kind infix 4 ⦅_⦆ₖ `⦅_⦆ₖ pattern ⦅_⦆ₖ k = KndParens _ k _ `⦅_⦆ₖ = λ k → KndParens pi-gen k pi-gen -- KndPi : posinfo → posinfo → bvar → tk → kind → kind -- KndTpArrow : type → kind → kind -- KndVar infix 11 κ_`_ `κ_`_ pattern κ_`_ x as = KndVar _ x as `κ_`_ = KndVar pi-gen -- Star pattern ★ = Star _ `★ = Star pi-gen
{ "alphanum_fraction": 0.6017043725, "avg_line_length": 35.3297491039, "ext": "agda", "hexsha": "ec75aba090be5957368b4c613d7e1185a50452b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CarlOlson/cedille", "max_forks_repo_path": "src/cedille-syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CarlOlson/cedille", "max_issues_repo_path": "src/cedille-syntax.agda", "max_line_length": 160, "max_stars_count": null, "max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CarlOlson/cedille", "max_stars_repo_path": "src/cedille-syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4784, "size": 9857 }
{-# OPTIONS --without-K #-} module mini-quine where open import common infixl 2 _▻_ infixl 3 _‘’_ infixr 1 _‘→’_ infixl 3 _‘’ₐ_ infixl 3 _w‘‘’’ₐ_ infixr 2 _‘∘’_ mutual data Context : Set where ε : Context _▻_ : (Γ : Context) → Type Γ → Context data Type : Context → Set where W : ∀ {Γ A} → Type Γ → Type (Γ ▻ A) W1 : ∀ {Γ A B} → Type (Γ ▻ B) → Type (Γ ▻ A ▻ (W {Γ = Γ} {A = A} B)) _‘’_ : ∀ {Γ A} → Type (Γ ▻ A) → Term {Γ} A → Type Γ ‘Typeε’ : ∀ {Γ} → Type Γ ‘□’ : ∀ {Γ} → Type (Γ ▻ ‘Typeε’) _‘→’_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ Quine : Type (ε ▻ ‘Typeε’) → Type ε ‘⊤’ : ∀ {Γ} → Type Γ ‘⊥’ : ∀ {Γ} → Type Γ data Term : {Γ : Context} → Type Γ → Set where ⌜_⌝ : ∀ {Γ} → Type ε → Term {Γ} ‘Typeε’ ⌜_⌝t : ∀ {Γ T} → Term {ε} T → Term {Γ} (‘□’ ‘’ ⌜ T ⌝) ‘⌜‘VAR₀’⌝t’ : ∀ {T} → Term {ε ▻ ‘□’ ‘’ ⌜ T ⌝} (W (‘□’ ‘’ ⌜ ‘□’ ‘’ ⌜ T ⌝ ⌝)) ‘λ∙’ : ∀ {Γ A B} → Term {Γ ▻ A} (W B) → Term {Γ} (A ‘→’ B) ‘VAR₀’ : ∀ {Γ T} → Term {Γ ▻ T} (W T) _‘’ₐ_ : ∀ {Γ A B} → Term {Γ} (A ‘→’ B) → Term {Γ} A → Term {Γ} B quine→ : ∀ {φ} → Term {ε} (Quine φ ‘→’ φ ‘’ ⌜ Quine φ ⌝) quine← : ∀ {φ} → Term {ε} (φ ‘’ ⌜ Quine φ ⌝ ‘→’ Quine φ) ‘tt’ : ∀ {Γ} → Term {Γ} ‘⊤’ →SW1SV→W : ∀ {Γ T X A B} {x : Term X} → Term {Γ} (T ‘→’ (W1 A ‘’ ‘VAR₀’ ‘→’ W B) ‘’ x) → Term {Γ} (T ‘→’ A ‘’ x ‘→’ B) ←SW1SV→W : ∀ {Γ T X A B} {x : Term X} → Term {Γ} ((W1 A ‘’ ‘VAR₀’ ‘→’ W B) ‘’ x ‘→’ T) → Term {Γ} ((A ‘’ x ‘→’ B) ‘→’ T) w : ∀ {Γ A T} → Term {Γ} A → Term {Γ ▻ T} (W A) w→ : ∀ {Γ A B X} → Term {Γ} (A ‘→’ B) → Term {Γ ▻ X} (W A ‘→’ W B) _‘∘’_ : ∀ {Γ A B C} → Term {Γ} (B ‘→’ C) → Term {Γ} (A ‘→’ B) → Term {Γ} (A ‘→’ C) _w‘‘’’ₐ_ : ∀ {A B T} → Term {ε ▻ T} (W (‘□’ ‘’ ⌜ A ‘→’ B ⌝)) → Term {ε ▻ T} (W (‘□’ ‘’ ⌜ A ⌝)) → Term {ε ▻ T} (W (‘□’ ‘’ ⌜ B ⌝)) □ : Type ε → Set _ □ = Term {ε} max-level : Level max-level = lzero mutual Context⇓ : (Γ : Context) → Set (lsuc max-level) Context⇓ ε = ⊤ Context⇓ (Γ ▻ T) = Σ (Context⇓ Γ) (Type⇓ {Γ} T) Type⇓ : {Γ : Context} → Type Γ → Context⇓ Γ → Set max-level Type⇓ (W T) Γ⇓ = Type⇓ T (Σ.proj₁ Γ⇓) Type⇓ (W1 T) Γ⇓ = Type⇓ T ((Σ.proj₁ (Σ.proj₁ Γ⇓)) , (Σ.proj₂ Γ⇓)) Type⇓ (T ‘’ x) Γ⇓ = Type⇓ T (Γ⇓ , Term⇓ x Γ⇓) Type⇓ ‘Typeε’ Γ⇓ = Lifted (Type ε) Type⇓ ‘□’ Γ⇓ = Lifted (Term {ε} (lower (Σ.proj₂ Γ⇓))) Type⇓ (A ‘→’ B) Γ⇓ = Type⇓ A Γ⇓ → Type⇓ B Γ⇓ Type⇓ ‘⊤’ Γ⇓ = ⊤ Type⇓ ‘⊥’ Γ⇓ = ⊥ Type⇓ (Quine φ) Γ⇓ = Type⇓ φ (Γ⇓ , (lift (Quine φ))) Term⇓ : ∀ {Γ : Context} {T : Type Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Type⇓ T Γ⇓ Term⇓ ⌜ x ⌝ Γ⇓ = lift x Term⇓ ⌜ x ⌝t Γ⇓ = lift x Term⇓ ‘⌜‘VAR₀’⌝t’ Γ⇓ = lift ⌜ (lower (Σ.proj₂ Γ⇓)) ⌝t Term⇓ (f ‘’ₐ x) Γ⇓ = Term⇓ f Γ⇓ (Term⇓ x Γ⇓) Term⇓ ‘tt’ Γ⇓ = tt Term⇓ (quine→ {φ}) Γ⇓ x = x Term⇓ (quine← {φ}) Γ⇓ x = x Term⇓ (‘λ∙’ f) Γ⇓ x = Term⇓ f (Γ⇓ , x) Term⇓ ‘VAR₀’ Γ⇓ = Σ.proj₂ Γ⇓ Term⇓ (←SW1SV→W f) = Term⇓ f Term⇓ (→SW1SV→W f) = Term⇓ f Term⇓ (w x) Γ⇓ = Term⇓ x (Σ.proj₁ Γ⇓) Term⇓ (w→ f) Γ⇓ = Term⇓ f (Σ.proj₁ Γ⇓) Term⇓ (g ‘∘’ f) Γ⇓ x = Term⇓ g Γ⇓ (Term⇓ f Γ⇓ x) Term⇓ (f w‘‘’’ₐ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘’ₐ lower (Term⇓ x Γ⇓)) module inner (‘X’ : Type ε) (‘f’ : Term {ε} (‘□’ ‘’ ⌜ ‘X’ ⌝ ‘→’ ‘X’)) where ‘H’ : Type ε ‘H’ = Quine (W1 ‘□’ ‘’ ‘VAR₀’ ‘→’ W ‘X’) ‘toH’ : □ ((‘□’ ‘’ ⌜ ‘H’ ⌝ ‘→’ ‘X’) ‘→’ ‘H’) ‘toH’ = ←SW1SV→W quine← ‘fromH’ : □ (‘H’ ‘→’ (‘□’ ‘’ ⌜ ‘H’ ⌝ ‘→’ ‘X’)) ‘fromH’ = →SW1SV→W quine→ ‘□‘H’→□‘X’’ : □ (‘□’ ‘’ ⌜ ‘H’ ⌝ ‘→’ ‘□’ ‘’ ⌜ ‘X’ ⌝) ‘□‘H’→□‘X’’ = ‘λ∙’ (w ⌜ ‘fromH’ ⌝t w‘‘’’ₐ ‘VAR₀’ w‘‘’’ₐ ‘⌜‘VAR₀’⌝t’) ‘h’ : Term ‘H’ ‘h’ = ‘toH’ ‘’ₐ (‘f’ ‘∘’ ‘□‘H’→□‘X’’) Lӧb : □ ‘X’ Lӧb = ‘fromH’ ‘’ₐ ‘h’ ‘’ₐ ⌜ ‘h’ ⌝t Lӧb : ∀ {X} → Term {ε} (‘□’ ‘’ ⌜ X ⌝ ‘→’ X) → Term {ε} X Lӧb {X} f = inner.Lӧb X f ⌞_⌟ : Type ε → Set _ ⌞ T ⌟ = Type⇓ T tt ‘¬’_ : ∀ {Γ} → Type Γ → Type Γ ‘¬’ T = T ‘→’ ‘⊥’ lӧb : ∀ {‘X’} → □ (‘□’ ‘’ ⌜ ‘X’ ⌝ ‘→’ ‘X’) → ⌞ ‘X’ ⌟ lӧb f = Term⇓ (Lӧb f) tt incompleteness : ¬ □ (‘¬’ (‘□’ ‘’ ⌜ ‘⊥’ ⌝)) incompleteness = lӧb soundness : ¬ □ ‘⊥’ soundness x = Term⇓ x tt non-emptyness : Σ (Type ε) (λ T → □ T) non-emptyness = ‘⊤’ , ‘tt’
{ "alphanum_fraction": 0.3990747504, "avg_line_length": 32.0859375, "ext": "agda", "hexsha": "4cef822d255cefe541075e9e560a9ced5f36ead0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/mini-quine.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/mini-quine.agda", "max_line_length": 132, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/mini-quine.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 2593, "size": 4107 }
------------------------------------------------------------------------ -- Types with decidable equality have unique identity proofs, and -- related results ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- The part up to "decidable⇒set" follows a proof by Michael Hedberg -- ("A coherence theorem for Martin-Löf's type theory", JFP 1998). open import Equality module Equality.Decidable-UIP {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Logical-equivalence using (module _⇔_) open import H-level eq open import Prelude -- Weakly constant functions. Constant : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Constant f = ∀ x y → f x ≡ f y -- Left inverses. _Left-inverse-of_ : ∀ {a b} {A : Type a} {B : Type b} → (B → A) → (A → B) → Type a g Left-inverse-of f = ∀ x → g (f x) ≡ x abstract -- A set with a constant endofunction with a left inverse is a -- proposition. proposition : ∀ {a} {A : Type a} → (f : ∃ λ (f : A → A) → Constant f) → (∃ λ g → g Left-inverse-of (proj₁ f)) → Is-proposition A proposition (f , constant) (g , left-inverse) x y = x ≡⟨ sym (left-inverse x) ⟩ g (f x) ≡⟨ cong g (constant x y) ⟩ g (f y) ≡⟨ left-inverse y ⟩∎ y ∎ -- Endofunction families on _≡_ always have left inverses. left-inverse : ∀ {a} {A : Type a} (f : (x y : A) → x ≡ y → x ≡ y) → ∀ {x y} → ∃ λ g → g Left-inverse-of f x y left-inverse {A = A} f {x} {y} = (λ x≡y → x ≡⟨ x≡y ⟩ y ≡⟨ sym (f y y (refl y)) ⟩∎ y ∎) , elim (λ {x y} x≡y → trans (f x y x≡y) (sym (f y y (refl y))) ≡ x≡y) (λ _ → trans-symʳ _) -- A type A is a set if there is a family of constant endofunctions -- on _≡_ {A = A}. constant⇒set : ∀ {a} {A : Type a} → ((x y : A) → ∃ λ (f : x ≡ y → x ≡ y) → Constant f) → Is-set A constant⇒set constant {x} {y} = proposition (constant x y) (left-inverse (λ x y → proj₁ $ constant x y)) -- If it is known whether or not a type is inhabited, then one can -- define a constant endofunction for that type. decidable⇒constant : ∀ {a} {A : Type a} → Dec A → ∃ λ (f : A → A) → Constant f decidable⇒constant (yes x) = (const x , λ _ _ → refl x) decidable⇒constant (no ¬x) = (id , λ _ → ⊥-elim ∘ ¬x) -- Types with decidable equality are sets. decidable⇒set : ∀ {a} {A : Type a} → Decidable-equality A → Is-set A decidable⇒set dec = constant⇒set (λ x y → decidable⇒constant (dec x y)) -- Non-dependent functions with propositional domains are constant. propositional-domain⇒constant : ∀ {a b} {A : Type a} {B : Type b} → Is-proposition A → (f : A → B) → Constant f propositional-domain⇒constant A-prop f = λ x y → cong f (A-prop x y) -- If there is a propositional, reflexive relation on A, and related -- elements are equal, then A is a set. -- -- (The statement of this lemma is one part of the statement of -- Theorem 7.2.2 in "Homotopy Type Theory: Univalent Foundations of -- Mathematics" (first edition).) propositional-identity⇒set : ∀ {a b} {A : Type a} (B : A → A → Type b) → (∀ x y → Is-proposition (B x y)) → (∀ x → B x x) → (∀ x y → B x y → x ≡ y) → Is-set A propositional-identity⇒set B B-prop B-refl f = constant⇒set λ x y → (λ eq → f x y (subst (B x) eq (B-refl x))) , (λ _ _ → propositional-domain⇒constant (B-prop x y) (f x y) _ _) -- The function cong {x = x} {y = y} takes (weakly) constant -- functions to constant functions. -- -- This is Lemma 3.1 from van Doorn's "Constructing the -- Propositional Truncation using Non-recursive HITs". cong-preserves-Constant : ∀ {a b} {A : Type a} {B : Type b} {f : A → B} {x y : A} → Constant f → Constant (cong {x = x} {y = y} f) cong-preserves-Constant {f = f} {x = x} {y = y} c p q = cong f p ≡⟨ lemma p ⟩ trans (sym (c x x)) (c x y) ≡⟨ sym (lemma q) ⟩∎ cong f q ∎ where lemma : ∀ p → cong {x = x} {y = y} f p ≡ trans (sym (c x x)) (c x y) lemma = elim (λ {x y} p → cong {x = x} {y = y} f p ≡ trans (sym (c x x)) (c x y)) (λ x → cong f (refl x) ≡⟨ cong-refl _ ⟩ refl (f x) ≡⟨ sym $ trans-symˡ _ ⟩∎ trans (sym (c x x)) (c x x) ∎) -- The following two results come from "Generalizations of Hedberg's -- Theorem" by Kraus, Escardó, Coquand and Altenkirch. -- Proposition 3. -- -- (I proved this result using cong-preserves-Constant.) cong-constant : ∀ {a b} {A : Type a} {B : Type b} {f : A → B} {x} {x≡x : x ≡ x} → Constant f → cong f x≡x ≡ refl (f x) cong-constant {f = f} {x} {x≡x} c = cong f x≡x ≡⟨ cong-preserves-Constant c _ _ ⟩ cong f (refl x) ≡⟨ cong-refl _ ⟩∎ refl (f x) ∎ -- The "Fixed Point Lemma". fixpoint-lemma : ∀ {a} {A : Type a} → (f : A → A) → Constant f → Is-proposition (∃ λ x → f x ≡ x) fixpoint-lemma f constant (x , fx≡x) (y , fy≡y) = let x≡y = x ≡⟨ sym fx≡x ⟩ f x ≡⟨ constant x y ⟩ f y ≡⟨ fy≡y ⟩∎ y ∎ x≡x = x ≡⟨ sym fx≡x ⟩ f x ≡⟨ subst (λ z → f z ≡ z) (sym x≡y) fy≡y ⟩∎ x ∎ lemma = subst (λ z → f z ≡ z) x≡x fx≡x ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong f x≡x)) (trans fx≡x (cong id x≡x)) ≡⟨ cong₂ (λ p q → trans (sym p) (trans _ q)) (cong-constant constant) (sym $ cong-id _) ⟩ trans (sym (refl (f x))) (trans fx≡x x≡x) ≡⟨ cong (λ p → trans p (trans fx≡x x≡x)) sym-refl ⟩ trans (refl (f x)) (trans fx≡x x≡x) ≡⟨ trans-reflˡ _ ⟩ trans fx≡x x≡x ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans fx≡x (sym fx≡x)) (subst (λ z → f z ≡ z) (sym x≡y) fy≡y) ≡⟨ cong (λ p → trans p (subst (λ z → f z ≡ z) (sym x≡y) fy≡y)) $ trans-symʳ _ ⟩ trans (refl (f x)) (subst (λ z → f z ≡ z) (sym x≡y) fy≡y) ≡⟨ trans-reflˡ _ ⟩∎ subst (λ z → f z ≡ z) (sym x≡y) fy≡y ∎ in x , fx≡x ≡⟨ Σ-≡,≡→≡ x≡x lemma ⟩ x , subst (λ z → f z ≡ z) (sym x≡y) fy≡y ≡⟨ sym $ Σ-≡,≡→≡ (sym x≡y) (refl _) ⟩∎ y , fy≡y ∎
{ "alphanum_fraction": 0.4773529412, "avg_line_length": 35.9788359788, "ext": "agda", "hexsha": "09746c13c7aa0f631161721de917f5d52c832475", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equality/Decidable-UIP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equality/Decidable-UIP.agda", "max_line_length": 129, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equality/Decidable-UIP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 2487, "size": 6800 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Binary Trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Tree.Binary where open import Level using (Level; _⊔_) open import Data.List.Base using (List) open import Data.DifferenceList as DiffList using (DiffList; []; _∷_; _∷ʳ_; _++_) open import Data.Nat.Base using (ℕ; zero; suc; _+_) open import Function.Base open import Relation.Binary.PropositionalEquality private variable a b : Level A : Set a B : Set b data Tree (A : Set a) : Set a where leaf : Tree A node : Tree A → A → Tree A → Tree A map : (A → B) → Tree A → Tree B map f leaf = leaf map f (node l m r) = node (map f l) (f m) (map f r) size : Tree A → ℕ size leaf = 0 size (node l m r) = size l + suc (size r) foldr : (B → A → B → B) → B → Tree A → B foldr nd lf leaf = lf foldr nd lf (node l m r) = nd (foldr nd lf l) m (foldr nd lf r) ------------------------------------------------------------------------ -- Extraction to lists, depth first and left to right. module Prefix where toDiffList : Tree A → DiffList A toDiffList = foldr (λ l m r → m ∷ l ++ r) [] toList : Tree A → List A toList = DiffList.toList ∘′ toDiffList module Infix where toDiffList : Tree A → DiffList A toDiffList = foldr (λ l m r → l ++ m ∷ r) [] toList : Tree A → List A toList = DiffList.toList ∘′ toDiffList module Suffix where toDiffList : Tree A → DiffList A toDiffList = foldr (λ l m r → l ++ r ∷ʳ m) [] toList : Tree A → List A toList = DiffList.toList ∘′ toDiffList
{ "alphanum_fraction": 0.5434007134, "avg_line_length": 25.4848484848, "ext": "agda", "hexsha": "15e82a66b5b59d83134401830640d86b7af1ec6b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Tree/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Tree/Binary.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Tree/Binary.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 499, "size": 1682 }
module Formalization.ClassicalPropositionalLogic.NaturalDeduction.Proofs where open import Data.Boolean open import Data.Either open import Functional open import Formalization.ClassicalPropositionalLogic.NaturalDeduction open import Formalization.ClassicalPropositionalLogic.Place open import Formalization.ClassicalPropositionalLogic.Syntax import Lvl open import Logic import Logic.Propositional as Meta open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to singleton ; _≡_ to _≡ₛ_) open import Type private variable ℓₚ ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A B : Type{ℓ} private variable P : Type{ℓₚ} private variable φ ψ γ : Formula(P) private variable Γ : Formulas(P){ℓ} private variable f : A → B private variable s e : Bool private variable p : P module _ where [¬]-intro-converse : ((Γ ∪ singleton(φ)) ⊢ ⊥) ← (Γ ⊢ (¬ φ)) [¬]-intro-converse {Γ = Γ}{φ = φ} Γ¬φ = [⊥]-intro (direct (Right [≡]-intro)) (weaken-union Γ¬φ) excluded-middle : Γ ⊢ (φ ∨ (¬ φ)) excluded-middle = ([¬¬]-elim ([¬]-intro ([⊥]-intro ([∨]-introᵣ ([¬]-intro ([⊥]-intro ([∨]-introₗ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro))) ) ) ) (direct (Right [≡]-intro)) ) ) ) [→]-disjunctive-form : (Γ ⊢ (φ ⟶ ψ)) Meta.↔ (Γ ⊢ ((¬ φ) ∨ ψ)) [→]-disjunctive-form = Meta.[↔]-intro l r where l = [∨]-elim ([⟶]-intro ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) (direct (Left (Right [≡]-intro))) ))) ([⟶]-intro (direct (Left (Right [≡]-intro)))) r = pq ↦ ([∨]-elim ([∨]-introᵣ ([⟶]-elim (direct (Right [≡]-intro)) (weaken Left pq))) ([∨]-introₗ (direct (Right [≡]-intro))) excluded-middle ) [⟷]-negated : (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ ((¬ φ) ⟷ (¬ ψ))) [⟷]-negated p = [⟷]-intro ([¬]-intro ([⊥]-intro ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken (Left ∘ Left) p)) (direct (Left (Right [≡]-intro))))) (([¬]-intro ([⊥]-intro ([⟷]-elimₗ (direct (Right [≡]-intro)) (weaken (Left ∘ Left) p)) (direct (Left (Right [≡]-intro)))))) [⟷]-conjunction-disjunction-negation : (Γ ⊢ (φ ⟷ ψ)) Meta.↔ (Γ ⊢ ((φ ∧ ψ) ∨ ((¬ φ) ∧ (¬ ψ)))) [⟷]-conjunction-disjunction-negation = Meta.[↔]-intro l r where l = [∨]-elim ([⟷]-intro ([∧]-elimₗ (direct (Left (Right [≡]-intro)))) ([∧]-elimᵣ (direct (Left (Right [≡]-intro)))) ) ([⟷]-intro ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) ([∧]-elimᵣ (direct (Left (Right [≡]-intro)))))) ([⊥]-elim ([⊥]-intro (direct (Right [≡]-intro)) ([∧]-elimₗ (direct (Left (Right [≡]-intro)))))) ) r = p ↦ [∨]-elim ([∨]-introₗ ([∧]-intro (direct (Right [≡]-intro)) ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken Left p)) )) ([∨]-introᵣ ([∧]-intro (direct (Right [≡]-intro)) ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken Left ([⟷]-negated p))) )) excluded-middle -- TODO: The two proofs contain very similar cases (the structure is identical in all cases). Are there any good ways to generalize? Maybe by using the strict variants? positive-congruence : Positive(P) f → (Γ ⊢ (φ ⟶ ψ) ⟶ (f(φ) ⟶ f(ψ))) negative-congruence : Negative(P) f → (Γ ⊢ (φ ⟶ ψ) ⟶ (f(φ) ⟵ f(ψ))) positive-congruence identity = [⟶]-intro ([⟶]-intro ([⟶]-elim (direct (Right [≡]-intro)) (direct (Left (Right [≡]-intro))))) positive-congruence (conjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (positive-congruence ctx))) )) positive-congruence (conjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (positive-congruence ctx))) ([∧]-elimᵣ (direct (Right [≡]-intro))) )) positive-congruence (disjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ (direct (Right [≡]-intro))) ([∨]-introᵣ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx)))) (direct (Right [≡]-intro)) )) positive-congruence (disjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx)))) ([∨]-introᵣ (direct (Right [≡]-intro))) (direct (Right [≡]-intro)) )) positive-congruence (implicationₗ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct(Right [≡]-intro)) (direct (Left (Right [≡]-intro)))) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx)) ))) positive-congruence (implicationᵣ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx))) (direct (Left (Right [≡]-intro))) ))) negative-congruence (conjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (negative-congruence ctx))) )) negative-congruence (conjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∧]-intro ([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) ([⟶]-elim (direct (Left (Right [≡]-intro))) (negative-congruence ctx))) ([∧]-elimᵣ (direct (Right [≡]-intro))) )) negative-congruence (disjunctionₗ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ (direct (Right [≡]-intro))) ([∨]-introᵣ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx)))) (direct (Right [≡]-intro)) )) negative-congruence (disjunctionᵣ ctx) = [⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx)))) ([∨]-introᵣ (direct (Right [≡]-intro))) (direct (Right [≡]-intro)) )) negative-congruence (implicationₗ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct(Right [≡]-intro)) (direct (Left (Right [≡]-intro)))) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (negative-congruence ctx)) ))) negative-congruence (implicationᵣ ctx) = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) (positive-congruence ctx))) (direct (Left (Right [≡]-intro))) ))) -- TODO: Mainly for results in minimal logic data NegativeFragment {P : Type{ℓₚ}} : Formula(P) → Type{Lvl.of(P)} where atom : NegativeFragment(¬(• p)) bottom : NegativeFragment(⊥) top : NegativeFragment(⊤) neg : NegativeFragment(φ) → NegativeFragment(¬ φ) and : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ∧ ψ) impl : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ⟶ ψ) eq : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ⟷ ψ) open import Functional open import Type.Dependent open import Type.Dependent.Functions module GGNegativeTranslation where trans : Formula(P) → Formula(P) trans (• p) = ¬(¬(• p)) trans ⊤ = ⊤ trans ⊥ = ⊥ trans (¬ φ) = ¬(trans φ) trans (φ ∧ ψ) = (trans φ) ∧ (trans ψ) trans (φ ∨ ψ) = ¬((¬(trans φ)) ∧ (¬(trans ψ))) trans (φ ⟶ ψ) = (trans φ) ⟶ (trans ψ) trans (φ ⟷ ψ) = (trans φ) ⟷ (trans ψ) trans-negativeFragment : NegativeFragment(trans(φ)) trans-negativeFragment {φ = • p} = neg atom trans-negativeFragment {φ = ⊤} = top trans-negativeFragment {φ = ⊥} = bottom trans-negativeFragment {φ = ¬ φ} = neg trans-negativeFragment trans-negativeFragment {φ = φ ∧ ψ} = and trans-negativeFragment trans-negativeFragment trans-negativeFragment {φ = φ ∨ ψ} = neg(and(neg trans-negativeFragment) (neg trans-negativeFragment)) trans-negativeFragment {φ = φ ⟶ ψ} = impl trans-negativeFragment trans-negativeFragment trans-negativeFragment {φ = φ ⟷ ψ} = eq trans-negativeFragment trans-negativeFragment
{ "alphanum_fraction": 0.5719433101, "avg_line_length": 42.6974358974, "ext": "agda", "hexsha": "03beb8ee32a1eb92f5158e4da707d457f1cf564a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Proofs.agda", "max_line_length": 168, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPropositionalLogic/NaturalDeduction/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3075, "size": 8326 }
------------------------------------------------------------------------ -- Finite sets (currently only some type signatures) ------------------------------------------------------------------------ module Data.Sets where open import Relation.Nullary open import Relation.Binary open import Relation.Binary.OrderMorphism open import Data.Function open import Data.List as L using (List) open import Data.Product using (∃; _×_) module Sets₁ (dto : DecTotalOrder) where open DecTotalOrder dto public using (_≈_) open DecTotalOrder dto hiding (_≈_) infixr 6 _∪_ infix 5 _∈?_ infix 4 _∈_ _|≈|_ abstract postulate decSetoid : DecSetoid <Set> : Set <Set> = DecSetoid.carrier decSetoid _|≈|_ : Rel <Set> _|≈|_ = DecSetoid._≈_ decSetoid abstract postulate empty : <Set> insert : carrier → <Set> → <Set> _∪_ : <Set> → <Set> → <Set> _∈_ : carrier → <Set> → Set _∈?_ : (x : carrier) → (s : <Set>) → Dec (x ∈ s) toList : <Set> → List carrier postulate prop-∈-insert₁ : ∀ {x y s} → x ≈ y → x ∈ insert y s prop-∈-insert₂ : ∀ {x y s} → x ∈ s → x ∈ insert y s prop-∈-insert₃ : ∀ {x y s} → ¬ x ≈ y → x ∈ insert y s → x ∈ s prop-∈-empty : ∀ {x} → ¬ x ∈ empty prop-∈-∪ : ∀ {x s₁ s₂} → x ∈ s₁ → x ∈ s₁ ∪ s₂ prop-∪₁ : ∀ {s₁ s₂} → s₁ ∪ s₂ |≈| s₂ ∪ s₁ prop-∪₂ : ∀ {s₁ s₂ s₃} → s₁ ∪ (s₂ ∪ s₃) |≈| (s₁ ∪ s₂) ∪ s₃ prop-∈-|≈| : ∀ {x} → (λ s → x ∈ s) Respects _|≈|_ prop-∈-≈ : ∀ {s} → (λ x → x ∈ s) Respects _≈_ -- TODO: Postulates for toList. singleton : carrier → <Set> singleton x = insert x empty ⋃_ : List <Set> → <Set> ⋃_ = L.foldr _∪_ empty fromList : List carrier → <Set> fromList = L.foldr insert empty _⊆_ : <Set> → <Set> → Set s₁ ⊆ s₂ = ∀ x → x ∈ s₁ → x ∈ s₂ open Sets₁ public open DecTotalOrder hiding (_≈_) open _⇒-Poset_ abstract postulate map : ∀ {do₁ do₂} → do₁ ⇒-DTO do₂ → <Set> do₁ → <Set> do₂ mapToSet : ∀ {do₁ do₂} → (carrier do₁ → <Set> do₂) → <Set> do₁ → <Set> do₂ prop-map-∈₁ : ∀ {do₁ do₂ f x s} → x ⟨ _∈_ do₁ ⟩₁ s → fun f x ⟨ _∈_ do₂ ⟩₁ map f s prop-map-∈₂ : ∀ {do₁ do₂ f y s} → y ⟨ _∈_ do₂ ⟩₁ map f s → ∃ λ x → (fun f x ⟨ _≈_ do₂ ⟩₁ y) × ( x ⟨ _∈_ do₁ ⟩₁ s) prop-mapToSet₁ : ∀ {do₁ do₂ f x s} → x ⟨ _∈_ do₁ ⟩₁ s → f x ⟨ _⊆_ do₂ ⟩₁ mapToSet f s prop-mapToSet₂ : ∀ {do₁ do₂ f y s} → y ⟨ _∈_ do₂ ⟩₁ mapToSet f s → ∃ λ x → (y ⟨ _∈_ do₂ ⟩₁ f x) × (x ⟨ _∈_ do₁ ⟩₁ s)
{ "alphanum_fraction": 0.4665170221, "avg_line_length": 28.1368421053, "ext": "agda", "hexsha": "c7a224a3104071541ef4af5007e61e869bf26946", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Sets.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Sets.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Sets.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1053, "size": 2673 }
module Proof where open import Basics hiding (_==_) open import Proc open import Path import Graph private open module G = Graph Nat open module P = Process param hiding (U; T; _!_) {- Soundness: if we get an answer there is a path Completeness: if there is a path we get an answer -} infix 18 _encodes_ data _encodes_ {G : Graph} : {x y : Nat} -> List Node -> Path G x y -> Set where nul-path : {x : Nat} -> stop :: [] encodes nul {x = x} step-path : {x y z : Nat}{xs : List Node} {step : Step G x y}{path : Path G y z} -> xs encodes path -> node y :: xs encodes step <> path test : {G : Graph}{a b c : Nat} {ab : Step G a b}{bc : Step G b c} -> node b :: node c :: stop :: [] encodes ab <> bc <> nul test = step-path (step-path nul-path) target : {G : Graph}{x y : Nat} -> Step G x y -> Nat target {y = y} _ = y encoding : {G : Graph}{x y : Nat} -> Path G x y -> List Node encoding nul = stop :: [] encoding (step <> path) = node (target step) :: encoding path lem-encode : {G : Graph}{x y : Nat}(path : Path G x y) -> encoding path encodes path lem-encode nul = nul-path lem-encode (step <> path) = step-path (lem-encode path) data WellFormed : List Node -> Set where good-stop : WellFormed (stop :: []) good-:: : forall {x xs} -> WellFormed xs -> WellFormed (node x :: xs) data MalFormed : List Node -> Set where bad-[] : MalFormed [] bad-:: : forall {x xs} -> MalFormed xs -> MalFormed (node x :: xs) bad-stop : forall {x xs} -> MalFormed (stop :: x :: xs) module Theorems (G : Graph)(start end : Nat) where mainp = main G start end Complete : Set Complete = (path : Path G start end) -> ∃ \q -> Silent q /\ mainp -! encoding path !->* q Sound : Set Sound = forall q xs -> Silent q -> WellFormed xs -> mainp -! xs !->* q -> ∃ \(path : Path G start end) -> xs encodes path Sound-Fail : Set Sound-Fail = forall q xs -> Silent q -> MalFormed xs -> mainp -! xs !->* q -> Path G start end -> False silent-edges : {a : U} -> Graph -> Proc a silent-edges [] = o silent-edges (_ :: G) = o || silent-edges G silent-silent-edges : {a : U}(G : Graph) -> Silent (silent-edges {a} G) silent-silent-edges [] = silent-o silent-silent-edges (_ :: G) = silent-|| silent-o (silent-silent-edges G) module Proofs (G : Graph) where private open module T = Theorems G complete : (start end : Nat) -> Complete start end complete x .x nul = ∃-intro q (silent-q , run) where edg₁ = {! !} edg₂ = {! !} edg₃ = silent-edges G silent-edg₃ : Silent edg₃ silent-edg₃ = silent-silent-edges G q = φ /| o || o || edg₃ silent-q : Silent q silent-q = silent-/| (silent-|| silent-o (silent-|| silent-o silent-edg₃)) rx-edg₁ : edges G -[ lift (forward stop (node x)) ]-> edg₁ rx-edg₁ = {! !} rx-edg₂ : edg₁ -[ {! !} ]-> edg₂ rx-edg₂ = {! !} run-edg₃ : φ /| o || o || edg₂ -! [] !->* φ /| o || o || edg₃ run-edg₃ = {! !} tx-batter : (n : Nat) -> if node n == node n then backward stop ! o else def (start x) -! lift (backward stop) !-> o tx-batter zero = tx-! tx-batter (suc n) = tx-batter n run : mainp x x -! stop :: [] !->* q run = (tx-/| (tx-!| (tx-def tx-!) (rx-|| (rx-def rx->) rx-edg₁))) >*> (tx-/| (tx-|! rx-o (tx-!| (tx-batter x) rx-edg₂))) >!> run-edg₃
{ "alphanum_fraction": 0.517297739, "avg_line_length": 27.6015037594, "ext": "agda", "hexsha": "10666ba728d368d4ddbb4dbddef755e4f1c9301a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cbs/Proof.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cbs/Proof.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/cbs/Proof.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1186, "size": 3671 }
module DifferentArities where open import Common.Equality open import Common.Prelude f : Nat → Nat → Nat f zero = λ x → x f (suc n) m = f n (suc m) testf1 : f zero ≡ λ x → x testf1 = refl testf2 : ∀ {n m} → f (suc n) m ≡ f n (suc m) testf2 = refl testf3 : f 4 5 ≡ 9 testf3 = refl
{ "alphanum_fraction": 0.6116838488, "avg_line_length": 15.3157894737, "ext": "agda", "hexsha": "32934d2679574f4bef70470d27ff1960d5683242", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/DifferentArities.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/DifferentArities.agda", "max_line_length": 44, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/DifferentArities.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 123, "size": 291 }
------------------------------------------------------------------------ -- Binary relations lifted to substitutions ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Data.Fin.Substitution.Relation where open import Data.Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.ExtraLemmas open import Data.Nat using (ℕ; zero; suc) open import Data.Vec.Relation.Binary.Pointwise.Inductive hiding (refl) import Function as Fun open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) -- Term relations. -- -- A term relation R : TermRel T₁ T₂ is a ℕ-indexed family of binary -- relations relating T₁-terms to T₂-terms. TermRel : (ℕ → Set) → (ℕ → Set) → Set₁ TermRel T₁ T₂ = ∀ {n} → T₁ n → T₂ n → Set -- Substitution relations. -- -- A substitution relation R : SubRel T₁ T₂ is a ℕ²-indexed family -- of binary relations relating T₁-substitutions to T₂-substitutions. SubRel : (ℕ → Set) → (ℕ → Set) → Set₁ SubRel T₁ T₂ = ∀ {m n} → Sub T₁ m n → Sub T₂ m n → Set module LiftTermRel (T₁ T₂ : ℕ → Set) where -- Term relations lifted point-wise to corresponding substitutions. -- -- Given a relation R on T₁ and T₂ terms, the family of relations -- (lift R) relates T₁ and T₂ substitutions point-wise. lift : TermRel T₁ T₂ → SubRel T₁ T₂ lift P σ₁ σ₂ = Pointwise P σ₁ σ₂ infix 4 _⟨_⟩_ -- Syntactic sugar: and infix version of lifting. _⟨_⟩_ : ∀ {m n} → Sub T₁ m n → TermRel T₁ T₂ → Sub T₂ m n → Set σ₁ ⟨ R ⟩ σ₂ = lift R σ₁ σ₂ ------------------------------------------------------------------------ -- Generic substitutions lifted to relations module _ {T₁ T₂} (_∼_ : TermRel T₁ T₂) where open LiftTermRel T₁ T₂ using (_⟨_⟩_) -- Extensions of substitutions lifted to relations. record RelExtension (ext₁ : Extension T₁) (ext₂ : Extension T₂) : Set where private module E₁ = Extension ext₁ module E₂ = Extension ext₂ -- Weakening lifted to _∼_. field weaken : ∀ {n} {t₁ : T₁ n} {t₂ : T₂ n} → t₁ ∼ t₂ → E₁.weaken t₁ ∼ E₂.weaken t₂ infixr 5 _/∷_ -- Extension. _/∷_ : ∀ {m n t₁ t₂} {σ₁ : Sub T₁ m n} {σ₂ : Sub T₂ m n} → t₁ ∼ t₂ → σ₁ ⟨ _∼_ ⟩ σ₂ → t₁ E₁./∷ σ₁ ⟨ _∼_ ⟩ t₂ E₂./∷ σ₂ t₁∼t₂ /∷ σ₁∼σ₂ = t₁∼t₂ ∷ map⁺ weaken σ₁∼σ₂ -- Simple substitutions lifted to relations. record RelSimple (simple₁ : Simple T₁) (simple₂ : Simple T₂) : Set where private module S₁ = SimpleExt simple₁ module S₂ = SimpleExt simple₂ field extension : RelExtension S₁.extension S₂.extension -- Relates variables. var : ∀ {n} (x : Fin n) → S₁.var x ∼ S₂.var x open RelExtension extension public infix 10 _↑ infixl 10 _↑⋆_ -- Lifting. _↑ : ∀ {m n} {σ₁ : Sub T₁ m n} {σ₂ : Sub T₂ m n} → σ₁ ⟨ _∼_ ⟩ σ₂ → σ₁ S₁.↑ ⟨ _∼_ ⟩ σ₂ S₂.↑ σ₁∼σ₂ ↑ = var zero /∷ σ₁∼σ₂ _↑⋆_ : ∀ {m n} {σ₁ : Sub T₁ m n} {σ₂ : Sub T₂ m n} → σ₁ ⟨ _∼_ ⟩ σ₂ → ∀ k → σ₁ S₁.↑⋆ k ⟨ _∼_ ⟩ σ₂ S₂.↑⋆ k σ₁∼σ₂ ↑⋆ zero = σ₁∼σ₂ σ₁∼σ₂ ↑⋆ suc k = (σ₁∼σ₂ ↑⋆ k) ↑ -- The identity substitution. id : ∀ {n} → S₁.id {n} ⟨ _∼_ ⟩ S₂.id {n} id {zero} = [] id {suc n} = id ↑ -- Weakening. wk⋆ : ∀ k {n} → S₁.wk⋆ k {n} ⟨ _∼_ ⟩ S₂.wk⋆ k {n} wk⋆ zero = id wk⋆ (suc k) = map⁺ weaken (wk⋆ k) wk : ∀ {n} → S₁.wk {n} ⟨ _∼_ ⟩ S₂.wk {n} wk = wk⋆ 1 -- A substitution which only replaces the first variable. sub : ∀ {n} {t₁ : T₁ n} {t₂} → t₁ ∼ t₂ → S₁.sub t₁ ⟨ _∼_ ⟩ S₂.sub t₂ sub t₁~t₂ = t₁~t₂ ∷ id -- Application of substitutions lifted to relations. record RelApplication {T₁′ T₂′} (R : TermRel T₁′ T₂′) (app₁ : Application T₁ T₁′) (app₂ : Application T₂ T₂′) : Set where private module A₁ = Application app₁ module A₂ = Application app₂ open LiftTermRel T₁′ T₂′ using () renaming (_⟨_⟩_ to _⟨_⟩′_) infixl 8 _/_ infixl 9 _⊙_ -- Post-application of substitutions to things. field _/_ : ∀ {m n t₁ t₂} {σ₁ : Sub T₁′ m n} {σ₂ : Sub T₂′ m n} → t₁ ∼ t₂ → σ₁ ⟨ R ⟩′ σ₂ → (t₁ A₁./ σ₁) ∼ (t₂ A₂./ σ₂) -- Reverse composition. (Fits well with post-application.) _⊙_ : ∀ {m n k} {σ₁ : Sub T₁ m n} {σ₂} {σ₁′ : Sub T₁′ n k} {σ₂′} → σ₁ ⟨ _∼_ ⟩ σ₂ → σ₁′ ⟨ R ⟩′ σ₂′ → σ₁ A₁.⊙ σ₁′ ⟨ _∼_ ⟩ σ₂ A₂.⊙ σ₂′ σ₁∼σ₂ ⊙ σ₁∼σ₂′ = map⁺ (λ t₁∼t₂ → t₁∼t₂ / σ₁∼σ₂′) σ₁∼σ₂ -- A combination of the two records above. record RelSubst (subst₁ : Subst T₁) (subst₂ : Subst T₂) : Set where private module S₁ = Subst subst₁ module S₂ = Subst subst₂ field simple : RelSimple S₁.simple S₂.simple application : RelApplication _∼_ S₁.application S₂.application open RelSimple simple public open RelApplication application public ------------------------------------------------------------------------ -- Instantiations and code for facilitating instantiations -- Liftings from TermRel T₁ T₂ to TermRel T₁′ T₂′. record RelLift {T₁ T₂ T₁′ T₂′} (_∼_ : TermRel T₁ T₂) (_∼′_ : TermRel T₁′ T₂′) (l₁ : Lift T₁ T₁′) (l₂ : Lift T₂ T₂′) : Set where private module L₁ = Lift l₁ module L₂ = Lift l₂ field simple : RelSimple _∼_ L₁.simple L₂.simple lift : ∀ {n} {t₁ : T₁ n} {t₂} → t₁ ∼ t₂ → L₁.lift t₁ ∼′ L₂.lift t₂ open RelSimple simple public -- Variable substitutions (renamings) lifted to equality. module VarEqSubst where private module V = VarSubst infix 4 _⟨≡⟩_ _⟨≡⟩_ : SubRel Fin Fin _⟨≡⟩_ = LiftTermRel.lift Fin Fin _≡_ subst : RelSubst _≡_ V.subst V.subst subst = record { simple = record { extension = extension; var = λ _ → refl } ; application = record { _/_ = _/_ } } where extension = record { weaken = cong suc } _/_ : ∀ {m n x₁ x₂} {σ₁ σ₂ : Sub Fin n m} → x₁ ≡ x₂ → σ₁ ⟨≡⟩ σ₂ → x₁ V./ σ₁ ≡ x₂ V./ σ₂ _/_ {x₁ = x} refl σ₁≡σ₂ = lookup σ₁≡σ₂ x open RelSubst subst public -- "Term" substitutions lifted to relations. record TermRelSubst {T₁ T₂ : ℕ → Set} (_∼_ : TermRel T₁ T₂) (ts₁ : TermSubst T₁) (ts₂ : TermSubst T₂) : Set₁ where private module S₁ = TermSubst ts₁ module S₂ = TermSubst ts₂ module V = VarEqSubst field var : ∀ {n} (x : Fin n) → S₁.var x ∼ S₂.var x app : ∀ {T₁′ T₂′} (R : TermRel T₁′ T₂′) (l₁ : Lift T₁′ T₁) (l₂ : Lift T₂′ T₂) → RelLift R _∼_ l₁ l₂ → let open LiftTermRel T₁′ T₂′ using (_⟨_⟩_) in ∀ {m n t₁ t₂} {σ₁ : Sub T₁′ m n} {σ₂ : Sub T₂′ m n} → t₁ ∼ t₂ → σ₁ ⟨ R ⟩ σ₂ → S₁.app l₁ t₁ σ₁ ∼ S₂.app l₂ t₂ σ₂ module RelLifted {T₁′ T₂′} (R : TermRel T₁′ T₂′) (l₁ : Lift T₁′ T₁) (l₂ : Lift T₂′ T₂) (lift : RelLift R _∼_ l₁ l₂) where private module L₁ = S₁.Lifted l₁ module L₂ = S₂.Lifted l₂ application : RelApplication _∼_ R L₁.application L₂.application application = record { _/_ = app R l₁ l₂ lift } varLift : RelLift _≡_ _∼_ S₁.varLift S₂.varLift varLift = record { simple = V.simple; lift = lift } where lift : ∀ {n} {x₁ x₂ : Fin n} → x₁ ≡ x₂ → S₁.var x₁ ∼ S₂.var x₂ lift {x₁ = x} refl = var x infix 8 _/Var_ _/Var_ : ∀ {m n t₁ t₂} {σ₁ σ₂ : Sub Fin m n} → t₁ ∼ t₂ → σ₁ V.⟨≡⟩ σ₂ → (t₁ S₁./Var σ₁) ∼ (t₂ S₂./Var σ₂) _/Var_ = app _≡_ S₁.varLift S₂.varLift varLift simple : RelSimple _∼_ S₁.simple S₂.simple simple = record { extension = record { weaken = λ t₁∼t₂ → t₁∼t₂ /Var V.wk } ; var = var } termLift : RelLift _∼_ _∼_ S₁.termLift S₂.termLift termLift = record { simple = simple; lift = Fun.id } subst : RelSubst _∼_ S₁.subst S₂.subst subst = record { simple = simple ; application = RelLifted.application _∼_ S₁.termLift S₂.termLift termLift } open LiftTermRel T₁ T₂ public using (_⟨_⟩_) open RelSubst subst public hiding (var; simple)
{ "alphanum_fraction": 0.5611375595, "avg_line_length": 32.5795918367, "ext": "agda", "hexsha": "0ad1592dc4b2ebd78d32ede2fa4368f837446813", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/Data/Fin/Substitution/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/Data/Fin/Substitution/Relation.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/Data/Fin/Substitution/Relation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3056, "size": 7982 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import cw.FinCW open import cw.FinBoundary open import cohomology.Theory module cw.cohomology.cochainequiv.FirstCoboundaryCommSquare (OT : OrdinaryTheory lzero) (⊙fin-skel : ⊙FinSkeleton 1) where open OrdinaryTheory OT open import cw.cohomology.WedgeOfCells OT ⊙⦉ ⊙fin-skel ⦊ open import cw.cohomology.reconstructed.TipAndAugment OT ⊙⦉ ⊙fcw-init ⊙fin-skel ⦊ open import cw.cohomology.reconstructed.TipCoboundary OT ⊙⦉ ⊙fin-skel ⦊ open import cw.cohomology.cochainequiv.DualizedFirstBoundary OT ⊙fin-skel open import cw.cohomology.cochainequiv.FirstCoboundary OT ⊙fin-skel private fin-skel = ⊙FinSkeleton.skel ⊙fin-skel I = AttachedFinSkeleton.numCells fin-skel ac = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero ⊙fin-skel₋₁ = ⊙fcw-init ⊙fin-skel fin-skel₋₁ = ⊙FinSkeleton.skel ⊙fin-skel₋₁ ac₋₁ = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel₋₁ lzero abstract rephrase-dualized-first-boundary-comm-sqr : CommSquareEquiv (λ g <I → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁))) (_∘ᴳ fboundary-last fin-skel) (FreeAbGroup-extend (C2-abgroup 0)) (FreeAbGroup-extend (C2-abgroup 0)) rephrase-dualized-first-boundary-comm-sqr = comm-sqr (λ g → equiv-adj' (GroupIso.f-equiv (FreeAbGroup-extend-iso (C2-abgroup 0))) (λ= λ <I → ! (rephrase-dualized-first-boundary-in-degree g <I))) , FreeAbGroup-extend-is-equiv (C2-abgroup 0) , FreeAbGroup-extend-is-equiv (C2-abgroup 0) rephrase-cw-co∂-head-comm-sqr : CommSquareEquiv (λ g <I → Group.sum (C2 0) (λ <I' → Group.exp (C2 0) (g <I') (fdegree-last fin-skel <I <I'))) (GroupHom.f cw-co∂-head) (GroupIso.g (C2×CX₀-diag-β ac₋₁)) (GroupIso.g (CXₙ/Xₙ₋₁-diag-β ac)) rephrase-cw-co∂-head-comm-sqr = comm-sqr (λ g → equiv-adj' (GroupIso.g-equiv (CXₙ/Xₙ₋₁-diag-β ac)) (λ= λ <I → ! (rephrase-cw-co∂-head-in-degree g <I))) , (GroupIso.g-is-equiv (C2×CX₀-diag-β ac₋₁)) , (GroupIso.g-is-equiv (CXₙ/Xₙ₋₁-diag-β ac)) first-coboundary-comm-sqr : CommSquareEquiv (GroupHom.f cw-co∂-head) (_∘ᴳ fboundary-last fin-skel) (FreeAbGroup-extend (C2-abgroup 0) ∘ GroupIso.f (C2×CX₀-diag-β ac₋₁)) (FreeAbGroup-extend (C2-abgroup 0) ∘ GroupIso.f (CXₙ/Xₙ₋₁-diag-β ac)) first-coboundary-comm-sqr = CommSquareEquiv-∘v rephrase-dualized-first-boundary-comm-sqr (CommSquareEquiv-inverse-v rephrase-cw-co∂-head-comm-sqr) first-coboundary-comm-sqrᴳ : CommSquareEquivᴳ cw-co∂-head (pre∘ᴳ-hom (C2-abgroup 0) (fboundary-last fin-skel)) (FreeAbGroup-extend-hom (C2-abgroup 0) ∘ᴳ GroupIso.f-hom (C2×CX₀-diag-β ac₋₁)) (FreeAbGroup-extend-hom (C2-abgroup 0) ∘ᴳ GroupIso.f-hom (CXₙ/Xₙ₋₁-diag-β ac)) first-coboundary-comm-sqrᴳ = comm-sqrᴳ (fst first-coboundary-comm-sqr □$_) , snd first-coboundary-comm-sqr
{ "alphanum_fraction": 0.6751935375, "avg_line_length": 39.0921052632, "ext": "agda", "hexsha": "704aba4aaa31e640c98a5f19c24c96f755173cdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundaryCommSquare.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundaryCommSquare.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/FirstCoboundaryCommSquare.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1162, "size": 2971 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Paths open import lib.types.TwoSemiCategory open import lib.two-semi-categories.Functor module lib.two-semi-categories.FunctorInverse where module _ {k l} {B : Type k} {C : B → B → Type l} (comp : {b b' b'' : B} → C b b' → C b' b'' → C b b'') where coe-C : {b₁ b₁' b₂ b₂' : B} → b₁ == b₂ → b₁' == b₂' → C b₁ b₁' → C b₂ b₂' coe-C p p' = coe (ap2 C p p') coe-comp : {b₁ b₁' b₁'' b₂ b₂' b₂'' : B} → (p : b₁ == b₂) (p' : b₁' == b₂') (p'' : b₁'' == b₂'') → (r : C b₁ b₁') (s : C b₁' b₁'') → coe-C p p'' (comp r s) == comp (coe-C p p' r) (coe-C p' p'' s) coe-comp idp idp idp r s = idp coe-comp-coh : {b₁ b₁' b₁'' b₁''' b₂ b₂' b₂'' b₂''' : B} → (assoc : {b b' b'' b''' : B} → (f : C b b') (g : C b' b'') (h : C b'' b''') → comp (comp f g) h == comp f (comp g h)) → (p : b₁ == b₂) (p' : b₁' == b₂') (p'' : b₁'' == b₂'') (p''' : b₁''' == b₂''') → (f : C b₁ b₁') (g : C b₁' b₁'') (h : C b₁'' b₁''') → coe-comp p p'' p''' (comp f g) h ◃∙ ap (λ s → comp s (coe-C p'' p''' h)) (coe-comp p p' p'' f g) ◃∙ assoc (coe-C p p' f) (coe-C p' p'' g) (coe-C p'' p''' h) ◃∎ =ₛ ap (coe-C p p''') (assoc f g h) ◃∙ coe-comp p p' p''' f (comp g h) ◃∙ ap (comp (coe-C p p' f)) (coe-comp p' p'' p''' g h) ◃∎ coe-comp-coh assoc idp idp idp idp f g h = =ₛ-in $ ! (ap-idf (assoc f g h)) ∙ ! (∙-unit-r (ap (coe-C idp idp) (assoc f g h))) module FunctorInverse {i₁ j₁ i₂ j₂} {C : TwoSemiCategory i₁ j₁} {D : TwoSemiCategory i₂ j₂} (F : TwoSemiFunctor C D) (F₀-is-equiv : is-equiv (TwoSemiFunctor.F₀ F)) (F₁-is-equiv : ∀ x y → is-equiv (TwoSemiFunctor.F₁ F {x} {y})) where private module C = TwoSemiCategory C module D = TwoSemiCategory D module F = TwoSemiFunctor F module F₀-is-equiv = is-equiv F₀-is-equiv module F₁-is-equiv (x y : C.El) = is-equiv (F₁-is-equiv x y) F₀ = F.F₀ F₁ = F.F₁ G₀ : D.El → C.El G₀ = F₀-is-equiv.g D' : TwoSemiCategory i₂ j₂ D' = record { El = D.El ; Arr = λ x y → D.Arr (F₀ (G₀ x)) (F₀ (G₀ y)) ; Arr-level = λ x y → D.Arr-level (F₀ (G₀ x)) (F₀ (G₀ y)) ; two-semi-cat-struct = record { comp = λ f g → D.comp f g ; assoc = λ f g h → D.assoc f g h ; pentagon-identity = λ f g h i → D.pentagon-identity f g h i } } N : TwoSemiFunctor D D' N = record { F₀ = idf D.El ; F₁ = λ {x} {y} f → coe (Arr-path x y) f ; pres-comp = λ {x} {y} {z} f g → coe-comp D.comp (F₀-η x) (F₀-η y) (F₀-η z) f g ; pres-comp-coh = λ {w} {x} {y} {z} f g h → coe-comp-coh D.comp D.assoc (F₀-η w) (F₀-η x) (F₀-η y) (F₀-η z) f g h } where F₀-η : (x : D.El) → x == F₀ (G₀ x) F₀-η x = ! (F₀-is-equiv.f-g x) Arr-path : (x y : D.El) → D.Arr x y == D.Arr (F₀ (G₀ x)) (F₀ (G₀ y)) Arr-path x y = ap2 D.Arr (F₀-η x) (F₀-η y) module N = TwoSemiFunctor N G₁ : {x y : D.El} → D.Arr (F₀ (G₀ x)) (F₀ (G₀ y)) → C.Arr (G₀ x) (G₀ y) G₁ {x} {y} f = F₁-is-equiv.g (G₀ x) (G₀ y) f F₁-β : {x y : D.El} (f : D.Arr (F₀ (G₀ x)) (F₀ (G₀ y))) → F₁ (G₁ f) == f F₁-β {x} {y} f = F₁-is-equiv.f-g (G₀ x) (G₀ y) f F₁-η : {x y : D.El} (f : D.Arr (F₀ (G₀ x)) (F₀ (G₀ y))) → f == F₁ (G₁ f) F₁-η f = ! (F₁-β f) G₁-β : {x y : D.El} → (f : C.Arr (G₀ x) (G₀ y)) → G₁ (F₁ f) == f G₁-β {x} {y} f = F₁-is-equiv.g-f (G₀ x) (G₀ y) f G₁-pres-comp-seq : {x y z : D.El} (f : D.Arr (F₀ (G₀ x)) (F₀ (G₀ y))) (g : D.Arr (F₀ (G₀ y)) (F₀ (G₀ z))) → G₁ (D.comp f g) =-= C.comp (G₁ f) (G₁ g) G₁-pres-comp-seq {x} {y} {z} f g = G₁ (D.comp f g) =⟪ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g) ⟫ G₁ (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) =⟪ ap G₁ (! (F.pres-comp (G₁ f) (G₁ g))) ⟫ G₁ (F₁ (C.comp (G₁ f) (G₁ g))) =⟪ G₁-β (C.comp (G₁ f) (G₁ g)) ⟫ C.comp (G₁ f) (G₁ g) ∎∎ abstract G₁-pres-comp : {x y z : D.El} (f : D.Arr (F₀ (G₀ x)) (F₀ (G₀ y))) (g : D.Arr (F₀ (G₀ y)) (F₀ (G₀ z))) → G₁ (D.comp f g) == C.comp (G₁ f) (G₁ g) G₁-pres-comp f g = ↯ (G₁-pres-comp-seq f g) G₁-pres-comp-β : {x y z : D.El} (f : D.Arr (F₀ (G₀ x)) (F₀ (G₀ y))) (g : D.Arr (F₀ (G₀ y)) (F₀ (G₀ z))) → G₁-pres-comp f g ◃∎ =ₛ G₁-pres-comp-seq f g G₁-pres-comp-β f g = =ₛ-in idp private G₁-pres-comp-coh : {w x y z : D.El} (f : D.Arr (F₀ (G₀ w)) (F₀ (G₀ x))) (g : D.Arr (F₀ (G₀ x)) (F₀ (G₀ y))) (h : D.Arr (F₀ (G₀ y)) (F₀ (G₀ z))) → G₁-pres-comp (D.comp f g) h ◃∙ ap (λ s → C.comp s (G₁ h)) (G₁-pres-comp f g) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ ap G₁ (D.assoc f g h) ◃∙ G₁-pres-comp f (D.comp g h) ◃∙ ap (C.comp (G₁ f)) (G₁-pres-comp g h) ◃∎ G₁-pres-comp-coh {w} {x} {y} {z} f g h = G₁-pres-comp (D.comp f g) h ◃∙ ap (λ s → C.comp s (G₁ h)) (G₁-pres-comp f g) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 0 & 1 & G₁-pres-comp-β (D.comp f g) h ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap G₁ (! (F.pres-comp (G₁ (D.comp f g)) (G₁ h))) ◃∙ G₁-β (C.comp (G₁ (D.comp f g)) (G₁ h)) ◃∙ ap (λ s → C.comp s (G₁ h)) (G₁-pres-comp f g) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 2 & 2 & !ₛ $ homotopy-naturality (λ s → G₁ (F₁ (C.comp s (G₁ h)))) (λ s → C.comp s (G₁ h)) (λ s → G₁-β (C.comp s (G₁ h))) (G₁-pres-comp f g) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap G₁ (! (F.pres-comp (G₁ (D.comp f g)) (G₁ h))) ◃∙ ap (λ s → G₁ (F₁ (C.comp s (G₁ h)))) (G₁-pres-comp f g) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 1 & 2 & !ₛ $ homotopy-naturality (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (λ s → G₁ (F₁ (C.comp s (G₁ h)))) (λ s → ap G₁ (! (F.pres-comp s (G₁ h)))) (G₁-pres-comp f g) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (G₁-pres-comp f g) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 1 & 1 & ap-seq-=ₛ (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (G₁-pres-comp-β f g) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap G₁ (! (F.pres-comp (G₁ f) (G₁ g)))) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (G₁-β (C.comp (G₁ f) (G₁ g))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ₁⟨ 3 & 1 & step₅ ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap G₁ (! (F.pres-comp (G₁ f) (G₁ g)))) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (F₁ (C.comp (G₁ f) (G₁ g)))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ₁⟨ 2 & 1 & ∘-ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) G₁ (! (F.pres-comp (G₁ f) (G₁ g))) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ s)) (F₁ (G₁ h)))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (F₁ (C.comp (G₁ f) (G₁ g)))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 2 & 2 & homotopy-naturality (λ s → G₁ (D.comp (F₁ (G₁ s)) (F₁ (G₁ h)))) (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (λ t → ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β t)) (! (F.pres-comp (G₁ f) (G₁ g))) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 0 & 3 & step₈ ⟩ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ G₁-β (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ C.assoc (G₁ f) (G₁ g) (G₁ h) ◃∎ =ₛ⟨ 5 & 2 & !ₛ $ homotopy-naturality-to-idf (G₁ ∘ F₁) G₁-β (C.assoc (G₁ f) (G₁ g) (G₁ h)) ⟩ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ ap (G₁ ∘ F₁) (C.assoc (G₁ f) (G₁ g) (G₁ h)) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 3 & 3 & step₁₀ ⟩ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∙ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 0 & 4 & step₁₁ ⟩ ap G₁ (D.assoc f g h) ◃∙ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 1 & 3 & step₁₂ ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 3 & 2 & !ₛ $ homotopy-naturality (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁ ∘ G₁) (G₁ ∘ D.comp (F₁ (G₁ f))) (ap (G₁ ∘ D.comp (F₁ (G₁ f))) ∘ F₁-β) (! (F.pres-comp (G₁ g) (G₁ h))) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁ ∘ G₁) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (F₁ (C.comp (G₁ g) (G₁ h)))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ₁⟨ 3 & 1 & ap-∘ (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) G₁ (! (F.pres-comp (G₁ g) (G₁ h))) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap G₁ (! (F.pres-comp (G₁ g) (G₁ h)))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (F₁ (C.comp (G₁ g) (G₁ h)))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ₁⟨ 4 & 1 & ! $ ap (ap (G₁ ∘ D.comp (F₁ (G₁ f)))) $ F₁-is-equiv.adj (G₀ x) (G₀ z) (C.comp (G₁ g) (G₁ h)) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap G₁ (! (F.pres-comp (G₁ g) (G₁ h)))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (ap F₁ (G₁-β (C.comp (G₁ g) (G₁ h)))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ₁⟨ 4 & 1 & ∘-ap (G₁ ∘ D.comp (F₁ (G₁ f))) F₁ (G₁-β (C.comp (G₁ g) (G₁ h))) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap G₁ (! (F.pres-comp (G₁ g) (G₁ h)))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (G₁-β (C.comp (G₁ g) (G₁ h))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 2 & 3 & ap-seq-=ₛ (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (!ₛ (G₁-pres-comp-β g h)) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (G₁-pres-comp g h) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 2 & 2 & homotopy-naturality (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (G₁ ∘ F₁ ∘ C.comp (G₁ f)) (λ s → ap G₁ (! (F.pres-comp (G₁ f) s))) (G₁-pres-comp g h) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (G₁ (D.comp g h)))) ◃∙ ap (G₁ ∘ F₁ ∘ C.comp (G₁ f)) (G₁-pres-comp g h) ◃∙ G₁-β (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ 3 & 2 & homotopy-naturality (G₁ ∘ F₁ ∘ C.comp (G₁ f)) (C.comp (G₁ f)) (G₁-β ∘ C.comp (G₁ f)) (G₁-pres-comp g h) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (G₁ (D.comp g h)))) ◃∙ G₁-β (C.comp (G₁ f) (G₁ (D.comp g h))) ◃∙ ap (C.comp (G₁ f)) (G₁-pres-comp g h) ◃∎ =ₛ⟨ 1 & 3 & !ₛ (G₁-pres-comp-β f (D.comp g h)) ⟩ ap G₁ (D.assoc f g h) ◃∙ G₁-pres-comp f (D.comp g h) ◃∙ ap (C.comp (G₁ f)) (G₁-pres-comp g h) ◃∎ ∎ₛ where step₅ : ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (G₁-β (C.comp (G₁ f) (G₁ g))) == ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (F₁ (C.comp (G₁ f) (G₁ g)))) step₅ = ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (G₁-β (C.comp (G₁ f) (G₁ g))) =⟨ ap-∘ (λ s → G₁ (D.comp s (F₁ (G₁ h)))) F₁ (G₁-β (C.comp (G₁ f) (G₁ g))) ⟩ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (ap F₁ (G₁-β (C.comp (G₁ f) (G₁ g)))) =⟨ ap (ap (λ s → G₁ (D.comp s (F₁ (G₁ h))))) (F₁-is-equiv.adj (G₀ w) (G₀ y) (C.comp (G₁ f) (G₁ g))) ⟩ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (F₁ (C.comp (G₁ f) (G₁ g)))) =∎ step₈ : ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∎ =ₛ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∎ step₈ = ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∎ =ₛ₁⟨ 1 & 1 & ap (ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h))))) (! (ap-ap2 G₁ D.comp (F₁-η f) (F₁-η g))) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) (ap G₁ (ap2 D.comp (F₁-η f) (F₁-η g))) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∎ =ₛ₁⟨ 1 & 1 & ∘-ap (λ s → G₁ (D.comp (F₁ s) (F₁ (G₁ h)))) G₁ (ap2 D.comp (F₁-η f) (F₁-η g)) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp f g)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ s)) (F₁ (G₁ h)))) (ap2 D.comp (F₁-η f) (F₁-η g)) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∎ =ₛ⟨ 0 & 2 & !ₛ $ homotopy-naturality (λ s → G₁ (D.comp s h)) (λ s → G₁ (D.comp (F₁ (G₁ s)) (F₁ (G₁ h)))) (λ s → ap2 (λ s t → G₁ (D.comp s t)) (F₁-η s) (F₁-η h)) (ap2 D.comp (F₁-η f) (F₁-η g)) ⟩ ap (λ s → G₁ (D.comp s h)) (ap2 D.comp (F₁-η f) (F₁-η g)) ◃∙ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∎ =ₛ⟨ 1 & 1 & ap2-out' (λ s t → G₁ (D.comp s t)) (F₁-η (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) (F₁-η h) ⟩ ap (λ s → G₁ (D.comp s h)) (ap2 D.comp (F₁-η f) (F₁-η g)) ◃∙ ap (λ t → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) t)) (F₁-η h) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-η (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∙ ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g)))) ◃∎ =ₛ⟨ 2 & 2 & ap-seq-=ₛ (λ s → G₁ (D.comp s (F₁ (G₁ h)))) $ =ₛ-in {s = F₁-η (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) ◃∙ F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) ◃∎} {t = D.comp (F₁ (G₁ f)) (F₁ (G₁ g)) ∎∎} (!-inv-l (F₁-β (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))))) ⟩ ap (λ s → G₁ (D.comp s h)) (ap2 D.comp (F₁-η f) (F₁-η g)) ◃∙ ap (λ t → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) t)) (F₁-η h) ◃∎ =ₛ₁⟨ 0 & 1 & ap-ap2 (λ s → G₁ (D.comp s h)) D.comp (F₁-η f) (F₁-η g) ⟩ ap2 (λ s t → G₁ (D.comp (D.comp s t) h)) (F₁-η f) (F₁-η g) ◃∙ ap (λ t → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) t)) (F₁-η h) ◃∎ =ₛ⟨ 0 & 1 & ap2-out (λ s t → G₁ (D.comp (D.comp s t) h)) (F₁-η f) (F₁-η g) ⟩ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∎ ∎ₛ step₁₀' : ap (λ s → D.comp s (F₁ (G₁ h))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) ◃∙ ap F₁ (C.assoc (G₁ f) (G₁ g) (G₁ h)) ◃∎ =ₛ D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h)) ◃∙ ap (D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h))) ◃∎ step₁₀' = ap (λ s → D.comp s (F₁ (G₁ h))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ! e₀₋₁ ◃∙ e₀₋₄ ◃∎ =ₛ₁⟨ 0 & 1 & ap-! (λ s → D.comp s (F₁ (G₁ h))) (F.pres-comp (G₁ f) (G₁ g)) ⟩ ! e₁₋₂ ◃∙ ! e₀₋₁ ◃∙ e₀₋₄ ◃∎ =ₛ⟨ post-rotate-seq-in {p = ! e₁₋₂ ◃∙ ! e₀₋₁ ◃∙ e₀₋₄ ◃∎} $ pre-rotate'-seq-in {p = e₀₋₁ ◃∙ e₁₋₂ ◃∎} $ !ₛ $ F.pres-comp-coh (G₁ f) (G₁ g) (G₁ h) ⟩ e₂₋₃ ◃∙ ! e₅₋₃ ◃∙ ! e₄₋₅ ◃∎ =ₛ₁⟨ 1 & 1 & !-ap (D.comp (F₁ (G₁ f))) (F.pres-comp (G₁ g) (G₁ h)) ⟩ e₂₋₃ ◃∙ ap (D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ! e₄₋₅ ◃∎ ∎ₛ where t₀ : D.Arr (F₀ (G₀ w)) (F₀ (G₀ z)) t₀ = F₁ (C.comp (C.comp (G₁ f) (G₁ g)) (G₁ h)) t₁ : D.Arr (F₀ (G₀ w)) (F₀ (G₀ z)) t₁ = D.comp (F₁ (C.comp (G₁ f) (G₁ g))) (F₁ (G₁ h)) t₂ : D.Arr (F₀ (G₀ w)) (F₀ (G₀ z)) t₂ = D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) (F₁ (G₁ h)) t₃ : D.Arr (F₀ (G₀ w)) (F₀ (G₀ z)) t₃ = D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) (F₁ (G₁ h))) t₄ : D.Arr (F₀ (G₀ w)) (F₀ (G₀ z)) t₄ = F₁ (C.comp (G₁ f) (C.comp (G₁ g) (G₁ h))) t₅ = D.comp (F₁ (G₁ f)) (F₁ (C.comp (G₁ g) (G₁ h))) e₀₋₁ : t₀ == t₁ e₀₋₁ = F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h) e₁₋₂ : t₁ == t₂ e₁₋₂ = ap (λ s → D.comp s (F₁ (G₁ h))) (F.pres-comp (G₁ f) (G₁ g)) e₂₋₃ : t₂ == t₃ e₂₋₃ = D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h)) e₀₋₄ : t₀ == t₄ e₀₋₄ = ap F₁ (C.assoc (G₁ f) (G₁ g) (G₁ h)) e₄₋₅ : t₄ == t₅ e₄₋₅ = F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)) e₅₋₃ : t₅ == t₃ e₅₋₃ = ap (D.comp (F₁ (G₁ f))) (F.pres-comp (G₁ g) (G₁ h)) step₁₀ : ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ ap (G₁ ∘ F₁) (C.assoc (G₁ f) (G₁ g) (G₁ h)) ◃∎ =ₛ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∎ step₁₀ = ap (λ s → G₁ (D.comp s (F₁ (G₁ h)))) (! (F.pres-comp (G₁ f) (G₁ g))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ ap (G₁ ∘ F₁) (C.assoc (G₁ f) (G₁ g) (G₁ h)) ◃∎ =ₛ₁⟨ 0 & 1 & ap-∘ G₁ (λ s → D.comp s (F₁ (G₁ h))) (! (F.pres-comp (G₁ f) (G₁ g))) ⟩ ap G₁ (ap (λ s → D.comp s (F₁ (G₁ h))) (! (F.pres-comp (G₁ f) (G₁ g)))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ ap (G₁ ∘ F₁) (C.assoc (G₁ f) (G₁ g) (G₁ h)) ◃∎ =ₛ₁⟨ 2 & 1 & ap-∘ G₁ F₁ (C.assoc (G₁ f) (G₁ g) (G₁ h)) ⟩ ap G₁ (ap (λ s → D.comp s (F₁ (G₁ h))) (! (F.pres-comp (G₁ f) (G₁ g)))) ◃∙ ap G₁ (! (F.pres-comp (C.comp (G₁ f) (G₁ g)) (G₁ h))) ◃∙ ap G₁ (ap F₁ (C.assoc (G₁ f) (G₁ g) (G₁ h))) ◃∎ =ₛ⟨ ap-seq-=ₛ G₁ step₁₀' ⟩ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∙ ap G₁ (ap (D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h)))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∎ =ₛ₁⟨ 1 & 1 & ∘-ap G₁ (D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ⟩ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (! (F.pres-comp (G₁ g) (G₁ h))) ◃∙ ap G₁ (! (F.pres-comp (G₁ f) (C.comp (G₁ g) (G₁ h)))) ◃∎ ∎ₛ step₁₁ : ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∙ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∎ =ₛ ap G₁ (D.assoc f g h) ◃∙ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∎ step₁₁ = ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (F₁-η h) ◃∙ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∎ =ₛ⟨ 2 & 2 & homotopy-naturality (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) (F₁ (G₁ g))) s)) (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (λ s → ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) s)) (F₁-η h) ⟩ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (F₁-η g) ◃∙ ap G₁ (D.assoc (F₁ (G₁ f)) (F₁ (G₁ g)) h) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∎ =ₛ⟨ 1 & 2 & homotopy-naturality (λ s → G₁ (D.comp (D.comp (F₁ (G₁ f)) s) h)) (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (λ s → ap G₁ (D.assoc (F₁ (G₁ f)) s h)) (F₁-η g) ⟩ ap (λ s → G₁ (D.comp (D.comp s g) h)) (F₁-η f) ◃∙ ap G₁ (D.assoc (F₁ (G₁ f)) g h) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∎ =ₛ⟨ 0 & 2 & homotopy-naturality (λ s → G₁ (D.comp (D.comp s g) h)) (λ s → G₁ (D.comp s (D.comp g h))) (λ s → ap G₁ (D.assoc s g h)) (F₁-η f) ⟩ ap G₁ (D.assoc f g h) ◃∙ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∎ ∎ₛ step₁₂ : ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∎ =ₛ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∎ step₁₂ = ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp s h))) (F₁-η g) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (D.comp (F₁ (G₁ g)) s))) (F₁-η h) ◃∎ =ₛ⟨ 1 & 2 & !ₛ (ap2-out (λ s t → G₁ (D.comp (F₁ (G₁ f)) (D.comp s t))) (F₁-η g) (F₁-η h)) ⟩ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap2 (λ s t → G₁ (D.comp (F₁ (G₁ f)) (D.comp s t))) (F₁-η g) (F₁-η h) ◃∎ =ₛ₁⟨ 1 & 1 & ! (ap-ap2 (G₁ ∘ D.comp (F₁ (G₁ f))) D.comp (F₁-η g) (F₁-η h)) ⟩ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (ap2 D.comp (F₁-η g) (F₁-η h)) ◃∎ =ₛ⟨ 2 & 0 & ap-seq-=ₛ (G₁ ∘ D.comp (F₁ (G₁ f))) $ =ₛ-in {s = D.comp (F₁ (G₁ g)) (F₁ (G₁ h)) ∎∎} {t = F₁-η (D.comp (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∙ F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h))) ◃∎} (! (!-inv-l (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))))) ⟩ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (ap2 D.comp (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-η (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∎ =ₛ⟨ 1 & 2 & homotopy-naturality (G₁ ∘ D.comp (F₁ (G₁ f))) (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁ ∘ G₁) (ap (G₁ ∘ D.comp (F₁ (G₁ f))) ∘ F₁-η) (ap2 D.comp (F₁-η g) (F₁-η h)) ⟩ ap (λ s → G₁ (D.comp s (D.comp g h))) (F₁-η f) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁ ∘ G₁) (ap2 D.comp (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∎ =ₛ⟨ 0 & 2 & !ₛ (ap2-out (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h))) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (λ s → G₁ (D.comp (F₁ (G₁ f)) (F₁ (G₁ s)))) (ap2 D.comp (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∎ =ₛ₁⟨ 1 & 1 & ap-ap2 (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁ ∘ G₁) D.comp (F₁-η g) (F₁-η h) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap2 (λ s t → G₁ (D.comp (F₁ (G₁ f)) (F₁ (G₁ (D.comp s t))))) (F₁-η g) (F₁-η h) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∎ =ₛ₁⟨ 1 & 1 & ! (ap-ap2 (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ⟩ ap2 (λ s t → G₁ (D.comp s t)) (F₁-η f) (F₁-η (D.comp g h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f)) ∘ F₁) (ap2 (λ s t → G₁ (D.comp s t)) (F₁-η g) (F₁-η h)) ◃∙ ap (G₁ ∘ D.comp (F₁ (G₁ f))) (F₁-β (D.comp (F₁ (G₁ g)) (F₁ (G₁ h)))) ◃∎ ∎ₛ G : TwoSemiFunctor D' C G = record { F₀ = G₀ ; F₁ = G₁ ; pres-comp = G₁-pres-comp ; pres-comp-coh = G₁-pres-comp-coh } module G = TwoSemiFunctor G module Comp = FunctorComposition N G open Comp using () renaming (composition to functor) public open TwoSemiFunctor functor public abstract pres-comp-β : {x y z : D.El} (f : D.Arr x y) (g : D.Arr y z) → pres-comp f g ◃∎ =ₛ ap G.F₁ (N.pres-comp f g) ◃∙ G₁-pres-comp-seq (N.F₁ f) (N.F₁ g) pres-comp-β f g = pres-comp f g ◃∎ =ₛ⟨ Comp.pres-comp-β f g ⟩ ap G.F₁ (N.pres-comp f g) ◃∙ G₁-pres-comp (N.F₁ f) (N.F₁ g) ◃∎ =ₛ⟨ 1 & 1 & G₁-pres-comp-β (N.F₁ f) (N.F₁ g) ⟩ ap G.F₁ (N.pres-comp f g) ◃∙ G₁-pres-comp-seq (N.F₁ f) (N.F₁ g) ∎ₛ open FunctorInverse using () renaming (functor to functor-inverse) public
{ "alphanum_fraction": 0.3957586813, "avg_line_length": 52.2074829932, "ext": "agda", "hexsha": "45388dcb8ba6e4d5c9fc2850d77f9c0334fde498", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/two-semi-categories/FunctorInverse.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/two-semi-categories/FunctorInverse.agda", "max_line_length": 110, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/two-semi-categories/FunctorInverse.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 15545, "size": 30698 }
{-# OPTIONS --without-K --safe #-} module Dodo.Nullary where open import Dodo.Nullary.Disjoint public open import Dodo.Nullary.Unique public open import Dodo.Nullary.XOpt public
{ "alphanum_fraction": 0.7777777778, "avg_line_length": 22.5, "ext": "agda", "hexsha": "e5c0c100f3548a00abe50c6780af9e299b7db64a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Nullary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Nullary.agda", "max_line_length": 40, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Nullary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 44, "size": 180 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? open import Data.Unit module MyTestModule where e1 : let x = ⊤ in x e1 = checkProperty record { databasePath = DATABASE_PATH ; propertyUUID = ???? }
{ "alphanum_fraction": 0.6780626781, "avg_line_length": 21.9375, "ext": "agda", "hexsha": "1a242244d333b730622c3c2457329fc5d0d31ea7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Yiergot/vehicle", "max_forks_repo_path": "examples/simple/let/let-output.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Yiergot/vehicle", "max_issues_repo_path": "examples/simple/let/let-output.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "7cdd7734fe0d50cc7d5a3b3c6bdddba778cfe6df", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Yiergot/vehicle", "max_stars_repo_path": "examples/simple/let/let-output.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 107, "size": 351 }
-- 2010-10-14 {-# OPTIONS --universe-polymorphism #-} module ProjectionsPreserveGuardednessTrivialExample where -- Coinduction is only available with universe polymorphism postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_ -- Coinduction infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} -- Products infixr 4 _,_ infixr 2 _×_ record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public syntax Σ A (λ x → B) = Σ[ x ∶ A ] B _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∶ A ] B -- Streams infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A mutual repeat : {A : Set}(a : A) → Stream A repeat a = a ∷ proj₂ (repeat' a) repeat' : {A : Set}(a : A) → A × ∞ (Stream A) repeat' a = a , ♯ repeat a
{ "alphanum_fraction": 0.5427385892, "avg_line_length": 17.9850746269, "ext": "agda", "hexsha": "c7a637e152c27367377c135306675a14bf5cae9d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/ProjectionsPreserveGuardednessTrivialExample.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/ProjectionsPreserveGuardednessTrivialExample.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/ProjectionsPreserveGuardednessTrivialExample.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 490, "size": 1205 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Left-biased universe-sensitive functor and monad instances for These. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). -- See the Data.Product.Categorical.Examples for how this is done in a -- Product-based similar setting. ------------------------------------------------------------------------ -- This functor can be understood as a notion of computation which can -- either fail (this), succeed (that) or accumulate warnings whilst -- delivering a successful computation (these). -- It is a good alternative to Data.Product.Categorical when the notion -- of warnings does not have a neutral element (e.g. List⁺). {-# OPTIONS --without-K --safe #-} open import Level open import Algebra module Data.These.Categorical.Left {c ℓ} (W : Semigroup c ℓ) (b : Level) where open Semigroup W open import Data.These.Categorical.Left.Base Carrier b public open import Data.These open import Category.Applicative open import Category.Monad module _ {a b} {A : Set a} {B : Set b} where applicative : RawApplicative Theseₗ applicative = record { pure = that ; _⊛_ = ap } where ap : ∀ {A B}→ Theseₗ (A → B) → Theseₗ A → Theseₗ B ap (this w) t = this w ap (that f) t = map₂ f t ap (these w f) t = map (w ∙_) f t monad : RawMonad Theseₗ monad = record { return = that ; _>>=_ = bind } where bind : ∀ {A B} → Theseₗ A → (A → Theseₗ B) → Theseₗ B bind (this w) f = this w bind (that t) f = f t bind (these w t) f = map₁ (w ∙_) (f t)
{ "alphanum_fraction": 0.6174377224, "avg_line_length": 29.5789473684, "ext": "agda", "hexsha": "45f7b5ab67199f74a598eb86a44d95e3d8ea450a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Left.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Left.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/These/Categorical/Left.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 475, "size": 1686 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Flip where -- Stdlib imports open import Level using (Level; _⊔_) open import Function.Base using (flip) open import Relation.Binary using (Rel; REL) open import Relation.Binary using (Symmetric) -- Local imports open import Dodo.Binary.Equality -- # Operations -- ## Operations: ⊆₂ module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where flip-⊆₂ : P ⊆₂ Q → flip P ⊆₂ flip Q flip-⊆₂ (⊆: P⊆Q) = ⊆: (flip P⊆Q) module _ {a ℓ₁ : Level} {A : Set a} {P : Rel A ℓ₁} where flip-sym-⊆₂ : Symmetric P → P ⊆₂ flip P flip-sym-⊆₂ symP = ⊆: (λ _ _ → symP) -- ## Operations: ⇔₂ module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where flip-⇔₂ : P ⇔₂ Q → flip P ⇔₂ flip Q flip-⇔₂ = ⇔₂-compose flip-⊆₂ flip-⊆₂ module _ {a ℓ₁ : Level} {A : Set a} {P : Rel A ℓ₁} where flip-sym-⇔₂ : Symmetric P → P ⇔₂ flip P flip-sym-⇔₂ symP = ⇔₂-intro (flip-sym-⊆₂ symP) (flip-sym-⊆₂ symP)
{ "alphanum_fraction": 0.5893203883, "avg_line_length": 23.4090909091, "ext": "agda", "hexsha": "1c91cdf988fe14c50e4e57426fcc5160fbedae3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Flip.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Flip.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Flip.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 450, "size": 1030 }
module MatchUpNames where open import ParseTree open import ScopeState open import Data.Sum open import Data.List hiding (lookup) open import AgdaHelperFunctions matchUpSignature : TypeSignature -> ScopeState TypeSignature matchUpExpr : Expr -> ScopeState Expr matchUpExpr (ident identifier₁) = do x <- access identifier₁ return $ ident x matchUpExpr (functionApp x x₁ {b} ) = do r1 <- matchUpExpr x r2 <- matchUpExpr x₁ return $ functionApp r1 r2 {b} matchUpExpr (namedArgument arg {b} {bef} {aft}) = do x <- matchUpSignature arg return $ namedArgument x {b} {bef} {aft} matchUpExpr x = return x matchUpSignature (typeSignature funcName funcType) = do newName <- access funcName newType <- matchUpExpr funcType return $ typeSignature newName newType matchUpPragma : Pragma -> ScopeState Pragma matchUpPragma (builtin concept definition) = do x <- access definition return $ builtin concept x matchUpPragma x = return x matchUpTree : ParseTree -> ScopeState ParseTree matchUpTree (signature signature₁ range₁) = do x <- matchUpSignature signature₁ return $ signature x range₁ matchUpTree (functionDefinition definitionOf params body range₁) = do newDef <- access definitionOf newParams <- mapState matchUpExpr params newBody <- matchUpExpr body return $ functionDefinition newDef newParams newBody range₁ matchUpTree (dataStructure dataName parameters indexInfo constructors range₁ {comments}) = do newName <- access dataName newParams <- mapState matchUpSignature parameters newIndex <- matchUpExpr indexInfo newCons <- mapState matchUpSignature constructors return $ dataStructure newName newParams newIndex newCons range₁ {comments} matchUpTree (pragma pragma₁ range₁) = do x <- matchUpPragma pragma₁ return $ pragma x range₁ matchUpTree (moduleName id r) = do x <- access id return $ moduleName x r matchUpTree x = return x matchUpNames : List ParseTree -> ScopeState (List ParseTree) matchUpNames list = mapState matchUpTree list
{ "alphanum_fraction": 0.7725, "avg_line_length": 31.746031746, "ext": "agda", "hexsha": "d20610208dd31d299369f98c6d11ac0d671b09f3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/MatchUpNames.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/MatchUpNames.agda", "max_line_length": 93, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/MatchUpNames.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 529, "size": 2000 }
------------------------------------------------------------------------ -- Cyclic groups ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Group.Cyclic {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Prelude as P hiding (id; _^_) renaming (_∘_ to _⊚_; _+_ to _⊕_) open import Equality.Path.Isomorphisms eq open import Equality.Path.Isomorphisms.Univalence eq open import Equivalence-relation equality-with-J using (Is-equivalence-relation) open import Equivalence equality-with-J using (_≃_) open import Erased.Cubical eq open import Function-universe equality-with-J hiding (_∘_) open import Group equality-with-J as G using (Group; Abelian; _≃ᴳ_; Homomorphic) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣) open import Integer equality-with-J hiding (suc) renaming (_*_ to _⊛_) import Nat equality-with-J as Nat open import Quotient eq as Q using (_/_) open Homomorphic private module ℤG = Group ℤ-group private variable a : Level A : Type a g : A G₁ G₂ : Group g n : ℕ i j k : ℤ ------------------------------------------------------------------------ -- Cyclic groups -- The property of being generated by an element. Generated-by : (G : Group g) → Group.Carrier G → Type g Generated-by G g = (x : Carrier) → ∥ (∃ λ (i : ℤ) → x ≡ g ^ i) ∥ where open Group G -- The property of being cyclic. Cyclic : Group g → Type g Cyclic G = ∥ ∃ (Generated-by G) ∥ -- Cyclic groups are abelian. Cyclic→Abelian : (G : Group g) → Cyclic G → Abelian G Cyclic→Abelian G c x y = flip (T.rec Carrier-is-set) c λ (g , gen-by) → flip (T.rec Carrier-is-set) (gen-by x) λ (i , x≡) → flip (T.rec Carrier-is-set) (gen-by y) λ (j , y≡) → x ∘ y ≡⟨ cong₂ _∘_ x≡ y≡ ⟩ g ^ i ∘ g ^ j ≡⟨ ^∘^ i ⟩ g ^ (i + j) ≡⟨ cong (g ^_) $ +-comm i ⟩ g ^ (j + i) ≡⟨ sym $ ^∘^ j ⟩ g ^ j ∘ g ^ i ≡⟨ sym $ cong₂ _∘_ y≡ x≡ ⟩∎ y ∘ x ∎ where open Group G -- If two groups are isomorphic, and one is generated by g, then the -- other is generated by the image of g under the isomorphism. ≃ᴳ→Generated-by→Generated-by : (G₁≃G₂ : G₁ ≃ᴳ G₂) → Generated-by G₁ g → Generated-by G₂ (to G₁≃G₂ g) ≃ᴳ→Generated-by→Generated-by {G₁ = G₁} {G₂ = G₂} {g = g} G₁≃G₂ gen-by x = flip T.∥∥-map (gen-by (_≃_.from (G₁≃G₂ .related) x)) λ (i , x≡) → i , (x ≡⟨ sym $ _≃_.from-to (G₁≃G₂ .related) x≡ ⟩ to G₁≃G₂ (g G₁.^ i) ≡⟨ G.→ᴳ-^ G₁≃G₂ g i ⟩∎ to G₁≃G₂ g G₂.^ i ∎) where module G₁ = Group G₁ module G₂ = Group G₂ -- If two groups are isomorphic, and one is cyclic, then the other one -- is cyclic. ≃ᴳ→Cyclic→Cyclic : G₁ ≃ᴳ G₂ → Cyclic G₁ → Cyclic G₂ ≃ᴳ→Cyclic→Cyclic G₁≃G₂ = T.∥∥-map λ (_ , gen-by) → _ , ≃ᴳ→Generated-by→Generated-by G₁≃G₂ gen-by ------------------------------------------------------------------------ -- The group of integers is cyclic -- The group of integers is generated by + 1. ℤ-generated-by-1 : Generated-by ℤ-group (+ 1) ℤ-generated-by-1 i = ∣ i , sym (*-left-identity i) ∣ -- The group of integers is cyclic. ℤ-cyclic : Cyclic ℤ-group ℤ-cyclic = ∣ _ , ℤ-generated-by-1 ∣ ------------------------------------------------------------------------ -- The group ℤ × ℤ is not cyclic -- The direct product of the group of integers and the group of -- integers is not cyclic. ℤ×ℤ-not-cyclic : ¬ Cyclic (ℤ-group G.× ℤ-group) ℤ×ℤ-not-cyclic = T.rec ⊥-propositional λ (g , gen-by) → flip (T.rec ⊥-propositional) (gen-by (+ 0 , + 1)) λ (i , 0,1≡) → flip (T.rec ⊥-propositional) (gen-by (+ 1 , + 0)) λ (j , 1,0≡) → lemma₂ g i j (0,1≡ , 1,0≡) where module G² = Group (ℤ-group G.× ℤ-group) 0≡*+→≡0 : ∀ n i → + 0 ≡ i *+ P.suc n → i ≡ + 0 0≡*+→≡0 n i 0≡ = case -⊎0⊎+ i of λ where (inj₁ neg) → ⊥-elim $ ¬-0 (<0→*+suc<0 i n neg) (sym 0≡) (inj₂ (inj₁ ≡0)) → ≡0 (inj₂ (inj₂ pos)) → ⊥-elim $ ¬+0 (>0→*+suc> i n pos) (sym 0≡) 1≢0* : ∀ i → + 1 ≢ + 0 ⊛ i 1≢0* i = + 1 ≡ + 0 ⊛ i ↝⟨ flip trans (ℤG.id^ i) ⟩ + 1 ≡ + 0 ↝⟨ +[1+]≢- ⟩□ ⊥ □ -≡0→≡0 : - i ≡ + 0 → i ≡ + 0 -≡0→≡0 {i = i} hyp = i ≡⟨ sym $ ℤG.involutive _ ⟩ - - i ≡⟨ cong -_ hyp ⟩ - + 0 ≡⟨ ℤG.identity ⟩∎ + 0 ∎ lemma₁ : ∀ g₁ g₂ i j → ¬ ((+ 0 ≡ g₁ ⊛ i × + 1 ≡ g₂ ⊛ i) × (+ 1 ≡ g₁ ⊛ j × + 0 ≡ g₂ ⊛ j)) lemma₁ _ _ (+ zero) _ = (_ × + 1 ≡ + 0) × _ ↝⟨ proj₂ ⊚ proj₁ ⟩ + 1 ≡ + 0 ↝⟨ +[1+]≢- ⟩□ ⊥ □ lemma₁ g₁ g₂ (+ P.suc m) j = (+ 0 ≡ g₁ *+ P.suc m × _) × (+ 1 ≡ g₁ ⊛ j × _) ↝⟨ Σ-map (0≡*+→≡0 m _ ⊚ proj₁) proj₁ ⟩ g₁ ≡ + 0 × + 1 ≡ g₁ ⊛ j ↝⟨ (λ (p , q) → trans q (cong (_⊛ j) p)) ⟩ + 1 ≡ (+ 0) ⊛ j ↝⟨ 1≢0* j ⟩□ ⊥ □ lemma₁ g₁ g₂ -[1+ m ] j = (+ 0 ≡ (- g₁) *+ P.suc m × _) × (+ 1 ≡ g₁ ⊛ j × _) ↝⟨ Σ-map (0≡*+→≡0 m _ ⊚ proj₁) proj₁ ⟩ - g₁ ≡ + 0 × + 1 ≡ g₁ ⊛ j ↝⟨ Σ-map -≡0→≡0 P.id ⟩ g₁ ≡ + 0 × + 1 ≡ g₁ ⊛ j ↝⟨ (λ (p , q) → trans q (cong (_⊛ j) p)) ⟩ + 1 ≡ (+ 0) ⊛ j ↝⟨ 1≢0* j ⟩□ ⊥ □ lemma₂ : ∀ g i j → ¬ ((+ 0 , + 1) ≡ g G².^ i × (+ 1 , + 0) ≡ g G².^ j) lemma₂ g@(g₁ , g₂) i j = (+ 0 , + 1) ≡ g G².^ i × (+ 1 , + 0) ≡ g G².^ j ↝⟨ Σ-map (flip trans (G.^-× ℤ-group ℤ-group i)) (flip trans (G.^-× ℤ-group ℤ-group j)) ⟩ (+ 0 , + 1) ≡ (g₁ ⊛ i , g₂ ⊛ i) × (+ 1 , + 0) ≡ (g₁ ⊛ j , g₂ ⊛ j) ↔⟨ inverse $ ≡×≡↔≡ ×-cong ≡×≡↔≡ ⟩ (+ 0 ≡ g₁ ⊛ i × + 1 ≡ g₂ ⊛ i) × (+ 1 ≡ g₁ ⊛ j × + 0 ≡ g₂ ⊛ j) ↝⟨ lemma₁ g₁ g₂ i j ⟩□ ⊥ □ -- The group of integers is not isomorphic to the direct product of -- the group of integers and the group of integers. ℤ≄ᴳℤ×ℤ : ¬ ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ℤ≄ᴳℤ×ℤ = ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ↝⟨ flip ≃ᴳ→Cyclic→Cyclic ℤ-cyclic ⟩ Cyclic (ℤ-group G.× ℤ-group) ↝⟨ ℤ×ℤ-not-cyclic ⟩□ ⊥ □ -- The group of integers is not equal to the direct product of the -- group of integers and the group of integers. ℤ≢ℤ×ℤ : ℤ-group ≢ (ℤ-group G.× ℤ-group) ℤ≢ℤ×ℤ = ℤ-group ≡ (ℤ-group G.× ℤ-group) ↝⟨ flip (subst (ℤ-group ≃ᴳ_)) G.↝ᴳ-refl ⟩ ℤ-group ≃ᴳ (ℤ-group G.× ℤ-group) ↝⟨ ℤ≄ᴳℤ×ℤ ⟩□ ⊥ □ ------------------------------------------------------------------------ -- The "equality modulo n" relation -- Equality modulo n. infix 4 _≡_mod_ _≡_mod_ : ℤ → ℤ → ℕ → Type i ≡ j mod n = ∥ (∃ λ k → i ≡ j + k *+ n) ∥ -- The relation _≡_mod n is an equivalence relation. ≡-mod-is-equivalence-relation : ∀ n → Is-equivalence-relation (_≡_mod n) ≡-mod-is-equivalence-relation n = λ where .Is-equivalence-relation.reflexive {x = i} → ∣ + 0 , (i ≡⟨ sym +-right-identity ⟩ i + + 0 ≡⟨ cong (_+_ i) $ sym $ ℤG.id^+ n ⟩∎ i + + 0 *+ n ∎) ∣ .Is-equivalence-relation.symmetric {x = i} {y = j} → T.∥∥-map λ (k , i≡j+kn) → - k , (j ≡⟨ sym +-right-identity ⟩ j + + 0 ≡⟨ cong (_+_ j) $ sym $ +-right-inverse (k *+ n) ⟩ j + (k *+ n - k *+ n) ≡⟨ cong (_+_ j) $ cong (_+_ (k *+ n)) $ ℤG.^+⁻¹ n ⟩ j + (k *+ n + - k *+ n) ≡⟨ +-assoc j ⟩ j + k *+ n + - k *+ n ≡⟨ cong (_+ - k *+ n) $ sym i≡j+kn ⟩∎ i + - k *+ n ∎) .Is-equivalence-relation.transitive {x = i} {y = j} {z = k} → T.rec (Π-closure ext 1 λ _ → T.truncation-is-proposition) λ (l₁ , i≡j+l₁n) → T.∥∥-map λ (l₂ , j≡k+l₂n) → l₂ + l₁ , (i ≡⟨ i≡j+l₁n ⟩ j + l₁ *+ n ≡⟨ cong (_+ l₁ *+ n) j≡k+l₂n ⟩ k + l₂ *+ n + l₁ *+ n ≡⟨ sym $ +-assoc k ⟩ k + (l₂ *+ n + l₁ *+ n) ≡⟨ cong (_+_ k) $ sym $ *+-distrib-+ n ⟩∎ k + (l₂ + l₁) *+ n ∎) -- If i and j are equal modulo n, then i + k and j + k are also equal -- modulo n. +-cong : ∀ n j → i ≡ j mod n → i + k ≡ j + k mod n +-cong {i = i} {k = k} n j = T.∥∥-map λ (l , i≡j+ln) → l , (i + k ≡⟨ cong (_+ k) i≡j+ln ⟩ j + l *+ n + k ≡⟨ sym $ +-assoc j ⟩ j + (l *+ n + k) ≡⟨ cong (_+_ j) $ +-comm (l *+ n) ⟩ j + (k + l *+ n) ≡⟨ +-assoc j ⟩∎ j + k + l *+ n ∎) -- If i and j are equal modulo n, then - i and - j are also equal -- modulo n. negate-cong : ∀ n j → i ≡ j mod n → - i ≡ - j mod n negate-cong {i = i} n j = T.∥∥-map λ (k , i≡j+kn) → - k , (- i ≡⟨ cong -_ i≡j+kn ⟩ - (j + k *+ n) ≡⟨ ℤG.∘⁻¹ {p = j} ⟩ - (k *+ n) + - j ≡⟨ +-comm (- (k *+ n)) ⟩ - j + - (k *+ n) ≡⟨ cong (_+_ (- j)) $ ℤG.^+⁻¹ n ⟩∎ - j + - k *+ n ∎) -- If i and j are equal modulo n, then i *+ m and j *+ m are equal -- modulo m * n. *+-cong : ∀ m → i ≡ j mod n → i *+ m ≡ j *+ m mod m * n *+-cong {i = i} {j = j} {n = n} m = T.∥∥-map λ (k , i≡j+kn) → k , (i *+ m ≡⟨ cong (_*+ m) i≡j+kn ⟩ (j + k *+ n) *+ m ≡⟨ ℤG.∘^+≡^+∘^+ (+-comm j) m ⟩ j *+ m + k *+ n *+ m ≡⟨ cong (_+_ (j *+ m)) $ ℤG.^+^+≡^+* n ⟩ j *+ m + k *+ (n * m) ≡⟨ cong (_+_ (j *+ m)) $ cong (k *+_) $ Nat.*-comm n ⟩∎ j *+ m + k *+ (m * n) ∎) -- If i and j are equal modulo 2 * n, then ⌊ i /2⌋ and ⌊ j /2⌋ are -- equal modulo n. ⌊/2⌋-cong : ∀ j n → i ≡ j mod 2 * n → ⌊ i /2⌋ ≡ ⌊ j /2⌋ mod n ⌊/2⌋-cong {i = i} j n = T.∥∥-map λ (k , i≡j+k2n) → k , (⌊ i /2⌋ ≡⟨ cong ⌊_/2⌋ i≡j+k2n ⟩ ⌊ j + k *+ (2 * n) /2⌋ ≡⟨ cong (⌊_/2⌋ ⊚ (_+_ j) ⊚ (k *+_)) $ sym $ Nat.*-comm n ⟩ ⌊ j + k *+ (n * 2) /2⌋ ≡⟨ cong (⌊_/2⌋ ⊚ (_+_ j)) $ sym $ ℤG.^+^+≡^+* n ⟩ ⌊ j + (k *+ n) *+ 2 /2⌋ ≡⟨ ⌊+*+2/2⌋≡ j ⟩∎ ⌊ j /2⌋ + k *+ n ∎) -- It is not the case that 0 is equal to 1 modulo n, if n is at least -- 2. 0≢1mod2+ : ∀ n → ¬ + 0 ≡ + 1 mod 2 ⊕ n 0≢1mod2+ n = T.rec ⊥-propositional $ uncurry lemma where lemma : ∀ k → + 0 ≢ + 1 + k *+ (2 ⊕ n) lemma (+ 0) = + 0 ≡ + 1 + + 0 *+ (2 ⊕ n) ↝⟨ flip trans (cong (_+_ (+ 1)) $ ℤG.id^+ (2 ⊕ n)) ⟩ + 0 ≡ + 1 + + 0 ↔⟨⟩ + 0 ≡ + 1 ↝⟨ +[1+]≢- ⊚ sym ⟩□ ⊥ □ lemma (+ suc k) = + 0 ≡ + 1 + + suc k *+ (2 ⊕ n) ↝⟨ flip ¬+0 ⊚ sym ⟩ ¬ Positive (+ 1 + + suc k *+ (2 ⊕ n)) ↝⟨ _⊚ >0→>0→+>0 (+ 1) (+ suc k *+ (2 ⊕ n)) _ ⟩ ¬ Positive (+ suc k *+ (2 ⊕ n)) ↝⟨ _$ >0→*+suc> (+ suc k) (suc n) _ ⟩□ ⊥ □ lemma -[1+ zero ] = + 0 ≡ + 1 + -[1+ 0 ] *+ (2 ⊕ n) ↝⟨ flip trans (+-assoc (+ 1) {j = -[1+ 0 ]} {k = -[1+ 0 ] *+ (1 ⊕ n)}) ⟩ + 0 ≡ + 1 + -[1+ 0 ] + -[1+ 0 ] *+ (1 ⊕ n) ↝⟨ flip trans +-left-identity ⟩ + 0 ≡ -[1+ 0 ] *+ (1 ⊕ n) ↝⟨ flip ¬-0 ⊚ sym ⟩ ¬ Negative (-[1+ 0 ] *+ (1 ⊕ n)) ↝⟨ _$ <0→*+suc<0 -[1+ 0 ] n _ ⟩□ ⊥ □ lemma -[1+ suc k ] = + 0 ≡ + 1 + -[1+ suc k ] *+ (2 ⊕ n) ↝⟨ flip trans (+-assoc (+ 1) {j = -[1+ suc k ]} {k = -[1+ suc k ] *+ (1 ⊕ n)}) ⟩ + 0 ≡ + 1 + -[1+ suc k ] + -[1+ suc k ] *+ (1 ⊕ n) ↔⟨⟩ + 0 ≡ -[1+ k ] + -[1+ suc k ] *+ (1 ⊕ n) ↝⟨ flip ¬-0 ⊚ sym ⟩ ¬ Negative (-[1+ k ] + -[1+ suc k ] *+ (1 ⊕ n)) ↝⟨ _⊚ <0→<0→+<0 -[1+ k ] (-[1+ suc k ] *+ (1 ⊕ n)) _ ⟩ ¬ Negative (-[1+ suc k ] *+ (1 ⊕ n)) ↝⟨ _$ <0→*+suc<0 -[1+ suc k ] n _ ⟩□ ⊥ □ -- It is not the case that ⌊_/2⌋ distributes over _+_ modulo 2 ⊕ n -- (for any n). ¬⌊+/2⌋≡⌊/2⌋+⌊/2⌋mod2+ : ¬ (∀ i j → ⌊ i + j /2⌋ ≡ ⌊ i /2⌋ + ⌊ j /2⌋ mod 2 ⊕ n) ¬⌊+/2⌋≡⌊/2⌋+⌊/2⌋mod2+ {n = n} = (∀ i j → ⌊ i + j /2⌋ ≡ ⌊ i /2⌋ + ⌊ j /2⌋ mod 2 ⊕ n) ↝⟨ (_$ (+ 1)) ⊚ (_$ (+ 1)) ⟩ + 1 ≡ + 0 mod 2 ⊕ n ↝⟨ ≡-mod-is-equivalence-relation (2 ⊕ n) .Is-equivalence-relation.symmetric ⟩ + 0 ≡ + 1 mod 2 ⊕ n ↝⟨ 0≢1mod2+ n ⟩□ ⊥ □ ------------------------------------------------------------------------ -- Finite cyclic groups -- ℤ/[1+ n ]ℤ is the group of integers with addition modulo 1 + n (the -- finite cyclic group of order 1 + n). ℤ/[1+_]ℤ : ℕ → Group lzero ℤ/[1+ n ]ℤ = λ where .Group.Carrier → ℤ / (_≡_mod suc n) .Group.Carrier-is-set → Q./-is-set .Group._∘_ → _+′_ .Group.id → Q.[ + 0 ] .Group._⁻¹ → -′_ .Group.left-identity → left-identity .Group.right-identity → right-identity .Group.assoc → assoc .Group.left-inverse → left-inverse .Group.right-inverse → right-inverse where _+′_ : ℤ / (_≡_mod suc n) → ℤ / (_≡_mod suc n) → ℤ / (_≡_mod suc n) _+′_ = Q.rec λ where .Q.[]ʳ i → _+_ i Q./-map λ j₁ j₂ → j₁ ≡ j₂ mod suc n ↝⟨ +-cong (suc n) j₂ ⟩ j₁ + i ≡ j₂ + i mod suc n ↝⟨ ≡⇒↝ _ $ cong₂ (_≡_mod suc n) (+-comm j₁) (+-comm j₂) ⟩□ i + j₁ ≡ i + j₂ mod suc n □ .Q.is-setʳ → Π-closure ext 2 λ _ → Q./-is-set .Q.[]-respects-relationʳ {x = i₁} {y = i₂} i₁≡i₂ → ⟨ext⟩ $ Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ j → $⟨ i₁≡i₂ ⟩ i₁ ≡ i₂ mod suc n ↝⟨ +-cong (suc n) i₂ ⟩ i₁ + j ≡ i₂ + j mod suc n ↝⟨ Q.[]-respects-relation ⟩□ Q.[ i₁ + j ] ≡ Q.[ i₂ + j ] □ -′_ : ℤ / (_≡_mod suc n) → ℤ / (_≡_mod suc n) -′_ = -_ Q./-map λ i₁ i₂ → i₁ ≡ i₂ mod suc n ↝⟨ negate-cong (suc n) i₂ ⟩□ - i₁ ≡ - i₂ mod suc n □ left-identity : ∀ i → Q.[ + 0 ] +′ i ≡ i left-identity = Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ _ → cong Q.[_] +-left-identity right-identity : ∀ i → i +′ Q.[ + 0 ] ≡ i right-identity = Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ _ → cong Q.[_] +-right-identity assoc : ∀ i j k → (i +′ (j +′ k)) ≡ ((i +′ j) +′ k) assoc = Q.elim-prop λ where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Q./-is-set .Q.[]ʳ i → Q.elim-prop λ where .Q.is-propositionʳ _ → Π-closure ext 1 λ _ → Q./-is-set .Q.[]ʳ _ → Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ _ → cong Q.[_] $ +-assoc i left-inverse : ∀ i → ((-′ i) +′ i) ≡ Q.[ + 0 ] left-inverse = Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ i → cong Q.[_] $ +-left-inverse i right-inverse : ∀ i → (i +′ (-′ i)) ≡ Q.[ + 0 ] right-inverse = Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ i → cong Q.[_] $ +-right-inverse i -- ℤ/[1+ n ]ℤ is cyclic. ℤ/ℤ-cyclic : Cyclic ℤ/[1+ n ]ℤ ℤ/ℤ-cyclic {n = n} = ∣ Q.[ + 1 ] , (Q.elim-prop λ where .Q.is-propositionʳ _ → T.truncation-is-proposition .Q.[]ʳ i → ∣ i , (Q.[ i ] ≡⟨ cong Q.[_] $ sym $ *-left-identity i ⟩ Q.[ + 1 ⊛ i ] ≡⟨ lemma i ⟩∎ Q.[ + 1 ] ℤ/.^ i ∎) ∣) ∣ where module ℤ/ = Group ℤ/[1+ n ]ℤ *+-lemma : ∀ n → Q.[ + 1 *+ n ] ≡ Q.[ + 1 ] ℤ/.^+ n *+-lemma zero = refl _ *+-lemma (suc n) = Q.[ + 1 *+ suc n ] ≡⟨⟩ Q.[ + 1 ] ℤ/.∘ Q.[ + 1 *+ n ] ≡⟨ cong (Q.[ + 1 ] ℤ/.∘_) $ *+-lemma n ⟩∎ Q.[ + 1 ] ℤ/.∘ Q.[ + 1 ] ℤ/.^+ n ∎ lemma : ∀ i → Q.[ + 1 ⊛ i ] ≡ Q.[ + 1 ] ℤ/.^ i lemma (+ n) = *+-lemma n lemma -[1+ n ] = Q.[ + 1 ⊛ -[1+ n ] ] ≡⟨⟩ Q.[ -[ 1 ] *+ suc n ] ≡⟨ cong Q.[_] $ sym $ ℤG.^+⁻¹ {p = + 1} (suc n) ⟩ Q.[ - (+ 1 *+ suc n) ] ≡⟨⟩ Q.[ + 1 *+ suc n ] ℤ/.⁻¹ ≡⟨ cong ℤ/._⁻¹ $ *+-lemma (suc n) ⟩ (Q.[ + 1 ] ℤ/.^+ suc n) ℤ/.⁻¹ ≡⟨ ℤ/.^+⁻¹ {p = Q.[ + 1 ]} (suc n) ⟩ (Q.[ + 1 ] ℤ/.⁻¹) ℤ/.^+ suc n ≡⟨⟩ Q.[ + 1 ] ℤ/.^ -[1+ n ] ∎ -- ℤ/[1+ n ]ℤ is abelian. ℤ/ℤ-abelian : Abelian ℤ/[1+ n ]ℤ ℤ/ℤ-abelian = Cyclic→Abelian ℤ/[1+ _ ]ℤ ℤ/ℤ-cyclic -- For finite cyclic groups of order at least 2 the number 0 is not -- equal to 1. -- -- The proof uses propositional extensionality. ℤ/ℤ-0≢1 : ∀ n → _≢_ {A = Group.Carrier ℤ/[1+ suc n ]ℤ} Q.[ + 0 ] Q.[ + 1 ] ℤ/ℤ-0≢1 n = Stable-¬ [ Q.[ + 0 ] ≡ Q.[ + 1 ] ↔⟨ inverse $ Q.related≃[equal] prop-ext (≡-mod-is-equivalence-relation (2 P.+ n)) T.truncation-is-proposition ⟩ (+ 0 ≡ + 1 mod 2 ⊕ n) ↝⟨ 0≢1mod2+ n ⟩□ ⊥ □ ] -- If any element in ℤ/2ℤ is added to itself we get 0. private module ℤ/2ℤ = Group ℤ/[1+ 1 ]ℤ ℤ/2ℤ-+≡0 : ∀ i → i ℤ/2ℤ.∘ i ≡ ℤ/2ℤ.id ℤ/2ℤ-+≡0 = Q.elim-prop λ where .Q.is-propositionʳ _ → Q./-is-set .Q.[]ʳ i → Q.[]-respects-relation ∣ i , (i + i ≡⟨ cong (_+_ i) $ sym +-right-identity ⟩ i + (i + + 0) ≡⟨⟩ i *+ 2 ≡⟨ sym +-left-identity ⟩∎ + 0 + i *+ 2 ∎) ∣
{ "alphanum_fraction": 0.4011392766, "avg_line_length": 36.1958762887, "ext": "agda", "hexsha": "e561318332bcd6d55d44d9bc00f4717663a2211d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Group/Cyclic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Group/Cyclic.agda", "max_line_length": 136, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Group/Cyclic.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 8019, "size": 17555 }
import Structure.Logic.Classical.NaturalDeduction module Structure.Logic.Classical.PredicateBoundedQuantification {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ where open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic) open import Functional hiding (Domain) open import Lang.Instance import Lvl open import Type.Dependent -- Bounded universal quantifier ∀ₚ : (Domain → Formula) → (Domain → Formula) → Formula ∀ₚ(B)(P) = ∀ₗ(x ↦ B(x) ⟶ P(x)) [∀ₚ]-intro : ∀{B}{P} → (∀{x} → Proof(B(x)) → Proof(P(x))) → Proof(∀ₚ(B)(P)) [∀ₚ]-intro {B}{P} proof = ([∀].intro(\{x} → ([→].intro(bx ↦ proof{x}(bx) )) )) [∀ₚ]-elim : ∀{B}{P} → Proof(∀ₚ(B)(P)) → ∀{x} → Proof(B(x)) → Proof(P(x)) [∀ₚ]-elim {B}{P} allSφ {x} bx = ([→].elim ([∀].elim allSφ{x}) (bx) ) -- Bounded existential quantifier ∃ₚ : (Domain → Formula) → (Domain → Formula) → Formula ∃ₚ(B)(P) = ∃ₗ(x ↦ B(x) ∧ P(x)) [∃ₚ]-intro : ∀{B}{P}{x} → Proof(B(x)) → Proof(P(x)) → Proof(∃ₚ(B)(P)) [∃ₚ]-intro {B}{P}{x} bx φx = ([∃].intro{_} {x} ([∧].intro (bx) (φx) ) ) [∃ₚ]-elim : ∀{B}{P₁}{P₂} → (∀{x} → Proof(B(x)) → Proof(P₁(x)) → Proof(P₂)) → Proof(∃ₚ(B)(P₁)) → Proof(P₂) [∃ₚ]-elim {B}{P₁}{P₂} proof existence = ([∃].elim{_}{P₂} (\{x} → conj ↦ ( (proof {x} ([∧].elimₗ(conj)) ([∧].elimᵣ(conj)) ) )) (existence) ) [∃ₚ]-to-[∃ₗ] : ∀{B P} → Proof(∃ₚ(B)(P)) → Proof(∃ₗ(P)) [∃ₚ]-to-[∃ₗ] ebp = [∃ₚ]-elim (\{x} → bx ↦ px ↦ [∃].intro px) (ebp) [∃ₚ]-witness : ∀{B P} → ⦃ _ : Proof(∃ₚ B P) ⦄ → Domain [∃ₚ]-witness ⦃ proof ⦄ = [∃]-witness ⦃ proof ⦄ [∃ₚ]-bound : ∀{B P} → ⦃ p : Proof(∃ₚ B P) ⦄ → Proof(B([∃ₚ]-witness{B}{P} ⦃ p ⦄)) [∃ₚ]-bound ⦃ proof ⦄ = [∧].elimₗ([∃]-proof ⦃ proof ⦄) [∃ₚ]-proof : ∀{B P} → ⦃ p : Proof(∃ₚ B P) ⦄ → Proof(P([∃ₚ]-witness{B}{P} ⦃ p ⦄)) [∃ₚ]-proof ⦃ proof ⦄ = [∧].elimᵣ([∃]-proof ⦃ proof ⦄) Uniqueₚ : (Domain → Formula) → (Domain → Formula) → Formula Uniqueₚ(B)(P) = ∀ₚ(B)(x ↦ ∀ₚ(B)(y ↦ (P(x) ∧ P(y)) ⟶ (x ≡ y))) -- Bounded unique existential quantifier ∃ₚ! : (Domain → Formula) → (Domain → Formula) → Formula ∃ₚ!(B)(P) = ((∃ₚ(B) P) ∧ Uniqueₚ(B)(P)) [∃ₚ!]-witness : ∀{B P} → ⦃ _ : Proof(∃ₚ! B P) ⦄ → Domain [∃ₚ!]-witness ⦃ proof ⦄ = [∃ₚ]-witness ⦃ [∧].elimₗ proof ⦄ [∃ₚ!]-bound : ∀{B P} → ⦃ p : Proof(∃ₚ! B P) ⦄ → Proof(B([∃ₚ!]-witness{B}{P} ⦃ p ⦄)) [∃ₚ!]-bound ⦃ proof ⦄ = [∃ₚ]-bound ⦃ [∧].elimₗ proof ⦄ [∃ₚ!]-proof : ∀{B P} → ⦃ p : Proof(∃ₚ! B P) ⦄ → Proof(P([∃ₚ!]-witness{B}{P} ⦃ p ⦄)) [∃ₚ!]-proof ⦃ proof ⦄ = [∃ₚ]-proof ⦃ [∧].elimₗ proof ⦄ postulate [∃ₚ!]-unique : ∀{B P} → ⦃ p : Proof(∃ₚ! B P) ⦄ → Proof(∀ₗ(x ↦ P(x) ⟶ (x ≡ [∃ₚ!]-witness{B}{P} ⦃ p ⦄))) boundedClassicalLogicSignature : (Domain → Formula) → Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Signature {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ} (Domain) boundedClassicalLogicSignature(B) = record{ ∀ₗ = ∀ₚ(B) ; ∃ₗ = ∃ₚ(B) } -- TODO: This should make it possible to embed a theory inside of another theory (e.g. group theory in set theory), but does not work. How should I formulate something like this for it to work? {- module _ (B : Domain → Formula) {ℓₒ₂} {Domain₂} (dom : Domain₂ → Domain) (dom-proof : ∀{x} → Proof(B(dom(x)))) (dom⁻¹ : Domain → Domain₂) where instance boundedPredEqSignature : Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Signature {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ₂} (Domain₂) boundedPredEqSignature = record{ ∀ₗ = P ↦ ∀ₗ(x ↦ B(x) ⟶ P(x)) ; ∃ₗ = P ↦ ∃ₚ(B) (x ↦ P(dom⁻¹ x)) } instance boundedPredEqTheory : Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Theory {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ₂} (Domain₂) ⦃ boundedPredEqSignature ⦄ boundedPredEqTheory = record{ universalQuantification = record{ intro = \{P} → proof ↦ [∀ₚ]-intro{B}{P ∘ dom⁻¹} (\{x} → bx ↦ proof{dom⁻¹ x}) ; elim = \{P} → ap ↦ \{x} → [∀ₚ]-elim ap{dom x} (dom-proof{x}) } ; existentialQuantification = record{ intro = \{P}{a} → pa ↦ [∃ₚ]-intro{B}{P}{dom a} (dom-proof{a}) pa; elim = \{P}{Z} → axpxz ↦ ep ↦ [∃ₚ]-elim{B}{P} (\{x} → bx ↦ px ↦ axpxz{dom⁻¹ x}(px)) ep } } -} {- module _ (B : Domain → Formula) {ℓₒ₂} {Domain₂} (morph : (x : Domain) → Proof(B(x)) → Domain₂) (morph₂ : Domain₂ → Domain) (ident : ∀{x} → Proof(B(x)) → morph(morph₂(x))(proof) ≡ x) (proof : ∀{x} → Proof(B(morph₂(x)))) where instance boundedPredEqSignature : Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Signature {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ₂} (Domain₂) boundedPredEqSignature = record{ ∀ₗ = ∀ₚ(B) ; ∃ₗ = ∃ₚ(B) } instance boundedPredEqTheory : Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Theory {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ₂} (Domain₂) ⦃ boundedPredEqSignature ⦄ boundedPredEqTheory = record{ universalQuantification = record{ intro = \{P} → proof ↦ [∀ₚ]-intro{B}{P ∘ dom⁻¹} (\{x} → bx ↦ proof{dom⁻¹ x}) ; elim = \{P} → ap ↦ \{x} → [∀ₚ]-elim ap{dom x} (dom-proof{x}) } ; existentialQuantification = record{ intro = \{P}{a} → pa ↦ [∃ₚ]-intro{B}{P}{dom a} (dom-proof{a}) pa; elim = \{P}{Z} → axpxz ↦ ep ↦ [∃ₚ]-elim{B}{P} (\{x} → bx ↦ px ↦ axpxz{dom⁻¹ x}(px)) ep } } -} {- module _ (B : Domain → Formula) where instance boundedPredEqSignature2 : Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Signature {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ} (Σ B Domain) boundedPredEqSignature2 = record{ ∀ₗ = P ↦ ∀ₚ(B)(P) ; ∃ₗ = P ↦ ∃ₚ(B)(P) } instance boundedPredEqTheory2 : Structure.Logic.Classical.NaturalDeduction.Domained.Predicate.Theory {ℓₗ} {Formula} {ℓₘₗ} (Proof) {ℓₒ} (Σ B Domain) ⦃ boundedPredEqSignature2 ⦄ boundedPredEqTheory2 = record{ universalQuantification = record{ intro = \{P} → proof ↦ [∀ₚ]-intro{B}{P} (\{x} → bx ↦ proof{dom⁻¹ x}) ; elim = \{P} → ap ↦ \{x} → [∀ₚ]-elim ap{x} (dom-proof{x}) } ; existentialQuantification = record{ intro = \{P}{a} → pa ↦ [∃ₚ]-intro{B}{P}{dom a} (dom-proof{a}) pa; elim = \{P}{Z} → axpxz ↦ ep ↦ [∃ₚ]-elim{B}{P} (\{x} → bx ↦ px ↦ axpxz{dom⁻¹ x}(px)) ep } } -}
{ "alphanum_fraction": 0.5363188673, "avg_line_length": 37.1314285714, "ext": "agda", "hexsha": "5a9d726c1561b074a589e986a300cc88755fed47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Classical/PredicateBoundedQuantification.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Classical/PredicateBoundedQuantification.agda", "max_line_length": 224, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Classical/PredicateBoundedQuantification.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2817, "size": 6498 }
-- Andreas, 2013-10-21 -- Test case for CheckInternal extracted from The Agda standard library -- Propositional (intensional) equality module FunExt where open import Common.Level open import Common.Equality Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (lsuc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ∀-extensionality ext B .B B₁≡B₂ | refl = refl
{ "alphanum_fraction": 0.6292466765, "avg_line_length": 27.08, "ext": "agda", "hexsha": "16f0d710e9864cf713ac88b48d535e10a15a798e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/FunExt.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/FunExt.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/FunExt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 257, "size": 677 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Helpers intended to ease the development of "tactics" which use -- proof by reflection ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Data.Fin open import Data.Nat open import Data.Vec as Vec open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (module Equivalence) open import Level open import Relation.Binary import Relation.Binary.PropositionalEquality as P -- Think of the parameters as follows: -- -- * Expr: A representation of code. -- * var: The Expr type should support a notion of variables. -- * ⟦_⟧: Computes the semantics of an expression. Takes an -- environment mapping variables to something. -- * ⟦_⇓⟧: Computes the semantics of the normal form of the -- expression. -- * correct: Normalisation preserves the semantics. -- -- Given these parameters two "tactics" are returned, prove and solve. -- -- For an example of the use of this module, see Algebra.RingSolver. module Relation.Binary.Reflection {e a s} {Expr : ℕ → Set e} {A : Set a} (Sem : Setoid a s) (var : ∀ {n} → Fin n → Expr n) (⟦_⟧ ⟦_⇓⟧ : ∀ {n} → Expr n → Vec A n → Setoid.Carrier Sem) (correct : ∀ {n} (e : Expr n) ρ → ⟦ e ⇓⟧ ρ ⟨ Setoid._≈_ Sem ⟩ ⟦ e ⟧ ρ) where open import Data.Vec.N-ary open import Data.Product import Relation.Binary.Reasoning.Setoid as Eq open Setoid Sem open Eq Sem -- If two normalised expressions are semantically equal, then their -- non-normalised forms are also equal. prove : ∀ {n} (ρ : Vec A n) e₁ e₂ → ⟦ e₁ ⇓⟧ ρ ≈ ⟦ e₂ ⇓⟧ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ prove ρ e₁ e₂ hyp = begin ⟦ e₁ ⟧ ρ ≈⟨ sym (correct e₁ ρ) ⟩ ⟦ e₁ ⇓⟧ ρ ≈⟨ hyp ⟩ ⟦ e₂ ⇓⟧ ρ ≈⟨ correct e₂ ρ ⟩ ⟦ e₂ ⟧ ρ ∎ -- Applies the function to all possible "variables". close : ∀ {A : Set e} n → N-ary n (Expr n) A → A close n f = f $ⁿ Vec.map var (allFin n) -- A variant of prove which should in many cases be easier to use, -- because variables and environments are handled in a less explicit -- way. -- -- If the type signature of solve is a bit daunting, then it may be -- helpful to instantiate n with a small natural number and normalise -- the remainder of the type. solve : ∀ n (f : N-ary n (Expr n) (Expr n × Expr n)) → Eqʰ n _≈_ (curryⁿ ⟦ proj₁ (close n f) ⇓⟧) (curryⁿ ⟦ proj₂ (close n f) ⇓⟧) → Eq n _≈_ (curryⁿ ⟦ proj₁ (close n f) ⟧) (curryⁿ ⟦ proj₂ (close n f) ⟧) solve n f hyp = curryⁿ-cong _≈_ ⟦ proj₁ (close n f) ⟧ ⟦ proj₂ (close n f) ⟧ (λ ρ → prove ρ (proj₁ (close n f)) (proj₂ (close n f)) (curryⁿ-cong⁻¹ _≈_ ⟦ proj₁ (close n f) ⇓⟧ ⟦ proj₂ (close n f) ⇓⟧ (Eqʰ-to-Eq n _≈_ hyp) ρ)) -- A variant of solve which does not require that the normal form -- equality is proved for an arbitrary environment. solve₁ : ∀ n (f : N-ary n (Expr n) (Expr n × Expr n)) → ∀ⁿ n (curryⁿ λ ρ → ⟦ proj₁ (close n f) ⇓⟧ ρ ≈ ⟦ proj₂ (close n f) ⇓⟧ ρ → ⟦ proj₁ (close n f) ⟧ ρ ≈ ⟦ proj₂ (close n f) ⟧ ρ) solve₁ n f = Equivalence.from (uncurry-∀ⁿ n) ⟨$⟩ λ ρ → P.subst id (P.sym (left-inverse (λ _ → _ ≈ _ → _ ≈ _) ρ)) (prove ρ (proj₁ (close n f)) (proj₂ (close n f))) -- A variant of _,_ which is intended to make uses of solve and solve₁ -- look a bit nicer. infix 4 _⊜_ _⊜_ : ∀ {n} → Expr n → Expr n → Expr n × Expr n _⊜_ = _,_
{ "alphanum_fraction": 0.5781554751, "avg_line_length": 34.180952381, "ext": "agda", "hexsha": "4a32d79a7e9b8836c609a5d569220f1e8da39d30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reflection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reflection.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reflection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1214, "size": 3589 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic private variable p : Level dup-◇ : (P : A → Type p) → (x : A) (xs : Type p) → ∥ P x ⊎ ∥ P x ⊎ xs ∥ ∥ ⇔ ∥ P x ⊎ xs ∥ dup-◇ P x xs .inv p = ∣ inr p ∣ dup-◇ P x xs .fun ps = ps >>= either (∣_∣ ∘ inl) id dup-◇ P x xs .leftInv p = squash _ p dup-◇ P x xs .rightInv p = squash p _ swap-◇ : {x y xs : Type p} → ∥ x ⊎ ∥ y ⊎ xs ∥ ∥ → ∥ y ⊎ ∥ x ⊎ xs ∥ ∥ swap-◇ p = p >>= either′ (∣_∣ ∘ inr ∘ ∣_∣ ∘ inl) (mapʳ (∣_∣ ∘ inr) ∥$∥_) com-◇ : (P : A → Type p) → (x y : A) (xs : Type p) → ∥ P x ⊎ ∥ P y ⊎ xs ∥ ∥ ⇔ ∥ P y ⊎ ∥ P x ⊎ xs ∥ ∥ com-◇ P y z xs .fun = swap-◇ com-◇ P y z xs .inv = swap-◇ com-◇ P y z xs .leftInv p = squash _ p com-◇ P y z xs .rightInv p = squash _ p ◇′ : (P : A → Type p) → 𝒦 A → hProp p ◇′ P = 𝒦-rec isSetHProp (λ { x (xs , _) → ∥ P x ⊎ xs ∥ , squash }) (⊥ , λ ()) (λ x xs → ΣProp≡ (λ _ → isPropIsProp) (isoToPath (dup-◇ P x (xs .fst)))) (λ x y xs → ΣProp≡ (λ _ → isPropIsProp) (isoToPath (com-◇ P x y (xs .fst)))) {-# INLINE ◇′ #-} ◇ : (P : A → Type p) → 𝒦 A → Type p ◇ P xs = ◇′ P xs .fst isProp-◇ : ∀ {P : A → Type p} {xs} → isProp (◇ P xs) isProp-◇ {P = P} {xs = xs} = ◇′ P xs .snd
{ "alphanum_fraction": 0.5729040097, "avg_line_length": 34.2916666667, "ext": "agda", "hexsha": "0427caea7f047b8c8070f41f8645bb294474ac3a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Def.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Def.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Def.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 733, "size": 1646 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Fundamental {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Introductions.Nat open import Definition.LogicalRelation.Substitution.Introductions.Natrec open import Definition.LogicalRelation.Substitution.Introductions.Empty open import Definition.LogicalRelation.Substitution.Introductions.Emptyrec open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.IdUPiPi open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.CastPi open import Definition.LogicalRelation.Substitution.Introductions.IdPi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Pair open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Snd open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.Introductions.Transp open import Definition.LogicalRelation.Substitution.Introductions.IdRefl open import Definition.LogicalRelation.Fundamental.Variable import Definition.LogicalRelation.Substitution.ProofIrrelevance as PI import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Weakening open import Tools.Product open import Tools.Unit open import Tools.Nat import Tools.PropositionalEquality as PE -- Fundamental theorem for contexts. valid : ∀ {Γ} → ⊢ Γ → ⊩ᵛ Γ fundamental : ∀ {Γ A rA} (⊢A : Γ ⊢ A ^ rA) → Σ (⊩ᵛ Γ) (λ [Γ] → Γ ⊩ᵛ⟨ ∞ ⟩ A ^ rA / [Γ]) fundamentalEq : ∀{Γ A B rA} → Γ ⊢ A ≡ B ^ rA → ∃ λ ([Γ] : ⊩ᵛ Γ) → ∃₂ λ ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ rA / [Γ]) ([B] : Γ ⊩ᵛ⟨ ∞ ⟩ B ^ rA / [Γ]) → Γ ⊩ᵛ⟨ ∞ ⟩ A ≡ B ^ rA / [Γ] / [A] fundamentalTerm : ∀{Γ A rA t} → Γ ⊢ t ∷ A ^ rA → ∃ λ ([Γ] : ⊩ᵛ Γ) → ∃ λ ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ rA / [Γ]) → Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ rA / [Γ] / [A] fundamentalTermEq : ∀{Γ A t t′ rA} → Γ ⊢ t ≡ t′ ∷ A ^ rA → ∃ λ ([Γ] : ⊩ᵛ Γ) → [ Γ ⊩ᵛ⟨ ∞ ⟩ t ≡ t′ ∷ A ^ rA / [Γ] ] abstract valid ε = ε valid (⊢Γ ∙ A) = let [Γ] , [A] = fundamental A in [Γ] ∙ [A] -- Fundamental theorem for types. fundamental (Uⱼ x) = valid x , maybeEmbᵛ {A = Univ _ _} (valid x) (Uᵛ ∞< (valid x)) fundamental (univ {A} ⊢A) with fundamentalTerm ⊢A fundamental (univ {A} ⊢A) | [Γ] , [U] , [A] = [Γ] , maybeEmbᵛ {A = A} [Γ] (univᵛ {A} [Γ] (≡is≤ PE.refl) [U] [A]) -- Fundamental theorem for type equality. fundamentalEq (univ {A} {B} x) with fundamentalTermEq x fundamentalEq (univ {A} {B} x) | [Γ] , modelsTermEq [U] [t] [u] [t≡u] = let [A] = maybeEmbᵛ {A = A} [Γ] (univᵛ {A} [Γ] (≡is≤ PE.refl) [U] [t]) [B] = maybeEmbᵛ {A = B} [Γ] (univᵛ {B} [Γ] (≡is≤ PE.refl) [U] [u]) in [Γ] , [A] , [B] , (λ ⊢Δ [σ] → univEqEq (proj₁ ([U] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])) fundamentalEq (refl D) = let [Γ] , [B] = fundamental D in [Γ] , [B] , [B] , (λ ⊢Δ [σ] → reflEq (proj₁ ([B] ⊢Δ [σ]))) fundamentalEq (sym A≡B) with fundamentalEq A≡B fundamentalEq (sym A≡B) | [Γ] , [B] , [A] , [B≡A] = [Γ] , [A] , [B] , (λ ⊢Δ [σ] → symEq (proj₁ ([B] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([B≡A] ⊢Δ [σ])) fundamentalEq (trans {A} {B₁} {B} A≡B₁ B₁≡B) with fundamentalEq A≡B₁ | fundamentalEq B₁≡B fundamentalEq (trans {A} {B₁} {B} A≡B B≡C) | [Γ] , [A] , [B₁] , [A≡B₁] | [Γ]₁ , [B₁]₁ , [B] , [B₁≡B] = [Γ] , [A] , S.irrelevance {A = B} [Γ]₁ [Γ] [B] , (λ ⊢Δ [σ] → let [σ]′ = S.irrelevanceSubst [Γ] [Γ]₁ ⊢Δ ⊢Δ [σ] in transEq (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([B₁] ⊢Δ [σ])) (proj₁ ([B] ⊢Δ [σ]′)) ([A≡B₁] ⊢Δ [σ]) (irrelevanceEq (proj₁ ([B₁]₁ ⊢Δ [σ]′)) (proj₁ ([B₁] ⊢Δ [σ])) ([B₁≡B] ⊢Δ [σ]′))) -- Fundamental theorem for terms. fundamentalTerm (ℕⱼ x) = valid x , maybeEmbᵛ {A = Univ _ _} (valid x) (Uᵛ emb< (valid x)) , maybeEmbTermᵛ {A = Univ _ _} {t = ℕ} (valid x) (Uᵛ emb< (valid x)) (ℕᵗᵛ (valid x)) fundamentalTerm (Emptyⱼ {l} ⊢Γ) = let [Γ] = valid ⊢Γ [U] = Uᵛ (proj₂ (levelBounded _)) [Γ] in [Γ] , maybeEmbᵛ {A = Univ _ _} [Γ] [U] , maybeEmbTermᵛ {A = Univ _ _} {t = Empty l} [Γ] [U] (Emptyᵗᵛ {ll = l} [Γ] (proj₂ (levelBounded _))) fundamentalTerm (Πⱼ_▹_▹_▹_ {F} {rF} {lF} {G} {lG} {rΠ} {lΠ} lF< lG< ⊢F ⊢G) with fundamentalTerm ⊢F | fundamentalTerm ⊢G ... | [Γ] , [UF] , [F]ₜ | [Γ]₁ ∙ [F] , [UG] , [G]ₜ = let [UF]′ = maybeEmbᵛ {A = Univ rF _} [Γ]₁ (Uᵛ (proj₂ (levelBounded lF)) [Γ]₁) [UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ]₁ (Uᵛ (proj₂ (levelBounded lΠ)) [Γ]₁) [F]′ = maybeEmbᵛ {A = F} [Γ]₁ [F] [UG]′ : _ ⊩ᵛ⟨ ∞ ⟩ Univ rΠ lG ^ [ ! , next lG ] / _∙_ {A = F} [Γ]₁ [F]′ [UG]′ = λ {Δ} {σ} → S.irrelevance {A = Univ rΠ lG} (_∙_ {A = F} [Γ]₁ [F]) (_∙_ {A = F} [Γ]₁ [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) {Δ} {σ} [F]ₜ′ = S.irrelevanceTerm {A = Univ rF _} {t = F} [Γ] [Γ]₁ [UF] [UF]′ [F]ₜ [G]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = G} (_∙_ {A = F} [Γ]₁ [F]) (_∙_ {A = F} [Γ]₁ [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [G]ₜ in [Γ]₁ , [UΠ] , Πᵗᵛ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ} lF< lG< [Γ]₁ [F]′ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ fundamentalTerm (∃ⱼ_▹_ {F} {G} {l} ⊢F ⊢G) with fundamentalTerm ⊢F | fundamentalTerm ⊢G ... | [Γ] , [UF] , [F]ₜ | [Γ]₁ ∙ [F] , [UG] , [G]ₜ = let [UF]′ = maybeEmbᵛ {A = SProp _} [Γ]₁ (Uᵛ (proj₂ (levelBounded l)) [Γ]₁) [UΠ] = maybeEmbᵛ {A = SProp _} [Γ]₁ (Uᵛ (proj₂ (levelBounded l)) [Γ]₁) [F]′ = maybeEmbᵛ {A = F} [Γ]₁ [F] [UG]′ : _ ⊩ᵛ⟨ ∞ ⟩ SProp l ^ [ ! , next l ] / _∙_ {A = F} [Γ]₁ [F]′ [UG]′ = λ {Δ} {σ} → S.irrelevance {A = Univ % l} (_∙_ {A = F} [Γ]₁ [F]) (_∙_ {A = F} [Γ]₁ [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) {Δ} {σ} [F]ₜ′ = S.irrelevanceTerm {A = SProp _} {t = F} [Γ] [Γ]₁ [UF] [UF]′ [F]ₜ [G]ₜ′ = S.irrelevanceTerm {A = SProp _} {t = G} (_∙_ {A = F} [Γ]₁ [F]) (_∙_ {A = F} [Γ]₁ [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [G]ₜ in [Γ]₁ , [UΠ] , ∃ᵗᵛ {F} {G} {l} [Γ]₁ [F]′ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ fundamentalTerm (Idⱼ {A} {l} {t} {u} ⊢A ⊢t ⊢u) with fundamentalTerm ⊢A | fundamentalTerm ⊢t | fundamentalTerm ⊢u ... | [Γ] , [UA] , [A]ₜ | [Γt] , [At] , [t]ₜ | [Γu] , [Au] , [u]ₜ = let [SProp] = maybeEmbᵛ {A = SProp _} [Γu] (Uᵛ (proj₂ (levelBounded l)) [Γu]) [t]ₜ′ = S.irrelevanceTerm {A = A} {t = t} [Γt] [Γu] [At] [Au] [t]ₜ [UA]′ = maybeEmbᵛ {A = Univ _ _} [Γu] (λ {Δ} {σ} → Uᵛ <next [Γu] {Δ} {σ}) [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [Γ] [Γu] (λ {Δ} {σ} → [UA] {Δ} {σ}) (λ {Δ} {σ} → [UA]′ {Δ} {σ}) [A]ₜ in [Γu] , [SProp] , Idᵗᵛ {A = A} {t = t} {u = u } [Γu] [Au] [t]ₜ′ [u]ₜ [A]ₜ′ fundamentalTerm (var ⊢Γ x∷A) = valid ⊢Γ , fundamentalVar x∷A (valid ⊢Γ) fundamentalTerm (lamⱼ {F} {r} {l} {rF} {lF} {G} {lG} {t} lF< lG< ⊢F ⊢t) with fundamental ⊢F | fundamentalTerm ⊢t ... | [Γ] , [F] | [Γ]₁ , [G] , [t] = let [G]′ = S.irrelevance {A = G} [Γ]₁ ([Γ] ∙ [F]) [G] [t]′ = S.irrelevanceTerm {A = G} {t = t} [Γ]₁ ([Γ] ∙ [F]) [G] [G]′ [t] in [Γ] , Πᵛ {F} {G} lF< lG< [Γ] [F] [G]′ , lamᵛ {F} {G} {rF} {lF} {lG} {l} {r} {t} lF< lG< [Γ] [F] [G]′ [t]′ fundamentalTerm (_∘ⱼ_ {g} {a} {F} {rF} {lF} {G} {lG} {r} {l} Dt Du) with fundamentalTerm Dt | fundamentalTerm Du ... | [Γ] , [ΠFG] , [t] | [Γ]₁ , [F] , [u] = let [ΠFG]′ = S.irrelevance {A = Π F ^ rF ° lF ▹ G ° lG ° l} [Γ] [Γ]₁ [ΠFG] [t]′ = S.irrelevanceTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = g} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [t] [G[t]] = substSΠ {F} {G} {a} [Γ]₁ [F] [ΠFG]′ [u] [t∘u] = appᵛ {F} {G} {rF} {lF} {lG} {r} {l} {g} {a} [Γ]₁ [F] [ΠFG]′ [t]′ [u] in [Γ]₁ , [G[t]] , [t∘u] fundamentalTerm (zeroⱼ x) = valid x , ℕᵛ (valid x) , zeroᵛ {l = ∞} (valid x) fundamentalTerm (sucⱼ {n} t) with fundamentalTerm t fundamentalTerm (sucⱼ {n} t) | [Γ] , [ℕ] , [n] = [Γ] , [ℕ] , sucᵛ {n = n} [Γ] [ℕ] [n] fundamentalTerm (natrecⱼ {G} {rG} {lG} {s} {z} {n} ⊢G ⊢z ⊢s ⊢n) with fundamental ⊢G | fundamentalTerm ⊢z | fundamentalTerm ⊢s | fundamentalTerm ⊢n ... | [Γ] , [G] | [Γ]₁ , [G₀] , [z] | [Γ]₂ , [G₊] , [s] | [Γ]₃ , [ℕ] , [n] = let sType = Π ℕ ^ ! ° ⁰ ▹ (G ^ rG ° _ ▹▹ G [ suc (var 0) ]↑ ° _ ° lG) ° _ ° lG [Γ]′ = [Γ]₃ [G]′ = S.irrelevance {A = G} [Γ] ([Γ]′ ∙ [ℕ]) [G] [G₀]′ = S.irrelevance {A = G [ zero ]} [Γ]₁ [Γ]′ [G₀] [G₊]′ = S.irrelevance {A = sType} [Γ]₂ [Γ]′ [G₊] [Gₙ]′ = substS {F = ℕ} {G = G} {t = n} [Γ]′ [ℕ] [G]′ [n] [z]′ = S.irrelevanceTerm {A = G [ zero ]} {t = z} [Γ]₁ [Γ]′ [G₀] [G₀]′ [z] [s]′ = S.irrelevanceTerm {A = sType} {t = s} [Γ]₂ [Γ]′ [G₊] [G₊]′ [s] in [Γ]′ , [Gₙ]′ , natrecᵛ {G} {rG} {lG} {z} {s} {n} [Γ]′ [ℕ] [G]′ [G₀]′ [G₊]′ [Gₙ]′ [z]′ [s]′ [n] fundamentalTerm (⦅_,_,_,_⦆ⱼ {l} {F} {G} {t} {u} ⊢F ⊢G ⊢t ⊢u) with fundamental ⊢F | fundamental ⊢G | fundamentalTerm ⊢t | fundamentalTerm ⊢u ... | [ΓF] , [F]' | [ΓG] , [G] | [Γ] , [F] , [t]ₜ | [Γ]₁ , [G[t]] , [u]ₜ = let [F]′ = S.irrelevance {A = F} [Γ] [Γ]₁ [F] [G]′ = S.irrelevance {A = G} [ΓG] ([Γ]₁ ∙ [F]′) [G] [t]ₜ′ = S.irrelevanceTerm {A = F} {t = t} [Γ] [Γ]₁ [F] [F]′ [t]ₜ [u]ₜ′ = S.irrelevanceTerm {A = G [ t ]} {t = u} [Γ]₁ [Γ]₁ [G[t]] (substS {F} {G} {t} [Γ]₁ [F]′ [G]′ [t]ₜ′) [u]ₜ in [Γ]₁ , ∃ᵛ {F} {G} {l∃ = l} [Γ]₁ [F]′ [G]′ , ⦅⦆ᵛ {F = F} {G = G} {t = t} {u = u} [Γ]₁ [F]′ [G]′ [t]ₜ′ [u]ₜ′ fundamentalTerm (fstⱼ {F} {G} {tu} {l} ⊢F ⊢G ⊢tu) with fundamentalTerm ⊢F | fundamentalTerm ⊢G | fundamentalTerm ⊢tu ... | [ΓF] , [UF] , [F]ₜ | [ΓG] ∙ [F] , [UG] , [G]ₜ | [Γ] , [∃FG] , [tu]ₜ = let [UF]′ = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l)) [Γ]) [F]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = F} [ΓF] [Γ] [UF] [UF]′ [F]ₜ [F]′ = maybeEmbᵛ {A = F} [Γ] (univᵛ {A = F} [Γ] (≡is≤ PE.refl) [UF]′ [F]ₜ′) [UG]′ = S.irrelevance {A = Univ _ _} (_∙_ {A = F} [ΓG] [F]) (_∙_ {A = F} [Γ] [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = G} (_∙_ {A = F} [ΓG] [F]) (_∙_ {A = F} [Γ] [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [G]ₜ [G]′ = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]′) (univᵛ {A = G} (_∙_ {A = F} [Γ] [F]′) (≡is≤ PE.refl) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [G]ₜ′) [tu]ₜ′ = S.irrelevanceTerm {A = ∃ F ▹ G} {t = tu} [Γ] [Γ] [∃FG] (∃ᵛ {F} {G} [Γ] [F]′ [G]′) [tu]ₜ in [Γ] , [F]′ , fstᵛ {F = F} {G = G} {tu = tu} [Γ] [F]′ [G]′ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ [tu]ₜ′ fundamentalTerm (sndⱼ {F} {G} {tu} {l} ⊢F ⊢G ⊢tu) with fundamentalTerm ⊢F | fundamentalTerm ⊢G | fundamentalTerm ⊢tu ... | [ΓF] , [UF] , [F]ₜ | [ΓG] ∙ [F] , [UG] , [G]ₜ | [Γ] , [∃FG] , [tu]ₜ = let [UF]′ = maybeEmbᵛ {A = Univ % _} [Γ] (Uᵛ (proj₂ (levelBounded l)) [Γ]) [F]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = F} [ΓF] [Γ] [UF] [UF]′ [F]ₜ [F]′ = maybeEmbᵛ {A = F} [Γ] (univᵛ {A = F} [Γ] (≡is≤ PE.refl) [UF]′ [F]ₜ′) [UG]′ = S.irrelevance {A = Univ _ _} (_∙_ {A = F} [ΓG] [F]) (_∙_ {A = F} [Γ] [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = G} (_∙_ {A = F} [ΓG] [F]) (_∙_ {A = F} [Γ] [F]′) (λ {Δ} {σ} → [UG] {Δ} {σ}) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [G]ₜ [G]′ = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]′) (univᵛ {A = G} (_∙_ {A = F} [Γ] [F]′) (≡is≤ PE.refl) (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [G]ₜ′) [tu]ₜ′ = S.irrelevanceTerm {A = ∃ F ▹ G} {t = tu} [Γ] [Γ] [∃FG] (∃ᵛ {F} {G} [Γ] [F]′ [G]′) [tu]ₜ in [Γ] , substS {F} {G} {fst tu} [Γ] [F]′ [G]′ (fstᵛ {F = F} {G = G} {tu = tu} [Γ] [F]′ [G]′ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ [tu]ₜ′) , sndᵛ {F = F} {G = G} {tu = tu} [Γ] [F]′ [G]′ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ [tu]ₜ′ fundamentalTerm {Γ} (Idreflⱼ {A} {l} {t} ⊢t) with fundamentalTerm ⊢t ... | [Γ] , [A] , [t] = let [Id] = Idᵛ {A = A} {t = t} {u = t } [Γ] [A] [t] [t] in [Γ] , [Id] , Idreflᵛ {Γ} {A} {l} {t} [Γ] [A] [t] fundamentalTerm (transpⱼ {A} {l} {P} {t} {s} {u} {e} ⊢A ⊢P ⊢t ⊢s ⊢u ⊢e) with fundamental ⊢A | fundamental ⊢P | fundamentalTerm ⊢t | fundamentalTerm ⊢s | fundamentalTerm ⊢u | fundamentalTerm ⊢e ... | [ΓA] , [A] | [ΓP] ∙ [A]' , [P] | [Γt] , [At] , [t] | [Γs] , [Pt] , [s] | [Γu] , [Au] , [u] | [Γe] , [Id] , [e] = let [A]′ = S.irrelevance {A = A} [ΓA] [Γe] [A] [P]′ = S.irrelevance {A = P} (_∙_ {A = A} [ΓP] [A]') (_∙_ {A = A} [Γe] [A]′) [P] [t]′ = S.irrelevanceTerm {A = A} {t = t} [Γt] [Γe] [At] [A]′ [t] [u]′ = S.irrelevanceTerm {A = A} {t = u} [Γu] [Γe] [Au] [A]′ [u] [Pt]′ = substS {A} {P} {t} [Γe] [A]′ [P]′ [t]′ [s]′ = S.irrelevanceTerm {A = P [ t ] } {t = s} [Γs] [Γe] [Pt] [Pt]′ [s] in [Γe] , substS {A} {P} {u} [Γe] [A]′ [P]′ [u]′ , transpᵗᵛ {A} {P} {l} {t} {s} {u} {e} [Γe] [A]′ [P]′ [t]′ [s]′ [u]′ [Id] [e] fundamentalTerm (castⱼ {A} {B} {r} {e} {t} ⊢A ⊢B ⊢e ⊢t) with fundamentalTerm ⊢A | fundamentalTerm ⊢B | fundamentalTerm ⊢e | fundamentalTerm ⊢t ... | [ΓA] , [UA] , [A]ₜ | [ΓB] , [UB] , [B]ₜ | [Γe] , [Id] , [e]ₜ | [Γ]₁ , [At] , [t]ₜ = let [UA]′ = S.irrelevance {A = Univ _ _} [ΓA] [Γ]₁ [UA] [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [ΓA] [Γ]₁ [UA] [UA]′ [A]ₜ [B]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} [ΓB] [Γ]₁ [UB] [UA]′ [B]ₜ [B] = maybeEmbᵛ {A = B} [Γ]₁ (univᵛ {A = B} [Γ]₁ (≡is≤ PE.refl) [UA]′ [B]ₜ′) [Id]′ = S.irrelevance {A = Id (Univ r _) A B} [Γe] [Γ]₁ [Id] [e]ₜ′ = S.irrelevanceTerm {A = Id (Univ r _) A B} {t = e} [Γe] [Γ]₁ [Id] [Id]′ [e]ₜ in [Γ]₁ , [B] , castᵗᵛ {A} {B} {r} {t} {e} [Γ]₁ [UA]′ [A]ₜ′ [B]ₜ′ [At] [B] [t]ₜ [Id]′ [e]ₜ′ fundamentalTerm {Γ} (castreflⱼ {A} {t} ⊢A ⊢t) with fundamentalTerm ⊢A | fundamentalTerm ⊢t ... | [ΓA] , [UA] , [A]ₜ | [Γ] , [A] , [t]ₜ = let [UA]′ = S.irrelevance {A = Univ _ _} [ΓA] [Γ] [UA] [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [ΓA] [Γ] [UA] [UA]′ [A]ₜ [Id] = Idᵛ {A = A} {t = t} {u = cast ⁰ A A (Idrefl (U ⁰) A) t} [Γ] [A] [t]ₜ (castᵗᵛ {A = A} {B = A} {t = t} {e = Idrefl (U ⁰) A} [Γ] [UA]′ [A]ₜ′ [A]ₜ′ [A] [A] [t]ₜ (Idᵛ {A = U _} {t = A} {u = A} [Γ] [UA]′ [A]ₜ′ [A]ₜ′) (Idreflᵛ {A = U _} {t = A} [Γ] [UA]′ [A]ₜ′)) in [Γ] , [Id] , castreflᵛ {Γ} {A} {t} [Γ] [UA]′ [A]ₜ′ [A] [t]ₜ fundamentalTerm (Emptyrecⱼ {A} {lEmpty} {lA} {rA} {n} ⊢A ⊢n) with fundamental ⊢A | fundamentalTerm ⊢n ... | [Γ] , [A] | [Γ]′ , [Empty] , [n] = let [A]′ = S.irrelevance {A = A} [Γ] [Γ]′ [A] in [Γ]′ , [A]′ , Emptyrecᵛ {A} {rA} {lA} {lEmpty} {n} [Γ]′ [Empty] [A]′ [n] fundamentalTerm (conv {t} {A} {B} ⊢t A′≡A) with fundamentalTerm ⊢t | fundamentalEq A′≡A fundamentalTerm (conv {t} {A} {B} ⊢t A′≡A) | [Γ] , [A′] , [t] | [Γ]₁ , [A′]₁ , [A] , [A′≡A] = let [Γ]′ = [Γ]₁ [t]′ = S.irrelevanceTerm {A = A} {t = t} [Γ] [Γ]′ [A′] [A′]₁ [t] in [Γ]′ , [A] , convᵛ {t} {A} {B} [Γ]′ [A′]₁ [A] [A′≡A] [t]′ fundamentalTerm (univ 0<1 ⊢Γ) = let [Γ] = valid ⊢Γ in [Γ] , (Uᵛ ∞< [Γ] , Uᵗᵛ [Γ]) -- Fundamental theorem for term equality. fundamentalTermEq (refl D) with fundamentalTerm D ... | [Γ] , [A] , [t] = [Γ] , modelsTermEq [A] [t] [t] (λ ⊢Δ [σ] → reflEqTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))) fundamentalTermEq (sym D) with fundamentalTermEq D fundamentalTermEq (sym D) | [Γ] , modelsTermEq [A] [t′] [t] [t′≡t] = [Γ] , modelsTermEq [A] [t] [t′] (λ ⊢Δ [σ] → symEqTerm (proj₁ ([A] ⊢Δ [σ])) ([t′≡t] ⊢Δ [σ])) fundamentalTermEq (trans {t} {u} {r} {A} t≡u u≡t′) with fundamentalTermEq t≡u | fundamentalTermEq u≡t′ fundamentalTermEq (trans {t} {u} {r} {A} t≡u u≡t′) | [Γ] , modelsTermEq [A] [t] [u] [t≡u] | [Γ]₁ , modelsTermEq [A]₁ [t]₁ [u]₁ [t≡u]₁ = let [r]′ = S.irrelevanceTerm {A = A} {t = r} [Γ]₁ [Γ] [A]₁ [A] [u]₁ in [Γ] , modelsTermEq [A] [t] [r]′ (λ ⊢Δ [σ] → let [σ]′ = S.irrelevanceSubst [Γ] [Γ]₁ ⊢Δ ⊢Δ [σ] [t≡u]₁′ = irrelevanceEqTerm (proj₁ ([A]₁ ⊢Δ [σ]′)) (proj₁ ([A] ⊢Δ [σ])) ([t≡u]₁ ⊢Δ [σ]′) in transEqTerm (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ]) [t≡u]₁′) fundamentalTermEq (conv {A} {B} {r} {t} {u} t≡u A′≡A) with fundamentalTermEq t≡u | fundamentalEq A′≡A fundamentalTermEq (conv {A} {B} {r} {t} {u} t≡u A′≡A) | [Γ] , modelsTermEq [A′] [t] [u] [t≡u] | [Γ]₁ , [A′]₁ , [A] , [A′≡A] = let [t]′ = S.irrelevanceTerm {A = A} {t = t} [Γ] [Γ]₁ [A′] [A′]₁ [t] [u]′ = S.irrelevanceTerm {A = A} {t = u} [Γ] [Γ]₁ [A′] [A′]₁ [u] [t]″ = convᵛ {t} {A} {B} [Γ]₁ [A′]₁ [A] [A′≡A] [t]′ [u]″ = convᵛ {u} {A} {B} [Γ]₁ [A′]₁ [A] [A′≡A] [u]′ in [Γ]₁ , modelsTermEq [A] [t]″ [u]″ (λ ⊢Δ [σ] → let [σ]′ = S.irrelevanceSubst [Γ]₁ [Γ] ⊢Δ ⊢Δ [σ] [t≡u]′ = irrelevanceEqTerm (proj₁ ([A′] ⊢Δ [σ]′)) (proj₁ ([A′]₁ ⊢Δ [σ])) ([t≡u] ⊢Δ [σ]′) in convEqTerm₁ (proj₁ ([A′]₁ ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ])) ([A′≡A] ⊢Δ [σ]) [t≡u]′) fundamentalTermEq (Π-cong {E} {F} {G} {H} {rF} {lF} {rG} {lG} {lΠ} lF< lG< ⊢F F≡H G≡E) with fundamental ⊢F | fundamentalTermEq F≡H | fundamentalTermEq G≡E ... | [Γ] , [F] | [Γ]₁ , modelsTermEq [U] [F]ₜ [H]ₜ [F≡H]ₜ | [Γ]₂ , modelsTermEq [U]₁ [G]ₜ [E]ₜ [G≡E]ₜ = let [U]′ = maybeEmbᵛ {A = Univ _ _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ]) [UΠ] = maybeEmbᵛ {A = Univ _ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ]) [F]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = F} [Γ]₁ [Γ] [U] [U]′ [F]ₜ [H]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = H} [Γ]₁ [Γ] [U] [U]′ [H]ₜ [F]′ = S.irrelevance {A = F} [Γ] [Γ]₁ [F] [H] = maybeEmbᵛ {A = H} [Γ] (univᵛ {A = H} [Γ] (≡is≤ PE.refl) [U]′ [H]ₜ′) [F≡H] = S.irrelevanceEq {A = F} {B = H} [Γ]₁ [Γ] [F]′ [F] (univEqᵛ {F} {H} [Γ]₁ [U] [F]′ [F≡H]ₜ) [U]₁′ = S.irrelevance {A = Univ _ _} [Γ]₂ ([Γ] ∙ [F]) [U]₁ [U]₂′ = S.irrelevanceLift {A = Univ _ _} {F = F} {H = H} [Γ] [F] [H] [F≡H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = G} [Γ]₂ ([Γ] ∙ [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G]ₜ [E]ₜ′ = S.irrelevanceTermLift {A = Univ _ _} {F = F} {H = H} {t = E} [Γ] [F] [H] [F≡H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) (S.irrelevanceTerm {A = Univ _ _} {t = E} [Γ]₂ ([Γ] ∙ [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [E]ₜ) [F≡H]ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = F} {u = H} [Γ]₁ [Γ] [U] [U]′ [F≡H]ₜ [G≡E]ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = G} {u = E} [Γ]₂ (_∙_ {A = F} [Γ] [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G≡E]ₜ in [Γ] , modelsTermEq [UΠ] -- looks like [U]′ but the implicits are different (Πᵗᵛ {F} {G} lF< lG< [Γ] [F] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ ) (Πᵗᵛ {H} {E} lF< lG< [Γ] [H] (λ {Δ} {σ} → [U]₂′ {Δ} {σ}) [H]ₜ′ [E]ₜ′) (Π-congᵗᵛ {F} {G} {H} {E} lF< lG< [Γ] [F] [H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) (λ {Δ} {σ} → [U]₂′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ [H]ₜ′ [E]ₜ′ [F≡H]ₜ′ [G≡E]ₜ′) fundamentalTermEq (app-cong {a} {b} {f} {g} {F} {G} {rF} {lF} {lG} {l} f≡g a≡b) with fundamentalTermEq f≡g | fundamentalTermEq a≡b ... | [Γ] , modelsTermEq [ΠFG] [f] [g] [f≡g] | [Γ]₁ , modelsTermEq [F] [a] [b] [a≡b] = let [ΠFG]′ = S.irrelevance {A = Π F ^ rF ° lF ▹ G ° lG ° l} [Γ] [Γ]₁ [ΠFG] [f]′ = S.irrelevanceTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = f} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [f] [g]′ = S.irrelevanceTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = g} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [g] [f≡g]′ = S.irrelevanceEqTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = f} {u = g} [Γ] [Γ]₁ [ΠFG] [ΠFG]′ [f≡g] [G[a]] = substSΠ {F} {G} {a} [Γ]₁ [F] [ΠFG]′ [a] [G[b]] = substSΠ {F} {G} {b} [Γ]₁ [F] [ΠFG]′ [b] [G[a]≡G[b]] = substSΠEq {F} {G} {F} {G} {a} {b} [Γ]₁ [F] [F] [ΠFG]′ [ΠFG]′ (reflᵛ {Π F ^ rF ° lF ▹ G ° lG ° l} [Γ]₁ [ΠFG]′) [a] [b] [a≡b] in [Γ]₁ , modelsTermEq [G[a]] (appᵛ {F} {G} {rF} {lF} {lG} { ! } {l} {f} {a} [Γ]₁ [F] [ΠFG]′ [f]′ [a]) (conv₂ᵛ {g ∘ b ^ l} {G [ a ]} {G [ b ]} [Γ]₁ [G[a]] [G[b]] [G[a]≡G[b]] (appᵛ {F} {G} {rF} {lF} {lG} { ! } {l} {g} {b} [Γ]₁ [F] [ΠFG]′ [g]′ [b])) (app-congᵛ {F} {G} {rF} {lF} {lG} { ! } {l} {f} {g} {a} {b} [Γ]₁ [F] [ΠFG]′ [f≡g]′ [a] [b] [a≡b]) fundamentalTermEq (β-red {a} {b} {F} {rF} {lF} {G} {lG} {l} l< l<' ⊢F ⊢b ⊢a) with fundamental ⊢F | fundamentalTerm ⊢b | fundamentalTerm ⊢a ... | [Γ] , [F] | [Γ]₁ , [G] , [b] | [Γ]₂ , [F]₁ , [a] = let [G]′ = S.irrelevance {A = G} [Γ]₁ ([Γ]₂ ∙ [F]₁) [G] [b]′ = S.irrelevanceTerm {A = G} {t = b} [Γ]₁ ([Γ]₂ ∙ [F]₁) [G] [G]′ [b] [G[a]] = substS {F} {G} {a} [Γ]₂ [F]₁ [G]′ [a] [b[a]] = substSTerm {F} {G} {a} {b} [Γ]₂ [F]₁ [G]′ [b]′ [a] [lam] , [eq] = redSubstTermᵛ {G [ a ]} {(lam F ▹ b ^ l) ∘ a ^ l} {b [ a ]} [Γ]₂ (λ {Δ} {σ} ⊢Δ [σ] → let [liftσ] = liftSubstS {F = F} [Γ]₂ ⊢Δ [F]₁ [σ] ⊢σF = escape (proj₁ ([F]₁ ⊢Δ [σ])) ⊢σb = escapeTerm (proj₁ ([G]′ (⊢Δ ∙ ⊢σF) [liftσ])) (proj₁ ([b]′ (⊢Δ ∙ ⊢σF) [liftσ])) ⊢σa = escapeTerm (proj₁ ([F]₁ ⊢Δ [σ])) (proj₁ ([a] ⊢Δ [σ])) in PE.subst₂ (λ x y → _ ⊢ (lam (subst σ F) ▹ (subst (liftSubst σ) b) ^ _) ∘ (subst σ a) ^ _ ⇒ x ∷ y ^ _) (PE.sym (singleSubstLift b a)) (PE.sym (singleSubstLift G a)) (β-red l< l<' ⊢σF ⊢σb ⊢σa)) [G[a]] [b[a]] in [Γ]₂ , modelsTermEq [G[a]] [lam] [b[a]] [eq] fundamentalTermEq (η-eq {f} {g} {F} {rF} {lF} {lG} {l} {G} lF< lG< ⊢F ⊢t ⊢t′ t≡t′) with fundamental ⊢F | fundamentalTerm ⊢t | fundamentalTerm ⊢t′ | fundamentalTermEq t≡t′ ... | [Γ] , [F] | [Γ]₁ , [ΠFG] , [t] | [Γ]₂ , [ΠFG]₁ , [t′] | [Γ]₃ , modelsTermEq [G] [t0] [t′0] [t0≡t′0] = let [F]′ = S.irrelevance {A = F} [Γ] [Γ]₁ [F] [G]′ = S.irrelevance {A = G} [Γ]₃ ([Γ]₁ ∙ [F]′) [G] [t′]′ = S.irrelevanceTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = g} [Γ]₂ [Γ]₁ [ΠFG]₁ [ΠFG] [t′] [ΠFG]″ = Πᵛ {F} {G} lF< lG< [Γ]₁ [F]′ [G]′ [t]″ = S.irrelevanceTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = f} [Γ]₁ [Γ]₁ [ΠFG] [ΠFG]″ [t] [t′]″ = S.irrelevanceTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = g} [Γ]₂ [Γ]₁ [ΠFG]₁ [ΠFG]″ [t′] [t0≡t′0]′ = S.irrelevanceEqTerm {A = G} {t = wk1 f ∘ var 0 ^ l} {u = wk1 g ∘ var 0 ^ l} [Γ]₃ ([Γ]₁ ∙ [F]′) [G] [G]′ [t0≡t′0] [t≡t′] = η-eqᵛ {f} {g} {F} {G} lF< lG< [Γ]₁ [F]′ [G]′ [t]″ [t′]″ [t0≡t′0]′ [t≡t′]′ = S.irrelevanceEqTerm {A = Π F ^ rF ° lF ▹ G ° lG ° l} {t = f} {u = g} [Γ]₁ [Γ]₁ [ΠFG]″ [ΠFG] [t≡t′] in [Γ]₁ , modelsTermEq [ΠFG] [t] [t′]′ [t≡t′]′ fundamentalTermEq (suc-cong x) with fundamentalTermEq x fundamentalTermEq (suc-cong {t} {u} x) | [Γ] , modelsTermEq [A] [t] [u] [t≡u] = let [suct] = sucᵛ {n = t} [Γ] [A] [t] [sucu] = sucᵛ {n = u} [Γ] [A] [u] in [Γ] , modelsTermEq [A] [suct] [sucu] (λ ⊢Δ [σ] → sucEqTerm (proj₁ ([A] ⊢Δ [σ])) ([t≡u] ⊢Δ [σ])) fundamentalTermEq (natrec-cong {z} {z′} {s} {s′} {n} {n′} {F} {F′} F≡F′ z≡z′ s≡s′ n≡n′) with fundamentalEq F≡F′ | fundamentalTermEq z≡z′ | fundamentalTermEq s≡s′ | fundamentalTermEq n≡n′ fundamentalTermEq (natrec-cong {z} {z′} {s} {s′} {n} {n′} {F} {F′} {l} F≡F′ z≡z′ s≡s′ n≡n′) | [Γ] , [F] , [F′] , [F≡F′] | [Γ]₁ , modelsTermEq [F₀] [z] [z′] [z≡z′] | [Γ]₂ , modelsTermEq [F₊] [s] [s′] [s≡s′] | [Γ]₃ , modelsTermEq [ℕ] [n] [n′] [n≡n′] = let sType = Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° l ▹▹ F [ suc (var 0) ]↑ ° l ° l) ° l ° l s′Type = Π ℕ ^ ! ° ⁰ ▹ (F′ ^ ! ° l ▹▹ F′ [ suc (var 0) ]↑ ° l ° l) ° l ° l [0] = S.irrelevanceTerm {l = ∞} {A = ℕ} {t = zero} [Γ]₃ [Γ]₃ (ℕᵛ [Γ]₃) [ℕ] (zeroᵛ {l = ∞} [Γ]₃) [F]′ = S.irrelevance {A = F} [Γ] ([Γ]₃ ∙ [ℕ]) [F] [F₀]′ = S.irrelevance {A = F [ zero ]} [Γ]₁ [Γ]₃ [F₀] [F₊]′ = S.irrelevance {A = sType} [Γ]₂ [Γ]₃ [F₊] [Fₙ]′ = substS {ℕ} {F} {n} [Γ]₃ [ℕ] [F]′ [n] [F′]′ = S.irrelevance {A = F′} [Γ] ([Γ]₃ ∙ [ℕ]) [F′] [F₀]″ = substS {ℕ} {F} {zero} [Γ]₃ [ℕ] [F]′ [0] [F′₀]′ = substS {ℕ} {F′} {zero} [Γ]₃ [ℕ] [F′]′ [0] [F′₊]′ = sucCase {F′} [Γ]₃ [ℕ] [F′]′ [F′ₙ′]′ = substS {ℕ} {F′} {n′} [Γ]₃ [ℕ] [F′]′ [n′] [ℕ≡ℕ] = reflᵛ {ℕ} [Γ]₃ [ℕ] [0≡0] = reflᵗᵛ {ℕ} {zero} [Γ]₃ [ℕ] [0] [F≡F′]′ = S.irrelevanceEq {A = F} {B = F′} [Γ] ([Γ]₃ ∙ [ℕ]) [F] [F]′ [F≡F′] [F₀≡F′₀] = substSEq {ℕ} {ℕ} {F} {F′} {zero} {zero} [Γ]₃ [ℕ] [ℕ] [ℕ≡ℕ] [F]′ [F′]′ [F≡F′]′ [0] [0] [0≡0] [F₀≡F′₀]′ = S.irrelevanceEq {A = F [ zero ]} {B = F′ [ zero ]} [Γ]₃ [Γ]₃ [F₀]″ [F₀]′ [F₀≡F′₀] [F₊≡F′₊] = sucCaseCong {F} {F′} [Γ]₃ [ℕ] [F]′ [F′]′ [F≡F′]′ [F₊≡F′₊]′ = S.irrelevanceEq {A = sType} {B = s′Type} [Γ]₃ [Γ]₃ (sucCase {F} [Γ]₃ [ℕ] [F]′) [F₊]′ [F₊≡F′₊] [Fₙ≡F′ₙ′]′ = substSEq {ℕ} {ℕ} {F} {F′} {n} {n′} [Γ]₃ [ℕ] [ℕ] [ℕ≡ℕ] [F]′ [F′]′ [F≡F′]′ [n] [n′] [n≡n′] [z]′ = S.irrelevanceTerm {A = F [ zero ]} {t = z} [Γ]₁ [Γ]₃ [F₀] [F₀]′ [z] [z′]′ = convᵛ {z′} {F [ zero ]} {F′ [ zero ]} [Γ]₃ [F₀]′ [F′₀]′ [F₀≡F′₀]′ (S.irrelevanceTerm {A = F [ zero ]} {t = z′} [Γ]₁ [Γ]₃ [F₀] [F₀]′ [z′]) [z≡z′]′ = S.irrelevanceEqTerm {A = F [ zero ]} {t = z} {u = z′} [Γ]₁ [Γ]₃ [F₀] [F₀]′ [z≡z′] [s]′ = S.irrelevanceTerm {A = sType} {t = s} [Γ]₂ [Γ]₃ [F₊] [F₊]′ [s] [s′]′ = convᵛ {s′} {sType} {s′Type} [Γ]₃ [F₊]′ [F′₊]′ [F₊≡F′₊]′ (S.irrelevanceTerm {A = sType} {t = s′} [Γ]₂ [Γ]₃ [F₊] [F₊]′ [s′]) [s≡s′]′ = S.irrelevanceEqTerm {A = sType} {t = s} {u = s′} [Γ]₂ [Γ]₃ [F₊] [F₊]′ [s≡s′] in [Γ]₃ , modelsTermEq [Fₙ]′ (natrecᵛ {F} { ! } {l} {z} {s} {n} [Γ]₃ [ℕ] [F]′ [F₀]′ [F₊]′ [Fₙ]′ [z]′ [s]′ [n]) (conv₂ᵛ {natrec l F′ z′ s′ n′} {F [ n ]} {F′ [ n′ ]} [Γ]₃ [Fₙ]′ [F′ₙ′]′ [Fₙ≡F′ₙ′]′ (natrecᵛ {F′} { ! } {l} {z′} {s′} {n′} [Γ]₃ [ℕ] [F′]′ [F′₀]′ [F′₊]′ [F′ₙ′]′ [z′]′ [s′]′ [n′])) (natrec-congᵛ {F} {F′} { ! } {l} {z} {z′} {s} {s′} {n} {n′} [Γ]₃ [ℕ] [F]′ [F′]′ [F≡F′]′ [F₀]′ [F′₀]′ [F₀≡F′₀]′ [F₊]′ [F′₊]′ [F₊≡F′₊]′ [Fₙ]′ [z]′ [z′]′ [z≡z′]′ [s]′ [s′]′ [s≡s′]′ [n] [n′] [n≡n′]) fundamentalTermEq (natrec-zero {z} {s} {F} ⊢F ⊢z ⊢s) with fundamental ⊢F | fundamentalTerm ⊢z | fundamentalTerm ⊢s fundamentalTermEq (natrec-zero {z} {s} {F} {l} ⊢F ⊢z ⊢s) | [Γ] , [F] | [Γ]₁ , [F₀] , [z] | [Γ]₂ , [F₊] , [s] = let sType = Π ℕ ^ ! ° ⁰ ▹ (F ^ ! ° l ▹▹ F [ suc (var 0) ]↑ ° l ° l) ° l ° l [Γ]′ = [Γ]₁ [ℕ]′ = ℕᵛ {l = ∞} [Γ]′ [F₊]′ = S.irrelevance {A = sType} [Γ]₂ [Γ]′ [F₊] [s]′ = S.irrelevanceTerm {A = sType} {t = s} [Γ]₂ [Γ]′ [F₊] [F₊]′ [s] [F]′ = S.irrelevance {A = F} [Γ] ([Γ]′ ∙ [ℕ]′) [F] d , r = redSubstTermᵛ {F [ zero ]} {natrec l F z s zero} {z} [Γ]′ (λ {Δ} {σ} ⊢Δ [σ] → let ⊢ℕ = escape (proj₁ ([ℕ]′ ⊢Δ [σ])) ⊢F = escape (proj₁ ([F]′ (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ]′ ⊢Δ [ℕ]′ [σ]))) ⊢z = PE.subst (λ x → Δ ⊢ subst σ z ∷ x ^ _) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x ^ [ ! , ι l ] ) (natrecSucCase σ F ! l) (escapeTerm (proj₁ ([F₊]′ ⊢Δ [σ])) (proj₁ ([s]′ ⊢Δ [σ]))) in PE.subst (λ x → Δ ⊢ subst σ (natrec l F z s zero) ⇒ subst σ z ∷ x ^ _) (PE.sym (singleSubstLift F zero)) (natrec-zero ⊢F ⊢z ⊢s)) [F₀] [z] in [Γ]′ , modelsTermEq [F₀] d [z] r fundamentalTermEq (natrec-suc {n} {z} {s} {F} {lF} ⊢n ⊢F ⊢z ⊢s) with fundamentalTerm ⊢n | fundamental ⊢F | fundamentalTerm ⊢z | fundamentalTerm ⊢s ... | [Γ] , [ℕ] , [n] | [Γ]₁ , [F] | [Γ]₂ , [F₀] , [z] | [Γ]₃ , [F₊] , [s] = let [ℕ]′ = S.irrelevance {A = ℕ} [Γ] [Γ]₃ [ℕ] [n]′ = S.irrelevanceTerm {A = ℕ} {t = n} [Γ] [Γ]₃ [ℕ] [ℕ]′ [n] [sucn] = sucᵛ {n = n} [Γ]₃ [ℕ]′ [n]′ [F₀]′ = S.irrelevance {A = F [ zero ]} [Γ]₂ [Γ]₃ [F₀] [z]′ = S.irrelevanceTerm {A = F [ zero ]} {t = z} [Γ]₂ [Γ]₃ [F₀] [F₀]′ [z] [F]′ = S.irrelevance {A = F} [Γ]₁ ([Γ]₃ ∙ [ℕ]′) [F] [F[sucn]] = substS {ℕ} {F} {suc n} [Γ]₃ [ℕ]′ [F]′ [sucn] [Fₙ]′ = substS {ℕ} {F} {n} [Γ]₃ [ℕ]′ [F]′ [n]′ [natrecₙ] = natrecᵛ {F} { ! } {lF} {z} {s} {n} [Γ]₃ [ℕ]′ [F]′ [F₀]′ [F₊] [Fₙ]′ [z]′ [s] [n]′ t = (s ∘ n ^ lF) ∘ (natrec lF F z s n) ^ lF q = subst (liftSubst (sgSubst n)) (wk1 (F [ suc (var 0) ]↑)) y = S.irrelevanceTerm′ {A = q [ natrec lF F z s n ]} {A′ = F [ suc n ]} {t = t} (natrecIrrelevantSubst′ F z s n) PE.refl [Γ]₃ [Γ]₃ (substSΠ {F [ n ]} {q} {natrec lF F z s n} [Γ]₃ (substS {ℕ} {F} {n} [Γ]₃ [ℕ]′ [F]′ [n]′) (substSΠ {ℕ} {F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF} {n} [Γ]₃ [ℕ]′ [F₊] [n]′) [natrecₙ]) [F[sucn]] (appᵛ {F [ n ]} {q} { ! } {lF} {lF} { ! } {lF} {s ∘ n ^ lF} {natrec lF F z s n} [Γ]₃ [Fₙ]′ (substSΠ {ℕ} {F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF} {n} [Γ]₃ [ℕ]′ [F₊] [n]′) (appᵛ {ℕ} {F ^ ! ° lF ▹▹ F [ suc (var 0) ]↑ ° lF ° lF} { ! } {⁰} {lF} { ! } {lF} {s} {n} [Γ]₃ [ℕ]′ [F₊] [s] [n]′) [natrecₙ]) d , r = redSubstTermᵛ {F [ suc n ]} {natrec lF F z s (suc n)} {t } {∞} {_} [Γ]₃ (λ {Δ} {σ} ⊢Δ [σ] → let ⊢n = escapeTerm (proj₁ ([ℕ]′ ⊢Δ [σ])) (proj₁ ([n]′ ⊢Δ [σ])) ⊢ℕ = escape (proj₁ ([ℕ]′ ⊢Δ [σ])) ⊢F = escape (proj₁ ([F]′ (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ]₃ ⊢Δ [ℕ]′ [σ]))) ⊢z = PE.subst (λ x → Δ ⊢ subst σ z ∷ x ^ _) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀]′ ⊢Δ [σ])) (proj₁ ([z]′ ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x ^ [ ! , ι lF ]) (natrecSucCase σ F ! lF) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) r = _⊢_⇒_∷_^_.natrec-suc {n = subst σ n} {z = subst σ z} {s = subst σ s} {F = subst (liftSubst σ) F} ⊢n ⊢F ⊢z ⊢s in PE.subst (λ x → Δ ⊢ subst σ (natrec lF F z s (suc n)) ⇒ (subst σ t) ∷ x ^ _) (PE.trans (PE.trans (substCompEq F) (substVar-to-subst (λ { 0 → PE.refl ; (1+ x) → PE.trans (subst-wk (σ x)) (subst-id (σ x)) }) F)) (PE.sym (substCompEq F))) r) [F[sucn]] y in [Γ]₃ , modelsTermEq [F[sucn]] d y r fundamentalTermEq (Emptyrec-cong {F} {F′} {n} {n′} F≡F′ ⊢n ⊢n′) with fundamentalEq F≡F′ | fundamentalTerm ⊢n | fundamentalTerm ⊢n′ fundamentalTermEq (Emptyrec-cong {F} {F′} {lF} {lEmpty} {n} {n′} F≡F′ ⊢n ⊢n′) | [Γ] , [F] , [F′] , [F≡F′] | [Γn] , [Empty] , [n] | [Γn′] , [Empty]′ , [n′] = let [F]′ = S.irrelevance {A = F} [Γ] [Γn′] [F] [F′]′ = S.irrelevance {A = F′} [Γ] [Γn′] [F′] [n]′ = S.irrelevanceTerm {A = Empty _} {t = n} [Γn] [Γn′] [Empty] [Empty]′ [n] [F≡F′]′ = S.irrelevanceEq {A = F} {B = F′} [Γ] [Γn′] [F] [F]′ [F≡F′] in [Γn′] , modelsTermEq [F]′ (Emptyrecᵛ {F} { ! } {lF} {lEmpty} {n} [Γn′] [Empty]′ [F]′ [n]′) (conv₂ᵛ {Emptyrec lF lEmpty F′ n′} {F} {F′} { [ ! , ι lF ] } [Γn′] [F]′ [F′]′ [F≡F′]′ (Emptyrecᵛ {F′} { ! } {lF} {lEmpty} {n′} [Γn′] [Empty]′ [F′]′ [n′])) (Emptyrec-congᵛ {F} {F′} { ! } {lF} {lEmpty} {n} {n′} [Γn′] [Empty]′ [F]′ [F′]′ [F≡F′]′ [n]′ [n′]) fundamentalTermEq (proof-irrelevance ⊢t ⊢u) with fundamentalTerm ⊢t | fundamentalTerm ⊢u fundamentalTermEq {A = A} {t = t} {t′ = t′} (proof-irrelevance ⊢t ⊢u) | [Γ] , [A] , [t] | [Γ]′ , [A]′ , [u] = let [u]′ = S.irrelevanceTerm {A = A} {t = t′} [Γ]′ [Γ] [A]′ [A] [u] in [Γ] , modelsTermEq [A] [t] [u]′ (PI.proof-irrelevanceᵛ {A = A} {t = t} {u = t′} [Γ] [A] [t] [u]′) fundamentalTermEq (∃-cong {E} {F} {G} {H} {l} ⊢F F≡H G≡E) with fundamental ⊢F | fundamentalTermEq F≡H | fundamentalTermEq G≡E ... | [Γ] , [F] | [Γ]₁ , modelsTermEq [U] [F]ₜ [H]ₜ [F≡H]ₜ | [Γ]₂ , modelsTermEq [U]₁ [G]ₜ [E]ₜ [G≡E]ₜ = let [U]′ = maybeEmbᵛ {A = Univ _ _} [Γ] (Uᵛ (proj₂ (levelBounded l)) [Γ]) [UΠ] = maybeEmbᵛ {A = Univ _ _} [Γ] (Uᵛ (proj₂ (levelBounded l)) [Γ]) [F]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = F} [Γ]₁ [Γ] [U] [U]′ [F]ₜ [H]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = H} [Γ]₁ [Γ] [U] [U]′ [H]ₜ [F]′ = S.irrelevance {A = F} [Γ] [Γ]₁ [F] [H] = maybeEmbᵛ {A = H} [Γ] (univᵛ {A = H} [Γ] (≡is≤ PE.refl) [U]′ [H]ₜ′) [F≡H] = S.irrelevanceEq {A = F} {B = H} [Γ]₁ [Γ] [F]′ [F] (univEqᵛ {F} {H} [Γ]₁ [U] [F]′ [F≡H]ₜ) [U]₁′ = S.irrelevance {A = Univ _ _} [Γ]₂ ([Γ] ∙ [F]) [U]₁ [U]₂′ = S.irrelevanceLift {A = Univ _ _} {F = F} {H = H} [Γ] [F] [H] [F≡H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = G} [Γ]₂ ([Γ] ∙ [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G]ₜ [E]ₜ′ = S.irrelevanceTermLift {A = Univ _ _} {F = F} {H = H} {t = E} [Γ] [F] [H] [F≡H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) (S.irrelevanceTerm {A = Univ _ _} {t = E} [Γ]₂ ([Γ] ∙ [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [E]ₜ) [F≡H]ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = F} {u = H} [Γ]₁ [Γ] [U] [U]′ [F≡H]ₜ [G≡E]ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = G} {u = E} [Γ]₂ (_∙_ {A = F} [Γ] [F]) [U]₁ (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [G≡E]ₜ in [Γ] , modelsTermEq [UΠ] -- looks like [U]′ but the implicits are different (∃ᵗᵛ {F} {G} [Γ] [F] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ ) (∃ᵗᵛ {H} {E} [Γ] [H] (λ {Δ} {σ} → [U]₂′ {Δ} {σ}) [H]ₜ′ [E]ₜ′) (∃-congᵗᵛ {F} {G} {H} {E} [Γ] [F] [H] (λ {Δ} {σ} → [U]₁′ {Δ} {σ}) (λ {Δ} {σ} → [U]₂′ {Δ} {σ}) [F]ₜ′ [G]ₜ′ [H]ₜ′ [E]ₜ′ [F≡H]ₜ′ [G≡E]ₜ′) fundamentalTermEq (Id-cong {A} {A'} {l} {t} {t'} {u} {u'} A≡A' t≡t' u≡u') with fundamentalTermEq A≡A' | fundamentalTermEq t≡t' | fundamentalTermEq u≡u' ... | [ΓA] , modelsTermEq [UA] [A]ₜ [A']ₜ [A≡A']ₜ | [Γt] , modelsTermEq [A] [t]ₜ [t']ₜ [t≡t']ₜ | [Γu] , modelsTermEq [A'] [u]ₜ [u']ₜ [u≡u']ₜ = let [SProp] = maybeEmbᵛ {A = Univ _ _} [Γu] (Uᵛ {rU = %} <next [Γu]) [UA]′ = maybeEmbᵛ {A = U l} [Γu] (Uᵛ <next [Γu]) [A]ₜ′ = S.irrelevanceTerm {A = U l} {t = A} [ΓA] [Γu] [UA] (λ {Δ} {σ} → [UA]′ {Δ} {σ}) [A]ₜ [A']ₜ′ = S.irrelevanceTerm {A = U l} {t = A'} [ΓA] [Γu] [UA] [UA]′ [A']ₜ [A]′ = S.irrelevance {A = A} [Γt] [Γu] [A] [A']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A'} [ΓA] [Γu] [UA] [UA]′ [A']ₜ [A']′ = maybeEmbᵛ {A = A'} [Γu] (univᵛ {A = A'} [Γu] (≡is≤ PE.refl) [UA]′ [A']ₜ′) [A≡A']ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = A} {u = A'} [ΓA] [Γu] [UA] [UA]′ [A≡A']ₜ [A≡A']′ = univEqᵛ {A = A} {B = A'} [Γu] [UA]′ [A]′ [A≡A']ₜ′ [t]ₜ′ = S.irrelevanceTerm {A = A} {t = t} [Γt] [Γu] [A] [A]′ [t]ₜ [t']ₜ′ = convᵛ {t = t'} {A = A} {B = A'} [Γu] [A]′ [A']′ [A≡A']′ (S.irrelevanceTerm {A = A} {t = t'} [Γt] [Γu] [A] [A]′ [t']ₜ) [u]ₜ′ = S.irrelevanceTerm {A = A} {t = u} [Γu] [Γu] [A'] [A]′ [u]ₜ [u']ₜ′ = convᵛ {t = u'} {A = A} {B = A'} [Γu] [A]′ [A']′ [A≡A']′ (S.irrelevanceTerm {A = A} {t = u'} [Γu] [Γu] [A'] [A]′ [u']ₜ) [t≡t']ₜ′ = S.irrelevanceEqTerm {A = A} {t = t} {u = t'} [Γt] [Γu] [A] [A]′ [t≡t']ₜ [u≡u']ₜ′ = S.irrelevanceEqTerm {A = A} {t = u} {u = u'} [Γu] [Γu] [A'] [A]′ [u≡u']ₜ in [Γu] , modelsTermEq [SProp] (Idᵗᵛ {A} {t} {u} [Γu] [A]′ [t]ₜ′ [u]ₜ′ [A]ₜ′) (Idᵗᵛ {A'} {t'} {u'} [Γu] [A']′ [t']ₜ′ [u']ₜ′ [A']ₜ′) (Id-congᵗᵛ {A} {A'} {t} {t'} {u} {u'} [Γu] [A]′ [t]ₜ′ [u]ₜ′ [A]ₜ′ [A']′ [t']ₜ′ [u']ₜ′ [A']ₜ′ [A≡A']ₜ′ [t≡t']ₜ′ [u≡u']ₜ′) fundamentalTermEq {Γ} (Id-Π {A} {rA} {lA} {lB} {l} {B} {t} {u} lA≤ lB≤ ⊢A ⊢B ⊢t ⊢u) with fundamentalTerm ⊢A | fundamentalTerm ⊢B | fundamentalTerm ⊢t | fundamentalTerm ⊢u ... | [ΓA] , [UA] , [A]ₜ | [ΓB] ∙ [AB] , [UB] , [B]ₜ | [Γt] , [Πt] , [t]ₜ | [Γu] , [Πu] , [u]ₜ = let [SProp] = maybeEmbᵛ {A = Univ _ _} [Γu] (Uᵛ {rU = %} (proj₂ (levelBounded l)) [Γu]) [UA]′ = maybeEmbᵛ {A = Univ _ _} [Γu] (Uᵛ (proj₂ (levelBounded lA)) [Γu]) [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [ΓA] [Γu] [UA] [UA]′ [A]ₜ [A] = maybeEmbᵛ {A = A} [Γu] (univᵛ {A = A} [Γu] (≡is≤ PE.refl) [UA]′ [A]ₜ′) [ΓuA] = _∙_ {A = A} [Γu] [A] [UB]′ = S.irrelevance {A = Univ _ _} (_∙_ {A = A} [ΓB] [AB]) (_∙_ {A = A} [Γu] [A]) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} (_∙_ {A = A} [ΓB] [AB]) [ΓuA] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [B]ₜ [t]ₜ′ = S.irrelevanceTerm {A = Π A ^ rA ° lA ▹ B ° lB ° l} {t = t} [Γt] [Γu] [Πt] [Πu] [t]ₜ in [Γu] , Id-Πᵗᵛ [Γu] lA≤ lB≤ [A] (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [A]ₜ′ [B]ₜ′ [Πu] [t]ₜ′ [u]ₜ fundamentalTermEq {Γ} (Id-ℕ-00 ⊢Γ) = let [Γ] = valid ⊢Γ [SProp] = Uᵛ emb< [Γ] [Unit] = Unitᵗᵛ {l = ⁰} [Γ] [id] , [eq] = redSubstTermᵛ {SProp ⁰} {Id ℕ zero zero} {Unit} [Γ] (λ ⊢Δ [σ] → Id-ℕ-00 ⊢Δ) [SProp] [Unit] in [Γ] , modelsTermEq (maybeEmbᵛ {A = SProp _} [Γ] [SProp]) [id] [Unit] [eq] fundamentalTermEq (Id-ℕ-SS ⊢n ⊢m) with fundamentalTerm ⊢n | fundamentalTerm ⊢m fundamentalTermEq (Id-ℕ-SS {n} {m} ⊢n ⊢m) | [Γ] , [ℕ] , [n] | [Γ]′ , [ℕ]′ , [m] = let [SProp] = maybeEmbᵛ {A = SProp ⁰} [Γ]′ (Uᵛ emb< [Γ]′) [Unit] = Unitᵗᵛ {l = ⁰} [Γ]′ ⊢Γ = soundContext [Γ]′ [n]′ = S.irrelevanceTerm {A = ℕ} {t = n} [Γ] [Γ]′ [ℕ] [ℕ]′ [n] Idnm = Idᵗᵛ {A = ℕ} {t = n} {u = m} [Γ]′ [ℕ]′ [n]′ [m] (ℕᵗᵛ [Γ]′) ⊢n′ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ℕ]′ {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([n]′ ⊢Δ [σ])) ⊢m′ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ℕ]′ {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([m] ⊢Δ [σ])) [id] , [eq] = redSubstTermᵛ {SProp ⁰} {t = Id ℕ (suc n) (suc m)} {u = Id ℕ n m} [Γ]′ (λ {Δ} {σ} ⊢Δ [σ] → Id-ℕ-SS (⊢n′ {Δ} {σ} ⊢Δ [σ]) (⊢m′ {Δ} {σ} ⊢Δ [σ])) [SProp] Idnm in [Γ]′ , modelsTermEq [SProp] [id] Idnm [eq] fundamentalTermEq (Id-U-ℕℕ ⊢Γ) = let [Γ] = valid ⊢Γ [SProp] = Uᵛ ∞< [Γ] [Unit] = Unitᵗᵛ {l = ¹} [Γ] [id] , [eq] = redSubstTermᵛ {SProp ¹} {Id (U ⁰) ℕ ℕ} {Unit} [Γ] (λ ⊢Δ [σ] → Id-U-ℕℕ ⊢Δ) [SProp] [Unit] in [Γ] , modelsTermEq (maybeEmbᵛ {A = SProp ¹} [Γ] [SProp]) [id] [Unit] [eq] fundamentalTermEq (Id-ℕ-0S ⊢n) with fundamentalTerm ⊢n fundamentalTermEq {Γ} (Id-ℕ-0S {n} ⊢n) | [Γ] , [ℕ] , [n] = let [SProp] = maybeEmbᵛ {A = SProp ⁰} [Γ] (Uᵛ emb< [Γ]) [Empty] = Emptyᵗᵛ {ll = ⁰} [Γ] emb< ⊢n′ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ℕ] {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([n] ⊢Δ [σ])) [id] , [eq] = redSubstTermᵛ {SProp ⁰} {t = Id ℕ zero (suc n)} {u = Empty _} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → Id-ℕ-0S (⊢n′ {Δ} {σ} ⊢Δ [σ])) [SProp] [Empty] in [Γ] , modelsTermEq [SProp] [id] [Empty] [eq] fundamentalTermEq (Id-ℕ-S0 ⊢n) with fundamentalTerm ⊢n fundamentalTermEq {Γ} (Id-ℕ-S0 {n} ⊢n) | [Γ] , [ℕ] , [n] = let [SProp] = maybeEmbᵛ {A = SProp ⁰} [Γ] (Uᵛ emb< [Γ]) [Empty] = Emptyᵗᵛ {ll = ⁰} [Γ] emb< ⊢n′ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ℕ] {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([n] ⊢Δ [σ])) [id] , [eq] = redSubstTermᵛ {SProp ⁰} {t = Id ℕ (suc n) zero} {u = Empty _} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → Id-ℕ-S0 (⊢n′ {Δ} {σ} ⊢Δ [σ])) [SProp] [Empty] in [Γ] , modelsTermEq [SProp] [id] [Empty] [eq] fundamentalTermEq (Id-U-ℕΠ ⊢A ⊢B) with fundamentalTerm ⊢A | fundamentalTerm ⊢B fundamentalTermEq {Γ} (Id-U-ℕΠ {A} {rA} {B} ⊢A ⊢B) | [Γ] , [UA] , [A]ᵗ | [Γ]₁ ∙ [A]₁ , [UB] , [B]ᵗ = let [SProp] = Uᵛ {rU = %} ∞< [Γ] [Empty] = Emptyᵗᵛ {ll = ¹} [Γ] ∞< ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([A]ᵗ ⊢Δ [σ])) [A] = univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]ᵗ ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) [Γ∙A] : ⊩ᵛ (Γ ∙ A ^ [ rA , ι ⁰ ]) [Γ∙A] = [Γ] ∙ [A] [UB]′ = S.irrelevance {A = Univ _ _} ([Γ]₁ ∙ [A]₁) [Γ∙A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ᵗ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} ([Γ]₁ ∙ [A]₁) [Γ∙A] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [B]ᵗ ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB]′ {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ᵗ′ {Δ} {σ} ⊢Δ [σ])) [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] [id] , [eq] = redSubstTermᵛ {SProp ¹} {t = Id (U ⁰) ℕ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰)} {u = Empty _} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → Id-U-ℕΠ (⊢AΔ {Δ} {σ} ⊢Δ [σ]) (⊢BΔ (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ]))) [SProp] [Empty] in [Γ] , modelsTermEq [SProp] [id] [Empty] [eq] fundamentalTermEq (Id-U-Πℕ ⊢A ⊢B) with fundamentalTerm ⊢A | fundamentalTerm ⊢B fundamentalTermEq {Γ} (Id-U-Πℕ {A} {rA} {B} ⊢A ⊢B) | [Γ] , [UA] , [A]ᵗ | [Γ]₁ ∙ [A]₁ , [UB] , [B]ᵗ = let [SProp] = Uᵛ {rU = %} ∞< [Γ] [Empty] = Emptyᵗᵛ {ll = ¹} [Γ] ∞< ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([A]ᵗ ⊢Δ [σ])) [A] = univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]ᵗ ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) [Γ∙A] : ⊩ᵛ (Γ ∙ A ^ [ rA , ι ⁰ ]) [Γ∙A] = [Γ] ∙ [A] [UB]′ = S.irrelevance {A = Univ _ _} ([Γ]₁ ∙ [A]₁) [Γ∙A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ᵗ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} ([Γ]₁ ∙ [A]₁) [Γ∙A] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [B]ᵗ ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB]′ {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ᵗ′ {Δ} {σ} ⊢Δ [σ])) [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] [id] , [eq] = redSubstTermᵛ {SProp ¹} {t = Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) ℕ} {u = Empty _} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → Id-U-Πℕ (⊢AΔ {Δ} {σ} ⊢Δ [σ]) (⊢BΔ (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ]))) [SProp] [Empty] in [Γ] , modelsTermEq [SProp] [id] [Empty] [eq] fundamentalTermEq {Γ} (Id-U-ΠΠ!% {A} {rA} {B} {A'} {rA'} {B'} eq ⊢A ⊢B ⊢A' ⊢B') with fundamentalTerm ⊢A | fundamentalTerm ⊢B | fundamentalTerm ⊢A' | fundamentalTerm ⊢B' ... | [Γ] , [UA] , [A]ᵗ | [ΓB] , [UB] , [B]ᵗ | [ΓA'] , [UA'] , [A']ᵗ | [ΓB'] , [UB'] , [B']ᵗ = let [SProp] = Uᵛ {rU = %} ∞< [Γ] [Empty] = Emptyᵗᵛ {ll = ¹} [Γ] ∞< ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([A]ᵗ ⊢Δ [σ])) [A] = univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]ᵗ ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ = Δ} {σ = σ} ⊢Δ [σ])) [Γ∙A] : ⊩ᵛ (Γ ∙ A ^ [ rA , ι ⁰ ]) [Γ∙A] = [Γ] ∙ [A] [UB]′ = S.irrelevance {A = Univ _ _} [ΓB] [Γ∙A] (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ᵗ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} [ΓB] [Γ∙A] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [B]ᵗ ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB]′ {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ᵗ′ {Δ} {σ} ⊢Δ [σ])) [UA']′ = S.irrelevance {A = Univ _ _} ([ΓA']) [Γ] [UA'] [A']ᵗ′ = S.irrelevanceTerm {A = Univ _ _} {t = A'} ([ΓA']) [Γ] [UA'] [UA']′ [A']ᵗ ⊢AΔ' = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA']′ {Δ = Δ} {σ = σ} ⊢Δ [σ])) (proj₁ ([A']ᵗ′ ⊢Δ [σ])) [A'] = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) [UA']′ [A']ᵗ′ ⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ = Δ} {σ = σ} ⊢Δ [σ])) [Γ∙A'] : ⊩ᵛ (Γ ∙ A' ^ [ rA' , ι ⁰ ]) [Γ∙A'] = [Γ] ∙ [A'] [UB']′ = S.irrelevance {A = Univ _ _} [ΓB'] [Γ∙A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ᵗ′ = S.irrelevanceTerm {A = Univ _ _} {t = B'} [ΓB'] [Γ∙A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [UB']′ {Δ} {σ}) [B']ᵗ ⊢BΔ' = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB']′ {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ᵗ′ {Δ} {σ} ⊢Δ [σ])) [id] , [eq] = redSubstTermᵛ {SProp ¹} {t = Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA' ° ⁰ ▹ B' ° ⁰ ° ⁰)} {u = Empty _} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → Id-U-ΠΠ!% eq (⊢AΔ {Δ} {σ} ⊢Δ [σ]) (⊢BΔ (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) (liftSubstS {F = A} [Γ] ⊢Δ [A] [σ])) (⊢AΔ' {Δ} {σ} ⊢Δ [σ]) (⊢BΔ' (⊢Δ ∙ ⊢A' {Δ} {σ} ⊢Δ [σ]) (liftSubstS {F = A'} [Γ] ⊢Δ [A'] [σ]))) [SProp] [Empty] in [Γ] , modelsTermEq [SProp] [id] [Empty] [eq] fundamentalTermEq (cast-cong {A} {A'} {B} {B'} {e} {e'} {t} {t'} A≡A' B≡B' t≡t' ⊢e ⊢e') with fundamentalTermEq A≡A' | fundamentalTermEq B≡B' | fundamentalTermEq t≡t' | fundamentalTerm ⊢e | fundamentalTerm ⊢e' ... | [Γ] , modelsTermEq [UA] [A]ₜ [A']ₜ [A≡A']ₜ | [Γ]₁ , modelsTermEq [UB] [B]ₜ [B']ₜ [B≡B']ₜ | [Γ]₂ , modelsTermEq [A]₁ [t]ₜ [t']ₜ [t≡t']ₜ | [Γe] , [IdAB] , [e]ₜ | [Γe'] , [IdAB'] , [e']ₜ = let [A] = maybeEmbᵛ {A = A} [Γ] (univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]ₜ) [B] = maybeEmbᵛ {A = B} [Γ]₁ (univᵛ {A = B} [Γ]₁ (≡is≤ PE.refl) [UB] [B]ₜ) [UA]′ = S.irrelevance {A = Univ _ _} [Γ] [Γ]₂ [UA] [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [Γ] [Γ]₂ [UA] [UA]′ [A]ₜ [A']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A'} [Γ] [Γ]₂ [UA] [UA]′ [A']ₜ [UB]′ = S.irrelevance {A = Univ _ _} [Γ]₁ [Γ]₂ [UB] [B]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} [Γ]₁ [Γ]₂ [UB] [UB]′ [B]ₜ [B]ₜ′′ = S.irrelevanceTerm {A = Univ _ _} {t = B} [Γ]₁ [Γ]₂ [UB] [UA]′ [B]ₜ [B']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B'} [Γ]₁ [Γ]₂ [UB] [UB]′ [B']ₜ [B']ₜ′′ = S.irrelevanceTerm {A = Univ _ _} {t = B'} [Γ]₁ [Γ]₂ [UB] [UA]′ [B']ₜ [A]′ = maybeEmbᵛ {A = A} [Γ]₂ (univᵛ {A = A} [Γ]₂ (≡is≤ PE.refl) [UA]′ [A]ₜ′) [t]ₜ′ = S.irrelevanceTerm {A = A} {t = t} [Γ]₂ [Γ]₂ [A]₁ [A]′ [t]ₜ [A']′ = maybeEmbᵛ {A = A'} [Γ]₂ (univᵛ {A = A'} [Γ]₂ (≡is≤ PE.refl) [UA]′ [A']ₜ′) [t']ₜ′ = S.irrelevanceTerm {A = A} {t = t'} [Γ]₂ [Γ]₂ [A]₁ [A]′ [t']ₜ [A≡A']ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = A} {u = A'} [Γ] [Γ]₂ [UA] [UA]′ [A≡A']ₜ [A≡A']′ = S.irrelevanceEq {A = A} {B = A'} [Γ] [Γ]₂ [A] [A]′ (univEqᵛ {A = A} {B = A'} [Γ] [UA] [A] [A≡A']ₜ) [t'A]ₜ = convᵛ {t'} {A} {A'} [Γ]₂ [A]′ [A']′ [A≡A']′ [t']ₜ′ [t≡t']ₜ′ = S.irrelevanceEqTerm {A = A} {t = t} {u = t'} [Γ]₂ [Γ]₂ [A]₁ [A]′ [t≡t']ₜ [B]′ = maybeEmbᵛ {A = B} [Γ]₂ (univᵛ {A = B} [Γ]₂ (≡is≤ PE.refl) [UB]′ [B]ₜ′) [B']′ = maybeEmbᵛ {A = B'} [Γ]₂ (univᵛ {A = B'} [Γ]₂ (≡is≤ PE.refl) [UB]′ [B']ₜ′) [B≡B']ₜ′ = S.irrelevanceEqTerm {A = Univ _ _} {t = B} {u = B'} [Γ]₁ [Γ]₂ [UB] [UB]′ [B≡B']ₜ [B≡B']′ = S.irrelevanceEq {A = B} {B = B'} [Γ]₁ [Γ]₂ [B] [B]′ (univEqᵛ {A = B} {B = B'} [Γ]₁ [UB] [B] [B≡B']ₜ) [IdAB]′ = S.irrelevance {A = Id (Univ _ _) A B} [Γe] [Γ]₂ [IdAB] [e]ₜ′ = S.irrelevanceTerm {A = Id (Univ _ _) A B} {t = e} [Γe] [Γ]₂ [IdAB] [IdAB]′ [e]ₜ [IdAB']′ = S.irrelevance {A = Id (Univ _ _) A' B'} [Γe'] [Γ]₂ [IdAB'] [e']ₜ′ = S.irrelevanceTerm {A = Id (Univ _ _) A' B'} {t = e'} [Γe'] [Γ]₂ [IdAB'] [IdAB']′ [e']ₜ in [Γ]₂ , modelsTermEq [B]′ (castᵗᵛ {A} {B} { ! } {t} {e} [Γ]₂ [UA]′ [A]ₜ′ [B]ₜ′′ [A]′ [B]′ [t]ₜ′ [IdAB]′ [e]ₜ′) (conv₂ᵛ {cast _ A' B' e' t'} {B} {B'} [Γ]₂ [B]′ [B']′ [B≡B']′ (castᵗᵛ {A'} {B'} { ! } {t'} {e'} [Γ]₂ [UA]′ [A']ₜ′ [B']ₜ′′ [A']′ [B']′ [t'A]ₜ [IdAB']′ [e']ₜ′)) (cast-congᵗᵛ {A} {A'} {B} {B'} {t} {t'} {e} {e'} [Γ]₂ [UA]′ [UB]′ [A]ₜ′ [A']ₜ′ [B]ₜ′ [B']ₜ′ [A≡A']ₜ′ [B≡B']ₜ′ [A]′ [A']′ [B]′ [B']′ [t]ₜ′ [t'A]ₜ [t≡t']ₜ′ [IdAB]′ [e]ₜ′ [IdAB']′ [e']ₜ′) fundamentalTermEq (cast-ℕ-0 {e} ⊢e) with fundamentalTerm ⊢e ... | [Γ] , [Id] , [e]ₜ = let ⊢eΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([Id] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([e]ₜ {Δ} {σ} ⊢Δ [σ])) [zero] = zeroᵛ {l = ∞} [Γ] [id] , [eq] = redSubstTermᵛ {ℕ} {cast ⁰ ℕ ℕ e zero} {zero} {∞} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → cast-ℕ-0 (⊢eΔ {Δ} {σ} ⊢Δ [σ])) (ℕᵛ [Γ]) [zero] in [Γ] , modelsTermEq (ℕᵛ [Γ]) [id] [zero] [eq] fundamentalTermEq (cast-ℕ-S {e} {n} ⊢e ⊢n) with fundamentalTerm ⊢e | fundamentalTerm ⊢n ... | [Γ] , [Id] , [e]ₜ | [Γ]₁ , [ℕ] , [n]ₜ = let [Id]′ = S.irrelevance {A = Id (U _) ℕ ℕ} [Γ] [Γ]₁ [Id] [e]ₜ′ = S.irrelevanceTerm {A = Id (U _) ℕ ℕ} {t = e} [Γ] [Γ]₁ [Id] [Id]′ [e]ₜ ⊢eΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([Id]′ {Δ} {σ} ⊢Δ [σ])) (proj₁ ([e]ₜ′ {Δ} {σ} ⊢Δ [σ])) ⊢nΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ℕ] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([n]ₜ {Δ} {σ} ⊢Δ [σ])) [suc-cast] = sucᵛ {n = cast ⁰ ℕ ℕ e n} [Γ]₁ [ℕ] (castᵗᵛ {ℕ} {ℕ} { ! } {n} {e} [Γ]₁ (maybeEmbᵛ {A = Univ _ _} [Γ]₁ (Uᵛ emb< [Γ]₁)) (ℕᵗᵛ [Γ]₁) (ℕᵗᵛ [Γ]₁) [ℕ] [ℕ] [n]ₜ [Id]′ [e]ₜ′) [id] , [eq] = redSubstTermᵛ {ℕ} {cast ⁰ ℕ ℕ e (suc n)} {suc (cast ⁰ ℕ ℕ e n)} {∞} [Γ]₁ (λ {Δ} {σ} ⊢Δ [σ] → cast-ℕ-S (⊢eΔ {Δ} {σ} ⊢Δ [σ]) (⊢nΔ {Δ} {σ} ⊢Δ [σ])) [ℕ] [suc-cast] in [Γ]₁ , modelsTermEq [ℕ] [id] [suc-cast] [eq] fundamentalTermEq {Γ} (cast-Π {A} {A'} {rA} {B} {B'} {e} {f} ⊢A ⊢B ⊢A' ⊢B' ⊢e ⊢f) with fundamentalTerm ⊢A | fundamentalTerm ⊢B | fundamentalTerm ⊢A' | fundamentalTerm ⊢B' | fundamentalTerm ⊢e | fundamentalTerm ⊢f ... | [ΓA] , [UA] , [A]ₜ | [ΓB] ∙ [AB] , [UB] , [B]ₜ | [ΓA'] , [UA'] , [A']ₜ | [ΓB'] ∙ [AB'] , [UB'] , [B']ₜ | [Γ] , [Id] , [e]ₜ | [Γ]₁ , [ΠAB] , [f]ₜ = let [UA]′ = maybeEmbᵛ {A = Univ rA _} [Γ]₁ (Uᵛ emb< [Γ]₁) [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [ΓA] [Γ]₁ [UA] [UA]′ [A]ₜ [A']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A'} [ΓA'] [Γ]₁ [UA'] [UA]′ [A']ₜ [A] = maybeEmbᵛ {A = A} [Γ]₁ (univᵛ {A = A} [Γ]₁ (≡is≤ PE.refl) [UA]′ [A]ₜ′) [A'] = maybeEmbᵛ {A = A'} [Γ]₁ (univᵛ {A = A'} [Γ]₁ (≡is≤ PE.refl) [UA]′ [A']ₜ′) [ΓB]₁ = [Γ]₁ ∙ [A] [UB]′ = S.irrelevance {A = Univ _ _} {Γ = Γ ∙ A ^ _} ([ΓB] ∙ [AB]) [ΓB]₁ (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} ([ΓB] ∙ [AB]) [ΓB]₁ (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [B]ₜ [ΓB']₁ = [Γ]₁ ∙ [A'] [UB']′ = S.irrelevance {A = Univ _ _} {Γ = Γ ∙ A' ^ _} ([ΓB'] ∙ [AB']) [ΓB']₁ (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B'} ([ΓB'] ∙ [AB']) [ΓB']₁ (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [UB']′ {Δ} {σ}) [B']ₜ [B'] = maybeEmbᵛ {A = B'} [ΓB']₁ (univᵛ {A = B'} [ΓB']₁ (≡is≤ PE.refl) (λ {Δ} {σ} → [UB']′ {Δ} {σ}) [B']ₜ′) [Id]′ = S.irrelevance {A = Id (Univ _ _) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰)} [Γ] [Γ]₁ [Id] [e]ₜ′ = S.irrelevanceTerm {A = Id (Univ _ _) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰ ) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰)} {t = e} [Γ] [Γ]₁ [Id] [Id]′ [e]ₜ in [Γ]₁ , cast-Πᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ]₁ [A] [A'] (λ {Δ} {σ} → [UB]′ {Δ} {σ}) (λ {Δ} {σ} → [UB']′ {Δ} {σ}) [A]ₜ′ [B]ₜ′ [A']ₜ′ [B']ₜ′ [Id]′ [e]ₜ′ [ΠAB] [f]ₜ fundamentalTermEq {Γ} (Id-SProp {A} {B} ⊢A ⊢B) with fundamentalTerm ⊢A | fundamentalTerm ⊢B ... | [ΓA] , [UA] , [A]ₜ | [ΓB] , [UB] , [B]ₜ = let [SProp] = Uᵛ {rU = %} ∞< [ΓB] [UA]′ = maybeEmbᵛ {A = Univ _ _} [ΓB] (Uᵛ emb< [ΓB]) [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [ΓA] [ΓB] [UA] [UA]′ [A]ₜ [B]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} [ΓB] [ΓB] [UB] [UA]′ [B]ₜ ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA]′ {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ′ ⊢Δ [σ])) [A] = maybeEmbᵛ {A = A} [ΓB] (univᵛ {A = A} [ΓB] (≡is≤ PE.refl) [UA]′ [A]ₜ′) [B] = maybeEmbᵛ {A = B} [ΓB] (univᵛ {A = B} [ΓB] (≡is≤ PE.refl) [UB] [B]ₜ) ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ ⊢Δ [σ])) _▹▹⁰_ = λ A B → A ^ % ° ⁰ ▹▹ B ° ⁰ ° ¹ Id-SProp-res = λ A B → (A ▹▹⁰ B) ×× (B ▹▹⁰ A) [Id-SProp] : Γ ⊩ᵛ Id (SProp ⁰) A B ⇒ Id-SProp-res A B ∷ SProp ¹ ^ ∞ / [ΓB] [Id-SProp] = λ {Δ} {σ} ⊢Δ [σ] → PE.subst (λ ret → Δ ⊢ Id (SProp ⁰) (subst σ A) (subst σ B) ⇒ ret ∷ SProp ¹ ^ ∞ ) (PE.cong₄ (λ a b c d → ∃ (Π a ^ % ° ⁰ ▹ b ° ⁰ ° ¹) ▹ (Π c ^ % ° ⁰ ▹ d ° ⁰ ° ¹)) PE.refl (PE.sym (Idsym-subst-lemma σ B)) (PE.sym (Idsym-subst-lemma σ B)) (PE.trans (PE.cong wk1d (PE.sym (Idsym-subst-lemma σ A))) (PE.sym (Idsym-subst-lemma-wk1d σ (wk1 A))))) (Id-SProp {A = subst σ A} {B = subst σ B} (⊢AΔ {Δ} {σ} ⊢Δ [σ]) (⊢BΔ {Δ} {σ} ⊢Δ [σ])) [A▹▹B]ₜ = ▹▹ᵗᵛ {F = A} {G = B} (<is≤ 0<1) (<is≤ 0<1) [ΓB] [A] [UA]′ [A]ₜ′ [B]ₜ′ [A▹▹B] = maybeEmbᵛ {A = A ▹▹⁰ B} [ΓB] (univᵛ {A = A ▹▹⁰ B} [ΓB] (≡is≤ PE.refl) [SProp] [A▹▹B]ₜ) [B▹▹A]ₜ = ▹▹ᵗᵛ {F = B} {G = A} (<is≤ 0<1) (<is≤ 0<1) [ΓB] [B] [UA]′ [B]ₜ′ [A]ₜ′ [Id-SProp-res] : Γ ⊩ᵛ⟨ ∞ ⟩ Id-SProp-res A B ∷ SProp ¹ ^ [ ! , ∞ ] / [ΓB] / [SProp] [Id-SProp-res] = ××ᵗᵛ {F = A ▹▹⁰ B} {G = B ▹▹⁰ A} [ΓB] [A▹▹B] [A▹▹B]ₜ [B▹▹A]ₜ [id] , [eq] = redSubstTermᵛ {SProp ¹} {Id (SProp ⁰) A B} {Id-SProp-res A B} [ΓB] (λ {Δ} {σ} ⊢Δ [σ] → [Id-SProp] {Δ} {σ} ⊢Δ [σ]) [SProp] [Id-SProp-res] in [ΓB] , modelsTermEq [SProp] [id] [Id-SProp-res] [eq] fundamentalTermEq (Id-U-ΠΠ ⊢A ⊢B ⊢A' ⊢B') with fundamentalTerm ⊢A | fundamentalTerm ⊢B | fundamentalTerm ⊢A' | fundamentalTerm ⊢B' fundamentalTermEq (Id-U-ΠΠ {A} {A'} {rA} {B} {B'} ⊢A ⊢B ⊢A' ⊢B') | [Γ] , [UA] , [A]ₜ | [Γ]₁ ∙ [A]₁ , [UB] , [B]ₜ | [Γ]' , [UA'] , [A']ₜ | [Γ]₁' ∙ [A']₁ , [UB'] , [B']ₜ = let [A]′ = S.irrelevance {A = A} [Γ] [Γ]₁' (maybeEmbᵛ {A = A} [Γ] (univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]ₜ)) [A']′ = S.irrelevance {A = A'} [Γ]' [Γ]₁' (maybeEmbᵛ {A = A'} [Γ]' (univᵛ {A = A'} [Γ]' (≡is≤ PE.refl) [UA'] [A']ₜ)) [UB]′ = S.irrelevance {A = Univ _ _} (_∙_ {A = A} [Γ]₁ [A]₁) (_∙_ {A = A} [Γ]₁' [A]′) (λ {Δ} {σ} → [UB] {Δ} {σ}) [UB']′ = S.irrelevance {A = Univ _ _} (_∙_ {A = A'} [Γ]₁' [A']₁) (_∙_ {A = A'} [Γ]₁' [A']′) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [U] = maybeEmbᵛ {A = Univ rA _} [Γ]₁' (Uᵛ emb< [Γ]₁') [A]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A} [Γ] [Γ]₁' [UA] [U] [A]ₜ [A']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = A'} [Γ]' [Γ]₁' [UA'] [U] [A']ₜ [B]ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B} (_∙_ {A = A} [Γ]₁ [A]₁) (_∙_ {A = A} [Γ]₁' [A]′) (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB]′ {Δ} {σ}) [B]ₜ [B']ₜ′ = S.irrelevanceTerm {A = Univ _ _} {t = B'} (_∙_ {A = A'} [Γ]₁' [A']₁) (_∙_ {A = A'} [Γ]₁' [A']′) (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [UB']′ {Δ} {σ}) [B']ₜ in [Γ]₁' , Id-U-ΠΠᵗᵛ [Γ]₁' [A]′ [A']′ (λ {Δ} {σ} → [UB]′ {Δ} {σ}) (λ {Δ} {σ} → [UB']′ {Δ} {σ}) [A]ₜ′ [B]ₜ′ [A']ₜ′ [B']ₜ′ -- Fundamental theorem for substitutions. fundamentalSubst : ∀ {Γ Δ σ} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) → Δ ⊢ˢ σ ∷ Γ → ∃ λ [Γ] → Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ fundamentalSubst ε ⊢Δ [σ] = ε , tt fundamentalSubst (⊢Γ ∙ ⊢A) ⊢Δ ([tailσ] , [headσ]) = let [Γ] , [A] = fundamental ⊢A [Δ] , [A]′ , [t] = fundamentalTerm [headσ] [Γ]′ , [σ] = fundamentalSubst ⊢Γ ⊢Δ [tailσ] [tailσ]′ = S.irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [σ] [idA] = proj₁ ([A]′ (soundContext [Δ]) (idSubstS [Δ])) [idA]′ = proj₁ ([A] ⊢Δ [tailσ]′) [idt] = proj₁ ([t] (soundContext [Δ]) (idSubstS [Δ])) in [Γ] ∙ [A] , ([tailσ]′ , irrelevanceTerm″ (subst-id _) PE.refl PE.refl (subst-id _) [idA] [idA]′ [idt]) -- Fundamental theorem for substitution equality. fundamentalSubstEq : ∀ {Γ Δ σ σ′} (⊢Γ : ⊢ Γ) (⊢Δ : ⊢ Δ) → Δ ⊢ˢ σ ≡ σ′ ∷ Γ → ∃₂ λ [Γ] [σ] → ∃ λ ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) → Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ] fundamentalSubstEq ε ⊢Δ σ = ε , tt , tt , tt fundamentalSubstEq (⊢Γ ∙ ⊢A) ⊢Δ (tailσ≡σ′ , headσ≡σ′) = let [Γ] , [A] = fundamental ⊢A [Γ]′ , [tailσ] , [tailσ′] , [tailσ≡σ′] = fundamentalSubstEq ⊢Γ ⊢Δ tailσ≡σ′ [Δ] , modelsTermEq [A]′ [t] [t′] [t≡t′] = fundamentalTermEq headσ≡σ′ [tailσ]′ = S.irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [tailσ] [tailσ′]′ = S.irrelevanceSubst [Γ]′ [Γ] ⊢Δ ⊢Δ [tailσ′] [tailσ≡σ′]′ = S.irrelevanceSubstEq [Γ]′ [Γ] ⊢Δ ⊢Δ [tailσ] [tailσ]′ [tailσ≡σ′] [idA] = proj₁ ([A]′ (soundContext [Δ]) (idSubstS [Δ])) [idA]′ = proj₁ ([A] ⊢Δ [tailσ]′) [idA]″ = proj₁ ([A] ⊢Δ [tailσ′]′) [idt] = proj₁ ([t] (soundContext [Δ]) (idSubstS [Δ])) [idt′] = proj₁ ([t′] (soundContext [Δ]) (idSubstS [Δ])) [idt≡t′] = [t≡t′] (soundContext [Δ]) (idSubstS [Δ]) in [Γ] ∙ [A] , ([tailσ]′ , irrelevanceTerm″ (subst-id _) PE.refl PE.refl (subst-id _) [idA] [idA]′ [idt]) , ([tailσ′]′ , convTerm₁ [idA]′ [idA]″ (proj₂ ([A] ⊢Δ [tailσ]′) [tailσ′]′ [tailσ≡σ′]′) (irrelevanceTerm″ (subst-id _) PE.refl PE.refl (subst-id _) [idA] [idA]′ [idt′])) , ([tailσ≡σ′]′ , irrelevanceEqTerm″ PE.refl PE.refl (subst-id _) (subst-id _) (subst-id _) [idA] [idA]′ [idt≡t′])
{ "alphanum_fraction": 0.3930807765, "avg_line_length": 66.750261233, "ext": "agda", "hexsha": "f810c70123e3c83e2a419efdeac16fc0f90c0796", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Fundamental.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Fundamental.agda", "max_line_length": 179, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Fundamental.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 33544, "size": 63880 }
module Oscar.Data.Term.ThickAndThin.internal {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Class.AlphaConversion import Oscar.Class.ThickAndThin as ⋆ open import Oscar.Data.Term FunctionName open import Oscar.Data.Term.Injectivity FunctionName open import Oscar.Data.Term.AlphaConversion FunctionName open import Oscar.Data.Equality open import Oscar.Data.Equality.properties open import Oscar.Data.Fin open import Oscar.Data.Fin.ThickAndThin open import Oscar.Data.Nat open import Oscar.Data.Vec open import Oscar.Data.Vec.Injectivity open import Oscar.Function private Fin⋆thin = ⋆.ThickAndThin.thin ThickAndThinFin Fin⋆thick = ⋆.ThickAndThin.thick ThickAndThinFin thin : ∀ {m} → Fin (suc m) → Term m → Term (suc m) thin = _◂_ ∘ Fin⋆thin thins : ∀ {m} → Fin (suc m) → ∀ {N} → Vec (Term m) N → Vec (Term (suc m)) N thins y = Fin⋆thin y ◂_ -- TODO: make point-free mutual thin-injective : ∀ {m} (y : Fin (suc m)) {τ₁ τ₂ : Term m} → thin y τ₁ ≡ thin y τ₂ → τ₁ ≡ τ₂ thin-injective y {i _} {i _} eq rewrite ⋆.thin-injective y (Term-i-inj eq) = refl thin-injective y {_ fork _} {_ fork _} eq rewrite thin-injective y (Term-forkLeft-inj eq) | thin-injective y (Term-forkRight-inj eq) = refl thin-injective _ {leaf} {leaf} _ = refl thin-injective y {function _ _} {function _ _} eq rewrite Term-functionName-inj eq with Term-functionArity-inj eq … | refl with Term-functionTerms-inj eq … | eq' rewrite (thins-injective y eq') = refl thin-injective _ {i _} {leaf} () thin-injective _ {i _} {_ fork _} () thin-injective _ {i _} {function _ _} () thin-injective _ {leaf} {i _} () thin-injective _ {leaf} {_ fork _} () thin-injective _ {leaf} {function _ _} () thin-injective _ {_ fork _} {i _} () thin-injective _ {_ fork _} {leaf} () thin-injective _ {_ fork _} {function _ _} () thin-injective _ {function _ _} {i _} () thin-injective _ {function _ _} {leaf} () thin-injective _ {function _ _} {_ fork _} () thins-injective : ∀ {m} (f : Fin (suc m)) → ∀ {N} {τs₁ τs₂ : Vec (Term m) N} → thins f τs₁ ≡ thins f τs₂ → τs₁ ≡ τs₂ thins-injective y {_} {[]} {[]} x₁ = refl thins-injective y {_} {_ ∷ _} {_ ∷ _} eq rewrite thin-injective y (Vec-head-inj eq) | thins-injective y (Vec-tail-inj eq) = refl thick : ∀ {m} → Term (suc m) → Fin m → Term m thick τ = flip _◂_ τ ∘ flip Fin⋆thick thicks : ∀ {m N} → Terms N (suc m) → Fin m → Terms N m thicks τ = flip _◂_ τ ∘ flip Fin⋆thick
{ "alphanum_fraction": 0.6585858586, "avg_line_length": 36.3970588235, "ext": "agda", "hexsha": "9b7b82ec3d9bbb2254675143e890c4c3927817b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Term/ThickAndThin/internal.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Term/ThickAndThin/internal.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Term/ThickAndThin/internal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 871, "size": 2475 }
module Oscar.Data.Substitist {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Data.Fin open import Oscar.Data.Nat open import Oscar.Data.Product open import Oscar.Data.Term FunctionName open import Oscar.Data.AList open import Oscar.Data.Equality Substitist : Nat → Nat → Set 𝔣 Substitist m n = AList (λ m → Term m × Fin (suc m)) n m pattern anil = [] pattern _asnoc_/_ σ t x = (t , x) ∷ σ _⊸_ = Substitist infixr 9 _∙_ _∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n ρ ∙ anil = ρ ρ ∙ (σ asnoc t / x) = (ρ ∙ σ) asnoc t / x ∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≡ h ∙ g ∙ f ∙-associativity anil σ _ = refl ∙-associativity (τ asnoc t / x) ρ σ = cong (λ s → s asnoc t / x) (∙-associativity τ ρ σ) ε : ∀ {n} → n ⊸ n ε = anil ∙-left-identity : ∀ {m n} (σ : m ⊸ n) → ε ∙ σ ≡ σ ∙-left-identity anil = refl ∙-left-identity (σ asnoc t' / x) = cong (λ σ → σ asnoc t' / x) (∙-left-identity σ) ∙-right-identity : ∀ {m n} (σ : m ⊸ n) → σ ∙ ε ≡ σ ∙-right-identity _ = refl open import Oscar.Category semigroupoidSubstitist : Semigroupoid Substitist (λ {x y} → ≡-setoid (Substitist x y)) Semigroupoid._∙_ semigroupoidSubstitist = _∙_ Semigroupoid.∙-extensionality semigroupoidSubstitist refl refl = refl Semigroupoid.∙-associativity semigroupoidSubstitist = ∙-associativity Substitist' : Nat → Nat → Set 𝔣 Substitist' m n = AList (λ m → Term m × Fin (suc m)) m n semigroupoidSubstitist' : Semigroupoid Substitist' (λ {x y} → ≡-setoid (Substitist' x y)) semigroupoidSubstitist' = Category'.semigroupoidAList categorySubstitist : Category semigroupoidSubstitist Category.ε categorySubstitist = ε Category.ε-left-identity categorySubstitist = ∙-left-identity _ Category.ε-right-identity categorySubstitist = ∙-right-identity _
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 32.1818181818, "ext": "agda", "hexsha": "a6db59c47b3a70b0ac2e3bb756b4f41a67429a92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Substitist.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Substitist.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Substitist.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 700, "size": 1770 }
module Prelude where open import Data.Nat public open import Data.Nat.Properties.Simple public open import Data.Fin using (Fin; #_; suc; zero) public open import Data.Unit using (tt; ⊤) public open import Data.Empty public open import Data.Bool using (true; false; Bool) public open import Data.Product public using (∃; ∃₂; _×_; _,_; proj₁; proj₂; ,_) public open import Relation.Binary.PropositionalEquality hiding ([_]) public open ≡-Reasoning public open import Relation.Nullary public open import Relation.Nullary.Decidable using (True) public open import Function using (_∘_; _$_; id; const; flip) public
{ "alphanum_fraction": 0.7662337662, "avg_line_length": 30.8, "ext": "agda", "hexsha": "1e35a433db87e183602d7729744a58f21ee19f5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Prelude.agda", "max_line_length": 80, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 159, "size": 616 }
open import Categories open import Functors open import RMonads module RMonads.CatofRAdj.InitRAdj {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D}(M : RMonad J) where open import Library open import Naturals hiding (Iso; module Iso) open import RAdjunctions open import RMonads.CatofRAdj M open import Categories.Initial open import RMonads.RKleisli M open import RMonads.RKleisli.Functors M open import RMonads.RKleisli.Adjunction M open import RAdjunctions.RAdj2RMon open Cat open Fun open RMonad M open NatT open RAdj lemX : R KlAdj ○ L KlAdj ≅ TFun M lemX = FunctorEq _ _ refl refl KlObj : Obj CatofAdj KlObj = record { E = Kl; adj = KlAdj; law = lemX; ηlaw = refl; bindlaw = λ{X}{Y}{f} → cong bind (stripsubst (Hom D (OMap J X)) f (fcong Y (cong OMap (sym lemX))))} where open Cat open ObjAdj open import Isomorphism open Iso lemZ : {F G G' : Fun C D} → G ≅ G' → {α : NatT F G}{β : NatT F G'} → α ≅ β → ∀{X} → cmp α {X} ≅ cmp β {X} lemZ refl refl = refl lemZ' : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{F F' G G' : Fun C D} → F ≅ F' → G ≅ G' → {α : NatT F G}{β : NatT F' G'} → α ≅ β → ∀{X} → cmp α {X} ≅ cmp β {X} lemZ' refl refl refl = refl lemfid : ∀{e f}{E : Cat {e}{f}}(L : Fun C E)(R : Fun E D) (T : Fun C D) (p : T ≅ R ○ L) (η : ∀ {X} → Hom D (OMap J X) (OMap T X)) (right : {X : Obj C}{Y : Obj E} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (left : {X : Obj C}{Y : Obj E} → Hom E (OMap L X) Y → Hom D (OMap J X) (OMap R Y)) → (q : {X : Obj C}{Y : Obj E}(f : Hom E (OMap L X) Y) → right (left f) ≅ f) → (r : {X : Obj C} → left (iden E {OMap L X}) ≅ η {X}) → {X : Obj C} → right (subst (Hom D (OMap J X)) (fcong X (cong OMap p)) η) ≅ iden E {OMap L X} lemfid {E = E} L R .(R ○ L) refl η right left q r {X} = trans (cong right (sym r)) (q (iden E)) lemfcomp : ∀{e f}{E : Cat {e}{f}}(L : Fun C E)(R : Fun E D)(T : Fun C D) (p : T ≅ R ○ L) (bind : ∀{X Y} → Hom D (OMap J X) (OMap T Y) → Hom D (OMap T X) (OMap T Y)) → (right : {X : Obj C} {Y : Obj E} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (q : {X Y : Obj C} {f : Hom D (OMap J X) (OMap T Y)} → HMap R (right (subst (Hom D (OMap J X)) (fcong Y (cong OMap p)) f)) ≅ bind f) → (r : {X X' : Obj C}{Y Y' : Obj E} (f : Hom C X' X)(g : Hom E Y Y') (h : Hom D (OMap J X) (OMap R Y)) → right (comp D (HMap R g) (comp D h (HMap J f))) ≅ comp E g (comp E (right h) (HMap L f))) → ∀{X Y Z : Obj C} {f : Hom D (OMap J Y) (OMap T Z)} {g : Hom D (OMap J X) (OMap T Y)} → right (subst (Hom D (OMap J X)) (fcong Z (cong OMap p)) (comp D (bind f) g)) ≅ comp E (right (subst (Hom D (OMap J Y)) (fcong Z (cong OMap p)) f)) (right (subst (Hom D (OMap J X)) (fcong Y (cong OMap p)) g)) lemfcomp {E = E} L R .(R ○ L) refl bind right q r {X}{Y}{Z}{f}{g} = trans (cong₂ (λ f g → right (comp D f g)) (sym (q {f = f})) (sym (idr D))) (trans (cong (λ h → right (comp D (HMap R (right f)) (comp D g h))) (sym (fid J))) (trans (r (iden C) (right f) g) (cong (comp E (right f)) (trans (cong (comp E (right g)) (fid L)) (idr E))))) lemLlaw : ∀{e f}{E : Cat {e}{f}}(J : Fun C D)(L : Fun C E)(R : Fun E D)(T : Fun C D) (p : T ≅ R ○ L) (η : ∀ {X} → Hom D (OMap J X) (OMap T X)) → (right : {X : Obj C} {Y : Obj E} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (left : {X : Obj C} {Y : Obj E} → Hom E (OMap L X) Y → Hom D (OMap J X) (OMap R Y)) → (q : {X : Obj C} {Y : Obj E} (f : Hom E (OMap L X) Y) → right (left f) ≅ f) → (r : {X : Obj C} → left (iden E {OMap L X}) ≅ η {X}) → (t : {X X' : Obj C}{Y Y' : Obj E} (f : Hom C X' X)(g : Hom E Y Y') (h : Hom D (OMap J X) (OMap R Y)) → right (comp D (HMap R g) (comp D h (HMap J f))) ≅ comp E g (comp E (right h) (HMap L f)) ) → {X Y : Obj C} (f : Hom C X Y) → right (subst (Hom D (OMap J X)) (fcong Y (cong OMap p)) (comp D η (HMap J f))) ≅ HMap L f lemLlaw {E = E} J L R .(R ○ L) refl η right left q r t {X}{Y} f = trans (cong (λ g → right (comp D g (HMap J f))) (sym r)) (trans (cong right (trans (sym (idl D)) (cong (λ g → comp D g (comp D (left (iden E)) (HMap J f))) (sym (fid R))))) (trans (trans (trans (t f (iden E) (left (iden E))) (idl E)) (cong (λ g → comp E g (HMap L f)) (q (iden E)))) (idl E))) K' : ∀{e}{f}(A : Obj (CatofAdj {e}{f})) → Fun (E KlObj) (E A) K' A = record { OMap = OMap (L (adj A)); HMap = λ{X}{Y} f → right (adj A) (subst (Hom D (OMap J X)) (fcong Y (cong OMap (sym (ObjAdj.law A)))) f); fid = lemfid (L (adj A)) (R (adj A)) (TFun M) (sym (law A)) η (right (adj A)) (left (adj A)) (lawa (adj A)) (ObjAdj.ηlaw A); fcomp = lemfcomp (L (adj A)) (R (adj A)) (TFun M) (sym (law A)) bind (right (adj A)) (bindlaw A) (natright (adj A))} Llaw' : ∀{e}{f}(A : Obj (CatofAdj {e}{f})) → K' A ○ L (adj KlObj) ≅ L (adj A) Llaw' A = FunctorEq _ _ refl (iext λ _ → iext λ _ → ext $ lemLlaw J (L (adj A)) (R (adj A)) (TFun M) (sym (law A)) η (right (adj A)) (left (adj A)) (lawa (adj A)) (ηlaw A) (natright (adj A))) Rlaw' : ∀{e}{f}(A : Obj (CatofAdj {e}{f})) → R (adj KlObj) ≅ R (adj A) ○ K' A Rlaw' A = FunctorEq _ _ (cong OMap (sym (law A))) (iext λ _ → iext λ _ → ext λ _ → sym (bindlaw A)) rightlaw' : ∀{e f}(A : Obj (CatofAdj {e}{f})) → {X : Obj C} {Y : Obj (E KlObj)} {f : Hom D (OMap J X) (OMap (R (adj KlObj)) Y)} → HMap (K' A) (right (adj KlObj) f) ≅ right (adj A) (subst (Hom D (OMap J X)) (fcong Y (cong OMap (Rlaw' A))) f) rightlaw' A {X}{Y}{f} = cong (right (adj A)) (trans (stripsubst (Hom D (OMap J X)) f (fcong Y (cong OMap (sym (law A))))) (sym (stripsubst (Hom D (OMap J X)) f (fcong Y (cong OMap (Rlaw' A))))) ) KlHom : {A : Obj CatofAdj} → Hom CatofAdj KlObj A KlHom {A = A} = record { K = K' A; Llaw = Llaw' A; Rlaw = Rlaw' A; rightlaw = rightlaw' A} KlIsInit : Init CatofAdj KlObj KlIsInit = record { i = KlHom; law = λ {X} {V} → HomAdjEq _ _ ((FunctorEq _ _ (cong OMap (sym (HomAdj.Llaw V))) (iext λ A → iext λ B → ext λ f → trans (cong₂ (λ B₁ → right (adj X) {A} {B₁}) (sym (fcong B (cong OMap (HomAdj.Llaw V)))) (trans (stripsubst (Hom D (OMap J A)) f (fcong B (cong OMap (sym (law X))))) (sym (stripsubst (Hom D (OMap J A)) f (fcong B (cong OMap (HomAdj.Rlaw V))))))) (sym (HomAdj.rightlaw V)))))} -- -}
{ "alphanum_fraction": 0.4200378072, "avg_line_length": 36.0681818182, "ext": "agda", "hexsha": "725585ebff63d864448c803a864fd2d4671f4726", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/CatofRAdj/InitRAdj.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/CatofRAdj/InitRAdj.agda", "max_line_length": 195, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/CatofRAdj/InitRAdj.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 2997, "size": 7935 }
module ASN1 where open import ASN1.Untyped public open import ASN1.BER public open import ASN1.X509 public
{ "alphanum_fraction": 0.8240740741, "avg_line_length": 18, "ext": "agda", "hexsha": "fdfae3f0c683ccb3f2504ca2dd268031b90f8935", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/asn1-agda", "max_forks_repo_path": "src/ASN1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/asn1-agda", "max_issues_repo_path": "src/ASN1.agda", "max_line_length": 31, "max_stars_count": null, "max_stars_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/asn1-agda", "max_stars_repo_path": "src/ASN1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 30, "size": 108 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.EilenbergMacLane1.Core open import lib.groups.Homomorphism open import lib.groups.LoopSpace open import lib.two-semi-categories.FundamentalCategory open import lib.two-semi-categories.Functor open import lib.two-semi-categories.GroupToCategory module lib.types.EilenbergMacLane1.Recursion {i} {G : Group i} where private module G = Group G module EM₁Rec' {j} {C : Type j} {{C-level : has-level 2 C}} (embase* : C) (emloop* : (g : G.El) → embase* == embase*) (emloop-comp* : (g₁ g₂ : G.El) → emloop* (G.comp g₁ g₂) == emloop* g₁ ∙ emloop* g₂) (emloop-coh* : (g₁ g₂ g₃ : G.El) → emloop-comp* (G.comp g₁ g₂) g₃ ◃∙ ap (λ l → l ∙ emloop* g₃) (emloop-comp* g₁ g₂) ◃∙ ∙-assoc (emloop* g₁) (emloop* g₂) (emloop* g₃) ◃∎ =ₛ ap emloop* (G.assoc g₁ g₂ g₃) ◃∙ emloop-comp* g₁ (G.comp g₂ g₃) ◃∙ ap (λ l → emloop* g₁ ∙ l) (emloop-comp* g₂ g₃) ◃∎) where private P : EM₁ G → Type j P _ = C Q : embase' G == embase → Type j Q p = embase* == embase* [ P ↓ p ] emloop** : ∀ g → Q (emloop g) emloop** g = ↓-cst-in (emloop* g) emloop-comp** : ∀ g₁ g₂ → emloop** (G.comp g₁ g₂) == emloop** g₁ ∙ᵈ emloop** g₂ [ Q ↓ emloop-comp g₁ g₂ ] emloop-comp** g₁ g₂ = ↓-cst-in2 (emloop-comp* g₁ g₂) ▹ ↓-cst-in-∙ (emloop g₁) (emloop g₂) (emloop* g₁) (emloop* g₂) module _ (g₁ g₂ g₃ : G.El) where s₀ : embase' G == embase s₀ = emloop (G.comp (G.comp g₁ g₂) g₃) s₁ : embase' G == embase s₁ = emloop (G.comp g₁ g₂) ∙ emloop g₃ s₂ : embase' G == embase s₂ = (emloop g₁ ∙ emloop g₂) ∙ emloop g₃ s₃ : embase' G == embase s₃ = emloop g₁ ∙ (emloop g₂ ∙ emloop g₃) s₄ : embase' G == embase s₄ = emloop (G.comp g₁ (G.comp g₂ g₃)) s₅ : embase' G == embase s₅ = emloop g₁ ∙ emloop (G.comp g₂ g₃) e₀₁ : s₀ == s₁ e₀₁ = emloop-comp (G.comp g₁ g₂) g₃ e₁₂ : s₁ == s₂ e₁₂ = ap (_∙ emloop g₃) (emloop-comp g₁ g₂) e₂₃ : s₂ == s₃ e₂₃ = ∙-assoc (emloop g₁) (emloop g₂) (emloop g₃) e₀₄ : s₀ == s₄ e₀₄ = ap emloop (G.assoc g₁ g₂ g₃) e₄₅ : s₄ == s₅ e₄₅ = emloop-comp g₁ (G.comp g₂ g₃) e₅₃ : s₅ == s₃ e₅₃ = ap (emloop g₁ ∙_) (emloop-comp g₂ g₃) φ : s₀ == s₃ φ = ↯ (e₀₁ ◃∙ e₁₂ ◃∙ e₂₃ ◃∎) ψ : s₀ == s₃ ψ = ↯ (e₀₄ ◃∙ e₄₅ ◃∙ e₅₃ ◃∎) φ=ψ : φ == ψ φ=ψ = =ₛ-out (emloop-coh g₁ g₂ g₃) s₀* : embase* == embase* s₀* = emloop* (G.comp (G.comp g₁ g₂) g₃) s₁* : embase* == embase* s₁* = emloop* (G.comp g₁ g₂) ∙ emloop* g₃ s₂* : embase* == embase* s₂* = (emloop* g₁ ∙ emloop* g₂) ∙ emloop* g₃ s₃* : embase* == embase* s₃* = emloop* g₁ ∙ (emloop* g₂ ∙ emloop* g₃) s₄* : embase* == embase* s₄* = emloop* (G.comp g₁ (G.comp g₂ g₃)) s₅* : embase* == embase* s₅* = emloop* g₁ ∙ emloop* (G.comp g₂ g₃) e₀₁* : s₀* == s₁* e₀₁* = emloop-comp* (G.comp g₁ g₂) g₃ e₁₂* : s₁* == s₂* e₁₂* = ap (_∙ emloop* g₃) (emloop-comp* g₁ g₂) e₂₃* : s₂* == s₃* e₂₃* = ∙-assoc (emloop* g₁) (emloop* g₂) (emloop* g₃) e₀₄* : s₀* == s₄* e₀₄* = ap emloop* (G.assoc g₁ g₂ g₃) e₄₅* : s₄* == s₅* e₄₅* = emloop-comp* g₁ (G.comp g₂ g₃) e₅₃* : s₅* == s₃* e₅₃* = ap (emloop* g₁ ∙_) (emloop-comp* g₂ g₃) φ* : s₀* == s₃* φ* = ↯ (e₀₁* ◃∙ e₁₂* ◃∙ e₂₃* ◃∎) ψ* : s₀* == s₃* ψ* = ↯ (e₀₄* ◃∙ e₄₅* ◃∙ e₅₃* ◃∎) φ*=ψ* : φ* == ψ* φ*=ψ* = =ₛ-out (emloop-coh* g₁ g₂ g₃) s₀** : Q s₀ s₀** = emloop** (G.comp (G.comp g₁ g₂) g₃) s₁** : Q s₁ s₁** = emloop** (G.comp g₁ g₂) ∙ᵈ emloop** g₃ s₂** : Q s₂ s₂** = (emloop** g₁ ∙ᵈ emloop** g₂) ∙ᵈ emloop** g₃ s₃** : Q s₃ s₃** = emloop** g₁ ∙ᵈ (emloop** g₂ ∙ᵈ emloop** g₃) s₄** : Q s₄ s₄** = emloop** (G.comp g₁ (G.comp g₂ g₃)) s₅** : Q s₅ s₅** = emloop** g₁ ∙ᵈ emloop** (G.comp g₂ g₃) e₀₁** : s₀** == s₁** [ Q ↓ e₀₁ ] e₀₁** = emloop-comp** (G.comp g₁ g₂) g₃ e₁₂** : s₁** == s₂** [ Q ↓ e₁₂ ] e₁₂** = emloop-comp** g₁ g₂ ∙ᵈᵣ emloop** g₃ e₂₃** : s₂** == s₃** [ Q ↓ e₂₃ ] e₂₃** = ∙ᵈ-assoc (emloop** g₁) (emloop** g₂) (emloop** g₃) e₀₄** : s₀** == s₄** [ Q ↓ e₀₄ ] e₀₄** = ↓-ap-in Q emloop (apd emloop** (G.assoc g₁ g₂ g₃)) e₄₅** : s₄** == s₅** [ Q ↓ e₄₅ ] e₄₅** = emloop-comp** g₁ (G.comp g₂ g₃) e₅₃** : s₅** == s₃** [ Q ↓ e₅₃ ] e₅₃** = emloop** g₁ ∙ᵈₗ emloop-comp** g₂ g₃ φ** : s₀** == s₃** [ Q ↓ φ ] φ** = e₀₁** ∙ᵈ e₁₂** ∙ᵈ e₂₃** ψ** : s₀** == s₃** [ Q ↓ ψ ] ψ** = e₀₄** ∙ᵈ e₄₅** ∙ᵈ e₅₃** s₃-path₁ : ↓-cst-in {p = s₃} s₃* == emloop** g₁ ∙ᵈ ↓-cst-in (emloop* g₂ ∙ emloop* g₃) s₃-path₁ = ↓-cst-in-∙ (emloop g₁) (emloop g₂ ∙ emloop g₃) (emloop* g₁) (emloop* g₂ ∙ emloop* g₃) s₃-path₂' : ↓-cst-in (emloop* g₂ ∙ emloop* g₃) == emloop** g₂ ∙ᵈ emloop** g₃ s₃-path₂' = ↓-cst-in-∙ (emloop g₂) (emloop g₃) (emloop* g₂) (emloop* g₃) s₃-path₂ : emloop** g₁ ∙ᵈ ↓-cst-in (emloop* g₂ ∙ emloop* g₃) == s₃** s₃-path₂ = emloop** g₁ ∙ᵈₗ s₃-path₂' s₃-path : ↓-cst-in s₃* == s₃** s₃-path = s₃-path₁ ∙ s₃-path₂ *-to-**-path : (r : s₀ == s₃) → s₀* == s₃* → s₀** == s₃** [ Q ↓ r ] *-to-**-path r q = ↓-cst-in2 {q = r} q ▹ s₃-path φ-step : *-to-**-path φ φ* == φ** φ-step = ↓-cst-in2 {q = φ} φ* ▹ s₃-path =⟨ (↓-cst-in2-∙ {p₀₁ = e₀₁} {p₁₂ = e₁₂ ∙ e₂₃} e₀₁* (e₁₂* ∙ e₂₃*)) ∙'ᵈᵣ s₃-path ⟩ (e₀₁*' ∙ᵈ ↓-cst-in2 {q = e₁₂ ∙ e₂₃} (e₁₂* ∙ e₂₃*)) ▹ s₃-path =⟨ ap (λ y → (e₀₁*' ∙ᵈ y) ▹ s₃-path) $ ↓-cst-in2-∙ {p₀₁ = e₁₂} {p₁₂ = e₂₃} e₁₂* e₂₃* ⟩ (e₀₁*' ∙ᵈ e₁₂*' ∙ᵈ e₂₃*') ▹ s₃-path =⟨ ∙ᵈ-∙'ᵈ-assoc' e₀₁*' (e₁₂*' ∙ᵈ e₂₃*') s₃-path ⟩ e₀₁*' ∙ᵈ (e₁₂*' ∙ᵈ e₂₃*') ▹ s₃-path =⟨ ap (e₀₁*' ∙ᵈ_) (∙ᵈ-∙'ᵈ-assoc' e₁₂*' e₂₃*' s₃-path) ⟩ e₀₁*' ∙ᵈ e₁₂*' ∙ᵈ e₂₃*' ▹ s₃-path =⟨ ap (λ y → e₀₁*' ∙ᵈ e₁₂*' ∙ᵈ y) $ ↓-cst-in-assoc {p₀ = emloop g₁} {p₁ = emloop g₂} {p₂ = emloop g₃} (emloop* g₁) (emloop* g₂) (emloop* g₃) ⟩ e₀₁*' ∙ᵈ e₁₂*' ∙ᵈ f₂ ◃ f₃ ◃ e₂₃** =⟨ ! (ap (e₀₁*' ∙ᵈ_) (▹∙ᵈ-∙ᵈ◃-assoc e₁₂*' f₂ (f₃ ◃ e₂₃**))) ⟩ e₀₁*' ∙ᵈ (e₁₂*' ▹ f₂) ∙ᵈ f₃ ◃ e₂₃** =⟨ ap (λ y → e₀₁*' ∙ᵈ y ∙ᵈ f₃ ◃ e₂₃**) $ ↓-cst-in2-whisker-right {p' = emloop g₃} {q' = emloop* g₃} {p₀₁ = emloop-comp g₁ g₂} (emloop-comp* g₁ g₂) ⟩ e₀₁*' ∙ᵈ (f₀ ◃ f₁) ∙ᵈ f₃ ◃ e₂₃** =⟨ ap (e₀₁*' ∙ᵈ_) (∙ᵈ-assoc f₀ f₁ (f₃ ◃ e₂₃**)) ⟩ e₀₁*' ∙ᵈ f₀ ◃ f₁ ∙ᵈ f₃ ◃ e₂₃** =⟨ ! (▹∙ᵈ-∙ᵈ◃-assoc e₀₁*' f₀ (f₁ ∙ᵈ f₃ ◃ e₂₃**)) ⟩ e₀₁** ∙ᵈ f₁ ∙ᵈ f₃ ◃ e₂₃** =⟨ ! (ap (e₀₁** ∙ᵈ_) (▹∙ᵈ-∙ᵈ◃-assoc f₁ f₃ e₂₃**)) ⟩ e₀₁** ∙ᵈ (f₁ ▹ f₃) ∙ᵈ e₂₃** =⟨ ! (ap (λ y → e₀₁** ∙ᵈ y ∙ᵈ e₂₃**) (∙ᵈᵣ-∙'ᵈ f₁' f₃' (emloop** g₃))) ⟩ φ** =∎ where e₀₁*' : ↓-cst-in s₀* == ↓-cst-in s₁* [ Q ↓ e₀₁ ] e₀₁*' = ↓-cst-in2 {q = e₀₁} e₀₁* e₁₂*' : ↓-cst-in s₁* == ↓-cst-in s₂* [ Q ↓ e₁₂ ] e₁₂*' = ↓-cst-in2 {q = e₁₂} e₁₂* e₂₃*' : ↓-cst-in s₂* == ↓-cst-in s₃* [ Q ↓ e₂₃ ] e₂₃*' = ↓-cst-in2 {q = e₂₃} e₂₃* f₀ : ↓-cst-in (emloop* (G.comp g₁ g₂) ∙ emloop* g₃) == emloop** (G.comp g₁ g₂) ∙ᵈ emloop** g₃ f₀ = ↓-cst-in-∙ (emloop (G.comp g₁ g₂)) (emloop g₃) (emloop* (G.comp g₁ g₂)) (emloop* g₃) f₁' : emloop** (G.comp g₁ g₂) == ↓-cst-in {p = emloop g₁ ∙ emloop g₂} (emloop* g₁ ∙ emloop* g₂) [ Q ↓ emloop-comp' G g₁ g₂ ] f₁' = ↓-cst-in2 {q = emloop-comp g₁ g₂} (emloop-comp* g₁ g₂) f₁ : emloop** (G.comp g₁ g₂) ∙ᵈ emloop** g₃ == ↓-cst-in {p = emloop g₁ ∙ emloop g₂} (emloop* g₁ ∙ emloop* g₂) ∙ᵈ emloop** g₃ [ Q ↓ ap (_∙ emloop' G g₃) (emloop-comp' G g₁ g₂) ] f₁ = f₁' ∙ᵈᵣ emloop** g₃ f₂ : ↓-cst-in ((emloop* g₁ ∙ emloop* g₂) ∙ emloop* g₃) == ↓-cst-in {p = emloop g₁ ∙ emloop g₂} (emloop* g₁ ∙ emloop* g₂) ∙ᵈ emloop** g₃ f₂ = ↓-cst-in-∙ (emloop g₁ ∙ emloop g₂) (emloop g₃) (emloop* g₁ ∙ emloop* g₂) (emloop* g₃) f₃' : ↓-cst-in {p = emloop g₁ ∙ emloop g₂} (emloop* g₁ ∙ emloop* g₂) == emloop** g₁ ∙ᵈ emloop** g₂ f₃' = ↓-cst-in-∙ (emloop g₁) (emloop g₂) (emloop* g₁) (emloop* g₂) f₃ : ↓-cst-in {p = emloop g₁ ∙ emloop g₂} (emloop* g₁ ∙ emloop* g₂) ∙ᵈ emloop** g₃ == (emloop** g₁ ∙ᵈ emloop** g₂) ∙ᵈ emloop** g₃ f₃ = f₃' ∙ᵈᵣ emloop** g₃ ψ-step : *-to-**-path ψ ψ* == ψ** ψ-step = ↓-cst-in2 {q = ψ} ψ* ▹ s₃-path =⟨ ap (_▹ s₃-path) $ ↓-cst-in2-∙ {p₀₁ = e₀₄} {p₁₂ = e₄₅ ∙ e₅₃} e₀₄* (e₄₅* ∙ e₅₃*) ⟩ (e₀₄*' ∙ᵈ ↓-cst-in2 {q = e₄₅ ∙ e₅₃} (e₄₅* ∙ e₅₃*)) ▹ s₃-path =⟨ ap (λ y → (e₀₄*' ∙ᵈ y) ▹ s₃-path) $ ↓-cst-in2-∙ {p₀₁ = e₄₅} {p₁₂ = e₅₃} e₄₅* e₅₃* ⟩ (e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ e₅₃*') ▹ s₃-path =⟨ ∙ᵈ-∙'ᵈ-assoc' e₀₄*' (e₄₅*' ∙ᵈ e₅₃*') s₃-path ⟩ e₀₄*' ∙ᵈ (e₄₅*' ∙ᵈ e₅₃*') ▹ s₃-path =⟨ ap (e₀₄*' ∙ᵈ_) (∙ᵈ-∙'ᵈ-assoc' e₄₅*' e₅₃*' s₃-path) ⟩ e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ e₅₃*' ▹ s₃-path =⟨ ap (λ y → e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ e₅₃*' ▹ y) (∙=∙' s₃-path₁ s₃-path₂) ⟩ e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ e₅₃*' ▹ (s₃-path₁ ∙' s₃-path₂) =⟨ ! $ ap (λ y → e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ y) $ ∙'ᵈ-assoc e₅₃*' s₃-path₁ s₃-path₂ ⟩ e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ (e₅₃*' ▹ s₃-path₁) ▹ s₃-path₂ =⟨ ap (λ y → e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ y ▹ s₃-path₂) $ ↓-cst-in2-whisker-left {p = emloop g₁} {q = emloop* g₁} {p₀₁' = emloop-comp g₂ g₃} (emloop-comp* g₂ g₃) ⟩ e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ (f₀ ◃ f₁) ▹ s₃-path₂ =⟨ ap (λ y → e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ y) $ ∙ᵈ-∙'ᵈ-assoc f₀ f₁ s₃-path₂ ⟩ e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ f₀ ◃ (f₁ ▹ s₃-path₂) =⟨ ! $ ap (λ y → e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ f₀ ◃ y) $ ∙ᵈₗ-∙'ᵈ f₁' s₃-path₂' (emloop** g₁) ⟩ e₀₄*' ∙ᵈ e₄₅*' ∙ᵈ f₀ ◃ e₅₃** =⟨ ! (ap (e₀₄*' ∙ᵈ_) (▹∙ᵈ-∙ᵈ◃-assoc e₄₅*' f₀ e₅₃**)) ⟩ e₀₄*' ∙ᵈ e₄₅** ∙ᵈ e₅₃** =⟨ ap (_∙ᵈ e₄₅** ∙ᵈ e₅₃**) $ ↓-cst-in2-ap emloop emloop* (G.assoc g₁ g₂ g₃) ⟩ ψ** =∎ where e₀₄*' : ↓-cst-in s₀* == ↓-cst-in s₄* [ Q ↓ e₀₄ ] e₀₄*' = ↓-cst-in2 {q = e₀₄} e₀₄* e₄₅*' : ↓-cst-in s₄* == ↓-cst-in s₅* [ Q ↓ e₄₅ ] e₄₅*' = ↓-cst-in2 {q = e₄₅} e₄₅* e₅₃*' : ↓-cst-in s₅* == ↓-cst-in s₃* [ Q ↓ e₅₃ ] e₅₃*' = ↓-cst-in2 {q = e₅₃} e₅₃* f₀ : ↓-cst-in (emloop* g₁ ∙ emloop* (G.comp g₂ g₃)) == emloop** g₁ ∙ᵈ ↓-cst-in (emloop* (G.comp g₂ g₃)) f₀ = ↓-cst-in-∙ (emloop g₁) (emloop' G (G.comp g₂ g₃)) (emloop* g₁) (emloop* (G.comp g₂ g₃)) f₁' : emloop** (G.comp g₂ g₃) == ↓-cst-in (emloop* g₂ ∙ emloop* g₃) [ Q ↓ emloop-comp g₂ g₃ ] f₁' = ↓-cst-in2 {q = emloop-comp g₂ g₃} (emloop-comp* g₂ g₃) f₁ : emloop** g₁ ∙ᵈ emloop** (G.comp g₂ g₃) == emloop** g₁ ∙ᵈ ↓-cst-in (emloop* g₂ ∙ emloop* g₃) [ Q ↓ ap (emloop g₁ ∙_) (emloop-comp g₂ g₃) ] f₁ = emloop** g₁ ∙ᵈₗ f₁' abstract emloop-coh** : φ** == ψ** [ (λ q → s₀** == s₃** [ Q ↓ q ]) ↓ φ=ψ ] emloop-coh** = ! φ-step ◃ ap (λ p* → *-to-**-path φ p*) φ*=ψ* ◃ apd (λ p → *-to-**-path p ψ*) φ=ψ ▹ ψ-step module M = EM₁Elim {P = λ _ → C} {{λ _ → C-level}} embase* emloop** emloop-comp** emloop-coh** abstract f : EM₁ G → C f = M.f embase-β : f embase ↦ embase* embase-β = M.embase-β {-# REWRITE embase-β #-} emloop-β : (g : G.El) → ap f (emloop g) == emloop* g emloop-β g = apd=cst-in (M.emloop-β g) private middle-fun : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ a₂ : A} (p₀₁ : a₀ == a₁) (p₁₂ : a₁ == a₂) (p₀₂ : a₀ == a₂) (q₀₁ : f a₀ == f a₁) (q₁₂ : f a₁ == f a₂) (q₀₂ : f a₀ == f a₂) (p-comp : p₀₂ == p₀₁ ∙ p₁₂) → apd f p₀₂ == ↓-cst-in {p = p₀₁} q₀₁ ∙ᵈ ↓-cst-in {p = p₁₂} q₁₂ [ (λ w → f a₀ == f a₂ [ (λ _ → B) ↓ w ]) ↓ p-comp ] → ap f p₀₂ == q₀₁ ∙ q₁₂ middle-fun {f = f} p₀₁ p₁₂ p₀₂ q₀₁ q₁₂ q₀₂ p-comp inner = ap=↓-cst-out-apd f p₀₂ ∙ ↓-cst-out2 inner ∙ ↓-cst-out2 (! (↓-cst-in-∙ p₀₁ p₁₂ q₀₁ q₁₂)) ∙ ↓-cst-β (p₀₁ ∙ p₁₂) (q₀₁ ∙ q₁₂) emloop-comp-path-rewrite₁ : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ a₂ : A} (p₀₁ : a₀ == a₁) (p₁₂ : a₁ == a₂) (p₀₂ : a₀ == a₂) (q₀₁ : f a₀ == f a₁) (q₁₂ : f a₁ == f a₂) (q₀₂ : f a₀ == f a₂) (p-comp : p₀₂ == p₀₁ ∙ p₁₂) (r₀₁ : apd f p₀₁ == ↓-cst-in q₀₁) (r₁₂ : apd f p₁₂ == ↓-cst-in q₁₂) → ap (ap f) p-comp ∙ ap-∙ f p₀₁ p₁₂ ∙ ap2 _∙_ (apd=cst-in r₀₁) (apd=cst-in r₁₂) == middle-fun p₀₁ p₁₂ p₀₂ q₀₁ q₁₂ q₀₂ p-comp (apd (apd f) p-comp ▹ apd-∙ f p₀₁ p₁₂ ∙ ap2 _∙ᵈ_ r₀₁ r₁₂) emloop-comp-path-rewrite₁ idp idp .idp q₀₁ q₁₂ q₀₂ idp r₀₁ r₁₂ = ! (∙-unit-r (idp ∙' ap2 _∙_ r₀₁ r₁₂) ∙ ∙'-unit-l (ap2 _∙_ r₀₁ r₁₂)) emloop-comp-path-rewrite₂ : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ a₂ : A} (p₀₁ : a₀ == a₁) (p₁₂ : a₁ == a₂) (p₀₂ : a₀ == a₂) (q₀₁ : f a₀ == f a₁) (q₁₂ : f a₁ == f a₂) (q₀₂ : f a₀ == f a₂) (p-comp : p₀₂ == p₀₁ ∙ p₁₂) (q-comp : q₀₂ == q₀₁ ∙ q₁₂) (r₀₁ : apd f p₀₁ == ↓-cst-in q₀₁) (r₁₂ : apd f p₁₂ == ↓-cst-in q₁₂) (r₀₂ : apd f p₀₂ == ↓-cst-in q₀₂) → middle-fun p₀₁ p₁₂ p₀₂ q₀₁ q₁₂ q₀₂ p-comp (r₀₂ ◃ ↓-cst-in2 {q = p-comp} q-comp ▹ ↓-cst-in-∙ p₀₁ p₁₂ q₀₁ q₁₂) == apd=cst-in r₀₂ ∙ q-comp emloop-comp-path-rewrite₂ idp idp .idp q₀₁ q₁₂ q₀₂ idp q-comp r₀₁ r₁₂ r₀₂ = ∙-unit-r (r₀₂ ∙ q-comp) emloop-comp-path : (g₁ g₂ : G.El) → ap (ap f) (emloop-comp g₁ g₂) ◃∙ ap-∙ f (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (emloop-β g₁) (emloop-β g₂) ◃∎ =ₛ emloop-β (G.comp g₁ g₂) ◃∙ emloop-comp* g₁ g₂ ◃∎ emloop-comp-path g₁ g₂ = =ₛ-in $ ap (ap f) (emloop-comp g₁ g₂) ∙ ap-∙ f (emloop g₁) (emloop g₂) ∙ ap2 _∙_ (emloop-β g₁) (emloop-β g₂) =⟨ emloop-comp-path-rewrite₁ p₀₁ p₁₂ p₀₂ q₀₁ q₁₂ q₀₂ p-comp r₀₁ r₁₂ ⟩ fun (apd (apd f) (emloop-comp g₁ g₂) ▹ apd-∙ f (emloop g₁) (emloop g₂) ∙ ap2 _∙ᵈ_ (M.emloop-β g₁) (M.emloop-β g₂)) =⟨ ap fun (M.emloop-comp-path g₁ g₂) ⟩ fun (M.emloop-β (G.comp g₁ g₂) ◃ emloop-comp** g₁ g₂) =⟨ emloop-comp-path-rewrite₂ p₀₁ p₁₂ p₀₂ q₀₁ q₁₂ q₀₂ p-comp q-comp r₀₁ r₁₂ r₀₂ ⟩ emloop-β (G.comp g₁ g₂) ∙ emloop-comp* g₁ g₂ =∎ where p₀₁ = emloop g₁ p₁₂ = emloop g₂ p₀₂ = emloop (G.comp g₁ g₂) q₀₁ = emloop* g₁ q₁₂ = emloop* g₂ q₀₂ = emloop* (G.comp g₁ g₂) r₀₁ = M.emloop-β g₁ r₁₂ = M.emloop-β g₂ r₀₂ = M.emloop-β (G.comp g₁ g₂) p-comp = emloop-comp g₁ g₂ q-comp = emloop-comp* g₁ g₂ fun = middle-fun p₀₁ p₁₂ p₀₂ q₀₁ q₁₂ q₀₂ p-comp module EM₁Rec {j} {C : Type j} {{C-level : has-level 2 C}} (F : TwoSemiFunctor (group-to-cat G) (2-type-fundamental-cat C {{C-level}})) where private module F = TwoSemiFunctor F module M = EM₁Rec' {C = C} {{C-level}} (F.F₀ unit) F.F₁ F.pres-comp F.pres-comp-coh abstract f : EM₁ G → C f = M.f embase-β : f embase ↦ F.F₀ unit embase-β = M.embase-β {-# REWRITE embase-β #-} emloop-β : (g : G.El) → ap f (emloop g) == F.F₁ g emloop-β = M.emloop-β emloop-comp-path : (g₁ g₂ : G.El) → ap (ap f) (emloop-comp g₁ g₂) ◃∙ ap-∙ f (emloop g₁) (emloop g₂) ◃∙ ap2 _∙_ (emloop-β g₁) (emloop-β g₂) ◃∎ =ₛ emloop-β (G.comp g₁ g₂) ◃∙ F.pres-comp g₁ g₂ ◃∎ emloop-comp-path = M.emloop-comp-path open EM₁Rec public using () renaming (f to EM₁-rec) module EM₁Level₁Rec {j} {C : Type j} {{C-level : has-level 1 C}} (embase* : C) (hom* : G →ᴳ (Ω^S-group 0 ⊙[ C , embase* ])) where module M = EM₁Rec' {{raise-level 1 C-level}} embase* (GroupHom.f hom*) (GroupHom.pres-comp hom*) (λ g₁ g₂ g₃ → =ₛ-in (prop-has-all-paths _ _)) abstract f : EM₁ G → C f = M.f embase-β : f embase ↦ embase* embase-β = M.embase-β {-# REWRITE embase-β #-} emloop-β : (g : G.El) → ap f (emloop g) == GroupHom.f hom* g emloop-β = M.emloop-β open EM₁Level₁Rec public using () renaming (f to EM₁-level₁-rec)
{ "alphanum_fraction": 0.4509678544, "avg_line_length": 35.7650727651, "ext": "agda", "hexsha": "d29f9bb85b9db7babe4ff37ece8599936471176b", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/EilenbergMacLane1/Recursion.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/EilenbergMacLane1/Recursion.agda", "max_line_length": 93, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/EilenbergMacLane1/Recursion.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 8882, "size": 17203 }
{-# OPTIONS --cubical-compatible #-} postulate w/e : Set data _==_ {A : Set} : A → A → Set where idp : {a : A} → a == a data Square {A : Set} {a : A} : {b c d : A} (p : a == b) (q : c == d) (r : a == c) (s : b == d) → Set where ids : Square {a = a} idp idp idp idp J1 : {A : Set} {a : A} {p : a == a} → Square p idp idp idp → Set J1 ids = w/e J2 : {A : Set} {a : A} {p : a == a} → Square idp p idp idp → Set J2 ids = w/e J3 : {A : Set} {a : A} {p : a == a} → Square idp idp p idp → Set J3 ids = w/e J4 : {A : Set} {a : A} {p : a == a} → Square idp idp idp p → Set J4 ids = w/e
{ "alphanum_fraction": 0.4693877551, "avg_line_length": 26.7272727273, "ext": "agda", "hexsha": "741eda6c55735a7ec9ee79d8cfad6db7a59fd4a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue3034.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue3034.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue3034.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 272, "size": 588 }
{-# OPTIONS --cubical --no-import-sorts #-} module SpacesFirstAttempt where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base -- Rel open import Data.Nat.Base using (ℕ) renaming (_≤_ to _≤ₙ_) record PoorField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field Carrier : Type ℓ -- comm ring 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier -- lattice _<_ : Rel Carrier Carrier ℓ' -- stronger than _#_ and _≤_ min : Carrier → Carrier → Carrier max : Carrier → Carrier → Carrier -- other _#_ : Rel Carrier Carrier ℓ' _≤_ : Rel Carrier Carrier ℓ' ∣_∣ᶠ' : Carrier → Σ[ x ∈ Carrier ] 0f ≤ x -- absolute value _⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier conj : Carrier → Carrier -- complex conjugation (only for ℂ; this is the identity function on ℝ) -- sqrt -- need that on ℝ₀⁺ to define a norm from an inner product ∣_∣ᶠ : Carrier → Carrier -- NOTE: well, this should be "into" ℝ₀⁺ ∣ x ∣ᶠ = fst (∣ x ∣ᶠ') _-_ : Carrier → Carrier → Carrier x - y = x + (- y) infix 9 _⁻¹ᶠ infix 8 -_ infixl 7 _·_ infixl 6 _+_ infixl 6 _-_ infixl 4 _#_ infixl 4 _<_ infixl 4 _≤_ -- different "variants" of reals -- this might be a "basis" for an instance-based, typeclass-like coercion "mechanism" between different "numbers" -- -- NOTE: the intuition with "variants" might align with "subset" where different properties are available -- from a "subset" in this manner, we want that it is "easy" to -- - make use of properties from the "full" set -- - this might be realized with an abuse of Agda's record-update syntax -- - the "core" of such a mechanism is to have a proper naming-scheme (because record-update basically just matches names) -- - "spontaneously enrich" some current context with a subset proof -- and then make use of the subset lemmas on elements of the "whole" set {- IDEA: for the organization of these definitions we might have some "ur"-reals these are "the" "numbers" or even better: just "ur-numbers" to support functions from 𝕂 into ℝ₀⁺ being part of some concrete number type is attached via a hidden instance-proof property this should be similar to a typeclass mechanism in Coq or Isabelle/HOL TODO: maybe, when re-reading their papers, it becomes apparent that this is how it's done in Hölzl 2013 and the Coq-Port of their work because I remember them writing something like "this work makes heavy use of typeclasses" so we explicitly quantify over "numbers" and implicitly quantify over "properties" the available properties must have the same name in each different number type that way we can make use of Agda's record update syntax (well, there can be exceptions since it is possible to rename stuff on the fly, but it'd be more convenient if the names already match) we might decide NOT (!) to overload operations such as _<_ and similar because having both overloaded - operations and numbers - is likely to generate resolving issues AND we must be very aware when a type depends on a hidden argument because in that case, we need to add an explicit coercion to our result so we just accept that "inconvenience" and embrace a style where these "important" arguments/instances are treated differently especially they should not be used anonymously and this might also embrace an anonymous-module style to create a scope that is shared by both: the declaration and the definition of something This might look ugly at first but that's okay if it works out -} record IsℝField (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF record Isℝ₀⁺Field (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF field isℝField : IsℝField PF isNonnegative : ∀ x → 0f ≤ x open IsℝField isℝField public record Isℝ⁺Field (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF field isℝField : IsℝField PF -- NOTE: 0f is not an element of ℝ⁺, so we do not have a neutral element for addition -- so the following holds in a different way -- isPositive : ∀ x → 0f < x open IsℝField isℝField public record Is𝕂Field (PF : PoorField {ℓ} {ℓ'}) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where open PoorField PF record ℝField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} isℝField : IsℝField poorField open PoorField poorField public open IsℝField isℝField public record ℝ₀⁺Field : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} isℝ₀⁺Field : Isℝ₀⁺Field poorField open PoorField poorField public open Isℝ₀⁺Field isℝ₀⁺Field public record ℝ⁺Field : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} isℝ⁺Field : Isℝ⁺Field poorField open PoorField poorField public open Isℝ⁺Field isℝ⁺Field public record 𝕂Field : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field poorField : PoorField {ℓ} {ℓ'} is𝕂Field : Is𝕂Field poorField open PoorField poorField public open Is𝕂Field is𝕂Field public postulate ℝℓ ℝℓ' : Level ℝF : ℝField {ℝℓ} {ℝℓ'} -- reals ℝ⁺F : ℝ⁺Field {ℝℓ} {ℝℓ'} -- positive reals without 0 ℝ₀⁺F : ℝ₀⁺Field {ℝℓ} {ℝℓ'} -- positive reals with 0 -- we also often use ℂ in the application -- we might often use ℝ in places where ℚ would suffice -- we use 𝕂 for "ℝ or ℂ" -- and we use ℕ, Fin k, ℤ of course -- then, there is (exterior) algebra -- NOTE: one could bring different "variants" of the reals into scope like so -- but we are likely to omit populating the scope with overlapping reals as much as possible open ℝField ℝF using () renaming ( Carrier to ℝ ) open ℝ₀⁺Field ℝ₀⁺F using () renaming ( Carrier to ℝ₀⁺ ; 0f to 0f₀⁺ ) open ℝ⁺Field ℝ⁺F using () renaming ( Carrier to ℝ⁺ ) ---------- application ------------- {- -- ∅ : ⊥ → -- topology on a set X record IsTopology (X : Type ℓ) (isOpen : X → Type ℓ') (_∪_ : X → X → X) (_∩_ : X → X → X) : Type _ where field record TopologicalSpace : Type _ where -} record IsMetric {ℓ} {X : Type ℓ} (d : X → X → ℝ₀⁺) : Type (ℓ-max ℓ (ℓ-max ℝℓ ℝℓ')) where open ℝ₀⁺Field ℝ₀⁺F field -- identity of indiscernibles isPositiveOnNonzero : ∀ x y → 0f ≡ d x y → x ≡ y isPositiveOnNonzero-back : ∀ x y → x ≡ y → 0f ≡ d x y isSym : ∀ x y → d x y ≡ d y x -- subadditivity / triangle inequality isTriangleIneq : ∀ x y z → d x y ≤ d x z + d z y record MetricSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℝℓ' ℝℓ)) where field Carrier : Type ℓ d : Carrier → Carrier → ℝ₀⁺ isMetric : IsMetric d open IsMetric isMetric public 𝕂ℓ = ℝℓ 𝕂ℓ' = ℝℓ' module _ (𝕂F : 𝕂Field {𝕂ℓ} {𝕂ℓ'}) where open 𝕂Field 𝕂F renaming (Carrier to 𝕂; 0f to 0ₛ; _+_ to _+ₛ_) postulate ∣_∣ᵣ : 𝕂 → ℝ₀⁺ record IsVectorAddition {X : Type ℓ} (0v : X) (_+_ : X → X → X) (-_ : X → X) : Type (ℓ-max ℓ (ℓ-max 𝕂ℓ 𝕂ℓ')) where field isCommutative : ∀ x y → x + y ≡ y + x isAssociative : ∀ x y z → (x + y) + z ≡ x + (y + z) rid : ∀ x → x + 0v ≡ x rid-back : ∀ x y → x + y ≡ x → y ≡ 0v invr : ∀ x → x + (- x) ≡ 0v record IsScalarMultiplication {X : Type ℓ} (0v : X) (_+_ : X → X → X) (-_ : X → X) (_·ₛ_ : 𝕂 → X → X) : Type (ℓ-max ℓ (ℓ-max 𝕂ℓ 𝕂ℓ')) where field ·ₛ-dist-+ : ∀ α x y → α ·ₛ (x + y) ≡ (α ·ₛ x) + (α ·ₛ y) 0-left-nullifies : ∀ x → 0ₛ ·ₛ x ≡ 0v +ₛ-dist-· : ∀ α β x → (α +ₛ β) ·ₛ x ≡ (α ·ₛ x) + (β ·ₛ x) record VectorSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max 𝕂ℓ 𝕂ℓ')) where field Carrier : Type ℓ 0v : Carrier _+_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _·ₛ_ : 𝕂 → Carrier → Carrier isVectorAddition : IsVectorAddition 0v _+_ (-_) isScalarMultiplication : IsScalarMultiplication 0v _+_ -_ _·ₛ_ open IsVectorAddition isVectorAddition public open IsScalarMultiplication isScalarMultiplication public module _ (VS : VectorSpace {ℓ}) where open VectorSpace VS using (_+_; _·ₛ_) renaming (Carrier to V; 0v to 0ᵥ) open ℝ₀⁺Field ℝ₀⁺F using () renaming (0f to 0ᵣ; _≤_ to _≤ᵣ_; _+_ to _+ᵣ_; _·_ to _·ᵣ_) record IsNorm (‖_‖ᵥ : V → ℝ₀⁺) : Type (ℓ-max ℓ (ℓ-max 𝕂ℓ 𝕂ℓ')) where field idToIndisc : ∀ x → ‖ x ‖ᵥ ≡ 0ᵣ → x ≡ 0ᵥ idToIndisc-back : ∀ x → x ≡ 0ᵥ → ‖ x ‖ᵥ ≡ 0ᵣ triangleIneq : ∀ x y → ‖ x + y ‖ᵥ ≤ᵣ ‖ x ‖ᵥ +ᵣ ‖ y ‖ᵥ absLinear : ∀ α x → ‖ α ·ₛ x ‖ᵥ ≡ ∣ α ∣ᵣ ·ᵣ ‖ x ‖ᵥ record NormedVectorSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max 𝕂ℓ 𝕂ℓ')) where field VS : VectorSpace {ℓ} open VectorSpace VS public field ‖_‖ᵥ : Carrier → ℝ₀⁺ isNorm : IsNorm VS ‖_‖ᵥ open IsNorm isNorm public -- cauchy w.r.t. a distance function -- NOTE: Booij defines cauchy w.r.t. the rationals ℚ IsCauchy : {X : Type ℓ} (d : X → X → ℝ₀⁺) → IsMetric d → (x : ℕ → X) → Type (ℓ-max ℝℓ ℝℓ') IsCauchy d isMetric x = let open ℝ₀⁺Field ℝ₀⁺F using () renaming (0f to 0ᵣ; _<_ to _<ᵣ_; _≤_ to _≤ᵣ_; _+_ to _+ᵣ_; _·_ to _·ᵣ_) in ∀(ε : ℝ₀⁺) → 0ᵣ <ᵣ ε → Σ[ I ∈ ℕ ] ∀ m n → I ≤ₙ m → I ≤ₙ n → d (x m) (x n) <ᵣ ε -- limit w.r.t. a metric IsLimit : {X : Type ℓ} {d : X → X → ℝ₀⁺} → (isMetric : IsMetric d) → (x : ℕ → X) → X → Type (ℓ-max ℝℓ ℝℓ') IsLimit {d = d} isMetric x a = let open ℝ₀⁺Field ℝ₀⁺F using () renaming (0f to 0ᵣ; _<_ to _<ᵣ_; _≤_ to _≤ᵣ_; _+_ to _+ᵣ_; _·_ to _·ᵣ_) in ∀(ε : ℝ₀⁺) → 0ᵣ <ᵣ ε → Σ[ I ∈ ℕ ] ∀ m → I ≤ₙ m → d (x m) a <ᵣ ε IsCauchyConvergent : {X : Type ℓ} (d : X → X → ℝ₀⁺) → (isMetric : IsMetric d) → (x : ℕ → X) → IsCauchy d isMetric x → Type (ℓ-max ℓ (ℓ-max ℝℓ ℝℓ')) IsCauchyConvergent {X = X} d isMetric x isCauchy = Σ[ a ∈ X ] IsLimit isMetric x a record CompleteMetricSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max ℝℓ' ℝℓ)) where field MS : MetricSpace {ℓ} open MetricSpace MS public field isCauchyComplete : ∀ x → (isCauchy : IsCauchy d isMetric x) → Σ[ a ∈ Carrier ] IsLimit isMetric x a module Lemma-1 (𝕂F : 𝕂Field {𝕂ℓ} {𝕂ℓ'}) (NVS : NormedVectorSpace 𝕂F {ℓ}) where open NormedVectorSpace NVS renaming (Carrier to V) open ℝ₀⁺Field ℝ₀⁺F using () renaming (_≤_ to _≤ᵣ_; _+_ to _+ᵣ_) d : V → V → ℝ₀⁺ d x y = ‖ x + (- y) ‖ᵥ lemma-1 : IsMetric d lemma-1 = record { isPositiveOnNonzero = {!!} ; isPositiveOnNonzero-back = {!!} ; isSym = {! λ x y → ?!} ; isTriangleIneq = {!!} } IsNormMetric : (V → V → ℝ₀⁺) → Type (ℓ-max ℓ ℝℓ) IsNormMetric d' = ∀ x y → d' x y ≡ d x y module _ (𝕂F : 𝕂Field {𝕂ℓ} {𝕂ℓ'}) where record CompleteNormedVectorSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max 𝕂ℓ' 𝕂ℓ)) where field NVS : NormedVectorSpace 𝕂F {ℓ} open NormedVectorSpace NVS public d : Carrier → Carrier → ℝ₀⁺ d x y = ‖ x + (- y) ‖ᵥ isMetric : IsMetric d isMetric = Lemma-1.lemma-1 𝕂F NVS field isCauchyComplete : ∀ x → (isCauchy : IsCauchy d isMetric x) → Σ[ a ∈ Carrier ] IsLimit isMetric x a BanachSpace = CompleteNormedVectorSpace module _ (𝕂F : 𝕂Field {𝕂ℓ} {𝕂ℓ'}) (VS : VectorSpace 𝕂F {ℓ}) where open 𝕂Field 𝕂F using (conj) renaming (Carrier to 𝕂; _·_ to _·ₖ_; _+_ to _+ₖ_) open VectorSpace VS renaming (Carrier to V) record IsInnerProduct (‹_,_›ᵥ : V → V → 𝕂) : Type (ℓ-max ℓ (ℓ-max 𝕂ℓ' 𝕂ℓ)) where field -- pos-definite : ∀ x → x ≠ 0v → ‹ x , x › ∈ ℝ⁺ -- TODO conj-sym : ∀ x y → ‹ x , y ›ᵥ ≡ conj (‹ y , x ›ᵥ) lin₁ : ∀ α x y → ‹ α ·ₛ x , y ›ᵥ ≡ α ·ₖ ‹ x , y ›ᵥ +distrib₁ : ∀ x y z → ‹ x + y , z ›ᵥ ≡ ‹ x , z ›ᵥ +ₖ ‹ y , z ›ᵥ -- If the positive-definite condition is replaced by merely requiring that ⟨ x , x ⟩ ≥ 0 for all x, -- then one obtains the definition of positive semi-definite Hermitian form. module _ (𝕂F : 𝕂Field {𝕂ℓ} {𝕂ℓ'}) where open 𝕂Field 𝕂F using (conj) renaming (Carrier to 𝕂; _·_ to _·ₖ_; _+_ to _+ₖ_) record InnerProductSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max 𝕂ℓ' 𝕂ℓ)) where field VS : VectorSpace 𝕂F {ℓ} open VectorSpace VS public field ‹_,_›ᵥ : Carrier → Carrier → 𝕂 isInnerProduct : IsInnerProduct 𝕂F VS ‹_,_›ᵥ open IsInnerProduct isInnerProduct public -- ‖_‖ᵥ : Carrier → ℝ₀⁺ -- ‖ x ‖ᵥ = sqrt (‹ x , x ›ᵥ) -- isNorm : IsNorm VS ‖_‖ᵥ -- isNorm = ? -- d : Carrier → Carrier → ℝ₀⁺ -- d x y = ‖ x + (- y) ‖ᵥ -- isMetric : IsMetric d -- isMetric = Lemma-1.lemma-1 𝕂F NVS -- NOTE: there are a lot of properties for InnerProductSpaces: https://en.wikipedia.org/wiki/Inner_product_space#Norm record HilbertSpace : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max 𝕂ℓ' 𝕂ℓ)) where field VS : VectorSpace 𝕂F {ℓ} open VectorSpace VS public field ‹_,_›ᵥ : Carrier → Carrier → 𝕂 isInnerProduct : IsInnerProduct 𝕂F VS ‹_,_›ᵥ open IsInnerProduct isInnerProduct public -- ‖_‖ᵥ : Carrier → ℝ₀⁺ -- ‖ x ‖ᵥ = sqrt (‹ x , x ›ᵥ) -- isNorm : IsNorm VS ‖_‖ᵥ -- isNorm = ? -- d : Carrier → Carrier → ℝ₀⁺ -- d x y = ‖ x + (- y) ‖ᵥ -- isMetric : IsMetric d -- isMetric = Lemma-1.lemma-1 𝕂F NVS -- field -- isCauchyComplete : ∀ x → (isCauchy : IsCauchy d isMetric x) → Σ[ a ∈ Carrier ] IsLimit isMetric x a -- NOTE: -- we observe that stronger structure "replaces" weaker structure in the sequence -- InnerProductSpace < NormedVectorSpace < MetricSpace -- when we add Cauchy completeness, we get -- HilbertSpace < BanachSpace < CompleteMetricSpace -- next up: EuclideanSpace ? -- see "Hölzl, Immler, Huffman 2013 - Type Classes and Filters for Mathematical Analysis in Isabelle/HOL" -- here, they start with topological spaces, where we start with the real numbers -- what about subspaces? How to formulate these? {- observed issues - subspaces - inclusions/coercions between different variants of "numbers" - conj - sqrt - topological spaces (do we need them after all?) - can we follow "Hölzl 2013" ? - size issues: the "amount" of ℓs is "high" and we are not ℓ-suc-ing to 𝕂ℓ and 𝕂ℓ' but we are ℓ-suc-ing to ℓ in the definition of PoorField so PoorField cannot be in ℓ-zero - is IsCauchy defined for ε ∈ ℚ or for ε ∈ ℝ ? in `Cubical.Data.Fin.Base` is written Finite types. Currently it is most convenient to define these as a subtype of the natural numbers, because indexed inductive definitions don't behave well with cubical Agda. This definition also has some more general attractive properties, of course, such as easy conversion back to ℕ. and then they state Fin : ℕ → Type₀ Fin n = Σ[ k ∈ ℕ ] k < n so Σ[ x ∈ 𝕏 ] (P x) kind of falls under what is called a "subtype" next-up - infimum and supremum on posets (and sub-posets / sub-lattices ?) - we do only really need these on ℝ - these do not necessarily exist in the subspace that we regard - morphisms on these spaces - (potentially) unbounded linear operators - algebraic and continuous dual spaces - Formulation of Riesz representation Theorem on Hilbert spaces -}
{ "alphanum_fraction": 0.6257016055, "avg_line_length": 35.4675925926, "ext": "agda", "hexsha": "c2c17920c0e0d83d7fd9885726d298b34192a27d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "test/SpacesFirstAttempt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "test/SpacesFirstAttempt.agda", "max_line_length": 147, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "test/SpacesFirstAttempt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 5832, "size": 15322 }
open import Relation.Binary.Core module Order.Total {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Sum refl≤ : {x : A} → x ≤ x refl≤ {x} with tot≤ x x ... | inj₁ x≤x = x≤x ... | inj₂ x≤x = x≤x
{ "alphanum_fraction": 0.4716981132, "avg_line_length": 18.9285714286, "ext": "agda", "hexsha": "37b39eb2f05ffe9992c0aae3948d6093ede23a3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Order/Total.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Order/Total.agda", "max_line_length": 43, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Order/Total.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 105, "size": 265 }
module hott.topology.loopspace.theorems where open import hott.core open import hott.core.theorems open import hott.topology.loopspace.eckmann-hilton public
{ "alphanum_fraction": 0.8427672956, "avg_line_length": 22.7142857143, "ext": "agda", "hexsha": "14339e62ef8dca060353492c887490f96dc3495f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/topology/loopspace/theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/topology/loopspace/theorems.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/topology/loopspace/theorems.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 159 }
module Data.Int.Literal where open import Data.Nat using (ℕ) open import Level using (suc) record Negative {a} (A : Set a) : Set (suc a) where field Constraint : ℕ → Set a fromNeg : (n : ℕ) → ⦃ Constraint n ⦄ → A open Negative {{...}} public using (fromNeg) {-# BUILTIN FROMNEG fromNeg #-}
{ "alphanum_fraction": 0.6435643564, "avg_line_length": 23.3076923077, "ext": "agda", "hexsha": "46855c354ca0a6e488a38d04f30bf520a6d99c53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/Celeste", "max_forks_repo_path": "formalization/Data/Int/Literal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/Celeste", "max_issues_repo_path": "formalization/Data/Int/Literal.agda", "max_line_length": 51, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/Celeste", "max_stars_repo_path": "formalization/Data/Int/Literal.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-16T17:31:57.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-16T17:31:57.000Z", "num_tokens": 96, "size": 303 }
{-# OPTIONS --prop --cubical-compatible #-} data _≡_ {A : Set} (x : A) : A → Prop where refl : x ≡ x
{ "alphanum_fraction": 0.5384615385, "avg_line_length": 20.8, "ext": "agda", "hexsha": "be754ead3a62d1b6ef271ce8c489050c5b42481c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue3433.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue3433.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue3433.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 39, "size": 104 }
------------------------------------------------------------------------ -- A type for values that should be erased at run-time ------------------------------------------------------------------------ -- This module contains some basic definitions with few dependencies -- (in particular, not Function-universe) that do not rely on -- equality. See Erased and other modules under Erased for more -- definitions. The definitions below are reexported from Erased. {-# OPTIONS --without-K --safe #-} module Erased.Basics where open import Prelude private variable a p q : Level -- Erased A is like A, but the values are (supposed to be) erased at -- run-time. record Erased (@0 A : Type a) : Type a where constructor [_] field @0 erased : A open Erased public -- A variant of [_] that does not take an erased argument. [_]→ : {@0 A : Type a} → A → Erased A [ x ]→ = [ x ] -- A variant of [_]→. [_∣_]→ : (@0 A : Type a) → A → Erased A [_∣_]→ _ = [_]→ -- Erased preserves dependent functions. map : {@0 A : Type a} {@0 P : A → Type p} → @0 ((x : A) → P x) → (x : Erased A) → Erased (P (erased x)) map f [ x ] = [ f x ] -- A binary variant of map. zip : {@0 A : Type a} {@0 P : A → Type p} {@0 Q : {x : A} → P x → Type q} → @0 ((x : A) (p : P x) → Q p) → (([ x ]) : Erased A) (([ p ]) : Erased (P x)) → Erased (Q p) zip f [ x ] [ p ] = [ f x p ]
{ "alphanum_fraction": 0.5231884058, "avg_line_length": 25.5555555556, "ext": "agda", "hexsha": "a63107dc404cc1624f5b6aa11c018b4de65978fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Erased/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Erased/Basics.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Erased/Basics.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 417, "size": 1380 }
{-# OPTIONS --without-K #-} {- Imports everything that is not imported by something else. This is not supposed to be used anywhere, this is just a simple way to do `make all' This file is intentionally named index.agda so that Agda will generate index.html. -} module index where -- import Spaces.IntervalProps -- import Algebra.F2NotCommutative import homotopy.LoopSpaceCircle import homotopy.HopfJunior import homotopy.Hopf -- cohomology import cohomology.EMModel import cohomology.Torus import homotopy.SpaceFromGroups import homotopy.CoverClassification import homotopy.AnyUniversalCoverIsPathSet import homotopy.PathSetIsInital -- import Spaces.LoopSpaceDecidableWedgeCircles -- import Homotopy.PullbackIsPullback -- import Homotopy.PushoutIsPushout -- import Homotopy.Truncation -- import Sets.QuotientUP import homotopy.PinSn -- import Homotopy.VanKampen import cw.CW import cw.Sphere import cw.Degree
{ "alphanum_fraction": 0.8090614887, "avg_line_length": 18.54, "ext": "agda", "hexsha": "683e37c1430e1dfb8d26d9c8cd20b5b696918cff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/index.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/index.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/index.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 248, "size": 927 }
module Groups.Symm.S3 where open import Equality ------------------------------------------------------------------------ -- definitions bin-op : ∀ {a} (A : Set a) → Set a bin-op A = A → A → A ------------------------------------------------------------------------ -- internal stuffs private record S₃ {a} (A : Set a) : Set a where constructor ⟨_,_,_⟩-⟨_,_,_⟩-⟨_,_,_⟩ infixl 5 _×_ field x y {e} : A _×_ : bin-op A assoc : ∀ a b c → a × b × c ≡ a × (b × c) idₗ : ∀ n → n × e ≡ n idᵣ : ∀ n → e × n ≡ n law-xxx=e : x × x × x ≡ e law-yy=e : y × y ≡ e law-yx=xxy : y × x ≡ x × x × y law-xyx=y : Set a law-xyx=y = x × y × x ≡ y xyx=y : law-xyx=y xyx=y rewrite assoc x y x | law-yx=xxy | sym (assoc x (x × x) y) | sym (assoc x x x) | law-xxx=e = idᵣ y ------------------------------------------------------------------------ -- public aliases s3-property-1 : ∀ {a} (A : S₃ (Set a)) → S₃.law-xyx=y A s3-property-1 = S₃.xyx=y
{ "alphanum_fraction": 0.3518518519, "avg_line_length": 23.4782608696, "ext": "agda", "hexsha": "618d09ccc57448b5ee9b03a921577a9d6b44a549", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Groups/Symm/S3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Groups/Symm/S3.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Groups/Symm/S3.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 368, "size": 1080 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Order-theoretic lattices ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Lattice where open import Algebra.FunctionProperties open import Data.Product using (_×_; _,_) open import Function using (flip) open import Level using (suc; _⊔_) open import Relation.Binary ------------------------------------------------------------------------ -- Relationships between orders and operators open import Relation.Binary public using (Maximum; Minimum) Supremum : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Op₂ A → Set _ Supremum _≤_ _∨_ = ∀ x y → x ≤ (x ∨ y) × y ≤ (x ∨ y) × ∀ z → x ≤ z → y ≤ z → (x ∨ y) ≤ z Infimum : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Op₂ A → Set _ Infimum _≤_ = Supremum (flip _≤_) Exponential : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Op₂ A → Op₂ A → Set _ Exponential _≤_ _∧_ _⇨_ = ∀ w x y → ((w ∧ x) ≤ y → w ≤ (x ⇨ y)) × (w ≤ (x ⇨ y) → (w ∧ x) ≤ y) ------------------------------------------------------------------------ -- Join semilattices record IsJoinSemilattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isPartialOrder : IsPartialOrder _≈_ _≤_ supremum : Supremum _≤_ _∨_ x≤x∨y : ∀ x y → x ≤ (x ∨ y) x≤x∨y x y = let pf , _ , _ = supremum x y in pf y≤x∨y : ∀ x y → y ≤ (x ∨ y) y≤x∨y x y = let _ , pf , _ = supremum x y in pf ∨-least : ∀ {x y z} → x ≤ z → y ≤ z → (x ∨ y) ≤ z ∨-least {x} {y} {z} = let _ , _ , pf = supremum x y in pf z open IsPartialOrder isPartialOrder public record JoinSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. isJoinSemilattice : IsJoinSemilattice _≈_ _≤_ _∨_ open IsJoinSemilattice isJoinSemilattice public poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (preorder) record IsBoundedJoinSemilattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. (⊥ : A) -- The minimum. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isJoinSemilattice : IsJoinSemilattice _≈_ _≤_ _∨_ minimum : Minimum _≤_ ⊥ open IsJoinSemilattice isJoinSemilattice public record BoundedJoinSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. ⊥ : Carrier -- The minimum. isBoundedJoinSemilattice : IsBoundedJoinSemilattice _≈_ _≤_ _∨_ ⊥ open IsBoundedJoinSemilattice isBoundedJoinSemilattice public joinSemilattice : JoinSemilattice c ℓ₁ ℓ₂ joinSemilattice = record { isJoinSemilattice = isJoinSemilattice } joinSemiLattice = joinSemilattice {-# WARNING_ON_USAGE joinSemiLattice "Warning: joinSemiLattice was deprecated in v0.17. Please use joinSemilattice instead." #-} open JoinSemilattice joinSemilattice public using (preorder; poset) ------------------------------------------------------------------------ -- Meet semilattices record IsMeetSemilattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∧_ : Op₂ A) -- The meet operation. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isPartialOrder : IsPartialOrder _≈_ _≤_ infimum : Infimum _≤_ _∧_ x∧y≤x : ∀ x y → (x ∧ y) ≤ x x∧y≤x x y = let pf , _ , _ = infimum x y in pf x∧y≤y : ∀ x y → (x ∧ y) ≤ y x∧y≤y x y = let _ , pf , _ = infimum x y in pf ∧-greatest : ∀ {x y z} → x ≤ y → x ≤ z → x ≤ (y ∧ z) ∧-greatest {x} {y} {z} = let _ , _ , pf = infimum y z in pf x open IsPartialOrder isPartialOrder public record MeetSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 7 _∧_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∧_ : Op₂ Carrier -- The meet operation. isMeetSemilattice : IsMeetSemilattice _≈_ _≤_ _∧_ open IsMeetSemilattice isMeetSemilattice public poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (preorder) record IsBoundedMeetSemilattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∧_ : Op₂ A) -- The join operation. (⊤ : A) -- The maximum. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isMeetSemilattice : IsMeetSemilattice _≈_ _≤_ _∧_ maximum : Maximum _≤_ ⊤ open IsMeetSemilattice isMeetSemilattice public record BoundedMeetSemilattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 7 _∧_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∧_ : Op₂ Carrier -- The join operation. ⊤ : Carrier -- The maximum. isBoundedMeetSemilattice : IsBoundedMeetSemilattice _≈_ _≤_ _∧_ ⊤ open IsBoundedMeetSemilattice isBoundedMeetSemilattice public meetSemilattice : MeetSemilattice c ℓ₁ ℓ₂ meetSemilattice = record { isMeetSemilattice = isMeetSemilattice } meetSemiLattice = meetSemilattice {-# WARNING_ON_USAGE meetSemiLattice "Warning: meetSemiLattice was deprecated in v0.17. Please use meetSemilattice instead." #-} open MeetSemilattice meetSemilattice public using (preorder; poset) ------------------------------------------------------------------------ -- Lattices record IsLattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. (_∧_ : Op₂ A) -- The meet operation. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isPartialOrder : IsPartialOrder _≈_ _≤_ supremum : Supremum _≤_ _∨_ infimum : Infimum _≤_ _∧_ isJoinSemilattice : IsJoinSemilattice _≈_ _≤_ _∨_ isJoinSemilattice = record { isPartialOrder = isPartialOrder ; supremum = supremum } isMeetSemilattice : IsMeetSemilattice _≈_ _≤_ _∧_ isMeetSemilattice = record { isPartialOrder = isPartialOrder ; infimum = infimum } open IsJoinSemilattice isJoinSemilattice public using (x≤x∨y; y≤x∨y; ∨-least) open IsMeetSemilattice isMeetSemilattice public using (x∧y≤x; x∧y≤y; ∧-greatest) open IsPartialOrder isPartialOrder public record Lattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ infixr 7 _∧_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. _∧_ : Op₂ Carrier -- The meet operation. isLattice : IsLattice _≈_ _≤_ _∨_ _∧_ open IsLattice isLattice public setoid : Setoid c ℓ₁ setoid = record { isEquivalence = isEquivalence } joinSemilattice : JoinSemilattice c ℓ₁ ℓ₂ joinSemilattice = record { isJoinSemilattice = isJoinSemilattice } meetSemilattice : MeetSemilattice c ℓ₁ ℓ₂ meetSemilattice = record { isMeetSemilattice = isMeetSemilattice } open JoinSemilattice joinSemilattice public using (poset; preorder) record IsDistributiveLattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. (_∧_ : Op₂ A) -- The meet operation. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isLattice : IsLattice _≈_ _≤_ _∨_ _∧_ ∧-distribˡ-∨ : _DistributesOverˡ_ _≈_ _∧_ _∨_ open IsLattice isLattice public record DistributiveLattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ infixr 7 _∧_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. _∧_ : Op₂ Carrier -- The meet operation. isDistributiveLattice : IsDistributiveLattice _≈_ _≤_ _∨_ _∧_ open IsDistributiveLattice isDistributiveLattice using (∧-distribˡ-∨) public open IsDistributiveLattice isDistributiveLattice using (isLattice) lattice : Lattice c ℓ₁ ℓ₂ lattice = record { isLattice = isLattice } open Lattice lattice hiding (Carrier; _≈_; _≤_; _∨_; _∧_) public record IsBoundedLattice {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. (_∧_ : Op₂ A) -- The meet operation. (⊤ : A) -- The maximum. (⊥ : A) -- The minimum. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isLattice : IsLattice _≈_ _≤_ _∨_ _∧_ maximum : Maximum _≤_ ⊤ minimum : Minimum _≤_ ⊥ open IsLattice isLattice public isBoundedJoinSemilattice : IsBoundedJoinSemilattice _≈_ _≤_ _∨_ ⊥ isBoundedJoinSemilattice = record { isJoinSemilattice = isJoinSemilattice ; minimum = minimum } isBoundedMeetSemilattice : IsBoundedMeetSemilattice _≈_ _≤_ _∧_ ⊤ isBoundedMeetSemilattice = record { isMeetSemilattice = isMeetSemilattice ; maximum = maximum } record BoundedLattice c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ infixr 7 _∧_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. _∧_ : Op₂ Carrier -- The meet operation. ⊤ : Carrier -- The maximum. ⊥ : Carrier -- The minimum. isBoundedLattice : IsBoundedLattice _≈_ _≤_ _∨_ _∧_ ⊤ ⊥ open IsBoundedLattice isBoundedLattice public boundedJoinSemilattice : BoundedJoinSemilattice c ℓ₁ ℓ₂ boundedJoinSemilattice = record { isBoundedJoinSemilattice = isBoundedJoinSemilattice } boundedMeetSemilattice : BoundedMeetSemilattice c ℓ₁ ℓ₂ boundedMeetSemilattice = record { isBoundedMeetSemilattice = isBoundedMeetSemilattice } lattice : Lattice c ℓ₁ ℓ₂ lattice = record { isLattice = isLattice } open Lattice lattice public using (joinSemilattice; meetSemilattice; poset; preorder; setoid) ------------------------------------------------------------------------ -- Heyting algebras (a bounded lattice with exponential operator) record IsHeytingAlgebra {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. (_∧_ : Op₂ A) -- The meet operation. (_⇨_ : Op₂ A) -- The exponential operation. (⊤ : A) -- The maximum. (⊥ : A) -- The minimum. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isBoundedLattice : IsBoundedLattice _≈_ _≤_ _∨_ _∧_ ⊤ ⊥ exponential : Exponential _≤_ _∧_ _⇨_ transpose-⇨ : ∀ {w x y} → (w ∧ x) ≤ y → w ≤ (x ⇨ y) transpose-⇨ {w} {x} {y} = let pf , _ = exponential w x y in pf transpose-∧ : ∀ {w x y} → w ≤ (x ⇨ y) → (w ∧ x) ≤ y transpose-∧ {w} {x} {y} = let _ , pf = exponential w x y in pf open IsBoundedLattice isBoundedLattice public record HeytingAlgebra c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 5 _⇨_ infixr 6 _∨_ infixr 7 _∧_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. _∧_ : Op₂ Carrier -- The meet operation. _⇨_ : Op₂ Carrier -- The exponential operation. ⊤ : Carrier -- The maximum. ⊥ : Carrier -- The minimum. isHeytingAlgebra : IsHeytingAlgebra _≈_ _≤_ _∨_ _∧_ _⇨_ ⊤ ⊥ boundedLattice : BoundedLattice c ℓ₁ ℓ₂ boundedLattice = record { isBoundedLattice = IsHeytingAlgebra.isBoundedLattice isHeytingAlgebra } open IsHeytingAlgebra isHeytingAlgebra using (exponential; transpose-⇨; transpose-∧) public open BoundedLattice boundedLattice hiding (Carrier; _≈_; _≤_; _∨_; _∧_; ⊤; ⊥) public ------------------------------------------------------------------------ -- Boolean algebras (a specialized Heyting algebra) record IsBooleanAlgebra {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_≤_ : Rel A ℓ₂) -- The partial order. (_∨_ : Op₂ A) -- The join operation. (_∧_ : Op₂ A) -- The meet operation. (¬_ : Op₁ A) -- The negation operation. (⊤ : A) -- The maximum. (⊥ : A) -- The minimum. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where infixr 5 _⇨_ _⇨_ : Op₂ A x ⇨ y = (¬ x) ∨ y field isHeytingAlgebra : IsHeytingAlgebra _≈_ _≤_ _∨_ _∧_ _⇨_ ⊤ ⊥ open IsHeytingAlgebra isHeytingAlgebra public record BooleanAlgebra c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ infixr 7 _∧_ infix 8 ¬_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. _∧_ : Op₂ Carrier -- The meet operation. ¬_ : Op₁ Carrier -- The negation operation. ⊤ : Carrier -- The maximum. ⊥ : Carrier -- The minimum. isBooleanAlgebra : IsBooleanAlgebra _≈_ _≤_ _∨_ _∧_ ¬_ ⊤ ⊥ open IsBooleanAlgebra isBooleanAlgebra using (isHeytingAlgebra) heytingAlgebra : HeytingAlgebra c ℓ₁ ℓ₂ heytingAlgebra = record { isHeytingAlgebra = isHeytingAlgebra } open HeytingAlgebra heytingAlgebra public hiding (Carrier; _≈_; _≤_; _∨_; _∧_; ⊤; ⊥)
{ "alphanum_fraction": 0.5389058137, "avg_line_length": 37.1603773585, "ext": "agda", "hexsha": "d206e036cd7b9ed0656e9236f3abca2328bd742d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Lattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Lattice.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Lattice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5213, "size": 15756 }
open import Prelude open import Nat open import Bij module Int where data Int : Set where +_ : Nat → Int -[1+_] : Nat → Int int→nat : Int → Nat int→nat (+ n) = 1+ (n + n) int→nat -[1+ n ] = n + n int→nat:inj : ∀{m n} → int→nat m == int→nat n → m == n int→nat:inj {+ m} {+ n} eq rewrite even-inj {m} {n} (1+inj eq) = refl int→nat:inj {+ m} { -[1+ n ]} eq = abort (even-not-odd {m} {n} eq) int→nat:inj { -[1+ m ]} {+ n} eq = abort (even-not-odd {n} {m} (! eq)) int→nat:inj { -[1+ m ]} { -[1+ n ]} eq rewrite even-inj {m} {n} eq = refl int→nat:surj : (n : Nat) → Σ[ m ∈ Int ] (int→nat m == n) int→nat:surj Z = -[1+ Z ] , refl int→nat:surj (1+ Z) = (+ Z) , refl int→nat:surj (1+ (1+ n)) with int→nat:surj n int→nat:surj (1+ (1+ .(1+ (n + n)))) | (+ n) , refl = (+ 1+ n) , 1+ap (1+ap n+1+m==1+n+m) int→nat:surj (1+ (1+ .(n + n))) | -[1+ n ] , refl = -[1+ 1+ n ] , 1+ap n+1+m==1+n+m instance IntBij : bij Int Nat IntBij = record { convert = int→nat; inj = int→nat:inj; surj = int→nat:surj}
{ "alphanum_fraction": 0.4678733032, "avg_line_length": 30.6944444444, "ext": "agda", "hexsha": "ed20ae2c4ac9e6b4e9dceac5fcc28fee5e4a0d6e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nickcollins/dependent-dicts-agda", "max_forks_repo_path": "Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nickcollins/dependent-dicts-agda", "max_issues_repo_path": "Int.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nickcollins/dependent-dicts-agda", "max_stars_repo_path": "Int.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 504, "size": 1105 }
module Haskell.RangedSetsProp.RangesProperties where open import Haskell.RangedSetsProp.library open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Agda.Builtin.Nat renaming (_==_ to eqq; _<_ to ltt) open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Bool open import Haskell.Prim.Maybe open import Haskell.Prim.Enum open import Haskell.Prim.Eq open import Haskell.Prim.Foldable open import Haskell.Prim.List open import Haskell.Prim.Integer open import Haskell.Prim.Double open import Haskell.RangedSets.Boundaries open import Haskell.RangedSets.Ranges open import Haskell.RangedSetsProp.BoundariesProperties postulate prop_range_creation : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {r1 r2 : Boundary a} → {r3 r4 : Boundary a} → (r1 ≡ r3) → (r2 ≡ r4) → (Rg r1 r2) ≡ Rg r3 r4 prop_intersection_sym : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 : Range a) → (r2 : Range a) → rangeIntersection r1 r2 ≡ rangeIntersection r2 r1 prop_intersection_sym ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) = begin rangeIntersection r1 r2 =⟨⟩ if_then_else_ (rangeIsEmpty r1 || rangeIsEmpty r2) emptyRange (Rg (max l1 l2) (min u1 u2)) =⟨ cong (ifThenElseHelper emptyRange (Rg (max l1 l2) (min u1 u2))) (prop_or_sym (rangeIsEmpty r1) (rangeIsEmpty r2)) ⟩ if_then_else_ (rangeIsEmpty r2 || rangeIsEmpty r1) emptyRange (Rg (max l1 l2) (min u1 u2)) =⟨ cong (if_then_else_ (rangeIsEmpty r2 || rangeIsEmpty r1) emptyRange) (prop_range_creation (prop_max_sym l1 l2) (prop_min_sym u1 u2)) ⟩ if_then_else_ (rangeIsEmpty r2 || rangeIsEmpty r1) emptyRange (Rg (max l2 l1) (min u2 u1)) =⟨⟩ rangeIntersection r2 r1 end prop_singletonRangeHas : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → (rangeHas ⦃ o ⦄ (singletonRange x) x) ≡ true prop_singletonRangeHas ⦃ o ⦄ ⦃ dio ⦄ x = begin (rangeHas (singletonRange x) x) =⟨⟩ (rangeHas (Rg (BoundaryBelow x) (BoundaryAbove x)) x) =⟨⟩ ((x />/ (BoundaryBelow x)) && (not (x />/ (BoundaryAbove x)))) =⟨⟩ ((x >= x) && (not (x > x))) =⟨ cong (_&& (not (x > x))) (gteq ⦃ o ⦄ refl) ⟩ (true && (not (x > x))) =⟨ cong (true &&_) (gt ⦃ o ⦄ refl) ⟩ (true && true) =⟨⟩ true end prop_singletonRangeHasOnly : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x y : a) → (rangeHas ⦃ o ⦄ (singletonRange x) y) ≡ (x == y) prop_singletonRangeHasOnly ⦃ o ⦄ ⦃ dio ⦄ v1 v2 = begin (rangeHas (singletonRange v1) v2) =⟨⟩ (rangeHas (Rg (BoundaryBelow v1) (BoundaryAbove v1)) v2) =⟨⟩ ((v2 />/ (BoundaryBelow v1)) && (not (v2 />/ (BoundaryAbove v1)))) =⟨⟩ ((v2 >= v1) && (not (v2 > v1))) =⟨ eq1 v2 v1 ⟩ (v1 == v2) end prop_singletonRangeConverse : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → rangeSingletonValue (singletonRange x) ≡ Just x prop_singletonRangeConverse ⦃ o ⦄ ⦃ dio ⦄ v = begin rangeSingletonValue (singletonRange v) =⟨⟩ rangeSingletonValue (Rg (BoundaryBelow v) (BoundaryAbove v)) =⟨⟩ if_then_else_ (v == v) (Just v) Nothing =⟨ propIf2 (v == v) (eq0 ⦃ o ⦄ refl) ⟩ Just v end prop_emptyNonSingleton : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → rangeSingletonValue ⦃ o ⦄ ⦃ dio ⦄ emptyRange ≡ Nothing prop_emptyNonSingleton = refl prop_fullNonSingleton : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → rangeSingletonValue ⦃ o ⦄ ⦃ dio ⦄ fullRange ≡ Nothing prop_fullNonSingleton = refl rs : Double → Double → List (Range Double) rs x y = (Rg (BoundaryBelow x) (BoundaryBelow y)) ∷ (Rg (BoundaryAbove x) (BoundaryBelow y)) ∷ (Rg (BoundaryBelow x) (BoundaryAbove y)) ∷ (Rg (BoundaryAbove x) (BoundaryAbove y)) ∷ [] length' : List a → Nat length' [] = 0 length' (x ∷ []) = 1 length' (x ∷ xs) = 1 + (length' xs) prop_unionRangeLengthHelper3 : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → (b : Bool) → ((eqq ((length' (if_then_else_ b ((Rg (min (rangeLower r1) (rangeLower r2)) (max (rangeUpper r1) (rangeUpper r2))) ∷ []) (r1 ∷ r2 ∷ [])))) 1) || (eqq (length' ((if_then_else_ b ((Rg (min (rangeLower r1) (rangeLower r2)) (max (rangeUpper r1) (rangeUpper r2))) ∷ []) (r1 ∷ r2 ∷ [])))) 2)) ≡ true prop_unionRangeLengthHelper3 ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) true = begin ((eqq (length' ((Rg (min l1 l2) (max u1 u2)) ∷ [])) 1) || (eqq (length' ((Rg (min l1 l2) (max u1 u2)) ∷ [])) 2)) =⟨⟩ ((eqq 1 1) || (eqq 1 2)) =⟨⟩ (true || false) =⟨⟩ true end prop_unionRangeLengthHelper3 ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) false = begin ((eqq (length' (r1 ∷ r2 ∷ [])) 1) || (eqq (length' (r1 ∷ r2 ∷ [])) 2)) =⟨⟩ ((eqq 2 1) || (eqq 2 2)) =⟨⟩ (false || true) =⟨⟩ true end prop_unionRangeLengthHelper2 : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → (b : Bool) → ((eqq (length' (if_then_else_ b (r1 ∷ []) (rangeU2 r1 r2))) 1) || (eqq (length' ((if_then_else_ b (r1 ∷ []) (rangeU2 r1 r2)))) 2)) ≡ true prop_unionRangeLengthHelper2 ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) true = begin ((eqq (length' (r1 ∷ [])) 1) || (eqq (length' (r1 ∷ [])) 2)) =⟨⟩ ((eqq 1 1) || (eqq 1 2)) =⟨⟩ (true || false) =⟨⟩ true end prop_unionRangeLengthHelper2 ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) false = begin ((eqq (length' (rangeU2 r1 r2)) 1) || (eqq (length' (rangeU2 r1 r2)) 2)) =⟨⟩ ((eqq (length' (if_then_else_ ((max l1 l2) <= (min u1 u2)) ((Rg (min l1 l2) (max u1 u2)) ∷ []) (r1 ∷ r2 ∷ []))) 1) || (eqq (length' (if_then_else_ ((max l1 l2) <= (min u1 u2)) ((Rg (min l1 l2) (max u1 u2)) ∷ []) (r1 ∷ r2 ∷ []))) 2)) =⟨ prop_unionRangeLengthHelper3 r1 r2 (((max l1 l2) <= (min u1 u2))) ⟩ true end prop_unionRangeLengthHelper : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → (b : Bool) → ((eqq (length' (if_then_else_ b (r2 ∷ []) (rangeU1 r1 r2))) 1) || (eqq (length' ((if_then_else_ b (r2 ∷ []) (rangeU1 r1 r2)))) 2)) ≡ true prop_unionRangeLengthHelper ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) true = begin ((eqq (length' (r2 ∷ [])) 1) || (eqq (length' (r2 ∷ [])) 2)) =⟨⟩ ((eqq 1 1) || (eqq 1 2)) =⟨⟩ (true || false) =⟨⟩ true end prop_unionRangeLengthHelper ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) false = begin ((eqq (length' (rangeU1 r1 r2)) 1) || (eqq (length' (rangeU1 r1 r2)) 2)) =⟨⟩ ((eqq (length' (if_then_else_ (rangeIsEmpty r2) (r1 ∷ []) (rangeU2 r1 r2))) 1) || (eqq (length' (if_then_else_ (rangeIsEmpty r2) (r1 ∷ []) (rangeU2 r1 r2))) 2)) =⟨ prop_unionRangeLengthHelper2 r1 r2 (rangeIsEmpty r2) ⟩ true end prop_unionRangeLength : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → ((eqq (length' (rangeUnion r1 r2)) 1) || (eqq (length' (rangeUnion r1 r2)) 2)) ≡ true prop_unionRangeLength ⦃ o ⦄ ⦃ dio ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) = begin ((eqq (length' (rangeUnion r1 r2)) 1) || (eqq (length' (rangeUnion r1 r2)) 2)) =⟨⟩ ((eqq (length' (if_then_else_ (rangeIsEmpty r1) (r2 ∷ []) (rangeU1 r1 r2))) 1) || (eqq (length' (if_then_else_ (rangeIsEmpty r1) (r2 ∷ []) (rangeU1 r1 r2))) 2)) =⟨ prop_unionRangeLengthHelper r1 r2 (rangeIsEmpty r1) ⟩ true end prop_UnionRange1 : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → ⦃ ne1 : IsFalse (rangeIsEmpty r1) ⦄ → ⦃ ne2 : IsFalse (rangeIsEmpty r2) ⦄ → ⦃ ne3 : IsFalse ((max (rangeLower r1) (rangeLower r2)) <= (min (rangeUpper r1) (rangeUpper r2))) ⦄ → (n : a) → (rangeListHas1 n (rangeUnion ⦃ ord ⦄ ⦃ diso ⦄ r1 r2)) ≡ ((rangeHas ⦃ ord ⦄ r1 n) || (rangeHas ⦃ ord ⦄ r2 n)) prop_UnionRange1 ⦃ ord ⦄ ⦃ diso ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) ⦃ ne1 ⦄ ⦃ ne2 ⦄ ⦃ ne3 ⦄ n = begin (rangeListHas1 n (rangeUnion r1 r2)) =⟨⟩ (rangeListHas1 n (if_then_else_ (rangeIsEmpty r1) (r2 ∷ []) (rangeU1 r1 r2))) =⟨ propIf (rangeListHas1 n) (rangeIsEmpty r1) ⟩ if_then_else_ (rangeIsEmpty r1) (rangeListHas1 n (r2 ∷ [])) (rangeListHas1 n (rangeU1 r1 r2)) =⟨ propIf3 (rangeIsEmpty r1) ne1 ⟩ rangeListHas1 n (rangeU1 r1 r2) =⟨ cong (rangeListHas1 n) (propIf3 (rangeIsEmpty r2) ne2) ⟩ (rangeListHas1 n (rangeU2 r1 r2)) =⟨ cong (rangeListHas1 n) (propIf3 ((max l1 l2) <= (min u1 u2)) ne3) ⟩ (rangeListHas1 n (r1 ∷ r2 ∷ [])) =⟨⟩ ((rangeHas r1 n) || (rangeHas r2 n)) end -- prop_UnionRange1' : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ -- → (r1 r2 : (Range a)) → ⦃ne1 : IsFalse (rangeIsEmpty r1)⦄ → ⦃ne2 : IsFalse (rangeIsEmpty r2)⦄ -- → ⦃ne3 : IsTrue ((max (rangeLower r1) (rangeLower r2)) <= (min (rangeUpper r1) (rangeUpper r2)))⦄ → (n : a) -- → (rangeListHas1 n (rangeUnion ⦃ord⦄ ⦃diso⦄ r1 r2)) ≡ ((rangeHas ⦃ord⦄ r1 n) || (rangeHas ⦃ord⦄ r2 n)) -- prop_UnionRange1' ⦃ord⦄ ⦃diso⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) ⦃ne1⦄ ⦃ne2⦄ ⦃ne3⦄ n = -- begin -- (rangeListHas1 n (rangeUnion r1 r2)) -- =⟨⟩ -- (rangeListHas1 n (if_then_else_ (rangeIsEmpty r1) (r2 ∷ []) (rangeU1 r1 r2))) -- =⟨ propIf (rangeListHas1 n) (rangeIsEmpty r1) ⟩ -- if_then_else_ (rangeIsEmpty r1) (rangeListHas1 n (r2 ∷ [])) (rangeListHas1 n (rangeU1 r1 r2)) -- =⟨ propIf3 (rangeIsEmpty r1) ne1 ⟩ -- rangeListHas1 n (rangeU1 r1 r2) -- =⟨ cong (rangeListHas1 n) (propIf3 (rangeIsEmpty r2) ne2) ⟩ -- (rangeListHas1 n (rangeU2 r1 r2)) -- =⟨ cong (rangeListHas1 n) (propIf2 ((max l1 l2) <= (min u1 u2)) ne3) ⟩ -- (rangeListHas1 n ((Rg (min l1 l2) (max u1 u2)) ∷ [])) -- =⟨⟩ -- ((n />/ (min l1 l2)) && not (n />/ (max u1 u2))) -- =⟨⟩ -- ((n />/ (if (compare l1 l2 == LT) then l1 else l2)) && not (n />/ (if (compare u1 u2 == GT) then u1 else u2))) -- =⟨⟩ -- ((rangeHas r1 n) || (rangeHas r2 n)) -- end prop_emptyRange : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r : Range a) → not (rangeIsEmpty r) ≡ (rangeLower r <= rangeUpper r) prop_emptyRange ⦃ o ⦄ ⦃ dio ⦄ r@(Rg l u) = begin not (rangeIsEmpty r) =⟨⟩ not (u <= l) =⟨ eq2 u l ⟩ l < u =⟨ lteq l u ⟩ l <= u end prop_rangeHas : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → {r : (Range a)} → {n : a} → (rangeHas1 ⦃ ord ⦄ n r) ≡ (rangeHas ⦃ ord ⦄ r n) prop_rangeHas {r = (Rg x y)} {n} = begin rangeHas1 n (Rg x y) =⟨⟩ (n />/ x) && (not (n />/ y)) =⟨⟩ rangeHas (Rg x y) n end prop_IntersectionRange : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → ⦃ ff : IsFalse (rangeIsEmpty r1 || rangeIsEmpty r2) ⦄ → (n : a) → ((rangeHas r1 n) && (rangeHas r2 n)) ≡ (rangeHas (rangeIntersection r1 r2) n) prop_IntersectionRange ⦃ ord ⦄ ⦃ diso ⦄ r1@(Rg x1 y1) r2@(Rg x2 y2) ⦃ ff ⦄ n = begin ((rangeHas r1 n) && (rangeHas r2 n)) =⟨⟩ ((n />/ x1) && (not (n />/ y1))) && ((n />/ x2) && (not (n />/ y2))) =⟨ prop_and_assoc (n />/ x1) (not (n />/ y1)) (n />/ x2 && (not (n />/ y2))) ⟩ ((n />/ x1) && ((not (n />/ y1)) && ((n />/ x2) && (not (n />/ y2))))) =⟨ cong ((n />/ x1) &&_) (sym (prop_and_assoc (not (n />/ y1)) (n />/ x2) (not (n />/ y2)))) ⟩ ((n />/ x1) && (not (n />/ y1) && (n />/ x2)) && (not (n />/ y2))) =⟨ sym (prop_and_assoc (n />/ x1) (not (n />/ y1) && (n />/ x2)) (not (n />/ y2))) ⟩ (((n />/ x1) && (not (n />/ y1) && (n />/ x2))) && (not (n />/ y2))) =⟨ cong (_&& (not (n />/ y2))) (cong ((n />/ x1) &&_) (prop_and_comm (not (n />/ y1)) (n />/ x2))) ⟩ (((n />/ x1) && ((n />/ x2) && not (n />/ y1))) && (not (n />/ y2))) =⟨ cong (_&& (not (n />/ y2))) (sym (prop_and_assoc (n />/ x1) (n />/ x2) (not (n />/ y1)))) ⟩ ((((n />/ x1) && (n />/ x2)) && not (n />/ y1)) && (not (n />/ y2))) =⟨ prop_and_assoc ((n />/ x1) && (n />/ x2)) (not (n />/ y1)) (not (n />/ y2)) ⟩ (((n />/ x1) && (n />/ x2)) && (not (n />/ y1) && (not (n />/ y2)))) =⟨ cong ((n />/ x1 && n />/ x2) &&_) (prop_demorgan2 (n />/ y1) (n />/ y2)) ⟩ (n />/ x1 && n />/ x2) && (not ((n />/ y1) || (n />/ y2))) =⟨ cong (_&& (not ((n />/ y1) || (n />/ y2)))) (boundaries0 n x1 x2) ⟩ (n />/ (max x1 x2)) && (not ((n />/ y1) || (n />/ y2))) =⟨ cong ((n />/ (max x1 x2)) &&_) (cong not (boundaries1 n y1 y2)) ⟩ (n />/ (max x1 x2)) && not (n />/ (min y1 y2)) =⟨⟩ rangeHas (Rg (max (rangeLower r1) (rangeLower r2)) (min (rangeUpper r1) (rangeUpper r2))) n =⟨ sym (cong (rangeHas1 n) (propIf3 (rangeIsEmpty r1 || rangeIsEmpty r2) ff)) ⟩ rangeHas1 n (rangeIntersection r1 r2) =⟨ prop_rangeHas ⦃ ord ⦄ ⦃ diso ⦄ {(rangeIntersection r1 r2)} ⟩ rangeHas (rangeIntersection r1 r2) n end prop_notEmptyRanges : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → (not ((rangeIsEmpty r1) || (rangeIsEmpty r2))) ≡ (((rangeLower r1) < (rangeUpper r1)) && ((rangeLower r2) < (rangeUpper r2))) prop_notEmptyRanges ⦃ ord ⦄ ⦃ diso ⦄ r1@(Rg l1 u1) r2@(Rg l2 u2) = begin not ((rangeIsEmpty r1 )|| (rangeIsEmpty r2)) =⟨⟩ (not (((rangeUpper r1) <= (rangeLower r1)) || ((rangeUpper r2) <= (rangeLower r2)))) =⟨ sym (prop_demorgan2 ((rangeUpper r1) <= (rangeLower r1)) ((rangeUpper r2) <= (rangeLower r2))) ⟩ ((not ((rangeUpper r1) <= (rangeLower r1)))) && (not ((rangeUpper r2) <= (rangeLower r2))) =⟨ cong (not ((rangeUpper r1) <= (rangeLower r1)) &&_) (eq2 (rangeUpper r2) (rangeLower r2)) ⟩ ((not ((rangeUpper r1) <= (rangeLower r1))) && ((rangeLower r2) < (rangeUpper r2))) =⟨ cong (_&& ((rangeLower r2) < (rangeUpper r2))) (eq2 (rangeUpper r1) (rangeLower r1)) ⟩ (((rangeLower r1) < (rangeUpper r1)) && ((rangeLower r2) < (rangeUpper r2))) end prop_intersectionOverlap : ⦃ ord : Ord a ⦄ → ⦃ diso : DiscreteOrdered a ⦄ → (r1 r2 : (Range a)) → ⦃ ff : IsFalse (rangeIsEmpty r1 || rangeIsEmpty r2) ⦄ → ⦃ tr : IsTrue (((rangeLower r1) < (rangeUpper r1)) && ((rangeLower r2) < (rangeUpper r2))) ⦄ → (rangeIsEmpty (rangeIntersection r1 r2)) ≡ not (rangeOverlap r1 r2) prop_intersectionOverlap ⦃ ord ⦄ ⦃ diso ⦄ r1@(Rg _ _) r2@(Rg _ _) ⦃ ff ⦄ ⦃ tr ⦄ = begin (rangeIsEmpty (rangeIntersection r1 r2)) =⟨⟩ rangeIsEmpty (if_then_else_ (rangeIsEmpty r1 || rangeIsEmpty r2) emptyRange (Rg (max (rangeLower r1) (rangeLower r2)) (min (rangeUpper r1) (rangeUpper r2)))) =⟨ cong rangeIsEmpty (propIf3 (rangeIsEmpty r1 || rangeIsEmpty r2) ff) ⟩ (rangeIsEmpty (Rg (max (rangeLower r1) (rangeLower r2)) (min (rangeUpper r1) (rangeUpper r2)))) =⟨⟩ ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2))) =⟨ sym (prop_or_false ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2)))) ⟩ (false || ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2)))) =⟨ cong (_|| ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2)))) (sym (propIsFalse (rangeIsEmpty r1 || rangeIsEmpty r2) ff)) ⟩ (((rangeIsEmpty r1) || (rangeIsEmpty r2)) || ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2)))) =⟨ prop_or_assoc (rangeIsEmpty r1) (rangeIsEmpty r2) ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2))) ⟩ ((rangeIsEmpty r1) || ((rangeIsEmpty r2) || ((min (rangeUpper r1) (rangeUpper r2)) <= (max (rangeLower r1) (rangeLower r2))))) =⟨ cong ((rangeIsEmpty r1) ||_) (cong ((rangeIsEmpty r2) ||_) (eq3 (rangeUpper r1) (rangeUpper r2) (rangeLower r1) (rangeLower r2) ⦃ tr ⦄)) ⟩ ((rangeIsEmpty r1) || ((rangeIsEmpty r2) || (rangeUpper r1 <= rangeLower r2 || rangeUpper r2 <= rangeLower r1))) =⟨ not-not ((rangeIsEmpty r1) || (rangeIsEmpty r2) || (rangeUpper r1 <= rangeLower r2 || rangeUpper r2 <= rangeLower r1)) ⟩ not (not ((rangeIsEmpty r1) || (rangeIsEmpty r2) || (rangeUpper r1 <= rangeLower r2 || rangeUpper r2 <= rangeLower r1))) =⟨ cong (not) (demorgan3 (rangeIsEmpty r1) (rangeIsEmpty r2) (rangeUpper r1 <= rangeLower r2) (rangeUpper r2 <= rangeLower r1)) ⟩ not (not (rangeIsEmpty r1) && not (rangeIsEmpty r2) && ((not (rangeUpper r1 <= rangeLower r2)) && (not (rangeUpper r2 <= rangeLower r1)))) =⟨ cong not (cong ((not (rangeIsEmpty r1)) &&_) (cong ((not (rangeIsEmpty r2)) &&_) (prop_demorgan2 (rangeUpper r1 <= rangeLower r2) (rangeUpper r2 <= rangeLower r1)))) ⟩ not (not (rangeIsEmpty r1) && not (rangeIsEmpty r2) && not ((rangeUpper r1 <= rangeLower r2) || (rangeUpper r2 <= rangeLower r1))) =⟨⟩ not (rangeOverlap r1 r2) end
{ "alphanum_fraction": 0.5528546204, "avg_line_length": 50.1179941003, "ext": "agda", "hexsha": "32b05747fd996f61936f0393df819947b43c75ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/RangedSetsProp/RangesProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/RangedSetsProp/RangesProperties.agda", "max_line_length": 183, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/RangedSetsProp/RangesProperties.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 7054, "size": 16990 }
module Haskell.RangedSetsProp.library where open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Haskell.Prim open import Haskell.Prim.Ord open import Haskell.Prim.Bool open import Haskell.Prim.Eq open import Haskell.Prim.Int open import Haskell.Prim.List open import Haskell.RangedSets.Boundaries open import Haskell.RangedSets.Ranges -- symmetry of equality sym : {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl -- transitivity of equality trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl -- congruence of equality cong : {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl begin_ : {A : Set} → {x y : A} → x ≡ y → x ≡ y begin p = p _end : {A : Set} → (x : A) → x ≡ x x end = refl _=⟨_⟩_ : {A : Set} → (x : A) → {y z : A} → x ≡ y → y ≡ z → x ≡ z x =⟨ p ⟩ q = trans p q _=⟨⟩_ : {A : Set} → (x : A) → {y : A} → x ≡ y → x ≡ y x =⟨⟩ q = x =⟨ refl ⟩ q infix 1 begin_ infix 3 _end infixr 2 _=⟨_⟩_ infixr 2 _=⟨⟩_ subst : {A : Set} {x y : A} → (P : A → Set) → x ≡ y → P x → P y subst P refl p = p isTrue&&₁ : {x y : Bool} → IsTrue (x && y) → IsTrue x isTrue&&₂ : {x y : Bool} → IsTrue (x && y) → IsTrue y isTrue&&₁ {true} _ = IsTrue.itsTrue isTrue&&₁ {false} () isTrue&&₂ {true} p = p isTrue&&₂ {false} () ifThenElseHelper : {a : Set ℓ} → a → a → Bool → a ifThenElseHelper b c d = if_then_else_ d b c propIf : {a b : Set} → {x y : a} (f : a → b) (c : Bool) → f (if c then x else y) ≡ (if c then f x else f y) propIf f false = refl propIf f true = refl propIf2 : ⦃ Ord a ⦄ → {x y : a} (c : Bool) → IsTrue c → (if c then x else y) ≡ x propIf2 true f = refl propIf3 : ⦃ Ord a ⦄ → {x y : a} (c : Bool) → IsFalse c → (if c then x else y) ≡ y propIf3 false f = refl propIf2' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {x y : List (Range a)} (c : Bool) → IsTrue c → (if c then x else y) ≡ x propIf2' true f = refl propIf3' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → {x y : List (Range a)} (c : Bool) → IsFalse c → (if c then x else y) ≡ y propIf3' false f = refl propIsFalse : (x : Bool) → IsFalse x → x ≡ false propIsFalse false f = refl propIsTrue : (x : Bool) → IsTrue x → x ≡ true propIsTrue true f = refl prop_or_and_eqiv_true : (x y : Bool) -> IsTrue x -> IsTrue y -> (x || y) ≡ (x && y) prop_or_and_eqiv_true true true _ _ = refl prop_or_and_eqiv_false : (x y : Bool) -> IsFalse x -> IsFalse y -> (x || y) ≡ (x && y) prop_or_and_eqiv_false false false _ _ = refl postulate isTrueAndIsFalse1 : {b : Bool} -> IsTrue b -> IsFalse (not b) isTrueAndIsFalse2 : {b : Bool} -> IsTrue (not b) -> IsFalse b isTrueAndIsFalse3 : {b : Bool} -> IsFalse (not b) -> IsTrue b isTrueAndIsFalse4 : {b : Bool} -> IsFalse b -> IsTrue (not b) gteq : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → (_>=_ ⦃ o ⦄ x y) ≡ true lt : ⦃ o : Ord a ⦄ → (x y : a) → (x ≡ y) → IsFalse (_>_ ⦃ o ⦄ x y) lteq : ⦃ o : Ord a ⦄ → (x y : a) → (_<_ ⦃ o ⦄ x y) ≡ (_<=_ ⦃ o ⦄ x y) gt : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → not (_>_ ⦃ o ⦄ x y) ≡ true eq0 : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → IsTrue (x == y) eq1 : ⦃ o : Ord a ⦄ → (x y : a) → ((_>=_ ⦃ o ⦄ x y) && (not (_>_ ⦃ o ⦄ x y))) ≡ (y == x) eq2 : ⦃ o : Ord a ⦄ → (x y : a) → not (_<=_ ⦃ o ⦄ x y) ≡ (_<_ ⦃ o ⦄ y x) eq3 : ⦃ o : Ord a ⦄ → (x y i j : a) → ⦃ IsTrue ((_<_ ⦃ o ⦄ i x) && (_<_ ⦃ o ⦄ j y)) ⦄ → ((min ⦃ o ⦄ x y) <= (max ⦃ o ⦄ i j)) ≡ ((_<=_ ⦃ o ⦄ x j) || (_<=_ ⦃ o ⦄ y i)) eq4 : ⦃ o : Ord a ⦄ → ∀ {x y : a} → (x ≡ y) → ((compare x y) == EQ) ≡ true boundaries0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → (b c : Boundary a) → ((x />/ b) && (x />/ c)) ≡ (x />/ (max b c)) boundaries1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : a) → (b c : Boundary a) → ((x />/ b) || (x />/ c)) ≡ (x />/ (min b c)) prop_and_assoc : (a b c : Bool) → ((a && b) && c) ≡ (a && (b && c)) prop_and_assoc true b c = begin ((true && b) && c) =⟨⟩ (b && c) =⟨⟩ (true && (b && c)) end prop_and_assoc false b c = begin ((false && b) && c) =⟨⟩ (false && c) =⟨⟩ false =⟨⟩ (false && (b && c)) end prop_and_cancel : (a : Bool) {b : Bool} → (a && a && b) ≡ (a && b) prop_and_cancel true = refl prop_and_cancel false = refl prop_or_assoc : (a b c : Bool) → ((a || b) || c) ≡ (a || (b || c)) prop_or_assoc true b c = refl prop_or_assoc false b c = refl prop_or_sym : (a b : Bool) → (a || b) ≡ (b || a) prop_or_sym true true = refl prop_or_sym true false = refl prop_or_sym false true = refl prop_or_sym false false = refl prop_or_same_value : (a : Bool) → (a || a) ≡ a prop_or_same_value true = refl prop_or_same_value false = refl prop_and_false : (a : Bool) → (a && false) ≡ false prop_and_false true = refl prop_and_false false = refl prop_and_true : (a : Bool) → (a && true) ≡ a prop_and_true true = refl prop_and_true false = refl prop_or_false : (a : Bool) → (false || a) ≡ a prop_or_false true = refl prop_or_false false = refl prop_or_false2 : (a : Bool) → (a || false) ≡ a prop_or_false2 true = refl prop_or_false2 false = refl prop_or_false3 : (a : Bool) → (a || true) ≡ true prop_or_false3 true = refl prop_or_false3 false = refl prop_or_true : (a : Bool) → (true || a) ≡ true prop_or_true true = refl prop_or_true false = refl prop_and_comm : (a b : Bool) → (a && b) ≡ (b && a) prop_and_comm false b = begin (false && b) =⟨⟩ false =⟨ sym (prop_and_false b) ⟩ (b && false) end prop_and_comm true b = begin (true && b) =⟨⟩ b =⟨ sym (prop_and_true b) ⟩ (b && true) end prop_distr : (a b c : Bool) → ((a || b) && c) ≡ ((a && c) || (b && c)) prop_distr true b true = refl prop_distr true true false = refl prop_distr true false false = refl prop_distr false true true = refl prop_distr false true false = refl prop_distr false false false = refl prop_distr false false true = refl prop_dnf : (a b c d : Bool) → ((a || b) && (c || d)) ≡ ((a && c) || (b && d) || (b && c) || (a && d)) prop_dnf true b true d = refl prop_dnf true true false true = refl prop_dnf true false false true = refl prop_dnf true true false false = refl prop_dnf true false false false = refl prop_dnf false true true true = refl prop_dnf false true false true = refl prop_dnf false false true true = refl prop_dnf false false true false = refl prop_dnf false false false true = refl prop_dnf false false false false = refl prop_dnf false true true false = refl prop_dnf false true false false = refl prop_demorgan2 : (a b : Bool) → ((not a) && (not b)) ≡ (not (a || b)) prop_demorgan2 false b = refl prop_demorgan2 true b = refl prop_demorgan : (a b : Bool) → (not (a && b)) ≡ ((not a) || (not b)) prop_demorgan false b = refl prop_demorgan true b = refl not-not : (b : Bool) → b ≡ not (not b) not-not false = refl not-not true = begin not (not true) =⟨⟩ not false =⟨⟩ true end demorgan3 : (a b c d : Bool) → (not (a || b || c || d)) ≡ ((not a) && (not b) && (not c) && (not d)) demorgan3 true b c d = refl demorgan3 false true c d = refl demorgan3 false false true d = refl demorgan3 false false false true = refl demorgan3 false false false false = refl
{ "alphanum_fraction": 0.5587094988, "avg_line_length": 30.6016949153, "ext": "agda", "hexsha": "2fd513ab257d4717418ccd1a42b40c298fdce162", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/RangedSetsProp/library.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/RangedSetsProp/library.agda", "max_line_length": 168, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/RangedSetsProp/library.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 2930, "size": 7222 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Several kinds of "relatedness" for containers such as equivalences, -- surjections and bijections ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Related where open import Level using (_⊔_) open import Data.Container.Core import Function.Related as Related open import Relation.Binary open import Data.Container.Membership open Related public using (Kind; Symmetric-kind) renaming ( implication to subset ; reverse-implication to superset ; equivalence to set ; injection to subbag ; reverse-injection to superbag ; bijection to bag ) [_]-Order : ∀ {s p ℓ} → Kind → Container s p → Set ℓ → Preorder (s ⊔ p ⊔ ℓ) (s ⊔ p ⊔ ℓ) (p ⊔ ℓ) [ k ]-Order C X = Related.InducedPreorder₂ k (_∈_ {C = C} {X = X}) [_]-Equality : ∀ {s p ℓ} → Symmetric-kind → Container s p → Set ℓ → Setoid (s ⊔ p ⊔ ℓ) (p ⊔ ℓ) [ k ]-Equality C X = Related.InducedEquivalence₂ k (_∈_ {C = C} {X = X}) infix 4 _∼[_]_ _∼[_]_ : ∀ {s p x} {C : Container s p} {X : Set x} → ⟦ C ⟧ X → Kind → ⟦ C ⟧ X → Set (p ⊔ x) _∼[_]_ {C = C} {X} xs k ys = Preorder._∼_ ([ k ]-Order C X) xs ys
{ "alphanum_fraction": 0.5144927536, "avg_line_length": 34.5, "ext": "agda", "hexsha": "0117335e355bd590c78d8dd1202fe346385f943b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Related.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Related.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Related.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 404, "size": 1380 }
{-# OPTIONS --without-K #-} module EquivEquiv where open import Level using (Level; _⊔_) open import Data.Product using (_,_; proj₁; proj₂) open import Data.Sum using (inj₁; inj₂) open import Relation.Binary using (Setoid) import Relation.Binary.PropositionalEquality as P using (_≡_; refl; sym; trans; cong; module ≡-Reasoning) import Relation.Binary.EqReasoning as EqR open import Function using (id; _∘_) open import Equiv using (module isqinv; qinv; _≃_; id≃; sym≃; _●_; _∼_; refl∼; sym∼; trans∼; cong∘r; cong∘l; _⊎≃_; β₁; β₂; gg; β⊎₁; β⊎₂) ------------------------------------------------------------------------------ -- Extensional equivalence of equivalences -- We need g to "pin down" the inverse, else we get lots of unsolved -- metas. infix 4 _≋_ record _≋_ {ℓ ℓ' : Level} {A : Set ℓ} {B : Set ℓ'} (eq₁ eq₂ : A ≃ B) : Set (ℓ ⊔ ℓ') where constructor eq open isqinv field f≡ : proj₁ eq₁ ∼ proj₁ eq₂ g≡ : g (proj₂ eq₁) ∼ g (proj₂ eq₂) -- the proof could use ∼-Reasoning if we had defined it g≡′ : g (proj₂ eq₁) ∼ g (proj₂ eq₂) g≡′ = trans∼ (cong∘r g₁ (refl∼ {f = id})) ( -- id ∘ g₁ trans∼ (cong∘r g₁ (sym∼ (β (proj₂ eq₂)))) (trans∼ (cong∘l g₂ (cong∘r g₁ (sym∼ f≡))) ( (cong∘l g₂ (α (proj₂ eq₁)))))) where g₁ = g (proj₂ eq₁) g₂ = g (proj₂ eq₂) f₁ = proj₁ eq₁ f₂ = proj₁ eq₂ -- The equivalence of equivalences is an equivalence relation that -- respects composition id≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x : A ≃ B} → x ≋ x id≋ = record { f≡ = λ _ → P.refl ; g≡ = λ _ → P.refl } sym≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y : A ≃ B} → x ≋ y → y ≋ x sym≋ (eq f≡ g≡) = eq (λ a → P.sym (f≡ a)) (λ b → P.sym (g≡ b)) flip≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y : A ≃ B} → x ≋ y → (sym≃ x) ≋ (sym≃ y) flip≋ (eq f≡ g≡) = eq g≡ f≡ flip-sym≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y : A ≃ B}→ x ≋ y → sym≃ y ≋ sym≃ x flip-sym≋ (eq f≡ g≡) = eq (sym∼ g≡) (sym∼ f≡) trans≋ : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} {x y z : A ≃ B} → x ≋ y → y ≋ z → x ≋ z trans≋ (eq f≡ g≡) (eq h≡ i≡) = eq (λ a → P.trans (f≡ a) (h≡ a)) (λ b → P.trans (g≡ b) (i≡ b)) _◎_ : {A B C : Set} {f h : B ≃ C} {g i : A ≃ B} → f ≋ h → g ≋ i → (f ● g) ≋ (h ● i) _◎_ {f = f} {h} {g} {i} (eq f≡ g≡) (eq h≡ i≡) = eq fwd bwd -- eq (λ x → {!!} ) -- P.trans (P.cong f (h≡ x)) (f≡ (i x))) -- (λ x → {!!} ) -- P.trans (P.cong g⁻¹ (g≡ x)) (i≡ (h⁻¹ x))) where open P.≡-Reasoning fwd : proj₁ (f ● g) ∼ proj₁ (h ● i) fwd x = begin ( proj₁ (f ● g) x ≡⟨ β₁ x ⟩ proj₁ f (proj₁ g x) ≡⟨ f≡ (proj₁ g x) ⟩ proj₁ h (proj₁ g x) ≡⟨ P.cong (proj₁ h) (h≡ x) ⟩ proj₁ h (proj₁ i x) ≡⟨ P.sym (β₁ x) ⟩ proj₁ (h ● i) x ∎) bwd : gg (f ● g) ∼ gg (h ● i) bwd x = begin ( gg (f ● g) x ≡⟨ β₂ x ⟩ gg g (gg f x) ≡⟨ i≡ (gg f x) ⟩ gg i (gg f x) ≡⟨ P.cong (gg i) (g≡ x) ⟩ gg i (gg h x) ≡⟨ P.sym (β₂ x) ⟩ gg (h ● i) x ∎) rinv≋ : ∀ {ℓ} {A B : Set ℓ} (x : A ≃ B) → (x ● (sym≃ x)) ≋ id≃ {A = B} rinv≋ (_ , qinv _ α _) = eq (trans∼ β₁ α) (trans∼ β₂ α) linv≋ : ∀ {ℓ} {A B : Set ℓ} (e : A ≃ B) → ((sym≃ e) ● e) ≋ id≃ linv≋ (_ , qinv _ _ β) = eq (trans∼ β₁ β) (trans∼ β₂ β) lid≋ : ∀ {ℓ} {A B : Set ℓ} {f : A ≃ B} → (id≃ ● f) ≋ f lid≋ = eq β₁ β₂ rid≋ : ∀ {ℓ} {A B : Set ℓ} {f : A ≃ B} → (f ● id≃) ≋ f rid≋ = eq β₁ β₂ -- {- symsym : ∀ {A B : Set} {f : A ≃ B} → sym≃ (sym≃ f) ≋ f symsym = eq (λ _ → P.refl) (λ _ → P.refl) -} sym≃● : ∀ {A B C : Set} {g : B ≃ C} {f : A ≃ B} → sym≃ (g ● f) ≋ sym≃ f ● sym≃ g sym≃● {g = (g , qinv g⁻¹ _ _)} {(f , qinv f⁻¹ _ _)} = eq (trans∼ β₂ (sym∼ β₁)) (trans∼ β₁ (sym∼ β₂)) -- underlying it all, it uses ∘ and ≡, thus associativity is immediate ●-assoc : {A B C D : Set} {f : A ≃ B} {g : B ≃ C} {h : C ≃ D} → ((h ● g) ● f) ≋ (h ● (g ● f)) ●-assoc {f = f} {g} {h} = eq fwd bwd where open P.≡-Reasoning fwd : proj₁ ((h ● g) ● f) ∼ proj₁ (h ● (g ● f)) fwd x = begin ( proj₁ ((h ● g) ● f) x ≡⟨ β₁ x ⟩ proj₁ (h ● g) (proj₁ f x) ≡⟨ β₁ (proj₁ f x) ⟩ proj₁ h (proj₁ g (proj₁ f x)) ≡⟨ P.cong (proj₁ h) (P.sym (β₁ x)) ⟩ proj₁ h (proj₁ (g ● f) x) ≡⟨ P.sym (β₁ x) ⟩ proj₁ (h ● (g ● f)) x ∎) bwd : gg ((h ● g) ● f) ∼ gg (h ● (g ● f)) bwd x = begin ( gg ((h ● g) ● f) x ≡⟨ β₂ x ⟩ gg f (gg (h ● g) x) ≡⟨ P.cong (gg f) (β₂ x) ⟩ gg f (gg g (gg h x)) ≡⟨ P.sym (β₂ (gg h x)) ⟩ gg (g ● f) (gg h x) ≡⟨ P.sym (β₂ x) ⟩ gg (h ● (g ● f)) x ∎) ●-assocl : {A B C D : Set} {f : A ≃ B} {g : B ≃ C} {h : C ≃ D} → h ● (g ● f) ≋ (h ● g) ● f ●-assocl {f = f} {g} {h} = sym≋ (●-assoc {f = f} {g} {h}) -- The setoid of equivalences under ≋ _S≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Setoid (ℓ ⊔ ℓ') (ℓ ⊔ ℓ') _S≃_ A B = record { Carrier = A ≃ B ; _≈_ = _≋_ ; isEquivalence = record { refl = id≋ ; sym = sym≋ ; trans = trans≋ } } module ≋-Reasoning where module _ {a b} {A : Set a} {B : Set b} where open EqR (A S≃ B) public hiding (_≡⟨_⟩_; _≡⟨⟩_) renaming (_≈⟨_⟩_ to _≋⟨_⟩_) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4287056171, "avg_line_length": 29.087431694, "ext": "agda", "hexsha": "84e1e1123e6c00f6aefb0371d23548d7d24d9000", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/EquivEquiv.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/EquivEquiv.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/EquivEquiv.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2579, "size": 5323 }
module Cats.Functor where open import Level open import Relation.Binary using (_Preserves_⟶_) open import Cats.Category.Base open import Cats.Util.Function using () renaming (_∘_ to _⊙_) open import Cats.Util.SetoidMorphism using (_⇒_ ; IsInjective ; IsSurjective) open import Cats.Util.SetoidMorphism.Iso using ( IsIso ; _≅_ ; IsIso→≅ ; Injective∧Surjective→Iso ; Iso→Injective ; Iso→Surjective ) import Cats.Category.Constructions.Iso as Iso open Iso.Build._≅_ infixr 9 _∘_ record Functor {lo la l≈ lo′ la′ l≈′} (C : Category lo la l≈) (D : Category lo′ la′ l≈′) : Set (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′) where private module C = Category C module C≅ = Iso.Build C module D = Category D module D≅ = Iso.Build D field fobj : C.Obj → D.Obj fmap : ∀ {A B} → A C.⇒ B → fobj A D.⇒ fobj B fmap-resp : ∀ {A B} → fmap {A} {B} Preserves C._≈_ ⟶ D._≈_ fmap-id : ∀ {A} → fmap (C.id {A}) D.≈ D.id fmap-∘ : ∀ {A B C} {f : B C.⇒ C} {g : A C.⇒ B} → fmap f D.∘ fmap g D.≈ fmap (f C.∘ g) sfmap : ∀ {a b} → C.Hom a b ⇒ D.Hom (fobj a) (fobj b) sfmap = record { arr = fmap ; resp = fmap-resp } fobj-resp : fobj Preserves C≅._≅_ ⟶ D≅._≅_ fobj-resp {i} {j} x≅y = record { forth = fmap (forth x≅y) ; back = fmap (back x≅y) ; back-forth = begin fmap (back x≅y) D.∘ fmap (forth x≅y) ≈⟨ fmap-∘ ⟩ fmap (back x≅y C.∘ forth x≅y) ≈⟨ fmap-resp (back-forth x≅y) ⟩ fmap C.id ≈⟨ fmap-id ⟩ D.id ∎ ; forth-back = begin fmap (forth x≅y) D.∘ fmap (back x≅y) ≈⟨ fmap-∘ ⟩ fmap (forth x≅y C.∘ back x≅y) ≈⟨ fmap-resp (forth-back x≅y) ⟩ fmap C.id ≈⟨ fmap-id ⟩ D.id ∎ } where open D.≈-Reasoning open Functor public id : ∀ {lo la l≈} {C : Category lo la l≈} → Functor C C id {C = C} = record { fobj = λ x → x ; fmap = λ f → f ; fmap-resp = λ eq → eq ; fmap-id = C.≈.refl ; fmap-∘ = C.≈.refl } where module C = Category C _∘_ : ∀ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} → {C : Category lo la l≈} → {D : Category lo′ la′ l≈′} → {E : Category lo″ la″ l≈″} → Functor D E → Functor C D → Functor C E _∘_ {E = E} F G = record { fobj = fobj F ⊙ fobj G ; fmap = fmap F ⊙ fmap G ; fmap-resp = fmap-resp F ⊙ fmap-resp G ; fmap-id = E.≈.trans (fmap-resp F (fmap-id G)) (fmap-id F) ; fmap-∘ = E.≈.trans (fmap-∘ F) (fmap-resp F (fmap-∘ G)) } where module E = Category E module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} (F : Functor C D) where private module C = Category C module D = Category D IsFaithful : Set (lo ⊔ la ⊔ l≈ ⊔ l≈′) IsFaithful = ∀ {a b} → IsInjective (sfmap F {a} {b}) IsFull : Set (lo ⊔ la ⊔ la′ ⊔ l≈′) IsFull = ∀ {a b} → IsSurjective (sfmap F {a} {b}) IsEmbedding : Set (lo ⊔ la ⊔ l≈ ⊔ la′ ⊔ l≈′) IsEmbedding = ∀ {a b} → IsIso (sfmap F {a} {b}) Embedding→≅ : IsEmbedding → ∀ {a b} → C.Hom a b ≅ D.Hom (fobj F a) (fobj F b) Embedding→≅ embedding = IsIso→≅ (sfmap F) embedding Full∧Faithful→Embedding : IsFull → IsFaithful → IsEmbedding Full∧Faithful→Embedding full faithful = Injective∧Surjective→Iso faithful full Embedding→Full : IsEmbedding → IsFull Embedding→Full embedding = Iso→Surjective embedding Embedding→Faithful : IsEmbedding → IsFaithful Embedding→Faithful embedding = Iso→Injective embedding
{ "alphanum_fraction": 0.5376254181, "avg_line_length": 24.9166666667, "ext": "agda", "hexsha": "6d6d7d8e64d3a3b1ef480e53b1a39b839358b176", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Functor.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Functor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1457, "size": 3588 }
{-# OPTIONS --prop --without-K --rewriting #-} -- Step effect. open import Calf.CostMonoid module Calf.Step (costMonoid : CostMonoid) where open CostMonoid costMonoid open import Calf.Prelude open import Calf.Metalanguage open import Calf.PhaseDistinction open import Relation.Binary.PropositionalEquality cost : tp neg cost = meta ℂ postulate step : ∀ (B : tp neg) → cmp cost → cmp B → cmp B step/id : ∀ {B : tp neg} {e : cmp B} → step B zero e ≡ e {-# REWRITE step/id #-} step/concat : ∀ {B e p q} → step B p (step B q e) ≡ step B (p + q) e {-# REWRITE step/concat #-} U_step : ∀ {A} {X : val A → tp neg} {e n} → U (tbind {A} (step (F A) n e) X) ≡ U (tbind {A} e X) {-# REWRITE U_step #-} Π/step : ∀ {A} {X : val A → tp neg} {f : cmp (Π A X)} {n} → step (Π A X) n f ≡ λ x → step (X x) n (f x) {-# REWRITE Π/step #-} bind/step : ∀ {A} {X} {e f n} → bind {A} X (step (F A) n e) f ≡ step X n (bind {A} X e f) dbind/step : ∀ {A} {X : val A → tp neg} {e f n} → dbind {A} X (step (F A) n e) f ≡ step (tbind {A} e X) n (dbind {A} X e f) {-# REWRITE bind/step dbind/step #-} step/ext : ∀ X → (e : cmp X) → (c : ℂ) → ◯ (step X c e ≡ e) -- sadly the above cannot be made an Agda rewrite rule
{ "alphanum_fraction": 0.5662063363, "avg_line_length": 30.775, "ext": "agda", "hexsha": "da25f2be68908437b2f9aeda00bbea4f56949afb", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/Step.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/Step.agda", "max_line_length": 125, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/Step.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 491, "size": 1231 }
open import Prelude hiding (module Fin) renaming (_≟_ to _N≟_) module Implicits.Syntax.Type where open import Data.Fin.Substitution open import Data.Nat.Properties as NatProps open import Data.Star using (Star; ε; _◅_) open import Data.List open import Data.List.All hiding (map) open import Data.Maybe hiding (map; All) open import Data.Product hiding (map) open import Data.Fin as Fin hiding (_+_) open import Data.Fin.Properties as FinProp using () open import Extensions.Nat import Data.Vec infixr 10 _→'_ infixr 10 _⇒_ mutual data SimpleType (ν : ℕ) : Set where tc : ℕ → SimpleType ν tvar : (n : Fin ν) → SimpleType ν _→'_ : Type ν → Type ν → SimpleType ν data Type (ν : ℕ) : Set where simpl : SimpleType ν → Type ν _⇒_ : Type ν → Type ν → Type ν ∀' : Type (suc ν) → Type ν TVar : ∀ {ν} → Fin ν → Type ν TVar = simpl ∘ tvar TC : ∀ {ν} → ℕ → Type ν TC = simpl ∘ tc is-∀' : ∀ {ν} → Type ν → Set is-∀' (simpl x) = ⊥ is-∀' (_ ⇒ _) = ⊥ is-∀' (∀' x) = ⊤ fvars : ∀ {ν} → Type ν → List (Fin ν) fvars (simpl (tc x)) = List.[] fvars (simpl (tvar n)) = n List.∷ List.[] fvars (simpl (x →' y)) = fvars x ++ fvars y fvars (a ⇒ b) = fvars a ++ fvars b fvars (∀' a) = gfilter (λ{ (Fin.zero) → nothing; (suc n) → just n}) (fvars a) occ : ∀ {ν} → ℕ → Type ν → ℕ occ α (simpl (tc x)) = 0 occ α (simpl (tvar n)) with α N≟ (toℕ n) occ α (simpl (tvar n)) | yes p = 1 occ α (simpl (tvar n)) | no ¬p = 0 occ α (simpl (a →' b)) = occ α a + occ α b occ α (a ⇒ b) = occ α a + occ α b occ α (∀' b) = occ α b module Functions where -- proposition that states that the given polytype -- is a (possibly polymorphic) function data IsFunction {ν : ℕ} : Type ν → Set where lambda : (a b : Type ν) → IsFunction (simpl $ a →' b) ∀'-lambda : ∀ {f} → IsFunction f → IsFunction (∀' f) -- decision procedure for IsFunction is-function : ∀ {ν} → (a : Type ν) → Dec (IsFunction a) is-function (simpl (tc _)) = no (λ ()) is-function (simpl (tvar n)) = no (λ ()) is-function (simpl (a →' b)) = yes (lambda a b) is-function (x ⇒ x₁) = no (λ ()) is-function (∀' a) with is-function a is-function (∀' a) | yes a-is-f = yes $ ∀'-lambda a-is-f is-function (∀' a) | no a-not-f = no (λ{ (∀'-lambda a-is-f) → a-not-f a-is-f }) domain : ∀ {ν} {f : Type ν} → IsFunction f → Type ν domain (lambda a b) = a domain (∀'-lambda f) = ∀' (domain f) codomain : ∀ {ν} {f : Type ν} → IsFunction f → Type ν codomain (lambda a b) = b codomain (∀'-lambda f) = ∀' (codomain f) module Rules where -- proposition that states that the given polytype -- is a (possibly polymorphic) rule type data IsRule {ν : ℕ} : Type ν → Set where rule : (a b : Type ν) → IsRule (a ⇒ b) ∀'-rule : ∀ {f} → IsRule f → IsRule (∀' f) -- decision procedure for IsRule is-rule : ∀ {ν} → (a : Type ν) → Dec (IsRule a) is-rule (simpl (tc _)) = no (λ ()) is-rule (simpl (tvar n)) = no (λ ()) is-rule (simpl (a →' b)) = no (λ ()) is-rule (a ⇒ b) = yes (rule a b) is-rule (∀' a) with is-rule a is-rule (∀' a) | yes a-is-f = yes $ ∀'-rule a-is-f is-rule (∀' a) | no a-not-f = no (λ{ (∀'-rule a-is-f) → a-not-f a-is-f }) domain : ∀ {ν} {f : Type ν} → IsRule f → Type ν domain (rule a b) = a domain (∀'-rule f) = ∀' (domain f) codomain : ∀ {ν} {f : Type ν} → IsRule f → Type ν codomain (rule a b) = b codomain (∀'-rule f) = ∀' (codomain f) to-function : ∀ {ν} {f : Type ν} → IsRule f → Type ν to-function (rule a b) = simpl (a →' b) to-function (∀'-rule f) = ∀' (to-function f) -- decidable equality on types _≟_ : ∀ {ν} → (a b : Type ν) → Dec (a ≡ b) simpl (tc x) ≟ simpl (tc y) with x N≟ y simpl (tc x) ≟ simpl (tc y) | yes p = yes (cong (simpl ∘ tc) p) simpl (tc x) ≟ simpl (tc y) | no ¬p = no (λ x=y → ¬p $ helper x=y ) where helper : ∀ {x y} → (simpl (tc x)) ≡ (simpl (tc y)) → x ≡ y helper refl = refl simpl (tc x) ≟ simpl (tvar n) = no (λ ()) simpl (tc x) ≟ simpl (x₁ →' x₂) = no (λ ()) simpl (tvar n) ≟ simpl (tc x) = no (λ ()) simpl (tvar n) ≟ simpl (tvar m) with n FinProp.≟ m simpl (tvar n) ≟ simpl (tvar m) | yes n≡m = yes (cong (simpl ∘ tvar) n≡m) simpl (tvar n) ≟ simpl (tvar m) | no n≢m = no (λ x=y → n≢m $ helper x=y) where helper : ∀ {n m} → (simpl (tvar n)) ≡ (simpl (tvar m)) → n ≡ m helper refl = refl simpl (tvar n) ≟ simpl (x →' x₁) = no (λ ()) simpl (a →' b) ≟ simpl (tc x₂) = no (λ ()) simpl (a →' b) ≟ simpl (tvar n) = no (λ ()) simpl (a →' b) ≟ simpl (a' →' b') with a ≟ a' | b ≟ b' simpl (a →' b) ≟ simpl (a' →' b') | yes p | yes q = yes (cong₂ (λ u v → simpl $ u →' v) p q) simpl (a →' b) ≟ simpl (a' →' b') | yes p | no ¬q = no (λ x → ¬q (helper x) ) where helper : ∀ {a b a' b'} → (simpl $ a →' b) ≡ (simpl $ a' →' b') → b ≡ b' helper refl = refl simpl (a →' b) ≟ simpl (a' →' b') | no ¬p | _ = no (λ x → ¬p (helper x) ) where helper : ∀ {a b a' b'} → (simpl $ a →' b) ≡ (simpl $ a' →' b') → a ≡ a' helper refl = refl simpl (tc x) ≟ (b ⇒ b₁) = no (λ ()) simpl (tvar n) ≟ (b ⇒ b₁) = no (λ ()) simpl (x →' x₁) ≟ (b ⇒ b₁) = no (λ ()) simpl (tc x) ≟ ∀' b = no (λ ()) simpl (tvar n) ≟ ∀' b = no (λ ()) simpl (x →' x₁) ≟ ∀' b = no (λ ()) (a ⇒ b) ≟ simpl x = no (λ ()) (a ⇒ b) ≟ (a' ⇒ b') with a ≟ a' | b ≟ b' (a ⇒ b) ≟ (a' ⇒ b') | yes p | yes q = yes (cong₂ (λ u v → u ⇒ v) p q) (a ⇒ b) ≟ (a' ⇒ b') | yes p | no ¬q = no (λ x → ¬q (helper x) ) where helper : ∀ {a b a' b'} → (a ⇒ b) ≡ (a' ⇒ b') → b ≡ b' helper refl = refl (a ⇒ b) ≟ (a' ⇒ b') | no ¬p | _ = no (λ x → ¬p (helper x) ) where helper : ∀ {a b a' b'} → (a ⇒ b) ≡ (a' ⇒ b') → a ≡ a' helper refl = refl (a ⇒ a₁) ≟ ∀' b = no (λ ()) ∀' a ≟ simpl x = no (λ ()) ∀' a ≟ (b ⇒ b₁) = no (λ ()) ∀' a ≟ ∀' b with a ≟ b ∀' a ≟ ∀' b | yes p = yes (cong ∀' p) ∀' a ≟ ∀' b | no ¬p = no (λ u → ¬p (helper u)) where helper : ∀ {ν} {a b : Type (suc ν)} → ∀' a ≡ ∀' b → a ≡ b helper refl = refl -- 'head' of the context type _◁ : ∀ {ν} → Type ν → ∃ λ μ → Type μ simpl x ◁ = , simpl x (a ⇒ b) ◁ = b ◁ ∀' a ◁ = a ◁ mutual data occ' {ν} : Fin ν → Type ν → Set where ⇒-left : ∀ {n a b} → (occ' n a) → occ' n (a ⇒ b) ⇒-right : ∀ {n a b} → (occ' n b) → occ' n (a ⇒ b) ∀' : ∀ {a n} → (occ' (suc n) a) → occ' n (∀' a) data occS {ν} : Fin ν → SimpleType ν → Set where tvar : (n : Fin ν) → occS n (tvar n) →'-left : ∀ {n a b} → (occ' n a) → occS n (a →' b) →'-right : ∀ {n a b} → (occ' n b) → occS n (a →' b) data _⊢unamb_ {ν} : List (Fin ν) → Type ν → Set where ua-simp : ∀ l {τ} → All (λ e → occS e τ) l → l ⊢unamb (simpl τ) ua-iabs : ∀ {l a b} → l ⊢unamb b → [] ⊢unamb a → l ⊢unamb (a ⇒ b) ua-tabs : ∀ {l} {a : Type (suc ν)} → (zero List.∷ (map suc l)) ⊢unamb a → l ⊢unamb (∀' a) module unamb-test where x : Type 1 x = ∀' (simpl (tvar zero)) px : [] ⊢unamb x px = ua-tabs (ua-simp (zero ∷ []) (tvar zero All.∷ All.[])) y : Type 1 y = ∀' (simpl (tvar (suc zero))) ¬py : ¬ ([] ⊢unamb y) ¬py (ua-tabs (ua-simp .(zero ∷ []) (() All.∷ x))) z : Type 1 z = ∀' (β ⇒ α) where α = (simpl (tvar zero)) β = (simpl (tvar (suc zero))) pz : [] ⊢unamb z pz = ua-tabs (ua-iabs (ua-simp (zero ∷ []) (tvar zero All.∷ All.[])) (ua-simp [] All.[])) z' : Type 1 z' = ∀' (α ⇒ β) where α = (simpl (tvar zero)) β = (simpl (tvar (suc zero))) ¬pz' : ¬ ([] ⊢unamb z') ¬pz' (ua-tabs (ua-iabs (ua-simp .(zero ∷ []) (() All.∷ pxs)) x₁)) read∘show : Type 1 read∘show = ∀' ((simpl (string →' α)) ⇒ ((simpl (α →' string)) ⇒ (simpl (string →' string)))) where α = (simpl (tvar zero)) string = (simpl (tvar (suc zero))) ¬pread∘show : ¬ [] ⊢unamb read∘show ¬pread∘show (ua-tabs (ua-iabs (ua-iabs (ua-simp .(zero ∷ []) (→'-left () All.∷ _)) _) _)) ¬pread∘show (ua-tabs (ua-iabs (ua-iabs (ua-simp .(zero ∷ []) (→'-right () All.∷ _)) _) _)) open unamb-test
{ "alphanum_fraction": 0.5008224725, "avg_line_length": 32.7925311203, "ext": "agda", "hexsha": "f0aa126ed630737a4ddeaecb545935814a3b1420", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Syntax/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Syntax/Type.agda", "max_line_length": 95, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Syntax/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 3373, "size": 7903 }
module Lectures.Three where open import Lectures.One open import Lectures.Two -- Introduce propositional equality data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} -- Comment on precendences infix 10 _≡_ record Equivalence (_~_ : ∀ {A : Set} → A → A → Set) : Set₁ where field reflexive : ∀ {A} {a : A} → a ~ a symmetric : ∀ {A} {a b : A} → a ~ b → b ~ a transitive : ∀ {A} {a b c : A} → a ~ b → b ~ c → a ~ c open Equivalence sym : ∀ {A} {a b : A} → a ≡ b → b ≡ a sym refl = refl trans : ∀ {A} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl refl = refl -- Comment on copatterns ≡-Equivalence : Equivalence _≡_ reflexive ≡-Equivalence = refl symmetric ≡-Equivalence = sym transitive ≡-Equivalence = trans cong : ∀ {A B} {a b : A} → (f : A → B) → a ≡ b → f a ≡ f b cong f refl = refl -- Leibniz equality? subst : ∀ {A} {x y : A} {P : A → Set} → P x → x ≡ y → P y subst p refl = p _ : _+_ ≡ _+_ _ = refl -- _ : _+_ ≡ λ x y → y + x -- _ = {!refl!} -- Comment on postulates postulate extensionality : {A B : Set} {f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g +-idʳ : ∀ x → x ≡ x + 0 +-idʳ zero = refl +-idʳ (suc x) = cong suc (+-idʳ _) +-suc : ∀ x y → suc (x + y) ≡ x + suc y +-suc zero y = refl +-suc (suc x) y = cong suc (+-suc _ _) +-comm : ∀ x y → x + y ≡ y + x +-comm zero y = +-idʳ _ +-comm (suc x) y = trans (cong suc (+-comm x y)) (+-suc _ _) +-assoc : ∀ x y z → x + (y + z) ≡ (x + y) + z +-assoc zero y z = refl +-assoc (suc x) y z = cong suc (+-assoc x y z)
{ "alphanum_fraction": 0.5225048924, "avg_line_length": 22.5441176471, "ext": "agda", "hexsha": "c4f26ccf189349bdecf799194b0c1e0f4ff079bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UoG-Agda/Agda101", "max_forks_repo_path": "Lectures/Three.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UoG-Agda/Agda101", "max_issues_repo_path": "Lectures/Three.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UoG-Agda/Agda101", "max_stars_repo_path": "Lectures/Three.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 659, "size": 1533 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Support.SetoidFunctions where open import Level open import Function using (_on_) open import Relation.Binary as B using (_=[_]⇒_) open import Relation.Binary.PropositionalEquality using () renaming (cong to ≡-cong; cong₂ to ≡-cong₂) open import Data.Product using (<_,_>; _×_; _,_) open import Categories.Support.Equivalence infixr 0 _⟶_ record _⟶_ {cf ℓf ct ℓt} (From : Setoid cf ℓf) (To : Setoid ct ℓt) : Set (cf ⊔ ℓf ⊔ ct ⊔ ℓt) where infixl 5 _⟨$⟩_ field _⟨$⟩_ : (x : Setoid.Carrier From) → Setoid.Carrier To .cong : Setoid._≈_ From =[ _⟨$⟩_ ]⇒ Setoid._≈_ To open _⟶_ public id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A id = record { _⟨$⟩_ = Function.id; cong = Function.id } infixr 9 _∙_ _∙_ : ∀ {ca ℓa} {A : Setoid ca ℓa} {cb ℓb} {B : Setoid cb ℓb} {cc ℓc} {C : Setoid cc ℓc} → B ⟶ C → A ⟶ B → A ⟶ C f ∙ g = record { _⟨$⟩_ = Function._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g) ; cong = Function._∘_ (cong f) (cong g) } const : ∀ {ca ℓa} {A : Setoid ca ℓa} {cb ℓb} {B : Setoid cb ℓb} → Setoid.Carrier B → A ⟶ B const {B = B} b = record { _⟨$⟩_ = Function.const b ; cong = Function.const (Setoid.refl B) } →-to-⟶ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → (set→setoid A ⟶ set→setoid B) →-to-⟶ f = record { _⟨$⟩_ = f; cong = ≡-cong f } ------------------------------------------------------------------------ -- Function setoids setoid : ∀ {cf ℓf ct ℓt} (From : Setoid cf ℓf) → Setoid ct ℓt → Setoid _ _ setoid From To = record { Carrier = From ⟶ To ; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y ; isEquivalence = record { refl = λ {f} → cong f ; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y)) ; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y) } } where open module From = Setoid From using () renaming (_≈_ to _≈₁_) open module To = Setoid To using () renaming (_≈_ to _≈₂_) infixr 0 _⇨_ _⇨_ : ∀ {cf ℓf ct ℓt} → Setoid cf ℓf → Setoid ct ℓt → Setoid _ _ From ⇨ To = setoid From To ⟪_,_⟫ : ∀ {cf ℓf ct₁ ℓt₁ ct₂ ℓt₂} {From : Setoid cf ℓf} {To₁ : Setoid ct₁ ℓt₁} {To₂ : Setoid ct₂ ℓt₂} (f₁ : From ⟶ To₁) (f₂ : From ⟶ To₂) → (From ⟶ (To₁ ×-setoid To₂)) ⟪ f₁ , f₂ ⟫ = record { _⟨$⟩_ = < (_⟨$⟩_ f₁) , (_⟨$⟩_ f₂) > ; cong = < cong f₁ , cong f₂ > } ⟪_,_⟫′ : ∀ {cf ℓf ct₁ ct₂} {From : Setoid cf ℓf} {To₁ : Set ct₁} {To₂ : Set ct₂} (f₁ : From ⟶ set→setoid To₁) (f₂ : From ⟶ set→setoid To₂) → (From ⟶ set→setoid (To₁ × To₂)) ⟪ f₁ , f₂ ⟫′ = record { _⟨$⟩_ = < (_⟨$⟩_ f₁) , (_⟨$⟩_ f₂) > ; cong = λ x≈y → ≡-cong₂ _,_ (cong f₁ x≈y) (cong f₂ x≈y) }
{ "alphanum_fraction": 0.522945966, "avg_line_length": 33.775, "ext": "agda", "hexsha": "c8c0d4a69dd2004ca67b446fd9440240622afcf1", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Support/SetoidFunctions.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Support/SetoidFunctions.agda", "max_line_length": 172, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Support/SetoidFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1203, "size": 2702 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Equational.Theory.Base where open import Function using (_∘_) open import Fragment.Algebra.Signature open import Fragment.Algebra.Free open import Fragment.Algebra.Algebra open import Fragment.Algebra.Properties open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import Data.Product using (_×_; map) Eq : (Σ : Signature) → (n : ℕ) → Set Eq Σ n = ∥ F Σ n ∥ × ∥ F Σ n ∥ record Theory : Set₁ where field Σ : Signature eqs : ℕ → Set _⟦_⟧ₑ : ∀ {arity} → eqs arity → Eq Σ arity open Signature Σ open Theory public data ExtendedEq (Θ : Theory) (E : ℕ → Set) : ℕ → Set where newₑ : ∀ {n} → E n → ExtendedEq Θ E n oldₑ : ∀ {n} → eqs Θ n → ExtendedEq Θ E n _⦅_⦆ₒ : (Θ : Theory) → (O : ℕ → Set) → Theory Θ ⦅ O ⦆ₒ = record { Σ = (Σ Θ) ⦅ O ⦆ ; eqs = eqs Θ ; _⟦_⟧ₑ = (map extend extend) ∘ Θ ⟦_⟧ₑ } _⦅_/_⦆ : (Θ : Theory) → (E : ℕ → Set) → (∀ {n} → E n → Eq (Σ Θ) n) → Theory Θ ⦅ E / ⟦_⟧' ⦆ = record { Σ = Σ Θ ; eqs = ExtendedEq Θ E ; _⟦_⟧ₑ = withE } where withE : ∀ {n} → ExtendedEq Θ E n → Eq (Σ Θ) n withE (newₑ eq) = ⟦ eq ⟧' withE (oldₑ eq) = Θ ⟦ eq ⟧ₑ _⦅_∣_/_⦆ : (Θ : Theory) → (O : ℕ → Set) → (E : ℕ → Set) → (∀ {n} → E n → Eq ((Σ Θ) ⦅ O ⦆) n) → Theory Θ ⦅ O ∣ E / ⟦_⟧' ⦆ = (Θ ⦅ O ⦆ₒ) ⦅ E / ⟦_⟧' ⦆
{ "alphanum_fraction": 0.4765625, "avg_line_length": 26.9473684211, "ext": "agda", "hexsha": "cfc59a92de92477a42e02e1141f1c965ae6006ca", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Theory/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Theory/Base.agda", "max_line_length": 58, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Theory/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 639, "size": 1536 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Algebra where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphism open import Cubical.Algebra.Group.MorphismProperties open import Cubical.HITs.PropositionalTruncation hiding (map) open Iso open GroupHom private variable ℓ ℓ' ℓ₁ ℓ₂ ℓ₃ : Level ------- elementary properties of morphisms -------- module _ (G : Group {ℓ}) (H : Group {ℓ'}) where module G = GroupStr (snd G) module H = GroupStr (snd H) -0≡0 : G.- G.0g ≡ G.0g -0≡0 = sym (G.lid _) ∙ G.invr _ -- ϕ(0) ≡ 0 morph0→0 : (f : GroupHom G H) → f .fun G.0g ≡ H.0g morph0→0 fh@(grouphom f _) = f G.0g ≡⟨ sym (H.rid _) ⟩ f G.0g H.+ H.0g ≡⟨ (λ i → f G.0g H.+ H.invr (f G.0g) (~ i)) ⟩ f G.0g H.+ (f G.0g H.- f G.0g) ≡⟨ H.assoc _ _ _ ⟩ (f G.0g H.+ f G.0g) H.- f G.0g ≡⟨ sym (cong (λ x → x H.+ (H.- f G.0g)) (sym (cong f (G.lid _)) ∙ isHom fh G.0g G.0g)) ⟩ f G.0g H.- f G.0g ≡⟨ H.invr _ ⟩ H.0g ∎ -- ϕ(- x) = - ϕ(x) morphMinus : (f : GroupHom G H) → (g : ⟨ G ⟩) → f .fun (G.- g) ≡ H.- (f .fun g) morphMinus fc@(grouphom f fh) g = f (G.- g) ≡⟨ sym (H.rid _) ⟩ f (G.- g) H.+ H.0g ≡⟨ cong (f (G.- g) H.+_) (sym (H.invr _)) ⟩ f (G.- g) H.+ (f g H.- f g) ≡⟨ H.assoc _ _ _ ⟩ (f (G.- g) H.+ f g) H.- f g ≡⟨ cong (H._+ (H.- f g)) helper ⟩ H.0g H.- f g ≡⟨ H.lid _ ⟩ H.- f g ∎ where helper : f (G.- g) H.+ f g ≡ H.0g helper = sym (fh (G.- g) g) ∙∙ cong f (G.invl g) ∙∙ morph0→0 fc -- ----------- Alternative notions of isomorphisms -------------- record GroupIso {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where constructor iso field map : GroupHom G H inv : ⟨ H ⟩ → ⟨ G ⟩ rightInv : section (GroupHom.fun map) inv leftInv : retract (GroupHom.fun map) inv record BijectionIso {ℓ ℓ'} (A : Group {ℓ}) (B : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where constructor bij-iso field map' : GroupHom A B inj : isInjective A B map' surj : isSurjective A B map' -- "Very" short exact sequences -- i.e. an exact sequence A → B → C → D where A and D are trivial record vSES {ℓ ℓ' ℓ'' ℓ'''} (A : Group {ℓ}) (B : Group {ℓ'}) (leftGr : Group {ℓ''}) (rightGr : Group {ℓ'''}) : Type (ℓ-suc (ℓ-max ℓ (ℓ-max ℓ' (ℓ-max ℓ'' ℓ''')))) where constructor ses field isTrivialLeft : isProp ⟨ leftGr ⟩ isTrivialRight : isProp ⟨ rightGr ⟩ left : GroupHom leftGr A right : GroupHom B rightGr ϕ : GroupHom A B Ker-ϕ⊂Im-left : (x : ⟨ A ⟩) → isInKer A B ϕ x → isInIm leftGr A left x Ker-right⊂Im-ϕ : (x : ⟨ B ⟩) → isInKer B rightGr right x → isInIm A B ϕ x open BijectionIso open GroupIso open vSES Iso+Hom→GrIso : {G : Group {ℓ}} {H : Group {ℓ₁}} → (e : Iso ⟨ G ⟩ ⟨ H ⟩) → isGroupHom G H (Iso.fun e) → GroupIso G H fun (map (Iso+Hom→GrIso e hom)) = Iso.fun e isHom (map (Iso+Hom→GrIso e hom)) = hom inv (Iso+Hom→GrIso e hom) = Iso.inv e rightInv (Iso+Hom→GrIso e hom) = Iso.rightInv e leftInv (Iso+Hom→GrIso e hom) = Iso.leftInv e compGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} {A : Group {ℓ₂}} → GroupIso G H → GroupIso H A → GroupIso G A map (compGroupIso iso1 iso2) = compGroupHom (map iso1) (map iso2) inv (compGroupIso iso1 iso2) = inv iso1 ∘ inv iso2 rightInv (compGroupIso iso1 iso2) a = cong (fun (map iso2)) (rightInv iso1 _) ∙ rightInv iso2 a leftInv (compGroupIso iso1 iso2) a = cong (inv iso1) (leftInv iso2 _) ∙ leftInv iso1 a isGroupHomInv' : {G : Group {ℓ}} {H : Group {ℓ₁}} (f : GroupIso G H) → isGroupHom H G (inv f) isGroupHomInv' {G = G} {H = H} f h h' = isInj-f _ _ ( f' (g (h ⋆² h')) ≡⟨ (rightInv f) _ ⟩ (h ⋆² h') ≡⟨ sym (cong₂ _⋆²_ (rightInv f h) (rightInv f h')) ⟩ (f' (g h) ⋆² f' (g h')) ≡⟨ sym (isHom (map f) _ _) ⟩ f' (g h ⋆¹ g h') ∎) where f' = fun (map f) _⋆¹_ = GroupStr._+_ (snd G) _⋆²_ = GroupStr._+_ (snd H) g = inv f isInj-f : (x y : ⟨ G ⟩) → f' x ≡ f' y → x ≡ y isInj-f x y p = sym (leftInv f _) ∙∙ cong g p ∙∙ leftInv f _ invGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} → GroupIso G H → GroupIso H G fun (map (invGroupIso iso1)) = inv iso1 isHom (map (invGroupIso iso1)) = isGroupHomInv' iso1 inv (invGroupIso iso1) = fun (map iso1) rightInv (invGroupIso iso1) = leftInv iso1 leftInv (invGroupIso iso1) = rightInv iso1 dirProdGroupIso : {G : Group {ℓ}} {H : Group {ℓ₁}} {A : Group {ℓ₂}} {B : Group {ℓ₃}} → GroupIso G H → GroupIso A B → GroupIso (dirProd G A) (dirProd H B) fun (map (dirProdGroupIso iso1 iso2)) prod = fun (map iso1) (fst prod) , fun (map iso2) (snd prod) isHom (map (dirProdGroupIso iso1 iso2)) a b = ΣPathP (isHom (map iso1) (fst a) (fst b) , isHom (map iso2) (snd a) (snd b)) inv (dirProdGroupIso iso1 iso2) prod = (inv iso1) (fst prod) , (inv iso2) (snd prod) rightInv (dirProdGroupIso iso1 iso2) a = ΣPathP (rightInv iso1 (fst a) , (rightInv iso2 (snd a))) leftInv (dirProdGroupIso iso1 iso2) a = ΣPathP (leftInv iso1 (fst a) , (leftInv iso2 (snd a))) GrIsoToGrEquiv : {G : Group {ℓ}} {H : Group {ℓ₂}} → GroupIso G H → GroupEquiv G H GroupEquiv.eq (GrIsoToGrEquiv i) = isoToEquiv (iso (fun (map i)) (inv i) (rightInv i) (leftInv i)) GroupEquiv.isHom (GrIsoToGrEquiv i) = isHom (map i) --- Proofs that BijectionIso and vSES both induce isomorphisms --- BijectionIsoToGroupIso : {A : Group {ℓ}} {B : Group {ℓ'}} → BijectionIso A B → GroupIso A B BijectionIsoToGroupIso {A = A} {B = B} i = grIso where module A = GroupStr (snd A) module B = GroupStr (snd B) f = fun (map' i) helper : (b : _) → isProp (Σ[ a ∈ ⟨ A ⟩ ] f a ≡ b) helper _ a b = Σ≡Prop (λ _ → isSetCarrier B _ _) (fst a ≡⟨ sym (A.rid _) ⟩ fst a A.+ A.0g ≡⟨ cong (fst a A.+_) (sym (A.invl _)) ⟩ fst a A.+ ((A.- fst b) A.+ fst b) ≡⟨ A.assoc _ _ _ ⟩ (fst a A.- fst b) A.+ fst b ≡⟨ cong (A._+ fst b) idHelper ⟩ A.0g A.+ fst b ≡⟨ A.lid _ ⟩ fst b ∎) where idHelper : fst a A.- fst b ≡ A.0g idHelper = inj i _ (isHom (map' i) (fst a) (A.- (fst b)) ∙ (cong (f (fst a) B.+_) (morphMinus A B (map' i) (fst b)) ∙∙ cong (B._+ (B.- f (fst b))) (snd a ∙ sym (snd b)) ∙∙ B.invr (f (fst b)))) grIso : GroupIso A B map grIso = map' i inv grIso b = (rec (helper b) (λ a → a) (surj i b)) .fst rightInv grIso b = (rec (helper b) (λ a → a) (surj i b)) .snd leftInv grIso b j = rec (helper (f b)) (λ a → a) (propTruncIsProp (surj i (f b)) ∣ b , refl ∣ j) .fst BijectionIsoToGroupEquiv : {A : Group {ℓ}} {B : Group {ℓ₂}} → BijectionIso A B → GroupEquiv A B BijectionIsoToGroupEquiv i = GrIsoToGrEquiv (BijectionIsoToGroupIso i) vSES→GroupIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Group {ℓ}} {B : Group {ℓ'}} (leftGr : Group {ℓ''}) (rightGr : Group {ℓ'''}) → vSES A B leftGr rightGr → GroupIso A B vSES→GroupIso {A = A} lGr rGr vses = BijectionIsoToGroupIso theIso where theIso : BijectionIso _ _ map' theIso = vSES.ϕ vses inj theIso a inker = rec (isSetCarrier A _ _) (λ (a , p) → sym p ∙∙ cong (fun (left vses)) (isTrivialLeft vses a _) ∙∙ morph0→0 lGr A (left vses)) (Ker-ϕ⊂Im-left vses a inker) surj theIso a = Ker-right⊂Im-ϕ vses a (isTrivialRight vses _ _) vSES→GroupEquiv : {A : Group {ℓ}} {B : Group {ℓ₁}} (leftGr : Group {ℓ₂}) (rightGr : Group {ℓ₃}) → vSES A B leftGr rightGr → GroupEquiv A B vSES→GroupEquiv {A = A} lGr rGr vses = GrIsoToGrEquiv (vSES→GroupIso lGr rGr vses) -- The trivial group is a unit. lUnitGroupIso : ∀ {ℓ} {G : Group {ℓ}} → GroupIso (dirProd trivialGroup G) G fun (map lUnitGroupIso) = snd isHom (map lUnitGroupIso) _ _ = refl inv lUnitGroupIso g = tt , g rightInv lUnitGroupIso _ = refl leftInv lUnitGroupIso _ = refl rUnitGroupIso : ∀ {ℓ} {G : Group {ℓ}} → GroupIso (dirProd G trivialGroup) G fun (map rUnitGroupIso) = fst isHom (map rUnitGroupIso) _ _ = refl inv rUnitGroupIso g = g , tt rightInv rUnitGroupIso _ = refl leftInv rUnitGroupIso _ = refl lUnitGroupEquiv : ∀ {ℓ} {G : Group {ℓ}} → GroupEquiv (dirProd trivialGroup G) G lUnitGroupEquiv = GrIsoToGrEquiv lUnitGroupIso rUnitGroupEquiv : ∀ {ℓ} {G : Group {ℓ}} → GroupEquiv (dirProd G trivialGroup) G rUnitGroupEquiv = GrIsoToGrEquiv rUnitGroupIso IsoContrGroupTrivialGroup : {G : Group {ℓ}} → isContr ⟨ G ⟩ → GroupIso G trivialGroup fun (map (IsoContrGroupTrivialGroup contr)) _ = tt isHom (map (IsoContrGroupTrivialGroup contr)) _ _ = refl inv (IsoContrGroupTrivialGroup contr) x = fst contr rightInv (IsoContrGroupTrivialGroup contr) x = refl leftInv (IsoContrGroupTrivialGroup contr) x = snd contr x contrGroup≅trivialGroup : {G : Group {ℓ}} → isContr ⟨ G ⟩ → GroupEquiv G trivialGroup contrGroup≅trivialGroup contr = GrIsoToGrEquiv (IsoContrGroupTrivialGroup contr) GroupIso→Iso : {A : Group {ℓ}} {B : Group {ℓ₁}} → GroupIso A B → Iso ⟨ A ⟩ ⟨ B ⟩ fun (GroupIso→Iso i) = fun (map i) inv (GroupIso→Iso i) = inv i rightInv (GroupIso→Iso i) = rightInv i leftInv (GroupIso→Iso i) = leftInv i congIdLeft≡congIdRight : {A : Type ℓ} (_+A_ : A → A → A) (-A_ : A → A) (0A : A) (rUnitA : (x : A) → x +A 0A ≡ x) (lUnitA : (x : A) → 0A +A x ≡ x) → (r≡l : rUnitA 0A ≡ lUnitA 0A) → (p : 0A ≡ 0A) → cong (0A +A_) p ≡ cong (_+A 0A) p congIdLeft≡congIdRight _+A_ -A_ 0A rUnitA lUnitA r≡l p = rUnit (cong (0A +A_) p) ∙∙ ((λ i → (λ j → lUnitA 0A (i ∧ j)) ∙∙ cong (λ x → lUnitA x i) p ∙∙ λ j → lUnitA 0A (i ∧ ~ j)) ∙∙ cong₂ (λ x y → x ∙∙ p ∙∙ y) (sym r≡l) (cong sym (sym r≡l)) ∙∙ λ i → (λ j → rUnitA 0A (~ i ∧ j)) ∙∙ cong (λ x → rUnitA x (~ i)) p ∙∙ λ j → rUnitA 0A (~ i ∧ ~ j)) ∙∙ sym (rUnit (cong (_+A 0A) p))
{ "alphanum_fraction": 0.5733958114, "avg_line_length": 40.6887159533, "ext": "agda", "hexsha": "1deae02bfeaaf1bb7f4ce390efa59210b7c5221d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Algebra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Algebra.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Algebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4189, "size": 10457 }
{-# OPTIONS --copatterns --sized-types #-} -- {-# OPTIONS -v tc.size.solve:60 #-} open import Common.Size open import Common.Prelude open import Common.Product -- Sized streams via head/tail. record Stream {i : Size} (A : Set) : Set where coinductive constructor delay field force : ∀ {j : Size< i} → A × Stream {j} A open Stream public _∷ˢ_ : ∀{i A} → A → Stream {i} A → Stream {↑ i} A force (a ∷ˢ s) = a , s -- Prepending a list to a stream. _++ˢ_ : ∀ {i A} → List A → Stream {i} A → Stream {i} A (a ∷ as) ++ˢ s = a ∷ˢ (as ++ˢ s) [] ++ˢ s = s
{ "alphanum_fraction": 0.582010582, "avg_line_length": 22.68, "ext": "agda", "hexsha": "7e093d0912b2e119d3d33562c4732c67d8f5fa68", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/OutStream.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/OutStream.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/OutStream.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 208, "size": 567 }
{-# OPTIONS --without-K --safe #-} -- The Underlying category of an Enriched category over a Monoidal category V open import Categories.Category.Monoidal using (Monoidal) open import Categories.Category.Core renaming (Category to Setoid-Category) module Categories.Enriched.Category.Underlying {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where open import Level open import Function using (_$_) open import Categories.Enriched.Category open import Categories.Category.Helper open import Categories.Category.Monoidal.Properties M using (module Kelly's) open import Categories.Category.Monoidal.Reasoning M open import Categories.Category.Monoidal.Utilities M using (module Shorthands) open import Categories.Morphism.Reasoning V import Categories.Morphism.IsoEquiv V as IsoEquiv open Setoid-Category V renaming (Obj to ObjV; id to idV) open Monoidal M open Shorthands open IsoEquiv._≃_ -- A V-category C does not have morphisms of its own, but the -- collection of V-morphisms from the monoidal unit into the -- hom-objects of C forms a setoid. This induces the *underlying* -- category of C. Underlying : {c : Level} (C : Category M c) → Setoid-Category c ℓ e Underlying C = categoryHelper (record { Obj = Obj ; _⇒_ = λ A B → unit ⇒ hom A B ; _≈_ = λ f g → f ≈ g ; id = id ; _∘_ = λ f g → ⊚ ∘ f ⊗₁ g ∘ λ⇐ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → begin ⊚ ∘ (⊚ ∘ h ⊗₁ g ∘ λ⇐) ⊗₁ f ∘ λ⇐ ≈˘⟨ refl⟩∘⟨ assoc ⟩⊗⟨refl ⟩∘⟨refl ⟩ ⊚ ∘ ((⊚ ∘ h ⊗₁ g) ∘ λ⇐) ⊗₁ f ∘ λ⇐ ≈⟨ refl⟩∘⟨ pushˡ split₁ʳ ⟩ ⊚ ∘ (⊚ ∘ h ⊗₁ g) ⊗₁ f ∘ (λ⇐ ⊗₁ idV) ∘ λ⇐ ≈⟨ pullˡ ⊚-assoc-var ⟩ (⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f) ∘ α⇒) ∘ (λ⇐ ⊗₁ idV) ∘ λ⇐ ≈˘⟨ pushˡ (pushʳ (pushʳ (switch-tofromˡ associator (to-≈ Kelly's.coherence-iso₁)))) ⟩ (⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f) ∘ λ⇐) ∘ λ⇐ ≈⟨ pullʳ (pullʳ unitorˡ-commute-to) ⟩ ⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f) ∘ idV ⊗₁ λ⇐ ∘ λ⇐ ≈˘⟨ refl⟩∘⟨ pushˡ split₂ʳ ⟩ ⊚ ∘ h ⊗₁ ((⊚ ∘ g ⊗₁ f) ∘ λ⇐) ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ assoc ⟩∘⟨refl ⟩ ⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f ∘ λ⇐) ∘ λ⇐ ∎ ; identityˡ = λ {_} {_} {f} → begin ⊚ ∘ id ⊗₁ f ∘ λ⇐ ≈⟨ refl⟩∘⟨ serialize₁₂ ⟩∘⟨refl ⟩ ⊚ ∘ (id ⊗₁ idV ∘ idV ⊗₁ f) ∘ λ⇐ ≈˘⟨ refl⟩∘⟨ pushʳ unitorˡ-commute-to ⟩ ⊚ ∘ id ⊗₁ idV ∘ λ⇐ ∘ f ≈⟨ pullˡ unitˡ ⟩ λ⇒ ∘ λ⇐ ∘ f ≈⟨ cancelˡ unitorˡ.isoʳ ⟩ f ∎ ; identityʳ = λ {_} {_} {f} → begin ⊚ ∘ f ⊗₁ id ∘ λ⇐ ≈⟨ refl⟩∘⟨ serialize₂₁ ⟩∘⟨refl ⟩ ⊚ ∘ (idV ⊗₁ id ∘ f ⊗₁ idV) ∘ λ⇐ ≈⟨ pullˡ (pullˡ unitʳ) ⟩ (unitorʳ.from ∘ f ⊗₁ idV) ∘ λ⇐ ≈⟨ unitorʳ-commute-from ⟩∘⟨refl ⟩ (f ∘ unitorʳ.from) ∘ λ⇐ ≈˘⟨ (refl⟩∘⟨ Kelly's.coherence₃) ⟩∘⟨refl ⟩ (f ∘ λ⇒) ∘ λ⇐ ≈⟨ cancelʳ unitorˡ.isoʳ ⟩ f ∎ ; equiv = equiv ; ∘-resp-≈ = λ eq₁ eq₂ → ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ⊗-resp-≈ eq₁ eq₂ }) where open Category C module Underlying {c} (C : Category M c) = Setoid-Category (Underlying C)
{ "alphanum_fraction": 0.5196202532, "avg_line_length": 46.4705882353, "ext": "agda", "hexsha": "ea57a46c0910bae1a40090f1eeca09a38f6940e2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Enriched/Category/Underlying.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Enriched/Category/Underlying.agda", "max_line_length": 121, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Enriched/Category/Underlying.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1404, "size": 3160 }
{- This second-order signature was created from the following second-order syntax description: syntax UTLC | Λ type * : 0-ary term app : * * -> * | _$_ l20 lam : *.* -> * | ƛ_ r10 theory (ƛβ) b : *.* a : * |> app (lam (x.b[x]), a) = b[a] (ƛη) f : * |> lam (x.app (f, x)) = f (lβ) b : *.* a : * |> letd (a, x. b) = b[a] -} module UTLC.Signature where open import SOAS.Context open import SOAS.Common open import SOAS.Syntax.Signature *T public open import SOAS.Syntax.Build *T public -- Operator symbols data Λₒ : Set where appₒ lamₒ : Λₒ -- Term signature Λ:Sig : Signature Λₒ Λ:Sig = sig λ { appₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ * ; lamₒ → (* ⊢₁ *) ⟼₁ * } open Signature Λ:Sig public
{ "alphanum_fraction": 0.5579809004, "avg_line_length": 17.8780487805, "ext": "agda", "hexsha": "c672d9810759a91dc883b8344a6adf8f883102f0", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/UTLC/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/UTLC/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/UTLC/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 295, "size": 733 }
module InterpretCommand where open import ParseTree open import Data.List open import Data.Nat open import ScopeState open import Data.Sum hiding (map) open import Data.Bool open import Data.String hiding (_++_) open import Data.Maybe hiding (map) open import Data.Product hiding (map) open import AgdaHelperFunctions getRange : ParseTree -> Range getRange (signature _ range₁) = range₁ getRange (functionDefinition _ _ _ range₁) = range₁ getRange (dataStructure _ _ _ _ range₁) = range₁ getRange (pragma _ range₁) = range₁ getRange (openImport _ _ _ range₁) = range₁ getRange (moduleName _ range₁) = range₁ _<=_ : ℕ -> ℕ -> Bool zero <= zero = true zero <= suc m = true suc n <= zero = false suc n <= suc m = n <= m isInRange : Range -> ℕ -> Bool isInRange (range lastUnaffected lastAffected) what = ((lastUnaffected + 1) <= what) ∧ (what <= (lastAffected + 1)) firstActualValue : {A : Set} -> List (Maybe A) -> Maybe A firstActualValue [] = nothing firstActualValue (just x ∷ list) = just x firstActualValue (nothing ∷ list) = firstActualValue list findInIdentifier : ℕ -> Identifier -> Maybe ℕ findInIdentifier n (identifier name isInRange₁ scope declaration) with isInRange₁ n ... | inside = just declaration ... | x = nothing findInSignature : ℕ -> TypeSignature -> Maybe ℕ findInExpr : ℕ -> Expr -> Maybe ℕ findInExpr n numLit = nothing findInExpr n (ident i) = findInIdentifier n i findInExpr n hole = nothing findInExpr n (functionApp e e₁) = firstActualValue (findInExpr n e ∷ findInExpr n e₁ ∷ []) findInExpr n (implicit e) = findInExpr n e findInExpr n underscore = nothing findInExpr n (namedArgument arg) = findInSignature n arg findInSignature n (typeSignature funcName funcType) = firstActualValue (findInIdentifier n funcName ∷ findInExpr n funcType ∷ []) findInParseTree : ℕ -> ParseTree -> Maybe ℕ findInParseTree n (signature signature₁ range₁) = findInSignature n signature₁ findInParseTree n (functionDefinition definitionOf params body range₁) = firstActualValue (findInIdentifier n definitionOf ∷ findInExpr n body ∷ map (findInExpr n) params) findInParseTree n (dataStructure dataName parameters indexInfo constructors range₁) = firstActualValue ((findInIdentifier n dataName ∷ findInExpr n indexInfo ∷ map (findInSignature n) parameters) ++ map (findInSignature n) constructors) findInParseTree n (pragma (builtin concept definition) range₁) = findInIdentifier n definition findInParseTree _ _ = nothing getDeclarationIDForPoint : List ParseTree -> ℕ -> Maybe ℕ getDeclarationIDForPoint [] point = nothing getDeclarationIDForPoint (x ∷ list) point with isInRange (getRange x) point getDeclarationIDForPoint (x ∷ list) point | false = getDeclarationIDForPoint list point getDeclarationIDForPoint (x ∷ list) point | true = findInParseTree point x -- for argument rearranging --TODO fix this when adding more detailed source position data getArgNumber : ℕ -> ℕ -> Expr -> ScopeState ℕ getArgNumber point currArgNumber (functionApp t t₁ {true}) = do just _ <- return $ findInExpr point t where _ -> getArgNumber point (currArgNumber + 1) t₁ return currArgNumber getArgNumber point currArgNumber t = fail "Point seems to be in result." getFuncIdAndArgNumberInParseTree : ℕ -> ParseTree -> ScopeState (ℕ × ℕ) getFuncIdAndArgNumberInParseTree n (signature (typeSignature (identifier name isInRange₁ scope declaration) funcType) range₁) = do argNum <- getArgNumber n zero funcType return $ declaration , argNum getFuncIdAndArgNumberInParseTree _ _ = fail "Point not in signature" getFuncIdAndArgNumber : List ParseTree -> ℕ -> ScopeState (ℕ × ℕ) getFuncIdAndArgNumber [] point = fail "Point not in code" getFuncIdAndArgNumber (x ∷ list) point with isInRange (getRange x) point getFuncIdAndArgNumber (x ∷ list) point | false = getFuncIdAndArgNumber list point getFuncIdAndArgNumber (x ∷ list) point | true = getFuncIdAndArgNumberInParseTree point x
{ "alphanum_fraction": 0.7641340496, "avg_line_length": 41.1473684211, "ext": "agda", "hexsha": "07d286709b77b54efe293eabc6e2aa85e727924a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/InterpretCommand.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/InterpretCommand.agda", "max_line_length": 236, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/InterpretCommand.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 1080, "size": 3909 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Equational.Theory.Laws (Σ : Signature) where open import Fragment.Equational.Theory.Base using (Eq) open import Function using (_∘_) open import Data.Empty using (⊥) open import Data.Fin using (#_) open import Data.Sum using (inj₁; inj₂) open import Data.Product using (_,_) import Relation.Binary.PropositionalEquality as PE open import Fragment.Algebra.Free Σ open import Fragment.Algebra.Free.Syntax Σ (PE.setoid ⊥) module _ where private a = # 0 dne : ops Σ 1 → Eq Σ 1 dne ~ = ⟨ ~ ⟩₁ ⟨ ~ ⟩₁ ⟨ a ⟩ , ⟨ a ⟩ module _ (e : ops Σ 0) where private a = # 0 idₗ : ops Σ 2 → Eq Σ 1 idₗ • = ⟨ e ⟩₀ ⟨ • ⟩₂ ⟨ a ⟩ , ⟨ a ⟩ idᵣ : ops Σ 2 → Eq Σ 1 idᵣ • = ⟨ a ⟩ ⟨ • ⟩₂ ⟨ e ⟩₀ , ⟨ a ⟩ anₗ : ops Σ 2 → Eq Σ 1 anₗ • = ⟨ e ⟩₀ ⟨ • ⟩₂ ⟨ a ⟩ , ⟨ e ⟩₀ anᵣ : ops Σ 2 → Eq Σ 1 anᵣ • = ⟨ a ⟩ ⟨ • ⟩₂ ⟨ e ⟩₀ , ⟨ e ⟩₀ invₗ : ops Σ 1 → ops Σ 2 → Eq Σ 1 invₗ ~ • = (⟨ ~ ⟩₁ ⟨ a ⟩) ⟨ • ⟩₂ ⟨ a ⟩ , ⟨ e ⟩₀ invᵣ : ops Σ 1 → ops Σ 2 → Eq Σ 1 invᵣ ~ • = ⟨ a ⟩ ⟨ • ⟩₂ (⟨ ~ ⟩₁ ⟨ a ⟩) , ⟨ e ⟩₀ module _ where private a = # 0 b = # 1 c = # 2 hom : ops Σ 1 → ∀ {n} → ops Σ n → Eq Σ n hom h {n} f = ⟨ h ⟩₁ term f (map ⟨_⟩ (allFin n)) , term f (map (⟨ h ⟩₁_ ∘ ⟨_⟩) (allFin n)) where open import Data.Vec using (map; allFin) comm : ops Σ 2 → Eq Σ 2 comm • = ⟨ a ⟩ ⟨ • ⟩₂ ⟨ b ⟩ , ⟨ b ⟩ ⟨ • ⟩₂ ⟨ a ⟩ assoc : ops Σ 2 → Eq Σ 3 assoc • = (⟨ a ⟩ ⟨ • ⟩₂ ⟨ b ⟩) ⟨ • ⟩₂ ⟨ c ⟩ , ⟨ a ⟩ ⟨ • ⟩₂ (⟨ b ⟩ ⟨ • ⟩₂ ⟨ c ⟩)
{ "alphanum_fraction": 0.4943324937, "avg_line_length": 21.7534246575, "ext": "agda", "hexsha": "40aef704ec3f146b1fb6845ae846e62898f4dcdb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Theory/Laws.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Theory/Laws.agda", "max_line_length": 60, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Theory/Laws.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 744, "size": 1588 }
------------------------------------------------------------------------------ -- Properties of the mirror function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Data.List.PropertiesATP using ( reverse-[x]≡[x] ) open import FOTC.Program.Mirror.Forest.PropertiesATP open import FOTC.Program.Mirror.Forest.TotalityATP open import FOTC.Program.Mirror.Mirror open import FOTC.Program.Mirror.Tree.TotalityATP open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ mirror-involutive : ∀ {t} → Tree t → mirror · (mirror · t) ≡ t helper : ∀ {ts} → Forest ts → reverse (map mirror (reverse (map mirror ts))) ≡ ts mirror-involutive (tree d fnil) = prf where postulate prf : mirror · (mirror · node d []) ≡ node d [] {-# ATP prove prf #-} mirror-involutive (tree d (fcons {t} {ts} Tt Fts)) = prf where postulate prf : mirror · (mirror · node d (t ∷ ts)) ≡ node d (t ∷ ts) {-# ATP prove prf helper #-} helper fnil = prf where postulate prf : reverse (map mirror (reverse (map mirror []))) ≡ [] {-# ATP prove prf #-} helper (fcons {t} {ts} Tt Fts) = prf (map-++ mirror mirror-Tree (reverse-Forest (map-Forest mirror mirror-Tree Fts)) (mirror · t ∷ [])) (mirror-involutive Tt) (helper Fts) where postulate -- We help the ATPs proving the first hypothesis. prf : (map mirror (reverse (map mirror ts) ++ (mirror · t ∷ [])) ≡ map mirror (reverse (map mirror ts)) ++ (map mirror (mirror · t ∷ []))) → mirror · (mirror · t) ≡ t → reverse (map mirror (reverse (map mirror ts))) ≡ ts → reverse (map mirror (reverse (map mirror (t ∷ ts)))) ≡ t ∷ ts {-# ATP prove prf reverse-∷ mirror-Tree map-Forest reverse-++ reverse-Forest reverse-[x]≡[x] #-}
{ "alphanum_fraction": 0.5334224599, "avg_line_length": 38.6896551724, "ext": "agda", "hexsha": "52f82ec0f040e5c6f3ad47a06f901d742fb34ad5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Mirror/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Mirror/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Mirror/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 588, "size": 2244 }
module RecordUpdateSyntax where open import Common.Prelude open import Common.Equality data Param : Nat → Set where param : ∀ n → Param (suc n) record R : Set where field {i} : Nat p : Param i s : Nat old : R old = record { p = param 0; s = 1 } -- Simple update, it should be able to infer the type and the implicit. new : _ new = record old { p = param 1 } new′ : R new′ = record { i = 2; p = param 1; s = 1 } -- Here's a needlessly complex update. upd-p-s : _ → _ → _ → R upd-p-s zero s r = record r { p = param zero; s = s } upd-p-s (suc n) s r = record (upd-p-s n 0 r) { p = param n; s = s } eq₁ : new ≡ new′ eq₁ = refl eq₂ : upd-p-s zero 1 (record new { s = 0 }) ≡ old eq₂ = refl -- Check that instance arguments are handled properly postulate T : Nat → Set instance t0 : T 0 t1 : T 1 record Instance : Set where field n : Nat {{t}} : T n r0 : Instance r0 = record { n = 0 } r1 : Instance r1 = record r0 { n = 1 } check : Instance.t r1 ≡ t1 check = refl
{ "alphanum_fraction": 0.5934718101, "avg_line_length": 18.0535714286, "ext": "agda", "hexsha": "4be1c937b0e104bf38c97d9916b7afbc25d31386", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/RecordUpdateSyntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/RecordUpdateSyntax.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/RecordUpdateSyntax.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 359, "size": 1011 }
module Thesis.Derive where open import Thesis.Lang open import Thesis.Changes open import Thesis.LangChanges open import Thesis.LangOps open import Relation.Binary.PropositionalEquality Γ≼ΔΓ : ∀ {Γ} → Γ ≼ ΔΓ Γ Γ≼ΔΓ {∅} = ∅ Γ≼ΔΓ {τ • Γ} = drop Δt τ • keep τ • Γ≼ΔΓ fit : ∀ {τ Γ} → Term Γ τ → Term (ΔΓ Γ) τ fit = weaken Γ≼ΔΓ ⟦Γ≼ΔΓ⟧ : ∀ {Γ ρ1 ρ2 dρ} → (dρρ : [ Γ ]Γ dρ from ρ1 to ρ2) → ρ1 ≡ ⟦ Γ≼ΔΓ ⟧≼ dρ ⟦Γ≼ΔΓ⟧ v∅ = refl ⟦Γ≼ΔΓ⟧ (dvv v• dρρ) = cong₂ _•_ refl (⟦Γ≼ΔΓ⟧ dρρ) fit-sound : ∀ {Γ τ} → (t : Term Γ τ) → ∀ {dρ ρ1 ρ2} → [ Γ ]Γ dρ from ρ1 to ρ2 → ⟦ t ⟧Term ρ1 ≡ ⟦ fit t ⟧Term dρ fit-sound t dρρ = trans (cong ⟦ t ⟧Term (⟦Γ≼ΔΓ⟧ dρρ)) (sym (weaken-sound t _)) deriveConst : ∀ {τ} → Const τ → Term ∅ (Δt τ) deriveConst unit = const unit deriveConst (lit n) = const (lit (+ 0)) deriveConst plus = abs (abs (abs (abs (app₂ (const plus) (var (that (that this))) (var this))))) -- minus = λ m n → m - n -- dminus = λ m dm n dn → (m + dm) - (n + dn) - (m - n) = dm - dn deriveConst minus = abs (abs (abs (abs (app₂ (const minus) (var (that (that this))) (var this))))) deriveConst cons = abs (abs (abs (abs (app (app (const cons) (var (that (that this)))) (var this))))) deriveConst fst = abs (abs (app (const fst) (var this))) deriveConst snd = abs (abs (app (const snd) (var this))) deriveConst linj = abs (abs (app (const linj) (app (const linj) (var this)))) deriveConst rinj = abs (abs (app (const linj) (app (const rinj) (var this)))) deriveConst (match {t1} {t2} {t3}) = -- λ s ds f df g dg → abs (abs (abs (abs (abs (abs -- match ds (app₃ (const match) (var (that (that (that (that this))))) -- λ ds₁ → match ds₁ (abs (app₃ (const match) (var this) -- case inj₁ da → absV 1 (λ da → match s (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- λ a → app₂ df a da (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (var (that this)))) -- absurd: λ b → dg b (nil b) (abs (app₂ (var (that (that (that this)))) (var this) (app (onilτo t2) (var this)))))) -- case inj₂ db → absV 1 (λ db → match s (abs (app₃ (const match) (var (that (that (that (that (that (that (that this)))))))) -- absurd: λ a → df a (nil a) (abs (app₂ (var (that (that (that (that (that this)))))) (var this) (app (onilτo t1) (var this)))) -- λ b → app₂ dg b db (abs (app₂ (var (that (that (that this)))) (var this) (var (that this)))))))) -- recomputation branch: -- λ s2 → ominus (match s2 (f ⊕ df) (g ⊕ dg)) (match s f g) (abs (app₂ (ominusτo t3) -- (match s2 (f ⊕ df) (g ⊕ dg)) (app₃ (const match) (var this) (app₂ (oplusτo (t1 ⇒ t3)) (var (that (that (that (that this))))) (var (that (that (that this))))) (app₂ (oplusτo (t2 ⇒ t3)) (var (that (that this))) (var (that this)))) -- (match s f g) (app₃ (const match) (var (that (that (that (that (that (that this))))))) (var (that (that (that (that this))))) (var (that (that this)))))))))))) {- derive (λ s f g → match s f g) = λ s ds f df g dg → case ds of ch1 da → case s of inj1 a → df a da inj2 b → {- absurd -} dg b (nil b) ch2 db → case s of inj2 b → dg b db inj1 a → {- absurd -} df a (nil a) rp s2 → match (f ⊕ df) (g ⊕ dg) s2 ⊝ match f g s -} derive-var : ∀ {Γ τ} → Var Γ τ → Var (ΔΓ Γ) (Δt τ) derive-var this = this derive-var (that x) = that (that (derive-var x)) derive : ∀ {Γ τ} → Term Γ τ → Term (ΔΓ Γ) (Δt τ) derive (const c) = weaken (∅≼Γ {ΔΓ _}) (deriveConst c) derive (var x) = var (derive-var x) derive (app s t) = app (app (derive s) (fit t)) (derive t) derive (abs t) = abs (abs (derive t)) ⟦_⟧ΔVar : ∀ {Γ τ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → Chτ τ ⟦ x ⟧ΔVar ρ dρ = ⟦ derive-var x ⟧Var dρ ⟦_⟧ΔTerm : ∀ {Γ τ} → (t : Term Γ τ) → (ρ : ⟦ Γ ⟧Context) (dρ : ChΓ Γ) → Chτ τ ⟦ t ⟧ΔTerm ρ dρ = ⟦ derive t ⟧Term dρ ⟦_⟧ΔConst : ∀ {τ} (c : Const τ) → Chτ τ ⟦ c ⟧ΔConst = ⟦ deriveConst c ⟧Term ∅ ⟦_⟧ΔConst-rewrite : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → ⟦_⟧ΔTerm (const c) ρ dρ ≡ ⟦ c ⟧ΔConst ⟦ c ⟧ΔConst-rewrite ρ dρ rewrite weaken-sound {Γ₁≼Γ₂ = ∅≼Γ} (deriveConst c) dρ | ⟦∅≼Γ⟧-∅ dρ = refl module _ {t1 t2 t3 : Type} (f : ⟦ t1 ⟧Type → ⟦ t3 ⟧Type) (df : Chτ (t1 ⇒ t3)) (g : ⟦ t2 ⟧Type → ⟦ t3 ⟧Type) (dg : Chτ (t2 ⇒ t3)) where private Γ : Context Γ = sum t1 t2 • (t2 ⇒ Δt t2 ⇒ Δt t3) • (t2 ⇒ t3) • (t1 ⇒ Δt t1 ⇒ Δt t3) • (t1 ⇒ t3) • sum (sum (Δt t1) (Δt t2)) (sum t1 t2) • sum t1 t2 • ∅ module _ where private Γ′ Γ′′ : Context Γ′ = t2 • (t2 ⇒ Δt t2 ⇒ Δt t3) • (t2 ⇒ t3) • Γ Γ′′ = t2 • Γ′ changeMatchSem-lem1 : ∀ a1 b2 → ⟦ match ⟧ΔConst (inj₁ a1) (inj₂ (inj₂ b2)) f df g dg ≡ g b2 ⊕ dg b2 (nil b2) ⊝ f a1 changeMatchSem-lem1 a1 b2 rewrite ominusτ-equiv-ext t2 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl module _ where private Γ′ Γ′′ : Context Γ′ = t1 • (t1 ⇒ Δt t1 ⇒ Δt t3) • (t1 ⇒ t3) • Γ Γ′′ = t1 • Γ′ changeMatchSem-lem2 : ∀ b1 a2 → ⟦ match ⟧ΔConst (inj₂ b1) (inj₂ (inj₁ a2)) f df g dg ≡ f a2 ⊕ df a2 (nil a2) ⊝ g b1 changeMatchSem-lem2 b1 a2 rewrite ominusτ-equiv-ext t1 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl module _ where private Γ′ Γ′′ : Context Γ′ = t1 • (t1 ⇒ Δt t1 ⇒ Δt t3) • (t1 ⇒ t3) • Γ Γ′′ = t1 • Γ′ changeMatchSem-lem3 : ∀ a1 a2 → ⟦ match ⟧ΔConst (inj₁ a1) (inj₂ (inj₁ a2)) f df g dg ≡ f a2 ⊕ df a2 (nil a2) ⊝ f a1 changeMatchSem-lem3 a1 a2 rewrite ominusτ-equiv-ext t1 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl module _ where private Γ′ Γ′′ : Context Γ′ = t2 • (t2 ⇒ Δt t2 ⇒ Δt t3) • (t2 ⇒ t3) • Γ Γ′′ = t2 • Γ′ changeMatchSem-lem4 : ∀ b1 b2 → ⟦ match ⟧ΔConst (inj₂ b1) (inj₂ (inj₂ b2)) f df g dg ≡ g b2 ⊕ dg b2 (nil b2) ⊝ g b1 changeMatchSem-lem4 b1 b2 rewrite ominusτ-equiv-ext t2 Γ′′ | oplusτ-equiv-ext t3 Γ′ | ominusτ-equiv-ext t3 Γ = refl
{ "alphanum_fraction": 0.524940239, "avg_line_length": 35.4519774011, "ext": "agda", "hexsha": "0e7a6508d1b828ff2ec9567a252c090c79c232dd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/Derive.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/Derive.agda", "max_line_length": 119, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/Derive.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 2722, "size": 6275 }
module z where ------------------------------------------------------------------------------ -- 1 intro -- data types data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} -------------------------------------------------- -- begin : from later - here to use in tests data Bool : Set where true : Bool false : Bool data IsTrue : Bool → Set where is-true : IsTrue true _=Nat_ : Nat → Nat → Bool zero =Nat zero = true (suc x) =Nat (suc y) = x =Nat y _ =Nat _ = false -- end : from later -------------------------------------------------- -- pattern matching _+_ : Nat → Nat → Nat zero + y = y (suc x) + y = suc (x + y) infixl 9 _+_ -- {-# BUILTIN NATPLUS _+_ #-} -- ex 1.1 halve : Nat → Nat halve zero = zero halve (suc zero) = zero halve (suc (suc n)) = suc (halve n) halve-0 : IsTrue (halve 0 =Nat 0) halve-0 = is-true halve-1 : IsTrue (halve 1 =Nat 0) halve-1 = is-true halve-2 : IsTrue (halve 2 =Nat 1) halve-2 = is-true halve-3 : IsTrue (halve 3 =Nat 1) halve-3 = is-true halve-4 : IsTrue (halve 4 =Nat 2) halve-4 = is-true halve-14 : IsTrue (halve 14 =Nat 7) halve-14 = is-true halve-15 : IsTrue (halve 15 =Nat 7) halve-15 = is-true halve-16 : IsTrue (halve 16 =Nat 8) halve-16 = is-true -- ex 1.2 _*_ : Nat → Nat → Nat zero * y = zero (suc x) * y = y + (x * y) 2*0 : IsTrue ((2 * 0) =Nat 0) 2*0 = is-true 2*1 : IsTrue ((2 * 1) =Nat 2) 2*1 = is-true 2*2 : IsTrue ((2 * 2) =Nat 4) 2*2 = is-true 3*3 : IsTrue ((3 * 3) =Nat 9) 3*3 = is-true 4*4 : IsTrue ((4 * 4) =Nat 16) 4*4 = is-true {- -- ex 1.3 data Bool : Set where true : Bool false : Bool -} not : Bool → Bool not true = false not false = true _&&_ : Bool → Bool → Bool _&&_ true y = y _&&_ false _ = false _||_ : Bool → Bool → Bool _||_ true _ = true _||_ false y = y -- types are 1st class -- equivalent to Haskell type alias : type MyNat = Nat MyNat : Set MyNat = Nat -- Set used to implement polymorphic functions idA : (A : Set) → A → A idA _ x = x -- implicit args id : {A : Set} → A → A id x = x -- polymorphic data types data List (A : Set) : Set where [] : List A _::_ : A → List A → List A infixr 5 _::_ -- ex 1.4 length : {A : Set} → List A → Nat length [] = zero length (_ :: xs) = 1 + length xs _++_ : {A : Set} → List A → List A → List A _++_ [] l2 = l2 _++_ (x :: xs) l2 = x :: xs ++ l2 map : { A B : Set } → (A → B) → List A → List B map _ [] = [] map f (x :: xs) = f x :: map f xs -- ex 1.5 data Maybe (A : Set) : Set where just : A → Maybe A nothing : Maybe A lookup : {A : Set} → List A → Nat → Maybe A lookup [] _ = nothing lookup (x :: _) zero = just x lookup (_ :: xs) (suc n) = lookup xs n _=List-Nat_ : List Nat → List Nat → Bool [] =List-Nat [] = true (x :: xs) =List-Nat (y :: ys) = (x =Nat y) && (xs =List-Nat ys) _ =List-Nat _ = false ex-xs : List Nat ex-xs = 0 :: 1 :: 2 :: 3 :: [] length++ : IsTrue ((length ex-xs + length ex-xs) =Nat (length (ex-xs ++ ex-xs))) length++ = is-true map2* : IsTrue (map (2 *_) ex-xs =List-Nat (0 :: 2 :: 4 :: 6 :: [])) map2* = is-true _=Maybe-Nat_ : Maybe Nat → Maybe Nat → Bool nothing =Maybe-Nat nothing = true (just x) =Maybe-Nat (just y) = x =Nat y _ =Maybe-Nat _ = false lookup[]0 : IsTrue (lookup [] 0 =Maybe-Nat nothing) lookup[]0 = is-true lookupex-xs0 : IsTrue (lookup ex-xs 0 =Maybe-Nat (just 0)) lookupex-xs0 = is-true lookupex-xs1 : IsTrue (lookup ex-xs 1 =Maybe-Nat (just 1)) lookupex-xs1 = is-true lookupex-xs9 : IsTrue (lookup ex-xs 9 =Maybe-Nat nothing) lookupex-xs9 = is-true data _×_ (A B : Set) : Set where _,_ : A → B → A × B infixr 4 _,_ fst : {A B : Set} → A × B → A fst (a , _) = a snd : {A B : Set} → A × B → B snd (_ , b) = b -- ex 1.6 -- NO. Regardless of the value of 'Nat', there is NO way to construct an A if given []. ------------------------------------------------------------------------------ -- 2 dependent types -- parameter : bound for ENTIRE def -- index : varies according to constructor -- v v data Vec (A : Set) : Nat → Set where -- Vec is dependent TYPE [] : Vec A 0 _::_ : {n : Nat} → A → Vec A n → Vec A (suc n) --infixr 5 _::_ -- dependent FUNCTION : return TYPE depends on inputs zeroes : (n : Nat) → Vec Nat n zeroes zero = [] zeroes (suc n) = 0 :: zeroes n -- ex 2.1 downFrom : (n : Nat) → Vec Nat n downFrom zero = [] downFrom (suc n) = n :: downFrom n _=Vec-Nat_ : {n : Nat} → Vec Nat n → Vec Nat n → Bool [] =Vec-Nat [] = true (x :: xs) =Vec-Nat (y :: ys) = (x =Nat y) && (xs =Vec-Nat ys) downFrom0 : IsTrue (downFrom 0 =Vec-Nat []) downFrom0 = is-true downFrom1 : IsTrue (downFrom 1 =Vec-Nat (0 :: [])) downFrom1 = is-true downFrom2 : IsTrue (downFrom 2 =Vec-Nat (1 :: 0 :: [])) downFrom2 = is-true downFrom3 : IsTrue (downFrom 3 =Vec-Nat (2 :: 1 :: 0 :: [])) downFrom3 = is-true downFrom7 : IsTrue (downFrom 7 =Vec-Nat (6 :: 5 :: 4 :: 3 :: 2 :: 1 :: 0 :: [])) downFrom7 = is-true -- ex 2.2 tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n tail (_ :: xs) = xs -- ex 2.3 dotProduct : {n : Nat} → Vec Nat n → Vec Nat n → Nat dotProduct [] [] = 0 dotProduct (x :: xs) (y :: ys) = (x * y) + dotProduct xs ys dotProduct32 : IsTrue (dotProduct (1 :: 2 :: 3 :: []) (1 :: 5 :: 7 :: []) =Nat 32) dotProduct32 = is-true -- finite type family data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} → Fin n → Fin (suc n) lookupVec : {A : Set} {n : Nat} → Vec A n → Fin n → A lookupVec [] () lookupVec (x :: _) zero = x lookupVec (_ :: xs) (suc i) = lookupVec xs i -- ex 2.4 putVec : {A : Set} {n : Nat} → Fin n → A → Vec A n → Vec A n putVec zero a (_ :: xs) = a :: xs putVec (suc i) a (x :: xs) = x :: putVec i a xs ex-vxs : Vec Nat 4 ex-vxs = 0 :: 1 :: 2 :: 3 :: [] lookupVecex-vxs0 : IsTrue (lookupVec ex-vxs zero =Nat 0) lookupVecex-vxs0 = is-true lookupVecex-vxs3 : IsTrue (lookupVec ex-vxs (suc (suc (suc zero))) =Nat 3) lookupVecex-vxs3 = is-true putVecex-vxs3 : IsTrue (putVec (suc (suc zero)) 22 ex-vxs =Vec-Nat (0 :: 1 :: 22 :: 3 :: [])) putVecex-vxs3 = is-true {- dependent pair type - aka Σ type aka Σ type because can be seen as sum (or disjoint union) of all the types B x - where 1st component is viewed as a label indicating which type of the family the 2nd belong to generalization of pair type A × B - where type of 2nd component can be different depending on value of 1st - e.g., Σ Nat (Vec Bool) (or equivalently, Σ Nat (λn → Vec Bool n)) contains elements 2 , (true :: false :: []) and 0 , [] but not 2 , [] (since [] does not have type Vec Bool 2). -} -- function -- v data Σ (A : Set) (B : A → Set) : Set where _,_ : (x : A) → B x → Σ A B -- see Σ as generalization of normal pair : normal pair ignores its input _×'_ : (A B : Set) → Set A ×' B = Σ A (λ _ → B) -- ex 2.5 ×-to-×' : {A B : Set} → (A × B) → (A ×' B) ×-to-×' (a , b) = a , b ×'-to-× : {A B : Set} → (A ×' B) → (A × B) ×'-to-× (a , b) = a , b -- Σ USE CASE : hide type info -- e.g., hide length of vector List' : (A : Set) → Set List' A = Σ Nat (Vec A) -- ex 2.6 list-to-vec : {A : Set} → (l : List A) → Vec A (length l) list-to-vec [] = [] list-to-vec (x :: xs) = x :: list-to-vec xs vec-to-list : {A : Set} {n : Nat} → Vec A n → List A vec-to-list [] = [] vec-to-list (x :: xs) = x :: vec-to-list xs list-to-list' : {A : Set} → List A → List' A list-to-list' l = length l , list-to-vec l list'-to-list : {A : Set} → List' A → List A list'-to-list (_ , v) = vec-to-list v -- if Nat relations existed at this point this function would be very different lookup-List' : {A : Set} → List' A -> Nat -> Maybe A lookup-List' (_ , []) _ = nothing lookup-List' (_ , (x :: _)) zero = just x lookup-List' (_ , (_ :: xs)) (suc n) = lookup-List' ((list-to-list' (vec-to-list xs))) n ex-l'xs : List' Nat ex-l'xs = (4 , 0 :: 1 :: 2 :: 3 :: []) lookup-List'[]0 : IsTrue (lookup-List' (0 , []) 0 =Maybe-Nat nothing) lookup-List'[]0 = is-true lookup-List'ex-l'xs0 : IsTrue (lookup-List' ex-l'xs 0 =Maybe-Nat (just 0)) lookup-List'ex-l'xs0 = is-true lookup-List'ex-l'xs1 : IsTrue (lookup-List' ex-l'xs 1 =Maybe-Nat (just 1)) lookup-List'ex-l'xs1 = is-true lookup-List'ex-l'xs9 : IsTrue (lookup-List' ex-l'xs 9 =Maybe-Nat nothing) lookup-List'ex-l'xs9 = is-true ------------------------------------------------------------------------------ -- 3 The Curry-Howard correspondence -- can interpret logical propositions — such as “P and Q”, “not P”, “P implies Q”, ... -- as types whose inhabitants are valid proofs of that proposition. -------------------------------------------------- -- PROPOSITIONAL LOGIC -- ex 3.1 data Either (A B : Set) : Set where left : A → Either A B right : B → Either A B cases : {A B C : Set} → Either A B → (A → C) → (B → C) → C cases (left a) fac _ = fac a cases (right b) _ fbc = fbc b cases-left : IsTrue (cases (left 3) (2 +_) (2 *_) =Nat 5) cases-left = is-true cases-right : IsTrue (cases (right 3) (2 +_) (2 *_) =Nat 6) cases-right = is-true {- ------------------------- TRUTH : true : the proposition that always holds no matter what. Proving it is straightforward: do not need to provide any assumptions. Assuming true in a proof does not provide any new information. 'true' corresponds to the unit type -} data ⊤ : Set where tt : ⊤ {- ------------------------- FALSITY. the proposition that is never true. There are no ways to prove it. Represented by empty type : datatype with no constructors -} data ⊥ : Set where {- given a proof p of “false” (which can't happen because no constructors) - “ex falso quodlibet” : “from falsity follows anything”) - can can get a proof of any proposition -} absurd : {A : Set} → ⊥ → A absurd () {- ------------------------- NEGATION : the type P → ⊥ EQUIVALENCE. “P is equivalent to Q” as (P → Q) × (Q → P) Propositional logic versus boolean logic. types ⊤ and ⊥ seem similar to booleans true and false - true and false are VALUES : can manipulate and return - ⊤ and and ⊥ are TYPES - not possible to check whether a given type ⊤ or ⊥ -} curryCompose : {P Q R : Set} → (P → Q) × (Q → R) -> (P → R) curryCompose (f , g) = λ x → g (f x) -- ex 3.2 if-A-then-B-implies-A : {A B : Set} → A → (B → A) if-A-then-B-implies-A a = λ _ → a if-A-and-true-then-A-or-false : {A : Set} → (A × ⊤) → Either A ⊥ if-A-and-true-then-A-or-false (a , ⊤) = left a uncurry : {A B C : Set} → (A → (B → C)) → (A × B) → C uncurry f = λ a×b → f (fst a×b) (snd a×b) ex32x : {A B C : Set} → (A × Either B C) → Either (A × B) (A × C) ex32x (a , left b) = left (a , b) ex32x (a , right c) = right (a , c) ex32y : {A B C D : Set} → ((A → C) × (B → D)) → (A × B) → (C × D) ex32y (ac , bd) (a , b) = ac a , bd b {- -------------------------------------------------- -- PREDICATE LOGIC to prove propositions that say something about a given VALUE or FUNCTION e.g., 6 is even length (map f xs) is equal to length xs for all xs there exists a number n such that n + n = 12 Curry-Howard : propositions are types can define new propositions by defining new data types e.g., -} -- index -- v data IsEven : Nat → Set where even-zero : IsEven zero even-suc2 : {n : Nat} → IsEven n → IsEven (suc (suc n)) 6-is-even : IsEven 6 6-is-even = even-suc2 (even-suc2 (even-suc2 even-zero)) 7-is-not-even : IsEven 7 → ⊥ 7-is-not-even (even-suc2 (even-suc2 (even-suc2 ()))) -- ^ -- absurb pattern as arg {- -- useful predicate -- states that a given Bool is true data IsTrue : Bool → Set where is-true : IsTrue true _=Nat_ : Nat → Nat → Bool zero =Nat zero = true (suc x) =Nat (suc y) = x =Nat y _ =Nat _ = false -} length-is-3 : IsTrue (length (1 :: 2 :: 3 :: []) =Nat 3) length-is-3 = is-true {- Defining properties as functions. Can define properties as - data types, or - functions that return a value of type Set e..g., -} IsTrue’ : Bool → Set IsTrue’ true = ⊤ IsTrue’ false = ⊥ {- Function approach often results in proofs that are shorter, but less readable. Also less general, as some types (e.g., identity type in next section) can only be defined as a data type. BEST PRACTICE: use data types (not functions) -------------------------------------------------- UNIVERSAL QUANTIFICATION : “∀ x of type A, P(x)” to prove : provide proof of P(v) for EVERY concrete value v : A. i.e., a function λv → P v in opposite direction assume a f of “∀ x of type A, P(x)” and given a concrete v : A then can the proof to the case of v to get a proof f v of P(v) under Curry-Howard, universal quantification corresponds to dependent function (x : A) → P x -} double : Nat → Nat double zero = zero double (suc n) = suc (suc (double n)) -- ∀ n : Nat, double n is an even number -- 'double-is-even' is a dependent function : return TYPE depends on input VALUE -- pattern matching here is "proof by cases" -- recursion here is "induction on n" double-is-even : (n : Nat) → IsEven (double n) double-is-even zero = even-zero double-is-even (suc m) = even-suc2 (double-is-even m) n-equals-n : (n : Nat) → IsTrue (n =Nat n) n-equals-n zero = is-true n-equals-n (suc m) = n-equals-n m {- -------------------------------------------------- EXISTENTIAL QUANTIFICATION : “∃ a x : A such that P( x )” to prove : provide a concrete v : A, and a proof that P(v) holds i.e. a pair (v : A, P v) in opposite direction given proof z of “∃ a x : A such that P( x )” then extract the witness fst z : A and the proof snd z : P (fst z) under Curry-Howard, existential quantification corresponds to the dependent pair type Σ A ( λ x → P x ). -} -- ∃ an n such that n + n = 12 half-a-dozen : Σ Nat (λ n → IsTrue ((n + n) =Nat 12)) half-a-dozen = 6 , is-true -- any number n is either 0 or the successor of another number m -- ∀ n, n is 0 -- or ∃ m such that n is suc m zero-or-suc : (n : Nat) → Either (IsTrue (n =Nat 0)) (Σ Nat (λ m → IsTrue (n =Nat (suc m)))) zero-or-suc zero = left is-true zero-or-suc (suc m) = right (m , n-equals-n m) {- -------------------------------------------------- Propositional logic Type System ------------------------------------------------------------ proposition P type proof of a proposition p : P program of a type conjunction P × Q pair type disjunction Either P Q either type implication P → Q function type truth ⊤ unit type falsity ⊥ empty type negation P → ⊥ function to ⊥ equivalence (P → Q) × (Q → P) pair of two functions ------------------------------------------------------------ Predicate log universal quantification (x : A) → P x dependent function type existential quantification Σ A (λ x → P x ) dependent pair type -------------------------------------------------- -- IDENTITY TYPE : EQUALITY at any type (to avoid =Nat, =Vec-Nat, ...) Martin-Löf introduced a new type x ≡ y, called the IDENTITY TYPE (NOT FUNCTION) if x and y are equal, then x ≡ y has a single inhabitant refl - behaves like the unit type ⊤ if x and y are distinct, then x ≡ y has no constructors - behaves like the empty type ⊥ -} data _≡_ {A : Set} : A → A → Set where -- ‘reflexivity’ refl : {x : A} → x ≡ x infix 4 _≡_ {-# BUILTIN EQUALITY _≡_ #-} one-plus-one-IsTrue : IsTrue ((1 + 1) =Nat 2) one-plus-one-IsTrue = is-true one-plus-one : 1 + 1 ≡ 2 one-plus-one = refl {- zero-not-one-not-IsTrue : IsTrue (0 =Nat 1) zero-not-one-not-IsTrue = {!!} -} zero-not-one : 0 ≡ 1 → ⊥ zero-not-one () -- prove facts about polymorphic types id-returns-input : {A : Set} → (x : A) → id x ≡ x id-returns-input _ = refl -- unit tests using identity type length-test1 : length (1 :: 2 :: []) ≡ 2 length-test1 = refl -- symmetry of equality sym : {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl -- transitivity of equality trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl -- congruence of equality cong : {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl {- If a and b can be unified by instantiating some of the variables, then can match on refl. If a and b are different (e.g. different constructors), then match on absurb pattern (). Agda canNOT always tell if they are different. -} ------------------------------------------------------------------------------ -- 4 EQUATIONAL REASONING begin_ : {A : Set} → {x y : A} → x ≡ y → x ≡ y begin p = p _end : {A : Set} → (x : A) → x ≡ x x end = refl _=⟨_⟩_ : {A : Set} → (x : A) → {y z : A} → x ≡ y → y ≡ z → x ≡ z x =⟨ p ⟩ q = trans p q _=⟨⟩_ : {A : Set} → (x : A) → {y : A} → x ≡ y → x ≡ y x =⟨⟩ q = x =⟨ refl ⟩ q infix 1 begin_ infix 3 _end infixr 2 _=⟨_⟩_ infixr 2 _=⟨⟩_ -- create singleton list [_] : {A : Set} → A → List A [ x ] = x :: [] reverse : {A : Set} → List A → List A reverse [] = [] reverse (x :: xs) = reverse xs ++ [ x ] -- reverse has no effect on singleton lists reverse-singleton : {A : Set} → (x : A) → reverse [ x ] ≡ [ x ] reverse-singleton x = begin reverse [ x ] =⟨⟩ -- definition of [_] reverse (x :: []) =⟨⟩ -- applying reverse (second clause) reverse [] ++ [ x ] =⟨⟩ -- applying reverse (first clause) [] ++ [ x ] =⟨⟩ -- applying _++_ [ x ] end -- proof by cases and induction not-not : (b : Bool) → not (not b) ≡ b not-not true = begin not (not true) =⟨⟩ not false =⟨⟩ -- apply inner not true -- apply not end not-not false = begin not (not false) =⟨⟩ not true =⟨⟩ false end -- prove fact about Nat by induction (i.e., recursion) add-n-zero : (n : Nat) → n + zero ≡ n add-n-zero zero = begin zero + zero =⟨⟩ zero =⟨⟩ zero end add-n-zero (suc n) = begin (suc n) + zero =⟨⟩ -- applying + suc (n + zero) =⟨ cong suc (add-n-zero n) ⟩ -- using induction hypothesis suc n end add-n-zero' : (n : Nat) → n + zero ≡ n add-n-zero' zero = refl add-n-zero' (suc n) = cong suc (add-n-zero' n) add-assoc : (x y z : Nat) → x + (y + z) ≡ (x + y) + z add-assoc zero y z = begin zero + (y + z) =⟨⟩ -- def of + y + z =⟨⟩ -- unapply + (zero + y) + z end add-assoc (suc x) y z = begin (suc x) + (y + z) =⟨⟩ -- def of + suc (x + (y + z)) =⟨ cong suc (add-assoc x y z) ⟩ -- inductive hypo suc ((x + y) + z) =⟨⟩ -- unapply outer add (suc (x + y)) + z =⟨⟩ -- unapply inner add ((suc x) + y) + z end -- ex 4.1 add-suc : (m n : Nat) → m + suc n ≡ suc (m + n) add-suc zero n = begin zero + suc n =⟨⟩ -- def of + suc n =⟨⟩ suc (zero + n) end add-suc (suc m) n = -- cong suc (add-suc m n) begin suc m + suc n =⟨⟩ -- def of + suc (m + suc n) =⟨ cong suc (add-suc m n) ⟩ suc (suc m + n) end --use add-suc and add-n-zero +-comm : (m n : Nat) → m + n ≡ n + m +-comm zero n = sym (add-n-zero n) +-comm (suc m) n rewrite -- suc m + n ≡ n + suc m -- suc (m + n) ≡ n + suc m +-comm m n -- suc (n + m) ≡ n + suc m | sym (add-suc n m) -- n + suc m ≡ n + suc m = refl +-comm' : (m n : Nat) → m + n ≡ n + m +-comm' zero n = begin zero + n =⟨⟩ -- def of + n =⟨ sym (add-n-zero n) ⟩ -- add zero to right n + zero end +-comm' (suc m) n = begin suc m + n =⟨⟩ -- def of + suc (m + n) =⟨ cong suc (+-comm m n) ⟩ suc (n + m) =⟨ sym (add-suc n m) ⟩ n + suc m end -------------------------------------------------- -- induction on lists -- ex 4.2 replicate : {A : Set} → Nat → A → List A replicate zero x = [] replicate (suc n) x = x :: replicate n x length-replicate : {A : Set} {a : A} → (n : Nat) → length (replicate n a) ≡ n length-replicate zero = refl length-replicate (suc n) = cong suc (length-replicate n) -- ex 4.3 append-[] : {A : Set} → (xs : List A) → xs ++ [] ≡ xs append-[] [] = refl append-[] (x :: xs) = cong (x ::_) (append-[] xs) append-assoc : {A : Set} → (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) append-assoc [] ys zs = refl append-assoc (x :: xs) ys zs -- (((x :: xs) ++ ys) ++ zs) ≡ ((x :: xs) ++ (ys ++ zs)) -- x :: ((xs ++ ys) ++ zs) ≡ x :: (xs ++ (ys ++ zs)) = cong (x ::_) (append-assoc xs ys zs) reverse-distributivity : {A : Set} → (xs ys : List A) → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-distributivity [] ys = sym (append-[] (reverse ys)) reverse-distributivity (x :: xs) ys -- reverse ((x :: xs) ++ ys) ≡ (reverse ys ++ reverse (x :: xs)) -- (reverse (xs ++ ys) ++ (x :: [])) ≡ (reverse ys ++ (reverse xs ++ (x :: []))) rewrite reverse-distributivity xs ys -- ((reverse ys ++ reverse xs) ++ (x :: [])) -- ≡ (reverse ys ++ (reverse xs ++ (x :: []))) | sym (append-assoc (reverse ys) (reverse xs) (x :: [])) = refl reverse-reverse : {A : Set} → (xs : List A) → reverse (reverse xs) ≡ xs reverse-reverse [] = refl reverse-reverse (x :: xs) -- reverse (reverse (x :: xs)) ≡ x :: xs -- reverse (reverse xs ++ (x :: [])) ≡ x :: xs rewrite -- NOTE -- v reverse-distributivity (reverse xs) [ x ] -- x :: reverse (reverse xs) ≡ x :: xs -- can rewrite here then refl --| reverse-reverse xs -- x :: xs ≡ x :: xs --= refl -- or use 'cong' on rightof '=' = cong (x ::_) (reverse-reverse xs) {- map satisfies functor laws: - identity : map id = id - composition : map (g . h) = map g . h -} map-id : {A : Set} → (xs : List A) → map id xs ≡ xs map-id [] = refl map-id (x :: xs) -- map id (x :: xs) ≡ x :: xs -- id x :: map id xs ≡ x :: xs = cong (x ::_) (map-id xs) _◦_ : {A B C : Set} → (B → C) → (A → B) → (A → C) g ◦ h = λ x → g (h x) map-compose : {A B C : Set} → (f : B → C) → (g : A → B) → (xs : List A) → map (f ◦ g) xs ≡ map f (map g xs) map-compose f g [] = refl map-compose f g (x :: xs) -- map (f ◦ g) (x :: xs) ≡ map f (map g (x :: xs)) -- (f ◦ g) x :: map (f ◦ g) xs ≡ f (g x) :: map f (map g xs) {- this rewrite sym (map-compose f g xs) -- f (g x) :: map (λ x₁ → f (g x₁)) xs ≡ f (g x) :: map (λ x₁ → f (g x₁)) xs = refl -} -- or this = cong (f (g x) ::_) (map-compose f g xs) -- ex 4.4 length-map : {A B : Set} {f : A → B} → (xs : List A) → length (map f xs) ≡ length xs length-map [] = refl length-map (x :: xs) -- length (map f (x :: xs)) ≡ length (x :: xs) -- suc (length (map f xs)) ≡ suc (length xs) = cong suc (length-map xs) -- ex 4.5 take : {A : Set} → List A → Nat → List A take _ zero = [] take [] (suc n) = [] take (x :: xs) (suc n) = x :: take xs n take-0 : take ex-xs 0 ≡ [] take-0 = refl take-1 : take ex-xs 1 ≡ 0 :: [] take-1 = refl take-2 : take ex-xs 2 ≡ 0 :: 1 :: [] take-2 = refl take-3 : take ex-xs 3 ≡ 0 :: 1 :: 2 :: [] take-3 = refl take-4 : take ex-xs 4 ≡ ex-xs take-4 = refl take-5 : take ex-xs 5 ≡ ex-xs take-5 = refl drop : {A : Set} → List A → Nat → List A drop xs zero = xs drop [] (suc x) = [] drop (_ :: xs) (suc n) = drop xs n drop-0 : drop ex-xs 0 ≡ ex-xs drop-0 = refl drop-1 : drop ex-xs 1 ≡ 1 :: 2 :: 3 :: [] drop-1 = refl drop-2 : drop ex-xs 2 ≡ 2 :: 3 :: [] drop-2 = refl drop-3 : drop ex-xs 3 ≡ 3 :: [] drop-3 = refl drop-4 : drop ex-xs 4 ≡ [] drop-4 = refl drop-5 : drop ex-xs 5 ≡ [] drop-5 = refl take-drop : {A : Set} → (xs : List A) → (n : Nat) → take xs n ++ drop xs n ≡ xs take-drop [] zero = refl take-drop [] (suc n) = refl take-drop (x :: xs) zero = refl take-drop (x :: xs) (suc n) -- (take (x :: xs) (suc n) ++ drop (x :: xs) (suc n)) ≡ x :: xs -- x :: (take xs n ++ drop xs n) ≡ x :: xs = cong (x ::_) (take-drop xs n) -------------------------------------------------- -- verifying optimizations -- list optimization reverse-acc : {A : Set} → List A → List A → List A reverse-acc [] ys = ys reverse-acc (x :: xs) ys = reverse-acc xs (x :: ys) reverse' : {A : Set} → List A → List A reverse' xs = reverse-acc xs [] reverse-acc-lemma : {A : Set} → (xs ys : List A) → reverse-acc xs ys ≡ reverse xs ++ ys reverse-acc-lemma [] _ = refl reverse-acc-lemma (x :: xs) ys -- reverse-acc (x :: xs) ys ≡ (reverse (x :: xs) ++ ys) -- reverse-acc xs (x :: ys) ≡ ((reverse xs ++ (x :: [])) ++ ys) rewrite append-assoc (reverse xs) [ x ] ys -- reverse-acc xs (x :: ys) ≡ (reverse xs ++ (x :: ys)) | reverse-acc-lemma xs (x :: ys) -- (reverse xs ++ (x :: ys)) ≡ (reverse xs ++ (x :: ys)) = refl reverse'-reverse : {A : Set} → (xs : List A) → reverse' xs ≡ reverse xs reverse'-reverse [] = refl reverse'-reverse (x :: xs) -- reverse' (x :: xs) ≡ reverse (x :: xs) -- reverse' (x :: xs) ≡ (reverse xs ++ (x :: [])) rewrite reverse-acc-lemma xs [ x ] -- (reverse xs ++ (x :: [])) ≡ (reverse xs ++ (x :: [])) = refl -- tree optimization data Tree (A : Set) : Set where leaf : A → Tree A node : Tree A → Tree A → Tree A flatten : {A : Set} → Tree A → List A flatten (leaf a) = [ a ] flatten (node t1 t2) = flatten t1 ++ flatten t2 flatten-acc : {A : Set} → Tree A → List A → List A flatten-acc (leaf x) xs = x :: xs flatten-acc (node t1 t2) xs = flatten-acc t1 (flatten-acc t2 xs) flatten' : {A : Set} → Tree A → List A flatten' t = flatten-acc t [] flatten-acc-lemma : {A : Set} → (t : Tree A) → (ys : List A) → flatten-acc t ys ≡ flatten t ++ ys flatten-acc-lemma (leaf x) _ = refl flatten-acc-lemma (node t1 t2) ys -- flatten-acc (node t1 t2) ys ≡ (flatten (node t1 t2) ++ ys) -- flatten-acc t1 (flatten-acc t2 ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) rewrite flatten-acc-lemma t1 (flatten-acc t2 ys) -- (flatten t1 ++ flatten-acc t2 ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) | flatten-acc-lemma t2 ys -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ ((flatten t1 ++ flatten t2) ++ ys) | append-assoc (flatten t1) (flatten t2) ys -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ (flatten t1 ++ (flatten t2 ++ ys)) = refl flatten-acc-flatten : {A : Set} → (t : Tree A) → (ys : List A) → flatten-acc t ys ≡ flatten t ++ ys flatten-acc-flatten (leaf x) ys = refl -- flatten-acc (leaf x) ys ≡ (flatten (leaf x) ++ ys) flatten-acc-flatten (node t1 t2) ys -- flatten-acc (node t1 t2) ys ≡ (flatten (node t1 t2) ++ ys) -- flatten-acc t1 (flatten-acc t2 ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) rewrite flatten-acc-lemma t2 ys -- flatten-acc t1 (flatten t2 ++ ys) ≡ ((flatten t1 ++ flatten t2) ++ ys) | flatten-acc-lemma t1 (flatten t2 ++ ys) -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ ((flatten t1 ++ flatten t2) ++ ys) | append-assoc (flatten t1) (flatten t2) ys -- (flatten t1 ++ (flatten t2 ++ ys)) ≡ (flatten t1 ++ (flatten t2 ++ ys)) = refl -- ex 4.6 flatten'-flatten : {A : Set} → (t : Tree A) → flatten' t ≡ flatten t flatten'-flatten (leaf x) = refl flatten'-flatten (node t1 t2) -- flatten' (node t1 t2) ≡ flatten (node t1 t2) -- flatten' (node t1 t2) ≡ (flatten t1 ++ flatten t2) rewrite sym (flatten-acc-flatten t1 (flatten t2)) -- flatten-acc t1 (flatten-acc t2 []) ≡ flatten-acc t1 (flatten t2) | flatten-acc-flatten t2 [] -- flatten-acc t1 (flatten t2 ++ []) ≡ flatten-acc t1 (flatten t2) | append-[] (flatten t2) -- flatten-acc t1 (flatten t2) ≡ flatten-acc t1 (flatten t2) = refl -------------------------------------------------- -- compiler correctness data Expr : Set where valE : Nat → Expr addE : Expr → Expr → Expr eval : Expr → Nat eval (valE x) = x eval (addE e1 e2) = eval e1 + eval e2 data Op : Set where PUSH : Nat → Op ADD : Op Stack = List Nat Code = List Op exec : Code → Stack → Stack exec [] s = s exec (PUSH x :: c) s = exec c (x :: s) exec (ADD :: c) (m :: n :: s) = exec c (n + m :: s) exec (ADD :: c) _ = [] compile' : Expr → Code → Code compile' (valE x) c = PUSH x :: c compile' (addE e1 e2) c = compile' e1 (compile' e2 (ADD :: c)) compile : Expr → Code compile e = compile' e [] compile'-exec-eval : (e : Expr) → (s : Stack) → (c : Code) → exec (compile' e c) s ≡ exec c (eval e :: s) compile'-exec-eval (valE _) _ _ = refl compile'-exec-eval (addE e1 e2) s c -- exec (compile' (addE e1 e2) c) s ≡ exec c (eval (addE e1 e2) :: s) -- exec (compile' e1 (compile' e2 (ADD :: c))) s ≡ exec c (eval e1 + eval e2 :: s) rewrite compile'-exec-eval e1 s (compile' e2 (ADD :: c)) -- exec (compile' e2 (ADD :: c)) (eval e1 :: s) ≡ exec c (eval e1 + eval e2 :: s) | compile'-exec-eval e2 (eval e1 :: s) (ADD :: c) -- exec c (eval e1 + eval e2 :: s) ≡ exec c (eval e1 + eval e2 :: s) = refl compile-exec-eval : (e : Expr) → exec (compile e) [] ≡ [ eval e ] compile-exec-eval e = compile'-exec-eval e [] []
{ "alphanum_fraction": 0.4924240008, "avg_line_length": 29.7146919431, "ext": "agda", "hexsha": "43858fda06af1dbd85accae6afff72b146d88105", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2021-03-Jesper_Cockx-Programming_and_Proving_in_Agda/z.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2021-03-Jesper_Cockx-Programming_and_Proving_in_Agda/z.agda", "max_line_length": 99, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2021-03-Jesper_Cockx-Programming_and_Proving_in_Agda/z.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 10670, "size": 31349 }
module hott.topology.theorems where open import hott.topology open import hott.topology.loopspace.theorems public
{ "alphanum_fraction": 0.852173913, "avg_line_length": 23, "ext": "agda", "hexsha": "e69db0eab5cf4a8618016d974cdcae7b2acc4da1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/topology/theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/topology/theorems.agda", "max_line_length": 51, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/topology/theorems.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 28, "size": 115 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Axiom.Omniscience where open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport open import Cubical.Data.Bool renaming (Bool to 𝟚; Bool→Type to ⟨_⟩) open import Cubical.Data.Empty as Empty open import Cubical.Data.Sum as Sum open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.Relation.Nullary private variable ℓ ℓ' : Level A : Type ℓ -- Lesser limited principle of omniscience -- -- If two decidable predicates cannot both be satisfied, we can -- determine that one predicate cannot be satisfied. LLPO : Type ℓ → Type ℓ LLPO A = ∀(P Q : A → 𝟚) → (∀ x y → ⟨ P x ⟩ → ⟨ Q y ⟩ → ⊥) → ∥ (∀ x → ¬ ⟨ P x ⟩) ⊎ (∀ y → ¬ ⟨ Q y ⟩) ∥₁ isPropLLPO : isProp (LLPO A) isPropLLPO = isPropΠ3 λ _ _ _ → squash₁ -- As above, but without ensuring propositionality LLPO∞ : Type ℓ → Type ℓ LLPO∞ A = ∀(P Q : A → 𝟚) → (∀ x y → ⟨ P x ⟩ → ⟨ Q y ⟩ → ⊥) → (∀ x → ¬ ⟨ P x ⟩) ⊎ (∀ y → ¬ ⟨ Q y ⟩) LLPO∞→LLPO : LLPO∞ A → LLPO A LLPO∞→LLPO llpo' P Q ¬both = ∣ llpo' P Q ¬both ∣₁ -- Weak limited principle of omniscience -- -- It is decidable whether or not a decidable predicate never holds. WLPO : Type ℓ → Type ℓ WLPO A = ∀(P : A → 𝟚) → Dec (∀ x → ¬ ⟨ P x ⟩) WLPO' : Type ℓ → Type ℓ WLPO' A = ∀(P : A → 𝟚) → Dec (P ≡ const false) isPropWLPO : isProp (WLPO A) isPropWLPO = isPropΠ λ P → isPropDec (isPropΠ λ x → isProp¬ ⟨ P x ⟩) isPropWLPO' : isProp (WLPO' A) isPropWLPO' = isPropΠ λ P → isPropDec (isSet→ isSetBool P (const false)) module WLPO≃ where points : (P : A → 𝟚) → P ≡ const false → ∀ x → ¬ ⟨ P x ⟩ points P p x = subst (λ Q → ⟨ Q x ⟩) p total : (P : A → 𝟚) → (∀ x → ¬ ⟨ P x ⟩) → P ≡ const false total P never i x with P x | never x ... | false | _ = false ... | true | ¬⊤ = Empty.rec {A = true ≡ false} (¬⊤ _) i open Iso total≡points : ∀(P : A → 𝟚) → (P ≡ const false) ≡ (∀ x → ¬ ⟨ P x ⟩) total≡points P = isoToPath λ where .fun → points P .inv → total P .rightInv never → isPropΠ (λ x → isProp¬ ⟨ P x ⟩) _ never .leftInv α≡f → isSet→ isSetBool P (const false) _ α≡f WLPO≡WLPO' : WLPO A ≡ WLPO' A WLPO≡WLPO' {A = A} i = (P : A → 𝟚) → Dec (WLPO≃.total≡points P (~ i)) WLPO→LLPO∞ : WLPO A → LLPO∞ A WLPO→LLPO∞ {A = A} womn P Q ¬both with womn P ... | yes ∀¬P = inl ∀¬P ... | no ¬∀¬P = inr ∀¬Q where ∀¬Q : ∀ y → ¬ ⟨ Q y ⟩ ∀¬Q y Qy = ¬∀¬P (λ x Px → ¬both x y Px Qy) -- Limited principle of omniscience -- -- Either a decidable predicate never holds, or it does LPO : Type ℓ → Type ℓ LPO A = ∀(P : A → 𝟚) → (∀ x → ¬ ⟨ P x ⟩) ⊎ ∥ Σ[ x ∈ A ] ⟨ P x ⟩ ∥₁ LPO→WLPO : LPO A → WLPO A LPO→WLPO omn P with omn P ... | inl ∀¬P = yes ∀¬P ... | inr ∃P = no λ ∀¬P → PT.rec isProp⊥ (uncurry ∀¬P) ∃P -- As above, but without truncation. LPO∞ : Type ℓ → Type ℓ LPO∞ A = ∀(P : A → 𝟚) → (∀ x → ¬ ⟨ P x ⟩) ⊎ (Σ[ x ∈ A ] ⟨ P x ⟩) LPO∞→LPO : LPO∞ A → LPO A LPO∞→LPO omn P = Sum.map (idfun _) ∣_∣₁ (omn P)
{ "alphanum_fraction": 0.5827664399, "avg_line_length": 28.5833333333, "ext": "agda", "hexsha": "b12801aa931190880b284f985471c6ae7212fd2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Axiom/Omniscience.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Axiom/Omniscience.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Axiom/Omniscience.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1326, "size": 3087 }
------------------------------------------------------------------------------ -- Properties of the divisibility relation ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Divisibility.NotBy0.Properties where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Base.Properties open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Properties open import LTC-PCF.Data.Nat.Divisibility.NotBy0 open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Data.Nat.Properties ------------------------------------------------------------------------------ -- Any positive number divides 0. S∣0 : ∀ {n} → N n → succ₁ n ∣ zero S∣0 {n} Nn = S≢0 , _ , nzero , sym (*-leftZero (succ₁ n)) -- 0 doesn't divide any number. 0∤x : ∀ {n} → ¬ (zero ∣ n) 0∤x (0≢0 , _) = ⊥-elim (0≢0 refl) -- The divisibility relation is reflexive for positive numbers. ∣-refl-S : ∀ {n} → N n → succ₁ n ∣ succ₁ n ∣-refl-S {n} Nn = S≢0 , _ , nsucc nzero , sym (*-leftIdentity (nsucc Nn)) -- If x divides y and z then x divides y ∸ z. x∣y→x∣z→x∣y∸z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * succ₁ m → o ≡ k' * succ₁ m → n ∸ o ≡ (k ∸ k') * succ₁ m x∣y→x∣z→x∣y∸z-helper {m} {n} {o} {k} {k'} Nm Nk Nk' h₁ h₂ = n ∸ o ≡⟨ ∸-leftCong h₁ ⟩ k * succ₁ m ∸ o ≡⟨ ∸-rightCong h₂ ⟩ (k * succ₁ m) ∸ (k' * succ₁ m) ≡⟨ sym (*∸-leftDistributive Nk Nk' (nsucc Nm)) ⟩ (k ∸ k') * succ₁ m ∎ x∣y→x∣z→x∣y∸z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n ∸ o x∣y→x∣z→x∣y∸z nzero Nn No (0≢0 , _) m∣o = ⊥-elim (0≢0 refl) x∣y→x∣z→x∣y∸z {n = n} {o} (nsucc {m} Nm) Nn No (_ , k , Nk , h₁) (_ , k' , Nk' , h₂) = (λ S≡0 → ⊥-elim (S≢0 S≡0)) , k ∸ k' , ∸-N Nk Nk' , x∣y→x∣z→x∣y∸z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and z then x divides y + z. x∣y→x∣z→x∣y+z-helper : ∀ {m n o k k'} → N m → N k → N k' → n ≡ k * succ₁ m → o ≡ k' * succ₁ m → n + o ≡ (k + k') * succ₁ m x∣y→x∣z→x∣y+z-helper {m} {n} {o} {k} {k'} Nm Nk Nk' h₁ h₂ = n + o ≡⟨ +-leftCong h₁ ⟩ k * succ₁ m + o ≡⟨ +-rightCong h₂ ⟩ (k * succ₁ m) + (k' * succ₁ m) ≡⟨ sym (*+-leftDistributive Nk Nk' (nsucc Nm)) ⟩ (k + k') * succ₁ m ∎ x∣y→x∣z→x∣y+z : ∀ {m n o} → N m → N n → N o → m ∣ n → m ∣ o → m ∣ n + o x∣y→x∣z→x∣y+z nzero Nn No (0≢0 , _) m∣o = ⊥-elim (0≢0 refl) x∣y→x∣z→x∣y+z {n = n} {o} (nsucc {m} Nm) Nn No (_ , k , Nk , h₁) (_ , k' , Nk' , h₂) = (λ S≡0 → ⊥-elim (S≢0 S≡0)) , k + k' , +-N Nk Nk' , x∣y→x∣z→x∣y+z-helper Nm Nk Nk' h₁ h₂ -- If x divides y and y is positive, then x ≤ y. x∣S→x≤S : ∀ {m n} → N m → N n → m ∣ (succ₁ n) → m ≤ succ₁ n x∣S→x≤S nzero Nn (0≢0 , _) = ⊥-elim (0≢0 refl) x∣S→x≤S (nsucc {m} Nm) Nn (_ , .zero , nzero , Sn≡0*Sm) = ⊥-elim (0≢S (trans (sym (*-leftZero (succ₁ m))) (sym Sn≡0*Sm))) x∣S→x≤S (nsucc {m} Nm) Nn (_ , .(succ₁ k) , nsucc {k} Nk , Sn≡Sk*Sm) = subst (λ t₁ → succ₁ m ≤ t₁) (sym Sn≡Sk*Sm) (subst (λ t₂ → succ₁ m ≤ t₂) (sym (*-Sx k (succ₁ m))) (x≤x+y (nsucc Nm) (*-N Nk (nsucc Nm))))
{ "alphanum_fraction": 0.4425591099, "avg_line_length": 42.2941176471, "ext": "agda", "hexsha": "a85c5a2fbdfd7a717dd0621e4c5564fa573fed7f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/NotBy0/Properties.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/NotBy0/Properties.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Divisibility/NotBy0/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1543, "size": 3595 }
{- Finite Types This file formalize the notion of Rijke finite type, which is a direct generalization of Bishop finite set. Basically, a type is (Rijke) n-finite if its i-th order homotopy groups πᵢ are Bishop finite for i ≤ n. Referrences: https://github.com/EgbertRijke/OEIS-A000001 -} {-# OPTIONS --safe #-} module Cubical.Data.FinType.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.HITs.SetTruncation open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.FinSet private variable ℓ ℓ' : Level n : ℕ X : Type ℓ -- the (Rijke) finite type isFinType : (n : ℕ) → Type ℓ → Type ℓ isFinType 0 X = isFinSet ∥ X ∥₂ isFinType (suc n) X = (isFinType 0 X) × ((a b : X) → isFinType n (a ≡ b)) isPropIsFinType : isProp (isFinType n X) isPropIsFinType {n = 0} = isPropIsFinSet isPropIsFinType {n = suc n} = isProp× isPropIsFinSet (isPropΠ2 (λ _ _ → isPropIsFinType {n = n})) -- the type of finite types FinType : (ℓ : Level)(n : ℕ) → Type (ℓ-suc ℓ) FinType ℓ n = TypeWithStr ℓ (isFinType n) -- basic numerical implications isFinTypeSuc→isFinType : isFinType (suc n) X → isFinType n X isFinTypeSuc→isFinType {n = 0} p = p .fst isFinTypeSuc→isFinType {n = suc n} p .fst = p .fst isFinTypeSuc→isFinType {n = suc n} p .snd a b = isFinTypeSuc→isFinType {n = n} (p .snd a b) isFinType→isFinType0 : isFinType n X → isFinType 0 X isFinType→isFinType0 {n = 0} p = p isFinType→isFinType0 {n = suc n} p = p .fst isFinTypeSuc→isFinType1 : isFinType (suc n) X → isFinType 1 X isFinTypeSuc→isFinType1 {n = 0} p = p isFinTypeSuc→isFinType1 {n = suc n} p .fst = p .fst isFinTypeSuc→isFinType1 {n = suc n} p .snd a b = isFinType→isFinType0 {n = suc n} (p .snd a b)
{ "alphanum_fraction": 0.7079646018, "avg_line_length": 28.25, "ext": "agda", "hexsha": "b700e887f35f8cc4b60fddf3397031974846b4cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/FinType/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/FinType/Base.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/FinType/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 677, "size": 1808 }
{-# OPTIONS --without-K --safe #-} module Strict where open import Agda.Builtin.Strict public open import Level infixr 0 _$!_ _$!_ : {A : Type a} {B : A → Type b} → (∀ x → B x) → ∀ x → B x f $! x = primForce x f {-# INLINE _$!_ #-} infixr 0 let-bang let-bang : {A : Type a} {B : A → Type b} → ∀ x → (∀ x → B x) → B x let-bang = primForce {-# INLINE let-bang #-} syntax let-bang v (λ x → e) = let! x =! v in! e infixr 0 lambda-bang lambda-bang : {A : Type a} {B : A → Type b} → (∀ x → B x) → ∀ x → B x lambda-bang f x = primForce x f {-# INLINE lambda-bang #-} syntax lambda-bang (λ x → e) = λ! x →! e
{ "alphanum_fraction": 0.5526315789, "avg_line_length": 23.3846153846, "ext": "agda", "hexsha": "0f6975ad4457021d7af7233845e9812dd9bcd7cb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Strict.agda", "max_line_length": 69, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Strict.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 236, "size": 608 }
module lambda.stack where open import Relation.Binary.PropositionalEquality infixr 40 _▸_ infixl 35 _∈_ data stack (T : Set) : Set where ε : stack T _▸_ : stack T → T → stack T data _∈_ {T : Set} (x : T) : stack T → Set where here : ∀ {Γ} → x ∈ Γ ▸ x there : ∀ {Γ y} → x ∈ Γ → x ∈ Γ ▸ y data _⊇_ {T : Set} : stack T → stack T → Set where bot : ε ⊇ ε skip : ∀ {Γ Δ x} → Γ ⊇ Δ → Γ ▸ x ⊇ Δ keep : ∀ {Γ Δ x} → Γ ⊇ Δ → Γ ▸ x ⊇ Δ ▸ x module _ {T : Set} where id : ∀ {Γ : stack T} → Γ ⊇ Γ id {ε} = bot id {Γ ▸ x} = keep id shift : ∀ {Γ Δ} {x : T} → Γ ⊇ Δ → x ∈ Δ → x ∈ Γ shift bot () shift (skip x) v = there (shift x v) shift (keep _) here = here shift (keep x) (there y) = there (shift x y) shift-id : ∀ {Γ : stack T} {x} → (e : x ∈ Γ) → shift id e ≡ e shift-id here = refl shift-id (there e) = cong there (shift-id e) _∘⊇_ : {Γ Δ Λ : stack T} → Γ ⊇ Δ → Δ ⊇ Λ → Γ ⊇ Λ bot ∘⊇ bot = bot skip x ∘⊇ y = skip (x ∘⊇ y) keep x ∘⊇ skip y = skip (x ∘⊇ y) keep x ∘⊇ keep y = keep (x ∘⊇ y) ∘⊇-idˡ : {Γ Δ : stack T} → (w : Γ ⊇ Δ) → id ∘⊇ w ≡ w ∘⊇-idˡ bot = refl ∘⊇-idˡ (skip x) = cong skip (∘⊇-idˡ x) ∘⊇-idˡ (keep x) = cong keep (∘⊇-idˡ x) ∘⊇-idʳ : {Δ Γ : stack T} → (w : Γ ⊇ Δ) → w ∘⊇ id ≡ w ∘⊇-idʳ bot = refl ∘⊇-idʳ (skip x) = cong skip (∘⊇-idʳ x) ∘⊇-idʳ (keep x) = cong keep (∘⊇-idʳ x) ∘⊇-assoc : {Γ Δ Λ Ω : stack T} → (w₁ : Γ ⊇ Δ) → (w₂ : Δ ⊇ Λ) → (w₃ : Λ ⊇ Ω) → (w₁ ∘⊇ w₂) ∘⊇ w₃ ≡ w₁ ∘⊇ (w₂ ∘⊇ w₃) ∘⊇-assoc bot bot bot = refl ∘⊇-assoc (skip w₁) w₂ w₃ = cong skip (∘⊇-assoc w₁ w₂ w₃) ∘⊇-assoc (keep w₁) (skip w₂) w₃ = cong skip (∘⊇-assoc w₁ w₂ w₃) ∘⊇-assoc (keep w₁) (keep w₂) (skip w₃) = cong skip (∘⊇-assoc w₁ w₂ w₃) ∘⊇-assoc (keep w₁) (keep w₂) (keep w₃) = cong keep (∘⊇-assoc w₁ w₂ w₃)
{ "alphanum_fraction": 0.4883852691, "avg_line_length": 29.4166666667, "ext": "agda", "hexsha": "d1bf880ddc0f28b602c8549f145c61855c42d51f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Lapin0t/lambda", "max_forks_repo_path": "lambda/stack.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Lapin0t/lambda", "max_issues_repo_path": "lambda/stack.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Lapin0t/lambda", "max_stars_repo_path": "lambda/stack.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 981, "size": 1765 }
data ⊥ : Set where p0 : Set → Set p0 A = A p1 : ⊥ → Set p1 () p2 : ⊥ → ⊥ p2 () p3 : Set → ⊥ p3 = ?
{ "alphanum_fraction": 0.4077669903, "avg_line_length": 7.3571428571, "ext": "agda", "hexsha": "5510f683b3fb14886071d8f018fa026eac4c1431", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "anqurvanillapy/fpl", "max_forks_repo_path": "agda/implication.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "anqurvanillapy/fpl", "max_issues_repo_path": "agda/implication.agda", "max_line_length": 18, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "anqurvanillapy/fpl", "max_stars_repo_path": "agda/implication.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z", "num_tokens": 55, "size": 103 }
record Additive {ℓ} (A : Set ℓ) : Set ℓ where field zero : A _+_ : A → A → A open Additive {{...}} public record Subtractive {ℓ} (A : Set ℓ) {{ADD : Additive A}} : Set ℓ where field _-_ : A → A → A neg : A → A neg x = zero - x open Subtractive {{...}} public check : ∀ ℓ (A : Set ℓ) (ADD : Additive A) (SUB : Subtractive A {{ADD}}) → A → A check ℓ A ADD SUB x = Subtractive.neg {ℓ} {A} {{ADD}} SUB x
{ "alphanum_fraction": 0.5422535211, "avg_line_length": 21.3, "ext": "agda", "hexsha": "9cd089e6e3b84b7fb637247ab359ea4ec2136cc4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1847.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1847.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1847.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 168, "size": 426 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Prod renaming (_×_ to _×'_) open import Cubical.Data.Int renaming (_+_ to _+Int_ ; _-_ to _-Int_) open import Cubical.Data.Unit open import Cubical.Algebra.Monoid hiding (⟨_⟩) open import Cubical.Algebra.Semigroup hiding (⟨_⟩) open import Cubical.Foundations.HLevels private variable ℓ : Level record IsGroup {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where no-eta-equality constructor isgroup field isMonoid : IsMonoid 0g _+_ inverse : (x : G) → (x + (- x) ≡ 0g) × ((- x) + x ≡ 0g) open IsMonoid isMonoid public infixl 6 _-_ _-_ : G → G → G x - y = x + (- y) invl : (x : G) → (- x) + x ≡ 0g invl x = inverse x .snd invr : (x : G) → x + (- x) ≡ 0g invr x = inverse x .fst η-isGroup : {G : Type ℓ} {0g 0g' : G} {_+_ _+'_ : G → G → G} { -_ -'_ : G → G} → 0g ≡ 0g' → _+_ ≡ _+'_ → -_ ≡ -'_ → IsGroup 0g _+_ -_ ≡ IsGroup 0g' _+'_ -'_ η-isGroup id1 id2 id3 i = IsGroup (id1 i) (id2 i) (id3 i) record Group : Type (ℓ-suc ℓ) where no-eta-equality constructor group field Carrier : Type ℓ 0g : Carrier _+_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier isGroup : IsGroup 0g _+_ -_ infix 8 -_ infixr 7 _+_ open IsGroup isGroup public Group₀ : Type₁ Group₀ = Group {ℓ-zero} -- Extractor for the carrier type ⟨_⟩ : Group → Type ℓ ⟨_⟩ = Group.Carrier isSetGroup : (G : Group {ℓ}) → isSet ⟨ G ⟩ isSetGroup G = Group.isGroup G .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsGroup : {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G} (is-setG : isSet G) (assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (rid : (x : G) → x + 0g ≡ x) (lid : (x : G) → 0g + x ≡ x) (rinv : (x : G) → x + (- x) ≡ 0g) (linv : (x : G) → (- x) + x ≡ 0g) → IsGroup 0g _+_ -_ IsGroup.isMonoid (makeIsGroup is-setG assoc rid lid rinv linv) = makeIsMonoid is-setG assoc rid lid IsGroup.inverse (makeIsGroup is-setG assoc rid lid rinv linv) = λ x → rinv x , linv x makeGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) (is-setG : isSet G) (assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (rid : (x : G) → x + 0g ≡ x) (lid : (x : G) → 0g + x ≡ x) (rinv : (x : G) → x + (- x) ≡ 0g) (linv : (x : G) → (- x) + x ≡ 0g) → Group Group.Carrier (makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv) = _ Group.0g (makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv) = 0g Group._+_ (makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv) = _+_ Group.- makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv = -_ Group.isGroup (makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv) = makeIsGroup is-setG assoc rid lid rinv linv makeGroup-right : ∀ {ℓ} {A : Type ℓ} → (id : A) → (comp : A → A → A) → (inv : A → A) → (set : isSet A) → (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c) → (rUnit : ∀ a → comp a id ≡ a) → (rCancel : ∀ a → comp a (inv a) ≡ id) → Group makeGroup-right {A = A} id comp inv set assoc rUnit rCancel = makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel where _⨀_ = comp abstract lCancel : ∀ a → comp (inv a) a ≡ id lCancel a = inv a ⨀ a ≡⟨ sym (rUnit (comp (inv a) a)) ⟩ (inv a ⨀ a) ⨀ id ≡⟨ cong (comp (comp (inv a) a)) (sym (rCancel (inv a))) ⟩ (inv a ⨀ a) ⨀ (inv a ⨀ (inv (inv a))) ≡⟨ assoc _ _ _ ⟩ ((inv a ⨀ a) ⨀ (inv a)) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → □ ⨀ _) (sym (assoc _ _ _)) ⟩ (inv a ⨀ (a ⨀ inv a)) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → (inv a ⨀ □) ⨀ (inv (inv a))) (rCancel a) ⟩ (inv a ⨀ id) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → □ ⨀ (inv (inv a))) (rUnit (inv a)) ⟩ inv a ⨀ (inv (inv a)) ≡⟨ rCancel (inv a) ⟩ id ∎ lUnit : ∀ a → comp id a ≡ a lUnit a = id ⨀ a ≡⟨ cong (λ b → comp b a) (sym (rCancel a)) ⟩ (a ⨀ inv a) ⨀ a ≡⟨ sym (assoc _ _ _) ⟩ a ⨀ (inv a ⨀ a) ≡⟨ cong (comp a) (lCancel a) ⟩ a ⨀ id ≡⟨ rUnit a ⟩ a ∎ makeGroup-left : ∀ {ℓ} {A : Type ℓ} → (id : A) → (comp : A → A → A) → (inv : A → A) → (set : isSet A) → (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c) → (lUnit : ∀ a → comp id a ≡ a) → (lCancel : ∀ a → comp (inv a) a ≡ id) → Group makeGroup-left {A = A} id comp inv set assoc lUnit lCancel = makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel where abstract rCancel : ∀ a → comp a (inv a) ≡ id rCancel a = comp a (inv a) ≡⟨ sym (lUnit (comp a (inv a))) ⟩ comp id (comp a (inv a)) ≡⟨ cong (λ b → comp b (comp a (inv a))) (sym (lCancel (inv a))) ⟩ comp (comp (inv (inv a)) (inv a)) (comp a (inv a)) ≡⟨ sym (assoc (inv (inv a)) (inv a) (comp a (inv a))) ⟩ comp (inv (inv a)) (comp (inv a) (comp a (inv a))) ≡⟨ cong (comp (inv (inv a))) (assoc (inv a) a (inv a)) ⟩ comp (inv (inv a)) (comp (comp (inv a) a) (inv a)) ≡⟨ cong (λ b → comp (inv (inv a)) (comp b (inv a))) (lCancel a) ⟩ comp (inv (inv a)) (comp id (inv a)) ≡⟨ cong (comp (inv (inv a))) (lUnit (inv a)) ⟩ comp (inv (inv a)) (inv a) ≡⟨ lCancel (inv a) ⟩ id ∎ rUnit : ∀ a → comp a id ≡ a rUnit a = comp a id ≡⟨ cong (comp a) (sym (lCancel a)) ⟩ comp a (comp (inv a) a) ≡⟨ assoc a (inv a) a ⟩ comp (comp a (inv a)) a ≡⟨ cong (λ b → comp b a) (rCancel a) ⟩ comp id a ≡⟨ lUnit a ⟩ a ∎ open Group open IsGroup η-Group : {G H : Group {ℓ}} → (p : ⟨ G ⟩ ≡ ⟨ H ⟩) → (q : PathP (λ i → p i) (0g G) (0g H)) → (r : PathP (λ i → (p i) → (p i) → (p i)) (_+_ G) (_+_ H)) → (s : PathP (λ i → p i → p i) (-_ G) (-_ H)) → PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup G) (isGroup H) → G ≡ H Carrier (η-Group p _ _ _ _ i) = p i 0g (η-Group _ q _ _ _ i) = q i _+_ (η-Group _ _ r _ _ i) = r i - η-Group _ _ _ s t i = s i isGroup (η-Group _ _ _ _ t i) = t i isSetCarrier : ∀ {ℓ} → (G : Group {ℓ}) → isSet ⟨ G ⟩ isSetCarrier G = IsSemigroup.is-set (IsMonoid.isSemigroup (isMonoid G)) open IsMonoid open IsSemigroup dirProd : ∀ {ℓ ℓ'} → Group {ℓ} → Group {ℓ'} → Group Carrier (dirProd A B) = Carrier A × Carrier B 0g (dirProd A B) = (0g A) , (0g B) _+_ (dirProd A B) a b = (_+_ A (fst a) (fst b)) , _+_ B (snd a) (snd b) -_ (dirProd A B) a = (-_ A (fst a)) , (-_ B (snd a)) is-set (isSemigroup (isMonoid (isGroup (dirProd A B)))) = isOfHLevelΣ 2 (isSetCarrier A) λ _ → isSetCarrier B assoc (isSemigroup (isMonoid (isGroup (dirProd A B)))) x y z i = assoc (isGroup A) (fst x) (fst y) (fst z) i , assoc (isGroup B) (snd x) (snd y) (snd z) i identity (isMonoid (isGroup (dirProd A B))) x = (λ i → IsGroup.rid (isGroup A) (fst x) i , IsGroup.rid (isGroup B) (snd x) i) , λ i → IsGroup.lid (isGroup A) (fst x) i , IsGroup.lid (isGroup B) (snd x) i inverse (isGroup (dirProd A B)) x = (λ i → (fst (inverse (isGroup A) (fst x)) i) , (fst (inverse (isGroup B) (snd x)) i)) , λ i → (snd (inverse (isGroup A) (fst x)) i) , (snd (inverse (isGroup B) (snd x)) i) trivialGroup : Group₀ Carrier trivialGroup = Unit 0g trivialGroup = _ _+_ trivialGroup _ _ = _ -_ trivialGroup _ = _ is-set (isSemigroup (isMonoid (isGroup trivialGroup))) = isSetUnit assoc (isSemigroup (isMonoid (isGroup trivialGroup))) _ _ _ = refl identity (isMonoid (isGroup trivialGroup)) _ = refl , refl inverse (isGroup trivialGroup) _ = refl , refl intGroup : Group₀ Carrier intGroup = Int 0g intGroup = 0 _+_ intGroup = _+Int_ - intGroup = 0 -Int_ is-set (isSemigroup (isMonoid (isGroup intGroup))) = isSetInt assoc (isSemigroup (isMonoid (isGroup intGroup))) = +-assoc identity (isMonoid (isGroup intGroup)) x = refl , (+-comm (pos 0) x) inverse (isGroup intGroup) x = +-comm x (pos 0 -Int x) ∙ minusPlus x 0 , (minusPlus x 0)
{ "alphanum_fraction": 0.5183854354, "avg_line_length": 34.0775510204, "ext": "agda", "hexsha": "91b4df6fd398c945aa15705f67376232a11c3cd6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Base.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3351, "size": 8349 }
module Sets.PredicateSet.Proofs where import Lvl open import Functional import Logic.Propositional as Logic import Logic.Propositional.Theorems as Logic import Logic.Predicate import Sets.PredicateSet import Structure.Relator.Properties import Type -- [⊆][⊇]-equivalence : ∀{A}{B} → (A ⊆ B) ↔ (B ⊇ A) module _ {ℓₗ}{ℓₒ} {T : Set(ℓₒ)} where open Sets.PredicateSet open Structure.Relator.Properties private Stmt = Logic.Stmt{ℓₗ Lvl.⊔ ℓₒ} PredSet' : Set(Lvl.𝐒(ℓₗ Lvl.⊔ ℓₒ)) PredSet' = PredSet{ℓₗ}{ℓₒ} (T) _⊆'_ : PredSet' → PredSet' → Stmt _⊆'_ = _⊆_ {ℓₗ}{ℓₗ} {ℓₒ} {T} _⊇'_ : PredSet' → PredSet' → Stmt _⊇'_ = _⊇_ {ℓₗ}{ℓₗ} {ℓₒ} {T} _≡'_ : PredSet' → PredSet' → Stmt _≡'_ = _≡_ {ℓₗ}{ℓₗ} {ℓₒ} {T} -- TODO: PredSet' has a greater level than Stmt? Not possible with Reflexivity or even Logic.Predicate -- Refl : (PredSet' → PredSet' → Stmt) → Stmt -- Refl(_▫_) = Reflexivity{_}{_} {PredSet'} (_▫_) -- TODO: This is alright... -- Refl : (T → T → Stmt) → Stmt -- Refl(_▫_) = (∀{x : T} → (x ▫ x)) -- ...but not this -- Refl : (PredSet' → PredSet' → Stmt) → Stmt -- Refl(_▫_) = (∀{x : PredSet'} → (x ▫ x)) [⊆]-reflexivity : ∀{A} → (A ⊆' A) [⊆]-reflexivity = id [⊆]-transitivity : ∀{A B C} → (A ⊆' B) → (B ⊆' C) → (A ⊆' C) [⊆]-transitivity ab bc = bc ∘ ab [⊆]-antisymmetry : ∀{A B} → (A ⊇' B) → (A ⊆' B) → (A ≡' B) [⊆]-antisymmetry = Logic.[∧]-intro
{ "alphanum_fraction": 0.5411051213, "avg_line_length": 28, "ext": "agda", "hexsha": "d4c1582eb58da6b2ed2df9fdd88180942441ed8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Sets/PredicateSet/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Sets/PredicateSet/Proofs.agda", "max_line_length": 106, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Sets/PredicateSet/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 658, "size": 1484 }
module AsP where f : {A : Set} → A → A → A f x@y z@w = x g : {A : Set} → A → A → A g x@y z'@w' with y ... | _ = x
{ "alphanum_fraction": 0.345323741, "avg_line_length": 6.619047619, "ext": "agda", "hexsha": "2b665f2348e18a364d775966056980969cfca469", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/pattern/AsP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/pattern/AsP.agda", "max_line_length": 16, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/pattern/AsP.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 79, "size": 139 }
module Lemmachine.Resource where import Lemmachine.Resource.Universe open import Data.Product open import Data.List private module U = Lemmachine.Resource.Universe open U using (Code; El) Hook = Σ Code El Hooks = List Hook _⇒_ : {A : Set}{B : A → Set} → (a : A) → B a → (Σ A B) _⇒_ = _,_ record Resource : Set where field resourceExists : El U.resourceExists serviceAvailable : El U.serviceAvailable isAuthorized : El U.isAuthorized forbidden : El U.forbidden allowMissingPost : El U.allowMissingPost malformedRequest : El U.malformedRequest uriTooLong : El U.uriTooLong knownContentType : El U.knownContentType validContentHeaders : El U.validContentHeaders validEntityLength : El U.validEntityLength options : El U.options allowedMethods : El U.allowedMethods knownMethods : El U.knownMethods deleteResource : El U.deleteResource deleteCompleted : El U.deleteCompleted postIsCreate : El U.postIsCreate createPath : El U.createPath processPost : El U.processPost contentTypesProvided : El U.contentTypesProvided languageAvailable : El U.languageAvailable contentTypesAccepted : El U.contentTypesAccepted charsetsProvided : El U.charsetsProvided encodingsProvided : El U.encodingsProvided variances : El U.variances isConflict : El U.isConflict multipleChoices : El U.multipleChoices previouslyExisted : El U.previouslyExisted movedPermanently : El U.movedPermanently movedTemporarily : El U.movedTemporarily lastModified : El U.lastModified expires : El U.expires generateETag : El U.generateETag finishRequest : El U.finishRequest body : El U.body
{ "alphanum_fraction": 0.7387971698, "avg_line_length": 32.6153846154, "ext": "agda", "hexsha": "15fc1844773090034bc931ffad6675d2a71baaeb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Resource.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Resource.agda", "max_line_length": 54, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Resource.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 447, "size": 1696 }
module _ where postulate U : Set u : U module M (x : U) where postulate f : U → U module M₁ = M (M.f u u) -- this caused a 'recursive display form' error
{ "alphanum_fraction": 0.6181818182, "avg_line_length": 13.75, "ext": "agda", "hexsha": "73782bc83a9c8a7a77706c01860755f4ebf2a65f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1870.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1870.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1870.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 59, "size": 165 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import stash.modalities.gbm.GbmUtil module stash.modalities.JoinAdj {i j k} (A : Type i) (B : Type j) (C : Type k) where private module From (f : B → C) (γ : A → hfiber cst f) = JoinRec (fst ∘ γ) f (λ a b → app= (snd (γ a)) b) from-β : (f : B → C) (γ : A → hfiber cst f) (a : A) (b : B) → ap (From.f f γ) (jglue a b) == app= (snd (γ a)) b from-β f γ a b = From.glue-β f γ a b to : (A * B → C) → Σ (B → C) (λ f → A → hfiber cst f) to φ = φ ∘ right , (λ a → φ (left a) , λ= (λ b → ap φ (glue (a , b)))) from : Σ (B → C) (λ f → A → hfiber cst f) → A * B → C from (f , γ) = From.f f γ abstract to-from : (ψ : Σ (B → C) (λ f → A → hfiber cst f)) → to (from ψ) == ψ to-from (f , γ) = pair= idp (λ= coh) where coh : (a : A) → from (f , γ) (left a) , λ= (λ b → ap (from (f , γ)) (glue (a , b))) == γ a coh a = pair= idp (ap λ= (λ= (λ b → from-β f γ a b)) ∙ ! (λ=-η (snd (γ a)))) from-to : (φ : A * B → C) → from (to φ) == φ from-to φ = λ= (Join-elim (λ a → idp) (λ b → idp) (λ a b → ↓-==-in (coh a b))) where coh : ∀ a b → ap φ (jglue a b) == ap (from (to φ)) (jglue a b) ∙ idp coh a b = ap φ (jglue a b) =⟨ ! (app=-β (λ b → ap φ (jglue a b)) b) ⟩ app= (λ= (λ b → ap φ (jglue a b))) b =⟨ ! (from-β (fst (to φ)) (snd (to φ)) a b) ⟩ ap (From.f (fst (to φ)) (snd (to φ))) (jglue a b) =⟨ ! (∙-unit-r (ap (from (to φ)) (jglue a b))) ⟩ ap (from (to φ)) (jglue a b) ∙ idp =∎ join-adj : (A * B → C) ≃ Σ (B → C) (λ f → A → hfiber cst f) join-adj = equiv to from to-from from-to
{ "alphanum_fraction": 0.4082295615, "avg_line_length": 38.4791666667, "ext": "agda", "hexsha": "5be73f0f10b3fae753cf0b6efd2373d05d1ed04d", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/JoinAdj.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/JoinAdj.agda", "max_line_length": 104, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/JoinAdj.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 743, "size": 1847 }
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ module Lambda.VirtualMachine where open import Category.Monad open import Category.Monad.Partiality as P using (_⊥; never); open P._⊥ open import Codata.Musical.Notation open import Data.Empty using (⊥-elim) open import Data.Fin open import Data.List hiding (lookup) open import Data.Maybe open import Data.Nat open import Data.Product as Prod open import Data.Vec using (Vec; []; _∷_; lookup) open import Function.Base import Level open import Relation.Binary.Construct.Closure.ReflexiveTransitive hiding (return) open import Relation.Binary.PropositionalEquality as PE using (_≡_) open import Relation.Nullary open RawMonad (P.monad {f = Level.zero}) open import Lambda.Syntax private module C = Closure Tm ------------------------------------------------------------------------ -- Instruction set mutual -- Instructions. data Instr (n : ℕ) : Set where var : (x : Fin n) → Instr n con : (i : ℕ) → Instr n clo : (c : Code (suc n)) → Instr n app : Instr n ret : Instr n -- Code. Code : ℕ → Set Code n = List (Instr n) -- Environments and values. open Closure Code ------------------------------------------------------------------------ -- Compiler -- The compiler takes a code continuation. comp : ∀ {n} → Tm n → Code n → Code n comp (con i) c = con i ∷ c comp (var x) c = var x ∷ c comp (ƛ t) c = clo (comp t [ ret ]) ∷ c comp (t₁ · t₂) c = comp t₁ (comp t₂ (app ∷ c)) -- Environments and values can also be compiled. mutual comp-env : ∀ {n} → C.Env n → Env n comp-env [] = [] comp-env (v ∷ ρ) = comp-val v ∷ comp-env ρ comp-val : C.Value → Value comp-val (C.con i) = con i comp-val (C.ƛ t ρ) = ƛ (comp t [ ret ]) (comp-env ρ) -- lookup x is homomorphic with respect to comp-env/comp-val. lookup-hom : ∀ {n} (x : Fin n) ρ → lookup (comp-env ρ) x ≡ comp-val (lookup ρ x) lookup-hom zero (v ∷ ρ) = PE.refl lookup-hom (suc x) (v ∷ ρ) = lookup-hom x ρ ------------------------------------------------------------------------ -- Stacks and states -- Stacks. data StackElement : Set where val : (v : Value) → StackElement ret : ∀ {n} (c : Code n) (ρ : Env n) → StackElement Stack : Set Stack = List StackElement -- States. data State : Set where ⟨_,_,_⟩ : ∀ {n} (c : Code n) (s : Stack) (ρ : Env n) → State ------------------------------------------------------------------------ -- Relational semantics of the VM module Relational where infix 4 _⟶_ data _⟶_ : State → State → Set where var : ∀ {n} {x : Fin n} {c s ρ} → ⟨ var x ∷ c , s , ρ ⟩ ⟶ ⟨ c , val (lookup ρ x) ∷ s , ρ ⟩ con : ∀ {n i} {c : Code n} {s ρ} → ⟨ con i ∷ c , s , ρ ⟩ ⟶ ⟨ c , val (con i) ∷ s , ρ ⟩ clo : ∀ {n} {c : Code n} {c′ s ρ} → ⟨ clo c′ ∷ c , s , ρ ⟩ ⟶ ⟨ c , val (ƛ c′ ρ) ∷ s , ρ ⟩ app : ∀ {n} {c : Code n} {v n′} {c′ : Code (suc n′)} {ρ′ s ρ} → ⟨ app ∷ c , val v ∷ val (ƛ c′ ρ′) ∷ s , ρ ⟩ ⟶ ⟨ c′ , ret c ρ ∷ s , v ∷ ρ′ ⟩ ret : ∀ {n} {c : Code n} {v n′} {c′ : Code n′} {ρ′ s ρ} → ⟨ ret ∷ c , val v ∷ ret c′ ρ′ ∷ s , ρ ⟩ ⟶ ⟨ c′ , val v ∷ s , ρ′ ⟩ -- Final (stuck) states. Final : State → Set Final s = ∄ λ s′ → s ⟶ s′ -- s ⇓ v means that s is a successful final state, and that the -- corresponding value is v. infix 4 _⇓_ data _⇓_ : State → Value → Set where final : ∀ {v} → ⟨ [] , val v ∷ [] , [] ⟩ ⇓ v -- Sanity check. ⇓-final : ∀ {s v} → s ⇓ v → Final s ⇓-final final (_ , ()) -- Crashing stuck states. Stuck : State → Set Stuck s = Final s × ∄ (λ v → s ⇓ v) -- Reflexive transitive closure. infix 4 _⟶⋆_ _⟶⋆_ : State → State → Set _⟶⋆_ = Star _⟶_ -- Infinite sequences of steps. infixr 5 _◅_ infix 4 _⟶∞ data _⟶∞ : State → Set where _◅_ : ∀ {s₁ s₂} (s₁⟶s₂ : s₁ ⟶ s₂) (s₂⟶∞ : ∞ (s₂ ⟶∞)) → s₁ ⟶∞ -- A variant of _⟶∞ which is easier to use. module InfiniteSequence where infix 4 _⟶∞′ infix 3 _⟶∞⟨_⟩ infixr 2 _⟶⟨_⟩′_ _⟶⋆⟨_⟩′_ data _⟶∞′ : State → Set where _⟶⟨_⟩′_ : ∀ s₁ {s₂} (s₁⟶s₂ : s₁ ⟶ s₂) (s₂⟶∞ : ∞ (s₂ ⟶∞′)) → s₁ ⟶∞′ _⟶⋆⟨_⟩′_ : ∀ s₁ {s₂} (s₁⟶⋆s₂ : s₁ ⟶⋆ s₂) (s₂⟶∞ : s₂ ⟶∞′) → s₁ ⟶∞′ _⟶∞⟨_⟩ : ∀ s (s⟶∞ : s ⟶∞′) → s ⟶∞′ sound : ∀ {s} → s ⟶∞′ → s ⟶∞ sound (s₁ ⟶⟨ s₁⟶s₂ ⟩′ s₂⟶∞) = s₁⟶s₂ ◅ ♯ (sound (♭ s₂⟶∞)) sound (s ⟶⋆⟨ ε ⟩′ s⟶∞) = sound s⟶∞ sound (s₁ ⟶⋆⟨ s₁⟶s₂ ◅ s₂⟶⋆s₃ ⟩′ s₃⟶∞) = s₁⟶s₂ ◅ ♯ (sound (_ ⟶⋆⟨ s₂⟶⋆s₃ ⟩′ s₃⟶∞)) sound (s ⟶∞⟨ s⟶∞ ⟩) = sound s⟶∞ complete : ∀ {s} → s ⟶∞ → s ⟶∞′ complete (s₁⟶s₂ ◅ s₂⟶∞) = _ ⟶⟨ s₁⟶s₂ ⟩′ ♯ complete (♭ s₂⟶∞) ------------------------------------------------------------------------ -- Functional semantics of the VM module Functional where -- The result of running the VM one step. data Result : Set where continue : (s : State) → Result done : (v : Value) → Result crash : Result -- A single step of the computation. step : State → Result step ⟨ [] , val v ∷ [] , [] ⟩ = done v step ⟨ var x ∷ c , s , ρ ⟩ = continue ⟨ c , val (lookup ρ x) ∷ s , ρ ⟩ step ⟨ con i ∷ c , s , ρ ⟩ = continue ⟨ c , val (con i) ∷ s , ρ ⟩ step ⟨ clo c′ ∷ c , s , ρ ⟩ = continue ⟨ c , val (ƛ c′ ρ) ∷ s , ρ ⟩ step ⟨ app ∷ c , val v ∷ val (ƛ c′ ρ′) ∷ s , ρ ⟩ = continue ⟨ c′ , ret c ρ ∷ s , v ∷ ρ′ ⟩ step ⟨ ret ∷ c , val v ∷ ret c′ ρ′ ∷ s , ρ ⟩ = continue ⟨ c′ , val v ∷ s , ρ′ ⟩ step _ = crash -- The VM. exec : State → Maybe Value ⊥ exec s with step s ... | continue s′ = later (♯ exec s′) ... | done v = return (just v) ... | crash = return nothing -- Equality for partial computations returning Maybe Value. -- -- Note that propositional equality is used for the underlying -- values, which can include code components. In other words, if -- v₁ ≈ v₂, then any code components in these values have to be -- /syntactically/ equal. module Equality where private open module PEq {A : Set} = P.Equality {A = A} _≡_ public using (_≈_; now; later; laterˡ) open P public using (later⁻¹; now≉never) module EqReasoning {A : Set} = P.Reasoning {A = A} PE.isEquivalence ------------------------------------------------------------------------ -- Equivalence proof module Equivalence where open Relational open Functional open Functional.Equality ---------------------------------------------------------------------- -- Classification of states -- Inductive characterisation of states which are stuck and not -- final. data Crashing : State → Set where crash₁ : ∀ {n ρ} → Crashing (⟨_,_,_⟩ { n} [] [] ρ ) crash₂ : ∀ {n n′ c ρ′ s ρ} → Crashing (⟨_,_,_⟩ { n} [] ( ret {n′} c ρ′ ∷ s ) ρ ) crash₃ : ∀ {n v e s ρ} → Crashing (⟨_,_,_⟩ { n} [] (val v ∷ e ∷ s ) ρ ) crash₄ : ∀ {n v₁ v₂ ρ} → Crashing (⟨_,_,_⟩ {suc n} [] ( val v₁ ∷ []) (v₂ ∷ ρ)) crash₅ : ∀ {n c ρ} → Crashing (⟨_,_,_⟩ { n} (app ∷ c) [] ρ ) crash₆ : ∀ {n c v ρ} → Crashing (⟨_,_,_⟩ { n} (app ∷ c) ( val v ∷ []) ρ ) crash₇ : ∀ {n c n′ c′ ρ′ s ρ} → Crashing (⟨_,_,_⟩ { n} (app ∷ c) ( ret {n′} c′ ρ′ ∷ s ) ρ ) crash₈ : ∀ {n c v i s ρ} → Crashing (⟨_,_,_⟩ { n} (app ∷ c) (val v ∷ val (con i) ∷ s ) ρ ) crash₉ : ∀ {n c v n′ c′ ρ′ s ρ} → Crashing (⟨_,_,_⟩ { n} (app ∷ c) (val v ∷ ret {n′} c′ ρ′ ∷ s ) ρ ) crash₁₀ : ∀ {n c ρ} → Crashing (⟨_,_,_⟩ { n} (ret ∷ c) [] ρ ) crash₁₁ : ∀ {n c v ρ} → Crashing (⟨_,_,_⟩ { n} (ret ∷ c) ( val v ∷ []) ρ ) crash₁₂ : ∀ {n c n′ c′ ρ′ s ρ} → Crashing (⟨_,_,_⟩ { n} (ret ∷ c) ( ret {n′} c′ ρ′ ∷ s ) ρ ) crash₁₃ : ∀ {n c v₁ v₂ s ρ} → Crashing (⟨_,_,_⟩ { n} (ret ∷ c) (val v₁ ∷ val v₂ ∷ s ) ρ ) -- There are three kinds of states. data Kind (s : State) : Set where done : ∀ {v} (s⇓v : s ⇓ v) → Kind s continue : ∀ {s′} (s⟶s′ : s ⟶ s′) → Kind s crash : (s↯ : Crashing s) → Kind s -- We can assign (at least) one kind to every state. kind : ∀ s → Kind s kind ⟨ [] , val v ∷ [] , [] ⟩ = done final kind ⟨ var x ∷ c , s , ρ ⟩ = continue var kind ⟨ con i ∷ c , s , ρ ⟩ = continue con kind ⟨ clo c′ ∷ c , s , ρ ⟩ = continue clo kind ⟨ app ∷ c , val v ∷ val (ƛ c′ ρ′) ∷ s , ρ ⟩ = continue app kind ⟨ ret ∷ c , val v ∷ ret c′ ρ′ ∷ s , ρ ⟩ = continue ret kind ⟨ [] , [] , _ ⟩ = crash crash₁ kind ⟨ [] , ret _ _ ∷ _ , _ ⟩ = crash crash₂ kind ⟨ [] , val _ ∷ _ ∷ _ , _ ⟩ = crash crash₃ kind ⟨ [] , val _ ∷ [] , _ ∷ _ ⟩ = crash crash₄ kind ⟨ app ∷ _ , [] , _ ⟩ = crash crash₅ kind ⟨ app ∷ _ , val _ ∷ [] , _ ⟩ = crash crash₆ kind ⟨ app ∷ _ , ret _ _ ∷ _ , _ ⟩ = crash crash₇ kind ⟨ app ∷ _ , val _ ∷ val (con _) ∷ _ , _ ⟩ = crash crash₈ kind ⟨ app ∷ _ , val _ ∷ ret _ _ ∷ _ , _ ⟩ = crash crash₉ kind ⟨ ret ∷ _ , [] , _ ⟩ = crash crash₁₀ kind ⟨ ret ∷ _ , val _ ∷ [] , _ ⟩ = crash crash₁₁ kind ⟨ ret ∷ _ , ret _ _ ∷ _ , _ ⟩ = crash crash₁₂ kind ⟨ ret ∷ _ , val _ ∷ val _ ∷ _ , _ ⟩ = crash crash₁₃ -- The functional semantics crashes for crashing states. exec-crashes : ∀ {s} → Crashing s → exec s ≈ return nothing exec-crashes crash₁ = now PE.refl exec-crashes crash₂ = now PE.refl exec-crashes crash₃ = now PE.refl exec-crashes crash₄ = now PE.refl exec-crashes crash₅ = now PE.refl exec-crashes crash₆ = now PE.refl exec-crashes crash₇ = now PE.refl exec-crashes crash₈ = now PE.refl exec-crashes crash₉ = now PE.refl exec-crashes crash₁₀ = now PE.refl exec-crashes crash₁₁ = now PE.refl exec-crashes crash₁₂ = now PE.refl exec-crashes crash₁₃ = now PE.refl -- The relational semantics also crashes for crashing states. ⟶-crashes : ∀ {s} → Crashing s → Stuck s ⟶-crashes s↯ = (helper₁ s↯ , helper₂ s↯) where helper₁ : ∀ {s} → Crashing s → Final s helper₁ crash₁ (_ , ()) helper₁ crash₂ (_ , ()) helper₁ crash₃ (_ , ()) helper₁ crash₄ (_ , ()) helper₁ crash₅ (_ , ()) helper₁ crash₆ (_ , ()) helper₁ crash₇ (_ , ()) helper₁ crash₈ (_ , ()) helper₁ crash₉ (_ , ()) helper₁ crash₁₀ (_ , ()) helper₁ crash₁₁ (_ , ()) helper₁ crash₁₂ (_ , ()) helper₁ crash₁₃ (_ , ()) helper₂ : ∀ {s} → Crashing s → ∄ λ v → s ⇓ v helper₂ crash₁ (_ , ()) helper₂ crash₂ (_ , ()) helper₂ crash₃ (_ , ()) helper₂ crash₄ (_ , ()) helper₂ crash₅ (_ , ()) helper₂ crash₆ (_ , ()) helper₂ crash₇ (_ , ()) helper₂ crash₈ (_ , ()) helper₂ crash₉ (_ , ()) helper₂ crash₁₀ (_ , ()) helper₂ crash₁₁ (_ , ()) helper₂ crash₁₂ (_ , ()) helper₂ crash₁₃ (_ , ()) ---------------------------------------------------------------------- -- The relational semantics is sound with respect to the functional -- one -- Note that these proofs implicitly establish that the relational -- semantics is deterministic. ⇒⇓ : ∀ {s s′ v} → s ⟶⋆ s′ → s′ ⇓ v → exec s ≈ return (just v) ⇒⇓ ε final = now PE.refl ⇒⇓ (var ◅ s⟶⋆) ⇓ = laterˡ (⇒⇓ s⟶⋆ ⇓) ⇒⇓ (con ◅ s⟶⋆) ⇓ = laterˡ (⇒⇓ s⟶⋆ ⇓) ⇒⇓ (clo ◅ s⟶⋆) ⇓ = laterˡ (⇒⇓ s⟶⋆ ⇓) ⇒⇓ (app ◅ s⟶⋆) ⇓ = laterˡ (⇒⇓ s⟶⋆ ⇓) ⇒⇓ (ret ◅ s⟶⋆) ⇓ = laterˡ (⇒⇓ s⟶⋆ ⇓) ⇒⇑ : ∀ {s} → s ⟶∞ → exec s ≈ never ⇒⇑ (var ◅ s⟶∞) = later (♯ (⇒⇑ (♭ s⟶∞))) ⇒⇑ (con ◅ s⟶∞) = later (♯ (⇒⇑ (♭ s⟶∞))) ⇒⇑ (clo ◅ s⟶∞) = later (♯ (⇒⇑ (♭ s⟶∞))) ⇒⇑ (app ◅ s⟶∞) = later (♯ (⇒⇑ (♭ s⟶∞))) ⇒⇑ (ret ◅ s⟶∞) = later (♯ (⇒⇑ (♭ s⟶∞))) ⇒↯ : ∀ {s} → ∃ (λ s′ → s ⟶⋆ s′ × Stuck s′) → exec s ≈ return nothing ⇒↯ (_ , var ◅ s⟶⋆ , ↯) = laterˡ (⇒↯ (_ , s⟶⋆ , ↯)) ⇒↯ (_ , con ◅ s⟶⋆ , ↯) = laterˡ (⇒↯ (_ , s⟶⋆ , ↯)) ⇒↯ (_ , clo ◅ s⟶⋆ , ↯) = laterˡ (⇒↯ (_ , s⟶⋆ , ↯)) ⇒↯ (_ , app ◅ s⟶⋆ , ↯) = laterˡ (⇒↯ (_ , s⟶⋆ , ↯)) ⇒↯ (_ , ret ◅ s⟶⋆ , ↯) = laterˡ (⇒↯ (_ , s⟶⋆ , ↯)) ⇒↯ (s , ε , ↯) with kind s ... | done s⇓v = ⊥-elim (proj₂ ↯ (-, s⇓v)) ... | continue s₁⟶s₂ = ⊥-elim (proj₁ ↯ (-, s₁⟶s₂)) ... | crash s↯ = exec-crashes s↯ ---------------------------------------------------------------------- -- The relational semantics is complete with respect to the -- functional one ⇐⇓ : ∀ {s v} → exec s ≈ return (just v) → ∃ λ s′ → s ⟶⋆ s′ × s′ ⇓ v ⇐⇓ {s = s} ⇓ with kind s ⇐⇓ (now PE.refl) | done final = (_ , ε , final) ⇐⇓ (laterˡ ⇓) | continue var = Prod.map id (Prod.map (_◅_ var) id) (⇐⇓ ⇓) ⇐⇓ (laterˡ ⇓) | continue con = Prod.map id (Prod.map (_◅_ con) id) (⇐⇓ ⇓) ⇐⇓ (laterˡ ⇓) | continue clo = Prod.map id (Prod.map (_◅_ clo) id) (⇐⇓ ⇓) ⇐⇓ (laterˡ ⇓) | continue app = Prod.map id (Prod.map (_◅_ app) id) (⇐⇓ ⇓) ⇐⇓ (laterˡ ⇓) | continue ret = Prod.map id (Prod.map (_◅_ ret) id) (⇐⇓ ⇓) ⇐⇓ {s} {v} ⇓ | crash s↯ with return (just v) ≈⟨ sym ⇓ ⟩ exec s ≈⟨ exec-crashes s↯ ⟩ return nothing ∎ where open EqReasoning ... | now () ⇐⇑ : ∀ {s} → exec s ≈ never → s ⟶∞ ⇐⇑ {s = s} ⇑ with kind s ⇐⇑ ⇑ | done final = ⊥-elim (now≉never ⇑) ⇐⇑ ⇑ | continue var = var ◅ ♯ ⇐⇑ (later⁻¹ ⇑) ⇐⇑ ⇑ | continue con = con ◅ ♯ ⇐⇑ (later⁻¹ ⇑) ⇐⇑ ⇑ | continue clo = clo ◅ ♯ ⇐⇑ (later⁻¹ ⇑) ⇐⇑ ⇑ | continue app = app ◅ ♯ ⇐⇑ (later⁻¹ ⇑) ⇐⇑ ⇑ | continue ret = ret ◅ ♯ ⇐⇑ (later⁻¹ ⇑) ⇐⇑ {s} ⇑ | crash s↯ = ⊥-elim (now≉never ( return nothing ≈⟨ sym $ exec-crashes s↯ ⟩ exec s ≈⟨ ⇑ ⟩ never ∎)) where open EqReasoning ⇐↯ : ∀ {s} → exec s ≈ return nothing → ∃ λ s′ → s ⟶⋆ s′ × Stuck s′ ⇐↯ {s = s} ↯ with kind s ⇐↯ (now ()) | done final ⇐↯ (laterˡ ↯) | continue var = Prod.map id (Prod.map (_◅_ var) id) $ ⇐↯ ↯ ⇐↯ (laterˡ ↯) | continue con = Prod.map id (Prod.map (_◅_ con) id) $ ⇐↯ ↯ ⇐↯ (laterˡ ↯) | continue clo = Prod.map id (Prod.map (_◅_ clo) id) $ ⇐↯ ↯ ⇐↯ (laterˡ ↯) | continue app = Prod.map id (Prod.map (_◅_ app) id) $ ⇐↯ ↯ ⇐↯ (laterˡ ↯) | continue ret = Prod.map id (Prod.map (_◅_ ret) id) $ ⇐↯ ↯ ⇐↯ ↯ | crash s↯ = (_ , ε , ⟶-crashes s↯)
{ "alphanum_fraction": 0.4410785619, "avg_line_length": 36.1927710843, "ext": "agda", "hexsha": "ecab07c5e2e3ff92fe1104c0c1e2bfb8f1502ed4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/VirtualMachine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/VirtualMachine.agda", "max_line_length": 115, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/VirtualMachine.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 6177, "size": 15020 }
{-# OPTIONS --without-K --safe #-} module FreshUtil where open import Level using (Level; _⊔_; Lift) open import Data.Empty open import Data.Product using (∃; _,_; -,_) open import Data.Sum.Base using (_⊎_; [_,_]′; inj₁; inj₂) open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Unary as U open import Relation.Binary as B using (Rel) open import Data.List.Fresh.Relation.Unary.Any open import Data.List.Fresh using (List#; []; cons; _∷#_; _#_) open import Relation.Binary.PropositionalEquality hiding ( [_] ) private variable ax px rx ay py ry az pz rz : Level AX : Set ax AY : Set ay AZ : Set az module _ {AX : Set ax} {RX : Rel AX rx} (PX : Pred AX px) {AY : Set ay} {RY : Rel AY ry} (PY : Pred AY py) {AZ : Set az} {RZ : Rel AZ rz} (PZ : Pred AZ pz) where ------------- FLinsert : AZ → List# AZ RZ → List# AZ RZ FLfresh : (a x : AZ ) → (y : List# AZ RZ ) → RZ a x -- → # AZ ? a y → fresh AZ ? a (FLinsert x y) FLinsert = {!!} FLfresh = {!!} x∈FLins : (x : AZ) → (xs : List# AZ RZ) → Any (x ≡_) (FLinsert x xs) x∈FLins = {!!} insAny : {x h : AZ } → (xs : List# AZ RZ) → Any (x ≡_) xs → Any (x ≡_) (FLinsert h xs) insAny = {!!} -- FLinsert {zero} f0 y = f0 ∷# [] -- FLinsert {suc n} x [] = x ∷# [] -- FLinsert {suc n} x (cons a y x₁) with FLcmp x a -- ... | tri≈ ¬a b ¬c = cons a y x₁ -- ... | tri< lt ¬b ¬c = cons x ( cons a y x₁) ( Level.lift (fromWitness lt ) , ttf lt y x₁) -- FLinsert {suc n} x (cons a [] x₁) | tri> ¬a ¬b lt = cons a ( x ∷# [] ) ( Level.lift (fromWitness lt) , Level.lift tt ) -- FLinsert {suc n} x (cons a y yr) | tri> ¬a ¬b a<x = cons a (FLinsert x y) (FLfresh a x y a<x yr ) -- -- FLfresh a x [] a<x (Level.lift tt) = Level.lift (fromWitness a<x) , Level.lift tt -- FLfresh a x (cons b [] (Level.lift tt)) a<x (Level.lift a<b , a<y) with FLcmp x b -- ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , Level.lift tt -- ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , Level.lift tt -- ... | tri> ¬a ¬b b<x = Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt -- FLfresh a x (cons b y br) a<x (Level.lift a<b , a<y) with FLcmp x b -- ... | tri< x<b ¬b ¬c = Level.lift (fromWitness a<x) , Level.lift a<b , ttf (toWitness a<b) y br -- ... | tri≈ ¬a refl ¬c = Level.lift (fromWitness a<x) , ttf a<x y br -- FLfresh a x (cons b [] br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = -- Level.lift a<b , Level.lift (fromWitness (f<-trans (toWitness a<b) b<x)) , Level.lift tt -- FLfresh a x (cons b (cons a₁ y x₁) br) a<x (Level.lift a<b , a<y) | tri> ¬a ¬b b<x = -- Level.lift a<b , FLfresh a x (cons a₁ y x₁) a<x a<y -- all cobmbination in P and Q (could be more general) record AnyPair (X : List# AX RX ) (Y : List# AY RY ) (fpq : (p : AX) (q : AY) → AZ) : Set (ax ⊔ px ⊔ rx ⊔ ay ⊔ py ⊔ ry ⊔ az ⊔ pz ⊔ rz ) where field pairList : List# AZ RZ pairAny : (p : AX) (q : AY) → Any ( p ≡_ ) X → Any ( q ≡_ ) Y → Any (fpq p q ≡_) pairList ------------- -- (p,q) (p,qn) .... (p,q0) -- pn,q -- : AnyPair FL0 FL0 P Q -- p0,q open AnyPair anyPair : (P : List# AX RX) (Q : List# AY RY) → (fpq : (p : AX) (q : AY) → AZ) → AnyPair P Q fpq anyPair [] [] _ = record { pairList = [] ; pairAny = λ _ _ () } anyPair [] (cons q Q qr) _ = record { pairList = [] ; pairAny = λ _ _ () } anyPair (cons p P pr) [] _ = record { pairList = [] ; pairAny = λ _ _ _ () } anyPair (cons p P pr) (cons q Q qr) fpq = record { pairList = FLinsert (fpq p q) (pairListQ Q) ; pairAny = anyc0n } where pairListP : (P1 : List# AX RX) → List# AZ RZ pairListP [] = pairList (anyPair P Q fpq) pairListP (cons p₁ P1 x) = FLinsert (fpq p₁ q) (pairListP P1) pairListQ : (Q1 : List# AY RY) → List# AZ RZ pairListQ [] = pairListP P pairListQ (cons q₁ Q1 qr₁) = FLinsert (fpq p q₁) (pairListQ Q1) anyc0n : (p₁ : AX) (q₁ : AY) → Any (_≡_ p₁) (cons p P pr) → Any (_≡_ q₁) (cons q Q qr) → Any (_≡_ (fpq p₁ q₁)) (FLinsert (fpq p q) (pairListQ Q)) anyc0n p₁ q₁ (here refl) (here refl) = x∈FLins _ (pairListQ Q ) anyc0n p₁ q₁ (here refl) (there anyq) = insAny (pairListQ Q) (anyc01 Q anyq) where anyc01 : (Q1 : List# AY RY) → Any (_≡_ q₁) Q1 → Any (_≡_ (fpq p₁ q₁)) (pairListQ Q1) anyc01 (cons q Q1 qr₂) (here refl) = x∈FLins _ _ anyc01 (cons q₂ Q1 qr₂) (there any) = insAny _ (anyc01 Q1 any) anyc0n p₁ q₁ (there anyp) (here refl) = insAny _ (anyc02 Q) where anyc03 : (P1 : List# AX RX) → Any (_≡_ p₁) P1 → Any (_≡_ (fpq p₁ q₁)) (pairListP P1) anyc03 (cons a P1 x) (here refl) = x∈FLins _ _ anyc03 (cons a P1 x) (there any) = insAny _ ( anyc03 P1 any) anyc02 : (Q1 : List# AY RY) → Any (_≡_ (fpq p₁ q₁)) (pairListQ Q1) anyc02 [] = anyc03 P anyp anyc02 (cons a Q1 x) = insAny _ (anyc02 Q1) anyc0n p₁ q₁ (there anyp) (there anyq) = insAny (pairListQ Q) (anyc04 Q) where anyc05 : (P1 : List# AX RX) → Any (_≡_ (fpq p₁ q₁)) (pairListP P1) anyc05 [] = pairAny (anyPair P Q fpq) p₁ q₁ anyp anyq anyc05 (cons a P1 x) = insAny _ (anyc05 P1) anyc04 : (Q1 : List# AY RY) → Any (_≡_ (fpq p₁ q₁)) (pairListQ Q1) anyc04 [] = anyc05 P anyc04 (cons a Q1 x) = insAny _ (anyc04 Q1)
{ "alphanum_fraction": 0.5140482128, "avg_line_length": 54.1891891892, "ext": "agda", "hexsha": "97b422c35b54531de669286d912de5149e1c6f3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/FreshUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/FreshUtil.agda", "max_line_length": 161, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/FreshUtil.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 2222, "size": 6015 }
{-# OPTIONS --without-K --safe #-} open import Categories.Bicategory using (Bicategory) -- The 1-cell dual (op) and 2-cell dual (co) of a given bicategory. module Categories.Bicategory.Opposite where open import Data.Product using (_,_) import Categories.Bicategory.Extras as BicategoryExtras open import Categories.Category using (Category) import Categories.Category.Cartesian as Cartesian import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as MorphismReasoning open import Categories.Category.Product using (Swap) open import Categories.Functor using (Functor; _∘F_) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) -- There several ways to dualize a bicategory: -- -- * flip the 1-cells (op C), or -- * flip the 2-cells (co C). -- * flip both (coop C). -- -- We implement all three. module _ {o ℓ e t} (C : Bicategory o ℓ e t) where open BicategoryExtras C open Shorthands private module MR {A} {B} where open Morphism (hom A B) public using (module ≅) open MorphismReasoning (hom A B) public using (switch-tofromʳ) open MR -- The 1-cell dual of C. -- -- NOTE. The definition here is specialized to the particular choice -- of tensor product (cartesian) and braiding (swap) used in the -- definition of Bicategories. We could instead have defined the -- `enriched' field using the generic `op' operation defined in -- Categories.Enriched.Category.Opposite, but that would have resulted -- in much more complicated proofs of the triangle and pentagon -- identities. That's because the definition of associativity and the -- unit laws in the generic opposite enriched category has to work for -- any choice of braiding and is therefore more involved. When these -- laws become natural isomorphism in the definition of Bicategories, -- they turn into long chains consisting of mostly identity morphisms -- that make the types of the triangle and pentagon identities -- enormous. We can avoid this by specializing the definitions of the -- associators and unitors below. -- -- Note also that this version of `op' is almost a (definitional) -- involution. The problematic fields are the triangle and pentagon -- identities which are not involutive on the nose. This could be -- fixed by adding additional fields (in the style of `sym-assoc' in -- Category). To also support `co` and `coop` would require two more -- variants of each equation, so there would be quite a lot of -- redundancy in the end. op : Bicategory o ℓ e t op = record { enriched = record { Obj = Obj ; hom = λ A B → hom B A ; id = id ; ⊚ = ⊚ ∘F Swap ; ⊚-assoc = niHelper (record { η = λ{ ((f , g) , h) → ⊚-assoc.⇐.η ((h , g) , f) } ; η⁻¹ = λ{ ((f , g) , h) → ⊚-assoc.⇒.η ((h , g) , f) } ; commute = λ{ ((α , β) , γ) → ⊚-assoc.⇐.commute ((γ , β) , α) } ; iso = λ _ → record { isoˡ = ⊚-assoc.iso.isoʳ _ ; isoʳ = ⊚-assoc.iso.isoˡ _ } }) ; unitˡ = niHelper (record { η = λ{ (_ , g) → unitʳ.⇒.η (g , _) } ; η⁻¹ = λ{ (_ , g) → unitʳ.⇐.η (g , _) } ; commute = λ{ (_ , β) → unitʳ.⇒.commute (β , _) } ; iso = λ{ (_ , g) → record { isoˡ = unitʳ.iso.isoˡ (g , _) ; isoʳ = unitʳ.iso.isoʳ (g , _) } } }) ; unitʳ = niHelper (record { η = λ{ (f , _) → unitˡ.⇒.η (_ , f) } ; η⁻¹ = λ{ (f , _) → unitˡ.⇐.η (_ , f) } ; commute = λ{ (α , _) → unitˡ.⇒.commute (_ , α) } ; iso = λ{ (f , _) → record { isoˡ = unitˡ.iso.isoˡ (_ , f) ; isoʳ = unitˡ.iso.isoʳ (_ , f) } } }) } ; triangle = λ {_ _ _ f g} → begin ρ⇒ ◁ g ∘ᵥ α⇐ ≈˘⟨ switch-tofromʳ (≅.sym associator) triangle ⟩ f ▷ λ⇒ ∎ ; pentagon = λ {_ _ _ _ _ f g h i} → begin α⇐ ◁ i ∘ᵥ α⇐ ∘ᵥ f ▷ α⇐ ≈˘⟨ hom.assoc ⟩ (α⇐ ◁ i ∘ᵥ α⇐) ∘ᵥ f ▷ α⇐ ≈⟨ pentagon-inv ⟩ α⇐ ∘ᵥ α⇐ ∎ } where open hom.HomReasoning -- The 2-cell dual of C. co : Bicategory o ℓ e t co = record { enriched = record { Obj = Obj ; hom = λ A B → Category.op (hom A B) ; id = Functor.op id ; ⊚ = Functor.op ⊚ ; ⊚-assoc = NaturalIsomorphism.op′ ⊚-assoc ; unitˡ = NaturalIsomorphism.op′ unitˡ ; unitʳ = NaturalIsomorphism.op′ unitʳ } ; triangle = triangle-inv ; pentagon = pentagon-inv } -- The combined 1- and 2-cell dual of C. coop : ∀ {o ℓ e t} → Bicategory o ℓ e t → Bicategory o ℓ e t coop C = co (op C)
{ "alphanum_fraction": 0.5919675283, "avg_line_length": 37.75, "ext": "agda", "hexsha": "1459192c3d9b502cd363c953dc819efec7c6c86e", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Bicategory/Opposite.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Bicategory/Opposite.agda", "max_line_length": 77, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Bicategory/Opposite.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1569, "size": 4681 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Groups.Definition open import Sets.EquivalenceRelations open import Setoids.Functions.Extension module Groups.SymmetricGroups.Definition where data SymmetryGroupElements {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where sym : {f : A → A} → SetoidBijection S S f → SymmetryGroupElements S symmetricSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Setoid (SymmetryGroupElements S) Setoid._∼_ (symmetricSetoid S) (sym {f} bijF) (sym {g} bijG) = ExtensionallyEqual {S = S} {S} (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) Equivalence.reflexive (Setoid.eq (symmetricSetoid S)) {sym {f} bijF} = extensionallyEqualReflexive S S f (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijF) Equivalence.symmetric (Setoid.eq (symmetricSetoid S)) {sym {f} bijF} {sym {g} bijG} f~g = extensionallyEqualSymmetric S S f g (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) f~g Equivalence.transitive (Setoid.eq (symmetricSetoid S)) {sym {f} bijF} {sym {g} bijG} {sym {h} bijH} f~g g~h = extensionallyEqualTransitive S S f g h (SetoidBijection.wellDefined bijF) (SetoidBijection.wellDefined bijG) (SetoidBijection.wellDefined bijH) f~g g~h symmetricGroupOp : {a b : _} {A : Set a} {S : Setoid {a} {b} A} (f g : SymmetryGroupElements S) → SymmetryGroupElements S symmetricGroupOp (sym {f} bijF) (sym {g} bijG) = sym (setoidBijComp bijG bijF) symmetricGroupInv : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → SymmetryGroupElements S → SymmetryGroupElements S symmetricGroupInv S (sym {f} bijF) with setoidBijectiveImpliesInvertible bijF ... | record { inverse = inverse ; inverseWellDefined = iwd ; isLeft = isLeft ; isRight = isRight } = sym (setoidInvertibleImpliesBijective (record { fWellDefined = iwd ; inverse = f ; inverseWellDefined = SetoidInjection.wellDefined (SetoidBijection.inj bijF) ; isLeft = λ b → isRight b ; isRight = λ b → isLeft b })) symmetricGroupInvIsLeft : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → {x : SymmetryGroupElements S} → Setoid._∼_ (symmetricSetoid S) (symmetricGroupOp (symmetricGroupInv S x) x) (sym setoidIdIsBijective) symmetricGroupInvIsLeft {A = A} S {sym {f = f} fBij} = ans where ans : {x : A} → Setoid._∼_ S (SetoidInvertible.inverse (setoidBijectiveImpliesInvertible fBij) (f x)) x ans {x} with SetoidSurjection.surjective (SetoidBijection.surj fBij) {f x} ans {x} | a , b = SetoidInjection.injective (SetoidBijection.inj fBij) b symmetricGroupInvIsRight : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → {x : SymmetryGroupElements S} → Setoid._∼_ (symmetricSetoid S) (symmetricGroupOp x (symmetricGroupInv S x)) (sym setoidIdIsBijective) symmetricGroupInvIsRight {A = A} S {sym {f = f} fBij} = ans where ans : {x : A} → Setoid._∼_ S (f (SetoidInvertible.inverse (setoidBijectiveImpliesInvertible fBij) x)) x ans {x} with SetoidSurjection.surjective (SetoidBijection.surj fBij) {x} ans {x} | a , b = b symmetricGroup : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Group (symmetricSetoid S) (symmetricGroupOp {A = A}) Group.+WellDefined (symmetricGroup A) {sym {m} bijM} {sym {n} bijN} {sym {x} bijX} {sym {y} bijY} m~x n~y = transitive m~x (SetoidBijection.wellDefined bijX n~y) where open Equivalence (Setoid.eq A) Group.0G (symmetricGroup A) = sym setoidIdIsBijective Group.inverse (symmetricGroup S) = symmetricGroupInv S Group.+Associative (symmetricGroup A) {sym {f} bijF} {sym {g} bijG} {sym {h} bijH} = Equivalence.reflexive (Setoid.eq A) Group.identRight (symmetricGroup A) {sym {f} bijF} = Equivalence.reflexive (Setoid.eq A) Group.identLeft (symmetricGroup A) {sym {f} bijF} = Equivalence.reflexive (Setoid.eq A) Group.invLeft (symmetricGroup S) {x} = symmetricGroupInvIsLeft S {x} Group.invRight (symmetricGroup S) {x} = symmetricGroupInvIsRight S {x}
{ "alphanum_fraction": 0.7211105553, "avg_line_length": 75.4339622642, "ext": "agda", "hexsha": "0ec8ab2e9f3fa2f75b1672bfcfe6f8f07a66cb99", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/SymmetricGroups/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/SymmetricGroups/Definition.agda", "max_line_length": 318, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/SymmetricGroups/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1435, "size": 3998 }
import Relation.Unary.Monotone as Mono open import Relation.Binary using (Preorder) open import Relation.Binary.PropositionalEquality open import Level module Category.Monad.Monotone.Heap -- preordered heap types {ℓ}(pre : Preorder ℓ ℓ ℓ) -- types (T : Set ℓ) -- weakenable values (V : T → Preorder.Carrier pre → Set ℓ) ⦃ wkV : ∀ {a} → Mono.Monotone pre (V a) ⦄ -- heaps indexed by the heap type (H : Preorder.Carrier pre → Set ℓ) -- weakenable heap type membership (_∈_ : T → Preorder.Carrier pre → Set ℓ) ⦃ wk∈ : ∀ {a} → Mono.Monotone pre (_∈_ a) ⦄ where open Preorder pre renaming (Carrier to I; _∼_ to _≤_; refl to ≤-refl; trans to ≤-trans) open import Data.Unit using (⊤; tt) open import Relation.Unary hiding (_∈_) open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Unary.Monotone pre open import Data.Product open import Category.Monad open import Category.Monad.Monotone pre open import Category.Monad.Identity open import Category.Monad.Monotone.State pre H record HeapMonad (M : Pt I ℓ) : Set (suc ℓ) where field ⦃ super ⦄ : StateMonad M open StateMonad super public field store : ∀ {a} → V a ⊆ M (λ W → a ∈ W) modify : ∀ {a} → _∈_ a ⊆ V a ⇒ M (λ W' → Lift ⊤) deref : ∀ {a} → _∈_ a ⊆ M (V a) module _ ⦃ m : RawMPMonad M ⦄ where open RawMPMonad m open import Data.List.All as All storeₙ : ∀ {W as} → All (λ a → V a W) as → M (λ W' → All (λ a → a ∈ W') as) W storeₙ vs = sequenceM (All.map (λ v {x} ext → store (wk ext v)) vs)
{ "alphanum_fraction": 0.6569010417, "avg_line_length": 32, "ext": "agda", "hexsha": "1fc1f1ff87477d64a450f113dc58d4fc6fd81ca1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Category/Monad/Monotone/Heap.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Category/Monad/Monotone/Heap.agda", "max_line_length": 92, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Category/Monad/Monotone/Heap.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 531, "size": 1536 }
module BasicT.Metatheory.Gentzen-BasicTarski where open import BasicT.Syntax.Gentzen public open import BasicT.Semantics.BasicTarski public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ a → eval t (γ , a) eval (app t u) γ = eval t γ $ eval u γ eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ eval true γ = true eval false γ = false eval (if t u v) γ = ifᴮ (eval t γ) (eval u γ) (eval v γ) eval zero γ = zero eval (suc t) γ = suc (eval t γ) eval (it t u v) γ = itᴺ (eval t γ) (eval u γ) (eval v γ) eval (rec t u v) γ = recᴺ (eval t γ) (eval u γ) (eval v γ) -- TODO: Correctness of evaluation with respect to conversion.
{ "alphanum_fraction": 0.6011976048, "avg_line_length": 30.9259259259, "ext": "agda", "hexsha": "c539cdf3e4af305f63e08ed240d8d74dc5765d11", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicT/Metatheory/Gentzen-BasicTarski.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicT/Metatheory/Gentzen-BasicTarski.agda", "max_line_length": 62, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicT/Metatheory/Gentzen-BasicTarski.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 306, "size": 835 }
{-# OPTIONS --without-K #-} module Pifextensional where open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; module ≡-Reasoning) open ≡-Reasoning open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_) open import Groupoid ------------------------------------------------------------------------------ -- Level 0: -- ZERO is a type with no elements -- ONE is a type with one element 'tt' -- PLUS ONE ONE is a type with elements 'false' and 'true' -- and so on for all finite types built from ZERO, ONE, PLUS, and TIMES -- -- We also have that U is a type with elements ZERO, ONE, PLUS ONE ONE, -- TIMES BOOL BOOL, etc. data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ -- Abbreviations for examples BOOL BOOL² : U BOOL = PLUS ONE ONE BOOL² = TIMES BOOL BOOL false⟷ true⟷ : ⟦ BOOL ⟧ false⟷ = inj₁ tt true⟷ = inj₂ tt -- For any finite type (t : U) there is no non-trivial path structure -- between the elements of t. All such finite types are discrete -- groupoids -- -- For U, there are non-trivial paths between its points. In the -- conventional HoTT presentation, a path between t₁ and t₂ is -- postulated by univalence for each equivalence between t₁ and t₂. In -- the context of finite types, an equivalence corresponds to a -- permutation as each permutation has a unique inverse -- permutation. Thus instead of the detour using univalence, we can -- give an inductive definition of all possible permutations between -- finite types which naturally induces paths between the points. More -- precisely, two types t₁ and t₂ have a path between them if there is -- a permutation (c : t₁ ⟷ t₂). The fact that c is a permutation -- guarantees, by construction, that (c ◎ ! c ∼ id⟷) and (! c ◎ c ∼ -- id⟷). A complete set of generators for all possible permutations -- between finite types is given by the following definition. Note -- that these permutations do not reach inside the types and hence do -- not generate paths between the points within the types. The paths -- are just between the types themselves. infix 30 _⟷_ infixr 50 _◎_ data _⟷_ : U → U → Set where unite₊ : {t : U} → PLUS ZERO t ⟷ t uniti₊ : {t : U} → t ⟷ PLUS ZERO t swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆ : {t : U} → TIMES ONE t ⟷ t uniti⋆ : {t : U} → t ⟷ TIMES ONE t swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) distz : {t : U} → TIMES ZERO t ⟷ ZERO factorz : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ id⟷ : {t : U} → t ⟷ t _◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) -- Nicer syntax that shows intermediate values instead of the above -- point-free notation of permutations infixr 2 _⟷⟨_⟩_ infix 2 _□ _⟷⟨_⟩_ : (t₁ : U) {t₂ : U} {t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _ ⟷⟨ α ⟩ β = α ◎ β _□ : (t : U) → {t : U} → (t ⟷ t) _□ t = id⟷ -- Many ways of negating a BOOL. Again, it is absolutely critical that there -- is NO path between false⟷ and true⟷. These permutations instead are based -- on paths between x and neg (neg x) which are the trivial paths on each of -- the two points in BOOL. neg₁ neg₂ neg₃ neg₄ neg₅ : BOOL ⟷ BOOL neg₁ = swap₊ neg₂ = id⟷ ◎ swap₊ neg₃ = swap₊ ◎ swap₊ ◎ swap₊ neg₄ = swap₊ ◎ id⟷ neg₅ = uniti⋆ ◎ swap⋆ ◎ (swap₊ ⊗ id⟷) ◎ swap⋆ ◎ unite⋆ -- CNOT CNOT : BOOL² ⟷ BOOL² CNOT = TIMES (PLUS x y) BOOL ⟷⟨ dist ⟩ PLUS (TIMES x BOOL) (TIMES y BOOL) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ swap₊) ⟩ PLUS (TIMES x BOOL) (TIMES y BOOL) ⟷⟨ factor ⟩ TIMES (PLUS x y) BOOL □ where x = ONE; y = ONE -- TOFFOLI TOFFOLI : TIMES BOOL BOOL² ⟷ TIMES BOOL BOOL² TOFFOLI = TIMES (PLUS x y) BOOL² ⟷⟨ dist ⟩ PLUS (TIMES x BOOL²) (TIMES y BOOL²) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ CNOT) ⟩ PLUS (TIMES x BOOL²) (TIMES y BOOL²) ⟷⟨ factor ⟩ TIMES (PLUS x y) BOOL² □ where x = ONE; y = ONE -- Every permutation has an inverse. There are actually many syntactically -- different inverses but they are all equivalent. ! : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) ! unite₊ = uniti₊ ! uniti₊ = unite₊ ! swap₊ = swap₊ ! assocl₊ = assocr₊ ! assocr₊ = assocl₊ ! unite⋆ = uniti⋆ ! uniti⋆ = unite⋆ ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! distz = factorz ! factorz = distz ! dist = factor ! factor = dist ! id⟷ = id⟷ ! (c₁ ◎ c₂) = ! c₂ ◎ ! c₁ ! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂) ! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂) !! : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → ! (! c) ≡ c !! {c = unite₊} = refl !! {c = uniti₊} = refl !! {c = swap₊} = refl !! {c = assocl₊} = refl !! {c = assocr₊} = refl !! {c = unite⋆} = refl !! {c = uniti⋆} = refl !! {c = swap⋆} = refl !! {c = assocl⋆} = refl !! {c = assocr⋆} = refl !! {c = distz} = refl !! {c = factorz} = refl !! {c = dist} = refl !! {c = factor} = refl !! {c = id⟷} = refl !! {c = c₁ ◎ c₂} = begin (! (! (c₁ ◎ c₂)) ≡⟨ refl ⟩ ! (! c₂ ◎ ! c₁) ≡⟨ refl ⟩ ! (! c₁) ◎ ! (! c₂) ≡⟨ cong₂ _◎_ (!! {c = c₁}) (!! {c = c₂}) ⟩ c₁ ◎ c₂ ∎) !! {c = c₁ ⊕ c₂} = begin (! (! (c₁ ⊕ c₂)) ≡⟨ refl ⟩ ! (! c₁) ⊕ ! (! c₂) ≡⟨ cong₂ _⊕_ (!! {c = c₁}) (!! {c = c₂}) ⟩ c₁ ⊕ c₂ ∎) !! {c = c₁ ⊗ c₂} = begin (! (! (c₁ ⊗ c₂)) ≡⟨ refl ⟩ ! (! c₁) ⊗ ! (! c₂) ≡⟨ cong₂ _⊗_ (!! {c = c₁}) (!! {c = c₂}) ⟩ c₁ ⊗ c₂ ∎) ------------------------------------------------------------------------------ -- Extensional view of 2paths. -- -- There is a 2path between two permutations p and q if for each x, the -- result of p(x) and q(x) are identical. -- First we define the extensional view of a permutation as a function. ap : {t₁ t₂ : U} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧ ap unite₊ (inj₁ ()) -- absurd ap unite₊ (inj₂ v) = v ap uniti₊ v = inj₂ v ap swap₊ (inj₁ v) = inj₂ v ap swap₊ (inj₂ v) = inj₁ v ap assocl₊ (inj₁ v) = inj₁ (inj₁ v) ap assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) ap assocl₊ (inj₂ (inj₂ v)) = inj₂ v ap assocr₊ (inj₁ (inj₁ v)) = inj₁ v ap assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) ap assocr₊ (inj₂ v) = inj₂ (inj₂ v) ap unite⋆ (tt , v) = v ap uniti⋆ v = (tt , v) ap swap⋆ (v₁ , v₂) = (v₂ , v₁) ap assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) ap assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) ap distz (() , _) -- absurd ap factorz () -- absurd ap dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) ap dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) ap factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) ap factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) ap id⟷ v = v ap (c₁ ◎ c₂) v = ap c₂ (ap c₁ v) ap (c₁ ⊕ c₂) (inj₁ v) = inj₁ (ap c₁ v) ap (c₁ ⊕ c₂) (inj₂ v) = inj₂ (ap c₂ v) ap (c₁ ⊗ c₂) (v₁ , v₂) = (ap c₁ v₁ , ap c₂ v₂) α◎!α : {t₁ t₂ : U} {α : t₁ ⟷ t₂} {v : ⟦ t₁ ⟧} → ap (α ◎ ! α) v ≡ v α◎!α {α = unite₊} {inj₁ ()} α◎!α {α = unite₊} {inj₂ v} = refl α◎!α {α = uniti₊} {v} = refl α◎!α {α = swap₊} {inj₁ v} = refl α◎!α {α = swap₊} {inj₂ v} = refl α◎!α {α = assocl₊} {inj₁ v} = refl α◎!α {α = assocl₊} {inj₂ (inj₁ v)} = refl α◎!α {α = assocl₊} {inj₂ (inj₂ v)} = refl α◎!α {α = assocr₊} {inj₁ (inj₁ v)} = refl α◎!α {α = assocr₊} {inj₁ (inj₂ v)} = refl α◎!α {α = assocr₊} {inj₂ v} = refl α◎!α {α = unite⋆} {v} = refl α◎!α {α = uniti⋆} {v} = refl α◎!α {α = swap⋆} {v} = refl α◎!α {α = assocl⋆} {v} = refl α◎!α {α = assocr⋆} {v} = refl α◎!α {α = distz} {(() , _)} α◎!α {α = factorz} {()} α◎!α {α = dist} {(inj₁ v₁ , v₂)} = refl α◎!α {α = dist} {(inj₂ v₁ , v₂)} = refl α◎!α {α = factor} {inj₁ v} = refl α◎!α {α = factor} {inj₂ v} = refl α◎!α {α = id⟷} {v} = refl α◎!α {α = α₁ ◎ α₂} {v} = begin ap ((α₁ ◎ α₂) ◎ ! (α₁ ◎ α₂)) v ≡⟨ refl ⟩ ap (! α₁) (ap (α₂ ◎ ! α₂) (ap α₁ v)) ≡⟨ cong (λ v' → ap (! α₁) v') (α◎!α {α = α₂} {v = ap α₁ v}) ⟩ ap (! α₁) (ap α₁ v) ≡⟨ α◎!α {α = α₁} {v = v} ⟩ v ∎ α◎!α {α = α₁ ⊕ α₂} {inj₁ v} = begin ap ((α₁ ⊕ α₂) ◎ ! (α₁ ⊕ α₂)) (inj₁ v) ≡⟨ refl ⟩ inj₁ (ap (! α₁) (ap α₁ v)) ≡⟨ cong inj₁ (α◎!α {α = α₁} {v}) ⟩ inj₁ v ∎ α◎!α {α = α₁ ⊕ α₂} {inj₂ v} = begin ap ((α₁ ⊕ α₂) ◎ ! (α₁ ⊕ α₂)) (inj₂ v) ≡⟨ refl ⟩ inj₂ (ap (! α₂) (ap α₂ v)) ≡⟨ cong inj₂ (α◎!α {α = α₂} {v}) ⟩ inj₂ v ∎ α◎!α {α = α₁ ⊗ α₂} {(v₁ , v₂)} = begin ap ((α₁ ⊗ α₂) ◎ ! (α₁ ⊗ α₂)) (v₁ , v₂) ≡⟨ refl ⟩ (ap (! α₁) (ap α₁ v₁) , ap (! α₂) (ap α₂ v₂)) ≡⟨ cong₂ (_,_) (α◎!α {α = α₁} {v = v₁}) (α◎!α {α = α₂} {v = v₂}) ⟩ (v₁ , v₂) ∎ !α◎α : {t₁ t₂ : U} {α : t₁ ⟷ t₂} {v : ⟦ t₂ ⟧} → ap (! α ◎ α) v ≡ v !α◎α {α = unite₊} {v} = refl !α◎α {α = uniti₊} {inj₁ ()} !α◎α {α = uniti₊} {inj₂ v} = refl !α◎α {α = swap₊} {inj₁ v} = refl !α◎α {α = swap₊} {inj₂ v} = refl !α◎α {α = assocl₊} {inj₁ (inj₁ v)} = refl !α◎α {α = assocl₊} {inj₁ (inj₂ v)} = refl !α◎α {α = assocl₊} {inj₂ v} = refl !α◎α {α = assocr₊} {inj₁ v} = refl !α◎α {α = assocr₊} {inj₂ (inj₁ v)} = refl !α◎α {α = assocr₊} {inj₂ (inj₂ v)} = refl !α◎α {α = unite⋆} {v} = refl !α◎α {α = uniti⋆} {v} = refl !α◎α {α = swap⋆} {v} = refl !α◎α {α = assocl⋆} {v} = refl !α◎α {α = assocr⋆} {v} = refl !α◎α {α = distz} {()} !α◎α {α = factorz} {(() , _)} !α◎α {α = dist} {inj₁ v} = refl !α◎α {α = dist} {inj₂ v} = refl !α◎α {α = factor} {(inj₁ v₁ , v₂)} = refl !α◎α {α = factor} {(inj₂ v₁ , v₂)} = refl !α◎α {α = id⟷} {v} = refl !α◎α {α = α₁ ◎ α₂} {v} = begin ap (! (α₁ ◎ α₂) ◎ (α₁ ◎ α₂)) v ≡⟨ refl ⟩ ap α₂ (ap (! α₁ ◎ α₁) (ap (! α₂) v)) ≡⟨ cong (λ v' → ap α₂ v') (!α◎α {α = α₁} {v = ap (! α₂) v}) ⟩ ap α₂ (ap (! α₂) v) ≡⟨ !α◎α {α = α₂} {v = v} ⟩ v ∎ !α◎α {α = α₁ ⊕ α₂} {inj₁ v} = begin ap (! (α₁ ⊕ α₂) ◎ (α₁ ⊕ α₂)) (inj₁ v) ≡⟨ refl ⟩ inj₁ (ap α₁ (ap (! α₁) v)) ≡⟨ cong inj₁ (!α◎α {α = α₁} {v}) ⟩ inj₁ v ∎ !α◎α {α = α₁ ⊕ α₂} {inj₂ v} = begin ap (! (α₁ ⊕ α₂) ◎ (α₁ ⊕ α₂)) (inj₂ v) ≡⟨ refl ⟩ inj₂ (ap α₂ (ap (! α₂) v)) ≡⟨ cong inj₂ (!α◎α {α = α₂} {v}) ⟩ inj₂ v ∎ !α◎α {α = α₁ ⊗ α₂} {(v₁ , v₂)} = begin ap (! (α₁ ⊗ α₂) ◎ (α₁ ⊗ α₂)) (v₁ , v₂) ≡⟨ refl ⟩ (ap α₁ (ap (! α₁) v₁) , ap α₂ (ap (! α₂) v₂)) ≡⟨ cong₂ (_,_) (!α◎α {α = α₁} {v = v₁}) (!α◎α {α = α₂} {v = v₂}) ⟩ (v₁ , v₂) ∎ -- Two permutations, viewed extensionally, are equivalent if they map -- each value x to the same value. Generally we would only require -- that the resulting values y and z have a path between them, but -- because the internals of each type are discrete groupoids, this -- reduces to saying that y and z are identical. infix 10 _∼_ _∼_ : ∀ {t₁ t₂} → (p q : t₁ ⟷ t₂) → Set _∼_ {t₁} {t₂} p q = (x : ⟦ t₁ ⟧) → ap p x ≡ ap q x α◎!α∼id⟷ : {t₁ t₂ : U} {α : t₁ ⟷ t₂} → α ◎ ! α ∼ id⟷ α◎!α∼id⟷ {α = α} v = α◎!α {α = α} {v} !α◎α∼id⟷ : {t₁ t₂ : U} {α : t₁ ⟷ t₂} → ! α ◎ α ∼ id⟷ !α◎α∼id⟷ {t₁} {t₂} {α} v = !α◎α {α = α} {v} resp◎ : {t₁ t₂ t₃ : U} {p q : t₁ ⟷ t₂} {r s : t₂ ⟷ t₃} → (α : p ∼ q) → (β : r ∼ s) → (p ◎ r) ∼ (q ◎ s) resp◎ {t₁} {t₂} {t₃} {p} {q} {r} {s} α β v = begin ap (p ◎ r) v ≡⟨ refl ⟩ ap r (ap p v) ≡⟨ cong (λ v → ap r v) (α v) ⟩ ap r (ap q v) ≡⟨ β (ap q v) ⟩ ap (q ◎ s) v ∎ -- Because we representing combinators semantically as functions (not as -- permutations), we have to use function extensionality to compare the -- semantic representation. This need to be changed by making use of a proper -- representation of permutations instead of plain functions. postulate funExtP : {A B : Set} {f g : A → B} → ((x : A) → f x ≡ g x) → (f ≡ g) -- Two extensionally equivalent combinators are semantically -- equivalent. Again, if we had a proper representation of permutations, this -- would reduce to comparing the two representations without involving -- function extensionality. ext2id : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → ap c₁ ≡ ap c₂ ext2id {t₁} {t₂} {c₁} {c₂} c₁∼c₂ = funExtP {⟦ t₁ ⟧} {⟦ t₂ ⟧} {ap c₁} {ap c₂} c₁∼c₂ -- The equivalence ∼ of paths makes U a 1groupoid: the points are -- types (t : U); the 1paths are ⟷; and the 2paths between them are -- based on extensional equivalence ∼ G : 1Groupoid G = record { set = U ; _↝_ = _⟷_ ; _≈_ = _∼_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ _ _ → refl ; rneutr = λ _ _ → refl ; assoc = λ _ _ _ _ → refl ; equiv = record { refl = λ _ → refl ; sym = λ α x → sym (α x) ; trans = λ α β x → trans (α x) (β x) } ; linv = λ {t₁} {t₂} α → α◎!α∼id⟷ {t₁} {t₂} {α} ; rinv = λ {t₁} {t₂} α → !α◎α∼id⟷ {t₁} {t₂} {α} ; ∘-resp-≈ = λ {t₁} {t₂} {t₃} {p} {q} {r} {s} p∼q r∼s → resp◎ {t₁} {t₂} {t₃} {r} {s} {p} {q} r∼s p∼q } ------------------------------------------------------------------------------ -- Picture so far: -- -- path p -- ===================== -- || || || -- || ||2path || -- || || || -- || || path q || -- t₁ =================t₂ -- || ... || -- ===================== -- -- The types t₁, t₂, etc are discrete groupoids. The paths between -- them correspond to permutations. Each syntactically different -- permutation corresponds to a path but equivalent permutations are -- connected by 2paths. But now we want an alternative definition of -- 2paths that is structural, i.e., that looks at the actual -- construction of the path t₁ ⟷ t₂ in terms of combinators... The -- theorem we want is that α ∼ β iff we can rewrite α to β using -- various syntactic structural rules. We start with a collection of -- simplication rules and then try to show they are complete. -- Simplification rules infix 30 _⇔_ data _⇔_ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → Set where assoc◎l : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → (c₁ ◎ (c₂ ◎ c₃)) ⇔ ((c₁ ◎ c₂) ◎ c₃) assoc◎r : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → ((c₁ ◎ c₂) ◎ c₃) ⇔ (c₁ ◎ (c₂ ◎ c₃)) assoc⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊕ (c₂ ⊕ c₃)) ⇔ (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) assoc⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) ⇔ (c₁ ⊕ (c₂ ⊕ c₃)) assoc⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊗ (c₂ ⊗ c₃)) ⇔ (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) assoc⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) ⇔ (c₁ ⊗ (c₂ ⊗ c₃)) dist⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → ((c₁ ⊕ c₂) ⊗ c₃) ⇔ (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) factor⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) ⇔ ((c₁ ⊕ c₂) ⊗ c₃) idl◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (id⟷ ◎ c) ⇔ c idl◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ id⟷ ◎ c idr◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ id⟷) ⇔ c idr◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ (c ◎ id⟷) linv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ ! c) ⇔ id⟷ linv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (c ◎ ! c) rinv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! c ◎ c) ⇔ id⟷ rinv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (! c ◎ c) unitel₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (unite₊ ◎ c₂) ⇔ ((c₁ ⊕ c₂) ◎ unite₊) uniter₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊕ c₂) ◎ unite₊) ⇔ (unite₊ ◎ c₂) unitil₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (uniti₊ ◎ (c₁ ⊕ c₂)) ⇔ (c₂ ◎ uniti₊) unitir₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti₊) ⇔ (uniti₊ ◎ (c₁ ⊕ c₂)) unitial₊⇔ : {t₁ t₂ : U} → (uniti₊ {PLUS t₁ t₂} ◎ assocl₊) ⇔ (uniti₊ ⊕ id⟷) unitiar₊⇔ : {t₁ t₂ : U} → (uniti₊ {t₁} ⊕ id⟷ {t₂}) ⇔ (uniti₊ ◎ assocl₊) swapl₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap₊ ◎ (c₁ ⊕ c₂)) ⇔ ((c₂ ⊕ c₁) ◎ swap₊) swapr₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊕ c₁) ◎ swap₊) ⇔ (swap₊ ◎ (c₁ ⊕ c₂)) unitel⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (unite⋆ ◎ c₂) ⇔ ((c₁ ⊗ c₂) ◎ unite⋆) uniter⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊗ c₂) ◎ unite⋆) ⇔ (unite⋆ ◎ c₂) unitil⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (uniti⋆ ◎ (c₁ ⊗ c₂)) ⇔ (c₂ ◎ uniti⋆) unitir⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti⋆) ⇔ (uniti⋆ ◎ (c₁ ⊗ c₂)) unitial⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {TIMES t₁ t₂} ◎ assocl⋆) ⇔ (uniti⋆ ⊗ id⟷) unitiar⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {t₁} ⊗ id⟷ {t₂}) ⇔ (uniti⋆ ◎ assocl⋆) swapl⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap⋆ ◎ (c₁ ⊗ c₂)) ⇔ ((c₂ ⊗ c₁) ◎ swap⋆) swapr⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊗ c₁) ◎ swap⋆) ⇔ (swap⋆ ◎ (c₁ ⊗ c₂)) swapfl⋆⇔ : {t₁ t₂ t₃ : U} → (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) ⇔ (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) swapfr⋆⇔ : {t₁ t₂ t₃ : U} → (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) ⇔ (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) id⇔ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ c trans⇔ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) resp◎⇔ : {t₁ t₂ t₃ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ◎ c₂) ⇔ (c₃ ◎ c₄) resp⊕⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊕ c₂) ⇔ (c₃ ⊕ c₄) resp⊗⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊗ c₂) ⇔ (c₃ ⊗ c₄) -- better syntax for writing 2paths infix 2 _▤ infixr 2 _⇔⟨_⟩_ _⇔⟨_⟩_ : {t₁ t₂ : U} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) _ ⇔⟨ α ⟩ β = trans⇔ α β _▤ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (c ⇔ c) _▤ c = id⇔ -- Inverses for 2paths 2! : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₁) 2! assoc◎l = assoc◎r 2! assoc◎r = assoc◎l 2! assoc⊕l = assoc⊕r 2! assoc⊕r = assoc⊕l 2! assoc⊗l = assoc⊗r 2! assoc⊗r = assoc⊗l 2! dist⇔ = factor⇔ 2! factor⇔ = dist⇔ 2! idl◎l = idl◎r 2! idl◎r = idl◎l 2! idr◎l = idr◎r 2! idr◎r = idr◎l 2! linv◎l = linv◎r 2! linv◎r = linv◎l 2! rinv◎l = rinv◎r 2! rinv◎r = rinv◎l 2! unitel₊⇔ = uniter₊⇔ 2! uniter₊⇔ = unitel₊⇔ 2! unitil₊⇔ = unitir₊⇔ 2! unitir₊⇔ = unitil₊⇔ 2! swapl₊⇔ = swapr₊⇔ 2! swapr₊⇔ = swapl₊⇔ 2! unitial₊⇔ = unitiar₊⇔ 2! unitiar₊⇔ = unitial₊⇔ 2! unitel⋆⇔ = uniter⋆⇔ 2! uniter⋆⇔ = unitel⋆⇔ 2! unitil⋆⇔ = unitir⋆⇔ 2! unitir⋆⇔ = unitil⋆⇔ 2! unitial⋆⇔ = unitiar⋆⇔ 2! unitiar⋆⇔ = unitial⋆⇔ 2! swapl⋆⇔ = swapr⋆⇔ 2! swapr⋆⇔ = swapl⋆⇔ 2! swapfl⋆⇔ = swapfr⋆⇔ 2! swapfr⋆⇔ = swapfl⋆⇔ 2! id⇔ = id⇔ 2! (trans⇔ α β) = trans⇔ (2! β) (2! α) 2! (resp◎⇔ α β) = resp◎⇔ (2! α) (2! β) 2! (resp⊕⇔ α β) = resp⊕⇔ (2! α) (2! β) 2! (resp⊗⇔ α β) = resp⊗⇔ (2! α) (2! β) -- a nice example of 2 paths negEx : neg₅ ⇔ neg₁ negEx = uniti⋆ ◎ (swap⋆ ◎ ((swap₊ ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ assoc◎l ⟩ uniti⋆ ◎ ((swap⋆ ◎ (swap₊ ⊗ id⟷)) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ swapl⋆⇔ id⇔) ⟩ uniti⋆ ◎ (((id⟷ ⊗ swap₊) ◎ swap⋆) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ assoc◎r ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (swap⋆ ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ assoc◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ ((swap⋆ ◎ swap⋆) ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ (resp◎⇔ linv◎l id⇔)) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (id⟷ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ idl◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ unite⋆) ⇔⟨ assoc◎l ⟩ (uniti⋆ ◎ (id⟷ ⊗ swap₊)) ◎ unite⋆ ⇔⟨ resp◎⇔ unitil⋆⇔ id⇔ ⟩ (swap₊ ◎ uniti⋆) ◎ unite⋆ ⇔⟨ assoc◎r ⟩ swap₊ ◎ (uniti⋆ ◎ unite⋆) ⇔⟨ resp◎⇔ id⇔ linv◎l ⟩ swap₊ ◎ id⟷ ⇔⟨ idr◎l ⟩ swap₊ ▤ -- The equivalence ⇔ of paths is rich enough to make U a 1groupoid: -- the points are types (t : U); the 1paths are ⟷; and the 2paths -- between them are based on the simplification rules ⇔ G' : 1Groupoid G' = record { set = U ; _↝_ = _⟷_ ; _≈_ = _⇔_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ _ → idr◎l ; rneutr = λ _ → idl◎l ; assoc = λ _ _ _ → assoc◎l ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; linv = λ {t₁} {t₂} α → linv◎l ; rinv = λ {t₁} {t₂} α → rinv◎l ; ∘-resp-≈ = λ p∼q r∼s → resp◎⇔ r∼s p∼q } ------------------------------------------------------------------------------ -- Soundness and completeness -- -- Proof of soundness and completeness: now we want to verify that ⇔ -- is sound and complete with respect to ∼. The statement to prove is -- that for all c₁ and c₂, we have c₁ ∼ c₂ iff c₁ ⇔ c₂ postulate -- to do eventually but should be fairly easy soundnessP : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₁ ∼ c₂) -- postulate -- proved below -- completenessP : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₁ ⇔ c₂) -- The idea is to invert evaluation and use that to extract from each -- extensional representation of a combinator, a canonical syntactic -- representative postulate invertP : {t₁ t₂ : U} → (⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (t₁ ⟷ t₂) canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) canonical c = invertP (ap c) -- Note that if c₁ ⇔ c₂, then by soundness c₁ ∼ c₂ and hence their -- canonical representatives are identical. canonicalWellDefined : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (canonical c₁ ≡ canonical c₂) canonicalWellDefined {t₁} {t₂} {c₁} {c₂} α = cong invertP (ext2id {t₁} {t₂} {c₁} {c₂} (soundnessP α)) -- If we can prove that every combinator is equal to its normal form -- then we can prove completeness. postulate inversionP : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ canonical c resp≡⇔ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ≡ c₂) → (c₁ ⇔ c₂) resp≡⇔ {t₁} {t₂} {c₁} {c₂} p rewrite p = id⇔ completeness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₁ ⇔ c₂) completeness {t₁} {t₂} {c₁} {c₂} c₁∼c₂ = c₁ ⇔⟨ inversionP ⟩ canonical c₁ ⇔⟨ resp≡⇔ (cong invertP (ext2id {t₁} {t₂} {c₁} {c₂} c₁∼c₂)) ⟩ canonical c₂ ⇔⟨ 2! inversionP ⟩ c₂ ▤ -- To summarize, completeness can be proved if we can define the following -- two functions: -- -- * a function that extracts a canonical combinator out of the -- semantic representation of a permutation: -- invertP : {t₁ t₂ : U} → (⟦ t₁ ⟧ → ⟦ t₂ ⟧) → (t₁ ⟷ t₂) -- * a function that proves that every combinator can be rewritten to this -- canonical form: -- inversionP : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ canonical c -- -- This all uses function extensionality. It is possible to get rid of -- that if we use an accurate representation of permutations. ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.476699708, "avg_line_length": 34.6833095578, "ext": "agda", "hexsha": "db32387d4ac09d9deee83452ab34304995cd78ad", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Pifextensional.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Pifextensional.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Pifextensional.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 12342, "size": 24313 }
open import Prelude hiding (_<_) module Implicits.Resolution.GenericFinite.Resolution where open import Coinduction open import Data.List open import Data.List.Any open Membership-≡ open import Data.Fin.Substitution open import Relation.Binary using (Rel) open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas.MetaType open import Implicits.Resolution.Termination open import Implicits.Resolution.GenericFinite.TerminationCondition private module M = MetaTypeMetaSubst module ResolutionRules (cond : TerminationCondition) where open TerminationCondition cond mutual data _,_⊢_↓_ {ν} (Δ : ICtx ν) : (Φ : TCtx) → Type ν → SimpleType ν → Set where i-simp : ∀ {Φ} a → Δ , Φ ⊢ simpl a ↓ a i-iabs : ∀ {Φ ρ₁ ρ₂ a} → let Φ' = (step Φ Δ ρ₁ ρ₂ a) in Φ' < Φ → Δ , Φ' ⊢ᵣ ρ₁ → Δ , Φ ⊢ ρ₂ ↓ a → Δ , Φ ⊢ ρ₁ ⇒ ρ₂ ↓ a i-tabs : ∀ {Φ ρ a} b → Δ , Φ ⊢ ρ tp[/tp b ] ↓ a → Δ , Φ ⊢ ∀' ρ ↓ a data _,_⊢ᵣ_ {ν} (Δ : ICtx ν) : TCtx → Type ν → Set where r-simp : ∀ {Φ r τ} → r ∈ Δ → Δ , Φ ⊢ r ↓ τ → Δ , Φ ⊢ᵣ simpl τ r-iabs : ∀ {Φ} ρ₁ {ρ₂} → ((ρ₁ ∷ Δ) , Φ ⊢ᵣ ρ₂) → Δ , Φ ⊢ᵣ (ρ₁ ⇒ ρ₂) r-tabs : ∀ {Φ ρ} → ictx-weaken Δ , Φ ⊢ᵣ ρ → Δ , Φ ⊢ᵣ ∀' ρ
{ "alphanum_fraction": 0.6277258567, "avg_line_length": 35.6666666667, "ext": "agda", "hexsha": "08e7ca59d42f665e1cb2b05d603102ea469bcba0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/Resolution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/Resolution.agda", "max_line_length": 82, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/Resolution.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 518, "size": 1284 }
module Haskell.Prim.Bounded where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Char open import Agda.Builtin.Equality open import Agda.Builtin.List open import Haskell.Prim open import Haskell.Prim.Eq open import Haskell.Prim.Int open import Haskell.Prim.Maybe open import Haskell.Prim.Ord open import Haskell.Prim.Tuple open import Haskell.Prim.Word -------------------------------------------------- -- Bounded record BoundedBelow (a : Set) : Set where field minBound : a record BoundedAbove (a : Set) : Set where field maxBound : a record Bounded (a : Set) : Set where field overlap ⦃ below ⦄ : BoundedBelow a overlap ⦃ above ⦄ : BoundedAbove a open BoundedBelow ⦃ ... ⦄ public open BoundedAbove ⦃ ... ⦄ public instance iBounded : ⦃ BoundedBelow a ⦄ → ⦃ BoundedAbove a ⦄ → Bounded a iBounded .Bounded.below = it iBounded .Bounded.above = it instance iBoundedBelowNatural : BoundedBelow Nat iBoundedBelowNatural .minBound = 0 iBoundedBelowWord : BoundedBelow Word iBoundedBelowWord .minBound = 0 iBoundedAboveWord : BoundedAbove Word iBoundedAboveWord .maxBound = 18446744073709551615 iBoundedBelowInt : BoundedBelow Int iBoundedBelowInt .minBound = -9223372036854775808 iBoundedAboveInt : BoundedAbove Int iBoundedAboveInt .maxBound = 9223372036854775807 iBoundedBelowBool : BoundedBelow Bool iBoundedBelowBool .minBound = false iBoundedAboveBool : BoundedAbove Bool iBoundedAboveBool .maxBound = true iBoundedBelowChar : BoundedBelow Char iBoundedBelowChar .minBound = '\0' iBoundedAboveChar : BoundedAbove Char iBoundedAboveChar .maxBound = '\1114111' iBoundedBelowTuple₀ : BoundedBelow (Tuple []) iBoundedBelowTuple₀ .minBound = [] iBoundedAboveTuple₀ : BoundedAbove (Tuple []) iBoundedAboveTuple₀ .maxBound = [] iBoundedBelowTuple : ∀ {as} → ⦃ BoundedBelow a ⦄ → ⦃ BoundedBelow (Tuple as) ⦄ → BoundedBelow (Tuple (a ∷ as)) iBoundedBelowTuple .minBound = minBound ∷ minBound iBoundedAboveTuple : ∀ {as} → ⦃ BoundedAbove a ⦄ → ⦃ BoundedAbove (Tuple as) ⦄ → BoundedAbove (Tuple (a ∷ as)) iBoundedAboveTuple .maxBound = maxBound ∷ maxBound iBoundedBelowOrdering : BoundedBelow Ordering iBoundedBelowOrdering .minBound = LT iBoundedAboveOrdering : BoundedAbove Ordering iBoundedAboveOrdering .maxBound = GT -- Sanity checks private _ : addWord maxBound 1 ≡ minBound _ = refl _ : addInt maxBound 1 ≡ minBound _ = refl
{ "alphanum_fraction": 0.7360549717, "avg_line_length": 27.797752809, "ext": "agda", "hexsha": "add0cd1454a4836512a0567aa888b34a307d5f33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Bounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Bounded.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Bounded.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 803, "size": 2474 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics module C1 {@♭ i₁ j₁ : ULevel} (@♭ I : Type i₁) (@♭ R : I → Type j₁) (@♭ r₀ : (index : I) → R index) where -- We assume the family R satisfies Axiom C0 open import Axiom.C0 {i₁} {j₁} I R open import Basics open import Flat open import Sharp open import lib.types.Bool open import Bool open import lib.Equivalence2 open import lib.types.Coproduct _is-discrete-C0 : {i : ULevel} (A : Type i) → Type _ _is-discrete-C0 {i} A = (index : I) → (is-equiv {i = i} (λ (a : A) → (λ (r : R index) → a))) discrete-C0-eq : {i : ULevel} {A : Type i} (p : A is-discrete-C0) (index : I) → A ≃ ((R index) → A) discrete-C0-eq p index = _ , (p index) prop-is-discrete-C0 : {i : ULevel} (P : PropT i) → (P holds) is-discrete-C0 prop-is-discrete-C0 P = (λ index → is-eq to fro (λ f → λ= (λ r → prop-path (P holds-is-a-prop) (f (r₀ index)) (f r))) (λ p → prop-path (P holds-is-a-prop) (fro {index} (to p)) p)) where to : {index : I} → P holds → (r : R index) → P holds to = λ p _ → p fro : {index : I} → ((r : R index) → P holds) → P holds fro {index} = λ f → f (r₀ index) crisp-prop-is-discrete : {@♭ i : ULevel} (@♭ P : PropT i) → (P holds) is-discrete crisp-prop-is-discrete P = C0 (P holds) (prop-is-discrete-C0 P) ⊥-is-discrete : ⊥ is-discrete ⊥-is-discrete = crisp-prop-is-discrete False -- Mapping into a C0 discrete gives a C0 discrete space. -- The argument is by swapping the order of application. Π-♭-C0 : {i j : ULevel} {A : Type i} {B : A → Type j} (p : (a : A) → (B a) is-discrete-C0) → ((a : A) → B a) is-discrete-C0 Π-♭-C0 {A = A} {B = B} p = λ index → _ is-an-equivalence-because (fro index) is-inverse-by to-fro index and fro-to index where fro : (index : I) → ((R index) → (a : A) → B a) → (a : A) → B a fro index f a = (<– (discrete-C0-eq (p a) index)) (λ r → f r a) abstract to-fro : ∀ index f → (λ _ → fro index f) == f to-fro index f = -- We swap the order of r and a and use the discreteness of B a λ= $ λ r → λ= $ λ a → app= (lemma a) r where lemma : ∀ a → (λ _ → fro index f a) == (λ r → f r a) lemma a = <–-inv-r (discrete-C0-eq (p a) index) $ λ r → f r a fro-to : ∀ index f → (fro index (λ _ → f)) == f fro-to index f = λ= $ λ a → <–-inv-l (discrete-C0-eq (p a) index) $ f a -- Crisp propositions are codiscrete crisp-prop-is-codiscrete : {@♭ i : ULevel} (@♭ P : PropT i) → (P holds) is-codiscrete crisp-prop-is-codiscrete P = (P holds) is-codiscrete-because -- We give the map going the other way: ♯ (P holds) –⟨ map₁ ⟩→ ♭ (♯ (P holds)) –⟨ map₂ ⟩→ ♭ (P holds) –⟨ _↓♭ ⟩→ P holds →∎ is-retract-by (λ _ → prop-path (snd P) _ _) where map₁ : ♯ (P holds) → ♭ (♯ (P holds)) map₁ = <– (discrete-eq (crisp-prop-is-discrete (♯ₙ P))) map₂ : ♭ (♯ (P holds)) → ♭ (P holds) map₂ = –> ♭♯-eq ¬-is-codiscrete : ∀ {i} (A : Type i) → (¬ A) is-codiscrete ¬-is-codiscrete {i} A = -- mapping into a codiscrete is codiscrete. replete (Π-codisc {A = A} (λ _ → ⊥)) (lemma₁ ⁻¹) where lemma₁ : (A → ⊥) ≃ (A → ♯ ⊥)-- ⊥ is codiscrete b/c it is crisp. lemma₁ = post∘-equiv (codisc-eq (crisp-prop-is-codiscrete False)) open import lib.types.Modality replete = (Modality.local-is-replete {i}) ♯-modality ♭-commutes-with-¬ : {@♭ i : ULevel} {@♭ A : Type i} → ♭ (¬ A) ≃ ¬ (♭ A) ♭-commutes-with-¬ {i = i} {A = A} = ♭ (¬ A) ≃⟨ ♭→e {A = ¬ A} {B = A → ♯ ⊥} lemma₁ ⟩ ♭ (A → ♯ ⊥) ≃⟨ ♭♯-adjoint ⁻¹ ⟩ ♭ (¬ (♭ A)) ≃⟨ discrete-eq (crisp-prop-is-discrete (¬ (♭ A) , proof)) ⟩ ¬ (♭ A) ≃∎ where lemma₁ : (A → ⊥) ≃ (A → ♯ ⊥)-- ⊥ is codiscrete b/c it is crisp. lemma₁ = post∘-equiv (codisc-eq (crisp-prop-is-codiscrete False)) proof : ¬ (♭ A) is-a-prop proof = mapping-into-prop-is-a-prop (λ _ → False holds-is-a-prop) -- Hereafter, we use LEM open import LEM open import NotNot module _ {@♭ i : ULevel} where record Γ : Type (lsucc i) where constructor ctx field ᶜP : PropT i ᶜnnp : ¬¬ (ᶜP holds) holds open Γ ♯-prop-is-¬¬ : (P : PropT i) → ((♯ₙ P) holds) ≃ ((¬¬ (P holds)) holds) ♯-prop-is-¬¬ P = iff-to-≃ {P = ♯ₙ P} {Q = ¬¬ (P holds)} -- ⇒ (♯ₙ P holds –⟨ (λ a → let♯ u ^♯:= a in♯ ((continue u) ^♯)) ⟩→ ♯ₙ (¬¬ (P holds)) holds –⟨ un♯ (¬-is-codiscrete (¬ (P holds))) ⟩→ ¬¬ (P holds) holds →∎) -- ⇐ (λ nnp → {!let♯ γ ::= (ctx P nnp) in♯ (helper (ᶜP γ) (ᶜnnp γ)) ^^♯-in-family (λ (@♭ γ : Γ) → (ᶜP γ) holds) !}) where helper : (@♭ P : PropT i) → ((¬¬ (P holds)) holds) ::→ (P holds) helper P nnp = (un¬¬-crisp {P = P} nnp)
{ "alphanum_fraction": 0.4792147806, "avg_line_length": 35.3469387755, "ext": "agda", "hexsha": "d64171fa74f3048ac1a6bbd16902fd5b6cd73659", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "glangmead/formalization", "max_forks_repo_path": "cohesion/david_jaz_261/C1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "glangmead/formalization", "max_issues_repo_path": "cohesion/david_jaz_261/C1.agda", "max_line_length": 118, "max_stars_count": 6, "max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "glangmead/formalization", "max_stars_repo_path": "cohesion/david_jaz_261/C1.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z", "num_tokens": 2006, "size": 5196 }
-- this is so this can be imported even though it has unresolved holes {-# OPTIONS --allow-unsolved-metas #-} module v01-01-basics where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) data day : Set where mon : day tue : day wed : day thu : day fri : day sat : day sun : day next-weekday : day → day next-weekday mon = tue next-weekday tue = wed next-weekday wed = thu next-weekday thu = fri next-weekday fri = mon next-weekday sat = mon next-weekday sun = mon _ : next-weekday fri ≡ mon _ = refl _ : next-weekday (next-weekday sat) ≡ tue _ = refl data bool : Set where true : bool false : bool negb : bool → bool negb true = false negb false = true andb : bool → bool → bool andb true b2 = b2 andb false _ = false orb : bool → bool → bool orb true _ = true orb false b2 = b2 _ : orb false false ≡ false _ = refl _ : orb false true ≡ true _ = refl _ : orb true false ≡ true _ = refl _ : orb true true ≡ true _ = refl nandb : bool → bool → bool nandb true true = false nandb _ _ = true _ : nandb false false ≡ true _ = refl _ : nandb false true ≡ true _ = refl _ : nandb true false ≡ true _ = refl _ : nandb true true ≡ false _ = refl andb3 : bool → bool → bool → bool andb3 true true true = true andb3 _ _ _ = false _ : andb3 true true true ≡ true _ = refl _ : andb3 false true true ≡ false _ = refl _ : andb3 true false true ≡ false _ = refl _ : andb3 true true false ≡ false _ = refl data rgb : Set where red : rgb green : rgb blue : rgb data color : Set where black : color white : color primary : rgb → color monochrome : color → bool monochrome black = true monochrome white = true monochrome (primary _) = false isred : color → bool isred (primary red) = true isred _ = false data bit : Set where B0 : bit B1 : bit data nybble : Set where bits : (b0 b1 b2 b3 : bit) → nybble all-zero : nybble → bool all-zero (bits B0 B0 B0 B0) = true all-zero _ = false _ : all-zero (bits B1 B0 B1 B0) ≡ false _ = refl _ : all-zero (bits B0 B0 B0 B0) ≡ true _ = refl data nat : Set where O : nat S : nat → nat pred : nat → nat pred O = O pred (S n) = n {-# BUILTIN NATURAL nat #-} _ : S (S (S (S O))) ≡ 4 _ = refl minustwo : nat → nat minustwo O = O minustwo (S O) = O minustwo (S (S n)) = n _ : minustwo 4 ≡ 2 _ = refl evenb : nat → bool evenb O = true evenb (S O) = false evenb (S (S n)) = evenb n oddb : nat → bool oddb n = negb (evenb n) _ : oddb 1 ≡ true _ = refl _ : oddb 4 ≡ false _ = refl plus : nat → nat → nat plus O m = m plus (S n) m = S (plus n m) _ : plus 3 2 ≡ 5 _ = refl mult : nat → nat → nat mult O m = 0 mult (S n) m = plus m (mult n m) _ : mult 3 3 ≡ 9 _ = refl minus : nat → nat → nat minus O _ = O minus x O = x minus (S n) (S m) = minus n m exp : (base power : nat) → nat exp _ O = S O exp b (S p) = mult b (exp b p) _ : exp 2 0 ≡ 1 _ = refl _ : exp 2 1 ≡ 2 _ = refl _ : exp 2 2 ≡ 4 _ = refl _ : exp 2 3 ≡ 8 _ = refl factorial : nat → nat factorial O = 1 factorial (S n) = mult (S n) (factorial n) _ : factorial 3 ≡ 6 _ = refl _ : factorial 5 ≡ mult 10 12 _ = refl _+_ : nat → nat → nat _+_ = plus _-_ : nat → nat → nat _-_ = minus _*_ : nat → nat → nat _*_ = mult infixl 6 _+_ _-_ infixl 7 _*_ {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATTIMES _*_ #-} {-# BUILTIN NATMINUS _-_ #-} eqb : (n m : nat) → bool eqb O O = true eqb O (S _) = false eqb (S _) O = false eqb (S l) (S r) = eqb l r leb : (n m : nat) → bool leb O _ = true leb (S n) O = false leb (S n) (S m) = leb n m _ : leb 2 2 ≡ true _ = refl _ : leb 2 4 ≡ true _ = refl _ : leb 4 2 ≡ false _ = refl _=?_ : (n m : nat) → bool _=?_ = eqb _<=?_ : (n m : nat) → bool _<=?_ = leb infix 4 _=?_ infix 4 _<=?_ _ : (4 <=? 2) ≡ false _ = refl ltb : (n m : nat) → bool ltb O O = false ltb O (S m) = true ltb (S n) O = false ltb (S n) (S m) = ltb n m _<?_ : (n m : nat) → bool _<?_ = ltb infix 4 _<?_ _ : ltb 2 2 ≡ false _ = refl _ : ltb 2 4 ≡ true _ = refl _ : ltb 4 2 ≡ false _ = refl -- proof by simplification plus-O-n : ∀ {n : nat} → 0 + n ≡ n plus-O-n = refl plus-1-l : ∀ {n : nat} → 1 + n ≡ S n plus-1-l = refl mult-O-l : ∀ {n : nat} → 0 * n ≡ 0 mult-O-l = refl -- proof by rewriting plus-id-example : ∀ {n m : nat} → n ≡ m → n + n ≡ m + m plus-id-example n≡m rewrite n≡m = refl plus_id_exercise : ∀ {n m o : nat} → n ≡ m → m ≡ o → n + m ≡ m + o plus_id_exercise n≡m m≡o rewrite n≡m | m≡o = refl *0 : ∀ (m : nat) → m * 0 ≡ 0 *0 0 = refl *0 (S m) = *0 m mult-n-O : ∀ (n : nat) → 0 ≡ n * 0 mult-n-O n rewrite *0 n = refl *1 : ∀ (n : nat) → n * 1 ≡ n *1 0 = refl *1 (S n) rewrite *1 n = refl 1* : ∀ (n : nat) → 1 * n ≡ n 1* 0 = refl 1* (S n) rewrite 1* n = refl mult-n-Sm : ∀ (n m : nat) → n * m + n ≡ n * S m mult-n-Sm O m = refl mult-n-Sm n O rewrite *0 n | plus-O-n {n} | *1 n = refl mult-n-Sm (S n) (S m) = {!!} -- TODO mult-n-0-m-0 : ∀ (p q : nat) → (p * 0) + (q * 0) ≡ 0 mult-n-0-m-0 p q rewrite *0 p | *0 q = refl mult-n-1 : ∀ (p : nat) → p * 1 ≡ p mult-n-1 = *1 -- proof by case analysis plus-1-neq-0 : ∀ (n : nat) → ((n + 1) =? 0) ≡ false plus-1-neq-0 O = refl plus-1-neq-0 (S n) rewrite plus-1-neq-0 n = refl negb-involutive : ∀ (b : bool) → negb (negb b) ≡ b negb-involutive true = refl negb-involutive false = refl andb-commutative : ∀ (b c : bool) → andb b c ≡ andb c b andb-commutative false false = refl andb-commutative false true = refl andb-commutative true false = refl andb-commutative true true = refl andb3-exchange : ∀ (b c d : bool) → andb (andb b c) d ≡ andb (andb b d) c andb3-exchange true true true = refl andb3-exchange true true false = refl andb3-exchange true false true = refl andb3-exchange true false false = refl andb3-exchange false true true = refl andb3-exchange false true false = refl andb3-exchange false false true = refl andb3-exchange false false false = refl andb-true-elim2 : ∀ (b c : bool) → andb b c ≡ true → c ≡ true andb-true-elim2 false _ () andb-true-elim2 true false () andb-true-elim2 true true _ = refl zero-nbeq-plus-1 : ∀ (n : nat) → (0 =? (n + 1)) ≡ false zero-nbeq-plus-1 O = refl zero-nbeq-plus-1 (S n) rewrite zero-nbeq-plus-1 n = refl identity-fn-applied-twice : ∀ {f : bool → bool} (b : bool) → f b ≡ b → f (f b) ≡ b identity-fn-applied-twice b p rewrite p | p = refl negation-fn-applied-twice : ∀ {f : bool → bool} {b : bool} -- TODO → f b ≡ negb b → f (f b) ≡ b negation-fn-applied-twice {f} {false} p = {!!} -- TODO negation-fn-applied-twice {f} {true} p = {!!} -- TODO andb-eq-orb : ∀ (b c : bool) → andb b c ≡ orb b c → b ≡ c andb-eq-orb true c p rewrite p = refl andb-eq-orb false c p rewrite p = refl -- NOTE: lowest order bit is on LEFT data bin : Set where Z : bin B₀ : bin → bin B₁ : bin → bin incr : bin → bin incr Z = B₁ Z incr (B₀ x) = B₁ x incr (B₁ x) = B₀ (incr x) bin-to-nat : bin → nat bin-to-nat Z = 0 bin-to-nat (B₀ x) = 2 * (bin-to-nat x) bin-to-nat (B₁ x) = 1 + 2 * (bin-to-nat x) _ : (incr (B₁ Z)) ≡ B₀ (B₁ Z) _ = refl _ : (incr (B₀ (B₁ Z))) ≡ B₁ (B₁ Z) _ = refl _ : (incr (B₁ (B₁ Z))) ≡ B₀ (B₀ (B₁ Z)) _ = refl _ : bin-to-nat (B₀ (B₁ Z)) ≡ 2 _ = refl _ : bin-to-nat (incr (B₁ Z)) ≡ 1 + bin-to-nat (B₁ Z) _ = refl _ : bin-to-nat (incr (incr (B₁ Z))) ≡ 2 + bin-to-nat (B₁ Z) _ = refl
{ "alphanum_fraction": 0.5602734324, "avg_line_length": 19.4056122449, "ext": "agda", "hexsha": "c558fa386b713a5e93bc278797c75acd7380432b", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/SFHC/v01-01-basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/SFHC/v01-01-basics.agda", "max_line_length": 73, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/SFHC/v01-01-basics.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 3222, "size": 7607 }
open import Agda.Builtin.Unit open import Agda.Builtin.List open import Agda.Builtin.Reflection id : {A : Set} → A → A id x = x macro tac : Term → TC ⊤ tac hole = unify hole (def (quote id) (arg (arg-info visible relevant) (var 0 []) ∷ [])) test : {A : Set} → A → A test x = {!tac!}
{ "alphanum_fraction": 0.6206896552, "avg_line_length": 20.7142857143, "ext": "agda", "hexsha": "17d0b50de5b3f039ae17ed45c3881b055e8b63ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "96860c1612fe64e5cdcc4ea6cb05b6b31673ca31", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "msuperdock/agda", "max_forks_repo_path": "test/interaction/Issue3486.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "96860c1612fe64e5cdcc4ea6cb05b6b31673ca31", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "msuperdock/agda", "max_issues_repo_path": "test/interaction/Issue3486.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "96860c1612fe64e5cdcc4ea6cb05b6b31673ca31", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "msuperdock/agda", "max_stars_repo_path": "test/interaction/Issue3486.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 101, "size": 290 }
module bijection where open import Level renaming ( zero to Zero ; suc to Suc ) open import Data.Nat open import Data.Maybe open import Data.List hiding ([_] ; sum ) open import Data.Nat.Properties open import Relation.Nullary open import Data.Empty open import Data.Unit hiding ( _≤_ ) open import Relation.Binary.Core hiding (_⇔_) open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality open import logic open import nat -- record Bijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where -- field -- fun← : S → R -- fun→ : R → S -- fiso← : (x : R) → fun← ( fun→ x ) ≡ x -- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x -- -- injection : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m) -- injection R S f = (x y : R) → f x ≡ f y → x ≡ y open Bijection bi-trans : {n m l : Level} (R : Set n) (S : Set m) (T : Set l) → Bijection R S → Bijection S T → Bijection R T bi-trans R S T rs st = record { fun← = λ x → fun← rs ( fun← st x ) ; fun→ = λ x → fun→ st ( fun→ rs x ) ; fiso← = λ x → trans (cong (λ k → fun← rs k) (fiso← st (fun→ rs x))) ( fiso← rs x) ; fiso→ = λ x → trans (cong (λ k → fun→ st k) (fiso→ rs (fun← st x))) ( fiso→ st x) } bid : {n : Level} (R : Set n) → Bijection R R bid {n} R = record { fun← = λ x → x ; fun→ = λ x → x ; fiso← = λ _ → refl ; fiso→ = λ _ → refl } bi-sym : {n m : Level} (R : Set n) (S : Set m) → Bijection R S → Bijection S R bi-sym R S eq = record { fun← = fun→ eq ; fun→ = fun← eq ; fiso← = fiso→ eq ; fiso→ = fiso← eq } open import Relation.Binary.Structures bijIsEquivalence : {n : Level } → IsEquivalence (Bijection {n} {n}) bijIsEquivalence = record { refl = λ {R} → bid R ; sym = λ {R} {S} → bi-sym R S ; trans = λ {R} {S} {T} → bi-trans R S T } -- ¬ A = A → ⊥ -- -- famous diagnostic function -- diag : {S : Set } (b : Bijection ( S → Bool ) S) → S → Bool diag b n = not (fun← b n n) diagonal : { S : Set } → ¬ Bijection ( S → Bool ) S diagonal {S} b = diagn1 (fun→ b (λ n → diag b n) ) refl where diagn1 : (n : S ) → ¬ (fun→ b (λ n → diag b n) ≡ n ) diagn1 n dn = ¬t=f (diag b n ) ( begin not (diag b n) ≡⟨⟩ not (not fun← b n n) ≡⟨ cong (λ k → not (k n) ) (sym (fiso← b _)) ⟩ not (fun← b (fun→ b (diag b)) n) ≡⟨ cong (λ k → not (fun← b k n) ) dn ⟩ not (fun← b n n) ≡⟨⟩ diag b n ∎ ) where open ≡-Reasoning b1 : (b : Bijection ( ℕ → Bool ) ℕ) → ℕ b1 b = fun→ b (diag b) b-iso : (b : Bijection ( ℕ → Bool ) ℕ) → fun← b (b1 b) ≡ (diag b) b-iso b = fiso← b _ -- -- ℕ <=> ℕ + 1 -- to1 : {n : Level} {R : Set n} → Bijection ℕ R → Bijection ℕ (⊤ ∨ R ) to1 {n} {R} b = record { fun← = to11 ; fun→ = to12 ; fiso← = to13 ; fiso→ = to14 } where to11 : ⊤ ∨ R → ℕ to11 (case1 tt) = 0 to11 (case2 x) = suc ( fun← b x ) to12 : ℕ → ⊤ ∨ R to12 zero = case1 tt to12 (suc n) = case2 ( fun→ b n) to13 : (x : ℕ) → to11 (to12 x) ≡ x to13 zero = refl to13 (suc x) = cong suc (fiso← b x) to14 : (x : ⊤ ∨ R) → to12 (to11 x) ≡ x to14 (case1 x) = refl to14 (case2 x) = cong case2 (fiso→ b x) open _∧_ record NN ( i : ℕ) (nxn→n : ℕ → ℕ → ℕ) (n→nxn : ℕ → ℕ ∧ ℕ) : Set where field j k sum stage : ℕ nn : j + k ≡ sum ni : i ≡ j + stage -- not used k1 : nxn→n j k ≡ i k0 : n→nxn i ≡ ⟪ j , k ⟫ nn-unique : {j0 k0 : ℕ } → nxn→n j0 k0 ≡ i → ⟪ j , k ⟫ ≡ ⟪ j0 , k0 ⟫ i≤0→i≡0 : {i : ℕ } → i ≤ 0 → i ≡ 0 i≤0→i≡0 {0} z≤n = refl nxn : Bijection ℕ (ℕ ∧ ℕ) nxn = record { fun← = λ p → nxn→n (proj1 p) (proj2 p) ; fun→ = n→nxn ; fiso← = n-id ; fiso→ = λ x → nn-id (proj1 x) (proj2 x) } where nxn→n : ℕ → ℕ → ℕ nxn→n zero zero = zero nxn→n zero (suc j) = j + suc (nxn→n zero j) nxn→n (suc i) zero = suc i + suc (nxn→n i zero) nxn→n (suc i) (suc j) = suc i + suc j + suc (nxn→n i (suc j)) n→nxn : ℕ → ℕ ∧ ℕ n→nxn zero = ⟪ 0 , 0 ⟫ n→nxn (suc i) with n→nxn i ... | ⟪ x , zero ⟫ = ⟪ zero , suc x ⟫ ... | ⟪ x , suc y ⟫ = ⟪ suc x , y ⟫ nxn→n0 : { j k : ℕ } → nxn→n j k ≡ 0 → ( j ≡ 0 ) ∧ ( k ≡ 0 ) nxn→n0 {zero} {zero} eq = ⟪ refl , refl ⟫ nxn→n0 {zero} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (subst (λ k → 0 < k) (+-comm _ k) (s≤s z≤n))) nxn→n0 {(suc j)} {zero} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) nxn→n0 {(suc j)} {(suc k)} eq = ⊥-elim ( nat-≡< (sym eq) (s≤s z≤n) ) nid20 : (i : ℕ) → i + (nxn→n 0 i) ≡ nxn→n i 0 nid20 zero = refl -- suc (i + (i + suc (nxn→n 0 i))) ≡ suc (i + suc (nxn→n i 0)) nid20 (suc i) = begin suc (i + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (i + k)) (sym (+-assoc i 1 (nxn→n 0 i))) ⟩ suc (i + ((i + 1) + nxn→n 0 i)) ≡⟨ cong (λ k → suc (i + (k + nxn→n 0 i))) (+-comm i 1) ⟩ suc (i + suc (i + nxn→n 0 i)) ≡⟨ cong ( λ k → suc (i + suc k)) (nid20 i) ⟩ suc (i + suc (nxn→n i 0)) ∎ where open ≡-Reasoning nid4 : {i j : ℕ} → i + 1 + j ≡ i + suc j nid4 {zero} {j} = refl nid4 {suc i} {j} = cong suc (nid4 {i} {j} ) nid5 : {i j k : ℕ} → i + suc (suc j) + suc k ≡ i + suc j + suc (suc k ) nid5 {zero} {j} {k} = begin suc (suc j) + suc k ≡⟨ +-assoc 1 (suc j) _ ⟩ 1 + (suc j + suc k) ≡⟨ +-comm 1 _ ⟩ (suc j + suc k) + 1 ≡⟨ +-assoc (suc j) (suc k) _ ⟩ suc j + (suc k + 1) ≡⟨ cong (λ k → suc j + k ) (+-comm (suc k) 1) ⟩ suc j + suc (suc k) ∎ where open ≡-Reasoning nid5 {suc i} {j} {k} = cong suc (nid5 {i} {j} {k} ) -- increment in ths same stage nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nid2 zero zero = refl nid2 zero (suc j) = refl nid2 (suc i) zero = begin suc (nxn→n (suc i) 1) ≡⟨ refl ⟩ suc (suc (i + 1 + suc (nxn→n i 1))) ≡⟨ cong (λ k → suc (suc k)) nid4 ⟩ suc (suc (i + suc (suc (nxn→n i 1)))) ≡⟨ cong (λ k → suc (suc (i + suc (suc k)))) (nid3 i) ⟩ suc (suc (i + suc (suc (i + suc (nxn→n i 0))))) ≡⟨ refl ⟩ nxn→n (suc (suc i)) zero ∎ where open ≡-Reasoning nid3 : (i : ℕ) → nxn→n i 1 ≡ i + suc (nxn→n i 0) nid3 zero = refl nid3 (suc i) = begin suc (i + 1 + suc (nxn→n i 1)) ≡⟨ cong suc nid4 ⟩ suc (i + suc (suc (nxn→n i 1))) ≡⟨ cong (λ k → suc (i + suc (suc k))) (nid3 i) ⟩ suc (i + suc (suc (i + suc (nxn→n i 0)))) ∎ nid2 (suc i) (suc j) = begin suc (nxn→n (suc i) (suc (suc j))) ≡⟨ refl ⟩ suc (suc (i + suc (suc j) + suc (nxn→n i (suc (suc j))))) ≡⟨ cong (λ k → suc (suc (i + suc (suc j) + k))) (nid2 i (suc j)) ⟩ suc (suc (i + suc (suc j) + suc (i + suc j + suc (nxn→n i (suc j))))) ≡⟨ cong ( λ k → suc (suc k)) nid5 ⟩ suc (suc (i + suc j + suc (suc (i + suc j + suc (nxn→n i (suc j)))))) ≡⟨ refl ⟩ nxn→n (suc (suc i)) (suc j) ∎ where open ≡-Reasoning -- increment ths stage nid00 : (i : ℕ) → suc (nxn→n i 0) ≡ nxn→n 0 (suc i) nid00 zero = refl nid00 (suc i) = begin suc (suc (i + suc (nxn→n i 0))) ≡⟨ cong (λ k → suc (suc (i + k ))) (nid00 i) ⟩ suc (suc (i + (nxn→n 0 (suc i)))) ≡⟨ refl ⟩ suc (suc (i + (i + suc (nxn→n 0 i)))) ≡⟨ cong suc (sym ( +-assoc 1 i (i + suc (nxn→n 0 i)))) ⟩ suc ((1 + i) + (i + suc (nxn→n 0 i))) ≡⟨ cong (λ k → suc (k + (i + suc (nxn→n 0 i)))) (+-comm 1 i) ⟩ suc ((i + 1) + (i + suc (nxn→n 0 i))) ≡⟨ cong suc (+-assoc i 1 (i + suc (nxn→n 0 i))) ⟩ suc (i + suc (i + suc (nxn→n 0 i))) ∎ where open ≡-Reasoning ----- -- -- create the invariant NN for all n -- nn : ( i : ℕ) → NN i nxn→n n→nxn nn zero = record { j = 0 ; k = 0 ; sum = 0 ; stage = 0 ; nn = refl ; ni = refl ; k1 = refl ; k0 = refl ; nn-unique = λ {j0} {k0} eq → cong₂ (λ x y → ⟪ x , y ⟫) (sym (proj1 (nxn→n0 eq))) (sym (proj2 (nxn→n0 {j0} {k0} eq))) } nn (suc i) with NN.k (nn i) | inspect NN.k (nn i) ... | zero | record { eq = eq } = record { k = suc (NN.sum (nn i)) ; j = 0 ; sum = suc (NN.sum (nn i)) ; stage = suc (NN.sum (nn i)) + (NN.stage (nn i)) ; nn = refl ; ni = nn01 ; k1 = nn02 ; k0 = nn03 ; nn-unique = nn04 } where --- --- increment the stage --- sum = NN.sum (nn i) stage = NN.stage (nn i) j = NN.j (nn i) nn01 : suc i ≡ 0 + (suc sum + stage ) nn01 = begin suc i ≡⟨ cong suc (NN.ni (nn i)) ⟩ suc ((NN.j (nn i) ) + stage ) ≡⟨ cong (λ k → suc (k + stage )) (+-comm 0 _ ) ⟩ suc ((NN.j (nn i) + 0 ) + stage ) ≡⟨ cong (λ k → suc ((NN.j (nn i) + k) + stage )) (sym eq) ⟩ suc ((NN.j (nn i) + NN.k (nn i)) + stage ) ≡⟨ cong (λ k → suc ( k + stage )) (NN.nn (nn i)) ⟩ 0 + (suc sum + stage ) ∎ where open ≡-Reasoning nn02 : nxn→n 0 (suc sum) ≡ suc i nn02 = begin sum + suc (nxn→n 0 sum) ≡⟨ sym (+-assoc sum 1 (nxn→n 0 sum)) ⟩ (sum + 1) + nxn→n 0 sum ≡⟨ cong (λ k → k + nxn→n 0 sum ) (+-comm sum 1 )⟩ suc (sum + nxn→n 0 sum) ≡⟨ cong suc (nid20 sum ) ⟩ suc (nxn→n sum 0) ≡⟨ cong (λ k → suc (nxn→n k 0 )) (sym (NN.nn (nn i))) ⟩ suc (nxn→n (NN.j (nn i) + (NN.k (nn i)) ) 0) ≡⟨ cong₂ (λ j k → suc (nxn→n (NN.j (nn i) + j) k )) eq (sym eq) ⟩ suc (nxn→n (NN.j (nn i) + 0 ) (NN.k (nn i))) ≡⟨ cong (λ k → suc ( nxn→n k (NN.k (nn i)))) (+-comm (NN.j (nn i)) 0) ⟩ suc (nxn→n (NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i) ) ⟩ suc i ∎ where open ≡-Reasoning nn03 : n→nxn (suc i) ≡ ⟪ 0 , suc (NN.sum (nn i)) ⟫ -- k0 : n→nxn i ≡ ⟪ NN.j (nn i) = sum , NN.k (nn i) = 0 ⟫ nn03 with n→nxn i | inspect n→nxn i ... | ⟪ x , zero ⟫ | record { eq = eq1 } = begin ⟪ zero , suc x ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (sym (cong proj1 eq1)) ⟩ ⟪ zero , suc (proj1 (n→nxn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (cong proj1 (NN.k0 (nn i))) ⟩ ⟪ zero , suc (NN.j (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (+-comm 0 _ ) ⟩ ⟪ zero , suc (NN.j (nn i) + 0) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc (NN.j (nn i) + k) ⟫ ) (sym eq) ⟩ ⟪ zero , suc (NN.j (nn i) + NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫ ) (NN.nn (nn i)) ⟩ ⟪ 0 , suc sum ⟫ ∎ where open ≡-Reasoning ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 (NN.k0 (nn i)))) (begin suc (NN.k (nn i)) ≡⟨ cong suc eq ⟩ suc 0 ≤⟨ s≤s z≤n ⟩ suc y ≡⟨ sym (cong proj2 eq1) ⟩ proj2 (n→nxn i) ∎ )) where open ≤-Reasoning -- nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nn04 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ 0 , suc (NN.sum (nn i)) ⟫ ≡ ⟪ j0 , k0 ⟫ nn04 {zero} {suc k0} eq1 = cong (λ k → ⟪ 0 , k ⟫ ) (cong suc (sym nn08)) where -- eq : nxn→n zero (suc k0) ≡ suc i -- nn07 : nxn→n k0 0 ≡ i nn07 = cong pred ( begin suc ( nxn→n k0 0 ) ≡⟨ nid00 k0 ⟩ nxn→n 0 (suc k0 ) ≡⟨ eq1 ⟩ suc i ∎ ) where open ≡-Reasoning nn08 : k0 ≡ sum nn08 = begin k0 ≡⟨ cong proj1 (sym (NN.nn-unique (nn i) nn07)) ⟩ NN.j (nn i) ≡⟨ +-comm 0 _ ⟩ NN.j (nn i) + 0 ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NN.nn (nn i) ⟩ sum ∎ where open ≡-Reasoning nn04 {suc j0} {k0} eq1 = ⊥-elim ( nat-≡< (cong proj2 (nn06 nn05)) (subst (λ k → k < suc k0) (sym eq) (s≤s z≤n))) where nn05 : nxn→n j0 (suc k0) ≡ i nn05 = begin nxn→n j0 (suc k0) ≡⟨ cong pred ( begin suc (nxn→n j0 (suc k0)) ≡⟨ nid2 j0 k0 ⟩ nxn→n (suc j0) k0 ≡⟨ eq1 ⟩ suc i ∎ ) ⟩ i ∎ where open ≡-Reasoning nn06 : nxn→n j0 (suc k0) ≡ i → ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn06 = NN.nn-unique (nn i) ... | suc k | record {eq = eq} = record { k = k ; j = suc (NN.j (nn i)) ; sum = NN.sum (nn i) ; stage = NN.stage (nn i) ; nn = nn10 ; ni = cong suc (NN.ni (nn i)) ; k1 = nn11 ; k0 = nn12 ; nn-unique = nn13 } where --- --- increment in a stage --- nn10 : suc (NN.j (nn i)) + k ≡ NN.sum (nn i) nn10 = begin suc (NN.j (nn i)) + k ≡⟨ cong (λ x → x + k) (+-comm 1 _) ⟩ (NN.j (nn i) + 1) + k ≡⟨ +-assoc (NN.j (nn i)) 1 k ⟩ NN.j (nn i) + suc k ≡⟨ cong (λ k → NN.j (nn i) + k) (sym eq) ⟩ NN.j (nn i) + NN.k (nn i) ≡⟨ NN.nn (nn i) ⟩ NN.sum (nn i) ∎ where open ≡-Reasoning nn11 : nxn→n (suc (NN.j (nn i))) k ≡ suc i -- nxn→n ( NN.j (nn i)) (NN.k (nn i) ≡ i nn11 = begin nxn→n (suc (NN.j (nn i))) k ≡⟨ sym (nid2 (NN.j (nn i)) k) ⟩ suc (nxn→n (NN.j (nn i)) (suc k)) ≡⟨ cong (λ k → suc (nxn→n (NN.j (nn i)) k)) (sym eq) ⟩ suc (nxn→n ( NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i)) ⟩ suc i ∎ where open ≡-Reasoning nn18 : zero < NN.k (nn i) nn18 = subst (λ k → 0 < k ) ( begin suc k ≡⟨ sym eq ⟩ NN.k (nn i) ∎ ) (s≤s z≤n ) where open ≡-Reasoning nn12 : n→nxn (suc i) ≡ ⟪ suc (NN.j (nn i)) , k ⟫ -- n→nxn i ≡ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ nn12 with n→nxn i | inspect n→nxn i ... | ⟪ x , zero ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 eq1)) (subst (λ k → 0 < k ) ( begin suc k ≡⟨ sym eq ⟩ NN.k (nn i) ≡⟨ cong proj2 (sym (NN.k0 (nn i)) ) ⟩ proj2 (n→nxn i) ∎ ) (s≤s z≤n )) ) where open ≡-Reasoning -- eq1 n→nxn i ≡ ⟪ x , zero ⟫ ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = begin -- n→nxn i ≡ ⟪ x , suc y ⟫ ⟪ suc x , y ⟫ ≡⟨ refl ⟩ ⟪ suc x , pred (suc y) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin ⟪ x , suc y ⟫ ≡⟨ sym eq1 ⟩ n→nxn i ≡⟨ NN.k0 (nn i) ⟩ ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ∎ ) ⟩ ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (NN.j (nn i)) , pred k ⟫) eq ⟩ ⟪ suc (NN.j (nn i)) , k ⟫ ∎ where open ≡-Reasoning nn13 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ suc (NN.j (nn i)) , k ⟫ ≡ ⟪ j0 , k0 ⟫ nn13 {zero} {suc k0} eq1 = ⊥-elim ( nat-≡< (sym (cong proj2 nn17)) nn18 ) where -- (nxn→n zero (suc k0)) ≡ suc i nn16 : nxn→n k0 zero ≡ i nn16 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid00 k0 )) eq1 ) nn17 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ k0 , zero ⟫ nn17 = NN.nn-unique (nn i) nn16 nn13 {suc j0} {k0} eq1 = begin ⟪ suc (NN.j (nn i)) , pred (suc k) ⟫ ≡⟨ cong (λ k → ⟪ suc (NN.j (nn i)) , pred k ⟫ ) (sym eq) ⟩ ⟪ suc (NN.j (nn i)) , pred (NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ suc (proj1 k) , pred (proj2 k) ⟫) ( begin ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡⟨ nn15 ⟩ ⟪ j0 , suc k0 ⟫ ∎ ) ⟩ ⟪ suc j0 , k0 ⟫ ∎ where -- nxn→n (suc j0) k0 ≡ suc i open ≡-Reasoning nn14 : nxn→n j0 (suc k0) ≡ i nn14 = cong pred ( subst (λ k → k ≡ suc i) (sym ( nid2 j0 k0 )) eq1 ) nn15 : ⟪ NN.j (nn i) , NN.k (nn i) ⟫ ≡ ⟪ j0 , suc k0 ⟫ nn15 = NN.nn-unique (nn i) nn14 n-id : (i : ℕ) → nxn→n (proj1 (n→nxn i)) (proj2 (n→nxn i)) ≡ i n-id i = subst (λ k → nxn→n (proj1 k) (proj2 k) ≡ i ) (sym (NN.k0 (nn i))) (NN.k1 (nn i)) nn-id : (j k : ℕ) → n→nxn (nxn→n j k) ≡ ⟪ j , k ⟫ nn-id j k = begin n→nxn (nxn→n j k) ≡⟨ NN.k0 (nn (nxn→n j k)) ⟩ ⟪ NN.j (nn (nxn→n j k)) , NN.k (nn (nxn→n j k)) ⟫ ≡⟨ NN.nn-unique (nn (nxn→n j k)) refl ⟩ ⟪ j , k ⟫ ∎ where open ≡-Reasoning -- [] 0 -- 0 → 1 -- 1 → 2 -- 01 → 3 -- 11 → 4 -- ... -- -- binary invariant -- record LB (n : ℕ) (lton : List Bool → ℕ ) : Set where field nlist : List Bool isBin : lton nlist ≡ n isUnique : (x : List Bool) → lton x ≡ n → nlist ≡ x -- we don't need this lb+1 : List Bool → List Bool lb+1 [] = false ∷ [] lb+1 (false ∷ t) = true ∷ t lb+1 (true ∷ t) = false ∷ lb+1 t lb-1 : List Bool → List Bool lb-1 [] = [] lb-1 (true ∷ t) = false ∷ t lb-1 (false ∷ t) with lb-1 t ... | [] = true ∷ [] ... | x ∷ t1 = true ∷ x ∷ t1 LBℕ : Bijection ℕ ( List Bool ) LBℕ = record { fun← = λ x → lton x ; fun→ = λ n → LB.nlist (lb n) ; fiso← = λ n → LB.isBin (lb n) ; fiso→ = λ x → LB.isUnique (lb (lton x)) x refl } where lton1 : List Bool → ℕ lton1 [] = 1 lton1 (true ∷ t) = suc (lton1 t + lton1 t) lton1 (false ∷ t) = lton1 t + lton1 t lton : List Bool → ℕ lton x = pred (lton1 x) lton1>0 : (x : List Bool ) → 0 < lton1 x lton1>0 [] = a<sa lton1>0 (true ∷ x₁) = 0<s lton1>0 (false ∷ t) = ≤-trans (lton1>0 t) x≤x+y 2lton1>0 : (t : List Bool ) → 0 < lton1 t + lton1 t 2lton1>0 t = ≤-trans (lton1>0 t) x≤x+y lb=3 : {x y : ℕ} → 0 < x → 0 < y → 1 ≤ pred (x + y) lb=3 {suc x} {suc y} (s≤s 0<x) (s≤s 0<y) = subst (λ k → 1 ≤ k ) (+-comm (suc y) _ ) (s≤s z≤n) lton-cons>0 : {x : Bool} {y : List Bool } → 0 < lton (x ∷ y) lton-cons>0 {true} {[]} = refl-≤s lton-cons>0 {true} {x ∷ y} = ≤-trans ( lb=3 (lton1>0 (x ∷ y)) (lton1>0 (x ∷ y))) px≤x lton-cons>0 {false} {[]} = refl-≤ lton-cons>0 {false} {x ∷ y} = lb=3 (lton1>0 (x ∷ y)) (lton1>0 (x ∷ y)) lb=0 : {x y : ℕ } → pred x < pred y → suc (x + x ∸ 1) < suc (y + y ∸ 1) lb=0 {0} {suc y} lt = s≤s (subst (λ k → 0 < k ) (+-comm (suc y) y ) 0<s) lb=0 {suc x} {suc y} lt = begin suc (suc ((suc x + suc x) ∸ 1)) ≡⟨ refl ⟩ suc (suc x) + suc x ≡⟨ refl ⟩ suc (suc x + suc x) ≤⟨ <-plus (s≤s lt) ⟩ suc y + suc x <⟨ <-plus-0 {suc x} {suc y} {suc y} (s≤s lt) ⟩ suc y + suc y ≡⟨ refl ⟩ suc ((suc y + suc y) ∸ 1) ∎ where open ≤-Reasoning lb=2 : {x y : ℕ } → pred x < pred y → suc (x + x ) < suc (y + y ) lb=2 {zero} {suc y} lt = s≤s 0<s lb=2 {suc x} {suc y} lt = s≤s (lb=0 {suc x} {suc y} lt) lb=1 : {x y : List Bool} {z : Bool} → lton (z ∷ x) ≡ lton (z ∷ y) → lton x ≡ lton y lb=1 {x} {y} {true} eq with <-cmp (lton x) (lton y) ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< (cong suc eq) (lb=2 {lton1 x} {lton1 y} a)) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< (cong suc (sym eq)) (lb=2 {lton1 y} {lton1 x} c)) lb=1 {x} {y} {false} eq with <-cmp (lton x) (lton y) ... | tri< a ¬b ¬c = ⊥-elim (nat-≡< (cong suc eq) (lb=0 {lton1 x} {lton1 y} a)) ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim (nat-≡< (cong suc (sym eq)) (lb=0 {lton1 y} {lton1 x} c)) --- --- lton is unique in a head --- lb-tf : {x y : List Bool } → ¬ (lton (true ∷ x) ≡ lton (false ∷ y)) lb-tf {x} {y} eq with <-cmp (lton1 x) (lton1 y) ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< eq (lb=01 a)) where lb=01 : {x y : ℕ } → x < y → x + x < (y + y ∸ 1) lb=01 {x} {y} x<y = begin suc (x + x) ≡⟨ refl ⟩ suc x + x ≤⟨ ≤-plus x<y ⟩ y + x ≡⟨ refl ⟩ pred (suc y + x) ≡⟨ cong (λ k → pred ( k + x)) (+-comm 1 y) ⟩ pred ((y + 1) + x ) ≡⟨ cong pred (+-assoc y 1 x) ⟩ pred (y + suc x) ≤⟨ px≤py (≤-plus-0 {suc x} {y} {y} x<y) ⟩ (y + y) ∸ 1 ∎ where open ≤-Reasoning ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (lb=02 c) ) where lb=02 : {x y : ℕ } → x < y → x + x ∸ 1 < y + y lb=02 {0} {y} lt = ≤-trans lt x≤x+y lb=02 {suc x} {y} lt = begin suc ( suc x + suc x ∸ 1 ) ≡⟨ refl ⟩ suc x + suc x ≤⟨ ≤-plus {suc x} (<to≤ lt) ⟩ y + suc x ≤⟨ ≤-plus-0 (<to≤ lt) ⟩ y + y ∎ where open ≤-Reasoning ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (sym eq) ( begin suc (lton1 y + lton1 y ∸ 1) ≡⟨ sucprd ( 2lton1>0 y) ⟩ lton1 y + lton1 y ≡⟨ cong (λ k → k + k ) (sym b) ⟩ lton1 x + lton1 x ∎ )) where open ≤-Reasoning --- --- lton uniqueness --- lb=b : (x y : List Bool) → lton x ≡ lton y → x ≡ y lb=b [] [] eq = refl lb=b [] (x ∷ y) eq = ⊥-elim ( nat-≡< eq (lton-cons>0 {x} {y} )) lb=b (x ∷ y) [] eq = ⊥-elim ( nat-≡< (sym eq) (lton-cons>0 {x} {y} )) lb=b (true ∷ x) (false ∷ y) eq = ⊥-elim ( lb-tf {x} {y} eq ) lb=b (false ∷ x) (true ∷ y) eq = ⊥-elim ( lb-tf {y} {x} (sym eq) ) lb=b (true ∷ x) (true ∷ y) eq = cong (λ k → true ∷ k ) (lb=b x y (lb=1 {x} {y} {true} eq)) lb=b (false ∷ x) (false ∷ y) eq = cong (λ k → false ∷ k ) (lb=b x y (lb=1 {x} {y} {false} eq)) lb : (n : ℕ) → LB n lton lb zero = record { nlist = [] ; isBin = refl ; isUnique = lb05 } where lb05 : (x : List Bool) → lton x ≡ zero → [] ≡ x lb05 x eq = lb=b [] x (sym eq) lb (suc n) with LB.nlist (lb n) | inspect LB.nlist (lb n) ... | [] | record { eq = eq } = record { nlist = false ∷ [] ; isUnique = lb06 ; isBin = lb10 } where open ≡-Reasoning lb10 : lton1 (false ∷ []) ∸ 1 ≡ suc n lb10 = begin lton (false ∷ []) ≡⟨ refl ⟩ suc 0 ≡⟨ refl ⟩ suc (lton []) ≡⟨ cong (λ k → suc (lton k)) (sym eq) ⟩ suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n) ) ⟩ suc n ∎ lb06 : (x : List Bool) → pred (lton1 x ) ≡ suc n → false ∷ [] ≡ x lb06 x eq1 = lb=b (false ∷ []) x (trans lb10 (sym eq1)) -- lton (false ∷ []) ≡ lton x ... | false ∷ t | record { eq = eq } = record { nlist = true ∷ t ; isBin = lb01 ; isUnique = lb09 } where lb01 : lton (true ∷ t) ≡ suc n lb01 = begin lton (true ∷ t) ≡⟨ refl ⟩ lton1 t + lton1 t ≡⟨ sym ( sucprd (2lton1>0 t) ) ⟩ suc (pred (lton1 t + lton1 t )) ≡⟨ refl ⟩ suc (lton (false ∷ t)) ≡⟨ cong (λ k → suc (lton k )) (sym eq) ⟩ suc (lton (LB.nlist (lb n))) ≡⟨ cong suc (LB.isBin (lb n)) ⟩ suc n ∎ where open ≡-Reasoning lb09 : (x : List Bool) → lton1 x ∸ 1 ≡ suc n → true ∷ t ≡ x lb09 x eq1 = lb=b (true ∷ t) x (trans lb01 (sym eq1) ) -- lton (true ∷ t) ≡ lton x ... | true ∷ t | record { eq = eq } = record { nlist = lb+1 (true ∷ t) ; isBin = lb02 (true ∷ t) lb03 ; isUnique = lb07 } where lb03 : lton (true ∷ t) ≡ n lb03 = begin lton (true ∷ t) ≡⟨ cong (λ k → lton k ) (sym eq ) ⟩ lton (LB.nlist (lb n)) ≡⟨ LB.isBin (lb n) ⟩ n ∎ where open ≡-Reasoning add11 : (x1 : ℕ ) → suc x1 + suc x1 ≡ suc (suc (x1 + x1)) add11 zero = refl add11 (suc x) = cong (λ k → suc (suc k)) (trans (+-comm x _) (cong suc (+-comm _ x))) lb04 : (t : List Bool) → suc (lton1 t) ≡ lton1 (lb+1 t) lb04 [] = refl lb04 (false ∷ t) = refl lb04 (true ∷ []) = refl lb04 (true ∷ t0 ) = begin suc (suc (lton1 t0 + lton1 t0)) ≡⟨ sym (add11 (lton1 t0)) ⟩ suc (lton1 t0) + suc (lton1 t0) ≡⟨ cong (λ k → k + k ) (lb04 t0 ) ⟩ lton1 (lb+1 t0) + lton1 (lb+1 t0) ∎ where open ≡-Reasoning lb02 : (t : List Bool) → lton t ≡ n → lton (lb+1 t) ≡ suc n lb02 [] refl = refl lb02 t eq1 = begin lton (lb+1 t) ≡⟨ refl ⟩ pred (lton1 (lb+1 t)) ≡⟨ cong pred (sym (lb04 t)) ⟩ pred (suc (lton1 t)) ≡⟨ sym (sucprd (lton1>0 t)) ⟩ suc (pred (lton1 t)) ≡⟨ refl ⟩ suc (lton t) ≡⟨ cong suc eq1 ⟩ suc n ∎ where open ≡-Reasoning lb07 : (x : List Bool) → pred (lton1 x ) ≡ suc n → lb+1 (true ∷ t) ≡ x lb07 x eq1 = lb=b (lb+1 (true ∷ t)) x (trans ( lb02 (true ∷ t) lb03 ) (sym eq1))
{ "alphanum_fraction": 0.4224228682, "avg_line_length": 48.1442495127, "ext": "agda", "hexsha": "0e640b3a95da81aef38c6c3894038523065ffc3a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/HyperReal-in-agda", "max_forks_repo_path": "src/bijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/HyperReal-in-agda", "max_issues_repo_path": "src/bijection.agda", "max_line_length": 159, "max_stars_count": null, "max_stars_repo_head_hexsha": "64d5f1ec0a6d81b7b9c45a289f669bbf32c9c891", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/HyperReal-in-agda", "max_stars_repo_path": "src/bijection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10941, "size": 24698 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.TLevel module experimental.Category where record CategoryStructure {i j} (Obj : Type i) (Mor : Obj → Obj → Type j) : Type (lmax i j) where constructor category-structure field comp : {o₁ o₂ o₃ : Obj} → Mor o₁ o₂ → Mor o₂ o₃ → Mor o₁ o₃ idm : {o : Obj} → Mor o o unit-r : ∀ {o₁ o₂} (m : Mor o₁ o₂) → comp m idm == m unit-l : ∀ {o₁ o₂} (m : Mor o₁ o₂) → comp idm m == m record Category i j : Type (lsucc (lmax i j)) where constructor category field Obj : Type i Mor : Obj → Obj → Type j Mor-level : ∀ {o₁ o₂} → is-set (Mor o₁ o₂) cat-struct : CategoryStructure Obj Mor open CategoryStructure cat-struct public
{ "alphanum_fraction": 0.6335078534, "avg_line_length": 29.3846153846, "ext": "agda", "hexsha": "8267be47fbdb7f9e94987adaf839ae36e5a95946", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/Category.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/Category.agda", "max_line_length": 63, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 262, "size": 764 }