Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --prop --rewriting #-} module Examples.Gcd.Clocked where open import Calf.CostMonoid import Calf.CostMonoids as CM open import Calf CM.ℕ-CostMonoid open import Calf.Types.Nat open import Data.Nat using (_≤_; z≤n) open import Calf.Types.Unit open import Calf.Types.Bounded CM.ℕ-CostMonoid open import Calf.Types.BoundedFunction CM.ℕ-CostMonoid open import Data.Nat.DivMod open import Relation.Binary.PropositionalEquality as P open import Data.Product open import Examples.Gcd.Euclid {- Alternative definition of gcd with an explicit clock parameter. It is easier to see the computational behavior of the code in this version: 1) when the clock is nonzero: the algorithm proceeds as normal 2) clock is zero: algorithm terminates Crucially, if the recursor is by-name, then the value of the clock does not affect asymptotic behavior of the algorithm. Two things one can do in calf: 1) give a good characterization of the clock in terms of the input by refining the raw recurrence (see Refine.agda) 2) give a good characterization for of the clock for running the code; this usually means finding a clock computation that is simpler to compute than the "good" upperbound. For gcd, one can reuse the argument as the clock (see Spec.agda) -} gcd/clocked : cmp (Π nat λ _ → Π gcd/i λ _ → F nat) gcd/clocked zero (x , y , h) = ret x gcd/clocked (suc k) (x , 0 , h) = ret {nat} x gcd/clocked (suc k) (x , suc y , h) = bind {mod-tp x (suc y) triv} (F nat) (mod x (suc y) triv) λ { (z , eqn2) → let h2 = P.subst (λ k → suc k ≤ suc y) (P.sym eqn2) (m%n<n' x _ triv) in gcd/clocked k (suc y , z , h2) } gcd : cmp (Π gcd/i λ _ → F nat) gcd i = gcd/clocked (gcd/depth i) i -- cost of clocked gcd is bounded by for any (not necessarily safe) -- instantiation of the clock gcd/clocked≤gcd/depth : ∀ k i → IsBounded nat (gcd/clocked k i) (gcd/depth i) gcd/clocked≤gcd/depth zero i = bound/relax (λ _ → z≤n) bound/ret gcd/clocked≤gcd/depth (suc k) (x , zero , h) = bound/ret gcd/clocked≤gcd/depth (suc k) (x , suc y , h) rewrite gcd/depth-unfold-suc {x} {y} {h} = bound/step 1 _ (gcd/clocked≤gcd/depth k (suc y , x % suc y , m%n<n' x _ triv)) gcd≤gcd/depth : ∀ i → IsBounded nat (gcd i) (gcd/depth i) gcd≤gcd/depth i = gcd/clocked≤gcd/depth (gcd/depth i) i gcd/bounded : cmp (Ψ gcd/i (λ { _ → nat }) gcd/depth) gcd/bounded = gcd , gcd≤gcd/depth
{ "alphanum_fraction": 0.70041841, "avg_line_length": 41.2068965517, "ext": "agda", "hexsha": "606ccf084ac3a6367d476f5baab9762631562835", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Gcd/Clocked.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Gcd/Clocked.agda", "max_line_length": 118, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Gcd/Clocked.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 788, "size": 2390 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LeibnizEquality where ------------------------------------------------------------------------------ -- The identity type. data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x -- Leibniz equality (see [Luo 1994, sec. 5.1.3]) -- (From Agda/examples/lib/Logic/Leibniz.agda) _≐_ : {A : Set} → A → A → Set₁ x ≐ y = (P : _ → Set) → P x → P y -- Properties ≐-refl : {A : Set}{x : A} → x ≐ x ≐-refl P Px = Px ≐-sym : {A : Set}{x y : A} → x ≐ y → y ≐ x ≐-sym {x = x} {y} h P Py = h (λ z → P z → P x) (λ Px → Px) Py ≐-trans : {A : Set}{x y z : A} → x ≐ y → y ≐ z → x ≐ z ≐-trans h₁ h₂ P Px = h₂ P (h₁ P Px) ≐-subst : {A : Set}(P : A → Set){x y : A} → x ≐ y → P x → P y ≐-subst P h = h P ------------------------------------------------------------------------------ -- Leibniz's equality and the identity type -- "In the presence of a type of propositions "Prop" one can also -- define propositional equality by Leibniz's principle." [Hofmman -- 1995, p. 4] ≐→≡ : {A : Set}{x y : A} → x ≐ y → x ≡ y ≐→≡ {x = x} h = h (λ z → x ≡ z) refl ≡→≐ : {A : Set}{x y : A} → x ≡ y → x ≐ y ≡→≐ refl P Px = Px ------------------------------------------------------------------------------ -- References -- -- Hofmann, Martin (1995). Extensional concepts in intensional type -- theory. PhD thesis. University of Edinburgh. -- Luo, Zhaohui (1994). Computation and Reasoning. A Type Theory for -- Computer Science. Oxford University Press.
{ "alphanum_fraction": 0.4636871508, "avg_line_length": 30.3962264151, "ext": "agda", "hexsha": "a9f9539f45553719c5e6588ee4a93c67795c73eb", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/setoids/LeibnizEquality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/setoids/LeibnizEquality.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/setoids/LeibnizEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 556, "size": 1611 }
{-# OPTIONS --without-K --safe #-} -- Definition of Pi with fractionals module PiFrac where -- From the standard library: open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂) -- The basic types we add: open import Singleton infixr 70 _×ᵤ_ infixr 60 _+ᵤ_ infixr 50 _⊚_ ------------------------------------------------------------------------------ -- Pi with fractionals -- The following are all mutually dependent: data 𝕌 : Set -- 𝕌niverse of types ⟦_⟧ : (A : 𝕌) → Set -- denotation of types data _⟷_ : 𝕌 → 𝕌 → Set -- type equivalences eval : {A B : 𝕌} → (A ⟷ B) → ⟦ A ⟧ → ⟦ B ⟧ -- evaluating an equivalence data 𝕌 where 𝟘 : 𝕌 𝟙 : 𝕌 _+ᵤ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 ●_[_] : (A : 𝕌) → ⟦ A ⟧ → 𝕌 𝟙/●_[_] : (A : 𝕌) → ⟦ A ⟧ → 𝕌 ⟦ 𝟘 ⟧ = ⊥ ⟦ 𝟙 ⟧ = ⊤ ⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ ⟦ ● A [ v ] ⟧ = Singleton ⟦ A ⟧ v ⟦ 𝟙/● A [ v ] ⟧ = Recip ⟦ A ⟧ v data _⟷_ where unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ⟷ t uniti₊l : {t : 𝕌} → t ⟷ 𝟘 +ᵤ t unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ⟷ t uniti₊r : {t : 𝕌} → t ⟷ t +ᵤ 𝟘 swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ⟷ t₂ +ᵤ t₁ assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ +ᵤ t₂) +ᵤ t₃ assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ⟷ t₁ +ᵤ (t₂ +ᵤ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙 swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃) absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ⟷ 𝟘 absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ⟷ 𝟘 factorzr : {t : 𝕌} → 𝟘 ⟷ t ×ᵤ 𝟘 factorzl : {t : 𝕌} → 𝟘 ⟷ 𝟘 ×ᵤ t dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤ t₂) ×ᵤ t₃ distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤ t₃) id⟷ : {t : 𝕌} → t ⟷ t _⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤ t₂ ⟷ t₃ +ᵤ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄) -- new operations on Singleton lift : {t₁ t₂ : 𝕌} → {v₁ : ⟦ t₁ ⟧} → (c : t₁ ⟷ t₂) → (● t₁ [ v₁ ] ⟷ ● t₂ [ eval c v₁ ]) tensorl : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} → ● t₁ ×ᵤ t₂ [ v₁ , v₂ ] ⟷ ● t₁ [ v₁ ] ×ᵤ ● t₂ [ v₂ ] tensorr : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} → ● t₁ [ v₁ ] ×ᵤ ● t₂ [ v₂ ] ⟷ ● t₁ ×ᵤ t₂ [ v₁ , v₂ ] plusll : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} → ● (t₁ +ᵤ t₂) [ inj₁ v ] ⟷ ● t₁ [ v ] pluslr : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} → ● t₁ [ v ] ⟷ ● (t₁ +ᵤ t₂) [ inj₁ v ] plusrl : {t₁ t₂ : 𝕌} {v : ⟦ t₂ ⟧} → ● (t₁ +ᵤ t₂) [ inj₂ v ] ⟷ ● t₂ [ v ] plusrr : {t₁ t₂ : 𝕌} {v : ⟦ t₂ ⟧} → ● t₂ [ v ] ⟷ ● (t₁ +ᵤ t₂) [ inj₂ v ] fracl : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} → 𝟙/● t₁ ×ᵤ t₂ [ v₁ , v₂ ] ⟷ 𝟙/● t₁ [ v₁ ] ×ᵤ 𝟙/● t₂ [ v₂ ] fracr : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} → 𝟙/● t₁ [ v₁ ] ×ᵤ 𝟙/● t₂ [ v₂ ] ⟷ 𝟙/● t₁ ×ᵤ t₂ [ v₁ , v₂ ] -- fractionals η : {t : 𝕌} → (v : ⟦ t ⟧) → 𝟙 ⟷ ● t [ v ] ×ᵤ 𝟙/● t [ v ] ε : {t : 𝕌} → (v : ⟦ t ⟧) → ● t [ v ] ×ᵤ 𝟙/● t [ v ] ⟷ 𝟙 -- double lift prop eq ll : ∀ {t : 𝕌} {v : ⟦ t ⟧} {w : ⟦ ● t [ v ] ⟧} → ● (● t [ v ]) [ w ] ⟷ ● t [ v ] == : ∀ {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} {w w' : ⟦ t₂ ⟧} → (● t₁ [ v ] ⟷ ● t₂ [ w ]) → (w ≡ w') → (● t₁ [ v ] ⟷ ● t₂ [ w' ]) eval unite₊l (inj₂ v) = v eval uniti₊l v = inj₂ v eval unite₊r (inj₁ v) = v eval uniti₊r v = inj₁ v eval swap₊ (inj₁ v) = inj₂ v eval swap₊ (inj₂ v) = inj₁ v eval assocl₊ (inj₁ v) = inj₁ (inj₁ v) eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) eval assocr₊ (inj₂ v) = inj₂ (inj₂ v) eval unite⋆l (tt , v) = v eval uniti⋆l v = (tt , v) eval unite⋆r (v , tt) = v eval uniti⋆r v = (v , tt) eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) eval assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) eval absorbl () eval absorbr () eval factorzl () eval factorzr () eval dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) eval dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) eval factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) eval factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) eval distl (v , inj₁ v₁) = inj₁ (v , v₁) eval distl (v , inj₂ v₂) = inj₂ (v , v₂) eval factorl (inj₁ (v , v₁)) = (v , inj₁ v₁) eval factorl (inj₂ (v , v₂)) = (v , inj₂ v₂) eval id⟷ v = v eval (c₁ ⊚ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v) eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂) eval (lift c) (w , v≡w) = eval c w , cong (eval c) v≡w eval tensorl ((w₁ , w₂) , vp≡wp) = (w₁ , cong proj₁ vp≡wp) , (w₂ , cong proj₂ vp≡wp) eval tensorr ((w₁ , p₁) , (w₂ , p₂)) = (w₁ , w₂) , cong₂ _,_ p₁ p₂ eval (η v) tt = (v , refl) , λ _ → tt eval (ε v) (p , f) = f p eval (plusll {v = .w₁}) (inj₁ w₁ , refl) = w₁ , refl eval pluslr (v₁ , refl) = inj₁ v₁ , refl eval (plusrl {v = .w₂}) (inj₂ w₂ , refl) = w₂ , refl eval plusrr (v₂ , refl) = inj₂ v₂ , refl eval (fracl {v₁ = v₁} {v₂ = v₂}) f = (λ _ → f ((v₁ , v₂) , refl)) , (λ _ → f ((v₁ , v₂) , refl)) eval fracr (f₁ , f₂) ((w₁ , w₂) , refl) = let _ = f₁ (w₁ , refl) ; _ = f₂ (w₂ , refl) in tt eval (ll {t} {v} {.w}) (w , refl) = v , refl eval (== c eq) s₁ = let (w₂ , p) = eval c s₁ in w₂ , trans (sym eq) p focus : {t : 𝕌} → (v : ⟦ t ⟧) → Singleton ⟦ t ⟧ v focus v = (v , refl) unfocus : {t : 𝕌} {v : ⟦ t ⟧} → Singleton ⟦ t ⟧ v → ⟦ t ⟧ unfocus (v , refl) = v ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4410130719, "avg_line_length": 37.5460122699, "ext": "agda", "hexsha": "acd5c292c0730f9d05127a73ce6962b19148a805", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/PiFrac.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/PiFrac.agda", "max_line_length": 96, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/PiFrac.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3500, "size": 6120 }
open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) import Web.Semantic.DL.Category.Composition import Web.Semantic.DL.Category.Morphism import Web.Semantic.DL.Category.Object import Web.Semantic.DL.Category.Properties import Web.Semantic.DL.Category.Tensor import Web.Semantic.DL.Category.Unit import Web.Semantic.DL.Category.Wiring module Web.Semantic.DL.Category {Σ : Signature} where infix 2 _≣_ _⇒_ infixr 5 _∙_ _⊗_ _⟨⊗⟩_ -- Categorial structure Object : TBox Σ → TBox Σ → Set₁ Object = Web.Semantic.DL.Category.Object.Object _⇒_ : ∀ {S T} → (Object S T) → (Object S T) → Set₁ _⇒_ = Web.Semantic.DL.Category.Morphism._⇒_ identity : ∀ {S T} (A : Object S T) → (A ⇒ A) identity = Web.Semantic.DL.Category.Wiring.identity _∙_ : ∀ {S T} {A B C : Object S T} → (A ⇒ B) → (B ⇒ C) → (A ⇒ C) _∙_ = Web.Semantic.DL.Category.Composition._∙_ -- Symmetric monoidal structure I : ∀ {S T} → Object S T I = Web.Semantic.DL.Category.Unit.I _⊗_ : ∀ {S T} → Object S T → Object S T → Object S T _⊗_ = Web.Semantic.DL.Category.Tensor._⊗_ _⟨⊗⟩_ : ∀ {S T : TBox Σ} {A₁ A₂ B₁ B₂ : Object S T} → (A₁ ⇒ B₁) → (A₂ ⇒ B₂) → ((A₁ ⊗ A₂) ⇒ (B₁ ⊗ B₂)) _⟨⊗⟩_ = Web.Semantic.DL.Category.Tensor._⟨⊗⟩_ symm : ∀ {S T : TBox Σ} → (A B : Object S T) → ((A ⊗ B) ⇒ (B ⊗ A)) symm = Web.Semantic.DL.Category.Wiring.symm assoc : ∀ {S T : TBox Σ} → (A B C : Object S T) → (((A ⊗ B) ⊗ C) ⇒ (A ⊗ (B ⊗ C))) assoc = Web.Semantic.DL.Category.Wiring.assoc assoc⁻¹ : ∀ {S T : TBox Σ} → (A B C : Object S T) → ((A ⊗ (B ⊗ C)) ⇒ ((A ⊗ B) ⊗ C)) assoc⁻¹ = Web.Semantic.DL.Category.Wiring.assoc⁻¹ unit₁ : ∀ {S T : TBox Σ} (A : Object S T) → ((I ⊗ A) ⇒ A) unit₁ = Web.Semantic.DL.Category.Wiring.unit₁ unit₁⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (I ⊗ A)) unit₁⁻¹ = Web.Semantic.DL.Category.Wiring.unit₁⁻¹ unit₂ : ∀ {S T : TBox Σ} (A : Object S T) → ((A ⊗ I) ⇒ A) unit₂ = Web.Semantic.DL.Category.Wiring.unit₂ unit₂⁻¹ : ∀ {S T : TBox Σ} (A : Object S T) → (A ⇒ (A ⊗ I)) unit₂⁻¹ = Web.Semantic.DL.Category.Wiring.unit₂⁻¹ -- Equivalence of morphisms _≣_ : ∀ {S T} {A B : Object S T} → (A ⇒ B) → (A ⇒ B) → Set₁ _≣_ = Web.Semantic.DL.Category.Morphism._≣_ ≣-refl : ∀ {S T} {A B : Object S T} (F : A ⇒ B) → (F ≣ F) ≣-refl = Web.Semantic.DL.Category.Properties.≣-refl ≣-sym : ∀ {S T} {A B : Object S T} {F G : A ⇒ B} → (F ≣ G) → (G ≣ F) ≣-sym = Web.Semantic.DL.Category.Properties.≣-sym ≣-trans : ∀ {S T} {A B : Object S T} {F G H : A ⇒ B} → (F ≣ G) → (G ≣ H) → (F ≣ H) ≣-trans = Web.Semantic.DL.Category.Properties.≣-trans -- Equations of a category compose-resp-≣ : ∀ {S T} {A B C : Object S T} {F₁ F₂ : A ⇒ B} {G₁ G₂ : B ⇒ C} → (F₁ ≣ F₂) → (G₁ ≣ G₂) → (F₁ ∙ G₁ ≣ F₂ ∙ G₂) compose-resp-≣ = Web.Semantic.DL.Category.Properties.compose-resp-≣ compose-unit₁ : ∀ {S T} {A B C : Object S T} (F : A ⇒ B) → (identity A ∙ F ≣ F) compose-unit₁ = Web.Semantic.DL.Category.Properties.compose-unit₁ compose-unit₂ : ∀ {S T} {A B C : Object S T} (F : A ⇒ B) → (F ∙ identity B ≣ F) compose-unit₂ = Web.Semantic.DL.Category.Properties.compose-unit₂ compose-assoc : ∀ {S T} {A B C D : Object S T} (F : A ⇒ B) (G : B ⇒ C) (H : C ⇒ D) → ((F ∙ G) ∙ H ≣ F ∙ (G ∙ H)) compose-assoc = Web.Semantic.DL.Category.Properties.compose-assoc -- Tensor is a bifunctor tensor-resp-≣ : ∀ {S T} {A₁ A₂ B₁ B₂ : Object S T} {F₁ G₁ : A₁ ⇒ B₁} {F₂ G₂ : A₂ ⇒ B₂} → (F₁ ≣ G₁) → (F₂ ≣ G₂) → (F₁ ⟨⊗⟩ F₂ ≣ G₁ ⟨⊗⟩ G₂) tensor-resp-≣ = Web.Semantic.DL.Category.Properties.tensor-resp-≣ tensor-resp-compose : ∀ {S T} {A₁ A₂ B₁ B₂ C₁ C₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (G₁ : B₁ ⇒ C₁) (G₂ : B₂ ⇒ C₂) → (((F₁ ∙ G₁) ⟨⊗⟩ (F₂ ∙ G₂)) ≣ ((F₁ ⟨⊗⟩ F₂) ∙ (G₁ ⟨⊗⟩ G₂))) tensor-resp-compose = Web.Semantic.DL.Category.Properties.tensor-resp-compose tensor-resp-id : ∀ {S T} (A₁ A₂ : Object S T) → ((identity A₁ ⟨⊗⟩ identity A₂) ≣ identity (A₁ ⊗ A₂)) tensor-resp-id = Web.Semantic.DL.Category.Properties.tensor-resp-id -- Isomorphisms of a symmetric monoidal category symm-iso : ∀ {S T} (A₁ A₂ : Object S T) → (symm A₁ A₂ ∙ symm A₂ A₁ ≣ identity (A₁ ⊗ A₂)) symm-iso = Web.Semantic.DL.Category.Properties.symm-iso assoc-iso : ∀ {S T} (A₁ A₂ A₃ : Object S T) → (assoc A₁ A₂ A₃ ∙ assoc⁻¹ A₁ A₂ A₃ ≣ identity ((A₁ ⊗ A₂) ⊗ A₃)) assoc-iso = Web.Semantic.DL.Category.Properties.assoc-iso assoc⁻¹-iso : ∀ {S T} (A₁ A₂ A₃ : Object S T) → (assoc⁻¹ A₁ A₂ A₃ ∙ assoc A₁ A₂ A₃ ≣ identity (A₁ ⊗ (A₂ ⊗ A₃))) assoc⁻¹-iso = Web.Semantic.DL.Category.Properties.assoc⁻¹-iso unit₁-iso : ∀ {S T} (A : Object S T) → (unit₁ A ∙ unit₁⁻¹ A ≣ identity (I ⊗ A)) unit₁-iso = Web.Semantic.DL.Category.Properties.unit₁-iso unit₁⁻¹-iso : ∀ {S T} (A : Object S T) → (unit₁⁻¹ A ∙ unit₁ A ≣ identity A) unit₁⁻¹-iso = Web.Semantic.DL.Category.Properties.unit₁⁻¹-iso unit₂-iso : ∀ {S T} (A : Object S T) → (unit₂ A ∙ unit₂⁻¹ A ≣ identity (A ⊗ I)) unit₂-iso = Web.Semantic.DL.Category.Properties.unit₂-iso unit₂⁻¹-iso : ∀ {S T} (A : Object S T) → (unit₂⁻¹ A ∙ unit₂ A ≣ identity A) unit₂⁻¹-iso = Web.Semantic.DL.Category.Properties.unit₂⁻¹-iso -- Coherence conditions of a symmetric monoidal category assoc-unit : ∀ {S T} (A₁ A₂ : Object S T) → (assoc A₁ I A₂ ∙ (identity A₁ ⟨⊗⟩ unit₁ A₂) ≣ unit₂ A₁ ⟨⊗⟩ identity A₂) assoc-unit = Web.Semantic.DL.Category.Properties.assoc-unit assoc-assoc : ∀ {S T} (A₁ A₂ A₃ A₄ : Object S T) → (assoc (A₁ ⊗ A₂) A₃ A₄ ∙ assoc A₁ A₂ (A₃ ⊗ A₄) ≣ (assoc A₁ A₂ A₃ ⟨⊗⟩ identity A₄) ∙ assoc A₁ (A₂ ⊗ A₃) A₄ ∙ (identity A₁ ⟨⊗⟩ assoc A₂ A₃ A₄)) assoc-assoc = Web.Semantic.DL.Category.Properties.assoc-assoc assoc-symm : ∀ {S T} (A₁ A₂ A₃ : Object S T) → (symm (A₁ ⊗ A₂) A₃ ∙ assoc⁻¹ A₃ A₁ A₂ ≣ assoc A₁ A₂ A₃ ∙ (identity A₁ ⟨⊗⟩ symm A₂ A₃) ∙ assoc⁻¹ A₁ A₃ A₂ ∙ (symm A₁ A₃ ⟨⊗⟩ identity A₂)) assoc-symm = Web.Semantic.DL.Category.Properties.assoc-symm -- Naturality conditions of a symmetric monoidal category unit₁-natural : ∀ {S T} {A B : Object S T} (F : A ⇒ B) → ((identity I ⟨⊗⟩ F) ∙ unit₁ B ≣ unit₁ A ∙ F) unit₁-natural = Web.Semantic.DL.Category.Properties.unit₁-natural unit₂-natural : ∀ {S T} {A B : Object S T} (F : A ⇒ B) → ((F ⟨⊗⟩ identity I) ∙ unit₂ B ≣ unit₂ A ∙ F) unit₂-natural = Web.Semantic.DL.Category.Properties.unit₂-natural symm-natural : ∀ {S T} {A₁ A₂ B₁ B₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) → ((F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ ≣ symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁)) symm-natural = Web.Semantic.DL.Category.Properties.symm-natural assoc-natural : ∀ {S T} {A₁ A₂ A₃ B₁ B₂ B₃ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) (F₃ : A₃ ⇒ B₃) → (((F₁ ⟨⊗⟩ F₂) ⟨⊗⟩ F₃) ∙ assoc B₁ B₂ B₃ ≣ assoc A₁ A₂ A₃ ∙ (F₁ ⟨⊗⟩ (F₂ ⟨⊗⟩ F₃))) assoc-natural = Web.Semantic.DL.Category.Properties.assoc-natural
{ "alphanum_fraction": 0.6059518469, "avg_line_length": 36.3423913043, "ext": "agda", "hexsha": "13c0375a880985435b1287735b6a3f6bbad1cb14", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category.agda", "max_line_length": 100, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 2997, "size": 6687 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Explaining how to use the inspect idiom and elaborating on the way -- it is implemented in the standard library. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module README.Inspect where open import Data.Nat.Base open import Data.Nat.Properties open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Using inspect -- We start with the definition of a (silly) predicate: `Plus m n p` states -- that `m + n` is equal to `p` in a rather convoluted way. Crucially, it -- distinguishes two cases: whether `p` is 0 or not. Plus-eq : (m n p : ℕ) → Set Plus-eq m n zero = m ≡ 0 × n ≡ 0 Plus-eq m n p@(suc _) = m + n ≡ p -- A sensible lemma to prove of this predicate is that whenever `p` is literally -- `m + n` then `Plus m n p` holds. That is to say `∀ m n → Plus m n (m + n)`. -- To be able to prove `Plus-eq m n (m + n)`, we need `m + n` to have either -- the shape `zero` or `suc _` so that `Plus-eq` may reduce. -- We could follow the way `_+_` computes by mimicking the same splitting -- strategy, thus forcing `m + n` to reduce: plus-eq-+ : ∀ m n → Plus-eq m n (m + n) plus-eq-+ zero zero = refl , refl plus-eq-+ zero (suc n) = refl plus-eq-+ (suc m) n = refl -- Or we could attempt to compute `m + n` first and check whether the result -- is `zero` or `suc p`. By using `with m + n` and naming the result `p`, -- the goal will become `Plus-eq m n p`. We can further refine this definition -- by distinguishing two cases like so: -- plus-eq-with : ∀ m n → Plus-eq m n (m + n) -- plus-eq-with m n with m + n -- ... | zero = {!!} -- ... | suc p = {!!} -- The problem however is that we have abolutely lost the connection between the -- computation `m + n` and its result `p`. Which makes the two goals unprovable: -- 1. `m ≡ 0 × n ≡ 0`, with no assumption whatsoever -- 2. `m + n ≡ suc p`, with no assumption either -- By using the `with` construct, we have generated an auxiliary function that -- looks like this: -- `plus-eq-with-aux : ∀ m n p → Plus-eq m n p` -- when we would have wanted a more precise type of the form: -- `plus-eq-aux : ∀ m n p → m + n ≡ p → Plus-eq m n p`. -- This is where we can use `inspect`. By using `with f x | inspect f x`, -- we get both a `y` which is the result of `f x` and a proof that `f x ≡ y`. -- Splitting on the result of `m + n`, we get two cases: -- 1. `m ≡ 0 × n ≡ 0` under the assumption that `m + n ≡ zero` -- 2. `m + n ≡ suc p` under the assumption that `m + n ≡ suc p` -- The first one can be discharged using lemmas from Data.Nat.Properties and -- the second one is trivial. plus-eq-with : ∀ m n → Plus-eq m n (m + n) plus-eq-with m n with m + n | inspect (m +_) n ... | zero | [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 ... | suc p | [ m+n≡1+p ] = m+n≡1+p ------------------------------------------------------------------------ -- Understanding the implementation of inspect -- So why is it that we have to go through the record type `Reveal_·_is_` -- and the ̀inspect` function? The fact is: we don't have to if we write -- our own auxiliary lemma: plus-eq-aux : ∀ m n → Plus-eq m n (m + n) plus-eq-aux m n = aux m n (m + n) refl where aux : ∀ m n p → m + n ≡ p → Plus-eq m n p aux m n zero m+n≡0 = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 aux m n (suc p) m+n≡1+p = m+n≡1+p -- The problem is that when we write ̀with f x | pr`, `with` decides to call `y` -- the result `f x` and to replace *all* of the occurences of `f x` in the type -- of `pr` with `y`. That is to say that if we were to write: -- plus-eq-naïve : ∀ m n → Plus-eq m n (m + n) -- plus-eq-naïve m n with m + n | refl {x = m + n} -- ... | p | eq = {!!} -- then `with` would abstract `m + n` as `p` on *both* sides of the equality -- proven by `refl` thus giving us the following goal with an extra, useless, -- assumption: -- 1. `Plus-eq m n p` under the assumption that `p ≡ p` -- So how does `inspect` work? The standard library uses a more general version -- of the following type and function: record MyReveal_·_is_ (f : ℕ → ℕ) (x y : ℕ) : Set where constructor [_] field eq : f x ≡ y my-inspect : ∀ f n → MyReveal f · n is (f n) my-inspect f n = [ refl ] -- Given that `inspect` has the type `∀ f n → Reveal f · n is (f n)`, when we -- write `with f n | inspect f n`, the only `f n` that can be abstracted in the -- type of `inspect f n` is the third argument to `Reveal_·_is_`. -- That is to say that the auxiliary definition generated looks like this: plus-eq-reveal : ∀ m n → Plus-eq m n (m + n) plus-eq-reveal m n = aux m n (m + n) (my-inspect (m +_) n) where aux : ∀ m n p → MyReveal (m +_) · n is p → Plus-eq m n p aux m n zero [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 aux m n (suc p) [ m+n≡1+p ] = m+n≡1+p -- At the cost of having to unwrap the constructor `[_]` around the equality -- we care about, we can keep relying on `with` and avoid having to roll out -- handwritten auxiliary definitions.
{ "alphanum_fraction": 0.5906286155, "avg_line_length": 38.992481203, "ext": "agda", "hexsha": "22f11e5d4db856fbe41b387b626c1fe95a4db081", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Inspect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Inspect.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Inspect.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1706, "size": 5186 }
-- named arguments should be allowed in module applications module Issue420 where module M {A : Set₁} where open M {A = Set}
{ "alphanum_fraction": 0.7401574803, "avg_line_length": 18.1428571429, "ext": "agda", "hexsha": "48863f5ae183ba22775d9f1f914df8dc76e28912", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue420.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue420.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue420.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32, "size": 127 }
{-# OPTIONS --without-K --safe #-} module Data.Bool.Base where open import Level open import Agda.Builtin.Bool using (Bool; true; false) public open import Data.Unit bool : ∀ {ℓ} {P : Bool → Type ℓ} (f : P false) (t : P true) → (x : Bool) → P x bool f t false = f bool f t true = t {-# INLINE bool #-} bool′ : A → A → Bool → A bool′ = bool {-# INLINE bool′ #-} not : Bool → Bool not false = true not true = false infixl 6 _or_ _or_ : Bool → Bool → Bool false or y = y true or y = true infixl 7 _and_ _and_ : Bool → Bool → Bool false and y = false true and y = y infixr 0 if_then_else_ if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if p then x else y = bool y x p {-# INLINE if_then_else_ #-}
{ "alphanum_fraction": 0.6197183099, "avg_line_length": 19.1891891892, "ext": "agda", "hexsha": "9dab142c1b3e1259175007a53e8aa5f40a26d4fe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Bool/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Bool/Base.agda", "max_line_length": 78, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Bool/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 245, "size": 710 }
module sn-calculus-compatconf.in-lift where open import sn-calculus-compatconf.base open import sn-calculus open import utility renaming (_U̬_ to _∪_) open import context-properties using (get-view ; wrap-rho ; unwrap-rho ; ->E-view ; E-view-main-bind ; _a~_ ; ->E-view-term ; ->E-view-inner-term ; done-E-view-term-disjoint) open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Lang.Binding open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Context.Properties using (plug) open import Esterel.Environment as Env using (Env ; []env ; _←_) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar ; _ᵥ) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; _∷_ ; [] ; _++_ ; map) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; _,′_ ; proj₁ ; proj₂ ; _×_ ; ∃) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open ->E-view open EvaluationContext1 open _≐_⟦_⟧e open Context1 open _≐_⟦_⟧c {- Base case where (E , C) = (_∷_ , []). LHS is arbitrary ->E-view reduction and RHS is a merge. This case is delegated to R-confluence. p ρθ. E⟦E₁⟦qin⟧⟧ -- sn⟶₁ -> ρθq. E⟦E₁⟦qo⟧⟧ (ρθ) E⟦E₂⟦ρθ'.rin⟧⟧ -- sn⟶₁ -> (ρθ) E⟦ρθ'.E₂⟦rin⟧⟧ -} 1-steplρ-E-view-ecin-lift : ∀{E E₁ Ei p qin q qo rin r ro θ θq BV FV A Aq} → {ρθ·psn⟶₁ρθq·q : ρ⟨ θ , A ⟩· p sn⟶₁ ρ⟨ θq , Aq ⟩· q} → CorrectBinding p BV FV → (p≐E⟦qin⟧ : p ≐ (E ++ (E₁ ∷ Ei)) ⟦ qin ⟧e) → (q≐E⟦qo⟧ : q ≐ (E ++ (E₁ ∷ Ei)) ⟦ qo ⟧e) → ->E-view ρθ·psn⟶₁ρθq·q p≐E⟦qin⟧ q≐E⟦qo⟧ → (p≐E⟦rin⟧ : p ≐ (map ceval E) ⟦ rin ⟧c) → (r≐E⟦ro⟧ : r ≐ (map ceval E) ⟦ ro ⟧c) → (rinsn⟶₁ro : rin sn⟶₁ ro) → ⊥ 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (depar₁ p'≐E⟦qin⟧) q≐E⟦qo⟧ e-view dchole dchole (rpar-done-right p'/halted q'/done) = (done-E-view-term-disjoint (dhalted (halted-⟦⟧e p'/halted p'≐E⟦qin⟧)) (->E-view-inner-term e-view)) 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (depar₂ q'≐E⟦qin⟧) q≐E⟦qo⟧ e-view dchole dchole (rpar-done-right p'/halted q'/done) = (done-E-view-term-disjoint (done-⟦⟧e q'/done q'≐E⟦qin⟧) (->E-view-inner-term e-view)) 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (depar₁ p'≐E⟦qin⟧) q≐E⟦qo⟧ e-view dchole dchole (rpar-done-left p'/done q'/halted) = (done-E-view-term-disjoint (done-⟦⟧e p'/done p'≐E⟦qin⟧) (->E-view-inner-term e-view)) 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (depar₂ q'≐E⟦qin⟧) q≐E⟦qo⟧ e-view dchole dchole (rpar-done-left p'/done q'/halted) = (done-E-view-term-disjoint (dhalted (halted-⟦⟧e q'/halted q'≐E⟦qin⟧)) (->E-view-inner-term e-view)) 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (deseq dehole) q≐E⟦qo⟧ () dchole dchole rseq-done 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (deseq dehole) q≐E⟦qo⟧ () dchole dchole rseq-exit 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (deloopˢ dehole) q≐E⟦qo⟧ () dchole dchole rloopˢ-exit 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (desuspend p≐E⟦qin⟧) q≐E⟦qo⟧ e-view dchole dchole (rsuspend-done p/halted) = (done-E-view-term-disjoint (dhalted (halted-⟦⟧e p/halted p≐E⟦qin⟧)) (->E-view-inner-term e-view)) 1-steplρ-E-view-ecin-lift {[]} {ρθ·psn⟶₁ρθq·q = ρθ·psn⟶₁ρθq·q} cb (detrap p≐E⟦qin⟧) q≐E⟦qo⟧ e-view dchole dchole (rtrap-done p/halted) = (done-E-view-term-disjoint (dhalted (halted-⟦⟧e p/halted p≐E⟦qin⟧)) (->E-view-inner-term e-view)) 1-steplρ-E-view-ecin-lift {E₁ ∷ E} {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧} cb@(CBpar cbp cbq _ _ _ _) (depar₁ p≐E⟦qin⟧) (depar₁ q≐E⟦qo⟧) e-view-E₁ (dcpar₁ p≐E⟦rin⟧) (dcpar₁ r≐E⟦ro⟧) rinsn⟶₁ro with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (depar₁ p≐E⟦qin⟧) (depar₁ q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁ ... | (ρθ·psn⟶₁ρθq·q , e-view) = 1-steplρ-E-view-ecin-lift cbp p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐E⟦rin⟧ r≐E⟦ro⟧ rinsn⟶₁ro 1-steplρ-E-view-ecin-lift {E₁ ∷ E} {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧} cb@(CBpar cbp cbq _ _ _ _) (depar₂ p≐E⟦qin⟧) (depar₂ q≐E⟦qo⟧) e-view-E₁ (dcpar₂ p≐E⟦rin⟧) (dcpar₂ r≐E⟦ro⟧) rinsn⟶₁ro with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (depar₂ p≐E⟦qin⟧) (depar₂ q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁ ... | (ρθ·psn⟶₁ρθq·q , e-view) = 1-steplρ-E-view-ecin-lift cbq p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐E⟦rin⟧ r≐E⟦ro⟧ rinsn⟶₁ro 1-steplρ-E-view-ecin-lift {E₁ ∷ E} {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧} cb@(CBseq cbp cbq _) (deseq p≐E⟦qin⟧) (deseq q≐E⟦qo⟧) e-view-E₁ (dcseq₁ p≐E⟦rin⟧) (dcseq₁ r≐E⟦ro⟧) rinsn⟶₁ro with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (deseq p≐E⟦qin⟧) (deseq q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁ ... | (ρθ·psn⟶₁ρθq·q , e-view) = 1-steplρ-E-view-ecin-lift cbp p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐E⟦rin⟧ r≐E⟦ro⟧ rinsn⟶₁ro 1-steplρ-E-view-ecin-lift {E₁ ∷ E} {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧} cb@(CBloopˢ cbp cbq _ _) (deloopˢ p≐E⟦qin⟧) (deloopˢ q≐E⟦qo⟧) e-view-E₁ (dcloopˢ₁ p≐E⟦rin⟧) (dcloopˢ₁ r≐E⟦ro⟧) rinsn⟶₁ro with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (deloopˢ p≐E⟦qin⟧) (deloopˢ q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁ ... | (ρθ·psn⟶₁ρθq·q , e-view) = 1-steplρ-E-view-ecin-lift cbp p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐E⟦rin⟧ r≐E⟦ro⟧ rinsn⟶₁ro 1-steplρ-E-view-ecin-lift {E₁ ∷ E} {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧} cb@(CBsusp cb' _) (desuspend p≐E⟦qin⟧) (desuspend q≐E⟦qo⟧) e-view-E₁ (dcsuspend p≐E⟦rin⟧) (dcsuspend r≐E⟦ro⟧) rinsn⟶₁ro with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (desuspend p≐E⟦qin⟧) (desuspend q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁ ... | (ρθ·psn⟶₁ρθq·q , e-view) = 1-steplρ-E-view-ecin-lift cb' p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐E⟦rin⟧ r≐E⟦ro⟧ rinsn⟶₁ro 1-steplρ-E-view-ecin-lift {E₁ ∷ E} {ρθ·psn⟶₁ρθq·q = ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧} cb@(CBtrap cb') (detrap p≐E⟦qin⟧) (detrap q≐E⟦qo⟧) e-view-E₁ (dctrap p≐E⟦rin⟧) (dctrap r≐E⟦ro⟧) rinsn⟶₁ro with unwrap-rho ρθ·E₁⟦p⟧sn⟶₁ρθq·E₁⟦q⟧ (detrap p≐E⟦qin⟧) (detrap q≐E⟦qo⟧) p≐E⟦qin⟧ q≐E⟦qo⟧ e-view-E₁ ... | (ρθ·psn⟶₁ρθq·q , e-view) = 1-steplρ-E-view-ecin-lift cb' p≐E⟦qin⟧ q≐E⟦qo⟧ e-view p≐E⟦rin⟧ r≐E⟦ro⟧ rinsn⟶₁ro
{ "alphanum_fraction": 0.6027067669, "avg_line_length": 36.5384615385, "ext": "agda", "hexsha": "acf83fb6edf6164190d771a3306272a5f7ff9def", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-compatconf/in-lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-compatconf/in-lift.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-compatconf/in-lift.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 3841, "size": 6650 }
-- Modified: Andreas, 2011-04-11 freezing metas, removed unused uni.poly {-# OPTIONS --guardedness-preserving-type-constructors #-} module UnusedArgsInPositivity where open import Common.Coinduction module Ex₁ where data Unit : Set where unit : Unit unused : Set → Unit → Set → Set unused X unit Y = Y mutual data D : Set where d : (x : Unit) → (El x x → D) → D El : Unit → Unit → Set El unit x = unused D x Unit module Ex₂ where data Maybe (A : Set) : Set where data Rec (A : ∞ Set) : Set where fold : ♭ A → Rec A mutual data Data : Set where maybe : ∞ Data -> Data sigma : (A : Data) → (El A → Data) -> Data El : Data → Set El (maybe A) = Rec (♯ Maybe (El (♭ {A = Data} A))) El (sigma A B) = El A {- This fails for 2 reasons: 1. Rec doesn't preserve guardedness (hence -no-termination-check) 2. Data "appears" in the definition of El The 1st one is now fixed. It is not clear how to fix the 2nd. Irrelevant parameters? -} {- /Users/txa/current/AIMXI/DataGuard.agda:15,8-12 Data is not strictly positive, because it occurs in the type of the constructor sigma in the definition of Data, which occurs in the second argument to ♭ in the first argument to El in the second argument to Maybe in the first clause in the definition of .DataGuard.♯-0, which occurs in the third clause in the definition of El. -} module Ex₃ where data D (A : Set) : Set where d : D A data E : Set where e : (D E → E) → E
{ "alphanum_fraction": 0.643989432, "avg_line_length": 23.65625, "ext": "agda", "hexsha": "d9966b8c74ca67e84939dcd3893caf5a9772e101", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/UnusedArgsInPositivity.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/UnusedArgsInPositivity.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/UnusedArgsInPositivity.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 467, "size": 1514 }
{-# OPTIONS --without-K #-} module M-types.Base.Axiom where open import M-types.Base.Core public open import M-types.Base.Sum public open import M-types.Base.Prod public open import M-types.Base.Eq public open import M-types.Base.Equi public postulate funext-axiom : {X : Ty ℓ₀} {Y : X → Ty ℓ₁} {f₀ f₁ : ∏ X Y} → IsEqui {_} {_} {f₀ ≡ f₁} {∏[ x ∈ X ] f₀ x ≡ f₁ x} (≡-apply) funext : {X : Ty ℓ₀} {Y : X → Ty ℓ₁} {f₀ f₁ : ∏ X Y} → (∏[ x ∈ X ] f₀ x ≡ f₁ x) → f₀ ≡ f₁ funext = inv (≡-apply , funext-axiom)
{ "alphanum_fraction": 0.5467372134, "avg_line_length": 29.8421052632, "ext": "agda", "hexsha": "c96a1b86175e13a129db7484e48d66235f406037", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DDOtten/M-types", "max_forks_repo_path": "Base/Axiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DDOtten/M-types", "max_issues_repo_path": "Base/Axiom.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DDOtten/M-types", "max_stars_repo_path": "Base/Axiom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 223, "size": 567 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Product where -- Stdlib imports open import Level using (Level; _⊔_) open import Function using (flip) open import Data.Product using (_×_; _,_; map₁; map₂) open import Relation.Unary using (Pred; _∈_) open import Relation.Binary using (REL; Rel) -- Local imports open import Dodo.Unary.Equality open import Dodo.Binary.Equality open import Dodo.Binary.Domain open import Dodo.Binary.Composition infix 40 _×₂_ _×₂_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → Pred A ℓ₁ → Pred B ℓ₂ ----------------- → REL A B (ℓ₁ ⊔ ℓ₂) _×₂_ P Q x y = P x × Q y -- ## Operations: ×₂ ## module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {d : Pred A ℓ₁} {r : Pred B ℓ₂} where ×₂-dom : ∀ {x : A} {y : B} → ( d ×₂ r ) x y → d x ×₂-dom (dx , ry) = dx ×₂-codom : ∀ {x : A} {y : B} → ( d ×₂ r ) x y → r y ×₂-codom (dx , ry) = ry ×₂-flip : ∀ {x : A} {y : B} → ( d ×₂ r ) x y → ( r ×₂ d ) y x ×₂-flip (dx , ry) = (ry , dx) module _ {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {d₁ : Pred A ℓ₁} {d₂ : Pred A ℓ₂} {r₁ : Pred B ℓ₃} {r₂ : Pred B ℓ₄} where ×₂-lift : ( d₁ ⊆₁ d₂ ) → ( r₁ ⊆₁ r₂ ) → d₁ ×₂ r₁ ⊆₂ d₂ ×₂ r₂ ×₂-lift f g = ⊆: lemma where lemma : d₁ ×₂ r₁ ⊆₂' d₂ ×₂ r₂ lemma x y (d₁x , r₁y) = (⊆₁-apply f d₁x , ⊆₁-apply g r₁y) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ₁} {d : Pred A ℓ₂} {r : Pred B ℓ₃} where ×₂-applyˡ : R ⊆₂ ( d ×₂ r ) → {x : A} {y : B} → R x y → d x ×₂-applyˡ R⊆₂d×r Rxy = ×₂-dom {d = d} {r = r} (⊆₂-apply R⊆₂d×r Rxy) ×₂-apply-dom : R ⊆₂ (d ×₂ r) → {x : A} → x ∈ dom R → d x ×₂-apply-dom R⊆d×r (y , Rxy) = ×₂-applyˡ R⊆d×r Rxy ×₂-applyʳ : R ⊆₂ ( d ×₂ r ) → {x : A} {y : B} → R x y → r y ×₂-applyʳ R⊆₂d×r Rxy = ×₂-codom {d = d} {r = r} (⊆₂-apply R⊆₂d×r Rxy) ×₂-apply-codom : R ⊆₂ (d ×₂ r) → {y : B} → y ∈ codom R → r y ×₂-apply-codom R⊆d×r (x , Rxy) = ×₂-applyʳ R⊆d×r Rxy module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {Q : REL A B ℓ₁} {d : A → Set ℓ₂} {r : B → Set ℓ₃} where ×₂-flip-⊆₂ : Q ⊆₂ d ×₂ r → flip Q ⊆₂ r ×₂ d ×₂-flip-⊆₂ (⊆: Q⊆×) = ⊆: lemma where lemma : flip Q ⊆₂' r ×₂ d lemma x y Qyx with Q⊆× y x Qyx ... | (dy , rx) = (rx , dy) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {R : Rel A ℓ₁} {P : Pred A ℓ₂} where ×₂-lift-udr : udr R ⊆₁ P ----------- → R ⊆₂ P ×₂ P ×₂-lift-udr udrR⊆P = ⊆: lemma where lemma : R ⊆₂' P ×₂ P lemma x y Rxy = ⊆₁-apply udrR⊆P (take-udrˡ R Rxy) , ⊆₁-apply udrR⊆P (take-udrʳ R Rxy) module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ₁} {P : Pred A ℓ₂} {Q : Pred B ℓ₃} where ×₂-lift-dom : dom R ⊆₁ P → codom R ⊆₁ Q ------------ → R ⊆₂ P ×₂ Q ×₂-lift-dom (⊆: dom⊆P) (⊆: codom⊆Q) = ⊆: lemma where lemma : R ⊆₂' P ×₂ Q lemma x y Rxy = (dom⊆P x (take-dom R Rxy) , codom⊆Q y (take-codom R Rxy)) module _ {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {Q : REL A B ℓ₁} {d₁ : Pred A ℓ₂} {d₂ : Pred A ℓ₃} {r : B → Set ℓ₄} where ×₂-⊆ˡ : d₁ ⊆₁ d₂ ------------------ → d₁ ×₂ r ⊆₂ d₂ ×₂ r ×₂-⊆ˡ d₁⊆d₂ = ⊆: lemma where lemma : d₁ ×₂ r ⊆₂' d₂ ×₂ r lemma x y = map₁ (⊆₁-apply d₁⊆d₂) module _ {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {Q : REL A B ℓ₁} {d : Pred A ℓ₂} {r₁ : Pred B ℓ₃} {r₂ : Pred B ℓ₄} where ×₂-⊆ʳ : r₁ ⊆₁ r₂ ------------------ → d ×₂ r₁ ⊆₂ d ×₂ r₂ ×₂-⊆ʳ r₁⊆r₂ = ⊆: lemma where lemma : d ×₂ r₁ ⊆₂' d ×₂ r₂ lemma x y = map₂ (⊆₁-apply r₁⊆r₂) module _ {a b c ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {C : Set c} {d₁ : Pred A ℓ₁} {r₁ : Pred B ℓ₂} {d₂ : Pred B ℓ₃} {r₂ : Pred C ℓ₄} where ×₂-combine-⨾ : ( d₁ ×₂ r₁ ) ⨾ ( d₂ ×₂ r₂ ) ⊆₂ d₁ ×₂ r₂ ×₂-combine-⨾ = ⊆: lemma where lemma : ( d₁ ×₂ r₁ ) ⨾ ( d₂ ×₂ r₂ ) ⊆₂' d₁ ×₂ r₂ lemma x y ((d₁x , r₁z) ⨾[ z ]⨾ (d₂z , r₂y)) = (d₁x , r₂y)
{ "alphanum_fraction": 0.4827323514, "avg_line_length": 27.9290780142, "ext": "agda", "hexsha": "6e10758dbeeecc011692325a063e0a4423549e34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Product.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2060, "size": 3938 }
------------------------------------------------------------------------ -- A memoising backend ------------------------------------------------------------------------ -- This code has bitrotted. -- Following Frost/Szydlowski and Frost/Hafiz/Callaghan (but without -- the left recursion fix). An improvement has been made: The user -- does not have to insert memoisation annotations manually. Instead -- all grammar nonterminals are memoised. This is perhaps a bit less -- flexible, but less error-prone, since there is no need to guarantee -- that all "keys" (arguments to the memoise combinator) are unique -- (assuming that the nonterminal equality is strong enough). open import Relation.Binary import Relation.Binary.PropositionalEquality as PropEq import Relation.Binary.PropositionalEquality1 as PropEq1 open PropEq using (_≡_) open PropEq1 using (_≡₁_) open import StructurallyRecursiveDescentParsing.Index open import Data.Product as Prod module StructurallyRecursiveDescentParsing.Memoised -- In order to be able to store results in a memo table (and avoid -- having to lift the table code to Set1) the result types have to -- come from the following universe: {Result : Set} (⟦_⟧ : Result → Set) -- Nonterminals also have to be small enough: {NT : Index → Result → Set} {LargeNT : NonTerminalType} (resultType : ∀ {i r} → LargeNT i r → Result) (resultTypeCorrect : ∀ {i r} (x : LargeNT i r) → ⟦ resultType x ⟧ ≡₁ r) (notTooLarge : ∀ {i r} (x : LargeNT i r) → NT i (resultType x)) -- Furthermore nonterminals need to be ordered, so that they can be -- used as memo table keys: {_≈_ _<_ : Rel (∃₂ NT)} (ntOrdered : IsStrictTotalOrder _≈_ _<_) -- And the underlying equality needs to be strong enough: (indicesEqual : _≈_ =[ (λ irx → (proj₁ irx , proj₁ (proj₂ irx))) ]⇒ _≡_ {Index × Result}) -- Token type: {Tok : Set} where open import Data.Bool renaming (true to ⊤; false to ⊥) import Data.Nat as Nat open Nat using (ℕ; zero; suc; pred; z≤n; s≤s) import Data.Nat.Properties as NatProp open import Function using (_∘_; _on_) import Data.Vec as Vec; open Vec using (Vec; []; _∷_) import Data.List as List; open List using (List; []; _∷_) open import Data.Sum open import Data.Maybe open import Relation.Binary.OrderMorphism hiding (_∘_) open _⇒-Poset_ import Relation.Binary.On as On import Relation.Binary.Props.StrictTotalOrder as STOProps open STOProps NatProp.strictTotalOrder import StructurallyRecursiveDescentParsing.Memoised.Monad as Monad open import StructurallyRecursiveDescentParsing.Type open import StructurallyRecursiveDescentParsing.Utilities renaming (_∘_ to _∘′_) ------------------------------------------------------------------------ -- Some monotone functions MonoFun : Set MonoFun = poset ⇒-Poset poset suc-mono : _≤_ =[ suc ]⇒ _≤_ suc-mono (inj₁ i<j) = inj₁ (s≤s i<j) suc-mono (inj₂ ≡-refl) = inj₂ ≡-refl pred-mono : _≤_ =[ pred ]⇒ _≤_ pred-mono (inj₁ (s≤s (z≤n {zero}))) = inj₂ PropEq.refl pred-mono (inj₁ (s≤s (z≤n {suc j}))) = inj₁ (s≤s z≤n) pred-mono (inj₁ (s≤s (s≤s i<j))) = inj₁ (s≤s i<j) pred-mono (inj₂ PropEq.refl) = inj₂ PropEq.refl sucM : MonoFun sucM = record { fun = suc ; monotone = suc-mono } predM : MonoFun predM = record { fun = pred ; monotone = pred-mono } maybePredM : Empty → MonoFun maybePredM e = if e then id else predM lemma : ∀ e pos → fun (maybePredM e) pos ≤ pos lemma ⊤ pos = refl lemma ⊥ zero = refl lemma ⊥ (suc pos) = inj₁ (Poset.refl Nat.poset) ------------------------------------------------------------------------ -- Parser monad data Key : MonoFun → Result → Set where key : ∀ {e c r} (nt : NT (e ◇ c) r) → Key (maybePredM e) r shuffle : ∃₂ Key → ∃₂ NT shuffle (._ , _ , key x) = (, , x) _≈K_ : Rel (∃₂ Key) _≈K_ = _≈_ on shuffle _<K_ : Rel (∃₂ Key) _<K_ = _<_ on shuffle ordered : IsStrictTotalOrder _≈K_ _<K_ ordered = On.isStrictTotalOrder shuffle ntOrdered funsEqual : _≈K_ =[ proj₁ ]⇒ _≡_ funsEqual {(._ , _ , key _)} {(._ , _ , key _)} eq = PropEq.cong (maybePredM ∘ empty ∘ proj₁) (indicesEqual eq) resultsEqual : _≈K_ =[ (λ rfk → proj₁ (proj₂ rfk)) ]⇒ _≡_ resultsEqual {(._ , _ , key _)} {(._ , _ , key _)} eq = PropEq.cong proj₂ (indicesEqual eq) open Monad (StrictTotalOrder.isStrictTotalOrder NatProp.strictTotalOrder) (Vec Tok) ⟦_⟧ ordered (λ {k₁} {k₂} → funsEqual {k₁} {k₂}) (λ {k₁} {k₂} → resultsEqual {k₁} {k₂}) open PM renaming ( return to return′ ; _>>=_ to _>>=′_ ; _=<<_ to _=<<′_ ; ∅ to fail′ ; _∣_ to _∣′_ ) cast : ∀ {bnd f A₁ A₂} → A₁ ≡₁ A₂ → P bnd f A₁ → P bnd f A₂ cast refl p = p ------------------------------------------------------------------------ -- Run function for the parsers -- Some helper functions. private -- Extracts the first element from the input, if any. eat : ∀ {bnd} (inp : Input≤ bnd) → Maybe Tok × Input≤ (pred (position inp)) eat {bnd} xs = helper (bounded xs) (string xs) where helper : ∀ {pos} → pos ≤ bnd → Vec Tok pos → Maybe Tok × Input≤ (pred pos) helper _ [] = (nothing , [] isBounded∶ refl) helper le (c ∷ cs) = (just c , cs isBounded∶ refl) -- Fails if it encounters nothing. fromJust : ∀ {bnd} → Maybe Tok → P bnd idM Tok fromJust nothing = fail′ fromJust (just c) = return′ c -- For every successful parse the run function returns the remaining -- string. (Since there can be several successful parses a list of -- strings is returned.) -- This function is structurally recursive with respect to the -- following lexicographic measure: -- -- 1) The upper bound of the length of the input string. -- 2) The parser's proper left corner tree. private module Dummy (g : Grammar LargeNT Tok) where mutual parse : ∀ n {e c R} → Parser LargeNT Tok (e ◇ c) R → P n (if e then idM else predM) R parse n (return x) = return′ x parse n (_∣_ {⊤} p₁ p₂) = parse n p₁ ∣′ parse↑ n p₂ parse n (_∣_ {⊥} {⊤} p₁ p₂) = parse↑ n p₁ ∣′ parse n p₂ parse n (_∣_ {⊥} {⊥} p₁ p₂) = parse n p₁ ∣′ parse n p₂ parse n (p₁ ?>>= p₂) = parse n p₁ >>=′ parse n ∘′ p₂ parse (suc n) (p₁ !>>= p₂) = parse (suc n) p₁ >>=′ parse↑ n ∘′ p₂ parse zero (p₁ !>>= p₂) = fail′ parse n fail = fail′ parse n token = fromJust =<<′ gmodify predM eat parse n (! x) = memoParse n x parse↑ : ∀ n {e c R} → Parser LargeNT Tok (e ◇ c) R → P n idM R parse↑ n {e} p = adjustBound (lemma e) (parse n p) memoParse : ∀ n {R e c} → LargeNT (e ◇ c) R → P n (if e then idM else predM) R memoParse n x = cast₁ (memoise k (cast₂ (parse n (g x)))) where k = key (notTooLarge x) cast₁ = cast (resultTypeCorrect x) cast₂ = cast (sym (resultTypeCorrect x)) -- Exported run function. parse : ∀ {i R} → Grammar LargeNT Tok → Parser LargeNT Tok i R → List Tok → List (R × List Tok) parse g p toks = List.map (Prod.map id (λ xs → Vec.toList (string xs))) $ run (Vec.fromList toks) (Dummy.parse g _ p) -- A variant which only returns parses which leave no remaining input. parse-complete : ∀ {i R} → Grammar Tok LargeNT → Parser Tok LargeNT i R → List Tok → List R parse-complete g p s = List.map proj₁ (List.filter (List.null ∘ proj₂) (parse g p s))
{ "alphanum_fraction": 0.5865775331, "avg_line_length": 32.3262711864, "ext": "agda", "hexsha": "8cf8a7ec78c12813ff550825d305ba9b295208b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "StructurallyRecursiveDescentParsing/Memoised.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "StructurallyRecursiveDescentParsing/Memoised.agda", "max_line_length": 76, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "StructurallyRecursiveDescentParsing/Memoised.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 2427, "size": 7629 }
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-} postulate _↦_ : {A : Set} → A → A → Set {-# BUILTIN REWRITE _↦_ #-} data _==_ {A : Set} (a : A) : A → Set where idp : a == a PathOver : {A : Set} (B : A → Set) {x y : A} (p : x == y) (u : B x) (v : B y) → Set PathOver B idp u v = (u == v) infix 30 PathOver syntax PathOver B p u v = u == v [ B ↓ p ] apd : {A : Set} {B : A → Set} (f : (a : A) → B a) {x y : A} → (p : x == y) → f x == f y [ B ↓ p ] apd f idp = idp module Disk where module _ where postulate -- HIT Disk : Set baseD : Disk loopD : baseD == baseD drumD : loopD == idp module DiskElim {P : Disk → Set} (baseD* : P baseD ) (loopD* : baseD* == baseD* [ P ↓ loopD ] ) (drumD* : loopD* == idp [ ((λ p → baseD* == baseD* [ P ↓ p ] ) ) ↓ drumD ] ) where postulate f : (x : Disk) → P x baseD-β : f baseD ↦ baseD* {-# REWRITE baseD-β #-} postulate loopD-ι : apd f loopD ↦ loopD* {-# REWRITE loopD-ι #-} postulate drumD-ι : apd (apd f) drumD ↦ drumD* {-# REWRITE drumD-ι #-} loopD-β : apd f loopD == loopD* loopD-β = idp drumD-β : apd (apd f) drumD == drumD* drumD-β = idp
{ "alphanum_fraction": 0.4954806902, "avg_line_length": 22.1272727273, "ext": "agda", "hexsha": "d5d3791987707f96c39ff37161420e4b4b7a8d82", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue2549.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue2549.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue2549.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 498, "size": 1217 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ open import Algebra module Algebra.Properties.Ring {r₁ r₂} (R : Ring r₁ r₂) where import Algebra.Properties.AbelianGroup as AGP open import Data.Product open import Function import Relation.Binary.EqReasoning as EqR open Ring R open EqR setoid open AGP +-abelianGroup public renaming ( ⁻¹-involutive to -‿involutive ; left-identity-unique to +-left-identity-unique ; right-identity-unique to +-right-identity-unique ; identity-unique to +-identity-unique ; left-inverse-unique to +-left-inverse-unique ; right-inverse-unique to +-right-inverse-unique ; ⁻¹-∙-comm to -‿+-comm ) -‿*-distribˡ : ∀ x y → - x * y ≈ - (x * y) -‿*-distribˡ x y = begin - x * y ≈⟨ sym $ proj₂ +-identity _ ⟩ - x * y + 0# ≈⟨ refl ⟨ +-cong ⟩ sym (proj₂ -‿inverse _) ⟩ - x * y + (x * y + - (x * y)) ≈⟨ sym $ +-assoc _ _ _ ⟩ - x * y + x * y + - (x * y) ≈⟨ sym (proj₂ distrib _ _ _) ⟨ +-cong ⟩ refl ⟩ (- x + x) * y + - (x * y) ≈⟨ (proj₁ -‿inverse _ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ 0# * y + - (x * y) ≈⟨ proj₁ zero _ ⟨ +-cong ⟩ refl ⟩ 0# + - (x * y) ≈⟨ proj₁ +-identity _ ⟩ - (x * y) ∎ -‿*-distribʳ : ∀ x y → x * - y ≈ - (x * y) -‿*-distribʳ x y = begin x * - y ≈⟨ sym $ proj₁ +-identity _ ⟩ 0# + x * - y ≈⟨ sym (proj₁ -‿inverse _) ⟨ +-cong ⟩ refl ⟩ - (x * y) + x * y + x * - y ≈⟨ +-assoc _ _ _ ⟩ - (x * y) + (x * y + x * - y) ≈⟨ refl ⟨ +-cong ⟩ sym (proj₁ distrib _ _ _) ⟩ - (x * y) + x * (y + - y) ≈⟨ refl ⟨ +-cong ⟩ (refl ⟨ *-cong ⟩ proj₂ -‿inverse _) ⟩ - (x * y) + x * 0# ≈⟨ refl ⟨ +-cong ⟩ proj₂ zero _ ⟩ - (x * y) + 0# ≈⟨ proj₂ +-identity _ ⟩ - (x * y) ∎
{ "alphanum_fraction": 0.4163150492, "avg_line_length": 41.0192307692, "ext": "agda", "hexsha": "84ef44d4a2af053673ead20175db8a67136ed287", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Ring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Ring.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Algebra/Properties/Ring.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 755, "size": 2133 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[X]X-A where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Data.Sigma open import Cubical.Data.FinData open import Cubical.Data.Empty as ⊥ open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT private variable ℓ : Level ----------------------------------------------------------------------------- -- Functions module Properties-Equiv-QuotientXn-A (Ar@(A , Astr) : CommRing ℓ) (n : ℕ) where open CommRingStr Astr using () renaming ( 0r to 0A ; 1r to 1A ; _+_ to _+A_ ; -_ to -A_ ; _·_ to _·A_ ; +Assoc to +AAssoc ; +Identity to +AIdentity ; +Lid to +ALid ; +Rid to +ARid ; +Inv to +AInv ; +Linv to +ALinv ; +Rinv to +ARinv ; +Comm to +AComm ; ·Assoc to ·AAssoc ; ·Identity to ·AIdentity ; ·Lid to ·ALid ; ·Rid to ·ARid ; ·Rdist+ to ·ARdist+ ; ·Ldist+ to ·ALdist+ ; is-set to isSetA ) open CommRingStr (snd (A[X1,···,Xn] Ar n) ) using () renaming ( 0r to 0PA ; 1r to 1PA ; _+_ to _+PA_ ; -_ to -PA_ ; _·_ to _·PA_ ; +Assoc to +PAAssoc ; +Identity to +PAIdentity ; +Lid to +PALid ; +Rid to +PARid ; +Inv to +PAInv ; +Linv to +PALinv ; +Rinv to +PARinv ; +Comm to +PAComm ; ·Assoc to ·PAAssoc ; ·Identity to ·PAIdentity ; ·Lid to ·PALid ; ·Rid to ·PARid ; ·Comm to ·PAComm ; ·Rdist+ to ·PARdist+ ; ·Ldist+ to ·PALdist+ ; is-set to isSetPA ) open CommRingStr (snd (A[X1,···,Xn]/<X1,···,Xn> Ar n)) using () renaming ( 0r to 0PAI ; 1r to 1PAI ; _+_ to _+PAI_ ; -_ to -PAI_ ; _·_ to _·PAI_ ; +Assoc to +PAIAssoc ; +Identity to +PAIIdentity ; +Lid to +PAILid ; +Rid to +PAIRid ; +Inv to +PAIInv ; +Linv to +PAILinv ; +Rinv to +PAIRinv ; +Comm to +PAIComm ; ·Assoc to ·PAIAssoc ; ·Identity to ·PAIIdentity ; ·Lid to ·PAILid ; ·Rid to ·PAIRid ; ·Rdist+ to ·PAIRdist+ ; ·Ldist+ to ·PAILdist+ ; is-set to isSetPAI ) open RingTheory discreteVecℕn = VecPath.discreteA→discreteVecA discreteℕ n ----------------------------------------------------------------------------- -- Direct sens PA→A : A[x1,···,xn] Ar n → A PA→A = Poly-Rec-Set.f Ar n _ isSetA 0A base-trad _+A_ +AAssoc +ARid +AComm base-0P-eq base-Poly+-eq where base-trad : (v : Vec ℕ n) → (a : A) → A base-trad v a with (discreteVecℕn v (replicate 0)) ... | yes p = a ... | no ¬p = 0A base-0P-eq : (v : Vec ℕ n) → base-trad v 0A ≡ 0A base-0P-eq v with (discreteVecℕn v (replicate 0)) ... | yes p = refl ... | no ¬p = refl base-Poly+-eq : (v : Vec ℕ n) → (a b : A) → base-trad v a +A base-trad v b ≡ base-trad v (a +A b) base-Poly+-eq v a b with (discreteVecℕn v (replicate 0)) ... | yes p = refl ... | no ¬p = +ARid _ PA→A-pres1 : PA→A 1PA ≡ 1A PA→A-pres1 with (discreteVecℕn (replicate 0) (replicate 0)) ... | yes p = refl ... | no ¬p = ⊥.rec (¬p refl) PA→A-pres+ : (P Q : A[x1,···,xn] Ar n) → PA→A (P +PA Q) ≡ PA→A P +A PA→A Q PA→A-pres+ P Q = refl PA→A-pres· : (P Q : A[x1,···,xn] Ar n) → PA→A (P ·PA Q) ≡ PA→A P ·A PA→A Q PA→A-pres· = Poly-Ind-Prop.f _ _ _ (λ P u v i Q → isSetA _ _ (u Q) (v Q) i) (λ Q → sym (0LeftAnnihilates (CommRing→Ring Ar) _)) (λ v a → Poly-Ind-Prop.f _ _ _ (λ Q → isSetA _ _) (sym (0RightAnnihilates (CommRing→Ring Ar) _)) (λ v' a' → base-base-eq a a' v v') λ {U V} ind-U ind-V → cong₂ _+A_ ind-U ind-V ∙ sym (·ARdist+ _ _ _)) λ {U V} ind-U ind-V Q → cong₂ _+A_ (ind-U Q) (ind-V Q) ∙ sym (·ALdist+ _ _ _) where base-base-eq : (a a' : A) → (v v' : Vec ℕ n) → PA→A (base v a ·PA base v' a') ≡ PA→A (base v a) ·A PA→A (base v' a') base-base-eq a a' v v' with (discreteVecℕn (v +n-vec v') (replicate 0)) | (discreteVecℕn v (replicate 0)) | (discreteVecℕn v' (replicate 0)) ... | yes r | yes p | yes e = refl ... | yes r | yes p | no ¬q = ⊥.rec (¬q (snd (+n-vecSplitReplicate0 v v' r))) ... | yes r | no ¬p | q = ⊥.rec (¬p (fst (+n-vecSplitReplicate0 v v' r))) ... | no ¬r | yes p | yes q = ⊥.rec (¬r (cong₂ _+n-vec_ p q ∙ +n-vec-rid _)) ... | no ¬r | yes p | no ¬q = sym (0RightAnnihilates (CommRing→Ring Ar) _) ... | no ¬r | no ¬p | yes q = sym (0LeftAnnihilates (CommRing→Ring Ar) _) ... | no ¬r | no ¬p | no ¬q = sym (0RightAnnihilates (CommRing→Ring Ar) _) PA→A-cancel : (k : Fin n) → PA→A (<X1,···,Xn> Ar n k) ≡ 0A PA→A-cancel k with (discreteVecℕn (δℕ-Vec n (toℕ k)) (replicate 0)) ... | yes p = ⊥.rec (δℕ-Vec-k<n→≢ n (toℕ k) (toℕ<n k) p) ... | no ¬p = refl PAr→Ar : CommRingHom (A[X1,···,Xn] Ar n) Ar fst PAr→Ar = PA→A snd PAr→Ar = makeIsRingHom PA→A-pres1 PA→A-pres+ PA→A-pres· PAIr→Ar : CommRingHom (A[X1,···,Xn]/<X1,···,Xn> Ar n) Ar PAIr→Ar = Quotient-FGideal-CommRing-CommRing.f (A[X1,···,Xn] Ar n) Ar PAr→Ar (<X1,···,Xn> Ar n) PA→A-cancel PAI→A : A[x1,···,xn]/<x1,···,xn> Ar n → A PAI→A = fst PAIr→Ar ----------------------------------------------------------------------------- -- Converse sens A→PA : A → A[x1,···,xn] Ar n A→PA a = (base (replicate 0) a) A→PA-pres1 : A→PA 1A ≡ 1PA A→PA-pres1 = refl A→PA-pres+ : (a a' : A) → A→PA (a +A a') ≡ (A→PA a) +PA (A→PA a') A→PA-pres+ a a' = sym (base-poly+ _ _ _) A→PA-pres· : (a a' : A) → A→PA (a ·A a') ≡ (A→PA a) ·PA (A→PA a') A→PA-pres· a a' = cong (λ X → base X (a ·A a')) (sym (+n-vec-rid _)) A→PAI : A → (A[x1,···,xn]/<x1,···,xn> Ar n) A→PAI = [_] ∘ A→PA ----------------------------------------------------------------------------- -- Section e-sect : (a : A) → PAI→A (A→PAI a) ≡ a e-sect a with (discreteVecℕn (replicate 0) (replicate 0)) ... | yes p = refl ... | no ¬p = ⊥.rec (¬p refl) ----------------------------------------------------------------------------- -- Retraction open RingStr open IsRing e-retr : (x : A[x1,···,xn]/<x1,···,xn> Ar n) → A→PAI (PAI→A x) ≡ x e-retr = SQ.elimProp (λ _ → isSetPAI _ _) (Poly-Ind-Prop.f _ _ _ (λ _ → isSetPAI _ _) base0-eq base-eq λ {U V} ind-U ind-V → cong [_] (A→PA-pres+ _ _) ∙ cong₂ _+PAI_ ind-U ind-V) where base0-eq : A→PAI (PAI→A [ 0P ]) ≡ [ 0P ] base0-eq = cong [_] (base-0P (replicate 0)) base-eq : (v : Vec ℕ n) → (a : A ) → [ A→PA (PA→A (base v a)) ] ≡ [ base v a ] base-eq v a with (discreteVecℕn v (replicate 0)) ... | yes p = cong [_] (cong (λ X → base X a) (sym p)) ... | no ¬p with (pred-vec-≢0 v ¬p) ... | k , v' , infkn , eqvv' = eq/ (base (replicate 0) 0A) (base v a) ∣ ((genδ-FinVec n k (base v' (-A a)) 0PA) , helper) ∣₁ where helper : _ helper = cong (λ X → X poly+ base v (-A a)) (base-0P (replicate 0)) ∙ +PALid (base v (-A a)) ∙ sym ( genδ-FinVec-ℕLinearCombi ((A[X1,···,Xn] Ar n)) n k infkn (base v' (-A a)) (<X1,···,Xn> Ar n) ∙ cong₂ base (cong (λ X → v' +n-vec δℕ-Vec n X) (toFromId' n k infkn)) (·ARid _) ∙ cong (λ X → base X (-A a)) (sym eqvv')) ----------------------------------------------------------------------------- -- Equiv module _ (Ar@(A , Astr) : CommRing ℓ) (n : ℕ) where open Iso open Properties-Equiv-QuotientXn-A Ar n Equiv-QuotientX-A : CommRingEquiv (A[X1,···,Xn]/<X1,···,Xn> Ar n) Ar fst Equiv-QuotientX-A = isoToEquiv is where is : Iso (A[x1,···,xn]/<x1,···,xn> Ar n) A fun is = PAI→A inv is = A→PAI rightInv is = e-sect leftInv is = e-retr snd Equiv-QuotientX-A = snd PAIr→Ar -- Warning this doesn't prove Z[X]/X ≅ ℤ because you get two definition, -- see notation Multivariate-Quotient-notationZ for more details
{ "alphanum_fraction": 0.485479798, "avg_line_length": 33.5830388693, "ext": "agda", "hexsha": "bc79ade974622cab08783493c39ccac10387693a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[X]X-A.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[X]X-A.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[X]X-A.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3517, "size": 9504 }
open import Categories open import Functors open import RMonads module RMonads.CatofRAdj.TermRAdjHom {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D}(M : RMonad J) where open import Library open import RAdjunctions open import RMonads.CatofRAdj M open import Categories.Terminal open import RMonads.REM M open import RMonads.REM.Adjunction M open import RAdjunctions.RAdj2RMon open import RMonads.CatofRAdj.TermRAdjObj M open Cat open Fun open RAdj alaw1lem : ∀{e f}{E : Cat {e}{f}}(T : Fun C D)(L : Fun C E)(R : Fun E D) (p : R ○ L ≅ T) (η : ∀ {X} → Hom D (OMap J X) (OMap T X)) → (right : ∀ {X Y} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (left : ∀ {X Y} → Hom E (OMap L X) Y → Hom D (OMap J X) (OMap R Y)) → (ηlaw : ∀ {X} → left (iden E {OMap L X}) ≅ η {X}) → ∀ {X}{Z}{f : Hom D (OMap J Z) (OMap R X)} → (nat : comp D (HMap R (right f)) (comp D (left (iden E)) (HMap J (iden C))) ≅ left (comp E (right f) (comp E (iden E) (HMap L (iden C))))) → (lawb : left (right f) ≅ f) → f ≅ comp D (subst (λ Z → Hom D Z (OMap R X)) (fcong Z (cong OMap p)) (HMap R (right f))) η alaw1lem {E = E} .(R ○ L) L R refl η right left ηlaw {X}{Z}{f} nat lawb = trans (trans (trans (sym lawb) (cong left (trans (sym (idr E)) (cong (comp E (right f)) (trans (sym (fid L)) (sym (idl E))))))) (trans (sym nat) (cong (comp D (HMap R (right f))) (trans (cong (comp D (left (iden E))) (fid J)) (idr D))))) (cong (comp D (HMap R (right f))) ηlaw) alaw2lem : ∀{e f}{E : Cat {e}{f}}(T : Fun C D)(L : Fun C E)(R : Fun E D) (p : R ○ L ≅ T) → (right : ∀ {X Y} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (bind : ∀{X Y} → Hom D (OMap J X) (OMap T Y) → Hom D (OMap T X) (OMap T Y)) → (natright : {X X' : Obj C} {Y Y' : Obj E} (f : Hom C X' X) (g : Hom E Y Y') (h : Hom D (OMap J X) (OMap R Y)) → right (comp D (HMap R g) (comp D h (HMap J f))) ≅ comp E g (comp E (right h) (HMap L f))) → ∀{X}{Z}{W} {k : Hom D (OMap J Z) (OMap T W)} {f : Hom D (OMap J W) (OMap R X)} → (bindlaw : HMap R (right (subst (Hom D (OMap J Z)) (fcong W (cong OMap (sym p))) k)) ≅ bind k) → subst (λ Z → Hom D Z (OMap R X)) (fcong Z (cong OMap p)) (HMap R (right (comp D (subst (λ Z → Hom D Z (OMap R X)) (fcong W (cong OMap p)) (HMap R (right f))) k))) ≅ comp D (subst (λ Z → Hom D Z (OMap R X)) (fcong W (cong OMap p)) (HMap R (right f))) (bind k) alaw2lem {E = E} .(R ○ L) L R refl right bind natright {k = k}{f = f} bl = trans (trans (cong (HMap R) (trans (cong (λ k → right (comp D (HMap R (right f)) k)) (trans (sym (idr D)) (cong (comp D k) (sym (fid J))))) (trans (trans (natright (iden C) (right f) k) (trans (sym (ass E)) (cong (comp E (comp E (right f) (right k))) (fid L)))) (idr E)))) (fcomp R)) (cong (comp D (HMap R (right f))) bl) ahomlem : ∀{e f}{E : Cat {e}{f}}(T : Fun C D)(L : Fun C E)(R : Fun E D) (p : R ○ L ≅ T) → (right : ∀ {X Y} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (natright : {X X' : Obj C} {Y Y' : Obj E} (f : Hom C X' X) (g : Hom E Y Y') (h : Hom D (OMap J X) (OMap R Y)) → right (comp D (HMap R g) (comp D h (HMap J f))) ≅ comp E g (comp E (right h) (HMap L f))) → {X : Obj E}{Y : Obj E}{f : Hom E X Y} → {Z : Obj C} {g : Hom D (OMap J Z) (OMap R X)} → comp D (HMap R f) (subst (λ Z → Hom D Z (OMap R X)) (fcong Z (cong OMap p)) (HMap R (right g))) ≅ subst (λ Z → Hom D Z (OMap R Y)) (fcong Z (cong OMap p)) (HMap R (right (comp D (HMap R f) g))) ahomlem {E = E} .(R ○ L) L R refl right natright {X}{Y}{f}{Z}{g} = trans (sym (fcomp R)) (cong (HMap R) (trans (trans (sym (idr E)) (trans (cong (comp E (comp E f (right g))) (sym (fid L))) (trans (ass E) (sym (natright (iden C) f g))))) (cong (λ g → right (comp D (HMap R f) g)) (trans (cong (comp D g) (fid J)) (idr D))))) open ObjAdj Llawlem : ∀{e f}{E : Cat {e}{f}}(T : Fun C D)(L : Fun C E)(R : Fun E D) (p : R ○ L ≅ T) → (right : ∀{X Y} → Hom D (OMap J X) (OMap R Y) → Hom E (OMap L X) Y) → (bind : ∀{X Y} → Hom D (OMap J X) (OMap T Y) → Hom D (OMap T X) (OMap T Y)) → (bindlaw : {X Y : Obj C} {f : Hom D (OMap J X) (OMap T Y)} → HMap R (right (subst (Hom D (OMap J X)) (fcong Y (cong OMap (sym p))) f)) ≅ bind f) → ∀{X Z} → {f : Hom D (OMap J Z) (OMap R (OMap L X))} {f' : Hom D (OMap J Z) (OMap T X)} → (q : f ≅ f') → subst (λ Z → Hom D Z (OMap R (OMap L X))) (fcong Z (cong OMap p)) (HMap R (right f)) ≅ bind f' Llawlem .(R ○ L) L R refl right bind bindlaw {X}{Z}{f}{.f} refl = bindlaw K : ∀{e f}(A : Obj (CatofAdj {e}{f})) → Fun (E A) (E EMObj) K A = record { OMap = λ X → record { acar = OMap (R (adj A)) X; astr = λ {Z} f → subst (λ Z₁ → Hom D Z₁ (OMap (R (adj A)) X)) (fcong Z (cong OMap (law A))) (HMap (R (adj A)) (right (adj A) f)); alaw1 = λ {Z} {f} → alaw1lem (TFun M) (L (adj A)) (R (adj A)) (law A) η (right (adj A)) (left (adj A)) (ηlaw A) (natleft (adj A) (iden C) (right (adj A) f) (iden (E A))) (lawb (adj A) f); alaw2 = λ {Z} {W} {k} {f} → alaw2lem (TFun M) (L (adj A)) (R (adj A)) (law A) (right (adj A)) bind (natright (adj A)) (bindlaw A {_} {_} {k})}; HMap = λ {X} {Y} f → record { amor = HMap (R (adj A)) f; ahom = λ {Z} {g} → ahomlem (TFun M) (L (adj A)) (R (adj A)) (law A) (right (adj A)) (natright (adj A)) }; fid = RAlgMorphEq (fid (R (adj A))); fcomp = RAlgMorphEq (fcomp (R (adj A)))} where open RMonad M Llaw' : ∀{e f}(A : Obj (CatofAdj {e}{f})) → K A ○ L (adj A) ≅ L (adj EMObj) Llaw' A = FunctorEq _ _ (ext λ X → AlgEq (fcong X (cong OMap (law A))) (iext λ Z → dext λ {f} {f'} → Llawlem (TFun M) (L (adj A)) (R (adj A)) (law A) (right (adj A)) bind (bindlaw A))) (iext λ X → iext λ Y → ext λ f → lemZ (AlgEq (fcong X (cong OMap (law A))) (iext λ Z → dext (Llawlem (TFun M) (L (adj A)) (R (adj A)) (law A) (right (adj A)) bind (bindlaw A)))) (AlgEq (fcong Y (cong OMap (law A))) (iext λ Z → dext (Llawlem (TFun M) (L (adj A)) (R (adj A)) (law A) (right (adj A)) bind (bindlaw A)))) (cong' refl (ext (λ _ → cong₂ (Hom D) (fcong X (cong OMap (law A))) (fcong Y (cong OMap (law A))))) (icong' refl (ext (λ Z → cong₂ (λ x y → Hom C X Z → Hom D x y) (fcong X (cong OMap (law A))) (fcong Z (cong OMap (law A))))) (icong' refl (ext (λ Z → cong (λ (F : Obj C → Obj D) → {Y₁ : Obj C} → Hom C Z Y₁ → Hom D (F Z) (F Y₁)) (cong OMap (law A)))) (cong HMap (law A)) (refl {x = X})) (refl {x = Y})) (refl {x = f}))) where open RMonad M Rlaw' : ∀{e f}(A : Obj (CatofAdj {e}{f})) → R (adj A) ≅ R (adj EMObj) ○ K A Rlaw' A = FunctorEq _ _ refl refl rightlaw' : ∀{e f}(A : Obj (CatofAdj {e}{f})) → {X : Obj C}{Y : Obj (E A)} → {f : Hom D (OMap J X) (OMap (R (adj A)) Y)} → HMap (K A) (right (adj A) f) ≅ right (adj EMObj) {X} {OMap (K A) Y} (subst (Hom D (OMap J X)) (fcong Y (cong OMap (Rlaw' A))) f) rightlaw' A {X}{Y}{f} = lemZ (AlgEq (fcong X (cong OMap (law A))) (iext λ Z → dext (λ {g} {g'} p → Llawlem (TFun M) (L (adj A)) (R (adj A)) (law A) (right (adj A)) bind (bindlaw A) p))) refl (trans (cong (λ (f₁ : Hom D (OMap J X) (OMap (R (adj A)) Y)) → HMap (R (adj A)) (right (adj A) f₁)) (sym (stripsubst (Hom D (OMap J X)) f (fcong Y (cong OMap (Rlaw' A)))))) (sym (stripsubst (λ (Z : Obj D) → Hom D Z (OMap (R (adj A)) Y)) _ (fcong X (cong OMap (law A)))))) where open RMonad M EMHom : {A : Obj CatofAdj} → Hom CatofAdj A EMObj EMHom {A} = record { K = K A; Llaw = Llaw' A; Rlaw = Rlaw' A; rightlaw = rightlaw' A } -- -}
{ "alphanum_fraction": 0.3994931576, "avg_line_length": 35.3584229391, "ext": "agda", "hexsha": "9ec22c194427b303c94f0017a3eac2c2c75b7f1b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/CatofRAdj/TermRAdjHom.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/CatofRAdj/TermRAdjHom.agda", "max_line_length": 79, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/CatofRAdj/TermRAdjHom.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 3623, "size": 9865 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.NatMinusOne.Base where open import Cubical.Core.Primitives open import Cubical.Data.Nat open import Cubical.Data.Empty record ℕ₋₁ : Type₀ where constructor -1+_ field n : ℕ pattern neg1 = -1+ zero pattern ℕ→ℕ₋₁ n = -1+ (suc n) 1+_ : ℕ₋₁ → ℕ 1+_ (-1+ n) = n suc₋₁ : ℕ₋₁ → ℕ₋₁ suc₋₁ (-1+ n) = -1+ (suc n) -- Natural number and negative integer literals for ℕ₋₁ open import Cubical.Data.Nat.Literals public instance fromNatℕ₋₁ : HasFromNat ℕ₋₁ fromNatℕ₋₁ = record { Constraint = λ _ → Unit ; fromNat = ℕ→ℕ₋₁ } instance fromNegℕ₋₁ : HasFromNeg ℕ₋₁ fromNegℕ₋₁ = record { Constraint = λ { (suc (suc _)) → ⊥ ; _ → Unit } ; fromNeg = λ { zero → 0 ; (suc zero) → neg1 } }
{ "alphanum_fraction": 0.6295369212, "avg_line_length": 23.5, "ext": "agda", "hexsha": "fd3c36d46cfbb755fa40843e43b4b44471391841", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/NatMinusOne/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/NatMinusOne/Base.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/NatMinusOne/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 303, "size": 799 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.ChainComplex open import cohomology.Theory open import groups.KernelImage open import cw.CW module cw.cohomology.ReconstructedCohomologyGroups {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.Descending OT open import cw.cohomology.ReconstructedCochainComplex OT open import cw.cohomology.ReconstructedZerothCohomologyGroup OT open import cw.cohomology.ReconstructedFirstCohomologyGroup OT open import cw.cohomology.ReconstructedHigherCohomologyGroups OT abstract reconstructed-cohomology-group : ∀ m {n} (⊙skel : ⊙Skeleton {i} n) → ⊙has-cells-with-choice 0 ⊙skel i → C m ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) m reconstructed-cohomology-group (pos 0) ⊙skel ac = zeroth-cohomology-group ⊙skel ac reconstructed-cohomology-group (pos 1) ⊙skel ac = first-cohomology-group ⊙skel ac reconstructed-cohomology-group (pos (S (S m))) ⊙skel ac = higher-cohomology-group m ⊙skel ac reconstructed-cohomology-group (negsucc m) ⊙skel ac = lift-iso {j = i} ∘eᴳ trivial-iso-0ᴳ (C-cw-at-negsucc ⊙skel m ac)
{ "alphanum_fraction": 0.7398171239, "avg_line_length": 40.1, "ext": "agda", "hexsha": "1a7e720991d776b984ded657cb7d23495468c150", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/ReconstructedCohomologyGroups.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/ReconstructedCohomologyGroups.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/ReconstructedCohomologyGroups.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 389, "size": 1203 }
module Qsort where open import Sec4 -- The module with definition of propositions import Sec2 -- postulate needed for ≤ on A postulate leq : {A : Set} → A → A → Prop postulate geq : {A : Set} → A → A → Prop postulate tot-list : {A : Set} → (a b : A) → (leq a b) ∨ (leq b a) postulate trans-list : {A : Set} → (a b c : A) → (leq a b) → (leq b c) → (leq a c) {- Definition of a list -} data List (A : Set) : Set where [] : List A -- Empty list _∷_ : A → List A → List A -- Cons -- Proposition stating what is a non empty list nelist : {A : Set} → (List A) → Prop nelist [] = ⊥ nelist (x ∷ x₁) = ⊤ -- Head function that only works on non empty list head : {A : Set} → (l : List A) → (p : nelist l) → A head [] () -- This can never happen head (x ∷ _) ⋆ = x -- This is the head of the list -- The tail of the list only works on non empty list tail : {A : Set} → (l : List A) → (p : nelist l) → (List A) tail [] () tail (_ ∷ l) ⋆ = l data Bool : Set where True : Bool False : Bool data ℕ : Set where Z : ℕ S : ℕ → ℕ -- Addition of natural numbers _+_ : ℕ → ℕ → ℕ Z + y = y S x + y = S (x + y) -- Relation on natural numbers _≤_ : ℕ → ℕ → Prop Z ≤ Z = ⊤ Z ≤ (S y) = ⊤ S x ≤ Z = ⊥ S x ≤ S y = x ≤ y -- {-# BUILTIN NATURAL ℕ #-} -- {-# BUILTIN BOOL Bool #-} -- ≤ is reflexive ≤-ref : ∀ (x : ℕ) → (x ≤ x) → (x ≤ x) ≤-ref _ y = y -- ≤ is not symmetric -- ≤-sym : ∀ (x y : ℕ) → (x ≤ y) → (y ≤ x) -- ≤-sym Z Z p = ⋆ -- ≤-sym Z (S y) ⋆ = {!!} -- ≤-sym (S x) Z () -- ≤-sym (S x) (S y) p = ≤-sym x y p -- ≤ is transitive ≤-trans : ∀ (x y z : ℕ) → (x ≤ y) → (y ≤ z) → (x ≤ z) ≤-trans Z Z Z p1 p2 = ⋆ ≤-trans Z Z (S z) p1 p2 = ⋆ ≤-trans Z (S y) Z p1 p2 = ⋆ ≤-trans Z (S y) (S z) p1 p2 = ⋆ ≤-trans (S x) Z z () p2 ≤-trans (S x) (S y) Z p1 () ≤-trans (S x) (S y) (S z) p1 p2 = ≤-trans x y z p1 p2 -- length of a list length : {A : Set} → (List A) → ℕ length [] = Z length (x ∷ l) = (S Z) + (length l) -- filter' on a list filter' : {A : Set} → (A → Bool) → (l : List A) → List A filter' f [] = [] filter' f (x ∷ l) with (f x) filter' f (x ∷ l) | True = (x ∷ (filter' f l)) filter' f (x ∷ l) | False = filter' f l ≤-cong : ∀ (x y : ℕ) → (x ≤ y) → (x ≤ (S y)) ≤-cong Z y p = ⋆ ≤-cong (S x) Z () ≤-cong (S x) (S y) p = ≤-cong x y p thm-filter' : {A : Set} → (l : List A) → (f : A → Bool) → length (filter' f l) ≤ S (length l) thm-filter' [] f = ⋆ thm-filter' (x ∷ l) f with (f x) thm-filter' (x ∷ l) f | True = thm-filter' l f thm-filter' (x ∷ l) f | False = ≤-cong (length (filter' f l)) (S (length l)) (thm-filter' l f) filter : {A : Set} → (A → Bool) → (l : List A) → Exists (List A) (λ l' → (length l') ≤ (length l)) filter f [] = [ [] , ⋆ ] filter f (x ∷ l) = [ filter' f l , thm-filter' l f ] -- append two lists _++_ : {A : Set} → (l : List A) → (l' : List A) → (List A) [] ++ l' = l' (x ∷ l) ++ l' = (x ∷ (l ++ l')) leq-nat : ℕ → ℕ → Bool leq-nat Z _ = True leq-nat (S n) Z = False leq-nat (S n) (S m) = leq-nat n m _<_ : ℕ → ℕ → Bool Z < (S _) = True Z < Z = False (S n) < (S m) = n < m (S n) < Z = False _>_ : ℕ → ℕ → Bool m > n = n < m -- The sorting algorithm -- The trick here is that we are reducing qsort on "n" qsort' : ∀ (n : ℕ) → ∀ (l : List ℕ) → (p : (length l) ≤ n) → (List ℕ) qsort' Z [] p = [] qsort' Z (x ∷ l) () qsort' (S n) [] p = [] qsort' (S n) (x ∷ l) p = let ll = (filter (leq-nat x) l) rr = (filter ((_>_) x) l) pl = elim2-exists ll pr = elim2-exists rr left = qsort' n (elim1-exists ll) (≤-trans (length (elim1-exists ll)) (length l) n pl p) right = qsort' n (elim1-exists rr) (≤-trans (length (elim1-exists rr)) (length l) n pr p) in (left ++ (x ∷ [])) ++ right l' : {A : Set} → (l : List A) → (length l ≤ length l) l' [] = ⋆ l' (x ∷ l) = l' l qsort : ∀ (l : List ℕ) → List ℕ qsort l = qsort' (length l) l (l' l) -- XXX: definition of an sorted list all-sorted-list : {A : Set} → (a : A) → (l : List A) → Prop all-sorted-list a [] = ⊤ all-sorted-list a (x ∷ l) = leq a x ∧ (all-sorted-list a l) sorted-list : {A : Set} → List A → Prop sorted-list [] = ⊤ sorted-list (x ∷ l) = (all-sorted-list x l) ∧ (sorted-list l) lem-qsort' : (x₁ : ℕ) → (l : List ℕ) → sorted-list ((qsort' (S (length l)) (filter' (leq-nat x₁) l) (≤-trans (length (filter' (leq-nat x₁) l)) (S (length l)) (S (length l)) (thm-filter' l (leq-nat x₁)) (l' l)) ++ (x₁ ∷ [])) ++ qsort' (S (length l)) (filter' (_>_ x₁) l) (≤-trans (length (filter' (_>_ x₁) l)) (S (length l)) (S (length l)) (thm-filter' l (_>_ x₁)) (l' l))) lem-qsort' x [] = and ⋆ ⋆ lem-qsort' x (x₁ ∷ l) = {!!} lem-qsort : (l : List ℕ) → (x : ℕ) → sorted-list ((qsort' (length l) (elim1-exists (filter (leq-nat x) l)) (≤-trans (length (elim1-exists (filter (leq-nat x) l))) (length l) (length l) (elim2-exists (filter (leq-nat x) l)) (l' l)) ++ (x ∷ [])) ++ qsort' (length l) (elim1-exists (filter (_>_ x) l)) (≤-trans (length (elim1-exists (filter (_>_ x) l))) (length l) (length l) (elim2-exists (filter (_>_ x) l)) (l' l))) lem-qsort [] x = and ⋆ ⋆ lem-qsort (x ∷ l) x₁ = lem-qsort' x₁ l -- Theorem that given a list, qsort will actually sort the list thm-qsort : ∀ (l : List ℕ) → sorted-list (qsort l) thm-qsort [] = ⋆ thm-qsort (x ∷ l) = lem-qsort l x
{ "alphanum_fraction": 0.4739740629, "avg_line_length": 28.4292929293, "ext": "agda", "hexsha": "2e2df15bc99760ee9792c7cb918bf9c13f3e8098", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/agda-tutorial-dybjer", "max_forks_repo_path": "Qsort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/agda-tutorial-dybjer", "max_issues_repo_path": "Qsort.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/agda-tutorial-dybjer", "max_stars_repo_path": "Qsort.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z", "num_tokens": 2286, "size": 5629 }
-- Andreas, 2021-07-25, issue #5478 reported by mrohman {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --double-check #-} -- {-# OPTIONS -v impossible:70 #-} -- {-# OPTIONS -v tc:20 #-} -- {-# OPTIONS -v tc.interaction:30 #-} -- {-# OPTIONS -v tc.meta:25 #-} -- {-# OPTIONS -v tc.rec:20 #-} -- {-# OPTIONS -v tc.cc:25 #-} -- {-# OPTIONS -v tc.record.eta.contract:20 #-} record ⊤ : Set where record R (A : Set) : Set₁ where foo : ⊤ foo = {!!} -- works with _ instead of ? field X : Set -- 2021-07-28, issue #5463, reported by laMudri open import Agda.Primitive record Foo (o : Level) : Set (lsuc o) where field Obj : Set o Hom : Set o Sub : Set {!!} Sub = Hom field id : Set o
{ "alphanum_fraction": 0.5666666667, "avg_line_length": 19.4594594595, "ext": "agda", "hexsha": "a915f45caeeee26f6e3dff80e6359ff97f048a9c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5478.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5478.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5478.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 241, "size": 720 }
-- Scenario: -- * start with B only -- * write 'f B = B' -- * add constructor A -- * want to deal with it first to preserve alphabetical ordering of clauses -- * add 'f t = ?' *above* 'f B = B' -- WAS: split t, get A and B -- WANT: split t, get A only data Type : Set where A B : Type f : Type → Type f t = {!!} f B = B
{ "alphanum_fraction": 0.5727272727, "avg_line_length": 19.4117647059, "ext": "agda", "hexsha": "7f00391e2e10a7fc5b962885ad4c3059cf16849b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3829.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3829.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3829.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 330 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.ExactSequence open import groups.HomSequence open import homotopy.CofiberSequence module cohomology.LongExactSequence {i} (CT : CohomologyTheory i) {X Y : Ptd i} (n : ℤ) (f : X ⊙→ Y) where open CohomologyTheory CT open import cohomology.PtdMapSequence CT co∂ : C n X →ᴳ C (succ n) (⊙Cofiber f) co∂ = record {f = CEl-fmap (succ n) ⊙extract-glue ∘ GroupIso.g (C-Susp n X); pres-comp = lemma} where abstract lemma = ∘ᴳ-pres-comp (C-fmap (succ n) ⊙extract-glue) (GroupIso.g-hom (C-Susp n X)) ⊙∂-before-Susp : ⊙Cofiber f ⊙→ ⊙Susp X ⊙∂-before-Susp = ⊙extract-glue ∂-before-Susp : Cofiber (fst f) → Susp (de⊙ X) ∂-before-Susp = extract-glue abstract ∂-before-Susp-glue-β : ∀ x → ap ∂-before-Susp (cfglue x) == merid x ∂-before-Susp-glue-β = ExtractGlue.glue-β C-cofiber-seq : HomSequence (C n Y) (C (succ n) X) C-cofiber-seq = C n Y →⟨ C-fmap n f ⟩ᴳ C n X →⟨ co∂ ⟩ᴳ C (succ n) (⊙Cofiber f) →⟨ C-fmap (succ n) (⊙cfcod' f) ⟩ᴳ C (succ n) Y →⟨ C-fmap (succ n) f ⟩ᴳ C (succ n) X ⊣|ᴳ private C-iterated-cofiber-seq = C-seq (succ n) (iterated-cofiber-seq f) C-iterated-cofiber-seq-is-exact : is-exact-seq C-iterated-cofiber-seq C-iterated-cofiber-seq-is-exact = C-exact (succ n) (⊙cfcod²' f) , C-exact (succ n) (⊙cfcod' f) , C-exact (succ n) f , lift tt -- An intermediate sequence for proving exactness of [C-cofiber-seq]. C-cofiber-seq' = C-seq (succ n) (cyclic-cofiber-seq f) C-cofiber-seq'-is-exact : is-exact-seq C-cofiber-seq' C-cofiber-seq'-is-exact = seq-equiv-preserves'-exact (C-seq-emap (succ n) (iterated-equiv-cyclic f)) C-iterated-cofiber-seq-is-exact -- Now the final sequence C-cofiber-seq'-to-C-cofiber-seq : HomSeqMap C-cofiber-seq' C-cofiber-seq (GroupIso.f-hom (C-Susp n Y)) (idhom _) C-cofiber-seq'-to-C-cofiber-seq = GroupIso.f-hom (C-Susp n Y) ↓⟨ C-Susp-fmap n f ⟩ᴳ GroupIso.f-hom (C-Susp n X) ↓⟨ comm-sqrᴳ (λ x → ap (CEl-fmap (succ n) ⊙extract-glue) (! $ GroupIso.g-f (C-Susp n X) x)) ⟩ᴳ idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ idhom _ ↓|ᴳ C-cofiber-seq'-equiv-C-cofiber-seq : HomSeqEquiv C-cofiber-seq' C-cofiber-seq (GroupIso.f-hom (C-Susp n Y)) (idhom _) C-cofiber-seq'-equiv-C-cofiber-seq = C-cofiber-seq'-to-C-cofiber-seq , (GroupIso.f-is-equiv (C-Susp n Y) , GroupIso.f-is-equiv (C-Susp n X) , idf-is-equiv _ , idf-is-equiv _ , idf-is-equiv _) abstract C-cofiber-seq-is-exact : is-exact-seq C-cofiber-seq C-cofiber-seq-is-exact = seq-equiv-preserves-exact C-cofiber-seq'-equiv-C-cofiber-seq C-cofiber-seq'-is-exact C-cofiber-exact-seq : ExactSequence (C n Y) (C (succ n) X) C-cofiber-exact-seq = C-cofiber-seq , C-cofiber-seq-is-exact
{ "alphanum_fraction": 0.6144859813, "avg_line_length": 37.9240506329, "ext": "agda", "hexsha": "600d7060c88ae782a8c17d0fc0140cc4d53b3ef8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/LongExactSequence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/LongExactSequence.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/LongExactSequence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1175, "size": 2996 }
{-# OPTIONS --erased-cubical #-} open import Agda.Builtin.Bool open import Agda.Builtin.Cubical.Path open import Agda.Primitive open import Agda.Primitive.Cubical private variable a p : Level A : Set a P : A → Set p x y : A refl : x ≡ x refl {x = x} = λ _ → x subst : (P : A → Set p) → x ≡ y → P x → P y subst P eq p = primTransp (λ i → P (eq i)) i0 p record Erased (@0 A : Set a) : Set a where constructor [_] field @0 erased : A []-cong : {@0 A : Set a} {@0 x y : A} → @0 x ≡ y → [ x ] ≡ [ y ] []-cong eq = λ i → [ eq i ] data Box : @0 Set → Set₁ where [_] : ∀ {A} → A → Box A unbox : ∀ {@0 A} → Box A → A unbox [ x ] = x postulate @0 not : Bool ≡ Bool should-be-true : Bool should-be-true = unbox (subst (λ ([ A ]) → Box A) ([]-cong refl) [ true ]) should-be-false : Bool should-be-false = unbox (subst (λ ([ A ]) → Box A) ([]-cong not) [ true ])
{ "alphanum_fraction": 0.5428253615, "avg_line_length": 19.9777777778, "ext": "agda", "hexsha": "55e9ab9c92dc8c3026ea1f347560f0da477525f6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5468.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5468.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5468.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 349, "size": 899 }
module Issue3879.Fin where open import Agda.Builtin.Nat data Fin : Nat → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) pattern 0F = zero
{ "alphanum_fraction": 0.6176470588, "avg_line_length": 17, "ext": "agda", "hexsha": "635d984f8b5888cab82654d7b56f2fb9bc99030c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3879/Fin.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3879/Fin.agda", "max_line_length": 36, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3879/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 170 }
module UnifyTerm where open import Data.Fin using (Fin; suc; zero) open import Data.Nat using (ℕ; suc; zero) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; cong; sym; trans) open import Function using (_∘_) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (∃; _,_; _×_) open import Data.Empty using (⊥-elim) data Term (n : ℕ) : Set where i : (x : Fin n) -> Term n leaf : Term n _fork_ : (s t : Term n) -> Term n _~>_ : (m n : ℕ) -> Set m ~> n = Fin m -> Term n ▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n ▹ r = i ∘ r _◃_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n f ◃ i x = f x f ◃ leaf = leaf f ◃ (s fork t) = (f ◃ s) fork (f ◃ t) _≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set f ≐ g = ∀ x -> f x ≡ g x ◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t ◃ext p (i x) = p x ◃ext p leaf = refl ◃ext p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t) _◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n f ◇ g = (f ◃_) ∘ g ≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g) ≐-cong h f≐g t = cong (h ◃_) (f≐g t) ≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f ≐-sym f≐g = sym ∘ f≐g module Sub where fact1 : ∀ {n} -> (t : Term n) -> i ◃ t ≡ t fact1 (i x) = refl fact1 leaf = refl fact1 (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t) fact2 : ∀ {l m n} -> (f : Fin m -> Term n) (g : _) (t : Term l) -> (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) fact2 f g (i x) = refl fact2 f g leaf = refl fact2 f g (s fork t) = cong₂ _fork_ (fact2 f g s) (fact2 f g t) fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r) fact3 f r = refl -- ext (λ _ -> refl) ◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ t -> f ◃ t ≡ h ◃ (g ◃ t) ◃ext' p t = trans (◃ext p t) (Sub.fact2 _ _ t) s : ℕ -> ℕ s = suc thin : ∀ {n} -> (x : Fin (s n)) (y : Fin n) -> Fin (s n) thin zero y = suc y thin (suc x) zero = zero thin (suc x) (suc y) = suc (thin x y) p : ∀ {n} -> Fin (suc (suc n)) -> Fin (suc n) p (suc x) = x p zero = zero module Thin where fact1 : ∀ {n} x y z -> thin {n} x y ≡ thin x z -> y ≡ z fact1 zero y .y refl = refl fact1 (suc x) zero zero r = refl fact1 (suc x) zero (suc z) () fact1 (suc x) (suc y) zero () fact1 (suc x) (suc y) (suc z) r = cong suc (fact1 x y z (cong p r)) fact2 : ∀ {n} x y -> ¬ thin {n} x y ≡ x fact2 zero y () fact2 (suc x) zero () fact2 (suc x) (suc y) r = fact2 x y (cong p r) fact3 : ∀{n} x y -> ¬ x ≡ y -> ∃ λ y' -> thin {n} x y' ≡ y fact3 zero zero ne = ⊥-elim (ne refl) fact3 zero (suc y) _ = y , refl fact3 {zero} (suc ()) _ _ fact3 {suc n} (suc x) zero ne = zero , refl fact3 {suc n} (suc x) (suc y) ne with y | fact3 x y (ne ∘ cong suc) ... | .(thin x y') | y' , refl = suc y' , refl open import Data.Maybe open import Category.Functor open import Category.Monad import Level open RawMonad (Data.Maybe.monad {Level.zero}) thick : ∀ {n} -> (x y : Fin (suc n)) -> Maybe (Fin n) thick zero zero = nothing thick zero (suc y) = just y thick {zero} (suc ()) _ thick {suc _} (suc x) zero = just zero thick {suc _} (suc x) (suc y) = suc <$> (thick x y) open import Data.Sum _≡Fin_ : ∀ {n} -> (x y : Fin n) -> Dec (x ≡ y) zero ≡Fin zero = yes refl zero ≡Fin suc y = no λ () suc x ≡Fin zero = no λ () suc {suc _} x ≡Fin suc y with x ≡Fin y ... | yes r = yes (cong suc r) ... | no r = no λ e -> r (cong p e) suc {zero} () ≡Fin _ module Thick where half1 : ∀ {n} (x : Fin (suc n)) -> thick x x ≡ nothing half1 zero = refl half1 {suc _} (suc x) = cong (_<$>_ suc) (half1 x) half1 {zero} (suc ()) half2 : ∀ {n} (x : Fin (suc n)) y -> ∀ y' -> thin x y' ≡ y -> thick x y ≡ just y' half2 zero zero y' () half2 zero (suc y) .y refl = refl half2 {suc n} (suc x) zero zero refl = refl half2 {suc _} (suc _) zero (suc _) () half2 {suc n} (suc x) (suc y) zero () half2 {suc n} (suc x) (suc .(thin x y')) (suc y') refl with thick x (thin x y') | half2 x (thin x y') y' refl ... | .(just y') | refl = refl half2 {zero} (suc ()) _ _ _ fact1 : ∀ {n} (x : Fin (suc n)) y r -> thick x y ≡ r -> x ≡ y × r ≡ nothing ⊎ ∃ λ y' -> thin x y' ≡ y × r ≡ just y' fact1 x y .(thick x y) refl with x ≡Fin y fact1 x .x ._ refl | yes refl = inj₁ (refl , half1 x) ... | no el with Thin.fact3 x y el ... | y' , thinxy'=y = inj₂ (y' , ( thinxy'=y , half2 x y y' thinxy'=y )) check : ∀{n} (x : Fin (suc n)) (t : Term (suc n)) -> Maybe (Term n) check x (i y) = i <$> thick x y check x leaf = just leaf check x (s fork t) = _fork_ <$> check x s ⊛ check x t _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n (t' for x) y = maybe′ i t' (thick x y) data AList : ℕ -> ℕ -> Set where anil : ∀ {n} -> AList n n _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m)) -> AList (suc m) n sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n sub anil = i sub (σ asnoc t' / x) = sub σ ◇ (t' for x) _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n ρ ++ anil = ρ ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ ++-assoc ρ σ anil = refl ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ) module SubList where anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ anil-id-l anil = refl anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = ◃ext (fact1 r s) t ◃-assoc = Sub.fact2 (sub r) (sub s) t _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -> ∃ (AList (suc m)) (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m) flexFlex {suc m} x y with thick x y ... | just y' = m , anil asnoc i y' / x ... | nothing = suc m , anil flexFlex {zero} () _ flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m)) flexRigid {suc m} x t with check x t ... | just t' = just (m , anil asnoc t' / x) ... | nothing = nothing flexRigid {zero} () _
{ "alphanum_fraction": 0.4915927851, "avg_line_length": 33.2081218274, "ext": "agda", "hexsha": "546a81d7aed5bff09097a8a59f45eff0a5252e29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/UnifyTerm.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/UnifyTerm.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/UnifyTerm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2862, "size": 6542 }
open import Function.Equivalence as FE using () open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Decidable using (False; map) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; cong; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.WithK using (≡-irrelevant) open ≡-Reasoning open import Data.Product using (_×_; _,_; uncurry) open import Data.Unit using (⊤; tt) open import Agda.Builtin.FromNat using (Number) module AKS.Rational.Base where open import Data.Integer using (ℤ; +_; +0; +[1+_]; -[1+_]; ∣_∣) renaming (_+_ to _+ℤ_; _*_ to _*ℤ_; -_ to -ℤ_; _≟_ to _≟ℤ_) open import Data.Integer.DivMod using () renaming (_divℕ_ to _/ℤ_) open import Data.Integer.Properties using (∣-n∣≡∣n∣) open import AKS.Nat using (ℕ; suc; ≢⇒¬≟; ¬≟⇒≢) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; _≟_ to _≟ℕ_) open import AKS.Nat using (n≢0∧m≢0⇒n*m≢0) open import AKS.Nat.Divisibility using () renaming (_/_ to _/ℕ_) open import AKS.Nat.GCD using (gcd; _⊥_; gcd[a,1]≡1; b≢0⇒gcd[a,b]≢0; gcd[0,a]≡1⇒a≡1; ⊥-respˡ; ⊥-sym) record ℚ : Set where constructor ℚ✓ field numerator : ℤ denominator : ℕ den≢0 : False (denominator ≟ℕ 0) coprime : ∣ numerator ∣ ⊥ denominator fromℤ : ℤ → ℚ fromℤ n = record { numerator = n ; denominator = 1 ; den≢0 = tt ; coprime = gcd[a,1]≡1 (∣ n ∣) } fromℕ : ℕ → ℚ fromℕ n = fromℤ (+ n) instance ℚ-number : Number ℚ ℚ-number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → fromℕ n } open import AKS.Unsafe using (trustMe; TODO) open import Data.Fin using (Fin) open import Data.Nat.DivMod using (_divMod_; result) ∣a/ℤb∣≡∣a∣/ℕb : ∀ a b {b≢0} → ∣ (a /ℤ b) {b≢0} ∣ ≡ (∣ a ∣ /ℕ b) {b≢0} ∣a/ℤb∣≡∣a∣/ℕb (+ n) b {b≢0} = refl ∣a/ℤb∣≡∣a∣/ℕb (-[1+ x ]) b {b≢0} with (suc x divMod b) {b≢0} ... | result q Fin.zero eq rewrite ∣-n∣≡∣n∣ (+ q) = trustMe ... | result q (Fin.suc r) eq = trustMe a/d⊥b/d : ∀ a b d {d≢0} → gcd a b ≡ d → (a /ℕ d) {d≢0} ⊥ (b /ℕ d) {d≢0} a/d⊥b/d a b d gcd[a,b]≡d = begin gcd (a /ℕ d) (b /ℕ d) ≡⟨ trustMe ⟩ 1 ∎ a≢0⇒a/b≢0 : ∀ a b (a≢0 : False (a ≟ℕ 0)) {b≢0} → (a /ℕ b) {b≢0} ≢ 0 a≢0⇒a/b≢0 (suc a) (suc b) a≢0 = TODO canonical : ∀ (num : ℤ) (den : ℕ) {den≢0 : False (den ≟ℕ 0)} → ℚ canonical num den {den≢0} = construct num den {den≢0} (gcd ∣ num ∣ den) {≢⇒¬≟ (b≢0⇒gcd[a,b]≢0 (∣ num ∣) den (¬≟⇒≢ den≢0))} refl where construct : ∀ num den {den≢0 : False (den ≟ℕ 0)} d {d≢0 : False (d ≟ℕ 0)} → gcd ∣ num ∣ den ≡ d → ℚ construct num den {den≢0} d {d≢0} gcd[num,den]≡d = record { numerator = (num /ℤ d) {d≢0} ; denominator = (den /ℕ d) {d≢0} ; den≢0 = ≢⇒¬≟ (a≢0⇒a/b≢0 den d den≢0) ; coprime = ⊥-respˡ {den /ℕ d} (sym (∣a/ℤb∣≡∣a∣/ℕb num d)) (a/d⊥b/d ∣ num ∣ den d gcd[num,den]≡d) } infixl 6 _+_ _+_ : ℚ → ℚ → ℚ (ℚ✓ num₁ den₁ den₁≢0 _) + (ℚ✓ num₂ den₂ den₂≢0 _) = canonical (num₁ *ℤ (+ den₂) +ℤ num₂ *ℤ (+ den₁)) (den₁ *ℕ den₂) {≢⇒¬≟ (n≢0∧m≢0⇒n*m≢0 (¬≟⇒≢ den₁≢0) (¬≟⇒≢ den₂≢0))} infix 8 -_ -_ : ℚ → ℚ - (ℚ✓ num den den≢0 num⊥den) = ℚ✓ (-ℤ num) den den≢0 (⊥-respˡ {den} (sym (∣-n∣≡∣n∣ num)) num⊥den) infixl 7 _*_ _*_ : ℚ → ℚ → ℚ (ℚ✓ num₁ den₁ den₁≢0 _) * (ℚ✓ num₂ den₂ den₂≢0 _) = canonical (num₁ *ℤ num₂) (den₁ *ℕ den₂) {≢⇒¬≟ (n≢0∧m≢0⇒n*m≢0 (¬≟⇒≢ den₁≢0) (¬≟⇒≢ den₂≢0))} infix 8 _⁻¹ _⁻¹ : ∀ (q : ℚ) {q≢0 : q ≢ 0} → ℚ (ℚ✓ +0 den den≢0 num⊥den ⁻¹) {q≢0} with gcd[0,a]≡1⇒a≡1 den num⊥den (ℚ✓ +0 .1 tt refl ⁻¹) {q≢0} | refl = contradiction refl q≢0 (ℚ✓ +[1+ num ] (suc den) den≢0 num⊥den) ⁻¹ = ℚ✓ +[1+ den ] (suc num) tt (⊥-sym {suc num} {suc den} num⊥den) (ℚ✓ -[1+ num ] (suc den) den≢0 num⊥den) ⁻¹ = ℚ✓ -[1+ den ] (suc num) tt (⊥-sym {suc num} {suc den} num⊥den) infixl 7 _/_ _/_ : ∀ (p q : ℚ) {q≢0 : q ≢ 0} → ℚ _/_ p q {q≢0}= p * (q ⁻¹) {q≢0} _≟_ : Decidable {A = ℚ} _≡_ (ℚ✓ num₁ (suc den₁) tt num₁⊥den₁) ≟ (ℚ✓ num₂ (suc den₂) tt num₂⊥den₂) = map (FE.equivalence forward backward) (num₁ ≟ℤ num₂ ×-dec den₁ ≟ℕ den₂) where forward : ∀ {num₁ num₂} {den₁ den₂} {num₁⊥den₁ num₂⊥den₂} → num₁ ≡ num₂ × den₁ ≡ den₂ → ℚ✓ num₁ (suc den₁) tt num₁⊥den₁ ≡ ℚ✓ num₂ (suc den₂) tt num₂⊥den₂ forward {num₁} {num₂} {den₁} {den₂} {num₁⊥den₁} {num₂⊥den₂} (refl , refl) = cong (λ pf → ℚ✓ num₁ (suc den₁) tt pf) (≡-irrelevant num₁⊥den₁ num₂⊥den₂) backward : ∀ {num₁ num₂} {den₁ den₂} {num₁⊥den₁ num₂⊥den₂} → ℚ✓ num₁ (suc den₁) tt num₁⊥den₁ ≡ ℚ✓ num₂ (suc den₂) tt num₂⊥den₂ → num₁ ≡ num₂ × den₁ ≡ den₂ backward refl = (refl , refl) ≢0 : ∀ {p : ℚ} {p≢0 : False (p ≟ 0)} → p ≢ 0 ≢0 {p} with p ≟ 0 ≢0 {p} | no p≢0 = p≢0 test = ((1 / 2) {≢0} + (3 / 4) {≢0}) ⁻¹ open import Data.String using (String; _++_) open import Data.Nat.Show using () renaming (show to show-ℕ) show-ℤ : ℤ → String show-ℤ (+ n) = show-ℕ n show-ℤ (-[1+ n ]) = "-" ++ show-ℕ (suc n) show-ℚ : ℚ → String show-ℚ (ℚ✓ num 1 _ _) = show-ℤ num show-ℚ (ℚ✓ num den _ _) = show-ℤ num ++ "/" ++ show-ℕ den
{ "alphanum_fraction": 0.5776173285, "avg_line_length": 38.0610687023, "ext": "agda", "hexsha": "f182b5d4fd20141b1c2f90d8c88555df8f7fec58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Rational/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Rational/Base.agda", "max_line_length": 166, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Rational/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 2648, "size": 4986 }
-- Andreas, 2017-12-04, issue #2862, reported by m0davis, case for records -- Regression in development version 2.5.4 -- Scope checker allowed definition in different module than signature module _ where module N where record R : Set where open N hiding (module R) module M where record R where -- should be rejected since signature lives in different module inhabited-R : R inhabited-R = _ data ⊥ : Set where record R where field absurd : ⊥ boom : ⊥ boom = R.absurd M.inhabited-R
{ "alphanum_fraction": 0.7245508982, "avg_line_length": 19.2692307692, "ext": "agda", "hexsha": "85f0054786a701aac262771a2c5838f130a37a1a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2862record.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2862record.agda", "max_line_length": 81, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2862record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 137, "size": 501 }
{-# OPTIONS --universe-polymorphism #-} module NoPanic where postulate Level : Set lzero : Level lsuc : Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} module M {A : Set} where postulate I : A → ∀ a → Set a i : ∀ (x : A) {a} → I x a f : {B : Set} → B a : A Foo : Set₁ Foo with i (f a) Foo | _ = Set -- Old (bad) error message: -- NoPanic.agda:24,3-16 -- Panic: Pattern match failure in do expression at -- src/full/Agda/TypeChecking/Rules/Term.hs:646:7-18 -- when checking that the expression _22 {A} has type Level
{ "alphanum_fraction": 0.6045380875, "avg_line_length": 19.28125, "ext": "agda", "hexsha": "57afbd3a87871b4aa6661de6ad9394ec40d3018f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/NoPanic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/NoPanic.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/NoPanic.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 210, "size": 617 }
module Ual.Ord where open import Agda.Primitive open import Ual.Void open import Ual.Eq open import Ual.Either open import Ual.Both record Ord {a} (A : Set a) : Set (lsuc a) where infix 30 _<_ infix 30 _>_ infix 30 _≤_ infix 30 _≥_ field ⦃ eqA ⦄ : Eq A _<_ : A → A → Set _>_ : A → A → Set x > y = x ≠ y ∧ ¬ (x < y) _≤_ : A → A → Set x ≤ y = x == y ∨ x < y _≥_ : A → A → Set x ≥ y = x == y ∨ x > y field ltNotEq : {x y : A} → x < y → x ≠ y symLt : {x y : A} → x < y → y > x symGt : {x y : A} → x > y → y < x transLt : {x y z : A} → x < y → y < z → x < z transLe : {x y z : A} → x ≤ y → y ≤ z → x ≤ z symLe : {x y : A} → x ≤ y → y ≥ x symLe (orL eq) = orL (sym ⦃ eqA ⦄ eq) symLe (orR lt) = orR (symLt lt) symGe : {x y : A} → x ≥ y → y ≤ x symGe (orL eq) = orL (sym ⦃ eqA ⦄ eq) symGe (orR gt) = orR (symGt gt) transGt : {x y z : A} → x > y → y > z → x > z transGt gt1 gt2 = symLt (transLt (symGt gt2) (symGt gt1)) transGe : {x y z : A} → x ≥ y → y ≥ z → x ≥ z transGe ge1 ge2 = symLe (transLe (symGe ge2) (symGe ge1)) open Ord ⦃ ... ⦄ public data Order {a} {A : Set a} ⦃ ordA : Ord A ⦄ : A → A → Set where less : {x y : A} → x < y → Order x y equal : {x y : A} → x == y → Order x y greater : {x y : A} → x > y → Order x y record Compare {a} (A : Set a) : Set (lsuc a) where field ⦃ ordA ⦄ : Ord A compare : (x : A) → (y : A) → Order x y
{ "alphanum_fraction": 0.4751724138, "avg_line_length": 27.358490566, "ext": "agda", "hexsha": "dda745e6310ae3e005279a3a44d93a88e1a57c32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/ual", "max_forks_repo_path": "Ord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/ual", "max_issues_repo_path": "Ord.agda", "max_line_length": 63, "max_stars_count": null, "max_stars_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/ual", "max_stars_repo_path": "Ord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 680, "size": 1450 }
record R : Set₁ where field ⟨_+_⟩ : Set open R -- Name parts coming from projections can not be used as part of -- variables. F : Set → Set F + = +
{ "alphanum_fraction": 0.6242038217, "avg_line_length": 13.0833333333, "ext": "agda", "hexsha": "6b5d74906bf1525e78827d4e05267f9309f25f5f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3400-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3400-3.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3400-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 48, "size": 157 }
------------------------------------------------------------------------ -- IO ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module IO-monad where open import Monad.Raw open import Prelude open import String ------------------------------------------------------------------------ -- The IO type former open import Agda.Builtin.IO public using (IO) ------------------------------------------------------------------------ -- The IO monad postulate returnIO : ∀ {a} {A : Type a} → A → IO A bindIO : ∀ {a b} {A : Type a} {B : Type b} → IO A → (A → IO B) → IO B {-# COMPILE GHC returnIO = \_ _ -> return #-} {-# COMPILE GHC bindIO = \_ _ _ _ -> (>>=) #-} instance io-monad : ∀ {ℓ} → Raw-monad (IO {a = ℓ}) Raw-monad.return io-monad = returnIO Raw-monad._>>=_ io-monad = bindIO ------------------------------------------------------------------------ -- Some IO primitives -- Note that some commands may raise exceptions when executed. postulate putStr : String → IO ⊤ putStrLn : String → IO ⊤ exitFailure : IO ⊤ getArgs : IO (List String) {-# FOREIGN GHC import qualified Data.Text import qualified Data.Text.IO import qualified System.Environment import qualified System.Exit #-} -- Note that the GHC code below ignores potential problems. For -- instance, putStr could raise an exception. {-# COMPILE GHC putStr = Data.Text.IO.putStr #-} {-# COMPILE GHC putStrLn = Data.Text.IO.putStrLn #-} {-# COMPILE GHC exitFailure = System.Exit.exitFailure #-} {-# COMPILE GHC getArgs = fmap (map Data.Text.pack) System.Environment.getArgs #-}
{ "alphanum_fraction": 0.4914956012, "avg_line_length": 27.9508196721, "ext": "agda", "hexsha": "ed1b784d896b8230b60e9cde6bd43c5c93a9c5f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/IO-monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/IO-monad.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/IO-monad.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 380, "size": 1705 }
{-# OPTIONS --cubical-compatible #-} {-# OPTIONS --allow-unsolved-metas #-} -- This issue demonstrates that a failing termination check, -- subsequently blocking reductions, makes some `impossible' -- cases possible in the conversion checker. module Issue921 where infix 3 _==_ postulate _==_ : {A : Set} → A → A → Set transport : {A : Set} (B : A → Set) {x y : A} (p : x == y) → (B x → B y) ! : {A : Set} {x y : A} → (x == y → y == x) infixr 1 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst open Σ public infix 4 _≃_ _≃_ : ∀ (A : Set) (B : Set) → Set A ≃ B = Σ (A → B) (λ _ → B → A) postulate <– : {A : Set} {B : Set} → (A ≃ B) → B → A infixr 4 _∘e_ _∘e_ : {A : Set} {B : Set} {C : Set} → B ≃ C → A ≃ B → A ≃ C e1 ∘e e2 = ({!!} , λ c → snd e2 (snd e1 c)) module _ {A : Set} {B : A → Set} {C : (a : A) → B a → Set} where Σ-assoc : Σ (Σ A B) (λ z → C (fst z) (snd z)) ≃ Σ A (λ a → Σ (B a) (C a)) Σ-assoc = ({!!} , λ {(a , (b , c)) → ((a , b) , c)}) data Ctx : Set postulate Ty : Ctx → Set data Ctx where _·_ : (Γ : Ctx) → Ty {!!} → Ctx infix 5 _ctx-⇛_ _ctx-⇛_ : Ctx → Ctx → Set -- swap these two lines and the internal error disappears Tm : Σ Ctx Ty → Set Γ ctx-⇛ (Δ · A) = Σ {!!} {!!} infix 10 _*_ postulate _*_ : {Γ Δ : Ctx} (m : Γ ctx-⇛ Δ) → Ty {!!} → Ty {!!} pullback : {Γ Δ : Ctx} {A : Ty Δ} → Tm (Δ , A) → (m : Γ ctx-⇛ Δ) → Tm (Γ , m * A) infix 7 _·_ data Xtc (Γ : Ctx) : Set where _·_ : (A : Ty {!!}) → Xtc {!!} → Xtc Γ infix 6 _⋯_ _⋯_ : (Γ : Ctx) → Xtc Γ → Ctx Γ ⋯ (A · s) = (Γ · A) ⋯ s module xtc where infix 5 _⇛_∣_ _⇛_∣_ : (Γ : Ctx) {Δ : Ctx} (m : Γ ctx-⇛ Δ) → Xtc Δ → Set Γ ⇛ m ∣ A · T = Σ (Tm (Γ , m * A)) (λ t → Γ ⇛ (m , t) ∣ T) infix 5 _⇛_ _⇛_ : (Γ : Ctx) → Σ Ctx (λ Δ → Xtc Δ) → Set Γ ⇛ (Δ , T) = Σ (Γ ctx-⇛ Δ) (λ m → Γ ⇛ m ∣ T) eq : {Γ Δ : Ctx} {T : Xtc Δ} → Γ ctx-⇛ Δ ⋯ T ≃ Γ ⇛ (Δ , T) eq {T = A · T} = Σ-assoc ∘e eq weaken : (Γ : Ctx) {T : Xtc Γ} → Γ ⋯ T ctx-⇛ Γ infix 10 _○_ _○_ : {Γ Δ Θ : Ctx} → Δ ctx-⇛ Θ → Γ ctx-⇛ Δ → Γ ctx-⇛ Θ postulate _○=_ : {Γ Δ Θ : Ctx} (n : Δ ctx-⇛ Θ) (m : Γ ctx-⇛ {!!}) {A : Ty {!!}} → (n ○ m) * A == m * (n * A) Tm P = Σ Ctx λ Γ → Σ (Ty {!!}) λ A → Σ (Xtc (Γ · A)) λ T → (Γ · A ⋯ T , weaken Γ {A · T} * A) == P weaken (Γ · A) {T} = (weaken Γ {A · T} , (Γ , A , T , {!!})) _○_ {Θ = Θ · _} (n , x) m = (n ○ m , transport (λ z → Tm (_ , z)) (! (n ○= m)) (pullback x m)) weaken-○-scope : {Γ Δ : Ctx} {T : Xtc Δ} (ms : Γ xtc.⇛ (Δ , T)) → weaken Δ {T} ○ snd xtc.eq ms == fst ms pullback-var : {Γ Δ : Ctx} {A : Ty {!!}} {T : Xtc (Δ · A)} (ms : Γ xtc.⇛ (Δ , A · T)) → Tm (Γ , snd xtc.eq ms * (weaken Δ {A · T} * A)) pullback-var {Γ} {Δ} {A} {T} ms = transport (λ z → Tm (Γ , z)) (weaken Δ {A · T} ○= snd xtc.eq ms) (transport (λ z → Tm (Γ , z * A)) (! (weaken-○-scope ms)) (fst (snd ms))) pullback (Δ' , _ , T , p) = transport (λ P → (m : _ ctx-⇛ fst P) → Tm (_ , m * snd P)) p (<– {!!} pullback-var) weaken-○-scope {Γ} {Δ · A} {T} ((m , t) , ts) = {!!} where helper3 : transport (λ z → Tm (Γ , z)) (! (fst (weaken (Δ · A)) ○= snd xtc.eq ((m , t) , ts))) (pullback-var {!!}) == transport (λ z → Tm (Γ , z * A)) (! (weaken-○-scope (m , t , ts))) t helper3 = {!!}
{ "alphanum_fraction": 0.4378522694, "avg_line_length": 28.5677966102, "ext": "agda", "hexsha": "f193a4562c87b3e2464c4c4d27b0ff08bb2731e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue921.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue921.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue921.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1647, "size": 3371 }
open import Relation.Binary.Core module InsertSort.Impl2.Correctness.Permutation.Base {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Sum open import InsertSort.Impl2 _≤_ tot≤ open import List.Permutation.Base A open import OList _≤_ lemma-forget-insert : {b : Bound} → (x : A) → (b≤x : LeB b (val x)) → (xs : OList b) → forget (insert b≤x xs) / x ⟶ forget xs lemma-forget-insert x b≤x onil = /head lemma-forget-insert x b≤x (:< {x = y} b≤y ys) with tot≤ x y ... | inj₁ x≤y = /head ... | inj₂ y≤x = /tail (lemma-forget-insert x (lexy y≤x) ys) theorem-insertSort∼ : (xs : List A) → xs ∼ forget (insertSort xs) theorem-insertSort∼ [] = ∼[] theorem-insertSort∼ (x ∷ xs) = ∼x /head (lemma-forget-insert x lebx (insertSort xs)) (theorem-insertSort∼ xs)
{ "alphanum_fraction": 0.6418242492, "avg_line_length": 35.96, "ext": "agda", "hexsha": "1e6220ecb2344163c905f2b03863fddd78699e5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/InsertSort/Impl2/Correctness/Permutation/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/InsertSort/Impl2/Correctness/Permutation/Base.agda", "max_line_length": 125, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/InsertSort/Impl2/Correctness/Permutation/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 318, "size": 899 }
module Issue731 where data empty : Set where foo : empty → _ foo () bar : empty → Set bar = foo {- But when I want to know what are the constraints (C-c C-= in emacs), I get the following error instead: No binding for builtin thing LEVELZERO, use {-# BUILTIN LEVELZERO name #-} to bind it to 'name' when checking that the expression foo has type empty → Set I’m not sure it is a bug, but it seems a bit strange to get an error message when doing C-c C-= -} -- Now displays correctly: -- _4 := foo [blocked by problem 3] -- [3] _2 =< Set : Set _1 -- _1 = (.Agda.Primitive.lsuc .Agda.Primitive.lzero) -- _1 = (.Agda.Primitive.lsuc .Agda.Primitive.lzero)
{ "alphanum_fraction": 0.6904400607, "avg_line_length": 25.3461538462, "ext": "agda", "hexsha": "0866e0f7c70fcfb0b27756f5757af5e527db0a2f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue731.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue731.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue731.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 659 }
record R : Set₁ where field A : Set open R ⦃ … ⦄ -- The inferred type of A is ⦃ r : R ⦄ → Set. However, the following -- code is rejected: X : R → Set X r = A ⦃ r = r ⦄ -- WAS: Function does not accept argument ⦃ r = r ⦄ -- when checking that ⦃ r = r ⦄ is a valid argument to a function of -- type ⦃ r = r₁ : R ⦄ → Set -- SHOULD: succeed
{ "alphanum_fraction": 0.58, "avg_line_length": 18.4210526316, "ext": "agda", "hexsha": "6b0224bdc4697b12f154f06adc5800b1284a2f68", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3463.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3463.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3463.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 137, "size": 350 }
-- 2017-11-01, issue #2668 reported by brprice -- -- This seems to have been fixed in 2.5.3 (specifically, commit -- 8518b8e seems to have solved this, along with #2727 and #2726) -- {-# OPTIONS -v tc.mod.apply:20 #-} -- {-# OPTIONS -v tc.proj.like:40 #-} -- {-# OPTIONS -v tc.signature:60 #-} -- {-# OPTIONS -v tc.with:60 #-} open import Agda.Builtin.Equality open import Agda.Builtin.Nat module _ (Q : Set) where -- parameter needed to trigger issue -- has to pattern match: `badRefl _ = refl` typechecks badRefl : (n : Nat) → n ≡ n badRefl zero = refl badRefl (suc n) = refl -- has to wrap: `Wrap = Nat` (and changing uses of wrap) typechecks data Wrap : Set where wrap : (n : Nat) → Wrap record Rec (A : Set) : Set where field recW : (m : Nat) → Wrap foo : A → Wrap → Wrap foo _ (wrap i) = recW i Thin : Rec Nat Thin = record { recW = wrap } module Th = Rec Thin test : ∀ (th : Nat)(t : Wrap) → Th.foo th t ≡ Th.foo th t -- If we don't go via Th, it typechecks -- → Rec.foo Thin th t ≡ Rec.foo Thin th t -- test = {!Rec.foo!} test th t with badRefl th ... | p = refl -- ERROR WAS: -- Expected a hidden argument, but found a visible argument -- when checking that the type -- (Q : Set) (th : Nat) → th ≡ th → (t : Wrap) → -- Rec.foo (record { recW = wrap }) th t ≡ -- Rec.foo (record { recW = wrap }) th t -- of the generated with function is well-formed -- Should succeed
{ "alphanum_fraction": 0.6138268156, "avg_line_length": 24.6896551724, "ext": "agda", "hexsha": "8ae14a41848e379c72edaecbf31611c7098b631d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2668.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2668.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2668.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 471, "size": 1432 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import groups.Exactness open import groups.HomSequence open import groups.ExactSequence open import cw.CW module cw.cohomology.Descending {i} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.TipAndAugment OT open import cw.cohomology.WedgeOfCells OT open import cohomology.LongExactSequence cohomology-theory private C-cw-descend-at-succ : ∀ {n} (⊙skel : ⊙Skeleton (S n)) {m} (m≠n : m ≠ ℕ-to-ℤ n) (Sm≠n : succ m ≠ ℕ-to-ℤ n) → ⊙has-cells-with-choice 0 ⊙skel i → C (succ m) ⊙⟦ ⊙skel ⟧ ≃ᴳ C (succ m) ⊙⟦ ⊙cw-init ⊙skel ⟧ C-cw-descend-at-succ ⊙skel {m} m≠n Sm≠n ac = Exact2.G-trivial-and-L-trivial-implies-H-iso-K (exact-seq-index 2 $ C-cofiber-exact-seq m (⊙cw-incl-last ⊙skel)) (exact-seq-index 0 $ C-cofiber-exact-seq (succ m) (⊙cw-incl-last ⊙skel)) (CXₙ/Xₙ₋₁-≠-is-trivial ⊙skel (succ-≠ m≠n) ac) (CXₙ/Xₙ₋₁-≠-is-trivial ⊙skel (succ-≠ Sm≠n) ac) C-cw-descend : ∀ {n} (⊙skel : ⊙Skeleton (S n)) {m} (m≠n : m ≠ ℕ-to-ℤ n) (m≠Sn : m ≠ ℕ-to-ℤ (S n)) → ⊙has-cells-with-choice 0 ⊙skel i → C m ⊙⟦ ⊙skel ⟧ ≃ᴳ C m ⊙⟦ ⊙cw-init ⊙skel ⟧ C-cw-descend ⊙skel {m = negsucc m} -Sm≠n -Sm≠Sn = C-cw-descend-at-succ ⊙skel (pred-≠ -Sm≠Sn) -Sm≠n C-cw-descend ⊙skel {m = pos O} O≠n O≠Sn = C-cw-descend-at-succ ⊙skel (pred-≠ O≠Sn) O≠n C-cw-descend ⊙skel {m = pos (S n)} Sm≠n Sm≠Sn = C-cw-descend-at-succ ⊙skel (pred-≠ Sm≠Sn) Sm≠n abstract C-cw-at-higher : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (n<m : n < m) → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (C (ℕ-to-ℤ m) ⊙⟦ ⊙skel ⟧) C-cw-at-higher {n = O} ⊙skel 0<n ac = CX₀-≠-is-trivial ⊙skel (ℕ-to-ℤ-≠ (≠-inv (<-to-≠ 0<n))) ac C-cw-at-higher {n = S n} ⊙skel Sn<m ac = iso-preserves'-trivial (C-cw-descend ⊙skel (ℕ-to-ℤ-≠ (≠-inv (<-to-≠ (<-trans ltS Sn<m)))) (ℕ-to-ℤ-≠ (≠-inv (<-to-≠ Sn<m))) ac) (C-cw-at-higher (⊙cw-init ⊙skel) (<-trans ltS Sn<m) (⊙init-has-cells-with-choice ⊙skel ac)) C-cw-at-negsucc : ∀ {n} (⊙skel : ⊙Skeleton n) m → ⊙has-cells-with-choice 0 ⊙skel i → is-trivialᴳ (C (negsucc m) ⊙⟦ ⊙skel ⟧) C-cw-at-negsucc {n = O} ⊙skel m ac = CX₀-≠-is-trivial ⊙skel (ℤ-negsucc≠pos m O) ac C-cw-at-negsucc {n = S n} ⊙skel m ac = iso-preserves'-trivial (C-cw-descend ⊙skel (ℤ-negsucc≠pos _ n) (ℤ-negsucc≠pos _ (S n)) ac) (C-cw-at-negsucc (⊙cw-init ⊙skel) m (⊙init-has-cells-with-choice ⊙skel ac)) C-cw-descend-at-lower : ∀ {n} (⊙skel : ⊙Skeleton (S n)) {m} (m<n : m < n) → ⊙has-cells-with-choice 0 ⊙skel i → C (ℕ-to-ℤ m) ⊙⟦ ⊙skel ⟧ ≃ᴳ C (ℕ-to-ℤ m) ⊙⟦ ⊙cw-init ⊙skel ⟧ C-cw-descend-at-lower ⊙skel m<n ac = C-cw-descend ⊙skel (ℕ-to-ℤ-≠ (<-to-≠ m<n)) (ℕ-to-ℤ-≠ (<-to-≠ (ltSR m<n))) ac {- favonia: it turns out easier (?) to do the descending step by step C-cw-to-diag-at-lower : ∀ n {m} (Sn≤m : S n ≤ m) (⊙skel : ⊙Skeleton m) → ⊙has-cells-with-choice 0 ⊙skel i → C (ℕ-to-ℤ n) ⊙⟦ ⊙skel ⟧ ≃ᴳ C (ℕ-to-ℤ n) ⊙⟦ ⊙cw-take Sn≤m ⊙skel ⟧ C-cw-to-diag-at-lower _ (inl idp) _ _ = idiso _ C-cw-to-diag-at-lower n (inr ltS) ⊙skel ac = C-cw-descend (ℕ-to-ℤ n) (ℕ-to-ℤ-≠ (<-to-≠ ltS)) (ℕ-to-ℤ-≠ (<-to-≠ (ltSR ltS))) ⊙skel ac C-cw-to-diag-at-lower n {S m} (inr (ltSR lt)) ⊙skel ac = C-cw-to-diag-at-lower n (inr lt) (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac) ∘eᴳ C-cw-descend (ℕ-to-ℤ n) (ℕ-to-ℤ-≠ n≠m) (ℕ-to-ℤ-≠ n≠Sm) ⊙skel ac where n≠Sm : n ≠ S m n≠Sm = <-to-≠ (<-trans ltS (ltSR lt)) n≠m : n ≠ m n≠m = <-to-≠ (<-trans ltS lt) -}
{ "alphanum_fraction": 0.5721448468, "avg_line_length": 38.6021505376, "ext": "agda", "hexsha": "904b91452588acc5d2cfb9156022ea34f1cdc837", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/Descending.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/Descending.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/Descending.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1813, "size": 3590 }
module Issue558 where data Nat : Set where Z : Nat S : Nat → Nat data _≡_ {A : Set} (a : A) : A → Set where Refl : a ≡ a plus : Nat → Nat → Nat plus Z n = n plus (S n) m = S (plus n m) record Addable (τ : Set) : Set where constructor addable field _+_ : τ → τ → τ open module AddableIFS {t : Set} {{r : Addable t}} = Addable {t} r record CommAddable (τ : Set) : Set where constructor commAddable field foo : Addable τ comm : (a b : τ) → (a + b) ≡ (b + a) natAdd : Addable Nat natAdd = record {_+_ = plus} postulate commPlus : (a b : Nat) → plus a b ≡ plus b a commAdd : CommAddable Nat commAdd = record {foo = natAdd; comm = commPlus} open CommAddable {{...}} test : (Z + Z) ≡ Z test = comm Z Z a : {x y : Nat} → (S (S Z) + (x + y)) ≡ ((x + y) + S (S Z)) a {x}{y} = comm (S (S Z)) (x + y) -- ERROR!
{ "alphanum_fraction": 0.5646916566, "avg_line_length": 19.6904761905, "ext": "agda", "hexsha": "08028f8bf612d273b4b80f641a49dbb84ce0e243", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue558.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue558.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue558.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 322, "size": 827 }
{-# OPTIONS --rewriting #-} data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) {-# BUILTIN NATPLUS _+_ #-} -- Without this, the internal error disappears. postulate _≡_ : Nat → Nat → Set {-# BUILTIN REWRITE _≡_ #-} postulate a b n : Nat Q : Nat → Set R : (m n : Nat) → Q (m + n) → Set +S : (n + a) ≡ b {-# REWRITE +S #-} variable m : Nat -- Explicitly quantifying over m, the internal error disappears. postulate bug : (q : Q n) → R m n q
{ "alphanum_fraction": 0.5648994516, "avg_line_length": 18.8620689655, "ext": "agda", "hexsha": "e959d550480176a7fd37c257067186c4dca55d35", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue4323.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4323.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4323.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 193, "size": 547 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.AbGroup open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' ℓ'' : Level record IsRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor isring field +IsAbGroup : IsAbGroup 0r _+_ -_ ·IsMonoid : IsMonoid 1r _·_ ·DistR+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z) ·DistL+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z) -- This is in the Agda stdlib, but it's redundant -- zero : (x : R) → (x · 0r ≡ 0r) × (0r · x ≡ 0r) open IsAbGroup +IsAbGroup public renaming ( isSemigroup to +IsSemigroup ; isMonoid to +IsMonoid ; isGroup to +IsGroup ) open IsMonoid ·IsMonoid public renaming ( isSemigroup to ·IsSemigroup ) hiding ( is-set ) -- We only want to export one proof of this unquoteDecl IsRingIsoΣ = declareRecordIsoΣ IsRingIsoΣ (quote IsRing) record RingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor ringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isRing : IsRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsRing isRing public Ring : ∀ ℓ → Type (ℓ-suc ℓ) Ring ℓ = TypeWithStr ℓ RingStr isSetRing : (R : Ring ℓ) → isSet ⟨ R ⟩ isSetRing R = R .snd .RingStr.isRing .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set module _ {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+Assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+IdR : (x : R) → x + 0r ≡ x) (+InvR : (x : R) → x + (- x) ≡ 0r) (+Comm : (x y : R) → x + y ≡ y + x) (·Assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·IdR : (x : R) → x · 1r ≡ x) (·IdL : (x : R) → 1r · x ≡ x) (·DistR+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·DistL+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) where makeIsRing : IsRing 0r 1r _+_ _·_ -_ makeIsRing .IsRing.+IsAbGroup = makeIsAbGroup is-setR +Assoc +IdR +InvR +Comm makeIsRing .IsRing.·IsMonoid = makeIsMonoid is-setR ·Assoc ·IdR ·IdL makeIsRing .IsRing.·DistR+ = ·DistR+ makeIsRing .IsRing.·DistL+ = ·DistL+ module _ {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+Assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+IdR : (x : R) → x + 0r ≡ x) (+InvR : (x : R) → x + (- x) ≡ 0r) (+Comm : (x y : R) → x + y ≡ y + x) (·Assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·IdR : (x : R) → x · 1r ≡ x) (·IdL : (x : R) → 1r · x ≡ x) (·DistR+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·DistL+ : (x y z : R) → (x + y) · z ≡ (x · z) + (y · z)) where makeRing : Ring ℓ makeRing .fst = R makeRing .snd .RingStr.0r = 0r makeRing .snd .RingStr.1r = 1r makeRing .snd .RingStr._+_ = _+_ makeRing .snd .RingStr._·_ = _·_ makeRing .snd .RingStr.-_ = -_ makeRing .snd .RingStr.isRing = makeIsRing is-setR +Assoc +IdR +InvR +Comm ·Assoc ·IdR ·IdL ·DistR+ ·DistL+ record IsRingHom {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module R = RingStr R module S = RingStr S field pres0 : f R.0r ≡ S.0r pres1 : f R.1r ≡ S.1r pres+ : (x y : A) → f (x R.+ y) ≡ f x S.+ f y pres· : (x y : A) → f (x R.· y) ≡ f x S.· f y pres- : (x : A) → f (R.- x) ≡ S.- (f x) unquoteDecl IsRingHomIsoΣ = declareRecordIsoΣ IsRingHomIsoΣ (quote IsRingHom) RingHom : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ') RingHom R S = Σ[ f ∈ (⟨ R ⟩ → ⟨ S ⟩) ] IsRingHom (R .snd) f (S .snd) IsRingEquiv : {A : Type ℓ} {B : Type ℓ'} (M : RingStr A) (e : A ≃ B) (N : RingStr B) → Type (ℓ-max ℓ ℓ') IsRingEquiv M e N = IsRingHom M (e .fst) N RingEquiv : (R : Ring ℓ) (S : Ring ℓ') → Type (ℓ-max ℓ ℓ') RingEquiv R S = Σ[ e ∈ (⟨ R ⟩ ≃ ⟨ S ⟩) ] IsRingEquiv (R .snd) e (S .snd) _$_ : {R : Ring ℓ} {S : Ring ℓ'} → (φ : RingHom R S) → (x : ⟨ R ⟩) → ⟨ S ⟩ φ $ x = φ .fst x RingEquiv→RingHom : {A B : Ring ℓ} → RingEquiv A B → RingHom A B RingEquiv→RingHom (e , eIsHom) = e .fst , eIsHom RingHomIsEquiv→RingEquiv : {A B : Ring ℓ} (f : RingHom A B) → isEquiv (fst f) → RingEquiv A B fst (fst (RingHomIsEquiv→RingEquiv f fIsEquiv)) = fst f snd (fst (RingHomIsEquiv→RingEquiv f fIsEquiv)) = fIsEquiv snd (RingHomIsEquiv→RingEquiv f fIsEquiv) = snd f isPropIsRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsRing 0r 1r _+_ _·_ -_) isPropIsRing 0r 1r _+_ _·_ -_ = isOfHLevelRetractFromIso 1 IsRingIsoΣ (isPropΣ (isPropIsAbGroup 0r _+_ (-_)) λ abgrp → isProp× (isPropIsMonoid 1r _·_) (isProp× (isPropΠ3 λ _ _ _ → abgrp .is-set _ _) (isPropΠ3 λ _ _ _ → abgrp .is-set _ _))) where open IsAbGroup isPropIsRingHom : {A : Type ℓ} {B : Type ℓ'} (R : RingStr A) (f : A → B) (S : RingStr B) → isProp (IsRingHom R f S) isPropIsRingHom R f S = isOfHLevelRetractFromIso 1 IsRingHomIsoΣ (isProp×4 (isSetRing (_ , S) _ _) (isSetRing (_ , S) _ _) (isPropΠ2 λ _ _ → isSetRing (_ , S) _ _) (isPropΠ2 λ _ _ → isSetRing (_ , S) _ _) (isPropΠ λ _ → isSetRing (_ , S) _ _)) isSetRingHom : (R : Ring ℓ) (S : Ring ℓ') → isSet (RingHom R S) isSetRingHom R S = isSetΣSndProp (isSetΠ (λ _ → isSetRing S)) (λ f → isPropIsRingHom (snd R) f (snd S)) isSetRingEquiv : (A : Ring ℓ) (B : Ring ℓ') → isSet (RingEquiv A B) isSetRingEquiv A B = isSetΣSndProp (isOfHLevel≃ 2 (isSetRing A) (isSetRing B)) (λ e → isPropIsRingHom (snd A) (fst e) (snd B)) RingHomPathP : (R S T : Ring ℓ) (p : S ≡ T) (φ : RingHom R S) (ψ : RingHom R T) → PathP (λ i → R .fst → p i .fst) (φ .fst) (ψ .fst) → PathP (λ i → RingHom R (p i)) φ ψ RingHomPathP R S T p φ ψ q = ΣPathP (q , isProp→PathP (λ _ → isPropIsRingHom _ _ _) _ _) RingHom≡ : {R S : Ring ℓ} {φ ψ : RingHom R S} → fst φ ≡ fst ψ → φ ≡ ψ RingHom≡ = Σ≡Prop λ f → isPropIsRingHom _ f _ 𝒮ᴰ-Ring : DUARel (𝒮-Univ ℓ) RingStr ℓ 𝒮ᴰ-Ring = 𝒮ᴰ-Record (𝒮-Univ _) IsRingEquiv (fields: data[ 0r ∣ null ∣ pres0 ] data[ 1r ∣ null ∣ pres1 ] data[ _+_ ∣ bin ∣ pres+ ] data[ _·_ ∣ bin ∣ pres· ] data[ -_ ∣ un ∣ pres- ] prop[ isRing ∣ (λ _ _ → isPropIsRing _ _ _ _ _) ]) where open RingStr open IsRingHom -- faster with some sharing null = autoDUARel (𝒮-Univ _) (λ A → A) un = autoDUARel (𝒮-Univ _) (λ A → A → A) bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A) RingPath : (R S : Ring ℓ) → RingEquiv R S ≃ (R ≡ S) RingPath = ∫ 𝒮ᴰ-Ring .UARel.ua uaRing : {A B : Ring ℓ} → RingEquiv A B → A ≡ B uaRing {A = A} {B = B} = equivFun (RingPath A B) isGroupoidRing : isGroupoid (Ring ℓ) isGroupoidRing _ _ = isOfHLevelRespectEquiv 2 (RingPath _ _) (isSetRingEquiv _ _) open RingStr open IsRingHom -- TODO: Induced structure results are temporarily inconvenient while we transition between algebra -- representations module _ (R : Ring ℓ) {A : Type ℓ} (0a 1a : A) (add mul : A → A → A) (inv : A → A) (e : ⟨ R ⟩ ≃ A) (p0 : e .fst (R .snd .0r) ≡ 0a) (p1 : e .fst (R .snd .1r) ≡ 1a) (p+ : ∀ x y → e .fst (R .snd ._+_ x y) ≡ add (e .fst x) (e .fst y)) (p· : ∀ x y → e .fst (R .snd ._·_ x y) ≡ mul (e .fst x) (e .fst y)) (pinv : ∀ x → e .fst (R .snd .-_ x) ≡ inv (e .fst x)) where private module R = RingStr (R .snd) BaseΣ : Type (ℓ-suc ℓ) BaseΣ = Σ[ B ∈ Type ℓ ] B × B × (B → B → B) × (B → B → B) × (B → B) FamilyΣ : BaseΣ → Type ℓ FamilyΣ (B , u0 , u1 , a , m , i) = IsRing u0 u1 a m i inducedΣ : FamilyΣ (A , 0a , 1a , add , mul , inv) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel BaseΣ) (e , p0 , p1 , p+ , p· , pinv)) R.isRing InducedRing : Ring ℓ InducedRing .fst = A 0r (InducedRing .snd) = 0a 1r (InducedRing .snd) = 1a _+_ (InducedRing .snd) = add _·_ (InducedRing .snd) = mul - InducedRing .snd = inv isRing (InducedRing .snd) = inducedΣ InducedRingEquiv : RingEquiv R InducedRing fst InducedRingEquiv = e pres0 (snd InducedRingEquiv) = p0 pres1 (snd InducedRingEquiv) = p1 pres+ (snd InducedRingEquiv) = p+ pres· (snd InducedRingEquiv) = p· pres- (snd InducedRingEquiv) = pinv InducedRingPath : R ≡ InducedRing InducedRingPath = RingPath _ _ .fst InducedRingEquiv -- Rings have an abelian group and a monoid module _ ((A , (ringstr 0r 1r _+_ _·_ -_ R)) : Ring ℓ) where Ring→AbGroup : AbGroup ℓ Ring→AbGroup .fst = A Ring→AbGroup .snd .AbGroupStr.0g = 0r Ring→AbGroup .snd .AbGroupStr._+_ = _+_ Ring→AbGroup .snd .AbGroupStr.-_ = -_ Ring→AbGroup .snd .AbGroupStr.isAbGroup = IsRing.+IsAbGroup R Ring→MultMonoid : Monoid ℓ Ring→MultMonoid = monoid A 1r _·_ (IsRing.·IsMonoid R) Ring→Group : Ring ℓ → Group ℓ Ring→Group = AbGroup→Group ∘ Ring→AbGroup Ring→AddMonoid : Ring ℓ → Monoid ℓ Ring→AddMonoid = Group→Monoid ∘ Ring→Group -- Smart constructor for ring homomorphisms -- that infers the other equations from pres1, pres+, and pres· module _ {R : Ring ℓ} {S : Ring ℓ'} {f : ⟨ R ⟩ → ⟨ S ⟩} where private module R = RingStr (R .snd) module S = RingStr (S .snd) module _ (p1 : f R.1r ≡ S.1r) (p+ : (x y : ⟨ R ⟩) → f (x R.+ y) ≡ f x S.+ f y) (p· : (x y : ⟨ R ⟩) → f (x R.· y) ≡ f x S.· f y) where open IsRingHom private isGHom : IsGroupHom (Ring→Group R .snd) f (Ring→Group S .snd) isGHom = makeIsGroupHom p+ makeIsRingHom : IsRingHom (R .snd) f (S .snd) makeIsRingHom .pres0 = isGHom .IsGroupHom.pres1 makeIsRingHom .pres1 = p1 makeIsRingHom .pres+ = p+ makeIsRingHom .pres· = p· makeIsRingHom .pres- = isGHom .IsGroupHom.presinv
{ "alphanum_fraction": 0.5525492361, "avg_line_length": 32.6306306306, "ext": "agda", "hexsha": "c89640ae8ba0953163df6b052c9581c0e0310308", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring/Base.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4457, "size": 10866 }
module Data.Tree where open import Data.Tree.Base public
{ "alphanum_fraction": 0.8103448276, "avg_line_length": 14.5, "ext": "agda", "hexsha": "64e7c097e7976eca734e9cda3987b340b585aaf3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Tree.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Tree.agda", "max_line_length": 33, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 12, "size": 58 }
{-# OPTIONS --without-K #-} module sets.nat.ordering.leq where open import sets.nat.ordering.leq.core public open import sets.nat.ordering.leq.level public open import sets.nat.ordering.leq.decide public
{ "alphanum_fraction": 0.7853658537, "avg_line_length": 29.2857142857, "ext": "agda", "hexsha": "6751c1de330438486c84d4b1bf7544e7c3366fd0", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/ordering/leq.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/ordering/leq.agda", "max_line_length": 47, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/ordering/leq.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 53, "size": 205 }
module InfConj where open import Data.Bool open import Data.Sum open import Relation.Binary.PropositionalEquality record Stream (A : Set) : Set where coinductive constructor _∷_ field hd : A tl : Stream A open Stream public -- | Partial elements record D (A : Set) : Set where coinductive field step : A ⊎ D A open D public -- | Lift ⊎ to relations data _⊎'_ {A B : Set} (R : A → A → Set) (S : B → B → Set) : A ⊎ B → A ⊎ B → Set where inj₁' : {x y : A} → R x y → (R ⊎' S) (inj₁ x) (inj₁ y) inj₂' : {x y : B} → S x y → (R ⊎' S) (inj₂ x) (inj₂ y) -- | Bisimilarity for partial elements record _~_ {A : Set} (x y : D A) : Set where coinductive field step~ : (_≡_ ⊎' _~_) (x .step) (y .step) open _~_ public -- | Injection into D η : {A : Set} → A → D A η a .step = inj₁ a -- | Conjunction for partial Booleans _∧'_ : D Bool → D Bool → D Bool (x ∧' y) .step with x .step | y .step (x ∧' y) .step | inj₁ false | v = inj₁ false (x ∧' y) .step | inj₁ true | v = v (x ∧' y) .step | inj₂ x' | inj₁ false = inj₁ false (x ∧' y) .step | inj₂ x' | inj₁ true = inj₂ x' (x ∧' y) .step | inj₂ x' | inj₂ y' = inj₂ (x' ∧' y') -- | Infinite conjunction ⋀∞ : Stream Bool → D Bool ⋀∞ s .step with s .hd ⋀∞ s .step | false = inj₁ false ⋀∞ s .step | true = inj₂ (⋀∞ (s .tl)) -- | Constant stream K : {A : Set} → A → Stream A K a .hd = a K a .tl = K a -- | Non-terminating computation ⊥ : {A : Set} → D A ⊥ .step = inj₂ ⊥ -- | Infinite conjunction of constant stream does not terminate prop : ⋀∞ (K true) ~ ⊥ prop .step~ = inj₂' prop -- | If there is an entry "false" in the stream, then the infinite conjunction -- terminates. Here is just an example. ex : ⋀∞ (false ∷ K true) ~ η false ex .step~ = inj₁' refl
{ "alphanum_fraction": 0.5707013575, "avg_line_length": 26, "ext": "agda", "hexsha": "2e7ce4693f21bb89b5e8b421a381ebeb45f7e457", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Partial/InfConj.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Partial/InfConj.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Partial/InfConj.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 695, "size": 1768 }
------------------------------------------------------------------------ -- List membership and some related definitions open import Level using (Level; _⊔_) open import Relation.Binary open import Relation.Binary.List.Pointwise as ListEq using ([]; _∷_) open import Relation.Nullary open import Data.List open import Data.List.Any open import Function import Relation.Binary.InducedPreorders as Ind open import Data.Product as Prod using (∃; _×_; _,_) module Membership-old {c ℓ : Level} (S : Setoid c ℓ) where private open module S = Setoid S using (_≈_) renaming (Carrier to A) open module LS = Setoid (ListEq.setoid S) using () renaming (_≈_ to _≋_) -- If a predicate P respects the underlying equality then Any P -- respects the list equality. lift-resp : ∀ {p} {P : A → Set p} → P Respects _≈_ → Any P Respects _≋_ lift-resp resp [] () lift-resp resp (x≈y ∷ xs≈ys) (here px) = here (resp x≈y px) lift-resp resp (x≈y ∷ xs≈ys) (there pxs) = there (lift-resp resp xs≈ys pxs) -- List membership. infix 4 _∈_ _∉_ _∈_ : A → List A → Set _ x ∈ xs = Any (_≈_ x) xs _∉_ : A → List A → Set _ x ∉ xs = ¬ x ∈ xs -- Subsets. infix 4 _⊆_ _⊈_ _⊆_ : List A → List A → Set _ xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys _⊈_ : List A → List A → Set _ xs ⊈ ys = ¬ xs ⊆ ys -- Equality is respected by the predicate which is used to define -- _∈_. ∈-resp-≈ : ∀ {x} → (_≈_ x) Respects _≈_ ∈-resp-≈ = flip S.trans -- List equality is respected by _∈_. ∈-resp-list-≈ : ∀ {x} → _∈_ x Respects _≋_ ∈-resp-list-≈ = lift-resp ∈-resp-≈ -- _⊆_ is a preorder. ⊆-preorder : Preorder _ _ _ ⊆-preorder = Ind.InducedPreorder₂ (ListEq.setoid S) _∈_ ∈-resp-list-≈ module ⊆-Reasoning where import Relation.Binary.PreorderReasoning as PreR open PreR ⊆-preorder public renaming (_∼⟨_⟩_ to _⊆⟨_⟩_) infix 1 _∈⟨_⟩_ _∈⟨_⟩_ : ∀ x {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs -- A variant of List.map. map-with-∈ : ∀ {b} {B : Set b} (xs : List A) → (∀ {x} → x ∈ xs → B) → List B map-with-∈ [] f = [] map-with-∈ (x ∷ xs) f = f (here S.refl) ∷ map-with-∈ xs (f ∘ there) -- Finds an element satisfying the predicate. find : ∀ {p} {P : A → Set p} {xs} → Any P xs → ∃ λ x → x ∈ xs × P x find (here px) = (_ , here S.refl , px) find (there pxs) = Prod.map id (Prod.map there id) (find pxs) lose : ∀ {p} {P : A → Set p} {x xs} → P Respects _≈_ → x ∈ xs → P x → Any P xs lose resp x∈xs px = Data.List.Any.map (flip resp px) x∈xs
{ "alphanum_fraction": 0.5608828006, "avg_line_length": 28.5652173913, "ext": "agda", "hexsha": "ada23fc138c1e66f317da46a6851e454c23a2e5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "unused/Membership-old.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "unused/Membership-old.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "unused/Membership-old.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 985, "size": 2628 }
data ⊤ : Set where tt : ⊤ record R : Set where constructor r field .x : ⊤ f : R → R R.x (f (r x)) = {!x!}
{ "alphanum_fraction": 0.4955752212, "avg_line_length": 11.3, "ext": "agda", "hexsha": "5b4dec09dfba3d3165c703e632cfe7e23628fa3b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3452.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3452.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3452.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 113 }
-- {-# OPTIONS -v tc.with:40 #-} id : (A : Set) → A → A id A = {!id′!} -- C-c C-h produces: id′ : ∀ {A} → A -- when it should produce: id′ : ∀ {A} → A → A f : (A : Set) (B : A → Set) (a : A) → B a f A B a = {!g A a!} -- Before: ∀ {A} {B : A → Set} A₁ (a : A₁) → B a -- After: ∀ A (a : A) {B : A → Set} → B a
{ "alphanum_fraction": 0.3839009288, "avg_line_length": 26.9166666667, "ext": "agda", "hexsha": "5c06d5cb00d2720fd0c566ff642397e85e3c36d9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/interaction/Issue1130.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/interaction/Issue1130.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/interaction/Issue1130.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 151, "size": 323 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PushoutDef module Homotopy.PushoutIsPushout {i} (d : pushout-diag i) where import Homotopy.PushoutUP as PushoutUP open PushoutUP d (λ _ → unit) -- A B C f g (λ _ → unit) pushout-cocone : cocone (pushout d) pushout-cocone = (left , right , glue) factor-pushout : (E : Set i) → (cocone E → (pushout d → E)) factor-pushout E (A→top , B→top , h) = pushout-rec-nondep E A→top B→top h abstract pushout-is-pushout : is-pushout (pushout d) pushout-cocone pushout-is-pushout E ⦃ tt ⦄ = iso-is-eq _ (factor-pushout E) (λ y → ap (λ u → _ , _ , u) (funext (λ x → pushout-β-glue-nondep E (cocone.A→top y) (cocone.B→top y) (cocone.h y) x))) (λ f → funext (pushout-rec _ (λ _ → refl) (λ _ → refl) (λ c → trans-app≡app (pushout-rec-nondep E (f ◯ left) (f ◯ right) (λ c' → ap f (glue c'))) f (glue c) refl ∘ (ap (λ u → ! u ∘ ap f (glue c)) (pushout-β-glue-nondep E (f ◯ left) (f ◯ right) (λ c' → ap f (glue c')) c) ∘ opposite-left-inverse (ap f (glue c))))))
{ "alphanum_fraction": 0.538590604, "avg_line_length": 36.1212121212, "ext": "agda", "hexsha": "f785856f1e67fae3f7239315d143e592d64655c1", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/PushoutIsPushout.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/PushoutIsPushout.agda", "max_line_length": 73, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/PushoutIsPushout.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 410, "size": 1192 }
{-# OPTIONS -v tc.force:60 #-} open import Agda.Builtin.Nat open import Agda.Builtin.List module _ {a} {A : Set a} where [_] : A → List A [ x ] = x ∷ [] data FSet : List A → Set a where sg : (x : A) → FSet [ x ] -- ^ should be forced HOLE : Set HOLE = {!!} -- just to force make bugs to look at the output
{ "alphanum_fraction": 0.552238806, "avg_line_length": 19.7058823529, "ext": "agda", "hexsha": "702177211bb6d56274514e041bd32bcbd8294210", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Bugs/Issue3898.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Bugs/Issue3898.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Bugs/Issue3898.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 116, "size": 335 }
module Numeral.Natural.Function.FlooredLogarithm where open import Data open import Data.Boolean.Stmt open import Numeral.Natural open import Numeral.Natural.Inductions open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.FlooredDivision.Proofs open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Structure.Relator.Ordering open Structure.Relator.Ordering.Strict.Properties ⌊log⌋ : (b : ℕ) → ⦃ _ : IsTrue(b ≥? 2) ⦄ → (n : ℕ) → ⦃ _ : IsTrue(n ≥? 1) ⦄ → ℕ ⌊log⌋ b@(𝐒(𝐒 _)) n = wellfounded-recursion (_<_) f(n) where f : (n : ℕ) → ((prev : ℕ) ⦃ _ : (prev < n) ⦄ → ℕ) → ℕ f 𝟎 _ = 𝟎 f (𝐒 𝟎) _ = 𝟎 f n@(𝐒(𝐒 _)) prev = 𝐒(prev((n ⌊/⌋ b)) ⦃ [⌊/⌋]-ltₗ {b = b} ⦄)
{ "alphanum_fraction": 0.6859323882, "avg_line_length": 38.2083333333, "ext": "agda", "hexsha": "da088a946968fbdfa4efd54fa5b9401c63089bf4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Function/FlooredLogarithm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Function/FlooredLogarithm.agda", "max_line_length": 79, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Function/FlooredLogarithm.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 359, "size": 917 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Literals where open import Agda.Builtin.FromNat open import Agda.Builtin.Nat open import Data.Unit number : Number Nat number = record { Constraint = λ _ → ⊤ ; fromNat = λ n → n }
{ "alphanum_fraction": 0.4547511312, "avg_line_length": 22.1, "ext": "agda", "hexsha": "ac6a33aaacc332feb5c10a274bd2dbc132bfc4fe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Literals.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Literals.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 88, "size": 442 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Setoid.Morphism.Base where open import Level using (Level; _⊔_) open import Function using (_∘_; Congruent) import Relation.Binary.PropositionalEquality as PE open import Relation.Binary using (Setoid) private variable a b c ℓ₁ ℓ₂ ℓ₃ : Level module _ (S : Setoid a ℓ₁) (T : Setoid b ℓ₂) where open Setoid S renaming (Carrier to A; _≈_ to _≈₁_) open Setoid T renaming (Carrier to B; _≈_ to _≈₂_) infixr 1 _↝_ record _↝_ : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field ∣_∣ : A → B ∣_∣-cong : Congruent _≈₁_ _≈₂_ ∣_∣ open _↝_ public lift : ∀ {A : Set a} {B : Setoid b ℓ₂} → (A → Setoid.Carrier B) → (PE.setoid A ↝ B) lift {B = B} f = record { ∣_∣ = f ; ∣_∣-cong = reflexive ∘ (PE.cong f) } where open Setoid B id : ∀ {A : Setoid a ℓ₁} → A ↝ A id = record { ∣_∣ = λ x → x ; ∣_∣-cong = λ x → x } _·_ : ∀ {A : Setoid a ℓ₁} {B : Setoid b ℓ₂} {C : Setoid c ℓ₃} → B ↝ C → A ↝ B → A ↝ C g · f = record { ∣_∣ = ∣ g ∣ ∘ ∣ f ∣ ; ∣_∣-cong = ∣ g ∣-cong ∘ ∣ f ∣-cong }
{ "alphanum_fraction": 0.5329815303, "avg_line_length": 24.7173913043, "ext": "agda", "hexsha": "fd05e5f006236d4957b00dc8515c44b0e3d46b2a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Setoid/Morphism/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Setoid/Morphism/Base.agda", "max_line_length": 61, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Setoid/Morphism/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 488, "size": 1137 }
{-# OPTIONS --cubical --safe #-} module Data.Unit.Properties where open import Data.Unit open import Prelude isProp⊤ : isProp ⊤ isProp⊤ _ _ = refl
{ "alphanum_fraction": 0.7066666667, "avg_line_length": 15, "ext": "agda", "hexsha": "2497d6023e5ac0e5879b6926f0231798444c8968", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Unit/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Unit/Properties.agda", "max_line_length": 33, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Unit/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 45, "size": 150 }
postulate R : Set → Set1 r : {X : Set} {{ _ : R X }} → X → Set A : Set a : A instance RI : R A -- RI = {!!} -- uncommenting lets instance resolution succeed foo : r a
{ "alphanum_fraction": 0.5248618785, "avg_line_length": 15.0833333333, "ext": "agda", "hexsha": "cbaa18ca5e472af05ae84c6e8db67fa9276c38bd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3338.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3338.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3338.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 181 }
module Numeral.Natural.Relation.Divisibility.Proofs.Product where open import Data.Tuple open import Functional open import Logic open import Logic.Predicate open import Logic.Propositional import Lvl open import Numeral.Integer import Numeral.Integer.Oper as ℤ open import Numeral.Integer.Proofs import Numeral.Integer.Relation.Divisibility as ℤ import Numeral.Integer.Relation.Divisibility.Proofs as ℤ open import Numeral.Natural open import Numeral.Natural.Coprime open import Numeral.Natural.Coprime.Proofs open import Numeral.Natural.Function.GreatestCommonDivisor.Extended open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Oper open import Numeral.Natural.Prime open import Numeral.Natural.Relation.Divisibility open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function open import Structure.Function.Multi open import Structure.Operator open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties open import Structure.Relator.Properties open import Structure.Relator open import Syntax.Transitivity private variable n x y d p : ℕ -- When d and x does not have any common divisors, thus no common prime divisors, it means that all common prime divisors lies in d and y. -- Also called: Generalized Euclid's lemma. coprime-divides-of-[⋅] : (d ∣ (x ⋅ y)) → Coprime(d)(x) → (d ∣ y) coprime-divides-of-[⋅] {d}{x}{y} dxy coprim with [∃]-intro (a , b) ⦃ p ⦄ ← gcd-linearCombination-existence {d}{x} = sub₂((ℤ._∣_) on₂ (+ₙ_))(_∣_) (substitute₂ᵣ(ℤ._∣_) {+ₙ d} eq div) where eq = ((+ₙ d) ℤ.⋅ a ℤ.⋅ (+ₙ y)) ℤ.+ ((+ₙ x) ℤ.⋅ b ℤ.⋅ (+ₙ y)) 🝖[ _≡_ ]-[ distributivityᵣ(ℤ._⋅_)(ℤ._+_) {(+ₙ d) ℤ.⋅ a}{(+ₙ x) ℤ.⋅ b}{+ₙ y} ]-sym (((+ₙ d) ℤ.⋅ a) ℤ.+ ((+ₙ x) ℤ.⋅ b)) ℤ.⋅ (+ₙ y) 🝖[ _≡_ ]-[ congruence₂ₗ(ℤ._⋅_)(+ₙ y) {_}{+ₙ 1} (p 🝖 congruence₁(+ₙ_) ([↔]-to-[→] Coprime-gcd coprim)) ] (+ₙ 1) ℤ.⋅ (+ₙ y) 🝖[ _≡_ ]-[ identityₗ(ℤ._⋅_)(+ₙ 1) ] (+ₙ y) 🝖-end r-eq : (+ₙ(x ⋅ y)) ℤ.⋅ b ≡ (+ₙ x) ℤ.⋅ b ℤ.⋅ (+ₙ y) r-eq = (+ₙ (x ⋅ y)) ℤ.⋅ b 🝖[ _≡_ ]-[ congruence₂ₗ(ℤ._⋅_)(b) (preserving₂(+ₙ_)(_⋅_)(ℤ._⋅_)) ] ((+ₙ x) ℤ.⋅ (+ₙ y)) ℤ.⋅ b 🝖[ _≡_ ]-[ One.commuteᵣ-assocₗ {a = +ₙ x}{b = +ₙ y}{c = b} ] ((+ₙ x) ℤ.⋅ b) ℤ.⋅ (+ₙ y) 🝖-end div : (+ₙ d) ℤ.∣ ((+ₙ d) ℤ.⋅ a ℤ.⋅ (+ₙ y) ℤ.+ (+ₙ x) ℤ.⋅ b ℤ.⋅ (+ₙ y)) div = ℤ.divides-with-[+] {+ₙ d}{(+ₙ d) ℤ.⋅ a ℤ.⋅ (+ₙ y)}{(+ₙ x) ℤ.⋅ b ℤ.⋅ (+ₙ y)} (ℤ.divides-with-[⋅] {+ₙ d}{(+ₙ d) ℤ.⋅ a} ([∨]-introₗ (ℤ.divides-with-[⋅] {+ₙ d}{+ₙ d} ([∨]-introₗ (reflexivity(_∣_)))))) (substitute₂ᵣ(ℤ._∣_) {+ₙ d} r-eq (ℤ.divides-with-[⋅] {+ₙ d}{+ₙ(x ⋅ y)} ([∨]-introₗ dxy))) -- A prime number dividing a product means that the prime divides one of its factors. -- Obvious intuitively because prime numbers are the "smallest units" in the context of divisibility. -- Also called: Euclid's lemma. prime-divides-of-[⋅] : Prime(p) → (p ∣ (x ⋅ y)) → ((p ∣ x) ∨ (p ∣ y)) prime-divides-of-[⋅] {p}{x}{y} prim pxy with Prime-to-div-or-coprime {y = x} prim ... | [∨]-introₗ div = [∨]-introₗ div ... | [∨]-introᵣ coprim = [∨]-introᵣ (coprime-divides-of-[⋅] pxy coprim) Coprime-of-[⋅] : ∀{x y z} → Coprime(x)(y) → Coprime(x)(z) → Coprime(x)(y ⋅ z) Coprime-of-[⋅] {x}{y}{z} xy (intro xz) = intro (\{n} → nx ↦ nyz ↦ xz nx (coprime-divides-of-[⋅] {n}{y}{z} nyz (divides-to-converse-coprime nx xy))) Coprime-of-[^]ₗ : Coprime(x)(y) ← Coprime(x)(y ^ 𝐒(n)) Coprime-of-[^]ₗ {x}{y}{ℕ.𝟎} p = p Coprime-of-[^]ₗ {x}{y}{ℕ.𝐒 n} (intro p) = Coprime-of-[^]ₗ {n = n} (intro \{d} dx dyn → p dx (divides-with-[⋅] {d}{y}{y ^ 𝐒(n)} ([∨]-introᵣ dyn))) Coprime-of-[^]ᵣ : Coprime(x)(y) → Coprime(x)(y ^ n) Coprime-of-[^]ᵣ {x}{y}{ℕ.𝟎} p = symmetry(Coprime) Coprime-of-1 Coprime-of-[^]ᵣ {x}{y}{ℕ.𝐒 n} p = Coprime-of-[⋅] p (Coprime-of-[^]ᵣ {n = n} p) -- Coprime-[+][⋅] : Coprime(x)(y) ↔ Coprime(x + y)(x ⋅ y)
{ "alphanum_fraction": 0.5912628672, "avg_line_length": 51.0641025641, "ext": "agda", "hexsha": "0cc1a7cd9da3d69554b7aa06c0d67cc1535c4cdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs/Product.agda", "max_line_length": 165, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1810, "size": 3983 }
open import Agda.Primitive variable @0 ℓ : Level A : Set ℓ levelOf : A → Level levelOf {a} _ = a
{ "alphanum_fraction": 0.640776699, "avg_line_length": 11.4444444444, "ext": "agda", "hexsha": "bccae8166c58106c3df5483916239d953b2c4cab", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5363b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5363b.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5363b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 40, "size": 103 }
module Selective.Examples.Bookstore where open import Selective.ActorMonad open import Selective.Libraries.Call using (UniqueTag ; call) open import Prelude open import Data.Nat using ( _≟_ ; pred ; ⌈_/2⌉ ; _≤?_ ; _∸_ ; _≤_ ; z≤n ; s≤s ; _<_ ; _≰_ ) open import Data.Nat.Properties using (≤-antisym ; ≰⇒>) open import Data.Nat.Show using (show) open import Data.String using (primStringEquality) open import Debug BookTitle = String Money = ℕ data BuyerRole : Set where Buyer1 Buyer2 : BuyerRole record Book : Set where field title : BookTitle price : Money -- =========== -- GET QUOTE -- =========== GetQuoteReply : MessageType GetQuoteReply = ValueType UniqueTag ∷ [ ValueType (Maybe Book) ]ˡ GetQuoteReplyInterface : InboxShape GetQuoteReplyInterface = [ GetQuoteReply ]ˡ GetQuote : MessageType GetQuote = ValueType UniqueTag ∷ ReferenceType GetQuoteReplyInterface ∷ [ ValueType BookTitle ]ˡ -- ====================== -- PROPOSE CONTRIBUTION -- ====================== record Contribution : Set where field book : Book money : Money ContributionMessage : MessageType ContributionMessage = [ ValueType Contribution ]ˡ -- =============== -- AGREE OR QUIT -- =============== data AgreeChoice : Set where AGREE QUIT : AgreeChoice AgreeDecision : MessageType AgreeDecision = [ ValueType AgreeChoice ]ˡ -- ================ -- TRANSFER MONEY -- ================ Transfer : MessageType Transfer = ValueType BuyerRole ∷ [ ValueType Contribution ]ˡ -- ============ -- INTERFACES -- ============ Buyer1-to-Seller : InboxShape Buyer1-to-Seller = GetQuote ∷ [ Transfer ]ˡ Buyer2-to-Seller : InboxShape Buyer2-to-Seller = AgreeDecision ∷ [ Transfer ]ˡ Buyer1-to-Buyer2 : InboxShape Buyer1-to-Buyer2 = [ ContributionMessage ]ˡ Buyer2-to-Buyer1 : InboxShape Buyer2-to-Buyer1 = [ AgreeDecision ]ˡ SellerInterface : InboxShape SellerInterface = GetQuote ∷ AgreeDecision ∷ [ Transfer ]ˡ Buyer1Interface : InboxShape Buyer1Interface = [ ReferenceType Buyer1-to-Seller ]ˡ ∷ [ ReferenceType Buyer1-to-Buyer2 ]ˡ ∷ GetQuoteReply ∷ [ AgreeDecision ]ˡ Buyer2Interface : InboxShape Buyer2Interface = [ ReferenceType Buyer2-to-Seller ]ˡ ∷ [ ReferenceType Buyer2-to-Buyer1 ]ˡ ∷ [ ContributionMessage ]ˡ -- ======== -- COMMON -- ======== book1 : BookTitle book1 = "Crime and Punishment" transfer-money : ∀ {i IS Seller Γ} → Γ ⊢ Seller → [ Transfer ]ˡ <: Seller → BuyerRole → Book → Money → ∞ActorM i IS ⊤₁ Γ (λ _ → Γ) transfer-money p sub role book money = p ![t: translate-⊆ sub Z ] ((lift role) ∷ [ lift record { book = book ; money = money } ]ᵃ) -- ======== -- SELLER -- ======== same-buyer-role : BuyerRole → BuyerRole → Bool same-buyer-role Buyer1 Buyer1 = true same-buyer-role Buyer1 Buyer2 = false same-buyer-role Buyer2 Buyer1 = false same-buyer-role Buyer2 Buyer2 = true data TransactionStatus (book : Book) (c1 c2 : Contribution) : Set where TooLittleMoney : (Contribution.money c1 + Contribution.money c2) < (Book.price book) → TransactionStatus book c1 c2 Accepted : (Contribution.money c1 + Contribution.money c2) ≡ (Book.price book) → TransactionStatus book c1 c2 TooMuchMoney : (Book.price book) < (Contribution.money c1 + Contribution.money c2) → TransactionStatus book c1 c2 transaction-status? : ∀ book c1 c2 → TransactionStatus book c1 c2 transaction-status? book c1 c2 with (Contribution.money c1 + Contribution.money c2 ≤? Book.price book) | (Book.price book ≤? Contribution.money c1 + Contribution.money c2) transaction-status? book c1 c2 | yes p | yes q = Accepted (≤-antisym p q) transaction-status? book c1 c2 | yes p | no ¬p = TooLittleMoney (≰⇒> ¬p) transaction-status? book c1 c2 | no ¬p | q = TooMuchMoney (≰⇒> ¬p) seller : ∀ {i} → ActorM i SellerInterface ⊤₁ [] (λ _ → []) seller = begin do record {msg = Msg Z (tag ∷ _ ∷ title ∷ []) } ← selective-receive select-quote where record { msg = (Msg (S _) _) ; msg-ok = () } let maybe-book = find-book known-books title (Z ![t: Z ] (lift tag ∷ [ lift maybe-book ]ᵃ)) after-book-quote maybe-book where select-quote : MessageFilter SellerInterface select-quote (Msg Z _) = true select-quote _ = false known-books : List Book known-books = [ record { title = book1 ; price = 37 } ]ˡ find-book : List Book → BookTitle → Maybe Book find-book [] title = nothing find-book (book ∷ books) title with (primStringEquality (Book.title book) title) ... | true = just book ... | false = find-book books title select-decision : MessageFilter SellerInterface select-decision (Msg (S Z) _) = true select-decision _ = false wait-for-decision : ∀ {i Γ} → ∞ActorM i SellerInterface (Lift (lsuc lzero) AgreeChoice) Γ (λ _ → Γ) wait-for-decision = do record { msg = Msg (S Z) (ac ∷ []) } ← (selective-receive select-decision) where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S (S _)) _) ; msg-ok = () } return ac select-contribution-from : BuyerRole → MessageFilter SellerInterface select-contribution-from br (Msg (S (S Z)) (br' ∷ _)) = same-buyer-role br br' select-contribution-from _ _ = false wait-for-money-from : ∀ {i Γ} → BuyerRole → ∞ActorM i SellerInterface (Lift (lsuc lzero) Contribution) Γ (λ _ → Γ) wait-for-money-from br = do record { msg = Msg (S (S Z)) (_ ∷ contribution ∷ []) } ← (selective-receive (select-contribution-from br)) where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S Z) _) ; msg-ok = () } record { msg = (Msg (S (S (S _))) _) ; msg-ok = () } return contribution transaction-message : Book → Contribution → Contribution → String transaction-message book c1 c2 with (transaction-status? book c1 c2) ... | Accepted _ = "Accepted purchase of " || Book.title book || " for $" || show (Book.price book) ... | TooLittleMoney p = "Received too little money for " || Book.title book || ". $" || show (Book.price book) || " - $" || show (Contribution.money c1) || " - $" || show (Contribution.money c2) || " = $" || show (Book.price book ∸ Contribution.money c1 ∸ Contribution.money c2) ... | TooMuchMoney p = "Received too much money for " || Book.title book || ". $" || show (Book.price book) || " - $" || show (Contribution.money c1) || " - $" || show (Contribution.money c2) || " = -$" || show ((Contribution.money c1 + Contribution.money c2) ∸ Book.price book) after-book-quote : ∀ {i} → Maybe Book → ∞ActorM i SellerInterface ⊤₁ [ GetQuoteReplyInterface ]ˡ (λ _ → []) after-book-quote (just book) = do lift AGREE ← wait-for-decision where lift QUIT → debug "seller sees that transaction was quit" (strengthen []) lift contrib1 ← wait-for-money-from Buyer1 lift contrib2 ← wait-for-money-from Buyer2 debug (transaction-message book contrib1 contrib2) (strengthen []) after-book-quote nothing = strengthen [] -- ========= -- BUYER 1 -- ========= buyer1 : ∀ {i} → ActorM i Buyer1Interface ⊤₁ [] (λ _ → []) buyer1 = begin do wait-for-seller lift (just book) ← get-quote Z 0 book1 where (lift nothing) → strengthen [] wait-for-buyer2 let my-contribution = ⌈ Book.price book /2⌉ send-contribution Z book my-contribution lift AGREE ← wait-for-decision where lift QUIT → debug "buyer1 sees that transaction was quit" (strengthen []) (transfer-money (S Z) (⊆-suc ⊆-refl) Buyer1 book my-contribution) (strengthen []) where select-seller : MessageFilter Buyer1Interface select-seller (Msg Z _) = true select-seller (Msg (S _) _) = false wait-for-seller : ∀ {i Γ} → ∞ActorM i Buyer1Interface ⊤₁ Γ (λ _ → Buyer1-to-Seller ∷ Γ) wait-for-seller = do record { msg = Msg Z _ } ← (selective-receive select-seller) where record { msg = (Msg (S _) _) ; msg-ok = () } return _ select-buyer2 : MessageFilter Buyer1Interface select-buyer2 (Msg (S Z) _) = true select-buyer2 _ = false wait-for-buyer2 : ∀ {i Γ} → ∞ActorM i Buyer1Interface ⊤₁ Γ (λ _ → Buyer1-to-Buyer2 ∷ Γ) wait-for-buyer2 = do record {msg = Msg (S Z) _ } ← selective-receive select-buyer2 where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S (S _)) _) ; msg-ok = () } return _ get-quote : ∀ {i Γ} → Γ ⊢ Buyer1-to-Seller → UniqueTag → BookTitle → ∞ActorM i Buyer1Interface (Lift (lsuc lzero) (Maybe Book)) Γ (λ _ → Γ) get-quote p tag title = do record { msg = Msg (S (S Z)) (_ ∷ book ∷ []) ; msg-ok = msg-ok } ← call p Z tag [ lift title ]ᵃ [ S (S Z) ]ᵐ Z where record { msg = (Msg Z (_ ∷ _)) ; msg-ok = () } record { msg = (Msg (S Z) (_ ∷ _)) ; msg-ok = () } record { msg = (Msg (S (S (S Z))) _) ; msg-ok = () } record { msg = (Msg (S (S (S (S _)))) _) ; msg-ok = () } return book send-contribution : ∀ {i Γ} → Γ ⊢ Buyer1-to-Buyer2 → Book → Money → ∞ActorM i Buyer1Interface ⊤₁ Γ (λ _ → Γ) send-contribution p book money = p ![t: Z ] [ lift record { book = book ; money = money } ]ᵃ select-decision : MessageFilter Buyer1Interface select-decision (Msg (S (S (S Z))) _) = true select-decision _ = false wait-for-decision : ∀ {i Γ} → ∞ActorM i Buyer1Interface (Lift (lsuc lzero) AgreeChoice) Γ (λ _ → Γ) wait-for-decision = do record {msg = Msg (S (S (S Z))) (ac ∷ []) } ← (selective-receive select-decision) where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S Z) _) ; msg-ok = () } record { msg = (Msg (S (S Z)) _) ; msg-ok = () } record { msg = (Msg (S (S (S (S _)))) _) ; msg-ok = () } return ac -- ========= -- BUYER 2 -- ========= buyer2 : ∀ {i} → ActorM i Buyer2Interface ⊤₁ [] (λ _ → []) buyer2 = begin do wait-for-seller wait-for-buyer1 lift contribution ← wait-for-contribution handle-contribution (S Z) Z contribution strengthen [] where select-seller : MessageFilter Buyer2Interface select-seller (Msg Z _) = true select-seller (Msg (S _) _) = false wait-for-seller : ∀ {i Γ} → ∞ActorM i Buyer2Interface ⊤₁ Γ (λ _ → Buyer2-to-Seller ∷ Γ) wait-for-seller = do record { msg = Msg Z _ } ← (selective-receive select-seller) where record { msg = (Msg (S _) _) ; msg-ok = () } return _ select-buyer1 : MessageFilter Buyer2Interface select-buyer1 (Msg (S Z) _) = true select-buyer1 _ = false wait-for-buyer1 : ∀ {i Γ} → ∞ActorM i Buyer2Interface ⊤₁ Γ (λ _ → Buyer2-to-Buyer1 ∷ Γ) wait-for-buyer1 = do record {msg = Msg (S Z) _ } ← selective-receive select-buyer1 where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S (S _)) _) ; msg-ok = () } return _ select-contribution : MessageFilter Buyer2Interface select-contribution (Msg (S (S Z)) _) = true select-contribution _ = false wait-for-contribution : ∀ {i Γ} → ∞ActorM i Buyer2Interface (Lift (lsuc lzero) Contribution) Γ (λ _ → Γ) wait-for-contribution = do record { msg = Msg (S (S Z)) (cc ∷ []) } ← (selective-receive select-contribution) where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S Z) _) ; msg-ok = () } record { msg = (Msg (S (S (S _))) _) ; msg-ok = () } return cc contribution-is-fair : Money → Money → Bool contribution-is-fair price money = ⌊ price ∸ money ≤? money ⌋ handle-contribution : ∀ {i Γ} → Γ ⊢ Buyer2-to-Seller → Γ ⊢ Buyer2-to-Buyer1 → Contribution → ∞ActorM i Buyer2Interface ⊤₁ Γ (λ _ → Γ) handle-contribution seller buyer1 record { book = book ; money = money } with (contribution-is-fair (Book.price book) money) ... | true = do buyer1 ![t: Z ] [ lift AGREE ]ᵃ seller ![t: Z ] [ lift AGREE ]ᵃ transfer-money seller (⊆-suc ⊆-refl) Buyer2 book ((Book.price book) ∸ money) ... | false = do buyer1 ![t: Z ] [ lift QUIT ]ᵃ seller ![t: Z ] [ lift QUIT ]ᵃ -- ============ -- SUPERVISOR -- ============ bookstore-supervisor : ∀ {i} → ∞ActorM i [] ⊤₁ [] (λ _ → []) bookstore-supervisor = do spawn seller spawn buyer1 spawn buyer2 Z ![t: Z ] [ [ (S (S Z)) ]>: ( S Z ∷ [ S (S Z) ]ᵐ)]ᵃ Z ![t: S Z ] [ [ S Z ]>: [ S (S (S Z)) ]ᵐ ]ᵃ (S Z) ![t: Z ] [ [ S (S Z) ]>: (Z ∷ [ S (S Z) ]ᵐ) ]ᵃ (S Z) ![t: S Z ] [ [ Z ]>: [ S (S Z) ]ᵐ ]ᵃ (strengthen [])
{ "alphanum_fraction": 0.5800369401, "avg_line_length": 38.4437869822, "ext": "agda", "hexsha": "783a68d9e9fdc8e4d156fc3330db14f8af3bb9bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/Bookstore.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/Bookstore.agda", "max_line_length": 283, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/singly-typed-actors", "max_stars_repo_path": "src/Selective/Examples/Bookstore.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-29T09:30:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:30:26.000Z", "num_tokens": 3938, "size": 12994 }
open import Mockingbird.Forest using (Forest) -- Is There a Sage Bird? module Mockingbird.Problems.Chapter10 {b ℓ} (forest : Forest {b} {ℓ}) where open import Data.Product using (_,_; proj₁; proj₂; ∃-syntax) open import Function using (_$_) open import Mockingbird.Forest.Birds forest open Forest forest module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasLark ⦄ where private hasMockingbirdComposer : ∃[ A ] (∀ x y → A ∙ x ∙ y ≈ x ∙ (M ∙ y)) hasMockingbirdComposer = (L , isMockingbirdComposer) where isMockingbirdComposer = λ x y → begin L ∙ x ∙ y ≈⟨ isLark x y ⟩ x ∙ (y ∙ y) ≈˘⟨ congˡ $ isMockingbird y ⟩ x ∙ (M ∙ y) ∎ hasSageBird : HasSageBird hasSageBird = record { Θ = M ∘ L ; isSageBird = λ x → begin x ∙ ((M ∘ L) ∙ x) ≈⟨ congˡ $ isComposition M L x ⟩ x ∙ (M ∙ (L ∙ x)) ≈⟨ congˡ $ isMockingbird (L ∙ x) ⟩ x ∙ ((L ∙ x) ∙ (L ∙ x)) ≈˘⟨ isLark x (L ∙ x) ⟩ (L ∙ x) ∙ (L ∙ x) ≈˘⟨ isMockingbird (L ∙ x) ⟩ M ∙ (L ∙ x) ≈˘⟨ isComposition M L x ⟩ (M ∘ L) ∙ x ∎ } module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ (hasMockingbirdComposer : ∃[ A ] (∀ x y → A ∙ x ∙ y ≈ x ∙ (M ∙ y))) where private A = proj₁ hasMockingbirdComposer [Ax]y≈x[My] = proj₂ hasMockingbirdComposer instance hasLark : HasLark hasLark = record { L = A ; isLark = λ x y → begin (A ∙ x) ∙ y ≈⟨ [Ax]y≈x[My] x y ⟩ x ∙ (M ∙ y) ≈⟨ congˡ $ isMockingbird y ⟩ x ∙ (y ∙ y) ∎ } hasSageBird′ : HasSageBird hasSageBird′ = hasSageBird
{ "alphanum_fraction": 0.5148104265, "avg_line_length": 31.2592592593, "ext": "agda", "hexsha": "03734d2c50fc6c13af1c1247930406c7e5df8440", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Problems/Chapter10.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Problems/Chapter10.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Problems/Chapter10.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 711, "size": 1688 }
_ : Set
{ "alphanum_fraction": 0.5, "avg_line_length": 4, "ext": "agda", "hexsha": "3701a9bb7a89cd3e4ca49c4d9ad98287c612ca10", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4881a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4881a.agda", "max_line_length": 7, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4881a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 4, "size": 8 }
module eq-reas-nouni {A : Set} where open import eq infix 1 begin_ infixr 2 _equiv[]_ _equiv[_]_ infix 3 _qed begin_ : ∀ {x y : A} → x ≡ y ----- → x ≡ y begin x≡y = x≡y _equiv[]_ : ∀ (x : A) {y : A} → x ≡ y ----- → x ≡ y x equiv[] x≡y = x≡y _equiv[_]_ : ∀ (x : A) {y z : A} → x ≡ y → y ≡ z ----- → x ≡ z x equiv[ x≡y ] y≡z = trans x≡y y≡z _qed : ∀ (x : A) ----- → x ≡ x x qed = refl
{ "alphanum_fraction": 0.3860759494, "avg_line_length": 14.3636363636, "ext": "agda", "hexsha": "7e7e494e9fcb4500e4c680515a77ae647b11dac1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JimFixGroupResearch/imper-ial", "max_forks_repo_path": "eq-reas-nouni.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JimFixGroupResearch/imper-ial", "max_issues_repo_path": "eq-reas-nouni.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JimFixGroupResearch/imper-ial", "max_stars_repo_path": "eq-reas-nouni.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 233, "size": 474 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Modules.FunctorApplicativeMonad where open import Haskell.Modules.Either ------------------------------------------------------------------------------ open import Data.List open import Data.Maybe renaming (_>>=_ to _Maybe->>=_) open import Function open import Level renaming (suc to ℓ+1; zero to ℓ0; _⊔_ to _ℓ⊔_) record Functor {ℓ₁ ℓ₂ : Level} (F : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where infixl 4 _<$>_ field _<$>_ : ∀ {A B : Set ℓ₁} → (A → B) → F A → F B fmap = _<$>_ open Functor ⦃ ... ⦄ public record Applicative {ℓ₁ ℓ₂ : Level} (F : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where infixl 4 _<*>_ field pure : ∀ {A : Set ℓ₁} → A → F A _<*>_ : ∀ {A B : Set ℓ₁} → F (A → B) → F A → F B open Applicative ⦃ ... ⦄ public instance ApplicativeFunctor : ∀ {ℓ₁ ℓ₂} {F : Set ℓ₁ → Set ℓ₂} ⦃ _ : Applicative F ⦄ → Functor F Functor._<$>_ ApplicativeFunctor f xs = pure f <*> xs record Monad {ℓ₁ ℓ₂ : Level} (M : Set ℓ₁ → Set ℓ₂) : Set (ℓ₂ ℓ⊔ ℓ+1 ℓ₁) where infixl 1 _>>=_ _>>_ field return : ∀ {A : Set ℓ₁} → A → M A _>>=_ : ∀ {A B : Set ℓ₁} → M A → (A → M B) → M B _>>_ : ∀ {A B : Set ℓ₁} → M A → M B → M B m₁ >> m₂ = m₁ >>= λ _ → m₂ open Monad ⦃ ... ⦄ public instance MonadApplicative : ∀ {ℓ₁ ℓ₂} {M : Set ℓ₁ → Set ℓ₂} ⦃ _ : Monad M ⦄ → Applicative M Applicative.pure MonadApplicative = return Applicative._<*>_ MonadApplicative fs xs = do f ← fs x ← xs return (f x) instance Monad-Either : ∀ {ℓ}{C : Set ℓ} → Monad{ℓ}{ℓ} (Either C) Monad.return (Monad-Either{ℓ}{C}) = Right Monad._>>=_ (Monad-Either{ℓ}{C}) = either (const ∘ Left) _|>_ Monad-Maybe : ∀ {ℓ} → Monad {ℓ} {ℓ} Maybe Monad.return (Monad-Maybe{ℓ}) = just Monad._>>=_ (Monad-Maybe{ℓ}) = _Maybe->>=_ Monad-List : ∀ {ℓ} → Monad {ℓ}{ℓ} List Monad.return Monad-List x = x ∷ [] Monad._>>=_ Monad-List x f = concat (Data.List.map f x)
{ "alphanum_fraction": 0.5753488372, "avg_line_length": 34.126984127, "ext": "agda", "hexsha": "8c2321543f8395c205947d33cac2f687d8e281f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Modules/FunctorApplicativeMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Modules/FunctorApplicativeMonad.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Modules/FunctorApplicativeMonad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 861, "size": 2150 }
module Issue279-4 where module M (X : Set) where data R : Set where r : X → R postulate P Q : Set open M P using (r) shouldn't-check : M.R Q → Q shouldn't-check (r q) = q
{ "alphanum_fraction": 0.6032608696, "avg_line_length": 12.2666666667, "ext": "agda", "hexsha": "c8d4c8d7d9dff932aba8a4422a5f0668a2919348", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue279-4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue279-4.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue279-4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 184 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bisimilarity for Colists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Colist.Bisimilarity where open import Level using (Level; _⊔_) open import Size open import Codata.Thunk open import Codata.Colist open import Data.List.Base using (List; []; _∷_) open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_) open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq using (_≡_) private variable a b c p q r : Level A : Set a B : Set b C : Set c i : Size data Bisim {A : Set a} {B : Set b} (R : REL A B r) (i : Size) : REL (Colist A ∞) (Colist B ∞) (r ⊔ a ⊔ b) where [] : Bisim R i [] [] _∷_ : ∀ {x y xs ys} → R x y → Thunk^R (Bisim R) i xs ys → Bisim R i (x ∷ xs) (y ∷ ys) module _ {R : Rel A r} where reflexive : Reflexive R → Reflexive (Bisim R i) reflexive refl^R {[]} = [] reflexive refl^R {r ∷ rs} = refl^R ∷ λ where .force → reflexive refl^R module _ {P : REL A B p} {Q : REL B A q} where symmetric : Sym P Q → Sym (Bisim P i) (Bisim Q i) symmetric sym^PQ [] = [] symmetric sym^PQ (p ∷ ps) = sym^PQ p ∷ λ where .force → symmetric sym^PQ (ps .force) module _ {P : REL A B p} {Q : REL B C q} {R : REL A C r} where transitive : Trans P Q R → Trans (Bisim P i) (Bisim Q i) (Bisim R i) transitive trans^PQR [] [] = [] transitive trans^PQR (p ∷ ps) (q ∷ qs) = trans^PQR p q ∷ λ where .force → transitive trans^PQR (ps .force) (qs .force) ------------------------------------------------------------------------ -- Congruence rules module _ {R : REL A B r} where ++⁺ : ∀ {as bs xs ys} → Pointwise R as bs → Bisim R i xs ys → Bisim R i (fromList as ++ xs) (fromList bs ++ ys) ++⁺ [] rs = rs ++⁺ (r ∷ pw) rs = r ∷ λ where .force → ++⁺ pw rs ⁺++⁺ : ∀ {as bs xs ys} → Pointwise R (List⁺.toList as) (List⁺.toList bs) → Thunk^R (Bisim R) i xs ys → Bisim R i (as ⁺++ xs) (bs ⁺++ ys) ⁺++⁺ (r ∷ pw) rs = r ∷ λ where .force → ++⁺ pw (rs .force) ------------------------------------------------------------------------ -- Pointwise Equality as a Bisimilarity module _ {A : Set a} where infix 1 _⊢_≈_ _⊢_≈_ : ∀ i → Colist A ∞ → Colist A ∞ → Set a _⊢_≈_ = Bisim _≡_ refl : Reflexive (i ⊢_≈_) refl = reflexive Eq.refl fromEq : ∀ {as bs} → as ≡ bs → i ⊢ as ≈ bs fromEq Eq.refl = refl sym : Symmetric (i ⊢_≈_) sym = symmetric Eq.sym trans : Transitive (i ⊢_≈_) trans = transitive Eq.trans isEquivalence : {R : Rel A r} → IsEquivalence R → IsEquivalence (Bisim R i) isEquivalence equiv^R = record { refl = reflexive equiv^R.refl ; sym = symmetric equiv^R.sym ; trans = transitive equiv^R.trans } where module equiv^R = IsEquivalence equiv^R setoid : Setoid a r → Size → Setoid a (a ⊔ r) setoid S i = record { isEquivalence = isEquivalence {i = i} (Setoid.isEquivalence S) } module ≈-Reasoning {a} {A : Set a} {i} where open import Relation.Binary.Reasoning.Setoid (setoid (Eq.setoid A) i) public
{ "alphanum_fraction": 0.5472682627, "avg_line_length": 31.3269230769, "ext": "agda", "hexsha": "543062a96a9ccb50f043f0fd1e1cb732a0c79b93", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Codata/Colist/Bisimilarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Codata/Colist/Bisimilarity.agda", "max_line_length": 85, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Codata/Colist/Bisimilarity.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1124, "size": 3258 }
module LC.Example where open import LC.Base open import LC.Subst open import LC.Reduction open import LC.Reasoning test-1 : ((ƛ var 0) ∙ var 0) β→* ((var 0) [ var 0 ]) test-1 = begin (ƛ var 0) ∙ var 0 →⟨ β-ƛ-∙ ⟩ (var 0) [ var 0 ] ∎ test-0 : ƛ (ƛ var 0 ∙ var 1) ∙ (ƛ var 0 ∙ var 1) β→* ƛ var 0 ∙ var 0 test-0 = begin ƛ (ƛ var 0 ∙ var 1) ∙ (ƛ var 0 ∙ var 1) →⟨ β-ƛ β-ƛ-∙ ⟩ ƛ (var 0 ∙ var 1) [ ƛ var 0 ∙ var 1 ] →⟨⟩ ƛ (var 0 ∙ var 1) [ ƛ var 0 ∙ var 1 / 0 ] →⟨⟩ ƛ (var 0) [ ƛ var 0 ∙ var 1 / 0 ] ∙ (var 1) [ ƛ var 0 ∙ var 1 / 0 ] →⟨⟩ ƛ lift 0 0 (ƛ var 0 ∙ var 1) ∙ var 0 →⟨⟩ ƛ (ƛ lift 0 0 (var 0 ∙ var 1)) ∙ var 0 →⟨⟩ ƛ (ƛ lift 0 0 (var 0) ∙ lift 0 0 (var 1)) ∙ var 0 →⟨⟩ ƛ ((ƛ var 0 ∙ var 1) ∙ var 0) →⟨ β-ƛ β-ƛ-∙ ⟩ ƛ (var 0 ∙ var 1) [ var 0 / 0 ] →⟨⟩ ƛ var 0 ∙ var 0 ∎ Z : Term Z = ƛ ƛ var 0 SZ : Term SZ = ƛ ƛ var 1 ∙ var 0 PLUS : Term PLUS = ƛ ƛ ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0) test-2 : PLUS ∙ Z ∙ SZ β→* SZ test-2 = begin PLUS ∙ Z ∙ SZ →⟨ β-∙-l β-ƛ-∙ ⟩ (ƛ ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 0 ] ∙ SZ →⟨⟩ (ƛ ((ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 1 ])) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 2 ])) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ ((var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 3 ])))) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ (var 3) [ ƛ ƛ var 0 / 3 ] ∙ (var 1) [ ƛ ƛ var 0 / 3 ] ∙ (var 2 ∙ var 1 ∙ var 0) [ ƛ ƛ var 0 / 3 ]))) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ (lift 0 3 (ƛ (ƛ var 0))) ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ (ƛ (ƛ (var 0))) ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ →⟨ β-∙-l (β-ƛ (β-ƛ (β-ƛ (β-∙-l β-ƛ-∙)))) ⟩ (ƛ (ƛ (ƛ (ƛ var 0) [ var 1 / 0 ] ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ (ƛ (var 0) [ var 1 / 1 ]) ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ (ƛ var 0) ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ →⟨ β-∙-l (β-ƛ (β-ƛ (β-ƛ β-ƛ-∙))) ⟩ (ƛ (ƛ (ƛ (var 0) [ var 2 ∙ var 1 ∙ var 0 / 0 ]))) ∙ SZ →⟨⟩ (ƛ (ƛ (ƛ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ →⟨ β-ƛ-∙ ⟩ (ƛ (ƛ (var 2 ∙ var 1 ∙ var 0))) [ SZ / 0 ] →⟨⟩ ƛ (ƛ (var 2 ∙ var 1 ∙ var 0) [ SZ / 2 ]) →⟨⟩ ƛ (ƛ lift 0 2 SZ ∙ var 1 ∙ var 0) →⟨⟩ ƛ (ƛ (ƛ ƛ var 1 ∙ var 0) ∙ var 1 ∙ var 0) →⟨ β-ƛ (β-ƛ (β-∙-l β-ƛ-∙)) ⟩ ƛ (ƛ (ƛ var 1 ∙ var 0) [ var 1 / 0 ] ∙ var 0) →⟨⟩ ƛ (ƛ (ƛ ((var 1 ∙ var 0) [ var 1 / 1 ])) ∙ var 0) →⟨⟩ ƛ (ƛ (ƛ ((var 1) [ var 1 / 1 ] ∙ (var 0) [ var 1 / 1 ])) ∙ var 0) →⟨⟩ ƛ (ƛ (ƛ (lift 0 1 (var 1) ∙ var 0)) ∙ var 0) →⟨⟩ ƛ (ƛ (ƛ (var 2 ∙ var 0)) ∙ var 0) →⟨ β-ƛ (β-ƛ β-ƛ-∙) ⟩ ƛ (ƛ (var 2 ∙ var 0) [ var 0 / 0 ]) →⟨⟩ ƛ (ƛ (var 2) [ var 0 / 0 ] ∙ var 0) →⟨⟩ ƛ (ƛ var 1 ∙ var 0) ∎
{ "alphanum_fraction": 0.379707113, "avg_line_length": 28.1176470588, "ext": "agda", "hexsha": "74ebfbf7d64a059137fc9bc743320303ba8bc907", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "LC/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "LC/Example.agda", "max_line_length": 118, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "LC/Example.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 1876, "size": 2868 }
module Data.Num.Digit where open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤; toℕ; zero; suc) open import Data.Fin.Properties as FinProps using (bounded; toℕ-fromℕ≤) open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) -------------------------------------------------------------------------------- -- Digits -------------------------------------------------------------------------------- Digit : ℕ → Set Digit = Fin -- converting to and from ℕ Digit-toℕ : ∀ {d} → Digit d → ℕ → ℕ Digit-toℕ x o = toℕ x + o Digit-fromℕ : ∀ {d} → (n o : ℕ) → d + o ≥ n → Digit (suc d) Digit-fromℕ {d} n o upper-bound with n ∸ o ≤? d Digit-fromℕ {d} n o upper-bound | yes p = fromℕ≤ (s≤s p) Digit-fromℕ {d} n o upper-bound | no ¬p = contradiction p ¬p where p : n ∸ o ≤ d p = start n ∸ o ≤⟨ ∸n-mono o upper-bound ⟩ (d + o) ∸ o ≈⟨ m+n∸n≡m d o ⟩ d □ Digit-fromℕ-toℕ : ∀ {d o} → (n : ℕ) → (lower-bound : o ≤ n) → (upper-bound : d + o ≥ n) → Digit-toℕ (Digit-fromℕ {d} n o upper-bound) o ≡ n Digit-fromℕ-toℕ {d} {o} n lb ub with n ∸ o ≤? d Digit-fromℕ-toℕ {d} {o} n lb ub | yes q = begin toℕ (fromℕ≤ (s≤s q)) + o ≡⟨ cong (λ x → x + o) (toℕ-fromℕ≤ (s≤s q)) ⟩ n ∸ o + o ≡⟨ m∸n+n≡m lb ⟩ n ∎ Digit-fromℕ-toℕ {d} {o} n lb ub | no ¬q = contradiction q ¬q where q : n ∸ o ≤ d q = +n-mono-inverse o $ start n ∸ o + o ≈⟨ m∸n+n≡m lb ⟩ n ≤⟨ ub ⟩ d + o □ -------------------------------------------------------------------------------- -- Properties of all Digits -------------------------------------------------------------------------------- Digit-upper-bound : ∀ {d} → (o : ℕ) → (x : Digit d) → Digit-toℕ x o < d + o Digit-upper-bound {d} o x = +n-mono o (bounded x) Digit-lower-bound : ∀ {d} → (o : ℕ) → (x : Digit d) → Digit-toℕ x o ≥ o Digit-lower-bound {d} o x = n≤m+n (toℕ x) o -------------------------------------------------------------------------------- -- Special Digits -------------------------------------------------------------------------------- -- A digit at its greatest Greatest : ∀ {d} (x : Digit d) → Set Greatest {d} x = suc (toℕ x) ≡ d Greatest? : ∀ {d} (x : Digit d) → Dec (Greatest x) Greatest? {d} x = suc (toℕ x) ≟ d greatest-digit : ∀ d → Digit (suc d) greatest-digit d = Fin.fromℕ d greatest-digit-toℕ : ∀ {d o} → (x : Digit (suc d)) → Greatest x → Digit-toℕ x o ≡ d + o greatest-digit-toℕ {d} {o} x greatest = cancel-suc $ begin suc (Digit-toℕ x o) ≡⟨ cong (λ w → w + o) greatest ⟩ suc (d + o) ∎ greatest-of-all : ∀ {d} (o : ℕ) → (x y : Digit d) → Greatest x → Digit-toℕ x o ≥ Digit-toℕ y o greatest-of-all o zero zero refl = ≤-refl greatest-of-all o zero (suc ()) refl greatest-of-all o (suc x) zero greatest = +n-mono o {zero} {suc (toℕ x)} z≤n greatest-of-all o (suc x) (suc y) greatest = s≤s (greatest-of-all o x y (cancel-suc greatest)) greatest-digit-is-the-Greatest : ∀ d → Greatest (greatest-digit d) greatest-digit-is-the-Greatest d = cong suc (FinProps.to-from d) -- carry, 1 `max` o, in case that the least digit "o" is 0 carry : ℕ → ℕ carry o = 1 ⊔ o carry-lower-bound : ∀ {o} → carry o ≥ o carry-lower-bound {o} = m≤n⊔m o 1 carry-upper-bound : ∀ {d o} → 2 ≤ suc d + o → carry o ≤ d + o carry-upper-bound {d} {zero} proper = ≤-pred proper carry-upper-bound {d} {suc o} proper = n≤m+n d (suc o) carry-digit : ∀ d o → 2 ≤ suc d + o → Digit (suc d) carry-digit d o proper = Digit-fromℕ (carry o) o (carry-upper-bound {d} proper) carry-digit-toℕ : ∀ d o → (proper : 2 ≤ suc (d + o)) → Digit-toℕ (carry-digit d o proper) o ≡ carry o carry-digit-toℕ d o proper = Digit-fromℕ-toℕ (carry o) (m≤n⊔m o 1) (carry-upper-bound {d} proper) -- LCD-upper-bound-prim d zero proper = ≤-pred proper -- LCD-upper-bound-prim d (suc o) proper = n≤m+n (suc o) d -- -- LCD : ∀ d o → 2 ≤ suc d + o → Digit (suc d) -- LCD d o proper = Digit-fromℕ (1 ⊔ o) o (LCD-upper-bound-prim d o proper) -- -- LCD-toℕ : ∀ d o -- → (proper : 2 ≤ suc (d + o)) -- → Digit-toℕ (LCD d o proper) o ≡ 1 ⊔ o -- LCD-toℕ d o proper = Digit-fromℕ-toℕ (1 ⊔ o) (m≤n⊔m o 1) (LCD-upper-bound-prim d o proper) -- -- LCD-upper-bound : ∀ {d o} -- → (proper : 2 ≤ suc (d + o)) -- → Digit-toℕ (LCD d o proper) o ≤ d + o -- LCD-upper-bound {d} {o} proper = -- start -- Digit-toℕ (LCD d o proper) o -- ≈⟨ LCD-toℕ d o proper ⟩ -- 1 ⊔ o -- ≤⟨ LCD-upper-bound-prim d o proper ⟩ -- d + o -- □ -------------------------------------------------------------------------------- -- Functions on Digits -------------------------------------------------------------------------------- -- +1 digit+1 : ∀ {d} → (x : Digit d) → (¬greatest : ¬ (Greatest x)) → Fin d digit+1 x ¬greatest = fromℕ≤ {suc (toℕ x)} (≤∧≢⇒< (bounded x) ¬greatest) digit+1-toℕ : ∀ {d o} → (x : Digit d) → (¬greatest : ¬ (Greatest x)) → Digit-toℕ (digit+1 x ¬greatest) o ≡ suc (Digit-toℕ x o) digit+1-toℕ {d} {o} x ¬greatest = begin Digit-toℕ (digit+1 x ¬greatest) o ≡⟨ cong (λ w → w + o) (toℕ-fromℕ≤ (≤∧≢⇒< (bounded x) ¬greatest)) ⟩ suc (Digit-toℕ x o) ∎ digit+1-n-lemma : ∀ {d} → (x : Digit d) → Greatest x → (n : ℕ) → n > 0 → suc (toℕ x) ∸ n < d digit+1-n-lemma {zero } () greatest n n>0 digit+1-n-lemma {suc d} x greatest n n>0 = s≤s $ start suc (toℕ x) ∸ n ≤⟨ ∸n-mono n (bounded x) ⟩ suc d ∸ n ≤⟨ n∸-mono (suc d) n>0 ⟩ suc d ∸ 1 ≤⟨ ≤-refl ⟩ d □ -- +1 and then -n, useful for handling carrying on increment digit+1-n : ∀ {d} → (x : Digit d) → Greatest x → (n : ℕ) → n > 0 → Digit d digit+1-n x greatest n n>0 = fromℕ≤ (digit+1-n-lemma x greatest n n>0) digit+1-n-toℕ : ∀ {d o} → (x : Digit d) → (greatest : Greatest x) → (n : ℕ) → (n>0 : n > 0) → n ≤ d → Digit-toℕ (digit+1-n x greatest n n>0) o ≡ suc (Digit-toℕ x o) ∸ n digit+1-n-toℕ {zero} {o} () greatest n n>0 n≤d digit+1-n-toℕ {suc d} {o} x greatest n n>0 n≤d = begin toℕ (digit+1-n x greatest n n>0) + o ≡⟨ cong (λ w → w + o) (toℕ-fromℕ≤ (digit+1-n-lemma x greatest n n>0)) ⟩ suc (toℕ x) ∸ n + o ≡⟨ +-comm (suc (toℕ x) ∸ n) o ⟩ o + (suc (toℕ x) ∸ n) ≡⟨ sym (+-∸-assoc o {suc (toℕ x)} {n} $ start n ≤⟨ n≤d ⟩ suc d ≈⟨ sym greatest ⟩ suc (toℕ x) □) ⟩ (o + suc (toℕ x)) ∸ n ≡⟨ cong (λ w → w ∸ n) (+-comm o (suc (toℕ x))) ⟩ suc (toℕ x) + o ∸ n ∎
{ "alphanum_fraction": 0.4750277469, "avg_line_length": 31.0689655172, "ext": "agda", "hexsha": "d2f4b2fdbc50e7486b9d54bfc4e2322b6f800bed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Digit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Digit.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Digit.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 2699, "size": 7208 }
module IID-Proof-Setup where open import LF open import Identity open import IID open import IIDr open import DefinitionalEquality OPg : Set -> Set1 OPg I = OP I I -- Encoding indexed inductive types as non-indexed types. ε : {I : Set}(γ : OPg I) -> OPr I ε (ι i) j = σ (i == j) (\_ -> ι ★) ε (σ A γ) j = σ A (\a -> ε (γ a) j) ε (δ H i γ) j = δ H i (ε γ j) -- Adds a reflexivity proof. g→rArgs : {I : Set}(γ : OPg I)(U : I -> Set) (a : Args γ U) -> rArgs (ε γ) U (index γ U a) g→rArgs (ι e) U arg = (refl , ★) g→rArgs (σ A γ) U arg = (π₀ arg , g→rArgs (γ (π₀ arg)) U (π₁ arg)) g→rArgs (δ H i γ) U arg = (π₀ arg , g→rArgs γ U (π₁ arg)) -- Strips the equality proof. r→gArgs : {I : Set}(γ : OPg I)(U : I -> Set) (i : I)(a : rArgs (ε γ) U i) -> Args γ U r→gArgs (ι i) U j _ = ★ r→gArgs (σ A γ) U j arg = (π₀ arg , r→gArgs (γ (π₀ arg)) U j (π₁ arg)) r→gArgs (δ H i γ) U j arg = (π₀ arg , r→gArgs γ U j (π₁ arg)) -- Converting an rArgs to a gArgs and back is (provably, not definitionally) -- the identity. r←→gArgs-subst : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> rArgs (ε γ) U i -> Set) (i : I)(a : rArgs (ε γ) U i) -> (C (index γ U (r→gArgs γ U i a)) (g→rArgs γ U (r→gArgs γ U i a)) ) -> C i a r←→gArgs-subst {I} (ι i) U C j arg m = elim== i (\k q -> C k (q , ★)) m j (π₀ arg) r←→gArgs-subst (σ A γ) U C j arg m = r←→gArgs-subst (γ (π₀ arg)) U (\i c -> C i (π₀ arg , c)) j (π₁ arg) m r←→gArgs-subst (δ H i γ) U C j arg m = r←→gArgs-subst γ U (\i c -> C i (π₀ arg , c)) j (π₁ arg) m -- r←→gArgs-subst eliminates the identity proof stored in the rArgs. If this proof is -- by reflexivity r←→gArgs-subst is a definitional identity. This is the case -- when a = g→rArgs a' r←→gArgs-subst-identity : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> rArgs (ε γ) U i -> Set) (a' : Args γ U) -> let a = g→rArgs γ U a' i = index γ U a' in (h : C (index γ U (r→gArgs γ U i a)) (g→rArgs γ U (r→gArgs γ U i a)) ) -> r←→gArgs-subst γ U C i a h ≡ h r←→gArgs-subst-identity (ι i) U C _ h = refl-≡ r←→gArgs-subst-identity (σ A γ) U C arg h = r←→gArgs-subst-identity (γ (π₀ arg)) U C' (π₁ arg) h where C' = \i c -> C i (π₀ arg , c) r←→gArgs-subst-identity (δ H i γ) U C arg h = r←→gArgs-subst-identity γ U C' (π₁ arg) h where C' = \i c -> C i (π₀ arg , c) -- Going the other way around is definitionally the identity. g←→rArgs-identity : {I : Set}(γ : OPg I)(U : I -> Set) (a : Args γ U) -> r→gArgs γ U (index γ U a) (g→rArgs γ U a) ≡ a g←→rArgs-identity (ι i) U _ = refl-≡ g←→rArgs-identity (σ A γ) U arg = cong-≡ (\ ∙ -> (π₀ arg , ∙)) (g←→rArgs-identity (γ (π₀ arg)) U (π₁ arg)) g←→rArgs-identity (δ H i γ) U arg = cong-≡ (\ ∙ -> (π₀ arg , ∙)) (g←→rArgs-identity γ U (π₁ arg)) -- Corresponding conversion functions for assumptions to inductive occurrences. -- Basically an identity function. g→rIndArg : {I : Set}(γ : OPg I)(U : I -> Set) (i : I)(a : rArgs (ε γ) U i) -> IndArg γ U (r→gArgs γ U i a) -> IndArg (ε γ i) U a g→rIndArg (ι j) U i _ () g→rIndArg (σ A γ) U i arg v = g→rIndArg (γ (π₀ arg)) U i (π₁ arg) v g→rIndArg (δ A j γ) U i arg (inl a) = inl a g→rIndArg (δ A j γ) U i arg (inr v) = inr (g→rIndArg γ U i (π₁ arg) v) -- Basically we can substitute general inductive occurences for the encoded -- restricted inductive occurrences. g→rIndArg-subst : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> U i -> Set) (i : I)(a : rArgs (ε γ) U i) (v : IndArg γ U (r→gArgs γ U i a)) -> C (IndIndex (ε γ i) U a (g→rIndArg γ U i a v)) (Ind (ε γ i) U a (g→rIndArg γ U i a v)) -> C (IndIndex γ U (r→gArgs γ U i a) v) (Ind γ U (r→gArgs γ U i a) v) g→rIndArg-subst (ι j) U C i _ () h g→rIndArg-subst (σ A γ) U C i arg v h = g→rIndArg-subst (γ (π₀ arg)) U C i (π₁ arg) v h g→rIndArg-subst (δ A j γ) U C i arg (inl a) h = h g→rIndArg-subst (δ A j γ) U C i arg (inr v) h = g→rIndArg-subst γ U C i (π₁ arg) v h -- g→rIndArg-subst is purely book-keeping. On the object level it's definitional identity. g→rIndArg-subst-identity : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> U i -> Set) (i : I)(a : rArgs (ε γ) U i) (v : IndArg γ U (r→gArgs γ U i a)) (h : C (IndIndex (ε γ i) U a (g→rIndArg γ U i a v)) (Ind (ε γ i) U a (g→rIndArg γ U i a v)) ) -> g→rIndArg-subst γ U C i a v h ≡ h g→rIndArg-subst-identity (ι j) U C i _ () h g→rIndArg-subst-identity (σ A γ) U C i arg v h = g→rIndArg-subst-identity (γ (π₀ arg)) U C i (π₁ arg) v h g→rIndArg-subst-identity (δ A j γ) U C i arg (inl a) h = refl-≡ g→rIndArg-subst-identity (δ A j γ) U C i arg (inr v) h = g→rIndArg-subst-identity γ U C i (π₁ arg) v h -- And finally conversion of induction hypotheses. This goes the other direction. r→gIndHyp : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> U i -> Set) (i : I)(a : rArgs (ε γ) U i) -> IndHyp (ε γ i) U C a -> IndHyp γ U C (r→gArgs γ U i a) r→gIndHyp γ U C i a h v = g→rIndArg-subst γ U C i a v (h (g→rIndArg γ U i a v))
{ "alphanum_fraction": 0.5488308116, "avg_line_length": 38.8473282443, "ext": "agda", "hexsha": "ef388f8bda7a6f04f9c8f552973e1a1e7783954a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof-Setup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof-Setup.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof-Setup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2208, "size": 5089 }
module Data.Boolean.Stmt where import Lvl open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Functional open import Logic.Propositional open import Type IsTrue : Bool → Type IsTrue = if_then ⊤ else ⊥ IsFalse : Bool → Type IsFalse = IsTrue ∘ !
{ "alphanum_fraction": 0.7460815047, "avg_line_length": 19.9375, "ext": "agda", "hexsha": "90f6395973875169a0591c0297e14740cae6db52", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Boolean/Stmt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Boolean/Stmt.agda", "max_line_length": 46, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Boolean/Stmt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 81, "size": 319 }
{-# OPTIONS --without-K #-} module PathStructure.Coproduct {a b} {A : Set a} {B : Set b} where open import Equivalence open import PathOperations open import Types -- We need to use Lift here, because Agda doesn't have -- cumulative universes. F : A ⊎ B → A ⊎ B → Set (a ⊔ b) F = case (λ _ → A ⊎ B → Set _) (λ a₁ → case (λ _ → Set _) (λ a₂ → Lift b (a₁ ≡ a₂)) (λ _ → Lift _ ⊥)) (λ b₁ → case (λ _ → Set _) (λ _ → Lift _ ⊥) (λ b₂ → Lift a (b₁ ≡ b₂))) F-lemma : (x : A ⊎ B) → F x x F-lemma = case (λ x → F x x) (λ _ → lift refl) (λ _ → lift refl) split-path : {x y : A ⊎ B} → x ≡ y → F x y split-path {x = x} p = tr (F x) p (F-lemma x) merge-path : {x y : A ⊎ B} → F x y → x ≡ y merge-path = case (λ x → ∀ y → F x y → x ≡ y) (λ a → case (λ y → F (inl a) y → inl a ≡ y) (λ _ → ap inl ∘ lower) (λ _ → 0-elim ∘ lower)) (λ b → case (λ y → F (inr b) y → inr b ≡ y) (λ _ → 0-elim ∘ lower) (λ _ → ap inr ∘ lower)) _ _ split-merge-eq : {x y : A ⊎ B} → (x ≡ y) ≃ F x y split-merge-eq {x = x} {y = y} = split-path , (merge-path , λ f → case (λ x → ∀ y (f : F x y) → split-path (merge-path {x} {y} f) ≡ f) (λ a → case (λ y → (f : F (inl a) y) → split-path (merge-path {inl a} {y} f) ≡ f) (λ a′ p → J (λ a a′ p → split-path (merge-path {inl a} {inl a′} (lift p)) ≡ lift p) (λ _ → refl) _ _ (lower p)) (λ _ → 0-elim ∘ lower)) (λ b → case (λ y → (f : F (inr b) y) → split-path (merge-path {inr b} {y} f) ≡ f) (λ _ → 0-elim ∘ lower) (λ b′ p → J (λ b b′ p → split-path (merge-path {inr b} {inr b′} (lift p)) ≡ lift p) (λ _ → refl) _ _ (lower p))) x y f) , (merge-path , J (λ _ _ p → merge-path (split-path p) ≡ p) (case (λ x → merge-path {x} {x} (split-path {x} {x} refl) ≡ refl) (λ _ → refl) (λ _ → refl)) _ _)
{ "alphanum_fraction": 0.4533264569, "avg_line_length": 30.7777777778, "ext": "agda", "hexsha": "98cf757193b5f86df3ebd2355b3d622fe1455360", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/PathStructure/Coproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/PathStructure/Coproduct.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/PathStructure/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 810, "size": 1939 }
module Lvl.Decidable where open import Data.Boolean.Stmt open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Type.Properties.Decidable open import Type.Properties.Decidable.Proofs open import Type private variable ℓ ℓ₁ : Lvl.Level -- Changing classical propositions' universe levels by using their boolean representation. module _ (P : Type{ℓ}) ⦃ dec : Decidable(0)(P) ⦄ where Convert : Type{ℓ₁} Convert = Lvl.Up(IsTrue(decide(0)(P))) -- LvlConvert is satisfied whenever its proposition is. Convert-correctness : P ↔ Convert{ℓ₁} Convert-correctness = [↔]-transitivity decider-true ([↔]-intro Lvl.Up.obj Lvl.up)
{ "alphanum_fraction": 0.7596439169, "avg_line_length": 32.0952380952, "ext": "agda", "hexsha": "4daf49118700d03a4a444d9972030d1970d95eac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lvl/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lvl/Decidable.agda", "max_line_length": 90, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lvl/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 187, "size": 674 }
module Formalization.LambdaCalculus.Semantics where open import Data open import Formalization.LambdaCalculus open import Syntax.Number open import Type -- A value in the language of lambda calculus is a irreducible term by a standard reduction definition. -- It can also be defined as terms that are lambda abstractions because an application of a lambda is supposed to be β-reducible. data Value : Expression → Type{0} where instance abs : ∀{body : Term(1)} → Value(Abstract body)
{ "alphanum_fraction": 0.7926078029, "avg_line_length": 40.5833333333, "ext": "agda", "hexsha": "ff97ab7be53bff0b1ec2aee22008bdffa8b422fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/LambdaCalculus/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/LambdaCalculus/Semantics.agda", "max_line_length": 129, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/LambdaCalculus/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 109, "size": 487 }
module Cutting where open import Basics open import Ix open import All record _|>_ (I O : Set) : Set1 where field Cuts : O -> Set inners : {o : O} -> Cuts o -> List I NatCut : Nat |> Nat NatCut = record { Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn ; inners = \ { (m , n , _) -> m ,- n ,- [] } } record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where constructor _8><_ open _|>_ C field cut : Cuts o pieces : All P (inners cut) infixr 3 _8><_ open Cutting public
{ "alphanum_fraction": 0.5319548872, "avg_line_length": 19.7037037037, "ext": "agda", "hexsha": "4f9469dfaaf6408751d627bd1ea5d230da9f84ac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Cutting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Cutting.agda", "max_line_length": 65, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Cutting.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 197, "size": 532 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- You can transform functions out of discrete -- categories into functors. module Categories.Functor.Construction.FromDiscrete {o ℓ e} (𝒞 : Category o ℓ e) where open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Categories.Category.Discrete open import Categories.Functor using (Functor) private module 𝒞 = Category 𝒞 open Category 𝒞 open 𝒞.HomReasoning FromDiscrete : ∀ {o} {A : Set o} → (A → Obj) → Functor (Discrete A) 𝒞 FromDiscrete {o} {A = A} select = record { F₀ = select ; F₁ = λ { ≡.refl → id } ; identity = refl ; homomorphism = λ { {_} {_} {_} {≡.refl} {≡.refl} → sym identity² } ; F-resp-≈ = λ { ≡.refl → refl } }
{ "alphanum_fraction": 0.6729475101, "avg_line_length": 27.5185185185, "ext": "agda", "hexsha": "a2a2b52858db07962ee89519c6fbf436a44d8a38", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Construction/FromDiscrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Construction/FromDiscrete.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Construction/FromDiscrete.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 248, "size": 743 }
module Dimension.PartialWeakening.Soundness where open import Exception -- using (Except; left; right; _<$>_; _>>=_) open import Injective -- Semantics given by application to a name in Fin n apply : ∀ {n m} (f : PWeak n m) (i : Fin n) → Except E (Fin m) apply [] () apply (e ∷ f) zero = left e apply (e ∷ f) (suc i) = apply f i apply (lift f) zero = right zero apply (lift f) (suc i) = suc <$> apply f i apply (weak f) i = suc <$> apply f i -- Proof of injectivity wrt. semantics injective : ∀ {n m} (f : PWeak n m) (i j : Fin n) → let k = apply f i in let l = apply f j in IsDefined k → k ≡ l → i ≡ j injective [] () injective (e ∷ f) zero j () p injective (e ∷ f) (suc i) zero fi p with apply f i injective (e ∷ f) (suc i) zero () p | left _ injective (e ∷ f) (suc i) zero fi () | right a injective (e ∷ f) (suc i) (suc j) fi p = cong suc (injective f i j fi p) injective (lift f) zero zero fi p = refl injective (lift f) zero (suc j) fi p with apply f j injective (lift f) zero (suc j) fi p | left _ = ⊥-elim (right≢left p) injective (lift f) zero (suc j) fi p | right l = ⊥-elim (zero≢suc (right-injective _ _ p)) injective (lift f) (suc i) zero fi p with apply f i injective (lift f) (suc i) zero fi p | left e = ⊥-elim (left≢right p) injective (lift f) (suc i) zero fi p | right k = ⊥-elim (suc≢zero (right-injective _ _ p)) injective (lift f) (suc i) (suc j) fi p = cong suc (injective f i j (map-def-inv _ fi) (map-injective suc-injective _ _ p)) injective (weak f) i j fi p = injective f i j (map-def-inv _ fi) (map-injective suc-injective _ _ p) -- Soundness of id apply-id : ∀ n (i : Fin n) → apply id i ≡ return i apply-id 0 () apply-id (suc n) zero = refl apply-id (suc n) (suc i) with (apply id i) | (apply-id n i) apply-id (suc n) (suc i) | .(right i) | refl = refl -- Lemma: one inductive step lift-lift-suc : ∀ {n m l} (f : PWeak n m) {g : PWeak m l} {i : Fin n} → (ih : apply (comp f g) i ≡ apply f i >>= apply g) → apply (comp (lift f) (lift g)) (suc i) ≡ apply (lift f) (suc i) >>= apply (lift g) lift-lift-suc f {g = g} {i = i} ih = begin apply (comp (lift f) (lift g)) (suc i) ≡⟨⟩ -- definition of comp apply (lift (comp f g)) (suc i) ≡⟨⟩ -- definition of apply suc <$> apply (comp f g) i ≡⟨ cong (_<$>_ suc) ih ⟩ -- induction hypothesis suc <$> (apply f i >>= apply g) ≡⟨ map-after-bind (apply f i) ⟩ -- map commutes with bind I (apply f i >>= λ j → suc <$> apply g j) ≡⟨⟩ -- definition of apply (apply f i >>= λ j → apply (lift g) (suc j)) ≡⟨ sym (bind-after-map (apply f i)) ⟩ -- map commutes with bind II (suc <$> apply f i) >>= apply (lift g) ≡⟨⟩ -- definition of apply apply (lift f) (suc i) >>= apply (lift g) ∎ -- Soundness of comp apply-comp : ∀ {n m l} (f : PWeak n m) (g : PWeak m l) (i : Fin n) → apply (comp f g) i ≡ apply f i >>= apply g apply-comp [] g () apply-comp (e ∷ f) g zero = refl apply-comp (e ∷ f) g (suc i) = apply-comp f g i -- apply-comp (lift f) (e ∷ g) i = {!!} apply-comp (lift f) (e ∷ g) zero = refl apply-comp (lift f) (e ∷ g) (suc i) with apply f i apply-comp (lift f) (e ∷ g) (suc i) | left e′ = {!!} apply-comp (lift f) (e ∷ g) (suc i) | right a = {!!} apply-comp (lift f) (lift g) zero = refl apply-comp (lift f) (lift g) (suc i) = lift-lift-suc f (apply-comp f g i) apply-comp (lift f) (weak g) i = begin suc <$> apply (comp (lift f) g) i ≡⟨ cong (_<$>_ suc) (apply-comp (lift f) g i) ⟩ -- ind. hyp. suc <$> (apply (lift f) i >>= apply g) ≡⟨ map-after-bind (apply (lift f) i) ⟩ -- move map apply (lift f) i >>= (λ j → suc <$> apply g j) ∎ apply-comp (weak f) g i = {!!}
{ "alphanum_fraction": 0.516263145, "avg_line_length": 34.9487179487, "ext": "agda", "hexsha": "94ece769ef307eae41d6dbb331deb805dd44945a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Dimension/PartialWeakening/Soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Dimension/PartialWeakening/Soundness.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Dimension/PartialWeakening/Soundness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1486, "size": 4089 }
{-# OPTIONS --prop --rewriting #-} module Examples.Exp2 where open import Calf.CostMonoid open import Calf.CostMonoids using (ℕ²-ParCostMonoid) parCostMonoid = ℕ²-ParCostMonoid open ParCostMonoid parCostMonoid open import Calf costMonoid open import Calf.ParMetalanguage parCostMonoid open import Calf.Types.Bool open import Calf.Types.Nat open import Calf.Types.Bounded costMonoid open import Calf.Types.BigO costMonoid open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; _≢_; module ≡-Reasoning) open import Data.Nat as Nat using (_+_; pred; _*_; _^_; _⊔_) import Data.Nat.Properties as N open import Data.Nat.PredExp2 open import Data.Product open import Data.Empty Correct : cmp (Π nat λ _ → F nat) → Set Correct exp₂ = (n : ℕ) → ◯ (exp₂ n ≡ ret (2 ^ n)) module Slow where exp₂ : cmp (Π nat λ _ → F nat) exp₂ zero = ret (suc zero) exp₂ (suc n) = bind (F nat) (exp₂ n & exp₂ n) λ (r₁ , r₂) → step (F nat) (1 , 1) (ret (r₁ + r₂)) exp₂/correct : Correct exp₂ exp₂/correct zero u = refl exp₂/correct (suc n) u = begin exp₂ (suc n) ≡⟨⟩ (bind (F nat) (exp₂ n & exp₂ n) λ (r₁ , r₂) → step (F nat) (1 , 1) (ret (r₁ + r₂))) ≡⟨ Eq.cong (bind (F nat) (exp₂ n & exp₂ n)) (funext (λ (r₁ , r₂) → step/ext (F nat) _ (1 , 1) u)) ⟩ (bind (F nat) (exp₂ n & exp₂ n) λ (r₁ , r₂) → ret (r₁ + r₂)) ≡⟨ Eq.cong (λ e → bind (F nat) (e & e) _) (exp₂/correct n u) ⟩ step (F nat) (𝟘 ⊗ 𝟘) (ret (2 ^ n + 2 ^ n)) ≡⟨⟩ ret (2 ^ n + 2 ^ n) ≡⟨ Eq.cong ret (lemma/2^suc n) ⟩ ret (2 ^ suc n) ∎ where open ≡-Reasoning exp₂/cost : cmp (Π nat λ _ → cost) exp₂/cost zero = 𝟘 exp₂/cost (suc n) = bind cost (exp₂ n & exp₂ n) λ (r₁ , r₂) → (exp₂/cost n ⊗ exp₂/cost n) ⊕ ((1 , 1) ⊕ 𝟘) exp₂/cost/closed : cmp (Π nat λ _ → cost) exp₂/cost/closed n = pred[2^ n ] , n exp₂/cost≤exp₂/cost/closed : ∀ n → ◯ (exp₂/cost n ≤ exp₂/cost/closed n) exp₂/cost≤exp₂/cost/closed zero u = ≤-refl exp₂/cost≤exp₂/cost/closed (suc n) u = let ≡ = exp₂/correct n u in let open ≤-Reasoning in begin exp₂/cost (suc n) ≡⟨⟩ (bind cost (exp₂ n & exp₂ n) λ (r₁ , r₂) → (exp₂/cost n ⊗ exp₂/cost n) ⊕ ((1 , 1) ⊕ 𝟘)) ≡⟨ Eq.cong₂ (λ e₁ e₂ → bind cost (e₁ & e₂) λ (r₁ , r₂) → (exp₂/cost n ⊗ exp₂/cost n) ⊕ _) (≡) (≡) ⟩ (exp₂/cost n ⊗ exp₂/cost n) ⊕ ((1 , 1) ⊕ 𝟘) ≡⟨ Eq.cong ((exp₂/cost n ⊗ exp₂/cost n) ⊕_) (⊕-identityʳ _) ⟩ (exp₂/cost n ⊗ exp₂/cost n) ⊕ (1 , 1) ≤⟨ ⊕-monoˡ-≤ (1 , 1) (⊗-mono-≤ (exp₂/cost≤exp₂/cost/closed n u) (exp₂/cost≤exp₂/cost/closed n u)) ⟩ (exp₂/cost/closed n ⊗ exp₂/cost/closed n) ⊕ (1 , 1) ≡⟨ Eq.cong₂ _,_ arithmetic/work arithmetic/span ⟩ exp₂/cost/closed (suc n) ∎ where arithmetic/work : proj₁ (exp₂/cost/closed n ⊗ exp₂/cost/closed n ⊕ (1 , 1)) ≡ proj₁ (exp₂/cost/closed (suc n)) arithmetic/work = begin proj₁ (exp₂/cost/closed n ⊗ exp₂/cost/closed n ⊕ (1 , 1)) ≡⟨⟩ proj₁ (exp₂/cost/closed n) + proj₁ (exp₂/cost/closed n) + 1 ≡⟨ N.+-comm _ 1 ⟩ suc (proj₁ (exp₂/cost/closed n) + proj₁ (exp₂/cost/closed n)) ≡⟨⟩ suc (pred[2^ n ] + pred[2^ n ]) ≡⟨ pred[2^suc[n]] n ⟩ pred[2^ suc n ] ≡⟨⟩ proj₁ (exp₂/cost/closed (suc n)) ∎ where open ≡-Reasoning arithmetic/span : proj₂ (exp₂/cost/closed n ⊗ exp₂/cost/closed n ⊕ (1 , 1)) ≡ proj₂ (exp₂/cost/closed (suc n)) arithmetic/span = begin proj₂ (exp₂/cost/closed n ⊗ exp₂/cost/closed n ⊕ (1 , 1)) ≡⟨⟩ proj₂ (exp₂/cost/closed n) ⊔ proj₂ (exp₂/cost/closed n) + 1 ≡⟨⟩ n ⊔ n + 1 ≡⟨ Eq.cong (_+ 1) (N.⊔-idem n) ⟩ n + 1 ≡⟨ N.+-comm _ 1 ⟩ suc n ≡⟨⟩ proj₂ (exp₂/cost/closed (suc n)) ∎ where open ≡-Reasoning exp₂≤exp₂/cost : ∀ n → IsBounded nat (exp₂ n) (exp₂/cost n) exp₂≤exp₂/cost zero = bound/ret exp₂≤exp₂/cost (suc n) = bound/bind (exp₂/cost n ⊗ exp₂/cost n) _ (bound/par (exp₂≤exp₂/cost n) (exp₂≤exp₂/cost n)) λ (r₁ , r₂) → bound/step (1 , 1) 𝟘 bound/ret exp₂≤exp₂/cost/closed : ∀ n → IsBounded nat (exp₂ n) (exp₂/cost/closed n) exp₂≤exp₂/cost/closed n = bound/relax (exp₂/cost≤exp₂/cost/closed n) (exp₂≤exp₂/cost n) exp₂/asymptotic : given nat measured-via (λ n → n) , exp₂ ∈𝓞(λ n → 2 ^ n , n) exp₂/asymptotic = 0 ≤n⇒f[n]≤g[n]via λ n _ → bound/relax (λ u → N.pred[n]≤n , N.≤-refl) (exp₂≤exp₂/cost/closed n) module Fast where exp₂ : cmp (Π nat λ _ → F nat) exp₂ zero = ret (suc zero) exp₂ (suc n) = bind (F nat) (exp₂ n) λ r → step (F nat) (1 , 1) (ret (r + r)) exp₂/correct : Correct exp₂ exp₂/correct zero u = refl exp₂/correct (suc n) u = begin exp₂ (suc n) ≡⟨⟩ (bind (F nat) (exp₂ n) λ r → step (F nat) (1 , 1) (ret (r + r))) ≡⟨ Eq.cong (bind (F nat) (exp₂ n)) (funext (λ r → step/ext (F nat) _ (1 , 1) u)) ⟩ (bind (F nat) (exp₂ n) λ r → ret (r + r)) ≡⟨ Eq.cong (λ e → bind (F nat) e _) (exp₂/correct n u) ⟩ (bind (F nat) (ret {nat} (2 ^ n)) λ r → ret (r + r)) ≡⟨⟩ ret (2 ^ n + 2 ^ n) ≡⟨ Eq.cong ret (lemma/2^suc n) ⟩ ret (2 ^ suc n) ∎ where open ≡-Reasoning exp₂/cost : cmp (Π nat λ _ → cost) exp₂/cost zero = 𝟘 exp₂/cost (suc n) = bind cost (exp₂ n) λ r → exp₂/cost n ⊕ ((1 , 1) ⊕ 𝟘) exp₂/cost/closed : cmp (Π nat λ _ → cost) exp₂/cost/closed n = n , n exp₂/cost≤exp₂/cost/closed : ∀ n → ◯ (exp₂/cost n ≤ exp₂/cost/closed n) exp₂/cost≤exp₂/cost/closed zero u = ≤-refl exp₂/cost≤exp₂/cost/closed (suc n) u = let open ≤-Reasoning in begin exp₂/cost (suc n) ≡⟨⟩ (bind cost (exp₂ n) λ r → exp₂/cost n ⊕ ((1 , 1) ⊕ 𝟘)) ≡⟨ Eq.cong (λ e → bind cost e λ r → exp₂/cost n ⊕ _) (exp₂/correct n u) ⟩ exp₂/cost n ⊕ ((1 , 1) ⊕ 𝟘) ≤⟨ ⊕-monoˡ-≤ ((1 , 1) ⊕ 𝟘) (exp₂/cost≤exp₂/cost/closed n u) ⟩ exp₂/cost/closed n ⊕ ((1 , 1) ⊕ 𝟘) ≡⟨ Eq.cong (exp₂/cost/closed n ⊕_) (⊕-identityʳ _) ⟩ exp₂/cost/closed n ⊕ (1 , 1) ≡⟨ Eq.cong₂ _,_ (N.+-comm _ 1) (N.+-comm _ 1) ⟩ exp₂/cost/closed (suc n) ∎ exp₂≤exp₂/cost : ∀ n → IsBounded nat (exp₂ n) (exp₂/cost n) exp₂≤exp₂/cost zero = bound/ret exp₂≤exp₂/cost (suc n) = bound/bind (exp₂/cost n) _ (exp₂≤exp₂/cost n) λ r → bound/step (1 , 1) 𝟘 bound/ret exp₂≤exp₂/cost/closed : ∀ n → IsBounded nat (exp₂ n) (exp₂/cost/closed n) exp₂≤exp₂/cost/closed n = bound/relax (exp₂/cost≤exp₂/cost/closed n) (exp₂≤exp₂/cost n) exp₂/asymptotic : given nat measured-via (λ n → n) , exp₂ ∈𝓞(λ n → n , n) exp₂/asymptotic = 0 ≤n⇒f[n]≤ 1 g[n]via λ n _ → Eq.subst (IsBounded _ _) (Eq.sym (⊕-identityʳ _)) (exp₂≤exp₂/cost/closed n) slow≡fast : ◯ (Slow.exp₂ ≡ Fast.exp₂) slow≡fast u = funext λ n → begin Slow.exp₂ n ≡⟨ Slow.exp₂/correct n u ⟩ ret (2 ^ n) ≡˘⟨ Fast.exp₂/correct n u ⟩ Fast.exp₂ n ∎ where open ≡-Reasoning
{ "alphanum_fraction": 0.5425889605, "avg_line_length": 34.1531100478, "ext": "agda", "hexsha": "52d123ad92887359c4c0836cc3c876f47b1ffbe1", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Exp2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Exp2.agda", "max_line_length": 124, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Exp2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 3172, "size": 7138 }
------------------------------------------------------------------------ -- Semantics of the parsers ------------------------------------------------------------------------ module TotalParserCombinators.Semantics where open import Codata.Musical.Notation open import Data.List hiding (drop) open import Data.List.Relation.Binary.BagAndSetEquality using (bag) renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe using (Maybe); open Data.Maybe.Maybe open import Data.Product open import Data.Unit using (⊤; tt) open import Function.Base open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_; module Equivalence) open import Function.Inverse using (_↔_; module Inverse) open import Function.Related as Related using (Related) open import Level import Relation.Binary.HeterogeneousEquality as H open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- Semantics -- The semantics of the parsers. x ∈ p · s means that x can be the -- result of applying the parser p to the string s. Note that the -- semantics is defined inductively. infix 60 <$>_ infixl 50 _⊛_ [_-_]_⊛_ infixl 10 _>>=_ [_-_]_>>=_ infix 4 _∈_·_ data _∈_·_ {Tok} : ∀ {R xs} → R → Parser Tok R xs → List Tok → Set₁ where return : ∀ {R} {x : R} → x ∈ return x · [] token : ∀ {x} → x ∈ token · [ x ] ∣-left : ∀ {R x xs₁ xs₂ s} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₁ : x ∈ p₁ · s) → x ∈ p₁ ∣ p₂ · s ∣-right : ∀ {R x xs₂ s} xs₁ {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₂ : x ∈ p₂ · s) → x ∈ p₁ ∣ p₂ · s <$>_ : ∀ {R₁ R₂ x s xs} {p : Parser Tok R₁ xs} {f : R₁ → R₂} (x∈p : x ∈ p · s) → f x ∈ f <$> p · s _⊛_ : ∀ {R₁ R₂ f x s₁ s₂ fs xs} {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → (f∈p₁ : f ∈ ♭? p₁ · s₁) (x∈p₂ : x ∈ ♭? p₂ · s₂) → f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ _>>=_ : ∀ {R₁ R₂ x y s₁ s₂ xs} {f : Maybe (R₁ → List R₂)} {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} (x∈p₁ : x ∈ ♭? p₁ · s₁) (y∈p₂x : y ∈ ♭? (p₂ x) · s₂) → y ∈ p₁ >>= p₂ · s₁ ++ s₂ nonempty : ∀ {R xs x y s} {p : Parser Tok R xs} (x∈p : y ∈ p · x ∷ s) → y ∈ nonempty p · x ∷ s cast : ∀ {R xs₁ xs₂ x s} {xs₁≈xs₂ : xs₁ List-∼[ bag ] xs₂} {p : Parser Tok R xs₁} (x∈p : x ∈ p · s) → x ∈ cast xs₁≈xs₂ p · s -- Some variants with fewer implicit arguments. (The arguments xs and -- fs can usually not be inferred, but I do not want to mention them -- in the paper, so I have made them implicit in the definition -- above.) [_-_]_⊛_ : ∀ {Tok R₁ R₂ f x s₁ s₂} xs fs {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → f ∈ ♭? p₁ · s₁ → x ∈ ♭? p₂ · s₂ → f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ [ xs - fs ] f∈p₁ ⊛ x∈p₂ = _⊛_ {fs = fs} {xs = xs} f∈p₁ x∈p₂ [_-_]_>>=_ : ∀ {Tok R₁ R₂ x y s₁ s₂} (f : Maybe (R₁ → List R₂)) xs {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} → x ∈ ♭? p₁ · s₁ → y ∈ ♭? (p₂ x) · s₂ → y ∈ p₁ >>= p₂ · s₁ ++ s₂ [ f - xs ] x∈p₁ >>= y∈p₂x = _>>=_ {xs = xs} {f = f} x∈p₁ y∈p₂x ------------------------------------------------------------------------ -- Parser and language equivalence infix 4 _∼[_]_ _≈_ _≅_ _≲_ -- There are two kinds of equivalences. Parser equivalences are -- stronger, and correspond to bag equality. Language equivalences are -- weaker, and correspond to set equality. open Data.List.Relation.Binary.BagAndSetEquality public using (Kind) renaming ( bag to parser ; set to language ; subbag to subparser ; subset to sublanguage ; superbag to superparser ; superset to superlanguage ) -- General definition of equivalence between parsers. (Note that this -- definition also gives access to some ordering relations.) _∼[_]_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Kind → Parser Tok R xs₂ → Set₁ p₁ ∼[ k ] p₂ = ∀ {x s} → Related k (x ∈ p₁ · s) (x ∈ p₂ · s) -- Language equivalence. (Corresponds to set equality.) _≈_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≈ p₂ = p₁ ∼[ language ] p₂ -- Parser equivalence. (Corresponds to bag equality.) _≅_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≅ p₂ = p₁ ∼[ parser ] p₂ -- p₁ ≲ p₂ means that the language defined by p₂ contains all the -- string/result pairs contained in the language defined by p₁. _≲_ : ∀ {Tok R xs₁ xs₂} → Parser Tok R xs₁ → Parser Tok R xs₂ → Set₁ p₁ ≲ p₂ = p₁ ∼[ sublanguage ] p₂ -- p₁ ≈ p₂ iff both p₁ ≲ p₂ and p₂ ≲ p₁. ≈⇔≲≳ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≈ p₂ ⇔ (p₁ ≲ p₂ × p₂ ≲ p₁) ≈⇔≲≳ = Eq.equivalence (λ p₁≈p₂ → ((λ {x s} → _⟨$⟩_ (Equivalence.to (p₁≈p₂ {x = x} {s = s}))) , λ {x s} → _⟨$⟩_ (Equivalence.from (p₁≈p₂ {x = x} {s = s})))) (λ p₁≲≳p₂ → λ {x s} → Eq.equivalence (proj₁ p₁≲≳p₂ {s = s}) (proj₂ p₁≲≳p₂ {s = s})) -- Parser equivalence implies language equivalence. ≅⇒≈ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≅ p₂ → p₁ ≈ p₂ ≅⇒≈ p₁≅p₂ = Related.↔⇒ p₁≅p₂ -- Language equivalence does not (in general) imply parser -- equivalence. ¬≈⇒≅ : ¬ (∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≈ p₂ → p₁ ≅ p₂) ¬≈⇒≅ hyp with Inverse.injective p₁≅p₂ {∣-left return} {∣-right [ tt ] return} (lemma _ _) where p₁ : Parser ⊤ ⊤ _ p₁ = return tt ∣ return tt p₂ : Parser ⊤ ⊤ _ p₂ = return tt p₁≲p₂ : p₁ ≲ p₂ p₁≲p₂ (∣-left return) = return p₁≲p₂ (∣-right ._ return) = return p₁≅p₂ : p₁ ≅ p₂ p₁≅p₂ = hyp $ Eq.equivalence p₁≲p₂ ∣-left lemma : ∀ {x s} (x∈₁ x∈₂ : x ∈ p₂ · s) → x∈₁ ≡ x∈₂ lemma return return = P.refl ... | () ------------------------------------------------------------------------ -- A simple cast lemma cast∈ : ∀ {Tok R xs} {p p′ : Parser Tok R xs} {x x′ s s′} → x ≡ x′ → p ≡ p′ → s ≡ s′ → x ∈ p · s → x′ ∈ p′ · s′ cast∈ P.refl P.refl P.refl x∈ = x∈
{ "alphanum_fraction": 0.5117513268, "avg_line_length": 36.6388888889, "ext": "agda", "hexsha": "1ebfe84395caa8654bc1a75838e841d391c2a3f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Semantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Semantics.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2481, "size": 6595 }
-- Agda should warn if a coinductive record is declared but neither -- --guardedness nor --sized-types is enabled. record R : Set where coinductive field r : R
{ "alphanum_fraction": 0.7100591716, "avg_line_length": 21.125, "ext": "agda", "hexsha": "0872da64c55ee9781a6eba43f8e8368b13b2f82c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WarningNoGuardedness.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WarningNoGuardedness.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WarningNoGuardedness.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 169 }
{-# OPTIONS --safe --no-qualified-instances #-} {- Noop removal transformation on bytecode -} module JVM.Transform.Noooops where open import Data.Product open import Data.Sum open import Function using (case_of_) open import Data.List open import Relation.Unary hiding (Empty) open import Relation.Binary.Structures open import Relation.Binary.PropositionalEquality using (refl; _≡_) open import Relation.Ternary.Core open import Relation.Ternary.Structures open import Relation.Ternary.Structures.Syntax hiding (_∣_) open import JVM.Types open import JVM.Model StackTy open import JVM.Syntax.Instructions open import Relation.Ternary.Data.ReflexiveTransitive {{intf-rel}} open IsEquivalence {{...}} using (sym) open import Data.Maybe using (just; nothing; Maybe) is-noop : ∀[ ⟨ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟩ ⇒ (Empty (ψ₁ ≡ ψ₂) ∪ U) ] is-noop noop = inj₁ (emp refl) is-noop _ = inj₂ _ noooop : ∀[ ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ ⇒ ⟪ 𝑭 ∣ ψ₁ ↝ ψ₂ ⟫ ] noooop nil = nil -- (1) not labeled noooop (cons (instr (↓ i) ∙⟨ σ ⟩ is)) = case (is-noop i) of λ where (inj₂ _) → instr (↓ i) ▹⟨ σ ⟩ noooop is (inj₁ (emp refl)) → coe (∙-id⁻ˡ σ) (noooop is) -- (2) is labeled noooop (cons (li@(labeled (l ∙⟨ σ₀ ⟩ ↓ i)) ∙⟨ σ ⟩ is)) = case (is-noop i) of λ where (inj₂ _) → cons (li ∙⟨ σ ⟩ noooop is) (inj₁ (emp refl)) → label-start noop l ⟨ coe {{∙-respects-≈ˡ}} (≈-sym (∙-id⁻ʳ σ₀)) σ ⟩ (noooop is)
{ "alphanum_fraction": 0.659269864, "avg_line_length": 32.488372093, "ext": "agda", "hexsha": "c7699236b82eb23e9a99032f7b2d08d339f0d169", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/JVM/Transform/Noooops.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/JVM/Transform/Noooops.agda", "max_line_length": 102, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/JVM/Transform/Noooops.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 506, "size": 1397 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Equality where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE U≡A′ : ∀ {A Γ l} ([U] : Γ ⊩⟨ l ⟩U) → Γ ⊩⟨ l ⟩ U ≡ A / (U-intr [U]) → A PE.≡ U U≡A′ (noemb [U]) (U₌ [U≡A]) = [U≡A] U≡A′ (emb 0<1 [U]) (ιx [U≡A]) = U≡A′ [U] [U≡A] -- If A is judgmentally equal to U, then A is propsitionally equal to U. U≡A : ∀ {A Γ} → Γ ⊢ U ≡ A → A PE.≡ U U≡A {A} U≡A with reducibleEq U≡A U≡A {A} U≡A | [U] , [A] , [U≡A] = U≡A′ (U-elim [U]) (irrelevanceEq [U] (U-intr (U-elim [U])) [U≡A]) ℕ≡A′ : ∀ {A Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ) → Γ ⊩⟨ l ⟩ ℕ ≡ A / (ℕ-intr [ℕ]) → Whnf A → A PE.≡ ℕ ℕ≡A′ (noemb x) (ιx (ℕ₌ [ℕ≡A])) whnfA = whnfRed* [ℕ≡A] whnfA ℕ≡A′ (emb 0<1 [ℕ]) (ιx [ℕ≡A]) whnfA = ℕ≡A′ [ℕ] [ℕ≡A] whnfA -- If A in WHNF is judgmentally equal to ℕ, then A is propsitionally equal to ℕ. ℕ≡A : ∀ {A Γ} → Γ ⊢ ℕ ≡ A → Whnf A → A PE.≡ ℕ ℕ≡A {A} ℕ≡A whnfA with reducibleEq ℕ≡A ℕ≡A {A} ℕ≡A whnfA | [ℕ] , [A] , [ℕ≡A] = ℕ≡A′ (ℕ-elim [ℕ]) (irrelevanceEq [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [ℕ≡A]) whnfA ne≡A′ : ∀ {A K Γ l} → ([K] : Γ ⊩⟨ l ⟩ne K) → Γ ⊩⟨ l ⟩ K ≡ A / (ne-intr [K]) → Whnf A → ∃ λ M → Neutral M × A PE.≡ M ne≡A′ (noemb [K]) (ιx (ne₌ M D′ neM K≡M)) whnfA = M , neM , (whnfRed* (red D′) whnfA) ne≡A′ (emb 0<1 [K]) (ιx [K≡A]) whnfA = ne≡A′ [K] [K≡A] whnfA -- If A in WHNF is judgmentally equal to K, then there exists a M such that -- A is propsitionally equal to M. ne≡A : ∀ {A K Γ} → Neutral K → Γ ⊢ K ≡ A → Whnf A → ∃ λ M → Neutral M × A PE.≡ M ne≡A {A} neK ne≡A whnfA with reducibleEq ne≡A ne≡A {A} neK ne≡A whnfA | [ne] , [A] , [ne≡A] = ne≡A′ (ne-elim neK [ne]) (irrelevanceEq [ne] (ne-intr (ne-elim neK [ne])) [ne≡A]) whnfA Π≡A′ : ∀ {A F G Γ l} ([Π] : Γ ⊩⟨ l ⟩Π Π F ▹ G) → Γ ⊩⟨ l ⟩ Π F ▹ G ≡ A / (Π-intr [Π]) → Whnf A → ∃₂ λ H E → A PE.≡ Π H ▹ E Π≡A′ (noemb [Π]) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) whnfA = F′ , G′ , whnfRed* D′ whnfA Π≡A′ (emb 0<1 [Π]) (ιx [Π≡A]) whnfA = Π≡A′ [Π] [Π≡A] whnfA -- If A is judgmentally equal to Π F ▹ G, then there exists H and E such that -- A is propsitionally equal to Π H ▹ E. Π≡A : ∀ {A F G Γ} → Γ ⊢ Π F ▹ G ≡ A → Whnf A → ∃₂ λ H E → A PE.≡ Π H ▹ E Π≡A {A} Π≡A whnfA with reducibleEq Π≡A Π≡A {A} Π≡A whnfA | [Π] , [A] , [Π≡A] = Π≡A′ (Π-elim [Π]) (irrelevanceEq [Π] (Π-intr (Π-elim [Π])) [Π≡A]) whnfA
{ "alphanum_fraction": 0.5437969253, "avg_line_length": 32.1494252874, "ext": "agda", "hexsha": "df370493c6fe0e76d300f1e1bfefd154472ea146", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Equality.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1458, "size": 2797 }
{-# OPTIONS --rewriting #-} module Issue5470.Import where open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite private postulate foo : Nat → Nat bar : Nat → Nat bar n = foo n private postulate lemma : ∀ n → foo n ≡ n {-# REWRITE lemma #-}
{ "alphanum_fraction": 0.6816720257, "avg_line_length": 14.8095238095, "ext": "agda", "hexsha": "0f522bcf18bed2d20c021fc886f0b03c11646d32", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue5470/Import.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue5470/Import.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue5470/Import.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 93, "size": 311 }
module ProposedSemantics where open import Syntax public -- Vindicative Kripke models. record Model : Set₁ where infix 3 _⊩ᵅ_ field World : Set _≤_ : World → World → Set refl≤ : ∀ {w} → w ≤ w trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″ _R_ : World → World → Set reflR : ∀ {w} → w R w transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″ _⊩ᵅ_ : World → Atom → Set mono⊩ᵅ : ∀ {w w′ P} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P -- Vindication, a consequence of brilliance and persistence. field ≤→R : ∀ {v′ w} → w ≤ v′ → w R v′ open Model {{…}} public -- Forcing in a particular world of a particular model. module _ {{_ : Model}} where infix 3 _⊩_ _⊩_ : World → Type → Set w ⊩ α P = w ⊩ᵅ P w ⊩ A ⇒ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B w ⊩ □ A = ∀ {v′} → w R v′ → v′ ⊩ A w ⊩ A ⩕ B = w ⊩ A ∧ w ⊩ B w ⊩ ⫪ = ⊤ w ⊩ ⫫ = ⊥ w ⊩ A ⩖ B = w ⊩ A ∨ w ⊩ B infix 3 _⊩⋆_ _⊩⋆_ : World → Stack Type → Set w ⊩⋆ ∅ = ⊤ w ⊩⋆ Ξ , A = w ⊩⋆ Ξ ∧ w ⊩ A -- Monotonicity of forcing with respect to constructive accessibility. module _ {{_ : Model}} where mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A mono⊩ {α P} ψ s = mono⊩ᵅ ψ s mono⊩ {A ⇒ B} ψ f = λ ψ′ a → f (trans≤ ψ ψ′) a mono⊩ {□ A} ψ f = λ ρ → f (transR (≤→R ψ) ρ) mono⊩ {A ⩕ B} ψ (a , b) = mono⊩ {A} ψ a , mono⊩ {B} ψ b mono⊩ {⫪} ψ ∙ = ∙ mono⊩ {⫫} ψ () mono⊩ {A ⩖ B} ψ (ι₁ a) = ι₁ (mono⊩ {A} ψ a) mono⊩ {A ⩖ B} ψ (ι₂ b) = ι₂ (mono⊩ {B} ψ b) mono⊩⋆ : ∀ {Ξ w w′} → w ≤ w′ → w ⊩⋆ Ξ → w′ ⊩⋆ Ξ mono⊩⋆ {∅} ψ ∙ = ∙ mono⊩⋆ {Ξ , A} ψ (ξ , s) = mono⊩⋆ {Ξ} ψ ξ , mono⊩ {A} ψ s -- Additional equipment. module _ {{_ : Model}} where lookup : ∀ {Ξ A w} → A ∈ Ξ → w ⊩⋆ Ξ → w ⊩ A lookup top (ξ , s) = s lookup (pop i) (ξ , s) = lookup i ξ -- Forcing in all worlds of all models, or semantic entailment. infix 3 _⊨_ _⊨_ : Context → Type → Set₁ Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w} → w ⊩⋆ Γ → (∀ {v′} → w R v′ → v′ ⊩⋆ Δ) → w ⊩ A -- Soundness of the semantics with respect to the syntax. reflect : ∀ {Γ Δ A} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A reflect (var i) γ δ = lookup i γ reflect (mvar i) γ δ = lookup i (δ reflR) reflect (lam d) γ δ = λ ψ a → reflect d (mono⊩⋆ ψ γ , a) (λ ρ → δ (transR (≤→R ψ) ρ)) reflect (app d e) γ δ = (reflect d γ δ) refl≤ (reflect e γ δ) reflect (box d) γ δ = λ ρ → reflect d ∙ (λ ρ′ → δ (transR ρ ρ′)) reflect (unbox d e) γ δ = reflect e γ (λ ρ → δ ρ , (reflect d γ δ) ρ) reflect (pair d e) γ δ = reflect d γ δ , reflect e γ δ reflect (fst d) γ δ = π₁ (reflect d γ δ) reflect (snd d) γ δ = π₂ (reflect d γ δ) reflect unit γ δ = ∙ reflect (boom d) γ δ = elim⊥ (reflect d γ δ) reflect (left d) γ δ = ι₁ (reflect d γ δ) reflect (right d) γ δ = ι₂ (reflect d γ δ) reflect (case d e f) γ δ = elim∨ (reflect d γ δ) (λ a → reflect e (γ , a) δ) (λ b → reflect f (γ , b) δ)
{ "alphanum_fraction": 0.4454748961, "avg_line_length": 30.359223301, "ext": "agda", "hexsha": "8fb0d05d6e20d9c85a8d9ad1e73bf4568a12d844", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/imla2017", "max_forks_repo_path": "src/ProposedSemantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/imla2017", "max_issues_repo_path": "src/ProposedSemantics.agda", "max_line_length": 76, "max_stars_count": 17, "max_stars_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/imla2017", "max_stars_repo_path": "src/ProposedSemantics.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-17T13:02:58.000Z", "max_stars_repo_stars_event_min_datetime": "2017-02-27T05:04:55.000Z", "num_tokens": 1474, "size": 3127 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommMonoid.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid.Base private variable ℓ ℓ' : Level module _ (M : CommMonoid ℓ) (P : ⟨ M ⟩ → hProp ℓ') where open CommMonoidStr (snd M) module _ (·Closed : (x y : ⟨ M ⟩) → ⟨ P x ⟩ → ⟨ P y ⟩ → ⟨ P (x · y) ⟩) (εContained : ⟨ P ε ⟩) where private subtype = Σ[ x ∈ ⟨ M ⟩ ] ⟨ P x ⟩ makeSubCommMonoid : CommMonoid _ fst makeSubCommMonoid = subtype CommMonoidStr.ε (snd makeSubCommMonoid) = ε , εContained CommMonoidStr._·_ (snd makeSubCommMonoid) (x , xContained) (y , yContained) = (x · y) , ·Closed x y xContained yContained IsCommMonoid.isMonoid (CommMonoidStr.isCommMonoid (snd makeSubCommMonoid)) = makeIsMonoid (isOfHLevelΣ 2 (isSetFromIsCommMonoid isCommMonoid) λ _ → isProp→isSet (snd (P _))) (λ x y z → Σ≡Prop (λ _ → snd (P _)) (·Assoc (fst x) (fst y) (fst z))) (λ x → Σ≡Prop (λ _ → snd (P _)) (·IdR (fst x))) λ x → Σ≡Prop (λ _ → snd (P _)) (·IdL (fst x)) IsCommMonoid.·Comm (CommMonoidStr.isCommMonoid (snd makeSubCommMonoid)) = λ x y → Σ≡Prop (λ _ → snd (P _)) (·Comm (fst x) (fst y)) module CommMonoidTheory (M' : CommMonoid ℓ) where open CommMonoidStr (snd M') private M = ⟨ M' ⟩ commAssocl : (x y z : M) → x · (y · z) ≡ y · (x · z) commAssocl x y z = ·Assoc x y z ∙∙ cong (_· z) (·Comm x y) ∙∙ sym (·Assoc y x z) commAssocr : (x y z : M) → x · y · z ≡ x · z · y commAssocr x y z = sym (·Assoc x y z) ∙∙ cong (x ·_) (·Comm y z) ∙∙ ·Assoc x z y commAssocr2 : (x y z : M) → x · y · z ≡ z · y · x commAssocr2 x y z = commAssocr _ _ _ ∙∙ cong (_· y) (·Comm _ _) ∙∙ commAssocr _ _ _ commAssocSwap : (x y z w : M) → (x · y) · (z · w) ≡ (x · z) · (y · w) commAssocSwap x y z w = ·Assoc (x · y) z w ∙∙ cong (_· w) (commAssocr x y z) ∙∙ sym (·Assoc (x · z) y w)
{ "alphanum_fraction": 0.5778823529, "avg_line_length": 35.4166666667, "ext": "agda", "hexsha": "40ee5bc4ef1d3348edda75eb6e7b83bc50b1285d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommMonoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommMonoid/Properties.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommMonoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 823, "size": 2125 }
-- Andreas, Ulf, AIM XXIX, 2019-03-18, issue #3597 -- Eta-expansion of record metas disregards freezing. -- Meta occurs check is then insufficient, leading to cyclic assignment. {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.meta:40 #-} -- {-# OPTIONS -v tc.meta.assign:100 #-} -- {-# OPTIONS -v tc.meta.eta:100 #-} postulate P : (A : Set) → (a : A) → Set record R : Set₁ where constructor c -- no-eta-equality -- WORKS without eta field A : Set a : A p : P A a → P A a C : R C = {!!} module M = R C test : P {!!} M.a → P {!!} M.a test x = M.p x -- WAS: cyclic assignment -- C = _5 -- _7 := _5 .A -- _9 := _5 .A -- _5 := c _10 _11 _12 -- _10 := C .A -- NOW: frozed metas are eta-expanded to records of frozen metas
{ "alphanum_fraction": 0.5787401575, "avg_line_length": 20.0526315789, "ext": "agda", "hexsha": "000b3d20844975dd0ed5ba08339c230136b10a5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3597.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3597.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3597.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 268, "size": 762 }
module Generic.Lib.Data.Sum where open import Data.Sum hiding (swap) renaming (map to smap) hiding (map₁; map₂; assocʳ; assocˡ; reduce) public
{ "alphanum_fraction": 0.7638888889, "avg_line_length": 36, "ext": "agda", "hexsha": "eeed72f85b868764ee4b7974282130aacf01fb97", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "380554b20e0991290d1864ddf81f0587ec1647ed", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iblech/Generic", "max_forks_repo_path": "src/Generic/Lib/Data/Sum.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "380554b20e0991290d1864ddf81f0587ec1647ed", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iblech/Generic", "max_issues_repo_path": "src/Generic/Lib/Data/Sum.agda", "max_line_length": 108, "max_stars_count": 30, "max_stars_repo_head_hexsha": "380554b20e0991290d1864ddf81f0587ec1647ed", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iblech/Generic", "max_stars_repo_path": "src/Generic/Lib/Data/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 42, "size": 144 }
module Lectures.Four where open import Lectures.One public open import Lectures.Two public open import Lectures.Three public _∘_ : {A B C : Set} → (B → C) → (A → B) → (A → C) (f ∘ g) x = f (g x) record _↔_ (A B : Set) : Set where constructor Isomorphism field to : A → B from : B → A from∘to : ∀ x → (from ∘ to) x ≡ x to∘from : ∀ y → (to ∘ from) y ≡ y open List foldr-List : {A B : Set} → (A → B → B) → B → List A → B foldr-List f z [] = z foldr-List f z (x ∷ xs) = f x (foldr-List f z xs) foldr-ℕ : {A : Set} → (A → A) → A → ℕ → A foldr-ℕ f z zero = z foldr-ℕ f z (suc n) = f (foldr-ℕ f z n) ℕ↔List⊤ : ℕ ↔ List ⊤ ℕ↔List⊤ = Isomorphism to from from∘to to∘from where to : ℕ → List ⊤ to = foldr-ℕ (tt ∷_) [] from : List ⊤ → ℕ from = foldr-List (λ _ → suc) 0 from∘to : ∀ x → (from ∘ to) x ≡ x from∘to zero = refl from∘to (suc x) = cong suc (from∘to x) to∘from : ∀ x → (to ∘ from) x ≡ x to∘from [] = refl to∘from (tt ∷ xs) = cong (tt ∷_) (to∘from xs) ℕ↔Even : ℕ ↔ Σ ℕ _isEven ℕ↔Even = Isomorphism to from from∘to to∘from where to : ℕ → Σ ℕ _isEven to zero = zero , tt to (suc n) with to n to (suc n) | (2n , 2nEven) = (suc (suc 2n) , 2nEven) from : (Σ ℕ _isEven) → ℕ from (n , nEven) = half n nEven from∘to : ∀ x → (from ∘ to) x ≡ x from∘to zero = refl from∘to (suc n) with to n | from∘to n from∘to (suc .(half (proj₁ q) (proj₂ q))) | q | refl = refl to∘from : ∀ x → (to ∘ from) x ≡ x to∘from (zero , tt) = refl to∘from (suc (suc n) , nEven) rewrite to∘from (n , nEven) = refl data Fin : ℕ → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) noFin0 : Fin 0 → ⊥ noFin0 () open Vec lookup : ∀ {n} {A : Set} → Vec A n → Fin n → A lookup (x ∷ xs) zero = x lookup (x ∷ xs) (suc i) = lookup xs i -- For next time: -- Fin -- Constructive leq
{ "alphanum_fraction": 0.5411700975, "avg_line_length": 22.512195122, "ext": "agda", "hexsha": "687fe23c64f77281b72cb710ac0cc2e4fdbac9f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UoG-Agda/Agda101", "max_forks_repo_path": "Lectures/Four.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UoG-Agda/Agda101", "max_issues_repo_path": "Lectures/Four.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UoG-Agda/Agda101", "max_stars_repo_path": "Lectures/Four.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 857, "size": 1846 }
module Issue2447.M where
{ "alphanum_fraction": 0.84, "avg_line_length": 12.5, "ext": "agda", "hexsha": "524fe7df459cd260e60b9488a79df9a437225883", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2447/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2447/M.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2447/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 7, "size": 25 }
------------------------------------------------------------------------ -- Data and codata can sometimes be "unified" ------------------------------------------------------------------------ -- In Haskell one can define the partial list type once, and define -- map once and for all for this type. In Agda one typically defines -- the (finite) list type + map and separately the (potentially -- infinite) colist type + map. This is not strictly necessary, -- though: the two types can be unified. The gain may be small, -- though. module DataAndCodata where open import Codata.Musical.Notation open import Function open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Conditional coinduction data Rec : Set where μ : Rec ν : Rec ∞? : Rec → Set → Set ∞? μ = id ∞? ν = ∞ ♯? : ∀ (r : Rec) {A} → A → ∞? r A ♯? μ x = x ♯? ν x = ♯ x ♭? : ∀ (r : Rec) {A} → ∞? r A → A ♭? μ = id ♭? ν = ♭ ------------------------------------------------------------------------ -- A type for definitely finite or potentially infinite lists -- If the Rec parameter is μ, then the type contains finite lists, and -- otherwise it contains potentially infinite lists. infixr 5 _∷_ data List∞? (r : Rec) (A : Set) : Set where [] : List∞? r A _∷_ : A → ∞? r (List∞? r A) → List∞? r A -- List equality. infix 4 _≈_ data _≈_ {r A} : List∞? r A → List∞? r A → Set where [] : [] ≈ [] _∷_ : ∀ {x y xs ys} → x ≡ y → ∞? r (♭? r xs ≈ ♭? r ys) → x ∷ xs ≈ y ∷ ys -- μ-lists can be seen as ν-lists. lift : ∀ {A} → List∞? μ A → List∞? ν A lift [] = [] lift (x ∷ xs) = x ∷ ♯ lift xs ------------------------------------------------------------------------ -- The map function -- Maps over any list. The definition contains separate cases for _∷_ -- depending on whether the Rec index is μ or ν, though. map : ∀ {r A B} → (A → B) → List∞? r A → List∞? r B map f [] = [] map {μ} f (x ∷ xs) = f x ∷ map f xs -- Structural recursion -- (guarded). map {ν} f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) -- Guarded corecursion. -- In Haskell the map function is automatically (in effect) parametric -- in the Rec parameter. Here this property is not automatic, so I -- have proved it manually: map-parametric : ∀ {A B} (f : A → B) (xs : List∞? μ A) → map f (lift xs) ≈ lift (map f xs) map-parametric f [] = [] map-parametric f (x ∷ xs) = refl ∷ ♯ map-parametric f xs
{ "alphanum_fraction": 0.4968152866, "avg_line_length": 29.9047619048, "ext": "agda", "hexsha": "4ef7e78516337a81789d9d81a5ead72033fee44f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "DataAndCodata.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "DataAndCodata.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "DataAndCodata.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 756, "size": 2512 }
{-# OPTIONS --universe-polymorphism --allow-unsolved-metas #-} module Issue253 where open import Common.Level data Id l (X : Set l)(x : X) : X → Set where refl : Id l X x x resp : (A B : Set _) → Id _ (Set _) A B → Set resp _ _ eq with eq resp ._ _ eq | refl = Level {- An internal error has occurred. Please report this as a bug. Location of the error: src/full/Agda/TypeChecking/Telescope.hs:51 -}
{ "alphanum_fraction": 0.6724137931, "avg_line_length": 25.375, "ext": "agda", "hexsha": "a6ff7490146eba90771f66325de228ea68d3274c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue253.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue253.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue253.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 127, "size": 406 }
-- Record projections should be positive in their argument module Issue602-2 where record A : Set₁ where constructor mkA field f : Set unA : A → Set unA (mkA x) = x data B (a : A) : Set where mkB : unA a → B a data D : Set where d : B (mkA D) → D
{ "alphanum_fraction": 0.6311787072, "avg_line_length": 15.4705882353, "ext": "agda", "hexsha": "38c5dfa21d8b2a495d67021aacf51e38fc9b1f73", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue602-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue602-2.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue602-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 94, "size": 263 }
module Luau.RuntimeError.ToString where open import FFI.Data.String using (String; _++_) open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; NilIsNotAFunction; UnboundVariable; SEGV; app; block) open import Luau.Addr.ToString using (addrToString) open import Luau.Var.ToString using (varToString) errToStringᴱ : ∀ {H B} → RuntimeErrorᴱ H B → String errToStringᴮ : ∀ {H B} → RuntimeErrorᴮ H B → String errToStringᴱ NilIsNotAFunction = "nil is not a function" errToStringᴱ (UnboundVariable x) = "variable " ++ varToString x ++ " is unbound" errToStringᴱ (SEGV a x) = "address " ++ addrToString a ++ " is unallocated" errToStringᴱ (app E) = errToStringᴱ E errToStringᴱ (block b E) = errToStringᴮ E ++ "\n in call of function " ++ varToString b errToStringᴮ (local x E) = errToStringᴱ E ++ "\n in definition of " ++ varToString x errToStringᴮ (return E) = errToStringᴱ E ++ "\n in return statement"
{ "alphanum_fraction": 0.7395498392, "avg_line_length": 49.1052631579, "ext": "agda", "hexsha": "f11756f74c453fd717db47fcda5a129711ca6108", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Luau/RuntimeError/ToString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Luau/RuntimeError/ToString.agda", "max_line_length": 135, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Luau/RuntimeError/ToString.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 295, "size": 933 }
------------------------------------------------------------------------ -- Colists ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types #-} open import Equality module Colist {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where private open module E = Derived-definitions-and-properties eq using (_≡_) open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Conat eq as Conat using (Conat; zero; suc; force; infinity) open import Function-universe eq hiding (id; _∘_) import Nat eq as Nat ------------------------------------------------------------------------ -- The type -- Colists. mutual infixr 5 _∷_ data Colist {a} (A : Type a) (i : Size) : Type a where [] : Colist A i _∷_ : A → Colist′ A i → Colist A i record Colist′ {a} (A : Type a) (i : Size) : Type a where coinductive field force : {j : Size< i} → Colist A j open Colist′ public ------------------------------------------------------------------------ -- Some operations -- A variant of cons. infixr 5 _∷′_ _∷′_ : ∀ {i a} {A : Type a} → A → Colist A i → Colist A i x ∷′ xs = x ∷ λ { .force → xs } -- The colist's tail, if any. tail : ∀ {a} {A : Type a} {i} → Colist A i → Colist′ A i tail xs@[] = λ { .force → xs } tail (x ∷ xs) = xs -- A map function. map : ∀ {a b i} {A : Type a} {B : Type b} → (A → B) → Colist A i → Colist B i map f [] = [] map f (x ∷ xs) = f x ∷ λ { .force → map f (force xs) } -- The length of a colist. length : ∀ {a i} {A : Type a} → Colist A i → Conat i length [] = zero length (n ∷ ns) = suc λ { .force → length (force ns) } -- The colist replicate n x contains exactly n copies of x (and -- nothing else). replicate : ∀ {a i} {A : Type a} → Conat i → A → Colist A i replicate zero x = [] replicate (suc n) x = x ∷ λ { .force → replicate (force n) x } -- Repeats the given element indefinitely. repeat : ∀ {a i} {A : Type a} → A → Colist A i repeat = replicate infinity -- Appends one colist to another. infixr 5 _++_ _++_ : ∀ {a i} {A : Type a} → Colist A i → Colist A i → Colist A i [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ λ { .force → force xs ++ ys } -- The colist cycle x xs is an endless cycle of repetitions of the -- colist x ∷ xs. cycle : ∀ {a i} {A : Type a} → A → Colist′ A i → Colist A i cycle x xs = x ∷ λ { .force → force xs ++ cycle x xs } -- "Scan left". scanl : ∀ {a b i} {A : Type a} {B : Type b} → (A → B → A) → A → Colist B i → Colist A i scanl c n [] = n ∷ λ { .force → [] } scanl c n (x ∷ xs) = n ∷ λ { .force → scanl c (c n x) (force xs) } -- The natural numbers in strictly increasing order. nats : ∀ {i} → Colist ℕ i nats = 0 ∷ λ { .force → map suc nats } -- The colist nats-from n is the natural numbers greater than or equal -- to n, in strictly increasing order. nats-from : ∀ {i} → ℕ → Colist ℕ i nats-from n = n ∷ λ { .force → nats-from (suc n) } -- The list take n xs is the longest possible prefix of xs that -- contains at most n elements. take : ∀ {a} {A : Type a} → ℕ → Colist A ∞ → List A take zero _ = [] take _ [] = [] take (suc n) (x ∷ xs) = x ∷ take n (force xs) -- The sum of the successor of every element in the list. sum-of-successors : ∀ {i} → Colist (Conat ∞) i → Conat i sum-of-successors [] = zero sum-of-successors (n ∷ ns) = suc λ { .force → n Conat.+ sum-of-successors (ns .force) } ------------------------------------------------------------------------ -- Bisimilarity module _ {a} {A : Type a} where -- [ ∞ ] xs ∼ ys means that xs and ys are "equal". mutual infix 4 [_]_∼_ [_]_∼′_ data [_]_∼_ (i : Size) : Colist A ∞ → Colist A ∞ → Type a where [] : [ i ] [] ∼ [] _∷_ : ∀ {x y xs ys} → x ≡ y → [ i ] force xs ∼′ force ys → [ i ] x ∷ xs ∼ y ∷ ys record [_]_∼′_ (i : Size) (xs ys : Colist A ∞) : Type a where coinductive field force : {j : Size< i} → [ j ] xs ∼ ys open [_]_∼′_ public -- Bisimilarity is an equivalence relation. reflexive-∼ : ∀ {i} xs → [ i ] xs ∼ xs reflexive-∼ [] = [] reflexive-∼ (x ∷ xs) = E.refl _ ∷ λ { .force → reflexive-∼ (force xs) } symmetric-∼ : ∀ {i xs ys} → [ i ] xs ∼ ys → [ i ] ys ∼ xs symmetric-∼ [] = [] symmetric-∼ (p₁ ∷ p₂) = E.sym p₁ ∷ λ { .force → symmetric-∼ (force p₂) } transitive-∼ : ∀ {i xs ys zs} → [ i ] xs ∼ ys → [ i ] ys ∼ zs → [ i ] xs ∼ zs transitive-∼ [] [] = [] transitive-∼ (p₁ ∷ p₂) (q₁ ∷ q₂) = E.trans p₁ q₁ ∷ λ { .force → transitive-∼ (force p₂) (force q₂) } -- Equational reasoning combinators. infix -1 _∎ infixr -2 step-∼ step-≡ _∼⟨⟩_ _∎ : ∀ {i} xs → [ i ] xs ∼ xs _∎ = reflexive-∼ step-∼ : ∀ {i} xs {ys zs} → [ i ] ys ∼ zs → [ i ] xs ∼ ys → [ i ] xs ∼ zs step-∼ _ ys∼zs xs∼ys = transitive-∼ xs∼ys ys∼zs syntax step-∼ xs ys∼zs xs∼ys = xs ∼⟨ xs∼ys ⟩ ys∼zs step-≡ : ∀ {i} xs {ys zs} → [ i ] ys ∼ zs → xs ≡ ys → [ i ] xs ∼ zs step-≡ {i} _ ys∼zs xs≡ys = E.subst ([ i ]_∼ _) (E.sym xs≡ys) ys∼zs syntax step-≡ xs ys∼zs xs≡ys = xs ≡⟨ xs≡ys ⟩ ys∼zs _∼⟨⟩_ : ∀ {i} xs {ys} → [ i ] xs ∼ ys → [ i ] xs ∼ ys _ ∼⟨⟩ xs∼ys = xs∼ys -- A property relating Colist._∷_ and _∷′_. ∷∼∷′ : ∀ {i} {x : A} {xs} → [ i ] x ∷ xs ∼ x ∷′ force xs ∷∼∷′ = E.refl _ ∷ λ { .force → reflexive-∼ _ } -- Functor laws. map-id : ∀ {a i} {A : Type a} (xs : Colist A ∞) → [ i ] map id xs ∼ xs map-id [] = [] map-id (_ ∷ xs) = E.refl _ ∷ λ { .force → map-id (force xs) } map-∘ : ∀ {a b c i} {A : Type a} {B : Type b} {C : Type c} {f : B → C} {g : A → B} (xs : Colist A ∞) → [ i ] map (f ∘ g) xs ∼ map f (map g xs) map-∘ [] = [] map-∘ (_ ∷ xs) = E.refl _ ∷ λ { .force → map-∘ (force xs) } -- If two non-empty colists are bisimilar, then their heads are -- bisimilar. head-cong : ∀ {a i} {A : Type a} {x y : A} {xs ys} → [ i ] x ∷ xs ∼ y ∷ ys → x ≡ y head-cong (p ∷ _) = p -- Some preservation lemmas. tail-cong : ∀ {a i} {A : Type a} {xs ys : Colist A ∞} → [ i ] xs ∼ ys → [ i ] force (tail xs) ∼′ force (tail ys) tail-cong [] = λ { .force → [] } tail-cong (_ ∷ ps) = ps map-cong : ∀ {a b i} {A : Type a} {B : Type b} {f g : A → B} {xs ys} → (∀ x → f x ≡ g x) → [ i ] xs ∼ ys → [ i ] map f xs ∼ map g ys map-cong f≡g [] = [] map-cong {f = f} {g} f≡g (_∷_ {x = x} {y = y} x≡y ps) = (f x E.≡⟨ E.cong f x≡y ⟩ f y E.≡⟨ f≡g y ⟩∎ g y ∎) ∷ λ { .force → map-cong f≡g (force ps) } length-cong : ∀ {a i} {A : Type a} {xs ys : Colist A ∞} → [ i ] xs ∼ ys → Conat.[ i ] length xs ∼ length ys length-cong [] = zero length-cong (_ ∷ ps) = suc λ { .force → length-cong (force ps) } replicate-cong : ∀ {a i} {A : Type a} {m n} {x : A} → Conat.[ i ] m ∼ n → [ i ] replicate m x ∼ replicate n x replicate-cong zero = [] replicate-cong (suc p) = E.refl _ ∷ λ { .force → replicate-cong (force p) } infixr 5 _++-cong_ _++-cong_ : ∀ {a i} {A : Type a} {xs₁ xs₂ ys₁ ys₂ : Colist A ∞} → [ i ] xs₁ ∼ ys₁ → [ i ] xs₂ ∼ ys₂ → [ i ] xs₁ ++ xs₂ ∼ ys₁ ++ ys₂ [] ++-cong qs = qs (p ∷ ps) ++-cong qs = p ∷ λ { .force → force ps ++-cong qs } cycle-cong : ∀ {a i} {A : Type a} {x : A} {xs ys} → [ i ] force xs ∼′ force ys → [ i ] cycle x xs ∼ cycle x ys cycle-cong p = E.refl _ ∷ λ { .force → force p ++-cong cycle-cong p } scanl-cong : ∀ {a b i} {A : Type a} {B : Type b} {c : A → B → A} {n : A} {xs ys} → [ i ] xs ∼ ys → [ i ] scanl c n xs ∼ scanl c n ys scanl-cong [] = E.refl _ ∷ λ { .force → [] } scanl-cong {c = c} {n} (_∷_ {x = x} {y = y} {xs = xs} {ys = ys} x≡y ps) = E.refl n ∷ λ { .force → scanl c (c n x) (force xs) ≡⟨ E.cong (λ x → scanl _ (c _ x) _) x≡y ⟩ scanl c (c n y) (force xs) ∼⟨ scanl-cong (force ps) ⟩ scanl c (c n y) (force ys) ∎ } take-cong : ∀ {a} {A : Type a} n {xs ys : Colist A ∞} → [ ∞ ] xs ∼ ys → take n xs ≡ take n ys take-cong n [] = E.refl _ take-cong zero (p ∷ ps) = E.refl _ take-cong (suc n) (p ∷ ps) = E.cong₂ _∷_ p (take-cong n (force ps)) sum-of-successors-cong : ∀ {i ms ns} → [ i ] ms ∼ ns → Conat.[ i ] sum-of-successors ms ∼ sum-of-successors ns sum-of-successors-cong [] = zero sum-of-successors-cong (p ∷ ps) = suc λ { .force → E.subst (Conat.[ _ ] _ ∼_) p (Conat.reflexive-∼ _) Conat.+-cong sum-of-successors-cong (ps .force) } -- The length of replicate n x is bisimilar to n. length-replicate : ∀ {a i} {A : Type a} {x : A} n → Conat.[ i ] length (replicate n x) ∼ n length-replicate zero = zero length-replicate (suc n) = suc λ { .force → length-replicate (force n) } -- A lemma relating nats and nats-from n. map-+-nats∼nats-from : ∀ {i} n → [ i ] map (n +_) nats ∼ nats-from n map-+-nats∼nats-from n = Nat.+-right-identity ∷ λ { .force → map (n +_) (map suc nats) ∼⟨ symmetric-∼ (map-∘ _) ⟩ map ((n +_) ∘ suc) nats ∼⟨ map-cong (λ _ → E.sym (Nat.suc+≡+suc _)) (_ ∎) ⟩ map (suc n +_) nats ∼⟨ map-+-nats∼nats-from (suc n) ⟩ nats-from (suc n) ∎ } -- The colist nats is bisimilar to nats-from 0. nats∼nats-from-0 : ∀ {i} → [ i ] nats ∼ nats-from 0 nats∼nats-from-0 = nats ∼⟨ symmetric-∼ (map-id _) ⟩ map id nats ∼⟨⟩ map (0 +_) nats ∼⟨ map-+-nats∼nats-from _ ⟩ nats-from 0 ∎ ------------------------------------------------------------------------ -- The ◇ predicate -- ◇ ∞ P xs means that P holds for some element in xs. data ◇ {a p} {A : Type a} (i : Size) (P : A → Type p) : Colist A ∞ → Type (a ⊔ p) where here : ∀ {x xs} → P x → ◇ i P (x ∷ xs) there : ∀ {x xs} {j : Size< i} → ◇ j P (force xs) → ◇ i P (x ∷ xs) -- ◇ respects bisimilarity. ◇-∼ : ∀ {a p i} {A : Type a} {P : A → Type p} {xs ys} → [ ∞ ] xs ∼ ys → ◇ i P xs → ◇ i P ys ◇-∼ (x≡y ∷ _) (here p) = here (E.subst _ x≡y p) ◇-∼ (_ ∷ b) (there p) = there (◇-∼ (force b) p) -- A map function for ◇. ◇-map : ∀ {a p q i} {A : Type a} {P : A → Type p} {Q : A → Type q} → (∀ {x} → P x → Q x) → (∀ {xs} → ◇ i P xs → ◇ i Q xs) ◇-map f (here p) = here (f p) ◇-map f (there p) = there (◇-map f p) -- A variant of ◇-map. ◇-map′ : ∀ {a b c p q i} {A : Type a} {B : Type b} {C : Type c} {P : B → Type p} {Q : C → Type q} {f : A → B} {g : A → C} → (∀ {x} → P (f x) → Q (g x)) → (∀ {xs} → ◇ i P (map f xs) → ◇ i Q (map g xs)) ◇-map′ g {_ ∷ _} (here p) = here (g p) ◇-map′ g {_ ∷ _} (there p) = there (◇-map′ g p) ◇-map′ g {[]} () -- If a predicate holds for some element in a colist, then it holds -- for some value. ◇-witness : ∀ {a p i} {A : Type a} {P : A → Type p} {xs} → ◇ i P xs → ∃ P ◇-witness (here p) = _ , p ◇-witness (there p) = ◇-witness p -- If const P holds for some element, then P holds. ◇-const : ∀ {a p i} {A : Type a} {P : Type p} {xs : Colist A ∞} → ◇ i (const P) xs → P ◇-const = proj₂ ∘ ◇-witness -- Colist membership. infix 4 [_]_∈_ [_]_∈_ : ∀ {a} {A : Type a} → Size → A → Colist A ∞ → Type a [ i ] x ∈ xs = ◇ i (x ≡_) xs -- A generalisation of "◇ ∞ P xs holds iff P holds for some element in -- xs". ◇⇔∈× : ∀ {a p i} {A : Type a} {P : A → Type p} {xs} → ◇ i P xs ⇔ ∃ λ x → [ i ] x ∈ xs × P x ◇⇔∈× {P = P} = record { to = to; from = from } where to : ∀ {i xs} → ◇ i P xs → ∃ λ x → [ i ] x ∈ xs × P x to (here p) = _ , here (E.refl _) , p to (there p) = Σ-map id (Σ-map there id) (to p) from : ∀ {i xs} → (∃ λ x → [ i ] x ∈ xs × P x) → ◇ i P xs from (x , here eq , p) = here (E.subst P eq p) from (x , there x∈xs , p) = there (from (x , x∈xs , p)) -- If P holds for some element in replicate (suc n) x, then it also -- holds for x, and vice versa. ◇-replicate-suc⇔ : ∀ {a p i} {A : Type a} {P : A → Type p} {x : A} {n} → ◇ i P (replicate (suc n) x) ⇔ P x ◇-replicate-suc⇔ {P = P} {x} = record { to = to _ ; from = here } where to : ∀ {i} n → ◇ i P (replicate n x) → P x to zero () to (suc n) (here p) = p to (suc n) (there p) = to (force n) p -- If P holds for some element in cycle x xs, then it also holds for -- some element in x ∷ xs, and vice versa. ◇-cycle⇔ : ∀ {a p i} {A : Type a} {P : A → Type p} {x : A} {xs} → ◇ i P (cycle x xs) ⇔ ◇ i P (x ∷ xs) ◇-cycle⇔ {i = i} {P = P} {x} {xs} = record { to = ◇ i P (cycle x xs) ↝⟨ ◇-∼ (transitive-∼ ∷∼∷′ (symmetric-∼ ∷∼∷′)) ⟩ ◇ i P ((x ∷ xs) ++ cycle x xs) ↝⟨ to _ ⟩ ◇ i P (x ∷ xs) ⊎ ◇ i P (x ∷ xs) ↝⟨ [ id , id ] ⟩□ ◇ i P (x ∷ xs) □ ; from = ◇ i P (x ∷ xs) ↝⟨ from ⟩ ◇ i P ((x ∷ xs) ++ cycle x xs) ↝⟨ ◇-∼ (transitive-∼ ∷∼∷′ (symmetric-∼ ∷∼∷′)) ⟩□ ◇ i P (cycle x xs) □ } where to : ∀ {i} ys → ◇ i P (ys ++ cycle x xs) → ◇ i P ys ⊎ ◇ i P (x ∷ xs) to [] (here p) = inj₂ (here p) to [] (there p) = case to (force xs) p of [ inj₂ ∘ there , inj₂ ] to (y ∷ ys) (here p) = inj₁ (here p) to (y ∷ ys) (there p) = ⊎-map there id (to (force ys) p) from : ∀ {i ys} → ◇ i P ys → ◇ i P (ys ++ cycle x xs) from (here p) = here p from (there ps) = there (from ps) ------------------------------------------------------------------------ -- The □ predicate -- □ ∞ P xs means that P holds for every element in xs. mutual data □ {a p} {A : Type a} (i : Size) (P : A → Type p) : Colist A ∞ → Type (a ⊔ p) where [] : □ i P [] _∷_ : ∀ {x xs} → P x → □′ i P (force xs) → □ i P (x ∷ xs) record □′ {a p} {A : Type a} (i : Size) (P : A → Type p) (xs : Colist A ∞) : Type (a ⊔ p) where coinductive field force : {j : Size< i} → □ j P xs open □′ public -- Some projections. □-head : ∀ {a p i} {A : Type a} {P : A → Type p} {x xs} → □ i P (x ∷ xs) → P x □-head (p ∷ _) = p □-tail : ∀ {a p i} {j : Size< i} {A : Type a} {P : A → Type p} {x xs} → □ i P (x ∷ xs) → □ j P (force xs) □-tail (_ ∷ ps) = force ps -- □ respects bisimilarity. □-∼ : ∀ {i a p} {A : Type a} {P : A → Type p} {xs ys} → [ i ] xs ∼ ys → □ i P xs → □ i P ys □-∼ [] _ = [] □-∼ (eq ∷ b) (p ∷ ps) = E.subst _ eq p ∷ λ { .force → □-∼ (force b) (force ps) } -- A generalisation of "□ ∞ P xs holds iff P is true for every element -- in xs". □⇔∈→ : ∀ {a p i} {A : Type a} {P : A → Type p} {xs} → □ i P xs ⇔ (∀ x → [ i ] x ∈ xs → P x) □⇔∈→ {P = P} = record { to = to; from = from _ } where to : ∀ {i xs} → □ i P xs → (∀ x → [ i ] x ∈ xs → P x) to (p ∷ ps) x (here eq) = E.subst P (E.sym eq) p to (p ∷ ps) x (there x∈xs) = to (force ps) x x∈xs from : ∀ {i} xs → (∀ x → [ i ] x ∈ xs → P x) → □ i P xs from [] f = [] from (x ∷ xs) f = f x (here (E.refl _)) ∷ λ { .force → from (force xs) (λ x → f x ∘ there) } -- If P is universally true, then □ i P is also universally true. □-replicate : ∀ {a p i} {A : Type a} {P : A → Type p} → (∀ x → P x) → (∀ xs → □ i P xs) □-replicate f _ = _⇔_.from □⇔∈→ (λ x _ → f x) -- Something resembling applicative functor application for □. infixl 4 _□-⊛_ _□-⊛_ : ∀ {i a p q} {A : Type a} {P : A → Type p} {Q : A → Type q} {xs} → □ i (λ x → P x → Q x) xs → □ i P xs → □ i Q xs [] □-⊛ _ = [] (f ∷ fs) □-⊛ (p ∷ ps) = f p ∷ λ { .force → force fs □-⊛ force ps } -- A map function for □. □-map : ∀ {a p q i} {A : Type a} {P : A → Type p} {Q : A → Type q} → (∀ {x} → P x → Q x) → (∀ {xs} → □ i P xs → □ i Q xs) □-map f ps = □-replicate (λ _ → f) _ □-⊛ ps -- A variant of □-map. □-map′ : ∀ {a b c p q i} {A : Type a} {B : Type b} {C : Type c} {P : B → Type p} {Q : C → Type q} {f : A → B} {g : A → C} → (∀ {x} → P (f x) → Q (g x)) → (∀ {xs} → □ i P (map f xs) → □ i Q (map g xs)) □-map′ g {[]} [] = [] □-map′ g {_ ∷ _} (p ∷ ps) = g p ∷ λ { .force → □-map′ g (force ps) } -- Something resembling applicative functor application for □ and ◇. infixl 4 _□◇-⊛_ _□◇-⊛_ : ∀ {a p q i} {A : Type a} {P : A → Type p} {Q : A → Type q} {xs} → □ i (λ x → P x → Q x) xs → ◇ i P xs → ◇ i Q xs (f ∷ _) □◇-⊛ (here p) = here (f p) (_ ∷ fs) □◇-⊛ (there p) = there (force fs □◇-⊛ p) -- A combination of some of the combinators above. □◇-witness : ∀ {a p q i} {A : Type a} {P : A → Type p} {Q : A → Type q} {xs} → □ i P xs → ◇ i Q xs → ∃ λ x → P x × Q x □◇-witness p q = ◇-witness (□-map _,_ p □◇-⊛ q) -- If P holds for every element in replicate (suc n) x, then it also holds -- for x, and vice versa. □-replicate-suc⇔ : ∀ {a p i} {A : Type a} {P : A → Type p} {x : A} {n} → □ i P (replicate (suc n) x) ⇔ P x □-replicate-suc⇔ {P = P} {x} = record { to = □-head ; from = from _ } where from : ∀ {i} n → P x → □ i P (replicate n x) from zero p = [] from (suc n) p = p ∷ λ { .force → from (force n) p } -- If P holds for every element in cycle x xs, then it also holds for -- every element in x ∷ xs, and vice versa. □-cycle⇔ : ∀ {a p i} {A : Type a} {P : A → Type p} {x : A} {xs} → □ i P (cycle x xs) ⇔ □ i P (x ∷ xs) □-cycle⇔ {i = i} {P = P} {x} {xs} = record { to = □ i P (cycle x xs) ↝⟨ (λ { (p ∷ ps) → p ∷ ps }) ⟩ □ i P ((x ∷ xs) ++ cycle x xs) ↝⟨ to _ ⟩□ □ i P (x ∷ xs) □ ; from = □ i P (x ∷ xs) ↝⟨ (λ hyp → from hyp hyp) ⟩ □ i P ((x ∷ xs) ++ cycle x xs) ↝⟨ (λ { (p ∷ ps) → p ∷ ps }) ⟩□ □ i P (cycle x xs) □ } where to : ∀ {i} ys → □ i P (ys ++ cycle x xs) → □ i P ys to [] _ = [] to (y ∷ ys) (p ∷ ps) = p ∷ λ { .force → to (force ys) (force ps) } from : ∀ {i ys} → □ i P (x ∷ xs) → □ i P ys → □ i P (ys ++ cycle x xs) from ps (q ∷ qs) = q ∷ λ { .force → from ps (force qs) } from (p ∷ ps) [] = p ∷ λ { .force → from (p ∷ ps) (force ps) } ------------------------------------------------------------------------ -- A variant of ◇ with a sized predicate -- ◇ˢ ∞ P xs means that (some instance of) P holds for some element in -- xs. data ◇ˢ {a p} {A : Type a} (i : Size) (P : Size → A → Type p) : Colist A ∞ → Type (a ⊔ p) where here : ∀ {x xs} → P i x → ◇ˢ i P (x ∷ xs) there : ∀ {x xs} {j : Size< i} → ◇ˢ j P (force xs) → ◇ˢ i P (x ∷ xs) -- ◇ˢ respects bisimilarity. ◇ˢ-∼ : ∀ {a p i} {A : Type a} {P : Size → A → Type p} {xs ys} → [ ∞ ] xs ∼ ys → ◇ˢ i P xs → ◇ˢ i P ys ◇ˢ-∼ (eq ∷ _) (here p) = here (E.subst _ eq p) ◇ˢ-∼ (_ ∷ b) (there p) = there (◇ˢ-∼ (force b) p) -- If P is upwards closed, then flip ◇ˢ P is upwards closed. ◇ˢ-upwards-closed : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i} {j : Size< i} {x} → P j x → P i x) → (∀ {i} {j : Size< i} {xs} → ◇ˢ j P xs → ◇ˢ i P xs) ◇ˢ-upwards-closed P-closed (here p) = here (P-closed p) ◇ˢ-upwards-closed P-closed (there p) = there (◇ˢ-upwards-closed P-closed p) -- A variant of the previous lemma. ◇ˢ-upwards-closed-∞ : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i x} → P i x → P ∞ x) → (∀ {i xs} → ◇ˢ i P xs → ◇ˢ ∞ P xs) ◇ˢ-upwards-closed-∞ P-closed-∞ (here p) = here (P-closed-∞ p) ◇ˢ-upwards-closed-∞ P-closed-∞ (there p) = there (◇ˢ-upwards-closed-∞ P-closed-∞ p) -- A map function for ◇ˢ. ◇ˢ-map : ∀ {a p q i} {A : Type a} {P : Size → A → Type p} {Q : Size → A → Type q} → (∀ {i x} → P i x → Q i x) → (∀ {xs} → ◇ˢ i P xs → ◇ˢ i Q xs) ◇ˢ-map f (here p) = here (f p) ◇ˢ-map f (there p) = there (◇ˢ-map f p) -- A variant of ◇ˢ-map. ◇ˢ-map′ : ∀ {a b c p q i} {A : Type a} {B : Type b} {C : Type c} {P : Size → B → Type p} {Q : Size → C → Type q} {f : A → B} {g : A → C} → (∀ {i x} → P i (f x) → Q i (g x)) → (∀ {xs} → ◇ˢ i P (map f xs) → ◇ˢ i Q (map g xs)) ◇ˢ-map′ g {_ ∷ _} (here p) = here (g p) ◇ˢ-map′ g {_ ∷ _} (there p) = there (◇ˢ-map′ g p) ◇ˢ-map′ g {[]} () -- If a predicate holds for some element in a colist, then it holds -- for some value (assuming that P is upwards closed). ◇ˢ-witness : ∀ {a p i} {A : Type a} {P : Size → A → Type p} {xs} → (∀ {i} {j : Size< i} {x} → P j x → P i x) → ◇ˢ i P xs → ∃ (P i) ◇ˢ-witness closed (here p) = _ , p ◇ˢ-witness closed (there p) = Σ-map id closed (◇ˢ-witness closed p) -- If P ∞ holds for some element in xs, then ◇ˢ ∞ P xs holds. ∈×∞→◇ˢ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {x xs} → [ ∞ ] x ∈ xs → P ∞ x → ◇ˢ ∞ P xs ∈×∞→◇ˢ (here eq) p = here (E.subst _ eq p) ∈×∞→◇ˢ (there x∈xs) p = there (∈×∞→◇ˢ x∈xs p) -- If P i x implies P ∞ x for any i and x, then ◇ˢ ∞ P xs holds iff -- P ∞ holds for some element in xs. ◇ˢ⇔∈× : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs} → (∀ {i x} → P i x → P ∞ x) → ◇ˢ ∞ P xs ⇔ (∃ λ x → [ ∞ ] x ∈ xs × P ∞ x) ◇ˢ⇔∈× {P = P} →∞ = record { to = to ; from = λ { (_ , x∈xs , p) → ∈×∞→◇ˢ x∈xs p } } where to : ∀ {i xs} → ◇ˢ i P xs → ∃ λ x → [ ∞ ] x ∈ xs × P ∞ x to (here p) = _ , here (E.refl _) , →∞ p to (there p) = Σ-map id (Σ-map there id) (to p) -- Sized variants of the previous lemma. ◇ˢ→∈× : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i} {j : Size< i} {x} → P j x → P i x) → ∀ {i xs} → ◇ˢ i P xs → ∃ λ x → [ i ] x ∈ xs × P i x ◇ˢ→∈× closed (here p) = _ , here (E.refl _) , p ◇ˢ→∈× closed (there p) = Σ-map id (Σ-map there closed) (◇ˢ→∈× closed p) ∈×→◇ˢ : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i} {j : Size< i} {x} → P i x → P j x) → ∀ {i x xs} → [ i ] x ∈ xs → P i x → ◇ˢ i P xs ∈×→◇ˢ closed (here eq) p = here (E.subst _ eq p) ∈×→◇ˢ closed (there x∈xs) p = there (∈×→◇ˢ closed x∈xs (closed p)) -- ◇ ∞ (P ∞) is "contained in" ◇ˢ ∞ P. ◇∞→◇ˢ∞ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs} → ◇ ∞ (P ∞) xs → ◇ˢ ∞ P xs ◇∞→◇ˢ∞ {P = P} {xs} = ◇ ∞ (P ∞) xs ↝⟨ _⇔_.to ◇⇔∈× ⟩ (∃ λ x → [ ∞ ] x ∈ xs × P ∞ x) ↝⟨ (λ { (_ , x∈xs , p) → ∈×∞→◇ˢ x∈xs p }) ⟩□ ◇ˢ ∞ P xs □ -- If P i x implies P ∞ x for any i and x, then ◇ˢ ∞ P is pointwise -- logically equivalent to ◇ ∞ (P ∞). ◇ˢ∞⇔◇∞ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs} → (∀ {i x} → P i x → P ∞ x) → ◇ˢ ∞ P xs ⇔ ◇ ∞ (P ∞) xs ◇ˢ∞⇔◇∞ {P = P} {xs} →∞ = ◇ˢ ∞ P xs ↝⟨ ◇ˢ⇔∈× →∞ ⟩ (∃ λ x → [ ∞ ] x ∈ xs × P ∞ x) ↝⟨ inverse ◇⇔∈× ⟩□ ◇ ∞ (P ∞) xs □ -- ◇ˢ i (const P) is pointwise logically equivalent to ◇ i P. ◇ˢ⇔◇ : ∀ {a p i} {A : Type a} {P : A → Type p} {xs} → ◇ˢ i (λ _ → P) xs ⇔ ◇ i P xs ◇ˢ⇔◇ {P = P} {xs} = record { to = to; from = from } where to : ∀ {i xs} → ◇ˢ i (λ _ → P) xs → ◇ i P xs to (here p) = here p to (there p) = there (to p) from : ∀ {i xs} → ◇ i P xs → ◇ˢ i (λ _ → P) xs from (here p) = here p from (there p) = there (from p) -- If ◇ˢ i P (x ∷ xs) holds, then ◇ˢ i P (cycle x xs) also holds. ◇ˢ-cycle← : ∀ {a p i} {A : Type a} {P : Size → A → Type p} {x : A} {xs} → ◇ˢ i P (x ∷ xs) → ◇ˢ i P (cycle x xs) ◇ˢ-cycle← {i = i} {P = P} {x} {xs} = ◇ˢ i P (x ∷ xs) ↝⟨ from ⟩ ◇ˢ i P ((x ∷ xs) ++ cycle x xs) ↝⟨ ◇ˢ-∼ (transitive-∼ ∷∼∷′ (symmetric-∼ ∷∼∷′)) ⟩□ ◇ˢ i P (cycle x xs) □ where from : ∀ {i ys} → ◇ˢ i P ys → ◇ˢ i P (ys ++ cycle x xs) from (here p) = here p from (there ps) = there (from ps) -- If P i x implies P ∞ x for any i and x, then ◇ˢ ∞ P (cycle x xs) is -- logically equivalent to ◇ˢ ∞ P (x ∷ xs). ◇ˢ-cycle⇔ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {x : A} {xs} → (∀ {i x} → P i x → P ∞ x) → ◇ˢ ∞ P (cycle x xs) ⇔ ◇ˢ ∞ P (x ∷ xs) ◇ˢ-cycle⇔ {P = P} {x} {xs} →∞ = record { to = ◇ˢ ∞ P (cycle x xs) ↝⟨ ◇ˢ-∼ (transitive-∼ ∷∼∷′ (symmetric-∼ ∷∼∷′)) ⟩ ◇ˢ ∞ P ((x ∷ xs) ++ cycle x xs) ↝⟨ to _ ⟩ ◇ˢ ∞ P (x ∷ xs) ⊎ ◇ˢ ∞ P (x ∷ xs) ↝⟨ [ id , id ] ⟩□ ◇ˢ ∞ P (x ∷ xs) □ ; from = ◇ˢ-cycle← } where to : ∀ {i} ys → ◇ˢ i P (ys ++ cycle x xs) → ◇ˢ ∞ P ys ⊎ ◇ˢ ∞ P (x ∷ xs) to [] (here p) = inj₂ (here (→∞ p)) to [] (there p) = case to (force xs) p of [ inj₂ ∘ there , inj₂ ] to (y ∷ ys) (here p) = inj₁ (here (→∞ p)) to (y ∷ ys) (there p) = ⊎-map there id (to (force ys) p) ------------------------------------------------------------------------ -- A variant of □ with a sized predicate -- □ˢ ∞ P xs means that (some instance of) P holds for every element -- in xs. mutual data □ˢ {a p} {A : Type a} (i : Size) (P : Size → A → Type p) : Colist A ∞ → Type (a ⊔ p) where [] : □ˢ i P [] _∷_ : ∀ {x xs} → P i x → □ˢ′ i P (force xs) → □ˢ i P (x ∷ xs) record □ˢ′ {a p} {A : Type a} (i : Size) (P : Size → A → Type p) (xs : Colist A ∞) : Type (a ⊔ p) where coinductive field force : {j : Size< i} → □ˢ j P xs open □ˢ′ public -- Some projections. □ˢ-head : ∀ {a p i} {A : Type a} {P : Size → A → Type p} {x xs} → □ˢ i P (x ∷ xs) → P i x □ˢ-head (p ∷ _) = p □ˢ-tail : ∀ {a p i} {j : Size< i} {A : Type a} {P : Size → A → Type p} {x xs} → □ˢ i P (x ∷ xs) → □ˢ j P (force xs) □ˢ-tail (_ ∷ ps) = force ps -- □ˢ respects bisimilarity. □ˢ-∼ : ∀ {i a p} {A : Type a} {P : Size → A → Type p} {xs ys} → [ i ] xs ∼ ys → □ˢ i P xs → □ˢ i P ys □ˢ-∼ [] _ = [] □ˢ-∼ (eq ∷ b) (p ∷ ps) = E.subst _ eq p ∷ λ { .force → □ˢ-∼ (force b) (force ps) } -- If P is downwards closed, then flip □ˢ P is downwards closed. □ˢ-downwards-closed : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i} {j : Size< i} {x} → P i x → P j x) → (∀ {i} {j : Size< i} {xs} → □ˢ i P xs → □ˢ j P xs) □ˢ-downwards-closed P-closed [] = [] □ˢ-downwards-closed P-closed (p ∷ ps) = P-closed p ∷ λ { .force → □ˢ-downwards-closed P-closed (force ps) } -- A variant of the previous lemma. □ˢ-downwards-closed-∞ : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i x} → P ∞ x → P i x) → (∀ {i xs} → □ˢ ∞ P xs → □ˢ i P xs) □ˢ-downwards-closed-∞ P-closed-∞ [] = [] □ˢ-downwards-closed-∞ P-closed-∞ (p ∷ ps) = P-closed-∞ p ∷ λ { .force → □ˢ-downwards-closed-∞ P-closed-∞ (force ps) } -- If □ˢ ∞ P xs holds, then P ∞ holds for every element in xs. □ˢ∞∈→ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs x} → □ˢ ∞ P xs → [ ∞ ] x ∈ xs → P ∞ x □ˢ∞∈→ (p ∷ ps) (here eq) = E.subst _ (E.sym eq) p □ˢ∞∈→ (p ∷ ps) (there x∈xs) = □ˢ∞∈→ (force ps) x∈xs -- If P ∞ x implies P i x for any i and x, then □ˢ ∞ P xs holds iff P ∞ -- holds for every element in xs. □ˢ⇔∈→ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs} → (∀ {i x} → P ∞ x → P i x) → □ˢ ∞ P xs ⇔ (∀ x → [ ∞ ] x ∈ xs → P ∞ x) □ˢ⇔∈→ {P = P} ∞→ = record { to = λ p _ → □ˢ∞∈→ p; from = from _ } where from : ∀ {i} xs → (∀ x → [ ∞ ] x ∈ xs → P ∞ x) → □ˢ i P xs from [] f = [] from (x ∷ xs) f = ∞→ (f x (here (E.refl _))) ∷ λ { .force → from (force xs) (λ x → f x ∘ there) } -- Sized variants of the previous lemma. □ˢ∈→ : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i} {j : Size< i} {x} → P j x → P i x) → ∀ {i x xs} → □ˢ i P xs → [ i ] x ∈ xs → P i x □ˢ∈→ closed (p ∷ ps) (here eq) = E.subst _ (E.sym eq) p □ˢ∈→ closed (p ∷ ps) (there x∈xs) = closed (□ˢ∈→ closed (force ps) x∈xs) ∈→→□ˢ : ∀ {a p} {A : Type a} {P : Size → A → Type p} → (∀ {i} {j : Size< i} {x} → P i x → P j x) → ∀ {i} xs → (∀ x → [ i ] x ∈ xs → P i x) → □ˢ i P xs ∈→→□ˢ closed [] f = [] ∈→→□ˢ closed (x ∷ xs) f = f x (here (E.refl _)) ∷ λ { .force → ∈→→□ˢ closed (force xs) (λ x → closed ∘ f x ∘ there) } -- □ˢ ∞ P is "contained in" □ ∞ (P ∞). □ˢ∞→□∞ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs} → □ˢ ∞ P xs → □ ∞ (P ∞) xs □ˢ∞→□∞ {P = P} {xs} = □ˢ ∞ P xs ↝⟨ (λ p _ → □ˢ∞∈→ p) ⟩ (∀ x → [ ∞ ] x ∈ xs → P ∞ x) ↝⟨ _⇔_.from □⇔∈→ ⟩□ □ ∞ (P ∞) xs □ -- If P ∞ x implies P i x for any i and x, then □ˢ ∞ P is pointwise -- logically equivalent to □ ∞ (P ∞). □ˢ∞⇔□∞ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {xs} → (∀ {i x} → P ∞ x → P i x) → □ˢ ∞ P xs ⇔ □ ∞ (P ∞) xs □ˢ∞⇔□∞ {P = P} {xs} ∞→ = □ˢ ∞ P xs ↝⟨ □ˢ⇔∈→ ∞→ ⟩ (∀ x → [ ∞ ] x ∈ xs → P ∞ x) ↝⟨ inverse □⇔∈→ ⟩□ □ ∞ (P ∞) xs □ -- □ˢ i (const P) is pointwise logically equivalent to □ i P. □ˢ⇔□ : ∀ {a p i} {A : Type a} {P : A → Type p} {xs} → □ˢ i (λ _ → P) xs ⇔ □ i P xs □ˢ⇔□ {P = P} {xs} = record { to = to; from = from } where to : ∀ {i xs} → □ˢ i (λ _ → P) xs → □ i P xs to [] = [] to (p ∷ ps) = p ∷ λ { .force → to (force ps) } from : ∀ {i xs} → □ i P xs → □ˢ i (λ _ → P) xs from [] = [] from (p ∷ ps) = p ∷ λ { .force → from (force ps) } -- If P is universally true, then □ˢ i P is also universally true. □ˢ-replicate : ∀ {a p i} {A : Type a} {P : Size → A → Type p} → (∀ {i} x → P i x) → (∀ xs → □ˢ i P xs) □ˢ-replicate f [] = [] □ˢ-replicate f (x ∷ xs) = f x ∷ λ { .force → □ˢ-replicate f (force xs) } -- Something resembling applicative functor application for □ˢ. infixl 4 _□ˢ-⊛_ _□ˢ-⊛_ : ∀ {i a p q} {A : Type a} {P : Size → A → Type p} {Q : Size → A → Type q} {xs} → □ˢ i (λ j x → P j x → Q j x) xs → □ˢ i P xs → □ˢ i Q xs [] □ˢ-⊛ _ = [] (f ∷ fs) □ˢ-⊛ (p ∷ ps) = f p ∷ λ { .force → force fs □ˢ-⊛ force ps } -- A map function for □ˢ. □ˢ-map : ∀ {a p q i} {A : Type a} {P : Size → A → Type p} {Q : Size → A → Type q} → (∀ {i x} → P i x → Q i x) → (∀ {xs} → □ˢ i P xs → □ˢ i Q xs) □ˢ-map f ps = □ˢ-replicate (λ _ → f) _ □ˢ-⊛ ps -- A variant of □ˢ-map. □ˢ-map′ : ∀ {a b c p q i} {A : Type a} {B : Type b} {C : Type c} {P : Size → B → Type p} {Q : Size → C → Type q} {f : A → B} {g : A → C} → (∀ {i x} → P i (f x) → Q i (g x)) → (∀ {xs} → □ˢ i P (map f xs) → □ˢ i Q (map g xs)) □ˢ-map′ g {[]} [] = [] □ˢ-map′ g {_ ∷ _} (p ∷ ps) = g p ∷ λ { .force → □ˢ-map′ g (force ps) } -- Something resembling applicative functor application for □ˢ and ◇ˢ. infixl 4 _□ˢ◇ˢ-⊛_ _□ˢ◇ˢ-⊛_ : ∀ {a p q i} {A : Type a} {P : Size → A → Type p} {Q : Size → A → Type q} {xs} → □ˢ i (λ j x → P j x → Q j x) xs → ◇ˢ i P xs → ◇ˢ i Q xs (f ∷ _) □ˢ◇ˢ-⊛ (here p) = here (f p) (_ ∷ fs) □ˢ◇ˢ-⊛ (there p) = there (force fs □ˢ◇ˢ-⊛ p) -- A combination of some of the combinators above. □ˢ◇ˢ-witness : ∀ {a p q i} {A : Type a} {P : Size → A → Type p} {Q : Size → A → Type q} {xs} → (∀ {i} {j : Size< i} {x} → P j x → P i x) → (∀ {i} {j : Size< i} {x} → Q j x → Q i x) → □ˢ i P xs → ◇ˢ i Q xs → ∃ λ x → P i x × Q i x □ˢ◇ˢ-witness P-closed Q-closed p q = ◇ˢ-witness (λ { {_} {_} → Σ-map P-closed Q-closed }) (□ˢ-map _,_ p □ˢ◇ˢ-⊛ q) -- If □ˢ i P (cycle x xs) holds, then □ˢ i P (x ∷ xs) also holds. □ˢ-cycle→ : ∀ {a p i} {A : Type a} {P : Size → A → Type p} {x : A} {xs} → □ˢ i P (cycle x xs) → □ˢ i P (x ∷ xs) □ˢ-cycle→ {i = i} {P = P} {x} {xs} = □ˢ i P (cycle x xs) ↝⟨ (λ { (p ∷ ps) → p ∷ ps }) ⟩ □ˢ i P ((x ∷ xs) ++ cycle x xs) ↝⟨ to _ ⟩□ □ˢ i P (x ∷ xs) □ where to : ∀ {i} ys → □ˢ i P (ys ++ cycle x xs) → □ˢ i P ys to [] _ = [] to (y ∷ ys) (p ∷ ps) = p ∷ λ { .force → to (force ys) (force ps) } -- If P ∞ x implies P i x for any i and x, then □ˢ ∞ P (cycle x xs) is -- logically equivalent to □ˢ ∞ P (x ∷ xs). □ˢ-cycle⇔ : ∀ {a p} {A : Type a} {P : Size → A → Type p} {x : A} {xs} → (∀ {i x} → P ∞ x → P i x) → □ˢ ∞ P (cycle x xs) ⇔ □ˢ ∞ P (x ∷ xs) □ˢ-cycle⇔ {P = P} {x} {xs} ∞→ = record { to = □ˢ-cycle→ ; from = □ˢ ∞ P (x ∷ xs) ↝⟨ (λ hyp → from hyp hyp) ⟩ □ˢ ∞ P ((x ∷ xs) ++ cycle x xs) ↝⟨ (λ { (p ∷ ps) → p ∷ ps }) ⟩□ □ˢ ∞ P (cycle x xs) □ } where from : ∀ {i ys} → □ˢ ∞ P (x ∷ xs) → □ˢ i P ys → □ˢ i P (ys ++ cycle x xs) from ps (q ∷ qs) = q ∷ λ { .force → from ps (force qs) } from (p ∷ ps) [] = ∞→ p ∷ λ { .force → from (p ∷ ps) (force ps) }
{ "alphanum_fraction": 0.4370089743, "avg_line_length": 32.5282828283, "ext": "agda", "hexsha": "7e9285cbd8ca0bf834ed7cc513351c8f52664e6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Colist.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Colist.agda", "max_line_length": 94, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Colist.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 15003, "size": 32203 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Transitive where -- Stdlib imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; _≢_; refl) open import Level using (Level; _⊔_) open import Function using (flip; _∘_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_,_; _×_; proj₁; proj₂; ∃-syntax) open import Relation.Unary using (Pred; _∈_) open import Relation.Binary using (Rel; REL) open import Relation.Binary using (Transitive) open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_; _∷ʳ_; _++_) -- Local imports open import Dodo.Unary.Equality open import Dodo.Binary.Equality open import Dodo.Binary.Domain ⁺-flip : {a ℓ : Level} {A : Set a} → {R : Rel A ℓ} → {x y : A} → TransClosure R x y → TransClosure (flip R) y x ⁺-flip [ x∼y ] = [ x∼y ] ⁺-flip (x∼z ∷ z∼⁺y) = ⁺-flip z∼⁺y ∷ʳ x∼z ⁺-map : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} → {R : Rel A ℓ₁} {Q : Rel B ℓ₂} → (f : A → B) → (map : ∀ {x y : A} → R x y → Q (f x) (f y)) → {x y : A} → TransClosure R x y → TransClosure Q (f x) (f y) ⁺-map _ map [ Rxy ] = [ map Rxy ] ⁺-map _ map ( Rxz ∷ R⁺zy ) = map Rxz ∷ ⁺-map _ map R⁺zy ⁺-dom : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → {x y : A} → TransClosure R x y ------------------ → x ∈ dom R ⁺-dom {R = R} [ Rxy ] = take-dom R Rxy ⁺-dom {R = R} ( Rxz ∷ R⁺zy ) = take-dom R Rxz ⁺-codom : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → {x y : A} → TransClosure R x y ------------------ → y ∈ codom R ⁺-codom {R = R} [ Rxy ] = take-codom R Rxy ⁺-codom {R = R} ( Rxz ∷ R⁺zy ) = ⁺-codom R⁺zy ⁺-udrˡ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → {x y : A} → TransClosure R x y ------------------ → x ∈ udr R ⁺-udrˡ = inj₁ ∘ ⁺-dom ⁺-udrʳ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → {x y : A} → TransClosure R x y ------------------ → y ∈ udr R ⁺-udrʳ = inj₂ ∘ ⁺-codom ⁺-predʳ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂} → (f : ∀ {x y : A} → P x → R x y → P y) → {x y : A} → TransClosure R x y → P x → P y ⁺-predʳ f [ Rxy ] Px = f Px Rxy ⁺-predʳ f ( Rxz ∷ R⁺zy ) Px = ⁺-predʳ f R⁺zy (f Px Rxz) ⁺-predˡ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂} → (f : ∀ {x y : A} → P y → R x y → P x) → {x y : A} → TransClosure R x y → P y → P x ⁺-predˡ f [ Rxy ] Px = f Px Rxy ⁺-predˡ f ( Rxz ∷ R⁺zy ) Px = f (⁺-predˡ f R⁺zy Px) Rxz ⁺-lift-predʳ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂} → (f : ∀ {x y : A} → R x y → P y) → {x y : A} → TransClosure R x y → P y ⁺-lift-predʳ f [ Rxy ] = f Rxy ⁺-lift-predʳ f ( Rxz ∷ R⁺zy ) = ⁺-lift-predʳ f R⁺zy ⁺-lift-predˡ : {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂} → (f : ∀ {x y : A} → R x y → P x) → {x y : A} → TransClosure R x y → P x ⁺-lift-predˡ f [ Rxy ] = f Rxy ⁺-lift-predˡ f ( Rxz ∷ R⁺zy ) = f Rxz module _ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} where ⁺-idem : TransClosure R ⇔₂ TransClosure (TransClosure R) ⁺-idem = ⇔: ⊆-proof ⊇-proof where ⊆-proof : TransClosure R ⊆₂' TransClosure (TransClosure R) ⊆-proof _ _ R⁺xy = [ R⁺xy ] ⊇-proof : TransClosure (TransClosure R) ⊆₂' TransClosure R ⊇-proof _ _ [ R⁺xy ] = R⁺xy ⊇-proof _ y ( _∷_ {_} {z} R⁺xz R⁺⁺zy ) = R⁺xz ++ ⊇-proof z y R⁺⁺zy ⁺-join : ∀ {x y : A} → TransClosure (TransClosure R) x y → TransClosure R x y ⁺-join = ⇔₂-apply-⊇₂ ⁺-idem module _ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} where ⁺-preserves-dom : dom R ⇔₁ dom (TransClosure R) ⁺-preserves-dom = ⇔: ⊆-proof ⊇-proof where ⊆-proof : dom R ⊆₁' dom (TransClosure R) ⊆-proof x (y , Rxy) = (y , [ Rxy ]) ⊇-proof : dom (TransClosure R) ⊆₁' dom R ⊇-proof x (y , R⁺xy) = ⁺-dom R⁺xy ⁺-preserves-codom : codom R ⇔₁ codom (TransClosure R) ⁺-preserves-codom = ⇔: ⊆-proof ⊇-proof where ⊆-proof : codom R ⊆₁' codom (TransClosure R) ⊆-proof y (x , Rxy) = (x , [ Rxy ]) ⊇-proof : codom (TransClosure R) ⊆₁' codom R ⊇-proof y (x , R⁺xy) = ⁺-codom R⁺xy ⁺-preserves-udr : udr R ⇔₁ udr (TransClosure R) ⁺-preserves-udr = ⇔: ⊆-proof ⊇-proof where ⊆-proof : udr R ⊆₁' udr (TransClosure R) ⊆-proof _ (inj₁ x∈dom) = inj₁ (⇔₁-apply-⊆₁ ⁺-preserves-dom x∈dom) ⊆-proof _ (inj₂ x∈codom) = inj₂ (⇔₁-apply-⊆₁ ⁺-preserves-codom x∈codom) ⊇-proof : udr (TransClosure R) ⊆₁' udr R ⊇-proof _ (inj₁ x∈dom) = inj₁ (⇔₁-apply-⊇₁ ⁺-preserves-dom x∈dom) ⊇-proof _ (inj₂ x∈codom) = inj₂ (⇔₁-apply-⊇₁ ⁺-preserves-codom x∈codom) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where ⁺-preserves-⊆₂ : P ⊆₂ Q → TransClosure P ⊆₂ TransClosure Q ⁺-preserves-⊆₂ P⊆Q = ⊆: lemma where lemma : TransClosure P ⊆₂' TransClosure Q lemma _ _ [ Pxy ] = [ ⊆₂-apply P⊆Q Pxy ] lemma _ y ( _∷_ {_} {z} Pxz P⁺zy ) = ⊆₂-apply P⊆Q Pxz ∷ lemma z y P⁺zy module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where ⁺-preserves-⇔₂ : P ⇔₂ Q → TransClosure P ⇔₂ TransClosure Q ⁺-preserves-⇔₂ = ⇔₂-compose ⁺-preserves-⊆₂ ⁺-preserves-⊆₂ module _ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} where ⁺-trans-⇔₂ : Transitive R → R ⇔₂ TransClosure R ⁺-trans-⇔₂ transR = ⇔: ⊆-proof ⊇-proof where ⊆-proof : R ⊆₂' TransClosure R ⊆-proof _ _ = [_] ⊇-proof : TransClosure R ⊆₂' R ⊇-proof _ _ [ Rxy ] = Rxy ⊇-proof _ y (_∷_ {_} {w} Rxw R⁺wy) = transR Rxw (⊇-proof w y R⁺wy) ⁺-trans-⊆₂ : Transitive R → TransClosure R ⊆₂ R ⁺-trans-⊆₂ transR = ⇔₂-to-⊇₂ (⁺-trans-⇔₂ transR) ⁺-join-trans : Transitive R → {x y : A} → TransClosure R x y → R x y ⁺-join-trans = ⊆₂-apply ∘ ⁺-trans-⊆₂ ⁺-unconsʳ : {x y : A} → TransClosure R x y → R x y ⊎ ∃[ z ] (TransClosure R x z × R z y) ⁺-unconsʳ [ Rxy ] = inj₁ Rxy ⁺-unconsʳ ( Rxz ∷ R⁺zy ) with ⁺-unconsʳ R⁺zy ... | inj₁ Rzy = inj₂ (_ , [ Rxz ] , Rzy) ... | inj₂ (v , R⁺zv , Rvy) = inj₂ (v , Rxz ∷ R⁺zv , Rvy)
{ "alphanum_fraction": 0.5308207705, "avg_line_length": 30.7731958763, "ext": "agda", "hexsha": "8d900d640ac4d7e13600136824cebe4f51dc4bca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Transitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Transitive.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Transitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2879, "size": 5970 }
{-# OPTIONS --cubical --safe #-} module Data.List.Filter where open import Prelude open import Data.List open import Data.List.Membership open import Data.Sigma.Properties open import Data.Bool.Properties open import Data.Fin module _ {p} {P : A → Type p} where filter : (P? : ∀ x → Dec (P x)) → List A → List (∃ P) filter P? = foldr f [] where f : _ → List (∃ P) → List (∃ P) f y ys with P? y ... | yes t = (y , t) ∷ ys ... | no _ = ys filter-preserves : (isPropP : ∀ x → isProp (P x)) (P? : ∀ x → Dec (P x)) (xs : List A) → (x : A) → (v : P x) → (x ∈ xs) → ((x , v) ∈ filter P? xs) filter-preserves isPropP P? (x ∷ xs) y v (n , y∈xs) with P? x filter-preserves isPropP P? (x ∷ xs) y v (f0 , y∈xs) | yes t = f0 , ΣProp≡ isPropP y∈xs filter-preserves isPropP P? (x ∷ xs) y v (fs n , y∈xs) | yes t = let m , q = filter-preserves isPropP P? xs y v (n , y∈xs) in fs m , q filter-preserves isPropP P? (x ∷ xs) y v (f0 , y∈xs) | no ¬t = ⊥-elim (¬t (subst P (sym y∈xs) v)) filter-preserves isPropP P? (x ∷ xs) y v (fs n , y∈xs) | no ¬t = filter-preserves isPropP P? xs y v (n , y∈xs)
{ "alphanum_fraction": 0.5252692626, "avg_line_length": 38.935483871, "ext": "agda", "hexsha": "dc10e2cc4797d9f635b1730e42080cfcc64d46e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/List/Filter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/List/Filter.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/List/Filter.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 464, "size": 1207 }
open import FRP.JS.Nat using ( ℕ ; float ) renaming ( _+_ to _+n_ ; _∸_ to _∸n_ ; _*_ to _*n_ ; _≟_ to _≟n_ ; _≠_ to _≠n_ ; _/_ to _/n_ ; _/?_ to _/?n_ ; _≤_ to _≤n_ ; _<_ to _<n_ ) open import FRP.JS.Float using ( ℝ ) open import FRP.JS.Bool using ( Bool ) open import FRP.JS.True using ( True ) open import FRP.JS.Maybe using ( Maybe ) module FRP.JS.Delay where record Delay : Set where constructor _ms field toℕ : ℕ {-# COMPILED_JS Delay function(x,v) { return v["_ms"](x); } #-} {-# COMPILED_JS _ms function(d) { return d; } #-} _≟_ : Delay → Delay → Bool (d ms) ≟ (e ms) = d ≟n e {-# COMPILED_JS _≟_ function(d) { return function(e) { return d === e; }; } #-} _≠_ : Delay → Delay → Bool (d ms) ≠ (e ms) = d ≠n e {-# COMPILED_JS _≠_ function(d) { return function(e) { return d !== e; }; } #-} _≤_ : Delay → Delay → Bool (d ms) ≤ (e ms) = d ≤n e {-# COMPILED_JS _≤_ function(d) { return function(e) { return d <= e; }; } #-} _<_ : Delay → Delay → Bool (d ms) < (e ms) = d <n e {-# COMPILED_JS _<_ function(d) { return function(e) { return d < e; }; } #-} _+_ : Delay → Delay → Delay (d ms) + (e ms) = (d +n e) ms {-# COMPILED_JS _+_ function(d) { return function(e) { return d + e; }; } #-} _∸_ : Delay → Delay → Delay (d ms) ∸ (e ms) = (d ∸n e) ms {-# COMPILED_JS _∸_ function(d) { return function(e) { return Math.min(0, d - e); }; } #-} _*_ : ℕ → Delay → Delay n * (d ms) = (n *n d) ms {-# COMPILED_JS _*_ function(n) { return function(d) { return n * d; }; } #-} _/_ : ∀ (d e : Delay) → {e≠0 : True (e ≠ 0 ms)} → ℝ _/_ (d ms) (e ms) {e≠0} = _/n_ d e {e≠0} {-# COMPILED_JS _/_ function(d) { return function(e) { return function() { return d / e; }; }; } #-} _/?_ : Delay → Delay → Maybe ℝ (d ms) /? (e ms) = d /?n e {-# COMPILED_JS _/?_ function(d) { return function(e) { if (e === 0) { return null; } else { return d / e; } }; } #-} _sec : ℕ → Delay n sec = n * (1000 ms) {-# COMPILED_JS _sec function(t) { return t * 1000; } #-} _min : ℕ → Delay n min = n * (60000 ms) {-# COMPILED_JS _min function(t) { return t * 60000; } #-}
{ "alphanum_fraction": 0.552173913, "avg_line_length": 28.75, "ext": "agda", "hexsha": "a236a0364b1773a585b5d375064b49dd895f6764", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/Delay.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/Delay.agda", "max_line_length": 117, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/Delay.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 797, "size": 2070 }
-- This variant of the code is due to Ulf Norell. open import Agda.Builtin.Size data ⊥ : Set where mutual data Unit (i : Size) : Set where c : Unit′ i → Unit i data Unit₁ (i : Size) : Set where c₁ : ⊥ → Unit i → Unit₁ i record Unit′ (i : Size) : Set where coinductive field force : {j : Size< i} → Unit₁ j open Unit′ public tail : Unit ∞ → Unit₁ ∞ tail (c x) = force x u : (∀ {i} → Unit′ i → Unit i) → ∀ {i} → Unit₁ i u cons = tail (cons λ { .force → u cons }) bad : Unit₁ ∞ bad = u c refute : Unit₁ ∞ → ⊥ refute (c₁ () _) loop : ⊥ loop = refute bad
{ "alphanum_fraction": 0.5622895623, "avg_line_length": 16.0540540541, "ext": "agda", "hexsha": "2efc0c7cc5bc8e9e6c621ef521ab2e5a24bdad7e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2985-2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2985-2.agda", "max_line_length": 49, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2985-2.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 225, "size": 594 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product open import Algebra.Definitions Alternativeˡ : Op₂ A → Set _ Alternativeˡ _∙_ = ∀ x y → ((x ∙ x) ∙ y) ≈ (x ∙ (y ∙ y)) Alternativeʳ : Op₂ A → Set _ Alternativeʳ _∙_ = ∀ x y → (x ∙ (y ∙ y)) ≈ ((x ∙ y) ∙ y) Alternative : Op₂ A → Set _ Alternative _∙_ = (Alternativeˡ _∙_ ) × ( Alternativeʳ _∙_) Flexible : Op₂ A → Set _ Flexible _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ (x ∙ (y ∙ x)) Medial : Op₂ A → Set _ Medial _∙_ = ∀ x y u z → ((x ∙ y) ∙ (u ∙ z)) ≈ ((x ∙ u) ∙ (y ∙ z)) LeftSemimedial : Op₂ A → Set _ LeftSemimedial _∙_ = ∀ x y z → ((x ∙ x) ∙ (y ∙ z)) ≈ ((x ∙ y) ∙ (x ∙ z)) RightSemimedial : Op₂ A → Set _ RightSemimedial _∙_ = ∀ x y z → ((y ∙ z) ∙ (x ∙ x)) ≈ ((y ∙ x) ∙ (z ∙ x)) Semimedial : Op₂ A → Set _ Semimedial _∙_ = (LeftSemimedial _∙_) × (RightSemimedial _∙_) LatinSquare₁ : Op₂ A → Set _ LatinSquare₁ _*_ = ∀ a b x → (a * x) ≈ b LatinSquare₂ : Op₂ A → Set _ LatinSquare₂ _*_ = ∀ a b y → (y * a) ≈ b LatinSquare : Op₂ A → Set _ LatinSquare _*_ = (LatinSquare₁ _*_) × (LatinSquare₂ _*_) LeftBol : Op₂ A → Set _ LeftBol _∙_ = ∀ x y z → (x ∙ (y ∙ (x ∙ z))) ≈ ((x ∙ (y ∙ z)) ∙ z ) RightBol : Op₂ A → Set _ RightBol _∙_ = ∀ x y z → (((z ∙ x) ∙ y) ∙ x) ≈ (z ∙ ((x ∙ y) ∙ x)) MoufangIdentity₁ : Op₂ A → Set _ MoufangIdentity₁ _∙_ = ∀ x y z → (z ∙ (x ∙ (z ∙ y))) ≈ (((z ∙ x) ∙ z) ∙ y) MoufangIdentity₂ : Op₂ A → Set _ MoufangIdentity₂ _∙_ = ∀ x y z → (x ∙ (z ∙ (y ∙ z))) ≈ (((x ∙ z) ∙ y) ∙ z) MoufangIdentity₃ : Op₂ A → Set _ MoufangIdentity₃ _∙_ = ∀ x y z → ((z ∙ x) ∙ (y ∙ z)) ≈ ((z ∙ (x ∙ y)) ∙ z) MoufangIdentity₄ : Op₂ A → Set _ MoufangIdentity₄ _∙_ = ∀ x y z → ((z ∙ x) ∙ (y ∙ z)) ≈ (z ∙ ((x ∙ y) ∙ z)) -- (x²y)x = x²(yx) JordanIdentity: : Op₂ A → Set _ JordanIdentity: _∙_ = ∀ x y → (((x ∙ x) ∙ y) ∙ x) ≈ (((x ∙ x) ∙ y) ∙ x) -- x = xyx PesudoInverse₁ : Op₂ A → Set _ PesudoInverse₁ _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ x -- y = yxy PseudoInverse₂ : Op₂ A → Set _ PseudoInverse₂ _∙_ = ∀ x y → ((y ∙ x) ∙ y) ≈ y PseudoInverse : Op₂ A → Set _ PseudoInverse ∙ = (PesudoInverse₁ ∙) × (PseudoInverse₂ ∙) -- JacobiIdentity is (x ∙ (y ∙ z)) + ((y ∙ (z ∙ x)) + (z ∙ (x ∙ y))) = 0 -- Using the antisymmetry property Jacobi identity may be rewritten as a modification of the associative property JacobiIdentity : Op₂ A → Op₂ A → Set _ JacobiIdentity _∙_ _-_ = ∀ x y z → (x ∙ (y ∙ z)) ≈ ((y ∙ (z ∙ x)) - (z ∙ (x ∙ y)))
{ "alphanum_fraction": 0.5373831776, "avg_line_length": 30.2117647059, "ext": "agda", "hexsha": "28d229bb6f889abfe6628d37172beb8284304026", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/Agda-Algebra", "max_forks_repo_path": "src/Definitions.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/Agda-Algebra", "max_issues_repo_path": "src/Definitions.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/Agda-Algebra", "max_stars_repo_path": "src/Definitions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1175, "size": 2568 }
-- Andreas, 2014-06-16 data D A : Set where c : {x : A} → A → D A f : ∀(A : Set) → D A → Set f A (c a b) = D A -- Expected error: -- The constructor c expects 2 arguments (including hidden ones), but -- has been given 3 (including hidden ones) -- when checking that the pattern c a b has type D A
{ "alphanum_fraction": 0.6258278146, "avg_line_length": 23.2307692308, "ext": "agda", "hexsha": "1f4bd6f6ec8b79ba1e006168295290334ef91639", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1202.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1202.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1202.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 302 }
{-# OPTIONS --without-K #-} open import HoTT.Base using (𝒰 ; Level ; module variables) module HoTT.Exercises.Chapter1 where open variables module Exercise1 where open HoTT.Base hiding (_∘_) _∘_ : {A B C : 𝒰 i} (g : B → C) (f : A → B) → A → C g ∘ f = λ x → g (f x) _ : {A B C D : 𝒰 i} {f : A → B} {g : B → C} {h : C → D} → h ∘ (g ∘ f) == (h ∘ g) ∘ f _ = refl module Exercise2 where open HoTT.Base hiding (×-rec ; Σ-rec) ×-rec : (C : 𝒰 i) → (A → B → C) → A × B → C ×-rec _ g x = g (pr₁ x) (pr₂ x) _ : {C : 𝒰 i} {g : A → B → C} {a : A} {b : B} → ×-rec C g (a , b) == g a b _ = refl Σ-rec : (C : 𝒰 i) → ((x : A) → P x → C) → Σ A P → C Σ-rec _ g x = g (pr₁ x) (pr₂ x) _ : {C : 𝒰 i} {g : (x : A) → P x → C} {a : A} {b : P a} → Σ-rec C g (a , b) == g a b _ = refl module Exercise3 where open HoTT.Base hiding (×-ind ; Σ-ind) ×-ind : {A B : 𝒰 i} (C : A × B → 𝒰 i) → ((a : A) → (b : B) → C (a , b)) → (x : A × B) → C x ×-ind C g x = transport C (×-uniq x) (g (pr₁ x) (pr₂ x)) Σ-ind : {A : 𝒰 i} {B : A → 𝒰 i} (C : Σ A B → 𝒰 i) → ((a : A) → (b : B a) → C (a , b)) → (x : Σ A B) → C x Σ-ind C g x = transport C (Σ-uniq x) (g (pr₁ x) (pr₂ x)) module Exercise4 where open HoTT.Base hiding (ℕ-rec) iter : (C : 𝒰 i) → C → (C → C) → ℕ → C iter C c₀ cₛ 0 = c₀ iter C c₀ cₛ (succ n) = cₛ (iter C c₀ cₛ n) f : {C : 𝒰 i} {cₛ : ℕ → C → C} → ℕ × C → ℕ × C f {cₛ = cₛ} (n , c) = succ n , cₛ n c iterℕ : (C : 𝒰 i) → C → (ℕ → C → C) → ℕ → ℕ × C iterℕ C c₀ cₛ n = iter (ℕ × C) (0 , c₀) (f {C = C} {cₛ = cₛ}) n ℕ-rec : (C : 𝒰 i) → C → (ℕ → C → C) → ℕ → C ℕ-rec C c₀ cₛ n = pr₂ (iterℕ C c₀ cₛ n) module _ {C : 𝒰 i} {c₀ : C} {cₛ : ℕ → C → C} where _ : ℕ-rec C c₀ cₛ 0 == c₀ _ = refl _ : (n : ℕ) → ℕ-rec C c₀ cₛ (succ n) == cₛ n (ℕ-rec C c₀ cₛ n) _ = ℕ-ind D d₀ dₛ where E : ℕ → 𝒰₀ E n = pr₁ (iterℕ C c₀ cₛ n) == n e₀ : E 0 e₀ = refl eₛ : (n : ℕ) → E n → E (succ n) eₛ n = ×-ind (λ z → pr₁ z == n → pr₁ (f z) == succ n) (λ _ _ p → ap succ p) (iterℕ C c₀ cₛ n) D : ℕ → 𝒰 i D n = ℕ-rec C c₀ cₛ (succ n) == cₛ n (ℕ-rec C c₀ cₛ n) d₀ : D 0 d₀ = refl dₛ : (n : ℕ) → D n → D (succ n) dₛ n _ = ×-ind (λ z → pr₁ z == n → pr₂ (f (f z)) == cₛ (succ n) (pr₂ (f z))) (λ x y p → ap (λ n → cₛ (succ n) (cₛ x y)) p) (iterℕ C c₀ cₛ n) (ℕ-ind E e₀ eₛ n) module Exercise5 where open HoTT.Base hiding (_+_ ; inl ; inr ; +-ind) _+_ : 𝒰 i → 𝒰 i → 𝒰 i _+_ A B = Σ[ x ∶ 𝟐 ] (𝟐-rec A B x) private variable C : A + B → 𝒰 i inl : A → A + B inl a = 0₂ , a inr : B → A + B inr b = 1₂ , b +-ind : (C : A + B → 𝒰 i) → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A + B) → C x +-ind C g₀ g₁ (0₂ , a) = g₀ a +-ind C g₀ g₁ (1₂ , b) = g₁ b _ : {g₀ : (a : A) → C (inl a)} {g₁ : (b : B) → C (inr b)} {a : A} → +-ind C g₀ g₁ (inl a) == g₀ a _ = refl _ : {g₀ : (a : A) → C (inl a)} {g₁ : (b : B) → C (inr b)} {b : B} → +-ind C g₀ g₁ (inr b) == g₁ b _ = refl module Exercise6 where open HoTT.Base hiding (_×_ ; _,_ ; pr₁ ; pr₂ ; ×-uniq ; ×-ind) open import HoTT.Identity.Pi _×_ : 𝒰 i → 𝒰 i → 𝒰 i _×_ A B = (x : 𝟐) → 𝟐-rec A B x _,_ : A → B → A × B _,_ a b = 𝟐-ind _ a b pr₁ : A × B → A pr₁ x = x 0₂ pr₂ : A × B → B pr₂ x = x 1₂ ×-uniq : (x : A × B) → pr₁ x , pr₂ x == x ×-uniq x = funext λ b → 𝟐-ind (λ b → (pr₁ x , pr₂ x) b == x b) refl refl b ×-ind : (C : A × B → 𝒰 i) → ((a : A) (b : B) → C (a , b)) → (x : A × B) → C x ×-ind C g x = transport C (×-uniq x) (g (pr₁ x) (pr₂ x)) module _ {C : A × B → 𝒰 i} {g : (a : A) (b : B) → C (a , b)} {a : A} {b : B} where _ : ×-ind C g (a , b) == g a b _ = ap (λ p → transport C p (g a b)) (ap funext (funext (𝟐-ind _ refl refl)) ∙ =Π-η refl) -- Alternative solution from https://pcapriotti.github.io/hott-exercises/chapter1.ex6.html {- ×-uniq-compute : (x : A × B) → pr₁ x , pr₂ x == x ×-uniq-compute x = ×-uniq (pr₁ x , pr₂ x) ⁻¹ ∙ ×-uniq x ×-ind' : (C : A × B → 𝒰 i) → ((a : A) (b : B) → C (a , b)) → (x : A × B) → C x ×-ind' C g x = transport C (×-uniq-compute x) (g (pr₁ x) (pr₂ x)) module _ {C : A × B → 𝒰 i} {g : (a : A) (b : B) → C (a , b)} {a : A} {b : B} where _ : ×-ind' C g (a , b) == g a b _ = ap (λ p → transport C p (g a b)) (∙-invₗ (×-uniq (a , b))) -} module Exercise7 where open HoTT.Base hiding (=-ind') open import HoTT.Identity.Sigma open import HoTT.Identity -- TODO: Using Lemma 3.11.8 might simplify this. =-ind' : (a : A) → (C : (x : A) → a == x → 𝒰 j) → C a refl → (x : A) → (p : a == x) → C x p =-ind' {A = A} a C c x p = transport (λ{(x , p) → C x p}) q c where D : (x y : A) → x == y → 𝒰 _ D x y p = transport (x ==_) p refl == p d : (x : A) → D x x refl d x = refl q : (a , refl) == (x , p) q = pair⁼ (p , =-ind D d p) module Exercise8 where open HoTT.Base hiding (_+_) renaming (ℕ-rec to rec ; ℕ-ind to ind) open import HoTT.Identity _+_ : ℕ → ℕ → ℕ n + m = rec m (λ _ → succ) n infix 17 _+_ _*_ : ℕ → ℕ → ℕ n * m = rec 0 (λ _ x → m + x) n infix 18 _*_ _^_ : ℕ → ℕ → ℕ n ^ m = rec 1 (λ _ x → m * x) n infix 19 _^_ +-assoc : (a b c : ℕ) → (a + b) + c == a + (b + c) +-assoc a b c = ind D d₀ dₛ a where D : ℕ → 𝒰₀ D a = (a + b) + c == a + (b + c) d₀ : D 0 d₀ = refl dₛ : (n : ℕ) → D n → D (succ n) dₛ n p = ap succ p +-unitₗ : (a : ℕ) → 0 + a == a +-unitₗ a = refl +-unitᵣ : (a : ℕ) → a + 0 == a +-unitᵣ a = ind (λ a → a + 0 == a) refl (λ _ → ap succ) a +-commute : (a b : ℕ) → a + b == b + a +-commute = ind D d₀ dₛ where D : ℕ → 𝒰₀ D a = (b : ℕ) → a + b == b + a d₀ : D 0 d₀ b = +-unitₗ b ∙ +-unitᵣ b ⁻¹ dₛ : (n : ℕ) → D n → D (succ n) dₛ n p b = ap succ (p b) ∙ ind E e₀ eₛ b where E : ℕ → 𝒰₀ E b = (succ b) + n == b + (succ n) e₀ : E 0 e₀ = refl eₛ : (m : ℕ) → E m → E (succ m) eₛ m q = ap succ q *-unitₗ : (a : ℕ) → 1 * a == a *-unitₗ = +-unitᵣ *-unitᵣ : (a : ℕ) → a * 1 == a *-unitᵣ = ind (λ a → a * 1 == a) refl (λ _ → ap succ) *-distₗ : (a b c : ℕ) → a * (b + c) == a * b + a * c *-distₗ a b c = ind D d₀ dₛ a where D : ℕ → 𝒰₀ D a = a * (b + c) == a * b + a * c d₀ : D 0 d₀ = refl dₛ : (a : ℕ) → D a → D (succ a) dₛ a p = succ a * (b + c) =⟨⟩ (b + c) + a * (b + c) =⟨ ap ((b + c) +_) p ⟩ (b + c) + (a * b + a * c) =⟨ +-assoc b c (a * b + a * c) ⟩ b + (c + (a * b + a * c)) =⟨ ap (b +_) (+-assoc c (a * b) (a * c) ⁻¹) ⟩ b + ((c + a * b) + a * c) =⟨ ap (λ n → b + (n + a * c)) (+-commute c (a * b)) ⟩ b + ((a * b + c) + a * c) =⟨ ap (b +_) (+-assoc (a * b) c (a * c)) ⟩ b + (a * b + (c + a * c)) =⟨ +-assoc b (a * b) (c + a * c) ⁻¹ ⟩ (b + a * b) + (c + a * c) =⟨⟩ succ a * b + succ a * c ∎ where open =-Reasoning *-zeroₗ : (a : ℕ) → 0 * a == 0 *-zeroₗ _ = refl *-zeroᵣ : (a : ℕ) → a * 0 == 0 *-zeroᵣ a = ind (λ n → n * 0 == 0) refl (λ _ p → p) a *-comm : (a b : ℕ) → a * b == b * a *-comm a b = ind D d₀ dₛ a where D : ℕ → 𝒰₀ D n = n * b == b * n d₀ : D 0 d₀ = *-zeroᵣ b ⁻¹ dₛ : (n : ℕ) → D n → D (succ n) dₛ n p = ap (b +_) p ∙ ap (_+ (b * n)) (*-unitᵣ b ⁻¹) ∙ *-distₗ b 1 n ⁻¹ *-distᵣ : (a b c : ℕ) → (a + b) * c == (a * c) + (b * c) *-distᵣ a b c = (a + b) * c =⟨ *-comm (a + b) c ⟩ c * (a + b) =⟨ *-distₗ c a b ⟩ c * a + c * b =⟨ ap (_+ (c * b)) (*-comm c a) ⟩ a * c + c * b =⟨ ap ((a * c) +_) (*-comm c b) ⟩ a * c + b * c ∎ where open =-Reasoning *-assoc : (a b c : ℕ) → (a * b) * c == a * (b * c) *-assoc a b c = ind D d₀ dₛ a where D : ℕ → 𝒰₀ D n = (n * b) * c == n * (b * c) d₀ : D 0 d₀ = refl dₛ : (n : ℕ) → D n → D (succ n) dₛ n p = *-distᵣ b (n * b) c ∙ ap ((b * c) +_) p module Exercise9 where open HoTT.Base Fin : ℕ → 𝒰₀ Fin n = ℕ-rec 𝟎 (λ _ A → 𝟏 + A) n fmax : (n : ℕ) → Fin (succ n) fmax = ℕ-ind (Fin ∘ succ) (inl ★) (λ _ → inr) module Exercise10 where open HoTT.Base ack : ℕ → ℕ → ℕ ack m n = ℕ-rec succ cₛ m n where cₛ : ℕ → (ℕ → ℕ) → ℕ → ℕ cₛ m c n = c (ℕ-rec 1 (λ _ → c) n) module Exercise11 where open HoTT.Base _ : ¬ ¬ ¬ A → ¬ A _ = λ f a → f (λ g → g a) module Exercise12 where open HoTT.Base _ : A → B → A _ = λ a _ → a _ : A → ¬ ¬ A _ = λ a f → f a _ : ¬ A + ¬ B → ¬ (A × B) _ = λ x y → +-rec (λ f → 𝟎-rec (f (pr₁ y))) (λ f → 𝟎-rec (f (pr₂ y))) x module Exercise13 where open HoTT.Base _ : ¬ ¬ (A + ¬ A) _ = λ f → f (inr (f ∘ inl)) module Exercise14 where -- For induction, we must have a function C : (s : A) → (t : A) → (q : s == t) → 𝒰. -- Since q : s == t, the equality type q == refl {s} does not make sense because -- we are trying to equate elements of two different types. module Exercise15 {C : A → 𝒰 i} where open HoTT.Base using (_==_ ; refl ; =-ind ; id) _ : {x y : A} → (p : x == y) → C x → C y _ = =-ind D d where D : (x y : A) → x == y → 𝒰 _ D x y p = C x → C y d : (x : A) → D x x refl d _ = id module Exercise16 where -- This is just a subset of Exercise8. See +-commute above.
{ "alphanum_fraction": 0.414581997, "avg_line_length": 27.1918604651, "ext": "agda", "hexsha": "61560ee9979c8f6bc933d4c8cccd5798bc834140", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Exercises/Chapter1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Exercises/Chapter1.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Exercises/Chapter1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4641, "size": 9354 }
{-# OPTIONS --without-K #-} module decidable where open import level using (Level) open import sets.empty using (⊥; ¬_) open import sets.unit using (⊤; tt) -- Decidable relations. data Dec {i} (P : Set i) : Set i where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P True : ∀ {i}{P : Set i} → Dec P → Set True (yes _) = ⊤ True (no _) = ⊥ witness : ∀ {i}{P : Set i}{d : Dec P} → True d → P witness {d = yes x} _ = x witness {d = no _} () decide : ∀ {i} {P : Set i} {d : Dec P} → P → True d decide {d = yes p} = λ _ → tt decide {d = no f} = f
{ "alphanum_fraction": 0.5351351351, "avg_line_length": 21.3461538462, "ext": "agda", "hexsha": "70539bc8e1f05928d40dc8163593db471169e081", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "decidable.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "decidable.agda", "max_line_length": 51, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "decidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 219, "size": 555 }
{- This file contains a summary of the proofs that π₄(S³) ≡ ℤ/2ℤ - The first proof "π₄S³≃ℤ/2ℤ" closely follows Brunerie's thesis. - The second proof "π₄S³≃ℤ/2ℤ-direct" is much more direct and avoids all of the more advanced constructions in chapters 4-6 in Brunerie's thesis. - The third proof "π₄S³≃ℤ/2ℤ-computation" uses ideas from the direct proof to define an alternative Brunerie number which computes to -2 in a few seconds and the main result is hence obtained by computation as conjectured on page 85 of Brunerie's thesis. The --experimental-lossy-unification flag is used to speed up type checking. The file still type checks without it, but it's a lot slower (about 10 times). -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Pi4S3.Summary where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Data.Nat.Base open import Cubical.Data.Int.Base open import Cubical.Data.Sigma.Base open import Cubical.HITs.Sn open import Cubical.HITs.SetTruncation open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.HopfInvariant.Homomorphism open import Cubical.Homotopy.HopfInvariant.HopfMap open import Cubical.Homotopy.HopfInvariant.Brunerie open import Cubical.Homotopy.Whitehead open import Cubical.Homotopy.Group.Base hiding (π) open import Cubical.Homotopy.Group.Pi3S2 open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber open import Cubical.Homotopy.Group.Pi4S3.DirectProof as DirectProof open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.GroupPath open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.IntMod open import Cubical.Algebra.Group.ZAction -- Homotopy groups (shifted version of π'Gr to get nicer numbering) π : ℕ → Pointed₀ → Group₀ π n X = π'Gr (predℕ n) X -- Nicer notation for the spheres (as pointed types) 𝕊² 𝕊³ : Pointed₀ 𝕊² = S₊∙ 2 𝕊³ = S₊∙ 3 -- The Brunerie number; defined in Cubical.Homotopy.Group.Pi4S3.BrunerieNumber -- as "abs (HopfInvariant-π' 0 ([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×))" β : ℕ β = Brunerie -- The connection to π₄(S³) is then also proved in the BrunerieNumber -- file following Corollary 3.4.5 in Guillaume Brunerie's PhD thesis. βSpec : GroupEquiv (π 4 𝕊³) (ℤGroup/ β) βSpec = BrunerieIso -- Ideally one could prove that β is 2 by normalization, but this does -- not seem to terminate before we run out of memory. To try normalize -- this use "C-u C-c C-n β≡2" (which normalizes the term, ignoring -- abstract's). So instead we prove this by hand as in the second half -- of Guillaume's thesis. β≡2 : β ≡ 2 β≡2 = Brunerie≡2 -- This involves a lot of theory, for example that π₃(S²) ≃ ℤGroup where -- the underlying map is induced by the Hopf invariant (which involves -- the cup product on cohomology). _ : GroupEquiv (π 3 𝕊²) ℤGroup _ = hopfInvariantEquiv -- Which is a consequence of the fact that π₃(S²) is generated by the -- Hopf map. _ : gen₁-by (π 3 𝕊²) ∣ HopfMap ∣₂ _ = π₂S³-gen-by-HopfMap -- etc. For more details see the proof of "Brunerie≡2". -- Combining all of this gives us the desired equivalence of groups: π₄S³≃ℤ/2ℤ : GroupEquiv (π 4 𝕊³) (ℤGroup/ 2) π₄S³≃ℤ/2ℤ = subst (GroupEquiv (π 4 𝕊³)) (cong ℤGroup/_ β≡2) βSpec -- By the SIP this induces an equality of groups: π₄S³≡ℤ/2ℤ : π 4 𝕊³ ≡ ℤGroup/ 2 π₄S³≡ℤ/2ℤ = GroupPath _ _ .fst π₄S³≃ℤ/2ℤ -- As a sanity check we also establish the equality with Bool: π₄S³≡Bool : π 4 𝕊³ ≡ BoolGroup π₄S³≡Bool = π₄S³≡ℤ/2ℤ ∙ GroupPath _ _ .fst (GroupIso→GroupEquiv ℤGroup/2≅Bool) -- We also have a much more direct proof in Cubical.Homotopy.Group.Pi4S3.DirectProof, -- not relying on any of the more advanced constructions in chapters -- 4-6 in Brunerie's thesis (but still using chapters 1-3 for the -- construction). For details see the header of that file. π₄S³≃ℤ/2ℤ-direct : GroupEquiv (π 4 𝕊³) (ℤGroup/ 2) π₄S³≃ℤ/2ℤ-direct = DirectProof.BrunerieGroupEquiv -- This direct proof allows us to define a much simplified version of -- the Brunerie number: β' : ℤ β' = fst DirectProof.computer η₃' -- This number computes definitionally to -2 in a few seconds! β'≡-2 : β' ≡ -2 β'≡-2 = refl -- As a sanity check we have proved (commented as typechecking is quite slow): -- β'Spec : GroupEquiv (π 4 𝕊³) (ℤGroup/ abs β') -- β'Spec = DirectProof.BrunerieGroupEquiv' -- Combining all of this gives us the desired equivalence of groups by -- computation as conjectured in Brunerie's thesis: π₄S³≃ℤ/2ℤ-computation : GroupEquiv (π 4 𝕊³) (ℤGroup/ 2) π₄S³≃ℤ/2ℤ-computation = DirectProof.BrunerieGroupEquiv''
{ "alphanum_fraction": 0.7527287993, "avg_line_length": 34.0285714286, "ext": "agda", "hexsha": "64c0a1896e3e72b26b60d0307322569991cf68fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 1622, "size": 4764 }
-- 2010-10-02 -- termination checker now recognizes projections module Issue334 where data Functor : Set₁ where |Id| : Functor _|x|_ : Functor → Functor → Functor record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B [_] : Functor → Set → Set [ |Id| ] X = X [ F |x| G ] X = [ F ] X × [ G ] X data µ_ (F : Functor) : Set where <_> : [ F ] (µ F) → µ F mapFold : ∀ {X} F G → ([ G ] X → X) → [ F ] (µ G) → [ F ] X mapFold |Id| G φ < x > = φ (mapFold G G φ x) mapFold (F1 |x| F2 ) G φ (x , y) = mapFold F1 G φ x , mapFold F2 G φ y -- after record pattern translation, this becomes -- mapFold (F1 |x| F2) G φ r = mapFold F1 G φ (proj₁ r) , mapFold F2 G φ (proj₂ r) -- foetus now honors proj₁ p <= p
{ "alphanum_fraction": 0.5548216645, "avg_line_length": 26.1034482759, "ext": "agda", "hexsha": "2c4c642b7ddb831b40806b2b085327eb21ec2164", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue334.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue334.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue334.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 295, "size": 757 }
{- Computer Aided Formal Reasoning (G53CFR, G54CFR) Thorsten Altenkirch Lecture 2: A first taste of Agda In this lecture we start to explore the Agda system, a functional programming language based on Type Theory. We start with some ordinary examples which we could have developed in Haskell as well. -} module l02 where -- module myNat where {- Agda has no automatically loaded prelude. Hence we can start from scratch and define the natural numbers. Later we will use the standard libray. -} data ℕ : Set where -- to type ℕ we type \bn zero : ℕ suc : (m : ℕ) → ℕ -- \-> or \to {- To process an Agda file we use C-c C-c from emacs. Once Agda has checked the file the type checker also colours the different symbols. -} {- We define addition. Note Agda's syntax for mixfix operations. The arguments are represented by _s -} _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) {- Try to evaluate: (suc (suc zero)) + (suc (suc zero)) by typing in C-c C-n -} {- Better we import the library definition of ℕ This way we can type 2 instead of (suc (suc zero)) -} -- open import Data.Nat {- We define Lists : -} data List (A : Set) : Set where [] : List A _∷_ : (a : A) → (as : List A) → List A {- In future we'll use open import Data.List -} {- declare the fixity of ∷ (type \::) -} infixr 5 _∷_ {- Two example lists -} {- l1 : List ℕ l1 = 1 ∷ 2 ∷ 3 ∷ [] l2 : List ℕ l2 = 4 ∷ 5 ∷ [] -} {- implementing append (++) -} _++_ : {A : Set} → List A → List A → List A [] ++ bs = bs (a ∷ as) ++ bs = a ∷ (as ++ bs) {- Note that Agda checks wether a function is terminating. If we type (a ∷ as) ++ bs = (a ∷ as) ++ bs in the 2nd line Agda will complain by coloring the offending function calls in red. -} {- What does the following variant of ++ do ? -} _++'_ : {A : Set} → List A → List A → List A as ++' [] = as as ++' (b ∷ bs) = (b ∷ as) ++' bs {- Indeed it can be used to define reverse. This way to implement reverse is often called fast reverse because it is "tail recursive" which leads to a more efficient execution than the naive implementation. -} rev : {A : Set} → List A → List A rev as = [] ++' as {- We tried to define a function which accesses the nth element of a list: _!!_ : {A : Set} → List A → ℕ → A [] !! n = {!!} (a ∷ as) !! zero = a (a ∷ as) !! suc n = as !! n but there is no way to complete the first line (consider what happens if A is the empty type! -} {- To fix this we handle errors explicitely, using Maybe -} -- open import Data.Maybe data Maybe (A : Set) : Set where just : (x : A) → Maybe A nothing : Maybe A {- This version of the function can either return an element of the list (just a) or an error (nothing). -} _!!_ : {A : Set} → List A → ℕ → Maybe A [] !! n = nothing (a ∷ as) !! zero = just a (a ∷ as) !! suc n = as !! n
{ "alphanum_fraction": 0.6085164835, "avg_line_length": 24.2666666667, "ext": "agda", "hexsha": "cb61f43baa8e6c9169b9a890009372a7cc2bad7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/l02.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/l02.agda", "max_line_length": 74, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/l02.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 924, "size": 2912 }