Search is not available for this dataset
text
string
meta
dict
module Data.List.Equiv where open import Logic.Propositional import Lvl open import Data.List open import Structure.Operator open import Structure.Setoid open import Type private variable ℓ ℓₑ ℓₚ : Lvl.Level private variable T : Type{ℓ} -- A correct equality relation on lists should state that prepend is a function and have the generalized cancellation properties for lists. record Extensionality ⦃ equiv : Equiv{ℓₑ}(T) ⦄ (equiv-List : Equiv{ℓₚ}(List(T))) : Type{ℓₑ Lvl.⊔ Lvl.of(T) Lvl.⊔ ℓₚ} where constructor intro private instance _ = equiv-List field ⦃ binaryOperator ⦄ : BinaryOperator(List._⊰_) generalized-cancellationᵣ : ∀{x y : T}{l₁ l₂ : List(T)} → (x ⊰ l₁ ≡ y ⊰ l₂) → (x ≡ y) generalized-cancellationₗ : ∀{x y : T}{l₁ l₂ : List(T)} → (x ⊰ l₁ ≡ y ⊰ l₂) → (l₁ ≡ l₂) case-unequality : ∀{x : T}{l : List(T)} → (∅ ≢ x ⊰ l) generalized-cancellation : ∀{x y : T}{l₁ l₂ : List(T)} → (x ⊰ l₁ ≡ y ⊰ l₂) → ((x ≡ y) ∧ (l₁ ≡ l₂)) generalized-cancellation p = [∧]-intro (generalized-cancellationᵣ p) (generalized-cancellationₗ p) open Extensionality ⦃ … ⦄ renaming ( binaryOperator to [⊰]-binaryOperator ; generalized-cancellationₗ to [⊰]-generalized-cancellationₗ ; generalized-cancellationᵣ to [⊰]-generalized-cancellationᵣ ; generalized-cancellation to [⊰]-generalized-cancellation ; case-unequality to [∅][⊰]-unequal ) public
{ "alphanum_fraction": 0.6843636364, "avg_line_length": 42.96875, "ext": "agda", "hexsha": "6370e115c015d5907255d8ae0cba4383db66ba8b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Equiv.agda", "max_line_length": 139, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 494, "size": 1375 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Orders.Total.Definition open import Rings.IntegralDomains.Definition module Rings.Orders.Total.AbsoluteValue {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where open Ring R open Group additiveGroup open Setoid S open SetoidPartialOrder pOrder open TotallyOrderedRing order open SetoidTotalOrder total open PartiallyOrderedRing pOrderRing open import Rings.Lemmas R open import Rings.Orders.Partial.Lemmas pOrderRing open import Rings.Orders.Total.Lemmas order abs : A → A abs a with totality 0R a abs a | inl (inl 0<a) = a abs a | inl (inr a<0) = inverse a abs a | inr 0=a = a absWellDefined : (a b : A) → a ∼ b → abs a ∼ abs b absWellDefined a b a=b with totality 0R a absWellDefined a b a=b | inl (inl 0<a) with totality 0R b absWellDefined a b a=b | inl (inl 0<a) | inl (inl 0<b) = a=b absWellDefined a b a=b | inl (inl 0<a) | inl (inr b<0) = exFalso (irreflexive {0G} (<Transitive 0<a (<WellDefined (Equivalence.symmetric eq a=b) (Equivalence.reflexive eq) b<0))) absWellDefined a b a=b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) 0<a)) absWellDefined a b a=b | inl (inr a<0) with totality 0R b absWellDefined a b a=b | inl (inr a<0) | inl (inl 0<b) = exFalso (irreflexive {0G} (<Transitive 0<b (<WellDefined a=b (Equivalence.reflexive eq) a<0))) absWellDefined a b a=b | inl (inr a<0) | inl (inr b<0) = inverseWellDefined additiveGroup a=b absWellDefined a b a=b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq a=b (Equivalence.symmetric eq 0=b)) (Equivalence.reflexive eq) a<0)) absWellDefined a b a=b | inr 0=a with totality 0R b absWellDefined a b a=b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) 0<b)) absWellDefined a b a=b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=a a=b)) (Equivalence.reflexive eq) b<0)) absWellDefined a b a=b | inr 0=a | inr 0=b = a=b triangleInequality : (a b : A) → ((abs (a + b)) < ((abs a) + (abs b))) || (abs (a + b) ∼ (abs a) + (abs b)) triangleInequality a b with totality 0R (a + b) triangleInequality a b | inl (inl 0<a+b) with totality 0R a triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) with totality 0R b triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inl 0<b) = inr (Equivalence.reflexive eq) triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a)) triangleInequality a b | inl (inl 0<a+b) | inl (inl 0<a) | inr 0=b = inr (Equivalence.reflexive eq) triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) with totality 0R b triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b) triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a+b (<WellDefined (Equivalence.reflexive eq) identLeft (ringAddInequalities a<0 b<0)))) triangleInequality a b | inl (inl 0<a+b) | inl (inr a<0) | inr 0=b = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 a a<0)) b) triangleInequality a b | inl (inl 0<a+b) | inr 0=a with totality 0R b triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inl 0<b) = inr (Equivalence.reflexive eq) triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 b b<0)) a)) triangleInequality a b | inl (inl 0<a+b) | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq) triangleInequality a b | inl (inr a+b<0) with totality 0G a triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) with totality 0G b triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities 0<a 0<b)) a+b<0)) triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (invContravariant additiveGroup)) (inverseWellDefined additiveGroup groupIsAbelian)) (Equivalence.reflexive eq) (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<a) 0<a) (inverse b))) triangleInequality a b | inl (inr a+b<0) | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) identRight) (Equivalence.reflexive eq) a+b<0))) triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) with totality 0G b triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inl 0<b) = inl (<WellDefined (Equivalence.symmetric eq (invContravariant additiveGroup)) groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder (lemm2' _ 0<b) 0<b) (inverse a))) triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian) triangleInequality a b | inl (inr a+b<0) | inl (inr a<0) | inr 0=b = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=b)) (invIdent additiveGroup)) (Equivalence.reflexive eq)) identLeft) (Equivalence.symmetric eq identRight)) (+WellDefined (Equivalence.reflexive eq) 0=b))) triangleInequality a b | inl (inr a+b<0) | inr 0=a with totality 0G b triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<b (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) identLeft) (Equivalence.reflexive eq) a+b<0))) triangleInequality a b | inl (inr a+b<0) | inr 0=a | inl (inr b<0) = inr (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (inverseWellDefined additiveGroup 0=a)) (invIdent additiveGroup)) 0=a) (Equivalence.reflexive eq)))) triangleInequality a b | inl (inr a+b<0) | inr 0=a | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.symmetric eq 0=b)) identLeft) (Equivalence.reflexive eq) a+b<0)) triangleInequality a b | inr 0=a+b with totality 0G a triangleInequality a b | inr 0=a+b | inl (inl 0<a) with totality 0G b triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined identLeft (Equivalence.symmetric eq 0=a+b) (ringAddInequalities 0<a 0<b))) triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inl (inr b<0) = inl (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder b<0 (lemm2 _ b<0)) a)) triangleInequality a b | inr 0=a+b | inl (inl 0<a) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) 0<a)) triangleInequality a b | inr 0=a+b | inl (inr a<0) with totality 0G b triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inl 0<b) = inl (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder a<0 (lemm2 _ a<0)) b) triangleInequality a b | inr 0=a+b | inl (inr a<0) | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=a+b) identLeft (ringAddInequalities a<0 b<0))) triangleInequality a b | inr 0=a+b | inl (inr a<0) | inr 0=b = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 _ _ (Equivalence.transitive eq 0=a+b groupIsAbelian) 0=b)) (Equivalence.reflexive eq) a<0)) triangleInequality a b | inr 0=a+b | inr 0=a with totality 0G b triangleInequality a b | inr 0=a+b | inr 0=a | inl (inl 0<b) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) 0<b)) triangleInequality a b | inr 0=a+b | inr 0=a | inl (inr b<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (lemm3 a b 0=a+b 0=a)) (Equivalence.reflexive eq) b<0)) triangleInequality a b | inr 0=a+b | inr 0=a | inr 0=b = inr (Equivalence.reflexive eq) absZero : abs (Ring.0R R) ≡ Ring.0R R absZero with totality (Ring.0R R) (Ring.0R R) absZero | inl (inl x) = exFalso (irreflexive x) absZero | inl (inr x) = exFalso (irreflexive x) absZero | inr x = refl absNegation : (a : A) → (abs a) ∼ (abs (inverse a)) absNegation a with totality 0R a absNegation a | inl (inl 0<a) with totality 0G (inverse a) absNegation a | inl (inl 0<a) | inl (inl 0<-a) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<-a (lemm2' a 0<a))) absNegation a | inl (inl 0<a) | inl (inr -a<0) = Equivalence.symmetric eq (invTwice additiveGroup a) absNegation a | inl (inl 0<a) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (invTwice additiveGroup a)) (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=-a))) (invIdent additiveGroup)) 0<a)) absNegation a | inl (inr a<0) with totality 0G (inverse a) absNegation a | inl (inr a<0) | inl (inl 0<-a) = Equivalence.reflexive eq absNegation a | inl (inr a<0) | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) -a<0)) a<0)) absNegation a | inl (inr a<0) | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq (inverseWellDefined additiveGroup 0=-a) (invTwice additiveGroup a))) (invIdent additiveGroup)) (Equivalence.reflexive eq) a<0)) absNegation a | inr 0=a with totality 0G (inverse a) absNegation a | inr 0=a | inl (inl 0<-a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) 0<-a)) absNegation a | inr 0=a | inl (inr -a<0) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.symmetric eq 0=a)) (invIdent additiveGroup)) (Equivalence.reflexive eq) -a<0)) absNegation a | inr 0=a | inr 0=-a = Equivalence.transitive eq (Equivalence.symmetric eq 0=a) 0=-a absRespectsTimes : (a b : A) → abs (a * b) ∼ (abs a) * (abs b) absRespectsTimes a b with totality 0R a absRespectsTimes a b | inl (inl 0<a) with totality 0R b absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) with totality 0R (a * b) absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (orderRespectsMultiplication 0<a 0<b) ab<0)) absRespectsTimes a b | inl (inl 0<a) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (orderRespectsMultiplication 0<a 0<b))) absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) with totality 0R (a * b) absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inl 0<ab) with <WellDefined (Equivalence.reflexive eq) ringMinusExtracts (orderRespectsMultiplication 0<a (lemm2 b b<0)) ... | bl = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ bl)))) absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts absRespectsTimes a b | inl (inl 0<a) | inl (inr b<0) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=ab) (Equivalence.reflexive eq) (posTimesNeg a b 0<a b<0))) absRespectsTimes a b | inl (inl 0<a) | inr 0=b with totality 0R (a * b) absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab)) absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inl (inr ab<0) = exFalso ((irreflexive {0G} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) (Equivalence.reflexive eq) ab<0))) absRespectsTimes a b | inl (inl 0<a) | inr 0=b | inr 0=ab = Equivalence.reflexive eq absRespectsTimes a b | inl (inr a<0) with totality 0R b absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) with totality 0R (a * b) absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inl 0<ab) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<ab (<WellDefined *Commutative (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0)))) absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts' absRespectsTimes a b | inl (inr a<0) | inl (inl 0<b) | inr 0=ab = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq 0=ab *Commutative)) (Equivalence.reflexive eq) (posTimesNeg b a 0<b a<0))) absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) with totality 0R (a * b) absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inl 0<ab) = Equivalence.symmetric eq twoNegativesTimes absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inl (inr ab<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (negTimesPos a b a<0 b<0) ab<0)) absRespectsTimes a b | inl (inr a<0) | inl (inr b<0) | inr 0=ab = exFalso (exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=ab) (negTimesPos a b a<0 b<0)))) absRespectsTimes a b | inl (inr a<0) | inr 0=b with totality 0R (a * b) absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (timesZero {a})) 0<ab)) absRespectsTimes a b | inl (inr a<0) | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0)) absRespectsTimes a b | inl (inr a<0) | inr 0=b | inr 0=ab = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) (Equivalence.transitive eq (Equivalence.transitive eq timesZero (Equivalence.symmetric eq timesZero)) (*WellDefined (Equivalence.reflexive eq) 0=b)) absRespectsTimes a b | inr 0=a with totality 0R b absRespectsTimes a b | inr 0=a | inl (inl 0<b) with totality 0R (a * b) absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inl 0<ab) = Equivalence.reflexive eq absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inl (inr ab<0) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (inverseWellDefined additiveGroup (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (invIdent additiveGroup)) (Equivalence.transitive eq (Equivalence.symmetric eq timesZero) *Commutative)) (*WellDefined 0=a (Equivalence.reflexive eq)) absRespectsTimes a b | inr 0=a | inl (inl 0<b) | inr 0=ab = Equivalence.reflexive eq absRespectsTimes a b | inr 0=a | inl (inr b<0) with totality 0R (a * b) absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inl 0<ab) = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq)))) absRespectsTimes a b | inr 0=a | inl (inr b<0) | inl (inr ab<0) = Equivalence.symmetric eq ringMinusExtracts absRespectsTimes a b | inr 0=a | inl (inr b<0) | inr 0=ab = Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq)) *Commutative) (Equivalence.transitive eq timesZero (Equivalence.transitive eq (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (*WellDefined 0=a (Equivalence.reflexive eq)))) absRespectsTimes a b | inr 0=a | inr 0=b with totality 0R (a * b) absRespectsTimes a b | inr 0=a | inr 0=b | inl (inl 0<ab) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) 0<ab)) absRespectsTimes a b | inr 0=a | inr 0=b | inl (inr ab<0) = exFalso (irreflexive {0R} (<WellDefined (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=b)) timesZero) (Equivalence.reflexive eq) ab<0)) absRespectsTimes a b | inr 0=a | inr 0=b | inr 0=ab = Equivalence.reflexive eq absNonnegative : {a : A} → (abs a < 0R) → False absNonnegative {a} pr with totality 0R a absNonnegative {a} pr | inl (inl x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder x pr) absNonnegative {a} pr | inl (inr x) = irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup a) (lemm2 (inverse a) pr)) x) absNonnegative {a} pr | inr x = irreflexive {0G} (<WellDefined (Equivalence.symmetric eq x) (Equivalence.reflexive eq) pr) absZeroImpliesZero : {a : A} → abs a ∼ 0R → a ∼ 0R absZeroImpliesZero {a} a=0 with totality 0R a absZeroImpliesZero {a} a=0 | inl (inl 0<a) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) a=0 0<a)) absZeroImpliesZero {a} a=0 | inl (inr a<0) = Equivalence.symmetric eq (lemm3 (inverse a) a (Equivalence.symmetric eq invLeft) (Equivalence.symmetric eq a=0)) absZeroImpliesZero {a} a=0 | inr 0=a = a=0 addingAbsCannotShrink : {a b : A} → 0G < b → 0G < ((abs a) + b) addingAbsCannotShrink {a} {b} 0<b with totality 0G a addingAbsCannotShrink {a} {b} 0<b | inl (inl x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities x 0<b) addingAbsCannotShrink {a} {b} 0<b | inl (inr x) = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities (lemm2 a x) 0<b) addingAbsCannotShrink {a} {b} 0<b | inr x = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined x (Equivalence.reflexive eq))) 0<b greaterZeroImpliesEqualAbs : {a : A} → 0R < a → a ∼ abs a greaterZeroImpliesEqualAbs {a} 0<a with totality 0R a ... | inl (inl _) = Equivalence.reflexive eq ... | inl (inr a<0) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a)) ... | inr 0=a = exFalso (irreflexive (<WellDefined 0=a (Equivalence.reflexive eq) 0<a)) lessZeroImpliesEqualNegAbs : {a : A} → a < 0R → abs a ∼ inverse a lessZeroImpliesEqualNegAbs {a} a<0 with totality 0R a ... | inl (inr _) = Equivalence.reflexive eq ... | inl (inl 0<a) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder a<0 0<a)) ... | inr 0=a = exFalso (irreflexive (<WellDefined (Equivalence.reflexive eq) 0=a a<0)) absZeroIsZero : abs 0R ∼ 0R absZeroIsZero with totality 0R 0R ... | inl (inl bad) = exFalso (irreflexive bad) ... | inl (inr bad) = exFalso (irreflexive bad) ... | inr _ = Equivalence.reflexive eq greaterThanAbsImpliesGreaterThan0 : {a b : A} → (abs a) < b → 0R < b greaterThanAbsImpliesGreaterThan0 {a} {b} a<b with totality 0R a greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inl 0<a) = SetoidPartialOrder.<Transitive pOrder 0<a a<b greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inl (inr a<0) = SetoidPartialOrder.<Transitive pOrder (lemm2 _ a<0) a<b greaterThanAbsImpliesGreaterThan0 {a} {b} a<b | inr 0=a = <WellDefined (Equivalence.symmetric eq 0=a) (Equivalence.reflexive eq) a<b abs1Is1 : abs 1R ∼ 1R abs1Is1 with totality 0R 1R abs1Is1 | inl (inl 0<1) = Equivalence.reflexive eq abs1Is1 | inl (inr 1<0) = exFalso (1<0False 1<0) abs1Is1 | inr 0=1 = Equivalence.reflexive eq absBoundedImpliesBounded : {a b : A} → abs a < b → a < b absBoundedImpliesBounded {a} {b} a<b with totality 0G a absBoundedImpliesBounded {a} {b} a<b | inl (inl x) = a<b absBoundedImpliesBounded {a} {b} a<b | inl (inr x) = SetoidPartialOrder.<Transitive pOrder x (SetoidPartialOrder.<Transitive pOrder (lemm2 a x) a<b) absBoundedImpliesBounded {a} {b} a<b | inr x = a<b a-bPos : {a b : A} → ((a ∼ b) → False) → 0R < abs (a + inverse b) a-bPos {a} {b} a!=b with totality 0R (a + inverse b) a-bPos {a} {b} a!=b | inl (inl x) = x a-bPos {a} {b} a!=b | inl (inr x) = lemm2 _ x a-bPos {a} {b} a!=b | inr x = exFalso (a!=b (transferToRight additiveGroup (Equivalence.symmetric eq x)))
{ "alphanum_fraction": 0.7231485247, "avg_line_length": 101.5183486239, "ext": "agda", "hexsha": "0959157e1828a52c278e412f50afdb3a3cb447da", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/AbsoluteValue.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/AbsoluteValue.agda", "max_line_length": 483, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/AbsoluteValue.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 8236, "size": 22131 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.AbGroup.TensorProduct where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function hiding (flip) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Relation.Binary open import Cubical.Data.Nat as ℕ open import Cubical.Data.Int using (ℤ) open import Cubical.Data.List open import Cubical.Data.Sigma open import Cubical.Data.Sum hiding (map) open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.AbGroup.Base private variable ℓ ℓ' : Level module _ (AGr : AbGroup ℓ) (BGr : AbGroup ℓ') where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G_) strA = snd AGr strB = snd BGr A = fst AGr B = fst BGr 0A = 0g strA 0B = 0g strB _+A_ = _+G_ strA _+B_ = _+G_ strB -A_ = -G_ strA -B_ = -G_ strB data _⨂₁_ : Type (ℓ-max ℓ ℓ') where _⊗_ : (a : A) → (b : B) → _⨂₁_ _+⊗_ : (w : _⨂₁_) → (u : _⨂₁_) → _⨂₁_ +⊗Comm : (x y : _) → x +⊗ y ≡ y +⊗ x +⊗Assoc : (x y z : _) → x +⊗ (y +⊗ z) ≡ (x +⊗ y) +⊗ z +⊗IdL : (x : _) → (0A ⊗ 0B) +⊗ x ≡ x ⊗DistR+⊗ : (x : A) (y z : B) → x ⊗ (y +B z) ≡ ((x ⊗ y) +⊗ (x ⊗ z)) ⊗DistL+⊗ : (x y : A) (z : B) → (x +A y) ⊗ z ≡ ((x ⊗ z) +⊗ (y ⊗ z)) ⊗squash : isSet _⨂₁_ module _ {AGr : AbGroup ℓ} {BGr : AbGroup ℓ'} where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G_) strA = snd AGr strB = snd BGr A = fst AGr B = fst BGr 0A = 0g strA 0B = 0g strB _+A_ = _+G_ strA _+B_ = _+G_ strB -A_ = -G_ strA -B_ = -G_ strB A⊗B = AGr ⨂₁ BGr ⊗elimProp : ∀ {ℓ} {C : AGr ⨂₁ BGr → Type ℓ} → ((x : _) → isProp (C x)) → (f : (x : A) (b : B) → C (x ⊗ b)) → (g : ((x y : _) → C x → C y → C (x +⊗ y))) → (x : _) → C x ⊗elimProp p f g (a ⊗ b) = f a b ⊗elimProp p f g (x +⊗ y) = g x y (⊗elimProp p f g x) (⊗elimProp p f g y) ⊗elimProp {C = C} p f g (+⊗Comm x y j) = isOfHLevel→isOfHLevelDep 1 {B = C} p (g x y (⊗elimProp p f g x) (⊗elimProp p f g y)) (g y x (⊗elimProp p f g y) (⊗elimProp p f g x)) (+⊗Comm x y) j ⊗elimProp {C = C} p f g (+⊗Assoc x y z j) = isOfHLevel→isOfHLevelDep 1 {B = C} p (g x (y +⊗ z) (⊗elimProp p f g x) (g y z (⊗elimProp p f g y) (⊗elimProp p f g z))) (g (x +⊗ y) z (g x y (⊗elimProp p f g x) (⊗elimProp p f g y)) (⊗elimProp p f g z)) (+⊗Assoc x y z) j ⊗elimProp {C = C} p f g (+⊗IdL x i) = isOfHLevel→isOfHLevelDep 1 {B = C} p (g (0A ⊗ 0B) x (f 0A 0B) (⊗elimProp p f g x)) (⊗elimProp p f g x) (+⊗IdL x) i ⊗elimProp {C = C} p f g (⊗DistR+⊗ x y z i) = isOfHLevel→isOfHLevelDep 1 {B = C} p (f x (y +B z)) (g (x ⊗ y) (x ⊗ z) (f x y) (f x z)) (⊗DistR+⊗ x y z) i ⊗elimProp {C = C} p f g (⊗DistL+⊗ x y z i) = isOfHLevel→isOfHLevelDep 1 {B = C} p (f (x +A y) z) (g (x ⊗ z) (y ⊗ z) (f x z) (f y z)) (⊗DistL+⊗ x y z) i ⊗elimProp {C = C} p f g (⊗squash x y q r i j) = isOfHLevel→isOfHLevelDep 2 {B = C} (λ x → isProp→isSet (p x)) _ _ (λ j → ⊗elimProp p f g (q j)) (λ j → ⊗elimProp p f g (r j)) (⊗squash x y q r) i j -- Group structure 0⊗ : AGr ⨂₁ BGr 0⊗ = 0A ⊗ 0B -⊗ : AGr ⨂₁ BGr → AGr ⨂₁ BGr -⊗ (a ⊗ b) = (-A a) ⊗ b -⊗ (x +⊗ x₁) = -⊗ x +⊗ -⊗ x₁ -⊗ (+⊗Comm x y i) = +⊗Comm (-⊗ x) (-⊗ y) i -⊗ (+⊗Assoc x y z i) = +⊗Assoc (-⊗ x) (-⊗ y) (-⊗ z) i -⊗ (+⊗IdL x i) = ((λ i → (GroupTheory.inv1g (AbGroup→Group AGr) i ⊗ 0B) +⊗ -⊗ x) ∙ +⊗IdL (-⊗ x)) i -⊗ (⊗DistR+⊗ x y z i) = ⊗DistR+⊗ (-A x) y z i -⊗ (⊗DistL+⊗ x y z i) = ((λ i → (GroupTheory.invDistr (AbGroup→Group AGr) x y ∙ +Comm strA (-A y) (-A x)) i ⊗ z) ∙ ⊗DistL+⊗ (-A x) (-A y) z) i -⊗ (⊗squash x y p q i j) = ⊗squash _ _ (λ j → -⊗ (p j)) (λ j → -⊗ (q j)) i j +⊗IdR : (x : A⊗B) → x +⊗ 0⊗ ≡ x +⊗IdR x = +⊗Comm x 0⊗ ∙ +⊗IdL x ------------------------------------------------------------------------------- -- Useful induction principle, which lets us view elements of A ⨂ B as lists -- over (A × B). Used for the right cancellation law unlist : List (A × B) → AGr ⨂₁ BGr unlist [] = 0A ⊗ 0B unlist (x ∷ x₁) = (fst x ⊗ snd x) +⊗ unlist x₁ unlist++ : (x y : List (A × B)) → unlist (x ++ y) ≡ (unlist x +⊗ unlist y) unlist++ [] y = sym (+⊗IdL (unlist y)) unlist++ (x ∷ x₁) y = (λ i → (fst x ⊗ snd x) +⊗ (unlist++ x₁ y i)) ∙ +⊗Assoc (fst x ⊗ snd x) (unlist x₁) (unlist y) ∃List : (x : AGr ⨂₁ BGr) → ∃[ l ∈ List (A × B) ] (unlist l ≡ x) ∃List = ⊗elimProp (λ _ → squash₁) (λ a b → ∣ [ a , b ] , +⊗IdR (a ⊗ b) ∣₁) λ x y → rec2 squash₁ λ {(l1 , p) (l2 , q) → ∣ (l1 ++ l2) , unlist++ l1 l2 ∙ cong₂ _+⊗_ p q ∣₁} ⊗elimPropUnlist : ∀ {ℓ} {C : AGr ⨂₁ BGr → Type ℓ} → ((x : _) → isProp (C x)) → ((x : _) → C (unlist x)) → (x : _) → C x ⊗elimPropUnlist {C = C} p f = ⊗elimProp p (λ x y → subst C (+⊗IdR (x ⊗ y)) (f [ x , y ])) λ x y → PT.rec (isPropΠ2 λ _ _ → p _) (PT.rec (isPropΠ3 λ _ _ _ → p _) (λ {(l1 , p) (l2 , q) ind1 ind2 → subst C (unlist++ l2 l1 ∙ cong₂ _+⊗_ q p) (f (l2 ++ l1))}) (∃List y)) (∃List x) ----------------------------------------------------------------------------------- ⊗AnnihilL : (x : B) → (0A ⊗ x) ≡ 0⊗ ⊗AnnihilL x = sym (+⊗IdR _) ∙∙ cong ((0A ⊗ x) +⊗_) (sym cancelLem) ∙∙ +⊗Assoc (0A ⊗ x) (0A ⊗ x) (0A ⊗ (-B x)) ∙∙ cong (_+⊗ (0A ⊗ (-B x))) inner ∙∙ cancelLem where cancelLem : (0A ⊗ x) +⊗ (0A ⊗ (-B x)) ≡ 0⊗ cancelLem = sym (⊗DistR+⊗ 0A x (-B x)) ∙ (λ i → 0A ⊗ +InvR strB x i) inner : (0A ⊗ x) +⊗ (0A ⊗ x) ≡ 0A ⊗ x inner = sym (⊗DistL+⊗ 0A 0A x) ∙ (λ i → +IdR strA 0A i ⊗ x) ⊗AnnihilR : (x : A) → (x ⊗ 0B) ≡ 0⊗ ⊗AnnihilR x = sym (+⊗IdR _) ∙∙ cong ((x ⊗ 0B) +⊗_) (sym cancelLem) ∙∙ +⊗Assoc (x ⊗ 0B) (x ⊗ 0B) ((-A x) ⊗ 0B) ∙∙ cong (_+⊗ ((-A x) ⊗ 0B)) inner ∙∙ cancelLem where cancelLem : (x ⊗ 0B) +⊗ ((-A x) ⊗ 0B) ≡ 0⊗ cancelLem = sym (⊗DistL+⊗ x (-A x) 0B) ∙ (λ i → +InvR strA x i ⊗ 0B) inner : (x ⊗ 0B) +⊗ (x ⊗ 0B) ≡ x ⊗ 0B inner = sym (⊗DistR+⊗ x 0B 0B) ∙ (λ i → x ⊗ +IdR strB 0B i) flip : (x : A) (b : B) → x ⊗ (-B b) ≡ ((-A x) ⊗ b) flip x b = sym (+⊗IdR _) ∙ cong ((x ⊗ (-B b)) +⊗_) (sym cancelLemA) ∙ +⊗Assoc (x ⊗ (-B b)) (x ⊗ b) ((-A x) ⊗ b) ∙ cong (_+⊗ ((-A x) ⊗ b)) cancelLemB ∙ +⊗IdL _ where cancelLemA : (x ⊗ b) +⊗ ((-A x) ⊗ b) ≡ 0⊗ cancelLemA = sym (⊗DistL+⊗ x (-A x) b) ∙ (λ i → +InvR strA x i ⊗ b) ∙ ⊗AnnihilL b cancelLemB : (x ⊗ (-B b)) +⊗ (x ⊗ b) ≡ 0⊗ cancelLemB = sym (⊗DistR+⊗ x (-B b) b) ∙ (λ i → x ⊗ +InvL strB b i) ∙ ⊗AnnihilR x +⊗InvR : (x : AGr ⨂₁ BGr) → (x +⊗ -⊗ x) ≡ 0⊗ +⊗InvR = ⊗elimPropUnlist (λ _ → ⊗squash _ _) h where h : (x : List (A × B)) → (unlist x +⊗ -⊗ (unlist x)) ≡ 0⊗ h [] = sym (⊗DistL+⊗ 0A (-A 0A) (0B)) ∙ cong (λ x → _⊗_ {AGr = AGr} {BGr = BGr} x 0B) (+InvR strA 0A) h (x ∷ x₁) = move4 (fst x ⊗ snd x) (unlist x₁) ((-A fst x) ⊗ snd x) (-⊗ (unlist x₁)) _+⊗_ +⊗Assoc +⊗Comm ∙∙ cong₂ _+⊗_ (sym (⊗DistL+⊗ (fst x) (-A (fst x)) (snd x)) ∙∙ (λ i → +InvR strA (fst x) i ⊗ (snd x)) ∙∙ ⊗AnnihilL (snd x)) (h x₁) ∙∙ +⊗IdR 0⊗ +⊗InvL : (x : AGr ⨂₁ BGr) → (-⊗ x +⊗ x) ≡ 0⊗ +⊗InvL x = +⊗Comm _ _ ∙ +⊗InvR x module _ where open AbGroupStr _⨂_ : AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ') fst (A ⨂ B) = A ⨂₁ B 0g (snd (A ⨂ B)) = 0⊗ AbGroupStr._+_ (snd (A ⨂ B)) = _+⊗_ AbGroupStr.- snd (A ⨂ B) = -⊗ isAbGroup (snd (A ⨂ B)) = makeIsAbGroup ⊗squash +⊗Assoc +⊗IdR +⊗InvR +⊗Comm -------------- Elimination principle into AbGroups -------------- module _ {ℓ ℓ' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G) _+A_ = _+G_ (snd A) _+B_ = _+G_ (snd B) 0A = 0g (snd A) 0B = 0g (snd B) ⨂→AbGroup-elim : ∀ {ℓ} (C : AbGroup ℓ) → (f : (fst A × fst B) → fst C) → (f (0A , 0B) ≡ 0g (snd C)) → (linR : (a : fst A) (x y : fst B) → f (a , x +B y) ≡ _+G_ (snd C) (f (a , x)) (f (a , y))) → (linL : (x y : fst A) (b : fst B) → f (x +A y , b) ≡ _+G_ (snd C) (f (x , b)) (f (y , b))) → A ⨂₁ B → fst C ⨂→AbGroup-elim C f p linR linL (a ⊗ b) = f (a , b) ⨂→AbGroup-elim C f p linR linL (x +⊗ x₁) = _+G_ (snd C) (⨂→AbGroup-elim C f p linR linL x) (⨂→AbGroup-elim C f p linR linL x₁) ⨂→AbGroup-elim C f p linR linL (+⊗Comm x x₁ i) = +Comm (snd C) (⨂→AbGroup-elim C f p linR linL x) (⨂→AbGroup-elim C f p linR linL x₁) i ⨂→AbGroup-elim C f p linR linL (+⊗Assoc x x₁ x₂ i) = +Assoc (snd C) (⨂→AbGroup-elim C f p linR linL x) (⨂→AbGroup-elim C f p linR linL x₁) (⨂→AbGroup-elim C f p linR linL x₂) i ⨂→AbGroup-elim C f p linR linL (+⊗IdL x i) = (cong (λ y → (snd C +G y) (⨂→AbGroup-elim C f p linR linL x)) p ∙ (+IdL (snd C) (⨂→AbGroup-elim C f p linR linL x))) i ⨂→AbGroup-elim C f p linR linL (⊗DistR+⊗ x y z i) = linR x y z i ⨂→AbGroup-elim C f p linR linL (⊗DistL+⊗ x y z i) = linL x y z i ⨂→AbGroup-elim C f p linR linL (⊗squash x x₁ x₂ y i i₁) = is-set (snd C) _ _ (λ i → ⨂→AbGroup-elim C f p linR linL (x₂ i)) (λ i → ⨂→AbGroup-elim C f p linR linL (y i)) i i₁ ⨂→AbGroup-elim-hom : ∀ {ℓ} (C : AbGroup ℓ) → (f : (fst A × fst B) → fst C) (linR : _) (linL : _) (p : _) → AbGroupHom (A ⨂ B) C fst (⨂→AbGroup-elim-hom C f linR linL p) = ⨂→AbGroup-elim C f p linR linL snd (⨂→AbGroup-elim-hom C f linR linL p) = makeIsGroupHom (λ x y → refl) private _* = AbGroup→Group ----------- Definition of universal property ------------ tensorFun : (A : Group ℓ) (B : Group ℓ') (T C : AbGroup (ℓ-max ℓ ℓ')) (f : GroupHom A (HomGroup B T *)) → GroupHom (T *) (C *) → GroupHom A (HomGroup B C *) fst (fst (tensorFun A B T C (f , p) (g , q)) a) b = g (fst (f a) b) snd (fst (tensorFun A B T C (f , p) (g , q)) a) = makeIsGroupHom λ x y → cong g (IsGroupHom.pres· (snd (f a)) x y) ∙ IsGroupHom.pres· q _ _ snd (tensorFun A B T C (f , p) (g , q)) = makeIsGroupHom λ x y → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ b → cong g (funExt⁻ (cong fst (IsGroupHom.pres· p x y)) b) ∙ IsGroupHom.pres· q _ _) isTensorProductOf_and_ : AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ')→ Type _ isTensorProductOf_and_ {ℓ} {ℓ'} A B T = Σ[ f ∈ GroupHom (A *) ((HomGroup (B *) T) *) ] ((C : AbGroup (ℓ-max ℓ ℓ')) → isEquiv {A = GroupHom (T *) (C *)} {B = GroupHom (A *) ((HomGroup (B *) C) *)} (tensorFun (A *) (B *) T C f)) ------ _⨂_ satisfies the universal property -------- module UP (AGr : AbGroup ℓ) (BGr : AbGroup ℓ') where private open AbGroupStr renaming (_+_ to _+G_ ; -_ to -G_) strA = snd AGr strB = snd BGr A = fst AGr B = fst BGr 0A = 0g strA 0B = 0g strB _+A_ = _+G_ strA _+B_ = _+G_ strB -A_ = -G_ strA -B_ = -G_ strB mainF : GroupHom (AGr *) (HomGroup (BGr *) (AGr ⨂ BGr) *) fst (fst mainF a) b = a ⊗ b snd (fst mainF a) = makeIsGroupHom (⊗DistR+⊗ a) snd mainF = makeIsGroupHom λ x y → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt (⊗DistL+⊗ x y)) isTensorProduct⨂ : (isTensorProductOf AGr and BGr) (AGr ⨂ BGr) fst isTensorProduct⨂ = mainF snd isTensorProduct⨂ C = isoToIsEquiv mainIso where invF : GroupHom (AGr *) (HomGroup (BGr *) C *) → GroupHom ((AGr ⨂ BGr) *) (C *) fst (invF (f , p)) = F where lem : f (0g (snd AGr)) .fst (0g (snd BGr)) ≡ 0g (snd C) lem = funExt⁻ (cong fst (IsGroupHom.pres1 p)) (0g (snd BGr)) F : ((AGr ⨂ BGr) *) .fst → (C *) .fst F (a ⊗ b) = f a .fst b F (x +⊗ x₁) = _+G_ (snd C) (F x) (F x₁) F (+⊗Comm x x₁ i) = +Comm (snd C) (F x) (F x₁) i F (+⊗Assoc x y z i) = +Assoc (snd C) (F x) (F y) (F z) i F (+⊗IdL x i) = (cong (λ y → _+G_ (snd C) y (F x)) lem ∙ +IdL (snd C) (F x)) i F (⊗DistR+⊗ x y z i) = IsGroupHom.pres· (f x .snd) y z i F (⊗DistL+⊗ x y z i) = fst (IsGroupHom.pres· p x y i) z F (⊗squash x x₁ x₂ y i i₁) = is-set (snd C) (F x) (F x₁) (λ i → F (x₂ i)) (λ i → F (y i)) i i₁ snd (invF (f , p)) = makeIsGroupHom λ x y → refl mainIso : Iso (GroupHom ((AGr ⨂ BGr) *) (C *)) (GroupHom (AGr *) (HomGroup (BGr *) C *)) Iso.fun mainIso = _ Iso.inv mainIso = invF Iso.rightInv mainIso (f , p) = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ a → Σ≡Prop (λ _ → isPropIsGroupHom _ _) refl) Iso.leftInv mainIso (f , p) = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt (⊗elimProp (λ _ → is-set (snd C) _ _) (λ _ _ → refl) λ x y ind1 ind2 → cong₂ (_+G_ (snd C)) ind1 ind2 ∙ sym (IsGroupHom.pres· p x y))) -------------------- Commutativity ------------------------ commFun : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → A ⨂₁ B → B ⨂₁ A commFun (a ⊗ b) = b ⊗ a commFun (x +⊗ x₁) = commFun x +⊗ commFun x₁ commFun (+⊗Comm x x₁ i) = +⊗Comm (commFun x) (commFun x₁) i commFun (+⊗Assoc x x₁ x₂ i) = +⊗Assoc (commFun x) (commFun x₁) (commFun x₂) i commFun (+⊗IdL x i) = +⊗IdL (commFun x) i commFun (⊗DistR+⊗ x y z i) = ⊗DistL+⊗ y z x i commFun (⊗DistL+⊗ x y z i) = ⊗DistR+⊗ z x y i commFun (⊗squash x x₁ x₂ y i i₁) = ⊗squash (commFun x) (commFun x₁) (λ i → commFun (x₂ i)) (λ i → commFun (y i)) i i₁ commFun²≡id : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} (x : A ⨂₁ B) → commFun (commFun x) ≡ x commFun²≡id = ⊗elimProp (λ _ → ⊗squash _ _) (λ _ _ → refl) (λ _ _ p q → cong₂ _+⊗_ p q) ⨂-commIso : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → GroupIso ((A ⨂ B) *) ((B ⨂ A) *) Iso.fun (fst ⨂-commIso) = commFun Iso.inv (fst ⨂-commIso) = commFun Iso.rightInv (fst ⨂-commIso) = commFun²≡id Iso.leftInv (fst ⨂-commIso) = commFun²≡id snd ⨂-commIso = makeIsGroupHom λ x y → refl ⨂-comm : ∀ {ℓ ℓ'} {A : AbGroup ℓ} {B : AbGroup ℓ'} → AbGroupEquiv (A ⨂ B) (B ⨂ A) fst ⨂-comm = isoToEquiv (fst (⨂-commIso)) snd ⨂-comm = snd ⨂-commIso open AbGroupStr -------------------- Associativity ------------------------ module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGroup ℓ''} where private f : (c : fst C) → AbGroupHom (A ⨂ B) (A ⨂ (B ⨂ C)) f c = ⨂→AbGroup-elim-hom (A ⨂ (B ⨂ C)) (λ ab → (fst ab) ⊗ ((snd ab) ⊗ c)) (λ a b b' → (λ i → a ⊗ (⊗DistL+⊗ b b' c i)) ∙ ⊗DistR+⊗ a (b ⊗ c) (b' ⊗ c)) (λ a a' b → ⊗DistL+⊗ a a' (b ⊗ c)) (⊗AnnihilL _ ∙ sym (⊗AnnihilL _)) assocHom : AbGroupHom ((A ⨂ B) ⨂ C) (A ⨂ (B ⨂ C)) assocHom = ⨂→AbGroup-elim-hom (A ⨂ (B ⨂ C)) (λ x → f (snd x) .fst (fst x)) helper (λ x y b → IsGroupHom.pres· (snd (f b)) x y) refl where helper : _ helper = ⊗elimProp (λ _ → isPropΠ2 λ _ _ → ⊗squash _ _) (λ a b x y → (λ i → a ⊗ (⊗DistR+⊗ b x y i)) ∙∙ ⊗DistR+⊗ a (b ⊗ x) (b ⊗ y) ∙∙ refl) λ a b ind1 ind2 x y → cong₂ _+⊗_ (ind1 x y) (ind2 x y) ∙∙ move4 (f x .fst a) (f y .fst a) (f x .fst b) (f y .fst b) _+⊗_ +⊗Assoc +⊗Comm ∙∙ cong₂ _+⊗_ (sym (IsGroupHom.pres· (snd (f x)) a b)) (IsGroupHom.pres· (snd (f y)) a b) module _ {ℓ ℓ' ℓ'' : Level} {A : AbGroup ℓ} {B : AbGroup ℓ'} {C : AbGroup ℓ''} where private f' : (a : fst A) → AbGroupHom (B ⨂ C) ((A ⨂ B) ⨂ C) f' a = ⨂→AbGroup-elim-hom ((A ⨂ B) ⨂ C) (λ bc → (a ⊗ fst bc) ⊗ snd bc) (λ x y b → ⊗DistR+⊗ (a ⊗ x) y b) (λ x y b → (λ i → (⊗DistR+⊗ a x y i) ⊗ b) ∙ ⊗DistL+⊗ (a ⊗ x) (a ⊗ y) b) λ i → ⊗AnnihilR a i ⊗ (0g (snd C)) assocHom⁻ : AbGroupHom (A ⨂ (B ⨂ C)) ((A ⨂ B) ⨂ C) assocHom⁻ = ⨂→AbGroup-elim-hom ((A ⨂ B) ⨂ C) (λ abc → f' (fst abc) .fst (snd abc)) (λ a → IsGroupHom.pres· (snd (f' a))) helper refl where helper : _ helper = λ x y → ⊗elimProp (λ _ → ⊗squash _ _) (λ b c → (λ i → ⊗DistL+⊗ x y b i ⊗ c) ∙ ⊗DistL+⊗ (x ⊗ b) (y ⊗ b) c) λ a b ind1 ind2 → cong₂ _+⊗_ ind1 ind2 ∙∙ move4 _ _ _ _ _+⊗_ +⊗Assoc +⊗Comm ∙∙ cong₂ _+⊗_ (IsGroupHom.pres· (snd (f' x)) a b) (IsGroupHom.pres· (snd (f' y)) a b) ⨂assocIso : Iso (A ⨂₁ (B ⨂ C)) ((A ⨂ B) ⨂₁ C) Iso.fun ⨂assocIso = fst assocHom⁻ Iso.inv ⨂assocIso = fst assocHom Iso.rightInv ⨂assocIso = ⊗elimProp (λ _ → ⊗squash _ _) (⊗elimProp (λ _ → isPropΠ (λ _ → ⊗squash _ _)) (λ a b c → refl) λ a b ind1 ind2 c → cong₂ _+⊗_ (ind1 c) (ind2 c) ∙ sym (⊗DistL+⊗ a b c)) λ x y p q → cong (fst assocHom⁻) (IsGroupHom.pres· (snd assocHom) x y) ∙∙ IsGroupHom.pres· (snd assocHom⁻) (fst assocHom x) (fst assocHom y) ∙∙ cong₂ _+⊗_ p q Iso.leftInv ⨂assocIso = ⊗elimProp (λ _ → ⊗squash _ _) (λ a → ⊗elimProp (λ _ → ⊗squash _ _) (λ b c → refl) λ x y ind1 ind2 → cong (fst assocHom ∘ fst assocHom⁻) (⊗DistR+⊗ a x y) ∙∙ cong (fst assocHom) (IsGroupHom.pres· (snd assocHom⁻) (a ⊗ x) (a ⊗ y)) ∙∙ IsGroupHom.pres· (snd assocHom) (fst assocHom⁻ (a ⊗ x)) (fst assocHom⁻ (a ⊗ y)) ∙∙ cong₂ _+⊗_ ind1 ind2 ∙∙ sym (⊗DistR+⊗ a x y)) λ x y p q → cong (fst assocHom) (IsGroupHom.pres· (snd assocHom⁻) x y) ∙∙ IsGroupHom.pres· (snd assocHom) (fst assocHom⁻ x) (fst assocHom⁻ y) ∙∙ cong₂ _+⊗_ p q ⨂assoc : AbGroupEquiv (A ⨂ (B ⨂ C)) ((A ⨂ B) ⨂ C) fst ⨂assoc = isoToEquiv ⨂assocIso snd ⨂assoc = snd assocHom⁻
{ "alphanum_fraction": 0.433604336, "avg_line_length": 40.6653061224, "ext": "agda", "hexsha": "efdfb4f596ba9f7fbc4d78eeabd243d40bf2c341", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/TensorProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/TensorProduct.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/TensorProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8789, "size": 19926 }
module int where open import bool open import eq open import nat open import product ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- data pol : Set where pos : pol neg : pol data sign : Set where nonzero : pol → sign zero : sign data int : sign → Set where +0 : int zero unit : ∀ {p : pol} → int (nonzero p) next_ : ∀ {p : pol} → int (nonzero p) → int (nonzero p) data nonneg : sign → Set where pos-nonneg : nonneg (nonzero pos) zero-nonneg : nonneg zero data nonpos : sign → Set where neg-nonpos : nonpos (nonzero neg) zero-nonpos : nonpos zero ℤ = Σi sign int ℤ-≥-0 = Σi sign (λ s → nonneg s × int s) ℤ-≤-0 = Σi sign (λ s → nonpos s × int s) ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infixl 6 _+ℤ_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- eq-pol : pol → pol → 𝔹 eq-pol pos pos = tt eq-pol neg neg = tt eq-pol pos neg = ff eq-pol neg pos = ff {- add a unit with the given polarity to the given int (so if the polarity is pos we are adding one, if it is neg we are subtracting one). Return the new int, together with its sign, which could change. -} add-unit : pol → ∀{s : sign} → int s → ℤ add-unit p +0 = , unit{p} add-unit p (unit{p'}) = if eq-pol p p' then , next (unit{p}) else , +0 add-unit p (next_{p'} x) = if eq-pol p p' then , next (next x) else , x _+ℤ_ : ℤ → ℤ → ℤ (, +0) +ℤ (, x) = , x (, x) +ℤ (, +0) = , x (, x) +ℤ (, unit{p}) = add-unit p x (, unit{p}) +ℤ (, x) = add-unit p x (, next_{p} x) +ℤ (, next_{p'} y) with ((, x) +ℤ (, next y)) ... | , r = add-unit p r ℕ-to-ℤ : ℕ → ℤ-≥-0 ℕ-to-ℤ zero = , (zero-nonneg , +0) ℕ-to-ℤ (suc x) with ℕ-to-ℤ x ... | , (zero-nonneg , y) = , ( pos-nonneg , unit ) ... | , (pos-nonneg , y) = , ( pos-nonneg , next y)
{ "alphanum_fraction": 0.4587200782, "avg_line_length": 26.5844155844, "ext": "agda", "hexsha": "b02d1aeca500d195e0a104927e1c6f60fb08c0a6", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "cruft/int.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "cruft/int.agda", "max_line_length": 74, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "cruft/int.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 657, "size": 2047 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.Int where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int renaming (ℤ to ℤType ; _+_ to _+ℤ_ ; _-_ to _-ℤ_; -_ to -ℤ_ ; _·_ to _·ℤ_) open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Properties open GroupStr ℤ : Group₀ fst ℤ = ℤType 1g (snd ℤ) = 0 _·_ (snd ℤ) = _+ℤ_ inv (snd ℤ) = _-ℤ_ 0 isGroup (snd ℤ) = isGroupℤ where abstract isGroupℤ : IsGroup (pos 0) _+ℤ_ (_-ℤ_ (pos 0)) isGroupℤ = makeIsGroup isSetℤ +Assoc (λ _ → refl) (+Comm 0) (λ x → +Comm x (pos 0 -ℤ x) ∙ minusPlus x 0) (λ x → minusPlus x 0) ℤHom : (n : ℤType) → GroupHom ℤ ℤ fst (ℤHom n) x = n ·ℤ x snd (ℤHom n) = makeIsGroupHom λ x y → ·DistR+ n x y negEquivℤ : GroupEquiv ℤ ℤ fst negEquivℤ = isoToEquiv (iso (GroupStr.inv (snd ℤ)) (GroupStr.inv (snd ℤ)) (GroupTheory.invInv ℤ) (GroupTheory.invInv ℤ)) snd negEquivℤ = makeIsGroupHom λ x y → +Comm (pos 0) (-ℤ (x +ℤ y)) ∙ -Dist+ x y ∙ cong₂ _+ℤ_ (+Comm (-ℤ x) (pos 0)) (+Comm (-ℤ y) (pos 0))
{ "alphanum_fraction": 0.6248037677, "avg_line_length": 28.3111111111, "ext": "agda", "hexsha": "2878504172a660d724dfa793980df10711bc3156", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Instances/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Instances/Int.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MatthiasHu/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Instances/Int.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 499, "size": 1274 }
{-# OPTIONS --without-K --rewriting #-} {- This file contains a bunch of basic stuff which is needed early. Maybe it should be organised better. -} module lib.Base where {- Universes and typing Agda has explicit universe polymorphism, which means that there is an actual type of universe levels on which you can quantify. This type is called [ULevel] and comes equipped with the following operations: - [lzero] : [ULevel] (in order to have at least one universe) - [lsucc] : [ULevel → ULevel] (the [i]th universe level is a term in the [lsucc i]th universe) - [lmax] : [ULevel → ULevel → ULevel] (in order to type dependent products (where the codomain is in a uniform universe level) This type is postulated below and linked to Agda’s universe polymorphism mechanism via the built-in module Agda.Primitive (it’s the new way). In plain Agda, the [i]th universe is called [Set i], which is not a very good name from the point of view of HoTT, so we define [Type] as a synonym of [Set] and [Set] should never be used again. -} open import Agda.Primitive public using (lzero) renaming (Level to ULevel; lsuc to lsucc; _⊔_ to lmax) Type : (i : ULevel) → Set (lsucc i) Type i = Set i Type₀ = Type lzero Type0 = Type lzero Type₁ = Type (lsucc lzero) Type1 = Type (lsucc lzero) {- There is no built-in or standard way to coerce an ambiguous term to a given type (like [u : A] in ML), the symbol [:] is reserved, and the Unicode [∶] is really a bad idea. So we’re using the symbol [_:>_], which has the advantage that it can micmic Coq’s [u = v :> A]. -} of-type : ∀ {i} (A : Type i) (u : A) → A of-type A u = u infix 40 of-type syntax of-type A u = u :> A {- Instance search -} ⟨⟩ : ∀ {i} {A : Type i} {{a : A}} → A ⟨⟩ {{a}} = a {- Identity type The identity type is called [Path] and [_==_] because the symbol [=] is reserved in Agda. The constant path is [idp]. Note that all arguments of [idp] are implicit. -} infix 30 _==_ data _==_ {i} {A : Type i} (a : A) : A → Type i where idp : a == a Path = _==_ {-# BUILTIN EQUALITY _==_ #-} {- Paulin-Mohring J rule At the time I’m writing this (July 2013), the identity type is somehow broken in Agda dev, it behaves more or less as the Martin-Löf identity type instead of behaving like the Paulin-Mohring identity type. So here is the Paulin-Mohring J rule -} J : ∀ {i j} {A : Type i} {a : A} (B : (a' : A) (p : a == a') → Type j) (d : B a idp) {a' : A} (p : a == a') → B a' p J B d idp = d J' : ∀ {i j} {A : Type i} {a : A} (B : (a' : A) (p : a' == a) → Type j) (d : B a idp) {a' : A} (p : a' == a) → B a' p J' B d idp = d {- Rewriting This is a new pragma added to Agda to help create higher inductive types. -} infix 30 _↦_ postulate -- HIT _↦_ : ∀ {i} {A : Type i} → A → A → Type i {-# BUILTIN REWRITE _↦_ #-} {- Unit type The unit type is defined as record so that we also get the η-rule definitionally. -} record ⊤ : Type₀ where instance constructor unit Unit = ⊤ {-# BUILTIN UNIT ⊤ #-} {- Dependent paths The notion of dependent path is a very important notion. If you have a dependent type [B] over [A], a path [p : x == y] in [A] and two points [u : B x] and [v : B y], there is a type [u == v [ B ↓ p ]] of paths from [u] to [v] lying over the path [p]. By definition, if [p] is a constant path, then [u == v [ B ↓ p ]] is just an ordinary path in the fiber. -} PathOver : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y) (u : B x) (v : B y) → Type j PathOver B idp u v = (u == v) infix 30 PathOver syntax PathOver B p u v = u == v [ B ↓ p ] {- Ap, coe and transport Given two fibrations over a type [A], a fiberwise map between the two fibrations can be applied to any dependent path in the first fibration ([ap↓]). As a special case, when [A] is [Unit], we find the familiar [ap] ([ap] is defined in terms of [ap↓] because it shouldn’t change anything for the user and this is helpful in some rare cases) -} ap : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y : A} → (x == y → f x == f y) ap f idp = idp ap↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (g : {a : A} → B a → C a) {x y : A} {p : x == y} {u : B x} {v : B y} → (u == v [ B ↓ p ] → g u == g v [ C ↓ p ]) ap↓ g {p = idp} p = ap g p {- [apd↓] is defined in lib.PathOver. Unlike [ap↓] and [ap], [apd] is not definitionally a special case of [apd↓] -} apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A} → (p : x == y) → f x == f y [ B ↓ p ] apd f idp = idp {- An equality between types gives two maps back and forth -} coe : ∀ {i} {A B : Type i} (p : A == B) → A → B coe idp x = x coe! : ∀ {i} {A B : Type i} (p : A == B) → B → A coe! idp x = x {- The operations of transport forward and backward are defined in terms of [ap] and [coe], because this is more convenient in practice. -} transport : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y) → (B x → B y) transport B p = coe (ap B p) transport! : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (p : x == y) → (B y → B x) transport! B p = coe! (ap B p) {- Π-types Shorter notation for Π-types. -} Π : ∀ {i j} (A : Type i) (P : A → Type j) → Type (lmax i j) Π A P = (x : A) → P x {- Σ-types Σ-types are defined as a record so that we have definitional η. -} infixr 60 _,_ record Σ {i j} (A : Type i) (B : A → Type j) : Type (lmax i j) where constructor _,_ field fst : A snd : B fst open Σ public pair= : ∀ {i j} {A : Type i} {B : A → Type j} {a a' : A} (p : a == a') {b : B a} {b' : B a'} (q : b == b' [ B ↓ p ]) → (a , b) == (a' , b') pair= idp q = ap (_ ,_) q pair×= : ∀ {i j} {A : Type i} {B : Type j} {a a' : A} (p : a == a') {b b' : B} (q : b == b') → (a , b) == (a' , b') pair×= idp q = pair= idp q {- Empty type We define the eliminator of the empty type using an absurd pattern. Given that absurd patterns are not consistent with HIT, we will not use empty patterns anymore after that. -} data ⊥ : Type₀ where Empty = ⊥ ⊥-elim : ∀ {i} {P : ⊥ → Type i} → ((x : ⊥) → P x) ⊥-elim () Empty-elim = ⊥-elim {- Negation and disequality -} ¬ : ∀ {i} (A : Type i) → Type i ¬ A = A → ⊥ _≠_ : ∀ {i} {A : Type i} → (A → A → Type i) x ≠ y = ¬ (x == y) {- Natural numbers -} data ℕ : Type₀ where O : ℕ S : (n : ℕ) → ℕ Nat = ℕ {-# BUILTIN NATURAL ℕ #-} {- Lifting to a higher universe level The operation of lifting enjoys both β and η definitionally. It’s a bit annoying to use, but it’s not used much (for now). -} record Lift {i j} (A : Type i) : Type (lmax i j) where instance constructor lift field lower : A open Lift public {- Equational reasoning Equational reasoning is a way to write readable chains of equalities. The idea is that you can write the following: t : a == e t = a =⟨ p ⟩ b =⟨ q ⟩ c =⟨ r ⟩ d =⟨ s ⟩ e ∎ where [p] is a path from [a] to [b], [q] is a path from [b] to [c], and so on. You often have to apply some equality in some context, for instance [p] could be [ap ctx thm] where [thm] is the interesting theorem used to prove that [a] is equal to [b], and [ctx] is the context. In such cases, you can use instead [thm |in-ctx ctx]. The advantage is that [ctx] is usually boring whereas the first word of [thm] is the most interesting part. _=⟨_⟩ is not definitionally the same thing as concatenation of paths _∙_ because we haven’t defined concatenation of paths yet, and also you probably shouldn’t reason on paths constructed with equational reasoning. If you do want to reason on paths constructed with equational reasoning, check out lib.types.PathSeq instead. -} infixr 10 _=⟨_⟩_ infix 15 _=∎ _=⟨_⟩_ : ∀ {i} {A : Type i} (x : A) {y z : A} → x == y → y == z → x == z _ =⟨ idp ⟩ idp = idp _=∎ : ∀ {i} {A : Type i} (x : A) → x == x _ =∎ = idp infixl 40 ap syntax ap f p = p |in-ctx f {- Various basic functions and function operations The identity function on a type [A] is [idf A] and the constant function at some point [b] is [cst b]. Composition of functions ([_∘_]) can handle dependent functions. -} idf : ∀ {i} (A : Type i) → (A → A) idf A = λ x → x cst : ∀ {i j} {A : Type i} {B : Type j} (b : B) → (A → B) cst b = λ _ → b infixr 80 _∘_ _∘_ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → (B a → Type k)} → (g : {a : A} → Π (B a) (C a)) → (f : Π A B) → Π A (λ a → C a (f a)) g ∘ f = λ x → g (f x) -- Application infixr 0 _$_ _$_ : ∀ {i j} {A : Type i} {B : A → Type j} → (∀ x → B x) → (∀ x → B x) f $ x = f x -- (Un)curryfication curry : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Σ A B → Type k} → (∀ s → C s) → (∀ x y → C (x , y)) curry f x y = f (x , y) uncurry : ∀ {i j k} {A : Type i} {B : A → Type j} {C : ∀ x → B x → Type k} → (∀ x y → C x y) → (∀ s → C (fst s) (snd s)) uncurry f (x , y) = f x y {- Truncation levels The type of truncation levels is isomorphic to the type of natural numbers but "starts at -2". -} data TLevel : Type₀ where ⟨-2⟩ : TLevel S : (n : TLevel) → TLevel ℕ₋₂ = TLevel ⟨_⟩₋₂ : ℕ → ℕ₋₂ ⟨ O ⟩₋₂ = ⟨-2⟩ ⟨ S n ⟩₋₂ = S ⟨ n ⟩₋₂ {- Coproducts and case analysis -} data Coprod {i j} (A : Type i) (B : Type j) : Type (lmax i j) where inl : A → Coprod A B inr : B → Coprod A B infixr 80 _⊔_ _⊔_ = Coprod Dec : ∀ {i} (P : Type i) → Type i Dec P = P ⊔ ¬ P {- Pointed types and pointed maps. [A ⊙→ B] was pointed, but it was never used as a pointed type. -} infix 60 ⊙[_,_] record Ptd (i : ULevel) : Type (lsucc i) where constructor ⊙[_,_] field de⊙ : Type i pt : de⊙ open Ptd public ptd : ∀ {i} (A : Type i) → A → Ptd i ptd = ⊙[_,_] ptd= : ∀ {i} {A A' : Type i} (p : A == A') {a : A} {a' : A'} (q : a == a' [ idf _ ↓ p ]) → ⊙[ A , a ] == ⊙[ A' , a' ] ptd= idp q = ap ⊙[ _ ,_] q Ptd₀ = Ptd lzero infixr 0 _⊙→_ _⊙→_ : ∀ {i j} → Ptd i → Ptd j → Type (lmax i j) ⊙[ A , a₀ ] ⊙→ ⊙[ B , b₀ ] = Σ (A → B) (λ f → f a₀ == b₀) ⊙idf : ∀ {i} (X : Ptd i) → X ⊙→ X ⊙idf X = (λ x → x) , idp ⊙cst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → X ⊙→ Y ⊙cst {Y = Y} = (λ x → pt Y) , idp {- Used in a hack to make HITs maybe consistent. This is just a parametrized unit type (positively) -} data Phantom {i} {A : Type i} (a : A) : Type₀ where phantom : Phantom a {- Numeric literal overloading This enables writing numeric literals -} record FromNat {i} (A : Type i) : Type (lsucc i) where field in-range : ℕ → Type i read : ∀ n → ⦃ _ : in-range n ⦄ → A open FromNat ⦃...⦄ public using () renaming (read to from-nat) {-# BUILTIN FROMNAT from-nat #-} record FromNeg {i} (A : Type i) : Type (lsucc i) where field in-range : ℕ → Type i read : ∀ n → ⦃ _ : in-range n ⦄ → A open FromNeg ⦃...⦄ public using () renaming (read to from-neg) {-# BUILTIN FROMNEG from-neg #-} instance ℕ-reader : FromNat ℕ FromNat.in-range ℕ-reader _ = ⊤ FromNat.read ℕ-reader n = n TLevel-reader : FromNat TLevel FromNat.in-range TLevel-reader _ = ⊤ FromNat.read TLevel-reader n = S (S ⟨ n ⟩₋₂) TLevel-neg-reader : FromNeg TLevel FromNeg.in-range TLevel-neg-reader O = ⊤ FromNeg.in-range TLevel-neg-reader 1 = ⊤ FromNeg.in-range TLevel-neg-reader 2 = ⊤ FromNeg.in-range TLevel-neg-reader (S (S (S _))) = ⊥ FromNeg.read TLevel-neg-reader O = S (S ⟨-2⟩) FromNeg.read TLevel-neg-reader 1 = S ⟨-2⟩ FromNeg.read TLevel-neg-reader 2 = ⟨-2⟩ FromNeg.read TLevel-neg-reader (S (S (S _))) ⦃()⦄
{ "alphanum_fraction": 0.5824583076, "avg_line_length": 24.7986870897, "ext": "agda", "hexsha": "8af326a8b78cbbbfb4f5d5a5458aebf428df7aa0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/Base.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4321, "size": 11333 }
{-# OPTIONS --show-implicit #-} module AgdaFeatureTerminationViaExplicitness where data Nat : Set where zero : Nat suc : (n : Nat) → Nat id : {A : Set} → A → A id = λ x → x data Pat (n : Nat) : Set where pzero : Pat n psuc : Pat n → Pat n data Cat : Nat → Set where cat : ∀ {n} → Cat (suc n) postulate up : ∀ {n} → (Cat n → Cat n) → Cat (suc n) down : ∀ {n} → Cat (suc n) → Cat n rectify-works : ∀ {x y} → Pat x → Pat y rectify-fails : ∀ {x y} → Pat x → Pat (id y) test-works1 : ∀ {n} → Pat n → Cat n → Cat n test-works1 (psuc t) acc = down (up (test-works1 t)) test-works1 t cat = up (test-works1 (rectify-works t)) {-# TERMINATING #-} test-fails2 : ∀ {n} → Pat n → Cat n → Cat n test-fails2 (psuc t) acc = down (up (test-fails2 t)) test-fails2 t cat = up (test-fails2 (rectify-fails t)) test-works3 : ∀ {n} → Pat n → Cat n → Cat n test-works3 (psuc t) cat = down (up (test-works3 t)) test-works3 t@pzero (cat {n = n}) = up (test-works3 {n = n} (rectify-fails t))
{ "alphanum_fraction": 0.5850956697, "avg_line_length": 26.8378378378, "ext": "agda", "hexsha": "f15399ce784adc45a8d4c655f7f93cef516a65d7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/AgdaFeatureTerminationViaExplicitness.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/AgdaFeatureTerminationViaExplicitness.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/AgdaFeatureTerminationViaExplicitness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 389, "size": 993 }
{-# OPTIONS --rewriting --confluence-check #-} module Issue4333.M where postulate A : Set _==_ : A → A → Set {-# BUILTIN REWRITE _==_ #-} postulate a a₀' a₁' : A p₀ : a == a₀' p₁ : a == a₁' B : A → Set b : B a
{ "alphanum_fraction": 0.5330396476, "avg_line_length": 14.1875, "ext": "agda", "hexsha": "66d0b0e5187d6817c5ebbfd4f0fa4fca7b2ca4b4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4333/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4333/M.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4333/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 90, "size": 227 }
{-# OPTIONS --without-K --safe #-} open import Algebra open import Data.Bool.Base using (Bool; if_then_else_) open import Function.Base using (_∘_) open import Data.Integer.Base as ℤ using (ℤ; +_; +0; +[1+_]; -[1+_]; +<+; +≤+) import Data.Integer.Properties as ℤP open import Data.Integer.DivMod as ℤD open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Nat.Properties as ℕP using (≤-step) import Data.Nat.DivMod as ℕD open import Level using (0ℓ) open import Data.Product open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Nullary.Decidable open import Relation.Unary using (Pred) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl; cong; sym; subst; trans; ≢-sym) open import Relation.Binary open import Data.Rational.Unnormalised as ℚ using (ℚᵘ; mkℚᵘ; _≢0; *≤*; _/_; 0ℚᵘ; ↥_; ↧_; ↧ₙ_) import Data.Rational.Unnormalised.Properties as ℚP open import Algebra.Bundles open import Algebra.Structures open import Data.Empty open import Data.Sum open import Data.Maybe.Base import Algebra.Solver.Ring as Solver import Algebra.Solver.Ring.AlmostCommutativeRing as ACR open ℚᵘ record ℝ : Set where constructor mkℝ field -- No n≢0 condition for seq seq : ℕ -> ℚᵘ reg : ∀ (m n : ℕ) -> {m≢0 : m ≢0} -> {n≢0 : n ≢0} -> ℚ.∣ seq m ℚ.- seq n ∣ ℚ.≤ ((+ 1) / m) {m≢0} ℚ.+ ((+ 1) / n) {n≢0} open ℝ infix 4 _≃_ _≃_ : Rel ℝ 0ℓ x ≃ y = ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ ((+ 2) / n) {n≢0} ≃-refl : Reflexive _≃_ ≃-refl {x} (suc k) = begin ℚ.∣ seq x n ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq x n)) ⟩ ℚ.∣ 0ℚᵘ ∣ ≈⟨ ℚP.≃-refl ⟩ 0ℚᵘ ≤⟨ ℚP.∣p∣≃p⇒0≤p ℚP.≃-refl ⟩ ((+ 2) / n) ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k ≃-symm : Symmetric _≃_ ≃-symm {x} {y} x≃y (suc k) = begin (ℚ.∣ seq y n ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.≃-trans (ℚP.≃-sym (ℚP.≃-reflexive (ℚP.∣-p∣≡∣p∣ (seq y n ℚ.- seq x n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> (:- (a :- b)) := b :- a) (ℚ.*≡* _≡_.refl) (seq y n) (seq x n)))) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ x≃y n ⟩ (+ 2) / n ∎) where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver n : ℕ n = suc k lemma1A : ∀ (x y : ℝ) -> x ≃ y -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ ((+ 1) / j) {j≢0} lemma1A x y x≃y (suc j) {j≢0} = 2 ℕ.* (suc j) , λ { (suc n) N<n → ℚP.≤-trans (x≃y (suc n)) (*≤* (+≤+ (ℕP.<⇒≤ (subst (ℕ._<_ (2 ℕ.* (suc j))) (cong suc (sym (ℕP.+-identityʳ n))) N<n))))} abstract no-0-divisors : ∀ (m n : ℕ) -> m ≢0 -> n ≢0 -> m ℕ.* n ≢0 no-0-divisors (suc m) (suc n) m≢0 n≢0 with (suc m) ℕ.* (suc n) ℕ.≟ 0 ... | res = _ m≤∣m∣ : ∀ (m : ℤ) -> m ℤ.≤ + ℤ.∣ m ∣ m≤∣m∣ (+_ n) = ℤP.≤-reflexive _≡_.refl m≤∣m∣ (-[1+_] n) = ℤ.-≤+ pos⇒≢0 : ∀ p → ℚ.Positive p → ℤ.∣ ↥ p ∣ ≢0 pos⇒≢0 p p>0 = fromWitnessFalse (contraposition ℤP.∣n∣≡0⇒n≡0 (≢-sym (ℤP.<⇒≢ (ℤP.positive⁻¹ p>0)))) 0<⇒pos : ∀ p -> 0ℚᵘ ℚ.< p -> ℚ.Positive p 0<⇒pos p p>0 = ℚ.positive p>0 archimedean-ℚ : ∀ (p r : ℚᵘ) -> ℚ.Positive p -> ∃ λ (N : ℕ) -> r ℚ.< ((+ N) ℤ.* (↥ p)) / (↧ₙ p) archimedean-ℚ (mkℚᵘ (+ p) q-1) (mkℚᵘ u v-1) p/q>0 = ℤ.∣ (+ 1) ℤ.+ t ∣ , ℚ.*<* (begin-strict u ℤ.* (+ q) ≡⟨ a≡a%ℕn+[a/ℕn]*n (u ℤ.* (+ q)) (p ℕ.* v) ⟩ (+ r) ℤ.+ (t ℤ.* (+ (p ℕ.* v))) <⟨ ℤP.+-monoˡ-< (t ℤ.* (+ (p ℕ.* v))) (+<+ (n%d<d (u ℤ.* (+ q)) (+ (p ℕ.* v)))) ⟩ (+ (p ℕ.* v)) ℤ.+ (t ℤ.* (+ (p ℕ.* v))) ≡⟨ solve 2 (λ pv t -> pv :+ (t :* pv) := (con (+ 1) :+ t) :* pv) _≡_.refl (+ (p ℕ.* v)) t ⟩ ((+ 1) ℤ.+ t) ℤ.* (+ (p ℕ.* v)) ≤⟨ ℤP.*-monoʳ-≤-nonNeg (p ℕ.* v) (m≤∣m∣ ((+ 1) ℤ.+ t)) ⟩ (+ ℤ.∣ (+ 1) ℤ.+ t ∣) ℤ.* (+ (p ℕ.* v)) ≡⟨ cong (λ x -> (+ ℤ.∣ (+ 1) ℤ.+ t ∣) ℤ.* x) (sym (ℤP.pos-distrib-* p v)) ⟩ (+ ℤ.∣ (+ 1) ℤ.+ t ∣) ℤ.* ((+ p) ℤ.* (+ v)) ≡⟨ sym (ℤP.*-assoc (+ ℤ.∣ (+ 1) ℤ.+ t ∣) (+ p) (+ v)) ⟩ (+ ℤ.∣ (+ 1) ℤ.+ t ∣) ℤ.* + p ℤ.* + v ∎) where open ℤP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver q : ℕ q = suc q-1 v : ℕ v = suc v-1 p≢0 : p ≢0 p≢0 = pos⇒≢0 ((+ p) / q) p/q>0 pv≢0 : p ℕ.* v ≢0 pv≢0 = no-0-divisors p v p≢0 _ r : ℕ r = ((u ℤ.* (+ q)) modℕ (p ℕ.* v)) {pv≢0} t : ℤ t = ((u ℤ.* (+ q)) divℕ (p ℕ.* v)) {pv≢0} alternate : ∀ (p : ℚᵘ) -> ∀ (N : ℕ) -> ((+ N) ℤ.* (↥ p)) / (↧ₙ p) ℚ.≃ ((+ N) / 1) ℚ.* p alternate p N = ℚ.*≡* (cong (λ x -> ((+ N) ℤ.* (↥ p)) ℤ.* x) (ℤP.*-identityˡ (↧ p))) get0ℚᵘ : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ((+ 0) / n) {n≢0} ℚ.≃ 0ℚᵘ get0ℚᵘ (suc n) = ℚ.*≡* (trans (ℤP.*-zeroˡ (+ 1)) (sym (ℤP.*-zeroˡ (+ (suc n))))) lemma1B : ∀ (x y : ℝ) -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ ((+ 1) / j) {j≢0}) -> x ≃ y lemma1B x y hyp (suc k₁) = lemA lemB where n : ℕ n = suc k₁ ∣xn-yn∣ : ℚᵘ ∣xn-yn∣ = ℚ.∣ seq x n ℚ.- seq y n ∣ 2/n : ℚᵘ 2/n = (+ 2) / n lemA : (∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∣xn-yn∣ ℚ.≤ 2/n ℚ.+ ((+ 3) / j) {j≢0}) -> ∣xn-yn∣ ℚ.≤ 2/n lemA hyp with ℚP.<-cmp ∣xn-yn∣ 2/n ... | tri< a ¬b ¬c = ℚP.<⇒≤ a ... | tri≈ ¬a b ¬c = ℚP.≤-reflexive b ... | tri> ¬a ¬b c with archimedean-ℚ (∣xn-yn∣ ℚ.- 2/n) ((+ 3) / 1) isPos where 0<res : 0ℚᵘ ℚ.< ∣xn-yn∣ ℚ.- 2/n 0<res = ℚP.<-respˡ-≃ (ℚP.+-inverseʳ 2/n) (ℚP.+-monoˡ-< (ℚ.- 2/n) c) isPos : ℚ.Positive (∣xn-yn∣ ℚ.- 2/n) isPos = ℚ.positive 0<res ... | 0 , 3<Nres = ⊥-elim (ℚP.<-asym 3<Nres (ℚP.<-respˡ-≃ (ℚP.≃-sym (get0ℚᵘ _)) (ℚP.positive⁻¹ {(+ 3) / 1} _))) ... | suc M , 3<Nres = ⊥-elim (ℚP.<-irrefl ℚP.≃-refl (ℚP.<-≤-trans part4 part5)) where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver N : ℕ N = suc M part1 : (+ 3) / 1 ℚ.< ((+ N) / 1) ℚ.* (∣xn-yn∣ ℚ.- 2/n) part1 = ℚP.<-respʳ-≃ (alternate (∣xn-yn∣ ℚ.- 2/n) N) 3<Nres part2a : ((+ 1) / N) ℚ.* (((+ N) / 1) ℚ.* (∣xn-yn∣ ℚ.- 2/n)) ℚ.≃ ∣xn-yn∣ ℚ.- 2/n part2a = begin-equality ((+ 1) / N) ℚ.* (((+ N) / 1) ℚ.* (∣xn-yn∣ ℚ.- 2/n)) ≈⟨ ℚP.≃-sym (ℚP.*-assoc ((+ 1) / N) ((+ N) / 1) (∣xn-yn∣ ℚ.- 2/n)) ⟩ ((+ 1) / N) ℚ.* ((+ N) / 1) ℚ.* (∣xn-yn∣ ℚ.- 2/n) ≈⟨ ℚP.*-congʳ {∣xn-yn∣ ℚ.- 2/n} (ℚ.*≡* {((+ 1) / N) ℚ.* ((+ N) / 1)} {ℚ.1ℚᵘ} (solve 1 (λ N -> (con (+ 1) :* N) :* con (+ 1) := con (+ 1) :* (N :* con (+ 1))) _≡_.refl (+ N))) ⟩ ℚ.1ℚᵘ ℚ.* (∣xn-yn∣ ℚ.- 2/n) ≈⟨ ℚP.*-identityˡ (∣xn-yn∣ ℚ.- 2/n) ⟩ ∣xn-yn∣ ℚ.- 2/n ∎ part2 : ((+ 1) / N) ℚ.* ((+ 3) / 1) ℚ.< ∣xn-yn∣ ℚ.- 2/n part2 = ℚP.<-respʳ-≃ part2a (ℚP.*-monoʳ-<-pos {(+ 1) / N} _ part1) part3a : ((+ 1) / N) ℚ.* ((+ 3) / 1) ℚ.≃ (+ 3) / N part3a = ℚ.*≡* (trans (cong (λ x -> x ℤ.* (+ N)) (ℤP.*-identityˡ (+ 3))) (cong (λ x -> (+ 3) ℤ.* x) (sym (ℤP.*-identityʳ (+ N))))) part3 : (+ 3) / N ℚ.< ∣xn-yn∣ ℚ.- 2/n part3 = ℚP.<-respˡ-≃ part3a part2 part4 : 2/n ℚ.+ ((+ 3) / N) ℚ.< ∣xn-yn∣ part4 = ℚP.<-respˡ-≃ (ℚP.+-comm ((+ 3) / N) 2/n) (ℚP.<-respʳ-≃ (ℚP.≃-trans (ℚP.+-congʳ ∣xn-yn∣ (ℚP.+-inverseʳ 2/n)) (ℚP.+-identityʳ ∣xn-yn∣)) (ℚP.<-respʳ-≃ (ℚP.+-assoc ∣xn-yn∣ (ℚ.- 2/n) 2/n) (ℚP.+-monoˡ-< 2/n part3))) part5 : ∣xn-yn∣ ℚ.≤ 2/n ℚ.+ ((+ 3) / N) part5 = hyp N lemB : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∣xn-yn∣ ℚ.≤ 2/n ℚ.+ ((+ 3) / j) {j≢0} lemB (suc k₂) with hyp (suc k₂) ... | N , proof = begin ∣xn-yn∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 4 (λ xn yn xm ym -> xn ℚ:- yn ℚ:= (xn ℚ:- xm) ℚ:+ (xm ℚ:- ym) ℚ:+ (ym ℚ:- yn)) (ℚ.*≡* _≡_.refl) (seq x n) (seq y n) (seq x m) (seq y m)) ⟩ ℚ.∣ (seq x n ℚ.- seq x m) ℚ.+ (seq x m ℚ.- seq y m) ℚ.+ (seq y m ℚ.- seq y n) ∣ ≤⟨ ℚP.≤-trans (ℚP.∣p+q∣≤∣p∣+∣q∣ ((seq x n ℚ.- seq x m) ℚ.+ (seq x m ℚ.- seq y m)) (seq y m ℚ.- seq y n)) (ℚP.+-monoˡ-≤ ℚ.∣ seq y m ℚ.- seq y n ∣ (ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x n ℚ.- seq x m) (seq x m ℚ.- seq y m))) ⟩ ℚ.∣ seq x n ℚ.- seq x m ∣ ℚ.+ ℚ.∣ seq x m ℚ.- seq y m ∣ ℚ.+ ℚ.∣ seq y m ℚ.- seq y n ∣ ≤⟨ ℚP.+-monoʳ-≤ (ℚ.∣ seq x n ℚ.- seq x m ∣ ℚ.+ ℚ.∣ seq x m ℚ.- seq y m ∣) (reg y m n) ⟩ ℚ.∣ seq x n ℚ.- seq x m ∣ ℚ.+ ℚ.∣ seq x m ℚ.- seq y m ∣ ℚ.+ (((+ 1) / m) ℚ.+ (+ 1) / n) ≤⟨ ℚP.+-monoˡ-≤ (((+ 1) / m) ℚ.+ (+ 1) / n) (ℚP.+-monoʳ-≤ ℚ.∣ seq x n ℚ.- seq x m ∣ (proof m (ℕP.m≤m⊔n (suc N) j))) ⟩ ℚ.∣ seq x n ℚ.- seq x m ∣ ℚ.+ ((+ 1) / j) ℚ.+ (((+ 1) / m) ℚ.+ ((+ 1) / n)) ≤⟨ ℚP.+-monoˡ-≤ (((+ 1) / m) ℚ.+ (+ 1) / n) (ℚP.+-monoˡ-≤ ((+ 1) / j) (reg x n m)) ⟩ (((+ 1) / n) ℚ.+ (+ 1) / m) ℚ.+ ((+ 1) / j) ℚ.+ (((+ 1) / m) ℚ.+ ((+ 1) / n)) ≤⟨ ℚP.+-monoˡ-≤ ((((+ 1) / m) ℚ.+ ((+ 1) / n))) (ℚP.+-monoˡ-≤ ((+ 1) / j) (ℚP.+-monoʳ-≤ ((+ 1) / n) 1/m≤1/j)) ⟩ (((+ 1) / n) ℚ.+ (+ 1) / j) ℚ.+ ((+ 1) / j) ℚ.+ (((+ 1) / m) ℚ.+ ((+ 1) / n)) ≤⟨ ℚP.+-monoʳ-≤ ((((+ 1) / n) ℚ.+ (+ 1) / j) ℚ.+ ((+ 1) / j)) (ℚP.+-monoˡ-≤ ((+ 1) / n) 1/m≤1/j) ⟩ (((+ 1) / n) ℚ.+ (+ 1) / j) ℚ.+ ((+ 1) / j) ℚ.+ (((+ 1) / j) ℚ.+ (+ 1) / n) ≈⟨ ℚ.*≡* (solve 2 (λ n j -> {- Function for the solver -} (((((con (+ 1) :* j :+ con (+ 1) :* n) :* j) :+ con (+ 1) :* (n :* j)) :* (j :* n)) :+ ((con (+ 1) :* n :+ con (+ 1) :* j) :* ((n :* j) :* j))) :* (n :* j) := ((con (+ 2) :* j :+ con (+ 3) :* n) :* (((n :* j) :* j) :* (j :* n)))) _≡_.refl (+ n) (+ j)) ⟩ ((+ 2) / n) ℚ.+ ((+ 3) / j) ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:=_ to _ℚ:=_ ) open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver j : ℕ j = suc k₂ m : ℕ m = (suc N) ℕ.⊔ j 1/m≤1/j : ((+ 1) / m) ℚ.≤ (+ 1) / j 1/m≤1/j = *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-identityˡ (+ j))) (ℤP.≤-trans (+≤+ (ℕP.m≤n⊔m (suc N) j)) (ℤP.≤-reflexive (sym (ℤP.*-identityˡ (+ m)))))) ≃-trans : Transitive _≃_ ≃-trans {x} {y} {z} x≃y y≃z = lemma1B x z lem where lem : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq x n ℚ.- seq z n ∣ ℚ.≤ ((+ 1) / j) {j≢0} lem (suc k₁) with (lemma1A x y x≃y (2 ℕ.* (suc k₁))) | (lemma1A y z y≃z (2 ℕ.* (suc k₁))) lem (suc k₁) | N₁ , xy | N₂ , yz = N , λ {n N<n -> begin ℚ.∣ seq x n ℚ.- seq z n ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 3 (λ x y z -> x ℚ:- z ℚ:= (x ℚ:- y) ℚ:+ (y ℚ:- z)) (ℚ.*≡* _≡_.refl) (seq x n) (seq y n) (seq z n)) ⟩ ℚ.∣ (seq x n ℚ.- seq y n) ℚ.+ (seq y n ℚ.- seq z n) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x n ℚ.- seq y n) (seq y n ℚ.- seq z n) ⟩ ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.+ ℚ.∣ seq y n ℚ.- seq z n ∣ ≤⟨ ℚP.≤-trans (ℚP.+-monoˡ-≤ ℚ.∣ seq y n ℚ.- seq z n ∣ (xy n (ℕP.m⊔n≤o⇒m≤o (suc N₁) (suc N₂) N<n))) (ℚP.+-monoʳ-≤ ((+ 1) / (2 ℕ.* j)) (yz n (ℕP.m⊔n≤o⇒n≤o (suc N₁) (suc N₂) N<n))) ⟩ ((+ 1) / (2 ℕ.* j)) ℚ.+ ((+ 1) / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (con (+ 1) :* (con (+ 2) :* j) :+ (con (+ 1) :* (con (+ 2) :* j))) :* j := (con (+ 1) :* ((con (+ 2) :* j) :* (con (+ 2) :* j)))) _≡_.refl (+ j)) ⟩ (+ 1) / j ∎} where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:=_ to _ℚ:=_ ; _:*_ to _ℚ:*_ ; _:-_ to _ℚ:-_ ) open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver N : ℕ N = N₁ ℕ.⊔ N₂ j : ℕ j = suc k₁ antidensity-ℤ : ¬(∃ λ (n : ℤ) -> + 0 ℤ.< n × n ℤ.< + 1) antidensity-ℤ (+[1+ n ] , +<+ m<n , +<+ (ℕ.s≤s ())) infixl 6 _+_ _-_ _⊔_ _⊓_ infixl 7 _*_ infix 8 -_ _⋆ _+_ : ℝ -> ℝ -> ℝ seq (x + y) n = seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n) reg (x + y) (suc k₁) (suc k₂) = begin ℚ.∣ (seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m)) ℚ.- (seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 4 (λ xm ym xn yn -> (xm ℚ:+ ym) ℚ:- (xn ℚ:+ yn) ℚ:= (xm ℚ:- xn) ℚ:+ (ym ℚ:- yn)) (ℚ.*≡* _≡_.refl) (seq x (2 ℕ.* m)) (seq y (2 ℕ.* m)) (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ ℚ.∣ (seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n)) ℚ.+ (seq y (2 ℕ.* m) ℚ.- seq y (2 ℕ.* n)) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n)) (seq y (2 ℕ.* m) ℚ.- seq y (2 ℕ.* n)) ⟩ ℚ.∣ seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n) ∣ ℚ.+ ℚ.∣ seq y (2 ℕ.* m) ℚ.- seq y (2 ℕ.* n)∣ ≤⟨ ℚP.≤-trans (ℚP.+-monoʳ-≤ ℚ.∣ seq x (2 ℕ.* m) ℚ.- seq x (2 ℕ.* n) ∣ (reg y (2 ℕ.* m) (2 ℕ.* n))) (ℚP.+-monoˡ-≤ (((+ 1) / (2 ℕ.* m)) ℚ.+ ((+ 1) / (2 ℕ.* n))) (reg x (2 ℕ.* m) (2 ℕ.* n))) ⟩ (((+ 1) / (2 ℕ.* m)) ℚ.+ ((+ 1) / (2 ℕ.* n))) ℚ.+ (((+ 1) / (2 ℕ.* m)) ℚ.+ ((+ 1) / (2 ℕ.* n))) ≈⟨ ℚ.*≡* (solve 2 (λ m n -> (((con (+ 1) :* (con (+ 2) :* n) :+ con (+ 1) :* (con (+ 2) :* m)) :* ((con (+ 2) :* m) :* (con (+ 2) :* n))) :+ (con (+ 1) :* (con (+ 2) :* n) :+ con (+ 1) :* (con (+ 2) :* m)) :* ((con (+ 2) :* m) :* (con (+ 2) :* n))) :* (m :* n) := (con (+ 1) :* n :+ con (+ 1) :* m) :* (((con (+ 2) :* m) :* (con (+ 2) :* n)) :* (((con (+ 2) :* m) :* (con (+ 2) :* n))))) _≡_.refl (+ m) (+ n)) ⟩ ((+ 1) / m) ℚ.+ ((+ 1) / n) ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:=_ to _ℚ:=_ ) open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver m : ℕ m = suc k₁ n : ℕ n = suc k₂ 2ℚᵘ : ℚᵘ 2ℚᵘ = (+ 2) / 1 least-ℤ>ℚ : ℚᵘ -> ℤ least-ℤ>ℚ p = + 1 ℤ.+ (↥ p divℕ ↧ₙ p) abstract least-ℤ>ℚ-greater : ∀ (p : ℚᵘ) -> p ℚ.< least-ℤ>ℚ p / 1 least-ℤ>ℚ-greater (mkℚᵘ p q-1) = ℚ.*<* (begin-strict p ℤ.* (+ 1) ≡⟨ trans (ℤP.*-identityʳ p) (a≡a%ℕn+[a/ℕn]*n p q) ⟩ (+ r) ℤ.+ t ℤ.* (+ q) <⟨ ℤP.+-monoˡ-< (t ℤ.* (+ q)) (+<+ (n%ℕd<d p q)) ⟩ (+ q) ℤ.+ t ℤ.* (+ q) ≡⟨ solve 2 (λ q t -> q :+ t :* q := (con (+ 1) :+ t) :* q) _≡_.refl (+ q) t ⟩ (+ 1 ℤ.+ t) ℤ.* (+ q) ∎) where open ℤP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver q : ℕ q = suc q-1 t : ℤ t = p divℕ q r : ℕ r = p modℕ q least-ℤ>ℚ-least : ∀ (p : ℚᵘ) -> ∀ (n : ℤ) -> p ℚ.< n / 1 -> least-ℤ>ℚ p ℤ.≤ n least-ℤ>ℚ-least (mkℚᵘ p q-1) n p/q<n with (least-ℤ>ℚ (mkℚᵘ p q-1)) ℤP.≤? n ... | .Bool.true because ofʸ P = P ... | .Bool.false because ofⁿ ¬P = ⊥-elim (antidensity-ℤ (n ℤ.- t , 0<n-t ,′ n-t<1)) where open ℤP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver q : ℕ q = suc q-1 t : ℤ t = p divℕ q r : ℕ r = p modℕ q n-t<1 : n ℤ.- t ℤ.< + 1 n-t<1 = ℤP.<-≤-trans (ℤP.+-monoˡ-< (ℤ.- t) (ℤP.≰⇒> ¬P)) (ℤP.≤-reflexive (solve 1 (λ t -> con (+ 1) :+ t :- t := con (+ 1)) _≡_.refl t)) part1 : (+ r) ℤ.+ t ℤ.* (+ q) ℤ.< n ℤ.* (+ q) part1 = begin-strict (+ r) ℤ.+ t ℤ.* (+ q) ≡⟨ trans (sym (a≡a%ℕn+[a/ℕn]*n p q)) (sym (ℤP.*-identityʳ p)) ⟩ p ℤ.* (+ 1) <⟨ ℚP.drop-*<* p/q<n ⟩ n ℤ.* (+ q) ∎ part2 : (+ r) ℤ.< (n ℤ.- t) ℤ.* (+ q) part2 = begin-strict + r ≡⟨ solve 2 (λ r t -> r := r :+ t :- t) _≡_.refl (+ r) (t ℤ.* (+ q)) ⟩ (+ r) ℤ.+ t ℤ.* (+ q) ℤ.- t ℤ.* (+ q) <⟨ ℤP.+-monoˡ-< (ℤ.- (t ℤ.* + q)) part1 ⟩ n ℤ.* (+ q) ℤ.- t ℤ.* (+ q) ≡⟨ solve 3 (λ n q t -> n :* q :- t :* q := (n :- t) :* q) _≡_.refl n (+ q) t ⟩ (n ℤ.- t) ℤ.* (+ q) ∎ part3 : + 0 ℤ.< (n ℤ.- t) ℤ.* (+ q) part3 = ℤP.≤-<-trans (+≤+ ℕ.z≤n) part2 0<n-t : + 0 ℤ.< n ℤ.- t 0<n-t = ℤP.*-cancelʳ-<-nonNeg q (ℤP.≤-<-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ q))) part3) least : ∀ (p : ℚᵘ) -> ∃ λ (K : ℤ) -> p ℚ.< (K / 1) × (∀ (n : ℤ) -> p ℚ.< (n / 1) -> K ℤ.≤ n) least p = least-ℤ>ℚ p , least-ℤ>ℚ-greater p ,′ least-ℤ>ℚ-least p K : ℝ -> ℕ K x with ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ... | mkℚᵘ p q-1 = suc ℤ.∣ p divℕ (suc q-1) ∣ private Kx=1+t : ∀ (x : ℝ) -> + K x ≡ (+ 1) ℤ.+ (↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) divℕ ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) Kx=1+t x = sym (trans (cong (λ x -> (+ 1) ℤ.+ x) (sym ∣t∣=t)) _≡_.refl) where t : ℤ t = ↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) divℕ ↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) 0≤∣x₁∣+2 : 0ℚᵘ ℚ.≤ ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ 0≤∣x₁∣+2 = ℚP.≤-trans (ℚP.0≤∣p∣ (seq x 1)) (ℚP.p≤p+q {ℚ.∣ seq x 1 ∣} {2ℚᵘ} _) ∣t∣=t : + ℤ.∣ t ∣ ≡ t ∣t∣=t = ℤP.0≤n⇒+∣n∣≡n (0≤n⇒0≤n/ℕd (↥ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) (↧ₙ (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) (ℚP.≥0⇒↥≥0 0≤∣x₁∣+2)) canonical-property : ∀ (x : ℝ) -> ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< (+ K x) / 1 × (∀ (n : ℤ) -> ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< n / 1 -> + K x ℤ.≤ n) canonical-property x = left ,′ right where left : ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< (+ K x) / 1 left = ℚP.<-respʳ-≃ (ℚP.≃-reflexive (ℚP./-cong (sym (Kx=1+t x)) _≡_.refl _ _)) (least-ℤ>ℚ-greater (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ)) right : ∀ (n : ℤ) -> ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ ℚ.< n / 1 -> + K x ℤ.≤ n right n hyp = ℤP.≤-trans (ℤP.≤-reflexive (Kx=1+t x)) (least-ℤ>ℚ-least (ℚ.∣ seq x 1 ∣ ℚ.+ 2ℚᵘ) n hyp) canonical-greater : ∀ (x : ℝ) -> ∀ (n : ℕ) -> {n ≢0} -> ℚ.∣ seq x n ∣ ℚ.< (+ K x) / 1 canonical-greater x (suc k₁) = begin-strict ℚ.∣ seq x n ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ xn x1 -> xn := xn :- x1 :+ x1) (ℚ.*≡* _≡_.refl) (seq x n) (seq x 1)) ⟩ ℚ.∣ seq x n ℚ.- seq x 1 ℚ.+ seq x 1 ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x n ℚ.- seq x 1) (seq x 1) ⟩ ℚ.∣ seq x n ℚ.- seq x 1 ∣ ℚ.+ ℚ.∣ seq x 1 ∣ ≤⟨ ℚP.+-monoˡ-≤ ℚ.∣ seq x 1 ∣ (reg x n 1) ⟩ (+ 1 / n) ℚ.+ (+ 1 / 1) ℚ.+ ℚ.∣ seq x 1 ∣ ≤⟨ ℚP.+-monoˡ-≤ ℚ.∣ seq x 1 ∣ (ℚP.≤-trans (ℚP.+-monoˡ-≤ (+ 1 / 1) 1/n≤1) ℚP.≤-refl) ⟩ 2ℚᵘ ℚ.+ ℚ.∣ seq x 1 ∣ <⟨ ℚP.<-respˡ-≃ (ℚP.+-comm ℚ.∣ seq x 1 ∣ 2ℚᵘ) (proj₁ (canonical-property x)) ⟩ (+ K x) / 1 ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver n : ℕ n = suc k₁ 1/n≤1 : + 1 / n ℚ.≤ + 1 / 1 1/n≤1 = *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-identityˡ (+ 1))) (ℤP.≤-trans (+≤+ (ℕ.s≤s ℕ.z≤n)) (ℤP.≤-reflexive (sym (ℤP.*-identityˡ (+ n)))))) ∣∣p∣-∣q∣∣≤∣p-q∣ : ∀ p q -> ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ℚ.≤ ℚ.∣ p ℚ.- q ∣ ∣∣p∣-∣q∣∣≤∣p-q∣ p q = [ lemA p q , lemB p q ]′ (ℚP.≤-total ℚ.∣ q ∣ ℚ.∣ p ∣) where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver lemA : ∀ p q -> ℚ.∣ q ∣ ℚ.≤ ℚ.∣ p ∣ -> ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ℚ.≤ ℚ.∣ p ℚ.- q ∣ lemA p q hyp = begin ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp) ⟩ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ≈⟨ ℚP.+-congˡ (ℚ.- ℚ.∣ q ∣) (ℚP.∣-∣-cong (solve 2 (λ p q -> p := p :- q :+ q) ℚP.≃-refl p q)) ⟩ ℚ.∣ p ℚ.- q ℚ.+ q ∣ ℚ.- ℚ.∣ q ∣ ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- ℚ.∣ q ∣) (ℚP.∣p+q∣≤∣p∣+∣q∣ (p ℚ.- q) q) ⟩ ℚ.∣ p ℚ.- q ∣ ℚ.+ ℚ.∣ q ∣ ℚ.- ℚ.∣ q ∣ ≈⟨ solve 2 (λ x y -> x :+ y :- y := x) ℚP.≃-refl ℚ.∣ p ℚ.- q ∣ ℚ.∣ q ∣ ⟩ ℚ.∣ p ℚ.- q ∣ ∎ lemB : ∀ p q -> ℚ.∣ p ∣ ℚ.≤ ℚ.∣ q ∣ -> ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ℚ.≤ ℚ.∣ p ℚ.- q ∣ lemB p q hyp = begin ℚ.∣ ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣ ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (ℚ.∣ p ∣ ℚ.- ℚ.∣ q ∣))) (ℚP.∣-∣-cong (solve 2 (λ p q -> :- (p :- q) := q :- p) ℚP.≃-refl ℚ.∣ p ∣ ℚ.∣ q ∣)) ⟩ ℚ.∣ ℚ.∣ q ∣ ℚ.- ℚ.∣ p ∣ ∣ ≤⟨ lemA q p hyp ⟩ ℚ.∣ q ℚ.- p ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (q ℚ.- p))) (ℚP.∣-∣-cong (solve 2 (λ p q -> :- (q :- p) := p :- q) ℚP.≃-refl p q)) ⟩ ℚ.∣ p ℚ.- q ∣ ∎ {- Reminder: Make the proof of reg (x * y) abstract to avoid performance issues. Maybe do the same with the other long proofs too. -} _*_ : ℝ -> ℝ -> ℝ seq (x * y) n = seq x (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) ℚ.* seq y (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) reg (x * y) (suc k₁) (suc k₂) = begin ℚ.∣ x₂ₖₘ ℚ.* y₂ₖₘ ℚ.- x₂ₖₙ ℚ.* y₂ₖₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 4 (λ xm ym xn yn -> xm ℚ:* ym ℚ:- xn ℚ:* yn ℚ:= xm ℚ:* (ym ℚ:- yn) ℚ:+ yn ℚ:* (xm ℚ:- xn)) (ℚ.*≡* _≡_.refl) x₂ₖₘ y₂ₖₘ x₂ₖₙ y₂ₖₙ) ⟩ ℚ.∣ x₂ₖₘ ℚ.* (y₂ₖₘ ℚ.- y₂ₖₙ) ℚ.+ y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (x₂ₖₘ ℚ.* (y₂ₖₘ ℚ.- y₂ₖₙ)) (y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ)) ⟩ ℚ.∣ x₂ₖₘ ℚ.* (y₂ₖₘ ℚ.- y₂ₖₙ) ∣ ℚ.+ ℚ.∣ y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ) ∣ ≈⟨ ℚP.≃-trans (ℚP.+-congˡ ℚ.∣ y₂ₖₙ ℚ.* (x₂ₖₘ ℚ.- x₂ₖₙ) ∣ (ℚP.∣p*q∣≃∣p∣*∣q∣ x₂ₖₘ (y₂ₖₘ ℚ.- y₂ₖₙ))) (ℚP.+-congʳ (ℚ.∣ x₂ₖₘ ∣ ℚ.* ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣) (ℚP.∣p*q∣≃∣p∣*∣q∣ y₂ₖₙ (x₂ₖₘ ℚ.- x₂ₖₙ))) ⟩ ℚ.∣ x₂ₖₘ ∣ ℚ.* ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣ ℚ.+ ℚ.∣ y₂ₖₙ ∣ ℚ.* ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣ ≤⟨ ℚP.≤-trans (ℚP.+-monoˡ-≤ (ℚ.∣ y₂ₖₙ ∣ ℚ.* ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣ ) (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣} _ ∣x₂ₖₘ∣≤k)) (ℚP.+-monoʳ-≤ ((+ k / 1) ℚ.* ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣) (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣} _ ∣y₂ₖₙ∣≤k)) ⟩ (+ k / 1) ℚ.* ℚ.∣ y₂ₖₘ ℚ.- y₂ₖₙ ∣ ℚ.+ (+ k / 1) ℚ.* ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣ ≤⟨ ℚP.≤-trans (ℚP.+-monoˡ-≤ ((+ k / 1) ℚ.* ℚ.∣ x₂ₖₘ ℚ.- x₂ₖₙ ∣) (ℚP.*-monoʳ-≤-nonNeg {+ k / 1} _ (reg y 2km 2kn))) (ℚP.+-monoʳ-≤ ((+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn))) (ℚP.*-monoʳ-≤-nonNeg {+ k / 1} _ (reg x 2km 2kn))) ⟩ (+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn)) ℚ.+ (+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn)) ≈⟨ ℚP.≃-sym (ℚP.*-distribˡ-+ (+ k / 1) ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn)) ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn))) ⟩ (+ k / 1) ℚ.* ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn) ℚ.+ ((+ 1 / 2km) ℚ.+ (+ 1 / 2kn))) ≈⟨ ℚ.*≡* (solve 3 (λ k m n -> {- Function for the solver -} (k :* ((((con (+ 1) :* (con (+ 2) :* k :* n)) :+ (con (+ 1) :* (con (+ 2) :* k :* m))) :* ((con (+ 2) :* k :* m) :* (con (+ 2) :* k :* n))) :+ (((con (+ 1) :* (con (+ 2) :* k :* n)) :+ (con (+ 1) :* (con (+ 2) :* k :* m))) :* ((con (+ 2) :* k :* m) :* (con (+ 2) :* k :* n))))) :* (m :* n) := (con (+ 1) :* n :+ con (+ 1) :* m) :* (con (+ 1) :* (((con (+ 2) :* k :* m) :* (con (+ 2) :* k :* n)):* ((con (+ 2) :* k :* m) :* (con (+ 2) :* k :* n))))) -- Other solver inputs _≡_.refl (+ k) (+ m) (+ n)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver m : ℕ m = suc k₁ n : ℕ n = suc k₂ k : ℕ k = K x ℕ.⊔ K y 2km : ℕ 2km = 2 ℕ.* k ℕ.* m 2kn : ℕ 2kn = 2 ℕ.* k ℕ.* n x₂ₖₘ : ℚᵘ x₂ₖₘ = seq x (2 ℕ.* k ℕ.* m) x₂ₖₙ : ℚᵘ x₂ₖₙ = seq x (2 ℕ.* k ℕ.* n) y₂ₖₘ : ℚᵘ y₂ₖₘ = seq y (2 ℕ.* k ℕ.* m) y₂ₖₙ : ℚᵘ y₂ₖₙ = seq y (2 ℕ.* k ℕ.* n) ∣x₂ₖₘ∣≤k : ℚ.∣ x₂ₖₘ ∣ ℚ.≤ (+ k) / 1 ∣x₂ₖₘ∣≤k = ℚP.≤-trans (ℚP.<⇒≤ (canonical-greater x 2km)) (*≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-identityʳ (+ K x))) (ℤP.≤-trans (+≤+ (ℕP.m≤m⊔n (K x) (K y))) (ℤP.≤-reflexive (sym (ℤP.*-identityʳ (+ k))))))) ∣y₂ₖₙ∣≤k : ℚ.∣ y₂ₖₙ ∣ ℚ.≤ (+ k) / 1 ∣y₂ₖₙ∣≤k = ℚP.≤-trans (ℚP.<⇒≤ (canonical-greater y 2kn)) (*≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-identityʳ (+ K y))) (ℤP.≤-trans (+≤+ (ℕP.m≤n⊔m (K x) (K y))) (ℤP.≤-reflexive (sym (ℤP.*-identityʳ (+ k))))))) p≃q⇒-p≃-q : ∀ (p q : ℚᵘ) -> p ℚ.≃ q -> ℚ.- p ℚ.≃ ℚ.- q p≃q⇒-p≃-q p q p≃q = ℚP.p-q≃0⇒p≃q (ℚ.- p) (ℚ.- q) (ℚP.≃-trans (ℚP.+-comm (ℚ.- p) (ℚ.- (ℚ.- q))) (ℚP.≃-trans (ℚP.+-congˡ (ℚ.- p) (ℚP.neg-involutive q)) (ℚP.p≃q⇒p-q≃0 q p (ℚP.≃-sym p≃q)))) p≤∣p∣ : ∀ (p : ℚᵘ) -> p ℚ.≤ ℚ.∣ p ∣ p≤∣p∣ (mkℚᵘ (+_ n) q-1) = ℚP.≤-refl p≤∣p∣ (mkℚᵘ (-[1+_] n) q-1) = *≤* ℤ.-≤+ {- The book uses an extra assumption to simplify this proof. It seems, for a proper proof, a 4-way case split is required, as done below. -} _⊔_ : ℝ -> ℝ -> ℝ seq (x ⊔ y) n = (seq x n) ℚ.⊔ (seq y n) reg (x ⊔ y) (suc k₁) (suc k₂) = [ left , right ]′ (ℚP.≤-total (seq x m ℚ.⊔ seq y m) (seq x n ℚ.⊔ seq y n)) where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver m : ℕ m = suc k₁ n : ℕ n = suc k₂ lem : ∀ (a b c d : ℚᵘ) -> a ℚ.≤ b -> ∀ (r s : ℕ) -> {r≢0 : r ≢0} -> {s≢0 : s ≢0} -> ℚ.∣ b ℚ.- d ∣ ℚ.≤ ((+ 1) / r) {r≢0} ℚ.+ ((+ 1) / s) {s≢0} -> (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ℚ.≤ ((+ 1) / r) {r≢0} ℚ.+ ((+ 1) / s) {s≢0} lem a b c d a≤b r s hyp = begin (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ≤⟨ ℚP.+-monoʳ-≤ (a ℚ.⊔ b) (ℚP.neg-mono-≤ (ℚP.p≤q⊔p c d)) ⟩ (a ℚ.⊔ b) ℚ.- d ≈⟨ ℚP.+-congˡ (ℚ.- d) (ℚP.p≤q⇒p⊔q≃q a≤b) ⟩ b ℚ.- d ≤⟨ p≤∣p∣ (b ℚ.- d) ⟩ ℚ.∣ b ℚ.- d ∣ ≤⟨ hyp ⟩ ((+ 1) / r) ℚ.+ ((+ 1) / s) ∎ left : seq x m ℚ.⊔ seq y m ℚ.≤ seq x n ℚ.⊔ seq y n -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) left hyp1 = [ xn≤yn , yn≤xn ]′ (ℚP.≤-total (seq x n) (seq y n)) where xn≤yn : seq x n ℚ.≤ seq y n -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) xn≤yn hyp2 = begin ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ ((seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> :- (a :- b) := b :- a) (ℚ.*≡* _≡_.refl) (seq x m ℚ.⊔ seq y m) (seq x n ℚ.⊔ seq y n))) ⟩ ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ≤⟨ lem (seq x n) (seq y n) (seq x m) (seq y m) hyp2 m n (ℚP.≤-respʳ-≃ (ℚP.+-comm (+ 1 / n) (+ 1 / m)) (reg y n m)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ yn≤xn : seq y n ℚ.≤ seq x n -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) yn≤xn hyp2 = begin ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ ((seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> :- (a :- b) := b :- a) (ℚ.*≡* _≡_.refl) (seq x m ℚ.⊔ seq y m) (seq x n ℚ.⊔ seq y n))) ⟩ ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq x n ℚ.⊔ seq y n) ℚ.- (seq x m ℚ.⊔ seq y m) ≈⟨ ℚP.≃-trans (ℚP.+-congʳ (seq x n ℚ.⊔ seq y n) (p≃q⇒-p≃-q (seq x m ℚ.⊔ seq y m) (seq y m ℚ.⊔ seq x m) (ℚP.⊔-comm (seq x m) (seq y m)))) (ℚP.+-congˡ (ℚ.- (seq y m ℚ.⊔ seq x m)) (ℚP.⊔-comm (seq x n) (seq y n))) ⟩ (seq y n ℚ.⊔ seq x n) ℚ.- (seq y m ℚ.⊔ seq x m) ≤⟨ lem (seq y n) (seq x n) (seq y m) (seq x m) hyp2 m n (ℚP.≤-respʳ-≃ (ℚP.+-comm (+ 1 / n) (+ 1 / m)) (reg x n m)) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ right : seq x n ℚ.⊔ seq y n ℚ.≤ seq x m ℚ.⊔ seq y m -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) right hyp1 = [ xm≤ym , ym≤xm ]′ (ℚP.≤-total (seq x m) (seq y m)) where xm≤ym : seq x m ℚ.≤ seq y m -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) xm≤ym hyp2 = ℚP.≤-respˡ-≃ (ℚP.≃-sym (ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1))) (lem (seq x m) (seq y m) (seq x n) (seq y n) hyp2 m n (reg y m n)) ym≤xm : seq y m ℚ.≤ seq x m -> ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ℚ.≤ ((+ 1) / m) ℚ.+ ((+ 1) / n) ym≤xm hyp2 = begin ℚ.∣ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq x m ℚ.⊔ seq y m) ℚ.- (seq x n ℚ.⊔ seq y n) ≈⟨ ℚP.≃-trans (ℚP.+-congˡ (ℚ.- (seq x n ℚ.⊔ seq y n)) (ℚP.⊔-comm (seq x m) (seq y m))) (ℚP.+-congʳ (seq y m ℚ.⊔ seq x m) (p≃q⇒-p≃-q (seq x n ℚ.⊔ seq y n) (seq y n ℚ.⊔ seq x n) (ℚP.⊔-comm (seq x n) (seq y n)))) ⟩ (seq y m ℚ.⊔ seq x m) ℚ.- (seq y n ℚ.⊔ seq x n) ≤⟨ lem (seq y m) (seq x m) (seq y n) (seq x n) hyp2 m n (reg x m n) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ -_ : ℝ -> ℝ seq (- x) n = ℚ.- seq x n reg (- x) m n {m≢0} {n≢0} = begin ℚ.∣ ℚ.- seq x m ℚ.- (ℚ.- seq x n) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.≃-sym (ℚP.≃-reflexive (ℚP.neg-distrib-+ (seq x m) (ℚ.- seq x n)))) ⟩ ℚ.∣ ℚ.- (seq x m ℚ.- seq x n) ∣ ≤⟨ ℚP.≤-respˡ-≃ (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (seq x m ℚ.- seq x n))) (reg x m n {m≢0} {n≢0}) ⟩ ((+ 1) / m) ℚ.+ ((+ 1) / n) ∎ where open ℚP.≤-Reasoning _-_ : ℝ -> ℝ -> ℝ x - y = x + (- y) -- Gets a real representation of a rational number. -- For a rational α, one real representation is the sequence -- α* = (α, α, α, α, α, ...). _⋆ : ℚᵘ -> ℝ seq (p ⋆) n = p reg (p ⋆) (suc m) (suc n) = begin ℚ.∣ p ℚ.- p ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.p≃q⇒p-q≃0 p p ℚP.≃-refl) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ ((+ 1) / (suc m)) ℚ.+ ((+ 1) / (suc n)) ∎ where open ℚP.≤-Reasoning {- Proofs that the above operations are well-defined functions (for setoid equality). -} {- ∣ x₂ₙ + y₂ₙ - z₂ₙ - w₂ₙ ∣ ≤ ∣ x₂ₙ - z₂ₙ ∣ + ∣ y₂ₙ - w₂ₙ ∣ ≤ 2/2n + 2/2n = 2/n -} +-cong : Congruent₂ _≃_ _+_ +-cong {x} {z} {y} {w} x≃z y≃w (suc k₁) = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n) ℚ.- (seq z (2 ℕ.* n) ℚ.+ seq w (2 ℕ.* n)) ∣ ≤⟨ ℚP.≤-respˡ-≃ (ℚP.∣-∣-cong (ℚsolve 4 (λ x y z w -> (x ℚ:- z) ℚ:+ (y ℚ:- w) ℚ:= x ℚ:+ y ℚ:- (z ℚ:+ w)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)) (seq z (2 ℕ.* n)) (seq w (2 ℕ.* n)))) (ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x (2 ℕ.* n) ℚ.- seq z (2 ℕ.* n)) (seq y (2 ℕ.* n) ℚ.- seq w (2 ℕ.* n))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq z (2 ℕ.* n) ∣ ℚ.+ ℚ.∣ seq y (2 ℕ.* n) ℚ.- seq w (2 ℕ.* n) ∣ ≤⟨ ℚP.≤-trans (ℚP.+-monoˡ-≤ ℚ.∣ seq y (2 ℕ.* n) ℚ.- seq w (2 ℕ.* n) ∣ (x≃z (2 ℕ.* n))) (ℚP.+-monoʳ-≤ (+ 2 / (2 ℕ.* n)) (y≃w (2 ℕ.* n))) ⟩ (+ 2 / (2 ℕ.* n)) ℚ.+ (+ 2 / (2 ℕ.* n)) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (con (+ 2) :* (con (+ 2) :* n) :+ con (+ 2) :* (con (+ 2) :* n)) :* n := (con (+ 2) :* ((con (+ 2) :* n) :* (con (+ 2) :* n)))) _≡_.refl (+ n)) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:=_ to _ℚ:=_ ) open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver n : ℕ n = suc k₁ +-congʳ : ∀ x {y z} -> y ≃ z -> x + y ≃ x + z +-congʳ x {y} {z} y≃z = +-cong {x} {x} {y} {z} (≃-refl {x}) y≃z +-congˡ : ∀ x {y z} -> y ≃ z -> y + x ≃ z + x +-congˡ x {y} {z} y≃z = +-cong {y} {z} {x} {x} y≃z (≃-refl {x}) +-comm : Commutative _≃_ _+_ +-comm x y (suc k₁) = begin ℚ.∣ (seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n)) ℚ.- (seq y (2 ℕ.* n) ℚ.+ seq x (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ x y -> (x :+ y) :- (y :+ x) := con (0ℚᵘ)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ 0ℚᵘ ≤⟨ *≤* (+≤+ ℕ.z≤n) ⟩ (+ 2) / n ∎ where open import Data.Rational.Unnormalised.Solver open +-*-Solver open ℚP.≤-Reasoning n : ℕ n = suc k₁ +-assoc : Associative _≃_ _+_ +-assoc x y z (suc k₁) = begin ℚ.∣ ((seq x 4n ℚ.+ seq y 4n) ℚ.+ seq z 2n) ℚ.- (seq x 2n ℚ.+ (seq y 4n ℚ.+ seq z 4n)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 5 (λ x4 y4 z2 x2 z4 -> ((x4 ℚ:+ y4) ℚ:+ z2) ℚ:- (x2 ℚ:+ (y4 ℚ:+ z4)) ℚ:= (x4 ℚ:- x2) ℚ:+ (z2 ℚ:- z4)) ℚP.≃-refl (seq x 4n) (seq y 4n) (seq z 2n) (seq x 2n) (seq z 4n)) ⟩ ℚ.∣ (seq x 4n ℚ.- seq x 2n) ℚ.+ (seq z 2n ℚ.- seq z 4n) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x 4n ℚ.- seq x 2n) (seq z 2n ℚ.- seq z 4n) ⟩ ℚ.∣ seq x 4n ℚ.- seq x 2n ∣ ℚ.+ ℚ.∣ seq z 2n ℚ.- seq z 4n ∣ ≤⟨ ℚP.≤-trans (ℚP.+-monoʳ-≤ ℚ.∣ seq x 4n ℚ.- seq x 2n ∣ (reg z 2n 4n)) (ℚP.+-monoˡ-≤ ((+ 1 / 2n) ℚ.+ (+ 1 / 4n)) (reg x 4n 2n)) ⟩ ((+ 1 / 4n) ℚ.+ (+ 1 / 2n)) ℚ.+ ((+ 1 / 2n) ℚ.+ (+ 1 / 4n)) ≈⟨ ℚ.*≡* (solve 1 ((λ 2n -> ((con (+ 1) :* 2n :+ con (+ 1) :* (con (+ 2) :* 2n)) :* (2n :* (con (+ 2) :* 2n)) :+ (con (+ 1) :* (con (+ 2) :* 2n) :+ con (+ 1) :* 2n) :* ((con (+ 2) :* 2n) :* 2n)) :* 2n := con (+ 3) :* (((con (+ 2) :* 2n) :* 2n) :* (2n :* (con (+ 2) :* 2n))))) _≡_.refl (+ 2n)) ⟩ + 3 / 2n ≤⟨ *≤* (ℤP.*-monoʳ-≤-nonNeg 2n (+≤+ (ℕ.s≤s (ℕ.s≤s (ℕ.s≤s (ℕ.z≤n {1})))))) ⟩ + 4 / 2n ≈⟨ ℚ.*≡* (solve 1 (λ n -> con (+ 4) :* n := con (+ 2) :* (con (+ 2) :* n)) _≡_.refl (+ n)) ⟩ + 2 / n ∎ where open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:=_ to _ℚ:=_ ) open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open ℚP.≤-Reasoning n : ℕ n = suc k₁ 2n : ℕ 2n = 2 ℕ.* n 4n : ℕ 4n = 2 ℕ.* 2n 0ℝ : ℝ 0ℝ = 0ℚᵘ ⋆ 1ℝ : ℝ 1ℝ = ℚ.1ℚᵘ ⋆ +-identityˡ : LeftIdentity _≃_ 0ℝ _+_ +-identityˡ x (suc k₁) = begin ℚ.∣ (0ℚᵘ ℚ.+ seq x (2 ℕ.* n)) ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- seq x n) (ℚP.+-identityˡ (seq x (2 ℕ.* n)))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq x n ∣ ≤⟨ reg x (2 ℕ.* n) n ⟩ (+ 1 / (2 ℕ.* n)) ℚ.+ (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (con (+ 1) :* n :+ con (+ 1) :* (con (+ 2) :* n)) :* (con (+ 2) :* n) := con (+ 3) :* ((con (+ 2) :* n) :* n)) _≡_.refl (+ n)) ⟩ + 3 / (2 ℕ.* n) ≤⟨ *≤* (ℤP.*-monoʳ-≤-nonNeg (2 ℕ.* n) (+≤+ (ℕ.s≤s (ℕ.s≤s (ℕ.s≤s (ℕ.z≤n {1})))))) ⟩ + 4 / (2 ℕ.* n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> con (+ 4) :* n := con (+ 2) :* (con (+ 2) :* n)) _≡_.refl (+ n)) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver n : ℕ n = suc k₁ +-identityʳ : RightIdentity _≃_ 0ℝ _+_ +-identityʳ x = ≃-trans {x + 0ℝ} {0ℝ + x} {x} (+-comm x 0ℝ) (+-identityˡ x) +-identity : Identity _≃_ 0ℝ _+_ +-identity = +-identityˡ , +-identityʳ +-inverseʳ : RightInverse _≃_ 0ℝ -_ _+_ +-inverseʳ x (suc k₁) = begin ℚ.∣ (seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n)) ℚ.+ 0ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ 0ℚᵘ (ℚP.+-inverseʳ (seq x (2 ℕ.* n)))) ⟩ 0ℚᵘ ≤⟨ *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ n))) (+≤+ ℕ.z≤n)) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ +-inverseˡ : LeftInverse _≃_ 0ℝ -_ _+_ +-inverseˡ x = ≃-trans {(- x) + x} {x - x} {0ℝ} (+-comm (- x) x) (+-inverseʳ x) +-inverse : Inverse _≃_ 0ℝ -_ _+_ +-inverse = +-inverseˡ , +-inverseʳ ⋆-distrib-+ : ∀ (p r : ℚᵘ) -> (p ℚ.+ r) ⋆ ≃ p ⋆ + r ⋆ ⋆-distrib-+ (mkℚᵘ p q-1) (mkℚᵘ u v-1) (suc k₁) = begin ℚ.∣ ((p / q) ℚ.+ (u / v)) ℚ.- ((p / q) ℚ.+ (u / v)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ((p / q) ℚ.+ (u / v))) ⟩ 0ℚᵘ ≤⟨ *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ n))) (+≤+ ℕ.z≤n)) ⟩ (+ 2) / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ q : ℕ q = suc q-1 v : ℕ v = suc v-1 ⋆-distrib-neg : ∀ (p : ℚᵘ) -> (ℚ.- p) ⋆ ≃ - (p ⋆) ⋆-distrib-neg p (suc k₁) = begin ℚ.∣ ℚ.- p ℚ.- (ℚ.- p) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (ℚ.- p)) ⟩ 0ℚᵘ ≤⟨ *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ n))) (+≤+ ℕ.z≤n)) ⟩ (+ 2) / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ abstract regular⇒cauchy : ∀ (x : ℝ) -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (m n : ℕ) -> N ℕ.≤ m -> N ℕ.≤ n -> ℚ.∣ seq x m ℚ.- seq x n ∣ ℚ.≤ (+ 1 / j) {j≢0} regular⇒cauchy x (suc k₁) = 2 ℕ.* j , right where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver j : ℕ j = suc k₁ N≤m⇒m≢0 : ∀ (m : ℕ) -> 2 ℕ.* j ℕ.≤ m -> m ≢0 N≤m⇒m≢0 (suc m) N≤m = _ N≤m⇒1/m≤1/N : ∀ (m : ℕ) -> (N≤m : 2 ℕ.* j ℕ.≤ m) -> (+ 1 / m) {N≤m⇒m≢0 m N≤m} ℚ.≤ (+ 1 / (2 ℕ.* j)) N≤m⇒1/m≤1/N (suc m) N≤m = *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-identityˡ (+ (2 ℕ.* j)))) (ℤP.≤-trans (ℤ.+≤+ N≤m) (ℤP.≤-reflexive (sym (ℤP.*-identityˡ (+ (suc m))))))) right : ∀ (m n : ℕ) -> 2 ℕ.* j ℕ.≤ m -> 2 ℕ.* j ℕ.≤ n -> ℚ.∣ seq x m ℚ.- seq x n ∣ ℚ.≤ + 1 / j right m n N≤m N≤n = begin ℚ.∣ seq x m ℚ.- seq x n ∣ ≤⟨ reg x m n {N≤m⇒m≢0 m N≤m} {N≤m⇒m≢0 n N≤n} ⟩ (+ 1 / m) {N≤m⇒m≢0 m N≤m} ℚ.+ (+ 1 / n) {N≤m⇒m≢0 n N≤n} ≤⟨ ℚP.≤-trans (ℚP.+-monoˡ-≤ ((+ 1 / n) {N≤m⇒m≢0 n N≤n}) (N≤m⇒1/m≤1/N m N≤m)) (ℚP.+-monoʳ-≤ (+ 1 / (2 ℕ.* j)) (N≤m⇒1/m≤1/N n N≤n)) ⟩ (+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (con (+ 1) :* (con (+ 2) :* j) :+ con (+ 1) :* (con (+ 2) :* j)) :* j := (con (+ 1) :* ((con (+ 2) :* j) :* (con (+ 2) :* j)))) _≡_.refl (+ j)) ⟩ + 1 / j ∎ equals-to-cauchy : ∀ (x y : ℝ) -> x ≃ y -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (m n : ℕ) -> N ℕ.< m -> N ℕ.< n -> ℚ.∣ seq x m ℚ.- seq y n ∣ ℚ.≤ (+ 1 / j) {j≢0} equals-to-cauchy x y x≃y (suc k₁) = N , lemA where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) j : ℕ j = suc k₁ N₁ : ℕ N₁ = proj₁ (lemma1A x y x≃y (2 ℕ.* j)) N₂ : ℕ N₂ = proj₁ (regular⇒cauchy x (2 ℕ.* j)) N : ℕ N = N₁ ℕ.⊔ N₂ lemA : ∀ (m n : ℕ) -> N ℕ.< m -> N ℕ.< n -> ℚ.∣ seq x m ℚ.- seq y n ∣ ℚ.≤ + 1 / j lemA (suc k₂) (suc k₃) N<m N<n = begin ℚ.∣ seq x m ℚ.- seq y n ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 3 (λ xm yn xn -> xm ℚ:- yn ℚ:= (xm ℚ:- xn) ℚ:+ (xn ℚ:- yn)) ℚP.≃-refl (seq x m) (seq y n) (seq x n)) ⟩ ℚ.∣ (seq x m ℚ.- seq x n) ℚ.+ (seq x n ℚ.- seq y n) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x m ℚ.- seq x n) (seq x n ℚ.- seq y n) ⟩ ℚ.∣ seq x m ℚ.- seq x n ∣ ℚ.+ ℚ.∣ seq x n ℚ.- seq y n ∣ ≤⟨ ℚP.+-mono-≤ (proj₂ (regular⇒cauchy x (2 ℕ.* j)) m n (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.<⇒≤ N<m)) (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.<⇒≤ N<n))) (proj₂ (lemma1A x y x≃y (2 ℕ.* j)) n (ℕP.<-transʳ (ℕP.m≤m⊔n N₁ N₂) N<n)) ⟩ (+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (con (+ 1) :* (con (+ 2) :* j) :+ (con (+ 1) :* (con (+ 2) :* j))) :* j := (con (+ 1) :* ((con (+ 2) :* j) :* (con (+ 2) :* j)))) _≡_.refl (+ j)) ⟩ + 1 / j ∎ where m : ℕ m = suc k₂ n : ℕ n = suc k₃ *-cong : Congruent₂ _≃_ _*_ *-cong {x} {z} {y} {w} x≃z y≃w = lemma1B (x * y) (z * w) lemA where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq (x * y) n ℚ.- seq (z * w) n ∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where j : ℕ j = suc k₁ r : ℕ r = K x ℕ.⊔ K y t : ℕ t = K z ℕ.⊔ K w N₁ : ℕ N₁ = proj₁ (equals-to-cauchy x z x≃z (K y ℕ.* (2 ℕ.* j))) N₂ : ℕ N₂ = proj₁ (equals-to-cauchy y w y≃w (K z ℕ.* (2 ℕ.* j))) N : ℕ N = N₁ ℕ.⊔ N₂ lemB : ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq (x * y) n ℚ.- seq (z * w) n ∣ ℚ.≤ (+ 1 / j) lemB (suc k₂) N<n = begin ℚ.∣ x₂ᵣₙ ℚ.* y₂ᵣₙ ℚ.- z₂ₜₙ ℚ.* w₂ₜₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 4 (λ x y z w -> x ℚ:* y ℚ:- z ℚ:* w ℚ:= y ℚ:* (x ℚ:- z) ℚ:+ z ℚ:* (y ℚ:- w)) ℚP.≃-refl x₂ᵣₙ y₂ᵣₙ z₂ₜₙ w₂ₜₙ) ⟩ ℚ.∣ y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- z₂ₜₙ) ℚ.+ z₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- w₂ₜₙ) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- z₂ₜₙ)) (z₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- w₂ₜₙ)) ⟩ ℚ.∣ y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- z₂ₜₙ) ∣ ℚ.+ ℚ.∣ z₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- w₂ₜₙ) ∣ ≈⟨ ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ y₂ᵣₙ ((x₂ᵣₙ ℚ.- z₂ₜₙ))) (ℚP.∣p*q∣≃∣p∣*∣q∣ z₂ₜₙ (y₂ᵣₙ ℚ.- w₂ₜₙ)) ⟩ ℚ.∣ y₂ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- z₂ₜₙ ∣ ℚ.+ ℚ.∣ z₂ₜₙ ∣ ℚ.* ℚ.∣ y₂ᵣₙ ℚ.- w₂ₜₙ ∣ ≤⟨ ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- z₂ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-greater y (2 ℕ.* r ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K y / 1} _ (proj₂ (equals-to-cauchy x z x≃z (K y ℕ.* (2 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* n) (N₁< (2 ℕ.* r ℕ.* n) (N<2kn r)) (N₁< (2 ℕ.* t ℕ.* n) (N<2kn t))))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₂ᵣₙ ℚ.- w₂ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-greater z (2 ℕ.* t ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K z / 1} _ (proj₂ (equals-to-cauchy y w y≃w (K z ℕ.* (2 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* n) (N₂< (2 ℕ.* r ℕ.* n) (N<2kn r)) (N₂< (2 ℕ.* t ℕ.* n) (N<2kn t))))) ⟩ (+ K y / 1) ℚ.* (+ 1 / (K y ℕ.* (2 ℕ.* j))) ℚ.+ (+ K z / 1) ℚ.* (+ 1 / (K z ℕ.* (2 ℕ.* j))) ≈⟨ ℚ.*≡* (solve 3 (λ Ky Kz j -> -- Function for solver ((Ky :* con (+ 1)) :* (con (+ 1) :* (Kz :* (con (+ 2) :* j))) :+ (Kz :* con (+ 1) :* (con (+ 1) :* (Ky :* (con (+ 2) :* j))))) :* j := con (+ 1) :* ((con (+ 1) :* (Ky :* (con (+ 2) :* j))) :* (con (+ 1) :* (Kz :* (con (+ 2) :* j))))) _≡_.refl (+ K y) (+ K z) (+ j)) ⟩ + 1 / j ∎ where n : ℕ n = suc k₂ x₂ᵣₙ : ℚᵘ x₂ᵣₙ = seq x (2 ℕ.* r ℕ.* n) y₂ᵣₙ : ℚᵘ y₂ᵣₙ = seq y (2 ℕ.* r ℕ.* n) z₂ₜₙ : ℚᵘ z₂ₜₙ = seq z (2 ℕ.* t ℕ.* n) w₂ₜₙ : ℚᵘ w₂ₜₙ = seq w (2 ℕ.* t ℕ.* n) N<2kn : ∀ (k : ℕ) -> {k ≢0} -> N ℕ.< 2 ℕ.* k ℕ.* n N<2kn (suc k) = ℕP.<-transˡ N<n (ℕP.m≤n*m n {2 ℕ.* (suc k)} ℕP.0<1+n) N₁< : ∀ (k : ℕ) -> N ℕ.< k -> N₁ ℕ.< k N₁< k N<k = ℕP.<-transʳ (ℕP.m≤m⊔n N₁ N₂) N<k N₂< : ∀ (k : ℕ) -> N ℕ.< k -> N₂ ℕ.< k N₂< k N<k = ℕP.<-transʳ (ℕP.m≤n⊔m N₁ N₂) N<k *-congˡ : LeftCongruent _≃_ _*_ *-congˡ {x} {y} {z} y≃z = *-cong {x} {x} {y} {z} (≃-refl {x}) y≃z *-congʳ : RightCongruent _≃_ _*_ *-congʳ {x} {y} {z} y≃z = *-cong {y} {z} {x} {x} y≃z (≃-refl {x}) *-comm : Commutative _≃_ _*_ *-comm x y (suc k₁) = begin ℚ.∣ seq (x * y) n ℚ.- seq (y * x) n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.≃-trans (ℚP.+-congʳ (seq (x * y) n) (p≃q⇒-p≃-q _ _ (ℚP.≃-sym xyℚ=yxℚ))) (ℚP.+-inverseʳ (seq (x * y) n))) ⟩ 0ℚᵘ ≤⟨ *≤* (+≤+ ℕ.z≤n) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ xyℚ=yxℚ : seq (x * y) n ℚ.≃ seq (y * x) n xyℚ=yxℚ = begin-equality seq x (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) ℚ.* seq y (2 ℕ.* (K x ℕ.⊔ K y) ℕ.* n) ≡⟨ cong (λ r -> seq x (2 ℕ.* r ℕ.* n) ℚ.* seq y (2 ℕ.* r ℕ.* n)) (ℕP.⊔-comm (K x) (K y)) ⟩ seq x (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ℚ.* seq y (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ≈⟨ ℚP.*-comm (seq x (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n)) (seq y (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n)) ⟩ seq y (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ℚ.* seq x (2 ℕ.* (K y ℕ.⊔ K x) ℕ.* n) ∎ {- Proposition: Multiplication on ℝ is associative. Proof: Let x,y,z∈ℝ. We must show that (xy)z = x(yz). Define r = max{Kx, Ky} s = max{Kxy, Kz} u = max{Kx, Kyz} t = max{Ky, Kz}, noting that Kxy is the canonical bound for x * y (similarly for Kyz). Let j∈ℤ⁺. Since (xₙ), (yₙ), and (zₙ) are Cauchy sequences, there is N₁,N₂,N₃∈ℤ⁺ such that: ∣xₘ - xₙ∣ ≤ 1 / (Ky * Kz * 3j) (m, n ≥ N₁), ∣yₘ - yₙ∣ ≤ 1 / (Kx * Kz * 3j) (m, n ≥ N₂), and ∣zₘ - zₙ∣ ≤ 1 / (Kx * Ky * 3j) (m, n ≥ N₃). x = z and y = w then x * y = z * w ∣xₘ - zₙ∣ ≤ ε Define N = max{N₁, N₂, N₃}. If we show that ∣x₄ᵣₛₙ * y₄ᵣₛₙ * z₂ₛₙ - x₂ᵤₙ * y₄ₜᵤₙ * z₄ₜᵤₙ∣ ≤ 1 / j for all n ≥ N, then (xy)z = x(yz) by Lemma 1. Note that, for all a, b, c, d in ℚ, we have ab - cd = b(a - c) + c(b - d). We will use this trick in our proof. We have: ∀ ε > 0 ∃ N ∈ ℕ ∀ m, n ≥ N -> ∣xₘ - xₙ∣ ≤ ε ∀ j ∈ ℤ⁺ ∃ N ∈ ℕ ∀ m, n ≥ N ∣ xn - yn ∣ ≤ 1/j ∀ n ∈ ℕ (∣ xn - yn ∣ ≤ 2/n) ∣x₄ᵣₛₙ * y₄ᵣₛₙ * z₂ₛₙ - x₂ᵤₙ * y₄ₜᵤₙ * z₄ₜᵤₙ∣ = ∣y₄ᵣₛₙ * z₂ₛₙ(x₄ᵣₛₙ - x₂ᵤₙ) + x₂ᵤₙ(y₄ᵣₛₙ * z₂ₛₙ - y₄ₜᵤₙ * z₄ₜᵤₙ)∣ = ∣y₄ᵣₛₙ * z₂ₛₙ(x₄ᵣₛₙ - x₂ᵤₙ) + x₂ᵤₙ(z₂ₛₙ(y₄ᵣₛₙ - y₄ₜᵤₙ) + y₄ₜᵤₙ(z₂ₛₙ - z₄ₜᵤₙ)∣ ≤ ∣y₄ᵣₛₙ∣*∣z₂ₛₙ∣*∣x₄ᵣₛₙ - x₂ᵤₙ∣ + ∣x₂ᵤₙ∣*∣z₂ₛₙ∣*∣y₄ᵣₛₙ - y₄ₜᵤₙ∣ + ∣x₂ᵤₙ∣*∣y₄ₜᵤₙ∣*∣z₂ₛₙ - z₄ₜᵤₙ∣ ≤ Ky * Kz * (1 / (Ky * Kz * 3j)) + Kx * Kz * (1 / (Kx * Kz * 3j)) + Kx * Ky * (1 / (Kx * Ky * 3j)) = 1 / 3j + 1 / 3j + 1 / 3j = 1 / j. Thus ∣x₄ᵣₛₙ*y₄ᵣₛₙ*z₂ₛₙ - x₂ᵤₙ*y₄ₜᵤₙ*z₄ₜᵤₙ∣ ≤ 1/j, as desired. □ -} *-assoc : Associative _≃_ _*_ *-assoc x y z = lemma1B ((x * y) * z) (x * (y * z)) lemA where open ℚP.≤-Reasoning r : ℕ r = K x ℕ.⊔ K y s : ℕ s = K (x * y) ℕ.⊔ K z u : ℕ u = K x ℕ.⊔ K (y * z) t : ℕ t = K y ℕ.⊔ K z lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq x (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) ℚ.* seq y (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) ℚ.* seq z (2 ℕ.* s ℕ.* n) ℚ.- seq x (2 ℕ.* u ℕ.* n) ℚ.* (seq y (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) ℚ.* seq z (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)))∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) j : ℕ j = suc k₁ N₁ : ℕ N₁ = proj₁ (regular⇒cauchy x ((K y ℕ.* K z) ℕ.* (3 ℕ.* j))) N₂ : ℕ N₂ = proj₁ (regular⇒cauchy y (K x ℕ.* K z ℕ.* (3 ℕ.* j))) N₃ : ℕ N₃ = proj₁ (regular⇒cauchy z (K x ℕ.* K y ℕ.* (3 ℕ.* j))) N : ℕ N = (N₁ ℕ.⊔ N₂) ℕ.⊔ N₃ lemB : ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq x (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) ℚ.* seq y (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) ℚ.* seq z (2 ℕ.* s ℕ.* n) ℚ.- seq x (2 ℕ.* u ℕ.* n) ℚ.* (seq y (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) ℚ.* seq z (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)))∣ ℚ.≤ (+ 1 / j) lemB (suc k₂) N<n = begin ℚ.∣ x₄ᵣₛₙ ℚ.* y₄ᵣₛₙ ℚ.* z₂ₛₙ ℚ.- x₂ᵤₙ ℚ.* (y₄ₜᵤₙ ℚ.* z₄ₜᵤₙ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 6 (λ a b c d e f -> a ℚ:* b ℚ:* c ℚ:- d ℚ:* (e ℚ:* f) ℚ:= (b ℚ:* c) ℚ:* (a ℚ:- d) ℚ:+ d ℚ:* (c ℚ:* (b ℚ:- e) ℚ:+ e ℚ:* (c ℚ:- f))) ℚP.≃-refl x₄ᵣₛₙ y₄ᵣₛₙ z₂ₛₙ x₂ᵤₙ y₄ₜᵤₙ z₄ₜᵤₙ) ⟩ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ℚ.+ x₂ᵤₙ ℚ.* (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ)) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ ((y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ)) (x₂ᵤₙ ℚ.* (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ))) ⟩ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ℚ.* (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ)) ∣ ≤⟨ ℚP.≤-respˡ-≃ (ℚP.≃-sym (ℚP.+-congʳ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ (ℚP.∣p*q∣≃∣p∣*∣q∣ x₂ᵤₙ (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ℚ.+ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ))))) (ℚP.+-monoʳ-≤ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ (ℚP.*-monoʳ-≤-nonNeg {ℚ.∣ x₂ᵤₙ ∣} _ (ℚP.∣p+q∣≤∣p∣+∣q∣ (z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ)) (y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ))))) ⟩ ℚ.∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) ℚ.* (x₄ᵣₛₙ ℚ.- x₂ᵤₙ) ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ∣ ℚ.* (ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ≈⟨ ℚP.+-congˡ (ℚ.∣ x₂ᵤₙ ∣ ℚ.* (ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣)) (ℚP.≃-trans (ℚP.∣p*q∣≃∣p∣*∣q∣ (y₄ᵣₛₙ ℚ.* z₂ₛₙ) (x₄ᵣₛₙ ℚ.- x₂ᵤₙ)) (ℚP.*-congʳ (ℚP.∣p*q∣≃∣p∣*∣q∣ y₄ᵣₛₙ z₂ₛₙ))) ⟩ ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ∣ ℚ.* (ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ≈⟨ ℚP.+-congʳ (ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣) (ℚP.*-distribˡ-+ ℚ.∣ x₂ᵤₙ ∣ ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ⟩ ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ℚ.+ (ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.+ ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣) ≤⟨ ℚP.≤-trans (ℚP.+-monoʳ-≤ (ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣) (ℚP.≤-trans (ℚP.+-monoʳ-≤ (ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣) part3) (ℚP.+-monoˡ-≤ (+ 1 / (3 ℕ.* j)) part2))) (ℚP.+-monoˡ-≤ (+ 1 / (3 ℕ.* j) ℚ.+ + 1 / (3 ℕ.* j)) part1) ⟩ (+ 1 / (3 ℕ.* j)) ℚ.+ ((+ 1 / (3 ℕ.* j)) ℚ.+ (+ 1 / (3 ℕ.* j))) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (con (+ 1) :* ((con (+ 3) :* j) :* (con (+ 3) :* j)) :+ ((con (+ 1) :* (con (+ 3) :* j)) :+ (con (+ 1) :* (con (+ 3) :* j))) :* (con (+ 3) :* j)) :* j := (con (+ 1) :* ((con (+ 3) :* j) :* ((con (+ 3) :* j) :* (con (+ 3) :* j))))) _≡_.refl (+ j)) ⟩ + 1 / j ∎ where n : ℕ n = suc k₂ x₄ᵣₛₙ : ℚᵘ x₄ᵣₛₙ = seq x (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) y₄ᵣₛₙ : ℚᵘ y₄ᵣₛₙ = seq y (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) z₂ₛₙ : ℚᵘ z₂ₛₙ = seq z (2 ℕ.* s ℕ.* n) x₂ᵤₙ : ℚᵘ x₂ᵤₙ = seq x (2 ℕ.* u ℕ.* n) y₄ₜᵤₙ : ℚᵘ y₄ₜᵤₙ = seq y (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) z₄ₜᵤₙ : ℚᵘ z₄ₜᵤₙ = seq z (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) N≤4rsn : N ℕ.≤ 2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n) N≤4rsn = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.≤-trans (ℕP.m≤n*m n {4 ℕ.* r ℕ.* s} ℕP.0<1+n) (ℤP.drop‿+≤+ (ℤP.≤-reflexive (solve 3 (λ r s n -> con (+ 4) :* r :* s :* n := con (+ 2) :* r :* (con (+ 2) :* s :* n)) _≡_.refl (+ r) (+ s) (+ n))))) N₁≤4rsn : N₁ ℕ.≤ 2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n) N₁≤4rsn = ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃) N≤4rsn) N₁≤2un : N₁ ℕ.≤ 2 ℕ.* u ℕ.* n N₁≤2un = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.m≤n*m n {2 ℕ.* u} ℕP.0<1+n)) part1 : ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ℚ.≤ + 1 / (3 ℕ.* j) part1 = begin ℚ.∣ y₄ᵣₛₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ≤⟨ ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣} _ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₂ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-greater y (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {(+ K y) / 1} _ (ℚP.<⇒≤ (canonical-greater z (2 ℕ.* s ℕ.* n))))) ⟩ (+ (K y ℕ.* K z) / 1) ℚ.* ℚ.∣ x₄ᵣₛₙ ℚ.- x₂ᵤₙ ∣ ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ (K y ℕ.* K z) / 1} _ (proj₂ (regular⇒cauchy x (K y ℕ.* K z ℕ.* (3 ℕ.* j))) (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) (2 ℕ.* u ℕ.* n) N₁≤4rsn N₁≤2un) ⟩ (+ (K y ℕ.* K z) / 1) ℚ.* (+ 1 / (K y ℕ.* K z ℕ.* (3 ℕ.* j))) ≈⟨ ℚ.*≡* (solve 3 (λ Ky Kz j -> ((Ky :* Kz) :* con (+ 1)) :* (con (+ 3) :* j) := (con (+ 1) :* (con (+ 1) :* (Ky :* Kz :* (con (+ 3) :* j))))) _≡_.refl (+ K y) (+ K z) (+ j)) ⟩ + 1 / (3 ℕ.* j) ∎ N₂≤4rsn : N₂ ℕ.≤ 2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n) N₂≤4rsn = ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃) N≤4rsn) N≤4tun : N ℕ.≤ 2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n) N≤4tun = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.≤-trans (ℕP.m≤n*m n {4 ℕ.* t ℕ.* u} ℕP.0<1+n) (ℤP.drop‿+≤+ (ℤP.≤-reflexive (solve 3 (λ t u n -> con (+ 4) :* t :* u :* n := con (+ 2) :* t :* (con (+ 2) :* u :* n)) _≡_.refl (+ t) (+ u) (+ n))))) N₂≤4tun : N₂ ℕ.≤ 2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n) N₂≤4tun = ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃) N≤4tun) part2 : ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ℚ.≤ + 1 / (3 ℕ.* j) part2 = begin ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.* (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ) ∣ ≈⟨ ℚP.≃-trans (ℚP.*-congˡ {ℚ.∣ x₂ᵤₙ ∣} (ℚP.∣p*q∣≃∣p∣*∣q∣ z₂ₛₙ (y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ))) (ℚP.≃-sym (ℚP.*-assoc ℚ.∣ x₂ᵤₙ ∣ ℚ.∣ z₂ₛₙ ∣ ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣)) ⟩ ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ∣ ℚ.* ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣} _ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₂ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-greater x (2 ℕ.* u ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (ℚP.<⇒≤ (canonical-greater z (2 ℕ.* s ℕ.* n))))) ⟩ (+ (K x ℕ.* K z) / 1) ℚ.* ℚ.∣ y₄ᵣₛₙ ℚ.- y₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ (K x ℕ.* K z) / 1} _ (proj₂ (regular⇒cauchy y (K x ℕ.* K z ℕ.* (3 ℕ.* j))) (2 ℕ.* r ℕ.* (2 ℕ.* s ℕ.* n)) (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) N₂≤4rsn N₂≤4tun) ⟩ (+ (K x ℕ.* K z) / 1) ℚ.* (+ 1 / (K x ℕ.* K z ℕ.* (3 ℕ.* j))) ≈⟨ ℚ.*≡* (solve 3 (λ Kx Kz j -> (Kx :* Kz :* con (+ 1)) :* (con (+ 3) :* j) := (con (+ 1) :* (con (+ 1) :* (Kx :* Kz :* (con (+ 3) :* j))))) _≡_.refl (+ K x) (+ K z) (+ j)) ⟩ + 1 / (3 ℕ.* j) ∎ N₃≤2sn : N₃ ℕ.≤ 2 ℕ.* s ℕ.* n N₃≤2sn = ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂) N₃) (ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.m≤n*m n {2 ℕ.* s} ℕP.0<1+n)) N₃≤4tun : N₃ ℕ.≤ 2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n) N₃≤4tun = ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂) N₃) N≤4tun part3 : ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣ ℚ.≤ + 1 / (3 ℕ.* j) part3 = begin ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ℚ.* (z₂ₛₙ ℚ.- z₄ₜᵤₙ) ∣ ≈⟨ ℚP.≃-trans (ℚP.*-congˡ {ℚ.∣ x₂ᵤₙ ∣} (ℚP.∣p*q∣≃∣p∣*∣q∣ y₄ₜᵤₙ (z₂ₛₙ ℚ.- z₄ₜᵤₙ))) (ℚP.≃-sym (ℚP.*-assoc ℚ.∣ x₂ᵤₙ ∣ ℚ.∣ y₄ₜᵤₙ ∣ ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣)) ⟩ ℚ.∣ x₂ᵤₙ ∣ ℚ.* ℚ.∣ y₄ₜᵤₙ ∣ ℚ.* ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣} _ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₄ₜᵤₙ ∣} _ (ℚP.<⇒≤ (canonical-greater x (2 ℕ.* u ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (ℚP.<⇒≤ (canonical-greater y (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)))))) ⟩ (+ (K x ℕ.* K y) / 1) ℚ.* ℚ.∣ z₂ₛₙ ℚ.- z₄ₜᵤₙ ∣ ≤⟨ ℚP.*-monoʳ-≤-nonNeg {+ (K x ℕ.* K y) / 1} _ (proj₂ (regular⇒cauchy z (K x ℕ.* K y ℕ.* (3 ℕ.* j))) (2 ℕ.* s ℕ.* n) (2 ℕ.* t ℕ.* (2 ℕ.* u ℕ.* n)) N₃≤2sn N₃≤4tun) ⟩ (+ (K x ℕ.* K y) / 1) ℚ.* (+ 1 / (K x ℕ.* K y ℕ.* (3 ℕ.* j))) ≈⟨ ℚ.*≡* (solve 3 (λ Kx Ky j -> (((Kx :* Ky) :* con (+ 1)) :* (con (+ 3) :* j)) := (con (+ 1) :* (con (+ 1) :* (Kx :* Ky :* (con (+ 3) :* j))))) _≡_.refl (+ K x) (+ K y) (+ j)) ⟩ + 1 / (3 ℕ.* j) ∎ *-distribˡ-+ : _DistributesOverˡ_ _≃_ _*_ _+_ *-distribˡ-+ x y z = lemma1B (x * (y + z)) ((x * y) + (x * z)) lemA where lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq (x * (y + z)) n ℚ.- seq ((x * y) + (x * z)) n ∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) j : ℕ j = suc k₁ r : ℕ r = K x ℕ.⊔ K (y + z) s : ℕ s = K x ℕ.⊔ K y t : ℕ t = K x ℕ.⊔ K z N₁ : ℕ N₁ = proj₁ (regular⇒cauchy x (K y ℕ.* (4 ℕ.* j))) N₂ : ℕ N₂ = proj₁ (regular⇒cauchy y (K x ℕ.* (4 ℕ.* j))) N₃ : ℕ N₃ = proj₁ (regular⇒cauchy x (K z ℕ.* (4 ℕ.* j))) N₄ : ℕ N₄ = proj₁ (regular⇒cauchy z (K x ℕ.* (4 ℕ.* j))) N : ℕ N = N₁ ℕ.⊔ N₂ ℕ.⊔ N₃ ℕ.⊔ N₄ lemB : ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq (x * (y + z)) n ℚ.- seq ((x * y) + (x * z)) n ∣ ℚ.≤ + 1 / j lemB (suc k₂) N<n = begin ℚ.∣ x₂ᵣₙ ℚ.* (y₄ᵣₙ ℚ.+ z₄ᵣₙ) ℚ.- (x₄ₛₙ ℚ.* y₄ₛₙ ℚ.+ x₄ₜₙ ℚ.* z₄ₜₙ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 7 (λ a b c d e f g -> a ℚ:* (b ℚ:+ c) ℚ:- (d ℚ:* e ℚ:+ f ℚ:* g) ℚ:= (b ℚ:* (a ℚ:- d) ℚ:+ (d ℚ:* (b ℚ:- e)) ℚ:+ ((c ℚ:* (a ℚ:- f)) ℚ:+ (f ℚ:* (c ℚ:- g))))) ℚP.≃-refl x₂ᵣₙ y₄ᵣₙ z₄ᵣₙ x₄ₛₙ y₄ₛₙ x₄ₜₙ z₄ₜₙ) ⟩ ℚ.∣ y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ) ℚ.+ x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ) ℚ.+ (z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ) ℚ.+ x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ)) ∣ ≤⟨ ℚP.≤-trans (ℚP.∣p+q∣≤∣p∣+∣q∣ (y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ) ℚ.+ x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ)) (z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ) ℚ.+ x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ))) (ℚP.+-mono-≤ (ℚP.∣p+q∣≤∣p∣+∣q∣ (y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ)) ( x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ))) (ℚP.∣p+q∣≤∣p∣+∣q∣ (z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ)) ( x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ)))) ⟩ ℚ.∣ y₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₛₙ) ∣ ℚ.+ ℚ.∣ x₄ₛₙ ℚ.* (y₄ᵣₙ ℚ.- y₄ₛₙ) ∣ ℚ.+ (ℚ.∣ z₄ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₄ₜₙ) ∣ ℚ.+ ℚ.∣ x₄ₜₙ ℚ.* (z₄ᵣₙ ℚ.- z₄ₜₙ) ∣) ≈⟨ ℚP.+-cong (ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ y₄ᵣₙ (x₂ᵣₙ ℚ.- x₄ₛₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ x₄ₛₙ (y₄ᵣₙ ℚ.- y₄ₛₙ))) (ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ z₄ᵣₙ (x₂ᵣₙ ℚ.- x₄ₜₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ x₄ₜₙ (z₄ᵣₙ ℚ.- z₄ₜₙ))) ⟩ ℚ.∣ y₄ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- x₄ₛₙ ∣ ℚ.+ ℚ.∣ x₄ₛₙ ∣ ℚ.* ℚ.∣ y₄ᵣₙ ℚ.- y₄ₛₙ ∣ ℚ.+ (ℚ.∣ z₄ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- x₄ₜₙ ∣ ℚ.+ ℚ.∣ x₄ₜₙ ∣ ℚ.* ℚ.∣ z₄ᵣₙ ℚ.- z₄ₜₙ ∣) ≤⟨ ℚP.+-mono-≤ (ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- x₄ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-greater y (2 ℕ.* (2 ℕ.* r ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K y / 1} _ (proj₂ (regular⇒cauchy x (K y ℕ.* (4 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* s ℕ.* (2 ℕ.* n)) (N₁≤ N≤2rn) (N₁≤ N≤4sn)))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₄ᵣₙ ℚ.- y₄ₛₙ ∣} _ (ℚP.<⇒≤ (canonical-greater x (2 ℕ.* s ℕ.* (2 ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (proj₂ (regular⇒cauchy y (K x ℕ.* (4 ℕ.* j))) (2 ℕ.* (2 ℕ.* r ℕ.* n)) (2 ℕ.* s ℕ.* (2 ℕ.* n)) (N₂≤ N≤4rn) (N₂≤ N≤4sn))))) (ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- x₄ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-greater z (2 ℕ.* (2 ℕ.* r ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K z / 1} _ (proj₂ (regular⇒cauchy x (K z ℕ.* (4 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* (2 ℕ.* n)) (N₃≤ N≤2rn) (N₃≤ N≤4tn)))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ z₄ᵣₙ ℚ.- z₄ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-greater x (2 ℕ.* t ℕ.* (2 ℕ.* n))))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (proj₂ (regular⇒cauchy z (K x ℕ.* (4 ℕ.* j))) (2 ℕ.* (2 ℕ.* r ℕ.* n)) (2 ℕ.* t ℕ.* (2 ℕ.* n)) (N₄≤ N≤4rn) (N₄≤ N≤4tn))))) ⟩ (+ K y / 1) ℚ.* (+ 1 / (K y ℕ.* (4 ℕ.* j))) ℚ.+ (+ K x / 1) ℚ.* (+ 1 / (K x ℕ.* (4 ℕ.* j))) ℚ.+ ((+ K z / 1) ℚ.* (+ 1 / (K z ℕ.* (4 ℕ.* j))) ℚ.+ (+ K x / 1) ℚ.* (+ 1 / (K x ℕ.* (4 ℕ.* j)))) ≈⟨ ℚ.*≡* (solve 4 (λ Kx Ky Kz j -> {- Function for solver -} (((Ky :* con (+ 1)) :* (con (+ 1) :* (Kx :* (con (+ 4) :* j))) :+ ((Kx :* con (+ 1)) :* (con (+ 1) :* (Ky :* (con (+ 4) :* j))))) :* ((con (+ 1) :* (Kz :* (con (+ 4) :* j))) :* (con (+ 1) :* (Kx :* (con (+ 4) :* j)))) :+ (((Kz :* con (+ 1)) :* (con (+ 1) :* (Kx :* (con (+ 4) :* j)))) :+ ((Kx :* con (+ 1)) :* (con (+ 1) :* (Kz :* (con (+ 4) :* j))))) :* ((con (+ 1) :* (Ky :* (con (+ 4) :* j))) :* (con (+ 1) :* (Kx :* (con (+ 4) :* j))))) :* j := con (+ 1) :* (((con (+ 1) :* (Ky :* (con (+ 4) :* j))) :* (con (+ 1) :* (Kx :* (con (+ 4) :* j)))) :* ((con (+ 1) :* (Kz :* (con (+ 4) :* j))) :* (con (+ 1) :* (Kx :* (con (+ 4) :* j)))))) _≡_.refl (+ K x) (+ K y) (+ K z) (+ j)) ⟩ + 1 / j ∎ where n : ℕ n = suc k₂ x₂ᵣₙ : ℚᵘ x₂ᵣₙ = seq x (2 ℕ.* r ℕ.* n) x₄ₛₙ : ℚᵘ x₄ₛₙ = seq x (2 ℕ.* s ℕ.* (2 ℕ.* n)) x₄ₜₙ : ℚᵘ x₄ₜₙ = seq x (2 ℕ.* t ℕ.* (2 ℕ.* n)) y₄ᵣₙ : ℚᵘ y₄ᵣₙ = seq y (2 ℕ.* (2 ℕ.* r ℕ.* n)) y₄ₛₙ : ℚᵘ y₄ₛₙ = seq y (2 ℕ.* s ℕ.* (2 ℕ.* n)) z₄ᵣₙ : ℚᵘ z₄ᵣₙ = seq z (2 ℕ.* (2 ℕ.* r ℕ.* n)) z₄ₜₙ : ℚᵘ z₄ₜₙ = seq z (2 ℕ.* t ℕ.* (2 ℕ.* n)) N≤2rn : N ℕ.≤ 2 ℕ.* r ℕ.* n N≤2rn = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.m≤n*m n {2 ℕ.* r} ℕP.0<1+n) N≤4sn : N ℕ.≤ 2 ℕ.* s ℕ.* (2 ℕ.* n) N≤4sn = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.≤-trans (ℕP.m≤n*m n {2 ℕ.* s ℕ.* 2} ℕP.0<1+n) (ℕP.≤-reflexive (ℕP.*-assoc (2 ℕ.* s) 2 n))) N≤4rn : N ℕ.≤ 2 ℕ.* (2 ℕ.* r ℕ.* n) N≤4rn = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.≤-trans (ℕP.m≤n*m n {2 ℕ.* (2 ℕ.* r)} ℕP.0<1+n) (ℕP.≤-reflexive (ℕP.*-assoc 2 (2 ℕ.* r) n))) N≤4tn : N ℕ.≤ 2 ℕ.* t ℕ.* (2 ℕ.* n) N≤4tn = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.≤-trans (ℕP.m≤n*m n {2 ℕ.* t ℕ.* 2} ℕP.0<1+n) (ℕP.≤-reflexive (ℕP.*-assoc (2 ℕ.* t) 2 n))) N₁≤_ : {m : ℕ} -> N ℕ.≤ m -> N₁ ℕ.≤ m N₁≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄) N≤m) N₂≤_ : {m : ℕ} -> N ℕ.≤ m -> N₂ ℕ.≤ m N₂≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂) N₃)) (ℕP.≤-trans (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄) N≤m) N₃≤_ : {m : ℕ} -> N ℕ.≤ m -> N₃ ℕ.≤ m N₃≤ N≤m = ℕP.≤-trans (ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂) N₃) (ℕP.m≤m⊔n (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄)) N≤m N₄≤_ : {m : ℕ} -> N ℕ.≤ m -> N₄ ℕ.≤ m N₄≤ N≤m = ℕP.≤-trans (ℕP.m≤n⊔m (N₁ ℕ.⊔ N₂ ℕ.⊔ N₃) N₄) N≤m *-distribʳ-+ : _DistributesOverʳ_ _≃_ _*_ _+_ *-distribʳ-+ x y z = ≃-trans {(y + z) * x} {x * (y + z)} {y * x + z * x} (*-comm (y + z) x) (≃-trans {x * (y + z)} {x * y + x * z} {y * x + z * x} (*-distribˡ-+ x y z) (+-cong {x * y} {y * x} {x * z} {z * x} (*-comm x y) (*-comm x z))) *-distrib-+ : _DistributesOver_ _≃_ _*_ _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ *-identityˡ : LeftIdentity _≃_ 1ℝ _*_ *-identityˡ x (suc k₁) = begin ℚ.∣ ℚ.1ℚᵘ ℚ.* seq x (2 ℕ.* k ℕ.* n) ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- seq x n) (ℚP.*-identityˡ (seq x (2 ℕ.* k ℕ.* n)))) ⟩ ℚ.∣ seq x (2 ℕ.* k ℕ.* n) ℚ.- seq x n ∣ ≤⟨ reg x (2 ℕ.* k ℕ.* n) n ⟩ (+ 1 / (2 ℕ.* k ℕ.* n)) ℚ.+ (+ 1 / n) ≤⟨ ℚP.+-monoˡ-≤ (+ 1 / n) lem ⟩ (+ 1 / n) ℚ.+ (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (con (+ 1) :* n :+ con (+ 1) :* n) :* n := (con (+ 2) :* (n :* n))) _≡_.refl (+ n)) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver k : ℕ k = K 1ℝ ℕ.⊔ K x n : ℕ n = suc k₁ lem : (+ 1 / (2 ℕ.* k ℕ.* n)) ℚ.≤ + 1 / n lem = *≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤n*m n {2 ℕ.* k} ℕP.0<1+n))) *-identityʳ : RightIdentity _≃_ 1ℝ _*_ *-identityʳ x = ≃-trans {x * 1ℝ} {1ℝ * x} {x} (*-comm x 1ℝ) (*-identityˡ x) *-identity : Identity _≃_ 1ℝ _*_ *-identity = *-identityˡ , *-identityʳ *-zeroˡ : LeftZero _≃_ 0ℝ _*_ *-zeroˡ x (suc k₁) = begin ℚ.∣ 0ℚᵘ ℚ.* seq x (2 ℕ.* k ℕ.* n) ℚ.- 0ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- 0ℚᵘ) (ℚP.*-zeroˡ (seq x (2 ℕ.* k ℕ.* n)))) ⟩ 0ℚᵘ ≤⟨ *≤* (ℤP.≤-trans (ℤP.≤-reflexive (ℤP.*-zeroˡ (+ n))) (+≤+ ℕ.z≤n)) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ k : ℕ k = K 0ℝ ℕ.⊔ K x *-zeroʳ : RightZero _≃_ 0ℝ _*_ *-zeroʳ x = ≃-trans {x * 0ℝ} {0ℝ * x} {0ℝ} (*-comm x 0ℝ) (*-zeroˡ x) *-zero : Zero _≃_ 0ℝ _*_ *-zero = *-zeroˡ , *-zeroʳ -‿cong : Congruent₁ _≃_ (-_) -‿cong {x} {y} x≃y n {n≢0} = begin ℚ.∣ ℚ.- seq x n ℚ.- (ℚ.- seq y n) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ x y -> :- x :- (:- y) := y :- x) ℚP.≃-refl (seq x n) (seq y n)) ⟩ ℚ.∣ seq y n ℚ.- seq x n ∣ ≤⟨ (≃-symm {x} {y} x≃y) n {n≢0} ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver neg-involutive : Involutive _≃_ (-_) neg-involutive x (suc k₁) = begin ℚ.∣ ℚ.- (ℚ.- seq x (suc k₁)) ℚ.- seq x (suc k₁) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseˡ (ℚ.- seq x (suc k₁))) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / (suc k₁) ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver neg-distrib-+ : ∀ x y -> - (x + y) ≃ (- x) + (- y) neg-distrib-+ x y (suc k₁) = begin ℚ.∣ ℚ.- (seq x (2 ℕ.* n) ℚ.+ seq y (2 ℕ.* n)) ℚ.- (ℚ.- seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)) ∣ ≈⟨ ℚP.∣-∣-cong (solve 2 (λ x y -> :- (x :+ y) :- (:- x :- y) := con (0ℚᵘ)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver n : ℕ n = suc k₁ ⊔-cong : Congruent₂ _≃_ _⊔_ ⊔-cong {x} {z} {y} {w} x≃z y≃w (suc k₁) = [ left , right ]′ (ℚP.≤-total (seq x n ℚ.⊔ seq y n) (seq z n ℚ.⊔ seq w n)) where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver n : ℕ n = suc k₁ lem : ∀ a b c d -> a ℚ.≤ b -> ℚ.∣ b ℚ.- d ∣ ℚ.≤ + 2 / n -> (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ℚ.≤ + 2 / n lem a b c d a≤b hyp = begin (a ℚ.⊔ b) ℚ.- (c ℚ.⊔ d) ≤⟨ ℚP.+-mono-≤ (ℚP.≤-reflexive (ℚP.p≤q⇒p⊔q≃q a≤b)) (ℚP.neg-mono-≤ (ℚP.p≤q⊔p c d)) ⟩ b ℚ.- d ≤⟨ p≤∣p∣ (b ℚ.- d) ⟩ ℚ.∣ b ℚ.- d ∣ ≤⟨ hyp ⟩ + 2 / n ∎ left : seq x n ℚ.⊔ seq y n ℚ.≤ seq z n ℚ.⊔ seq w n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n left hyp1 = [ zn≤wn , wn≤zn ]′ (ℚP.≤-total (seq z n) (seq w n)) where first : ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≃ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) first = begin-equality ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ ((seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n)))) (ℚP.∣-∣-cong (solve 2 (λ a b -> :- (a :- b) := b :- a) ℚP.≃-refl (seq x n ℚ.⊔ seq y n) (seq z n ℚ.⊔ seq w n))) ⟩ ℚ.∣ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ∎ zn≤wn : seq z n ℚ.≤ seq w n -> ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n zn≤wn hyp2 = begin ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ first ⟩ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ≤⟨ lem (seq z n) (seq w n) (seq x n) (seq y n) hyp2 (≃-symm {y} {w} y≃w n) ⟩ + 2 / n ∎ wn≤zn : seq w n ℚ.≤ seq z n -> ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n wn≤zn hyp2 = begin ℚ.∣ (seq x n ℚ.⊔ seq y n) ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ first ⟩ (seq z n ℚ.⊔ seq w n) ℚ.- (seq x n ℚ.⊔ seq y n) ≈⟨ ℚP.+-cong (ℚP.⊔-comm (seq z n) (seq w n)) (ℚP.-‿cong (ℚP.⊔-comm (seq x n) (seq y n))) ⟩ (seq w n ℚ.⊔ seq z n) ℚ.- (seq y n ℚ.⊔ seq x n) ≤⟨ lem (seq w n) (seq z n) (seq y n) (seq x n) hyp2 (≃-symm {x} {z} x≃z n) ⟩ + 2 / n ∎ right : seq z n ℚ.⊔ seq w n ℚ.≤ seq x n ℚ.⊔ seq y n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n right hyp1 = [ xn≤yn , yn≤xn ]′ (ℚP.≤-total (seq x n) (seq y n)) where xn≤yn : seq x n ℚ.≤ seq y n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n xn≤yn hyp2 = begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ≤⟨ lem (seq x n) (seq y n) (seq z n) (seq w n) hyp2 (y≃w n) ⟩ + 2 / n ∎ yn≤xn : seq y n ℚ.≤ seq x n -> ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ℚ.≤ + 2 / n yn≤xn hyp2 = begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp1) ⟩ seq x n ℚ.⊔ seq y n ℚ.- (seq z n ℚ.⊔ seq w n) ≈⟨ ℚP.+-cong (ℚP.⊔-comm (seq x n) (seq y n)) (ℚP.-‿cong (ℚP.⊔-comm (seq z n) (seq w n))) ⟩ seq y n ℚ.⊔ seq x n ℚ.- (seq w n ℚ.⊔ seq z n) ≤⟨ lem (seq y n) (seq x n) (seq w n) (seq z n) hyp2 (x≃z n) ⟩ + 2 / n ∎ ⊔-congˡ : LeftCongruent _≃_ _⊔_ ⊔-congˡ {x} {y} {z} y≃z = ⊔-cong {x} {x} {y} {z} (≃-refl {x}) y≃z ⊔-congʳ : RightCongruent _≃_ _⊔_ ⊔-congʳ {x} {y} {z} y≃z = ⊔-cong {y} {z} {x} {x} y≃z (≃-refl {x}) ⊔-comm : Commutative _≃_ _⊔_ ⊔-comm x y n {n≢0} = begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq y n ℚ.⊔ seq x n) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (seq x n ℚ.⊔ seq y n) (ℚP.-‿cong (ℚP.⊔-comm (seq y n) (seq x n)))) ⟩ ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.- (seq x n ℚ.⊔ seq y n) ∣ ≤⟨ ≃-refl {x ⊔ y} n {n≢0} ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning ⊔-assoc : Associative _≃_ _⊔_ ⊔-assoc x y z n {n≢0} = begin ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n ℚ.- (seq x n ℚ.⊔ (seq y n ℚ.⊔ seq z n)) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ (seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n) (ℚP.-‿cong (ℚP.≃-sym (ℚP.⊔-assoc (seq x n) (seq y n) (seq z n))))) ⟩ ℚ.∣ seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n ℚ.- (seq x n ℚ.⊔ seq y n ℚ.⊔ seq z n) ∣ ≤⟨ ≃-refl {x ⊔ y ⊔ z} n {n≢0} ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning _⊓_ : (x y : ℝ) -> ℝ x ⊓ y = - ((- x) ⊔ (- y)) ⊓-cong : Congruent₂ _≃_ _⊓_ ⊓-cong {x} {z} {y} {w} x≃z y≃w = -‿cong {(- x ⊔ - y)} {(- z ⊔ - w)} (⊔-cong {(- x)} {(- z)} {(- y)} {(- w)} (-‿cong {x} {z} x≃z) (-‿cong {y} {w} y≃w)) ⊓-congˡ : LeftCongruent _≃_ _⊓_ ⊓-congˡ {x} {y} {z} y≃z = ⊓-cong {x} {x} {y} {z} (≃-refl {x}) y≃z ⊓-congʳ : RightCongruent _≃_ _⊓_ ⊓-congʳ {x} {y} {z} y≃z = ⊓-cong {y} {z} {x} {x} y≃z (≃-refl {x}) ⊓-comm : Commutative _≃_ _⊓_ ⊓-comm x y = -‿cong { - x ⊔ - y} { - y ⊔ - x} (⊔-comm (- x) (- y)) ⊓-assoc : Associative _≃_ _⊓_ ⊓-assoc x y z = -‿cong {(- (- ((- x) ⊔ (- y)))) ⊔ (- z)} {(- x) ⊔ (- (- ((- y) ⊔ (- z))))} (≃-trans {(- (- ((- x) ⊔ (- y))) ⊔ (- z))} {((- x) ⊔ (- y)) ⊔ (- z)} {(- x) ⊔ (- (- ((- y) ⊔ (- z))))} (⊔-congʳ {(- z)} {(- (- ((- x) ⊔ (- y))))} {(- x) ⊔ (- y)} (neg-involutive ((- x) ⊔ (- y)))) (≃-trans {((- x) ⊔ (- y)) ⊔ (- z)} {(- x) ⊔ ((- y) ⊔ (- z))} {(- x) ⊔ (- (- ((- y) ⊔ (- z))))} (⊔-assoc (- x) (- y) (- z)) (⊔-congˡ { - x} { - y ⊔ - z} { - (- (- y ⊔ - z))} (≃-symm { - (- (- y ⊔ - z))} { - y ⊔ - z} (neg-involutive ((- y) ⊔ (- z))))))) ∣_∣ : ℝ -> ℝ ∣ x ∣ = x ⊔ (- x) ∣-∣-cong : Congruent₁ _≃_ ∣_∣ ∣-∣-cong {x} {y} x≃y = ⊔-cong {x} {y} {(- x)} {(- y)} x≃y (-‿cong {x} {y} x≃y) ∣p∣≃p⊔-p : ∀ p -> ℚ.∣ p ∣ ℚ.≃ p ℚ.⊔ (ℚ.- p) ∣p∣≃p⊔-p p = [ left , right ]′ (ℚP.∣p∣≡p∨∣p∣≡-p p) where open ℚP.≤-Reasoning left : ℚ.∣ p ∣ ≡ p -> ℚ.∣ p ∣ ℚ.≃ p ℚ.⊔ (ℚ.- p) left hyp = begin-equality ℚ.∣ p ∣ ≈⟨ ℚP.≃-reflexive hyp ⟩ p ≈⟨ ℚP.≃-sym (ℚP.p≥q⇒p⊔q≃p (ℚP.≤-trans (p≤∣p∣ (ℚ.- p)) (ℚP.≤-reflexive (ℚP.≃-trans (ℚP.∣-p∣≃∣p∣ p) (ℚP.≃-reflexive hyp))))) ⟩ p ℚ.⊔ (ℚ.- p) ∎ right : ℚ.∣ p ∣ ≡ ℚ.- p -> ℚ.∣ p ∣ ℚ.≃ p ℚ.⊔ (ℚ.- p) right hyp = begin-equality ℚ.∣ p ∣ ≈⟨ ℚP.≃-reflexive hyp ⟩ ℚ.- p ≈⟨ ℚP.≃-sym (ℚP.p≤q⇒p⊔q≃q (ℚP.≤-trans (p≤∣p∣ p) (ℚP.≤-reflexive (ℚP.≃-reflexive hyp)))) ⟩ p ℚ.⊔ (ℚ.- p) ∎ -- Alternate definition of absolute value defined pointwise in the real number's regular sequence ∣_∣₂ : ℝ -> ℝ seq ∣ x ∣₂ n = ℚ.∣ seq x n ∣ reg ∣ x ∣₂ m n {m≢0} {n≢0} = begin ℚ.∣ ℚ.∣ seq x m ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≤⟨ ∣∣p∣-∣q∣∣≤∣p-q∣ (seq x m) (seq x n) ⟩ ℚ.∣ seq x m ℚ.- seq x n ∣ ≤⟨ reg x m n {m≢0} {n≢0} ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ where open ℚP.≤-Reasoning ∣x∣≃∣x∣₂ : ∀ x -> ∣ x ∣ ≃ ∣ x ∣₂ ∣x∣≃∣x∣₂ x (suc k₁) = begin ℚ.∣ (seq x n ℚ.⊔ (ℚ.- seq x n)) ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- ℚ.∣ seq x n ∣) (ℚP.≃-sym (∣p∣≃p⊔-p (seq x n)))) ⟩ ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ℚ.∣ seq x n ∣) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ -- K(x*y) --K∣x∣ K∣y∣ -- ∣x₁∣ + 2 ∣x*y∣≃∣x∣*∣y∣ : ∀ x y -> ∣ x * y ∣ ≃ ∣ x ∣ * ∣ y ∣ ∣x*y∣≃∣x∣*∣y∣ x y = ≃-trans {∣ x * y ∣} {∣ x * y ∣₂} {∣ x ∣ * ∣ y ∣} (∣x∣≃∣x∣₂ (x * y)) (≃-trans {∣ x * y ∣₂} {∣ x ∣₂ * ∣ y ∣₂} {∣ x ∣ * ∣ y ∣} (lemma1B ∣ x * y ∣₂ (∣ x ∣₂ * ∣ y ∣₂) lemA) (*-cong {∣ x ∣₂} {∣ x ∣} {∣ y ∣₂} {∣ y ∣} (≃-symm {∣ x ∣} {∣ x ∣₂} (∣x∣≃∣x∣₂ x)) (≃-symm {∣ y ∣} {∣ y ∣₂} (∣x∣≃∣x∣₂ y)))) where lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq (∣ x * y ∣₂) n ℚ.- seq (∣ x ∣₂ * ∣ y ∣₂) n ∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where j : ℕ j = suc k₁ r : ℕ r = K x ℕ.⊔ K y t : ℕ t = K ∣ x ∣₂ ℕ.⊔ K ∣ y ∣₂ N₁ : ℕ N₁ = proj₁ (regular⇒cauchy x (K y ℕ.* (2 ℕ.* j))) N₂ : ℕ N₂ = proj₁ (regular⇒cauchy y (K x ℕ.* (2 ℕ.* j))) N : ℕ N = N₁ ℕ.⊔ N₂ lemB : ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq (∣ x * y ∣₂) n ℚ.- seq (∣ x ∣₂ * ∣ y ∣₂) n ∣ ℚ.≤ (+ 1 / j) lemB (suc k₁) N<n = begin ℚ.∣ ℚ.∣ x₂ᵣₙ ℚ.* y₂ᵣₙ ∣ ℚ.- ℚ.∣ x₂ₜₙ ∣ ℚ.* ℚ.∣ y₂ₜₙ ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congʳ ℚ.∣ x₂ᵣₙ ℚ.* y₂ᵣₙ ∣ (ℚP.-‿cong (ℚP.≃-sym (ℚP.∣p*q∣≃∣p∣*∣q∣ x₂ₜₙ y₂ₜₙ)))) ⟩ ℚ.∣ ℚ.∣ x₂ᵣₙ ℚ.* y₂ᵣₙ ∣ ℚ.- ℚ.∣ x₂ₜₙ ℚ.* y₂ₜₙ ∣ ∣ ≤⟨ ∣∣p∣-∣q∣∣≤∣p-q∣ (x₂ᵣₙ ℚ.* y₂ᵣₙ) (x₂ₜₙ ℚ.* y₂ₜₙ) ⟩ ℚ.∣ x₂ᵣₙ ℚ.* y₂ᵣₙ ℚ.- x₂ₜₙ ℚ.* y₂ₜₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 4 (λ x y z w -> x ℚ:* y ℚ:- z ℚ:* w ℚ:= (y ℚ:* (x ℚ:- z) ℚ:+ z ℚ:* (y ℚ:- w))) ℚP.≃-refl x₂ᵣₙ y₂ᵣₙ x₂ₜₙ y₂ₜₙ) ⟩ ℚ.∣ y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₂ₜₙ) ℚ.+ x₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- y₂ₜₙ) ∣ ≤⟨ ℚP.∣p+q∣≤∣p∣+∣q∣ (y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₂ₜₙ)) (x₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- y₂ₜₙ)) ⟩ ℚ.∣ y₂ᵣₙ ℚ.* (x₂ᵣₙ ℚ.- x₂ₜₙ) ∣ ℚ.+ ℚ.∣ x₂ₜₙ ℚ.* (y₂ᵣₙ ℚ.- y₂ₜₙ) ∣ ≈⟨ ℚP.+-cong (ℚP.∣p*q∣≃∣p∣*∣q∣ y₂ᵣₙ (x₂ᵣₙ ℚ.- x₂ₜₙ)) (ℚP.∣p*q∣≃∣p∣*∣q∣ x₂ₜₙ (y₂ᵣₙ ℚ.- y₂ₜₙ)) ⟩ ℚ.∣ y₂ᵣₙ ∣ ℚ.* ℚ.∣ x₂ᵣₙ ℚ.- x₂ₜₙ ∣ ℚ.+ ℚ.∣ x₂ₜₙ ∣ ℚ.* ℚ.∣ y₂ᵣₙ ℚ.- y₂ₜₙ ∣ ≤⟨ ℚP.+-mono-≤ (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ x₂ᵣₙ ℚ.- x₂ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-greater y (2 ℕ.* r ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K y / 1} _ (proj₂ (regular⇒cauchy x (K y ℕ.* (2 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* n) (N₁≤ (N≤2kn r)) (N₁≤ (N≤2kn t))))) (ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ y₂ᵣₙ ℚ.- y₂ₜₙ ∣} _ (ℚP.<⇒≤ (canonical-greater x (2 ℕ.* t ℕ.* n)))) (ℚP.*-monoʳ-≤-nonNeg {+ K x / 1} _ (proj₂ (regular⇒cauchy y (K x ℕ.* (2 ℕ.* j))) (2 ℕ.* r ℕ.* n) (2 ℕ.* t ℕ.* n) (N₂≤ (N≤2kn r)) (N₂≤ (N≤2kn t))))) ⟩ (+ K y / 1) ℚ.* (+ 1 / (K y ℕ.* (2 ℕ.* j))) ℚ.+ (+ K x / 1) ℚ.* (+ 1 / (K x ℕ.* (2 ℕ.* j))) ≈⟨ ℚ.*≡* (solve 3 (λ Kx Ky j -> -- Function for solver ((Ky :* con (+ 1)) :* (con (+ 1) :* (Kx :* (con (+ 2) :* j))) :+ ((Kx :* con (+ 1)) :* (con (+ 1) :* (Ky :* (con (+ 2) :* j))))) :* j := con (+ 1) :* ((con (+ 1) :* (Ky :* (con (+ 2) :* j))) :* (con (+ 1) :* (Kx :* (con (+ 2) :* j))))) _≡_.refl (+ K x) (+ K y) (+ j)) ⟩ + 1 / j ∎ where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) n : ℕ n = suc k₁ x₂ᵣₙ : ℚᵘ x₂ᵣₙ = seq x (2 ℕ.* r ℕ.* n) x₂ₜₙ : ℚᵘ x₂ₜₙ = seq x (2 ℕ.* t ℕ.* n) y₂ᵣₙ : ℚᵘ y₂ᵣₙ = seq y (2 ℕ.* r ℕ.* n) y₂ₜₙ : ℚᵘ y₂ₜₙ = seq y (2 ℕ.* t ℕ.* n) N≤2kn : ∀ (k : ℕ) -> {k ≢0} -> N ℕ.≤ 2 ℕ.* k ℕ.* n N≤2kn (suc k₂) = ℕP.≤-trans (ℕP.<⇒≤ N<n) (ℕP.m≤n*m n {2 ℕ.* (suc k₂)} ℕP.0<1+n) N₁≤ : {m : ℕ} -> N ℕ.≤ m -> N₁ ℕ.≤ m N₁≤ N≤m = ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) N≤m N₂≤ : {m : ℕ} -> N ℕ.≤ m -> N₂ ℕ.≤ m N₂≤ N≤m = ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) N≤m {- A bunch of algebraic bundles from the standard library. I've followed the conventions used in the standard library's properties file for unnormalised rationals. Sometimes we use copatterns so we can use implicit arguments (e.g. in ≃-isEquivalence's definition). It's inconvenient, but some properties of ℝ might not work without implicit arguments. For instance, if we use ≃-trans without its implicit arguments in ≃-isEquivalence below (so just ≃-trans instead of ≃-trans {x} {y} {z}), Agda will give a constraint error. -} ≃-isEquivalence : IsEquivalence _≃_ IsEquivalence.refl ≃-isEquivalence {x} = ≃-refl {x} IsEquivalence.sym ≃-isEquivalence {x} {y} = ≃-symm {x} {y} IsEquivalence.trans ≃-isEquivalence {x} {y} {z} = ≃-trans {x} {y} {z} ≃-setoid : Setoid 0ℓ 0ℓ ≃-setoid = record { isEquivalence = ≃-isEquivalence } +-rawMagma : RawMagma 0ℓ 0ℓ +-rawMagma = record { _≈_ = _≃_ ; _∙_ = _+_ } +-rawMonoid : RawMonoid 0ℓ 0ℓ +-rawMonoid = record { _≈_ = _≃_ ; _∙_ = _+_ ; ε = 0ℝ } +-0-rawGroup : RawGroup 0ℓ 0ℓ +-0-rawGroup = record { Carrier = ℝ ; _≈_ = _≃_ ; _∙_ = _+_ ; ε = 0ℝ ; _⁻¹ = -_ } +-*-rawRing : RawRing 0ℓ 0ℓ +-*-rawRing = record { Carrier = ℝ ; _≈_ = _≃_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0ℝ ; 1# = 1ℝ } +-isMagma : IsMagma _≃_ _+_ IsMagma.isEquivalence +-isMagma = ≃-isEquivalence IsMagma.∙-cong +-isMagma {x} {y} {z} {w} = +-cong {x} {y} {z} {w} +-isSemigroup : IsSemigroup _≃_ _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-0-isMonoid : IsMonoid _≃_ _+_ 0ℝ +-0-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } +-0-isCommutativeMonoid : IsCommutativeMonoid _≃_ _+_ 0ℝ +-0-isCommutativeMonoid = record { isMonoid = +-0-isMonoid ; comm = +-comm } +-0-isGroup : IsGroup _≃_ _+_ 0ℝ (-_) IsGroup.isMonoid +-0-isGroup = +-0-isMonoid IsGroup.inverse +-0-isGroup = +-inverse IsGroup.⁻¹-cong +-0-isGroup {x} {y} = -‿cong {x} {y} +-0-isAbelianGroup : IsAbelianGroup _≃_ _+_ 0ℝ (-_) +-0-isAbelianGroup = record { isGroup = +-0-isGroup ; comm = +-comm } +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-group : Group 0ℓ 0ℓ +-0-group = record { isGroup = +-0-isGroup } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-0-isAbelianGroup } *-rawMagma : RawMagma 0ℓ 0ℓ *-rawMagma = record { _≈_ = _≃_ ; _∙_ = _*_ } *-rawMonoid : RawMonoid 0ℓ 0ℓ *-rawMonoid = record { _≈_ = _≃_ ; _∙_ = _*_ ; ε = 1ℝ } *-isMagma : IsMagma _≃_ _*_ IsMagma.isEquivalence *-isMagma = ≃-isEquivalence IsMagma.∙-cong *-isMagma {x} {y} {z} {w} = *-cong {x} {y} {z} {w} *-isSemigroup : IsSemigroup _≃_ _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-1-isMonoid : IsMonoid _≃_ _*_ 1ℝ *-1-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-1-isCommutativeMonoid : IsCommutativeMonoid _≃_ _*_ 1ℝ *-1-isCommutativeMonoid = record { isMonoid = *-1-isMonoid ; comm = *-comm } +-*-isRing : IsRing _≃_ _+_ _*_ -_ 0ℝ 1ℝ +-*-isRing = record { +-isAbelianGroup = +-0-isAbelianGroup ; *-isMonoid = *-1-isMonoid ; distrib = *-distrib-+ ; zero = *-zero } +-*-isCommutativeRing : IsCommutativeRing _≃_ _+_ _*_ -_ 0ℝ 1ℝ +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm } *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-ring : Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } +-*-commutativeRing : CommutativeRing 0ℓ 0ℓ +-*-commutativeRing = record { isCommutativeRing = +-*-isCommutativeRing } {- Predicates about sign of real number and some properties -} Positive : Pred ℝ 0ℓ Positive x = ∃ λ (n : ℕ) -> seq x (suc n) ℚ.> + 1 / (suc n) -- ∀n∈ℕ( xₙ ≥ -n⁻¹) NonNegative : Pred ℝ 0ℓ NonNegative x = (n : ℕ) -> {n≢0 : n ≢0} -> seq x n ℚ.≥ ℚ.- ((+ 1 / n) {n≢0}) p<q⇒0<q-p : ∀ {p q} -> p ℚ.< q -> 0ℚᵘ ℚ.< q ℚ.- p p<q⇒0<q-p {p} {q} p<q = begin-strict 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ p) ⟩ p ℚ.- p <⟨ ℚP.+-monoˡ-< (ℚ.- p) p<q ⟩ q ℚ.- p ∎ where open ℚP.≤-Reasoning -- r < Np -- r < (Np)/1 Original version -- r < (N/1) * p -- r/N < p archimedean-ℚ₂ : ∀ (p r : ℚᵘ) -> ℚ.Positive p -> ∃ λ (N : ℕ) -> r ℚ.< (+ N / 1) ℚ.* p archimedean-ℚ₂ p r p>0 = N , (begin-strict r <⟨ proj₂ (archimedean-ℚ p r p>0) ⟩ ((+ N) ℤ.* (↥ p)) / (↧ₙ p) ≈⟨ ℚ.*≡* (cong (λ x -> (+ N) ℤ.* (↥ p) ℤ.* x) (ℤP.*-identityˡ (↧ p))) ⟩ (+ N / 1) ℚ.* p ∎) where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver N : ℕ N = proj₁ (archimedean-ℚ p r p>0) lemma2-8-1a : ∀ x -> Positive x -> ∃ λ (N : ℕ) -> ∀ (m : ℕ) -> m ℕ.≥ suc N -> seq x m ℚ.≥ + 1 / (suc N) lemma2-8-1a x (n-1 , xₙ>1/n) = N-1 , lem where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) n : ℕ n = suc n-1 pos : ℚ.Positive (seq x n ℚ.- (+ 1 / n)) pos = 0<⇒pos (seq x n ℚ.- (+ 1 / n)) (p<q⇒0<q-p xₙ>1/n) N-1 : ℕ N-1 = proj₁ (archimedean-ℚ₂ (seq x n ℚ.- (+ 1 / n)) (+ 2 / 1) pos) N : ℕ N = suc N-1 part1 : + 2 / 1 ℚ.≤ (+ N / 1) ℚ.* (seq x n ℚ.- (+ 1 / n)) part1 = begin + 2 / 1 <⟨ proj₂ (archimedean-ℚ₂ (seq x n ℚ.- (+ 1 / n)) (+ 2 / 1) pos) ⟩ (+ N-1) / 1 ℚ.* (seq x n ℚ.- (+ 1 / n)) ≤⟨ ℚP.*-monoˡ-≤-nonNeg {seq x n ℚ.- + 1 / n} (ℚP.positive⇒nonNegative {seq x n ℚ.- + 1 / n} pos) {+ N-1 / 1} {+ N / 1} (*≤* (ℤP.*-monoʳ-≤-nonNeg 1 (+≤+ (ℕP.n≤1+n N-1)))) ⟩ (+ N / 1) ℚ.* (seq x n ℚ.- (+ 1 / n)) ∎ part2 : + 2 / N ℚ.≤ seq x n ℚ.- (+ 1 / n) part2 = begin + 2 / N ≈⟨ ℚ.*≡* (sym (ℤP.*-assoc (+ 2) (+ 1) (+ N))) ⟩ (+ 2 / 1) ℚ.* (+ 1 / N) ≤⟨ ℚP.*-monoˡ-≤-nonNeg _ part1 ⟩ (+ N / 1) ℚ.* (seq x n ℚ.- (+ 1 / n)) ℚ.* (+ 1 / N) ≈⟨ ℚ.*≡* (solve 3 (λ N p q -> ((N :* p) :* con (+ 1)) :* q := (p :* ((con (+ 1) :* q) :* N))) _≡_.refl (+ N) (↥ (seq x n ℚ.- (+ 1 / n))) (↧ (seq x n ℚ.- (+ 1 / n)))) ⟩ seq x n ℚ.- (+ 1 / n) ∎ part3 : + 1 / N ℚ.≤ seq x n ℚ.- (+ 1 / n) ℚ.- (+ 1 / N) part3 = begin + 1 / N ≈⟨ ℚ.*≡* (solve 1 (λ N -> con (+ 1) :* (N :* N) := (((con (+ 2) :* N) :+ (:- con (+ 1) :* N)) :* N)) _≡_.refl (+ N)) ⟩ (+ 2 / N) ℚ.- (+ 1 / N) ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- (+ 1 / N)) part2 ⟩ seq x n ℚ.- (+ 1 / n) ℚ.- (+ 1 / N) ∎ lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq x m ℚ.≥ + 1 / N lem (suc k₂) N≤m = begin + 1 / N ≤⟨ part3 ⟩ seq x n ℚ.- (+ 1 / n) ℚ.- (+ 1 / N) ≤⟨ ℚP.+-monoʳ-≤ (seq x n ℚ.- (+ 1 / n)) {ℚ.- (+ 1 / N)} {ℚ.- (+ 1 / m)} (ℚP.neg-mono-≤ (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ N≤m)))) ⟩ seq x n ℚ.- (+ 1 / n) ℚ.- (+ 1 / m) ≤⟨ ℚP.≤-respˡ-≃ (ℚsolve 3 (λ a b c -> a ℚ:- (b ℚ:+ c) ℚ:= a ℚ:- b ℚ:- c) ℚP.≃-refl (seq x n) (+ 1 / n) (+ 1 / m)) (ℚP.+-monoʳ-≤ (seq x n) (ℚP.neg-mono-≤ (reg x n m))) ⟩ seq x n ℚ.- ℚ.∣ seq x n ℚ.- seq x m ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x n) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x n ℚ.- seq x m))) ⟩ seq x n ℚ.- (seq x n ℚ.- seq x m) ≈⟨ ℚsolve 2 (λ a b -> a ℚ:- (a ℚ:- b) ℚ:= b) ℚP.≃-refl (seq x n) (seq x m) ⟩ seq x m ∎ where m : ℕ m = suc k₂ lemma2-8-1b : ∀ (x : ℝ) -> (∃ λ (N-1 : ℕ) -> ∀ (m : ℕ) -> m ℕ.≥ suc N-1 -> seq x m ℚ.≥ + 1 / (suc N-1)) -> Positive x lemma2-8-1b x (N-1 , proof) = N , (begin-strict + 1 / (suc N) <⟨ ℚ.*<* (ℤP.*-monoˡ-<-pos 0 (+<+ (ℕP.n<1+n N))) ⟩ + 1 / N ≤⟨ proof (suc N) (ℕ.s≤s (ℕP.n≤1+n N-1)) ⟩ seq x (suc N) ∎) where open ℚP.≤-Reasoning N : ℕ N = suc N-1 -- xₙ ≥ -n⁻¹ -- Nonnegative x ⇒ ∀ n ∃ Nₙ ∀ m≥Nₙ (xₘ ≥ -n⁻¹) lemma2-8-2a : ∀ (x : ℝ) -> NonNegative x -> ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq x m ℚ.≥ ℚ.- (+ 1 / n) {n≢0}) lemma2-8-2a x x≥0 (suc k₁) = n , _ , λ {(suc m) m≥n → ℚP.≤-trans (ℚP.neg-mono-≤ (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ m≥n)))) (x≥0 (suc m))} where n : ℕ n = suc k₁ archimedean-ℚ₃ : ∀ (p : ℚᵘ) -> ∀ (r : ℤ) -> ℚ.Positive p -> ∃ λ (N-1 : ℕ) -> r / (suc N-1) ℚ.< p archimedean-ℚ₃ p r 0<p = ℕ.pred N , (begin-strict r / N ≈⟨ ℚP.≃-reflexive (ℚP./-cong (sym (ℤP.*-identityʳ r)) (sym (ℕP.*-identityˡ N)) _ _) ⟩ (r / 1) ℚ.* (+ 1 / N) <⟨ ℚP.*-monoˡ-<-pos {+ 1 / N} _ {r / 1} {(+ N / 1) ℚ.* p} (ℚP.<-trans (proj₂ (archimedean-ℚ₂ p (r / 1) 0<p)) (ℚP.*-monoˡ-<-pos {p} 0<p {+ (ℕ.pred N) / 1} {+ N / 1} (ℚ.*<* (ℤP.*-monoʳ-<-pos 0 (+<+ (ℕP.n<1+n (ℕ.pred N))))))) ⟩ (+ N / 1) ℚ.* p ℚ.* (+ 1 / N) ≈⟨ ℚ.*≡* (solve 3 (λ N n d -> ((N :* n) :* con (+ 1)) :* d := (n :* (con (+ 1) :* d :* N))) _≡_.refl (+ N) (↥ p) (↧ p)) ⟩ p ∎) where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver N : ℕ N = suc (proj₁ (archimedean-ℚ₂ p (r / 1) 0<p)) -- y - ε ≤ x -- y ≤ x ℚ-≤-lemma : ∀ (x y : ℚᵘ) -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> y ℚ.- (+ 1 / j) {j≢0} ℚ.≤ x) -> y ℚ.≤ x ℚ-≤-lemma x y hyp with ℚP.<-cmp y x ... | tri< a ¬b ¬c = ℚP.<⇒≤ a ... | tri≈ ¬a b ¬c = ℚP.≤-reflexive b ... | tri> ¬a ¬b c = ⊥-elim (ℚP.<⇒≱ lem (hyp N)) where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver N : ℕ N = suc (proj₁ (archimedean-ℚ₃ (y ℚ.- x) (+ 1) (0<⇒pos (y ℚ.- x) (p<q⇒0<q-p c)))) lem : x ℚ.< y ℚ.- (+ 1 / N) lem = begin-strict x ≈⟨ solve 2 (λ a b -> a := a :+ b :- b) ℚP.≃-refl x (+ 1 / N) ⟩ x ℚ.+ (+ 1 / N) ℚ.- (+ 1 / N) <⟨ ℚP.+-monoˡ-< (ℚ.- (+ 1 / N)) (ℚP.+-monoʳ-< x (proj₂ (archimedean-ℚ₃ (y ℚ.- x) (+ 1) (0<⇒pos (y ℚ.- x) (p<q⇒0<q-p c))))) ⟩ x ℚ.+ (y ℚ.- x) ℚ.- (+ 1 / N) ≈⟨ solve 3 (λ a b c -> a :+ (b :- a) :- c := b :- c) ℚP.≃-refl x y (+ 1 / N) ⟩ y ℚ.- (+ 1 / N) ∎ {- Proof of ̄if direction of Lemma 2.8.2: Let j∈ℤ⁺, let n = 2j, and let m = max{Nₙ, 2j}. Let k∈ℕ. We must show that xₖ ≥ -k⁻¹. We have: xₖ = xₘ - (xₘ - xₖ) ≥ xₘ - ∣xₘ - xₖ∣ ≥ -n⁻¹ - ∣xₘ - xₖ∣ by assumption since m ≥ Nₙ ≥ -n⁻¹ - (m⁻¹ + k⁻¹) by regularity of x = -k⁻¹ - (m⁻¹ + n⁻¹) ≥ -k⁻¹ - ((2j)⁻¹ + (2j)⁻¹) since m ≥ 2j and n = 2j = -k⁻¹ - 1/j. Thus, for all j∈ℤ⁺, we have xₖ ≥ -k⁻¹ - 1/j. Hence xₖ ≥ -k⁻¹, and we are done. □ -} lemma2-8-2b : ∀ (x : ℝ) -> (∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq x m ℚ.≥ ℚ.- (+ 1 / n) {n≢0})) -> NonNegative x lemma2-8-2b x hyp K {K≢0} = lemB K {K≢0} (lemA K {K≢0}) where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; :-_ to ℚ:-_ ; _:=_ to _ℚ:=_ ) lemA : ∀ (k : ℕ) -> {k≢0 : k ≢0} -> ∀ (j : ℕ) -> {j≢0 : j ≢0} -> seq x k ℚ.≥ ℚ.- (+ 1 / k) {k≢0} ℚ.- (+ 1 / j) {j≢0} lemA (suc k₁) (suc k₂) = begin ℚ.- (+ 1 / k) ℚ.- (+ 1 / j) ≈⟨ ℚP.+-congʳ (ℚ.- (+ 1 / k)) {ℚ.- (+ 1 / j)} {ℚ.- ((+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)))} (ℚP.-‿cong (ℚ.*≡* (solve 1 (λ j -> con (+ 1) :* (con (+ 2) :* j :* (con (+ 2) :* j)) := ((con (+ 1) :* (con (+ 2) :* j) :+ con (+ 1) :* (con (+ 2) :* j)) :* j)) _≡_.refl (+ j)))) ⟩ ℚ.- (+ 1 / k) ℚ.- ((+ 1 / n) ℚ.+ (+ 1 / n)) ≤⟨ ℚP.+-monoʳ-≤ (ℚ.- (+ 1 / k)) {ℚ.- ((+ 1 / n) ℚ.+ (+ 1 / n))} {ℚ.- ((+ 1 / m) ℚ.+ (+ 1 / n))} (ℚP.neg-mono-≤ {(+ 1 / m) ℚ.+ (+ 1 / n)} {(+ 1 / n) ℚ.+ (+ 1 / n)} (ℚP.+-monoˡ-≤ (+ 1 / n) {+ 1 / m} {+ 1 / n} (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤n⊔m (suc Nₙ) n)))))) ⟩ ℚ.- (+ 1 / k) ℚ.- ((+ 1 / m) ℚ.+ (+ 1 / n)) ≈⟨ ℚsolve 3 (λ x y z -> ℚ:- x ℚ:- (y ℚ:+ z) ℚ:= ℚ:- z ℚ:- (y ℚ:+ x)) ℚP.≃-refl (+ 1 / k) (+ 1 / m) (+ 1 / n) ⟩ ℚ.- (+ 1 / n) ℚ.- ((+ 1 / m) ℚ.+ (+ 1 / k)) ≤⟨ ℚP.+-mono-≤ (proj₂ (proj₂ (hyp n)) m (ℕP.≤-trans (ℕP.n≤1+n Nₙ) (ℕP.m≤m⊔n (suc Nₙ) n))) (ℚP.neg-mono-≤ (reg x m k)) ⟩ seq x m ℚ.- ℚ.∣ seq x m ℚ.- seq x k ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x m) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x m ℚ.- seq x k))) ⟩ seq x m ℚ.- (seq x m ℚ.- seq x k) ≈⟨ ℚsolve 2 (λ x y -> x ℚ:- (x ℚ:- y) ℚ:= y) ℚP.≃-refl (seq x m) (seq x k) ⟩ seq x k ∎ where k : ℕ k = suc k₁ j : ℕ j = suc k₂ n : ℕ n = 2 ℕ.* j Nₙ : ℕ Nₙ = proj₁ (hyp n) m : ℕ m = (suc Nₙ) ℕ.⊔ 2 ℕ.* j lemB : ∀ (k : ℕ) -> {k≢0 : k ≢0} -> (∀ (j : ℕ) -> {j≢0 : j ≢0} -> seq x k ℚ.≥ ℚ.- (+ 1 / k) {k≢0} ℚ.- (+ 1 / j) {j≢0}) -> seq x k ℚ.≥ ℚ.- (+ 1 / k) {k≢0} lemB (suc k₁) = ℚ-≤-lemma (seq x (suc k₁)) (ℚ.- (+ 1 / (suc k₁))) {- Proposition: If x is positive and x ≃ y, then y is positive. Proof Since x is positive, there is N₁∈ℕ such that xₘ ≥ N₁⁻¹ for all m ≥ N. Since x ≃ y, there is N₂∈ℕ such that, for all m > N₂, we have ∣ xₘ - yₘ ∣ ≤ (2N₁)⁻¹. Let N = max{N₁, N₂} and let m ≥ 2N. Then N₁ ≤ N, so N⁻¹ ≤ N₁⁻¹. We have: yₘ ≥ xₘ - ∣ xₘ - yₘ ∣ ≥ N₁⁻¹ - (2N₁)⁻¹ = (2N₁)⁻¹ ≥ (2N)⁻¹. Thus yₘ ≥ (2N)⁻¹ for all m ≥ 2N. Hence y is positive. □ -} pos-cong : ∀ x y -> x ≃ y -> Positive x -> Positive y pos-cong x y x≃y posx = lemma2-8-1b y (ℕ.pred (2 ℕ.* N) , lemA) where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:-_ to _ℚ:-_ ; _:=_ to _ℚ:=_ ) N₁ : ℕ N₁ = suc (proj₁ (lemma2-8-1a x posx)) N₂ : ℕ N₂ = proj₁ (lemma1A x y x≃y (2 ℕ.* N₁)) N : ℕ N = N₁ ℕ.⊔ N₂ lemA : ∀ (m : ℕ) -> m ℕ.≥ 2 ℕ.* N -> seq y m ℚ.≥ + 1 / (2 ℕ.* N) lemA m m≥2N = begin + 1 / (2 ℕ.* N) ≤⟨ *≤* (ℤP.*-monoˡ-≤-nonNeg 1 (ℤP.*-monoˡ-≤-nonNeg 2 (+≤+ (ℕP.m≤m⊔n N₁ N₂)))) ⟩ + 1 / (2 ℕ.* N₁) ≈⟨ ℚ.*≡* (solve 1 (λ N₁ -> con (+ 1) :* (N₁ :* (con (+ 2) :* N₁)) := (con (+ 1) :* (con (+ 2) :* N₁) :+ (:- con (+ 1)) :* N₁) :* (con (+ 2) :* N₁)) _≡_.refl (+ N₁)) ⟩ (+ 1 / N₁) ℚ.- (+ 1 / (2 ℕ.* N₁)) ≤⟨ ℚP.+-mono-≤ (proj₂ (lemma2-8-1a x posx) m (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.<⇒≤ N<m))) (ℚP.neg-mono-≤ (proj₂ (lemma1A x y x≃y (2 ℕ.* N₁)) m (ℕP.<-transʳ (ℕP.m≤n⊔m N₁ N₂) N<m))) ⟩ seq x m ℚ.- ℚ.∣ seq x m ℚ.- seq y m ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x m) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x m ℚ.- seq y m))) ⟩ seq x m ℚ.- (seq x m ℚ.- seq y m) ≈⟨ ℚsolve 2 (λ xₘ yₘ -> xₘ ℚ:- (xₘ ℚ:- yₘ) ℚ:= yₘ) ℚP.≃-refl (seq x m) (seq y m) ⟩ seq y m ∎ where N<m : N ℕ.< m N<m = ℕP.<-transˡ (ℕP.<-transˡ (ℕP.m<n+m N {N} ℕP.0<1+n) (ℤP.drop‿+≤+ (ℤP.≤-reflexive (solve 1 (λ N -> N :+ N := con (+ 2) :* N) _≡_.refl (+ N))))) m≥2N {- Let x be a positive real number. By Lemma 2.8.1, there is N∈ℕ such that xₘ ≥ N⁻¹ (m ≥ N). Let n∈ℕ and let Nₙ = N. Then: -n⁻¹ < 0 < N⁻¹ ≤ xₘ for all m ≥ Nₙ. Hence x is nonnegative by Lemma 2.8.2. □ -} pos⇒nonNeg : ∀ x -> Positive x -> NonNegative x pos⇒nonNeg x posx = lemma2-8-2b x lemA where open ℚP.≤-Reasoning N : ℕ N = suc (proj₁ (lemma2-8-1a x posx)) lemA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × ∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq x m ℚ.≥ ℚ.- (+ 1 / n) {n≢0} lemA (suc k₁) = N , _ , lemB where n : ℕ n = suc k₁ test : ℚ.Negative (ℚ.- (+ 1 / n)) test = _ lemB : ∀ (m : ℕ) -> m ℕ.≥ N -> seq x m ℚ.≥ ℚ.- (+ 1 / n) lemB m m≥N = begin ℚ.- (+ 1 / n) <⟨ ℚP.negative⁻¹ _ ⟩ 0ℚᵘ <⟨ ℚP.positive⁻¹ _ ⟩ + 1 / N ≤⟨ proj₂ (lemma2-8-1a x posx) m m≥N ⟩ seq x m ∎ {- Proposition: If x and y are positive, then so is x + y. Proof: By Lemma 2.8.1, there is N₁∈ℕ such that m ≥ N₁ implies xₘ ≥ N₂⁻¹. Similarly, there is N₂∈ℕ such that m ≥ N₂ implies yₘ ≥ N₂⁻¹. Define N = max{N₁, N₂}, and let m ≥ N. We have: (x + y)ₘ = x₂ₘ + y₂ₘ ≥ N₁⁻¹ + N₂⁻¹ ≥ N⁻¹ + N⁻¹ ≥ N⁻¹. Thus (x + y)ₘ ≥ N⁻¹ for all m ≥ N. By Lemma 2.8.1, x + y is positive. □ -} posx,y⇒posx+y : ∀ x y -> Positive x -> Positive y -> Positive (x + y) posx,y⇒posx+y x y posx posy = lemma2-8-1b (x + y) (ℕ.pred N , lem) where open ℚP.≤-Reasoning N₁ : ℕ N₁ = suc (proj₁ (lemma2-8-1a x posx)) N₂ : ℕ N₂ = suc (proj₁ (lemma2-8-1a y posy)) N : ℕ N = N₁ ℕ.⊔ N₂ lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x + y) m ℚ.≥ + 1 / N lem m m≥N = begin + 1 / N ≤⟨ ℚP.p≤p+q {+ 1 / N} {+ 1 / N} _ ⟩ (+ 1 / N) ℚ.+ (+ 1 / N) ≤⟨ ℚP.+-mono-≤ {+ 1 / N} {+ 1 / N₁} {+ 1 / N} {+ 1 / N₂} (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤m⊔n N₁ N₂)))) (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤n⊔m N₁ N₂)))) ⟩ (+ 1 / N₁) ℚ.+ (+ 1 / N₂) ≤⟨ ℚP.+-mono-≤ {+ 1 / N₁} {seq x (2 ℕ.* m)} {+ 1 / N₂} {seq y (2 ℕ.* m)} (proj₂ (lemma2-8-1a x posx) (2 ℕ.* m) (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans m≥N (ℕP.m≤n*m m {2} ℕP.0<1+n)))) (proj₂ (lemma2-8-1a y posy) (2 ℕ.* m) (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans m≥N (ℕP.m≤n*m m {2} ℕP.0<1+n)))) ⟩ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ∎ nonNegx,y⇒nonNegx+y : ∀ x y -> NonNegative x -> NonNegative y -> NonNegative (x + y) nonNegx,y⇒nonNegx+y x y nonx nony = lemma2-8-2b (x + y) lemA where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver lemA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × ∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq (x + y) m ℚ.≥ ℚ.- (+ 1 / n) {n≢0} lemA (suc k₁) = N , _ , lemB where n : ℕ n = suc k₁ Nx : ℕ Nx = proj₁ (lemma2-8-2a x nonx (2 ℕ.* n)) Ny : ℕ Ny = proj₁ (lemma2-8-2a y nony (2 ℕ.* n)) N : ℕ N = Nx ℕ.⊔ Ny lemB : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x + y) m ℚ.≥ ℚ.- (+ 1 / n) lemB m m≥N = begin ℚ.- (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (:- con (+ 1)) :* (con (+ 2) :* n :* (con (+ 2) :* n)) := (((:- con (+ 1)) :* (con (+ 2) :* n) :+ ((:- con (+ 1)) :* (con (+ 2) :* n))) :* n)) _≡_.refl (+ n)) ⟩ ℚ.- (+ 1 / (2 ℕ.* n)) ℚ.- (+ 1 / (2 ℕ.* n)) ≤⟨ ℚP.+-mono-≤ (proj₂ (proj₂ (lemma2-8-2a x nonx (2 ℕ.* n))) (2 ℕ.* m) (ℕP.≤-trans (ℕP.m≤m⊔n Nx Ny) (ℕP.≤-trans m≥N (ℕP.m≤n*m m {2} ℕP.0<1+n)))) (proj₂ (proj₂ (lemma2-8-2a y nony (2 ℕ.* n))) (2 ℕ.* m) (ℕP.≤-trans (ℕP.m≤n⊔m Nx Ny) (ℕP.≤-trans m≥N (ℕP.m≤n*m m {2} ℕP.0<1+n)))) ⟩ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ∎ {- Suppose x≃y and x is nonnegative. WTS y is nonnegative. Then, for each n∈ℕ, there is Nₙ∈ℕ such that m≥Nₙ implies xₘ ≥ -n⁻¹. Thus there is N₁∈ℕ such that m ≥ N₁ implies xₘ ≥ -(2n)⁻¹. Since x ≃ y, there is N₂∈ℕ such that m ≥ N₂ implies ∣xₘ - yₘ∣ ≤ (2n)⁻¹. Let N = max{N₁, N₂} and let m ≥ N. We have: yₘ ≥ xₘ - ∣xₘ - yₘ∣ ≥ -(2n)⁻¹ - (2n)⁻¹ = -n⁻¹, so yₘ ≥ -n⁻¹ for all m ≥ N. Thus y is nonnegative. □ -} nonNeg-cong : ∀ x y -> x ≃ y -> NonNegative x -> NonNegative y nonNeg-cong x y x≃y nonx = lemma2-8-2b y lemA where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:+_ to _ℚ:+_ ; _:-_ to _ℚ:-_ ; _:=_ to _ℚ:=_ ) lemA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × ∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq y m ℚ.≥ ℚ.- (+ 1 / n) lemA (suc k₁) = N , _ , lemB where n : ℕ n = suc k₁ N₁ : ℕ N₁ = proj₁ (lemma2-8-2a x nonx (2 ℕ.* n)) N₂ : ℕ N₂ = proj₁ (lemma1A x y x≃y (2 ℕ.* n)) N : ℕ N = suc (N₁ ℕ.⊔ N₂) lemB : ∀ (m : ℕ) -> m ℕ.≥ N -> seq y m ℚ.≥ ℚ.- (+ 1 / n) lemB m m≥N = begin ℚ.- (+ 1 / n) ≈⟨ ℚ.*≡* (solve 1 (λ n -> (:- con (+ 1)) :* (con (+ 2) :* n :* (con (+ 2) :* n)) := (((:- con (+ 1)) :* (con (+ 2) :* n) :+ ((:- con (+ 1)) :* (con (+ 2) :* n))) :* n)) _≡_.refl (+ n)) ⟩ ℚ.- (+ 1 / (2 ℕ.* n)) ℚ.- (+ 1 / (2 ℕ.* n)) ≤⟨ ℚP.+-mono-≤ (proj₂ (proj₂ (lemma2-8-2a x nonx (2 ℕ.* n))) m (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans (ℕP.n≤1+n (N₁ ℕ.⊔ N₂)) m≥N))) (ℚP.neg-mono-≤ (proj₂ (lemma1A x y x≃y (2 ℕ.* n)) m (ℕP.<-transʳ (ℕP.m≤n⊔m N₁ N₂) m≥N))) ⟩ seq x m ℚ.- ℚ.∣ seq x m ℚ.- seq y m ∣ ≤⟨ ℚP.+-monoʳ-≤ (seq x m) (ℚP.neg-mono-≤ (p≤∣p∣ (seq x m ℚ.- seq y m))) ⟩ seq x m ℚ.- (seq x m ℚ.- seq y m) ≈⟨ ℚsolve 2 (λ x y -> x ℚ:- (x ℚ:- y) ℚ:= y) ℚP.≃-refl (seq x m) (seq y m) ⟩ seq y m ∎ {- Proposition: If x is positive and y is nonnegative, then x + y is positive. Proof: Since x is positive, there is an N₁∈ℕ such that xₘ ≥ N₁⁻¹ for all m ≥ N₁. Since y is nonnegative, there is N₂∈ℕ such that, for all m ≥ N₂, we have yₘ ≥ -(2N₁)⁻¹. Let N = 2max{N₁, N₂}. Let m ≥ N ≥ N₁, N₂. We have: (x + y)ₘ = x₂ₘ + y₂ₘ ≥ N₁⁻¹ - (2N₁)⁻¹ = (2N₁)⁻¹. ≥ N⁻¹. Thus (x + y)ₘ ≥ N⁻¹ for all m ≥ N. By Lemma 2.8.1, x + y is positive. □ -} posx∧nonNegy⇒posx+y : ∀ x y -> Positive x -> NonNegative y -> Positive (x + y) posx∧nonNegy⇒posx+y x y posx nony = lemma2-8-1b (x + y) (ℕ.pred N , lem) where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver N₁ : ℕ N₁ = suc (proj₁ (lemma2-8-1a x posx)) N₂ : ℕ N₂ = proj₁ (lemma2-8-2a y nony (2 ℕ.* N₁)) N : ℕ N = 2 ℕ.* (N₁ ℕ.⊔ N₂) lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x + y) m ℚ.≥ + 1 / N lem m m≥N = begin + 1 / N ≤⟨ *≤* (ℤP.*-monoˡ-≤-nonNeg 1 (ℤP.*-monoˡ-≤-nonNeg 2 (+≤+ (ℕP.m≤m⊔n N₁ N₂)))) ⟩ + 1 / (2 ℕ.* N₁) ≈⟨ ℚ.*≡* (solve 1 (λ N₁ -> con (+ 1) :* (N₁ :* (con (+ 2) :* N₁)) := (con (+ 1) :* (con (+ 2) :* N₁) :+ (:- con (+ 1)) :* N₁) :* (con (+ 2) :* N₁)) _≡_.refl (+ N₁)) ⟩ (+ 1 / N₁) ℚ.- (+ 1 / (2 ℕ.* N₁)) ≤⟨ ℚP.+-mono-≤ (proj₂ (lemma2-8-1a x posx) (2 ℕ.* m) (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) (ℕP.≤-trans (ℕP.m≤n*m (N₁ ℕ.⊔ N₂) {2} ℕP.0<1+n) (ℕP.≤-trans m≥N (ℕP.m≤n*m m {2} ℕP.0<1+n))))) (proj₂ (proj₂ (lemma2-8-2a y nony (2 ℕ.* N₁))) (2 ℕ.* m) (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) (ℕP.≤-trans (ℕP.m≤n*m (N₁ ℕ.⊔ N₂) {2} ℕP.0<1+n) (ℕP.≤-trans m≥N (ℕP.m≤n*m m {2} ℕP.0<1+n))))) ⟩ seq x (2 ℕ.* m) ℚ.+ seq y (2 ℕ.* m) ∎ ∣x∣nonNeg : ∀ x -> NonNegative ∣ x ∣ ∣x∣nonNeg x = nonNeg-cong ∣ x ∣₂ ∣ x ∣ (≃-symm {∣ x ∣} {∣ x ∣₂} (∣x∣≃∣x∣₂ x)) λ {(suc k₁) -> ℚP.≤-trans (ℚP.nonPositive⁻¹ _) (ℚP.0≤∣p∣ (seq x (suc k₁)))} {- Module for chain of equality reasoning on ℝ -} module ≃-Reasoning where open import Relation.Binary.Reasoning.Setoid ≃-setoid public {- Proposition: If x is nonnegative, then ∣x∣ = x. Proof: Let j∈ℕ. Since x is nonnegative, there is N∈ℕ such that xₘ ≥ -(2j)⁻¹ (m ≥ N). Let m ≥ N. Then -2xₘ ≤ j⁻¹. Either xₘ ≥ 0 or xₘ < 0. Case 1: Suppose xₘ ≥ 0. Then: ∣∣xₘ∣ - xₘ∣ = ∣xₘ∣ - xₘ = xₘ - xₘ = 0 ≤ j⁻¹ Case 2: Suppose xₘ < 0. Then: ∣∣xₘ∣ - xₘ∣ = ∣xₘ∣ - xₘ = -xₘ - xₘ = -2xₘ ≤ j⁻¹. Thus ∣∣xₘ∣ - xₘ∣ ≤ j⁻¹ for all m ≥ N. By Lemma 1, ∣x∣ = x. □ -} nonNegx⇒∣x∣₂≃x : ∀ x -> NonNegative x -> ∣ x ∣₂ ≃ x nonNegx⇒∣x∣₂≃x x nonx = lemma1B ∣ x ∣₂ x lemA where open ℚP.≤-Reasoning open import Data.Integer.Solver open +-*-Solver lemA : ∀ (j : ℕ) -> {j≢0 : j ≢0} -> ∃ λ (N : ℕ) -> ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq ∣ x ∣₂ n ℚ.- seq x n ∣ ℚ.≤ (+ 1 / j) {j≢0} lemA (suc k₁) = N , lemB where j : ℕ j = suc k₁ N : ℕ N = proj₁ (lemma2-8-2a x nonx (2 ℕ.* j)) lemB : ∀ (n : ℕ) -> N ℕ.< n -> ℚ.∣ seq ∣ x ∣₂ n ℚ.- seq x n ∣ ℚ.≤ + 1 / j lemB (suc k₂) N<n = [ left , right ]′ (ℚP.≤-total (seq x n) 0ℚᵘ) where n : ℕ n = suc k₂ -xₙ≤1/2j : ℚ.- seq x n ℚ.≤ + 1 / (2 ℕ.* j) -xₙ≤1/2j = begin ℚ.- seq x n ≤⟨ ℚP.neg-mono-≤ (proj₂ (proj₂ (lemma2-8-2a x nonx (2 ℕ.* j))) n (ℕP.<⇒≤ N<n)) ⟩ ℚ.- (ℚ.- (+ 1 / (2 ℕ.* j))) ≈⟨ ℚP.neg-involutive (+ 1 / (2 ℕ.* j)) ⟩ + 1 / (2 ℕ.* j) ∎ left : seq x n ℚ.≤ 0ℚᵘ -> ℚ.∣ seq ∣ x ∣₂ n ℚ.- seq x n ∣ ℚ.≤ + 1 / j left hyp = begin ℚ.∣ seq ∣ x ∣₂ n ℚ.- seq x n ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p (p≤∣p∣ (seq x n))) ⟩ ℚ.∣ seq x n ∣ ℚ.- seq x n ≈⟨ ℚP.+-congˡ (ℚ.- seq x n) (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (seq x n))) ⟩ ℚ.∣ ℚ.- seq x n ∣ ℚ.- seq x n ≈⟨ ℚP.+-congˡ (ℚ.- seq x n) (ℚP.0≤p⇒∣p∣≃p (ℚP.neg-mono-≤ hyp)) ⟩ ℚ.- seq x n ℚ.- seq x n ≤⟨ ℚP.+-mono-≤ -xₙ≤1/2j -xₙ≤1/2j ⟩ (+ 1 / (2 ℕ.* j)) ℚ.+ (+ 1 / (2 ℕ.* j)) ≈⟨ ℚ.*≡* (solve 1 (λ j -> (con (+ 1) :* (con (+ 2) :* j) :+ con (+ 1) :* (con (+ 2) :* j)) :* j := (con (+ 1) :* (con (+ 2) :* j :* (con (+ 2) :* j)))) _≡_.refl (+ j)) ⟩ + 1 / j ∎ right : 0ℚᵘ ℚ.≤ seq x n -> ℚ.∣ seq ∣ x ∣₂ n ℚ.- seq x n ∣ ℚ.≤ + 1 / j right hyp = begin ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- seq x n ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p (p≤∣p∣ (seq x n))) ⟩ ℚ.∣ seq x n ∣ ℚ.- seq x n ≈⟨ ℚP.+-congˡ (ℚ.- seq x n) (ℚP.0≤p⇒∣p∣≃p hyp) ⟩ seq x n ℚ.- seq x n ≈⟨ ℚP.+-inverseʳ (seq x n) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 1 / j ∎ nonNegx⇒∣x∣≃x : ∀ x -> NonNegative x -> ∣ x ∣ ≃ x nonNegx⇒∣x∣≃x x nonx = ≃-trans {∣ x ∣} {∣ x ∣₂} {x} (∣x∣≃∣x∣₂ x) (nonNegx⇒∣x∣₂≃x x nonx) {- Proposition: If x and y are nonnegative, then so is x * y. Proof: Since x and y are nonnegative, we have x = ∣x∣ and y = ∣y∣. Then x*y = ∣x∣*∣y∣ = ∣x*y∣, which is nonnegative. □ -} nonNegx,y⇒nonNegx*y : ∀ x y -> NonNegative x -> NonNegative y -> NonNegative (x * y) nonNegx,y⇒nonNegx*y x y nonx nony = nonNeg-cong ∣ x * y ∣ (x * y) lem (∣x∣nonNeg (x * y)) where open ≃-Reasoning lem : ∣ x * y ∣ ≃ x * y lem = begin ∣ x * y ∣ ≈⟨ ∣x*y∣≃∣x∣*∣y∣ x y ⟩ ∣ x ∣ * ∣ y ∣ ≈⟨ *-cong {∣ x ∣} {x} {∣ y ∣} {y} (nonNegx⇒∣x∣≃x x nonx) (nonNegx⇒∣x∣≃x y nony) ⟩ x * y ∎ {- Proposition: If x and y are positive, then so is x * y. Proof: By Lemma 2.8.1, there exists N₁,N₂∈ℕ such that xₘ ≥ N₁⁻¹ (m ≥ N₁), and yₘ ≥ N₂⁻¹ (m ≥ N₂). Let N = max{N₁, N₂} and let m ≥ N². We have: x₂ₖₘy₂ₖₘ ≥ N₁⁻¹N₂⁻¹ ≥ N⁻¹ * N⁻¹ = (N²)⁻¹, so x₂ₖₘy₂ₖₘ ≥ (N²)⁻¹ for all m ≥ N². By Lemma 2.8.1, x * y is positive. □ -} posx,y⇒posx*y : ∀ x y -> Positive x -> Positive y -> Positive (x * y) posx,y⇒posx*y x y posx posy = lemma2-8-1b (x * y) (ℕ.pred (N ℕ.* N) , lem) where open ℚP.≤-Reasoning k : ℕ k = K x ℕ.⊔ K y N₁ : ℕ N₁ = suc (proj₁ (lemma2-8-1a x posx)) N₂ : ℕ N₂ = suc (proj₁ (lemma2-8-1a y posy)) N : ℕ N = N₁ ℕ.⊔ N₂ lem : ∀ (m : ℕ) -> m ℕ.≥ N ℕ.* N -> seq (x * y) m ℚ.≥ + 1 / (N ℕ.* N) lem m m≥N² = begin + 1 / (N ℕ.* N) ≡⟨ _≡_.refl ⟩ (+ 1 / N) ℚ.* (+ 1 / N) ≤⟨ ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {+ 1 / N} _ {+ 1 / N} {+ 1 / N₁} (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤m⊔n N₁ N₂))))) (ℚP.*-monoʳ-≤-nonNeg {+ 1 / N₁} _ {+ 1 / N} {+ 1 / N₂} (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤n⊔m N₁ N₂))))) ⟩ (+ 1 / N₁) ℚ.* (+ 1 / N₂) ≤⟨ ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {+ 1 / N₂} _ {+ 1 / N₁} {seq x (2 ℕ.* k ℕ.* m)} (proj₂ (lemma2-8-1a x posx) (2 ℕ.* k ℕ.* m) (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) N≤2km))) (ℚP.*-monoʳ-≤-pos {seq x (2 ℕ.* k ℕ.* m)} posx₂ₖₘ {+ 1 / N₂} {seq y (2 ℕ.* k ℕ.* m)} (proj₂ (lemma2-8-1a y posy) (2 ℕ.* k ℕ.* m) (ℕP.≤-trans (ℕP.m≤n⊔m N₁ N₂) N≤2km))) ⟩ seq x (2 ℕ.* k ℕ.* m) ℚ.* seq y (2 ℕ.* k ℕ.* m) ∎ where N≤2km : N ℕ.≤ 2 ℕ.* k ℕ.* m N≤2km = ℕP.≤-trans (ℕP.m≤n*m N {N} ℕP.0<1+n) (ℕP.≤-trans m≥N² (ℕP.m≤n*m m {2 ℕ.* k} ℕP.0<1+n)) posx₂ₖₘ : ℚ.Positive (seq x (2 ℕ.* k ℕ.* m)) posx₂ₖₘ = 0<⇒pos (seq x (2 ℕ.* k ℕ.* m)) (ℚP.<-≤-trans {0ℚᵘ} {+ 1 / N₁} {seq x (2 ℕ.* k ℕ.* m)} (ℚP.positive⁻¹ _) (proj₂ (lemma2-8-1a x posx) (2 ℕ.* k ℕ.* m) (ℕP.≤-trans (ℕP.m≤m⊔n N₁ N₂) N≤2km))) {- Proposition: If x is positive and y is any real number, then max{x, y} is positive. Proof: Since x is positive, there is N∈ℕ such that m ≥ N implies xₘ ≥ N⁻¹. Let m ≥ N. We have: (x ⊔ y)ₘ = xₘ ⊔ yₘ ≥ xₘ ≥ N⁻¹. -} posx⇒posx⊔y : ∀ x y -> Positive x -> Positive (x ⊔ y) posx⇒posx⊔y x y posx = lemma2-8-1b (x ⊔ y) (ℕ.pred N , lem) where open ℚP.≤-Reasoning N : ℕ N = suc (proj₁ (lemma2-8-1a x posx)) lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x ⊔ y) m ℚ.≥ + 1 / N lem m m≥N = begin + 1 / N ≤⟨ proj₂ (lemma2-8-1a x posx) m m≥N ⟩ seq x m ≤⟨ ℚP.p≤p⊔q (seq x m) (seq y m) ⟩ seq x m ℚ.⊔ seq y m ∎ {- Proposition: If x is nonnegative and y is any real number, then max{x, y} is nonnegative. Proof: Since x is nonnegative, for each n∈ℕ there is Nₙ∈ℕ such that xₘ ≥ -n⁻¹ for all m ≥ Nₙ. Let m ≥ Nₙ. Then: (x ⊔ y)ₘ = xₘ ⊔ yₘ ≥ xₘ ≥ -n⁻¹. -} nonNegx⇒nonNegx⊔y : ∀ x y -> NonNegative x -> NonNegative (x ⊔ y) nonNegx⇒nonNegx⊔y x y nonx = lemma2-8-2b (x ⊔ y) lemA where open ℚP.≤-Reasoning lemA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × ∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq (x ⊔ y) m ℚ.≥ ℚ.- (+ 1 / n) {n≢0} lemA n {n≢0} = Nₙ , proj₁ (proj₂ (lemma2-8-2a x nonx n {n≢0})) , lemB where Nₙ : ℕ Nₙ = proj₁ (lemma2-8-2a x nonx n {n≢0}) lemB : ∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq (x ⊔ y) m ℚ.≥ ℚ.- (+ 1 / n) {n≢0} lemB m m≥Nₙ = begin ℚ.- (+ 1 / n) {n≢0} ≤⟨ proj₂ (proj₂ (lemma2-8-2a x nonx n {n≢0})) m m≥Nₙ ⟩ seq x m ≤⟨ ℚP.p≤p⊔q (seq x m) (seq y m) ⟩ seq x m ℚ.⊔ seq y m ∎ _⊓₂_ : (x y : ℝ) -> ℝ seq (x ⊓₂ y) m = seq x m ℚ.⊓ seq y m reg (x ⊓₂ y) (suc k₁) (suc k₂) = begin ℚ.∣ (xₘ ℚ.⊓ yₘ) ℚ.- (xₙ ℚ.⊓ yₙ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-cong (ℚP.⊓-cong (ℚP.≃-sym (ℚP.neg-involutive xₘ)) (ℚP.≃-sym (ℚP.neg-involutive yₘ))) (ℚP.-‿cong (ℚP.⊓-cong (ℚP.≃-sym (ℚP.neg-involutive xₙ)) (ℚP.≃-sym (ℚP.neg-involutive yₙ))))) ⟩ ℚ.∣ ((ℚ.- (ℚ.- xₘ)) ℚ.⊓ (ℚ.- (ℚ.- yₘ))) ℚ.- ((ℚ.- (ℚ.- xₙ)) ℚ.⊓ (ℚ.- (ℚ.- yₙ))) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-cong (ℚP.≃-sym (ℚP.neg-distrib-⊔-⊓ (ℚ.- xₘ) (ℚ.- yₘ))) (ℚP.-‿cong (ℚP.≃-sym (ℚP.neg-distrib-⊔-⊓ (ℚ.- xₙ) (ℚ.- yₙ))))) ⟩ ℚ.∣ ℚ.- ((ℚ.- xₘ) ℚ.⊔ (ℚ.- yₘ)) ℚ.- (ℚ.- ((ℚ.- xₙ) ℚ.⊔ (ℚ.- yₙ))) ∣ ≤⟨ reg (x ⊓ y) m n ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ where open ℚP.≤-Reasoning m : ℕ m = suc k₁ n : ℕ n = suc k₂ xₘ : ℚᵘ xₘ = seq x m xₙ : ℚᵘ xₙ = seq x n yₘ : ℚᵘ yₘ = seq y m yₙ : ℚᵘ yₙ = seq y n x⊓y≃x⊓₂y : ∀ x y -> x ⊓ y ≃ x ⊓₂ y x⊓y≃x⊓₂y x y (suc k₁) = begin ℚ.∣ (ℚ.- ((ℚ.- xₙ) ℚ.⊔ (ℚ.- yₙ))) ℚ.- (xₙ ℚ.⊓ yₙ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- (xₙ ℚ.⊓ yₙ)) (ℚP.neg-distrib-⊔-⊓ (ℚ.- xₙ) (ℚ.- yₙ))) ⟩ ℚ.∣ ((ℚ.- (ℚ.- xₙ)) ℚ.⊓ (ℚ.- (ℚ.- yₙ))) ℚ.- (xₙ ℚ.⊓ yₙ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- (xₙ ℚ.⊓ yₙ)) (ℚP.⊓-cong (ℚP.neg-involutive xₙ) (ℚP.neg-involutive yₙ))) ⟩ ℚ.∣ (xₙ ℚ.⊓ yₙ) ℚ.- (xₙ ℚ.⊓ yₙ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (xₙ ℚ.⊓ yₙ)) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ xₙ : ℚᵘ xₙ = seq x n yₙ : ℚᵘ yₙ = seq y n {- Proposition: If x and y are nonnegative, then so is min{x, y}. Proof: Since x and y are nonnegative, for each n∈ℕ there is Nₙx, Nₙy∈ℕ such that xₘ ≥ -n⁻¹ (m ≥ Nₙx), and yₘ ≥ -n⁻¹ (m ≥ Nₙy). Let Nₙ = max{Nₙx, Nₙy}, and let m ≥ Nₙ. Suppose, without loss of generality, that xₘ ⊓ yₘ = xₘ. Then we have: (x ⊓ y)ₘ = xₘ ⊓ yₘ = xₘ ≥ -n⁻¹. -} nonNegx,y⇒nonNegx⊓y : ∀ x y -> NonNegative x -> NonNegative y -> NonNegative (x ⊓ y) nonNegx,y⇒nonNegx⊓y x y nonx nony = nonNeg-cong (x ⊓₂ y) (x ⊓ y) (≃-symm {x ⊓ y} {x ⊓₂ y} (x⊓y≃x⊓₂y x y)) (lemma2-8-2b (x ⊓₂ y) lemA) where open ℚP.≤-Reasoning lemA : ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ∃ λ (Nₙ : ℕ) -> Nₙ ≢0 × (∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq (x ⊓₂ y) m ℚ.≥ ℚ.- (+ 1 / n) {n≢0}) lemA (suc k₁) = Nₙ , _ , lemB where n : ℕ n = suc k₁ Nₙx : ℕ Nₙx = proj₁ (lemma2-8-2a x nonx n) Nₙy : ℕ Nₙy = proj₁ (lemma2-8-2a y nony n) Nₙ : ℕ Nₙ = Nₙx ℕ.⊔ Nₙy lemB : ∀ (m : ℕ) -> m ℕ.≥ Nₙ -> seq (x ⊓₂ y) m ℚ.≥ ℚ.- (+ 1 / n) lemB m m≥Nₙ = [ left , right ]′ (ℚP.≤-total (seq x m) (seq y m)) where left : seq x m ℚ.≤ seq y m -> seq (x ⊓₂ y) m ℚ.≥ ℚ.- (+ 1 / n) left hyp = begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ (lemma2-8-2a x nonx n)) m (ℕP.≤-trans (ℕP.m≤m⊔n Nₙx Nₙy) m≥Nₙ) ⟩ seq x m ≈⟨ ℚP.≃-sym (ℚP.p≤q⇒p⊓q≃p hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ right : seq y m ℚ.≤ seq x m -> seq (x ⊓₂ y) m ℚ.≥ ℚ.- (+ 1 / n) right hyp = begin ℚ.- (+ 1 / n) ≤⟨ proj₂ (proj₂ (lemma2-8-2a y nony n)) m (ℕP.≤-trans (ℕP.m≤n⊔m Nₙx Nₙy) m≥Nₙ) ⟩ seq y m ≈⟨ ℚP.≃-sym (ℚP.p≥q⇒p⊓q≃q hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ {- Proposition: If x and y are positive, then so is min{x, y}. Proof: Since x and y are positive, there are Nx, Ny∈ℕ such that xₘ ≥ Nx⁻¹ (m ≥ Nx), and yₘ ≥ Ny⁻¹ (m ≥ Ny). Let N = max{Nx, Ny}, and let m ≥ N. Suppose, without loss of generality, that xₘ ⊓ yₘ = xₘ. We have: (x ⊓ y)ₘ = xₘ ⊓ yₘ = xₘ ≥ Nx⁻¹ ≥ N⁻¹. -} posx,y⇒posx⊓y : ∀ x y -> Positive x -> Positive y -> Positive (x ⊓ y) posx,y⇒posx⊓y x y posx posy = pos-cong (x ⊓₂ y) (x ⊓ y) (≃-symm {x ⊓ y} {x ⊓₂ y} (x⊓y≃x⊓₂y x y)) (lemma2-8-1b (x ⊓₂ y) (ℕ.pred N , lem)) where open ℚP.≤-Reasoning Nx : ℕ Nx = suc (proj₁ (lemma2-8-1a x posx)) Ny : ℕ Ny = suc (proj₁ (lemma2-8-1a y posy)) N : ℕ N = Nx ℕ.⊔ Ny lem : ∀ (m : ℕ) -> m ℕ.≥ N -> seq (x ⊓₂ y) m ℚ.≥ + 1 / N lem m m≥N = [ left , right ]′ (ℚP.≤-total (seq x m) (seq y m)) where left : seq x m ℚ.≤ seq y m -> seq (x ⊓₂ y) m ℚ.≥ + 1 / N left hyp = begin + 1 / N ≤⟨ *≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤m⊔n Nx Ny))) ⟩ + 1 / Nx ≤⟨ proj₂ (lemma2-8-1a x posx) m (ℕP.≤-trans (ℕP.m≤m⊔n Nx Ny) m≥N) ⟩ seq x m ≈⟨ ℚP.≃-sym (ℚP.p≤q⇒p⊓q≃p hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ right : seq y m ℚ.≤ seq x m -> seq (x ⊓₂ y) m ℚ.≥ + 1 / N right hyp = begin + 1 / N ≤⟨ *≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤n⊔m Nx Ny))) ⟩ + 1 / Ny ≤⟨ proj₂ (lemma2-8-1a y posy) m (ℕP.≤-trans (ℕP.m≤n⊔m Nx Ny) m≥N) ⟩ seq y m ≈⟨ ℚP.≃-sym (ℚP.p≥q⇒p⊓q≃q hyp) ⟩ seq x m ℚ.⊓ seq y m ∎ infix 4 _<_ _>_ _≤_ _≥_ _<_ : Rel ℝ 0ℓ x < y = Positive (y - x) _>_ : Rel ℝ 0ℓ x > y = y < x _≤_ : Rel ℝ 0ℓ x ≤ y = NonNegative (y - x) --data _≤_ : Rel ℝ 0ℓ where -- ⋆≤⋆ : ∀ x y -> NonNegative (y - x) -> x ≤ y _≥_ : Rel ℝ 0ℓ x ≥ y = y ≤ x Negative : Pred ℝ 0ℓ Negative x = Positive (- x) <⇒≤ : _<_ ⇒ _≤_ <⇒≤ {x} {y} x<y = pos⇒nonNeg (y - x) x<y <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans {x} {y} {z} x<y y≤z = pos-cong (y - x + (z - y)) (z - x) lem (posx∧nonNegy⇒posx+y (y - x) (z - y) x<y y≤z) where open ≃-Reasoning lem : (y - x) + (z - y) ≃ z - x lem = begin (y - x) + (z - y) ≈⟨ +-comm (y - x) (z - y) ⟩ (z - y) + (y - x) ≈⟨ +-assoc z (- y) (y - x) ⟩ z + ((- y) + (y - x)) ≈⟨ +-congʳ z {(- y) + (y - x)} {(- y + y) - x} (≃-symm {(- y + y) - x} {(- y) + (y - x)} (+-assoc (- y) y (- x))) ⟩ z + ((- y + y) - x) ≈⟨ +-congʳ z {(- y + y) - x} {0ℝ - x} (+-congˡ (- x) {(- y + y)} {0ℝ} (+-inverseˡ y)) ⟩ z + (0ℝ - x) ≈⟨ +-congʳ z {0ℝ - x} {(- x)} (+-identityˡ (- x)) ⟩ z - x ∎ ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans {x} {y} {z} x≤y y<z = pos-cong ((z - y) + (y - x)) (z - x) lem (posx∧nonNegy⇒posx+y (z - y) (y - x) y<z x≤y) where open ≃-Reasoning lem : (z - y) + (y - x) ≃ z - x lem = begin (z - y) + (y - x) ≈⟨ +-assoc z (- y) (y - x) ⟩ z + (- y + (y - x)) ≈⟨ +-congʳ z {(- y) + (y - x)} {(- y + y) - x} (≃-symm {(- y + y) - x} {(- y) + (y - x)} (+-assoc (- y) y (- x))) ⟩ z + ((- y + y) - x) ≈⟨ +-congʳ z {(- y + y) - x} {0ℝ - x} (+-congˡ (- x) {(- y + y)} {0ℝ} (+-inverseˡ y)) ⟩ z + (0ℝ - x) ≈⟨ +-congʳ z {0ℝ - x} {(- x)} (+-identityˡ (- x)) ⟩ z - x ∎ <-trans : Transitive _<_ <-trans {x} {y} {z} = ≤-<-trans {x} {y} {z} ∘ <⇒≤ {x} {y} ≤-trans : Transitive _≤_ ≤-trans {x} {y} {z} x≤y y≤z = nonNeg-cong (z - y + (y - x)) (z - x) lem (nonNegx,y⇒nonNegx+y (z - y) (y - x) y≤z x≤y) where open ≃-Reasoning lem : (z - y) + (y - x) ≃ z - x lem = begin (z - y) + (y - x) ≈⟨ +-assoc z (- y) (y - x) ⟩ z + (- y + (y - x)) ≈⟨ +-congʳ z {(- y) + (y - x)} {(- y + y) - x} (≃-symm {(- y + y) - x} {(- y) + (y - x)} (+-assoc (- y) y (- x))) ⟩ z + ((- y + y) - x) ≈⟨ +-congʳ z {(- y + y) - x} {0ℝ - x} (+-congˡ (- x) {(- y + y)} {0ℝ} (+-inverseˡ y)) ⟩ z + (0ℝ - x) ≈⟨ +-congʳ z {0ℝ - x} {(- x)} (+-identityˡ (- x)) ⟩ z - x ∎ nonNeg0 : NonNegative 0ℝ nonNeg0 (suc k₁) = ℚP.<⇒≤ (ℚP.negative⁻¹ _) nonNeg-refl : ∀ x -> NonNegative (x - x) nonNeg-refl x = nonNeg-cong 0ℝ (x - x) (≃-symm {x - x} {0ℝ} (+-inverseʳ x)) nonNeg0 +-mono-≤ : _+_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ +-mono-≤ {x} {z} {y} {t} x≤z y≤t = nonNeg-cong ((z - x) + (t - y)) ((z + t) - (x + y)) lem (nonNegx,y⇒nonNegx+y (z - x) (t - y) x≤z y≤t) where open ≃-Reasoning lem : (z - x) + (t - y) ≃ (z + t) - (x + y) lem = begin (z - x) + (t - y) ≈⟨ +-congʳ (z - x) {t - y} { - y + t} (+-comm t (- y)) ⟩ (z - x) + (- y + t) ≈⟨ +-assoc z (- x) (- y + t) ⟩ z + (- x + (- y + t)) ≈⟨ ≃-symm {z + ((- x + - y) + t)} {z + (- x + (- y + t))} (+-congʳ z { - x + - y + t} { - x + (- y + t)} (+-assoc (- x) (- y) t)) ⟩ z + ((- x + - y) + t) ≈⟨ +-congʳ z { - x + - y + t} {t + (- x + - y)} (+-comm (- x + - y) t) ⟩ z + (t + (- x + - y)) ≈⟨ ≃-symm {(z + t) + (- x + - y)} {z + (t + (- x + - y))} (+-assoc z t (- x + - y)) ⟩ (z + t) + (- x + - y) ≈⟨ +-congʳ (z + t) { - x + - y} { - (x + y)} (≃-symm { - (x + y)} { - x + - y} (neg-distrib-+ x y)) ⟩ (z + t) - (x + y) ∎ +-monoʳ-≤ : ∀ (x : ℝ) -> (_+_ x) Preserves _≤_ ⟶ _≤_ +-monoʳ-≤ x {y} {z} y≤z = +-mono-≤ {x} {x} {y} {z} (nonNeg-refl x) y≤z +-monoˡ-≤ : ∀ (x : ℝ) -> (_+ x) Preserves _≤_ ⟶ _≤_ +-monoˡ-≤ x {y} {z} y≤z = +-mono-≤ {y} {z} {x} {x} y≤z (nonNeg-refl x) +-mono-< : _+_ Preserves₂ _<_ ⟶ _<_ ⟶ _<_ +-mono-< {x} {z} {y} {t} x<z y<t = pos-cong ((z - x) + (t - y)) ((z + t) - (x + y)) lem (posx,y⇒posx+y (z - x) (t - y) x<z y<t) where open ≃-Reasoning lem : (z - x) + (t - y) ≃ (z + t) - (x + y) lem = begin (z - x) + (t - y) ≈⟨ +-congʳ (z - x) {t - y} { - y + t} (+-comm t (- y)) ⟩ (z - x) + (- y + t) ≈⟨ +-assoc z (- x) (- y + t) ⟩ z + (- x + (- y + t)) ≈⟨ ≃-symm {z + ((- x + - y) + t)} {z + (- x + (- y + t))} (+-congʳ z { - x + - y + t} { - x + (- y + t)} (+-assoc (- x) (- y) t)) ⟩ z + ((- x + - y) + t) ≈⟨ +-congʳ z { - x + - y + t} {t + (- x + - y)} (+-comm (- x + - y) t) ⟩ z + (t + (- x + - y)) ≈⟨ ≃-symm {(z + t) + (- x + - y)} {z + (t + (- x + - y))} (+-assoc z t (- x + - y)) ⟩ (z + t) + (- x + - y) ≈⟨ +-congʳ (z + t) { - x + - y} { - (x + y)} (≃-symm { - (x + y)} { - x + - y} (neg-distrib-+ x y)) ⟩ (z + t) - (x + y) ∎ neg-distribˡ-* : ∀ x y -> - (x * y) ≃ - x * y neg-distribˡ-* x y = begin - (x * y) ≈⟨ ≃-trans { - (x * y)} { - (x * y) + 0ℝ} { - (x * y) + 0ℝ * y} (≃-symm { - (x * y) + 0ℝ} { - (x * y)} (+-identityʳ (- (x * y)))) (+-congʳ (- (x * y)) {0ℝ} {0ℝ * y} (≃-symm {0ℝ * y} {0ℝ} (*-zeroˡ y))) ⟩ - (x * y) + 0ℝ * y ≈⟨ +-congʳ (- (x * y)) {0ℝ * y} {(x - x) * y} (*-congʳ {y} {0ℝ} {x - x} (≃-symm {x - x} {0ℝ} (+-inverseʳ x))) ⟩ - (x * y) + (x - x) * y ≈⟨ +-congʳ (- (x * y)) {(x - x) * y} {x * y + (- x) * y} (*-distribʳ-+ y x (- x)) ⟩ - (x * y) + (x * y + (- x) * y) ≈⟨ ≃-symm { - (x * y) + x * y + - x * y} { - (x * y) + (x * y + - x * y)} (+-assoc (- (x * y)) (x * y) ((- x) * y)) ⟩ - (x * y) + x * y + (- x) * y ≈⟨ +-congˡ (- x * y) { - (x * y) + x * y} {0ℝ} (+-inverseˡ (x * y)) ⟩ 0ℝ + (- x) * y ≈⟨ +-identityˡ ((- x) * y) ⟩ (- x) * y ∎ where open ≃-Reasoning neg-distribʳ-* : ∀ x y -> - (x * y) ≃ x * (- y) neg-distribʳ-* x y = begin - (x * y) ≈⟨ -‿cong {x * y} {y * x} (*-comm x y) ⟩ - (y * x) ≈⟨ neg-distribˡ-* y x ⟩ - y * x ≈⟨ *-comm (- y) x ⟩ x * (- y) ∎ where open ≃-Reasoning ≤-reflexive : _≃_ ⇒ _≤_ ≤-reflexive {x} {y} x≃y = nonNeg-cong (x - x) (y - x) (+-congˡ (- x) {x} {y} x≃y) (nonNeg-refl x) ≤-refl : Reflexive _≤_ ≤-refl {x} = ≤-reflexive {x} {x} (≃-refl {x}) ≤-isPreorder : IsPreorder _≃_ _≤_ IsPreorder.isEquivalence ≤-isPreorder = ≃-isEquivalence IsPreorder.reflexive ≤-isPreorder {x} {y} x≃y = ≤-reflexive {x} {y} x≃y IsPreorder.trans ≤-isPreorder {x} {y} {z} = ≤-trans {x} {y} {z} <-respʳ-≃ : _<_ Respectsʳ _≃_ <-respʳ-≃ {x} {y} {z} y≃z x<y = <-≤-trans {x} {y} {z} x<y (≤-reflexive {y} {z} y≃z) <-respˡ-≃ : _<_ Respectsˡ _≃_ <-respˡ-≃ {x} {y} {z} y≃z y<x = ≤-<-trans {z} {y} {x} (≤-reflexive {z} {y} (≃-symm {y} {z} y≃z)) y<x <-resp-≃ : _<_ Respects₂ _≃_ <-resp-≃ = (λ {x} {y} {z} -> <-respʳ-≃ {x} {y} {z}) , λ {x} {y} {z} -> <-respˡ-≃ {x} {y} {z} {- Same issue as with ≃-refl. I need to specify the arguments in order to avoid the constraint error, hence the lambdas. -} module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder (λ {x} {y} {z} -> <-trans {x} {y} {z}) <-resp-≃ (λ {x} {y} -> <⇒≤ {x} {y}) (λ {x} {y} {z} -> <-≤-trans {x} {y} {z}) (λ {x} {y} {z} -> ≤-<-trans {x} {y} {z}) public *-monoʳ-≤-nonNeg : ∀ x y z -> x ≤ z -> NonNegative y -> x * y ≤ z * y *-monoʳ-≤-nonNeg x y z x≤z nony = nonNeg-cong ((z - x) * y) (z * y - x * y) lem (nonNegx,y⇒nonNegx*y (z - x) y x≤z nony) where open ≃-Reasoning lem : (z - x) * y ≃ z * y - x * y lem = begin (z - x) * y ≈⟨ *-distribʳ-+ y z (- x) ⟩ z * y + (- x) * y ≈⟨ +-congʳ (z * y) { - x * y} { - (x * y)} (≃-symm { - (x * y)} { - x * y} (neg-distribˡ-* x y)) ⟩ z * y - x * y ∎ *-monoˡ-≤-nonNeg : ∀ x y z -> x ≤ z -> NonNegative y -> y * x ≤ y * z *-monoˡ-≤-nonNeg x y z x≤z nony = begin y * x ≈⟨ *-comm y x ⟩ x * y ≤⟨ *-monoʳ-≤-nonNeg x y z x≤z nony ⟩ z * y ≈⟨ *-comm z y ⟩ y * z ∎ where open ≤-Reasoning *-monoʳ-<-pos : ∀ {y} -> Positive y -> (_*_ y) Preserves _<_ ⟶ _<_ *-monoʳ-<-pos {y} posy {x} {z} x<z = pos-cong (y * (z - x)) (y * z - y * x) lem (posx,y⇒posx*y y (z - x) posy x<z) where open ≃-Reasoning lem : y * (z - x) ≃ y * z - y * x lem = begin y * (z - x) ≈⟨ *-distribˡ-+ y z (- x) ⟩ y * z + y * (- x) ≈⟨ +-congʳ (y * z) {y * (- x)} { - (y * x)} (≃-symm { - (y * x)} {y * (- x)} (neg-distribʳ-* y x)) ⟩ y * z - y * x ∎ *-monoˡ-<-pos : ∀ {y} -> Positive y -> (_* y) Preserves _<_ ⟶ _<_ *-monoˡ-<-pos {y} posy {x} {z} x<z = begin-strict x * y ≈⟨ *-comm x y ⟩ y * x <⟨ *-monoʳ-<-pos {y} posy {x} {z} x<z ⟩ y * z ≈⟨ *-comm y z ⟩ z * y ∎ where open ≤-Reasoning neg-mono-< : -_ Preserves _<_ ⟶ _>_ neg-mono-< {x} {y} x<y = pos-cong (y - x) (- x - (- y)) lem x<y where open ≃-Reasoning lem : y - x ≃ - x - (- y) lem = begin y - x ≈⟨ +-congˡ (- x) {y} { - (- y)} (≃-symm { - (- y)} {y} (neg-involutive y)) ⟩ - (- y) - x ≈⟨ +-comm (- (- y)) (- x) ⟩ - x - (- y) ∎ neg-mono-≤ : -_ Preserves _≤_ ⟶ _≥_ neg-mono-≤ {x} {y} x≤y = nonNeg-cong (y - x) (- x - (- y)) lem x≤y where open ≃-Reasoning lem : y - x ≃ - x - (- y) lem = begin y - x ≈⟨ +-congˡ (- x) {y} { - (- y)} (≃-symm { - (- y)} {y} (neg-involutive y)) ⟩ - (- y) - x ≈⟨ +-comm (- (- y)) (- x) ⟩ - x - (- y) ∎ x≤x⊔y : ∀ x y -> x ≤ x ⊔ y x≤x⊔y x y (suc k₁) = begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (seq x (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- seq x (2 ℕ.* n)) (ℚP.p≤p⊔q (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.⊔ seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ x≤y⊔x : ∀ x y -> x ≤ y ⊔ x x≤y⊔x x y = begin x ≤⟨ x≤x⊔y x y ⟩ x ⊔ y ≈⟨ ⊔-comm x y ⟩ y ⊔ x ∎ where open ≤-Reasoning x⊓y≤x : ∀ x y -> x ⊓ y ≤ x x⊓y≤x x y = nonNeg-cong (x - (x ⊓₂ y)) (x - (x ⊓ y)) lemA lemB where open ℚP.≤-Reasoning lemA : x - (x ⊓₂ y) ≃ x - (x ⊓ y) lemA = +-congʳ x { - (x ⊓₂ y)} { - (x ⊓ y)} (-‿cong {x ⊓₂ y} {x ⊓ y} (≃-symm {x ⊓ y} {x ⊓₂ y} (x⊓y≃x⊓₂y x y))) lemB : x ⊓₂ y ≤ x lemB (suc k₁) = begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (seq x (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≤⟨ ℚP.+-monoʳ-≤ (seq x (2 ℕ.* n)) (ℚP.neg-mono-≤ (ℚP.p⊓q≤p (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)))) ⟩ seq x (2 ℕ.* n) ℚ.- seq (x ⊓₂ y) (2 ℕ.* n) ∎ where n : ℕ n = suc k₁ x⊓y≤y : ∀ x y -> x ⊓ y ≤ y x⊓y≤y x y = begin x ⊓ y ≈⟨ ⊓-comm x y ⟩ y ⊓ x ≤⟨ x⊓y≤x y x ⟩ y ∎ where open ≤-Reasoning {- Proposition: ≤ is antisymmetric. Proof: Since y - x and x - y are nonnegative, for all n∈ℕ, we have y₂ₙ - x₂ₙ ≥ -n⁻¹ (1), and x₂ₙ - y₂ₙ ≥ -n⁻¹ (2) Let n∈ℕ. Either ∣x₂ₙ - y₂ₙ∣ = x₂ₙ - y₂ₙ or ∣x₂ₙ - y₂ₙ∣ = y₂ₙ - x₂ₙ. Case 1: We have: ∣x₂ₙ - y₂ₙ∣ = x₂ₙ - y₂ₙ ≤ n⁻¹ by (1) ≤ 2n⁻¹. Case 2: Similar. Thus x - y ≃ 0. Hence x ≃ y. □ -} ≤-antisym : Antisymmetric _≃_ _≤_ ≤-antisym {x} {y} x≤y y≤x = ≃-symm {y} {x} lemB where lemA : x - y ≃ 0ℝ lemA (suc k₁) = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ℚ.- 0ℚᵘ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-identityʳ (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n))) ⟩ ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≤⟨ [ left , right ]′ (ℚP.≤-total (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n))) ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning open import Data.Rational.Unnormalised.Solver open +-*-Solver n : ℕ n = suc k₁ left : seq x (2 ℕ.* n) ℚ.≤ seq y (2 ℕ.* n) -> ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ℚ.≤ + 2 / n left hyp = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.∣-p∣≃∣p∣ (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)))) (ℚP.0≤p⇒∣p∣≃p (ℚP.neg-mono-≤ (ℚP.p≤q⇒p-q≤0 hyp))) ⟩ ℚ.- (seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n)) ≤⟨ ℚP.≤-respʳ-≃ (ℚP.neg-involutive (+ 1 / n)) (ℚP.neg-mono-≤ (y≤x n)) ⟩ + 1 / n ≤⟨ *≤* (ℤP.*-monoʳ-≤-nonNeg n {+ 1} {+ 2} (+≤+ (ℕ.s≤s ℕ.z≤n))) ⟩ + 2 / n ∎ right : seq y (2 ℕ.* n) ℚ.≤ seq x (2 ℕ.* n) -> ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ℚ.≤ + 2 / n right hyp = begin ℚ.∣ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ∣ ≈⟨ ℚP.0≤p⇒∣p∣≃p (ℚP.p≤q⇒0≤q-p hyp) ⟩ seq x (2 ℕ.* n) ℚ.- seq y (2 ℕ.* n) ≈⟨ solve 2 (λ x y -> x :- y := :- (y :- x)) ℚP.≃-refl (seq x (2 ℕ.* n)) (seq y (2 ℕ.* n)) ⟩ ℚ.- (seq y (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n)) ≤⟨ ℚP.≤-respʳ-≃ (ℚP.neg-involutive (+ 1 / n)) (ℚP.neg-mono-≤ (x≤y n)) ⟩ + 1 / n ≤⟨ *≤* (ℤP.*-monoʳ-≤-nonNeg n {+ 1} {+ 2} (+≤+ (ℕ.s≤s ℕ.z≤n))) ⟩ + 2 / n ∎ lemB : y ≃ x lemB = begin y ≈⟨ ≃-symm {y + 0ℝ} {y} (+-identityʳ y) ⟩ y + 0ℝ ≈⟨ +-congʳ y {0ℝ} {x - y} (≃-symm {x - y} {0ℝ} lemA) ⟩ y + (x - y) ≈⟨ +-congʳ y {x - y} { - y + x} (+-comm x (- y)) ⟩ y + (- y + x) ≈⟨ ≃-symm {y - y + x} {y + (- y + x)} (+-assoc y (- y) x) ⟩ y - y + x ≈⟨ +-congˡ x {y - y} {0ℝ} (+-inverseʳ y) ⟩ 0ℝ + x ≈⟨ +-identityˡ x ⟩ x ∎ where open ≃-Reasoning 0≤∣x∣ : ∀ x -> 0ℝ ≤ ∣ x ∣ 0≤∣x∣ x = nonNeg-cong ∣ x ∣ (∣ x ∣ - 0ℝ) (≃-symm {∣ x ∣ - 0ℝ} {∣ x ∣} (+-identityʳ ∣ x ∣)) (∣x∣nonNeg x) ∣x+y∣₂≤∣x∣₂+∣y∣₂ : ∀ x y -> ∣ x + y ∣₂ ≤ ∣ x ∣₂ + ∣ y ∣₂ ∣x+y∣₂≤∣x∣₂+∣y∣₂ x y (suc k₁) = begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣)) ⟩ ∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣ ℚ.- (∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣) ≤⟨ ℚP.+-monoʳ-≤ (∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣) (ℚP.neg-mono-≤ (ℚP.∣p+q∣≤∣p∣+∣q∣ (seq x (2 ℕ.* (2 ℕ.* n))) (seq y (2 ℕ.* (2 ℕ.* n))))) ⟩ ∣x₄ₙ∣ ℚ.+ ∣y₄ₙ∣ ℚ.- ∣x₄ₙ+y₄ₙ∣ ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ ∣x₄ₙ∣ : ℚᵘ ∣x₄ₙ∣ = ℚ.∣ seq x (2 ℕ.* (2 ℕ.* n)) ∣ ∣y₄ₙ∣ : ℚᵘ ∣y₄ₙ∣ = ℚ.∣ seq y (2 ℕ.* (2 ℕ.* n)) ∣ ∣x₄ₙ+y₄ₙ∣ : ℚᵘ ∣x₄ₙ+y₄ₙ∣ = ℚ.∣ seq x (2 ℕ.* (2 ℕ.* n)) ℚ.+ seq y (2 ℕ.* (2 ℕ.* n)) ∣ ∣x+y∣≤∣x∣+∣y∣ : ∀ x y -> ∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ ∣x+y∣≤∣x∣+∣y∣ x y = begin ∣ x + y ∣ ≈⟨ ∣x∣≃∣x∣₂ (x + y) ⟩ ∣ x + y ∣₂ ≤⟨ ∣x+y∣₂≤∣x∣₂+∣y∣₂ x y ⟩ ∣ x ∣₂ + ∣ y ∣₂ ≈⟨ +-cong {∣ x ∣₂} {∣ x ∣} {∣ y ∣₂} {∣ y ∣} (≃-symm {∣ x ∣} {∣ x ∣₂} (∣x∣≃∣x∣₂ x)) (≃-symm {∣ y ∣} {∣ y ∣₂} (∣x∣≃∣x∣₂ y)) ⟩ ∣ x ∣ + ∣ y ∣ ∎ where open ≤-Reasoning _≄_ : Rel ℝ 0ℓ x ≄ y = x < y ⊎ y < x x≤∣x∣ : ∀ x -> x ≤ ∣ x ∣ x≤∣x∣ x (suc k₁) = begin ℚ.- (+ 1 / n) ≤⟨ ℚP.nonPositive⁻¹ _ ⟩ 0ℚᵘ ≈⟨ ℚP.≃-sym (ℚP.+-inverseʳ (seq x (2 ℕ.* n))) ⟩ seq x (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ≤⟨ ℚP.+-monoˡ-≤ (ℚ.- seq x (2 ℕ.* n)) (ℚP.p≤p⊔q (seq x (2 ℕ.* n)) (ℚ.- seq x (2 ℕ.* n))) ⟩ seq ∣ x ∣ (2 ℕ.* n) ℚ.- seq x (2 ℕ.* n) ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ ∣-x∣₂≃∣x∣₂ : ∀ x -> ∣ - x ∣₂ ≃ ∣ x ∣₂ ∣-x∣₂≃∣x∣₂ x (suc k₁) = begin ℚ.∣ ℚ.∣ ℚ.- seq x n ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-congˡ (ℚ.- ℚ.∣ seq x n ∣) (ℚP.∣-p∣≃∣p∣ (seq x n))) ⟩ ℚ.∣ ℚ.∣ seq x n ∣ ℚ.- ℚ.∣ seq x n ∣ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ ℚ.∣ seq x n ∣) ⟩ 0ℚᵘ ≤⟨ ℚP.nonNegative⁻¹ _ ⟩ + 2 / n ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ test : seq ∣ - x ∣₂ n ℚ.≃ ℚ.∣ ℚ.- seq x n ∣ test = ℚP.≃-refl ∣-x∣≃∣x∣ : ∀ x -> ∣ - x ∣ ≃ ∣ x ∣ ∣-x∣≃∣x∣ x = begin ∣ - x ∣ ≈⟨ ∣x∣≃∣x∣₂ (- x) ⟩ ∣ - x ∣₂ ≈⟨ ∣-x∣₂≃∣x∣₂ x ⟩ ∣ x ∣₂ ≈⟨ ≃-symm {∣ x ∣} {∣ x ∣₂} (∣x∣≃∣x∣₂ x) ⟩ ∣ x ∣ ∎ where open ≃-Reasoning 0<x⇒posx : ∀ x -> 0ℝ < x -> Positive x 0<x⇒posx x 0<x = pos-cong (x - 0ℝ) x (+-identityʳ x) 0<x posx⇒0<x : ∀ x -> Positive x -> 0ℝ < x posx⇒0<x x posx = pos-cong x (x - 0ℝ) (≃-symm {x - 0ℝ} {x} (+-identityʳ x)) posx x≄0⇒0<∣x∣ : ∀ x -> x ≄ 0ℝ -> 0ℝ < ∣ x ∣ x≄0⇒0<∣x∣ x x≄0 = [ left , right ]′ x≄0 where open ≤-Reasoning left : x < 0ℝ -> 0ℝ < ∣ x ∣ left hyp = begin-strict 0ℝ <⟨ neg-mono-< {x} {0ℝ} hyp ⟩ - x ≤⟨ x≤∣x∣ (- x) ⟩ ∣ - x ∣ ≈⟨ ∣-x∣≃∣x∣ x ⟩ ∣ x ∣ ∎ right : 0ℝ < x -> 0ℝ < ∣ x ∣ right hyp = begin-strict 0ℝ <⟨ hyp ⟩ x ≤⟨ x≤∣x∣ x ⟩ ∣ x ∣ ∎ x≄0⇒pos∣x∣ : ∀ x -> x ≄ 0ℝ -> Positive ∣ x ∣ x≄0⇒pos∣x∣ x x≄0 = 0<x⇒posx ∣ x ∣ (x≄0⇒0<∣x∣ x x≄0) x≄0⇒pos∣x∣₂ : ∀ x -> x ≄ 0ℝ -> Positive ∣ x ∣₂ x≄0⇒pos∣x∣₂ x x≄0 = pos-cong ∣ x ∣ ∣ x ∣₂ (∣x∣≃∣x∣₂ x) (x≄0⇒pos∣x∣ x x≄0) {- Using abstract versions of previous results for better performance. For instance, using lemma2-8-1a directly can be very slow. -} abstract fastℕ<?ℕ : Decidable ℕ._<_ fastℕ<?ℕ = ℕP._<?_ fast2-8-1a : ∀ x -> Positive x -> ∃ λ (N : ℕ) -> ∀ (m : ℕ) -> m ℕ.≥ suc N -> seq x m ℚ.≥ + 1 / (suc N) fast2-8-1a = lemma2-8-1a ℚ≠-helper : ∀ p -> p ℚ.> 0ℚᵘ ⊎ p ℚ.< 0ℚᵘ -> p ℚ.≠ 0ℚᵘ ℚ≠-helper p hyp1 hyp2 = [ left , right ]′ hyp1 where left : ¬ (p ℚ.> 0ℚᵘ) left hyp = ℚP.<-irrefl (ℚP.≃-sym hyp2) hyp right : ¬ (p ℚ.< 0ℚᵘ) right hyp = ℚP.<-irrefl hyp2 hyp {- For the sake of performance, we define an alternative version of the inverse given by Bishop. -} Nₐ : (x : ℝ) -> {x≄0 : x ≄ 0ℝ} -> ℕ Nₐ x {x≄0} = suc (proj₁ (fast2-8-1a ∣ x ∣₂ (x≄0⇒pos∣x∣₂ x x≄0))) not0-helper : ∀ (x : ℝ) -> {x≄0 : x ≄ 0ℝ} -> ∀ (n : ℕ) -> ℤ.∣ ↥ (seq x ((n ℕ.+ (Nₐ x {x≄0})) ℕ.* ((Nₐ x {x≄0}) ℕ.* (Nₐ x {x≄0})))) ∣ ≢0 not0-helper x {x≄0} n = ℚP.p≄0⇒∣↥p∣≢0 xₛ (ℚ≠-helper xₛ ([ left , right ]′ (ℚP.∣p∣≡p∨∣p∣≡-p xₛ))) where open ℚP.≤-Reasoning N : ℕ N = Nₐ x {x≄0} xₛ : ℚᵘ xₛ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) 0<∣xₛ∣ : 0ℚᵘ ℚ.< ℚ.∣ xₛ ∣ 0<∣xₛ∣ = begin-strict 0ℚᵘ <⟨ ℚP.positive⁻¹ _ ⟩ + 1 / N ≤⟨ proj₂ (fast2-8-1a ∣ x ∣₂ (x≄0⇒pos∣x∣₂ x x≄0)) ((n ℕ.+ N) ℕ.* (N ℕ.* N)) (ℕP.≤-trans (ℕP.m≤n*m N {N} ℕP.0<1+n) (ℕP.m≤n*m (N ℕ.* N) {n ℕ.+ N} (subst (0 ℕ.<_) (ℕP.+-comm N n) ℕP.0<1+n))) ⟩ ℚ.∣ xₛ ∣ ∎ left : ℚ.∣ xₛ ∣ ≡ xₛ -> xₛ ℚ.> 0ℚᵘ ⊎ xₛ ℚ.< 0ℚᵘ left hyp = inj₁ (begin-strict 0ℚᵘ <⟨ 0<∣xₛ∣ ⟩ ℚ.∣ xₛ ∣ ≡⟨ hyp ⟩ xₛ ∎) right : ℚ.∣ xₛ ∣ ≡ ℚ.- xₛ -> xₛ ℚ.> 0ℚᵘ ⊎ xₛ ℚ.< 0ℚᵘ right hyp = inj₂ (begin-strict xₛ ≈⟨ ℚP.≃-sym (ℚP.neg-involutive xₛ) ⟩ ℚ.- (ℚ.- xₛ) ≡⟨ cong ℚ.-_ (sym hyp) ⟩ ℚ.- ℚ.∣ xₛ ∣ <⟨ ℚP.neg-mono-< 0<∣xₛ∣ ⟩ 0ℚᵘ ∎) {- Strangely enough, this function is EXTREMELY slow. It pretty much does not compute. But proving an instance of it in the definition of multiplicative inverse is very fast. Not sure why. -} -- ∣xₘ∣ ≥ N⁻¹ {- abstract inverse-helper : ∀ (x : ℝ) -> {x≄0 : x ≄ 0ℝ} -> ∀ (n : ℕ) -> {n≢0 : n ≢0} -> ℚ.∣ (ℚ.1/ seq x ((n ℕ.+ (Nₐ x {x≄0})) ℕ.* ((Nₐ x {x≄0}) ℕ.* (Nₐ x {x≄0})))) {not0-helper x {x≄0} n} ∣ ℚ.≤ + (Nₐ x {x≄0}) / 1 inverse-helper x {x≄0} (suc k₁) = begin ℚ.∣ xₛ⁻¹ ∣ ≈⟨ {!N!} {-{!ℚP.≃-trans (ℚP.≃-sym (ℚP.*-identityʳ ℚ.∣ xₛ⁻¹ ∣)) (ℚP.*-congˡ {ℚ.∣ xₛ⁻¹ ∣} (ℚP.≃-sym (ℚP.*-inverseʳ (+ 1 / N))))!}-} ⟩ ℚ.∣ xₛ⁻¹ ∣ ℚ.* ((+ 1 / N) ℚ.* (+ N / 1)) ≤⟨ {!!} ⟩ + N / 1 ∎ where open ℚP.≤-Reasoning n : ℕ n = suc k₁ N : ℕ N = Nₐ x {x≄0} xₛ : ℚᵘ xₛ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) xₛ≢0 : ℤ.∣ ↥ xₛ ∣ ≢0 xₛ≢0 = not0-helper x {x≄0} n xₛ⁻¹ : ℚᵘ xₛ⁻¹ = (ℚ.1/ seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N))) {xₛ≢0} helper : ℚ.∣ xₛ⁻¹ ∣ ℚ.* ℚ.∣ xₛ ∣ ℚ.≃ ℚ.1ℚᵘ helper = begin-equality ℚ.∣ xₛ⁻¹ ∣ ℚ.* ℚ.∣ xₛ ∣ ≈⟨ ℚP.≃-sym (ℚP.∣p*q∣≃∣p∣*∣q∣ xₛ⁻¹ xₛ) ⟩ ℚ.∣ xₛ⁻¹ ℚ.* xₛ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.*-inverseˡ xₛ {xₛ≢0}) ⟩ ℚ.1ℚᵘ ∎-} {- ∣x∣ > 0 ∣xₘ∣ ≥ N⁻¹ (m ≥ N) x ≄ 0 x⁻¹ = (x (N³))⁻¹ if n < N (x (n * N²))⁻¹ else x⁻¹ = (x ((n + N) * N²))⁻¹ x⁻¹ n with n <? N -} _⁻¹ : (x : ℝ) -> {x≄0 : x ≄ 0ℝ} -> ℝ seq ((x ⁻¹) {x≄0}) n = (ℚ.1/ xₛ) {not0-helper x {x≄0} n} where open ℚP.≤-Reasoning N : ℕ N = Nₐ x {x≄0} xₛ : ℚᵘ xₛ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) reg ((x ⁻¹) {x≄0}) (suc k₁) (suc k₂) = begin ℚ.∣ yₘ ℚ.- yₙ ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-cong (ℚP.≃-trans (ℚP.≃-sym (ℚP.*-identityʳ yₘ)) (ℚP.*-congˡ {yₘ} (ℚP.≃-sym (ℚP.*-inverseˡ xₙ {xₖ≢0 n})))) (ℚP.-‿cong (ℚP.≃-trans (ℚP.≃-sym (ℚP.*-identityʳ yₙ)) (ℚP.*-congˡ {yₙ} (ℚP.≃-sym (ℚP.*-inverseˡ xₘ {xₖ≢0 m})))))) ⟩ ℚ.∣ yₘ ℚ.* (yₙ ℚ.* xₙ) ℚ.- yₙ ℚ.* (yₘ ℚ.* xₘ) ∣ ≈⟨ ℚP.∣-∣-cong (ℚsolve 4 (λ xₘ xₙ yₘ yₙ -> yₘ ℚ:* (yₙ ℚ:* xₙ) ℚ:- yₙ ℚ:* (yₘ ℚ:* xₘ) ℚ:= yₘ ℚ:* yₙ ℚ:* (xₙ ℚ:- xₘ)) ℚP.≃-refl xₘ xₙ yₘ yₙ) ⟩ ℚ.∣ yₘ ℚ.* yₙ ℚ.* (xₙ ℚ.- xₘ) ∣ ≈⟨ ℚP.∣p*q∣≃∣p∣*∣q∣ (yₘ ℚ.* yₙ) (xₙ ℚ.- xₘ) ⟩ ℚ.∣ yₘ ℚ.* yₙ ∣ ℚ.* ℚ.∣ xₙ ℚ.- xₘ ∣ ≤⟨ ℚP.≤-trans (ℚP.*-monoʳ-≤-nonNeg {ℚ.∣ yₘ ℚ.* yₙ ∣} _ (reg x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) ((m ℕ.+ N) ℕ.* (N ℕ.* N)))) (ℚP.*-monoˡ-≤-nonNeg {+ 1 / ((n ℕ.+ N) ℕ.* (N ℕ.* N)) ℚ.+ + 1 / ((m ℕ.+ N) ℕ.* (N ℕ.* N))} _ ∣yₘ*yₙ∣≤N²) ⟩ (+ N / 1) ℚ.* (+ N / 1) ℚ.* ((+ 1 / ((n ℕ.+ N) ℕ.* (N ℕ.* N))) ℚ.+ (+ 1 / ((m ℕ.+ N) ℕ.* (N ℕ.* N)))) ≈⟨ ℚ.*≡* (solve 3 (λ m n N -> -- Function and details for solver ((N :* N) :* ((con (+ 1) :* ((m :+ N) :* (N :* N))) :+ (con (+ 1) :* ((n :+ N) :* (N :* N))))) :* ((m :+ N) :* (n :+ N)) := (con (+ 1) :* (n :+ N) :+ con (+ 1) :* (m :+ N)) :* (con (+ 1) :* con (+ 1) :* (((n :+ N) :* (N :* N)) :* ((m :+ N) :* (N :* N))))) _≡_.refl (+ m) (+ n) (+ N)) ⟩ (+ 1 / (m ℕ.+ N)) ℚ.+ (+ 1 / (n ℕ.+ N)) ≤⟨ ℚP.+-mono-≤ {+ 1 / (m ℕ.+ N)} {+ 1 / m} {+ 1 / (n ℕ.+ N)} {+ 1 / n} (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤m+n m N)))) (*≤* (ℤP.*-monoˡ-≤-nonNeg 1 (+≤+ (ℕP.m≤m+n n N)))) ⟩ (+ 1 / m) ℚ.+ (+ 1 / n) ∎ where open ℚP.≤-Reasoning open import Data.Integer.Solver as ℤ-Solver open ℤ-Solver.+-*-Solver open import Data.Rational.Unnormalised.Solver as ℚ-Solver open ℚ-Solver.+-*-Solver using () renaming ( solve to ℚsolve ; _:-_ to _ℚ:-_ ; _:*_ to _ℚ:*_ ; _:=_ to _ℚ:=_ ) N : ℕ N = Nₐ x {x≄0} m : ℕ m = suc k₁ n : ℕ n = suc k₂ xₘ : ℚᵘ xₘ = seq x ((m ℕ.+ N) ℕ.* (N ℕ.* N)) xₙ : ℚᵘ xₙ = seq x ((n ℕ.+ N) ℕ.* (N ℕ.* N)) xₖ≢0 : ∀ (k : ℕ) -> ℤ.∣ ↥ seq x ((k ℕ.+ N) ℕ.* (N ℕ.* N)) ∣ ≢0 xₖ≢0 k = not0-helper x {x≄0} k yₘ : ℚᵘ yₘ = (ℚ.1/ xₘ) {xₖ≢0 m} yₙ : ℚᵘ yₙ = (ℚ.1/ xₙ) {xₖ≢0 n} ∣yₖ∣≤N : ∀ (k : ℕ) -> ℚ.∣ (ℚ.1/ (seq x ((k ℕ.+ N) ℕ.* (N ℕ.* N)))) {not0-helper x {x≄0} k} ∣ ℚ.≤ + N / 1 ∣yₖ∣≤N k = begin ℚ.∣ yₖ ∣ ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.*-identityʳ ℚ.∣ yₖ ∣)) (ℚP.*-congˡ {ℚ.∣ yₖ ∣} (ℚP.≃-sym (ℚP.*-inverseʳ (+ 1 / N)))) ⟩ ℚ.∣ yₖ ∣ ℚ.* ((+ 1 / N) ℚ.* (+ N / 1)) ≤⟨ ℚP.*-monoʳ-≤-nonNeg {ℚ.∣ yₖ ∣} _ (ℚP.*-monoˡ-≤-nonNeg {+ N / 1} _ (proj₂ (fast2-8-1a ∣ x ∣₂ (x≄0⇒pos∣x∣₂ x x≄0)) ((k ℕ.+ N) ℕ.* (N ℕ.* N)) (ℕP.≤-trans (ℕP.m≤m*n N {N} ℕP.0<1+n) (ℕP.m≤n*m (N ℕ.* N) {k ℕ.+ N} (subst (0 ℕ.<_) (ℕP.+-comm N k) ℕP.0<1+n))))) ⟩ ℚ.∣ yₖ ∣ ℚ.* (ℚ.∣ xₖ ∣ ℚ.* (+ N / 1)) ≈⟨ ℚP.≃-trans (ℚP.≃-sym (ℚP.*-assoc ℚ.∣ yₖ ∣ ℚ.∣ xₖ ∣ (+ N / 1))) (ℚP.≃-sym (ℚP.*-congʳ {+ N / 1} (ℚP.∣p*q∣≃∣p∣*∣q∣ yₖ xₖ))) ⟩ ℚ.∣ yₖ ℚ.* xₖ ∣ ℚ.* (+ N / 1) ≈⟨ ℚP.≃-trans (ℚP.*-congʳ {+ N / 1} (ℚP.∣-∣-cong (ℚP.*-inverseˡ xₖ {xₖ≢0 k}))) (ℚP.*-identityˡ (+ N / 1)) ⟩ + N / 1 ∎ where xₖ : ℚᵘ xₖ = seq x ((k ℕ.+ N) ℕ.* (N ℕ.* N)) yₖ : ℚᵘ yₖ = (ℚ.1/ xₖ) {not0-helper x {x≄0} k} ∣yₘ*yₙ∣≤N² : ℚ.∣ yₘ ℚ.* yₙ ∣ ℚ.≤ (+ N / 1) ℚ.* (+ N / 1) ∣yₘ*yₙ∣≤N² = begin ℚ.∣ yₘ ℚ.* yₙ ∣ ≈⟨ ℚP.∣p*q∣≃∣p∣*∣q∣ yₘ yₙ ⟩ ℚ.∣ yₘ ∣ ℚ.* ℚ.∣ yₙ ∣ ≤⟨ ℚP.≤-trans (ℚP.*-monoˡ-≤-nonNeg {ℚ.∣ yₙ ∣} _ (∣yₖ∣≤N m)) (ℚP.*-monoʳ-≤-nonNeg {+ N / 1} _ (∣yₖ∣≤N n)) ⟩ (+ N / 1) ℚ.* (+ N / 1) ∎ {- DISCUSSION POINTS ON THE POSSIBILITY OF THE ℝ SOLVER ---------------------------------------------------------------------------------------------------------------------------------------------------------------- Obviously, we want the ring solver to work on ℝ. It would be extremely tedious to prove any interesting result later on without the ring solver. But there are some problems, at least right now, preventing it from working. First, note that the ring solvers generally use rings with decidable equality. But it actually CAN work without decidable equality. The equality can be so weak that it's not even slightly weakly decidable. As proof of concept, see the example below. -} {- sadDec : ∀ (x y : ℚᵘ) -> Maybe (x ℚ.≃ y) sadDec x y = nothing module ℚ-Sad-+-*-Solver = Solver ℚP.+-*-rawRing (ACR.fromCommutativeRing ℚP.+-*-commutativeRing) (ACR.-raw-almostCommutative⟶ (ACR.fromCommutativeRing ℚP.+-*-commutativeRing)) sadDec testing₁ : ∀ (x y z : ℚᵘ) -> ℚ.1ℚᵘ ℚ.* (x ℚ.+ y ℚ.- z ℚ.+ 0ℚᵘ) ℚ.≃ y ℚ.- (ℚ.- x ℚ.+ z) testing₁ x y z = solve 3 (λ x y z -> con ℚ.1ℚᵘ :* (x :+ y :- z :+ con 0ℚᵘ) := y :- (:- x :+ z)) ℚP.≃-refl x y z where open ℚ-Sad-+-*-Solver -} {- However, the same solution will NOT work on ℝ, at least for now, as shown below.-} {- ≃-weaklyDec : ∀ x y -> Maybe (x ≃ y) ≃-weaklyDec x y = nothing module ℝ-+-*-Solver = Solver +-*-rawRing (ACR.fromCommutativeRing +-*-commutativeRing) (ACR.-raw-almostCommutative⟶ (ACR.fromCommutativeRing +-*-commutativeRing)) ≃-weaklyDec testing₂ : ∀ x y z -> 1ℝ * (x + y - z + 0ℝ) ≃ y - (- x + z) testing₂ x y z = ? where open ℝ-+-*-Solver -} {- The problem is ≃-refl. For some reason, it's incapable of determining implicit arguments, even in trivial cases. For instance, 0ℝ ≃ 0ℝ must be proved using ≃-refl {0ℝ}. Excluding the implicit argument results in a constraint error, as shown below.-} {-sad0ℝ₁ : 0ℝ ≃ 0ℝ sad0ℝ₁ = ≃-refl sad0ℝ₂ : 0ℝ ≃ 0ℝ sad0ℝ₂ = ≃-refl {0ℝ} -} {- From the constraint error, I thought it was a problem with the definition of regularity in the definition of ℝ. In particular, the issue could be the implicit m ≢0 and n ≢0 arguments. But modifying the definition so that there are NO implicit arguments still doesn't work. I am unsure what the cause is. So, how do we let ℝ's solver work with reflexivity proofs? Here are some proposed attempts: (1) Prove the ring equality at the sequence level instead. This means, to prove that (x + y) - z ≃ y - (z - x), for instance, we prove it by definition of ≃ instead of by using the various ring properties of ℝ. So our proof would need to be of the form ∣ (x₄ₘ + y₄ₘ - z₂ₘ) - (y₂ₘ - (z₄ₘ - x₄ₘ)) ∣ ≤ 2m⁻¹ (m∈ℤ⁺) and we would use the ℚ ring solver to assist with it. This could be shorter, in some instances, than applying a bunch of ring properties of ℝ. But it most likely becomes intractable when we get more difficult equalities and, for instance, when the ring equality includes multiplication (since the canonical bounds would interfere). (2) Prove the ring equality for ALL rings and then apply it to ℝ. It seems to work, as shown below in testing₃, but it's very tedious and seems prone to fail. (3) The final option I've come up with is to wait for the next Agda release, which looks to be right around the corner. I've had this "constraints that seem trivial but Agda won't solve" issue a few times now, and it was solved by an update twice (the other time there was an easy function I could make to fix it. That doesn't seem to be the case here). -} {- testing₃ : ∀ x y z -> x + y + z ≃ y + (z + x) testing₃ = lem (+-*-commutativeRing) where open CommutativeRing using (Carrier; 0#; 1#; _≈_) renaming ( _+_ to _R+_ ; _-_ to _R-_ ; _*_ to _R*_ ; -_ to R-_ ) {- The notation is a bit ugly, but this says x + y - z + 0 = 1 * (y - (z - x)). -} lem : ∀ (R : CommutativeRing 0ℓ 0ℓ) -> ∀ (x y z : Carrier R) -> (_≈_ R) ((_R+_ R) ((_R+_ R) x y) z) ((_R+_ R) y ((_R+_ R) z x)) lem R x y z = solve 3 (λ x y z -> x :+ y :+ z := y :+ (z :+ x)) R-refl x y z where R-weaklyDec : ∀ x y -> Maybe ((R ≈ x) y) R-weaklyDec x y = nothing rawRing : RawRing 0ℓ 0ℓ rawRing = {!!} R-refl : Reflexive (_≈_ R) R-refl = {!!} module R-Solver = Solver rawRing (ACR.fromCommutativeRing R) (ACR.-raw-almostCommutative⟶ (ACR.fromCommutativeRing R)) R-weaklyDec open R-Solver UPDATE It seems (3) won't fix the problem. I tried the newest developmental release as of June 7th, 2021, and it didn't work. Solution (2) might be promising if I can make some sort of function that says something for general rings R like "If ϕᴿ(x₁,...,xₙ) = ψᴿ(x₁,...,xₙ) for all xᵢ∈R and for all rings R, then ϕ̂(x₁,...,xₙ) = ψ(x₁,...,xₙ) for all xᵢ∈ℝ. That might save me the trouble of declaring a general ring solver and whatnot over and over again. Not sure if this is possible, though. -} {- If ϕ(x) = ψ(x) for all x∈R for all rings R, then ϕ(x) = ψ(x) for all x∈ℝ." -} {- open CommutativeRing {{...}} using (Carrier; 0#; 1#; _≈_) renaming ( _+_ to _R+_ ; _-_ to _R-_ ; _*_ to _R*_ ; -_ to R-_ ) -} -- This function and its counterparts are probably useless since we'd have to prove the -- middle section anyway, which we could then directly apply in our proof instead of wasting our -- time with this function. {-solveMe : (ϕ ψ : (R : CommutativeRing 0ℓ 0ℓ) -> (x y z : Carrier) -> Carrier R) -> (∀ (R : CommutativeRing 0ℓ 0ℓ) -> ∀ (x y z : Carrier R) -> (_≈_ R) (ϕ R x y z) (ψ R x y z)) -> ∀ (x y z : ℝ) -> ϕ +-*-commutativeRing x y z ≃ ψ +-*-commutativeRing x y z solveMe ϕ ψ hyp x y z = hyp +-*-commutativeRing x y z-} {- R-Solver : CommutativeRing 0ℓ 0ℓ -> {!!} R-Solver R = {!+-*-Solver!} where module +-*-Solver = Solver {!!} {!!} {!!} {!!} open +-*-Solver test : ∀ {{R : CommutativeRing 0ℓ 0ℓ}} -> ∀ (x y : Carrier) -> x R+ y ≈ (y R+ x) test x y = {!!} where module +-*-Solver = Solver {!!} {!!} {!!} {!!} -} 0test : 0ℝ ≃ - 0ℝ 0test = ≃-refl {0ℝ} data _≃'_ : Rel ℝ 0ℓ where *≃* : ∀ {x y : ℝ} -> (∀ (n : ℕ) -> {n≢0 : n ≢0} -> ℚ.∣ seq x n ℚ.- seq y n ∣ ℚ.≤ (+ 2 / n) {n≢0}) -> x ≃' y ≃'-refl : Reflexive _≃'_ ≃'-refl {x} = *≃* λ { (suc k₁) → let n = suc k₁ in begin ℚ.∣ seq x n ℚ.- seq x n ∣ ≈⟨ ℚP.∣-∣-cong (ℚP.+-inverseʳ (seq x n)) ⟩ 0ℚᵘ ≤⟨ ℚP.∣p∣≃p⇒0≤p ℚP.≃-refl ⟩ + 2 / n ∎} where open ℚP.≤-Reasoning test0 : ∀ p -> - (p ⋆) ≃ (ℚ.- p) ⋆ test0 p = ≃-refl { - (p ⋆)} test3 : 0ℝ ≃ - 0ℝ test3 = ≃-refl {0ℝ} test2 : seq 0ℝ ≡ seq (- 0ℝ) test2 = _≡_.refl test4 : reg 0ℝ ≡ reg (- 0ℝ) test4 = {!refl!} alpha : ¬ (0ℝ ≡ - 0ℝ) alpha hyp = {!!} gamma : 0ℝ ≃ - 0ℝ -> 0ℝ ≡ - 0ℝ gamma 0≃-0 = {!!} test1 : ∀ p -> (- (p ⋆)) ≃' ((ℚ.- p) ⋆) test1 p = {!≃'-refl {(ℚ.- p) ⋆}!} {- (tⁿ) diverges iff ∃ε>0 ∀k∈ℕ ∃m,n≥k (∣tᵐ - tⁿ∣ ≥ ε) t > 1 ε = 1/10 Let k∈ℕ. -}
{ "alphanum_fraction": 0.3358288405, "avg_line_length": 47.1035130062, "ext": "agda", "hexsha": "100eedacc5c506b03d1c982f5b0177e173dbf582", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "z-murray/AnalysisAgda", "max_forks_repo_path": "Reals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "z-murray/AnalysisAgda", "max_issues_repo_path": "Reals.agda", "max_line_length": 174, "max_stars_count": null, "max_stars_repo_head_hexsha": "6fbaca08b1d63b5765d184f6284fb0e58c9f5e52", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "z-murray/AnalysisAgda", "max_stars_repo_path": "Reals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 83794, "size": 175649 }
-- 2010-09-29 Andreas, mail to Ulf module ExistentialsProjections where postulate .irrelevant : {A : Set} -> .A -> A record Exists (A : Set) (P : A -> Set) : Set where constructor exists field .fwitness : A fcontent : P fwitness .witness : forall {A P} -> (x : Exists A P) -> A witness (exists a p) = irrelevant a -- second projection out of existential is breaking abstraction, so should be forbidden content : forall {A P} -> (x : Exists A P) -> P (witness x) content (exists a p) = p -- should not typecheck!! {- We have p : P a != P (witness (exists a p)) = P (irrelevant a) because a != irrelevant a. -}
{ "alphanum_fraction": 0.6444444444, "avg_line_length": 25.2, "ext": "agda", "hexsha": "d48d3ccd84a465164a834b13c40778a9438e5d27", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ExistentialsProjections.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ExistentialsProjections.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ExistentialsProjections.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 194, "size": 630 }
------------------------------------------------------------------------ -- Some definitions related to and properties of finite sets ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Fin {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Logical-equivalence using (_⇔_) open import Prelude hiding (id) open import Bijection eq as Bijection using (_↔_; module _↔_) open Derived-definitions-and-properties eq open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq as F hiding (_∘_; Distinct↔≢) open import H-level eq hiding (⌞_⌟) open import H-level.Closure eq open import List eq open import Nat eq as Nat using (_≤_; ≤-refl; ≤-step; _<_; pred) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Some bijections relating Fin and ∃ ∃-Fin-zero : ∀ {p ℓ} (P : Fin zero → Type p) → ∃ P ↔ ⊥ {ℓ = ℓ} ∃-Fin-zero P = Σ-left-zero ∃-Fin-suc : ∀ {p n} (P : Fin (suc n) → Type p) → ∃ P ↔ P fzero ⊎ ∃ (P ∘ fsuc) ∃-Fin-suc P = ∃ P ↔⟨ ∃-⊎-distrib-right ⟩ ∃ (P ∘ inj₁) ⊎ ∃ (P ∘ inj₂) ↔⟨ Σ-left-identity ⊎-cong id ⟩□ P (inj₁ tt) ⊎ ∃ (P ∘ inj₂) □ ------------------------------------------------------------------------ -- Fin n is a set abstract Fin-set : ∀ n → Is-set (Fin n) Fin-set zero = mono₁ 1 ⊥-propositional Fin-set (suc n) = ⊎-closure 0 (mono 0≤2 ⊤-contractible) (Fin-set n) where 0≤2 : 0 ≤ 2 0≤2 = ≤-step (≤-step ≤-refl) ------------------------------------------------------------------------ -- If two nonempty finite sets are isomorphic, then we can remove one -- element from each and get new isomorphic finite sets private well-behaved : ∀ {m n} (f : Fin (1 + m) ↔ Fin (1 + n)) → Well-behaved (_↔_.to f) well-behaved f {b = i} eq₁ eq₂ = ⊎.inj₁≢inj₂ ( fzero ≡⟨ sym $ to-from f eq₂ ⟩ from f fzero ≡⟨ to-from f eq₁ ⟩∎ fsuc i ∎) where open _↔_ cancel-suc : ∀ {m n} → Fin (1 + m) ↔ Fin (1 + n) → Fin m ↔ Fin n cancel-suc f = ⊎-left-cancellative f (well-behaved f) (well-behaved $ inverse f) -- In fact, we can do it in such a way that, if the input bijection -- relates elements of two lists with equal heads, then the output -- bijection relates elements of the tails of the lists. -- -- xs And ys Are-related-by f is inhabited if the indices of xs and ys -- which are related by f point to equal elements. infix 4 _And_Are-related-by_ _And_Are-related-by_ : ∀ {a} {A : Type a} (xs ys : List A) → Fin (length xs) ↔ Fin (length ys) → Type a xs And ys Are-related-by f = ∀ i → index xs i ≡ index ys (_↔_.to f i) abstract -- The tails are related. cancel-suc-preserves-relatedness : ∀ {a} {A : Type a} (x : A) xs ys (f : Fin (length (x ∷ xs)) ↔ Fin (length (x ∷ ys))) → x ∷ xs And x ∷ ys Are-related-by f → xs And ys Are-related-by cancel-suc f cancel-suc-preserves-relatedness x xs ys f related = helper where open _↔_ f helper : xs And ys Are-related-by cancel-suc f helper i with inspect (to (fsuc i)) | related (fsuc i) helper i | fsuc k , eq₁ | hyp₁ = index xs i ≡⟨ hyp₁ ⟩ index (x ∷ ys) (to (fsuc i)) ≡⟨ cong (index (x ∷ ys)) eq₁ ⟩ index (x ∷ ys) (fsuc k) ≡⟨ refl _ ⟩∎ index ys k ∎ helper i | fzero , eq₁ | hyp₁ with inspect (to (fzero)) | related (fzero) helper i | fzero , eq₁ | hyp₁ | fsuc j , eq₂ | hyp₂ = index xs i ≡⟨ hyp₁ ⟩ index (x ∷ ys) (to (fsuc i)) ≡⟨ cong (index (x ∷ ys)) eq₁ ⟩ index (x ∷ ys) (fzero) ≡⟨ refl _ ⟩ x ≡⟨ hyp₂ ⟩ index (x ∷ ys) (to (fzero)) ≡⟨ cong (index (x ∷ ys)) eq₂ ⟩ index (x ∷ ys) (fsuc j) ≡⟨ refl _ ⟩∎ index ys j ∎ helper i | fzero , eq₁ | hyp₁ | fzero , eq₂ | hyp₂ = ⊥-elim $ well-behaved f eq₁ eq₂ -- By using cancel-suc we can show that finite sets are isomorphic iff -- they have equal size. isomorphic-same-size : ∀ {m n} → (Fin m ↔ Fin n) ⇔ m ≡ n isomorphic-same-size {m} {n} = record { to = to m n ; from = λ m≡n → subst (λ n → Fin m ↔ Fin n) m≡n id } where abstract to : ∀ m n → (Fin m ↔ Fin n) → m ≡ n to zero zero _ = refl _ to (suc m) (suc n) 1+m↔1+n = cong suc $ to m n $ cancel-suc 1+m↔1+n to zero (suc n) 0↔1+n = ⊥-elim $ _↔_.from 0↔1+n fzero to (suc m) zero 1+m↔0 = ⊥-elim $ _↔_.to 1+m↔0 fzero ------------------------------------------------------------------------ -- The natural number corresponding to a value in Fin n -- The underlying natural number. ⌞_⌟ : ∀ {n} → Fin n → ℕ ⌞_⌟ {n = zero} () ⌞_⌟ {n = suc _} fzero = zero ⌞_⌟ {n = suc _} (fsuc i) = suc ⌞ i ⌟ -- Use of subst Fin does not change the underlying natural number. ⌞subst⌟ : ∀ {m n} (p : m ≡ n) (i : Fin m) → ⌞ subst Fin p i ⌟ ≡ ⌞ i ⌟ ⌞subst⌟ {m} p i = ⌞ subst Fin p i ⌟ ≡⟨ cong (uncurry λ n p → ⌞ subst Fin p i ⌟) (Σ-≡,≡→≡ (sym p) ( subst (m ≡_) (sym p) p ≡⟨ sym trans-subst ⟩ trans p (sym p) ≡⟨ trans-symʳ p ⟩∎ refl m ∎)) ⟩ ⌞ subst Fin (refl m) i ⌟ ≡⟨ cong ⌞_⌟ (subst-refl _ _) ⟩∎ ⌞ i ⌟ ∎ -- If the underlying natural numbers are equal, then the values in -- Fin n are equal. cancel-⌞⌟ : ∀ {n} {i j : Fin n} → ⌞ i ⌟ ≡ ⌞ j ⌟ → i ≡ j cancel-⌞⌟ {zero} {} cancel-⌞⌟ {suc _} {fzero} {fzero} _ = refl _ cancel-⌞⌟ {suc _} {fzero} {fsuc _} 0≡+ = ⊥-elim (Nat.0≢+ 0≡+) cancel-⌞⌟ {suc _} {fsuc _} {fzero} +≡0 = ⊥-elim (Nat.0≢+ (sym +≡0)) cancel-⌞⌟ {suc _} {fsuc _} {fsuc _} +≡+ = cong fsuc (cancel-⌞⌟ (Nat.cancel-suc +≡+)) -- Tries to convert from natural numbers. from-ℕ′ : ∀ {m} (n : ℕ) → m ≤ n ⊎ ∃ λ (i : Fin m) → ⌞ i ⌟ ≡ n from-ℕ′ {zero} _ = inj₁ (Nat.zero≤ _) from-ℕ′ {suc m} zero = inj₂ (fzero , refl _) from-ℕ′ {suc m} (suc n) = ⊎-map Nat.suc≤suc (Σ-map fsuc (cong suc)) (from-ℕ′ {m} n) from-ℕ : ∀ {m} (n : ℕ) → m ≤ n ⊎ Fin m from-ℕ = ⊎-map id proj₁ ∘ from-ℕ′ -- Values of type Fin n can be seen as natural numbers smaller than n. Fin↔< : ∀ n → Fin n ↔ ∃ λ m → m < n Fin↔< zero = ⊥ ↝⟨ inverse ×-right-zero ⟩ ℕ × ⊥ ↔⟨ ∃-cong (λ _ → inverse <zero↔) ⟩□ (∃ λ m → m < zero) □ Fin↔< (suc n) = ⊤ ⊎ Fin n ↝⟨ inverse (_⇔_.to contractible⇔↔⊤ (singleton-contractible 0)) ⊎-cong Fin↔< n ⟩ (∃ λ m → m ≡ 0) ⊎ (∃ λ m → m < n) ↝⟨ id ⊎-cong ∃<↔∃0<×≤ ⟩ (∃ λ m → m ≡ 0) ⊎ (∃ λ m → 0 < m × m ≤ n) ↝⟨ inverse ∃-⊎-distrib-left ⟩ (∃ λ m → m ≡ 0 ⊎ 0 < m × m ≤ n) ↝⟨ ∃-cong (λ _ → inverse ≤↔≡0⊎0<×≤) ⟩ (∃ λ m → m ≤ n) ↝⟨ ∃-cong (λ _ → inverse suc≤suc↔) ⟩ (∃ λ m → suc m ≤ suc n) ↔⟨⟩ (∃ λ m → m < suc n) □ -- The forward direction of Fin↔< gives the underlying natural number. Fin↔<≡⌞⌟ : ∀ {n} (i : Fin n) → proj₁ (_↔_.to (Fin↔< n) i) ≡ ⌞ i ⌟ Fin↔<≡⌞⌟ {n = zero} () Fin↔<≡⌞⌟ {n = suc _} fzero = refl _ Fin↔<≡⌞⌟ {n = suc _} (fsuc i) = cong suc (Fin↔<≡⌞⌟ i) -- The largest possible number. largest : ∀ n → Fin (suc n) largest zero = fzero largest (suc n) = fsuc (largest n) largest-correct : ∀ n → ⌞ largest n ⌟ ≡ n largest-correct zero = refl _ largest-correct (suc n) = cong suc (largest-correct n) -- The largest possible number can be expressed using Fin↔<. largest≡Fin↔< : ∀ {n} → largest n ≡ _↔_.from (Fin↔< (suc n)) (n , ≤-refl) largest≡Fin↔< {n} = largest n ≡⟨ sym (_↔_.left-inverse-of (Fin↔< (suc n)) _) ⟩ _↔_.from (Fin↔< (suc n)) (_↔_.to (Fin↔< (suc n)) (largest n)) ≡⟨ cong (_↔_.from (Fin↔< (suc n))) (Σ-≡,≡→≡ (Fin↔<≡⌞⌟ (largest n)) (refl _)) ⟩ _↔_.from (Fin↔< (suc n)) (⌞ largest n ⌟ , p₁) ≡⟨ cong (_↔_.from (Fin↔< (suc n))) (Σ-≡,≡→≡ (largest-correct n) (≤-propositional p₂ ≤-refl)) ⟩∎ _↔_.from (Fin↔< (suc n)) (n , ≤-refl) ∎ where p₁ = subst (_< suc n) (Fin↔<≡⌞⌟ (largest n)) (proj₂ (_↔_.to (Fin↔< (suc n)) (largest n))) p₂ = subst (_< suc n) (largest-correct n) p₁ ------------------------------------------------------------------------ -- Weakening -- Single-step weakening. weaken₁ : ∀ {n} → Fin n → Fin (suc n) weaken₁ {zero} () weaken₁ {suc _} fzero = fzero weaken₁ {suc _} (fsuc i) = fsuc (weaken₁ i) weaken₁-correct : ∀ {n} (i : Fin n) → ⌞ weaken₁ i ⌟ ≡ ⌞ i ⌟ weaken₁-correct {zero} () weaken₁-correct {suc _} fzero = refl _ weaken₁-correct {suc _} (fsuc i) = cong suc (weaken₁-correct i) -- Multiple-step weakening. weaken : ∀ {m n} → m ≤ n → Fin m → Fin n weaken (Nat.≤-refl′ m≡n) = subst Fin m≡n weaken (Nat.≤-step′ m≤k 1+k≡n) = subst Fin 1+k≡n ∘ weaken₁ ∘ weaken m≤k weaken-correct : ∀ {m n} (m≤n : m ≤ n) (i : Fin m) → ⌞ weaken m≤n i ⌟ ≡ ⌞ i ⌟ weaken-correct (Nat.≤-refl′ m≡n) i = ⌞ subst Fin m≡n i ⌟ ≡⟨ ⌞subst⌟ _ _ ⟩∎ ⌞ i ⌟ ∎ weaken-correct (Nat.≤-step′ m≤k 1+k≡n) i = ⌞ subst Fin 1+k≡n (weaken₁ (weaken m≤k i)) ⌟ ≡⟨ ⌞subst⌟ _ _ ⟩ ⌞ weaken₁ (weaken m≤k i) ⌟ ≡⟨ weaken₁-correct _ ⟩ ⌞ weaken m≤k i ⌟ ≡⟨ weaken-correct m≤k _ ⟩∎ ⌞ i ⌟ ∎ ------------------------------------------------------------------------ -- Predecessor and successor -- Predecessor. predᶠ : ∀ {n} → Fin n → Fin n predᶠ {n = zero} () predᶠ {n = suc _} fzero = fzero predᶠ {n = suc _} (fsuc i) = weaken₁ i predᶠ-correct : ∀ {n} (i : Fin n) → ⌞ predᶠ i ⌟ ≡ Nat.pred ⌞ i ⌟ predᶠ-correct {n = zero} () predᶠ-correct {n = suc _} fzero = refl _ predᶠ-correct {n = suc _} (fsuc i) = weaken₁-correct i -- Successor. sucᶠ : ∀ {n} (i : Fin (suc n)) → i ≡ largest n ⊎ i ≢ largest n × ∃ λ (j : Fin (suc n)) → ⌞ j ⌟ ≡ suc ⌞ i ⌟ sucᶠ {zero} fzero = inj₁ (refl _) sucᶠ {zero} (fsuc ()) sucᶠ {suc _} fzero = inj₂ (⊎.inj₁≢inj₂ , fsuc fzero , refl _) sucᶠ {suc _} (fsuc i) = ⊎-map (cong fsuc) (Σ-map (_∘ ⊎.cancel-inj₂) (Σ-map fsuc (cong suc))) (sucᶠ i) ------------------------------------------------------------------------ -- Arithmetic -- Addition. _+ᶠ_ : ∀ {m n} → Fin m → Fin n → Fin (m + n) _+ᶠ_ {m = zero} () _+ᶠ_ {m = suc m} fzero j = weaken (Nat.m≤n+m _ (suc m)) j _+ᶠ_ {m = suc _} (fsuc i) j = fsuc (i +ᶠ j) +ᶠ-correct : ∀ {m n} (i : Fin m) (j : Fin n) → ⌞ i +ᶠ j ⌟ ≡ ⌞ i ⌟ + ⌞ j ⌟ +ᶠ-correct {m = zero} () +ᶠ-correct {m = suc m} fzero j = weaken-correct (Nat.m≤n+m _ (suc m)) _ +ᶠ-correct {m = suc _} (fsuc i) j = cong suc (+ᶠ-correct i j) ------------------------------------------------------------------------ -- "Type arithmetic" using Fin -- Taking the disjoint union of two finite sets amounts to the same -- thing as adding the sizes. Fin⊎Fin↔Fin+ : ∀ m n → Fin m ⊎ Fin n ↔ Fin (m + n) Fin⊎Fin↔Fin+ zero n = Fin 0 ⊎ Fin n ↝⟨ id ⟩ ⊥ ⊎ Fin n ↝⟨ ⊎-left-identity ⟩ Fin n ↝⟨ id ⟩□ Fin (0 + n) □ Fin⊎Fin↔Fin+ (suc m) n = Fin (suc m) ⊎ Fin n ↝⟨ id ⟩ (⊤ ⊎ Fin m) ⊎ Fin n ↝⟨ inverse ⊎-assoc ⟩ ⊤ ⊎ (Fin m ⊎ Fin n) ↝⟨ id ⊎-cong Fin⊎Fin↔Fin+ m n ⟩ ⊤ ⊎ Fin (m + n) ↝⟨ id ⟩ Fin (suc (m + n)) ↝⟨ id ⟩□ Fin (suc m + n) □ -- Taking the product of two finite sets amounts to the same thing as -- multiplying the sizes. Fin×Fin↔Fin* : ∀ m n → Fin m × Fin n ↔ Fin (m * n) Fin×Fin↔Fin* zero n = Fin 0 × Fin n ↝⟨ id ⟩ ⊥ × Fin n ↝⟨ ×-left-zero ⟩ ⊥ ↝⟨ id ⟩□ Fin 0 □ Fin×Fin↔Fin* (suc m) n = Fin (suc m) × Fin n ↝⟨ id ⟩ (⊤ ⊎ Fin m) × Fin n ↝⟨ ∃-⊎-distrib-right ⟩ ⊤ × Fin n ⊎ Fin m × Fin n ↝⟨ ×-left-identity ⊎-cong Fin×Fin↔Fin* m n ⟩ Fin n ⊎ Fin (m * n) ↝⟨ Fin⊎Fin↔Fin+ _ _ ⟩ Fin (n + m * n) ↝⟨ id ⟩□ Fin (suc m * n) □ -- Forming the function space between two finite sets amounts to the -- same thing as raising one size to the power of the other (assuming -- extensionality). [Fin→Fin]↔Fin^ : Extensionality (# 0) (# 0) → ∀ m n → (Fin m → Fin n) ↔ Fin (n ^ m) [Fin→Fin]↔Fin^ ext zero n = (Fin 0 → Fin n) ↝⟨ id ⟩ (⊥ → Fin n) ↝⟨ Π⊥↔⊤ ext ⟩ ⊤ ↝⟨ inverse ⊎-right-identity ⟩□ Fin 1 □ [Fin→Fin]↔Fin^ ext (suc m) n = (Fin (suc m) → Fin n) ↝⟨ id ⟩ (⊤ ⊎ Fin m → Fin n) ↝⟨ Π⊎↔Π×Π ext ⟩ (⊤ → Fin n) × (Fin m → Fin n) ↝⟨ Π-left-identity ×-cong [Fin→Fin]↔Fin^ ext m n ⟩ Fin n × Fin (n ^ m) ↝⟨ Fin×Fin↔Fin* _ _ ⟩ Fin (n * n ^ m) ↝⟨ id ⟩□ Fin (n ^ suc m) □ -- Automorphisms on Fin n are isomorphic to Fin (n !) (assuming -- extensionality). [Fin↔Fin]↔Fin! : Extensionality (# 0) (# 0) → ∀ n → (Fin n ↔ Fin n) ↔ Fin (n !) [Fin↔Fin]↔Fin! ext zero = Fin 0 ↔ Fin 0 ↝⟨ Eq.↔↔≃ ext (Fin-set 0) ⟩ Fin 0 ≃ Fin 0 ↝⟨ id ⟩ ⊥ ≃ ⊥ ↔⟨ ≃⊥≃¬ ext ⟩ ¬ ⊥ ↝⟨ ¬⊥↔⊤ ext ⟩ ⊤ ↝⟨ inverse ⊎-right-identity ⟩ ⊤ ⊎ ⊥ ↝⟨ id ⟩□ Fin 1 □ [Fin↔Fin]↔Fin! ext (suc n) = Fin (suc n) ↔ Fin (suc n) ↝⟨ [⊤⊎↔⊤⊎]↔[⊤⊎×↔] Fin._≟_ ext ⟩ Fin (suc n) × (Fin n ↔ Fin n) ↝⟨ id ×-cong [Fin↔Fin]↔Fin! ext n ⟩ Fin (suc n) × Fin (n !) ↝⟨ Fin×Fin↔Fin* _ _ ⟩□ Fin (suc n !) □ -- A variant of the previous property. [Fin≡Fin]↔Fin! : Extensionality (# 0) (# 0) → Univalence (# 0) → ∀ n → (Fin n ≡ Fin n) ↔ Fin (n !) [Fin≡Fin]↔Fin! ext univ n = Fin n ≡ Fin n ↔⟨ ≡≃≃ univ ⟩ Fin n ≃ Fin n ↝⟨ inverse $ Eq.↔↔≃ ext (Fin-set n) ⟩ Fin n ↔ Fin n ↝⟨ [Fin↔Fin]↔Fin! ext n ⟩□ Fin (n !) □ ------------------------------------------------------------------------ -- Inequality and a related isomorphism -- Inequality. Distinct : ∀ {n} → Fin n → Fin n → Type Distinct i j = Nat.Distinct ⌞ i ⌟ ⌞ j ⌟ -- This definition of inequality is pointwise logically equivalent to -- _≢_, and in the presence of extensionality the two definitions are -- pointwise isomorphic. Distinct↔≢ : ∀ {k n} {i j : Fin n} → Extensionality? ⌊ k ⌋-sym lzero lzero → Distinct i j ↝[ ⌊ k ⌋-sym ] i ≢ j Distinct↔≢ {i = i} {j} ext = Distinct i j ↔⟨⟩ Nat.Distinct ⌞ i ⌟ ⌞ j ⌟ ↝⟨ F.Distinct↔≢ ext ⟩ ⌞ i ⌟ ≢ ⌞ j ⌟ ↝⟨ generalise-ext?-prop ≢⇔≢ ¬-propositional ¬-propositional ext ⟩□ i ≢ j □ where ≢⇔≢ : ⌞ i ⌟ ≢ ⌞ j ⌟ ⇔ i ≢ j ≢⇔≢ = record { to = _∘ cong ⌞_⌟; from = _∘ cancel-⌞⌟ } -- For every i : Fin n there is a bijection between Fin (pred n) and -- numbers in Fin n distinct from i. -- -- When n is positive the forward direction of this bijection -- corresponds to the function "thin" from McBride's "First-order -- unification by structural recursion", with an added inequality -- proof, and the other direction is a total variant of "thick". Fin↔Fin+≢ : ∀ {n} (i : Fin n) → Fin (pred n) ↔ ∃ λ (j : Fin n) → Distinct j i Fin↔Fin+≢ {suc n} fzero = Fin n ↝⟨ inverse ⊎-left-identity ⟩ ⊥ ⊎ Fin n ↝⟨ inverse $ id ⊎-cong ×-right-identity ⟩ ⊥ ⊎ Fin n × ⊤ ↝⟨ inverse $ ∃-Fin-suc _ ⟩□ (∃ λ (j : Fin (suc n)) → Distinct j fzero) □ Fin↔Fin+≢ {suc (suc n)} (fsuc i) = Fin (1 + n) ↔⟨⟩ ⊤ ⊎ Fin n ↝⟨ id ⊎-cong Fin↔Fin+≢ i ⟩ ⊤ ⊎ (∃ λ (j : Fin (1 + n)) → Distinct j i) ↔⟨ inverse $ ∃-Fin-suc _ ⟩□ (∃ λ (j : Fin (2 + n)) → Distinct j (fsuc i)) □ Fin↔Fin+≢ {zero} () Fin↔Fin+≢ {suc zero} (fsuc ())
{ "alphanum_fraction": 0.4743744061, "avg_line_length": 35.6320541761, "ext": "agda", "hexsha": "7522df8ccb5a708b1c1aaecd41cd0d69f4483e58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Fin.agda", "max_line_length": 143, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6727, "size": 15785 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by total orders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.TotalOrder {t₁ t₂ t₃} (T : TotalOrder t₁ t₂ t₃) where open Relation.Binary.TotalOrder T open import Relation.Binary.Consequences decTotalOrder : Decidable _≈_ → DecTotalOrder _ _ _ decTotalOrder ≟ = record { isDecTotalOrder = record { isTotalOrder = isTotalOrder ; _≟_ = ≟ ; _≤?_ = total+dec⟶dec reflexive antisym total ≟ } }
{ "alphanum_fraction": 0.5285714286, "avg_line_length": 28, "ext": "agda", "hexsha": "9e7bfe7647a4e743975929d548f800a7287e2e71", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/TotalOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/TotalOrder.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/TotalOrder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 160, "size": 700 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.HLevel open import HoTT.HLevel.Truncate open import HoTT.Logic open import HoTT.Identity open import HoTT.Identity.Identity open import HoTT.Identity.Coproduct open import HoTT.Identity.Sigma open import HoTT.Identity.Pi open import HoTT.Identity.Universe open import HoTT.Equivalence open import HoTT.Equivalence.Lift open import HoTT.Sigma.Transport module HoTT.Exercises.Chapter3 where module Exercise1 {i} {A B : 𝒰 i} (e : A ≃ B) (A-set : isSet A) where □ : isSet B □ {x} {y} p q = ap⁻¹ (ap≃ (e ⁻¹ₑ) x y) (A-set (ap g p) (ap g q)) where open Iso (eqv→iso e) module Exercise2 {i} {A B : 𝒰 i} (A-set : isSet A) (B-set : isSet B) where □ : isSet (A + B) □ {inl x} {inl y} p q = ap⁻¹ =+-equiv (ap lift (A-set (lower (=+-elim p)) (lower (=+-elim q)))) □ {inl x} {inr y} p q = 𝟎-rec (=+-elim p) □ {inr x} {inl y} p q = 𝟎-rec (=+-elim p) □ {inr x} {inr y} p q = ap⁻¹ =+-equiv (ap lift (B-set (lower (=+-elim p)) (lower (=+-elim q)))) module Exercise3 {i} {A : 𝒰 i} (A-set : isSet A) {j} {B : A → 𝒰 j} (B-set : {x : A} → isSet (B x)) where □ : isSet (Σ A B) □ {x = x@(x₁ , x₂)} {y = y@(y₁ , y₂)} p q = ap⁻¹ =Σ-equiv (lemma (pr₁ =Σ-equiv p) (pr₁ =Σ-equiv q)) where lemma : (p q : Σ (x₁ == y₁) λ p₁ → (transport B p₁ x₂ == y₂)) → p == q lemma (p₁ , p₂) (q₁ , q₂) = pair⁼ (r₁ , r₂) where r₁ = A-set p₁ q₁ r₂ = B-set (transport _ r₁ p₂) q₂ module Exercise4 {i} {A : 𝒰 i} where _ : isProp A → isContr (A → A) _ = λ A-prop → id , λ f → funext λ x → A-prop x (f x) _ : isContr (A → A) → isProp A _ = λ where (f , contr) x y → happly (contr (const x) ⁻¹ ∙ contr (const y)) x module Exercise5 {i} {A : 𝒰 i} where open import HoTT.Pi.Transport open import HoTT.Sigma.Transport _ : isProp A ≃ (A → isContr A) _ = f , qinv→isequiv (g , η , ε) where f : isProp A → (A → isContr A) f A-prop x = x , A-prop x g : (A → isContr A) → isProp A g h x y = let contr = pr₂ (h x) in contr x ⁻¹ ∙ contr y η : g ∘ f ~ id η _ = isProp-prop _ _ ε : f ∘ g ~ id ε h = funext λ _ → isContr-prop _ _ module Exercise6 {i} {A : 𝒰 i} where instance LEM-prop : ⦃ hlevel 1 A ⦄ → hlevel 1 (A + ¬ A) LEM-prop = isProp→hlevel1 λ where (inl a) (inl a') → ap inl center (inl a) (inr f) → 𝟎-rec (f a) (inr f) (inl b') → 𝟎-rec (f b') (inr f) (inr f') → ap inr center module Exercise7 {i} {A : 𝒰 i} {A-prop : isProp A} {j} {B : 𝒰 j} {B-prop : isProp B} where □ : ¬ (A × B) → isProp (A + B) □ f = λ where (inl x) (inl y) → ap inl (A-prop _ _) (inl x) (inr y) → 𝟎-rec (f (x , y)) (inr x) (inl y) → 𝟎-rec (f (y , x)) (inr x) (inr y) → ap inr (B-prop _ _) module Exercise8 {i j} {A : 𝒰 i} {B : 𝒰 j} {f : A → B} where open import HoTT.Equivalence.Proposition prop₁ : qinv f → ∥ qinv f ∥ prop₁ e = ∣ e ∣ prop₂ : ∥ qinv f ∥ → qinv f prop₂ e = isequiv→qinv (∥-rec ⦃ isProp→hlevel1 isequiv-prop ⦄ qinv→isequiv e) prop₃ : isProp ∥ qinv f ∥ prop₃ = hlevel1→isProp module Exercise9 {i} (lem : LEM {i}) where open import HoTT.Logic open import HoTT.Equivalence.Lift _ : Prop𝒰 i ≃ 𝟐 _ = f , qinv→isequiv (g , η , ε) where f : Prop𝒰 i → 𝟐 f P with lem P ... | inl _ = 0₂ ... | inr _ = 1₂ g : 𝟐 → Prop𝒰 i g 0₂ = ⊤ g 1₂ = ⊥ η : g ∘ f ~ id η P with lem P ... | inl t = hlevel⁼ (ua (prop-equiv (const t) (const ★))) ... | inr f = hlevel⁼ (ua (prop-equiv 𝟎-rec (𝟎-rec ∘ f))) ε : f ∘ g ~ id ε 0₂ with lem (g 0₂) ... | inl _ = refl ... | inr f = 𝟎-rec (f ★) ε 1₂ with lem (g 1₂) ... | inl () ... | inr _ = refl import HoTT.Exercises.Chapter3.Exercise10 module Exercise11 where open variables open import HoTT.Pi.Transport open import HoTT.Identity.Boolean prop : ¬ ((A : 𝒰₀) → ∥ A ∥ → A) prop f = 𝟎-rec (g (f 𝟐 ∣ 0₂ ∣) p) where not = 𝟐-rec 1₂ 0₂ e : 𝟐 ≃ 𝟐 e = not , qinv→isequiv (not , 𝟐-ind _ refl refl , 𝟐-ind _ refl refl) g : (x : 𝟐) → ¬ (not x == x) g 0₂ = 𝟎-rec ∘ pr₁ =𝟐-equiv g 1₂ = 𝟎-rec ∘ pr₁ =𝟐-equiv p : not (f 𝟐 ∣ 0₂ ∣) == f 𝟐 ∣ 0₂ ∣ p = not (f 𝟐 ∣ 0₂ ∣) =⟨ ap (λ e → pr₁ e (f 𝟐 ∣ 0₂ ∣)) (=𝒰-β e) ⁻¹ ⟩ transport id (ua e) (f 𝟐 ∣ 0₂ ∣) =⟨ ap (λ x → transport id (ua e) (f 𝟐 x)) center ⟩ transport id (ua e) (f 𝟐 (transport ∥_∥ (ua e ⁻¹) ∣ 0₂ ∣)) =⟨ happly (transport-→ ∥_∥ id (ua e) (f 𝟐) ⁻¹) ∣ 0₂ ∣ ⟩ transport (λ A → ∥ A ∥ → A) (ua e) (f 𝟐) ∣ 0₂ ∣ =⟨ happly (apd f (ua e)) ∣ 0₂ ∣ ⟩ f 𝟐 ∣ 0₂ ∣ ∎ where open =-Reasoning module Exercise12 {i} {A : 𝒰 i} (lem : LEM {i}) where open variables using (B ; j) □ : ∥ (∥ A ∥ → A) ∥ □ with lem (type ∥ A ∥) ... | inl x = swap ∥-rec x λ x → ∣ const x ∣ ... | inr f = ∣ 𝟎-rec ∘ f ∣ module Exercise13 {i} (lem : LEM∞ {i}) where □ : AC {i} {i} {i} □ {X = X} {A = A} {P = P} f = ∣ pr₁ ∘ g , pr₂ ∘ g ∣ where g : (x : X) → Σ (A x) (P x) g x with lem (Σ (A x) (P x)) ... | inl t = t ... | inr b = ∥-rec ⦃ hlevel-in (λ {x} → 𝟎-rec (b x)) ⦄ id (f x) module Exercise14 (lem : ∀ {i} → LEM {i}) where open import HoTT.Sigma.Universal open variables ∥_∥' : 𝒰 i → 𝒰 i ∥ A ∥' = ¬ ¬ A ∣_∣' : A → ∥ A ∥' ∣ a ∣' f = f a ∥'-hlevel : hlevel 1 ∥ A ∥' ∥'-hlevel = ⟨⟩ ∥'-rec : ⦃ hlevel 1 B ⦄ → (f : A → B) → Σ[ g ∶ (∥ A ∥' → B) ] Π[ a ∶ A ] g ∣ a ∣' == f a ∥'-rec f = λ where .pr₁ a → +-rec id (λ b → 𝟎-rec (a (𝟎-rec ∘ b ∘ f))) (lem (type _)) .pr₂ _ → center _ : ∥ A ∥' ≃ ∥ A ∥ _ = let open Iso in iso→eqv λ where .f → pr₁ (∥'-rec ∣_∣) .g → ∥-rec ∣_∣' .η _ → center .ε _ → center module Exercise15 (LiftProp-isequiv : ∀ {i j} → isequiv (LiftProp {i} {j})) where open import HoTT.Equivalence.Transport open variables open module LiftProp-qinv {i} {j} = qinv (isequiv→qinv (LiftProp-isequiv {i} {j})) renaming (g to LowerProp ; η to LiftProp-η ; ε to LiftProp-ε) ∥_∥' : 𝒰 (lsuc i) → 𝒰 (lsuc i) ∥_∥' {i} A = (P : Prop𝒰 i) → (A → P ty) → P ty ∣_∣' : A → ∥ A ∥' ∣ a ∣' _ f = f a ∥'-hlevel : hlevel 1 ∥ A ∥' ∥'-hlevel = ⟨⟩ ∥'-rec : {A : 𝒰 (lsuc i)} {(type B) : Prop𝒰 (lsuc i)} → (f : A → B) → Σ (∥ A ∥' → B) λ g → (a : A) → g ∣ a ∣' == f a ∥'-rec {_} {_} {B} f = let p = ap _ty (LiftProp-ε B) in λ where .pr₁ a → transport id p (lift (a (LowerProp B) (lower ∘ transport id (p ⁻¹) ∘ f))) -- We do not get a definitional equality since our propositional -- resizing equivalence does not give us definitionally equal -- types, i.e. LowerProp B ‌≢ B. If it did, then we could write -- -- ∥'-rec f a :≡ a (LowerProp B) f -- -- and then we'd have ∥'-rec f ∣a∣' ≡ f a. .pr₂ a → Eqv.ε (transport-equiv p) (f a) module Exercise16 {i} {(type X) : Set𝒰 i} {j} {Y : X → Prop𝒰 j} (lem : ∀ {i} → LEM {i}) where _ : Π[ x ∶ X ] ¬ ¬ Y x ty ≃ ¬ ¬ (Π[ x ∶ X ] Y x ty) _ = let open Iso in iso→eqv λ where .f s t → t λ x → +-rec id (𝟎-rec ∘ s x) (lem (Y x)) .g s x y → 𝟎-rec (s λ f → 𝟎-rec (y (f x))) .η _ → center .ε _ → center module Exercise17 {i} {A : 𝒰 i} {j} {B : ∥ A ∥ → Prop𝒰 j} where ∥-ind : ((a : A) → B ∣ a ∣ ty) → (x : ∥ A ∥) → B x ty ∥-ind f x = ∥-rec (transport (_ty ∘ B) center ∘ f) x where instance _ = λ {x} → hlevel𝒰.h (B x) module Exercise18 {i} where open Exercise6 _ : LEM {i} → LDN {i} _ = λ lem P f → +-rec id (𝟎-rec ∘ f) (lem P) _ : LDN {i} → LEM {i} _ = λ ldn P → ldn (type (P ty + ¬ P ty)) λ f → f (inr (f ∘ inl)) module Exercise19 {i} {P : ℕ → 𝒰 i} (P-lem : (n : ℕ) → P n + ¬ P n) -- Do not assume that all P n are mere propositions so we can -- reuse this solution for exercise 23. where open import HoTT.NaturalNumber renaming (_+_ to _+ₙ_ ; +-comm to +ₙ-comm) open import HoTT.Identity.NaturalNumber open import HoTT.Transport.Identity open import HoTT.Base.Inspect open import HoTT.Identity.Product open import HoTT.Equivalence.Sigma open import HoTT.Equivalence.Coproduct open import HoTT.Equivalence.Empty -- P n does not hold for any m < n ℕ* : ℕ → 𝒰 i ℕ* zero = 𝟏 ℕ* (succ n) = ¬ P n × ℕ* n P* : {n : ℕ} → P n → 𝒰 i P* {n} p = inl p == P-lem n -- ℕ* is the product of 𝟏 and some ¬ P n, all of which are -- propositions, so it is a proposition as well. instance ℕ*-hlevel : {n : ℕ} → hlevel 1 (ℕ* n) ℕ*-hlevel {zero} = 𝟏-hlevel ℕ*-hlevel {succ n} = ×-hlevel P*-hlevel : {n : ℕ} → hlevel 1 (Σ (P n) P*) hlevel-out (P*-hlevel {n}) {p , _} = ⟨⟩ where e : P n ≃ P n + ¬ P n e = +-empty₂ ⁻¹ₑ ∙ₑ +-equiv reflₑ (𝟎-equiv (_$ p)) instance _ = =-contrᵣ (P-lem n) _ = raise ⦃ equiv-hlevel (Σ-equiv₁ e ⁻¹ₑ) ⦄ instance _ = P*-hlevel -- Extract evidence that ¬ P m for some m < n extract : {m n : ℕ} → m < n → ℕ* n → ¬ P m extract {m} (k , p) = pr₁ ∘ weaken ∘ transport ℕ* p' where p' = p ⁻¹ ∙ +ₙ-comm (succ m) k weaken : {k : ℕ} → ℕ* (k +ₙ succ m) → ℕ* (succ m) weaken {zero} = id weaken {succ k} = weaken ∘ pr₂ -- The smallest n such that P n holds Pₒ = Σ (Σ ℕ λ n → Σ (P n) P*) (ℕ* ∘ pr₁) Pₒ-prop : isProp Pₒ Pₒ-prop ((n , p , _) , n*) ((m , q , _) , m*) = pair⁼ (pair⁼ (n=m , center) , center) where n=m : n == m n=m with n <=> m -- If n = m, then there is nothing to do. ... | inl n=m = n=m -- If n < m, we have P n and we know ℕ* m contains ¬ P n -- somewhere inside, so we can just extract it to find a -- contradiction. ... | inr (inl n<m) = 𝟎-rec (extract n<m m* p) -- The m < n case is symmetrical. ... | inr (inr m<n) = 𝟎-rec (extract m<n n* q) instance _ = isProp→hlevel1 Pₒ-prop -- Use the decidability of P to search for an instance of P in -- some finite range of natural numbers, keeping track of evidence -- that P does not hold for lower n. find-P : (n : ℕ) → Pₒ + ℕ* n find-P zero = inr ★ find-P (succ n) with find-P n | P-lem n | inspect P-lem n ... | inl x | _ | _ = inl x ... | inr n* | inl p | [ p* ] = inl ((n , p , p*) , n*) ... | inr n* | inr ¬p | _ = inr (¬p , n*) -- If we know P holds for some n, then we have an upper bound for -- which to search for the smallest n. If we do not find any other -- n' ≤ n such that P n', then we have a contradiction. to-Pₒ : Σ ℕ P → Pₒ to-Pₒ (n , p) with find-P (succ n) ... | inl x = x ... | inr (¬p , _) = 𝟎-rec (¬p p) from-Pₒ : Pₒ → Σ ℕ P from-Pₒ ((n , p , p*) , n*) = n , p _ : ∥ Σ ℕ P ∥ → Σ ℕ P _ = from-Pₒ ∘ ∥-rec to-Pₒ module Exercise20 where open variables -- See HoTT.HLevel _ : ⦃ _ : hlevel 0 A ⦄ → Σ A P ≃ P center _ = Σ-contr₁ module Exercise21 {i} {P : 𝒰 i} where open import HoTT.Equivalence.Proposition _ : isProp P ≃ (P ≃ ∥ P ∥) _ = prop-equiv ⦃ isProp-hlevel1 ⦄ f g where f : isProp P → P ≃ ∥ P ∥ f p = prop-equiv ∣_∣ (∥-rec id) where instance _ = isProp→hlevel1 p g : P ≃ ∥ P ∥ → isProp P g e = hlevel1→isProp ⦃ equiv-hlevel (e ⁻¹ₑ) ⦄ instance _ = Σ-hlevel ⦃ Π-hlevel ⦄ ⦃ isProp→hlevel1 isequiv-prop ⦄ module Exercise22 where Fin : ℕ → 𝒰₀ Fin zero = 𝟎 Fin (succ n) = Fin n + 𝟏 □ : ∀ {i} (n : ℕ) {A : Fin n → 𝒰 i} {P : (x : Fin n) → A x → 𝒰 i} → ((x : Fin n) → ∥ Σ (A x) (P x) ∥) → ∥ Σ ((x : Fin n) → A x) (λ g → ((x : Fin n) → P x (g x))) ∥ □ zero _ = ∣ 𝟎-ind , 𝟎-ind ∣ □ (succ n) {A} {P} f = swap ∥-rec (f (inr ★)) λ zₛ → swap ∥-rec (□ n (f ∘ inl)) λ zₙ → let f = f' zₛ zₙ in ∣ pr₁ ∘ f , pr₂ ∘ f ∣ where f' : _ → _ → (x : Fin (succ n)) → Σ (A x) (P x) f' (_ , _) (g , h) (inl m) = g m , h m f' (x , y) (_ , _) (inr ★) = x , y module Exercise23 where -- The solution for Exercise19 covers the case where P is not -- necessarily a mere proposition. open Exercise19
{ "alphanum_fraction": 0.5127774042, "avg_line_length": 30.192893401, "ext": "agda", "hexsha": "0715f345be8081b38e70b079c4d2b588cd32951e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Exercises/Chapter3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Exercises/Chapter3.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Exercises/Chapter3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5412, "size": 11896 }
{-# OPTIONS --without-K #-} module sets.vec.core where open import function.core open import sets.nat.core using (ℕ; zero; suc) open import sets.fin data Vec {i}(A : Set i) : ℕ → Set i where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) infixr 5 _∷_ head : ∀ {i}{A : Set i}{n : ℕ} → Vec A (suc n) → A head (x ∷ _) = x tail : ∀ {i}{A : Set i}{n : ℕ} → Vec A (suc n) → Vec A n tail (_ ∷ xs) = xs tabulate : ∀ {i}{A : Set i}{n : ℕ} → (Fin n → A) → Vec A n tabulate {n = zero} _ = [] tabulate {n = suc m} f = f zero ∷ tabulate (f ∘ suc) lookup : ∀ {i}{A : Set i}{n : ℕ} → Vec A n → Fin n → A lookup [] () lookup (x ∷ xs) zero = x lookup (x ∷ xs) (suc i) = lookup xs i _!_ : ∀ {i}{A : Set i}{n : ℕ} → Vec A n → Fin n → A _!_ = lookup
{ "alphanum_fraction": 0.5084525358, "avg_line_length": 23.303030303, "ext": "agda", "hexsha": "ea5f530d9db8264359d3fcd43a00bfbac223a038", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "sets/vec/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/vec/core.agda", "max_line_length": 56, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "sets/vec/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 319, "size": 769 }
-- Andreas, 2020-05-08, issue #4637 -- Print record pattern (in with-function) in termination error. -- {-# OPTIONS -v reify:60 #-} record R : Set where pattern; inductive field foo : R postulate bar : R → R test : R → R test r with bar r test r | record { foo = x } with bar x test r | record { foo = x } | _ = test x -- WAS: -- Termination checking failed for the following functions: -- test -- Problematic calls: -- test r | bar r -- Issue4637.with-14 r (recCon-NOT-PRINTED x) -- | bar x -- test x -- EXPECTED: -- Termination checking failed for the following functions: -- test -- Problematic calls: -- test r | bar r -- Issue4637.with-14 r (record { foo = x }) -- | bar x -- test x
{ "alphanum_fraction": 0.625, "avg_line_length": 20.5714285714, "ext": "agda", "hexsha": "2e6a28a38cffcf7181ab89e205ea66509b6cd46c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4637.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4637.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4637.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 226, "size": 720 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Lists.Definition open import Lists.Fold.Fold open import Lists.Concat open import Lists.Length open import Numbers.Naturals.Semiring module Lists.Monad where open import Lists.Map.Map public flatten : {a : _} {A : Set a} → (l : List (List A)) → List A flatten [] = [] flatten (l :: ls) = l ++ flatten ls flatten' : {a : _} {A : Set a} → (l : List (List A)) → List A flatten' = fold _++_ [] flatten=flatten' : {a : _} {A : Set a} (l : List (List A)) → flatten l ≡ flatten' l flatten=flatten' [] = refl flatten=flatten' (l :: ls) = applyEquality (l ++_) (flatten=flatten' ls) lengthFlatten : {a : _} {A : Set a} (l : List (List A)) → length (flatten l) ≡ (fold _+N_ zero (map length l)) lengthFlatten [] = refl lengthFlatten (l :: ls) rewrite lengthConcat l (flatten ls) | lengthFlatten ls = refl flattenConcat : {a : _} {A : Set a} (l1 l2 : List (List A)) → flatten (l1 ++ l2) ≡ (flatten l1) ++ (flatten l2) flattenConcat [] l2 = refl flattenConcat (l1 :: ls) l2 rewrite flattenConcat ls l2 | concatAssoc l1 (flatten ls) (flatten l2) = refl pure : {a : _} {A : Set a} → A → List A pure a = [ a ] bind : {a b : _} {A : Set a} {B : Set b} → (f : A → List B) → List A → List B bind f l = flatten (map f l) private leftIdentLemma : {a : _} {A : Set a} (xs : List A) → flatten (map pure xs) ≡ xs leftIdentLemma [] = refl leftIdentLemma (x :: xs) rewrite leftIdentLemma xs = refl leftIdent : {a b : _} {A : Set a} {B : Set b} → (f : A → List B) → {x : A} → bind pure (f x) ≡ f x leftIdent f {x} with f x leftIdent f {x} | [] = refl leftIdent f {x} | y :: ys rewrite leftIdentLemma ys = refl rightIdent : {a b : _} {A : Set a} {B : Set b} → (f : A → List B) → {x : A} → bind f (pure x) ≡ f x rightIdent f {x} with f x rightIdent f {x} | [] = refl rightIdent f {x} | y :: ys rewrite appendEmptyList ys = refl associative : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → (f : A → List B) (g : B → List C) → {x : List A} → bind g (bind f x) ≡ bind (λ a → bind g (f a)) x associative f g {[]} = refl associative f g {x :: xs} rewrite mapConcat (f x) (flatten (map f xs)) g | flattenConcat (map g (f x)) (map g (flatten (map f xs))) = applyEquality (flatten (map g (f x)) ++_) (associative f g {xs})
{ "alphanum_fraction": 0.603215993, "avg_line_length": 40.3684210526, "ext": "agda", "hexsha": "ddeb258d84f00dade5bceaa75aec56c6f23a0813", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Monad.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Monad.agda", "max_line_length": 198, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 822, "size": 2301 }
-- Andreas, 2013-06-22, bug reported by evancavallo {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.conv:20 -v impossible:100 #-} module Issue874 where record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst module _ {A : Set} where postulate P : A → Set foo : A → Set foo _ = Σ (A → A) (λ _ → (∀ _ → A)) -- the unsolved meta here is essential to trigger the bug bar : (x : A) → foo x → Set bar x (g , _) = P (g x) postulate pos : {x : A} → Σ (foo x) (bar x) test : {x : A} → Σ (foo x) (bar x) test = pos -- this raised an internal error in Conversion.compareElims -- when projecting at unsolved record type
{ "alphanum_fraction": 0.5836909871, "avg_line_length": 21.84375, "ext": "agda", "hexsha": "c0fca3b512908ebde6591d56be94f0273ce882d8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue874.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue874.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue874.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 244, "size": 699 }
{-# OPTIONS --without-K --safe #-} -- adding eta/epsilon to PiPointed -- separate file for presentation in paper module PiPointedFrac where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open import Singleton infixr 90 _#_ infixr 70 _×ᵤ_ infixr 60 _+ᵤ_ infixr 50 _⊚_ infix 100 !_ infixr 70 _∙×ᵤ_ infixr 60 _∙+ᵤl_ infixr 60 _∙+ᵤr_ infixr 70 _∙⊗_ infixr 60 _∙⊕ₗ_ infixr 60 _∙⊕ᵣ_ infixr 50 _∙⊚_ infix 100 !∙_ ------------------------------------------------------------------------------ -- Pi data 𝕌 : Set ⟦_⟧ : (A : 𝕌) → Set data _⟷_ : 𝕌 → 𝕌 → Set eval : {A B : 𝕌} → (A ⟷ B) → ⟦ A ⟧ → ⟦ B ⟧ data 𝕌 where 𝟘 : 𝕌 𝟙 : 𝕌 _+ᵤ_ : 𝕌 → 𝕌 → 𝕌 _×ᵤ_ : 𝕌 → 𝕌 → 𝕌 ⟦ 𝟘 ⟧ = ⊥ ⟦ 𝟙 ⟧ = ⊤ ⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ data _⟷_ where unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ⟷ t uniti₊l : {t : 𝕌} → t ⟷ 𝟘 +ᵤ t unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ⟷ t uniti₊r : {t : 𝕌} → t ⟷ t +ᵤ 𝟘 swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ⟷ t₂ +ᵤ t₁ assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ +ᵤ t₂) +ᵤ t₃ assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ⟷ t₁ +ᵤ (t₂ +ᵤ t₃) unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙 swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁ assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃ assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃) absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ⟷ 𝟘 absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ⟷ 𝟘 factorzr : {t : 𝕌} → 𝟘 ⟷ t ×ᵤ 𝟘 factorzl : {t : 𝕌} → 𝟘 ⟷ 𝟘 ×ᵤ t dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤ t₂) ×ᵤ t₃ distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤ t₃) id⟷ : {t : 𝕌} → t ⟷ t _⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤ t₂ ⟷ t₃ +ᵤ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄) !_ : {A B : 𝕌} → A ⟷ B → B ⟷ A ! unite₊l = uniti₊l ! uniti₊l = unite₊l ! unite₊r = uniti₊r ! uniti₊r = unite₊r ! swap₊ = swap₊ ! assocl₊ = assocr₊ ! assocr₊ = assocl₊ ! unite⋆l = uniti⋆l ! uniti⋆l = unite⋆l ! unite⋆r = uniti⋆r ! uniti⋆r = unite⋆r ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! absorbr = factorzl ! absorbl = factorzr ! factorzr = absorbl ! factorzl = absorbr ! dist = factor ! factor = dist ! distl = factorl ! factorl = distl ! id⟷ = id⟷ ! (c₁ ⊚ c₂) = (! c₂) ⊚ (! c₁) ! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂) ! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂) eval unite₊l (inj₂ v) = v eval uniti₊l v = inj₂ v eval unite₊r (inj₁ v) = v eval uniti₊r v = inj₁ v eval swap₊ (inj₁ v) = inj₂ v eval swap₊ (inj₂ v) = inj₁ v eval assocl₊ (inj₁ v) = inj₁ (inj₁ v) eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) eval assocr₊ (inj₂ v) = inj₂ (inj₂ v) eval unite⋆l (tt , v) = v eval uniti⋆l v = (tt , v) eval unite⋆r (v , tt) = v eval uniti⋆r v = (v , tt) eval swap⋆ (v₁ , v₂) = (v₂ , v₁) eval assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) eval assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) eval absorbl () eval absorbr () eval factorzl () eval factorzr () eval dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) eval dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) eval factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) eval factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) eval distl (v , inj₁ v₁) = inj₁ (v , v₁) eval distl (v , inj₂ v₂) = inj₂ (v , v₂) eval factorl (inj₁ (v , v₁)) = (v , inj₁ v₁) eval factorl (inj₂ (v , v₂)) = (v , inj₂ v₂) eval id⟷ v = v eval (c₁ ⊚ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v) eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂) ΠisRev : ∀ {A B} → (c : A ⟷ B) (a : ⟦ A ⟧) → eval (c ⊚ ! c) a ≡ a ΠisRev unite₊l (inj₂ y) = refl ΠisRev uniti₊l a = refl ΠisRev unite₊r (inj₁ x) = refl ΠisRev uniti₊r a = refl ΠisRev swap₊ (inj₁ x) = refl ΠisRev swap₊ (inj₂ y) = refl ΠisRev assocl₊ (inj₁ x) = refl ΠisRev assocl₊ (inj₂ (inj₁ x)) = refl ΠisRev assocl₊ (inj₂ (inj₂ y)) = refl ΠisRev assocr₊ (inj₁ (inj₁ x)) = refl ΠisRev assocr₊ (inj₁ (inj₂ y)) = refl ΠisRev assocr₊ (inj₂ y) = refl ΠisRev unite⋆l (tt , y) = refl ΠisRev uniti⋆l a = refl ΠisRev unite⋆r (x , tt) = refl ΠisRev uniti⋆r a = refl ΠisRev swap⋆ (x , y) = refl ΠisRev assocl⋆ (x , (y , z)) = refl ΠisRev assocr⋆ ((x , y) , z) = refl ΠisRev dist (inj₁ x , z) = refl ΠisRev dist (inj₂ y , z) = refl ΠisRev factor (inj₁ (x , z)) = refl ΠisRev factor (inj₂ (y , z)) = refl ΠisRev distl (x , inj₁ y) = refl ΠisRev distl (x , inj₂ z) = refl ΠisRev factorl (inj₁ (x , y)) = refl ΠisRev factorl (inj₂ (x , z)) = refl ΠisRev id⟷ a = refl ΠisRev (c₁ ⊚ c₂) a rewrite ΠisRev c₂ (eval c₁ a) = ΠisRev c₁ a ΠisRev (c₁ ⊕ c₂) (inj₁ x) rewrite ΠisRev c₁ x = refl ΠisRev (c₁ ⊕ c₂) (inj₂ y) rewrite ΠisRev c₂ y = refl ΠisRev (c₁ ⊗ c₂) (x , y) rewrite ΠisRev c₁ x | ΠisRev c₂ y = refl ------------------------------------------------------------------------------ -- Pointed types and singleton types data ∙𝕌 : Set where _#_ : (t : 𝕌) → (v : ⟦ t ⟧) → ∙𝕌 _∙×ᵤ_ : ∙𝕌 → ∙𝕌 → ∙𝕌 _∙+ᵤl_ : ∙𝕌 → ∙𝕌 → ∙𝕌 _∙+ᵤr_ : ∙𝕌 → ∙𝕌 → ∙𝕌 Singᵤ : ∙𝕌 → ∙𝕌 Recipᵤ : ∙𝕌 → ∙𝕌 ∙⟦_⟧ : ∙𝕌 → Σ[ A ∈ Set ] A ∙⟦ t # v ⟧ = ⟦ t ⟧ , v ∙⟦ T₁ ∙×ᵤ T₂ ⟧ = zip _×_ _,_ ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ T₁ ∙+ᵤl T₂ ⟧ = zip _⊎_ (λ x _ → inj₁ x) ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ T₁ ∙+ᵤr T₂ ⟧ = zip _⊎_ (λ _ y → inj₂ y) ∙⟦ T₁ ⟧ ∙⟦ T₂ ⟧ ∙⟦ Singᵤ T ⟧ = < uncurry Singleton , (λ y → proj₂ y , refl) > ∙⟦ T ⟧ ∙⟦ Recipᵤ T ⟧ = < uncurry Recip , (λ _ _ → tt) > ∙⟦ T ⟧ ∙𝟙 : ∙𝕌 ∙𝟙 = 𝟙 # tt data _∙⟶_ : ∙𝕌 → ∙𝕌 → Set where -- when we know the base type ∙c : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} → (c : t₁ ⟷ t₂) → t₁ # v ∙⟶ t₂ # (eval c v) ∙times# : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} → ((t₁ ×ᵤ t₂) # (v₁ , v₂)) ∙⟶ ((t₁ # v₁) ∙×ᵤ (t₂ # v₂)) ∙#times : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} → ((t₁ # v₁) ∙×ᵤ (t₂ # v₂)) ∙⟶ ((t₁ ×ᵤ t₂) # (v₁ , v₂)) -- some things need to be explicitly lifted ∙id⟷ : {T : ∙𝕌} → T ∙⟶ T _∙⊚_ : {T₁ T₂ T₃ : ∙𝕌} → (T₁ ∙⟶ T₂) → (T₂ ∙⟶ T₃) → (T₁ ∙⟶ T₃) ∙unite⋆l : {t : ∙𝕌} → ∙𝟙 ∙×ᵤ t ∙⟶ t ∙uniti⋆l : {t : ∙𝕌} → t ∙⟶ ∙𝟙 ∙×ᵤ t ∙unite⋆r : {t : ∙𝕌} → t ∙×ᵤ ∙𝟙 ∙⟶ t ∙uniti⋆r : {t : ∙𝕌} → t ∙⟶ t ∙×ᵤ ∙𝟙 ∙swap⋆ : {T₁ T₂ : ∙𝕌} → T₁ ∙×ᵤ T₂ ∙⟶ T₂ ∙×ᵤ T₁ ∙assocl⋆ : {T₁ T₂ T₃ : ∙𝕌} → T₁ ∙×ᵤ (T₂ ∙×ᵤ T₃) ∙⟶ (T₁ ∙×ᵤ T₂) ∙×ᵤ T₃ ∙assocr⋆ : {T₁ T₂ T₃ : ∙𝕌} → (T₁ ∙×ᵤ T₂) ∙×ᵤ T₃ ∙⟶ T₁ ∙×ᵤ (T₂ ∙×ᵤ T₃) _∙⊗_ : {T₁ T₂ T₃ T₄ : ∙𝕌} → (T₁ ∙⟶ T₃) → (T₂ ∙⟶ T₄) → (T₁ ∙×ᵤ T₂ ∙⟶ T₃ ∙×ᵤ T₄) _∙⊕ₗ_ : {T₁ T₂ T₃ T₄ : ∙𝕌} → (T₁ ∙⟶ T₃) → (T₂ ∙⟶ T₄) → (T₁ ∙+ᵤl T₂ ∙⟶ T₃ ∙+ᵤl T₄) _∙⊕ᵣ_ : {T₁ T₂ T₃ T₄ : ∙𝕌} → (T₁ ∙⟶ T₃) → (T₂ ∙⟶ T₄) → (T₁ ∙+ᵤr T₂ ∙⟶ T₃ ∙+ᵤr T₄) -- monad return : (T : ∙𝕌) → T ∙⟶ Singᵤ T -- comonad extract : (T : ∙𝕌) → Singᵤ T ∙⟶ T -- eta/epsilon η : (T : ∙𝕌) → ∙𝟙 ∙⟶ (Singᵤ T ∙×ᵤ Recipᵤ T) ε : (T : ∙𝕌) → (Singᵤ T ∙×ᵤ Recipᵤ T) ∙⟶ ∙𝟙 tensor : {T₁ T₂ : ∙𝕌} → (Singᵤ T₁ ∙×ᵤ Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensor {T₁} {T₂} = (extract T₁ ∙⊗ extract T₂) ∙⊚ return (T₁ ∙×ᵤ T₂) untensor : {T₁ T₂ : ∙𝕌} → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (Singᵤ T₁ ∙×ᵤ Singᵤ T₂) untensor {T₁} {T₂} = extract (T₁ ∙×ᵤ T₂) ∙⊚ (return T₁ ∙⊗ return T₂) tensorl : {T₁ T₂ : ∙𝕌} → (Singᵤ T₁ ∙×ᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensorl {T₁} {T₂} = (extract T₁ ∙⊗ ∙id⟷) ∙⊚ return (T₁ ∙×ᵤ T₂) tensorr : {T₁ T₂ : ∙𝕌} → (T₁ ∙×ᵤ Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙×ᵤ T₂) tensorr {T₁} {T₂} = (∙id⟷ ∙⊗ extract T₂) ∙⊚ return (T₁ ∙×ᵤ T₂) cotensorl : {T₁ T₂ : ∙𝕌} → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (Singᵤ T₁ ∙×ᵤ T₂) cotensorl {T₁} {T₂} = extract (T₁ ∙×ᵤ T₂) ∙⊚ (return T₁ ∙⊗ ∙id⟷) cotensorr : {T₁ T₂ : ∙𝕌} → Singᵤ (T₁ ∙×ᵤ T₂) ∙⟶ (T₁ ∙×ᵤ Singᵤ T₂) cotensorr {T₁} {T₂} = extract (T₁ ∙×ᵤ T₂) ∙⊚ (∙id⟷ ∙⊗ return T₂) plusl : {T₁ T₂ : ∙𝕌} → (Singᵤ T₁ ∙+ᵤl T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤl T₂) plusl {T₁} {T₂} = (extract T₁ ∙⊕ₗ ∙id⟷) ∙⊚ return (T₁ ∙+ᵤl T₂) plusr : {T₁ T₂ : ∙𝕌} → (T₁ ∙+ᵤr Singᵤ T₂) ∙⟶ Singᵤ (T₁ ∙+ᵤr T₂) plusr {T₁} {T₂} = (∙id⟷ ∙⊕ᵣ extract T₂) ∙⊚ return (T₁ ∙+ᵤr T₂) coplusl : {T₁ T₂ : ∙𝕌} → Singᵤ (T₁ ∙+ᵤl T₂) ∙⟶ (Singᵤ T₁ ∙+ᵤl T₂) coplusl {T₁} {T₂} = extract (T₁ ∙+ᵤl T₂) ∙⊚ (return T₁ ∙⊕ₗ ∙id⟷) coplusr : {T₁ T₂ : ∙𝕌} → Singᵤ (T₁ ∙+ᵤr T₂) ∙⟶ (T₁ ∙+ᵤr Singᵤ T₂) coplusr {T₁} {T₂} = extract (T₁ ∙+ᵤr T₂) ∙⊚ (∙id⟷ ∙⊕ᵣ return T₂) -- functor ∙Singᵤ : {T₁ T₂ : ∙𝕌} → (T₁ ∙⟶ T₂) → (Singᵤ T₁ ∙⟶ Singᵤ T₂) ∙Singᵤ {T₁} {T₂} c = extract T₁ ∙⊚ c ∙⊚ return T₂ join : {T₁ : ∙𝕌} → Singᵤ (Singᵤ T₁) ∙⟶ Singᵤ T₁ join {T₁} = extract (Singᵤ T₁) duplicate : {T₁ : ∙𝕌} → Singᵤ T₁ ∙⟶ Singᵤ (Singᵤ T₁) duplicate {T₁} = return (Singᵤ T₁) !∙_ : {A B : ∙𝕌} → A ∙⟶ B → B ∙⟶ A !∙ (∙c {t₁} {t₂} {v} c) = subst (λ x → t₂ # eval c v ∙⟶ t₁ # x) (ΠisRev c v) (∙c (! c)) !∙ ∙times# = ∙#times !∙ ∙#times = ∙times# !∙ ∙id⟷ = ∙id⟷ !∙ (c₁ ∙⊚ c₂) = (!∙ c₂) ∙⊚ (!∙ c₁) !∙ ∙unite⋆l = ∙uniti⋆l !∙ ∙uniti⋆l = ∙unite⋆l !∙ ∙unite⋆r = ∙uniti⋆r !∙ ∙uniti⋆r = ∙unite⋆r !∙ ∙swap⋆ = ∙swap⋆ !∙ ∙assocl⋆ = ∙assocr⋆ !∙ ∙assocr⋆ = ∙assocl⋆ !∙ (c₁ ∙⊗ c₂) = (!∙ c₁) ∙⊗ (!∙ c₂) !∙ (c₁ ∙⊕ₗ c₂) = (!∙ c₁) ∙⊕ₗ (!∙ c₂) !∙ (c₁ ∙⊕ᵣ c₂) = (!∙ c₁) ∙⊕ᵣ (!∙ c₂) !∙ return T = extract T !∙ extract T = return T !∙ η T = ε T !∙ ε T = η T ∙eval : {T₁ T₂ : ∙𝕌} → (C : T₁ ∙⟶ T₂) → let (t₁ , v₁) = ∙⟦ T₁ ⟧ (t₂ , v₂) = ∙⟦ T₂ ⟧ in Σ (t₁ → t₂) (λ f → f v₁ ≡ v₂) ∙eval ∙id⟷ = (λ x → x) , refl ∙eval (∙c c) = eval c , refl ∙eval (C₁ ∙⊚ C₂) with ∙eval C₁ | ∙eval C₂ ... | (f , p) | (g , q) = (λ x → g (f x)) , trans (cong g p) q ∙eval ∙unite⋆l = (λ {(tt , x) → x}) , refl ∙eval ∙uniti⋆l = (λ {x → (tt , x)}) , refl ∙eval ∙unite⋆r = (λ {(x , tt) → x}) , refl ∙eval ∙uniti⋆r = (λ {x → (x , tt)}) , refl ∙eval ∙swap⋆ = (λ {(x , y) → y , x}) , refl ∙eval ∙assocl⋆ = (λ {(x , (y , z)) → ((x , y) , z)}) , refl ∙eval ∙assocr⋆ = (λ {((x , y) , z) → (x , (y , z))}) , refl ∙eval (C₀ ∙⊗ C₁) with ∙eval C₀ | ∙eval C₁ ... | (f , p) | (g , q) = (λ {(t₁ , t₂) → f t₁ , g t₂}) , cong₂ _,_ p q ∙eval (C₀ ∙⊕ₗ C₁) with ∙eval C₀ | ∙eval C₁ ... | (f , p) | (g , q) = (λ { (inj₁ x) → inj₁ (f x) ; (inj₂ y) → inj₂ (g y) }) , cong inj₁ p ∙eval (C₀ ∙⊕ᵣ C₁) with ∙eval C₀ | ∙eval C₁ ... | (f , p) | (g , q) = (λ { (inj₁ x) → inj₁ (f x) ; (inj₂ y) → inj₂ (g y) }) , cong inj₂ q ∙eval ∙times# = (λ x → x) , refl ∙eval ∙#times = (λ x → x) , refl ∙eval (return T) = (λ _ → proj₂ ∙⟦ T ⟧ , refl) , refl ∙eval (extract T) = (λ {(w , refl) → w}) , refl ∙eval (η T) = (λ tt → (proj₂ ∙⟦ T ⟧ , refl) , λ _ → tt) , refl ∙eval (ε T) = (λ { ((_ , refl) , f) → f (proj₂ ∙⟦ T ⟧ , refl)}) , refl -- you don't need to prove this ∙ΠisRev : ∀ {T₁ T₂} → (c : T₁ ∙⟶ T₂) → let (t₁ , v₁) = ∙⟦ T₁ ⟧ (t₂ , v₂) = ∙⟦ T₂ ⟧ (f , pf) = ∙eval (c ∙⊚ !∙ c) in f v₁ ≡ v₁ ∙ΠisRev c = proj₂ (∙eval (c ∙⊚ !∙ c)) -----------------------------------------------------------------------------
{ "alphanum_fraction": 0.4701566887, "avg_line_length": 33.1561561562, "ext": "agda", "hexsha": "bdd3a1ba677b4506722c7094b0cb37c92e980a5d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/PiPointedFrac.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/PiPointedFrac.agda", "max_line_length": 87, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/PiPointedFrac.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 7112, "size": 11041 }
module Formalization.LambdaCalculus.SyntaxTransformation where open import Formalization.LambdaCalculus open import Lang.Instance open import Numeral.Natural open import Numeral.Finite open import Numeral.Finite.Bound open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals private variable d d₁ d₂ : ℕ private variable x y : Term(d) -- Increase the depth level of the given term by something. -- Example: `depth-[≤](Var(2) : Term(5)) = Var(2) : Term(50)` depth-[≤] : ⦃ _ : (d₁ ≤ d₂) ⦄ → Term(d₁) → Term(d₂) depth-[≤] (Apply t1 t2) = Apply(depth-[≤] t1) (depth-[≤] t2) depth-[≤] (Abstract t) = Abstract(depth-[≤] t) depth-[≤] (Var x) = Var(bound-[≤] infer x) -- Increment the depth level of the given term by 1. -- Example: `depth-𝐒(Var(2) : Term(5)) = Var(2) : Term(6)` depth-𝐒 : Term(d) → Term(𝐒(d)) depth-𝐒 = depth-[≤] -- depth-𝐒 (Apply(f)(x)) = Apply (depth-𝐒(f)) (depth-𝐒(x)) -- depth-𝐒 (Abstract(body)) = Abstract(depth-𝐒(body)) -- depth-𝐒 (Var(n)) = Var(bound-𝐒 (n)) Apply₊ : ⦃ _ : (d₁ ≤ d₂) ⦄ → Term(d₂) → Term(d₁) → Term(d₂) Apply₊ {d₁}{d₂} f(x) = Apply f(depth-[≤] {d₁}{d₂} (x)) {- -- Increase all variables of the given term var-[≤] : ∀{d₁ d₂} → ⦃ _ : (d₁ ≤ d₂) ⦄ → Term(d₁) → Term(d₂) var-[≤] (Apply t1 t2) = Apply(depth-[≤] t1) (depth-[≤] t2) var-[≤] (Abstract t) = Abstract(depth-[≤] t) var-[≤] (Var x) = Var({!x + (d₂ − d₁)!}) where open import Numeral.Natural.TotalOper -} -- Increment all variables of the given term. -- Example: `var-𝐒(Var(2) : Term(5)) = Var(3) : Term(6)` -- Examples: -- term : Term(1) -- term = (1 ↦ (2 ↦ 2 ← 2) ← 0 ← 1 ← 0) -- -- Then: -- term = 1 ↦ (2 ↦ 2 ← 2) ← 0 ← 1 ← 0 -- var-𝐒(term) = 2 ↦ (3 ↦ 3 ← 3) ← 1 ← 2 ← 1 -- var-𝐒(var-𝐒(term)) = 3 ↦ (4 ↦ 4 ← 4) ← 2 ← 3 ← 2 var-𝐒 : Term(d) → Term(𝐒(d)) var-𝐒 (Apply(f)(x)) = Apply (var-𝐒(f)) (var-𝐒(x)) var-𝐒 (Abstract{d}(body)) = Abstract{𝐒(d)} (var-𝐒(body)) var-𝐒 (Var{𝐒(d)}(n)) = Var{𝐒(𝐒(d))} (𝐒(n)) -- Substitutes the most recent free variable with a term in a term, while also decrementing them. -- `substitute val term` is the term where all occurences in `term` of the outer-most variable is replaced with the term `val`. -- Examples: -- substituteOuterVar x (Var(0) : Term(1)) = x -- substituteOuterVar x ((Apply (Var(1)) (Var(0))) : Term(2)) = Apply (Var(0)) x -- substituteOuterVar (𝜆 0 0) ((𝜆 1 1) ← 0) = ((𝜆 0 0) ← (𝜆 0 0)) -- substituteOuterVar (𝜆 0 0) ((𝜆 1 1 ← 0) ← 0) = (((𝜆 0 0) ← (𝜆 0 0)) ← (𝜆 0 0)) substituteVar0 : Term(d) → Term(𝐒(d)) → Term(d) substituteVar0 val (Apply(f)(x)) = Apply (substituteVar0 val f) (substituteVar0 val x) substituteVar0 val (Abstract(body)) = Abstract (substituteVar0 (var-𝐒 val) body) substituteVar0 val (Var(𝟎)) = val substituteVar0 val (Var(𝐒(v))) = Var v {- substituteMap : (𝕟(d₁) → Term(d₂)) → Term(d₁) → Term(d₂) substituteMap F (Apply(f)(x)) = Apply (substituteMap F (f)) (substituteMap F (x)) substituteMap F (Var(v)) = F(v) substituteMap F (Abstract(body)) = Abstract (substituteMap F (body)) -- TODO: Probably incorrect -} -- Substituting the outer variable of `var-𝐒 x` yields `x`. -- This is useful because `substituteVar0` uses `var-𝐒` in its definition. substituteVar0-var-𝐒 : (substituteVar0 y (var-𝐒 x) ≡ x) substituteVar0-var-𝐒 {d}{y}{Apply f x} rewrite substituteVar0-var-𝐒 {d}{y}{f} rewrite substituteVar0-var-𝐒 {d}{y}{x} = [≡]-intro substituteVar0-var-𝐒 {d}{y}{Abstract x} rewrite substituteVar0-var-𝐒 {𝐒 d}{var-𝐒 y}{x} = [≡]-intro substituteVar0-var-𝐒 {_}{_}{Var 𝟎} = [≡]-intro substituteVar0-var-𝐒 {_}{_}{Var(𝐒 _)} = [≡]-intro {-# REWRITE substituteVar0-var-𝐒 #-}
{ "alphanum_fraction": 0.6073834546, "avg_line_length": 43.6588235294, "ext": "agda", "hexsha": "9be3757f226692a7e7b3aa5fc3ef9be6c69799ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/LambdaCalculus/SyntaxTransformation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/LambdaCalculus/SyntaxTransformation.agda", "max_line_length": 129, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/LambdaCalculus/SyntaxTransformation.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1542, "size": 3711 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.HITs.InfNat.Properties where open import Cubical.Core.Everything open import Cubical.Data.Maybe open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.HITs.InfNat.Base import Cubical.Data.InfNat as Coprod ℕ+∞→Cℕ+∞ : ℕ+∞ → Coprod.ℕ+∞ ℕ+∞→Cℕ+∞ zero = Coprod.zero ℕ+∞→Cℕ+∞ (suc n) = Coprod.suc (ℕ+∞→Cℕ+∞ n) ℕ+∞→Cℕ+∞ ∞ = Coprod.∞ ℕ+∞→Cℕ+∞ (suc-inf i) = Coprod.∞ ℕ→ℕ+∞ : ℕ → ℕ+∞ ℕ→ℕ+∞ zero = zero ℕ→ℕ+∞ (suc n) = suc (ℕ→ℕ+∞ n) Cℕ+∞→ℕ+∞ : Coprod.ℕ+∞ → ℕ+∞ Cℕ+∞→ℕ+∞ Coprod.∞ = ∞ Cℕ+∞→ℕ+∞ (Coprod.fin n) = ℕ→ℕ+∞ n ℕ→ℕ+∞→Cℕ+∞ : ∀ n → ℕ+∞→Cℕ+∞ (ℕ→ℕ+∞ n) ≡ Coprod.fin n ℕ→ℕ+∞→Cℕ+∞ zero = refl ℕ→ℕ+∞→Cℕ+∞ (suc n) = cong Coprod.suc (ℕ→ℕ+∞→Cℕ+∞ n) Cℕ+∞→ℕ+∞→Cℕ+∞ : ∀ n → ℕ+∞→Cℕ+∞ (Cℕ+∞→ℕ+∞ n) ≡ n Cℕ+∞→ℕ+∞→Cℕ+∞ Coprod.∞ = refl Cℕ+∞→ℕ+∞→Cℕ+∞ (Coprod.fin n) = ℕ→ℕ+∞→Cℕ+∞ n suc-hom : ∀ n → Cℕ+∞→ℕ+∞ (Coprod.suc n) ≡ suc (Cℕ+∞→ℕ+∞ n) suc-hom Coprod.∞ = suc-inf suc-hom (Coprod.fin x) = refl ℕ+∞→Cℕ+∞→ℕ+∞ : ∀ n → Cℕ+∞→ℕ+∞ (ℕ+∞→Cℕ+∞ n) ≡ n ℕ+∞→Cℕ+∞→ℕ+∞ zero = refl ℕ+∞→Cℕ+∞→ℕ+∞ ∞ = refl ℕ+∞→Cℕ+∞→ℕ+∞ (suc n) = suc-hom (ℕ+∞→Cℕ+∞ n) ∙ cong suc (ℕ+∞→Cℕ+∞→ℕ+∞ n) ℕ+∞→Cℕ+∞→ℕ+∞ (suc-inf i) = lemma i where lemma : (λ i → ∞ ≡ suc-inf i) [ refl ≡ suc-inf ∙ refl ] lemma i j = hcomp (λ k → λ { (i = i0) → ∞ ; (i = i1) → compPath-filler suc-inf refl k j ; (j = i0) → ∞ ; (j = i1) → suc-inf i }) (suc-inf (i ∧ j)) open Iso ℕ+∞⇔Cℕ+∞ : Iso ℕ+∞ Coprod.ℕ+∞ ℕ+∞⇔Cℕ+∞ .fun = ℕ+∞→Cℕ+∞ ℕ+∞⇔Cℕ+∞ .inv = Cℕ+∞→ℕ+∞ ℕ+∞⇔Cℕ+∞ .leftInv = ℕ+∞→Cℕ+∞→ℕ+∞ ℕ+∞⇔Cℕ+∞ .rightInv = Cℕ+∞→ℕ+∞→Cℕ+∞
{ "alphanum_fraction": 0.5222696766, "avg_line_length": 26.435483871, "ext": "agda", "hexsha": "c50e2ba4ebea4f418d4b4c7c0d5932f613bf672a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/InfNat/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/InfNat/Properties.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/InfNat/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1124, "size": 1639 }
{-# OPTIONS --cubical --safe #-} module Function.Surjective where open import Function.Surjective.Base public
{ "alphanum_fraction": 0.7589285714, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "babc71b6096b3cd33a73a0647232cb20a781f266", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Function/Surjective.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Function/Surjective.agda", "max_line_length": 43, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Function/Surjective.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 25, "size": 112 }
module Issue3295 where open import Issue3295.Incomplete open import Issue3295.Incomplete2 open import Agda.Builtin.Nat open import Agda.Builtin.Equality _ : f 0 ≡ 0 _ = {!!} _ : g 0 ≡ 0 _ = {!!} _ : f 1 ≡ 1 -- the evaluation of `f` should be blocked here _ = {!!} -- so looking at the normalised type should not cause any issue _ : g 1 ≡ 1 -- the evaluation of `g` should be blocked here _ = {!!} -- so looking at the normalised type should not cause any issue
{ "alphanum_fraction": 0.6822033898, "avg_line_length": 24.8421052632, "ext": "agda", "hexsha": "ee7299b4f84000811de5e972ec4610903b06c4fc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3295.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3295.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3295.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 149, "size": 472 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Poset) -- A thin (or posetal) category is a category with at most one -- morphism between any pair of objects. -- -- As explained on nLab: -- -- "Up to isomorphism, a thin category is the same thing as a -- proset. Up to equivalence, a thin category is the same thing as a -- poset. (...) (It is really a question of whether you're working -- with strict categories, which are classified up to isomorphism, -- or categories as such, which are classified up to equivalence.)" -- -- -- https://ncatlab.org/nlab/show/thin+category -- -- Since -- -- 1. posets in the standard library are defined up to an underlying -- equivalence/setoid, but -- -- 2. categories in this library do not have a notion of equality on -- objects (i.e. objects are considered up to isomorphism), -- -- it makes sense to work with the weaker notion of thin categories -- here, i.e. those generated by posets rather than prosets. This -- means that the core of a thin category (the groupoid consisting of -- all its isomorphism) is just the setoid underlying the -- corresponding poset. -- -- (See Categories.Adjoint.Instance.PosetCore for more details.) module Categories.Category.Construction.Thin {o ℓ₁ ℓ₂} e (P : Poset o ℓ₁ ℓ₂) where open import Level open import Data.Unit using (⊤) open import Function using (flip) open import Categories.Category import Categories.Morphism as Morphism open Poset P Thin : Category o ℓ₂ e Thin = record { Obj = Carrier ; _⇒_ = _≤_ ; _≈_ = λ _ _ → Lift e ⊤ ; id = refl ; _∘_ = flip trans ; assoc = _ ; identityˡ = _ ; identityʳ = _ ; equiv = _ ; ∘-resp-≈ = _ } module EqIsIso where open Category Thin hiding (_≈_) open Morphism Thin using (_≅_) open _≅_ -- Equivalent elements of |P| are isomorphic objects of |Thin P|. ≈⇒≅ : ∀ {x y : Obj} → x ≈ y → x ≅ y ≈⇒≅ x≈y = record { from = reflexive x≈y ; to = reflexive (Eq.sym x≈y) } ≅⇒≈ : ∀ {x y : Obj} → x ≅ y → x ≈ y ≅⇒≈ x≅y = antisym (from x≅y) (to x≅y)
{ "alphanum_fraction": 0.6448730009, "avg_line_length": 28.3466666667, "ext": "agda", "hexsha": "0ff3916792d3be0985eec8b616cd024df0ad42d7", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Thin.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Thin.agda", "max_line_length": 82, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Thin.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 661, "size": 2126 }
{-# OPTIONS --safe --without-K #-} open import Data.Char.Base using (Char) open import Data.List.Base using (List; []; _∷_) module PiCalculus.Syntax where Name : Set Name = List Char module Raw where infixr 20 _∥_ infixr 15 ⦅ν_⦆_ infixr 10 _⦅_⦆_ _⟨_⟩_ data Raw : Set where 𝟘 : Raw ⦅ν_⦆_ : Name → Raw → Raw _∥_ : Raw → Raw → Raw _⦅_⦆_ : Name → Name → Raw → Raw _⟨_⟩_ : Name → Name → Raw → Raw module Scoped where open import Data.Fin.Base open import Data.Nat.Base infixr 20 _∥_ infixr 15 ν infixr 10 _⦅⦆_ _⟨_⟩_ private variable n : ℕ data Scoped : ℕ → Set where 𝟘 : Scoped n ν : Scoped (suc n) → ⦃ name : Name ⦄ → Scoped n _∥_ : Scoped n → Scoped n → Scoped n _⦅⦆_ : Fin n → Scoped (suc n) → ⦃ name : Name ⦄ → Scoped n _⟨_⟩_ : Fin n → Fin n → Scoped n → Scoped n module Conversion where private open Raw open Scoped open import Level using (Lift; _⊔_) open import Function using (_∘_) open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable using (isYes; True; toWitness) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Negation using (¬?) import Data.Vec.Base as Vec import Data.Char.Base as Char import Data.Char.Properties as Charₚ import Data.List.Base as List import Data.List.Properties as Listₚ import Data.String.Base as String import Data.String.Properties as Stringₚ import Data.Nat.Show as ℕₛ import Data.Vec.Membership.DecPropositional as DecPropositional open import Data.Empty using (⊥) open import Data.Bool.Base using (true; false; if_then_else_) open import Data.Product using (_,_; _×_) open import Data.Unit using (⊤; tt) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Fin.Base using (Fin; zero; suc) open import Data.String.Base using (_++_) open import Data.Vec.Membership.Propositional using (_∈_; _∉_) open import Data.Vec.Relation.Unary.Any using (here; there) open Vec using (Vec; []; _∷_) _∈?_ = DecPropositional._∈?_ (Listₚ.≡-dec Charₚ._≟_) variable n m : ℕ Ctx : ℕ → Set Ctx = Vec Name count : Name → Ctx n → ℕ count name = Vec.count (Listₚ.≡-dec Charₚ._≟_ name) toChars : Name × ℕ → List Char.Char toChars (x , i) = x List.++ ('^' ∷ ℕₛ.charsInBase 10 i) repr : ∀ x (xs : Vec Name n) → Name repr x xs = toChars (x , (count x xs)) apply : Ctx n → Ctx n apply [] = [] apply (x ∷ xs) = repr x xs ∷ apply xs WellScoped : Ctx n → Raw → Set WellScoped ctx 𝟘 = ⊤ WellScoped ctx (⦅ν x ⦆ P) = WellScoped (x ∷ ctx) P WellScoped ctx (P ∥ Q) = WellScoped ctx P × WellScoped ctx Q WellScoped ctx (x ⦅ y ⦆ P) = (x ∈ ctx) × WellScoped (y ∷ ctx) P WellScoped ctx (x ⟨ y ⟩ P) = (x ∈ ctx) × (y ∈ ctx) × WellScoped ctx P WellScoped? : (ctx : Ctx n) (P : Raw) → Dec (WellScoped ctx P) WellScoped? ctx 𝟘 = yes tt WellScoped? ctx (⦅ν x ⦆ P) = WellScoped? (x ∷ ctx) P WellScoped? ctx (P ∥ Q) = WellScoped? ctx P ×-dec WellScoped? ctx Q WellScoped? ctx (x ⦅ y ⦆ P) = x ∈? ctx ×-dec WellScoped? (y ∷ ctx) P WellScoped? ctx (x ⟨ y ⟩ P) = x ∈? ctx ×-dec y ∈? ctx ×-dec WellScoped? ctx P NotShadowed : Ctx n → Raw → Set NotShadowed ctx 𝟘 = ⊤ NotShadowed ctx (⦅ν name ⦆ P) = name ∉ ctx × NotShadowed (name ∷ ctx) P NotShadowed ctx (P ∥ Q) = NotShadowed ctx P × NotShadowed ctx Q NotShadowed ctx (x ⦅ y ⦆ P) = y ∉ ctx × NotShadowed (y ∷ ctx) P NotShadowed ctx (x ⟨ y ⟩ P) = NotShadowed ctx P NotShadowed? : (ctx : Ctx n) (P : Raw) → Dec (NotShadowed ctx P) NotShadowed? ctx 𝟘 = yes tt NotShadowed? ctx (⦅ν name ⦆ P) = ¬? (name ∈? ctx) ×-dec NotShadowed? (name ∷ ctx) P NotShadowed? ctx (P ∥ Q) = NotShadowed? ctx P ×-dec NotShadowed? ctx Q NotShadowed? ctx (x ⦅ y ⦆ P) = ¬? (y ∈? ctx) ×-dec NotShadowed? (y ∷ ctx) P NotShadowed? ctx (x ⟨ y ⟩ P) = NotShadowed? ctx P ∈toFin : ∀ {a} {A : Set a} {x} {xs : Vec A n} → x ∈ xs → Fin n ∈toFin (here px) = zero ∈toFin (there x∈xs) = suc (∈toFin x∈xs) fromRaw' : (ctx : Ctx n) (P : Raw) → WellScoped ctx P → Scoped n fromRaw' ctx 𝟘 tt = 𝟘 fromRaw' ctx (⦅ν x ⦆ P) wsP = ν (fromRaw' (x ∷ ctx) P wsP) ⦃ x ⦄ fromRaw' ctx (P ∥ Q) (wsP , wsQ) = fromRaw' ctx P wsP ∥ fromRaw' ctx Q wsQ fromRaw' ctx (x ⦅ y ⦆ P) (x∈ctx , wsP) = (∈toFin x∈ctx ⦅⦆ fromRaw' (y ∷ ctx) P wsP) ⦃ y ⦄ fromRaw' ctx (x ⟨ y ⟩ P) (x∈ctx , y∈ctx , wsP) = ∈toFin x∈ctx ⟨ ∈toFin y∈ctx ⟩ fromRaw' ctx P wsP fromRaw : (ctx : Ctx n) (P : Raw) → ⦃ _ : True (WellScoped? ctx P) ⦄ → Scoped n fromRaw ctx P ⦃ p ⦄ = fromRaw' ctx P (toWitness p) toRaw : Ctx n → Scoped n → Raw toRaw ctx 𝟘 = 𝟘 toRaw ctx (ν P ⦃ name ⦄) = ⦅ν repr name ctx ⦆ toRaw (name ∷ ctx) P toRaw ctx (P ∥ Q) = toRaw ctx P ∥ toRaw ctx Q toRaw ctx ((x ⦅⦆ P) ⦃ name ⦄) = let ctx' = apply ctx in Vec.lookup ctx' x ⦅ repr name ctx ⦆ toRaw (name ∷ ctx) P toRaw ctx (x ⟨ y ⟩ P) = let ctx' = apply ctx in Vec.lookup ctx' x ⟨ Vec.lookup ctx' y ⟩ toRaw ctx P map : ∀ {a} (B : Scoped n → Set a) (ctx : Vec Name n) (P : Raw) → Set a map B ctx P with WellScoped? ctx P map B ctx P | yes wsP = B (fromRaw' ctx P wsP) map B ctx P | no _ = Lift _ ⊥ map₂ : ∀ {a} (B : Scoped n → Scoped n → Set a) (ctx : Vec Name n) (P Q : Raw) → Set a map₂ B ctx P Q with WellScoped? ctx P | WellScoped? ctx Q map₂ B ctx P Q | yes wsP | yes wsQ = B (fromRaw' ctx P wsP) (fromRaw' ctx Q wsQ) map₂ B ctx P Q | _ | _ = Lift _ ⊥
{ "alphanum_fraction": 0.5972247252, "avg_line_length": 33.4277108434, "ext": "agda", "hexsha": "c71e83444a2e8f6324a33fd76d3d17f0d0612ed9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/Syntax.agda", "max_line_length": 87, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 2220, "size": 5549 }
{- Day 3, 1st part -} module a3 where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Unit using (⊤) open import Agda.Builtin.String using (String; primShowNat) open import Agda.Builtin.Equality open import Data.Nat open import Data.Bool open import Data.List hiding (lookup;allFin) renaming (map to mapList) open import Data.Vec open import Data.Fin hiding (_+_) open import Data.Maybe renaming (map to maybeMap) open import a3-input postulate putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text as T #-} {-# COMPILE GHC putStrLn = putStrLn . T.unpack #-} -- helper showMaybeNat : Maybe ℕ → String showMaybeNat (just n) = primShowNat n showMaybeNat nothing = "nothing" data Bit : Set where one : Bit zero : Bit BitVec = Vec Bit Vecℕ→BitVec : {n : ℕ} → Vec ℕ n → Maybe (BitVec n) Vecℕ→BitVec [] = just [] Vecℕ→BitVec (x ∷ v) with Vecℕ→BitVec v ... | just v' with x ... | 0 = just (zero ∷ v') ... | 1 = just (one ∷ v') ... | suc (suc _) = nothing Vecℕ→BitVec (x ∷ v) | nothing = nothing findMostCommonBit : {n : ℕ} (index : Fin n) → List (BitVec n) → Bit findMostCommonBit {n = n} index input = iterate 0 0 input where iterate : (zeros : ℕ) (ones : ℕ) → List (BitVec n) → Bit iterate zeros ones [] = if zeros <ᵇ ones then one else zero iterate zeros ones (bitVec ∷ list) with lookup bitVec index ... | zero = iterate (1 + zeros) ones list ... | one = iterate zeros (1 + ones) list bitVecToℕ : {n : ℕ} → BitVec n → ℕ bitVecToℕ [] = 0 bitVecToℕ (zero ∷ v) = bitVecToℕ v bitVecToℕ {n = suc n} (one ∷ v) = 2 ^ n + (bitVecToℕ v) invertBitVec : {n : ℕ} → BitVec n → BitVec n invertBitVec [] = [] invertBitVec (zero ∷ v) = one ∷ invertBitVec v invertBitVec (one ∷ v) = zero ∷ invertBitVec v listMaybe : {A : Set} → List (Maybe A) → Maybe (List A) listMaybe [] = just [] listMaybe (just x ∷ list) with listMaybe list ... | just proccessedList = just (x ∷ proccessedList) ... | nothing = nothing listMaybe (nothing ∷ list) = nothing doTask : List (BitVec 12) → ℕ doTask input = gamma * epsilon where bitVecGamma = map (λ index → findMostCommonBit index input) (allFin 12) gamma : ℕ gamma = bitVecToℕ bitVecGamma epsilon = bitVecToℕ (invertBitVec bitVecGamma) main : IO ⊤ main = putStrLn (showMaybeNat ((maybeMap doTask) (listMaybe (mapList Vecℕ→BitVec input)))) private -- checks from the exercise text testInput : Maybe (List (BitVec 5)) testInput = listMaybe (mapList Vecℕ→BitVec ((0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷ (1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷ (1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷ (1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷ (1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷ (0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷ (0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷ (1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷ (1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷ (1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷ (0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷ (0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷ [])) _ : maybeMap (findMostCommonBit Fin.zero) testInput ≡ just one _ = refl _ : maybeMap (findMostCommonBit (Fin.suc Fin.zero)) testInput ≡ just zero _ = refl _ : maybeMap (findMostCommonBit (Fin.suc (Fin.suc Fin.zero))) testInput ≡ just one _ = refl _ : maybeMap (findMostCommonBit (Fin.suc (Fin.suc (Fin.suc Fin.zero)))) testInput ≡ just one _ = refl _ : maybeMap (findMostCommonBit (fromℕ 4)) testInput ≡ just zero _ = refl -- test bitVecToℕ _ : bitVecToℕ (one ∷ zero ∷ one ∷ one ∷ zero ∷ []) ≡ 22 _ = refl _ : Vecℕ→BitVec (1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ≡ just (one ∷ zero ∷ one ∷ one ∷ zero ∷ []) _ = refl _ : Vecℕ→BitVec (1 ∷ 0 ∷ 1 ∷ 5 ∷ 0 ∷ []) ≡ nothing _ = refl
{ "alphanum_fraction": 0.5384615385, "avg_line_length": 31.5714285714, "ext": "agda", "hexsha": "3881a435e75d21e014eee77d5cef2addfd4d3fdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felixwellen/adventOfCode", "max_forks_repo_path": "a3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felixwellen/adventOfCode", "max_issues_repo_path": "a3.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "834bc9e291a76bdbcd58cbff9805161f1b1cfe71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felixwellen/adventOfCode", "max_stars_repo_path": "a3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1494, "size": 3978 }
{-# OPTIONS --prop --without-K #-} module Data.Nat.Square where open import Data.Nat open import Data.Nat.Properties open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl) _² : ℕ → ℕ n ² = n * n n^2≡n² : ∀ n → n ^ 2 ≡ n ² n^2≡n² n = Eq.cong (n *_) (*-identityʳ n) ²-mono : _² Preserves _≤_ ⟶ _≤_ ²-mono m≤n = *-mono-≤ m≤n m≤n
{ "alphanum_fraction": 0.6642156863, "avg_line_length": 20.4, "ext": "agda", "hexsha": "f0e82fca790ed677fafb7fdb7a7fd439e09d2aed", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Data/Nat/Square.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Data/Nat/Square.agda", "max_line_length": 73, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Data/Nat/Square.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 157, "size": 408 }
module Structure.Type.Quotient where import Lvl open import Logic open import Logic.Propositional open import Structure.Function hiding (intro) open import Structure.Function.Domain hiding (intro) open import Structure.Relator.Equivalence hiding (intro) open import Structure.Setoid hiding (intro) import Type open import Type.Properties.Empty hiding (intro) record Quotient {ℓ₁ ℓ₂} {T : TYPE(ℓ₁)} (_≅_ : T → T → Stmt{ℓ₂}) ⦃ equivalence : Equivalence(_≅_) ⦄ : Stmtω where field {ℓ} : Lvl.Level Type : TYPE(ℓ) {ℓₑ} : Lvl.Level ⦃ equiv ⦄ : Equiv{ℓₑ}(Type) -- TODO: Consider using Id instead of this because otherwise every type has a quotient by just using itself class : T → Type ⦃ intro-function ⦄ : Function ⦃ Structure.Setoid.intro(_≅_) ⦃ equivalence ⦄ ⦄ (class) ⦃ intro-bijective ⦄ : Bijective ⦃ Structure.Setoid.intro(_≅_) ⦃ equivalence ⦄ ⦄ (class) -- elim : Type → T -- TODO: Choice? -- inverseᵣ : ∀{q : Type} → (class(elim(q)) ≡ q) -- extensionality : ∀{a b : T} → (class(a) ≡ class(b)) ↔ (a ≅ b) _/_ : ∀{ℓ₁ ℓ₂} → (T : TYPE(ℓ₁)) → (_≅_ : T → T → Stmt{ℓ₂}) → ⦃ e : Equivalence(_≅_) ⦄ → ⦃ q : Quotient(_≅_) ⦃ e ⦄ ⦄ → TYPE(Quotient.ℓ q) (T / (_≅_)) ⦃ _ ⦄ ⦃ q ⦄ = Quotient.Type(q) [_of_] : ∀{ℓ₁ ℓ₂}{T : TYPE(ℓ₁)} → T → (_≅_ : T → T → Stmt{ℓ₂}) → ⦃ e : Equivalence(_≅_) ⦄ → ⦃ q : Quotient(_≅_) ⦃ e ⦄ ⦄ → (T / (_≅_)) [ x of (_≅_) ] ⦃ _ ⦄ ⦃ q ⦄ = Quotient.class(q)(x) {- record Filterer (Filter : ∀{T : Type} → (T → Stmt) → Type) : Stmt where field intro : ∀{P} → (x : T) → ⦃ _ : P(x) ⦄ → Filter(P) obj : ∀{P} → Filter(P) → T proof : ∀{P} → (X : Filter(P)) → P(obj(X)) inverseₗ : ∀{P}{X : Filter(P)} → (intro(obj(X)) ⦃ proof(X) ⦄ ≡ X) inverseᵣ : ∀{P}{x}{px} → (obj(intro(x) ⦃ px ⦄) ≡ x) extensionality : ∀{T} → ⦃ _ : Equiv(T) ⦄ → ∀{Q : (T / (_≡_))}{a b : Q} → (intro(a) ≡ intro(b)) ↔ (a ≡ b) -}
{ "alphanum_fraction": 0.5657264502, "avg_line_length": 44.7380952381, "ext": "agda", "hexsha": "a35b68d56e4148ee5d9c48adba98a740001952bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Type/Quotient.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Type/Quotient.agda", "max_line_length": 139, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Type/Quotient.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 798, "size": 1879 }
module GUIgeneric.Prelude where open import Data.Sum public hiding (map) open import Data.List public open import Data.Bool public open import Data.String hiding (decSetoid) renaming (_++_ to _++Str_; _==_ to _==Str_; _≟_ to _≟Str_) public open import Data.Unit hiding (_≟_; decSetoid; setoid) public open import Data.Empty public open import Data.Product hiding (map; zip) public open import Data.Sum hiding (map) public open import Data.Nat hiding (_≟_; _≤_; _≤?_) public open import Data.Maybe.Base hiding (map) public open import Function public open import Relation.Binary.PropositionalEquality.Core public open import Relation.Binary.PropositionalEquality hiding (setoid ; preorder ; decSetoid; [_]) public open import Size public open import Level renaming (_⊔_ to _⊔Level_; suc to sucLevel; zero to zeroLevel) public open import Relation.Binary.Core using (Decidable) public open import Relation.Nullary using (Dec) public open import Relation.Nullary.Decidable using (⌊_⌋) public -- -- ooAgda Imports -- open import NativeIO public open import StateSizedIO.Base hiding (IOInterfaceˢ; IOˢ; IOˢ'; IOˢ+; delayˢ; doˢ; fmapˢ; fmapˢ'; returnˢ) public open import StateSizedIO.GUI.WxGraphicsLibLevel3 public renaming (createFrame to createWxFrame) open import StateSizedIO.GUI.WxBindingsFFI renaming (Frame to FFIFrame; Button to FFIButton; TextCtrl to FFITextCtrl) public open import SizedIO.Base public open import StateSizedIO.GUI.BaseStateDependent public open import StateSizedIO.GUI.VariableList renaming (addVar to addVar'; addVar' to addVar) public
{ "alphanum_fraction": 0.7937619351, "avg_line_length": 38.3170731707, "ext": "agda", "hexsha": "8d015a1ee88b15d44eddcb7d8b165e24b3ee0580", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "examples/GUIgeneric/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "examples/GUIgeneric/Prelude.agda", "max_line_length": 125, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "examples/GUIgeneric/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 429, "size": 1571 }
module Dave.Extensionality where open import Dave.Equality postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) → f ≡ g postulate ∀-extensionality : ∀ {A : Set} {B : A → Set} {f g : ∀(x : A) → B x} → (∀ (x : A) → f x ≡ g x) → f ≡ g
{ "alphanum_fraction": 0.4041297935, "avg_line_length": 28.25, "ext": "agda", "hexsha": "f49d2e58d976d3719d3c1f86db178469a748717c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Extensionality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Extensionality.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Extensionality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 122, "size": 339 }
module Cats.Category.Preorder where open import Data.Unit using (⊤ ; tt) open import Level open import Relation.Binary as Rel using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_ ; Setoid) open import Cats.Category open import Cats.Category.Setoids using (Setoids ; ≈-intro) open import Cats.Util.Conv open import Cats.Util.Function as Fun using (_on_) module _ (lc l≈ l≤ : Level) where infixr 9 _∘_ infixr 4 _≈_ private module Setoids = Category (Setoids lc l≈) Obj : Set (suc (lc ⊔ l≈ ⊔ l≤)) Obj = Rel.Preorder lc l≈ l≤ Universe : Obj → Setoid lc l≈ Universe A = record { Carrier = Rel.Preorder.Carrier A ; _≈_ = Rel.Preorder._≈_ A ; isEquivalence = Rel.Preorder.isEquivalence A } record _⇒_ (A B : Obj) : Set (lc ⊔ l≈ ⊔ l≤) where private module A = Rel.Preorder A module B = Rel.Preorder B field arr : Universe A Setoids.⇒ Universe B monotone : ∀ {x y} → x A.∼ y → (arr ⃗) x B.∼ (arr ⃗) y open Cats.Category.Setoids._⇒_ arr public using (resp) open _⇒_ using (monotone ; resp) instance HasArrow-⇒ : ∀ A B → HasArrow (A ⇒ B) _ _ _ HasArrow-⇒ A B = record { Cat = Setoids lc l≈ ; _⃗ = _⇒_.arr } id : ∀ {A} → A ⇒ A id = record { arr = Setoids.id ; monotone = Fun.id } _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C g ∘ f = record { arr = g ⃗ Setoids.∘ f ⃗ ; monotone = monotone g Fun.∘ monotone f } _≈_ : {A B : Obj} → Rel (A ⇒ B) (lc ⊔ l≈) _≈_ = Setoids._≈_ on _⃗ instance Preorder : Category (suc (lc ⊔ l≈ ⊔ l≤)) (lc ⊔ l≈ ⊔ l≤) (lc ⊔ l≈) Preorder = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = Fun.on-isEquivalence _⃗ Setoids.equiv ; ∘-resp = Setoids.∘-resp ; id-r = Setoids.id-r ; id-l = Setoids.id-l ; assoc = λ { {f = f} {g} {h} → Setoids.assoc {f = f ⃗} {g ⃗} {h ⃗} } } preorderAsCategory : ∀ {lc l≈ l≤} → Rel.Preorder lc l≈ l≤ → Category lc l≤ zero preorderAsCategory P = record { Obj = P.Carrier ; _⇒_ = P._∼_ ; _≈_ = λ _ _ → ⊤ ; id = P.refl ; _∘_ = λ B≤C A≤B → P.trans A≤B B≤C ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; ∘-resp = λ _ _ → tt ; id-r = tt ; id-l = tt ; assoc = tt } where module P = Rel.Preorder P
{ "alphanum_fraction": 0.5398116438, "avg_line_length": 23.36, "ext": "agda", "hexsha": "e4965ca15c39a2dc7db524b3b0fbd60b14b1524d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Preorder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Preorder.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Preorder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 955, "size": 2336 }
module plfa.part1.Isomorphism where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; cong-app) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm)
{ "alphanum_fraction": 0.7663934426, "avg_line_length": 30.5, "ext": "agda", "hexsha": "c62153f1d56f36b094a9f5eb67ba887890127a4e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/plfa-exercises/part1/Isomorphism.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/plfa-exercises/part1/Isomorphism.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/plfa-exercises/part1/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 71, "size": 244 }
module Issue2447.Internal-error where import Issue2447.M {-# IMPOSSIBLE #-}
{ "alphanum_fraction": 0.7564102564, "avg_line_length": 13, "ext": "agda", "hexsha": "d364d41d23503ce6d57ee44eaed9b0b2ddddbfe7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2447/Internal-error.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2447/Internal-error.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2447/Internal-error.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 78 }
{-# OPTIONS --without-K #-} module sets.nat.ordering.lt where open import sets.nat.ordering.lt.core public open import sets.nat.ordering.lt.level public
{ "alphanum_fraction": 0.7662337662, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "2e73b18f34c7f4da0f5e1ffc8217e8faa71b7a31", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/ordering/lt.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/ordering/lt.agda", "max_line_length": 45, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/ordering/lt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 37, "size": 154 }
module Thesis.SIRelBigStep.DLangDerive where open import Thesis.SIRelBigStep.DSyntax public derive-const : ∀ {Δ σ} → (c : Const σ) → DSVal Δ σ derive-const (lit n) = dconst (lit 0) derive-dterm : ∀ {Δ σ} → (t : Term Δ σ) → DTerm Δ σ derive-dsval : ∀ {Δ σ} → (t : SVal Δ σ) → DSVal Δ σ derive-dsval (var x) = dvar x derive-dsval (abs t) = dabs (derive-dterm t) derive-dsval (cons sv1 sv2) = dcons (derive-dsval sv1) (derive-dsval sv2) derive-dsval (const c) = derive-const c derive-dterm (val x) = dval (derive-dsval x) derive-dterm (primapp p sv) = dprimapp p sv (derive-dsval sv) derive-dterm (app vs vt) = dapp (derive-dsval vs) vt (derive-dsval vt) derive-dterm (lett s t) = dlett s (derive-dterm s) (derive-dterm t) -- Nontrivial because of unification problems in pattern matching. I wanted to -- use it to define ⊕ on closures purely on terms of the closure change. -- Instead, I decided to use decidable equality on contexts: that's a lot of -- tedious boilerplate, but not too hard, but the proof that validity and ⊕ -- agree becomes easier. -- -- Define a DVar and be done? -- underive-dvar : ∀ {Δ σ} → Var (ΔΔ Δ) (Δτ σ) → Var Δ σ -- underive-dvar {∅} () -- underive-dvar {τ • Δ} x = {!!} --underive-dvar {σ • Δ} (that x) = that (underive-dvar x)
{ "alphanum_fraction": 0.6766798419, "avg_line_length": 38.3333333333, "ext": "agda", "hexsha": "ce464465fbc27579fbfeb753320d46f769a48b63", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/SIRelBigStep/DLangDerive.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/SIRelBigStep/DLangDerive.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/SIRelBigStep/DLangDerive.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 443, "size": 1265 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.elims.CofPushoutSection as CofPushoutSection module homotopy.SmashIsCofiber {i j} (X : Ptd i) (Y : Ptd j) where {- the proof that our smash matches the more classical definition as a cofiber -} Smash-equiv-Cof : Smash X Y ≃ Cofiber (∨-to-× {X = X} {Y = Y}) Smash-equiv-Cof = equiv to from to-from from-to where module To = SmashRec {C = Cofiber (∨-to-× {X = X} {Y = Y})} (curry cfcod) cfbase cfbase (λ x → ! (cfglue (winl x))) (λ y → ! (cfglue (winr y))) to : Smash X Y → Cofiber (∨-to-× {X = X} {Y = Y}) to = To.f module FromGlue = WedgeElim {P = λ x∨y → smin (pt X) (pt Y) == uncurry smin (∨-to-× {X = X} {Y = Y} x∨y)} (λ x → smgluel (pt X) ∙' ! (smgluel x)) (λ y → smgluer (pt Y) ∙' ! (smgluer y)) (↓-cst=app-in $ ap2 _∙'_ (!-inv'-r (smgluel (pt X))) ( ap-∘ (uncurry smin) (∨-to-× {X = X} {Y = Y}) wglue ∙ ap (ap (uncurry smin)) (∨-to-×-glue-β {X = X} {Y = Y})) ∙ ! (!-inv'-r (smgluer (pt Y)))) module From = CofiberRec {C = Smash X Y} (smin (pt X) (pt Y)) (uncurry smin) FromGlue.f from : Cofiber (∨-to-× {X = X} {Y = Y}) → Smash X Y from = From.f abstract from-to : ∀ x → from (to x) == x from-to = Smash-elim (λ _ _ → idp) (smgluel (pt X)) (smgluer (pt Y)) (λ x → ↓-∘=idf-in' from to $ ap from (ap to (smgluel x)) ∙' smgluel (pt X) =⟨ ap (_∙' smgluel (pt X)) $ ap from (ap to (smgluel x)) =⟨ ap (ap from) (To.smgluel-β x) ⟩ ap from (! (cfglue (winl x))) =⟨ ap-! from (cfglue (winl x)) ⟩ ! (ap from (cfglue (winl x))) =⟨ ap ! $ From.glue-β (winl x) ⟩ ! (smgluel (pt X) ∙' ! (smgluel x)) =⟨ !-∙' (smgluel (pt X)) (! (smgluel x)) ⟩ ! (! (smgluel x)) ∙' ! (smgluel (pt X)) =∎ ⟩ (! (! (smgluel x)) ∙' ! (smgluel (pt X))) ∙' smgluel (pt X) =⟨ ∙'-assoc (! (! (smgluel x))) (! (smgluel (pt X))) (smgluel (pt X)) ⟩ ! (! (smgluel x)) ∙' ! (smgluel (pt X)) ∙' smgluel (pt X) =⟨ ap2 _∙'_ (!-! (smgluel x)) (!-inv'-l (smgluel (pt X))) ⟩ smgluel x =∎) (λ y → ↓-∘=idf-in' from to $ ap from (ap to (smgluer y)) ∙' smgluer (pt Y) =⟨ ap (_∙' smgluer (pt Y)) $ ap from (ap to (smgluer y)) =⟨ ap (ap from) (To.smgluer-β y) ⟩ ap from (! (cfglue (winr y))) =⟨ ap-! from (cfglue (winr y)) ⟩ ! (ap from (cfglue (winr y))) =⟨ ap ! $ From.glue-β (winr y) ⟩ ! (smgluer (pt Y) ∙' ! (smgluer y)) =⟨ !-∙' (smgluer (pt Y)) (! (smgluer y)) ⟩ ! (! (smgluer y)) ∙' ! (smgluer (pt Y)) =∎ ⟩ (! (! (smgluer y)) ∙' ! (smgluer (pt Y))) ∙' smgluer (pt Y) =⟨ ∙'-assoc (! (! (smgluer y))) (! (smgluer (pt Y))) (smgluer (pt Y)) ⟩ ! (! (smgluer y)) ∙' ! (smgluer (pt Y)) ∙' smgluer (pt Y) =⟨ ap2 _∙'_ (!-! (smgluer y)) (!-inv'-l (smgluer (pt Y))) ⟩ smgluer y =∎) to-from : ∀ x → to (from x) == x to-from = CofPushoutSection.elim (λ _ → unit) (λ _ → idp) (! (cfglue (winr (pt Y)))) (λ _ → idp) (λ x → ↓-∘=idf-in' to from $ ap to (ap from (cfglue (winl x))) =⟨ ap (ap to) (From.glue-β (winl x)) ⟩ ap to (FromGlue.f (winl x)) =⟨ ap-∙' to (smgluel (pt X)) (! (smgluel x)) ⟩ ap to (smgluel (pt X)) ∙' ap to (! (smgluel x)) =⟨ ap2 _∙'_ (To.smgluel-β (pt X)) (ap-! to (smgluel x) ∙ ap ! (To.smgluel-β x) ∙ !-! (cfglue (winl x))) ⟩ ! (cfglue (winl (pt X))) ∙' cfglue (winl x) =⟨ ap (λ p → ! p ∙' cfglue (winl x)) $ ap (cfglue (winl (pt X)) ∙'_) ( ap (ap cfcod) (! ∨-to-×-glue-β) ∙ ∘-ap cfcod ∨-to-× wglue) ∙ ↓-cst=app-out (apd cfglue wglue) ⟩ ! (cfglue (winr (pt Y))) ∙' cfglue (winl x) =⟨ ∙'=∙ (! (cfglue (winr (pt Y)))) (cfglue (winl x)) ⟩ ! (cfglue (winr (pt Y))) ∙ cfglue (winl x) =∎) (λ y → ↓-∘=idf-in' to from $ ap to (ap from (cfglue (winr y))) =⟨ ap (ap to) (From.glue-β (winr y)) ⟩ ap to (FromGlue.f (winr y)) =⟨ ap-∙' to (smgluer (pt Y)) (! (smgluer y)) ⟩ ap to (smgluer (pt Y)) ∙' ap to (! (smgluer y)) =⟨ ap2 _∙'_ (To.smgluer-β (pt Y)) (ap-! to (smgluer y) ∙ ap ! (To.smgluer-β y) ∙ !-! (cfglue (winr y))) ⟩ ! (cfglue (winr (pt Y))) ∙' cfglue (winr y) =⟨ ∙'=∙ (! (cfglue (winr (pt Y)))) (cfglue (winr y)) ⟩ ! (cfglue (winr (pt Y))) ∙ cfglue (winr y) =∎) Smash-⊙equiv-Cof : ⊙Smash X Y ⊙≃ ⊙Cofiber (∨-⊙to-× {X = X} {Y = Y}) Smash-⊙equiv-Cof = ≃-to-⊙≃ Smash-equiv-Cof (! (cfglue (winl (pt X))))
{ "alphanum_fraction": 0.4324324324, "avg_line_length": 41.6638655462, "ext": "agda", "hexsha": "a87a878e6e1575596b850003f1fb124ee7740df5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SmashIsCofiber.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SmashIsCofiber.agda", "max_line_length": 85, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SmashIsCofiber.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2121, "size": 4958 }
------------------------------------------------------------------------ -- The abstract syntax is a set, and the semantics is propositional ------------------------------------------------------------------------ open import Atom module Propositional (atoms : χ-atoms) where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (const) open import Bijection equality-with-J using (_↔_) open import Equality.Decidable-UIP equality-with-J open import Equality.Decision-procedures equality-with-J open import Function-universe equality-with-J hiding (_∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import Cancellation atoms open import Chi atoms open import Deterministic atoms open χ-atoms atoms -- Exp has decidable equality. mutual _≟_ : Decidable-equality Exp apply e₁₁ e₂₁ ≟ apply e₁₂ e₂₂ with e₁₁ ≟ e₁₂ ... | no e₁₁≢e₁₂ = no (e₁₁≢e₁₂ ∘ proj₁ ∘ cancel-apply) ... | yes e₁₁≡e₁₂ = ⊎-map (cong₂ apply e₁₁≡e₁₂) (_∘ proj₂ ∘ cancel-apply) (e₂₁ ≟ e₂₂) lambda x₁ e₁ ≟ lambda x₂ e₂ with x₁ V.≟ x₂ ... | no x₁≢x₂ = no (x₁≢x₂ ∘ proj₁ ∘ cancel-lambda) ... | yes x₁≡x₂ = ⊎-map (cong₂ lambda x₁≡x₂) (_∘ proj₂ ∘ cancel-lambda) (e₁ ≟ e₂) case e₁ bs₁ ≟ case e₂ bs₂ with e₁ ≟ e₂ ... | no e₁≢e₂ = no (e₁≢e₂ ∘ proj₁ ∘ cancel-case) ... | yes e₁≡e₂ = ⊎-map (cong₂ case e₁≡e₂) (_∘ proj₂ ∘ cancel-case) (bs₁ ≟-B⋆ bs₂) rec x₁ e₁ ≟ rec x₂ e₂ with x₁ V.≟ x₂ ... | no x₁≢x₂ = no (x₁≢x₂ ∘ proj₁ ∘ cancel-rec) ... | yes x₁≡x₂ = ⊎-map (cong₂ rec x₁≡x₂) (_∘ proj₂ ∘ cancel-rec) (e₁ ≟ e₂) var x₁ ≟ var x₂ = ⊎-map (cong var) (_∘ cancel-var) (x₁ V.≟ x₂) const c₁ es₁ ≟ const c₂ es₂ with c₁ C.≟ c₂ ... | no c₁≢c₂ = no (c₁≢c₂ ∘ proj₁ ∘ cancel-const) ... | yes c₁≡c₂ = ⊎-map (cong₂ const c₁≡c₂) (_∘ proj₂ ∘ cancel-const) (es₁ ≟-⋆ es₂) apply _ _ ≟ lambda _ _ = no (λ ()) apply _ _ ≟ case _ _ = no (λ ()) apply _ _ ≟ rec _ _ = no (λ ()) apply _ _ ≟ var _ = no (λ ()) apply _ _ ≟ const _ _ = no (λ ()) lambda _ _ ≟ apply _ _ = no (λ ()) lambda _ _ ≟ case _ _ = no (λ ()) lambda _ _ ≟ rec _ _ = no (λ ()) lambda _ _ ≟ var _ = no (λ ()) lambda _ _ ≟ const _ _ = no (λ ()) case _ _ ≟ apply _ _ = no (λ ()) case _ _ ≟ lambda _ _ = no (λ ()) case _ _ ≟ rec _ _ = no (λ ()) case _ _ ≟ var _ = no (λ ()) case _ _ ≟ const _ _ = no (λ ()) rec _ _ ≟ apply _ _ = no (λ ()) rec _ _ ≟ lambda _ _ = no (λ ()) rec _ _ ≟ case _ _ = no (λ ()) rec _ _ ≟ var _ = no (λ ()) rec _ _ ≟ const _ _ = no (λ ()) var _ ≟ apply _ _ = no (λ ()) var _ ≟ lambda _ _ = no (λ ()) var _ ≟ case _ _ = no (λ ()) var _ ≟ rec _ _ = no (λ ()) var _ ≟ const _ _ = no (λ ()) const _ _ ≟ apply _ _ = no (λ ()) const _ _ ≟ lambda _ _ = no (λ ()) const _ _ ≟ case _ _ = no (λ ()) const _ _ ≟ rec _ _ = no (λ ()) const _ _ ≟ var _ = no (λ ()) _≟-B_ : Decidable-equality Br branch c₁ xs₁ e₁ ≟-B branch c₂ xs₂ e₂ with c₁ C.≟ c₂ ... | no c₁≢c₂ = no (c₁≢c₂ ∘ proj₁ ∘ cancel-branch) ... | yes c₁≡c₂ with List.Dec._≟_ V._≟_ xs₁ xs₂ ... | no xs₁≢xs₂ = no (xs₁≢xs₂ ∘ proj₁ ∘ proj₂ ∘ cancel-branch) ... | yes xs₁≡xs₂ = ⊎-map (cong₂ (uncurry branch) (cong₂ _,_ c₁≡c₂ xs₁≡xs₂)) (_∘ proj₂ ∘ proj₂ ∘ cancel-branch) (e₁ ≟ e₂) _≟-⋆_ : Decidable-equality (List Exp) [] ≟-⋆ [] = yes refl (e₁ ∷ es₁) ≟-⋆ (e₂ ∷ es₂) with e₁ ≟ e₂ ... | no e₁≢e₂ = no (e₁≢e₂ ∘ List.cancel-∷-head) ... | yes e₁≡e₂ = ⊎-map (cong₂ _∷_ e₁≡e₂) (_∘ List.cancel-∷-tail) (es₁ ≟-⋆ es₂) [] ≟-⋆ (_ ∷ _) = no (λ ()) (_ ∷ _) ≟-⋆ [] = no (λ ()) _≟-B⋆_ : Decidable-equality (List Br) [] ≟-B⋆ [] = yes refl (b₁ ∷ bs₁) ≟-B⋆ (b₂ ∷ bs₂) with b₁ ≟-B b₂ ... | no b₁≢b₂ = no (b₁≢b₂ ∘ List.cancel-∷-head) ... | yes b₁≡b₂ = ⊎-map (cong₂ _∷_ b₁≡b₂) (_∘ List.cancel-∷-tail) (bs₁ ≟-B⋆ bs₂) [] ≟-B⋆ (_ ∷ _) = no (λ ()) (_ ∷ _) ≟-B⋆ [] = no (λ ()) -- Exp is a set. Exp-set : Is-set Exp Exp-set = decidable⇒set _≟_ -- An alternative definition of the semantics. data Lookup′ (c : Const) : List Br → List Var → Exp → Type where here : ∀ {c′ xs xs′ e e′ bs} → c ≡ c′ → xs ≡ xs′ → e ≡ e′ → Lookup′ c (branch c′ xs′ e′ ∷ bs) xs e there : ∀ {c′ xs′ e′ bs xs e} → c ≢ c′ → Lookup′ c bs xs e → Lookup′ c (branch c′ xs′ e′ ∷ bs) xs e infixr 5 _∷_ infix 4 _[_←_]↦′_ data _[_←_]↦′_ (e : Exp) : List Var → List Exp → Exp → Type where [] : ∀ {e′} → e ≡ e′ → e [ [] ← [] ]↦′ e′ _∷_ : ∀ {x xs e′ es′ e″ e‴} → e‴ ≡ e″ [ x ← e′ ] → e [ xs ← es′ ]↦′ e″ → e [ x ∷ xs ← e′ ∷ es′ ]↦′ e‴ infix 4 _⇓′_ _⇓⋆′_ mutual data _⇓′_ : Exp → Exp → Type where apply : ∀ {e₁ e₂ x e v₂ v} → e₁ ⇓′ lambda x e → e₂ ⇓′ v₂ → e [ x ← v₂ ] ⇓′ v → apply e₁ e₂ ⇓′ v case : ∀ {e bs c es xs e′ e″ v} → e ⇓′ const c es → Lookup′ c bs xs e′ → e′ [ xs ← es ]↦′ e″ → e″ ⇓′ v → case e bs ⇓′ v rec : ∀ {x e v} → e [ x ← rec x e ] ⇓′ v → rec x e ⇓′ v lambda : ∀ {x x′ e e′} → x ≡ x′ → e ≡ e′ → lambda x e ⇓′ lambda x′ e′ const : ∀ {c c′ es vs} → c ≡ c′ → es ⇓⋆′ vs → const c es ⇓′ const c′ vs data _⇓⋆′_ : List Exp → List Exp → Type where [] : [] ⇓⋆′ [] _∷_ : ∀ {e es v vs} → e ⇓′ v → es ⇓⋆′ vs → e ∷ es ⇓⋆′ v ∷ vs -- The alternative definition is isomorphic to the other one. Lookup↔Lookup′ : ∀ {c bs xs e} → Lookup c bs xs e ↔ Lookup′ c bs xs e Lookup↔Lookup′ = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to : ∀ {c bs xs e} → Lookup c bs xs e → Lookup′ c bs xs e to here = here refl refl refl to (there p₁ p₂) = there p₁ (to p₂) from : ∀ {c bs xs e} → Lookup′ c bs xs e → Lookup c bs xs e from (here refl refl refl) = here from (there p₁ p₂) = there p₁ (from p₂) from∘to : ∀ {c bs xs e} (p : Lookup c bs xs e) → from (to p) ≡ p from∘to here = refl from∘to (there p₁ p₂) rewrite from∘to p₂ = refl to∘from : ∀ {c bs xs e} (p : Lookup′ c bs xs e) → to (from p) ≡ p to∘from (here refl refl refl) = refl to∘from (there p₁ p₂) rewrite to∘from p₂ = refl ↦↔↦′ : ∀ {e xs es e′} → e [ xs ← es ]↦ e′ ↔ e [ xs ← es ]↦′ e′ ↦↔↦′ = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to : ∀ {e xs es e′} → e [ xs ← es ]↦ e′ → e [ xs ← es ]↦′ e′ to [] = [] refl to (∷ p) = refl ∷ to p from : ∀ {e xs es e′} → e [ xs ← es ]↦′ e′ → e [ xs ← es ]↦ e′ from ([] refl) = [] from (refl ∷ p) = ∷ from p from∘to : ∀ {e xs es e′} (p : e [ xs ← es ]↦ e′) → from (to p) ≡ p from∘to [] = refl from∘to (∷ p) rewrite from∘to p = refl to∘from : ∀ {e xs es e′} (p : e [ xs ← es ]↦′ e′) → to (from p) ≡ p to∘from ([] refl) = refl to∘from (refl ∷ p) rewrite to∘from p = refl ⇓↔⇓′ : ∀ {e v} → e ⇓ v ↔ e ⇓′ v ⇓↔⇓′ = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where mutual to : ∀ {e v} → e ⇓ v → e ⇓′ v to (apply p q r) = apply (to p) (to q) (to r) to (case p q r s) = case (to p) (_↔_.to Lookup↔Lookup′ q) (_↔_.to ↦↔↦′ r) (to s) to (rec p) = rec (to p) to lambda = lambda refl refl to (const ps) = const refl (to⋆ ps) to⋆ : ∀ {e v} → e ⇓⋆ v → e ⇓⋆′ v to⋆ [] = [] to⋆ (p ∷ ps) = to p ∷ to⋆ ps mutual from : ∀ {e v} → e ⇓′ v → e ⇓ v from (apply p q r) = apply (from p) (from q) (from r) from (case p q r s) = case (from p) (_↔_.from Lookup↔Lookup′ q) (_↔_.from ↦↔↦′ r) (from s) from (rec p) = rec (from p) from (lambda refl refl) = lambda from (const refl ps) = const (from⋆ ps) from⋆ : ∀ {e v} → e ⇓⋆′ v → e ⇓⋆ v from⋆ [] = [] from⋆ (p ∷ ps) = from p ∷ from⋆ ps mutual from∘to : ∀ {e v} (p : e ⇓ v) → from (to p) ≡ p from∘to (apply p q r) rewrite from∘to p | from∘to q | from∘to r = refl from∘to (case p q r s) rewrite from∘to p | _↔_.left-inverse-of Lookup↔Lookup′ q | _↔_.left-inverse-of ↦↔↦′ r | from∘to s = refl from∘to (rec p) rewrite from∘to p = refl from∘to lambda = refl from∘to (const ps) rewrite from⋆∘to⋆ ps = refl from⋆∘to⋆ : ∀ {e v} (ps : e ⇓⋆ v) → from⋆ (to⋆ ps) ≡ ps from⋆∘to⋆ [] = refl from⋆∘to⋆ (p ∷ ps) rewrite from∘to p | from⋆∘to⋆ ps = refl mutual to∘from : ∀ {e v} (p : e ⇓′ v) → to (from p) ≡ p to∘from (apply p q r) rewrite to∘from p | to∘from q | to∘from r = refl to∘from (case p q r s) rewrite to∘from p | _↔_.right-inverse-of Lookup↔Lookup′ q | _↔_.right-inverse-of ↦↔↦′ r | to∘from s = refl to∘from (rec p) rewrite to∘from p = refl to∘from (lambda refl refl) = refl to∘from (const refl ps) rewrite to⋆∘from⋆ ps = refl to⋆∘from⋆ : ∀ {e v} (ps : e ⇓⋆′ v) → to⋆ (from⋆ ps) ≡ ps to⋆∘from⋆ [] = refl to⋆∘from⋆ (p ∷ ps) rewrite to∘from p | to⋆∘from⋆ ps = refl -- The alternative semantics is deterministic. Lookup′-deterministic : ∀ {c bs xs₁ xs₂ e₁ e₂} → Lookup′ c bs xs₁ e₁ → Lookup′ c bs xs₂ e₂ → xs₁ ≡ xs₂ × e₁ ≡ e₂ Lookup′-deterministic p q = Lookup-deterministic (_↔_.from Lookup↔Lookup′ p) (_↔_.from Lookup↔Lookup′ q) refl ↦′-deterministic : ∀ {e xs es e₁ e₂} → e [ xs ← es ]↦′ e₁ → e [ xs ← es ]↦′ e₂ → e₁ ≡ e₂ ↦′-deterministic p q = ↦-deterministic (_↔_.from ↦↔↦′ p) (_↔_.from ↦↔↦′ q) ⇓′-deterministic : ∀ {e v₁ v₂} → e ⇓′ v₁ → e ⇓′ v₂ → v₁ ≡ v₂ ⇓′-deterministic p q = ⇓-deterministic (_↔_.from ⇓↔⇓′ p) (_↔_.from ⇓↔⇓′ q) -- The alternative semantics is propositional. Lookup′-propositional : ∀ {c bs xs e} → Is-proposition (Lookup′ c bs xs e) Lookup′-propositional (here p₁ p₂ p₃) (here q₁ q₂ q₃) rewrite C.Name-set p₁ q₁ | decidable⇒set (List.Dec._≟_ V._≟_) p₂ q₂ | Exp-set p₃ q₃ = refl Lookup′-propositional (there p₁ p₂) (there q₁ q₂) rewrite ¬-propositional ext p₁ q₁ | Lookup′-propositional p₂ q₂ = refl Lookup′-propositional (here c≡c′ _ _) (there c≢c′ _) = ⊥-elim (c≢c′ c≡c′) Lookup′-propositional (there c≢c′ _) (here c≡c′ _ _) = ⊥-elim (c≢c′ c≡c′) ↦′-propositional : ∀ {e xs es e′} → Is-proposition (e [ xs ← es ]↦′ e′) ↦′-propositional ([] p) ([] q) rewrite Exp-set p q = refl ↦′-propositional (p₁ ∷ p₂) (q₁ ∷ q₂) with ↦′-deterministic p₂ q₂ ... | refl rewrite Exp-set p₁ q₁ | ↦′-propositional p₂ q₂ = refl mutual ⇓′-propositional : ∀ {e v} → Is-proposition (e ⇓′ v) ⇓′-propositional (apply p₁ p₂ p₃) (apply q₁ q₂ q₃) with ⇓′-deterministic p₁ q₁ ... | refl rewrite ⇓′-propositional p₁ q₁ with ⇓′-deterministic p₂ q₂ ... | refl rewrite ⇓′-propositional p₂ q₂ | ⇓′-propositional p₃ q₃ = refl ⇓′-propositional (case p₁ p₂ p₃ p₄) (case q₁ q₂ q₃ q₄) with ⇓′-deterministic p₁ q₁ ... | refl rewrite ⇓′-propositional p₁ q₁ with Lookup′-deterministic p₂ q₂ ... | refl , refl rewrite Lookup′-propositional p₂ q₂ with ↦′-deterministic p₃ q₃ ... | refl rewrite ↦′-propositional p₃ q₃ | ⇓′-propositional p₄ q₄ = refl ⇓′-propositional (rec p) (rec q) rewrite ⇓′-propositional p q = refl ⇓′-propositional (lambda p₁ p₂) (lambda q₁ q₂) rewrite V.Name-set p₁ q₁ | Exp-set p₂ q₂ = refl ⇓′-propositional (const p ps) (const q qs) rewrite C.Name-set p q | ⇓⋆′-propositional ps qs = refl ⇓⋆′-propositional : ∀ {es vs} → Is-proposition (es ⇓⋆′ vs) ⇓⋆′-propositional [] [] = refl ⇓⋆′-propositional (p ∷ ps) (q ∷ qs) rewrite ⇓′-propositional p q | ⇓⋆′-propositional ps qs = refl -- The semantics is propositional. ⇓-propositional : ∀ {e v} → Is-proposition (e ⇓ v) ⇓-propositional {e} {v} = $⟨ ⇓′-propositional ⟩ Is-proposition (e ⇓′ v) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse ⇓↔⇓′) 1 ⟩□ Is-proposition (e ⇓ v) □
{ "alphanum_fraction": 0.4770158252, "avg_line_length": 33.3417085427, "ext": "agda", "hexsha": "eb34fac38f6015ad37c8a3becdc3f5eeca5972fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Propositional.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Propositional.agda", "max_line_length": 94, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 5502, "size": 13270 }
{-# OPTIONS --safe #-} module Cubical.HITs.Sn.Properties where open import Cubical.Foundations.Pointed open import Cubical.Foundations.Path open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.HITs.S1 renaming (_·_ to _*_) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp open import Cubical.HITs.Truncation -- open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.HITs.Join open import Cubical.Data.Bool private variable ℓ : Level IsoSucSphereSusp : (n : ℕ) → Iso (S₊ (suc n)) (Susp (S₊ n)) IsoSucSphereSusp zero = S¹IsoSuspBool IsoSucSphereSusp (suc n) = idIso -- Elimination principles for spheres sphereElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isOfHLevel (suc n) (A x)) → A (ptSn (suc n)) → (x : S₊ (suc n)) → A x sphereElim zero hlev pt = toPropElim hlev pt sphereElim (suc n) hlev pt north = pt sphereElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt sphereElim (suc n) {A = A} hlev pt (merid a i) = sphereElim n {A = λ a → PathP (λ i → A (merid a i)) pt (subst A (merid (ptSn (suc n))) pt)} (λ a → isOfHLevelPathP' (suc n) (hlev south) _ _) (λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∧ j))) (~ i) pt) a i sphereElim2 : ∀ {ℓ} (n : ℕ) {A : (S₊ (suc n)) → (S₊ (suc n)) → Type ℓ} → ((x y : S₊ (suc n)) → isOfHLevel (suc n) (A x y)) → A (ptSn (suc n)) (ptSn (suc n)) → (x y : S₊ (suc n)) → A x y sphereElim2 n hlev pt = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → hlev _ _) (sphereElim n (hlev _ ) pt) private compPath-lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → PathP (λ i → (p ∙ sym q) i ≡ y) p q compPath-lem {y = y} p q i j = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → q (~ k ∨ j) ; (j = i1) → y }) (p (j ∨ i)) sphereToPropElim : (n : ℕ) {A : (S₊ (suc n)) → Type ℓ} → ((x : S₊ (suc n)) → isProp (A x)) → A (ptSn (suc n)) → (x : S₊ (suc n)) → A x sphereToPropElim zero = toPropElim sphereToPropElim (suc n) hlev pt north = pt sphereToPropElim (suc n) {A = A} hlev pt south = subst A (merid (ptSn (suc n))) pt sphereToPropElim (suc n) {A = A} hlev pt (merid a i) = isProp→PathP {B = λ i → A (merid a i)} (λ _ → hlev _) pt (subst A (merid (ptSn (suc n))) pt) i -- Elimination rule for fibrations (x : Sⁿ) → (y : Sᵐ) → A x y of h-Level (n + m). -- The following principle is just the special case of the "Wedge Connectivity Lemma" -- for spheres (See Cubical.Homotopy.WedgeConnectivity or chapter 8.6 in the HoTT book). -- We prove it directly here for three reasons: -- (i) it should perform better -- (ii) we get a slightly stronger statement for spheres: one of the homotopies will, by design, be refl -- (iii) the fact that the two homotopies only differ by (composition with) the homotopy leftFunction(base) ≡ rightFunction(base) -- is close to trivial wedgeconFun : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y)) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (g (ptSn (suc n)) ≡ f (ptSn (suc m))) → (x : S₊ (suc n)) (y : S₊ (suc m)) → A x y wedgeconLeft : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m))) → (x : _) → wedgeconFun n m hLev f g hom (ptSn (suc n)) x ≡ f x wedgeconRight : (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ} → (hLev : ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))) → (f : (x : _) → A (ptSn (suc n)) x) → (g : (x : _) → A x (ptSn (suc m))) → (hom : g (ptSn (suc n)) ≡ f (ptSn (suc m))) → (x : _) → wedgeconFun n m hLev f g hom x (ptSn (suc m)) ≡ g x wedgeconFun zero zero {A = A} hlev f g hom = F where helper : SquareP (λ i j → A (loop i) (loop j)) (cong f loop) (cong f loop) (λ i → hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i))) λ i → hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i)) helper = toPathP (isOfHLevelPathP' 1 (hlev _ _) _ _ _ _) F : (x y : S¹) → A x y F base y = f y F (loop i) base = hcomp (λ k → λ { (i = i0) → hom k ; (i = i1) → hom k }) (g (loop i)) F (loop i) (loop j) = helper i j wedgeconFun zero (suc m) {A = A} hlev f g hom = F₀ module _ where transpLemma₀ : (x : S₊ (suc m)) → transport (λ i₁ → A base (merid x i₁)) (g base) ≡ f south transpLemma₀ x = cong (transport (λ i₁ → A base (merid x i₁))) hom ∙ (λ i → transp (λ j → A base (merid x (i ∨ j))) i (f (merid x i))) pathOverMerid₀ : (x : S₊ (suc m)) → PathP (λ i₁ → A base (merid x i₁)) (g base) (transport (λ i₁ → A base (merid (ptSn (suc m)) i₁)) (g base)) pathOverMerid₀ x i = hcomp (λ k → λ { (i = i0) → g base ; (i = i1) → (transpLemma₀ x ∙ sym (transpLemma₀ (ptSn (suc m)))) k}) (transp (λ i₁ → A base (merid x (i₁ ∧ i))) (~ i) (g base)) pathOverMeridId₀ : pathOverMerid₀ (ptSn (suc m)) ≡ λ i → transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base) pathOverMeridId₀ = (λ j i → hcomp (λ k → λ {(i = i0) → g base ; (i = i1) → rCancel (transpLemma₀ (ptSn (suc m))) j k}) (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base))) ∙ λ j i → hfill (λ k → λ { (i = i0) → g base ; (i = i1) → transport (λ i₁ → A base (merid (ptSn (suc m)) i₁)) (g base)}) (inS (transp (λ i₁ → A base (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g base))) (~ j) indStep₀ : (x : _) (a : _) → PathP (λ i → A x (merid a i)) (g x) (subst (λ y → A x y) (merid (ptSn (suc m))) (g x)) indStep₀ = wedgeconFun zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _) pathOverMerid₀ (λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g a)) (sym pathOverMeridId₀) F₀ : (x : S¹) (y : Susp (S₊ (suc m))) → A x y F₀ x north = g x F₀ x south = subst (λ y → A x y) (merid (ptSn (suc m))) (g x) F₀ x (merid a i) = indStep₀ x a i wedgeconFun (suc n) m {A = A} hlev f g hom = F₁ module _ where transpLemma₁ : (x : S₊ (suc n)) → transport (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) ≡ g south transpLemma₁ x = cong (transport (λ i₁ → A (merid x i₁) (ptSn (suc m)))) (sym hom) ∙ (λ i → transp (λ j → A (merid x (i ∨ j)) (ptSn (suc m))) i (g (merid x i))) pathOverMerid₁ : (x : S₊ (suc n)) → PathP (λ i₁ → A (merid x i₁) (ptSn (suc m))) (f (ptSn (suc m))) (transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m))) (f (ptSn (suc m)))) pathOverMerid₁ x i = hcomp (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → (transpLemma₁ x ∙ sym (transpLemma₁ (ptSn (suc n)))) k }) (transp (λ i₁ → A (merid x (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m)))) pathOverMeridId₁ : pathOverMerid₁ (ptSn (suc n)) ≡ λ i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))) pathOverMeridId₁ = (λ j i → hcomp (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → rCancel (transpLemma₁ (ptSn (suc n))) j k }) (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))))) ∙ λ j i → hfill (λ k → λ { (i = i0) → f (ptSn (suc m)) ; (i = i1) → transport (λ i₁ → A (merid (ptSn (suc n)) i₁) (ptSn (suc m))) (f (ptSn (suc m))) }) (inS (transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))))) (~ j) indStep₁ : (a : _) (y : _) → PathP (λ i → A (merid a i) y) (f y) (subst (λ x → A x y) (merid (ptSn (suc n))) (f y)) indStep₁ = wedgeconFun n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _) (λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i) (f a)) pathOverMerid₁ pathOverMeridId₁ F₁ : (x : Susp (S₊ (suc n))) (y : S₊ (suc m)) → A x y F₁ north y = f y F₁ south y = subst (λ x → A x y) (merid (ptSn (suc n))) (f y) F₁ (merid a i) y = indStep₁ a y i wedgeconRight zero zero {A = A} hlev f g hom = right where right : (x : S¹) → _ right base = sym hom right (loop i) j = hcomp (λ k → λ { (i = i0) → hom (~ j ∧ k) ; (i = i1) → hom (~ j ∧ k) ; (j = i1) → g (loop i) }) (g (loop i)) wedgeconRight zero (suc m) {A = A} hlev f g hom x = refl wedgeconRight (suc n) m {A = A} hlev f g hom = right where lem : (x : _) → indStep₁ n m hlev f g hom x (ptSn (suc m)) ≡ _ lem = wedgeconRight n m (λ _ _ → isOfHLevelPathP' (suc (n + suc m)) (hlev _ _) _ _) (λ a i → transp (λ i₁ → A (merid (ptSn (suc n)) (i₁ ∧ i)) a) (~ i) (f a)) (pathOverMerid₁ n m hlev f g hom) (pathOverMeridId₁ n m hlev f g hom) right : (x : Susp (S₊ (suc n))) → _ ≡ g x right north = sym hom right south = cong (subst (λ x → A x (ptSn (suc m))) (merid (ptSn (suc n)))) (sym hom) ∙ λ i → transp (λ j → A (merid (ptSn (suc n)) (i ∨ j)) (ptSn (suc m))) i (g (merid (ptSn (suc n)) i)) right (merid a i) j = hcomp (λ k → λ { (i = i0) → hom (~ j) ; (i = i1) → transpLemma₁ n m hlev f g hom (ptSn (suc n)) j ; (j = i0) → lem a (~ k) i ; (j = i1) → g (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom (~ j) ; (i = i1) → compPath-lem (transpLemma₁ n m hlev f g hom a) (transpLemma₁ n m hlev f g hom (ptSn (suc n))) k j ; (j = i1) → g (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom (~ j) ; (j = i0) → transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i) (f (ptSn (suc m))) ; (j = i1) → transp (λ j → A (merid a (i ∧ (j ∨ k))) (ptSn (suc m))) (k ∨ ~ i) (g (merid a (i ∧ k))) }) (transp (λ i₂ → A (merid a (i₂ ∧ i)) (ptSn (suc m))) (~ i) (hom (~ j))))) wedgeconLeft zero zero {A = A} hlev f g hom x = refl wedgeconLeft zero (suc m) {A = A} hlev f g hom = help where left₁ : (x : _) → indStep₀ m hlev f g hom base x ≡ _ left₁ = wedgeconLeft zero m (λ _ _ → isOfHLevelPathP' (2 + m) (hlev _ _) _ _) (pathOverMerid₀ m hlev f g hom) (λ a i → transp (λ i₁ → A a (merid (ptSn (suc m)) (i₁ ∧ i))) (~ i) (g a)) (sym (pathOverMeridId₀ m hlev f g hom)) help : (x : S₊ (suc (suc m))) → _ help north = hom help south = cong (subst (A base) (merid (ptSn (suc m)))) hom ∙ λ i → transp (λ j → A base (merid (ptSn (suc m)) (i ∨ j))) i (f (merid (ptSn (suc m)) i)) help (merid a i) j = hcomp (λ k → λ { (i = i0) → hom j ; (i = i1) → transpLemma₀ m hlev f g hom (ptSn (suc m)) j ; (j = i0) → left₁ a (~ k) i ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom j ; (i = i1) → compPath-lem (transpLemma₀ m hlev f g hom a) (transpLemma₀ m hlev f g hom (ptSn (suc m))) k j ; (j = i1) → f (merid a i)}) (hcomp (λ k → λ { (i = i0) → hom j ; (j = i0) → transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i) (g base) ; (j = i1) → transp (λ j → A base (merid a (i ∧ (j ∨ k)))) (k ∨ ~ i) (f (merid a (i ∧ k)))}) (transp (λ i₂ → A base (merid a (i₂ ∧ i))) (~ i) (hom j)))) wedgeconLeft (suc n) m {A = A} hlev f g hom _ = refl ---------- Connectedness ----------- sphereConnected : (n : HLevel) → isConnected (suc n) (S₊ n) sphereConnected n = ∣ ptSn n ∣ , elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a → sym (spoke ∣_∣ (ptSn n)) ∙ spoke ∣_∣ a) -- The fact that path spaces of Sn are connected can be proved directly for Sⁿ. -- (Unfortunately, this does not work for higher paths) pathIdTruncSⁿ : (n : ℕ) (x y : S₊ (suc n)) → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣ → hLevelTrunc (suc n) (x ≡ y) pathIdTruncSⁿ n = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) (sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) λ _ → ∣ refl ∣) pathIdTruncSⁿ⁻ : (n : ℕ) (x y : S₊ (suc n)) → hLevelTrunc (suc n) (x ≡ y) → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣ pathIdTruncSⁿ⁻ n x y = rec (isOfHLevelTrunc (2 + n) _ _) (J (λ y _ → Path (hLevelTrunc (2 + n) (S₊ (suc n))) ∣ x ∣ ∣ y ∣) refl) pathIdTruncSⁿretract : (n : ℕ) (x y : S₊ (suc n)) → (p : hLevelTrunc (suc n) (x ≡ y)) → pathIdTruncSⁿ n x y (pathIdTruncSⁿ⁻ n x y p) ≡ p pathIdTruncSⁿretract n = sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ y → elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (J (λ y p → pathIdTruncSⁿ n (ptSn (suc n)) y (pathIdTruncSⁿ⁻ n (ptSn (suc n)) y ∣ p ∣) ≡ ∣ p ∣) (cong (pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n))) (transportRefl refl) ∙ pm-help n)) where pm-help : (n : ℕ) → pathIdTruncSⁿ n (ptSn (suc n)) (ptSn (suc n)) refl ≡ ∣ refl ∣ pm-help zero = refl pm-help (suc n) = refl isConnectedPathSⁿ : (n : ℕ) (x y : S₊ (suc n)) → isConnected (suc n) (x ≡ y) isConnectedPathSⁿ n x y = isContrRetract (pathIdTruncSⁿ⁻ n x y) (pathIdTruncSⁿ n x y) (pathIdTruncSⁿretract n x y) ((isContr→isProp (sphereConnected (suc n)) ∣ x ∣ ∣ y ∣) , isProp→isSet (isContr→isProp (sphereConnected (suc n))) _ _ _) -- Equivalence Sⁿ*Sᵐ≃Sⁿ⁺ᵐ⁺¹ IsoSphereJoin : (n m : ℕ) → Iso (join (S₊ n) (S₊ m)) (S₊ (suc (n + m))) IsoSphereJoin zero m = compIso join-comm (compIso (invIso Susp-iso-joinBool) (invIso (IsoSucSphereSusp m))) IsoSphereJoin (suc n) m = compIso (Iso→joinIso (subst (λ x → Iso (S₊ (suc x)) (join (S₊ n) Bool)) (+-comm n 0) (invIso (IsoSphereJoin n 0))) idIso) (compIso (equivToIso joinAssocDirect) (compIso (Iso→joinIso idIso (compIso join-comm (compIso (invIso Susp-iso-joinBool) (invIso (IsoSucSphereSusp m))))) (compIso (IsoSphereJoin n (suc m)) (pathToIso λ i → S₊ (suc (+-suc n m i)))))) -- Some lemmas on the H rUnitS¹ : (x : S¹) → x * base ≡ x rUnitS¹ base = refl rUnitS¹ (loop i₁) = refl commS¹ : (a x : S¹) → a * x ≡ x * a commS¹ = wedgeconFun _ _ (λ _ _ → isGroupoidS¹ _ _) (sym ∘ rUnitS¹) rUnitS¹ refl SuspS¹-hom : (a x : S¹) → Path (Path (hLevelTrunc 4 (S₊ 2)) _ _) (cong ∣_∣ₕ (merid (a * x) ∙ sym (merid base))) (cong ∣_∣ₕ (merid a ∙ sym (merid base)) ∙ (cong ∣_∣ₕ (merid x ∙ sym (merid base)))) SuspS¹-hom = wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 4 _ _ _ _) (λ x → lUnit _ ∙ cong (_∙ cong ∣_∣ₕ (merid x ∙ sym (merid base))) (cong (cong ∣_∣ₕ) (sym (rCancel (merid base))))) (λ x → (λ i → cong ∣_∣ₕ (merid (rUnitS¹ x i) ∙ sym (merid base))) ∙∙ rUnit _ ∙∙ cong (cong ∣_∣ₕ (merid x ∙ sym (merid base)) ∙_) (cong (cong ∣_∣ₕ) (sym (rCancel (merid base))))) (sym (l (cong ∣_∣ₕ (merid base ∙ sym (merid base))) (cong (cong ∣_∣ₕ) (sym (rCancel (merid base)))))) where l : ∀ {ℓ} {A : Type ℓ} {x : A} (p : x ≡ x) (P : refl ≡ p) → lUnit p ∙ cong (_∙ p) P ≡ rUnit p ∙ cong (p ∙_) P l p = J (λ p P → lUnit p ∙ cong (_∙ p) P ≡ rUnit p ∙ cong (p ∙_) P) refl rCancelS¹ : (x : S¹) → ptSn 1 ≡ x * (invLooper x) rCancelS¹ base = refl rCancelS¹ (loop i) j = hcomp (λ r → λ {(i = i0) → base ; (i = i1) → base ; (j = i0) → base}) base SuspS¹-inv : (x : S¹) → Path (Path (hLevelTrunc 4 (S₊ 2)) _ _) (cong ∣_∣ₕ (merid (invLooper x) ∙ sym (merid base))) (cong ∣_∣ₕ (sym (merid x ∙ sym (merid base)))) SuspS¹-inv x = (lUnit _ ∙∙ cong (_∙ cong ∣_∣ₕ (merid (invLooper x) ∙ sym (merid base))) (sym (lCancel (cong ∣_∣ₕ (merid x ∙ sym (merid base))))) ∙∙ sym (assoc _ _ _)) ∙∙ cong (sym (cong ∣_∣ₕ (merid x ∙ sym (merid base))) ∙_) lem ∙∙ (assoc _ _ _ ∙∙ cong (_∙ (cong ∣_∣ₕ (sym (merid x ∙ sym (merid base))))) (lCancel (cong ∣_∣ₕ (merid x ∙ sym (merid base)))) ∙∙ sym (lUnit _)) where lem : cong ∣_∣ₕ (merid x ∙ sym (merid base)) ∙ cong ∣_∣ₕ (merid (invLooper x) ∙ sym (merid base)) ≡ cong ∣_∣ₕ (merid x ∙ sym (merid base)) ∙ cong ∣_∣ₕ (sym (merid x ∙ sym (merid base))) lem = sym (SuspS¹-hom x (invLooper x)) ∙ ((λ i → cong ∣_∣ₕ (merid (rCancelS¹ x (~ i)) ∙ sym (merid base))) ∙ cong (cong ∣_∣ₕ) (rCancel (merid base))) ∙ sym (rCancel _)
{ "alphanum_fraction": 0.4402318043, "avg_line_length": 51.2896725441, "ext": "agda", "hexsha": "663f3e90203276bd6053ab7be30fd54aa9c56cf4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ecavallo/cubical", "max_forks_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ecavallo/cubical", "max_issues_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ecavallo/cubical", "max_stars_repo_path": "Cubical/HITs/Sn/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7427, "size": 20362 }
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.TBox.Interp using ( Interp ; Δ ; _⊨_≈_ ; con ; rol ; ≈-refl ; ≈-sym ; ≈-trans ; con-≈ ; rol-≈ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.Util using ( id ; _∘_ ) module Web.Semantic.DL.TBox.Interp.Morphism {Σ : Signature} where infix 2 _≲_ _≃_ -- I ≲ J whenever J respects all the properties of I data _≲_ (I J : Interp Σ) : Set where morph : (f : Δ I → Δ J) → (≲-resp-≈ : ∀ {x y} → (I ⊨ x ≈ y) → (J ⊨ f x ≈ f y)) → (≲-resp-con : ∀ {c x} → (x ∈ con I c) → (f x ∈ con J c)) → (≲-resp-rol : ∀ {r x y} → ((x , y) ∈ rol I r) → ((f x , f y) ∈ rol J r)) → (I ≲ J) ≲-image : ∀ {I J} → (I ≲ J) → Δ I → Δ J ≲-image (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) = f ≲-image² : ∀ {I J} → (I ≲ J) → (Δ I × Δ I) → (Δ J × Δ J) ≲-image² I≲J (x , y) = (≲-image I≲J x , ≲-image I≲J y) ≲-resp-≈ : ∀ {I J} → (I≲J : I ≲ J) → ∀ {x y} → (I ⊨ x ≈ y) → (J ⊨ ≲-image I≲J x ≈ ≲-image I≲J y) ≲-resp-≈ (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) = ≲-resp-≈ ≲-resp-con : ∀ {I J} → (I≲J : I ≲ J) → ∀ {c x} → (x ∈ con I c) → (≲-image I≲J x ∈ con J c) ≲-resp-con (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) = ≲-resp-con ≲-resp-rol : ∀ {I J} → (I≲J : I ≲ J) → ∀ {r xy} → (xy ∈ rol I r) → (≲-image² I≲J xy ∈ rol J r) ≲-resp-rol (morph f ≲-resp-≈ ≲-resp-con ≲-resp-rol) {r} {x , y} = ≲-resp-rol ≲-refl : ∀ I → (I ≲ I) ≲-refl I = morph id id id id ≲-trans : ∀ {I J K} → (I ≲ J) → (J ≲ K) → (I ≲ K) ≲-trans I≲J J≲K = morph (≲-image J≲K ∘ ≲-image I≲J) (≲-resp-≈ J≲K ∘ ≲-resp-≈ I≲J) (≲-resp-con J≲K ∘ ≲-resp-con I≲J) (≲-resp-rol J≲K ∘ ≲-resp-rol I≲J) -- I ≃ J whenever there is an isomprhism between I and J data _≃_ (I J : Interp Σ) : Set where iso : (≃-impl-≲ : I ≲ J) → (≃-impl-≳ : J ≲ I) → (≃-iso : ∀ x → I ⊨ (≲-image ≃-impl-≳ (≲-image ≃-impl-≲ x)) ≈ x) → (≃-iso⁻¹ : ∀ x → J ⊨ (≲-image ≃-impl-≲ (≲-image ≃-impl-≳ x)) ≈ x) → (I ≃ J) ≃-impl-≲ : ∀ {I J} → (I ≃ J) → (I ≲ J) ≃-impl-≲ (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-impl-≲ ≃-impl-≳ : ∀ {I J} → (I ≃ J) → (J ≲ I) ≃-impl-≳ (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-impl-≳ ≃-image : ∀ {I J} → (I ≃ J) → Δ I → Δ J ≃-image I≃J = ≲-image (≃-impl-≲ I≃J) ≃-image² : ∀ {I J} → (I ≃ J) → (Δ I × Δ I) → (Δ J × Δ J) ≃-image² I≃J = ≲-image² (≃-impl-≲ I≃J) ≃-image⁻¹ : ∀ {I J} → (I ≃ J) → Δ J → Δ I ≃-image⁻¹ I≃J = ≲-image (≃-impl-≳ I≃J) ≃-image²⁻¹ : ∀ {I J} → (I ≃ J) → (Δ J × Δ J) → (Δ I × Δ I) ≃-image²⁻¹ I≃J = ≲-image² (≃-impl-≳ I≃J) ≃-iso : ∀ {I J} → (I≃J : I ≃ J) → ∀ x → (I ⊨ (≃-image⁻¹ I≃J (≃-image I≃J x)) ≈ x) ≃-iso (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-iso ≃-iso⁻¹ : ∀ {I J} → (I≃J : I ≃ J) → ∀ x → (J ⊨ (≃-image I≃J (≃-image⁻¹ I≃J x)) ≈ x) ≃-iso⁻¹ (iso ≃-impl-≲ ≃-impl-≳ ≃-iso ≃-iso⁻¹) = ≃-iso⁻¹ ≃-resp-≈ : ∀ {I J} → (I≃J : I ≃ J) → ∀ {x y} → (I ⊨ x ≈ y) → (J ⊨ ≃-image I≃J x ≈ ≃-image I≃J y) ≃-resp-≈ I≃J = ≲-resp-≈ (≃-impl-≲ I≃J) ≃-refl-≈ : ∀ {I J} → (I≃J : I ≃ J) → ∀ {x y} → (I ⊨ ≃-image⁻¹ I≃J x ≈ ≃-image⁻¹ I≃J y) → (J ⊨ x ≈ y) ≃-refl-≈ {I} {J} I≃J {x} {y} x≈y = ≈-trans J (≈-sym J (≃-iso⁻¹ I≃J x)) (≈-trans J (≃-resp-≈ I≃J x≈y) (≃-iso⁻¹ I≃J y)) ≃-refl : ∀ I → (I ≃ I) ≃-refl I = iso (≲-refl I) (≲-refl I) (λ x → ≈-refl I) (λ x → ≈-refl I) ≃-sym : ∀ {I J} → (I ≃ J) → (J ≃ I) ≃-sym I≃J = iso (≃-impl-≳ I≃J) (≃-impl-≲ I≃J) (≃-iso⁻¹ I≃J) (≃-iso I≃J) ≃-trans : ∀ {I J K} → (I ≃ J) → (J ≃ K) → (I ≃ K) ≃-trans {I} {J} {K} I≃J J≃K = iso (≲-trans (≃-impl-≲ I≃J) (≃-impl-≲ J≃K)) (≲-trans (≃-impl-≳ J≃K) (≃-impl-≳ I≃J)) (λ x → ≈-trans I (≲-resp-≈ (≃-impl-≳ I≃J) (≃-iso J≃K (≃-image I≃J x))) (≃-iso I≃J x)) (λ x → ≈-trans K (≲-resp-≈ (≃-impl-≲ J≃K) (≃-iso⁻¹ I≃J (≃-image⁻¹ J≃K x))) (≃-iso⁻¹ J≃K x))
{ "alphanum_fraction": 0.4307853953, "avg_line_length": 35.25, "ext": "agda", "hexsha": "fbb4ad2c41be89a23b8031ea354ae56d5876ee56", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/TBox/Interp/Morphism.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/TBox/Interp/Morphism.agda", "max_line_length": 83, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/TBox/Interp/Morphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 2348, "size": 3807 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Data.Empty where open import Light.Library.Data.Empty using (Library ; Dependencies) open import Light.Level using (0ℓ) open import Light.Variable.Sets instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where data Empty : Set where eliminate : Empty → 𝕒 eliminate ()
{ "alphanum_fraction": 0.6972972973, "avg_line_length": 27.75, "ext": "agda", "hexsha": "b3b4c80d61e5eb76097b14924f32f536937c8840", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Data/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Data/Empty.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Data/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 103, "size": 555 }
-- Andreas, 2018-06-19, issue #3130 -- Do not treat .(p) as projection pattern, but always as dot pattern. record R : Set₁ where field f : Set open R -- Shouldn't pass. mkR : (A : Set) → R mkR A .(f) = A
{ "alphanum_fraction": 0.6267942584, "avg_line_length": 17.4166666667, "ext": "agda", "hexsha": "a51d6f70ce77bfc5497043a3ec5642b79bffbcf2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3130ParenthesizedProjectionPattern.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3130ParenthesizedProjectionPattern.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3130ParenthesizedProjectionPattern.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 209 }
-- Alternative proof of LLPO => MP∨ {-# OPTIONS --without-K --safe #-} module Constructive.Axiom.Properties.Alternative where -- agda-stdlib open import Level renaming (suc to lsuc; zero to lzero) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Bool using (Bool; true; false; not) open import Data.Sum as Sum open import Data.Product as Prod open import Data.Nat as ℕ using (ℕ; zero; suc; _≤_; s≤s; z≤n; _≤?_) import Data.Nat.Properties as ℕₚ import Data.Nat.Induction as ℕInd open import Function.Base import Induction.WellFounded as Ind open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Binary using (tri≈; tri<; tri>; Rel; Trichotomous) open import Relation.Binary.PropositionalEquality -- agda-misc open import Constructive.Axiom open import Constructive.Combinators open import Constructive.Common -- LLPO => MP∨ record HasPropertiesForLLPO⇒MP∨ {a} r p (A : Set a) : Set (a ⊔ lsuc r ⊔ lsuc p) where field _<_ : Rel A r <-cmp : Trichotomous _≡_ _<_ <-all-dec : {P : A → Set p} → DecU P → DecU (λ n → ∀ i → i < n → P i) <-wf : Ind.WellFounded _<_ llpo⇒mp∨ : ∀ {r p a} {A : Set a} → HasPropertiesForLLPO⇒MP∨ r p A → LLPO A (p ⊔ a ⊔ r) → MP∨ A p llpo⇒mp∨ {r} {p} {a} {A = A} has llpo {P = P} {Q} P? Q? ¬¬[∃x→Px⊎Qx] = Sum.swap ¬¬∃Q⊎¬¬∃P where open HasPropertiesForLLPO⇒MP∨ has -- ex. R 5 -- n : 0 1 2 3 4 5 6 7 8 -- P : 0 0 0 0 0 1 ? ? ? -- Q : 0 0 0 0 0 0 ? ? ? R S : A → Set (r ⊔ p ⊔ a) R n = (∀ i → i < n → ¬ P i × ¬ Q i) × P n × ¬ Q n S n = (∀ i → i < n → ¬ P i × ¬ Q i) × ¬ P n × Q n lem : DecU (λ n → ∀ i → i < n → ¬ P i × ¬ Q i) lem = <-all-dec (DecU-× (¬-DecU P?) (¬-DecU Q?)) R? : DecU R R? = DecU-× lem (DecU-× P? (¬-DecU Q?)) S? : DecU S S? = DecU-× lem (DecU-× (¬-DecU P?) Q?) ¬[∃R×∃S] : ¬ (∃ R × ∃ S) ¬[∃R×∃S] ((m , ∀i→i<m→¬Pi׬Qi , Pm , ¬Qm) , (n , ∀i→i<n→¬Pi׬Qi , ¬Pn , Qn)) with <-cmp m n ... | tri< m<n _ _ = proj₁ (∀i→i<n→¬Pi׬Qi m m<n) Pm ... | tri≈ _ m≡n _ = ¬Pn (subst P m≡n Pm) ... | tri> _ _ n<m = proj₂ (∀i→i<m→¬Pi׬Qi n n<m) Qn -- use LLPO ¬∃R⊎¬∃S : ¬ ∃ R ⊎ ¬ ∃ S ¬∃R⊎¬∃S = llpo R? S? ¬[∃R×∃S] -- Induction by _<_ byacc₁ : (∀ x → ¬ R x) → (∀ x → ¬ Q x) → ∀ x → Ind.Acc _<_ x → ¬ P x byacc₁ ∀¬R ∀¬Q x (Ind.acc rs) Px = ∀¬R x ((λ i i<x → (λ Pi → byacc₁ ∀¬R ∀¬Q i (rs i i<x) Pi) , ∀¬Q i) , (Px , ∀¬Q x)) ∀¬R→∀¬Q→∀¬P : (∀ x → ¬ R x) → (∀ x → ¬ Q x) → ∀ x → ¬ P x ∀¬R→∀¬Q→∀¬P ∀¬R ∀¬Q x Px = byacc₁ ∀¬R ∀¬Q x (<-wf x) Px ¬∃R→¬∃Q→¬∃P : ¬ ∃ R → ¬ ∃ Q → ¬ ∃ P ¬∃R→¬∃Q→¬∃P ¬∃R ¬∃Q = ∀¬P→¬∃P $ ∀¬R→∀¬Q→∀¬P (¬∃P→∀¬P ¬∃R) (¬∃P→∀¬P ¬∃Q) byacc₂ : (∀ x → ¬ S x) → (∀ x → ¬ P x) → ∀ x → Ind.Acc _<_ x → ¬ Q x byacc₂ ∀¬S ∀¬P x (Ind.acc rs) Qx = ∀¬S x ((λ i i<x → ∀¬P i , λ Qi → byacc₂ ∀¬S ∀¬P i (rs i i<x) Qi) , (∀¬P x , Qx)) ∀¬S→∀¬P→∀¬Q : (∀ x → ¬ S x) → (∀ x → ¬ P x) → ∀ x → ¬ Q x ∀¬S→∀¬P→∀¬Q ∀¬S ∀¬P x Qx = byacc₂ ∀¬S ∀¬P x (<-wf x) Qx ¬∃S→¬∃P→¬∃Q : ¬ ∃ S → ¬ ∃ P → ¬ ∃ Q ¬∃S→¬∃P→¬∃Q ¬∃S ¬∃P = ∀¬P→¬∃P $ ∀¬S→∀¬P→∀¬Q (¬∃P→∀¬P ¬∃S) (¬∃P→∀¬P ¬∃P) ¬¬[∃P⊎∃Q] : ¬ ¬ (∃ P ⊎ ∃ Q) ¬¬[∃P⊎∃Q] = DN-map ∃-distrib-⊎ ¬¬[∃x→Px⊎Qx] ¬¬∃Q⊎¬¬∃P : ¬ ¬ ∃ Q ⊎ ¬ ¬ ∃ P ¬¬∃Q⊎¬¬∃P = Sum.map (λ ¬∃R ¬∃Q → ¬¬[∃P⊎∃Q] Sum.[ ¬∃R→¬∃Q→¬∃P ¬∃R ¬∃Q , ¬∃Q ]) (λ ¬∃S ¬∃P → ¬¬[∃P⊎∃Q] Sum.[ ¬∃P , ¬∃S→¬∃P→¬∃Q ¬∃S ¬∃P ]) ¬∃R⊎¬∃S
{ "alphanum_fraction": 0.4584076055, "avg_line_length": 33, "ext": "agda", "hexsha": "61fb8386923b4fc2d870e4856ce66ea2ae9f265d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Axiom/Properties/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Axiom/Properties/Alternative.agda", "max_line_length": 86, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Axiom/Properties/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1839, "size": 3366 }
-- Andreas, 2021-04-28, issue #5336 -- data...where is already extensible. module _ where module C where postulate Name QName : Set variable x y : C.Name xs ys : C.QName interleaved mutual -- Scope of a declaration. data Scope : Set variable sc sc' : Scope -- Declarations in a scope. data Decls (sc : Scope) : Set variable ds₀ ds ds' : Decls sc -- A definition in a scope. -- So far, we can only define modules, which hold declarations. data Val : (sc : Scope) → Set -- We use letter v ("value") for definitions. variable v v' : Val sc -- A well-scoped name pointing to its definition. data Name : (sc : Scope) → Val sc → Set variable n n' : Name sc v -- A well-scoped declaration is one of -- -- * A module definition. -- * Importing the declarations of another module via `open`. data Decl (sc : Scope) : Set where modl : (x : C.Name) (ds : Decls sc) → Decl sc opn : (n : Name sc v) → Decl sc variable d d' : Decl sc -- A scope is a snoc list of lists of declarations. data Scope where ε : Scope data Scope where _▷_ : (sc : Scope) (ds : Decls sc) → Scope -- Lists of declarations are also given in snoc-form. data Decls where ε : Decls sc data Decls where _▷_ : (ds : Decls sc) (d : Decl (sc ▷ ds)) → Decls sc data Val where -- The content of a module. content : (ds : Decls sc) → Val sc -- Qualifying a value that is taken from inside module x. inside : (x : C.Name) (v : Val ((sc ▷ ds) ▷ ds')) → Val (sc ▷ (ds ▷ modl x ds')) imp : (n : Name (sc ▷ ds₀) (content ds')) (v : Val ((sc ▷ ds₀) ▷ ds')) → Val (sc ▷ (ds₀ ▷ opn n)) -- Weakning from one scope to an extended scope. data _⊆_ : (sc sc' : Scope) → Set variable τ : sc ⊆ sc' -- Weakning by a list of declarations or a single declaration. wk1 : sc ⊆ (sc ▷ ds) wk01 : (sc ▷ ds) ⊆ (sc ▷ (ds ▷ d)) -- Weakening a definition. data WkVal : (τ : sc ⊆ sc') → Val sc → Val sc' → Set variable wv wv' wv₀ : WkVal τ v v' data WkDecl (τ : sc ⊆ sc') : Decl sc → Decl sc' → Set variable wd wd' : WkDecl τ d d' data WkDecls : (τ : sc ⊆ sc') → Decls sc → Decls sc' → Set variable wds₀ wds wds' : WkDecls τ ds ds' -- Names resolving in a list of declarations. data DsName (sc : Scope) : (ds : Decls sc) → Val (sc ▷ ds) → Set -- where variable nds nds' : DsName sc ds v -- Names resolving in a declaration. data DName (sc : Scope) (ds₀ : Decls sc) : (d : Decl (sc ▷ ds₀)) → Val (sc ▷ (ds₀ ▷ d)) → Set where modl : (wds : WkDecls wk01 ds ds') → DName sc ds₀ (modl x ds) (content ds') inside : (n : DsName (sc ▷ ds₀) ds' v) → DName sc ds₀ (modl x ds') (inside x v) imp : (n : Name (sc ▷ ds₀) (content ds')) (nds : DsName (sc ▷ ds₀) ds' v) → DName sc ds₀ (opn n) (imp n v) variable nd nd' : DName sc ds d v -- This finally allows us to define names resolving in a scope. data DsName where here : (nd : DName sc ds d v) → DsName sc (ds ▷ d) v there : (w : WkVal wk01 v v') (nds : DsName sc ds v) → DsName sc (ds ▷ d) v' data Name where site : (nds : DsName sc ds v) → Name (sc ▷ ds) v parent : (w : WkVal wk1 v v') (n : Name sc v) → Name (sc ▷ ds) v' ------------------------------------------------------------------------ -- Relating entities defined in a scope to their weakenings. -- Weakenings are order-preserving embeddings. data _⊆_ where ε : ε ⊆ ε _▷_ : (τ : sc ⊆ sc') (wds : WkDecls τ ds ds') → (sc ▷ ds) ⊆ (sc' ▷ ds') _▷ʳ_ : (τ : sc ⊆ sc') (ds : Decls sc') → sc ⊆ (sc' ▷ ds) data WkDecls where ε : WkDecls τ ε ε _▷_ : (ws : WkDecls τ ds ds') (wd : WkDecl (τ ▷ ws) d d') → WkDecls τ (ds ▷ d) (ds' ▷ d') _▷ʳ_ : (ws : WkDecls τ ds ds') (d : Decl (_ ▷ ds')) → WkDecls τ ds (ds' ▷ d) refl-⊆ : sc ⊆ sc wkDecls-refl-⊆ : WkDecls τ ds ds wkDecl-refl-⊆ : WkDecl τ d d wkDecls-refl-⊆ {ds = ε} = ε wkDecls-refl-⊆ {ds = ds ▷ d} = wkDecls-refl-⊆ ▷ wkDecl-refl-⊆ refl-⊆ {sc = ε} = ε refl-⊆ {sc = sc ▷ ds} = refl-⊆ ▷ wkDecls-refl-⊆ -- We can now define the singleton weaknings. -- By another list of declarations. wk1 {ds = ds} = refl-⊆ ▷ʳ ds -- By a single declaration. wk01 {d = d} = refl-⊆ ▷ (wkDecls-refl-⊆ ▷ʳ d) -- Weakning names data WkName : (τ : sc ⊆ sc') (wv : WkVal τ v v') → Name sc v → Name sc' v' → Set postulate wkVal-refl-⊆ : WkVal τ v v wkName-refl-⊆ : WkName τ wv n n data WkDecl where modl : (w : WkDecls τ ds ds') → WkDecl τ (modl x ds) (modl x ds') opn : (wn : WkName τ wv n n' ) → WkDecl τ (opn n) (opn n') wkDecl-refl-⊆ {d = modl x ds} = modl wkDecls-refl-⊆ wkDecl-refl-⊆ {d = opn n } = opn {wv = wkVal-refl-⊆} wkName-refl-⊆ -- We can prove that the identity weaking leaves definitions unchanged. data WkVal where content : (wds : WkDecls τ ds ds') → WkVal τ (content ds) (content ds') inside : (wv : WkVal ((τ ▷ wds) ▷ wds') v v' ) → WkVal (τ ▷ (wds ▷ modl wds')) (inside x v) (inside x v') data WkName where site : WkName τ wv (site nds) (site nds')
{ "alphanum_fraction": 0.5394983152, "avg_line_length": 26.9797979798, "ext": "agda", "hexsha": "dd4259c0d0eb32bfeafbee7439fa28811b816f30", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5336.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5336.agda", "max_line_length": 102, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5336.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 2046, "size": 5342 }
{-# OPTIONS --rewriting #-} {-# OPTIONS --no-fast-reduce #-} open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data A : Set where a b : A postulate rew : a ≡ b {-# REWRITE rew #-} test : a ≡ b test = refl
{ "alphanum_fraction": 0.600896861, "avg_line_length": 14.8666666667, "ext": "agda", "hexsha": "2feaf49122a033e1989506ece4d770f4f50faa30", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4909.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4909.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4909.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 70, "size": 223 }
module Lvl.Functions where open import Lvl open import Numeral.Natural add : ℕ → Lvl.Level → Lvl.Level add ℕ.𝟎 ℓ = ℓ add (ℕ.𝐒 n) ℓ = Lvl.𝐒(add n ℓ)
{ "alphanum_fraction": 0.6688311688, "avg_line_length": 17.1111111111, "ext": "agda", "hexsha": "994ad6939da820ebf07418891a3845997998fef5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lvl/Functions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lvl/Functions.agda", "max_line_length": 31, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lvl/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 68, "size": 154 }
module RawSemantics where open import Data.Maybe open import Data.Nat hiding (_⊔_; _⊓_) open import Data.Product open import Data.Sum open import Data.String using (String) open import Data.Unit hiding (_≟_) open import Data.Empty open import Function using (_∘_) open import Relation.Nullary import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_;_≢_; refl) open Eq.≡-Reasoning open import Level hiding (_⊔_) renaming (zero to lzero; suc to lsuc) {- TODO: * might be useful to distinguish positive and negative (refinement) types from the start * subtyping of refinement types * union types: want a rule to convert from a (union) type to a sum type using a decidable predicate * intersection types -} Id = String variable x y : Id ℓ ℓ′ : Level n : ℕ data Expr : Set where Nat : ℕ → Expr Var : Id → Expr Lam : Id → Expr → Expr App : Expr → Expr → Expr Pair : Expr → Expr → Expr LetPair : Id → Id → Expr → Expr → Expr Fst Snd : Expr → Expr Inl Inr : Expr → Expr Case : Expr → Id → Expr → Id → Expr → Expr -- raw types are the types which support standard execution -- currently just simple types data RawType : Set where Nat : RawType _⇒_ _⋆_ _⊹_ : RawType → RawType → RawType ss⇒tt : ∀ {S S₁ T T₁ : RawType} → (S ⇒ S₁) ≡ (T ⇒ T₁) → (S ≡ T × S₁ ≡ T₁) ss⇒tt refl = refl , refl ss⋆tt : ∀ {S S₁ T T₁ : RawType} → (S ⋆ S₁) ≡ (T ⋆ T₁) → (S ≡ T × S₁ ≡ T₁) ss⋆tt refl = refl , refl ss⊹tt : ∀ {S S₁ T T₁ : RawType} → (S ⊹ S₁) ≡ (T ⊹ T₁) → (S ≡ T × S₁ ≡ T₁) ss⊹tt refl = refl , refl -- semantics of raw types R⟦_⟧ : RawType → Set R⟦ Nat ⟧ = ℕ R⟦ S ⇒ T ⟧ = R⟦ S ⟧ → R⟦ T ⟧ R⟦ S ⋆ T ⟧ = R⟦ S ⟧ × R⟦ T ⟧ R⟦ S ⊹ T ⟧ = R⟦ S ⟧ ⊎ R⟦ T ⟧ data Env (A : Set ℓ) : Set ℓ where · : Env A _,_⦂_ : Env A → (x : Id) → (a : A) → Env A data AllEnv (A : Set ℓ) (P : A → Set) : Env A → Set ℓ where · : AllEnv A P · _,_ : ∀ {γ}{x : Id}{a : A} → AllEnv A P γ → P a → AllEnv A P (γ , x ⦂ a) variable L M N : Expr RS RT RU RV RW : RawType Δ Δ₁ Δ₂ : Env RawType -- mapping a function over an environment _⁺ : ∀ {A : Set ℓ′}{B : Set ℓ} → (A → B) → (Env A → Env B) (f ⁺) · = · (f ⁺) (Φ , x ⦂ a) = (f ⁺) Φ , x ⦂ f a RE⟦_⟧ : Env RawType → Env Set RE⟦_⟧ = R⟦_⟧ ⁺ data _⦂_∈_ {A : Set ℓ} : Id → A → Env A → Set ℓ where found : ∀ {a : A}{E : Env A} → x ⦂ a ∈ (E , x ⦂ a) there : ∀ {a a' : A}{E : Env A} → x ⦂ a ∈ E → -- x ≢ y → x ⦂ a ∈ (E , y ⦂ a') data iEnv : Env Set → Set where · : iEnv · _,_⦂_ : ∀ {E}{A} → iEnv E → (x : Id) → (a : A) → iEnv (E , x ⦂ A) data jEnv {A : Set ℓ} (⟦_⟧ : A → Set) : Env A → Set where · : jEnv ⟦_⟧ · _,_⦂_ : ∀ {E}{A} → jEnv ⟦_⟧ E → (x : Id) → (a : ⟦ A ⟧) → jEnv ⟦_⟧ (E , x ⦂ A) -- F here is a natural transformation jEnvMap : {A : Set ℓ} {⟦_⟧ ⟦_⟧′ : A → Set}{E : Env A} → (F : {a : A} → ⟦ a ⟧ → ⟦ a ⟧′) → jEnv ⟦_⟧ E → jEnv ⟦_⟧′ E jEnvMap F · = · jEnvMap F (env , x ⦂ ⟦a⟧) = (jEnvMap F env) , x ⦂ F ⟦a⟧ -- should be in terms of RawType for evaluation data _⊢_⦂_ : Env RawType → Expr → RawType → Set₁ where nat : Δ ⊢ Nat n ⦂ Nat var : (x∈ : x ⦂ RT ∈ Δ) → -------------------- Δ ⊢ Var x ⦂ RT lam : (Δ , x ⦂ RS) ⊢ M ⦂ RT → -------------------- Δ ⊢ Lam x M ⦂ (RS ⇒ RT) app : Δ ⊢ M ⦂ (RS ⇒ RT) → Δ ⊢ N ⦂ RS → -------------------- Δ ⊢ App M N ⦂ RT pair : Δ ⊢ M ⦂ RS → Δ ⊢ N ⦂ RT → -------------------- Δ ⊢ Pair M N ⦂ (RS ⋆ RT) pair-E : Δ ⊢ M ⦂ (RS ⋆ RT) → ((Δ , x ⦂ RS) , y ⦂ RT) ⊢ N ⦂ RU → ------------------------------ Δ ⊢ LetPair x y M N ⦂ RU pair-E1 : Δ ⊢ M ⦂ (RS ⋆ RT) → -------------------- Δ ⊢ Fst M ⦂ RS pair-E2 : Δ ⊢ M ⦂ (RS ⋆ RT) → -------------------- Δ ⊢ Snd M ⦂ RT sum-I1 : Δ ⊢ M ⦂ RS → -------------------- Δ ⊢ Inl M ⦂ (RS ⊹ RT) sum-I2 : Δ ⊢ N ⦂ RT → -------------------- Δ ⊢ Inr N ⦂ (RS ⊹ RT) sum-E : Δ ⊢ L ⦂ (RS ⊹ RT) → (Δ , x ⦂ RS) ⊢ M ⦂ RU → (Δ , y ⦂ RT) ⊢ N ⦂ RV → RW ≡ RU × RW ≡ RV → -------------------- Δ ⊢ Case L x M y N ⦂ RW glookup : ∀ {A : Set ℓ} {⟦_⟧ : A → Set}{Φ : Env A}{a : A} → (x ⦂ a ∈ Φ) → jEnv ⟦_⟧ Φ → ⟦ a ⟧ glookup found (γ , _ ⦂ a) = a glookup (there x∈) (γ , _ ⦂ a) = glookup x∈ γ {- lookup : (x ⦂ RT ∈ Δ) → jEnv R⟦_⟧ Δ → R⟦ RT ⟧ lookup found (γ , _ ⦂ a) = a lookup (there x∈) (γ , _ ⦂ a) = lookup x∈ γ -} eval : Δ ⊢ M ⦂ RT → jEnv R⟦_⟧ Δ → R⟦ RT ⟧ eval (nat{n = n}) γ = n eval (var x∈) γ = glookup x∈ γ eval (lam ⊢M) γ = λ s → eval ⊢M (γ , _ ⦂ s) eval (app ⊢M ⊢N) γ = eval ⊢M γ (eval ⊢N γ) eval (pair ⊢M ⊢N) γ = (eval ⊢M γ) , (eval ⊢N γ) eval (pair-E ⊢M ⊢N) γ with eval ⊢M γ ... | vx , vy = eval ⊢N ((γ , _ ⦂ vx) , _ ⦂ vy) eval (pair-E1 ⊢M) γ = proj₁ (eval ⊢M γ) eval (pair-E2 ⊢M) γ = proj₂ (eval ⊢M γ) eval (sum-I1 ⊢M) γ = inj₁ (eval ⊢M γ) eval (sum-I2 ⊢N) γ = inj₂ (eval ⊢N γ) eval (sum-E ⊢L ⊢M ⊢N (refl , refl)) γ = [ (λ s → eval ⊢M (γ , _ ⦂ s)) , (λ t → eval ⊢N (γ , _ ⦂ t)) ] (eval ⊢L γ) ---------------------------------------------------------------------- -- refinement types that drive the incorrectness typing data Type : Set₁ where Base : (P : ℕ → Set) (p : ∀ n → Dec (P n)) → Type -- refinement Nat : Type _⇒_ _⋆_ : (S : Type) (T : Type) → Type _⊹_ _⊹ˡ_ _⊹ʳ_ : (S : Type) (T : Type) → Type T-Nat : Type T-Nat = Base (λ n → ⊤) (λ n → yes tt) -- all natural numbers -- characterize non-empty types data ne : Type → Set where ne-base : ∀ {P p} → (∃P : Σ ℕ P) → ne (Base P p) ne-nat : ne Nat ne-⇒ : ∀ {S T} → ne S → ne T → ne (S ⇒ T) ne-⋆ : ∀ {S T} → ne S → ne T → ne (S ⋆ T) ne-⊹L : ∀ {S T} → ne S → ne (S ⊹ T) ne-⊹R : ∀ {S T} → ne T → ne (S ⊹ T) ∥_∥ : Type → RawType ∥ Base P p ∥ = Nat ∥ Nat ∥ = Nat ∥ S ⇒ S₁ ∥ = ∥ S ∥ ⇒ ∥ S₁ ∥ ∥ S ⋆ S₁ ∥ = ∥ S ∥ ⋆ ∥ S₁ ∥ ∥ S ⊹ S₁ ∥ = ∥ S ∥ ⊹ ∥ S₁ ∥ ∥ S ⊹ˡ S₁ ∥ = ∥ S ∥ ⊹ ∥ S₁ ∥ ∥ S ⊹ʳ S₁ ∥ = ∥ S ∥ ⊹ ∥ S₁ ∥ T⟦_⟧ : Type → Set T⟦ Base P p ⟧ = Σ ℕ P T⟦ Nat ⟧ = ℕ T⟦ S ⇒ T ⟧ = T⟦ S ⟧ → T⟦ T ⟧ T⟦ S ⋆ T ⟧ = T⟦ S ⟧ × T⟦ T ⟧ T⟦ S ⊹ T ⟧ = T⟦ S ⟧ ⊎ T⟦ T ⟧ T⟦ S ⊹ˡ T ⟧ = T⟦ S ⟧ T⟦ S ⊹ʳ T ⟧ = T⟦ T ⟧ M⟦_⟧ V⟦_⟧ : Type → (Set → Set) → Set V⟦ Base P p ⟧ m = Σ ℕ P V⟦ Nat ⟧ m = ℕ V⟦ T ⇒ T₁ ⟧ m = V⟦ T ⟧ m → M⟦ T₁ ⟧ m V⟦ T ⋆ T₁ ⟧ m = V⟦ T ⟧ m × V⟦ T₁ ⟧ m V⟦ T ⊹ T₁ ⟧ m = V⟦ T ⟧ m ⊎ V⟦ T₁ ⟧ m V⟦ T ⊹ˡ T₁ ⟧ m = V⟦ T ⟧ m V⟦ T ⊹ʳ T₁ ⟧ m = V⟦ T₁ ⟧ m M⟦ T ⟧ m = m (V⟦ T ⟧ m) E⟦_⟧ : Env Type → Env Set E⟦_⟧ = T⟦_⟧ ⁺ ∥_∥⁺ : Env Type → Env RawType ∥_∥⁺ = ∥_∥ ⁺ -- a value is a member of refinement type T _∋_ : (T : Type) → R⟦ ∥ T ∥ ⟧ → Set Base P p ∋ x = P x Nat ∋ x = ⊤ (T ⇒ T₁) ∋ f = ∀ x → T ∋ x → T₁ ∋ f x (T ⋆ T₁) ∋ (fst , snd) = T ∋ fst × T₁ ∋ snd (T ⊹ T₁) ∋ inj₁ x = T ∋ x (T ⊹ T₁) ∋ inj₂ y = T₁ ∋ y (S ⊹ˡ T) ∋ inj₁ x = S ∋ x (S ⊹ˡ T) ∋ inj₂ y = ⊥ (S ⊹ʳ T) ∋ inj₁ x = ⊥ (S ⊹ʳ T) ∋ inj₂ y = T ∋ y -- operations on predicates _∨_ : (P Q : ℕ → Set) → ℕ → Set P ∨ Q = λ n → P n ⊎ Q n _∧_ : (P Q : ℕ → Set) → ℕ → Set P ∧ Q = λ n → P n × Q n implies : ∀ {P Q : ℕ → Set} → (n : ℕ) → P n → (P n ⊎ Q n) implies n Pn = inj₁ Pn p*q->p : ∀ {P Q : ℕ → Set} → (n : ℕ) → (P n × Q n) → P n p*q->p n (Pn , Qn) = Pn dec-P∨Q : ∀ {P Q : ℕ → Set} → (p : ∀ n → Dec (P n)) (q : ∀ n → Dec (Q n)) → (∀ n → Dec ((P ∨ Q) n)) dec-P∨Q p q n with p n | q n ... | no ¬p | no ¬q = no [ ¬p , ¬q ] ... | no ¬p | yes !q = yes (inj₂ !q) ... | yes !p | no ¬q = yes (inj₁ !p) ... | yes !p | yes !q = yes (inj₁ !p) dec-P∧Q : ∀ {P Q : ℕ → Set} → (p : ∀ n → Dec (P n)) (q : ∀ n → Dec (Q n)) → (∀ n → Dec ((P ∧ Q) n)) dec-P∧Q p q n with p n | q n ... | no ¬p | no ¬q = no (¬p ∘ proj₁) ... | no ¬p | yes !q = no (¬p ∘ proj₁) ... | yes !p | no ¬q = no (¬q ∘ proj₂) ... | yes !p | yes !q = yes (!p , !q) _⊔_ _⊓_ : (S T : Type) {r : ∥ S ∥ ≡ ∥ T ∥} → Type (Base P p ⊔ Base P₁ p₁) {refl} = Base (P ∨ P₁) (dec-P∨Q p p₁) (Base P p ⊔ Nat) = Nat (Nat ⊔ Base P p) = Nat (Nat ⊔ Nat) = Nat ((S ⇒ S₁) ⊔ (T ⇒ T₁)) {r} with ss⇒tt r ... | sss , ttt = (S ⊓ T){sss} ⇒ (S₁ ⊔ T₁){ttt} ((S ⋆ S₁) ⊔ (T ⋆ T₁)) {r} with ss⋆tt r ... | sss , ttt = (S ⊔ T){sss} ⋆ (S₁ ⊔ T₁){ttt} ((S ⊹ S₁) ⊔ (T ⊹ T₁)) {r} with ss⊹tt r ... | sss , ttt = (S ⊔ T){sss} ⊹ (S₁ ⊔ T₁){ttt} ((S ⊹ S₁) ⊔ (T ⊹ˡ T₁)) {r} with ss⊹tt r ... | sss , ttt = (S ⊔ T){sss} ⊹ S₁ ((S ⊹ S₁) ⊔ (T ⊹ʳ T₁)) {r} with ss⊹tt r ... | sss , ttt = S ⊹ (S₁ ⊔ T₁){ttt} ((S ⊹ˡ S₁) ⊔ (T ⊹ T₁)) {r} with ss⊹tt r ... | sss , ttt = ((S ⊔ T){sss}) ⊹ (S₁ ⊔ T₁){ttt} ((S ⊹ˡ S₁) ⊔ (T ⊹ˡ T₁)) {r} with ss⊹tt r ... | sss , ttt = ((S ⊔ T){sss}) ⊹ˡ ((S₁ ⊔ T₁){ttt}) ((S ⊹ˡ S₁) ⊔ (T ⊹ʳ T₁)) {r} = S ⊹ T₁ ((S ⊹ʳ S₁) ⊔ (T ⊹ T₁)) {r} with ss⊹tt r ... | sss , ttt = T ⊹ ((S₁ ⊔ T₁) {ttt}) ((S ⊹ʳ S₁) ⊔ (T ⊹ˡ T₁)) {r} = T ⊹ S₁ ((S ⊹ʳ S₁) ⊔ (T ⊹ʳ T₁)) {r} with ss⊹tt r ... | sss , ttt = (S ⊔ T) {sss} ⊹ (S₁ ⊔ T₁) {ttt} Base P p ⊓ Base P₁ p₁ = Base (P ∧ P₁) (dec-P∧Q p p₁) Base P p ⊓ Nat = Base P p Nat ⊓ Base P p = Base P p Nat ⊓ Nat = Nat ((S ⇒ S₁) ⊓ (T ⇒ T₁)){r} with ss⇒tt r ... | sss , ttt = (S ⊔ T){sss} ⇒ (S₁ ⊓ T₁){ttt} ((S ⋆ S₁) ⊓ (T ⋆ T₁)){r} with ss⋆tt r ... | sss , ttt = (S ⊓ T){sss} ⋆ (S₁ ⊓ T₁){ttt} ((S ⊹ S₁) ⊓ (T ⊹ T₁)){r} with ss⊹tt r ... | sss , ttt = (S ⊓ T){sss} ⊹ (S₁ ⊓ T₁){ttt} ((S ⊹ˡ S₁) ⊓ (T ⊹ T₁)) {r} = {!!} ((S ⊹ʳ S₁) ⊓ (T ⊹ T₁)) {r} = {!!} ((S ⊹ S₁) ⊓ (T ⊹ˡ T₁)) {r} = {!!} ((S ⊹ˡ S₁) ⊓ (T ⊹ˡ T₁)) {r} = {!!} ((S ⊹ʳ S₁) ⊓ (T ⊹ˡ T₁)) {r} = {!!} ((S ⊹ S₁) ⊓ (T ⊹ʳ T₁)) {r} = {!!} ((S ⊹ˡ S₁) ⊓ (T ⊹ʳ T₁)) {r} = {!!} ((S ⊹ʳ S₁) ⊓ (T ⊹ʳ T₁)) {r} = {!!} variable S T U S′ T′ U′ U″ : Type Γ Γ₁ Γ₂ : Env Type P : ℕ → Set p : ∀ n → Dec (P n) A : Set ℓ a : A Φ Φ₁ Φ₂ : Env A ⊔-preserves : ∀ S T {st : ∥ S ∥ ≡ ∥ T ∥} → ∥ (S ⊔ T){st} ∥ ≡ ∥ S ∥ × ∥ (S ⊔ T){st} ∥ ≡ ∥ T ∥ ⊓-preserves : ∀ S T {st : ∥ S ∥ ≡ ∥ T ∥} → ∥ (S ⊓ T){st} ∥ ≡ ∥ S ∥ × ∥ (S ⊓ T){st} ∥ ≡ ∥ T ∥ ⊔-preserves (Base P p) (Base P₁ p₁) {refl} = refl , refl ⊔-preserves (Base P p) Nat {st} = refl , refl ⊔-preserves Nat (Base P p) {st} = refl , refl ⊔-preserves Nat Nat {st} = refl , refl ⊔-preserves (S ⇒ S₁) (T ⇒ T₁) {st} with ss⇒tt st ... | sss , ttt with ⊓-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊔-preserves (S ⋆ S₁) (T ⋆ T₁) {st} with ss⋆tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊔-preserves (S ⊹ S₁) (T ⊹ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊔-preserves (S ⊹ S₁) (T ⊹ˡ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s = refl , st ⊔-preserves (S ⊹ S₁) (T ⊹ʳ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊔-preserves (S ⊹ˡ S₁) (T ⊹ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊔-preserves (S ⊹ˡ S₁) (T ⊹ˡ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊔-preserves (S ⊹ˡ S₁) (T ⊹ʳ T₁) {st} with ss⊹tt st ... | sss , ttt rewrite sss | ttt = refl , refl ⊔-preserves (S ⊹ʳ S₁) (T ⊹ T₁) {st} with ss⊹tt st ... | sss , ttt rewrite sss with ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t rewrite sut=t = (Eq.sym st) , refl ⊔-preserves (S ⊹ʳ S₁) (T ⊹ˡ T₁) {st} with ss⊹tt st ... | sss , ttt rewrite sss = refl , st ⊔-preserves (S ⊹ʳ S₁) (T ⊹ʳ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊔-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s₁ , sut=t₁ rewrite sut=s | sut=s₁ = refl , st ⊓-preserves (Base P p) (Base P₁ p₂) {st} = refl , refl ⊓-preserves (Base P p) Nat {st} = refl , refl ⊓-preserves Nat (Base P p) {st} = refl , refl ⊓-preserves Nat Nat {st} = refl , refl ⊓-preserves (S ⇒ S₁) (T ⇒ T₁) {st} with ss⇒tt st ... | sss , ttt with ⊔-preserves S T {sss} | ⊓-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s1 , sut=t1 rewrite sut=s | sut=s1 = refl , st ⊓-preserves (S ⋆ S₁) (T ⋆ T₁) {st} with ss⋆tt st ... | sss , ttt with ⊓-preserves S T {sss} | ⊓-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s1 , sut=t1 rewrite sut=s | sut=s1 = refl , st ⊓-preserves (S ⊹ S₁) (T ⊹ T₁) {st} with ss⊹tt st ... | sss , ttt with ⊓-preserves S T {sss} | ⊓-preserves S₁ T₁ {ttt} ... | sut=s , sut=t | sut=s1 , sut=t1 rewrite sut=s | sut=s1 = refl , st ⊓-preserves (S ⊹ˡ S₁) (T ⊹ T₁) {st} = {!!} ⊓-preserves (S ⊹ʳ S₁) (T ⊹ T₁) {st} = {!!} ⊓-preserves S (T ⊹ˡ T₁) {st} = {!!} ⊓-preserves S (T ⊹ʳ T₁) {st} = {!!} data Split {A : Set ℓ} : Env A → Env A → Env A → Set ℓ where nil : Split · · · lft : ∀ {a : A}{Γ Γ₁ Γ₂ : Env A} → Split Γ Γ₁ Γ₂ → Split (Γ , x ⦂ a) (Γ₁ , x ⦂ a) Γ₂ rgt : ∀ {a : A}{Γ Γ₁ Γ₂ : Env A} → Split Γ Γ₁ Γ₂ → Split (Γ , x ⦂ a) Γ₁ (Γ₂ , x ⦂ a) -- subtyping data _<:_ : Type → Type → Set where <:-refl : T <: T <:-base : (P Q : ℕ → Set) → {p : ∀ n → Dec (P n)} {q : ∀ n → Dec (Q n)} (p→q : ∀ n → P n → Q n) → Base P p <: Base Q q <:-base-nat : ∀ {p : ∀ n → Dec (P n)} → Base P p <: Nat <:-⇒ : S′ <: S → T <: T′ → (S ⇒ T) <: (S′ ⇒ T′) <:-⋆ : S <: S′ → T <: T′ → (S ⋆ T) <: (S′ ⋆ T′) <:-⊹ : S <: S′ → T <: T′ → (S ⊹ T) <: (S′ ⊹ T′) <:-⊹ˡ-⊹ : S <: S′ → (S ⊹ˡ T) <: (S′ ⊹ T) <:-⊹ʳ-⊹ : T <: T′ → (S ⊹ʳ T) <: (S ⊹ T′) -- subtyping is compatible with raw types <:-raw : S <: T → ∥ S ∥ ≡ ∥ T ∥ <:-raw <:-refl = refl <:-raw (<:-base P Q p→q) = refl <:-raw <:-base-nat = refl <:-raw (<:-⇒ s<:t s<:t₁) = Eq.cong₂ _⇒_ (Eq.sym (<:-raw s<:t)) (<:-raw s<:t₁) <:-raw (<:-⋆ s<:t s<:t₁) = Eq.cong₂ _⋆_ (<:-raw s<:t) (<:-raw s<:t₁) <:-raw (<:-⊹ s<:t s<:t₁) = Eq.cong₂ _⊹_ (<:-raw s<:t) (<:-raw s<:t₁) <:-raw (<:-⊹ˡ-⊹ s<:t) = Eq.cong₂ _⊹_ (<:-raw s<:t) refl <:-raw (<:-⊹ʳ-⊹ s<:t) = Eq.cong₂ _⊹_ refl (<:-raw s<:t) <:-⊔ : ∀ S T → {c : ∥ S ∥ ≡ ∥ T ∥} → S <: (S ⊔ T){c} <:-⊓ : ∀ S T → {c : ∥ S ∥ ≡ ∥ T ∥} → (S ⊓ T){c} <: S <:-⊔ (Base P p) (Base P₁ p₁) {refl} = <:-base P (P ∨ P₁) implies <:-⊔ (Base P p) Nat = <:-base-nat <:-⊔ Nat (Base P p) = <:-refl <:-⊔ Nat Nat = <:-refl <:-⊔ (S ⇒ S₁) (T ⇒ T₁) {c} with ss⇒tt c ... | c1 , c2 = <:-⇒ (<:-⊓ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⋆ S₁) (T ⋆ T₁) {c} with ss⋆tt c ... | c1 , c2 = <:-⋆ (<:-⊔ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⊹ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊔ S T) (<:-⊔ S₁ T₁) <:-⊔ (S ⊹ S₁) (T ⊹ˡ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊔ S T) <:-refl <:-⊔ (S ⊹ S₁) (T ⊹ʳ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ <:-refl (<:-⊔ S₁ T₁) <:-⊔ (S ⊹ˡ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c12 = {!<:-⊹!} <:-⊔ (S ⊹ˡ S₁) (T ⊹ˡ T₁) = {!!} <:-⊔ (S ⊹ˡ S₁) (T ⊹ʳ T₁) = {!!} <:-⊔ (S ⊹ʳ S₁) T = {!!} <:-⊓ (Base P p) (Base P₁ p₁) {refl} = <:-base (P ∧ P₁) P p*q->p <:-⊓ (Base P p) Nat = <:-refl <:-⊓ Nat (Base P p) = <:-base-nat <:-⊓ Nat Nat = <:-refl <:-⊓ (S ⇒ S₁) (T ⇒ T₁) {c} with ss⇒tt c ... | c1 , c2 = <:-⇒ (<:-⊔ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⋆ S₁) (T ⋆ T₁) {c} with ss⋆tt c ... | c1 , c2 = <:-⋆ (<:-⊓ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⊹ S₁) (T ⊹ T₁) {c} with ss⊹tt c ... | c1 , c2 = <:-⊹ (<:-⊓ S T) (<:-⊓ S₁ T₁) <:-⊓ (S ⊹ S₁) (T ⊹ˡ T₁) = {!!} <:-⊓ (S ⊹ S₁) (T ⊹ʳ T₁) = {!!} <:-⊓ (S ⊹ˡ S₁) T = {!!} <:-⊓ (S ⊹ʳ S₁) T = {!!} -- subtyping generates an embedding and a projection embed : (S <: T) → T⟦ S ⟧ → T⟦ T ⟧ embed <:-refl s = s embed (<:-base P Q p→q) (s , p) = s , p→q s p embed <:-base-nat (s , p) = s embed (<:-⇒ s<:t s<:t₁) s = λ x → embed s<:t₁ (s (embed s<:t x)) embed (<:-⋆ s<:t s<:t₁) (s , t) = (embed s<:t s) , (embed s<:t₁ t) embed (<:-⊹ s<:t s<:t₁) (inj₁ x) = inj₁ (embed s<:t x) embed (<:-⊹ s<:t s<:t₁) (inj₂ y) = inj₂ (embed s<:t₁ y) embed (<:-⊹ˡ-⊹ s<:t) s = inj₁ (embed s<:t s) embed (<:-⊹ʳ-⊹ s<:t) s = inj₂ (embed s<:t s) {- no definable inject : T⟦ S ⟧ → V⟦ S ⟧ Maybe eject : V⟦ S ⟧ Maybe → Maybe T⟦ S ⟧ inject {Base P p} s = s inject {Nat} s = s inject {S ⇒ S₁} s = λ x → eject{S} x >>= λ x₁ → let s₁ = s x₁ in just (inject {S₁} s₁) inject {S ⋆ S₁} (s , s₁) = (inject{S} s) , (inject{S₁} s₁) inject {S ⊹ S₁} (inj₁ x) = inj₁ (inject{S} x) inject {S ⊹ S₁} (inj₂ y) = inj₂ (inject{S₁} y) inject {S ⊹ˡ S₁} s = inject{S} s inject {S ⊹ʳ S₁} s = inject{S₁} s eject {Base P p} s = {!!} eject {Nat} s = {!!} eject {S ⇒ S₁} s = just (λ x → {!!}) eject {S ⋆ S₁} s = {!!} eject {S ⊹ S₁} s = {!!} eject {S ⊹ˡ S₁} s = {!!} eject {S ⊹ʳ S₁} s = {!!} -} project : (S <: T) → V⟦ T ⟧ Maybe → M⟦ S ⟧ Maybe project <:-refl t = just t project (<:-base P Q {p = p} p→q) (t , qt) with p t ... | no ¬p = nothing ... | yes p₁ = just (t , p₁) project (<:-base-nat{p = p}) t with p t ... | no ¬p = nothing ... | yes p₁ = just (t , p₁) project (<:-⇒ s<:t s<:t₁) t = just λ s → project s<:t s >>= t >>= project s<:t₁ project (<:-⋆ s<:t s<:t₁) (s , t) = project s<:t s >>= λ x → project s<:t₁ t >>= λ x₁ → just (x , x₁) project (<:-⊹ s<:t s<:t₁) (inj₁ x) = Data.Maybe.map inj₁ (project s<:t x) project (<:-⊹ s<:t s<:t₁) (inj₂ y) = Data.Maybe.map inj₂ (project s<:t₁ y) project (<:-⊹ˡ-⊹ s<:t) (inj₁ x) = project s<:t x project (<:-⊹ˡ-⊹ s<:t) (inj₂ y) = nothing project (<:-⊹ʳ-⊹ s<:t) (inj₁ x) = nothing project (<:-⊹ʳ-⊹ s<:t) (inj₂ y) = project s<:t y split-sym : Split Φ Φ₁ Φ₂ → Split Φ Φ₂ Φ₁ split-sym nil = nil split-sym (lft sp) = rgt (split-sym sp) split-sym (rgt sp) = lft (split-sym sp) split-map : ∀ {A : Set ℓ}{B : Set ℓ′}{Φ Φ₁ Φ₂ : Env A} → {f : A → B} → Split Φ Φ₁ Φ₂ → Split ((f ⁺) Φ) ((f ⁺) Φ₁) ((f ⁺) Φ₂) split-map nil = nil split-map (lft sp) = lft (split-map sp) split-map (rgt sp) = rgt (split-map sp) weaken-∈ : Split Φ Φ₁ Φ₂ → x ⦂ a ∈ Φ₁ → x ⦂ a ∈ Φ weaken-∈ (lft sp) found = found weaken-∈ (rgt sp) found = there (weaken-∈ sp found) weaken-∈ (lft sp) (there x∈) = there (weaken-∈ sp x∈) weaken-∈ (rgt sp) (there x∈) = there (weaken-∈ sp (there x∈)) weaken : Split Δ Δ₁ Δ₂ → Δ₁ ⊢ M ⦂ RT → Δ ⊢ M ⦂ RT weaken sp (nat) = nat weaken sp (var x∈) = var (weaken-∈ sp x∈) weaken sp (lam ⊢M) = lam (weaken (lft sp) ⊢M) weaken sp (app ⊢M ⊢N) = app (weaken sp ⊢M) (weaken sp ⊢N) weaken sp (pair ⊢M ⊢N) = pair (weaken sp ⊢M) (weaken sp ⊢N) weaken sp (pair-E ⊢M ⊢N) = pair-E (weaken sp ⊢M) (weaken (lft (lft sp)) ⊢N) weaken sp (pair-E1 ⊢M) = pair-E1 (weaken sp ⊢M) weaken sp (pair-E2 ⊢M) = pair-E2 (weaken sp ⊢M) weaken sp (sum-I1 ⊢M) = sum-I1 (weaken sp ⊢M) weaken sp (sum-I2 ⊢N) = sum-I2 (weaken sp ⊢N) weaken sp (sum-E ⊢L ⊢M ⊢N (RT=RU , RT=RV)) = sum-E (weaken sp ⊢L) (weaken (lft sp) ⊢M) (weaken (lft sp) ⊢N) (RT=RU , RT=RV) -- incorrectness typing -- a positive type contains refinements only in positive positions mutual data Pos : Type → Set where Pos-Base : Pos (Base P p) Pos-Nat : Pos Nat Pos-⇒ : Neg S → Pos T → Pos (S ⇒ T) Pos-⋆ : Pos S → Pos T → Pos (S ⋆ T) Pos-⊹ : Pos S → Pos T → Pos (S ⊹ T) Pos-⊹ˡ : Pos S → Pos (S ⊹ˡ T) Pos-⊹ʳ : Pos T → Pos (S ⊹ʳ T) data Neg : Type → Set where Neg-Nat : Neg Nat Neg-⇒ : Pos S → Neg T → Neg (S ⇒ T) Neg-⋆ : Neg S → Neg T → Neg (S ⋆ T) Neg-⊹ : Neg S → Neg T → Neg (S ⊹ T) pos-unique : ∀ T → (pos pos' : Pos T) → pos ≡ pos' neg-unique : ∀ T → (neg neg' : Neg T) → neg ≡ neg' pos-unique (Base P p) Pos-Base Pos-Base = refl pos-unique Nat Pos-Nat Pos-Nat = refl pos-unique (T ⇒ T₁) (Pos-⇒ x pos) (Pos-⇒ x₁ pos') rewrite neg-unique T x x₁ | pos-unique T₁ pos pos' = refl pos-unique (T ⋆ T₁) (Pos-⋆ pos pos₁) (Pos-⋆ pos' pos'') rewrite pos-unique T pos pos' | pos-unique T₁ pos₁ pos'' = refl pos-unique (T ⊹ T₁) (Pos-⊹ pos pos₁) (Pos-⊹ pos' pos'') rewrite pos-unique T pos pos' | pos-unique T₁ pos₁ pos'' = refl pos-unique (T ⊹ˡ T₁) (Pos-⊹ˡ pos) (Pos-⊹ˡ pos') rewrite pos-unique T pos pos' = refl pos-unique (T ⊹ʳ T₁) (Pos-⊹ʳ pos) (Pos-⊹ʳ pos') rewrite pos-unique T₁ pos pos' = refl --etc neg-unique T neg neg' = {!!} module positive-restricted where toRaw : ∀ T → Pos T → T⟦ T ⟧ → R⟦ ∥ T ∥ ⟧ fromRaw : ∀ T → Neg T → R⟦ ∥ T ∥ ⟧ → T⟦ T ⟧ toRaw (Base P p) Pos-Base (n , pn) = n toRaw Nat Pos-Nat t = t toRaw (T ⇒ T₁) (Pos-⇒ neg pos₁) t = toRaw T₁ pos₁ ∘ t ∘ fromRaw T neg toRaw (T ⋆ T₁) (Pos-⋆ pos pos₁) (t , t₁) = toRaw T pos t , (toRaw T₁ pos₁ t₁) toRaw (T ⊹ T₁) (Pos-⊹ pos pos₁) (inj₁ x) = inj₁ (toRaw T pos x) toRaw (T ⊹ T₁) (Pos-⊹ pos pos₁) (inj₂ y) = inj₂ (toRaw T₁ pos₁ y) toRaw (S ⊹ˡ T) (Pos-⊹ˡ pos) x = inj₁ (toRaw S pos x) toRaw (S ⊹ʳ T) (Pos-⊹ʳ pos) y = inj₂ (toRaw T pos y) fromRaw (Base P p) () r fromRaw Nat Neg-Nat r = r fromRaw (T ⇒ T₁) (Neg-⇒ pos neg) r = fromRaw T₁ neg ∘ r ∘ toRaw T pos fromRaw (T ⋆ T₁) (Neg-⋆ neg neg₁) (r , r₁) = fromRaw T neg r , fromRaw T₁ neg₁ r₁ fromRaw (T ⊹ T₁) (Neg-⊹ neg neg₁) (inj₁ x) = inj₁ (fromRaw T neg x) fromRaw (T ⊹ T₁) (Neg-⊹ neg neg₁) (inj₂ y) = inj₂ (fromRaw T₁ neg₁ y) toRawEnv : AllEnv Type Pos Γ → jEnv T⟦_⟧ Γ → jEnv R⟦_⟧ ∥ Γ ∥⁺ toRawEnv{·} posΓ · = · toRawEnv{Γ , _ ⦂ T} (posΓ , x₁) (γ , x ⦂ a) = toRawEnv{Γ} posΓ γ , x ⦂ toRaw T x₁ a {- -- attempt to map type (interpretation) to corresponding raw type (interpretation) -- * must be monadic because of refinement -- * fails at function types module monadic where toRaw : ∀ T → T⟦ T ⟧ → Maybe R⟦ ∥ T ∥ ⟧ fromRaw : ∀ T → R⟦ ∥ T ∥ ⟧ → Maybe T⟦ T ⟧ toRaw (Base P p) (n , Pn) = just n toRaw Nat n = just n toRaw (T ⇒ T₁) t = {!!} toRaw (T ⋆ T₁) (t , t₁) = toRaw T t >>= (λ r → toRaw T₁ t₁ >>= (λ r₁ → just (r , r₁))) toRaw (T ⊹ T₁) (inj₁ x) = Data.Maybe.map inj₁ (toRaw T x) toRaw (T ⊹ T₁) (inj₂ y) = Data.Maybe.map inj₂ (toRaw T₁ y) fromRaw (Base P p) r with p r ... | no ¬p = nothing ... | yes pr = just (r , pr) fromRaw Nat r = just r fromRaw (T ⇒ T₁) r = {!!} fromRaw (T ⋆ T₁) (r , r₁) = fromRaw T r >>= (λ t → fromRaw T₁ r₁ >>= (λ t₁ → just (t , t₁))) fromRaw (T ⊹ T₁) (inj₁ x) = Data.Maybe.map inj₁ (fromRaw T x) fromRaw (T ⊹ T₁) (inj₂ y) = Data.Maybe.map inj₂ (fromRaw T₁ y) -} corr-sp : Split Γ Γ₁ Γ₂ → Split ∥ Γ ∥⁺ ∥ Γ₁ ∥⁺ ∥ Γ₂ ∥⁺ corr-sp nil = nil corr-sp (lft sp) = lft (corr-sp sp) corr-sp (rgt sp) = rgt (corr-sp sp) postulate ext : ∀ {A B : Set}{f g : A → B} → (∀ x → f x ≡ g x) → f ≡ g unsplit-env : ∀ {A : Set ℓ} {⟦_⟧ : A → Set}{Φ Φ₁ Φ₂ : Env A}→ Split Φ Φ₁ Φ₂ → jEnv ⟦_⟧ Φ₁ → jEnv ⟦_⟧ Φ₂ → jEnv ⟦_⟧ Φ unsplit-env nil γ₁ γ₂ = · unsplit-env (lft sp) (γ₁ , _ ⦂ a) γ₂ = (unsplit-env sp γ₁ γ₂) , _ ⦂ a unsplit-env (rgt sp) γ₁ (γ₂ , _ ⦂ a) = (unsplit-env sp γ₁ γ₂) , _ ⦂ a unsplit-split : ∀ {A : Set ℓ} {⟦_⟧ : A → Set}{Φ Φ₁ Φ₂ : Env A} → (sp : Split Φ Φ₁ Φ₂) (γ₁ : jEnv ⟦_⟧ Φ₁) (γ₂ : jEnv ⟦_⟧ Φ₂) → unsplit-env sp γ₁ γ₂ ≡ unsplit-env (split-sym sp) γ₂ γ₁ unsplit-split nil γ₁ γ₂ = refl unsplit-split (lft sp) (γ₁ , _ ⦂ a) γ₂ rewrite unsplit-split sp γ₁ γ₂ = refl unsplit-split (rgt sp) γ₁ (γ₂ , _ ⦂ a) rewrite unsplit-split sp γ₁ γ₂ = refl lookup-unsplit : ∀ {A : Set ℓ} {⟦_⟧ : A → Set}{Φ Φ₁ Φ₂ : Env A}{a : A} → (sp : Split Φ Φ₁ Φ₂) (γ₁ : jEnv ⟦_⟧ Φ₁) (γ₂ : jEnv ⟦_⟧ Φ₂) → (x∈ : x ⦂ a ∈ Φ₁) → glookup (weaken-∈ sp x∈) (unsplit-env sp γ₁ γ₂) ≡ glookup x∈ γ₁ lookup-unsplit (lft sp) (γ₁ , _ ⦂ a) γ₂ found = refl lookup-unsplit (rgt sp) γ₁ (γ₂ , _ ⦂ a) found = lookup-unsplit sp γ₁ γ₂ found lookup-unsplit (lft sp) (γ₁ , _ ⦂ a) γ₂ (there x∈) = lookup-unsplit sp γ₁ γ₂ x∈ lookup-unsplit (rgt sp) γ₁ (γ₂ , _ ⦂ a) (there x∈) = lookup-unsplit sp γ₁ γ₂ (there x∈) open positive-restricted eval-unsplit' : (sp : Split Γ Γ₁ Γ₂) (γ₁ : jEnv T⟦_⟧ Γ₁) (γ₂ : jEnv T⟦_⟧ Γ₂) → (posΓ₁ : AllEnv Type Pos Γ₁) (posΓ₂ : AllEnv Type Pos Γ₂) → (⊢M : ∥ Γ₁ ∥⁺ ⊢ M ⦂ RT) → eval (weaken (corr-sp sp) ⊢M) (unsplit-env (corr-sp sp) (toRawEnv posΓ₁ γ₁) (toRawEnv posΓ₂ γ₂)) ≡ eval ⊢M (toRawEnv posΓ₁ γ₁) eval-unsplit' sp γ₁ γ₂ posΓ₁ posΓ₂ ⊢M = {!!} {- (eval (weaken (corr-sp sp) (corr ÷M)) (toRawEnv posΓ (unsplit-env sp γ₁ γ₂))) -} eval-unsplit : (sp : Split Δ Δ₁ Δ₂) (γ₁ : jEnv R⟦_⟧ Δ₁) (γ₂ : jEnv R⟦_⟧ Δ₂) → (⊢M : Δ₁ ⊢ M ⦂ RT) → eval (weaken sp ⊢M) (unsplit-env sp γ₁ γ₂) ≡ eval ⊢M γ₁ eval-unsplit sp γ₁ γ₂ (nat)= refl eval-unsplit sp γ₁ γ₂ (var x∈) = lookup-unsplit sp γ₁ γ₂ x∈ eval-unsplit sp γ₁ γ₂ (lam ⊢M) = ext (λ s → eval-unsplit (lft sp) (γ₁ , _ ⦂ s) γ₂ ⊢M) eval-unsplit sp γ₁ γ₂ (app ⊢M ⊢M₁) rewrite eval-unsplit sp γ₁ γ₂ ⊢M | eval-unsplit sp γ₁ γ₂ ⊢M₁ = refl eval-unsplit sp γ₁ γ₂ (pair ⊢M ⊢M₁) rewrite eval-unsplit sp γ₁ γ₂ ⊢M | eval-unsplit sp γ₁ γ₂ ⊢M₁ = refl eval-unsplit sp γ₁ γ₂ (pair-E ⊢M ⊢N) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = eval-unsplit (lft (lft sp)) ((γ₁ , _ ⦂ _) , _ ⦂ _) γ₂ ⊢N eval-unsplit sp γ₁ γ₂ (pair-E1 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (pair-E2 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (sum-I1 ⊢M) rewrite eval-unsplit sp γ₁ γ₂ ⊢M = refl eval-unsplit sp γ₁ γ₂ (sum-I2 ⊢N) rewrite eval-unsplit sp γ₁ γ₂ ⊢N = refl eval-unsplit sp γ₁ γ₂ (sum-E ⊢L ⊢M ⊢N (refl , refl)) rewrite eval-unsplit sp γ₁ γ₂ ⊢L | ext (λ s → eval-unsplit (lft sp) (γ₁ , _ ⦂ s) γ₂ ⊢M) | ext (λ t → eval-unsplit (lft sp) (γ₁ , _ ⦂ t) γ₂ ⊢N) = refl module rule-by-rule where open positive-restricted open Eq.≡-Reasoning data _⊢_÷_ : Env Type → Expr → Type → Set₁ where nat' : -------------------- · ⊢ Nat n ÷ Base (_≡_ n) (_≟_ n) var' : ( · , x ⦂ T) ⊢ Var x ÷ T pair-I : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ M ÷ S → Γ₂ ⊢ N ÷ T → -------------------- Γ ⊢ Pair M N ÷ (S ⋆ T) sum-I1 : Γ ⊢ M ÷ S → -------------------- Γ ⊢ Inl M ÷ (S ⊹ˡ T) sum-I2 : Γ ⊢ M ÷ T → -------------------- Γ ⊢ Inr M ÷ (S ⊹ʳ T) {- perhaps this rule should involve splitting between L and M,N -} sum-Case : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ (U ⊹ˡ U′) → (Γ₂ , y ⦂ T) ⊢ N ÷ (U ⊹ʳ U′) → ------------------------------ Γ ⊢ Case L x M y N ÷ (U ⊹ U′) corr : Γ ⊢ M ÷ T → ∥ Γ ∥⁺ ⊢ M ⦂ ∥ T ∥ corr nat' = nat corr var' = var found corr (pair-I sp ÷M ÷N) = pair (weaken (corr-sp sp) (corr ÷M)) (weaken (split-sym (corr-sp sp)) (corr ÷N)) corr (sum-I1 ÷M) = sum-I1 (corr ÷M) corr (sum-I2 ÷M) = sum-I2 (corr ÷M) corr (sum-Case sp ÷L ÷M ÷N) = sum-E (weaken (corr-sp sp) (corr ÷L)) (weaken (split-sym (corr-sp (rgt sp))) (corr ÷M)) (weaken (split-sym (corr-sp (rgt sp))) (corr ÷N)) (refl , refl) applySplit : {A : Set ℓ}{P : A → Set}{Θ Θ₁ Θ₂ : Env A} → Split Θ Θ₁ Θ₂ → AllEnv A P Θ → AllEnv A P Θ₁ × AllEnv A P Θ₂ applySplit nil · = · , · applySplit (lft sp) (ae , x) with applySplit sp ae ... | ae1 , ae2 = (ae1 , x) , ae2 applySplit (rgt sp) (ae , x) with applySplit sp ae ... | ae1 , ae2 = ae1 , (ae2 , x) lave' : (÷M : Γ ⊢ M ÷ T) → (posT : Pos T) → (posΓ : AllEnv Type Pos Γ) → ∀ (t : T⟦ T ⟧) → ∃ λ (γ : jEnv T⟦_⟧ Γ) → eval (corr ÷M) (toRawEnv posΓ γ) ≡ toRaw T posT t lave' nat' Pos-Base posΓ (n , refl) = · , refl lave' var' posT (· , posT') t rewrite pos-unique _ posT posT' = (· , _ ⦂ t) , refl lave' (pair-I x ÷M ÷M₁) posT posΓ t = {!!} lave' (sum-I1 ÷M) (Pos-⊹ˡ posT) posΓ t with lave' ÷M posT posΓ t ... | γ , ih = γ , Eq.cong inj₁ ih lave' (sum-I2 ÷M) (Pos-⊹ʳ posT) posΓ t with lave' ÷M posT posΓ t ... | γ , ih = γ , Eq.cong inj₂ ih lave' (sum-Case sp ÷M ÷M₁ ÷M₂) (Pos-⊹ posT posT₁) posΓ (inj₁ x) with applySplit sp posΓ ... | posΓ₁ , posΓ₂ with lave' ÷M₁ (Pos-⊹ˡ posT) (posΓ₂ , {!!}) x ... | (γ₂ , _ ⦂ s) , ih₂ with lave' ÷M (Pos-⊹ {!!} {!!}) posΓ₁ (inj₁ s) ... | γ₁ , ih₁ = let ih₂′ = {!eval-unsplit' sp γ₁ γ₂ posΓ₁ posΓ₂ (corr ÷M) !} in (unsplit-env sp γ₁ γ₂) , {!!} lave' (sum-Case sp ÷M ÷M₁ ÷M₂) (Pos-⊹ posT posT₁) posΓ (inj₂ y) = {!!} lave : (÷M : Γ ⊢ M ÷ T) → (pos : Pos T) → ∀ (t : T⟦ T ⟧) → ∃ λ (γ : jEnv R⟦_⟧ ∥ Γ ∥⁺) → eval (corr ÷M) γ ≡ toRaw T pos t lave nat' Pos-Base (n , pn) = · , pn lave var' pos t = (· , _ ⦂ toRaw _ pos t) , refl lave (pair-I sp ÷M ÷N) (Pos-⋆ pos₁ pos₂) (t₁ , t₂) with lave ÷M pos₁ t₁ | lave ÷N pos₂ t₂ ... | γ₁ , ih₁ | γ₂ , ih₂ = (unsplit-env (corr-sp sp) γ₁ γ₂) , Eq.cong₂ _,_ (begin (eval (weaken (corr-sp sp) (corr ÷M)) (unsplit-env (corr-sp sp) γ₁ γ₂) ≡⟨ eval-unsplit (corr-sp sp) γ₁ γ₂ (corr ÷M) ⟩ ih₁)) (begin (eval (weaken (split-sym (corr-sp sp)) (corr ÷N)) (unsplit-env (corr-sp sp) γ₁ γ₂) ≡⟨ Eq.cong (eval (weaken (split-sym (corr-sp sp)) (corr ÷N))) (unsplit-split (corr-sp sp) γ₁ γ₂) ⟩ eval (weaken (split-sym (corr-sp sp)) (corr ÷N)) (unsplit-env (split-sym (corr-sp sp)) γ₂ γ₁) ≡⟨ eval-unsplit (split-sym (corr-sp sp)) γ₂ γ₁ (corr ÷N) ⟩ ih₂)) lave (sum-I1 ÷M) (Pos-⊹ˡ pos) t with lave ÷M pos t ... | γ , ih = γ , Eq.cong inj₁ ih lave (sum-I2 ÷M) (Pos-⊹ʳ pos) t with lave ÷M pos t ... | γ , ih = γ , Eq.cong inj₂ ih lave (sum-Case sp ÷L ÷M ÷N) (Pos-⊹ p p₁) (inj₁ x) with lave ÷M (Pos-⊹ˡ p) x ... | (γ₂ , _ ⦂ a) , ih₂ with lave ÷L {!!} (inj₁ {!!}) ... | γ₁ , ih₁ = {!!} lave (sum-Case sp ÷L ÷M ÷N) (Pos-⊹ p p₁) (inj₂ y) = {!!} data _⊢_÷_ : Env Type → Expr → Type → Set₁ where nat' : -------------------- · ⊢ Nat n ÷ Base (_≡_ n) λ n₁ → n ≟ n₁ var1 : ( · , x ⦂ T) ⊢ Var x ÷ T {- var : x ⦂ T ∈ Γ → -------------------- Γ ⊢ Var x ÷ T -} lam : (· , x ⦂ S) ⊢ M ÷ T → -------------------- · ⊢ Lam x M ÷ (S ⇒ T) pair : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ M ÷ S → Γ₂ ⊢ N ÷ T → -------------------- Γ ⊢ Pair M N ÷ (S ⋆ T) pair-E1 : Γ ⊢ M ÷ (S ⋆ T) → -------------------- Γ ⊢ Fst M ÷ S pair-E2 : Γ ⊢ M ÷ (S ⋆ T) → -------------------- Γ ⊢ Snd M ÷ T sum-E : Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ U → (Γ₂ , y ⦂ T) ⊢ N ÷ U → -------------------- Γ ⊢ Case L x M y N ÷ U sum-E′ : ∀ {ru′=ru″} → Split Γ Γ₁ Γ₂ → Γ₁ ⊢ L ÷ (S ⊹ T) → (Γ₂ , x ⦂ S) ⊢ M ÷ U′ → (Γ₂ , y ⦂ T) ⊢ N ÷ U″ → U ≡ (U′ ⊔ U″){ru′=ru″} → -------------------- Γ ⊢ Case L x M y N ÷ U {- `sub` : Γ ⊢ M ÷ S → T <: S → -------------------- Γ ⊢ M ÷ T -} corr : Γ ⊢ M ÷ T → ∥ Γ ∥⁺ ⊢ M ⦂ ∥ T ∥ corr (nat') = nat corr var1 = var found -- corr (var x) = var x corr (lam ⊢M) = lam (corr ⊢M) corr (pair-E1 ÷M) = pair-E1 (corr ÷M) corr (pair-E2 ÷M) = pair-E2 (corr ÷M) corr (pair sp ÷M ÷N) = pair (weaken (corr-sp sp) (corr ÷M)) (weaken (split-sym (corr-sp sp)) (corr ÷N)) corr (sum-E sp ÷L ÷M ÷N) = sum-E (weaken (corr-sp sp) (corr ÷L)) (weaken (lft (split-sym (corr-sp sp))) (corr ÷M)) (weaken (lft (split-sym (corr-sp sp))) (corr ÷N)) (refl , refl) corr (sum-E′ {S = S}{T = T}{U′ = U′}{U″ = U″}{U = U}{ru′=ru″ = ru′=ru″} sp ÷L ÷M ÷N refl) = sum-E (weaken (corr-sp sp) (corr ÷L)) (weaken (lft (split-sym (corr-sp sp))) (corr ÷M)) (weaken (lft (split-sym (corr-sp sp))) (corr ÷N)) (⊔-preserves U′ U″) -- pick one element of a type to demonstrate non-emptiness one : ∀ (T : Type) {ne-T : ne T} → T⟦ T ⟧ one (Base P p) {ne-base ∃P} = ∃P one Nat = zero one (T ⇒ T₁) {ne-⇒ ne-T ne-T₁} = λ x → one T₁ {ne-T₁} one (T ⋆ T₁) {ne-⋆ ne-T ne-T₁} = (one T {ne-T}) , (one T₁ {ne-T₁}) one (T ⊹ T₁) {ne-⊹L ne-T} = inj₁ (one T {ne-T}) one (T ⊹ T₁) {ne-⊹R ne-T₁} = inj₂ (one T₁ {ne-T₁}) {- not needed many : iEnv E⟦ Γ ⟧ many {·} = · many {Γ , x ⦂ T} = many , x ⦂ one T gen : (x∈ : x ⦂ T ∈ Γ) (t : T⟦ T ⟧) → iEnv E⟦ Γ ⟧ gen found t = many , _ ⦂ t gen (there x∈) t = (gen x∈ t) , _ ⦂ one {!!} lookup-gen : (x∈ : x ⦂ T ∈ Γ) (t : T⟦ T ⟧) → lookup x∈ (gen x∈ t) ≡ t lookup-gen found t = refl lookup-gen (there x∈) t = lookup-gen x∈ t -} {- -- soundness of the incorrectness rules lave : (÷M : Γ ⊢ M ÷ T) → ∀ (t : T⟦ T ⟧) → ∃ λ (γ : iEnv E⟦ Γ ⟧) → eval (corr ÷M) γ ≡ t lave nat' (n , refl) = · , refl lave var1 t = (· , _ ⦂ t) , refl -- lave (var x∈) t = (gen x∈ t) , lookup-gen x∈ t lave (lam{x = x}{S = S} ÷M) t = · , ext aux where aux : (s : T⟦ S ⟧) → eval (corr ÷M) (· , x ⦂ s) ≡ t s aux s with lave ÷M (t s) ... | (· , .x ⦂ a) , snd = {!!} -- impossible to complete! lave (pair-E1 ÷M) t with lave ÷M (t , one {!!}) ... | γ , ih = γ , Eq.cong proj₁ ih lave (pair-E2 ÷M) t with lave ÷M (one {!!} , t) ... | γ , ih = γ , Eq.cong proj₂ ih lave (pair sp ÷M ÷N) (s , t) with lave ÷M s | lave ÷N t ... | γ₁ , ih-M | γ₂ , ih-N = unsplit-env sp γ₁ γ₂ , Eq.cong₂ _,_ (Eq.trans (eval-unsplit sp γ₁ γ₂ (corr ÷M)) ih-M) (begin eval (weaken (split-sym sp) (corr ÷N)) (unsplit-env sp γ₁ γ₂) ≡⟨ Eq.cong (eval (weaken (split-sym sp) (corr ÷N))) (unsplit-split sp γ₁ γ₂) ⟩ eval (weaken (split-sym sp) (corr ÷N)) (unsplit-env (split-sym sp) γ₂ γ₁) ≡⟨ eval-unsplit (split-sym sp) γ₂ γ₁ (corr ÷N) ⟩ ih-N) -- works, but unsatisfactory! -- this proof uses only one branch of the case -- this choice is possible because both branches ÷M and ÷N have the same type -- in general, U could be the union of the types of ÷M and ÷N lave (sum-E{S = S}{T = T}{U = U} sp ÷L ÷M ÷N) u with lave ÷M u | lave ÷N u ... | (γ₁ , x ⦂ s) , ih-M | (γ₂ , y ⦂ t) , ih-N with lave ÷L (inj₁ s) ... | γ₀ , ih-L = unsplit-env sp γ₀ γ₁ , (begin [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval (weaken sp (corr ÷L)) (unsplit-env sp γ₀ γ₁)) ≡⟨ Eq.cong [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval-unsplit sp γ₀ γ₁ (corr ÷L)) ⟩ [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] (eval (corr ÷L) γ₀) ≡⟨ Eq.cong [ (λ s₁ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s₁)) , (λ t₁ → eval (weaken (lft (split-sym sp)) (corr ÷N)) (unsplit-env sp γ₀ γ₁ , y ⦂ t₁)) ] ih-L ⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env sp γ₀ γ₁ , x ⦂ s) ≡⟨ Eq.cong (λ γ → eval (weaken (lft (split-sym sp)) (corr ÷M)) (γ , x ⦂ s)) (unsplit-split sp γ₀ γ₁) ⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env (split-sym sp) γ₁ γ₀ , x ⦂ s) ≡⟨⟩ eval (weaken (lft (split-sym sp)) (corr ÷M)) (unsplit-env (lft (split-sym sp)) (γ₁ , x ⦂ s) γ₀) ≡⟨ eval-unsplit (lft (split-sym sp)) (γ₁ , x ⦂ s) γ₀ (corr ÷M) ⟩ ih-M) lave (sum-E′{S = S}{T = T}{U = U} sp ÷L ÷M ÷N uuu) u = {!!} -} -- unused stuff {- unused - needed? record _←_ (A B : Set) : Set where field func : A → B back : ∀ (b : B) → ∃ λ (a : A) → func a ≡ b open _←_ -}
{ "alphanum_fraction": 0.4770508232, "avg_line_length": 32.0119156737, "ext": "agda", "hexsha": "fa99160e962b7be48717e73c349e8a47275ee48f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "91a5ff5267089e6ed0d2f6d3998633ba1842b397", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "proglang/incorrectness", "max_forks_repo_path": "src/RawSemantics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "91a5ff5267089e6ed0d2f6d3998633ba1842b397", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "proglang/incorrectness", "max_issues_repo_path": "src/RawSemantics.agda", "max_line_length": 128, "max_stars_count": 1, "max_stars_repo_head_hexsha": "91a5ff5267089e6ed0d2f6d3998633ba1842b397", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "proglang/incorrectness", "max_stars_repo_path": "src/RawSemantics.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-17T19:13:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-17T19:13:13.000Z", "num_tokens": 17453, "size": 34925 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Many properties which hold for `∼` also hold for `flip ∼`. Unlike -- the module `Relation.Binary.Construct.Flip` this module does not -- flip the underlying equality. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Construct.Converse where open import Function open import Data.Product ------------------------------------------------------------------------ -- Properties module _ {a ℓ} {A : Set a} (∼ : Rel A ℓ) where refl : Reflexive ∼ → Reflexive (flip ∼) refl refl = refl sym : Symmetric ∼ → Symmetric (flip ∼) sym sym = sym trans : Transitive ∼ → Transitive (flip ∼) trans trans = flip trans asym : Asymmetric ∼ → Asymmetric (flip ∼) asym asym = asym total : Total ∼ → Total (flip ∼) total total x y = total y x resp : ∀ {p} (P : A → Set p) → Symmetric ∼ → P Respects ∼ → P Respects (flip ∼) resp _ sym resp ∼ = resp (sym ∼) max : ∀ {⊥} → Minimum ∼ ⊥ → Maximum (flip ∼) ⊥ max min = min min : ∀ {⊤} → Maximum ∼ ⊤ → Minimum (flip ∼) ⊤ min max = max module _ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} (∼ : Rel A ℓ₂) where reflexive : Symmetric ≈ → (≈ ⇒ ∼) → (≈ ⇒ flip ∼) reflexive sym impl = impl ∘ sym irrefl : Symmetric ≈ → Irreflexive ≈ ∼ → Irreflexive ≈ (flip ∼) irrefl sym irrefl x≈y y∼x = irrefl (sym x≈y) y∼x antisym : Antisymmetric ≈ ∼ → Antisymmetric ≈ (flip ∼) antisym antisym = flip antisym compare : Trichotomous ≈ ∼ → Trichotomous ≈ (flip ∼) compare cmp x y with cmp x y ... | tri< x<y x≉y y≮x = tri> y≮x x≉y x<y ... | tri≈ x≮y x≈y y≮x = tri≈ y≮x x≈y x≮y ... | tri> x≮y x≉y y<x = tri< y<x x≉y x≮y module _ {a ℓ₁ ℓ₂} {A : Set a} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) where resp₂ : ∼₁ Respects₂ ∼₂ → (flip ∼₁) Respects₂ ∼₂ resp₂ (resp₁ , resp₂) = resp₂ , resp₁ module _ {a b ℓ} {A : Set a} {B : Set b} (∼ : REL A B ℓ) where dec : Decidable ∼ → Decidable (flip ∼) dec dec = flip dec ------------------------------------------------------------------------ -- Structures module _ {a ℓ} {A : Set a} {≈ : Rel A ℓ} where isEquivalence : IsEquivalence ≈ → IsEquivalence (flip ≈) isEquivalence eq = record { refl = refl ≈ Eq.refl ; sym = sym ≈ Eq.sym ; trans = trans ≈ Eq.trans } where module Eq = IsEquivalence eq isDecEquivalence : IsDecEquivalence ≈ → IsDecEquivalence (flip ≈) isDecEquivalence eq = record { isEquivalence = isEquivalence Dec.isEquivalence ; _≟_ = dec ≈ Dec._≟_ } where module Dec = IsDecEquivalence eq module _ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} where isPreorder : IsPreorder ≈ ∼ → IsPreorder ≈ (flip ∼) isPreorder O = record { isEquivalence = O.isEquivalence ; reflexive = reflexive ∼ O.Eq.sym O.reflexive ; trans = trans ∼ O.trans } where module O = IsPreorder O isPartialOrder : IsPartialOrder ≈ ∼ → IsPartialOrder ≈ (flip ∼) isPartialOrder O = record { isPreorder = isPreorder O.isPreorder ; antisym = antisym ∼ O.antisym } where module O = IsPartialOrder O isTotalOrder : IsTotalOrder ≈ ∼ → IsTotalOrder ≈ (flip ∼) isTotalOrder O = record { isPartialOrder = isPartialOrder O.isPartialOrder ; total = total ∼ O.total } where module O = IsTotalOrder O isDecTotalOrder : IsDecTotalOrder ≈ ∼ → IsDecTotalOrder ≈ (flip ∼) isDecTotalOrder O = record { isTotalOrder = isTotalOrder O.isTotalOrder ; _≟_ = O._≟_ ; _≤?_ = dec ∼ O._≤?_ } where module O = IsDecTotalOrder O isStrictPartialOrder : IsStrictPartialOrder ≈ ∼ → IsStrictPartialOrder ≈ (flip ∼) isStrictPartialOrder O = record { isEquivalence = O.isEquivalence ; irrefl = irrefl ∼ O.Eq.sym O.irrefl ; trans = trans ∼ O.trans ; <-resp-≈ = resp₂ ∼ ≈ O.<-resp-≈ } where module O = IsStrictPartialOrder O isStrictTotalOrder : IsStrictTotalOrder ≈ ∼ → IsStrictTotalOrder ≈ (flip ∼) isStrictTotalOrder O = record { isEquivalence = O.isEquivalence ; trans = trans ∼ O.trans ; compare = compare ∼ O.compare } where module O = IsStrictTotalOrder O module _ {a ℓ} where setoid : Setoid a ℓ → Setoid a ℓ setoid S = record { isEquivalence = isEquivalence S.isEquivalence } where module S = Setoid S decSetoid : DecSetoid a ℓ → DecSetoid a ℓ decSetoid S = record { isDecEquivalence = isDecEquivalence S.isDecEquivalence } where module S = DecSetoid S module _ {a ℓ₁ ℓ₂} where preorder : Preorder a ℓ₁ ℓ₂ → Preorder a ℓ₁ ℓ₂ preorder O = record { isPreorder = isPreorder O.isPreorder } where module O = Preorder O poset : Poset a ℓ₁ ℓ₂ → Poset a ℓ₁ ℓ₂ poset O = record { isPartialOrder = isPartialOrder O.isPartialOrder } where module O = Poset O totalOrder : TotalOrder a ℓ₁ ℓ₂ → TotalOrder a ℓ₁ ℓ₂ totalOrder O = record { isTotalOrder = isTotalOrder O.isTotalOrder } where module O = TotalOrder O decTotalOrder : DecTotalOrder a ℓ₁ ℓ₂ → DecTotalOrder a ℓ₁ ℓ₂ decTotalOrder O = record { isDecTotalOrder = isDecTotalOrder O.isDecTotalOrder } where module O = DecTotalOrder O strictPartialOrder : StrictPartialOrder a ℓ₁ ℓ₂ → StrictPartialOrder a ℓ₁ ℓ₂ strictPartialOrder O = record { isStrictPartialOrder = isStrictPartialOrder O.isStrictPartialOrder } where module O = StrictPartialOrder O strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂ → StrictTotalOrder a ℓ₁ ℓ₂ strictTotalOrder O = record { isStrictTotalOrder = isStrictTotalOrder O.isStrictTotalOrder } where module O = StrictTotalOrder O
{ "alphanum_fraction": 0.5921655079, "avg_line_length": 29.6331658291, "ext": "agda", "hexsha": "76e271c3a9eabafab9f4818af740a98d2d347145", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Converse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Converse.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Converse.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1986, "size": 5897 }
-- {-# OPTIONS -v tc.conv:50 -v tc.reduce:100 -v tc:50 -v tc.term.expr.coind:15 -v tc.meta:20 #-} -- 2012-03-15, reported by Nisse module Issue585 where open import Common.Coinduction data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ data Fin : ℕ → Set where zero : ∀ {n} → Fin (suc n) suc : ∀ {n} → Fin n → Fin (suc n) infixr 5 _∷_ data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) lookup : ∀ {n A} → Fin n → Vec A n → A lookup zero (x ∷ xs) = x lookup (suc i) (x ∷ xs) = lookup i xs infixl 9 _·_ data Tm (n : ℕ) : Set where var : Fin n → Tm n ƛ : Tm (suc n) → Tm n _·_ : Tm n → Tm n → Tm n infixr 8 _⇾_ data Ty : Set where _⇾_ : ∞ Ty → ∞ Ty → Ty Ctxt : ℕ → Set Ctxt n = Vec Ty n infix 4 _⊢_∈_ data _⊢_∈_ {n} (Γ : Ctxt n) : Tm n → Ty → Set where var : ∀ {x} → Γ ⊢ var x ∈ lookup x Γ ƛ : ∀ {t σ τ} → ♭ σ ∷ Γ ⊢ t ∈ ♭ τ → Γ ⊢ ƛ t ∈ σ ⇾ τ _·_ : ∀ {t₁ t₂ σ τ} → Γ ⊢ t₁ ∈ σ ⇾ τ → Γ ⊢ t₂ ∈ ♭ σ → Γ ⊢ t₁ · t₂ ∈ ♭ τ Ω : Tm zero Ω = ω · ω where ω = ƛ (var zero · var zero) Ω-has-any-type : ∀ τ → [] ⊢ Ω ∈ τ Ω-has-any-type τ = _·_ {σ = σ} {τ = ♯ _} (ƛ (var · var)) (ƛ (var · var)) where σ : ∞ Ty σ = ♯ (σ ⇾ ♯ _) -- τ) -- If the last -- underscore is replaced by τ, then the code checks successfully. -- WAS: Agda seems to loop when checking Ω-has-any-type. -- NOW: this should leave metas unsolved.
{ "alphanum_fraction": 0.5041958042, "avg_line_length": 22, "ext": "agda", "hexsha": "11e9e7da84e9afb1d156ffbd2c0f879dc8369363", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue585.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue585.agda", "max_line_length": 97, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue585.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 649, "size": 1430 }
module IPC.Metatheory.Gentzen-KripkeExploding where open import IPC.Syntax.Gentzen public open import IPC.Semantics.KripkeExploding public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam {A} {B} t) γ = return {A ▻ B} λ ξ a → eval t (mono⊩⋆ ξ γ , a) eval (app {A} {B} t u) γ = bind {A ▻ B} {B} (eval t γ) λ ξ f → _⟪$⟫_ {A} {B} f (eval u (mono⊩⋆ ξ γ)) eval (pair {A} {B} t u) γ = return {A ∧ B} (eval t γ , eval u γ) eval (fst {A} {B} t) γ = bind {A ∧ B} {A} (eval t γ) (K π₁) eval (snd {A} {B} t) γ = bind {A ∧ B} {B} (eval t γ) (K π₂) eval unit γ = return {⊤} ∙ eval (boom {C} t) γ = bind {⊥} {C} (eval t γ) (K elim𝟘) eval (inl {A} {B} t) γ = return {A ∨ B} (ι₁ (eval t γ)) eval (inr {A} {B} t) γ = return {A ∨ B} (ι₂ (eval t γ)) eval (case {A} {B} {C} t u v) γ = bind {A ∨ B} {C} (eval t γ) λ ξ s → elim⊎ s (λ a → eval u (mono⊩⋆ ξ γ , λ ξ′ k → a ξ′ k)) (λ b → eval v (mono⊩⋆ ξ γ , λ ξ′ k → b ξ′ k)) -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { World = Cx Ty ; _≤_ = _⊆_ ; refl≤ = refl⊆ ; trans≤ = trans⊆ ; _⊪ᵅ_ = λ Γ P → Γ ⊢ α P ; mono⊪ᵅ = mono⊢ ; _‼_ = λ Γ A → Γ ⊢ A } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A reflectᶜ {α P} t = return {α P} t reflectᶜ {A ▻ B} t = return {A ▻ B} λ η a → reflectᶜ {B} (app (mono⊢ η t) (reifyᶜ {A} a)) reflectᶜ {A ∧ B} t = return {A ∧ B} (reflectᶜ {A} (fst t) , reflectᶜ {B} (snd t)) reflectᶜ {⊤} t = return {⊤} ∙ reflectᶜ {⊥} t = λ η k → boom (mono⊢ η t) reflectᶜ {A ∨ B} t = λ η k → case (mono⊢ η t) (k weak⊆ (ι₁ (reflectᶜ {A} v₀))) (k weak⊆ (ι₂ (reflectᶜ {B} (v₀)))) reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A reifyᶜ {α P} k = k refl≤ λ η s → s reifyᶜ {A ▻ B} k = k refl≤ λ η s → lam (reifyᶜ {B} (s weak⊆ (reflectᶜ {A} (v₀)))) reifyᶜ {A ∧ B} k = k refl≤ λ η s → pair (reifyᶜ {A} (π₁ s)) (reifyᶜ {B} (π₂ s)) reifyᶜ {⊤} k = k refl≤ λ η s → unit reifyᶜ {⊥} k = k refl≤ λ η () reifyᶜ {A ∨ B} k = k refl≤ λ η s → elim⊎ s (λ a → inl (reifyᶜ {A} (λ η′ k → a η′ k))) (λ b → inr (reifyᶜ {B} (λ η′ k → b η′ k))) reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reifyᶜ (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
{ "alphanum_fraction": 0.4501748252, "avg_line_length": 33.9801980198, "ext": "agda", "hexsha": "060602877b50b42f5ad0aa2016bfd7612db56b69", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Metatheory/Gentzen-KripkeExploding.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Metatheory/Gentzen-KripkeExploding.agda", "max_line_length": 83, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Metatheory/Gentzen-KripkeExploding.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1606, "size": 3432 }
-- 2013-11-xx Andreas -- Previous clauses did not reduce in later clauses under -- a module telescope. {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v interaction.give:20 -v tc.cc:60 -v reify.clause:60 -v tc.section.check:10 -v tc:90 #-} -- {-# OPTIONS -v tc.lhs:20 #-} -- {-# OPTIONS -v tc.cover:20 #-} module Issue937 where data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} infixr 4 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public data _≤_ : Nat → Nat → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n _<_ : Nat → Nat → Set m < n = suc m ≤ n ex : Σ Nat (λ n → zero < n) proj₁ ex = suc zero proj₂ ex = s≤s z≤n -- works ex' : Σ Nat (λ n → zero < n) proj₁ ex' = suc zero proj₂ ex' = {! s≤s z≤n !} module _ (A : Set) where ex'' : Σ Nat (λ n → zero < n) proj₁ ex'' = suc zero proj₂ ex'' = s≤s z≤n -- works ex''' : Σ Nat (λ n → zero < n) proj₁ ex''' = suc zero proj₂ ex''' = {! s≤s z≤n !} -- The normalized goals should be printed as 1 ≤ 1
{ "alphanum_fraction": 0.5523724261, "avg_line_length": 21.0754716981, "ext": "agda", "hexsha": "61303691611d08d83762c4f11eded95a4370c417", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue937.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue937.agda", "max_line_length": 104, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue937.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 431, "size": 1117 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness #-} open import Data.Product open import Data.Sum open import Common module Progress {ℙ : Set} (message : Message ℙ) where open import SessionType message open import Transitions message open import Session message data Progress : Session -> Set where win#def : ∀{T S} (w : Win T) (def : Defined S) -> Progress (T # S) inp#out : ∀{f g} (W : Witness g) -> Progress (inp f # out g) out#inp : ∀{f g} (W : Witness f) -> Progress (out f # inp g) progress-sound : ∀{S} -> Progress S -> ProgressS S progress-sound (win#def e def) = inj₁ (win#def e def) progress-sound (inp#out (_ , !x)) = inj₂ (_ , sync inp (out !x)) progress-sound (out#inp (_ , !x)) = inj₂ (_ , sync (out !x) inp) progress-complete : ∀{S} -> ProgressS S -> Progress S progress-complete (inj₁ (win#def e def)) = win#def e def progress-complete (inj₂ (_ , sync inp (out !x))) = inp#out (_ , !x) progress-complete (inj₂ (_ , sync (out !x) inp)) = out#inp (_ , !x)
{ "alphanum_fraction": 0.7069128788, "avg_line_length": 39.1111111111, "ext": "agda", "hexsha": "0389cf63b7090bdc41f8d1d0022171fcf4d6eddc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Progress.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Progress.agda", "max_line_length": 68, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Progress.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 554, "size": 2112 }
open import Functional open import Logic open import Logic.Propositional open import Type module Relator.Ordering where module From-[<][≡] {ℓ₁}{ℓ₂}{ℓ₃} {T : Type{ℓ₁}} (_<_ : T → T → Stmt{ℓ₂}) (_≡_ : T → T → Stmt{ℓ₃}) where -- Greater than _>_ : T → T → Stmt _>_ = swap(_<_) -- Lesser than or equals _≤_ : T → T → Stmt x ≤ y = (x < y) ∨ (x ≡ y) -- Greater than or equals _≥_ : T → T → Stmt x ≥ y = (x > y) ∨ (x ≡ y) -- In an open interval _<_<_ : T → T → T → Stmt x < y < z = (x < y) ∧ (y < z) -- In an closed interval _≤_≤_ : T → T → T → Stmt x ≤ y ≤ z = (x ≤ y) ∧ (y ≤ z) _≮_ : T → T → Stmt _≮_ = (¬_) ∘₂ (_<_) _≯_ : T → T → Stmt _≯_ = (¬_) ∘₂ (_>_) _≰_ : T → T → Stmt _≰_ = (¬_) ∘₂ (_≤_) _≱_ : T → T → Stmt _≱_ = (¬_) ∘₂ (_≥_) module From-[≤] {ℓ₁}{ℓ₂} {T : Type{ℓ₁}} (_≤_ : T → T → Stmt{ℓ₂}) where -- Greater than or equals _≥_ : T → T → Stmt _≥_ = swap(_≤_) _≰_ : T → T → Stmt _≰_ = (¬_) ∘₂ (_≤_) _≱_ : T → T → Stmt _≱_ = swap(_≰_) -- Greater than _>_ : T → T → Stmt _>_ = _≰_ -- Lesser than or equals _<_ : T → T → Stmt _<_ = swap(_>_) -- In an open interval _<_<_ : T → T → T → Stmt x < y < z = (x < y) ∧ (y < z) -- In an closed interval _≤_≤_ : T → T → T → Stmt x ≤ y ≤ z = (x ≤ y) ∧ (y ≤ z) _≮_ : T → T → Stmt _≮_ = (¬_) ∘₂ (_<_) _≯_ : T → T → Stmt _≯_ = (¬_) ∘₂ (_>_) module From-[≤][<] {ℓ₁}{ℓ₂}{ℓ₃} {T : Type{ℓ₁}} (_≤_ : T → T → Stmt{ℓ₂}) (_<_ : T → T → Stmt{ℓ₃}) where -- Greater than _>_ : T → T → Stmt _>_ = swap(_<_) -- Greater than or equals _≥_ : T → T → Stmt _≥_ = swap(_≤_) -- In an open interval _<_<_ : T → T → T → Stmt x < y < z = (x < y) ∧ (y < z) -- In an closed interval _≤_≤_ : T → T → T → Stmt x ≤ y ≤ z = (x ≤ y) ∧ (y ≤ z) _≮_ : T → T → Stmt _≮_ = (¬_) ∘₂ (_<_) _≯_ : T → T → Stmt _≯_ = (¬_) ∘₂ (_>_) _≰_ : T → T → Stmt _≰_ = (¬_) ∘₂ (_≤_) _≱_ : T → T → Stmt _≱_ = (¬_) ∘₂ (_≥_) module From-[≤][≢] {ℓ₁}{ℓ₂}{ℓ₃} {T : Type{ℓ₁}} (_≤_ : T → T → Stmt{ℓ₂}) (_≢_ : T → T → Stmt{ℓ₃}) where -- Lesser than or equals _<_ : T → T → Stmt x < y = (x ≤ y) ∧ (x ≢ y) -- Greater than _>_ : T → T → Stmt _>_ = swap(_<_) -- Greater than or equals _≥_ : T → T → Stmt _≥_ = swap(_≤_) -- In an open interval _<_<_ : T → T → T → Stmt x < y < z = (x < y) ∧ (y < z) -- In an closed interval _≤_≤_ : T → T → T → Stmt x ≤ y ≤ z = (x ≤ y) ∧ (y ≤ z) _≮_ : T → T → Stmt _≮_ = (¬_) ∘₂ (_<_) _≯_ : T → T → Stmt _≯_ = (¬_) ∘₂ (_>_) _≰_ : T → T → Stmt _≰_ = (¬_) ∘₂ (_≤_) _≱_ : T → T → Stmt _≱_ = (¬_) ∘₂ (_≥_)
{ "alphanum_fraction": 0.4281894576, "avg_line_length": 19.3925925926, "ext": "agda", "hexsha": "f6197a2778774a1f163d015581efa3a06f056c0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Ordering.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Ordering.agda", "max_line_length": 102, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Ordering.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1336, "size": 2618 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Sub | S type L : 0-ary T : 0-ary term vr : L -> T sb : L.T T -> T theory (C) x y : T |> sb (a. x[], y[]) = x[] (L) x : T |> sb (a. vr(a), x[]) = x[] (R) a : L x : L.T |> sb (b. x[b], vr(a[])) = x[a[]] (A) x : (L,L).T y : L.T z : T |> sb (a. sb (b. x[a,b], y[a]), z[]) = sb (b. sb (a. x[a, b], z[]), sb (a. y[a], z[])) -} module Sub.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Sub.Signature open import Sub.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution S:Syn open import SOAS.Metatheory.SecondOrder.Equality S:Syn private variable α β γ τ : ST Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ S) α Γ → (𝔐 ▷ S) α Γ → Set where C : ⁅ T ⁆ ⁅ T ⁆̣ ▹ ∅ ⊢ sb 𝔞 𝔟 ≋ₐ 𝔞 L : ⁅ T ⁆̣ ▹ ∅ ⊢ sb (vr x₀) 𝔞 ≋ₐ 𝔞 R : ⁅ L ⁆ ⁅ L ⊩ T ⁆̣ ▹ ∅ ⊢ sb (𝔟⟨ x₀ ⟩) (vr 𝔞) ≋ₐ 𝔟⟨ 𝔞 ⟩ A : ⁅ L · L ⊩ T ⁆ ⁅ L ⊩ T ⁆ ⁅ T ⁆̣ ▹ ∅ ⊢ sb (sb (𝔞⟨ x₁ ◂ x₀ ⟩) (𝔟⟨ x₀ ⟩)) 𝔠 ≋ₐ sb (sb (𝔞⟨ x₀ ◂ x₁ ⟩) 𝔠) (sb (𝔟⟨ x₀ ⟩) 𝔠) open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.527027027, "avg_line_length": 24.6666666667, "ext": "agda", "hexsha": "51be70bf3bcc28f9afc61859c6233e9aba46d642", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Sub/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Sub/Equality.agda", "max_line_length": 120, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Sub/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 659, "size": 1332 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Functions.Definition module Orders.Partial.Definition {a : _} (carrier : Set a) where record PartialOrder {b : _} : Set (a ⊔ lsuc b) where field _<_ : Rel {a} {b} carrier irreflexive : {x : carrier} → (x < x) → False <Transitive : {a b c : carrier} → (a < b) → (b < c) → (a < c) <WellDefined : {r s t u : carrier} → (r ≡ t) → (s ≡ u) → r < s → t < u <WellDefined refl refl r<s = r<s
{ "alphanum_fraction": 0.6018018018, "avg_line_length": 32.6470588235, "ext": "agda", "hexsha": "c5d1a5273b81901b87ce8b583d926c7bc2e1bfe9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Orders/Partial/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Orders/Partial/Definition.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Orders/Partial/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 199, "size": 555 }
module x08-747Quantifiers-hc where -- Library import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; z≤n; s≤s) -- added ≤ -- open import Data.Nat.Properties using (≤-refl) open import Relation.Nullary using (¬_) open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) -- added proj₂ open import Data.Sum using (_⊎_; inj₁; inj₂ ) -- added inj₁, inj₂ open import Function using (_∘_) -- added -- BEGIN: Copied from 747Isomorphism. postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g infix 0 _≃_ record _≃_ (A B : Set) : Set where constructor mk-≃ field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ -- END: Copied from 747Isomorphism. -- Logical forall is ∀. -- Forall elimination is function application. ∀-elim : ∀ {A : Set} {B : A → Set} → (L : ∀ (x : A) → B x) → (M : A) ----------------- → B M ∀-elim L M = L M -- A → B is nicer syntax for ∀ (_ : A) → B. -- 747/PLFA exercise: ForAllDistProd (1 point) -- ∀ distributes over × -- (note: → distributes over × was shown in Connectives) ∀-distrib-× : ∀ {A : Set} {B C : A → Set} → (∀ (a : A) → B a × C a) ≃ (∀ (a : A) → B a) × (∀ (a : A) → C a) to ∀-distrib-× a→Ba×Ca = ⟨ proj₁ ∘ a→Ba×Ca , proj₂ ∘ a→Ba×Ca ⟩ from ∀-distrib-× ⟨ a→ba , a→ca ⟩ = λ a → ⟨ a→ba a , a→ca a ⟩ from∘to ∀-distrib-× a→Ba×Ca = refl to∘from ∀-distrib-× ⟨ a→ba , a→ca ⟩ = refl -- 747/PLFA exercise: SumForAllImpForAllSum (1 point) -- disjunction of foralls implies a forall of disjunctions ⊎∀-implies-∀⊎ : ∀ {A : Set} {B C : A → Set} → (∀ (a : A) → B a) ⊎ (∀ (a : A) → C a) → ∀ (a : A) → B a ⊎ C a ⊎∀-implies-∀⊎ (inj₁ a→ba) = inj₁ ∘ a→ba ⊎∀-implies-∀⊎ (inj₂ a→ca) = inj₂ ∘ a→ca -- Existential quantification -- a pair: -- - a witness and -- - a proof that the witness satisfies the property data Σ (A : Set) (B : A → Set) : Set where ⟨_,_⟩ : (a : A) → B a → Σ A B -- convenient syntax Σ-syntax = Σ infix 2 Σ-syntax syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B -- can use the RHS syntax in code, -- but LHS will show up in displays of goal and context. -- This syntax is equivalent to defining a dependent record type. record Σ′ (A : Set) (B : A → Set) : Set where field proj₁′ : A proj₂′ : B proj₁′ -- convention : library uses ∃ when domain of bound variable is implicit ∃ : ∀ {A : Set} (B : A → Set) → Set ∃ {A} B = Σ A B -- syntax ∃-syntax = ∃ syntax ∃-syntax (λ x → B) = ∃[ x ] B -- eliminate existential with a function -- that consumes the witness and proof -- and reaches a conclusion C ∃-elim : ∀ {A : Set} {B : A → Set} {C : Set} → (∀ a → B a → C) → ∃[ a ] B a --------------- → C ∃-elim a→Ba→C ⟨ a , Ba ⟩ = a→Ba→C a Ba -- generalization of currying (from Connectives) -- currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C) ∀∃-currying : ∀ {A : Set} {B : A → Set} {C : Set} → (∀ a → B a → C) ≃ (∃[ a ] B a → C) _≃_.to ∀∃-currying a→Ba→C ⟨ a , Ba ⟩ = a→Ba→C a Ba _≃_.from ∀∃-currying ∃xB a Ba = ∃xB ⟨ a , Ba ⟩ _≃_.from∘to ∀∃-currying a→Ba→C = refl _≃_.to∘from ∀∃-currying ∃xB = extensionality λ { ⟨ a , Ba ⟩ → refl} -- 747/PLFA exercise: ExistsDistSum (2 points) -- existentials distribute over disjunction ∃-distrib-⊎ : ∀ {A : Set} {B C : A → Set} → ∃[ a ] (B a ⊎ C a) ≃ (∃[ a ] B a) ⊎ (∃[ a ] C a) to ∃-distrib-⊎ ⟨ a , inj₁ Ba ⟩ = inj₁ ⟨ a , Ba ⟩ to ∃-distrib-⊎ ⟨ a , inj₂ Ca ⟩ = inj₂ ⟨ a , Ca ⟩ from ∃-distrib-⊎ (inj₁ ⟨ a , Ba ⟩) = ⟨ a , inj₁ Ba ⟩ from ∃-distrib-⊎ (inj₂ ⟨ a , Ca ⟩) = ⟨ a , inj₂ Ca ⟩ from∘to ∃-distrib-⊎ ⟨ a , inj₁ Ba ⟩ = refl from∘to ∃-distrib-⊎ ⟨ a , inj₂ Ca ⟩ = refl to∘from ∃-distrib-⊎ (inj₁ ⟨ a , Ba ⟩) = refl to∘from ∃-distrib-⊎ (inj₂ ⟨ a , Ca ⟩) = refl -- 747/PLFA exercise: ExistsProdImpProdExists (1 point) -- existentials distribute over × ∃×-implies-×∃ : ∀ {A : Set} {B C : A → Set} → ∃[ a ] (B a × C a) → (∃[ a ] B a) × (∃[ a ] C a) ∃×-implies-×∃ ⟨ a , ⟨ Ba , Ca ⟩ ⟩ = ⟨ ⟨ a , Ba ⟩ , ⟨ a , Ca ⟩ ⟩ -- existential example: revisiting even/odd. -- mutually-recursive definitions of even and odd. data even : ℕ → Set data odd : ℕ → Set data even where even-zero : even zero even-suc : ∀ {n : ℕ} → odd n ------------ → even (suc n) data odd where odd-suc : ∀ {n : ℕ} → even n ----------- → odd (suc n) -- number is even iff it is double some other number even-∃ : ∀ {n : ℕ} → even n → ∃[ m ] ( m * 2 ≡ n) -- number is odd iff it is one plus double some other number odd-∃ : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + m * 2 ≡ n) even-∃ even-zero = ⟨ zero , refl ⟩ even-∃ (even-suc odd-suc-x*2) with odd-∃ odd-suc-x*2 ... | ⟨ x , refl ⟩ = ⟨ suc x , refl ⟩ odd-∃ (odd-suc even-x*2) with even-∃ even-x*2 ... | ⟨ x , refl ⟩ = ⟨ x , refl ⟩ ∃-even : ∀ {n : ℕ} → ∃[ m ] ( m * 2 ≡ n) → even n ∃-odd : ∀ {n : ℕ} → ∃[ m ] (1 + m * 2 ≡ n) → odd n ∃-even ⟨ zero , refl ⟩ = even-zero ∃-even ⟨ suc x , refl ⟩ = even-suc (∃-odd ⟨ x , refl ⟩) ∃-odd ⟨ x , refl ⟩ = odd-suc (∃-even ⟨ x , refl ⟩) -- PLFA exercise: what if we write the arithmetic more "naturally"? -- (Proof gets harder but is still doable). -- 747/PLFA exercise: AltLE (3 points) -- alternate definition of y ≤ z -- (Optional exercise: Is this an isomorphism?) +0 : ∀ (m : ℕ) → m + zero ≡ m +0 zero = refl +0 (suc m) = cong suc (+0 m) open import x03-842Relations-hc-2 using (s≤s) xxx : ∀ {m n : ℕ} → m ≤ n → suc (m + zero) ≤ suc n xxx {m} {n} p rewrite +0 m = s≤s p ≤-refl : ∀ {n : ℕ} ----- → n ≤ n ≤-refl {zero} = z≤n ≤-refl {suc n} = s≤s (≤-refl {n}) +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) aaa : ∀ {x y z : ℕ} → y + suc x ≡ z → y ≤ y + suc x --aaa {x} {y} y+sucx≡z rewrite sym y+sucx≡z {- | +-suc y x -} = {!!} aaa {zero} {zero} refl = z≤n aaa {suc x} {zero} refl = z≤n aaa {zero} {suc y} refl = s≤s {!!} aaa {suc x} {suc y} refl = s≤s {!!} zzz : ∀ {y z : ℕ} → y + zero ≡ z → y ≤ z zzz {y} y+x≡z rewrite +0 y | y+x≡z | sym y+x≡z = ≤-refl {y} ∃-≤ : ∀ {y z : ℕ} → ( (y ≤ z) ⇔ ( ∃[ x ] (y + x ≡ z) ) ) {- ∃-≤ {y} {z} = record { to = λ { z≤n → ⟨ zero , {!!} ⟩ ; (s≤s y≤z) → {!!} }; from = {!!} } -} to ∃-≤ z≤n = ⟨ zero , {!!} ⟩ to ∃-≤ (s≤s z≤n) = ⟨ suc zero , {!!} ⟩ to ∃-≤ (s≤s (s≤s m≤n)) = ⟨ suc (suc zero) , {!!} ⟩ from ∃-≤ ⟨ zero , y+zero≡z ⟩ = zzz y+zero≡z from ∃-≤ ⟨ suc x , y+sucx≡z ⟩ rewrite sym y+sucx≡z = {!!} -- The negation of an existential is isomorphic to a universal of a negation. ¬∃≃∀¬ : ∀ {A : Set} {B : A → Set} → (¬ ∃[ a ] B a) ≃ ∀ a → ¬ B a to ¬∃≃∀¬ = λ { ¬∃B a → λ Ba → ¬∃B ⟨ a , Ba ⟩ } from ¬∃≃∀¬ = λ { a→¬Ba ⟨ a , Ba ⟩ → a→¬Ba a Ba } from∘to ¬∃≃∀¬ = λ ¬∃B → {!!} -- TODO to∘from ¬∃≃∀¬ = λ a→¬Ba → refl -- 747/PLFA exercise: ExistsNegImpNegForAll (1 point) -- Existence of negation implies negation of universal. ∃¬-implies-¬∀ : ∀ {A : Set} {B : A → Set} → ∃[ a ] (¬ B a) -------------- → ¬ (∀ a → B a) ∃¬-implies-¬∀ ⟨ a , ¬Ba ⟩ = λ a→Ba → ¬Ba (a→Ba a) -- The converse cannot be proved in intuitionistic logic. -- PLFA exercise: isomorphism between naturals and existence of canonical binary. -- This is essentially what we did at the end of 747Isomorphism.
{ "alphanum_fraction": 0.4996077406, "avg_line_length": 31.3442622951, "ext": "agda", "hexsha": "d62b1484b31d48665d78fcaf3a4417732e3d4fcd", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x08-747Quantifiers-hc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x08-747Quantifiers-hc.agda", "max_line_length": 89, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x08-747Quantifiers-hc.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 3318, "size": 7648 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Unary.Any directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Any where open import Data.Vec.Relation.Unary.Any public
{ "alphanum_fraction": 0.4393530997, "avg_line_length": 28.5384615385, "ext": "agda", "hexsha": "26d1ee72713bb0e369b495af62ac33de2cd30b9a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Any.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Any.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 60, "size": 371 }
{-# OPTIONS --safe #-} module Cubical.Categories.NaturalTransformation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (iso to iIso) open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.Categories.Morphism renaming (isIso to isIsoC) open import Cubical.Categories.NaturalTransformation.Base private variable ℓC ℓC' ℓD ℓD' : Level open isIsoC open NatIso open NatTrans open Category open Functor open Iso module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} where private _⋆ᴰ_ : ∀ {x y z} (f : D [ x , y ]) (g : D [ y , z ]) → D [ x , z ] f ⋆ᴰ g = f ⋆⟨ D ⟩ g -- natural isomorphism is symmetric symNatIso : ∀ {F G : Functor C D} → F ≅ᶜ G → G ≅ᶜ F symNatIso η .trans .N-ob x = η .nIso x .inv symNatIso η .trans .N-hom _ = sqLL η symNatIso η .nIso x .inv = η .trans .N-ob x symNatIso η .nIso x .sec = η .nIso x .ret symNatIso η .nIso x .ret = η .nIso x .sec -- Properties -- path helpers module NatTransP where module _ {F G : Functor C D} where -- same as Sigma version NatTransΣ : Type (ℓ-max (ℓ-max ℓC ℓC') ℓD') NatTransΣ = Σ[ ob ∈ ((x : C .ob) → D [(F .F-ob x) , (G .F-ob x)]) ] ({x y : _ } (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (ob y) ≡ (ob x) ⋆ᴰ (G .F-hom f)) NatTransIsoΣ : Iso (NatTrans F G) NatTransΣ NatTransIsoΣ .fun (natTrans N-ob N-hom) = N-ob , N-hom NatTransIsoΣ .inv (N-ob , N-hom) = (natTrans N-ob N-hom) NatTransIsoΣ .rightInv _ = refl NatTransIsoΣ .leftInv _ = refl NatTrans≡Σ : NatTrans F G ≡ NatTransΣ NatTrans≡Σ = isoToPath NatTransIsoΣ -- introducing paths NatTrans-≡-intro : ∀ {αo βo : N-ob-Type F G} {αh : N-hom-Type F G αo} {βh : N-hom-Type F G βo} → (p : αo ≡ βo) → PathP (λ i → ({x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (p i y) ≡ (p i x) ⋆ᴰ (G .F-hom f))) αh βh → natTrans {F = F} {G} αo αh ≡ natTrans βo βh NatTrans-≡-intro p q i = natTrans (p i) (q i) module _ {F G : Functor C D} {α β : NatTrans F G} where open Iso private αOb = α .N-ob βOb = β .N-ob αHom = α .N-hom βHom = β .N-hom -- path between natural transformations is the same as a pair of paths (between ob and hom) NTPathIsoPathΣ : Iso (α ≡ β) (Σ[ p ∈ (αOb ≡ βOb) ] (PathP (λ i → ({x y : _} (f : _) → F ⟪ f ⟫ ⋆ᴰ (p i y) ≡ (p i x) ⋆ᴰ G ⟪ f ⟫)) αHom βHom)) NTPathIsoPathΣ .fun p = (λ i → p i .N-ob) , (λ i → p i .N-hom) NTPathIsoPathΣ .inv (po , ph) i = record { N-ob = po i ; N-hom = ph i } NTPathIsoPathΣ .rightInv pσ = refl NTPathIsoPathΣ .leftInv p = refl NTPath≃PathΣ = isoToEquiv NTPathIsoPathΣ NTPath≡PathΣ = ua NTPath≃PathΣ module _ where open NatTransP -- if the target category has hom Sets, then any natural transformation is a set isSetNatTrans : {F G : Functor C D} → isSet (NatTrans F G) isSetNatTrans = isSetRetract (fun NatTransIsoΣ) (inv NatTransIsoΣ) (leftInv NatTransIsoΣ) (isSetΣSndProp (isSetΠ (λ _ → isSetHom D)) (λ _ → isPropImplicitΠ2 (λ _ _ → isPropΠ (λ _ → isSetHom D _ _))))
{ "alphanum_fraction": 0.5541137493, "avg_line_length": 35.1650485437, "ext": "agda", "hexsha": "a79e1cc619f4f395fbd0b1cd161db758e313fdf3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/NaturalTransformation/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/NaturalTransformation/Properties.agda", "max_line_length": 130, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/NaturalTransformation/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1326, "size": 3622 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Divisibility ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Divisibility where open import Algebra open import Data.Nat as Nat open import Data.Nat.DivMod open import Data.Nat.Properties open import Data.Nat.Solver open import Data.Fin using (Fin; zero; suc; toℕ) import Data.Fin.Properties as FP open import Data.Product open import Function open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Binary import Relation.Binary.Reasoning.PartialOrder as POR open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; trans; cong; cong₂; subst) open +-*-Solver ------------------------------------------------------------------------ -- m ∣ n is inhabited iff m divides n. Some sources, like Hardy and -- Wright's "An Introduction to the Theory of Numbers", require m to -- be non-zero. However, some things become a bit nicer if m is -- allowed to be zero. For instance, _∣_ becomes a partial order, and -- the gcd of 0 and 0 becomes defined. infix 4 _∣_ _∤_ record _∣_ (m n : ℕ) : Set where constructor divides field quotient : ℕ equality : n ≡ quotient * m open _∣_ using (quotient) public _∤_ : Rel ℕ _ m ∤ n = ¬ (m ∣ n) ------------------------------------------------------------------------ -- _∣_ is a partial order ∣⇒≤ : ∀ {m n} → m ∣ suc n → m ≤ suc n ∣⇒≤ (divides zero ()) ∣⇒≤ {m} {n} (divides (suc q) eq) = begin m ≤⟨ m≤m+n m (q * m) ⟩ suc q * m ≡⟨ sym eq ⟩ suc n ∎ where open ≤-Reasoning ∣-reflexive : _≡_ ⇒ _∣_ ∣-reflexive {n} refl = divides 1 (sym (*-identityˡ n)) ∣-refl : Reflexive _∣_ ∣-refl = ∣-reflexive refl ∣-trans : Transitive _∣_ ∣-trans (divides p refl) (divides q refl) = divides (q * p) (sym (*-assoc q p _)) ∣-antisym : Antisymmetric _≡_ _∣_ ∣-antisym {m} {0} _ (divides q eq) = trans eq (*-comm q 0) ∣-antisym {0} {n} (divides p eq) _ = sym (trans eq (*-comm p 0)) ∣-antisym {suc m} {suc n} (divides p eq₁) (divides q eq₂) = ≤-antisym (∣⇒≤ (divides p eq₁)) (∣⇒≤ (divides q eq₂)) ∣-isPreorder : IsPreorder _≡_ _∣_ ∣-isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = ∣-reflexive ; trans = ∣-trans } ∣-preorder : Preorder _ _ _ ∣-preorder = record { isPreorder = ∣-isPreorder } ∣-isPartialOrder : IsPartialOrder _≡_ _∣_ ∣-isPartialOrder = record { isPreorder = ∣-isPreorder ; antisym = ∣-antisym } poset : Poset _ _ _ poset = record { Carrier = ℕ ; _≈_ = _≡_ ; _≤_ = _∣_ ; isPartialOrder = ∣-isPartialOrder } module ∣-Reasoning = POR poset hiding (_≈⟨_⟩_) renaming (_≤⟨_⟩_ to _∣⟨_⟩_) ------------------------------------------------------------------------ -- Simple properties of _∣_ infix 10 1∣_ _∣0 1∣_ : ∀ n → 1 ∣ n 1∣ n = divides n (sym (*-identityʳ n)) _∣0 : ∀ n → n ∣ 0 n ∣0 = divides 0 refl n∣n : ∀ {n} → n ∣ n n∣n = ∣-refl n∣m*n : ∀ m {n} → n ∣ m * n n∣m*n m = divides m refl m∣m*n : ∀ {m} n → m ∣ m * n m∣m*n n = divides n (*-comm _ n) 0∣⇒≡0 : ∀ {n} → 0 ∣ n → n ≡ 0 0∣⇒≡0 {n} 0∣n = ∣-antisym (n ∣0) 0∣n ∣1⇒≡1 : ∀ {n} → n ∣ 1 → n ≡ 1 ∣1⇒≡1 {n} n∣1 = ∣-antisym n∣1 (1∣ n) ------------------------------------------------------------------------ -- Operators and divisibility module _ where open PropEq.≡-Reasoning ∣m⇒∣m*n : ∀ {i m} n → i ∣ m → i ∣ m * n ∣m⇒∣m*n {i} {m} n (divides q eq) = divides (q * n) $ begin m * n ≡⟨ cong (_* n) eq ⟩ q * i * n ≡⟨ *-assoc q i n ⟩ q * (i * n) ≡⟨ cong (q *_) (*-comm i n) ⟩ q * (n * i) ≡⟨ sym (*-assoc q n i) ⟩ q * n * i ∎ ∣n⇒∣m*n : ∀ {i} m {n} → i ∣ n → i ∣ m * n ∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $ begin m * n ≡⟨ cong (m *_) eq ⟩ m * (q * i) ≡⟨ sym (*-assoc m q i) ⟩ m * q * i ∎ ∣m∣n⇒∣m+n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n ∣m∣n⇒∣m+n (divides p refl) (divides q refl) = divides (p + q) (sym (*-distribʳ-+ _ p q)) ∣m+n∣m⇒∣n : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n ∣m+n∣m⇒∣n {i} {m} {n} (divides p m+n≡p*i) (divides q m≡q*i) = divides (p ∸ q) $ begin n ≡⟨ sym (m+n∸n≡m n m) ⟩ n + m ∸ m ≡⟨ cong (_∸ m) (+-comm n m) ⟩ m + n ∸ m ≡⟨ cong₂ _∸_ m+n≡p*i m≡q*i ⟩ p * i ∸ q * i ≡⟨ sym (*-distribʳ-∸ i p q) ⟩ (p ∸ q) * i ∎ ∣m∸n∣n⇒∣m : ∀ i {m n} → n ≤ m → i ∣ m ∸ n → i ∣ n → i ∣ m ∣m∸n∣n⇒∣m i {m} {n} n≤m (divides p m∸n≡p*i) (divides q n≡q*o) = divides (p + q) $ begin m ≡⟨ sym (m+n∸m≡n n≤m) ⟩ n + (m ∸ n) ≡⟨ +-comm n (m ∸ n) ⟩ m ∸ n + n ≡⟨ cong₂ _+_ m∸n≡p*i n≡q*o ⟩ p * i + q * i ≡⟨ sym (*-distribʳ-+ i p q) ⟩ (p + q) * i ∎ *-cong : ∀ {i j} k → i ∣ j → k * i ∣ k * j *-cong {i} {j} k (divides q j≡q*i) = divides q $ begin k * j ≡⟨ cong (_*_ k) j≡q*i ⟩ k * (q * i) ≡⟨ sym (*-assoc k q i) ⟩ (k * q) * i ≡⟨ cong (_* i) (*-comm k q) ⟩ (q * k) * i ≡⟨ *-assoc q k i ⟩ q * (k * i) ∎ /-cong : ∀ {i j} k → suc k * i ∣ suc k * j → i ∣ j /-cong {i} {j} k (divides q eq) = divides q (*-cancelʳ-≡ j (q * i) (begin j * (suc k) ≡⟨ *-comm j (suc k) ⟩ (suc k) * j ≡⟨ eq ⟩ q * ((suc k) * i) ≡⟨ cong (q *_) (*-comm (suc k) i) ⟩ q * (i * (suc k)) ≡⟨ sym (*-assoc q i (suc k)) ⟩ (q * i) * (suc k) ∎)) m%n≡0⇒n∣m : ∀ m n → m % (suc n) ≡ 0 → suc n ∣ m m%n≡0⇒n∣m m n eq = divides (m div (suc n)) (begin m ≡⟨ a≡a%n+[a/n]*n m n ⟩ m % (suc n) + m div (suc n) * (suc n) ≡⟨ cong₂ _+_ eq refl ⟩ m div (suc n) * (suc n) ∎) n∣m⇒m%n≡0 : ∀ m n → suc n ∣ m → m % (suc n) ≡ 0 n∣m⇒m%n≡0 m n (divides v eq) = begin m % (suc n) ≡⟨ cong (_% (suc n)) eq ⟩ (v * suc n) % (suc n) ≡⟨ kn%n≡0 v n ⟩ 0 ∎ m%n≡0⇔n∣m : ∀ m n → m % (suc n) ≡ 0 ⇔ suc n ∣ m m%n≡0⇔n∣m m n = equivalence (m%n≡0⇒n∣m m n) (n∣m⇒m%n≡0 m n) -- Divisibility is decidable. infix 4 _∣?_ _∣?_ : Decidable _∣_ zero ∣? zero = yes (0 ∣0) zero ∣? suc m = no ((λ()) ∘′ 0∣⇒≡0) suc n ∣? m = Dec.map (m%n≡0⇔n∣m m n) (m % (suc n) ≟ 0) ------------------------------------------------------------------------ -- DEPRECATED - please use new names as continuing support for the old -- names is not guaranteed. ∣-+ = ∣m∣n⇒∣m+n {-# WARNING_ON_USAGE ∣-+ "Warning: ∣-+ was deprecated in v0.14. Please use ∣m∣n⇒∣m+n instead." #-} ∣-∸ = ∣m+n∣m⇒∣n {-# WARNING_ON_USAGE ∣-∸ "Warning: ∣-∸ was deprecated in v0.14. Please use ∣m+n∣m⇒∣n instead." #-} ∣-* = n∣m*n {-# WARNING_ON_USAGE ∣-* "Warning: ∣-* was deprecated in v0.14. Please use n∣m*n instead." #-} nonZeroDivisor-lemma : ∀ m q (r : Fin (1 + m)) → toℕ r ≢ 0 → 1 + m ∤ toℕ r + q * (1 + m) nonZeroDivisor-lemma m zero r r≢zero (divides zero eq) = r≢zero $ begin toℕ r ≡⟨ sym (*-identityˡ (toℕ r)) ⟩ 1 * toℕ r ≡⟨ eq ⟩ 0 ∎ where open PropEq.≡-Reasoning nonZeroDivisor-lemma m zero r r≢zero (divides (suc q) eq) = i+1+j≰i m $ begin m + suc (q * suc m) ≡⟨ +-suc m (q * suc m) ⟩ suc (m + q * suc m) ≡⟨ sym eq ⟩ 1 * toℕ r ≡⟨ *-identityˡ (toℕ r) ⟩ toℕ r ≤⟨ FP.toℕ≤pred[n] r ⟩ m ∎ where open ≤-Reasoning nonZeroDivisor-lemma m (suc q) r r≢zero d = nonZeroDivisor-lemma m q r r≢zero (∣m+n∣m⇒∣n d' ∣-refl) where lem = solve 3 (λ m r q → r :+ (m :+ q) := m :+ (r :+ q)) refl (suc m) (toℕ r) (q * suc m) d' = subst (1 + m ∣_) lem d {-# WARNING_ON_USAGE nonZeroDivisor-lemma "Warning: nonZeroDivisor-lemma was deprecated in v0.17." #-}
{ "alphanum_fraction": 0.4706410256, "avg_line_length": 30.3501945525, "ext": "agda", "hexsha": "21e9db07e1a8f32aa672875550a3d411f5c90c75", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Divisibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Divisibility.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/Divisibility.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3547, "size": 7800 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.Types open import LibraBFT.Impl.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open WithAbsVote module LibraBFT.Concrete.Obligations.VotesOnce (𝓔 : EpochConfig) (𝓥 : VoteEvidence 𝓔) where open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Concrete.Intermediate 𝓔 𝓥 ------------------- -- * VotesOnce * -- ------------------- module _ {ℓ}(𝓢 : IntermediateSystemState ℓ) where open IntermediateSystemState 𝓢 Type : Set ℓ Type = ∀{α v v'} → Meta-Honest-Member α → vMember v ≡ α → HasBeenSent v → vMember v' ≡ α → HasBeenSent v' → vRound v ≡ vRound v' → vBlockUID v ≡ vBlockUID v' -- NOTE: It is interesting that this does not require the timeout signature (or even -- presence/lack thereof) to be the same. The abstract proof goes through without out it, so I -- am leaving it out for now, but I'm curious what if anything could go wrong if an honest -- author can send different votes for the same epoch and round that differ on timeout -- signature. Maybe something for liveness? proof : Type → VotesOnlyOnceRule InSys proof glob-inv α hα {q} {q'} q∈sys q'∈sys va va' VO≡ with ∈QC⇒HasBeenSent q∈sys hα va | ∈QC⇒HasBeenSent q'∈sys hα va' ...| sent-cv | sent-cv' with glob-inv hα (sym (∈QC-Member q va)) sent-cv (sym (∈QC-Member q' va')) sent-cv' VO≡ ...| bId≡ = Vote-η VO≡ (trans (sym (∈QC-Member q va)) (∈QC-Member q' va')) bId≡
{ "alphanum_fraction": 0.6373684211, "avg_line_length": 38, "ext": "agda", "hexsha": "f32ee2c34392d93590e4f2327b1c0900e95d5044", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/Obligations/VotesOnce.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/Obligations/VotesOnce.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/Obligations/VotesOnce.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 582, "size": 1900 }
------------------------------------------------------------------------------ -- Testing the use of local hints ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LocalHints where postulate D : Set zero : D data N : D → Set where zN : N zero postulate 0-N : N zero {-# ATP prove 0-N zN #-}
{ "alphanum_fraction": 0.376953125, "avg_line_length": 24.380952381, "ext": "agda", "hexsha": "f0393687aafdb7a777b8f6a88611733d29bbf467", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/LocalHints.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/LocalHints.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/LocalHints.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 96, "size": 512 }
{-# OPTIONS --cubical --safe #-} -- Free join semilattice module Algebra.Construct.Free.Semilattice where open import Algebra.Construct.Free.Semilattice.Definition public open import Algebra.Construct.Free.Semilattice.Eliminators public open import Algebra.Construct.Free.Semilattice.Union public using (_∪_; 𝒦-semilattice) open import Algebra.Construct.Free.Semilattice.Homomorphism public using (μ; ∙-hom)
{ "alphanum_fraction": 0.812195122, "avg_line_length": 41, "ext": "agda", "hexsha": "41adc3b4847509483128f96c44f6dae7cb55252e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice.agda", "max_line_length": 86, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 106, "size": 410 }
open import Agda.Primitive open import Agda.Builtin.Sigma open import Agda.Builtin.Equality record R {A : Set} {B : A → Set} p@ab : Set where field prf : p ≡ p
{ "alphanum_fraction": 0.6886227545, "avg_line_length": 20.875, "ext": "agda", "hexsha": "a1935196ab1ce603a29d70b58576eaf8e29da5f9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/NoLetInRecordTele.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/NoLetInRecordTele.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/NoLetInRecordTele.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 58, "size": 167 }
module PreludeList where open import AlonzoPrelude as Prelude open import PreludeNat infixr 50 _::_ _++_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} [_] : {A : Set} -> A -> List A [ x ] = x :: [] length : {A : Set} -> List A -> Nat length [] = 0 length (_ :: xs) = 1 + length xs map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) zipWith : {A B C : Set} -> (A -> B -> C) -> List A -> List B -> List C zipWith f [] [] = [] zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys zipWith f [] (_ :: _) = [] zipWith f (_ :: _) [] = [] foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f z [] = z foldr f z (x :: xs) = f x (foldr f z xs) foldl : {A B : Set} -> (B -> A -> B) -> B -> List A -> B foldl f z [] = z foldl f z (x :: xs) = foldl f (f z x) xs replicate : {A : Set} -> Nat -> A -> List A replicate zero x = [] replicate (suc n) x = x :: replicate n x iterate : {A : Set} -> Nat -> (A -> A) -> A -> List A iterate zero f x = [] iterate (suc n) f x = x :: iterate n f (f x) splitAt : {A : Set} -> Nat -> List A -> List A × List A splitAt zero xs = < [] , xs > splitAt (suc n) [] = < [] , [] > splitAt (suc n) (x :: xs) = add x $ splitAt n xs where add : _ -> List _ × List _ -> List _ × List _ add x < ys , zs > = < x :: ys , zs > reverse : {A : Set} -> List A -> List A reverse xs = foldl (flip _::_) [] xs
{ "alphanum_fraction": 0.4522968198, "avg_line_length": 25.7272727273, "ext": "agda", "hexsha": "4b5dbe09c3e3553e281201ca40edbc12cc8e59f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeList.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeList.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 624, "size": 1698 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Core where open import Level open import Function renaming (id to id→; _∘_ to _●_) using () open import Relation.Binary hiding (_⇒_) import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Morphism as M private variable o ℓ e o′ ℓ′ e′ o′′ ℓ′′ e′′ : Level C D : Category o ℓ e record Functor (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where eta-equality private module C = Category C private module D = Category D field F₀ : C.Obj → D.Obj F₁ : ∀ {A B} (f : C [ A , B ]) → D [ F₀ A , F₀ B ] identity : ∀ {A} → D [ F₁ (C.id {A}) ≈ D.id ] homomorphism : ∀ {X Y Z} {f : C [ X , Y ]} {g : C [ Y , Z ]} → D [ F₁ (C [ g ∘ f ]) ≈ D [ F₁ g ∘ F₁ f ] ] F-resp-≈ : ∀ {A B} {f g : C [ A , B ]} → C [ f ≈ g ] → D [ F₁ f ≈ F₁ g ] op : Functor C.op D.op op = record { F₀ = F₀ ; F₁ = F₁ ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = F-resp-≈ } Endofunctor : Category o ℓ e → Set _ Endofunctor C = Functor C C id : ∀ {C : Category o ℓ e} → Endofunctor C id {C = C} = record { F₀ = id→ ; F₁ = id→ ; identity = refl ; homomorphism = refl ; F-resp-≈ = id→ } where open Category.Equiv C infixr 9 _∘F_ -- note that this definition could be shortened a lot by inlining the definitions for -- identity′ and homomorphism′, but the definitions below are simpler to understand. _∘F_ : ∀ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E : Category o′′ ℓ′′ e′′} → Functor D E → Functor C D → Functor C E _∘F_ {C = C} {D = D} {E = E} F G = record { F₀ = F₀ ● G₀ ; F₁ = F₁ ● G₁ ; identity = identity′ ; homomorphism = homomorphism′ ; F-resp-≈ = F-resp-≈ ● G-resp-≈ } where module C = Category C module D = Category D module E = Category E module F = Functor F module G = Functor G open F open G renaming (F₀ to G₀; F₁ to G₁; F-resp-≈ to G-resp-≈) identity′ : ∀ {A} → E [ F₁ (G₁ (C.id {A})) ≈ E.id ] identity′ = begin F₁ (G₁ C.id) ≈⟨ F-resp-≈ G.identity ⟩ F₁ D.id ≈⟨ F.identity ⟩ E.id ∎ where open SetoidR E.hom-setoid homomorphism′ : ∀ {X Y Z} {f : C [ X , Y ]} {g : C [ Y , Z ]} → E [ F₁ (G₁ (C [ g ∘ f ])) ≈ E [ F₁ (G₁ g) ∘ F₁ (G₁ f) ] ] homomorphism′ {f = f} {g = g} = begin F₁ (G₁ (C [ g ∘ f ])) ≈⟨ F-resp-≈ G.homomorphism ⟩ F₁ (D [ G₁ g ∘ G₁ f ]) ≈⟨ F.homomorphism ⟩ E [ F₁ (G₁ g) ∘ F₁ (G₁ f) ] ∎ where open SetoidR E.hom-setoid
{ "alphanum_fraction": 0.5246704331, "avg_line_length": 28.8586956522, "ext": "agda", "hexsha": "f53d81e447f124b2c39c7b5eee73bbd19f30f6a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Functor/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Functor/Core.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Functor/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1072, "size": 2655 }
module *-comm where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Induction′ using (+-assoc; +-comm; +-suc) open import +-swap using (+-swap) *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm zero zero = refl *-comm zero (suc n) = begin zero * (suc n) ≡⟨⟩ zero ≡⟨⟩ zero + (zero * n) ≡⟨ *-comm zero n ⟩ zero + (n * zero) ≡⟨⟩ (suc n) * zero ∎ *-comm (suc m) zero = begin (suc m) * zero ≡⟨⟩ zero + (m * zero) ≡⟨ *-comm m zero ⟩ (zero * m) ≡⟨⟩ zero ≡⟨⟩ zero * (suc m) ∎ *-comm (suc m) (suc n) = begin (suc m) * (suc n) ≡⟨⟩ (suc n) + (m * (suc n)) ≡⟨ cong ((suc n) +_) (*-comm m (suc n)) ⟩ (suc n) + ((suc n) * m) ≡⟨⟩ (suc n) + (m + (n * m)) ≡⟨ +-swap (suc n) m (n * m) ⟩ m + ((suc n) + (n * m)) ≡⟨ sym (+-assoc m (suc n) (n * m)) ⟩ (m + (suc n)) + (n * m) ≡⟨ cong (_+ (n * m)) (+-suc m n) ⟩ suc (m + n) + (n * m) ≡⟨ cong suc (+-assoc m n (n * m)) ⟩ (suc m) + (n + (n * m)) ≡⟨ cong (λ m*n → (suc m) + (n + m*n)) (*-comm n m) ⟩ (suc m) + (n + (m * n)) ≡⟨⟩ (suc m) + ((suc m) * n) ≡⟨ cong ((suc m) +_) (*-comm ((suc m)) n) ⟩ (suc m) + (n * (suc m)) ≡⟨⟩ (suc n) * (suc m) ∎
{ "alphanum_fraction": 0.427626745, "avg_line_length": 21.6031746032, "ext": "agda", "hexsha": "3ae5ddd83b84966acc00ff15050c803fd3af409f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/induction/*-comm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/induction/*-comm.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/induction/*-comm.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 689, "size": 1361 }
{- Maybe structure: X ↦ Maybe (S X) -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.Relational.Maybe where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Maybe open import Cubical.Data.Sigma open import Cubical.Structures.Maybe private variable ℓ ℓ₁ ℓ₁' : Level -- Structured relations preservesSetsMaybe : {S : Type ℓ → Type ℓ₁} → preservesSets S → preservesSets (MaybeStructure S) preservesSetsMaybe p setX = isOfHLevelMaybe 0 (p setX) MaybeRelStr : {S : Type ℓ → Type ℓ₁} {ℓ₁' : Level} → StrRel S ℓ₁' → StrRel (λ X → Maybe (S X)) ℓ₁' MaybeRelStr ρ R = MaybeRel (ρ R) open SuitableStrRel maybeSuitableRel : {S : Type ℓ → Type ℓ₁} {ρ : StrRel S ℓ₁'} → SuitableStrRel S ρ → SuitableStrRel (MaybeStructure S) (MaybeRelStr ρ) maybeSuitableRel θ .quo (X , nothing) R _ .fst = nothing , _ maybeSuitableRel θ .quo (X , nothing) R _ .snd (nothing , _) = refl maybeSuitableRel θ .quo (X , just s) R c .fst = just (θ .quo (X , s) R c .fst .fst) , θ .quo (X , s) R c .fst .snd maybeSuitableRel θ .quo (X , just s) R c .snd (just s' , r) = cong (λ {(t , r') → just t , r'}) (θ .quo (X , s) R c .snd (s' , r)) maybeSuitableRel θ .symmetric R {nothing} {nothing} r = _ maybeSuitableRel θ .symmetric R {just s} {just t} r = θ .symmetric R r maybeSuitableRel θ .transitive R R' {nothing} {nothing} {nothing} r r' = _ maybeSuitableRel θ .transitive R R' {just s} {just t} {just u} r r' = θ .transitive R R' r r' maybeSuitableRel θ .prop propR nothing nothing = isOfHLevelLift 1 isPropUnit maybeSuitableRel θ .prop propR nothing (just y) = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) nothing = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) (just y) = θ .prop propR x y maybeRelMatchesEquiv : {S : Type ℓ → Type ℓ₁} (ρ : StrRel S ℓ₁') {ι : StrEquiv S ℓ₁'} → StrRelMatchesEquiv ρ ι → StrRelMatchesEquiv (MaybeRelStr ρ) (MaybeEquivStr ι) maybeRelMatchesEquiv ρ μ (X , nothing) (Y , nothing) _ = idEquiv _ maybeRelMatchesEquiv ρ μ (X , nothing) (Y , just y) _ = idEquiv _ maybeRelMatchesEquiv ρ μ (X , just x) (Y , nothing) _ = idEquiv _ maybeRelMatchesEquiv ρ μ (X , just x) (Y , just y) = μ (X , x) (Y , y)
{ "alphanum_fraction": 0.7039552537, "avg_line_length": 40.3709677419, "ext": "agda", "hexsha": "4f24e357b67e6dc282701a76026a6bd84d6dfeba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Relational/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Relational/Maybe.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Relational/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 897, "size": 2503 }
{-# OPTIONS --sized-types #-} module SizedTypesVarSwap where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} bad : {i j : Size} -> Nat {i} -> Nat {j} -> Nat {∞} bad (suc x) y = bad (suc y) x bad zero y = y
{ "alphanum_fraction": 0.5311778291, "avg_line_length": 20.619047619, "ext": "agda", "hexsha": "3e0be8ad22d5cc9f793ddab0c236f31fec6195a3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/SizedTypesVarSwap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/SizedTypesVarSwap.agda", "max_line_length": 52, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/SizedTypesVarSwap.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 155, "size": 433 }
module Pi.Opsem where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open import Base open import Pi.Syntax infix 1 _↦_ -- Base combinators base : ∀ {A B} (c : A ↔ B) → Set base unite₊l = ⊤ base uniti₊l = ⊤ base swap₊ = ⊤ base assocl₊ = ⊤ base assocr₊ = ⊤ base unite⋆l = ⊤ base uniti⋆l = ⊤ base swap⋆ = ⊤ base assocl⋆ = ⊤ base assocr⋆ = ⊤ base absorbr = ⊤ base factorzl = ⊤ base dist = ⊤ base factor = ⊤ base _ = ⊥ base-is-prop : ∀ {A B} (c : A ↔ B) → is-prop (base c) base-is-prop unite₊l tt tt = refl base-is-prop uniti₊l tt tt = refl base-is-prop swap₊ tt tt = refl base-is-prop assocl₊ tt tt = refl base-is-prop assocr₊ tt tt = refl base-is-prop unite⋆l tt tt = refl base-is-prop uniti⋆l tt tt = refl base-is-prop swap⋆ tt tt = refl base-is-prop assocl⋆ tt tt = refl base-is-prop assocr⋆ tt tt = refl base-is-prop absorbr tt tt = refl base-is-prop factorzl tt tt = refl base-is-prop dist tt tt = refl base-is-prop factor tt tt = refl -- Evaluator for base combinators δ : ∀ {A B} (c : A ↔ B) {_ : base c} → ⟦ A ⟧ → ⟦ B ⟧ δ unite₊l (inj₂ v) = v δ uniti₊l v = inj₂ v δ swap₊ (inj₁ x) = inj₂ x δ swap₊ (inj₂ y) = inj₁ y δ assocl₊ (inj₁ v) = inj₁ (inj₁ v) δ assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) δ assocl₊ (inj₂ (inj₂ v)) = inj₂ v δ assocr₊ (inj₁ (inj₁ v)) = inj₁ v δ assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) δ assocr₊ (inj₂ v) = inj₂ (inj₂ v) δ unite⋆l (tt , v) = v δ uniti⋆l v = (tt , v) δ swap⋆ (x , y) = (y , x) δ assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) δ assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) δ absorbr () δ factorzl () δ dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) δ dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) δ factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) δ factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) -- Context data Context : {A B : 𝕌} → Set where ☐ : ∀ {A B} → Context {A} {B} ☐⨾_•_ : ∀ {A B C} → (c₂ : B ↔ C) → Context {A} {C} → Context {A} {B} _⨾☐•_ : ∀ {A B C} → (c₁ : A ↔ B) → Context {A} {C} → Context {B} {C} ☐⊕_•_ : ∀ {A B C D} → (c₂ : C ↔ D) → Context {A +ᵤ C} {B +ᵤ D} → Context {A} {B} _⊕☐•_ : ∀ {A B C D} → (c₁ : A ↔ B) → Context {A +ᵤ C} {B +ᵤ D} → Context {C} {D} ☐⊗[_,_]•_ : ∀ {A B C D} → (c₂ : C ↔ D) → ⟦ C ⟧ → Context {A ×ᵤ C} {B ×ᵤ D} → Context {A} {B} [_,_]⊗☐•_ : ∀ {A B C D} → (c₁ : A ↔ B) → ⟦ B ⟧ → Context {A ×ᵤ C} {B ×ᵤ D} → Context {C} {D} -- Machine state data State : Set where ⟨_∣_∣_⟩ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → Context {A} {B} → State [_∣_∣_] : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → Context {A} {B} → State -- Reduction relation data _↦_ : State → State → Set where ↦₁ : ∀ {A B} {c : A ↔ B} {b : base c} {v : ⟦ A ⟧} {κ : Context} → ⟨ c ∣ v ∣ κ ⟩ ↦ [ c ∣ δ c {b} v ∣ κ ] ↦₂ : ∀ {A} {v : ⟦ A ⟧} {κ : Context} → ⟨ id↔ ∣ v ∣ κ ⟩ ↦ [ id↔ ∣ v ∣ κ ] ↦₃ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ A ⟧} {κ : Context} → ⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩ ↦ ⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩ ↦₄ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {κ : Context} → ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩ ↦ ⟨ c₁ ∣ x ∣ ☐⊕ c₂ • κ ⟩ ↦₅ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩ ↦ ⟨ c₂ ∣ y ∣ c₁ ⊕☐• κ ⟩ ↦₆ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ A ⟧} {y : ⟦ C ⟧} {κ : Context} → ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩ ↦ ⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩ ↦₇ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ B ⟧} {κ : Context} → [ c₁ ∣ v ∣ ☐⨾ c₂ • κ ] ↦ ⟨ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ⟩ ↦₈ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ C ⟧} {κ : Context} → [ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ] ↦ ⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩ ↦₉ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {y : ⟦ D ⟧} {κ : Context} → [ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ] ↦ [ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ] ↦₁₀ : ∀ {A B C} {c₁ : A ↔ B} {c₂ : B ↔ C} {v : ⟦ C ⟧} {κ : Context} → [ c₂ ∣ v ∣ (c₁ ⨾☐• κ) ] ↦ [ c₁ ⨾ c₂ ∣ v ∣ κ ] ↦₁₁ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {x : ⟦ B ⟧} {κ : Context} → [ c₁ ∣ x ∣ ☐⊕ c₂ • κ ] ↦ [ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ] ↦₁₂ : ∀ {A B C D} {c₁ : A ↔ B} {c₂ : C ↔ D} {y : ⟦ D ⟧} {κ : Context} → [ c₂ ∣ y ∣ c₁ ⊕☐• κ ] ↦ [ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]
{ "alphanum_fraction": 0.4542601979, "avg_line_length": 37.3243243243, "ext": "agda", "hexsha": "feb5a5f4330167cefe3ac4aef9f7be8c6f1e82b1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi/Opsem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi/Opsem.agda", "max_line_length": 106, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi/Opsem.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2304, "size": 4143 }
------------------------------------------------------------------------ -- Atoms ------------------------------------------------------------------------ module Atom where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude open import Bag-equivalence equality-with-J open import Bijection equality-with-J as Bijection using (_↔_) open import Equality.Decidable-UIP equality-with-J open import Equality.Path.Isomorphisms.Univalence equality-with-paths open import Equivalence equality-with-J as Eq using (_≃_) open import Finite-subset.Listed equality-with-paths as S using (Finite-subset-of; _∉_) open import Function-universe equality-with-J hiding (id) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths using (∥_∥; ∣_∣) open import Injection equality-with-J using (Injective) import Nat equality-with-J as Nat open import Univalence-axiom equality-with-J -- Atoms. record Atoms : Type₁ where field -- The type of atoms. Name : Type -- The type must be countably infinite. countably-infinite : Name ↔ ℕ -- Atoms have decidable equality. _≟_ : Decidable-equality Name _≟_ = Bijection.decidable-equality-respects (inverse countably-infinite) Nat._≟_ -- Membership test. member : (x : Name) (xs : List Name) → Dec (x ∈ xs) member x [] = no (λ ()) member x (y ∷ xs) with x ≟ y ... | yes x≡y = yes (inj₁ x≡y) ... | no x≢y with member x xs ... | yes x∈xs = yes (inj₂ x∈xs) ... | no x∉xs = no [ x≢y , x∉xs ] -- Conversions. name : ℕ → Name name = _↔_.from countably-infinite code : Name → ℕ code = _↔_.to countably-infinite -- The name function is injective. name-injective : Injective name name-injective = _↔_.injective (inverse countably-infinite) -- Distinct natural numbers are mapped to distinct names. distinct-codes→distinct-names : ∀ {m n} → m ≢ n → name m ≢ name n distinct-codes→distinct-names {m} {n} m≢n = name m ≡ name n ↝⟨ name-injective ⟩ m ≡ n ↝⟨ m≢n ⟩□ ⊥ □ -- One can always find a name that is distinct from the names in a -- given finite set of names. fresh : (ns : Finite-subset-of Name) → ∃ λ (n : Name) → n ∉ ns fresh ns = Σ-map name (λ {m} → →-cong-→ (name m S.∈ ns ↝⟨ (λ ∈ns → ∣ name m , ∈ns , _↔_.right-inverse-of countably-infinite _ ∣) ⟩ ∥ (∃ λ n → n S.∈ ns × code n ≡ m) ∥ ↔⟨ inverse S.∈map≃ ⟩□ m S.∈ S.map code ns □) id) (S.fresh (S.map code ns)) -- Name is a set. Name-set : Is-set Name Name-set = decidable⇒set _≟_ -- One implementation of atoms, using natural numbers. ℕ-atoms : Atoms Atoms.Name ℕ-atoms = ℕ Atoms.countably-infinite ℕ-atoms = Bijection.id -- Two sets of atoms, one for constants and one for variables. record χ-atoms : Type₁ where field const-atoms var-atoms : Atoms module C = Atoms const-atoms renaming (Name to Const) module V = Atoms var-atoms renaming (Name to Var) open C public using (Const) open V public using (Var) -- One implementation of χ-atoms, using natural numbers. χ-ℕ-atoms : χ-atoms χ-atoms.const-atoms χ-ℕ-atoms = ℕ-atoms χ-atoms.var-atoms χ-ℕ-atoms = ℕ-atoms -- The type of atoms is isomorphic to the unit type. Atoms↔⊤ : Atoms ↔ ⊤ Atoms↔⊤ = Atoms ↝⟨ eq ⟩ (∃ λ (Name : Type) → Name ↔ ℕ) ↝⟨ ∃-cong (λ _ → Eq.↔↔≃′ ext ℕ-set) ⟩ (∃ λ (Name : Type) → Name ≃ ℕ) ↝⟨ singleton-with-≃-↔-⊤ ext univ ⟩□ ⊤ □ where open Atoms eq : Atoms ↔ ∃ λ (Name : Type) → Name ↔ ℕ eq = record { surjection = record { logical-equivalence = record { to = λ a → Name a , countably-infinite a ; from = uncurry λ N c → record { Name = N; countably-infinite = c } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- The χ-atoms type is isomorphic to the unit type. χ-atoms↔⊤ : χ-atoms ↔ ⊤ χ-atoms↔⊤ = χ-atoms ↝⟨ eq ⟩ Atoms × Atoms ↝⟨ Atoms↔⊤ ×-cong Atoms↔⊤ ⟩ ⊤ × ⊤ ↝⟨ ×-right-identity ⟩□ ⊤ □ where open χ-atoms eq : χ-atoms ↔ Atoms × Atoms eq = record { surjection = record { logical-equivalence = record { to = λ a → const-atoms a , var-atoms a ; from = uncurry λ c v → record { const-atoms = c; var-atoms = v } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- If a property holds for one choice of atoms, then it holds for any -- other choice of atoms. invariant : ∀ {p} (P : χ-atoms → Type p) → ∀ a₁ a₂ → P a₁ → P a₂ invariant P a₁ a₂ = subst P (mono₁ 0 (_⇔_.from contractible⇔↔⊤ χ-atoms↔⊤) a₁ a₂) -- If a property holds for χ-ℕ-atoms, then it holds for any choice of -- atoms. one-can-restrict-attention-to-χ-ℕ-atoms : ∀ {p} (P : χ-atoms → Type p) → P χ-ℕ-atoms → ∀ a → P a one-can-restrict-attention-to-χ-ℕ-atoms P p a = invariant P χ-ℕ-atoms a p
{ "alphanum_fraction": 0.5656261753, "avg_line_length": 28.2872340426, "ext": "agda", "hexsha": "b1c04a7f1fac5477ae174f6a8f6d49bad4dbc668", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Atom.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Atom.agda", "max_line_length": 104, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Atom.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 1732, "size": 5318 }
{-# OPTIONS --without-K --safe #-} open import Level using (Level) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Data.Nat using (ℕ; zero; suc) open import Data.Vec using (Vec; []; _∷_; _++_; foldr; map; replicate) open import Data.Vec.Properties open import FLA.Algebra.Structures open import FLA.Algebra.Properties.Field open import FLA.Algebra.LinearAlgebra open import FLA.Data.Vec.Properties module FLA.Algebra.LinearAlgebra.Properties where private variable ℓ : Level A : Set ℓ m n p q : ℕ module _ ⦃ F : Field A ⦄ where open Field F +ⱽ-assoc : (v₁ v₂ v₃ : Vec A n) → v₁ +ⱽ v₂ +ⱽ v₃ ≡ v₁ +ⱽ (v₂ +ⱽ v₃) +ⱽ-assoc [] [] [] = refl +ⱽ-assoc (v₁ ∷ vs₁) (v₂ ∷ vs₂) (v₃ ∷ vs₃) rewrite +ⱽ-assoc vs₁ vs₂ vs₃ | +-assoc v₁ v₂ v₃ = refl +ⱽ-comm : (v₁ v₂ : Vec A n) → v₁ +ⱽ v₂ ≡ v₂ +ⱽ v₁ +ⱽ-comm [] [] = refl +ⱽ-comm (x₁ ∷ vs₁) (x₂ ∷ vs₂) = begin x₁ + x₂ ∷ vs₁ +ⱽ vs₂ ≡⟨ cong ((x₁ + x₂) ∷_) (+ⱽ-comm vs₁ vs₂) ⟩ x₁ + x₂ ∷ vs₂ +ⱽ vs₁ ≡⟨ cong (_∷ vs₂ +ⱽ vs₁) (+-comm x₁ x₂) ⟩ x₂ + x₁ ∷ vs₂ +ⱽ vs₁ ∎ v+0ᶠⱽ≡v : (v : Vec A n) → v +ⱽ (replicate 0ᶠ) ≡ v v+0ᶠⱽ≡v [] = refl v+0ᶠⱽ≡v (v ∷ vs) = cong₂ _∷_ (+0ᶠ v) (v+0ᶠⱽ≡v vs) 0ᶠⱽ+v≡v : (v : Vec A n) → (replicate 0ᶠ) +ⱽ v ≡ v 0ᶠⱽ+v≡v v = trans (+ⱽ-comm (replicate 0ᶠ) v) (v+0ᶠⱽ≡v v) 0ᶠ∘ⱽv≡0ᶠⱽ : (v : Vec A n) → 0ᶠ ∘ⱽ v ≡ replicate 0ᶠ 0ᶠ∘ⱽv≡0ᶠⱽ [] = refl 0ᶠ∘ⱽv≡0ᶠⱽ (v ∷ vs) = cong₂ _∷_ (0ᶠ*a≡0ᶠ v) (0ᶠ∘ⱽv≡0ᶠⱽ vs) c∘ⱽ0ᶠⱽ≡0ᶠⱽ : {n : ℕ} → (c : A) → c ∘ⱽ replicate {n = n} 0ᶠ ≡ replicate 0ᶠ c∘ⱽ0ᶠⱽ≡0ᶠⱽ {zero} c = refl c∘ⱽ0ᶠⱽ≡0ᶠⱽ {suc n} c = cong₂ _∷_ (a*0ᶠ≡0ᶠ c) (c∘ⱽ0ᶠⱽ≡0ᶠⱽ c) v*ⱽ0ᶠⱽ≡0ᶠⱽ : {n : ℕ} → (v : Vec A n) → v *ⱽ replicate 0ᶠ ≡ replicate 0ᶠ v*ⱽ0ᶠⱽ≡0ᶠⱽ [] = refl v*ⱽ0ᶠⱽ≡0ᶠⱽ (v ∷ vs) = cong₂ _∷_ (a*0ᶠ≡0ᶠ v) (v*ⱽ0ᶠⱽ≡0ᶠⱽ vs) map-*c-≡c∘ⱽ : (c : A) (v : Vec A n) → map (_* c) v ≡ c ∘ⱽ v map-*c-≡c∘ⱽ c [] = refl map-*c-≡c∘ⱽ c (v ∷ vs) = cong₂ _∷_ (*-comm v c) (map-*c-≡c∘ⱽ c vs) replicate-distr-+ : {n : ℕ} → (u v : A) → replicate {n = n} (u + v) ≡ replicate u +ⱽ replicate v replicate-distr-+ u v = sym (zipWith-replicate _+_ u v) -- This should work for any linear function (I think), instead of just -_, *ⱽ-map--ⱽ : (a v : Vec A n) → a *ⱽ (map -_ v) ≡ map -_ (a *ⱽ v) *ⱽ-map--ⱽ [] [] = refl *ⱽ-map--ⱽ (a ∷ as) (v ∷ vs) = begin (a ∷ as) *ⱽ map -_ (v ∷ vs) ≡⟨⟩ (a * - v) ∷ (as *ⱽ map -_ vs) ≡⟨ cong ((a * - v) ∷_) (*ⱽ-map--ⱽ as vs) ⟩ (a * - v) ∷ (map -_ (as *ⱽ vs)) ≡⟨ cong (_∷ (map -_ (as *ⱽ vs))) (a*-b≡-[a*b] a v) ⟩ (- (a * v)) ∷ (map -_ (as *ⱽ vs)) ≡⟨⟩ map -_ ((a ∷ as) *ⱽ (v ∷ vs)) ∎ -ⱽ≡-1ᶠ∘ⱽ : (v : Vec A n) → map -_ v ≡ (- 1ᶠ) ∘ⱽ v -ⱽ≡-1ᶠ∘ⱽ [] = refl -ⱽ≡-1ᶠ∘ⱽ (v ∷ vs) = begin map -_ (v ∷ vs) ≡⟨⟩ (- v) ∷ map -_ vs ≡⟨ cong₂ (_∷_) (-a≡-1ᶠ*a v) (-ⱽ≡-1ᶠ∘ⱽ vs) ⟩ (- 1ᶠ * v) ∷ (- 1ᶠ) ∘ⱽ vs ≡⟨⟩ (- 1ᶠ) ∘ⱽ (v ∷ vs) ∎ *ⱽ-assoc : (v₁ v₂ v₃ : Vec A n) → v₁ *ⱽ v₂ *ⱽ v₃ ≡ v₁ *ⱽ (v₂ *ⱽ v₃) *ⱽ-assoc [] [] [] = refl *ⱽ-assoc (v₁ ∷ vs₁) (v₂ ∷ vs₂) (v₃ ∷ vs₃) rewrite *ⱽ-assoc vs₁ vs₂ vs₃ | *-assoc v₁ v₂ v₃ = refl *ⱽ-comm : (v₁ v₂ : Vec A n) → v₁ *ⱽ v₂ ≡ v₂ *ⱽ v₁ *ⱽ-comm [] [] = refl *ⱽ-comm (v₁ ∷ vs₁) (v₂ ∷ vs₂) rewrite *ⱽ-comm vs₁ vs₂ | *-comm v₁ v₂ = refl *ⱽ-distr-+ⱽ : (a u v : Vec A n) → a *ⱽ (u +ⱽ v) ≡ a *ⱽ u +ⱽ a *ⱽ v *ⱽ-distr-+ⱽ [] [] [] = refl *ⱽ-distr-+ⱽ (a ∷ as) (u ∷ us) (v ∷ vs) rewrite *ⱽ-distr-+ⱽ as us vs | *-distr-+ a u v = refl *ⱽ-distr--ⱽ : (a u v : Vec A n) → a *ⱽ (u -ⱽ v) ≡ a *ⱽ u -ⱽ a *ⱽ v *ⱽ-distr--ⱽ a u v = begin a *ⱽ (u -ⱽ v) ≡⟨⟩ a *ⱽ (u +ⱽ (map (-_) v)) ≡⟨ *ⱽ-distr-+ⱽ a u (map -_ v) ⟩ a *ⱽ u +ⱽ a *ⱽ (map -_ v) ≡⟨ cong (a *ⱽ u +ⱽ_) (*ⱽ-map--ⱽ a v) ⟩ a *ⱽ u +ⱽ (map -_ (a *ⱽ v)) ≡⟨⟩ a *ⱽ u -ⱽ a *ⱽ v ∎ -- Homogeneity of degree 1 for linear maps *ⱽ∘ⱽ≡∘ⱽ*ⱽ : (c : A) (u v : Vec A n) → u *ⱽ c ∘ⱽ v ≡ c ∘ⱽ (u *ⱽ v) *ⱽ∘ⱽ≡∘ⱽ*ⱽ c [] [] = refl *ⱽ∘ⱽ≡∘ⱽ*ⱽ c (u ∷ us) (v ∷ vs) rewrite *ⱽ∘ⱽ≡∘ⱽ*ⱽ c us vs | *-assoc u c v | *-comm u c | sym (*-assoc c u v) = refl ∘ⱽ*ⱽ-assoc : (c : A) (u v : Vec A n) → c ∘ⱽ (u *ⱽ v) ≡ (c ∘ⱽ u) *ⱽ v ∘ⱽ*ⱽ-assoc c [] [] = refl ∘ⱽ*ⱽ-assoc c (u ∷ us) (v ∷ vs) = cong₂ (_∷_) (*-assoc c u v) (∘ⱽ*ⱽ-assoc c us vs) ∘ⱽ-distr-+ⱽ : (c : A) (u v : Vec A n) → c ∘ⱽ (u +ⱽ v) ≡ c ∘ⱽ u +ⱽ c ∘ⱽ v ∘ⱽ-distr-+ⱽ c [] [] = refl ∘ⱽ-distr-+ⱽ c (u ∷ us) (v ∷ vs) rewrite ∘ⱽ-distr-+ⱽ c us vs | *-distr-+ c u v = refl ∘ⱽ-comm : (a b : A) (v : Vec A n) → a ∘ⱽ (b ∘ⱽ v) ≡ b ∘ⱽ (a ∘ⱽ v) ∘ⱽ-comm a b [] = refl ∘ⱽ-comm a b (v ∷ vs) = cong₂ _∷_ (trans (trans (*-assoc a b v) (cong (_* v) (*-comm a b))) (sym (*-assoc b a v))) (∘ⱽ-comm a b vs) +ⱽ-flip-++ : (a b : Vec A n) → (c d : Vec A m) → (a ++ c) +ⱽ (b ++ d) ≡ a +ⱽ b ++ c +ⱽ d +ⱽ-flip-++ [] [] c d = refl +ⱽ-flip-++ (a ∷ as) (b ∷ bs) c d rewrite +ⱽ-flip-++ as bs c d = refl ∘ⱽ-distr-++ : (c : A) (a : Vec A n) (b : Vec A m) → c ∘ⱽ (a ++ b) ≡ (c ∘ⱽ a) ++ (c ∘ⱽ b) ∘ⱽ-distr-++ c [] b = refl ∘ⱽ-distr-++ c (a ∷ as) b rewrite ∘ⱽ-distr-++ c as b = refl replicate[a*b]≡a∘ⱽreplicate[b] : {n : ℕ} (a b : A) → replicate {n = n} (a * b) ≡ a ∘ⱽ replicate b replicate[a*b]≡a∘ⱽreplicate[b] {n = n} a b = sym (map-replicate (a *_) b n) replicate[a*b]≡b∘ⱽreplicate[a] : {n : ℕ} (a b : A) → replicate {n = n} (a * b) ≡ b ∘ⱽ replicate a replicate[a*b]≡b∘ⱽreplicate[a] a b = trans (cong replicate (*-comm a b)) (replicate[a*b]≡a∘ⱽreplicate[b] b a) sum[0ᶠⱽ]≡0ᶠ : {n : ℕ} → sum (replicate {n = n} 0ᶠ) ≡ 0ᶠ sum[0ᶠⱽ]≡0ᶠ {n = zero} = refl sum[0ᶠⱽ]≡0ᶠ {n = suc n} = begin sum (0ᶠ ∷ replicate {n = n} 0ᶠ) ≡⟨⟩ 0ᶠ + sum (replicate {n = n} 0ᶠ) ≡⟨ cong (0ᶠ +_) (sum[0ᶠⱽ]≡0ᶠ {n}) ⟩ 0ᶠ + 0ᶠ ≡⟨ 0ᶠ+0ᶠ≡0ᶠ ⟩ 0ᶠ ∎ sum-distr-+ⱽ : (v₁ v₂ : Vec A n) → sum (v₁ +ⱽ v₂) ≡ sum v₁ + sum v₂ sum-distr-+ⱽ [] [] = sym (0ᶠ+0ᶠ≡0ᶠ) sum-distr-+ⱽ (v₁ ∷ vs₁) (v₂ ∷ vs₂) rewrite sum-distr-+ⱽ vs₁ vs₂ | +-assoc (v₁ + v₂) (foldr (λ v → A) _+_ 0ᶠ vs₁) (foldr (λ v → A) _+_ 0ᶠ vs₂) | sym (+-assoc v₁ v₂ (foldr (λ v → A) _+_ 0ᶠ vs₁)) | +-comm v₂ (foldr (λ v → A) _+_ 0ᶠ vs₁) | +-assoc v₁ (foldr (λ v → A) _+_ 0ᶠ vs₁) v₂ | sym (+-assoc (v₁ + (foldr (λ v → A) _+_ 0ᶠ vs₁)) v₂ (foldr (λ v → A) _+_ 0ᶠ vs₂)) = refl sum[c∘ⱽv]≡c*sum[v] : (c : A) (v : Vec A n) → sum (c ∘ⱽ v) ≡ c * sum v sum[c∘ⱽv]≡c*sum[v] c [] = sym (a*0ᶠ≡0ᶠ c) sum[c∘ⱽv]≡c*sum[v] c (v ∷ vs) = begin sum (c ∘ⱽ (v ∷ vs)) ≡⟨⟩ c * v + sum (c ∘ⱽ vs) ≡⟨ cong (c * v +_) (sum[c∘ⱽv]≡c*sum[v] c vs) ⟩ c * v + c * sum vs ≡⟨ sym (*-distr-+ c v (sum vs)) ⟩ c * (v + sum vs) ≡⟨⟩ c * sum (v ∷ vs) ∎ ⟨⟩-comm : (v₁ v₂ : Vec A n) → ⟨ v₁ , v₂ ⟩ ≡ ⟨ v₂ , v₁ ⟩ ⟨⟩-comm v₁ v₂ = cong sum (*ⱽ-comm v₁ v₂) -- Should we show bilinearity? -- ∀ λ ∈ F, B(λv, w) ≡ B(v, λw) ≡ λB(v, w) -- B(v₁ + v₂, w) ≡ B(v₁, w) + B(v₂, w) ∧ B(v, w₁ + w₂) ≡ B(v, w₁) + B(v, w₂) -- Additivity in both arguments ⟨x+y,z⟩≡⟨x,z⟩+⟨y,z⟩ : (x y z : Vec A n) → ⟨ x +ⱽ y , z ⟩ ≡ (⟨ x , z ⟩) + (⟨ y , z ⟩) ⟨x+y,z⟩≡⟨x,z⟩+⟨y,z⟩ x y z = begin ⟨ x +ⱽ y , z ⟩ ≡⟨⟩ sum ((x +ⱽ y) *ⱽ z ) ≡⟨ cong sum (*ⱽ-comm (x +ⱽ y) z) ⟩ sum (z *ⱽ (x +ⱽ y)) ≡⟨ cong sum (*ⱽ-distr-+ⱽ z x y) ⟩ sum (z *ⱽ x +ⱽ z *ⱽ y) ≡⟨ sum-distr-+ⱽ (z *ⱽ x) (z *ⱽ y) ⟩ sum (z *ⱽ x) + sum (z *ⱽ y) ≡⟨⟩ ⟨ z , x ⟩ + ⟨ z , y ⟩ ≡⟨ cong (_+ ⟨ z , y ⟩) (⟨⟩-comm z x) ⟩ ⟨ x , z ⟩ + ⟨ z , y ⟩ ≡⟨ cong (⟨ x , z ⟩ +_ ) (⟨⟩-comm z y) ⟩ ⟨ x , z ⟩ + ⟨ y , z ⟩ ∎ ⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ : (x y z : Vec A n) → ⟨ x , y +ⱽ z ⟩ ≡ (⟨ x , y ⟩) + (⟨ x , z ⟩) ⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ x y z = begin ⟨ x , y +ⱽ z ⟩ ≡⟨ ⟨⟩-comm x (y +ⱽ z) ⟩ ⟨ y +ⱽ z , x ⟩ ≡⟨ ⟨x+y,z⟩≡⟨x,z⟩+⟨y,z⟩ y z x ⟩ ⟨ y , x ⟩ + ⟨ z , x ⟩ ≡⟨ cong (_+ ⟨ z , x ⟩) (⟨⟩-comm y x) ⟩ ⟨ x , y ⟩ + ⟨ z , x ⟩ ≡⟨ cong (⟨ x , y ⟩ +_ ) (⟨⟩-comm z x) ⟩ ⟨ x , y ⟩ + ⟨ x , z ⟩ ∎ ⟨a++b,c++d⟩≡⟨a,c⟩+⟨b,d⟩ : (a : Vec A m) → (b : Vec A n) → (c : Vec A m) → (d : Vec A n) → ⟨ a ++ b , c ++ d ⟩ ≡ ⟨ a , c ⟩ + ⟨ b , d ⟩ ⟨a++b,c++d⟩≡⟨a,c⟩+⟨b,d⟩ [] b [] d rewrite 0ᶠ+ (⟨ b , d ⟩) = refl ⟨a++b,c++d⟩≡⟨a,c⟩+⟨b,d⟩ (a ∷ as) b (c ∷ cs) d = begin ⟨ a ∷ as ++ b , c ∷ cs ++ d ⟩ ≡⟨⟩ (a * c) + ⟨ as ++ b , cs ++ d ⟩ ≡⟨ cong ((a * c) +_) (⟨a++b,c++d⟩≡⟨a,c⟩+⟨b,d⟩ as b cs d) ⟩ (a * c) + (⟨ as , cs ⟩ + ⟨ b , d ⟩) ≡⟨ +-assoc (a * c) ⟨ as , cs ⟩ ⟨ b , d ⟩ ⟩ ((a * c) + ⟨ as , cs ⟩) + ⟨ b , d ⟩ ≡⟨⟩ ⟨ a ∷ as , c ∷ cs ⟩ + ⟨ b , d ⟩ ∎ ⟨a,b⟩+⟨c,d⟩≡⟨a++c,b++d⟩ : (a b : Vec A m) → (c d : Vec A n) → ⟨ a , b ⟩ + ⟨ c , d ⟩ ≡ ⟨ a ++ c , b ++ d ⟩ ⟨a,b⟩+⟨c,d⟩≡⟨a++c,b++d⟩ a b c d = sym (⟨a++b,c++d⟩≡⟨a,c⟩+⟨b,d⟩ a c b d)
{ "alphanum_fraction": 0.4030042918, "avg_line_length": 35.4372623574, "ext": "agda", "hexsha": "af38b72a60338eefc2a8905148212700790ba90a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z", "max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "turion/functional-linear-algebra", "max_forks_repo_path": "src/FLA/Algebra/LinearAlgebra/Properties.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "turion/functional-linear-algebra", "max_issues_repo_path": "src/FLA/Algebra/LinearAlgebra/Properties.agda", "max_line_length": 89, "max_stars_count": 21, "max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "turion/functional-linear-algebra", "max_stars_repo_path": "src/FLA/Algebra/LinearAlgebra/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z", "num_tokens": 5529, "size": 9320 }
module Problem1 where -- 1.1 data Nat : Set where zero : Nat suc : Nat -> Nat -- 1.2 infixl 60 _+_ _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- 1.3 infixl 70 _*_ _*_ : Nat -> Nat -> Nat zero * m = zero suc n * m = m + n * m -- 1.4 infix 30 _==_ data _==_ {A : Set}(x : A) : A -> Set where refl : x == x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl assoc : (x y z : Nat) -> x + (y + z) == (x + y) + z assoc zero y z = refl assoc (suc x) y z = cong suc (assoc x y z) -- Alternative solution using 'with'. Note that in order -- to be able to pattern match on the induction hypothesis -- we have to abstract (using with) over the left hand side -- of the equation. assoc' : (x y z : Nat) -> x + (y + z) == (x + y) + z assoc' zero y z = refl assoc' (suc x) y z with x + (y + z) | assoc x y z ... | .((x + y) + z) | refl = refl
{ "alphanum_fraction": 0.5145945946, "avg_line_length": 18.8775510204, "ext": "agda", "hexsha": "21f1196d3561e0d31e897f3c05729118caca04c0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/SummerSchool07/Solutions/Problem1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/SummerSchool07/Solutions/Problem1.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/SummerSchool07/Solutions/Problem1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 363, "size": 925 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Solver for monoid equalities ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Solver.Monoid {m₁ m₂} (M : Monoid m₁ m₂) where open import Data.Fin as Fin hiding (_≟_) import Data.Fin.Properties as Fin open import Data.List.Base hiding (lookup) import Data.List.Relation.Binary.Equality.DecPropositional as ListEq open import Data.Maybe as Maybe using (Maybe; decToMaybe; From-just; from-just) open import Data.Nat.Base using (ℕ) open import Data.Product open import Data.Vec using (Vec; lookup) open import Function using (_∘_; _$_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality as P using (_≡_) import Relation.Binary.Reflection open import Relation.Nullary import Relation.Nullary.Decidable as Dec open Monoid M open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Monoid expressions -- There is one constructor for every operation, plus one for -- variables; there may be at most n variables. infixr 5 _⊕_ data Expr (n : ℕ) : Set where var : Fin n → Expr n id : Expr n _⊕_ : Expr n → Expr n → Expr n -- An environment contains one value for every variable. Env : ℕ → Set _ Env n = Vec Carrier n -- The semantics of an expression is a function from an environment to -- a value. ⟦_⟧ : ∀ {n} → Expr n → Env n → Carrier ⟦ var x ⟧ ρ = lookup ρ x ⟦ id ⟧ ρ = ε ⟦ e₁ ⊕ e₂ ⟧ ρ = ⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ ------------------------------------------------------------------------ -- Normal forms -- A normal form is a list of variables. Normal : ℕ → Set Normal n = List (Fin n) -- The semantics of a normal form. ⟦_⟧⇓ : ∀ {n} → Normal n → Env n → Carrier ⟦ [] ⟧⇓ ρ = ε ⟦ x ∷ nf ⟧⇓ ρ = lookup ρ x ∙ ⟦ nf ⟧⇓ ρ -- A normaliser. normalise : ∀ {n} → Expr n → Normal n normalise (var x) = x ∷ [] normalise id = [] normalise (e₁ ⊕ e₂) = normalise e₁ ++ normalise e₂ -- The normaliser is homomorphic with respect to _++_/_∙_. homomorphic : ∀ {n} (nf₁ nf₂ : Normal n) (ρ : Env n) → ⟦ nf₁ ++ nf₂ ⟧⇓ ρ ≈ (⟦ nf₁ ⟧⇓ ρ ∙ ⟦ nf₂ ⟧⇓ ρ) homomorphic [] nf₂ ρ = begin ⟦ nf₂ ⟧⇓ ρ ≈⟨ sym $ identityˡ _ ⟩ ε ∙ ⟦ nf₂ ⟧⇓ ρ ∎ homomorphic (x ∷ nf₁) nf₂ ρ = begin lookup ρ x ∙ ⟦ nf₁ ++ nf₂ ⟧⇓ ρ ≈⟨ ∙-congˡ (homomorphic nf₁ nf₂ ρ) ⟩ lookup ρ x ∙ (⟦ nf₁ ⟧⇓ ρ ∙ ⟦ nf₂ ⟧⇓ ρ) ≈⟨ sym $ assoc _ _ _ ⟩ lookup ρ x ∙ ⟦ nf₁ ⟧⇓ ρ ∙ ⟦ nf₂ ⟧⇓ ρ ∎ -- The normaliser preserves the semantics of the expression. normalise-correct : ∀ {n} (e : Expr n) (ρ : Env n) → ⟦ normalise e ⟧⇓ ρ ≈ ⟦ e ⟧ ρ normalise-correct (var x) ρ = begin lookup ρ x ∙ ε ≈⟨ identityʳ _ ⟩ lookup ρ x ∎ normalise-correct id ρ = begin ε ∎ normalise-correct (e₁ ⊕ e₂) ρ = begin ⟦ normalise e₁ ++ normalise e₂ ⟧⇓ ρ ≈⟨ homomorphic (normalise e₁) (normalise e₂) ρ ⟩ ⟦ normalise e₁ ⟧⇓ ρ ∙ ⟦ normalise e₂ ⟧⇓ ρ ≈⟨ ∙-cong (normalise-correct e₁ ρ) (normalise-correct e₂ ρ) ⟩ ⟦ e₁ ⟧ ρ ∙ ⟦ e₂ ⟧ ρ ∎ ------------------------------------------------------------------------ -- "Tactics" open module R = Relation.Binary.Reflection setoid var ⟦_⟧ (⟦_⟧⇓ ∘ normalise) normalise-correct public using (solve; _⊜_) -- We can decide if two normal forms are /syntactically/ equal. infix 5 _≟_ _≟_ : ∀ {n} → Decidable {A = Normal n} _≡_ nf₁ ≟ nf₂ = Dec.map′ ≋⇒≡ ≡⇒≋ (nf₁ ≋? nf₂) where open ListEq Fin._≟_ -- We can also give a sound, but not necessarily complete, procedure -- for determining if two expressions have the same semantics. prove′ : ∀ {n} (e₁ e₂ : Expr n) → Maybe (∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ) prove′ e₁ e₂ = Maybe.map lemma $ decToMaybe (normalise e₁ ≟ normalise e₂) where lemma : normalise e₁ ≡ normalise e₂ → ∀ ρ → ⟦ e₁ ⟧ ρ ≈ ⟦ e₂ ⟧ ρ lemma eq ρ = R.prove ρ e₁ e₂ (begin ⟦ normalise e₁ ⟧⇓ ρ ≡⟨ P.cong (λ e → ⟦ e ⟧⇓ ρ) eq ⟩ ⟦ normalise e₂ ⟧⇓ ρ ∎) -- This procedure can be combined with from-just. prove : ∀ n (es : Expr n × Expr n) → From-just (uncurry prove′ es) prove _ = from-just ∘ uncurry prove′
{ "alphanum_fraction": 0.5662423385, "avg_line_length": 30.5179856115, "ext": "agda", "hexsha": "266add0fe6419395aff1794fe89820518e7b48b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Monoid.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Solver/Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1541, "size": 4242 }
open import Oscar.Prelude open import Oscar.Data.¶ open import Oscar.Data.Fin open import Oscar.Data.Term module Oscar.Data.Substitunction where module Substitunction {𝔭} (𝔓 : Ø 𝔭) where open Term 𝔓 Substitunction : ¶ → ¶ → Ø 𝔭 Substitunction m n = ¶⟨< m ⟩ → Term n module SubstitunctionOperator {𝔭} (𝔓 : Ø 𝔭) where open Substitunction 𝔓 _⊸_ = Substitunction
{ "alphanum_fraction": 0.7108753316, "avg_line_length": 17.9523809524, "ext": "agda", "hexsha": "7ef33a57f6ed07d03e5a1f1c8cfddc558419db28", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Substitunction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Substitunction.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Substitunction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 137, "size": 377 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Foundations.HLevels module Cubical.Algebra.Magma.Construct.Free {ℓ} (Aˢ : hSet ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Magma open import Cubical.Data.Empty.Polymorphic open import Cubical.Data.Prod A = ⟨ Aˢ ⟩ isSetA = Aˢ .snd ------------------------------------------------------------------------ -- The free magma type data FreeM : Type ℓ where inj : A → FreeM _•_ : Op₂ FreeM ------------------------------------------------------------------------ -- Proof the free magma is a set module FreeMPath where Cover : FreeM → FreeM → Type ℓ Cover (inj x) (inj y) = x ≡ y Cover (inj x) (y₁ • y₂) = ⊥ Cover (x₁ • x₂) (inj y) = ⊥ Cover (x₁ • x₂) (y₁ • y₂) = Cover x₁ y₁ × Cover x₂ y₂ isPropCover : ∀ x y → isProp (Cover x y) isPropCover (inj x) (inj y) = isSetA x y isPropCover (inj x) (y₁ • y₂) = isProp⊥ isPropCover (x₁ • x₂) (inj y) = isProp⊥ isPropCover (x₁ • x₂) (y₁ • y₂) = isPropProd (isPropCover x₁ y₁) (isPropCover x₂ y₂) reflCover : ∀ x → Cover x x reflCover (inj x) = refl reflCover (x • y) = reflCover x , reflCover y encode : ∀ x y → x ≡ y → Cover x y encode x _ = J (λ y _ → Cover x y) (reflCover x) encodeRefl : ∀ x → encode x x refl ≡ reflCover x encodeRefl x = JRefl (λ y _ → Cover x y) (reflCover x) decode : ∀ x y → Cover x y → x ≡ y decode (inj x) (inj y) p = cong inj p decode (inj x) (y₁ • y₂) () decode (x₁ • x₂) (inj y) () decode (x₁ • x₂) (y₁ • y₂) (p , q) = cong₂ _•_ (decode x₁ y₁ p) (decode x₂ y₂ q) decodeRefl : ∀ x → decode x x (reflCover x) ≡ refl decodeRefl (inj x) = refl decodeRefl (x • y) i j = decodeRefl x i j • decodeRefl y i j decodeEncode : ∀ x y → (p : x ≡ y) → decode x y (encode x y p) ≡ p decodeEncode x _ = J (λ y p → decode x y (encode x y p) ≡ p) (cong (decode x x) (encodeRefl x) ? decodeRefl x) isSetFreeM : isSet FreeM isSetFreeM x y = isOfHLevelRetract 1 (FreeMPath.encode x y) (FreeMPath.decode x y) (FreeMPath.decodeEncode x y) (FreeMPath.isPropCover x y) ------------------------------------------------------------------------ -- The free magma FreeM-isMagma : IsMagma FreeM _•_ FreeM-isMagma = record { is-set = isSetFreeM } FreeMagma : Magma ℓ FreeMagma = record { isMagma = FreeM-isMagma }
{ "alphanum_fraction": 0.5747078464, "avg_line_length": 28.8674698795, "ext": "agda", "hexsha": "5a9b5c5e5a871d83e76ec0f8919a1736ec1c14b1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Free.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Free.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Free.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 877, "size": 2396 }
open import SOAS.Common open import SOAS.Families.Core open import Categories.Object.Initial open import SOAS.Coalgebraic.Strength import SOAS.Metatheory.MetaAlgebra -- Traversals parametrised by a pointed coalgebra module SOAS.Metatheory.Traversal {T : Set} (⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (⅀:Str : Strength ⅀F) (𝔛 : Familyₛ) (open SOAS.Metatheory.MetaAlgebra ⅀F 𝔛) (𝕋:Init : Initial 𝕄etaAlgebras) where open import SOAS.Context open import SOAS.Variable open import SOAS.Abstract.Hom import SOAS.Abstract.Coalgebra as →□ ; open →□.Sorted import SOAS.Abstract.Box as □ ; open □.Sorted open import SOAS.Metatheory.Algebra ⅀F open import SOAS.Metatheory.Semantics ⅀F ⅀:Str 𝔛 𝕋:Init open Strength ⅀:Str private variable Γ Δ Θ Π : Ctx α β : T 𝒫 𝒬 𝒜 : Familyₛ -- Parametrised interpretation into an internal hom module Traversal (𝒫ᴮ : Coalgₚ 𝒫)(𝑎𝑙𝑔 : ⅀ 𝒜 ⇾̣ 𝒜) (φ : 𝒫 ⇾̣ 𝒜)(χ : 𝔛 ⇾̣ 〖 𝒜 , 𝒜 〗) where open Coalgₚ 𝒫ᴮ -- Under the assumptions 𝒜 and 〖 𝒫 , 𝒜 〗 are both meta-algebras 𝒜ᵃ : MetaAlg 𝒜 𝒜ᵃ = record { 𝑎𝑙𝑔 = 𝑎𝑙𝑔 ; 𝑣𝑎𝑟 = λ x → φ (η x) ; 𝑚𝑣𝑎𝑟 = χ } Travᵃ : MetaAlg 〖 𝒫 , 𝒜 〗 Travᵃ = record { 𝑎𝑙𝑔 = λ t σ → 𝑎𝑙𝑔 (str 𝒫ᴮ 𝒜 t σ) ; 𝑣𝑎𝑟 = λ x σ → φ (σ x) ; 𝑚𝑣𝑎𝑟 = λ 𝔪 ε σ → χ 𝔪 (λ 𝔫 → ε 𝔫 σ) } -- 〖 𝒫 , 𝒜 〗 is also a pointed □-coalgebra Travᵇ : Coalg 〖 𝒫 , 𝒜 〗 Travᵇ = record { r = λ h ρ σ → h (σ ∘ ρ) ; counit = refl ; comult = refl } Travᴮ : Coalgₚ 〖 𝒫 , 𝒜 〗 Travᴮ = record { ᵇ = Travᵇ ; η = λ x σ → φ (σ x) ; r∘η = refl } open Semantics Travᵃ public renaming (𝕤𝕖𝕞 to 𝕥𝕣𝕒𝕧) -- Traversal-specific homomorphism properties that incorporate a substitution 𝕥⟨𝕧⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{x : ℐ α Γ} → 𝕥𝕣𝕒𝕧 (𝕧𝕒𝕣 x) σ ≡ φ (σ x) 𝕥⟨𝕧⟩ {σ = σ} = cong (λ - → - σ) ⟨𝕧⟩ 𝕥⟨𝕞⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → 𝕥𝕣𝕒𝕧 (𝕞𝕧𝕒𝕣 𝔪 ε) σ ≡ χ 𝔪 (λ p → 𝕥𝕣𝕒𝕧 (ε p) σ) 𝕥⟨𝕞⟩ {σ = σ} = cong (λ - → - σ) ⟨𝕞⟩ 𝕥⟨𝕒⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{t : ⅀ 𝕋 α Γ} → 𝕥𝕣𝕒𝕧 (𝕒𝕝𝕘 t) σ ≡ 𝑎𝑙𝑔 (str 𝒫ᴮ 𝒜 (⅀₁ 𝕥𝕣𝕒𝕧 t) σ) 𝕥⟨𝕒⟩ {σ = σ} = cong (λ - → - σ) ⟨𝕒⟩ -- Congruence in the two arguments of 𝕥𝕣𝕒𝕧 𝕥≈₁ : {σ : Γ ~[ 𝒫 ]↝ Δ}{t₁ t₂ : 𝕋 α Γ} → t₁ ≡ t₂ → 𝕥𝕣𝕒𝕧 t₁ σ ≡ 𝕥𝕣𝕒𝕧 t₂ σ 𝕥≈₁ {σ = σ} p = cong (λ - → 𝕥𝕣𝕒𝕧 - σ) p 𝕥≈₂ : {σ₁ σ₂ : Γ ~[ 𝒫 ]↝ Δ}{t : 𝕋 α Γ} → ({τ : T}{x : ℐ τ Γ} → σ₁ x ≡ σ₂ x) → 𝕥𝕣𝕒𝕧 t σ₁ ≡ 𝕥𝕣𝕒𝕧 t σ₂ 𝕥≈₂ {t = t} p = cong (𝕥𝕣𝕒𝕧 t) (dext′ p) -- A pointed meta-Λ-algebra induces 𝕒𝕝𝕘 traversal into □ 𝒜 module □Traversal {𝒜} (𝒜ᵃ : MetaAlg 𝒜) = Traversal ℐᴮ (MetaAlg.𝑎𝑙𝑔 𝒜ᵃ) (MetaAlg.𝑣𝑎𝑟 𝒜ᵃ) (MetaAlg.𝑚𝑣𝑎𝑟 𝒜ᵃ) -- Corollary: □ lifts to an endofunctor on pointed meta-Λ-algebras □ᵃ : (𝒜ᵃ : MetaAlg 𝒜) → MetaAlg (□ 𝒜) □ᵃ = □Traversal.Travᵃ -- Helper records for proving equality of maps f, g out of 𝕋, -- with 0, 1 or 2 parameters record MapEq₀ (𝒜 : Familyₛ)(f g : 𝕋 ⇾̣ 𝒜) : Set where field ᵃ : MetaAlg 𝒜 open Semantics ᵃ open 𝒜 field f⟨𝑣⟩ : {x : ℐ α Γ} → f (𝕧𝕒𝕣 x) ≡ 𝑣𝑎𝑟 x f⟨𝑚⟩ : {𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → f (𝕞𝕧𝕒𝕣 𝔪 ε) ≡ 𝑚𝑣𝑎𝑟 𝔪 (f ∘ ε) f⟨𝑎⟩ : {t : ⅀ 𝕋 α Γ} → f (𝕒𝕝𝕘 t) ≡ 𝑎𝑙𝑔 (⅀₁ f t) g⟨𝑣⟩ : {x : ℐ α Γ} → g (𝕧𝕒𝕣 x) ≡ 𝑣𝑎𝑟 x g⟨𝑚⟩ : {𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → g (𝕞𝕧𝕒𝕣 𝔪 ε) ≡ 𝑚𝑣𝑎𝑟 𝔪 (g ∘ ε) g⟨𝑎⟩ : {t : ⅀ 𝕋 α Γ} → g (𝕒𝕝𝕘 t) ≡ 𝑎𝑙𝑔 (⅀₁ g t) fᵃ : MetaAlg⇒ 𝕋ᵃ ᵃ f fᵃ = record { ⟨𝑎𝑙𝑔⟩ = f⟨𝑎⟩ ; ⟨𝑣𝑎𝑟⟩ = f⟨𝑣⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ = f⟨𝑚⟩ } gᵃ : MetaAlg⇒ 𝕋ᵃ ᵃ g gᵃ = record { ⟨𝑎𝑙𝑔⟩ = g⟨𝑎⟩ ; ⟨𝑣𝑎𝑟⟩ = g⟨𝑣⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ = g⟨𝑚⟩ } ≈ : (t : 𝕋 α Γ) → f t ≡ g t ≈ t = eq fᵃ gᵃ t record MapEq₁ (𝒫ᴮ : Coalgₚ 𝒫)(𝑎𝑙𝑔 : ⅀ 𝒜 ⇾̣ 𝒜) (f g : 𝕋 ⇾̣ 〖 𝒫 , 𝒜 〗) : Set where field φ : 𝒫 ⇾̣ 𝒜 χ : 𝔛 ⇾̣ 〖 𝒜 , 𝒜 〗 open Traversal 𝒫ᴮ 𝑎𝑙𝑔 φ χ field f⟨𝑣⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{x : ℐ α Γ} → f (𝕧𝕒𝕣 x) σ ≡ φ (σ x) f⟨𝑚⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → f (𝕞𝕧𝕒𝕣 𝔪 ε) σ ≡ χ 𝔪 (λ p → f (ε p) σ) f⟨𝑎⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{t : ⅀ 𝕋 α Γ} → f (𝕒𝕝𝕘 t) σ ≡ 𝑎𝑙𝑔 (str 𝒫ᴮ 𝒜 (⅀₁ f t) σ) g⟨𝑣⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{x : ℐ α Γ} → g (𝕧𝕒𝕣 x) σ ≡ φ (σ x) g⟨𝑚⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → g (𝕞𝕧𝕒𝕣 𝔪 ε) σ ≡ χ 𝔪 (λ p → g (ε p) σ) g⟨𝑎⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{t : ⅀ 𝕋 α Γ} → g (𝕒𝕝𝕘 t) σ ≡ 𝑎𝑙𝑔 (str 𝒫ᴮ 𝒜 (⅀₁ g t) σ) fᵃ : MetaAlg⇒ 𝕋ᵃ Travᵃ f fᵃ = record { ⟨𝑎𝑙𝑔⟩ = dext′ f⟨𝑎⟩ ; ⟨𝑣𝑎𝑟⟩ = dext′ f⟨𝑣⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ = dext′ f⟨𝑚⟩ } gᵃ : MetaAlg⇒ 𝕋ᵃ Travᵃ g gᵃ = record { ⟨𝑎𝑙𝑔⟩ = dext′ g⟨𝑎⟩ ; ⟨𝑣𝑎𝑟⟩ = dext′ g⟨𝑣⟩ ; ⟨𝑚𝑣𝑎𝑟⟩ = dext′ g⟨𝑚⟩ } ≈ : {σ : Γ ~[ 𝒫 ]↝ Δ}(t : 𝕋 α Γ) → f t σ ≡ g t σ ≈ {σ = σ} t = cong (λ - → - σ) (eq fᵃ gᵃ t) record MapEq₂ (𝒫ᴮ : Coalgₚ 𝒫)(𝒬ᴮ : Coalgₚ 𝒬)(𝑎𝑙𝑔 : ⅀ 𝒜 ⇾̣ 𝒜) (f g : 𝕋 ⇾̣ 〖 𝒫 , 〖 𝒬 , 𝒜 〗 〗) : Set where field φ : 𝒬 ⇾̣ 𝒜 ϕ : 𝒫 ⇾̣ 〖 𝒬 , 𝒜 〗 χ : 𝔛 ⇾̣ 〖 𝒜 , 𝒜 〗 open Traversal 𝒫ᴮ (Traversal.𝒜.𝑎𝑙𝑔 𝒬ᴮ 𝑎𝑙𝑔 φ χ) ϕ (λ 𝔪 ε σ → χ 𝔪 (λ 𝔫 → ε 𝔫 σ)) field f⟨𝑣⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}{x : ℐ α Γ} → f (𝕧𝕒𝕣 x) σ ς ≡ ϕ (σ x) ς f⟨𝑚⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}{𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → f (𝕞𝕧𝕒𝕣 𝔪 ε) σ ς ≡ χ 𝔪 (λ 𝔫 → f (ε 𝔫) σ ς) f⟨𝑎⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}{t : ⅀ 𝕋 α Γ} → f (𝕒𝕝𝕘 t) σ ς ≡ 𝑎𝑙𝑔 (str 𝒬ᴮ 𝒜 (str 𝒫ᴮ 〖 𝒬 , 𝒜 〗 (⅀₁ f t) σ) ς) g⟨𝑣⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}{x : ℐ α Γ} → g (𝕧𝕒𝕣 x) σ ς ≡ ϕ (σ x) ς g⟨𝑚⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}{𝔪 : 𝔛 α Π}{ε : Π ~[ 𝕋 ]↝ Γ} → g (𝕞𝕧𝕒𝕣 𝔪 ε) σ ς ≡ χ 𝔪 (λ 𝔫 → g (ε 𝔫) σ ς) g⟨𝑎⟩ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}{t : ⅀ 𝕋 α Γ} → g (𝕒𝕝𝕘 t) σ ς ≡ 𝑎𝑙𝑔 (str 𝒬ᴮ 𝒜 (str 𝒫ᴮ 〖 𝒬 , 𝒜 〗 (⅀₁ g t) σ) ς) fᵃ : MetaAlg⇒ 𝕋ᵃ Travᵃ f fᵃ = record { ⟨𝑎𝑙𝑔⟩ = dext′ (dext′ f⟨𝑎⟩) ; ⟨𝑣𝑎𝑟⟩ = dext′ (dext′ f⟨𝑣⟩) ; ⟨𝑚𝑣𝑎𝑟⟩ = dext′ (dext′ f⟨𝑚⟩) } gᵃ : MetaAlg⇒ 𝕋ᵃ Travᵃ g gᵃ = record { ⟨𝑎𝑙𝑔⟩ = dext′ (dext′ g⟨𝑎⟩) ; ⟨𝑣𝑎𝑟⟩ = dext′ (dext′ g⟨𝑣⟩) ; ⟨𝑚𝑣𝑎𝑟⟩ = dext′ (dext′ g⟨𝑚⟩) } ≈ : {σ : Γ ~[ 𝒫 ]↝ Δ}{ς : Δ ~[ 𝒬 ]↝ Θ}(t : 𝕋 α Γ) → f t σ ς ≡ g t σ ς ≈ {σ = σ}{ς} t = cong (λ - → - σ ς) (eq fᵃ gᵃ t) -- Interaction of traversal and interpretation module _ (𝒫ᴮ : Coalgₚ 𝒫)(𝒜ᵃ : MetaAlg 𝒜)(φ : 𝒫 ⇾̣ 𝒜) where open MetaAlg 𝒜ᵃ open Coalgₚ 𝒫ᴮ open Semantics 𝒜ᵃ open Traversal 𝒫ᴮ 𝑎𝑙𝑔 φ 𝑚𝑣𝑎𝑟 using (𝕥𝕣𝕒𝕧 ; 𝕥⟨𝕒⟩ ; 𝕥⟨𝕧⟩ ; 𝕥⟨𝕞⟩) open ≡-Reasoning -- Traversal with the point of 𝒫 is the same as direct interpretation 𝕥𝕣𝕒𝕧-η≈𝕤𝕖𝕞 : (φ∘η≈𝑣𝑎𝑟 : ∀{α Γ}{v : ℐ α Γ} → φ (η v) ≡ 𝑣𝑎𝑟 v){t : 𝕋 α Γ} → 𝕥𝕣𝕒𝕧 t η ≡ 𝕤𝕖𝕞 t 𝕥𝕣𝕒𝕧-η≈𝕤𝕖𝕞 φ∘η≈𝑣𝑎𝑟 {t = t} = Semantics.eq 𝒜ᵃ (record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → trans 𝕥⟨𝕒⟩ (cong 𝑎𝑙𝑔 (begin str 𝒫ᴮ 𝒜 (⅀₁ 𝕥𝕣𝕒𝕧 t) η ≡⟨ str-nat₁ (ηᴮ⇒ 𝒫ᴮ) (⅀₁ 𝕥𝕣𝕒𝕧 t) id ⟩ str ℐᴮ 𝒜 (⅀₁ (λ{ h ρ → h (η ∘ ρ)}) ((⅀₁ 𝕥𝕣𝕒𝕧 t))) id ≡⟨ str-unit 𝒜 ((⅀₁ (λ{ h ρ → h (η ∘ ρ)}) ((⅀₁ 𝕥𝕣𝕒𝕧 t)))) ⟩ ⅀₁ (i 𝒜) (⅀₁ (λ { h ρ → h (η ∘ ρ) }) (⅀₁ 𝕥𝕣𝕒𝕧 t)) ≡˘⟨ trans ⅀.homomorphism ⅀.homomorphism ⟩ ⅀₁ (λ t → 𝕥𝕣𝕒𝕧 t η) t ∎))} ; ⟨𝑣𝑎𝑟⟩ = λ{ {v = v} → trans 𝕥⟨𝕧⟩ φ∘η≈𝑣𝑎𝑟 } ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪}{ε} → 𝕥⟨𝕞⟩ } }) 𝕤𝕖𝕞ᵃ⇒ t -- Traversal with the point of 𝒫 into 𝕋 is the identity 𝕥𝕣𝕒𝕧-η≈id : (𝒫ᴮ : Coalgₚ 𝒫)(open Coalgₚ 𝒫ᴮ)(φ : 𝒫 ⇾̣ 𝕋) (φ∘η≈𝑣𝑎𝑟 : ∀{α Γ}{v : ℐ α Γ} → φ (η v) ≡ 𝕧𝕒𝕣 v){t : 𝕋 α Γ} → Traversal.𝕥𝕣𝕒𝕧 𝒫ᴮ 𝕒𝕝𝕘 φ 𝕞𝕧𝕒𝕣 t η ≡ t 𝕥𝕣𝕒𝕧-η≈id 𝒫ᴮ φ φ∘η≈𝑣𝑎𝑟 = trans (𝕥𝕣𝕒𝕧-η≈𝕤𝕖𝕞 𝒫ᴮ 𝕋ᵃ φ φ∘η≈𝑣𝑎𝑟) 𝕤𝕖𝕞-id -- Corollaries for ℐ-parametrised traversals □𝕥𝕣𝕒𝕧-id≈𝕤𝕖𝕞 : (𝒜ᵃ : MetaAlg 𝒜){t : 𝕋 α Γ} → □Traversal.𝕥𝕣𝕒𝕧 𝒜ᵃ t id ≡ Semantics.𝕤𝕖𝕞 𝒜ᵃ t □𝕥𝕣𝕒𝕧-id≈𝕤𝕖𝕞 𝒜ᵃ {t} = 𝕥𝕣𝕒𝕧-η≈𝕤𝕖𝕞 ℐᴮ 𝒜ᵃ (MetaAlg.𝑣𝑎𝑟 𝒜ᵃ) refl □𝕥𝕣𝕒𝕧-id≈id : {t : 𝕋 α Γ} → □Traversal.𝕥𝕣𝕒𝕧 𝕋ᵃ t id ≡ t □𝕥𝕣𝕒𝕧-id≈id = 𝕥𝕣𝕒𝕧-η≈id ℐᴮ 𝕧𝕒𝕣 refl
{ "alphanum_fraction": 0.473529804, "avg_line_length": 34.2420091324, "ext": "agda", "hexsha": "23385b98dc79a7c64c7623c9cb8519dc1f4dccee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "k4rtik/agda-soas", "max_forks_repo_path": "SOAS/Metatheory/Traversal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "k4rtik/agda-soas", "max_issues_repo_path": "SOAS/Metatheory/Traversal.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "k4rtik/agda-soas", "max_stars_repo_path": "SOAS/Metatheory/Traversal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5767, "size": 7499 }
module Category.Functor.Const where open import Category.Functor using (RawFunctor ; module RawFunctor ) open import Category.Functor.Lawful open import Relation.Binary.PropositionalEquality using (refl) Const : ∀ {l₁ l₂} (R : Set l₂) (_ : Set l₁) → Set l₂ Const R _ = R constFunctor : ∀ {l₁} {R : Set l₁} → RawFunctor (Const {l₁} R) constFunctor = record { _<$>_ = λ _ z → z } constLawfulFunctor : ∀ {l₁} {R : Set l₁} → LawfulFunctorImp (constFunctor {l₁} {R}) constLawfulFunctor = record { <$>-identity = refl ; <$>-compose = refl }
{ "alphanum_fraction": 0.6763636364, "avg_line_length": 36.6666666667, "ext": "agda", "hexsha": "37295079d21f39350f7cf621adad431b4082833b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Category/Functor/Const.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Category/Functor/Const.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Category/Functor/Const.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 184, "size": 550 }
module MLib.Algebra.PropertyCode where open import MLib.Prelude open import MLib.Finite open import MLib.Algebra.PropertyCode.RawStruct public open import MLib.Algebra.PropertyCode.Core as Core public using (Property; Properties; Code; IsSubcode; _∈ₚ_; _⇒ₚ_; ⟦_⟧P) renaming (⇒ₚ-weaken to weaken) open Core.PropKind public open Core.PropertyC using (_on_; _is_for_; _⟨_⟩ₚ_) public import Relation.Unary as U using (Decidable) open import Relation.Binary as B using (Setoid) open import Data.List.All as All using (All; _∷_; []) public open import Data.List.Any using (Any; here; there) open import Data.Bool using (_∨_) open import Category.Applicative record Struct {k} (code : Code k) c ℓ : Set (sucˡ (c ⊔ˡ ℓ ⊔ˡ k)) where open Code code public field rawStruct : RawStruct K c ℓ Π : Properties code open RawStruct rawStruct public open Properties Π public field reify : ∀ {π} → π ∈ₚ Π → ⟦ π ⟧P rawStruct Hasₚ : (Π′ : Properties code) → Set Hasₚ Π′ = Π′ ⇒ₚ Π Has : List (Property K) → Set Has = Hasₚ ∘ Core.fromList Has₁ : Property K → Set Has₁ π = Hasₚ (Core.singleton π) use : ∀ π ⦃ hasπ : π ∈ₚ Π ⦄ → ⟦ π ⟧P rawStruct use _ ⦃ hasπ ⦄ = reify hasπ from : ∀ {Π′} (hasΠ′ : Hasₚ Π′) π ⦃ hasπ : π ∈ₚ Π′ ⦄ → ⟦ π ⟧P rawStruct from hasΠ′ _ ⦃ hasπ ⦄ = use _ ⦃ Core.⇒ₚ-MP hasπ hasΠ′ ⦄ substruct : ∀ {k′} {code′ : Code k′} → IsSubcode code′ code → Struct code′ c ℓ substruct isSub = record { rawStruct = record { Carrier = Carrier ; _≈_ = _≈_ ; appOp = appOp ∘ Core.subK→supK isSub ; isRawStruct = isRawStruct′ } ; Π = Core.subcodeProperties isSub Π ; reify = Core.reinterpret isSub rawStruct isRawStruct′ _ ∘ reify ∘ Core.fromSubcode isSub } where isRawStruct′ = record { isEquivalence = isEquivalence ; congⁿ = congⁿ ∘ Core.subK→supK isSub } toSubstruct : ∀ {k′} {code′ : Code k′} (isSub : IsSubcode code′ code) → ∀ {Π′ : Properties code′} (hasΠ′ : Hasₚ (Core.supcodeProperties isSub Π′)) → Π′ ⇒ₚ Core.subcodeProperties isSub Π toSubstruct isSub hasΠ′ = Core.→ₚ-⇒ₚ λ π hasπ → Core.fromSupcode isSub (Core.⇒ₚ-→ₚ hasΠ′ (Core.mapProperty (Core.subK→supK isSub) π) (Core.fromSupcode′ isSub hasπ))
{ "alphanum_fraction": 0.645631068, "avg_line_length": 29.0512820513, "ext": "agda", "hexsha": "d01d571db09094efe8ff066e174a27752ae62e47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Algebra/PropertyCode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Algebra/PropertyCode.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Algebra/PropertyCode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 860, "size": 2266 }
{-# OPTIONS --safe #-} module Cubical.Data.FinData.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; _·_; +-assoc) open import Cubical.Data.Bool.Base open import Cubical.Relation.Nullary private variable ℓ : Level A B : Type ℓ data Fin : ℕ → Type₀ where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) -- useful patterns pattern one = suc zero pattern two = suc one toℕ : ∀ {n} → Fin n → ℕ toℕ zero = 0 toℕ (suc i) = suc (toℕ i) fromℕ : (n : ℕ) → Fin (suc n) fromℕ zero = zero fromℕ (suc n) = suc (fromℕ n) toFromId : ∀ (n : ℕ) → toℕ (fromℕ n) ≡ n toFromId zero = refl toFromId (suc n) = cong suc (toFromId n) ¬Fin0 : ¬ Fin 0 ¬Fin0 () _==_ : ∀ {n} → Fin n → Fin n → Bool zero == zero = true zero == suc _ = false suc _ == zero = false suc m == suc n = m == n weakenFin : {n : ℕ} → Fin n → Fin (suc n) weakenFin zero = zero weakenFin (suc i) = suc (weakenFin i) predFin : {n : ℕ} → Fin (suc (suc n)) → Fin (suc n) predFin zero = zero predFin (suc x) = x foldrFin : ∀ {n} → (A → B → B) → B → (Fin n → A) → B foldrFin {n = zero} _ b _ = b foldrFin {n = suc n} f b l = f (l zero) (foldrFin f b (l ∘ suc)) elim : ∀(P : ∀{k} → Fin k → Type ℓ) → (∀{k} → P {suc k} zero) → (∀{k} → {fn : Fin k} → P fn → P (suc fn)) → {k : ℕ} → (fn : Fin k) → P fn elim P fz fs {zero} = ⊥.rec ∘ ¬Fin0 elim P fz fs {suc k} zero = fz elim P fz fs {suc k} (suc fj) = fs (elim P fz fs fj) rec : ∀{k} → (a0 aS : A) → Fin k → A rec a0 aS zero = a0 rec a0 aS (suc x) = aS FinVec : (A : Type ℓ) (n : ℕ) → Type ℓ FinVec A n = Fin n → A replicateFinVec : (n : ℕ) → A → FinVec A n replicateFinVec _ a _ = a _++Fin_ : {n m : ℕ} → FinVec A n → FinVec A m → FinVec A (n + m) _++Fin_ {n = zero} _ W i = W i _++Fin_ {n = suc n} V _ zero = V zero _++Fin_ {n = suc n} V W (suc i) = ((V ∘ suc) ++Fin W) i
{ "alphanum_fraction": 0.5636456212, "avg_line_length": 23.380952381, "ext": "agda", "hexsha": "a994130a44160e67265e82b31b1ee4f8e1a6bf06", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/FinData/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/FinData/Base.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/FinData/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 842, "size": 1964 }
module Issue784.Values where open import Data.Bool using (Bool; true; false; not) open import Data.String public using (String) open import Data.String.Properties public using (_≟_) open import Function public open import Data.List using (List; []; _∷_; _++_; [_]; filterᵇ) renaming (map to mapL) open import Data.List.Relation.Unary.Any public using (Any; here; there) renaming (map to mapA; any to anyA) open import Data.Product public using (Σ; Σ-syntax; proj₁; proj₂; _,_; _×_) renaming (map to mapΣ) open import Data.Unit public using (⊤) open import Data.Unit.NonEta public using (Unit; unit) open import Data.Empty public using (⊥; ⊥-elim) open import Relation.Binary.Core hiding (_⇔_) public open import Relation.Nullary hiding (Irrelevant) public import Level open import Relation.Binary.PropositionalEquality public hiding ([_]) renaming (cong to ≡-cong; cong₂ to ≡-cong₂) open import Relation.Binary.PropositionalEquality.Core public renaming (sym to ≡-sym; trans to ≡-trans) {- ≢-sym : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≢ y → y ≢ x ≢-sym x≢y = x≢y ∘ ≡-sym -} ≡-elim : ∀ {ℓ} {X Y : Set ℓ} → X ≡ Y → X → Y ≡-elim refl p = p ≡-elim′ : ∀ {a ℓ} {A : Set a} {x y : A} → (P : A → Set ℓ) → x ≡ y → P x → P y ≡-elim′ P = ≡-elim ∘ (≡-cong P) Named : ∀ {ℓ} (A : Set ℓ) → Set ℓ Named A = String × A NamedType : ∀ ℓ → Set (Level.suc ℓ) NamedType ℓ = Named (Set ℓ) NamedValue : ∀ ℓ → Set (Level.suc ℓ) NamedValue ℓ = Named (Σ[ A ∈ Set ℓ ] A) Names : Set Names = List String Types : ∀ ℓ → Set (Level.suc ℓ) Types ℓ = List (NamedType ℓ) Values : ∀ ℓ → Set (Level.suc ℓ) Values ℓ = List (NamedValue ℓ) names : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names names = mapL proj₁ types : ∀ {ℓ} → Values ℓ → Types ℓ types = mapL (mapΣ id proj₁) infix 4 _∈_ _∉_ _∈_ : ∀ {ℓ} {A : Set ℓ} → A → List A → Set ℓ x ∈ xs = Any (_≡_ x) xs _∉_ : ∀ {ℓ} {A : Set ℓ} → A → List A → Set ℓ x ∉ xs = ¬ x ∈ xs x∉y∷l⇒x≢y : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ∉ y ∷ l → x ≢ y x∉y∷l⇒x≢y x∉y∷l x≡y = x∉y∷l $ here x≡y x∉y∷l⇒x∉l : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ∉ y ∷ l → x ∉ l x∉y∷l⇒x∉l x∉y∷l x∈l = x∉y∷l $ there x∈l x≢y⇒x∉l⇒x∉y∷l : ∀ {ℓ} {A : Set ℓ} {x y : A} {l : List A} → x ≢ y → x ∉ l → x ∉ y ∷ l x≢y⇒x∉l⇒x∉y∷l x≢y x∉l (here x≡y) = x≢y x≡y x≢y⇒x∉l⇒x∉y∷l x≢y x∉l (there x∈l) = x∉l x∈l infix 5 _∋!_ _∈?_ _∈?_ : (s : String) (n : Names) → Dec (s ∈ n) s ∈? [] = no λ() s ∈? (h ∷ t) with s ≟ h ... | yes s≡h = yes $ here s≡h ... | no s≢h with s ∈? t ... | yes s∈t = yes $ there s∈t ... | no s∉t = no $ x≢y⇒x∉l⇒x∉y∷l s≢h s∉t _∋!_ : Names → String → Bool l ∋! e with e ∈? l ... | yes _ = true ... | no _ = false infix 4 _⊆_ _⊈_ _⊆_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys _⊈_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → Set ℓ xs ⊈ ys = ¬ xs ⊆ ys infixl 5 _∪_ _∪_ : ∀ {ℓ} {A : Set ℓ} → List A → List A → List A _∪_ = _++_ infixl 6 _∩_ _∩_ : Names → Names → Names x ∩ y = filterᵇ (_∋!_ y) x infixl 6 _∖_ _∖∖_ _∖_ : Names → Names → Names _∖_ x y = filterᵇ (not ∘ _∋!_ y) x _∖∖_ : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names → List (Named A) _∖∖_ l n = filterᵇ (not ∘ _∋!_ n ∘ proj₁) l filter-∈ : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Names → List (Named A) filter-∈ l n = filterᵇ (_∋!_ n ∘ proj₁) l infixr 5 _∷_ data NonRepetitive {ℓ} {A : Set ℓ} : List A → Set ℓ where [] : NonRepetitive [] _∷_ : ∀ {x xs} → x ∉ xs → NonRepetitive xs → NonRepetitive (x ∷ xs) infix 4 _≋_ data _≋_ {ℓ} {A : Set ℓ} : List A → List A → Set ℓ where refl : ∀ {l} → l ≋ l perm : ∀ {l} l₁ x₁ x₂ l₂ → l ≋ l₁ ++ x₂ ∷ x₁ ∷ l₂ → l ≋ l₁ ++ x₁ ∷ x₂ ∷ l₂ NonRepetitiveNames : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Set NonRepetitiveNames = NonRepetitive ∘ names NonRepetitiveTypes : ∀ ℓ → Set (Level.suc ℓ) NonRepetitiveTypes ℓ = Σ[ t ∈ Types ℓ ] NonRepetitiveNames t -- lemmas ∪-assoc : ∀ {l} {A : Set l} (x y z : List A) → (x ∪ y) ∪ z ≡ x ∪ (y ∪ z) ∪-assoc [] y z = refl ∪-assoc (x ∷ xs) y z = ≡-elim′ (λ e → x ∷ e ≡ (x ∷ xs) ∪ (y ∪ z)) (≡-sym $ ∪-assoc xs y z) refl ≡⇒≋ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≡ y → x ≋ y ≡⇒≋ refl = refl private ∈-perm : ∀ {ℓ} {A : Set ℓ} {x : A} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → x ∈ l₁ ++ e₁ ∷ e₂ ∷ l₂ → x ∈ l₁ ++ e₂ ∷ e₁ ∷ l₂ ∈-perm [] e₁ e₂ l₂ (here .{e₁} .{e₂ ∷ l₂} px) = there $ here px ∈-perm [] e₁ e₂ l₂ (there .{e₁} .{e₂ ∷ l₂} (here .{e₂} .{l₂} px)) = here px ∈-perm [] e₁ e₂ l₂ (there .{e₁} .{e₂ ∷ l₂} (there .{e₂} .{l₂} pxs)) = there $ there pxs ∈-perm (h₁ ∷ t₁) e₁ e₂ l₂ (here .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} px) = here px ∈-perm (h₁ ∷ t₁) e₁ e₂ l₂ (there .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} pxs) = there $ ∈-perm t₁ e₁ e₂ l₂ pxs ≋⇒⊆ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≋ y → x ⊆ y ≋⇒⊆ refl p = p ≋⇒⊆ {x = x} {y = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} (perm l₁ x₁ x₂ l₂ p) {e} e∈x = ∈-perm l₁ x₂ x₁ l₂ $ ≋⇒⊆ p e∈x ≋-trans : ∀ {l} {A : Set l} {x y z : List A} → x ≋ y → y ≋ z → x ≋ z ≋-trans p refl = p ≋-trans p₁ (perm l₁ x₁ x₂ l₂ p₂) = perm l₁ x₁ x₂ l₂ $ ≋-trans p₁ p₂ ≋-sym : ∀ {l} {A : Set l} {x y : List A} → x ≋ y → y ≋ x ≋-sym refl = refl ≋-sym (perm l₁ x₁ x₂ l₂ p) = ≋-trans (perm l₁ x₂ x₁ l₂ refl) (≋-sym p) ≋-del-ins-r : ∀ {l} {A : Set l} (l₁ : List A) (x : A) (l₂ l₃ : List A) → (l₁ ++ x ∷ l₂ ++ l₃) ≋ (l₁ ++ l₂ ++ x ∷ l₃) ≋-del-ins-r l₁ x [] l₃ = refl ≋-del-ins-r l₁ x (h ∷ t) l₃ = ≋-trans p₀ p₅ where p₀ : (l₁ ++ x ∷ h ∷ t ++ l₃) ≋ (l₁ ++ h ∷ x ∷ t ++ l₃) p₀ = perm l₁ h x (t ++ l₃) refl p₁ : ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ ((l₁ ++ [ h ]) ++ t ++ x ∷ l₃) p₁ = ≋-del-ins-r (l₁ ++ [ h ]) x t l₃ p₂ : (l₁ ++ [ h ]) ++ t ++ x ∷ l₃ ≡ l₁ ++ h ∷ t ++ x ∷ l₃ p₂ = ∪-assoc l₁ [ h ] (t ++ x ∷ l₃) p₃ : (l₁ ++ [ h ]) ++ x ∷ t ++ l₃ ≡ l₁ ++ h ∷ x ∷ t ++ l₃ p₃ = ∪-assoc l₁ [ h ] (x ∷ t ++ l₃) p₄ : ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ (l₁ ++ h ∷ t ++ x ∷ l₃) p₄ = ≡-elim′ (λ y → ((l₁ ++ [ h ]) ++ x ∷ t ++ l₃) ≋ y) p₂ p₁ p₅ : (l₁ ++ h ∷ x ∷ t ++ l₃) ≋ (l₁ ++ h ∷ t ++ x ∷ l₃) p₅ = ≡-elim′ (λ y → y ≋ (l₁ ++ h ∷ t ++ x ∷ l₃)) p₃ p₄ ≋-del-ins-l : ∀ {l} {A : Set l} (l₁ l₂ : List A) (x : A) (l₃ : List A) → (l₁ ++ l₂ ++ x ∷ l₃) ≋ (l₁ ++ x ∷ l₂ ++ l₃) ≋-del-ins-l l₁ l₂ x l₃ = ≋-sym $ ≋-del-ins-r l₁ x l₂ l₃ x∪[]≡x : ∀ {ℓ} {A : Set ℓ} (x : List A) → x ∪ [] ≡ x x∪[]≡x [] = refl x∪[]≡x (h ∷ t) = ≡-trans p₀ p₁ where p₀ : (h ∷ t) ++ [] ≡ h ∷ t ++ [] p₀ = ∪-assoc [ h ] t [] p₁ : h ∷ t ++ [] ≡ h ∷ t p₁ = ≡-cong (λ x → h ∷ x) (x∪[]≡x t) x∖[]≡x : (x : Names) → x ∖ [] ≡ x x∖[]≡x [] = refl x∖[]≡x (h ∷ t) = ≡-cong (_∷_ h) (x∖[]≡x t) t∖[]≡t : ∀ {ℓ} {A : Set ℓ} (t : List (Named A)) → t ∖∖ [] ≡ t t∖[]≡t [] = refl t∖[]≡t (h ∷ t) = ≡-cong (_∷_ h) (t∖[]≡t t) e∷x≋e∷y : ∀ {ℓ} {A : Set ℓ} (e : A) {x y : List A} → x ≋ y → e ∷ x ≋ e ∷ y e∷x≋e∷y _ refl = refl e∷x≋e∷y x (perm l₁ e₁ e₂ l₂ p) = perm (x ∷ l₁) e₁ e₂ l₂ (e∷x≋e∷y x p) ∪-sym : ∀ {ℓ} {A : Set ℓ} (x y : List A) → x ∪ y ≋ y ∪ x ∪-sym [] y = ≡-elim′ (λ z → y ≋ z) (≡-sym $ x∪[]≡x y) refl ∪-sym x [] = ≡-elim′ (λ z → z ≋ x) (≡-sym $ x∪[]≡x x) refl ∪-sym x (y ∷ ys) = ≡-elim′ (λ z → x ++ (y ∷ ys) ≋ z) p₃ (≋-trans p₁ p₂) where p₁ : x ++ (y ∷ ys) ≋ y ∷ (x ++ ys) p₁ = ≋-del-ins-l [] x y ys p₂ : y ∷ (x ++ ys) ≋ y ∷ (ys ++ x) p₂ = e∷x≋e∷y y $ ∪-sym x ys p₃ : y ∷ (ys ++ x) ≡ (y ∷ ys) ++ x p₃ = ∪-assoc [ y ] ys x y≋ỳ⇒x∪y≋x∪ỳ : ∀ {ℓ} {A : Set ℓ} (x : List A) {y ỳ : List A} → y ≋ ỳ → x ∪ y ≋ x ∪ ỳ y≋ỳ⇒x∪y≋x∪ỳ [] p = p y≋ỳ⇒x∪y≋x∪ỳ (h ∷ t) p = e∷x≋e∷y h (y≋ỳ⇒x∪y≋x∪ỳ t p) x≋x̀⇒x∪y≋x̀∪y : ∀ {ℓ} {A : Set ℓ} {x x̀ : List A} → x ≋ x̀ → (y : List A) → x ∪ y ≋ x̀ ∪ y x≋x̀⇒x∪y≋x̀∪y {x = x} {x̀ = x̀} p y = ≋-trans (∪-sym x y) $ ≋-trans (y≋ỳ⇒x∪y≋x∪ỳ y p) (∪-sym y x̀) x⊆y≋z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ⊆ y → y ≋ z → x ⊆ z x⊆y≋z x⊆y refl = x⊆y x⊆y≋z {x = x} {y = y} {z = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} x⊆y (perm l₁ x₁ x₂ l₂ p) = ∈-perm l₁ x₂ x₁ l₂ ∘ x⊆y≋z x⊆y p x≋y⊆z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ≋ y → x ⊆ z → y ⊆ z x≋y⊆z refl x⊆z = x⊆z x≋y⊆z {y = .(l₁ ++ x₁ ∷ x₂ ∷ l₂)} {z = z} (perm l₁ x₁ x₂ l₂ p) x⊆z = x≋y⊆z p x⊆z ∘ ∈-perm l₁ x₁ x₂ l₂ x⊆x∪y : ∀ {ℓ} {A : Set ℓ} (x y : List A) → x ⊆ x ∪ y x⊆x∪y .(x ∷ xs) y (here {x} {xs} px) = here px x⊆x∪y .(x ∷ xs) y (there {x} {xs} pxs) = there $ x⊆x∪y xs y pxs x∪y⊆z⇒x⊆z : ∀ {ℓ} {A : Set ℓ} (x y : List A) {z : List A} → x ∪ y ⊆ z → x ⊆ z x∪y⊆z⇒x⊆z x y x∪y⊆z = x∪y⊆z ∘ x⊆x∪y x y x∪y⊆z⇒y⊆z : ∀ {ℓ} {A : Set ℓ} (x y : List A) {z : List A} → x ∪ y ⊆ z → y ⊆ z x∪y⊆z⇒y⊆z x y = x∪y⊆z⇒x⊆z y x ∘ x≋y⊆z (∪-sym x y) n-x∪y : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → names (x ∪ y) ≡ names x ∪ names y n-x∪y [] _ = refl n-x∪y {ℓ} (x ∷ xs) y = ≡-trans p₁ p₂ where nx = [ proj₁ x ] nxs = names xs ny = names y p₁ : nx ∪ names (xs ∪ y) ≡ nx ∪ (nxs ∪ ny) p₁ = ≡-cong (λ z → nx ∪ z) (n-x∪y xs y) p₂ : nx ∪ (nxs ∪ ny) ≡ (nx ∪ nxs) ∪ ny p₂ = ≡-sym $ ∪-assoc nx nxs ny t-x∪y : ∀ {ℓ} (x y : Values ℓ) → types (x ∪ y) ≡ types x ∪ types y t-x∪y [] _ = refl t-x∪y (x ∷ xs) y = ≡-trans p₁ p₂ where nx = types [ x ] nxs = types xs ny = types y p₁ : nx ∪ types (xs ∪ y) ≡ nx ∪ (nxs ∪ ny) p₁ = ≡-cong (λ z → nx ∪ z) (t-x∪y xs y) p₂ : nx ∪ (nxs ∪ ny) ≡ (nx ∪ nxs) ∪ ny p₂ = ≡-sym $ ∪-assoc nx nxs ny n-x≋y : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ≋ y → names x ≋ names y n-x≋y refl = refl n-x≋y (perm {x} l₁ e₁ e₂ l₂ p) = p₃ where n-l₁e₁e₂l₂ : ∀ e₁ e₂ → names (l₁ ++ e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names [ e₂ ] ++ names l₂ n-l₁e₁e₂l₂ e₁ e₂ = ≡-trans p₁ $ ≡-trans p₂ p₃ where p₁ : names (l₁ ++ e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names (e₁ ∷ e₂ ∷ l₂) p₁ = n-x∪y l₁ (e₁ ∷ e₂ ∷ l₂) p₂ : names l₁ ++ names (e₁ ∷ e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names (e₂ ∷ l₂) p₂ = ≡-cong (λ z → names l₁ ++ z) (n-x∪y [ e₁ ] (e₂ ∷ l₂)) p₃ : names l₁ ++ names [ e₁ ] ++ names (e₂ ∷ l₂) ≡ names l₁ ++ names [ e₁ ] ++ names [ e₂ ] ++ names l₂ p₃ = ≡-cong (λ z → names l₁ ++ names [ e₁ ] ++ z) (n-x∪y [ e₂ ] l₂) p₁ : names x ≋ names l₁ ++ proj₁ e₂ ∷ proj₁ e₁ ∷ names l₂ p₁ = ≡-elim′ (λ z → names x ≋ z) (n-l₁e₁e₂l₂ e₂ e₁) (n-x≋y p) p₂ : names x ≋ names l₁ ++ proj₁ e₁ ∷ proj₁ e₂ ∷ names l₂ p₂ = perm (names l₁) (proj₁ e₁) (proj₁ e₂) (names l₂) p₁ p₃ : names x ≋ names (l₁ ++ e₁ ∷ e₂ ∷ l₂) p₃ = ≡-elim′ (λ z → names x ≋ z) (≡-sym $ n-l₁e₁e₂l₂ e₁ e₂) p₂ n-types : ∀ {ℓ} (x : Values ℓ) → names (types x) ≡ names x n-types [] = refl n-types (x ∷ xs) = ≡-cong (λ z → proj₁ x ∷ z) (n-types xs) nr-x≋y : ∀ {ℓ} {A : Set ℓ} {x y : List A} → x ≋ y → NonRepetitive x → NonRepetitive y nr-x≋y refl u = u nr-x≋y {y = .(l₁ ++ e₁ ∷ e₂ ∷ l₂)} (perm l₁ e₁ e₂ l₂ p) u = ≋-step l₁ e₂ e₁ l₂ (nr-x≋y p u) where ∉-step : ∀ {ℓ} {A : Set ℓ} {x : A} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → x ∉ l₁ ++ e₁ ∷ e₂ ∷ l₂ → x ∉ l₁ ++ e₂ ∷ e₁ ∷ l₂ ∉-step l₁ e₁ e₂ l₂ x∉l x∈l = ⊥-elim $ x∉l $ ∈-perm l₁ e₂ e₁ l₂ x∈l ≋-step : ∀ {ℓ} {A : Set ℓ} (l₁ : List A) (e₁ : A) (e₂ : A) (l₂ : List A) → NonRepetitive (l₁ ++ e₁ ∷ e₂ ∷ l₂) → NonRepetitive (l₁ ++ e₂ ∷ e₁ ∷ l₂) ≋-step [] e₁ e₂ l₂ (_∷_ .{e₁} .{e₂ ∷ l₂} e₁∉e₂∷l₂ (_∷_ .{e₂} .{l₂} e₂∉l₂ pU)) = e₂∉e₁∷l₂ ∷ e₁∉l₂ ∷ pU where e₁∉l₂ = e₁ ∉ l₂ ∋ x∉y∷l⇒x∉l e₁∉e₂∷l₂ e₂∉e₁∷l₂ = e₂ ∉ e₁ ∷ l₂ ∋ x≢y⇒x∉l⇒x∉y∷l (≢-sym $ x∉y∷l⇒x≢y e₁∉e₂∷l₂) e₂∉l₂ ≋-step (h₁ ∷ t₁) e₁ e₂ l₂ (_∷_ .{h₁} .{t₁ ++ e₁ ∷ e₂ ∷ l₂} p∉ pU) = ∉-step t₁ e₁ e₂ l₂ p∉ ∷ ≋-step t₁ e₁ e₂ l₂ pU nr-x⇒nr-t-x : ∀ {ℓ} {x : Values ℓ} → NonRepetitiveNames x → NonRepetitiveNames (types x) nr-x⇒nr-t-x {x = x} = ≡-elim′ NonRepetitive (≡-sym $ n-types x) n-x∖y : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → names (x ∖∖ y) ≡ names x ∖ y n-x∖y [] _ = refl n-x∖y (x ∷ xs) ny with not $ ny ∋! proj₁ x ... | false = n-x∖y xs ny ... | true = ≡-trans p₁ p₂ where p₁ : names (x ∷ (xs ∖∖ ny)) ≡ proj₁ x ∷ names (xs ∖∖ ny) p₁ = n-x∪y [ x ] (xs ∖∖ ny) p₂ : proj₁ x ∷ names (xs ∖∖ ny) ≡ proj₁ x ∷ (names xs ∖ ny) p₂ = ≡-cong (λ z → proj₁ x ∷ z) (n-x∖y xs ny) t-x∖y : ∀ {ℓ} (x : Values ℓ) (y : Names) → types (x ∖∖ y) ≡ types x ∖∖ y t-x∖y [] _ = refl t-x∖y (x ∷ xs) ny with not $ ny ∋! proj₁ x ... | false = t-x∖y xs ny ... | true = ≡-trans p₁ p₂ where x̀ = types [ x ] p₁ : types (x ∷ (xs ∖∖ ny)) ≡ x̀ ∪ types (xs ∖∖ ny) p₁ = t-x∪y [ x ] (xs ∖∖ ny) p₂ : x̀ ∪ types (xs ∖∖ ny) ≡ x̀ ∪ (types xs ∖∖ ny) p₂ = ≡-cong (λ z → x̀ ∪ z) (t-x∖y xs ny) n-filter-∈ : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → names (filter-∈ x y) ≡ names x ∩ y n-filter-∈ [] _ = refl n-filter-∈ (x ∷ xs) ny with ny ∋! proj₁ x ... | false = n-filter-∈ xs ny ... | true = ≡-trans p₁ p₂ where p₁ : names (x ∷ (filter-∈ xs ny)) ≡ proj₁ x ∷ names (filter-∈ xs ny) p₁ = n-x∪y [ x ] (filter-∈ xs ny) p₂ : proj₁ x ∷ names (filter-∈ xs ny) ≡ proj₁ x ∷ (names xs ∩ ny) p₂ = ≡-cong (λ z → proj₁ x ∷ z) (n-filter-∈ xs ny) t-filter-∈ : ∀ {ℓ} (x : Values ℓ) (y : Names) → types (filter-∈ x y) ≡ filter-∈ (types x) y t-filter-∈ [] _ = refl t-filter-∈ (x ∷ xs) ny with ny ∋! proj₁ x ... | false = t-filter-∈ xs ny ... | true = ≡-trans p₁ p₂ where x̀ = types [ x ] p₁ : types (x ∷ filter-∈ xs ny) ≡ x̀ ∪ types (filter-∈ xs ny) p₁ = t-x∪y [ x ] (filter-∈ xs ny) p₂ : x̀ ∪ types (filter-∈ xs ny) ≡ x̀ ∪ filter-∈ (types xs) ny p₂ = ≡-cong (λ z → x̀ ∪ z) (t-filter-∈ xs ny) []⊆x : ∀ {ℓ} {A : Set ℓ} (x : List A) → [] ⊆ x []⊆x _ () ∀x∉[] : ∀ {ℓ} {A : Set ℓ} {x : A} → x ∉ [] ∀x∉[] () x⊆[]⇒x≡[] : ∀ {ℓ} {A : Set ℓ} {x : List A} → x ⊆ [] → x ≡ [] x⊆[]⇒x≡[] {x = []} _ = refl x⊆[]⇒x≡[] {x = _ ∷ _} x⊆[] = ⊥-elim $ ∀x∉[] $ x⊆[] (here refl) x∩y⊆x : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (y : Names) → filter-∈ x y ⊆ x x∩y⊆x [] _ = λ() x∩y⊆x (h ∷ t) y with y ∋! proj₁ h ... | false = there ∘ x∩y⊆x t y ... | true = f where f : h ∷ filter-∈ t y ⊆ h ∷ t f (here {x = .h} p) = here p f (there {xs = .(filter-∈ t y)} p) = there $ x∩y⊆x t y p e∈x⇒e∈y∪x : ∀ {ℓ} {A : Set ℓ} {e : A} {x : List A} (y : List A) → e ∈ x → e ∈ y ∪ x e∈x⇒e∈y∪x [] = id e∈x⇒e∈y∪x (h ∷ t) = there ∘ e∈x⇒e∈y∪x t e∈x⇒e∈x∪y : ∀ {ℓ} {A : Set ℓ} {e : A} {x : List A} (y : List A) → e ∈ x → e ∈ x ∪ y e∈x⇒e∈x∪y {e = e} {x = x} y e∈x = x⊆y≋z f (∪-sym y x) (e ∈ [ e ] ∋ here refl) where f : [ e ] ⊆ y ∪ x f {è} (here {x = .e} p) = ≡-elim′ (λ z → z ∈ y ∪ x) (≡-sym p) (e∈x⇒e∈y∪x y e∈x) f (there ()) x∪y⊆x̀∪ỳ : ∀ {ℓ} {A : Set ℓ} {x x̀ y ỳ : List A} → x ⊆ x̀ → y ⊆ ỳ → x ∪ y ⊆ x̀ ∪ ỳ x∪y⊆x̀∪ỳ {x = []} {x̀ = []} _ y⊆ỳ = y⊆ỳ x∪y⊆x̀∪ỳ {x = []} {x̀ = _ ∷ t̀} _ y⊆ỳ = there ∘ x∪y⊆x̀∪ỳ ([]⊆x t̀) y⊆ỳ x∪y⊆x̀∪ỳ {x = h ∷ t} {x̀ = x̀} {y = y} {ỳ = ỳ} x⊆x̀ y⊆ỳ = f where f : (h ∷ t) ∪ y ⊆ x̀ ∪ ỳ f {e} (here {x = .h} e≡h) = e∈x⇒e∈x∪y ỳ (x⊆x̀ $ here e≡h) f {e} (there {xs = .(t ∪ y)} p) = x∪y⊆x̀∪ỳ (x∪y⊆z⇒y⊆z [ h ] t x⊆x̀) y⊆ỳ p x∖y⊆x : (x y : Names) → x ∖ y ⊆ x x∖y⊆x [] _ = λ() x∖y⊆x (h ∷ t) y with y ∋! h ... | true = there ∘ x∖y⊆x t y ... | false = x∪y⊆x̀∪ỳ (≋⇒⊆ $ ≡⇒≋ $ refl {x = [ h ]}) (x∖y⊆x t y) t≋t∖n∪t∩n : ∀ {ℓ} {A : Set ℓ} (t : List (Named A)) (n : Names) → t ≋ (t ∖∖ n) ∪ filter-∈ t n t≋t∖n∪t∩n [] _ = refl t≋t∖n∪t∩n (h ∷ t) n with n ∋! proj₁ h ... | false = e∷x≋e∷y h $ t≋t∖n∪t∩n t n ... | true = ≋-trans p₁ p₂ where p₁ : h ∷ t ≋ (h ∷ (t ∖∖ n)) ∪ filter-∈ t n p₁ = e∷x≋e∷y h $ t≋t∖n∪t∩n t n p₂ : (h ∷ (t ∖∖ n)) ∪ filter-∈ t n ≋ (t ∖∖ n) ∪ (h ∷ filter-∈ t n) p₂ = ≋-del-ins-r [] h (t ∖∖ n) (filter-∈ t n) e₁∈x⇒e₂∉x⇒e≢e₂ : ∀ {ℓ} {A : Set ℓ} {e₁ e₂ : A} {x : List A} → e₁ ∈ x → e₂ ∉ x → e₁ ≢ e₂ e₁∈x⇒e₂∉x⇒e≢e₂ e₁∈x e₂∉x refl = e₂∉x e₁∈x e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x : ∀ {ℓ} {A : Set ℓ} {e₁ e₂ : A} {x : List A} → e₁ ∈ e₂ ∷ x → e₁ ≢ e₂ → e₁ ∈ x e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (here e₁≡e₂) e₁≢e₂ = ⊥-elim $ e₁≢e₂ e₁≡e₂ e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (there e₁∈x) _ = e₁∈x x⊆e∷y⇒e∉x⇒x⊆y : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → x ⊆ e ∷ y → e ∉ x → x ⊆ y x⊆e∷y⇒e∉x⇒x⊆y {e = e} {x = x} {y = y} x⊆e∷y e∉x {è} è∈x = e₁∈e₂∷x⇒e₁≢e₂⇒e₁∈x (x⊆e∷y è∈x) (e₁∈x⇒e₂∉x⇒e≢e₂ è∈x e∉x) n-e∉l⇒e∉l : ∀ {ℓ} {A : Set ℓ} {e : Named A} {l : List (Named A)} → proj₁ e ∉ names l → e ∉ l n-e∉l⇒e∉l {e = e} n-e∉l (here {x = è} p) = ⊥-elim $ n-e∉l $ here $ ≡-cong proj₁ p n-e∉l⇒e∉l n-e∉l (there p) = n-e∉l⇒e∉l (x∉y∷l⇒x∉l n-e∉l) p nr-names⇒nr : ∀ {ℓ} {A : Set ℓ} {l : List (Named A)} → NonRepetitiveNames l → NonRepetitive l nr-names⇒nr {l = []} [] = [] nr-names⇒nr {l = _ ∷ _} (nh∉nt ∷ nr-t) = n-e∉l⇒e∉l nh∉nt ∷ nr-names⇒nr nr-t e∉x⇒e∉y⇒e∉x∪y : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → e ∉ x → e ∉ y → e ∉ x ∪ y e∉x⇒e∉y⇒e∉x∪y {x = []} _ e∉y e∈y = ⊥-elim $ e∉y e∈y e∉x⇒e∉y⇒e∉x∪y {x = h ∷ t} e∉x e∉y (here e≡h) = ⊥-elim $ e∉x $ here e≡h e∉x⇒e∉y⇒e∉x∪y {x = h ∷ t} e∉x e∉y (there e∈t∪y) = e∉x⇒e∉y⇒e∉x∪y (x∉y∷l⇒x∉l e∉x) e∉y e∈t∪y nr-x∖y∪y : {x y : Names} → NonRepetitive x → NonRepetitive y → NonRepetitive (x ∖ y ∪ y) nr-x∖y∪y {x = []} _ nr-y = nr-y nr-x∖y∪y {x = x ∷ xs} {y = y} (x∉xs ∷ nr-xs) nr-y with x ∈? y ... | yes x∈y = nr-x∖y∪y nr-xs nr-y ... | no x∉y = e∉x⇒e∉y⇒e∉x∪y (⊥-elim ∘ x∉xs ∘ x∖y⊆x xs y) x∉y ∷ nr-x∖y∪y nr-xs nr-y e∉l∖[e] : (e : String) (l : Names) → e ∉ l ∖ [ e ] e∉l∖[e] _ [] = λ() e∉l∖[e] e (h ∷ t) with h ≟ e ... | yes _ = e∉l∖[e] e t ... | no h≢e = x≢y⇒x∉l⇒x∉y∷l (≢-sym h≢e) (e∉l∖[e] e t) e∉l⇒l∖e≡l : {e : String} {l : Names} → e ∉ l → l ∖ [ e ] ≡ l e∉l⇒l∖e≡l {e = e} {l = []} _ = refl e∉l⇒l∖e≡l {e = e} {l = h ∷ t} e∉l with h ∈? [ e ] ... | yes h∈e = ⊥-elim $ x≢y⇒x∉l⇒x∉y∷l (≢-sym $ x∉y∷l⇒x≢y e∉l) (λ()) h∈e ... | no h∉e = ≡-cong (_∷_ h) (e∉l⇒l∖e≡l $ x∉y∷l⇒x∉l e∉l) e∈l⇒nr-l⇒l∖e∪e≋l : {e : String} {l : Names} → e ∈ l → NonRepetitive l → l ∖ [ e ] ∪ [ e ] ≋ l e∈l⇒nr-l⇒l∖e∪e≋l {l = []} () _ e∈l⇒nr-l⇒l∖e∪e≋l {e = e} {l = h ∷ t} e∈h∷t (h∉t ∷ nr-t) with h ∈? [ e ] ... | yes (here h≡e) = ≋-trans (≡⇒≋ $ ≡-trans p₁ p₂) (∪-sym t [ h ]) where p₁ : t ∖ [ e ] ∪ [ e ] ≡ t ∖ [ h ] ∪ [ h ] p₁ = ≡-cong (λ x → t ∖ [ x ] ∪ [ x ]) (≡-sym h≡e) p₂ : t ∖ [ h ] ∪ [ h ] ≡ t ∪ [ h ] p₂ = ≡-cong (λ x → x ∪ [ h ]) (e∉l⇒l∖e≡l h∉t) ... | yes (there ()) ... | no h∉e with e∈h∷t ... | here e≡h = ⊥-elim ∘ h∉e ∘ here ∘ ≡-sym $ e≡h ... | there e∈t = e∷x≋e∷y _ $ e∈l⇒nr-l⇒l∖e∪e≋l e∈t nr-t nr-x∖y : {x : Names} → NonRepetitive x → (y : Names) → NonRepetitive (x ∖ y) nr-x∖y {x = []} _ _ = [] nr-x∖y {x = x ∷ xs} (x∉xs ∷ nr-xs) y with x ∈? y ... | yes x∈y = nr-x∖y nr-xs y ... | no x∉y = ⊥-elim ∘ x∉xs ∘ x∖y⊆x xs y ∷ nr-x∖y nr-xs y x⊆y⇒e∉y⇒e∉x : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → x ⊆ y → e ∉ y → e ∉ x x⊆y⇒e∉y⇒e∉x x⊆y e∉y e∈x = e∉y $ x⊆y e∈x e∈n-l⇒∃è,n-è≡e×è∈l : ∀ {ℓ} {A : Set ℓ} {e : String} {l : List (Named A)} → e ∈ names l → Σ[ è ∈ Named A ] (e ≡ proj₁ è × è ∈ l) e∈n-l⇒∃è,n-è≡e×è∈l {l = []} () e∈n-l⇒∃è,n-è≡e×è∈l {l = h ∷ t} (here e≡n-h) = h , e≡n-h , here refl e∈n-l⇒∃è,n-è≡e×è∈l {l = h ∷ t} (there e∈n-t) with e∈n-l⇒∃è,n-è≡e×è∈l e∈n-t ... | è , n-è≡e , è∈l = è , n-è≡e , there è∈l x⊆y⇒nx⊆ny : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ⊆ y → names x ⊆ names y x⊆y⇒nx⊆ny {x = x} {y = y} x⊆y {e} e∈n-x with e ∈? names y ... | yes e∈n-y = e∈n-y ... | no e∉n-y with e∈n-l⇒∃è,n-è≡e×è∈l e∈n-x ... | è , e≡n-è , è∈x = ⊥-elim $ x⊆y⇒e∉y⇒e∉x x⊆y (n-e∉l⇒e∉l $ ≡-elim′ (λ z → z ∉ names y) e≡n-è e∉n-y) è∈x nr-x⇒nr-x∩y : ∀ {ℓ} {A : Set ℓ} {x : List (Named A)} → NonRepetitiveNames x → (y : Names) → NonRepetitiveNames (filter-∈ x y) nr-x⇒nr-x∩y {x = []} _ _ = [] nr-x⇒nr-x∩y {x = h ∷ t} (h∉t ∷ nr-t) y with y ∋! proj₁ h ... | false = nr-x⇒nr-x∩y nr-t y ... | true = x⊆y⇒e∉y⇒e∉x (x⊆y⇒nx⊆ny $ x∩y⊆x t y) h∉t ∷ nr-x⇒nr-x∩y nr-t y e∈l⇒[e]⊆l : ∀ {ℓ} {A : Set ℓ} {e : A} {l : List A} → e ∈ l → [ e ] ⊆ l e∈l⇒[e]⊆l e∈l (here è≡e) = ≡-elim′ (λ x → x ∈ _) (≡-sym è≡e) e∈l e∈l⇒[e]⊆l e∈l (there ()) a∈x⇒x≋y⇒a∈y : ∀ {ℓ} {A : Set ℓ} {x y : List A} {a : A} → a ∈ x → x ≋ y → a ∈ y a∈x⇒x≋y⇒a∈y a∈x x≋y = x⊆y≋z (e∈l⇒[e]⊆l a∈x) x≋y (here refl) x⊆z⇒y⊆z⇒x∪y⊆z : ∀ {ℓ} {A : Set ℓ} {x y z : List A} → x ⊆ z → y ⊆ z → x ∪ y ⊆ z x⊆z⇒y⊆z⇒x∪y⊆z {x = []} _ y⊆z = y⊆z x⊆z⇒y⊆z⇒x∪y⊆z {x = h ∷ t} {y = y} {z = z} x⊆z y⊆z = f where f : (h ∷ t) ∪ y ⊆ z f {e} (here e≡h) = x⊆z $ here e≡h f {e} (there e∈t∪y) = x⊆z⇒y⊆z⇒x∪y⊆z (x∪y⊆z⇒y⊆z [ h ] t x⊆z) y⊆z e∈t∪y x⊆x∖y∪y : (x y : Names) → x ⊆ x ∖ y ∪ y x⊆x∖y∪y [] _ = []⊆x _ x⊆x∖y∪y (h ∷ t) y with h ∈? y x⊆x∖y∪y (h ∷ t) y | yes h∈y = x⊆z⇒y⊆z⇒x∪y⊆z (e∈l⇒[e]⊆l $ e∈x⇒e∈y∪x (t ∖ y) h∈y) (x⊆x∖y∪y t y) x⊆x∖y∪y (h ∷ t) y | no _ = x∪y⊆x̀∪ỳ ([ h ] ⊆ [ h ] ∋ ≋⇒⊆ refl) (x⊆x∖y∪y t y) e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ : {e₁ e₂ : String} {l : Names} → e₁ ∈ l → e₁ ∉ l ∖ [ e₂ ] → e₁ ≡ e₂ e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ {e₁ = e₁} {e₂ = e₂} {l = l} e₁∈l e₁∉l∖e₂ with e₁ ≟ e₂ ... | yes e₁≡e₂ = e₁≡e₂ ... | no e₁≢e₂ = ⊥-elim $ p₄ e₁∈l where p₁ : e₁ ∉ [ e₂ ] ∪ (l ∖ [ e₂ ]) p₁ = x≢y⇒x∉l⇒x∉y∷l e₁≢e₂ e₁∉l∖e₂ p₂ : [ e₂ ] ∪ (l ∖ [ e₂ ]) ≋ (l ∖ [ e₂ ]) ∪ [ e₂ ] p₂ = ∪-sym [ e₂ ] (l ∖ [ e₂ ]) p₃ : e₁ ∉ (l ∖ [ e₂ ]) ∪ [ e₂ ] p₃ = p₁ ∘ ≋⇒⊆ (∪-sym (l ∖ [ e₂ ]) [ e₂ ]) p₄ : e₁ ∉ l p₄ = x⊆y⇒e∉y⇒e∉x (x⊆x∖y∪y l [ e₂ ]) p₃ e∉x⇒x∩y≋x∩y∖e : {e : String} {x : Names} (y : Names) → e ∉ x → x ∩ y ≡ x ∩ (y ∖ [ e ]) e∉x⇒x∩y≋x∩y∖e {x = []} _ _ = refl e∉x⇒x∩y≋x∩y∖e {e = e} {x = h ∷ t} y e∉x with h ∈? y | h ∈? (y ∖ [ e ]) ... | yes h∈y | yes h∈y∖e = ≡-cong (_∷_ h) $ e∉x⇒x∩y≋x∩y∖e y $ x∉y∷l⇒x∉l e∉x ... | yes h∈y | no h∉y∖e = ⊥-elim $ e∉x e∈x where e∈x : e ∈ h ∷ t e∈x = here $ ≡-sym $ e₁∈l⇒e₁∉l∖e₂⇒e₁≡e₂ h∈y h∉y∖e ... | no h∉y | yes h∈y∖e = ⊥-elim $ h∉y $ x∖y⊆x y [ e ] h∈y∖e ... | no h∉y | no h∉y∖e = e∉x⇒x∩y≋x∩y∖e y $ x∉y∷l⇒x∉l e∉x y⊆x⇒x∩y≋y : {x y : Names} → NonRepetitive y → NonRepetitive x → y ⊆ x → x ∩ y ≋ y y⊆x⇒x∩y≋y {x = []} _ _ y⊆[] = ≡⇒≋ $ ≡-elim′ (λ y → [] ∩ y ≡ y) (≡-sym $ x⊆[]⇒x≡[] y⊆[]) refl y⊆x⇒x∩y≋y {x = h ∷ t} {y = y} nr-y (h∉t ∷ nr-t) y⊆h∷t with h ∈? y ... | yes h∈y = ≋-trans (∪-sym [ h ] (t ∩ y)) p₄ where p₁ : t ∩ y ≋ t ∩ (y ∖ [ h ]) p₁ = ≡⇒≋ $ e∉x⇒x∩y≋x∩y∖e y h∉t p₂ : t ∩ (y ∖ [ h ]) ≋ y ∖ [ h ] p₂ = y⊆x⇒x∩y≋y (nr-x∖y nr-y [ h ]) nr-t $ x⊆e∷y⇒e∉x⇒x⊆y (y⊆h∷t ∘ x∖y⊆x y [ h ]) (e∉l∖[e] h y) p₃ : y ∖ [ h ] ∪ [ h ] ≋ y p₃ = e∈l⇒nr-l⇒l∖e∪e≋l h∈y nr-y p₄ : t ∩ y ∪ [ h ] ≋ y p₄ = ≋-trans (x≋x̀⇒x∪y≋x̀∪y (≋-trans p₁ p₂) [ h ]) p₃ ... | no h∉y = y⊆x⇒x∩y≋y nr-y nr-t $ x⊆e∷y⇒e∉x⇒x⊆y y⊆h∷t h∉y x∪y∖n≡x∖n∪y∖n : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) (n : Names) → (x ∪ y) ∖∖ n ≡ (x ∖∖ n) ∪ (y ∖∖ n) x∪y∖n≡x∖n∪y∖n [] _ _ = refl x∪y∖n≡x∖n∪y∖n (h ∷ t) y n with proj₁ h ∈? n ... | yes _ = x∪y∖n≡x∖n∪y∖n t y n ... | no _ = ≡-cong (_∷_ h) (x∪y∖n≡x∖n∪y∖n t y n) n-x⊆n⇒x∖n≡[] : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) (n : Names) → names x ⊆ n → x ∖∖ n ≡ [] n-x⊆n⇒x∖n≡[] [] _ _ = refl n-x⊆n⇒x∖n≡[] (h ∷ t) n n-x⊆n with proj₁ h ∈? n ... | yes _ = n-x⊆n⇒x∖n≡[] t n $ x∪y⊆z⇒y⊆z [ proj₁ h ] (names t) (x≋y⊆z (≡⇒≋ $ n-x∪y [ h ] t) n-x⊆n) ... | no h∉n = ⊥-elim $ h∉n $ n-x⊆n (proj₁ h ∈ proj₁ h ∷ names t ∋ here refl) x∖x≡[] : ∀ {ℓ} {A : Set ℓ} (x : List (Named A)) → x ∖∖ names x ≡ [] x∖x≡[] x = n-x⊆n⇒x∖n≡[] x (names x) (≋⇒⊆ refl) nr-[a] : ∀ {ℓ} {A : Set ℓ} {a : A} → NonRepetitive [ a ] nr-[a] = (λ()) ∷ [] x≋y⇒x∖n≋y∖n : ∀ {ℓ} {A : Set ℓ} {x y : List (Named A)} → x ≋ y → (n : Names) → x ∖∖ n ≋ y ∖∖ n x≋y⇒x∖n≋y∖n refl _ = refl x≋y⇒x∖n≋y∖n {x = x} (perm l₁ x₁ x₂ l₂ p) n = ≋-trans p₀ $ ≋-trans (≡⇒≋ p₅) $ ≋-trans pg (≡⇒≋ $ ≡-sym g₅) where p₀ : x ∖∖ n ≋ (l₁ ++ x₂ ∷ x₁ ∷ l₂) ∖∖ n p₀ = x≋y⇒x∖n≋y∖n p n p₁ : (l₁ ++ [ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n p₁ = x∪y∖n≡x∖n∪y∖n l₁ ([ x₂ ] ++ [ x₁ ] ++ l₂) n p₂ : l₁ ∖∖ n ++ ([ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ ([ x₁ ] ++ l₂) ∖∖ n p₂ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₂ ] ([ x₁ ] ++ l₂) n) p₃ : l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ ([ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n ++ l₂ ∖∖ n p₃ = ≡-cong (λ z → l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₁ ] l₂ n) p₄ : l₁ ∖∖ n ++ [ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n ++ l₂ ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n p₄ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (≡-sym $ ∪-assoc ([ x₂ ] ∖∖ n) ([ x₁ ] ∖∖ n) (l₂ ∖∖ n)) p₅ : (l₁ ++ [ x₂ ] ++ [ x₁ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n p₅ = ≡-trans p₁ $ ≡-trans p₂ $ ≡-trans p₃ p₄ pg : l₁ ∖∖ n ++ ([ x₂ ] ∖∖ n ++ [ x₁ ] ∖∖ n) ++ l₂ ∖∖ n ≋ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n pg = y≋ỳ⇒x∪y≋x∪ỳ (l₁ ∖∖ n) $ x≋x̀⇒x∪y≋x̀∪y (∪-sym ([ x₂ ] ∖∖ n) ([ x₁ ] ∖∖ n)) (l₂ ∖∖ n) g₁ : (l₁ ++ [ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n g₁ = x∪y∖n≡x∖n∪y∖n l₁ ([ x₁ ] ++ [ x₂ ] ++ l₂) n g₂ : l₁ ∖∖ n ++ ([ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ ([ x₂ ] ++ l₂) ∖∖ n g₂ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₁ ] ([ x₂ ] ++ l₂) n) g₃ : l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ ([ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n ++ l₂ ∖∖ n g₃ = ≡-cong (λ z → l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ z) (x∪y∖n≡x∖n∪y∖n [ x₂ ] l₂ n) g₄ : l₁ ∖∖ n ++ [ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n ++ l₂ ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n g₄ = ≡-cong (λ z → l₁ ∖∖ n ++ z) (≡-sym $ ∪-assoc ([ x₁ ] ∖∖ n) ([ x₂ ] ∖∖ n) (l₂ ∖∖ n)) g₅ : (l₁ ++ [ x₁ ] ++ [ x₂ ] ++ l₂) ∖∖ n ≡ l₁ ∖∖ n ++ ([ x₁ ] ∖∖ n ++ [ x₂ ] ∖∖ n) ++ l₂ ∖∖ n g₅ = ≡-trans g₁ $ ≡-trans g₂ $ ≡-trans g₃ g₄ nr-x∪y⇒e∈x⇒e∈y⇒⊥ : ∀ {ℓ} {A : Set ℓ} {e : A} {x y : List A} → NonRepetitive (x ∪ y) → e ∈ x → e ∈ y → ⊥ nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = []} _ () nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = h ∷ t} (h∉t∪y ∷ nr-t∪y) (here e≡h) = h∉t∪y ∘ e∈x⇒e∈y∪x t ∘ ≡-elim′ (λ x → x ∈ _) e≡h nr-x∪y⇒e∈x⇒e∈y⇒⊥ {x = h ∷ t} (h∉t∪y ∷ nr-t∪y) (there e∈t) = nr-x∪y⇒e∈x⇒e∈y⇒⊥ nr-t∪y e∈t nr-x∪y⇒x∖y≡x : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → NonRepetitiveNames (x ∪ y) → y ∖∖ names x ≡ y nr-x∪y⇒x∖y≡x x y nr-x∪y = f₀ y (≋⇒⊆ refl) where f₀ : ∀ t → t ⊆ y → t ∖∖ names x ≡ t f₀ [] _ = refl f₀ (h ∷ t) h∷t⊆y with proj₁ h ∈? names x ... | yes h∈x = ⊥-elim $ nr-x∪y⇒e∈x⇒e∈y⇒⊥ (≡-elim′ NonRepetitive (n-x∪y x y) nr-x∪y) h∈x (x⊆y⇒nx⊆ny h∷t⊆y $ here refl) ... | no _ = ≡-cong (_∷_ h) (f₀ t $ x∪y⊆z⇒y⊆z [ h ] t h∷t⊆y) t≋t₁∪t₂⇒t∖t₁≋t₂ : ∀ {ℓ} {A : Set ℓ} {t : List (Named A)} → NonRepetitiveNames t → (t₁ t₂ : List (Named A)) → t ≋ t₁ ∪ t₂ → t ∖∖ names t₁ ≋ t₂ t≋t₁∪t₂⇒t∖t₁≋t₂ {t = t} nr-t t₁ t₂ t≋t₁∪t₂ = ≋-trans p₂ (≡⇒≋ $ nr-x∪y⇒x∖y≡x t₁ t₂ $ nr-x≋y (n-x≋y t≋t₁∪t₂) nr-t) where n-t₁ = names t₁ p₁ : t ∖∖ n-t₁ ≋ (t₁ ∖∖ n-t₁) ∪ (t₂ ∖∖ n-t₁) p₁ = ≋-trans (x≋y⇒x∖n≋y∖n t≋t₁∪t₂ n-t₁) (≡⇒≋ $ x∪y∖n≡x∖n∪y∖n t₁ t₂ n-t₁) p₂ : t ∖∖ n-t₁ ≋ t₂ ∖∖ n-t₁ p₂ = ≡-elim′ (λ x → t ∖∖ n-t₁ ≋ x ∪ (t₂ ∖∖ n-t₁)) (x∖x≡[] t₁) p₁ x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ : ∀ {ℓ} {A : Set ℓ} {x x̀ y ỳ : List A} → x ≋ x̀ → y ≋ ỳ → x ∪ y ≋ x̀ ∪ ỳ x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ x≋x̀ (refl {y}) = x≋x̀⇒x∪y≋x̀∪y x≋x̀ y x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ {x = x} {x̀ = x̀} {y = y} {ỳ = ._} x≋x̀ (perm l₁ x₁ x₂ l₂ y≋l₁x₂x₁l₂) = ≋-trans p₁ $ ≋-trans p₂ $ ≋-trans p₃ p₄ where p₁ : x ∪ y ≋ x̀ ∪ (l₁ ++ x₂ ∷ x₁ ∷ l₂) p₁ = x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ x≋x̀ y≋l₁x₂x₁l₂ p₂ : x̀ ∪ (l₁ ++ x₂ ∷ x₁ ∷ l₂) ≋ (x̀ ∪ l₁) ++ x₂ ∷ x₁ ∷ l₂ p₂ = ≡⇒≋ $ ≡-sym $ ∪-assoc x̀ l₁ (x₂ ∷ x₁ ∷ l₂) p₃ : (x̀ ∪ l₁) ++ x₂ ∷ x₁ ∷ l₂ ≋ (x̀ ∪ l₁) ++ x₁ ∷ x₂ ∷ l₂ p₃ = perm (x̀ ∪ l₁) x₁ x₂ l₂ refl p₄ : (x̀ ∪ l₁) ++ x₁ ∷ x₂ ∷ l₂ ≋ x̀ ∪ (l₁ ++ x₁ ∷ x₂ ∷ l₂) p₄ = ≡⇒≋ $ ∪-assoc x̀ l₁ (x₁ ∷ x₂ ∷ l₂) x∖y∪y≋y∖x∪x : ∀ {ℓ} {A : Set ℓ} (x y : List (Named A)) → let nx = names x ny = names y in filter-∈ x ny ≋ filter-∈ y nx → x ∖∖ ny ∪ y ≋ y ∖∖ nx ∪ x x∖y∪y≋y∖x∪x x y p₀ = ≋-trans p₁ $ ≋-trans p₂ p₃ where nx = names x ny = names y p₁ : x ∖∖ ny ∪ y ≋ x ∖∖ ny ∪ y ∖∖ nx ∪ filter-∈ y nx p₁ = ≋-trans (y≋ỳ⇒x∪y≋x∪ỳ (x ∖∖ ny) (t≋t∖n∪t∩n y nx)) (≡⇒≋ $ ≡-sym $ ∪-assoc (x ∖∖ ny) (y ∖∖ nx) (filter-∈ y nx)) p₂ : (x ∖∖ ny ∪ y ∖∖ nx) ∪ filter-∈ y nx ≋ (y ∖∖ nx ∪ x ∖∖ ny) ∪ filter-∈ x ny p₂ = x≋x̀⇒y≋ỳ⇒x∪y≋x̀∪ỳ (∪-sym (x ∖∖ ny) (y ∖∖ nx)) (≋-sym p₀) p₃ : y ∖∖ nx ∪ x ∖∖ ny ∪ filter-∈ x ny ≋ y ∖∖ nx ∪ x p₃ = ≋-trans (≡⇒≋ $ ∪-assoc (y ∖∖ nx) (x ∖∖ ny) (filter-∈ x ny)) (≋-sym $ y≋ỳ⇒x∪y≋x∪ỳ (y ∖∖ nx) (t≋t∖n∪t∩n x ny)) names⇒named : Names → List (Named Unit) names⇒named = mapL (λ x → x , unit) nn-x∪y≡nn-x∪nn-y : ∀ x y → names⇒named (x ∪ y) ≡ names⇒named x ∪ names⇒named y nn-x∪y≡nn-x∪nn-y [] y = refl nn-x∪y≡nn-x∪nn-y (h ∷ t) y = ≡-cong (_∷_ _) (nn-x∪y≡nn-x∪nn-y t y) nn-x≡x : ∀ x → names (names⇒named x) ≡ x nn-x≡x [] = refl nn-x≡x (h ∷ t) = ≡-cong (_∷_ h) (nn-x≡x t) x≋y⇒nn-x≋nn-y : ∀ {x y} → x ≋ y → names⇒named x ≋ names⇒named y x≋y⇒nn-x≋nn-y refl = refl x≋y⇒nn-x≋nn-y {x = x} {y = ._} (perm l₁ x₁ x₂ l₂ x≋l₁x₂x₁l₂) = ≋-trans p₁ p₂ where p₁ : names⇒named x ≋ names⇒named l₁ ++ (x₂ , unit) ∷ (x₁ , unit) ∷ names⇒named l₂ p₁ = ≋-trans (x≋y⇒nn-x≋nn-y x≋l₁x₂x₁l₂) (≡⇒≋ $ nn-x∪y≡nn-x∪nn-y l₁ (x₂ ∷ x₁ ∷ l₂)) p₂ : names⇒named l₁ ++ (x₂ , unit) ∷ (x₁ , unit) ∷ names⇒named l₂ ≋ names⇒named (l₁ ++ x₁ ∷ x₂ ∷ l₂) p₂ = ≋-trans (perm (names⇒named l₁) (x₁ , unit) (x₂ , unit) (names⇒named l₂) refl) (≡⇒≋ $ ≡-sym $ nn-x∪y≡nn-x∪nn-y l₁ (x₁ ∷ x₂ ∷ l₂)) x≋y∪z⇒x∖y≋z : {x : Names} → NonRepetitive x → (y z : Names) → x ≋ y ∪ z → x ∖ y ≋ z x≋y∪z⇒x∖y≋z {x} nr-x y z x≋y∪z = ≋-trans (≡⇒≋ $ ≡-sym $ ≡-trans p₂ p₃) (≋-trans p₁ $ ≡⇒≋ $ nn-x≡x z) where ux = names⇒named x uy = names⇒named y uz = names⇒named z ux≋uy∪uz : ux ≋ uy ∪ uz ux≋uy∪uz = ≋-trans (x≋y⇒nn-x≋nn-y x≋y∪z) (≡⇒≋ $ nn-x∪y≡nn-x∪nn-y y z) p₁ : names (ux ∖∖ names uy) ≋ names uz p₁ = n-x≋y $ t≋t₁∪t₂⇒t∖t₁≋t₂ (≡-elim′ NonRepetitive (≡-sym $ nn-x≡x x) nr-x) uy uz ux≋uy∪uz p₂ : names (ux ∖∖ names uy) ≡ names ux ∖ names uy p₂ = n-x∖y ux (names uy) p₃ : names ux ∖ names uy ≡ x ∖ y p₃ = ≡-cong₂ _∖_ (nn-x≡x x) (nn-x≡x y) h∈x⇒∃t,x≋h∷t : ∀ {ℓ} {A : Set ℓ} {h : A} {x : List A} → h ∈ x → NonRepetitive x → Σ[ t ∈ List A ] x ≋ h ∷ t h∈x⇒∃t,x≋h∷t {h = h} .{x = x ∷ xs} (here {x = x} {xs = xs} h≡x) (x∉xs ∷ nr-xs) = xs , ≡⇒≋ (≡-cong (λ z → z ∷ xs) (≡-sym h≡x)) h∈x⇒∃t,x≋h∷t {h = h} .{x = x ∷ xs} (there {x = x} {xs = xs} h∈xs) (x∉xs ∷ nr-xs) = let t , xs≋h∷t = ((Σ[ t ∈ List _ ] xs ≋ h ∷ t) ∋ h∈x⇒∃t,x≋h∷t h∈xs nr-xs) p₁ : x ∷ xs ≋ x ∷ h ∷ t p₁ = y≋ỳ⇒x∪y≋x∪ỳ [ x ] xs≋h∷t p₂ : x ∷ h ∷ t ≋ h ∷ x ∷ t p₂ = ≋-del-ins-l [] [ x ] h t in x ∷ t , ≋-trans p₁ p₂ nr-x∪y⇒nr-y : ∀ {ℓ} {A : Set ℓ} (x y : List A) → NonRepetitive (x ∪ y) → NonRepetitive y nr-x∪y⇒nr-y [] _ nr-y = nr-y nr-x∪y⇒nr-y (h ∷ t) y (_ ∷ nr-t∪y) = nr-x∪y⇒nr-y t y nr-t∪y x⊆y⇒∃x̀,y≋x∪x̀ : ∀ {ℓ} {A : Set ℓ} {x y : List A} → NonRepetitive x → NonRepetitive y → x ⊆ y → Σ[ x̀ ∈ List A ] y ≋ x ∪ x̀ x⊆y⇒∃x̀,y≋x∪x̀ {x = []} {y = y} _ _ _ = y , refl x⊆y⇒∃x̀,y≋x∪x̀ {x = h ∷ t} {y = y} (h∉t ∷ nr-t) nr-y h∷t⊆y = let ỳ , y≋h∷ỳ = h∈x⇒∃t,x≋h∷t (h∷t⊆y (h ∈ h ∷ t ∋ here refl)) nr-y p₁ : t ⊆ ỳ p₁ = x⊆e∷y⇒e∉x⇒x⊆y (x⊆y≋z (x∪y⊆z⇒y⊆z [ h ] t h∷t⊆y) y≋h∷ỳ) h∉t nr-ỳ = nr-x∪y⇒nr-y [ h ] ỳ $ nr-x≋y y≋h∷ỳ nr-y t̀ , ỳ≋t∪t̀ = x⊆y⇒∃x̀,y≋x∪x̀ nr-t nr-ỳ p₁ p₂ : h ∷ ỳ ≋ (h ∷ t) ∪ t̀ p₂ = y≋ỳ⇒x∪y≋x∪ỳ [ h ] ỳ≋t∪t̀ in t̀ , ≋-trans y≋h∷ỳ p₂ t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ : ∀ {ℓ} {A : Set ℓ} {t₁ t₂ : List (Named A)} → NonRepetitiveNames t₁ → NonRepetitiveNames t₂ → t₁ ⊆ t₂ → t₂ ≋ t₁ ∪ t₂ ∖∖ names t₁ t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ {t₁ = t₁} {t₂ = t₂} nr-nt₁ nr-nt₂ t₁⊆t₂ = ≋-trans p₁ $ y≋ỳ⇒x∪y≋x∪ỳ t₁ p₆ where n-t₁ = names t₁ nr-t₁ = nr-names⇒nr nr-nt₁ nr-t₂ = nr-names⇒nr nr-nt₂ t̀₁,t₁∪t̀₁≋t₂ = x⊆y⇒∃x̀,y≋x∪x̀ nr-t₁ nr-t₂ t₁⊆t₂ t̀₁ = proj₁ t̀₁,t₁∪t̀₁≋t₂ p₁ : t₂ ≋ t₁ ∪ t̀₁ p₁ = proj₂ t̀₁,t₁∪t̀₁≋t₂ p₂ : t₂ ∖∖ n-t₁ ≋ (t₁ ∪ t̀₁) ∖∖ n-t₁ p₂ = x≋y⇒x∖n≋y∖n p₁ n-t₁ p₃ : (t₁ ∪ t̀₁) ∖∖ n-t₁ ≡ t₁ ∖∖ n-t₁ ∪ t̀₁ ∖∖ n-t₁ p₃ = x∪y∖n≡x∖n∪y∖n t₁ t̀₁ n-t₁ p₄ : t₁ ∖∖ n-t₁ ∪ t̀₁ ∖∖ n-t₁ ≡ t̀₁ ∖∖ n-t₁ p₄ = ≡-cong (λ x → x ∪ t̀₁ ∖∖ n-t₁) (x∖x≡[] t₁) p₅ : t̀₁ ∖∖ n-t₁ ≡ t̀₁ p₅ = nr-x∪y⇒x∖y≡x t₁ t̀₁ $ nr-x≋y (n-x≋y p₁) nr-nt₂ p₆ : t̀₁ ≋ t₂ ∖∖ n-t₁ p₆ = ≋-sym $ ≋-trans p₂ $ ≡⇒≋ $ ≡-trans p₃ $ ≡-trans p₄ p₅ t₁⊆t₂⇒t₁≋f∈-t₂-nt₁ : ∀ {ℓ} {A : Set ℓ} {t₁ t₂ : List (Named A)} → NonRepetitiveNames t₁ → NonRepetitiveNames t₂ → t₁ ⊆ t₂ → t₁ ≋ filter-∈ t₂ (names t₁) t₁⊆t₂⇒t₁≋f∈-t₂-nt₁ {t₁ = t₁} {t₂ = t₂} nr-t₁ nr-t₂ t₁⊆t₂ = ≋-trans (≋-sym p₃) p₄ where nt₁ = names t₁ p₁ : t₂ ≋ t₂ ∖∖ nt₁ ∪ t₁ p₁ = ≋-trans (t₁⊆t₂⇒t₂≋t₁∪t₂∖nt₁ nr-t₁ nr-t₂ t₁⊆t₂) (∪-sym t₁ (t₂ ∖∖ nt₁)) p₂ : t₂ ≋ t₂ ∖∖ nt₁ ∪ filter-∈ t₂ nt₁ p₂ = t≋t∖n∪t∩n t₂ nt₁ p₃ : t₂ ∖∖ names (t₂ ∖∖ nt₁) ≋ t₁ p₃ = t≋t₁∪t₂⇒t∖t₁≋t₂ nr-t₂ (t₂ ∖∖ nt₁) t₁ p₁ p₄ : t₂ ∖∖ names (t₂ ∖∖ nt₁) ≋ filter-∈ t₂ nt₁ p₄ = t≋t₁∪t₂⇒t∖t₁≋t₂ nr-t₂ (t₂ ∖∖ nt₁) (filter-∈ t₂ nt₁) p₂ -- /lemmas -- assertions infix 4 _s-≢!_ _s-≢!_ : String → String → Set x s-≢! y with x ≟ y ... | yes _ = ⊥ ... | no _ = ⊤ s-≢!⇒≢? : ∀ {x y} → x s-≢! y → x ≢ y s-≢!⇒≢? {x} {y} x≢!y with x ≟ y s-≢!⇒≢? () | yes _ s-≢!⇒≢? _ | no p = p s-NonRepetitive? : (n : Names) → Dec (NonRepetitive n) s-NonRepetitive? [] = yes [] s-NonRepetitive? (h ∷ t) with h ∈? t | s-NonRepetitive? t ... | no h∉t | yes nr-t = yes (h∉t ∷ nr-t) ... | yes h∈t | _ = no f where f : NonRepetitive (_ ∷ _) → _ f (h∉t ∷ _) = h∉t h∈t ... | _ | no ¬nr-t = no f where f : NonRepetitive (_ ∷ _) → _ f (_ ∷ nr-t) = ¬nr-t nr-t s-NonRepetitive! : Names → Set s-NonRepetitive! n with s-NonRepetitive? n ... | yes _ = ⊤ ... | no _ = ⊥ NonRepetitiveNames! : ∀ {ℓ} {A : Set ℓ} → List (Named A) → Set NonRepetitiveNames! = s-NonRepetitive! ∘ names s-nr!⇒nr : {n : Names} → s-NonRepetitive! n → NonRepetitive n s-nr!⇒nr {n = n} _ with s-NonRepetitive? n s-nr!⇒nr _ | yes p = p s-nr!⇒nr () | no _ -- /assertions
{ "alphanum_fraction": 0.4316689934, "avg_line_length": 43.6101036269, "ext": "agda", "hexsha": "f1047f57da1f840bb336cbe0e8aaa5b830deba34", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/LibSucceed/Issue784/Values.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/LibSucceed/Issue784/Values.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/LibSucceed/Issue784/Values.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 21872, "size": 33667 }
{-# OPTIONS --without-K #-} module mini-lob where open import common infixl 2 _▻_ infixl 3 _‘’_ infixr 1 _‘→’_ infixl 3 _‘’ₐ_ mutual data Context : Set where ε : Context _▻_ : (Γ : Context) → Type Γ → Context data Type : Context → Set where _‘’_ : ∀ {Γ A} → Type (Γ ▻ A) → Term {Γ} A → Type Γ ‘Typeε’ : Type ε ‘□’ : Type (ε ▻ ‘Typeε’) _‘→’_ : ∀ {Γ} → Type Γ → Type Γ → Type Γ ‘⊤’ : ∀ {Γ} → Type Γ ‘⊥’ : ∀ {Γ} → Type Γ data Term : {Γ : Context} → Type Γ → Set where ⌜_⌝ : Type ε → Term {ε} ‘Typeε’ _‘’ₐ_ : ∀ {Γ A B} → Term {Γ} (A ‘→’ B) → Term {Γ} A → Term {Γ} B Lӧb : ∀ {X} → Term {ε} (‘□’ ‘’ ⌜ X ⌝ ‘→’ X) → Term {ε} X ‘tt’ : ∀ {Γ} → Term {Γ} ‘⊤’ □ : Type ε → Set _ □ = Term {ε} max-level : Level max-level = lzero mutual Context⇓ : (Γ : Context) → Set (lsuc max-level) Context⇓ ε = ⊤ Context⇓ (Γ ▻ T) = Σ (Context⇓ Γ) (Type⇓ {Γ} T) Type⇓ : {Γ : Context} → Type Γ → Context⇓ Γ → Set max-level Type⇓ (T ‘’ x) Γ⇓ = Type⇓ T (Γ⇓ , Term⇓ x Γ⇓) Type⇓ ‘Typeε’ Γ⇓ = Lifted (Type ε) Type⇓ ‘□’ Γ⇓ = Lifted (Term {ε} (lower (Σ.proj₂ Γ⇓))) Type⇓ (A ‘→’ B) Γ⇓ = Type⇓ A Γ⇓ → Type⇓ B Γ⇓ Type⇓ ‘⊤’ Γ⇓ = ⊤ Type⇓ ‘⊥’ Γ⇓ = ⊥ Term⇓ : ∀ {Γ : Context} {T : Type Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Type⇓ T Γ⇓ Term⇓ ⌜ x ⌝ Γ⇓ = lift x Term⇓ (f ‘’ₐ x) Γ⇓ = Term⇓ f Γ⇓ (Term⇓ x Γ⇓) Term⇓ (Lӧb □‘X’→X) Γ⇓ = Term⇓ □‘X’→X Γ⇓ (lift (Lӧb □‘X’→X)) Term⇓ ‘tt’ Γ⇓ = tt ⌞_⌟ : Type ε → Set _ ⌞ T ⌟ = Type⇓ T tt ‘¬’_ : ∀ {Γ} → Type Γ → Type Γ ‘¬’ T = T ‘→’ ‘⊥’ lӧb : ∀ {‘X’} → □ (‘□’ ‘’ ⌜ ‘X’ ⌝ ‘→’ ‘X’) → ⌞ ‘X’ ⌟ lӧb f = Term⇓ (Lӧb f) tt incompleteness : ¬ □ (‘¬’ (‘□’ ‘’ ⌜ ‘⊥’ ⌝)) incompleteness = lӧb soundness : ¬ □ ‘⊥’ soundness x = Term⇓ x tt non-emptyness : Σ (Type ε) (λ T → □ T) non-emptyness = ‘⊤’ , ‘tt’
{ "alphanum_fraction": 0.4617117117, "avg_line_length": 25.014084507, "ext": "agda", "hexsha": "86f9f56a8d2b450ff926508f5b532e16da053547", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z", "max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JasonGross/lob", "max_forks_repo_path": "internal/mini-lob.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JasonGross/lob", "max_issues_repo_path": "internal/mini-lob.agda", "max_line_length": 80, "max_stars_count": 19, "max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JasonGross/lob", "max_stars_repo_path": "internal/mini-lob.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z", "num_tokens": 1027, "size": 1776 }
{-# OPTIONS --without-K --safe #-} module Bundles where open import Algebra.Core open import Quasigroup.Structures open import Relation.Binary open import Level open import Algebra.Bundles open import Algebra.Structures open import Structures record InverseSemigroup c ℓ : Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isInverseSemigroup : IsInverseSemigroup _≈_ _∙_ open IsInverseSemigroup isInverseSemigroup public magma : Magma c ℓ magma = record { isMagma = isMagma } open Magma magma public using (_≉_; rawMagma) record Rng c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier isRng : IsRng _≈_ _+_ _*_ -_ 0# open IsRng isRng public +-abelianGroup : AbelianGroup _ _ +-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } *-semigroup : Semigroup _ _ *-semigroup = record { isSemigroup = *-isSemigroup } open AbelianGroup +-abelianGroup public using () renaming (group to +-group; invertibleMagma to +-invertibleMagma; invertibleUnitalMagma to +-invertibleUnitalMagma) open Semigroup *-semigroup public using () renaming ( rawMagma to *-rawMagma ; magma to *-magma ) record NonAssociativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isNonAssociativeRing : IsNonAssociativeRing _≈_ _+_ _*_ -_ 0# 1# open IsNonAssociativeRing isNonAssociativeRing public +-abelianGroup : AbelianGroup _ _ +-abelianGroup = record { isAbelianGroup = +-isAbelianGroup } *-unitalmagma : UnitalMagma _ _ *-unitalmagma = record { isUnitalMagma = *-isUnitalMagma } open AbelianGroup +-abelianGroup public using () renaming (group to +-group; invertibleMagma to +-invertibleMagma; invertibleUnitalMagma to +-invertibleUnitalMagma) open UnitalMagma *-unitalmagma public using () renaming ( rawMagma to *-rawMagma ; magma to *-magma )
{ "alphanum_fraction": 0.6274747475, "avg_line_length": 26.902173913, "ext": "agda", "hexsha": "07e27c6b43aefd8a93352755ff0a9a5c5446306a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Bundles.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Bundles.agda", "max_line_length": 128, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Bundles.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 797, "size": 2475 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: Hancock (2008). (Ordinal-theoretic) proof theory. module Ordinals where data ℕ : Set where zero : ℕ succ : ℕ → ℕ data Ω : Set where zero : Ω succ : Ω → Ω limN : (ℕ → Ω) → Ω inj : ℕ → Ω inj zero = zero inj (succ n) = succ (inj n) ω : Ω ω = limN (λ n → inj n) ω+1 : Ω ω+1 = succ ω data Ω₂ : Set where zero : Ω₂ succ : Ω₂ → Ω₂ limN : (ℕ → Ω₂) → Ω₂ limΩ : (Ω → Ω₂) → Ω₂ inj₁ : Ω → Ω₂ inj₁ zero = zero inj₁ (succ o) = succ (inj₁ o) inj₁ (limN f) = limN (λ n → inj₁ (f n)) ω₁ : Ω₂ ω₁ = limΩ (λ o → inj₁ o)
{ "alphanum_fraction": 0.5188284519, "avg_line_length": 17.0714285714, "ext": "agda", "hexsha": "e6a40264eb05d39657d354e03ba874505ff65112", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/Ordinals.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/Ordinals.agda", "max_line_length": 58, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/Ordinals.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 305, "size": 717 }
-- Andreas, 2019-11-12, issue #4168b -- -- Meta variable solver should not use uncurrying -- if the record type contains erased fields. open import Agda.Builtin.Equality open import Agda.Builtin.Sigma open import Common.IO P : (A B : Set) → (A → B) → Set P A B f = (y : B) → Σ A (λ x → f x ≡ y) record R (A B : Set) : Set where field to : A → B from : B → A from-to : (x : A) → from (to x) ≡ x p : (A B : Set) (r : R A B) → P A B (R.to r) p _ _ r y = R.from r y , to-from y where postulate to-from : ∀ x → R.to r (R.from r x) ≡ x record Box (A : Set) : Set where constructor box field @0 unbox : A test : (A : Set) → P (Box A) (Box (Box A)) (box {A = Box A}) test A = p _ _ (record { to = box {A = _} ; from = λ { (box (box x)) → box {A = A} x } -- at first, a postponed type checking problem ?from ; from-to = λ x → refl {A = Box A} {x = _} }) -- from-to creates constraint -- -- x : Box A |- ?from (box x) = x : Box A -- -- This was changed to -- -- y : Box (Box A) |- ?from y = unbox y : Box A -- -- which is an invalid transformation since x is not -- guaranteed to be in erased context. -- As a consequence, compilation (GHC backend) failed. -- A variant with a non-erased field. record ⊤ : Set where record Box' (A : Set) : Set where constructor box' field unit : ⊤ @0 unbox' : A test' : (A : Set) → P (Box' A) (Box' (Box' A)) (box' {A = Box' A} _) test' A = p _ _ (record { to = box' {A = _} _ ; from = λ { (box' _ (box' _ x)) → box' {A = A} _ x } ; from-to = λ x → refl {A = Box' A} {x = _} }) main : IO ⊤ main = return _
{ "alphanum_fraction": 0.5388379205, "avg_line_length": 23.3571428571, "ext": "agda", "hexsha": "5d621278a0f78d67ce15bd0746e50fa30430518b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a2a54ce1b97fe103fbe1b961ffda95fe6313abf0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "k-bx/agda", "max_forks_repo_path": "test/Compiler/simple/Issue4168-4185.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a2a54ce1b97fe103fbe1b961ffda95fe6313abf0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "k-bx/agda", "max_issues_repo_path": "test/Compiler/simple/Issue4168-4185.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "a2a54ce1b97fe103fbe1b961ffda95fe6313abf0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "k-bx/agda", "max_stars_repo_path": "test/Compiler/simple/Issue4168-4185.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 607, "size": 1635 }
open import Data.Product using ( _×_ ; _,_ ; proj₁ ; proj₂ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Data.Unit using ( tt ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Relation.Unary using ( _∈_ ; _⊆_ ) open import Web.Semantic.DL.ABox using ( ABox ; Assertions ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind ; _≋_ ) open import Web.Semantic.DL.ABox.Model using ( _⟦_⟧₀ ; _⊨a_ ; Assertions✓ ) open import Web.Semantic.DL.Concept using ( ⟨_⟩ ; ¬⟨_⟩ ; ⊤ ; ⊥ ; _⊓_ ; _⊔_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; >1 ) open import Web.Semantic.DL.Concept.Model using ( _⟦_⟧₁ ; ⟦⟧₁-resp-≈ ) open import Web.Semantic.DL.Integrity using ( Unique ; Mediator ; Initial ; _>>_ ; _⊕_⊨_ ; _,_ ) open import Web.Semantic.DL.KB using ( KB ; tbox ; abox ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Role using ( ⟨_⟩ ; ⟨_⟩⁻¹ ) open import Web.Semantic.DL.Role.Model using ( _⟦_⟧₂ ; ⟦⟧₂-resp-≈ ) open import Web.Semantic.DL.Sequent using ( Γ ; γ ; _⊕_⊢_∼_ ; _⊕_⊢_∈₁_ ; _⊕_⊢_∈₂_ ; ∼-assert ; ∼-import ;∼-refl ; ∼-sym ; ∼-trans ; ∼-≤1 ; ∈₂-assert ; ∈₂-import ; ∈₂-resp-∼ ; ∈₂-subsum ; ∈₂-refl ; ∈₂-trans ; ∈₂-inv-I ; ∈₂-inv-E ; ∈₁-assert ; ∈₁-import ; ∈₁-resp-∼ ; ∈₁-subsum ; ∈₁-⊤-I ; ∈₁-⊓-I ; ∈₁-⊓-E₁ ; ∈₁-⊓-E₂ ; ∈₁-⊔-I₁ ; ∈₁-⊔-I₂ ; ∈₁-∃-I ; ∈₁-∀-E ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ; Axioms ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Tra ) open import Web.Semantic.DL.TBox.Interp using ( interp ; Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ; con-≈ ; rol-≈ ) renaming ( Interp to Interp′ ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( morph ; ≲-image ; ≲-resp-≈ ; ≲-resp-con ; ≲-resp-rol ) open import Web.Semantic.DL.TBox.Minimizable using ( LHS ; RHS ; μTBox ; ⟨_⟩ ; ⊤ ; ⊥ ; _⊓_ ; _⊔_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Ref ; Tra ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ; Axioms✓ ) open import Web.Semantic.Util using ( Subset ; ⊆-refl ; id ; _∘_ ; _⊕_⊕_ ; _[⊕]_[⊕]_ ; inode ; bnode ; enode ) module Web.Semantic.DL.Sequent.Model {Σ : Signature} {W X Y : Set} where infix 5 _⊞_ minimal′ : Interp Σ X → KB Σ (X ⊕ W ⊕ Y) → Interp′ Σ minimal′ I KB = interp (Γ I KB) (λ x y → (I ⊕ KB ⊢ x ∼ y)) ∼-refl ∼-sym ∼-trans (λ c x → I ⊕ KB ⊢ x ∈₁ ⟨ c ⟩) (λ r xy → I ⊕ KB ⊢ xy ∈₂ ⟨ r ⟩) (λ c → ∈₁-resp-∼) (λ r → ∈₂-resp-∼) minimal : Interp Σ X → KB Σ (X ⊕ W ⊕ Y) → Interp Σ (X ⊕ W ⊕ Y) minimal I KB = (minimal′ I KB , γ I KB) complete₂ : ∀ I KB R {xy} → (xy ∈ minimal′ I KB ⟦ R ⟧₂) → (I ⊕ KB ⊢ xy ∈₂ R) complete₂ I KB ⟨ r ⟩ {(x , y)} xy∈⟦r⟧ = xy∈⟦r⟧ complete₂ I KB ⟨ r ⟩⁻¹ {(x , y)} yx∈⟦r⟧ = ∈₂-inv-I yx∈⟦r⟧ complete₁ : ∀ I KB {C x} → (C ∈ LHS) → (x ∈ minimal′ I KB ⟦ C ⟧₁) → (I ⊕ KB ⊢ x ∈₁ C) complete₁ I KB ⟨ c ⟩ x∈⟦c⟧ = x∈⟦c⟧ complete₁ I KB ⊤ _ = ∈₁-⊤-I complete₁ I KB (C ⊓ D) (x∈⟦C⟧ , x∈⟦D⟧) = ∈₁-⊓-I (complete₁ I KB C x∈⟦C⟧) (complete₁ I KB D x∈⟦D⟧) complete₁ I KB (C ⊔ D) (inj₁ x∈⟦C⟧) = ∈₁-⊔-I₁ (complete₁ I KB C x∈⟦C⟧) complete₁ I KB (C ⊔ D) (inj₂ x∈⟦D⟧) = ∈₁-⊔-I₂ (complete₁ I KB D x∈⟦D⟧) complete₁ I KB (∃⟨ R ⟩ C) (y , xy∈⟦R⟧ , y∈⟦C⟧) = ∈₁-∃-I (complete₂ I KB R xy∈⟦R⟧) (complete₁ I KB C y∈⟦C⟧) complete₁ I KB ⊥ () sound₂ : ∀ I KB R {xy} → (I ⊕ KB ⊢ xy ∈₂ R) → (xy ∈ minimal′ I KB ⟦ R ⟧₂) sound₂ I KB ⟨ r ⟩ {(x , y)} ⊢xy∈r = ⊢xy∈r sound₂ I KB ⟨ r ⟩⁻¹ {(x , y)} ⊢xy∈r⁻ = ∈₂-inv-E ⊢xy∈r⁻ sound₁ : ∀ I KB {C x} → (C ∈ RHS) → (I ⊕ KB ⊢ x ∈₁ C) → (x ∈ minimal′ I KB ⟦ C ⟧₁) sound₁ I KB ⟨ c ⟩ ⊢x∈c = ⊢x∈c sound₁ I KB ⊤ ⊢x∈⊤ = tt sound₁ I KB (C ⊓ D) ⊢x∈C⊓D = (sound₁ I KB C (∈₁-⊓-E₁ ⊢x∈C⊓D) , sound₁ I KB D (∈₁-⊓-E₂ ⊢x∈C⊓D)) sound₁ I KB (∀[ R ] C) ⊢x∈∀RC = λ y xy∈⟦R⟧ → sound₁ I KB C (∈₁-∀-E ⊢x∈∀RC (complete₂ I KB R xy∈⟦R⟧)) sound₁ I KB (≤1 R) ⊢x∈≤1R = λ y z xy∈⟦R⟧ xz∈⟦R⟧ → ∼-≤1 ⊢x∈≤1R (complete₂ I KB R xy∈⟦R⟧) (complete₂ I KB R xz∈⟦R⟧) minimal-⊨ : ∀ I KB → (tbox KB ∈ μTBox) → (minimal I KB ⊨ KB) minimal-⊨ I KB μT = ( minimal-tbox μT (⊆-refl (Axioms (tbox KB))) , minimal-abox (abox KB) (⊆-refl (Assertions (abox KB)))) where minimal-tbox : ∀ {T} → (T ∈ μTBox) → (Axioms T ⊆ Axioms (tbox KB)) → minimal′ I KB ⊨t T minimal-tbox ε ε⊆T = tt minimal-tbox (U , V) UV⊆T = ( minimal-tbox U (λ u → UV⊆T (inj₁ u)) , minimal-tbox V (λ v → UV⊆T (inj₂ v)) ) minimal-tbox (C ⊑₁ D) C⊑₁D∈T = λ x∈⟦C⟧ → sound₁ I KB D (∈₁-subsum (complete₁ I KB C x∈⟦C⟧) (C⊑₁D∈T refl)) minimal-tbox (Q ⊑₂ R) Q⊑₁R∈T = λ xy∈⟦Q⟧ → sound₂ I KB R (∈₂-subsum (complete₂ I KB Q xy∈⟦Q⟧) (Q⊑₁R∈T refl)) minimal-tbox (Ref R) RefR∈T = λ x → sound₂ I KB R (∈₂-refl x (RefR∈T refl)) minimal-tbox (Tra R) TraR∈T = λ xy∈⟦R⟧ yz∈⟦R⟧ → sound₂ I KB R (∈₂-trans (complete₂ I KB R xy∈⟦R⟧) (complete₂ I KB R yz∈⟦R⟧) (TraR∈T refl)) minimal-abox : ∀ A → (Assertions A ⊆ Assertions (abox KB)) → minimal I KB ⊨a A minimal-abox ε ε⊆A = tt minimal-abox (B , C) BC⊆A = ( minimal-abox B (λ b → BC⊆A (inj₁ b)) , minimal-abox C (λ c → BC⊆A (inj₂ c)) ) minimal-abox (x ∼ y) x∼y⊆A = ∼-assert (x∼y⊆A refl) minimal-abox (x ∈₁ c) x∈C⊆A = sound₁ I KB ⟨ c ⟩ (∈₁-assert (x∈C⊆A refl)) minimal-abox ((x , y) ∈₂ r) xy∈R⊆A = sound₂ I KB ⟨ r ⟩ (∈₂-assert (xy∈R⊆A refl)) minimal-≳ : ∀ I KB → (I ≲ inode * minimal I KB) minimal-≳ I KB = (morph inode ∼-import ∈₁-import ∈₂-import , λ x → ∼-refl) minimal-≲ : ∀ I KB J → (I ≲ inode * J) → (J ⊨ KB) → (minimal I KB ≲ J) minimal-≲ I KB J I≲J (J⊨T , J⊨A) = (morph f minimal-≈ minimal-con minimal-rol , fγ≈j) where f : Γ I KB → Δ ⌊ J ⌋ f = (≲-image ≲⌊ I≲J ⌋) [⊕] (ind J ∘ bnode) [⊕] (ind J ∘ enode) fγ≈j : ∀ x → ⌊ J ⌋ ⊨ f (γ I KB x) ≈ ind J x fγ≈j (inode x) = ≲-resp-ind I≲J x fγ≈j (bnode v) = ≈-refl ⌊ J ⌋ fγ≈j (enode y) = ≈-refl ⌊ J ⌋ mutual minimal-≈ : ∀ {x y} → (I ⊕ KB ⊢ x ∼ y) → (⌊ J ⌋ ⊨ f x ≈ f y) minimal-≈ (∼-assert x∼y∈A) = ≈-trans ⌊ J ⌋ (fγ≈j _) (≈-trans ⌊ J ⌋ (Assertions✓ J (abox KB) x∼y∈A J⊨A) (≈-sym ⌊ J ⌋ (fγ≈j _))) minimal-≈ (∼-import x≈y) = ≲-resp-≈ ≲⌊ I≲J ⌋ x≈y minimal-≈ ∼-refl = ≈-refl ⌊ J ⌋ minimal-≈ (∼-sym x∼y) = ≈-sym ⌊ J ⌋ (minimal-≈ x∼y) minimal-≈ (∼-trans x∼y y∼z) = ≈-trans ⌊ J ⌋ (minimal-≈ x∼y) (minimal-≈ y∼z) minimal-≈ (∼-≤1 x∈≤1R xy∈R xz∈R) = minimal-con x∈≤1R _ _ (minimal-rol xy∈R) (minimal-rol xz∈R) minimal-con : ∀ {x C} → (I ⊕ KB ⊢ x ∈₁ C) → (f x ∈ ⌊ J ⌋ ⟦ C ⟧₁) minimal-con (∈₁-assert x∈c∈A) = con-≈ ⌊ J ⌋ _ (Assertions✓ J (abox KB) x∈c∈A J⊨A) (≈-sym ⌊ J ⌋ (fγ≈j _)) minimal-con (∈₁-import x∈⟦c⟧) = ≲-resp-con ≲⌊ I≲J ⌋ x∈⟦c⟧ minimal-con {x} {C} (∈₁-resp-∼ x∈C x∼y) = ⟦⟧₁-resp-≈ ⌊ J ⌋ C (minimal-con x∈C) (minimal-≈ x∼y) minimal-con (∈₁-subsum x∈C C⊑D∈T) = Axioms✓ ⌊ J ⌋ (tbox KB) C⊑D∈T J⊨T (minimal-con x∈C) minimal-con ∈₁-⊤-I = tt minimal-con (∈₁-⊓-I x∈C x∈D) = (minimal-con x∈C , minimal-con x∈D) minimal-con (∈₁-⊓-E₁ x∈C⊓D) = proj₁ (minimal-con x∈C⊓D) minimal-con (∈₁-⊓-E₂ x∈C⊓D) = proj₂ (minimal-con x∈C⊓D) minimal-con (∈₁-⊔-I₁ x∈C) = inj₁ (minimal-con x∈C) minimal-con (∈₁-⊔-I₂ x∈D) = inj₂ (minimal-con x∈D) minimal-con (∈₁-∀-E x∈[R]C xy∈R) = minimal-con x∈[R]C _ (minimal-rol xy∈R) minimal-con (∈₁-∃-I xy∈R y∈C) = (_ , minimal-rol xy∈R , minimal-con y∈C) minimal-rol : ∀ {x y R} → (I ⊕ KB ⊢ (x , y) ∈₂ R) → ((f x , f y) ∈ ⌊ J ⌋ ⟦ R ⟧₂) minimal-rol (∈₂-assert xy∈r∈A) = rol-≈ ⌊ J ⌋ _ (fγ≈j _) (Assertions✓ J (abox KB) xy∈r∈A J⊨A) (≈-sym ⌊ J ⌋ (fγ≈j _)) minimal-rol (∈₂-import xy∈⟦r⟧) = ≲-resp-rol ≲⌊ I≲J ⌋ xy∈⟦r⟧ minimal-rol {x} {y} {R} (∈₂-resp-∼ w∼x xy∈R y∼z) = ⟦⟧₂-resp-≈ ⌊ J ⌋ R (minimal-≈ w∼x) (minimal-rol xy∈R) (minimal-≈ y∼z) minimal-rol (∈₂-subsum xy∈Q Q⊑R∈T) = Axioms✓ ⌊ J ⌋ (tbox KB) Q⊑R∈T J⊨T (minimal-rol xy∈Q) minimal-rol (∈₂-refl x RefR∈T) = Axioms✓ ⌊ J ⌋ (tbox KB) RefR∈T J⊨T _ minimal-rol (∈₂-trans xy∈R yz∈R TraR∈T) = Axioms✓ ⌊ J ⌋ (tbox KB) TraR∈T J⊨T (minimal-rol xy∈R) (minimal-rol yz∈R) minimal-rol (∈₂-inv-I xy∈r) = minimal-rol xy∈r minimal-rol (∈₂-inv-E xy∈r⁻) = minimal-rol xy∈r⁻ minimal-≋ : ∀ I KB K I≲K K⊨KB → (I≲K ≋ minimal-≳ I KB >> minimal-≲ I KB K I≲K K⊨KB) minimal-≋ I KB K I≲K (K⊨T , K⊨A) = λ x → ≈-refl ⌊ K ⌋ minimal-uniq : ∀ I KB K I≲K → Unique I (minimal I KB) K (minimal-≳ I KB) I≲K minimal-uniq I KB K I≲K J≲₁K J≲₂K I≲K≋I≲J≲₁K I≲K≋I≲J≲₂K (inode x) = ≈-trans ⌊ K ⌋ (≈-sym ⌊ K ⌋ (I≲K≋I≲J≲₁K x)) (I≲K≋I≲J≲₂K x) minimal-uniq I KB K I≲K J≲₁K J≲₂K I≲K≋I≲J≲₁K I≲K≋I≲J≲₂K (bnode v) = ≈-trans ⌊ K ⌋ (≲-resp-ind J≲₁K (bnode v)) (≈-sym ⌊ K ⌋ (≲-resp-ind J≲₂K (bnode v))) minimal-uniq I KB K I≲K J≲₁K J≲₂K I≲K≋I≲J≲₁K I≲K≋I≲J≲₂K (enode y) = ≈-trans ⌊ K ⌋ (≲-resp-ind J≲₁K (enode y)) (≈-sym ⌊ K ⌋ (≲-resp-ind J≲₂K (enode y))) minimal-med : ∀ I KB → Mediator I (minimal I KB) (minimal-≳ I KB) KB minimal-med I KB K I≲K K⊨KB = ( minimal-≲ I KB K I≲K K⊨KB , minimal-≋ I KB K I≲K K⊨KB , minimal-uniq I KB K I≲K) minimal-init : ∀ I KB → (tbox KB ∈ μTBox) → Initial I KB (minimal I KB) minimal-init I KB μKB = (minimal-≳ I KB , minimal-⊨ I KB μKB , minimal-med I KB) _⊞_ : Interp Σ X → KB Σ (X ⊕ W ⊕ Y) → Interp Σ Y I ⊞ KB = enode * minimal I KB ⊞-sound : ∀ I KB₁ KB₂ → (tbox KB₁ ∈ μTBox) → (I ⊞ KB₁ ⊨ KB₂) → (I ⊕ KB₁ ⊨ KB₂) ⊞-sound I KB₁ KB₂ μKB₁ ⊨KB₂ = (minimal I KB₁ , minimal-init I KB₁ μKB₁ , ⊨KB₂)
{ "alphanum_fraction": 0.5147164393, "avg_line_length": 39.8, "ext": "agda", "hexsha": "377c6172890a440ed2d41bf0f67760450a370728", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Sequent/Model.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Sequent/Model.agda", "max_line_length": 78, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Sequent/Model.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 5271, "size": 9751 }
------------------------------------------------------------------------ -- A simplification of Hinze.Section2-4 ------------------------------------------------------------------------ module Hinze.Simplified.Section2-4 where open import Stream.Programs open import Stream.Equality open import Stream.Pointwise hiding (⟦_⟧) open import Hinze.Lemmas open import Codata.Musical.Notation hiding (∞) open import Data.Nat renaming (suc to 1+) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality renaming (module ≡-Reasoning to ER) open import Algebra.Structures import Data.Nat.Properties as Nat private module CS = IsCommutativeSemiring Nat.+-*-isCommutativeSemiring open import Data.Product ------------------------------------------------------------------------ -- Abbreviations 2* : ℕ → ℕ 2* n = 2 * n 1+2* : ℕ → ℕ 1+2* n = 1 + 2 * n 2+2* : ℕ → ℕ 2+2* n = 2 + 2 * n ------------------------------------------------------------------------ -- Definitions nat : Prog ℕ nat = 0 ≺ ♯ (1+ · nat) fac : Prog ℕ fac = 1 ≺ ♯ (1+ · nat ⟨ _*_ ⟩ fac) fib : Prog ℕ fib = 0 ≺ ♯ (fib ⟨ _+_ ⟩ (1 ≺ ♯ fib)) bin : Prog ℕ bin = 0 ≺ ♯ (1+2* · bin ⋎ 2+2* · bin) ------------------------------------------------------------------------ -- Laws and properties const-is-∞ : ∀ {A} {x : A} {xs} → xs ≊ x ≺♯ xs → xs ≊ x ∞ const-is-∞ {x = x} {xs} eq = xs ≊⟨ eq ⟩ x ≺♯ xs ≊⟨ refl ≺ ♯ const-is-∞ eq ⟩ x ≺♯ x ∞ ≡⟨ refl ⟩ x ∞ ∎ nat-lemma₁ : 0 ≺♯ 1+2* · nat ⋎ 2+2* · nat ≊ 2* · nat ⋎ 1+2* · nat nat-lemma₁ = 0 ≺♯ 1+2* · nat ⋎ 2+2* · nat ≊⟨ refl ≺ ♯ ⋎-cong (1+2* · nat) (1+2* · nat) (1+2* · nat ∎) (2+2* · nat) (2* · 1+ · nat) (lemma 2 nat) ⟩ 0 ≺♯ 1+2* · nat ⋎ 2* · 1+ · nat ≡⟨ refl ⟩ 2* · nat ⋎ 1+2* · nat ∎ where lemma : ∀ m s → (λ n → m + m * n) · s ≊ _*_ m · 1+ · s lemma m = pointwise 1 (λ s → (λ n → m + m * n) · s) (λ s → _*_ m · 1+ · s) (λ n → sym (ER.begin m * (1 + n) ER.≡⟨ proj₁ CS.distrib m 1 n ⟩ m * 1 + m * n ER.≡⟨ cong (λ x → x + m * n) (proj₂ CS.*-identity m) ⟩ m + m * n ER.∎)) nat-lemma₂ : nat ≊ 2* · nat ⋎ 1+2* · nat nat-lemma₂ = nat ≡⟨ refl ⟩ 0 ≺♯ 1+ · nat ≊⟨ refl ≺ ♯ ·-cong 1+ nat (2* · nat ⋎ 1+2* · nat) nat-lemma₂ ⟩ 0 ≺♯ 1+ · (2* · nat ⋎ 1+2* · nat) ≊⟨ ≅-sym (refl ≺ ♯ ⋎-map 1+ (2* · nat) (1+2* · nat)) ⟩ 0 ≺♯ 1+ · 2* · nat ⋎ 1+ · 1+2* · nat ≊⟨ refl ≺ ♯ ⋎-cong (1+ · 2* · nat) (1+2* · nat) (map-fusion 1+ 2* nat) (1+ · 1+2* · nat) (2+2* · nat) (map-fusion 1+ 1+2* nat) ⟩ 0 ≺♯ 1+2* · nat ⋎ 2+2* · nat ≊⟨ nat-lemma₁ ⟩ 2* · nat ⋎ 1+2* · nat ∎ nat≊bin : nat ≊ bin nat≊bin = nat ≊⟨ nat-lemma₂ ⟩ 2* · nat ⋎ 1+2* · nat ≊⟨ ≅-sym nat-lemma₁ ⟩ 0 ≺♯ 1+2* · nat ⋎ 2+2* · nat ≊⟨ refl ≺ coih ⟩ 0 ≺♯ 1+2* · bin ⋎ 2+2* · bin ≡⟨ refl ⟩ bin ∎ where coih = ♯ ⋎-cong (1+2* · nat) (1+2* · bin) (·-cong 1+2* nat bin nat≊bin) (2+2* · nat) (2+2* · bin) (·-cong 2+2* nat bin nat≊bin) iterate-fusion : ∀ {A B} (h : A → B) (f₁ : A → A) (f₂ : B → B) → (∀ x → h (f₁ x) ≡ f₂ (h x)) → ∀ x → h · iterate f₁ x ≊ iterate f₂ (h x) iterate-fusion h f₁ f₂ hyp x = h · iterate f₁ x ≡⟨ refl ⟩ h x ≺♯ h · iterate f₁ (f₁ x) ≊⟨ refl ≺ ♯ iterate-fusion h f₁ f₂ hyp (f₁ x) ⟩ h x ≺♯ iterate f₂ (h (f₁ x)) ≡⟨ cong (λ y → ⟦ h x ≺♯ iterate f₂ y ⟧) (hyp x) ⟩ h x ≺♯ iterate f₂ (f₂ (h x)) ≡⟨ refl ⟩ iterate f₂ (h x) ∎ nat-iterate : nat ≊ iterate 1+ 0 nat-iterate = nat ≡⟨ refl ⟩ 0 ≺ ♯ (1+ · nat) ≊⟨ refl ≺ ♯ ·-cong 1+ nat (iterate 1+ 0) nat-iterate ⟩ 0 ≺♯ 1+ · iterate 1+ 0 ≊⟨ refl ≺ ♯ iterate-fusion 1+ 1+ 1+ (λ _ → refl) 0 ⟩ 0 ≺♯ iterate 1+ 1 ≡⟨ refl ⟩ iterate 1+ 0 ∎
{ "alphanum_fraction": 0.3211374031, "avg_line_length": 33.0855263158, "ext": "agda", "hexsha": "7b90be345c3f4e274d4b018646ef08cfca027217", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Hinze/Simplified/Section2-4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Hinze/Simplified/Section2-4.agda", "max_line_length": 102, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Hinze/Simplified/Section2-4.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1798, "size": 5029 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of homogeneous binary relations ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary or Relation.Binary.PropositionalEquality. {-# OPTIONS --without-K --safe #-} module Relation.Binary.Core where open import Agda.Builtin.Equality using (_≡_) renaming (refl to ≡-refl) open import Data.Maybe.Base using (Maybe) open import Data.Product using (_×_) open import Data.Sum.Base using (_⊎_) open import Function using (_on_; flip) open import Level open import Relation.Nullary using (Dec; ¬_) ------------------------------------------------------------------------ -- Binary relations -- Heterogeneous binary relations REL : ∀ {a b} → Set a → Set b → (ℓ : Level) → Set (a ⊔ b ⊔ suc ℓ) REL A B ℓ = A → B → Set ℓ -- Homogeneous binary relations Rel : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ) Rel A ℓ = REL A A ℓ ------------------------------------------------------------------------ -- Simple properties of binary relations infixr 4 _⇒_ _=[_]⇒_ -- Implication/containment. Could also be written ⊆. _⇒_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇒ Q = ∀ {i j} → P i j → Q i j -- Generalised implication. If P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → Rel A ℓ₁ → (A → B) → Rel B ℓ₂ → Set _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym, along with a binary variant. _Preserves_⟶_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → (A → B) → Rel A ℓ₁ → Rel B ℓ₂ → Set _ f Preserves P ⟶ Q = P =[ f ]⇒ Q _Preserves₂_⟶_⟶_ : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → Set _ _+_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x + u) (y + v) -- Reflexivity of _∼_ can be expressed as _≈_ ⇒ _∼_, for some -- underlying equality _≈_. However, the following variant is often -- easier to use. Reflexive : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ Reflexive _∼_ = ∀ {x} → x ∼ x -- Irreflexivity is defined using an underlying equality. Irreflexive : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → Set _ Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y) -- Generalised symmetry. Sym : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL B A ℓ₂ → Set _ Sym P Q = P ⇒ flip Q Symmetric : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ Symmetric _∼_ = Sym _∼_ _∼_ -- Generalised transitivity. Trans : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k -- A variant of Trans. TransFlip : ∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c} → REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k Transitive : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ Transitive _∼_ = Trans _∼_ _∼_ _∼_ -- Generalised antisymmetry Antisym : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL B A ℓ₂ → REL A B ℓ₃ → Set _ Antisym R S E = ∀ {i j} → R i j → S j i → E i j Antisymmetric : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _ Antisymmetric _≈_ _≤_ = Antisym _≤_ _≤_ _≈_ Asymmetric : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x) -- Generalised connex. Conn : ∀ {a b p q} {A : Set a} {B : Set b} → REL A B p → REL B A q → Set _ Conn P Q = ∀ x y → P x y ⊎ Q y x Total : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Set _ Total _∼_ = Conn _∼_ _∼_ data Tri {a b c} (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C Trichotomous : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _ Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y) where _>_ = flip _<_ Max : ∀ {a ℓ} {A : Set a} {b} {B : Set b} → REL A B ℓ → B → Set _ Max _≤_ T = ∀ x → x ≤ T Maximum : ∀ {a ℓ} {A : Set a} → Rel A ℓ → A → Set _ Maximum = Max Min : ∀ {a ℓ} {A : Set a} {b} {B : Set b} → REL A B ℓ → A → Set _ Min R = Max (flip R) Minimum : ∀ {a ℓ} {A : Set a} → Rel A ℓ → A → Set _ Minimum = Min _⟶_Respects_ : ∀ {a b ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} → (A → Set ℓ₁) → (B → Set ℓ₂) → REL A B ℓ₃ → Set _ P ⟶ Q Respects _∼_ = ∀ {x y} → x ∼ y → P x → Q y _Respects_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → (A → Set ℓ₁) → Rel A ℓ₂ → Set _ P Respects _∼_ = P ⟶ P Respects _∼_ _Respectsʳ_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → REL A B ℓ₁ → Rel B ℓ₂ → Set _ P Respectsʳ _∼_ = ∀ {x} → (P x) Respects _∼_ _Respectsˡ_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → REL A B ℓ₁ → Rel A ℓ₂ → Set _ P Respectsˡ _∼_ = ∀ {y} → (flip P y) Respects _∼_ _Respects₂_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _ P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_) Substitutive : ∀ {a ℓ₁} {A : Set a} → Rel A ℓ₁ → (ℓ₂ : Level) → Set _ Substitutive {A = A} _∼_ p = (P : A → Set p) → P Respects _∼_ Decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} → REL A B ℓ → Set _ Decidable _∼_ = ∀ x y → Dec (x ∼ y) WeaklyDecidable : ∀ {a b ℓ} {A : Set a} {B : Set b} → REL A B ℓ → Set _ WeaklyDecidable _∼_ = ∀ x y → Maybe (x ∼ y) Irrelevant : ∀ {a b ℓ} {A : Set a} {B : Set b} → REL A B ℓ → Set _ Irrelevant _∼_ = ∀ {x y} (a b : x ∼ y) → a ≡ b record NonEmpty {a b ℓ} {A : Set a} {B : Set b} (T : REL A B ℓ) : Set (a ⊔ b ⊔ ℓ) where constructor nonEmpty field {x} : A {y} : B proof : T x y ------------------------------------------------------------------------ -- Equivalence relations -- The preorders of this library are defined in terms of an underlying -- equivalence relation, and hence equivalence relations are not -- defined in terms of preorders. record IsEquivalence {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) : Set (a ⊔ ℓ) where field refl : Reflexive _≈_ sym : Symmetric _≈_ trans : Transitive _≈_ reflexive : _≡_ ⇒ _≈_ reflexive ≡-refl = refl
{ "alphanum_fraction": 0.5060163645, "avg_line_length": 31.6395939086, "ext": "agda", "hexsha": "8c14a58c789bfbaf27c6fbb9891695ddbfcfb207", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Core.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2573, "size": 6233 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) module Number.Base where private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Nat renaming (ℕ to Nat) open import Cubical.Data.Unit.Base -- Unit open import Cubical.Data.Empty -- ⊥ open import Number.Postulates open import Number.Bundles data NumberKind : Type where isNat : NumberKind isInt : NumberKind isRat : NumberKind isReal : NumberKind isComplex : NumberKind -- NumberKindEnumeration NLE : NumberKind → Nat NLE isNat = 0 NLE isInt = 1 NLE isRat = 2 NLE isReal = 3 NLE isComplex = 4 -- inverse of NumberKindEnumeration NLE⁻¹ : Nat → NumberKind NLE⁻¹ 0 = isNat NLE⁻¹ 1 = isInt NLE⁻¹ 2 = isRat NLE⁻¹ 3 = isReal NLE⁻¹ 4 = isComplex NLE⁻¹ x = isComplex -- doesn't matter -- proof of inversity NLE⁻¹-isRetraction : ∀ x → NLE⁻¹ (NLE x) ≡ x NLE⁻¹-isRetraction isNat = refl NLE⁻¹-isRetraction isInt = refl NLE⁻¹-isRetraction isRat = refl NLE⁻¹-isRetraction isReal = refl NLE⁻¹-isRetraction isComplex = refl -- order lifted from Nat open import Enumeration NLE NLE⁻¹ NLE⁻¹-isRetraction using () renaming ( _≤'_ to _≤ₙₗ_ ; min' to minₙₗ ; max' to maxₙₗ ; max-implies-≤' to max-implies-≤ₙₗ₂ ) public data PositivityKindOrderedRing : Type where anyPositivityᵒʳ : PositivityKindOrderedRing isNonzeroᵒʳ : PositivityKindOrderedRing isNonnegativeᵒʳ : PositivityKindOrderedRing isPositiveᵒʳ : PositivityKindOrderedRing isNegativeᵒʳ : PositivityKindOrderedRing isNonpositiveᵒʳ : PositivityKindOrderedRing data PositivityKindField : Type where anyPositivityᶠ : PositivityKindField isNonzeroᶠ : PositivityKindField PositivityKindType : NumberKind → Type PositivityKindType isNat = PositivityKindOrderedRing PositivityKindType isInt = PositivityKindOrderedRing PositivityKindType isRat = PositivityKindOrderedRing PositivityKindType isReal = PositivityKindOrderedRing PositivityKindType isComplex = PositivityKindField NumberProp = Σ NumberKind PositivityKindType module PatternsType where -- ordered ring patterns pattern X = anyPositivityᵒʳ pattern X⁺⁻ = isNonzeroᵒʳ pattern X₀⁺ = isNonnegativeᵒʳ pattern X⁺ = isPositiveᵒʳ pattern X⁻ = isNegativeᵒʳ pattern X₀⁻ = isNonpositiveᵒʳ -- field patterns (overlapping) pattern X = anyPositivityᶠ pattern X⁺⁻ = isNonzeroᶠ module PatternsProp where -- ordered ring patterns pattern ⁇x⁇ = anyPositivityᵒʳ pattern x#0 = isNonzeroᵒʳ pattern 0≤x = isNonnegativeᵒʳ pattern 0<x = isPositiveᵒʳ pattern x<0 = isNegativeᵒʳ pattern x≤0 = isNonpositiveᵒʳ -- field patterns (overlapping) pattern ⁇x⁇ = anyPositivityᶠ pattern x#0 = isNonzeroᶠ open PatternsProp coerce-PositivityKind-OR2F : PositivityKindOrderedRing → PositivityKindField coerce-PositivityKind-OR2F ⁇x⁇ = ⁇x⁇ coerce-PositivityKind-OR2F x#0 = x#0 coerce-PositivityKind-OR2F 0≤x = ⁇x⁇ coerce-PositivityKind-OR2F 0<x = x#0 coerce-PositivityKind-OR2F x<0 = x#0 coerce-PositivityKind-OR2F x≤0 = ⁇x⁇ coerce-PositivityKind-F2OR : PositivityKindField → PositivityKindOrderedRing coerce-PositivityKind-F2OR ⁇x⁇ = ⁇x⁇ coerce-PositivityKind-F2OR x#0 = x#0 coerce-PositivityKind-OR2 : PositivityKindOrderedRing → (to : NumberKind) → PositivityKindType to coerce-PositivityKind-OR2 pl isNat = pl coerce-PositivityKind-OR2 pl isInt = pl coerce-PositivityKind-OR2 pl isRat = pl coerce-PositivityKind-OR2 pl isReal = pl coerce-PositivityKind-OR2 pl isComplex = coerce-PositivityKind-OR2F pl coerce-PositivityKind-F2 : PositivityKindField → (to : NumberKind) → PositivityKindType to coerce-PositivityKind-F2 pl isNat = coerce-PositivityKind-F2OR pl coerce-PositivityKind-F2 pl isInt = coerce-PositivityKind-F2OR pl coerce-PositivityKind-F2 pl isRat = coerce-PositivityKind-F2OR pl coerce-PositivityKind-F2 pl isReal = coerce-PositivityKind-F2OR pl coerce-PositivityKind-F2 pl isComplex = pl coerce-PositivityKind : (from to : NumberKind) → PositivityKindType from → PositivityKindType to coerce-PositivityKind isNat to x = coerce-PositivityKind-OR2 x to coerce-PositivityKind isInt to x = coerce-PositivityKind-OR2 x to coerce-PositivityKind isRat to x = coerce-PositivityKind-OR2 x to coerce-PositivityKind isReal to x = coerce-PositivityKind-OR2 x to coerce-PositivityKind isComplex to x = coerce-PositivityKind-F2 x to -- NumberKind interpretation NumberKindLevel : NumberKind → Level NumberKindLevel isNat = ℕℓ NumberKindLevel isInt = ℤℓ NumberKindLevel isRat = ℚℓ NumberKindLevel isReal = ℝℓ NumberKindLevel isComplex = ℂℓ NumberKindProplevel : NumberKind → Level NumberKindProplevel isNat = ℕℓ' NumberKindProplevel isInt = ℤℓ' NumberKindProplevel isRat = ℚℓ' NumberKindProplevel isReal = ℝℓ' NumberKindProplevel isComplex = ℂℓ' NumberKindInterpretation : (x : NumberKind) → Type (NumberKindLevel x) NumberKindInterpretation isNat = let open ℕ* in ℕ NumberKindInterpretation isInt = let open ℤ* in ℤ NumberKindInterpretation isRat = let open ℚ* in ℚ NumberKindInterpretation isReal = let open ℝ* in ℝ NumberKindInterpretation isComplex = let open ℂ* in ℂ -- PositivityKind interpretation PositivityKindInterpretation : (nl : NumberKind) → PositivityKindType nl → (x : NumberKindInterpretation nl) → Type (NumberKindProplevel nl) PositivityKindInterpretation isNat ⁇x⁇ x = Unit PositivityKindInterpretation isNat x#0 x = let open ℕ in x # 0f PositivityKindInterpretation isNat 0≤x x = let open ℕ in 0f ≤ x PositivityKindInterpretation isNat 0<x x = let open ℕ in 0f < x PositivityKindInterpretation isNat x≤0 x = let open ℕ in x ≤ 0f PositivityKindInterpretation isNat x<0 x = ⊥ PositivityKindInterpretation isInt ⁇x⁇ x = Lift Unit PositivityKindInterpretation isInt x#0 x = let open ℤ in x # 0f PositivityKindInterpretation isInt 0≤x x = let open ℤ in 0f ≤ x PositivityKindInterpretation isInt 0<x x = let open ℤ in 0f < x PositivityKindInterpretation isInt x≤0 x = let open ℤ in x ≤ 0f PositivityKindInterpretation isInt x<0 x = let open ℤ in x < 0f PositivityKindInterpretation isRat ⁇x⁇ x = Lift Unit PositivityKindInterpretation isRat x#0 x = let open ℚ in x # 0f PositivityKindInterpretation isRat 0≤x x = let open ℚ in 0f ≤ x PositivityKindInterpretation isRat 0<x x = let open ℚ in 0f < x PositivityKindInterpretation isRat x≤0 x = let open ℚ in x ≤ 0f PositivityKindInterpretation isRat x<0 x = let open ℚ in x < 0f PositivityKindInterpretation isReal ⁇x⁇ x = Lift Unit PositivityKindInterpretation isReal x#0 x = let open ℝ in x # 0f PositivityKindInterpretation isReal 0≤x x = let open ℝ in 0f ≤ x PositivityKindInterpretation isReal 0<x x = let open ℝ in 0f < x PositivityKindInterpretation isReal x≤0 x = let open ℝ in x ≤ 0f PositivityKindInterpretation isReal x<0 x = let open ℝ in x < 0f PositivityKindInterpretation isComplex ⁇x⁇ x = Lift Unit PositivityKindInterpretation isComplex x#0 x = let open ℂ in x # 0f NumberLevel : NumberKind → Level NumberLevel l = ℓ-max (NumberKindLevel l) (NumberKindProplevel l) -- NumberProp interpretation NumberInterpretation : ((l , p) : NumberProp) → Type (NumberLevel l) NumberInterpretation (level , positivity) = Σ (NumberKindInterpretation level) (PositivityKindInterpretation level positivity) -- generic number type data Number (p : NumberProp) : Type (NumberLevel (fst p)) where _,,_ : (x : NumberKindInterpretation (fst p)) → (PositivityKindInterpretation (fst p) (snd p) x) → Number p num : ∀{(l , p) : NumberProp} → Number (l , p) → NumberKindInterpretation l num (p ,, q) = p prp : ∀{pp@(l , p) : NumberProp} → (x : Number pp) → PositivityKindInterpretation l p (num x) prp (p ,, q) = q pop : ∀{p : NumberProp} → Number p → NumberInterpretation p pop (x ,, p) = x , p open PatternsType {- NOTE: overlapping patterns makes this possible: _ : NumberProp' _ = isRat , X⁺⁻ _ : NumberProp' _ = isComplex , X⁺⁻ -}
{ "alphanum_fraction": 0.7343297975, "avg_line_length": 36.5462555066, "ext": "agda", "hexsha": "74c9ce4d13c26c3d971e125f4214c56339cc867f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Base.agda", "max_line_length": 140, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 2898, "size": 8296 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Operations on and properties of decidable relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Decidable where open import Level using (Level) open import Function.Base open import Function.Equality using (_⟨$⟩_; module Π) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Function.Injection using (Injection; module Injection) open import Relation.Binary using (Setoid; module Setoid; Decidable) open import Relation.Nullary private variable p q : Level P : Set p Q : Set q ------------------------------------------------------------------------ -- Re-exporting the core definitions open import Relation.Nullary.Decidable.Core public ------------------------------------------------------------------------ -- Maps map : P ⇔ Q → Dec P → Dec Q map P⇔Q = map′ (to ⟨$⟩_) (from ⟨$⟩_) where open Equivalence P⇔Q module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} (inj : Injection A B) where open Injection inj open Setoid A using () renaming (_≈_ to _≈A_) open Setoid B using () renaming (_≈_ to _≈B_) -- If there is an injection from one setoid to another, and the -- latter's equivalence relation is decidable, then the former's -- equivalence relation is also decidable. via-injection : Decidable _≈B_ → Decidable _≈A_ via-injection dec x y = map′ injective (Π.cong to) (dec (to ⟨$⟩ x) (to ⟨$⟩ y))
{ "alphanum_fraction": 0.5681536555, "avg_line_length": 31.0384615385, "ext": "agda", "hexsha": "b7e2c0265b44b24979dcc76215d19118fb4f8974", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Nullary/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Nullary/Decidable.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Nullary/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 397, "size": 1614 }
module Impossible where -- The only way to trigger an __IMPOSSIBLE__ that isn't a bug. {-# IMPOSSIBLE #-}
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 18, "ext": "agda", "hexsha": "a0ec74f0e3deed159eacd3810506d3a42120f155", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Impossible.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Impossible.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Impossible.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 108 }
module Web.Semantic.DL.Category.Properties.Composition where open import Web.Semantic.DL.Category.Properties.Composition.RespectsEquiv public using ( compose-resp-≣ ) open import Web.Semantic.DL.Category.Properties.Composition.LeftUnit public using ( compose-unit₁ ) open import Web.Semantic.DL.Category.Properties.Composition.RightUnit public using ( compose-unit₂ ) open import Web.Semantic.DL.Category.Properties.Composition.Assoc public using ( compose-assoc )
{ "alphanum_fraction": 0.8113207547, "avg_line_length": 34.0714285714, "ext": "agda", "hexsha": "d8cb0679039151c8026481b8d33cc762915e05ff", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition.agda", "max_line_length": 73, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 110, "size": 477 }
{-# OPTIONS -v scope.import:10 #-} import Common.Level import Common.Level
{ "alphanum_fraction": 0.7236842105, "avg_line_length": 15.2, "ext": "agda", "hexsha": "56d03e5a0c546ffea5276ace74276fee06133ef7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1770.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1770.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1770.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 76 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation. This is commonly -- known as Order Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Sublist.Propositional {a} {A : Set a} where open import Data.List.Relation.Binary.Equality.Propositional using (≋⇒≡) import Data.List.Relation.Binary.Sublist.Setoid as SetoidSublist open import Data.List.Relation.Unary.Any using (Any) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Re-export definition and operations from setoid sublists open SetoidSublist (setoid A) public hiding (lookup; ⊆-reflexive; ⊆-antisym ; ⊆-isPreorder; ⊆-isPartialOrder ; ⊆-preorder; ⊆-poset ) ------------------------------------------------------------------------ -- Additional operations module _ {p} {P : Pred A p} where lookup : ∀ {xs ys} → xs ⊆ ys → Any P xs → Any P ys lookup = SetoidSublist.lookup (setoid A) (subst _) ------------------------------------------------------------------------ -- Relational properties ⊆-reflexive : _≡_ ⇒ _⊆_ ⊆-reflexive refl = ⊆-refl ⊆-antisym : Antisymmetric _≡_ _⊆_ ⊆-antisym xs⊆ys ys⊆xs = ≋⇒≡ (SetoidSublist.⊆-antisym (setoid A) xs⊆ys ys⊆xs) ⊆-isPreorder : IsPreorder _≡_ _⊆_ ⊆-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ⊆-reflexive ; trans = ⊆-trans } ⊆-isPartialOrder : IsPartialOrder _≡_ _⊆_ ⊆-isPartialOrder = record { isPreorder = ⊆-isPreorder ; antisym = ⊆-antisym } ⊆-preorder : Preorder a a a ⊆-preorder = record { isPreorder = ⊆-isPreorder } ⊆-poset : Poset a a a ⊆-poset = record { isPartialOrder = ⊆-isPartialOrder }
{ "alphanum_fraction": 0.5658636597, "avg_line_length": 28.2753623188, "ext": "agda", "hexsha": "14d11b5ef187f67caeaca439012a5944f7df96c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Propositional.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 588, "size": 1951 }
{-# OPTIONS --without-K --safe #-} module Function where open import Level infixr 9 _∘_ _∘′_ _∘_ : ∀ {A : Type a} {B : A → Type b} {C : {x : A} → B x → Type c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) {-# INLINE _∘_ #-} _∘′_ : (B → C) → (A → B) → A → C f ∘′ g = λ x → f (g x) {-# INLINE _∘′_ #-} flip : ∀ {A : Type a} {B : Type b} {C : A → B → Type c} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ y x → f x y {-# INLINE flip #-} id : ∀ {A : Type a} → A → A id x = x {-# INLINE id #-} const : A → B → A const x _ = x {-# INLINE const #-} infixr -1 _$_ _$_ : ∀ {A : Type a} {B : A → Type b} → (∀ (x : A) → B x) → (x : A) → B x f $ x = f x {-# INLINE _$_ #-} infixl 0 _|>_ _|>_ : ∀ {A : Type a} {B : A → Type b} → (x : A) → (∀ (x : A) → B x) → B x _|>_ = flip _$_ {-# INLINE _|>_ #-} infixl 1 _⟨_⟩_ _⟨_⟩_ : A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y {-# INLINE _⟨_⟩_ #-} infixl 0 the the : (A : Type a) → A → A the _ x = x {-# INLINE the #-} syntax the A x = x ⦂ A infix 0 case_of_ case_of_ : A → (A → B) → B case x of f = f x {-# INLINE case_of_ #-}
{ "alphanum_fraction": 0.3989941324, "avg_line_length": 18.9365079365, "ext": "agda", "hexsha": "17e79a7fec0312b9c147daf4e2f85a1dc70b2ef0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Function.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Function.agda", "max_line_length": 68, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Function.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 541, "size": 1193 }
module FileNotFound where import A.B.WildGoose
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 12, "ext": "agda", "hexsha": "4d7037b37514f8ca86ab4a04084fc20432b5f296", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/FileNotFound.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/FileNotFound.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/FileNotFound.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 48 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import groups.KernelImage module cohomology.ChainComplex where record ChainComplex i : Type (lsucc i) where field head : AbGroup i chain : ℕ → AbGroup i augment : AbGroup.grp (chain 0) →ᴳ AbGroup.grp head boundary : ∀ n → (AbGroup.grp (chain (S n)) →ᴳ AbGroup.grp (chain n)) record CochainComplex i : Type (lsucc i) where field head : AbGroup i cochain : ℕ → AbGroup i augment : AbGroup.grp head →ᴳ AbGroup.grp (cochain 0) coboundary : ∀ n → (AbGroup.grp (cochain n) →ᴳ AbGroup.grp (cochain (S n))) homology-group : ∀ {i} → ChainComplex i → (n : ℤ) → Group i homology-group cc (pos 0) = Ker/Im cc.augment (cc.boundary 0) (snd (cc.chain 0)) where module cc = ChainComplex cc homology-group cc (pos (S n)) = Ker/Im (cc.boundary n) (cc.boundary (S n)) (snd (cc.chain (S n))) where module cc = ChainComplex cc homology-group {i} cc (negsucc _) = Lift-group {j = i} Unit-group cohomology-group : ∀ {i} → CochainComplex i → (n : ℤ) → Group i cohomology-group cc (pos 0) = Ker/Im (cc.coboundary 0) cc.augment (snd (cc.cochain 0)) where module cc = CochainComplex cc cohomology-group cc (pos (S n)) = Ker/Im (cc.coboundary (S n)) (cc.coboundary n) (snd (cc.cochain (S n))) where module cc = CochainComplex cc cohomology-group {i} cc (negsucc _) = Lift-group {j = i} Unit-group complex-dualize : ∀ {i j} → ChainComplex i → AbGroup j → CochainComplex (lmax i j) complex-dualize {i} {j} cc G = record {M} where module cc = ChainComplex cc module M where head : AbGroup (lmax i j) head = hom-abgroup (AbGroup.grp cc.head) G cochain : ℕ → AbGroup (lmax i j) cochain n = hom-abgroup (AbGroup.grp (cc.chain n)) G augment : AbGroup.grp head →ᴳ AbGroup.grp (cochain 0) augment = pre∘ᴳ-hom G cc.augment coboundary : ∀ n → (AbGroup.grp (cochain n) →ᴳ AbGroup.grp (cochain (S n))) coboundary n = pre∘ᴳ-hom G (cc.boundary n)
{ "alphanum_fraction": 0.6335129838, "avg_line_length": 37.7962962963, "ext": "agda", "hexsha": "89ed69bd73e6c61363da66f3c55b03c54a248a68", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/ChainComplex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/ChainComplex.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/ChainComplex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 695, "size": 2041 }
{-# OPTIONS -v tc.lhs.shadow:30 #-} {-# OPTIONS --copatterns #-} module PatternShadowsConstructor4 where module A where data B : Set where x : B data C : Set where c : B → C open A using (C; c) record R : Set where field fst : C → C snd : A.B open R r : R fst r (c x) = x snd r = A.B.x
{ "alphanum_fraction": 0.5621118012, "avg_line_length": 12.3846153846, "ext": "agda", "hexsha": "3c4ffd7307e20cdc16fc1714108470a00c66f4a5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/PatternShadowsConstructor4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/PatternShadowsConstructor4.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/PatternShadowsConstructor4.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 110, "size": 322 }
module Logic.WeaklyClassical where import Lvl open import Functional open import Logic.Names open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Theorems open import Type private variable ℓ : Lvl.Level private variable T X Y : Type{ℓ} private variable P : T → Type{ℓ} -- TODO: What should (¬¬ P → P) for a P be called? DoubleNegation? Stable proposition? [⊤]-doubleNegation : DoubleNegationOn(⊤) [⊤]-doubleNegation = const [⊤]-intro [⊥]-doubleNegation : DoubleNegationOn(⊥) [⊥]-doubleNegation = apply id [¬]-doubleNegation : DoubleNegationOn(¬ X) [¬]-doubleNegation = _∘ apply [∧]-doubleNegation : DoubleNegationOn(X) → DoubleNegationOn(Y) → DoubleNegationOn(X ∧ Y) [∧]-doubleNegation nnxx nnyy nnxy = [∧]-intro (nnxx(nx ↦ nnxy(nx ∘ [∧]-elimₗ))) (nnyy(ny ↦ nnxy(ny ∘ [∧]-elimᵣ))) [→]-doubleNegation : DoubleNegationOn(Y) → DoubleNegationOn(X → Y) [→]-doubleNegation nnyy nnxy x = nnyy(ny ↦ nnxy(xy ↦ (ny ∘ xy) x)) [∀]-doubleNegation-distribute : (∀{x} → DoubleNegationOn(P(x))) → DoubleNegationOn(∀{x} → P(x)) [∀]-doubleNegation-distribute annp nnap = annp(npx ↦ nnap(npx $_)) doubleNegation-to-callCC : DoubleNegationOn(X) → DoubleNegationOn(Y) → (((X → Y) → X) → X) doubleNegation-to-callCC dx dy xyx = dx(nx ↦ nx(xyx(dy ∘ const ∘ nx)))
{ "alphanum_fraction": 0.6978361669, "avg_line_length": 34.972972973, "ext": "agda", "hexsha": "d6a608c01bdc4ca7b8a571d7c9926ca73fb397c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/WeaklyClassical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/WeaklyClassical.agda", "max_line_length": 113, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/WeaklyClassical.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 466, "size": 1294 }
-- Solutions to ExerciseSession2 {-# OPTIONS --cubical #-} module SolutionsSession2 where open import Part1 open import Part2 open import ExerciseSession1 -- Exercise 1 JEq : {x : A} (P : (z : A) → x ≡ z → Type ℓ'') (d : P x refl) → J P d refl ≡ d JEq P p d = transportRefl p d -- Exercise 2 isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b = sym (p a) ∙ p b -- Exercise 3 isProp→isProp' : isProp A → isProp' A isProp→isProp' p x y = p x y , isProp→isSet p _ _ (p x y) -- Exercise 4 isContr→isContr≡ : isContr A → (x y : A) → isContr (x ≡ y) isContr→isContr≡ h = isProp→isProp' (isContr→isProp h) -- Exercise 5 fromPathP : {A : I → Type ℓ} {x : A i0} {y : A i1} → PathP A x y → transport (λ i → A i) x ≡ y fromPathP {A = A} p i = transp (λ j → A (i ∨ j)) i (p i) -- The converse is harder to prove so we give it: toPathP : {A : I → Type ℓ} {x : A i0} {y : A i1} → transport (λ i → A i) x ≡ y → PathP A x y toPathP {A = A} {x = x} p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) -- Exercise 6 Σ≡Prop : {B : A → Type ℓ'} {u v : Σ A B} (h : (x : A) → isProp (B x)) → (p : fst u ≡ fst v) → u ≡ v Σ≡Prop {B = B} {u = u} {v = v} h p = ΣPathP (p , toPathP (h _ (transport (λ i → B (p i)) (snd u)) (snd v))) -- Exercice 7 (thanks Loïc for the slick proof!) isPropIsContr : isProp (isContr A) isPropIsContr (c0 , h0) (c1 , h1) j = h0 c1 j , λ y i → hcomp (λ k → λ { (i = i0) → h0 (h0 c1 j) k; (i = i1) → h0 y k; (j = i0) → h0 (h0 y i) k; (j = i1) → h0 (h1 y i) k}) c0 -- Exercises about Part 3: -- Exercise 8 (a bit longer, but very good): open import Cubical.Data.Nat open import Cubical.Data.Int hiding (addEq ; subEq) -- Compose sucPathInt with itself n times. Transporting along this -- will be addition, transporting with it backwards will be subtraction. -- a) Define a path "addEq n" by composing sucPathInt with itself n -- times. addEq : ℕ → Int ≡ Int addEq zero = refl addEq (suc n) = (addEq n) ∙ sucPathInt -- b) Define another path "subEq n" by composing "sym sucPathInt" with -- itself n times. subEq : ℕ → Int ≡ Int subEq zero = refl subEq (suc n) = (subEq n) ∙ sym sucPathInt -- c) Define addition on integers by pattern-matching and transporting -- along addEq/subEq appropriately. _+Int_ : Int → Int → Int m +Int pos n = transport (addEq n) m m +Int negsuc n = transport (subEq (suc n)) m -- d) Do some concrete computations using _+Int_ (this would not work -- in HoTT as the transport would be stuck!) -- Exercise 9: prove that hSet is not an hSet open import Cubical.Data.Bool renaming (notEq to notPath) open import Cubical.Data.Empty -- Just define hSets of level 0 for simplicity hSet : Type₁ hSet = Σ[ A ∈ Type₀ ] isSet A -- Bool is an hSet BoolSet : hSet BoolSet = Bool , isSetBool notPath≢refl : (notPath ≡ refl) → ⊥ notPath≢refl e = true≢false (transport (λ i → transport (e i) true ≡ false) refl) ¬isSet-hSet : isSet hSet → ⊥ ¬isSet-hSet h = notPath≢refl (cong (cong fst) (h BoolSet BoolSet p refl)) where p : BoolSet ≡ BoolSet p = Σ≡Prop (λ A → isPropIsSet {A = A}) notPath -- Exercise 10: squivalence between FinData and Fin -- Thanks to Elies for the PR with the code. On the development -- version of the library there is now: -- -- open import Cubical.Data.Fin using (FinData≡Fin)
{ "alphanum_fraction": 0.598913665, "avg_line_length": 27.7619047619, "ext": "agda", "hexsha": "df867fde78127db5d16213cab2089c4430147030", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-08-02T16:16:34.000Z", "max_forks_repo_forks_event_min_datetime": "2021-08-02T16:16:34.000Z", "max_forks_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "williamdemeo/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/SolutionsSession2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "williamdemeo/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/SolutionsSession2.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "williamdemeo/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/SolutionsSession2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1268, "size": 3498 }
open import x1-Base module x2-Sort {X : Set} {_≈_ : Rel X} {_≤_ : Rel X} (_≤?_ : Decidable _≤_) (ord : TotalOrder _≈_ _≤_) where open TotalOrder ord using (total; equivalence) open Equivalence equivalence using (refl) -- represent bounded lists, but want bounds to be open -- so lift X in a type that contains a top and bottom elements data ⊥X⊤ : Set where ⊤ ⊥ : ⊥X⊤ ⟦_⟧ : X → ⊥X⊤ -- lift ordering to work with ⊥X⊤ data _≤̂_ : Rel ⊥X⊤ where ⊥≤̂ : ∀ {x} → ⊥ ≤̂ x ≤̂⊤ : ∀ {x} → x ≤̂ ⊤ ≤-lift : ∀ {x y} → x ≤ y → ⟦ x ⟧ ≤̂ ⟦ y ⟧ -- bounded, ordered lists -- elements ordered according to ≤ relation data OList (l u : ⊥X⊤) : Set where -- nil works with any bounds l ≤ u nil : l ≤̂ u → OList l u -- cons x to a list with x as a lower bound, -- return a list with lower bound l, l ≤̂ ⟦ x ⟧ cons : ∀ x (xs : OList ⟦ x ⟧ u) → l ≤̂ ⟦ x ⟧ → OList l u toList : ∀ {l u} → OList l u → List X toList (nil _) = [] toList (cons x xs _) = x ∷ toList xs insert : ∀ {l u} x → OList l u → l ≤̂ ⟦ x ⟧ → ⟦ x ⟧ ≤̂ u → OList l u insert x (nil _) l≤̂⟦x⟧ ⟦x⟧≤̂u = cons x (nil ⟦x⟧≤̂u) l≤̂⟦x⟧ insert x L@(cons x' xs l≤̂⟦x'⟧) l≤̂⟦x⟧ ⟦x⟧≤̂u with x ≤? x' ... | left x≤x' = cons x (cons x' xs (≤-lift x≤x')) l≤̂⟦x⟧ ... | (right x≤x'→Empty) = cons x' (insert x xs ([ ≤-lift , (λ y≤x → absurd (x≤x'→Empty y≤x)) ] (total x' x)) ⟦x⟧≤̂u) l≤̂⟦x'⟧ -- Insertion sort uses OList ⊥ ⊤ to represent a sorted list with open bounds: isort' : List X → OList ⊥ ⊤ isort' = foldr (λ x xs → insert x xs ⊥≤̂ ≤̂⊤) (nil ⊥≤̂) isort : List X → List X isort xs = toList (isort' xs) ------------------------------------------------------------------------------ -- Tree sort (more efficient) -- bounded, ordered binary tree data Tree (l u : ⊥X⊤) : Set where leaf : l ≤̂ u → Tree l u node : (x : X) → Tree l ⟦ x ⟧ → Tree ⟦ x ⟧ u → Tree l u t-insert : ∀ {l u} → (x : X) → Tree l u → l ≤̂ ⟦ x ⟧ → ⟦ x ⟧ ≤̂ u → Tree l u t-insert x (leaf _) l≤x x≤u = node x (leaf l≤x) (leaf x≤u) t-insert x (node y ly yu) l≤x x≤u with x ≤? y ... | left x≤y = node y (t-insert x ly l≤x (≤-lift x≤y)) yu ... | right x>y = node y ly (t-insert x yu ([ (λ x≤y → absurd (x>y x≤y)) , ≤-lift ] (total x y)) x≤u) t-fromList : List X → Tree ⊥ ⊤ t-fromList = foldr (λ x xs → t-insert x xs ⊥≤̂ ≤̂⊤) (leaf ⊥≤̂) -- OList concatenation, including inserting a new element in the middle _⇒_++_ : ∀ {l u} x → OList l ⟦ x ⟧ → OList ⟦ x ⟧ u → OList l u x ⇒ nil l≤u ++ xu = cons x xu l≤u x ⇒ cons y yx l≤y ++ xu = cons y (x ⇒ yx ++ xu) l≤y t-flatten : ∀ {l u} → Tree l u → OList l u t-flatten (leaf l≤u) = (nil l≤u) t-flatten (node x lx xu) = x ⇒ t-flatten lx ++ t-flatten xu t-sort' : List X → OList ⊥ ⊤ t-sort' xs = t-flatten (foldr (λ x xs → t-insert x xs ⊥≤̂ ≤̂⊤) (leaf ⊥≤̂) xs) t-sort : List X → List X t-sort xs = toList (t-sort' xs)
{ "alphanum_fraction": 0.4484867013, "avg_line_length": 27.9572649573, "ext": "agda", "hexsha": "e4fe205117764a6ed39498f25236df220563c072", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x2-Sort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x2-Sort.agda", "max_line_length": 85, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x2-Sort.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1382, "size": 3271 }
{-# OPTIONS --prop --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite postulate A : Prop a : A B : Set b : B f : A → B → Set₁ g : B → Set₁ rew₁ : ∀ y → f a y ≡ g y rew₂ : ∀ x → f x b ≡ Set rew₃ : ∀ y → g y ≡ Set {-# REWRITE rew₁ rew₂ rew₃ #-}
{ "alphanum_fraction": 0.5692307692, "avg_line_length": 17.1052631579, "ext": "agda", "hexsha": "31fe9142c146df5df4820bff3bc5d8bfedb63dfb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/RewritingGlobalConfluenceWithProp.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/RewritingGlobalConfluenceWithProp.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/RewritingGlobalConfluenceWithProp.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 128, "size": 325 }
test = forall (_Set_ : Set) → Set
{ "alphanum_fraction": 0.6176470588, "avg_line_length": 17, "ext": "agda", "hexsha": "df38eb987d8e9bc7a5d87312752e0df168d068a2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/ValidNamePartSet.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ValidNamePartSet.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ValidNamePartSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 12, "size": 34 }