Search is not available for this dataset
text
string
meta
dict
module ModuleInstInLet where data Nat : Set where zero : Nat suc : Nat -> Nat module List (Elem : Set) where data List : Set where [] : List _::_ : Elem -> List -> List xs : let open List Nat in List xs = List._::_ zero List.[]
{ "alphanum_fraction": 0.5875486381, "avg_line_length": 14.2777777778, "ext": "agda", "hexsha": "762c6f7e998fc3544d4e68552df4109dc04ae88a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ModuleInstInLet.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ModuleInstInLet.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ModuleInstInLet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 81, "size": 257 }
{-# OPTIONS --no-termination-check #-} -- TODO: switch the termination checker back on. open import Coinduction using ( ∞ ; ♭ ; ♯_ ) open import Data.Bool using ( Bool ; true ; false ) open import Data.Maybe using ( Maybe ; just ; nothing ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Data.Product using ( ∃ ; _,_ ) open import Data.ByteString using ( ByteString ; strict ; null ) open import System.IO using ( IO ; Command ; return ; _>>_ ; _>>=_ ; skip ; getBytes ; putBytes ; commit ) open import System.IO.Transducers.Lazy using ( _⇒_ ; _⤇_ ; inp ; out ; done ; ι⁻¹ ) open import System.IO.Transducers.Session using ( I ; Σ ; Bytes ) open import System.IO.Transducers.Strict using ( _⇛_ ) module System.IO.Transducers.IO where infixl 5 _$_ postulate IOError : Set _catch_ : ∀ {A} → (IO A) → (IOError → (IO A)) → (IO A) {-# COMPILED_TYPE IOError IOError #-} {-# COMPILED _catch_ (\ _ -> catch) #-} _$_ : ∀ {A V F T} → (Σ {A} V F ⤇ T) → (a : A) → (♭ F a ⤇ T) inp P $ a = ♭ P a out b P $ a = out b (P $ a) getBytes? : IO (Maybe (ByteString strict)) getBytes? = (getBytes >>= λ x → return (just x)) catch (λ e → return nothing) runI : (I ⤇ Bytes) → Command runI (out true (out x P)) = putBytes x >> commit >> runI P runI (out false P) = skip mutual run? : (Bytes ⤇ Bytes) → (Maybe (ByteString strict)) → Command run? P (just b) = run' (P $ true $ b) run? P nothing = runI (P $ false) run' : (Bytes ⤇ Bytes) → Command run' (out true (out b P)) = putBytes b >> commit >> run' P run' (out false P) = skip run' P = getBytes? >>= run? P run : (Bytes ⇒ Bytes) → Command run P = run' (ι⁻¹ P)
{ "alphanum_fraction": 0.6028794241, "avg_line_length": 34.0204081633, "ext": "agda", "hexsha": "c7821d378f1a71faf459edc174b7a8a921838d12", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/IO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/IO.agda", "max_line_length": 106, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/IO.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 551, "size": 1667 }
{-# OPTIONS --without-K --safe #-} module EqBool where open import Data.Bool record HasEqBool {a} (A : Set a) : Set a where field _==_ : A → A → Bool open HasEqBool ⦃ ... ⦄ public open import Data.List as List using (List; _∷_; []) ==[] : ∀ {a} {A : Set a} → ⦃ _ : HasEqBool A ⦄ → List A → List A → Bool ==[] [] [] = true ==[] [] (x ∷ ys) = false ==[] (x ∷ xs) [] = false ==[] (x ∷ xs) (y ∷ ys) = x == y ∧ ==[] xs ys instance eqList : ∀ {a} {A : Set a} → ⦃ _ : HasEqBool A ⦄ → HasEqBool (List A) _==_ ⦃ eqList ⦄ = ==[] open import Data.Nat using (ℕ) instance eqNat : HasEqBool ℕ _==_ ⦃ eqNat ⦄ = Agda.Builtin.Nat._==_ where import Agda.Builtin.Nat instance eqBool : HasEqBool Bool _==_ ⦃ eqBool ⦄ false false = true _==_ ⦃ eqBool ⦄ false true = false _==_ ⦃ eqBool ⦄ true y = y open import Data.String using (String) instance eqString : HasEqBool String _==_ ⦃ eqString ⦄ = Data.String._==_ where import Data.String
{ "alphanum_fraction": 0.5763598326, "avg_line_length": 23.3170731707, "ext": "agda", "hexsha": "dc9f62b9b6332c460a849770f5ace82345194cf6", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/EqBool.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/EqBool.agda", "max_line_length": 71, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/EqBool.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 377, "size": 956 }
module L0 where open import Common -- Syntax data Name : Set where d n j m : Name data Pred1 : Set where M B : Pred1 data Pred2 : Set where K L : Pred2 data Expr : Set where _⦅_⦆ : Pred1 -> Name -> Expr _⦅_,_⦆ : Pred2 -> Name -> Name -> Expr ¬ : Expr -> Expr [_∧_] : Expr -> Expr -> Expr [_∨_] : Expr -> Expr -> Expr [_⇒_] : Expr -> Expr -> Expr [_⇔_] : Expr -> Expr -> Expr example1 : Expr example1 = [ K ⦅ d , j ⦆ ∧ M ⦅ d ⦆ ] example2 : Expr example2 = ¬ [ M ⦅ d ⦆ ∨ B ⦅ m ⦆ ] example3 : Expr example3 = [ L ⦅ n , j ⦆ ⇒ [ B ⦅ d ⦆ ∨ ¬ (K ⦅ m , m ⦆) ] ] example4 : Expr example4 = [ ¬ (¬ (¬ (B ⦅ n ⦆))) ⇔ ¬ (M ⦅ n ⦆) ] -- Semantics data Person : Set where Richard_Nixon : Person Noam_Chomsky : Person John_Mitchell : Person Muhammad_Ali : Person instance eqPerson : Eq Person -- _==_ ⦃ eqPerson ⦄ x y = isEq x y (refl {!x y!}) _==_ ⦃ eqPerson ⦄ Richard_Nixon Richard_Nixon = true _==_ ⦃ eqPerson ⦄ Noam_Chomsky Noam_Chomsky = true _==_ ⦃ eqPerson ⦄ John_Mitchell John_Mitchell = true _==_ ⦃ eqPerson ⦄ Muhammad_Ali Muhammad_Ali = true _==_ ⦃ eqPerson ⦄ _ _ = false _∈_ : {A : Set} {{_ : Eq A}} -> A -> PSet A -> Bool x ∈ ⦃⦄ = false x ∈ (x₁ :: xs) = (x == x₁) || (x ∈ xs) ⟦_⟧ₙ : Name -> Person ⟦ d ⟧ₙ = Richard_Nixon ⟦ n ⟧ₙ = Noam_Chomsky ⟦ j ⟧ₙ = John_Mitchell ⟦ m ⟧ₙ = Muhammad_Ali ⟦_⟧ₚ₁ : Pred1 -> PSet Person ⟦ x ⟧ₚ₁ = {!!} ⟦_⟧ₚ₂ : Pred2 -> PSet (Pair Person) ⟦ x ⟧ₚ₂ = {!!} ⟦_⟧ₑ : Expr -> Bool {-# TERMINATING #-} ⟦ x ⦅ x₁ ⦆ ⟧ₑ = ⟦ x₁ ⟧ₙ ∈ ⟦ x ⟧ₚ₁ ⟦ x ⦅ x₁ , x₂ ⦆ ⟧ₑ = < ⟦ x₁ ⟧ₙ , ⟦ x₂ ⟧ₙ > ∈ ⟦ x ⟧ₚ₂ ⟦ ¬ x ⟧ₑ = neg ⟦ x ⟧ₑ ⟦ [ x ∧ x₁ ] ⟧ₑ = ⟦ x ⟧ₑ && ⟦ x₁ ⟧ₑ ⟦ [ x ∨ x₁ ] ⟧ₑ = ⟦ x ⟧ₑ || ⟦ x₁ ⟧ₑ ⟦ [ x ⇒ x₁ ] ⟧ₑ = (neg ⟦ x₁ ⟧ₑ) || ⟦ x ⟧ₑ ⟦ [ x ⇔ x₁ ] ⟧ₑ = ⟦ [ x ⇒ x₁ ] ⟧ₑ && ⟦ [ x₁ ⇒ x ] ⟧ₑ
{ "alphanum_fraction": 0.5094124358, "avg_line_length": 23.0657894737, "ext": "agda", "hexsha": "4ba72218cc306d19d228f9e58c768fbafee358c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_forks_repo_licenses": [ "Artistic-2.0" ], "max_forks_repo_name": "daherb/Agda-Montague", "max_forks_repo_path": "L0.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Artistic-2.0" ], "max_issues_repo_name": "daherb/Agda-Montague", "max_issues_repo_path": "L0.agda", "max_line_length": 58, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f8bbff7248dbeb54919e03957daf9b35ec1ac23", "max_stars_repo_licenses": [ "Artistic-2.0" ], "max_stars_repo_name": "daherb/Agda-Montague", "max_stars_repo_path": "L0.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-18T11:56:24.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-18T11:56:24.000Z", "num_tokens": 906, "size": 1753 }
{-# OPTIONS --cubical --safe --postfix-projections #-} open import Prelude open import Relation.Binary module Relation.Binary.Construct.Bounded {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where open TotalOrder totalOrder renaming (refl to ≤-refl) import Data.Unit.UniversePolymorphic as Poly import Data.Empty.UniversePolymorphic as Poly data [∙] : Type e where [⊥] [⊤] : [∙] [_] : E → [∙] _[≤]_ : [∙] → [∙] → Type _ [⊥] [≤] _ = Poly.⊤ _ [≤] [⊤] = Poly.⊤ [⊤] [≤] _ = Poly.⊥ _ [≤] [⊥] = Poly.⊥ [ x ] [≤] [ y ] = x ≤ y _[<]_ : [∙] → [∙] → Type _ [⊤] [<] _ = Poly.⊥ _ [<] [⊥] = Poly.⊥ [⊥] [<] _ = Poly.⊤ _ [<] [⊤] = Poly.⊤ [ x ] [<] [ y ] = x < y b-pord : PartialOrder [∙] _ b-pord .PartialOrder.preorder .Preorder._≤_ = _[≤]_ b-pord .PartialOrder.preorder .Preorder.refl {[⊥]} = Poly.tt b-pord .PartialOrder.preorder .Preorder.refl {[⊤]} = Poly.tt b-pord .PartialOrder.preorder .Preorder.refl {[ x ]} = ≤-refl b-pord .PartialOrder.preorder .Preorder.trans {[⊥]} {y} {z} x≤y y≤z = Poly.tt b-pord .PartialOrder.preorder .Preorder.trans {[⊤]} {[⊤]} {[⊤]} x≤y y≤z = Poly.tt b-pord .PartialOrder.preorder .Preorder.trans {[ x ]} {[⊤]} {[⊤]} x≤y y≤z = Poly.tt b-pord .PartialOrder.preorder .Preorder.trans {[ x ]} {[ y ]} {[⊤]} x≤y y≤z = Poly.tt b-pord .PartialOrder.preorder .Preorder.trans {[ x ]} {[ y ]} {[ z ]} x≤y y≤z = ≤-trans x≤y y≤z b-pord .PartialOrder.antisym {[⊥]} {[⊥]} x≤y y≤x i = [⊥] b-pord .PartialOrder.antisym {[⊤]} {[⊤]} x≤y y≤x i = [⊤] b-pord .PartialOrder.antisym {[ x ]} {[ y ]} x≤y y≤x i = [ antisym x≤y y≤x i ] b-sord : StrictPartialOrder [∙] _ b-sord .StrictPartialOrder.strictPreorder .StrictPreorder._<_ = _[<]_ b-sord .StrictPartialOrder.strictPreorder .StrictPreorder.trans {[⊥]} {[ x ]} {[⊤]} x<y y<z = Poly.tt b-sord .StrictPartialOrder.strictPreorder .StrictPreorder.trans {[⊥]} {[ x ]} {[ x₁ ]} x<y y<z = Poly.tt b-sord .StrictPartialOrder.strictPreorder .StrictPreorder.trans {[ x ]} {[ x₁ ]} {[⊤]} x<y y<z = Poly.tt b-sord .StrictPartialOrder.strictPreorder .StrictPreorder.trans {[ x ]} {[ x₁ ]} {[ x₂ ]} x<y y<z = <-trans x<y y<z b-sord .StrictPartialOrder.strictPreorder .StrictPreorder.irrefl {[ x ]} x<x = irrefl x<x b-sord .StrictPartialOrder.conn {[⊥]} {[⊥]} x≮y y≮x = refl b-sord .StrictPartialOrder.conn {[⊥]} {[⊤]} x≮y y≮x = ⊥-elim (x≮y Poly.tt) b-sord .StrictPartialOrder.conn {[⊥]} {[ x ]} x≮y y≮x = ⊥-elim (x≮y Poly.tt) b-sord .StrictPartialOrder.conn {[⊤]} {[⊥]} x≮y y≮x = ⊥-elim (y≮x Poly.tt) b-sord .StrictPartialOrder.conn {[⊤]} {[⊤]} x≮y y≮x = refl b-sord .StrictPartialOrder.conn {[⊤]} {[ x ]} x≮y y≮x = ⊥-elim (y≮x Poly.tt) b-sord .StrictPartialOrder.conn {[ x ]} {[⊥]} x≮y y≮x = ⊥-elim (y≮x Poly.tt) b-sord .StrictPartialOrder.conn {[ x ]} {[⊤]} x≮y y≮x = ⊥-elim (x≮y Poly.tt) b-sord .StrictPartialOrder.conn {[ x ]} {[ x₁ ]} x≮y y≮x = cong [_] (conn x≮y y≮x) b-ord : TotalOrder [∙] _ _ b-ord .TotalOrder.strictPartialOrder = b-sord b-ord .TotalOrder.partialOrder = b-pord b-ord .TotalOrder._<?_ [⊥] [⊥] = no λ () b-ord .TotalOrder._<?_ [⊥] [⊤] = yes _ b-ord .TotalOrder._<?_ [⊥] [ y ] = yes _ b-ord .TotalOrder._<?_ [⊤] [⊥] = no λ () b-ord .TotalOrder._<?_ [⊤] [⊤] = no λ () b-ord .TotalOrder._<?_ [⊤] [ y ] = no λ () b-ord .TotalOrder._<?_ [ x ] [⊥] = no λ () b-ord .TotalOrder._<?_ [ x ] [⊤] = yes _ b-ord .TotalOrder._<?_ [ x ] [ y ] = x <? y b-ord .TotalOrder.≰⇒> {[⊥]} {y} x≰y = ⊥-elim (x≰y Poly.tt) b-ord .TotalOrder.≰⇒> {[⊤]} {[⊥]} x≰y = Poly.tt b-ord .TotalOrder.≰⇒> {[⊤]} {[⊤]} x≰y = ⊥-elim (x≰y Poly.tt) b-ord .TotalOrder.≰⇒> {[⊤]} {[ x ]} x≰y = Poly.tt b-ord .TotalOrder.≰⇒> {[ x ]} {[⊥]} x≰y = Poly.tt b-ord .TotalOrder.≰⇒> {[ x ]} {[⊤]} x≰y = ⊥-elim (x≰y Poly.tt) b-ord .TotalOrder.≰⇒> {[ x ]} {[ x₁ ]} x≰y = ≰⇒> x≰y b-ord .TotalOrder.≮⇒≥ {x} {[⊥]} x≮y = Poly.tt b-ord .TotalOrder.≮⇒≥ {[⊥]} {[⊤]} x≮y = ⊥-elim (x≮y Poly.tt) b-ord .TotalOrder.≮⇒≥ {[⊤]} {[⊤]} x≮y = Poly.tt b-ord .TotalOrder.≮⇒≥ {[ x ]} {[⊤]} x≮y = ⊥-elim (x≮y Poly.tt) b-ord .TotalOrder.≮⇒≥ {[⊥]} {[ x₁ ]} x≮y = ⊥-elim (x≮y Poly.tt) b-ord .TotalOrder.≮⇒≥ {[⊤]} {[ x₁ ]} x≮y = Poly.tt b-ord .TotalOrder.≮⇒≥ {[ x ]} {[ y ]} x≮y = ≮⇒≥ x≮y
{ "alphanum_fraction": 0.5572463768, "avg_line_length": 47.5862068966, "ext": "agda", "hexsha": "8f7a5ee460d17f6b99c433b2d364ffe6cd0908cc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Construct/Bounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Construct/Bounded.agda", "max_line_length": 115, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Construct/Bounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 2023, "size": 4140 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lexicographic ordering of lists ------------------------------------------------------------------------ -- The definitions of lexicographic ordering used here are suitable if -- the argument order is a strict partial order. {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Lex.Strict where open import Data.Empty using (⊥) open import Data.Unit.Base using (⊤; tt) open import Function using (_∘_; id) open import Data.Product using (_,_) open import Data.Sum using (inj₁; inj₂) open import Data.List.Base using (List; []; _∷_) open import Level using (_⊔_) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Binary open import Relation.Binary.Consequences open import Data.List.Relation.Binary.Pointwise as Pointwise using (Pointwise; []; _∷_; head; tail) open import Data.List.Relation.Binary.Lex.Core as Core public using (base; halt; this; next; ¬≤-this; ¬≤-next) ---------------------------------------------------------------------- -- Strict lexicographic ordering. module _ {a ℓ₁ ℓ₂} {A : Set a} where Lex-< : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) → Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂) Lex-< = Core.Lex ⊥ -- Properties module _ {_≈_ : Rel A ℓ₁} {_≺_ : Rel A ℓ₂} where private _≋_ = Pointwise _≈_ _<_ = Lex-< _≈_ _≺_ ¬[]<[] : ¬ [] < [] ¬[]<[] (base ()) <-irreflexive : Irreflexive _≈_ _≺_ → Irreflexive _≋_ _<_ <-irreflexive irr [] (base ()) <-irreflexive irr (x≈y ∷ xs≋ys) (this x<y) = irr x≈y x<y <-irreflexive irr (x≈y ∷ xs≋ys) (next _ xs⊴ys) = <-irreflexive irr xs≋ys xs⊴ys <-asymmetric : Symmetric _≈_ → _≺_ Respects₂ _≈_ → Asymmetric _≺_ → Asymmetric _<_ <-asymmetric sym resp as = asym where irrefl : Irreflexive _≈_ _≺_ irrefl = asym⟶irr resp sym as asym : Asymmetric _<_ asym (halt) () asym (base bot) _ = bot asym (this x<y) (this y<x) = as x<y y<x asym (this x<y) (next y≈x ys⊴xs) = irrefl (sym y≈x) x<y asym (next x≈y xs⊴ys) (this y<x) = irrefl (sym x≈y) y<x asym (next x≈y xs⊴ys) (next y≈x ys⊴xs) = asym xs⊴ys ys⊴xs <-antisymmetric : Symmetric _≈_ → Irreflexive _≈_ _≺_ → Asymmetric _≺_ → Antisymmetric _≋_ _<_ <-antisymmetric = Core.antisymmetric <-transitive : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → Transitive _≺_ → Transitive _<_ <-transitive = Core.transitive <-compare : Symmetric _≈_ → Trichotomous _≈_ _≺_ → Trichotomous _≋_ _<_ <-compare sym tri [] [] = tri≈ ¬[]<[] [] ¬[]<[] <-compare sym tri [] (y ∷ ys) = tri< halt (λ()) (λ()) <-compare sym tri (x ∷ xs) [] = tri> (λ()) (λ()) halt <-compare sym tri (x ∷ xs) (y ∷ ys) with tri x y ... | tri< x<y x≉y y≮x = tri< (this x<y) (x≉y ∘ head) (¬≤-this (x≉y ∘ sym) y≮x) ... | tri> x≮y x≉y y<x = tri> (¬≤-this x≉y x≮y) (x≉y ∘ head) (this y<x) ... | tri≈ x≮y x≈y y≮x with <-compare sym tri xs ys ... | tri< xs<ys xs≉ys ys≮xs = tri< (next x≈y xs<ys) (xs≉ys ∘ tail) (¬≤-next y≮x ys≮xs) ... | tri≈ xs≮ys xs≈ys ys≮xs = tri≈ (¬≤-next x≮y xs≮ys) (x≈y ∷ xs≈ys) (¬≤-next y≮x ys≮xs) ... | tri> xs≮ys xs≉ys ys<xs = tri> (¬≤-next x≮y xs≮ys) (xs≉ys ∘ tail) (next (sym x≈y) ys<xs) <-decidable : Decidable _≈_ → Decidable _≺_ → Decidable _<_ <-decidable = Core.decidable (no id) <-respects₂ : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → _<_ Respects₂ _≋_ <-respects₂ = Core.respects₂ <-isStrictPartialOrder : IsStrictPartialOrder _≈_ _≺_ → IsStrictPartialOrder _≋_ _<_ <-isStrictPartialOrder spo = record { isEquivalence = Pointwise.isEquivalence isEquivalence ; irrefl = <-irreflexive irrefl ; trans = Core.transitive isEquivalence <-resp-≈ trans ; <-resp-≈ = Core.respects₂ isEquivalence <-resp-≈ } where open IsStrictPartialOrder spo <-isStrictTotalOrder : IsStrictTotalOrder _≈_ _≺_ → IsStrictTotalOrder _≋_ _<_ <-isStrictTotalOrder sto = record { isEquivalence = Pointwise.isEquivalence isEquivalence ; trans = <-transitive isEquivalence <-resp-≈ trans ; compare = <-compare Eq.sym compare } where open IsStrictTotalOrder sto <-strictPartialOrder : ∀ {a ℓ₁ ℓ₂} → StrictPartialOrder a ℓ₁ ℓ₂ → StrictPartialOrder _ _ _ <-strictPartialOrder spo = record { isStrictPartialOrder = <-isStrictPartialOrder isStrictPartialOrder } where open StrictPartialOrder spo <-strictTotalOrder : ∀ {a ℓ₁ ℓ₂} → StrictTotalOrder a ℓ₁ ℓ₂ → StrictTotalOrder _ _ _ <-strictTotalOrder sto = record { isStrictTotalOrder = <-isStrictTotalOrder isStrictTotalOrder } where open StrictTotalOrder sto ---------------------------------------------------------------------- -- Non-strict lexicographic ordering. module _ {a ℓ₁ ℓ₂} {A : Set a} where Lex-≤ : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) → Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂) Lex-≤ = Core.Lex ⊤ -- Properties ≤-reflexive : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) → Pointwise _≈_ ⇒ Lex-≤ _≈_ _≺_ ≤-reflexive _≈_ _≺_ [] = base tt ≤-reflexive _≈_ _≺_ (x≈y ∷ xs≈ys) = next x≈y (≤-reflexive _≈_ _≺_ xs≈ys) module _ {_≈_ : Rel A ℓ₁} {_≺_ : Rel A ℓ₂} where private _≋_ = Pointwise _≈_ _≤_ = Lex-≤ _≈_ _≺_ ≤-antisymmetric : Symmetric _≈_ → Irreflexive _≈_ _≺_ → Asymmetric _≺_ → Antisymmetric _≋_ _≤_ ≤-antisymmetric = Core.antisymmetric ≤-transitive : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → Transitive _≺_ → Transitive _≤_ ≤-transitive = Core.transitive -- Note that trichotomy is an unnecessarily strong precondition for -- the following lemma. ≤-total : Symmetric _≈_ → Trichotomous _≈_ _≺_ → Total _≤_ ≤-total _ _ [] [] = inj₁ (base tt) ≤-total _ _ [] (x ∷ xs) = inj₁ halt ≤-total _ _ (x ∷ xs) [] = inj₂ halt ≤-total sym tri (x ∷ xs) (y ∷ ys) with tri x y ... | tri< x<y _ _ = inj₁ (this x<y) ... | tri> _ _ y<x = inj₂ (this y<x) ... | tri≈ _ x≈y _ with ≤-total sym tri xs ys ... | inj₁ xs≲ys = inj₁ (next x≈y xs≲ys) ... | inj₂ ys≲xs = inj₂ (next (sym x≈y) ys≲xs) ≤-decidable : Decidable _≈_ → Decidable _≺_ → Decidable _≤_ ≤-decidable = Core.decidable (yes tt) ≤-respects₂ : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → _≤_ Respects₂ _≋_ ≤-respects₂ = Core.respects₂ ≤-isPreorder : IsEquivalence _≈_ → Transitive _≺_ → _≺_ Respects₂ _≈_ → IsPreorder _≋_ _≤_ ≤-isPreorder eq tr resp = record { isEquivalence = Pointwise.isEquivalence eq ; reflexive = ≤-reflexive _≈_ _≺_ ; trans = Core.transitive eq resp tr } ≤-isPartialOrder : IsStrictPartialOrder _≈_ _≺_ → IsPartialOrder _≋_ _≤_ ≤-isPartialOrder spo = record { isPreorder = ≤-isPreorder isEquivalence trans <-resp-≈ ; antisym = Core.antisymmetric Eq.sym irrefl asym } where open IsStrictPartialOrder spo ≤-isTotalOrder : IsStrictTotalOrder _≈_ _≺_ → IsTotalOrder _≋_ _≤_ ≤-isTotalOrder sto = record { isPartialOrder = ≤-isPartialOrder isStrictPartialOrder ; total = ≤-total Eq.sym compare } where open IsStrictTotalOrder sto ≤-isDecTotalOrder : IsStrictTotalOrder _≈_ _≺_ → IsDecTotalOrder _≋_ _≤_ ≤-isDecTotalOrder sto = record { isTotalOrder = ≤-isTotalOrder sto ; _≟_ = Pointwise.decidable _≟_ ; _≤?_ = ≤-decidable _≟_ _<?_ } where open IsStrictTotalOrder sto ≤-preorder : ∀ {a ℓ₁ ℓ₂} → Preorder a ℓ₁ ℓ₂ → Preorder _ _ _ ≤-preorder pre = record { isPreorder = ≤-isPreorder isEquivalence trans ∼-resp-≈ } where open Preorder pre ≤-partialOrder : ∀ {a ℓ₁ ℓ₂} → StrictPartialOrder a ℓ₁ ℓ₂ → Poset _ _ _ ≤-partialOrder spo = record { isPartialOrder = ≤-isPartialOrder isStrictPartialOrder } where open StrictPartialOrder spo ≤-decTotalOrder : ∀ {a ℓ₁ ℓ₂} → StrictTotalOrder a ℓ₁ ℓ₂ → DecTotalOrder _ _ _ ≤-decTotalOrder sto = record { isDecTotalOrder = ≤-isDecTotalOrder isStrictTotalOrder } where open StrictTotalOrder sto
{ "alphanum_fraction": 0.5596287703, "avg_line_length": 37.1551724138, "ext": "agda", "hexsha": "0d1ea08467d38b3bd7ccf7c878af590f4688ca00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Strict.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Strict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3060, "size": 8620 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Base where {- The free commutative algebra over a commutative ring, or in other words the ring of polynomials with coefficients in a given ring. Note that this is a constructive definition, which entails that polynomials cannot be represented by lists of coefficients, where the last one is non-zero. For rings with decidable equality, that is still possible. I learned about this (and other) definition(s) from David Jaz Myers. You can watch him talk about these things here: https://www.youtube.com/watch?v=VNp-f_9MnVk This file contains * the definition of the free commutative algebra on a type I over a commutative ring R as a HIT (let us call that R[I]) * a prove that the construction is an commutative R-algebra * definitions of the induced maps appearing in the universal property of R[I], that is: * for any map I → A, where A is a commutative R-algebra, the induced algebra homomorphism R[I] → A ('inducedHom') * for any hom R[I] → A, the 'restricttion to variables' I → A ('evaluateAt') * a proof that the two constructions are inverse to each other ('homRetrievable' and 'mapRetrievable') * a proof, that the corresponding pointwise equivalence of functors is natural ('naturalR', 'naturalL') -} open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommAlgebra.Base private variable ℓ ℓ' : Level module Construction (R : CommRing ℓ) where open CommRingStr (snd R) using (1r; 0r) renaming (_+_ to _+r_; _·_ to _·r_) data R[_] (I : Type ℓ') : Type (ℓ-max ℓ ℓ') where var : I → R[ I ] const : fst R → R[ I ] _+_ : R[ I ] → R[ I ] → R[ I ] -_ : R[ I ] → R[ I ] _·_ : R[ I ] → R[ I ] → R[ I ] -- \cdot +-assoc : (x y z : R[ I ]) → x + (y + z) ≡ (x + y) + z +-rid : (x : R[ I ]) → x + (const 0r) ≡ x +-rinv : (x : R[ I ]) → x + (- x) ≡ (const 0r) +-comm : (x y : R[ I ]) → x + y ≡ y + x ·-assoc : (x y z : R[ I ]) → x · (y · z) ≡ (x · y) · z ·-lid : (x : R[ I ]) → (const 1r) · x ≡ x ·-comm : (x y : R[ I ]) → x · y ≡ y · x ldist : (x y z : R[ I ]) → (x + y) · z ≡ (x · z) + (y · z) +HomConst : (s t : fst R) → const (s +r t) ≡ const s + const t ·HomConst : (s t : fst R) → const (s ·r t) ≡ (const s) · (const t) 0-trunc : (x y : R[ I ]) (p q : x ≡ y) → p ≡ q _⋆_ : {I : Type ℓ'} → fst R → R[ I ] → R[ I ] r ⋆ x = const r · x ⋆-assoc : {I : Type ℓ'} → (s t : fst R) (x : R[ I ]) → (s ·r t) ⋆ x ≡ s ⋆ (t ⋆ x) ⋆-assoc s t x = const (s ·r t) · x ≡⟨ cong (λ u → u · x) (·HomConst _ _) ⟩ (const s · const t) · x ≡⟨ sym (·-assoc _ _ _) ⟩ const s · (const t · x) ≡⟨ refl ⟩ s ⋆ (t ⋆ x) ∎ ⋆-ldist-+ : {I : Type ℓ'} → (s t : fst R) (x : R[ I ]) → (s +r t) ⋆ x ≡ (s ⋆ x) + (t ⋆ x) ⋆-ldist-+ s t x = (s +r t) ⋆ x ≡⟨ cong (λ u → u · x) (+HomConst _ _) ⟩ (const s + const t) · x ≡⟨ ldist _ _ _ ⟩ (s ⋆ x) + (t ⋆ x) ∎ ⋆-rdist-+ : {I : Type ℓ'} → (s : fst R) (x y : R[ I ]) → s ⋆ (x + y) ≡ (s ⋆ x) + (s ⋆ y) ⋆-rdist-+ s x y = const s · (x + y) ≡⟨ ·-comm _ _ ⟩ (x + y) · const s ≡⟨ ldist _ _ _ ⟩ (x · const s) + (y · const s) ≡⟨ cong (λ u → u + (y · const s)) (·-comm _ _) ⟩ (s ⋆ x) + (y · const s) ≡⟨ cong (λ u → (s ⋆ x) + u) (·-comm _ _) ⟩ (s ⋆ x) + (s ⋆ y) ∎ ⋆-assoc-· : {I : Type ℓ'} → (s : fst R) (x y : R[ I ]) → (s ⋆ x) · y ≡ s ⋆ (x · y) ⋆-assoc-· s x y = (s ⋆ x) · y ≡⟨ sym (·-assoc _ _ _) ⟩ s ⋆ (x · y) ∎ 0a : {I : Type ℓ'} → R[ I ] 0a = (const 0r) 1a : {I : Type ℓ'} → R[ I ] 1a = (const 1r) isCommAlgebra : {I : Type ℓ'} → IsCommAlgebra R {A = R[ I ]} 0a 1a _+_ _·_ -_ _⋆_ isCommAlgebra = makeIsCommAlgebra 0-trunc +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ldist ·-comm ⋆-assoc ⋆-rdist-+ ⋆-ldist-+ ·-lid ⋆-assoc-· _[_] : (R : CommRing ℓ) (I : Type ℓ') → CommAlgebra R (ℓ-max ℓ ℓ') (R [ I ]) = R[ I ] , commalgebrastr 0a 1a _+_ _·_ -_ _⋆_ isCommAlgebra where open Construction R
{ "alphanum_fraction": 0.4858180168, "avg_line_length": 41.5754716981, "ext": "agda", "hexsha": "9c88e4d95d585b6fd45ab8c61801c278adea1c96", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra/Base.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/FreeCommAlgebra/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1752, "size": 4407 }
module Issue256 where open import Common.Level const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x = λ _ → x level : ∀ {ℓ} → Set ℓ → Level level {ℓ} _ = ℓ -- termination check should fail for the following definition ℓ : Level ℓ = const lzero (Set ℓ) -- A : Set (lsuc {!ℓ!}) -- A = Set (level A)
{ "alphanum_fraction": 0.5903225806, "avg_line_length": 17.2222222222, "ext": "agda", "hexsha": "c98827e0f2961d52a17a82458704c670ae4105cd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue256.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue256.agda", "max_line_length": 61, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue256.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 115, "size": 310 }
module FunctionName where open import OscarPrelude record FunctionName : Set where constructor ⟨_⟩ field name : Nat open FunctionName public instance EqFunctionName : Eq FunctionName Eq._==_ EqFunctionName _ = decEq₁ (cong name) ∘ (_≟_ on name $ _)
{ "alphanum_fraction": 0.7414448669, "avg_line_length": 16.4375, "ext": "agda", "hexsha": "f8650ee865b21b61f1bd1b82fe796dd58b8747c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/FunctionName.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/FunctionName.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/FunctionName.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 76, "size": 263 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NConnected open import lib.NType2 open import lib.cubical.Square open import lib.types.Lift open import lib.types.Nat open import lib.types.Pointed open import lib.types.Sigma open import lib.types.TLevel open import lib.types.Truncation open import lib.types.Unit {- Sequential colimits -} module lib.types.NatColim where module _ {i} {D : ℕ → Type i} where private data #ℕColim-aux (d : (n : ℕ) → D n → D (S n)) : Type i where #ncin : (n : ℕ) → D n → #ℕColim-aux d data #ℕColim (d : (n : ℕ) → D n → D (S n)) : Type i where #ncolim : #ℕColim-aux d → (Unit → Unit) → #ℕColim d ℕColim : (d : (n : ℕ) → D n → D (S n)) → Type i ℕColim d = #ℕColim d ncin : {d : (n : ℕ) → D n → D (S n)} → (n : ℕ) → D n → ℕColim d ncin n x = #ncolim (#ncin n x) _ postulate -- HIT ncglue : {d : (n : ℕ) → D n → D (S n)} (n : ℕ) → (x : D n) → ncin {d = d} n x == ncin (S n) (d n x) module ℕColimElim (d : (n : ℕ) → D n → D (S n)) {j} {P : ℕColim d → Type j} (ncin* : (n : ℕ) (x : D n) → P (ncin n x)) (ncglue* : (n : ℕ) (x : D n) → ncin* n x == ncin* (S n) (d n x) [ P ↓ ncglue n x ]) where f : Π (ℕColim d) P f = f-aux phantom where f-aux : Phantom ncglue* → Π (ℕColim d) P f-aux phantom (#ncolim (#ncin n x) _) = ncin* n x postulate -- HIT ncglue-β : (n : ℕ) (x : D n) → apd f (ncglue n x) == ncglue* n x open ℕColimElim public using () renaming (f to ℕColim-elim) module ℕColimRec (d : (n : ℕ) → D n → D (S n)) {j} {A : Type j} (ncin* : (n : ℕ) → D n → A) (ncglue* : (n : ℕ) → (x : D n) → ncin* n x == ncin* (S n) (d n x)) where private module M = ℕColimElim d ncin* (λ n x → ↓-cst-in (ncglue* n x)) f : ℕColim d → A f = M.f ncglue-β : (n : ℕ) (x : D n) → ap f (ncglue n x) == ncglue* n x ncglue-β n x = apd=cst-in {f = f} (M.ncglue-β n x) ⊙ℕColim : ∀ {i} {D : ℕ → Ptd i} (d : (n : ℕ) → fst (D n ⊙→ D (S n))) → Ptd i ⊙ℕColim {D = D} d = ⊙[ ℕColim (fst ∘ d) , ncin 0 (snd (D 0)) ] {- Can define a function [nc-raise d : ℕColim d → ℕColim d] so that [inn (S n) ∘ d = nc-raise d ∘ inn n] -} module ℕCRaise {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) = ℕColimRec d {A = ℕColim d} (λ n x → ncin (S n) (d n x)) (λ n x → ncglue (S n) (d n x)) nc-raise : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) → ℕColim d → ℕColim d nc-raise d = ℕCRaise.f d nc-raise-= : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (c : ℕColim d) → c == nc-raise d c nc-raise-= d = ℕColimElim.f d (λ n x → ncglue n x) (λ n x → ↓-='-from-square $ ap-idf (ncglue n x) ∙v⊡ connection2 ⊡v∙ (! (ℕCRaise.ncglue-β d n x))) {- Lift an element of D₀ to any level -} nc-lift : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (n : ℕ) → D O → D n nc-lift d O x = x nc-lift d (S n) x = d n (nc-lift d n x) nc-lift-= : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (n : ℕ) (x : D O) → ncin {d = d} O x == ncin n (nc-lift d n x) nc-lift-= d O x = idp nc-lift-= d (S n) x = nc-lift-= d n x ∙ ncglue n (nc-lift d n x) {- Lift an element of D₀ to the 'same level' as some element of ℕColim d -} module ℕCMatch {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (x : D O) = ℕColimRec d {A = ℕColim d} (λ n _ → ncin n (nc-lift d n x)) (λ n _ → ncglue n (nc-lift d n x)) nc-match = ℕCMatch.f nc-match-=-base : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (x : D O) (c : ℕColim d) → ncin O x == nc-match d x c nc-match-=-base d x = ℕColimElim.f d (λ n _ → nc-lift-= d n x) (λ n y → ↓-cst=app-from-square $ disc-to-square idp ⊡v∙ ! (ℕCMatch.ncglue-β d x n y)) {- If all Dₙ are m-connected, then the colim is m-connected -} ncolim-conn : ∀ {i} {D : ℕ → Type i} (d : (n : ℕ) → D n → D (S n)) (m : ℕ₋₂) → ((n : ℕ) → is-connected m (D n)) → is-connected m (ℕColim d) ncolim-conn {D = D} d ⟨-2⟩ cD = -2-conn (ℕColim d) ncolim-conn {D = D} d (S m) cD = Trunc-rec (prop-has-level-S is-contr-is-prop) (λ x → ([ ncin O x ] , (Trunc-elim (λ _ → =-preserves-level _ Trunc-level) $ λ c → ap [_] (nc-match-=-base d x c) ∙ nc-match-=-point x c))) (fst (cD O)) where nc-match-=-point : (x : D O) (c : ℕColim d) → [_] {n = S m} (nc-match d x c) == [ c ] nc-match-=-point x = ℕColimElim.f d (λ n y → ap (Trunc-fmap (ncin n)) (contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ])) (λ n y → ↓-='-from-square $ (ap-∘ [_] (nc-match d x) (ncglue n y) ∙ ap (ap [_]) (ℕCMatch.ncglue-β d x n y)) ∙v⊡ ! (ap-idf _) ∙h⊡ (square-symmetry $ natural-square (Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ c → ap [_] (nc-raise-= d c))) (ap (Trunc-fmap (ncin n)) (contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ]))) ⊡h∙ (∘-ap (Trunc-fmap (nc-raise d)) (Trunc-fmap (ncin n)) (contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ]) ∙ vert-degen-path (natural-square (λ t → Trunc-fmap-∘ (nc-raise d) (ncin n) t ∙ ! (Trunc-fmap-∘ (ncin (S n)) (d n) t)) (contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ])) ∙ ap-∘ (Trunc-fmap (ncin (S n))) (Trunc-fmap (d n)) (contr-has-all-paths (cD n) [ nc-lift d n x ] [ y ]) ∙ ap (ap (Trunc-fmap (ncin (S n)))) (contr-has-all-paths (=-preserves-level _ (cD (S n))) _ _))) {- Type of finite tuples -} FinTuplesType : ∀ {i} → (ℕ → Ptd i) → ℕ → Ptd i FinTuplesType F O = ⊙Lift ⊙Unit FinTuplesType F (S n) = F O ⊙× FinTuplesType (F ∘ S) n fin-tuples-map : ∀ {i} (F : ℕ → Ptd i) (n : ℕ) → fst (FinTuplesType F n ⊙→ FinTuplesType F (S n)) fin-tuples-map F O = (_ , idp) fin-tuples-map F (S n) = ((λ {(x , r) → (x , fst (fin-tuples-map (F ∘ S) n) r)}) , pair×= idp (snd (fin-tuples-map (F ∘ S) n))) ⊙FinTuples : ∀ {i} → (ℕ → Ptd i) → Ptd i ⊙FinTuples {i} F = ⊙ℕColim (fin-tuples-map F) FinTuples : ∀ {i} → (ℕ → Ptd i) → Type i FinTuples = fst ∘ ⊙FinTuples module FinTuplesCons {i} (F : ℕ → Ptd i) where module Into (x : fst (F O)) = ℕColimRec (fst ∘ fin-tuples-map (F ∘ S)) {A = fst (⊙FinTuples F)} (λ n r → ncin (S n) (x , r)) (λ n r → ncglue (S n) (x , r)) into = uncurry Into.f out-ncin : (n : ℕ) → fst (FinTuplesType F n) → fst (F O ⊙× ⊙FinTuples (F ∘ S)) out-ncin O x = (snd (F O) , ncin O _) out-ncin (S n) (x , r) = (x , ncin n r) out-ncglue : (n : ℕ) (r : fst (FinTuplesType F n)) → out-ncin n r == out-ncin (S n) (fst (fin-tuples-map F n) r) out-ncglue O x = idp out-ncglue (S n) (x , r) = pair= idp (ncglue n r) module Out = ℕColimRec _ out-ncin out-ncglue out = Out.f into-out-ncin : (n : ℕ) (r : fst (FinTuplesType F n)) → into (out-ncin n r) == ncin n r into-out-ncin O x = ! (ncglue O x) into-out-ncin (S n) (x , r) = idp into-out-ncglue : (n : ℕ) (r : fst (FinTuplesType F n)) → into-out-ncin n r == into-out-ncin (S n) (fst (fin-tuples-map F n) r) [ (λ s → into (out s) == s) ↓ ncglue n r ] into-out-ncglue O x = ↓-∘=idf-from-square into out $ ap (ap into) (Out.ncglue-β O x) ∙v⊡ bl-square (ncglue O x) into-out-ncglue (S n) (x , r) = ↓-∘=idf-from-square into out $ (ap (ap into) (Out.ncglue-β (S n) (x , r)) ∙ ∘-ap into (_,_ x) (ncglue n r) ∙ Into.ncglue-β x n r) ∙v⊡ vid-square into-out : (r : fst (⊙FinTuples F)) → into (out r) == r into-out = ℕColimElim.f _ into-out-ncin into-out-ncglue out-into : (t : fst (F O ⊙× ⊙FinTuples (F ∘ S))) → out (into t) == t out-into = uncurry $ λ x → ℕColimElim.f _ (λ n r → idp) (λ n r → ↓-='-from-square $ (ap-∘ out (Into.f x) (ncglue n r) ∙ ap (ap out) (Into.ncglue-β x n r) ∙ Out.ncglue-β (S n) (x , r)) ∙v⊡ vid-square) fin-tuples-cons : ∀ {i} (F : ℕ → Ptd i) → fst (F O) × FinTuples (F ∘ S) ≃ FinTuples F fin-tuples-cons {i} F = equiv into out into-out out-into where open FinTuplesCons F ⊙fin-tuples-cons : ∀ {i} (F : ℕ → Ptd i) → (F O ⊙× ⊙FinTuples (F ∘ S)) ⊙≃ ⊙FinTuples F ⊙fin-tuples-cons F = ⊙≃-in (fin-tuples-cons F) (! (ncglue O _))
{ "alphanum_fraction": 0.5033751205, "avg_line_length": 33.4516129032, "ext": "agda", "hexsha": "85314ac4c5b68aa15cf117beb0d3c6d4d2b06955", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/NatColim.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/NatColim.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/NatColim.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3626, "size": 8296 }
module Bug where data A : Set where a : A h : A -> A h a = a data B : A -> Set where b : (x : A) -> B (h x) data _==_ : {x₁ x₂ : A} -> B x₁ -> B x₂ -> Set where eqb : {x : A} -> b x == b x -- The problem here is that we get the constraint h x = h x, which when x is a -- meta variable we don't solve. This constraint blocks the solution y := b x -- and so we don't see that y should be dotted. Either explicitly dotting y or -- binding x removes the problem. bad : {x : A}{y : B x} -> y == y -> A bad eqb = ? -- bad .{h x} .{b x} (eqb {x}) = ? -- works -- bad .{y = _} eqb = ? -- works -- bad (eqb {_}) = ? -- works -- The above example is solved by checking syntactic equality on blocked terms. -- This doesn't work below: infixl 70 _/_ infixl 50 _▻_ infix 40 _∋_ _⊢ _⇒_ _≛_ _≈∋_ mutual data Ctxt : Set where _▻_ : (Γ : Ctxt) -> Γ ⊢ -> Ctxt data _⊢ : (Γ : Ctxt) -> Set where ✶ : {Γ : Ctxt} -> Γ ⊢ data _⇒_ : Ctxt -> Ctxt -> Set where wk : {Γ : Ctxt} (σ : Γ ⊢) -> Γ ⇒ Γ ▻ σ data _∋_ : (Γ : Ctxt) -> Γ ⊢ -> Set where vz : {Γ : Ctxt} (τ : Γ ⊢) -> Γ ▻ τ ∋ τ / wk τ _/_ : {Γ Δ : Ctxt} -> Γ ⊢ -> Γ ⇒ Δ -> Δ ⊢ ✶ / ρ = ✶ data _≛_ : {Γ¹ Γ² : Ctxt} -> Γ¹ ⊢ -> Γ² ⊢ -> Set where data _≈∋_ : {Γ¹ Γ² : Ctxt} {τ¹ : Γ¹ ⊢} {τ² : Γ² ⊢} -> Γ¹ ∋ τ¹ -> Γ² ∋ τ² -> Set where vzCong : {Γ¹ : Ctxt} {τ¹ : Γ¹ ⊢} {Γ² : Ctxt} {τ² : Γ² ⊢} -> τ¹ ≛ τ² -> vz τ¹ ≈∋ vz τ² f : {Γ¹ : Ctxt} {σ¹ : Γ¹ ⊢} {v¹ : Γ¹ ∋ σ¹} {Γ² : Ctxt} {σ² : Γ² ⊢} {v² : Γ² ∋ σ²} {Γ³ : Ctxt} {σ³ : Γ³ ⊢} {v³ : Γ³ ∋ σ³} -> v¹ ≈∋ v² -> v² ≈∋ v³ -> v¹ ≈∋ v³ f (vzCong eqσ¹²) (vzCong eqσ²³) = ?
{ "alphanum_fraction": 0.4746987952, "avg_line_length": 25.9375, "ext": "agda", "hexsha": "d28738b33d63d088d07243136075de70c83afa90", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/fixed/DotPattern.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/fixed/DotPattern.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/fixed/DotPattern.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 780, "size": 1660 }
module sv20.assign2.Second_old2 where -- ------------------------------------------------------------------------ open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (≡-decSetoid) open import Data.List using (List; []; _∷_; _++_) open import Relation.Binary using (Setoid; DecSetoid) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Relation.Nullary using (¬_; Dec; yes; no) -- ℕsetoid : Setoid lzero lzero -- ℕsetoid = record { -- Carrier = ℕ -- ; _≈_ = _≡_ -- ; isEquivalence = record { -- refl = refl -- ; sym = sym -- ; trans = trans -- } -- } -- open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise -- using (Pointwise) -- -- ℕ×ℕdecsetoid : DecSetoid lzero lzero -- ℕ×ℕdecsetoid = record { -- Carrier = ℕ × ℕ -- ; _≈_ = _≡_ -- ; isDecEquivalence = record -- { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } -- ; _≟_ = ? -- _≟_ -- } -- } import Data.List.Relation.Binary.Subset.Setoid as SubSetoid open SubSetoid (DecSetoid.setoid ≡-decSetoid) using (_⊆_) --import Data.List.Membership.Setoid --module ListSetoid = Data.List.Membership.Setoid (ℕsetoid) --open ListSetoid using (_∈_) open import Data.List.Membership.DecSetoid (≡-decSetoid) using () renaming (_∈?_ to _∈ℕ?_) --open import Data.List.Membership.DecSetoid (ℕ×ℕdecsetoid) using () renaming (_∈?_ to _∈ℕ×ℕ?_) open import Data.List.Relation.Unary.Any using (Any; index; map; here; there) --simple : [] ⊆ (2 ∷ []) --simple () -- --simple₂ : (1 ∷ []) ⊆ (2 ∷ 1 ∷ []) --simple₂ (here px) = there (here px) --Look at: -- https://agda.github.io/agda-stdlib/Data.List.Relation.Binary.Subset.Propositional.Properties.html -- https://agda.github.io/agda-stdlib/Data.List.Relation.Binary.Subset.Setoid.html#692 -- https://agda.github.io/agda-stdlib/Relation.Binary.Structures.html#1522 --simple₃ : 1 ∈ (2 ∷ 1 ∷ []) --simple₃ = ? -- ⟨Set⟩ are basically lists in Athena. Which is not what a set should be but -- the professor doesn't care about this, so I can implement this using lists -- data relation {a b : Set} (A : ⟨Set⟩ a) (B : ⟨Set⟩ b) : ⟨Set⟩ (a × b) where -- --relation = _×_ -- --range-theorem-2 : ∀ {a b} {A : ⟨Set⟩ a} {B : ⟨Set⟩ b} -- (F G : ⟨Set⟩ (a × b)) -- → Range (F intersect G) ⊆ (Range F) intersect (Range G) -- --range-theorem-2 : ∀ {a b} {A : ⟨Set⟩ a} {B : ⟨Set⟩ b} -- (F G : ⟨Set⟩ (a × b)) -- → Range (F ∩ G) ⊆ (Range F) ∩ (Range G) -- --dom-theorem-3 : ∀ {A B : ⟨Set⟩} -- (F G : A × B) -- → (Dom F) diff (Dom G) ⊆ Dom (F diff G) -- --range-theorem-3 : ∀ {a b} {A : ⟨Set⟩ a} {B : ⟨Set⟩ b} -- (F G : A × B) -- → (Range F) diff (Range G) ⊆ Range (F diff G) dom : ∀ {A B : Set} → List (A × B) → List A dom [] = [] dom (⟨ x , _ ⟩ ∷ ls) = x ∷ dom ls range : ∀ {A B : Set} → List (A × B) → List B range [] = [] range (⟨ _ , y ⟩ ∷ ls) = y ∷ range ls _∩ℕ_ : List ℕ → List ℕ → List ℕ --_∩ : List A → List A → List A [] ∩ℕ _ = [] --xs ∩ ys = ? (x ∷ xs) ∩ℕ ys with x ∈ℕ? ys ... | yes _ = x ∷ (xs ∩ℕ ys) ... | no _ = xs ∩ℕ ys --_intersectℕ×ℕ_ : List (ℕ × ℕ) → List (ℕ × ℕ) → List (ℕ × ℕ) ----_intersect_ : List A → List A → List A --[] intersectℕ×ℕ _ = [] ----xs intersect ys = ? --(x ∷ xs) intersectℕ×ℕ ys with x ∈ℕ×ℕ? ys --... | yes _ = x ∷ (xs intersectℕ×ℕ ys) --... | no _ = xs intersectℕ×ℕ ys simple-theorem : (F G : List ℕ) → (F ∩ℕ G) ⊆ F simple-theorem [] _ p = p simple-theorem (x ∷ xs) ys = ? -- NO IDEA HOW TO PROCEDE EVEN WITH THE "SIMPLEST" OF CASES --simple-theorem (x ∷ xs) ys = ? -- λ x xs ys x₁ → x₁ ListSetoid.∈ ((x ∷ xs) intersectℕ ys) → x₁ ListSetoid.∈ x ∷ xs} --simple-theorem [] _ p = p --simple-theorem (x ∷ xs) [] = ? --simple-theorem (x ∷ xs) (y ∷ ys) = ? -- (2 ∷ 3 ∷ 60 ∷ []) intersectℕ (1 ∷ 3 ∷ 2 ∷ []) -- (⟨ 2 , 0 ⟩ ∷ ⟨ 3 , 2 ⟩ ∷ ⟨ 60 , 1 ⟩ ∷ []) intersectℕ (1 ∷ 3 ∷ 2 ∷ []) --module Intersect {a ℓ} (DS : DecSetoid a ℓ) where -- open import Data.List.Membership.DecSetoid (DS) using (_∈?_) -- --open DecSetoid DS using (_≟_) -- -- A = DecSetoid.Carrier DS -- -- --_intersect_ : List ℕ → List ℕ → List ℕ -- _intersect_ : List A → List A → List A -- [] intersect ys = ys -- --xs intersect ys = ? -- (x ∷ xs) intersect ys with x ∈? ys -- ... | yes _ = x ∷ (xs intersect ys) -- ... | no _ = xs intersect ys -- -- --import Data.List.Relation.Binary.Subset.Setoid as SubSetoid -- --module Range-Theorem-2 {a ℓ} (DS₁ : DecSetoid a ℓ) (DS₂ : DecSetoid a ℓ) where -- A = DecSetoid.Carrier DS₁ -- B = DecSetoid.Carrier DS₂ -- -- DSboth : DecSetoid a ℓ -- DSboth = record { -- Carrier = A × B -- ; _≈_ = ? -- ; isDecEquivalence = ? -- } -- -- open Intersect (DSboth) using (_intersect_) -- open Intersect (DS₂) using () renaming (_intersect_ to _intersect₂_) -- -- S₂setoid : Setoid a ℓ -- S₂setoid = record { -- Carrier = B -- ; _≈_ = DecSetoid._≈_ DS₂ -- ; isEquivalence = Setoid.isEquivalence (DecSetoid.setoid DS₂) -- } -- open SubSetoid (S₂setoid) using (_⊆_) -- -- range-theorem-2 : --∀ {A B : Set} -- (F G : List (A × B)) -- --(F G : List (ℕ × ℕ)) -- → range (F intersect G) ⊆ (range F) intersect₂ (range G) -- range-theorem-2 [] _ p = p -- range-theorem-2 (x ∷ xs) [] = ? -- range-theorem-2 (x ∷ xs) (y ∷ ys) = ? --open import Data.AVL.Sets using (⟨Set⟩; empty; insert; delete)
{ "alphanum_fraction": 0.5405832748, "avg_line_length": 33.6804733728, "ext": "agda", "hexsha": "80d7d754e61481f85cf22c7d79e2a05fed7b804c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old2.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old2.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/Second_old2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2054, "size": 5692 }
module Issue307 where postulate A : Set _! : A → A x ! = x ! : A → A ! x = x data D : Set where d : D → D syntax d x = x d f : D → D f (x d) = x g : D → D g (d x) = x
{ "alphanum_fraction": 0.45, "avg_line_length": 7.2, "ext": "agda", "hexsha": "2cd96cf7ffce33b68f993dec75d8be9c5800a8ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue307.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue307.agda", "max_line_length": 21, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue307.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 82, "size": 180 }
-- Andreas, 2015-09-09 Issue 1643 -- {-# OPTIONS -v tc.mod.apply:20 #-} -- {-# OPTIONS -v tc.signature:30 #-} -- {-# OPTIONS -v tc.display:100 #-} -- {-# OPTIONS -v scope:50 -v scope.inverse:100 -v interactive.meta:20 #-} module _ where module M where postulate A : Set module N = M -- This alias used to introduce a display form M.A --> N.A open N postulate a : A test : Set test = a -- ERROR SHOULD BE: A !=< Set of type Set
{ "alphanum_fraction": 0.6176470588, "avg_line_length": 19.2173913043, "ext": "agda", "hexsha": "bead4e2ca66a959c5be170734001edadcd6715fa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1643a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1643a.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1643a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 140, "size": 442 }
module PatternSynonymNoParse where pattern f x = a b
{ "alphanum_fraction": 0.7962962963, "avg_line_length": 13.5, "ext": "agda", "hexsha": "e84edb57467896e8433834c4f5561d744711bd36", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/PatternSynonymNoParse.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/PatternSynonymNoParse.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/PatternSynonymNoParse.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 54 }
------------------------------------------ -- Mathematical induction derived from Z ------------------------------------------ module sv20.assign2.SetTheory.PMI where open import sv20.assign2.SetTheory.Logic open import sv20.assign2.SetTheory.ZAxioms open import sv20.assign2.SetTheory.Algebra open import sv20.assign2.SetTheory.Subset open import sv20.assign2.SetTheory.Pairs -- Axiom of infinity postulate infinity : ∃ (λ I → ∅ ∈ I ∧ ∀ x → x ∈ I → x ∪ singleton x ∈ I) succ : 𝓢 → 𝓢 succ x = x ∪ singleton x -- Inductive property Inductive : 𝓢 → Set Inductive A = ∅ ∈ A ∧ ((x : 𝓢) → x ∈ A → succ x ∈ A) -- An inductive set. I : 𝓢 I = proj₁ infinity formulaN : 𝓢 → Set formulaN x = (A : 𝓢) → Inductive A → x ∈ A fullN : ∃ (λ B → {z : 𝓢} → z ∈ B ⇔ z ∈ I ∧ formulaN z) fullN = sub formulaN I ℕ : 𝓢 ℕ = proj₁ fullN x∈ℕ→x∈InductiveSet : (x : 𝓢) → x ∈ ℕ → (A : 𝓢) → Inductive A → x ∈ A x∈ℕ→x∈InductiveSet x h = ∧-proj₂ (∧-proj₁ (proj₂ _ fullN) h) -- PMI version from Ivorra Castillo (n.d.), Teorema 8.13. PMI : (A : 𝓢) → A ⊆ ℕ → ∅ ∈ A → ((n : 𝓢) → n ∈ A → succ n ∈ A) → A ≡ ℕ PMI A h₁ h₂ h₃ = equalitySubset A ℕ (prf₁ , prf₂) where prf₁ : (z : 𝓢) → z ∈ A → z ∈ ℕ prf₁ z h = h₁ z h inductiveA : Inductive A inductiveA = h₂ , h₃ prf₂ : (z : 𝓢) → z ∈ ℕ → z ∈ A prf₂ z h = x∈ℕ→x∈InductiveSet z h A inductiveA -- References -- -- Suppes, Patrick (1960). Axiomatic Set Theory. -- The University Series in Undergraduate Mathematics. -- D. Van Nostrand Company, inc. -- -- Enderton, Herbert B. (1977). Elements of Set Theory. -- Academic Press Inc. -- -- Ivorra Castillo, Carlos (n.d.). Lógica y Teoría de -- Conjuntos. https://www.uv.es/ivorra/
{ "alphanum_fraction": 0.5935057126, "avg_line_length": 25.984375, "ext": "agda", "hexsha": "7cd3791792738b9f3f4786cff897587705fc8efc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/PMI.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/PMI.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/PMI.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 636, "size": 1663 }
module tmp where open import univ open import cwf open import Base open import Nat open import help open import proofs {- TODO: Prove w = ƛ ((w // wk) ∙ vz) (η) ƛ v // σ = ƛ (v // (σ ∘ wk ,, vz)) w ∙ u // σ = (w // σ) ∙ (u // σ) -} {- lem-tmp : {Γ : Con}{A : Type Γ}(B : Type (Γ , A)) -> Π A B =Ty Π A (B / (wk ∘ wk ,, castElem ? vz) / [ vz ]) lem-tmp B = ? lem-η : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)}(w : Elem Γ (Π A B)) -> w =El castElem (lem-tmp B) (ƛ {A = A} (castElem (symTy (lem-Π/ B wk)) (w // wk {A = A}) ∙ vz) ) lem-η (elem (el < w , pw >)) = ? -}
{ "alphanum_fraction": 0.4624373957, "avg_line_length": 18.71875, "ext": "agda", "hexsha": "293d6a26a10231b985030ce434a7032b4c224c6f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/univ/tmp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/univ/tmp.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/univ/tmp.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 265, "size": 599 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The free monad construction on containers ------------------------------------------------------------------------ module Data.Container.FreeMonad where open import Level open import Function using (_∘_) open import Data.Empty using (⊥-elim) open import Data.Sum using (inj₁; inj₂) open import Data.Product open import Data.Container open import Data.Container.Combinator using (const; _⊎_) open import Data.W open import Category.Monad infixl 1 _⋆C_ infix 1 _⋆_ ------------------------------------------------------------------------ -- The free monad construction over a container and a set is, in -- universal algebra terminology, also known as the term algebra over a -- signature (a container) and a set (of variable symbols). The return -- of the free monad corresponds to variables and the bind operator -- corresponds to (parallel) substitution. -- A useful intuition is to think of containers describing single -- operations and the free monad construction over a container and a set -- describing a tree of operations as nodes and elements of the set as -- leafs. If one starts at the root, then any path will pass finitely -- many nodes (operations described by the container) and eventually end -- up in a leaf (element of the set) -- hence the Kleene star notation -- (the type can be read as a regular expression). _⋆C_ : ∀ {c} → Container c → Set c → Container c C ⋆C X = const X ⊎ C _⋆_ : ∀ {c} → Container c → Set c → Set c C ⋆ X = μ (C ⋆C X) do : ∀ {c} {C : Container c} {X} → ⟦ C ⟧ (C ⋆ X) → C ⋆ X do (s , k) = sup (inj₂ s) k rawMonad : ∀ {c} {C : Container c} → RawMonad (_⋆_ C) rawMonad = record { return = return; _>>=_ = _>>=_ } where return : ∀ {c} {C : Container c} {X} → X → C ⋆ X return x = sup (inj₁ x) (⊥-elim ∘ lower) _>>=_ : ∀ {c} {C : Container c} {X Y} → C ⋆ X → (X → C ⋆ Y) → C ⋆ Y sup (inj₁ x) _ >>= k = k x sup (inj₂ s) f >>= k = do (s , λ p → f p >>= k)
{ "alphanum_fraction": 0.5948616601, "avg_line_length": 36.1428571429, "ext": "agda", "hexsha": "f3e8a25e446c07d1bee459033d54cce8dae8a7da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/FreeMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/FreeMonad.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/FreeMonad.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 590, "size": 2024 }
module Misc.NumeralSystem where -- One Numeral System to rule them all!? open import Data.Maybe using (Maybe; nothing; just) open import Data.Nat open import Data.Product open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import Relation.Nullary using (¬_ ; yes; no) open import Relation.Binary open import Level renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; setoid; cong) open import Data.Nat.Properties using (≤-step) open DecTotalOrder Data.Nat.decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) infixr 5 _∷[_,_]_ -------------------------------------------------------------------------------- -- PN - Positional Notation -- http://en.wikipedia.org/wiki/Positional_notation -- -- base: b -- digits: consecutive ℕ from m to n -- ●────○ data PN (b m n : ℕ) : Set where [_] : m < n → PN b m n _∷[_,_]_ : (x : ℕ) → (m ≤ x) → (x < n) → PN b m n → PN b m n -------------------------------------------------------------------------------- toℕ : ∀ {b m n} → PN b m n → ℕ toℕ [ _ ] = 0 toℕ {b} (x ∷[ x≥m , x<n ] xs) = x + b * toℕ xs private ≤→< : ∀ {m n} → m ≤ n → ¬ (m ≡ n) → m < n ≤→< {n = zero} z≤n 0≠0 = ⊥-elim (0≠0 refl) ≤→< {n = suc n} z≤n neq = s≤s z≤n ≤→< (s≤s m≤n) 1+m≠1+n = s≤s (≤→< m≤n (λ m≡n → 1+m≠1+n (cong suc m≡n))) -------------------------------------------------------------------------------- -- increment -- the image of 'incr' is "continuous" if when -- b = 1 ⇒ m ≥ 1, n ≥ 2m -- b > 1 ⇒ m ≥ 0, n ≥ m + b, n ≥ 1 + mb incr : ∀ {b m n} → m ≤ 1 → 2 ≤ n → PN b m n → PN b m n incr m≤1 2≤n [ m<n ] = 1 ∷[ m≤1 , 2≤n ] [ m<n ] incr {b} {m} {n} m≤1 2≤n (x ∷[ m≤x , x<n ] xs) with suc x ≟ n incr {b} {m} m≤1 2≤n (x ∷[ m≤x , x<n ] xs) | no 1+x≠n = suc x ∷[ ≤-step m≤x , ≤→< x<n 1+x≠n ] xs incr {b} {m} m≤1 2≤n (x ∷[ m≤x , x<n ] xs) | yes refl = m ∷[ ≤-refl , s≤s m≤x ] incr m≤1 2≤n xs base=1-incr : ∀ {m n} → 1 ≤ m → m * 2 ≤ n → PN 1 m n → PN 1 m n base=1-incr {m} {n} 1≤m 2m≤n [ m<n ] = m ∷[ ≤-refl , m<n ] [ m<n ] base=1-incr {m} {n} 1≤m 2m≤n (x ∷[ m≤x , x<n ] xs) with suc x ≟ n base=1-incr {m} {n} 1≤m 2m≤n (x ∷[ m≤x , x<n ] xs) | no 1+x≠n = suc x ∷[ ≤-step m≤x , ≤→< x<n 1+x≠n ] xs base=1-incr {m} 1≤m 2m≤n (x ∷[ m≤x , x<n ] xs) | yes refl = m ∷[ ≤-refl , s≤s m≤x ] base=1-incr 1≤m 2m≤n xs base>1-incr : ∀ {b m n} → 1 < b → 0 ≤ m → m + b ≤ n → m * b + 1 ≤ n → PN b m n → PN b m n base>1-incr {b} {m} {n} 1<b 0≤m m+b≤n mb+1≤n [ m<n ] = m ∷[ ≤-refl , m<n ] [ m<n ] base>1-incr {b} {m} {n} 1<b 0≤m m+b≤n mb+1≤n (x ∷[ m≤x , x<n ] xs) with suc x ≟ n base>1-incr {b} {m} {n} 1<b 0≤m m+b≤n mb+1≤n (x ∷[ m≤x , x<n ] xs) | no 1+x≠n = suc x ∷[ ≤-step m≤x , ≤→< x<n 1+x≠n ] xs base>1-incr {b} {m} 1<b 0≤m m+b≤n mb+1≤n (x ∷[ m≤x , x<n ] xs) | yes refl = m ∷[ ≤-refl , s≤s m≤x ] base>1-incr 1<b 0≤m m+b≤n mb+1≤n xs -- -- A ── incr ⟶ A' -- | | -- toℕ toℕ -- ↓ ↓ -- n ── suc ⟶ suc n -- -- first attempt :p -- unary-toℕ-hom : (a : PN 1 1 2) → suc (toℕ a) ≡ toℕ (base=1-incr (s≤s z≤n) (s≤s (s≤s z≤n)) a) -- unary-toℕ-hom [ m<n ] = refl -- unary-toℕ-hom (zero ∷[ () , x<n ] xs) -- unary-toℕ-hom (suc zero ∷[ m≤x , x<n ] xs) = cong suc {! !} -- unary-toℕ-hom (suc (suc x) ∷[ m≤x , s≤s (s≤s ()) ] xs) -------------------------------------------------------------------------------- -- Instances private -- Unary Unary : Set Unary = PN 1 1 2 u₀ : Unary u₀ = 1 ∷[ s≤s z≤n , s≤s (s≤s z≤n) ] 1 ∷[ s≤s z≤n , s≤s (s≤s z≤n) ] [ s≤s (s≤s z≤n) ] -- Binary Bin : Set Bin = PN 2 0 2 b₀ : Bin b₀ = 1 ∷[ z≤n , s≤s (s≤s z≤n) ] 0 ∷[ z≤n , s≤s z≤n ] [ s≤s z≤n ] -- Zeroless Binary Bin+ : Set Bin+ = PN 2 1 3
{ "alphanum_fraction": 0.4450359329, "avg_line_length": 34.1545454545, "ext": "agda", "hexsha": "34421584bdf2acf969b36cd223f1f92b522b6d7b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/Misc/NumeralSystem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/Misc/NumeralSystem.agda", "max_line_length": 135, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/Misc/NumeralSystem.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 1840, "size": 3757 }
module Issue390 where data main : Set where
{ "alphanum_fraction": 0.7777777778, "avg_line_length": 11.25, "ext": "agda", "hexsha": "5328e6962c7c88fedcc838e8b81101c992f88eae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue390.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue390.agda", "max_line_length": 21, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue390.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 11, "size": 45 }
module Prelude.List.Relations.Permutation where open import Prelude.List.Base open import Prelude.List.Relations.Any data Permutation {a} {A : Set a} : List A → List A → Set a where [] : Permutation [] [] _∷_ : ∀ {x xs ys} (i : x ∈ ys) → Permutation xs (deleteIx ys i) → Permutation (x ∷ xs) ys
{ "alphanum_fraction": 0.6474358974, "avg_line_length": 31.2, "ext": "agda", "hexsha": "082a6d9e6c4d046453e9ec84778b90456733b1ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/List/Relations/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/List/Relations/Permutation.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/List/Relations/Permutation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 97, "size": 312 }
module ASN1.BER where open import Data.Word8 using (Word8; _==_) renaming (primWord8fromNat to to𝕎; primWord8toNat to from𝕎) open import Data.ByteString using (ByteString; Strict; Lazy; null; pack; unpack; fromChunks; toStrict; unsafeHead; unsafeTail; unsafeSplitAt) renaming (length to BSlength) open import Data.Bool using (Bool; true; false) open import Data.Nat using (ℕ; _+_; _∸_; _≤?_) open import Data.List using (List; []; _∷_; length; reverse; concatMap; foldl; map) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_) open import Data.String using (String) open import Relation.Nullary using (Dec; yes; no) open import Function using (case_of_; const) open import ASN1.Util open import ASN1.Untyped -- encode module _ where encodeLen : Len → List Word8 encodeLen n with n ≤? 127 encodeLen n | yes p = to𝕎 n ∷ [] encodeLen n | no ¬p = to𝕎 (128 + length ns) ∷ reverse ns where ns : List Word8 ns = base256 n -- TODO: use WF induction {-# TERMINATING #-} encode : AST → List (ByteString Strict) encode (tlv t (constr vs)) = pack (constructed t ∷ encodeLen l) ∷ evs where evs : List (ByteString Strict) evs = concatMap encode vs l : ℕ l = foldl _+_ 0 (map BSlength evs) encode (tlv t (prim octets)) = pack (t ∷ encodeLen (BSlength octets)) ∷ octets ∷ [] encode′ : AST → ByteString Lazy encode′ ast = fromChunks (encode ast) encode″ : AST → ByteString Strict encode″ ast = toStrict (encode′ ast) -- decode module _ where Stream = ByteString Strict StateT : (Set → Set) → Set → Set → Set StateT M S A = S → M (A × S) E : Set → Set E A = String ⊎ A M = StateT E Stream -- TODO: use std monad _>>=_ : ∀ {A B} → M A → (A → M B) → M B ma >>= f = λ st → case ma st of λ { (inj₁ err) → inj₁ err ; (inj₂ (a , st′)) → f a st′ } _>>_ : ∀ {A B} → M A → M B → M B ma >> mb = ma >>= (const mb) return : ∀ {A : Set} → A → M A return a = λ st → inj₂ (a , st) get : M Stream get st = inj₂ (st , st) error : ∀ {A : Set} → String → M A error e = λ _ → inj₁ e head : M Word8 head st with null st head st | false = inj₂ (unsafeHead st , unsafeTail st) head st | true = inj₁ "stream is empty" take : ℕ → M (ByteString Strict) take n st with n ≤? BSlength st take n st | yes _ = inj₂ (unsafeSplitAt n st) take n st | no _ = inj₁ "stream is small" getTag : M Tag getTag = head getLen : M Len getLen = do n ← head let n′ = from𝕎 n no _ ← return (n′ ≤? 127) where yes _ → return n′ let k = n′ ∸ 128 ns ← take k let n″ = (fromBase256 (unpack ns)) no _ ← return (n″ ≤? 127) where yes _ → error "invalid len" return n″ decode : M AST {-# TERMINATING #-} decodeTLVs : M (List AST) decodeTLVs = do st ← get false ← return (null st) where true → return [] h ← decode t ← decodeTLVs return (h ∷ t) getValue : Tag → Len → M Value getValue tag len = do bs ← take len true ← return (is-constructed tag) where false → return (prim bs) inj₂ (vs , _) ← return (decodeTLVs bs) where inj₁ e → error e return (constr vs) decode = do t ← getTag l ← getLen v ← getValue t l return (tlv t v) -- TODO: check for non-empty stream tail after decode
{ "alphanum_fraction": 0.6092854989, "avg_line_length": 26.1181102362, "ext": "agda", "hexsha": "004a2de9b69bf24a3c6f3f677396da637ad8a7fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "semenov-vladyslav/asn1-agda", "max_forks_repo_path": "src/ASN1/BER.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "semenov-vladyslav/asn1-agda", "max_issues_repo_path": "src/ASN1/BER.agda", "max_line_length": 171, "max_stars_count": null, "max_stars_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "semenov-vladyslav/asn1-agda", "max_stars_repo_path": "src/ASN1/BER.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1129, "size": 3317 }
------------------------------------------------------------------------------ -- Conversion rules for the division ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Division.ConversionRulesATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Program.Division.Division ---------------------------------------------------------------------- -- NB. These equations are not used by the ATPs. They use the official -- equation. private -- The division result when the dividend is minor than the -- the divisor. postulate div-x<y : ∀ {i j} → i < j → div i j ≡ zero {-# ATP prove div-x<y #-} -- The division result when the dividend is greater or equal than the -- the divisor. postulate div-x≮y : ∀ {i j} → i ≮ j → div i j ≡ succ₁ (div (i ∸ j) j) {-# ATP prove div-x≮y #-}
{ "alphanum_fraction": 0.5055970149, "avg_line_length": 34.5806451613, "ext": "agda", "hexsha": "697ea4b2a28842c35c3b7da99ce20bd92593ba7d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Division/ConversionRulesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Division/ConversionRulesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Division/ConversionRulesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 240, "size": 1072 }
{-# OPTIONS --safe #-} module Sol01 where open import Data.Nat open import Data.Nat.Properties open import Relation.Binary.PropositionalEquality fibAux : ℕ -> ℕ -> ℕ -> ℕ fibAux a b 0 = a fibAux a b (suc n) = fibAux b (a + b) n fib2 : ℕ -> ℕ fib2 = fibAux 0 1 fib : ℕ -> ℕ fib 0 = 0 fib 1 = 1 fib (suc (suc n)) = fib (suc n) + fib n lemma : ∀ (a b c d n : ℕ) → fibAux (a + c) (b + d) n ≡ fibAux a b n + fibAux c d n lemma a b c d zero = refl lemma a b c d (suc n) rewrite sym (+-assoc (a + c) b d) | +-assoc a c b | +-comm c b | sym (+-assoc a b c) | +-assoc (a + b) c d = lemma b (a + b) d (c + d) n fibEq : (n : ℕ) -> fib2 n ≡ fib n fibEq zero = refl fibEq (suc zero) = refl fibEq (suc (suc n)) rewrite lemma 0 1 1 1 n | fibEq n | fibEq (suc n) | +-comm (fib n) (fib (suc n)) = refl
{ "alphanum_fraction": 0.5752212389, "avg_line_length": 28.25, "ext": "agda", "hexsha": "c03aea99aa489615b3cebf1085ac970eb5ee11eb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Sol01.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Sol01.agda", "max_line_length": 158, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Sol01.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 330, "size": 791 }
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Reflection.External where open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Sigma open import Agda.Builtin.String postulate execTC : String → List String → String → TC (Σ Nat (λ _ → Σ String (λ _ → String))) {-# BUILTIN AGDATCMEXEC execTC #-}
{ "alphanum_fraction": 0.7095959596, "avg_line_length": 26.4, "ext": "agda", "hexsha": "86cdeb08ed50bbc5e93b1d5ad42739721fdb17be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f7772e5515cd896fc9bf458fa19d18847ac56742", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Saizan/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Reflection/External.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f7772e5515cd896fc9bf458fa19d18847ac56742", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "Saizan/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Reflection/External.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "f7772e5515cd896fc9bf458fa19d18847ac56742", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "Saizan/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Reflection/External.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 109, "size": 396 }
open import Mockingbird.Forest using (Forest) -- Russel’s Forest module Mockingbird.Problems.Chapter15 {b ℓ} (forest : Forest {b} {ℓ}) where open import Data.Empty using (⊥; ⊥-elim) open import Data.Product using (_×_; _,_; ∃-syntax; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_$_; flip; case_of_; _⇔_; Equivalence; mk⇔) open import Function.Equivalence.Reasoning renaming (begin_ to ⇔-begin_; _∎ to _⇔-∎) open import Level using (_⊔_) open import Relation.Binary using (_Respects_) open import Relation.Nullary using (¬_) open import Relation.Unary using (Pred) open Forest forest open import Mockingbird.Forest.Birds forest ⇔-¬ : ∀ {a b} {A : Set a} {B : Set b} → A ⇔ B → (¬ A) ⇔ (¬ B) ⇔-¬ A⇔B = record { f = λ ¬A b → ¬A (A⇔B.g b) ; g = λ ¬B a → ¬B (A⇔B.f a) ; cong₁ = λ p → ≡.cong _ p ; cong₂ = λ p → ≡.cong _ p } where module A⇔B = Equivalence A⇔B open import Relation.Binary.PropositionalEquality as ≡ using (cong) ⇔-↯ : ∀ {a} {A : Set a} → ¬ (A ⇔ (¬ A)) ⇔-↯ {A = A} A⇔¬A = yes but no where _but_ = flip _$_ no : ¬ A no A = Equivalence.f A⇔¬A A A yes : A yes = Equivalence.g A⇔¬A no module _ {s} (Sings : Pred Bird s) (respects : Sings Respects _≈_) where private -- TODO: move to Mockingbird.Forest.Axiom(.ExcludedMiddle)? ExcludedMiddle : Set (b ⊔ s) ExcludedMiddle = ∀ x → Sings x ⊎ ¬ Sings x doubleNegation : ExcludedMiddle → ∀ x → ¬ ¬ Sings x → Sings x doubleNegation LEM x ¬¬x-sings with LEM x ... | inj₁ x-sings = x-sings ... | inj₂ ¬x-sings = ⊥-elim $ ¬¬x-sings ¬x-sings doubleNegation-⇔ : ExcludedMiddle → ∀ x → (¬ ¬ Sings x) ⇔ Sings x doubleNegation-⇔ LEM x = mk⇔ (doubleNegation LEM x) λ x-sings ¬x-sings → ¬x-sings x-sings respects-⇔ : ∀ {x y} → x ≈ y → Sings x ⇔ Sings y respects-⇔ x≈y = mk⇔ (respects x≈y) (respects (sym x≈y)) problem₁ : ExcludedMiddle → ∃[ a ] (∀ x → Sings (a ∙ x) ⇔ Sings (x ∙ x)) → (∀ x → ∃[ x′ ] (∀ y → Sings (x′ ∙ y) ⇔ (¬ Sings (x ∙ y)))) → ⊥ problem₁ LEM (a , is-a) neg = let (a′ , is-a′) = neg a a′a′-sings⇔¬a′a′-sings : Sings (a′ ∙ a′) ⇔ (¬ Sings (a′ ∙ a′)) a′a′-sings⇔¬a′a′-sings = ⇔-begin Sings (a′ ∙ a′) ⇔⟨ is-a′ a′ ⟩ ¬ Sings (a ∙ a′) ⇔⟨ ⇔-¬ $ is-a a′ ⟩ (¬ Sings (a′ ∙ a′)) ⇔-∎ a′a′-sings⇒¬a′a′-sings = Equivalence.f a′a′-sings⇔¬a′a′-sings ¬a′a′-sings⇒a′a′-sings = Equivalence.g a′a′-sings⇔¬a′a′-sings ↯ : ⊥ ↯ = case LEM (a′ ∙ a′) of λ { (inj₁ a′a′-sings) → a′a′-sings⇒¬a′a′-sings a′a′-sings a′a′-sings ; (inj₂ ¬a′a′-sings) → ¬a′a′-sings (¬a′a′-sings⇒a′a′-sings ¬a′a′-sings) } in ↯ -- A constructive proof of Russel’s paradox, not using the LEM. problem₁′ : ∃[ a ] (∀ x → Sings (a ∙ x) ⇔ Sings (x ∙ x)) → (∀ x → ∃[ x′ ] (∀ y → Sings (x′ ∙ y) ⇔ (¬ Sings (x ∙ y)))) → ⊥ problem₁′ (a , is-a) neg = let (a′ , is-a′) = neg a a′a′-sings⇔¬a′a′-sings : Sings (a′ ∙ a′) ⇔ (¬ Sings (a′ ∙ a′)) a′a′-sings⇔¬a′a′-sings = ⇔-begin Sings (a′ ∙ a′) ⇔⟨ is-a′ a′ ⟩ (¬ Sings (a ∙ a′)) ⇔⟨ ⇔-¬ $ is-a a′ ⟩ (¬ Sings (a′ ∙ a′)) ⇔-∎ in ⇔-↯ a′a′-sings⇔¬a′a′-sings problem₂ : ⦃ _ : HasSageBird ⦄ → ExcludedMiddle → ∃[ N ] (∀ x → Sings x ⇔ (¬ Sings (N ∙ x))) → ⊥ problem₂ LEM (N , is-N) = isNotFond isFond where isFond : N IsFondOf (Θ ∙ N) isFond = isSageBird N isNotFond : ¬ N IsFondOf (Θ ∙ N) isNotFond isFond with LEM (Θ ∙ N) ... | inj₁ ΘN-sings = Equivalence.f (is-N (Θ ∙ N)) ΘN-sings (respects (sym isFond) ΘN-sings) ... | inj₂ ¬ΘN-sings = let N[ΘN]-sings : Sings (N ∙ (Θ ∙ N)) N[ΘN]-sings = doubleNegation LEM (N ∙ (Θ ∙ N)) $ Equivalence.f (⇔-¬ (is-N (Θ ∙ N))) ¬ΘN-sings in Equivalence.f (is-N (Θ ∙ N)) (respects isFond N[ΘN]-sings) N[ΘN]-sings -- A constructive proof of problem 2, not using the LEM. problem₂′ : ⦃ _ : HasSageBird ⦄ → ∃[ N ] (∀ x → Sings x ⇔ (¬ Sings (N ∙ x))) → ⊥ problem₂′ (N , is-N) = ⇔-↯ ΘN-sings⇔¬ΘN-sings where isFond : N IsFondOf (Θ ∙ N) isFond = isSageBird N ΘN-sings⇔¬ΘN-sings : Sings (Θ ∙ N) ⇔ (¬ Sings (Θ ∙ N)) ΘN-sings⇔¬ΘN-sings = ⇔-begin Sings (Θ ∙ N) ⇔⟨ is-N (Θ ∙ N) ⟩ ¬ Sings (N ∙ (Θ ∙ N)) ⇔⟨ ⇔-¬ $ respects-⇔ isFond ⟩ (¬ Sings (Θ ∙ N)) ⇔-∎ problem₃ : ⦃ _ : HasSageBird ⦄ → ∃[ A ] (∀ x y → Sings (A ∙ x ∙ y) ⇔ (¬ Sings x × ¬ Sings y)) → ⊥ problem₃ (A , is-A) = ↯ where isFond : ∀ {x} → A ∙ x IsFondOf (Θ ∙ (A ∙ x)) isFond {x} = isSageBird (A ∙ x) ¬Θ[Ax]-sings : ∀ x → ¬ Sings (Θ ∙ (A ∙ x)) ¬Θ[Ax]-sings x Θ[Ax]-sings = let Ax[Θ[Ax]]-sings : Sings (A ∙ x ∙ (Θ ∙ (A ∙ x))) Ax[Θ[Ax]]-sings = respects (sym isFond) Θ[Ax]-sings ¬Θ[Ax]-sings : ¬ Sings (Θ ∙ (A ∙ x)) ¬Θ[Ax]-sings = proj₂ $ Equivalence.f (is-A x (Θ ∙ (A ∙ x))) Ax[Θ[Ax]]-sings in ¬Θ[Ax]-sings Θ[Ax]-sings ¬¬x-sings : ∀ x → ¬ ¬ Sings x ¬¬x-sings x ¬x-sings = let Ax[Θ[Ax]]-sings = Equivalence.g (is-A x (Θ ∙ (A ∙ x))) (¬x-sings , ¬Θ[Ax]-sings x) Θ[Ax]-sings = respects isFond Ax[Θ[Ax]]-sings in ¬Θ[Ax]-sings x Θ[Ax]-sings ↯ : ⊥ ↯ = ¬¬x-sings (Θ ∙ (A ∙ A)) $ ¬Θ[Ax]-sings A
{ "alphanum_fraction": 0.4985196151, "avg_line_length": 34.641025641, "ext": "agda", "hexsha": "d79cb0a04760ca3a772d5a83218f8044af1355ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Problems/Chapter15.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Problems/Chapter15.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Problems/Chapter15.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 2555, "size": 5404 }
-- Disjoint sum type; also used as logical disjunction. {-# OPTIONS --safe #-} module Tools.Sum where data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B -- Idempotency. id : ∀ {A} → A ⊎ A → A id (inj₁ x) = x id (inj₂ x) = x -- Symmetry. sym : ∀ {A B} → A ⊎ B → B ⊎ A sym (inj₁ x) = inj₂ x sym (inj₂ x) = inj₁ x
{ "alphanum_fraction": 0.5384615385, "avg_line_length": 15.3636363636, "ext": "agda", "hexsha": "751972d79d9800c873493fbc9ab836bffc2bf60f", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Tools/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Tools/Sum.agda", "max_line_length": 55, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Tools/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 147, "size": 338 }
mutual record R (A : Set) : Set where inductive field f₁ : A f₂ : R′ A record R′ (A : Set) : Set where inductive field f : R A
{ "alphanum_fraction": 0.4880952381, "avg_line_length": 12, "ext": "agda", "hexsha": "e90495cf68a77bb8b4ef3b6ff6d41c2d54ceaf34", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2916.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2916.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2916.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 168 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.Equiv.Induced-Poly where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Univariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Properties open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open Nth-Poly-structure private variable ℓ : Level ----------------------------------------------------------------------------- -- Lift open IsRingHom makeCommRingHomPoly : (A' B' : CommRing ℓ) → (f : CommRingHom A' B') → (n : ℕ) → CommRingHom (PolyCommRing A' n) (PolyCommRing B' n) fst (makeCommRingHomPoly A' B' (f , fcrhom) n) = Poly-Rec-Set.f A' n (Poly B' n) trunc 0P (λ v a → base v (f a)) _Poly+_ Poly+-assoc Poly+-Rid Poly+-comm (λ v → (cong (base v) (pres0 fcrhom)) ∙ (base-0P v)) λ v a b → (base-Poly+ v (f a) (f b)) ∙ (cong (base v) (sym (pres+ fcrhom a b))) snd (makeCommRingHomPoly A' B' (f , fcrhom) n) = makeIsRingHom (cong (base (replicate zero)) (pres1 fcrhom)) (λ P Q → refl) (Poly-Ind-Prop.f A' n _ (λ P p q i Q j → trunc _ _ (p Q) (q Q) i j) (λ Q → refl) (λ v a → Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v' a' → cong (base (v +n-vec v')) (pres· fcrhom a a')) λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V) λ {U V} ind-U ind-V Q → cong₂ _Poly+_ (ind-U Q) (ind-V Q)) ----------------------------------------------------------------------------- -- Lift preserve equivalence open RingEquivs lift-equiv-poly : (A' B' : CommRing ℓ) → (e : CommRingEquiv A' B') → (n : ℕ) → CommRingEquiv (PolyCommRing A' n) (PolyCommRing B' n) fst (lift-equiv-poly A' B' e n) = isoToEquiv is where et = fst e fcrh = snd e f = fst et g = invEq et gcrh : IsRingHom (snd (CommRing→Ring B')) g (snd (CommRing→Ring A')) gcrh = isRingHomInv (et , fcrh) is : Iso _ _ Iso.fun is = fst (makeCommRingHomPoly A' B' (f , fcrh) n) Iso.inv is = fst (makeCommRingHomPoly B' A' (g , gcrh) n) Iso.rightInv is = (Poly-Ind-Prop.f B' n _ (λ _ → trunc _ _) refl (λ v a → cong (base v) (secEq et a)) λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V) Iso.leftInv is = (Poly-Ind-Prop.f A' n _ (λ _ → trunc _ _) refl (λ v a → cong (base v) (retEq et a)) λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V) snd (lift-equiv-poly A' B' e n) = snd (makeCommRingHomPoly A' B' (fst (fst e) , snd e) n)
{ "alphanum_fraction": 0.5005847953, "avg_line_length": 42.2222222222, "ext": "agda", "hexsha": "95fa9a44c6b75e6f9b4c265b0357d4735c49a580", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Induced-Poly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Induced-Poly.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Induced-Poly.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 981, "size": 3420 }
module FFI where open import Common.Prelude _+'_ : Nat → Nat → Nat zero +' y = y suc x +' y = suc (x +' y) {-# COMPILE GHC _+'_ = (+) :: Integer -> Integer -> Integer #-} -- on-purpose buggy haskell implementation! _+''_ : Nat → Nat → Nat zero +'' y = y suc x +'' y = suc (x +'' y) {-# COMPILE GHC _+''_ = (-) :: Integer -> Integer -> Integer #-} listMap : {A B : Set} → (A → B) → List A → List B listMap f [] = [] listMap f (x ∷ xs) = f x ∷ listMap f xs {-# COMPILE GHC listMap as listMap #-} {-# FOREIGN GHC agdaMap :: (a -> b) -> [a] -> [b] agdaMap = listMap () () #-} open import Common.IO open import Common.Unit _>>_ : {A B : Set} → IO A → IO B → IO B m >> m' = m >>= λ _ → m' main : IO Unit main = do printNat (10 +' 5) printNat (30 +'' 7)
{ "alphanum_fraction": 0.5314136126, "avg_line_length": 20.6486486486, "ext": "agda", "hexsha": "a5ad01121fdd253056e6d637cc58ca42e0d06c77", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/FFI.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/FFI.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/FFI.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 274, "size": 764 }
------------------------------------------------------------------------------ -- Testing an implicit argument for natural numbers induction ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.PA.Inductive.ImplicitArgumentInductionSL where open import Data.Nat renaming ( suc to succ ) open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n succCong refl = refl -- N.B. It is not possible to use an implicit argument in the -- inductive hypothesis. ℕ-ind : (A : ℕ → Set) → A zero → (∀ {n} → A n → A (succ n)) → ∀ n → A n ℕ-ind A A0 h zero = A0 ℕ-ind A A0 h (succ n) = h (ℕ-ind A A0 h n) +-assoc : ∀ m n o → m + n + o ≡ m + (n + o) +-assoc m n o = ℕ-ind A A0 is m where A : ℕ → Set A i = i + n + o ≡ i + (n + o) A0 : A zero A0 = refl is : ∀ {i} → A i → A (succ i) is ih = succCong ih
{ "alphanum_fraction": 0.4568527919, "avg_line_length": 31.1052631579, "ext": "agda", "hexsha": "35c59d14b4932ff3203bf69f203a736d2a110128", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/PA/Inductive/ImplicitArgumentInductionSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/PA/Inductive/ImplicitArgumentInductionSL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/PA/Inductive/ImplicitArgumentInductionSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 316, "size": 1182 }
{-# OPTIONS --no-main #-} postulate easy : (A : Set₁) → A record R₁ : Set₂ where field A : Set₁ record R₂ : Set₂ where field r₁ : R₁ a : R₁.A r₁ r₁ : R₁ r₁ .R₁.A = Set r₂ : R₂ r₂ = λ where .R₂.r₁ → r₁ .R₂.a → easy _
{ "alphanum_fraction": 0.5265306122, "avg_line_length": 11.1363636364, "ext": "agda", "hexsha": "83bcf4bdefd325c552d13a2538a69d82d54b34fc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2918-Inlining.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2918-Inlining.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2918-Inlining.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 245 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Unit open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite data Box : Set → Set₁ where box : (A : Set) → Box A data D (A : Set) : Set₁ where c : A → Box A → D A postulate any : {A : Set} → A one : {A : Set} → D A rew : ∀ A → c any (box A) ≡ one -- Jesper, 2020-06-17: Ideally Agda should reject the above rewrite -- rule, since it causes reduction to be unstable under eta-conversion works : c any (box ⊤) ≡ c tt (box ⊤) works = refl -- However, currently it is accepted, breaking subject reduction: {-# REWRITE rew #-} fails : c any (box ⊤) ≡ c tt (box ⊤) fails = refl
{ "alphanum_fraction": 0.6450151057, "avg_line_length": 23.6428571429, "ext": "agda", "hexsha": "fc7d51ec3adcd2ee9ce82be65f5a220905ca96e5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Bugs/Issue4755b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Bugs/Issue4755b.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Bugs/Issue4755b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 218, "size": 662 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Strict2Group.Explicit.ToXModule where open import Cubical.Foundations.Prelude hiding (comp) open import Cubical.Data.Group.Base open import Cubical.Data.XModule.Base open import Cubical.Data.Group.Action.Base open import Cubical.Data.Sigma open import Cubical.Data.Strict2Group.Explicit.Base open import Cubical.Data.Strict2Group.Explicit.Interface Strict2GroupExp→XModuleExp : {ℓ : Level} (S : Strict2GroupExp ℓ) → (XModuleExp ℓ) Strict2GroupExp→XModuleExp (strict2groupexp C₀ C₁ s t i ∘ si ti s∘ t∘ isMorph∘ assoc∘ lUnit∘ rUnit∘) = record { G = C₀ ; H = ks ; τ = tₖₛ ; α = laction (λ g h → lAction.act lad (id g) h) (λ h → ΣPathP (p1 h , isProp→PathP (λ i → snd (P (p1 h i))) (kerIsNormal {G = C₁} {H = C₀} s (id 1₀) h) (kerIsNormal {G = C₁} {H = C₀} s 1₁ h)) ∙ lAction.identity lad h) (λ g g' h → ΣPathP (p2 g g' h , isProp→PathP (λ i → snd (P (p2 g g' h i))) (kerIsNormal {G = C₁} {H = C₀} s (id (g ∙₀ g')) h) (kerIsNormal {G = C₁} {H = C₀} s (id g ∙₁ id g') h)) ∙ (lAction.coh lad (id g) (id g') h)) λ g h h' → lAction.hom lad (id g) h h' ; equivar = equivar ; peiffer = pf } where S = strict2groupexp C₀ C₁ s t i ∘ si ti s∘ t∘ isMorph∘ assoc∘ lUnit∘ rUnit∘ open S2GInterface S -- the kernel of the source map kers = ker {G = C₁} {H = C₀} s -- the family of propositions ker(x) ≡ 1 P = Subgroup.typeProp kers -- kernel coerced to group ks = Subgroup→Group {G = C₁} kers -- the left adjoint action of hom on its normal subgroup ker(src) lad : lAction C₁ ks lad = lActionAdjSubgroup C₁ kers (kerIsNormal {G = C₁} {H = C₀} s) -- the target map restricted to ker(src) tₖₛ = restrictGroupMorph {G = C₁} {H = C₀} t kers tarₖₛ = fst tₖₛ tar∙ₖₛ = snd tₖₛ -- multiplication, inverse in ker src _∙₁ₖₛ_ = isGroup.comp (Group.groupStruc ks) ks⁻¹ = isGroup.inv (Group.groupStruc ks) -- group laws in ker(src) lUnitₖₛ = isGroup.lUnit (Group.groupStruc ks) rUnitₖₛ = isGroup.rUnit (Group.groupStruc ks) rCancelₖₛ = isGroup.rCancel (Group.groupStruc ks) assocₖₛ = isGroup.assoc (Group.groupStruc ks) 1ₖₛ = isGroup.id (Group.groupStruc ks) -- Composition restricted to ks×₀ks ∘ₖₛ : (g f : Group.type ks) → (src (fst g) ≡ tarₖₛ f) → Group.type ks ∘ₖₛ g f coh = (⊙' (fst g) (fst f) coh) , ((src⊙' (fst g) (fst f) coh) ∙ snd f) -- right and left unit law for restricted ∘ abstract rUnit∘ₖₛ : (h : Group.type ks) → ∘ₖₛ h (id (src (fst h)) , si (src (fst h)) ∙ snd h) (sym (ti (src (fst h)))) ≡ h rUnit∘ₖₛ h = ΣPathP (rUnit∘ (fst h) , isProp→PathP (λ i → snd (P (rUnit∘ (fst h) i))) (src⊙' (fst h) (id (src (fst h))) (sym (ti (src (fst h)))) ∙ si (src (fst h)) ∙ snd h) (snd h)) abstract lUnit∘ₖₛ : (h : Group.type ks) → (⊙ (co (id (tar (fst h))) (fst h) (si (tar (fst h)))) , (src⊙' (id (tar (fst h))) (fst h) (si (tar (fst h)))) ∙ snd h) ≡ h lUnit∘ₖₛ h = ΣPathP ( lUnit∘ (fst h) , isProp→PathP (λ i → snd (P (lUnit∘ (fst h) i))) (src⊙' (id (tar (fst h))) (fst h) (si (tar (fst h))) ∙ snd h) (snd h)) -- two proofs used in equivariant abstract p1 = λ (h : Group.type ks) → cong (λ z → (z ∙₁ fst h) ∙₁ (C₁⁻¹ z)) (morphId {G = C₀} {H = C₁} i) p2 = λ (g g' : Group.type C₀) (h : Group.type ks) → cong (λ z → (z ∙₁ fst h) ∙₁ (C₁⁻¹ z)) (id∙₀ g g') equivar = λ g h → tar∙₁ (id g ∙₁ fst h) (C₁⁻¹ (id g)) ∙∙ cong (_∙₀ (tar (C₁⁻¹ (id g)))) (tar∙₁ (id g) (fst h)) ∙∙ cong (((tar (id g)) ∙₀ (tar (fst h))) ∙₀_) (morphInv {G = C₁} {H = C₀} t (id g)) ∙ cong (λ z → (z ∙₀ (tar (fst h))) ∙₀ (C₀⁻¹ z)) (ti g) -- the peiffer identity, proved according to -- ixh'ix- ≡ eixh'ix- ≡ hh-ixh'ix- ≡ hh-ixh'ixe pf : (h h' : Group.type ks) → lAction.act lad (id (tarₖₛ h)) h' ≡ (h ∙₁ₖₛ h') ∙₁ₖₛ (ks⁻¹ h) pf h h' = ixh'ix- ≡⟨ sym (lUnitₖₛ ixh'ix-) ⟩ 1ₖₛ ∙₁ₖₛ ixh'ix- ≡⟨ cong (_∙₁ₖₛ ixh'ix-) (sym (rCancelₖₛ h)) ⟩ (h ∙₁ₖₛ h-) ∙₁ₖₛ ixh'ix- ≡⟨ assocₖₛ h h- ixh'ix- ⟩ h ∙₁ₖₛ (h- ∙₁ₖₛ ixh'ix-) ≡⟨ cong (h ∙₁ₖₛ_) ( h- ∙₁ₖₛ ixh'ix- ≡⟨ cong (h- ∙₁ₖₛ_) (sym (rUnit∘ₖₛ ixh'ix-)) ⟩ h- ∙₁ₖₛ (∘ₖₛ ixh'ix- (is ixh'ix-) (src≡tarIdSrc (fst ixh'ix-))) ≡⟨ cong (_∙₁ₖₛ (∘ₖₛ ixh'ix- (is ixh'ix-) (src≡tarIdSrc (fst ixh'ix-)))) (sym (lUnit∘ₖₛ h-)) ⟩ (⊙ ix-⊙h-₁ , (src⊙ ix-⊙h-₁) ∙ snd h-) ∙₁ₖₛ ∘ₖₛ ixh'ix- (is ixh'ix-) (src≡tarIdSrc (fst ixh'ix-)) ≡⟨ ΣPathP (q3 , isProp→PathP (λ i → snd (P (q3 i))) (snd ((ix-∘h-₁ , (src⊙ ix-⊙h-₁) ∙ snd h-) ∙₁ₖₛ ∘ₖₛ ixh'ix- (is ixh'ix-) (src≡tarIdSrc (fst ixh'ix-)))) (src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ fst (is ixh'ix-)) q1 ∙ q2)) ⟩ (⊙ (co (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ fst (is ixh'ix-)) q1)) , (src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ fst (is ixh'ix-)) q1) ∙ q2 ≡⟨ ΣPathP (q18 , (isProp→PathP (λ j → snd (P (q18 j))) ((src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ fst (is ixh'ix-)) q1) ∙ q2) ((src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ 1₁) (q5 ∙ q8)) ∙ q9))) ⟩ (⊙ (co (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ 1₁) (q5 ∙ q8))) , (src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ 1₁) (q5 ∙ q8)) ∙ q9 ≡⟨ ΣPathP (q17 , (isProp→PathP (λ j → snd (P (q17 j))) ((src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ 1₁) (q5 ∙ q8)) ∙ q9) ((src⊙' (ix- ∙₁ fst ixh'ix-) (fst h-) q5) ∙ snd h-))) ⟩ (⊙ (co (ix- ∙₁ fst ixh'ix-) (h- .fst) q5)) , (src⊙' (ix- ∙₁ fst ixh'ix-) (h- .fst) q5) ∙ snd h- ≡⟨ ΣPathP (q16 , isProp→PathP (λ j → snd (P (q16 j))) ((src⊙' (ix- ∙₁ fst ixh'ix-) (fst h-) q5) ∙ snd h-) ((src⊙' (ix- ∙₁ fst ixh'ix-) (1₁ ∙₁ h- .fst) (q5 ∙ q6)) ∙ q7)) ⟩ (⊙ (co (ix- ∙₁ fst ixh'ix-) (1₁ ∙₁ h- .fst) (q5 ∙ q6))) , (src⊙' (ix- ∙₁ fst ixh'ix-) (1₁ ∙₁ h- .fst) (q5 ∙ q6)) ∙ q7 ≡⟨ ΣPathP (q15 , (isProp→PathP (λ j → snd (P (q15 j))) ((src⊙' (ix- ∙₁ fst ixh'ix-) (1₁ ∙₁ h- .fst) (q5 ∙ q6)) ∙ q7) ((src⊙' ((fst h') ∙₁ ix-) (1₁ ∙₁ h- .fst) q4) ∙ q7))) ⟩ (⊙ (co ((fst h') ∙₁ ix-) (1₁ ∙₁ h- .fst) q4)) , (src⊙' ((fst h') ∙₁ ix-) (1₁ ∙₁ h- .fst) q4) ∙ q7 ≡⟨ ΣPathP (q14 , isProp→PathP (λ j → snd (P (q14 j))) ((src⊙' ((fst h') ∙₁ ix-) (1₁ ∙₁ h- .fst) q4) ∙ q7) q12) ⟩ (⊙ (co (fst h') 1₁ ((snd h') ∙ (sym tar1₁≡1₀)))) ∙₁ ix-∘h-₁ , q12 ≡⟨ ΣPathP (q11 , isProp→PathP (λ j → snd (P (q11 j))) q12 q13) ⟩ h' .fst ∙₁ ix-∘h-₁ , q13 ≡⟨ ΣPathP (q10 , isProp→PathP (λ j → snd (P (q10 j))) (src∙₁ (fst h') ix-∘h-₁ ∙∙ (λ i₁ → snd h' i₁ ∙₀ src ix-∘h-₁) ∙∙ lUnit₀ (src ix-∘h-₁) ∙∙ src⊙ ix-⊙h-₁ ∙∙ snd h-) (Subgroup.compClosed kers h' h-)) ⟩ h' .fst ∙₁ h- .fst , Subgroup.compClosed kers h' h- ≡⟨ refl ⟩ (h' ∙₁ₖₛ h-) ≡⟨ refl ⟩ refl ) ⟩ h ∙₁ₖₛ (h' ∙₁ₖₛ h-) ≡⟨ sym (assocₖₛ h h' h-) ⟩ (h ∙₁ₖₛ h') ∙₁ₖₛ h- ≡⟨ refl ⟩ refl where -- some abbreviations h- = ks⁻¹ h -- h⁻¹ x = tarₖₛ h -- target of h x- = tarₖₛ h- -- target of h⁻¹ x-≡x⁻¹ : x- ≡ C₀⁻¹ x x-≡x⁻¹ = morphInv {G = ks} {H = C₀} tₖₛ h ix = id x -- i (t h) ix- = id x- -- i (t h⁻¹) ixh'ix- : Group.type ks -- abv. for (ix ∙₁ h') ∙₁ ix- ixh'ix- = lAction.act lad (id (tarₖₛ h)) h' is : Group.type ks → Group.type ks -- abv. for i(s _) in ks is h = id (src (fst h)) , (si (src (fst h))) ∙ snd h ix-⊙h-₁ = co ix- (fst h-) (si x-) ix-∘h-₁ = ⊙ ix-⊙h-₁ -- some identities ix-≡ix⁻¹ : ix- ≡ (C₁⁻¹ ix) ix-≡ix⁻¹ = (cong id x-≡x⁻¹) ∙ (morphInv {G = C₀} {H = C₁} i x) ish≡1ₖₛ : (h : Group.type ks) → (is h) ≡ 1ₖₛ ish≡1ₖₛ h = ΣPathP (cong (fst i) (snd h) ∙ id1₀≡1₁ , isProp→PathP (λ j → snd (P (((λ k → id(snd h k)) ∙ id1₀≡1₁) j))) (si (src (fst h)) ∙ snd h) (Subgroup.subId kers)) -- t h⁻¹ ≡ (t h)⁻¹ th-≡x- = morphInv {G = ks} {H = C₀} tₖₛ h ----------------------------------------- -- here comes particles of the main proof ----------------------------------------- -- coherence condition for the composition -- ∘ (ix- ∙₁ fst ixh'ix-) (h- .fst ∙₁ fst (is ixh'ix-)) q1 = src∙₁ ix- (fst ixh'ix-) ∙∙ cong (_∙₀ src (fst ixh'ix-)) (si x-) ∙∙ cong (x- ∙₀_) (snd ixh'ix-) ∙∙ rUnit₀ x- ∙∙ th-≡x- ∙∙ sym (rUnit₀ (C₀⁻¹ x)) ∙∙ cong ((C₀⁻¹ x) ∙₀_) (sym ((ti ((src (fst ixh'ix-)))) ∙ (snd ixh'ix-))) ∙∙ cong (_∙₀ (tar (fst (is ixh'ix-)))) (sym th-≡x-) ∙∙ sym (tar∙₁ (fst h-) (fst (is ixh'ix-))) -- to show that ∘ q1 is in ks, p2 is proof that f is in ks q2 = src∙₁ (fst h-) (fst (is ixh'ix-)) ∙∙ cong (_∙₀ (src (fst (is ixh'ix-)))) (snd h-) ∙∙ lUnit₀ (src (fst (is ixh'ix-))) ∙∙ cong (λ z → src (fst z)) (ish≡1ₖₛ ixh'ix-) ∙∙ snd 1ₖₛ -- (∘ (si x-)) ∙₁ (fst (∘ₖₛ (src≡tarIdSrc (fst ixh'ix-)))) ≡ ∘ q1 q3 = (ix-∘h-₁ ∙₁ fst (∘ₖₛ ixh'ix- (is ixh'ix-) (src≡tarIdSrc (fst ixh'ix-)))) ≡⟨ refl ⟩ ⊙ ix-⊙h-₁ ∙₁ ⊙ co3 ≡⟨ sym (isMorph⊙ ix-⊙h-₁ co3) ⟩ ⊙ (ix-⊙h-₁ ∙Co co3) ≡⟨ ⊙≡c (ix-⊙h-₁ ∙Co co3) q1 ⟩ ⊙ co1 ≡⟨ refl ⟩ refl where co1 = co (ix- ∙₁ fst ixh'ix-) (fst h- ∙₁ fst (is ixh'ix-)) q1 co3 = co (fst ixh'ix-) (fst (is ixh'ix-)) (src≡tarIdSrc (fst ixh'ix-)) -- coherence condition for ∘ {g = ?} {f = 1₁ ∙₁ h- .fst} (_∙ q6) q6 = sym (lUnit₀ (tar (fst h-))) ∙∙ sym (cong (_∙₀ (tar (fst h-))) (morphId {G = C₁} {H = C₀} t)) ∙∙ sym (tar∙₁ 1₁ (fst h-)) -- coherence condition for ∘ {g = (fst h') ∙₁ ix- } {f = 1₁ ∙₁ h- .fst } q4 q4 = src∙₁ (fst h') ix- ∙∙ (cong (_∙₀ src ix-) (snd h')) ∙∙ lUnit₀ (src ix-) ∙∙ si x- ∙∙ q6 -- coherence condition for ∘ {g = ix- ∙₁ fst ixh'ix- } {f = ?} (q5 ∙ ?) q5 = src∙₁ ix- (fst ixh'ix-) ∙∙ cong ((src ix-) ∙₀_) (snd ixh'ix-) ∙∙ rUnit₀ (src ix-) ∙ si x- -- proof that 1₁ ∙₁ h- .fst : ker s q7 = src∙₁ 1₁ (fst h-) ∙∙ cong (src 1₁ ∙₀_) (snd h-) ∙∙ rUnit₀ (src 1₁) ∙ src1₁≡1₀ -- proof that s x- ≡ t (h- .fst ∙₁ 1₁) q8 = sym (rUnit₀ (tar (fst h-))) ∙∙ (sym (cong ((tar (fst h-)) ∙₀_) tar1₁≡1₀)) ∙∙ (sym (tar∙₁ (fst h-) 1₁)) -- proof that h- .fst ∙₁ 1₁ : ker s q9 = src∙₁ (fst h-) 1₁ ∙∙ cong (_∙₀ (src 1₁)) (snd h-) ∙∙ lUnit₀ (src 1₁) ∙ src1₁≡1₀ -- proof that (h' .fst ∙₁ ix-∘h-₁) ≡ (h' .fst ∙₁ h- .fst) q10 = cong (h' .fst ∙₁_) (lUnit∘ (fst h-)) -- proof that (h'∘1₁)∙₁ ix-∘h-₁ ≡ h' ‌‌‌∙₁ ix-∘h-₁ q11 = cong (_∙₁ ix-∘h-₁) (⊙≡ (co (fst h') 1₁ (snd h' ∙ sym tar1₁≡1₀)) (id (src (fst h')) , sym id1₀≡1₁ ∙ sym (cong id (snd h'))) ∙ rUnit⊙c (fst h') ((snd h' ∙ (λ i₁ → tar1₁≡1₀ (~ i₁))) ∙ cong tar ((λ i₁ → id1₀≡1₁ (~ i₁)) ∙ (λ i₁ → id (snd h' (~ i₁)))))) q12 = src∙₁ ((⊙ (co (fst h') 1₁ ((snd h') ∙ sym tar1₁≡1₀)))) ix-∘h-₁ ∙∙ cong (_∙₀ (src ix-∘h-₁)) ((src⊙' (fst h') 1₁ ((snd h') ∙ (sym tar1₁≡1₀))) ∙ src1₁≡1₀) ∙∙ lUnit₀ (src ix-∘h-₁) ∙ src⊙' ix- (fst h-) (si x-) ∙ snd h- q13 = src∙₁ (fst h') ix-∘h-₁ ∙∙ cong (_∙₀ (src ix-∘h-₁)) (snd h') ∙∙ lUnit₀ (src ix-∘h-₁) ∙∙ src⊙' ix- (fst h-) (si x-) ∙∙ snd h- q14 = ⊙' ((fst h') ∙₁ ix-) (1₁ ∙₁ h- .fst) q4 ≡⟨ ⊙≡c~ q4 (𝒸 (co (fst h') 1₁ (snd h' ∙ (λ i₁ → tar1₁≡1₀ (~ i₁))) ∙Co ix-⊙h-₁)) ⟩ ⊙' ((fst h') ∙₁ ix-) (1₁ ∙₁ (fst h-)) (𝒸 (co (fst h') 1₁ (snd h' ∙ (λ i₁ → tar1₁≡1₀ (~ i₁))) ∙Co ix-⊙h-₁)) ≡⟨ isMorph⊙ (co (fst h') 1₁ (snd h' ∙ (λ i₁ → tar1₁≡1₀ (~ i₁)))) ix-⊙h-₁ ⟩ -- (⊙' (fst h') 1₁ (snd h' ∙ (λ i₁ → tar1₁≡1₀ (~ i₁)))) ∙₁ ix-∘h-₁ ≡⟨ refl ⟩ refl q15 = ≡⊙c* (q5 ∙ q6) (cong (ix- ∙₁_) (assoc₁ ix (fst h') (C₁⁻¹ ix)) ∙∙ sym (assoc₁ ix- ix (fst h' ∙₁ C₁⁻¹ ix)) ∙∙ cong (λ z → (z ∙₁ ix) ∙₁ (fst h' ∙₁ C₁⁻¹ ix)) ix-≡ix⁻¹ ∙∙ cong (_∙₁ (fst h' ∙₁ C₁⁻¹ ix)) (lCancel₁ ix) ∙∙ lUnit₁ (fst h' ∙₁ C₁⁻¹ ix) ∙ cong (fst h' ∙₁_) (sym ix-≡ix⁻¹)) q4 {- use this to see what's going on ⊙ co1 ≡⟨ ≡⊙c* (q5 ∙ q6) ((cong (ix- ∙₁_) (assoc₁ ix (fst h') (C₁⁻¹ ix))) ∙ sym (assoc₁ ix- ix (fst h' ∙₁ C₁⁻¹ ix)) ∙ cong (λ z → (z ∙₁ ix) ∙₁ (fst h' ∙₁ C₁⁻¹ ix)) ix-≡ix⁻¹ ∙ cong (_∙₁ (fst h' ∙₁ C₁⁻¹ ix)) (lCancel₁ ix) ∙ (lUnit₁ (fst h' ∙₁ C₁⁻¹ ix)) ∙ (cong (fst h' ∙₁_) (sym ix-≡ix⁻¹))) q4 ⟩ ⊙ co2 ≡⟨ refl ⟩ refl where co1 = co (ix- ∙₁ (fst ixh'ix-)) (1₁ ∙₁ (fst h-)) (q5 ∙ q6) co2 = co ((fst h') ∙₁ ix-) (1₁ ∙₁ (fst h-)) q4 -} q16 = ⊙≡c* q5 (sym (lUnit₁ (fst h-))) (q5 ∙ q6) {- use this to see what's going on ⊙ co1 ≡⟨ ⊙≡c* q5 (sym (lUnit₁ (fst h-))) (q5 ∙ q6) ⟩ ⊙ co2 ≡⟨ refl ⟩ refl where co1 = co (ix- ∙₁ fst ixh'ix-) (fst h-) q5 co2 = co (ix- ∙₁ fst ixh'ix-) (1₁ ∙₁ fst h-) (q5 ∙ q6) -} q17 = ⊙≡c* (q5 ∙ q8) (rUnit₁ (fst h-)) q5 {- use this to see what's going on ⊙ co1 ≡⟨ ⊙≡c* (q5 ∙ q8) (rUnit₁ (fst h-)) q5 ⟩ ⊙ co2 ≡⟨ refl ⟩ refl where co1 = co (ix- ∙₁ fst ixh'ix-) (fst h- ∙₁ 1₁) (q5 ∙ q8) co2 = co (ix- ∙₁ fst ixh'ix-) (fst h-) q5 -} q18 = ⊙≡c* q1 (cong (fst h- ∙₁_) ((cong id (snd ixh'ix-)) ∙ id1₀≡1₁)) (q5 ∙ q8) {- use this to see what's going on ⊙ co1 ≡⟨ ⊙≡c* q1 (cong (fst h- ∙₁_) ((cong id (snd ixh'ix-)) ∙ id1₀≡1₁)) (q5 ∙ q8) ⟩ ⊙ co2 ≡⟨ refl ⟩ refl where co1 = co (ix- ∙₁ fst ixh'ix-) (fst h- ∙₁ (fst (is ixh'ix-))) q1 co2 = co (ix- ∙₁ fst ixh'ix-) (fst h- ∙₁ 1₁) (q5 ∙ q8) -}
{ "alphanum_fraction": 0.4049800923, "avg_line_length": 47.6596385542, "ext": "agda", "hexsha": "68aa37c254e9924d7195f4ec03cf4127b501cdb4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Data/Strict2Group/Explicit/ToXModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Data/Strict2Group/Explicit/ToXModule.agda", "max_line_length": 242, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Data/Strict2Group/Explicit/ToXModule.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7048, "size": 15823 }
module Test.Numeral where import Lvl open import Relator.Equals{Lvl.𝟎} module One where test0 : (0 mod 1) ≡ 0 test0 = [≡]-intro test1 : (1 mod 1) ≡ 0 test1 = [≡]-intro test2 : (2 mod 1) ≡ 0 test2 = [≡]-intro test3 : (3 mod 1) ≡ 0 test3 = [≡]-intro test4 : (4 mod 1) ≡ 0 test4 = [≡]-intro test5 : (5 mod 1) ≡ 0 test5 = [≡]-intro test6 : (6 mod 1) ≡ 0 test6 = [≡]-intro test7 : (7 mod 1) ≡ 0 test7 = [≡]-intro test8 : (8 mod 1) ≡ 0 test8 = [≡]-intro test9 : (9 mod 1) ≡ 0 test9 = [≡]-intro test10 : (10 mod 1) ≡ 0 test10 = [≡]-intro test11 : (11 mod 1) ≡ 0 test11 = [≡]-intro module Two where test0 : (0 mod 2) ≡ 0 test0 = [≡]-intro test1 : (1 mod 2) ≡ 1 test1 = [≡]-intro test2 : (2 mod 2) ≡ 0 test2 = [≡]-intro test3 : (3 mod 2) ≡ 1 test3 = [≡]-intro test4 : (4 mod 2) ≡ 0 test4 = [≡]-intro test5 : (5 mod 2) ≡ 1 test5 = [≡]-intro test6 : (6 mod 2) ≡ 0 test6 = [≡]-intro test7 : (7 mod 2) ≡ 1 test7 = [≡]-intro test8 : (8 mod 2) ≡ 0 test8 = [≡]-intro test9 : (9 mod 2) ≡ 1 test9 = [≡]-intro test10 : (10 mod 2) ≡ 0 test10 = [≡]-intro test11 : (11 mod 2) ≡ 1 test11 = [≡]-intro module Three where test0 : (0 mod 3) ≡ 0 test0 = [≡]-intro test1 : (1 mod 3) ≡ 1 test1 = [≡]-intro test2 : (2 mod 3) ≡ 2 test2 = [≡]-intro test3 : (3 mod 3) ≡ 0 test3 = [≡]-intro test4 : (4 mod 3) ≡ 1 test4 = [≡]-intro test5 : (5 mod 3) ≡ 2 test5 = [≡]-intro test6 : (6 mod 3) ≡ 0 test6 = [≡]-intro test7 : (7 mod 3) ≡ 1 test7 = [≡]-intro test8 : (8 mod 3) ≡ 2 test8 = [≡]-intro test9 : (9 mod 3) ≡ 0 test9 = [≡]-intro test10 : (10 mod 3) ≡ 1 test10 = [≡]-intro test11 : (11 mod 3) ≡ 2 test11 = [≡]-intro
{ "alphanum_fraction": 0.4581589958, "avg_line_length": 16.6260869565, "ext": "agda", "hexsha": "9adc90b1de6c4cbc7aa350504c770d5912987b96", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Tests/Numeral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Tests/Numeral.agda", "max_line_length": 33, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Tests/Numeral.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 938, "size": 1912 }
{-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality.FasterReasoning {a} {A : Set a} where open import Relation.Binary.PropositionalEquality infix 3 _∎ infixr 2 _≡⟨⟩_ step-≡ step-≡˘ infix 1 begin_ begin_ : ∀{x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y step-≡ : (x {y z} : A) → y ≡ z → x ≡ y → x ≡ z step-≡ _ y≡z x≡y = trans x≡y y≡z syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z _∎ : (x : A) → x ≡ x _∎ _ = refl step-≡˘ : (x {y z} : A) → y ≡ z → y ≡ x → x ≡ z step-≡˘ _ y≡z y≡x = trans (sym y≡x) y≡z syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
{ "alphanum_fraction": 0.5143769968, "avg_line_length": 21.5862068966, "ext": "agda", "hexsha": "ccb01f8602539dbc97c1b862faa83eb6f8c10313", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Relation/Binary/PropositionalEquality/FasterReasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Relation/Binary/PropositionalEquality/FasterReasoning.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Relation/Binary/PropositionalEquality/FasterReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 357, "size": 626 }
module AbstractData where abstract data D : Set where c : D d : D d = c
{ "alphanum_fraction": 0.5813953488, "avg_line_length": 7.8181818182, "ext": "agda", "hexsha": "a47f2ae45e778d8fc5ad58791072b72ccecdfc4c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/AbstractData.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/AbstractData.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/AbstractData.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 86 }
-- --------------------------------------------------------------------- -- Geometric Group Theory (topics from) -- ------------------------------------------ -- actions are usually denoted as `·` (\cdot) -- mimics structure in stdlib -- --------------------------------------------------------------------- module GGT where open import GGT.Definitions public open import GGT.Structures public open import GGT.Bundles public
{ "alphanum_fraction": 0.4252336449, "avg_line_length": 35.6666666667, "ext": "agda", "hexsha": "eaaa611ca72fce5e1d84cac95aeb6ae7b058fdd4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/GGT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/GGT.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/GGT.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 71, "size": 428 }
{-# OPTIONS --show-implicit #-} {-# OPTIONS --sized-types #-} {-# OPTIONS --termination-depth=2 #-} -- {-# OPTIONS -v term:10 #-} module SizedBTree where open import Common.Size data BTree (A : Set) : {size : Size} → Set where leaf : {i : Size} → A → BTree A {↑ i} node : {i : Size} → BTree A {i} → BTree A {i} → BTree A {↑ i} map : ∀ {A B i} → (A → B) → BTree A {i} → BTree B {i} map f (leaf a) = leaf (f a) map f (node l r) = node (map f l) (map f r) -- deep matching deep : ∀ {i A} → BTree A {i} → A deep (leaf a) = a deep (node (leaf _) r) = deep r deep (node (node l r) _) = deep (node l r) -- nesting deep2 : ∀ {i A} → BTree A {i} → BTree A {i} deep2 (leaf a) = leaf a deep2 (node (leaf _) r) = r deep2 (node (node l r) t) with deep2 (deep2 (node l r)) ... | leaf a = leaf a ... | node l2 r2 = deep2 (node l2 r2) -- increasing the termination count does the job!
{ "alphanum_fraction": 0.5634920635, "avg_line_length": 25.2, "ext": "agda", "hexsha": "9e7953bcac34cc1e3b58531b5f93b70e2ec3989a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/SizedBTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/SizedBTree.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/SizedBTree.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 328, "size": 882 }
{- Lemmas and operations involving rewriting and heterogeneous equality. -} module TemporalOps.Common.Rewriting where open import Relation.Binary.HeterogeneousEquality as ≅ open import Relation.Binary.PropositionalEquality as ≡ -- | Rewriting and heterogeneous equality -- Substitution with identity predicate – explicit rewriting rew : ∀{ℓ}{x y : Set ℓ} -> x ≡ y -> x -> y rew refl x = x -- Rewriting preserves heterogeneous equality rew-to-≅ : ∀{ℓ}{A B : Set ℓ}{v : A} -> (p : A ≡ B) -> v ≅ rew p v rew-to-≅ {A = A} {.A} {v} refl = ≅.refl -- Heterogenous equality with differently typed arguments -- can be converted to homogeneous equality via rewriting of the types ≅-to-rew-≡ : ∀ {P Q : Set} {x : P} {y : Q} -> (p : x ≅ y) -> (e : P ≡ Q) -> rew e x ≡ y ≅-to-rew-≡ ≅.refl refl = refl -- Rewriting by p is cancelled out by rewriting by (sym p) rew-cancel : ∀ {P Q : Set} -> (v : P) -> (p : P ≡ Q) -> rew (≡.sym p) (rew p v) ≡ v rew-cancel v refl = refl -- | Equality of equality proofs and functions -- Two propositional equality proofs are propositionally (heterogeneously) equal -- if given two heterogeneously equal values, rewriting each with -- the respective proofs gives propositionally (heterogeneously) equal terms. -- Propositional equality of equality proofs Proof-≅ : ∀{p1 p2 q1 q2 : Set} -> p1 ≡ q1 -> p2 ≡ q2 -> Set Proof-≅ {p1}{p2} pf1 pf2 = (v : p1) (v′ : p2) -> v ≅ v′ -> rew pf1 v ≅ rew pf2 v′ -- Propositional equality of equality proofs Proof-≡ : ∀{p1 p2 q : Set} -> p1 ≡ q -> p2 ≡ q -> Set Proof-≡ {p1}{p2} pf1 pf2 = (v : p1) (v′ : p2) -> v ≅ v′ -> rew pf1 v ≡ rew pf2 v′ -- Propositional equality of functions Fun-≅ : ∀{a1 a2 b1 b2 : Set} -> (a1 -> b1) -> (a2 -> b2) -> Set Fun-≅ {a1}{a2} f1 f2 = (v : a1) (v′ : a2) -> v ≅ v′ -> f1 v ≅ f2 v′ -- | Other lemmas -- Heterogeneous congruence of three arguments ≅-cong₃ : ∀ {a b c d} {A : Set a} {B : A → Set b} {C : ∀ (x : A) → B x → Set c} {D : ∀ (x : A) -> (y : B x) -> C x y -> Set d} {x y z w u v} -> (f : (x : A) (y : B x) (z : C x y) → D x y z) -> x ≅ y -> z ≅ w -> u ≅ v -> f x z u ≅ f y w v ≅-cong₃ f ≅.refl ≅.refl ≅.refl = ≅.refl
{ "alphanum_fraction": 0.5699505173, "avg_line_length": 36.4426229508, "ext": "agda", "hexsha": "bdcfca9b006b6d7a4c7d0ed042edf5be34412263", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/TemporalOps/Common/Rewriting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/TemporalOps/Common/Rewriting.agda", "max_line_length": 80, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/TemporalOps/Common/Rewriting.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 837, "size": 2223 }
module Issue546 where data I : Set where i : I data ⊤ : Set where tt : ⊤ abstract P : I → Set P i = ⊤ Q : P i → Set Q _ = ⊤ q : Q tt q = tt -- Q tt should be rejected. -- This bug was introduced in Agda 2.3.0.
{ "alphanum_fraction": 0.5625, "avg_line_length": 10.6666666667, "ext": "agda", "hexsha": "2a37dfc02b3a65ae2d83bb1cf2e55bf4b3bf7fda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue546.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue546.agda", "max_line_length": 41, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue546.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 89, "size": 224 }
open import Prelude hiding (id; Bool) module Implicits.Resolution.Deterministic.Incomplete where open import Implicits.Syntax open import Implicits.WellTyped open import Implicits.Substitutions open import Data.Product open import Data.List hiding ([_]) open import Data.List.Any open Membership-≡ open import Extensions.ListFirst Bool : Type 0 Bool = simpl $ tc 0 Int : Type 0 Int = simpl $ tc 1 -- We'll proof incompleteness with a simple example that we'll be able to resolve -- using the ambigous resolution rules, but not with the deterministic rules. -- This proofs that the ambiguous rules are stronger, such that together with Oliveira's -- proof that determinstic resolution is sound w.r.t. ambiguous resolution, we have the -- result that deterministic resolution is incomplete (or ambiguous resolution is strictly stronger) Δ : ICtx 0 Δ = (Int ⇒ Bool) ∷ Bool List.∷ List.[] open import Implicits.Resolution.Deterministic.Resolution as D open import Implicits.Resolution.Ambiguous.Resolution as A open import Extensions.ListFirst private -- proof that Bool is not derivable under the deterministic resolution rules deterministic-cant : ¬ (Δ D.⊢ᵣ Bool) deterministic-cant (r-simp fst fst↓bool) with FirstLemmas.first-unique (here (m-iabs m-simp) (Bool List.∷ List.[])) fst deterministic-cant (r-simp fst (i-iabs (r-simp r _) b)) | refl = ¬r◁Int (, r) where ¬r◁Int : ¬ (∃ λ r → Δ ⟨ tc 1 ⟩= r) ¬r◁Int (._ , here (m-iabs ()) ._) ¬r◁Int (._ , there _ _ (here () .List.[])) ¬r◁Int ( _ , there _ _ (there _ _ ())) -- proof that Bool is derivable under the "Ambiguous" resolution rules ambiguous-can : Δ A.⊢ᵣ Bool ambiguous-can = r-ivar (there (here refl)) incomplete : ∃ λ ν → ∃₂ λ (Δ : ICtx ν) r → (Δ A.⊢ᵣ r) × (¬ Δ D.⊢ᵣ r) incomplete = , (Δ , (Bool , (ambiguous-can , deterministic-cant)))
{ "alphanum_fraction": 0.7041036717, "avg_line_length": 35.6153846154, "ext": "agda", "hexsha": "3adb7bfdfd1a2b7c019f1d4c40a109269291389e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Deterministic/Incomplete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Deterministic/Incomplete.agda", "max_line_length": 100, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Deterministic/Incomplete.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 563, "size": 1852 }
module Issue676 where data Bool : Set where true false : Bool data ⊥ : Set where data Silly A : Set where [_] : A → Silly A fail : ⊥ → Silly A -- This shouldn't be projection-like since the second clause won't reduce. unsillify : ∀ {A} → Silly A → A unsillify [ x ] = x unsillify (fail ()) data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x -- Triggers an __IMPOSSIBLE__ if unsillify is projection like. bad : (x : ⊥) → unsillify (fail x) ≡ true bad x = refl
{ "alphanum_fraction": 0.6325678497, "avg_line_length": 19.9583333333, "ext": "agda", "hexsha": "0391b6a15c96ffba4646463b46b2509fb1d4e05a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue676.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue676.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue676.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 171, "size": 479 }
module Coirc.Format where open import Data.Empty open import Data.Unit open import Data.Bool open import Data.Nat open import Data.Char open import Data.String open import Data.List open import Data.Sum open import Data.Product open import Coirc infixr 3 _∣_ infixr 1 _>>_ _>>-_ _>>=_ within? : Char → ℕ → ℕ → Bool within? c start end = toBool lower ∧ toBool higher where target = toNat c lower = suc target ∸ start higher = suc end ∸ target toBool : ℕ → Bool toBool zero = false toBool (suc _) = true data DarRange (start end : ℕ) : Bool → Set where dar : (c : Char) → DarRange start end (within? c start end) data Dar : ℕ → Set where dar : (c : Char) → Dar (toNat c) data U : Set where CHAR : U DAR : ℕ → U DAR-RANGE : ℕ → ℕ → U `*! `*sp `*crlf : U El : U → Set El CHAR = Char El (DAR n) = Dar n El (DAR-RANGE n m) = DarRange n m true El `*! = String El `*sp = String El `*crlf = String mutual data Format : Set where Fail End : Format As : Event → Format Base : U → Format Skip Or And : Format → Format → Format Use : (f : Format) → (⟦ f ⟧ → Format) → Format ⟦_⟧ : Format → Set ⟦ Fail ⟧ = ⊥ ⟦ End ⟧ = ⊤ ⟦ As _ ⟧ = Event ⟦ Base u ⟧ = El u ⟦ Skip _ f ⟧ = ⟦ f ⟧ ⟦ Or f₁ f₂ ⟧ = ⟦ f₁ ⟧ ⊎ ⟦ f₂ ⟧ ⟦ And f₁ f₂ ⟧ = ⟦ f₁ ⟧ × ⟦ f₂ ⟧ ⟦ Use f₁ f₂ ⟧ = Σ ⟦ f₁ ⟧ λ x → ⟦ f₂ x ⟧ _>>_ : Format → Format → Format f₁ >> f₂ = Skip f₁ f₂ _>>-_ : Format → Format → Format x >>- y = And x y _>>=_ : (f : Format) → (⟦ f ⟧ → Format) → Format x >>= y = Use x y _∣_ : Format → Format → Format x ∣ y = Or x y char : Char → Format char c = Base (DAR (toNat c)) str : String → Format str s = chars (toList s) where chars : List Char → Format chars [] = End chars (x ∷ xs) = char x >>- chars xs DIGIT = Base (DAR-RANGE (toNat '0') (toNat '9')) cl = char ':' sp = char ' ' cr = char '\r' lf = char '\n' crlf = cr >>- lf prefix = cl >> Base `*sp Notice : Format Notice = prefix >> sp >> str "NOTICE" >> sp >> char '*' >> sp >> Base `*crlf >> -- text crlf >> As notice NumericReply : Format NumericReply = prefix >> sp >> (DIGIT >>- DIGIT >>- DIGIT) >> sp >> Base `*sp >> -- target sp >> Base `*crlf >> -- text crlf >> As numeric Mode : Format Mode = prefix >> sp >> str "MODE" >> sp >> Base `*sp >> -- nickname sp >> Base `*crlf >> -- modes crlf >> As mode Ping : Format Ping = str "PING" >> sp >> Base `*crlf >> -- server crlf >> As ping Privmsg : Format Privmsg = cl >> Base `*! >>= λ source → Base `*sp >> sp >> str "PRIVMSG" >> sp >> Base `*sp >> -- target sp >> cl >> Base `*crlf >>= λ text → crlf >> As (privmsg source text)
{ "alphanum_fraction": 0.5476455321, "avg_line_length": 17.8609271523, "ext": "agda", "hexsha": "dd67342d355bdefb225043ec91d8371147875ee3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:29.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:53:29.000Z", "max_forks_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/coirc", "max_forks_repo_path": "src/Coirc/Format.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/coirc", "max_issues_repo_path": "src/Coirc/Format.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/coirc", "max_stars_repo_path": "src/Coirc/Format.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1058, "size": 2697 }
------------------------------------------------------------------------ -- Termination predicates ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --sized-types #-} open import Prelude hiding (↑; module W) module Delay-monad.Alternative.Termination {a} {A : Type a} where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Equality.Decision-procedures equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc import Nat equality-with-J as N open import Delay-monad hiding (Delay) open import Delay-monad.Alternative open import Delay-monad.Alternative.Equivalence open import Delay-monad.Alternative.Properties import Delay-monad.Bisimilarity as B import Delay-monad.Termination as T infix 4 _⇓_ _∥⇓∥_ _⇓′_ -- The three logically equivalent types x ⇓ y, x ∥⇓∥ y and x ⇓′ y -- all mean that the computation x terminates with the value y: -- -- ∙ _⇓_ is the "obvious" definition. The definition does not -- involve truncation, and can be used directly. -- -- ∙ _∥⇓∥_ is a truncated variant of _⇓_. It may be more convenient -- to construct values of type x ∥⇓∥ y than of type x ⇓ y, because -- the former type is a proposition. -- -- ∙ _⇓′_ is an auxiliary definition, used to prove that the other -- two are logically equivalent. This definition does not use -- truncation, but is still propositional (if A is a set). _⇓_ : Delay A → A → Type a (f , _) ⇓ y = ∃ λ n → f n ↓ y _∥⇓∥_ : Delay A → A → Type a x ∥⇓∥ y = ∥ x ⇓ y ∥ _⇓′_ : Delay A → A → Type _ (f , _) ⇓′ y = ∃ λ m → f m ↓ y × (∀ n → ¬ f n ↑ → m N.≤ n) -- _⇓′_ is a family of propositions (if A is a set). ⇓′-propositional : Is-set A → ∀ x {y : A} → Is-proposition (x ⇓′ y) ⇓′-propositional A-set x@(f , _) {y} p q = $⟨ number-unique p q ⟩ proj₁ p ≡ proj₁ q ↝⟨ ignore-propositional-component (×-closure 1 (Maybe-closure 0 A-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ≤-propositional)) ⟩□ p ≡ q □ where number-unique : (p q : x ⇓′ y) → proj₁ p ≡ proj₁ q number-unique (pm , f-pm↓y , pm≤) (qm , f-qm↓y , qm≤) = N.≤-antisymmetric (pm≤ qm λ f-qm↑ → ⊎.inj₁≢inj₂ (nothing ≡⟨ sym f-qm↑ ⟩ f qm ≡⟨ f-qm↓y ⟩∎ just y ∎)) (qm≤ pm λ f-pm↑ → ⊎.inj₁≢inj₂ (nothing ≡⟨ sym f-pm↑ ⟩ f pm ≡⟨ f-pm↓y ⟩∎ just y ∎)) -- All values that a computation can terminate with are equal. termination-value-unique : ∀ (x : Delay A) {y z} → x ⇓ y → x ⇓ z → y ≡ z termination-value-unique (f , inc) {y} {z} (m , fm↓y) (n , fn↓z) with N.total m n ... | inj₁ m≤n = ⊎.cancel-inj₂ (just y ≡⟨ sym (↓-upwards-closed inc m≤n fm↓y) ⟩ f n ≡⟨ fn↓z ⟩∎ just z ∎) ... | inj₂ n≤m = ⊎.cancel-inj₂ (just y ≡⟨ sym fm↓y ⟩ f m ≡⟨ ↓-upwards-closed inc n≤m fn↓z ⟩∎ just z ∎) -- _⇓_ is contained in _⇓′_. ⇓→⇓′ : ∀ x {y : A} → x ⇓ y → x ⇓′ y ⇓→⇓′ x@(f , inc) = uncurry find-min where find-min : ∀ {y} m → f m ↓ y → x ⇓′ y find-min zero f0↓y = zero , f0↓y , λ _ _ → N.zero≤ _ find-min {y} (suc m) f-1+m↓y with inspect (f m) ... | nothing , fm↑ = suc m , f-1+m↓y , 1+m-is-min where 1+m-is-min : ∀ n → ¬ f n ↑ → m N.< n 1+m-is-min n ¬fn↑ with inspect (f n) ... | nothing , fn↑ = ⊥-elim (¬fn↑ fn↑) ... | just _ , fn↓ = ↑<↓ inc fm↑ fn↓ ... | just y′ , fm↓y′ = $⟨ find-min m fm↓y′ ⟩ x ⇓′ y′ ↝⟨ Σ-map id (Σ-map with-other-value id) ⟩□ x ⇓′ y □ where with-other-value : ∀ {n} → f n ↓ y′ → f n ↓ y with-other-value = subst (_ ↓_) (termination-value-unique x (_ , fm↓y′) (_ , f-1+m↓y)) -- _⇓_ and _∥⇓∥_ are pointwise logically equivalent (if A is a set). ⇓⇔∥⇓∥ : Is-set A → ∀ x {y : A} → x ⇓ y ⇔ x ∥⇓∥ y ⇓⇔∥⇓∥ A-set x {y} = record { to = ∣_∣ ; from = x ∥⇓∥ y ↝⟨ Trunc.rec (⇓′-propositional A-set x) (⇓→⇓′ x) ⟩ x ⇓′ y ↝⟨ Σ-map id proj₁ ⟩□ x ⇓ y □ } -- The notion of termination defined here is logically equivalent -- (via Delay⇔Delay) to the one defined for the coinductive delay -- monad. ⇓⇔⇓ : ∀ x {y} → x ⇓ y ⇔ _⇔_.to Delay⇔Delay x T.⇓ y ⇓⇔⇓ x = record { to = λ { (n , fn↓y) → to n _ (proj₂ x) refl fn↓y } ; from = from _ refl } where to : ∀ {f : ℕ → Maybe A} n x {y} → Increasing f → x ≡ f 0 → f n ↓ y → Delay⇔Delay.To.to′ f x T.⇓ y to (suc n) nothing f-inc f0↑ fn↓y = B.laterʳ (to n _ (f-inc ∘ suc) refl fn↓y) to {f} zero nothing {y} _ f0↑ fn↓y = ⊥-elim $ ⊎.inj₁≢inj₂ ( nothing ≡⟨ f0↑ ⟩ f 0 ≡⟨ fn↓y ⟩∎ just y ∎) to {f} n (just x) {y} f-inc f0↓x fn↓y = subst (_ T.⇓_) (⊎.cancel-inj₂ {A = ⊤} (just x ≡⟨ sym $ ↓-upwards-closed₀ f-inc (sym f0↓x) n ⟩ f n ≡⟨ fn↓y ⟩∎ just y ∎)) B.now from : ∀ {f : ℕ → Maybe A} {y} x → x ≡ f 0 → Delay⇔Delay.To.to′ f x T.⇓ y → ∃ λ n → f n ↓ y from (just x) f0↓x B.now = 0 , sym f0↓x from nothing _ (B.laterʳ to⇓y) = Σ-map suc id (from _ refl to⇓y) ⇓⇔⇓′ : ∀ {x} {y : A} → x T.⇓ y ⇔ _⇔_.from Delay⇔Delay x ⇓ y ⇓⇔⇓′ = record { to = to ; from = uncurry (from _) } where to : ∀ {x y} → x T.⇓ y → Delay⇔Delay.from x ⇓ y to B.now = 0 , refl to (B.laterʳ p) = Σ-map suc id (to p) from : ∀ x {y} n → proj₁ (Delay⇔Delay.from x) n ↓ y → x T.⇓ y from (now x) n refl = B.now from (later x) zero () from (later x) (suc n) xn↓y = B.laterʳ (from (force x) n xn↓y) -- If there is a function f : ℕ → Maybe A satisfying a property -- similar to termination-value-unique, then this function can be -- turned into a value in Delay A which is, in some sense, weakly -- bisimilar to the function. complete-function : (f : ℕ → Maybe A) → (∀ {y z} → (∃ λ m → f m ↓ y) → (∃ λ n → f n ↓ z) → y ≡ z) → ∃ λ x → ∀ {y} → x ⇓ y ⇔ ∃ λ n → f n ↓ y complete-function f unique = (first-value , inc) , λ {y} → record { to = (∃ λ n → first-value n ↓ y) ↝⟨ uncurry first-value↓→f↓ ⟩□ (∃ λ n → f n ↓ y) □ ; from = (∃ λ n → f n ↓ y) ↝⟨ Σ-map id (f↓→first-value↓ _) ⟩□ (∃ λ n → first-value n ↓ y) □ } where -- If f m terminates for some m smaller than or equal to n, then -- first-value n returns the value of f for the largest such m, and -- otherwise nothing. first-value : ℕ → Maybe A first-value zero = f zero first-value (suc n) = Prelude.[ (λ _ → first-value n) , just ] (f (suc n)) -- Some simple lemmas. step : ∀ {n} → f (suc n) ↑ → first-value (suc n) ≡ first-value n step {n} = cong Prelude.[ (λ _ → first-value n) , just ] done : ∀ {n y} → f (suc n) ↓ y → first-value (suc n) ↓ y done {n} = cong Prelude.[ (λ _ → first-value n) , just ] -- If f n terminates with a certain value, then first-value n -- terminates with the same value. f↓→first-value↓ : ∀ {y} n → f n ↓ y → first-value n ↓ y f↓→first-value↓ zero f↓ = f↓ f↓→first-value↓ (suc n) f↑ = done f↑ -- If first-value m terminates with a certain value, then there is -- some n for which f n terminates with the same value. first-value↓→f↓ : ∀ {y} m → first-value m ↓ y → ∃ λ n → f n ↓ y first-value↓→f↓ zero first-value↓ = zero , first-value↓ first-value↓→f↓ {y} (suc n) first-value↓ with inspect (f (suc n)) ... | just y′ , f↓ = suc n , (f (suc n) ≡⟨ f↓ ⟩ just y′ ≡⟨ sym (done f↓) ⟩ first-value (suc n) ≡⟨ first-value↓ ⟩∎ just y ∎) ... | nothing , f↑ = first-value↓→f↓ n (first-value n ≡⟨ sym (step f↑) ⟩ first-value (suc n) ≡⟨ first-value↓ ⟩∎ just y ∎) -- The function first-value is an increasing sequence. inc : Increasing first-value inc n with inspect (first-value n) | inspect (f (suc n)) inc n | _ | nothing , f↑ = inj₁ (first-value n ≡⟨ sym (step f↑) ⟩∎ first-value (suc n) ∎) inc n | nothing , first-value↑ | just y , f↓ = inj₂ (first-value↑ , λ first-value↑ → ⊎.inj₁≢inj₂ ( nothing ≡⟨ sym first-value↑ ⟩ first-value (suc n) ≡⟨ done f↓ ⟩∎ just y ∎)) inc n | just y , first-value↓ | just y′ , f↓ = inj₁ (first-value n ≡⟨ first-value↓ ⟩ just y ≡⟨ cong just $ unique (_ , proj₂ (first-value↓→f↓ n first-value↓)) (_ , f↓) ⟩ just y′ ≡⟨ sym (done f↓) ⟩∎ first-value (suc n) ∎)
{ "alphanum_fraction": 0.4911326297, "avg_line_length": 36.6175298805, "ext": "agda", "hexsha": "b9ec9d299ae6a29843af5fd2805c1628f417b2a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Delay-monad/Alternative/Termination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Delay-monad/Alternative/Termination.agda", "max_line_length": 108, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Delay-monad/Alternative/Termination.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 3486, "size": 9191 }
module AnonymousDecl where _ : Set₁ _ = Set _ : Set → Set _ = λ x → x _∋_ : ∀ {ℓ} (A : Set ℓ) → A → A A ∋ a = a _ = Set₁ _ = (Set → Set) ∋ λ x → x data Bool : Set where t f : Bool not : Bool → Bool not t = f not f = t data _≡_ {A : Set} (a : A) : A → Set where refl : a ≡ a _ : ∀ x → not (not x) ≡ x _ = λ { t → refl; f → refl }
{ "alphanum_fraction": 0.4837758112, "avg_line_length": 13.0384615385, "ext": "agda", "hexsha": "d5001dca11123c0cd56d6f678639fe0cd1645c4a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/AnonymousDecl.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/AnonymousDecl.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/AnonymousDecl.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 156, "size": 339 }
open import FRP.JS.Time.Core using ( Time ) module FRP.JS.RSet where infixr 1 _⇒_ RSet : Set₁ RSet = Time → Set _⇒_ : RSet → RSet → RSet (A ⇒ B) t = A t → B t ⟨_⟩ : Set → RSet ⟨ A ⟩ t = A ⟦_⟧ : RSet → Set ⟦ A ⟧ = ∀ {t} → A t
{ "alphanum_fraction": 0.5367965368, "avg_line_length": 12.8333333333, "ext": "agda", "hexsha": "7f9ee091397d26ae4c0aaa6381b9f48a5c42039f", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "src/agda/FRP/JS/RSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "src/agda/FRP/JS/RSet.agda", "max_line_length": 43, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "src/agda/FRP/JS/RSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 115, "size": 231 }
-- Andreas, 2016-12-30 test case for #2369 -- {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v scope.import:20 #-} module Issue2369 where import Issue2369.OpenIP -- Error is: -- Module cannot be imported since it has open interaction points -- (consider adding {-# OPTIONS --allow-unsolved-metas #-} to this -- module) -- when scope checking the declaration -- import Issue2369.OpenIP -- Error could be better, or this could just work.
{ "alphanum_fraction": 0.7013274336, "avg_line_length": 23.7894736842, "ext": "agda", "hexsha": "2fbf335265cef3f7c847844831182196abf73436", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2369.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2369.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2369.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 119, "size": 452 }
module <-trans-revisited where open import Data.Nat using (ℕ; suc) open import Relations using (_≤_; z≤n; s≤s; ≤-trans; _<_; z<s; s<s) open import ≤-iff-< using (≤-iff-<′) <-iff-≤ : ∀ {m n : ℕ} → m < n --------- → suc m ≤ n <-iff-≤ z<s = s≤s z≤n <-iff-≤ (s<s m<n) = s≤s (<-iff-≤ m<n) -- <-trans の別証明 (≤-trans版) <-trans-revisited : ∀ {m n p : ℕ} → m < n → n < p ----- → m < p <-trans-revisited z<s (s<s n<p) = ≤-iff-<′ (≤-trans (<-iff-≤ z<s) (<-iff-≤ (s<s n<p))) <-trans-revisited (s<s m<n) (s<s n<p) = ≤-iff-<′ (≤-trans (s≤s (<-iff-≤ (lemma m<n))) (<-iff-≤ (s<s n<p))) where lemma : ∀ {m n : ℕ} → m < n --------- → m < suc n lemma z<s = z<s lemma (s<s m<n) = s<s (lemma m<n)
{ "alphanum_fraction": 0.432576769, "avg_line_length": 24.9666666667, "ext": "agda", "hexsha": "d8d402fbd3e8fbfa9a9c76f5c2bd220948743bfa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/relations/<-trans-revisited.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/relations/<-trans-revisited.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/relations/<-trans-revisited.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 344, "size": 749 }
postulate A : Set data B (a : A) : Set where conB : B a → B a → B a data C (a : A) : B a → Set where conC : {bl br : B a} → C a bl → C a br → C a (conB bl br) -- First bug. {- a !=< "An internal error has occurred. Please report this as a bug.\nLocation of the error: src/full/Agda/TypeChecking/Telescope.hs:68\n" of type A when checking that the type (a : A) (b : B a) (tl : C a (_16 a b)) → C a (_16 a b) → (tr : C a (_17 a b)) → Set of the generated with function is well-formed -- Is there a contained error printing bug? -} goo : (a : A) (b : B a) (c : C a _) → Set -- giving b for _ resolves the error goo a b (conC tl tr) with tl ... | _ = _
{ "alphanum_fraction": 0.5687409551, "avg_line_length": 27.64, "ext": "agda", "hexsha": "ba54efd3101a7ff8b61dd08ea1904a23f89ec51a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2679a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2679a.agda", "max_line_length": 131, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2679a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 241, "size": 691 }
------------------------------------------------------------------------ -- Correct-by-construction pretty-printing -- -- Nils Anders Danielsson ------------------------------------------------------------------------ -- A pretty-printing library that guarantees that pretty-printers are -- correct (on the assumption that grammars are unambiguous). {-# OPTIONS --guardedness #-} module README where -- Various utility functions. import Utilities -- Infinite grammars. import Grammar.Infinite.Basic import Grammar.Infinite -- Pretty-printing (documents and document combinators). import Pretty -- Document renderers. import Renderer -- Examples. import Examples.Bool import Examples.Expression import Examples.Identifier import Examples.Identifier-list import Examples.Precedence import Examples.Tree import Examples.XML -- Abstract grammars. (Not used by the pretty-printer.) import Grammar.Abstract -- Grammars defined as functions from non-terminals to productions. -- (Not used by the pretty-printer.) import Grammar.Non-terminal -- A README directed towards readers of the paper -- "Correct-by-Construction Pretty-Printing". import README.Correct-by-Construction-Pretty-Printing
{ "alphanum_fraction": 0.6916043225, "avg_line_length": 22.2777777778, "ext": "agda", "hexsha": "3f8c7218ef6aafd8c52afa72c83b070d19d6e4c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "README.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 216, "size": 1203 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- Maybe it is actually easier to prove [sum-subindicator] and then derive the other lemma. -} module groups.SumOfSubIndicator where module _ {i} (G : Group i) where open Group G abstract sum-ident : ∀ {I} (f : Fin I → El) → (∀ <I → f <I == ident) → sum f == ident sum-ident {I = O} f z = idp sum-ident {I = S I} f z = ap2 comp (sum-ident (f ∘ Fin-S) (z ∘ Fin-S)) (z (I , ltS)) ∙ unit-l _ sum-subindicator : ∀ {I} (f : Fin I → El) <I* → (sub-indicator : ∀ {<I} → <I ≠ <I* → f <I == ident) → sum f == f <I* sum-subindicator f (I , ltS) subind = ap (λ g → comp g (f (I , ltS))) (sum-ident (f ∘ Fin-S) (λ <I → subind (ltSR≠ltS <I))) ∙ unit-l _ sum-subindicator {I = S I} f (m , ltSR m<I) subind = ap2 comp (sum-subindicator (f ∘ Fin-S) (m , m<I) (subind ∘ Fin-S-≠)) (subind (ltS≠ltSR (m , m<I))) ∙ unit-r _ module _ {i j k} (G : Group i) {A : Type j} {B : Type k} {I} (p : Fin I ≃ Coprod A B) (f : B → Group.El G) b* (sub-indicator : ∀ {b} → b ≠ b* → f b == Group.ident G) where open Group G abstract private sub-indicator' : ∀ {<I} → <I ≠ <– p (inr b*) → Coprod-rec (λ _ → ident) f (–> p <I) == ident sub-indicator' {<I} <I≠p⁻¹b* = Coprod-elim {C = λ c → c ≠ inr b* → Coprod-rec (λ _ → ident) f c == ident} (λ _ _ → idp) (λ b inrb≠inrb* → sub-indicator (inrb≠inrb* ∘ ap inr)) (–> p <I) (<I≠p⁻¹b* ∘ equiv-adj p) subsum-r-subindicator : subsum-r (–> p) f == f b* subsum-r-subindicator = sum-subindicator G (Coprod-rec (λ _ → ident) f ∘ –> p) (<– p (inr b*)) sub-indicator' ∙ ap (Coprod-rec (λ _ → ident) f) (<–-inv-r p (inr b*))
{ "alphanum_fraction": 0.4840626688, "avg_line_length": 29.380952381, "ext": "agda", "hexsha": "f3ef87ccb536ebe7b97dd225cc33730f37de4429", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/SumOfSubIndicator.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/SumOfSubIndicator.agda", "max_line_length": 72, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/SumOfSubIndicator.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 714, "size": 1851 }
module Issue502 where record R : Set where record S (A : Set) : Set where field f : A → A
{ "alphanum_fraction": 0.5865384615, "avg_line_length": 13, "ext": "agda", "hexsha": "ac72500ceb5fe5057f5684ef15559de08c863946", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue502.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue502.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue502.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 34, "size": 104 }
-------------------------------------------------------------------------------- -- This file is the entry point for checking or executing code. It provides the -- type MetaContext, which tracks the entire state of the interpreter as well as -- the function tryExecute to parse and execute some code if possible -------------------------------------------------------------------------------- {-# OPTIONS --type-in-type #-} module Execution where open import Class.Monad.Except open import Class.Monad.IO open import Class.Monad.State open import Data.HSTrie open import Conversion open import CoreTheory open import Parse.TreeConvert open import Parse.Generate open import Prelude open import Prelude.Strings record MetaEnv : Set where field grammar : Grammar namespace : String -- we need to remember the current namespace -- because the rule string in the grammar doesn't evaluator : AnnTerm -- The full state of the interpreter: the context of defined values plus parsing -- and semantics for generating code MetaContext : Set MetaContext = GlobalContext × MetaEnv -- Many statements just return a single string, in which case this function can -- be used strResult : String → MetaResult strResult s = [ s ] , [] getParserNamespace : Context → String → List String getParserNamespace (Γ , _) n = strDrop (strLength n + 1) <$> (trieKeys $ lookupHSTrie n Γ) module _ {M : Set → Set} {{_ : Monad M}} {{_ : MonadExcept M String}} {{_ : MonadState M MetaContext}} where getContext : M Context getContext = gets (globalToContext ∘ proj₁) getMeta : M MetaEnv getMeta = gets proj₂ modify' : (MetaContext → MetaContext) → M ⊤ modify' f = modify f >> return tt setMeta : MetaEnv → M ⊤ setMeta menv = modify' λ { (Γ , _) → (Γ , menv) } setContext : GlobalContext → M ⊤ setContext Γ = modify' λ { (_ , m) → (Γ , m) } modifyContext : (GlobalContext → GlobalContext) → M ⊤ modifyContext f = do Γ ← getContext setContext $ f $ contextToGlobal Γ addDef : GlobalName → Def → M String addDef n d = do Γ ← getContext case insertInGlobalContext n d (contextToGlobal Γ) of λ where (inj₁ x) → throwError x (inj₂ y) → setContext y >> return ("Defined " + n + show d) unquoteFromTerm : ∀ {A} ⦃ _ : Unquote A ⦄ → PureTerm → M A unquoteFromTerm t = do Γ ← getContext catchError (unquoteConstrs Γ $ normalizePure Γ t) (λ e → throwError $ "Error while unquoting" <+> show t + ":\n" + e) -- Typecheck a term and return its type inferType : AnnTerm → M AnnTerm inferType t = do Γ ← getContext synthType Γ t checkType : AnnTerm → AnnTerm → M ⊤ checkType t T = do t' ← inferType t inferType T Γ ← getContext catchError (checkβη Γ T t') (λ e → throwError $ "Type mismatch with the provided type!\n" + e + "\nProvided: " + show t' + "\nSynthesized: " + show T) checkTypePure : AnnTerm → PureTerm → M ⊤ checkTypePure t T = do t' ← inferType t Γ ← getContext catchError (checkβηPure Γ T $ Erase t') (λ e → throwError $ "Type mismatch with the provided type!\n" + e + "\nProvided: " + show t' + "\nSynthesized: " + show T) parseMeta : MetaEnv → String → M (AnnTerm × String) parseMeta menv s = let open MetaEnv menv in parse grammar (initNT grammar) namespace s module ExecutionDefs {M : Set → Set} {{_ : Monad M}} {{_ : MonadExcept M String}} {{_ : MonadState M MetaContext}} {{_ : MonadIO M}} where {-# NON_TERMINATING #-} -- Execute a term of type M t for some t executeTerm : PureTerm → M (MetaResult × PureTerm) executeStmt : Stmt → M MetaResult executePrimitive : (m : PrimMeta) → primMetaArgs PureTerm m → M (MetaResult × AnnTerm) -- Parse and execute a string parseAndExecute' parseAndExecuteBootstrap : String → M (MetaResult × String) parseAndExecute : String → M MetaResult executeStmt (Let n t nothing) = do T ← inferType t strResult <$> addDef n (Let t T) executeStmt (Let n t (just t')) = do checkType t t' strResult <$> addDef n (Let t t') executeStmt (Ass n t) = do _ ← inferType t strResult <$> addDef n (Axiom t) executeStmt (SetEval t n start) = do Γ ← getContext y ← generateCFG start $ getParserNamespace Γ n (Pi-A _ u u₁) ← hnfNorm Γ <$> synthType Γ t where _ → throwError "The evaluator needs to have a pi type" appendIfError (checkβη Γ u $ FreeVar (n + "$" + start)) "The evaluator needs to accept the parse result as input" case (hnfNorm Γ u₁) of λ where (M-A _) → do setMeta record { grammar = y ; namespace = n ; evaluator = t } return $ strResult "Successfully set the evaluator" _ → throwError "The evaluator needs to return a M type" executeStmt (Import x) = do res ← liftIO $ readFiniteFileError (x + ".mced") case res of λ where (inj₁ x) → throwError x (inj₂ y) → parseAndExecute y executeStmt Empty = return (strResult "") executeTerm (Mu-P t t₁) = do Γ ← getContext (res , t') ← executeTerm (hnfNormPure Γ t) (res' , resTerm) ← executeTerm (hnfNormPure Γ (t₁ ⟪$⟫ t')) return (res + res' , resTerm) executeTerm (Epsilon-P t) = return (([] , []) , t) executeTerm (Gamma-P t t') = catchError (executeTerm t) (λ s → executeTerm (t' ⟪$⟫ quoteToPureTerm s)) executeTerm (Ev-P m t) = do (res , t') ← executePrimitive m t checkTypePure t' $ primMetaT m t return (res , Erase t') {-# CATCHALL #-} executeTerm t = throwError ("Error: " + show t + " is not a term that can be evaluated!") executePrimitive EvalStmt t = do Γ ← getContext stmt ← unquoteFromTerm t res ← executeStmt stmt return (res , quoteToAnnTerm res) executePrimitive ShellCmd (t , t') = do Γ ← getContext cmd ← unquoteFromTerm t args ← unquoteFromTerm t' res ← liftIO $ runShellCmd cmd args return (strResult res , quoteToAnnTerm res) executePrimitive CheckTerm (t , t') = do Γ ← getContext u ← unquoteFromTerm t' T' ← inferType u catchError (checkβηPure Γ t $ Erase T') (λ e → throwError $ "Type mismatch with the provided type!\nProvided: " + show t + "\nSynthesized: " + show T') return (strResult "" , u) executePrimitive Parse (t , type , t') = do Γ ← getContext nonTerminal ← M String ∋ (unquoteFromTerm t) text ← M String ∋ (unquoteFromTerm t') record { grammar = G ; namespace = namespace } ← getMeta NT ← maybeToError (findNT G nonTerminal) ("Non-terminal" <+> nonTerminal <+> "does not exist in the current grammar!") (res , rest) ← parse G NT namespace text T ← appendIfError (synthType Γ res) ("\n\nError while interpreting input: " + (shortenString 10000 (show res)) + "\nWhile parsing: " + (shortenString 10000 text)) appendIfError (checkβηPure Γ type $ Erase T) ("Type mismatch with the provided type!\nProvided: " + show type + "\nSynthesized: " + show T) -- need to spell out instance manually, since we don't want to quote 'res' return (strResult "" , quoteToAnnTerm ⦃ Quotable-ProductData ⦃ Quotable-NoQuoteAnnTerm ⦄ ⦄ record { lType = T ; rType = FreeVar "init$string" ; l = res ; r = rest }) executePrimitive Normalize t = do Γ ← getContext u ← unquoteFromTerm t T ← synthType Γ u return (strResult (show u + " : " + show T + " normalizes to: " + (show $ normalizePure Γ $ Erase u)) , (quoteToAnnTerm $ normalizePure Γ $ Erase u)) executePrimitive HeadNormalize t = do Γ ← getContext u ← unquoteFromTerm t T ← synthType Γ u return (strResult (show t + " : " + show T + " head-normalizes to: " + (show $ hnfNorm Γ u)) , (quoteToAnnTerm $ hnfNorm Γ u)) executePrimitive InferType t = do Γ ← getContext u ← unquoteFromTerm t T ← synthType Γ u return (strResult "" , (quoteToAnnTerm T)) parseAndExecuteBootstrap s = do (fst , snd) ← parseStmt s res ← appendIfError (executeStmt fst) ("\n\nError while executing statement: " + show fst) return (res , snd) parseAndExecute' s = do Γ ← getContext m ← getMeta (fst , snd) ← parseMeta m s let exec = MetaEnv.evaluator m ⟪$⟫ fst (M-A _) ← hnfNorm Γ <$> appendIfError (synthType Γ exec) ("\n\nError while interpreting input: " + (shortenString 10000 (show fst)) + "\nWhile parsing: " + (shortenString 10000 s)) where _ → throwError "Trying to execute something that isn't of type M t. This should never happen!" let execHnf = hnfNormPure Γ $ Erase exec (res , _) ← appendIfError (executeTerm execHnf) ("\n\nError while executing input: " + s) return (res , snd) parseAndExecute s = do record { evaluator = evaluator } ← getMeta (res , rest) ← case evaluator of λ where (Sort-A □) → parseAndExecuteBootstrap s _ → parseAndExecute' s res' ← if strNull rest then return mzero else parseAndExecute rest return (res + res') module ExecutionMonad where open import Monads.ExceptT open import Monads.StateT ExecutionState : Set ExecutionState = MetaContext contextFromState : ExecutionState → MetaContext contextFromState s = s Execution : Set → Set Execution = ExceptT (StateT IO ExecutionState) String execute : ∀ {A} → Execution A → MetaContext → IO (ExecutionState × (String ⊎ A)) execute x Γ = do (x' , s') ← x Γ return (s' , x') instance Execution-Monad : Monad Execution Execution-Monad = ExceptT-Monad {{StateT-Monad}} Execution-MonadExcept : MonadExcept Execution {{Execution-Monad}} String Execution-MonadExcept = ExceptT-MonadExcept {{StateT-Monad}} Execution-MonadState : MonadState Execution {{Execution-Monad}} ExecutionState Execution-MonadState = ExceptT-MonadState {{StateT-Monad}} {{StateT-MonadState}} Execution-IO : MonadIO Execution {{Execution-Monad}} Execution-IO = ExceptT-MonadIO {{StateT-Monad}} {{StateT-MonadIO {{_}} {{IO-MonadIO}}}} open ExecutionMonad public open ExecutionDefs {Execution} public
{ "alphanum_fraction": 0.6335088746, "avg_line_length": 34.0664451827, "ext": "agda", "hexsha": "ead50781d649572752a2759198d4155d4ad6bd49", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "src/Execution.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "src/Execution.agda", "max_line_length": 106, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "src/Execution.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 2914, "size": 10254 }
{-# OPTIONS --erased-cubical --safe #-} module Instruments where open import Data.Fin using (#_) open import MidiEvent using (InstrumentNumber-1; maxChannels) open import Data.Vec using (Vec; []; _∷_) -- Start of an instrument list -- all instruments have this type piano : InstrumentNumber-1 piano = # 0 brightPiano = # 1 electricGrandPiano = # 2 honkyTonkPiano = # 3 electricPiano1 = # 4 electricPiano2 = # 5 harpsichord = # 6 clavinet = # 7 celesta = # 8 vibraphone = # 11 drawbarOrgan = # 16 percussiveOrgan = # 17 rockOrgan = # 18 churchOrgan = # 19 acousticGuitar[nylon] = # 24 acousticGuitar[steel] = # 25 electricGuitar[jazz] = # 26 electricGuitar[clean] = # 27 electricGuitar[muted] = # 28 overdrivenGuitar = # 29 distortionGuitar = # 30 guitarHarmonics = # 31 harp = # 46 ---------------- drums : InstrumentNumber-1 drums = # 0 ---------------- -- Assign piano to all tracks -- Note that channel 10 (9 as Channel-1) is percussion pianos : Vec InstrumentNumber-1 maxChannels pianos = piano ∷ -- 1 piano ∷ -- 2 piano ∷ -- 3 piano ∷ -- 4 piano ∷ -- 5 piano ∷ -- 6 piano ∷ -- 7 piano ∷ -- 8 piano ∷ -- 9 drums ∷ -- 10 (percussion) piano ∷ -- 11 piano ∷ -- 12 piano ∷ -- 13 piano ∷ -- 14 piano ∷ -- 15 piano ∷ -- 16 []
{ "alphanum_fraction": 0.5543328748, "avg_line_length": 20.4788732394, "ext": "agda", "hexsha": "66b2687affa26b616f03718269ac5130768d99d2", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Instruments.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Instruments.agda", "max_line_length": 61, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Instruments.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 498, "size": 1454 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Documentation for the List type ------------------------------------------------------------------------ {-# OPTIONS --warning noMissingDefinitions #-} module README.Data.List where open import Algebra.Structures using (IsCommutativeMonoid) open import Data.Char.Base using (Char; fromℕ) open import Data.Char.Properties as CharProp hiding (setoid) open import Data.Nat using (ℕ; _+_; _<_; s≤s; z≤n; _*_; _∸_; _≤_) open import Data.Nat.Properties as NatProp open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; setoid) ------------------------------------------------------------------------ -- 1. Basics ------------------------------------------------------------------------ -- The `List` datatype is exported by the following file: open import Data.List using (List ; []; _∷_ ; sum; map; take; reverse; _++_; drop ) module Basics where -- Lists are built using the "[]" and "_∷_" constructors. list₁ : List ℕ list₁ = 3 ∷ 1 ∷ 2 ∷ [] -- Basic operations over lists are also exported by the same file. lem₁ : sum list₁ ≡ 6 lem₁ = refl lem₂ : map (_+ 2) list₁ ≡ 5 ∷ 3 ∷ 4 ∷ [] lem₂ = refl lem₃ : take 2 list₁ ≡ 3 ∷ 1 ∷ [] lem₃ = refl lem₄ : reverse list₁ ≡ 2 ∷ 1 ∷ 3 ∷ [] lem₄ = refl lem₅ : list₁ ++ list₁ ≡ 3 ∷ 1 ∷ 2 ∷ 3 ∷ 1 ∷ 2 ∷ [] lem₅ = refl -- Various properties of these operations can be found in: open import Data.List.Properties lem₆ : ∀ n (xs : List ℕ) → take n xs ++ drop n xs ≡ xs lem₆ = take++drop lem₇ : ∀ (xs : List ℕ) → reverse (reverse xs) ≡ xs lem₇ = reverse-involutive lem₈ : ∀ (xs ys zs : List ℕ) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) lem₈ = ++-assoc ------------------------------------------------------------------------ -- 2. Binary relations over lists ------------------------------------------------------------------------ -- All binary relations over lists are found in the folder -- `Data.List.Relation.Binary`. ------------------------------------------------------------------------ -- Pointwise module PointwiseExplanation where -- One of the most basic ways to form a binary relation between two -- lists of type `List A`, given a binary relation over `A`, is to say -- that two lists are related if: -- i) the first elements in the lists are related -- ii) the second elements in the lists are related -- iii) the third elements in the lists are related etc. -- -- A formalisation of this "pointwise" lifting of a relation to lists -- is found in: open import Data.List.Relation.Binary.Pointwise -- The same syntax to construct a list (`[]` & `_∷_`) is used to -- construct proofs for the `Pointwise` relation. For example if you -- want to prove that one list is strictly less than another list: lem₁ : Pointwise _<_ (0 ∷ 2 ∷ 1 ∷ []) (1 ∷ 4 ∷ 2 ∷ []) lem₁ = 0<1 ∷ 2<4 ∷ 1<2 ∷ [] where 0<1 = s≤s z≤n 2<4 = s≤s (s≤s (s≤s z≤n)) 1<2 = s≤s 0<1 -- Lists that are related by `Pointwise` must be of the same length. -- For example: open import Relation.Nullary using (¬_) lem₂ : ¬ Pointwise _<_ (0 ∷ 2 ∷ []) (1 ∷ []) lem₂ (0<1 ∷ ()) ------------------------------------------------------------------------ -- Equality module EqualityExplanation where -- There are many different options for what it means for two -- different lists of type `List A` to be "equal". We will initially -- consider notions of equality that require the list elements to be -- in the same order and later discuss other types of equality. -- The most basic option in the former case is simply to use -- propositional equality `_≡_` over lists: open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl) lem₁ : 1 ∷ 2 ∷ 3 ∷ [] ≡ 1 ∷ 2 ∷ 3 ∷ [] lem₁ = refl -- However propositional equality is only suitable when we want to -- use propositional equality to compare the individual elements. -- Although a contrived example, consider trying to prove the -- equality of two lists of the type `List (ℕ → ℕ)`: lem₂ : (λ x → 2 * x + 2) ∷ [] ≡ (λ x → 2 * (x + 1)) ∷ [] -- In such a case it is impossible to prove the two lists equal with -- refl as the two functions are not propositionally equal. In the -- absence of postulating function extensionality (see README.Axioms), -- the most common definition of function equality is to say that two -- functions are equal if their outputs are always propositionally -- equal for any input. This notion of function equality `_≗_` is -- found in: open import Relation.Binary.PropositionalEquality using (_≗_) -- We now want to use the `Pointwise` relation to say that the two -- lists are equal if their elements are pointwise equal with resepct -- to `_≗_`. However instead of using the pointwise module directly -- to write: open import Data.List.Relation.Binary.Pointwise using (Pointwise) lem₃ : Pointwise _≗_ ((λ x → x + 1) ∷ []) ((λ x → x + 2 ∸ 1) ∷ []) -- the library provides some nicer wrappers and infix notation in the -- folder "Data.List.Relation.Binary.Equality". -- Within this folder there are four different modules. import Data.List.Relation.Binary.Equality.Setoid as SetoidEq import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq import Data.List.Relation.Binary.Equality.Propositional as PropEq import Data.List.Relation.Binary.Equality.DecPropositional as DecPropEq -- Which one should be used depends on whether the underlying equality -- over "A" is: -- i) propositional or setoid-based -- ii) decidable. -- Each of the modules except `PropEq` are designed to be opened with a -- module parameter. This is to avoid having to specify the underlying -- equality relation or the decidability proofs every time you use the -- list equality. -- In our example function equality is not decidable and not propositional -- and so we want to use the `SetoidEq` module. This requires a proof that -- the `_≗_` relation forms a setoid over functions of the type `ℕ → ℕ`. -- This is found in: open import Relation.Binary.PropositionalEquality using (_→-setoid_) -- The `SetoidEq` module should therefore be opened as follows: open SetoidEq (ℕ →-setoid ℕ) -- All four equality modules provide an infix operator `_≋_` for the -- new equality relation over lists. The type of `lem₃` can therefore -- be rewritten as: lem₄ : (λ x → x + 1) ∷ [] ≋ (λ x → x + 2 ∸ 1) ∷ [] lem₄ = 2x+2≗2[x+1] ∷ [] where 2x+2≗2[x+1] : (λ x → x + 1) ≗ (λ x → x + 2 ∸ 1) 2x+2≗2[x+1] x = sym (+-∸-assoc x (s≤s z≤n)) -- The modules also provide proofs that the `_≋_` relation is a -- setoid in its own right and therefore is reflexive, symmetric, -- transitive: lem₅ : (λ x → 2 * x + 2) ∷ [] ≋ (λ x → 2 * x + 2) ∷ [] lem₅ = ≋-refl -- If we could prove that `_≗_` forms a `DecSetoid` then we could use -- the module `DecSetoidEq` instead. This exports everything from -- `SetoidEq` as well as the additional proof `_≋?_` that the list -- equality is decidable. -- This pattern of four modules for each of the four different types -- of equality is repeated throughout the library (e.g. see the -- `Membership` subheading below). Note that in this case the modules -- `PropEq` and `DecPropEq` are not very useful as if two lists are -- pointwise propositionally equal they are necessarily -- propositionally equal (and vice-versa). There are proofs of this -- fact exported by `PropEq` and `DecPropEq`. Although, these two -- types of list equality are not very useful in practice, they are -- included for completeness's sake. ------------------------------------------------------------------------ -- Permutations module PermutationExplanation where -- Alternatively you might consider two lists to be equal if they -- contain the same elements regardless of the order of the elements. -- This is known as either "set equality" or a "permutation". -- The easiest-to-use formalisation of this relation is found in the -- module: open import Data.List.Relation.Binary.Permutation.Propositional -- The permutation relation is written as `_↭_` and has four -- constructors. The first `refl` says that a list is always -- a permutation of itself, the second `prep` says that if the -- heads of the lists are the same they can be skipped, the third -- `swap` says that the first two elements of the lists can be -- swapped and the fourth `trans` says that permutation proofs -- can be chained transitively. -- For example a proof that two lists are a permutation of one -- another can be written as follows: lem₁ : 1 ∷ 2 ∷ 3 ∷ [] ↭ 3 ∷ 1 ∷ 2 ∷ [] lem₁ = trans (prep 1 (swap 2 3 refl)) (swap 1 3 refl) -- In practice it is difficult to parse the constructors in the -- proof above and hence understand why it holds. The -- `PermutationReasoning` module can be used to write this proof -- in a much more readable form: open PermutationReasoning lem₂ : 1 ∷ 2 ∷ 3 ∷ [] ↭ 3 ∷ 1 ∷ 2 ∷ [] lem₂ = begin 1 ∷ 2 ∷ 3 ∷ [] ↭⟨ prep 1 (swap 2 3 refl) ⟩ 1 ∷ 3 ∷ 2 ∷ [] ↭⟨ swap 1 3 refl ⟩ 3 ∷ 1 ∷ 2 ∷ [] ∎ -- As might be expected, properties of the permutation relation may be -- found in `Data.List.Relation.Binary.Permutation.Inductive.Properties`. open import Data.List.Relation.Binary.Permutation.Propositional.Properties lem₃ : ∀ {xs ys : List ℕ} → xs ↭ ys → map fromℕ xs ↭ map fromℕ ys lem₃ = map⁺ fromℕ lem₄ : IsCommutativeMonoid {A = List ℕ} _↭_ _++_ [] lem₄ = ++-isCommutativeMonoid -- Note: at the moment permutations have only been formalised for -- propositional equality. Permutations for the other three types of -- equality (decidable propositional, setoid and decidable setoid) -- will hopefully be added in later versions of the library. ------------------------------------------------------------------------ -- Other relations -- There exist many other binary relations in the -- `Data.List.Relation.Binary` folder, including: -- 1. lexicographic orderings -- 2. bag/multiset equality -- 3. the subset relations. -- 4. the sublist relations ------------------------------------------------------------------------ -- 3. Properties of lists ------------------------------------------------------------------------ -- Whereas binary relations deal with how two lists relate to one -- another, the unary relations in `Data.List.Relation.Unary` are used -- to reason about the properties of an individual list. ------------------------------------------------------------------------ -- Any module AnyExplanation where -- The predicate `Any` encodes the idea of at least one element of a -- given list satisfying a given property (or more formally a -- predicate, see the `Pred` type in `Relation.Unary`). open import Data.List.Relation.Unary.Any as Any -- A proof of type Any consists of a sequence of the "there" -- constructors, which says that the element lies in the remainder of -- the list, followed by a single "here" constructor which indicates -- that the head of the list satisfies the predicate and takes a proof -- that it does so. -- For example a proof that a given list of natural numbers contains -- at least one number greater than or equal to 4 can be written as -- follows: lem₁ : Any (4 ≤_) (3 ∷ 5 ∷ 1 ∷ 6 ∷ []) lem₁ = there (here 4≤5) where 4≤5 = s≤s (s≤s (s≤s (s≤s z≤n))) -- Note that nothing requires that the proof of `Any` points at the -- first such element in the list. There is therefore an alternative -- proof for the above lemma which points to 6 instead of 5. lem₂ : Any (4 ≤_) (3 ∷ 5 ∷ 1 ∷ 6 ∷ []) lem₂ = there (there (there (here 4≤6))) where 4≤6 = s≤s (s≤s (s≤s (s≤s z≤n))) -- There also exist various operations over proofs of `Any` whose names -- shadow the corresponding list operation. The standard way of using -- these is to use `as` to name the module: import Data.List.Relation.Unary.Any as Any -- and then use the qualified name `Any.map`. For example, map can -- be used to change the predicate of `Any`: open import Data.Nat.Properties using (≤-trans; n≤1+n) lem₃ : Any (3 ≤_) (3 ∷ 5 ∷ 1 ∷ 6 ∷ []) lem₃ = Any.map 4≤x⇒3≤x lem₂ where 4≤x⇒3≤x : ∀ {x} → 4 ≤ x → 3 ≤ x 4≤x⇒3≤x = ≤-trans (n≤1+n 3) ------------------------------------------------------------------------ -- All module AllExplanation where -- The dual to `Any` is the predicate `All` which encodes the idea that -- every element in a given list satisfies a given property. open import Data.List.Relation.Unary.All -- Proofs for `All` are constructed using exactly the same syntax as -- is used to construct lists ("[]" & "_∷_"). For example to prove -- that every element in a list is less than or equal to one: lem₁ : All (_≤ 1) (1 ∷ 0 ∷ 1 ∷ []) lem₁ = 1≤1 ∷ 0≤1 ∷ 1≤1 ∷ [] where 0≤1 = z≤n 1≤1 = s≤s z≤n -- As with `Any`, the module also provides the standard operators -- `map`, `zip` etc. to manipulate proofs for `All`. import Data.List.Relation.Unary.All as All open import Data.Nat.Properties using (≤-trans; n≤1+n) lem₂ : All (_≤ 2) (1 ∷ 0 ∷ 1 ∷ []) lem₂ = All.map ≤1⇒≤2 lem₁ where ≤1⇒≤2 : ∀ {x} → x ≤ 1 → x ≤ 2 ≤1⇒≤2 x≤1 = ≤-trans x≤1 (n≤1+n 1) ------------------------------------------------------------------------ -- Membership module MembershipExplanation where -- Membership of a list is simply a special case of `Any` where -- `x ∈ xs` is defined as `Any (x ≈_) xs`. -- Just like pointwise equality of lists, the exact membership module -- that should be used depends on whether the equality on the -- underlying elements of the list is i) propositional or setoid-based -- and ii) decidable. import Data.List.Membership.Setoid as SetoidMembership import Data.List.Membership.DecSetoid as DecSetoidMembership import Data.List.Membership.Propositional as PropMembership import Data.List.Membership.DecPropositional as DecPropMembership -- For example if we want to reason about membership for `List ℕ` -- then you would use the `DecSetoidMembership` as we use -- propositional equality over `ℕ` and it is also decidable. Therefore -- the module `DecPropMembership` should be opened as follows: open DecPropMembership NatProp._≟_ -- As membership is just an instance of `Any` we also need to import -- the constructors `here` and `there`. (See issue #553 on Github for -- why we're struggling to have `here` and `there` automatically -- re-exported by the membership modules). open import Data.List.Relation.Unary.Any using (here; there) -- These modules provide the infix notation `_∈_` which can be used -- as follows: lem₁ : 1 ∈ 2 ∷ 1 ∷ 3 ∷ [] lem₁ = there (here refl) -- Properties of the membership relation can be found in the following -- two files: import Data.List.Membership.Setoid.Properties as SetoidProperties import Data.List.Membership.Propositional.Properties as PropProperties -- As of yet there are no corresponding files for properties of -- membership for decidable versions of setoid and propositional -- equality as we have no properties that only hold when equality is -- decidable. -- These `Properties` modules are NOT parameterised in the same way as -- the main membership modules as some of the properties relate -- membership proofs for lists of different types. For example in the -- following the first `∈` refers to lists of type `List ℕ` whereas -- the second `∈` refers to lists of type `List Char`. open DecPropMembership CharProp._≟_ renaming (_∈_ to _∈ᶜ_) open SetoidProperties using (∈-map⁺) lem₂ : {v : ℕ} {xs : List ℕ} → v ∈ xs → fromℕ v ∈ᶜ map fromℕ xs lem₂ = ∈-map⁺ (setoid ℕ) (setoid Char) (cong fromℕ)
{ "alphanum_fraction": 0.6315163652, "avg_line_length": 36.4817351598, "ext": "agda", "hexsha": "e05d75bcdf8f7338c0500f76f772a4a76df29976", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Data/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Data/List.agda", "max_line_length": 76, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Data/List.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4578, "size": 15979 }
-- {-# OPTIONS -v scope.let:10 #-} module Issue381 (A : Set) where data _≡_ (x : A) : A → Set where refl : x ≡ x id : A → A id x = let abstract y = x in y -- abstract in let should be disallowed lemma : ∀ x → id x ≡ x lemma x = refl
{ "alphanum_fraction": 0.5774058577, "avg_line_length": 18.3846153846, "ext": "agda", "hexsha": "51a0774d8b687f76fc64608291c546d2b76b21e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue381.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue381.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue381.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 87, "size": 239 }
module Metalogic.Classical.Propositional.Syntax {ℓₚ} (Proposition : Set(ℓₚ)) where import Lvl infixl 1011 •_ infixl 1010 ¬_ infixl 1005 _∧_ infixl 1004 _∨_ infixl 1000 _⇐_ _⇔_ _⇒_ data Formula : Set(ℓₚ) where •_ : Proposition → Formula ⊤ : Formula ⊥ : Formula ¬_ : Formula → Formula _∧_ : Formula → Formula → Formula _∨_ : Formula → Formula → Formula _⇒_ : Formula → Formula → Formula _⇐_ : Formula → Formula → Formula _⇐_ a b = _⇒_ b a _⇔_ : Formula → Formula → Formula _⇔_ a b = (_⇐_ a b) ∧ (_⇒_ a b)
{ "alphanum_fraction": 0.6495238095, "avg_line_length": 18.75, "ext": "agda", "hexsha": "a83fd8e924dda4af6756b6e8d8c6d5751a914925", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/Syntax.agda", "max_line_length": 82, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 232, "size": 525 }
{-# OPTIONS --cubical --safe #-} module Lens where open import Lens.Definition public open import Lens.Operators public open import Lens.Composition public open import Lens.Pair public
{ "alphanum_fraction": 0.7860962567, "avg_line_length": 20.7777777778, "ext": "agda", "hexsha": "49bf57b6113ee19e55422d9e5bdbace8b7897f53", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Lens.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Lens.agda", "max_line_length": 35, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Lens.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 41, "size": 187 }
module Data.Unit.Instance where open import Class.Monoid open import Data.Unit.Polymorphic instance Unit-Monoid : ∀ {a} → Monoid {a} ⊤ Unit-Monoid = record { mzero = tt ; _+_ = λ _ _ -> tt }
{ "alphanum_fraction": 0.6751269036, "avg_line_length": 21.8888888889, "ext": "agda", "hexsha": "cee7df8e45bba18eecb48abd24f7a826c8f72bc8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Unit/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Unit/Instance.agda", "max_line_length": 57, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Unit/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 64, "size": 197 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_+_ to _+Int_ ; _-_ to _-Int_) open import Cubical.Data.Unit open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open import Cubical.Foundations.HLevels private variable ℓ : Level record IsGroup {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where constructor isgroup field isMonoid : IsMonoid 0g _+_ inverse : (x : G) → (x + (- x) ≡ 0g) × ((- x) + x ≡ 0g) open IsMonoid isMonoid public infixl 6 _-_ _-_ : G → G → G x - y = x + (- y) invl : (x : G) → (- x) + x ≡ 0g invl x = inverse x .snd invr : (x : G) → x + (- x) ≡ 0g invr x = inverse x .fst record GroupStr (G : Type ℓ) : Type (ℓ-suc ℓ) where constructor groupstr field 0g : G _+_ : G → G → G -_ : G → G isGroup : IsGroup 0g _+_ -_ infix 8 -_ infixr 7 _+_ open IsGroup isGroup public Group : Type (ℓ-suc ℓ) Group = TypeWithStr _ GroupStr Group₀ : Type₁ Group₀ = Group {ℓ-zero} group : (G : Type ℓ) (0g : G) (_+_ : G → G → G) (-_ : G → G) (h : IsGroup 0g _+_ -_) → Group group G 0g _+_ -_ h = G , groupstr 0g _+_ -_ h isSetGroup : (G : Group {ℓ}) → isSet ⟨ G ⟩ isSetGroup G = GroupStr.isGroup (snd G) .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsGroup : {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G} (is-setG : isSet G) (assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (rid : (x : G) → x + 0g ≡ x) (lid : (x : G) → 0g + x ≡ x) (rinv : (x : G) → x + (- x) ≡ 0g) (linv : (x : G) → (- x) + x ≡ 0g) → IsGroup 0g _+_ -_ IsGroup.isMonoid (makeIsGroup is-setG assoc rid lid rinv linv) = makeIsMonoid is-setG assoc rid lid IsGroup.inverse (makeIsGroup is-setG assoc rid lid rinv linv) = λ x → rinv x , linv x makeGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) (is-setG : isSet G) (assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (rid : (x : G) → x + 0g ≡ x) (lid : (x : G) → 0g + x ≡ x) (rinv : (x : G) → x + (- x) ≡ 0g) (linv : (x : G) → (- x) + x ≡ 0g) → Group makeGroup 0g _+_ -_ is-setG assoc rid lid rinv linv = _ , helper where helper : GroupStr _ GroupStr.0g helper = 0g GroupStr._+_ helper = _+_ GroupStr.- helper = -_ GroupStr.isGroup helper = makeIsGroup is-setG assoc rid lid rinv linv makeGroup-right : ∀ {ℓ} {A : Type ℓ} → (id : A) → (comp : A → A → A) → (inv : A → A) → (set : isSet A) → (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c) → (rUnit : ∀ a → comp a id ≡ a) → (rCancel : ∀ a → comp a (inv a) ≡ id) → Group makeGroup-right id comp inv set assoc rUnit rCancel = makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel where _⨀_ = comp abstract lCancel : ∀ a → comp (inv a) a ≡ id lCancel a = inv a ⨀ a ≡⟨ sym (rUnit (comp (inv a) a)) ⟩ (inv a ⨀ a) ⨀ id ≡⟨ cong (comp (comp (inv a) a)) (sym (rCancel (inv a))) ⟩ (inv a ⨀ a) ⨀ (inv a ⨀ (inv (inv a))) ≡⟨ assoc _ _ _ ⟩ ((inv a ⨀ a) ⨀ (inv a)) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → □ ⨀ _) (sym (assoc _ _ _)) ⟩ (inv a ⨀ (a ⨀ inv a)) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → (inv a ⨀ □) ⨀ (inv (inv a))) (rCancel a) ⟩ (inv a ⨀ id) ⨀ (inv (inv a)) ≡⟨ cong (λ □ → □ ⨀ (inv (inv a))) (rUnit (inv a)) ⟩ inv a ⨀ (inv (inv a)) ≡⟨ rCancel (inv a) ⟩ id ∎ lUnit : ∀ a → comp id a ≡ a lUnit a = id ⨀ a ≡⟨ cong (λ b → comp b a) (sym (rCancel a)) ⟩ (a ⨀ inv a) ⨀ a ≡⟨ sym (assoc _ _ _) ⟩ a ⨀ (inv a ⨀ a) ≡⟨ cong (comp a) (lCancel a) ⟩ a ⨀ id ≡⟨ rUnit a ⟩ a ∎ makeGroup-left : ∀ {ℓ} {A : Type ℓ} → (id : A) → (comp : A → A → A) → (inv : A → A) → (set : isSet A) → (assoc : ∀ a b c → comp a (comp b c) ≡ comp (comp a b) c) → (lUnit : ∀ a → comp id a ≡ a) → (lCancel : ∀ a → comp (inv a) a ≡ id) → Group makeGroup-left id comp inv set assoc lUnit lCancel = makeGroup id comp inv set assoc rUnit lUnit rCancel lCancel where abstract rCancel : ∀ a → comp a (inv a) ≡ id rCancel a = comp a (inv a) ≡⟨ sym (lUnit (comp a (inv a))) ⟩ comp id (comp a (inv a)) ≡⟨ cong (λ b → comp b (comp a (inv a))) (sym (lCancel (inv a))) ⟩ comp (comp (inv (inv a)) (inv a)) (comp a (inv a)) ≡⟨ sym (assoc (inv (inv a)) (inv a) (comp a (inv a))) ⟩ comp (inv (inv a)) (comp (inv a) (comp a (inv a))) ≡⟨ cong (comp (inv (inv a))) (assoc (inv a) a (inv a)) ⟩ comp (inv (inv a)) (comp (comp (inv a) a) (inv a)) ≡⟨ cong (λ b → comp (inv (inv a)) (comp b (inv a))) (lCancel a) ⟩ comp (inv (inv a)) (comp id (inv a)) ≡⟨ cong (comp (inv (inv a))) (lUnit (inv a)) ⟩ comp (inv (inv a)) (inv a) ≡⟨ lCancel (inv a) ⟩ id ∎ rUnit : ∀ a → comp a id ≡ a rUnit a = comp a id ≡⟨ cong (comp a) (sym (lCancel a)) ⟩ comp a (comp (inv a) a) ≡⟨ assoc a (inv a) a ⟩ comp (comp a (inv a)) a ≡⟨ cong (λ b → comp b a) (rCancel a) ⟩ comp id a ≡⟨ lUnit a ⟩ a ∎ open GroupStr hiding (0g ; _+_ ; -_) isSetCarrier : ∀ {ℓ} → (G : Group {ℓ}) → isSet ⟨ G ⟩ isSetCarrier G = IsSemigroup.is-set (IsMonoid.isSemigroup (GroupStr.isMonoid (snd G))) open GroupStr dirProd : ∀ {ℓ ℓ'} → Group {ℓ} → Group {ℓ'} → Group dirProd (GC , G) (HC , H) = makeGroup (0g G , 0g H) (λ { (x1 , x2) (y1 , y2) → _+_ G x1 y1 , _+_ H x2 y2 }) (λ { (x1 , x2) → -_ G x1 , -_ H x2 }) (isSet× (isSetCarrier (GC , G)) (isSetCarrier (HC , H))) (λ { (x1 , x2) (y1 , y2) (z1 , z2) i → assoc G x1 y1 z1 i , assoc H x2 y2 z2 i }) (λ { (x1 , x2) i → GroupStr.rid G x1 i , GroupStr.rid H x2 i }) (λ { (x1 , x2) i → GroupStr.lid G x1 i , GroupStr.lid H x2 i }) (λ { (x1 , x2) i → GroupStr.invr G x1 i , GroupStr.invr H x2 i }) (λ { (x1 , x2) i → GroupStr.invl G x1 i , GroupStr.invl H x2 i }) trivialGroup : Group₀ trivialGroup = Unit , groupstr tt (λ _ _ → tt) (λ _ → tt) (makeIsGroup isSetUnit (λ _ _ _ → refl) (λ _ → refl) (λ _ → refl) (λ _ → refl) (λ _ → refl)) intGroup : Group₀ intGroup = Int , groupstr 0 _+Int_ (0 -Int_) (makeIsGroup isSetInt +-assoc (λ x → refl) (λ x → +-comm 0 x) (λ x → +-comm x (pos 0 -Int x) ∙ minusPlus x 0) (λ x → minusPlus x 0))
{ "alphanum_fraction": 0.4791636832, "avg_line_length": 32.6308411215, "ext": "agda", "hexsha": "407277ce24e9f24734b3fab004f79925051a3e71", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Base.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2786, "size": 6983 }
{-# OPTIONS --cubical #-} module n2o.Network.WebSocket where open import proto.Base open import proto.IO open import n2o.Network.Internal {-# FOREIGN GHC import Network.N2O.Web.WebSockets #-} data N2OProto (A : Set) : Set where Io : ByteString Strict → ByteString Strict → N2OProto A Nop : N2OProto A Cx : Set → Set Cx = Context N2OProto CxHandler : Set → Set CxHandler a = Cx a → Cx a -- mkHandler : ∀ {A : Set} (h : Set → IO A) → Set → IO A -- mkHandler h m = h m >> return Empty -- TODO : monad instance for Result postulate runServer : ∀ {A : Set} → String → ℤ → Context N2OProto A → IO ⊤ {-# COMPILE GHC Cx = Network.N2O.Web.WebSockets.Cx #-} {-# COMPILE GHC CxHandler = Network.N2O.Web.WebSockets.CxHandler #-} {-# COMPILE GHC runServer = Network.N2O.Web.WebSockets.runServer #-} {-# COMPILE GHC N2OProto = data Network.N2O.Web.Websockets.N2OProto ( Io | Nop ) #-}
{ "alphanum_fraction": 0.5936883629, "avg_line_length": 30.7272727273, "ext": "agda", "hexsha": "9a0115180f2518e07b116f91b8cb8fa090d294e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "o4/n2o", "max_forks_repo_path": "n2o/Network/WebSocket.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "o4/n2o", "max_issues_repo_path": "n2o/Network/WebSocket.agda", "max_line_length": 85, "max_stars_count": 3, "max_stars_repo_head_hexsha": "d7903dfffcd66ae174eed9347afe008f892b2491", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "o4/n2o", "max_stars_repo_path": "n2o/Network/WebSocket.agda", "max_stars_repo_stars_event_max_datetime": "2019-01-02T06:37:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-30T11:37:10.000Z", "num_tokens": 289, "size": 1014 }
-- Andreas, 2012-11-22 abstract aliases module Issue729 where abstract B = Set B₁ = B B₂ = Set abstract foo : Set₁ foo = x where x = B {- does not work yet mutual abstract D = C C = B -} -- other stuff private A = Set Y = let X = Set in Set
{ "alphanum_fraction": 0.6007462687, "avg_line_length": 9.9259259259, "ext": "agda", "hexsha": "6795b923bcb47172a6bb3c418b927c1180e28ed7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue729.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue729.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue729.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 99, "size": 268 }
{-# OPTIONS --without-K --safe #-} module root2 where -- imports. We use the latest agda stdlib. open import Data.Nat open import Data.Nat.DivMod open import Data.Nat.Properties open import Data.Nat.Solver open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Sum renaming (inj₁ to even ; inj₂ to odd) open import Relation.Nullary open import Data.Empty -- Even predicate. Even : ℕ -> Set Even n = ∃ λ k → n ≡ 2 * k -- Odd predicate. Odd : ℕ -> Set Odd n = ∃ λ k → n ≡ 1 + 2 * k open +-*-Solver -- Lemma: an even number cannot equal to an odd number. lemma-even-odd-exclusive : ∀ k l -> ¬ 2 * k ≡ 1 + 2 * l lemma-even-odd-exclusive k l hyp = z hyp' where z : ¬ 0 ≡ 1 z () n*m%n≡0 : ∀ m n .{{_ : NonZero n}} → (n * m) % n ≡ 0 n*m%n≡0 m n = begin (n * m) % n ≡⟨ cong (_% n) (solve 2 (λ n m → n :* m := m :* n) refl n m) ⟩ (m * n) % n ≡⟨ m*n%n≡0 m n ⟩ 0 ∎ where open ≡-Reasoning lem1%2 : 1 % 2 ≡ 1 lem1%2 = refl hyp' : 0 ≡ 1 hyp' = begin 0 ≡⟨ sym (n*m%n≡0 k 2) ⟩ (2 * k) % 2 ≡⟨ cong (_% 2) hyp ⟩ (1 + 2 * l) % 2 ≡⟨ %-distribˡ-+ 1 (2 * l) 2 ⟩ ((1 % 2) + ((2 * l) % 2)) % 2 ≡⟨ cong (_% 2) (cong₂ (_+_) lem1%2 (n*m%n≡0 l 2)) ⟩ (1 + 0) % 2 ≡⟨ refl ⟩ 1 % 2 ≡⟨ refl ⟩ 1 ∎ where open ≡-Reasoning -- Lemma: a natural number cannot be both even and odd. lemma-even-odd-exclusive' : ∀ n -> ¬ (Even n × Odd n) lemma-even-odd-exclusive' n ((k , eqn) , (l , eqn')) = lemma-even-odd-exclusive k l claim where claim : 2 * k ≡ 1 + 2 * l claim = begin 2 * k ≡⟨ sym eqn ⟩ n ≡⟨ eqn' ⟩ 1 + 2 * l ∎ where open ≡-Reasoning -- Lemma: a natrual number is either even or odd (but not both as shown by lemma-even-odd-exclusive'). Parity : (n : ℕ) -> Even n ⊎ Odd n Parity zero = even (zero , refl) Parity (suc n) with Parity n ... | even (k , eq) = odd (k , cong suc eq) ... | odd (k , eq) = even (suc k , claim) where claim : suc n ≡ suc (k + suc (k + 0)) claim = begin suc n ≡⟨ refl ⟩ 1 + n ≡⟨ cong (1 +_) eq ⟩ 1 + suc (k + (k + 0)) ≡⟨ solve 1 (λ k → con 1 :+ (con 1 :+ (k :+ (k :+ con 0))) := con 1 :+ (k :+ (con 1 :+ (k :+ con 0)))) refl k ⟩ 1 + (k + (1 + (k + 0))) ≡⟨ refl ⟩ suc (k + suc (k + 0)) ∎ where open ≡-Reasoning -- Auxillary lemmas: lemma-div2 : ∀ n .{{_ : NonZero n}} -> n / 2 < n lemma-div2 n = m/n<m n 2 (s≤s (s≤s z≤n)) lemma-<-< : ∀ {a b c} -> a < b -> b < suc c -> a < c lemma-<-< (s≤s ab) (s≤s bc) = <-transˡ (s≤s ab) bc lemma-div2' : ∀ n b .{{_ : NonZero n}} -> n < 1 + b -> n / 2 < b lemma-div2' n b n1b = lemma-<-< (lemma-div2 n) n1b -- We do a case split in the parity of m and n. For each of the four -- cases, we can derive a contradiction using induction on the bound -- of m and n. lemma-root2-irra : ∀ b m n -> ¬ m ≡ 0 -> ¬ n ≡ 0 → m < b → n < b → ¬ m * m ≡ 2 * (n * n) lemma-root2-irra (suc b) 0 0 mnz nnz mlb nlb hyp = mnz refl lemma-root2-irra (suc b) 0 (suc n) mnz nnz mlb nlb hyp = mnz refl lemma-root2-irra (suc b) (suc m) 0 mnz nnz mlb nlb hyp = nnz refl lemma-root2-irra (suc b) m@(suc m') n@(suc n') mnz nnz mlb nlb hyp with Parity m | Parity n ... | even (k , eqm) | even (l , eqn) = ih where factor-four : 4 * (k * k) ≡ 4 * (2 * (l * l)) factor-four = begin 4 * (k * k) ≡⟨ solve 1 (λ k → con 4 :* (k :* k) := (con 2 :* k) :* (con 2 :* k)) refl k ⟩ (2 * k) * (2 * k) ≡⟨ cong₂ _*_ (sym eqm) (sym eqm) ⟩ m * m ≡⟨ hyp ⟩ 2 * (n * n) ≡⟨ cong (2 *_) (cong₂ _*_ eqn eqn) ⟩ 2 * ((2 * l) * (2 * l)) ≡⟨ solve 1 (λ l → con 2 :* ((con 2 :* l) :* (con 2 :* l)) := con 4 :* (con 2 :* (l :* l))) refl l ⟩ 4 * (2 * (l * l)) ∎ where open ≡-Reasoning hyp' : k * k ≡ 2 * (l * l) hyp' = *-cancelˡ-≡ 4 factor-four klb : k < b klb = begin-strict k ≡⟨ sym (m*n/n≡m k 2) ⟩ (k * 2) / 2 ≡⟨ cong (_/ 2) (solve 1 (λ k → k :* con 2 := con 2 :* k) refl k) ⟩ (2 * k) / 2 ≡⟨ cong (_/ 2) (sym eqm) ⟩ m / 2 <⟨ lemma-div2' m b mlb ⟩ b ∎ where open ≤-Reasoning llb : l < b llb = begin-strict l ≡⟨ sym (m*n/n≡m l 2) ⟩ (l * 2) / 2 ≡⟨ cong (_/ 2) (solve 1 (λ l → l :* con 2 := con 2 :* l) refl l) ⟩ (2 * l) / 2 ≡⟨ cong (_/ 2) (sym eqn) ⟩ n / 2 <⟨ lemma-div2' n b nlb ⟩ b ∎ where open ≤-Reasoning knz : ¬ k ≡ 0 knz k0 = mnz m0 where m0 : m ≡ 0 m0 = begin m ≡⟨ eqm ⟩ 2 * k ≡⟨ cong (2 *_) k0 ⟩ 2 * 0 ≡⟨ refl ⟩ 0 ∎ where open ≡-Reasoning lnz : ¬ l ≡ 0 lnz l0 = nnz n0 where n0 : n ≡ 0 n0 = begin n ≡⟨ eqn ⟩ 2 * l ≡⟨ cong (2 *_) l0 ⟩ 2 * 0 ≡⟨ refl ⟩ 0 ∎ where open ≡-Reasoning ih : ⊥ ih = lemma-root2-irra b k l knz lnz klb llb hyp' ... | even (k , eqm) | odd (l , eqn) = lemma-even-odd-exclusive' (n * n) (even-right , odd-right) where even-left : Even (m * m) even-left = 2 * (k * k) , claim where claim : m * m ≡ 2 * (2 * (k * k)) claim = begin m * m ≡⟨ cong₂ _*_ eqm eqm ⟩ (2 * k) * (2 * k) ≡⟨ solve 1 (λ k → (con 2 :* k) :* (con 2 :* k) := con 2 :* (con 2 :* (k :* k))) refl k ⟩ 2 * (2 * (k * k)) ∎ where open ≡-Reasoning odd-right : Odd (n * n) odd-right = (2 * (l * l) + 2 * l) , claim where claim : n * n ≡ 1 + 2 * (2 * (l * l) + 2 * l) claim = begin n * n ≡⟨ cong₂ _*_ eqn eqn ⟩ (1 + 2 * l) * (1 + 2 * l) ≡⟨ solve 1 (λ l → (con 1 :+ con 2 :* l) :* (con 1 :+ con 2 :* l) := con 1 :+ (con 2 :* ((con 2 :* (l :* l)) :+ con 2 :* l))) refl l ⟩ 1 + 2 * (2 * (l * l) + 2 * l) ∎ where open ≡-Reasoning 2*n*n≡2*2*k*k : 2 * (n * n) ≡ 2 * (2 * (k * k)) 2*n*n≡2*2*k*k = begin 2 * (n * n) ≡⟨ sym hyp ⟩ m * m ≡⟨ (let (_ , p) = even-left in p) ⟩ 2 * (2 * (k * k)) ∎ where open ≡-Reasoning n*n≡2*k*k : (n * n) ≡ (2 * (k * k)) n*n≡2*k*k = *-cancelˡ-≡ 2 2*n*n≡2*2*k*k even-right : Even (n * n) even-right = k * k , (n*n≡2*k*k) ... | odd (k , eqn) | _ = lemma-even-odd-exclusive' (m * m) (even-left , odd-left) where odd-left : Odd (m * m) odd-left = (2 * (k * k) + 2 * k) , claim where claim : m * m ≡ 1 + 2 * (2 * (k * k) + 2 * k) claim = begin m * m ≡⟨ cong₂ _*_ eqn eqn ⟩ (1 + 2 * k) * (1 + 2 * k) ≡⟨ solve 1 (λ k → (con 1 :+ con 2 :* k) :* (con 1 :+ con 2 :* k) := con 1 :+ (con 2 :* ((con 2 :* (k :* k)) :+ con 2 :* k))) refl k ⟩ 1 + 2 * (2 * (k * k) + 2 * k) ∎ where open ≡-Reasoning even-left : Even (m * m) even-left = (n * n) , hyp -- Main theorem: for any natural number m and n, it impossible that m -- * m ≡ 2 * (n * n) except when m ≡ 0 and n ≡ 0 (in this situation, -- m/n is not defined), in other words, no rational number equals √2. theorem-root2-irra : ∀ m n -> m * m ≡ 2 * (n * n) -> m ≡ 0 × n ≡ 0 theorem-root2-irra zero zero hyp = (refl , refl ) theorem-root2-irra zero n@(suc n') hyp = (refl , sym 0≡n ) where 2*0≡2*n*n : 2 * 0 ≡ 2 * (n * n) 2*0≡2*n*n = hyp 0≡n*n : 0 ≡ n * n 0≡n*n = *-cancelˡ-≡ 2 hyp n*0≡n*n : n * 0 ≡ n * n n*0≡n*n = begin n * 0 ≡⟨ *-comm n 0 ⟩ 0 * n ≡⟨ refl ⟩ 0 ≡⟨ 0≡n*n ⟩ n * n ∎ where open ≡-Reasoning 0≡n : 0 ≡ n 0≡n = *-cancelˡ-≡ n n*0≡n*n theorem-root2-irra m@(suc m') n@(suc n') hyp = ⊥-elim claim where -- m ⊔ n = max m n b = 1 + (m ⊔ n) mlb : m < b mlb = s≤s (m≤m⊔n m n) nlb : n < b nlb = s≤s (m≤n⊔m m n) claim = lemma-root2-irra b m n (λ ()) (λ ()) mlb nlb hyp
{ "alphanum_fraction": 0.4343998016, "avg_line_length": 30.3157894737, "ext": "agda", "hexsha": "7693556ce7499f63e24c0ff8ce50cdc89f6fa7dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1e50ef1caffc2a4d2e2f8bc7aaa969acc1ba1cc4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/root2", "max_forks_repo_path": "root2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1e50ef1caffc2a4d2e2f8bc7aaa969acc1ba1cc4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/root2", "max_issues_repo_path": "root2.agda", "max_line_length": 169, "max_stars_count": null, "max_stars_repo_head_hexsha": "1e50ef1caffc2a4d2e2f8bc7aaa969acc1ba1cc4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/root2", "max_stars_repo_path": "root2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3622, "size": 8064 }
module pretty where open import general-util -- Adapted from A Prettier Printer (Philip Wadler) -- https://homepages.inf.ed.ac.uk/wadler/papers/prettier/prettier.pdf -- The pretty printer infixr 5 _:<|>_ infixr 6 _:<>_ infixr 6 _<>_ data DOC : Set where NIL : DOC _:<>_ : DOC → DOC → DOC NEST : ℕ → DOC → DOC TEXT : rope → DOC LINE : DOC _:<|>_ : DOC → DOC → DOC data Doc : Set where Nil : Doc _Text_ : rope → Doc → Doc _Line_ : ℕ → Doc → Doc nil = NIL _<>_ = _:<>_ nest = NEST text = TEXT line = LINE flatten : DOC → DOC flatten NIL = NIL flatten (x :<> y) = flatten x :<> flatten y flatten (NEST i x) = NEST i (flatten x) flatten (TEXT s) = TEXT s flatten LINE = TEXT [[ " " ]] flatten (x :<|> y) = flatten x flatten-out : DOC → rope flatten-out NIL = [[]] flatten-out (x :<> y) = flatten-out x ⊹⊹ flatten-out y flatten-out (NEST i x) = flatten-out x flatten-out (TEXT s) = s flatten-out LINE = [[ " " ]] flatten-out (x :<|> y) = flatten-out x group = λ x → flatten x :<|> x fold : ∀ {ℓ} {X : Set ℓ} → ℕ → X → (X → X) → X fold 0 z s = z fold (suc n) z s = s (fold n z s) copy : ∀ {ℓ} {X : Set ℓ} → ℕ → X → 𝕃 X copy i x = fold i [] (x ::_) layout : Doc → rope layout Nil = [[]] layout (s Text x) = s ⊹⊹ layout x layout (i Line x) = [[ 𝕃char-to-string ('\n' :: copy i ' ') ]] ⊹⊹ layout x _∸'_ : ℕ → ℕ → maybe ℕ m ∸' n with suc m ∸ n ...| zero = nothing ...| suc o = just o fits : maybe ℕ → Doc → 𝔹 fits nothing x = ff fits (just w) Nil = tt fits (just w) (s Text x) = fits (w ∸' rope-length s) x fits (just w) (i Line x) = tt {-# TERMINATING #-} be : ℕ → ℕ → 𝕃 (ℕ × DOC) → Doc better : ℕ → ℕ → Doc → Doc → Doc best : ℕ → ℕ → DOC → Doc better w k x y = if fits (w ∸' k) x then x else y best w k x = be w k [ 0 , x ] be w k [] = Nil be w k ((i , NIL) :: z) = be w k z be w k ((i , x :<> y) :: z) = be w k ((i , x) :: (i , y) :: z) be w k ((i , NEST j x) :: z) = be w k ((i + j , x) :: z) be w k ((i , TEXT s) :: z) = s Text be w (k + rope-length s) z be w k ((i , LINE) :: z) = i Line be w i z be w k ((i , x :<|> y) :: z) = better w k (be w k ((i , x) :: z)) (be w k ((i , y) :: z)) pretty : ℕ → DOC → rope pretty w x = layout (best w 0 x) -- Utility functions infixr 6 _<+>_ _</>_ _<+/>_ _<+>_ : DOC → DOC → DOC x <+> y = x <> text [[ " " ]] <> y _</>_ : DOC → DOC → DOC x </> y = x <> line <> y folddoc : (DOC → DOC → DOC) → 𝕃 DOC → DOC folddoc f [] = nil folddoc f (x :: []) = x folddoc f (x :: xs) = f x (folddoc f xs) spread = folddoc _<+>_ stack = folddoc _</>_ bracket : string → DOC → string → DOC bracket l x r = group (text [[ l ]] <> nest 2 (line <> x) <> line <> text [[ r ]]) _<+/>_ : DOC → DOC → DOC x <+/> y = x <> (text [[ " " ]] :<|> line) <> y {-# TERMINATING #-} fill : 𝕃 DOC → DOC fill [] = nil fill (x :: []) = x fill (x :: y :: zs) = (flatten x <+> fill (flatten y :: zs)) :<|> (x </> fill (y :: zs)) {-# TERMINATING #-} filln : 𝕃 (ℕ × DOC) → DOC filln [] = nil filln ((i , x) :: []) = nest i x filln ((i , x) :: (j , y) :: zs) = (flatten x <+> filln ((j , flatten y) :: zs)) :<|> (nest i x <> nest j line <> filln ((j , y) :: zs)) {-# TERMINATING #-} fill-last : ℕ → 𝕃 DOC → DOC fill-last i [] = nil fill-last i (x :: []) = nest i x fill-last i (x :: y :: []) = (flatten x <+> flatten y) :<|> (nest i (x </> y)) fill-last i (x :: y :: zs) = (flatten x <+> fill-last i (flatten y :: zs)) :<|> (x </> fill-last i (y :: zs))
{ "alphanum_fraction": 0.5094007051, "avg_line_length": 23.9718309859, "ext": "agda", "hexsha": "f87204b532daf0bbc6bdd5c259256fdf76fc1554", "lang": "Agda", "max_forks_count": 34, "max_forks_repo_forks_event_max_datetime": "2022-02-20T18:33:16.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-17T11:51:36.000Z", "max_forks_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mudathirmahgoub/cedille", "max_forks_repo_path": "src/pretty.agda", "max_issues_count": 123, "max_issues_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_issues_repo_issues_event_max_datetime": "2022-01-12T03:51:28.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-17T10:53:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mudathirmahgoub/cedille", "max_issues_repo_path": "src/pretty.agda", "max_line_length": 109, "max_stars_count": 328, "max_stars_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mudathirmahgoub/cedille", "max_stars_repo_path": "src/pretty.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T10:33:07.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-14T20:06:09.000Z", "num_tokens": 1352, "size": 3404 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) module Categories.Diagram.Pushout {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open import Level private variable A B E X Y Z : Obj record Pushout (f : X ⇒ Y) (g : X ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where field {Q} : Obj i₁ : Y ⇒ Q i₂ : Z ⇒ Q field commute : i₁ ∘ f ≈ i₂ ∘ g universal : {h₁ : Y ⇒ B} {h₂ : Z ⇒ B} → h₁ ∘ f ≈ h₂ ∘ g → Q ⇒ B unique : {h₁ : Y ⇒ E} {h₂ : Z ⇒ E} {j : Q ⇒ E} {eq : h₁ ∘ f ≈ h₂ ∘ g} → j ∘ i₁ ≈ h₁ → j ∘ i₂ ≈ h₂ → j ≈ universal eq universal∘i₁≈h₁ : {h₁ : Y ⇒ E} {h₂ : Z ⇒ E} {eq : h₁ ∘ f ≈ h₂ ∘ g} → universal eq ∘ i₁ ≈ h₁ universal∘i₂≈h₂ : {h₁ : Y ⇒ E} {h₂ : Z ⇒ E} {eq : h₁ ∘ f ≈ h₂ ∘ g} → universal eq ∘ i₂ ≈ h₂
{ "alphanum_fraction": 0.4583333333, "avg_line_length": 26.9090909091, "ext": "agda", "hexsha": "f0e4c47b0285a0789e23b21d66a212de56484bf5", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Pushout.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Pushout.agda", "max_line_length": 78, "max_stars_count": 279, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Pushout.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 374, "size": 888 }
module Prelude.Product where open import Agda.Primitive open import Agda.Builtin.Sigma public open import Prelude.Function open import Prelude.Equality open import Prelude.Decidable open import Prelude.Ord instance ipair : ∀ {a b} {A : Set a} {B : A → Set b} {{x : A}} {{y : B x}} → Σ A B ipair {{x}} {{y}} = x , y infixr 3 _×_ _×_ : ∀ {a b} → Set a → Set b → Set (a ⊔ b) A × B = Σ A (λ _ → B) _,′_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → A × B _,′_ = _,_ uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} → (∀ x (y : B x) → C x y) → (p : Σ A B) → C (fst p) (snd p) uncurry f (x , y) = f x y uncurry′ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} → (∀ x → B x → C) → Σ A B → C uncurry′ f (x , y) = f x y curry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} → (∀ p → C p) → ∀ x (y : B x) → C (x , y) curry f x y = f (x , y) infixr 3 _***_ _***′_ _&&&_ _***_ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂} (f : A₁ → A₂) → (∀ {x} → B₁ x → B₂ (f x)) → Σ A₁ B₁ → Σ A₂ B₂ (f *** g) (x , y) = f x , g y _***′_ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : Set b₁} {B₂ : Set b₂} → (A₁ → A₂) → (B₁ → B₂) → A₁ × B₁ → A₂ × B₂ (f ***′ g) (x , y) = f x , g y _&&&_ : ∀ {c a b} {C : Set c} {A : Set a} {B : A → Set b} (f : C → A) → (∀ x → B (f x)) → C → Σ A B (f &&& g) x = f x , g x first : ∀ {a₁ a₂ b} {A₁ : Set a₁} {A₂ : Set a₂} {B : Set b} → (A₁ → A₂) → A₁ × B → A₂ × B first f = f *** id second : ∀ {a b₁ b₂} {A : Set a} {B₁ : A → Set b₁} {B₂ : A → Set b₂} → (∀ {x} → B₁ x → B₂ x) → Σ A B₁ → Σ A B₂ second f = id *** f -- Eq instance -- sigma-inj-fst : ∀ {a b} {A : Set a} {B : A → Set b} {x : A} {y : B x} {x₁ : A} {y₁ : B x₁} → (x , y) ≡ (x₁ , y₁) → x ≡ x₁ sigma-inj-fst refl = refl sigma-inj-snd : ∀ {a b} {A : Set a} {B : A → Set b} {x : A} {y y₁ : B x} → _≡_ {A = Σ A B} (x , y) (x , y₁) → y ≡ y₁ sigma-inj-snd refl = refl instance EqSigma : ∀ {a b} {A : Set a} {B : A → Set b} {{EqA : Eq A}} {{EqB : ∀ {x} → Eq (B x)}} → Eq (Σ A B) _==_ {{EqSigma}} (x , y) (x₁ , y₁) with x == x₁ _==_ {{EqSigma}} (x , y) (x₁ , y₁) | no neq = no λ eq → neq (sigma-inj-fst eq) _==_ {{EqSigma}} (x , y) (.x , y₁) | yes refl with y == y₁ _==_ {{EqSigma}} (x , y) (.x , y₁) | yes refl | no neq = no λ eq → neq (sigma-inj-snd eq) _==_ {{EqSigma}} (x , y) (.x , .y) | yes refl | yes refl = yes refl -- Ord instance -- data LexiographicOrder {a b} {A : Set a} {B : A → Set b} (_<A_ : A → A → Set a) (_<B_ : ∀ {x} → B x → B x → Set b) : Σ A B → Σ A B → Set (a ⊔ b) where fst< : ∀ {x₁ x₂} {y₁ : B x₁} {y₂ : B x₂} → x₁ <A x₂ → LexiographicOrder _<A_ _<B_ (x₁ , y₁) (x₂ , y₂) snd< : ∀ {x} {y₁ y₂ : B x} → y₁ <B y₂ → LexiographicOrder _<A_ _<B_ (x , y₁) (x , y₂) module _ {a b} {A : Set a} {B : A → Set b} {{OrdA : Ord A}} {{OrdB : ∀ {x} → Ord (B x)}} where private cmpSigma : (x y : Σ A B) → Comparison (LexiographicOrder _<_ _<_) x y cmpSigma (x , y) (x₁ , y₁) with compare x x₁ cmpSigma (x , y) (x₁ , y₁) | less x<x₁ = less (fst< x<x₁) cmpSigma (x , y) (x₁ , y₁) | greater x₁<x = greater (fst< x₁<x) cmpSigma (x , y) (.x , y₁) | equal refl with compare y y₁ cmpSigma (x₁ , y) (.x₁ , y₁) | equal refl | less y<y₁ = less (snd< y<y₁) cmpSigma (x₁ , y) (.x₁ , y₁) | equal refl | greater y₁<y = greater (snd< y₁<y) cmpSigma (x₁ , y) (.x₁ , .y) | equal refl | equal refl = equal refl from-eq : (x y : Σ A B) → x ≡ y → LexiographicOrder _<_ _≤_ x y from-eq (x , y) (.x , .y) refl = snd< (eq-to-leq (refl {x = y})) from-lt : (x y : Σ A B) → LexiographicOrder _<_ _<_ x y → LexiographicOrder _<_ _≤_ x y from-lt (x₁ , y₁) (x₂ , y₂) (fst< lt) = fst< lt from-lt (x , y₁) (.x , y₂) (snd< lt) = snd< (lt-to-leq {x = y₁} lt) from-leq : (x y : Σ A B) → LexiographicOrder _<_ _≤_ x y → LessEq (LexiographicOrder _<_ _<_) x y from-leq (a , b) (a₁ , b₁) (fst< a<a₁) = less (fst< a<a₁) from-leq (a , b) (.a , b₁) (snd< b≤b₁) with leq-to-lteq {{OrdB}} b≤b₁ ... | less b<b₁ = less (snd< b<b₁) ... | equal b=b₁ = equal ((a ,_) $≡ b=b₁) instance OrdSigma : Ord (Σ A B) Ord._<_ OrdSigma = _ Ord._≤_ OrdSigma = LexiographicOrder _<_ _≤_ Ord.compare OrdSigma = cmpSigma Ord.eq-to-leq OrdSigma = from-eq _ _ Ord.lt-to-leq OrdSigma = from-lt _ _ Ord.leq-to-lteq OrdSigma = from-leq _ _ module _ {a b} {A : Set a} {B : A → Set b} {{OrdA : Ord/Laws A}} {{OrdB : ∀ {x} → Ord/Laws (B x)}} where OrdLawsSigma : Ord/Laws (Σ A B) Ord/Laws.super OrdLawsSigma = OrdSigma {{OrdB = OrdB .Ord/Laws.super}} less-antirefl {{OrdLawsSigma}} (fst< lt) = less-antirefl {A = A} lt less-antirefl {{OrdLawsSigma}} (snd< {x = x} lt) = less-antirefl {A = B x} lt less-trans {{OrdLawsSigma}} (fst< lt) (fst< lt₁) = fst< (less-trans {A = A} lt lt₁) less-trans {{OrdLawsSigma}} (fst< lt) (snd< lt₁) = fst< lt less-trans {{OrdLawsSigma}} (snd< lt) (fst< lt₁) = fst< lt₁ less-trans {{OrdLawsSigma}} (snd< {x = x} lt) (snd< lt₁) = snd< (less-trans {A = B x} lt lt₁)
{ "alphanum_fraction": 0.474738024, "avg_line_length": 42.752, "ext": "agda", "hexsha": "b6edec1fb1e082e81db32c20c775db3df10a68b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Prelude/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Prelude/Product.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Prelude/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2395, "size": 5344 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.DescendingList where open import Cubical.Data.DescendingList.Base public open import Cubical.Data.DescendingList.Properties public open import Cubical.Data.DescendingList.Examples public open import Cubical.Data.DescendingList.Strict public open import Cubical.Data.DescendingList.Strict.Properties public
{ "alphanum_fraction": 0.8337730871, "avg_line_length": 37.9, "ext": "agda", "hexsha": "3faf3cad8e634876b4fab72a529667d1be35150c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/DescendingList.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/DescendingList.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/DescendingList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 80, "size": 379 }
import Lvl -- TODO: Is it possible formalize this like this? Is it even correct? -- Based on http://www.maths.ed.ac.uk/~tl/edinburgh_yrm/ (2017-11-22) module Sets.ETCS where open import Logic.Propositional module Theory (S : Set(Lvl.𝟎)) (F : S → S → Set(Lvl.𝟎)) (_∘_ : ∀{a b c} → F(b)(c) → F(a)(b) → F(a)(c)) (_≡_ : ∀{a b} → F(a)(b) → F(a)(b) → Stmt{Lvl.𝟎}) where open import Functional hiding (_∘_) open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎} open import Logic.Propositional.Theorems{Lvl.𝟎} open import Relator.Equals{Lvl.𝟎} using () renaming (_≡_ to _≡ᵣ_) open import Type{Lvl.𝟎} Terminal : S → Stmt Terminal(x) = (∀{a : S} → (f g : F(a)(x)) → (f ≡ g)) record Axioms : Set(Lvl.𝐒(Lvl.𝟎)) where field associativity : ∀{a b c d : S}{f : F(a)(b)}{g : F(b)(c)}{h : F(c)(d)} → ((h ∘ (g ∘ f)) ≡ ((h ∘ g) ∘ f)) identity : ∀{a : S} → ∃{F(a)(a)}(id ↦ (∀{b : S}{f : F(a)(b)} → ((f ∘ id) ≡ f)) ∧ (∀{b : S}{f : F(b)(a)} → ((id ∘ f) ≡ f))) terminal : ∃(term ↦ Terminal(term)) 𝟏 : S 𝟏 = [∃]-witness(terminal) _∈_ : ∀{a b : S} → F(a)(b) → S → Stmt _∈_ {a}{b} x X = (a ≡ᵣ 𝟏)∧(b ≡ᵣ X) _∉_ : ∀{a b : S} → F(a)(b) → S → Stmt _∉_ x X = ¬(x ∈ X) field empty : ∃{S}(∅ ↦ ∀{a b : S}{f : F(a)(b)} → (f ∉ ∅)) -- TODO module Construction where open import Data open import Functional using (_∘_ ; id) open import Logic.Predicate{Lvl.𝐒(Lvl.𝟎)}{Lvl.𝟎} open import Logic.Propositional.Theorems{Lvl.𝐒(Lvl.𝟎)} open import Relator.Equals{Lvl.𝟎} Terminal : Set → Stmt Terminal(x) = (∀{a : Set}{f g : a → x} → (f ≡ g)) _∈_ : ∀{a b : Set} → (a → b) → Set → Stmt _∈_ {a}{b} _ X = (a ≡ Unit)∧(b ≡ X) ∅ : Set ∅ = Empty -- TODO: Maybe use FunctionEquals instead? -- TODO: Is this construction working? Try to prove some of the theorems of standard set theory
{ "alphanum_fraction": 0.5138381201, "avg_line_length": 33.0172413793, "ext": "agda", "hexsha": "3d5a5c58b3a112b2ea2697f07e8d3237460d5d5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Sets/ETCS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Sets/ETCS.agda", "max_line_length": 159, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Sets/ETCS.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 827, "size": 1915 }
module Lectures.Two where -- Introduce imports open import Lectures.One -- Introduce type parameters module List-types where data List (A : Set₁) : Set₁ where [] : List A _∷_ : A → List A → List A _ : List Set _ = ⊥ ∷ (ℕ ∷ (⊤ ∷ [])) module List {ℓ} where data List (A : Set ℓ) : Set ℓ where [] : List A _∷_ : A → List A → List A _++_ : {A : Set ℓ} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) map : {A B : Set ℓ} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs open List using (List; []; _∷_) _ : List ℕ _ = 0 ∷ (1 ∷ (2 ∷ [])) -- Introduce type families module Vec where data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) head : ∀ {A n} → Vec A (suc n) → A head (x ∷ xs) = x _++_ : ∀ {A n m} → Vec A n → Vec A m → Vec A (n + m) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) map : ∀ {A B n} → (A → B) → Vec A n → Vec B n map f [] = [] map f (x ∷ xs) = f x ∷ map f xs zipWith : ∀ {A B C : Set} {n} (f : A → B → C) → Vec A n → Vec B n → Vec C n zipWith f [] [] = [] zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys -- \u+ data _⊎_ (A : Set) (B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B Dec : Set → Set Dec B = B ⊎ (¬ B) private data _×'_ (A : Set) (B : Set) : Set where _,'_ : A → B → A ×' B record _×''_ (A : Set) (B : Set) : Set where constructor _,''_ field proj₁ : A proj₂ : B -- \Sigma record Σ {ℓ} (A : Set ℓ) (B : A → Set ℓ) : Set ℓ where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public _ : Σ ℕ _isEven _ = 0 , tt _×_ : Set → Set → Set A × B = Σ A λ _ → B
{ "alphanum_fraction": 0.4663212435, "avg_line_length": 18.8804347826, "ext": "agda", "hexsha": "4fc0491a3c56a0cfd6997747821ad7403e95c260", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UoG-Agda/Agda101", "max_forks_repo_path": "Lectures/Two.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UoG-Agda/Agda101", "max_issues_repo_path": "Lectures/Two.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UoG-Agda/Agda101", "max_stars_repo_path": "Lectures/Two.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 757, "size": 1737 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Level open import Function open import Category.Functor open import Relation.Binary.PropositionalEquality module Optics.Functorial where Lens' : (F : Set → Set) → RawFunctor F → Set → Set → Set Lens' F _ S A = (A → F A) → S → F S data Lens (S A : Set) : Set₁ where lens : ((F : Set → Set)(rf : RawFunctor F) → Lens' F rf S A) → Lens S A private cf : {A : Set} → RawFunctor {Level.zero} (const A) cf = record { _<$>_ = λ x x₁ → x₁ } if : RawFunctor {Level.zero} id if = record { _<$>_ = λ x x₁ → x x₁ } -- We can make lenses relatively painlessly without requiring reflection -- by providing getter and setter functions mkLens' : ∀ {A B : Set} → (B → A) → (B → A → B) → Lens B A mkLens' {A} {B} get set = lens (λ F rf f b → Category.Functor.RawFunctor._<$>_ {F = F} rf {A = A} {B = B} (set b) (f (get b))) -- Getter: -- this is typed as ^\. _^∙_ : ∀{S A} → S → Lens S A → A _^∙_ {_} {A} s (lens p) = p (const A) cf id s -- Setter: set : ∀{S A} → Lens S A → A → S → S set (lens p) a s = p id if (const a) s syntax set p a s = s [ p := a ] -- Modifier: over : ∀{S A} → Lens S A → (A → A) → S → S over (lens p) f s = p id if f s syntax over p f s = s [ p %~ f ] -- Composition infixr 30 _∙_ _∙_ : ∀{S A B} → Lens S A → Lens A B → Lens S B (lens p) ∙ (lens q) = lens (λ F rf x x₁ → p F rf (q F rf x) x₁)
{ "alphanum_fraction": 0.5238359202, "avg_line_length": 27.7538461538, "ext": "agda", "hexsha": "57299b57c41e0f4f6e7a008fab4585f0aaa48804", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "Optics/Functorial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "Optics/Functorial.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "Optics/Functorial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 619, "size": 1804 }
open import Agda.Primitive open import Agda.Builtin.Nat -- Named implicit function types postulate T : Set → Set → Set foo : {A = X : Set} {B : Set} → T X B bar : ∀ {A = X} {B} → T X B foo₁ : (X : Set) → T X X foo₁ X = foo {A = X} {B = X} bar₁ : ∀ X → T X X bar₁ X = bar {A = X} {B = X} Id : {A = _ : Set} → Set Id {A = X} = X Id₁ : Set → Set Id₁ X = Id {A = X} -- With blanks postulate namedUnused : {A = _ : Set} → Set unnamedUsed : {_ = X : Set} → X → X unnamedUnused : {_ = _ : Set} → Set _ : Set _ = namedUnused {A = Nat} _ : Nat → Nat _ = unnamedUsed {Nat} -- can't give by name _ : Set _ = unnamedUnused {Nat} -- In left-hand sides id : {A = X : Set} → X → X id {A = Y} x = x -- In with-functions with-fun : ∀ {A} {B = X} → T A X → T A X with-fun {A = A} {B = Z} x with T A Z with-fun {B = Z} x | Goal = x -- In datatypes data List {ℓ = a} (A : Set a) : Set a where [] : List A _∷_ : A → List A → List A List₁ = List {ℓ = lsuc lzero} -- In module telescopes module Named {A : Set} {B = X : Set} where postulate H : X → A h : (A : Set) → A → A h A = Named.H {A = A} {B = A} postulate X : Set open Named {A = X} {B = X} hh : X → X hh = H -- Constructors data Q (n : Nat) : Set where mkQ : Q n data E {n = x} (q : Q x) : Set where mkE : E q e₁ : (q : Q 1) → E q e₁ q = mkE {n = 1} {q = q} -- Generalized variables variable m n : Nat q₁ = mkQ {n = 1} data D (x : Q n) : Q m → Set where refl : {y = z : Q m} → D x z D₁ = D {n = 1} D₁₂ = λ x → D {n = 1} x {m = 2} refl′ = λ x → refl {n = 1} {x = x} {m = 2} {y = mkQ}
{ "alphanum_fraction": 0.5028355388, "avg_line_length": 15.87, "ext": "agda", "hexsha": "e9b1323adc270006b001ccd4d7b2d759faedf740", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue952.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue952.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue952.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 687, "size": 1587 }
module Prelude.Bot where data Bot : Set where magic : ∀{A : Set} -> Bot -> A magic ()
{ "alphanum_fraction": 0.6136363636, "avg_line_length": 12.5714285714, "ext": "agda", "hexsha": "4b7d81f09dd91334a9cc3ff1a94d710dff4c07cb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/Bot.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/Bot.agda", "max_line_length": 30, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/Bot.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 26, "size": 88 }
open import Data.List {- --- 6. Vectors --- -} {- 6.1 Warmup -} {- Problem: what do we return for the empty list ? -} head2 : {A : Set} → List A → A head2 [] = {!!} head2 (x ∷ l) = x {- 6.2 Definition -} open import Data.Nat data Vec (A : Set) : ℕ → Set where [] : Vec A zero _::_ : {n : ℕ} → A → Vec A n → Vec A (suc n) {- 6.3 Head and tail -} head-vec : {A : Set} → {n : ℕ} → Vec A (suc n) → A head-vec (x :: v) = x tail-vec : {A : Set} → {n : ℕ} → Vec A (suc n) → Vec A n tail-vec (x :: v) = v {- 6.4 Concatenation -} concat-vec : {A : Set} → {m n : ℕ} → Vec A m → Vec A n → Vec A (m + n) concat-vec [] v2 = v2 concat-vec (x :: v1) v2 = x :: (concat-vec v1 v2) {- 6.5 Reversal -} snoc-vec : {A : Set} → {n : ℕ} → A → Vec A n → Vec A (suc n) snoc-vec a [] = a :: [] snoc-vec a (x :: v) = x :: (snoc-vec a v) rev-vec : {A : Set} → {n : ℕ} → Vec A n → Vec A n rev-vec [] = [] rev-vec (x :: v) = snoc-vec x (rev-vec v) {- 6.6 Accessing an element -} data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) {- 6.7 Zipping -} open import Data.Product hiding (zip) zip-vec : {A : Set} → {n : ℕ} → Vec A n → Vec A n → Vec (A × A) n zip-vec [] [] = [] zip-vec (x₁ :: y₁) (x₂ :: y₂) = (x₁ , x₂) :: (zip-vec y₁ y₂)
{ "alphanum_fraction": 0.4944707741, "avg_line_length": 24.8235294118, "ext": "agda", "hexsha": "7dbfa743e4eb6b8515652373ad997f9146618130", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "erwinkn/program-eq-proof", "max_forks_repo_path": "TD6/Vector.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "erwinkn/program-eq-proof", "max_issues_repo_path": "TD6/Vector.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "9a0d4a3f97103550a67e5e9ecbc8322bf0a8be23", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "erwinkn/program-eq-proof", "max_stars_repo_path": "TD6/Vector.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 554, "size": 1266 }
{-# OPTIONS --without-K --safe #-} open import Level module Categories.Category.Instance.One where open import Data.Unit using (⊤; tt) open import Categories.Category open import Categories.Functor open import Categories.Category.Instance.Cats import Categories.Object.Terminal as Term module _ {o ℓ e : Level} where open Term (Cats o ℓ e) One : Category o ℓ e One = record { Obj = Lift o ⊤ ; _⇒_ = λ _ _ → Lift ℓ ⊤ ; _≈_ = λ _ _ → Lift e ⊤ } One-⊤ : Terminal One-⊤ = record { ⊤ = One ; ! = record { F₀ = λ _ → lift tt } } -- not only is One terminal, it can be shifted anywhere else. Stronger veersion of ! shift : {o ℓ e : Level} (o′ ℓ′ e′ : Level) → Functor (One {o} {ℓ} {e}) (One {o′} {ℓ′} {e′}) shift o′ ℓ′ e′ = _ -- so obvious, Agda can fill it all in automatically! One0 : Category 0ℓ 0ℓ 0ℓ One0 = One {0ℓ} {0ℓ} {0ℓ}
{ "alphanum_fraction": 0.6145952109, "avg_line_length": 26.5757575758, "ext": "agda", "hexsha": "662282c5df19057b7accfde99066bd46ceb7c755", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/One.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/One.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/One.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 310, "size": 877 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Presheaves where open import Level open import Categories.Category open import Categories.Agda open import Categories.FunctorCategory Presheaves : ∀ {o ℓ e : Level} → Category o ℓ e → Category _ _ _ Presheaves {o} {ℓ} {e} C = Functors (Category.op C) (ISetoids ℓ e)
{ "alphanum_fraction": 0.745398773, "avg_line_length": 29.6363636364, "ext": "agda", "hexsha": "733ca6df003cb28219b7807c1853a4229c33704c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Presheaves.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Presheaves.agda", "max_line_length": 66, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Presheaves.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 94, "size": 326 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of homogeneous binary relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary where open import Agda.Builtin.Equality using (_≡_) open import Data.Product open import Data.Sum open import Function open import Level import Relation.Binary.PropositionalEquality.Core as PropEq open import Relation.Binary.Consequences ------------------------------------------------------------------------ -- Simple properties and equivalence relations open import Relation.Binary.Core public ------------------------------------------------------------------------ -- Preorders record IsPreorder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_∼_ : Rel A ℓ₂) -- The relation. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsEquivalence _≈_ -- Reflexivity is expressed in terms of an underlying equality: reflexive : _≈_ ⇒ _∼_ trans : Transitive _∼_ module Eq = IsEquivalence isEquivalence refl : Reflexive _∼_ refl = reflexive Eq.refl ∼-respˡ-≈ : _∼_ Respectsˡ _≈_ ∼-respˡ-≈ x≈y x∼z = trans (reflexive (Eq.sym x≈y)) x∼z ∼-respʳ-≈ : _∼_ Respectsʳ _≈_ ∼-respʳ-≈ x≈y z∼x = trans z∼x (reflexive x≈y) ∼-resp-≈ : _∼_ Respects₂ _≈_ ∼-resp-≈ = ∼-respʳ-≈ , ∼-respˡ-≈ record Preorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _∼_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _∼_ : Rel Carrier ℓ₂ -- The relation. isPreorder : IsPreorder _≈_ _∼_ open IsPreorder isPreorder public ------------------------------------------------------------------------ -- Setoids -- Equivalence relations are defined in Relation.Binary.Core. record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public isPreorder : IsPreorder _≡_ _≈_ isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = reflexive ; trans = trans } preorder : Preorder c c ℓ preorder = record { isPreorder = isPreorder } ------------------------------------------------------------------------ -- Decidable equivalence relations record IsDecEquivalence {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) : Set (a ⊔ ℓ) where infix 4 _≟_ field isEquivalence : IsEquivalence _≈_ _≟_ : Decidable _≈_ open IsEquivalence isEquivalence public record DecSetoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ isDecEquivalence : IsDecEquivalence _≈_ open IsDecEquivalence isDecEquivalence public setoid : Setoid c ℓ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public using (preorder) ------------------------------------------------------------------------ -- Partial orders record IsPartialOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isPreorder : IsPreorder _≈_ _≤_ antisym : Antisymmetric _≈_ _≤_ open IsPreorder isPreorder public renaming ( ∼-respˡ-≈ to ≤-respˡ-≈ ; ∼-respʳ-≈ to ≤-respʳ-≈ ; ∼-resp-≈ to ≤-resp-≈ ) record Poset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isPartialOrder : IsPartialOrder _≈_ _≤_ open IsPartialOrder isPartialOrder public preorder : Preorder c ℓ₁ ℓ₂ preorder = record { isPreorder = isPreorder } ------------------------------------------------------------------------ -- Decidable partial orders record IsDecPartialOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where infix 4 _≟_ _≤?_ field isPartialOrder : IsPartialOrder _≈_ _≤_ _≟_ : Decidable _≈_ _≤?_ : Decidable _≤_ private module PO = IsPartialOrder isPartialOrder open PO public hiding (module Eq) module Eq where isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = PO.isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isDecPartialOrder : IsDecPartialOrder _≈_ _≤_ private module DPO = IsDecPartialOrder isDecPartialOrder open DPO public hiding (module Eq) poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (preorder) module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DPO.Eq.isDecEquivalence } open DecSetoid decSetoid public ------------------------------------------------------------------------ -- Strict partial orders record IsStrictPartialOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsEquivalence _≈_ irrefl : Irreflexive _≈_ _<_ trans : Transitive _<_ <-resp-≈ : _<_ Respects₂ _≈_ module Eq = IsEquivalence isEquivalence asym : Asymmetric _<_ asym {x} {y} = trans∧irr⟶asym Eq.refl trans irrefl {x = x} {y} <-respʳ-≈ : _<_ Respectsʳ _≈_ <-respʳ-≈ = proj₁ <-resp-≈ <-respˡ-≈ : _<_ Respectsˡ _≈_ <-respˡ-≈ = proj₂ <-resp-≈ asymmetric = asym {-# WARNING_ON_USAGE asymmetric "Warning: asymmetric was deprecated in v0.16. Please use asym instead." #-} record StrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ open IsStrictPartialOrder isStrictPartialOrder public ------------------------------------------------------------------------ -- Decidable strict partial orders record IsDecStrictPartialOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where infix 4 _≟_ _<?_ field isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ _≟_ : Decidable _≈_ _<?_ : Decidable _<_ private module SPO = IsStrictPartialOrder isStrictPartialOrder open SPO public hiding (module Eq) module Eq where isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = SPO.isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ private module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder open DSPO public hiding (module Eq) strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DSPO.Eq.isDecEquivalence } open DecSetoid decSetoid public ------------------------------------------------------------------------ -- Total orders record IsTotalOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isPartialOrder : IsPartialOrder _≈_ _≤_ total : Total _≤_ open IsPartialOrder isPartialOrder public record TotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isTotalOrder : IsTotalOrder _≈_ _≤_ open IsTotalOrder isTotalOrder public poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public using (preorder) ------------------------------------------------------------------------ -- Decidable total orders record IsDecTotalOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where infix 4 _≟_ _≤?_ field isTotalOrder : IsTotalOrder _≈_ _≤_ _≟_ : Decidable _≈_ _≤?_ : Decidable _≤_ open IsTotalOrder isTotalOrder public hiding (module Eq) module Eq where isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public record DecTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ private module DTO = IsDecTotalOrder isDecTotalOrder open DTO public hiding (module Eq) totalOrder : TotalOrder c ℓ₁ ℓ₂ totalOrder = record { isTotalOrder = isTotalOrder } open TotalOrder totalOrder public using (poset; preorder) module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DTO.Eq.isDecEquivalence } open DecSetoid decSetoid public ------------------------------------------------------------------------ -- Strict total orders -- Note that these orders are decidable. The current implementation -- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable -- definition capturing these three properties implies decidability -- as `Trichotomous` necessarily separates out the equality case. record IsStrictTotalOrder {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsEquivalence _≈_ trans : Transitive _<_ compare : Trichotomous _≈_ _<_ infix 4 _≟_ _<?_ _≟_ : Decidable _≈_ _≟_ = tri⟶dec≈ compare _<?_ : Decidable _<_ _<?_ = tri⟶dec< compare isDecEquivalence : IsDecEquivalence _≈_ isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } module Eq = IsDecEquivalence isDecEquivalence <-respˡ-≈ : _<_ Respectsˡ _≈_ <-respˡ-≈ = trans∧tri⟶respˡ≈ Eq.trans trans compare <-respʳ-≈ : _<_ Respectsʳ _≈_ <-respʳ-≈ = trans∧tri⟶respʳ≈ Eq.sym Eq.trans trans compare <-resp-≈ : _<_ Respects₂ _≈_ <-resp-≈ = <-respʳ-≈ , <-respˡ-≈ isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = tri⟶irr compare ; trans = trans ; <-resp-≈ = <-resp-≈ } open IsStrictPartialOrder isStrictPartialOrder public using (irrefl; asym) record StrictTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ open IsStrictTotalOrder isStrictTotalOrder public hiding (module Eq) strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = isDecEquivalence } module Eq = DecSetoid decSetoid
{ "alphanum_fraction": 0.5689741451, "avg_line_length": 28.2783018868, "ext": "agda", "hexsha": "07bb58e66babfcfd76980d0d7012c80e3d46f641", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3807, "size": 11990 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.SimilaritySingleton open import Oscar.Class.SimilarityM module Oscar.Class.Similarity where module Similarity {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {𝔣} {𝔉 : Ø 𝔣} {𝔞̇ 𝔟̇} (_∼₁_ : 𝔄 → 𝔄 → Ø 𝔞̇) (_∼₂_ : 𝔅 → 𝔅 → Ø 𝔟̇) (let _∼₂_ = _∼₂_; infix 4 _∼₂_) (_◃_ : 𝔉 → 𝔄 → 𝔅) (let _◃_ = _◃_; infix 16 _◃_) = ℭLASS (_◃_ , _∼₂_) (∀ {x y} f → x ∼₁ y → f ◃ x ∼₂ f ◃ y) module _ {𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} {𝔣} {𝔉 : Ø 𝔣} {𝔞̇ 𝔟̇} {_∼₁_ : 𝔄 → 𝔄 → Ø 𝔞̇} {_∼₂_ : 𝔅 → 𝔅 → Ø 𝔟̇} {_◃_ : 𝔉 → 𝔄 → 𝔅} where similarity = Similarity.method _∼₁_ _∼₂_ _◃_ module _ ⦃ _ : Similarity.class _∼₁_ _∼₂_ _◃_ ⦄ where instance toSimilaritySingleton : ∀ {x y f} → SimilaritySingleton.class (x ∼₁ y) _∼₂_ _◃_ x y f toSimilaritySingleton .⋆ = similarity _ toSimilarityM : ∀ {x y} → SimilarityM.class _∼₁_ _∼₂_ _◃_ x y toSimilarityM .⋆ = similarity open import Oscar.Class.Smap open import Oscar.Class.Surjection module Similarity,cosmaparrow {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} (surjection : Surjection.type 𝔛₁ 𝔛₂) {𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯) {𝔭₁} (𝔓₁ : 𝔛₂ → Ø 𝔭₁) {𝔭₂} (𝔓₂ : 𝔛₂ → Ø 𝔭₂) (smaparrow : Smaparrow.type ℜ 𝔓₁ 𝔓₂ surjection surjection) {𝔯̇} (ℜ̇ : ∀ {x y} → ℜ x y → ℜ x y → Ø 𝔯̇) {𝔭̇₂} (𝔓̇₂ : ∀ {x} → 𝔓₂ x → 𝔓₂ x → Ø 𝔭̇₂) where class = ∀ {m n} → Similarity.class (ℜ̇ {m} {n}) (𝔓̇₂ {surjection n}) (flip smaparrow) type = ∀ {m n} → Similarity.type (ℜ̇ {m} {n}) (𝔓̇₂ {surjection n}) (flip smaparrow) module Similarity,cosmaparrow! {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} ⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄ {𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯) {𝔭₁} (𝔓₁ : 𝔛₂ → Ø 𝔭₁) {𝔭₂} (𝔓₂ : 𝔛₂ → Ø 𝔭₂) ⦃ _ : Smaparrow!.class ℜ 𝔓₁ 𝔓₂ ⦄ {𝔯̇} (ℜ̇ : ∀ {x y} → ℜ x y → ℜ x y → Ø 𝔯̇) {𝔭̇₂} (𝔓̇₂ : ∀ {x} → 𝔓₂ x → 𝔓₂ x → Ø 𝔭̇₂) = Similarity,cosmaparrow surjection ℜ 𝔓₁ 𝔓₂ smaparrow ℜ̇ 𝔓̇₂ module Similarity,cosmaphomarrow {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} (surjection : Surjection.type 𝔛₁ 𝔛₂) {𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯) {𝔭} (𝔓 : 𝔛₂ → Ø 𝔭) (smaparrow : Smaphomarrow.type ℜ 𝔓 surjection) {𝔯̇} (ℜ̇ : ∀ {x y} → ℜ x y → ℜ x y → Ø 𝔯̇) {𝔭̇} (𝔓̇ : ∀ {x} → 𝔓 x → 𝔓 x → Ø 𝔭̇) = Similarity,cosmaparrow surjection ℜ 𝔓 𝔓 smaparrow ℜ̇ 𝔓̇ module Similarity,cosmaphomarrow! {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} ⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄ {𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯) {𝔭} (𝔓 : 𝔛₂ → Ø 𝔭) ⦃ _ : Smaphomarrow!.class ℜ 𝔓 ⦄ {𝔯̇} (ℜ̇ : ∀ {x y} → ℜ x y → ℜ x y → Ø 𝔯̇) {𝔭̇} (𝔓̇ : ∀ {x} → 𝔓 x → 𝔓 x → Ø 𝔭̇) = Similarity,cosmaphomarrow surjection ℜ 𝔓 smaparrow ℜ̇ 𝔓̇ module Similarity,smaparrow {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} (surjection : Surjection.type 𝔛₁ 𝔛₂) {𝔯} (ℜ : π̂² 𝔯 𝔛₁) {𝔭₁} (𝔓₁ : π̂ 𝔭₁ 𝔛₂) {𝔭₂} (𝔓₂ : π̂ 𝔭₂ 𝔛₂) (smaparrow : Smaparrow.type ℜ 𝔓₁ 𝔓₂ surjection surjection) {𝔭̇₁} (𝔓̇₁ : ∀̇ π̂² 𝔭̇₁ (𝔓₁ ∘ surjection)) {𝔭̇₂} (𝔓̇₂ : ∀̇ π̂² 𝔭̇₂ (𝔓₂ ∘ surjection)) where class = ∀ {m n} → Similarity.class (𝔓̇₁ {m}) (𝔓̇₂ {n}) smaparrow type = ∀ {m n} → Similarity.type (𝔓̇₁ {m}) (𝔓̇₂ {n}) smaparrow module Similarity,smaparrow! {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} ⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄ {𝔯} (ℜ : π̂² 𝔯 𝔛₁) {𝔭₁} (𝔓₁ : π̂ 𝔭₁ 𝔛₂) {𝔭₂} (𝔓₂ : π̂ 𝔭₂ 𝔛₂) ⦃ _ : Smaparrow!.class ℜ 𝔓₁ 𝔓₂ ⦄ {𝔭̇₁} (𝔓̇₁ : ∀̇ π̂² 𝔭̇₁ (𝔓₁ ∘ surjection)) {𝔭̇₂} (𝔓̇₂ : ∀̇ π̂² 𝔭̇₂ (𝔓₂ ∘ surjection)) = Similarity,smaparrow surjection ℜ 𝔓₁ 𝔓₂ smaparrow 𝔓̇₁ 𝔓̇₂ module Similarity,smaphomarrow {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} (surjection : Surjection.type 𝔛₁ 𝔛₂) {𝔯} (ℜ : π̂² 𝔯 𝔛₁) {𝔭} (𝔓 : π̂ 𝔭 𝔛₂) (smaparrow : Smaphomarrow.type ℜ 𝔓 surjection) {𝔭̇} (𝔓̇ : ∀̇ π̂² 𝔭̇ (𝔓 ∘ surjection)) = Similarity,smaparrow surjection ℜ 𝔓 𝔓 smaparrow 𝔓̇ 𝔓̇ module Similarity,smaphomarrow! {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} ⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄ {𝔯} (ℜ : π̂² 𝔯 𝔛₁) {𝔭} (𝔓 : π̂ 𝔭 𝔛₂) ⦃ _ : Smaphomarrow!.class ℜ 𝔓 ⦄ {𝔭̇} (𝔓̇ : ∀̇ π̂² 𝔭̇ (𝔓 ∘ surjection)) = Similarity,smaphomarrow surjection ℜ 𝔓 smaparrow 𝔓̇
{ "alphanum_fraction": 0.5481425322, "avg_line_length": 29.9772727273, "ext": "agda", "hexsha": "1782adff58587570e4b55cc64b7c21ad50dafd0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Similarity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Similarity.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Similarity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2586, "size": 3957 }
module Silica where open import Agda.Builtin.Bool public open import Data.Bool using (true; false) public open import Prelude public open import Data.Nat public open import Data.List public open import Data.Nat.Properties public open import Relation.Nullary using (¬_; Dec; yes; no) public open import Relation.Binary using (module StrictTotalOrder; DecSetoid; IsDecEquivalence) public open import Data.Maybe using (just) public import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.Core import Relation.Binary.HeterogeneousEquality open Eq using (_≡_; _≢_; refl; cong; sym) public open Eq.≡-Reasoning public open import Data.Product using (_×_; proj₁; proj₂; ∃-syntax; ∃) renaming (_,_ to ⟨_,_⟩) public import Context open import Data.List.Membership.DecSetoid ≡-decSetoid import Data.List.Membership.DecSetoid import Data.List.Relation.Binary.Subset.Setoid using (_⊆_) import Data.List.Relation.Binary.Equality.DecPropositional using (_≡?_) open import Data.List.Relation.Unary.Any open import Data.List.All open import Data.Empty open import Data.Sum open import Level import Data.Fin -------------- Syntax ------------ Id : Set Id = ℕ -- State sets σ : Set σ = List ℕ -- List of ℕ subset _⊆_ : σ → σ → Set _⊆_ = Data.List.Relation.Binary.Subset.Setoid._⊆_ (DecSetoid.setoid ≡-decSetoid) -- List of ℕ decidable equality _≟l_ : Relation.Binary.Core.Decidable {A = σ} _≡_ _≟l_ = Data.List.Relation.Binary.Equality.DecPropositional._≡?_ _≟_ data Perm : Set where Owned : Perm Unowned : Perm Shared : Perm S : σ → Perm record Tc : Set where constructor tc field contractName : Id perm : Perm data Tbase : Set where Void : Tbase Boolean : Tbase data Type : Set where base : Tbase -> Type contractType : Tc -> Type SInjective : (l₁ l₂ : σ) → l₁ ≢ l₂ → S l₁ ≢ S l₂ SInjective l₁ .l₁ lsEq refl = lsEq refl TCInjectiveContractName : ∀ {p₁ p₂} → (cn₁ cn₂ : Id) → cn₁ ≢ cn₂ → tc cn₁ p₁ ≢ tc cn₂ p₂ TCInjectiveContractName cn₁ cn₂ nEq refl = nEq refl TCInjectivePermission : ∀ {cn₁ cn₂} → (p₁ p₂ : Perm) → p₁ ≢ p₂ → tc cn₁ p₁ ≢ tc cn₂ p₂ TCInjectivePermission cn₁ cn₂ nEq refl = nEq refl contractTypeInjective : ∀ {tc₁ tc₂} → tc₁ ≢ tc₂ → contractType tc₁ ≢ contractType tc₂ contractTypeInjective nEq refl = nEq refl -- Decidable equality for permissions infix 4 _≟p_ _≟p_ : Relation.Binary.Core.Decidable {A = Perm} _≡_ Owned ≟p Owned = yes refl Owned ≟p Unowned = no (λ ()) Owned ≟p Shared = no (λ ()) Owned ≟p S x = no (λ ()) Unowned ≟p Owned = no (λ ()) Unowned ≟p Unowned = yes refl Unowned ≟p Shared = no (λ ()) Unowned ≟p S x = no (λ ()) Shared ≟p Owned = no (λ ()) Shared ≟p Unowned = no (λ ()) Shared ≟p Shared = yes refl Shared ≟p S x = no (λ ()) S x ≟p Owned = no (λ ()) S x ≟p Unowned = no (λ ()) S x ≟p Shared = no (λ ()) S s1 ≟p S s2 with s1 ≟l s2 ... | yes eq = yes (Eq.cong S eq) ... | no nEq = no λ sEq → SInjective s1 s2 nEq sEq -- Decidable equality for types infix 4 _≟t_ _≟t_ : Relation.Binary.Core.Decidable {A = Type} _≡_ base Void ≟t base Void = yes refl base Void ≟t base Boolean = no (λ ()) base Boolean ≟t base Void = no (λ ()) base Boolean ≟t base Boolean = yes refl base x ≟t contractType x₁ = no (λ ()) contractType x ≟t base x₁ = no (λ ()) contractType (tc contractName p₁) ≟t contractType (tc contractName₁ p₂) with contractName ≟ contractName₁ | p₁ ≟p p₂ ... | yes eqNames | yes eqPerms = yes (Eq.cong₂ (λ a → λ b → contractType (tc a b)) eqNames eqPerms) ... | no nEqNames | _ = no (contractTypeInjective (TCInjectiveContractName contractName contractName₁ nEqNames)) ... | _ | no nEqPerms = no (contractTypeInjective (TCInjectivePermission p₁ p₂ nEqPerms)) ≟tIsEquivalence : Relation.Binary.IsEquivalence {A = Type} _≡_ -- _≟t_ ≟tIsEquivalence = Eq.isEquivalence ≡t-isDecEquivalence : IsDecEquivalence (_≡_ {A = Type}) ≡t-isDecEquivalence = record { isEquivalence = ≟tIsEquivalence ; _≟_ = _≟t_ } ≡t-decSetoid : DecSetoid 0ℓ 0ℓ ≡t-decSetoid = record { Carrier = Type ; _≈_ = _≡_ ; isDecEquivalence = ≡t-isDecEquivalence } module tDecSetoid = Data.List.Membership.DecSetoid ≡t-decSetoid _∈ₜ_ : Type → List Type → Set _∈ₜ_ = tDecSetoid._∈_ isShared : Type → Bool isShared (contractType (record {contractName = _ ; perm = Shared})) = true isShared _ = false eqContractTypes : ∀ {t₁ : Tc} → ∀ {t₂ : Tc} → Tc.perm t₁ ≡ Tc.perm t₂ → Tc.contractName t₁ ≡ Tc.contractName t₂ → t₁ ≡ t₂ eqContractTypes {t₁} {t₂} refl refl = refl record State : Set where field field₁ : Tc field₂ : Tc isAsset : Bool data Targ : Set where arg-trans : Tc -> Perm -> Targ base : Tbase -> Targ IndirectRef : Set IndirectRef = Id ObjectRef : Set ObjectRef = Id data SimpleExpr : Set where var : Id -> SimpleExpr loc : IndirectRef -> SimpleExpr record Object : Set where field contractName : Id stateName : Id x₁ : SimpleExpr x₂ : SimpleExpr data Value : Set where boolVal : (b : Bool) ------------ → Value voidVal : Value objVal : ∀ (o : ObjectRef) -------------- → Value data Expr : Set where valExpr : Value → Expr simpleExpr : SimpleExpr → Expr fieldAccess : Id → Expr -- All field accesses are to 'this', so the field name suffices. assertₓ : Id → σ → Expr assertₗ : IndirectRef → σ → Expr new : Id → Id → SimpleExpr → SimpleExpr → Expr -- Contract, state, field values (always two of them). -- TODO: add the rest of the expressions objValInjective : ∀ {o o'} → o ≢ o' → objVal o ≢ objVal o' objValInjective {o} {.o} oNeqo' refl = oNeqo' refl objValInjectiveContrapositive : ∀ {o o'} → objVal o ≡ objVal o' → o ≡ o' objValInjectiveContrapositive {o} {o'} refl = refl record PublicTransaction : Set where constructor publicTransaction field retType : Type name : Id argType : Targ argName : Id initialState : Perm finalState : Perm expr : Expr -- TODO: add private transactions record Contract : Set where constructor contract field isAsset : Bool name : Id states : List State transactions : List PublicTransaction data Program : Set where program : List Contract -> Expr -> Program --============= Utilities ================ data FreeLocations : Expr → List IndirectRef → Set where boolFL : ∀ {b : Bool} → FreeLocations (valExpr (boolVal b)) [] varFL : ∀ {x : Id} → FreeLocations (simpleExpr (var x)) [] voidFL : FreeLocations (valExpr voidVal) [] objValFL : ∀ {o : ObjectRef} → FreeLocations (valExpr (objVal o)) [] locFL : ∀ (l : IndirectRef) → FreeLocations (simpleExpr (loc l)) [ l ] freeLocationsOfSimpleExpr : SimpleExpr → List IndirectRef freeLocationsOfSimpleExpr (var x) = [] freeLocationsOfSimpleExpr (loc l) = [ l ] freeLocations : Expr → List IndirectRef freeLocations (valExpr (boolVal b)) = [] freeLocations (simpleExpr (se)) = freeLocationsOfSimpleExpr se freeLocations (valExpr voidVal) = [] freeLocations (valExpr (objVal o)) = [] freeLocations (fieldAccess x) = [] freeLocations (assertₓ x x₁) = [] freeLocations (assertₗ l x₁) = [ l ] freeLocations (new _ _ f₁ f₂) = (freeLocationsOfSimpleExpr f₁) ++ (freeLocationsOfSimpleExpr f₂) data FreeVariables : Expr → List Id → Set where boolFL : ∀ {b : Bool} → FreeVariables (valExpr (boolVal b)) [] varFL : ∀ {x : Id} → FreeVariables (simpleExpr (var x)) [ x ] voidFL : FreeVariables (valExpr voidVal) [] objValFL : ∀ {o : ObjectRef} → FreeVariables (valExpr (objVal o)) [] locFL : ∀ (l : IndirectRef) → FreeVariables (simpleExpr (loc l)) [] data Closed : Expr → Set where closed : ∀ (e : Expr) → FreeVariables e [] -------------------- → Closed e freeVariablesOfSimpleExpr : SimpleExpr → List IndirectRef freeVariablesOfSimpleExpr (var x) = [ x ] freeVariablesOfSimpleExpr (loc l) = [] freeVariables : Expr → List IndirectRef freeVariables (valExpr (boolVal b)) = [] freeVariables (simpleExpr se) = freeVariablesOfSimpleExpr se freeVariables (valExpr voidVal) = [] freeVariables (valExpr (objVal o)) = [] freeVariables (fieldAccess x) = [] freeVariables (assertₓ x x₁) = [ x ] freeVariables (assertₗ l x₁) = [] freeVariables (new _ _ f₁ f₂) = (freeVariablesOfSimpleExpr f₁) ++ (freeVariablesOfSimpleExpr f₂) --=============== Static Semantics ================ -- A ContractEnv (written Γ) maps from Ids to contract definitions. module ContractEnv = Context Contract module TypeEnvContext = Context Type TypeEnv = TypeEnvContext.ctx open TypeEnvContext record StaticEnv : Set where constructor se field varEnv : TypeEnv locEnv : TypeEnv objEnv : TypeEnv _,ₓ_⦂_ : StaticEnv → Id → Type → StaticEnv Δ ,ₓ x ⦂ T = record Δ {varEnv = (StaticEnv.varEnv Δ) , x ⦂ T} _,ₗ_⦂_ : StaticEnv → Id → Type → StaticEnv Δ ,ₗ l ⦂ T = record Δ {locEnv = (StaticEnv.locEnv Δ) , l ⦂ T} _,ₒ_⦂_ : StaticEnv → Id → Type → StaticEnv Δ ,ₒ o ⦂ T = record Δ {objEnv = (StaticEnv.objEnv Δ) , o ⦂ T} -- Subtyping -- data _<:_ : Type → Type → Set where <:-refl : ∀ {T : Type} ---------------- → T <: T -- TODO: add more subtyping judgments -- Helper judgments -- --data _⊢_NotAsset : ContractEnv.ctx → Id → Set where data NotAsset : ContractEnv.ctx → Id → Set where inContext : {Γ : ContractEnv.ctx} → {id : Id} → (contr : Contract) → (p : Contract.isAsset contr ≡ false) → (q : (Γ ContractEnv.∋ id ⦂ contr)) ------------- → NotAsset Γ id -- Context strength -- data _<ₗ_ : TypeEnv → TypeEnv → Set where empty< : ∀ { Δ Δ' : TypeEnv} → (Δ' ≡ ∅) -------------- → Δ <ₗ Δ' nonempty< : ∀ {Δ Δ' Δ'' Δ''' : TypeEnv} → ∀ {l : ℕ} → ∀ {T T' : Type} → Δ' ≡ (Δ'' , l ⦂ T') → Δ ≡ (Δ''' , l ⦂ T) → T <: T' → Δ''' <ₗ Δ'' ------------- → Δ <ₗ Δ' data _<*_ : StaticEnv → StaticEnv → Set where * : ∀ {Δ Δ'} → (StaticEnv.locEnv Δ) <ₗ (StaticEnv.locEnv Δ') ----------------------------------------------- → Δ <* Δ' <ₗ-refl : ∀ {Δ : TypeEnv} → Δ <ₗ Δ <ₗ-refl {Context.∅} = empty< refl <ₗ-refl {Δ , x ⦂ x₁} = nonempty< refl refl (<:-refl) (<ₗ-refl {Δ}) <*-refl : ∀ {Δ : StaticEnv} → Δ <* Δ <*-refl = * <ₗ-refl <*-o-extension : ∀ {Δ o T} → (Δ ,ₒ o ⦂ T) <* Δ <*-o-extension {Δ} {o} {T} = * <ₗ-refl -- Splitting -- record SplitType : Set where constructor _⇛_/_ field t₁ : Type t₂ : Type t₃ : Type infix 4 _⊢_ data _⊢_ : ContractEnv.ctx -> SplitType -> Set where voidSplit : ∀ {Γ : ContractEnv.ctx} --------------- → Γ ⊢ (base Void) ⇛ (base Void) / (base Void) booleanSplit : ∀ {Γ : ContractEnv.ctx} -------------- → Γ ⊢ base Boolean ⇛ base Boolean / base Boolean -- split Unowned off of anything. unownedSplit : ∀ {Γ : ContractEnv.ctx} → ∀ {t1 t2 t3 : Tc} → (Tc.contractName t1) ≡ (Tc.contractName t2) → Tc.contractName t1 ≡ Tc.contractName t3 → (Tc.perm t1) ≡ (Tc.perm t2) → Tc.perm t3 ≡ Unowned -------------- → Γ ⊢ contractType t1 ⇛ contractType t2 / contractType t3 shared-shared-shared : ∀ {Γ : ContractEnv.ctx} → ∀ {t : Tc} → Tc.perm t ≡ Shared -------------------------------------------------------- → Γ ⊢ contractType t ⇛ contractType t / contractType t owned-shared : ∀ {c : Id} → ∀ {Γ : ContractEnv.ctx} → NotAsset Γ c -------------- → Γ ⊢ contractType (tc c Owned) ⇛ contractType (tc c Shared) / contractType (tc c Shared) states-shared : ∀ {s : σ} → ∀ {c : Id} → ∀ {Γ : ContractEnv.ctx} → NotAsset Γ c -------------- → Γ ⊢ contractType ( record {perm = S s ; contractName = c} ) ⇛ contractType ( record {perm = Shared ; contractName = c} ) / contractType ( record {perm = Shared ; contractName = c} ) splitType : ∀ {Γ : ContractEnv.ctx} → ∀ {t1 t2 t3 : Type} → Γ ⊢ t1 ⇛ t2 / t3 → SplitType splitType voidSplit = (base Void) ⇛ (base Void) / (base Void) splitType booleanSplit = base Boolean ⇛ base Boolean / base Boolean splitType (unownedSplit {Γ} {t1} {t2} {t3} eqNames1 eqNames2 eqPerms eqUnownedPerm) = contractType t1 ⇛ contractType t2 / contractType t3 splitType (shared-shared-shared {Γ} {t} _) = contractType t ⇛ contractType t / contractType t splitType (owned-shared {c} x) = contractType ( record {perm = Owned ; contractName = c} ) ⇛ contractType ( record {perm = Shared ; contractName = c} ) / contractType ( record {perm = Shared ; contractName = c} ) splitType (states-shared {s} {c} x) = contractType ( record {perm = S s ; contractName = c} ) ⇛ contractType ( record {perm = Shared ; contractName = c} ) / contractType ( record {perm = Shared ; contractName = c} ) splitTypeCorrect : ∀ {Γ} → ∀ {t1 t2 t3 : Type} → ∀ (p : Γ ⊢ t1 ⇛ t2 / t3) → splitType p ≡ t1 ⇛ t2 / t3 splitTypeCorrect voidSplit = refl splitTypeCorrect booleanSplit = refl splitTypeCorrect (unownedSplit x _ _ _) = refl splitTypeCorrect (shared-shared-shared _) = refl splitTypeCorrect (owned-shared x) = refl splitTypeCorrect (states-shared x) = refl ------------ Type judgments ---------------- data _⊢_⦂_⊣_ : StaticEnv → Expr → Type → StaticEnv → Set where varTy : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} → ∀ {T₁ T₂ T₃ : Type} → ∀ (x : Id) → Γ ⊢ T₁ ⇛ T₂ / T₃ ----------------------------------- → (Δ ,ₓ x ⦂ T₁) ⊢ (simpleExpr (var x)) ⦂ T₂ ⊣ (Δ ,ₓ x ⦂ T₃) locTy : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} → ∀ {T₁ T₂ T₃ : Type} → ∀ (l : IndirectRef) → Γ ⊢ T₁ ⇛ T₂ / T₃ ------------------------------------ → (Δ ,ₗ l ⦂ T₁) ⊢ (simpleExpr (loc l)) ⦂ T₂ ⊣ (Δ ,ₗ l ⦂ T₃) objTy : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} → ∀ {T₁ T₂ T₃ : Type} → ∀ (o : ObjectRef) → Γ ⊢ T₁ ⇛ T₂ / T₃ ------------------------------------ → (Δ ,ₒ o ⦂ T₁) ⊢ (valExpr (objVal o)) ⦂ T₂ ⊣ (Δ ,ₒ o ⦂ T₃) boolTy : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} → ∀ (b : Bool) ------------------------------------ → Δ ⊢ (valExpr (boolVal b)) ⦂ (base Boolean) ⊣ Δ voidTy : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} -------------------- → Δ ⊢ (valExpr voidVal) ⦂ base Void ⊣ Δ assertTyₓ : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} → ∀ {s₁ s₂ : σ} → ∀ {tc : Tc} → ∀ {x : Id} → Tc.perm tc ≡ S s₁ → s₁ ⊆ s₂ -------------------------- → (Δ ,ₓ x ⦂ (contractType tc)) ⊢ assertₓ x s₁ ⦂ base Void ⊣ (Δ ,ₓ x ⦂ (contractType tc)) assertTyₗ : ∀ {Γ : ContractEnv.ctx} → ∀ {Δ : StaticEnv} → ∀ {s₁ s₂ : σ} → ∀ {tc : Tc} → ∀ {l : IndirectRef} → Tc.perm tc ≡ S s₁ → s₁ ⊆ s₂ -------------------------- → (Δ ,ₗ l ⦂ (contractType tc)) ⊢ assertₗ l s₁ ⦂ base Void ⊣ (Δ ,ₗ l ⦂ (contractType tc)) newTy : ∀ {Γ Δ Δ' Δ''} → {states : List State} → {C st : Id} → {x₁ x₂ : SimpleExpr} → {T₁ T₂ Tf₁ Tf₂ : Tc} → ∀ {isCAsset isSAsset transactions} → (stOK : st < (length states)) → Δ ⊢ simpleExpr x₁ ⦂ (contractType T₁) ⊣ Δ' → Δ' ⊢ simpleExpr x₂ ⦂ (contractType T₂) ⊣ Δ'' → Γ ContractEnv.∋ C ⦂ (contract isCAsset C states transactions) → (Data.List.lookup states (Data.Fin.fromℕ≤ stOK)) ≡ record {field₁ = Tf₁ ; field₂ = Tf₂ ; isAsset = isSAsset} -------------------------- → Δ ⊢ new C st x₁ x₂ ⦂ (contractType (tc C (S [ st ]))) ⊣ Δ'' ------------ DYNAMIC SEMANTICS -------------- -- μ module ObjectRefContext = Context Object ObjectRefEnv = ObjectRefContext.ctx -- ρ module IndirectRefContext = Context Value -- TODO: require that these are all values IndirectRefEnv = IndirectRefContext.ctx -- φ module StateLockingContext = Context Bool StateLockingEnv = StateLockingContext.ctx -- ψ module ReentrancyContext = Context Bool ReentrancyEnv = ReentrancyContext.ctx record RuntimeEnv : Set where constructor re field μ : ObjectRefEnv ρ : IndirectRefEnv φ : StateLockingEnv ψ : ReentrancyEnv ----------- Reduction Rules ------------ data _,_⟶_,_ : RuntimeEnv → Expr → RuntimeEnv → Expr → Set where SElookup : -- of locations (i.e. let-bound variables) ∀ {Σ : RuntimeEnv} → ∀ {Δ Δ' : StaticEnv} → ∀ {T : Type} → ∀ {l : IndirectRef} → ∀ {v : Value} → Δ ⊢ (simpleExpr (loc l)) ⦂ T ⊣ Δ' → RuntimeEnv.ρ Σ IndirectRefContext.∋ l ⦂ v ----------------------------------------------------------- → (Σ , (simpleExpr (loc l)) ⟶ Σ , valExpr v) SEassertₓ : ∀ {Σ : RuntimeEnv} → ∀ (x : Id) → ∀ (s : σ) -------------- → (Σ , assertₓ x s ⟶ Σ , valExpr voidVal) SEassertₗ : ∀ {Σ : RuntimeEnv} → ∀ (l : IndirectRef) → ∀ (s : σ) -------------- → (Σ , assertₗ l s ⟶ Σ , valExpr voidVal) SEnew : ∀ {Σ μ' Σ' C st x₁ x₂ o} → o ObjectRefContext.∉dom (RuntimeEnv.μ Σ) → μ' ≡ (RuntimeEnv.μ Σ) ObjectRefContext., o ⦂ record { contractName = C ; stateName = st ; x₁ = x₁ ; x₂ = x₂ } → Σ' ≡ record Σ {μ = μ'} ------------- → (Σ , new C st x₁ x₂ ⟶ Σ' , valExpr (objVal o))
{ "alphanum_fraction": 0.5345861868, "avg_line_length": 32.2, "ext": "agda", "hexsha": "4ed3de585ac35d4362ebbba301bc024ba4e1bfa7", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z", "max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ivoysey/Obsidian", "max_forks_repo_path": "formalization/silica.agda", "max_issues_count": 259, "max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ivoysey/Obsidian", "max_issues_repo_path": "formalization/silica.agda", "max_line_length": 218, "max_stars_count": 79, "max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ivoysey/Obsidian", "max_stars_repo_path": "formalization/silica.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z", "max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z", "num_tokens": 5967, "size": 18837 }
-- labeled λ-calculus module IntrinsicallyTypedLLC where open import Data.List open import Data.List.Relation.Unary.All open import Data.List.Base open import Data.Vec hiding (_++_) open import Data.Unit hiding (_≤_) open import Data.Nat hiding (_≤_) open import Data.Fin.Subset open import Data.Fin.Subset.Properties open import Data.Fin hiding (_≤_) open import Data.Product open import Data.Empty open import Relation.Binary -- definitions data Ty (nl : ℕ) : Set where -- nl ~ (max.) number of labels Tunit : Ty nl Tlabel : Subset nl → Ty nl Tfun : Ty nl → Ty nl → Ty nl TEnv : ℕ → Set TEnv nl = List (Ty nl) data _≤_ {nl} : Ty nl → Ty nl → Set where Sunit : Tunit ≤ Tunit Slabel : ∀ {snl snl'} → snl ⊆ snl' → (Tlabel snl) ≤ (Tlabel snl') Sfun : ∀ {A A' B B'} → A' ≤ A → B ≤ B' → (Tfun A B) ≤ (Tfun A' B') data _∈`_ {nl : ℕ} : Ty nl → TEnv nl → Set where here : ∀ {lt φ} → lt ∈` (lt ∷ φ) there : ∀ {lt lt' φ} → lt ∈` φ → lt ∈` (lt' ∷ φ) data Exp {nl : ℕ} : TEnv nl → Ty nl → Set where Unit : ∀ {φ} → Exp φ Tunit Var : ∀ {φ t} → (x : t ∈` φ) → Exp φ t -- t ∈` φ gives us the position of "x" in env SubType : ∀ {A A' φ} → Exp φ A → A ≤ A' → Exp φ A' Lab-I : ∀ {l snl φ} → l ∈ snl → Exp φ (Tlabel snl) Lab-E : ∀ {snl φ B} → Exp φ (Tlabel snl) → (∀ l → l ∈ snl → Exp φ B) → Exp φ B Abs : ∀ {B A φ} → Exp (A ∷ φ) B → Exp φ (Tfun A B) App : ∀ {A B φ} → Exp φ (Tfun A B) → (ex : Exp φ A) → Exp φ B -- subtyping properties ≤-trans : ∀ {nl} {t t' t'' : Ty nl} → t ≤ t' → t' ≤ t'' → t ≤ t'' ≤-trans Sunit Sunit = Sunit ≤-trans (Slabel snl⊆snl') (Slabel snl'⊆snl'') = Slabel (⊆-trans snl⊆snl' snl'⊆snl'') ≤-trans (Sfun a'≤a b≤b') (Sfun a''≤a' b'≤b'') = Sfun (≤-trans a''≤a' a'≤a) (≤-trans b≤b' b'≤b'') ≤-refl : ∀ {nl} → (t : Ty nl) → t ≤ t ≤-refl Tunit = Sunit ≤-refl (Tlabel x) = Slabel (⊆-refl) ≤-refl (Tfun t t') = Sfun (≤-refl t) (≤-refl t') -- big-step semantics Val : ∀ {nl} → Ty nl → Set Val Tunit = Data.Unit.⊤ Val {nl} (Tlabel snl) = Σ (Fin nl) (λ l → l ∈ snl) Val (Tfun ty ty₁) = (Val ty) → (Val ty₁) coerce : ∀ {nl} {t t' : Ty nl} → t ≤ t' → Val t → Val t' -- supertype of a Value is also a Value coerce Sunit t = tt coerce (Slabel snl⊆snl') (Finnl , Finnl∈snl) = (Finnl , (snl⊆snl' Finnl∈snl)) coerce (Sfun A'≤A B≤B') f = λ x → coerce B≤B' (f (coerce A'≤A x)) access : ∀ {nl} {t : Ty nl} {φ} → t ∈` φ → All Val φ → Val t access here (px ∷ ρ) = px access (there x) (px ∷ ρ) = access x ρ eval : ∀ {nl φ t} → Exp {nl} φ t → All Val φ → Val t eval Unit ϱ = tt eval (Var x) ϱ = access x ϱ eval (SubType e a≤a') ϱ = coerce a≤a' (eval e ϱ) eval (Lab-I {l} l∈snl) ϱ = l , (l∈snl) eval (Lab-E e case) ϱ with eval e ϱ ... | lab , lab∈nl = eval (case lab lab∈nl) ϱ eval (Abs e) ϱ = λ x → eval e (x ∷ ϱ) eval (App e e₁) ϱ = (eval e ϱ) (eval e₁ ϱ) -- small-step semantics -- substitution taken from PLFA ext : ∀ {nl φ ψ} → (∀ {A : Ty nl} → A ∈` φ → A ∈` ψ) → (∀ {A B} → A ∈` (B ∷ φ) → A ∈` (B ∷ ψ)) ext ϱ here = here ext ϱ (there x) = there (ϱ x) rename : ∀ {nl φ ψ} → (∀ {A : Ty nl} → A ∈` φ → A ∈` ψ) → (∀ {A} → Exp φ A → Exp ψ A) rename ϱ Unit = Unit rename ϱ (Var x) = Var (ϱ x) rename ϱ (SubType expr:A' A'≤A) = SubType (rename ϱ expr:A') A'≤A rename {ψ} ϱ (Lab-I l∈snl) = Lab-I {ψ} l∈snl rename ϱ (Lab-E expr:snl case) = Lab-E (rename ϱ expr:snl) λ l l∈snl → (rename ϱ (case l l∈snl)) rename ϱ (Abs expr:B) = Abs (rename (ext ϱ) expr:B) rename ϱ (App expr:A->B expr:A) = App (rename ϱ expr:A->B) (rename ϱ expr:A) exts : ∀ {nl φ ψ} → (∀ {A : Ty nl} → A ∈` φ → Exp ψ A) → (∀ {A B} → A ∈` (B ∷ φ) → Exp (B ∷ ψ) A) exts ϱ here = Var (here) exts ϱ (there x) = rename there (ϱ x) subst : ∀ {nl φ ψ} → (∀ {A : Ty nl} → A ∈` φ → Exp ψ A) -- simult. substitution → (∀ {A : Ty nl} → Exp φ A → Exp ψ A) subst ϱ Unit = Unit subst ϱ (Var x) = ϱ x subst ϱ (SubType expr:A' A'≤A) = SubType (subst ϱ expr:A') A'≤A subst {ψ} ϱ (Lab-I l∈snl) = Lab-I {ψ} l∈snl subst ϱ (Lab-E expr:snl case) = Lab-E (subst ϱ expr:snl) λ l l∈snl → (subst ϱ (case l l∈snl)) subst ϱ (Abs expr:B) = Abs (subst (exts ϱ) expr:B) subst ϱ (App expr:A→B expr:A) = App (subst ϱ expr:A→B) (subst ϱ expr:A) _[[_]] : ∀ {nl φ} {A B : Ty nl} → Exp (B ∷ φ) A → Exp φ B → Exp φ A -- single substitution _[[_]] {nl} {φ} {A} {B} N M = subst {nl} {B ∷ φ} {φ} ϱ {A} N where ϱ : ∀ {A} → A ∈` (B ∷ φ) → Exp φ A ϱ here = M ϱ (there x) = Var x expansionlemma : ∀ {nl} {lt : Ty nl} {φ φ'} → lt ∈` φ' → lt ∈` (φ' ++ φ) expansionlemma here = here expansionlemma (there x) = there (expansionlemma x) extensionlemma : ∀ {nl} {lt : Ty nl} {φ φ'} → lt ∈` φ → lt ∈` (φ' ++ φ) extensionlemma {φ' = []} here = here extensionlemma {φ' = x ∷ xs} here = there (extensionlemma{φ' = xs} here) extensionlemma {φ' = []} (there y) = there y extensionlemma {φ' = x ∷ xs} (there y) = there (extensionlemma {φ' = xs} (there y)) inextdebr : ∀ {nl} {B A : Ty nl} {φ' φ} → B ∈` (φ' ++ φ) → B ∈` (φ' ++ (A ∷ φ)) inextdebr {φ' = []} here = there here inextdebr {φ' = []} (there x) = there (there x) inextdebr {φ' = x ∷ xs} here = here inextdebr {φ' = x ∷ xs} (there y) = there (inextdebr{φ' = xs} y) inext : ∀ {nl} {φ φ'} {A B : Ty nl} → Exp (φ' ++ φ) B → Exp (φ' ++ (A ∷ φ)) B inext Unit = Unit inext {φ' = φ'} (Var x) = Var (inextdebr{φ' = φ'} x) inext {φ = φ}{φ' = φ'} (SubType expr b≤b') = SubType (inext{φ = φ}{φ' = φ'} expr) b≤b' inext (Lab-I x) = Lab-I x inext {φ = φ} {φ' = φ'} (Lab-E x x₁) = Lab-E (inext{φ = φ}{φ' = φ'} x) λ l x₂ → inext{φ = φ}{φ' = φ'} (x₁ l x₂) inext {nl} {φ} {φ'} (Abs{A = A°} x) = Abs (inext{φ = φ}{φ' = A° ∷ φ'} x) inext {φ = φ} {φ' = φ'} (App x x₁) = App (inext{φ = φ}{φ' = φ'} x) (inext{φ = φ}{φ' = φ'} x₁) debrsub : ∀ {nl} {B B' A A' : Ty nl} {φ' φ} → B ∈` (φ' ++ (A ∷ φ)) → A' ≤ A → B ≤ B' → Exp (φ' ++ (A' ∷ φ)) B' debrsub {φ' = []} here a'≤a b≤b' = SubType (Var here) (≤-trans a'≤a b≤b') debrsub {φ' = []} (there x) a'≤a b≤b' = SubType (Var (there x)) b≤b' debrsub {φ' = x ∷ xs} here a'≤a b≤b' = SubType (Var (here)) b≤b' debrsub {φ' = x ∷ xs} (there z) a'≤a b≤b' = inext{φ' = []}{A = x} (debrsub{φ' = xs} z a'≤a b≤b') typesub : ∀ {nl φ φ' A B A' B'} → Exp{nl} (φ' ++ (A ∷ φ)) B → A' ≤ A → B ≤ B' → Exp (φ' ++ (A' ∷ φ)) B' -- subtyping "substitution" typesub Unit a'≤a Sunit = Unit typesub {φ = φ} {φ'} {A} {B} {A'} {B'} (Var x) a'≤a b≤b' = debrsub{φ' = φ'}{φ = φ} x a'≤a b≤b' typesub {nl} {φ} {φ'} (SubType expr x) a'≤a b≤b' = typesub{nl}{φ}{φ'} expr a'≤a (≤-trans x b≤b') typesub (Lab-I l∈snl) a'≤a b≤b' = SubType (Lab-I l∈snl) b≤b' typesub {nl} {φ} {φ'} (Lab-E{snl = snl} expr cases) a'≤a b≤b' = Lab-E (typesub{nl}{φ}{φ'} expr a'≤a (≤-refl (Tlabel snl))) λ l x → typesub{nl}{φ}{φ'} (cases l x) a'≤a b≤b' typesub {φ' = φ'}{A = A}{B = A°→B°}{A' = A'}{B' = A°°→B°°} (Abs{A = A°} expr) a'≤a (Sfun{A = .A°}{A' = A°°}{B = B°}{B' = B°°} A°°≤A° B°≤B°°) = SubType (Abs (typesub{φ' = A° ∷ φ'} expr a'≤a B°≤B°°)) (Sfun A°°≤A° (≤-refl B°°)) typesub {nl}{φ}{φ'}{A}{B}{A'}{B'} (App{A = A°}{B = .B} expr expr') a'≤a b≤b' = SubType (App (typesub{nl}{φ}{φ'} expr a'≤a (≤-refl (Tfun A° B))) (typesub{nl}{φ}{φ'} expr' a'≤a (≤-refl A°))) b≤b' -- we force values to have type SubType, since Lab-I results in expressions with type {l} -- and we want to keep the information about which subset l is in data Val' {n φ} : (t : Ty n) → Exp {n} φ t → Set where Vunit : Val' (Tunit) Unit Vlab : ∀ {l snl l∈snl} → Val' (Tlabel snl) (Lab-I{l = l}{snl} l∈snl) Vfun : ∀ {A B exp} → Val' (Tfun A B) (Abs exp) data _~>_ {n φ} : {A : Ty n} → Exp {n} φ A → Exp {n} φ A → Set where -- small-steps semantics relation (call-by-value) ξ-App1 : ∀ {A B} {L L' : (Exp φ (Tfun B A))} {M} → L ~> L' → App L M ~> App L' M ξ-App2 : ∀ {A B} {M M' : Exp φ A} {L : Exp φ (Tfun A B)} → Val' (Tfun A B) L → M ~> M' → App L M ~> App L M' β-App : ∀ {A B M exp} → Val' B M → App{B = A} (Abs exp) M ~> (exp [[ M ]]) ξ-SubType : ∀ {A A' A≤A' } {L L' : Exp φ A} → L ~> L' → SubType{A = A}{A'} L A≤A' ~> SubType{A = A} L' A≤A' ξ-Lab-E : ∀ {A snl} {L L' : Exp φ (Tlabel snl)} {cases} → L ~> L' → Lab-E{B = A} L cases ~> Lab-E L' cases β-Lab-E : ∀ {A l snl l∈snl cases} → Lab-E{B = A} (Lab-I{l = l}{snl} l∈snl) cases ~> cases l (l∈snl) γ-Lab-I : ∀ {l snl snl'} {l∈snl : l ∈ snl} {snl⊆snl' : snl ⊆ snl'} → SubType (Lab-I{l = l}{snl = snl} l∈snl) (Slabel snl⊆snl') ~> Lab-I (snl⊆snl' l∈snl) γ-Abs : ∀ {A B A' B' e} {A'≤A : A' ≤ A} {B≤B' : B ≤ B'} → SubType (Abs{B = B}{A = A} e) (Sfun A'≤A B≤B') ~> Abs{B = B'}{A = A'} (typesub{φ' = []} e A'≤A B≤B') γ-SubType : ∀ {A A' A'' A≤A' A'≤A'' expr} → SubType{A = A'}{A' = A''} (SubType{A = A} expr A≤A') A'≤A'' ~> SubType expr (≤-trans A≤A' A'≤A'') -- either we define Unit values to be SubTypes of Unit≤Unit; or we introducte the following rule β-SubType-Unit : SubType Unit Sunit ~> Unit -- properties of small-step evaluation infix 2 _~>>_ -- refl. transitive closure infix 1 begin_ infixr 2 _~>⟨_⟩_ infix 3 _∎ data _~>>_ : ∀ {n} {φ} {A : Ty n} → Exp φ A → Exp φ A → Set where _∎ : ∀ {n φ} {A : Ty n} (L : Exp φ A) → L ~>> L _~>⟨_⟩_ : ∀ {n φ} {A : Ty n} (L : Exp φ A) {M N : Exp φ A} → L ~> M → M ~>> N → L ~>> N begin_ : ∀ {n φ} {A : Ty n} {M N : Exp φ A} → M ~>> N → M ~>> N begin M~>>N = M~>>N -- progress theorem data Progress {n A} (M : Exp{n} [] A) : Set where step : ∀ {N : Exp [] A} → M ~> N → Progress M done : Val' A M → Progress M -- proof progress : ∀ {n A} → (M : Exp{n} [] A) → Progress M progress Unit = done Vunit progress (Var ()) -- Var requires a proof for A ∈ [] which cannot exist progress (SubType Unit Sunit) = step β-SubType-Unit progress (SubType (Var ()) A'≤A) progress (SubType (SubType expr:A' x) A'≤A) = step γ-SubType progress (SubType (Lab-I{l}{snl} l∈snl) (Slabel{snl' = snl'} snl⊆snl')) = step γ-Lab-I progress (SubType (Lab-E expr:A' x) A'≤A) with progress (Lab-E expr:A' x) ... | step a = step (ξ-SubType a) ... | done () -- Lab-E without SubType can't be a value progress (SubType (Abs expr:A') (Sfun A'≤A B≤B')) with progress (Abs expr:A') ... | step a = step (ξ-SubType a) ... | done Vfun = step γ-Abs progress (SubType (App expr:A' expr:A'') A'≤A) with progress (expr:A') ... | step a = step (ξ-SubType (ξ-App1 a)) ... | done Vfun with progress (expr:A'') ... | step b = step (ξ-SubType (ξ-App2 Vfun b)) ... | done val = step (ξ-SubType (β-App val)) progress (Lab-I l∈snl) = done Vlab progress (Lab-E expr cases) with progress expr ... | step expr~>expr' = step (ξ-Lab-E expr~>expr') ... | done Vlab = step (β-Lab-E) progress (Abs expr) = done Vfun progress (App L M) with progress L ... | step L~>L' = step (ξ-App1 L~>L') ... | done Vfun with progress M ... | step M~>M' = step (ξ-App2 Vfun M~>M') ... | done x = step (β-App x) -- generation of evaluation sequences -- taken from plfa data Gas : Set where gas : ℕ → Gas data Finished {n φ A} (N : Exp{n} φ A) : Set where done : Val' A N → Finished N out-of-gas : Finished N data Steps : ∀ {n A} → Exp{n} [] A → Set where steps : ∀ {n A} {L N : Exp{n} [] A} → L ~>> N → Finished N → Steps L eval' : ∀ {n A} → Gas → (L : Exp{n} [] A) → Steps L eval' (gas zero) L = steps (L ∎) out-of-gas eval' (gas (suc m)) L with progress L ... | done VL = steps (L ∎) (done VL) ... | step {M} L~>M with eval' (gas m) M ... | steps M~>>N fin = steps (L ~>⟨ L~>M ⟩ M~>>N) fin -- examples -- (λ (x : Unit) → x) (Unit) ex0 : Exp{suc zero} [] Tunit ex0 = App (Abs (Unit{φ = (Tunit ∷ [])})) (Unit) _ : ex0 ~>> Unit _ = begin App (Abs (Unit)) (Unit) ~>⟨ β-App (Vunit) ⟩ Unit ∎ ex1 : Exp{suc zero} [] Tunit ex1 = Lab-E (Lab-I (x∈⁅x⁆ zero)) λ l x → Unit _ : ex1 ~>> Unit _ = begin Lab-E (Lab-I (x∈⁅x⁆ zero)) (λ l x → Unit) ~>⟨ β-Lab-E ⟩ Unit ∎ ex2 : Exp{suc zero} [] Tunit ex2 = App (SubType (Abs Unit) (Sfun Sunit Sunit)) Unit -- proof that {inside, outside} ⊆ {inside, inside} -- i.e. {0} ⊆ {0, 1} x⊆y : (inside ∷ outside ∷ []) ⊆ (inside ∷ inside ∷ []) x⊆y {.zero} here = here x⊆y {.(suc (suc _))} (there (there ())) -- proof that zero is in (inside ∷ outside ∷ []) -- i.e. 0 ∈ {0} l∈snl : (zero) ∈ (inside ∷ outside ∷ []) l∈snl = here -- [({0, 1}→{0, 1} <: {0}→{0, 1}) (λ x : {0, 1} . x)] 0 ex3 : Exp{suc (suc zero)} [] (Tlabel (inside ∷ inside ∷ [])) ex3 = App (SubType (Abs{A = Tlabel (inside ∷ inside ∷ [])} (Var here)) (Sfun (Slabel{snl = (inside ∷ outside ∷ [])} x⊆y) (≤-refl (Tlabel (inside ∷ inside ∷ []))))) (Lab-I l∈snl)
{ "alphanum_fraction": 0.4336877076, "avg_line_length": 42.5141242938, "ext": "agda", "hexsha": "f392b403d10abf124168fc910aeeae3f6cf99473", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kcaliban/ldlc", "max_forks_repo_path": "src/llc/IntrinsicallyTypedLLC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kcaliban/ldlc", "max_issues_repo_path": "src/llc/IntrinsicallyTypedLLC.agda", "max_line_length": 196, "max_stars_count": null, "max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kcaliban/ldlc", "max_stars_repo_path": "src/llc/IntrinsicallyTypedLLC.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5861, "size": 15050 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Wrapper for the erased modality -- -- This allows us to store erased proofs in a record and use projections -- to manipulate them without having to turn on the unsafe option -- --irrelevant-projections. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Erased where open import Level using (Level) private variable a b c : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Type record Erased (A : Set a) : Set a where constructor [_] field .erased : A open Erased public ------------------------------------------------------------------------ -- Algebraic structure: Functor, Appplicative and Monad-like map : (A → B) → Erased A → Erased B map f [ a ] = [ f a ] pure : A → Erased A pure x = [ x ] infixl 4 _<*>_ _<*>_ : Erased (A → B) → Erased A → Erased B [ f ] <*> [ a ] = [ f a ] infixl 1 _>>=_ _>>=_ : Erased A → (.A → Erased B) → Erased B [ a ] >>= f = f a ------------------------------------------------------------------------ -- Other functions zipWith : (A → B → C) → Erased A → Erased B → Erased C zipWith f a b = ⦇ f a b ⦈
{ "alphanum_fraction": 0.4401220442, "avg_line_length": 24.2777777778, "ext": "agda", "hexsha": "4e74ce3df4186e3db9ac2938b8341451fc63cb6e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Erased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Erased.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Erased.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 324, "size": 1311 }
open import Signature -- | In this module, we construct the free monad and the free completely -- iterative monad over a signature Σ (see Aczel, Adamek, Milius and Velebil). -- The first assigns to a set V of variables the set TV of finite terms over Σ -- (that is, finite trees labelled with symbols in f ∈ ∥Σ∥ and ar(f) branching). -- The second extends this to also allow for infinite trees, the set of those -- is then denoted by T∞(V). -- Categorically, T(V) is the initial (Σ + V)-algebra, whereas T∞(V) is the -- final (Σ + V)-coalgebra. module Terms (Σ : Sig) where open import Function open import Data.Empty open import Data.Unit hiding (_≤_) open import Data.Product as Prod renaming (Σ to ⨿) open import Data.Nat as Nat open import Data.Sum as Sum open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Binary hiding (_⇒_) open import Relation.Unary hiding (_⇒_) import Streams as Str open import Streams hiding (corec) -- | Natural transformations Nat : (Set → Set) → (Set → Set) → Set₁ Nat F G = ∀{X} → F X → G X Id : Set → Set Id = id least : {X : Set} (_⊑_ : Rel X _) (P : X → Set) → X → Set least _⊑_ P x = (P x) × (∀ {y} → P y → x ⊑ y) least-unique : {X : Set} {_⊑_ : Rel X _} → (IsTotalOrder _≡_ _⊑_) → {P : X → Set} → (x y : X) → least _⊑_ P x → least _⊑_ P y → x ≡ y least-unique isTO x y (p , l₁) (q , l₂) with IsTotalOrder.total isTO x y least-unique isTO x y (p , l₁) (q , l₂) | inj₁ x⊑y = IsTotalOrder.antisym isTO x⊑y (l₂ p) least-unique isTO x y (p , l₁) (q , l₂) | inj₂ y⊑x = IsTotalOrder.antisym isTO (l₁ q) y⊑x infixr 1 _⇒_ _⇒_ = Nat data T (V : Set) : Set where sup : ⟪ Σ ⟫ (T V) ⊎ V → T V rec : ∀{V X} → (f : ⟪ Σ ⟫ X ⊎ V → X) → T V → X rec f (sup (inj₁ (s , α))) = f (inj₁ (s , λ i → rec f (α i))) rec f (sup (inj₂ y)) = f (inj₂ y) -- | Functor T, on morphisms T₁ : ∀ {V W} → (V → W) → T V → T W T₁ f = rec (sup ∘ Sum.map id f) η : Id ⇒ T η = sup ∘ inj₂ μ : T ∘ T ⇒ T μ {V} = rec f where f : ⟪ Σ ⟫ (T V) ⊎ T V → T V f = [ sup ∘ inj₁ , id ] -- | T is free over Σ with inclusion ι : ⟪ Σ ⟫ ⇒ T ι = sup ∘ inj₁ ∘ ⟪ Σ ⟫₁ η -- | Kleisli morphsims for T∞ V Subst : Set → Set → Set Subst V W = V → T W infixr 9 _•_ -- | Kleisli composition _•_ : ∀ {U V W} → Subst V W → Subst U V → Subst U W τ • σ = μ ∘ T₁ τ ∘ σ -- | Application of substitutions to infinite terms app : ∀ {V W} → Subst V W → T V → T W app σ = μ ∘ T₁ σ infixl 1 _≡ₛ_ _≡ₛ_ : ∀{V W} → Rel (Subst V W) _ σ ≡ₛ τ = ∀ {v} → σ v ≡ τ v -- | Order on subsitutions _⊑_ : ∀{V W} → Rel (Subst V W) _ σ₁ ⊑ σ₂ = ∃ λ σ → σ • σ₁ ≡ₛ σ₂ matches : ∀{V W} → T V → T W → Subst V W → Set matches t s σ = app σ t ≡ s -- | Most general matcher mgm : ∀{V W} → T V → T W → Subst V W → Set mgm t s = least _⊑_ (matches t s) unifies : ∀{V W} → T V → T V → Subst V W → Set unifies t s σ = app σ t ≡ app σ s -- | Most general unifier mgu : ∀{V W} → T V → T V → Subst V W → Set mgu t s = least _⊑_ (unifies t s) -- | Free variables fv : ∀{V} → T V → Pred V _ fv (sup (inj₁ (s , α))) v = ⨿ (Sig.ar Σ s) λ i → (fv (α i) v) fv (sup (inj₂ v₁)) v = v₁ ≡ v isVar : ∀{V} → Pred (T V) _ isVar (sup (inj₁ x)) = ⊥ isVar (sup (inj₂ y)) = ⊤ record T∞ (V : Set) : Set where coinductive field out : ⟪ Σ ⟫ (T∞ V) ⊎ V open T∞ public sum-lift : {A B : Set} (R₁ : A → A → Set) (R₂ : B → B → Set) (x y : A ⊎ B) → Set sum-lift R₁ R₂ (inj₁ x) (inj₁ y) = R₁ x y sum-lift R₁ R₂ (inj₁ x) (inj₂ y) = ⊥ sum-lift R₁ R₂ (inj₂ x) (inj₁ y) = ⊥ sum-lift R₁ R₂ (inj₂ x) (inj₂ y) = R₂ x y ~-data : ∀{V} (R : T∞ V → T∞ V → Set) (u w : ⟪ Σ ⟫ (T∞ V) ⊎ V) → Set ~-data R = sum-lift (sig-lift R) _≡_ record _~_ {V : Set} (t s : T∞ V) : Set where coinductive field out~ : ~-data _~_ (out t) (out s) open _~_ public corec : ∀{V X} → (f : X → ⟪ Σ ⟫ X ⊎ V) → X → T∞ V out (corec f x) with f x ... | inj₁ (s , α) = inj₁ (s , (λ i → corec f (α i))) ... | inj₂ v = inj₂ v prim-corec : ∀{V X} → (f : X → ⟪ Σ ⟫ X ⊎ V ⊎ T∞ V) → X → T∞ V out (prim-corec {V} {X} f x) with f x ... | inj₁ (s , α) = inj₁ (s , (λ i → prim-corec f (α i))) ... | inj₂ (inj₁ v) = inj₂ v ... | inj₂ (inj₂ t) = out t sup∞ : ∀{V} → ⟪ Σ ⟫ (T∞ V) ⊎ V → T∞ V out (sup∞ (inj₁ u)) = inj₁ u out (sup∞ (inj₂ v)) = inj₂ v -- | Functor T∞, on morphisms T∞₁ : ∀ {V W} → (V → W) → T∞ V → T∞ W T∞₁ f = corec (Sum.map id f ∘ out) η∞ : Id ⇒ T∞ η∞ = sup∞ ∘ inj₂ μ∞ : T∞ ∘ T∞ ⇒ T∞ μ∞ {V} = corec f where g : T∞ V → ⟪ Σ ⟫ (T∞ (T∞ V)) ⊎ V g = Sum.map (⟪ Σ ⟫₁ η∞) id ∘ out f : T∞ (T∞ V) → ⟪ Σ ⟫ (T∞ (T∞ V)) ⊎ V f = [ inj₁ , g ] ∘ out ι∞ : ⟪ Σ ⟫ ⇒ T∞ ι∞ {V} = g ∘ inj₁ where g : ⟪ Σ ⟫ V ⊎ T∞ V → T∞ V g = prim-corec [ inj₁ ∘ ⟪ Σ ⟫₁ (inj₂ ∘ η∞) , inj₂ ∘ inj₂ ] -- | T is a submonad of T∞ χ : T ⇒ T∞ χ = rec sup∞ -- | Kleisli morphsims for T∞ V Subst∞ : Set → Set → Set Subst∞ V W = V → T∞ W infixl 1 _≡ₛ∞_ _≡ₛ∞_ : ∀{V W} → Rel (Subst∞ V W) _ σ ≡ₛ∞ τ = ∀ {v} → σ v ~ τ v infixr 9 _•∞_ -- | Kleisli composition _•∞_ : ∀ {U V W} → Subst∞ V W → Subst∞ U V → Subst∞ U W τ •∞ σ = μ∞ ∘ T∞₁ τ ∘ σ -- | Application of substitutions to infinite terms app∞ : ∀ {V W} → Subst∞ V W → T∞ V → T∞ W app∞ σ = μ∞ ∘ T∞₁ σ isVar∞ : ∀{V} → Pred (T∞ V) _ isVar∞ t with out t isVar∞ t | inj₁ x = ⊥ isVar∞ t | inj₂ v = ⊤ varNowOrLater : ∀{V} → (T∞ V → Pred V _) → T∞ V → Pred V _ varNowOrLater R t v with out t ... | inj₁ (f , α) = ∃ (λ i → R (α i) v) ... | inj₂ v₁ = v ≡ v₁ record fv∞ {V : Set} (t : T∞ V) (v : V) : Set where coinductive field isFv∞ : varNowOrLater fv∞ t v root-matches : ∀{V} → T V → ∥ Σ ∥ → Set root-matches (sup (inj₁ (g , _))) f = g ≡ f root-matches (sup (inj₂ y)) f = ⊥ record RootsMatch {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) : Set where coinductive field hd-match : root-matches (hd s) f tl-match : RootsMatch (tl s) f open RootsMatch -- | Nasty hack: assume that RootsMatch is propositional postulate RootsMatch-unique : ∀{V} {s : Stream (T V)} {f : ∥ Σ ∥} (p q : RootsMatch s f) → p ≡ q split : {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) → RootsMatch s f → ar Σ f → Stream (T V) hd (split s f p i) with hd s | hd-match p hd (split s f p i) | sup (inj₁ (.f , α)) | refl = α i hd (split s f p i) | sup (inj₂ y) | () tl (split s f p i) = split (tl s) f (tl-match p) i root-matches∞ : ∀{V} → T∞ V → ∥ Σ ∥ → Set root-matches∞ t f with out t root-matches∞ t f | inj₁ (g , _) = f ≡ g root-matches∞ t f | inj₂ v = ⊥ split∞ : {V : Set} → (t : T∞ V) (f : ∥ Σ ∥) → root-matches∞ t f → ar Σ f → T∞ V split∞ t f p i with out t split∞ t f refl i | inj₁ (.f , α) = α i split∞ t f () i | inj₂ y data AnyRootMatch {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) : Stream (T V) → Set where match-hd : root-matches (hd s) f → AnyRootMatch s f s match-tl : AnyRootMatch (tl s) f (tl s) → AnyRootMatch s f (tl s) first-root-match : ∀{V} → Stream (T V) → ∥ Σ ∥ → ℕ → Set first-root-match s f = least _≤_ (λ k → root-matches (s at k) f) conv-branch : {V : Set} (R : Stream (T V) → T∞ V → Set) → Stream (T V) → T∞ V → T V → ⟪ Σ ⟫ (T∞ V) ⊎ V → Set conv-branch R s t (sup (inj₁ (f , α))) (inj₁ (g , β)) = ⨿ (f ≡ g) λ p → ⨿ (RootsMatch (tl s) f) λ q → ∀ i → R (split (tl s) f q i) (β (subst (ar Σ) p i)) conv-branch R s t (sup (inj₁ (f , α))) (inj₂ v) = ⊥ conv-branch R s t (sup (inj₂ v)) (inj₁ (f , α)) = ∃ λ s' → AnyRootMatch s f s' × R s' t conv-branch R s t (sup (inj₂ v)) (inj₂ w) = v ≡ w × R (tl s) t {- conv-branch : {V : Set} (R : Stream (T V) → T∞ V → Set) → Stream (T V) → T∞ V → Set conv-branch R s t with hd s | out t conv-branch R s t | sup (inj₁ (f , α)) | inj₁ (g , β) = ⨿ (f ≡ g) λ p → ⨿ (RootsMatch (tl s) f) λ q → ∀ i → R (split (tl s) f q i) (β (subst (ar Σ) p i)) conv-branch R s t | sup (inj₁ x) | inj₂ v = ⊥ conv-branch R s t | sup (inj₂ v) | inj₁ (f , α) = ∃ λ n → first-root-match s f n × R (δ n s) t conv-branch R s t | sup (inj₂ v) | inj₂ w = v ≡ w × R (tl s) t -} -- | A sequence s of finite terms converges to a possibly infinite term, -- if for all i, sᵢ₊₁ = sᵢ[σ] for some substitution σ : V → T V and t = sᵢ[τ] -- for some τ : V → T∞ V. -- Note that this coincides with convergence in the prefix metric. record _→∞_ {V : Set} (s : Stream (T V)) (t : T∞ V) : Set where coinductive field conv-out : conv-branch _→∞_ s t (hd s) (out t) {- hd-matches : ∃ λ σ → hd (tl s) ≡ app σ (hd s) hd-prefix : ∃ λ τ → t ~ app∞ τ (χ (hd s)) tl-converges : tl s →∞ t -} open _→∞_ public {- lem₂ : ∀{V n f} {s : Stream (T V)} → first-root-match s f (suc n) → first-root-match (tl s) f n lem₂ {n = n} {f} {s} (p , q) = (p , λ m → ≤-pred (q m)) -} {- lem₃ : ∀{V f} (s : Stream (T V)) → ∀{t} → first-root-match s f zero → s →∞ t → first-root-match (tl s) f zero lem₃ s {t} m c with hd s | out t | conv-out c lem₃ s (refl , q) c | sup (inj₁ _) | inj₁ _ | refl , p , _ = (hd-match p , (λ m → z≤n)) lem₃ s (refl , q) c | sup (inj₁ _) | inj₂ v | () lem₃ s (() , q) c | sup (inj₂ v) | u | r -} lem₆ : ∀{V} (s : Stream (T V)) → ∀{t f} → root-matches (hd s) f → s →∞ t → RootsMatch (tl s) f hd-match (lem₆ s {t} m c) with hd s | out t | conv-out c hd-match (lem₆ s refl c) | sup (inj₁ (f , α)) | inj₁ (.f , β) | refl , m₁ , br = hd-match m₁ hd-match (lem₆ s refl c) | sup (inj₁ (f , α)) | inj₂ y | () hd-match (lem₆ s () c) | sup (inj₂ v) | x | y tl-match (lem₆ s {t} m c) with hd s | out t | conv-out c tl-match (lem₆ s refl c) | sup (inj₁ (f , α)) | inj₁ (.f , β) | refl , m₁ , br = tl-match m₁ tl-match (lem₆ s refl c) | sup (inj₁ (f , α)) | inj₂ y | () tl-match (lem₆ s () c) | sup (inj₂ v) | x | y lem₅ : ∀{V} (s : Stream (T V)) → ∀{t f} → root-matches (hd s) f → s →∞ t → tl s →∞ t conv-out (lem₅ s {t} m c) with hd s | out t | conv-out c conv-out (lem₅ s refl c) | sup (inj₁ (f , α)) | inj₁ (.f , β) | refl , m , br = {!!} conv-out (lem₅ s refl c) | sup (inj₁ (f , α)) | inj₂ y | () conv-out (lem₅ s () c) | sup (inj₂ v) | x | y lem₇ : ∀{V} (s : Stream (T V)) → ∀{t f α} → RootsMatch (tl s) f → s →∞ t → hd s ≡ sup (inj₁ (f , α)) → ∃ λ β → hd (tl s) ≡ sup (inj₁ (f , β)) lem₇ = {!!} lem₄ : ∀{V} (s : Stream (T V)) → ∀{t} → s →∞ t → tl s →∞ t lem₄ {V} s {t} p = q {s} {t} (hd s) (out t) refl refl (conv-out p) where q : ∀{s t} → (u : T V) → (x : ⟪ Σ ⟫ (T∞ V) ⊎ V) → hd s ≡ u → out t ≡ x → conv-branch _→∞_ s t u x → tl s →∞ t conv-out (q {s} {t} (sup (inj₁ (f , α))) (inj₁ (.f , β)) hs≡u ot≡x (refl , m , br)) = subst₂ (λ u₁ u₂ → conv-branch _→∞_ (tl s) t u₁ u₂) (sym (proj₂ (lem₇ s m (record { conv-out = subst₂ (λ u₁ u₂ → conv-branch _→∞_ s t u₁ u₂) (sym hs≡u) (sym ot≡x) (refl , (m , br)) }) hs≡u) ) ) (sym ot≡x) (refl , tl-match m , (λ i → lem₅ (split (tl s) f m i) {!!} (br i))) -- conv-branch _→∞_ (tl s₁) t₁ (hd (tl s₁)) (out t₁) -- conv-branch _→∞_ (tl .s) .t (hd (tl .s)) (out .t) q (sup (inj₁ x)) (inj₂ y) hs≡u ot≡x () q (sup (inj₂ y)) (inj₁ (g , β)) hs≡u ot≡x (s₁ , match-hd x , c) = lem₅ s₁ x c q (sup (inj₂ y)) (inj₁ (g , β)) hs≡u ot≡x (._ , match-tl m , c) = c -- conv-out (q (sup (inj₂ y)) (inj₁ (g , β)) hs≡u ot≡x (zero , m , br)) = {!!} -- conv-out (q {s} {t} (sup (inj₂ y)) (inj₁ x) hs≡u ot≡x (suc n , m , br)) = {!!} -- q {s} {t} (hd (δ n s)) (inj₁ x) {!!} ot≡x {!!} -- q (hd (tl s)) (inj₁ x) ? ot≡x br --q (hd (δ n s)) (out t) refl refl (conv-out br) q (sup (inj₂ y)) (inj₂ y₁) hs≡u ot≡x br = proj₂ br {- lem₄ : ∀{V} (s : Stream (T V)) → ∀{t} → s →∞ t → tl s →∞ t lem₄ {V} s {t} p = q {s} {t} (hd s) (out t) refl refl (conv-out p) where q : ∀{s t} → (u : T V) → (x : ⟪ Σ ⟫ (T∞ V) ⊎ V) → hd s ≡ u → out t ≡ x → conv-branch _→∞_ s t u x → tl s →∞ t q (sup (inj₁ (f , α))) (inj₁ (.f , β)) hs≡u ot≡x (refl , m , br) = {!!} q (sup (inj₁ x)) (inj₂ y) hs≡u ot≡x () conv-out (q (sup (inj₂ y)) (inj₁ (g , β)) hs≡u ot≡x (zero , m , br)) = {!!} conv-out (q {s} {t} (sup (inj₂ y)) (inj₁ x) hs≡u ot≡x (suc n , m , br)) = {!!} -- q {s} {t} (hd (δ n s)) (inj₁ x) {!!} ot≡x {!!} -- q (hd (tl s)) (inj₁ x) ? ot≡x br --q (hd (δ n s)) (out t) refl refl (conv-out br) q (sup (inj₂ y)) (inj₂ y₁) hs≡u ot≡x br = proj₂ br -} {- lem₄ {V} s {t} p | sup (inj₁ (f , α)) | inj₁ (.f , β) | refl , m , r = q {!!} m r where q : {s' : Stream (T V)} {t : T∞ V} {f : ∥ Σ ∥} {β : ar Σ f → T∞ V} → out t ≡ inj₁ (f , β) → (m : RootsMatch s' f) → ((i : ar Σ f) → split s' f m i →∞ β i) → s' →∞ t conv-out (q {s'} {t} ts m n) with hd s' | hd-match m | out t conv-out (q {s'} refl m n) | sup (inj₁ (f₁ , α₁)) | refl | inj₁ (.f₁ , β₁) = (refl , tl-match m , (λ i → lem₄ (split s' f₁ m i) (n i))) conv-out (q () m₁ n) | sup (inj₁ (f₁ , α₁)) | refl | inj₂ v conv-out (q ts m n) | sup (inj₂ y) | () | u lem₄ s p | sup (inj₁ x) | inj₂ y | () lem₄ s p | sup (inj₂ y) | inj₁ x | r = {!!} lem₄ s p | sup (inj₂ y) | inj₂ y₁ | r = proj₂ r -} {- lem₁ : ∀{V} (n k : ℕ) (s : Stream (T V)) → ∀{f g t} → first-root-match s f n → first-root-match s g k → δ n s →∞ t → δ k s →∞ t → f ≡ g lem₁ n k s {f} {g} {t} m₁ m₂ c₁ c₂ with s at n | s at k | m₁ | m₂ | out t | conv-out c₁ | conv-out c₂ lem₁ zero zero s _ _ c₁ c₂ | sup (inj₁ (f , α)) | sup (inj₁ (g , β)) | (refl , p) | (refl , q) | inj₁ x | w | r = trans (proj₁ w) (sym (proj₁ r)) lem₁ zero zero s _ _ c₁ c₂ | sup (inj₁ (f , α)) | sup (inj₁ (g , β)) | (refl , p) | (refl , q) | inj₂ y | () | r lem₁ zero zero s _ _ c₁ c₂ | sup (inj₁ (f , α)) | sup (inj₂ y) | (refl , p) | (() , q) | v | w | r lem₁ zero zero s _ _ c₁ c₂ | sup (inj₂ y) | u | (() , p) | m₂ | v | w | r lem₁ zero (suc k) s m₁ m₂ c₁ c₂ | u | u₁ | m₁' | m₂' | v | w | r = lem₁ zero k (tl s) (lem₃ s m₁ c₁) {!m₂!} (lem₄ s c₁) c₂ lem₁ (suc n) zero s _ _ c₁ c₂ | u | u₁ | m₁ | m₂ | v | w | r = {!!} lem₁ (suc n) (suc k) s m₁ m₂ c₁ c₂ | u | u₁ | _ | _ | v | w | r = lem₁ n k (tl s) (lem₂ m₁) (lem₂ m₂) c₁ c₂ lem : ∀{V} (n k : ℕ) {s : Stream (T V)} → ∀{f g t} → first-root-match s f n → first-root-match s g k → δ n s →∞ t → δ k s →∞ t → n ≡ k lem n k p q c₁ c₂ = least-unique NatTO n k p (subst _ (sym (lem₁ n k _ p q c₁ c₂)) q) where NatTO = TotalOrder.isTotalOrder (DecTotalOrder.totalOrder Nat.decTotalOrder) {- lem n k {s} {f} {g} {t} (m₁ , p) (m₂ , q) c₁ c₂ with conv-out c₁ | conv-out c₂ lem zero zero (m₁ , p) (m₂ , q) c₁ c₂ | u | v = refl lem zero (suc k) (m₁ , p) (m₂ , q) c₁ c₂ | u | v = {!!} lem (suc n) zero (m₁ , p) (m₂ , q) c₁ c₂ | u | v = {!!} lem (suc n) (suc k) {s} (m₁ , p) (m₂ , q) c₁ c₂ | u | v = cong suc (lem n k {tl s} (m₁ , {!!}) {!!} {!!} {!!}) -} unique-conv : ∀{V} (s : Stream (T V)) (t₁ t₂ : T∞ V) → s →∞ t₁ → s →∞ t₂ → t₁ ~ t₂ out~ (unique-conv s t₁ t₂ p q) with hd s | out t₁ | out t₂ | conv-out p | conv-out q out~ (unique-conv s t₁ t₂ p q) | sup (inj₁ (._ , α)) | inj₁ (._ , β) | inj₁ (f , γ) | refl , q₁ , ω₁ | refl , q₂ , ω₂ = refl , (λ {i} → unique-conv (split (tl s) f q₁ i) (β i) (γ i) (ω₁ i) (subst (λ u → split (tl s) f u i →∞ γ i) (RootsMatch-unique q₂ q₁) (ω₂ i))) out~ (unique-conv s t₁ t₂ p q) | sup (inj₁ x) | inj₁ x₁ | inj₂ y | y₁ | () out~ (unique-conv s t₁ t₂ p q) | sup (inj₁ x) | inj₂ y | x₁ | () | z out~ (unique-conv s t₁ t₂ p q) | sup (inj₂ v) | inj₁ (f , α) | inj₁ (g , β) | (n , mg , p₁) | (k , mf , q₁) with s at n | s at k out~ (unique-conv s t₁ t₂ p q) | sup (inj₂ v) | inj₁ (f , α) | inj₁ (.g , β) | n , m₁ , p₁ | k , (refl , r₂) , q₁ | sup (inj₁ (f' , γ)) | sup (inj₁ (g , ρ)) = (lem₁ n k s ({!m₁!} , {!!}) {!!} {!!} {!!}) , {!!} out~ (unique-conv s t₁ t₂ p q) | sup (inj₂ v) | inj₁ (f , α) | inj₁ (g , β) | n , mg , p₁ | k , (() , _) , q₁ | sup (inj₁ x) | sup (inj₂ y) out~ (unique-conv s t₁ t₂ p q) | sup (inj₂ v) | inj₁ (f , α) | inj₁ (g , β) | n , (() , _) , p₁ | k , mf , q₁ | sup (inj₂ y) | b out~ (unique-conv s t₁ t₂ p q) | sup (inj₂ y) | inj₁ x | inj₂ y₁ | y₂ | z = {!!} out~ (unique-conv s t₁ t₂ p q) | sup (inj₂ y) | inj₂ y₁ | x₁ | y₂ | z = {!!} -} -- | A non-trivial substitution is a substitution σ, such that, for all v ∈ V -- we have that either σ(v) is a non-trivial term or if it is a variable w, then -- w = v. -- This allows us to stop substituting the first time we hit a variable. NonTrivSubst : Set → Set NonTrivSubst V = ⨿ (Subst V V) λ σ → (∀ v → isVar (σ v) → σ v ≡ η v) term-seq-from-subst-seq : ∀{V} → Stream (NonTrivSubst V) → T V → Stream (T V) hd (term-seq-from-subst-seq Δ t) = t tl (term-seq-from-subst-seq Δ t) = term-seq-from-subst-seq (tl Δ) (app (proj₁ (hd Δ)) t) ∞term-from-subst-seq : ∀{V} → Stream (NonTrivSubst V) → T V → T∞ V out (∞term-from-subst-seq Δ (sup (inj₁ (s , α)))) = inj₁ (s , (λ i → ∞term-from-subst-seq Δ (α i))) out (∞term-from-subst-seq Δ (sup (inj₂ v))) with proj₁ (hd Δ) v | proj₂ (hd Δ) v ... | sup (inj₁ (s , α)) | f = inj₁ (s , (λ i → ∞term-from-subst-seq (tl Δ) (α i))) ... | sup (inj₂ v₁) | f with f tt out (∞term-from-subst-seq Δ (sup (inj₂ v))) | sup (inj₂ .v) | f | refl = inj₂ v {- ∞term-from-subst-seq-converges : ∀{V} → (Δ : Stream (NonTrivSubst V)) → (t : T V) → term-seq-from-subst-seq Δ t →∞ ∞term-from-subst-seq Δ t hd-matches (∞term-from-subst-seq-converges Δ t) = (proj₁ (hd Δ) , refl) hd-prefix (∞term-from-subst-seq-converges Δ t) = {!!} tl-converges (∞term-from-subst-seq-converges Δ t) = {!∞term-from-subst-seq-converges!} -}
{ "alphanum_fraction": 0.4903233024, "avg_line_length": 35.6135458167, "ext": "agda", "hexsha": "0a05a292dc176f26a974a9de0dbcc44beac7f939", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "LP2/Terms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "LP2/Terms.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "LP2/Terms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8291, "size": 17878 }
module Function.Axioms where open import Lang.Instance open import Logic.Predicate open import Logic import Lvl import Structure.Function.Names as Names open import Structure.Setoid open import Type private variable ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ : Lvl.Level module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ ⦃ _ : Equiv{ℓₗ₃}(A → B) ⦄ (f g : A → B) where record FunctionExtensionalityOn : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where constructor intro field proof : Names.FunctionExtensionalityOn(f)(g) functionExtensionalityOn = inst-fn FunctionExtensionalityOn.proof record FunctionApplicationOn : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where constructor intro field proof : Names.FunctionApplicationOn(f)(g) functionApplicationOn = inst-fn FunctionApplicationOn.proof module _ (A : Type{ℓₒ₁}) (B : Type{ℓₒ₂}) ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ ⦃ _ : Equiv{ℓₗ₃}(A → B) ⦄ where FunctionExtensionality : Stmt FunctionExtensionality = ∀²(FunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B}) functionExtensionality : ⦃ funcExt : FunctionExtensionality ⦄ → Names.FunctionExtensionality(A)(B) functionExtensionality {f}{g} = functionExtensionalityOn f g FunctionApplication : Stmt FunctionApplication = ∀²(FunctionApplicationOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B}) functionApplication : ⦃ funcApp : FunctionApplication ⦄ → Names.FunctionApplication(A)(B) functionApplication {f}{g} = functionApplicationOn f g module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}((a : A) → B(a)) ⦄ (f g : ((a : A) → B(a))) where record DependentFunctionExtensionalityOn : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where constructor intro field proof : Names.DependentFunctionExtensionalityOn(f)(g) dependentFunctionExtensionalityOn = inst-fn DependentFunctionExtensionalityOn.proof module _ (A : Type{ℓₒ₁}) (B : A → Type{ℓₒ₂}) ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}((a : A) → B(a)) ⦄ where DependentFunctionExtensionality : Stmt DependentFunctionExtensionality = ∀²(DependentFunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B}) dependentFunctionExtensionality : ⦃ depFuncExt : DependentFunctionExtensionality ⦄ → Names.DependentFunctionExtensionality(A)(B) dependentFunctionExtensionality {f}{g} = dependentFunctionExtensionalityOn f g module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}({a : A} → B(a)) ⦄ (f g : ({a : A} → B(a))) where record DependentImplicitFunctionExtensionalityOn : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where constructor intro field proof : Names.DependentImplicitFunctionExtensionalityOn(f)(g) dependentImplicitFunctionExtensionalityOn = inst-fn DependentImplicitFunctionExtensionalityOn.proof module _ (A : Type{ℓₒ₁}) (B : A → Type{ℓₒ₂}) ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}({a : A} → B(a)) ⦄ where DependentImplicitFunctionExtensionality : Stmt DependentImplicitFunctionExtensionality = ∀²(DependentImplicitFunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B}) dependentImplicitFunctionExtensionality : ⦃ depFuncExt : DependentImplicitFunctionExtensionality ⦄ → Names.DependentImplicitFunctionExtensionality(A)(B) dependentImplicitFunctionExtensionality {f}{g} = dependentImplicitFunctionExtensionalityOn f g module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}(⦃ a : A ⦄ → B(a)) ⦄ (f g : (⦃ a : A ⦄ → B(a))) where record DependentInstanceFunctionExtensionalityOn : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓₗ₃} where constructor intro field proof : Names.DependentInstanceFunctionExtensionalityOn(f)(g) dependentInstanceFunctionExtensionalityOn = inst-fn DependentInstanceFunctionExtensionalityOn.proof module _ (A : Type{ℓₒ₁}) (B : A → Type{ℓₒ₂}) ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}(⦃ a : A ⦄ → B(a)) ⦄ where DependentInstanceFunctionExtensionality : Stmt DependentInstanceFunctionExtensionality = ∀²(DependentInstanceFunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B}) dependentInstanceFunctionExtensionality : ⦃ depFuncExt : DependentInstanceFunctionExtensionality ⦄ → Names.DependentInstanceFunctionExtensionality(A)(B) dependentInstanceFunctionExtensionality {f}{g} = dependentInstanceFunctionExtensionalityOn f g
{ "alphanum_fraction": 0.7197571228, "avg_line_length": 45.0736842105, "ext": "agda", "hexsha": "f8dcf08830059442ed61dfa2c5f3752b61d5a0b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Axioms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Axioms.agda", "max_line_length": 154, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Axioms.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1697, "size": 4282 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Various forms of induction for natural numbers ------------------------------------------------------------------------ module Induction.Nat where open import Function open import Data.Nat open import Data.Fin using (_≺_) open import Data.Fin.Properties open import Data.Product open import Data.Unit open import Induction open import Induction.WellFounded as WF open import Level using (Lift) open import Relation.Binary.PropositionalEquality open import Relation.Unary ------------------------------------------------------------------------ -- Ordinary induction Rec : ∀ ℓ → RecStruct ℕ ℓ ℓ Rec _ P zero = Lift ⊤ Rec _ P (suc n) = P n rec-builder : ∀ {ℓ} → RecursorBuilder (Rec ℓ) rec-builder P f zero = _ rec-builder P f (suc n) = f n (rec-builder P f n) rec : ∀ {ℓ} → Recursor (Rec ℓ) rec = build rec-builder ------------------------------------------------------------------------ -- Complete induction CRec : ∀ ℓ → RecStruct ℕ ℓ ℓ CRec _ P zero = Lift ⊤ CRec _ P (suc n) = P n × CRec _ P n cRec-builder : ∀ {ℓ} → RecursorBuilder (CRec ℓ) cRec-builder P f zero = _ cRec-builder P f (suc n) = f n ih , ih where ih = cRec-builder P f n cRec : ∀ {ℓ} → Recursor (CRec ℓ) cRec = build cRec-builder ------------------------------------------------------------------------ -- Complete induction based on _<′_ <-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ <-Rec = WfRec _<′_ mutual <-well-founded : Well-founded _<′_ <-well-founded n = acc (<-well-founded′ n) <-well-founded′ : ∀ n → <-Rec (Acc _<′_) n <-well-founded′ zero _ () <-well-founded′ (suc n) .n ≤′-refl = <-well-founded n <-well-founded′ (suc n) m (≤′-step m<n) = <-well-founded′ n m m<n module _ {ℓ} where open WF.All <-well-founded ℓ public renaming ( wfRec-builder to <-rec-builder ; wfRec to <-rec ) ------------------------------------------------------------------------ -- Complete induction based on _≺_ ≺-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ ≺-Rec = WfRec _≺_ ≺-well-founded : Well-founded _≺_ ≺-well-founded = Subrelation.well-founded ≺⇒<′ <-well-founded module _ {ℓ} where open WF.All ≺-well-founded ℓ public renaming ( wfRec-builder to ≺-rec-builder ; wfRec to ≺-rec ) ------------------------------------------------------------------------ -- Examples private module Examples where -- Doubles its input. twice : ℕ → ℕ twice = rec _ λ { zero _ → zero ; (suc n) twice-n → suc (suc twice-n) } -- Halves its input (rounding downwards). -- -- The step function is mentioned in a proof below, so it has been -- given a name. (The mutual keyword is used to avoid having to give -- a type signature for the step function.) mutual half₁-step = λ { zero _ → zero ; (suc zero) _ → zero ; (suc (suc n)) (_ , half₁n , _) → suc half₁n } half₁ : ℕ → ℕ half₁ = cRec _ half₁-step -- An alternative implementation of half₁. mutual half₂-step = λ { zero _ → zero ; (suc zero) _ → zero ; (suc (suc n)) rec → suc (rec n (≤′-step ≤′-refl)) } half₂ : ℕ → ℕ half₂ = <-rec _ half₂-step -- The application half₁ (2 + n) is definitionally equal to -- 1 + half₁ n. Perhaps it is instructive to see why. half₁-2+ : ∀ n → half₁ (2 + n) ≡ 1 + half₁ n half₁-2+ n = begin half₁ (2 + n) ≡⟨⟩ cRec (λ _ → ℕ) half₁-step (2 + n) ≡⟨⟩ half₁-step (2 + n) (cRec-builder (λ _ → ℕ) half₁-step (2 + n)) ≡⟨⟩ half₁-step (2 + n) (let ih = cRec-builder (λ _ → ℕ) half₁-step (1 + n) in half₁-step (1 + n) ih , ih) ≡⟨⟩ half₁-step (2 + n) (let ih = cRec-builder (λ _ → ℕ) half₁-step n in half₁-step (1 + n) (half₁-step n ih , ih) , half₁-step n ih , ih) ≡⟨⟩ 1 + half₁-step n (cRec-builder (λ _ → ℕ) half₁-step n) ≡⟨⟩ 1 + cRec (λ _ → ℕ) half₁-step n ≡⟨⟩ 1 + half₁ n ∎ where open ≡-Reasoning -- The application half₂ (2 + n) is definitionally equal to -- 1 + half₂ n. Perhaps it is instructive to see why. half₂-2+ : ∀ n → half₂ (2 + n) ≡ 1 + half₂ n half₂-2+ n = begin half₂ (2 + n) ≡⟨⟩ <-rec (λ _ → ℕ) half₂-step (2 + n) ≡⟨⟩ half₂-step (2 + n) (<-rec-builder (λ _ → ℕ) half₂-step (2 + n)) ≡⟨⟩ 1 + <-rec-builder (λ _ → ℕ) half₂-step (2 + n) n (≤′-step ≤′-refl) ≡⟨⟩ 1 + Some.wfRec-builder (λ _ → ℕ) half₂-step (2 + n) (<-well-founded (2 + n)) n (≤′-step ≤′-refl) ≡⟨⟩ 1 + Some.wfRec-builder (λ _ → ℕ) half₂-step (2 + n) (acc (<-well-founded′ (2 + n))) n (≤′-step ≤′-refl) ≡⟨⟩ 1 + half₂-step n (Some.wfRec-builder (λ _ → ℕ) half₂-step n (<-well-founded′ (2 + n) n (≤′-step ≤′-refl))) ≡⟨⟩ 1 + half₂-step n (Some.wfRec-builder (λ _ → ℕ) half₂-step n (<-well-founded′ (1 + n) n ≤′-refl)) ≡⟨⟩ 1 + half₂-step n (Some.wfRec-builder (λ _ → ℕ) half₂-step n (<-well-founded n)) ≡⟨⟩ 1 + half₂-step n (<-rec-builder (λ _ → ℕ) half₂-step n) ≡⟨⟩ 1 + <-rec (λ _ → ℕ) half₂-step n ≡⟨⟩ 1 + half₂ n ∎ where open ≡-Reasoning -- Some properties that the functions above satisfy, proved using -- cRec. half₁-+₁ : ∀ n → half₁ (twice n) ≡ n half₁-+₁ = cRec _ λ { zero _ → refl ; (suc zero) _ → refl ; (suc (suc n)) (_ , half₁twice-n≡n , _) → cong (suc ∘ suc) half₁twice-n≡n } half₂-+₁ : ∀ n → half₂ (twice n) ≡ n half₂-+₁ = cRec _ λ { zero _ → refl ; (suc zero) _ → refl ; (suc (suc n)) (_ , half₁twice-n≡n , _) → cong (suc ∘ suc) half₁twice-n≡n } -- Some properties that the functions above satisfy, proved using -- <-rec. half₁-+₂ : ∀ n → half₁ (twice n) ≡ n half₁-+₂ = <-rec _ λ { zero _ → refl ; (suc zero) _ → refl ; (suc (suc n)) rec → cong (suc ∘ suc) (rec n (≤′-step ≤′-refl)) } half₂-+₂ : ∀ n → half₂ (twice n) ≡ n half₂-+₂ = <-rec _ λ { zero _ → refl ; (suc zero) _ → refl ; (suc (suc n)) rec → cong (suc ∘ suc) (rec n (≤′-step ≤′-refl)) }
{ "alphanum_fraction": 0.4532363636, "avg_line_length": 29.1313559322, "ext": "agda", "hexsha": "23a61b4d73d21797d0810d01a954e4c9ebebc138", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Induction/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Induction/Nat.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Induction/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2220, "size": 6875 }
module AuxDefs where data ℕ : Set where zero : ℕ suc : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) data Bool : Set where true : Bool false : Bool data Comparison : Set where less : Comparison equal : Comparison greater : Comparison _<_ : ℕ → ℕ → Bool zero < y = true suc x < zero = false suc x < suc y = x < y
{ "alphanum_fraction": 0.553133515, "avg_line_length": 14.68, "ext": "agda", "hexsha": "6ad9299a4bf0576e7439cbcb515b61cf0e2ca4e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "abolotina/plfa.github.io", "max_forks_repo_path": "src/plfa/part1/AuxDefs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "abolotina/plfa.github.io", "max_issues_repo_path": "src/plfa/part1/AuxDefs.agda", "max_line_length": 27, "max_stars_count": null, "max_stars_repo_head_hexsha": "75bef9bb35643160e2d2ab4221a3057f22eb3324", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "abolotina/plfa.github.io", "max_stars_repo_path": "src/plfa/part1/AuxDefs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 133, "size": 367 }
module Splitting where open import Basics open import All data _<[_]>_ {X : Set} : List X -> List X -> List X -> Set where sz : [] <[ [] ]> [] sl : forall {l ls ms rs} -> ls <[ ms ]> rs -> (l ,- ls) <[ l ,- ms ]> rs sr : forall {r ls ms rs} -> ls <[ ms ]> rs -> ls <[ r ,- ms ]> (r ,- rs) riffle : {X : Set}{ls ms rs : List X} -> ls <[ ms ]> rs -> {P : X -> Set} -> All P ls -> All P rs -> All P ms riffle sz <> <> = <> riffle (sl x) (p , lp) rp = p , riffle x lp rp riffle (sr x) lp (p , rp) = p , riffle x lp rp srs : forall {X : Set}(xs : List X) -> [] <[ xs ]> xs srs [] = sz srs (x ,- xs) = sr (srs xs) data SRS {X : Set}(ms : List X) : (xs : List X) -> [] <[ ms ]> xs -> Set where mkSRS : SRS ms ms (srs ms) isSRS : {X : Set}{ms xs : List X}(i : [] <[ ms ]> xs) -> SRS ms xs i isSRS sz = mkSRS isSRS (sr i) with isSRS i isSRS (sr .(srs _)) | mkSRS = mkSRS slrs : forall {X : Set}(xs ys : List X) -> xs <[ xs +L ys ]> ys slrs [] ys = srs ys slrs (x ,- xs) ys = sl (slrs xs ys) cat : forall {X}{P : X -> Set}(xs ys : List X) -> All P xs -> All P ys -> All P (xs +L ys) cat xs ys ps qs = riffle (slrs xs ys) ps qs data IsRiffle {X : Set}{ls ms rs : List X}(i : ls <[ ms ]> rs){P : X -> Set} : All P ms -> Set where mkRiffle : (lp : All P ls)(rp : All P rs) -> IsRiffle i (riffle i lp rp) isRiffle : {X : Set}{ls ms rs : List X}(i : ls <[ ms ]> rs){P : X -> Set}(mp : All P ms) -> IsRiffle i mp isRiffle sz <> = mkRiffle <> <> isRiffle (sl i) (p , mp) with isRiffle i mp isRiffle (sl i) (p , .(riffle i lp rp)) | mkRiffle lp rp = mkRiffle (p , lp) rp isRiffle (sr i) (p , mp) with isRiffle i mp isRiffle (sr i) (p , .(riffle i lp rp)) | mkRiffle lp rp = mkRiffle lp (p , rp) mirror : {X : Set}{ls ms rs : List X} -> ls <[ ms ]> rs -> rs <[ ms ]> ls mirror sz = sz mirror (sl x) = sr (mirror x) mirror (sr x) = sl (mirror x) rotatel : {X : Set}{ls ms rs lrs rrs : List X} -> ls <[ ms ]> rs -> lrs <[ rs ]> rrs -> Sg (List X) \ ns -> (ls <[ ns ]> lrs) * (ns <[ ms ]> rrs) rotatel sz sz = [] , sz , sz rotatel (sl x) y with rotatel x y ... | _ , a , b = _ , sl a , sl b rotatel (sr x) (sl y) with rotatel x y ... | _ , a , b = _ , sr a , sl b rotatel (sr x) (sr y) with rotatel x y ... | _ , a , b = _ , a , sr b rotater : {X : Set}{lls rls ls ms rs : List X} -> lls <[ ls ]> rls -> ls <[ ms ]> rs -> Sg (List X) \ ns -> (lls <[ ms ]> ns) * (rls <[ ns ]> rs) rotater x y with rotatel (mirror y) (mirror x) ... | _ , a , b = _ , mirror b , mirror a llswap : {X : Set}{ls ms lrs rrs : List X} -> (Sg (List X) \ rs -> (ls <[ ms ]> rs) * (lrs <[ rs ]> rrs)) -> Sg (List X) \ ns -> (lrs <[ ms ]> ns) * (ls <[ ns ]> rrs) llswap (_ , x , y) with rotatel x y ... | _ , a , b = rotater (mirror a) b insS : {X : Set}(xs : List X)(y : X)(zs : List X) -> (y ,- []) <[ (xs +L y ,- zs) ]> (xs +L zs) insS [] y zs = sl (srs zs) insS (x ,- xs) y zs = sr (insS xs y zs) catS : forall {X}{as abs bs cs cds ds : List X} -> as <[ abs ]> bs -> cs <[ cds ]> ds -> (as +L cs) <[ (abs +L cds) ]> (bs +L ds) catS sz y = y catS (sl x) y = sl (catS x y) catS (sr x) y = sr (catS x y) splimap : forall {X Y}(f : X -> Y){xs xys ys} -> xs <[ xys ]> ys -> list f xs <[ list f xys ]> list f ys splimap f sz = sz splimap f (sl s) = sl (splimap f s) splimap f (sr s) = sr (splimap f s)
{ "alphanum_fraction": 0.5001503759, "avg_line_length": 37.3595505618, "ext": "agda", "hexsha": "be7243178e2eca7562634d8782bce01914486d4c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Splitting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Splitting.agda", "max_line_length": 105, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Splitting.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 1426, "size": 3325 }
{-# OPTIONS --cubical --safe #-} module Function.Injective where open import Function.Injective.Base public
{ "alphanum_fraction": 0.7545454545, "avg_line_length": 18.3333333333, "ext": "agda", "hexsha": "4088eaf731d015624bb9938f751cb68d5529313c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Function/Injective.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Function/Injective.agda", "max_line_length": 42, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Function/Injective.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 23, "size": 110 }
module Open where open import bool open import nat open import product open import sum open import functor data Row : Set₁ where Empty : Row Ty : Set → Row Prod : Row → Row → Row infixr 19 _♯_ _′ = Ty _♯_ = Prod all : Row → Set all Empty = ⊤ all (Ty x) = x all (Prod r₁ r₂) = (all r₁) × (all r₂) one : Row → Set one Empty = ⊥ one (Ty x) = x one (Prod r₁ r₂) = (one r₁) ⊎ (one r₂) _⊗_ : {A B : Row} → all A → all B → all (A ♯ B) _⊗_ p₁ p₂ = p₁ , p₂ _&_ : {A : Set}{B : Row} → A → all B → all (A ′ ♯ B) _&_ {A}{B} = _⊗_ {A ′}{B} _⊕_ : {A B : Row} → (one A) ⊎ (one B) → one (A ♯ B) _⊕_ p = p ⊕inj₁ : {A B : Row} → one A → one (A ♯ B) ⊕inj₁ = inj₁ ⊕inj₂ : {A B : Row} → one B → one (A ♯ B) ⊕inj₂ = inj₂ inj : {A : Set}{B : Row} → A → one (A ′ ♯ B) inj {A}{B} = ⊕inj₁ {A ′}{B} test₁ : all (ℕ ′ ♯ 𝔹 ′ ♯ Empty) test₁ = _&_ {ℕ}{𝔹 ′ ♯ Empty} 1 (_&_ {𝔹}{Empty} tt triv)
{ "alphanum_fraction": 0.5090702948, "avg_line_length": 18.375, "ext": "agda", "hexsha": "3ea25ffb1e35ebb182ec750121f61e3f500d1dba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "open.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "open.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "open.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 449, "size": 882 }
-- Andreas, 2017-08-24, issue #2717, reported by m0davis -- -- Internal error in DisplayForm.hs triggered by -v 100. -- Regression introduced by #2590 {-# OPTIONS -v tc.display.top:100 -v tc.polarity.dep:20 #-} -- KEEP module _ (A : Set) where module M (_ : Set) where data D (n : Set) : Set where d : D n open M A
{ "alphanum_fraction": 0.6492307692, "avg_line_length": 21.6666666667, "ext": "agda", "hexsha": "b81145a7bc019ff469d39e2571a2a1a8823f3896", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2717.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2717.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2717.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 325 }
{-# OPTIONS --cubical --safe #-} module Path.Reasoning where open import Prelude infixr 2 ≡˘⟨⟩-syntax _≡⟨⟩_ ≡⟨∙⟩-syntax ≡˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≡ z → y ≡ x → x ≡ z ≡˘⟨⟩-syntax _ y≡z y≡x = sym y≡x ; y≡z syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z ≡⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≡ z → x ≡ y → x ≡ z ≡⟨∙⟩-syntax _ y≡z x≡y = x≡y ; y≡z syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z _≡⟨⟩_ : ∀ (x : A) {y} → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y infix 2.5 _∎ _∎ : ∀ {A : Type a} (x : A) → x ≡ x _∎ x = refl
{ "alphanum_fraction": 0.4410058027, "avg_line_length": 20.68, "ext": "agda", "hexsha": "7c122044cd7e023fc76b55c74e382d1d40d100ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Path/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Path/Reasoning.agda", "max_line_length": 53, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Path/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 343, "size": 517 }
module Generic.Lib.Reflection.Fold where open import Generic.Lib.Intro open import Generic.Lib.Decidable open import Generic.Lib.Category open import Generic.Lib.Data.Nat open import Generic.Lib.Data.String open import Generic.Lib.Data.Maybe open import Generic.Lib.Data.List open import Generic.Lib.Reflection.Core foldTypeOf : Data Type -> Type foldTypeOf (packData d a b cs ns) = appendType iab ∘ pi "π" π ∘ pi "P" P $ cs ʰ→ from ‵→ to where infixr 5 _ʰ→_ i = countPis a j = countPis b ab = appendType a b iab = implicitize ab π = implRelArg (quoteTerm Level) P = explRelArg ∘ appendType (shiftBy (suc j) b) ∘ agda-sort ∘ set $ pureVar j hyp = mapName (λ p -> appVar p ∘ drop i) d ∘ shiftBy (2 + j) _ʰ→_ = flip $ foldr (λ c r -> hyp c ‵→ shift r) from = appDef d (pisToArgVars (2 + i + j) ab) to = appVar 1 (pisToArgVars (3 + j) b) foldClausesOf : Name -> Data Type -> List Clause foldClausesOf f (packData d a b cs ns) = allToList $ mapAllInd (λ {a} n -> clauseOf n a) ns where k = length cs clauseOf : ℕ -> Type -> Name -> Clause clauseOf i c n = clause lhs rhs where args = explPisToNames c j = length args lhs = patVars ("P" ∷ unmap (λ n -> "f" ++ˢ showName n) ns) ∷ʳ explRelArg (patCon n (patVars args)) tryHyp : ℕ -> ℕ -> Type -> Maybe Term tryHyp m l (explPi r s a b) = explLam s <$> tryHyp (suc m) l b tryHyp m l (pi s a b) = tryHyp m l b tryHyp m l (appDef e _) = d == e ?> vis appDef f (pars ∷ʳ rarg) where pars = map (λ i -> pureVar (m + i)) $ downFromTo (suc k + j) j rarg = vis appVar (m + l) $ map pureVar (downFrom m) tryHyp m l b = nothing hyps : ℕ -> Type -> List Term hyps (suc l) (explPi r s a b) = fromMaybe (pureVar l) (tryHyp 0 l a) ∷ hyps l b hyps l (pi s a b) = hyps l b hyps l b = [] rhs = vis appVar (k + j ∸ suc i) (hyps j c) -- i = 1: f -- j = 3: x t r -- k = 2: g f -- 5 4 3 2 1 0 3 2 4 3 1 1 0 6 5 2 1 0 -- fold P g f (cons x t r) = f x (fold g f t) (λ y u -> fold g f (r y u)) defineFold : Name -> Data Type -> TC _ defineFold f D = declareDef (explRelArg f) (foldTypeOf D) >> defineFun f (foldClausesOf f D) deriveFold : Name -> Data Type -> TC Name deriveFold d D = freshName ("fold" ++ˢ showName d) >>= λ f -> f <$ defineFold f D deriveFoldTo : Name -> Name -> TC _ deriveFoldTo f = getData >=> defineFold f
{ "alphanum_fraction": 0.5836669335, "avg_line_length": 35.6857142857, "ext": "agda", "hexsha": "60b89eae85a52f3b381c11d3c9a5e6f1dea6fc8f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Reflection/Fold.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Reflection/Fold.agda", "max_line_length": 97, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Reflection/Fold.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 920, "size": 2498 }
module MacroNotToTerm where open import Common.Reflection open import Common.Prelude data X : Set where macro f : Term -> Set f x _ = X
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 12, "ext": "agda", "hexsha": "c38d5c1a1489ed9b790f08b2ca74640d186c8e6b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/MacroNotToTerm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/MacroNotToTerm.agda", "max_line_length": 29, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/MacroNotToTerm.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 144 }
{-# OPTIONS --sized-types #-} module SOList.Total {A : Set}(_≤_ : A → A → Set) where open import Bound.Total A open import Bound.Total.Order _≤_ open import Data.List open import Size data SOList : {ι : Size} → Bound → Bound → Set where onil : {ι : Size}{b t : Bound} → LeB b t → SOList {↑ ι} b t ocons : {ι : Size}{b t : Bound}(x : A) → SOList {ι} b (val x) → SOList {ι} (val x) t → SOList {↑ ι} b t forget : {b t : Bound} → SOList b t → List A forget (onil _) = [] forget (ocons x xs ys) = forget xs ++ (x ∷ forget ys)
{ "alphanum_fraction": 0.4968454259, "avg_line_length": 25.36, "ext": "agda", "hexsha": "09691153bb472cf169d0795740592e8c2e2017f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SOList/Total.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SOList/Total.agda", "max_line_length": 55, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SOList/Total.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 206, "size": 634 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Nat {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Tools.Embedding open import Tools.Product -- Validity of the natural number type. ℕᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ] ℕᵛ [Γ] ⊢Δ [σ] = ℕᵣ (idRed:*: (ℕⱼ ⊢Δ)) , λ _ x₂ → ιx (ℕ₌ (id (ℕⱼ ⊢Δ))) -- Validity of the natural number type as a term. ℕᵗᵛ : ∀ {Γ} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ ¹ ⟩ ℕ ∷ U / [Γ] / Uᵛ [Γ] ℕᵗᵛ [Γ] ⊢Δ [σ] = let ⊢ℕ = ℕⱼ ⊢Δ [ℕ] = ℕᵣ (idRed:*: (ℕⱼ ⊢Δ)) in Uₜ ℕ (idRedTerm:*: ⊢ℕ) ℕₙ (≅ₜ-ℕrefl ⊢Δ) [ℕ] , (λ x x₁ → Uₜ₌ ℕ ℕ (idRedTerm:*: ⊢ℕ) (idRedTerm:*: ⊢ℕ) ℕₙ ℕₙ (≅ₜ-ℕrefl ⊢Δ) [ℕ] [ℕ] (ιx (ℕ₌ (id (ℕⱼ ⊢Δ))))) -- Validity of zero. zeroᵛ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) → Γ ⊩ᵛ⟨ l ⟩ zero ∷ ℕ / [Γ] / ℕᵛ [Γ] zeroᵛ [Γ] ⊢Δ [σ] = ιx (ℕₜ zero (idRedTerm:*: (zeroⱼ ⊢Δ)) (≅ₜ-zerorefl ⊢Δ) zeroᵣ) , (λ _ x₁ → ιx (ℕₜ₌ zero zero (idRedTerm:*: (zeroⱼ ⊢Δ)) (idRedTerm:*: (zeroⱼ ⊢Δ)) (≅ₜ-zerorefl ⊢Δ) zeroᵣ)) -- Validity of successor of valid natural numbers. sucᵛ : ∀ {Γ n l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ n ∷ ℕ / [Γ] / [ℕ] → Γ ⊩ᵛ⟨ l ⟩ suc n ∷ ℕ / [Γ] / [ℕ] sucᵛ ⊢Γ [ℕ] [n] ⊢Δ [σ] = sucTerm (proj₁ ([ℕ] ⊢Δ [σ])) (proj₁ ([n] ⊢Δ [σ])) , (λ x x₁ → sucEqTerm (proj₁ ([ℕ] ⊢Δ [σ])) (proj₂ ([n] ⊢Δ [σ]) x x₁))
{ "alphanum_fraction": 0.543986637, "avg_line_length": 36.6530612245, "ext": "agda", "hexsha": "9e1395b280783ac9b2496696285b2c579e12a562", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Nat.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 892, "size": 1796 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Sets.Facts.Initial where open import Data.Empty using (⊥ ; ⊥-elim) open import Level using (Lift ; lift ; lower) open import Cats.Category open import Cats.Category.Sets using (Sets) instance hasInitial : ∀ {l} → HasInitial (Sets l) hasInitial = record { ⊥ = Lift _ ⊥ ; isInitial = λ X → record { arr = λ() ; unique = λ { _ () } } }
{ "alphanum_fraction": 0.6088992974, "avg_line_length": 21.35, "ext": "agda", "hexsha": "55a83ebebf1635284de17774a3f625feedc06d92", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Sets/Facts/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Sets/Facts/Initial.agda", "max_line_length": 45, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Sets/Facts/Initial.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 122, "size": 427 }
{-# OPTIONS --without-K --exact-split #-} module 02-natural-numbers where import 00-preamble open 00-preamble public -- Definition 2.2.3 id : {i : Level} {A : UU i} → A → A id a = a -- Definition 2.2.4 _∘_ : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} → (B → C) → ((A → B) → (A → C)) (g ∘ f) a = g (f a) data ℕ : UU lzero where zero-ℕ : ℕ succ-ℕ : ℕ → ℕ one-ℕ : ℕ one-ℕ = succ-ℕ zero-ℕ -- induction: for any dependent type P over ℕ, define a section of P -- built out of a term in P 0 and a section of P n → P(Nsucc n) ind-ℕ : {i : Level} {P : ℕ → UU i} → P zero-ℕ → ((n : ℕ) → P n → P(succ-ℕ n)) → ((n : ℕ) → P n) ind-ℕ p0 pS zero-ℕ = p0 ind-ℕ p0 pS (succ-ℕ n) = pS n (ind-ℕ p0 pS n) -- use the general induction principle to define addition -- in this case P is ℕ, the special non-dependent type over ℕ, and -- so sections of P (dependent functions Π_{x:ℕ} P(x)) are functions ℕ → ℕ add-ℕ : ℕ → ℕ → ℕ add-ℕ zero-ℕ y = y add-ℕ (succ-ℕ x) y = succ-ℕ (add-ℕ x y) -- Exercise 2.2 const : {i j : Level} (A : UU i) (B : UU j) (b : B) → A → B const A B b x = b -- Exercise 2.3 -- In this exercise we are asked to construct some standard functions on the -- natural numbers. -- Exercise 2.3(a) max-ℕ : ℕ → (ℕ → ℕ) max-ℕ zero-ℕ n = n max-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m max-ℕ (succ-ℕ m) (succ-ℕ n) = succ-ℕ (max-ℕ m n) min-ℕ : ℕ → (ℕ → ℕ) min-ℕ zero-ℕ n = zero-ℕ min-ℕ (succ-ℕ m) zero-ℕ = zero-ℕ min-ℕ (succ-ℕ m) (succ-ℕ n) = succ-ℕ (min-ℕ m n) -- Exercise 2.3(b) mul-ℕ : ℕ → (ℕ → ℕ) mul-ℕ zero-ℕ n = zero-ℕ mul-ℕ (succ-ℕ m) n = add-ℕ (mul-ℕ m n) n -- Exercise 2.3(c) _^_ : ℕ → (ℕ → ℕ) m ^ zero-ℕ = one-ℕ m ^ (succ-ℕ n) = mul-ℕ m (m ^ n) -- Exercise 2.3(d) factorial : ℕ → ℕ factorial zero-ℕ = one-ℕ factorial (succ-ℕ m) = mul-ℕ (succ-ℕ m) (factorial m) -- Exercise 2.3(e) _choose_ : ℕ → ℕ → ℕ zero-ℕ choose zero-ℕ = one-ℕ zero-ℕ choose succ-ℕ k = zero-ℕ (succ-ℕ n) choose zero-ℕ = one-ℕ (succ-ℕ n) choose (succ-ℕ k) = add-ℕ (n choose k) (n choose (succ-ℕ k)) -- Exercise 2.3(f) Fibonacci : ℕ → ℕ Fibonacci zero-ℕ = zero-ℕ Fibonacci (succ-ℕ zero-ℕ) = one-ℕ Fibonacci (succ-ℕ (succ-ℕ n)) = add-ℕ (Fibonacci n) (Fibonacci (succ-ℕ n)) -- Exercise 2.4 _∘'_ : {i j k : Level} {A : UU i} {B : A → UU j} {C : (x : A) → B x → UU k} → (g : (x : A) → (y : B x) → C x y) (f : (x : A) → B x) → (x : A) → C x (f x) (g ∘' f) x = g x (f x) -- Exercise 2.5 Π-swap : {i j k : Level} {A : UU i} {B : UU j} {C : A → (B → UU k)} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) Π-swap f y x = f x y -- Note: apparently Agda still allows us to define a sequence of universe levels indexed by ℕ Level-ℕ : ℕ → Level Level-ℕ zero-ℕ = lzero Level-ℕ (succ-ℕ n) = lsuc (Level-ℕ n) sequence-UU : (n : ℕ) → UU (Level-ℕ (succ-ℕ n)) sequence-UU n = UU (Level-ℕ n) -- However, the following definition is unacceptable for Agda, since it runs -- into Setω. {- Π-sequence-UU : Setω Π-sequence-UU = (n : ℕ) → sequence-UU n -}
{ "alphanum_fraction": 0.5657356948, "avg_line_length": 25.7543859649, "ext": "agda", "hexsha": "be1a16dfe251df6329fc1fd26b72f30773cd07ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/02-natural-numbers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/02-natural-numbers.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/02-natural-numbers.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1376, "size": 2936 }
{-# OPTIONS --type-in-type #-} module TooManyArgs where open import AgdaPrelude myFun : (a : Set) -> a -> a -> a myFun a x y = x myApp = myFun _ Zero Zero Zero Zero
{ "alphanum_fraction": 0.6390532544, "avg_line_length": 16.9, "ext": "agda", "hexsha": "861e4f46f6116568ed178361608171125a8cdb3b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_forks_repo_path": "thesisExamples/TooManyArgs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_issues_repo_path": "thesisExamples/TooManyArgs.agda", "max_line_length": 35, "max_stars_count": 16, "max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_stars_repo_path": "thesisExamples/TooManyArgs.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z", "num_tokens": 55, "size": 169 }
------------------------------------------------------------------------ -- A coinductive definition of (strong) bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Bisimilarity {ℓ} (lts : LTS ℓ) where open import Equality.Propositional open import Prelude open import Prelude.Size import Function-universe equality-with-J as F import Bisimilarity.General open import Indexed-container using (Container; ν; ν′) open import Relation open import Up-to open LTS lts private module General = Bisimilarity.General lts _[_]⟶_ _[_]⟶_ id id open General public using (module StepC; ⟨_,_⟩; left-to-right; right-to-left; force; reflexive-∼; reflexive-∼′; ≡⇒∼; ∼:_; ∼′:_; [_]_≡_; [_]_≡′_; []≡↔; module Bisimilarity-of-∼; Extensionality; extensionality) -- StepC is given in the following way, rather than via open public, -- to make hyperlinks to it more informative. StepC : Container (Proc × Proc) (Proc × Proc) StepC = General.StepC -- The following definitions are given explicitly, to make the code -- easier to follow for readers of the paper. Bisimilarity : Size → Rel₂ ℓ Proc Bisimilarity = ν StepC Bisimilarity′ : Size → Rel₂ ℓ Proc Bisimilarity′ = ν′ StepC infix 4 [_]_∼_ [_]_∼′_ _∼_ _∼′_ [_]_∼_ : Size → Proc → Proc → Type ℓ [ i ] p ∼ q = ν StepC i (p , q) [_]_∼′_ : Size → Proc → Proc → Type ℓ [ i ] p ∼′ q = ν′ StepC i (p , q) _∼_ : Proc → Proc → Type ℓ _∼_ = [ ∞ ]_∼_ _∼′_ : Proc → Proc → Type ℓ _∼′_ = [ ∞ ]_∼′_ private -- However, these definitions are definitionally equivalent to -- corresponding definitions in General. indirect-Bisimilarity : Bisimilarity ≡ General.Bisimilarity indirect-Bisimilarity = refl indirect-Bisimilarity′ : Bisimilarity′ ≡ General.Bisimilarity′ indirect-Bisimilarity′ = refl indirect-[]∼ : [_]_∼_ ≡ General.[_]_∼_ indirect-[]∼ = refl indirect-[]∼′ : [_]_∼′_ ≡ General.[_]_∼′_ indirect-[]∼′ = refl indirect-∼ : _∼_ ≡ General._∼_ indirect-∼ = refl indirect-∼′ : _∼′_ ≡ General._∼′_ indirect-∼′ = refl -- Combinators that can perhaps make the code a bit nicer to read. infix -3 _⟶⟨_⟩ʳˡ_ _[_]⟶⟨_⟩ʳˡ_ lr-result-with-action lr-result-without-action _⟶⟨_⟩ʳˡ_ : ∀ {i p′ q′ μ} p → p [ μ ]⟶ p′ → [ i ] p′ ∼′ q′ → ∃ λ p′ → p [ μ ]⟶ p′ × [ i ] p′ ∼′ q′ _ ⟶⟨ p⟶p′ ⟩ʳˡ p′∼′q′ = _ , p⟶p′ , p′∼′q′ _[_]⟶⟨_⟩ʳˡ_ : ∀ {i p′ q′} p μ → p [ μ ]⟶ p′ → [ i ] p′ ∼′ q′ → ∃ λ p′ → p [ μ ]⟶ p′ × [ i ] p′ ∼′ q′ _ [ _ ]⟶⟨ p⟶p′ ⟩ʳˡ p′∼′q′ = _ ⟶⟨ p⟶p′ ⟩ʳˡ p′∼′q′ lr-result-without-action : ∀ {i p′ q′ μ} → [ i ] p′ ∼′ q′ → ∀ q → q [ μ ]⟶ q′ → ∃ λ q′ → q [ μ ]⟶ q′ × [ i ] p′ ∼′ q′ lr-result-without-action p′∼′q′ _ q⟶q′ = _ , q⟶q′ , p′∼′q′ lr-result-with-action : ∀ {i p′ q′} → [ i ] p′ ∼′ q′ → ∀ μ q → q [ μ ]⟶ q′ → ∃ λ q′ → q [ μ ]⟶ q′ × [ i ] p′ ∼′ q′ lr-result-with-action p′∼′q′ _ _ q⟶q′ = lr-result-without-action p′∼′q′ _ q⟶q′ syntax lr-result-without-action p′∼q′ q q⟶q′ = p′∼q′ ⟵⟨ q⟶q′ ⟩ q syntax lr-result-with-action p′∼q′ μ q q⟶q′ = p′∼q′ [ μ ]⟵⟨ q⟶q′ ⟩ q -- Strong bisimilarity is a weak simulation (of a certain kind). strong-is-weak⇒̂ : ∀ {p p′ q μ} → p ∼ q → p [ μ ]⇒̂ p′ → ∃ λ q′ → q [ μ ]⇒̂ q′ × p′ ∼ q′ strong-is-weak⇒̂ = is-weak⇒̂ StepC.left-to-right (λ p∼′q → force p∼′q) (λ s tr → step s tr done) ⟶→⇒̂ mutual -- Bisimilarity is symmetric. symmetric-∼ : ∀ {i p q} → [ i ] p ∼ q → [ i ] q ∼ p symmetric-∼ p∼q = StepC.⟨ Σ-map id (Σ-map id symmetric-∼′) ∘ StepC.right-to-left p∼q , Σ-map id (Σ-map id symmetric-∼′) ∘ StepC.left-to-right p∼q ⟩ symmetric-∼′ : ∀ {i p q} → [ i ] p ∼′ q → [ i ] q ∼′ p force (symmetric-∼′ p∼q) = symmetric-∼ (force p∼q) private -- An alternative proof of symmetry. alternative-proof-of-symmetry : ∀ {i p q} → [ i ] p ∼ q → [ i ] q ∼ p alternative-proof-of-symmetry {i} = uncurry [ i ]_∼_ ⁻¹ ⊆⟨ ν-symmetric _ _ swap refl F.id ⟩∎ uncurry [ i ]_∼_ ∎ -- Strong bisimilarity is transitive. transitive-∼ : ∀ {i p q r} → [ i ] p ∼ q → [ i ] q ∼ r → [ i ] p ∼ r transitive-∼ {i} = λ p q → StepC.⟨ lr p q , Σ-map id (Σ-map id symmetric-∼′) ∘ lr (symmetric-∼ q) (symmetric-∼ p) ⟩ where lr : ∀ {p p′ q r μ} → [ i ] p ∼ q → [ i ] q ∼ r → p [ μ ]⟶ p′ → ∃ λ r′ → r [ μ ]⟶ r′ × [ i ] p′ ∼′ r′ lr p q tr = let (_ , tr′ , p′) = StepC.left-to-right p tr (_ , tr″ , q′) = StepC.left-to-right q tr′ in (_ , tr″ , λ { .force → transitive-∼ (force p′) (force q′) }) transitive-∼′ : ∀ {i p q r} → [ i ] p ∼′ q → [ i ] q ∼′ r → [ i ] p ∼′ r force (transitive-∼′ p∼q q∼r) = transitive-∼ (force p∼q) (force q∼r)
{ "alphanum_fraction": 0.5284450063, "avg_line_length": 28.9390243902, "ext": "agda", "hexsha": "b785933aed9d974fac2de25e600dfef88c86a1b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2033, "size": 4746 }
------------------------------------------------------------------------------ -- A proof that was rejected using the --without-K option ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module ListsSL where open import Data.List open import Data.Nat open import Data.Nat.Properties open import Data.Product open import Relation.Binary.PropositionalEquality open import Relation.Binary module NDTO = DecTotalOrder ≤-decTotalOrder ------------------------------------------------------------------------------ LTC : {A : Set} → List A → List A → Set LTC xs ys = ∃ (λ x → ys ≡ x ∷ xs) LTL : {A : Set} → List A → List A → Set LTL xs ys = (length xs) < (length ys) helper : {A : Set}(y : A)(xs : List A) → (length xs) < (length (y ∷ xs)) helper y [] = s≤s z≤n helper y (x ∷ xs) = s≤s NDTO.refl -- 25 April 2014. The proof is accepted using Cockx's --without-K -- implementation. foo : {A : Set}(xs ys : List A) → LTC xs ys → LTL xs ys foo xs .(x ∷ xs) (x , refl) = helper x xs foo' : {A : Set}(xs ys : List A) → LTC xs ys → LTL xs ys foo' xs ys (x , h) = subst (λ ys' → length xs < length ys') (sym h) (helper x xs)
{ "alphanum_fraction": 0.498121713, "avg_line_length": 32.4634146341, "ext": "agda", "hexsha": "780070022417806ca1abf277cef96a16bf3fa1f4", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/k-axiom/ListsSL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/k-axiom/ListsSL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/k-axiom/ListsSL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 356, "size": 1331 }
{-# OPTIONS --universe-polymorphism --no-irrelevant-projections --cubical-compatible #-} module SafeFlagSafePragmas where
{ "alphanum_fraction": 0.7886178862, "avg_line_length": 30.75, "ext": "agda", "hexsha": "c760824c8197c9b39d46235b6a7d0b86c4d39a69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/SafeFlagSafePragmas.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/SafeFlagSafePragmas.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/SafeFlagSafePragmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 30, "size": 123 }