Search is not available for this dataset
text
string
meta
dict
module Generic.Lib.Reflection.Core where open import Agda.Builtin.Reflection using (withNormalisation; Relevance; Visibility; clause) public open import Reflection renaming (visible to expl; hidden to impl; instance′ to inst; relevant to rel; irrelevant to irr; pi to absPi; lam to absLam; def to appDef) hiding (Arg-info; var; con; meta; visibility; relevance; _≟_; return; _>>=_; _>>_) public open import Reflection.Argument.Information using (ArgInfo; visibility; relevance) public import Reflection.Name open Term using () renaming (var to appVar; con to appCon; meta to appMeta) public open Pattern using () renaming (var to patVar; con to patCon) public open Literal using () renaming (meta to litMeta) public open Sort public open import Generic.Lib.Intro open import Generic.Lib.Equality.Propositional open import Generic.Lib.Decidable open import Generic.Lib.Category open import Generic.Lib.Data.Nat open import Generic.Lib.Data.String open import Generic.Lib.Data.Maybe open import Generic.Lib.Data.Product open import Generic.Lib.Data.List open import Data.Vec using (toList) open import Data.Vec.N-ary using (N-ary; curryⁿ) infixr 5 _‵→_ infixl 3 _·_ listCurryⁿ : ∀ {α β} {A : Set α} {B : Set β} n -> (List A -> B) -> N-ary n A B listCurryⁿ n f = curryⁿ {n = n} (f ∘ toList) named : String -> String named s = if s == "_" then "x" else s record Reify {α} (A : Set α) : Set α where field reify : A -> Term macro reflect : A -> Term -> TC _ reflect = unify ∘ reify open Reify {{...}} public pattern pureVar n = appVar n [] pattern pureCon c = appCon c [] pattern pureDef f = appDef f [] pattern pureMeta m = appMeta m [] {-# DISPLAY appVar i [] = pureVar i #-} {-# DISPLAY appCon c [] = pureCon c #-} {-# DISPLAY appDef f [] = pureDef f #-} {-# DISPLAY appMeta m [] = pureMeta m #-} pattern explInfo r = arg-info expl r pattern implInfo r = arg-info impl r pattern instInfo r = arg-info inst r {-# DISPLAY arg-info expl r = explInfo r #-} {-# DISPLAY arg-info impl r = implInfo r #-} {-# DISPLAY arg-info inst r = instInfo r #-} pattern explRelInfo = explInfo rel pattern explIrrInfo = explInfo irr pattern implRelInfo = implInfo rel pattern implIrrInfo = implInfo irr pattern instRelInfo = instInfo rel pattern instIrrInfo = instInfo irr {-# DISPLAY explInfo rel = explRelInfo #-} {-# DISPLAY explInfo irr = explIrrInfo #-} {-# DISPLAY implInfo rel = implRelInfo #-} {-# DISPLAY implInfo irr = implIrrInfo #-} {-# DISPLAY instInfo rel = instRelInfo #-} {-# DISPLAY instInfo irr = instIrrInfo #-} pattern explArg r x = arg (explInfo r) x pattern implArg r x = arg (implInfo r) x pattern instArg r x = arg (instInfo r) x {-# DISPLAY arg (explInfo r) = explArg r #-} {-# DISPLAY arg (implInfo r) = implArg r #-} {-# DISPLAY arg (instInfo r) = instArg r #-} pattern explRelArg x = explArg rel x pattern implRelArg x = implArg rel x pattern instRelArg x = instArg rel x {-# DISPLAY explArg rel x = explRelArg x #-} {-# DISPLAY implArg rel x = implRelArg x #-} {-# DISPLAY instArg rel x = instRelArg x #-} pattern pi s a b = absPi a (abs s b) {-# DISPLAY absPi a (abs s b) = pi s a b #-} pattern explPi r s a b = pi s (explArg r a) b pattern implPi r s a b = pi s (implArg r a) b pattern instPi r s a b = pi s (instArg r a) b {-# DISPLAY pi (explArg r a) s b = explPi r s a b #-} {-# DISPLAY pi (implArg r a) s b = implPi r s a b #-} {-# DISPLAY pi (instArg r a) s b = instPi r s a b #-} pattern explRelPi s a b = explPi rel a s b pattern explIrrPi s a b = explPi irr a s b pattern implRelPi s a b = implPi rel a s b pattern implIrrPi s a b = implPi irr a s b pattern instRelPi s a b = instPi rel a s b pattern instIrrPi s a b = instPi irr a s b {-# DISPLAY explPi rel a s b = explRelPi s a b #-} {-# DISPLAY explPi irr a s b = explIrrPi s a b #-} {-# DISPLAY implPi rel a s b = implRelPi s a b #-} {-# DISPLAY implPi irr a s b = implIrrPi s a b #-} {-# DISPLAY instPi rel a s b = instRelPi s a b #-} {-# DISPLAY instPi irr a s b = instIrrPi s a b #-} pattern lam v s t = absLam v (abs s t) {-# DISPLAY absLam v (abs s t) = lam v s t #-} pattern explLam s t = lam expl s t pattern implLam s t = lam impl s t pattern instLam s t = lam inst s t {-# DISPLAY lam expl s t = explLam s t #-} {-# DISPLAY lam impl s t = implLam s t #-} {-# DISPLAY lam inst s t = instLam s t #-} pattern _‵→_ a b = pi "_" (explRelArg a) b -- No longer parses for whatever reason. -- {-# DISPLAY pi "_" (explRelArg a) b = a ‵→ b #-} mutual <_>_ : ∀ {α} -> Relevance -> Set α -> Set α <_>_ = flip RelValue data RelValue {α} (A : Set α) : Relevance -> Set α where relv : A -> < rel > A irrv : .A -> < irr > A elimRelValue : ∀ {r α π} {A : Set α} -> (P : ∀ {r} -> < r > A -> Set π) -> (∀ x -> P (relv x)) -> (∀ .x -> P (irrv x)) -> (x : < r > A) -> P x elimRelValue P f g (relv x) = f x elimRelValue P f g (irrv x) = g x unrelv : ∀ {α} {A : Set α} -> < rel > A -> A unrelv (relv x) = x -- Is it possible to handle this in some other way that doesn't require a postulate? -- See the `appRel` function below. Or is the postulate fine? postulate .unirrv : ∀ {α} {A : Set α} -> < irr > A -> A <_>_~>_ : ∀ {α β} -> Relevance -> Set α -> Set β -> Set (α ⊔ β) < rel > A ~> B = A -> B < irr > A ~> B = .A -> B lamRel : ∀ {r α β} {A : Set α} {B : Set β} -> (< r > A -> B) -> < r > A ~> B lamRel {rel} f = λ x -> f (relv x) lamRel {irr} f = λ x -> f (irrv x) -- The laziness is intentional. appRel : ∀ {r α β} {A : Set α} {B : Set β} -> (< r > A ~> B) -> < r > A -> B appRel {rel} f rx = f (unrelv rx) appRel {irr} f rx = f (unirrv rx) Pi : ∀ {α β} i -> (A : Set α) -> (< relevance i > A -> Set β) -> Set (α ⊔ β) Pi explRelInfo A B = (x : A) -> B (relv x) Pi explIrrInfo A B = . (x : A) -> B (irrv x) Pi implRelInfo A B = {x : A} -> B (relv x) Pi implIrrInfo A B = . {x : A} -> B (irrv x) Pi instRelInfo A B = {{x : A}} -> B (relv x) Pi instIrrInfo A B = .{{x : A}} -> B (irrv x) lamPi : ∀ {α β} {A : Set α} i {B : < relevance i > A -> Set β} -> (∀ x -> B x) -> Pi i A B lamPi explRelInfo f = λ x -> f (relv x) lamPi explIrrInfo f = λ x -> f (irrv x) lamPi implRelInfo f = f _ lamPi implIrrInfo f = f _ lamPi instRelInfo f = f _ lamPi instIrrInfo f = f _ appPi : ∀ {α β} {A : Set α} i {B : < relevance i > A -> Set β} -> Pi i A B -> ∀ x -> B x appPi explRelInfo f (relv x) = f x appPi explIrrInfo f (irrv x) = f x appPi implRelInfo y (relv x) = y appPi implIrrInfo y (irrv x) = y appPi instRelInfo y (relv x) = y {{x}} appPi instIrrInfo y (irrv x) = y {{x}} RelEq : ∀ {α} -> Relevance -> Set α -> Set α RelEq rel A = Eq A RelEq irr A = ⊤ vis : {A : Set} -> (A -> List (Arg Term) -> Term) -> A -> List Term -> Term vis k x = k x ∘ map explRelArg vis# : ∀ {A : Set} n -> (A -> List (Arg Term) -> Term) -> A -> N-ary n Term Term vis# n k = listCurryⁿ n ∘ vis k isRelevant : Relevance -> Bool isRelevant rel = true isRelevant irr = false argInfo : ∀ {α} {A : Set α} -> Arg A -> _ argInfo (arg i x) = i argVal : ∀ {α} {A : Set α} -> Arg A -> A argVal (arg i x) = x unExpl : ∀ {α} {A : Set α} -> Arg A -> Maybe A unExpl (explArg r x) = just x unExpl _ = nothing absName : ∀ {α} {A : Set α} -> Abs A -> String absName (abs s x) = s absVal : ∀ {α} {A : Set α} -> Abs A -> A absVal (abs s x) = x patVars : List String -> List (Arg Pattern) patVars = map (explRelArg ∘ patVar ∘ named) record Data {α} (A : Set α) : Set α where no-eta-equality constructor packData field dataName : Name parsTele : Type indsTele : Type consTypes : List A consNames : All (const Name) consTypes open Data public instance NameEq : Eq Name NameEq = viaBase Reflection.Name._≟_ EqRelValue : ∀ {α r} {A : Set α} {{aEq : RelEq r A}} -> Eq (< r > A) EqRelValue {A = A} {{aEq}} = record { _≟_ = go } where relv-inj : {x y : A} -> relv x ≡ relv y -> x ≡ y relv-inj refl = refl go : ∀ {r} {{aEq : RelEq r A}} -> IsSet (< r > A) go (relv x) (relv y) = dcong relv relv-inj (x ≟ y) go (irrv x) (irrv y) = yes refl ArgFunctor : ∀ {α} -> RawFunctor {α} Arg ArgFunctor = record { _<$>_ = λ{ f (arg i x) -> arg i (f x) } } AbsFunctor : ∀ {α} -> RawFunctor {α} Abs AbsFunctor = record { _<$>_ = λ{ f (abs s x) -> abs s (f x) } } TCMonad : ∀ {α} -> RawMonad {α} TC TCMonad = record { return = Reflection.return ; _>>=_ = Reflection._>>=_ } TCApplicative : ∀ {α} -> RawApplicative {α} TC TCApplicative = rawIApplicative TCFunctor : ∀ {α} -> RawFunctor {α} TC TCFunctor = rawFunctor keep : (ℕ -> ℕ) -> ℕ -> ℕ keep ι 0 = 0 keep ι (suc n) = suc (ι n) {-# TERMINATING #-} mutual ren : (ℕ -> ℕ) -> Term -> Term ren ι (appVar v xs) = appVar (ι v) (rens ι xs) ren ι (appCon c xs) = appCon c (rens ι xs) ren ι (appDef f xs) = appDef f (rens ι xs) ren ι (lam v s t) = lam v s (ren (keep ι) t) ren ι (pat-lam cs xs) = undefined where postulate undefined : _ ren ι (pi s a b) = pi s (ren ι <$> a) (ren (keep ι) b) ren ι (agda-sort s) = agda-sort (renSort ι s) ren ι (lit l) = lit l ren ι (appMeta x xs) = appMeta x (rens ι xs) ren ι unknown = unknown rens : (ℕ -> ℕ) -> List (Arg Term) -> List (Arg Term) rens ι = map (fmap (ren ι)) renSort : (ℕ -> ℕ) -> Sort -> Sort renSort ι (set t) = set (ren ι t) renSort ι (lit n) = lit n renSort ι unknown = unknown shiftBy : ℕ -> Term -> Term shiftBy = ren ∘ _+_ shift : Term -> Term shift = shiftBy 1 unshiftBy : ℕ -> Term -> Term unshiftBy n = ren (_∸ n) isSomeName : Name -> Term -> Bool isSomeName n (appDef m _) = n == m isSomeName n (appCon m _) = n == m isSomeName n t = false {-# TERMINATING #-} mutual mapName : (ℕ -> List (Arg Term) -> Term) -> Name -> Term -> Term mapName f n (appVar v xs) = appVar v (mapNames f n xs) mapName f n (appCon m xs) = (if n == m then f 0 else appCon m) (mapNames f n xs) mapName f n (appDef m xs) = (if n == m then f 0 else appDef m) (mapNames f n xs) mapName f n (lam v s t) = lam v s (mapName (f ∘ suc) n t) mapName f n (pat-lam cs xs) = undefined where postulate undefined : _ mapName f n (pi s a b) = pi s (mapName f n <$> a) (mapName (f ∘ suc) n b) mapName f n (agda-sort s) = agda-sort (mapNameSort f n s) mapName f n (lit l) = lit l mapName f n (appMeta x xs) = appMeta x (mapNames f n xs) mapName f n unknown = unknown mapNames : (ℕ -> List (Arg Term) -> Term) -> Name -> List (Arg Term) -> List (Arg Term) mapNames f n = map (fmap (mapName f n)) mapNameSort : (ℕ -> List (Arg Term) -> Term) -> Name -> Sort -> Sort mapNameSort f n (set t) = set (mapName f n t) mapNameSort f n (lit l) = lit l mapNameSort f n unknown = unknown explsOnly : List (Arg Term) -> List Term explsOnly = mapMaybe unExpl initType : Type -> Type initType (pi s a b) = pi s a (initType b) initType b = unknown lastType : Type -> Type lastType (pi s a b) = lastType b lastType b = b -- These two should return just `Type` like everything else. takePis : ℕ -> Type -> Maybe Type takePis 0 a = just unknown takePis (suc n) (pi s a b) = pi s a <$> takePis n b takePis _ _ = nothing dropPis : ℕ -> Type -> Maybe Type dropPis 0 a = just a dropPis (suc n) (pi s a b) = dropPis n b dropPis _ _ = nothing monoLastType : Type -> Type monoLastType = go 0 where go : ℕ -> Type -> Type go n (pi s a b) = go (suc n) b go n b = unshiftBy n b appendType : Type -> Type -> Type appendType (pi s a b) c = pi s a (appendType b c) appendType b c = c explLamsBy : Type -> Term -> Term explLamsBy (explPi r s a b) t = explLam s (explLamsBy b t) explLamsBy (pi s a b) t = explLamsBy b t explLamsBy b t = t implicitize : Type -> Type implicitize (explPi r s a b) = implPi r s a (implicitize b) implicitize (pi s a b) = pi s a (implicitize b) implicitize b = b leadImpls : Type -> List (Abs Term) leadImpls (implPi r s a b) = abs s a ∷ leadImpls b leadImpls b = [] pisToAbsArgTypes : Type -> List (Abs (Arg Type)) pisToAbsArgTypes (pi s a b) = abs s a ∷ pisToAbsArgTypes b pisToAbsArgTypes b = [] explPisToAbsTypes : Type -> List (Abs Type) explPisToAbsTypes (explPi r s a b) = abs s a ∷ explPisToAbsTypes b explPisToAbsTypes (pi s a b) = explPisToAbsTypes b explPisToAbsTypes b = [] explPisToNames : Type -> List String explPisToNames = map absName ∘ explPisToAbsTypes countPis : Type -> ℕ countPis = length ∘ pisToAbsArgTypes countExplPis : Type -> ℕ countExplPis = length ∘ explPisToAbsTypes pisToAbsArgVars : ℕ -> Type -> List (Abs (Arg Term)) pisToAbsArgVars (suc n) (pi s (arg i a) b) = abs s (arg i (pureVar n)) ∷ pisToAbsArgVars n b pisToAbsArgVars n b = [] pisToArgVars : ℕ -> Type -> List (Arg Term) pisToArgVars = map absVal % ∘ pisToAbsArgVars explPisToAbsVars : ℕ -> Type -> List (Abs Term) explPisToAbsVars (suc n) (explPi r s a b) = abs s (pureVar n) ∷ explPisToAbsVars n b explPisToAbsVars (suc n) (pi s a b) = explPisToAbsVars n b explPisToAbsVars n b = [] throw : ∀ {α} {A : Set α} -> String -> TC A throw s = typeError (strErr s ∷ []) panic : ∀ {α} {A : Set α} -> String -> TC A panic s = throw $ "panic: " ++ˢ s -- I'll merge these later. macro sate : Name -> Term -> TC _ sate f ?r = getType f >>= λ a -> let res = λ app -> quoteTC (vis# (countExplPis a) app f) >>= unify ?r in getDefinition f >>= λ { (data-cons _) -> res appCon ; _ -> res appDef } sateMacro : Name -> Term -> TC _ sateMacro f ?r = getType f >>= λ a -> quoteTC (vis# (pred (countExplPis a)) appDef f) >>= unify ?r _·_ : Term -> Term -> Term _·_ = sate _$_ unshift′ : Term -> Term unshift′ t = explLam "_" t · sate tt₀ -- A note for myself: `foldℕ (sate lsuc) (sate lzero) n` is not `reify n`: -- it's damn `lsuc` -- not `suc`. termLevelOf : Term -> Maybe Term termLevelOf (agda-sort (set t)) = just t termLevelOf (agda-sort (lit n)) = just (foldℕ (sate lsuc) (sate lzero) n) termLevelOf (agda-sort unknown) = just unknown termLevelOf _ = nothing instance TermReify : Reify Term TermReify = record { reify = id } NameReify : Reify Name NameReify = record { reify = lit ∘′ name } VisibilityReify : Reify Visibility VisibilityReify = record { reify = λ { expl -> sate expl ; impl -> sate impl ; inst -> sate inst } } RelevanceReify : Reify Relevance RelevanceReify = record { reify = λ { rel -> sate rel ; irr -> sate irr } } ArgInfoReify : Reify ArgInfo ArgInfoReify = record { reify = λ{ (arg-info v r) -> sate arg-info (reify v) (reify r) } } ProdReify : ∀ {α β} {A : Set α} {B : A -> Set β} {{aReify : Reify A}} {{bReify : ∀ {x} -> Reify (B x)}} -> Reify (Σ A B) ProdReify = record { reify = uncurry λ x y -> sate _,_ (reify x) (reify y) } ℕReify : Reify ℕ ℕReify = record { reify = foldℕ (sate suc) (sate zero) } ListReify : ∀ {α} {A : Set α} {{aReify : Reify A}} -> Reify (List A) ListReify = record { reify = foldr (sate _∷_ ∘ reify) (sate []) } AllReify : ∀ {α β} {A : Set α} {B : A -> Set β} {xs} {{bReify : ∀ {x} -> Reify (B x)}} -> Reify (All B xs) AllReify {B = B} {{bReify}} = record { reify = go _ } where go : ∀ xs -> All B xs -> Term go [] tt = sate tt₀ go (x ∷ xs) (y , ys) = sate _,_ (reify {{bReify}} y) (go xs ys) toTuple : List Term -> Term toTuple = foldr₁ (sate _,_) (sate tt₀) curryBy : Type -> Term -> Term curryBy = go 0 where go : ℕ -> Type -> Term -> Term go n (pi s (arg (arg-info v r) a) b) t = lam v s $ go (suc n) b t go n _ t = shiftBy n t · toTuple (map pureVar (downFrom n)) explUncurryBy : Type -> Term -> Term explUncurryBy a f = explLam "x" $ appDef (quote id) (explArg rel (shift f) ∷ go a (pureVar 0)) where go : Term -> Term -> List (Arg Term) go (explPi r s a b@(pi _ _ _)) p = explArg r (sate proj₁ p) ∷ go b (sate proj₂ p) go (pi s a b@(pi _ _ _)) p = go b (sate proj₂ p) go (explPi r s a b) x = explArg r x ∷ [] go _ t = [] defineTerm : Name -> Term -> TC _ defineTerm n t = getType n >>= λ a -> defineFun n (clause (map (implRelArg ∘ patVar ∘ named ∘ absName) (leadImpls a)) t ∷ []) -- Able to normalize a Setω. normalize : Term -> TC Term normalize (pi s (arg i a) b) = pi s ∘ arg i <$> normalize a <*> extendContext (arg i a) (normalize b) normalize t = normalise t getNormType : Name -> TC Type getNormType = getType >=> normalize inferNormType : Term -> TC Type inferNormType = inferType >=> normalize getData : Name -> TC (Data Type) getData d = getNormType d >>= λ ab -> getDefinition d >>= λ { (data-type p cs) -> mapM (λ c -> _,_ c ∘ dropPis p <$> getNormType c) cs >>= λ mans -> case takePis p ab ⊗ (dropPis p ab ⊗ (mapM (uncurry λ c ma -> flip _,_ c <$> ma) mans)) of λ { nothing -> panic "getData: data" ; (just (a , b , acs)) -> return ∘ uncurry (packData d a b) $ splitList acs } ; (record-type c _) -> getNormType c >>= dropPis (countPis ab) >>> λ { nothing -> panic "getData: record" ; (just a′) -> return $ packData d (initType ab) (lastType ab) (a′ ∷ []) (c , tt) } ; _ -> throw "not a data" } macro TypeOf : Term -> Term -> TC _ TypeOf t ?r = inferNormType t >>= unify ?r runTC : ∀ {α} {A : Set α} -> TC A -> Term -> TC _ runTC a ?r = bindTC a quoteTC >>= unify ?r
{ "alphanum_fraction": 0.5834500532, "avg_line_length": 31.535335689, "ext": "agda", "hexsha": "30fea146a6d6e5903ddecb82df959621a9086c13", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Reflection/Core.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Reflection/Core.agda", "max_line_length": 100, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Reflection/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 6335, "size": 17849 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.DiffInt where open import Cubical.Data.DiffInt.Base public open import Cubical.Data.DiffInt.Properties public
{ "alphanum_fraction": 0.7802197802, "avg_line_length": 30.3333333333, "ext": "agda", "hexsha": "c889672851335f95e9851b5f2b0e10d410802359", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/DiffInt.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/DiffInt.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/DiffInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 42, "size": 182 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Globe where open import Level using (Level; zero) open import Relation.Binary using (IsEquivalence; module IsEquivalence) open import Relation.Binary.PropositionalEquality using (isEquivalence) open import Data.Nat using (ℕ; zero; suc; _<_; _≤_; z≤n; s≤s) open import Categories.Category data GlobeHom : (m n : ℕ) → Set where I : ∀ {place : ℕ} → GlobeHom place place σ : ∀ {n m : ℕ} → GlobeHom (suc n) m → GlobeHom n m τ : ∀ {n m : ℕ} → GlobeHom (suc n) m → GlobeHom n m data GlobeEq : {m n : ℕ} → GlobeHom m n → GlobeHom m n → Set where both-I : ∀ {m} → GlobeEq {m} {m} I I both-σ : ∀ {m n x y} → GlobeEq {m} {n} (σ x) (σ y) both-τ : ∀ {m n x y} → GlobeEq {m} {n} (τ x) (τ y) GlobeEquiv : ∀ {m n} → IsEquivalence (GlobeEq {m} {n}) GlobeEquiv = record { refl = refl; sym = sym; trans = trans } where refl : ∀ {m n} {x : GlobeHom m n} → GlobeEq x x refl {x = I} = both-I refl {x = σ y} = both-σ refl {x = τ y} = both-τ sym : ∀ {m n} {x y : GlobeHom m n} → GlobeEq x y → GlobeEq y x sym both-I = both-I sym both-σ = both-σ sym both-τ = both-τ trans : ∀ {m n} {x y z : GlobeHom m n} → GlobeEq x y → GlobeEq y z → GlobeEq x z trans both-I y∼z = y∼z trans both-σ both-σ = both-σ trans both-τ both-τ = both-τ infixl 7 _⊚_ _⊚_ : ∀ {l m n} → GlobeHom m n → GlobeHom l m → GlobeHom l n x ⊚ I = x x ⊚ σ y = σ (x ⊚ y) x ⊚ τ y = τ (x ⊚ y) Globe : Category Level.zero Level.zero Level.zero Globe = record { Obj = ℕ ; _⇒_ = GlobeHom ; _≈_ = GlobeEq ; id = I ; _∘_ = _⊚_ ; assoc = λ {_ _ _ _ f g h} → assoc {f = f} {g} {h} ; sym-assoc = λ {_ _ _ _ f g h} → GlobeEquiv.sym (assoc {f = f} {g} {h}) ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = GlobeEquiv ; ∘-resp-≈ = ∘-resp-≡ } where module GlobeEquiv {m n} = IsEquivalence (GlobeEquiv {m} {n}) assoc : ∀ {A B C D} {f : GlobeHom A B} {g : GlobeHom B C} {h : GlobeHom C D} → GlobeEq ((h ⊚ g) ⊚ f) (h ⊚ (g ⊚ f)) assoc {f = I} = refl where open IsEquivalence GlobeEquiv assoc {f = σ y} = both-σ assoc {f = τ y} = both-τ identityˡ : ∀ {A B} {f : GlobeHom A B} → GlobeEq (I ⊚ f) f identityˡ {f = I} = both-I identityˡ {f = σ y} = both-σ identityˡ {f = τ y} = both-τ identityʳ : ∀ {A B} {f : GlobeHom A B} → GlobeEq (f ⊚ I) f identityʳ = IsEquivalence.refl GlobeEquiv identity² : {m : ℕ} → GlobeEq {m} (I ⊚ I) I identity² = both-I ∘-resp-≡ : ∀ {A B C} {f h : GlobeHom B C} {g i : GlobeHom A B} → GlobeEq f h → GlobeEq g i → GlobeEq (f ⊚ g) (h ⊚ i) ∘-resp-≡ f∼h both-I = f∼h ∘-resp-≡ f∼h both-σ = both-σ ∘-resp-≡ f∼h both-τ = both-τ
{ "alphanum_fraction": 0.5663847003, "avg_line_length": 34.858974359, "ext": "agda", "hexsha": "3b67a5a61a6807d195c41c89d27f56cb8a046044", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Globe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Globe.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Globe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1154, "size": 2719 }
{-# OPTIONS --prop --rewriting #-} open import Examples.Sorting.Sequential.Comparable module Examples.Sorting.Sequential.MergeSort.Split (M : Comparable) where open Comparable M open import Examples.Sorting.Sequential.Core M open import Calf costMonoid open import Calf.Types.Nat open import Calf.Types.List open import Calf.Types.Bounded costMonoid open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl) open import Data.Product using (_×_; _,_; ∃; proj₁; proj₂) open import Data.Nat as Nat using (ℕ; zero; suc; _+_; _*_; ⌊_/2⌋; ⌈_/2⌉) open import Data.Nat.Properties as N using (module ≤-Reasoning) pair = Σ++ (list A) λ _ → (list A) split/clocked : cmp (Π nat λ _ → Π (list A) λ _ → F pair) split/clocked zero l = ret ([] , l) split/clocked (suc k) [] = ret ([] , []) split/clocked (suc k) (x ∷ xs) = bind (F pair) (split/clocked k xs) λ (l₁ , l₂) → ret (x ∷ l₁ , l₂) split/clocked/correct : ∀ k k' l → k + k' ≡ length l → ◯ (∃ λ l₁ → ∃ λ l₂ → split/clocked k l ≡ ret (l₁ , l₂) × length l₁ ≡ k × length l₂ ≡ k' × l ↭ (l₁ ++ l₂)) split/clocked/correct zero k' l refl u = [] , l , refl , refl , refl , refl split/clocked/correct (suc k) k' (x ∷ xs) h u = let (l₁ , l₂ , ≡ , h₁ , h₂ , ↭) = split/clocked/correct k k' xs (N.suc-injective h) u in x ∷ l₁ , l₂ , Eq.cong (λ e → bind (F pair) e _) ≡ , Eq.cong suc h₁ , h₂ , prep x ↭ split/clocked/cost : cmp (Π nat λ _ → Π (list A) λ _ → cost) split/clocked/cost _ _ = zero split/clocked≤split/clocked/cost : ∀ k l → IsBounded pair (split/clocked k l) (split/clocked/cost k l) split/clocked≤split/clocked/cost zero l = bound/ret split/clocked≤split/clocked/cost (suc k) [] = bound/ret split/clocked≤split/clocked/cost (suc k) (x ∷ xs) = bound/bind/const zero zero (split/clocked≤split/clocked/cost k xs) λ _ → bound/ret split : cmp (Π (list A) λ _ → F pair) split l = split/clocked ⌊ length l /2⌋ l split/correct : ∀ l → ◯ (∃ λ l₁ → ∃ λ l₂ → split l ≡ ret (l₁ , l₂) × length l₁ ≡ ⌊ length l /2⌋ × length l₂ ≡ ⌈ length l /2⌉ × l ↭ (l₁ ++ l₂)) split/correct l = split/clocked/correct ⌊ length l /2⌋ ⌈ length l /2⌉ l (N.⌊n/2⌋+⌈n/2⌉≡n (length l)) split/cost : cmp (Π (list A) λ _ → cost) split/cost l = split/clocked/cost ⌊ length l /2⌋ l split≤split/cost : ∀ l → IsBounded pair (split l) (split/cost l) split≤split/cost l = split/clocked≤split/clocked/cost ⌊ length l /2⌋ l
{ "alphanum_fraction": 0.6337910945, "avg_line_length": 43.6909090909, "ext": "agda", "hexsha": "8f8211edb358827a462fca09be4ab70b8810c7a0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Sequential/MergeSort/Split.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Sequential/MergeSort/Split.agda", "max_line_length": 134, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Sequential/MergeSort/Split.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 921, "size": 2403 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Group where open import Cubical.Data.Group.Base public
{ "alphanum_fraction": 0.7431192661, "avg_line_length": 21.8, "ext": "agda", "hexsha": "97c1b5d00d43606c9b2e89a51ff7e9e5b3e3f90a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Group.agda", "max_line_length": 42, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Group.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 25, "size": 109 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.Pi open import lib.NType2 open import lib.types.EilenbergMacLane1.Core module lib.types.EilenbergMacLane1.DoubleElim where private emloop-emloop-helper : ∀ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} {a : A} (p : a == a) {b₀ b₁ : B} (q : b₀ == b₁) (f : (b : B) → C a b) (g : (b : B) → C a b) (r₀ : f b₀ == g b₀ [ (λ a → C a b₀) ↓ p ]) (r₁ : f b₁ == g b₁ [ (λ a → C a b₁) ↓ p ]) → ↓-ap-in (λ Z → Z) (λ a → C a b₀) r₀ ∙'ᵈ ↓-ap-in (λ Z → Z) (C a) (apd g q) == ↓-ap-in (λ Z → Z) (C a) (apd f q) ∙ᵈ ↓-ap-in (λ Z → Z) (λ a → C a b₁) r₁ [ (λ p → f b₀ == g b₁ [ (λ Z → Z) ↓ p ]) ↓ ap-comm' C p q ] → r₀ == r₁ [ (λ b → f b == g b [ (λ a → C a b) ↓ p ]) ↓ q ] emloop-emloop-helper {C = C} p {b₀} idp f g r₀ r₁ s = –>-is-inj (↓-ap-equiv (λ Z → Z) (λ a → C a b₀)) r₀ r₁ $ (! (▹idp (↓-ap-in (λ Z → Z) (λ a → C a b₀) r₀)) ∙ s ∙ idp◃ (↓-ap-in (λ Z → Z) (λ a → C a b₀) r₁)) module _ {i j} (G : Group i) (H : Group j) where private module G = Group G module H = Group H module EM₁Level₁DoubleElim {k} {P : EM₁ G → EM₁ H → Type k} {{P-level : ∀ x y → has-level 1 (P x y)}} (embase-embase* : P embase embase) (embase-emloop* : ∀ h → embase-embase* == embase-embase* [ P embase ↓ emloop h ]) (emloop-embase* : ∀ g → embase-embase* == embase-embase* [ (λ x → P x embase) ↓ emloop g ]) (embase-emloop-comp* : ∀ h₁ h₂ → embase-emloop* (H.comp h₁ h₂) == embase-emloop* h₁ ∙ᵈ embase-emloop* h₂ [ (λ p → embase-embase* == embase-embase* [ P embase ↓ p ]) ↓ emloop-comp h₁ h₂ ]) (emloop-comp-embase* : ∀ g₁ g₂ → emloop-embase* (G.comp g₁ g₂) == emloop-embase* g₁ ∙ᵈ emloop-embase* g₂ [ (λ p → embase-embase* == embase-embase* [ (λ x → P x embase) ↓ p ]) ↓ emloop-comp g₁ g₂ ]) (emloop-emloop* : ∀ g h → ↓-ap-in (λ Z → Z) (λ a → P a embase) (emloop-embase* g) ∙'ᵈ ↓-ap-in (λ Z → Z) (P embase) (embase-emloop* h) == ↓-ap-in (λ Z → Z) (P embase) (embase-emloop* h) ∙ᵈ ↓-ap-in (λ Z → Z) (λ a → P a embase) (emloop-embase* g) [ (λ p → embase-embase* == embase-embase* [ (λ Z → Z) ↓ p ]) ↓ ap-comm' P (emloop g) (emloop h) ]) where private module Embase = EM₁Level₁Elim {P = P embase} {{P-level embase}} embase-embase* embase-emloop* embase-emloop-comp* P' : embase' G == embase → EM₁ H → Type k P' p y = Embase.f y == Embase.f y [ (λ x → P x y) ↓ p ] P'-level : ∀ p y → has-level 0 (P' p y) P'-level _ y = ↓-level (P-level embase y) emloop-emloop** : ∀ g h → emloop-embase* g == emloop-embase* g [ P' (emloop g) ↓ emloop h ] emloop-emloop** g h = emloop-emloop-helper {C = P} (emloop g) (emloop h) Embase.f Embase.f (emloop-embase* g) (emloop-embase* g) (transport! (λ u → ↓-ap-in (λ Z → Z) (λ a → P a embase) (emloop-embase* g) ∙'ᵈ ↓-ap-in (λ Z → Z) (P embase) u == ↓-ap-in (λ Z → Z) (P embase) u ∙ᵈ ↓-ap-in (λ Z → Z) (λ a → P a embase) (emloop-embase* g) [ (λ p → embase-embase* == embase-embase* [ (λ Z → Z) ↓ p ]) ↓ ap-comm' P (emloop g) (emloop h) ]) (Embase.emloop-β h) (emloop-emloop* g h)) module Emloop (g : G.El) = EM₁SetElim {P = P' (emloop g)} {{P'-level (emloop g)}} (emloop-embase* g) (emloop-emloop** g) module EmloopComp (g₁ g₂ : G.El) = EM₁PropElim {P = λ y → Emloop.f (G.comp g₁ g₂) y == Emloop.f g₁ y ∙ᵈ Emloop.f g₂ y [ (λ x → P' x y) ↓ emloop-comp g₁ g₂ ]} {{λ y → ↓-level (P'-level _ y)}} (emloop-comp-embase* g₁ g₂) module DoubleElim (y : EM₁ H) = EM₁Level₁Elim {P = λ x → P x y} {{λ x → P-level x y}} (Embase.f y) (λ g → Emloop.f g y) (λ g₁ g₂ → EmloopComp.f g₁ g₂ y) abstract f : ∀ x y → P x y f x y = DoubleElim.f y x embase-embase-β : f embase embase ↦ embase-embase* embase-embase-β = Embase.embase-β {-# REWRITE embase-embase-β #-} embase-emloop-β : ∀ (h : H.El) → apd (λ y → f embase y) (emloop h) == embase-emloop* h embase-emloop-β h = Embase.emloop-β h emloop-embase-β : ∀ (g : G.El) → apd (λ x → f x embase) (emloop g) == emloop-embase* g emloop-embase-β g = DoubleElim.emloop-β embase g
{ "alphanum_fraction": 0.4704897447, "avg_line_length": 39.4876033058, "ext": "agda", "hexsha": "08055831f66c745d9f72bfc345ae8154ea6b752d", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/EilenbergMacLane1/DoubleElim.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/EilenbergMacLane1/DoubleElim.agda", "max_line_length": 114, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/EilenbergMacLane1/DoubleElim.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1832, "size": 4778 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning double negation elimination. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Axiom.DoubleNegationElimination where open import Axiom.ExcludedMiddle open import Level open import Relation.Nullary open import Relation.Nullary.Negation ------------------------------------------------------------------------ -- Definition -- The classical statement of double negation elimination says that -- if a property is not not true then it is true. DoubleNegationElimination : (ℓ : Level) → Set (suc ℓ) DoubleNegationElimination ℓ = {P : Set ℓ} → ¬ ¬ P → P ------------------------------------------------------------------------ -- Properties -- Double negation elimination is equivalent to excluded middle em⇒dne : ∀ {ℓ} → ExcludedMiddle ℓ → DoubleNegationElimination ℓ em⇒dne em = decidable-stable em dne⇒em : ∀ {ℓ} → DoubleNegationElimination ℓ → ExcludedMiddle ℓ dne⇒em dne = dne excluded-middle
{ "alphanum_fraction": 0.5521023766, "avg_line_length": 31.2571428571, "ext": "agda", "hexsha": "3a3cf70fd12d551d3e4976cfd0041b595a5dd26f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Axiom/DoubleNegationElimination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Axiom/DoubleNegationElimination.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Axiom/DoubleNegationElimination.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 237, "size": 1094 }
------------------------------------------------------------------------------ -- Group theory base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.Base where infix 8 _⁻¹ infixl 7 _·_ ------------------------------------------------------------------------------ -- First-order logic with equality. open import Common.FOL.FOL-Eq public renaming ( D to G ) -- Group theory axioms postulate ε : G -- The identity element. _·_ : G → G → G -- The binary operation. _⁻¹ : G → G -- The inverse function. -- We choose a non-redundant set of axioms. See for example (Mac -- Lane and Garret 1999, exercises 5-7, p. 50-51, or Hodges 1993, -- p. 37). assoc : ∀ a b c → a · b · c ≡ a · (b · c) leftIdentity : ∀ a → ε · a ≡ a leftInverse : ∀ a → a ⁻¹ · a ≡ ε {-# ATP axioms assoc leftIdentity leftInverse #-} ------------------------------------------------------------------------------ -- References -- -- Hodges, W. (1993). Model Theory. Vol. 42. Encyclopedia of -- Mathematics and its Applications. Cambridge University Press. -- -- Mac Lane, S. and Birkhof, G. (1999). Algebra. 3rd ed. AMS Chelsea -- Publishing.
{ "alphanum_fraction": 0.456241033, "avg_line_length": 34, "ext": "agda", "hexsha": "a4febf7d2c3ee1fc42971d5591d8c1863bac4aa6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 335, "size": 1394 }
module ProcessAlgebra where open import Data.Nat open import Data.Nat.Properties open import Data.List data Channel : Set where ℂ_ : ℕ → Channel data ℙ : Set₁ where ν_[_] : List Channel → (Channel → ℙ) → ℙ B_,_ : Channel → ℙ → ℙ Send_[_],_ : ∀ {A : Set} → Channel → A → ℙ → ℙ Recv_,_ : ∀ {A : Set} → Channel → (A → ℙ) → ℙ _||_ : ℙ → ℙ → ℙ Dup_ : ℙ → ℙ Done : ℙ data Message : Set₁ where _,_of_ : Channel → (A : Set) → A → Message data Action : Set₁ where Out_ : Message → Action In_ : Message → Action data Label : Set₁ where Silent : Label Act_ : Action → Label
{ "alphanum_fraction": 0.6053511706, "avg_line_length": 19.2903225806, "ext": "agda", "hexsha": "fb93ae84543a6186d71cd30fbc7433a6b6bbdb32", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/ProcessAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/ProcessAlgebra.agda", "max_line_length": 48, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/ProcessAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 226, "size": 598 }
-- Andreas, 2018-06-10, issue #3124 -- Wrong context for error IrrelevantDatatype in the coverage checker. data Squash (A : Set) : Prop where squash : A → Squash A test : ∀{A} → Squash (Squash A → A) test = squash λ{ (squash y) → y } -- WAS: de Bruijn index in error message -- Expected error: -- Cannot split on argument of irrelevant datatype (Squash .A) -- when checking the definition of .extendedlambda0
{ "alphanum_fraction": 0.6987951807, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "1cb1faac6f3735b9c1f677b1fd7a0da507f1ec9f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue3124.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue3124.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue3124.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 123, "size": 415 }
module Categories.Topos where
{ "alphanum_fraction": 0.8666666667, "avg_line_length": 15, "ext": "agda", "hexsha": "10f3954b1bca967aad685d54960e8cdfd9daeb1e", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Topos.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Topos.agda", "max_line_length": 29, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Topos.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 6, "size": 30 }
{-# OPTIONS --universe-polymorphism #-} module NoBlockOnLevel where open import Common.Level infixr 0 _,_ record ∃ {a b} {A : Set a} (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open ∃ BSetoid : ∀ c → Set (lsuc c) BSetoid c = Set c infixr 0 _⟶_ postulate _⟶_ : ∀ {f t} → BSetoid f → BSetoid t → Set (f ⊔ t) →-to-⟶ : ∀ {a b} {A : Set a} {B : BSetoid b} → (A → B) → A ⟶ B postulate a b p : Level A : Set a B : Set b P : A → B → Set p -- This will leave unsolved metas if we give up on an unsolved level constraint -- when checking argument spines. Since we can't match on levels it's safe to keep -- checking later constraints even if they depend on the unsolved levels. f : (∃ λ x → ∃ λ y → P x y) ⟶ (∃ λ y → ∃ λ x → P x y) f = →-to-⟶ λ p → proj₁ (proj₂ p) , proj₁ p , proj₂ (proj₂ p)
{ "alphanum_fraction": 0.5889145497, "avg_line_length": 24.0555555556, "ext": "agda", "hexsha": "e85031af2dd7cc0661ad70648be310dcfdb4fe30", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/NoBlockOnLevel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/NoBlockOnLevel.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/NoBlockOnLevel.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 334, "size": 866 }
-- Andreas, 2017-01-01, issue #2372, reported by m0davis -- {-# OPTIONS -v tc.def.alias:100 -v tc.decl.instance:100 #-} -- Expected error: -- Terms marked as eligible for instance search should end with a name -- when checking the definition of i postulate D : Set instance i = D -- NOW: Error given here (as expected). record R : Set₁ where field r : Set open R {{ ... }} public f : r → Set₁ -- WAS: Here, confusingly, is where Agda registers its complaint. f _ = Set
{ "alphanum_fraction": 0.6652977413, "avg_line_length": 21.1739130435, "ext": "agda", "hexsha": "83aec6ab072c08c4865c146c5844d5217b69d9d1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2372.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2372.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2372.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 487 }
-- {-# OPTIONS -v tc.conv:10 #-} -- 2013-11-03 Reported by sanzhiyan module Issue933 where record RGraph : Set₁ where field O : Set R : Set refl : O -> R module Families (Γ : RGraph) where module Γ = RGraph Γ record RG-Fam : Set₁ where field O : Γ.O -> Set refl : ∀ {γo} -> (o : O γo) → O (Γ.refl γo) -- "O (Γ.refl γo)" should be a type error. -- Andreas: Fixed. SyntacticEquality wrongly just skipped projections.
{ "alphanum_fraction": 0.6111111111, "avg_line_length": 18, "ext": "agda", "hexsha": "f94ce852bfd3905bc8754288e1e612a46bba79f7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue933.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue933.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue933.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 155, "size": 450 }
{-# OPTIONS --rewriting #-} module Luau.StrictMode.ToString where open import FFI.Data.String using (String; _++_) open import Luau.StrictMode using (Warningᴱ; Warningᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; FunctionDefnMismatch; BlockMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; block₁; return; LocalVarMismatch; local₁; local₂; function₁; function₂; heap; expr; block; addr) open import Luau.Syntax using (Expr; val; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name) open import Luau.Type using (strict) open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_) open import Luau.Addr.ToString using (addrToString) open import Luau.Var.ToString using (varToString) open import Luau.Type.ToString using (typeToString) open import Luau.Syntax.ToString using (binOpToString) warningToStringᴱ : ∀ {H Γ T} M → {D : Γ ⊢ᴱ M ∈ T} → Warningᴱ H D → String warningToStringᴮ : ∀ {H Γ T} B → {D : Γ ⊢ᴮ B ∈ T} → Warningᴮ H D → String warningToStringᴱ (var x) (UnboundVariable p) = "Unbound variable " ++ varToString x warningToStringᴱ (val (addr a)) (UnallocatedAddress p) = "Unallocated adress " ++ addrToString a warningToStringᴱ (M $ N) (FunctionCallMismatch {T = T} {U = U} p) = "Function has type " ++ typeToString T ++ " but argument has type " ++ typeToString U warningToStringᴱ (M $ N) (app₁ W) = warningToStringᴱ M W warningToStringᴱ (M $ N) (app₂ W) = warningToStringᴱ N W warningToStringᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) (FunctionDefnMismatch {V = V} p) = "Function expresion " ++ varToString f ++ " has return type " ++ typeToString U ++ " but body returns " ++ typeToString V warningToStringᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) (function₁ W) = warningToStringᴮ B W ++ "\n in function expression " ++ varToString f warningToStringᴱ block var b ∈ T is B end (BlockMismatch {U = U} p) = "Block " ++ varToString b ++ " has type " ++ typeToString T ++ " but body returns " ++ typeToString U warningToStringᴱ block var b ∈ T is B end (block₁ W) = warningToStringᴮ B W ++ "\n in block " ++ varToString b warningToStringᴱ (binexp M op N) (BinOpMismatch₁ {T = T} p) = "Binary operator " ++ binOpToString op ++ " lhs has type " ++ typeToString T warningToStringᴱ (binexp M op N) (BinOpMismatch₂ {U = U} p) = "Binary operator " ++ binOpToString op ++ " rhs has type " ++ typeToString U warningToStringᴱ (binexp M op N) (bin₁ W) = warningToStringᴱ M W warningToStringᴱ (binexp M op N) (bin₂ W) = warningToStringᴱ N W warningToStringᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (FunctionDefnMismatch {V = V} p) = "Function declaration " ++ varToString f ++ " has return type " ++ typeToString U ++ " but body returns " ++ typeToString V warningToStringᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function₁ W) = warningToStringᴮ C W ++ "\n in function declaration " ++ varToString f warningToStringᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function₂ W) = warningToStringᴮ B W warningToStringᴮ (local var x ∈ T ← M ∙ B) (LocalVarMismatch {U = U} p) = "Local variable " ++ varToString x ++ " has type " ++ typeToString T ++ " but expression has type " ++ typeToString U warningToStringᴮ (local var x ∈ T ← M ∙ B) (local₁ W) = warningToStringᴱ M W ++ "\n in local variable declaration " ++ varToString x warningToStringᴮ (local var x ∈ T ← M ∙ B) (local₂ W) = warningToStringᴮ B W warningToStringᴮ (return M ∙ B) (return W) = warningToStringᴱ M W ++ "\n in return statement"
{ "alphanum_fraction": 0.7024182077, "avg_line_length": 87.875, "ext": "agda", "hexsha": "ca55888c62d2debb67b9f2880a32a8a7f8962d65", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Luau/StrictMode/ToString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Luau/StrictMode/ToString.agda", "max_line_length": 303, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3f69d3a4f2b74dac8ecff2ef8ec851c8636324b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "gideros/luau", "max_stars_repo_path": "prototyping/Luau/StrictMode/ToString.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-18T04:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-18T04:10:20.000Z", "num_tokens": 1159, "size": 3515 }
{- This second-order term syntax was created from the following second-order syntax description: syntax CommGroup | CG type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 neg : * -> * | ⊖_ r40 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊖N⊕ᴸ) a |> add (neg (a), a) = unit (⊖N⊕ᴿ) a |> add (a, neg (a)) = unit (⊕C) a b |> add(a, b) = add(b, a) -} module CommGroup.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import CommGroup.Signature private variable Γ Δ Π : Ctx α : *T 𝔛 : Familyₛ -- Inductive term declaration module CG:Terms (𝔛 : Familyₛ) where data CG : Familyₛ where var : ℐ ⇾̣ CG mvar : 𝔛 α Π → Sub CG Π Γ → CG α Γ ε : CG * Γ _⊕_ : CG * Γ → CG * Γ → CG * Γ ⊖_ : CG * Γ → CG * Γ infixl 20 _⊕_ infixr 40 ⊖_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 CGᵃ : MetaAlg CG CGᵃ = record { 𝑎𝑙𝑔 = λ where (unitₒ ⋮ _) → ε (addₒ ⋮ a , b) → _⊕_ a b (negₒ ⋮ a) → ⊖_ a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module CGᵃ = MetaAlg CGᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : CG ⇾̣ 𝒜 𝕊 : Sub CG Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 ε = 𝑎𝑙𝑔 (unitₒ ⋮ tt) 𝕤𝕖𝕞 (_⊕_ a b) = 𝑎𝑙𝑔 (addₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (⊖_ a) = 𝑎𝑙𝑔 (negₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ CGᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ CG α Γ) → 𝕤𝕖𝕞 (CGᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (unitₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (addₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (negₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ CG ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : CG ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ CGᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : CG α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub CG Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! ε = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_⊕_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (⊖_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature CG:Syn : Syntax CG:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = CG:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open CG:Terms 𝔛 in record { ⊥ = CG ⋉ CGᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax CG:Syn public open CG:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands CGᵃ public open import SOAS.Metatheory CG:Syn public
{ "alphanum_fraction": 0.5246342192, "avg_line_length": 24.9925373134, "ext": "agda", "hexsha": "7285ed6cd297357bba1a5d8d0a0fd30b3203332a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/CommGroup/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/CommGroup/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/CommGroup/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2106, "size": 3349 }
module Categories.Normalise where -- Experiments on using computation to simplify equalities open import Level open import Function renaming (id to idᶠ; _∘_ to _©_) open import Data.Product open import Categories.Support.PropositionalEquality open import Categories.Category import Categories.Morphisms as Mor open import Relation.Binary hiding (_⇒_) --open import Categories.Object.Coproduct open import Categories.Object.BinaryCoproducts open import Categories.Square -- Normalizing with β and η rules for coproducts, through Yoneda module +Reasoning {o ℓ e} (C : Category o ℓ e) (bincoprod : BinCoproducts C) where private module C = Category C open C using (Obj; _≡_; _⇒_; module Equiv) open Equiv open BinCoproducts C bincoprod -- open BinaryCoproducts C (Bin→Binary C bincoprod) hiding ([_,_]; i₁; i₂; universal; commute₁; commute₂) data Ty : Set o where ↑_ : Obj -> Ty _⊎_ : Ty -> Ty -> Ty T : Ty -> Obj T (↑ x) = x T (t ⊎ t₁) = T t + T t₁ data Term : Ty → Ty → Set (o ⊔ ℓ) where #id : ∀ {A} → Term A A #i₁ : ∀ {A B} → Term A (A ⊎ B) #i₂ : ∀ {A B} → Term B (A ⊎ B) #[_,_] : ∀ {A B C} → Term A C → Term B C → Term (A ⊎ B) C _#∘_ : ∀ {A B C} → Term B C → Term A B → Term A C `_` : ∀ {A B} → T A ⇒ T B → Term A B ↑↑ : ∀ {A B} -> A C.⇒ B -> Term (↑ A) (↑ B) ↑↑ {A} {B} f = `_` {↑ A} {↑ B} f _#⧻_ : ∀ {A B C D} → (Term A B) → (Term C D) → (Term (A ⊎ C) (B ⊎ D)) f #⧻ g = #[ #i₁ #∘ f , #i₂ #∘ g ] #left : ∀ {A B C} → (Term A B) → (Term (A ⊎ C) (B ⊎ C)) #left f = f #⧻ #id #right : ∀ {A C D} → (Term C D) → (Term (A ⊎ C) (A ⊎ D)) #right g = #id #⧻ g eval : ∀ {A B} → Term A B → T A ⇒ T B eval #id = C.id eval #i₁ = i₁ eval #i₂ = i₂ eval #[ t , t₁ ] = [ (eval t) , (eval t₁) ] eval (t #∘ t₁) = eval t C.∘ eval t₁ eval ` x ` = x module Internal where _⇛_ : Ty → Ty → Set _ _⇛_ (↑ x) t = x ⇒ T t _⇛_ (s ⊎ s₁) t = (s ⇛ t) × (s₁ ⇛ t) ⇛→⇒ : ∀ {A B} → A ⇛ B → T A ⇒ T B ⇛→⇒ {↑ O} f = f ⇛→⇒ {A ⊎ A₁} (f , g) = [ ⇛→⇒ {A} f , ⇛→⇒ {A₁} g ] _<∘_ : ∀ {A B C} → T B ⇒ T C → A ⇛ B → A ⇛ C _<∘_ {↑ x} f g = f C.∘ g _<∘_ {A ⊎ A₁} f (g₁ , g₂) = (_<∘_ {A} f g₁) , (_<∘_ {A₁} f g₂) .<∘-comm : ∀ {A B C} (f : T B ⇒ T C) (g : A ⇛ B) → f C.∘ (⇛→⇒ {A} g) C.≡ ⇛→⇒ {A} (_<∘_ {A} {B} {C} f g) <∘-comm {↑ x} f g = refl <∘-comm {A ⊎ A₁} f g = trans ∘[] ([]-cong₂ (<∘-comm f (proj₁ g)) (<∘-comm f (proj₂ g))) mutual j₁ : ∀ {A B} → A ⇛ (A ⊎ B) j₁ {↑ x} = i₁ j₁ {A ⊎ A₁} = _<∘_ {A} i₁ (j₁ {A} {A₁}) , _<∘_ {A₁} i₁ (j₂ {A₁} {A}) j₂ : ∀ {B A} → B ⇛ (A ⊎ B) j₂ {↑ x} = i₂ j₂ {B ⊎ B₁} = _<∘_ {B} i₂ (j₁ {B} {B₁}) , _<∘_ {B₁} i₂ (j₂ {B₁} {B}) id : ∀ {A} → A ⇛ A id {↑ x} = C.id id {A ⊎ A₁} = j₁ {A} {A₁} , j₂ {A₁} {A} ⇒→⇛ : ∀ {A B} → T A ⇒ T B → A ⇛ B ⇒→⇛ {↑ x} f = f ⇒→⇛ {A ⊎ A₁} f = _<∘_ {A} f (j₁ {A} {A₁}) , _<∘_ {A₁} f (j₂ {A₁} {A}) mutual .j₁≡i₁ : ∀ {A B} → ⇛→⇒ {A} (j₁ {A} {B}) C.≡ i₁ j₁≡i₁ {↑ x} = refl j₁≡i₁ {A ⊎ A₁} = universal (trans (C.∘-resp-≡ʳ (sym (j₁≡i₁ {A} {A₁}))) (<∘-comm {A} i₁ (j₁ {A} {A₁}))) (trans (C.∘-resp-≡ʳ (sym (j₂≡i₂ {A₁} {A}))) (<∘-comm {A₁} i₁ (j₂ {A₁} {A}))) .j₂≡i₂ : ∀ {B A} → ⇛→⇒ {B} (j₂ {B} {A}) C.≡ i₂ j₂≡i₂ {↑ x} = refl j₂≡i₂ {A ⊎ A₁} = universal (trans (C.∘-resp-≡ʳ (sym (j₁≡i₁ {A} {A₁}))) (<∘-comm {A} i₂ (j₁ {A} {A₁}))) (trans (C.∘-resp-≡ʳ (sym (j₂≡i₂ {A₁} {A}))) (<∘-comm {A₁} i₂ (j₂ {A₁} {A}))) .iso₁-⇒⇛ : ∀ {A B} → (f : T A ⇒ T B) → ⇛→⇒ {A} {B} (⇒→⇛ {A} {B} f) ≡ f iso₁-⇒⇛ {↑ x} f = refl iso₁-⇒⇛ {A ⊎ A₁} {B} f = universal (trans (C.∘-resp-≡ʳ (sym j₁≡i₁)) (<∘-comm {A} {A ⊎ A₁} {B} f (j₁ {A}))) (trans (C.∘-resp-≡ʳ (sym j₂≡i₂)) (<∘-comm {A₁} {A ⊎ A₁} {B} f (j₂ {A₁}))) .id≡id : ∀ A → ⇛→⇒ {A} (id {A}) ≡ C.id id≡id (↑ x) = refl id≡id (A ⊎ A₁) = universal (trans C.identityˡ (sym j₁≡i₁)) (trans C.identityˡ (sym j₂≡i₂)) _∘_ : ∀ {A B C} → B ⇛ C → A ⇛ B → A ⇛ C _∘_ {↑ x} {B} f g = ⇛→⇒ {B} f C.∘ g _∘_ {A ⊎ A₁} f (g₁ , g₂) = (_∘_ {A} f g₁) , (_∘_ {A₁} f g₂) .∘-comm : ∀ {A B C} (f : B ⇛ C) (g : A ⇛ B) → (⇛→⇒ {B} f) C.∘ (⇛→⇒ {A} g) C.≡ ⇛→⇒ {A} (_∘_ {A} {B} {C} f g) ∘-comm {↑ x} f g = refl ∘-comm {A ⊎ A₁} f g = trans ∘[] ([]-cong₂ (∘-comm f (proj₁ g)) (∘-comm f (proj₂ g))) -- An η-expanded version of C Cη : Category _ _ _ Cη = record { Obj = Ty ; _⇒_ = _⇛_ ; _≡_ = λ {A} f g → ⇛→⇒ {A} f ≡ ⇛→⇒ {A} g ; _∘_ = λ {A} {B} {C} → _∘_ {A} {B} {C} ; id = λ {X} → id {X} ; assoc = λ {A} {B} {C} {D} {f} {g} {h} → trans (sym (∘-comm {A} {B} {D} (h ∘ g) f)) (trans (C.∘-resp-≡ˡ (sym (∘-comm {B} {C} {D} h g))) (trans C.assoc (trans (C.∘-resp-≡ʳ (∘-comm {A} {B} {C} g f)) (∘-comm {A} {C} {D} h (g ∘ f))))) ; identityˡ = λ {A} {B} {f} → trans (sym (∘-comm {A} {B} {B} id f)) (trans (C.∘-resp-≡ˡ (id≡id B)) C.identityˡ) ; identityʳ = λ {A} {B} {f} → trans (sym (∘-comm {A} {A} {B} f id)) (trans (C.∘-resp-≡ʳ (id≡id A)) C.identityʳ) ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≡ = λ {A} {B} {C} {f} {h} {g} {i} f≡h g≡i → trans (sym (∘-comm {A} {B} {C} f g)) (trans (C.∘-resp-≡ f≡h g≡i) (∘-comm {A} {B} {C} h i)) } module Cη = Category Cη -- We need the opposite category for Yon because i₁ and i₂ simplify when precomposed. -- Using Eda seems to undo the simplifications instead. open Yon-Eda (Category.op Cη) Yon-i₁ : ∀ {A B} → Yon (A ⊎ B) A Yon-i₁ {A} {B} = record { arr = j₁ {A} {B} ; fun = proj₁ ; ok = λ {W} f → trans (trans (sym commute₁) (C.∘-resp-≡ʳ (sym (j₁≡i₁ {A} {B})))) (∘-comm {A} {A ⊎ B} {W} f (j₁ {A} {B})) } Yon-i₂ : ∀ {A B} → Yon (A ⊎ B) B Yon-i₂ {A} {B} = record { arr = j₂ {B} {A} ; fun = proj₂ ; ok = λ {W} f → trans (trans (sym commute₂) (C.∘-resp-≡ʳ (sym (j₂≡i₂ {B} {A})))) (∘-comm {B} {A ⊎ B} {W} f (j₂ {B} {A})) } Yon-[_,_] : ∀ {A B C} → Yon C A → Yon C B → Yon C (A ⊎ B) Yon-[_,_] f g = record { arr = (Yon.arr f) , (Yon.arr g) ; fun = λ f₁ → (Yon.fun f f₁) , (Yon.fun g f₁) ; ok = λ f₁ → []-cong₂ (Yon.ok f f₁) (Yon.ok g f₁) } eeval : ∀ {A B} → Term A B → Yon B A eeval #id = Yon-id eeval #i₁ = Yon-i₁ eeval #i₂ = Yon-i₂ eeval #[ t , t₁ ] = Yon-[ (eeval t) , (eeval t₁) ] eeval (t #∘ t₁) = Yon-compose (eeval t₁) (eeval t) eeval {A} ` f ` = Yon-inject (⇒→⇛ {A} f) yeeval : ∀ {A B} → Term A B → T A ⇒ T B yeeval {A} {B} t = ⇛→⇒ {A} (Yon.arr (eeval t)) .yeeval≡eval : ∀ {A B} → (f : Term A B) → yeeval f ≡ eval f yeeval≡eval #id = id≡id _ yeeval≡eval {A} #i₁ = j₁≡i₁ {A} yeeval≡eval {A} #i₂ = j₂≡i₂ {A} yeeval≡eval ` x ` = iso₁-⇒⇛ x yeeval≡eval #[ f , f₁ ] = []-cong₂ (yeeval≡eval f) (yeeval≡eval f₁) yeeval≡eval (f #∘ f₁) = trans (trans (Yon.ok (eeval f₁) (Yon.arr (eeval f))) (sym (∘-comm (Yon.arr (eeval f)) (Yon.arr (eeval f₁))))) (C.∘-resp-≡ (yeeval≡eval f) (yeeval≡eval f₁)) +reasoning : NormReasoning C o (ℓ ⊔ o) +reasoning = record { U = Ty ; T = T ; _#⇒_ = Term ; eval = eval ; norm = yeeval ; norm≡eval = yeeval≡eval } open NormReasoning Internal.+reasoning public hiding (T; eval)
{ "alphanum_fraction": 0.4049566295, "avg_line_length": 36.6818181818, "ext": "agda", "hexsha": "28d735af0e3a68a63097ada1afb54241441e8680", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Normalise.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Normalise.agda", "max_line_length": 142, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Normalise.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 3862, "size": 8070 }
-- The bug appeared since I forgot to keep the constraint when trying to unify -- a blocked term (I just didn't instantiate). module LostConstraint where infixr 10 _==>_ _=>_ data Setoid : Set1 where setoid : Set -> Setoid El : Setoid -> Set El (setoid A) = A eq : (A : Setoid) -> El A -> El A -> Set eq (setoid A) = e where postulate e : (x, y : A) -> Set data _=>_ (A,B : Setoid) : Set where lam : (f : El A -> El B) -> ((x : El A) -> eq A x x -> eq B (f x) (f x) ) -> A => B app : {A,B : Setoid} -> (A => B) -> El A -> El B app (lam f _) = f postulate EqFun : {A,B : Setoid}(f, g : A => B) -> Set lam2 : {A,B,C : Setoid} -> (f : El A -> El B -> El C) -> (x : El A) -> B => C lam2 {A}{B}{C} f x = lam (f x) (lem _) where postulate lem : (x : El A)(y : El B) -> eq B y y -> eq C (f x y) (f x y)
{ "alphanum_fraction": 0.4612903226, "avg_line_length": 23.8461538462, "ext": "agda", "hexsha": "673356f5bff923e9b067bcd7a7bf7b860b4bdd3d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/fixed/LostConstraint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/fixed/LostConstraint.agda", "max_line_length": 78, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/fixed/LostConstraint.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 343, "size": 930 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Functor.Diagonal where open import Data.Product open import Categories.Category open import Categories.Functor open import Categories.Product open import Categories.FunctorCategory open import Categories.Functor.Constant import Categories.Power as Power Δ : ∀ {o ℓ e} → (C : Category o ℓ e) → Functor C (Product C C) Δ C = record { F₀ = λ x → x , x ; F₁ = λ f → f , f ; identity = refl , refl ; homomorphism = refl , refl ; F-resp-≡ = λ x → x , x } where open Category C open Equiv Δ′ : ∀ {o ℓ e} → (I : Set) → (C : Category o ℓ e) → Functor C (Power.Exp C I) Δ′ I C = record { F₀ = λ x _ → x ; F₁ = λ f _ → f ; identity = λ _ → refl ; homomorphism = λ _ → refl ; F-resp-≡ = λ x _ → x } where open Power C open Category C open Equiv ΔF : ∀ {o ℓ e o₁ ℓ₁ e₁} {C : Category o ℓ e} (I : Category o₁ ℓ₁ e₁) → Functor C (Functors I C) ΔF {C = C} I = record { F₀ = λ c → Constant c ; F₁ = λ f → record { η = λ X → f; commute = λ g → trans C.identityʳ (sym C.identityˡ) } ; identity = refl ; homomorphism = refl ; F-resp-≡ = λ x → x } where module C = Category C open C.Equiv module I = Category I
{ "alphanum_fraction": 0.6080525883, "avg_line_length": 23.862745098, "ext": "agda", "hexsha": "314adc4507da08e8aafe6fb0d8a935cd6346bc1e", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Functor/Diagonal.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Functor/Diagonal.agda", "max_line_length": 95, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Functor/Diagonal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 449, "size": 1217 }
record R : Set₁ where field A : Set B : Set B = A field C : Set D : Set D = A → B → C
{ "alphanum_fraction": 0.4403669725, "avg_line_length": 8.3846153846, "ext": "agda", "hexsha": "34f3cd1ff1b2773e762dab67b34728f6b2c50638", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3020.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3020.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3020.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 47, "size": 109 }
module Extended.FunRetRec where open import Function open import Data.Nat open import Data.Nat.Properties.Simple open import Relation.Binary.PropositionalEquality hiding ([_]) open import Data.String open import Data.Product open import Data.Bool renaming (not to bnot) hiding (if_then_else_) open import Relation.Nullary.Decidable open import Relation.Nullary open import Data.List hiding (and; or) open import Data.List.Properties using (∷-injective) open import Data.Empty open import Data.Unit import Level as L open import Utils.Decidable open import Utils.Monoid open import Utils.NatOrdLemmas {- This module contains an extension of the While language and assorted semantics. It incorporates some of the suggested extra features in the book. The extra features in short: - Function calls and recursive local function declarations - Local variable declarations - String-based bindings with name shadowing - Return statements with the usual jump in control flow -} -- Data definitions -------------------------------------------------- data Ty : Set where bool nat : Ty ⟦_⟧ᵗ : Ty → Set ⟦ nat ⟧ᵗ = ℕ ⟦ bool ⟧ᵗ = Bool data Exp : Ty → Set where lit : ℕ → Exp nat add mul sub : Exp nat → Exp nat → Exp nat var : String → Exp nat {- Function calls. Note that we have calls as a proper *expression* that evaluate to a value, if they terminate. This also implies that the evaluation of expressions has a partial semantics just like statements. We apply a function to a list of arguments. The number of args must be correct. -} _$:_ : String → List (Exp nat) → Exp nat tt ff : Exp bool eq lt lte : Exp nat → Exp nat → Exp bool and : Exp bool → Exp bool → Exp bool not : Exp bool → Exp bool or : Exp bool → Exp bool → Exp bool infixr 4 _,_ infixr 5 _:=_ data St : Set where {- Function declarations. We specify the arguments as a list of bindings. They are recursive. -} fun : String → List String → St → St → St {- variable declarations -} decl : String → Exp nat → St → St _:=_ : String → Exp nat → St skip : St _,_ : St → St → St if_then_else_ : Exp bool → St → St → St while_do_ : Exp bool → St → St ret : Exp nat → St {- The environment contains numbers and functions -} data Entry : Set where nat : ℕ → Entry fun : List String → St → Entry {- The environment is now keyed by strings (rather than de Bruijn indices) -} Env : Set Env = List (String × Entry) _,ₙ_ : String → ℕ → (String × Entry) v ,ₙ n = v , nat n infixr 5 _,ₙ_ {- A note on the return statement: The book recommends two way for dealing with exceptions and jumps. One way is to use small-step semantics. The other way is to introduce new program states in big-step semantics. With more complicated derivation rules and many types of non-local effects (and of course non-determinism), small-step semantics seems to be more manageable. But here we have just the return statement, so big-step semantics seems fine. -} data State : Set where ok : Env → State ret : ℕ → State ret-inj : ∀ {a b} → (State ∋ ret a) ≡ ret b → a ≡ b ret-inj refl = refl ok-inj : ∀ {s s'} → ok s ≡ ok s' → s ≡ s' ok-inj refl = refl -- Well-scopedness -------------------------------------------------- {- Scoping rules are nontrivial, but we don't want to clutter our derivations with explicit proofs for them. A standard Agda solution for this is to use so-called irrelevant proofs. Such types have at most a single value up to definitional equality, therefore they cannot influence actual computation. Agda is willing to automatically fill in the value for some of these types once it becomes apparent that the value exists. The simplest example of a irrelevant type is the unit type. record ⊤ : Set where constructor tt. Agda has eta-extensionality for records, so Agda thinks that any value of type ⊤ is definitionally equal to "tt". The well-scopedness predicates below all compute to ⊤ or ⊥ (the unprovable type), and both are irrelevant, so we get all the scoping proofs nicely inferred and hidden. We also augment our inference system with judicious use of instance arguments. Agda tries to search for suitable values for these arguments from the current scope. -} ------------------------------------------------------------ {- A note on static semantics: Arguably, well-scopedness should belong to static semantics. After all, it can be checked without running the program, and in real compilers scope checking also tends to be done statically. Here, we don't *have* static semantics at all. The static semantic rules are baked into the dynamic semantic rules. Adding proper static semantics would be one of the many potential extensions and improvements to this library. Ideally, we would have a completely raw AST, and an AST for code that is correct with respect to static semantics (so it's annotated with proofs of static correctness). We would also have a type checker function that would decide if a raw AST can be converted to the correct AST. It would also nice to have a type erasure function that goes in the opposite direction (erases proofs and returns a raw AST), and we could establish correctness of type checking with respect to erasure, for example by proving that checking is the left inverse of erasure. It may be also the case, although I haven't tested it, that type checking would be faster with a separate checked AST. -} -- variable is in scope InScopeVar : String → Env → Set InScopeVar v [] = ⊥ InScopeVar v ((_ , fun _ _) ∷ s) = InScopeVar v s InScopeVar v ((v' , nat n) ∷ s) with v ≡⁇ v' ... | yes _ = ⊤ ... | no _ = InScopeVar v s -- function is in scope InScopeFun : String → Env → Set InScopeFun v [] = ⊥ InScopeFun v ((_ , nat _) ∷ s) = InScopeFun v s InScopeFun v ((v' , fun _ _) ∷ s) with v ≡⁇ v' ... | yes _ = ⊤ ... | no _ = InScopeFun v s lookupVar : ∀ v s ⦃ _ : InScopeVar v s ⦄ → ℕ lookupVar v [] ⦃ ⦄ lookupVar v ((_ , fun _ _) ∷ s) = lookupVar v s lookupVar v ((v' , nat n) ∷ s) with v ≡⁇ v' ... | yes _ = n ... | no _ = lookupVar v s lookupFun : ∀ f s ⦃ _ : InScopeFun f s ⦄ → List String × St lookupFun v [] ⦃ ⦄ lookupFun v ((_ , nat _) ∷ s) = lookupFun v s lookupFun v ((v' , fun args body) ∷ s) with v ≡⁇ v' ... | yes _ = args , body ... | no _ = lookupFun v s -- perform a substitution on the environment at a name that is in scope _[_]≔_ : ∀ s v ⦃ _ : InScopeVar v s ⦄ → ℕ → Env _[_]≔_ [] _ ⦃ ⦄ _ _[_]≔_ ((v' , fun args body) ∷ s) v n = (v' , fun args body) ∷ (s [ v ]≔ n) ((v' , nat n) ∷ Γ) [ v ]≔ n' with v ≡⁇ v' ... | yes p = (v' , nat n') ∷ Γ ... | no ¬p = (v' , nat n ) ∷ Γ [ v ]≔ n' -- Match the length of two lists ArgLenMatch : List String → List ℕ → Set ArgLenMatch [] [] = ⊤ ArgLenMatch [] (_ ∷ _) = ⊥ ArgLenMatch (_ ∷ names) [] = ⊥ ArgLenMatch (_ ∷ names) (_ ∷ vals) = ArgLenMatch names vals -- Create a new environment with the function arguments pushed to the front callWith : ∀ args vals ⦃ _ : ArgLenMatch args vals ⦄ → Env callWith [] [] = [] callWith [] (_ ∷ _) ⦃ ⦄ callWith (_ ∷ _) [] ⦃ ⦄ callWith (n ∷ names) (v ∷ vals) = (n , nat v) ∷ callWith names vals -- Semantics -------------------------------------------------- mutual -- Evaluation of argument lists infixr 5 _∷_ data _⟨_⟩ᵃ⟱_ (s : Env) : List (Exp nat) → List ℕ → Set where [] : ---------------- s ⟨ [] ⟩ᵃ⟱ [] _∷_ : ∀ {a args v vals} → s ⟨ a ⟩ᵉ⟱ v → s ⟨ args ⟩ᵃ⟱ vals → --------------------------------- s ⟨ a ∷ args ⟩ᵃ⟱ (v ∷ vals) -- Shorthand for the evaluation of binary expressions BinExp : ∀ {s t r} → (Exp t → Exp t → Exp r) → (⟦ t ⟧ᵗ → ⟦ t ⟧ᵗ → ⟦ r ⟧ᵗ) → Set BinExp {s} cons op = ∀ {a b va vb} → s ⟨ a ⟩ᵉ⟱ va → s ⟨ b ⟩ᵉ⟱ vb ----------------------------- → s ⟨ cons a b ⟩ᵉ⟱ (op va vb) -- Evaluation of expressions data _⟨_⟩ᵉ⟱_ (s : Env) : ∀ {t} → Exp t → ⟦ t ⟧ᵗ → Set where add : BinExp add _+_ eq : BinExp eq (λ a b → ⌊ a ≡⁇ b ⌋) lt : BinExp lt (λ a b → ⌊ suc a ≤⁇ b ⌋) lte : BinExp lte (λ a b → ⌊ a ≤⁇ b ⌋) and : BinExp and _∧_ or : BinExp or _∨_ mul : BinExp mul _*_ sub : BinExp sub _∸_ tt : s ⟨ tt ⟩ᵉ⟱ true ff : s ⟨ ff ⟩ᵉ⟱ false lit : ∀ {n} → s ⟨ lit n ⟩ᵉ⟱ n not : ∀ {e b} → s ⟨ e ⟩ᵉ⟱ b → s ⟨ not e ⟩ᵉ⟱ bnot b var : ∀ {v in-scope} → ---------------------------- s ⟨ var v ⟩ᵉ⟱ lookupVar v s {- Evaluation of function calls -} _$:_ : {retVal : ℕ} {argVals : List ℕ} {f : String} -- if we have a function {args : List (Exp nat)} -- and a list of arguments ⦃ in-scope-f : InScopeFun f s ⦄ -- and the function is in scope → let func = lookupFun f s argNames = proj₁ func body = proj₂ func in s ⟨ args ⟩ᵃ⟱ argVals -- we can evaluate the arguments → ⦃ arg-len-match : ArgLenMatch argNames argVals ⦄ -- and the number of arguments is correct -- note the recursive occurence in the call environement ⇓ → let callEnv = callWith argNames argVals <> [ (f , fun argNames body) ] in ⟨ body , ok callEnv ⟩⟱ ret retVal → ----------------------------------- -- then a function call evaluates to the return value s ⟨ f $: args ⟩ᵉ⟱ retVal -- of the function body evaluated in the call environment -- Evaluation of statements data ⟨_,_⟩⟱_ : St → State → State → Set where fun : ∀ {x s s' S args body} → ⟨ S , ok ((x , fun args body) ∷ s) ⟩⟱ ok ((x , fun args body) ∷ s') → ------------------------------------------------------------------- ⟨ fun x args body S , ok s ⟩⟱ ok s' {-- This rule propagates ("rethrows") the return statement's effect if it happens inside the scope of the function declaration --} fun-ret : ∀ {x s r S args body} → ⟨ S , ok ((x , fun args body) ∷ s) ⟩⟱ ret r → -------------------------------------------- ⟨ fun x args body S , ok s ⟩⟱ ret r {- variable declarations -} decl : ∀ {s s' S x e eVal e'} → s ⟨ e ⟩ᵉ⟱ eVal → ⟨ S , ok ((x , nat eVal) ∷ s) ⟩⟱ (ok ((x , e') ∷ s')) → ---------------------------------------------------- ⟨ decl x e S , ok s ⟩⟱ ok s' {- variable declarations propagating the return statement -} decl-ret : ∀ {r s S x e eVal} → s ⟨ e ⟩ᵉ⟱ eVal → ⟨ S , ok ((x , nat eVal) ∷ s) ⟩⟱ ret r → --------------------------------------- ⟨ decl x e S , ok s ⟩⟱ ret r ret : ∀ {e eVal s} → s ⟨ e ⟩ᵉ⟱ eVal → --------------------------- ⟨ ret e , ok s ⟩⟱ ret eVal ass : ∀ {s e eVal x in-scope} → s ⟨ e ⟩ᵉ⟱ eVal → -------------------------------------- ⟨ x := e , ok s ⟩⟱ ok (s [ x ]≔ eVal) skip : ∀ {s} → ----------------- ⟨ skip , s ⟩⟱ s _,_ : ∀ {s₁ s₂ s₃ S₁ S₂} → ⟨ S₁ , s₁ ⟩⟱ ok s₂ → ⟨ S₂ , ok s₂ ⟩⟱ s₃ → -------------------------------------- ⟨ (S₁ , S₂ ) , s₁ ⟩⟱ s₃ {-- If we return in the left statement of a composite statement, then we ignore the right statement and just return -} _ret,_ : ∀ {x s₁ s₂ S₁ S₂} → ⟨ S₁ , s₁ ⟩⟱ ret x → ⟨ S₂ , ret x ⟩⟱ s₂ → --------------------------------------- ⟨ (S₁ , S₂ ) , s₁ ⟩⟱ ret x if-true : ∀ {s s' S₁ S₂ b} → s ⟨ b ⟩ᵉ⟱ true → ⟨ S₁ , ok s ⟩⟱ s' → ------------------------------------ ⟨ if b then S₁ else S₂ , ok s ⟩⟱ s' if-false : ∀ {s s' S₁ S₂ b} → s ⟨ b ⟩ᵉ⟱ false → ⟨ S₂ , ok s ⟩⟱ s' → ------------------------------------- ⟨ if b then S₁ else S₂ , ok s ⟩⟱ s' while-true : ∀ {s s' s'' S b} → s ⟨ b ⟩ᵉ⟱ true → ⟨ S , ok s ⟩⟱ s' → ⟨ while b do S , s' ⟩⟱ s'' → ------------------------------------------------------------------ ⟨ while b do S , ok s ⟩⟱ s'' while-false : ∀ {s S b} → s ⟨ b ⟩ᵉ⟱ false → ------------------------------ ⟨ while b do S , ok s ⟩⟱ ok s substExp : ∀ {t s}{e : Exp t}{v v'} → v ≡ v' → s ⟨ e ⟩ᵉ⟱ v → s ⟨ e ⟩ᵉ⟱ v' substExp refl p2 = p2 -- State transition is deterministic -------------------------------------------------- deterministic : ∀ {S s s' s''} → ⟨ S , s ⟩⟱ s' → ⟨ S , s ⟩⟱ s'' → s' ≡ s'' deterministic = st where mutual args : ∀ {s as vs vs'} → s ⟨ as ⟩ᵃ⟱ vs → s ⟨ as ⟩ᵃ⟱ vs' → vs ≡ vs' args [] [] = refl args (x ∷ p1) (x₁ ∷ p2) rewrite exp x x₁ | args p1 p2 = refl exp : ∀ {t s}{e : Exp t}{v v'} → s ⟨ e ⟩ᵉ⟱ v → s ⟨ e ⟩ᵉ⟱ v' → v ≡ v' exp (add p1 p2) (add p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (sub p1 p2) (sub p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (eq p1 p2) (eq p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (lt p1 p2) (lt p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (lte p1 p2) (lte p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (and p1 p2) (and p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (or p1 p2) (or p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp (mul p1 p2) (mul p3 p4) rewrite exp p1 p3 | exp p2 p4 = refl exp tt tt = refl exp ff ff = refl exp lit lit = refl exp (not p1) (not p2) rewrite exp p1 p2 = refl exp var var = refl exp (_$:_ ae be) (_$:_ ae' be') rewrite args ae ae' = ret-inj (st be be') st : ∀ {S s s' s''} → ⟨ S , s ⟩⟱ s' → ⟨ S , s ⟩⟱ s'' → s' ≡ s'' st (fun p1) (fun p2) = cong ok $ proj₂ $ ∷-injective $ ok-inj $ st p1 p2 st (fun p1) (fun-ret p2) with st p1 p2 ... | () st (fun-ret p1) (fun p2) with st p1 p2 ... | () st (fun-ret p1) (fun-ret p2) = st p1 p2 st (decl x₁ p1) (decl x₂ p2) rewrite exp x₁ x₂ = cong ok $ proj₂ $ ∷-injective $ ok-inj $ st p1 p2 st (decl x₁ p1) (decl-ret x₂ p2) rewrite exp x₁ x₂ with st p1 p2 ... | () st (decl-ret x₁ p1) (decl x₂ p2) rewrite exp x₁ x₂ with st p1 p2 ... | () st (decl-ret x₁ p1) (decl-ret x₂ p2) rewrite exp x₁ x₂ = st p1 p2 st (ret x) (ret x₁) rewrite exp x x₁ = refl st (ass x₁) (ass x₂) rewrite exp x₁ x₂ = refl st skip skip = refl st (p1 , p2) (p3 , p4) rewrite st p1 p3 = st p2 p4 st (p1 , p2) (p3 ret, p4) with st p1 p3 ... | () st (p1 ret, p2) (p3 , p4) with st p1 p3 ... | () st (p1 ret, p2) (p3 ret, p4) = st p1 p3 st (if-true x p1) (if-true x₁ p2) rewrite st p1 p2 = refl st (if-true x p1) (if-false x₁ p2) with exp x₁ x ... | () st (if-false x p1) (if-true x₁ p2) with exp x x₁ ... | () st (if-false x p1) (if-false x₁ p2) rewrite st p1 p2 = refl st (while-true x p1 p2) (while-true x₁ p3 p4) rewrite st p1 p3 | st p2 p4 = refl st (while-true x p1 p2) (while-false x₁) with exp x x₁ ... | () st (while-false x) (while-true x₁ p2 p3) with exp x x₁ ... | () st (while-false x) (while-false x₁) = refl -- Divergence -------------------------------------------------- _divergesOn_ : St → State → Set prog divergesOn s = ∀ {s'} → ¬ ⟨ prog , s ⟩⟱ s' Divergent : St → Set Divergent prog = ∀ {s} → prog divergesOn s private inf-loop : Divergent (while tt do skip) inf-loop (while-true tt p p₁) = inf-loop p₁ inf-loop (while-false ()) -- Semantic equivalence -------------------------------------------------- _⇔_ : ∀ {a b} → Set a → Set b → Set (a L.⊔ b) A ⇔ B = (A → B) × (B → A) SemanticEq : St → St → Set SemanticEq pa pb = ∀ {s s'} → ⟨ pa , s ⟩⟱ s' ⇔ ⟨ pb , s ⟩⟱ s' Semantic⇒ : St → St → Set Semantic⇒ pa pb = ∀ {s s'} → ⟨ pa , s ⟩⟱ s' → ⟨ pb , s ⟩⟱ s' -- -- Correctness of factorial programs -- -------------------------------------------------- private --- Semantics in meta-langauge ⟦fac⟧ : ℕ → ℕ ⟦fac⟧ zero = 1 ⟦fac⟧ (suc n) = suc n * ⟦fac⟧ n -- 1. Correctness of recursive definition fac-rec-body : St fac-rec-body = if lte (var "n") (lit 0) then (ret (lit 1)) else (ret (mul (var "n") ("fac" $: [ sub (var "n") (lit 1) ] ))) fac-rec : St fac-rec = fun "fac" [ "n" ] fac-rec-body (ret ("fac" $: [ var "n" ])) fac-rec-body-ok : ∀ n → ⟨ fac-rec-body , ok (("n" ,ₙ n) ∷ ("fac" , fun [ "n" ] fac-rec-body) ∷ []) ⟩⟱ ret (⟦fac⟧ n) fac-rec-body-ok zero = if-true (lte var lit) (ret lit) fac-rec-body-ok (suc n) = if-false (lte var lit) (ret (mul var ((sub var lit ∷ []) $: (fac-rec-body-ok n)))) fac-rec-ok : ∀ n → ⟨ fac-rec , ok [ ("n" ,ₙ n) ] ⟩⟱ ret (⟦fac⟧ n) fac-rec-ok n = fun-ret (ret ((var ∷ []) $: (fac-rec-body-ok n))) -- 2. Correctness of procedural definition fac-loop : St fac-loop = while lt (var "i") (var "n") do ( "i" := add (lit 1) (var "i") , "acc" := mul (var "i") (var "acc") ) fac-proc : St fac-proc = fun "fac" ( "n" ∷ []) ( decl "i" (lit 0) ( decl "acc" (lit 1) ( fac-loop , ret (var "acc") ))) (ret ("fac" $: [ var "n" ])) fac-loop-ok : ∀ {s} d i → ⟨ fac-loop , ok (("acc",ₙ ⟦fac⟧ i) ∷ ("i",ₙ i ) ∷ ("n",ₙ d + i) ∷ s) ⟩⟱ ok (("acc",ₙ ⟦fac⟧ (d + i)) ∷ ("i",ₙ d + i) ∷ ("n",ₙ d + i) ∷ s) fac-loop-ok zero i = while-false (substExp (¬A→≡false (a≮a i)) (lt var var)) fac-loop-ok (suc d) i with fac-loop-ok d (suc i) ... | next rewrite +-suc d i = while-true (substExp (A→≡true (a<sb+a i d)) (lt var var)) ( ass (add lit var) , ass (mul var var)) next fac-proc-ok : ∀ n → ⟨ fac-proc , ok (("n",ₙ n) ∷ []) ⟩⟱ ret (⟦fac⟧ n) fac-proc-ok n with fac-loop-ok n 0 ... | loop-ok rewrite +-comm n 0 = fun-ret (ret ((var ∷ []) $: decl-ret lit ( decl-ret lit (loop-ok , ret var))))
{ "alphanum_fraction": 0.5130984151, "avg_line_length": 32.3257042254, "ext": "agda", "hexsha": "d724e9ea5b791ed74ea1d879d7605cf9eb3b1694", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Extended/FunRetRec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Extended/FunRetRec.agda", "max_line_length": 103, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Extended/FunRetRec.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 6161, "size": 18361 }
-- We define ZigZag-complete relations and prove that quasi equivalence relations -- give rise to equivalences on the set quotients. {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.ZigZag.Base where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.HITs.SetQuotients open import Cubical.HITs.PropositionalTruncation as Trunc open import Cubical.Relation.Binary.Base open isEquivRel private variable ℓ ℓ' : Level isZigZagComplete : {A B : Type ℓ} (R : A → B → Type ℓ') → Type (ℓ-max ℓ ℓ') isZigZagComplete R = ∀ {a b a' b'} → R a b → R a' b → R a' b' → R a b' ZigZagRel : (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) ZigZagRel A B ℓ' = Σ[ R ∈ (A → B → Type ℓ') ] (isZigZagComplete R) record isQuasiEquivRel {A B : Type ℓ} (R : A → B → Type ℓ') : Type (ℓ-max ℓ ℓ') where field zigzag : isZigZagComplete R fwd : (a : A) → ∃[ b ∈ B ] R a b bwd : (b : B) → ∃[ a ∈ A ] R a b open isQuasiEquivRel QuasiEquivRel : (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ')) QuasiEquivRel A B ℓ' = Σ[ R ∈ PropRel A B ℓ' ] isQuasiEquivRel (R .fst) invQER : {A B : Type ℓ} {ℓ' : Level} → QuasiEquivRel A B ℓ' → QuasiEquivRel B A ℓ' invQER (R , qer) .fst = invPropRel R invQER (R , qer) .snd .zigzag aRb aRb' a'Rb' = qer .zigzag a'Rb' aRb' aRb invQER (R , qer) .snd .fwd = qer .bwd invQER (R , qer) .snd .bwd = qer .fwd QER→EquivRel : {A B : Type ℓ} → QuasiEquivRel A B ℓ' → EquivPropRel A (ℓ-max ℓ ℓ') QER→EquivRel (R , sim) .fst = compPropRel R (invPropRel R) QER→EquivRel (R , sim) .snd .reflexive a = Trunc.map (λ {(b , r) → b , r , r}) (sim .fwd a) QER→EquivRel (R , sim) .snd .symmetric _ _ = Trunc.map (λ {(b , r₀ , r₁) → b , r₁ , r₀}) QER→EquivRel (R , sim) .snd .transitive _ _ _ = Trunc.map2 (λ {(b , r₀ , r₁) (b' , r₀' , r₁') → b , r₀ , sim .zigzag r₁' r₀' r₁}) -- The following result is due to Carlo Angiuli module QER→Equiv {A B : Type ℓ} (R : QuasiEquivRel A B ℓ') where Rᴸ = QER→EquivRel R .fst .fst Rᴿ = QER→EquivRel (invQER R) .fst .fst private sim = R .snd private f : (a : A) → ∃[ b ∈ B ] R .fst .fst a b → B / Rᴿ f a = Trunc.rec→Set squash/ ([_] ∘ fst) (λ {(b , r) (b' , r') → eq/ b b' ∣ a , r , r' ∣}) fPath : (a₀ : A) (s₀ : ∃[ b ∈ B ] R .fst .fst a₀ b) (a₁ : A) (s₁ : ∃[ b ∈ B ] R .fst .fst a₁ b) → Rᴸ a₀ a₁ → f a₀ s₀ ≡ f a₁ s₁ fPath a₀ = Trunc.elim (λ _ → isPropΠ3 λ _ _ _ → squash/ _ _) (λ {(b₀ , r₀) a₁ → Trunc.elim (λ _ → isPropΠ λ _ → squash/ _ _) (λ {(b₁ , r₁) → Trunc.elim (λ _ → squash/ _ _) (λ {(b' , r₀' , r₁') → eq/ b₀ b₁ ∣ a₀ , r₀ , sim .zigzag r₀' r₁' r₁ ∣})})}) φ : A / Rᴸ → B / Rᴿ φ [ a ] = f a (sim .fwd a) φ (eq/ a₀ a₁ r i) = fPath a₀ (sim .fwd a₀) a₁ (sim .fwd a₁) r i φ (squash/ _ _ p q j i) = squash/ _ _ (cong φ p) (cong φ q) j i relToFwd≡ : ∀ {a b} → R .fst .fst a b → φ [ a ] ≡ [ b ] relToFwd≡ {a} {b} r = Trunc.elim {P = λ s → f a s ≡ [ b ]} (λ _ → squash/ _ _) (λ {(b' , r') → eq/ b' b ∣ a , r' , r ∣}) (sim .fwd a) fwd≡ToRel : ∀ {a b} → φ [ a ] ≡ [ b ] → R .fst .fst a b fwd≡ToRel {a} {b} = Trunc.elim {P = λ s → f a s ≡ [ b ] → R .fst .fst a b} (λ _ → isPropΠ λ _ → R .fst .snd _ _) (λ {(b' , r') p → Trunc.rec (R .fst .snd _ _) (λ {(a' , s' , s) → R .snd .zigzag r' s' s}) (effective (QER→EquivRel (invQER R) .fst .snd) (QER→EquivRel (invQER R) .snd) b' b p)}) (sim .fwd a) private g : (b : B) → ∃[ a ∈ A ] R .fst .fst a b → A / Rᴸ g b = Trunc.rec→Set squash/ ([_] ∘ fst) (λ {(a , r) (a' , r') → eq/ a a' ∣ b , r , r' ∣}) gPath : (b₀ : B) (s₀ : ∃[ a ∈ A ] R .fst .fst a b₀) (b₁ : B) (s₁ : ∃[ a ∈ A ] R .fst .fst a b₁) → Rᴿ b₀ b₁ → g b₀ s₀ ≡ g b₁ s₁ gPath b₀ = Trunc.elim (λ _ → isPropΠ3 λ _ _ _ → squash/ _ _) (λ {(a₀ , r₀) b₁ → Trunc.elim (λ _ → isPropΠ λ _ → squash/ _ _) (λ {(a₁ , r₁) → Trunc.elim (λ _ → squash/ _ _) (λ {(a' , r₀' , r₁') → eq/ a₀ a₁ ∣ b₀ , r₀ , sim .zigzag r₁ r₁' r₀' ∣})})}) ψ : B / Rᴿ → A / Rᴸ ψ [ b ] = g b (sim .bwd b) ψ (eq/ b₀ b₁ r i) = gPath b₀ (sim .bwd b₀) b₁ (sim .bwd b₁) r i ψ (squash/ _ _ p q j i) = squash/ _ _ (cong ψ p) (cong ψ q) j i relToBwd≡ : ∀ {a b} → R .fst .fst a b → ψ [ b ] ≡ [ a ] relToBwd≡ {a} {b} r = Trunc.elim {P = λ s → g b s ≡ [ a ]} (λ _ → squash/ _ _) (λ {(a' , r') → eq/ a' a ∣ b , r' , r ∣}) (sim .bwd b) private η : ∀ qb → φ (ψ qb) ≡ qb η = elimProp (λ _ → squash/ _ _) (λ b → Trunc.elim {P = λ s → φ (g b s) ≡ [ b ]} (λ _ → squash/ _ _) (λ {(a , r) → relToFwd≡ r}) (sim .bwd b)) ε : ∀ qa → ψ (φ qa) ≡ qa ε = elimProp (λ _ → squash/ _ _) (λ a → Trunc.elim {P = λ s → ψ (f a s) ≡ [ a ]} (λ _ → squash/ _ _) (λ {(b , r) → relToBwd≡ r}) (sim .fwd a)) bwd≡ToRel : ∀ {a b} → ψ [ b ] ≡ [ a ] → R .fst .fst a b bwd≡ToRel {a} {b} p = fwd≡ToRel (cong φ (sym p) ∙ η [ b ]) Thm : (A / Rᴸ) ≃ (B / Rᴿ) Thm = isoToEquiv (iso φ ψ η ε)
{ "alphanum_fraction": 0.4912987727, "avg_line_length": 33.6975308642, "ext": "agda", "hexsha": "aded8f02fadce4288b2c61a3973bea070c18c5a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Relation/ZigZag/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Relation/ZigZag/Base.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Relation/ZigZag/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2476, "size": 5459 }
module Numeral.Natural.Sequence.Proofs where import Lvl open import Data open import Data.Either as Either using (_‖_) open import Data.Either.Equiv as Either open import Data.Either.Equiv.Id open import Data.Either.Proofs as Either open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Data.Tuple.Equiv as Tuple open import Data.Tuple.Equiv.Id open import Data.Tuple.Proofs as Tuple open import Functional open import Function.Proofs open import Lang.Inspect open import Logic open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.DivMod.Proofs open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Sequence open import Relator.Equals renaming (_≡_ to Id) open import Relator.Equals.Proofs.Equiv{T = ℕ} open import Relator.Equals.Proofs.Equivalence using () renaming ([≡]-equiv to Id-equiv ; [≡]-to-function to Id-to-function) open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Domain.Proofs import Structure.Function.Names as Names open import Structure.Operator open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ ℓₑ₅ ℓₑ₆ : Lvl.Level private variable n : ℕ private variable A : Type{ℓ} private variable B : Type{ℓ} alternate₂-args : ∀{n} → (alternate₂(n ⋅ 2) ≡ Either.Left(n)) ∧ (alternate₂(𝐒(n ⋅ 2)) ≡ Either.Right(n)) alternate₂-args {0} = [∧]-intro [≡]-intro [≡]-intro alternate₂-args {1} = [∧]-intro [≡]-intro [≡]-intro alternate₂-args {𝐒(𝐒(n))} with [∧]-intro l r ← alternate₂-args {n} rewrite l rewrite r = [∧]-intro [≡]-intro [≡]-intro alternate₂-values : ∀{n} → (alternate₂(n) ≡ Either.Left(n ⌊/⌋ 2)) ∨ (alternate₂(n) ≡ Either.Right(n ⌊/⌋ 2)) alternate₂-values {0} = Either.Left [≡]-intro alternate₂-values {1} = Either.Right [≡]-intro alternate₂-values {𝐒(𝐒(n))} with alternate₂-values {n} ... | Either.Left eq rewrite eq = Either.Left [≡]-intro ... | Either.Right eq rewrite eq = Either.Right [≡]-intro instance alternate₂-inverseₗ : Inverseₗ(alternate₂)(unalternate₂) alternate₂-inverseₗ = intro proof where p : ∀{e} → (unalternate₂(Either.map 𝐒 𝐒 e) ≡ 𝐒(𝐒(unalternate₂ e))) p {Either.Left _} = [≡]-intro p {Either.Right _} = [≡]-intro proof : Names.Inverses(unalternate₂)(alternate₂) proof {0} = [≡]-intro proof {1} = [≡]-intro proof {𝐒(𝐒(n))} = (unalternate₂ ∘ alternate₂) (𝐒(𝐒(n))) 🝖[ _≡_ ]-[] unalternate₂(alternate₂(𝐒(𝐒(n)))) 🝖[ _≡_ ]-[] unalternate₂(Either.map 𝐒 𝐒 (alternate₂ n)) 🝖[ _≡_ ]-[ p{alternate₂ n} ] 𝐒(𝐒(unalternate₂(alternate₂ n))) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₁(𝐒) (proof {n})) ] 𝐒(𝐒(n)) 🝖-end instance alternate₂-inverseᵣ : Inverseᵣ(alternate₂)(unalternate₂) alternate₂-inverseᵣ = intro proof where proof : Names.Inverses(alternate₂)(unalternate₂) proof {Either.Left n} = [∧]-elimₗ alternate₂-args proof {Either.Right n} = [∧]-elimᵣ alternate₂-args instance alternate₂-inverse : Inverse(alternate₂)(unalternate₂) alternate₂-inverse = [∧]-intro alternate₂-inverseₗ alternate₂-inverseᵣ instance alternate₂-bijective : Bijective(alternate₂) alternate₂-bijective = invertible-to-bijective ⦃ inver = [∃]-intro unalternate₂ ⦃ [∧]-intro Id-to-function alternate₂-inverse ⦄ ⦄ pairIndexing-def3 : ∀{a b} → (pairIndexing a (𝐒 b) ≡ 𝐒(pairIndexing (𝐒 a) b)) pairIndexing-def3 {𝟎} {b} = [≡]-intro pairIndexing-def3 {𝐒 a} {b} = [≡]-intro instance {-# TERMINATING #-} pairIndexing-inverseₗ : Inverseₗ(Tuple.uncurry pairIndexing)(diagonalFilling) pairIndexing-inverseₗ = intro proof where proof : Names.Inverses(diagonalFilling)(Tuple.uncurry pairIndexing) proof {𝟎 , 𝟎} = [≡]-intro proof {𝐒(a) , 𝟎} with diagonalFilling(pairIndexing 𝟎 a) | proof {𝟎 , a} ... | 𝟎 , 𝟎 | [≡]-intro = [≡]-intro ... | 𝟎 , 𝐒(d) | [≡]-intro = [≡]-intro ... | 𝐒(c) , 𝟎 | () ... | 𝐒(c) , 𝐒(d) | () {-# CATCHALL #-} proof {a , 𝐒(b)} rewrite pairIndexing-def3 {a}{b} with diagonalFilling(pairIndexing (𝐒(a)) b) | proof {𝐒(a) , b} ... | 𝟎 , 𝟎 | () ... | 𝟎 , 𝐒(d) | () ... | 𝐒(c) , 𝟎 | [≡]-intro = [≡]-intro ... | 𝐒(c) , 𝐒(d) | [≡]-intro = [≡]-intro instance pairIndexing-inverseᵣ : Inverseᵣ(Tuple.uncurry pairIndexing)(diagonalFilling) pairIndexing-inverseᵣ = intro proof where proof : Names.Inverses(Tuple.uncurry pairIndexing)(diagonalFilling) proof {𝟎} = [≡]-intro proof {𝐒(n)} with diagonalFilling n | proof {n} ... | (𝟎 , b) | q = congruence₁(𝐒) q ... | (𝐒(a) , b) | q rewrite pairIndexing-def3 {a}{b} = congruence₁(𝐒) q instance pairIndexing-inverse : Inverse(Tuple.uncurry pairIndexing)(diagonalFilling) pairIndexing-inverse = [∧]-intro pairIndexing-inverseₗ pairIndexing-inverseᵣ instance diagonalFilling-inverse : Inverse(diagonalFilling)(Tuple.uncurry pairIndexing) diagonalFilling-inverse = [∧]-intro pairIndexing-inverseᵣ pairIndexing-inverseₗ instance pairIndexing-bijective : Bijective(Tuple.uncurry pairIndexing) pairIndexing-bijective = invertible-to-bijective ⦃ inver = [∃]-intro diagonalFilling ⦃ [∧]-intro [≡]-function pairIndexing-inverse ⦄ ⦄ instance diagonalFilling-bijective : Bijective(diagonalFilling) diagonalFilling-bijective = invertible-to-bijective ⦃ inver = [∃]-intro (Tuple.uncurry pairIndexing) ⦃ [∧]-intro Id-to-function diagonalFilling-inverse ⦄ ⦄ tupleIndexing-inverseᵣ : Inverseᵣ(tupleIndexing{𝐒(n)})(spaceFilling{𝐒(n)}) tupleIndexing-inverseᵣ{n} = intro(proof{n}) where proof : ∀{n} → Names.Inverses(tupleIndexing{𝐒(n)})(spaceFilling{𝐒(n)}) proof {𝟎} {_} = [≡]-intro proof {𝐒(n)}{i} with (x , y) ← diagonalFilling i | intro [≡]-intro ← inspect diagonalFilling i = pairIndexing x (tupleIndexing{𝐒(n)} (spaceFilling{𝐒(n)} y)) 🝖[ _≡_ ]-[ congruence₁(pairIndexing(x)) (proof{n}{y}) ] pairIndexing x y 🝖[ _≡_ ]-[ inverseᵣ(Tuple.uncurry pairIndexing)(diagonalFilling) ] i 🝖-end tupleIndexing-inverseₗ : Inverseₗ(tupleIndexing{𝐒(n)})(spaceFilling{𝐒(n)}) tupleIndexing-inverseₗ{n} = intro(proof{n}) where proof : ∀{n} → Names.Inverses(spaceFilling{𝐒(n)})(tupleIndexing{𝐒(n)}) proof {𝟎} {_} = [≡]-intro proof {𝐒(n)}{x , xs} = Tuple.mapRight spaceFilling (diagonalFilling (pairIndexing x (tupleIndexing xs))) 🝖[ _≡_ ]-[ congruence₁(Tuple.mapRight spaceFilling) (inverseₗ(Tuple.uncurry pairIndexing)(diagonalFilling)) ] Tuple.mapRight spaceFilling (x , tupleIndexing xs) 🝖[ _≡_ ]-[] (x , spaceFilling(tupleIndexing xs)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_,_)(x) (proof{n}{xs}) ] (x , xs) 🝖-end instance tupleIndexing-inverse : Inverse(tupleIndexing{𝐒(n)})(spaceFilling{𝐒(n)}) tupleIndexing-inverse = [∧]-intro tupleIndexing-inverseₗ tupleIndexing-inverseᵣ instance tupleIndexing-bijective : Bijective(tupleIndexing{𝐒(n)}) tupleIndexing-bijective = invertible-to-bijective ⦃ inver = [∃]-intro spaceFilling ⦃ [∧]-intro [≡]-function tupleIndexing-inverse ⦄ ⦄ module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-AB : Equiv{ℓₑ}(A ‖ B) ⦄ ⦃ ext-AB : Either.Extensionality ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (equiv-AB) ⦄ {af : ℕ → A} ⦃ bij-af : Bijective ⦃ [≡]-equiv ⦄ ⦃ equiv-A ⦄ (af) ⦄ {bf : ℕ → B} ⦃ bij-bf : Bijective ⦃ [≡]-equiv ⦄ ⦃ equiv-B ⦄ (bf) ⦄ where instance interleave-bijective : Bijective(interleave af bf) interleave-bijective = [∘]-bijective ⦃ bij-f = Either.map-bijective ⦄ ⦃ bij-g = alternate₂-bijective ⦄ module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-AB : Equiv{ℓₑ}(A ⨯ B) ⦄ ⦃ ext-AB : Tuple.Extensionality ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (equiv-AB) ⦄ {af : ℕ → A} ⦃ bij-af : Bijective ⦃ [≡]-equiv ⦄ ⦃ equiv-A ⦄ (af) ⦄ {bf : ℕ → B} ⦃ bij-bf : Bijective ⦃ [≡]-equiv ⦄ ⦃ equiv-B ⦄ (bf) ⦄ where instance pair-bijective : Bijective ⦃ [≡]-equiv ⦄ ⦃ equiv-AB ⦄ (pair af bf) pair-bijective = [∘]-bijective ⦃ bij-f = Tuple.map-bijective ⦃ Id-equiv ⦄ ⦃ Id-equiv ⦄ ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ ⦃ Id-equiv ⦄ ⦄ ⦃ bij-g = diagonalFilling-bijective ⦄ {- TODO: Old stuff. Probably okay to delete? But maybe it could be handy when the new interleave is used (it is similar to the old one)? -- Interleaves two sequences into one, alternating between the elements from each sequence. interleave : (ℕ → A) → (ℕ → B) → (ℕ → (A ‖ B)) interleave af bf 𝟎 = Either.Left(af(𝟎)) interleave af bf (𝐒 𝟎) = Either.Right(bf(𝟎)) interleave af bf (𝐒(𝐒 n)) = interleave (af ∘ 𝐒) (bf ∘ 𝐒) n private variable af : ℕ → A private variable bf : ℕ → B interleave-left : ∀{n} → (interleave af bf (2 ⋅ n) ≡ Either.Left(af(n))) interleave-left {n = 𝟎} = [≡]-intro interleave-left {n = 𝐒 n} = interleave-left {n = n} interleave-right : ∀{n} → (interleave af bf (𝐒(2 ⋅ n)) ≡ Either.Right(bf(n))) interleave-right {n = 𝟎} = [≡]-intro interleave-right {n = 𝐒 n} = interleave-right {n = n} interleave-values : ∀{n} → (interleave af bf n ≡ Either.Left(af(n ⌊/⌋ 2))) ∨ (interleave af bf n ≡ Either.Right(bf(n ⌊/⌋ 2))) interleave-values {n = 𝟎} = [∨]-introₗ [≡]-intro interleave-values {n = 𝐒 𝟎} = [∨]-introᵣ [≡]-intro interleave-values {af = af}{bf = bf} {n = 𝐒(𝐒 n)} = interleave-values {af = af ∘ 𝐒}{bf = bf ∘ 𝐒} {n = n} interleave-left-args : ⦃ _ : Injective(af) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Left(af(n))) ↔ (m ≡ 2 ⋅ n) interleave-left-args {n = n} = [↔]-intro (\{[≡]-intro → interleave-left{n = n}}) r where r : ⦃ _ : Injective(af) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Left(af(n))) → (m ≡ 2 ⋅ n) r {af = af} {m = 𝟎}{n = n} = congruence₁(2 ⋅_) ∘ injective(af) ∘ injective(Either.Left) ⦃ Left-injective ⦄ r {af = af}{bf = bf} {m = 𝐒 (𝐒 m)}{n = 𝟎} p with interleave-values {af = af}{bf = bf}{n = 𝐒(𝐒 m)} ... | [∨]-introₗ v with () ← injective(af) (injective(Either.Left) ⦃ Left-injective ⦄ (symmetry(_≡_) v 🝖 p)) ... | [∨]-introᵣ v with () ← symmetry(_≡_) v 🝖 p r {af = af} {m = 𝐒 (𝐒 m)}{n = 𝐒 n} p = congruence₁(𝐒 ∘ 𝐒) (r ⦃ [∘]-injective {f = af} ⦄{m = m}{n = n} p) interleave-right-args : ⦃ _ : Injective(bf) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Right(bf(n))) ↔ (m ≡ 𝐒(2 ⋅ n)) interleave-right-args {n = n} = [↔]-intro (\{[≡]-intro → interleave-right{n = n}}) r where r : ⦃ _ : Injective(bf) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Right(bf(n))) → (m ≡ 𝐒(2 ⋅ n)) r {bf = bf} {m = 𝐒 𝟎}{n = n} = congruence₁(𝐒 ∘ (2 ⋅_)) ∘ injective(bf) ∘ injective(Either.Right) ⦃ Right-injective ⦄ r {bf = bf}{af = af} {m = 𝐒 (𝐒 m)}{n = 𝟎} p with interleave-values {af = af}{bf = bf}{n = 𝐒(𝐒 m)} ... | [∨]-introₗ v with () ← symmetry(_≡_) v 🝖 p ... | [∨]-introᵣ v with () ← injective(bf) (injective(Either.Right) ⦃ Right-injective ⦄ (symmetry(_≡_) v 🝖 p)) r {bf = bf} {m = 𝐒 (𝐒 m)}{n = 𝐒 n} p = congruence₁(𝐒 ∘ 𝐒) (r ⦃ [∘]-injective {f = bf} ⦄{m = m}{n = n} p) interleave-step-left : ⦃ _ : Injective(af) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Left(af(n))) ↔ (interleave af bf (𝐒(𝐒 m)) ≡ Either.Left(af(𝐒 n))) interleave-step-left{af = iaf}{bf = ibf}{m = m}{n = n} = [↔]-intro (l{af = iaf}{bf = ibf}{m = m}{n = n}) (r{af = iaf}{bf = ibf}{m = m}{n = n}) where l : ⦃ _ : Injective(af) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Left(af(n))) ← (interleave af bf (𝐒(𝐒 m)) ≡ Either.Left(af(𝐒 n))) l {af = af} {m = 𝟎} {n} = congruence₁(Either.Left) ∘ congruence₁(af) ∘ injective(𝐒) ∘ injective(af) ∘ injective(Either.Left) ⦃ Left-injective ⦄ l {af = af}{bf = bf} {m = 𝐒 (𝐒 m)}{𝟎} p with interleave-values {af = af}{bf = bf}{n = 𝐒(𝐒(𝐒(𝐒 m)))} ... | [∨]-introₗ v with () ← injective(af) (injective(Either.Left) ⦃ Left-injective ⦄ (symmetry(_≡_) v 🝖 p)) ... | [∨]-introᵣ v with () ← symmetry(_≡_) v 🝖 p l {af = af} {m = 𝐒 (𝐒 m)}{𝐒 n} = l {af = af ∘ 𝐒} ⦃ [∘]-injective {f = af} ⦄ {m = m}{n} r : ⦃ _ : Injective(af) ⦄ → ∀{m n} → (interleave af bf m ≡ Either.Left(af(n))) → (interleave af bf (𝐒(𝐒 m)) ≡ Either.Left(af(𝐒 n))) r {af = af} {m = 𝟎} {n} = congruence₁(Either.Left) ∘ congruence₁(af) ∘ congruence₁(𝐒) ∘ injective(af) ∘ injective(Either.Left) ⦃ Left-injective ⦄ r {af = af}{bf = bf} {m = 𝐒(𝐒 m)} {𝟎} p with interleave-values {af = af}{bf = bf}{n = 𝐒(𝐒 m)} ... | [∨]-introₗ v with () ← injective(af) (injective(Either.Left) ⦃ Left-injective ⦄ (symmetry(_≡_) v 🝖 p)) ... | [∨]-introᵣ v with () ← symmetry(_≡_) v 🝖 p r {af = af} {m = 𝐒(𝐒 m)} {𝐒 n} = r {af = af ∘ 𝐒} ⦃ [∘]-injective {f = af} ⦄ {m = m}{n} postulate interleave-injective-raw : ⦃ inj-af : Injective(af) ⦄ → ⦃ inj-bf : Injective(bf) ⦄ → Names.Injective(interleave af bf) {-interleave-injective-raw {af = af} {bf = bf} {x = 𝟎} {y = 𝟎} fxfy = [≡]-intro interleave-injective-raw {af = af} {bf = bf} {x = 𝟎} {y = 𝐒 (𝐒 y)} fxfy = symmetry(_≡_) ([↔]-to-[→] (interleave-left-args {bf = bf}) (symmetry(_≡_) fxfy)) interleave-injective-raw {af = af} {bf = bf} {x = 𝐒 (𝐒 x)} {y = 𝟎} fxfy = [↔]-to-[→] (interleave-left-args {bf = bf}) fxfy interleave-injective-raw {af = af} {bf = bf} {x = 𝐒 𝟎} {y = 𝐒 𝟎} fxfy = [≡]-intro interleave-injective-raw {af = af} {bf = bf} {x = 𝐒 𝟎} {y = 𝐒 (𝐒 y)} fxfy = symmetry(_≡_) ([↔]-to-[→] (interleave-right-args {bf = bf}{af = af}) (symmetry(_≡_) fxfy)) interleave-injective-raw {af = af} {bf = bf} {x = 𝐒 (𝐒 x)} {y = 𝐒 𝟎} fxfy = [↔]-to-[→] (interleave-right-args {bf = bf}{af = af}) fxfy interleave-injective-raw {af = af} {bf = bf} {x = 𝐒 (𝐒 x)} {y = 𝐒 (𝐒 y)} fxfy with interleave-values {af = af ∘ 𝐒}{bf = bf ∘ 𝐒}{n = x} | interleave-values {af = af ∘ 𝐒}{bf = bf ∘ 𝐒}{n = y} ... | [∨]-introₗ p | [∨]-introₗ q = {!congruence₁(𝐒) (injective(af) (injective(Either.Left) (symmetry(_≡_) p 🝖 fxfy 🝖 q)))!} -- TODO: interleave-left and a proof of the division algorihm would work here instead of using interleave-values. Or alternatively, use this, multiply by 2, prove the divisibilities for both cases so that each case have division as inverse of multiplication ... | [∨]-introₗ p | [∨]-introᵣ q = {!!} ... | [∨]-introᵣ p | [∨]-introₗ q = {!!} ... | [∨]-introᵣ p | [∨]-introᵣ q = {!congruence₁(𝐒) (injective(bf) (injective(Either.Right) (symmetry(_≡_) p 🝖 fxfy 🝖 q)))!} -} instance interleave-injective : ⦃ inj-af : Injective(af) ⦄ → ⦃ inj-bf : Injective(bf) ⦄ → Injective(interleave af bf) interleave-injective = intro interleave-injective-raw instance interleave-surjective : ⦃ surj-af : Surjective(af) ⦄ → ⦃ surj-bf : Surjective(bf) ⦄ → Surjective(interleave af bf) Surjective.proof (interleave-surjective {af = af}{bf = bf}) {[∨]-introₗ y} with surjective(af){y} ... | [∃]-intro n ⦃ [≡]-intro ⦄ = [∃]-intro(2 ⋅ n) ⦃ interleave-left{n = n} ⦄ Surjective.proof (interleave-surjective {af = af}{bf = bf}) {[∨]-introᵣ y} with surjective(bf){y} ... | [∃]-intro n ⦃ [≡]-intro ⦄ = [∃]-intro(𝐒(2 ⋅ n)) ⦃ interleave-right{n = n} ⦄ instance interleave-bijective : ⦃ bij-af : Bijective(af) ⦄ → ⦃ bij-bf : Bijective(bf) ⦄ → Bijective(interleave af bf) interleave-bijective {af = af}{bf = bf} = injective-surjective-to-bijective(interleave af bf) where instance inj-af : Injective(af) inj-af = bijective-to-injective af instance inj-bf : Injective(bf) inj-bf = bijective-to-injective bf instance surj-af : Surjective(af) surj-af = bijective-to-surjective af instance surj-bf : Surjective(bf) surj-bf = bijective-to-surjective bf -}
{ "alphanum_fraction": 0.6088114105, "avg_line_length": 53.8395904437, "ext": "agda", "hexsha": "97c568f215ca11821daddf79aadc76ca05e8be09", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Sequence/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Sequence/Proofs.agda", "max_line_length": 382, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Sequence/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6518, "size": 15775 }
module Issue347 where import Common.Irrelevance {- Dan Doel, 2010-10-09 This is a boiling down of a problem encountered by Eric Mertens. It seems the unifier will make up values for records without bothering with irrelevant fields: -} data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () ⊥-elimⁱ : {A : Set} → .⊥ → A ⊥-elimⁱ () module Bad where record ○ (A : Set) : Set where constructor poof field .inflate : A open ○ -- This, for some reason, doesn't. Apparently it thinks it can -- make up records without bothering to infer the irrelevant fields. evil : ∀ A → A evil A = ⊥-elimⁱ (inflate _) -- the meta var ?a : Squash A eta-expands to -- ?a = poof Bot ?b -- meta var ?b should be left over
{ "alphanum_fraction": 0.6469002695, "avg_line_length": 21.2, "ext": "agda", "hexsha": "67a6adc06aed5e2e37831d00922c5c472211771f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue347.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue347.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue347.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 249, "size": 742 }
data ⊤ : Set where t : ⊤ data ⊤⊤ : Set where tt : ⊤⊤ module M (x : ⊤⊤) where instance top : ⊤ top = t search : ∀ {ℓ} {t : Set ℓ} {{_ : t}} → t search {{p}} = p -- no instance is in scope, and none is found -- correct : ⊤ -- correct = search someDef : ⊤ someDef = top where open M tt -- incorrect! there should be no instance available. leak : ⊤ leak = search
{ "alphanum_fraction": 0.5555555556, "avg_line_length": 13.3448275862, "ext": "agda", "hexsha": "2daf26b27ed845469cd022bc901f9116dd12b98a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2489.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2489.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2489.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 152, "size": 387 }
module IsLiteralSequent where open import OscarPrelude open import Sequent open import IsLiteralFormula record IsLiteralSequent (Φ : Sequent) : Set where constructor _╱_ field isLiteralStatement : IsLiteralFormula (statement Φ) isLiteralSuppositions : All IsLiteralFormula (suppositions Φ) open IsLiteralSequent public instance EqIsLiteralSequent : ∀ {Φ} → Eq (IsLiteralSequent Φ) Eq._==_ EqIsLiteralSequent ( φᵗ₁ ╱ φˢs₁ ) ( φᵗ₂ ╱ φˢs₂ ) = decEq₂ (cong isLiteralStatement) (cong isLiteralSuppositions) (φᵗ₁ ≟ φᵗ₂) (φˢs₁ ≟ φˢs₂)
{ "alphanum_fraction": 0.7692307692, "avg_line_length": 28.7368421053, "ext": "agda", "hexsha": "7062576a8a46e622f76127097e0dd9a2948db3a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/IsLiteralSequent.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/IsLiteralSequent.agda", "max_line_length": 146, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/IsLiteralSequent.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 193, "size": 546 }
------------------------------------------------------------------------------ -- Totality properties respect to OrdTree ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.OrdTreeATP where open import FOTC.Base open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Program.SortList.SortList open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.Properties.Totality.TreeATP ------------------------------------------------------------------------------ -- Subtrees -- If (node t₁ i t₂) is ordered then t₁ is ordered. postulate leftSubTree-OrdTree : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → OrdTree t₁ {-# ATP prove leftSubTree-OrdTree &&-Bool &&-list₂-t le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool #-} -- If (node t₁ i t₂) is ordered then t₂ is ordered. postulate rightSubTree-OrdTree : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → OrdTree t₂ -- 2018-06-28: The ATPs could not prove the theorem (300 sec), but -- Vampire 4.2.2, via `online-atps`, could prove it. -- -- {-# ATP prove rightSubTree-OrdTree &&-Bool &&-list₂-t le-ItemTree-Bool le-TreeItem-Bool ordTree-Bool #-} ------------------------------------------------------------------------------ -- Helper functions toTree-OrdTree-helper₁ : ∀ {i₁ i₂ t} → N i₁ → N i₂ → i₁ > i₂ → Tree t → ≤-TreeItem t i₁ → ≤-TreeItem (toTree · i₂ · t) i₁ toTree-OrdTree-helper₁ {i₁} {i₂} .{nil} Ni₁ Ni₂ i₁>i₂ tnil t≤i₁ = prf where postulate prf : ≤-TreeItem (toTree · i₂ · nil) i₁ {-# ATP prove prf x<y→x≤y #-} toTree-OrdTree-helper₁ {i₁} {i₂} Ni₁ Ni₂ i₁>i₂ (ttip {j} Nj) t≤i₁ = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where postulate prf₁ : j > i₂ → ≤-TreeItem (toTree · i₂ · tip j) i₁ {-# ATP prove prf₁ x>y→x≰y x<y→x≤y #-} postulate prf₂ : j ≤ i₂ → ≤-TreeItem (toTree · i₂ · tip j) i₁ {-# ATP prove prf₂ x<y→x≤y #-} toTree-OrdTree-helper₁ {i₁} {i₂} Ni₁ Ni₂ i₁>i₂ (tnode {t₁} {j} {t₂} Tt₁ Nj Tt₂) t≤i₁ = case (prf₁ (toTree-OrdTree-helper₁ Ni₁ Ni₂ i₁>i₂ Tt₁ (&&-list₂-t₁ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁)))) (prf₂ (toTree-OrdTree-helper₁ Ni₁ Ni₂ i₁>i₂ Tt₂ (&&-list₂-t₂ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁)))) (x>y∨x≤y Nj Ni₂) where postulate prf₁ : ≤-TreeItem (toTree · i₂ · t₁) i₁ → j > i₂ → ≤-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ {-# ATP prove prf₁ x>y→x≰y &&-list₂-t le-TreeItem-Bool #-} postulate prf₂ : ≤-TreeItem (toTree · i₂ · t₂) i₁ → j ≤ i₂ → ≤-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ {-# ATP prove prf₂ &&-list₂-t le-TreeItem-Bool #-} toTree-OrdTree-helper₂ : ∀ {i₁ i₂ t} → N i₁ → N i₂ → i₁ ≤ i₂ → Tree t → ≤-ItemTree i₁ t → ≤-ItemTree i₁ (toTree · i₂ · t) toTree-OrdTree-helper₂ {i₁} {i₂} .{nil} Ni₁ Ni₂ i₁≤i₂ tnil i₁≤t = prf where postulate prf : ≤-ItemTree i₁ (toTree · i₂ · nil) {-# ATP prove prf #-} toTree-OrdTree-helper₂ {i₁} {i₂} Ni₁ Ni₂ i₁≤i₂ (ttip {j} Nj) i₁≤t = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where postulate prf₁ : j > i₂ → ≤-ItemTree i₁ (toTree · i₂ · tip j) {-# ATP prove prf₁ x>y→x≰y #-} postulate prf₂ : j ≤ i₂ → ≤-ItemTree i₁ (toTree · i₂ · tip j) {-# ATP prove prf₂ #-} toTree-OrdTree-helper₂ {i₁} {i₂} Ni₁ Ni₂ i₁≤i₂ (tnode {t₁} {j} {t₂} Tt₁ Nj Tt₂) i₁≤t = case (prf₁ (toTree-OrdTree-helper₂ Ni₁ Ni₂ i₁≤i₂ Tt₁ (&&-list₂-t₁ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t)))) (prf₂ (toTree-OrdTree-helper₂ Ni₁ Ni₂ i₁≤i₂ Tt₂ (&&-list₂-t₂ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t)))) (x>y∨x≤y Nj Ni₂) where postulate prf₁ : ≤-ItemTree i₁ (toTree · i₂ · t₁) → j > i₂ → ≤-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) {-# ATP prove prf₁ x>y→x≰y &&-list₂-t le-ItemTree-Bool #-} postulate prf₂ : ≤-ItemTree i₁ (toTree · i₂ · t₂) → j ≤ i₂ → ≤-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) {-# ATP prove prf₂ &&-list₂-t le-ItemTree-Bool #-}
{ "alphanum_fraction": 0.5166051661, "avg_line_length": 42.9083333333, "ext": "agda", "hexsha": "8d2ea5c6828d70e9c86c1f6c765b6403e69df0d6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeATP.agda", "max_line_length": 107, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1802, "size": 5149 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Functor.Equivalence.Strong where open import Level open import Relation.Binary using (IsEquivalence) open import Relation.Nullary using (¬_) open import Data.Product using (Σ; ∃; _,_; proj₁; proj₂) open import Function using () renaming (_∘_ to _∙_) open import Categories.Category open import Categories.Functor hiding (equiv) open import Categories.Functor.Properties import Categories.Morphisms as Morphisms record StrongEquivalence {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field .full : Full F .faithful : Faithful F eso : EssentiallySurjective F record StronglyEquivalent {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field C⇒D : Functor C D strong-equivalence : StrongEquivalence C⇒D open StrongEquivalence strong-equivalence public refl : ∀ {o ℓ e} {C : Category o ℓ e} → StronglyEquivalent C C refl {C = C} = record { C⇒D = id ; strong-equivalence = record { full = λ {X Y} → my-full X Y ; faithful = λ _ _ eq → eq ; eso = λ d → d , (record { f = C.id; g = C.id; iso = record { isoˡ = C.identityˡ; isoʳ = C.identityˡ } }) } } where module C = Category C open C hiding (id) .my-full : ∀ X Y → ¬ Σ (X ⇒ Y) (λ f → ¬ ∃ (λ g → C [ g ≡ f ])) my-full X Y (f , elim) = elim (f , Equiv.refl) sym : ∀ {o ℓ e o′ ℓ′ e′} → {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → StronglyEquivalent C D → StronglyEquivalent D C sym {C = C} {D = D} Op = record { C⇒D = record { F₀ = λ d → proj₁ (Op.eso d) ; F₁ = λ f → {!rev (proj₂ (Op.eso _)) ∘ f ∘ ?!} ; identity = {!!} ; homomorphism = {!!} ; F-resp-≡ = {!!} } ; strong-equivalence = record { full = {!!} ; faithful = {!!} ; eso = {!!} } } where module Op = StronglyEquivalent Op open Op using () renaming (C⇒D to F) open Functor F open Morphisms._≅_ C renaming (f to fwd; g to rev) trans : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} {C₁ : Category o₁ ℓ₁ e₁} {C₂ : Category o₂ ℓ₂ e₂} {C₃ : Category o₃ ℓ₃ e₃} → StronglyEquivalent C₁ C₂ → StronglyEquivalent C₂ C₃ → StronglyEquivalent C₁ C₃ trans {C₁ = C₁} {C₂} {C₃} C₁⇒C₂ C₂⇒C₃ = record { C⇒D = G ∘ F ; strong-equivalence = record { full = λ {X Y} → my-full X Y ; faithful = λ f g → C₁⇒C₂.faithful _ _ ∙ C₂⇒C₃.faithful _ _ ; eso = my-eso } } where module C₁⇒C₂ = StronglyEquivalent C₁⇒C₂ module C₂⇒C₃ = StronglyEquivalent C₂⇒C₃ open C₁⇒C₂ using () renaming (C⇒D to F) open C₂⇒C₃ using () renaming (C⇒D to G) module F = Functor F open F using (F₀; F₁) module G = Functor G open G using () renaming (F₀ to G₀; F₁ to G₁) module E = Category.Equiv C₃ open Morphisms C₃ .my-full : ∀ X Y → ¬ ∃ (λ f → ¬ ∃ (λ (g : C₁ [ X , Y ]) → C₃ [ G₁ (F₁ g) ≡ f ])) my-full X Y (f , elim) = C₂⇒C₃.full (f , lemma) where lemma : ¬ ∃ (λ h → C₃ [ G₁ h ≡ f ]) lemma (h , G₁h≡f) = C₁⇒C₂.full (h , lemma₂) where lemma₂ : ¬ ∃ (λ g → C₂ [ F₁ g ≡ h ]) lemma₂ (g , F₁g≡h) = elim (g , E.trans (G.F-resp-≡ F₁g≡h) G₁h≡f) my-eso : ∀ c₃ → ∃ (λ c₁ → G₀ (F₀ c₁) ≅ c₃) my-eso c₃ with C₂⇒C₃.eso c₃ my-eso c₃ | c₂ , ff₃ with C₁⇒C₂.eso c₂ my-eso c₃ | c₂ , ff₃ | c₁ , ff₂ = c₁ , (ff₃ ⓘ resp-≅ ff₂) where open FunctorsAlways G equiv : ∀ {o ℓ e} → IsEquivalence (StronglyEquivalent {o} {ℓ} {e}) equiv = record { refl = refl ; sym = sym ; trans = trans }
{ "alphanum_fraction": 0.5846462332, "avg_line_length": 34.5643564356, "ext": "agda", "hexsha": "261832c7a1c7d237118bd13f8ec814c0056b96ce", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Functor/Equivalence/Strong.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Functor/Equivalence/Strong.agda", "max_line_length": 194, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Functor/Equivalence/Strong.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1476, "size": 3491 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Sn.Properties where open import Cubical.Data.Int hiding (_+_) open import Cubical.Data.Bool open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.HITs.S1 hiding (inv) open import Cubical.Data.Nat open import Cubical.Data.Prod open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp open import Cubical.Data.Unit open import Cubical.HITs.Join open import Cubical.HITs.Pushout open import Cubical.HITs.SmashProduct open import Cubical.HITs.PropositionalTruncation open Iso private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' --- Some silly lemmas on S1 --- S¹≡S1 : S₊ 1 ≡ S¹ S¹≡S1 = cong Susp (sym (ua Bool≃Susp⊥)) ∙ sym S¹≡SuspBool isOfHLevelS1 : isOfHLevel 3 (S₊ 1) isOfHLevelS1 = transport (λ i → isOfHLevel 3 (S¹≡S1 (~ i))) λ x y → J (λ y p → (q : x ≡ y) → isProp (p ≡ q)) (transport (λ i → isSet (basedΩS¹≡Int x (~ i))) isSetInt refl) isGroupoidS1 : isGroupoid (S₊ 1) isGroupoidS1 = transport (λ i → isGroupoid (S¹≡S1 (~ i))) isGroupoidS¹ isConnectedS1 : (x : S₊ 1) → ∥ north ≡ x ∥ isConnectedS1 x = rec propTruncIsProp (λ p → ∣ cong (transport (sym (S¹≡S1))) p ∙ transport⁻Transport (S¹≡S1) x ∣) (isConnectedS¹ (transport S¹≡S1 x)) SuspBool→S1 : Susp Bool → S₊ 1 SuspBool→S1 north = north SuspBool→S1 south = south SuspBool→S1 (merid false i) = merid south i SuspBool→S1 (merid true i) = merid north i S1→SuspBool : S₊ 1 → Susp Bool S1→SuspBool north = north S1→SuspBool south = south S1→SuspBool (merid north i) = merid true i S1→SuspBool (merid south i) = merid false i SuspBool→S1-sect : section SuspBool→S1 S1→SuspBool SuspBool→S1-sect north = refl SuspBool→S1-sect south = refl SuspBool→S1-sect (merid north i) = refl SuspBool→S1-sect (merid south i) = refl SuspBool→S1-retr : retract SuspBool→S1 S1→SuspBool SuspBool→S1-retr north = refl SuspBool→S1-retr south = refl SuspBool→S1-retr (merid false i) = refl SuspBool→S1-retr (merid true i) = refl S1→S¹ : S₊ 1 → S¹ S1→S¹ x = SuspBool→S¹ (S1→SuspBool x) S¹→S1 : S¹ → S₊ 1 S¹→S1 x = SuspBool→S1 (S¹→SuspBool x) S1→S¹-sect : section S1→S¹ S¹→S1 S1→S¹-sect x = cong SuspBool→S¹ (SuspBool→S1-retr (S¹→SuspBool x)) ∙ S¹→SuspBool→S¹ x S1→S¹-retr : retract S1→S¹ S¹→S1 S1→S¹-retr x = cong SuspBool→S1 (SuspBool→S¹→SuspBool (S1→SuspBool x)) ∙ SuspBool→S1-sect x SuspBoolIsoS1 : Iso (Susp Bool) (S₊ 1) fun SuspBoolIsoS1 = SuspBool→S1 inv SuspBoolIsoS1 = S1→SuspBool rightInv SuspBoolIsoS1 north = refl rightInv SuspBoolIsoS1 south = refl rightInv SuspBoolIsoS1 (merid north i) = refl rightInv SuspBoolIsoS1 (merid south i) = refl leftInv SuspBoolIsoS1 north = refl leftInv SuspBoolIsoS1 south = refl leftInv SuspBoolIsoS1 (merid false i) = refl leftInv SuspBoolIsoS1 (merid true i) = refl SuspBool≃S1 : Susp Bool ≃ S₊ 1 SuspBool≃S1 = isoToEquiv SuspBoolIsoS1 -- map between S¹ ∧ A and Susp A. private f' : {a : A} → A → S₊ 1 → Susp A f' {a = pt} A north = north f' {a = pt} A south = north f' {a = pt} a (merid p i) = ((merid a) ∙ sym (merid pt)) i proj' : {A : Pointed ℓ} {B : Pointed ℓ'} → typ A → typ B → A ⋀ B proj' a b = inr (a , b) module smashS1→susp {(A , pt) : Pointed ℓ} where f : (S₊ 1 , north) ⋀ (A , pt) → (Susp A) f (inl tt) = north f (inr (x , x₁)) = f' {a = pt} x₁ x f (push (inl north) i) = north f (push (inl south) i) = north f (push (inl (merid a i₁)) i) = rCancel (merid pt) (~ i) i₁ f (push (inr x) i) = north f (push (push tt i₁) i) = north f⁻ : Susp A → (S₊ 1 , north) ⋀ (A , pt) f⁻ north = inl tt f⁻ south = inl tt f⁻ (merid a i) = (push (inr a) ∙∙ cong (λ x → proj' {A = S₊ 1 , north} {B = A , pt} x a) (merid south ∙ sym (merid north)) ∙∙ sym (push (inr a))) i {- TODO : Prove that they cancel out -} {- Map used in definition of cup product. Maybe mover there later -} sphereSmashMap : (n m : ℕ) → (S₊ (suc n) , north) ⋀ (S₊ (suc m) , north) → S₊ (2 + n + m) sphereSmashMap zero m = smashS1→susp.f sphereSmashMap (suc n) m = smashS1→susp.f ∘ (idfun∙ _ ⋀→ (sphereSmashMap n m , refl)) ∘ ⋀-associate ∘ ((smashS1→susp.f⁻ , refl) ⋀→ idfun∙ _)
{ "alphanum_fraction": 0.6347128378, "avg_line_length": 32.8888888889, "ext": "agda", "hexsha": "b840b3a948a227932461d9dff136c2c97c05b5b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1846, "size": 4736 }
record SemiRing : Set1 where field R : Set _+_ : R -> R -> R zero : R _*_ : R -> R -> R one : R module Vectors (S : SemiRing) where open SemiRing S open import Data.Nat renaming (ℕ to Nat; zero to z; _*_ to times; _+_ to plus) open import Data.Fin renaming (zero to z) hiding (_+_) open import RMonads open import Functors.Fin open import Data.Bool open import Function open import Relation.Binary.HeterogeneousEquality Vec : Nat -> Set Vec n = Fin n -> R Matrix : Nat -> Nat -> Set Matrix m n = Fin m -> Vec n -- unit delta : forall {n} -> Matrix n n delta i j = if feq i j then one else zero transpose : forall {m n} -> Matrix m n -> Matrix n m transpose A = λ j i -> A i j dot : forall {n} -> Vec n -> Vec n -> R dot {z} x y = zero dot {suc n} x y = (x z * y z) + dot (x ∘ suc) (y ∘ suc) mult : forall {m n} -> Matrix m n -> Vec m -> Vec n mult A x = λ j -> dot (transpose A j) x VecRMon : RMonad FinF VecRMon = rmonad Vec delta mult {!!} {!!} {!!} where {- lem : forall {n}(x : Vec n)(j : Fin n) -> dot (λ i → if feq i j then one else zero) x ≅ x j lem {z} x () lem {suc n} x z = {!lem {n} (x ∘ suc) !} lem {suc n} x (suc j) = {!!} -}
{ "alphanum_fraction": 0.5394223263, "avg_line_length": 21.7118644068, "ext": "agda", "hexsha": "1a96ef7860f5ac48f7b28f9e6ae82ec0378ef776", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Vectors.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Vectors.agda", "max_line_length": 95, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Vectors.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 465, "size": 1281 }
module BBHeap.DropLast {A : Set}(_≤_ : A → A → Set) where open import BBHeap _≤_ open import BBHeap.Compound _≤_ open import BBHeap.Properties _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.Empty open import Data.Sum renaming (_⊎_ to _∨_) mutual dropLast : {b : Bound} → BBHeap b → BBHeap b dropLast leaf = leaf dropLast (left b≤x l⋘r) with l⋘r | lemma-dropLast⋘ l⋘r ... | lf⋘ | _ = leaf ... | ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | inj₁ (≃nd .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₁≃r₁ _ l₁≃l₂) = let l≃r = ≃nd x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ in right b≤x (lemma-dropLast≃ l≃r (cl x≤y₁ l₁⋘r₁)) ... | lr⋘ _ _ _ _ _ _ | inj₁ () ... | _ | inj₂ dl⋘r = left b≤x dl⋘r dropLast (right b≤x l⋙r) with lemma-dropLast⋙ l⋙r ... | inj₁ l⋗r = left b≤x (lemma-dropLast⋗ l⋗r) ... | inj₂ l⋙dr = right b≤x l⋙dr lemma-dropLast-⊥ : {b : Bound}{l r : BBHeap b} → l ≃ r → dropLast l ⋘ r → Compound l → ⊥ lemma-dropLast-⊥ () _ (cr _ _) lemma-dropLast-⊥ (≃nd b≤x b≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') dxlr⋘x'l'r' (cl .b≤x .l⋘r) with l⋘r | l≃r | l≃l' | l'⋘r' | lemma-dropLast⋘ l⋘r | dxlr⋘x'l'r' ... | lf⋘ | ≃lf | _ | _ | _ | () ... | lr⋘ x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₁≃r₁ l₁⋗l₂ | () | _ | _ | _ | _ ... | ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | _ | ≃nd .x≤y₁ x'≤y'₁ .l₁⋘r₁ l'₁⋘r'₁ _ l'₁≃r'₁ l₁≃r'₁ | ll⋘ .x'≤y'₁ x'≤y'₂ .l'₁⋘r'₁ l'₂⋘r'₂ l'₂≃r'₂ r'₁≃l'₂ | inj₁ (≃nd .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₁≃r₁ _ l₁≃l₂) | _dxlr⋘x'l'r' with lemma-dropLast≃ (≃nd x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) (cl x≤y₁ l₁⋘r₁) | _dxlr⋘x'l'r' ... | l⋙dr | lr⋘ .b≤x .b≤x' .l⋙dr .(ll⋘ x'≤y'₁ x'≤y'₂ l'₁⋘r'₁ l'₂⋘r'₂ l'₂≃r'₂ r'₁≃l'₂) _ l⋗l' with lemma-≃-⊥ (≃nd x≤y₁ x'≤y'₁ l₁⋘r₁ l'₁⋘r'₁ l₁≃r₁ l'₁≃r'₁ l₁≃r'₁) l⋗l' ... | () lemma-dropLast-⊥ (≃nd b≤x b≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') dxlr⋘x'l'r' (cl .b≤x .l⋘r) | ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | ≃nd .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₁≃r₁ _ l₁≃l₂ | _ | _ | inj₂ dl⋘r | _ with lemma-dropLast-⊥ (≃nd x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) dl⋘r (cl x≤y₁ l₁⋘r₁) ... | () lemma-dropLast≃ : {b : Bound}{l r : BBHeap b} → l ≃ r → Compound l → l ⋙ dropLast r lemma-dropLast≃ () (cr _ _) lemma-dropLast≃ (≃nd b≤x b≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') (cl .b≤x .l⋘r) with l'≃r' | l≃l' | l≃r | l⋘r | l'⋘r' | lemma-dropLast⋘ l'⋘r' ... | ≃lf | ≃lf | ≃lf | lf⋘ | lf⋘ | _ = ⋙lf b≤x ... | ≃nd x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ _ _ _ | _ | _l≃r | _l⋘r | ll⋘ .x'≤y₁ .x'≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₂≃r₂ _ | inj₁ (≃nd .x'≤y₁ .x'≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₁≃r₁ _ l₁≃l₂) = let l'≃r' = ≃nd x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ ; l'⋙dr' = lemma-dropLast≃ l'≃r' (cl x'≤y₁ l₁⋘r₁) in ⋙rr b≤x b≤x' _l⋘r _l≃r l'⋙dr' l≃l' ... | ≃nd x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ | _l≃l' | _l≃r | _l⋘r | ll⋘ .x'≤y₁ .x'≤y₂ .l₁⋘r₁ .l₂⋘r₂ _ _ | inj₂ dl'⋘r' with lemma-dropLast-⊥ (≃nd x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) dl'⋘r' (cl x'≤y₁ l₁⋘r₁) ... | () lemma-dropLast⋗ : {b : Bound}{l r : BBHeap b} → l ⋗ r → dropLast l ⋘ r lemma-dropLast⋗ (⋗lf b≤x) = lf⋘ lemma-dropLast⋗ (⋗nd b≤x b≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') with l⋘r | l≃r | l⋗l' | lemma-dropLast⋘ l⋘r ... | lf⋘ | _ | () | _ ... | lr⋘ x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₁≃r₁ l₁⋗l₂ | _ | _ | inj₁ () ... | lr⋘ x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₁≃r₁ l₁⋗l₂ | () | _ | inj₂ _ ... | ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | _ | _ | inj₁ (≃nd .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₁≃r₁ _ l₁≃l₂) = let _l≃r = ≃nd x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ ; l⋙dr = lemma-dropLast≃ _l≃r (cl x≤y₁ l₁⋘r₁) in lr⋘ b≤x b≤x' l⋙dr l'⋘r' l'≃r' l⋗l' ... | ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ _ r₁≃l₂ | ≃nd .x≤y₁ .x≤y₂ .l₁⋘r₁ .l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ | _ | inj₂ dl⋘r with lemma-dropLast-⊥ (≃nd x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) dl⋘r (cl x≤y₁ l₁⋘r₁) ... | () lemma-dropLast⋘ : {b : Bound}{l r : BBHeap b} → l ⋘ r → l ≃ r ∨ dropLast l ⋘ r lemma-dropLast⋘ lf⋘ = inj₁ ≃lf lemma-dropLast⋘ (ll⋘ b≤x b≤x' l⋘r l'⋘r' l'≃r' r≃l') with l⋘r | l'⋘r' | r≃l' | lemma-dropLast⋘ l⋘r ... | lf⋘ | lf⋘ | ≃lf | _ = inj₁ (≃nd b≤x b≤x' lf⋘ lf⋘ ≃lf ≃lf ≃lf) ... | ll⋘ x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | _l'⋘r' | _r≃l' | inj₁ l≃r = let l≃l' = trans≃ l≃r _r≃l' ; _l⋘r = ll⋘ x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ in inj₁ (≃nd b≤x b≤x' _l⋘r _l'⋘r' l≃r l'≃r' l≃l') ... | ll⋘ x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | _l'⋘r' | _r≃l' | inj₂ dl⋘r = inj₂ (ll⋘ b≤x b≤x' dl⋘r _l'⋘r' l'≃r' _r≃l') ... | lr⋘ x'≤y₁ x'≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ | _l'⋘r' | _r≃l' | inj₁ l≃r = let l≃l' = trans≃ l≃r _r≃l' ; _l⋘r = lr⋘ x'≤y₁ x'≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ in inj₁ (≃nd b≤x b≤x' _l⋘r _l'⋘r' l≃r l'≃r' l≃l') ... | lr⋘ x'≤y₁ x'≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ | _l'⋘r' | _r≃l' | inj₂ dl⋘r = inj₂ (ll⋘ b≤x b≤x' dl⋘r _l'⋘r' l'≃r' _r≃l') lemma-dropLast⋘ (lr⋘ b≤x b≤x' l⋙r l'⋘r' l'≃r' l⋗l') with lemma-dropLast⋙ l⋙r ... | inj₁ l⋗r = let dl⋘r = lemma-dropLast⋗ l⋗r ; r≃l' = lemma⋗⋗' l⋗r l⋗l' in inj₂ (ll⋘ b≤x b≤x' dl⋘r l'⋘r' l'≃r' r≃l') ... | inj₂ l⋙dr = inj₂ (lr⋘ b≤x b≤x' l⋙dr l'⋘r' l'≃r' l⋗l') lemma-dropLast⋙ : {b : Bound}{l r : BBHeap b} → l ⋙ r → l ⋗ r ∨ l ⋙ dropLast r lemma-dropLast⋙ (⋙lf b≤x) = inj₁ (⋗lf b≤x) lemma-dropLast⋙ (⋙rl b≤x b≤x' l⋘r l≃r l'⋘r' l⋗r') with l'⋘r' | l≃r | l⋗r' | lemma-dropLast⋘ l'⋘r' ... | lf⋘ | ≃nd x≤y _ lf⋘ lf⋘ ≃lf ≃lf ≃lf | ⋗lf .x≤y | _ = inj₁ (⋗nd b≤x b≤x' l⋘r lf⋘ l≃r ≃lf (⋗lf x≤y)) ... | ll⋘ x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | _l≃r | _l⋗r' | inj₁ l'≃r' = let l⋗l' = lemma⋗≃ _l⋗r' (sym≃ l'≃r') ; _l'⋘r' = ll⋘ x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ in inj₁ (⋗nd b≤x b≤x' l⋘r _l'⋘r' _l≃r l'≃r' l⋗l') ... | ll⋘ x'≤y₁ x'≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ | _l≃r | _l⋗r' | inj₂ dl'⋘r' = inj₂ (⋙rl b≤x b≤x' l⋘r _l≃r dl'⋘r' _l⋗r') ... | lr⋘ x'≤y₁ x'≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ | _l≃r | _l⋗r' | inj₁ l'≃r' = let l⋗l' = lemma⋗≃ _l⋗r' (sym≃ l'≃r') ; _l'⋘r' = lr⋘ x'≤y₁ x'≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ in inj₁ (⋗nd b≤x b≤x' l⋘r _l'⋘r' _l≃r l'≃r' l⋗l') ... | lr⋘ x'≤y₁ x'≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ | _l≃r | _l⋗r' | inj₂ dl'⋘r' = inj₂ (⋙rl b≤x b≤x' l⋘r _l≃r dl'⋘r' _l⋗r') lemma-dropLast⋙ (⋙rr b≤x b≤x' l⋘r l≃r l'⋙r' l≃l') with lemma-dropLast⋙ l'⋙r' ... | inj₁ l'⋗r' = let dl'⋘r' = lemma-dropLast⋗ l'⋗r' ; l⋗r' = lemma≃⋗ l≃l' l'⋗r' in inj₂ (⋙rl b≤x b≤x' l⋘r l≃r dl'⋘r' l⋗r') ... | inj₂ l'⋙dr' = inj₂ (⋙rr b≤x b≤x' l⋘r l≃r l'⋙dr' l≃l')
{ "alphanum_fraction": 0.4740696458, "avg_line_length": 58.1826086957, "ext": "agda", "hexsha": "24ac646872cf0817f41ba5726e6609a146da12cb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/DropLast.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/DropLast.agda", "max_line_length": 223, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/DropLast.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 4828, "size": 6691 }
module Data.Bin.Props where open import Data.Bin import Data.Nat import Data.Nat.Properties open Data.Nat using (ℕ) open import Data.List open import Relation.Binary.PropositionalEquality open import Function using (_⟨_⟩_) open import Algebra.Structures using (IsCommutativeMonoid; module IsCommutativeMonoid; module IsCommutativeSemiring) import Data.Bin.Addition bin-+-is-comm-monoid = Data.Bin.Addition.is-commutativeMonoid open import Data.Bin.Bijection using (fromℕ-bijection) import Algebra.Lifting module Lifting = Algebra.Lifting _ _ fromℕ-bijection open import Data.Bin.Multiplication bin-*-is-comm-monoid : IsCommutativeMonoid _≡_ _*_ ([] 1#) bin-*-is-comm-monoid = lift-isCommutativeMonoid 1 *-isCommutativeMonoid where open IsCommutativeSemiring Data.Nat.Properties.isCommutativeSemiring using(*-isCommutativeMonoid) open Lifting.WithOp₂ Data.Nat._*_ _*_ *-is-multiplication open IsCommutativeMonoid bin-*-is-comm-monoid using () renaming (comm to *-comm) *2-is-2* : ∀ x → x *2 ≡ (fromℕ 2) * x *2-is-2* 0# = refl *2-is-2* (bs 1#) = refl *-distrib : ∀ {a b c} → (a + b) * c ≡ a * c + b * c *-distrib {a} {b} {c} = Data.Bin.Multiplication.*-distribʳ a b c *2-distrib : ∀ a b → (a + b) *2 ≡ a *2 + b *2 *2-distrib a b = *2-is-*2-bin (a + b) ⟨ trans ⟩ *-distrib {a} {b} {fromℕ 2} ⟨ trans ⟩ cong₂ _+_ (sym (*2-is-*2-bin a)) (sym (*2-is-*2-bin b)) where *2-is-*2-bin : ∀ a → a *2 ≡ a * fromℕ 2 *2-is-*2-bin a = *2-is-2* a ⟨ trans ⟩ *-comm (fromℕ 2) a open import Function open import Data.Empty 1+≢0 : ∀ l → toℕ (l 1#) ≢ 0 1+≢0 l eq = case Data.Bin.Bijection.toℕ-inj {l 1#} {0#} eq of (λ ()) z<nzℕ : ∀ {n} → n ≢ 0 → Data.Nat._<_ 0 n z<nzℕ {Data.Bin.0b} neq = ⊥-elim (neq refl) z<nzℕ {Data.Bin.Bijection.1+ n} neq = Data.Nat.s≤s Data.Nat.z≤n z<nz : ∀ l → 0# < l 1# z<nz l = Data.Bin.less (z<nzℕ (1+≢0 l))
{ "alphanum_fraction": 0.639019301, "avg_line_length": 34.2321428571, "ext": "agda", "hexsha": "27af607a30a81df8ff10e3e7e603d3c06c86cad7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/Props.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/Props.agda", "max_line_length": 143, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/Props.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 776, "size": 1917 }
import cedille-options open import general-util module classify (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} where open import lib open import cedille-types open import constants open import conversion open import ctxt open import is-free open import lift open import rename open import rewriting open import meta-vars options {mF} open import spans options {mF} open import subst open import syntax-util open import to-string options open import untyped-spans options {mF} check-ret : ∀{A : Set} → maybe A → Set check-ret{A} nothing = maybe A check-ret (just _) = ⊤ infixl 2 _≫=spanr_ _≫=spanr_ : ∀{A : Set}{m : maybe A} → spanM (maybe A) → (A → spanM (check-ret m)) → spanM (check-ret m) _≫=spanr_{m = nothing} = _≫=spanm_ _≫=spanr_{m = just _} = _≫=spanj_ -- return the appropriate value meaning that typing failed (in either checking or synthesizing mode) check-fail : ∀{A : Set} → (m : maybe A) → spanM (check-ret m) check-fail nothing = spanMr nothing check-fail (just _) = spanMok unimplemented-check : spanM ⊤ unimplemented-check = spanMok unimplemented-synth : ∀{A : Set} → spanM (maybe A) unimplemented-synth = spanMr nothing unimplemented-if : ∀{A : Set} → (m : maybe A) → spanM (check-ret m) unimplemented-if nothing = unimplemented-synth unimplemented-if (just _) = unimplemented-check -- return the second maybe value, if we are in synthesizing mode return-when : ∀{A : Set} → (m : maybe A) → maybe A → spanM (check-ret m) return-when nothing u = spanMr u return-when (just _) u = spanMr triv -- if m is not "nothing", return "just star" return-star-when : (m : maybe kind) → spanM (check-ret m) return-star-when m = return-when m (just star) if-check-against-star-data : ctxt → string → maybe kind → 𝕃 tagged-val × err-m if-check-against-star-data Γ desc nothing = [ kind-data Γ star ] , nothing if-check-against-star-data Γ desc (just (Star _)) = [ kind-data Γ star ] , nothing if-check-against-star-data Γ desc (just k) = [ expected-kind Γ k ] , just (desc ^ " is being checked against a kind other than ★") hnf-from : ctxt → (e : 𝔹) → maybeMinus → term → term hnf-from Γ e EpsHnf t = hnf Γ (unfolding-set-erased unfold-head e) t tt hnf-from Γ e EpsHanf t = hanf Γ e t maybe-hnf : {ed : exprd} → ctxt → maybe ⟦ ed ⟧ → maybe ⟦ ed ⟧ maybe-hnf Γ = maybe-map λ t → hnf Γ (unfolding-elab unfold-head) t tt check-term-update-eq : ctxt → leftRight → maybeMinus → posinfo → term → term → posinfo → type check-term-update-eq Γ Left m pi t1 t2 pi' = TpEq pi (hnf-from Γ tt m t1) t2 pi' check-term-update-eq Γ Right m pi t1 t2 pi' = TpEq pi t1 (hnf-from Γ tt m t2) pi' check-term-update-eq Γ Both m pi t1 t2 pi' = TpEq pi (hnf-from Γ tt m t1) (hnf-from Γ tt m t2) pi' add-tk' : erased? → posinfo → var → tk → spanM restore-def add-tk' e pi x atk = helper atk ≫=span λ mi → (if ~ (x =string ignored-var) then (get-ctxt λ Γ → spanM-add (var-span e Γ pi x checking atk nothing)) else spanMok) ≫span spanMr mi where helper : tk → spanM restore-def helper (Tkk k) = spanM-push-type-decl pi x k helper (Tkt t) = spanM-push-term-decl pi x t add-tk : posinfo → var → tk → spanM restore-def add-tk = add-tk' ff check-type-return : ctxt → kind → spanM (maybe kind) check-type-return Γ k = spanMr (just (hnf Γ unfold-head k tt)) check-termi-return-hnf : ctxt → (subject : term) → type → spanM (maybe type) check-termi-return-hnf Γ subject tp = spanMr (just (hnf Γ (unfolding-elab unfold-head) tp tt)) lambda-bound-var-conv-error : ctxt → var → tk → tk → 𝕃 tagged-val → 𝕃 tagged-val × string lambda-bound-var-conv-error Γ x atk atk' tvs = (("the variable" , [[ x ]] , []) :: (to-string-tag-tk "its declared classifier" Γ atk') :: [ to-string-tag-tk "the expected classifier" Γ atk ]) ++ tvs , "The classifier given for a λ-bound variable is not the one we expected" lambda-bound-class-if : optClass → tk → tk lambda-bound-class-if NoClass atk = atk lambda-bound-class-if (SomeClass atk') atk = atk' {- for check-term and check-type, if the optional classifier is given, we will check against it. Otherwise, we will try to synthesize a type. check-type should return kinds in hnf using check-type-return. Use add-tk above to add declarations to the ctxt, since these should be normalized and with self-types instantiated. The term/type/kind being checked is never qualified, but the type/kind it is being checked against should always be qualified. So if a term/type is ever being checked against something that was in a term/type the user wrote (phi, for example, needs to check its first term against an equation between its second and third terms), the type/ kind being checked against should be qualified first. Additionally, when returning a synthesized type, lambdas should substitute the position-qualified variable for the original variable in the returned type, so that if the bound variable ever gets substituted by some other code it will work correctly. -} record spine-data : Set where constructor mk-spine-data field spine-mvars : meta-vars spine-type : decortype spine-locale : ℕ {-# TERMINATING #-} check-term : term → (m : maybe type) → spanM (check-ret m) check-termi : term → (m : maybe type) → spanM (check-ret m) check-term-spine : term → (m : prototype) → 𝔹 → spanM (maybe spine-data) check-type : type → (m : maybe kind) → spanM (check-ret m) check-typei : type → (m : maybe kind) → spanM (check-ret m) check-kind : kind → spanM ⊤ check-args-against-params : (kind-or-import : maybe tagged-val {- location -}) → (posinfo × var) → params → args → spanM ⊤ check-erased-margs : term → maybe type → spanM ⊤ check-tk : tk → spanM ⊤ check-def : defTermOrType → spanM (var × restore-def) {- Cedilleum specification, section 4.3 -} is-arrow-type : type → kind → posinfo → posinfo → spanM ⊤ is-arrow-type t (KndTpArrow t' (Star _)) pi pi' = get-ctxt (λ Γ → if (conv-type Γ t t') then spanMok else (spanM-add (mk-span "Wrong motive" pi pi' (expected-type Γ t :: [ type-argument Γ t' ]) (just "Type missmatch")))) is-arrow-type t (KndPi _ _ _ (Tkt t') (Star _)) pi pi' = get-ctxt (λ Γ → if (conv-type Γ t t') then spanMok else (spanM-add (mk-span "Wrong motive" pi pi' (expected-type Γ t :: [ type-argument Γ t' ]) (just "Type missmatch")))) is-arrow-type t _ pi pi' = spanM-add (mk-span "Wrong motive" pi pi' [] (just "Not a valid motive type 3")) -- example of renaming: [[%CE%93%E2%86%92%CE%93' : ctxt %E2%86%92 ctxt][here]] -- [[check-term-spine t'@(App t%E2%82%81 e? t%E2%82%82) mtp max =]] valid-elim-kind : type → kind → kind → posinfo → posinfo → spanM ⊤ valid-elim-kind t (Star _) k pi pi' = is-arrow-type t k pi pi' valid-elim-kind t (KndPi _ pix x (Tkt t1) k1) (KndPi _ _ y (Tkt t2) k2) pi pi' = get-ctxt (λ Γ → if (conv-type Γ t1 t2) then set-ctxt (ctxt-term-decl pix x t1 Γ) ≫span valid-elim-kind (TpAppt t (Var pix x)) k1 k2 pi pi' else spanM-add (mk-span "Motive error" pi pi' [] (just "Not a valid motive 4"))) valid-elim-kind t (KndPi _ pix x (Tkk k1') k1) (KndPi _ _ y (Tkk k2') k2) pi pi' = get-ctxt (λ Γ → if (conv-kind Γ k1' k2') then set-ctxt (ctxt-type-decl pix x k1' Γ) ≫span valid-elim-kind (TpApp t (TpVar pix x)) k1 k2 pi pi' else spanM-add (mk-span "Motive error" pi pi' [] (just "Not a valid motive 5"))) valid-elim-kind t (KndTpArrow t1 k1) (KndTpArrow t2 k2) pi pi' = get-ctxt (λ Γ → if (conv-type Γ t1 t2) then valid-elim-kind (TpApp t t1) k1 k2 pi pi' else spanM-add (mk-span "Motive error" pi pi' [] (just "Not a valid motive 6"))) valid-elim-kind _ _ _ pi pi' = spanM-add (mk-span "Motive error" pi pi' [] (just "Not a valid motive 7")) {- Cedilleum specification, section 4.4 -} branch-type : ctxt → term → type → type → type -- Π x : Tk, ∀ x : T, ∀ x : k cases branch-type Γ t (Abs pi e pi' x tk ty) m = Abs pi e pi' x tk (branch-type Γ t ty m) branch-type Γ t _ m = TpAppt m t -- TODO: missing indices s ! is ctxt needed ? -- converts mu cases (Example: from "vcons -n -m x xs -eq → ff" to "Λ n. Λ m. λ x. λ xs. Λ eq. ff") abstract-varargs : varargs → term → spanM (maybe term) abstract-varargs NoVarargs t = spanMr (just t) abstract-varargs (NormalVararg x vs) t = (abstract-varargs vs t) on-fail (spanMr nothing) ≫=spanm' (λ a → spanMr (just (Lam posinfo-gen NotErased posinfo-gen x NoClass a))) abstract-varargs (ErasedVararg x vs) t = (abstract-varargs vs t) on-fail (spanMr nothing) ≫=spanm' (λ a → spanMr (just (Lam posinfo-gen Erased posinfo-gen x NoClass a))) abstract-varargs (TypeVararg x vs) t = (abstract-varargs vs t) on-fail (spanMr nothing) ≫=spanm' (λ a → get-ctxt (λ Γ → helper (ctxt-lookup-type-var Γ x) a)) where helper : maybe kind → term → spanM (maybe term) helper nothing t = spanMr nothing helper (just k) t = spanMr (just (Lam posinfo-gen Erased posinfo-gen x (SomeClass (Tkk k)) t)) check-cases : dataConsts → cases → params → type → posinfo → posinfo → spanM ⊤ check-cases DataNull NoCase _ _ _ _ = spanMok check-cases (DataCons (DataConst _ c t) cts) (SomeCase pi c' varsargs t' cs) ps ty pic pic' = spanM-add (mk-span "Mu case" pi (term-end-pos t') [] nothing) ≫span check-cases cts cs ps ty pic pic' check-cases _ _ _ _ pic pic' = spanM-add (mk-span "Mu Cases error" pic pic' [] (just "Number of cases and constructors do not match")) {- Cedilleum specification, section 4.5 -} well-formed-patterns : defDatatype → term → type → cases → posinfo → posinfo → spanM ⊤ well-formed-patterns dd@(Datatype pi pix x ps k cons pf) t P cases pic pic' = (check-type P nothing) on-fail (spanM-add (mk-span "Wrong motive" (type-start-pos P) (type-end-pos P) [] (just "Motive does not typecheck"))) ≫=spanm' (λ kmtv → get-ctxt (λ Γ → valid-elim-kind (lam-expand-type ps (qualif-type Γ (TpVar pix x))) k kmtv (type-start-pos P) (type-end-pos P) ≫span check-cases cons cases ps P pic pic')) -- check-term -- ================================================== module check-term-errors {A : Set} where inapplicable-tp : (t : term) (tp : type) (htp : type) (mtp : maybe type) → spanM $ check-ret mtp inapplicable-tp t tp htp m = get-ctxt λ Γ → spanM-add (AppTp-span t tp (maybe-to-checking m) ([ head-type Γ htp ]) (just "The type of the head does not allow it to be applied to a type argument")) ≫span (spanMr $ ret m) where ret : (m : maybe type) → check-ret m ret (just x₁) = triv ret nothing = nothing check-term = check-termi -- Used to call hnf on expected/synthesized type check-type subject nothing = check-typei subject nothing check-type subject (just k) = get-ctxt (λ Γ → check-typei subject (just (hnf Γ (unfolding-elab unfold-head) k tt))) check-termi (Parens pi t pi') tp = spanM-add (punctuation-span "Parens" pi pi') ≫span check-termi t tp check-termi (Var pi x) mtp = get-ctxt (cont mtp) where cont : (mtp : maybe type) → ctxt → spanM (check-ret mtp) cont mtp Γ with ctxt-lookup-term-var Γ x cont mtp Γ | nothing = spanM-add (Var-span Γ pi x (maybe-to-checking mtp) (expected-type-if Γ mtp ++ [ missing-type ]) (just "Missing a type for a term variable.")) ≫span return-when mtp mtp cont nothing Γ | just tp = spanM-add (Var-span Γ pi x synthesizing [ type-data Γ tp ] nothing) ≫span spanMr (just tp) cont (just tp) Γ | just tp' = spanM-add (uncurry (Var-span Γ pi x checking) (check-for-type-mismatch Γ "synthesized" tp tp')) check-termi t'@(AppTp t tp') mtp = get-ctxt λ Γ → check-termi t nothing on-fail spanM-add (AppTp-span t tp' (maybe-to-checking mtp) (expected-type-if Γ mtp) nothing) ≫span return-when mtp mtp ≫=spanm' λ tp → spanMr (either-else' (to-is-tpabs tp) (λ _ → to-is-tpabs (hnf Γ (unfolding-elab unfold-head) tp tt)) inj₂) on-fail (λ _ → check-term-errors.inapplicable-tp {A = check-ret mtp} t tp' tp mtp) ≫=spans' λ ret → let mk-tpabs e? x k body = ret in check-type tp' (just k) ≫span let rtp = subst Γ (qualif-type Γ tp') x body in spanM-add (uncurry (λ tvs → AppTp-span t tp' (maybe-to-checking mtp) (type-data Γ rtp :: tvs)) (check-for-type-mismatch-if Γ "synthesizing" mtp rtp)) ≫span return-when mtp (just rtp) check-termi t''@(App t m t') tp = get-ctxt λ Γ → check-term-spine t'' (proto-maybe tp) tt on-fail check-fail tp ≫=spanm' λ where (mk-spine-data Xs tp' _) → return-when tp (just (meta-vars-subst-type' ff Γ Xs (decortype-to-type tp'))) check-termi (Let pi d t) mtp = -- spanM-add (punctuation-span "Let" pi (posinfo-plus pi 3)) ≫span check-def d ≫=span finish where maybe-subst : defTermOrType → (mtp : maybe type) → check-ret mtp → spanM (check-ret mtp) maybe-subst _ (just T) triv = spanMok maybe-subst _ nothing nothing = spanMr nothing maybe-subst (DefTerm pi x NoType t) nothing (just T) = get-ctxt λ Γ → spanMr (just (subst Γ (qualif-term Γ (Chi posinfo-gen NoType t)) (pi % x) T)) maybe-subst (DefTerm pi x (SomeType T') t) nothing (just T) = get-ctxt λ Γ → spanMr (just (subst Γ (qualif-term Γ (Chi posinfo-gen (SomeType T') t)) (pi % x) T)) maybe-subst (DefType pi x k T') nothing (just T) = get-ctxt λ Γ → spanMr (just (subst Γ (qualif-type Γ T') (pi % x) T)) -- maybe-subst covers the case where the synthesized type of t has the let-bound -- variable in it by substituting the let definition for the let-bound variable -- in the synthesized type. We also need to use Chi to maintain the checking mode -- of the term so that the type still kind-checks, as a synthesizing term let could -- be substituted into a checking position, or vice-versa with a checking term let. finish : (var × restore-def) → spanM (check-ret mtp) finish (x , m) = get-ctxt λ Γ → spanM-add (Let-span Γ (maybe-to-checking mtp) pi d t [] nothing) ≫span check-term t mtp ≫=span λ r → spanM-restore-info x m ≫span maybe-subst d mtp r check-termi (Open pi x t) mtp = get-ctxt (λ Γ → spanMr (ctxt-get-qi Γ x) ≫=span λ where (just (x' , _)) → cont x' mtp nothing → spanM-add (Var-span Γ (posinfo-plus pi 5) x (maybe-to-checking mtp) [] (just (nodef-err x))) ≫span -- (open-span (just (nodef-err x))) ≫span (check-fail mtp)) where span-name = "Open an opaque definition in a sub-term" nodef-err : string → string nodef-err s = "the definition '" ^ s ^ "' is not in scope" category-err : string → string category-err s = "the definition '" ^ s ^ "' is not a type/term definition" open-span : err-m → span open-span err = mk-span span-name pi (term-end-pos t) [] err cont : var → (m : maybe type) → spanM (check-ret m) cont v mtp = spanM-clarify-def v ≫=span λ where (just si) → spanM-add (open-span nothing) ≫span get-ctxt (λ Γ' → spanM-add (Var-span Γ' (posinfo-plus pi 5) x (maybe-to-checking mtp) [] nothing) ≫span check-term t mtp ≫=span λ r → spanM-restore-clarified-def v si ≫span spanMr r) nothing → spanM-add (open-span (just (category-err v))) ≫span (check-fail mtp) check-termi (Lam pi l pi' x (SomeClass atk) t) nothing = spanM-add (punctuation-span "Lambda" pi (posinfo-plus pi 1)) ≫span check-tk atk ≫span add-tk pi' x atk ≫=span λ mi → check-term t nothing ≫=span λ mtp → spanM-restore-info x mi ≫span -- now restore the context cont mtp where cont : maybe type → spanM (maybe type) cont nothing = get-ctxt λ Γ → spanM-add (Lam-span Γ synthesizing pi l x (SomeClass atk) t [] nothing) ≫span spanMr nothing cont (just tp) = get-ctxt λ Γ → let atk' = qualif-tk Γ atk in -- This should indeed "unqualify" occurrences of x in tp for rettp let rettp = abs-tk l x atk' (rename-var Γ (pi' % x) x tp) in let tvs = [ type-data Γ rettp ] in let p = if me-erased l && is-free-in skip-erased x t then just "The bound variable occurs free in the erasure of the body (not allowed)." , [ erasure Γ t ] else nothing , [] in spanM-add (Lam-span Γ synthesizing pi l x (SomeClass atk') t (snd p ++ tvs) (fst p)) ≫span check-termi-return-hnf Γ (Lam pi l pi' x (SomeClass atk) t) rettp check-termi (Lam pi l _ x NoClass t) nothing = get-ctxt λ Γ → spanM-add (punctuation-span "Lambda" pi (posinfo-plus pi 1)) ≫span spanM-add (Lam-span Γ synthesizing pi l x NoClass t [] (just ("We are not checking this abstraction against a type, so a classifier must be" ^ " given for the bound variable " ^ x))) ≫span spanMr nothing check-termi (Lam pi l pi' x oc t) (just tp) = get-ctxt λ Γ → cont (to-abs tp maybe-or to-abs (hnf Γ unfold-head tp tt)) where cont : maybe abs → spanM ⊤ cont (just (mk-abs b x' atk _ tp')) = check-oc oc ≫span spanM-add (punctuation-span "Lambda" pi (posinfo-plus pi 1)) ≫span get-ctxt λ Γ → spanM-add (uncurry (this-span Γ atk oc) (check-erasures Γ l b)) ≫span add-tk' (me-erased l) pi' x (lambda-bound-class-if oc atk) ≫=span λ mi → get-ctxt λ Γ' → check-term t (just (rename-var Γ x' (qualif-var Γ' x) tp')) ≫span spanM-restore-info x mi where this-span : ctxt → tk → optClass → 𝕃 tagged-val → err-m → span this-span Γ _ NoClass tvs = Lam-span Γ checking pi l x oc t tvs this-span Γ atk (SomeClass atk') tvs err = if conv-tk Γ (qualif-tk Γ atk') atk then Lam-span Γ checking pi l x oc t tvs err else let p = lambda-bound-var-conv-error Γ x atk atk' tvs in Lam-span Γ checking pi l x oc t (fst p) (just (snd p)) check-oc : optClass → spanM ⊤ check-oc NoClass = spanMok check-oc (SomeClass atk) = check-tk atk check-erasures : ctxt → maybeErased → maybeErased → 𝕃 tagged-val × err-m check-erasures Γ Erased All = if is-free-in skip-erased x t then type-data Γ tp :: [ erasure Γ t ] , just "The Λ-bound variable occurs free in the erasure of the body." else [ type-data Γ tp ] , nothing check-erasures Γ NotErased Pi = [ type-data Γ tp ] , nothing check-erasures Γ Erased Pi = [ expected-type Γ tp ] , just ("The expected type is a Π-abstraction (indicating explicit input), but" ^ " the term is a Λ-abstraction (implicit input).") check-erasures Γ NotErased All = [ expected-type Γ tp ] , just ("The expected type is a ∀-abstraction (indicating implicit input), but" ^ " the term is a λ-abstraction (explicit input).") cont nothing = get-ctxt λ Γ → spanM-add (punctuation-span "Lambda" pi (posinfo-plus pi 1)) ≫span spanM-add (Lam-span Γ checking pi l x oc t [ expected-type Γ tp ] (just "The expected type is not of the form that can classify a λ-abstraction")) check-termi (Beta pi ot ot') (just tp) = untyped-optTerm-spans ot ≫span untyped-optTerm-spans ot' ≫span get-ctxt λ Γ → spanM-add (uncurry (Beta-span pi (optTerm-end-pos-beta pi ot ot') checking) (case hnf Γ unfold-head tp tt of λ where (TpEq pi' t1 t2 pi'') → if conv-term Γ t1 t2 then [ type-data Γ (TpEq pi' t1 t2 pi'') ] , (optTerm-conv Γ t1 ot) else [ expected-type Γ (TpEq pi' t1 t2 pi'') ] , (just "The two terms in the equation are not β-equal") tp → [ expected-type Γ tp ] , just "The expected type is not an equation.")) where optTerm-conv : ctxt → term → optTerm → err-m optTerm-conv Γ t1 NoTerm = nothing optTerm-conv Γ t1 (SomeTerm t _) = if conv-term Γ (qualif-term Γ t) t1 then nothing else just "The expected type does not match the synthesized type" check-termi (Beta pi (SomeTerm t pi') ot) nothing = get-ctxt λ Γ → untyped-term-spans t ≫span untyped-optTerm-spans ot ≫span let tp = qualif-type Γ (TpEq posinfo-gen t t posinfo-gen) in spanM-add (Beta-span pi (optTerm-end-pos-beta pi (SomeTerm t pi') ot) synthesizing [ type-data Γ tp ] nothing) ≫span spanMr (just tp) check-termi (Beta pi NoTerm ot') nothing = untyped-optTerm-spans ot' ≫span spanM-add (Beta-span pi (optTerm-end-pos-beta pi NoTerm ot') synthesizing [] (just "An expected type is required in order to type a use of plain β.")) ≫span spanMr nothing check-termi (Epsilon pi lr m t) (just tp) = -- (TpEq pi' t1 t2 pi'')) = get-ctxt λ Γ → case hnf Γ unfold-head tp tt of λ where (TpEq pi' t1 t2 pi'') → spanM-add (Epsilon-span pi lr m t checking [ type-data Γ (TpEq pi' t1 t2 pi'') ] nothing) ≫span check-term t (just (check-term-update-eq Γ lr m pi' t1 t2 pi'')) tp → spanM-add (Epsilon-span pi lr m t checking [ expected-type Γ tp ] (just "The expected type is not an equation, when checking an ε-term.")) check-termi (Epsilon pi lr m t) nothing = check-term t nothing ≫=span λ mtp → get-ctxt λ Γ → cont (maybe-hnf Γ mtp) where cont : maybe type → spanM (maybe type) cont nothing = spanM-add (Epsilon-span pi lr m t synthesizing [] (just "There is no expected type, and we could not synthesize a type from the body of the ε-term.")) ≫span spanMr nothing cont (just (TpEq pi' t1 t2 pi'')) = get-ctxt λ Γ → let r = check-term-update-eq Γ lr m pi' t1 t2 pi'' in spanM-add (Epsilon-span pi lr m t synthesizing [ type-data Γ r ] nothing) ≫span spanMr (just r) cont (just tp) = get-ctxt λ Γ → spanM-add (Epsilon-span pi lr m t synthesizing [ to-string-tag "the synthesized type" Γ tp ] (just "There is no expected type, and the type we synthesized for the body of the ε-term is not an equation.")) ≫span spanMr nothing check-termi (Sigma pi t) mt = check-term t nothing ≫=span λ mt' → get-ctxt λ Γ → cont Γ mt (maybe-hnf Γ mt') where cont : ctxt → (outer : maybe type) → maybe type → spanM (check-ret outer) cont Γ mt nothing = spanM-add (Sigma-span pi t (maybe-to-checking mt) [] (just "We could not synthesize a type from the body of the ς-term")) ≫span check-fail mt cont Γ mt (just tp) with mt | hnf Γ unfold-head tp tt ...| nothing | TpEq pi' t1 t2 pi'' = spanM-add (Sigma-span pi t synthesizing [ type-data Γ (TpEq pi' t2 t1 pi'') ] nothing) ≫span spanMr (just (TpEq pi' t2 t1 pi'')) ...| just tp' | TpEq pi' t1 t2 pi'' = spanM-add ∘ (flip uncurry) (check-for-type-mismatch Γ "synthesized" tp' (TpEq pi' t2 t1 pi'')) $ λ tvs err → Sigma-span pi t checking tvs err ...| mt' | tp' = spanM-add (Sigma-span pi t (maybe-to-checking mt') (to-string-tag "the synthesized type" Γ tp' :: expected-type-if Γ mt') (just ("The type we synthesized for the body of the ς-term is not an equation"))) ≫span check-fail mt' check-termi (Phi pi t₁≃t₂ t₁ t₂ pi') (just tp) = get-ctxt λ Γ → check-term t₁≃t₂ (just (qualif-type Γ (TpEq posinfo-gen t₁ t₂ posinfo-gen))) ≫span check-term t₁ (just tp) ≫span untyped-term-spans t₂ ≫span spanM-add (Phi-span pi pi' checking [ type-data Γ tp ] nothing) check-termi (Phi pi t₁≃t₂ t₁ t₂ pi') nothing = get-ctxt λ Γ → check-term t₁≃t₂ (just (qualif-type Γ (TpEq posinfo-gen t₁ t₂ posinfo-gen))) ≫span check-term t₁ nothing ≫=span λ mtp → untyped-term-spans t₂ ≫span spanM-add (Phi-span pi pi' synthesizing (type-data-tvs Γ mtp) nothing) ≫span spanMr mtp where type-data-tvs : ctxt → maybe type → 𝕃 tagged-val type-data-tvs Γ (just tp) = [ type-data Γ tp ] type-data-tvs Γ nothing = [] check-termi (Rho pi op on t (Guide pi' x tp) t') nothing = get-ctxt λ Γ → spanM-add (Var-span (ctxt-var-decl-loc pi' x Γ) pi' x synthesizing [] nothing) ≫span check-term t' nothing ≫=span λ mtp → untyped-optGuide-spans (Guide pi' x tp) ≫span check-term t nothing ≫=span λ mtp' → case maybe-hnf Γ mtp' of λ where (just (TpEq _ t1 t2 _)) → maybe-else (spanM-add (Rho-span pi t t' synthesizing op (inj₂ x) [] nothing) ≫span spanMr nothing) (λ tp' → let Γ' = ctxt-var-decl-loc pi' x Γ tp = qualif-type Γ' tp tp'' = subst Γ t1 x tp qt = qualif-term Γ t -- tp''' = qualif-type Γ (subst-type Γ t2 x tp) tp''' = post-rewrite Γ' x qt t2 (rewrite-at Γ' x qt tt tp' tp) in if conv-type Γ tp'' tp' then (spanM-add (Rho-span pi t t' synthesizing op (inj₂ x) [ type-data Γ tp''' ] nothing) ≫span spanMr (just tp''')) else (spanM-add (Rho-span pi t t' synthesizing op (inj₂ x) (type-data Γ tp' :: [ expected-type-subterm Γ tp'' ]) (just "The expected type of the subterm does not match the synthesized type")) ≫span spanMr nothing)) mtp (just _) → spanM-add (Rho-span pi t t' synthesizing op (inj₂ x) [] (just "We could not synthesize an equation from the first subterm in a ρ-term.")) ≫span spanMr nothing nothing → spanM-add (Rho-span pi t t' synthesizing op (inj₂ x) [] nothing) ≫span check-term t' nothing check-termi (Rho pi op on t (Guide pi' x tp) t') (just tp') = get-ctxt λ Γ → untyped-optGuide-spans (Guide pi' x tp) ≫span check-term t nothing ≫=span λ mtp → case maybe-hnf Γ mtp of λ where (just (TpEq _ t1 t2 _)) → let Γ' = ctxt-var-decl-loc pi' x Γ qt = qualif-term Γ t tp = qualif-type Γ' tp tp'' = subst Γ' t2 x tp -- This is t2 (and t1 below) so that Cedille Core files are correctly checked by regular Cedille -- tp''' = subst-type Γ t1 x (qualif-type Γ tp) tp''' = post-rewrite Γ' x qt t1 (rewrite-at Γ' x qt tt tp' tp) err = if conv-type Γ tp'' tp' then nothing else just "The expected type does not match the specified type" in spanM-add (Rho-span pi t t' checking op (inj₂ x) (type-data Γ tp'' :: [ expected-type Γ tp' ]) err) ≫span spanM-add (Var-span (ctxt-var-decl-loc pi' x Γ) pi' x checking [] nothing) ≫span check-term t' (just tp''') (just _) → spanM-add (Rho-span pi t t' checking op (inj₂ x) [] (just "We could not synthesize an equation from the first subterm in a ρ-term.")) nothing → spanM-add (Rho-span pi t t' checking op (inj₂ x) [] nothing) ≫span check-term t' (just tp) check-termi (Rho pi op on t NoGuide t') (just tp) = get-ctxt λ Γ → check-term t nothing ≫=span λ mtp → cont (maybe-hnf Γ mtp) (hnf Γ unfold-head-no-lift tp tt) where cont : maybe type → type → spanM ⊤ cont nothing tp = get-ctxt λ Γ → spanM-add (Rho-span pi t t' checking op (inj₁ 0) [ expected-type Γ tp ] nothing) ≫span check-term t' (just tp) cont (just (TpEq pi' t1 t2 pi'')) tp = get-ctxt λ Γ → let ns-err = optNums-to-stringset on x = fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt Γ' = ctxt-var-decl x Γ qt = qualif-term Γ t s = rewrite-type tp Γ' (is-rho-plus op) (fst ns-err) qt t1 x 0 T = post-rewrite Γ' x qt t2 (fst s) in -- subst-type Γ' t2 x (fst s) in check-term t' (just T) ≫span spanM-add (Rho-span pi t t' checking op (inj₁ (fst (snd s))) ((to-string-tag "the equation" Γ (TpEq pi' t1 t2 pi'')) :: [ type-data Γ tp ]) (snd ns-err (snd (snd s)))) cont (just tp') tp = get-ctxt λ Γ → spanM-add (Rho-span pi t t' checking op (inj₁ 0) ((to-string-tag "the synthesized type for the first subterm" Γ tp') :: [ expected-type Γ tp ]) (just "We could not synthesize an equation from the first subterm in a ρ-term.")) check-termi (Rho pi op on t NoGuide t') nothing = check-term t nothing ≫=span λ mtp → check-term t' nothing ≫=span λ mtp' → get-ctxt λ Γ → cont (maybe-hnf Γ mtp) (maybe-map (λ mtp' → hnf Γ unfold-head-no-lift mtp' tt) mtp') where cont : maybe type → maybe type → spanM (maybe type) cont (just (TpEq pi' t1 t2 pi'')) (just tp) = get-ctxt λ Γ → let ns-err = optNums-to-stringset on x = fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt qt = qualif-term Γ t Γ' = ctxt-var-decl x Γ s = rewrite-type tp Γ' (is-rho-plus op) (fst ns-err) qt t1 x 0 tp' = post-rewrite Γ' x qt t2 (fst s) in -- subst-type Γ t2 x (fst s) in spanM-add (Rho-span pi t t' synthesizing op (inj₁ (fst (snd s))) [ type-data Γ tp' ] (snd ns-err (snd (snd s)))) ≫span check-termi-return-hnf Γ (Rho pi op on t NoGuide t') tp' cont (just tp') (just _) = get-ctxt λ Γ → spanM-add (Rho-span pi t t' synthesizing op (inj₁ 0) [ to-string-tag "the synthesized type for the first subterm" Γ tp' ] (just "We could not synthesize an equation from the first subterm in a ρ-term.")) ≫span spanMr nothing cont _ _ = spanM-add (Rho-span pi t t' synthesizing op (inj₁ 0) [] nothing) ≫span spanMr nothing check-termi (Chi pi (SomeType tp) t) mtp = check-type tp (just star) ≫span get-ctxt λ Γ → let tp' = qualif-type Γ tp in check-termi t (just tp') ≫span cont tp' mtp where cont : type → (m : maybe type) → spanM (check-ret m) cont tp' nothing = get-ctxt λ Γ → spanM-add (Chi-span Γ pi (SomeType tp) t synthesizing [] nothing) ≫span spanMr (just tp') cont tp' (just tp'') = get-ctxt λ Γ → spanM-add (uncurry (Chi-span Γ pi (SomeType tp') t checking) (check-for-type-mismatch Γ "asserted" tp'' tp')) check-termi (Chi pi NoType t) (just tp) = check-term t nothing ≫=span cont where cont : (m : maybe type) → spanM ⊤ cont nothing = get-ctxt (λ Γ → spanM-add (Chi-span Γ pi NoType t checking [] nothing) ≫span spanMok) cont (just tp') = get-ctxt λ Γ → spanM-add (uncurry (Chi-span Γ pi NoType t checking) (check-for-type-mismatch Γ "synthesized" tp tp')) check-termi (Chi pi NoType t) nothing = get-ctxt λ Γ → spanM-add (Chi-span Γ pi NoType t synthesizing [] nothing) ≫span check-term t nothing check-termi (Delta pi mT t) mtp = check-term t nothing ≫=span λ T → get-ctxt λ Γ → spanM-add (Delta-span Γ pi mT t (maybe-to-checking mtp) [] (maybe-hnf Γ T ≫=maybe check-contra Γ)) ≫span (case mT of λ where NoType → spanMr compileFailType (SomeType T) → check-type T (just (Star posinfo-gen)) ≫span spanMr T) ≫=span λ T → return-when mtp (just (qualif-type Γ T)) where check-contra : ctxt → type → err-m check-contra Γ (TpEq _ t1 t2 _) = if check-beta-inequiv (hnf Γ unfold-head t1 tt) (hnf Γ unfold-head t2 tt) then nothing else just "We could not find a contradiction in the synthesized type of the subterm." check-contra _ _ = just "We could not synthesize an equation from the subterm." check-termi (Theta pi u t ls) nothing = get-ctxt λ Γ → spanM-add (Theta-span Γ pi u t ls synthesizing [] (just "Theta-terms can only be used in checking positions (and this is a synthesizing one).")) ≫span spanMr nothing check-termi (Theta pi AbstractEq t ls) (just tp) = -- discard spans from checking t, because we will check it again below check-term t nothing ≫=spand λ mtp → get-ctxt λ Γ → cont (maybe-hnf Γ mtp) (hnf Γ unfold-head tp tt) where cont : maybe type → type → spanM ⊤ cont nothing tp = check-term t nothing ≫=span λ m → get-ctxt λ Γ → spanM-add (Theta-span Γ pi AbstractEq t ls checking [ expected-type Γ tp ] (just "We could not compute a motive from the given term")) -- (expected-type Γ tp :: [ motive-label , [[ "We could not compute a motive from the given term" ]] , [] ])))) cont (just htp) tp = get-ctxt λ Γ → let x = (fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt) in let motive = mtplam x (Tkt htp) (TpArrow (TpEq posinfo-gen t (mvar x) posinfo-gen) Erased tp) in spanM-add (Theta-span Γ pi AbstractEq t ls checking (expected-type Γ tp :: [ the-motive Γ motive ]) nothing) ≫span check-term (lterms-to-term AbstractEq (AppTp t (NoSpans motive (posinfo-plus (term-end-pos t) 1))) ls) (just tp) check-termi (Theta pi Abstract t ls) (just tp) = -- discard spans from checking the head, because we will check it again below check-term t nothing ≫=spand λ mtp → get-ctxt λ Γ → cont t (maybe-hnf Γ mtp) (hnf Γ unfold-head tp tt) where cont : term → maybe type → type → spanM ⊤ cont _ nothing tp = check-term t nothing ≫=span λ m → get-ctxt λ Γ → spanM-add (Theta-span Γ pi Abstract t ls checking [ expected-type Γ tp ] (just "We could not compute a motive from the given term")) -- (expected-type Γ tp :: [ motive-label , [[ "We could not compute a motive from the given term" ]] , [] ])))) cont t (just htp) tp = get-ctxt λ Γ → let x = compute-var (hnf Γ unfold-head (qualif-term Γ t) tt) x' = maybe-else (unqual-local x) id (var-suffix x) in let motive = mtplam x' (Tkt htp) (rename-var Γ x x' tp) in spanM-add (Theta-span Γ pi Abstract t ls checking (expected-type Γ tp :: [ the-motive Γ motive ]) nothing) ≫span check-term (lterms-to-term Abstract (AppTp t (NoSpans motive (term-end-pos t))) ls) (just tp) where compute-var : term → var compute-var (Var pi' x) = x compute-var t = ignored-var check-termi (Theta pi (AbstractVars vs) t ls) (just tp) = get-ctxt λ Γ → let tp = hnf Γ unfold-head tp tt in cont (wrap-vars Γ vs tp {-(substs-type empty-ctxt (rep-vars Γ vs empty-trie) tp)-}) tp where wrap-var : ctxt → var → type → maybe type wrap-var Γ v tp = ctxt-lookup-tk-var Γ v ≫=maybe λ atk → just (mtplam v atk (rename-var Γ (qualif-var Γ v) v tp)) wrap-vars : ctxt → vars → type → maybe type wrap-vars Γ (VarsStart v) tp = wrap-var Γ v tp wrap-vars Γ (VarsNext v vs) tp = wrap-vars Γ vs tp ≫=maybe wrap-var Γ v cont : maybe type → type → spanM ⊤ cont nothing tp = check-term t nothing ≫=span λ m → get-ctxt λ Γ → spanM-add (Theta-span Γ pi (AbstractVars vs) t ls checking [ expected-type Γ tp ] (just ("We could not compute a motive from the given term" ^ " because one of the abstracted vars is not in scope."))) cont (just motive) tp = get-ctxt λ Γ → spanM-add (Theta-span Γ pi (AbstractVars vs) t ls checking (expected-type Γ tp :: [ the-motive Γ motive ]) nothing) ≫span check-term (lterms-to-term Abstract (AppTp t (NoSpans motive (posinfo-plus (term-end-pos t) 1))) ls) (just tp) {-rep-var : ctxt → var → trie term → trie term rep-var Γ v ρ with trie-lookup (ctxt-get-qualif Γ) v ...| nothing = ρ ...| just (v' , _) = trie-insert ρ v' (Var posinfo-gen v) rep-vars : ctxt → vars → trie term → trie term rep-vars Γ (VarsStart v) = rep-var Γ v rep-vars Γ (VarsNext v vs) ρ = rep-vars Γ vs (rep-var Γ v ρ)-} check-termi (Hole pi) tp = get-ctxt λ Γ → spanM-add (hole-span Γ pi tp []) ≫span return-when tp tp check-termi (IotaPair pi t1 t2 og pi') (just tp) = -- (Iota pi1 pi2 x tp1 tp2)) = get-ctxt λ Γ → case hnf Γ unfold-head tp tt of λ where (Iota pi1 pi2 x tp1 tp2) → check-term t1 (just tp1) ≫span let t1' = qualif-term Γ t1 t2' = qualif-term Γ t2 in check-term t2 (just (subst Γ t1' x tp2)) ≫span optGuide-spans og checking ≫span check-optGuide og tp1 tp2 pi2 x ≫=span λ e → let cc = check-conv Γ t1' t2' e in spanM-add (IotaPair-span pi pi' checking (expected-type Γ (Iota pi1 pi2 x tp1 tp2) :: snd cc) (fst cc)) tp → spanM-add (IotaPair-span pi pi' checking [ expected-type Γ tp ] (just "The type we are checking against is not a iota-type")) where ntag : ctxt → string → string → term → unfolding → tagged-val ntag Γ nkind which t u = to-string-tag (nkind ^ " of the " ^ which ^ " component: ") Γ (hnf Γ u t tt) err : ctxt → string → term → tagged-val err Γ which t = ntag Γ "Hnf" which t unfold-head check-conv : ctxt → term → term → err-m → err-m × 𝕃 tagged-val check-conv Γ t1 t2 e = if conv-term Γ t1 t2 then e , [] else just "The two components of the iota-pair are not convertible (as required)." , err Γ "first" t1 :: [ err Γ "second" t2 ] check-optGuide : optGuide → type → type → posinfo → var → spanM err-m check-optGuide NoGuide tp1 tp2 pi2 x = spanMr nothing check-optGuide (Guide pi x' tp) tp1 tp2 pi2 x = get-ctxt λ Γ → with-ctxt (ctxt-term-decl pi x' tp1 Γ) (check-type tp (just (Star posinfo-gen))) ≫span spanMr (if conv-type Γ tp2 (qualif-type (ctxt-var-decl x Γ) (subst Γ (Var pi2 x) x' tp)) then nothing else just "The expected type does not match the guided type") check-termi (IotaPair pi t1 t2 (Guide pi' x T2) pi'') nothing = get-ctxt λ Γ → check-term t1 nothing ≫=span λ T1 → check-term t2 (just (qualif-type Γ (subst Γ (qualif-term Γ t1) x T2))) ≫span maybe-else spanMok (λ T1 → with-ctxt (ctxt-term-decl pi' x T1 Γ) (check-type T2 (just (Star posinfo-gen)))) T1 ≫span let T2' = qualif-type (ctxt-var-decl x Γ) T2 in spanM-add (IotaPair-span pi pi'' synthesizing (maybe-else [] (λ T1 → [ type-data Γ (Iota posinfo-gen posinfo-gen x T1 T2') ]) T1) nothing) ≫span spanM-add (Var-span (ctxt-var-decl-loc pi' x Γ) pi' x synthesizing [] nothing) ≫span spanMr (T1 ≫=maybe λ T1 → just (Iota posinfo-gen posinfo-gen x T1 T2')) where err : ctxt → err-m × 𝕃 tagged-val err Γ = if conv-term Γ t1 t2 then nothing , [] else just "The two components of the iota-pair are not convertible (as required)." , to-string-tag "Hnf of the first component" Γ (hnf Γ unfold-head t1 tt) :: [ to-string-tag "Hnf of the second component" Γ (hnf Γ unfold-head t2 tt) ] check-termi (IotaPair pi t1 t2 NoGuide pi') nothing = spanM-add (IotaPair-span pi pi' synthesizing [] (just "Iota pairs require a specified type when in a synthesizing position")) ≫span spanMr nothing check-termi (IotaProj t n pi) mtp = check-term t nothing ≫=span λ mtp' → get-ctxt λ Γ → cont' mtp (posinfo-to-ℕ n) (maybe-hnf Γ mtp') where cont : (outer : maybe type) → ℕ → (computed : type) → spanM (check-ret outer) cont mtp n computed with computed cont mtp 1 computed | Iota pi' pi'' x t1 t2 = get-ctxt λ Γ → spanM-add (uncurry (λ tvs → IotaProj-span t pi (maybe-to-checking mtp) (head-type Γ computed :: tvs)) (check-for-type-mismatch-if Γ "synthesized" mtp t1)) ≫span return-when mtp (just t1) cont mtp 2 computed | Iota pi' pi'' x a t2 = get-ctxt λ Γ → let t2' = subst Γ (qualif-term Γ t) x t2 in spanM-add (uncurry (λ tvs → IotaProj-span t pi (maybe-to-checking mtp) (head-type Γ computed :: tvs)) (check-for-type-mismatch-if Γ "synthesized" mtp t2')) ≫span return-when mtp (just t2') cont mtp n computed | Iota pi' pi'' x t1 t2 = get-ctxt λ Γ → spanM-add (IotaProj-span t pi (maybe-to-checking mtp) [ head-type Γ computed ] (just "Iota-projections must use .1 or .2 only.")) ≫span return-when mtp mtp cont mtp n computed | _ = get-ctxt λ Γ → spanM-add (IotaProj-span t pi (maybe-to-checking mtp) [ head-type Γ computed ] (just "The head type is not a iota-abstraction.")) ≫span return-when mtp mtp cont' : (outer : maybe type) → ℕ → (computed : maybe type) → spanM (check-ret outer) cont' mtp _ nothing = spanM-add (IotaProj-span t pi (maybe-to-checking mtp) [] nothing) ≫span return-when mtp mtp cont' mtp n (just tp) = get-ctxt λ Γ → cont mtp n (hnf Γ unfold-head tp tt) -- we are looking for iotas in the bodies of rec defs check-termi mu@(Mu' pi t (SomeType P) pi' cs pi'') nothing = check-term t nothing on-fail (spanMr nothing) ≫=spanm' (λ I → spanM-add (Mu'-span mu [] nothing) ≫span spanMr (just I) ) check-termi mu@(Mu' pi t (SomeType P) pi' cs pi'') (just tp) = check-term t nothing on-fail spanMok ≫=spanm' (λ I → -- TODO: remove T parameters and s indices from expression I T s get-ctxt (helper I)) where helper : type → ctxt → spanM ⊤ helper (TpVar _ x) (mk-ctxt _ _ _ _ d) with trie-lookup d x ... | just dt = well-formed-patterns dt t P cs pi' pi'' ... | nothing = spanMok helper _ Γ = spanMok check-termi (Mu' pi t NoType _ cs pi') (just tp) = spanMok check-termi (Mu' pi t NoType _ cs pi') nothing = spanMr nothing check-termi (Mu pi x t (SomeType m) _ cs pi') (just tp) = spanMok check-termi (Mu pi x t (SomeType m) _ cs pi') nothing = spanMr nothing check-termi (Mu pi x t NoType _ cs pi') nothing = spanMr nothing check-termi (Mu pi x t NoType _ cs pi') (just tp) = spanMok {-check-termi t tp = get-ctxt (λ Γ → spanM-add (unimplemented-term-span Γ (term-start-pos t) (term-end-pos t) tp) ≫span unimplemented-if tp)-} -- END check-term -- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -- check-term-spine -- ================================================== -- check-term-spine is where metavariables are generated and solved, so it -- requires its set of helpers check-term-spine-return : ctxt → meta-vars → decortype → ℕ → spanM (maybe spine-data) check-term-spine-return Γ Xs dt locl = spanMr (just (mk-spine-data Xs dt locl)) -- a flag indicating how aggresively we should be unfolding during matching. -- "both" is the backtracking flag. We will attempt "both" matches, which means -- first matching without unfolding, then if that fails unfolding the type once -- and continue matching the subexpresions with "both" data match-unfolding-state : Set where match-unfolding-both match-unfolding-approx match-unfolding-hnf : match-unfolding-state -- main matching definitions -- -------------------------------------------------- -- NOTE: these functions don't actually ever emit spans match-types : meta-vars → local-vars → match-unfolding-state → (tpₓ tp : type) → spanM $ match-error-t meta-vars match-kinds : meta-vars → local-vars → match-unfolding-state → (kₓ k : kind) → spanM $ match-error-t meta-vars match-tks : meta-vars → local-vars → match-unfolding-state → (tkₓ tk : tk) → spanM $ match-error-t meta-vars record match-prototype-data : Set where constructor mk-match-prototype-data field match-proto-mvars : meta-vars match-proto-dectp : decortype match-proto-error : 𝔹 open match-prototype-data match-prototype : (Xs : meta-vars) (is-hnf : 𝔹) (tp : type) (pt : prototype) → spanM $ match-prototype-data -- substitutions used during matching -- -------------------------------------------------- -- These have to be in the spanM monad because substitution can unlock a `stuck` -- decoration, causing another round of prototype matching (which invokes type matching) substh-decortype : {ed : exprd} → ctxt → renamectxt → trie ⟦ ed ⟧ → decortype → spanM $ decortype substh-decortype Γ ρ σ (decor-type tp) = spanMr $ decor-type (substh-type Γ ρ σ tp) substh-decortype Γ ρ σ (decor-arrow e? dom cod) = substh-decortype Γ ρ σ cod ≫=span λ cod → spanMr $ decor-arrow e? (substh-type Γ ρ σ dom) cod -- spanMr $ decor-arrow e? (substh-type Γ ρ σ dom) (substh-decortype Γ ρ σ cod) substh-decortype Γ ρ σ (decor-decor e? pi x sol dt) = let x' = subst-rename-var-if Γ ρ x σ Γ' = ctxt-var-decl-loc pi x' Γ ρ' = renamectxt-insert ρ x x' in substh-decortype Γ' ρ' σ dt ≫=span λ dt' → spanMr $ decor-decor e? pi x' (substh-meta-var-sort Γ ρ σ sol) dt' -- decor-decor e? x' (substh-meta-var-sol Γ' ρ' σ sol) (substh-decortype Γ' ρ' σ dt) substh-decortype Γ ρ σ (decor-stuck tp pt) = match-prototype meta-vars-empty ff (substh-type Γ ρ σ tp) pt -- NOTE: its an invariant that if you start with no meta-variables, prototype matching -- produces no meta-variables as output ≫=span λ ret → spanMr (match-proto-dectp ret) substh-decortype Γ ρ σ (decor-error tp pt) = spanMr $ decor-error (substh-type Γ ρ σ tp) pt subst-decortype : {ed : exprd} → ctxt → ⟦ ed ⟧ → var → decortype → spanM $ decortype subst-decortype Γ s x dt = substh-decortype Γ empty-renamectxt (trie-single x s) dt meta-vars-subst-decortype' : (unfold : 𝔹) → ctxt → meta-vars → decortype → spanM decortype meta-vars-subst-decortype' uf Γ Xs dt = substh-decortype Γ empty-renamectxt (meta-vars-get-sub Xs) dt ≫=span λ dt' → spanMr $ if uf then hnf-decortype Γ (unfolding-elab unfold-head) dt' tt else dt' meta-vars-subst-decortype : ctxt → meta-vars → decortype → spanM decortype meta-vars-subst-decortype = meta-vars-subst-decortype' tt -- unfolding a decorated type to reveal a term / type abstraction -- -------------------------------------------------- {-# TERMINATING #-} meta-vars-peel' : ctxt → span-location → meta-vars → decortype → spanM $ (𝕃 meta-var) × decortype meta-vars-peel' Γ sl Xs (decor-decor e? pi x (meta-var-tp k mtp) dt) = let Y = meta-var-fresh-tp Xs x sl (k , mtp) Xs' = meta-vars-add Xs Y in subst-decortype Γ (meta-var-to-type-unsafe Y) x dt ≫=span λ dt' → meta-vars-peel' Γ sl Xs' dt' ≫=span λ ret → let Ys = fst ret ; rdt = snd ret in spanMr $ Y :: Ys , rdt meta-vars-peel' Γ sl Xs dt@(decor-decor e? pi x (meta-var-tm _ _) _) = spanMr $ [] , dt meta-vars-peel' Γ sl Xs dt@(decor-arrow _ _ _) = spanMr $ [] , dt -- NOTE: vv The clause below will later generate a type error vv meta-vars-peel' Γ sl Xs dt@(decor-stuck _ _) = spanMr $ [] , dt -- NOTE: vv The clause below is an internal error, if reached vv meta-vars-peel' Γ sl Xs dt@(decor-type _) = spanMr $ [] , dt meta-vars-peel' Γ sl Xs dt@(decor-error _ _) = spanMr $ [] , dt meta-vars-unfold-tmapp' : ctxt → span-location → meta-vars → decortype → spanM $ (𝕃 meta-var × is-tmabsd?) meta-vars-unfold-tmapp' Γ sl Xs dt = meta-vars-subst-decortype Γ Xs dt ≫=span λ dt' → meta-vars-peel' Γ sl Xs dt' ≫=span λ where (Ys , dt'@(decor-arrow e? dom cod)) → spanMr $ Ys , yes-tmabsd dt' e? "_" dom ff cod (Ys , dt'@(decor-decor e? pi x (meta-var-tm dom _) cod)) → spanMr $ Ys , yes-tmabsd dt' e? x dom (is-free-in check-erased x (decortype-to-type cod)) cod (Ys , dt@(decor-decor _ _ _ (meta-var-tp _ _) _)) → spanMr $ Ys , not-tmabsd dt -- NOTE: vv this is a type error vv (Ys , dt@(decor-stuck _ _)) → spanMr $ Ys , not-tmabsd dt -- NOTE: vv this is an internal error, if reached vv (Ys , dt@(decor-type _)) → spanMr $ Ys , not-tmabsd dt (Ys , dt@(decor-error _ _)) → spanMr $ Ys , not-tmabsd dt meta-vars-unfold-tpapp' : ctxt → meta-vars → decortype → spanM is-tpabsd? meta-vars-unfold-tpapp' Γ Xs dt = meta-vars-subst-decortype Γ Xs dt ≫=span λ where (dt″@(decor-decor e? pi x (meta-var-tp k mtp) dt')) → spanMr $ yes-tpabsd dt″ e? x k (flip maybe-map mtp meta-var-sol.sol) dt' (dt″@(decor-decor _ _ _ (meta-var-tm _ _) _)) → spanMr $ not-tpabsd dt″ (dt″@(decor-arrow _ _ _)) → spanMr $ not-tpabsd dt″ (dt″@(decor-stuck _ _)) → spanMr $ not-tpabsd dt″ (dt″@(decor-type _)) → spanMr $ not-tpabsd dt″ (dt″@(decor-error _ _)) → spanMr $ not-tpabsd dt″ -- errors -- -------------------------------------------------- -- general type errors for applications module check-term-app-tm-errors {A : Set} (t₁ t₂ : term) (htp : type) (Xs : meta-vars) (is-locale : 𝔹) (m : checking-mode) where inapplicable : maybeErased → decortype → prototype → spanM (maybe A) inapplicable e? dt pt = get-ctxt λ Γ → spanM-add (App-span is-locale t₁ t₂ m (head-type Γ (meta-vars-subst-type Γ Xs htp) -- :: decortype-data Γ dt -- :: prototype-data Γ pt :: meta-vars-data-all Γ Xs) (just $ "The type of the head does not allow the head to be applied to " ^ h e? ^ " argument")) ≫span spanMr nothing where h : maybeErased → string h Erased = "an erased term" h NotErased = "a term" bad-erasure : maybeErased → spanM (maybe A) bad-erasure e? = get-ctxt λ Γ → spanM-add (App-span is-locale t₁ t₂ m (head-type Γ (meta-vars-subst-type Γ Xs htp) :: meta-vars-data-all Γ Xs) (just (msg e?))) ≫span spanMr nothing where msg : maybeErased → string msg Erased = "The type computed for the head requires an explicit (non-erased) argument," ^ " but the application is marked as erased" msg NotErased = "The type computed for the head requires an implicit (erased) argument," ^ " but the application is marked as not erased" unmatchable : (tpₓ tp : type) (msg : string) → 𝕃 tagged-val → spanM (maybe A) unmatchable tpₓ tp msg tvs = get-ctxt λ Γ → spanM-add (App-span is-locale t₁ t₂ m (arg-exp-type Γ tpₓ :: arg-type Γ tp :: tvs ++ meta-vars-data-all Γ Xs) (just msg)) ≫span spanMr nothing unsolved-meta-vars : type → 𝕃 tagged-val → spanM (maybe A) unsolved-meta-vars tp tvs = get-ctxt λ Γ → spanM-add (App-span tt t₁ t₂ m (type-data Γ tp :: meta-vars-data-all Γ Xs ++ tvs) (just "There are unsolved meta-variables in this maximal application")) ≫span spanMr nothing module check-term-app-tp-errors {A : Set} (t : term) (tp htp : type) (Xs : meta-vars) (m : checking-mode) where inapplicable : decortype → spanM (maybe A) inapplicable dt = get-ctxt λ Γ → spanM-add (AppTp-span t tp synthesizing (head-type Γ (meta-vars-subst-type Γ Xs htp) -- :: decortype-data Γ dt :: meta-vars-data-all Γ Xs) (just "The type of the head does not allow the head to be applied to a type argument")) ≫span spanMr nothing ctai-disagree : (ctai-sol : type) → spanM $ maybe A ctai-disagree ctai-sol = get-ctxt λ Γ → spanM-add (AppTp-span t tp m (head-type Γ (meta-vars-subst-type Γ Xs htp) :: contextual-type-argument Γ ctai-sol :: meta-vars-data-all Γ Xs) (just "The given and contextually inferred type argument differ")) ≫span spanMr nothing -- meta-variable locality -- -------------------------------------------------- -- for debugging -- prepend to the tvs returned by check-spine-locality if you're having trouble private locale-tag : ℕ → tagged-val locale-tag n = "locale n" , [[ ℕ-to-string n ]] , [] private is-locale : (max : 𝔹) → (locl : maybe ℕ) → 𝔹 is-locale max locl = max || maybe-else' locl ff iszero check-spine-locality : ctxt → meta-vars → type → (max : 𝔹) → (locl : ℕ) → spanM (maybe (meta-vars × ℕ × 𝔹)) check-spine-locality Γ Xs tp max locl = let new-locl = if iszero locl then num-arrows-in-type Γ tp else locl new-Xs = if iszero locl then meta-vars-empty else Xs left-locl = is-locale max (just locl) in if left-locl && (~ meta-vars-solved? Xs) then spanMr nothing else spanMr (just (new-Xs , new-locl , left-locl)) -- main definition -------------------------------------------------- data check-term-app-ret : Set where check-term-app-return : (Xs : meta-vars) (cod : decortype) (arg-mode : checking-mode) → (tvs : 𝕃 tagged-val) → check-term-app-ret check-term-app : (Xs : meta-vars) (Ys : 𝕃 meta-var) → (t₁ t₂ : term) → is-tmabsd → 𝔹 → spanM (maybe check-term-app-ret) check-term-spine t'@(App t₁ e? t₂) pt max = -- 1) type the applicand, extending the prototype let pt' = proto-arrow e? pt in check-term-spine t₁ pt' ff on-fail handleApplicandTypeError -- 2) make sure the applicand type reveals an arrow (term abstraction) ≫=spanm' λ ret → let (mk-spine-data Xs dt locl) = ret in -- the meta-vars need to know the span they were introduced in get-ctxt λ Γ → let sloc = span-loc $ ctxt-get-current-filename Γ in -- see if the decorated type of the head `dt` reveals an arrow meta-vars-unfold-tmapp' Γ sloc Xs dt ≫=span λ ret → let Ys = fst ret ; tm-arrow? = snd ret in spanMr tm-arrow? on-fail (λ _ → genInapplicableError Xs dt pt' locl) -- if so, get the (plain, undecorated) type of the head `htp` ≫=spans' λ arr → let htp = decortype-to-type ∘ is-tmabsd-dt $ arr in -- 3) make sure erasures of the applicand type + syntax of application match checkErasuresMatch e? (is-tmabsd-e? arr) htp Xs locl -- 4) type the application, filling in missing type arguments with meta-variables ≫=spanm' λ _ → check-term-app Xs Ys t₁ t₂ arr (islocl locl) -- 5) check no unsolved mvars, if the application is maximal (or a locality) ≫=spanm' λ {(check-term-app-return Xs' rtp' arg-mode tvs) → let rtp = decortype-to-type rtp' in checkLocality Γ Xs' htp rtp max (pred locl) tvs ≫=spanm' uncurry₂ λ Xs'' locl' is-loc → -- 6) generate span and finish genAppSpan Γ Xs Xs' Ys pt rtp is-loc tvs ≫span check-term-spine-return Γ Xs'' rtp' locl' } where mode = prototype-to-checking pt span-loc : (fn : string) → span-location span-loc fn = fn , term-start-pos t₁ , term-end-pos t₂ islocl : ℕ → 𝔹 islocl locl = is-locale max (just $ pred locl) handleApplicandTypeError : spanM ∘ maybe $ _ handleApplicandTypeError = spanM-add (App-span max t₁ t₂ mode [] nothing) ≫span check-term t₂ nothing ≫=span (const $ spanMr nothing) genInapplicableError : meta-vars → decortype → prototype → (locl : ℕ) → spanM (maybe _) genInapplicableError Xs dt pt locl = check-term-app-tm-errors.inapplicable t₁ t₂ (decortype-to-type dt) Xs (islocl locl) mode e? dt (proto-arrow e? pt) checkErasuresMatch : (e?₁ e?₂ : maybeErased) → type → meta-vars → (locl : ℕ) → spanM ∘ maybe $ ⊤ checkErasuresMatch e?₁ e?₂ htp Xs locl = if ~ eq-maybeErased e?₁ e?₂ then check-term-app-tm-errors.bad-erasure t₁ t₂ htp Xs (islocl locl) mode e?₁ else (spanMr ∘ just $ triv) checkLocality : ctxt → meta-vars → (htp rtp : type) → (max : 𝔹) (locl : ℕ) → 𝕃 tagged-val → spanM ∘ maybe $ _ checkLocality Γ Xs htp rtp max locl tvs = check-spine-locality Γ Xs rtp max locl on-fail check-term-app-tm-errors.unsolved-meta-vars t₁ t₂ htp Xs (islocl locl) mode rtp tvs ≫=spanm' (spanMr ∘ just) genAppSpan : ctxt → (Xs Xs' : meta-vars) → (Ys : 𝕃 meta-var) → prototype → type → (is-locl : 𝔹) → 𝕃 tagged-val → spanM ⊤ genAppSpan Γ Xs Xs' Ys pt rtp is-loc tvs = spanM-add $ (flip uncurry) (meta-vars-check-type-mismatch-if (prototype-to-maybe pt) Γ "synthesized" meta-vars-empty rtp) λ tvs' → App-span is-loc t₁ t₂ mode (tvs' ++ meta-vars-intro-data Γ (meta-vars-from-list Ys) ++ meta-vars-sol-data Γ Xs Xs' ++ tvs) check-term-spine t'@(AppTp t tp) pt max = get-ctxt λ Γ → -- 1) type the applicand check-term-spine t pt max on-fail handleApplicandTypeError ≫=spanm' λ ret → let (mk-spine-data Xs dt locl) = ret ; htp = decortype-to-type dt in -- 2) make sure it reveals a type abstraction meta-vars-unfold-tpapp' Γ Xs dt on-fail (λ _ → genInapplicableError Xs htp dt) -- 3) ensure the type argument has the expected kind, -- but don't compare with the contextually infered type argument (for now) ≫=spans' λ ret → let mk-tpabsd dt e? x k sol rdt = ret in check-type tp (just (meta-vars-subst-kind Γ Xs k)) -- 4) produce the result type of the application ≫span subst-decortype-if Γ Xs x k sol rdt ≫=span λ ret → let Xs = fst ret ; rdt = snd ret ; rtp = decortype-to-type rdt in -- 5) generate span data and finish genAppTpSpan Γ Xs pt rtp ≫span check-term-spine-return Γ Xs rdt locl where mode = prototype-to-checking pt span-loc : ctxt → span-location span-loc Γ = (ctxt-get-current-filename Γ) , term-start-pos t , type-end-pos tp handleApplicandTypeError : spanM ∘ maybe $ spine-data handleApplicandTypeError = spanM-add (AppTp-span t tp synthesizing [] nothing) ≫span check-type tp nothing ≫=span (const $ spanMr nothing) genInapplicableError : meta-vars → type → decortype → spanM ∘ maybe $ spine-data genInapplicableError Xs htp dt = check-term-app-tp-errors.inapplicable t tp htp Xs mode dt subst-decortype-if : ctxt → meta-vars → var → kind → maybe type → decortype → spanM (meta-vars × decortype) subst-decortype-if Γ Xs x k sol rdt = if ~ is-hole tp then subst-decortype Γ (qualif-type Γ tp) x rdt ≫=span (λ res → spanMr (Xs , res)) else let sol = maybe-map (λ t → mk-meta-var-sol t checking) sol Y = meta-var-fresh-tp Xs x (span-loc Γ) (k , sol) Xs' = meta-vars-add Xs Y in subst-decortype Γ (meta-var-to-type-unsafe Y) x rdt ≫=span λ rdt' → spanMr (Xs' , rdt') genAppTpSpan : ctxt → meta-vars → prototype → (ret-tp : type) → spanM ⊤ genAppTpSpan Γ Xs pt ret-tp = spanM-add ∘ (flip uncurry) -- check for a type mismatch, if there even is an expected type (meta-vars-check-type-mismatch-if (prototype-to-maybe pt) Γ "synthesizing" Xs ret-tp) $ -- then take the generated 𝕃 tagged-val and add to the span λ tvs → AppTp-span t tp mode $ tvs ++ meta-vars-data-all Γ Xs -- ++ (prototype-data Γ tp :: [ decortype-data Γ dt ]) check-term-spine (Parens _ t _) pt max = check-term-spine t pt max check-term-spine t pt max = check-term t nothing ≫=spanm' λ htp → get-ctxt λ Γ → let locl = num-arrows-in-type Γ htp in match-prototype meta-vars-empty ff htp pt -- NOTE: it is an invariant that the variables solved in the -- solution set of the fst of this are a subset of the variables given -- to match-* -- that is, for (σ , W) = match-prototype ... -- we have dom(σ) = ∅ ≫=span λ ret → let dt = match-proto-dectp ret in check-term-spine-return Γ meta-vars-empty dt locl -- check-term-app -- -------------------------------------------------- -- -- If `dom` has unsolved meta-vars in it, synthesize argument t₂ and try to solve for them. -- Otherwise, check t₂ against a fully known expected type check-term-app Xs Zs t₁ t₂ (mk-tmabsd dt e? x dom occurs cod) is-locl = get-ctxt λ Γ → let Xs' = meta-vars-add* Xs Zs ; tp = decortype-to-type dt in -- 1) calculate return type of function (possible subst) genAppRetType Γ -- 2) either synth or check arg type, depending on available info -- checking "exits early", as well as failure ≫=span λ rdt → checkArgWithMetas Xs' tp rdt exit-early spanMr -- 3) match *synthesized* type with expected (partial) type ≫=spans' λ atp → match-types Xs' empty-trie match-unfolding-both dom atp ≫=span (handleMatchResult Xs' atp tp rdt) where mode = synthesizing genAppRetType : ctxt → spanM decortype genAppRetType Γ = if occurs then subst-decortype Γ (qualif-term Γ t₂) x cod else spanMr cod genAppRetTypeHole : ctxt → spanM decortype genAppRetTypeHole Γ = if occurs then subst-decortype Γ (Hole posinfo-gen) x cod else spanMr cod checkArgWithMetas : meta-vars → type → decortype → spanM $ (maybe check-term-app-ret ∨ type) checkArgWithMetas Xs' tp rdt = get-ctxt λ Γ → -- check arg against fully known type if ~ meta-vars-are-free-in-type Xs' dom then check-term t₂ (just dom) ≫span (spanMr ∘' inj₁ ∘' just $ check-term-app-return Xs' rdt mode []) -- synthesize type for the argument else check-term t₂ nothing -- if that doesn't work, press on -- feeding a hole for the dependency, if needed on-fail (genAppRetTypeHole Γ ≫=span λ rdt-hole → spanMr ∘' inj₁ ∘' just $ check-term-app-return Xs' rdt-hole mode [ arg-exp-type Γ dom ]) ≫=spanm' λ tp → spanMr ∘' inj₂ $ tp handleMatchResult : meta-vars → (atp tp : type) → decortype → match-error-t meta-vars → spanM ∘ maybe $ check-term-app-ret handleMatchResult Xs' atp tp rdt (match-error (msg , tvs)) = check-term-app-tm-errors.unmatchable t₁ t₂ tp Xs' is-locl mode dom atp msg tvs handleMatchResult Xs' atp tp rdt (match-ok Xs) = get-ctxt λ Γ → meta-vars-subst-decortype Γ Xs rdt ≫=span λ rdt → spanMr ∘ just $ check-term-app-return Xs rdt mode [] match-unfolding-next : match-unfolding-state → match-unfolding-state match-unfolding-next match-unfolding-both = match-unfolding-both match-unfolding-next match-unfolding-approx = match-unfolding-approx match-unfolding-next match-unfolding-hnf = match-unfolding-both module m-err = meta-vars-match-errors check-type-for-match : type → spanM $ match-error-t kind check-type-for-match tp = (with-qualified-qualif $ with-clear-error $ get-ctxt λ Γ → check-type tp nothing on-fail spanMr ∘ match-error $ "Could not kind computed arg type" , [] ≫=spanm' λ k → spanMr ∘ match-ok $ k) ≫=spand spanMr where qualified-qualif : ctxt → qualif qualified-qualif (mk-ctxt mod ss is os _) = for trie-strings is accum empty-trie use λ x q → trie-insert q x (x , ArgsNil) -- helper to restore qualif state with-qualified-qualif : ∀ {A} → spanM A → spanM A with-qualified-qualif sm = get-ctxt λ Γ → with-ctxt (ctxt-set-qualif Γ (qualified-qualif Γ)) sm -- helper to restore error state with-clear-error : ∀ {A} → spanM A → spanM A with-clear-error m = get-error λ es → set-error nothing ≫span m ≫=span λ a → set-error es ≫span spanMr a -- match-types -- -------------------------------------------------- match-types-ok : meta-vars → spanM $ match-error-t meta-vars match-types-ok = spanMr ∘ match-ok match-types-error : match-error-data → spanM $ match-error-t meta-vars match-types-error = spanMr ∘ match-error match-types Xs Ls match-unfolding-both tpₓ tp = get-ctxt λ Γ → match-types Xs Ls match-unfolding-approx tpₓ tp ≫=span λ where (match-ok Xs) → match-types-ok Xs (match-error msg) → match-types Xs Ls match-unfolding-hnf (hnf Γ (unfolding-elab unfold-head) tpₓ tt) (hnf Γ (unfolding-elab unfold-head) tp tt) match-types Xs Ls unf tpₓ@(TpVar pi x) tp = -- check that x is a meta-var get-ctxt λ Γ → maybe-else' (meta-vars-lookup-with-kind Xs x) -- if not, make sure the two variables are the same -- TODO: above assumes no term meta-variables (spanMr (err⊎-guard (~ conv-type Γ tpₓ tp) m-err.e-match-failure ≫⊎ match-ok Xs)) -- scope check the solution λ ret → let X = fst ret ; kₓ = snd ret in if are-free-in-type check-erased Ls tp then match-types-error $ m-err.e-meta-scope Γ tpₓ tp else (check-type-for-match tp ≫=spans' λ k → match-kinds Xs empty-trie match-unfolding-both kₓ k on-fail (λ _ → spanMr ∘ match-error $ m-err.e-bad-sol-kind Γ x tp) ≫=spans' λ Xs → spanMr (meta-vars-solve-tp Γ Xs x tp synthesizing) ≫=spans' λ Xs → match-types-ok $ meta-vars-update-kinds Γ Xs Xs) match-types Xs Ls unf (TpApp tpₓ₁ tpₓ₂) (TpApp tp₁ tp₂) = match-types Xs Ls unf tpₓ₁ tp₁ ≫=spans' λ Xs' → match-types Xs' Ls (match-unfolding-next unf) tpₓ₂ tp₂ match-types Xs Ls unf (TpAppt tpₓ tmₓ) (TpAppt tp tm) = match-types Xs Ls unf tpₓ tp ≫=spans' λ Xs' → get-ctxt λ Γ → spanMr $ if ~ conv-term Γ tmₓ tm then (match-error m-err.e-match-failure) else match-ok Xs' match-types Xs Ls unf tpₓ'@(Abs piₓ bₓ piₓ' xₓ tkₓ tpₓ) tp'@(Abs pi b pi' x tk tp) = get-ctxt λ Γ → if ~ eq-maybeErased bₓ b then (match-types-error m-err.e-match-failure) else ( match-tks Xs Ls (match-unfolding-next unf) tkₓ tk ≫=spans' λ Xs' → with-ctxt (Γ→Γ' Γ) (match-types Xs' Ls' (match-unfolding-next unf) tpₓ tp)) where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x match-types Xs Ls unf tpₓ@(TpArrow tp₁ₓ atₓ tp₂ₓ) tp@(TpArrow tp₁ at tp₂) = get-ctxt λ Γ → if ~ eq-maybeErased atₓ at then match-types-error m-err.e-match-failure else ( match-types Xs Ls (match-unfolding-next unf) tp₁ₓ tp₁ ≫=spans' λ Xs → match-types Xs Ls (match-unfolding-next unf) tp₂ₓ tp₂) match-types Xs Ls unf tpₓ@(TpArrow tp₁ₓ atₓ tp₂ₓ) tp@(Abs pi b pi' x (Tkt tp₁) tp₂) = get-ctxt λ Γ → if ~ eq-maybeErased atₓ b then match-types-error m-err.e-match-failure else ( match-types Xs Ls (match-unfolding-next unf) tp₁ₓ tp₁ ≫=spans' λ Xs → match-types Xs (stringset-insert Ls x) (match-unfolding-next unf) tp₂ₓ tp₂) match-types Xs Ls unf tpₓ@(Abs piₓ bₓ piₓ' xₓ (Tkt tp₁ₓ) tp₂ₓ) tp@(TpArrow tp₁ at tp₂) = get-ctxt λ Γ → if ~ eq-maybeErased bₓ at then match-types-error m-err.e-match-failure else ( match-types Xs Ls (match-unfolding-next unf) tp₁ₓ tp₁ ≫=spans' λ Xs → match-types Xs (stringset-insert Ls xₓ) (match-unfolding-next unf) tp₂ₓ tp₂) match-types Xs Ls unf (Iota _ piₓ xₓ mₓ tpₓ) (Iota _ pi x m tp) = get-ctxt λ Γ → match-types Xs Ls (match-unfolding-next unf) mₓ m ≫=spans' λ Xs → with-ctxt (Γ→Γ' Γ) (match-types Xs Ls' (match-unfolding-next unf) tpₓ tp) where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x match-types Xs Ls unf (TpEq _ t₁ₓ t₂ₓ _) (TpEq _ t₁ t₂ _) = get-ctxt λ Γ → if ~ conv-term Γ t₁ₓ t₁ then match-types-error $ m-err.e-match-failure else if ~ conv-term Γ t₂ₓ t₂ then match-types-error $ m-err.e-match-failure else match-types-ok Xs match-types Xs Ls unf (Lft _ piₓ xₓ tₓ lₓ) (Lft _ pi x t l) = get-ctxt λ Γ → if ~ conv-liftingType Γ lₓ l then match-types-error $ m-err.e-match-failure else if ~ conv-term (Γ→Γ' Γ) tₓ t then match-types-error $ m-err.e-match-failure else match-types-ok Xs where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) match-types Xs Ls unf (TpLambda _ piₓ xₓ atkₓ tpₓ) (TpLambda _ pi x atk tp) = get-ctxt λ Γ → match-tks Xs Ls (match-unfolding-next unf) atkₓ atk ≫=spans' λ Xs → with-ctxt (Γ→Γ' Γ) (match-types Xs Ls' (match-unfolding-next unf) tpₓ tp) where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x match-types Xs Ls unf (NoSpans tpₓ _) (NoSpans tp _) = match-types Xs Ls unf tpₓ tp -- TODO for now, don't approximate lets match-types Xs Ls unf (TpLet piₓ (DefTerm pi x ot t) tpₓ) tp = get-ctxt λ Γ → match-types Xs Ls unf (subst Γ (Chi posinfo-gen ot t) x tpₓ) tp match-types Xs Ls unf (TpLet piₓ (DefType pi x k tpₓ-let) tpₓ) tp = get-ctxt λ Γ → match-types Xs Ls unf (subst Γ tpₓ-let x tpₓ) tp match-types Xs Ls unf tpₓ (TpLet _ (DefTerm _ x ot t) tp) = get-ctxt λ Γ → match-types Xs Ls unf tpₓ (subst Γ (Chi posinfo-gen ot t) x tp) match-types Xs Ls unf tpₓ (TpLet _ (DefType _ x k tp-let) tp) = get-ctxt λ Γ → match-types Xs Ls unf tpₓ (subst Γ tp-let x tp) -- match-types Xs Ls unf (TpHole x₁) tp = {!!} match-types Xs Ls unf (TpParens _ tpₓ _) tp = match-types Xs Ls unf tpₓ tp match-types Xs Ls unf tpₓ (TpParens _ tp _) = match-types Xs Ls unf tpₓ tp match-types Xs Ls unf tpₓ tp = get-ctxt λ Γ → match-types-error m-err.e-match-failure -- match-kinds -- -------------------------------------------------- -- match-kinds-norm: match already normalized kinds match-kinds-norm : meta-vars → local-vars → match-unfolding-state → (kₓ k : kind) → spanM $ match-error-t meta-vars match-kinds-norm Xs Ls uf (KndParens _ kₓ _) (KndParens _ k _) = match-kinds Xs Ls uf kₓ k -- kind pi match-kinds-norm Xs Ls uf (KndPi _ piₓ xₓ tkₓ kₓ) (KndPi _ pi x tk k) = get-ctxt λ Γ → match-tks Xs Ls uf tkₓ tk ≫=spans' λ Xs → with-ctxt (Γ→Γ' Γ) (match-kinds Xs Ls uf kₓ k) where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x -- kind arrow match-kinds-norm Xs Ls uf (KndArrow kₓ₁ kₓ₂) (KndArrow k₁ k₂) = match-kinds Xs Ls uf kₓ₁ k₁ ≫=spans' λ Xs → match-kinds Xs Ls uf kₓ₂ k₂ match-kinds-norm Xs Ls uf (KndArrow kₓ₁ kₓ₂) (KndPi _ pi x (Tkk k₁) k₂) = match-kinds Xs Ls uf kₓ₁ k₁ ≫=spans' λ Xs → match-kinds Xs Ls uf kₓ₂ k₂ match-kinds-norm Xs Ls uf (KndPi _ _ x (Tkk kₓ₁) kₓ₂) (KndArrow k₁ k₂) = match-kinds Xs Ls uf kₓ₁ k₁ ≫=spans' λ Xs → match-kinds Xs Ls uf kₓ₂ k₂ -- kind tp arrow match-kinds-norm Xs Ls uf (KndTpArrow tpₓ kₓ) (KndTpArrow tp k) = match-types Xs Ls uf tpₓ tp ≫=spans' λ Xs → match-kinds Xs Ls uf kₓ k match-kinds-norm Xs Ls uf (KndPi _ _ x (Tkt tpₓ) kₓ) (KndTpArrow tp k) = match-types Xs Ls uf tpₓ tp ≫=spans' λ Xs → match-kinds Xs Ls uf kₓ k match-kinds-norm Xs Ls uf (KndTpArrow tpₓ kₓ) (KndPi _ _ x (Tkt tp) k) = match-types Xs Ls uf tpₓ tp ≫=spans' λ Xs → match-kinds Xs Ls uf kₓ k match-kinds-norm Xs Ls uf (Star _) (Star _) = match-types-ok $ Xs match-kinds-norm Xs Ls uf kₓ k = get-ctxt λ Γ → match-types-error $ m-err.e-matchk-failure -- m-err.e-kind-ineq Γ kₓ k match-kinds Xs Ls uf kₓ k = get-ctxt λ Γ → match-kinds-norm Xs Ls uf (hnf Γ (unfolding-elab unfold-head) kₓ tt) (hnf Γ (unfolding-elab unfold-head) k tt) -- match-tk -- -------------------------------------------------- match-tks Xs Ls uf (Tkk kₓ) (Tkk k) = match-kinds Xs Ls uf kₓ k match-tks Xs Ls uf (Tkt tpₓ) (Tkt tp) = match-types Xs Ls uf tpₓ tp match-tks Xs Ls uf tkₓ tk = get-ctxt λ Γ → match-types-error m-err.e-matchk-failure -- m-err.e-tk-ineq Γ tkₓ tk -- match-prototype -- -------------------------------------------------- match-prototype-err : type → prototype → spanM match-prototype-data match-prototype-err tp pt = spanMr $ mk-match-prototype-data meta-vars-empty (decor-error tp pt) tt {- -------------------- Xs ⊢? T ≔ ⁇ ⇒ (∅ , T) -} match-prototype Xs uf tp (proto-maybe nothing) = spanMr $ mk-match-prototype-data Xs (decor-type tp) ff {- Xs ⊢= T ≔ S ⇒ σ -------------------- Xs ⊢? T ≔ S ⇒ (σ , T) -} match-prototype Xs uf tp (proto-maybe (just tp')) = match-types Xs empty-trie match-unfolding-both tp tp' on-fail (λ _ → spanMr $ mk-match-prototype-data Xs (decor-type tp) tt) ≫=spans' λ Xs' → spanMr $ mk-match-prototype-data Xs' (decor-type tp) ff {- Xs,X ⊢? T ≔ ⁇ → P ⇒ (σ , W) ----------------------------------------------- Xs ⊢? ∀ X . T ≔ ⁇ → P ⇒ (σ - X , ∀ X = σ(X) . W) -} match-prototype Xs uf (Abs pi bₓ pi' x (Tkk k) tp) pt'@(proto-arrow e? pt) = get-ctxt λ Γ → -- 1) generate a fresh meta-var Y, add it to the meta-vars, and rename -- occurences of x in tp to Y let ret = meta-vars-add-from-tpabs Γ missing-span-location Xs (mk-tpabs Erased x k tp) Y = fst ret ; Xs' = snd ret ; tp' = subst Γ (meta-var-to-type-unsafe Y) x tp -- 2) match the body against the original prototype to generate a decorated type -- and find some solutions in match-prototype Xs' ff tp' pt' ≫=span λ ret → let mk-match-prototype-data Xs' dt err = ret Y' = maybe-else' (meta-vars-lookup Xs' (meta-var-name Y)) Y λ Y → Y -- 3) replace the meta-vars with the bound type variable in subst-decortype Γ (TpVar pi x) (meta-var-name Y) dt -- 4) leave behind the solution for Y as a decoration and drop Y from Xs ≫=span λ dt' → let sort' = meta-var.sort (meta-var-set-src Y' checking) dt″ = decor-decor Erased pi x sort' dt' in spanMr $ mk-match-prototype-data (meta-vars-remove Xs' Y) dt″ err {- Xs ⊢? T ≔ P ⇒ (σ , P) ----------------------------- Xs ⊢? S → T ≔ ⁇ → P ⇒ (σ , P) -} match-prototype Xs uf (Abs pi b pi' x (Tkt dom) cod) (proto-arrow e? pt) = match-prototype Xs ff cod pt ≫=span λ ret → let mk-match-prototype-data Xs dt err = ret dt' = decor-decor b pi x (meta-var-tm dom nothing) dt in spanMr $ if ~ eq-maybeErased b e? then mk-match-prototype-data meta-vars-empty dt' tt else mk-match-prototype-data Xs dt' err match-prototype Xs uf (TpArrow dom at cod) (proto-arrow e? pt) = match-prototype Xs ff cod pt ≫=span λ ret → let mk-match-prototype-data Xs' dt err = ret dt' = decor-arrow at dom dt in spanMr $ if ~ eq-maybeErased at e? then mk-match-prototype-data meta-vars-empty dt' tt else mk-match-prototype-data Xs' dt' err {- X ∈ Xs ----------------------------------- Xs ⊢? X ≔ ⁇ → P ⇒ (σ , (X , ⁇ → P)) -} match-prototype Xs tt tp@(TpVar pi x) pt@(proto-arrow _ _) = spanMr $ mk-match-prototype-data Xs (decor-stuck tp pt) ff -- everything else... -- Types for which we should keep digging match-prototype Xs ff tp@(TpVar pi x) pt@(proto-arrow _ _) = get-ctxt λ Γ → match-prototype Xs tt (hnf Γ (unfolding-elab unfold-head) tp tt) pt match-prototype Xs uf (NoSpans tp _) pt@(proto-arrow _ _) = match-prototype Xs uf tp pt match-prototype Xs uf (TpParens _ tp _) pt@(proto-arrow _ _) = match-prototype Xs uf tp pt match-prototype Xs uf (TpLet pi (DefTerm piₗ x opt t) tp) pt@(proto-arrow _ _) = get-ctxt λ Γ → let tp' = subst Γ (Chi posinfo-gen opt t) x tp in match-prototype Xs uf tp' pt match-prototype Xs uf (TpLet pi (DefType piₗ x k tp') tp) pt@(proto-arrow _ _) = get-ctxt λ Γ → let tp″ = subst Γ tp' x tp in match-prototype Xs uf tp″ pt match-prototype Xs ff tp@(TpApp _ _) pt@(proto-arrow _ _) = get-ctxt λ Γ → match-prototype Xs tt (hnf Γ (unfolding-elab unfold-head) tp tt) pt match-prototype Xs ff tp@(TpAppt _ _) pt@(proto-arrow _ _) = get-ctxt λ Γ → match-prototype Xs tt (hnf Γ (unfolding-elab unfold-head) tp tt) pt -- types for which we should suspend disbelief match-prototype Xs tt tp@(TpApp _ _) pt@(proto-arrow _ _) = spanMr $ mk-match-prototype-data Xs (decor-stuck tp pt) ff match-prototype Xs tt tp@(TpAppt _ _) pt@(proto-arrow _ _) = spanMr $ mk-match-prototype-data Xs (decor-stuck tp pt) ff -- types which clearly do not match the prototype match-prototype Xs uf tp@(TpEq _ _ _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Xs uf tp@(TpHole _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Xs uf tp@(TpLambda _ _ _ _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Xs uf tp@(Iota _ _ _ _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Xs uf tp@(Lft _ _ _ _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt -- check-typei: check a type against (maybe) a kind -- ================================================== --ACG WIP --check-typei (TpHole pi) k = spanM-add check-typei (TpHole pi) k = get-ctxt (λ Γ → spanM-add (tp-hole-span Γ pi k []) ≫span return-when k k) check-typei (TpParens pi t pi') k = spanM-add (punctuation-span "Parens (type)" pi pi') ≫span check-type t k check-typei (NoSpans t _) k = check-type t k ≫=spand spanMr check-typei (TpVar pi x) mk = get-ctxt (cont mk) where cont : (mk : maybe kind) → ctxt → spanM (check-ret mk) cont mk Γ with ctxt-lookup-type-var Γ x cont mk Γ | nothing = spanM-add (TpVar-span Γ pi x (maybe-to-checking mk) (expected-kind-if Γ mk ++ [ missing-kind ]) (just "Missing a kind for a type variable.")) ≫span return-when mk mk cont nothing Γ | (just k) = spanM-add (TpVar-span Γ pi x synthesizing [ kind-data Γ k ] nothing) ≫span check-type-return Γ k cont (just k) Γ | just k' = spanM-add (TpVar-span Γ pi x checking (expected-kind Γ k :: [ kind-data Γ k' ]) (if conv-kind Γ k k' then nothing else just "The computed kind does not match the expected kind.")) check-typei (TpLambda pi pi' x atk body) (just k) with to-absk k check-typei (TpLambda pi pi' x atk body) (just k) | just (mk-absk x' atk' _ k') = check-tk atk ≫span spanM-add (punctuation-span "Lambda (type)" pi (posinfo-plus pi 1)) ≫span get-ctxt λ Γ → spanM-add (if conv-tk Γ (qualif-tk Γ atk) atk' then TpLambda-span pi x atk body checking [ kind-data Γ k ] nothing else uncurry (λ tvs err → TpLambda-span pi x atk body checking tvs (just err)) (lambda-bound-var-conv-error Γ x atk' atk [ kind-data Γ k ])) ≫span add-tk pi' x atk ≫=span λ mi → get-ctxt λ Γ' → check-type body (just (rename-var Γ x' (qualif-var Γ' x) k')) ≫span spanM-restore-info x mi check-typei (TpLambda pi pi' x atk body) (just k) | nothing = check-tk atk ≫span spanM-add (punctuation-span "Lambda (type)" pi (posinfo-plus pi 1)) ≫span get-ctxt λ Γ → spanM-add (TpLambda-span pi x atk body checking [ expected-kind Γ k ] (just "The type is being checked against a kind which is not an arrow- or Pi-kind.")) check-typei (TpLambda pi pi' x atk body) nothing = spanM-add (punctuation-span "Lambda (type)" pi (posinfo-plus pi 1)) ≫span check-tk atk ≫span add-tk pi' x atk ≫=span λ mi → check-type body nothing ≫=span cont ≫=span λ mk → spanM-restore-info x mi ≫span spanMr mk where cont : maybe kind → spanM (maybe kind) cont nothing = spanM-add (TpLambda-span pi x atk body synthesizing [] nothing) ≫span spanMr nothing cont (just k) = get-ctxt λ Γ → let atk' = qualif-tk Γ atk in -- This should indeed "unqualify" occurrences of x in k for r let r = absk-tk x atk' (rename-var Γ (pi' % x) x k) in spanM-add (TpLambda-span pi x atk' body synthesizing [ kind-data Γ r ] nothing) ≫span spanMr (just r) check-typei (Abs pi b {- All or Pi -} pi' x atk body) k = get-ctxt λ Γ → spanM-add (uncurry (TpQuant-span (me-unerased b) pi x atk body (maybe-to-checking k)) (if-check-against-star-data Γ "A type-level quantification" k)) ≫span spanM-add (punctuation-span "Forall" pi (posinfo-plus pi 1)) ≫span check-tk atk ≫span add-tk pi' x atk ≫=span λ mi → check-type body (just star) ≫span spanM-restore-info x mi ≫span return-star-when k check-typei (TpArrow t1 _ t2) k = get-ctxt λ Γ → spanM-add (uncurry (TpArrow-span t1 t2 (maybe-to-checking k)) (if-check-against-star-data Γ "An arrow type" k)) ≫span check-type t1 (just star) ≫span check-type t2 (just star) ≫span return-star-when k check-typei (TpAppt tp t) k = check-type tp nothing ≫=span cont'' ≫=spanr cont' k where cont : kind → spanM (maybe kind) cont (KndTpArrow tp' k') = check-term t (just tp') ≫span spanMr (just k') cont (KndPi _ _ x (Tkt tp') k') = check-term t (just tp') ≫span get-ctxt λ Γ → spanMr (just (subst Γ (qualif-term Γ t) x k')) cont k' = get-ctxt λ Γ → spanM-add (TpAppt-span tp t (maybe-to-checking k) (type-app-head Γ tp :: head-kind Γ k' :: [ term-argument Γ t ]) (just ("The kind computed for the head of the type application does" ^ " not allow the head to be applied to an argument which is a term"))) ≫span spanMr nothing cont' : (outer : maybe kind) → kind → spanM (check-ret outer) cont' nothing k = get-ctxt λ Γ → spanM-add (TpAppt-span tp t synthesizing [ kind-data Γ k ] nothing) ≫span check-type-return Γ k cont' (just k') k = get-ctxt λ Γ → if conv-kind Γ k k' then spanM-add (TpAppt-span tp t checking (expected-kind Γ k' :: [ kind-data Γ k ]) nothing) else spanM-add (TpAppt-span tp t checking (expected-kind Γ k' :: [ kind-data Γ k ]) (just "The kind computed for a type application does not match the expected kind.")) cont'' : maybe kind → spanM (maybe kind) cont'' nothing = spanM-add (TpAppt-span tp t (maybe-to-checking k) [] nothing) ≫span spanMr nothing cont'' (just k) = cont k check-typei (TpApp tp tp') k = check-type tp nothing ≫=span cont'' ≫=spanr cont' k where cont : kind → spanM (maybe kind) cont (KndArrow k'' k') = check-type tp' (just k'') ≫span spanMr (just k') cont (KndPi _ _ x (Tkk k'') k') = check-type tp' (just k'') ≫span get-ctxt λ Γ → spanMr (just (subst Γ (qualif-type Γ tp') x k')) cont k' = get-ctxt λ Γ → spanM-add (TpApp-span tp tp' (maybe-to-checking k) (type-app-head Γ tp :: head-kind Γ k' :: [ type-argument Γ tp' ]) (just ("The kind computed for the head of the type application does" ^ " not allow the head to be applied to an argument which is a type"))) ≫span spanMr nothing cont' : (outer : maybe kind) → kind → spanM (check-ret outer) cont' nothing k = get-ctxt λ Γ → spanM-add (TpApp-span tp tp' synthesizing [ kind-data Γ k ] nothing) ≫span check-type-return Γ k cont' (just k') k = get-ctxt λ Γ → if conv-kind Γ k k' then spanM-add (TpApp-span tp tp' checking (expected-kind Γ k' :: [ kind-data Γ k' ]) nothing) else spanM-add (TpApp-span tp tp' checking (expected-kind Γ k' :: [ kind-data Γ k ]) (just "The kind computed for a type application does not match the expected kind.")) cont'' : maybe kind → spanM (maybe kind) cont'' nothing = spanM-add (TpApp-span tp tp' (maybe-to-checking k) [] nothing) ≫span spanMr nothing cont'' (just k) = cont k check-typei (TpEq pi t1 t2 pi') k = get-ctxt (λ Γ → untyped-term-spans t1 ≫span set-ctxt Γ ≫span untyped-term-spans t2 ≫span set-ctxt Γ) ≫span get-ctxt λ Γ → spanM-add (uncurry (TpEq-span pi t1 t2 pi' (maybe-to-checking k)) (if-check-against-star-data Γ "An equation" k)) ≫span -- spanM-add (unchecked-term-span t1) ≫span -- spanM-add (unchecked-term-span t2) ≫span return-star-when k check-typei (Lft pi pi' X t l) k = add-tk pi' X (Tkk star) ≫=span λ mi → get-ctxt λ Γ → check-term t (just (qualif-type Γ (liftingType-to-type X l))) ≫span spanM-add (punctuation-span "Lift" pi (posinfo-plus pi 1)) ≫span spanM-restore-info X mi ≫span cont k (qualif-kind Γ (liftingType-to-kind l)) where cont : (outer : maybe kind) → kind → spanM (check-ret outer) cont nothing k = get-ctxt λ Γ → spanM-add (Lft-span pi X t synthesizing [ kind-data Γ k ] nothing) ≫span spanMr (just k) cont (just k') k = get-ctxt λ Γ → if conv-kind Γ k k' then spanM-add (Lft-span pi X t checking ( expected-kind Γ k' :: [ kind-data Γ k ]) nothing) else spanM-add (Lft-span pi X t checking ( expected-kind Γ k' :: [ kind-data Γ k ]) (just "The expected kind does not match the computed kind.")) check-typei (Iota pi pi' x t1 t2) mk = get-ctxt λ Γ → spanM-add (uncurry (Iota-span pi t2 (maybe-to-checking mk)) (if-check-against-star-data Γ "A iota-type" mk)) ≫span check-typei t1 (just star) ≫span add-tk pi' x (Tkt t1) ≫=span λ mi → check-typei t2 (just star) ≫span spanM-restore-info x mi ≫span return-star-when mk check-typei (TpLet pi d T) mk = check-def d ≫=span finish where maybe-subst : defTermOrType → (mk : maybe kind) → check-ret mk → spanM (check-ret mk) maybe-subst _ (just k) triv = spanMok maybe-subst _ nothing nothing = spanMr nothing maybe-subst (DefTerm pi x NoType t) nothing (just k) = get-ctxt λ Γ → spanMr (just (subst Γ (qualif-term Γ (Chi posinfo-gen NoType t)) (pi % x) k)) maybe-subst (DefTerm pi x (SomeType T) t) nothing (just k) = get-ctxt λ Γ → spanMr (just (subst Γ (qualif-term Γ (Chi posinfo-gen (SomeType T) t)) (pi % x) k)) maybe-subst (DefType pi x k' T') nothing (just k) = get-ctxt λ Γ → spanMr (just (subst Γ (qualif-type Γ T') (pi % x) k)) finish : var × restore-def → spanM (check-ret mk) finish (x , m) = get-ctxt λ Γ → spanM-add (TpLet-span Γ (maybe-to-checking mk) pi d T [] nothing) ≫span check-type T mk ≫=span λ r → spanM-restore-info x m ≫span maybe-subst d mk r check-kind (KndParens pi k pi') = spanM-add (punctuation-span "Parens (kind)" pi pi') ≫span check-kind k check-kind (Star pi) = spanM-add (Star-span pi checking nothing) check-kind (KndVar pi x ys) = get-ctxt λ Γ → maybe-else' (ctxt-lookup-kind-var-def-args Γ x) (spanM-add (KndVar-span Γ (pi , x) (kvar-end-pos pi x ys) ParamsNil checking [] (just "Undefined kind variable"))) λ ps-as → check-args-against-params nothing (pi , x) -- Isn't used vvvv (fst $ snd $ elim-pair ps-as λ ps as → subst-params-args Γ ps as star) ys {-helper (ctxt-lookup-kind-var-def-args Γ x) where helper : maybe (params × args) → spanM ⊤ helper (just (ps , as)) = check-args-against-params nothing (pi , x) ps (append-args as ys) helper nothing = get-ctxt λ Γ → spanM-add (KndVar-span Γ (pi , x) (kvar-end-pos pi x ys) ParamsNil checking [] (just "Undefined kind variable"))-} check-kind (KndArrow k k') = spanM-add (KndArrow-span k k' checking nothing) ≫span check-kind k ≫span check-kind k' check-kind (KndTpArrow t k) = spanM-add (KndTpArrow-span t k checking nothing) ≫span check-type t (just star) ≫span check-kind k check-kind (KndPi pi pi' x atk k) = spanM-add (punctuation-span "Pi (kind)" pi (posinfo-plus pi 1)) ≫span spanM-add (KndPi-span pi x atk k checking nothing) ≫span check-tk atk ≫span add-tk pi' x atk ≫=span λ mi → check-kind k ≫span spanM-restore-info x mi check-args-against-params kind-or-import orig ps ys = caap (~ isJust kind-or-import) ps ys empty-trie where make-span : ctxt → 𝕃 tagged-val → err-m → span make-span Γ ts err = maybe-else (KndVar-span Γ orig (kvar-end-pos (fst orig) (snd orig) ys) ps checking ts err) (λ loc → Import-module-span Γ orig ps (loc :: ts) err) kind-or-import caap : 𝔹 → params → args → trie arg → spanM ⊤ caap koi (ParamsCons (Decl _ pi _ x (Tkk k) _) ps) (ArgsCons (TypeArg T) ys) σ = get-ctxt λ Γ → check-type T (just (substs Γ σ k)) ≫span caap koi ps ys (trie-insert σ x $ TypeArg (qualif-type Γ T)) caap ff (ParamsCons (Decl _ pi NotErased x (Tkt T) _) ps) (ArgsCons (TermArg NotErased t) ys) σ = get-ctxt λ Γ → let T' = substs Γ σ T in check-term t (just T') ≫span check-erased-margs t (just T') ≫span caap ff ps ys (trie-insert σ x $ TermArg NotErased (qualif-term Γ t)) caap ff (ParamsCons (Decl _ pi Erased x (Tkt T) _) ps) (ArgsCons (TermArg NotErased t) ys) σ = get-ctxt λ Γ → spanM-add (make-span Γ [ term-argument Γ t ] (just ("A term argument was supplied for erased term parameter " ^ x))) caap ff (ParamsCons (Decl _ pi NotErased x (Tkt T) _) ps) (ArgsCons (TermArg Erased t) ys) σ = get-ctxt λ Γ → spanM-add (make-span Γ [ term-argument Γ t ] (just ("An erased term argument was supplied for term parameter " ^ x))) -- Either a kind argument or a correctly erased module argument caap koi (ParamsCons (Decl _ pi me x (Tkt T) _) ps) (ArgsCons (TermArg me' t) ys) σ = get-ctxt λ Γ → check-term t (just (substs Γ σ T)) ≫span caap koi ps ys (trie-insert σ x $ TermArg me (qualif-term Γ t)) caap koi (ParamsCons (Decl _ x₁ _ x (Tkk x₃) x₄) ps₁) (ArgsCons (TermArg _ x₅) ys₂) σ = get-ctxt λ Γ → spanM-add (make-span Γ [ term-argument Γ x₅ ] (just ("A term argument was supplied for type parameter " ^ x))) caap koi (ParamsCons (Decl _ x₁ _ x (Tkt x₃) x₄) ps₁) (ArgsCons (TypeArg x₅) ys₂) σ = get-ctxt λ Γ → spanM-add (make-span Γ [ type-argument Γ x₅ ] (just ("A type argument was supplied for term parameter " ^ x))) caap tt (ParamsCons (Decl _ _ _ x _ _) ps₁) ArgsNil σ = get-ctxt λ Γ → spanM-add (make-span Γ [] (just ("Missing an argument for parameter " ^ x))) caap ff (ParamsCons (Decl _ _ _ x _ _) ps₁) ArgsNil σ = get-ctxt λ Γ → spanM-add (make-span Γ [] nothing) caap koi ParamsNil (ArgsCons x₁ ys₂) σ = get-ctxt λ Γ → spanM-add (make-span Γ [ arg-argument Γ x₁ ] (just "An extra argument was given")) caap koi ParamsNil ArgsNil σ = get-ctxt λ Γ → spanM-add (make-span Γ [] nothing) check-erased-margs t mtp = get-ctxt λ Γ → let x = erased-margs Γ in if are-free-in skip-erased x t then spanM-add (erased-marg-span Γ t mtp) else spanMok check-tk (Tkk k) = check-kind k check-tk (Tkt t) = check-type t (just star) check-def (DefTerm pi₁ x NoType t') = get-ctxt λ Γ → check-term t' nothing ≫=span cont (compileFail-in Γ t') t' where cont : 𝕃 tagged-val × err-m → term → maybe type → spanM (var × restore-def) cont (tvs , err) t' (just T) = spanM-push-term-def pi₁ x t' T ≫=span λ m → get-ctxt λ Γ → spanM-add (Var-span Γ pi₁ x synthesizing (type-data Γ T :: noterased :: tvs) err) ≫span spanMr (x , m) cont (tvs , err) t' nothing = spanM-push-term-udef pi₁ x t' ≫=span λ m → get-ctxt λ Γ → spanM-add (Var-span Γ pi₁ x synthesizing (noterased :: tvs) err) ≫span spanMr (x , m) check-def (DefTerm pi₁ x (SomeType T) t') = check-type T (just star) ≫span get-ctxt λ Γ → let T' = qualif-type Γ T in check-term t' (just T') ≫span spanM-push-term-def pi₁ x t' T' ≫=span λ m → get-ctxt λ Γ → let p = compileFail-in Γ t' in spanM-add (Var-span Γ pi₁ x checking (type-data Γ T' :: noterased :: fst p) (snd p)) ≫span spanMr (x , m) check-def (DefType pi x k T) = check-kind k ≫span get-ctxt λ Γ → let k' = qualif-kind Γ k in check-type T (just k') ≫span spanM-push-type-def pi x T k' ≫=span λ m → get-ctxt λ Γ → spanM-add (Var-span Γ pi x checking (noterased :: [ kind-data Γ k' ]) nothing) ≫span spanMr (x , m)
{ "alphanum_fraction": 0.6225491824, "avg_line_length": 47.5155181483, "ext": "agda", "hexsha": "32125a2e6dbff2c453c7c20f7259ea1ce1ff2561", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/classify.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/classify.agda", "max_line_length": 186, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/classify.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 29557, "size": 90327 }
open import Relation.Binary.Core module Heapsort.Impl2 {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ hiding (flatten) open import BBHeap.Compound _≤_ open import BBHeap.Drop _≤_ tot≤ trans≤ open import BBHeap.Drop.Properties _≤_ tot≤ trans≤ open import BBHeap.Heapify _≤_ tot≤ trans≤ open import BBHeap.Order _≤_ open import BBHeap.Order.Properties _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List hiding (drop) open import OList _≤_ flatten : {b : Bound}(h : BBHeap b) → Acc h → OList b flatten leaf _ = onil flatten (left b≤x l⋘r) (acc rs) = :< b≤x (flatten (drop (cl b≤x l⋘r)) (rs (drop (cl b≤x l⋘r)) (lemma-drop≤′ (cl b≤x l⋘r)))) flatten (right b≤x l⋙r) (acc rs) = :< b≤x (flatten (drop (cr b≤x l⋙r)) (rs (drop (cr b≤x l⋙r)) (lemma-drop≤′ (cr b≤x l⋙r)))) heapsort : List A → OList bot heapsort xs = flatten (heapify xs) (≺-wf (heapify xs))
{ "alphanum_fraction": 0.6344621514, "avg_line_length": 37.1851851852, "ext": "agda", "hexsha": "9352cea12f91e7d6f260cf1e7b97cae5ae6a2a1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Heapsort/Impl2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Heapsort/Impl2.agda", "max_line_length": 124, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Heapsort/Impl2.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 393, "size": 1004 }
------------------------------------------------------------------------------ -- Equality reasoning on axiomatic PA ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module only re-export the preorder reasoning instanced on -- the axiomatic PA propositional equality. module PA.Axiomatic.Mendelson.Relation.Binary.EqReasoning where open import PA.Axiomatic.Mendelson.Base open import PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityI using ( ≈-refl ; ≈-trans) import Common.Relation.Binary.PreorderReasoning open module ≈-Reasoning = Common.Relation.Binary.PreorderReasoning _≈_ ≈-refl ≈-trans public renaming ( _∼⟨_⟩_ to _≈⟨_⟩_ )
{ "alphanum_fraction": 0.5773672055, "avg_line_length": 37.652173913, "ext": "agda", "hexsha": "0885e853e7a0e8d3061deca16df889f8d37dcb94", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/EqReasoning.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/EqReasoning.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Mendelson/Relation/Binary/EqReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 191, "size": 866 }
module MJ.Examples.Integer where open import Prelude open import Data.Maybe open import Data.Vec import Data.Vec.All as Vec∀ open import Data.Star open import Data.Bool open import Data.List open import Data.List.Any open import Data.List.Membership.Propositional open import Data.List.All hiding (lookup) open import Data.Product hiding (Σ) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Data.String open import MJ.Types {- class Integer { int x = 0; int get() { return this.x; } int set(Integer b) { this.x = b.get() return; } } -} open import MJ.Classtable.Core 1 INT : Cid 1 INT = (cls (# 0)) decls : (ns : NS) → List (String × typing ns) decls METHOD = ("get" , ([] , int)) ∷ ("set" , (ref INT ∷ [] , void)) ∷ [] decls FIELD = ("x" , int) ∷ [] IntegerSig = (class Object (int ∷ []) decls) -- class table signature Σ : Classtable Σ = record { Σ = λ{ (cls zero) → IntegerSig ; (cls (suc ())) ; Object → ObjectClass} ; founded = refl ; rooted = λ{ (cls zero) → super ◅ ε ; (cls (suc ())) ; Object → ε }; Σ-Object = refl } open import MJ.Classtable.Code Σ open import MJ.Syntax Σ open import MJ.Syntax.Program Σ -- Integer class body IntegerImpl : Implementation INT IntegerImpl = implementation (body (body (set (var (here refl)) "x" (var (there (here refl))) ◅ ε) unit)) -- methods ( -- get body (body ε (get (var (here refl)) "x")) -- set ∷ (body (body (set (var (here refl)) "x" {int} (get (var (there (here refl))) "x") ◅ ε) unit)) ∷ [] ) -- Implementation of the class table Lib : Code Lib (cls zero) = IntegerImpl Lib (cls (suc ())) Lib Object = implementation (body (body ε unit)) [] open import MJ.Semantics Σ Lib open import MJ.Semantics.Values Σ -- a simple program p₀ : Prog int p₀ = Lib , let x = (here refl) y = (there (here refl)) in body ( loc (ref INT) ◅ loc (ref INT) ◅ asgn x (new INT ((num 9) ∷ [])) ◅ asgn y (new INT ((num 18) ∷ [])) ◅ run (call (var x) "set" {_}{void} (var y ∷ [])) ◅ ε ) (get (var x) "x") test0 : p₀ ⇓⟨ 100 ⟩ (λ {W} (v : Val W int) → v ≡ num 18) test0 = refl
{ "alphanum_fraction": 0.5591802593, "avg_line_length": 19.5983606557, "ext": "agda", "hexsha": "8eb08a1de34ace25cb44dc0927335f6efba2505b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Examples/Integer.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Examples/Integer.agda", "max_line_length": 56, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Examples/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 744, "size": 2391 }
{-# OPTIONS --sized-types #-} module SBList.Properties {A : Set}(_≤_ : A → A → Set) where open import Data.List open import List.Permutation.Base A open import SBList _≤_ lemma-unbound-bound : (xs : List A) → xs ∼ unbound (bound xs) lemma-unbound-bound [] = ∼[] lemma-unbound-bound (x ∷ xs) = ∼x /head /head (lemma-unbound-bound xs)
{ "alphanum_fraction": 0.6647058824, "avg_line_length": 24.2857142857, "ext": "agda", "hexsha": "ea9349bec0f7a5b0406b9752ed457168f1417f95", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SBList/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SBList/Properties.agda", "max_line_length": 70, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SBList/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 107, "size": 340 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic products of binary relations ------------------------------------------------------------------------ -- The definition of lexicographic product used here is suitable if -- the left-hand relation is a strict partial order. {-# OPTIONS --without-K --safe #-} module Data.Product.Relation.Binary.Lex.Strict where open import Data.Product open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise using (Pointwise) open import Data.Sum using (inj₁; inj₂; _-⊎-_; [_,_]) open import Data.Empty open import Function open import Level open import Relation.Nullary open import Relation.Nullary.Product open import Relation.Nullary.Sum open import Relation.Binary open import Relation.Binary.Consequences module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where ------------------------------------------------------------------------ -- A lexicographic ordering over products ×-Lex : (_≈₁_ _<₁_ : Rel A₁ ℓ₁) → (_≤₂_ : Rel A₂ ℓ₂) → Rel (A₁ × A₂) _ ×-Lex _≈₁_ _<₁_ _≤₂_ = (_<₁_ on proj₁) -⊎- (_≈₁_ on proj₁) -×- (_≤₂_ on proj₂) ------------------------------------------------------------------------ -- Some properties which are preserved by ×-Lex (under certain -- assumptions). ×-reflexive : ∀ _≈₁_ _∼₁_ {_≈₂_ : Rel A₂ ℓ₂} _≤₂_ → _≈₂_ ⇒ _≤₂_ → (Pointwise _≈₁_ _≈₂_) ⇒ (×-Lex _≈₁_ _∼₁_ _≤₂_) ×-reflexive _ _ _ refl₂ = λ x≈y → inj₂ (proj₁ x≈y , refl₂ (proj₂ x≈y)) ×-irreflexive : ∀ {_≈₁_ _<₁_} → Irreflexive _≈₁_ _<₁_ → ∀ {_≈₂_ _<₂_ : Rel A₂ ℓ₂} → Irreflexive _≈₂_ _<₂_ → Irreflexive (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_) ×-irreflexive ir₁ ir₂ x≈y (inj₁ x₁<y₁) = ir₁ (proj₁ x≈y) x₁<y₁ ×-irreflexive ir₁ ir₂ x≈y (inj₂ x≈<y) = ir₂ (proj₂ x≈y) (proj₂ x≈<y) ×-transitive : ∀ {_≈₁_ _<₁_} → IsEquivalence _≈₁_ → _<₁_ Respects₂ _≈₁_ → Transitive _<₁_ → ∀ {_≤₂_} → Transitive _≤₂_ → Transitive (×-Lex _≈₁_ _<₁_ _≤₂_) ×-transitive {_≈₁_} {_<₁_} eq₁ resp₁ trans₁ {_≤₂_} trans₂ = trans where module Eq₁ = IsEquivalence eq₁ trans : Transitive (×-Lex _≈₁_ _<₁_ _≤₂_) trans (inj₁ x₁<y₁) (inj₁ y₁<z₁) = inj₁ (trans₁ x₁<y₁ y₁<z₁) trans (inj₁ x₁<y₁) (inj₂ y≈≤z) = inj₁ (proj₁ resp₁ (proj₁ y≈≤z) x₁<y₁) trans (inj₂ x≈≤y) (inj₁ y₁<z₁) = inj₁ (proj₂ resp₁ (Eq₁.sym $ proj₁ x≈≤y) y₁<z₁) trans (inj₂ x≈≤y) (inj₂ y≈≤z) = inj₂ ( Eq₁.trans (proj₁ x≈≤y) (proj₁ y≈≤z) , trans₂ (proj₂ x≈≤y) (proj₂ y≈≤z) ) ×-antisymmetric : ∀ {_≈₁_ _<₁_} → Symmetric _≈₁_ → Irreflexive _≈₁_ _<₁_ → Asymmetric _<₁_ → ∀ {_≈₂_ _≤₂_ : Rel A₂ ℓ₂} → Antisymmetric _≈₂_ _≤₂_ → Antisymmetric (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _<₁_ _≤₂_) ×-antisymmetric {_≈₁_} {_<₁_} sym₁ irrefl₁ asym₁ {_≈₂_} {_≤₂_} antisym₂ = antisym where antisym : Antisymmetric (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _<₁_ _≤₂_) antisym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = ⊥-elim $ asym₁ x₁<y₁ y₁<x₁ antisym (inj₁ x₁<y₁) (inj₂ y≈≤x) = ⊥-elim $ irrefl₁ (sym₁ $ proj₁ y≈≤x) x₁<y₁ antisym (inj₂ x≈≤y) (inj₁ y₁<x₁) = ⊥-elim $ irrefl₁ (sym₁ $ proj₁ x≈≤y) y₁<x₁ antisym (inj₂ x≈≤y) (inj₂ y≈≤x) = proj₁ x≈≤y , antisym₂ (proj₂ x≈≤y) (proj₂ y≈≤x) ×-asymmetric : ∀ {_≈₁_ _<₁_} → Symmetric _≈₁_ → _<₁_ Respects₂ _≈₁_ → Asymmetric _<₁_ → ∀ {_<₂_} → Asymmetric _<₂_ → Asymmetric (×-Lex _≈₁_ _<₁_ _<₂_) ×-asymmetric {_≈₁_} {_<₁_} sym₁ resp₁ asym₁ {_<₂_} asym₂ = asym where irrefl₁ : Irreflexive _≈₁_ _<₁_ irrefl₁ = asym⟶irr resp₁ sym₁ asym₁ asym : Asymmetric (×-Lex _≈₁_ _<₁_ _<₂_) asym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = asym₁ x₁<y₁ y₁<x₁ asym (inj₁ x₁<y₁) (inj₂ y≈<x) = irrefl₁ (sym₁ $ proj₁ y≈<x) x₁<y₁ asym (inj₂ x≈<y) (inj₁ y₁<x₁) = irrefl₁ (sym₁ $ proj₁ x≈<y) y₁<x₁ asym (inj₂ x≈<y) (inj₂ y≈<x) = asym₂ (proj₂ x≈<y) (proj₂ y≈<x) ×-respects₂ : ∀ {_≈₁_ _<₁_} → IsEquivalence _≈₁_ → _<₁_ Respects₂ _≈₁_ → {_≈₂_ _<₂_ : Rel A₂ ℓ₂} → _<₂_ Respects₂ _≈₂_ → (×-Lex _≈₁_ _<₁_ _<₂_) Respects₂ (Pointwise _≈₁_ _≈₂_) ×-respects₂ {_≈₁_} {_<₁_} eq₁ resp₁ {_≈₂_} {_<₂_} resp₂ = resp¹ , resp² where _<_ = ×-Lex _≈₁_ _<₁_ _<₂_ open IsEquivalence eq₁ renaming (sym to sym₁; trans to trans₁) resp¹ : ∀ {x} → (x <_) Respects (Pointwise _≈₁_ _≈₂_) resp¹ y≈y' (inj₁ x₁<y₁) = inj₁ (proj₁ resp₁ (proj₁ y≈y') x₁<y₁) resp¹ y≈y' (inj₂ x≈<y) = inj₂ ( trans₁ (proj₁ x≈<y) (proj₁ y≈y') , proj₁ resp₂ (proj₂ y≈y') (proj₂ x≈<y) ) resp² : ∀ {y} → (flip _<_ y) Respects (Pointwise _≈₁_ _≈₂_) resp² x≈x' (inj₁ x₁<y₁) = inj₁ (proj₂ resp₁ (proj₁ x≈x') x₁<y₁) resp² x≈x' (inj₂ x≈<y) = inj₂ ( trans₁ (sym₁ $ proj₁ x≈x') (proj₁ x≈<y) , proj₂ resp₂ (proj₂ x≈x') (proj₂ x≈<y) ) ×-decidable : ∀ {_≈₁_ _<₁_} → Decidable _≈₁_ → Decidable _<₁_ → ∀ {_≤₂_} → Decidable _≤₂_ → Decidable (×-Lex _≈₁_ _<₁_ _≤₂_) ×-decidable dec-≈₁ dec-<₁ dec-≤₂ x y = dec-<₁ (proj₁ x) (proj₁ y) ⊎-dec (dec-≈₁ (proj₁ x) (proj₁ y) ×-dec dec-≤₂ (proj₂ x) (proj₂ y)) ×-total₁ : ∀ {_≈₁_ _<₁_} → Total _<₁_ → ∀ {_≤₂_} → Total (×-Lex _≈₁_ _<₁_ _≤₂_) ×-total₁ total₁ x y with total₁ (proj₁ x) (proj₁ y) ... | inj₁ x₁<y₁ = inj₁ (inj₁ x₁<y₁) ... | inj₂ x₁>y₁ = inj₂ (inj₁ x₁>y₁) ×-total₂ : ∀ {_≈₁_ _<₁_} → Symmetric _≈₁_ → Trichotomous _≈₁_ _<₁_ → ∀ {_≤₂_} → Total _≤₂_ → Total (×-Lex _≈₁_ _<₁_ _≤₂_) ×-total₂ sym tri₁ total₂ x y with tri₁ (proj₁ x) (proj₁ y) ... | tri< x₁<y₁ _ _ = inj₁ (inj₁ x₁<y₁) ... | tri> _ _ y₁<x₁ = inj₂ (inj₁ y₁<x₁) ... | tri≈ _ x₁≈y₁ _ with total₂ (proj₂ x) (proj₂ y) ... | inj₁ x₂≤y₂ = inj₁ (inj₂ (x₁≈y₁ , x₂≤y₂)) ... | inj₂ y₂≤x₂ = inj₂ (inj₂ (sym x₁≈y₁ , y₂≤x₂)) ×-compare : {_≈₁_ _<₁_ : Rel A₁ ℓ₁} → Symmetric _≈₁_ → Trichotomous _≈₁_ _<₁_ → {_≈₂_ _<₂_ : Rel A₂ ℓ₂} → Trichotomous _≈₂_ _<₂_ → Trichotomous (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_) ×-compare sym₁ cmp₁ cmp₂ (x₁ , x₂) (y₁ , y₂) with cmp₁ x₁ y₁ ... | (tri< x₁<y₁ x₁≉y₁ x₁≯y₁) = tri< (inj₁ x₁<y₁) (x₁≉y₁ ∘ proj₁) [ x₁≯y₁ , x₁≉y₁ ∘ sym₁ ∘ proj₁ ] ... | (tri> x₁≮y₁ x₁≉y₁ x₁>y₁) = tri> [ x₁≮y₁ , x₁≉y₁ ∘ proj₁ ] (x₁≉y₁ ∘ proj₁) (inj₁ x₁>y₁) ... | (tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁) with cmp₂ x₂ y₂ ... | (tri< x₂<y₂ x₂≉y₂ x₂≯y₂) = tri< (inj₂ (x₁≈y₁ , x₂<y₂)) (x₂≉y₂ ∘ proj₂) [ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ] ... | (tri> x₂≮y₂ x₂≉y₂ x₂>y₂) = tri> [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ] (x₂≉y₂ ∘ proj₂) (inj₂ (sym₁ x₁≈y₁ , x₂>y₂)) ... | (tri≈ x₂≮y₂ x₂≈y₂ x₂≯y₂) = tri≈ [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ] (x₁≈y₁ , x₂≈y₂) [ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ] ------------------------------------------------------------------------ -- Collections of properties which are preserved by ×-Lex. ×-isPreorder : ∀ {_≈₁_ _∼₁_} → IsPreorder _≈₁_ _∼₁_ → ∀ {_≈₂_ _∼₂_} → IsPreorder _≈₂_ _∼₂_ → IsPreorder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _∼₁_ _∼₂_) ×-isPreorder {_≈₁_} {_∼₁_} pre₁ {_∼₂_ = _∼₂_} pre₂ = record { isEquivalence = Pointwise.×-isEquivalence (isEquivalence pre₁) (isEquivalence pre₂) ; reflexive = ×-reflexive _≈₁_ _∼₁_ _∼₂_ (reflexive pre₂) ; trans = ×-transitive (isEquivalence pre₁) (∼-resp-≈ pre₁) (trans pre₁) {_≤₂_ = _∼₂_} (trans pre₂) } where open IsPreorder ×-isStrictPartialOrder : ∀ {_≈₁_ _<₁_} → IsStrictPartialOrder _≈₁_ _<₁_ → ∀ {_≈₂_ _<₂_} → IsStrictPartialOrder _≈₂_ _<₂_ → IsStrictPartialOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_) ×-isStrictPartialOrder {_<₁_ = _<₁_} spo₁ {_<₂_ = _<₂_} spo₂ = record { isEquivalence = Pointwise.×-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂) ; irrefl = ×-irreflexive {_<₁_ = _<₁_} (irrefl spo₁) {_<₂_ = _<₂_} (irrefl spo₂) ; trans = ×-transitive {_<₁_ = _<₁_} (isEquivalence spo₁) (<-resp-≈ spo₁) (trans spo₁) {_≤₂_ = _<₂_} (trans spo₂) ; <-resp-≈ = ×-respects₂ (isEquivalence spo₁) (<-resp-≈ spo₁) (<-resp-≈ spo₂) } where open IsStrictPartialOrder ×-isStrictTotalOrder : ∀ {_≈₁_ _<₁_} → IsStrictTotalOrder _≈₁_ _<₁_ → ∀ {_≈₂_ _<₂_} → IsStrictTotalOrder _≈₂_ _<₂_ → IsStrictTotalOrder (Pointwise _≈₁_ _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_) ×-isStrictTotalOrder {_<₁_ = _<₁_} spo₁ {_<₂_ = _<₂_} spo₂ = record { isEquivalence = Pointwise.×-isEquivalence (isEquivalence spo₁) (isEquivalence spo₂) ; trans = ×-transitive {_<₁_ = _<₁_} (isEquivalence spo₁) (<-resp-≈ spo₁) (trans spo₁) {_≤₂_ = _<₂_} (trans spo₂) ; compare = ×-compare (Eq.sym spo₁) (compare spo₁) (compare spo₂) } where open IsStrictTotalOrder ------------------------------------------------------------------------ -- "Packages" can also be combined. module _ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} where ×-preorder : Preorder ℓ₁ ℓ₂ _ → Preorder ℓ₃ ℓ₄ _ → Preorder _ _ _ ×-preorder p₁ p₂ = record { isPreorder = ×-isPreorder (isPreorder p₁) (isPreorder p₂) } where open Preorder ×-strictPartialOrder : StrictPartialOrder ℓ₁ ℓ₂ _ → StrictPartialOrder ℓ₃ ℓ₄ _ → StrictPartialOrder _ _ _ ×-strictPartialOrder s₁ s₂ = record { isStrictPartialOrder = ×-isStrictPartialOrder (isStrictPartialOrder s₁) (isStrictPartialOrder s₂) } where open StrictPartialOrder ×-strictTotalOrder : StrictTotalOrder ℓ₁ ℓ₂ _ → StrictTotalOrder ℓ₃ ℓ₄ _ → StrictTotalOrder _ _ _ ×-strictTotalOrder s₁ s₂ = record { isStrictTotalOrder = ×-isStrictTotalOrder (isStrictTotalOrder s₁) (isStrictTotalOrder s₂) } where open StrictTotalOrder ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 _×-irreflexive_ = ×-irreflexive {-# WARNING_ON_USAGE _×-irreflexive_ "Warning: _×-irreflexive_ was deprecated in v0.15. Please use ×-irreflexive instead." #-} _×-isPreorder_ = ×-isPreorder {-# WARNING_ON_USAGE _×-isPreorder_ "Warning: _×-isPreorder_ was deprecated in v0.15. Please use ×-isPreorder instead." #-} _×-isStrictPartialOrder_ = ×-isStrictPartialOrder {-# WARNING_ON_USAGE _×-isStrictPartialOrder_ "Warning: _×-isStrictPartialOrder_ was deprecated in v0.15. Please use ×-isStrictPartialOrder instead." #-} _×-isStrictTotalOrder_ = ×-isStrictTotalOrder {-# WARNING_ON_USAGE _×-isStrictTotalOrder_ "Warning: _×-isStrictTotalOrder_ was deprecated in v0.15. Please use ×-isStrictTotalOrder instead." #-} _×-preorder_ = ×-preorder {-# WARNING_ON_USAGE _×-preorder_ "Warning: _×-preorder_ was deprecated in v0.15. Please use ×-preorder instead." #-} _×-strictPartialOrder_ = ×-strictPartialOrder {-# WARNING_ON_USAGE _×-strictPartialOrder_ "Warning: _×-strictPartialOrder_ was deprecated in v0.15. Please use ×-strictPartialOrder instead." #-} _×-strictTotalOrder_ = ×-strictTotalOrder {-# WARNING_ON_USAGE _×-strictTotalOrder_ "Warning: _×-strictTotalOrder_ was deprecated in v0.15. Please use ×-strictTotalOrder instead." #-} ×-≈-respects₂ = ×-respects₂ {-# WARNING_ON_USAGE ×-≈-respects₂ "Warning: ×-≈-respects₂ was deprecated in v0.15. Please use ×-respects₂ instead." #-}
{ "alphanum_fraction": 0.5509931564, "avg_line_length": 39.2852459016, "ext": "agda", "hexsha": "ca5f13f23d887366dfe7d9dd6a9b297ae2e3226b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/Strict.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Binary/Lex/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4972, "size": 11982 }
data _×_ (A B : Set) : Set where _,_ : A → B → A × B postulate M : Set → Set _>>=_ : ∀{A B : Set} → M A → (A → M B) → M B infixr 1 bind bind : _ bind = _>>=_ infix 0 id id : ∀{A : Set} → A → A id = λ x → x syntax id x = do x syntax bind ma (λ x → f) = x ← ma , f swapM′ : ∀ {A B} → M (A × B) → M (B × A) swapM′ mAB = do (a , b) ← mAB , return $ b , a -- Was: -- An internal error has occurred. Please report this as a bug. -- Location of the error: -- src/full/Agda/TypeChecking/Monad/Base.hs:1793
{ "alphanum_fraction": 0.5074626866, "avg_line_length": 17.8666666667, "ext": "agda", "hexsha": "6ac5181c4ba31c585384fa9bd278943c1254db2b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue1129b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue1129b.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue1129b.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 222, "size": 536 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Instances.QuoInt where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ) open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_) open import Cubical.Relation.Binary.Base open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_) open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import Cubical.Data.Sigma open import Cubical.Data.Bool using (not) open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim` open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ) open import Function.Base using (it; _∋_; _$_) open import Cubical.HITs.PropositionalTruncation --.Properties open import Utils using (!_; !!_) open import MoreLogic.Reasoning open import MoreLogic.Definitions open import MoreLogic.Properties open import MorePropAlgebra.Definitions hiding (_≤''_) open import MorePropAlgebra.Structures open import MorePropAlgebra.Bundles open import MorePropAlgebra.Consequences open import Number.Structures2 open import Number.Bundles2 open import Number.Instances.Nat using (lemma10''; lemma12'') renaming ( _<_ to _<ⁿ_ ; <-irrefl to <ⁿ-irrefl ; <-cotrans to <ⁿ-cotrans ; suc-creates-< to sucⁿ-creates-<ⁿ ; 0<suc to 0<ⁿsuc ) open import Data.Nat.Base using () renaming ( _⊔_ to maxⁿ ; _⊓_ to minⁿ ; _+_ to _+ⁿ_ ) open import Cubical.HITs.Ints.QuoInt open import Cubical.HITs.Ints.QuoInt.Properties open import Cubical.Data.Nat using (suc; zero; ℕ) renaming ( +-comm to +ⁿ-comm ) open import Cubical.Data.Nat.Order using () renaming ( <-trans to <ⁿ-trans ; _<_ to _<ⁿᵗ_ ; _≟_ to _≟ⁿ_ ; lt to ltⁿ ; gt to gtⁿ ; eq to eqⁿ ; ¬-<-zero to ¬-<ⁿ-zero ) -- hProp-valued _<_ _<_ : ∀(x y : ℤ) → hProp ℓ-zero x < y with sign x | sign y ... | spos | spos = abs x <ⁿ abs y ... | spos | sneg = ⊥ ... | sneg | spos = ⊤ -- ↯ NOTE: exploiting this specific behaviour of `sign` is not much different from using just `Int` ... | sneg | sneg = abs y <ⁿ abs x -- _<_ on a representation `λ x → (sign x , abs x)` of QuoInt _<ʳ_ : ∀(x y : Sign × ℕ) → hProp ℓ-zero (spos , x) <ʳ (spos , y) = x <ⁿ y (spos , x) <ʳ (sneg , y) = ⊥ (sneg , x) <ʳ (spos , y) = ⊤ (sneg , x) <ʳ (sneg , y) = y <ⁿ x <≡<ʳ : ∀ x y → x < y ≡ (sign x , abs x) <ʳ (sign y , abs y) <≡<ʳ x y with sign x | sign y ... | spos | spos = refl ... | spos | sneg = refl ... | sneg | spos = refl ... | sneg | sneg = refl -- different version of _<_ _<'_ : ℤ → ℤ → hProp ℓ-zero pos n₀ <' pos n₁ = n₀ <ⁿ n₁ pos n₀ <' neg n₁ = ⊥ neg 0 <' pos 0 = ⊥ neg 0 <' pos (suc n₁) = ⊤ neg (suc n₀) <' pos 0 = ⊤ neg (suc n₀) <' pos (suc n₁) = ⊤ neg n₀ <' neg n₁ = n₁ <ⁿ n₀ pos n₀ <' posneg j = lemma10'' n₀ j neg 0 <' posneg j = lemma10'' 0 (~ j) neg (suc n₀) <' posneg j = lemma12'' n₀ (~ j) posneg i <' pos 0 = lemma10'' 0 i posneg i <' pos (suc n₁) = lemma12'' n₁ i posneg i <' neg n₁ = lemma10'' n₁ (~ i) posneg i <' posneg j = lemma10'' 0 ((i ∨ j) ∧ ~(i ∧ j)) <'≡< : ∀ x y → x <' y ≡ x < y <'≡< (pos zero ) (pos zero ) = refl <'≡< (pos zero ) (pos (suc y)) = refl <'≡< (pos (suc x)) (pos zero ) = refl <'≡< (pos (suc x)) (pos (suc y)) = refl <'≡< (pos zero ) (neg zero ) = sym (lemma10'' _) <'≡< (pos zero ) (neg (suc y)) = refl <'≡< (pos (suc x)) (neg zero ) = sym (lemma10'' _) <'≡< (pos (suc x)) (neg (suc y)) = refl <'≡< (neg zero ) (pos zero ) = sym (lemma10'' _) <'≡< (neg zero ) (pos (suc y)) = sym (lemma12'' _) <'≡< (neg (suc x)) (pos zero ) = refl <'≡< (neg (suc x)) (pos (suc y)) = refl <'≡< (neg zero ) (neg zero ) = refl <'≡< (neg zero ) (neg (suc y)) = lemma10'' _ <'≡< (neg (suc x)) (neg zero ) = lemma12'' _ <'≡< (neg (suc x)) (neg (suc y)) = refl <'≡< (pos zero ) (posneg i) j = lemma10'' 0 (~ j ∧ i) <'≡< (pos (suc x)) (posneg i) j = lemma10'' (suc x) (~ j ∧ i) <'≡< (neg zero ) (posneg i) j = lemma10'' 0 (~ j ∧ ~ i) <'≡< (neg (suc x)) (posneg i) j = lemma12'' x (j ∨ ~ i) <'≡< (posneg i) (pos zero ) j = lemma10'' 0 (~ j ∧ i) <'≡< (posneg i) (pos (suc y)) j = lemma12'' y (~ j ∧ i) <'≡< (posneg i) (neg zero ) j = lemma10'' 0 (~ j ∧ ~ i) <'≡< (posneg i) (neg (suc y)) j = lemma10'' (suc y) (j ∨ ~ i) <'≡< (posneg i) (posneg j ) k = lemma10'' 0 (((i ∨ j) ∧ ~ i ∨ ~ j) ∧ ~ k) min : ℤ → ℤ → ℤ min x y with sign x | sign y ... | spos | spos = pos (minⁿ (abs x) (abs y)) ... | spos | sneg = y ... | sneg | spos = x ... | sneg | sneg = neg (maxⁿ (abs x) (abs y)) max : ℤ → ℤ → ℤ max x y with sign x | sign y ... | spos | spos = pos (maxⁿ (abs x) (abs y)) ... | spos | sneg = x ... | sneg | spos = y ... | sneg | sneg = neg (minⁿ (abs x) (abs y)) <-irrefl : (a : ℤ) → [ ¬ (a < a) ] <-irrefl (pos zero) = <ⁿ-irrefl 0 <-irrefl (pos (suc n)) = <ⁿ-irrefl (suc n) <-irrefl (neg zero) = <ⁿ-irrefl 0 <-irrefl (neg (suc n)) = <ⁿ-irrefl (suc n) <-irrefl (posneg i) p = <ⁿ-irrefl 0 p <-trans : (a b c : ℤ) → [ a < b ] → [ b < c ] → [ a < c ] <-trans a b c a<b b<c with sign a | sign b | sign c | pathTo⇒ (<≡<ʳ a b) a<b | pathTo⇒ (<≡<ʳ b c) b<c | pathTo⇐ (<≡<ʳ a c) ... | spos | spos | spos | a<b' | b<c' | p = p (<ⁿ-trans a<b' b<c') ... | spos | spos | sneg | a<b' | b<c' | p = p b<c' ... | spos | sneg | spos | a<b' | b<c' | p = p (⊥-elim a<b') ... | spos | sneg | sneg | a<b' | b<c' | p = p a<b' ... | sneg | spos | spos | a<b' | b<c' | p = p a<b' ... | sneg | spos | sneg | a<b' | b<c' | p = p (⊥-elim b<c') ... | sneg | sneg | spos | a<b' | b<c' | p = p b<c' ... | sneg | sneg | sneg | a<b' | b<c' | p = p (<ⁿ-trans b<c' a<b') <-cotrans : (a b : ℤ) → [ a < b ] → (x : ℤ) → [ (a < x) ⊔ (x < b) ] <-cotrans a b a<b c with sign a , abs a | sign b , abs b | sign c , abs c | pathTo⇒ (<≡<ʳ a b) a<b | pathTo⇐ (λ i → (<≡<ʳ a c) i ⊔ (<≡<ʳ c b) i) ... | spos , a' | spos , b' | spos , c' | a<b' | p = p (<ⁿ-cotrans _ _ a<b' c') ... | spos , a' | spos , b' | sneg , c' | a<b' | p = p (inrᵖ tt) ... | sneg , a' | spos , b' | spos , c' | a<b' | p = p (inlᵖ tt) ... | sneg , a' | spos , b' | sneg , c' | a<b' | p = p (inrᵖ tt) ... | sneg , a' | sneg , b' | spos , c' | a<b' | p = p (inlᵖ tt) ... | sneg , a' | sneg , b' | sneg , c' | a<b' | p = p (pathTo⇒ (⊔-comm (b' <ⁿ c') (c' <ⁿ a')) (<ⁿ-cotrans _ _ a<b' c')) data Trichotomy (m n : ℤ) : Type₀ where lt : [ m < n ] → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : [ n < m ] → Trichotomy m n record Reveal'_·_is_ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f⁻¹ : B → A) (y : B) (x : A) : Type ℓ where eta-equality constructor [_]ⁱ' field eq' : x ≡ f⁻¹ y inspect' : ∀{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f⁻¹ : B → A) (f : A → B) (x : A) → f⁻¹ (f x) ≡ x → Reveal' f⁻¹ · (f x) is x inspect' f⁻¹ f x p = [ sym p ]ⁱ' reprℤ : ℤ → Sign × ℕ reprℤ z = sign z , abs z reprℤ⁻¹ : Sign × ℕ → ℤ reprℤ⁻¹ (s , n) = signed s n reprℤ-id : ∀ z → reprℤ⁻¹ (reprℤ z) ≡ z reprℤ-id (pos zero ) = refl reprℤ-id (pos (suc n)) = refl reprℤ-id (neg zero ) = posneg reprℤ-id (neg (suc n)) = refl reprℤ-id (posneg i ) = λ j → posneg (i ∧ j) inspect-reprℤ : (x : ℤ) → Reveal' reprℤ⁻¹ · (reprℤ x) is x inspect-reprℤ a = inspect' reprℤ⁻¹ reprℤ a (reprℤ-id a) -- abs : ℤ → ℕ -- abs (signed _ n) = n -- abs (posneg i) = zero -- NOTE: this would be easier to get from `Int≡QuoInt` _≟_ : ∀ m n → Trichotomy m n m ≟ n with reprℤ m | reprℤ n | inspect-reprℤ m | inspect-reprℤ n | abs m ≟ⁿ abs n | pathTo⇐ (<≡<ʳ m n) | pathTo⇐ (<≡<ʳ n m) ... | spos , m' | spos , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | ltⁿ x | p | q = lt (p (transport (λ i → [ abs (m≡ i) <ⁿ abs (n≡ i) ]) x)) ... | spos , m' | spos , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | eqⁿ x | p | q = let m'≡n' = (λ i → abs (m≡ (~ i))) ∙ x ∙ (λ i → abs (n≡ i)) in eq (transport (λ i → (m≡ (~ i)) ≡ (n≡ (~ i))) (λ i → pos (m'≡n' i))) ... | spos , m' | spos , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | gtⁿ x | p | q = gt (q (transport (λ i → [ abs (n≡ i) <ⁿ abs (m≡ i) ]) x)) ... | spos , m' | sneg , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | o | p | q = gt (q tt) ... | sneg , m' | spos , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | o | p | q = lt (p tt) ... | sneg , m' | sneg , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | ltⁿ x | p | q = gt (q (transport (λ i → [ abs (m≡ i) <ⁿ abs (n≡ i) ]) x)) ... | sneg , m' | sneg , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | eqⁿ x | p | q = let m'≡n' = (λ i → abs (m≡ (~ i))) ∙ x ∙ (λ i → abs (n≡ i)) in eq (transport (λ i → (m≡ (~ i)) ≡ (n≡ (~ i))) (λ i → neg (m'≡n' i))) ... | sneg , m' | sneg , n' | [ m≡ ]ⁱ' | [ n≡ ]ⁱ' | gtⁿ x | p | q = lt (p (transport (λ i → [ abs (n≡ i) <ⁿ abs (m≡ i) ]) x)) is-min : (x y z : ℤ) → [ ¬ᵖ (min x y < z) ⇔ ¬ᵖ (x < z) ⊓ ¬ᵖ (y < z) ] is-min = {! !} is-max : (x y z : ℤ) → [ ¬ᵖ (z < max x y) ⇔ ¬ᵖ (z < x) ⊓ ¬ᵖ (z < y) ] is-max = {! !} sucℤ-pos-suc : ∀ n → sucℤ (pos n) ≡ pos (suc n) sucℤ-pos-suc x = refl -- holds definitionally +-preserves-pos : ∀ x y → pos x + pos y ≡ pos (x +ⁿ y) +-preserves-pos zero y = refl +-preserves-pos (suc x) zero = transport (λ i → sucℤ (+-comm (pos 0) (pos x) i) ≡ pos (suc (+ⁿ-comm 0 x i))) refl +-preserves-pos (suc x) (suc y) = λ i → sucℤ (+-preserves-pos x (suc y) i) -- +-reflects-< : ∀ a b x → [ (a + x) < (b + x) ] → [ a < b ] -- +-reflects-< a b x a+x<b+x with reprℤ a | reprℤ b | reprℤ x | reprℤ (a + x) | reprℤ (b + x) -- | inspect-reprℤ a -- | inspect-reprℤ b -- | inspect-reprℤ x -- | inspect-reprℤ (a + x) -- | inspect-reprℤ (b + x) -- | pathTo⇒ (<≡<ʳ (a + x) (b + x)) a+x<b+x -- | pathTo⇐ (<≡<ʳ a b) -- ... | spos , a' | spos , b' | sx , x' | spos , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | spos , a' | spos , b' | sx , x' | sneg , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | spos , a' | spos , b' | sx , x' | sneg , a+x | sneg , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | spos , a' | sneg , b' | sx , x' | spos , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | spos , a' | sneg , b' | sx , x' | sneg , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | spos , a' | sneg , b' | sx , x' | sneg , a+x | sneg , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | sneg , a' | spos , b' | sx , x' | spos , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | sneg , a' | spos , b' | sx , x' | sneg , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | sneg , a' | spos , b' | sx , x' | sneg , a+x | sneg , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | sneg , a' | sneg , b' | sx , x' | spos , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | sneg , a' | sneg , b' | sx , x' | sneg , a+x | spos , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} -- ... | sneg , a' | sneg , b' | sx , x' | sneg , a+x | sneg , b+x | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | [ x≡ ]ⁱ' | [ a+x≡ ]ⁱ' | [ b+x≡ ]ⁱ' | p | q = q {! !} +-identity-posˡ : ∀ a → pos zero + a ≡ a +-identity-posˡ a = refl +-identity-posʳ : ∀ a → a + pos zero ≡ a +-identity-posʳ a = +-comm a (pos zero) ∙ +-identity-posˡ a -- -_ : ℤ → ℤ -- - signed s n = signed (not s) n -- - posneg i = posneg (~ i) -- -- _+_ : ℤ → ℤ → ℤ -- (signed _ zero) + n = n -- (posneg _) + n = n -- (pos (suc m)) + n = sucℤ (pos m + n) -- (neg (suc m)) + n = predℤ (neg m + n) pos≡-neg : ∀ n → pos n ≡ - neg n pos≡-neg n = refl -pos≡neg : ∀ n → - pos n ≡ neg n -pos≡neg n = refl suc-neg-suc≡neg : ∀ n → sucℤ (neg (suc n)) ≡ neg n suc-neg-suc≡neg n = refl pos+neg≡0 : ∀ n → pos n + neg n ≡ 0 pos+neg≡0 zero = sym posneg pos+neg≡0 (suc n) = transport ( pos n + neg n ≡ pos 0 ≡⟨ (λ i → +-comm (pos n) (neg n) i ≡ pos 0) ⟩ neg n + pos n ≡ pos 0 ≡⟨ refl ⟩ (sucℤ (neg (suc n)) + pos n) ≡ pos 0 ≡⟨ (λ i → sucℤ-+ˡ (neg (suc n)) (pos n) (~ i) ≡ pos 0) ⟩ sucℤ (neg (suc n) + pos n) ≡ pos 0 ≡⟨ (λ i → sucℤ (+-comm (pos n) (neg (suc n)) (~ i)) ≡ pos 0) ⟩ sucℤ (pos n + neg (suc n)) ≡ pos 0 ∎) (pos+neg≡0 n) neg+pos≡0 : ∀ n → neg n + pos n ≡ 0 neg+pos≡0 n = +-comm (neg n) (pos n) ∙ pos+neg≡0 n +-inverseʳ : ∀ a → a + (- a) ≡ 0 +-inverseʳ a with reprℤ a | inspect-reprℤ a ... | spos , a' | [ a≡ ]ⁱ' = transport (λ i → a≡ (~ i) + (- a≡ (~ i)) ≡ pos 0) (pos+neg≡0 a') ... | sneg , a' | [ a≡ ]ⁱ' = transport (λ i → a≡ (~ i) + (- a≡ (~ i)) ≡ pos 0) (neg+pos≡0 a') +-inverseˡ : ∀ a → (- a) + a ≡ 0 +-inverseˡ a = +-comm (- a) a ∙ +-inverseʳ a +-inverse : (x : ℤ) → (x + (- x) ≡ pos 0) × ((- x) + x ≡ pos 0) +-inverse x .fst = +-inverseʳ x +-inverse x .snd = +-inverseˡ x -- -on-reprℤ : ∀ a → (sign (- a) , abs (- a)) ≡ (not (sign a) , abs a) -- -on-reprℤ (pos zero) = {! !} -- Goal (spos , 0) ≡ (sneg , 0) -- -on-reprℤ (pos (suc n)) = {! !} -- -on-reprℤ (neg n) = {! !} -- -on-reprℤ (posneg i) = {! !} -flips-< : ∀ a b → [ a < b ] → [ (- b) < (- a) ] -flips-< a b a<b with reprℤ a | reprℤ b | inspect-reprℤ a | inspect-reprℤ b | pathTo⇒ (<≡<ʳ a b) a<b | pathTo⇐ (<≡<ʳ (- b) (- a)) ... | spos , zero | spos , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r p) ... | sneg , zero | spos , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r (⊥-elim $ <-irrefl a $ subst (λ p → [ a < p ]) (b≡ ∙ posneg ∙ sym a≡) a<b)) ... | sneg , zero | sneg , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r p) ... | spos , zero | spos , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r tt) ... | sneg , zero | spos , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r tt) ... | sneg , zero | sneg , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r p) ... | spos , suc a' | spos , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r (¬-<ⁿ-zero p)) ... | sneg , suc a' | spos , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r (0<ⁿsuc _)) ... | sneg , suc a' | sneg , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r (0<ⁿsuc _)) ... | spos , suc a' | spos , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r p) ... | sneg , suc a' | spos , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r tt) ... | sneg , suc a' | sneg , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (sym λ i → fst ((sign (- b≡ i) , abs (- b≡ i)) <ʳ (sign (- a≡ i) , abs (- a≡ i)))) in q (r p) -- suc-reflects-< : ∀ a b → [ sucℤ a < sucℤ b ] → [ a < b ] -- suc-reflects-< (pos zero) (pos zero) sa<sb = ⊥-elim $ <-irrefl (pos 1) sa<sb -- suc-reflects-< (pos zero) (pos (suc n₁)) sa<sb = sucⁿ-creates-<ⁿ 0 (suc n₁) .snd sa<sb -- suc-reflects-< (pos zero) (neg zero) sa<sb = {! !} -- suc-reflects-< (pos zero) (neg (suc n₁)) sa<sb = {! !} -- suc-reflects-< (pos (suc n₀)) (pos zero) sa<sb = {! !} -- suc-reflects-< (pos (suc n₀)) (pos (suc n₁)) sa<sb = {! !} -- suc-reflects-< (pos (suc n₀)) (neg zero) sa<sb = {! !} -- suc-reflects-< (pos (suc n₀)) (neg (suc n₁)) sa<sb = {! !} -- suc-reflects-< (neg zero) (pos zero) sa<sb = {! !} -- suc-reflects-< (neg zero) (pos (suc n₁)) sa<sb = {! !} -- suc-reflects-< (neg zero) (neg zero) sa<sb = {! !} -- suc-reflects-< (neg zero) (neg (suc n₁)) sa<sb = {! !} -- suc-reflects-< (neg (suc n₀)) (pos zero) sa<sb = {! !} -- suc-reflects-< (neg (suc n₀)) (pos (suc n₁)) sa<sb = {! !} -- suc-reflects-< (neg (suc n₀)) (neg zero) sa<sb = {! !} -- suc-reflects-< (neg (suc n₀)) (neg (suc n₁)) sa<sb = {! !} -- suc-reflects-< (signed s₀ n₀) (posneg j) sa<sb = {! !} -- suc-reflects-< (posneg i) (signed s₁ n₁) sa<sb = {! !} -- suc-reflects-< (posneg i) (posneg j) sa<sb = {! !} suc-reflects-< : ∀ a b → [ sucℤ a < sucℤ b ] → [ a < b ] suc-reflects-< a b sa<sb with reprℤ a | reprℤ b | inspect-reprℤ a | inspect-reprℤ b | pathTo⇒ (<≡<ʳ (sucℤ a) (sucℤ b)) sa<sb | pathTo⇐ (<≡<ʳ a b) ... | spos , a' | spos , b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (sign (sucℤ (a≡ i)) , abs (sucℤ (a≡ i))) <ʳ (sign (sucℤ (b≡ i)) , abs (sucℤ (b≡ i))) ]) p in q (sucⁿ-creates-<ⁿ a' b' .snd r) -- ... | spos , a' | sneg , b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (sign (sucℤ (a≡ i)) , abs (sucℤ (a≡ i))) <ʳ (sign (sucℤ (b≡ i)) , abs (sucℤ (b≡ i))) ]) p -- in q {! !} ... | spos , a' | sneg , 0 | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (sign (sucℤ (a≡ i)) , abs (sucℤ (a≡ i))) <ʳ (sign (sucℤ (b≡ i)) , abs (sucℤ (b≡ i))) ]) p in q (¬-<ⁿ-zero $ sucⁿ-creates-<ⁿ a' 0 .snd r) ... | spos , a' | sneg , suc 0 | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (sign (sucℤ (a≡ i)) , abs (sucℤ (a≡ i))) <ʳ (sign (sucℤ (b≡ i)) , abs (sucℤ (b≡ i))) ]) p in q (¬-<ⁿ-zero r) ... | spos , a' | sneg , suc (suc b') | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (sign (sucℤ (a≡ i)) , abs (sucℤ (a≡ i))) <ʳ (sign (sucℤ (b≡ i)) , abs (sucℤ (b≡ i))) ]) p in q r ... | sneg , a' | spos , b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = q tt ... | sneg , zero | sneg , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = q (⊥-elim $ <-irrefl (sucℤ a) $ subst (λ p → [ sucℤ a < sucℤ p ]) (b≡ ∙ sym a≡) sa<sb) ... | sneg , zero | sneg , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = q {! !} ... | sneg , suc a' | sneg , zero | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = q (0<ⁿsuc _) ... | sneg , suc a' | sneg , suc b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (sign (sucℤ (a≡ i)) , abs (sucℤ (a≡ i))) <ʳ (sign (sucℤ (b≡ i)) , abs (sucℤ (b≡ i))) ]) p in q {! !} -- ... | sneg , a' | sneg , b' | [ a≡ ]ⁱ' | [ b≡ ]ⁱ' | p | q = let r = transport (λ i → [ (- sucℤ (b≡ i)) < (- sucℤ (a≡ i)) ] ) -- in q {! sa<sb !} -- [ (a + pos (suc n)) < (b + pos (suc n)) ] → +-reflects-< : ∀ a b x → [ (a + x) < (b + x) ] → [ a < b ] +-reflects-< a b (pos (suc n)) a+x<b+x = +-reflects-< a b (pos n) {! !} +-reflects-< a b (neg (suc n)) a+x<b+x = {! !} -- +-reflects-< a b (pos zero) a+x<b+x = pathTo⇒ (λ i → +-identity-posʳ a i < +-identity-posʳ b i) a+x<b+x +-reflects-< a b (pos zero) a+x<b+x = pathTo⇒ (λ i → +-comm a (pos zero) i < +-comm b (pos zero) i) a+x<b+x +-reflects-< a b (neg zero) a+x<b+x = pathTo⇒ (λ i → +-comm a (neg zero) i < +-comm b (neg zero) i) a+x<b+x +-reflects-< a b (posneg i) a+x<b+x = pathTo⇒ (λ j → +-comm a (posneg i) j < +-comm b (posneg i) j) a+x<b+x +-<-ext : (w x y z : ℤ) → [ (w + x) < (y + z) ] → [ (w < y) ⊔ (x < z) ] +-<-ext w x y z r with w ≟ y | x ≟ z ... | lt w<y | q = inlᵖ w<y ... | eq w≡y | q = inrᵖ {! +-injˡ y x z !} ... | gt y<w | q = {! !} ·-preserves-< : (x y z : ℤ) → [ 0 < z ] → [ x < y ] → [ (x * z) < (y * z) ] ·-preserves-< = {! !} +-Semigroup : [ isSemigroup _+_ ] +-Semigroup .IsSemigroup.is-set = isSetℤ +-Semigroup .IsSemigroup.is-assoc = +-assoc ·-Semigroup : [ isSemigroup _*_ ] ·-Semigroup .IsSemigroup.is-set = isSetℤ ·-Semigroup .IsSemigroup.is-assoc = *-assoc +-Monoid : [ isMonoid 0 _+_ ] +-Monoid .IsMonoid.is-Semigroup = +-Semigroup +-Monoid .IsMonoid.is-identity x = +-identityʳ x , refl ·-Monoid : [ isMonoid 1 _*_ ] ·-Monoid .IsMonoid.is-Semigroup = ·-Semigroup ·-Monoid .IsMonoid.is-identity x = *-identityʳ x , *-identityˡ x is-Semiring : [ isSemiring 0 1 _+_ _*_ ] is-Semiring .IsSemiring.+-Monoid = +-Monoid is-Semiring .IsSemiring.·-Monoid = ·-Monoid is-Semiring .IsSemiring.+-comm = +-comm is-Semiring .IsSemiring.is-dist x y z = sym (*-distribˡ x y z) , sym (*-distribʳ x y z) is-CommSemiring : [ isCommSemiring 0 1 _+_ _*_ ] is-CommSemiring .IsCommSemiring.is-Semiring = is-Semiring is-CommSemiring .IsCommSemiring.·-comm = *-comm <-StrictLinearOrder : [ isStrictLinearOrder _<_ ] <-StrictLinearOrder .IsStrictLinearOrder.is-irrefl = <-irrefl <-StrictLinearOrder .IsStrictLinearOrder.is-trans a b c = <-trans a b c <-StrictLinearOrder .IsStrictLinearOrder.is-tricho a b with a ≟ b ... | lt a<b = inl (inl a<b) ... | eq a≡b = inr ∣ a≡b ∣ ... | gt b<a = inl (inr b<a) ≤-isLattice : [ isLattice (λ x y → ¬ᵖ (y < x)) min max ] ≤-isLattice .IsLattice.≤-PartialOrder = linearorder⇒partialorder _ (≤'-isLinearOrder <-StrictLinearOrder) ≤-isLattice .IsLattice.is-min = is-min ≤-isLattice .IsLattice.is-max = is-max is-LinearlyOrderedCommSemiring : [ isLinearlyOrderedCommSemiring 0 1 _+_ _*_ _<_ min max ] is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.is-CommSemiring = is-CommSemiring is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.<-StrictLinearOrder = <-StrictLinearOrder is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.≤-isLattice = ≤-isLattice is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.+-<-ext = +-<-ext is-LinearlyOrderedCommSemiring .IsLinearlyOrderedCommSemiring.·-preserves-< = ·-preserves-< is-LinearlyOrderedCommRing : [ isLinearlyOrderedCommRing 0 1 _+_ _*_ -_ _<_ min max ] is-LinearlyOrderedCommRing .IsLinearlyOrderedCommRing.is-LinearlyOrderedCommSemiring = is-LinearlyOrderedCommSemiring is-LinearlyOrderedCommRing .IsLinearlyOrderedCommRing.+-inverse = +-inverse ℤbundle : LinearlyOrderedCommRing {ℓ-zero} {ℓ-zero} ℤbundle .LinearlyOrderedCommRing.Carrier = ℤ ℤbundle .LinearlyOrderedCommRing.0f = 0 ℤbundle .LinearlyOrderedCommRing.1f = 1 ℤbundle .LinearlyOrderedCommRing._+_ = _+_ ℤbundle .LinearlyOrderedCommRing._·_ = _*_ ℤbundle .LinearlyOrderedCommRing.-_ = -_ ℤbundle .LinearlyOrderedCommRing.min = min ℤbundle .LinearlyOrderedCommRing.max = max ℤbundle .LinearlyOrderedCommRing._<_ = _<_ ℤbundle .LinearlyOrderedCommRing.is-LinearlyOrderedCommRing = is-LinearlyOrderedCommRing
{ "alphanum_fraction": 0.4755294912, "avg_line_length": 51.192224622, "ext": "agda", "hexsha": "9f9c3fc4d1c76659e5a1a44613d5a02445596df6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Instances/QuoIntUnfinished.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Instances/QuoIntUnfinished.agda", "max_line_length": 252, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Instances/QuoIntUnfinished.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 10872, "size": 23702 }
open import Oscar.Prelude open import Oscar.Data.Maybe open import Oscar.Class open import Oscar.Class.Fmap open import Oscar.Class.Pure open import Oscar.Class.Apply open import Oscar.Class.Bind open import Oscar.Class.IsFunctor open import Oscar.Class.IsPrefunctor open import Oscar.Class.IsPrecategory open import Oscar.Class.IsCategory import Oscar.Property.Category.Function import Oscar.Class.Reflexivity.Function import Oscar.Class.Transextensionality.Proposequality module Oscar.Property.Monad.Maybe where instance 𝓕mapMaybe : ∀ {𝔬₁ 𝔬₂} → 𝓕map Maybe 𝔬₁ 𝔬₂ 𝓕mapMaybe .𝓕map.fmap′ f ∅ = ∅ 𝓕mapMaybe .𝓕map.fmap′ f (↑ x) = ↑ f x 𝓟ureMaybe : ∀ {𝔬} → 𝓟ure (Maybe {𝔬}) 𝓟ureMaybe .𝓟ure.pure = ↑_ 𝓐pplyMaybe : ∀ {𝔬₁ 𝔬₂} → 𝓐pply Maybe 𝔬₁ 𝔬₂ 𝓐pplyMaybe .𝓐pply.apply ∅ x = ∅ 𝓐pplyMaybe .𝓐pply.apply (↑ f) x = fmap′ f x 𝓑indMaybe : ∀ {𝔬₁ 𝔬₂} → 𝓑ind Maybe 𝔬₁ 𝔬₂ 𝓑indMaybe .𝓑ind.bind ∅ _ = ∅ 𝓑indMaybe .𝓑ind.bind (↑ x) f = f x {- FmapMaybe : ∀ {𝔬} → Fmap (Maybe {𝔬}) FmapMaybe .Fmap.fmap = fmap′ FmapMaybe .Fmap.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`IsPrecategory₁ = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`IsPrecategory₂ = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`𝓢urjtranscommutativity = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsPrefunctor .IsPrefunctor.`𝓢urjextensionality = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsCategory₁ = ! FmapMaybe .Fmap.isFunctor .IsFunctor.`IsCategory₂ .IsCategory.`IsPrecategory .IsPrecategory.`𝓣ransextensionality = {!!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsCategory₂ .IsCategory.`IsPrecategory .IsPrecategory.`𝓣ransassociativity = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsCategory₂ .IsCategory.`𝓣ransleftidentity = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`IsCategory₂ .IsCategory.`𝓣ransrightidentity = {!!} FmapMaybe .Fmap.isFunctor .IsFunctor.`𝒮urjidentity = {!!} -}
{ "alphanum_fraction": 0.7429013939, "avg_line_length": 39.5306122449, "ext": "agda", "hexsha": "c952cb6730c604a43f7ce82fa58145b2129049c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Monad/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Monad/Maybe.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Monad/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 746, "size": 1937 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.FiberOfWedgeToProduct {i j} (X : Ptd i) (Y : Ptd j) where private X⊙×Y = X ⊙× Y private to-glue-template : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)} (q : p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ]) → jright (snd×= p) == jleft (fst×= p') :> (pt X == x) * (pt Y == y) to-glue-template {p = p} {p' = p'} q = ! (jglue (fst×= p) (snd×= p)) ∙' ap (jleft ∘ fst×=) (↓-∨to×=cst-out q) module To (x : de⊙ X) (y : de⊙ Y) = WedgeElim {P = λ x∨y → ∨-to-× x∨y == (x , y) → (pt X == x) * (pt Y == y)} (λ x p → jright (snd×= p)) (λ y p → jleft (fst×= p)) (↓-app→cst-in to-glue-template) to : ∀ x y → hfiber ∨-to-× (x , y) → (pt X == x) * (pt Y == y) to x y = uncurry (To.f x y) private -- the only needed β-rule for [to] applied to [wglue]. abstract to-glue-idp-β : ap (to (pt X) (pt Y)) (pair= wglue (↓-∨to×=cst-in idp)) == ! (jglue idp idp) to-glue-idp-β = split-ap2 (to _ _) wglue (↓-∨to×=cst-in idp) ∙ ap (λ p → ↓-app→cst-out p (↓-∨to×=cst-in idp)) (To.glue-β _ _) ∙ ↓-app→cst-β to-glue-template (↓-∨to×=cst-in idp) ∙ ap (λ p → ! (jglue idp idp) ∙' ap (left ∘ fst×=) p) (↓-∨to×=cst-β idp) private from-glue-template : ∀ {x y} (x-path : pt X == x) (y-path : pt Y == y) → (winr y , pair×= x-path idp) == (winl x , pair×= idp y-path) :> hfiber ∨-to-× (x , y) from-glue-template idp idp = ! $ pair= wglue (↓-∨to×=cst-in idp) module From (x : de⊙ X) (y : de⊙ Y) = JoinRec {C = hfiber ∨-to-× (x , y)} (λ x-path → winr y , pair×= x-path idp) (λ y-path → winl x , pair×= idp y-path) from-glue-template from : ∀ x y → (pt X == x) * (pt Y == y) → hfiber ∨-to-× (x , y) from = From.f private abstract to-from-glue-template : ∀ {x y} (x-path : pt X == x) (y-path : pt Y == y) → ap left (fst×=-β x-path idp) == ap right (snd×=-β idp y-path) [ (λ j → to x y (from x y j) == j) ↓ jglue x-path y-path ] to-from-glue-template idp idp = ↓-∘=idf-in' (to _ _) (from _ _) $ ap (ap (to _ _)) (From.glue-β _ _ idp idp) ∙ ap-! (to _ _) (pair= wglue (↓-∨to×=cst-in idp)) ∙ ap ! to-glue-idp-β ∙ !-! (jglue idp idp) to-from : ∀ x y j → to x y (from x y j) == j to-from x y = Join-elim {P = λ j → to x y (from x y j) == j} (λ x-path → ap left (fst×=-β x-path idp)) (λ y-path → ap right (snd×=-β idp y-path)) to-from-glue-template private abstract from-to-winl-template : ∀ {x x' y} (xy-path : (x' , pt Y) == (x , y)) → (winl x , pair×= idp (snd×= xy-path)) == (winl x' , xy-path) :> hfiber (∨-to-× {X = X} {Y = Y}) (x , y) from-to-winl-template idp = idp from-to-winr-template : ∀ {x y y'} (xy-path : (pt X , y') == (x , y)) → (winr y , pair×= (fst×= xy-path) idp) == (winr y' , xy-path) :> hfiber (∨-to-× {X = X} {Y = Y}) (x , y) from-to-winr-template idp = idp -- this version enables path induction on [q] which -- turns *both* [p] and [p'] into [idp]. yay! from-to-glue-template' : ∀ {x y} (p p' : (pt X , pt Y) == (x , y)) (q : p == p') → from-to-winl-template p == from-to-winr-template p' [ (λ xy → from x y (to x y xy) == xy) ↓ pair= wglue (↓-∨to×=cst-in q) ] from-to-glue-template' idp .idp idp = ↓-∘=idf-in' (from (pt X) (pt Y)) (to (pt X) (pt Y)) $ ap (ap (from _ _)) to-glue-idp-β ∙ ap-! (from _ _) (jglue idp idp) ∙ ap ! (From.glue-β _ _ idp idp) ∙ !-! (pair= wglue (↓-∨to×=cst-in idp)) from-to-glue-template : ∀ {x y} (p p' : (pt X , pt Y) == (x , y)) (q : p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ]) → from-to-winl-template p == from-to-winr-template p' [ (λ xy → from x y (to x y xy) == xy) ↓ pair= wglue q ] from-to-glue-template {x} {y} p p' q = transport (λ q → from-to-winl-template p == from-to-winr-template p' [ (λ xy → from x y (to x y xy) == xy) ↓ pair= wglue q ]) (↓-∨to×=cst-η q) (from-to-glue-template' p p' (↓-∨to×=cst-out q)) from-to : ∀ x y hf → from x y (to x y hf) == hf from-to x y = uncurry $ Wedge-elim {P = λ w → ∀ p → from x y (To.f x y w p) == (w , p)} (λ x → from-to-winl-template) (λ y → from-to-winr-template) (↓-Π-in λ {p} {p'} → from-to-glue-template p p') fiber-thm : ∀ x y → hfiber ∨-to-× (x , y) ≃ (pt X == x) * (pt Y == y) fiber-thm x y = equiv (to x y) (from x y) (to-from x y) (from-to x y)
{ "alphanum_fraction": 0.4595455511, "avg_line_length": 40.2478632479, "ext": "agda", "hexsha": "9e979386e976693ed0b7d507111f4b877a023a6c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/FiberOfWedgeToProduct.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/FiberOfWedgeToProduct.agda", "max_line_length": 81, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/FiberOfWedgeToProduct.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1963, "size": 4709 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary module Algorithms.List.Sort.IsSort {c l₁ l₂} (DTO : DecTotalOrder c l₁ l₂) where -- agda-stdlib open import Level import Relation.Binary.Reasoning.Setoid as SetoidReasoning open import Data.List import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality import Data.List.Relation.Binary.Permutation.Setoid as PermutationSetoid open import Data.List.Relation.Unary.Linked as Linked -- agda-misc open import Algorithms.List.Sort.Common DTO import Algorithms.List.Sort.Insertion as I import Algorithms.List.Sort.Insertion.Properties as Iₚ open DecTotalOrder DTO renaming (Carrier to A) open PermutationSetoid Eq.setoid open SetoidEquality Eq.setoid open I.InsertionSortOperation _≤?_ renaming (sort to Isort) record IsSort (sort : List A → List A) : Set (c ⊔ l₁ ⊔ l₂) where field sorted : (xs : List A) → Sorted (sort xs) perm : (xs : List A) → sort xs ↭ xs open Iₚ DTO sort-Isort : ∀ xs → sort xs ≋ Isort xs sort-Isort xs = Sorted-unique (↭-trans (perm xs) (↭-sym (sort-permutation xs))) (sorted xs) (sort-Sorted xs) isSort-unique : ∀ {sort₁ sort₂ : List A → List A} → IsSort sort₁ → IsSort sort₂ → ∀ xs → sort₁ xs ≋ sort₂ xs isSort-unique {sort₁} {sort₂} sort₁-isSort sort₂-isSort xs = begin sort₁ xs ≈⟨ IsSort.sort-Isort sort₁-isSort xs ⟩ Isort xs ≈⟨ ≋-sym (IsSort.sort-Isort sort₂-isSort xs) ⟩ sort₂ xs ∎ where open SetoidReasoning ≋-setoid
{ "alphanum_fraction": 0.7007926024, "avg_line_length": 33.6444444444, "ext": "agda", "hexsha": "a7416b778b084e2084137a83ae00b0a5d6e3c408", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Algorithms/List/Sort/IsSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Algorithms/List/Sort/IsSort.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Algorithms/List/Sort/IsSort.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 462, "size": 1514 }
module WithInParModule (A : Set) where data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where true : Bool false : Bool isZero : Nat -> Bool isZero zero = true isZero (suc _) = false f : Nat -> Nat f n with isZero n f n | true = zero f n | false = suc zero g : Nat -> Nat g zero = zero g (suc n) with g n g (suc n) | zero = n g (suc n) | suc _ = n -- Andreas, 2014-11-06 outlawing with on module parameter. -- The following will trigger an error: -- data T : Set where -- tt : T -- module A (x : T) where -- h : T -- h with x -- illegal! -- h | y = y -- postulate -- C : T -> Set -- test : C (A.h tt) -> C tt -- test x = x
{ "alphanum_fraction": 0.5692995529, "avg_line_length": 15.25, "ext": "agda", "hexsha": "f1995812a43d58d7e73c82e0978e2f14cd3131cf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/WithInParModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/WithInParModule.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/WithInParModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 244, "size": 671 }
open import Level using (_⊔_) open import Function using (_$_) open import Data.Empty using (⊥) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Rel; Reflexive; Transitive; Antisymmetric; _Respects₂_; _Respectsʳ_; _Respectsˡ_; Symmetric; Decidable; Irrelevant) open import Relation.Binary.PropositionalEquality using (_≡_) renaming (refl to ≡-refl; cong to ≡-cong) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Algebra.Bundles using (CommutativeSemiring) module AKS.Algebra.Divisibility {c ℓ} (S : CommutativeSemiring c ℓ) where open import AKS.Nat using (ℕ; _<_; <-irrelevant) open import AKS.Nat.WellFounded using (Acc; acc; <-well-founded) open CommutativeSemiring S using (_+_; _*_; 0#; 1#) renaming (Carrier to C) open CommutativeSemiring S using (_≈_; setoid; refl; sym; trans) open import Relation.Binary.Reasoning.Setoid setoid open CommutativeSemiring S using (+-cong; +-congˡ; +-congʳ; +-identityʳ; +-comm; +-assoc) open CommutativeSemiring S using (*-assoc; *-identityˡ; *-identityʳ; *-congˡ; *-congʳ; zeroˡ; zeroʳ; distribʳ; distribˡ; *-comm) open import Algebra.Core using (Op₂) open import Algebra.Definitions _≈_ using (Commutative; Congruent₂; LeftCongruent; RightCongruent) open import AKS.Algebra.Structures C _≈_ using (module Divisibility; module Modulus) open Divisibility _*_ using (_∣_; _∤_; divides; IsGCD) public infix 4 _≉_ _≉_ : Rel C ℓ x ≉ y = x ≈ y → ⊥ ∣-refl : Reflexive _∣_ ∣-refl {x} = divides 1# (sym (*-identityˡ x)) ∣-trans : Transitive _∣_ ∣-trans {x} {y} {z} (divides q₁ y≈q₁*x) (divides q₂ z≈q₂*y) = divides (q₂ * q₁) $ begin z ≈⟨ z≈q₂*y ⟩ q₂ * y ≈⟨ *-congˡ y≈q₁*x ⟩ q₂ * (q₁ * x) ≈⟨ sym (*-assoc q₂ q₁ x) ⟩ (q₂ * q₁) * x ∎ ∣-respʳ : _∣_ Respectsʳ _≈_ ∣-respʳ {y} {x₁} {x₂} x₁≈x₂ (divides q x₁≈q*y) = divides q $ begin x₂ ≈⟨ sym x₁≈x₂ ⟩ x₁ ≈⟨ x₁≈q*y ⟩ q * y ∎ ∣-respˡ : _∣_ Respectsˡ _≈_ ∣-respˡ {y} {x₁} {x₂} x₁≈x₂ (divides q y≈q*x₁) = divides q $ begin y ≈⟨ y≈q*x₁ ⟩ q * x₁ ≈⟨ *-congˡ x₁≈x₂ ⟩ q * x₂ ∎ ∣-resp : _∣_ Respects₂ _≈_ ∣-resp = ∣-respʳ , ∣-respˡ infix 10 1∣_ _∣0 1∣_ : ∀ n → 1# ∣ n 1∣ n = divides n (sym (*-identityʳ n)) _∣0 : ∀ n → n ∣ 0# n ∣0 = divides 0# (sym (zeroˡ n)) 0∣n⇒n≈0 : ∀ {n} → 0# ∣ n → n ≈ 0# 0∣n⇒n≈0 {n} (divides q n≈q*0) = begin n ≈⟨ n≈q*0 ⟩ q * 0# ≈⟨ zeroʳ q ⟩ 0# ∎ ∣n⇒∣m*n : ∀ i n m → i ∣ n → i ∣ m * n ∣n⇒∣m*n i n m (divides q n≈q*i) = divides (m * q) $ begin m * n ≈⟨ *-congˡ n≈q*i ⟩ m * (q * i) ≈⟨ sym (*-assoc m q i) ⟩ m * q * i ∎ ∣n⇒∣n*m : ∀ i n m → i ∣ n → i ∣ n * m ∣n⇒∣n*m i n m i∣n = ∣-respʳ (*-comm m n) (∣n⇒∣m*n i n m i∣n) module GCD {gcd : Op₂ C} (isGCD : IsGCD gcd) (∣-antisym : Antisymmetric _≈_ _∣_) where open IsGCD isGCD ∣1⇒≈1 : ∀ {n} → n ∣ 1# → n ≈ 1# ∣1⇒≈1 {n} n∣1 = ∣-antisym n∣1 (1∣ n) gcd[0,0]≈0 : gcd 0# 0# ≈ 0# gcd[0,0]≈0 = ∣-antisym (gcd 0# 0# ∣0) (gcd-greatest ∣-refl ∣-refl) gcd-comm : Commutative gcd gcd-comm a b = ∣-antisym (gcd-greatest (gcd[a,b]∣b a b) (gcd[a,b]∣a a b)) (gcd-greatest (gcd[a,b]∣b b a) (gcd[a,b]∣a b a)) gcd[0,a]≈a : ∀ a → gcd 0# a ≈ a gcd[0,a]≈a a = ∣-antisym (gcd[a,b]∣b 0# a) (gcd-greatest (a ∣0) ∣-refl) gcd[a,0]≈a : ∀ a → gcd a 0# ≈ a gcd[a,0]≈a a = ∣-antisym (gcd[a,b]∣a a 0#) (gcd-greatest ∣-refl (a ∣0)) gcd[0,a]≈1⇒a≈1 : ∀ a → gcd 0# a ≈ 1# → a ≈ 1# gcd[0,a]≈1⇒a≈1 a gcd[0,a]≈1 = ∣1⇒≈1 (∣-respʳ gcd[0,a]≈1 (gcd-greatest (a ∣0) ∣-refl)) gcd[a,0]≈1⇒a≈1 : ∀ a → gcd a 0# ≈ 1# → a ≈ 1# gcd[a,0]≈1⇒a≈1 a gcd[a,0]≈1 = ∣1⇒≈1 (∣-respʳ gcd[a,0]≈1 (gcd-greatest ∣-refl (a ∣0))) gcd[a,b]≈0⇒a≈0 : ∀ {a b} → gcd a b ≈ 0# → a ≈ 0# gcd[a,b]≈0⇒a≈0 {a} {b} gcd[a,b]≈0 = 0∣n⇒n≈0 (∣-respˡ gcd[a,b]≈0 (gcd[a,b]∣a a b)) gcd[a,b]≈0⇒b≈0 : ∀ {a b} → gcd a b ≈ 0# → b ≈ 0# gcd[a,b]≈0⇒b≈0 {a} {b} gcd[a,b]≈0 = 0∣n⇒n≈0 (∣-respˡ gcd[a,b]≈0 (gcd[a,b]∣b a b)) gcd[a,1]≈1 : ∀ a → gcd a 1# ≈ 1# gcd[a,1]≈1 a = ∣-antisym (gcd[a,b]∣b a 1#) (gcd-greatest (1∣ a) ∣-refl) gcd[1,a]≈1 : ∀ a → gcd 1# a ≈ 1# gcd[1,a]≈1 a = ∣-antisym (gcd[a,b]∣a 1# a) (gcd-greatest ∣-refl (1∣ a)) -- gcd[d*a,d*b]≈d*gcd[a,b] : ∀ a b d → gcd (d * a) (d * b) ≈ d * gcd a b -- gcd[d*a,d*b]≈d*gcd[a,b] = ? a≉0⇒gcd[a,b]≉0 : ∀ a b → a ≉ 0# → gcd a b ≉ 0# a≉0⇒gcd[a,b]≉0 a b a≉0 gcd[a,b]≈0 = a≉0 (gcd[a,b]≈0⇒a≈0 gcd[a,b]≈0) b≉0⇒gcd[a,b]≉0 : ∀ a b → b ≉ 0# → gcd a b ≉ 0# b≉0⇒gcd[a,b]≉0 a b b≉0 gcd[a,b]≈0 = b≉0 (gcd[a,b]≈0⇒b≈0 gcd[a,b]≈0) gcd-cong : Congruent₂ gcd gcd-cong {a} {b} {c} {d} a≈b c≈d = ∣-antisym (gcd-greatest (∣-respʳ a≈b (gcd[a,b]∣a a c)) (∣-respʳ c≈d (gcd[a,b]∣b a c))) (gcd-greatest (∣-respʳ (sym a≈b) (gcd[a,b]∣a b d)) (∣-respʳ (sym c≈d) (gcd[a,b]∣b b d))) gcd-congˡ : LeftCongruent gcd gcd-congˡ c≈d = gcd-cong refl c≈d gcd-congʳ : RightCongruent gcd gcd-congʳ a≈b = gcd-cong a≈b refl infix 4 _⊥_ _⊥_ : C → C → Set ℓ n ⊥ m = gcd n m ≈ 1# ⊥-sym : Symmetric _⊥_ ⊥-sym {x} {y} gcd[x,y]≡1 = begin gcd y x ≈⟨ gcd-comm y x ⟩ gcd x y ≈⟨ gcd[x,y]≡1 ⟩ 1# ∎ ⊥-respʳ : _⊥_ Respectsʳ _≈_ ⊥-respʳ {y} {x₁} {x₂} x₁≈x₂ gcd[y,x₁]≈1 = begin gcd y x₂ ≈⟨ gcd-congˡ (sym x₁≈x₂) ⟩ gcd y x₁ ≈⟨ gcd[y,x₁]≈1 ⟩ 1# ∎ ⊥-respˡ : _⊥_ Respectsˡ _≈_ ⊥-respˡ {y} {x₁} {x₂} x₁≈x₂ gcd[x₁,y]≈1 = begin gcd x₂ y ≈⟨ gcd-congʳ (sym x₁≈x₂) ⟩ gcd x₁ y ≈⟨ gcd[x₁,y]≈1 ⟩ 1# ∎ ⊥-resp : _⊥_ Respects₂ _≈_ ⊥-resp = ⊥-respʳ , ⊥-respˡ module _ (∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ) (_div_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) (_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C) where open Modulus 0# ∣_∣ _mod_ module Euclidean (_≈?_ : Decidable _≈_) (≈-irrelevant : Irrelevant _≈_) (≉-irrelevant : Irrelevant _≉_) (division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ m * (n div m) {m≉0} + (n mod m) {m≉0}) (modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder n m {m≉0}) (mod-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ mod y₁) {y₁≉0} ≈ (x₂ mod y₂) {y₂≉0}) (mod-distribʳ-* : ∀ c a b {b≉0} {b*c≉0} → ((a * c) mod (b * c)) {b*c≉0} ≈ (a mod b) {b≉0} * c) where gcdₕ : ∀ (n m : C) {m≉0 : m ≉ 0#} → Acc _<_ (∣ m ∣ {m≉0}) → C gcdₕ n m {m≉0} (acc downward) with modulus n m {m≉0} ... | 0≈ r≈0 = m ... | 0≉ r≉0 r<m = gcdₕ m (n mod m) (downward r<m) gcd : C → C → C gcd n m with m ≈? 0# ... | yes m≈0 = n ... | no m≉0 = gcdₕ n m {m≉0} <-well-founded ∣b∣a%b⇒∣a : ∀ {c a b} {b≉0 : b ≉ 0#} → c ∣ b → c ∣ (a mod b) {b≉0} → c ∣ a ∣b∣a%b⇒∣a {c} {a} {b} {b≉0} (divides q₁ b≈q₁*c) (divides q₂ a%b≈q₂*c) = divides ((a div b) {b≉0} * q₁ + q₂) $ begin a ≈⟨ division a b {b≉0} ⟩ b * (a div b) + a mod b ≈⟨ +-cong (*-congʳ b≈q₁*c) a%b≈q₂*c ⟩ (q₁ * c) * (a div b) + q₂ * c ≈⟨ +-congʳ (*-comm (q₁ * c) (a div b)) ⟩ (a div b) * (q₁ * c) + q₂ * c ≈⟨ +-congʳ (sym (*-assoc (a div b) q₁ c)) ⟩ ((a div b) * q₁) * c + q₂ * c ≈⟨ sym (distribʳ c ((a div b) * q₁) q₂) ⟩ ((a div b) * q₁ + q₂) * c ∎ gcd[a,b]∣a×gcd[a,b]∣b : ∀ a b → (gcd a b ∣ a) × (gcd a b ∣ b) gcd[a,b]∣a×gcd[a,b]∣b a b with b ≈? 0# ... | yes b≈0 = ∣-refl , (∣-respʳ (sym b≈0) (a ∣0)) ... | no b≉0 = loop a b {b≉0} <-well-founded where loop : ∀ a b {b≉0} (rec : Acc _<_ (∣ b ∣ {b≉0})) → (gcdₕ a b rec ∣ a) × (gcdₕ a b rec ∣ b) loop a b {b≉0} (acc downward) with modulus a b {b≉0} ... | 0≈ r≈0 = ∣b∣a%b⇒∣a ∣-refl (∣-respʳ (sym r≈0) (b ∣0)) , ∣-refl ... | 0≉ r≉0 r<m with loop b (a mod b) (downward r<m) ... | gcd∣b , gcd∣a%b = ∣b∣a%b⇒∣a gcd∣b gcd∣a%b , gcd∣b ∣a∣b⇒∣a%b : ∀ {c a b} {b≉0 : b ≉ 0#} → c ∣ a → c ∣ b → c ∣ (a mod b) {b≉0} ∣a∣b⇒∣a%b {c} {a} {b} {b≉0} (divides q₁ a≈q₁*c) (divides q₂ b≈q₂*c) = divides ((q₁ mod q₂) {q≉0}) $ begin a mod b ≈⟨ mod-cong a≈q₁*c b≈q₂*c {b≉0} {q₂*c≉0} ⟩ (q₁ * c) mod (q₂ * c) ≈⟨ mod-distribʳ-* c q₁ q₂ ⟩ (q₁ mod q₂) * c ∎ where q≉0 : q₂ ≉ 0# q≉0 q₂≈0 = b≉0 $ begin b ≈⟨ b≈q₂*c ⟩ q₂ * c ≈⟨ *-congʳ q₂≈0 ⟩ 0# * c ≈⟨ zeroˡ c ⟩ 0# ∎ q₂*c≉0 : q₂ * c ≉ 0# q₂*c≉0 q₂*c≈0 = b≉0 $ begin b ≈⟨ b≈q₂*c ⟩ q₂ * c ≈⟨ q₂*c≈0 ⟩ 0# ∎ gcd-greatest : ∀ {c a b} → c ∣ a → c ∣ b → c ∣ gcd a b gcd-greatest {c} {a} {b} c∣a c∣b with b ≈? 0# ... | yes b≈0 = c∣a ... | no b≉0 = loop c a b <-well-founded c∣a c∣b where loop : ∀ c a b {b≉0} (rec : Acc _<_ (∣ b ∣ {b≉0})) → c ∣ a → c ∣ b → c ∣ gcdₕ a b rec loop c a b {b≉0} (acc downward) c∣a c∣b with modulus a b {b≉0} ... | 0≈ r≈0 = c∣b ... | 0≉ r≉0 r<m = loop c b (a mod b) (downward r<m) c∣b (∣a∣b⇒∣a%b c∣a c∣b) gcd-isGCD : IsGCD gcd gcd-isGCD = record { gcd[a,b]∣a = λ a b → proj₁ (gcd[a,b]∣a×gcd[a,b]∣b a b) ; gcd[a,b]∣b = λ a b → proj₂ (gcd[a,b]∣a×gcd[a,b]∣b a b) ; gcd-greatest = gcd-greatest } -- open GCD gcd-isGCD ∣-antisym public data Identity (d : C) (a : C) (b : C) : Set (c ⊔ ℓ) where +ʳ : ∀ (x y : C) → d + x * a ≈ y * b → Identity d a b +ˡ : ∀ (x y : C) → d + y * b ≈ x * a → Identity d a b identity-sym : ∀ {d} → Symmetric (Identity d) identity-sym (+ʳ x y pf) = +ˡ y x pf identity-sym (+ˡ x y pf) = +ʳ y x pf identity-base : ∀ {d a} → Identity d d a identity-base {d} {a} = +ˡ 1# 0# $ begin d + 0# * a ≈⟨ +-congˡ (zeroˡ a) ⟩ d + 0# ≈⟨ +-identityʳ d ⟩ d ≈⟨ sym (*-identityˡ d) ⟩ 1# * d ∎ stepʳ : ∀ d x y a b {b≉0} → d + x * b ≈ y * (a mod b) {b≉0} → d + (x + y * (a div b) {b≉0}) * b ≈ y * a stepʳ d x y a b {b≉0} d+x*b≈y*[a%b] = begin d + (x + y * a div b) * b ≈⟨ +-congˡ (distribʳ b x (y * (a div b) {b≉0})) ⟩ d + (x * b + y * a div b * b) ≈⟨ sym (+-assoc d (x * b) (y * a div b * b)) ⟩ (d + x * b) + y * a div b * b ≈⟨ +-cong d+x*b≈y*[a%b] (*-assoc y (a div b) b) ⟩ y * a mod b + y * (a div b * b) ≈⟨ sym (distribˡ y (a mod b) (a div b * b)) ⟩ y * (a mod b + a div b * b) ≈⟨ *-congˡ (+-comm (a mod b) (a div b * b)) ⟩ y * (a div b * b + a mod b) ≈⟨ *-congˡ (+-congʳ (*-comm (a div b) b)) ⟩ y * (b * a div b + a mod b) ≈⟨ *-congˡ (sym (division a b)) ⟩ y * a ∎ stepˡ : ∀ d x y a b {b≉0} → d + y * (a mod b) {b≉0} ≈ x * b → d + y * a ≈ (x + y * (a div b) {b≉0}) * b stepˡ d x y a b {b≉0} d+x*b≈y*[a%b] = begin d + y * a ≈⟨ +-congˡ (*-congˡ (division a b {b≉0})) ⟩ d + y * (b * a div b + a mod b) ≈⟨ +-congˡ (*-congˡ (+-comm (b * a div b) (a mod b))) ⟩ d + y * (a mod b + b * a div b) ≈⟨ +-congˡ (distribˡ y (a mod b) (b * a div b)) ⟩ d + (y * (a mod b) + y * (b * a div b)) ≈⟨ sym (+-assoc d (y * (a mod b)) (y * (b * a div b))) ⟩ (d + y * (a mod b)) + y * (b * a div b) ≈⟨ +-cong d+x*b≈y*[a%b] (*-congˡ (*-comm b (a div b))) ⟩ x * b + y * (a div b * b) ≈⟨ +-congˡ (sym (*-assoc y (a div b) b)) ⟩ x * b + (y * a div b) * b ≈⟨ sym (distribʳ b x (y * a div b)) ⟩ (x + y * (a div b)) * b ∎ identity-step : ∀ {d a b} {b≉0} → Identity d b ((a mod b) {b≉0}) → Identity d a b identity-step {d} {a} {b} {b≉0} (+ʳ x y d+x*b≈y*[a%b]) = +ˡ y (x + y * (a div b)) (stepʳ d x y a b {b≉0} d+x*b≈y*[a%b]) identity-step {d} {a} {b} {b≉0} (+ˡ x y d+y*[a%b]≈x*b) = +ʳ y (x + y * (a div b)) (stepˡ d x y a b {b≉0} d+y*[a%b]≈x*b) data Bézoutₕ (a : C) (b : C) {b≉0 : b ≉ 0#} (rec : Acc _<_ (∣ b ∣ {b≉0})) : Set (c ⊔ ℓ) where lemmaₕ : ∀ d → gcdₕ a b rec ≈ d → Identity d a b → Bézoutₕ a b rec gcdₕ-base : ∀ {a b} {b≉0} {rec : Acc _<_ (∣ b ∣ {b≉0})} (r≈0 : (a mod b) {b≉0} ≈ 0#) → gcdₕ a b rec ≈ b gcdₕ-base {a} {b} {b≉0} {acc downward} [r≈0]₁ with modulus a b {b≉0} ... | 0≈ [r≈0]₂ rewrite ≈-irrelevant [r≈0]₁ [r≈0]₂ = refl ... | 0≉ r≉0 _ = contradiction [r≈0]₁ r≉0 gcdₕ-step : ∀ {d a b} {b≉0} {r≉0 : (a mod b) {b≉0} ≉ 0#} {r<m : ∣ a mod b ∣ {r≉0} < ∣ b ∣ {b≉0}} {downward : ∀ {x} → x < ∣ b ∣ {b≉0} → Acc _<_ x} → gcdₕ b (a mod b) (downward {∣ a mod b ∣} r<m) ≈ d → gcdₕ a b (acc downward) ≈ d gcdₕ-step {d} {a} {b} {b≉0} {[r≉0]₁} {[r<m]₁} gcdₕ[b,a%b]≈d with modulus a b {b≉0} ... | 0≈ r≈0 = contradiction r≈0 [r≉0]₁ ... | 0≉ [r≉0]₂ [r<m]₂ rewrite ≉-irrelevant [r≉0]₁ [r≉0]₂ | <-irrelevant [r<m]₁ [r<m]₂ = gcdₕ[b,a%b]≈d bézoutₕ : ∀ a b {b≉0} (rec : Acc _<_ (∣ b ∣ {b≉0})) → Bézoutₕ a b rec bézoutₕ a b {b≉0} (acc downward) with modulus a b {b≉0} ... | 0≈ r≈0 = lemmaₕ b (gcdₕ-base r≈0) (identity-sym identity-base) ... | 0≉ r≉0 r<m with bézoutₕ b (a mod b) {r≉0} (downward r<m) ... | lemmaₕ d gcdₕ[b,a%b]≈d ident = lemmaₕ d (gcdₕ-step gcdₕ[b,a%b]≈d) (identity-step ident) data Bézout (a : C) (b : C) : Set (c ⊔ ℓ) where lemma : ∀ d → gcd a b ≈ d → Identity d a b → Bézout a b b≈0⇒gcd[a,b]≈a : ∀ a b → b ≈ 0# → gcd a b ≈ a b≈0⇒gcd[a,b]≈a a b b≈0 with b ≈? 0# ... | yes _ = refl ... | no b≉0 = contradiction b≈0 b≉0 gcdₕ⇒gcd : ∀ {d a b} {b≉0} → gcdₕ a b {b≉0} <-well-founded ≈ d → gcd a b ≈ d gcdₕ⇒gcd {d} {a} {b} {[b≉0]₁} gcdₕ[a,b]≈d with b ≈? 0# ... | yes b≈0 = contradiction b≈0 [b≉0]₁ ... | no [b≉0]₂ rewrite ≉-irrelevant [b≉0]₁ [b≉0]₂ = gcdₕ[a,b]≈d bézout : ∀ a b → Bézout a b bézout a b with b ≈? 0# ... | yes b≈0 = lemma a (b≈0⇒gcd[a,b]≈a a b b≈0) identity-base ... | no b≉0 with bézoutₕ a b {b≉0} <-well-founded ... | lemmaₕ d gcdₕ[a,b]≈d ident = lemma d (gcdₕ⇒gcd gcdₕ[a,b]≈d) ident
{ "alphanum_fraction": 0.4715375587, "avg_line_length": 40.2123893805, "ext": "agda", "hexsha": "85616f9e26a9fca746b9f6498ffda7cd0ee6d64c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Algebra/Divisibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Algebra/Divisibility.agda", "max_line_length": 150, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Algebra/Divisibility.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 7467, "size": 13632 }
------------------------------------------------------------------------ -- A semantics which uses continuation-passing style ------------------------------------------------------------------------ module TotalParserCombinators.Semantics.Continuation where open import Algebra open import Codata.Musical.Notation open import Data.List import Data.List.Properties as ListProp open import Data.List.Relation.Binary.BagAndSetEquality using (bag) renaming (_∼[_]_ to _List-∼[_]_) open import Data.Maybe using (Maybe) open import Data.Product as Prod open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_) private module LM {Tok : Set} = Monoid (ListProp.++-monoid Tok) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics as S hiding ([_-_]_⊛_; [_-_]_>>=_) -- The statement x ⊕ s₂ ∈ p · s means that there is some s₁ such that -- s ≡ s₁ ++ s₂ and x ∈ p · s₁. This variant of the semantics is -- perhaps harder to understand, but sometimes easier to work with -- (and it is proved to be language equivalent to the semantics in -- TotalParserCombinators.Semantics). infix 60 <$>_ infixl 50 [_-_]_⊛_ infixl 10 [_-_]_>>=_ infix 4 _⊕_∈_·_ data _⊕_∈_·_ {Tok} : ∀ {R xs} → R → List Tok → Parser Tok R xs → List Tok → Set₁ where return : ∀ {R} {x : R} {s} → x ⊕ s ∈ return x · s token : ∀ {x s} → x ⊕ s ∈ token · x ∷ s ∣-left : ∀ {R x xs₁ xs₂ s s₁} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s ∣-right : ∀ {R x xs₂ s s₁} xs₁ {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} (x∈p₂ : x ⊕ s₁ ∈ p₂ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s <$>_ : ∀ {R₁ R₂ x s s₁ xs} {p : Parser Tok R₁ xs} {f : R₁ → R₂} (x∈p : x ⊕ s₁ ∈ p · s) → f x ⊕ s₁ ∈ f <$> p · s [_-_]_⊛_ : ∀ {R₁ R₂ f x s s₁ s₂} xs fs {p₁ : ∞⟨ xs ⟩Parser Tok (R₁ → R₂) (flatten fs)} {p₂ : ∞⟨ fs ⟩Parser Tok R₁ (flatten xs)} → (f∈p₁ : f ⊕ s₁ ∈ ♭? p₁ · s) (x∈p₂ : x ⊕ s₂ ∈ ♭? p₂ · s₁) → f x ⊕ s₂ ∈ p₁ ⊛ p₂ · s [_-_]_>>=_ : ∀ {R₁ R₂ x y s s₁ s₂} (f : Maybe (R₁ → List R₂)) xs {p₁ : ∞⟨ f ⟩Parser Tok R₁ (flatten xs)} {p₂ : (x : R₁) → ∞⟨ xs ⟩Parser Tok R₂ (apply f x)} → (x∈p₁ : x ⊕ s₁ ∈ ♭? p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ ♭? (p₂ x) · s₁) → y ⊕ s₂ ∈ p₁ >>= p₂ · s nonempty : ∀ {R xs x y s₂} s₁ {p : Parser Tok R xs} (x∈p : y ⊕ s₂ ∈ p · x ∷ s₁ ++ s₂) → y ⊕ s₂ ∈ nonempty p · x ∷ s₁ ++ s₂ cast : ∀ {R xs₁ xs₂ x s₁ s₂} {xs₁≈xs₂ : xs₁ List-∼[ bag ] xs₂} {p : Parser Tok R xs₁} (x∈p : x ⊕ s₂ ∈ p · s₁) → x ⊕ s₂ ∈ cast xs₁≈xs₂ p · s₁ -- A simple cast lemma. private cast∈′ : ∀ {Tok R xs} {p : Parser Tok R xs} {x s s′ s₁} → s ≡ s′ → x ⊕ s₁ ∈ p · s → x ⊕ s₁ ∈ p · s′ cast∈′ P.refl x∈ = x∈ -- The definition is sound and complete with respect to the one in -- TotalParserCombinators.Semantics. sound′ : ∀ {Tok R xs x s₂ s} {p : Parser Tok R xs} → x ⊕ s₂ ∈ p · s → ∃ λ s₁ → s ≡ s₁ ++ s₂ × x ∈ p · s₁ sound′ return = ([] , P.refl , return) sound′ {x = x} token = ([ x ] , P.refl , token) sound′ (∣-left x∈p₁) = Prod.map id (Prod.map id ∣-left) (sound′ x∈p₁) sound′ (∣-right e₁ x∈p₁) = Prod.map id (Prod.map id (∣-right e₁)) (sound′ x∈p₁) sound′ (<$> x∈p) = Prod.map id (Prod.map id (<$>_)) (sound′ x∈p) sound′ ([ xs - fs ] f∈p₁ ⊛ x∈p₂) with sound′ f∈p₁ | sound′ x∈p₂ sound′ ([ xs - fs ] f∈p₁ ⊛ x∈p₂) | (s₁ , P.refl , f∈p₁′) | (s₂ , P.refl , x∈p₂′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , S.[_-_]_⊛_ xs fs f∈p₁′ x∈p₂′) sound′ (nonempty s₁ x∈p) with sound′ x∈p sound′ (nonempty s₁ x∈p) | (y ∷ s , eq , x∈p′) = (y ∷ s , eq , nonempty x∈p′) sound′ (nonempty s₁ x∈p) | ([] , eq , x∈p′) with ListProp.++-identityˡ-unique (_ ∷ s₁) (P.sym eq) sound′ (nonempty s₁ x∈p) | ([] , eq , x∈p′) | () sound′ (cast x∈p) = Prod.map id (Prod.map id cast) (sound′ x∈p) sound′ ([ f - xs ] x∈p₁ >>= y∈p₂x) with sound′ x∈p₁ | sound′ y∈p₂x sound′ ([ f - xs ] x∈p₁ >>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , S.[_-_]_>>=_ f xs x∈p₁′ y∈p₂x′) sound : ∀ {Tok R xs x s} {p : Parser Tok R xs} → x ⊕ [] ∈ p · s → x ∈ p · s sound x∈p with sound′ x∈p sound x∈p | (s , P.refl , x∈p′) with s ++ [] | Prod.proj₂ LM.identity s sound x∈p | (s , P.refl , x∈p′) | .s | P.refl = x∈p′ extend : ∀ {Tok R xs x s s′ s″} {p : Parser Tok R xs} → x ⊕ s′ ∈ p · s → x ⊕ s′ ++ s″ ∈ p · s ++ s″ extend return = return extend token = token extend (∣-left x∈p₁) = ∣-left (extend x∈p₁) extend (∣-right e₁ x∈p₂) = ∣-right e₁ (extend x∈p₂) extend (<$> x∈p) = <$> extend x∈p extend ([ xs - fs ] f∈p₁ ⊛ x∈p₂) = [ xs - fs ] extend f∈p₁ ⊛ extend x∈p₂ extend ([ f - xs ] x∈p₁ >>= y∈p₂x) = [ f - xs ] extend x∈p₁ >>= extend y∈p₂x extend (cast x∈p) = cast (extend x∈p) extend (nonempty s₁ x∈p) = cast₂ (nonempty s₁ (cast₁ (extend x∈p))) where lem = LM.assoc (_ ∷ s₁) _ _ cast₁ = cast∈′ lem cast₂ = cast∈′ (P.sym lem) complete : ∀ {Tok R xs x s} {p : Parser Tok R xs} → x ∈ p · s → x ⊕ [] ∈ p · s complete return = return complete token = token complete (∣-left x∈p₁) = ∣-left (complete x∈p₁) complete (∣-right e₁ x∈p₂) = ∣-right e₁ (complete x∈p₂) complete (<$> x∈p) = <$> complete x∈p complete (_⊛_ {fs = fs} {xs = xs} f∈p₁ x∈p₂) = [ xs - fs ] extend (complete f∈p₁) ⊛ complete x∈p₂ complete (_>>=_ {xs = xs} {f = f} x∈p₁ y∈p₂x) = [ f - xs ] extend (complete x∈p₁) >>= complete y∈p₂x complete (cast x∈p) = cast (complete x∈p) complete (nonempty {s = s} x∈p) = cast₂ (nonempty s (cast₁ (complete x∈p))) where lem = Prod.proj₂ LM.identity _ cast₁ = cast∈′ (P.sym lem) cast₂ = cast∈′ lem complete′ : ∀ {Tok R xs x s₂ s} {p : Parser Tok R xs} → (∃ λ s₁ → s ≡ s₁ ++ s₂ × x ∈ p · s₁) → x ⊕ s₂ ∈ p · s complete′ (s₁ , P.refl , x∈p) = extend (complete x∈p)
{ "alphanum_fraction": 0.4642803654, "avg_line_length": 47.3546099291, "ext": "agda", "hexsha": "33b27c9cc7ab8e0a7b6a8c14deb223eb80399a14", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Semantics/Continuation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Semantics/Continuation.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Semantics/Continuation.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 2653, "size": 6677 }
open import FRP.JS.Behaviour using ( Beh ; [_] ) open import FRP.JS.DOM using ( DOM ; element ; attr ; text ; _++_ ) open import FRP.JS.RSet using ( ⟦_⟧ ) module FRP.JS.Demo.HRef where main : ∀ {w} → ⟦ Beh (DOM w) ⟧ main = element ("a") ( attr "href" ["http://bell-labs.com/"] ++ text ["A hyperlink."] )
{ "alphanum_fraction": 0.5942492013, "avg_line_length": 28.4545454545, "ext": "agda", "hexsha": "c5cb0f5c99b1ce5b3749bc3e62b900af239fe7b8", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "demo/agda/FRP/JS/Demo/HRef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "demo/agda/FRP/JS/Demo/HRef.agda", "max_line_length": 67, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "demo/agda/FRP/JS/Demo/HRef.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 111, "size": 313 }
open import Prelude module Implicits.Resolution.Scala.Terminates where open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Resolution.Infinite.Algorithm open import Implicits.Resolution.Scala.Type open import Category.Monad.Partiality open import Category.Monad.Partiality as P open Workaround open import Category.Monad.Partiality.All using (All; module Alternative) open Alternative renaming (sound to AllP-sound) hiding (complete) private open import Relation.Binary.PropositionalEquality as PEq using (_≡_) open module PartialEq = P.Equality {A = Bool} _≡_ open module PartialReasoning = P.Reasoning (PEq.isEquivalence {A = Bool}) match-terminates : ∀ {ν} (Δ : ICtx ν) → (τ : SimpleType ν) → (r : Type ν) → (match Δ τ r) ⇓ match-terminates Δ τ r = ? match1st-terminates : ∀ {ν} (Δ : ICtx ν) → (ρs : ICtx ν) → (τ : SimpleType ν) → (match1st Δ ρs τ) ⇓ match1st-terminates Δ List.[] τ = false , (now refl) match1st-terminates Δ (x List.∷ ρs) τ = {!!} terminates : ∀ {ν} (Δ : ICtx ν) (a : Type ν) → ScalaICtx Δ → ScalaType a → (resolve Δ a) ⇓ terminates Δ (simpl x) p q = match1st-terminates Δ Δ x terminates Δ (∀' a) p (∀' q) = terminates (ictx-weaken Δ) a (weaken-scalaictx p) q terminates Δ (a ⇒ b) p ()
{ "alphanum_fraction": 0.7154213037, "avg_line_length": 39.3125, "ext": "agda", "hexsha": "3df3f3e888f3d7fb6976e997a66fc3272d0303f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Scala/Terminates.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Scala/Terminates.agda", "max_line_length": 99, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Scala/Terminates.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 413, "size": 1258 }
-- {-# OPTIONS -v term:10 -v tc.pos:10 -v tc.decl:10 #-} -- Andreas, 2018-02-26, issue #2975 -- Problem history: -- -- The example below crashed with an internal error. -- The problem is that the termination checker needs to know -- whether force is the projection of a recursive coinductive -- record. However, the positivity checker has not run, -- thus, this information is not available. record R : Set where coinductive field force : R -- The following corecursive definition should pass the termination checker. r : R force r = r -- Should succeed.
{ "alphanum_fraction": 0.7122807018, "avg_line_length": 27.1428571429, "ext": "agda", "hexsha": "90821225617a4c7cb5ce6d06d08c07d8093f7524", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2975.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2975.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2975.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 147, "size": 570 }
{-# OPTIONS --universe-polymorphism #-} module Categories.2-Category where open import Level open import Data.Product using (curry; _,_) open import Function using () renaming (_∘_ to _·_) open import Categories.Support.PropositionalEquality open import Categories.Category open import Categories.Categories open import Categories.Object.Terminal open import Categories.Terminal open import Categories.Functor using (Functor) renaming (_∘_ to _∘F_; _≡_ to _≡F_; id to idF) open import Categories.Bifunctor using (Bifunctor; reduce-×) open import Categories.Product using (assocʳ; πˡ; πʳ) record 2-Category (o ℓ t e : Level) : Set (suc (o ⊔ ℓ ⊔ t ⊔ e)) where open Terminal (One {ℓ} {t} {e}) infix 4 _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : (A B : Obj) → Category ℓ t e id : {A : Obj} → Functor ⊤ (A ⇒ A) —∘— : {A B C : Obj} → Bifunctor (B ⇒ C) (A ⇒ B) (A ⇒ C) _∘_ : {A B C : Obj} {L R : Category ℓ t e} → Functor L (B ⇒ C) → Functor R (A ⇒ B) → Bifunctor L R (A ⇒ C) _∘_ {A} {B} {C} F G = reduce-× {D₁ = B ⇒ C} {D₂ = A ⇒ B} —∘— F G field .assoc : ∀ {A B C D : Obj} → ((—∘— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)) ≡F (idF ∘ —∘—) .identityˡ : {A B : Obj} → (id {B} ∘ idF {C = A ⇒ B}) ≡F πʳ {C = ⊤} {A ⇒ B} .identityʳ : {A B : Obj} → (idF {C = A ⇒ B} ∘ id {A}) ≡F πˡ {C = A ⇒ B} {⊤} -- convenience? module _⇒_ (A B : Obj) = Category (A ⇒ B) open _⇒_ public using () renaming (Obj to _⇒₁_) private module imp⇒ {X Y : Obj} = Category (X ⇒ Y) open imp⇒ public using () renaming (_⇒_ to _⇒₂_; id to id₂; _∘_ to _•_; assoc to vassoc′; identityˡ to videntityˡ′; identityʳ to videntityʳ′; ∘-resp-≡ to •-resp-≡′; ∘-resp-≡ˡ to •-resp-≡′ˡ; ∘-resp-≡ʳ to •-resp-≡′ʳ; hom-setoid to hom₂′-setoid; _≡_ to _≡′_; equiv to equiv′; module Equiv to Equiv′) module Equiv {X Y : Obj} = Heterogeneous (X ⇒ Y) open Equiv public using () renaming (_∼_ to _≡_; ≡⇒∼ to loosely) id₁ : ∀ {A} → A ⇒₁ A id₁ {A} = Functor.F₀ (id {A}) unit id₁₂ : ∀ {A} → id₁ {A} ⇒₂ id₁ {A} id₁₂ {A} = id₂ {A = id₁ {A}} infixr 9 _∘₁_ _∘₁_ : ∀ {A B C} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C _∘₁_ = curry (Functor.F₀ —∘—) -- horizontal composition infixr 9 _∘₂_ _∘₂_ : ∀ {A B C} {g g′ : B ⇒₁ C} {f f′ : A ⇒₁ B} (β : g ⇒₂ g′) (α : f ⇒₂ f′) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f′) _∘₂_ = curry (Functor.F₁ —∘—) .∘₂-resp-≡′ : ∀ {A B C} {f h : B ⇒₁ C} {g i : A ⇒₁ B} {α γ : f ⇒₂ h} {β δ : g ⇒₂ i} → α ≡′ γ → β ≡′ δ → α ∘₂ β ≡′ γ ∘₂ δ ∘₂-resp-≡′ = curry (Functor.F-resp-≡ —∘—) .∘₂-resp-≡ : ∀ {A B C} {f f′ h h′ : B ⇒₁ C} {g g′ i i′ : A ⇒₁ B} {α : f ⇒₂ h} {γ : f′ ⇒₂ h′} {β : g ⇒₂ i} {δ : g′ ⇒₂ i′} → α ≡ γ → β ≡ δ → (α ∘₂ β) ≡ (γ ∘₂ δ) ∘₂-resp-≡ (loosely a) (loosely b) = loosely (∘₂-resp-≡′ a b) -- left whiskering infixl 9 _◃_ _◃_ : ∀ {A B C} {g g′ : B ⇒₁ C} → g ⇒₂ g′ → (f : A ⇒₁ B) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f) β ◃ f = β ∘₂ id₂ -- right whiskering infixr 9 _▹_ _▹_ : ∀ {A B C} (g : B ⇒₁ C) → {f f′ : A ⇒₁ B} → f ⇒₂ f′ → (g ∘₁ f) ⇒₂ (g ∘₁ f′) g ▹ α = id₂ ∘₂ α private ≡F-on-objects : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) → (F ≡F G) → (X : Category.Obj C) → Functor.F₀ F X ≣ Functor.F₀ G X ≡F-on-objects {C = C} F G eq X with Functor.F₀ F X | Functor.F₁ F (Category.id C {X}) | eq (Category.id C {X}) ≡F-on-objects {C = C} F G eq X | ._ | _ | Heterogeneous.≡⇒∼ _ = ≣-refl private module Laws1A {A B} {f : A ⇒₁ B} where .assoc₁ : ∀ {C D} {g : B ⇒₁ C} {h : C ⇒₁ D} → ((h ∘₁ g) ∘₁ f) ≣ (h ∘₁ (g ∘₁ f)) assoc₁ {C} {D} {g} {h} = ≡F-on-objects ((—∘— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)) (idF ∘ —∘—) assoc (h , g , f) .identity₁ˡ : {- ∀ {A B} {f : A ⇒₁ B} → -} id₁ ∘₁ f ≣ f identity₁ˡ = ≡F-on-objects (id {B} ∘ idF {C = A ⇒ B}) (πʳ {C = ⊤} {A ⇒ B}) identityˡ (unit , f) .identity₁ʳ : ∀ {A B} {f : A ⇒₁ B} → f ∘₁ id₁ ≣ f identity₁ʳ {A} {B} {f} = ≡F-on-objects (idF {C = A ⇒ B} ∘ id {A}) (πˡ {C = A ⇒ B} {⊤}) identityʳ (f , unit) .vassoc : ∀ {A B} {f g h i : A ⇒₁ B} {η : f ⇒₂ g} {θ : g ⇒₂ h} {ι : h ⇒₂ i} → ((ι • θ) • η) ≡ (ι • (θ • η)) vassoc = loosely vassoc′ .hidentityˡ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (id₁₂ ∘₂ η) ≡ η hidentityˡ {A} {B} {f} {f′} {η} = Equiv.trans (loosely (∘₂-resp-≡′ (Equiv′.sym (Functor.identity id)) Equiv′.refl)) (identityˡ (unit , η)) .hidentityʳ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (η ∘₂ id₁₂) ≡ η hidentityʳ {A} {B} {f} {f′} {η} = Equiv.trans (loosely (∘₂-resp-≡′ Equiv′.refl (Equiv′.sym (Functor.identity id)))) (identityʳ (η , unit)) .im-id₂-closed-under-∘₂′ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → id₂ {A = g} ∘₂ id₂ {A = f} ≡′ id₂ {A = g ∘₁ f} im-id₂-closed-under-∘₂′ = Functor.identity —∘— .im-id₂-closed-under-∘₂ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → (id₂ {A = g} ∘₂ id₂ {A = f}) ≡ id₂ {A = g ∘₁ f} im-id₂-closed-under-∘₂ = loosely im-id₂-closed-under-∘₂′ .lidentityˡ′ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → id₂ {A = g} ◃ f ≡′ id₂ lidentityˡ′ = Functor.identity —∘— .lidentityˡ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → (id₂ {A = g} ◃ f) ≡ id₂ {A = g ∘₁ f} lidentityˡ = loosely lidentityˡ′ .ridentityʳ′ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → g ▹ id₂ {A = f} ≡′ id₂ ridentityʳ′ = Functor.identity —∘— .ridentityʳ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → (g ▹ id₂ {A = f}) ≡ id₂ {A = g ∘₁ f} ridentityʳ = loosely ridentityʳ′ -- .lidentityʳ′ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (η ◃ id₁) ≡′ η -- lidentityʳ′ = ? .lidentityʳ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (η ◃ id₁) ≡ η lidentityʳ {η = η} = Equiv.trans (∘₂-resp-≡ Equiv.refl (Equiv.sym (loosely (Functor.identity id)))) (identityʳ (η , unit)) -- .ridentityˡ′ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (id₁ ▹ η) ≡′ η -- ridentityˡ′ = ? .ridentityˡ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (id₁ ▹ η) ≡ η ridentityˡ {η = η} = Equiv.trans (∘₂-resp-≡ (Equiv.sym (loosely (Functor.identity id))) Equiv.refl) (identityˡ (unit , η)) .interchange′ : ∀ {A B C} {f g h : A ⇒₁ B} {i j k : B ⇒₁ C} {α : f ⇒₂ g} {β : g ⇒₂ h} {γ : i ⇒₂ j} {δ : j ⇒₂ k} → ((δ • γ) ∘₂ (β • α)) ≡′ ((δ ∘₂ β) • (γ ∘₂ α)) interchange′ = Functor.homomorphism —∘— .interchange : ∀ {A B C} {f g h : A ⇒₁ B} {i j k : B ⇒₁ C} {α : f ⇒₂ g} {β : g ⇒₂ h} {γ : i ⇒₂ j} {δ : j ⇒₂ k} → ((δ • γ) ∘₂ (β • α)) ≡ ((δ ∘₂ β) • (γ ∘₂ α)) interchange = loosely interchange′ .lvdistrib′ : ∀ {A B C} {f : A ⇒₁ B} {g h i : B ⇒₁ C} {η : g ⇒₂ h} {θ : h ⇒₂ i} → (θ • η) ◃ f ≡′ ((θ ◃ f) • (η ◃ f)) lvdistrib′ = Equiv′.trans (∘₂-resp-≡′ Equiv′.refl (Equiv′.sym videntityˡ′)) interchange′ .lvdistrib : ∀ {A B C} {f : A ⇒₁ B} {g h i : B ⇒₁ C} {η : g ⇒₂ h} {θ : h ⇒₂ i} → ((θ • η) ◃ f) ≡ ((θ ◃ f) • (η ◃ f)) lvdistrib = loosely lvdistrib′ .rvdistrib′ : ∀ {A B C} {f g h : A ⇒₁ B} {i : B ⇒₁ C} {η : f ⇒₂ g} {θ : g ⇒₂ h} → (i ▹ (θ • η)) ≡′ ((i ▹ θ) • (i ▹ η)) rvdistrib′ = Equiv′.trans (∘₂-resp-≡′ (Equiv′.sym videntityˡ′) Equiv′.refl) interchange′ .rvdistrib : ∀ {A B C} {f g h : A ⇒₁ B} {i : B ⇒₁ C} {η : f ⇒₂ g} {θ : g ⇒₂ h} → (i ▹ (θ • η)) ≡ ((i ▹ θ) • (i ▹ η)) rvdistrib = loosely rvdistrib′ -- XXX mixed assocs still need proving {- -- XXX not well-typed without a subst or something -- .lhassoc′ : ∀ {A B C D} {f : A ⇒₁ B} {g : B ⇒₁ C} {h i : C ⇒₁ D} {η : h ⇒₂ i} → (η ◃ (g ∘₁ f)) ≡′ {!((η ◃ g) ◃ f)!} -- lhassoc′ = {!!} .lhassoc : ∀ {A B C D} {f : A ⇒₁ B} {g : B ⇒₁ C} {h i : C ⇒₁ D} {η : h ⇒₂ i} → (η ◃ (g ∘₁ f)) ≡ ((η ◃ g) ◃ f) lhassoc = {!!} -- XXX ditto -- .rlassoc′ : ∀ {A B C D} {f : A ⇒₁ B} {g h : B ⇒₁ C} {i : C ⇒₁ D} {η : g ⇒₂ h} → (i ▹ (η ◃ f)) ≡′ {!((i ▹ η) ◃ f)!} -- rlassoc′ = {!!} .rlassoc : ∀ {A B C D} {f : A ⇒₁ B} {g h : B ⇒₁ C} {i : C ⇒₁ D} {η : g ⇒₂ h} → (i ▹ (η ◃ f)) ≡ ((i ▹ η) ◃ f) rlassoc = {!!} -- XXX tritto -- .hrassoc′ : ∀ {A B C D} {f g : A ⇒₁ B} {h : B ⇒₁ C} {i : C ⇒₁ D} {η : f ⇒₂ g} → (i ▹ (h ▹ η)) ≡′ {!((i ∘₁ h) ▹ η)!} -- hrassoc′ = {!!} .hrassoc : ∀ {A B C D} {f g : A ⇒₁ B} {h : B ⇒₁ C} {i : C ⇒₁ D} {η : f ⇒₂ g} → (i ▹ (h ▹ η)) ≡ ((i ∘₁ h) ▹ η) hrassoc = {!!} -} .lrsmoosh′ : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((θ ◃ g) • (h ▹ η)) ≡′ (θ ∘₂ η) lrsmoosh′ = Equiv′.trans (Equiv′.sym interchange′) (∘₂-resp-≡′ videntityʳ′ videntityˡ′) .lrsmoosh : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((θ ◃ g) • (h ▹ η)) ≡ (θ ∘₂ η) lrsmoosh = loosely lrsmoosh′ .rlsmoosh′ : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡′ (θ ∘₂ η) rlsmoosh′ = Equiv′.trans (Equiv′.sym interchange′) (∘₂-resp-≡′ videntityˡ′ videntityʳ′) .rlsmoosh : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡ (θ ∘₂ η) rlsmoosh = loosely rlsmoosh′ .lrexch′ : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡′ ((θ ◃ g) • (h ▹ η)) lrexch′ = Equiv′.trans rlsmoosh′ (Equiv′.sym lrsmoosh′) .lrexch : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡ ((θ ◃ g) • (h ▹ η)) lrexch = loosely lrexch′ module Hom₁Reasoning = ≣-reasoning module Hom₂′Reasoning {A B : Obj} {f g : A ⇒₁ B} where open imp⇒.HomReasoning {A} {B} {f} {g} public renaming (_⟩∘⟨_ to _⟩•⟨_) -- XXX won't work if Hom₂′Reasoning is frozen infixr 4 _⟩∘₂⟨_ ._⟩∘₂⟨_ : ∀ {C} {h i : C ⇒₁ A} {α β : f ⇒₂ g} {γ δ : h ⇒₂ i} → α ≡′ β → γ ≡′ δ → (α ∘₂ γ) ≡′ (β ∘₂ δ) _⟩∘₂⟨_ = ∘₂-resp-≡′
{ "alphanum_fraction": 0.4703012304, "avg_line_length": 46.6732673267, "ext": "agda", "hexsha": "1b19c3736c0c4c1feb43d874fccd48f8538dfc98", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/2-Category.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/2-Category.agda", "max_line_length": 298, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/2-Category.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 4913, "size": 9428 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 27 May 2011. -- Nils' idea about databases in the Agda mailing list. -- http://thread.gmane.org/gmane.comp.lang.agda/2911/focus=2917 module FOT.Agsy.DataBase where open import Data.Nat open import Data.Product open import Relation.Binary.PropositionalEquality open ≡-Reasoning postulate right-identity : ∀ n → n + 0 ≡ n move-suc : ∀ m n → suc (m + n) ≡ m + suc n db = right-identity ,′ move-suc comm : ∀ m n → m + n ≡ n + m -- Via auto {!-c db!} comm zero n = sym (proj₁ db n) comm (suc n) n' = begin suc (n + n') ≡⟨ cong suc (comm n n') ⟩ suc (n' + n) ≡⟨ proj₂ db n' n ⟩ (n' + suc n) ∎
{ "alphanum_fraction": 0.5944700461, "avg_line_length": 26.303030303, "ext": "agda", "hexsha": "4e3531d045577139ec7843147485a2de19a88c09", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/Agsy/DataBase.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/Agsy/DataBase.agda", "max_line_length": 70, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/Agsy/DataBase.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 282, "size": 868 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of List⁺ ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.NonEmpty.Categorical where open import Agda.Builtin.List import Data.List.Categorical as List open import Data.List.NonEmpty open import Data.Product using (uncurry) open import Category.Functor open import Category.Applicative open import Category.Monad open import Category.Comonad open import Function ------------------------------------------------------------------------ -- List⁺ applicative functor functor : ∀ {f} → RawFunctor {f} List⁺ functor = record { _<$>_ = map } applicative : ∀ {f} → RawApplicative {f} List⁺ applicative = record { pure = [_] ; _⊛_ = λ fs as → concatMap (λ f → map f as) fs } ------------------------------------------------------------------------ -- List⁺ monad monad : ∀ {f} → RawMonad {f} List⁺ monad = record { return = [_] ; _>>=_ = flip concatMap } ------------------------------------------------------------------------ -- List⁺ comonad comonad : ∀ {f} → RawComonad {f} List⁺ comonad = record { extract = head ; extend = λ f → uncurry (extend f) ∘′ uncons } where extend : ∀ {A B} → (List⁺ A → B) → A → List A → List⁺ B extend f x xs@[] = f (x ∷ xs) ∷ [] extend f x xs@(y ∷ ys) = f (x ∷ xs) ∷⁺ extend f y ys ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {A} → List⁺ (F A) → F (List⁺ A) sequenceA (x ∷ xs) = _∷_ <$> x ⊛ List.sequenceA App xs mapA : ∀ {a} {A : Set a} {B} → (A → F B) → List⁺ A → F (List⁺ B) mapA f = sequenceA ∘ map f forA : ∀ {a} {A : Set a} {B} → List⁺ A → (A → F B) → F (List⁺ B) forA = flip mapA module _ {m M} (Mon : RawMonad {m} M) where private App = RawMonad.rawIApplicative Mon sequenceM = sequenceA App mapM = mapA App forM = forA App ------------------------------------------------------------------------ -- List⁺ monad transformer monadT : ∀ {f} → RawMonadT {f} (_∘′ List⁺) monadT M = record { return = pure ∘′ [_] ; _>>=_ = λ mas f → mas >>= λ as → concat <$> mapM M f as } where open RawMonad M
{ "alphanum_fraction": 0.4774736842, "avg_line_length": 26.3888888889, "ext": "agda", "hexsha": "a33778c544ce7e0ad0a282f996866b6d371f885f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty/Categorical.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty/Categorical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 705, "size": 2375 }
{-# OPTIONS --safe #-} module Definition.Conversion.Transitivity where open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.RedSteps open import Definition.Conversion open import Definition.Conversion.Soundness open import Definition.Conversion.Stability open import Definition.Conversion.Conversion open import Definition.Conversion.Whnf open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Injectivity import Definition.Typed.Consequences.Inequality as WF open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.NeTypeEq open import Definition.Typed.Consequences.SucCong open import Tools.Nat open import Tools.Product open import Tools.Empty import Tools.PropositionalEquality as PE mutual -- Transitivity of algorithmic equality of neutrals. trans~↑! : ∀ {t u v A B Γ Δ l l'} → l PE.≡ l' → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↑! A ^ l → Δ ⊢ u ~ v ↑! B ^ l' → Γ ⊢ t ~ v ↑! A ^ l × Γ ⊢ A ≡ B ^ [ ! , l ] trans~↑! el Γ≡Δ (var-refl x₁ x≡y) (var-refl x₂ x≡y₁) = var-refl x₁ (PE.trans x≡y x≡y₁) , proj₂ (neTypeEq (var _) x₁ (PE.subst (λ x → _ ⊢ var x ∷ _ ^ _) (PE.sym x≡y) (stabilityTerm (symConEq Γ≡Δ) (PE.subst (λ lx → _ ⊢ _ ∷ _ ^ [ ! , lx ]) (PE.sym el) x₂)))) trans~↑! el Γ≡Δ (app-cong {rF = !} t~u a<>b) (app-cong {rF = !} u~v b<>c) = let t~v , ΠFG≡ΠF′G′ = trans~↓! PE.refl Γ≡Δ t~u u~v F≡F₁ , rF≡rF₁ , lF≡lF₁ , lG≡lG₁ , G≡G₁ = injectivity ΠFG≡ΠF′G′ a<>c = transConv↑Term Γ≡Δ F≡F₁ a<>b (PE.subst (λ x → _ ⊢ _ [conv↑] _ ∷ _ ^ ι x) (PE.sym lF≡lF₁) b<>c) in app-cong t~v a<>c , substTypeEq G≡G₁ (soundnessConv↑Term a<>b) trans~↑! el Γ≡Δ (app-cong {rF = %} t~u a<>b) (app-cong {rF = %} u~v b<>c) = let t~v , ΠFG≡ΠF′G′ = trans~↓! PE.refl Γ≡Δ t~u u~v F≡F₁ , rF≡rF₁ , lF≡lF₁ , lG≡lG₁ , G≡G₁ = injectivity ΠFG≡ΠF′G′ ⊢Γ = proj₁ (proj₂ (contextConvSubst Γ≡Δ)) a<>c = trans~↑% Γ≡Δ a<>b (conv~↑% (PE.subst (λ x → _ ⊢ _ ~ _ ↑% _ ^ ι x) (PE.sym lF≡lF₁) b<>c) (stabilityEq Γ≡Δ (sym F≡F₁))) _ , _ , t≡v = soundness~↑% a<>b in app-cong t~v a<>c , substTypeEq G≡G₁ t≡v trans~↑! el Γ≡Δ (app-cong {rF = !} t~u a<>b) (app-cong {rF = %} u~v b<>c) = let whnfA , neK , neL = ne~↓! t~u ⊢A , ⊢k , ⊢l₁ = syntacticEqTerm (soundness~↓! t~u) ⊢A' , ⊢l₁' , ⊢l = syntacticEqTerm (soundness~↓! u~v) _ , ΠFG≡ΠF₂G₂ = neTypeEq neL ⊢l₁ (stabilityTerm (symConEq Γ≡Δ) ⊢l₁') F≡F₂ , rF≡rF₂ , G≡G₂ = injectivity ΠFG≡ΠF₂G₂ in ⊥-elim (relevance-discr rF≡rF₂) trans~↑! el Γ≡Δ (app-cong {rF = %} t~u a<>b) (app-cong {rF = !} u~v b<>c) = let whnfA , neK , neL = ne~↓! t~u ⊢A , ⊢k , ⊢l₁ = syntacticEqTerm (soundness~↓! t~u) ⊢A' , ⊢l₁' , ⊢l = syntacticEqTerm (soundness~↓! u~v) _ , ΠFG≡ΠF₂G₂ = neTypeEq neL ⊢l₁ (stabilityTerm (symConEq Γ≡Δ) ⊢l₁') F≡F₂ , rF≡rF₂ , G≡G₂ = injectivity ΠFG≡ΠF₂G₂ in ⊥-elim (relevance-discr (PE.sym rF≡rF₂)) trans~↑! PE.refl Γ≡Δ (natrec-cong A<>B a₀<>b₀ aₛ<>bₛ t~u) (natrec-cong B<>C b₀<>c₀ bₛ<>cₛ u~v) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ A≡B = soundnessConv↑ A<>B F[0]≡F₁[0] = substTypeEq A≡B (refl (zeroⱼ ⊢Γ)) ΠℕFs≡ΠℕF₁s = sucCong A≡B A<>C = transConv↑ (Γ≡Δ ∙ (refl (univ (ℕⱼ ⊢Γ)))) A<>B B<>C a₀<>c₀ = transConv↑Term Γ≡Δ F[0]≡F₁[0] a₀<>b₀ b₀<>c₀ aₛ<>cₛ = transConv↑Term Γ≡Δ ΠℕFs≡ΠℕF₁s aₛ<>bₛ bₛ<>cₛ t~v , _ = trans~↓! PE.refl Γ≡Δ t~u u~v in natrec-cong A<>C a₀<>c₀ aₛ<>cₛ t~v , substTypeEq A≡B (soundness~↓! t~u) trans~↑! PE.refl Γ≡Δ (Emptyrec-cong A<>B t~u) (Emptyrec-cong B<>C u~v) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ A≡B = soundnessConv↑ A<>B A<>C = transConv↑ Γ≡Δ A<>B B<>C ⊢t , ⊢u , t≡u = soundness~↑% t~u _ , ⊢v , u≡v = soundness~↑% u~v t~v = %~↑ ⊢t (stabilityTerm (symConEq Γ≡Δ) ⊢v) in Emptyrec-cong A<>C t~v , A≡B trans~↑! el Γ≡Δ (Id-cong X x x₁) (Id-cong Y x₂ x₃) = let XY , [U] = trans~↓! el Γ≡Δ X Y X≡Y = univ (soundness~↓! XY) Y≡Y = PE.subst (λ lx → _ ⊢ _ ≡ _ ^ [ ! , ι lx ]) (PE.sym (next-inj el)) (univ (soundness~↓! Y)) x₂' = PE.subst (λ lx → _ ⊢ _ [conv↑] _ ∷ _ ^ ι lx) (PE.sym (next-inj el)) x₂ t~t = transConv↑Term Γ≡Δ X≡Y x (convConvTerm x₂' Y≡Y) x₃' = PE.subst (λ lx → _ ⊢ _ [conv↑] _ ∷ _ ^ ι lx) (PE.sym (next-inj el)) x₃ u~u = transConv↑Term Γ≡Δ X≡Y x₁ (convConvTerm x₃' Y≡Y) ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-cong XY t~t u~u , PE.subst (λ lx → _ ⊢ _ ≡ SProp lx ^ [ ! , _ ]) (next-inj el) (refl (Ugenⱼ ⊢Γ)) trans~↑! el Γ≡Δ (Id-ℕ X x) (Id-ℕ Y x₁) = let t~t , ℕ≡ℕ = trans~↓! PE.refl Γ≡Δ X Y u~u = transConv↑Term Γ≡Δ ℕ≡ℕ x x₁ ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-ℕ t~t u~u , refl (Ugenⱼ ⊢Γ) trans~↑! el Γ≡Δ (Id-ℕ0 X) (Id-ℕ0 Y) = let t~t , ℕ≡ℕ = trans~↓! PE.refl Γ≡Δ X Y ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-ℕ0 t~t , refl (Ugenⱼ ⊢Γ) trans~↑! el Γ≡Δ (Id-ℕS x X) (Id-ℕS x₁ Y) = let X~X , ℕ≡ℕ = trans~↓! PE.refl Γ≡Δ X Y t~t = transConv↑Term Γ≡Δ ℕ≡ℕ x x₁ ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-ℕS t~t X~X , refl (Ugenⱼ ⊢Γ) trans~↑! el Γ≡Δ (Id-U X x) (Id-U Y x₁) = let t~t , U≡U = trans~↓! PE.refl Γ≡Δ X Y u~u = transConv↑Term Γ≡Δ U≡U x x₁ ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-U t~t u~u , refl (Ugenⱼ ⊢Γ) trans~↑! el Γ≡Δ (Id-Uℕ X) (Id-Uℕ Y) = let t~t , _ = trans~↓! PE.refl Γ≡Δ X Y ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-Uℕ t~t , refl (Ugenⱼ ⊢Γ) trans~↑! el Γ≡Δ (Id-UΠ x X) (Id-UΠ x₁ Y) = let t~t , U≡U = trans~↓! PE.refl Γ≡Δ X Y u~u = transConv↑Term Γ≡Δ U≡U x x₁ ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in Id-UΠ u~u t~t , refl (Ugenⱼ ⊢Γ) trans~↑! el Γ≡Δ (cast-cong X x x₁ x₂ x₃) (cast-cong Y x₄ x₅ x₆ x₇) = let XY , [U] = trans~↓! PE.refl Γ≡Δ X Y X≡Y = univ (soundness~↓! XY) Y≡Y = univ (soundness~↓! Y) t~t = transConv↑Term Γ≡Δ [U] x x₄ u~u = transConv↑Term Γ≡Δ X≡Y x₁ (convConvTerm x₅ Y≡Y) A₁≡B = trans (soundnessConv↑Term t~t) (sym (soundnessConv↑Term (stabilityConv↑Term (symConEq Γ≡Δ) x₄))) ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in cast-cong XY t~t u~u x₂ (stabilityTerm (symConEq Γ≡Δ) x₇) , univ A₁≡B trans~↑! el Γ≡Δ (cast-ℕ X x x₁ x₂) (cast-ℕ Y x₃ x₄ x₅) = let XY , [U] = trans~↓! PE.refl Γ≡Δ X Y ⊢Γ , _ , _ = contextConvSubst Γ≡Δ t~t = transConv↑Term Γ≡Δ (refl (univ (ℕⱼ ⊢Γ))) x x₃ in cast-ℕ XY t~t x₁ (stabilityTerm (symConEq Γ≡Δ) x₅) , univ (soundness~↓! X) trans~↑! el Γ≡Δ (cast-ℕℕ X x x₁) (cast-ℕℕ Y x₂ x₃) = let XY , N = trans~↓! PE.refl Γ≡Δ X Y ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in cast-ℕℕ XY x (stabilityTerm (symConEq Γ≡Δ) x₃) , N trans~↑! el Γ≡Δ (cast-Π x X x₁ x₂ x₃) (cast-Π x₄ Y x₅ x₆ x₇) = let XY , [U] = trans~↓! PE.refl Γ≡Δ X Y X≡Y = soundness~↓! XY Y≡Y = univ (soundnessConv↑Term x₄) t~t = transConv↑Term Γ≡Δ [U] x x₄ u~u = transConv↑Term Γ≡Δ (univ (soundnessConv↑Term t~t)) x₁ (convConvTerm x₅ Y≡Y) A₁≡B = trans X≡Y (sym (soundness~↓! (stability~↓! (symConEq Γ≡Δ) Y))) ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in cast-Π t~t XY u~u x₂ (stabilityTerm (symConEq Γ≡Δ) x₇) , univ A₁≡B trans~↑! el Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) (cast-Πℕ x₄ x₅ x₆ x₇) = let Y≡Y = univ (soundnessConv↑Term x₄) ⊢Γ , _ , _ = contextConvSubst Γ≡Δ t~t = transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ)) x x₄ u~u = transConv↑Term Γ≡Δ (univ (soundnessConv↑Term t~t)) x₁ (convConvTerm x₅ Y≡Y) in cast-Πℕ t~t u~u x₂ (stabilityTerm (symConEq Γ≡Δ) x₇) , refl (univ (ℕⱼ ⊢Γ)) trans~↑! el Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) (cast-ℕΠ x₄ x₅ x₆ x₇) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ t~t = transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ)) x x₄ u~u = transConv↑Term Γ≡Δ (refl (univ (ℕⱼ ⊢Γ))) x₁ x₅ in cast-ℕΠ t~t u~u x₂ (stabilityTerm (symConEq Γ≡Δ) x₇) , univ (soundnessConv↑Term x) trans~↑! el Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) (cast-ΠΠ%! x₅ x₆ x₇ x₈ x₉) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ A~A = transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ)) x x₅ B~B = transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ)) x₁ x₆ u~u = transConv↑Term Γ≡Δ (univ (soundnessConv↑Term x)) x₂ x₇ in cast-ΠΠ%! A~A B~B u~u x₃ (stabilityTerm (symConEq Γ≡Δ) x₉) , trans (univ (soundnessConv↑Term B~B)) (sym (univ (soundnessConv↑Term (stabilityConv↑Term (symConEq Γ≡Δ) x₆)))) trans~↑! el Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) (cast-ΠΠ!% x₅ x₆ x₇ x₈ x₉) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ A~A = transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ)) x x₅ B~B = transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ)) x₁ x₆ u~u = transConv↑Term Γ≡Δ (univ (soundnessConv↑Term x)) x₂ x₇ in cast-ΠΠ!% A~A B~B u~u x₃ (stabilityTerm (symConEq Γ≡Δ) x₉) , trans (univ (soundnessConv↑Term B~B)) (sym (univ (soundnessConv↑Term (stabilityConv↑Term (symConEq Γ≡Δ) x₆)))) trans~↑% : ∀ {t u v A Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↑% A ^ l → Δ ⊢ u ~ v ↑% A ^ l → Γ ⊢ t ~ v ↑% A ^ l trans~↑% Γ≡Δ (%~↑ ⊢t ⊢u) (%~↑ ⊢u′ ⊢v) = let ⊢Δu′ = stabilityTerm (symConEq Γ≡Δ) ⊢u′ ⊢Δv = stabilityTerm (symConEq Γ≡Δ) ⊢v in %~↑ ⊢t ⊢Δv -- Transitivity of algorithmic equality of neutrals with types in WHNF. trans~↓! : ∀ {t u v A B Γ Δ l l'} → l PE.≡ l' → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↓! A ^ l → Δ ⊢ u ~ v ↓! B ^ l' → Γ ⊢ t ~ v ↓! A ^ l × Γ ⊢ A ≡ B ^ [ ! , l ] trans~↓! PE.refl Γ≡Δ ([~] A₁ D whnfA k~l) ([~] A₂ D₁ whnfA₁ k~l₁) = let t~v , A≡B = trans~↑! PE.refl Γ≡Δ k~l k~l₁ in [~] A₁ D whnfA t~v , trans (sym (subset* D)) (trans A≡B (subset* (stabilityRed* (symConEq Γ≡Δ) D₁))) -- Transitivity of algorithmic equality of types. transConv↑ : ∀ {A B C r Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↑] B ^ r → Δ ⊢ B [conv↑] C ^ r → Γ ⊢ A [conv↑] C ^ r transConv↑ {r = r} Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) ([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) = [↑] A′ B″ D (stabilityRed* (symConEq Γ≡Δ) D″) whnfA′ whnfB″ (transConv↓ Γ≡Δ A′<>B′ (PE.subst (λ x → _ ⊢ x [conv↓] B″ ^ r) (whrDet* (D₁ , whnfA″) (stabilityRed* Γ≡Δ D′ , whnfB′)) A′<>B″)) -- Transitivity of algorithmic equality of types in WHNF. transConv↓ : ∀ {A B C r Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↓] B ^ r → Δ ⊢ B [conv↓] C ^ r → Γ ⊢ A [conv↓] C ^ r transConv↓ Γ≡Δ (U-refl e x) (U-refl e₁ x₁) = U-refl (PE.trans e e₁) x transConv↓ Γ≡Δ (univ x) (univ y) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ X = transConv↓Term Γ≡Δ (refl (Ugenⱼ ⊢Γ )) PE.refl x y in univ X -- Transitivity of algorithmic equality of terms. transConv↑Term : ∀ {t u v A B Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t [conv↑] u ∷ A ^ l → Δ ⊢ u [conv↑] v ∷ B ^ l → Γ ⊢ t [conv↑] v ∷ A ^ l transConv↑Term Γ≡Δ A≡B ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) ([↑]ₜ B₂ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁) = let B₁≡B₂ = trans (sym (subset* D)) (trans A≡B (subset* (stabilityRed* (symConEq Γ≡Δ) D₁))) d₁″ = conv* (stabilityRed*Term (symConEq Γ≡Δ) d″) (sym B₁≡B₂) d₁′ = stabilityRed*Term Γ≡Δ (conv* d′ B₁≡B₂) in [↑]ₜ B₁ t′ u″ D d d₁″ whnfB whnft′ whnfu″ (transConv↓Term Γ≡Δ B₁≡B₂ PE.refl t<>u (PE.subst (λ x → _ ⊢ x [conv↓] u″ ∷ B₂ ^ _) (whrDet*Term (d₁ , whnft″) (d₁′ , whnfu′)) t<>u₁)) -- Transitivity of algorithmic equality of terms in WHNF. transConv↓Term : ∀ {t u v A B Γ Δ l l'} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B ^ [ ! , l ] → l PE.≡ l' → Γ ⊢ t [conv↓] u ∷ A ^ l → Δ ⊢ u [conv↓] v ∷ B ^ l' → Γ ⊢ t [conv↓] v ∷ A ^ l transConv↓Term {Δ = Δ} Γ≡Δ A≡B el (ne x) (ne x₁) = ne (proj₁ (trans~↓! PE.refl Γ≡Δ x (PE.subst (λ lx → Δ ⊢ _ ~ _ ↓! Univ _ _ ^ lx) (PE.sym el) x₁))) transConv↓Term Γ≡Δ A≡B el (ℕ-ins x) (ℕ-ins x₁) = ℕ-ins (proj₁ (trans~↓! PE.refl Γ≡Δ x x₁)) transConv↓Term {Δ = Δ} Γ≡Δ A≡B el (ne-ins t u x x₁) (ne-ins {k} {l} {M} {N} t′ u′ x₂ x₃) = ne-ins t (conv (stabilityTerm (symConEq Γ≡Δ) (PE.subst (λ lx → Δ ⊢ l ∷ N ^ [ ! , lx ]) (PE.sym el) u′)) (sym A≡B)) x (proj₁ (trans~↓! PE.refl Γ≡Δ x₁ (PE.subst (λ lx → Δ ⊢ k ~ l ↓! M ^ lx ) (PE.sym el) x₃))) transConv↓Term Γ≡Δ A≡B el (zero-refl x) (zero-refl x₁) = zero-refl x transConv↓Term Γ≡Δ A≡B el (suc-cong x) (suc-cong x₁) = suc-cong (transConv↑Term Γ≡Δ A≡B x x₁) transConv↓Term {Δ = Δ} Γ≡Δ A≡B el (η-eq {rF = rF₁} l< l<' x x₁ x₂ y y₁ x₃) (η-eq {u} {v} {F} {G} {rF} {lF} {lG} {l} l<'' l<''' x₄ x₅ x₆ y₂ y₃ x₇) = let F₁≡F , rF₁≡rF , lF₁≡lF , lG₁≡lG , G₁≡G = injectivity (PE.subst (λ lx → _ ⊢ _ ≡ Π _ ^ _ ° _ ▹ _ ° _ ° lx ^ _) (ιinj (PE.sym el)) A≡B ) in η-eq l< l<' x x₁ (conv (stabilityTerm (symConEq Γ≡Δ) (PE.subst (λ lx → Δ ⊢ v ∷ Π F ^ rF ° lF ▹ G ° lG ° l ^ [ ! , lx ]) (PE.sym el) x₆)) (sym A≡B)) y y₃ (transConv↑Term (Γ≡Δ ∙ F₁≡F) G₁≡G x₃ (PE.subst (λ lx → Δ ∙ F ^ [ rF₁ , _ ] ⊢ _ ∘ _ ^ _ [conv↑] wk1 v ∘ var 0 ^ _ ∷ G ^ ι lx) (PE.sym lG₁≡lG) (PE.subst (λ lx → Δ ∙ F ^ [ rF₁ , _ ] ⊢ wk1 u ∘ var 0 ^ lx [conv↑] wk1 v ∘ var 0 ^ lx ∷ G ^ ι lG) (PE.sym (ιinj el)) (PE.subst (λ lx → Δ ∙ F ^ [ rF₁ , lx ] ⊢ wk1 u ∘ var 0 ^ l [conv↑] wk1 v ∘ var 0 ^ l ∷ G ^ ι lG) (PE.sym (PE.cong ι lF₁≡lF)) (PE.subst (λ rx → Δ ∙ F ^ [ rx , ι lF ] ⊢ _ [conv↑] _ ∷ _ ^ _) (PE.sym rF₁≡rF) x₇))))) transConv↓Term Γ≡Δ A≡B el (ℕ-refl x) (ℕ-refl x₁) = ℕ-refl x transConv↓Term Γ≡Δ A≡B el (Empty-refl PE.refl x) (Empty-refl PE.refl x₁) = Empty-refl PE.refl x transConv↓Term Γ≡Δ A≡B el (U-refl e x) (U-refl e₁ x₁) = U-refl (PE.trans e e₁) x transConv↓Term Γ≡Δ A≡B el (Π-cong PE.refl PE.refl PE.refl PE.refl l< l<' x₅ x₆ x₇) (Π-cong PE.refl PE.refl PE.refl PE.refl x₁₁ x₁₂ x₁₃ x₁₄ x₁₅) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ rF≡rF₁ , _ = Uinjectivity A≡B in Π-cong PE.refl PE.refl PE.refl PE.refl l< l<' x₅ (transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ )) x₆ x₁₄) (transConv↑Term (Γ≡Δ ∙ univ (soundnessConv↑Term x₆)) (PE.subst (λ rx → _ ⊢ _ ≡ Univ rx _ ^ _) rF≡rF₁ (refl (Ugenⱼ (⊢Γ ∙ x₅)) ) ) x₇ x₁₅) transConv↓Term Γ≡Δ A≡B el (∃-cong PE.refl x₅ x₆ x₇) (∃-cong PE.refl x₁₃ x₁₄ x₁₅) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ rF≡rF₁ , _ = Uinjectivity A≡B in ∃-cong PE.refl x₅ (transConv↑Term Γ≡Δ (refl (Ugenⱼ ⊢Γ )) x₆ (PE.subst (λ l → _ ⊢ _ [conv↑] _ ∷ SProp l ^ next l) (next-inj (PE.sym el)) x₁₄ )) (transConv↑Term (Γ≡Δ ∙ univ (soundnessConv↑Term x₆)) (refl (Ugenⱼ (⊢Γ ∙ x₅))) x₇ (PE.subst (λ l → _ ∙ _ ^ [ % , ι l ] ⊢ _ [conv↑] _ ∷ SProp l ^ next l) (next-inj (PE.sym el)) x₁₅ )) transConv↓Term Γ≡Δ A≡B PE.refl (ℕ-refl x) (η-eq x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) = ⊥-elim (WF.U≢Π! A≡B) transConv↓Term Γ≡Δ A≡B el (Empty-refl {l} PE.refl x) (η-eq x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) = let X = PE.subst (λ lx → _ ⊢ SProp l ≡ Π _ ^ _ ° _ ▹ _ ° _ ° _ ^ [ _ , lx ]) el A≡B in ⊥-elim (WF.U≢Π! X) transConv↓Term Γ≡Δ A≡B el (Π-cong {rΠ = rΠ} {lΠ = lΠ} x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₀) (η-eq x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃ x₁₄ x₁₅) = let X = PE.subst (λ lx → _ ⊢ Univ rΠ lΠ ≡ Π _ ^ _ ° _ ▹ _ ° _ ° _ ^ [ _ , lx ]) el A≡B in ⊥-elim (WF.U≢Π! X) transConv↓Term Γ≡Δ A≡B el (∃-cong {l = l} x₅ x₆ x₇ x₀) (η-eq x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃ x₁₄ x₁₅) = let X = PE.subst (λ lx → _ ⊢ SProp l ≡ Π _ ^ _ ° _ ▹ _ ° _ ° _ ^ [ _ , lx ]) el A≡B in ⊥-elim (WF.U≢Π! X) transConv↓Term Γ≡Δ A≡B el (ne x) (ℕ-ins x₁) = ⊥-elim (WF.U≢ℕ! A≡B) transConv↓Term Γ≡Δ A≡B PE.refl (ne x) (ne-ins x₁ x₂ x₃ x₄) = ⊥-elim (WF.U≢ne! x₃ A≡B) transConv↓Term Γ≡Δ A≡B PE.refl (ne x) (η-eq x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) = ⊥-elim (WF.U≢Π! A≡B) --transConv↓Term Γ≡Δ A≡B el (zero-refl x) (zero-refl x₁) = {!!} transConv↓Term Γ≡Δ A≡B el (ℕ-ins x) (ne-ins t u x₂ x₃) = ⊥-elim (WF.ℕ≢ne! x₂ A≡B) transConv↓Term Γ≡Δ A≡B PE.refl (ℕ-ins x) (η-eq _ _ x₂ x₃ x₄ y y₁ x₅) = ⊥-elim (WF.ℕ≢Π! A≡B) transConv↓Term Γ≡Δ A≡B el (ℕ-ins x) (ne x₁) = ⊥-elim (WF.U≢ℕ! (sym A≡B)) transConv↓Term Γ≡Δ A≡B PE.refl (ne-ins x x₁ x₂ x₃) (ne x₄) = ⊥-elim (WF.U≢ne! x₂ (sym A≡B)) transConv↓Term Γ≡Δ A≡B PE.refl (ne-ins t u x x₁) (ℕ-ins x₂) = ⊥-elim (WF.ℕ≢ne! x (sym A≡B)) transConv↓Term Γ≡Δ A≡B PE.refl (ne-ins x x₁ x₂ x₃) (η-eq x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁) = ⊥-elim (WF.Π≢ne x₂ (sym A≡B)) transConv↓Term Γ≡Δ A≡B PE.refl (zero-refl x) (η-eq x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) = ⊥-elim (WF.ℕ≢Π! A≡B) transConv↓Term Γ≡Δ A≡B PE.refl (suc-cong x) (η-eq x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) = ⊥-elim (WF.ℕ≢Π! A≡B) transConv↓Term Γ≡Δ A≡B el (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ne x₈) = ⊥-elim (WF.U≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B el (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ℕ-refl x₈) = ⊥-elim (WF.U≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B el (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (Empty-refl x₀ x₈) = ⊥-elim (WF.U≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B el (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (Π-cong x₀ x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃ x₁₄ x₁₅) = ⊥-elim (WF.U≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B el (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (∃-cong x₀ x₁₃ x₁₄ x₁₅) = ⊥-elim (WF.U≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B PE.refl (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ℕ-ins x₈) = ⊥-elim (WF.ℕ≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B el (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (ne-ins x₈ x₉ x₁₀ x₁₁) = ⊥-elim (WF.Π≢ne x₁₀ A≡B) transConv↓Term Γ≡Δ A≡B PE.refl (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (zero-refl x₈) = ⊥-elim (WF.ℕ≢Π! (sym A≡B)) transConv↓Term Γ≡Δ A≡B PE.refl (η-eq x x₁ x₂ x₃ x₄ x₅ x₆ x₇) (suc-cong x₈) = ⊥-elim (WF.ℕ≢Π! (sym A≡B)) -- Transitivity of algorithmic equality of types of the same context. transConv : ∀ {A B C r Γ} → Γ ⊢ A [conv↑] B ^ r → Γ ⊢ B [conv↑] C ^ r → Γ ⊢ A [conv↑] C ^ r transConv A<>B B<>C = let Γ≡Γ = reflConEq (wfEq (soundnessConv↑ A<>B)) in transConv↑ Γ≡Γ A<>B B<>C -- Transitivity of algorithmic equality of terms of the same context. transConvTerm : ∀ {t u v A Γ l} → Γ ⊢ t [conv↑] u ∷ A ^ l → Γ ⊢ u [conv↑] v ∷ A ^ l → Γ ⊢ t [conv↑] v ∷ A ^ l transConvTerm t<>u u<>v = let t≡u = soundnessConv↑Term t<>u Γ≡Γ = reflConEq (wfEqTerm t≡u) ⊢A , _ , _ = syntacticEqTerm t≡u in transConv↑Term Γ≡Γ (refl ⊢A) t<>u u<>v trans~↑!Term : ∀ {t u v A Γ l} → Γ ⊢ t ~ u ↑% A ^ l → Γ ⊢ u ~ v ↑% A ^ l → Γ ⊢ t ~ v ↑% A ^ l trans~↑!Term t<>u u<>v = let _ , _ , t≡u = soundness~↑% t<>u Γ≡Γ = reflConEq (wfEqTerm t≡u) in trans~↑% Γ≡Γ t<>u u<>v
{ "alphanum_fraction": 0.5115045151, "avg_line_length": 53.701369863, "ext": "agda", "hexsha": "bcc2c945fb9a41aab660cc3e1a8ccdc339530da7", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/Transitivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/Transitivity.agda", "max_line_length": 150, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/Transitivity.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 9898, "size": 19601 }
------------------------------------------------------------------------ -- Mixfix operator grammars, and parsing of mixfix operators -- -- Nils Anders Danielsson ------------------------------------------------------------------------ module Mixfix where -- There are two separate developments here. One is very close to the -- paper "Parsing Mixfix Operators" (by me and Ulf Norell), and uses -- directed acyclic precedence graphs and grammars which are neither -- left nor right recursive. The other uses precedence graphs which -- may be cyclic and grammars which can be both left and right -- recursive (following an alternative definition of grammars given in -- the paper). The two grammar schemes are equivalent when restricted -- to acyclic precedence graphs. -- The grammars which use DAGs have the advantage that they can be -- implemented using a larger variety of parser combinator libraries. -- This could lead to a more efficient implementation. On the other -- hand the definition of the other grammars does not attempt to avoid -- left and right recursion, which means that it is arguably a bit -- easier to understand and work with (compare the proofs in -- Mixfix.Acyclic.Show and Mixfix.Cyclic.Show, for instance). ------------------------------------------------------------------------ -- Shared code -- Fixity and associativity. import Mixfix.Fixity -- Operators. import Mixfix.Operator -- Precedence-correct expressions, parametrised on abstract precedence -- graphs. import Mixfix.Expr ------------------------------------------------------------------------ -- Acyclic graphs -- A custom-made parser combinator library (with a formal semantics). import Mixfix.Acyclic.Lib -- Acyclic precedence graphs. import Mixfix.Acyclic.PrecedenceGraph -- Mixfix operator grammars. The resulting expressions are -- precedence-correct by construction. import Mixfix.Acyclic.Grammar -- A minor lemma. import Mixfix.Acyclic.Lemma -- Linearisation of operators, and a proof showing that all the -- generated strings are syntactically correct (although perhaps -- ambiguous). If the result is combined with the one in -- Mixfix.Cyclic.Uniqueness we get that every expression has a unique -- representation. (Two different expressions may have the same -- representation, though.) import Mixfix.Acyclic.Show -- An example. import Mixfix.Acyclic.Example ------------------------------------------------------------------------ -- Cyclic graphs -- A custom-made parser combinator library (with a formal semantics). import Mixfix.Cyclic.Lib -- Cyclic precedence graphs. (These graphs are not used below, because -- Mixfix.Cyclic.Grammar can handle arbitrary precedence graphs.) import Mixfix.Cyclic.PrecedenceGraph -- Mixfix operator grammars. The resulting expressions are -- precedence-correct by construction. import Mixfix.Cyclic.Grammar -- A constructive proof (i.e. a "show" function) showing that every -- expression has at least one representation. import Mixfix.Cyclic.Show -- A proof showing that every expression has at most one -- representation. import Mixfix.Cyclic.Uniqueness -- An example. import Mixfix.Cyclic.Example ------------------------------------------------------------------------ -- Equivalence -- For acyclic precedence graphs the two grammar definitions above are -- equivalent. -- Note that this proof only establishes language equivalence, not -- parser equivalence (see TotalParserCombinators.Semantics). In other -- words, the two definitions are seen as equivalent if they yield the -- same language, even though the number of parse trees corresponding -- to a certain (input string, result)-pair may vary between the two -- definitions. For instance, when parsing the string s using one -- grammar the result could contain the expression e once, whereas -- parsing with the other grammar could yield a result containing two -- copies of e. This is not a big problem: syntactic equality of -- expressions is decidable, so extra occurrences of e can be filtered -- out. The same considerations apply to the equivalence proofs in -- Mixfix.Acyclic.Lib and Mixfix.Cyclic.Lib. Note that I believe that -- it is easy (but tedious) to strengthen all these proofs so that -- parser equivalence is established, but I have not tried to do this. import Mixfix.Equivalence
{ "alphanum_fraction": 0.7000691085, "avg_line_length": 33.9140625, "ext": "agda", "hexsha": "a2d56bb58df473552b8f1d0829ba847bfa8047fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "Mixfix.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 873, "size": 4341 }
import Lvl open import Functional open import Logic.Propositional{Lvl.𝟎} open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎} open import Logic.Propositional.Theorems{Lvl.𝟎} open import Relator.Equals{Lvl.𝟎}{Lvl.𝟎} renaming (_≡_ to _≡ₑ_) open import Type{Lvl.𝟎} -- Based on https://plato.stanford.edu/entries/set-theory-constructive/axioms-CZF-IZF.html (2017-10-13) module Sets.IZF (S : Set(Lvl.𝟎)) (_∈_ : S → S → Stmt) where module Relations where _∉_ : S → S → Stmt _∉_ x a = ¬(x ∈ a) _⊆_ : S → S → Stmt _⊆_ a b = (∀{x} → (x ∈ a) → (x ∈ b)) _⊇_ : S → S → Stmt _⊇_ a b = (∀{x} → (x ∈ a) ← (x ∈ b)) _≡_ : S → S → Stmt _≡_ a b = (∀{x} → (x ∈ a) ↔ (x ∈ b)) -- The statement that the set s is empty Empty : S → Stmt Empty(s) = (∀{x} → (x ∉ s)) -- The statement that the set s is inhabited/non-empty NonEmpty : S → Stmt NonEmpty(s) = ∃(x ↦ (x ∈ s)) -- The statement that the set s is a singleton set containing only the single element x₁ Singleton : S → S → Stmt Singleton(s) (x₁) = (∀{x} → (x ∈ s) ↔ (x ≡ x₁)) -- The statement that the set s is a pair set containing only the two elements x₁, x₂ Pair : S → S → S → Stmt Pair(s) (x₁)(x₂) = (∀{x} → (x ∈ s) ↔ (x ≡ x₁)∨(x ≡ x₂)) -- The statement that the set sᵤ is the union of the sets s₁, s₂ Union : S → S → S → Stmt Union(sᵤ) (s₁)(s₂) = (∀{x} → (x ∈ sᵤ) ↔ (x ∈ s₁)∨(x ∈ s₂)) -- The statement that the set sᵤ is the intersection of the sets s₁, s₂ Intersection : S → S → S → Stmt Intersection(sᵢ) (s₁)(s₂) = (∀{x} → (x ∈ sᵢ) ↔ (x ∈ s₁)∧(x ∈ s₂)) -- The statement that the set sₚ is the power set of s Power : S → S → Stmt Power(sₚ) (s) = (∀{x} → (x ∈ sₚ) ↔ (x ⊆ s)) -- The statement that the set sᵤ is the union of all sets in ss UnionAll : S → S → Stmt UnionAll(sᵤ) (ss) = (∀{x s} → (x ∈ sᵤ) ↔ (x ∈ s)∧(s ∈ ss)) -- The statement that the set sᵤ is the intersection of all sets in ss IntersectionAll : S → S → Stmt IntersectionAll(sᵢ) (ss) = (∀{x} → (x ∈ sᵢ) ↔ (∀{s} → (s ∈ ss) → (x ∈ s))) -- The statement that the set sₛ is the subset of s where every element satisfies φ FilteredSubset : S → (s : S) → ((x : S) → ⦃ _ : (x ∈ s) ⦄ → Stmt) → Stmt FilteredSubset(sₛ) (s)(φ) = (∀{x} → (x ∈ sₛ) ↔ ∃{x ∈ s}(proof ↦ φ(x) ⦃ proof ⦄)) module RelationsTheorems where open Relations [≡]-reflexivity : ∀{s} → (s ≡ s) [≡]-reflexivity = [↔]-reflexivity [≡]-transitivity : ∀{s₁ s₂ s₃} → (s₁ ≡ s₂) → (s₂ ≡ s₃) → (s₁ ≡ s₃) [≡]-transitivity(s12)(s23){x} = [↔]-transitivity(s12{x})(s23{x}) [≡]-symmetry : ∀{s₁ s₂} → (s₁ ≡ s₂) → (s₂ ≡ s₁) [≡]-symmetry(s12){x} = [↔]-symmetry(s12{x}) -- TODO: Are these even provable with my def. of set equality? -- [≡]-substitute : ∀{φ : S → Stmt}{s₁ s₂} → (s₁ ≡ s₂) → ∀{x} → φ(s₁) ↔ φ(s₂) -- [≡]-substituteₗ : ∀{φ : Stmt → Stmt}{s₁ s₂} → (s₁ ≡ s₂) → ∀{x} → φ(s₁ ∈ x) ↔ φ(s₂ ∈ x) [⊆]-reflexivity : ∀{s} → (s ⊆ s) [⊆]-reflexivity = [→]-reflexivity [⊆]-transitivity : ∀{s₁ s₂ s₃} → (s₁ ⊆ s₂) → (s₂ ⊆ s₃) → (s₁ ⊆ s₃) [⊆]-transitivity(s12)(s23){x} = [→]-transitivity(s12{x})(s23{x}) [⊆]-antisymmetry : ∀{s₁ s₂} → (s₁ ⊇ s₂) → (s₁ ⊆ s₂) → (s₁ ≡ s₂) [⊆]-antisymmetry(s21)(s12){x} = [↔]-intro (s21{x}) (s12{x}) module Axioms1 where open Relations -- Axiom of extensionality -- Sets are equal when they have the same elements. record SetEquality : Set(Lvl.𝟎) where field equality : ∀{s₁ s₂} → (s₁ ≡ s₂) → (s₁ ≡ₑ s₂) open SetEquality ⦃ ... ⦄ public -- Axiom of the empty set -- A set which is empty exists. record EmptySetExistence : Set(Lvl.𝟎) where field empty : ∃(s ↦ Empty(s)) open EmptySetExistence ⦃ ... ⦄ public -- Axiom of pairing -- A set with two elements exists. record PairExistence : Set(Lvl.𝟎) where field pair : ∀{x₁ x₂} → ∃(s ↦ Pair(s)(x₁)(x₂)) open PairExistence ⦃ ... ⦄ public -- Axiom of union -- A set which contains all the elements of a group of sets exists. record UnionExistence : Set(Lvl.𝟎) where field union : ∀{ss} → ∃(sᵤ ↦ UnionAll(sᵤ)(ss)) open UnionExistence ⦃ ... ⦄ public -- Axiom of the power set -- A set which contains all the subsets of a set exists. record PowerSetExistence : Set(Lvl.𝟎) where field power : ∀{s} → ∃(sₚ ↦ Power(sₚ)(s)) open PowerSetExistence ⦃ ... ⦄ public -- Axiom schema of restricted comprehension | Axiom schema of specification | Axiom schema of separation -- A set which is the subset of a set where all elements satisfies a predicate exists. record RestrictedComprehensionExistence : Set(Lvl.𝐒(Lvl.𝟎)) where field comprehension : ∀{s}{φ : (x : S) → ⦃ _ : (x ∈ s) ⦄ → Stmt} → ∃(sₛ ↦ FilteredSubset(sₛ)(s)(φ)) open RestrictedComprehensionExistence ⦃ ... ⦄ public -- Axiom schema of collection -- A set which collects all RHS in a binary relation (and possibly more elements) exists. -- The image of a function has a superset? -- Detailed explanation: -- Given a set a and a formula φ: -- If ∀(x∊a)∃y. φ(x)(y) -- The binary relation φ describes a total multivalued function from the set a to b: -- φ: a→b -- Note: φ is not neccessarily a set. -- Then ∃b∀(x∊a)∃(y∊b). φ(x)(y) -- There exists a set b such that every argument of the function has one of its function values in it. record CollectionAxiom : Set(Lvl.𝐒(Lvl.𝟎)) where field collection : ∀{φ : S → S → Stmt} → ∀{a} → (∀{x} → (x ∈ a) → ∃(y ↦ φ(x)(y))) → ∃(b ↦ ∀{x} → (x ∈ a) → ∃(y ↦ ((y ∈ b) ∧ φ(x)(y)))) open CollectionAxiom ⦃ ... ⦄ public -- Induction proof on sets. -- This can be used to prove stuff about all sets. -- This can be interpreted as: -- A proof of a predicate satisfying every element of an arbitrary set is a proof of this predicate satisfying every set. record InductionProof : Set(Lvl.𝐒(Lvl.𝟎)) where field induction : ∀{φ : S → Stmt} → (∀{s} → (∀{x} → (x ∈ s) → φ(x)) → φ(s)) → (∀{s} → φ(s)) open InductionProof ⦃ ... ⦄ public module Theorems1 where open Axioms1 open Relations module _ ⦃ _ : PairExistence ⦄ where -- A set with only one element exists. single : ∀{x₁} → ∃(s ↦ (∀{x} → (x ∈ s) ↔ (x ≡ x₁))) single{x} with pair{x}{x} ... | [∃]-intro (z) ⦃ f ⦄ = ([∃]-intro (z) ⦃ \{w} → [↔]-transitivity (f{w}) [∨]-redundancy ⦄) module _ ⦃ _ : EmptySetExistence ⦄ where [∅]-uniqueness : ∀{x y} → Empty(x) → Empty(y) → (x ≡ y) [∅]-uniqueness (empty-x)(empty-y) = ([↔]-intro ([⊥]-elim ∘ empty-y) ([⊥]-elim ∘ empty-x) ) {- Singleton-elem-uniqueness : ∀{x y₁ y₂} → (y₁ ∈ Singleton(x)) → (y₂ ∈ Singleton(x)) → (y₁ ≡ y₂) Singleton-elem-uniqueness (y₁-proof)(y₂-proof) = ([↔]-intro (y₁-proof) (y₂-proof) ) -} module Operations where open Axioms1 open Relations open Theorems1 module _ ⦃ _ : EmptySetExistence ⦄ where -- Definition of the empty set: ∅={}. -- This can be used to construct a set with no elements. ∅ : S ∅ = [∃]-witness(empty) module _ ⦃ _ : PairExistence ⦄ where -- Definition of a singleton set: {x} for some element x. -- This can be used to construct a set with a single element. • : S → S •(x) = [∃]-witness(single{x}) -- Definition of a pair set: {x,y} for some elements x and y. -- This can be used to construct a set with a countable number of elements: x⟒y⟒z. _⟒_ : S → S → S _⟒_ (x)(y) = [∃]-witness(pair{x}{y}) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where -- Definition of the union of two sets: s₁∪s₂ for two sets s₁ and s₂. -- This can be used to construct a set that contains all elements from either of the two sets. _∪_ : S → S → S _∪_ s₁ s₂ = [∃]-witness(union{s₁ ⟒ s₂}) module _ ⦃ _ : UnionExistence ⦄ where -- Definition of the union of a set of sets: ⋃(ss) for a set of sets ss. -- This can be used to construct a set that contains all elements from the sets. reduce-[∪] : S → S reduce-[∪] ss = [∃]-witness(union{ss}) module _ ⦃ _ : PowerSetExistence ⦄ where -- Definition of the power set of a set: ℘(s) for some set s. -- This can be used to construct a set that contains all subsets of a set. ℘ : S → S ℘(s) = [∃]-witness(power{s}) module _ ⦃ _ : RestrictedComprehensionExistence ⦄ where -- Definition of the usual "set builder notation": {(x∊s). φ(x)} for some set s. -- This can be used to construct a set that is the subset which satisfies a certain predicate for every element. filter : S → (S → Stmt) → S filter(s)(φ) = [∃]-witness(comprehension{s}{x ↦ \ ⦃ _ ⦄ → φ(x)}) -- Definition of a "set builder notation": {(x∊s). φ(x)} for some set s where the predicate φ gets a proof of (x∈s). -- This can be used to construct a set that is the subset which satisfies a certain predicate for every element. filter-dep : (s : S) → ((x : S) → ⦃ _ : (x ∈ s) ⦄ → Stmt) → S filter-dep(s)(φ) = [∃]-witness(comprehension{s}{φ}) -- Definition of the intersection of two sets: s₁∩s₂ for two sets s₁ and s₂. -- This can be used to construct a set that contains all elements that only are in both sets. _∩_ : S → S → S _∩_ (s₁)(s₂) = filter(s₁)(x ↦ (x ∈ s₂)) -- Definition of the subtraction of two sets: s₁∖s₂ for two sets s₁ and s₂. -- This can be used to construct a set that contains all elements from s₁ which is not in s₂. _∖_ : S → S → S _∖_ (s₁)(s₂) = filter(s₁)(_∉ s₂) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ where -- Definition of the intersection of a set of sets: ⋂(ss) for a set of sets ss. -- This can be used to construct a set that only contains the elements which all the sets have in common. reduce-[∩] : S → S reduce-[∩] ss = filter(reduce-[∪] (ss))(x ↦ ∀{s} → (s ∈ ss) → (x ∈ s)) module OperationsTheorems where open Axioms1 open Operations open Relations open Theorems1 open Relations open RelationsTheorems -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Containment module _ ⦃ _ : EmptySetExistence ⦄ where [∅]-containment : Empty(∅) [∅]-containment = [∃]-proof(empty) module _ ⦃ _ : PairExistence ⦄ where [•]-containment : ∀{x₁} → (x₁ ∈ •(x₁)) [•]-containment{x₁} = [↔]-elimₗ([∃]-proof(single{x₁})) ([≡]-reflexivity) [⟒]-containment : ∀{x₁ x₂}{x} → (x ∈ (x₁ ⟒ x₂)) ↔ (x ≡ x₁)∨(x ≡ x₂) [⟒]-containment{x₁}{x₂} = [∃]-proof(pair{x₁}{x₂}) [⟒]-containmentₗ : ∀{x₁ x₂} → (x₁ ∈ (x₁ ⟒ x₂)) [⟒]-containmentₗ{x₁}{x₂} = [↔]-elimₗ([∃]-proof(pair{x₁}{x₂})) ([∨]-introₗ([≡]-reflexivity)) [⟒]-containmentᵣ : ∀{x₁ x₂} → (x₂ ∈ (x₁ ⟒ x₂)) [⟒]-containmentᵣ{x₁}{x₂} = [↔]-elimₗ([∃]-proof(pair{x₁}{x₂})) ([∨]-introᵣ([≡]-reflexivity)) module _ ⦃ _ : RestrictedComprehensionExistence ⦄ where filter-dep-containment : ∀{s}{φ}{x} → (x ∈ filter-dep(s)(φ)) ↔ (∃{x ∈ s}(proof ↦ φ(x) ⦃ proof ⦄)) filter-dep-containment{s} = [∃]-proof(comprehension) test : ∀{s}{φ}{x} → (x ∈ filter-dep(s)(φ)) → (∃{x ∈ s}(proof ↦ φ(x) ⦃ proof ⦄)) test{s} = [↔]-elimᵣ (filter-dep-containment) test2 : ∀{s}{φ}{x} → (x ∈ filter-dep(s)(φ)) → (x ∈ s) test2(a) = [∃]-witness (test(a)) -- TODO: ? -- test3 : ∀{s}{φ}{x} → (x ∈ filter-dep(s)(φ)) → ⦃ _ : (x ∈ s) ⦄ → φ(x) -- test3(a) ⦃ _ ⦄ = [∃]-proof (test(a)) postulate filter-containment : ∀{s}{φ}{x} → (x ∈ filter(s)(φ)) ↔ ((x ∈ s) ∧ φ(x)) -- filter-containment{s} = [∃]-proof(comprehension) [∩]-containment : ∀{s₁ s₂}{x} → (x ∈ (s₁ ∩ s₂)) ↔ (x ∈ s₁)∧(x ∈ s₂) [∩]-containment = filter-containment module _ ⦃ _ : UnionExistence ⦄ where postulate reduce-[∪]-containment : ∀{ss}{x} → (x ∈ reduce-[∪] (ss)) ↔ ∃(s ↦ (s ∈ ss)∧(x ∈ s)) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where [∪]-containment : ∀{s₁ s₂}{x} → (x ∈ (s₁ ∪ s₂)) ↔ (x ∈ s₁)∨(x ∈ s₂) [∪]-containment = [↔]-intro [∪]-containmentₗ [∪]-containmentᵣ where postulate [∪]-containmentₗ : ∀{s₁ s₂}{x} → (x ∈ (s₁ ∪ s₂)) ← (x ∈ s₁)∨(x ∈ s₂) postulate [∪]-containmentᵣ : ∀{s₁ s₂}{x} → (x ∈ (s₁ ∪ s₂)) → (x ∈ s₁)∨(x ∈ s₂) module _ ⦃ _ : PowerSetExistence ⦄ where [℘]-containment : ∀{s sₛ} → (sₛ ⊆ s) ↔ (sₛ ∈ ℘(s)) [℘]-containment{s} = [↔]-symmetry([∃]-proof(power{s})) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ where postulate reduce-[∩]-containment : ∀{ss}{x} → (x ∈ reduce-[∪] (ss)) ↔ (∀{s} → (s ∈ ss) → (x ∈ s)) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Other module _ ⦃ _ : EmptySetExistence ⦄ where [∅]-in-subset : ∀{s} → (∅ ⊆ s) [∅]-in-subset = [⊥]-elim ∘ [∅]-containment module _ ⦃ _ : EmptySetExistence ⦄ ⦃ _ : PowerSetExistence ⦄ where [℘][∅]-containment : ∀{s} → (∅ ∈ ℘(s)) [℘][∅]-containment = [↔]-elimᵣ([℘]-containment)([∅]-in-subset) module _ ⦃ _ : PowerSetExistence ⦄ where [℘]-set-containment : ∀{s} → (s ∈ ℘(s)) [℘]-set-containment = [↔]-elimᵣ([℘]-containment)([⊆]-reflexivity) module _ ⦃ _ : InductionProof ⦄ where self-noncontainment : ∀{s} → (s ∉ s) -- ¬ ∃(s ↦ s ∈ s) self-noncontainment = induction{x ↦ x ∉ x} (proof) where proof : ∀{s} → (∀{x} → (x ∈ s) → (x ∉ x)) → (s ∉ s) proof{s} (f)(s∈s) = f{s}(s∈s)(s∈s) -- ∀{s} → (∀{x} → (x ∈ s) → (x ∉ x)) → (s ∉ s) -- ∀{s} → (∀{x} → (x ∈ s) → (x ∈ x) → ⊥) → (s ∈ s) → ⊥ [𝐔]-nonexistence : ¬ ∃(𝐔 ↦ ∀{x} → (x ∈ 𝐔)) [𝐔]-nonexistence ([∃]-intro(𝐔) ⦃ proof ⦄) = self-noncontainment {𝐔} (proof{𝐔}) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Subset module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ where postulate reduce-[∪]-subset : ∀{ss}{s} → (s ∈ ss) → (s ⊆ reduce-[∪] (ss)) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where [∪]-subsetₗ : ∀{s₁ s₂} → (s₁ ⊆ (s₁ ∪ s₂)) [∪]-subsetₗ = ([↔]-elimₗ([∪]-containment)) ∘ [∨]-introₗ [∪]-subsetᵣ : ∀{s₁ s₂} → (s₂ ⊆ (s₁ ∪ s₂)) [∪]-subsetᵣ = ([↔]-elimₗ([∪]-containment)) ∘ [∨]-introᵣ postulate [∪]-subset-eq : ∀{s₁ s₂ s₃} → ((s₁ ∪ s₂) ⊆ s₃) ↔ ((s₁ ⊆ s₃)∧(s₂ ⊆ s₃)) module _ ⦃ _ : RestrictedComprehensionExistence ⦄ where [∩]-subsetₗ : ∀{s₁ s₂} → ((s₁ ∩ s₂) ⊆ s₁) [∩]-subsetₗ = [∧]-elimₗ ∘ ([↔]-elimᵣ([∩]-containment)) [∩]-subsetᵣ : ∀{s₁ s₂} → ((s₁ ∩ s₂) ⊆ s₂) [∩]-subsetᵣ = [∧]-elimᵣ ∘ ([↔]-elimᵣ([∩]-containment)) filter-dep-subset : ∀{s}{φ} → (filter-dep(s)(φ) ⊆ s) filter-dep-subset{s}{φ} {x}(x∈s) = [∃]-witness([↔]-elimᵣ(filter-dep-containment{s}{φ})(x∈s)) filter-subset : ∀{s}{φ} → (filter(s)(φ) ⊆ s) filter-subset{s}{φ} {x}(x∈s) = [∧]-elimₗ([↔]-elimᵣ(filter-containment{s}{φ})(x∈s)) module _ ⦃ _ : PowerSetExistence ⦄ where [℘]-subset : ∀{s₁ s₂} → (s₁ ⊆ s₂) ↔ (℘(s₁) ⊆ ℘(s₂)) [℘]-subset = [↔]-intro l r where l : ∀{s₁ s₂} → (s₁ ⊆ s₂) ← (℘(s₁) ⊆ ℘(s₂)) l {s₁}{s₂} (p1p2) = ([↔]-elimₗ [℘]-containment) (p1p2{s₁} ([℘]-set-containment)) r : ∀{s₁ s₂} → (s₁ ⊆ s₂) → (℘(s₁) ⊆ ℘(s₂)) r {s₁}{s₂} (s12) {a} (aps1) = ([↔]-elimᵣ [℘]-containment) ([⊆]-transitivity (([↔]-elimₗ [℘]-containment) aps1) (s12)) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ where postulate reduce-[∩]-subset : ∀{ss}{s} → (s ∈ ss) → (reduce-[∩] (ss) ⊆ s) -- TODO: Does this hold: Empty(s) ∨ NonEmpty(s) ? Probably not -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Commutativity -- [⟒]-commutativity : ∀{s₁ s₂} → (s₁ ⟒ s₂) ≡ (s₂ ⟒ s₁) -- [⟒]-commutativity{s₁}{s₂} {x} = [↔]-intro (f{s₂}{s₁}) (f{s₁}{s₂}) where -- f : ∀{s₁ s₂} → (x ∈ (s₁ ⟒ s₂)) → (x ∈ (s₂ ⟒ s₁)) -- f{s₁}{s₂} = ([↔]-elimₗ([⟒]-containment{s₂}{s₁}{x})) ∘ ([∨]-symmetry) ∘ ([↔]-elimᵣ([∪]-containment{s₁}{s₂}{x})) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where [∪]-commutativity : ∀{s₁ s₂} → (s₁ ∪ s₂) ≡ (s₂ ∪ s₁) [∪]-commutativity{s₁}{s₂} {x} = [↔]-intro (f{s₂}{s₁}) (f{s₁}{s₂}) where f : ∀{s₁ s₂} → (x ∈ (s₁ ∪ s₂)) → (x ∈ (s₂ ∪ s₁)) f{s₁}{s₂} = ([↔]-elimₗ([∪]-containment{s₂}{s₁}{x})) ∘ ([∨]-symmetry) ∘ ([↔]-elimᵣ([∪]-containment{s₁}{s₂}{x})) module _ ⦃ _ : RestrictedComprehensionExistence ⦄ where [∩]-commutativity : ∀{s₁ s₂} → (s₁ ∩ s₂) ≡ (s₂ ∩ s₁) [∩]-commutativity{s₁}{s₂} {x} = [↔]-intro (f{s₂}{s₁}) (f{s₁}{s₂}) where f : ∀{s₁ s₂} → (x ∈ (s₁ ∩ s₂)) → (x ∈ (s₂ ∩ s₁)) f{s₁}{s₂} = ([↔]-elimₗ([∩]-containment{s₂}{s₁}{x})) ∘ ([∧]-symmetry) ∘ ([↔]-elimᵣ([∩]-containment{s₁}{s₂}{x})) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Associativity module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where [∪]-associativity : ∀{s₁ s₂ s₃} → ((s₁ ∪ s₂) ∪ s₃) ≡ (s₁ ∪ (s₂ ∪ s₃)) [∪]-associativity{s₁}{s₂}{s₃} {x} = [↔]-intro l r where l : (x ∈ ((s₁ ∪ s₂) ∪ s₃)) ← (x ∈ (s₁ ∪ (s₂ ∪ s₃))) l = ([↔]-elimₗ([∪]-containment{s₁ ∪ s₂}{s₃}{x})) ∘ ([∨]-elim ([∨]-introₗ ∘ ([↔]-elimₗ([∪]-containment{s₁}{s₂}{x}))) ([∨]-introᵣ)) ∘ ([↔]-elimₗ [∨]-associativity) ∘ ([∨]-elim ([∨]-introₗ) ([∨]-introᵣ ∘ ([↔]-elimᵣ([∪]-containment{s₂}{s₃}{x})))) ∘ ([↔]-elimᵣ([∪]-containment{s₁}{s₂ ∪ s₃}{x})) r : (x ∈ ((s₁ ∪ s₂) ∪ s₃)) → (x ∈ (s₁ ∪ (s₂ ∪ s₃))) r = ([↔]-elimₗ([∪]-containment{s₁}{s₂ ∪ s₃}{x})) ∘ ([∨]-elim ([∨]-introₗ) ([∨]-introᵣ ∘ ([↔]-elimₗ([∪]-containment{s₂}{s₃}{x})))) ∘ ([↔]-elimᵣ [∨]-associativity) ∘ ([∨]-elim ([∨]-introₗ ∘ ([↔]-elimᵣ([∪]-containment{s₁}{s₂}{x}))) ([∨]-introᵣ)) ∘ ([↔]-elimᵣ([∪]-containment{s₁ ∪ s₂}{s₃}{x})) module _ ⦃ _ : RestrictedComprehensionExistence ⦄ where [∩]-associativity : ∀{s₁ s₂ s₃} → ((s₁ ∩ s₂) ∩ s₃) ≡ (s₁ ∩ (s₂ ∩ s₃)) [∩]-associativity{s₁}{s₂}{s₃} {x} = [↔]-intro l r where l : (x ∈ ((s₁ ∩ s₂) ∩ s₃)) ← (x ∈ (s₁ ∩ (s₂ ∩ s₃))) l = (([↔]-elimₗ([∩]-containment{s₁ ∩ s₂}{s₃}{x})) :of: ((x ∈ ((s₁ ∩ s₂) ∩ s₃)) ← (x ∈ (s₁ ∩ s₂))∧(x ∈ s₃))) ∘ ((prop ↦ ([∧]-intro ([↔]-elimₗ([∩]-containment{s₁}{s₂}{x}) ([∧]-elimₗ prop)) ([∧]-elimᵣ prop))) :of: ((x ∈ (s₁ ∩ s₂))∧(x ∈ s₃) ← ((x ∈ s₁)∧(x ∈ s₂))∧(x ∈ s₃))) ∘ ([↔]-elimₗ [∧]-associativity) ∘ ((prop ↦ ([∧]-intro ([∧]-elimₗ prop) ([↔]-elimᵣ([∩]-containment{s₂}{s₃}{x}) ([∧]-elimᵣ prop)))) :of: ((x ∈ s₁)∧((x ∈ s₂)∧(x ∈ s₃)) ← (x ∈ s₁)∧(x ∈ (s₂ ∩ s₃)))) ∘ (([↔]-elimᵣ([∩]-containment{s₁}{s₂ ∩ s₃}{x})) :of: ((x ∈ s₁)∧(x ∈ (s₂ ∩ s₃)) ← (x ∈ (s₁ ∩ (s₂ ∩ s₃))))) r : (x ∈ ((s₁ ∩ s₂) ∩ s₃)) → (x ∈ (s₁ ∩ (s₂ ∩ s₃))) r = (([↔]-elimₗ([∩]-containment{s₁}{s₂ ∩ s₃}{x})) :of: ((x ∈ s₁)∧(x ∈ (s₂ ∩ s₃)) → (x ∈ (s₁ ∩ (s₂ ∩ s₃))))) ∘ ((prop ↦ ([∧]-intro ([∧]-elimₗ prop) ([↔]-elimₗ([∩]-containment{s₂}{s₃}{x}) ([∧]-elimᵣ prop)))) :of: ((x ∈ s₁)∧((x ∈ s₂)∧(x ∈ s₃)) → (x ∈ s₁)∧(x ∈ (s₂ ∩ s₃)))) ∘ ([↔]-elimᵣ [∧]-associativity) ∘ ((prop ↦ ([∧]-intro ([↔]-elimᵣ([∩]-containment{s₁}{s₂}{x}) ([∧]-elimₗ prop)) ([∧]-elimᵣ prop))) :of: ((x ∈ (s₁ ∩ s₂))∧(x ∈ s₃) → ((x ∈ s₁)∧(x ∈ s₂))∧(x ∈ s₃))) ∘ (([↔]-elimᵣ([∩]-containment{s₁ ∩ s₂}{s₃}{x})) :of: ((x ∈ ((s₁ ∩ s₂) ∩ s₃)) → (x ∈ (s₁ ∩ s₂))∧(x ∈ s₃))) module NaturalNumbers where open Axioms1 open Operations module _ ⦃ _ : EmptySetExistence ⦄ where -- Could be interpreted as a set theoretic definition of zero from the natural numbers. 𝟎 : S 𝟎 = ∅ module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where -- Could be interpreted as a set theoretic definition of the successor function from the natural numbers. 𝐒 : S → S 𝐒(x) = (x ∪ •(x)) module _ ⦃ _ : EmptySetExistence ⦄ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where Inductive : S → Stmt Inductive(N) = ((𝟎 ∈ N) ∧ (∀{n} → (n ∈ N) → (𝐒(n) ∈ N))) module Tuples where open Axioms1 open Operations open Relations module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where _,_ : S → S → S _,_ x y = (x ∪ (x ⟒ y)) postulate Tuple-elem-uniqueness : ∀{x₁ x₂ y₁ y₂} → ((x₁ , y₁) ≡ (x₂ , y₂)) → (x₁ ≡ x₂)∧(y₁ ≡ y₂) -- Tuple-elem-uniqueness (x1y1x2y2) = module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ ⦃ _ : PowerSetExistence ⦄ where _⨯_ : S → S → S _⨯_ s₁ s₂ = filter(℘(℘(s₁ ∪ s₂))) (s ↦ ∃(x ↦ ∃(y ↦ (x ∈ s₁) ∧ (y ∈ s₂) ∧ (s ≡ (x , y))))) module Functions where open Axioms1 open Operations open Relations open Tuples module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ where Function : S → S → S → Stmt Function(f) (s₁)(s₂) = (∀{x} → (x ∈ s₁) → ∃(y ↦ (y ∈ s₂) ∧ ((x , y) ∈ f) ∧ (∀{y₂} → ((x , y₂) ∈ f) → (y ≡ y₂)))) module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ ⦃ _ : PowerSetExistence ⦄ where _^_ : S → S → S _^_ s₁ s₂ = filter(℘(s₂ ⨯ s₁)) (f ↦ Function(f)(s₁)(s₂)) module Axioms2 where open Axioms1 open NaturalNumbers open Relations module _ ⦃ _ : EmptySetExistence ⦄ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where -- Sets can model ℕ. -- This can be used to construct a set representing the natural numbers. -- In this context, "Model" and "Representing" means a bijection. record InfinityAxiom : Set(Lvl.𝟎) where field infinity : ∃(N ↦ Inductive(N)) open InfinityAxiom ⦃ ... ⦄ public record ChoiceAxiom : Set(Lvl.𝟎) where field choice : ⊤ open ChoiceAxiom ⦃ ... ⦄ public module NaturalNumberTheorems where open Axioms1 open Axioms2 open NaturalNumbers open Operations open OperationsTheorems open Relations open RelationsTheorems module _ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ where [𝐒]-contains-arg : ∀{x} → (x ∈ 𝐒(x)) [𝐒]-contains-arg = [↔]-elimₗ ([∪]-containment) ([∨]-introᵣ [•]-containment) [𝐒]-subset-arg : ∀{x} → (x ⊆ 𝐒(x)) [𝐒]-subset-arg = [∪]-subsetₗ module _ ⦃ _ : EmptySetExistence ⦄ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ ⦃ _ : InfinityAxiom ⦄ where Infinity-contains-[𝟎] : (𝟎 ∈ [∃]-witness(infinity)) Infinity-contains-[𝟎] = [∧]-elimₗ ([∃]-proof(infinity)) Infinity-contains-[𝐒] : ∀{n} → (n ∈ [∃]-witness(infinity)) → (𝐒(n) ∈ [∃]-witness(infinity)) Infinity-contains-[𝐒] = [∧]-elimᵣ ([∃]-proof(infinity)) Infinity-inductive : Inductive([∃]-witness(infinity)) Infinity-inductive = [∧]-intro (Infinity-contains-[𝟎]) (Infinity-contains-[𝐒]) module _ ⦃ _ : EmptySetExistence ⦄ ⦃ _ : UnionExistence ⦄ ⦃ _ : PairExistence ⦄ ⦃ _ : InfinityAxiom ⦄ ⦃ _ : RestrictedComprehensionExistence ⦄ where ℕ : S ℕ = filter([∃]-witness(infinity)) (n ↦ ∀{I} → Inductive(I) → (n ∈ I)) [ℕ]-subset-of-infinity : (ℕ ⊆ [∃]-witness(infinity)) [ℕ]-subset-of-infinity = filter-subset [ℕ]-contains-[𝟎] : (𝟎 ∈ ℕ) [ℕ]-contains-[𝟎] = ([↔]-elimₗ (filter-containment {_}{_}{𝟎})) ([∧]-intro (Infinity-contains-[𝟎]) (\{_} → [∧]-elimₗ)) [ℕ]-contains-[𝐒] : ∀{n} → (n ∈ ℕ) → (𝐒(n) ∈ ℕ) [ℕ]-contains-[𝐒] {n} (n-in) with ([↔]-elimᵣ filter-containment) (n-in) ... | ([∧]-intro (n-in-inf) (n-satisfies)) = (([↔]-elimₗ (filter-containment {_}{_}{𝐒(n)})) ([∧]-intro (Sn-in-inf) (\{_} → Sn-satisfies) ) ) where Sn-in-inf : (𝐒(n) ∈ [∃]-witness(infinity)) Sn-in-inf = Infinity-contains-[𝐒] (n-in-inf) Sn-satisfies : ∀{I} → Inductive(I) → (𝐒(n) ∈ I) Sn-satisfies{I}(I-inductive) = ([∧]-elimᵣ(I-inductive)) (n-satisfies{I}(I-inductive)) -- TODO: Is this provable without extensionality? The problem is (x∈z ↔ y∈z) when (x≡y). module _ ⦃ _ : SetEquality ⦄ where [ℕ]-containsₗ : ∀{n} → (n ∈ ℕ) ← (n ≡ 𝟎)∨(∃(x ↦ (x ∈ ℕ)∧(n ≡ 𝐒(x)))) [ℕ]-containsₗ {_} ([∨]-introₗ n-zero) with equality(n-zero) ... | [≡]-intro = [ℕ]-contains-[𝟎] [ℕ]-containsₗ {n} ([∨]-introᵣ ([∃]-intro (x) ⦃ [∧]-intro (in-N) (n-succ) ⦄)) with equality(n-succ) ... | [≡]-intro = [ℕ]-contains-[𝐒] {x} (in-N) [ℕ]-inductive : Inductive(ℕ) [ℕ]-inductive = [∧]-intro ([ℕ]-contains-[𝟎]) ([ℕ]-contains-[𝐒]) [ℕ]-subset : ∀{I} → Inductive(I) → (ℕ ⊆ I) [ℕ]-subset{I} (I-inductive) {n} (n-in-ℕ) with ([↔]-elimᵣ filter-containment) (n-in-ℕ) ... | ([∧]-intro (n-in-inf) (n-satisfies)) = n-satisfies{I} (I-inductive) -- [ℕ]-containsᵣ : ∀{n} → (n ∈ ℕ) → (n ≡ 𝟎)∨(∃(x ↦ (x ∈ ℕ)∧(n ≡ 𝐒(x)))) -- [ℕ]-containsᵣ{n} (n-in) with ([↔]-elimᵣ filter-containment) (n-in) = [ℕ]-set-induction : ∀{Nₛ} → (Nₛ ⊆ ℕ) → Inductive(Nₛ) → (Nₛ ≡ ℕ) [ℕ]-set-induction {Nₛ} (Nₛ-subset) (ind) = [↔]-intro ([ℕ]-subset {Nₛ} (ind)) (Nₛ-subset) module _ ⦃ _ : (𝟎 ∈ ℕ)⦄ ⦃ _ : ∀{n} → ⦃ _ : (n ∈ ℕ) ⦄ → (𝐒(n) ∈ ℕ) ⦄ where postulate [ℕ]-induction : ∀{φ : (n : S) → ⦃ _ : (n ∈ ℕ) ⦄ → Stmt} → φ(𝟎) → (∀{n} → ⦃ n-in : (n ∈ ℕ) ⦄ → φ(n) → φ(𝐒(n))) → (∀{n} → ⦃ _ : n ∈ ℕ ⦄ → φ(n)) {-[ℕ]-induction {φ} (zero) (succ) {n} ⦃ n-in-ℕ ⦄ = ([∧]-elimᵣ (([↔]-elimᵣ filter-containment) ([ℕ]-subset {set} ([∧]-intro (zero-in) (succ-in)) {n} (n-in-ℕ)) ) ) where set : S set = filter-dep(ℕ)(φ) module _ {n} ⦃ n-in-ℕ : (n ∈ ℕ) ⦄ where n-inₗ : φ(n) ← (n ∈ set) n-inₗ (proof) = [∃]-proof (([↔]-elimᵣ filter-dep-containment) (proof)) n-inᵣ : φ(n) → (n ∈ set) n-inᵣ (proof) = ([↔]-elimₗ filter-containment) ([∧]-intro (n-in-ℕ) (proof)) -- TODO: Unnecessary Sn-inₗ : φ(𝐒(n)) ← (𝐒(n) ∈ set) Sn-inₗ (proof) = [∧]-elimᵣ (([↔]-elimᵣ filter-containment) (proof)) Sn-inᵣ : φ(𝐒(n)) → (𝐒(n) ∈ set) Sn-inᵣ (proof) = ([↔]-elimₗ filter-containment) ([∧]-intro ([ℕ]-contains-[𝐒] (n-in-ℕ)) (proof)) zero-in : 𝟎 ∈ set zero-in = (([↔]-elimₗ filter-containment) ([∧]-intro ([ℕ]-contains-[𝟎]) (zero) ) ) succ-in : ∀{n} → (n ∈ set) → (𝐒(n) ∈ set) succ-in{n} (n-in-filter) with ([↔]-elimᵣ filter-containment) (n-in-filter) ... | ([∧]-intro (n-in-ℕ) (φn)) = (Sn-inᵣ ⦃ n-in-ℕ ⦄ (succ ⦃ n-in-ℕ ⦄ (n-inₗ ⦃ n-in-ℕ ⦄ n-in-filter))) -} {- ... | ([∧]-intro (n-in-ℕ) (φn)) = (([↔]-elimₗ filter-containment) ([∧]-intro ([ℕ]-contains-[𝐒] (n-in-ℕ)) (?) ) ) -} -- succ-in = (Sn-inᵣ) ∘ (succ {n} (n-in-ℕ)) ∘ (n-inₗ) _<_ : (a : S) → ⦃ _ : (a ∈ ℕ) ⦄ → (b : S) → ⦃ _ : (b ∈ ℕ) ⦄ → Stmt a < b = (a ∈ b) _≤_ : (a : S) → ⦃ _ : (a ∈ ℕ) ⦄ → (b : S) → ⦃ _ : (b ∈ ℕ) ⦄ → Stmt a ≤ b = (a < b) ∨ (a ≡ b) {- [<]-transitivity : ∀{a b c} → ⦃ _ : (a ∈ ℕ) ⦄ → ⦃ _ : (b ∈ ℕ) ⦄ → ⦃ _ : (c ∈ ℕ) ⦄ → (a < b) → (b < c) → (a < c) [<]-transitivity{a}{b}{c} = [ℕ]-induction{n ↦ \ ⦃ _ ⦄ → ((a < b) → (b < n) → (a < n))} φ-zero φ-succ {c} where postulate φ-zero : (a < b) → (b < 𝟎) ⦃ _ ⦄ ⦃ [ℕ]-contains-[𝟎] ⦄ → (a < 𝟎) ⦃ _ ⦄ ⦃ [ℕ]-contains-[𝟎] ⦄ postulate φ-succ : ∀{n} → ⦃ _ : n ∈ ℕ ⦄ → ((a < b) → (b < n) → (a < n)) → ((a < b) → (b < 𝐒(n)) → (a < 𝐒(n))) -} {--- TODO: I think a filtering like this gives the minimal inductive set? But probably not. (x∈ℕ) is missing, and then the definition is refering to itself. ℕ : S ℕ = filter([∃]-witness(infinity)) (n ↦ (n ≡ 𝟎) ∨ ∃(x ↦ ∧(n ≡ 𝐒(x)))) -- TODO: Does this potentially include other stuff too? Like 𝐒 ⦃ 𝟎 ⦄ ? -- TODO: ∀{n} → (n ∈ ℕ) → (n ≡ 𝟎)∨(∃(x ↦ (x ∈ ℕ)∧(n ≡ 𝐒(x)))). COuld use [ℕ]-contains-[𝐒]-arg to achieve this. [ℕ]-contains-only : ∀{n} → (n ∈ ℕ) → (n ≡ 𝟎)∨(∃(x ↦ n ≡ 𝐒(x))) [ℕ]-contains-only {n} (n-containment) = [∧]-elimᵣ (([↔]-elimᵣ (filter-containment {_}{_}{n})) (n-containment)) -- [ℕ]-contains-[𝐒]-arg : ∀{n} → (𝐒(n) ∈ ℕ) → (n ∈ ℕ) -- [ℕ]-contains-[𝐒]-arg{n} (sn-in) = [ℕ]-contains-only{𝐒(n)} ([∨]-introᵣ ) [ℕ]-contains-[𝟎] : (𝟎 ∈ ℕ) [ℕ]-contains-[𝟎] = ([↔]-elimₗ (filter-containment {_}{_}{𝟎})) ([∧]-intro Infinity-contains-[𝟎] satisfy-property) where satisfy-property : (𝟎 ≡ 𝟎) ∨ ∃(y ↦ 𝟎 ≡ 𝐒(y)) satisfy-property = [∨]-introₗ [≡]-reflexivity [ℕ]-contains-[𝐒] : ∀{n} → (n ∈ ℕ) → (𝐒(n) ∈ ℕ) [ℕ]-contains-[𝐒] {n} (n-containment) = ([↔]-elimₗ (filter-containment {_}{_}{𝐒(n)})) ([∧]-intro (Infinity-contains-[𝐒] {n} ([ℕ]-subset-of-infinity {n} (n-containment))) satisfy-property) where satisfy-property : (𝐒(n) ≡ 𝟎) ∨ ∃(y ↦ 𝐒(n) ≡ 𝐒(y)) satisfy-property = [∨]-introᵣ ([∃]-intro n ⦃ [≡]-reflexivity ⦄) -- [ℕ]-subset-implies-containment : ∀{n} → (n ⊆ ℕ) → (n ∈ ℕ) -- [ℕ]-strict-subset-is-containment : ∀{n} → (n ⊂ ℕ) ↔ (n ∈ ℕ) [ℕ]-subset : ∀{Nₛ} → Inductive(Nₛ) → (ℕ ⊆ Nₛ) [ℕ]-subset {Nₛ} ([∧]-intro zero-containment successor-containment) {n} ([ℕ]-n-containment) = [∨]-elim (zero) (succ) ([ℕ]-contains-only{n} ([ℕ]-n-containment)) where zero : (n ≡ 𝟎) → (n ∈ Nₛ) zero(n0) with equality(n0) ... | [≡]-intro = zero-containment succ : (∃(x ↦ n ≡ 𝐒(x))) → (n ∈ Nₛ) succ([∃]-intro(x) ⦃ prop ⦄) with equality(prop) ... | [≡]-intro = successor-containment(x-in) where postulate x-in : (x ∈ Nₛ) -- TODO: Impossible to prove? Something is missing in the definition of ℕ? -- TODO: Is it possible to connect this to the ℕ in Numeral.Natural.ℕ? -- TODO: Is (∀{s₁ s₂ : S} → (s₁ ≡ s₂) → (s₁ ∈ S) → (s₂ ∈ S)) provable without axiom of extensionality? -} record IZF : Set(Lvl.𝐒(Lvl.𝟎)) where instance constructor IZFStructure open Axioms1 open Axioms2 field ⦃ extensionality ⦄ : SetEquality ⦃ empty ⦄ : EmptySetExistence ⦃ pair ⦄ : PairExistence ⦃ union ⦄ : UnionExistence ⦃ power ⦄ : PowerSetExistence ⦃ comprehension ⦄ : RestrictedComprehensionExistence ⦃ infinity ⦄ : InfinityAxiom ⦃ collection ⦄ : CollectionAxiom ⦃ induction ⦄ : InductionProof
{ "alphanum_fraction": 0.5194574086, "avg_line_length": 42.7916666667, "ext": "agda", "hexsha": "8fdc6b449ad367e36de7f25afb84feb8da7ddc27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Sets/IZF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Sets/IZF.agda", "max_line_length": 196, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Sets/IZF.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 13192, "size": 29783 }
{-# OPTIONS --without-K --safe #-} module Math.NumberTheory.Product.Generic.Properties where -- agda-stdlib open import Algebra -- agda-misc open import Math.NumberTheory.Summation.Generic.Properties -- TODO add renamaings module CommutativeMonoidProductProperties {c e} (CM : CommutativeMonoid c e) = CommutativeMonoidSummationProperties CM renaming ( Σ<-cong to Π<-cong ; Σ<-congˡ to Π<-congˡ ; Σ<-congʳ to Π<-congʳ ; Σ≤-cong to Π≤-cong ; Σ≤-congˡ to Π≤-congˡ ; Σ≤-congʳ to Π≤-congʳ ; Σ<range-cong to Π<range-cong ; Σ<range-cong₃ to Π<range-cong₃ ; Σ<range-cong₁₂ to Π<range-cong₁₂ ; Σ<range-cong₁ to Π<range-cong₁ ; Σ<range-cong₂ to Π<range-cong₂ ; Σ≤range-cong to Π≤range-cong ; Σ<-congˡ-with-< to Π<-congˡ-with-< ; Σ≤-congˡ-with-≤ to Π≤-congˡ-with-≤ ; Σ<-0 to Π<-1 ; Σ≤-0 to Π≤-1 ; Σ<[1,f]≈f[0] to Π<[1,f]≈f[0] ; Σ≤[0,f]≈f[0] to Π≤[0,f]≈f[0] ; n≤m⇒Σ<range[m,n,f]≈0 to n≤m⇒Π<range[m,n,f]≈1 ; n<m⇒Σ≤range[m,n,f]≈0 to n<m⇒Π≤range[m,n,f]≈1 ; Σ<range[n,n,f]≈0 to Π<range[n,n,f]≈1 ; Σ<range-cong₃-with-< to Π<range-cong₃-with-< ; Σ≤range-cong₃-with-≤ to Π≤range-cong₃-wiht-≤ ; Σ<range[n,1+n,f]≈f[n] to Π<range[n,1+n,f]≈f[n] ; Σ≤range[n,n,f]≈f[n] to Π≤range[n,n,f]≈f[n] ; Σ<-+ to Π<-+ ; Σ≤-Σ<-+ to Π≤-Π<-+ ; Σ≤-+ to Π≤-+ ; Σ<-push-suc to Π<-push-suc ; Σ≤-push-suc to Π≤-push-suc ; Σ<range[0,n,f]≈Σ<[n,f] to Π<range[0,n,f]≈Π<[n,f] ; Σ≤range[0,n,f]≈Σ≤[n,f] to Π≤range[0,n,f]≈Π≤[n,f] ; Σ<range[m,m+n+o,f]≈Σ<range[m,m+n,f]+Σ<range[m+n,m+n+o,f] to Π<range[m,m+n+o,f]≈Π<range[m,m+n,f]*Π<range[m+n,m+n+o,f] ; Σ<range[m,n,f]≈Σ<range[m,o,f]+Σ<range[o,n,f] to Π<range[m,n,f]≈Π<range[m,o,f]*Π<range[o,n,f] ; Σ<range[m,n,f]≈Σ<range[o+m,o+n,i→f[i∸o]] to Π<range[m,n,f]≈Π<range[o+m,o+n,i→f[i∸o]] ; Σ<-const to Π<-const ; Σ≤-const to Π≤-const ; Σ<range-const to Π<range-const ; Σ≤range-const to Π≤range-const ; Σ<-distrib-+ to Π<-distrib-* ; Σ≤-distrib-+ to Π≤-distrib-* ; Σ<range-distrib-+ to Π<range-distrib-* ; Σ≤range-distrib-+ to Π≤range-distrib-* ; Σ<-comm to Π<-comm ; Σ≤-comm to Π≤-comm ; Σ<range-comm to Π<range-comm ; Σ≤range-comm to Π≤range-comm ; Σ<-sumₜ-syntax to Π<-sumₜ-syntax ; Σ<-reverse to Π<-reverse ; Σ≤-reverse to Π≤-reverse ; Σ<range-reverse to Π<range-reverse ; Σ≤range-reverse to Π≤range-reverse ; Σ<-split-even to Π<-split-even ; Σ<-split-odd to Π<-split-odd ) using ()
{ "alphanum_fraction": 0.5985099338, "avg_line_length": 32.6486486486, "ext": "agda", "hexsha": "748af6fcd712037c226aa473486d8c73b9fd2f01", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Math/NumberTheory/Product/Generic/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Math/NumberTheory/Product/Generic/Properties.agda", "max_line_length": 78, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Math/NumberTheory/Product/Generic/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1339, "size": 2416 }
-- Andreas, 2015-10-26, issue reported by Wolfram Kahl -- {-# OPTIONS -v scope.mod.inst:30 -v tc.mod.check:10 -v tc.mod.apply:80 #-} module _ where module ModParamsRecord (A : Set) where record R (B : Set) : Set where field F : A → B module ModParamsToLoose (A : Set) where open ModParamsRecord private module M (B : Set) (G : A → B) where r : R A B r = record { F = G } module r = R r open M public module ModParamsLost (A : Set) where open ModParamsRecord open ModParamsToLoose A f : (A → A) → A → A f G = S.F where module S = r A G -- expected |S.F : A → A|, -- WAS: but obtained |S.F : (B : Set) (G₁ : A → B) → A → B| -- module S = r -- as expected: |S.F : (B : Set) (G₁ : A → B) → A → B| -- module S = R A (r A G) -- as expected: |S.F : A → A|
{ "alphanum_fraction": 0.494002181, "avg_line_length": 28.65625, "ext": "agda", "hexsha": "c0c0d424e36e14f8caad516c41105c0613f7f953", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1701a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1701a.agda", "max_line_length": 94, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1701a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 303, "size": 917 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Quasigroup.Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where open import Algebra.Core open import Data.Product LatinSquareProperty₁ : Op₂ A → Set _ LatinSquareProperty₁ _*_ = ∀ a b x → (a * x) ≈ b LatinSquareProperty₂ : Op₂ A → Set _ LatinSquareProperty₂ _*_ = ∀ a b y → (y * a) ≈ b LatinSquareProperty : Op₂ A → Set _ LatinSquareProperty _*_ = (LatinSquareProperty₁ _*_) × (LatinSquareProperty₂ _*_)
{ "alphanum_fraction": 0.6886446886, "avg_line_length": 26, "ext": "agda", "hexsha": "0e86dd3238ac4b966fbf1dd30a54a86c104cb686", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Quasigroup/Definitions.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Quasigroup/Definitions.agda", "max_line_length": 81, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Quasigroup/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 168, "size": 546 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Universe.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B} → transport p ≡ transport q → p ≡ q isInjectiveTransport {p = p} {q} α i = hcomp (λ j → λ { (i = i0) → secEq univalence p j ; (i = i1) → secEq univalence q j }) (invEq univalence ((λ a → α i a) , t i)) where t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd) t = isProp→isContrPathP (λ i → isPropIsEquiv (λ a → α i a)) _ _ .fst
{ "alphanum_fraction": 0.6535859269, "avg_line_length": 33.5909090909, "ext": "agda", "hexsha": "846b63d597380fb4d5ab212b331e56d9d0076c58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/Universe/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/Universe/Properties.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/Universe/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 261, "size": 739 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Reflexivity {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Tools.Product -- Reflexivity of valid types. reflᵛ : ∀ {A Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ A / [Γ] / [A] reflᵛ [Γ] [A] ⊢Δ [σ] = reflEq (proj₁ ([A] ⊢Δ [σ])) -- Reflexivity of valid terms. reflᵗᵛ : ∀ {A t Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A]) → Γ ⊩ᵛ⟨ l ⟩ t ≡ t ∷ A / [Γ] / [A] reflᵗᵛ [Γ] [A] [t] ⊢Δ [σ] = reflEqTerm (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ]))
{ "alphanum_fraction": 0.5320754717, "avg_line_length": 26.5, "ext": "agda", "hexsha": "c57d92a875d6b3161416206d91b6a25b6289fbfc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reflexivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reflexivity.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reflexivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 353, "size": 795 }
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.RawRing where open import Cubical.Foundations.Prelude private variable ℓ : Level record RawRing ℓ : Type (ℓ-suc ℓ) where constructor rawring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : RawRing ℓ → Type ℓ ⟨_⟩ = RawRing.Carrier
{ "alphanum_fraction": 0.6206896552, "avg_line_length": 17.6071428571, "ext": "agda", "hexsha": "46c5e1e7a3fc2609e3dcde1c31fa6269830ceacd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/RawRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/RawRing.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/RawRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 165, "size": 493 }
module Issue1760f where -- Skipping a single record definition in an abstract block. abstract {-# NO_POSITIVITY_CHECK #-} record U : Set where field ap : U → U
{ "alphanum_fraction": 0.7100591716, "avg_line_length": 21.125, "ext": "agda", "hexsha": "72f71f950258e5a714e86fddb88be86fe9af1d44", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1760f.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1760f.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1760f.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 44, "size": 169 }
{-# OPTIONS --verbose=10 #-} module inorderF where open import Data.Nat open import Data.Vec open import Agda.Builtin.Sigma open import Data.Product open import Data.Fin using (fromℕ) open import trees open import optics open import lemmas inorderTreeF : {A : Set} -> (t : Tree A) -> Vec A (#nodes t) × (Vec A (#nodes t) -> Tree A) inorderTreeF empty = ([] , λ _ -> empty) inorderTreeF {A} (node t₁ x t₂) with inorderTreeF t₁ | inorderTreeF t₂ ... | (g₁ , p₁) | (g₂ , p₂) = (g₁ ++ (x ∷ g₂) , λ v -> node (p₁ (take n₁ v)) (head (drop n₁ v)) (righttree v)) where n = #nodes (node t₁ x t₂) n₁ = #nodes t₁ n₂ = #nodes t₂ righttree : Vec A n -> Tree A righttree v rewrite +-suc n₁ n₂ = p₂ (drop (1 + n₁) v) inorderF : {A : Set} -> TraversalF (Tree A) (Tree A) A A inorderF = record{ extract = (#nodes , inorderTreeF) } module tests where tree1 : Tree ℕ tree1 = node (node empty 1 empty) 3 empty open Traversal
{ "alphanum_fraction": 0.5708812261, "avg_line_length": 29, "ext": "agda", "hexsha": "b1a9f57fec50138ad4f3f0c252e3e2e31f71179d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "hablapps/safeoptics", "max_forks_repo_path": "src/main/agda/inorderF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "hablapps/safeoptics", "max_issues_repo_path": "src/main/agda/inorderF.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "hablapps/safeoptics", "max_stars_repo_path": "src/main/agda/inorderF.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 354, "size": 1044 }
open import Common.Prelude open import Common.Reflection module TermSplicing1 where x = unquote (give Set)
{ "alphanum_fraction": 0.8073394495, "avg_line_length": 15.5714285714, "ext": "agda", "hexsha": "666dec597596153b947d45677ff35909ed63f8ab", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/TermSplicing1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/TermSplicing1.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/TermSplicing1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 109 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties related to Data.Star -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties -- module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Star.Properties where open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties public
{ "alphanum_fraction": 0.552734375, "avg_line_length": 30.1176470588, "ext": "agda", "hexsha": "781a6e6a9cb998a64e007d19a783fa73c16edd49", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Properties.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 84, "size": 512 }
------------------------------------------------------------------------------ -- Well-founded induction on the relation _◁_ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Program.McCarthy91.WF-Relation.Induction.Acc.WF-ATP where open import FOTC.Base open import FOTC.Data.Nat import FOTC.Data.Nat.Induction.Acc.WF-ATP open FOTC.Data.Nat.Induction.Acc.WF-ATP.<-WF using ( <-wf ) open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Induction.WF open import FOTC.Program.McCarthy91.WF-Relation open import FOTC.Program.McCarthy91.WF-Relation.PropertiesATP -- Parametrized modules open module InvImg = FOTC.Induction.WF.InverseImage {N} {N} {_<_} ◁-fn-N ------------------------------------------------------------------------------ -- The relation _◁_ is well-founded (using the inverse image combinator). ◁-wf : WellFounded _◁_ ◁-wf Nn = wellFounded <-wf Nn -- Well-founded induction on the relation _◁_. ◁-wfind : (A : D → Set) → (∀ {n} → N n → (∀ {m} → N m → m ◁ n → A m) → A n) → ∀ {n} → N n → A n ◁-wfind A = WellFoundedInduction ◁-wf
{ "alphanum_fraction": 0.5615010424, "avg_line_length": 35.0975609756, "ext": "agda", "hexsha": "7c5eede1fff600f794cfbe65b8b67fa24d22df3a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/Induction/Acc/WF-ATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/Induction/Acc/WF-ATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/Induction/Acc/WF-ATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 389, "size": 1439 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists defined in terms of the reflexive-transitive closure, Star ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Star.List where open import Data.Star.Nat open import Data.Unit open import Relation.Binary.Construct.Always using (Always) open import Relation.Binary.Construct.Constant using (Const) open import Relation.Binary.Construct.Closure.ReflexiveTransitive -- Lists. List : ∀ {a} → Set a → Set a List A = Star (Const A) tt tt -- Nil and cons. [] : ∀ {a} {A : Set a} → List A [] = ε infixr 5 _∷_ _∷_ : ∀ {a} {A : Set a} → A → List A → List A _∷_ = _◅_ -- The sum of the elements in a list containing natural numbers. sum : List ℕ → ℕ sum = fold (Star Always) _+_ zero
{ "alphanum_fraction": 0.5664739884, "avg_line_length": 24.0277777778, "ext": "agda", "hexsha": "379f1b0e682238d5b73fbb8986bc6d8d82d62ba5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/List.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/List.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 217, "size": 865 }
module triple where
{ "alphanum_fraction": 0.6071428571, "avg_line_length": 4.6666666667, "ext": "agda", "hexsha": "3e18612e33a40f983227a7edacd990b9c9605b80", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "triple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "triple.agda", "max_line_length": 19, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "triple.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5, "size": 28 }
-- Syntactic kits from Conor McBride's -- "Type-Preserving Renaming and Substitution" module Syntax.Substitution.Kits where open import Syntax.Types open import Syntax.Context open import Syntax.Terms open import CategoryTheory.Categories open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; sym) -- Type of entities that we can traverse -- (instantiated by variables and types) Schema : Set₁ Schema = Context -> Judgement -> Set -- Explicit substitution from term in context Δ to term in context Γ -- E.g. from Γ ⌊ A ⌋ Γ′ ⊢ N : B to Γ ⌊⌋ Γ′ ⊢ N[σ] : B -- using substitution Γ ⌊⌋ Γ′ ⊢ σ : Γ ⌊ A ⌋ Γ′ data Subst (𝒮 : Schema) : Context -> Context -> Set where -- Empty substitution ● : ∀ {Δ} -> Subst 𝒮 ∙ Δ -- Extending the domain of a substitution _▸_ : ∀ {A Γ Δ} -> (σ : Subst 𝒮 Γ Δ) -> (T : 𝒮 Δ A) -> Subst 𝒮 (Γ , A) Δ -- Syntactic kit grouping together common operations on traversable -- syntactic entities such as variables and terms record Kit (𝒮 : Schema) : Set where field -- Convert a variable to the entity 𝓋 : ∀ {Γ A} -> A ∈ Γ -> 𝒮 Γ A -- Convert the entity to a term 𝓉 : ∀ {Γ A} -> 𝒮 Γ A -> Γ ⊢ A -- Weaken the entity 𝓌 : ∀ {B Γ A} -> 𝒮 Γ A -> 𝒮 (Γ , B) A -- Stabilise the context of the entity 𝒶 : ∀ {Γ A} -> 𝒮 Γ (A always) -> 𝒮 (Γ ˢ) (A always) -- Substitutable kit record SubstKit (𝒮 : Schema) : Set where field -- Underlying traversable kit 𝓀 : Kit 𝒮 -- Apply substitution to a kit 𝓈 : ∀ {Γ Δ A} -> Subst 𝒮 Γ Δ -> 𝒮 Γ A -> 𝒮 Δ A open Kit -- | Combinators -- | All take a syntactic (substitutable) kit as an argument -- | which provides the necessary operations -- Weakening a substitution -- Δ ⊢ σ : Γ to (Δ , A) ⊢ σ : Γ _⁺_ : ∀ {A 𝒮 Γ Δ} -> Subst 𝒮 Γ Δ -> Kit 𝒮 -> Subst 𝒮 Γ (Δ , A) ● ⁺ _ = ● (σ ▸ T) ⁺ k = (σ ⁺ k) ▸ 𝓌 k T infixl 40 _⁺_ -- Lifting a substitution -- Δ ⊢ σ : Γ to (Δ , A) ⊢ σ : (Γ , A) _↑_ : ∀ {A 𝒮 Γ Δ} -> Subst 𝒮 Γ Δ -> Kit 𝒮 -> Subst 𝒮 (Γ , A) (Δ , A) σ ↑ k = (σ ⁺ k) ▸ 𝓋 k top infixl 40 _↑_ -- Stabilising a substitution -- Δ ⊢ σ : Γ to Δ ˢ ⊢ σ : Γ ˢ _↓ˢ_ : ∀ {𝒮 Γ Δ} -> Subst 𝒮 Γ Δ -> Kit 𝒮 -> Subst 𝒮 (Γ ˢ) (Δ ˢ) ● ↓ˢ _ = ● (_▸_ {A now} σ T) ↓ˢ k = σ ↓ˢ k (_▸_ {A always} σ T) ↓ˢ k = (σ ↓ˢ k) ▸ 𝒶 k T infixl 40 _↓ˢ_ -- Identity substitution idₛ : ∀ {Γ 𝒮} -> Kit 𝒮 -> Subst 𝒮 Γ Γ idₛ {∙} k = ● idₛ {Γ , _} k = idₛ k ↑ k -- Composition of substitutions _∘[_]ₛ_ : ∀ {𝒮 Γ Δ Ξ} -> Subst 𝒮 Δ Ξ -> SubstKit 𝒮 -> Subst 𝒮 Γ Δ -> Subst 𝒮 Γ Ξ σ₂ ∘[ k ]ₛ ● = ● σ₂ ∘[ k ]ₛ (σ₁ ▸ T) = (σ₂ ∘[ k ]ₛ σ₁) ▸ SubstKit.𝓈 k σ₂ T -- Substitution from an order-preserving embedding -- Γ ⊆ Δ to Δ ⊢ σ : Γ _⊆ₛ_ : ∀ {𝒮 Γ Δ} -> Γ ⊆ Δ -> Kit 𝒮 -> Subst 𝒮 Γ Δ refl ⊆ₛ k = idₛ k (keep s) ⊆ₛ k = (s ⊆ₛ k) ↑ k (drop s) ⊆ₛ k = (s ⊆ₛ k) ⁺ k -- Substitution from propositional equality of contexts _≡ₛ_ : ∀ {𝒮 Γ Δ} -> Γ ≡ Δ -> Kit 𝒮 -> Subst 𝒮 Γ Δ refl ≡ₛ k = idₛ k -- Substitution from idempotence of stabilisation _ˢˢₛ_ : ∀ {𝒮} -> (Γ : Context) -> Kit 𝒮 -> Subst 𝒮 (Γ ˢ) (Γ ˢ ˢ) ∙ ˢˢₛ k = ● (Γ , A now) ˢˢₛ k = Γ ˢˢₛ k (Γ , A always) ˢˢₛ k = (Γ ˢˢₛ k) ↑ k -- | Standard substitutions -- | Common transformations between contexts module _ {𝒮 : Schema} (sk : SubstKit 𝒮) where open SubstKit sk open Kit 𝓀 -- | Weakening -- Weakening the top of the context weak-topₛ : ∀{A Γ} -> Subst 𝒮 Γ (Γ , A) weak-topₛ = idₛ 𝓀 ⁺ 𝓀 -- Weakening the middle of the context weak-midₛ : ∀{A} Γ Γ′ -> Subst 𝒮 (Γ ⌊⌋ Γ′) (Γ ⌊ A ⌋ Γ′) weak-midₛ Γ ∙ = weak-topₛ weak-midₛ Γ (Γ′ , B) = weak-midₛ Γ Γ′ ↑ 𝓀 -- General weakening from an OPE weakₛ : ∀{Γ Δ} -> Γ ⊆ Δ -> Subst 𝒮 Γ Δ weakₛ = _⊆ₛ 𝓀 -- | Exchange -- Exchange on top ex-topₛ : ∀{A B} Γ -> Subst 𝒮 (Γ , A , B) (Γ , B , A) ex-topₛ Γ = (idₛ 𝓀 ⁺ 𝓀 ↑ 𝓀) ▸ (𝓋 𝓀 (pop top)) -- General exchange lemma exₛ : ∀{A B} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊ B ⌋ Γ″) (Γ ⌊ B ⌋ Γ′ ⌊ A ⌋ Γ″) exₛ Γ ∙ ∙ = ex-topₛ Γ exₛ {A} {B} Γ (Γ′ , C) ∙ = (exₛ Γ Γ′ [ A ] ∘[ sk ]ₛ ex-topₛ (Γ , C ⌊⌋ Γ′)) ∘[ sk ]ₛ exₛ Γ Γ′ [ B ] exₛ Γ ∙ (Γ″ , D) = exₛ Γ ∙ Γ″ ↑ 𝓀 exₛ Γ (Γ′ , C) (Γ″ , D) = exₛ Γ (Γ′ , C) Γ″ ↑ 𝓀 -- | Contraction -- Contraction on top contr-topₛ : ∀{A Γ} -> Subst 𝒮 (Γ , A , A) (Γ , A) contr-topₛ = (idₛ 𝓀) ▸ (𝓋 𝓀 top) -- General contraction lemma (left) contr-lₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″) (Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″) contr-lₛ Γ ∙ ∙ = contr-topₛ contr-lₛ Γ (Γ′ , B) ∙ = (idₛ 𝓀) ▸ (𝓌 𝓀 (𝓈 (contr-lₛ Γ Γ′ ∙) (𝓋 𝓀 top))) contr-lₛ Γ ∙ (Γ″ , C) = contr-lₛ Γ ∙ Γ″ ↑ 𝓀 contr-lₛ Γ (Γ′ , B) (Γ″ , C) = contr-lₛ Γ (Γ′ , B) Γ″ ↑ 𝓀 -- General contraction lemma (right) contr-rₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″) (Γ ⌊⌋ Γ′ ⌊ A ⌋ Γ″) contr-rₛ Γ ∙ ∙ = contr-topₛ contr-rₛ {A} Γ (Γ′ , B) ∙ = (ex-topₛ (Γ ⌊⌋ Γ′) ∘[ sk ]ₛ contr-rₛ Γ Γ′ [ B ]) ∘[ sk ]ₛ ex-topₛ (Γ , A ⌊⌋ Γ′) contr-rₛ Γ ∙ (Γ″ , C) = contr-rₛ Γ ∙ Γ″ ↑ 𝓀 contr-rₛ Γ (Γ′ , B) (Γ″ , C) = contr-rₛ Γ (Γ′ , B) Γ″ ↑ 𝓀 -- | Movement -- Moving a variable to the right in the context move-rₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″) (Γ ⌊⌋ Γ′ ⌊ A ⌋ Γ″) move-rₛ {A} Γ Γ′ Γ″ = contr-rₛ Γ Γ′ Γ″ ∘[ sk ]ₛ weak-midₛ (Γ ⌊ A ⌋ Γ′) Γ″ -- Moving a variable to the left in the context -- Bit verbose as we have to deal with associativity move-lₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ⌊⌋ Γ′ ⌊ A ⌋ Γ″) (Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″) move-lₛ {A} Γ Γ′ Γ″ = contr-lₛ Γ Γ′ Γ″ ∘[ sk ]ₛ ((sym (⌊A⌋-assoc Γ Γ′ Γ″ A A) ≡ₛ 𝓀) ∘[ sk ]ₛ ((weak-midₛ {A} Γ (Γ′ ⌊ A ⌋ Γ″)) ∘[ sk ]ₛ (⌊⌋-assoc Γ (Γ′ , A) Γ″ ≡ₛ 𝓀))) -- Moving a variable to the right in the stabilised context context moveˢ-rₛ : ∀{A} Γ Γ′ Γ″ -> Subst 𝒮 (Γ ˢ ⌊ A ⌋ (Γ′ ⌊⌋ Γ″) ˢ) ((Γ ⌊⌋ Γ′) ˢ ⌊ A ⌋ Γ″ ˢ) moveˢ-rₛ {A} Γ Γ′ Γ″ rewrite ˢ-pres-⌊⌋ Γ Γ′ | ˢ-pres-⌊⌋ Γ′ Γ″ | sym (⌊⌋-assoc (Γ ˢ , A) (Γ′ ˢ) (Γ″ ˢ)) = move-rₛ (Γ ˢ) (Γ′ ˢ) (Γ″ ˢ) -- | Substitution -- Substitution for the top of the context sub-topₛ : ∀{A Γ} -> 𝒮 Γ A -> Subst 𝒮 (Γ , A) Γ sub-topₛ T = (idₛ 𝓀) ▸ T -- Substitution for the top of a stabilised context sub-topˢₛ : ∀{Γ A} -> 𝒮 Γ A -> Subst 𝒮 (Γ ˢ , A) Γ sub-topˢₛ {Γ} T = (Γˢ⊆Γ Γ ⊆ₛ 𝓀) ▸ T -- Substitution for the middle of the context sub-midₛ : ∀{A} Γ Γ′ -> 𝒮 (Γ ⌊⌋ Γ′) A -> Subst 𝒮 (Γ ⌊ A ⌋ Γ′) (Γ ⌊⌋ Γ′) sub-midₛ Γ Γ′ T = sub-topₛ T ∘[ sk ]ₛ move-rₛ Γ Γ′ ∙
{ "alphanum_fraction": 0.5035949212, "avg_line_length": 33.3520408163, "ext": "agda", "hexsha": "10bcbf704be0bb81aeda47765a72e07d0cce5ce9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Syntax/Substitution/Kits.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Syntax/Substitution/Kits.agda", "max_line_length": 88, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Syntax/Substitution/Kits.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 3322, "size": 6537 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module constructs the zero R-module, and similar for weaker -- module-like structures. -- The intended universal property is that, given any R-module M, there -- is a unique map into and a unique map out of the zero R-module -- from/to M. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.Module.Construct.Zero where open import Algebra.Bundles open import Algebra.Module.Bundles open import Data.Unit open import Level private variable r s ℓr ℓs : Level leftSemimodule : {R : Semiring r ℓr} → LeftSemimodule R 0ℓ 0ℓ leftSemimodule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } rightSemimodule : {S : Semiring s ℓs} → RightSemimodule S 0ℓ 0ℓ rightSemimodule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } bisemimodule : {R : Semiring r ℓr} {S : Semiring s ℓs} → Bisemimodule R S 0ℓ 0ℓ bisemimodule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } semimodule : {R : CommutativeSemiring r ℓr} → Semimodule R 0ℓ 0ℓ semimodule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } leftModule : {R : Ring r ℓr} → LeftModule R 0ℓ 0ℓ leftModule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } rightModule : {S : Ring s ℓs} → RightModule S 0ℓ 0ℓ rightModule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } bimodule : {R : Ring r ℓr} {S : Ring s ℓs} → Bimodule R S 0ℓ 0ℓ bimodule = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ } ⟨module⟩ : {R : CommutativeRing r ℓr} → Module R 0ℓ 0ℓ ⟨module⟩ = record { Carrierᴹ = ⊤ ; _≈ᴹ_ = λ _ _ → ⊤ }
{ "alphanum_fraction": 0.5769462885, "avg_line_length": 23.0138888889, "ext": "agda", "hexsha": "e6f8af4a3edcade50ffc2f9ca3294ac9221b943a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Construct/Zero.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Construct/Zero.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Construct/Zero.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 655, "size": 1657 }
{-# OPTIONS --guardedness #-} module Stream.Iterable where open import Data open import Data.Boolean open import Functional open import Logic.Propositional open import Logic.Predicate import Lvl open import Relator.Equals open import Stream as Stream open import Structure.Container.Iterable open import Type private variable ℓ : Lvl.Level private variable T : Type{ℓ} instance Stream-iterable : Iterable(Stream(T)) Iterable.Element (Stream-iterable {T = T}) = T Iterable.isEmpty Stream-iterable = const 𝐹 Iterable.current Stream-iterable = Stream.head Iterable.indexStep Stream-iterable = const <> Iterable.step Stream-iterable = Stream.tail instance Stream-prepend : Iterable.PrependConstruction(Stream-iterable{T = T})(_⊰_) ∃.witness Stream-prepend = [≡]-intro ∃.proof (Stream-prepend) = [∧]-intro [≡]-intro [≡]-intro
{ "alphanum_fraction": 0.7450523865, "avg_line_length": 27.7096774194, "ext": "agda", "hexsha": "c39fc224391fb2e014fcc74890f6e4b7e941eb2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Stream/Iterable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Stream/Iterable.agda", "max_line_length": 76, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Stream/Iterable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 225, "size": 859 }
open import Mockingbird.Forest using (Forest) -- To Mock a Mockingbird module Mockingbird.Problems.Chapter09 {b ℓ} (forest : Forest {b} {ℓ}) where open import Data.Product using (_,_; proj₁; proj₂; ∃-syntax) open import Function using (_$_) open import Level using (_⊔_) open import Relation.Nullary using (¬_) open import Mockingbird.Forest.Birds forest open Forest forest module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ where problem₁ : ∀ A → ∃[ B ] A IsFondOf B problem₁ A = let C = A ∘ M isFond : A IsFondOf (C ∙ C) isFond = sym $ begin C ∙ C ≈⟨ isComposition A M C ⟩ A ∙ (M ∙ C) ≈⟨ congˡ (isMockingbird C) ⟩ A ∙ (C ∙ C) ∎ in (C ∙ C , isFond) module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ where problem₂ : ∃[ E ] IsEgocentric E problem₂ = let (E , isFond) = problem₁ M isEgocentric : IsEgocentric E isEgocentric = begin E ∙ E ≈˘⟨ isMockingbird E ⟩ M ∙ E ≈⟨ isFond ⟩ E ∎ in (E , isEgocentric) module _ ⦃ _ : HasComposition ⦄ (hasAgreeable : ∃[ A ] IsAgreeable A) where A = proj₁ hasAgreeable isAgreeable = proj₂ hasAgreeable problem₃ : ∀ B → ∃[ C ] B IsFondOf C problem₃ B = let D = B ∘ A (x , Ax≈Dx) = isAgreeable D isFond : B IsFondOf (A ∙ x) isFond = begin B ∙ (A ∙ x) ≈˘⟨ isComposition B A x ⟩ D ∙ x ≈˘⟨ Ax≈Dx ⟩ A ∙ x ∎ in (A ∙ x , isFond) -- Bonus question of Problem 3. C₂→HasAgreeable : ⦃ _ : HasMockingbird ⦄ → ∃[ A ] IsAgreeable A C₂→HasAgreeable = (M , λ B → (B , isMockingbird B)) module _ ⦃ _ : HasComposition ⦄ (A B C : Bird) (Cx≈A[Bx] : IsComposition A B C) where problem₄ : IsAgreeable C → IsAgreeable A problem₄ C-isAgreeable D = let E = D ∘ B (x , Cx≈Ex) = C-isAgreeable E agree : Agree A D (B ∙ x) agree = begin A ∙ (B ∙ x) ≈˘⟨ Cx≈A[Bx] x ⟩ C ∙ x ≈⟨ Cx≈Ex ⟩ E ∙ x ≈⟨ isComposition D B x ⟩ D ∙ (B ∙ x) ∎ in (B ∙ x , agree) module _ ⦃ _ : HasComposition ⦄ where problem₅ : ∀ A B C → ∃[ D ] (∀ x → D ∙ x ≈ A ∙ (B ∙ (C ∙ x))) problem₅ A B C = let E = B ∘ C D = A ∘ E in (D , λ x → trans (isComposition A E x) $ congˡ (isComposition B C x)) module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ where problem₆ : ∀ A B → Compatible A B problem₆ A B = let C = A ∘ B (y , Cy≈y) = problem₁ C x = B ∙ y in (x , y , trans (sym (isComposition A B y)) Cy≈y , refl) problem₇ : ∀ A → ∃[ B ] A IsFondOf B → IsHappy A problem₇ A (B , AB≈B) = (B , B , AB≈B , AB≈B) -- problem₇ : ∀ A → IsNormal A → IsHappy A module _ ⦃ _ : HasComposition ⦄ where problem₈ : ∃[ H ] IsHappy H → ∃[ N ] IsNormal N problem₈ (H , x , y , Hx≈y , Hy≈x) = let N = H ∘ H isFond : N IsFondOf x isFond = begin N ∙ x ≈⟨ isComposition H H x ⟩ H ∙ (H ∙ x) ≈⟨ congˡ Hx≈y ⟩ H ∙ y ≈⟨ Hy≈x ⟩ x ∎ in (N , x , isFond) module _ ⦃ _ : HasComposition ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasKestrel ⦄ where problem₉ : ∃[ A ] IsHopelesslyEgocentric A problem₉ = let (A , KA≈A) = problem₁ K isHopelesslyEgocentric : IsHopelesslyEgocentric A isHopelesslyEgocentric x = begin A ∙ x ≈˘⟨ congʳ KA≈A ⟩ (K ∙ A) ∙ x ≈⟨ isKestrel A x ⟩ A ∎ in (A , isHopelesslyEgocentric) problem₁₀ : ∀ x y → x IsFixatedOn y → x IsFondOf y problem₁₀ x y xz≈y = xz≈y y problem₁₁ : ∀ K → IsKestrel K → IsEgocentric K → IsHopelesslyEgocentric K problem₁₁ K isKestrel KK≈K x = begin K ∙ x ≈˘⟨ congʳ KK≈K ⟩ (K ∙ K) ∙ x ≈⟨ isKestrel K x ⟩ K ∎ problem₁₂ : ⦃ _ : HasKestrel ⦄ → ∀ x → IsEgocentric (K ∙ x) → K IsFondOf x problem₁₂ x [Kx][Kx]≈Kx = begin K ∙ x ≈˘⟨ [Kx][Kx]≈Kx ⟩ (K ∙ x) ∙ (K ∙ x) ≈⟨ isKestrel x (K ∙ x) ⟩ x ∎ problem₁₃ : ∀ A x y → IsHopelesslyEgocentric A → A ∙ x ≈ A ∙ y problem₁₃ A x y Az≈A = begin A ∙ x ≈⟨ Az≈A x ⟩ A ≈˘⟨ Az≈A y ⟩ A ∙ y ∎ problem₁₄ : ∀ A x y → IsHopelesslyEgocentric A → (A ∙ x) ∙ y ≈ A problem₁₄ A x y Az≈A = begin (A ∙ x) ∙ y ≈⟨ congʳ (Az≈A x) ⟩ A ∙ y ≈⟨ Az≈A y ⟩ A ∎ problem₁₅ : ∀ A x → IsHopelesslyEgocentric A → IsHopelesslyEgocentric (A ∙ x) problem₁₅ A x Az≈A y = begin (A ∙ x) ∙ y ≈⟨ congʳ (Az≈A x) ⟩ A ∙ y ≈⟨ Az≈A y ⟩ A ≈˘⟨ Az≈A x ⟩ A ∙ x ∎ problem₁₆ : ∀ K → IsKestrel K → ∀ x y → K ∙ x ≈ K ∙ y → x ≈ y problem₁₆ K isKestrel x y Kx≈Ky = begin x ≈˘⟨ isKestrel x K ⟩ -- NOTE: for the right-most kestrel, we can choose any bird. (Since we know -- only of three birds to exist here, the only option is a combination of -- {K, x, y}). (K ∙ x) ∙ K ≈⟨ congʳ Kx≈Ky ⟩ (K ∙ y) ∙ K ≈⟨ isKestrel y K ⟩ y ∎ problem₁₇ : ∀ A x y → A IsFixatedOn x → A IsFixatedOn y → x ≈ y problem₁₇ A x y Az≈x Az≈y = begin x ≈˘⟨ Az≈x A ⟩ -- NOTE: for the right-most A, we can choose any bird. (In this case a -- combination of {A, B, C}). A ∙ A ≈⟨ Az≈y A ⟩ y ∎ problem₁₈ : ⦃ _ : HasKestrel ⦄ → ∀ x → K IsFondOf K ∙ x → K IsFondOf x problem₁₈ x K[Kx]≈Kx = begin K ∙ x ≈˘⟨ isKestrel (K ∙ x) x ⟩ -- NOTE: for the right-most x, we can choose any bird. (K ∙ (K ∙ x)) ∙ x ≈⟨ congʳ K[Kx]≈Kx ⟩ (K ∙ x) ∙ x ≈⟨ isKestrel x x ⟩ x ∎ -- In the circumstances of Problem 19, the only bird in the forest is the -- kestrel. problem₁₉ : ∀ K → IsKestrel K → IsEgocentric K → ∀ x → x ≈ K problem₁₉ K isKestrel KK≈K x = begin x ≈⟨ lemma x x ⟩ K ∙ x ≈˘⟨ congʳ KK≈K ⟩ (K ∙ K) ∙ x ≈⟨ isKestrel K x ⟩ K ∎ where lemma : ∀ y z → y ≈ K ∙ z lemma y z = begin y ≈˘⟨ isKestrel y z ⟩ (K ∙ y) ∙ z ≈˘⟨ congʳ (congʳ KK≈K) ⟩ ((K ∙ K) ∙ y) ∙ z ≈⟨ congʳ (isKestrel K y) ⟩ K ∙ z ∎ module _ ⦃ _ : HasIdentity ⦄ where problem₂₀ : IsAgreeable I → ∀ A → ∃[ B ] A IsFondOf B problem₂₀ isAgreeable A = let (B , IB≈AB) = isAgreeable A isFond : A IsFondOf B isFond = begin A ∙ B ≈˘⟨ IB≈AB ⟩ I ∙ B ≈⟨ isIdentity B ⟩ B ∎ in (B , isFond) problem₂₁ : (∀ A → ∃[ B ] A IsFondOf B) → IsAgreeable I problem₂₁ isFond A = let (B , AB≈B) = isFond A agree : I ∙ B ≈ A ∙ B agree = begin I ∙ B ≈⟨ isIdentity B ⟩ B ≈˘⟨ AB≈B ⟩ A ∙ B ∎ in (B , agree) problem₂₂-1 : (∀ A B → Compatible A B) → ∀ A → IsNormal A problem₂₂-1 compatible A = let (x , y , Ix≈y , Ay≈x) = compatible I A isFond : A IsFondOf y isFond = begin A ∙ y ≈⟨ Ay≈x ⟩ x ≈˘⟨ isIdentity x ⟩ I ∙ x ≈⟨ Ix≈y ⟩ y ∎ in (y , isFond) problem₂₂-2 : (∀ A B → Compatible A B) → IsAgreeable I problem₂₂-2 compatible A = let (x , y , Ix≈y , Ay≈x) = compatible I A agree : Agree I A y agree = begin I ∙ y ≈⟨ isIdentity y ⟩ y ≈˘⟨ Ix≈y ⟩ I ∙ x ≈⟨ isIdentity x ⟩ x ≈˘⟨ Ay≈x ⟩ A ∙ y ∎ in (y , agree) problem₂₃ : IsHopelesslyEgocentric I → ∀ x → I ≈ x problem₂₃ isHopelesslyEgocentric x = begin I ≈˘⟨ isHopelesslyEgocentric x ⟩ I ∙ x ≈⟨ isIdentity x ⟩ x ∎ module _ ⦃ _ : HasLark ⦄ ⦃ _ : HasIdentity ⦄ where problem₂₄ : HasMockingbird problem₂₄ = record { M = L ∙ I ; isMockingbird = λ x → begin (L ∙ I) ∙ x ≈⟨ isLark I x ⟩ I ∙ (x ∙ x) ≈⟨ isIdentity (x ∙ x) ⟩ x ∙ x ∎ } module _ ⦃ _ : HasLark ⦄ where problem₂₅ : ∀ x → IsNormal x problem₂₅ x = let isFond : x IsFondOf (L ∙ x) ∙ (L ∙ x) isFond = begin x ∙ ((L ∙ x) ∙ (L ∙ x)) ≈˘⟨ isLark x (L ∙ x) ⟩ (L ∙ x) ∙ (L ∙ x) ∎ in ((L ∙ x) ∙ (L ∙ x) , isFond) problem₂₆ : IsHopelesslyEgocentric L → ∀ x → x IsFondOf L problem₂₆ isHopelesslyEgocentric x = begin x ∙ L ≈˘⟨ congˡ $ isHopelesslyEgocentric L ⟩ x ∙ (L ∙ L) ≈˘⟨ isLark x L ⟩ (L ∙ x) ∙ L ≈⟨ congʳ $ isHopelesslyEgocentric x ⟩ L ∙ L ≈⟨ isHopelesslyEgocentric L ⟩ L ∎ module _ ⦃ _ : HasLark ⦄ ⦃ _ : HasKestrel ⦄ where problem₂₇ : L ≉ K → ¬ L IsFondOf K problem₂₇ L≉K isFond = let K-fondOf-KK : K IsFondOf K ∙ K K-fondOf-KK = begin K ∙ (K ∙ K) ≈˘⟨ congʳ isFond ⟩ (L ∙ K) ∙ (K ∙ K) ≈⟨ isLark K (K ∙ K) ⟩ K ∙ ((K ∙ K) ∙ (K ∙ K)) ≈⟨ congˡ $ isKestrel K (K ∙ K) ⟩ K ∙ K ∎ isEgocentric : IsEgocentric K isEgocentric = problem₁₈ K K-fondOf-KK L≈K : L ≈ K L≈K = problem₁₉ K isKestrel isEgocentric L in L≉K L≈K problem₂₈ : K IsFondOf L → ∀ x → x IsFondOf L problem₂₈ KL≈L = let isHopelesslyEgocentric : IsHopelesslyEgocentric L isHopelesslyEgocentric y = begin L ∙ y ≈˘⟨ congʳ KL≈L ⟩ (K ∙ L) ∙ y ≈⟨ isKestrel L y ⟩ L ∎ in problem₂₆ isHopelesslyEgocentric module _ ⦃ _ : HasLark ⦄ where problem₂₉ : ∃[ x ] IsEgocentric x problem₂₉ = let (y , [LL]y≈y) = problem₂₅ (L ∙ L) isEgocentric : IsEgocentric (y ∙ y) isEgocentric = begin (y ∙ y) ∙ (y ∙ y) ≈˘⟨ isLark (y ∙ y) y ⟩ (L ∙ (y ∙ y)) ∙ y ≈˘⟨ congʳ (isLark L y) ⟩ ((L ∙ L) ∙ y) ∙ y ≈⟨ congʳ [LL]y≈y ⟩ y ∙ y ∎ -- The expression of yy in terms of L and brackets. _ : y ∙ y ≈ ((L ∙ (L ∙ L)) ∙ (L ∙ (L ∙ L))) ∙ ((L ∙ (L ∙ L)) ∙ (L ∙ (L ∙ L))) _ = refl in (y ∙ y , isEgocentric)
{ "alphanum_fraction": 0.4919610855, "avg_line_length": 29.8623853211, "ext": "agda", "hexsha": "717d0e2d2a1ca48e056369a4fdf971af3052b7c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Problems/Chapter09.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Problems/Chapter09.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Problems/Chapter09.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 4476, "size": 9765 }
module Web.URI.Scheme.Primitive where postulate Scheme? : Set {-# COMPILED_TYPE Scheme? String #-} postulate http: : Scheme? {-# COMPILED http: "http:" #-} postulate https: : Scheme? {-# COMPILED https: "https:" #-} postulate ε : Scheme? {-# COMPILED ε "" #-}
{ "alphanum_fraction": 0.6528301887, "avg_line_length": 17.6666666667, "ext": "agda", "hexsha": "868da09cde201739c6b311502fdeca94b7ca0f9c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-uri", "max_forks_repo_path": "src/Web/URI/Scheme/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-uri", "max_issues_repo_path": "src/Web/URI/Scheme/Primitive.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-uri", "max_stars_repo_path": "src/Web/URI/Scheme/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z", "num_tokens": 71, "size": 265 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.ByteString open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Util.Util import LibraBFT.Yasm.Types as LYT open import Optics.All -- This module provides some scaffolding to define the handlers for our fake/simple -- "implementation" and connect them to the interface of the SystemModel. module LibraBFT.Impl.Handle where open import LibraBFT.Impl.Consensus.RoundManager open RWST-do open EpochConfig record GenesisInfo : Set where constructor mkGenInfo field -- TODO-1 : Nodes, PKs for initial epoch -- TODO-1 : Faults to tolerate (or quorum size?) genQC : QuorumCert -- We use the same genesis QC for both highestQC and -- highestCommitCert. open GenesisInfo postulate -- valid assumption -- We postulate the existence of GenesisInfo known to all -- TODO: construct one or write a function that generates one from some parameters. genInfo : GenesisInfo postulate -- TODO-2: define GenesisInfo to match implementation and write these functions initVV : GenesisInfo → ValidatorVerifier init-EC : GenesisInfo → EpochConfig data ∈GenInfo : Signature → Set where inGenQC : ∀ {vs} → vs ∈ qcVotes (genQC genInfo) → ∈GenInfo (proj₂ vs) open import LibraBFT.Abstract.Records UID _≟UID_ NodeId (init-EC genInfo) (ConcreteVoteEvidence (init-EC genInfo)) as Abs using () postulate -- TODO-1 : prove ∈GenInfo? : (sig : Signature) → Dec (∈GenInfo sig) postulate -- TODO-1: prove after defining genInfo genVotesRound≡0 : ∀ {pk v} → (wvs : WithVerSig pk v) → ∈GenInfo (ver-signature wvs) → v ^∙ vRound ≡ 0 genVotesConsistent : (v1 v2 : Vote) → ∈GenInfo (₋vSignature v1) → ∈GenInfo (₋vSignature v2) → v1 ^∙ vProposedId ≡ v2 ^∙ vProposedId postulate -- TODO-1: reasonable assumption that some RoundManager exists, though we could prove -- it by construction; eventually we will construct an entire RoundManager, so -- this won't be needed -- This represents an uninitialised RoundManager, about which we know nothing, which we use as -- the initial RoundManager for every peer until it is initialised. fakeRM : RoundManager initSR : SafetyRules initSR = over (srPersistentStorage ∙ pssSafetyData ∙ sdEpoch) (const 1) (over (srPersistentStorage ∙ pssSafetyData ∙ sdLastVotedRound) (const 0) (₋rmSafetyRules (₋rmEC fakeRM))) initRMEC : RoundManagerEC initRMEC = RoundManagerEC∙new (EpochState∙new 1 (initVV genInfo)) initSR postulate -- TODO-2 : prove these once initRMEC is defined directly init-EC-epoch-1 : epoch (init-EC genInfo) ≡ 1 initRMEC-correct : RoundManagerEC-correct initRMEC initRM : RoundManager initRM = fakeRM -- Eventually, the initialization should establish some properties we care about, but for now we -- just initialise again to fakeRM, which means we cannot prove the base case for various -- properties, e.g., in Impl.Properties.VotesOnce -- TODO: create real RoundManager using GenesisInfo initialRoundManagerAndMessages : (a : Author) → GenesisInfo → RoundManager × List NetworkMsg initialRoundManagerAndMessages a _ = initRM , [] handle : NodeId → NetworkMsg → Instant → LBFT Unit handle _self msg now with msg ...| P p = processProposalMsg now p ...| V v = processVote now v ...| C c = return unit -- We don't do anything with commit messages, they are just for defining Correctness. initWrapper : NodeId → GenesisInfo → RoundManager × List (LYT.Action NetworkMsg) initWrapper nid g = ×-map₂ (List-map LYT.send) (initialRoundManagerAndMessages nid g) -- Note: the SystemModel allows anyone to receive any message sent, so intended recipient is ignored; -- it is included in the model only to facilitate future work on liveness properties, when we will need -- assumptions about message delivery between honest peers. outputToActions : RoundManager → Output → List (LYT.Action NetworkMsg) outputToActions rm (BroadcastProposal p) = List-map (const (LYT.send (P p))) (List-map proj₁ (kvm-toList (:vvAddressToValidatorInfo (₋esVerifier (₋rmEpochState (₋rmEC rm)))))) outputToActions _ (LogErr x) = [] outputToActions _ (SendVote v toList) = List-map (const (LYT.send (V v))) toList outputsToActions : ∀ {State} → List Output → List (LYT.Action NetworkMsg) outputsToActions {st} = concat ∘ List-map (outputToActions st) runHandler : RoundManager → LBFT Unit → RoundManager × List (LYT.Action NetworkMsg) runHandler st handler = ×-map₂ (outputsToActions {st}) (proj₂ (LBFT-run handler st)) -- And ultimately, the all-knowing system layer only cares about the -- step function. -- -- Note that we currently do not do anything non-trivial with the timestamp. -- Here, we just pass 0 to `handle`. peerStep : NodeId → NetworkMsg → RoundManager → RoundManager × List (LYT.Action NetworkMsg) peerStep nid msg st = runHandler st (handle nid msg 0)
{ "alphanum_fraction": 0.6845534031, "avg_line_length": 44.1893939394, "ext": "agda", "hexsha": "53dfc7c4de1da6489287b9df21410833a2a5f833", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Handle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Handle.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Handle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1482, "size": 5833 }
{-# OPTIONS --no-positivity-check --no-termination-check #-} module Homogenous.Base where -- module Homogenous.Base(Arity, Sig, T, Intro) where import TYPE import PolyDepPrelude open PolyDepPrelude using ( Absurd ; Unit; unit ; Nat; zero; suc ; List; nil; _::_ ; Either; left; right ; Pair; pair) -- A homogenous algebra can be represented by a list of arities -- (natural numbers) Arity : Set Arity = Nat Sig : Set Sig = List Arity -- Many definitions below come in pairs - one for Arity and one for -- Sig - where name of the first one ends in a (as in Arity) : -- funa : Arity -> ... -- fun : Sig -> ... -- (Fa n,Fa1 n) is the functor "n-tuple of same type" or -- "vector of length n" or "(^n)" Fa : (n : Arity) -> Set -> Set Fa (zero) X = Unit Fa (suc m) X = Pair X (Fa m X) ---------------------------------------------------------------- Fa1 : (n : Arity) -> {a b : Set} -> (a -> b) -> Fa n a -> Fa n b Fa1 (zero) f (unit) = unit Fa1 (suc m) f (pair fst snd) = pair (f fst) (Fa1 m f snd) -- (F fi, F1 fi) is the pattern functor for a homogenous algebra F : (fi : Sig)(X : Set) -> Set F (nil) X = Absurd F (n :: fi') X = Either (Fa n X) (F fi' X) F1 : (fi : Sig){a b : Set}(f : a -> b)(x : F fi a) -> F fi b F1 (nil) f () -- empty F1 (n :: ns) f (left t) = left (Fa1 n f t) F1 (n :: ns) f (right y) = right (F1 ns f y) -- For the definition of the recursor R we need family-level -- variants of F and F1 : FIH and Fmap. As usual we define these first -- for arities (with a postfix 'a' in the name) and then for signatures. FIHa : (n : Arity){X : Set}(C : X -> Set)(x : Fa n X) -> Set FIHa (zero) C unit = Unit FIHa (suc m) C (pair fst snd) = Pair (C fst) (FIHa m C snd) FIH : (fi : Sig){X : Set}(C : X -> Set)(x : F fi X) -> Set FIH (nil) C () -- empty FIH (n :: ns) C (left t) = FIHa n C t FIH (n :: ns) C (right y) = FIH ns C y Fmapa : (n : Arity){X : Set}{C : X -> Set}(h : (x : X) -> C x)(u : Fa n X) -> FIHa n C u Fmapa (zero) h (unit) = unit Fmapa (suc m) h (pair fst snd) = pair (h fst) (Fmapa m h snd) Fmap : (fi : Sig){X : Set}{C : X -> Set}(h : (x : X) -> C x)(u : F fi X) -> FIH fi C u Fmap (nil) h () -- empty Fmap (n :: ns) h (left x) = Fmapa n h x Fmap (n :: ns) h (right y) = Fmap ns h y -- Finally the homogenous algebra construction itself - for each code -- fi there is a datatype T fi and an iterator It fi data T (fi : Sig) : Set where Intro : F fi (T fi) -> T fi It : (fi : Sig){C : Set}(d : F fi C -> C) -> T fi -> C It fi d (Intro i) = d (F1 fi (It fi d) i) -- Mendler style iterator is also straight forward MIt : (fi : Sig){C : Set}(s : {X : Set} -> (X -> C) -> F fi X -> C) -> T fi -> C MIt fi s (Intro i) = s (MIt fi s) i R : (fi : Sig) {C : T fi -> Set} (d : (y : F fi (T fi)) -> FIH fi C y -> C (Intro y)) (x : T fi) -> C x R fi d (Intro i) = d i (Fmap fi (R fi d) i) -- Special case of FIH FIHs : (fi : Sig) -> (T fi -> Set) -> F fi (T fi) -> Set FIHs fi = FIH fi -- A simple example : the inverse of Intro out : (fi : Sig) -> T fi -> F fi (T fi) out fi = R fi (\y p -> y) ---------------------------------------------------------------- -- Now for the Type level : define FIHa, FIH, Fmapa, Fmap again -- (universe polymorphism, please!) FIHaT : (n : Arity)(X : Set)(C : X -> Set1)(x : Fa n X) -> Set1 FIHaT (zero) X C (unit) = TYPE.Unit FIHaT (suc m) X C (pair fst snd) = TYPE.Pair (C fst) (FIHaT m X C snd) FIHT : (fi : Sig)(X : Set)(C : X -> Set1)(x : F fi X) -> Set1 FIHT (nil) X C () -- empty FIHT (n :: ns) X C (left t) = FIHaT n X C t FIHT (n :: ns) X C (right y) = FIHT ns X C y FIHsT : (fi : Sig)(C : T fi -> Set1)(x : F fi (T fi)) -> Set1 FIHsT fi C x = FIHT fi (T fi) C x FmapaT : (n : Arity){X : Set}{C : X -> Set1}(h : (x : X) -> C x)(u : Fa n X) -> FIHaT n X C u FmapaT (zero) h (unit) = TYPE.unit FmapaT (suc m) h (pair fst snd) = TYPE.pair (h fst) (FmapaT m h snd) FmapT : (fi : Sig){X : Set}{C : X -> Set1}(h : (x : X) -> C x)(u : F fi X) -> FIHT fi X C u FmapT (nil) h () -- empty FmapT (n :: ns) h (left x') = FmapaT n h x' FmapT (n :: ns) h (right y) = FmapT ns h y RT : (fi : Sig) {C : T fi -> Set1} (d : (y : F fi (T fi)) -> FIHT fi (T fi) C y -> C (Intro y)) (x : T fi) -> C x RT fi d (Intro i) = d i (FmapT fi (RT fi d) i)
{ "alphanum_fraction": 0.5132382892, "avg_line_length": 31.3404255319, "ext": "agda", "hexsha": "5590205b8154ca26b069addcce82a02fb515d05c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM5/PolyDep/Homogenous/Base.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM5/PolyDep/Homogenous/Base.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM5/PolyDep/Homogenous/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1717, "size": 4419 }
{- This second-order term syntax was created from the following second-order syntax description: syntax Naturals | Nat type N : 0-ary term ze : N su : N -> N nrec : N α (α,N).α -> α theory (zeβ) z : α s : (α,N).α |> nrec (ze, z, r m. s[r,m]) = z (suβ) z : α s : (α,N).α n : N |> nrec (su (n), z, r m. s[r,m]) = s[nrec (n, z, r m. s[r,m]), n] -} module Naturals.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Naturals.Signature private variable Γ Δ Π : Ctx α : NatT 𝔛 : Familyₛ -- Inductive term declaration module Nat:Terms (𝔛 : Familyₛ) where data Nat : Familyₛ where var : ℐ ⇾̣ Nat mvar : 𝔛 α Π → Sub Nat Π Γ → Nat α Γ ze : Nat N Γ su : Nat N Γ → Nat N Γ nrec : Nat N Γ → Nat α Γ → Nat α (α ∙ N ∙ Γ) → Nat α Γ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 Natᵃ : MetaAlg Nat Natᵃ = record { 𝑎𝑙𝑔 = λ where (zeₒ ⋮ _) → ze (suₒ ⋮ a) → su a (nrecₒ ⋮ a , b , c) → nrec a b c ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module Natᵃ = MetaAlg Natᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : Nat ⇾̣ 𝒜 𝕊 : Sub Nat Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 ze = 𝑎𝑙𝑔 (zeₒ ⋮ tt) 𝕤𝕖𝕞 (su a) = 𝑎𝑙𝑔 (suₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (nrec a b c) = 𝑎𝑙𝑔 (nrecₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b , 𝕤𝕖𝕞 c) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Natᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ Nat α Γ) → 𝕤𝕖𝕞 (Natᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (zeₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (suₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (nrecₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ Nat ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : Nat ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Natᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : Nat α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub Nat Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! ze = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (su a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (nrec a b c) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b | 𝕤𝕖𝕞! c = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature Nat:Syn : Syntax Nat:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = Nat:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open Nat:Terms 𝔛 in record { ⊥ = Nat ⋉ Natᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax Nat:Syn public open Nat:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands Natᵃ public open import SOAS.Metatheory Nat:Syn public
{ "alphanum_fraction": 0.5295169946, "avg_line_length": 26, "ext": "agda", "hexsha": "2703b3ce71b02e8a02baa0f9e2d8199d21e8c6db", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Naturals/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Naturals/Syntax.agda", "max_line_length": 100, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Naturals/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2046, "size": 3354 }
module Data.Option.Iterable where open import Data open import Data.Option import Data.Option.Functions as Option open import Functional open import Logic.Propositional open import Logic.Predicate import Lvl open import Relator.Equals open import Structure.Container.Iterable open import Type private variable ℓ : Lvl.Level private variable T : Type{ℓ} instance Option-iterable : Iterable(Option(T)) Iterable.Element (Option-iterable {T = T}) = T Iterable.isEmpty Option-iterable = Option.isNone Iterable.current Option-iterable None = <> Iterable.current Option-iterable (Some x) = x Iterable.indexStep Option-iterable None = <> Iterable.indexStep Option-iterable (Some _) = <> Iterable.step Option-iterable None = <> Iterable.step Option-iterable (Some x) = None instance Option-finite-iterable : Iterable.Finite(Option-iterable{T = T}) ∃.witness Option-finite-iterable(_▫_) id None = id ∃.witness Option-finite-iterable(_▫_) id (Some x) = x ▫ id ∃.proof Option-finite-iterable {iter = None} = [≡]-intro ∃.proof Option-finite-iterable {iter = Some x} = [≡]-intro instance Option-empty : Iterable.EmptyConstruction(Option-iterable{T = T})(None) Option-empty = <>
{ "alphanum_fraction": 0.7182985554, "avg_line_length": 32.7894736842, "ext": "agda", "hexsha": "bbe0595c28d9ae46edc5e58cb594cc3b2236612c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option/Iterable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option/Iterable.agda", "max_line_length": 73, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option/Iterable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 347, "size": 1246 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Conversion {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.RedSteps open import Definition.Typed.Reduction import Definition.Typed.Weakening as W open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Tools.Product import Tools.PropositionalEquality as PE import Data.Fin as Fin import Data.Nat as Nat -- Conversion of syntactic reduction closures. convRed:*: : ∀ {t u A B Γ l} → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t :⇒*: u ∷ B ^ l convRed:*: [[ ⊢t , ⊢u , d ]] A≡B = [[ conv ⊢t A≡B , conv ⊢u A≡B , conv* d A≡B ]] -- helper functions for the universe convTermTUniv : ∀ {Γ A B t l l' r ll l< d r' ll' l<' el' d'} (er : r PE.≡ r') (ellll' : ll PE.≡ ll') → Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , next ll ] / Uᵣ (Uᵣ r ll l< PE.refl d) → Γ ⊩⟨ l' ⟩ t ∷ B ^ [ ! , next ll ] / Uᵣ (Uᵣ r' ll' l<' el' d') convTermTUniv {l< = l<} {l<' = l<'} {d' = d'} er ellll' (Uₜ K d typeK K≡K [t]) = let dd = PE.subst (λ x → _ ⊢ _ :⇒*: Univ x _ ^ _) (PE.sym er) (PE.subst (λ x → _ ⊢ _ :⇒*: Univ _ x ^ [ ! , next x ]) (PE.sym ellll') d') in reduction-irrelevant-Univ {l< = l<} {l<' = l<'} {el = PE.refl} {D = dd} {D' = d'} er (Uₜ K d typeK K≡K [t]) convEqTermTUniv : ∀ {Γ A B t u l r ll l< d dd} → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ ! , next ll ] / Uᵣ (Uᵣ r ll l< PE.refl d) → Γ ⊩⟨ l ⟩ t ≡ u ∷ B ^ [ ! , next ll ] / Uᵣ (Uᵣ r ll l< PE.refl dd) convEqTermTUniv {l = ι ¹} {r = r} {⁰} (Uₜ₌ [t] [u] A≡B [t≡u]) = Uₜ₌ (convTermTUniv PE.refl PE.refl [t]) (convTermTUniv PE.refl PE.refl [u]) A≡B [t≡u] convEqTermTUniv {l = ∞} {r = r} {¹} (Uₜ₌ [t] [u] A≡B [t≡u]) = Uₜ₌ (convTermTUniv PE.refl PE.refl [t]) (convTermTUniv PE.refl PE.refl [u]) A≡B [t≡u] mutual -- Helper function for conversion of terms converting from left to right. convTermT₁ : ∀ {Γ A B r t l l′} {[A] : Γ ⊩⟨ l ⟩ A ^ r} {[B] : Γ ⊩⟨ l′ ⟩ B ^ r} → ShapeView Γ l l′ A B r r [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B ^ r / [B] convTermT₁ (ℕᵥ D D′) A≡B t = t convTermT₁ (Emptyᵥ D D′) A≡B t = t convTermT₁ {r = [ ! , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ k d (neNfₜ neK₂ ⊢k k≡k)) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in neₜ k (convRed:*: d K≡K₁) (neNfₜ neK₂ (conv ⊢k K≡K₁) (~-conv k≡k K≡K₁)) convTermT₁ {r = [ % , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ d) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in neₜ (conv d (reduction (red D) (red D₁) (ne neK) (ne neK₁) K≡K₁)) convTermT₁ {Γ = Γ} {r = [ ! , ι ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ f d funcF f≡f [f] [f]₁) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ , lΠ≡lΠ₁ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ ! , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ f (convRed:*: d ΠFG≡ΠF₁G₁) funcF (≅-conv f≡f ΠFG≡ΠF₁G₁) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂′ PE.refl (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [b]₁ = convTerm₂′ PE.refl (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [b] [a≡b]₁ = convEqTerm₂′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a≡b] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convEqTerm₁′ PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([f] [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁)) (λ {ρ} [ρ] ⊢Δ [a] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂′ PE.refl (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convTerm₁′ PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([f]₁ [ρ] ⊢Δ [a]₁)) convTermT₁ {Γ = Γ} {r = [ % , ι ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) d = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ % , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in conv d ΠFG≡ΠF₁G₁ convTermT₁ {Γ = Γ} {r = [ % , ll ]} (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) d = let ∃F₁G₁≡∃F′G′ = whrDet* (red D₁ , ∃ₙ) (D′ , ∃ₙ) F₁≡F′ , G₁≡G′ = ∃-PE-injectivity ∃F₁G₁≡∃F′G′ ∃FG≡∃F₁G₁ = PE.subst (λ x → Γ ⊢ ∃ F ▹ G ≡ x ^ [ % , ll ]) (PE.sym ∃F₁G₁≡∃F′G′) (≅-eq A≡B) in conv d ∃FG≡∃F₁G₁ convTermT₁ (Uᵥ (Uᵣ r l l< PE.refl d) (Uᵣ r' l' l<' el' d')) A≡B X = let U≡U = whrDet* (A≡B , Uₙ) (red d' , Uₙ) r≡r , l≡l = Univ-PE-injectivity U≡U in convTermTUniv r≡r l≡l X convTermT₁ (emb⁰¹ X) A≡B t = convTermT₁ X A≡B t convTermT₁ (emb¹⁰ X) A≡B t = convTermT₁ X A≡B t convTermT₁ (emb¹∞ X) A≡B t = convTermT₁ X A≡B t convTermT₁ (emb∞¹ X) A≡B t = convTermT₁ X A≡B t -- Helper function for conversion of terms converting from right to left. convTermT₂ : ∀ {l l′ Γ A B r t} {[A] : Γ ⊩⟨ l ⟩ A ^ r} {[B] : Γ ⊩⟨ l′ ⟩ B ^ r} → ShapeView Γ l l′ A B r r [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B ^ r / [B] → Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] convTermT₂ (ℕᵥ D D′) A≡B t = t convTermT₂ (Emptyᵥ D D′) A≡B t = t convTermT₂ {r = [ ! , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ k d (neNfₜ neK₂ ⊢k k≡k)) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _ ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in neₜ k (convRed:*: d K₁≡K) (neNfₜ neK₂ (conv ⊢k K₁≡K) (~-conv k≡k K₁≡K)) convTermT₂ {r = [ % , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ d) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _ ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in neₜ (conv d (reduction (red D₁) (red D) (ne neK₁) (ne neK) K₁≡K)) convTermT₂ {Γ = Γ} {r = [ ! , ι ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ f d funcF f≡f [f] [f]₁) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ , lΠ≡lΠ₁ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ ! , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ f (convRed:*: d (sym ΠFG≡ΠF₁G₁)) funcF (≅-conv f≡f (sym ΠFG≡ΠF₁G₁)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [b]₁ = convTerm₁′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [b] [a≡b]₁ = convEqTerm₁′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a≡b] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convEqTerm₂′ PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([f] [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁)) (λ {ρ} [ρ] ⊢Δ [a] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convTerm₂′ PE.refl PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([f]₁ [ρ] ⊢Δ [a]₁)) convTermT₂ {Γ = Γ} {r = [ % , ι ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) d = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ % , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in conv d (sym ΠFG≡ΠF₁G₁) convTermT₂ {Γ = Γ} {r = [ % , ll ]} (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) d = let ∃F₁G₁≡∃F′G′ = whrDet* (red D₁ , ∃ₙ) (D′ , ∃ₙ) F₁≡F′ , G₁≡G′ = ∃-PE-injectivity ∃F₁G₁≡∃F′G′ ∃FG≡∃F₁G₁ = PE.subst (λ x → Γ ⊢ ∃ F ▹ G ≡ x ^ [ % , ll ]) (PE.sym ∃F₁G₁≡∃F′G′) (≅-eq A≡B) in conv d (sym ∃FG≡∃F₁G₁) convTermT₂ (Uᵥ (Uᵣ r l l< el d) (Uᵣ r' l' l<' PE.refl d')) A≡B X = let U≡U = whrDet* (A≡B , Uₙ) (red d' , Uₙ) r≡r , l≡l = Univ-PE-injectivity U≡U in convTermTUniv (PE.sym r≡r) (PE.sym l≡l) X convTermT₂ (emb⁰¹ X) A≡B t = convTermT₂ X A≡B t convTermT₂ (emb¹⁰ X) A≡B t = convTermT₂ X A≡B t convTermT₂ (emb¹∞ X) A≡B t = convTermT₂ X A≡B t convTermT₂ (emb∞¹ X) A≡B t = convTermT₂ X A≡B t -- Conversion of terms converting from left to right. convTerm₁ : ∀ {Γ A B r ll t l l′} ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r , ll ]) → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / [A] → Γ ⊩⟨ l ⟩ t ∷ A ^ [ r , ll ] / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B ^ [ r , ll ] / [B] convTerm₁ [A] [B] A≡B t = convTermT₁ (goodCases [A] [B] A≡B) A≡B t -- Conversion of terms converting from left to right. with PE convTerm₁′ : ∀ {Γ A B r r' ll ll' t l l′} (eq : r PE.≡ r') (eql : ll PE.≡ ll') ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r' , ll' ]) → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / [A] → Γ ⊩⟨ l ⟩ t ∷ A ^ [ r , ll ] / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B ^ [ r' , ll' ] / [B] convTerm₁′ PE.refl PE.refl [A] [B] A≡B t = convTerm₁ [A] [B] A≡B t -- Conversion of terms converting from right to left. convTerm₂ : ∀ {Γ A B r t l l′} ([A] : Γ ⊩⟨ l ⟩ A ^ r) ([B] : Γ ⊩⟨ l′ ⟩ B ^ r) → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B ^ r / [B] → Γ ⊩⟨ l ⟩ t ∷ A ^ r / [A] convTerm₂ [A] [B] A≡B t = convTermT₂ (goodCases [A] [B] A≡B) A≡B t -- Conversion of terms converting from right to left -- with some propsitionally equal types. convTerm₂′ : ∀ {Γ A r r' ll ll' B B′ t l l′} → B PE.≡ B′ → r PE.≡ r' → ll PE.≡ ll' → ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ] ) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r' , ll' ]) → Γ ⊩⟨ l ⟩ A ≡ B′ ^ [ r , ll ] / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B ^ [ r' , ll' ] / [B] → Γ ⊩⟨ l ⟩ t ∷ A ^ [ r , ll ] / [A] convTerm₂′ PE.refl PE.refl PE.refl [A] [B] A≡B t = convTerm₂ [A] [B] A≡B t -- Helper function for conversion of term equality converting from left to right. convEqTermT₁ : ∀ {l l′ Γ A B r t u} {[A] : Γ ⊩⟨ l ⟩ A ^ r} {[B] : Γ ⊩⟨ l′ ⟩ B ^ r} → ShapeView Γ l l′ A B r r [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B ^ r / [B] convEqTermT₁ (ℕᵥ D D′) A≡B t≡u = t≡u convEqTermT₁ (Emptyᵥ D D′) A≡B t≡u = t≡u convEqTermT₁ {r = [ ! , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ₌ k m d d′ (neNfₜ₌ neK₂ neM₁ k≡m)) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in neₜ₌ k m (convRed:*: d K≡K₁) (convRed:*: d′ K≡K₁) (neNfₜ₌ neK₂ neM₁ (~-conv k≡m K≡K₁)) convEqTermT₁ {r = [ % , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ₌ d d′) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in neₜ₌ (conv d (reduction (red D) (red D₁) (ne neK) (ne neK₁) K≡K₁)) (conv d′ (reduction (red D) (red D₁) (ne neK) (ne neK₁) K≡K₁)) convEqTermT₁ {Γ = Γ} {r = [ ! , ι ll ]} (Πᵥ (Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ lF₁≤ lG₁≤ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ₌ f g d d′ funcF funcG t≡u [t] [u] [t≡u]) = let [A] = Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Πᵣ′ rF₁ lF₁ lG₁ lF₁≤ lG₁≤ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ ! , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ₌ f g (convRed:*: d ΠFG≡ΠF₁G₁) (convRed:*: d′ ΠFG≡ΠF₁G₁) funcF funcG (≅-conv t≡u ΠFG≡ΠF₁G₁) (convTerm₁ [A] [B] [A≡B] [t]) (convTerm₁ [A] [B] [A≡B] [u]) (λ {ρ} [ρ] ⊢Δ [a] → let F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ , lΠ≡lΠ₁ = Π-PE-injectivity (whrDet* (red D₁ , Πₙ) (D′ , Πₙ)) [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂′ PE.refl (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convEqTerm₁′ PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([t≡u] [ρ] ⊢Δ [a]₁)) convEqTermT₁ {Γ = Γ} {r = [ % , ι ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (d , d′) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ % , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in conv d ΠFG≡ΠF₁G₁ , conv d′ ΠFG≡ΠF₁G₁ convEqTermT₁ {Γ = Γ} {r = [ % , ll ]} (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (d , d′) = let ∃F₁G₁≡∃F′G′ = whrDet* (red D₁ , ∃ₙ) (D′ , ∃ₙ) ∃FG≡∃F₁G₁ = PE.subst (λ x → Γ ⊢ ∃ F ▹ G ≡ x ^ [ % , ll ]) (PE.sym ∃F₁G₁≡∃F′G′) (≅-eq A≡B) in (conv d ∃FG≡∃F₁G₁) , conv d′ ∃FG≡∃F₁G₁ convEqTermT₁ (Uᵥ (Uᵣ r ll l< PE.refl d) (Uᵣ r' ll' l<' el' d')) A≡B X = let U≡U = whrDet* (A≡B , Uₙ) (red d' , Uₙ) r≡r , l≡l = Univ-PE-injectivity U≡U dd = PE.subst (λ x → _ ⊢ _ :⇒*: Univ x _ ^ _) (PE.sym r≡r) (PE.subst (λ x → _ ⊢ _ :⇒*: Univ _ x ^ [ ! , next x ]) (PE.sym l≡l) d') in reduction-irrelevant-Univ= {l< = l<} {l<' = l<'} {el = PE.refl} {el' = el'} {D = dd} {D' = d'} r≡r (convEqTermTUniv X) convEqTermT₁ (emb⁰¹ X) A≡B t≡u = convEqTermT₁ X A≡B t≡u convEqTermT₁ (emb¹⁰ X) A≡B t≡u = convEqTermT₁ X A≡B t≡u convEqTermT₁ (emb¹∞ X) A≡B t≡u = convEqTermT₁ X A≡B t≡u convEqTermT₁ (emb∞¹ X) A≡B t≡u = convEqTermT₁ X A≡B t≡u -- Helper function for conversion of term equality converting from right to left. convEqTermT₂ : ∀ {l l′ Γ A B t u r} {[A] : Γ ⊩⟨ l ⟩ A ^ r} {[B] : Γ ⊩⟨ l′ ⟩ B ^ r} → ShapeView Γ l l′ A B r r [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B ^ r / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] convEqTermT₂ (ℕᵥ D D′) A≡B t≡u = t≡u convEqTermT₂ (Emptyᵥ D D′) A≡B t≡u = t≡u convEqTermT₂ {r = [ ! , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ₌ k m d d′ (neNfₜ₌ neK₂ neM₁ k≡m)) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _ ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in neₜ₌ k m (convRed:*: d K₁≡K) (convRed:*: d′ K₁≡K) (neNfₜ₌ neK₂ neM₁ (~-conv k≡m K₁≡K)) convEqTermT₂ {r = [ % , ll ]} (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ne₌ M D′ neM K≡M) (neₜ₌ d d′) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _ ^ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in neₜ₌ (conv d (reduction (red D₁) (red D) (ne neK₁) (ne neK) K₁≡K)) (conv d′ (reduction (red D₁) (red D) (ne neK₁) (ne neK) K₁≡K)) convEqTermT₂ {Γ = Γ} {r = [ ! , ι ll ]} (Πᵥ (Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ lF₁≤ lG₁≤ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ₌ f g d d′ funcF funcG t≡u [t] [u] [t≡u]) = let [A] = Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Πᵣ′ rF₁ lF₁ lG₁ lF₁≤ lG₁≤ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ ! , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ₌ f g (convRed:*: d (sym ΠFG≡ΠF₁G₁)) (convRed:*: d′ (sym ΠFG≡ΠF₁G₁)) funcF funcG (≅-conv t≡u (sym ΠFG≡ΠF₁G₁)) (convTerm₂ [A] [B] [A≡B] [t]) (convTerm₂ [A] [B] [A≡B] [u]) (λ {ρ} [ρ] ⊢Δ [a] → let F₁≡F′ , rF₁≡rF′ , lF₁≡lF′ , G₁≡G′ , lG₁≡lG′ , lΠ≡lΠ₁ = Π-PE-injectivity (whrDet* (red D₁ , Πₙ) (D′ , Πₙ)) [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁′ (PE.sym rF₁≡rF′) (PE.cong ι (PE.sym lF₁≡lF′)) ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convEqTerm₂′ PE.refl (PE.cong ι (PE.sym lG₁≡lG′)) ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([t≡u] [ρ] ⊢Δ [a]₁)) convEqTermT₂ {Γ = Γ} {r = [ % , ι ll ]} (Πᵥ (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ rF₁ lF₁ lG₁ _ _ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (d , d′) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° ll ≡ x ^ [ % , ι ll ]) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in (conv d (sym ΠFG≡ΠF₁G₁)) , (conv d′ (sym ΠFG≡ΠF₁G₁)) convEqTermT₂ {Γ = Γ} {r = [ % , ll ]} (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (∃ᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (d , d′) = let ∃F₁G₁≡∃F′G′ = whrDet* (red D₁ , ∃ₙ) (D′ , ∃ₙ) ∃FG≡∃F₁G₁ = PE.subst (λ x → Γ ⊢ ∃ F ▹ G ≡ x ^ [ % , ll ]) (PE.sym ∃F₁G₁≡∃F′G′) (≅-eq A≡B) in (conv d (sym ∃FG≡∃F₁G₁)) , (conv d′ (sym ∃FG≡∃F₁G₁)) convEqTermT₂ (Uᵥ (Uᵣ r l l< el d) (Uᵣ r' l' l<' PE.refl d')) A≡B X = let U≡U = whrDet* (A≡B , Uₙ) (red d' , Uₙ) r≡r , l≡l = Univ-PE-injectivity (PE.sym U≡U) dd = PE.subst (λ x → _ ⊢ _ :⇒*: Univ x _ ^ _) (PE.sym r≡r) (PE.subst (λ x → _ ⊢ _ :⇒*: Univ _ x ^ [ ! , next x ]) (PE.sym l≡l) d) in reduction-irrelevant-Univ= {l< = l<'} {el = PE.refl} {D = dd} {D' = d} r≡r (convEqTermTUniv X) convEqTermT₂ (emb⁰¹ X) A≡B t≡u = convEqTermT₂ X A≡B t≡u convEqTermT₂ (emb¹⁰ X) A≡B t≡u = convEqTermT₂ X A≡B t≡u convEqTermT₂ (emb¹∞ X) A≡B t≡u = convEqTermT₂ X A≡B t≡u convEqTermT₂ (emb∞¹ X) A≡B t≡u = convEqTermT₂ X A≡B t≡u -- Conversion of term equality converting from left to right. convEqTerm₁ : ∀ {l l′ Γ A B t u r} ([A] : Γ ⊩⟨ l ⟩ A ^ r) ([B] : Γ ⊩⟨ l′ ⟩ B ^ r) → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ r / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B ^ r / [B] convEqTerm₁ [A] [B] A≡B t≡u = convEqTermT₁ (goodCases [A] [B] A≡B) A≡B t≡u -- Conversion of term equality converting from left to right. with PE convEqTerm₁′ : ∀ {l l′ Γ A B t u r r' ll ll'} (eq : r PE.≡ r') (eql : ll PE.≡ ll') ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r' , ll' ]) → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ r , ll ] / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B ^ [ r' , ll' ] / [B] convEqTerm₁′ PE.refl PE.refl [A] [B] A≡B t≡u = convEqTerm₁ [A] [B] A≡B t≡u -- Conversion of term equality converting from right to left. convEqTerm₂ : ∀ {l l′ Γ A B t u r ll} ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r , ll ]) → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B ^ [ r , ll ] / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ r , ll ] / [A] convEqTerm₂ [A] [B] A≡B t≡u = convEqTermT₂ (goodCases [A] [B] A≡B) A≡B t≡u -- Conversion of term equality converting from right to left with PE convEqTerm₂′ : ∀ {l l′ Γ A B t u r r' ll ll'} (eq : r PE.≡ r') (eql : ll PE.≡ ll') ([A] : Γ ⊩⟨ l ⟩ A ^ [ r , ll ]) ([B] : Γ ⊩⟨ l′ ⟩ B ^ [ r' , ll' ]) → Γ ⊩⟨ l ⟩ A ≡ B ^ [ r , ll ] / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B ^ [ r' , ll' ] / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ [ r , ll ] / [A] convEqTerm₂′ PE.refl PE.refl [A] [B] A≡B t≡u = convEqTerm₂ [A] [B] A≡B t≡u
{ "alphanum_fraction": 0.3947889443, "avg_line_length": 62.0491400491, "ext": "agda", "hexsha": "c76f8bcad5918943f2ec2652ad95e02f72c75275", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_line_length": 143, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 12898, "size": 25254 }
-- Useless private module Issue476a where A : Set₁ private A = Set
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 10, "ext": "agda", "hexsha": "eb3072bfcc65b269e12f8b7ddd794b11d4c2d0ef", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue476a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue476a.agda", "max_line_length": 22, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue476a.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 23, "size": 70 }
-- Andreas, 2015-05-06 module Issue1484 where data ⊥ : Set where -- Smörgåsbord of legal absurd lambdas -- non-hidden abs esabs eabs eabs2 eabs3 : ⊥ → Set abs = λ() esabs = λ{ ()} eabs = λ{()} eabs2 = λ{(())} eabs3 = λ{((()))} -- hidden habs eshabs eshpabs eshpabs2 : {_ : ⊥} → Set habs = λ{} eshabs = λ{ {}} eshpabs = λ{ {()}} eshpabs2 = λ{ {(())}} -- instance iabs esiabs esipabs esipabs2 : {{_ : ⊥}} → Set iabs = λ{{}} esiabs = λ{ {{}}} esipabs = λ{ {{()}}} esipabs2 = λ{ {{(())}}}
{ "alphanum_fraction": 0.525390625, "avg_line_length": 14.2222222222, "ext": "agda", "hexsha": "5287462ff6b5e7736f61a23779313fc7aa75e5a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1484.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1484.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1484.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 213, "size": 512 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Component functions of permutations found in `Data.Fin.Permutation` ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Permutation.Components where open import Data.Bool.Base using (Bool; true; false) open import Data.Fin.Base open import Data.Fin.Properties open import Data.Nat.Base as ℕ using (zero; suc; _∸_) import Data.Nat.Properties as ℕₚ open import Data.Product using (proj₂) open import Function.Base using (_∘_) open import Relation.Nullary.Reflects using (invert) open import Relation.Nullary using (does; _because_; yes; no) open import Relation.Nullary.Decidable using (dec-true; dec-false) open import Relation.Binary.PropositionalEquality open import Algebra.Definitions using (Involutive) open ≡-Reasoning -------------------------------------------------------------------------------- -- Functions -------------------------------------------------------------------------------- -- 'tranpose i j' swaps the places of 'i' and 'j'. transpose : ∀ {n} → Fin n → Fin n → Fin n → Fin n transpose i j k with does (k ≟ i) ... | true = j ... | false with does (k ≟ j) ... | true = i ... | false = k -- reverse i = n ∸ 1 ∸ i reverse : ∀ {n} → Fin n → Fin n reverse {suc n} i = inject≤ (n ℕ- i) (ℕₚ.m∸n≤m (suc n) (toℕ i)) -------------------------------------------------------------------------------- -- Properties -------------------------------------------------------------------------------- transpose-inverse : ∀ {n} (i j : Fin n) {k} → transpose i j (transpose j i k) ≡ k transpose-inverse i j {k} with k ≟ j ... | true because [k≡j] rewrite dec-true (i ≟ i) refl = sym (invert [k≡j]) ... | false because [k≢j] with k ≟ i ... | true because [k≡i] rewrite dec-false (j ≟ i) (invert [k≢j] ∘ trans (invert [k≡i]) ∘ sym) | dec-true (j ≟ j) refl = sym (invert [k≡i]) ... | false because [k≢i] rewrite dec-false (k ≟ i) (invert [k≢i]) | dec-false (k ≟ j) (invert [k≢j]) = refl reverse-prop : ∀ {n} → (i : Fin n) → toℕ (reverse i) ≡ n ∸ suc (toℕ i) reverse-prop {suc n} i = begin toℕ (inject≤ (n ℕ- i) _) ≡⟨ toℕ-inject≤ _ (ℕₚ.m∸n≤m (suc n) (toℕ i)) ⟩ toℕ (n ℕ- i) ≡⟨ toℕ‿ℕ- n i ⟩ n ∸ toℕ i ∎ reverse-involutive : ∀ {n} → Involutive _≡_ (reverse {n}) reverse-involutive {suc n} i = toℕ-injective (begin toℕ (reverse (reverse i)) ≡⟨ reverse-prop (reverse i) ⟩ n ∸ (toℕ (reverse i)) ≡⟨ cong (n ∸_) (reverse-prop i) ⟩ n ∸ (n ∸ (toℕ i)) ≡⟨ ℕₚ.m∸[m∸n]≡n (ℕₚ.≤-pred (toℕ<n i)) ⟩ toℕ i ∎) reverse-suc : ∀ {n} {i : Fin n} → toℕ (reverse (suc i)) ≡ toℕ (reverse i) reverse-suc {n} {i} = begin toℕ (reverse (suc i)) ≡⟨ reverse-prop (suc i) ⟩ suc n ∸ suc (toℕ (suc i)) ≡⟨⟩ n ∸ toℕ (suc i) ≡⟨⟩ n ∸ suc (toℕ i) ≡⟨ sym (reverse-prop i) ⟩ toℕ (reverse i) ∎
{ "alphanum_fraction": 0.4831059129, "avg_line_length": 38.9620253165, "ext": "agda", "hexsha": "8123392c8c886bab3af93cb7985ab5d0eb4dd0b1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Fin/Permutation/Components.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Fin/Permutation/Components.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Fin/Permutation/Components.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1018, "size": 3078 }
open import Common.Prelude instance tti : ⊤ tti = record{} NonZero : Nat → Set NonZero zero = ⊥ NonZero (suc _) = ⊤ pred′ : (n : Nat) .{{_ : NonZero n}} → Nat pred′ zero {{}} pred′ (suc n) = n test : (n : Nat) {{x y : NonZero n}} → Nat test n = pred′ n _<_ : Nat → Nat → Set m < zero = ⊥ zero < suc n = ⊤ suc m < suc n = m < n instance <-suc : ∀ {m n} → .(m < n) → m < suc n <-suc {zero} _ = tt <-suc {suc m} {zero} () <-suc {suc m} {suc n} = <-suc {m} {n}
{ "alphanum_fraction": 0.4947807933, "avg_line_length": 16.5172413793, "ext": "agda", "hexsha": "e38d9250a1cab9b5ca4bb39b62a2c9cf6b661121", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/IrrelevantInstance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/IrrelevantInstance.agda", "max_line_length": 42, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/IrrelevantInstance.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 213, "size": 479 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality test : (x : Nat) (f : {n : Nat} → Nat) → f {0} ≡ x → Nat test x f p = {!p!}
{ "alphanum_fraction": 0.5928571429, "avg_line_length": 23.3333333333, "ext": "agda", "hexsha": "d68f2b80d20839043a57e7e11b5cf20714a67d9c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1996.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1996.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1996.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 56, "size": 140 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Abelian.Definition open import Groups.Definition open import Groups.Lemmas open import Rings.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Numbers.Naturals.Semiring open import Numbers.Naturals.EuclideanAlgorithm open import Numbers.Primes.PrimeNumbers module Rings.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) where abstract open Setoid S open Ring R open Group additiveGroup ringMinusExtracts : {x y : A} → (x * Group.inverse (Ring.additiveGroup R) y) ∼ (Group.inverse (Ring.additiveGroup R) (x * y)) ringMinusExtracts {x = x} {y} = transferToRight' additiveGroup (transitive (symmetric *DistributesOver+) (transitive (*WellDefined reflexive invLeft) (Ring.timesZero R))) where open Equivalence eq ringMinusExtracts' : {x y : A} → ((inverse x) * y) ∼ inverse (x * y) ringMinusExtracts' {x = x} {y} = transitive *Commutative (transitive ringMinusExtracts (inverseWellDefined additiveGroup *Commutative)) where open Equivalence eq twoNegativesTimes : {a b : A} → (inverse a) * (inverse b) ∼ a * b twoNegativesTimes {a} {b} = transitive (ringMinusExtracts) (transitive (inverseWellDefined additiveGroup ringMinusExtracts') (invTwice additiveGroup (a * b))) where open Equivalence eq groupLemmaMove0G : {a b : _} → {A : Set a} → {_·_ : A → A → A} → {S : Setoid {a} {b} A} → (G : Group S _·_) → {x : A} → (Setoid._∼_ S (Group.0G G) (Group.inverse G x)) → Setoid._∼_ S x (Group.0G G) groupLemmaMove0G {S = S} G {x} pr = transitive (symmetric (invInv G)) (transitive (symmetric p) (invIdent G)) where open Equivalence (Setoid.eq S) p : Setoid._∼_ S (Group.inverse G (Group.0G G)) (Group.inverse G (Group.inverse G x)) p = inverseWellDefined G pr groupLemmaMove0G' : {a b : _} → {A : Set a} → {_·_ : A → A → A} → {S : Setoid {a} {b} A} → (G : Group S _·_) → {x : A} → Setoid._∼_ S x (Group.0G G) → (Setoid._∼_ S (Group.0G G) (Group.inverse G x)) groupLemmaMove0G' {S = S} G {x} pr = transferToRight' G (Equivalence.transitive (Setoid.eq S) (Group.identLeft G) pr) oneZeroImpliesAllZero : 0R ∼ 1R → {x : A} → x ∼ 0R oneZeroImpliesAllZero 0=1 = Equivalence.transitive eq (Equivalence.symmetric eq identIsIdent) (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=1) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero)) lemm3 : (a b : A) → 0G ∼ (a + b) → 0G ∼ a → 0G ∼ b lemm3 a b pr1 pr2 with transferToRight' additiveGroup (Equivalence.symmetric eq pr1) ... | a=-b with Equivalence.transitive eq pr2 a=-b ... | 0=-b with inverseWellDefined additiveGroup 0=-b ... | -0=--b = Equivalence.transitive eq (Equivalence.symmetric eq (invIdent additiveGroup)) (Equivalence.transitive eq -0=--b (invTwice additiveGroup b)) charNot2ImpliesNontrivial : ((1R + 1R) ∼ 0R → False) → (0R ∼ 1R) → False charNot2ImpliesNontrivial charNot2 0=1 = charNot2 (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=1) (Equivalence.symmetric eq 0=1)) identRight) abelianUnderlyingGroup : AbelianGroup additiveGroup abelianUnderlyingGroup = record { commutative = groupIsAbelian }
{ "alphanum_fraction": 0.6910569106, "avg_line_length": 54.4426229508, "ext": "agda", "hexsha": "c868a83494b00834c25ccf00b12b283f1e839180", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Lemmas.agda", "max_line_length": 247, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1122, "size": 3321 }
{-# OPTIONS --without-K --safe --overlapping-instances #-} -- Reference to check out -- -- Simply Typed Lambda Calculus in Agda, without Shortcuts -- https://gergo.erdi.hu/blog/2013-05-01-simply_typed_lambda_calculus_in_agda,_without_shortcuts/ module InterpreterWithConstants where open import Data.Char hiding (_≤_) open import Data.Bool hiding (_≤_) open import Data.Nat hiding (_≤_) open import Data.Unit import Data.Nat as N open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality open import Relation.Nullary import Data.String as Str open import Data.Nat.Show import Data.List as List open import Data.Empty infix 3 _:::_,_ infix 2 _∈_ infix 2 _∉_ infix 1 _⊢_ data `Set : Set where `Bool : `Set _`⇨_ : `Set → `Set → `Set `⊤ : `Set _`×_ : `Set → `Set → `Set infixr 2 _`⇨_ data Var : Set where x' : Var y' : Var z' : Var -- Inequality proofs on variables data _≠_ : Var → Var → Set where x≠y : x' ≠ y' x≠z : x' ≠ z' y≠x : y' ≠ x' y≠z : y' ≠ z' z≠x : z' ≠ x' z≠y : z' ≠ y' instance xy : x' ≠ y' xy = x≠y xz : x' ≠ z' xz = x≠z yx : y' ≠ x' yx = y≠x yz : y' ≠ z' yz = y≠z zx : z' ≠ x' zx = z≠x zy : z' ≠ y' zy = z≠y ⟦_⟧ : `Set → Set ⟦ `Bool ⟧ = Bool ⟦ (t `⇨ s) ⟧ = ⟦ t ⟧ → ⟦ s ⟧ ⟦ `⊤ ⟧ = ⊤ ⟦ (t `× s) ⟧ = ⟦ t ⟧ × ⟦ s ⟧ data Γ : Set where · : Γ _:::_,_ : Var → `Set → Γ → Γ data _∈_ : Var → Γ → Set where H : ∀ {x Δ t } → x ∈ x ::: t , Δ TH : ∀ {x y Δ t} → ⦃ prf : x ∈ Δ ⦄ → ⦃ neprf : x ≠ y ⦄ → x ∈ y ::: t , Δ instance ∈_type₁ : ∀ {x Δ t} → x ∈ x ::: t , Δ ∈_type₁ = H ∈_type₂ : ∀ {x y Δ t} → ⦃ prf : x ∈ Δ ⦄ → ⦃ x ≠ y ⦄ → x ∈ y ::: t , Δ ∈_type₂ = TH data _∉_ : Var → Γ → Set where H : ∀ {x} → x ∉ · TH : ∀ {x y Δ t} → ⦃ prf : x ∉ Δ ⦄ → ⦃ neprf : x ≠ y ⦄ → x ∉ y ::: t , Δ instance ∉_type₁ : ∀ {x} → x ∉ · ∉_type₁ = H ∉_type₂ : ∀ {x y Δ t} → ⦃ prf : x ∉ Δ ⦄ → ⦃ x ≠ y ⦄ → x ∉ y ::: t , Δ ∉_type₂ = TH !Γ_[_] : ∀ {x} → (Δ : Γ) → x ∈ Δ → `Set !Γ_[_] · () !Γ _ ::: t , Δ [ H ] = t !Γ _ ::: _ , Δ [ TH ⦃ prf = i ⦄ ] = !Γ Δ [ i ] infix 30 `v_ infix 30 `c_ infix 24 _`,_ infixl 22 _`₋_ data Constant : `Set → Set where `not : Constant (`Bool `⇨ `Bool) `∧ : Constant (`Bool `× `Bool `⇨ `Bool) `∨ : Constant (`Bool `× `Bool `⇨ `Bool) `xor : Constant (`Bool `× `Bool `⇨ `Bool) data _⊢_ : Γ → `Set → Set where `false : ∀ {Δ} → Δ ⊢ `Bool `true : ∀ {Δ} → Δ ⊢ `Bool `v_ : ∀ {Δ} → (x : Var) → ⦃ i : x ∈ Δ ⦄ → Δ ⊢ !Γ Δ [ i ] `c_ : ∀ {Δ t} → Constant t → Δ ⊢ t _`₋_ : ∀ {Δ t s} → Δ ⊢ t `⇨ s → Δ ⊢ t → Δ ⊢ s --application `λ_`:_⇨_ : ∀ {Δ tr} → (x : Var) → (tx : `Set) → x ::: tx , Δ ⊢ tr → Δ ⊢ tx `⇨ tr _`,_ : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ s → Δ ⊢ t `× s `fst : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ t `snd : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ s `tt : ∀ {Δ} → Δ ⊢ `⊤ data ⟨_⟩ : Γ → Set₁ where [] : ⟨ · ⟩ _∷_ : ∀ {x t Δ} → ⟦ t ⟧ → ⟨ Δ ⟩ → ⟨ x ::: t , Δ ⟩ !_[_] : ∀ {x Δ} → ⟨ Δ ⟩ → (i : x ∈ Δ) → ⟦ !Γ Δ [ i ] ⟧ !_[_] [] () !_[_] (val ∷ env) H = val !_[_] (val ∷ env) (TH ⦃ prf = i ⦄) = ! env [ i ] interpretConstant : ∀ {t} → Constant t → ⟦ t ⟧ interpretConstant `not = not interpretConstant `∧ = uncurry _∧_ interpretConstant `∨ = uncurry _∨_ interpretConstant `xor = uncurry _xor_ interpret : ∀ {t} → · ⊢ t → ⟦ t ⟧ interpret = interpret' [] where interpret' : ∀ {Δ t} → ⟨ Δ ⟩ → Δ ⊢ t → ⟦ t ⟧ interpret' env `true = true interpret' env `false = false interpret' env `tt = tt interpret' env ((`v x) ⦃ i = idx ⦄) = ! env [ idx ] interpret' env (f `₋ x) = (interpret' env f) (interpret' env x) interpret' env (`λ _ `: tx ⇨ body) = λ (x : ⟦ tx ⟧) → interpret' (x ∷ env) body interpret' env (`c f) = interpretConstant f interpret' env (f `, s) = interpret' env f ,′ interpret' env s interpret' env (`fst p) with interpret' env p interpret' env (`fst p) | f , s = f interpret' env (`snd p) with interpret' env p interpret' env (`snd p) | f , s = s ----- and₁ : · ⊢ `Bool `× `Bool `⇨ `Bool and₁ = `λ x' `: `Bool `× `Bool ⇨ `c `∧ `₋ `v x' and₂ : · ⊢ `Bool `× `Bool `⇨ `Bool and₂ = `c `∧ {- I want to write a function called eta-reduce that one could prove the following: pf : eta-reduce and₁ ≡ and₂ pf = refl This function will eta-reduce when it can, and do nothing when it can't. For instance the following should be true: eta-reduce-constant : ∀ {c} → eta-reduce (`c c) ≡ `c c However, I get stuck even on this case. Uncomment the definition below and try to type check this module: -} -- eta-reduce : ∀ {t₁ t₂} → · ⊢ t₁ `⇨ t₂ → · ⊢ t₁ `⇨ t₂ -- eta-reduce (`c c) = ? {- You will get the following error message: I'm not sure if there should be a case for the constructor `v_, because I get stuck when trying to solve the following unification problems (inferred index ≟ expected index): Δ ≟ · !Γ Δ [ i ] ≟ t₁ `⇨ t₂ when checking the definition of eta-reduce I did a bit of searching on the Internet and the only source I could find that I could understand was this one: https://doisinkidney.com/posts/2018-09-20-agda-tips.html It seems to be suggesting that one of the indices for a type is not in constructor form but is, rather, a function. Looking at the definition of _⊢_ we see that the `v_` constructor is most likely at fault: `v_ : ∀ {Δ} → (x : Var) → ⦃ i : x ∈ Δ ⦄ → Δ ⊢ !Γ Δ [ i ] The result type is `Δ ⊢ !Γ Δ [ i ]`. Clearly the index `!Γ Δ [ i ]` is referring to a user-defined function. My question is, "how can I fix this?". How would I modify the _⊢_ data structure - I would be open to an alternative interpreter for the Simply Typed Lambda Calculus - This interpreter is a modified form of this code base. ttps://github.com/ahmadsalim/well-typed-agda-interpreter It has had instance declarations added and the syntactic form of terms has changed a little. I pulled out the constant functions into their own data structure called `Constant` and changed their types a little to work on products (_×_) instead of a curried form. -} {- The instance based searching for _∈_ proofs might be a problem. I'm uncomfortable with the use of --overlapping-instances -} -- eta-reduce : ∀ {t₁ t₂} → · ⊢ t₁ `⇨ t₂ → · ⊢ t₁ `⇨ t₂ -- eta-reduce (`λ x `: _ ⇨ f `₋ y) = {!!} -- eta-reduce t = t
{ "alphanum_fraction": 0.5265941372, "avg_line_length": 26.2619047619, "ext": "agda", "hexsha": "18601ac944ba24cd8cd923ef865baa7050a8cf84", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-06-18T12:31:11.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-18T06:14:18.000Z", "max_forks_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sseefried/well-typed-agda-interpreter", "max_forks_repo_path": "InterpreterWithConstants.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sseefried/well-typed-agda-interpreter", "max_issues_repo_path": "InterpreterWithConstants.agda", "max_line_length": 113, "max_stars_count": 3, "max_stars_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sseefried/well-typed-agda-interpreter", "max_stars_repo_path": "InterpreterWithConstants.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-18T12:37:46.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-18T12:06:14.000Z", "num_tokens": 2605, "size": 6618 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT hiding (left; right) import homotopy.WedgeExtension as WedgeExt module homotopy.blakersmassey.CoherenceData {i j k} {A : Type i} {B : Type j} (Q : A → B → Type k) m (f-conn : ∀ a → is-connected (S m) (Σ B (λ b → Q a b))) n (g-conn : ∀ b → is-connected (S n) (Σ A (λ a → Q a b))) where open import homotopy.blakersmassey.Pushout Q {- goal : Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) ≃ Trunc (m +2+ n) (hfiber bmglue r) -} private swap-level : (m +2+ n) -Type (lmax i (lmax j k)) → (n +2+ m) -Type (lmax i (lmax j k)) swap-level (X , level) = X , new-level where abstract new-level = transport (λ o → has-level o X) (+2+-comm m n) level α₁=α₁α₂⁻¹α₂ : ∀ {p₁ p₂ p₃ : BMPushout} (α₁ : p₁ == p₂) (α₂ : p₃ == p₂) → α₁ == α₁ ∙' ! α₂ ∙' α₂ α₁=α₁α₂⁻¹α₂ _ idp = idp α₁=α₂α₂⁻¹α₁ : ∀ {p₁ p₂ p₃ : BMPushout} (α₁ : p₁ == p₂) (α₂ : p₁ == p₃) → α₁ == α₂ ∙' ! α₂ ∙' α₁ α₁=α₂α₂⁻¹α₁ idp α₂ = ! (!-inv'-r α₂) private path-lemma₁ : ∀ {a₀ a₁ b} (q₀ : Q a₀ b) (q₁ : Q a₁ b) → bmglue q₀ == bmglue q₀ ∙' ! (bmglue q₁) ∙' bmglue q₁ path-lemma₁ q₀ q₁ = α₁=α₁α₂⁻¹α₂ (bmglue q₀) (bmglue q₁) path-lemma₂ : ∀ {a b₀ b₁} (q₀ : Q a b₀) (q₁ : Q a b₁) → bmglue q₀ == bmglue q₁ ∙' ! (bmglue q₁) ∙' bmglue q₀ path-lemma₂ q₀ q₁ = α₁=α₂α₂⁻¹α₁ (bmglue q₀) (bmglue q₁) abstract path-coherence : ∀ {a b} (q : Q a b) → path-lemma₁ q q == path-lemma₂ q q path-coherence q = lemma (bmglue q) where lemma : ∀ {p₀ p₁ : BMPushout} (path : p₀ == p₁) → α₁=α₁α₂⁻¹α₂ path path == α₁=α₂α₂⁻¹α₁ path path lemma idp = idp module To {a₁ b₀} (q₁₀ : Q a₁ b₀) where U = Σ A λ a → Q a b₀ u₀ : U u₀ = (a₁ , q₁₀) V = Σ B λ b → Q a₁ b v₀ : V v₀ = (b₀ , q₁₀) P : U → V → Type (lmax i (lmax j k)) P u v = (r : bmleft (fst u) == bmright (fst v)) → bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) == r → Trunc (m +2+ n) (hfiber bmglue r) template : ∀ (u : U) (v : V) → (r : bmleft (fst u) == bmright (fst v)) → (shift : bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) == r) → ∀ q₀₁ → bmglue q₀₁ == bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) → Trunc (m +2+ n) (hfiber bmglue r) template u v r shift q₀₁ path = [ q₀₁ , path ∙' shift ] f = λ u r shift → template u v₀ r shift (snd u) (path-lemma₁ (snd u) q₁₀) g = λ v r shift → template u₀ v r shift (snd v) (path-lemma₂ (snd v) q₁₀) p' = λ r shift → ap (template u₀ v₀ r shift q₁₀) (path-coherence q₁₀) p = λ= λ r → λ= λ shift → p' r shift args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { n = n; m = m; cA = g-conn b₀; cB = f-conn a₁; P = λ u v → swap-level $ P u v , Π-level λ _ → Π-level λ _ → Trunc-level; f = f; g = g; p = p} ext : ∀ u v → P u v ext = WedgeExt.ext args β-l : ∀ u r shift → ext u v₀ r shift == f u r shift β-l u r shift = app= (app= (WedgeExt.β-l u) r) shift β-r : ∀ v r shift → ext u₀ v r shift == g v r shift β-r v r shift = app= (app= (WedgeExt.β-r v) r) shift abstract coh : ∀ r shift → ! (β-l u₀ r shift) ∙ β-r v₀ r shift == p' r shift coh r shift = ! (β-l u₀ r shift) ∙ β-r v₀ r shift =⟨ ap (_∙ β-r v₀ r shift) (!-ap (_$ shift) (app= (WedgeExt.β-l u₀) r)) ∙ ∙-ap (_$ shift) (! (app= (WedgeExt.β-l {r = args} u₀) r)) (app= (WedgeExt.β-r {r = args} v₀) r) ∙ ap (λ p → app= p shift) ( ap (_∙ app= (WedgeExt.β-r {r = args} v₀) r) (!-ap (_$ r) (WedgeExt.β-l {r = args} u₀)) ∙ ∙-ap (_$ r) (! (WedgeExt.β-l {r = args} u₀)) (WedgeExt.β-r {r = args} v₀)) ⟩ app= (app= (! (WedgeExt.β-l {r = args} u₀) ∙ WedgeExt.β-r {r = args} v₀) r) shift =⟨ ap (λ p → app= (app= p r) shift) (WedgeExt.coh {r = args}) ⟩ app= (app= (λ= λ r → λ= λ shift → p' r shift) r) shift =⟨ ap (λ p → app= p shift) (app=-β (λ r → λ= λ shift → p' r shift) r) ∙ app=-β (λ shift → p' r shift) shift ⟩ p' r shift =∎ to' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r → Trunc (m +2+ n) (hfiber bmglue r) to' q₀₀ q₁₁ r (q₁₀ , shift) = To.ext q₁₀ (_ , q₀₀) (_ , q₁₁) r shift to : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) → Trunc (m +2+ n) (hfiber bmglue r) to q₀₀ q₁₁ r = Trunc-rec (to' q₀₀ q₁₁ r) module From {a₀ b₁} (q₀₁ : Q a₀ b₁) where U = Σ A λ a → Q a b₁ u₀ : U u₀ = (a₀ , q₀₁) V = Σ B λ b → Q a₀ b v₀ : V v₀ = (b₁ , q₀₁) P : U → V → Type (lmax i (lmax j k)) P u v = (r : bmleft a₀ == bmright b₁) → bmglue q₀₁ == r → Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue (snd v) ∙' ! (bmglue q₁₀) ∙' bmglue (snd u)) r) template : ∀ (u : U) (v : V) → (r : bmleft a₀ == bmright b₁) → (shift : bmglue q₀₁ == r) → ∀ q₁₀ → bmglue q₀₁ == bmglue (snd v) ∙' ! (bmglue q₁₀) ∙' bmglue (snd u) → Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue (snd v) ∙' ! (bmglue q₁₀) ∙' bmglue (snd u)) r) template u v r shift q₁₀ path = [ q₁₀ , ! path ∙' shift ] f = λ u r shift → template u v₀ r shift (snd u) (path-lemma₁ q₀₁ (snd u)) g = λ v r shift → template u₀ v r shift (snd v) (path-lemma₂ q₀₁ (snd v)) p' = λ r shift → ap (template u₀ v₀ r shift q₀₁) (path-coherence q₀₁) p = λ= λ r → λ= λ shift → p' r shift args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { n = n; m = m; cA = g-conn b₁; cB = f-conn a₀; P = λ u v → swap-level $ P u v , Π-level λ _ → Π-level λ _ → Trunc-level; f = f; g = g; p = p} ext : ∀ u v → P u v ext = WedgeExt.ext args β-l : ∀ u r shift → ext u v₀ r shift == f u r shift β-l u r shift = app= (app= (WedgeExt.β-l u) r) shift β-r : ∀ v r shift → ext u₀ v r shift == g v r shift β-r v r shift = app= (app= (WedgeExt.β-r v) r) shift abstract coh : ∀ r shift → ! (β-l u₀ r shift) ∙ β-r v₀ r shift == p' r shift coh r shift = ! (β-l u₀ r shift) ∙ β-r v₀ r shift =⟨ ap (_∙ β-r v₀ r shift) (!-ap (_$ shift) (app= β-l' r)) ∙ ∙-ap (_$ shift) (! (app= β-l' r)) (app= β-r' r) ∙ ap (λ p → app= p shift) ( ap (_∙ app= β-r' r) (!-ap (_$ r) β-l') ∙ ∙-ap (_$ r) (! β-l') β-r') ⟩ app= (app= (! β-l' ∙ β-r') r) shift =⟨ ap (λ p → app= (app= p r) shift) (WedgeExt.coh {r = args}) ⟩ app= (app= (λ= λ r → λ= λ shift → p' r shift) r) shift =⟨ ap (λ p → app= p shift) (app=-β (λ r → λ= λ shift → p' r shift) r) ∙ app=-β (λ shift → p' r shift) shift ⟩ p' r shift =∎ where β-l' = WedgeExt.β-l {r = args} u₀ β-r' = WedgeExt.β-r {r = args} v₀ from' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → hfiber bmglue r → Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) from' q₀₀ q₁₁ r (q₀₁ , shift) = From.ext q₀₁ (_ , q₁₁) (_ , q₀₀) r shift from : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) → (r : bmleft a₀ == bmright b₁) → Trunc (m +2+ n) (hfiber bmglue r) → Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) from q₀₀ q₁₁ r = Trunc-rec (from' q₀₀ q₁₁ r) -- Equivalence {- First step: Pack relevant rules into records. -} record βPair {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) (q₀₁ : Q a₀ b₁) (q₁₀ : Q a₁ b₀) (r : bmleft a₀ == bmright b₁) : Type (lmax i (lmax j k)) where constructor βpair field path : bmglue q₀₁ == bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁ to-β : ∀ shift → To.ext q₁₀ (_ , q₀₀) (_ , q₁₁) r shift == To.template q₁₀ (_ , q₀₀) (_ , q₁₁) r shift q₀₁ path from-β : ∀ shift → From.ext q₀₁ (_ , q₁₁) (_ , q₀₀) r shift == From.template q₀₁ (_ , q₁₁) (_ , q₀₀) r shift q₁₀ path βpair-bmleft : ∀ {a₀ a₁ b} (q₀ : Q a₀ b) (q₁ : Q a₁ b) r → βPair q₀ q₁ q₀ q₁ r βpair-bmleft q₀ q₁ r = record { path = path-lemma₁ q₀ q₁ ; to-β = To.β-l q₁ (_ , q₀) r ; from-β = From.β-l q₀ (_ , q₁) r } βpair-bmright : ∀ {a b₀ b₁} (q₀ : Q a b₀) (q₁ : Q a b₁) r → βPair q₀ q₁ q₁ q₀ r βpair-bmright q₀ q₁ r = record { path = path-lemma₂ q₁ q₀ ; to-β = To.β-r q₀ (_ , q₁) r ; from-β = From.β-r q₁ (_ , q₀) r } abstract βpair= : ∀ {a₀ a₁} {b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) (q₀₁ : Q a₀ b₁) (q₁₀ : Q a₁ b₀) (r : bmleft a₀ == bmright b₁) {p₁ p₂ : bmglue q₀₁ == bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁} (p= : p₁ == p₂) {toβ₁} {toβ₂} (toβ= : ∀ shift → toβ₁ shift ∙ ap (To.template q₁₀ (_ , q₀₀) (_ , q₁₁) r shift q₀₁) p= == toβ₂ shift) {fromβ₁} {fromβ₂} (fromβ= : ∀ shift → fromβ₁ shift ∙ ap (From.template q₀₁ (_ , q₁₁) (_ , q₀₀) r shift q₁₀) p= == fromβ₂ shift) → βpair p₁ toβ₁ fromβ₁ == βpair p₂ toβ₂ fromβ₂ βpair= q₀₀ q₁₁ q₀₁ q₁₀ r {p} idp toβ= fromβ= = lemma (λ= λ shift → ! (∙-unit-r _) ∙ toβ= shift) (λ= λ shift → ! (∙-unit-r _) ∙ fromβ= shift) where lemma : ∀ {toβ₁} {toβ₂} (toβ= : toβ₁ == toβ₂) {fromβ₁} {fromβ₂} (fromβ= : fromβ₁ == fromβ₂) → βpair p toβ₁ fromβ₁ == βpair p toβ₂ fromβ₂ lemma idp idp = idp abstract βpair-glue : ∀ {a} {b} (q : Q a b) r → βpair-bmleft q q r == βpair-bmright q q r βpair-glue q r = βpair= q q q q r (path-coherence q) (λ shift → To.β-l q (_ , q) r shift ∙ To.p' q r shift =⟨ ! $ ap (To.β-l q (_ , q) r shift ∙_) (To.coh q r shift) ⟩ To.β-l q (_ , q) r shift ∙ ! (To.β-l q (_ , q) r shift) ∙ To.β-r q (_ , q) r shift =⟨ ! (∙-assoc (To.β-l q (_ , q) r shift) (! (To.β-l q (_ , q) r shift)) (To.β-r q (_ , q) r shift)) ∙ ap (_∙ To.β-r q (_ , q) r shift) (!-inv-r (To.β-l q (_ , q) r shift)) ⟩ To.β-r q (_ , q) r shift ∎) (λ shift → From.β-l q (_ , q) r shift ∙ From.p' q r shift =⟨ ! $ ap (From.β-l q (_ , q) r shift ∙_) (From.coh q r shift) ⟩ From.β-l q (_ , q) r shift ∙ ! (From.β-l q (_ , q) r shift) ∙ From.β-r q (_ , q) r shift =⟨ ! (∙-assoc (From.β-l q (_ , q) r shift) (! (From.β-l q (_ , q) r shift)) (From.β-r q (_ , q) r shift)) ∙ ap (_∙ From.β-r q (_ , q) r shift) (!-inv-r (From.β-l q (_ , q) r shift)) ⟩ From.β-r q (_ , q) r shift ∎) -- Lemmas private abstract to-from-template : ∀ {a₀ a₁ b₀ b₁} {q₀₀ : Q a₀ b₀} {q₁₁ : Q a₁ b₁} {q₀₁ : Q a₀ b₁} {q₁₀ : Q a₁ b₀} {r} (params : βPair q₀₀ q₁₁ q₀₁ q₁₀ r) shift → to q₀₀ q₁₁ r (from q₀₀ q₁₁ r [ q₀₁ , shift ]) == [ q₀₁ , shift ] to-from-template {q₀₀ = q₀₀} {q₁₁} {q₀₁} {q₁₀} {r} params shift = to q₀₀ q₁₁ r (from q₀₀ q₁₁ r [ q₀₁ , shift ]) =⟨ ap (to q₀₀ q₁₁ r) $ from-β shift ⟩ to q₀₀ q₁₁ r [ q₁₀ , ! path ∙' shift ] =⟨ to-β (! path ∙' shift) ⟩ [ q₀₁ , path ∙' ! path ∙' shift ] =⟨ ap (λ p → [ q₀₁ , p ]) $ ! (∙'-assoc path (! path) shift) ∙ ap (_∙' shift) (!-inv'-r path) ∙ ∙'-unit-l shift ⟩ [ q₀₁ , shift ] =∎ where open βPair params module FromTo {a₁ b₀} (q₁₀ : Q a₁ b₀) where -- upper U = To.U q₁₀ u₀ = To.u₀ q₁₀ -- lower V = To.V q₁₀ v₀ = To.v₀ q₁₀ P : U → V → Type (lmax i (lmax j k)) P u v = (r : bmleft (fst u) == bmright (fst v)) → (shift : bmglue (snd u) ∙' ! (bmglue q₁₀) ∙' bmglue (snd v) == r) → from (snd u) (snd v) r (to (snd u) (snd v) r [ q₁₀ , shift ]) == [ q₁₀ , shift ] abstract template : ∀ (u : U) (v : V) r shift q₀₁ → βPair (snd u) (snd v) q₀₁ q₁₀ r → from (snd u) (snd v) r (to (snd u) (snd v) r [ q₁₀ , shift ]) == [ q₁₀ , shift ] template (_ , q₀₀) (_ , q₁₁) r shift q₀₁ params = from q₀₀ q₁₁ r (to q₀₀ q₁₁ r [ q₁₀ , shift ]) =⟨ ap (from q₀₀ q₁₁ r) $ to-β shift ⟩ from q₀₀ q₁₁ r [ q₀₁ , path ∙' shift ] =⟨ from-β (path ∙' shift) ⟩ [ q₁₀ , ! path ∙' path ∙' shift ] =⟨ ap (λ p → [ q₁₀ , p ]) $ ! (∙'-assoc (! path) path shift) ∙ ap (_∙' shift) (!-inv'-l path) ∙ ∙'-unit-l shift ⟩ [ q₁₀ , shift ] =∎ where open βPair params f = λ u r shift → template u v₀ r shift (snd u) (βpair-bmleft (snd u) q₁₀ r) g = λ v r shift → template u₀ v r shift (snd v) (βpair-bmright q₁₀ (snd v) r) abstract p : f u₀ == g v₀ p = λ= λ r → λ= λ shift → ap (template u₀ v₀ r shift q₁₀) (βpair-glue q₁₀ r) args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { n = n; m = m; cA = g-conn b₀; cB = f-conn a₁; P = λ u v → swap-level $ P u v , Π-level λ _ → Π-level λ _ → =-preserves-level Trunc-level; f = f; g = g; p = p} abstract ext : ∀ u v → P u v ext = WedgeExt.ext args abstract from-to' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → from q₀₀ q₁₁ r (to q₀₀ q₁₁ r [ fiber ]) == [ fiber ] from-to' q₀₀ q₁₁ r (q₁₀ , shift) = FromTo.ext q₁₀ (_ , q₀₀) (_ , q₁₁) r shift from-to : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → from q₀₀ q₁₁ r (to q₀₀ q₁₁ r fiber) == fiber from-to q₀₀ q₁₁ r = Trunc-elim (from-to' q₀₀ q₁₁ r) module ToFrom {a₀ b₁} (q₀₁ : Q a₀ b₁) where -- upper U = From.U q₀₁ u₀ = From.u₀ q₀₁ -- lower V = From.V q₀₁ v₀ = From.v₀ q₀₁ P : U → V → Type (lmax i (lmax j k)) P u v = (r : bmleft a₀ == bmright b₁) → (shift : bmglue q₀₁ == r) → to (snd v) (snd u) r (from (snd v) (snd u) r [ q₀₁ , shift ]) == [ q₀₁ , shift ] abstract template : ∀ (u : U) (v : V) r shift q₁₀ → βPair (snd v) (snd u) q₀₁ q₁₀ r → to (snd v) (snd u) r (from (snd v) (snd u) r [ q₀₁ , shift ]) == [ q₀₁ , shift ] template (_ , q₁₁) (_ , q₀₀) r shift q₁₀ params = to q₀₀ q₁₁ r (from q₀₀ q₁₁ r [ q₀₁ , shift ]) =⟨ ap (to q₀₀ q₁₁ r) $ from-β shift ⟩ to q₀₀ q₁₁ r [ q₁₀ , ! path ∙' shift ] =⟨ to-β (! path ∙' shift) ⟩ [ q₀₁ , path ∙' ! path ∙' shift ] =⟨ ap (λ p → [ q₀₁ , p ]) $ ! (∙'-assoc path (! path) shift) ∙ ap (_∙' shift) (!-inv'-r path) ∙ ∙'-unit-l shift ⟩ [ q₀₁ , shift ] =∎ where open βPair params f = λ u r shift → template u v₀ r shift (snd u) (βpair-bmleft q₀₁ (snd u) r) g = λ v r shift → template u₀ v r shift (snd v) (βpair-bmright (snd v) q₀₁ r) abstract p : f u₀ == g v₀ p = λ= λ r → λ= λ shift → ap (template u₀ v₀ r shift q₀₁) (βpair-glue q₀₁ r) args : WedgeExt.args {A = U} {a₀ = u₀} {B = V} {b₀ = v₀} args = record { n = n; m = m; cA = g-conn b₁; cB = f-conn a₀; P = λ u v → swap-level $ P u v , Π-level λ _ → Π-level λ _ → =-preserves-level Trunc-level; f = f; g = g; p = p} abstract ext : ∀ u v → P u v ext = WedgeExt.ext args abstract to-from' : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → to q₀₀ q₁₁ r (from q₀₀ q₁₁ r [ fiber ]) == [ fiber ] to-from' q₀₀ q₁₁ r (q₀₁ , shift) = ToFrom.ext q₀₁ (_ , q₁₁) (_ , q₀₀) r shift to-from : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r fiber → to q₀₀ q₁₁ r (from q₀₀ q₁₁ r fiber) == fiber to-from q₀₀ q₁₁ r = Trunc-elim (to-from' q₀₀ q₁₁ r) eqv : ∀ {a₀ a₁ b₀ b₁} (q₀₀ : Q a₀ b₀) (q₁₁ : Q a₁ b₁) r → Trunc (m +2+ n) (hfiber (λ q₁₀ → bmglue q₀₀ ∙' ! (bmglue q₁₀) ∙' bmglue q₁₁) r) ≃ Trunc (m +2+ n) (hfiber bmglue r) eqv q₀₀ q₁₁ r = equiv (to q₀₀ q₁₁ r) (from q₀₀ q₁₁ r) (to-from q₀₀ q₁₁ r) (from-to q₀₀ q₁₁ r)
{ "alphanum_fraction": 0.5070869199, "avg_line_length": 37.5936739659, "ext": "agda", "hexsha": "6ec33cdced245afc9768b59818a77699ebeb3030", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/blakersmassey/CoherenceData.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/blakersmassey/CoherenceData.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/blakersmassey/CoherenceData.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7188, "size": 15451 }
module examplesPaperJFP.StateDependentIO where open import Size open import NativeIO open import Function open import Agda.Primitive open import Level using (_⊔_) renaming (suc to lsuc) module _ {σ γ ρ} where record IOInterfaceˢ : Set (lsuc (σ ⊔ γ ⊔ ρ )) where field Stateˢ : Set σ Commandˢ : Stateˢ → Set γ Responseˢ : (s : Stateˢ) → Commandˢ s → Set ρ nextˢ : (s : Stateˢ) → (c : Commandˢ s) → Responseˢ s c → Stateˢ open IOInterfaceˢ public module _ {α σ γ ρ}(i : IOInterfaceˢ {σ} {γ} {ρ} ) (let S = Stateˢ i) (let C = Commandˢ i) (let R = Responseˢ i) (let next = nextˢ i) where mutual record IOˢ (i : Size) (A : S → Set α) (s : S) : Set (lsuc (α ⊔ σ ⊔ γ ⊔ ρ )) where coinductive constructor delay field forceˢ : {j : Size< i} → IOˢ′ j A s data IOˢ′ (i : Size) (A : S → Set α) : S → Set (lsuc (α ⊔ σ ⊔ γ ⊔ ρ )) where doˢ′ : {s : S} → (c : C s) → (f : (r : R s c) → IOˢ i A (next s c r) ) → IOˢ′ i A s returnˢ′ : {s : S} → (a : A s) → IOˢ′ i A s data IOˢ+ (i : Size) (A : S → Set α ) : S → Set (lsuc (α ⊔ σ ⊔ γ ⊔ ρ )) where doˢ′ : {s : S} → (c : C s) (f : (r : R s c) → IOˢ i A (next s c r)) → IOˢ+ i A s open IOˢ public module _ {α σ γ ρ}{I : IOInterfaceˢ {σ} {γ} {ρ}} (let S = Stateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let next = nextˢ I) where returnˢ : ∀{i}{A : S → Set α} {s : S} (a : A s) → IOˢ I i A s forceˢ (returnˢ a) = returnˢ′ a doˢ : ∀{i}{A : S → Set α} {s : S} (c : C s) (f : (r : R s c) → IOˢ I i A (next s c r)) → IOˢ I i A s forceˢ (doˢ c f) = doˢ′ c f module _ {σ γ}{I : IOInterfaceˢ {σ} {γ} {lzero}} (let S = Stateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let next = nextˢ I) where {-# NON_TERMINATING #-} translateIOˢ : ∀{A : Set }{s : S} → (translateLocal : (s : S) → (c : C s) → NativeIO (R s c)) → IOˢ I ∞ (λ s → A) s → NativeIO A translateIOˢ {A} {s} translateLocal p = case (forceˢ p {_}) of λ{ (doˢ′ {.s} c f) → (translateLocal s c) native>>= λ r → translateIOˢ translateLocal (f r) ; (returnˢ′ a) → nativeReturn a }
{ "alphanum_fraction": 0.4728553668, "avg_line_length": 34.9710144928, "ext": "agda", "hexsha": "ddb6c4825b2d38dcd5bfaa2668a64c356c39da68", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/StateDependentIO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/StateDependentIO.agda", "max_line_length": 88, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/StateDependentIO.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 978, "size": 2413 }
module Tree where open import Data.Vec open import Data.Nat data Head : Set where H : Head infixr 5 _⇒_ data Expr : Set where S : Expr -- something _⇒_ : Expr → Expr → Expr -- "->" expression E : Head → ∀{n} → Vec Expr n → Expr -- arbitrary expression -- the termination checker is very unhappy with this one leftBalance : Expr → Expr leftBalance S = S leftBalance (e ⇒ S) = e ⇒ S leftBalance (e ⇒ (f ⇒ g)) = leftBalance ((leftBalance (e ⇒ f)) ⇒ g) leftBalance (e ⇒ E H []) = (e ⇒ E H []) leftBalance (e ⇒ E H (a ∷ x)) = E H (leftBalance (leftBalance e ⇒ a) ∷ (map leftBalance x)) leftBalance (E H x) = E H (map leftBalance x) -- leftBalance (e ⇒ E H (a ∷ x)) = E H ((leftBalance (e ⇒ a)) ∷ (map leftBalance x))
{ "alphanum_fraction": 0.5525672372, "avg_line_length": 31.4615384615, "ext": "agda", "hexsha": "7db4abb9aaafd7bad5f39e5af3693f56b4452140", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "442a0fa153c70cc8402d69738668bf853b39fc6a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UnofficialJuliaMirror/MemoryMutate.jl-a5f39ad1-fb6e-5f16-afbb-4d8233a49418", "max_forks_repo_path": "src/Tree.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "442a0fa153c70cc8402d69738668bf853b39fc6a", "max_issues_repo_issues_event_max_datetime": "2019-03-04T19:02:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-03T18:44:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UnofficialJuliaMirror/MemoryMutate.jl-a5f39ad1-fb6e-5f16-afbb-4d8233a49418", "max_issues_repo_path": "src/Tree.agda", "max_line_length": 91, "max_stars_count": 5, "max_stars_repo_head_hexsha": "442a0fa153c70cc8402d69738668bf853b39fc6a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UnofficialJuliaMirror/MemoryMutate.jl-a5f39ad1-fb6e-5f16-afbb-4d8233a49418", "max_stars_repo_path": "src/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-29T12:37:52.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-03T16:33:15.000Z", "num_tokens": 254, "size": 818 }
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.NaturalIsomorphism where open import Level open import Data.Product using (_×_; _,_; map; zip) open import Function using (flip) open import Categories.Category open import Categories.Functor as ℱ renaming (id to idF) import Categories.NaturalTransformation as NT open NT hiding (id) import Categories.Morphism as Morphism import Categories.Morphism.Properties as Morphismₚ import Categories.Morphism.Reasoning as MR open import Categories.Functor.Properties open import Relation.Binary private variable o ℓ e o′ ℓ′ e′ : Level B C D E : Category o ℓ e record NaturalIsomorphism {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where private module F = Functor F module G = Functor G field F⇒G : NaturalTransformation F G F⇐G : NaturalTransformation G F module ⇒ = NaturalTransformation F⇒G module ⇐ = NaturalTransformation F⇐G field iso : ∀ X → Morphism.Iso D (⇒.η X) (⇐.η X) module iso X = Morphism.Iso (iso X) open Morphism D FX≅GX : ∀ {X} → F.F₀ X ≅ G.F₀ X FX≅GX {X} = record { from = _ ; to = _ ; iso = iso X } op : NaturalIsomorphism G.op F.op op = record { F⇒G = ⇒.op ; F⇐G = ⇐.op ; iso = λ X → record { isoˡ = iso.isoʳ X ; isoʳ = iso.isoˡ X } } op′ : NaturalIsomorphism F.op G.op op′ = record { F⇒G = ⇐.op ; F⇐G = ⇒.op ; iso = λ X → record { isoˡ = iso.isoˡ X ; isoʳ = iso.isoʳ X } } -- This helper definition lets us specify only one of the commuting -- squares and have the other one derived. record NIHelper {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where open Functor F using (F₀; F₁) open Functor G using () renaming (F₀ to G₀; F₁ to G₁) open Category D field η : ∀ X → D [ F₀ X , G₀ X ] η⁻¹ : ∀ X → D [ G₀ X , F₀ X ] commute : ∀ {X Y} (f : C [ X , Y ]) → η Y ∘ F₁ f ≈ G₁ f ∘ η X iso : ∀ X → Morphism.Iso D (η X) (η⁻¹ X) niHelper : ∀ {F G : Functor C D} → NIHelper F G → NaturalIsomorphism F G niHelper {D = D} {F = F} {G = G} α = record { F⇒G = ntHelper record { η = η ; commute = commute } ; F⇐G = ntHelper record { η = η⁻¹ ; commute = λ {X Y} f → begin η⁻¹ Y ∘ F₁ G f ≈˘⟨ cancelʳ (isoʳ (iso X)) ⟩ ((η⁻¹ Y ∘ F₁ G f) ∘ η X) ∘ η⁻¹ X ≈˘⟨ pushʳ (commute f) ⟩∘⟨refl ⟩ (η⁻¹ Y ∘ (η Y ∘ F₁ F f)) ∘ η⁻¹ X ≈⟨ cancelˡ (isoˡ (iso Y)) ⟩∘⟨refl ⟩ F₁ F f ∘ η⁻¹ X ∎ } ; iso = iso } where open Morphism.Iso open NIHelper α open Functor open Category D open HomReasoning open MR D open NaturalIsomorphism infixr 9 _ⓘᵥ_ _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ infix 4 _≃_ -- commonly used short-hand in CT for NaturalIsomorphism _≃_ : (F G : Functor C D) → Set _ _≃_ = NaturalIsomorphism _ⓘᵥ_ : {F G H : Functor C D} → G ≃ H → F ≃ G → F ≃ H _ⓘᵥ_ {D = D} α β = record { F⇒G = F⇒G α ∘ᵥ F⇒G β ; F⇐G = F⇐G β ∘ᵥ F⇐G α ; iso = λ X → Iso-∘ (iso β X) (iso α X) } where open NaturalIsomorphism open Morphismₚ D _ⓘₕ_ : {H I : Functor D E} {F G : Functor C D} → H ≃ I → F ≃ G → (H ∘F F) ≃ (I ∘F G) _ⓘₕ_ {E = E} {I = I} α β = record { F⇒G = F⇒G α ∘ₕ F⇒G β ; F⇐G = F⇐G α ∘ₕ F⇐G β ; iso = λ X → Iso-resp-≈ (Iso-∘ (iso α _) ([ I ]-resp-Iso (iso β X))) E.Equiv.refl (commute (F⇐G α) (η (F⇐G β) X)) } where open NaturalIsomorphism open NaturalTransformation module E = Category E open E.Equiv open Morphismₚ E _ⓘˡ_ : {F G : Functor C D} → (H : Functor D E) → (η : F ≃ G) → H ∘F F ≃ H ∘F G H ⓘˡ η = record { F⇒G = H ∘ˡ F⇒G η ; F⇐G = H ∘ˡ F⇐G η ; iso = λ X → [ H ]-resp-Iso (iso η X) } where open Functor H _ⓘʳ_ : {F G : Functor C D} → (η : F ≃ G) → (K : Functor E C) → F ∘F K ≃ G ∘F K η ⓘʳ K = record { F⇒G = F⇒G η ∘ʳ K ; F⇐G = F⇐G η ∘ʳ K ; iso = λ X → iso η (F₀ X) } where open Functor K refl : Reflexive (NaturalIsomorphism {C = C} {D = D}) refl {D = D} = record { F⇒G = NT.id ; F⇐G = NT.id ; iso = λ _ → record { isoˡ = Category.identityˡ D ; isoʳ = Category.identityʳ D } } sym : Symmetric (NaturalIsomorphism {C = C} {D = D}) sym {D = D} F≃G = record { F⇒G = F⇐G F≃G ; F⇐G = F⇒G F≃G ; iso = λ X → let open Iso (iso F≃G X) in record { isoˡ = isoʳ ; isoʳ = isoˡ } } where open Morphism D trans : Transitive (NaturalIsomorphism {C = C} {D = D}) trans = flip _ⓘᵥ_ isEquivalence : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → IsEquivalence (NaturalIsomorphism {C = C} {D = D}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } module ≃ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} = IsEquivalence (isEquivalence {C = C} {D = D}) Functor-NI-setoid : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Setoid _ _ Functor-NI-setoid C D = record { Carrier = Functor C D ; _≈_ = NaturalIsomorphism ; isEquivalence = isEquivalence } module LeftRightId (F : Functor C D) where module D = Category D iso-id-id : (X : Category.Obj C) → Morphism.Iso D {A = Functor.F₀ F X} D.id D.id iso-id-id X = record { isoˡ = D.identityˡ ; isoʳ = D.identityʳ } -- Left and Right and 'Central' Unitors, Natural Isomorphisms. module _ {F : Functor C D} where open Category.HomReasoning D open Functor F open LeftRightId F open Category D unitorˡ : ℱ.id ∘F F ≃ F unitorˡ = record { F⇒G = id∘F⇒F ; F⇐G = F⇒id∘F ; iso = iso-id-id } unitorʳ : F ∘F ℱ.id ≃ F unitorʳ = record { F⇒G = F∘id⇒F ; F⇐G = F⇒F∘id ; iso = iso-id-id } unitor² : {C : Category o ℓ e} → ℱ.id ∘F ℱ.id ≃ ℱ.id {C = C} unitor² = record { F⇒G = id∘id⇒id ; F⇐G = id⇒id∘id ; iso = LeftRightId.iso-id-id ℱ.id } -- associator module _ (F : Functor B C) (G : Functor C D) (H : Functor D E) where open Category.HomReasoning E open Category E open Functor open LeftRightId (H ∘F (G ∘F F)) private -- components of α assocʳ : NaturalTransformation ((H ∘F G) ∘F F) (H ∘F (G ∘F F)) assocʳ = ntHelper record { η = λ _ → id ; commute = λ _ → MR.id-comm-sym E } assocˡ : NaturalTransformation (H ∘F (G ∘F F)) ((H ∘F G) ∘F F) assocˡ = ntHelper record { η = λ _ → id ; commute = λ _ → MR.id-comm-sym E } associator : (H ∘F G) ∘F F ≃ H ∘F (G ∘F F) associator = record { F⇒G = assocʳ ; F⇐G = assocˡ ; iso = iso-id-id }
{ "alphanum_fraction": 0.5531074305, "avg_line_length": 27.7679324895, "ext": "agda", "hexsha": "8bbce78e661551632322dd60b8ce4d64173fbe76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism.agda", "max_line_length": 118, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2796, "size": 6581 }
module Point where open import Nat open import Bool -- A record can be seen as a one constructor datatype. In this case: data Point' : Set where mkPoint : (x : Nat)(y : Nat) -> Point' getX : Point' -> Nat getX (mkPoint x y) = x getY : Point' -> Nat getY (mkPoint x y) = y
{ "alphanum_fraction": 0.6582733813, "avg_line_length": 18.5333333333, "ext": "agda", "hexsha": "9979e6f8e9570efdc5b0599c39283e184d6fc42a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/Point.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/Point.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/Point.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 85, "size": 278 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Rings.Definition open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Groups.Definition module Rings.Orders.Total.Bounded {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (tRing : TotallyOrderedRing pRing) where open import Rings.Orders.Partial.Bounded pRing open Ring R open Group additiveGroup open import Groups.Lemmas (Ring.additiveGroup R) open Setoid S open Equivalence eq open SetoidPartialOrder pOrder open import Rings.Orders.Total.Lemmas tRing open PartiallyOrderedRing pRing boundGreaterThanZero : {s : Sequence A} → (b : Bounded s) → 0G < underlying b boundGreaterThanZero {s} (a , b) with b 0 ... | (l ,, r) = halvePositive a (<WellDefined invLeft reflexive (orderRespectsAddition (<Transitive l r) a))
{ "alphanum_fraction": 0.7597597598, "avg_line_length": 40.3636363636, "ext": "agda", "hexsha": "a7a38ac6afbe1ff55a09722cd602d59efd448b26", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/Bounded.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/Bounded.agda", "max_line_length": 276, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/Bounded.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 381, "size": 1332 }
{-# OPTIONS --without-K #-} module Ch2-2 where open import Ch2-1 open import Level -- Lemma 2.2.1 (ap) ap : ∀ {a b} {A : Set a} {B : Set b} {x y : A} → (f : A → B) → (p : x ≡ y) → f x ≡ f y ap {a} {b} {A} {B} {x} {y} f p = J {a} {a ⊔ b} A D d x y p f where -- the predicate D : (x y : A) (p : x ≡ y) → Set (a ⊔ b) D x y p = (f : A → B) → f x ≡ f y -- base case d : (x : A) → D x x refl d x f = refl -- ap2 : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} {x y : A} {z w : B} -- → (f : A → B → C) (p : x ≡ y) (q : z ≡ w) -- → f x z ≡ f y w -- ap2 {a} {b} {c} {A} {B} {C} {x} {y} {z} {w} f p q = J A D d x y p z w q f -- where -- -- the predicate -- D : (x y : A) (p : x ≡ y) → Set _ -- D x y p = (a b : B) (q : z ≡ w) (f : A → B → C) → f x z ≡ f y w -- -- -- base case -- d : (x : A) → D x x refl -- d x z w q f = ap (f x) q [_]∙ : ∀ {a} {A : Set a} {x y z : A} → (p : x ≡ y) (q : y ≡ z) → x ≡ z [ p ]∙ q = p ∙ q ∙[_] : ∀ {a} {A : Set a} {x y z : A} → (q : y ≡ z) (p : x ≡ y) → x ≡ z ∙[ p ] q = q ∙ p -- -- -- cong₂ :: -- [_]∙[_] : ∀ {a} {A : Set a} {x y z : A} -- → (p q : x ≡ y) (r s : y ≡ z) -- → p ∙ r ≡ q ∙ s -- [_]∙[_] {a} {A} {x} {y} {z} p q r s = {! ap2 !} ap-refl : ∀ {a b} {A : Set a} {B : Set b} {x : A} → (f : A → B) → ap {a} {b} {A} {B} {x} f refl ≡ refl ap-refl f = refl -- Lemma 2.2.2.i (ap respects _∙_) ap-∙ : ∀ {a b} {A : Set a} {B : Set b} {x y z : A} → (f : A → B) → (p : x ≡ y) (q : y ≡ z) → ap f (p ∙ q) ≡ ap f p ∙ ap f q ap-∙ {a} {b} {A} {B} {x} {y} {z} f p q = J A D d x y p f z q where -- the predicate D : (x y : A) (p : x ≡ y) → Set _ D x y p = (f : A → B) (z : A) (q : y ≡ z) → ap f (p ∙ q) ≡ ap f p ∙ ap f q -- base case d : (x : A) → D x x refl d x f z q = J A E e x z q where -- the predicate E : (x z : A) (q : x ≡ z) → Set _ E x z q = ap f (refl ∙ q) ≡ ap f refl ∙ ap f q -- base case e : (x : A) → E x x refl e x = refl -- Lemma 2.2.2.ii (ap respects ¬_) ap-¬ : ∀ {a b} {A : Set a} {B : Set b} {x y : A} → (f : A → B) → (p : x ≡ y) → ap f (¬ p) ≡ ¬ ap f p ap-¬ {a} {b} {A} {B} {x} {y} f p = J A D d x y p f where -- the predicate D : (x y : A) (p : x ≡ y) → Set _ D x y p = (f : A → B) → ap f (¬ p) ≡ ¬ ap f p -- base case d : (x : A) → D x x refl d x f = refl open import Function using (_∘_; id) -- Lemma 2.2.2.iii (ap respects function compos) ap-∘ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {x y : A} → (f : A → B) (g : B → C) → (p : x ≡ y) → ap g (ap f p) ≡ ap (g ∘ f) p ap-∘ {_} {_} {_} {A} {B} {C} {x} {y} f g p = J A D d x y p f g where -- the predicate D : (x y : A) (p : x ≡ y) → Set _ D x y p = (f : A → B) → (g : B → C) → ap g (ap f p) ≡ ap (g ∘ f) p -- base case d : (x : A) → D x x refl d x f g = refl -- Lemma 2.2.2.iv (ap respects identity function) ap-id : ∀ {a} {A : Set a} {x y : A} → (p : x ≡ y) → ap id p ≡ p ap-id {a} {A} {x} {y} p = J A D d x y p where -- the predicate D : (x y : A) (p : x ≡ y) → Set a D x y p = ap id p ≡ p -- base case d : (x : A) → D x x refl d x = refl
{ "alphanum_fraction": 0.3715710723, "avg_line_length": 25.4603174603, "ext": "agda", "hexsha": "945f7d863d2ac709d644d44670f3674bcf73cd78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-2.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1625, "size": 3208 }
------------------------------------------------------------------------ -- Well-typed binary relations lifted to substitutions ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Data.Fin.Substitution.TypedRelation where open import Data.Context hiding (map) open import Data.Context.WellFormed open import Data.Fin using (Fin; zero) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Typed open import Data.Nat using (ℕ; zero; suc) open import Data.Product as Prod using (_×_; _,_) open import Data.Vec as Vec using (_∷_; map; zip; unzip) open import Data.Vec.Properties open import Function using (flip) open import Level using (_⊔_) renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Abstract typed binary relations lifted point-wise to substitutions -- A shorthand. infixr 2 _⊗_ _⊗_ : ∀ {t₁ t₂ } → Pred ℕ t₁ → Pred ℕ t₂ → Pred ℕ (t₁ ⊔ t₂) (T₁ ⊗ T₂) n = T₁ n × T₂ n -- Abstract typed binary relations on terms. -- -- An abtract typed term relation _⊢_∼_∈_ : TypedRel Bnd Term₁ Term₂ -- Type is a four-place relation which, in a given Bnd-context, -- relates Term₁ to Term₂-terms and their Type-types. -- An abtract typing judgment _⊢_∈_ : Typing Bnd Term Type is a -- ternary relation which, in a given Bnd-context, relates Term-terms -- to their Type-types. TypedRel : ∀ {t₁ t₂ t₃ t₄} → Pred ℕ t₁ → Pred ℕ t₂ → Pred ℕ t₃ → Pred ℕ t₄ → ∀ ℓ → Set (t₁ ⊔ t₂ ⊔ t₃ ⊔ t₄ ⊔ lsuc ℓ) TypedRel Bnd Term₁ Term₂ Type ℓ = ∀ {n} → Ctx Bnd n → Term₁ n → Term₂ n → Type n → Set ℓ module _ {t₁ t₂ t₃ t₄ ℓ} {Bnd : Pred ℕ t₁} {Term₁ : Pred ℕ t₂} {Term₂ : Pred ℕ t₃} {Type : Pred ℕ t₄} where -- The following maps witness the obvious correspondence between typed -- relations on Term₁ and Term₂ terms and typings of Term₁-Term₂ pairs. toTyping : TypedRel Bnd Term₁ Term₂ Type ℓ → Typing Bnd (Term₁ ⊗ Term₂) Type ℓ toTyping _⊢_∼_∈_ Γ = Prod.uncurry (_⊢_∼_∈_ Γ) fromTyping : Typing Bnd (Term₁ ⊗ Term₂) Type ℓ → TypedRel Bnd Term₁ Term₂ Type ℓ fromTyping _⊢_∈_ Γ = Prod.curry (_⊢_∈_ Γ) record TypedRelation {t} (Type : Pred ℕ t) -- Type syntax (Term : Pred ℕ lzero) -- Term syntax ℓ : Set (lsuc (t ⊔ ℓ)) where infix 4 _⊢_∼_∈_ _⊢_wf field _⊢_wf : Wf Type Type ℓ -- Type formation judgment _⊢_∼_∈_ : TypedRel Type Term Term Type ℓ -- Typed relation judgment ------------------------------------------------------------------------ -- Abstract typed term relations lifted point-wise to substitutions record TypedSubRel {t} (Type : Pred ℕ t) -- Type syntax (Term : Pred ℕ lzero) -- Term syntax ℓ : Set (lsuc (t ⊔ ℓ)) where -- The underlying typed relation field typedRelation : TypedRelation Type Term ℓ open TypedRelation typedRelation public -- Weakening and term substitutions in types. field typeExtension : Extension Type -- type weakening typeTermApplication : Application Type (Term ⊗ Term) -- term subst. app. termSimple : Simple Term -- simple term subst. open ContextFormation _⊢_wf using (_wf) open Application typeTermApplication using (_/_) -- We associate with every typed relation _⊢_∼_∈_ lifted to a pair -- of Term-substitutions a single typed substitution of pairs of -- Term-terms. termPairSimple : Simple (Term ⊗ Term) termPairSimple = record { var = Prod.< var , var > ; weaken = Prod.map weaken weaken } where open Simple termSimple typedSub : TypedSub Type (Term ⊗ Term) ℓ typedSub = record { _⊢_wf = _⊢_wf ; _⊢_∈_ = toTyping _⊢_∼_∈_ ; typeExtension = typeExtension ; typeTermApplication = typeTermApplication ; termSimple = termPairSimple } open TypedSub typedSub using (_⊢_∈_; _⊢/_∈_; /∈-wf) public infix 4 _⊢/_∼_∈_ -- Typed relations lifted to substitutions. -- -- A typed substitution relation Δ ⊢/ σ ∼ ρ ∈ Γ is a pair σ, ρ of -- substitutions which, when applied to related terms Γ ⊢ s ∼ t ∈ a -- in a source context Γ, yield related well-typed terms Δ ⊢ s / σ ∼ -- t / ρ ∈ a / zip σ ρ in a well-formed target context Δ. _⊢/_∼_∈_ : ∀ {m n} → Ctx Type n → Sub Term m n → Sub Term m n → Ctx Type m → Set (t ⊔ ℓ) Δ ⊢/ σ ∼ ρ ∈ Γ = Δ ⊢/ zip σ ρ ∈ Γ ------------------------------------------------------------------------ -- Operations on abstract well-typed substitutions -- Helpers functions for relating extensions of (untyped) zipped -- substitutions to their projections. module ZipUnzipExtension {Tm₁ Tm₂ : ℕ → Set} (ext₁ : Extension Tm₁) (ext₂ : Extension Tm₂) where private module E₁ = Extension ext₁ module E₂ = Extension ext₂ -- Extensions of (untyped) Tm⊗Tm substitutions. zippedExtension : Extension (Tm₁ ⊗ Tm₂) zippedExtension = record { weaken = Prod.map E₁.weaken E₂.weaken } open Extension zippedExtension -- Some useful shorthands π₁ : ∀ {n m} → Sub (Tm₁ ⊗ Tm₂) m n → Sub Tm₁ m n π₁ σ = Prod.proj₁ (unzip σ) π₂ : ∀ {n m} → Sub (Tm₁ ⊗ Tm₂) m n → Sub Tm₂ m n π₂ σ = Prod.proj₂ (unzip σ) -- π₁ and π₂ are projections (w.r.t. zipping) π₁-zip : ∀ {n m} (σ : Sub Tm₁ m n) (τ : Sub Tm₂ m n) → π₁ (zip σ τ) ≡ σ π₁-zip σ τ = cong Prod.proj₁ (unzip∘zip σ τ) π₂-zip : ∀ {n m} (σ : Sub Tm₁ m n) (τ : Sub Tm₂ m n) → π₂ (zip σ τ) ≡ τ π₂-zip σ τ = cong Prod.proj₂ (unzip∘zip σ τ) -- Weakening commutes with zipping and unzipping. map-weaken-zip : ∀ {m n} (σ : Sub Tm₁ m n) τ → Vec.map weaken (zip σ τ) ≡ zip (Vec.map E₁.weaken σ) (Vec.map E₂.weaken τ) map-weaken-zip σ τ = map-zip E₁.weaken E₂.weaken σ τ map-weaken-unzip : ∀ {m n} (στ : Sub (Tm₁ ⊗ Tm₂) m n) → (Vec.map E₁.weaken (π₁ στ) , Vec.map E₂.weaken (π₂ στ)) ≡ unzip (Vec.map weaken στ) map-weaken-unzip στ = map-unzip E₁.weaken E₂.weaken στ -- Extension commutes with zipping and unzipping. /∷-zip : ∀ {m n s t} (σ : Sub Tm₁ m n) τ → (s , t) /∷ zip σ τ ≡ zip (s E₁./∷ σ) (t E₂./∷ τ) /∷-zip σ τ = cong (_∷_ _) (map-weaken-zip σ τ) /∷-unzip : ∀ {m n s t} (στ : Sub (Tm₁ ⊗ Tm₂) m n) → (s E₁./∷ π₁ στ , t E₂./∷ π₂ στ) ≡ unzip ((s , t) /∷ στ) /∷-unzip στ = cong (Prod.map (_∷_ _) (_∷_ _)) (map-weaken-unzip στ) -- Operations on related abstract typed substitutions that require -- weakening of derivations of the typed relation record TypedRelWeakenOps {t ℓ} {Type : Pred ℕ t} {Term : Pred ℕ lzero} (typedSubRel : TypedSubRel Type Term ℓ) : Set (lsuc (t ⊔ ℓ)) where open TypedSubRel typedSubRel open ContextFormation _⊢_wf using (_wf) open Application typeTermApplication using (_/_) -- Operations on contexts and raw terms that require weakening private termExtension : Extension Term termExtension = record { weaken = Simple.weaken termSimple } module E = Extension termExtension module C = WeakenOps typeExtension module P = Simple termPairSimple field -- Weakening preserves well-typed terms. ∼∈-weaken : ∀ {n} {Δ : Ctx Type n} {t u a b} → Δ ⊢ a wf → Δ ⊢ t ∼ u ∈ b → (a ∷ Δ) ⊢ E.weaken t ∼ E.weaken u ∈ C.weaken b -- Well-typedness implies well-formedness of contexts. ∼∈-wf : ∀ {n} {Δ : Ctx Type n} {t u a} → Δ ⊢ t ∼ u ∈ a → Δ wf -- Lemmas relating type weakening to term substitutions /-wk : ∀ {n} {a : Type n} → a / P.wk ≡ C.weaken a /-weaken : ∀ {m n} {στ : Sub (Term ⊗ Term) m n} a → a / Vec.map P.weaken στ ≡ a / στ / P.wk weaken-/-∷ : ∀ {n m} {tu} {στ : Sub (Term ⊗ Term) m n} (a : Type m) → C.weaken a / (tu ∷ στ) ≡ a / στ -- Operations on the underlying abstract typed substitutions that -- require weakening. typedWeakenOps : TypedWeakenOps typedSub typedWeakenOps = record { ∈-weaken = ∼∈-weaken ; ∈-wf = ∼∈-wf ; /-wk = /-wk ; /-weaken = /-weaken ; weaken-/-∷ = weaken-/-∷ } open TypedWeakenOps typedWeakenOps using (∈-/∷) open ZipUnzipExtension termExtension termExtension using (/∷-zip) -- Look up a pair of related entries in a pair of related -- substitutions. lookup : ∀ {m n Δ} {σ τ : Sub Term m n} {Γ} → Δ ⊢/ σ ∼ τ ∈ Γ → (x : Fin m) → Δ ⊢ Vec.lookup σ x ∼ Vec.lookup τ x ∈ C.lookup Γ x / zip σ τ lookup {σ = σ} {τ} σ∼τ∈Γ x = subst₂ (toTyping _⊢_∼_∈_ _) (lookup-zip x σ τ) refl (TypedWeakenOps.lookup typedWeakenOps σ∼τ∈Γ x) -- Extension by a pair of related typed terms. ∼∈-/∷ : ∀ {m n Γ} {σ τ : Sub Term m n} {Δ t u a b} → b ∷ Δ ⊢ t ∼ u ∈ C.weaken (a / zip σ τ) → Δ ⊢/ σ ∼ τ ∈ Γ → b ∷ Δ ⊢/ (t E./∷ σ) ∼ (u E./∷ τ) ∈ a ∷ Γ ∼∈-/∷ t∼u∈a/στ σ∼τ∈Γ = subst (flip (_⊢/_∈_ _) _) (/∷-zip _ _) (∈-/∷ t∼u∈a/στ σ∼τ∈Γ) -- Helpers functions for relating simple (untyped) zipped -- substitutions to their projections. module ZipUnzipSimple {Tm₁ Tm₂ : ℕ → Set} (simple₁ : Simple Tm₁) (simple₂ : Simple Tm₂) where private module S₁ = SimpleExt simple₁ module S₂ = SimpleExt simple₂ open ZipUnzipExtension S₁.extension S₂.extension public -- Simple (untyped) Tm⊗Tm substitutions. zippedSimple : Simple (Tm₁ ⊗ Tm₂) zippedSimple = record { weaken = Prod.map S₁.weaken S₂.weaken ; var = λ x → S₁.var x , S₂.var x } open SimpleExt zippedSimple -- Lifting commutes with zipping. ↑-zip : ∀ {m n} (σ : Sub Tm₁ m n) τ → zip σ τ ↑ ≡ zip (σ S₁.↑) (τ S₂.↑) ↑-zip σ τ = /∷-zip σ τ ↑⋆-zip : ∀ {m n} (σ : Sub Tm₁ m n) τ k → zip σ τ ↑⋆ k ≡ zip (σ S₁.↑⋆ k) (τ S₂.↑⋆ k) ↑⋆-zip σ τ zero = refl ↑⋆-zip σ τ (suc k) = cong (var zero ∷_) (begin map weaken (zip σ τ ↑⋆ k) ≡⟨ cong (map weaken) (↑⋆-zip σ τ k) ⟩ -- map weaken (zip (σ S₁.↑⋆ k) (τ S₂.↑⋆ k)) ≡⟨ map-weaken-zip (σ S₁.↑⋆ k) (τ S₂.↑⋆ k) ⟩ zip (map S₁.weaken (σ S₁.↑⋆ k)) (map S₂.weaken (τ S₂.↑⋆ k)) ∎) -- Lifting commutes with unzipping. ↑-unzip : ∀ {m n} (σ : Sub (Tm₁ ⊗ Tm₂) m n) → (π₁ σ S₁.↑ , π₂ σ S₂.↑) ≡ unzip (σ ↑) ↑-unzip σ = /∷-unzip σ -- Zipping preserves identity substitutions. id-zip : ∀ {n} → id {n} ≡ zip S₁.id S₂.id id-zip {zero} = refl id-zip {suc n} = begin id {n} ↑ ≡⟨ cong _↑ id-zip ⟩ (zip S₁.id S₂.id) ↑ ≡⟨ ↑-zip S₁.id S₂.id ⟩ zip (S₁.id S₁.↑) (S₂.id S₂.↑) ∎ -- Unzipping preserves identity substitutions. id-unzip : ∀ {n} → (S₁.id , S₂.id) ≡ unzip (id {n}) id-unzip {zero} = refl id-unzip {suc n} = begin (S₁.id S₁.↑ , S₂.id S₂.↑) ≡⟨ cong (Prod.map S₁._↑ S₂._↑) id-unzip ⟩ (π₁ id S₁.↑ , π₂ id S₂.↑) ≡⟨ ↑-unzip id ⟩ unzip (id {n} ↑) ∎ -- Zipping preserves weakening substitutions. wk-zip : ∀ {n} → wk {n} ≡ zip S₁.wk S₂.wk wk-zip {n} = begin map weaken id ≡⟨ cong (map weaken) id-zip ⟩ map weaken (zip S₁.id S₂.id) ≡⟨ map-zip S₁.weaken S₂.weaken _ _ ⟩ zip (map S₁.weaken S₁.id) (map S₂.weaken S₂.id) ∎ -- Unzipping preserves weakening substitutions. wk-unzip : ∀ {n} → (S₁.wk , S₂.wk) ≡ unzip (wk {n}) wk-unzip {n} = begin (map S₁.weaken S₁.id , map S₂.weaken S₂.id) ≡⟨ cong (Prod.map (map S₁.weaken) (map S₂.weaken)) id-unzip ⟩ (map S₁.weaken (π₁ id) , map S₂.weaken (π₂ id)) ≡⟨ map-unzip S₁.weaken S₂.weaken id ⟩ unzip (map weaken id) ∎ -- Zipping preserves sigle-variable substitutions. sub-zip : ∀ {n} (s : Tm₁ n) t → sub (s , t) ≡ zip (S₁.sub s) (S₂.sub t) sub-zip s t = cong (_∷_ (s , t)) id-zip -- Unzipping preserves sigle-variable substitutions. sub-unzip : ∀ {n} (s : Tm₁ n) t → (S₁.sub s , S₂.sub t) ≡ unzip (sub (s , t)) sub-unzip s t = cong (Prod.map (_∷_ s) (_∷_ t)) id-unzip -- Operations on abstract typed substitutions that require simple term -- substitutions record TypedRelSimple {t ℓ} {Type : Pred ℕ t} {Term : Pred ℕ lzero} (typedSubRel : TypedSubRel Type Term ℓ) : Set (lsuc (t ⊔ ℓ)) where -- Operations on related abstract typed substitutions that require -- weakening. field typedRelWeakenOps : TypedRelWeakenOps typedSubRel open TypedRelWeakenOps typedRelWeakenOps public open TypedSubRel typedSubRel open ContextFormation _⊢_wf using (_wf; _⊢_wfExt) open Application typeTermApplication using (_/_) private module S = Simple termSimple module C = WeakenOps typeExtension module P = Simple termPairSimple open S using (_↑; _↑⋆_; id; wk; sub) -- Context operations that require term substitutions in types. open SubstOps typeTermApplication termPairSimple using (_E/_) field -- Takes equal variables to well-typed related terms. ∼∈-var : ∀ {n} {Γ : Ctx Type n} → ∀ x → Γ wf → Γ ⊢ S.var x ∼ S.var x ∈ C.lookup Γ x -- Well-formedness of related types implies well-formedness of -- contexts. wf-wf : ∀ {n} {Γ : Ctx Type n} {a} → Γ ⊢ a wf → Γ wf -- The identity substitution in types is an identity id-vanishes : ∀ {n} (a : Type n) → a / P.id ≡ a -- Operations on the underlying abstract typed substitutions that -- require simple typed term substitutions. typedSimple : TypedSimple typedSub typedSimple = record { typedWeakenOps = typedWeakenOps ; ∈-var = ∼∈-var ; wf-wf = wf-wf ; id-vanishes = id-vanishes } open TypedSimple typedSimple using (∈-↑; ∈-↑⋆; ∈-id; ∈-wk; ∈-sub; ∈-tsub) open ZipUnzipSimple termSimple termSimple -- Lifting. ∼∈-↑ : ∀ {m n Δ} {σ τ : Sub Term m n} {a Γ} → Δ ⊢ a / zip σ τ wf → Δ ⊢/ σ ∼ τ ∈ Γ → a / zip σ τ ∷ Δ ⊢/ σ ↑ ∼ τ ↑ ∈ a ∷ Γ ∼∈-↑ a/στ-wf σ∼τΓ = subst (flip (_⊢/_∈_ _) _) (↑-zip _ _) (∈-↑ a/στ-wf σ∼τΓ) ∼∈-↑⋆ : ∀ {k m n Δ} {E : CtxExt Type m k} {σ τ : Sub Term m n} {Γ} → Δ ⊢ (E E/ zip σ τ) wfExt → Δ ⊢/ σ ∼ τ ∈ Γ → (E E/ zip σ τ) ++ Δ ⊢/ σ ↑⋆ k ∼ τ ↑⋆ k ∈ (E ++ Γ) ∼∈-↑⋆ {k} E/στ-wfExt σ∼τ∈Γ = subst (flip (_⊢/_∈_ _) _) (↑⋆-zip _ _ k) (∈-↑⋆ E/στ-wfExt σ∼τ∈Γ) -- The identity substitution. ∼∈-id : ∀ {n} {Γ : Ctx Type n} → Γ wf → Γ ⊢/ id ∼ id ∈ Γ ∼∈-id Γ-wf = subst (flip (_⊢/_∈_ _) _) id-zip (∈-id Γ-wf) -- Weakening. ∼∈-wk : ∀ {n} {Γ : Ctx Type n} {a} → Γ ⊢ a wf → a ∷ Γ ⊢/ wk ∼ wk ∈ Γ ∼∈-wk a-wf = subst (flip (_⊢/_∈_ _) _) wk-zip (∈-wk a-wf) -- A substitution which only replaces the first variable. ∼∈-sub : ∀ {n} {Γ : Ctx Type n} {t u a} → Γ ⊢ t ∼ u ∈ a → Γ ⊢/ sub t ∼ sub u ∈ a ∷ Γ ∼∈-sub s∼t∈a = subst (flip (_⊢/_∈_ _) _) (sub-zip _ _) (∈-sub s∼t∈a) -- A substitution which only changes the type of the first variable. ∼∈-tsub : ∀ {n} {Γ : Ctx Type n} {a b} → b ∷ Γ ⊢ S.var zero ∼ S.var zero ∈ C.weaken a → b ∷ Γ ⊢/ id ∼ id ∈ a ∷ Γ ∼∈-tsub z∈a = subst (flip (_⊢/_∈_ _) _) id-zip (∈-tsub z∈a)
{ "alphanum_fraction": 0.5577132603, "avg_line_length": 34.0676855895, "ext": "agda", "hexsha": "ddefbf82cf00d59bf24ac249ed196559db3a596e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/Data/Fin/Substitution/TypedRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/Data/Fin/Substitution/TypedRelation.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/Data/Fin/Substitution/TypedRelation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5661, "size": 15603 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of interleaving using propositional equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Ternary.Interleaving.Propositional.Properties {a} {A : Set a} where import Data.List.Relation.Ternary.Interleaving.Setoid.Properties as SetoidProperties open import Relation.Binary.PropositionalEquality using (setoid) ------------------------------------------------------------------------ -- Re-exporting existing properties open SetoidProperties (setoid A) public
{ "alphanum_fraction": 0.5326409496, "avg_line_length": 33.7, "ext": "agda", "hexsha": "1156079c25d4f61c84c4f929decbbf131b230aab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Propositional/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Propositional/Properties.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Propositional/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 112, "size": 674 }
-- Andreas, 2012-07-01, issue reported by patrickATparcs.ath... -- {-# OPTIONS -v tc.term.let.pattern:20 #-} module Issue671 where open import Common.Prelude record Foo : Set where constructor foo field foo₁ : Nat bar : Nat → Nat bar a = let b = a c = b foo x = foo 5 in b -- should succeed, used to throw a panic from Open'ing a let assigned value -- in a wrong Context
{ "alphanum_fraction": 0.655, "avg_line_length": 20, "ext": "agda", "hexsha": "48717aa198197eb2fb537c35b87f96f4424f6bd4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue671.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue671.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue671.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 400 }
-- Andreas, 2020-02-15, issue #4447, reported by zraffer record Wrap : Set₁ where constructor ↑ field ↓ : Set open Wrap public data Unit : Set -- The type checker sees through this definition, -- thus, the positivity checker should as well: 𝕌nit = ↑ Unit data Unit where unit : ↓ 𝕌nit -- WAS: internal error in the positivity checker.
{ "alphanum_fraction": 0.710982659, "avg_line_length": 19.2222222222, "ext": "agda", "hexsha": "91f9602840bac3ea8ac111046722d5f57ad8a783", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4447.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4447.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4447.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 96, "size": 346 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.OneSkeleton {i} {A : Type i} {j} {B : Type j} where private module _ (map : A → B) where data #OneSkeleton-aux : Type i where #point : A → #OneSkeleton-aux data #OneSkeleton : Type i where #one-skeleton : #OneSkeleton-aux → (Unit → Unit) → #OneSkeleton OneSkeleton : (A → B) → Type i OneSkeleton = #OneSkeleton module _ {map : A → B} where point : A → OneSkeleton map point a = #one-skeleton (#point a) _ postulate -- HIT link : ∀ a₁ a₂ → map a₁ == map a₂ → point a₁ == point a₂ module OneSkeletonElim {l} {P : OneSkeleton map → Type l} (point* : ∀ a → P (point a)) (link* : ∀ a₁ a₂ p → point* a₁ == point* a₂ [ P ↓ link a₁ a₂ p ]) where f : Π (OneSkeleton map) P f = f-aux phantom where f-aux : Phantom link* → Π (OneSkeleton map) P f-aux phantom (#one-skeleton (#point a) _) = point* a postulate link-β : ∀ a₁ a₂ p → apd f (link a₁ a₂ p) == link* a₁ a₂ p open OneSkeletonElim public using () renaming (f to OneSkeleton-elim) module OneSkeletonRec {l} {P : Type l} (point* : ∀ a → P) (link* : ∀ a₁ a₂ p → point* a₁ == point* a₂) where private module M = OneSkeletonElim point* (λ a₁ a₂ p → ↓-cst-in (link* a₁ a₂ p)) f : OneSkeleton map → P f = M.f link-β : ∀ a₁ a₂ p → ap f (link a₁ a₂ p) == link* a₁ a₂ p link-β a₁ a₂ p = apd=cst-in {f = f} (M.link-β a₁ a₂ p) open OneSkeletonRec public using () renaming (f to OneSkeleton-rec) OneSkeleton-lift : OneSkeleton map → B OneSkeleton-lift = OneSkeleton-rec map (λ _ _ p → p) {- module _ {i} {A B : Set i} where skeleton₁ : (A → B) → Set i skeleton₁ f = Graveyard.skeleton₁ {i} {A} {B} {f} -}
{ "alphanum_fraction": 0.5601952278, "avg_line_length": 27.1176470588, "ext": "agda", "hexsha": "1216901a0f97074f6668169363b1b78a13fa4488", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "homotopy/OneSkeleton.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "homotopy/OneSkeleton.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "homotopy/OneSkeleton.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 633, "size": 1844 }
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.Extranatural where -- Although there is a notion of Extranatural in Categories.NaturalTransformation.Dinatural, -- it isn't the most general form, thus the need for this as well. open import Level open import Data.Product open import Relation.Binary using (Rel; IsEquivalence; Setoid) open import Categories.Category open import Categories.NaturalTransformation as NT hiding (_∘ʳ_) open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.Category.Product import Categories.Morphism.Reasoning as MR private variable o₁ o₂ o₃ o₄ ℓ₁ ℓ₂ ℓ₃ ℓ₄ e₁ e₂ e₃ e₄ : Level record ExtranaturalTransformation {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} {D : Category o₄ ℓ₄ e₄} (P : Functor (Product A (Product (Category.op B) B)) D) (Q : Functor (Product A (Product (Category.op C) C)) D) : Set (o₁ ⊔ o₂ ⊔ o₃ ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ e₄) where private module A = Category A module B = Category B module C = Category C module D = Category D module P = Functor P module Q = Functor Q open D hiding (op) open Commutation D field α : ∀ a b c → D [ P.₀ (a , (b , b)) , Q.₀ (a , (c , c)) ] commute : ∀ {a a′ b b′ c c′} (f : A [ a , a′ ]) (g : B [ b , b′ ]) (h : C [ c , c′ ]) → [ P.₀ (a , (b′ , b) ) ⇒ Q.₀ (a′ , (c , c′)) ]⟨ P.₁ (f , B.id , g) ⇒⟨ P.₀ (a′ , (b′ , b′)) ⟩ α a′ b′ c ⇒⟨ Q.₀ (a′ , (c , c)) ⟩ Q.₁ (A.id , C.id , h) ≈ P.₁ (A.id , g , B.id) ⇒⟨ P.₀ (a , (b , b)) ⟩ α a b c′ ⇒⟨ Q.₀ (a , (c′ , c′)) ⟩ Q.₁ (f , h , C.id) ⟩
{ "alphanum_fraction": 0.5350971922, "avg_line_length": 34.9433962264, "ext": "agda", "hexsha": "0bff0edbec1f7053d3cd246d508e9d065a052118", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/Extranatural.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/Extranatural.agda", "max_line_length": 112, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/Extranatural.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 646, "size": 1852 }
open import Data.Nat as N using (ℕ; zero; suc; _<_; _≤_; _>_; z≤n; s≤s; _∸_) open import Data.Nat.Properties as N open import Data.Vec as V using (Vec; []; _∷_) open import Data.Vec.Properties as V open import Data.Fin as F using (Fin; zero; suc) import Data.Fin.Properties as F open import Data.List as L using (List; []; _∷_) open import Data.Unit using (⊤; tt) open import Data.Nat.Properties import Data.Nat.DivMod as N open import Data.Bool using (Bool; true; false) open import Data.Product renaming (_×_ to _⊗_) open import Relation.Binary.PropositionalEquality -- using (≡-Reasoning; _≡_; refl; cong; sym; subst; subst₂) -- (Extensionality) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation open import Function open import Reflection open import Level using () renaming (zero to ℓ0; suc to lsuc) open import Array.Base open import Array.Properties open import Agda.Builtin.Float data dy-args : ∀ m n → Vec ℕ m → Vec ℕ n → Set where n-n : ∀ {n s} → dy-args n n s s n-0 : ∀ {n s} → dy-args n 0 s [] 0-n : ∀ {n s} → dy-args 0 n [] s dy-args-dim : ∀ {m n sx sy} → dy-args m n sx sy → ℕ dy-args-dim {m} n-n = m dy-args-dim {m} n-0 = m dy-args-dim {m}{n} 0-n = n dy-args-shp : ∀ {m n sx sy} → (dy : dy-args m n sx sy) → Vec ℕ (dy-args-dim dy) dy-args-shp {m}{n}{sx} n-n = sx dy-args-shp {m}{n}{sx} n-0 = sx dy-args-shp {m}{n}{sx}{sy} 0-n = sy dy-args-ok? : Term → TC ⊤ dy-args-ok? hole = do goal ← inferType hole def (quote dy-args) (vArg m ∷ vArg n ∷ vArg sx ∷ vArg sy ∷ []) ← reduce goal where _ → typeError (strErr "expected dy-args expression in goal, found:" ∷ termErr goal ∷ []) reduce m >>= λ where (lit (nat 0)) → unify hole (con (quote 0-n) []) (meta id _) → blockOnMeta id m → reduce n >>= λ where (lit (nat 0)) → unify hole (con (quote n-0) []) (meta id _) → blockOnMeta id n → do catchTC (unify m n) (typeError (strErr "no valid dy-args found for goal: " ∷ termErr goal ∷ [])) -- XXX we could further check that sx and sy unify as well, however, this would -- fail later if they don't. unify hole (con (quote n-n) []) dy-type : ∀ a → Set a → Set a dy-type a X = ∀ {m n sx sy} {@(tactic dy-args-ok?) args : dy-args m n sx sy} → Ar X m sx → Ar X n sy → Ar X _ (dy-args-shp args) lift′ : ∀ {a}{X : Set a} → (_⊕_ : X → X → X) → dy-type a X lift′ _⊕_ {args = n-n} (imap a) (imap b) = imap λ iv → a iv ⊕ b iv lift′ _⊕_ {args = n-0} (imap a) (imap b) = imap λ iv → a iv ⊕ b [] lift′ _⊕_ {args = 0-n} (imap a) (imap b) = imap λ iv → a [] ⊕ b iv Scal : ∀ {a} → Set a → Set a Scal X = Ar X 0 [] --scal : ∀ {a}{X : Set a} → X → Scal X --scal = cst --unscal : ∀ {a}{X : Set a} → Scal X → X --unscal (imap f) = f [] --module reduce-split where -- split-thm : ∀ m n → (m N.⊓ n) N.+ (n N.∸ m) ≡ n -- split-thm zero n = refl -- split-thm (suc m) zero = refl -- split-thm (suc m) (suc n) = cong suc (split-thm m n) -- -- {-# REWRITE split-thm #-} -- -- split : ∀ {X : Set}{n} → (m : ℕ) → (xy : Vec X n) -- → ∃₂ λ (x : Vec X (m N.⊓ n)) (y : Vec X (n N.∸ m)) → x V.++ y ≡ xy -- split zero xy = [] , xy , refl -- split {n = zero} (suc m) xy = [] , xy , refl -- split {X = X}{n = suc n} (suc m) (x ∷ xy) with split m xy -- ... | xs , ys , refl = x ∷ xs , ys , refl -- -- split-axis : ∀ m → (k : Fin m) → ∃₂ λ l r → l N.+ 1 N.+ r ≡ m -- split-axis zero () -- split-axis (suc m) zero = 0 , m , refl -- split-axis (suc m) (suc k) with split-axis m k -- ... | l' , r' , refl = suc l' , r' , refl -- -- -- split-vec : ∀ {l r}{X : Set} → (xyz : Vec X (l N.+ 1 N.+ r)) -- → Σ[ x ∈ Vec X l ] Σ[ y ∈ Vec X 1 ] Σ[ z ∈ Vec X r ] ((x V.++ y) V.++ z ≡ xyz) -- split-vec {zero} {r} (h ∷ t) = [] , (h ∷ []) , t , refl -- split-vec {suc l} {r} (h ∷ t) with split-vec {l = l} t -- ... | l' , m' , r' , refl = h ∷ l' , m' , r' , refl data SVup (X : Set) : Set → (d : ℕ) → (sh : Vec ℕ d) → Set where instance scal : SVup X X 0 [] vect : ∀ {n} → SVup X (Vec X n) 1 (n ∷ []) arry : ∀ {d s} → SVup X (Ar X d s) d s -- XXX do we need the id case for arrays themselves? infixr 30 ▴_ ▴_ : ∀ {X A d s}{{t : SVup X A d s}} → A → Ar X d s ▴_ ⦃ t = scal ⦄ a = cst a --imap λ _ → a ▴_ ⦃ t = vect ⦄ a = imap λ iv → V.lookup a $ ix-lookup iv zero --imap λ where (i ∷ []) → V.lookup a i ▴_ ⦃ t = arry ⦄ a = a {- data SVdown (X : Set) : (d : ℕ) → (sh : Vec ℕ d) → Set → Set where instance scal : SVdown X 0 [] X vect : ∀ {n} → SVdown X 1 (n ∷ []) (Vec X n) -- XXX do we need the id case for arrays themselves? -} infixr 30 ▾_ ▾_ : ∀ {X A d s}{{t : SVup X A d s}} → Ar X d s → A ▾_ ⦃ t = scal ⦄ (imap a) = a [] ▾_ ⦃ t = vect ⦄ (imap a) = V.tabulate λ i → a $ i ∷ [] ▾_ ⦃ t = arry ⦄ a = a -- FIXME These cases are missing -- Ar X 1 [n] + Vec X 0 -- Ar X 1 [n] + Vec X 1 -- Ar X 1 [n] + Vec X n -- FIXME we should allow for different types of lhs and rhs and result, -- e.g. replicate : ℕ → Char → String (not critical, but would be nice). -- FIXME we can add the cases when indices are added with scalars/arrays/vectors. -- -- Simplify handling concatenation of `Prog`s and `String`s data DyScalVec (X : Set) : Set → Set → (d : ℕ) → (sh : Vec ℕ d) → Set where instance s-s : DyScalVec X X X 0 [] s-v : ∀ {n} → DyScalVec X X (Vec X n) 1 (n ∷ []) s-a : ∀ {d s} → DyScalVec X X (Ar X d s) d s v-s : ∀ {n} → DyScalVec X (Vec X n) X 1 (n ∷ []) v-v : ∀ {n} → DyScalVec X (Vec X n) (Vec X n) 1 (n ∷ []) -- v-a : X (Ar X 1 (n ∷ [])) (Vec X n) 1 (n ∷ []) a-s : ∀ {d s} → DyScalVec X (Ar X d s) X d s -- a-v : X (Vec X n) (Ar X 1 (n ∷ [])) 1 (n ∷ []) a-a : ∀ {m n sx sy}{@(tactic dy-args-ok?) args : dy-args m n sx sy} → DyScalVec X (Ar X m sx) (Ar X n sy) (dy-args-dim args) (dy-args-shp args) ▴ₗ : ∀ {X A B d s} {{t : DyScalVec X A B d s}} → A → Ar X d s ▴ₗ {{s-s}} a = cst a ▴ₗ {{s-v}} a = cst a ▴ₗ {{s-a}} a = cst a ▴ₗ {{v-s}} a = ▴ a ▴ₗ {{v-v}} a = ▴ a ▴ₗ {{a-s}} a = a ▴ₗ ⦃ t = a-a {args = n-n} ⦄ a = a ▴ₗ ⦃ t = a-a {args = n-0} ⦄ a = a ▴ₗ ⦃ t = a-a {args = 0-n} ⦄ a = cst (sel a []) ▴ᵣ : ∀ {X A B d s} {{t : DyScalVec X A B d s}} → B → Ar X d s ▴ᵣ {{s-s}} b = cst b ▴ᵣ {{s-v}} b = ▴ b ▴ᵣ {{s-a}} b = b ▴ᵣ {{v-s}} b = cst b ▴ᵣ {{v-v}} b = ▴ b ▴ᵣ {{a-s}} b = cst b ▴ᵣ ⦃ t = a-a {args = n-n} ⦄ b = b ▴ᵣ ⦃ t = a-a {args = n-0} ⦄ b = cst (sel b []) ▴ᵣ ⦃ t = a-a {args = 0-n} ⦄ b = b --infixr 20 _-′_ --_-′_ = lift′ N._∸_ _-safe-_ : (a : ℕ) → (b : ℕ) .{≥ : a N.≥ b} → ℕ a -safe- b = a N.∸ b {- infixr 20 _-ₙ_ _-ₙ_ : ∀ {n}{s} → (a : Ar ℕ n s) → (b : Ar ℕ n s) → .{≥ : a ≥a b} → Ar ℕ n s (imap f -ₙ imap g) {≥} = imap λ iv → (f iv -safe- g iv) {≥ = ≥ iv} -} ---- FIXME: I guess we can eliminate _-′_ and lift′ entirely by inlining definitions. --infixr 20 _-_ --_-_ : ∀ {A B d s}{{t : DyScalVec ℕ A B d s}} → (a : A) → (b : B) → .{≥ : ▴ₗ a ≥a ▴ᵣ b} → Ar ℕ d s --_-_ ⦃ t = s-s ⦄ a b {a≥b} = imap λ iv → (a -safe- b) {a≥b iv} --_-_ ⦃ t = s-v ⦄ a b {a≥b} = imap λ iv → (a -safe- sel (▴ b) iv) {a≥b iv} --_-_ ⦃ t = s-a ⦄ a b {a≥b} = imap λ iv → (a -safe- sel b iv) {a≥b iv} --= ▴ a -′ b --_-_ ⦃ t = v-s ⦄ a b {a≥b} = imap λ iv → (sel (▴ a) iv -safe- b) {a≥b iv} -- = ▴ a -′ ▴ b --_-_ ⦃ t = v-v ⦄ a b {a≥b} = imap λ iv → (sel (▴ a) iv -safe- sel (▴ b) iv) {a≥b iv} --= ▴ a -′ ▴ b --_-_ ⦃ t = a-s ⦄ a b {a≥b} = imap λ iv → (sel a iv -safe- b) {a≥b iv} --= a -′ ▴ b --_-_ ⦃ t = a-a {args = n-n} ⦄ a b {a≥b} = imap λ iv → (sel a iv -safe- sel b iv) {a≥b iv} --_-_ ⦃ t = a-a {args = n-0} ⦄ a b {a≥b} = imap λ iv → (sel a iv -safe- sel b []) {a≥b iv} --_-_ ⦃ t = a-a {args = 0-n} ⦄ a b {a≥b} = imap λ iv → (sel a [] -safe- sel b iv) {a≥b iv} infixr 20 _-_ _-_ : ∀ {A B d s}{{t : DyScalVec ℕ A B d s}} → (a : A) → (b : B) → .{≥ : ▴ₗ a ≥a ▴ᵣ b} → Ar ℕ d s _-_ ⦃ t = s-s ⦄ a b = imap λ iv → (a N.∸ b) _-_ ⦃ t = s-v ⦄ a b = imap λ iv → (a N.∸ sel (▴ b) iv) _-_ ⦃ t = s-a ⦄ a b = imap λ iv → (a N.∸ sel b iv) _-_ ⦃ t = v-s ⦄ a b = imap λ iv → (sel (▴ a) iv N.∸ b) _-_ ⦃ t = v-v ⦄ a b = imap λ iv → (sel (▴ a) iv N.∸ sel (▴ b) iv) _-_ ⦃ t = a-s ⦄ a b = imap λ iv → (sel a iv N.∸ b) _-_ ⦃ t = a-a {args = n-n} ⦄ a b = imap λ iv → (sel a iv N.∸ sel b iv) _-_ ⦃ t = a-a {args = n-0} ⦄ a b = imap λ iv → (sel a iv N.∸ sel b []) _-_ ⦃ t = a-a {args = 0-n} ⦄ a b = imap λ iv → (sel a [] N.∸ sel b iv) -- _-′_ {args = args} a b lift : ∀ {X A B d s}{{t : DyScalVec X A B d s}} → A → B → (_⊕_ : X → X → X) → Ar X d s lift ⦃ t ⦄ a b _⊕_ = imap λ iv → sel (▴ₗ a) iv ⊕ sel (▴ᵣ b) iv -- ℕ operations infixr 20 _+_ _×_ _+_ _×_ : ∀ {A B d s}{{t : DyScalVec ℕ A B d s}} → A → B → Ar ℕ d s a + b = lift a b N._+_ a × b = lift a b N._*_ -- Float operations infixr 20 _+ᵣ_ _-ᵣ_ _×ᵣ_ _÷ᵣ_ _+ᵣ_ _-ᵣ_ _×ᵣ_ _÷ᵣ_ : ∀ {A B d s}{{t : DyScalVec Float A B d s}} → A → B → Ar Float d s a +ᵣ b = lift a b primFloatPlus a -ᵣ b = lift a b primFloatMinus a ×ᵣ b = lift a b primFloatTimes -- XXX we can request the proof that the right argument is not zero. -- However, the current primFloatDiv has the type Float → Float → Float, so... a ÷ᵣ b = lift a b primFloatDiv lift-unary : ∀ {X A d s}{{t : SVup X A d s}} → (X → X) → A → Ar X d s lift-unary ⦃ t = scal ⦄ f a = cst $ f a lift-unary ⦃ t = vect ⦄ f a = imap λ iv → f $ V.lookup a $ ix-lookup iv zero lift-unary ⦃ t = arry ⦄ f (imap a) = imap λ iv → f $ a iv infixr 20 -ᵣ_ ÷ᵣ_ *ᵣ_ -ᵣ_ ÷ᵣ_ *ᵣ_ : ∀ {A d s}{{t : SVup Float A d s}} → A → Ar Float d s *ᵣ_ = lift-unary primFloatExp -ᵣ_ = lift-unary primFloatNegate ÷ᵣ_ = lift-unary (primFloatDiv 1.0) module reduce-custom where drop-last : ∀ {m}{X : Set} → Vec X m → Vec X (m N.∸ 1) drop-last {0} x = x drop-last {1} x = [] drop-last {suc (suc m)} (x ∷ xs) = x ∷ drop-last xs gz : ℕ → ℕ gz 0 = 0 gz _ = 1 take-last : ∀ {m}{X : Set} → Vec X m → Vec X (gz m) take-last {0} x = x take-last {1} x = x take-last {suc (suc m)} (x ∷ xs) = take-last xs _tldl++_ : ∀ {d s} → Ix (d N.∸ 1) (drop-last s) → Ix (gz d) (take-last s) → Ix d s _tldl++_ {0} {s} iv jv = iv _tldl++_ {1} {s} iv jv = jv _tldl++_ {suc (suc d)} {s ∷ ss} (i ∷ iv) jv = i ∷ (iv tldl++ jv) reduce-1d : ∀ {X Y : Set}{s} → (X → Y → Y) → Y → Ar X 1 s → Y reduce-1d {s = 0 ∷ []} _⊕_ ε a = ε reduce-1d {s = suc x ∷ []} _⊕_ ε (imap a) = a (zero ∷ []) ⊕ reduce-1d {s = x ∷ []} _⊕_ ε (imap λ where (i ∷ []) → a (suc i ∷ [])) infixr 20 _/′_ _/′_ : ∀ {X Y : Set}{d s} → (X → Y → Y) → Ar X d s → {ε : Y} → Ar Y _ (drop-last s) _/′_ {d = 0} f (imap a) {ε} = imap λ iv → ε _/′_ {d = suc d} f (imap a) {ε} = imap λ iv → reduce-1d f ε (imap λ jv → a (iv tldl++ jv)) data reduce-neut : {X Y : Set} → (X → Y → Y) → Y → Set where instance plus-nat : reduce-neut N._+_ 0 mult-nat : reduce-neut N._*_ 1 plus-flo : reduce-neut primFloatPlus 0.0 gplus-float : reduce-neut (_+ᵣ_ {{t = a-a {sx = []}{sy = []}{args = n-n} }}) (cst 0.0) infixr 20 _/_ _/_ : ∀ {X Y : Set}{n s ε} → (_⊕_ : X → Y → Y) → {{c : reduce-neut _⊕_ ε}} → Ar X n s → Ar Y _ (drop-last s) _/_ {ε = ε} f a = (f /′ a){ε} infixr 20 _//_ _//_ : ∀ {X Y : Set}{n s ε} → (_⊕_ : Scal X → Scal Y → Scal Y) → {{c : reduce-neut _⊕_ ε}} → Ar X n s → Ar Y _ (drop-last s) _//_ {ε = ε} f a = imap λ jv → ▾ (sel ((f /′ (imap λ iv → ▴ (sel a iv))){ε}) jv) infixr 20 _/ᵣ_ _/ᵣ_ : ∀ {X : Set}{d}{s}{m} → (n : ℕ) → Ar X (d N.+ 1) (s V.++ (m ∷ [])) → Ar X (d N.+ 1) (s V.++ (n N.* m ∷ [])) _/ᵣ_ {d = d} {s = s} 0 a = imap λ iv → magic-fin (ix-lookup (take-ix-r s _ iv) zero) _/ᵣ_ {d = d} {s = s} (suc n) a = imap λ iv → let i = ix-lookup (take-ix-r s _ iv) zero l = take-ix-l s _ iv i/n = F.fromℕ< $ /-mono-f {b = suc n} (F.toℕ<n i) _ in sel a $ l ix++ (i/n ∷ []) infixr 20 _⌿ᵣ_ _⌿ᵣ_ : ∀ {X : Set}{d s m} → (n : ℕ) → Ar X (1 N.+ d) ((m ∷ []) V.++ s) → Ar X (1 N.+ d) ((n N.* m ∷ []) V.++ s) _⌿ᵣ_ {d = d} {s = s} 0 a = imap λ iv → magic-fin (ix-lookup iv zero) _⌿ᵣ_ {d = d} {s = s} (suc n) a = imap λ iv → let i = ix-lookup iv zero r = take-ix-r _ s iv i/n = F.fromℕ< $ /-mono-f {b = suc n} (F.toℕ<n i) _ in sel a $ (i/n ∷ []) ix++ r open reduce-custom public -- shape and flatten infixr 20 ρ_ ρ_ : ∀ {ℓ}{X : Set ℓ}{d s} → Ar X d s → Ar ℕ 1 (d ∷ []) ρ_ {s = s} _ = s→a s infixr 20 ,_ ,_ : ∀ {a}{X : Set a}{n s} → Ar X n s → Ar X 1 (prod s ∷ []) ,_ {s = s} p = imap λ iv → sel p (off→idx s iv) -- Note that two dots in an upper register combined with -- the underscore form the _̈ symbol. When the symbol is -- used on its own, it looks like ̈ which is the correct -- "spelling". infixr 20 _̈_ _̈_ : ∀ {a}{X Y : Set a}{n s} → (X → Y) → Ar X n s → Ar Y n s f ̈ imap p = imap $ f ∘ p module _ where data iota-type : (d : ℕ) → (n : ℕ) → (Vec ℕ d) → Set where instance iota-scal : iota-type 0 1 [] iota-vec : ∀ {n} → iota-type 1 n (n ∷ []) iota-res-t : ∀ {d n s} → iota-type d n s → (sh : Ar ℕ d s) → Set iota-res-t {n = n} iota-scal sh = Ar (Σ ℕ λ x → x N.< ▾ sh) 1 (▾ sh ∷ []) iota-res-t {n = n} iota-vec sh = Ar (Σ (Ar ℕ 1 (n ∷ [])) λ v → v <a sh) n (a→s sh) data iota-t : Set → (n : ℕ) → Set where instance iota-scal : iota-t ℕ 0 iota-vect : ∀ {n} → iota-t (Vec ℕ n) n iota-arrs : iota-t (Ar ℕ 0 []) 1 iota-arrv : ∀ {n} → iota-t (Ar ℕ 1 (n ∷ [])) n iota-ty : ∀ {X n} → iota-t X n → X → Set iota-ty {n = n} iota-scal x = Ar (Ix 1 (x ∷ [])) 1 (x ∷ []) iota-ty {n = n} iota-vect x = Ar (Ix n x) n x iota-ty {n = n} iota-arrs x = Ar (Ix n (▾ x ∷ [])) n (▾ x ∷ []) iota-ty {n = n} iota-arrv x = Ar (Ix n (▾ x)) n (▾ x) iota_ : ∀ {X n}{{t : iota-t X n}} → (x : X) → iota-ty t x iota_ ⦃ t = iota-scal ⦄ x = imap id iota_ ⦃ t = iota-vect ⦄ x = imap id iota_ ⦃ t = iota-arrs ⦄ x = imap id iota_ ⦃ t = iota-arrv ⦄ x = imap id {- iota-t : ∀ {A d s} → SVup ℕ A d s → Ar ℕ d s → Set iota-t {d = d}{s} scal a = Ar (Ix 1 (▾ a ∷ [])) 1 (▾ a ∷ []) iota-t {d = d}{n ∷ []} vect a = Ar (Ix n (▾ a)) n (▾ a) iota-t {d = d}{n ∷ []} arry a = Ar (Ix n (▾ a)) n (▾ a) iota_ : ∀ {A d s}{{t : SVup ℕ A d s}} → (a : Ar ℕ d s) → iota-t t a iota_ {d = d}{s}⦃ t = scal ⦄ a = imap id iota_ {d = d}{s}⦃ t = vect ⦄ a = imap id iota_ {d = d}{s}⦃ t = arry ⦄ a = {!!} --imap id -} a<b⇒b≡c⇒a<c : ∀ {a b c} → a N.< b → b ≡ c → a N.< c a<b⇒b≡c⇒a<c a<b refl = a<b infixr 20 ι_ ι_ : ∀ {d n s}{{c : iota-type d n s}} → (sh : Ar ℕ d s) → iota-res-t c sh ι_ ⦃ c = iota-scal ⦄ s = (imap λ iv → (F.toℕ $ ix-lookup iv zero) , F.toℕ<n (ix-lookup iv zero)) ι_ {n = n} {s = s ∷ []} ⦃ c = iota-vec ⦄ (imap sh) = imap cast-ix→a where cast-ix→a : _ cast-ix→a iv = let ix , pf = ix→a iv in ix , λ jv → a<b⇒b≡c⇒a<c (pf jv) (s→a∘a→s (imap sh) jv) module cnn where open reduce-custom -- blog←{⍺×⍵×1-⍵} -- NOTE: We use + instead of - in the last example, as we are not in ℝ, and N.∸ needs a proof. blog : ∀ {n s} → Ar ℕ n s → Ar ℕ n s → Ar ℕ n s blog α ω = α × ω × 1 + ω conv : ∀ {n wₛ aₛ} → Ar ℕ n wₛ → Ar ℕ n aₛ → {≥ : ▴ aₛ ≥a ▴ wₛ} → Ar ℕ n $ ▾ (1 + (aₛ - wₛ){≥}) conv _ _ = cst 1 -- backbias←{+/,⍵} backbias : ∀ {n s} → Ar ℕ n s → Ar ℕ _ [] backbias ω = N._+_ / , ω -- meansqerr←{÷∘2+/,(⍺-⍵)*2} meansqerr : ∀ {n s} → Ar ℕ n s → Ar ℕ n s → Ar ℕ _ [] meansqerr α ω = _+ 2 $ N._+_ / , (α + ω) × (α + ω) -- backavgpool←{2⌿2/⍵÷4}⍤2 backavgpool : ∀ {s} → Ar ℕ 2 s → Ar ℕ 2 $ ▾ (2 × s) backavgpool {s = _ ∷ _ ∷ []} ω = 2 /ᵣ′ 2 ⌿ᵣ ω × 4 where infixr 20 _/ᵣ′_ _/ᵣ′_ = _/ᵣ_ {s = _ ∷ []} -- Something that could go in Stdlib. ≡⇒≤ : ∀ {a b} → a ≡ b → a N.≤ b ≡⇒≤ refl = ≤-refl -- This should be perfectly generaliseable --- instead of 2 -- we can use any m>0 a<b⇒k<2⇒a*2+k<b*2 : ∀ {a b k} → a N.< b → k N.< 2 → a N.* 2 N.+ k N.< b N.* 2 a<b⇒k<2⇒a*2+k<b*2 {a} {b} {zero} a<b k<2 rewrite (+-identityʳ (a N.* 2)) | (*-comm a 2) | (*-comm b 2) = *-monoʳ-< 1 a<b a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc zero} a<b k<2 = ≤-trans (N.s≤s (≡⇒≤ (+-comm _ 1))) (*-monoˡ-≤ 2 a<b) a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc (suc k)} a<b (N.s≤s (N.s≤s ())) A<B⇒K<2⇒A*2+K<B*2 : ∀ {n s}{a b k : Ar ℕ n s} → a <a b → k <a (cst 2) → ((a × 2) + k) <a (b × 2) A<B⇒K<2⇒A*2+K<B*2 {a = imap a} {imap b} {imap k} a<b k<2 = λ iv → a<b⇒k<2⇒a*2+k<b*2 (a<b iv) (k<2 iv) --- a<n⇒b<n⇒a+b<m+n : ∀ {m n} a b → a N.< m → b N.< n → a N.+ b N.< m N.+ n a<n⇒b<n⇒a+b<m+n {m} zero b a<m b<n = ≤-stepsˡ m b<n a<n⇒b<n⇒a+b<m+n {suc m} (suc a) b (N.s≤s a<m) b<n = N.s≤s (a<n⇒b<n⇒a+b<m+n a b a<m b<n) a<n⇒b<n⇒a+b<m+n-1 : ∀ {m n} a b → a N.< m → b N.< n → a N.+ b N.< m N.+ n N.∸ 1 a<n⇒b<n⇒a+b<m+n-1 {suc m} {suc n} zero b a<m b<n = ≤-stepsˡ m b<n a<n⇒b<n⇒a+b<m+n-1 {suc m} {suc n} (suc a) b (N.s≤s a<m) b<n rewrite +-suc m n = N.s≤s $ begin suc (a N.+ b) ≤⟨ a<n⇒b<n⇒a+b<m+n-1 a b a<m b<n ⟩ m N.+ suc n N.∸ 1 ≡⟨ cong₂ N._∸_ (+-suc m n) refl ⟩ suc (m N.+ n) N.∸ 1 ≡⟨⟩ m N.+ n ∎ where open N.≤-Reasoning _+ff_ : ∀ {m n} → Fin m → Fin n → Fin (m N.+ n N.∸ 1) a +ff b = F.fromℕ< (a<n⇒b<n⇒a+b<m+n-1 _ _ (F.toℕ<n a) (F.toℕ<n b)) _+f_ : ∀ {m n} → Fin m → Fin n → Fin (m N.+ n) a +f b = F.fromℕ< (a<n⇒b<n⇒a+b<m+n _ _ (F.toℕ<n a) (F.toℕ<n b)) _*lf_ : ∀ {n} → (m : ℕ) → Fin n → .{m N.> 0} → Fin (suc (m N.* n N.∸ m)) _*lf_ {n} m (b) {m>0} = let m*sb≤m*n = *-monoʳ-≤ m $ F.toℕ<n b m+m*b≤m*n = subst₂ N._≤_ (*-suc m _) refl m*sb≤m*n m+m*b-m≤m*n = ∸-monoˡ-≤ m m+m*b≤m*n m*b≤m*n-m = subst₂ N._≤_ (m+n∸m≡n m _) refl m+m*b-m≤m*n in F.fromℕ< (N.s≤s m*b≤m*n-m) --_i+_ : ∀ {n s s'} → Ix n s → Ix n s' → Ix n (▾ ((s + s') -′ ▴ 1)) --iv i+ jv = ix-tabulate λ i → subst Fin (sym (V.lookup∘tabulate _ i)) $ ix-lookup iv i +ff ix-lookup jv i -- Note that we explicitly use _-′_ instead of _-_ to avoid the proof. -- It is ok if m ≥ s×m as this means that s=0, and therefore there is no -- such index (element of Fin 0 at some position in s). --_il×_ : ∀ {n s} → (m : ℕ) → Ix n s → .{≥ : m N.> 0} → let s = 1 + (m × s) -′ ▴ m in Ix n (▾ s) --(a il× ix) {m>0} = ix-tabulate λ i → subst Fin (sym (V.lookup∘tabulate _ i)) $ (a *lf ix-lookup ix i){m>0} {- avgpool' : ∀ {s} → Ar Float 2 $ ▾ (2 × s) → Ar Float 2 s avgpool' {s} (imap p) = imap body where m>0⇒k≤k*m : ∀ {m} → m N.> 0 → ∀ k → k N.≤ k N.* m m>0⇒k≤k*m m>0 zero = N.z≤n m>0⇒k≤k*m m>0 (suc k) = +-mono-≤ m>0 (m>0⇒k≤k*m m>0 k) --a≤a*b thm : ∀ {d s} → Ix d s → ∀ i → d N.+ (d N.* V.lookup s i N.∸ d) ≡ d N.* V.lookup s i thm {d}{s} ix i with V.lookup s i | ix-lookup ix i ... | zero | () ... | suc m | _ = m+[n∸m]≡n (m>0⇒k≤k*m {m = suc m} (N.s≤s N.z≤n) d) thmx : ∀ {d s} → Ix d s → ∀ i → V.lookup (▾ (d + (d × s) -′ ▴ d)) i ≡ V.lookup (▾ (d × s)) i thmx {d}{s} ix i with V.lookup s i | inspect (V.lookup s) i | ix-lookup ix i ... | zero | _ | () ... | suc m | [ pf ] | _ = begin V.lookup (V.tabulate (λ z → d N.+ (d N.* V.lookup s z N.∸ d))) i ≡⟨ lookup∘tabulate _ i ⟩ d N.+ (d N.* V.lookup s i N.∸ d) ≡⟨ cong (d N.+_) (cong (N._∸ d) (cong (d N.*_) pf)) ⟩ d N.+ (d N.* suc m N.∸ d) ≡⟨ m+[n∸m]≡n (m>0⇒k≤k*m {m = suc m} (N.s≤s N.z≤n) d) ⟩ d N.* suc m ≡⟨ cong (d N.*_) (sym pf) ⟩ d N.* V.lookup s i ≡⟨ sym (lookup∘tabulate _ i) ⟩ V.lookup (V.tabulate (λ z → d N.* V.lookup s z)) i ∎ where open ≡-Reasoning body : _ → _ body iv = let ixs = iota (2 ∷ 2 ∷ []) ix = (2 il× iv) {N.s≤s N.z≤n} f iv = p $ subst-ix {!!} $ iv i+ ix xx = primFloatPlus / , f ̈ ixs in {!!} -} avgpool : ∀ {s} → Ar ℕ 2 $ ▾ (s × 2) → Ar ℕ 2 s avgpool {s} (imap p) = imap body where body : _ → _ body iv = let sh = s × 2 ix , ix<s = ix→a iv bx = ix × 2 ixs = ι (cst {s = 2 ∷ []} 2) use-ixs = λ where (i , pf) → p $ a→ix (bx + i) sh $ A<B⇒K<2⇒A*2+K<B*2 ix<s pf in ▾ (_× 4 $ N._+_ / , use-ixs ̈ ixs) --test : ∀ {s : Vec ℕ 2} → ℕ --test {s} = {! s × 2!} -- Take and Drop ax+sh<s : ∀ {n} → (ax sh s : Ar ℕ 1 (n ∷ [])) → (s≥sh : s ≥a sh) → (ax <a (s - sh) {≥ = s≥sh}) → (ax + sh) <a s ax+sh<s (imap ax) (imap sh) (imap s) s≥sh ax<s-sh iv = let ax+sh<s-sh+sh = +-monoˡ-< (sh iv) (ax<s-sh iv) s-sh+sh≡s = m∸n+n≡m (s≥sh iv) in a<b⇒b≡c⇒a<c ax+sh<s-sh+sh s-sh+sh≡s {- _↑_ : ∀ {a}{X : Set a}{n s} → (sh : Ar ℕ 1 (n ∷ [])) → (a : Ar X n s) → {pf : s→a s ≥a sh} → Ar X n $ a→s sh _↑_ {s = s} sh (imap f) {pf} with (prod $ a→s sh) N.≟ 0 _↑_ {s = s} sh (imap f) {pf} | yes Πsh≡0 = imap λ iv → magic-fin $ Πs≡0⇒Fin0 _ iv Πsh≡0 --mkempty _ Πsh≡0 _↑_ {s = s} (imap q) (imap f) {pf} | no Πsh≢0 = imap λ iv → {- mtake where mtake : _ mtake iv = -} let ai , ai< = ix→a iv ix<q jv = a<b⇒b≡c⇒a<c (ai< jv) (s→a∘a→s (imap q) jv) ix = a→ix ai (s→a s) λ jv → ≤-trans (ix<q jv) (pf jv) in f (subst-ix (a→s∘s→a s) ix) -} {- -} _↑_ : ∀ {a}{X : Set a}{n s} → (sh : Ar ℕ 1 (n ∷ [])) → (a : Ar X n s) → {pf : s→a s ≥a sh} → Ar X n $ a→s sh _↑_ {s = s} sh (imap f) {pf} = case (prod $ a→s sh) N.≟ 0 of λ where (yes Πsh≡0) → imap λ iv → magic-fin $ Πs≡0⇒Fin0 _ iv Πsh≡0 (no Πsh≢0) → imap λ iv → let ai , ai< = ix→a iv ix<q jv = a<b⇒b≡c⇒a<c (ai< jv) (s→a∘a→s sh jv) ix = a→ix ai (s→a s) λ jv → ≤-trans (ix<q jv) (pf jv) in f (subst-ix (a→s∘s→a s) ix) {- -} _↓_ : ∀ {a}{X : Set a}{n s} → (sh : Ar ℕ 1 (n ∷ [])) → (a : Ar X n s) → {pf : (s→a s) ≥a sh} → Ar X n $ a→s $ (s→a s - sh) {≥ = pf} _↓_ {s = s} sh (imap x) {pf} with let p = prod $ a→s $ (s→a s - sh) {≥ = pf} in p N.≟ 0 _↓_ {s = s} sh (imap f) {pf} | yes Π≡0 = mkempty _ Π≡0 _↓_ {s = s} (imap q) (imap f) {pf} | no Π≢0 = imap mkdrop where mkdrop : _ mkdrop iv = let ai , ai< = ix→a iv ax = ai + (imap q) thmx = ax+sh<s ai (imap q) (s→a s) pf λ jv → a<b⇒b≡c⇒a<c (ai< jv) (s→a∘a→s ((s→a s - (imap q)) {≥ = pf}) jv) ix = a→ix ax (s→a s) thmx in f (subst-ix (a→s∘s→a s) ix) ∸-monoˡ-< : ∀ {m n o} → m < n → o ≤ m → m ∸ o < n ∸ o ∸-monoˡ-< {o = zero} m<n o≤m = m<n ∸-monoˡ-< {suc m} {o = suc o} (s≤s m<n) (s≤s o≤m) = ∸-monoˡ-< m<n o≤m a+b-a≡a : ∀ {n} {s₁ : Vec ℕ n} {s : Ix 1 (n ∷ []) → ℕ} {jv : Ix 1 (n ∷ [])} → V.lookup (V.tabulate (λ i → s (i ∷ []) N.+ V.lookup s₁ i)) (ix-lookup jv zero) ∸ s jv ≡ V.lookup s₁ (ix-lookup jv zero) a+b-a≡a {zero} {[]} {s} {x ∷ []} = magic-fin x a+b-a≡a {suc n} {x ∷ s₁} {s} {zero ∷ []} = m+n∸m≡n (s (zero ∷ [])) x a+b-a≡a {suc n} {x ∷ s₁} {s} {suc j ∷ []} = a+b-a≡a {s₁ = s₁} {s = λ { (j ∷ []) → s (suc j ∷ [])}} {jv = j ∷ []} pre-pad : ∀ {a}{X : Set a}{n}{s₁ : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s₁) → Ar X n (a→s $ sh + ρ a) pre-pad {s₁ = s₁} (imap s) e (imap f) = imap body where body : _ body iv = let ix , ix<s = ix→a iv in case ix ≥a? (imap s) of λ where (yes p) → let fx = (ix - (imap s)) {≥ = p} fv = a→ix fx (s→a s₁) λ jv → a<b⇒b≡c⇒a<c (∸-monoˡ-< (ix<s jv) (p jv)) (a+b-a≡a {s₁ = s₁} {s = s} {jv = jv}) in f (subst-ix (λ i → lookup∘tabulate _ i) fv) (no ¬p) → e b≤a⇒c<b⇒a-b+c<a : ∀ {a b c} → b ≤ a → c < b → a ∸ b N.+ c < a b≤a⇒c<b⇒a-b+c<a {suc a} {suc b} {zero} b≤a c<b rewrite +-identityʳ (a ∸ b) = s≤s (m∸n≤m a b) b≤a⇒c<b⇒a-b+c<a {suc a} {suc b} {suc c} (s≤s b≤a) (s≤s c<b) = let q = b≤a⇒c<b⇒a-b+c<a b≤a c<b in subst₂ _<_ (sym $ +-suc (a ∸ b) c) refl $ +-monoʳ-< 1 q [a+b≥c]⇒b<c⇒a+b-c<a : ∀ {a b c} → a N.+ b N.≥ c → b < c → a N.+ b ∸ c < a [a+b≥c]⇒b<c⇒a+b-c<a {a}{b}{c} a+b≥c b<c = let a+b<a+c = +-monoʳ-< a b<c in subst₂ _<_ refl (m+n∸n≡m _ c) $ ∸-monoˡ-< a+b<a+c a+b≥c {- _-↑⟨_⟩_ : ∀ {a}{X : Set a}{n}{s₁ : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s₁) → Ar X n (▾ sh) _-↑⟨_⟩_ {s₁ = s₁} s e a = imap λ iv → let ix , ix<s = ix→a iv in case ((ρ a) + ix) ≥a? s of λ where (yes p) → let ov = (((ρ a) + ix) - s){p} oi = a→ix ov (ρ a) λ { jv@(i ∷ []) → [a+b≥c]⇒b<c⇒a+b-c<a (p jv) (subst₂ _<_ refl (V.lookup∘tabulate _ i) $ ix<s jv) } in sel a (subst-ix (λ i → lookup∘tabulate _ i) oi) (no _) → e -} _-↑⟨_⟩_ : ∀ {a}{X : Set a}{n}{s₁ : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s₁) → Ar X n (▾ sh) _-↑⟨_⟩_ {s₁ = s₁} s e a = imap body where body : _ body iv with ix→a iv ... | ix , ix<s with ((ρ a) + ix) ≥a? s ... | (yes p) = let ov = (((ρ a) + ix) - s){p} oi = a→ix ov (ρ a) λ { jv@(i ∷ []) → [a+b≥c]⇒b<c⇒a+b-c<a (p jv) (subst₂ _<_ refl (V.lookup∘tabulate _ i) $ ix<s jv) } in sel a (subst-ix (λ i → lookup∘tabulate _ i) oi) ... | _ = e {- _↑⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s) → Ar X n (▾ sh) _↑⟨_⟩_ {s = s} (imap sh) e (imap a) = imap body where body : _ body iv = let ix , ix<s = ix→a iv in case ix <a? (ρ imap a) of λ where (yes p) → let av = a→ix ix (ρ imap a) p in a (subst-ix (λ i → lookup∘tabulate _ i) av) (no ¬p) → e -} _↑⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ n} → (sh : Ar ℕ 1 (n ∷ [])) → X → (a : Ar X n s) → Ar X n (▾ sh) _↑⟨_⟩_ {s = s} (imap sh) e (imap a) = imap body where body : _ body iv with ix→a iv ... | ix , ix<s with ix <a? (ρ imap a) ... | (yes p) = let av = a→ix ix (ρ imap a) p in a (subst-ix (λ i → lookup∘tabulate _ i) av) ... | (no ¬p) = e _̈⟨_⟩_ : ∀ {a}{X Y Z : Set a}{n s} → Ar X n s → (X → Y → Z) → Ar Y n s → Ar Z n s --(imap p) ̈⟨ f ⟩ (imap p₁) = imap λ iv → f (p iv) (p₁ iv) p ̈⟨ f ⟩ p₁ = imap λ iv → f (sel p iv) (sel p₁ iv) module test where s : Vec ℕ 3 s = 1 ∷ 2 ∷ 3 ∷ [] a : Ar ℕ 3 s a = cst 10 b : Ar ℕ 0 [] b = cst 20 test/ : _ test/ = reduce-custom._/_ N._+_ a -- These tests work, which is nice. test₁ : Ar ℕ 3 s test₁ = a + b test₂ : Ar ℕ 3 s test₂ = b + a test₃ : Ar ℕ 3 s test₃ = a + a test₄ : Ar ℕ 0 [] test₄ = b + b -- This looks much better. test-nn : ∀ {n s} → (a b : Ar ℕ n s) → Ar ℕ n s test-nn {n}{s} x y = x + y test-n0 : ∀ {n s} → Ar ℕ n s → Ar ℕ n s test-n0 x = x + b test-0n : ∀ {n s} → Ar ℕ n s → Ar ℕ n s test-0n x = b + x -- This definition should fail, as sx ≠ sy (not necessarily) --test-fail : ∀ {n sx sy} → Ar ℕ n sx → Ar ℕ n sy → Ar ℕ n sy --test-fail x y = x + y
{ "alphanum_fraction": 0.4272331534, "avg_line_length": 35.6708074534, "ext": "agda", "hexsha": "9e138334448fb1f0749445eb6ec47b58ac3be6cb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "APL2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "APL2.agda", "max_line_length": 150, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "APL2.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 13279, "size": 28715 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning uniqueness of identity proofs, with axiom K ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Axiom.UniquenessOfIdentityProofs.WithK where open import Axiom.UniquenessOfIdentityProofs open import Relation.Binary.PropositionalEquality.Core -- Axiom K implies UIP. uip : ∀ {a} {A : Set a} → UIP A uip refl refl = refl
{ "alphanum_fraction": 0.5333333333, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "8529e4f4b28b5bc837846bd1906fdd487bf2efe7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Axiom/UniquenessOfIdentityProofs/WithK.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Axiom/UniquenessOfIdentityProofs/WithK.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Axiom/UniquenessOfIdentityProofs/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 102, "size": 510 }