Search is not available for this dataset
text
string | meta
dict |
---|---|
{- NEW INTERP WITH RREC -}
{-# OPTIONS --no-termination-check #-}
open import Preliminaries
open import Preorder
open import Pilot-WithFlatrec
module Interp-WithFlatrec where
-- interpret complexity types as preorders
[_]t : CTp → PREORDER
[ unit ]t = unit-p
[ nat ]t = Nat , ♭nat-p
[ τ ->c τ₁ ]t = [ τ ]t ->p [ τ₁ ]t
[ τ ×c τ₁ ]t = [ τ ]t ×p [ τ₁ ]t
[ list τ ]t = (List (fst [ τ ]t)) , list-p (snd [ τ ]t)
[ bool ]t = Bool , bool-p
[ C ]t = Nat , nat-p
[ rnat ]t = Nat , nat-p
[_]tm : ∀ {A} → CTpM A → Preorder-max-str (snd [ A ]t)
[ runit ]tm = unit-pM
[ rn ]tm = nat-pM
[ e ×cm e₁ ]tm = axb-pM [ e ]tm [ e₁ ]tm
[ _->cm_ {τ1} e ]tm = mono-pM [ e ]tm
-- interpret contexts as preorders
[_]c : Ctx → PREORDER
[ [] ]c = unit-p
[ τ :: Γ ]c = [ Γ ]c ×p [ τ ]t
lookup : ∀{Γ τ} → τ ∈ Γ → el ([ Γ ]c ->p [ τ ]t)
lookup (i0 {Γ} {τ}) = snd' id
lookup (iS {Γ} {τ} {τ1} x) = comp (fst' id) (lookup x)
interpE : ∀{Γ τ} → Γ |- τ → el ([ Γ ]c ->p [ τ ]t)
sound : ∀ {Γ τ} (e e' : Γ |- τ) → e ≤s e' → PREORDER≤ ([ Γ ]c ->p [ τ ]t) (interpE e) (interpE e')
interpE unit = monotone (λ x → <>) (λ x y x₁ → <>)
interpE 0C = monotone (λ x → Z) (λ x y x₁ → <>)
interpE 1C = monotone (λ x → S Z) (λ x y x₁ → <>)
interpE (plusC e e₁) =
monotone (λ x → Monotone.f (interpE e) x + Monotone.f (interpE e₁) x)
(λ x y x₁ → plus-lem (Monotone.f (interpE e) x) (Monotone.f (interpE e₁) x) (Monotone.f (interpE e) y) (Monotone.f (interpE e₁) y)
(Monotone.is-monotone (interpE e) x y x₁) (Monotone.is-monotone (interpE e₁) x y x₁))
interpE (var x) = lookup x
interpE z = monotone (λ x → Z) (λ x y x₁ → <>)
interpE (s e) = monotone (λ x → S (Monotone.f (interpE e) x)) (λ x y x₁ → Monotone.is-monotone (interpE e) x y x₁)
interpE {Γ} {τ} (rec e e₁ e₂) = comp (pair' id (interpE e)) (♭rec' (interpE e₁) (interpE e₂))
interpE (lam e) = lam' (interpE e)
interpE (app e e₁) = app' (interpE e) (interpE e₁)
interpE rz = z'
interpE (rsuc e) = suc' (interpE e)
interpE (rrec e e₁ e₂ P) = comp (pair' id (interpE e)) (rec' (interpE e₁) (unlam' (unlam' (interpE e₂))) (λ x → sound e₁ (app (app e₂ rz) e₁) P x))
interpE (prod e e₁) = pair' (interpE e) (interpE e₁)
interpE (l-proj e) = fst' (interpE e)
interpE (r-proj e) = snd' (interpE e)
interpE nil = nil'
interpE (e ::c e₁) = cons' (interpE e) (interpE e₁)
interpE (listrec e e₁ e₂) = comp (pair' id (interpE e)) (lrec' (interpE e₁) (interpE e₂))
interpE true = monotone (λ x → True) (λ x y x₁ → <>)
interpE false = monotone (λ x → False) (λ x y x₁ → <>)
interpE {Γ} {τ'} (max τ e1 e2) =
monotone (λ x → Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x))
(λ x y x₁ → Preorder-max-str.max-lub [ τ ]tm (Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))
(Monotone.f (interpE e1) x) (Monotone.f (interpE e2) x)
(Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e1) x) (Monotone.f (interpE e1) y)
(Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))
(Monotone.is-monotone (interpE e1) x y x₁) (Preorder-max-str.max-l [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y)))
(Preorder-str.trans (snd [ τ' ]t) (Monotone.f (interpE e2) x) (Monotone.f (interpE e2) y)
(Preorder-max-str.max [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))
(Monotone.is-monotone (interpE e2) x y x₁) (Preorder-max-str.max-r [ τ ]tm (Monotone.f (interpE e1) y) (Monotone.f (interpE e2) y))))
throw-r : ∀ {Γ Γ' τ} → rctx Γ (τ :: Γ') → rctx Γ Γ'
throw-r d = λ x → d (iS x)
interpR : ∀ {Γ Γ'} → rctx Γ Γ' → MONOTONE [ Γ ]c [ Γ' ]c
interpR {Γ' = []} ρ = monotone (λ _ → <>) (λ x y x₁ → <>)
interpR {Γ' = τ :: Γ'} ρ = monotone (λ x → (Monotone.f (interpR (throw-r ρ)) x) , (Monotone.f (lookup (ρ i0)) x))
(λ x y x₁ → (Monotone.is-monotone (interpR (throw-r ρ)) x y x₁) , (Monotone.is-monotone (lookup (ρ i0)) x y x₁))
throw-s : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ'
throw-s d = λ x → d (iS x)
interpS : ∀ {Γ Γ'} → sctx Γ Γ' → el ([ Γ ]c ->p [ Γ' ]c)
interpS {Γ' = []} Θ = monotone (λ _ → <>) (λ x y x₁ → <>)
interpS {Γ' = τ :: Γ'} Θ = monotone (λ x → Monotone.f (interpS (throw-s Θ)) x , Monotone.f (interpE (Θ i0)) x)
(λ x y x₁ → Monotone.is-monotone (interpS (throw-s Θ)) x y x₁ , (Monotone.is-monotone (interpE (Θ i0)) x y x₁))
ren-eq-l-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x)) (Monotone.f (interpR ρ) k)
ren-eq-l-lam {Γ' = []} ρ k x = <>
ren-eq-l-lam {Γ' = x :: Γ'} ρ k x₁ =
(ren-eq-l-lam (throw-r ρ) k x₁) ,
(Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k))
ren-eq-l : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
ren-eq-l ρ unit k = <>
ren-eq-l ρ 0C k = <>
ren-eq-l ρ 1C k = <>
ren-eq-l ρ (plusC e e₁) k =
plus-lem (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(ren-eq-l ρ e k) (ren-eq-l ρ e₁ k)
ren-eq-l {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k)
ren-eq-l {τ = τ} ρ (var (iS x)) k = ren-eq-l (throw-r ρ) (var x) k
ren-eq-l ρ z k = <>
ren-eq-l ρ (s e) k = ren-eq-l ρ e k
ren-eq-l {Γ} {Γ'} {τ = τ} ρ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE (ren e ρ)) k))
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(♭h-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend ρ))))
(k , (Monotone.f (interpE (ren e ρ)) k))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(ren-eq-l ρ e k))
(♭h-cong
(interpE (ren e₁ ρ))
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₂ (r-extend (r-extend ρ))))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁))) ,
(snd (fst x₁))) ,
(snd x₁))))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(λ x → ren-eq-l ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x))
(Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x))
(ren-eq-l (r-extend (r-extend ρ)) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x)
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x)))
(Monotone.f (interpR ρ) (fst (fst x)))
(ren-eq-l-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x))
(ren-eq-l-lam ρ (fst (fst x)) (snd (fst x))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))))
ren-eq-l {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x)
(Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x))
(ren-eq-l (r-extend ρ) e (k , x))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))
(Monotone.f (interpR ρ) k , x)
(ren-eq-l-lam ρ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x)))
ren-eq-l {Γ} {τ = τ} ρ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (ren-eq-l ρ e₁ k))
(ren-eq-l ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
ren-eq-l ρ rz k = <>
ren-eq-l ρ (rsuc e) k = ren-eq-l ρ e k
ren-eq-l {Γ} {Γ'} {τ} ρ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE (ren e ρ)))
(rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P)))) k)
(Monotone.f (rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpR ρ) k))
(h-lem2 (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(k , Monotone.f (interpE (ren e ρ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(λ x → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x)
(ren-eq-l ρ e k))
(h-cong2 (interpE (ren e₁ ρ))
(monotone
(λ z₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) z₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(unlam' (unlam' (interpE (ren e₂ ρ))))
(monotone
(λ v → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpR ρ) (fst (fst v)))) (snd (fst v))) (snd v))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(λ x → ren-eq-l ρ e₁ x)
(λ x → ren-eq-l ρ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁)
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpR ρ) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
ren-eq-l ρ (prod e e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k)
ren-eq-l ρ (l-proj e) k = fst (ren-eq-l ρ e k)
ren-eq-l ρ (r-proj e) k = snd (ren-eq-l ρ e k)
ren-eq-l ρ nil k = <>
ren-eq-l ρ (e ::c e₁) k = (ren-eq-l ρ e k) , (ren-eq-l ρ e₁ k)
ren-eq-l {Γ} {Γ'} {τ = τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁)))
(listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(k , (Monotone.f (interpE (ren e ρ)) k))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
((Preorder-str.refl (snd [ Γ ]c) k) , (ren-eq-l ρ e k)))
(lrec-cong
(interpE (ren e₁ ρ))
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x) (Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(monotone (λ x → Monotone.f (interpE e₂) ((((Monotone.f (interpR ρ) (fst (fst (fst x)))) , (snd (fst (fst x)))) , (snd (fst x))) , (snd x)))
(λ x y x₁ → Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
((((Monotone.is-monotone (interpR ρ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁)))) ,
(snd (fst (fst x₁)))) ,
(snd (fst x₁))) ,
(snd x₁))))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(λ x → ren-eq-l ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x))
(Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(ren-eq-l (r-extend (r-extend (r-extend ρ))) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(Monotone.f (interpR ρ) (fst (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x))
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(ren-eq-l-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x))
(ren-eq-l-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x))))
(ren-eq-l-lam ρ (fst (fst (fst x))) (snd (fst (fst x)))) ,
Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x)))) ,
l-refl (snd [ τ' ]t) (snd (fst x))) ,
Preorder-str.refl (snd [ τ' ]t) (snd x)))))
ren-eq-l ρ true k = <>
ren-eq-l ρ false k = <>
ren-eq-l {τ = τ} ρ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren e₁ ρ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k))
(ren-eq-l ρ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e₁ ρ)) k)
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpR ρ) k))
(ren-eq-l ρ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))))
ren-eq-r-lam : ∀ {Γ Γ' τ1} (ρ : rctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpR ρ) k) (Monotone.f (interpR (throw-r (r-extend {_} {_} {τ1} ρ))) (k , x))
ren-eq-r-lam {Γ' = []} ρ k x = <>
ren-eq-r-lam {Γ' = x :: Γ'} ρ k x₁ =
(ren-eq-r-lam (throw-r ρ) k x₁) ,
(Preorder-str.refl (snd [ x ]t) (Monotone.f (lookup (ρ i0)) k))
ren-eq-r : ∀ {Γ Γ' τ} → (ρ : rctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e ρ)) k)
ren-eq-r ρ unit k = <>
ren-eq-r ρ 0C k = <>
ren-eq-r ρ 1C k = <>
ren-eq-r ρ (plusC e e₁) k =
plus-lem (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)
(ren-eq-r ρ e k) (ren-eq-r ρ e₁ k)
ren-eq-r {τ = τ} ρ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (lookup (ρ i0)) k)
ren-eq-r {τ = τ} ρ (var (iS x)) k = ren-eq-r (throw-r ρ) (var x) k
ren-eq-r ρ z k = <>
ren-eq-r ρ (s e) k = ren-eq-r ρ e k
ren-eq-r {Γ} {Γ'} {τ} ρ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(natrec (Monotone.f (interpE (ren e₁ ρ)) k)
(λ n x₂ → Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) ((k , x₂) , n))
(Monotone.f (interpE (ren e ρ)) k))
(♭h-cong
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁) (Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₁ ρ))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) ,
snd (fst x₁)) ,
snd x₁)))
(interpE (ren e₂ (r-extend (r-extend ρ))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(λ x → ren-eq-r ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) ((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x))
(Monotone.f (interpE (ren e₂ (r-extend (r-extend ρ)))) x)
(Monotone.is-monotone (interpE e₂)
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
(Monotone.f (interpR {nat :: τ :: Γ} {_ :: _ :: Γ'} (r-extend (r-extend ρ))) x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR ρ) (fst (fst x)))
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst x) , snd (fst x)))
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) x)
(ren-eq-r-lam ρ (fst (fst x)) (snd (fst x)))
(ren-eq-r-lam {τ :: Γ} {Γ'} (throw-r (r-extend ρ)) (fst x) (snd x))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))
(ren-eq-r (r-extend (r-extend ρ)) e₂ x)))
(♭h-fix-args (interpE (ren e₁ ρ))
(interpE (ren e₂ (r-extend (r-extend ρ))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(k , Monotone.f (interpE (ren e ρ)) k) (ren-eq-r ρ e k))
ren-eq-r {Γ} {τ = τ1 ->c τ2} ρ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k , x))
(Monotone.f (interpE e) (Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x)))
(Monotone.f (Monotone.f (interpE (ren (lam e) ρ)) k) x)
((Monotone.is-monotone (interpE e)
(Monotone.f (interpR ρ) k , x)
(Monotone.f (interpR (r-extend {_} {_} {τ1} ρ)) (k , x))
(ren-eq-r-lam ρ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x))))
(ren-eq-r (r-extend ρ) e (k , x))
ren-eq-r {Γ} {τ = τ} ρ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.f (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k))
(ren-eq-r ρ e k (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)))
(Monotone.is-monotone (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k)) (Monotone.f (interpE (ren e₁ ρ)) k) (ren-eq-r ρ e₁ k))
ren-eq-r ρ rz k = <>
ren-eq-r ρ (rsuc e) k = ren-eq-r ρ e k
ren-eq-r {Γ} {Γ'} {τ} ρ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpR ρ) k))
(Monotone.f (rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(Monotone.f (comp (pair' id (interpE (ren e ρ)))
(rec' (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P)))) k)
(h-cong2
(monotone (λ z₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) z₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₁ ρ))
(monotone (λ v → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpR ρ) (fst (fst v)))) (snd (fst v))) (snd v))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpR ρ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpR ρ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpR ρ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(unlam' (unlam' (interpE (ren e₂ ρ))))
(λ x → ren-eq-r ρ e₁ x)
(λ x → ren-eq-r ρ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpR ρ) x₁))
(λ x₁ → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x₁)
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))))
(h-lem2 (interpE (ren e₁ ρ)) (unlam' (unlam' (interpE (ren e₂ ρ))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(k , Monotone.f (interpE (ren e ρ)) k)
(λ x → sound (ren e₁ ρ) (app (app (ren e₂ ρ) rz) (ren e₁ ρ)) (ren-cong P) x)
(ren-eq-r ρ e k))
ren-eq-r ρ (prod e e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k)
ren-eq-r ρ (l-proj e) k = fst (ren-eq-r ρ e k)
ren-eq-r ρ (r-proj e) k = snd (ren-eq-r ρ e k)
ren-eq-r ρ nil k = <>
ren-eq-r ρ (e ::c e₁) k = (ren-eq-r ρ e k) , (ren-eq-r ρ e₁ k)
ren-eq-r {Γ} {Γ'} {τ} ρ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren e₁ ρ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) (((k , x₃) , x₂) , x₁)))
(lrec-cong
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpR ρ) x)
(Monotone.f (interpR ρ) y)
(Monotone.is-monotone (interpR ρ) x y x₁)))
(interpE (ren e₁ ρ))
(monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpR ρ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpR ρ)
(fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) ,
snd (fst (fst x₁))) ,
snd (fst x₁)) ,
snd x₁)))
(interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(k , (Monotone.f (interpE e) (Monotone.f (interpR ρ) k)))
(λ x → ren-eq-r ρ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) (((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x))
(Monotone.f (interpE (ren e₂ (r-extend (r-extend (r-extend ρ))))) x)
(Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpR ρ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(Monotone.f (interpR {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (r-extend (r-extend (r-extend ρ)))) x)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR ρ) (fst (fst (fst x))))
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(ren-eq-r-lam ρ (fst (fst (fst x))) (snd (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpR {τ :: Γ} {Γ'} (throw-r (r-extend ρ))) (fst (fst (fst x)) , snd (fst (fst x))))
(Monotone.f (interpR (λ x₁ → iS (iS (ρ x₁)))) (fst x))
(Monotone.f (interpR (λ x₁ → iS (iS (iS (ρ x₁))))) x)
(ren-eq-r-lam (λ x₁ → iS (ρ x₁)) (fst (fst x)) (snd (fst x)))
(ren-eq-r-lam (λ x₁ → iS (iS (ρ x₁))) (fst x) (snd x)))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) ,
(l-refl (snd [ τ' ]t) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ' ]t) (snd x))))
(ren-eq-r (r-extend (r-extend (r-extend ρ))) e₂ x)))
(listrec-fix-args (interpE (ren e₁ ρ)) (interpE (ren e₂ (r-extend (r-extend (r-extend ρ)))))
(k , Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(k , Monotone.f (interpE (ren e ρ)) k)
(Preorder-str.refl (snd [ Γ ]c) k , ren-eq-r ρ e k))
ren-eq-r ρ true k = <>
ren-eq-r ρ false k = <>
ren-eq-r {τ = τ} ρ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (ren (max x e e₁) ρ)) k)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e ρ)) k)
(Monotone.f (interpE (ren (max x e e₁) ρ)) k)
(ren-eq-r ρ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₁) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e₁ ρ)) k)
(Monotone.f (interpE (ren (max x e e₁) ρ)) k)
(ren-eq-r ρ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (ren e ρ)) k) (Monotone.f (interpE (ren e₁ ρ)) k)))
ids-lem-l : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k) k
ids-lem-l {[]} k = <>
ids-lem-l {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1)
k1
(ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2)
(ids-lem-l {Γ} k1)) ,
(Preorder-str.refl (snd [ x ]t) k2)
subst-eq-l-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x)) (Monotone.f (interpS Θ) k)
subst-eq-l-lam {Γ' = []} Θ k x = <>
subst-eq-l-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ =
(subst-eq-l-lam (throw-s Θ) k x₁) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁))
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)))
(snd (Monotone.f (interpS Θ) k))
(ren-eq-l iS (Θ i0) (k , x₁))
(Monotone.is-monotone (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)) k
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
k
(ren-eq-l-lam {Γ} {Γ} (λ x₂ → x₂) k x₁)
(ids-lem-l {Γ} k)))
subst-eq-l : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
subst-eq-l Θ unit k = <>
subst-eq-l Θ 0C k = <>
subst-eq-l Θ 1C k = <>
subst-eq-l Θ (plusC e e₁) k =
plus-lem (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e k) (subst-eq-l Θ e₁ k)
subst-eq-l {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k)
subst-eq-l {τ = τ} Θ (var (iS x)) k = subst-eq-l (throw-s Θ) (var x) k
subst-eq-l Θ z k = <>
subst-eq-l Θ (s e) k = subst-eq-l Θ e k
subst-eq-l {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE (subst e Θ)) k))
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(♭h-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend Θ))))
(k , Monotone.f (interpE (subst e Θ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e k))
(♭h-cong
(interpE (subst e₁ Θ))
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₂ (s-extend (s-extend Θ))))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) ,
snd (fst x₁)) ,
snd x₁)))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(λ x → subst-eq-l Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x))
(Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x))
(subst-eq-l (s-extend (s-extend Θ)) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x)
(Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x))
(Monotone.f (interpS Θ) (fst (fst x)))
(subst-eq-l-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x))
(subst-eq-l-lam Θ (fst (fst x)) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))))
subst-eq-l {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x)
(Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x))
(subst-eq-l (s-extend Θ) e (k , x))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))
(Monotone.f (interpS Θ) k , x)
(subst-eq-l-lam Θ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x)))
subst-eq-l {Γ} {τ = τ} Θ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (subst-eq-l Θ e₁ k))
(subst-eq-l Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
subst-eq-l Θ rz k = <>
subst-eq-l Θ (rsuc e) k = subst-eq-l Θ e k
subst-eq-l {Γ} {Γ'} {τ} Θ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE (subst e Θ)))
(rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P)))) k)
(Monotone.f (rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpS Θ) k))
(h-lem2 (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(k , Monotone.f (interpE (subst e Θ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(λ x → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x)
(subst-eq-l Θ e k))
(h-cong2
(interpE (subst e₁ Θ))
(monotone (λ x → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpS Θ) x)
(Monotone.f (interpS Θ) y)
(Monotone.is-monotone (interpS Θ) x y x₁)))
(unlam' (unlam' (interpE (subst e₂ Θ))))
(monotone (λ x → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpS Θ) (fst (fst x)))) (snd (fst x))) (snd x))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(λ x → subst-eq-l Θ e₁ x)
(λ x → subst-eq-l Θ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁)
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpS Θ) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
subst-eq-l Θ (prod e e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k)
subst-eq-l Θ (l-proj e) k = fst (subst-eq-l Θ e k)
subst-eq-l Θ (r-proj e) k = snd (subst-eq-l Θ e k)
subst-eq-l Θ nil k = <>
subst-eq-l Θ (e ::c e₁) k = (subst-eq-l Θ e k) , (subst-eq-l Θ e₁ k)
subst-eq-l {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁)))
(listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(k , Monotone.f (interpE (subst e Θ)) k)
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Preorder-str.refl (snd [ Γ ]c) k , subst-eq-l Θ e k))
(lrec-cong
(interpE (subst e₁ Θ))
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁))
(λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpS Θ) (fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) ,
snd (fst (fst x₁))) ,
snd (fst x₁)) ,
snd x₁)))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(λ x → subst-eq-l Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x)
(Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x))
(Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(subst-eq-l (s-extend (s-extend (s-extend Θ))) e₂ x)
(Monotone.is-monotone (interpE e₂)
(Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(Monotone.f (interpS Θ) (fst (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x))
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(subst-eq-l-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x))
(subst-eq-l-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x))))
(subst-eq-l-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x))))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) ,
(l-refl (snd [ τ' ]t) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ' ]t) (snd x))))))
subst-eq-l Θ true k = <>
subst-eq-l Θ false k = <>
subst-eq-l {τ = τ} Θ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e₁ Θ)) k)
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (max x e e₁)) (Monotone.f (interpS Θ) k))
(subst-eq-l Θ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))))
ids-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
ids-lem-r {[]} k = <>
ids-lem-r {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
k1
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k1)
(Monotone.f (interpR {x :: Γ} {Γ} (throw-r (λ x₂ → x₂))) (k1 , k2))
(ids-lem-r {Γ} k1)
(ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k1 k2)) ,
(Preorder-str.refl (snd [ x ]t) k2)
subst-eq-r-lam : ∀ {Γ Γ' τ1} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (x : fst [ τ1 ]t)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS (throw-s (s-extend {_} {_} {τ1} Θ))) (k , x))
subst-eq-r-lam {Γ' = []} Θ k x = <>
subst-eq-r-lam {Γ} {Γ' = x :: Γ'} {τ1} Θ k x₁ =
(subst-eq-r-lam (throw-s Θ) k x₁) ,
Preorder-str.trans (snd [ x ]t)
(snd (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁)))
(Monotone.f (interpE (ren (Θ i0) iS)) (k , x₁))
(Monotone.is-monotone (interpE (Θ i0))
k
(Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))
(Preorder-str.trans (snd [ Γ ]c)
k
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.f (interpR {τ1 :: Γ} {Γ} iS) (k , x₁))
(ids-lem-r {Γ} k)
(ren-eq-r-lam {Γ} {Γ} (λ x₂ → x₂) k x₁)))
(ren-eq-r iS (Θ i0) (k , x₁))
subst-eq-r : ∀ {Γ Γ' τ} → (Θ : sctx Γ Γ') → (e : Γ' |- τ) → (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ τ ]t) (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e Θ)) k)
subst-eq-r Θ unit k = <>
subst-eq-r Θ 0C k = <>
subst-eq-r Θ 1C k = <>
subst-eq-r Θ (plusC e e₁) k =
plus-lem (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)
(subst-eq-r Θ e k) (subst-eq-r Θ e₁ k)
subst-eq-r {τ = τ} Θ (var i0) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE (Θ i0)) k)
subst-eq-r {τ = τ} Θ (var (iS x)) k = subst-eq-r (throw-s Θ) (var x) k
subst-eq-r Θ z k = <>
subst-eq-r Θ (s e) k = subst-eq-r Θ e k
subst-eq-r {Γ} {Γ'} {τ} Θ (rec e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(natrec (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ n x₂ → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(natrec (Monotone.f (interpE (subst e₁ Θ)) k)
(λ n x₂ → Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) ((k , x₂) , n))
(Monotone.f (interpE (subst e Θ)) k))
(♭h-cong
(monotone (λ v → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) v))
(λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₁ Θ))
(monotone (λ v → Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst v)) , snd (fst v)) , snd v))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) ,
snd (fst x₁)) ,
snd x₁)))
(interpE (subst e₂ (s-extend (s-extend Θ))))
(k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(λ x → subst-eq-r Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) ((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x))
(Monotone.f (interpE (subst e₂ (s-extend (s-extend Θ)))) x)
(Monotone.is-monotone (interpE e₂)
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
(Monotone.f (interpS {nat :: τ :: Γ} {_ :: _ :: Γ'} (s-extend (s-extend Θ))) x)
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) (fst (fst x)))
(Monotone.f (interpS (λ x₁ → ren (Θ x₁) iS)) (fst x))
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) x)
(subst-eq-r-lam Θ (fst (fst x)) (snd (fst x)))
(subst-eq-r-lam {τ :: Γ} {Γ'} (λ x₁ → ren (Θ x₁) iS) (fst x) (snd x))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst x)))) ,
(♭nat-refl (snd x))))
(subst-eq-r (s-extend (s-extend Θ)) e₂ x)))
(♭h-fix-args (interpE (subst e₁ Θ))
(interpE (subst e₂ (s-extend (s-extend Θ))))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(k , Monotone.f (interpE (subst e Θ)) k)
(subst-eq-r Θ e k))
subst-eq-r {Γ} {τ = τ1 ->c τ2} Θ (lam e) k x =
Preorder-str.trans (snd [ τ2 ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k , x))
(Monotone.f (interpE e) (Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x)))
(Monotone.f (Monotone.f (interpE (subst (lam e) Θ)) k) x)
((Monotone.is-monotone (interpE e)
(Monotone.f (interpS Θ) k , x)
(Monotone.f (interpS (s-extend {_} {_} {τ1} Θ)) (k , x))
(subst-eq-r-lam Θ k x ,
(Preorder-str.refl (snd [ τ1 ]t) x))))
(subst-eq-r (s-extend Θ) e (k , x))
subst-eq-r {Γ} {τ = τ} Θ (app e e₁) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.f (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k))
(subst-eq-r Θ e k (Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)))
(Monotone.is-monotone (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k)) (Monotone.f (interpE (subst e₁ Θ)) k) (subst-eq-r Θ e₁ k))
subst-eq-r Θ rz k = <>
subst-eq-r Θ (rsuc e) k = subst-eq-r Θ e k
subst-eq-r {Γ} {Γ'} {τ} Θ (rrec e e₁ e₂ P) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (comp (pair' id (interpE e))
(rec' (interpE e₁) (unlam' (unlam' (interpE e₂)))
(sound e₁ (app (app e₂ rz) e₁) P))) (Monotone.f (interpS Θ) k))
(Monotone.f (rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(Monotone.f (comp (pair' id (interpE (subst e Θ)))
(rec' (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P)))) k)
(h-cong2
(monotone (λ z₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) z₁))
(λ x y x₁ →
Monotone.is-monotone (interpE e₁)
(Monotone.f (interpS Θ) x)
(Monotone.f (interpS Θ) y)
(Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₁ Θ))
(monotone (λ v → Monotone.f (Monotone.f (Monotone.f (interpE e₂) (Monotone.f (interpS Θ) (fst (fst v)))) (snd (fst v))) (snd v))
(λ x y x₁ →
Monotone.is-monotone (unlam' (unlam' (interpE e₂)))
((Monotone.f (interpS Θ) (fst (fst x)) , snd (fst x)) , snd x)
((Monotone.f (interpS Θ) (fst (fst y)) , snd (fst y)) , snd y)
((Monotone.is-monotone (interpS Θ) (fst (fst x)) (fst (fst y)) (fst (fst x₁)) , snd (fst x₁)) , snd x₁)))
(unlam' (unlam' (interpE (subst e₂ Θ))))
(λ x → subst-eq-r Θ e₁ x)
(λ x → subst-eq-r Θ e₂ (fst (fst x)) (snd (fst x)) (snd x))
(λ x₁ → sound e₁ (app (app e₂ rz) e₁) P (Monotone.f (interpS Θ) x₁))
(λ x₁ → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x₁)
(k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))))
(h-lem2 (interpE (subst e₁ Θ)) (unlam' (unlam' (interpE (subst e₂ Θ))))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(k , Monotone.f (interpE (subst e Θ)) k)
(λ x → sound (subst e₁ Θ) (app (app (subst e₂ Θ) rz) (subst e₁ Θ)) (subst-cong P) x)
(subst-eq-r Θ e k))
subst-eq-r Θ (prod e e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k)
subst-eq-r Θ (l-proj e) k = fst (subst-eq-r Θ e k)
subst-eq-r Θ (r-proj e) k = snd (subst-eq-r Θ e k)
subst-eq-r Θ nil k = <>
subst-eq-r Θ (e ::c e₁) k = (subst-eq-r Θ e k) , (subst-eq-r Θ e₁ k)
subst-eq-r {Γ} {Γ'} {τ} Θ (listrec {.Γ'} {τ'} e e₁ e₂) k =
Preorder-str.trans (snd [ τ ]t)
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(λ x₁ x₂ x₃ → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec (Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst e₁ Θ)) k)
(λ x₁ x₂ x₃ → Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) (((k , x₃) , x₂) , x₁)))
(lrec-cong
(monotone (λ k₁ → Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k₁))
(λ x y x₁ → Monotone.is-monotone (interpE e₁) (Monotone.f (interpS Θ) x) (Monotone.f (interpS Θ) y) (Monotone.is-monotone (interpS Θ) x y x₁)))
(interpE (subst e₁ Θ))
(monotone (λ x → Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(λ x y x₁ →
Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(((Monotone.f (interpS Θ) (fst (fst (fst y))) , snd (fst (fst y))) , snd (fst y)) , snd y)
(((Monotone.is-monotone (interpS Θ)
(fst (fst (fst x))) (fst (fst (fst y))) (fst (fst (fst x₁))) , snd (fst (fst x₁))) , snd (fst x₁)) , snd x₁)))
(interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(k , (Monotone.f (interpE e) (Monotone.f (interpS Θ) k)))
(λ x → subst-eq-r Θ e₁ x)
(λ x →
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₂) (((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x))
(Monotone.f (interpE e₂) (Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x))
(Monotone.f (interpE (subst e₂ (s-extend (s-extend (s-extend Θ))))) x)
(Monotone.is-monotone (interpE e₂)
(((Monotone.f (interpS Θ) (fst (fst (fst x))) , snd (fst (fst x))) , snd (fst x)) , snd x)
(Monotone.f (interpS {τ' :: list τ' :: τ :: Γ} {_ :: _ :: _ :: Γ'} (s-extend (s-extend (s-extend Θ)))) x)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) (fst (fst (fst x))))
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(subst-eq-r-lam {Γ} {Γ'} Θ (fst (fst (fst x))) (snd (fst (fst x))))
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS {τ :: Γ} {Γ'} (throw-s (s-extend Θ))) (fst (fst x)))
(Monotone.f (interpS (λ x₁ → ren (ren (Θ x₁) iS) iS)) (fst x))
(Monotone.f (interpS (λ x₁ → ren (ren (ren (Θ x₁) iS) iS) iS)) x)
(subst-eq-r-lam (λ x₁ → ren (Θ x₁) iS) (fst (fst x)) (snd (fst x)))
(subst-eq-r-lam (λ x₁ → ren (ren (Θ x₁) iS) iS) (fst x) (snd x)))) ,
(Preorder-str.refl (snd [ τ ]t) (snd (fst (fst x))))) ,
(l-refl (snd [ τ' ]t) (snd (fst x)))) ,
(Preorder-str.refl (snd [ τ' ]t) (snd x))))
(subst-eq-r (s-extend (s-extend (s-extend Θ))) e₂ x)))
(listrec-fix-args (interpE (subst e₁ Θ)) (interpE (subst e₂ (s-extend (s-extend (s-extend Θ)))))
(k , Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(k , Monotone.f (interpE (subst e Θ)) k)
(Preorder-str.refl (snd [ Γ ]c) k , subst-eq-r Θ e k))
subst-eq-r Θ true k = <>
subst-eq-r Θ false k = <>
subst-eq-r {τ = τ} Θ (max x e e₁) k =
Preorder-max-str.max-lub [ x ]tm
(Monotone.f (interpE (subst (max x e e₁) Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE (subst (max x e e₁) Θ)) k)
(subst-eq-r Θ e k)
(Preorder-max-str.max-l [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e₁) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e₁ Θ)) k)
(Monotone.f (interpE (subst (max x e e₁) Θ)) k)
(subst-eq-r Θ e₁ k)
(Preorder-max-str.max-r [ x ]tm (Monotone.f (interpE (subst e Θ)) k) (Monotone.f (interpE (subst e₁ Θ)) k)))
interp-rr-l : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k)
interp-rr-l {Γ'' = []} ρ1 ρ2 k = <>
interp-rr-l {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-l ρ1 (throw-r ρ2) k) , (ren-eq-r ρ1 (var (ρ2 i0)) k)
interp-rr-r : ∀ {Γ Γ' Γ''} (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpR (λ x → ρ1 (ρ2 x))) k)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
interp-rr-r {Γ'' = []} ρ1 ρ2 k = <>
interp-rr-r {Γ'' = x :: Γ''} ρ1 ρ2 k = (interp-rr-r ρ1 (throw-r ρ2) k) , (ren-eq-l ρ1 (var (ρ2 i0)) k)
interp-rs-l : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
(Monotone.f (interpS (λ x → ren (Θ x) ρ)) k)
interp-rs-l {Γ'' = []} ρ Θ k = <>
interp-rs-l {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-l ρ (throw-s Θ) k) , (ren-eq-r ρ (Θ i0) k)
interp-rs-r : ∀ {Γ Γ' Γ''} (ρ : rctx Γ Γ') (Θ : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS (λ x → ren (Θ x) ρ)) k)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
interp-rs-r {Γ'' = []} ρ Θ k = <>
interp-rs-r {Γ'' = x :: Γ''} ρ Θ k = (interp-rs-r ρ (throw-s Θ) k) , (ren-eq-l ρ (Θ i0) k)
interp-sr-l : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
(Monotone.f (interpS (λ x → Θ (ρ x))) k)
interp-sr-l {Γ'' = []} Θ ρ k = <>
interp-sr-l {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-l Θ (throw-r ρ) k) , (subst-eq-r Θ (var (ρ i0)) k)
interp-sr-r : ∀ {Γ Γ' Γ''} (Θ : sctx Γ Γ') (ρ : rctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS (λ x → Θ (ρ x))) k)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
interp-sr-r {Γ'' = []} Θ ρ k = <>
interp-sr-r {Γ'' = x :: Γ''} Θ ρ k = (interp-sr-r Θ (throw-r ρ) k) , (subst-eq-l Θ (var (ρ i0)) k)
interp-ss-l : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
interp-ss-l {Γ'' = []} Θ1 Θ2 k = <>
interp-ss-l {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-l Θ1 (throw-s Θ2) k) , (subst-eq-l Θ1 (Θ2 i0) k)
interp-ss-r : ∀ {Γ Γ' Γ''} (Θ1 : sctx Γ Γ') (Θ2 : sctx Γ' Γ'') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ'' ]c)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpS (λ x → subst (Θ2 x) Θ1)) k)
interp-ss-r {Γ'' = []} Θ1 Θ2 k = <>
interp-ss-r {Γ'' = x :: Γ''} Θ1 Θ2 k = (interp-ss-r Θ1 (throw-s Θ2) k) , (subst-eq-r Θ1 (Θ2 i0) k)
lam-s-lem : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) (Monotone.f (interpS {Γ} {Γ} ids) k) k
lam-s-lem {[]} k = <>
lam-s-lem {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2))
(Monotone.f (interpS {Γ} {Γ} ids) k1)
k1
(subst-eq-l-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2)))
(lam-s-lem {Γ} k1)) ,
(Preorder-str.refl (snd [ x ]t) k2)
lam-s-lem-r : ∀ {Γ} (k : fst [ Γ ]c) → Preorder-str.≤ (snd [ Γ ]c) k (Monotone.f (interpS {Γ} {Γ} ids) k)
lam-s-lem-r {[]} k = <>
lam-s-lem-r {x :: Γ} (k1 , k2) =
(Preorder-str.trans (snd [ Γ ]c)
k1
(Monotone.f (interpS {Γ} {Γ} ids) k1)
(Monotone.f (interpS {x :: Γ} {Γ} (throw-s ids)) (k1 , k2))
(lam-s-lem-r {Γ} k1)
(subst-eq-r-lam {Γ} {Γ} ids k1 (Monotone.f (interpE {x :: Γ} {x} (ids i0)) (k1 , k2)))) ,
(Preorder-str.refl (snd [ x ]t) k2)
interp-subst-comp-l : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
(Monotone.f (interpS (λ x → Θ x)) k)
interp-subst-comp-l {Γ' = []} Θ v k = <>
interp-subst-comp-l {Γ} {Γ' = x :: Γ'} {τ'} Θ v k =
(interp-subst-comp-l (throw-s Θ) v k) ,
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.f (interpE (Θ i0)) k)
(subst-eq-l (lem3' ids v) (ren (Θ i0) iS) k)
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)))
(Monotone.f (interpE (Θ i0)) k)
(ren-eq-l iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.is-monotone (interpE (Θ i0))
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
k
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
k
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS)
(Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)
(k , Monotone.f (interpE v) k)
(lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))
(ren-eq-l-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k)))
(ids-lem-l {Γ} k)))))
interp-subst-comp-r : ∀ {Γ Γ' τ'} (Θ : sctx Γ Γ') (v : Γ |- τ') (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → Θ x)) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
interp-subst-comp-r {Γ' = []} Θ v k = <>
interp-subst-comp-r {Γ} {Γ' = x :: Γ'} {τ'} Θ v k =
(interp-subst-comp-r (throw-s Θ) v k) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (Θ i0)) k)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v))) k)
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (Θ i0)) k)
(Monotone.f (interpE (Θ i0)) (Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)))
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v)) k))
(Monotone.is-monotone (interpE (Θ i0))
k
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(Preorder-str.trans (snd [ Γ ]c)
k
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(ids-lem-r {Γ} k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {Γ} {Γ} (λ x₂ → x₂)) k)
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (k , Monotone.f (interpE v) k))
(Monotone.f (interpR {τ' :: Γ} {Γ} iS) (Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k))
(ren-eq-r-lam {Γ} {Γ} {τ'} (λ x₂ → x₂) k (Monotone.f (interpE v) k))
(Monotone.is-monotone (interpR {τ' :: Γ} {Γ} iS)
(k , Monotone.f (interpE v) k)
(Monotone.f (interpS {Γ} {τ' :: Γ} (lem3' ids v)) k)
(lam-s-lem-r {Γ} k , Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))))
(ren-eq-r iS (Θ i0) (Monotone.f (interpS (lem3' ids v)) k)))
(subst-eq-r (lem3' ids v) (ren (Θ i0) iS) k)
interp-subst-comp2-l : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'')
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
interp-subst-comp2-l {Γ' = []} Θ k v1 v2 = <>
interp-subst-comp2-l {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 =
(interp-subst-comp2-l (throw-s Θ) k v1 v2) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(ren-eq-l iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k))
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(Monotone.is-monotone (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (lem3' ids v2)) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpS {Γ} ids) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k))
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(ren-eq-l-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k))
(ren-eq-l-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k)))
(interp-sr-l {Γ} ids (λ x₁ → x₁) k) ,
Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)))
(subst-eq-r (lem3' ids v2) (ren (Θ i0) iS) k))
interp-subst-comp2-r : ∀ {Γ Γ' τ' τ''} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v1 : Γ |- τ') (v2 : Γ |- τ'')
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
interp-subst-comp2-r {Γ' = []} Θ k v1 v2 = <>
interp-subst-comp2-r {Γ} {Γ' = x :: Γ'} {τ'} {τ''} Θ k v1 v2 =
(interp-subst-comp2-r (throw-s Θ) k v1 v2) ,
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (subst (ren (Θ i0) iS) (lem3' ids v2))) k)
(Monotone.f (interpE (ren (Θ i0) iS)) (Monotone.f (interpS (lem3' ids v2)) k))
(Monotone.f (interpE (ren (Θ i0) iS))
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(subst-eq-l (lem3' ids v2) (ren (Θ i0) iS) k)
(Monotone.is-monotone (interpE (ren (Θ i0) iS))
(Monotone.f (interpS (lem3' ids v2)) k)
(Monotone.f (interpR {τ' :: τ'' :: Γ} iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
((Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpS {Γ} ids) k)
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-sr-r {Γ} ids (λ x₁ → x₁) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {Γ} {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ'' :: Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k))
(Monotone.f (interpR {τ' :: τ'' :: Γ} (λ x₁ → iS (iS x₁))) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(ren-eq-r-lam {Γ} {Γ} {τ''} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v2) k))
(ren-eq-r-lam {τ'' :: Γ} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))) ,
(Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)))))
(ren-eq-r iS (ren (Θ i0) iS) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
interp-subst-comp3-l : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
interp-subst-comp3-l {Γ' = []} Θ k v3 v2 v1 = <>
interp-subst-comp3-l {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 =
(interp-subst-comp3-l (throw-s Θ) k v3 v2 v1) ,
(Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS))
(((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(ren-eq-l iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)
((Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpS {Γ} ids) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS)))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(fst (ren-eq-l-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁)
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))
(ren-eq-l-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k)))
(ren-eq-l-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k)))
(interp-sr-l {Γ} ids (λ x₁ → x₁) k) ,
Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k)) ,
Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))))
interp-subst-comp3-r : ∀ {Γ Γ' τ1 τ2 τ3} (Θ : sctx Γ Γ') (k : fst [ Γ ]c) (v3 : Γ |- τ3) (v2 : Γ |- τ2) (v1 : Γ |- τ1)
→ Preorder-str.≤ (snd [ Γ' ]c)
(Monotone.f (interpS {τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (Θ x) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {Γ'} (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
interp-subst-comp3-r {Γ' = []} Θ k v3 v2 v1 = <>
interp-subst-comp3-r {Γ} {Γ' = x :: Γ'} {τ1} {τ2} {τ3} Θ k v3 v2 v1 =
(interp-subst-comp3-r (throw-s Θ) k v3 v2 v1) ,
Preorder-str.trans (snd [ x ]t)
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpE (ren (ren (Θ i0) iS) iS))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k)))
(Monotone.f (interpE (ren (ren (ren (Θ i0) iS) iS) iS))
(((Monotone.f (interpS {Γ} {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.is-monotone (interpE (ren (ren (Θ i0) iS) iS))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k)
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {τ2 :: τ3 :: Γ} iS)
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(((Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpS {Γ} ids) k)
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-sr-r {Γ} ids (λ x₁ → x₁) k)
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {Γ} (λ x₁ → x₁)) (Monotone.f (interpS {Γ} ids) k))
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(ren-eq-r-lam {Γ} {Γ} {τ3} (λ x₁ → x₁) (Monotone.f (interpS {Γ} ids) k) (Monotone.f (interpE v3) k))
(Preorder-str.trans (snd [ Γ ]c)
(Monotone.f (interpR {τ3 :: Γ} {Γ} (throw-r (r-extend (λ x₁ → x₁)))) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k))
(Monotone.f (interpR {τ2 :: τ3 :: Γ} (throw-r (r-extend iS)))
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpR {τ1 :: τ2 :: τ3 :: Γ} {Γ} (λ x₁ → iS (iS (iS x₁))))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(ren-eq-r-lam {τ3 :: Γ} {Γ} {τ2} (λ x₁ → iS x₁) (Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) (Monotone.f (interpE v2) k))
(fst (ren-eq-r-lam {τ2 :: τ3 :: Γ} {τ3 :: Γ} {τ1} (λ x₁ → iS x₁)
((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) (Monotone.f (interpE v1) k)))))) ,
(Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) ,
(Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))))
(ren-eq-r iS (ren (ren (Θ i0) iS) iS) (((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
s-cong2-lem : ∀ {Γ Γ'} (Θ Θ' : sctx Γ Γ') (x : (τ₁ : CTp) (x₁ : τ₁ ∈ Γ') → Θ x₁ ≤s Θ' x₁) (k : fst [ Γ ]c)
→ Preorder-str.≤ (snd [ Γ' ]c) (Monotone.f (interpS Θ) k) (Monotone.f (interpS Θ') k)
s-cong2-lem {Γ' = []} Θ Θ' x k = <>
s-cong2-lem {Γ' = x :: Γ'} Θ Θ' x₁ k =
s-cong2-lem (throw-s Θ) (throw-s Θ') (λ τ₁ x₂ → x₁ τ₁ (iS x₂)) k ,
sound (Θ i0) (Θ' i0) (x₁ x i0) k
sound {_} {τ} e .e refl-s k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} e e' (trans-s {.Γ} {.τ} {.e} {e''} {.e'} d d₁) k =
Preorder-str.trans (snd [ τ ]t) (Monotone.f (interpE e) k) (Monotone.f (interpE e'') k) (Monotone.f (interpE e') k) (sound e e'' d k) (sound e'' e' d₁ k)
sound {_} {τ} e .e (cong-refl Refl) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound .(plusC 0C e') e' +-unit-l k = Preorder-str.refl (snd [ rnat ]t) (Monotone.f (interpE e') k)
sound e .(plusC 0C e) +-unit-l' k = Preorder-str.refl (snd [ rnat ]t) (Monotone.f (interpE e) k)
sound {_} {.C} .(plusC e' 0C) e' +-unit-r k = +-unit (Monotone.f (interpE e') k)
sound e .(plusC e 0C) +-unit-r' k = plus-lem' (Monotone.f (interpE e) k) (Monotone.f (interpE e) k) Z (nat-refl (Monotone.f (interpE e) k))
sound {Γ} {.C} ._ ._ (+-assoc {.Γ} {e1} {e2} {e3}) k = plus-assoc (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k)
sound {Γ} {.C} ._ ._ (+-assoc' {.Γ} {e1} {e2} {e3}) k = plus-assoc' (Monotone.f (interpE e1) k) (Monotone.f (interpE e2) k) (Monotone.f (interpE e3) k)
sound {Γ} {.C} ._ ._ (refl-+ {.Γ} {e0} {e1}) k = +-comm (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k)
sound {Γ} {C} ._ ._ (cong-+ {.Γ} {e0} {e1} {e0'} {e1'} d d₁) k = --also called plus-s. should really delete this rule so we don't have duplicates
plus-lem (Monotone.f (interpE e0) k) (Monotone.f (interpE e1) k) (Monotone.f (interpE e0') k) (Monotone.f (interpE e1') k)
(sound e0 e0' d k) (sound e1 e1' d₁ k)
sound {Γ} {τ} ._ ._ (cong-lproj {.Γ} {.τ} {_} {e} {e'} d) k = fst (sound e e' d k)
sound {Γ} {τ} ._ ._ (cong-rproj {.Γ} {_} {.τ} {e} {e'} d) k = snd (sound e e' d k)
sound {Γ} {τ} ._ ._ (cong-app {.Γ} {τ'} {.τ} {e} {e'} {e1} d) k = sound e e' d k (Monotone.f (interpE e1) k)
sound {Γ} {τ} ._ ._ (ren-cong {.Γ} {Γ'} {.τ} {e1} {e2} {ρ} d) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e1 ρ)) k)
(Monotone.f (interpE e1) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e2 ρ)) k)
(ren-eq-l ρ e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e2) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren e2 ρ)) k)
(sound e1 e2 d (Monotone.f (interpR ρ) k))
(ren-eq-r ρ e2 k))
sound {Γ} {τ} ._ ._ (subst-cong {.Γ} {Γ'} {.τ} {e1} {e2} {Θ} d) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 Θ)) k)
(Monotone.f (interpE e1) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e2 Θ)) k)
(subst-eq-l Θ e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e2) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e2 Θ)) k)
(sound e1 e2 d (Monotone.f (interpS Θ) k))
(subst-eq-r Θ e2 k))
sound {Γ} {τ} ._ ._ (subst-cong2 {.Γ} {Γ'} {.τ} {Θ} {Θ'} {e} x) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ)) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e Θ')) k) (subst-eq-l Θ e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ') k))
(Monotone.f (interpE (subst e Θ')) k)
(Monotone.is-monotone (interpE e) (Monotone.f (interpS Θ) k)
(Monotone.f (interpS Θ') k) (s-cong2-lem Θ Θ' x k))
(subst-eq-r Θ' e k))
sound {Γ} {τ} ._ ._ (cong-rec {.Γ} {.τ} {e} {e'} {e0} {e1} d) k =
♭h-fix-args (interpE e0) (interpE e1) (k , Monotone.f (interpE e) k) (k , Monotone.f (interpE e') k) (sound e e' d k)
sound {Γ} {τ} ._ ._ (cong-listrec {.Γ} {τ'} {.τ} {e} {e'} {e0} {e1} d) k =
listrec-fix-args (interpE e0) (interpE e1) (k , (Monotone.f (interpE e) k)) (k , Monotone.f (interpE e') k) ((Preorder-str.refl (snd [ Γ ]c) k) , (sound e e' d k))
sound {Γ} {τ} ._ ._ (lam-s {.Γ} {τ'} {.τ} {e} {e2}) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (q e2))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (q e2)) k))
(Monotone.f (interpE e) (k , Monotone.f (interpE e2) k))
(subst-eq-l (q e2) e k)
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (q e2)) k)
(k , Monotone.f (interpE e2) k)
(lam-s-lem {Γ} k , (Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE e2) k))))
sound {Γ} {τ} e ._ (l-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} e ._ (r-proj-s {.Γ}) k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {_} {τ} e ._ rec-steps-z k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} ._ ._ (rec-steps-s {.Γ} {.τ} {e} {e0} {e1}) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids (rec e e0 e1)) e))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k))
(Monotone.f (interpE e1)
((k , natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k))
(subst-eq-l (lem3' (lem3' ids (rec e e0 e1)) e) e1 k)
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' ids (rec e e0 e1)) e)) k)
((k , natrec (Monotone.f (interpE e0) k)
(λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)) , Monotone.f (interpE e) k)
((lam-s-lem {Γ} k ,
(Preorder-str.refl (snd [ τ ]t) (natrec (Monotone.f (interpE e0) k) (λ n x₂ → Monotone.f (interpE e1) ((k , x₂) , n)) (Monotone.f (interpE e) k)))) ,
(♭nat-refl (Monotone.f (interpE e) k))))
sound {Γ} {τ} e ._ listrec-steps-nil k = Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE e) k)
sound {Γ} {τ} ._ ._ (listrec-steps-cons {.Γ} {τ'} {.τ} {h} {t} {e0} {e1}) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k))
(Monotone.f (interpE e1)
(((k ,
lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) ,
Monotone.f (interpE t) k) ,
Monotone.f (interpE h) k))
(subst-eq-l (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h) e1 k)
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' (lem3' ids (listrec t e0 e1)) t) h)) k)
(((k , lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))) ,
Monotone.f (interpE t) k) , Monotone.f (interpE h) k)
(((lam-s-lem {Γ} k ,
(Preorder-str.refl (snd [ τ ]t) (lrec (Monotone.f (interpE t) k) (Monotone.f (interpE e0) k) (λ x₁ x₂ x₃ → Monotone.f (interpE e1) (((k , x₃) , x₂) , x₁))))) ,
(l-refl (snd [ τ' ]t) (Monotone.f (interpE t) k))) ,
(Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE h) k))))
sound {Γ} {τ} .(ren (ren e ρ2) ρ1) ._ (ren-comp-l ρ1 ρ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren (ren e ρ2) ρ1)) k)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(ren-eq-l ρ1 (ren e ρ2) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)))
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(ren-eq-l ρ2 e (Monotone.f (interpR ρ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpR (ρ1 ∙rr ρ2)) k)
(interp-rr-l ρ1 ρ2 k)))
(ren-eq-r (ρ1 ∙rr ρ2) e k))
sound {Γ} {τ} ._ .(ren (ren e ρ2) ρ1) (ren-comp-r ρ1 ρ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.f (interpE (ren (ren e ρ2) ρ1)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e (ρ1 ∙rr ρ2))) k)
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(ren-eq-l (ρ1 ∙rr ρ2) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpR (ρ1 ∙rr ρ2)) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k)))
(Monotone.f (interpE (ren e ρ2)) (Monotone.f (interpR ρ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR (ρ1 ∙rr ρ2)) k)
(Monotone.f (interpR ρ2) (Monotone.f (interpR ρ1) k))
(interp-rr-r ρ1 ρ2 k))
(ren-eq-r ρ2 e (Monotone.f (interpR ρ1) k))))
(ren-eq-r ρ1 (ren e ρ2) k)
sound {Γ} {τ} e ._ (subst-id-l .e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) k)
(Monotone.f (interpE e) (Monotone.f (interpS {Γ} {Γ} ids) k))
(Monotone.f (interpE (subst e ids)) k)
(Monotone.is-monotone (interpE e) k (Monotone.f (interpS {Γ} {Γ} ids) k) (lam-s-lem-r {Γ} k))
(subst-eq-r ids e k)
sound {Γ} {τ} ._ e' (subst-id-r .e') k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e' ids)) k)
(Monotone.f (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k))
(Monotone.f (interpE e') k)
(subst-eq-l ids e' k)
(Monotone.is-monotone (interpE e') (Monotone.f (interpS {Γ} {Γ} ids) k) k (lam-s-lem {Γ} k))
sound {Γ} {τ} .(ren (subst e Θ) ρ) ._ (subst-rs-l ρ Θ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren (subst e Θ) ρ)) k)
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(ren-eq-l ρ (subst e Θ) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(subst-eq-l Θ e (Monotone.f (interpR ρ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k))
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
(Monotone.f (interpS (ρ rs Θ)) k)
(interp-rs-l ρ Θ k))
(subst-eq-r (ρ rs Θ) e k)))
sound {Γ} {τ} ._ .(ren (subst e Θ) ρ) (subst-rs-r ρ Θ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Monotone.f (interpE (ren (subst e Θ) ρ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(Monotone.f (interpE (subst e Θ)) (Monotone.f (interpR ρ) k))
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (ρ rs Θ))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (ρ rs Θ)) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k)))
(subst-eq-l (ρ rs Θ) e k)
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (ρ rs Θ)) k)
(Monotone.f (interpS Θ) (Monotone.f (interpR ρ) k))
(interp-rs-r ρ Θ k)))
(subst-eq-r Θ e (Monotone.f (interpR ρ) k)))
(ren-eq-r ρ (subst e Θ) k)
sound {Γ} {τ} .(subst (ren e ρ) Θ) ._ (subst-sr-l Θ ρ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (ren e ρ) Θ)) k)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(subst-eq-l Θ (ren e ρ) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(ren-eq-l ρ e (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
(Monotone.f (interpS (Θ sr ρ)) k)
(interp-sr-l Θ ρ k)))
(subst-eq-r (Θ sr ρ) e k))
sound {Γ} {τ} ._ .(subst (ren e ρ) Θ) (subst-sr-r Θ ρ e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst (ren e ρ) Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (Θ sr ρ))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(subst-eq-l (Θ sr ρ) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ sr ρ)) k))
(Monotone.f (interpE e) (Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE (ren e ρ)) (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (Θ sr ρ)) k)
(Monotone.f (interpR ρ) (Monotone.f (interpS Θ) k))
(interp-sr-r Θ ρ k))
(ren-eq-r ρ e (Monotone.f (interpS Θ) k))))
(subst-eq-r Θ (ren e ρ) k)
sound {Γ} {τ} ._ .(subst (subst e Θ2) Θ1) (subst-ss-l Θ1 Θ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (Θ1 ss Θ2))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(subst-eq-l (Θ1 ss Θ2) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)))
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (Θ1 ss Θ2)) k)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
(interp-ss-l Θ1 Θ2 k))
(subst-eq-r Θ2 e (Monotone.f (interpS Θ1) k)))
(subst-eq-r Θ1 (subst e Θ2) k))
sound {Γ} {τ} .(subst (subst e Θ2) Θ1) ._ (subst-ss-r Θ1 Θ2 e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(Monotone.f (interpE (subst e (Θ1 ss Θ2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e Θ2) Θ1)) k)
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(subst-eq-l Θ1 (subst e Θ2) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e Θ2)) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpE e) (Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (Θ1 ss Θ2)) k))
(subst-eq-l Θ2 e (Monotone.f (interpS Θ1) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS Θ2) (Monotone.f (interpS Θ1) k))
(Monotone.f (interpS (Θ1 ss Θ2)) k)
(interp-ss-r Θ1 Θ2 k))))
(subst-eq-r (Θ1 ss Θ2) e k)
sound {Γ} {τ} ._ .(subst e (lem3' Θ v)) (subst-compose-l {.Γ} {Γ'} {τ'} Θ v e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(subst-eq-l (q v) (subst e (s-extend Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(subst-eq-l (s-extend Θ) e (Monotone.f (interpS (q v)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))
(Monotone.f (interpS (lem3' Θ v)) k)
(Preorder-str.trans (snd [ Γ' ]c)
(fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k)))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
(Monotone.f (interpS Θ) k)
(fst (interp-ss-r (q v) (s-extend Θ) k))
(interp-subst-comp-l Θ v k) ,
Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))
(subst-eq-r (lem3' Θ v) e k))
sound {Γ} {τ} .(subst e (lem3' Θ v)) ._ (subst-compose-r {.Γ} {Γ'} {τ'} Θ v e) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.f (interpE (subst (subst e (s-extend Θ)) (q v))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' Θ v))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(subst-eq-l (lem3' Θ v) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' Θ v)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k)))
(Monotone.f (interpE (subst e (s-extend Θ))) (Monotone.f (interpS (q v)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (lem3' Θ v)) k)
(Monotone.f (interpS {τ' :: Γ} {τ' :: Γ'} (s-extend {Γ} {Γ'} Θ)) (Monotone.f (interpS {Γ} {τ' :: Γ} (q v)) k))
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v))) k)
(fst (Monotone.f (interpS (s-extend Θ)) (Monotone.f (interpS (q v)) k)))
(interp-subst-comp-r Θ v k)
(fst (interp-ss-l (q v) (s-extend Θ) k))) ,
(Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v) k))))
(subst-eq-r (s-extend Θ) e (Monotone.f (interpS (q v)) k))))
(subst-eq-r (q v) (subst e (s-extend Θ)) k)
sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose2-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS Θ) k)
(interp-subst-comp2-l Θ k v1 v2)
(interp-subst-comp-l Θ v2 k) ,
Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k)) ,
Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (lem4' Θ v1 v2) e1 k))
sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose2-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(subst-eq-l (lem4' Θ v1 v2) e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
(Monotone.f (interpS {τ' :: τ'' :: Γ} {τ' :: τ'' :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp-r Θ v2 k)
(interp-subst-comp2-r Θ k v1 v2)) ,
(Preorder-str.refl (snd [ τ'' ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ τ' ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))))
(subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) (subst-compose3-l {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(subst-eq-l Θ (subst e1 (lem3' (lem3' ids v2) v1)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(subst-eq-l (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))
(Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)
(((interp-ss-r Θ ids k) ,
(subst-eq-r Θ v2 k)) ,
(subst-eq-r Θ v1 k))))
(subst-eq-r (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k))
sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) ._ (subst-compose3-r {.Γ} {Γ'} {.τ} {τ'} {τ''} Θ e1 v1 v2) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.f (interpE (subst (subst e1 (lem3' (lem3' ids v2) v1)) Θ)) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(subst-eq-l (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ)) e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k)))
(Monotone.f (interpE (subst e1 (lem3' (lem3' ids v2) v1))) (Monotone.f (interpS Θ) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem3' (lem3' Θ (subst v2 Θ)) (subst v1 Θ))) k)
(Monotone.f (interpS (lem3' (lem3' ids v2) v1)) (Monotone.f (interpS Θ) k))
(((interp-ss-l Θ ids k) ,
(subst-eq-l Θ v2 k)) ,
(subst-eq-l Θ v1 k)))
(subst-eq-r (lem3' (lem3' ids v2) v1) e1 (Monotone.f (interpS Θ) k))))
(subst-eq-r Θ (subst e1 (lem3' (lem3' ids v2) v1)) k)
sound {Γ} {τ} ._ .(subst e1 (lem3' (lem3' Θ v2) v1)) (subst-compose4-l {.Γ} {Γ'} Θ v1 v2 e1) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(subst-eq-l (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(subst-eq-l (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS Θ) k)
(interp-subst-comp2-l Θ k v1 v2)
(interp-subst-comp-l Θ v2 k) ,
Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k)) ,
Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (lem4' Θ v1 v2) e1 k))
sound {Γ} {τ} .(subst e1 (lem3' (lem3' Θ v2) v1)) ._ (subst-compose4-r {.Γ} {Γ'} Θ v1 v2 e1) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.f (interpE (subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e1 (lem4' Θ v1 v2))) k)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(subst-eq-l (lem4' Θ v1 v2) e1 k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e1) (Monotone.f (interpS (lem4' Θ v1 v2)) k))
(Monotone.f (interpE e1) (Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k)))
(Monotone.f (interpE (subst e1 (s-extend (s-extend Θ)))) (Monotone.f (interpS (lem4 v1 v2)) k))
(Monotone.is-monotone (interpE e1)
(Monotone.f (interpS (lem4' Θ v1 v2)) k)
(Monotone.f (interpS {nat :: τ :: Γ} {nat :: τ :: Γ'} (s-extend (s-extend Θ))) (Monotone.f (interpS (lem4 v1 v2)) k))
(((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v2))) k)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp-r Θ v2 k)
(interp-subst-comp2-r Θ k v1 v2)) ,
(Preorder-str.refl (snd [ τ ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ nat ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (s-extend (s-extend Θ)) e1 (Monotone.f (interpS (lem4 v1 v2)) k))))
(subst-eq-r (lem4 v1 v2) (subst e1 (s-extend (s-extend Θ))) k)
sound {Γ} {τ} ._ .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) (subst-compose5-l {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(subst-eq-l (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)))
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(subst-eq-l (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k ,
Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(Monotone.f (interpS Θ) k)
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS)) (((Monotone.f (interpS {Γ} ids) k ,
Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(interp-subst-comp3-l Θ k v3 v2 v1)
(interp-subst-comp2-l Θ k v2 v3))
(interp-subst-comp-l Θ v3 k)) ,
(Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) ,
(Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k)))))
(subst-eq-r (lem3' (lem3' (lem3' Θ v3) v2) v1) e k))
sound {Γ} {τ} .(subst e (lem3' (lem3' (lem3' Θ v3) v2) v1)) ._ (subst-compose5-r {.Γ} {Γ'} {.τ} {τ1} {τ2} {τ3} Θ e v1 v2 v3) k =
Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.f (interpE (subst (subst e (s-extend (s-extend (s-extend Θ)))) (lem3' (lem3' (lem3' ids v3) v2) v1))) k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE (subst e (lem3' (lem3' (lem3' Θ v3) v2) v1))) k)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(subst-eq-l (lem3' (lem3' (lem3' Θ v3) v2) v1) e k)
(Preorder-str.trans (snd [ τ ]t)
(Monotone.f (interpE e) (Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k))
(Monotone.f (interpE e) (Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k)))
(Monotone.f (interpE (subst e (s-extend (s-extend (s-extend Θ))))) (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
(Monotone.is-monotone (interpE e)
(Monotone.f (interpS (lem3' (lem3' (lem3' Θ v3) v2) v1)) k)
(Monotone.f (interpS {τ1 :: τ2 :: τ3 :: Γ} {τ1 :: τ2 :: τ3 :: Γ'} (s-extend (s-extend (s-extend Θ))))
(Monotone.f (interpS {Γ} {τ1 :: τ2 :: τ3 :: Γ} (lem3' (lem3' (lem3' ids v3) v2) v1)) k))
((((Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS Θ) k)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp-r Θ v3 k)
(Preorder-str.trans (snd [ Γ' ]c)
(Monotone.f (interpS (λ x → subst (ren (Θ x) iS) (lem3' ids v3))) k)
(Monotone.f (interpS (λ x → ren (ren (Θ x) iS) iS)) ((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k))
(Monotone.f (interpS (λ x → ren (ren (ren (Θ x) iS) iS) iS))
(((Monotone.f (interpS {Γ} ids) k , Monotone.f (interpE v3) k) , Monotone.f (interpE v2) k) , Monotone.f (interpE v1) k))
(interp-subst-comp2-r Θ k v2 v3)
(interp-subst-comp3-r Θ k v3 v2 v1))) ,
(Preorder-str.refl (snd [ τ3 ]t) (Monotone.f (interpE v3) k))) ,
(Preorder-str.refl (snd [ τ2 ]t) (Monotone.f (interpE v2) k))) ,
(Preorder-str.refl (snd [ τ1 ]t) (Monotone.f (interpE v1) k))))
(subst-eq-r (s-extend (s-extend (s-extend Θ))) e (Monotone.f (interpS (lem3' (lem3' (lem3' ids v3) v2) v1)) k))))
(subst-eq-r (lem3' (lem3' (lem3' ids v3) v2) v1) (subst e (s-extend (s-extend (s-extend Θ)))) k)
|
{
"alphanum_fraction": 0.5097528075,
"avg_line_length": 65.8153594771,
"ext": "agda",
"hexsha": "1ce72a68545ea0951345a24e1b8bd4db7661416b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity/complexity-final/Interp-WithFlatrec.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity/complexity-final/Interp-WithFlatrec.agda",
"max_line_length": 172,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity/complexity-final/Interp-WithFlatrec.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 50202,
"size": 120837
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- AVL trees
------------------------------------------------------------------------
-- AVL trees are balanced binary search trees.
-- The search tree invariant is specified using the technique
-- described by Conor McBride in his talk "Pivotal pragmatism".
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
module Data.AVL
{k v ℓ}
{Key : Set k} (Value : Key → Set v)
{_<_ : Rel Key ℓ}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
open import Data.Bool
import Data.DifferenceList as DiffList
open import Data.Empty
open import Data.List as List using (List)
open import Data.Maybe hiding (map)
open import Data.Nat hiding (_<_; compare; _⊔_)
open import Data.Product hiding (map)
open import Data.Unit
open import Function
open import Level using (_⊔_; Lift; lift)
open IsStrictTotalOrder isStrictTotalOrder
------------------------------------------------------------------------
-- Extended keys
module Extended-key where
-- The key type extended with a new minimum and maximum.
data Key⁺ : Set k where
⊥⁺ ⊤⁺ : Key⁺
[_] : (k : Key) → Key⁺
-- An extended strict ordering relation.
infix 4 _<⁺_
_<⁺_ : Key⁺ → Key⁺ → Set ℓ
⊥⁺ <⁺ [ _ ] = Lift ⊤
⊥⁺ <⁺ ⊤⁺ = Lift ⊤
[ x ] <⁺ [ y ] = x < y
[ _ ] <⁺ ⊤⁺ = Lift ⊤
_ <⁺ _ = Lift ⊥
-- A pair of ordering constraints.
infix 4 _<_<_
_<_<_ : Key⁺ → Key → Key⁺ → Set ℓ
l < x < u = l <⁺ [ x ] × [ x ] <⁺ u
-- _<⁺_ is transitive.
trans⁺ : ∀ l {m u} → l <⁺ m → m <⁺ u → l <⁺ u
trans⁺ [ l ] {m = [ m ]} {u = [ u ]} l<m m<u = trans l<m m<u
trans⁺ ⊥⁺ {u = [ _ ]} _ _ = _
trans⁺ ⊥⁺ {u = ⊤⁺} _ _ = _
trans⁺ [ _ ] {u = ⊤⁺} _ _ = _
trans⁺ _ {m = ⊥⁺} {u = ⊥⁺} _ (lift ())
trans⁺ _ {m = [ _ ]} {u = ⊥⁺} _ (lift ())
trans⁺ _ {m = ⊤⁺} {u = ⊥⁺} _ (lift ())
trans⁺ [ _ ] {m = ⊥⁺} {u = [ _ ]} (lift ()) _
trans⁺ [ _ ] {m = ⊤⁺} {u = [ _ ]} _ (lift ())
trans⁺ ⊤⁺ {m = ⊥⁺} (lift ()) _
trans⁺ ⊤⁺ {m = [ _ ]} (lift ()) _
trans⁺ ⊤⁺ {m = ⊤⁺} (lift ()) _
------------------------------------------------------------------------
-- Types and functions which are used to keep track of height
-- invariants
module Height-invariants where
-- Bits. (I would use Fin 2 instead if Agda had "defined patterns",
-- so that I could pattern match on 1# instead of suc zero; the text
-- "suc zero" takes up a lot more space.)
data ℕ₂ : Set where
0# : ℕ₂
1# : ℕ₂
-- Addition.
infixl 6 _⊕_
_⊕_ : ℕ₂ → ℕ → ℕ
0# ⊕ n = n
1# ⊕ n = 1 + n
-- i ⊕ n -1 = pred (i ⊕ n).
_⊕_-1 : ℕ₂ → ℕ → ℕ
i ⊕ zero -1 = 0
i ⊕ suc n -1 = i ⊕ n
infix 4 _∼_
-- If m ∼ n, then the difference between m and n is at most 1. _∼_
-- is used to record the balance factor of the AVL trees, and also
-- to ensure that the absolute value of the balance factor is never
-- more than 1.
data _∼_ : ℕ → ℕ → Set where
∼+ : ∀ {n} → n ∼ 1 + n
∼0 : ∀ {n} → n ∼ n
∼- : ∀ {n} → 1 + n ∼ n
-- The maximum of m and n.
max : ∀ {m n} → m ∼ n → ℕ
max (∼+ {n}) = 1 + n
max (∼0 {n}) = n
max (∼- {n}) = 1 + n
-- Some lemmas.
1+ : ∀ {m n} → m ∼ n → 1 + m ∼ 1 + n
1+ ∼+ = ∼+
1+ ∼0 = ∼0
1+ ∼- = ∼-
max∼ : ∀ {i j} (bal : i ∼ j) → max bal ∼ i
max∼ ∼+ = ∼-
max∼ ∼0 = ∼0
max∼ ∼- = ∼0
∼max : ∀ {i j} (bal : i ∼ j) → j ∼ max bal
∼max ∼+ = ∼0
∼max ∼0 = ∼0
∼max ∼- = ∼+
max∼max : ∀ {i j} (bal : i ∼ j) → max (max∼ bal) ∼ max (∼max bal)
max∼max ∼+ = ∼0
max∼max ∼0 = ∼0
max∼max ∼- = ∼0
max-lemma : ∀ {m n} (bal : m ∼ n) →
1 + max (1+ (max∼max bal)) ≡ 2 + max bal
max-lemma ∼+ = P.refl
max-lemma ∼0 = P.refl
max-lemma ∼- = P.refl
------------------------------------------------------------------------
-- AVL trees
-- Key/value pairs.
KV : Set (k ⊔ v)
KV = Σ Key Value
module Indexed where
open Extended-key
open Height-invariants
-- The trees have three parameters/indices: a lower bound on the
-- keys, an upper bound, and a height.
--
-- (The bal argument is the balance factor.)
data Tree (l u : Key⁺) : ℕ → Set (k ⊔ v ⊔ ℓ) where
leaf : (l<u : l <⁺ u) → Tree l u 0
node : ∀ {hˡ hʳ}
(k : KV)
(lk : Tree l [ proj₁ k ] hˡ)
(ku : Tree [ proj₁ k ] u hʳ) (bal : hˡ ∼ hʳ) →
Tree l u (1 + max bal)
-- Cast operations. Logarithmic in the size of the tree, if we don't
-- count the time needed to construct the new proofs in the leaf
-- cases. (The same kind of caveat applies to other operations
-- below.)
--
-- Perhaps it would be worthwhile changing the data structure so
-- that the casts could be implemented in constant time (excluding
-- proof manipulation). However, note that this would not change the
-- worst-case time complexity of the operations below (up to Θ).
castˡ : ∀ {l m u h} → l <⁺ m → Tree m u h → Tree l u h
castˡ {l} l<m (leaf m<u) = leaf (trans⁺ l l<m m<u)
castˡ l<m (node k mk ku bal) = node k (castˡ l<m mk) ku bal
castʳ : ∀ {l m u h} → Tree l m h → m <⁺ u → Tree l u h
castʳ {l} (leaf l<m) m<u = leaf (trans⁺ l l<m m<u)
castʳ (node k lk km bal) m<u = node k lk (castʳ km m<u) bal
-- Various constant-time functions which construct trees out of
-- smaller pieces, sometimes using rotation.
joinˡ⁺ : ∀ {l u hˡ hʳ} →
(k : KV) →
(∃ λ i → Tree l [ proj₁ k ] (i ⊕ hˡ)) →
Tree [ proj₁ k ] u hʳ →
(bal : hˡ ∼ hʳ) →
∃ λ i → Tree l u (i ⊕ (1 + max bal))
joinˡ⁺ k₆ (1# , node k₂ t₁
(node k₄ t₃ t₅ bal)
∼+) t₇ ∼- = (0# , P.subst (Tree _ _) (max-lemma bal)
(node k₄
(node k₂ t₁ t₃ (max∼ bal))
(node k₆ t₅ t₇ (∼max bal))
(1+ (max∼max bal))))
joinˡ⁺ k₄ (1# , node k₂ t₁ t₃ ∼-) t₅ ∼- = (0# , node k₂ t₁ (node k₄ t₃ t₅ ∼0) ∼0)
joinˡ⁺ k₄ (1# , node k₂ t₁ t₃ ∼0) t₅ ∼- = (1# , node k₂ t₁ (node k₄ t₃ t₅ ∼-) ∼+)
joinˡ⁺ k₂ (1# , t₁) t₃ ∼0 = (1# , node k₂ t₁ t₃ ∼-)
joinˡ⁺ k₂ (1# , t₁) t₃ ∼+ = (0# , node k₂ t₁ t₃ ∼0)
joinˡ⁺ k₂ (0# , t₁) t₃ bal = (0# , node k₂ t₁ t₃ bal)
joinʳ⁺ : ∀ {l u hˡ hʳ} →
(k : KV) →
Tree l [ proj₁ k ] hˡ →
(∃ λ i → Tree [ proj₁ k ] u (i ⊕ hʳ)) →
(bal : hˡ ∼ hʳ) →
∃ λ i → Tree l u (i ⊕ (1 + max bal))
joinʳ⁺ k₂ t₁ (1# , node k₆
(node k₄ t₃ t₅ bal)
t₇ ∼-) ∼+ = (0# , P.subst (Tree _ _) (max-lemma bal)
(node k₄
(node k₂ t₁ t₃ (max∼ bal))
(node k₆ t₅ t₇ (∼max bal))
(1+ (max∼max bal))))
joinʳ⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼+) ∼+ = (0# , node k₄ (node k₂ t₁ t₃ ∼0) t₅ ∼0)
joinʳ⁺ k₂ t₁ (1# , node k₄ t₃ t₅ ∼0) ∼+ = (1# , node k₄ (node k₂ t₁ t₃ ∼+) t₅ ∼-)
joinʳ⁺ k₂ t₁ (1# , t₃) ∼0 = (1# , node k₂ t₁ t₃ ∼+)
joinʳ⁺ k₂ t₁ (1# , t₃) ∼- = (0# , node k₂ t₁ t₃ ∼0)
joinʳ⁺ k₂ t₁ (0# , t₃) bal = (0# , node k₂ t₁ t₃ bal)
joinˡ⁻ : ∀ {l u} hˡ {hʳ} →
(k : KV) →
(∃ λ i → Tree l [ proj₁ k ] (i ⊕ hˡ -1)) →
Tree [ proj₁ k ] u hʳ →
(bal : hˡ ∼ hʳ) →
∃ λ i → Tree l u (i ⊕ max bal)
joinˡ⁻ zero k₂ (0# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ zero k₂ (1# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼+ = joinʳ⁺ k₂ t₁ (1# , t₃) ∼+
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼0 = (1# , node k₂ t₁ t₃ ∼+)
joinˡ⁻ (suc _) k₂ (0# , t₁) t₃ ∼- = (0# , node k₂ t₁ t₃ ∼0)
joinˡ⁻ (suc _) k₂ (1# , t₁) t₃ bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ : ∀ {l u hˡ} hʳ →
(k : KV) →
Tree l [ proj₁ k ] hˡ →
(∃ λ i → Tree [ proj₁ k ] u (i ⊕ hʳ -1)) →
(bal : hˡ ∼ hʳ) →
∃ λ i → Tree l u (i ⊕ max bal)
joinʳ⁻ zero k₂ t₁ (0# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ zero k₂ t₁ (1# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼- = joinˡ⁺ k₂ (1# , t₁) t₃ ∼-
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼0 = (1# , node k₂ t₁ t₃ ∼-)
joinʳ⁻ (suc _) k₂ t₁ (0# , t₃) ∼+ = (0# , node k₂ t₁ t₃ ∼0)
joinʳ⁻ (suc _) k₂ t₁ (1# , t₃) bal = (1# , node k₂ t₁ t₃ bal)
-- Extracts the smallest element from the tree, plus the rest.
-- Logarithmic in the size of the tree.
headTail : ∀ {l u h} → Tree l u (1 + h) →
∃ λ (k : KV) → l <⁺ [ proj₁ k ] ×
∃ λ i → Tree [ proj₁ k ] u (i ⊕ h)
headTail (node k₁ (leaf l<k₁) t₂ ∼+) = (k₁ , l<k₁ , 0# , t₂)
headTail (node k₁ (leaf l<k₁) t₂ ∼0) = (k₁ , l<k₁ , 0# , t₂)
headTail (node {hˡ = suc _} k₃ t₁₂ t₄ bal) with headTail t₁₂
... | (k₁ , l<k₁ , t₂) = (k₁ , l<k₁ , joinˡ⁻ _ k₃ t₂ t₄ bal)
-- Extracts the largest element from the tree, plus the rest.
-- Logarithmic in the size of the tree.
initLast : ∀ {l u h} → Tree l u (1 + h) →
∃ λ (k : KV) → [ proj₁ k ] <⁺ u ×
∃ λ i → Tree l [ proj₁ k ] (i ⊕ h)
initLast (node k₂ t₁ (leaf k₂<u) ∼-) = (k₂ , k₂<u , (0# , t₁))
initLast (node k₂ t₁ (leaf k₂<u) ∼0) = (k₂ , k₂<u , (0# , t₁))
initLast (node {hʳ = suc _} k₂ t₁ t₃₄ bal) with initLast t₃₄
... | (k₄ , k₄<u , t₃) = (k₄ , k₄<u , joinʳ⁻ _ k₂ t₁ t₃ bal)
-- Another joining function. Logarithmic in the size of either of
-- the input trees (which need to have almost equal heights).
join : ∀ {l m u hˡ hʳ} →
Tree l m hˡ → Tree m u hʳ → (bal : hˡ ∼ hʳ) →
∃ λ i → Tree l u (i ⊕ max bal)
join t₁ (leaf m<u) ∼0 = (0# , castʳ t₁ m<u)
join t₁ (leaf m<u) ∼- = (0# , castʳ t₁ m<u)
join {hʳ = suc _} t₁ t₂₃ bal with headTail t₂₃
... | (k₂ , m<k₂ , t₃) = joinʳ⁻ _ k₂ (castʳ t₁ m<k₂) t₃ bal
-- An empty tree.
empty : ∀ {l u} → l <⁺ u → Tree l u 0
empty = leaf
-- A singleton tree.
singleton : ∀ {l u} (k : Key) → Value k → l < k < u → Tree l u 1
singleton k v (l<k , k<u) = node (k , v) (leaf l<k) (leaf k<u) ∼0
-- Inserts a key into the tree, using a function to combine any
-- existing value with the new value. Logarithmic in the size of the
-- tree (assuming constant-time comparisons and a constant-time
-- combining function).
insertWith : ∀ {l u h} → (k : Key) → Value k →
(Value k → Value k → Value k) → -- New → old → result.
Tree l u h → l < k < u →
∃ λ i → Tree l u (i ⊕ h)
insertWith k v f (leaf l<u) l<k<u = (1# , singleton k v l<k<u)
insertWith k v f (node (k′ , v′) lp pu bal) (l<k , k<u) with compare k k′
... | tri< k<k′ _ _ = joinˡ⁺ (k′ , v′) (insertWith k v f lp (l<k , k<k′)) pu bal
... | tri> _ _ k′<k = joinʳ⁺ (k′ , v′) lp (insertWith k v f pu (k′<k , k<u)) bal
... | tri≈ _ k≡k′ _ rewrite P.sym k≡k′ = (0# , node (k , f v v′) lp pu bal)
-- Inserts a key into the tree. If the key already exists, then it
-- is replaced. Logarithmic in the size of the tree (assuming
-- constant-time comparisons).
insert : ∀ {l u h} → (k : Key) → Value k → Tree l u h → l < k < u →
∃ λ i → Tree l u (i ⊕ h)
insert k v = insertWith k v const
-- Deletes the key/value pair containing the given key, if any.
-- Logarithmic in the size of the tree (assuming constant-time
-- comparisons).
delete : ∀ {l u h} → Key → Tree l u h →
∃ λ i → Tree l u (i ⊕ h -1)
delete k (leaf l<u) = (0# , leaf l<u)
delete k (node p lp pu bal) with compare k (proj₁ p)
... | tri< _ _ _ = joinˡ⁻ _ p (delete k lp) pu bal
... | tri> _ _ _ = joinʳ⁻ _ p lp (delete k pu) bal
... | tri≈ _ _ _ = join lp pu bal
-- Looks up a key. Logarithmic in the size of the tree (assuming
-- constant-time comparisons).
lookup : ∀ {l u h} → (k : Key) → Tree l u h → Maybe (Value k)
lookup k (leaf _) = nothing
lookup k (node (k′ , v) lk′ k′u _) with compare k k′
... | tri< _ _ _ = lookup k lk′
... | tri> _ _ _ = lookup k k′u
... | tri≈ _ eq _ rewrite eq = just v
-- Maps a function over all values in the tree.
map : (∀ {k} → Value k → Value k) →
∀ {l u h} → Tree l u h → Tree l u h
map f (leaf l<u) = leaf l<u
map f (node (k , v) l r bal) = node (k , f v) (map f l) (map f r) bal
-- Converts the tree to an ordered list. Linear in the size of the
-- tree.
open DiffList
toDiffList : ∀ {l u h} → Tree l u h → DiffList KV
toDiffList (leaf _) = []
toDiffList (node k l r _) = toDiffList l ++ k ∷ toDiffList r
------------------------------------------------------------------------
-- Types and functions with hidden indices
data Tree : Set (k ⊔ v ⊔ ℓ) where
tree : let open Extended-key in
∀ {h} → Indexed.Tree ⊥⁺ ⊤⁺ h → Tree
empty : Tree
empty = tree (Indexed.empty _)
singleton : (k : Key) → Value k → Tree
singleton k v = tree (Indexed.singleton k v _)
insert : (k : Key) → Value k → Tree → Tree
insert k v (tree t) = tree $ proj₂ $ Indexed.insert k v t _
insertWith : (k : Key) → Value k → (Value k → Value k → Value k) →
Tree → Tree
insertWith k v f (tree t) = tree $ proj₂ $ Indexed.insertWith k v f t _
delete : Key → Tree → Tree
delete k (tree t) = tree $ proj₂ $ Indexed.delete k t
lookup : (k : Key) → Tree → Maybe (Value k)
lookup k (tree t) = Indexed.lookup k t
map : ({k : Key} → Value k → Value k) → Tree → Tree
map f (tree t) = tree $ Indexed.map f t
_∈?_ : Key → Tree → Bool
k ∈? t = is-just (lookup k t)
headTail : Tree → Maybe (KV × Tree)
headTail (tree (Indexed.leaf _)) = nothing
headTail (tree {h = suc _} t) with Indexed.headTail t
... | (k , _ , _ , t′) = just (k , tree (Indexed.castˡ _ t′))
initLast : Tree → Maybe (Tree × KV)
initLast (tree (Indexed.leaf _)) = nothing
initLast (tree {h = suc _} t) with Indexed.initLast t
... | (k , _ , _ , t′) = just (tree (Indexed.castʳ t′ _) , k)
-- The input does not need to be ordered.
fromList : List KV → Tree
fromList = List.foldr (uncurry insert) empty
-- Returns an ordered list.
toList : Tree → List KV
toList (tree t) = DiffList.toList (Indexed.toDiffList t)
-- Naive implementations of union.
unionWith : (∀ {k} → Value k → Value k → Value k) →
-- Left → right → result.
Tree → Tree → Tree
unionWith f t₁ t₂ =
List.foldr (λ { (k , v) → insertWith k v f }) t₂ (toList t₁)
-- Left-biased.
union : Tree → Tree → Tree
union = unionWith const
unionsWith : (∀ {k} → Value k → Value k → Value k) → List Tree → Tree
unionsWith f ts = List.foldr (unionWith f) empty ts
-- Left-biased.
unions : List Tree → Tree
unions = unionsWith const
|
{
"alphanum_fraction": 0.4863217858,
"avg_line_length": 33.9258426966,
"ext": "agda",
"hexsha": "937e2bc5a73a7a30755418e6b5bd6292ecf3ac11",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/AVL.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/AVL.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/AVL.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 5920,
"size": 15097
}
|
module Issue4260.M where
postulate
F : Set → Set
syntax F X = G X
|
{
"alphanum_fraction": 0.6714285714,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "ae3f1a57a6e88267cddfb657b57e21ebffe13d88",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue4260/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue4260/M.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue4260/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 70
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
open import Light.Library.Data.Integer as ℤ using (ℤ ; zero ; successor)
open import Light.Package using (Package)
module Light.Literals.Integer ⦃ package : Package record { ℤ } ⦄ where
open import Light.Literals.Definition.Natural using (FromNatural)
open import Light.Literals.Definition.Negative using (FromNegative)
open FromNatural using (convert)
open import Light.Library.Relation.Decidable using (if_then_else_)
open import Light.Library.Relation.Binary.Equality using (_≈_)
import Light.Library.Data.Natural as ℕ
import Light.Library.Relation.Binary.Equality.Decidable
instance from‐natural : FromNatural ℤ
convert from‐natural n =
if n ≈ ℕ.zero
then zero
else successor (convert from‐natural (ℕ.predecessor n))
|
{
"alphanum_fraction": 0.7752126367,
"avg_line_length": 39.1904761905,
"ext": "agda",
"hexsha": "7471e952f7cfdb71ccb7b5e1f0c769c47c883918",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Literals/Integer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Literals/Integer.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Literals/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 192,
"size": 823
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Int.Base where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
data Int : Type₀ where
pos : (n : ℕ) → Int
negsuc : (n : ℕ) → Int
sucInt : Int → Int
sucInt (pos n) = pos (suc n)
sucInt (negsuc zero) = pos zero
sucInt (negsuc (suc n)) = negsuc n
predInt : Int → Int
predInt (pos zero) = negsuc zero
predInt (pos (suc n)) = pos n
predInt (negsuc n) = negsuc (suc n)
|
{
"alphanum_fraction": 0.6306695464,
"avg_line_length": 22.0476190476,
"ext": "agda",
"hexsha": "fa561630da1e4be7136ee6801275bcdf163c51f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Int/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Int/Base.agda",
"max_line_length": 38,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Int/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 172,
"size": 463
}
|
open import Relation.Binary.PropositionalEquality using
( _≡_ ; refl ; sym ; trans ; subst ; subst₂ ; cong ; cong₂ )
open import AssocFree.Util using ( δsubst₂ )
import AssocFree.STLambdaC.Typ
import AssocFree.STLambdaC.Exp
import AssocFree.STLambdaC.NF
import AssocFree.STLambdaC.Redn
module AssocFree.STLambdaC.Eval
(TConst : Set)
(Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where
open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ )
open module Typ = AssocFree.STLambdaC.Typ TConst using
( Typ ; Ctxt ; const ; _⇝_ ; [_] ; [] ; _∷_ ; _++_ ; _∈_ ; uniq
; Case ; case ; inj₁ ; inj₂ ; case-≫ ; _≪_ ; _≫_ )
open module Exp = AssocFree.STLambdaC.Exp TConst Const using
( Exp ; exp ; const ; abs ; app ; var ; var₀
; Substn ; substn+ ; substn* ; xsubstn+ ; weaken+ ; weaken* ; weakens*
; ⟨_⟩ ; choose ; _◁_ ; id
; weaken*-[] ; weaken*-++ ; substn*-◁ ; substn*-id )
open module NF = AssocFree.STLambdaC.NF TConst Const using
( Atom ; NF ; var ; const ; app ; abs ; atom ; atom₀ ; aweaken* )
open module Redn = AssocFree.STLambdaC.Redn TConst Const using
( _⇒_ ; _⇓ ; _⇓′ ; eta ; beta ; lhs ; atom ; nf ; redn ; tgt ; ⇓abs ; ⇓app ; rweaken* )
-- Values
data cVal {Γ C} : Exp Γ (const C) → Set where
atom : ∀ {M} → Atom M → cVal M
redn : ∀ {M N} → (M ⇒ N) → cVal N → cVal M
data fVal {Γ T U} (F : ∀ {Γ} → Exp Γ T → Set) (G : ∀ {Γ} → Exp Γ U → Set) : Exp Γ (T ⇝ U) → Set where
fun : ∀ {M} → (∀ Δ → {N : Exp (Δ ++ Γ) T} → F N → G (app (weaken* Δ {Γ} M) N)) → fVal F G M
redn : ∀ {M N} → (M ⇒ N) → fVal F G N → fVal F G M
Val : ∀ {Γ T} → Exp Γ T → Set
Val {Γ} {const C} M = cVal M
Val {Γ} {T ⇝ U} M = fVal Val Val M
-- Values are closed under reduction and application
vredn : ∀ {Γ T} {M N : Exp Γ T} → (M ⇒ N) → Val N → Val M
vredn {Γ} {const C} = redn
vredn {Γ} {T ⇝ U} = redn
vapp : ∀ {Γ T U} {M : Exp Γ (T ⇝ U)} {N : Exp Γ T} → Val M → Val N → Val (app M N)
vapp {Γ} {T} {U} {M} {N} (fun f) W = subst (λ X → Val (app X N)) (weaken*-[] M) (f [] W)
vapp (redn M⇒N V) W = vredn (lhs M⇒N) (vapp V W)
-- Reification and reflection
mutual
reify : ∀ {Γ T} {M : Exp Γ T} → Val M → (M ⇓)
reify {Γ} {const C} (atom N) = nf (atom N)
reify {Γ} {const C} (redn M⇒N V) = redn M⇒N (reify V)
reify {Γ} {T ⇝ U} {M} (fun f) = redn (eta M) (⇓abs {Γ} T (reify (f [ T ] (reflect (atom (atom₀ {Γ}))))))
reify {Γ} {T ⇝ U} (redn M⇒N V) = redn M⇒N (reify V)
reflect : ∀ {Γ T} {M : Exp Γ T} → (M ⇓′) → Val M
reflect {Γ} {const C} (atom M) = atom M
reflect {Γ} {T ⇝ U} (atom M) = fun (λ Δ V → reflect (⇓app (atom (aweaken* Δ M)) (reify V)))
reflect (redn M⇒N N⇓) = vredn M⇒N (reflect N⇓)
-- Value substitutions
Vals : ∀ {Γ Δ} → Substn (exp var) Γ Δ → Set
Vals {Γ} {Δ} σ = ∀ {T} (x : T ∈ Δ) → Val (σ x)
⟪_⟫ : ∀ {Γ T} {N : Exp Γ T} → Val N → Vals ⟨ N ⟩
⟪ V ⟫ x = δsubst₂ (λ X Y → Val {T = X} Y) (uniq x) refl V
vchoose : ∀ {Γ Δ E} {σ : Substn (exp var) Γ Δ} {τ : Substn (exp var) Γ E} → Vals σ → Vals τ →
∀ {T} (x : Case T Δ E) → Val (choose σ τ x)
vchoose Vs Ws (inj₁ x) = Vs x
vchoose Vs Ws (inj₂ x) = Ws x
_◂_ : ∀ {Γ Δ T} {N : Exp Γ T} {σ : Substn (exp var) Γ Δ} → Val N → Vals σ → Vals (N ◁ σ)
_◂_ {Γ} {Δ} {T} V Vs x = vchoose ⟪ V ⟫ Vs (case [ T ] Δ x)
-- Weakening
vweaken* : ∀ {Γ} Δ {U} {M : Exp Γ U} → Val M → Val (weaken* Δ M)
vweaken* Δ {const C} (atom N) = atom (aweaken* Δ N)
vweaken* Δ {const C} (redn M⇒N V) = redn (rweaken* Δ M⇒N) (vweaken* Δ V)
vweaken* Δ {T ⇝ U} {M} (fun f) = fun (λ Φ {N} V → subst (λ X → Val (app X N)) (sym (weaken*-++ Φ Δ _ M)) (f (Φ ++ Δ) V))
vweaken* Δ {T ⇝ U} (redn M⇒N V) = redn (rweaken* Δ M⇒N) (vweaken* Δ V)
vweakens* : ∀ {Γ Δ} E {σ : Substn (exp var) Γ Δ} → Vals σ → Vals (weakens* E σ)
vweakens* E {σ} Vs x = vweaken* E (Vs x)
-- Evaluation
eval : ∀ {Γ Δ T} (M : Exp Γ T) → {σ : Substn (exp var) Δ Γ} →
Vals σ → Val (substn* σ M)
eval (const {T} c) Vs = reflect (atom (const c))
eval {Γ} {Δ} (var x) {σ} Vs =
subst Val (begin
σ x
≡⟨ sym (weaken*-[] (σ x)) ⟩
weaken* [] (σ x)
≡⟨ cong (xsubstn+ [] Δ Γ σ) (sym (case-≫ [] x)) ⟩
substn* σ (var x)
∎) (Vs x)
eval {Γ} {Δ} (abs T M) {σ} Vs =
fun (λ E {N} V →
vredn (beta {E ++ Δ} (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M)) N)
(subst Val
(substn*-◁ Γ Δ E M N σ)
(eval M (V ◂ vweakens* E {σ} Vs))))
eval (app M N) Vs = vapp (eval M Vs) (eval N Vs)
vid : ∀ Γ → Vals (id Γ)
vid Γ x = reflect (atom (var x))
normalize : ∀ {Γ T} → (M : Exp Γ T) → (M ⇓)
normalize {Γ} M = reify (subst Val (substn*-id M) (eval M (vid Γ)))
normal : ∀ {Γ T} → Exp Γ T → Exp Γ T
normal M = tgt (normalize M)
|
{
"alphanum_fraction": 0.5299765308,
"avg_line_length": 36.6171875,
"ext": "agda",
"hexsha": "4350e0f776976a3839e95218c6fb4b6494b08d6e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z",
"max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-assoc-free",
"max_forks_repo_path": "src/AssocFree/STLambdaC/Eval.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-assoc-free",
"max_issues_repo_path": "src/AssocFree/STLambdaC/Eval.agda",
"max_line_length": 125,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-assoc-free",
"max_stars_repo_path": "src/AssocFree/STLambdaC/Eval.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z",
"num_tokens": 2119,
"size": 4687
}
|
module Duploid.Functor where
open import Preduploid
open import Duploid
import Preduploid.Functor as PF
open import Level
record Functor {o₁ ℓ₁ o₂ ℓ₂} (𝒞 : Duploid o₁ ℓ₁) (𝒟 : Duploid o₂ ℓ₂)
: Set (levelOfTerm 𝒞 ⊔ levelOfTerm 𝒟) where
private
module 𝒞 = Duploid.Duploid 𝒞
module 𝒟 = Duploid.Duploid 𝒟
open 𝒟
field
F : PF.Functor 𝒞.𝒟 𝒟.𝒟
open PF.Functor F
field
F-wrap-Thunkable : forall {N : 𝒞.Ob ⊝} -> Thunkable (F₁ (𝒞.wrap {N = N}))
F-force-Linear : forall {P : 𝒞.Ob +} -> Linear (F₁ (𝒞.force {P = P}))
|
{
"alphanum_fraction": 0.6525735294,
"avg_line_length": 21.76,
"ext": "agda",
"hexsha": "9243e08320575e2186b7d0ae58cd657bb38eb75e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/duploids",
"max_forks_repo_path": "Duploid/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/duploids",
"max_issues_repo_path": "Duploid/Functor.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "16def03e15bb8d71680bea60ae758ab37f4b2df9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/duploids",
"max_stars_repo_path": "Duploid/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-13T22:35:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-09T01:39:36.000Z",
"num_tokens": 237,
"size": 544
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Structures.Ring where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS)
open import Cubical.Structures.NAryOp
open import Cubical.Structures.Monoid hiding (⟨_⟩)
open import Cubical.Structures.AbGroup hiding (⟨_⟩)
open import Cubical.Structures.Pointed
private
variable
ℓ ℓ' : Level
raw-ring-structure : Type ℓ → Type ℓ
raw-ring-structure X = (X → X → X) × X × (X → X → X)
-- Maybe this is not the best way? (Suggestions welcome, maybe having raw-monoid-iso defined?)
raw-ring-is-SNS : SNS {ℓ} raw-ring-structure _
raw-ring-is-SNS = join-SNS (nAryFunIso 2) (nAryFunSNS 2)
(join-iso pointed-iso (nAryFunIso 2))
(join-SNS pointed-iso pointed-is-SNS (nAryFunIso 2) (nAryFunSNS 2))
ring-axioms : (X : Type ℓ) (s : raw-ring-structure X) → Type ℓ
ring-axioms X (_+_ , ₁ , _·_) = abelian-group-axioms X _+_ ×
monoid-axioms X (₁ , _·_) ×
((x y z : X) → x · (y + z) ≡ (x · y) + (x · z)) ×
((x y z : X) → (x + y) · z ≡ (x · z) + (y · z))
ring-structure : Type ℓ → Type ℓ
ring-structure = add-to-structure raw-ring-structure ring-axioms
Ring : Type (ℓ-suc ℓ)
Ring {ℓ} = TypeWithStr ℓ ring-structure
ring-iso : StrIso ring-structure ℓ
ring-iso = add-to-iso (join-iso (nAryFunIso 2) (join-iso pointed-iso (nAryFunIso 2))) ring-axioms
ring-axioms-isProp : (X : Type ℓ) (s : raw-ring-structure X) → isProp (ring-axioms X s)
ring-axioms-isProp X (_+_ , ₁ , _·_) = isPropΣ (abelian-group-axioms-isProp X _+_)
λ _ → isPropΣ (monoid-axioms-are-Props X (₁ , _·_))
λ { (isSetX , _) → isPropΣ (isPropΠ3 (λ _ _ _ → isSetX _ _))
λ _ → isPropΠ3 (λ _ _ _ → isSetX _ _)}
ring-is-SNS : SNS {ℓ} ring-structure ring-iso
ring-is-SNS = add-axioms-SNS _ ring-axioms-isProp raw-ring-is-SNS
RingPath : (M N : Ring {ℓ}) → (M ≃[ ring-iso ] N) ≃ (M ≡ N)
RingPath = SIP ring-is-SNS
-- Rings have an abelian group
Ring→AbGroup : Ring {ℓ} → AbGroup {ℓ}
Ring→AbGroup (R , (_+_ , _) , +AbGroup , _) = R , _+_ , +AbGroup
-- Rings have a monoid
Ring→Monoid : Ring {ℓ} → Monoid {ℓ}
Ring→Monoid (R , (_ , ₁ , _·_) , _ , ·Monoid , _) = R , (₁ , _·_) , ·Monoid
-- Ring extractors
⟨_⟩ : Ring {ℓ} → Type ℓ
⟨ R , _ ⟩ = R
module _ (R : Ring {ℓ}) where
ring+-operation = abgroup-operation (Ring→AbGroup R)
ring-is-set = abgroup-is-set (Ring→AbGroup R)
ring+-assoc = abgroup-assoc (Ring→AbGroup R)
ring+-id = abgroup-id (Ring→AbGroup R)
ring+-rid = abgroup-rid (Ring→AbGroup R)
ring+-lid = abgroup-lid (Ring→AbGroup R)
ring+-inv = abgroup-inv (Ring→AbGroup R)
ring+-rinv = abgroup-rinv (Ring→AbGroup R)
ring+-linv = abgroup-linv (Ring→AbGroup R)
ring+-comm = abgroup-comm (Ring→AbGroup R)
ring·-operation = monoid-operation (Ring→Monoid R)
ring·-assoc = monoid-assoc (Ring→Monoid R)
ring·-id = monoid-id (Ring→Monoid R)
ring·-rid = monoid-rid (Ring→Monoid R)
ring·-lid = monoid-lid (Ring→Monoid R)
module ring-syntax where
ring+-operation-syntax : (R : Ring {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩
ring+-operation-syntax R = ring+-operation R
infixr 14 ring+-operation-syntax
syntax ring+-operation-syntax R x y = x +⟨ R ⟩ y
ring·-operation-syntax : (R : Ring {ℓ}) → ⟨ R ⟩ → ⟨ R ⟩ → ⟨ R ⟩
ring·-operation-syntax R = ring·-operation R
infixr 18 ring·-operation-syntax
syntax ring·-operation-syntax R x y = x ·⟨ R ⟩ y
open ring-syntax
ring-rdist : (R : Ring {ℓ}) (x y z : ⟨ R ⟩) → x ·⟨ R ⟩ (y +⟨ R ⟩ z) ≡ (x ·⟨ R ⟩ y) +⟨ R ⟩ (x ·⟨ R ⟩ z)
ring-rdist (_ , _ , _ , _ , P , _) = P
ring-ldist : (R : Ring {ℓ}) (x y z : ⟨ R ⟩) → (x +⟨ R ⟩ y) ·⟨ R ⟩ z ≡ (x ·⟨ R ⟩ z) +⟨ R ⟩ (y ·⟨ R ⟩ z)
ring-ldist (_ , _ , _ , _ , _ , P) = P
-- Ring ·syntax
module ring-·syntax (R : Ring {ℓ}) where
infixr 14 _+_
infixr 18 _·_
infix 15 -_
_+_ = ring+-operation R
_·_ = ring·-operation R
₀ = ring+-id R
₁ = ring·-id R
-_ = ring+-inv R
|
{
"alphanum_fraction": 0.5877772534,
"avg_line_length": 29.6363636364,
"ext": "agda",
"hexsha": "bd8d07297ecb8e47ee5d8fcb375dc6755e72c5d6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/Structures/Ring.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/Structures/Ring.agda",
"max_line_length": 102,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/Structures/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 1573,
"size": 4238
}
|
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
open import Common.Equality
open import Agda.Builtin.Sigma
record Functor (F : Set → Set) : Set₁ where
field
fmap : ∀ {A B} → (A → B) → F A → F B
IdF : Functor (λ A → A)
unquoteDef IdF =
defineFun IdF (clause (("x" , vArg unknown) ∷ ("f" , vArg unknown) ∷ [])
(vArg (projP (quote Functor.fmap)) ∷ vArg (var 1) ∷ vArg (var 0) ∷ [])
(var 1 (vArg (var 0 []) ∷ [])) ∷ [])
check : ∀ {A B} (f : A → B) (x : A) → Functor.fmap IdF f x ≡ f x
check f x = refl
open Functor {{...}}
instance
InstF : Functor (λ A → A)
unquoteDef InstF =
defineFun InstF (clause (("x" , vArg unknown) ∷ ("f" , vArg unknown) ∷ [])
(iArg (projP (quote fmap)) ∷ vArg (var 1) ∷ vArg (var 0) ∷ [])
(var 1 (vArg (var 0 []) ∷ [])) ∷ [])
check₁ : ∀ {A B} (f : A → B) (x : A) → fmap f x ≡ f x
check₁ f x = refl
|
{
"alphanum_fraction": 0.5010288066,
"avg_line_length": 30.375,
"ext": "agda",
"hexsha": "6c90cdc2e66f9d6d03177b5fa5af65806755cc87",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ReflectionCopatterns.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ReflectionCopatterns.agda",
"max_line_length": 94,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ReflectionCopatterns.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 346,
"size": 972
}
|
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
open import Agda.Builtin.String
infixr 4 _>>=_
_>>=_ = bindTC
login : String → String
login "secret" = "access granted"
login _ = "access denied"
macro
getDef : Name → Term → TC ⊤
getDef f hole =
getDefinition f >>= λ def → quoteTC def >>= unify hole
test : Definition
test = getDef login
|
{
"alphanum_fraction": 0.6853333333,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "24951948995d273589b982a4f3c8f4def916d914",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2072.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2072.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2072.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 109,
"size": 375
}
|
module Everything where
import Prelude
import Category
--------------------------------------------------------------------------------
-- The syntax of STLC.
import STLC.Syntax
-- A simplification of Coquand 2002,
-- with de Bruijn indices and implicit substitutions.
import STLC.Coquand.Renaming
import STLC.Coquand.Substitution
import STLC.Coquand.Normalisation -- TODO: Fill postulates
import STLC.Coquand.Convertibility -- TODO: Simplify β-reduction rule
import STLC.Coquand.Completeness -- TODO: Fill postulates
import STLC.Coquand.Soundness -- TODO: Fill postulates
-- A restyling of Kovacs 2017.
import STLC.Kovacs.Embedding
import STLC.Kovacs.Substitution
import STLC.Kovacs.NormalForm
import STLC.Kovacs.Normalisation
import STLC.Kovacs.Convertibility
import STLC.Kovacs.Completeness
import STLC.Kovacs.PresheafRefinement
import STLC.Kovacs.Soundness
--------------------------------------------------------------------------------
-- The syntax of STLC, with simple products.
import STLC1.Syntax
-- An extension of Kovacs 2017.
import STLC1.Kovacs.Embedding
import STLC1.Kovacs.Substitution
import STLC1.Kovacs.NormalForm
import STLC1.Kovacs.Normalisation
import STLC1.Kovacs.Convertibility
import STLC1.Kovacs.Completeness
import STLC1.Kovacs.PresheafRefinement
import STLC1.Kovacs.Soundness
--------------------------------------------------------------------------------
-- The syntax of STLC, with simple products and coproducts.
import STLC2.Syntax
-- An extension of Kovacs 2017.
import STLC2.Kovacs.Embedding
import STLC2.Kovacs.Substitution
import STLC2.Kovacs.NormalForm
import STLC2.Kovacs.Normalisation.SoundNotComplete
import STLC2.Kovacs.Normalisation.Experimental
import STLC2.Kovacs.Normalisation
import STLC2.Kovacs.Convertibility
import STLC2.Kovacs.Completeness -- TODO: Finish this
-- import STLC2.Kovacs.PresheafRefinement -- TODO: Start this
-- import STLC2.Kovacs.Soundness -- TODO: Start this
--------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.6796116505,
"avg_line_length": 29.4285714286,
"ext": "agda",
"hexsha": "cbda07a7a1a1adbea809d63e2973cedcd930af0a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/Everything.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 501,
"size": 2060
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation.Standard.Relation.Sets where
open import Light.Level using (_⊔_)
open import Light.Variable.Levels
open import Light.Variable.Sets
open import Light.Library.Relation using (Base ; Kind ; Style)
open import Light.Library.Data.Unit as Unit using (Unit ; unit)
open import Light.Library.Data.Empty as Empty using (Empty)
open import Light.Library.Data.Both as Both using (Both)
import Light.Library.Data.Product as Product
open import Light.Library.Data.These as These using (These)
import Light.Implementation.Standard.Data.Unit
import Light.Implementation.Standard.Data.Empty
import Light.Implementation.Standard.Data.Product
import Light.Implementation.Standard.Data.These
instance kind : Kind
kind = record { Proposition = λ ℓ → Set ℓ }
instance style : Style kind
style = record { Implementation }
where
module Implementation where
true = Unit
false = Empty
¬_ : Set ℓ → Set ℓ
¬ 𝕒 = 𝕒 → Empty
_∧_ = Both
_∨_ = These
_⇢_ : Set aℓ → Set bℓ → Set (aℓ ⊔ bℓ)
𝕒 ⇢ 𝕓 = 𝕒 → 𝕓
True : Set ℓ → Set ℓ
True 𝕒 = 𝕒
False = ¬_
true‐is‐true = unit
false‐is‐false : _
false‐is‐false ()
instance base : Base
base = record { kind = kind ; style = style }
|
{
"alphanum_fraction": 0.6234113712,
"avg_line_length": 31.1458333333,
"ext": "agda",
"hexsha": "16a5458ce44bd7703bb4d1f5c096efd488a6a84d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "bindings/stdlib/Light/Implementation/Standard/Relation/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "bindings/stdlib/Light/Implementation/Standard/Relation/Sets.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "bindings/stdlib/Light/Implementation/Standard/Relation/Sets.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 363,
"size": 1495
}
|
-- Agda program using the Iowa Agda library
open import bool
module PROOF-permlength
(Choice : Set)
(choose : Choice → 𝔹)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where
open import eq
open import bool
open import nat
open import list
open import maybe
---------------------------------------------------------------------------
-- Translated Curry operations:
insert : {a : Set} → Choice → a → 𝕃 a → 𝕃 a
insert c1 x [] = x :: []
insert c1 y (z :: u) = if choose c1 then y :: (z :: u) else z :: (insert (lchoice c1) y u)
perm : {a : Set} → Choice → 𝕃 a → 𝕃 a
perm c1 [] = []
perm c1 (x :: y) = insert c1 x (perm (lchoice c1) y)
---------------------------------------------------------------------------
insert-inc-length : ∀ {a : Set} → (ch : Choice) (x : a) (xs : 𝕃 a)
→ length (insert ch x xs) ≡ suc (length xs)
insert-inc-length ch x [] = refl
insert-inc-length ch x (y :: ys) with choose ch
... | tt = refl
... | ff rewrite insert-inc-length (lchoice ch) x ys = refl
permlength : {a : Set} → (c1 : Choice) → (x : 𝕃 a) → (length x) ≡ (length (perm c1 x))
permlength c1 [] = refl
permlength c1 (x :: xs)
rewrite insert-inc-length c1 x (perm (lchoice c1) xs)
| permlength (lchoice c1) xs
= refl
---------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4981301421,
"avg_line_length": 28.4468085106,
"ext": "agda",
"hexsha": "333a43c190ccd362bf171ca4f4c346751feeb4b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phlummox/curry-tools",
"max_forks_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-permlength.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phlummox/curry-tools",
"max_issues_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-permlength.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phlummox/curry-tools",
"max_stars_repo_path": "currypp/.cpm/packages/verify/examples/PROOF-permlength.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 391,
"size": 1337
}
|
module SHE-Prelude where
record Functor (T : Set -> Set) : Set1 where
field
-- OPERATIONS ----------------------------------------------
map : forall {X Y} -> (X -> Y) -> T X -> T Y
record Applicative (T : Set -> Set) : Set1 where
field
-- OPERATIONS ----------------------------------------------
pure : forall {X} -> X -> T X
_<*>_ : forall {X Y} -> T (X -> Y) -> T X -> T Y
data Zero : Set where
magic : forall {l}{A : Set l} -> Zero -> A
magic ()
record One : Set where
constructor <>
open One public
{-# COMPILED_DATA One () () #-}
|
{
"alphanum_fraction": 0.4446337308,
"avg_line_length": 25.5217391304,
"ext": "agda",
"hexsha": "a54596c54e4c45c4362240576de48c786a9725a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3d0514c72c804acc10851b90a7ef82a5b4cbc1ff",
"max_forks_repo_licenses": [
"MIT-0"
],
"max_forks_repo_name": "iain-logan/she",
"max_forks_repo_path": "comparisons/agda/SHE-Prelude.agda",
"max_issues_count": 11,
"max_issues_repo_head_hexsha": "3d0514c72c804acc10851b90a7ef82a5b4cbc1ff",
"max_issues_repo_issues_event_max_datetime": "2016-03-20T10:18:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-01-28T17:02:48.000Z",
"max_issues_repo_licenses": [
"MIT-0"
],
"max_issues_repo_name": "iain-logan/she",
"max_issues_repo_path": "comparisons/agda/SHE-Prelude.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "3d0514c72c804acc10851b90a7ef82a5b4cbc1ff",
"max_stars_repo_licenses": [
"MIT-0"
],
"max_stars_repo_name": "iain-logan/she",
"max_stars_repo_path": "comparisons/agda/SHE-Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2016-08-04T00:06:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-08-04T00:06:06.000Z",
"num_tokens": 161,
"size": 587
}
|
-- Note that this module assumes function extensionality
module guarded-recursion.prelude where
open import Level
public
using (_⊔_)
renaming (zero to ₀
;suc to ₛ)
open import Function
public
using (id; _∘_; _∘′_)
open import Data.Nat
public
using (ℕ; _+_)
renaming (zero to O
;suc to S)
open import Data.Bool
public
renaming (Bool to 𝟚
;false to 0₂
;true to 1₂)
open import Data.Sum
public
using (_⊎_; [_,_])
renaming (inj₁ to inl
;inj₂ to inr)
open import Data.Maybe
public
using (Maybe; nothing; just)
open import Data.Empty
public
renaming (⊥ to 𝟘
;⊥-elim to 𝟘-elim)
open import Data.Unit
public
using ()
-- using (Hidden; Unit; hide; reveal)
renaming (⊤ to 𝟙)
open import Data.Unit.NonEta
public
using (Hidden; Unit; hide; reveal)
import Data.Product
open Data.Product
public
using (Σ; _×_; _,_; curry; <_,_>)
renaming (proj₁ to fst
;proj₂ to snd)
open import Relation.Binary
public
using (Reflexive)
import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality
public
using (_≡_)
renaming (subst to transport
;refl to idp
;sym to !
;cong to ap)
import Relation.Binary.PropositionalEquality.TrustMe
module ThisIsUnsafeButPlease = Relation.Binary.PropositionalEquality.TrustMe
-- using stdlib only
infixr 8 _∙_
_∙_ = Relation.Binary.PropositionalEquality.trans
ℕ² = ℕ × ℕ
-- Let's rename "Set₀" as "Type" to avoid confusion with set-theory
Type = Set
-- Let's rename "Set ℓ" as "Type_ ℓ" to avoid confusion with set-theory
Type_ : ∀ ℓ → Set (ₛ ℓ)
Type_ ℓ = Set ℓ
-→- : ∀ {a b} → Type_ a → Type_ b → Type_ (a ⊔ b)
-→- A B = A → B
Endo : ∀ {a} → Type_ a → Type_ a
Endo A = A → A
Fix : ∀ {a} → Type_ a → Type_ a
Fix X = (X → X) → X
postulate
funext : ∀ {a b}
{A : Type_ a} {B : A → Type_ b}
{f g : (x : A) → B x}
→ (∀ x → f x ≡ g x)
→ f ≡ g
𝟘-elim-uniq! : ∀ {a} {A : Type_ a} {f : 𝟘 → A} → 𝟘-elim ≡ f
𝟘-elim-uniq! = funext (λ())
[,]-uniq! : ∀ {a b c} {A : Type_ a} {B : Type_ b} {C : Type_ c}
{f : (A ⊎ B) → C}
→ [ f ∘ inl , f ∘ inr ] ≡ f
[,]-uniq! = funext p
where p : (_ : _ ⊎ _) → _
p (inl _) = idp
p (inr _) = idp
module Coe {ℓ} where
coe : {A B : Type_ ℓ} → A ≡ B → A → B
coe = transport id
coe! : {A B : Type_ ℓ} → A ≡ B → B → A
coe! = transport id ∘ !
module _ {a} {A : Type_ a} {P Q : A → Type_ ℓ} (p : P ≡ Q) {x} where
coe₁ : P x → Q x
coe₁ = transport (λ P → P x) p
coe₁! : Q x → P x
coe₁! = transport (λ P → P x) (! p)
module _ {a b} {A : Type_ a} {B : Type_ b} {R S : A → B → Type_ ℓ} (p : R ≡ S) {x y} where
coe₂ : R x y → S x y
coe₂ = transport (λ R → R x y) p
coe₂! : S x y → R x y
coe₂! = transport (λ R → R x y) (! p)
[0:_1:_] : ∀ {a} {A : Type_ a} (a₀ a₁ : A) → 𝟚 → A
[0: a₀ 1: a₁ ] 0₂ = a₀
[0: a₀ 1: a₁ ] 1₂ = a₁
|
{
"alphanum_fraction": 0.4670793472,
"avg_line_length": 27.9842519685,
"ext": "agda",
"hexsha": "de84d6bc527c8d60d284620afd6b784411f9f60c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T16:21:54.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-19T12:37:53.000Z",
"max_forks_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "np/guarded-recursion",
"max_forks_repo_path": "guarded-recursion/prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "np/guarded-recursion",
"max_issues_repo_path": "guarded-recursion/prelude.agda",
"max_line_length": 94,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "np/guarded-recursion",
"max_stars_repo_path": "guarded-recursion/prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2016-12-06T23:04:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-06T23:04:56.000Z",
"num_tokens": 1192,
"size": 3554
}
|
module Categories.Terminal where
open import Library
open import Categories
open import Categories.Sets
open Cat
record Term {a b} (C : Cat {a}{b})(T : Obj C) : Set (a ⊔ b) where
constructor term
field t : ∀{X} → Hom C X T
law : ∀{X}{f : Hom C X T} → t {X} ≅ f
OneSet : Term Sets ⊤
OneSet = record {t = λ _ → _; law = ext (λ _ → refl)}
|
{
"alphanum_fraction": 0.6096866097,
"avg_line_length": 23.4,
"ext": "agda",
"hexsha": "1c2f39bd02752ad5115c4e1d41b89aa2bf6c9c0b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Categories/Terminal.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Categories/Terminal.agda",
"max_line_length": 65,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Categories/Terminal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 123,
"size": 351
}
|
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
{- Addition -}
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4
≡⟨⟩
suc (2 + 4)
≡⟨⟩
suc (suc (1 + 4))
≡⟨⟩
suc (suc (suc (0 + 4)))
≡⟨⟩
suc (suc (suc 4))
≡⟨⟩
7
∎
_ : 1 + 1 ≡ 2
_ = refl
{- Multiplication -}
_*_ : ℕ → ℕ → ℕ
zero * n = zero
(suc m) * n = n + (m * n)
_ : 2 * 2 ≡ 4
_ =
begin
2 * 2
≡⟨⟩
2 + (1 * 2)
≡⟨⟩
2 + (2 + (0 * 2))
≡⟨⟩
2 + 2
≡⟨⟩
4
∎
_ : 1 * 1 ≡ 1
_ = refl
{- Exponentiation -}
_^_ : ℕ → ℕ → ℕ
n ^ 0 = 1
n ^ (suc m) = n * (n ^ m)
_ : 2 ^ 3 ≡ 8
_ =
begin
2 ^ 3
≡⟨⟩
2 * (2 ^ 2)
≡⟨⟩
2 * (2 * (2 ^ 1))
≡⟨⟩
2 * (2 * (2 * (2 ^ 0)))
≡⟨⟩
2 * (2 * (2 * 1))
≡⟨⟩
8
∎
_ : 42 ^ 0 ≡ 1
_ = refl
{- Monus -}
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ (suc n) = zero
(suc m) ∸ (suc n) = m ∸ n
_ : 2 ∸ 1 ≡ 1
_ =
begin
2 ∸ 1
≡⟨⟩
1 ∸ 0
≡⟨⟩
1
∎
_ : 7 ∸ 4 ≡ 3
_ = refl
_ : 4 ∸ 7 ≡ 0
_ = refl
|
{
"alphanum_fraction": 0.356779661,
"avg_line_length": 11.1320754717,
"ext": "agda",
"hexsha": "0e5c5c77e66b3e256aa745eb27d76e9c4057952e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "anqurvanillapy/fpl",
"max_forks_repo_path": "agda/proof-nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "anqurvanillapy/fpl",
"max_issues_repo_path": "agda/proof-nat.agda",
"max_line_length": 50,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "anqurvanillapy/fpl",
"max_stars_repo_path": "agda/proof-nat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z",
"num_tokens": 689,
"size": 1180
}
|
module String where
import Lvl
open import Data.Boolean
open import Data.List
open import Numeral.Natural
open import Type
postulate Char : Type{Lvl.𝟎}
{-# BUILTIN CHAR Char #-}
postulate String : Type{Lvl.𝟎}
{-# BUILTIN STRING String #-}
private
module Primitives where
primitive primStringToList : String → List(Char)
primitive primStringFromList : List(Char) → String
primitive primStringAppend : String → String → String
primitive primStringEquality : String → String → Bool
primitive primShowChar : Char → String
primitive primShowString : String → String
primitive primShowNat : ℕ → String
primitive primIsLower : Char → Bool
primitive primIsDigit : Char → Bool
primitive primIsAlpha : Char → Bool
primitive primIsSpace : Char → Bool
primitive primIsAscii : Char → Bool
primitive primIsLatin1 : Char → Bool
primitive primIsPrint : Char → Bool
primitive primIsHexDigit : Char → Bool
primitive primToUpper : Char → Char
primitive primToLower : Char → Char
primitive primCharToNat : Char → ℕ
primitive primNatToChar : ℕ → Char
primitive primCharEquality : Char → Char → Bool
module String where
open Primitives renaming
( primStringToList to toList
; primStringFromList to fromList
; primStringAppend to _++_
; primStringEquality to _==_
; primShowChar to fromChar
; primShowNat to fromℕ
) public
{-
open import Relator.Equals
open import Relator.Equals.Proofs
open import Syntax.Transitivity
primitive primEraseEquality : ∀{ℓ}{A : Type{ℓ}}{x y : A} → (x ≡ y) → (x ≡ y)
unsafeDefinitionalEquality : ∀{ℓ}{A : Type{ℓ}}{x y : A} → (x ≡ y)
unsafeDefinitionalEquality {x = x}{y = y} = primEraseEquality xy where
postulate xy : x ≡ y
toList-fromList-of-[⊰] : ∀{x}{l} → (toList(fromList(x ⊰ l)) ≡ x ⊰ toList(fromList(l)))
toList-fromList-of-[⊰] = unsafeDefinitionalEquality
fromList-toList-inverse : ∀{s} → (fromList(toList(s)) ≡ s)
fromList-toList-inverse = unsafeDefinitionalEquality
toList-fromList-inverse : ∀{l} → (toList(fromList(l)) ≡ l)
toList-fromList-inverse {∅} = [≡]-intro
toList-fromList-inverse {x ⊰ l} = toList-fromList-of-[⊰] 🝖 [≡]-with(x ⊰_) (toList-fromList-inverse {l})
-}
|
{
"alphanum_fraction": 0.6631130064,
"avg_line_length": 33.5,
"ext": "agda",
"hexsha": "36694c5c733ec9d5a8ec6aa8b8e39c2a2b0d6bfb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "String.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "String.agda",
"max_line_length": 105,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "String.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 688,
"size": 2345
}
|
{- This file describes properties of computable relations. -}
open import bool
open import level
open import eq
open import product
open import product-thms
module relations {ℓ ℓ' : level}{A : Set ℓ} (_≥A_ : A → A → Set ℓ') where
reflexive : Set (ℓ ⊔ ℓ')
reflexive = ∀ {a : A} → a ≥A a
transitive : Set (ℓ ⊔ ℓ')
transitive = ∀ {a b c : A} → a ≥A b → b ≥A c → a ≥A c
preorder : Set (ℓ ⊔ ℓ')
preorder = reflexive ∧ transitive
_iso_ : A → A → Set ℓ'
d iso d' = d ≥A d' ∧ d' ≥A d
iso-intro : ∀{x y : A} → x ≥A y → y ≥A x → x iso y
iso-intro p1 p2 = p1 , p2
|
{
"alphanum_fraction": 0.593250444,
"avg_line_length": 21.6538461538,
"ext": "agda",
"hexsha": "965b1a952dedf5b9014d436411dc31f59c146f58",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "relations.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "relations.agda",
"max_line_length": 72,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "relations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 224,
"size": 563
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Type where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open Precategory
module _ ℓ where
TYPE : Precategory (ℓ-suc ℓ) ℓ
TYPE .ob = Type ℓ
TYPE .Hom[_,_] A B = A → B
TYPE .id A = λ x → x
TYPE ._⋆_ f g = λ x → g (f x)
TYPE .⋆IdL f = refl
TYPE .⋆IdR f = refl
TYPE .⋆Assoc f g h = refl
|
{
"alphanum_fraction": 0.6466346154,
"avg_line_length": 21.8947368421,
"ext": "agda",
"hexsha": "e73bdbe19a2d728cf10865a78505288428a4e499",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "apabepa10/cubical",
"max_forks_repo_path": "Cubical/Categories/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "apabepa10/cubical",
"max_issues_repo_path": "Cubical/Categories/Type.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "apabepa10/cubical",
"max_stars_repo_path": "Cubical/Categories/Type.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 154,
"size": 416
}
|
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Reflection.Properties where
open import Agda.Builtin.Reflection
open import Agda.Builtin.Equality
primitive
primMetaToNatInjective : ∀ a b → primMetaToNat a ≡ primMetaToNat b → a ≡ b
primQNameToWord64sInjective : ∀ a b → primQNameToWord64s a ≡ primQNameToWord64s b → a ≡ b
|
{
"alphanum_fraction": 0.7279596977,
"avg_line_length": 30.5384615385,
"ext": "agda",
"hexsha": "55d067eea90964e7104da1e140e119d892ef061a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Reflection/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Reflection/Properties.agda",
"max_line_length": 91,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Reflection/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-26T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-26T09:35:17.000Z",
"num_tokens": 120,
"size": 397
}
|
------------------------------------------------------------------------
-- Some theory of equivalences with erased "proofs", developed using
-- Cubical Agda
------------------------------------------------------------------------
-- This module instantiates and reexports code from
-- Equivalence.Erased.
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module Equivalence.Erased.Cubical
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Erased.Cubical eq
import Equivalence.Erased
open Equivalence.Erased equality-with-J public
hiding (module []-cong)
open Equivalence.Erased.[]-cong
equality-with-J instance-of-[]-cong-axiomatisation
public
|
{
"alphanum_fraction": 0.6,
"avg_line_length": 28.4615384615,
"ext": "agda",
"hexsha": "2da3190509d09ca9a3ce33c89d3de62933b4e57a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Equivalence/Erased/Cubical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Equivalence/Erased/Cubical.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Equivalence/Erased/Cubical.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 177,
"size": 740
}
|
{-# OPTIONS --without-K --safe #-}
-- Defines Restriction Category
-- https://ncatlab.org/nlab/show/restriction+category
-- but see also
-- https://github.com/jmchapman/restriction-categories
-- Notation choice: one of the interpretations is that the
-- restriction structure captures the "domain of definedness"
-- of a morphism, as a (partial) identity. As this is positive
-- information, we will use f ↓ (as a postfix operation) to
-- denote this. Note that computability theory uses the same
-- notation to mean definedness.
-- Note, as we're working in Setoid-Enriched Categories, we need
-- to add an explicit axiom, that ↓ preserves ≈
module Categories.Category.Restriction where
open import Level using (Level; _⊔_)
open import Categories.Category.Core using (Category)
private
variable
o ℓ e : Level
record Restriction (C : Category o ℓ e) : Set (o ⊔ ℓ ⊔ e) where
open Category C using (Obj; _⇒_; _∘_; _≈_; id)
field
_↓ : {A B : Obj} → A ⇒ B → A ⇒ A
-- partial identity on the right
pidʳ : {A B : Obj} {f : A ⇒ B} → f ∘ f ↓ ≈ f
-- the domain-of-definition arrows commute
↓-comm : {A B C : Obj} {f : A ⇒ B} {g : A ⇒ C} → f ↓ ∘ g ↓ ≈ g ↓ ∘ f ↓
-- domain-of-definition denests (on the right)
↓-denestʳ : {A B C : Obj} {f : A ⇒ B} {g : A ⇒ C} → (g ∘ f ↓) ↓ ≈ g ↓ ∘ f ↓
-- domain-of-definition has a skew-commutative law
↓-skew-comm : {A B C : Obj} {g : A ⇒ B} {f : C ⇒ A} → g ↓ ∘ f ≈ f ∘ (g ∘ f) ↓
-- and the new axiom, ↓ is a congruence
↓-cong : {A B : Obj} {f g : A ⇒ B} → f ≈ g → f ↓ ≈ g ↓
-- it is convenient to define the total predicate in this context
total : {A B : Obj} (f : A ⇒ B) → Set e
total f = f ↓ ≈ id
|
{
"alphanum_fraction": 0.6107184923,
"avg_line_length": 36.9130434783,
"ext": "agda",
"hexsha": "523f8c4d533408799ad349e7c226d9306daf144c",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Restriction.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Restriction.agda",
"max_line_length": 81,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Restriction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 570,
"size": 1698
}
|
module Formalization.LambdaCalculus where
import Lvl
open import Data
open import Numeral.Natural
open import Numeral.Finite
open import Syntax.Number
open import Type
-- A lambda term (A term in the language of lambda calculus).
-- This is encoded with an abstraction depth which ensures that every term is well-formed.
-- `Term(𝟎)` is the type of closed terms, terms that have no unbound variables.
-- In this representation, it means that there are no occurrences of `Var(_)` in a term.
-- `Term(𝐒(n))` for some `n` is the types of open terms with possibly `n` number of different variables, terms that have unbound variables.
-- In this representation, it means that there can be `Var(i)` for `i < n` in a term.
data Term : ℕ → Type{0} where
-- The term which represents applying the second term on the first term.
-- Representation in function notation:
-- (Apply f(x)) is f(x)
Apply : ∀{d} → Term(d) → Term(d) → Term(d)
-- The term which represents bounding a new variable (introducing a variable).
-- Representation in function notation:
-- (Abstract{n} term) is (xₙ ↦ term)
Abstract : ∀{d} → Term(𝐒(d)) → Term(d)
-- The term which represents a specific variable in scope.
-- Representation in function notation:
-- (Var(n)) is xₙ
Var : ∀{d} → 𝕟(d) → Term(d)
-- An expression in the language of lambda calculus is a closed term.
Expression : Type{0}
Expression = Term(0)
module VarNumeralSyntax where
-- Syntax for writing Var as a numeral.
instance
Term-from-ℕ : ∀{N} → Numeral(Term(N))
Numeral.restriction-ℓ ( Term-from-ℕ {N} ) = Numeral.restriction-ℓ ( 𝕟-from-ℕ {N} )
Numeral.restriction ( Term-from-ℕ {N} ) = Numeral.restriction ( 𝕟-from-ℕ {N} )
num ⦃ Term-from-ℕ {N} ⦄ (n) ⦃ proof ⦄ = Var(num n)
module OperSyntax where
open VarNumeralSyntax public
infixr 100 _↦_
infixl 101 _←_
pattern _↦_ d expr = Term.Abstract{d} expr
pattern _←_ a b = Term.Apply a b
module ExplicitLambdaSyntax where
open VarNumeralSyntax public
infixl 101 _←_
pattern 𝜆 d expr = Term.Abstract{d} expr
pattern _←_ a b = Term.Apply a b
|
{
"alphanum_fraction": 0.6857410882,
"avg_line_length": 35.5333333333,
"ext": "agda",
"hexsha": "8e2cf11e109e0eed8ea0970b6827f3802bc8fb68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/LambdaCalculus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/LambdaCalculus.agda",
"max_line_length": 139,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/LambdaCalculus.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 631,
"size": 2132
}
|
module ctxt-types where
open import lib
open import cedille-types
open import general-util
open import syntax-util
location : Set
location = string × posinfo -- file path and starting position in the file
-- file path and starting / ending position in file
span-location = string × posinfo × posinfo
-- missing locations
missing-location : location
missing-location = ("missing" , "missing")
missing-span-location : span-location
missing-span-location = ("missing" , "missing" , "missing")
{- we will generally keep classifiers of variables in hnf in the ctxt, although
we will not necessarily unfold recursive type definitions. -}
defScope : Set
defScope = 𝔹
pattern localScope = tt
pattern globalScope = ff
pattern concrete-datatype = globalScope
pattern abstract-datatype = localScope
defParams : Set
defParams = maybe params
data ctxt-info : Set where
-- for defining a datatype
-- datatype-def : defParams → (ind reg : kind) → ctrs → ctxt-info
-- for defining a datatype constructor
ctr-def : params → type → (ctrs-length ctr-index ctr-unerased-arrows : ℕ) → ctxt-info
-- for declaring the type that proves a type is a datatype (X/Mu)
-- mu-def : defParams → var → kind → ctxt-info
-- for declaring a variable to have a given type (with no definition)
term-decl : type → ctxt-info
-- for defining a variable to equal a term with a given type
-- maybe term, because datatype X/Mu and X/mu have params, etc... but no def
term-def : defParams → opacity → maybe term → type → ctxt-info
-- for untyped term definitions
term-udef : defParams → opacity → term → ctxt-info
-- for declaring a variable to have a given kind (with no definition)
type-decl : kind → ctxt-info
-- for defining a variable to equal a type with a given kind
type-def : defParams → opacity → maybe type → kind → ctxt-info
-- for defining a variable to equal a kind
kind-def : params → kind → ctxt-info
-- to rename a variable at any level to another
rename-def : var → ctxt-info
-- representing a declaration of a variable with no other information about it
var-decl : ctxt-info
sym-info : Set
sym-info = ctxt-info × location
-- module filename, name, parameters, and qualifying substitution
mod-info : Set
mod-info = string × string × params × qualif
is-term-level : ctxt-info → 𝔹
is-term-level (term-decl _) = tt
is-term-level (term-def _ _ _ _) = tt
is-term-level (term-udef _ _ _) = tt
is-term-level (ctr-def _ _ _ _ _ ) = tt
is-term-level _ = ff
data ctxt : Set where
mk-ctxt : (mod : mod-info) → -- current module
(syms : trie (string × 𝕃 string) × trie string × trie params × trie ℕ × Σ ℕ (𝕍 string)) → -- map each filename to its module name and the symbols declared in that file, map each module name to its filename and params, and file ID's for use in to-string.agda
(i : trie sym-info) → -- map symbols (from Cedille files) to their ctxt-info and location
(sym-occurrences : trie (𝕃 (var × posinfo × string))) → -- map symbols to a list of definitions they occur in (and relevant file info)
(Δ : trie (params × kind × kind × ctrs) × trie (var × var × args) × trie var) → -- datatype info: (concrete/global datatypes × abstract/local datatypes × datatype/Mu map)
ctxt
ctxt-binds-var : ctxt → var → 𝔹
ctxt-binds-var (mk-ctxt (_ , _ , _ , q) _ i _ _) x = trie-contains q x || trie-contains i x
ctxt-var-decl : var → ctxt → ctxt
ctxt-var-decl v (mk-ctxt (fn , mn , ps , q) syms i symb-occs Δ) =
mk-ctxt (fn , mn , ps , (trie-insert q v (v , []))) syms (trie-insert i v (var-decl , "missing" , "missing")) symb-occs Δ
ctxt-var-decl-loc : posinfo → var → ctxt → ctxt
ctxt-var-decl-loc pi v (mk-ctxt (fn , mn , ps , q) syms i symb-occs Δ) =
mk-ctxt (fn , mn , ps , (trie-insert q v (v , []))) syms (trie-insert i v (var-decl , fn , pi)) symb-occs Δ
qualif-var : ctxt → var → var
qualif-var (mk-ctxt (_ , _ , _ , q) _ _ _ _) v with trie-lookup q v
...| just (v' , _) = v'
...| nothing = v
start-modname : start → string
start-modname (File _ _ _ mn _ _ _) = mn
ctxt-get-current-filename : ctxt → string
ctxt-get-current-filename (mk-ctxt (fn , _) _ _ _ _) = fn
ctxt-get-current-mod : ctxt → mod-info
ctxt-get-current-mod (mk-ctxt m _ _ _ _) = m
ctxt-get-current-modname : ctxt → string
ctxt-get-current-modname (mk-ctxt (_ , mn , _ , _) _ _ _ _) = mn
ctxt-get-current-params : ctxt → params
ctxt-get-current-params (mk-ctxt (_ , _ , ps , _) _ _ _ _) = ps
ctxt-get-symbol-occurrences : ctxt → trie (𝕃 (var × posinfo × string))
ctxt-get-symbol-occurrences (mk-ctxt _ _ _ symb-occs _) = symb-occs
ctxt-set-symbol-occurrences : ctxt → trie (𝕃 (var × posinfo × string)) → ctxt
ctxt-set-symbol-occurrences (mk-ctxt fn syms i symb-occs Δ) new-symb-occs = mk-ctxt fn syms i new-symb-occs Δ
|
{
"alphanum_fraction": 0.6708599711,
"avg_line_length": 37.5891472868,
"ext": "agda",
"hexsha": "1993c5dab5ff9c3a79fda2529ef442e0c04b4df4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CarlOlson/cedille",
"max_forks_repo_path": "src/ctxt-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CarlOlson/cedille",
"max_issues_repo_path": "src/ctxt-types.agda",
"max_line_length": 272,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CarlOlson/cedille",
"max_stars_repo_path": "src/ctxt-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1381,
"size": 4849
}
|
-- {-# OPTIONS -v tc.cover.split.con:100 #-}
{-# OPTIONS --show-implicit #-}
data D : Set where
d : {x : D} → D
f : D → Set
f y = {!!}
|
{
"alphanum_fraction": 0.4928571429,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "22c6e4b2c5551cbc62fd28a0815972ab50c77fdb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2166.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2166.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2166.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 48,
"size": 140
}
|
open import Sec2
data Vec (A : Set) : ℕ → Set where
[] : Vec A Z
_∷_ : {n : ℕ} → A → Vec A n → Vec A (S n)
head : {A : Set} → {n : ℕ} → Vec A (S n) → A
head (x ∷ vs) = x
tail : {A : Set} → {n : ℕ} → Vec A (S n) → Vec A n
tail (x ∷ vs) = vs
map : {A B : Set} → {n : ℕ} → (f : A → B) → Vec A n → Vec B n
map f [] = []
map f (x ∷ vs) = f x ∷ map f vs
zip : {A B : Set} → {n : ℕ} → Vec A n → Vec B n → Vec (A Π B) n
zip [] [] = []
zip (x ∷ xs) (x₁ ∷ ys) = < x , x₁ > ∷ zip xs ys
|
{
"alphanum_fraction": 0.4156378601,
"avg_line_length": 22.0909090909,
"ext": "agda",
"hexsha": "61077a6af3740f509d479ecfed02341afd84ff28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/agda-tutorial-dybjer",
"max_forks_repo_path": "Sec3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/agda-tutorial-dybjer",
"max_issues_repo_path": "Sec3.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/agda-tutorial-dybjer",
"max_stars_repo_path": "Sec3.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z",
"num_tokens": 234,
"size": 486
}
|
module x02-842Induction-hc-2 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_)
-- PLFA coverage of identity, associativity, commutativity, distributivity.
-- + associative
_ : (3 + 4) + 5 ≡ 3 + (4 + 5)
_ =
begin
(3 + 4) + 5 ≡⟨⟩
7 + 5 ≡⟨⟩
12 ≡⟨⟩
3 + 9 ≡⟨⟩
3 + (4 + 5)
∎
+-identityᴸ : ∀ (m : ℕ) → zero + m ≡ m
+-identityᴸ m = refl
0+ : ∀ (m : ℕ) → zero + m ≡ m
0+ = +-identityᴸ
+-identityʳ : ∀ (m : ℕ) → m + zero ≡ m
+-identityʳ zero = refl
+-identityʳ (suc m) = cong suc (+-identityʳ m)
+0 : ∀ (m : ℕ) → m + zero ≡ m
+0 = +-identityʳ
+-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc zero n p = refl
+-assoc (suc m) n p = cong suc (+-assoc m n p)
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm zero n -- zero + n ≡ n + zero
-- n ≡ n + zero
rewrite +-identityʳ n -- n ≡ n
= refl
+-comm (suc m) n -- suc m + n ≡ n + suc m
-- suc (m + n) ≡ n + suc m
rewrite +-suc n m -- suc (m + n) ≡ suc (n + m)
| cong suc (+-comm m n) -- suc (n + m) ≡ suc (n + m)
= refl
-- without using induction/recursion
+-swap : ∀ (m n p : ℕ) → (m + n) + p ≡ n + (m + p)
+-swap zero n p = refl
+-swap (suc m) n p -- suc m + n + p ≡ n + (suc m + p)
-- suc (m + n + p) ≡ n + suc (m + p)
rewrite
+-suc n (m + p) -- suc (m + n + p) ≡ suc (n + (m + p))
| sym (+-assoc n m p) -- suc (m + n + p) ≡ suc (n + m + p)
| +-comm m n -- suc (n + m + p) ≡ suc (n + m + p)
= refl
*-+-rdistrib : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p
*-+-rdistrib zero n p = refl
*-+-rdistrib (suc m) n p -- (suc m + n) * p ≡ suc m * p + n * p
-- p + (m + n) * p ≡ p + m * p + n * p
rewrite
*-+-rdistrib m n p -- p + (m * p + n * p) ≡ p + m * p + n * p
| +-assoc p (m * p) (n * p) -- p + (m * p + n * p) ≡ p + (m * p + n * p)
= refl
*-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p)
*-assoc zero n p = refl
*-assoc (suc m) n p -- suc m * n * p ≡ suc m * (n * p)
-- (n + m * n) * p ≡ n * p + m * (n * p)
rewrite
*-+-rdistrib n (m * n) p -- n * p + m * n * p ≡ n * p + m * (n * p)
| sym (*-assoc m n p) -- n * p + m * n * p ≡ n * p + m * n * p
= refl
*0 : ∀ (m : ℕ) → m * zero ≡ zero
*0 zero = refl
*0 (suc m) = *0 m
*1 : ∀ (m : ℕ) → m * suc zero ≡ m
*1 zero = refl
*1 (suc m) = cong suc (*1 m)
-- like addition, helper lemmas needed
*-comm : ∀ (m n : ℕ) → m * n ≡ n * m
*-comm zero n rewrite *0 n = refl
*-comm m zero rewrite *0 m = refl
*-comm (suc m) (suc n) -- suc m * suc n ≡ suc n * suc m
-- suc (n + m * suc n) ≡ suc (m + n * suc m)
rewrite
*-comm m (suc n) -- suc (n + (m + n * m)) ≡ suc (m + n * suc m)
| *-comm n (suc m) -- suc (n + (m + n * m)) ≡ suc (m + (n + m * n))
| sym (+-assoc n m (n * m)) -- suc (n + m + n * m) ≡ suc (m + (n + m * n))
| sym (+-assoc m n (m * n)) -- suc (n + m + n * m) ≡ suc (m + n + m * n)
| +-swap n m (n * m) -- suc (m + (n + n * m)) ≡ suc (m + n + m * n)
| sym (+-assoc m n (n * m)) -- suc (m + n + n * m) ≡ suc (m + n + m * n)
| *-comm m n -- suc (m + n + n * m) ≡ suc (m + n + n * m)
= refl
0∸n≡0 : ∀ (m : ℕ) → zero ∸ m ≡ zero
0∸n≡0 zero = refl
0∸n≡0 (suc m) rewrite 0∸n≡0 m = refl
m∸0≡m : ∀ (m : ℕ) → m ∸ zero ≡ m
m∸0≡m m = refl
∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p)
∸-+-assoc zero n p -- zero ∸ n ∸ p ≡ zero ∸ (n + p)
rewrite
0∸n≡0 (n + p) -- 0 ∸ n ∸ p ≡ 0
| 0∸n≡0 n -- 0 ∸ p ≡ 0
| 0∸n≡0 p -- 0 ≡ 0
= refl
∸-+-assoc m zero p
= refl
∸-+-assoc m n zero -- m ∸ n ∸ zero ≡ m ∸ (n + zero)
rewrite
+0 n -- m ∸ n ≡ m ∸ n
= refl
∸-+-assoc (suc m) (suc n) (suc p) -- m ∸ n ∸ suc p ≡ m ∸ (n + suc p)
rewrite sym (∸-+-assoc m n (suc p)) -- m ∸ n ∸ suc p ≡ m ∸ n ∸ suc p
= refl
------------------------------------------------------------------------------
-- Properties of binary representation.
-----
-- BEGIN : copied from x01-842Naturals-hc-2.agda
data Bin-ℕ : Set where
bits : Bin-ℕ
_x0 : Bin-ℕ → Bin-ℕ
_x1 : Bin-ℕ → Bin-ℕ
bin-zero : Bin-ℕ
bin-zero = bits
bin-one : Bin-ℕ
bin-one = bits x1 -- 1 in binary
bin-two : Bin-ℕ
bin-two = bits x1 x0 -- 10 in binary
inc : Bin-ℕ → Bin-ℕ
inc bits = bits x1
inc (m x0) = m x1
inc (m x1) = (inc m) x0
dbl : ℕ → ℕ
dbl zero = zero
dbl (suc m) = suc (suc (dbl m))
tob : ℕ → Bin-ℕ
tob zero = bits
tob (suc m) = inc (tob m)
fromb : Bin-ℕ → ℕ
fromb bits = zero
fromb (n x0) = dbl (fromb n)
fromb (n x1) = suc (dbl (fromb n))
_bin-+_ : Bin-ℕ → Bin-ℕ → Bin-ℕ
bits bin-+ n = n
m bin-+ bits = m
(m x0) bin-+ (n x0) = (m bin-+ n) x0
(m x0) bin-+ (n x1) = inc ((m bin-+ n) x0)
(m x1) bin-+ (n x0) = inc ((m bin-+ n) x0)
(m x1) bin-+ (n x1) = inc (inc ((m bin-+ n) x0))
-- END : copied from x01-842Naturals-hc-2.agda
-----
-- Bin-ℕ version of dbl. Do not use tob/fromb.
dblb : Bin-ℕ → Bin-ℕ
dblb bits = bits
dblb (m x0) = (dblb m) x0
dblb (m x1) = inc (inc ((dblb m) x0))
_ : dblb bits ≡ bits
_ = refl
_ : dblb (bits x0) ≡ bits x0
_ = refl
_ : dblb (bits x1) ≡ bits x1 x0
_ = refl
_ : dblb (bits x1 x0) ≡ bits x1 x0 x0
_ = refl
_ : dblb (bits x1 x1) ≡ bits x1 x1 x0
_ = refl
_ : dblb (bits x1 x0 x0) ≡ bits x1 x0 x0 x0
_ = refl
_ : dblb (bits x1 x0 x1) ≡ bits x1 x0 x1 x0
_ = refl
from∘inc : ∀ (m : Bin-ℕ) → fromb (inc m) ≡ suc (fromb m)
from∘inc bits = refl
from∘inc (m x0) = refl
from∘inc (m x1) -- fromb (inc (m x1)) ≡ suc (fromb (m x1))
-- dbl (fromb (inc m)) ≡ suc (suc (dbl (fromb m)))
rewrite
from∘inc m -- dbl (suc (fromb m)) ≡ suc (suc (dbl (fromb m)))
-- suc (suc (dbl (fromb m))) ≡ suc (suc (dbl (fromb m)))
= refl
from∘tob : ∀ (m : ℕ) → fromb (tob m) ≡ m
from∘tob zero = refl
from∘tob (suc m) -- fromb (tob (suc m)) ≡ suc m
-- fromb (inc (tob m)) ≡ suc m
rewrite
from∘inc (tob m) -- suc (fromb (tob m)) ≡ suc m
| from∘tob m -- suc m ≡ suc m
= refl
-- ∀ (m : Bin-ℕ) → tob (fromb m) ≡ m cannot be proved.
-- Because there are multiple representations of ZERO.
-- This restriction can be proved.
to/from-corr : ∀ (b : Bin-ℕ) (n : ℕ) → b ≡ tob n → fromb b ≡ n
to/from-corr .bits zero refl = refl
to/from-corr .(inc (tob n)) (suc n) refl -- fromb (tob (suc n)) ≡ suc n
-- fromb (inc (tob n)) ≡ suc n
rewrite
from∘inc (tob n) -- suc (fromb (tob n)) ≡ suc n
| to/from-corr (tob n) n refl -- suc n ≡ suc n
= refl
dblb∘inc : ∀ (b : Bin-ℕ) → dblb (inc b) ≡ inc (inc (dblb b))
dblb∘inc bits = refl
dblb∘inc (b x0) = refl
dblb∘inc (b x1) -- dblb (inc (b x1)) ≡ inc (inc (dblb (b x1)))
-- (dblb (inc b) x0) ≡ (inc (inc (dblb b)) x0)
rewrite
dblb∘inc b -- (inc (inc (dblb b)) x0) ≡ (inc (inc (dblb b)) x0)
= refl
to∘dbl : ∀ (m : ℕ) → tob (dbl m) ≡ dblb (tob m)
to∘dbl zero = refl
to∘dbl (suc m) -- tob (dbl (suc m)) ≡ dblb (tob (suc m))
-- inc (inc (tob (dbl m))) ≡ dblb (inc (tob m))
rewrite
to∘dbl m -- inc (inc (dblb (tob m))) ≡ dblb (inc (tob m))
| dblb∘inc (tob m) -- inc (inc (dblb (tob m))) ≡ inc (inc (dblb (tob m)))
= refl
from∘dblb : ∀ (b : Bin-ℕ) → fromb (dblb b) ≡ dbl (fromb b)
from∘dblb bits = refl
from∘dblb (b x0) -- fromb (dblb (b x0)) ≡ dbl (fromb (b x0))
-- dbl (fromb (dblb b)) ≡ dbl (dbl (fromb b))
rewrite
from∘dblb b -- dbl (dbl (fromb b)) ≡ dbl (dbl (fromb b))
= refl
from∘dblb (b x1) -- fromb (dblb (b x1)) ≡ dbl (fromb (b x1))
-- dbl (fromb (inc (dblb b))) ≡ suc (suc (dbl (dbl (fromb b))))
rewrite
from∘inc (dblb b) -- dbl (suc (fromb (dblb b))) ≡ suc (suc (dbl (dbl (fromb b))))
| from∘dblb b -- suc (suc (dbl (dbl (fromb b)))) ≡ suc (suc (dbl (dbl (fromb b))))
= refl
-- lemma
-- second case for unary addition
-- suc m + n = suc (m + n)
-- into binary setting.
-- Induction on both m and n is needed.
bin-+-linc : ∀ (m n : Bin-ℕ) → (inc m) bin-+ n ≡ inc (m bin-+ n)
bin-+-linc bits bits = refl
bin-+-linc bits (n x0) = refl
bin-+-linc bits (n x1) = refl
bin-+-linc (m x0) bits = refl
bin-+-linc (m x0) (n x0) = refl
bin-+-linc (m x0) (n x1) = refl
bin-+-linc (m x1) bits = refl
bin-+-linc (m x1) (n x0) rewrite bin-+-linc m n = refl
bin-+-linc (m x1) (n x1) rewrite bin-+-linc m n = refl
-- theorem relates unary and binary addition
to∘+ : ∀ (m n : ℕ) → tob (m + n) ≡ tob m bin-+ tob n
to∘+ zero n = refl
to∘+ (suc m) n -- tob (suc m + n) ≡ (tob (suc m) bin-+ tob n)
-- inc (tob (m + n)) ≡ (inc (tob m) bin-+ tob n)
rewrite
bin-+-linc (tob m) (tob n) -- inc (tob (m + n)) ≡ inc (tob m bin-+ tob n)
| to∘+ m n -- inc (tob m bin-+ tob n) ≡ inc (tob m bin-+ tob n)
= refl
|
{
"alphanum_fraction": 0.4312001636,
"avg_line_length": 33.7310344828,
"ext": "agda",
"hexsha": "9f9c031472e4f5d5e7e975986bd2a52c59708722",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction-hc-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction-hc-2.agda",
"max_line_length": 90,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02-842Induction-hc-2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 4236,
"size": 9782
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Groupoids where
-- The category of groupoids.
--
-- This category should maybe be called "Ho(Groupoids)" or "Ho(Gpd)"
-- instead. The "homsets" are not the "usual" ones consisting of
-- functors, but consist instead of equivalence classes of functors up
-- to natural isomorphism. This is because homsets here are really
-- hom-setoids and we pick natural isomorphism as the equivalence
-- relation for these setoids.
--
-- See https://ncatlab.org/nlab/show/Ho%28Cat%29
open import Level
open import Categories.Category
open import Categories.Category.Groupoid
open import Categories.Functor as Fctr using (Functor; _∘F_)
open import Categories.Functor.Properties using ([_]-resp-Iso)
import Categories.Morphism.IsoEquiv as IsoEquiv
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; associator; unitorˡ; unitorʳ; unitor²; isEquivalence; _ⓘₕ_; sym)
private
variable
o ℓ e : Level
open Groupoid using (category)
-- The category of groupoids.
Groupoids : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Groupoids o ℓ e = record
{ Obj = Groupoid o ℓ e
; _⇒_ = λ G H → Functor (category G) (category H)
; _≈_ = NaturalIsomorphism
; id = Fctr.id
; _∘_ = _∘F_
; assoc = λ {_ _ _ _ F G H} → associator F G H
; sym-assoc = λ {_ _ _ _ F G H} → sym (associator F G H)
; identityˡ = unitorˡ
; identityʳ = unitorʳ
; identity² = unitor²
; equiv = isEquivalence
; ∘-resp-≈ = _ⓘₕ_
}
module _ {o ℓ e o′ ℓ′ e′} {G : Groupoid o ℓ e} {H : Groupoid o′ ℓ′ e′}
(F : Functor (category G) (category H))
where
private
module G = Groupoid G
module H = Groupoid H
open Functor F
open IsoEquiv (category H) using (to-unique)
-- Functors preserve inverses
F-resp-⁻¹ : ∀ {A B} (f : A G.⇒ B) → F₁ (f G.⁻¹) H.≈ (F₁ f) H.⁻¹
F-resp-⁻¹ f = to-unique ([ F ]-resp-Iso G.iso) H.iso H.Equiv.refl
|
{
"alphanum_fraction": 0.6603491272,
"avg_line_length": 32.868852459,
"ext": "agda",
"hexsha": "407bb6167fc6ee65f0fa471b37b776cd3de025b8",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Groupoids.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Groupoids.agda",
"max_line_length": 93,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Groupoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 683,
"size": 2005
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.DistLattice where
open import Cubical.Algebra.DistLattice.Base public
|
{
"alphanum_fraction": 0.7863247863,
"avg_line_length": 23.4,
"ext": "agda",
"hexsha": "a0d6e821a5555e72da6c5df8bc93320528a3fcc0",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Algebra/DistLattice.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Algebra/DistLattice.agda",
"max_line_length": 51,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Algebra/DistLattice.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 29,
"size": 117
}
|
-- Andreas, 2016-04-14 Issue 1821
-- pts rule for SizeUniv not implemented properly
open import Common.Size
open import Common.Equality
record Reveal_·_is_ {A : Set} {B : A → Set}
(f : (x : A) → B x) (x : A) (y : B x) :
Set where
constructor [_]
field eq : f x ≡ y
inspect : ∀ {A : Set} {B : A → Set}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
record Co i : Set where
coinductive
field force : ∀{j : Size< i} → Co j
test : ∀ (n : Co ∞) → Set
(test n) with inspect Co.force n
(test n) | n' = Co ∞
-- Error WAS:
-- SizeUniv != Set
-- when checking that the type
-- ...
-- of the generated with function is well-formed
|
{
"alphanum_fraction": 0.5499296765,
"avg_line_length": 23.7,
"ext": "agda",
"hexsha": "ee38953f32c97e516b187ec3680cfefc118c3b44",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1821.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1821.agda",
"max_line_length": 59,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1821.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 242,
"size": 711
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions.Definition
open import Numbers.Naturals.Definition
open import Sets.FinSet.Definition
open import Setoids.Setoids
module Setoids.Cardinality.Infinite.Definition where
InfiniteSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Set (a ⊔ b)
InfiniteSetoid {A = A} S = (n : ℕ) → (f : FinSet n → A) → (SetoidBijection (reflSetoid (FinSet n)) S f) → False
record DedekindInfiniteSetoid {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where
field
inj : ℕ → A
isInjection : SetoidInjection (reflSetoid ℕ) S inj
|
{
"alphanum_fraction": 0.6868686869,
"avg_line_length": 36.4736842105,
"ext": "agda",
"hexsha": "8e644d8bb6b74f765d30e69c7a161da2c9096483",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Cardinality/Infinite/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Cardinality/Infinite/Definition.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Cardinality/Infinite/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 238,
"size": 693
}
|
module Properties.Dec where
data ⊥ : Set where
data Dec(A : Set) : Set where
yes : A → Dec A
no : (A → ⊥) → Dec A
|
{
"alphanum_fraction": 0.5785123967,
"avg_line_length": 13.4444444444,
"ext": "agda",
"hexsha": "d89fd754e58cc9fd62c88106a3d8d3e289b19072",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/Properties/Dec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/Properties/Dec.agda",
"max_line_length": 29,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Properties/Dec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 43,
"size": 121
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Magma.Morphism where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Functions.Embedding
open import Cubical.Algebra
private
variable
m n : Level
IsMagmaHom : (M : Magma m) (N : Magma n) → (⟨ M ⟩ → ⟨ N ⟩) → Type (ℓ-max m n)
IsMagmaHom M N fun = Homomorphic₂ fun (Magma._•_ M) (Magma._•_ N)
record MagmaHom (M : Magma m) (N : Magma n) : Type (ℓ-max m n) where
constructor magmahom
field
fun : ⟨ M ⟩ → ⟨ N ⟩
isHom : IsMagmaHom M N fun
record MagmaEquiv (M : Magma m) (N : Magma n) : Type (ℓ-max m n) where
constructor magmaequiv
field
eq : ⟨ M ⟩ ≃ ⟨ N ⟩
isHom : IsMagmaHom M N (equivFun eq)
hom : MagmaHom M N
hom = record { isHom = isHom }
instance
MagmaHomOperators : HomOperators (Magma m) (Magma n) (ℓ-max m n)
MagmaHomOperators = record { _⟶ᴴ_ = MagmaHom; _≃ᴴ_ = MagmaEquiv }
|
{
"alphanum_fraction": 0.6617492097,
"avg_line_length": 27.1142857143,
"ext": "agda",
"hexsha": "a3460beff72780b3d5ed2ef07e327a1d42f8ac66",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Magma/Morphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Magma/Morphism.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Magma/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 351,
"size": 949
}
|
{-# OPTIONS --without-K #-}
module Piston where
open import Data.Fin using (#_)
open import Data.List using (List; map; _∷_; []; concatMap; zip; drop; length; replicate; intercalate)
open import Data.Maybe using (Maybe; fromMaybe)
open import Data.Nat using (ℕ)
open import Data.Product using (_×_; proj₁; proj₂)
open import Data.Vec using (Vec; fromList; _∷_; []; toList)
open import Function using (_∘_)
open import Counterpoint
open import Harmony
open import Note
open import Music
open import MidiEvent
open import Pitch
open import Interval
open import Util
-- 3/4 time
melodyAs : List Note
melodyAs =
tone dhalf (c 6) ∷
tone qtr (d 6) ∷ tone qtr (c 6) ∷ tone qtr (e 6) ∷
tone half (f 6) ∷ tone qtr (f 6) ∷
tone qtr (g 6) ∷ tone qtr (f 6) ∷ tone qtr (d 6) ∷
tone half (c 6) ∷ tone qtr (a 5) ∷
tone qtr (b♭ 5) ∷ tone half (g 5) ∷
tone dhalf (f 5) ∷ []
-- 4/4 time
melodyBs : List Note
melodyBs =
tone half (c 6) ∷ tone qtr (b 5) ∷ tone qtr (c 6) ∷
tone half (d 6) ∷ tone qtr (e 6) ∷ tone qtr (c 6) ∷
tone half (f 6) ∷ tone half (d 6) ∷
tone half (b 5) ∷ tone qtr (c 6) ∷ tone qtr (d 6) ∷
tone half (b 5) ∷ tone half (b 5) ∷
tone half (c 6) ∷ tone half (c 6) ∷ []
-- 4/4 time
melodyCs : List Note
melodyCs =
tone qtr (g♯ 5) ∷ tone qtr (g♯ 5) ∷ tone qtr (a 5) ∷ tone qtr (f♯ 5) ∷
tone half (g♯ 5) ∷ tone qtr (g♯ 5) ∷ tone qtr (c♯ 6) ∷
tone half (b 5) ∷ tone qtr (g♯ 5) ∷ tone qtr (a 5) ∷
tone half (f♯ 5) ∷ tone half (f♯ 5) ∷
tone qtr (g♯ 5) ∷ tone qtr (g♯ 5) ∷ tone qtr (a 5) ∷ tone qtr (b 5) ∷
tone half (c♯ 6) ∷ tone half (b 5) ∷
tone qtr (b 5) ∷ tone qtr (d♯ 5) ∷ tone qtr (e 5) ∷ tone qtr (f♯ 5) ∷
tone whole (e 5) ∷ []
-- This is example 9-1 in the 5th edition of Piston.
-- It was example 117 in a previous edition used in the FHARM paper.
-- 4/4 time
melody117s : List Note
melody117s =
rest half ∷ tone half (g 5) ∷
tone half (e 5) ∷ tone half (g 5) ∷
tone half (a 5) ∷ tone half (c 6) ∷
tone half (b 5) ∷ tone half (a 5) ∷
tone whole (g 5) ∷ []
melody117a : List Note
melody117a =
tone whole (b 4) ∷
tone half (c 5) ∷ tone half (e 5) ∷
tone half (f 5) ∷ tone half (e 5) ∷
tone half (g 5) ∷ tone half (f 5) ∷
tone whole (d 5) ∷ []
melody117t : List Note
melody117t =
tone dwhole (g 4) ∷ tone half (c 5) ∷
tone whole (c 5) ∷
tone half (e 5) ∷ tone half (c 5) ∷
tone whole (b 4) ∷ []
melody117b : List Note
melody117b =
tone whole (g 3) ∷
tone whole (c 4) ∷
tone half (f 4) ∷ tone half (a 4) ∷
tone half (e 4) ∷ tone half (f 4) ∷
tone whole (g 4) ∷ []
----
piano marimba : InstrumentNumber-1
piano = # 0
marimba = # 12
channel1 channel2 : Channel-1
channel1 = # 0
channel2 = # 1
tempo : ℕ
tempo = 120
mVelocity cVelocity : Velocity
mVelocity = # 60
cVelocity = # 60
melodyAsTrack : MidiTrack
melodyAsTrack = track "Melody A S" piano channel1 tempo (notes→events mVelocity melodyAs)
melodyATracks : List MidiTrack
melodyATracks = melodyAsTrack ∷ []
melodyBsTrack : MidiTrack
melodyBsTrack = track "Melody B S" piano channel1 tempo (notes→events mVelocity melodyBs)
melodyBTracks : List MidiTrack
melodyBTracks = melodyBsTrack ∷ []
melodyCsTrack : MidiTrack
melodyCsTrack = track "Melody C S" piano channel1 tempo (notes→events mVelocity melodyCs)
melodyCTracks : List MidiTrack
melodyCTracks = melodyCsTrack ∷ []
melody117sTrack : MidiTrack
melody117sTrack = track "Melody 117 S" piano channel1 tempo (notes→events mVelocity melody117s)
melody117aTrack : MidiTrack
melody117aTrack = track "Melody 117 A" piano channel1 tempo (notes→events mVelocity melody117a)
melody117tTrack : MidiTrack
melody117tTrack = track "Melody 117 T" piano channel1 tempo (notes→events mVelocity melody117t)
melody117bTrack : MidiTrack
melody117bTrack = track "Melody 117 B" piano channel1 tempo (notes→events mVelocity melody117b)
melody117Tracks : List MidiTrack
melody117Tracks = melody117sTrack ∷ melody117aTrack ∷ melody117tTrack ∷ melody117bTrack ∷ []
-----
-- Harmonization of Piston's example 9-1 (117).
pitches117s : Vec Pitch 9
pitches117s = g 5 ∷ g 5 ∷ e 5 ∷ g 5 ∷ a 5 ∷ c 6 ∷ b 5 ∷ a 5 ∷ g 5 ∷ []
vhs117 : List (Vec (Vec Pitch 4) 9)
vhs117 = voicedHarmonizations pitches117s
best : Maybe (List (Vec Pitch 4))
best = Data.Maybe.map toList (listMin (length ∘ motionErrors) vhs117)
vh117 : List (Vec Pitch 4)
vh117 = fromMaybe [] best
chordsPoints117 : List (Vec Point 4)
chordsPoints117 = map (Data.Vec.map tone) vh117
harm117 : Harmony 4 (length vh117)
harm117 = harmony (fromList (map chord chordsPoints117))
testHTrack : MidiTrack
testHTrack = track "Test Harm" piano channel1 tempo (harmony→events mVelocity harm117)
testHTracks : List MidiTrack
testHTracks = testHTrack ∷ []
|
{
"alphanum_fraction": 0.6663137836,
"avg_line_length": 28.2814371257,
"ext": "agda",
"hexsha": "7524d7d476bee46b52f14c7024bb10ebc412a191",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "doc/icfp20/code/Piston.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "doc/icfp20/code/Piston.agda",
"max_line_length": 105,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "doc/icfp20/code/Piston.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 1873,
"size": 4723
}
|
module A where
postulate A : Set
|
{
"alphanum_fraction": 0.7352941176,
"avg_line_length": 8.5,
"ext": "agda",
"hexsha": "33ccb027b9f510bfe3f85848d865255703d8af35",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/relocatable/originals/A.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/relocatable/originals/A.agda",
"max_line_length": 17,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/relocatable/originals/A.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 10,
"size": 34
}
|
module Data.Any where
import Lvl
open import Type
-- A type that can hold a value of any type.
record Any {ℓ} : Type{Lvl.𝐒(ℓ)} where
constructor intro
field
{type} : Type{ℓ}
value : type
map : ∀{T : Type{ℓ}} → (type → T) → Any{ℓ}
map f = record{value = f(value)}
-- A type that can hold a value of any type in any universe.
record UniversalAny : Typeω where
constructor intro
field
{level} : Lvl.Level
{type} : Type{level}
value : type
map : ∀{ℓ}{T : Type{ℓ}} → (type → T) → UniversalAny
map f = record{value = f(value)}
|
{
"alphanum_fraction": 0.6151142355,
"avg_line_length": 21.8846153846,
"ext": "agda",
"hexsha": "8d9b8e3013f8d1b68bf27e7d3e6ef7fa86a54519",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Any.agda",
"max_line_length": 60,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Any.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 195,
"size": 569
}
|
module List.Permutation.Base.Equivalence (A : Set) where
open import List.Permutation.Base A
open import Data.List
open import Data.Product renaming (_×_ to _∧_)
refl∼ : {xs : List A} → xs ∼ xs
refl∼ {[]} = ∼[]
refl∼ {x ∷ xs} = ∼x /head /head refl∼
sym∼ : {xs ys : List A} → xs ∼ ys → ys ∼ xs
sym∼ ∼[] = ∼[]
sym∼ (∼x xs/x⟶xs' ys/x⟶ys' xs'∼ys') = ∼x ys/x⟶ys' xs/x⟶xs' (sym∼ xs'∼ys')
lemma// : {x y : A}{xs ys zs : List A} → xs / x ⟶ ys → ys / y ⟶ zs → ∃ (λ ws → xs / y ⟶ ws ∧ ws / x ⟶ zs)
lemma// (/head {x = x}) (/head {xs = xs}) = x ∷ xs , /tail /head , /head
lemma// (/head {x = x}) (/tail {x = u} {ys = us'} us/y⟶us') = x ∷ u ∷ us' , /tail (/tail us/y⟶us') , /head
lemma// (/tail {xs = us} us/x⟶us') /head = us , /head , us/x⟶us'
lemma// (/tail {x = u} us/x⟶us') (/tail us'/y⟶us'')
with lemma// us/x⟶us' us'/y⟶us''
... | ws' , us/y⟶ws' , ws'/x⟶us'' = u ∷ ws' , /tail us/y⟶ws' , /tail ws'/x⟶us''
lemma∼/∷ : {x : A}{xs ys : List A} → (x ∷ xs) ∼ ys → ∃ (λ ys' → ys / x ⟶ ys' ∧ xs ∼ ys')
lemma∼/∷ (∼x {ys' = vs'} /head ys/x⟶vs' xs∼vs') = vs' , ys/x⟶vs' , xs∼vs'
lemma∼/∷ (∼x (/tail xs/u⟶us') ys/u⟶vs' x∷us'∼vs')
with lemma∼/∷ x∷us'∼vs'
... | _ , vs'/x⟶zs , us'∼zs
with lemma// ys/u⟶vs' vs'/x⟶zs
... | ws , ys/x⟶ws , ws/u⟶zs = ws , ys/x⟶ws , ∼x xs/u⟶us' ws/u⟶zs us'∼zs
lemma∼/ : {x : A}{xs xs' ys : List A} → xs ∼ ys → xs / x ⟶ xs' →
∃ (λ ys' → ys / x ⟶ ys' ∧ xs' ∼ ys')
lemma∼/ u∷us∼ys /head = lemma∼/∷ u∷us∼ys
lemma∼/ u∷us∼ys (/tail us/x⟶xs')
with lemma∼/∷ u∷us∼ys
... | _ , ys/u⟶ys' , us∼ys'
with lemma∼/ us∼ys' us/x⟶xs'
... | _ , ys'/x⟶vs , xs'∼vs
with lemma// ys/u⟶ys' ys'/x⟶vs
... | ws , ys/x⟶ws , ws/u⟶vs = ws , ys/x⟶ws , ∼x /head ws/u⟶vs xs'∼vs
trans∼ : {xs ys zs : List A} → xs ∼ ys → ys ∼ zs → xs ∼ zs
trans∼ ∼[] ∼[] = ∼[]
trans∼ ∼[] (∼x .{xs = []} () zs/x⟶zs' ys'∼zs')
trans∼ {zs = zs} (∼x {ys = ys} xs/x⟶xs' ys/x⟶ys' xs'∼ys') ys∼zs
with lemma∼/ {xs = ys} ys∼zs ys/x⟶ys'
... | _ , zs/x⟶us , ys'∼us = ∼x xs/x⟶xs' zs/x⟶us (trans∼ xs'∼ys' ys'∼us)
|
{
"alphanum_fraction": 0.4689655172,
"avg_line_length": 41.4285714286,
"ext": "agda",
"hexsha": "e0ccccb2b88f2a4e1b80e1aae48de4852ee0bbfd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/List/Permutation/Base/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/List/Permutation/Base/Equivalence.agda",
"max_line_length": 106,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/List/Permutation/Base/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 1057,
"size": 2030
}
|
{-
This file contains:
- the abelianization of groups as a HIT as proposed in https://arxiv.org/abs/2007.05833
The definition of the abelianization is not as a set-quotient, since the relation of
abelianization is cumbersome to work with.
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Abelianization.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
using (isPropIsGroupHom; compGroupHom; idGroupHom)
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Algebra.Group.Abelianization.Base
private
variable
ℓ : Level
module _ (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
private
instance
_ = snd G
-- Some helpful lemmas, similar to those in Cubical/HITs/SetQuotients/Properties.agda
elimProp : {B : Abelianization G → Type ℓ}
→ (Bprop : (x : Abelianization G) → isProp (B x))
→ (f : (g : fst G) → B (η g))
→ (x : Abelianization G)
→ B x
elimProp Bprop f (η g) = f g
elimProp {B = B} Bprop f (comm a b c i) =
isProp→PathP (λ i → Bprop (comm a b c i)) (f (a · (b · c))) (f (a · (c · b))) i
elimProp Bprop f (isset x y p q i j) =
isOfHLevel→isOfHLevelDep
2 (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (isset x y p q) i j
where
g = elimProp Bprop f
elimProp2 : {C : Abelianization G → Abelianization G → Type ℓ}
→ (Cprop : (x y : Abelianization G) → isProp (C x y))
→ (f : (a b : fst G) → C (η a) (η b))
→ (x y : Abelianization G)
→ C x y
elimProp2 Cprop f = elimProp (λ x → isPropΠ (λ y → Cprop x y))
(λ x → elimProp (λ y → Cprop (η x) y) (f x))
elimProp3 : {D : Abelianization G → Abelianization G → Abelianization G → Type ℓ}
→ (Dprop : (x y z : Abelianization G) → isProp (D x y z))
→ ((a b c : fst G) → D (η a) (η b) (η c))
→ (x y z : Abelianization G)
→ D x y z
elimProp3 Dprop f = elimProp (λ x → isPropΠ2 (λ y z → Dprop x y z))
(λ x → elimProp2 (λ y z → Dprop (η x) y z) (f x))
elimContr : {B : Abelianization G → Type ℓ}
→ (Bcontr : ∀ (a : fst G) → isContr (B (η a)))
→ (x : Abelianization G)
→ B x
elimContr Bcontr = elimProp (elimProp (λ _ → isPropIsProp) λ _ → isContr→isProp (Bcontr _))
λ _ → Bcontr _ .fst
elimContr2 : {C : Abelianization G → Abelianization G → Type ℓ}
→ (Ccontr : ∀ (a b : fst G) → isContr (C (η a) (η b)))
→ (x y : Abelianization G)
→ C x y
elimContr2 Ccontr = elimContr λ _ → isOfHLevelΠ 0
(elimContr λ _ → inhProp→isContr (Ccontr _ _) isPropIsContr)
rec : {M : Type ℓ}
(Mset : isSet M)
(f : fst G → M)
(fcomm : (a b c : fst G) → f (a · (b · c)) ≡ f (a · (c · b)))
→ Abelianization G → M
rec Mset f fcomm (η g) = f g
rec Mset f fcomm (comm a b c i) = fcomm a b c i
rec Mset f fcomm (isset a b p q i j) = Mset (g a) (g b) (cong g p) (cong g q) i j
where
g = rec Mset f fcomm
rec2 : {M : Type ℓ}
(Mset : isSet M)
(f : fst G → fst G → M)
(fcomml : (a b c d : fst G) → f (a · (b · c)) d ≡ f (a · (c · b)) d)
(fcommr : (a b c d : fst G) → f a (b · (c · d)) ≡ f a (b · (d · c)))
→ Abelianization G → Abelianization G → M
rec2 Mset f fcomml fcommr =
rec
(isSetΠ (λ _ → Mset))
(λ g → rec Mset (λ h → f g h) (fcommr g))
(λ a b c → funExt (elimProp (λ _ → Mset _ _) (λ d → fcomml a b c d)))
module AbelianizationGroupStructure (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
private
instance
_ = snd G
{-
Definition of the group structure on the abelianization. Here the generality of the comm
relation is used.
-}
_·Ab_ : Abelianization G → Abelianization G → Abelianization G
_·Ab_ =
(rec2 G)
isset
(λ x y → η (x · y))
(λ a b c d → η ((a · (b · c)) · d) ≡⟨ cong η (cong (λ x → (x · d)) (assoc _ _ _)) ⟩
η (((a · b) · c) · d) ≡⟨ cong η (sym (assoc (a · b) c d)) ⟩
η ((a · b) · (c · d)) ≡⟨ comm (a · b) c d ⟩
η ((a · b) · (d · c)) ≡⟨ cong η (sym (assoc _ _ _)) ⟩
η (a · (b · (d · c))) ≡⟨ cong η (cong (λ x → (a · x)) (assoc _ _ _)) ⟩
η (a · ((b · d) · c)) ≡⟨ comm a (b · d) c ⟩
η (a · (c · (b · d))) ≡⟨ cong η (cong (λ x → (a · x)) (assoc _ _ _)) ⟩
η (a · ((c · b) · d)) ≡⟨ cong η (assoc a (c · b) d) ⟩
η ((a · (c · b)) · d) ∎)
(λ a b c d → η (a · (b · (c · d))) ≡⟨ cong η (assoc _ _ _) ⟩
η ((a · b) · (c · d)) ≡⟨ comm (a · b) c d ⟩
η ((a · b) · (d · c)) ≡⟨ cong η (sym (assoc _ _ _)) ⟩
η (a · (b · (d · c))) ∎)
1Ab : Abelianization G
1Ab = η 1g
invAb : Abelianization G → Abelianization G
invAb =
(rec G)
isset
((λ x → η (inv x)))
(λ a b c → η (inv (a · (b · c))) ≡⟨ cong η (invDistr a (b · c)) ⟩
η ((inv (b · c)) · (inv a)) ≡⟨ cong (λ x → η (x · (inv a))) (invDistr b c) ⟩
η (((inv c) · (inv b)) · (inv a)) ≡⟨ cong
η
((sym (lid (((inv c) · (inv b)) · (inv a))))) ⟩
η (1g · (((inv c) · (inv b)) · (inv a))) ≡⟨ comm 1g ((inv c) · (inv b)) (inv a) ⟩
η (1g · ((inv a) · ((inv c) · (inv b)))) ≡⟨ cong η (lid ((inv a) · ((inv c) · (inv b)))) ⟩
η ((inv a) · ((inv c) · (inv b))) ≡⟨ comm (inv a) (inv c) (inv b) ⟩
η ((inv a) · ((inv b) · (inv c))) ≡⟨ cong
η
((sym (lid ((inv a) · ((inv b) · (inv c)))))) ⟩
η (1g · ((inv a) · ((inv b) · (inv c)))) ≡⟨ comm 1g (inv a) ((inv b) · (inv c)) ⟩
η (1g · (((inv b) · (inv c)) · (inv a))) ≡⟨ cong η (lid (((inv b) · (inv c)) · (inv a))) ⟩
η (((inv b) · (inv c)) · (inv a)) ≡⟨ cong
(λ x → η (x · (inv a)))
(sym (invDistr c b)) ⟩
η ((inv (c · b)) · (inv a)) ≡⟨ cong η (sym (invDistr a (c · b))) ⟩
η (inv (a · (c · b))) ∎)
assocAb : (x y z : Abelianization G) → x ·Ab (y ·Ab z) ≡ (x ·Ab y) ·Ab z
assocAb =
(elimProp3 G)
(λ x y z → isset (x ·Ab (y ·Ab z)) ((x ·Ab y) ·Ab z))
(λ x y z → cong η (assoc x y z))
ridAb : (x : Abelianization G) → x ·Ab 1Ab ≡ x
ridAb =
(elimProp G)
(λ x → isset (x ·Ab 1Ab) x)
(λ x → cong η (rid x))
rinvAb : (x : Abelianization G) → x ·Ab (invAb x) ≡ 1Ab
rinvAb =
(elimProp G)
(λ x → isset (x ·Ab (invAb x)) 1Ab)
(λ x → (η x) ·Ab (invAb (η x)) ≡⟨ refl ⟩
(η x) ·Ab (η (inv x)) ≡⟨ refl ⟩
η (x · (inv x)) ≡⟨ cong η (fst (inverse x)) ⟩
η 1g ≡⟨ refl ⟩
1Ab ∎)
commAb : (x y : Abelianization G) → x ·Ab y ≡ y ·Ab x
commAb =
(elimProp2 G)
(λ x y → isset (x ·Ab y) (y ·Ab x))
(λ x y → (η x) ·Ab (η y) ≡⟨ refl ⟩
η (x · y) ≡⟨ cong η (sym (lid (x · y))) ⟩
η (1g · (x · y)) ≡⟨ comm 1g x y ⟩
η (1g · (y · x)) ≡⟨ cong η (lid (y · x)) ⟩
η (y · x) ≡⟨ refl ⟩
(η y) ·Ab (η x) ∎)
-- The proof that the abelianization is in fact an abelian group.
asAbelianGroup : AbGroup ℓ
asAbelianGroup = makeAbGroup 1Ab _·Ab_ invAb isset assocAb ridAb rinvAb commAb
-- The proof that η can be seen as a group homomorphism
ηAsGroupHom : GroupHom G (AbGroup→Group asAbelianGroup)
ηAsGroupHom = f , fIsHom
where
f = λ x → η x
fIsHom : IsGroupHom (snd G) f (snd (AbGroup→Group asAbelianGroup))
IsGroupHom.pres· fIsHom = λ x y → refl
IsGroupHom.pres1 fIsHom = refl
IsGroupHom.presinv fIsHom = λ x → refl
AbelianizationAbGroup : (G : Group ℓ) → AbGroup ℓ
AbelianizationAbGroup G = AbelianizationGroupStructure.asAbelianGroup G
AbelianizationHom : (G : Group ℓ) → GroupHom G (AbGroup→Group (AbelianizationAbGroup G))
AbelianizationHom G = AbelianizationGroupStructure.ηAsGroupHom G
module UniversalProperty (G : Group ℓ) where
open GroupStr {{...}}
open GroupTheory G
open AbelianizationGroupStructure G
private
instance
_ = snd G
abstract
{- The proof of the universal property of the abelianization.
G --η--> abelianization
\ .
\ .
f ∃! inducedHom
\ .
\ .
H
commuting diagram
-}
inducedHom : (H : AbGroup ℓ)
→ (f : GroupHom G (AbGroup→Group H))
→ AbGroupHom asAbelianGroup H
inducedHom H f = g , gIsHom
where open IsGroupHom
instance
_ : GroupStr (fst H)
_ = snd (AbGroup→Group H)
f' : fst G → fst H
f' = fst f
g : Abelianization G → fst H
g = (rec G)
(isSetAbGroup H)
(λ x → (f') x)
(λ a b c → f' (a · b · c) ≡⟨ (snd f).pres· a (b · c) ⟩
(f' a) · (f' (b · c)) ≡⟨ cong
(λ x → (f' a) · x)
((snd f).pres· b c) ⟩
(f' a) · (f' b) · (f' c) ≡⟨ cong
(λ x → (f' a) · x)
((snd H).AbGroupStr.comm (f' b) (f' c)) ⟩
(f' a) · (f' c) · (f' b) ≡⟨ cong
(λ x → (f' a) · x)
(sym ((snd f).pres· c b)) ⟩
(f' a) · (f' (c · b)) ≡⟨ sym ((snd f).pres· a (c · b)) ⟩
f' (a · c · b) ∎)
gIsHom : IsGroupHom (snd (AbGroup→Group asAbelianGroup)) g (snd (AbGroup→Group H))
pres· gIsHom =
(elimProp2 G)
(λ x y → isSetAbGroup H _ _)
((snd f).pres·)
pres1 gIsHom = (snd f).pres1
presinv gIsHom =
(elimProp G)
(λ x → isSetAbGroup H _ _)
((snd f).presinv)
commutativity : (H : AbGroup ℓ)
→ (f : GroupHom G (AbGroup→Group H))
→ (compGroupHom ηAsGroupHom (inducedHom H f) ≡ f)
commutativity H f =
Σ≡Prop
(λ _ → isPropIsGroupHom _ _)
(λ i x → q x i)
where q : (x : fst G)
→ fst (compGroupHom ηAsGroupHom (inducedHom H f)) x ≡ fst f x
q = (λ x → refl)
uniqueness : (H : AbGroup ℓ)
→ (f : GroupHom G (AbGroup→Group H))
→ (g : AbGroupHom asAbelianGroup H)
→ (p : compGroupHom ηAsGroupHom g ≡ f)
→ (g ≡ inducedHom H f)
uniqueness H f g p =
Σ≡Prop
(λ _ → isPropIsGroupHom _ _)
(λ i x → q x i)
where q : (x : Abelianization G)
→ fst g x ≡ fst (inducedHom H f) x
q = (elimProp G)
(λ _ → isSetAbGroup H _ _)
(λ x → fst g (η x) ≡⟨ cong (λ f → f x) (cong fst p) ⟩
(fst f) x ≡⟨ refl ⟩
fst (inducedHom H f) (η x)∎)
|
{
"alphanum_fraction": 0.4489156218,
"avg_line_length": 39.3466666667,
"ext": "agda",
"hexsha": "47262c5ee1a6493e6a597c70c8dba1b4c1784472",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "gmagaf/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Abelianization/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "gmagaf/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Abelianization/Properties.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1d9b9691d375659fa8ebd9cbf8b63678955b196b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "gmagaf/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Abelianization/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4191,
"size": 11804
}
|
{-# OPTIONS --copatterns #-}
module IOExampleGraphicsMovingText where
--
-- not yet updated for new SizedIO library
-- not yet updated to change with IOInterface Record of Commands / Responses
--
{-
open import SizedIO.General
open import SizedIO.IOGraphicsLib -- TODO
open import Data.Bool.Base
open import Data.Char.Base
open import Data.Nat.Base
open import Data.List.Base hiding (_++_)
open import Data.Integer.Base hiding (_+_;suc)
open import Data.String.Base
open import Data.Maybe.Base
open import Function
open import Size
width : ℕ
width = 125
height : ℕ
height = 20
myBox : Point → Graphic
myBox p = withColor black (polygon ( point x y
∷ point (x +IntNat width) y
∷ point (x +IntNat width) (y +IntNat height)
∷ point x (y +IntNat height)
∷ [] ) )
where x = proj1Point p
y = proj2Point p
record State : Set where
constructor state
field oldpoint : Maybe Point
newpoint : Maybe Point
open State
module _ (w : Window) where
-- If there was a mouse movement since the last invokation of refresh
-- overwrite old text and place text at new mouse position.
refresh : ∀{i} → State → IOGraphics i State
refresh s = case newpoint s of
λ{ nothing → return s
; (just lastMousePoint) →
{- case there was a new mouse movement. -}
(whenJust (oldpoint s) λ p →
exec1 (drawInWindow w (myBox p)) >>
exec1 (drawInWindow w (withColor white (text lastMousePoint ("1st :some Text")))))
>> return (state (just lastMousePoint) nothing)
}
processEvent : ∀{i} → State → IOGraphics+ i (Maybe State)
processEvent s =
exec (getWindowEvent w)
λ{ {- key event: check whether this was equal to 'x'; if yes, terminate, otherwise return to loop -}
(Key c t) →
if (c ==CharBool 'x') then return nothing else return (just s)
{- mouse event: if this was the first ever event, ignore it, but
record that the next mouse event is no longer the first one.
If it was not the first ever event: set newpoint to the position of the mouse p -}
; (MouseMove p) →
return (just record s{ newpoint = just p })
{- otherwise just go back to start -}
; _ →
return (just s)
}
loop : ∀{i} → State → IOGraphics i Unit
force (loop s) = processEvent s >>=+' -- maybe′ loop (return _)
λ{ nothing → return _
; (just s') → refresh s' >>= loop
}
myProgram : ∀{i} → IOGraphics i Unit
force myProgram =
exec (openWindowEx "Hello World" nothing (just (natSize 1000 1000)) nativeDrawGraphic nothing) λ window →
loop window (state nothing nothing)
main : NativeIO Unit
main = nativeRunGraphics (translateIOGraphics myProgram)
-}
|
{
"alphanum_fraction": 0.6113387978,
"avg_line_length": 30.8210526316,
"ext": "agda",
"hexsha": "8de5eda7568e9ff0db639d88f277cf4f2e6b73c3",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/DrawingProgram/IOExampleGraphicsMovingText.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/DrawingProgram/IOExampleGraphicsMovingText.agda",
"max_line_length": 109,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/DrawingProgram/IOExampleGraphicsMovingText.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 743,
"size": 2928
}
|
open import Data.Empty
open import Data.List renaming (_∷_ to _∷ₗ_ ; [_] to [_]ₗ)
open import Data.Maybe
open import Data.Product
open import Data.Sum
open import Data.Unit
open import AEff
open import AwaitingComputations
open import EffectAnnotations
open import Preservation
open import ProcessPreservation
open import Progress
open import Renamings
open import Substitutions
open import Types
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Negation
module ProcessProgress where
-- PROCESS RESULTS
data ParResult⟨_⟩ : {o : O} {PP : PType o} → [] ⊢P⦂ PP → Set where
run : {X : VType}
{o : O}
{i : I} →
{M : [] ⊢M⦂ X ! (o , i)} →
RunResult⟨ [] ∣ M ⟩ →
--------------------------
ParResult⟨ run M ⟩
par : {o o' : O}
{PP : PType o}
{QQ : PType o'}
{P : [] ⊢P⦂ PP}
{Q : [] ⊢P⦂ QQ} →
ParResult⟨ P ⟩ →
ParResult⟨ Q ⟩ →
------------------
ParResult⟨ P ∥ Q ⟩
data ProcResult⟨_⟩ : {o : O} {PP : PType o} → [] ⊢P⦂ PP → Set where
proc : {o : O}
{PP : PType o}
{P : [] ⊢P⦂ PP} →
ParResult⟨ P ⟩ →
-----------------
ProcResult⟨ P ⟩
signal : {o : O}
{PP : PType o}
{op : Σₛ}
{p : op ∈ₒ o}
{V : [] ⊢V⦂ ``(payload op)}
{P : [] ⊢P⦂ PP} →
ProcResult⟨ P ⟩ →
---------------------------
ProcResult⟨ ↑ op p V P ⟩
-- PROGRESS THEOREM FOR PROCESSES
{- THEOREM 4.3 -}
proc-progress : {o : O}
{PP : PType o} →
(P : [] ⊢P⦂ PP) →
-------------------------------------------------------------------------------
(Σ[ o' ∈ O ] Σ[ QQ ∈ PType o' ] Σ[ r ∈ PP ⇝ QQ ] Σ[ Q ∈ [] ⊢P⦂ QQ ] (P [ r ]↝ Q)
⊎
ProcResult⟨ P ⟩)
proc-progress (run {X} {o} {i} M) with progress M
... | inj₁ (M' , r) =
inj₁ (_ , _ , _ , _ , run r)
... | inj₂ (comp R) =
inj₂ (proc (run R))
... | inj₂ (signal {_} {_} {_} {_} {p} {V} {Q} R) =
inj₁ (_ , _ , _ , _ , ↑ p V Q)
proc-progress (P ∥ Q) with proc-progress P
... | inj₁ (o' , PP' , r , P' , r') =
inj₁ (_ , _ , _ , _ , context ([-] ∥ₗ Q) r')
... | inj₂ R with proc-progress Q
... | inj₁ (o' , QQ' , r , Q' , r') =
inj₁ (_ , _ , _ , _ , context (P ∥ᵣ [-]) r')
proc-progress (P ∥ Q) | inj₂ (proc R) | inj₂ (proc R') =
inj₂ (proc (par R R'))
proc-progress (P ∥ .(↑ _ _ _ _)) | inj₂ R | inj₂ (signal {_} {_} {_} {p} {V} {Q} R') =
inj₁ (_ , _ , _ , _ , ↑-∥ᵣ p V P Q)
proc-progress (.(↑ _ _ _ _) ∥ Q) | inj₂ (signal {_} {_} {_} {p} {V} {P} R) | inj₂ R' =
inj₁ (_ , _ , _ , _ , ↑-∥ₗ p V P Q)
proc-progress (↑ op p V P) with proc-progress P
... | inj₁ (o' , PP' , r , P' , r') =
inj₁ (_ , _ , _ , _ , context (↑ op p V [-]) r')
... | inj₂ R =
inj₂ (signal R)
proc-progress (↓ op V P) with proc-progress P
... | inj₁ (o' , OO' , r , P' , r') =
inj₁ (_ , _ , _ , _ , context (↓ op V [-]) r')
... | inj₂ (proc (run {_} {_} {_} {M} R)) =
inj₁ (_ , _ , _ , _ , ↓-run V M)
... | inj₂ (proc (par {_} {_} {_} {_} {Q} {Q'} R R')) =
inj₁ (_ , _ , _ , _ , ↓-∥ V Q Q')
... | inj₂ (signal {_} {_} {_} {p} {W} {Q} R) =
inj₁ (_ , _ , _ , _ , ↓-↑ p V W Q)
|
{
"alphanum_fraction": 0.4304023845,
"avg_line_length": 30.2252252252,
"ext": "agda",
"hexsha": "50a498bd6b2c040c503cfee4bf5f4a5561799bc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danelahman/aeff-agda",
"max_forks_repo_path": "ProcessProgress.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danelahman/aeff-agda",
"max_issues_repo_path": "ProcessProgress.agda",
"max_line_length": 96,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danelahman/aeff-agda",
"max_stars_repo_path": "ProcessProgress.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z",
"num_tokens": 1231,
"size": 3355
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRingSolver.Solver where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order using (zero-≤)
open import Cubical.Data.Vec.Base
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ᵣ)
open import Cubical.Algebra.CommRingSolver.AlgebraExpression
open import Cubical.Algebra.CommRingSolver.IntAsRawRing
open import Cubical.Algebra.CommRingSolver.HornerForms
open import Cubical.Algebra.CommRingSolver.EvalHom
open import Cubical.Algebra.CommRingSolver.HornerEval
private
variable
ℓ : Level
module EqualityToNormalform (R : CommRing ℓ) where
νR = CommRing→RawℤAlgebra R
open CommRingStr (snd R)
open RingTheory (CommRing→Ring R)
open Eval ℤAsRawRing νR
open IteratedHornerOperations νR
open HomomorphismProperties R
ℤExpr : (n : ℕ) → Type _
ℤExpr = Expr ℤAsRawRing (fst R)
normalize : {n : ℕ} → ℤExpr n → IteratedHornerForms νR n
normalize {n = n} (K r) = Constant n νR r
normalize {n = n} (∣ k) = Variable n νR k
normalize (x +' y) =
(normalize x) +ₕ (normalize y)
normalize (x ·' y) =
(normalize x) ·ₕ (normalize y)
normalize (-' x) = -ₕ (normalize x)
isEqualToNormalform :
{n : ℕ} (e : ℤExpr n) (xs : Vec (fst R) n)
→ eval (normalize e) xs ≡ ⟦ e ⟧ xs
isEqualToNormalform (K r) [] = refl
isEqualToNormalform {n = ℕ.suc n} (K r) (x ∷ xs) =
eval (Constant (ℕ.suc n) νR r) (x ∷ xs) ≡⟨ refl ⟩
eval (0ₕ ·X+ Constant n νR r) (x ∷ xs) ≡⟨ combineCasesEval R 0ₕ (Constant n νR r) x xs ⟩
eval 0ₕ (x ∷ xs) · x + eval (Constant n νR r) xs ≡⟨ cong (λ u → u · x + eval (Constant n νR r) xs)
(Eval0H (x ∷ xs)) ⟩
0r · x + eval (Constant n νR r) xs ≡⟨ cong
(λ u → u + eval (Constant n νR r) xs)
(0LeftAnnihilates _) ⟩
0r + eval (Constant n νR r) xs ≡⟨ +IdL _ ⟩
eval (Constant n νR r) xs ≡⟨ isEqualToNormalform (K r) xs ⟩
_ ∎
isEqualToNormalform (∣ zero) (x ∷ xs) =
eval (1ₕ ·X+ 0ₕ) (x ∷ xs) ≡⟨ combineCasesEval R 1ₕ 0ₕ x xs ⟩
eval 1ₕ (x ∷ xs) · x + eval 0ₕ xs ≡⟨ cong (λ u → u · x + eval 0ₕ xs)
(Eval1ₕ (x ∷ xs)) ⟩
1r · x + eval 0ₕ xs ≡⟨ cong (λ u → 1r · x + u ) (Eval0H xs) ⟩
1r · x + 0r ≡⟨ +IdR _ ⟩
1r · x ≡⟨ ·IdL _ ⟩
x ∎
isEqualToNormalform {n = ℕ.suc n} (∣ (suc k)) (x ∷ xs) =
eval (0ₕ ·X+ Variable n νR k) (x ∷ xs) ≡⟨ combineCasesEval R 0ₕ (Variable n νR k) x xs ⟩
eval 0ₕ (x ∷ xs) · x + eval (Variable n νR k) xs ≡⟨ cong (λ u → u · x + eval (Variable n νR k) xs)
(Eval0H (x ∷ xs)) ⟩
0r · x + eval (Variable n νR k) xs ≡⟨ cong (λ u → u + eval (Variable n νR k) xs)
(0LeftAnnihilates _) ⟩
0r + eval (Variable n νR k) xs ≡⟨ +IdL _ ⟩
eval (Variable n νR k) xs ≡⟨ isEqualToNormalform (∣ k) xs ⟩
⟦ ∣ (suc k) ⟧ (x ∷ xs) ∎
isEqualToNormalform (-' e) [] =
eval (-ₕ (normalize e)) [] ≡⟨ -EvalDist (normalize e) [] ⟩
- eval (normalize e) [] ≡⟨ cong -_ (isEqualToNormalform e [] ) ⟩
- ⟦ e ⟧ [] ∎
isEqualToNormalform (-' e) (x ∷ xs) =
eval (-ₕ (normalize e)) (x ∷ xs) ≡⟨ -EvalDist (normalize e) (x ∷ xs) ⟩
- eval (normalize e) (x ∷ xs) ≡⟨ cong -_ (isEqualToNormalform e (x ∷ xs) ) ⟩
- ⟦ e ⟧ (x ∷ xs) ∎
isEqualToNormalform (e +' e₁) [] =
eval (normalize e +ₕ normalize e₁) []
≡⟨ +Homeval (normalize e) _ [] ⟩
eval (normalize e) []
+ eval (normalize e₁) []
≡⟨ cong (λ u → u + eval (normalize e₁) [])
(isEqualToNormalform e []) ⟩
⟦ e ⟧ []
+ eval (normalize e₁) []
≡⟨ cong (λ u → ⟦ e ⟧ [] + u) (isEqualToNormalform e₁ []) ⟩
⟦ e ⟧ [] + ⟦ e₁ ⟧ [] ∎
isEqualToNormalform (e +' e₁) (x ∷ xs) =
eval (normalize e +ₕ normalize e₁) (x ∷ xs)
≡⟨ +Homeval (normalize e) _ (x ∷ xs) ⟩
eval (normalize e) (x ∷ xs) + eval (normalize e₁) (x ∷ xs)
≡⟨ cong (λ u → u + eval (normalize e₁) (x ∷ xs))
(isEqualToNormalform e (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) + eval (normalize e₁) (x ∷ xs)
≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) + u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) + ⟦ e₁ ⟧ (x ∷ xs) ∎
isEqualToNormalform (e ·' e₁) [] =
eval (normalize e ·ₕ normalize e₁) []
≡⟨ ·Homeval (normalize e) _ [] ⟩
eval (normalize e) [] · eval (normalize e₁) []
≡⟨ cong (λ u → u · eval (normalize e₁) [])
(isEqualToNormalform e []) ⟩
⟦ e ⟧ [] · eval (normalize e₁) []
≡⟨ cong (λ u → ⟦ e ⟧ [] · u) (isEqualToNormalform e₁ []) ⟩
⟦ e ⟧ [] · ⟦ e₁ ⟧ [] ∎
isEqualToNormalform (e ·' e₁) (x ∷ xs) =
eval (normalize e ·ₕ normalize e₁) (x ∷ xs)
≡⟨ ·Homeval (normalize e) _ (x ∷ xs) ⟩
eval (normalize e) (x ∷ xs) · eval (normalize e₁) (x ∷ xs)
≡⟨ cong (λ u → u · eval (normalize e₁) (x ∷ xs))
(isEqualToNormalform e (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) · eval (normalize e₁) (x ∷ xs)
≡⟨ cong (λ u → ⟦ e ⟧ (x ∷ xs) · u) (isEqualToNormalform e₁ (x ∷ xs)) ⟩
⟦ e ⟧ (x ∷ xs) · ⟦ e₁ ⟧ (x ∷ xs) ∎
solve :
{n : ℕ} (e₁ e₂ : ℤExpr n) (xs : Vec (fst R) n)
(p : eval (normalize e₁) xs ≡ eval (normalize e₂) xs)
→ ⟦ e₁ ⟧ xs ≡ ⟦ e₂ ⟧ xs
solve e₁ e₂ xs p =
⟦ e₁ ⟧ xs ≡⟨ sym (isEqualToNormalform e₁ xs) ⟩
eval (normalize e₁) xs ≡⟨ p ⟩
eval (normalize e₂) xs ≡⟨ isEqualToNormalform e₂ xs ⟩
⟦ e₂ ⟧ xs ∎
ℤExpr : (R : CommRing ℓ) (n : ℕ)
→ _
ℤExpr R n = EqualityToNormalform.ℤExpr R n
solve : (R : CommRing ℓ)
{n : ℕ} (e₁ e₂ : ℤExpr R n) (xs : Vec (fst R) n)
(p : eval (EqualityToNormalform.normalize R e₁) xs ≡ eval (EqualityToNormalform.normalize R e₂) xs)
→ _
solve R = EqualityToNormalform.solve R
|
{
"alphanum_fraction": 0.5062952471,
"avg_line_length": 43.5205479452,
"ext": "agda",
"hexsha": "8f7d7d5f43494f1ce09b757822143b70de568e96",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRingSolver/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRingSolver/Solver.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRingSolver/Solver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2382,
"size": 6354
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Pullback {o ℓ e} (C : Category o ℓ e) where
open Category C
open HomReasoning
open import Level
open import Data.Product using (_,_; ∃)
open import Function using (flip; _$_) renaming (_∘_ to _●_)
open import Categories.Morphism C
open import Categories.Object.Product C
open import Categories.Diagram.Equalizer C
open import Categories.Morphism.Reasoning C as Square
renaming (glue to glue-square) hiding (id-unique)
private
variable
A B X Y Z : Obj
f g h h₁ h₂ i i₁ i₂ j : A ⇒ B
-- Pullback of two arrows with a common codomain
record Pullback (f : X ⇒ Z) (g : Y ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where
field
{P} : Obj
p₁ : P ⇒ X
p₂ : P ⇒ Y
field
commute : f ∘ p₁ ≈ g ∘ p₂
universal : ∀ {h₁ : A ⇒ X} {h₂ : A ⇒ Y} → f ∘ h₁ ≈ g ∘ h₂ → A ⇒ P
unique : ∀ {eq : f ∘ h₁ ≈ g ∘ h₂} →
p₁ ∘ i ≈ h₁ → p₂ ∘ i ≈ h₂ →
i ≈ universal eq
p₁∘universal≈h₁ : ∀ {eq : f ∘ h₁ ≈ g ∘ h₂} →
p₁ ∘ universal eq ≈ h₁
p₂∘universal≈h₂ : ∀ {eq : f ∘ h₁ ≈ g ∘ h₂} →
p₂ ∘ universal eq ≈ h₂
unique′ : (eq eq′ : f ∘ h₁ ≈ g ∘ h₂) → universal eq ≈ universal eq′
unique′ eq eq′ = unique p₁∘universal≈h₁ p₂∘universal≈h₂
id-unique : id ≈ universal commute
id-unique = unique identityʳ identityʳ
unique-diagram : p₁ ∘ h ≈ p₁ ∘ i →
p₂ ∘ h ≈ p₂ ∘ i →
h ≈ i
unique-diagram {h = h} {i = i} eq₁ eq₂ = begin
h ≈⟨ unique eq₁ eq₂ ⟩
universal eq ≈˘⟨ unique refl refl ⟩
i ∎
where eq = extendʳ commute
swap : Pullback f g → Pullback g f
swap p = record
{ p₁ = p₂
; p₂ = p₁
; commute = ⟺ commute
; universal = universal ● ⟺
; unique = flip unique
; p₁∘universal≈h₁ = p₂∘universal≈h₂
; p₂∘universal≈h₂ = p₁∘universal≈h₁
}
where open Pullback p
glue : (p : Pullback f g) → Pullback h (Pullback.p₁ p) → Pullback (f ∘ h) g
glue {h = h} p q = record
{ p₁ = q.p₁
; p₂ = p.p₂ ∘ q.p₂
; commute = glue-square p.commute q.commute
; universal = λ eq → q.universal (⟺ (p.p₁∘universal≈h₁ {eq = ⟺ assoc ○ eq}))
; unique = λ {_ h₁ h₂ i} eq eq′ →
q.unique eq (p.unique (begin
p.p₁ ∘ q.p₂ ∘ i ≈˘⟨ extendʳ q.commute ⟩
h ∘ q.p₁ ∘ i ≈⟨ refl⟩∘⟨ eq ⟩
h ∘ h₁ ∎)
(⟺ assoc ○ eq′))
; p₁∘universal≈h₁ = q.p₁∘universal≈h₁
; p₂∘universal≈h₂ = assoc ○ ∘-resp-≈ʳ q.p₂∘universal≈h₂ ○ p.p₂∘universal≈h₂
}
where module p = Pullback p
module q = Pullback q
unglue : (p : Pullback f g) → Pullback (f ∘ h) g → Pullback h (Pullback.p₁ p)
unglue {f = f} {g = g} {h = h} p q = record
{ p₁ = q.p₁
; p₂ = p₂′
; commute = ⟺ p.p₁∘universal≈h₁
; universal = λ {_ h₁ h₂} eq → q.universal $ begin
(f ∘ h) ∘ h₁ ≈⟨ pullʳ eq ⟩
f ∘ p.p₁ ∘ h₂ ≈⟨ extendʳ p.commute ⟩
g ∘ p.p₂ ∘ h₂ ∎
; unique = λ {_ h₁ h₂ i} eq eq′ → q.unique eq $ begin
q.p₂ ∘ i ≈⟨ pushˡ (⟺ p.p₂∘universal≈h₂) ⟩
p.p₂ ∘ p₂′ ∘ i ≈⟨ refl⟩∘⟨ eq′ ⟩
p.p₂ ∘ h₂ ∎
; p₁∘universal≈h₁ = q.p₁∘universal≈h₁
; p₂∘universal≈h₂ = λ {_ _ _ eq} →
p.unique-diagram ((pullˡ p.p₁∘universal≈h₁) ○ pullʳ q.p₁∘universal≈h₁ ○ eq)
(pullˡ p.p₂∘universal≈h₂ ○ q.p₂∘universal≈h₂)
}
where module p = Pullback p
module q = Pullback q
p₂′ = p.universal (⟺ assoc ○ q.commute) -- used twice above
Product×Equalizer⇒Pullback :
(p : Product A B) → Equalizer (f ∘ Product.π₁ p) (g ∘ Product.π₂ p) →
Pullback f g
Product×Equalizer⇒Pullback {f = f} {g = g} p e = record
{ p₁ = π₁ ∘ arr
; p₂ = π₂ ∘ arr
; commute = ⟺ assoc ○ equality ○ assoc
; universal = λ {_ h₁ h₂} eq → equalize $ begin
(f ∘ π₁) ∘ ⟨ h₁ , h₂ ⟩ ≈⟨ pullʳ project₁ ⟩
f ∘ h₁ ≈⟨ eq ⟩
g ∘ h₂ ≈˘⟨ pullʳ project₂ ⟩
(g ∘ π₂) ∘ ⟨ h₁ , h₂ ⟩ ∎
; unique = λ eq eq′ → e.unique (p.unique (⟺ assoc ○ eq) (⟺ assoc ○ eq′))
; p₁∘universal≈h₁ = pullʳ (⟺ e.universal) ○ project₁
; p₂∘universal≈h₂ = pullʳ (⟺ e.universal) ○ project₂
}
where module p = Product p
module e = Equalizer e
open p
open e
Product×Pullback⇒Equalizer : (p : Product A B) → Pullback f g →
Equalizer (f ∘ Product.π₁ p) (g ∘ Product.π₂ p)
Product×Pullback⇒Equalizer {f = f} {g = g} p pu = record
{ arr = ⟨ p₁ , p₂ ⟩
; equality = begin
(f ∘ π₁) ∘ ⟨ p₁ , p₂ ⟩ ≈⟨ pullʳ project₁ ⟩
f ∘ p₁ ≈⟨ commute ⟩
g ∘ p₂ ≈˘⟨ pullʳ project₂ ⟩
(g ∘ π₂) ∘ ⟨ p₁ , p₂ ⟩ ∎
; equalize = λ eq → pu.universal (⟺ assoc ○ eq ○ assoc)
; universal = λ {_ h} → begin
h ≈˘⟨ p.unique (⟺ p₁∘universal≈h₁) (⟺ p₂∘universal≈h₂) ⟩
⟨ p₁ ∘ _ , p₂ ∘ _ ⟩ ≈⟨ p.unique (pullˡ project₁) (pullˡ project₂) ⟩
⟨ p₁ , p₂ ⟩ ∘ _ ∎
; unique = λ eq → pu.unique (pushˡ (⟺ project₁) ○ ⟺ (∘-resp-≈ʳ eq))
(pushˡ (⟺ project₂) ○ ⟺ (∘-resp-≈ʳ eq))
}
where module p = Product p
module pu = Pullback pu
open p
open pu
module _ (p : Pullback f g) where
open Pullback p
Pullback-resp-≈ : h ≈ f → i ≈ g → Pullback h i
Pullback-resp-≈ eq eq′ = record
{ p₁ = p₁
; p₂ = p₂
; commute = ∘-resp-≈ˡ eq ○ commute ○ ⟺ (∘-resp-≈ˡ eq′)
; universal = λ eq″ → universal (∘-resp-≈ˡ (⟺ eq) ○ eq″ ○ ∘-resp-≈ˡ eq′)
; unique = unique
; p₁∘universal≈h₁ = p₁∘universal≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂
}
Pullback-resp-Mono : Mono g → Mono p₁
Pullback-resp-Mono mg h i eq = unique-diagram eq (mg _ _ eq′)
where eq′ : g ∘ p₂ ∘ h ≈ g ∘ p₂ ∘ i
eq′ = begin
g ∘ p₂ ∘ h ≈⟨ extendʳ (sym commute) ⟩
f ∘ p₁ ∘ h ≈⟨ refl⟩∘⟨ eq ⟩
f ∘ p₁ ∘ i ≈⟨ extendʳ commute ⟩
g ∘ p₂ ∘ i ∎
Pullback-resp-Iso : Iso g h → ∃ λ i → Iso p₁ i
Pullback-resp-Iso {h = h} iso = universal eq
, record
{ isoˡ = unique-diagram eq₁ eq₂
; isoʳ = p₁∘universal≈h₁
}
where open Iso iso
eq = begin
f ∘ id ≈⟨ introˡ refl ⟩
id ∘ f ∘ id ≈⟨ pushˡ (⟺ isoʳ) ⟩
g ∘ h ∘ f ∘ id ∎
eq₁ = begin
p₁ ∘ universal eq ∘ p₁ ≈⟨ cancelˡ p₁∘universal≈h₁ ⟩
p₁ ≈˘⟨ identityʳ ⟩
p₁ ∘ id ∎
eq₂ = begin
p₂ ∘ universal eq ∘ p₁ ≈⟨ extendʳ p₂∘universal≈h₂ ⟩
h ∘ (f ∘ id) ∘ p₁ ≈⟨ refl ⟩∘⟨ identityʳ ⟩∘⟨ refl ⟩
h ∘ f ∘ p₁ ≈⟨ refl ⟩∘⟨ commute ⟩
h ∘ g ∘ p₂ ≈⟨ cancelˡ isoˡ ⟩
p₂ ≈˘⟨ identityʳ ⟩
p₂ ∘ id ∎
|
{
"alphanum_fraction": 0.4765999436,
"avg_line_length": 36.0101522843,
"ext": "agda",
"hexsha": "f96f0f5123e7e1f5181c83189252f6e2f5897e0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Diagram/Pullback.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Diagram/Pullback.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Diagram/Pullback.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2897,
"size": 7094
}
|
-- Environment model of the STLC
module STLC.Model where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import SOAS.Abstract.Monoid
open import SOAS.Coalgebraic.Lift
open import STLC.Signature
open import STLC.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution Λ:Syn
open import SOAS.Metatheory.SecondOrder.Equality Λ:Syn
open import SOAS.Metatheory.FreeMonoid Λ:Syn
open import SOAS.Syntax.Arguments
open import Data.Nat
private
variable
α β γ τ : ΛT
Γ Δ Π : Ctx
𝔛 : Familyₛ
Λᴳ : Familyₛ
Λᴳ = Λ Ø
-- Interpretation of types and contexts
⟦_⟧ : ΛT → Set
⟦ N ⟧ = ℕ
⟦ α ↣ β ⟧ = ⟦ α ⟧ → ⟦ β ⟧
⟦_⟧ᶜ : Ctx → Set
⟦ Γ ⟧ᶜ = {α : ΛT} → ℐ α Γ → ⟦ α ⟧
_⁺_ : ⟦ α ⟧ → ⟦ Γ ⟧ᶜ → ⟦ α ∙ Γ ⟧ᶜ
_⁺_ x γ new = x
_⁺_ x γ (old v) = γ v
infixr 10 _⁺_
-- Environment model
Env : Familyₛ
Env α Γ = ⟦ Γ ⟧ᶜ → ⟦ α ⟧
ΣEnvᴹ : ΣMon Env
ΣEnvᴹ = record
{ ᵐ = record
{ η = λ v γ → γ v ; μ = λ t σ δ → t (λ v → σ v δ)
; lunit = refl ; runit = refl ; assoc = refl }
; 𝑎𝑙𝑔 = λ{ (appₒ ⋮ f , a) γ → f γ (a γ)
; (lamₒ ⋮ b) γ → λ a → b (a ⁺ γ) }
; μ⟨𝑎𝑙𝑔⟩ = λ{ (appₒ ⋮ _) → refl
; (lamₒ ⋮ b) → ext² λ δ a → cong b (dext
(λ { new → refl ; (old y) → refl })) } }
module Env = FΣM Ø ΣEnvᴹ (λ ())
eval : Λ Ø ⇾̣ Env
eval = Env.𝕖𝕩𝕥
evalᶜ : Λ Ø α ∅ → ⟦ α ⟧
evalᶜ t = eval t (λ ())
_ : evalᶜ {N ↣ N ↣ N} (ƛ ƛ x₁) ≡ λ x y → x
_ = refl
open Theory Ø
-- Operational semantics of the STLC
data Value : Λᴳ α Γ → Set where
lamⱽ : {b : Λᴳ β (α ∙ Γ)} →
Value (ƛ b)
data _⟿_ : Λᴳ α Γ → Λᴳ α Γ → Set where
ζ-$₁ : {f g : Λᴳ (α ↣ β) Γ}{a : Λᴳ α Γ} →
f ⟿ g → f $ a ⟿ g $ a
ζ-$₂ : {f : Λᴳ (α ↣ β) Γ}{a b : Λᴳ α Γ} →
Value f → a ⟿ b → f $ a ⟿ f $ b
β-ƛ : {b : Λᴳ β (α ∙ Γ)}{t : Λᴳ α Γ} →
Value t → ((ƛ b) $ t) ⟿ [ t /] b
infix 2 _⟿_
-- Evaluation preserves the meaning of terms
sound : {t s : Λᴳ α Γ} → t ⟿ s → (γ : ⟦ Γ ⟧ᶜ) → eval t γ ≡ eval s γ
sound (ζ-$₁ r) γ rewrite sound r γ = refl
sound (ζ-$₂ _ r) γ rewrite sound r γ = refl
sound (β-ƛ {b = b}{t} x) γ rewrite Env.𝕖𝕩𝕥ᵐ⇒.sub-lemma t b =
cong (eval b) (dext λ{ new → refl ; (old v) → refl })
|
{
"alphanum_fraction": 0.5521796565,
"avg_line_length": 24.1595744681,
"ext": "agda",
"hexsha": "17c98996d682f736589c104fb16b3895a3271cb5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "out/STLC/Model.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "out/STLC/Model.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "out/STLC/Model.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1100,
"size": 2271
}
|
-- Andreas, 2016-12-12, issue #2046, reported by Nad
-- Parameter refinement broke the size solver.
-- {-# OPTIONS -v tc.size.solve:100 #-}
-- {-# OPTIONS -v tc.constr.cast:100 #-}
-- -- {-# OPTIONS -v tc.sig.param:60 #-}
-- -- {-# OPTIONS -v tc.check.internal:100 #-}
-- -- {-# OPTIONS -v interaction.give:100 #-}
open import Agda.Builtin.Size using (Size; Size<_)
data _×_ (A B : Set) : Set where
_,_ : A → B → A × B
record Always {A : Set} (P : A → Set) : Set where
field
always : ∀ x → P x
postulate
A : Set
module M (P : A → Set) where
record R₁ (i : Size) (x : A) : Set where
coinductive
field
force : {j : Size< i} → R₁ j x
record R₂ (i : Size) (x : A) : Set where
inductive
constructor ⟨_,_⟩
field
f₁ : P x
f₂ : P x → R₁ i x
data P : A → Set where
c : (y : A) → P y → P y
postulate
p : (x : A) → P x
a : (i : Size) → Always (M.R₁ P i)
module _ (Unused : Set) where
open M P
rejected : ∀ i z → R₂ i z
rejected i z =
⟨ p z
, (λ { (c y q) → Always.always (a _) z })
⟩
-- Should succeed
{-
Solving constraints (DontDefaultToInfty)
i =< _i_31 Unused i z : Size
_i_31 Unused i z =< _i_35 z Unused i q : Size
converting size constraint i =< _i_31 Unused i z : Size
converting size constraint
_i_31 Unused i z =< _i_35 z Unused i q : Size
Solving constraint cluster
[Unused, i, z] i ≤ _i_31 Unused i z
[z, Unused, i, q] _i_31 Unused i z ≤ _i_35 z Unused i q
Size hypotheses
Canonicalized constraints
[z, Unused, i, q] Unused ≤ _i_31 z Unused i
[z, Unused, i, q] _i_31 Unused i z ≤ _i_35 z Unused i q
solution _i_31 z Unused i := Unused
xs = [3,2,1]
u = Var 2 []
solution _i_35 z Unused i q := Unused
xs = [3,2,1,0]
u = Var 2 []
-}
|
{
"alphanum_fraction": 0.5875933372,
"avg_line_length": 22.9078947368,
"ext": "agda",
"hexsha": "98dfaaa14a2593be4ca7c6cd18435e0a21567168",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2046.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2046.agda",
"max_line_length": 55,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2046.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 646,
"size": 1741
}
|
{-
Matrix with coefficients in integers
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.IntegerMatrix.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function hiding (const)
open import Cubical.Foundations.Powerset
open import Cubical.Data.Nat
hiding (_·_)
renaming (_+_ to _+ℕ_ ; +-assoc to +Assocℕ)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Nat.Divisibility
using (m∣n→m≤n)
renaming (∣-trans to ∣ℕ-trans)
open import Cubical.Data.Int
hiding (_+_ ; _·_ ; _-_ ; -_ ; addEq)
open import Cubical.Data.Int.Divisibility
open import Cubical.Data.FinData
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit as Unit
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Algebra.Matrix
open import Cubical.Algebra.Matrix.CommRingCoefficient
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Int
renaming (ℤ to ℤRing)
open import Cubical.Relation.Nullary
open import Cubical.Induction.WellFounded
private
variable
m n k : ℕ
open CommRingStr (ℤRing .snd)
open Coefficient ℤRing
open Sum (CommRing→Ring ℤRing)
-- Using well-foundedness to do induction
Norm : ℤ → Type
Norm n = Acc _<_ (abs n)
-- Divisibility of matrix elements
∣-sum :
(a : ℤ)(V : FinVec ℤ n)
→ ((i : Fin n) → a ∣ V i)
→ a ∣ ∑ V
∣-sum {n = 0} _ _ _ = ∣-zeroʳ
∣-sum {n = suc n} _ _ p = ∣-+ (p zero) (∣-sum _ _ (p ∘ suc))
∣-left⋆ :
(a : ℤ)(M : Mat m n)(N : Mat n k)
→ ((i : Fin m)(j : Fin n) → a ∣ M i j)
→ (i : Fin m)(j : Fin k) → a ∣ (M ⋆ N) i j
∣-left⋆ a M N div i j =
∣-sum a (λ l → M i l · N l j) (λ l → ∣-left· (div i l))
∣-right⋆ :
(a : ℤ)(M : Mat m n)(N : Mat n k)
→ ((i : Fin n)(j : Fin k) → a ∣ N i j)
→ (i : Fin m)(j : Fin k) → a ∣ (M ⋆ N) i j
∣-right⋆ a M N div i j =
∣-sum a (λ l → M i l · N l j) (λ l → ∣-right· {n = M i l} (div l j))
open SimRel
open Sim
sim∣ :
(a : ℤ)(M : Mat m n)
→ (sim : Sim M)
→ ((i : Fin m)(j : Fin n) → a ∣ M i j)
→ (i : Fin m)(j : Fin n) → a ∣ sim .result i j
sim∣ a M sim div i j =
subst (a ∣_) (λ t → sim .simrel .transEq (~ t) i j)
(∣-left⋆ _ _ (sim .simrel .transMatR)
(∣-right⋆ _ (sim .simrel .transMatL) _ div) i j)
-- Find a pivot to begin reduction
data PivotOrNot (a : ℤ)(M : Mat (suc m) (suc n)) : Type where
pivot : (i : Fin (suc m))(j : Fin (suc n))(p : ¬ a ∣ M i j) → PivotOrNot a M
noPivot : ((i : Fin (suc m))(j : Fin (suc n)) → a ∣ M i j) → PivotOrNot a M
findPivot : (a : ℤ)(M : Mat (suc m) (suc n)) → PivotOrNot a M
findPivot a M =
let pivot? = ∀Dec2 (λ i j → a ∣ M i j) (λ _ _ → dec∣ _ _) in
case pivot?
return (λ _ → PivotOrNot a M) of λ
{ (inl p) → noPivot p
; (inr p) → pivot (p .fst) (p .snd .fst) (p . snd .snd) }
-- Find an non-zero element
data NonZeroOrNot (M : Mat (suc m) (suc n)) : Type where
hereIs : (i : Fin (suc m))(j : Fin (suc n))(p : ¬ M i j ≡ 0) → NonZeroOrNot M
allZero : M ≡ 𝟘 → NonZeroOrNot M
findNonZero : (M : Mat (suc m) (suc n)) → NonZeroOrNot M
findNonZero M =
let nonZero? = ∀Dec2 (λ i j → M i j ≡ 0) (λ _ _ → discreteℤ _ 0) in
case nonZero?
return (λ _ → NonZeroOrNot M) of λ
{ (inl p) → allZero (λ t i j → p i j t)
; (inr p) → hereIs (p .fst) (p .snd .fst) (p . snd .snd) }
|
{
"alphanum_fraction": 0.5976011994,
"avg_line_length": 28.2627118644,
"ext": "agda",
"hexsha": "77d1441c37f1e5770e0da002dbda019bccfb6f8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/IntegerMatrix/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/IntegerMatrix/Base.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/IntegerMatrix/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1349,
"size": 3335
}
|
{-# OPTIONS --exact-split #-}
-- The --exact-split flag causes Agda to raise an error whenever
-- a clause in a definition by pattern matching cannot be made to
-- hold definitionally (i.e. as a reduction rule). Specific clauses
-- can be excluded from this check by means of the {-# CATCHALL #-}
-- pragma.
module ExactSplit where
data Bool : Set where
true false : Bool
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = zero
(suc m) + n = suc (m + n)
eq : ℕ → ℕ → Bool
eq zero zero = true
eq (suc m) (suc n) = eq m n
{-# CATCHALL #-}
eq _ _ = false
-- See also fail/ExactSplitMin.agda
min : ℕ → ℕ → ℕ
min zero y = zero
{-# CATCHALL #-}
min x zero = zero
min (suc x) (suc y) = suc (min x y)
-- See also fail/ExactSplitBerry.agda
maj : Bool → Bool → Bool → Bool
maj true true true = true
{-# CATCHALL #-}
maj x true false = x
{-# CATCHALL #-}
maj false y true = y
maj true false z = z
maj false false false = false
-- See also fail/ExactSplitParity.agda
parity : ℕ → ℕ → Bool
parity zero zero = true
parity zero (suc zero) = false
parity zero (suc (suc n)) = parity zero n
parity (suc zero) zero = false
parity (suc (suc m)) zero = parity m zero
{-# CATCHALL #-}
parity (suc m) (suc n) = parity m n
|
{
"alphanum_fraction": 0.5815654718,
"avg_line_length": 25.3148148148,
"ext": "agda",
"hexsha": "00a87798c9fdcd2e068a2c5d797066d6cf1f6f97",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ExactSplit.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ExactSplit.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ExactSplit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 423,
"size": 1367
}
|
module Numeral.Finite.Conversions where
import Lvl
open import Data using (Empty ; Unit ; <>)
open import Data.Boolean using (Bool ; 𝐹 ; 𝑇)
open import Data.Tuple using (_,_)
open import Logic.Propositional using (_↔_)
open import Numeral.Finite
open import Numeral.Natural
open import Syntax.Number
private variable ℓ : Lvl.Level
empty : 𝕟(0) ↔ Empty{ℓ}
empty = (\()) , (\())
unit : 𝕟(1) ↔ Unit{ℓ}
unit = (\{<> → 0}) , (\{𝟎 → <>})
bool : 𝕟(2) ↔ Bool
bool = (\{𝐹 → 0 ; 𝑇 → 1}) , (\{𝟎 → 𝐹 ; (𝐒(𝟎)) → 𝑇})
|
{
"alphanum_fraction": 0.6159844055,
"avg_line_length": 23.3181818182,
"ext": "agda",
"hexsha": "6723c22d13545676327458619792f61d80cc626a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite/Conversions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite/Conversions.agda",
"max_line_length": 51,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite/Conversions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 196,
"size": 513
}
|
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Equivalence
module HoTT.Equivalence.Lift where
open variables
Lift-equiv : Lift {i} A ≃ A
Lift-equiv = iso→eqv λ{.f → lower ; .g → lift ; .η _ → refl ; .ε _ → refl}
where open Iso
|
{
"alphanum_fraction": 0.6666666667,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "3eadbb2730efc0ee1af18536416c5af7bddc89c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Equivalence/Lift.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Equivalence/Lift.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Equivalence/Lift.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 83,
"size": 252
}
|
module prelude where
open import level public
open import product public
open import product-thms public
open import sum public
open import empty public
open import unit public
open import functions renaming (id to id-set) public
open import eq public
open import list public
open import list-thms public
open import bool public
open import nat public
open import nat-thms public
-- Extensionality will be used when proving equivalences of morphisms.
postulate ext-set : ∀{l1 l2 : level} → extensionality {l1} {l2}
-- These are isomorphisms, but Agda has no way to prove these as
-- equivalences. They are consistent to adopt as equivalences by
-- univalence:
postulate ∧-unit : ∀{ℓ}{A : Set ℓ} → A ≡ (⊤ {ℓ} ∧ A)
postulate ∧-assoc : ∀{ℓ}{A B C : Set ℓ} → (A ∧ (B ∧ C)) ≡ ((A ∧ B) ∧ C)
postulate ∧-twist : ∀{ℓ}{A B : Set ℓ} → (A ∧ B) ≡ (B ∧ A)
-- Provable from the above axioms:
postulate assoc-twist₁ : {A B C D : Set} → ((A × C) × (B × D)) ≡ ((A × B) × (C × D))
-- The following defines a commutative monoid as lists:
_* = 𝕃
postulate *-comm : ∀{A : Set}{l₁ l₂ : A *} → l₁ ++ l₂ ≡ l₂ ++ l₁
|
{
"alphanum_fraction": 0.6715195632,
"avg_line_length": 33.303030303,
"ext": "agda",
"hexsha": "55e57f432bcc5101d45e0761e1d6651e8ff44238",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "dialectica-cats/prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "dialectica-cats/prelude.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "dialectica-cats/prelude.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 365,
"size": 1099
}
|
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Transitivity
module Oscar.Class.Transitivity.Function where
module _
{a}
where
instance
𝓣ransitivityFunction : Transitivity.class Function⟦ a ⟧
𝓣ransitivityFunction .⋆ f g = g ∘ f
|
{
"alphanum_fraction": 0.7545787546,
"avg_line_length": 17.0625,
"ext": "agda",
"hexsha": "6091fc5c8f0892e4681e9bcd7fed3a359f60c43a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transitivity/Function.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transitivity/Function.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transitivity/Function.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 76,
"size": 273
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Sets.FinSet.Definition
module Sets.Cardinality.Infinite.Definition where
InfiniteSet : {a : _} (A : Set a) → Set a
InfiniteSet A = (n : ℕ) → (f : FinSet n → A) → (Bijection f) → False
record DedekindInfiniteSet {a : _} (A : Set a) : Set a where
field
inj : ℕ → A
isInjection : Injection inj
|
{
"alphanum_fraction": 0.6993603412,
"avg_line_length": 27.5882352941,
"ext": "agda",
"hexsha": "fb6679891bb9fb2a9b3df0b14fc72c5c0e2d19a1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/Cardinality/Infinite/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/Cardinality/Infinite/Definition.agda",
"max_line_length": 68,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/Cardinality/Infinite/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 141,
"size": 469
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
pathological : (e : 9999999999 ≡ 9999999999) → Set
pathological refl = Nat
|
{
"alphanum_fraction": 0.7714285714,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "30d4d851d756460102b1186c869a44d14a5e6317",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/UnifyLiteral.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/UnifyLiteral.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/UnifyLiteral.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 140
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Container combinators
------------------------------------------------------------------------
module Data.Container.Combinator where
open import Data.Container
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product as Prod hiding (Σ) renaming (_×_ to _⟨×⟩_)
open import Data.Sum renaming (_⊎_ to _⟨⊎⟩_)
open import Data.Unit using (⊤)
open import Function as F hiding (id; const) renaming (_∘_ to _⟨∘⟩_)
open import Function.Inverse using (_↔_)
open import Level
open import Relation.Binary.PropositionalEquality as P
using (_≗_; refl)
------------------------------------------------------------------------
-- Combinators
-- Identity.
id : ∀ {c} → Container c
id = Lift ⊤ ▷ F.const (Lift ⊤)
-- Constant.
const : ∀ {c} → Set c → Container c
const X = X ▷ F.const (Lift ⊥)
-- Composition.
infixr 9 _∘_
_∘_ : ∀ {c} → Container c → Container c → Container c
C₁ ∘ C₂ = ⟦ C₁ ⟧ (Shape C₂) ▷ ◇ (Position C₂)
-- Product. (Note that, up to isomorphism, this is a special case of
-- indexed product.)
infixr 2 _×_
_×_ : ∀ {c} → Container c → Container c → Container c
C₁ × C₂ =
(Shape C₁ ⟨×⟩ Shape C₂) ▷
uncurry (λ s₁ s₂ → Position C₁ s₁ ⟨⊎⟩ Position C₂ s₂)
-- Indexed product.
Π : ∀ {c} {I : Set c} → (I → Container c) → Container c
Π C = (∀ i → Shape (C i)) ▷ λ s → ∃ λ i → Position (C i) (s i)
-- Sum. (Note that, up to isomorphism, this is a special case of
-- indexed sum.)
infixr 1 _⊎_
_⊎_ : ∀ {c} → Container c → Container c → Container c
C₁ ⊎ C₂ = (Shape C₁ ⟨⊎⟩ Shape C₂) ▷ [ Position C₁ , Position C₂ ]
-- Indexed sum.
Σ : ∀ {c} {I : Set c} → (I → Container c) → Container c
Σ C = (∃ λ i → Shape (C i)) ▷ λ s → Position (C (proj₁ s)) (proj₂ s)
-- Constant exponentiation. (Note that this is a special case of
-- indexed product.)
infix 0 const[_]⟶_
const[_]⟶_ : ∀ {c} → Set c → Container c → Container c
const[ X ]⟶ C = Π {I = X} (F.const C)
------------------------------------------------------------------------
-- Correctness proofs
-- I have proved some of the correctness statements under the
-- assumption of functional extensionality. I could have reformulated
-- the statements using suitable setoids, but I could not be bothered.
module Identity where
correct : ∀ {c} {X : Set c} → ⟦ id ⟧ X ↔ F.id X
correct {c} = record
{ to = P.→-to-⟶ {a = c} λ xs → proj₂ xs _
; from = P.→-to-⟶ {b₁ = c} λ x → (_ , λ _ → x)
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
module Constant (ext : ∀ {ℓ} → P.Extensionality ℓ ℓ) where
correct : ∀ {ℓ} (X : Set ℓ) {Y} → ⟦ const X ⟧ Y ↔ F.const X Y
correct X {Y} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ right-inverse-of = λ _ → refl
; left-inverse-of =
λ xs → P.cong (_,_ (proj₁ xs)) (ext (λ x → ⊥-elim (lower x)))
}
}
where
to : ⟦ const X ⟧ Y → X
to = proj₁
from : X → ⟦ const X ⟧ Y
from = < F.id , F.const (⊥-elim ∘′ lower) >
module Composition where
correct : ∀ {c} (C₁ C₂ : Container c) {X : Set c} →
⟦ C₁ ∘ C₂ ⟧ X ↔ (⟦ C₁ ⟧ ⟨∘⟩ ⟦ C₂ ⟧) X
correct C₁ C₂ {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ C₁ ∘ C₂ ⟧ X → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)
to ((s , f) , g) = (s , < f , curry g >)
from : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₁ ∘ C₂ ⟧ X
from (s , f) = ((s , proj₁ ⟨∘⟩ f) , uncurry (proj₂ ⟨∘⟩ f))
module Product (ext : ∀ {ℓ} → P.Extensionality ℓ ℓ) where
correct : ∀ {c} (C₁ C₂ : Container c) {X : Set c} →
⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X ⟨×⟩ ⟦ C₂ ⟧ X)
correct {c} C₁ C₂ {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ C₁ × C₂ ⟧ X → ⟦ C₁ ⟧ X ⟨×⟩ ⟦ C₂ ⟧ X
to ((s₁ , s₂) , f) = ((s₁ , f ⟨∘⟩ inj₁) , (s₂ , f ⟨∘⟩ inj₂))
from : ⟦ C₁ ⟧ X ⟨×⟩ ⟦ C₂ ⟧ X → ⟦ C₁ × C₂ ⟧ X
from ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ])
from∘to : from ⟨∘⟩ to ≗ F.id
from∘to (s , f) =
P.cong (_,_ s) (ext {ℓ = c} [ (λ _ → refl) , (λ _ → refl) ])
module IndexedProduct where
correct : ∀ {c I} (C : I → Container c) {X : Set c} →
⟦ Π C ⟧ X ↔ (∀ i → ⟦ C i ⟧ X)
correct {I = I} C {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ Π C ⟧ X → ∀ i → ⟦ C i ⟧ X
to (s , f) = λ i → (s i , λ p → f (i , p))
from : (∀ i → ⟦ C i ⟧ X) → ⟦ Π C ⟧ X
from f = (proj₁ ⟨∘⟩ f , uncurry (proj₂ ⟨∘⟩ f))
module Sum where
correct : ∀ {c} (C₁ C₂ : Container c) {X : Set c} →
⟦ C₁ ⊎ C₂ ⟧ X ↔ (⟦ C₁ ⟧ X ⟨⊎⟩ ⟦ C₂ ⟧ X)
correct C₁ C₂ {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = from∘to
; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ]
}
}
where
to : ⟦ C₁ ⊎ C₂ ⟧ X → ⟦ C₁ ⟧ X ⟨⊎⟩ ⟦ C₂ ⟧ X
to (inj₁ s₁ , f) = inj₁ (s₁ , f)
to (inj₂ s₂ , f) = inj₂ (s₂ , f)
from : ⟦ C₁ ⟧ X ⟨⊎⟩ ⟦ C₂ ⟧ X → ⟦ C₁ ⊎ C₂ ⟧ X
from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]
from∘to : from ⟨∘⟩ to ≗ F.id
from∘to (inj₁ s₁ , f) = refl
from∘to (inj₂ s₂ , f) = refl
module IndexedSum where
correct : ∀ {c I} (C : I → Container c) {X : Set c} →
⟦ Σ C ⟧ X ↔ (∃ λ i → ⟦ C i ⟧ X)
correct {I = I} C {X} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ left-inverse-of = λ _ → refl
; right-inverse-of = λ _ → refl
}
}
where
to : ⟦ Σ C ⟧ X → ∃ λ i → ⟦ C i ⟧ X
to ((i , s) , f) = (i , (s , f))
from : (∃ λ i → ⟦ C i ⟧ X) → ⟦ Σ C ⟧ X
from (i , (s , f)) = ((i , s) , f)
module ConstantExponentiation where
correct : ∀ {c X} (C : Container c) {Y : Set c} →
⟦ const[ X ]⟶ C ⟧ Y ↔ (X → ⟦ C ⟧ Y)
correct C = IndexedProduct.correct (F.const C)
|
{
"alphanum_fraction": 0.4706812075,
"avg_line_length": 28.3721973094,
"ext": "agda",
"hexsha": "f3c7bf3abb1b74182706814ea39c5edd4ef96d0b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/Combinator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/Combinator.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/Combinator.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2479,
"size": 6327
}
|
test : Set → Set
test A with A
test | B = B
|
{
"alphanum_fraction": 0.5909090909,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "60317a31cd2491a40e4aced0bbb9bffb7c7c522e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/WithTooFewPatterns.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/WithTooFewPatterns.agda",
"max_line_length": 16,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/WithTooFewPatterns.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 17,
"size": 44
}
|
module Sec4 where
-- open import Sec2
Prop : Set₁
Prop = Set
Value : Set₁
Value = Set
-- XXX: The true type
data ⊤ : Prop where
⋆ : ⊤
-- XXX: The false type
data ⊥ : Prop where
-- XXX: Conjunction of Propositions
data _∧_ (A B : Prop) : Prop where
and : A → B → (A ∧ B)
-- XXX: The disjuction of propositions
data _∨_ (A B : Prop) : Prop where
ora : A → A ∨ B
orb : B → A ∨ B
-- XXX: implication
data _⇒_ (A B : Prop) : Prop where
impl : (f : A → B) → A ⇒ B
infixr 2 _⇒_
-- XXX: equivalence
data _⇔_ (A B : Prop) : Prop where
eq : (f₁ : A ⇒ B) → (f₂ : B ⇒ A) → A ⇔ B
-- XXX: Negation as a function
data ¬_ (A : Prop) : Prop where
neg : A ⇒ ⊥ → (¬ A)
-- XXX: Elimination rules as functions
-- XXX: Eliminating ≡>
elim-⇒ : {A B : Prop} → (f₁ : A ⇒ B) → A → B
elim-⇒ (impl f) x = f x
elim1-⇔ : {A B : Prop} → (A ⇔ B) → A → B
elim1-⇔ (eq (impl f) _) x = f x
elim2-⇔ : {A B : Prop} → (A ⇔ B) → B → A
elim2-⇔ (eq _ (impl f₁)) x = f₁ x
-- XXX: Eliminating disjunction
elim-∨ : {A B C : Prop} → (A ∨ B) → (A → C) → (B → C) → C
elim-∨ (ora x) f₁ _ = f₁ x
elim-∨ (orb x) _ f₂ = f₂ x
-- XXX: Eliminating conjuction
elim1-∧ : {A B : Prop} → (A ∧ B) → A
elim1-∧ (and x x₁) = x
elim2-∧ : {A B : Prop} → (A ∧ B) → B
elim2-∧ (and x x₁) = x₁
-- TODO: Example of proofs of tautology
-- XXX: Easy one
ex1 : {A B : Prop} → ((A ⇒ B) ∧ (B ⇒ A)) ⇔ (A ⇔ B)
ex1 {A} {B} =
eq
(impl (λ x →
let x1 = elim1-∧ x
x2 = elim2-∧ x
in
eq (impl (λ x₁ → elim-⇒ x1 x₁))
(impl (λ x₁ → elim-⇒ x2 x₁))))
(impl (λ x →
let x1 = elim1-⇔ x
x2 = elim2-⇔ x
in
and
(impl (λ x₁ → x1 x₁))
(impl (λ x₁ → x2 x₁))))
-- XXX: Transitivity
ex2 : {A B C : Prop} → ((A ⇒ B) ∧ (B ⇒ C)) ⇒ (A ⇒ C)
ex2 = impl (λ x →
impl (λ x₁ → elim-⇒ (elim2-∧ x) (elim-⇒ (elim1-∧ x) x₁)))
-- XXX: Transitivity in the function space of Agda itself. Equivalent to
-- the above one.
trans : {A B C : Set} → ((A → B) ∧ (B → C)) → (A → C)
trans (and x1 x2) z = let t = x1 z
t1 = x2 t
in t1
-- (elim-⇒ x x₂)
transitivity : {A B C : Prop} → (A ⇒ B) ⇒ (B ⇒ C) ⇒ (A ⇒ C)
transitivity = impl (λ x →
impl
(λ x₁ → impl
(λ x₂ →
elim-⇒ x₁ (elim-⇒ x x₂))))
-- XXX: Moving ∧ into Agda's space. Equivalent to transitivity and trans
-- above.
trans' : {A B C : Set} → (A → B) → (B → C) → (A → C)
trans' x y = λ z → y (x z)
-- XXX: absorption law
absorption : {P Q : Prop} → (P ∨ (P ∧ Q)) ⇔ P
absorption {p} {q} =
eq
(impl (λ x → let x1 = elim-∨ x (λ p → p) (λ y → elim1-∧ y) in x1))
(impl (λ x → ora x))
-- XXX: commutativity
commute : {P Q : Prop} → (P ∧ Q) ⇔ (Q ∧ P)
commute = eq (impl (λ x → and (elim2-∧ x) (elim1-∧ x)))
(impl (λ x → and (elim2-∧ x) (elim1-∧ x)))
-- XXX: associativity
associative : {P Q R : Prop} → ((P ∧ Q) ∧ R) ⇔ (P ∧ (Q ∧ R))
associative = eq
(impl (λ x →
and (elim1-∧ (elim1-∧ x))
(and (elim2-∧ (elim1-∧ x)) (elim2-∧ x))))
(impl (λ x →
and (and (elim1-∧ x) (elim1-∧ (elim2-∧ x)))
(elim2-∧ (elim2-∧ x))))
elim-neg : {A : Prop} → A → (¬ A) → ⊥
elim-neg y (neg x) = elim-⇒ x y
eet : {A B : Prop} → ((¬ A) ∧ (¬ B)) ⇒ (¬ (A ∧ B))
eet = impl (λ x → neg (impl (λ x₁ → elim-neg (elim1-∧ x₁) (elim1-∧ x))))
-- tt : {A : Prop} → (A ∨ (¬ A)) → (¬ (¬ A)) → A
-- tt (ora x) (neg y) = x
-- tt {A} (orb x) (neg y) =
-- let
-- z = elim-⇒ y x
-- t = elim-neg {!!} x
-- in
-- {!!}
-- XXX: A ⇒ ¬¬ A
f : {A : Prop} → A ⇒ (¬ (¬ A))
f = impl (λ x → neg (impl (λ x₁ → elim-neg x x₁)))
-- A⇔¬¬A : {A : Prop} → A ⇔ (¬ (¬ A))
-- A⇔¬¬A = eq (impl (λ x → neg (impl (λ x₁ → elim-neg x x₁))))
-- (impl (λ x → {!!}))
-- A⇔A⇒⊥⇒⊥ : {A : Prop} → (A ⇔ ((A ⇒ ⊥) ⇒ ⊥))
-- A⇔A⇒⊥⇒⊥ = eq (impl (λ x → impl (λ x₁ → elim-⇒ x₁ x)))
-- (impl (λ x → {!!}))
-- AC⇒Contra : {A : Prop} → (A ∨ (¬ A)) ⇒ ((¬ (¬ A)) ⇒ A)
-- AC⇒Contra = impl (λ x → impl (λ x₁ → {!!}))
-- XXX: Axiom of choice one way
C-⇒ : {P : Prop} → (P ∨ (¬ P)) ⇒ ⊤
C-⇒ = impl (λ _ → ⋆)
-- XXX: Axiom of choice
-- C-⇔ : {P : Prop} → (P ∨ (¬ P)) ⇔ ⊤
-- C-⇔ = eq
-- (impl (λ _ → ⋆))
-- -- XXX: The following proof is impossible todo
-- -- Goal: .P ∨ (¬ .P)
-- -- ————————————————————————————————————————————————————————————
-- -- x : ⊤
-- -- .P : Prop
-- (impl (λ x → {!!})) -- XXX: We do not have any proof object of P
-- -- on the right hand side. This is the
-- -- difference between constructive logic, and
-- -- classical logic.
-- distributive : {p q r : Prop} → (p ∧ (q ∨ r)) ⇔ ((p ∧ q) ∨ (p ∧ r))
-- distributive =
-- eq
-- (impl (λ x →
-- let p = elim1-∧ x
-- x2 = elim2-∧ x
-- x3 = elim-∨ x2 (λ q → q) (λ x₁ → {!!})
-- in
-- ora (and p x3)))
-- (impl (λ x →
-- let x1 = elim-∨ x (λ l → elim1-∧ l) (λ r → elim1-∧ r)
-- x2 = elim-∨ x (λ x₁ → {!!}) (λ r → elim2-∧ r)
-- in
-- and x1 (orb x2)))
and-⇒ : {A B : Prop} → (A ∧ B) ⇒ (A ⇒ B)
and-⇒ = impl (λ x → impl (λ x₁ → elim2-∧ x))
tii : {A B C : Prop} → ((A ∧ B) ⇒ C) ⇒ (A ⇒ (B ⇒ C))
tii = impl (λ x → impl (λ x₁ → impl (λ x₂ → elim-⇒ x (and x₁ x₂))))
-- tii2 : {A B : Prop} → (((¬ A) ∨ B) ∧ A) ⇒ B
-- tii2 = impl (λ x →
-- let
-- x₁ = elim1-∧ x
-- x₂ = elim2-∧ x
-- in
-- {!!})
-- contradiction : {A : Prop} → (¬ (¬ A)) ⇒ A
-- contradiction = impl (λ x → {!!})
-- XXX: Predicate logic
-- XXX: For all introduction
data ForAll (A : Set) (B : A → Prop) : Prop where
dfun : (∀ (x : A) → (B x)) → (ForAll A B)
elim-ForAll : {A : Set} → (x : A) → {B : A → Prop} → (ForAll A B) → (B x)
elim-ForAll x (dfun x₁) = x₁ x
-- XXX: Exists
data Exists (A : Set) (B : A → Prop) : Prop where
[_,_] : (x : A) → (B x) → Exists A B
elim1-exists : {A : Prop} → {B : A → Prop} → (Exists A B) → A
elim1-exists [ x , _ ] = x
elim2-exists : {A : Prop} → {B : A → Prop} → (p : Exists A B) → (B (elim1-exists p))
elim2-exists [ _ , x ] = x
-- TODO: Proofs in predicate logic
-- XXX: model-checking depends on this theorem
mthm : {V : Value} → {P : V → Prop} → (Exists V (λ (x : V) → (¬ P x)))
⇒ (¬ ForAll V P)
mthm = impl (λ x →
neg (impl (λ x₁ →
elim-neg (elim-ForAll (elim1-exists x) x₁) (elim2-exists x))))
pex0 : {X : Set} → {P : X → Prop} → (¬ (Exists X P)) ⇒ (ForAll X (λ x → (¬ P x)))
pex0 = impl (λ x →
dfun (λ x₁ →
neg (impl (λ x₂ →
let x1 = elim-neg [ x₁ , x₂ ] x
in
x1))))
pex0' : {X : Set} → {P : X → Prop} → (ForAll X (λ x → (¬ P x))) ⇒ (¬ (Exists X P))
pex0' = impl (λ x →
neg (impl
(λ x₁ →
let x1 = elim1-exists x₁
x1' = elim2-exists x₁
x2 = elim-ForAll x1 x
in
elim-neg x1' x2)))
pex2 : {X Y : Set} → {P : X → Y → Prop} → (Exists Y (λ (y : Y) → (ForAll X (λ (x : X) → P x y))))
⇒ (ForAll X (λ (x : X) → (Exists Y (λ (y : Y) → P x y))))
pex2 = impl (λ x →
dfun (λ x₁ →
let x1 = elim1-exists x
x2 = elim2-exists x
x3 = elim-ForAll x₁ x2
in
[ x1 , x3 ]))
-- TODO: Tautology in first order predicate logic
ptau : {V B : Value} → {A : V → Prop} → (x : V)
→ (ForAll V (λ _ → (A x) ⇒ B))
⇔ (Exists V (λ _ → (A x) ⇒ B))
ptau a = eq
(impl (λ x →
[ a , (impl (λ x₁ →
elim-⇒ (elim-ForAll a x) x₁)) ]))
(impl (λ x → dfun (λ x₁ → impl (λ x₂ →
elim-⇒ (elim2-exists x) x₂))))
|
{
"alphanum_fraction": 0.3832516912,
"avg_line_length": 30.7311827957,
"ext": "agda",
"hexsha": "e377ad6098599000c257edb7715e39fbe7cac2b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/agda-tutorial-dybjer",
"max_forks_repo_path": "Sec4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/agda-tutorial-dybjer",
"max_issues_repo_path": "Sec4.agda",
"max_line_length": 97,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/agda-tutorial-dybjer",
"max_stars_repo_path": "Sec4.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z",
"num_tokens": 3288,
"size": 8574
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Cocone where
open import Level
open import Categories.Category
open import Categories.Functor hiding (_≡_; _∘_)
record Cocone {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′) where
module J = Category J
open Category C
open Functor F
field
N : Obj
ψ : ∀ X → ((F₀ X) ⇒ N)
.commute : ∀ {X Y} (f : J [ X , Y ]) → ψ X ≡ ψ Y ∘ F₁ f
|
{
"alphanum_fraction": 0.5863539446,
"avg_line_length": 27.5882352941,
"ext": "agda",
"hexsha": "fc2dd35bb8315ce904b55d1e5192b522678b5665",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Cocone.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Cocone.agda",
"max_line_length": 129,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Cocone.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 183,
"size": 469
}
|
------------------------------------------------------------------------
-- Up-to techniques, compatibility, size-preserving functions, and the
-- companion
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
-- The definitions below are parametrised by an indexed container.
open import Prelude
open import Indexed-container
module Up-to {ℓ} {I : Type ℓ} (C : Container I I) where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import Function-universe.Size equality-with-J
open import Indexed-container.Combinators
hiding (id; const) renaming (_∘_ to _⊚_)
open import Relation
------------------------------------------------------------------------
-- Up-to techniques
-- This definition of soundness is based on the definition of
-- "b-soundness" given by Pous and Sangiorgi in "Enhancements of the
-- bisimulation proof method", with the following differences:
--
-- * The property is stated for an indexed container rather than a
-- monotone function on a (particular) complete lattice.
--
-- * The extension ⟦ C ⟧ of the container C takes the place of b.
--
-- * The type-theoretic greatest fixpoint ν takes the place of a
-- set-theoretic greatest fixpoint.
Sound : Container I I → Type ℓ
Sound F = ν (C ⊚ F) ∞ ⊆ ν C ∞
-- A relation transformer F is a (sound) up-to technique if every
-- relation R that is contained in ⟦ C ⟧ (F R) is contained in ν C ∞.
Up-to-technique : Trans ℓ I → Type (lsuc ℓ)
Up-to-technique F = ∀ {R} → R ⊆ ⟦ C ⟧ (F R) → R ⊆ ν C ∞
-- The two definitions above are pointwise logically equivalent, if
-- the second one is restricted to containers (in a certain way).
Sound⇔ : ∀ F → Sound F ⇔ Up-to-technique ⟦ F ⟧
Sound⇔ F = record
{ to = λ sound {R} →
R ⊆ ⟦ C ⟧ (⟦ F ⟧ R) ↝⟨ ⊆-congʳ _ (_⇔_.from $ ⟦∘⟧↔ _ C) ⟩
R ⊆ ⟦ C ⊚ F ⟧ R ↝⟨ unfold (C ⊚ F) ⟩
R ⊆ ν (C ⊚ F) ∞ ↝⟨ ⊆-congʳ _ sound ⟩□
R ⊆ ν C ∞ □
; from = λ up-to → up-to (
ν (C ⊚ F) ∞ ⊆⟨ ν-out _ ⟩
⟦ C ⊚ F ⟧ (ν (C ⊚ F) ∞) ⊆⟨ ⟦∘⟧↔ _ C ⟩∎
⟦ C ⟧ (⟦ F ⟧ (ν (C ⊚ F) ∞)) ∎)
}
------------------------------------------------------------------------
-- Compatibility
-- Compatibility.
--
-- This definition corresponds to Pous and Sangiorgi's definition of
-- b-compatibility.
Compatible : Trans ℓ I → Type (lsuc ℓ)
Compatible F = ∀ {R} → F (⟦ C ⟧ R) ⊆ ⟦ C ⟧ (F R)
-- If F is monotone and compatible, and R is contained in ⟦ C ⟧ (F R),
-- then F ^ω R is a post-fixpoint of ⟦ C ⟧.
--
-- The proof of Pous and Sangiorgi's Theorem 6.3.9 contains a similar
-- result.
compatible→^ω-post-fixpoint :
∀ {F} →
Monotone F → Compatible F →
∀ {R} → R ⊆ ⟦ C ⟧ (F R) → F ^ω R ⊆ ⟦ C ⟧ (F ^ω R)
compatible→^ω-post-fixpoint {F} mono comp {R = R} R⊆ = uncurry λ n →
F ^[ n ] R ⊆⟨ Fⁿ⊆∘F¹⁺ⁿ n ⟩
⟦ C ⟧ (F ^[ 1 + n ] R) ⊆⟨ map C (1 + n ,_) ⟩∎
⟦ C ⟧ (F ^ω R) ∎
where
Fⁿ⊆∘F¹⁺ⁿ : ∀ n → F ^[ n ] R ⊆ ⟦ C ⟧ (F ^[ suc n ] R)
Fⁿ⊆∘F¹⁺ⁿ zero =
R ⊆⟨ R⊆ ⟩∎
⟦ C ⟧ (F R) ∎
Fⁿ⊆∘F¹⁺ⁿ (suc n) =
F ^[ 1 + n ] R ⊆⟨⟩
F (F ^[ n ] R) ⊆⟨ mono (Fⁿ⊆∘F¹⁺ⁿ n) ⟩
F (⟦ C ⟧ (F ^[ 1 + n ] R)) ⊆⟨ comp ⟩∎
⟦ C ⟧ (F ^[ 2 + n ] R) ∎
-- Monotone compatible functions are up-to techniques.
--
-- This is basically Pous and Sangiorgi's Theorem 6.3.9.
monotone→compatible→up-to :
∀ {F} → Monotone F → Compatible F → Up-to-technique F
monotone→compatible→up-to {F} mono comp {R = R} R⊆ =
R ⊆⟨ 0 ,_ ⟩
F ^ω R ⊆⟨ unfold C (compatible→^ω-post-fixpoint mono comp R⊆) ⟩∎
ν C ∞ ∎
------------------------------------------------------------------------
-- Size-preserving functions (using sized types)
-- F is size-preserving if, for any relation R, if R is contained in
-- ν C i, then F R is contained in ν C i.
Size-preserving : Trans ℓ I → Type (lsuc ℓ)
Size-preserving F = ∀ {R i} → R ⊆ ν C i → F R ⊆ ν C i
-- If a transformer is size-preserving, then it satisfies the
-- corresponding property for ν′, and vice versa.
--
-- Note that this proof uses the size successor function.
size-preserving⇔size-preserving′ :
∀ {F} → Size-preserving F ⇔ (∀ {R i} → R ⊆ ν′ C i → F R ⊆ ν′ C i)
force (_⇔_.to size-preserving⇔size-preserving′ pres R⊆ν′Ci x) =
pres (λ y → force (R⊆ν′Ci y)) x
_⇔_.from size-preserving⇔size-preserving′ pres′ {i = i} R⊆ν′Ci x =
force (pres′ {i = ssuc i} (λ x → λ { .force → R⊆ν′Ci x }) x)
-- If the relation transformer F is size-preserving, then F is an
-- up-to technique.
--
-- On the other hand, up-to techniques are not necessarily
-- size-preserving, not even for monotone and extensive transformers,
-- see
-- Bisimilarity.Up-to.Counterexamples.∃monotone×extensive×up-to׬size-preserving.
-- Thus the property of being size-preserving is less general than
-- that of being an up-to technique. However, the latter property is
-- not closed under composition (not even for monotone and extensive
-- transformers, see Bisimilarity.Up-to.Counterexamples.¬-∘-closure),
-- whereas the former property is (see ∘-closure below).
size-preserving→up-to : ∀ {F} → Size-preserving F → Up-to-technique F
size-preserving→up-to {F} pres {R = R} R⊆CFR = helper
where
helper : ∀ {i} → R ⊆ ⟦ C ⟧ (ν′ C i)
helper =
map C (_⇔_.to size-preserving⇔size-preserving′
pres (λ x → λ { .force → helper x })) ∘
R⊆CFR
-- An alternative implementation of helper which might be a bit
-- easier to follow.
helper′ : ∀ {i} → R ⊆ ν C i
helper′ {i} =
R ⊆⟨ R⊆CFR ⟩
⟦ C ⟧ (F R) ⊆⟨ map C (_⇔_.to size-preserving⇔size-preserving′
pres (λ x → λ { .force → helper′ x })) ⟩
⟦ C ⟧ (ν′ C i) ⊆⟨ id ⟩∎
ν C i ∎
-- If F is monotone, then Size-preserving F is logically equivalent to
-- a special case stating that, for any size i, ν C i should be a
-- pre-fixpoint of F.
--
-- Note that size-preserving relation transformers are not necessarily
-- monotone (or extensive), see
-- Bisimilarity.Up-to.Counterexamples.∃size-preserving׬[monotone⊎extensive].
--
-- Furthermore there is a container C such that transformers F that
-- satisfy the property ∀ {i} → F (ν C i) ⊆ ν C i are not necessarily
-- up-to techniques for C, see
-- Bisimilarity.Up-to.Counterexamples.∃special-case-of-size-preserving׬up-to.
monotone→⇔ :
∀ {F} →
Monotone F →
Size-preserving F ⇔ (∀ {i} → F (ν C i) ⊆ ν C i)
monotone→⇔ mono = record
{ to = λ pres → pres id
; from = λ pres R⊆νCi → pres ∘ mono R⊆νCi
}
-- A special case of compatibility.
Compatible′ : Trans ℓ I → Type ℓ
Compatible′ F = ∀ {i} → F (⟦ C ⟧ (ν′ C i)) ⊆ ⟦ C ⟧ (F (ν′ C i))
-- Monotone transformers that satisfy the special case of
-- compatibility are size-preserving.
monotone→compatible′→size-preserving :
∀ {F} → Monotone F → Compatible′ F → Size-preserving F
monotone→compatible′→size-preserving {F = F} mono comp =
_⇔_.from (monotone→⇔ mono) helper
where
mutual
helper : ∀ {i} → F (⟦ C ⟧ (ν′ C i)) ⊆ ⟦ C ⟧ (ν′ C i)
helper = map C helper′ ∘ comp
helper′ : ∀ {i} → F (ν′ C i) ⊆ ν′ C i
force (helper′ x) = helper (mono (λ y → force y) x)
-- A variant of helper that is perhaps a bit easier to follow.
helper″ : ∀ {i} → F (ν C i) ⊆ ν C i
helper″ {i} =
F (ν C i) ⊆⟨⟩
F (⟦ C ⟧ (ν′ C i)) ⊆⟨ comp ⟩
⟦ C ⟧ (F (ν′ C i)) ⊆⟨ map C helper′ ⟩
⟦ C ⟧ (ν′ C i) ⊆⟨ id ⟩∎
ν C i ∎
-- This definition is definitionally equal to helper.
helper″≡helper : (λ {i x} → helper″ {i = i} {x = x}) ≡ helper
helper″≡helper = refl
-- Monotone, compatible transformers are size-preserving.
monotone→compatible→size-preserving :
∀ {F} → Monotone F → Compatible F → Size-preserving F
monotone→compatible→size-preserving mono comp =
monotone→compatible′→size-preserving mono comp
-- Extensive, size-preserving transformers satisfy the special case of
-- compatibility.
extensive→size-preserving→compatible′ :
∀ {F} →
Extensive F → Size-preserving F → Compatible′ F
extensive→size-preserving→compatible′ {F} extensive pres {i} =
F (⟦ C ⟧ (ν′ C i)) ⊆⟨⟩
F (ν C i) ⊆⟨ pres id ⟩
ν C i ⊆⟨⟩
⟦ C ⟧ (ν′ C i) ⊆⟨ map C (extensive _) ⟩∎
⟦ C ⟧ (F (ν′ C i)) ∎
-- For monotone and extensive transformers the special case of
-- compatibility is logically equivalent to being size-preserving.
--
-- However, size-preserving transformers are not necessarily
-- compatible, not even if they are monotone and extensive, see
-- Bisimilarity.Up-to.Counterexamples.∃monotone×extensive×size-preserving׬compatible.
-- Thus the property of being size-preserving is more general than the
-- property of being compatible. However, it is more well-behaved than
-- Up-to-technique, because it is closed under composition (see
-- ∘-closure below).
monotone→extensive→size-preserving⇔compatible′ :
∀ {F} →
Monotone F → Extensive F →
Size-preserving F ⇔ Compatible′ F
monotone→extensive→size-preserving⇔compatible′ mono extensive = record
{ to = extensive→size-preserving→compatible′ extensive
; from = monotone→compatible′→size-preserving mono
}
-- The following four lemmas correspond to Pous and Sangiorgi's
-- Proposition 6.3.11.
-- The identity function is size-preserving.
id-size-preserving :
Size-preserving id
id-size-preserving = id
-- If R is contained in ν C ∞, then const R is size-preserving.
const-size-preserving :
{R : Rel ℓ I} →
R ⊆ ν C ∞ →
Size-preserving (const R)
const-size-preserving R⊆∼ _ = R⊆∼
-- If F and G are both size-preserving, then F ∘ G is also
-- size-preserving.
∘-closure :
∀ {F G} →
Size-preserving F → Size-preserving G → Size-preserving (F ∘ G)
∘-closure F-pres G-pres = F-pres ∘ G-pres
private
-- An alternative implementation of ∘-closure which might be a bit
-- easier to follow.
∘-closure′ :
∀ {F G} →
Size-preserving F → Size-preserving G → Size-preserving (F ∘ G)
∘-closure′ {F} {G} F-pres G-pres {R = R} {i = i} =
R ⊆ ν C i ↝⟨ G-pres ⟩
G R ⊆ ν C i ↝⟨ F-pres ⟩□
F (G R) ⊆ ν C i □
-- If F is a family of size-preserving transformers, then ⋃ lzero F is
-- also size-preserving.
⋃-closure :
{A : Type ℓ} {F : A → Trans ℓ I} →
(∀ a → Size-preserving (F a)) →
Size-preserving (⋃ lzero F)
⋃-closure {F = F} pres {R = R} {i = i} =
R ⊆ ν C i ↝⟨ (λ R⊆∼ {_} → uncurry λ a →
F a R ⊆⟨ pres a (λ {_} → R⊆∼ {_}) ⟩∎
ν C i ∎) ⟩□
(λ b → ∃ λ a → F a R b) ⊆ ν C i □
-- If F and G are both size-preserving, then
-- λ R → F R ∪ G R is also size-preserving.
∪-closure :
{F G : Trans ℓ I} →
Size-preserving F →
Size-preserving G →
Size-preserving (λ R → F R ∪ G R)
∪-closure {F} {G} F-pres G-pres {R = R} {i = i} =
R ⊆ ν C i ↝⟨ (λ R⊆∼ {_} → [ F-pres (R⊆∼ {_}) , G-pres (R⊆∼ {_}) ]) ⟩□
F R ∪ G R ⊆ ν C i □
------------------------------------------------------------------------
-- The companion
-- The companion.
--
-- The name comes from "Coinduction All the Way Up" by Pous, but this
-- definition is based on the one presented by Parrow and Weber in
-- "The Largest Respectful Function".
Companion : Trans ℓ I
Companion R x = ∀ {i} → R ⊆ ν C i → ν C i x
-- Another conservative approximation of "up-to technique": being
-- below the companion. This notion was presented by Pous in
-- "Coinduction All the Way Up".
Below-the-companion : Trans ℓ I → Type (lsuc ℓ)
Below-the-companion F = ∀ {R} → F R ⊆ Companion R
-- A transformer is below the companion iff it is size-preserving.
--
-- This is a generalisation of the following result, which is based on
-- a proposition due to Pous and Rot.
below-the-companion⇔size-preserving :
∀ {F} → Below-the-companion F ⇔ Size-preserving F
below-the-companion⇔size-preserving {F} = record
{ to = λ below R⊆νCi x → below x R⊆νCi
; from = λ pres x R⊆νCi → pres R⊆νCi x
}
-- A monotone transformer F is below the companion iff, for all
-- sizes i, ν C i is a pre-fixpoint of F.
--
-- This corresponds roughly to Proposition 5.2 in "Companions,
-- Codensity and Causality" by Pous and Rot.
monotone→below-the-companion⇔size-preserving :
∀ {F} →
Monotone F →
Below-the-companion F ⇔ (∀ {i} → F (ν C i) ⊆ ν C i)
monotone→below-the-companion⇔size-preserving {F} mono =
Below-the-companion F ↝⟨ below-the-companion⇔size-preserving ⟩
Size-preserving F ↝⟨ monotone→⇔ mono ⟩□
(∀ {i} → F (ν C i) ⊆ ν C i) □
-- The companion is size-preserving.
companion-size-preserving : Size-preserving Companion
companion-size-preserving =
_⇔_.to below-the-companion⇔size-preserving id
-- The companion is monotone.
--
-- This result corresponds to Lemma 2.13 in "The Largest Respectful
-- Function".
companion-monotone : Monotone Companion
companion-monotone R⊆S f S⊆νCi = f (S⊆νCi ∘ R⊆S)
-- A preservation lemma.
companion-cong :
∀ {k R S} →
Extensionality? ⌊ k ⌋-sym ℓ ℓ →
(∀ {x} → R x ↝[ ⌊ k ⌋-sym ] S x) →
(∀ {x} → Companion R x ↝[ ⌊ k ⌋-sym ] Companion S x)
companion-cong {k} {R} {S} ext R↝S {x} =
(∀ {i} → R ⊆ ν C i → ν C i x) ↝⟨ implicit-∀-size-cong (lower-extensionality? ⌊ k ⌋-sym _ lzero ext) (→-cong ext (⊆-cong ext R↝S F.id) F.id) ⟩□
(∀ {i} → S ⊆ ν C i → ν C i x) □
-- The companion is an up-to technique.
companion-up-to : Up-to-technique Companion
companion-up-to = size-preserving→up-to companion-size-preserving
-- The following four lemmas correspond to parts of Lemma 3.2 from
-- "Coinduction All the Way Up".
-- The identity function is below the companion.
id-below : Below-the-companion id
id-below x f = f x
private
-- An alternative implementation that might be a bit easier to
-- follow.
id-below′ : Below-the-companion id
id-below′ {R = R} {x = x} Rx {i} =
R ⊆ ν C i ↝⟨ (λ f → f Rx) ⟩□
ν C i x □
-- ⟦ C ⟧ is below the companion.
⟦⟧-below : Below-the-companion ⟦ C ⟧
⟦⟧-below x = ν-in C ∘ (λ f → f x) ∘ map C
private
-- An alternative implementation that might be a bit easier to
-- follow.
⟦⟧-below′ : Below-the-companion ⟦ C ⟧
⟦⟧-below′ {R = R} {x = x} CR {i} =
R ⊆ ν C i ↝⟨ map C ⟩
⟦ C ⟧ R ⊆ ⟦ C ⟧ (ν C i) ↝⟨ (λ f → f CR) ⟩
⟦ C ⟧ (ν C i) x ↝⟨ ν-in C ⟩□
ν C i x □
-- The companion composed with itself is below the companion.
companion∘companion-below : Below-the-companion (Companion ∘ Companion)
companion∘companion-below =
_⇔_.from below-the-companion⇔size-preserving
(∘-closure companion-size-preserving companion-size-preserving)
-- The companion is idempotent (in a certain sense).
companion-idempotent :
∀ R {x} → Companion (Companion R) x ⇔ Companion R x
companion-idempotent R = record
{ to = companion∘companion-below
; from = Companion R ⊆⟨ companion-monotone id-below ⟩∎
Companion (Companion R) ∎
}
-- An example illustrating how some of the lemmas above can be used:
-- If F is below the companion, then ⟦ C ⟧ ∘ F is below
-- Companion ∘ Companion, which is below the companion.
below-the-companion-example :
∀ {F} → Below-the-companion F → Below-the-companion (⟦ C ⟧ ∘ F)
below-the-companion-example {F} =
F Below Companion ↝⟨ ∘-cong₂ companion-monotone ⟦⟧-below ⟩
(⟦ C ⟧ ∘ F) Below (Companion ∘ Companion) ↝⟨ (λ below {_ _} → companion∘companion-below ∘ below {_}) ⟩□
(⟦ C ⟧ ∘ F) Below Companion □
where
_Below_ : Trans ℓ I → Trans ℓ I → Type (lsuc ℓ)
F Below G = ∀ {R} → F R ⊆ G R
∘-cong₂ : ∀ {F₁ F₂ G₁ G₂ : Trans ℓ I} →
Monotone F₂ →
F₁ Below F₂ → G₁ Below G₂ → (F₁ ∘ G₁) Below (F₂ ∘ G₂)
∘-cong₂ {F₁} {F₂} {G₁} {G₂} F₂-mono F₁⊆F₂ G₁⊆G₂ {R} =
F₁ (G₁ R) ⊆⟨ F₁⊆F₂ ⟩
F₂ (G₁ R) ⊆⟨ F₂-mono G₁⊆G₂ ⟩∎
F₂ (G₂ R) ∎
-- The greatest fixpoint ν C ∞ is pointwise logically equivalent to
-- the companion applied to an empty relation.
--
-- This corresponds to Theorem 3.3 from "Coinduction All the Way Up".
ν⇔companion-⊥ : ∀ {x} → ν C ∞ x ⇔ Companion (λ _ → ⊥) x
ν⇔companion-⊥ {x} = record
{ to = λ x _ → x
; from = λ f → f (λ ())
}
-- Every "partial" fixpoint ν C i is a pre-fixpoint of the companion.
companion-ν⊆ν : ∀ {i} → Companion (ν C i) ⊆ ν C i
companion-ν⊆ν {i} =
(∀ {j} → ν C i ⊆ ν C j → ν C j _) ↝⟨ (λ hyp → hyp id) ⟩□
ν C i _ □
-- Every "partial" fixpoint ν′ C i is a pre-fixpoint of the companion.
companion-ν′⊆ν′ : ∀ {i} → Companion (ν′ C i) ⊆ ν′ C i
force (companion-ν′⊆ν′ hyp) =
companion-ν⊆ν (companion-monotone (λ x → force x) hyp)
-- The companion applied to the greatest fixpoint ν C ∞ is pointwise
-- logically equivalent to the greatest fixpoint.
--
-- This corresponds to Corollary 3.4 from "Coinduction All the Way
-- Up".
companion-ν⇔ν : ∀ {x} → Companion (ν C ∞) x ⇔ ν C ∞ x
companion-ν⇔ν {x} = record
{ to = companion-ν⊆ν
; from = ν C ∞ ⊆⟨ _⇔_.to ν⇔companion-⊥ ⟩
Companion (λ _ → ⊥) ⊆⟨ companion-monotone (λ ()) ⟩∎
Companion (ν C ∞) ∎
}
-- If "one half of f-symmetry" holds for R, for some involution f,
-- then the other half also holds.
--
-- (Pous mentions something similar in "Coinduction All the Way Up".)
other-half-of-symmetry :
{f : I → I} →
f ∘ f ≡ id →
(R : Rel ℓ I) → R ∘ f ⊆ R → R ⊆ R ∘ f
other-half-of-symmetry {f} f-involution R R∘f⊆R =
R ⊆⟨ (λ {x} → subst (λ g → R (g x)) (sym f-involution)) ⟩
R ∘ f ∘ f ⊆⟨ R∘f⊆R ⟩∎
R ∘ f ∎
-- The results in the following module are based on Proposition 7.1 in
-- "Coinduction All the Way Up".
module _
(D : Container I I)
(f : I → I)
(f-involution : f ∘ f ≡ id)
(C⇔⟷D : ∀ {R : Rel ℓ I} {x} → ⟦ C ⟧ R x ⇔ ⟦ D ⊗ reindex f D ⟧ R x)
where
mutual
ν-symmetric : ∀ {i} → ν C i ∘ f ⊆ ν C i
ν-symmetric {i} =
ν C i ∘ f ⊆⟨⟩
⟦ C ⟧ (ν′ C i) ∘ f ⊆⟨ _⇔_.to C⇔⟷D ⟩
⟦ D ⊗ reindex f D ⟧ (ν′ C i) ∘ f ⊆⟨ ⟦⊗⟧↔ _ D (reindex f D) ⟩
⟦ D ⟧ (ν′ C i) ∘ f ∩ ⟦ reindex f D ⟧ (ν′ C i) ∘ f ⊆⟨ Σ-map id (⟦reindex⟧↔ _ D) ⟩
⟦ D ⟧ (ν′ C i) ∘ f ∩ ⟦ D ⟧ (ν′ C i ∘ f) ∘ f ∘ f ⊆⟨ (λ {x} → Σ-map id (subst (λ g → ⟦ D ⟧ (ν′ C i ∘ f) (g x)) f-involution)) ⟩
⟦ D ⟧ (ν′ C i) ∘ f ∩ ⟦ D ⟧ (ν′ C i ∘ f) ⊆⟨ Σ-map (map D (other-half-of-symmetry f-involution (ν′ C i) ν′-symmetric))
(map D ν′-symmetric) ⟩
⟦ D ⟧ (ν′ C i ∘ f) ∘ f ∩ ⟦ D ⟧ (ν′ C i) ⊆⟨ swap ⟩
⟦ D ⟧ (ν′ C i) ∩ ⟦ D ⟧ (ν′ C i ∘ f) ∘ f ⊆⟨ Σ-map id (_⇔_.from (⟦reindex⟧↔ _ D)) ⟩
⟦ D ⟧ (ν′ C i) ∩ ⟦ reindex f D ⟧ (ν′ C i) ⊆⟨ _⇔_.from (⟦⊗⟧↔ _ D (reindex f D)) ⟩
⟦ D ⊗ reindex f D ⟧ (ν′ C i) ⊆⟨ _⇔_.from C⇔⟷D ⟩
⟦ C ⟧ (ν′ C i) ⊆⟨ id ⟩∎
ν C i ∎
ν′-symmetric : ∀ {i} → ν′ C i ∘ f ⊆ ν′ C i
force (ν′-symmetric x) = ν-symmetric (force x)
companion-symmetric : ∀ {R} → Companion R ∘ f ⊆ Companion R
companion-symmetric {R} {x} =
Companion R (f x) ↔⟨⟩
(∀ {i} → R ⊆ ν C i → ν C i (f x)) ↝⟨ (λ hyp R⊆ν → ν-symmetric (hyp R⊆ν)) ⦂ (_ → (∀ {i} → R ⊆ ν C i → ν C i x)) ⟩
(∀ {i} → R ⊆ ν C i → ν C i x) ↔⟨⟩
Companion R x □
symmetry-lemma :
{R S : Rel ℓ I} →
R ∘ f ⊆ R →
R ⊆ ⟦ C ⟧ (Companion S) ⇔ R ⊆ ⟦ D ⟧ (Companion S)
symmetry-lemma {R} {S} R-sym = record { to = to; from = from }
where
lemma = λ {x} →
⟦ C ⟧ (Companion S) x ↝⟨ C⇔⟷D ⟩
⟦ D ⊗ reindex f D ⟧ (Companion S) x ↝⟨ ⟦⊗⟧↔ _ D (reindex f D) ⟩
⟦ D ⟧ (Companion S) x × ⟦ reindex f D ⟧ (Companion S) x ↝⟨ ∃-cong (λ _ → ⟦reindex⟧↔ _ D) ⟩□
⟦ D ⟧ (Companion S) x × ⟦ D ⟧ (Companion S ∘ f) (f x) □
to : R ⊆ ⟦ C ⟧ (Companion S) → R ⊆ ⟦ D ⟧ (Companion S)
to R⊆CCS =
R ⊆⟨ R⊆CCS ⟩
⟦ C ⟧ (Companion S) ⊆⟨ _⇔_.to lemma ⟩
⟦ D ⟧ (Companion S) ∩ ⟦ D ⟧ (Companion S ∘ f) ∘ f ⊆⟨ proj₁ ⟩∎
⟦ D ⟧ (Companion S) ∎
from : R ⊆ ⟦ D ⟧ (Companion S) → R ⊆ ⟦ C ⟧ (Companion S)
from R⊆DCS =
R ⊆⟨ (λ x → x , x) ⟩
R ∩ R ⊆⟨ Σ-map id (other-half-of-symmetry f-involution R R-sym) ⟩
R ∩ R ∘ f ⊆⟨ Σ-map R⊆DCS R⊆DCS ⟩
⟦ D ⟧ (Companion S) ∩ ⟦ D ⟧ (Companion S) ∘ f ⊆⟨ Σ-map id (map D (other-half-of-symmetry f-involution
(Companion S) companion-symmetric)) ⟩
⟦ D ⟧ (Companion S) ∩ ⟦ D ⟧ (Companion S ∘ f) ∘ f ⊆⟨ _⇔_.from lemma ⟩∎
⟦ C ⟧ (Companion S) ∎
-- Pous defines the companion in roughly the following way in
-- "Coinduction All the Way Up".
--
-- Note that this definition is large.
Companion₁ : Rel ℓ I → Rel (lsuc ℓ) I
Companion₁ R x = ∃ λ (F : Trans ℓ I) → Monotone F × Compatible F × F R x
-- Pous' variant of the companion is compatible (modulo size issues).
--
-- This corresponds to Lemma 3.2 from "Coinduction All the Way Up".
companion₁-compatible :
∀ R → Companion₁ (⟦ C ⟧ R) ⊆ ⟦ C ⟧ (Companion₁ R)
companion₁-compatible R {x} (F , mono , comp , FCR) =
$⟨ FCR ⟩
F (⟦ C ⟧ R) x ↝⟨ comp ⟩
⟦ C ⟧ (F R) x ↝⟨ map C (λ FR → F , (λ {_ _} → mono) , (λ {_ _} → comp) , FR) ⟩□
⟦ C ⟧ (Companion₁ R) x □
-- Pous' variant of the companion is monotone.
companion₁-monotone : ∀ {R S} → R ⊆ S → Companion₁ R ⊆ Companion₁ S
companion₁-monotone R⊆S =
∃-cong λ _ → ∃-cong λ mono → ∃-cong λ _ → mono R⊆S
-- Pous' variant of the companion is contained in Companion.
companion₁⊆companion : ∀ {R} → Companion₁ R ⊆ Companion R
companion₁⊆companion (F , mono , comp , x) =
_⇔_.from below-the-companion⇔size-preserving
(monotone→compatible→size-preserving mono comp) x
-- The other direction holds iff Companion is compatible.
--
-- However, I don't know if Companion is provably compatible (in
-- predicative, constructive type theory).
companion-compatible⇔companion⊆companion₁ :
Compatible Companion ⇔ (∀ {R} → Companion R ⊆ Companion₁ R)
companion-compatible⇔companion⊆companion₁ = record
{ to = λ comp f → (Companion , companion-monotone , comp , f)
; from = λ below f →
let (F , mono , comp , FCR) = below f
in map C ((λ FR → companion₁⊆companion (F , mono , comp , FR)) ⦂
(_ → Companion _ _))
(comp FCR)
}
where
-- An alternative implementation of the from component which might
-- be a bit easier to follow.
from′ : (∀ {R} → Companion R ⊆ Companion₁ R) → Compatible Companion
from′ below {R = R} =
Companion (⟦ C ⟧ R) ⊆⟨ below ⟩
Companion₁ (⟦ C ⟧ R) ⊆⟨ (λ { (F , mono , comp , x) → (_$ x) (
F (⟦ C ⟧ R) ⊆⟨ comp ⟩
⟦ C ⟧ (F R) ⊆⟨ map C (
F R ⊆⟨ (λ y → F , (λ {_ _} → mono) , (λ {_ _} → comp) , y) ⟩
Companion₁ R ⊆⟨ companion₁⊆companion ⟩∎
Companion R ∎) ⟩∎
⟦ C ⟧ (Companion R) ∎) }) ⟩∎
⟦ C ⟧ (Companion R) ∎
-- Assumptions used by companion-compatible below.
record Companion-compatible-assumptions : Type (lsuc ℓ) where
field
-- A strong form of excluded middle, not compatible with
-- univalence.
excluded-middle : (P : Type ℓ) → Dec P
-- The type i < j means that i is a smaller size than j, i ≣ j means
-- that i is equal to j, and i ≤ j means that i is smaller than or
-- equal to j.
infix 4 _<_ _≣_ _≤_
_<_ : Size → Size → Type
_<_ = λ i j → Σ (Size< j in-type) λ { k → record { size = i } ≡ k }
_≣_ : Size → Size → Type
_≣_ = λ i j →
_≡_ {A = Size in-type} (record { size = i }) (record { size = j })
_≤_ : Size → Size → Type
_≤_ = λ i j → i < j ⊎ i ≣ j
-- Successor sizes: Sizes i for which there is a size j < i such
-- that every size k < i satisfies k ≤ j.
Successor : Size → Type
Successor i = ∃ λ (j : Size< i in-type) → (k : Size< i) → k ≤ size j
field
-- If i is not smaller than or equal to j, then j is smaller
-- than i.
≰→> : ∀ {i j} → ¬ i ≤ j → j < i
-- If a predicate from a certain class of predicates is satisfied
-- for all sizes smaller than i, but not for i itself, then i is a
-- successor size.
is-successor :
{R : Rel ℓ I} →
let P = λ i → R ⊆ ν C i in
∀ i →
((j : Size< i) → P j) →
¬ P i →
Successor i
-- Size elimination. A very similar elimination principle can at
-- the time of writing be implemented in Agda, but Andreas Abel
-- has suggested that this implementation should not be allowed.
size-elim :
(P : Size → Type ℓ) →
(∀ i → ((j : Size< i) → P j) → P i) →
∀ i → P i
-- A variant of excluded-middle.
excluded-middle₀ : (P : Type) → Dec P
excluded-middle₀ P =
⊎-map lower (_∘ lift) $ excluded-middle (↑ ℓ P)
-- "Not for all" implies "exists not".
¬∀→∃¬ : {A : Type} {P : A → Type ℓ} →
¬ (∀ x → P x) → ∃ λ x → ¬ P x
¬∀→∃¬ {P = P} ¬∀ = case excluded-middle (∃ λ x → ¬ P x) of λ where
(inj₁ ∃¬P) → ∃¬P
(inj₂ ¬∃¬P) → ⊥-elim (¬∀ λ x → case excluded-middle (P x) of λ where
(inj₁ Px) → Px
(inj₂ ¬Px) → ⊥-elim (¬∃¬P (x , ¬Px)))
-- Given the assumptions above every pair of sizes must be related
-- by either _<_, _≡_, or flip _<_. However, note that all three
-- relations hold for ∞ and ∞, so we do not get a law of trichotomy.
compare : ∀ i j → i < j ⊎ i ≣ j ⊎ j < i
compare i j = case excluded-middle₀ (i < j) of λ where
(inj₁ i<j) → inj₁ i<j
(inj₂ i≮j) → case excluded-middle₀ (i ≣ j) of λ where
(inj₁ i≡j) → inj₂ (inj₁ i≡j)
(inj₂ i≢j) → inj₂ (inj₂ (≰→> [ i≮j , i≢j ]))
-- Given certain assumptions one can prove that the companion is
-- compatible. (The proof is based on that of Theorem 2.14 in Parrow
-- and Weber's "The Largest Respectful Function".) However, I don't
-- know if these assumptions are consistent with the variant of Agda
-- that is used in this development. I discussed the assumptions with
-- Andreas Abel and Andrea Vezzosi. Some potential problems came up in
-- the discussion:
--
-- * The fact that ∞ : Size< ∞ could perhaps lead to some kind of
-- problem.
--
-- * The assumptions make it possible to define functions that give
-- completely different results for different sizes (assuming that
-- there is more than one size).
companion-compatible :
Companion-compatible-assumptions → Compatible Companion
companion-compatible assumptions {R} = case lemma R of λ where
(inj₁ R⊆νC) →
Companion (⟦ C ⟧ R) ⊆⟨ _$ map C (λ Rx → λ { .force → R⊆νC Rx }) ⟩
ν C ∞ ⊆⟨ map C ((λ ν′C∞x _ → force ν′C∞x) ⦂ (_ → Companion _ _)) ⟩∎
⟦ C ⟧ (Companion R) ∎
(inj₂ (1+i , (i , <1+i→≤i) , <1+i→R⊆νC , R⊈νC[1+i])) →
let CR⊆νC[1+i] =
⟦ C ⟧ R ⊆⟨ map C (<1+i→R⊆νC (size i)) ⟩
⟦ C ⟧ (ν C (size i)) ⊆⟨ map C (λ x → λ { .force {j} → cast (<1+i→≤i j) x }) ⟩∎
ν C (size 1+i) ∎
νCi⊆CompanionR =
ν C (size i) ⊆⟨ (λ hyp → λ { j≤i → cast j≤i hyp }) ⟩
(λ x → ∀ {j} → j ≤ size i → ν C j x) ⊆⟨ (λ hyp → λ { (j , refl) → hyp (<1+i→≤i (size j)) }) ⟩
(λ x → ∀ {j} → j < size 1+i → ν C j x) ⊆⟨ (λ hyp → λ { j<1+i _ → hyp j<1+i }) ⟩
(λ x → ∀ {j} → j < size 1+i → R ⊆ ν C j → ν C j x) ⊆⟨ (λ hyp → λ { 1+i≰j → hyp (≰→> 1+i≰j) }) ⟩
(λ x → ∀ {j} → ¬ size 1+i ≤ j → R ⊆ ν C j → ν C j x) ⊆⟨ (λ hyp → λ { {j} → [ (λ 1+i≤j R⊆νCj →
⊥-elim $ R⊈νC[1+i] (
R ⊆⟨ (λ {x} → R⊆νCj {x}) ⟩
ν C j ⊆⟨ cast 1+i≤j ⟩∎
ν C (size 1+i) ∎))
, hyp
] }) ⟩
(λ x → ∀ {j} → Dec (size 1+i ≤ j) → R ⊆ ν C j → ν C j x) ⊆⟨ (λ hyp → λ { {_} → hyp (excluded-middle₀ _) }) ⟩
(λ x → ∀ {j} → R ⊆ ν C j → ν C j x) ⊆⟨ id ⟩∎
Companion R ∎
ν′C[1+i]⊆νCi : ν′ C (size 1+i) ⊆ ν C (size i)
ν′C[1+i]⊆νCi {x} y =
let y′ : (j : Size< (size 1+i)) → ν C j x
y′ = λ { j → y .force {j = j} }
in y′ (size i)
in
Companion (⟦ C ⟧ R) ⊆⟨ (λ c → c {i = size 1+i} CR⊆νC[1+i]) ⟩
ν C (size 1+i) ⊆⟨⟩
⟦ C ⟧ (ν′ C (size 1+i)) ⊆⟨ map C ν′C[1+i]⊆νCi ⟩
⟦ C ⟧ (ν C (size i)) ⊆⟨ map C νCi⊆CompanionR ⟩∎
⟦ C ⟧ (Companion R) ∎
where
open Companion-compatible-assumptions assumptions
cast : ∀ {j k} → j ≤ k → ν C k ⊆ ν C j
cast (inj₁ (_ , refl)) x = x
cast (inj₂ refl) x = x
lemma :
∀ R → (∀ {i} → R ⊆ ν C i)
⊎
∃ λ i → Successor (size i) ×
((j : Size< (size i)) → R ⊆ ν C j) ×
¬ R ⊆ ν C (size i)
lemma R =
case excluded-middle (∀ {i} → R ⊆ ν C i) of
⊎-map id
(¬ (∀ {i} → R ⊆ ν C i) ↝⟨ (λ hyp₁ hyp₂ → hyp₁ λ { {i} → hyp₂ {i = record { size = i }} }) ⟩
¬ (∀ {i} → R ⊆ ν C (size i)) ↝⟨ (λ hyp → ¬∀→∃¬ {P = λ _ → _ ⊆ _} (λ ∀iR⊆νCi → hyp λ {i} → ∀iR⊆νCi i)) ⟩
(∃ λ i → ¬ R ⊆ ν C (size i)) ↝⟨ (λ (i , R⊈νCi) →
size-elim
(λ i → ¬ R ⊆ ν C i → _)
(λ i ind-hyp R⊈νCi → case excluded-middle
((j : Size< i in-type) → R ⊆ ν C (size j))
of λ where
(inj₁ ∀<R⊆νC) → record { size = i }
, (λ { j → ∀<R⊆νC (record { size = j }) })
, R⊈νCi
(inj₂ ¬∀<R⊆νC) → let j , R⊈νCj = ¬∀→∃¬ ¬∀<R⊆νC
in ind-hyp (size j) R⊈νCj)
(size i) R⊈νCi) ⟩
(∃ λ i → ((j : Size< (size i)) → R ⊆ ν C j) ×
¬ R ⊆ ν C (size i)) ↝⟨ (λ { (i , hyp) → (i , uncurry (is-successor (size i)) hyp , hyp) }) ⟩□
(∃ λ i → Successor (size i) ×
((j : Size< (size i)) → R ⊆ ν C j) ×
¬ R ⊆ ν C (size i)) □)
|
{
"alphanum_fraction": 0.5074565948,
"avg_line_length": 36.9073001159,
"ext": "agda",
"hexsha": "68bf7e0546565acdc6c13136dd5d71587f726e0a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Up-to.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Up-to.agda",
"max_line_length": 145,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Up-to.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11576,
"size": 31851
}
|
module Homogenous.Reflexivity where
import Homogenous.Base
import Homogenous.Equality
open Homogenous.Base using(Arity; Sig; Fa; Fa1; F; F1; T; It; FIHa; FIH; R)
open Homogenous.Equality using(equal; eq_step; eq_step'; eq_step_ar)
import PolyDepPrelude
open PolyDepPrelude using(Bool; true; false; True;
pair; fst; snd;
zero; suc;
left; right;
_::_; nil;
unit)
import Tools
open Tools using(liftAnd)
import Reflexivity
open Reflexivity using(lref; Refl; refl)
-- -----------------------------
-- Reflexivity
-- Short-hand notation for mapping a rel. over Fa resp. F
Fa1rel : (n : Arity)-> (X : Set) -> (X -> X -> Bool) ->
Fa n X -> Fa n (X -> Bool)
Fa1rel n X r = Fa1 n (\x -> (\y -> r x y) )
F1rel : (fi : Sig)(X : Set) -> (X -> X -> Bool) -> F fi X -> F fi (X -> Bool)
F1rel fi X r = F1 fi (\x -> (\y -> r x y) )
-- Now the real reflexivity lemmas start
ref_eq_step_ar : (n : Arity) (Y : Set) (e : Y -> Y -> Bool) (x : Fa n Y)
(ih : FIHa n (lref e) x)
-> True (eq_step_ar n (Fa1rel n Y e x) x)
ref_eq_step_ar (zero) Y e (unit) (unit) = unit
ref_eq_step_ar (suc m) Y e (pair y ys) (pair r rs) with e y y | r
ref_eq_step_ar (suc m) Y e (pair y ys) (pair r rs) | false | ()
ref_eq_step_ar (suc m) Y e (pair y ys) (pair r rs) | true | unit =
ref_eq_step_ar m Y e ys rs
-- Reflexivity for matching constructors is trivial
ref_eq_step' : (fi : Sig)(X : Set)(e : X -> X -> Bool)(x : F fi X)
-> FIH fi (lref e) x -> True (eq_step' fi (F1rel fi X e x) x)
ref_eq_step' (nil) X e () -- empty
ref_eq_step' (n :: ns) X e (left x') = ref_eq_step_ar n X e x'
ref_eq_step' (n :: ns) X e (right y) = ref_eq_step' ns X e y
ref_eq' : (fi : Sig) -> (x : T fi) -> lref (equal fi) x
ref_eq' fi = R fi (ref_eq_step' fi (T fi) (equal fi))
ref_eq : (fi : Sig) -> Refl (equal fi)
ref_eq fi = refl (R fi (ref_eq_step' fi (T fi) (equal fi)))
|
{
"alphanum_fraction": 0.5664652568,
"avg_line_length": 36.7777777778,
"ext": "agda",
"hexsha": "c3ac2a0d7bb708cac0a4f5779aaf3a9526d3f931",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM5/PolyDep/Homogenous/Reflexivity.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM5/PolyDep/Homogenous/Reflexivity.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM5/PolyDep/Homogenous/Reflexivity.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 682,
"size": 1986
}
|
open import Agda.Builtin.Bool
test : (true : Bool) → Set
test = {!!} -- C-c C-c
|
{
"alphanum_fraction": 0.5853658537,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "5e45d11140d4945d5f2959b7969cf203525d077a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2522-case.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2522-case.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2522-case.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 82
}
|
{-# OPTIONS --without-K #-}
module sets.nat.ordering.leq.core where
open import decidable
open import equality.core
open import function.core
open import sets.nat.core
open import sets.empty
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {m n} (p : m ≤ n) → suc m ≤ suc n
ap-pred-≤ : ∀ {n m} → suc n ≤ suc m → n ≤ m
ap-pred-≤ (s≤s p) = p
refl≤ : {n : ℕ} → n ≤ n
refl≤ {0} = z≤n
refl≤ {suc n} = s≤s refl≤
≡⇒≤ : {n m : ℕ} → n ≡ m → n ≤ m
≡⇒≤ refl = refl≤
suc≤ : ∀ {n} → n ≤ suc n
suc≤ {0} = z≤n
suc≤ {suc n} = s≤s suc≤
suc≰ : ∀ {n} → ¬ (suc n ≤ n)
suc≰ {zero} ()
suc≰ {suc n} p = suc≰ (ap-pred-≤ p)
trans≤ : ∀ {n m p} → n ≤ m → m ≤ p → n ≤ p
trans≤ z≤n q = z≤n
trans≤ (s≤s p) (s≤s q) = s≤s (trans≤ p q)
antisym≤ : ∀ {n m} → n ≤ m → m ≤ n → n ≡ m
antisym≤ z≤n z≤n = refl
antisym≤ (s≤s p) (s≤s q) = ap suc (antisym≤ p q)
|
{
"alphanum_fraction": 0.5029655991,
"avg_line_length": 21.6153846154,
"ext": "agda",
"hexsha": "4b28620c665403c3d6c45763ba53e6ed9b53a0f8",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/nat/ordering/leq/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/nat/ordering/leq/core.agda",
"max_line_length": 48,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/nat/ordering/leq/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 448,
"size": 843
}
|
-- You can't define the same module twice.
module ClashingModule where
module A where
module A where
open A
|
{
"alphanum_fraction": 0.7727272727,
"avg_line_length": 13.75,
"ext": "agda",
"hexsha": "d732f22995e43bfbf0b295fe0129bca1da409a6f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/ClashingModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/ClashingModule.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/ClashingModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 110
}
|
module Nat where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3
≡⟨⟩
suc (1 + 3)
≡⟨⟩
suc (suc (0 + 3))
≡⟨⟩
suc (suc 3)
≡⟨⟩
5
∎
|
{
"alphanum_fraction": 0.4876237624,
"avg_line_length": 12.625,
"ext": "agda",
"hexsha": "c48f04dc0d15c691a635bd307464d6d7268063b3",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/Nat.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/Nat.agda",
"max_line_length": 50,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 192,
"size": 404
}
|
{- This example goes through now that we allow instantiation of
blocked terms #-}
module Issue439 where
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
p₁ : A
p₂ : B p₁
open Σ
record ⊤ : Set where
data Tree : Set where
leaf : Tree
node : Tree → Tree → Tree
mutual
U : Tree → Set
U leaf = ⊤
U (node tr₁ tr₂) = Σ (U tr₁) λ a → El a → U tr₂
El : ∀ {tr} → U tr → Set
El {leaf} _ = ⊤
El {node tr₁ tr₂} (a , b) = (x : El a) → El (b x)
mutual
data C : Set where
c : (Γ : C) → T Γ → C
T : C → Set
T Γ = Σ Tree (λ tr → E Γ → U tr)
E : C → Set
E (c Γ σ) = Σ (E Γ) λ γ → El (p₂ σ γ)
postulate
e : C
M : (Γ : C) → T Γ → Set
z : ∀ {Γ σ} → M (c Γ σ) (p₁ σ , λ γ → p₂ σ (p₁ γ))
l : ∀ {Γ} σ {τ} → M (c Γ σ) τ →
M Γ (_ , λ γ → p₂ σ γ , λ v → p₂ τ (γ , v))
a : ∀ {Γ tr₁ tr₂ σ} →
M Γ (node tr₁ tr₂ , σ) → M Γ (tr₁ , λ γ → p₁ (σ γ)) →
M Γ (leaf , _)
s : ∀ {Γ} → M Γ (leaf , _)
t : ∀ {Γ σ} → M Γ σ → T Γ
t {σ = σ} _ = σ
foo : M (c e (leaf , _)) (leaf , _)
foo = a (l (t s) z) z
|
{
"alphanum_fraction": 0.4595103578,
"avg_line_length": 18.9642857143,
"ext": "agda",
"hexsha": "5c1021ad4602ca36cabbc4bf78b9c3732d7fbcab",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue439.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue439.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue439.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 473,
"size": 1062
}
|
{-# OPTIONS --without-K --safe #-}
module Data.Quiver.Paths where
-- Paths in a Quiver.
--
-- This is almost the same as the 'paths' in a relation, as defined in
-- Relation.Binary.Construct.Closure.ReflexiveTransitive
-- but here the relation is typed, and that has to be respected. So this
-- is somewhat duplicated
open import Level
open import Data.Quiver
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
import Relation.Binary.Reasoning.Setoid as EqR
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
module Paths {o ℓ e : Level} (Q : Quiver o ℓ e) where
open Quiver Q hiding (setoid)
private
variable
A B : Obj
infix 4 _≈*_
data _≈*_ : (p q : Star _⇒_ A B) → Set (o ⊔ ℓ ⊔ e) where
ε : {A : Obj} → _≈*_ {A} ε ε
_◅_ : {A B C : Obj} {x y : A ⇒ B} {p q : Star _⇒_ B C} (x≈y : x ≈ y) (p≈q : p ≈* q) → x ◅ p ≈* y ◅ q
refl : {p : Star _⇒_ A B} → p ≈* p
refl {p = ε} = ε
refl {p = x ◅ p} = Equiv.refl ◅ refl
sym : {p q : Star _⇒_ A B} → p ≈* q → q ≈* p
sym ε = ε
sym (x≈y ◅ eq) = Equiv.sym x≈y ◅ sym eq
≡⇒≈* : {p q : Star _⇒_ A B} → p ≡ q → p ≈* q
≡⇒≈* ≡.refl = refl
≡⇒≈ : {p q : A ⇒ B} → p ≡ q → p ≈ q
≡⇒≈ ≡.refl = Equiv.refl
trans : {p q r : Star _⇒_ A B} → p ≈* q → q ≈* r → p ≈* r
trans ε ε = ε
trans (x≈y ◅ ss) (y≈z ◅ tt) = Equiv.trans x≈y y≈z ◅ trans ss tt
isEquivalence : IsEquivalence (λ (p q : Star _⇒_ A B) → p ≈* q)
isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
setoid : Obj → Obj → Setoid (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)
setoid A B = record { _≈_ = _≈*_ ; isEquivalence = isEquivalence {A} {B} }
-- convenient to define here
--
-- FIXME: this should go into the standard library at
-- Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties
◅◅-identityʳ : (f : Star _⇒_ A B) → f ◅◅ ε ≈* f
◅◅-identityʳ ε = ε
◅◅-identityʳ (x ◅ f) = Equiv.refl ◅ ◅◅-identityʳ f
module PathEqualityReasoning {A B} where
open EqR (setoid A B) public
|
{
"alphanum_fraction": 0.5919960957,
"avg_line_length": 31.5230769231,
"ext": "agda",
"hexsha": "8d9ef8faddcccefe1616c72b3394985bfc96b838",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Data/Quiver/Paths.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Data/Quiver/Paths.agda",
"max_line_length": 104,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Data/Quiver/Paths.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 860,
"size": 2049
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Base definitions for the right-biased universe-sensitive functor
-- and monad instances for the Product type.
--
-- To minimize the universe level of the RawFunctor, we require that
-- elements of B are "lifted" to a copy of B at a higher universe level
-- (a ⊔ b). See the Data.Product.Categorical.Examples for how this is
-- done.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Level
module Data.Product.Categorical.Right.Base
{b} (B : Set b) (a : Level) where
open import Data.Product using (_×_; map₁; proj₁; proj₂; <_,_>)
open import Category.Functor using (RawFunctor)
open import Category.Comonad using (RawComonad)
------------------------------------------------------------------------
-- Definitions
Productᵣ : Set (a ⊔ b) → Set (a ⊔ b)
Productᵣ A = A × B
functor : RawFunctor Productᵣ
functor = record { _<$>_ = map₁ }
comonad : RawComonad Productᵣ
comonad = record
{ extract = proj₁
; extend = <_, proj₂ >
}
|
{
"alphanum_fraction": 0.563002681,
"avg_line_length": 29.4473684211,
"ext": "agda",
"hexsha": "55264e646052e1b60e1c1adfb43d3ded7450bbb9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Right/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 274,
"size": 1119
}
|
{-# OPTIONS --no-positivity-check #-}
module Section4a where
open import Section3 public
-- 4. The semantic model
-- =====================
--
-- As we want to deal with full conversion on open terms and the η-rule, we choose to describe
-- the semantics in a Kripke style model [6, 11, 15]. A Kripke model is a set of possible worlds,
-- `𝒲 : Set`, with a partial ordering `⊒ : 𝒲 → 𝒲 → Set`, of extensions of worlds. We also have
-- a family of ground sets `𝒢 : 𝒲 → Set` over possible worlds which are the interpretation of
-- the base type. We also need independence of the proof of `_⊒_`, i.e., if `c₁, c₂ : w′ ⊒ w`, then
-- `c₁ ≡ c₂`. (…)
record Model : Set₁ where
infix 3 _⊒_
field
𝒲 : Set
_⊒_ : 𝒲 → 𝒲 → Set
refl⊒ : ∀ {w} → w ⊒ w
_◇_ : ∀ {w w′ w″} → w′ ⊒ w → w″ ⊒ w′ → w″ ⊒ w
uniq⊒ : ∀ {w w′} → (c c′ : w′ ⊒ w) → c ≡ c′
𝒢 : 𝒲 → Set
open Model {{…}} public
module _ {{_ : Model}} where
trans⊒ : ∀ {w w′ w″} → w″ ⊒ w′ → w′ ⊒ w → w″ ⊒ w
trans⊒ = flip _◇_
id₁◇ : ∀ {w w′} → (c : w ⊒ w) (c′ : w′ ⊒ w) → c ◇ c′ ≡ c′
id₁◇ c c′ = uniq⊒ (c ◇ c′) c′
id₂◇ : ∀ {w w′} → (c : w′ ⊒ w) (c′ : w′ ⊒ w′) → c ◇ c′ ≡ c
id₂◇ c c′ = uniq⊒ (c ◇ c′) c
assoc◇ : ∀ {w w′ w″ w‴} → (c : w′ ⊒ w) (c′ : w″ ⊒ w′) (c″ : w‴ ⊒ w″) →
c ◇ (c′ ◇ c″) ≡ (c ◇ c′) ◇ c″
assoc◇ c c′ c″ = uniq⊒ (c ◇ (c′ ◇ c″)) ((c ◇ c′) ◇ c″)
comp◇ : ∀ {w w′ w″} → (c : w′ ⊒ w) (c′ : w″ ⊒ w′) (c″ : w″ ⊒ w) →
c ◇ c′ ≡ c″
comp◇ c c′ c″ = uniq⊒ (c ◇ c′) c″
-- 4.1. Semantic objects
-- ---------------------
--
-- We define the set of semantic objects as usual in Kripke semantics.
--
-- Forcing is written `w ⊩ A`. For the base type an element in `w ⊩ •` is a family of
-- elements in `𝒢 w′`, `w′ ⊒ w`. For the type `A ⊃ B` an element in `w ⊩ A ⊃ B` is a family of
-- functions from `w′ ⊩ A` to `w′ ⊩ B`, `w′ ⊒ w`. (…)
module _ {{_ : Model}} where
-- TODO: Replace with strictly positive definition
infix 3 _⊩_
data _⊩_ : 𝒲 → 𝒯 → Set where
⟦𝒢⟧ : ∀ {w} →
(∀ {w′} → w′ ⊒ w → 𝒢 w′) →
w ⊩ •
⟦ƛ⟧ : ∀ {w A B} →
(∀ {w′} → w′ ⊒ w → w′ ⊩ A → w′ ⊩ B) →
w ⊩ A ⊃ B
-- We use the notational convention `⟦𝒢⟧` for the semantics of the ground type and
-- `⟦ƛ⟧` for the semantics of the function type.
--
-- We define the following two elimination rules: (…)
module _ {{_ : Model}} where
_⟦g⟧⟨_⟩ : ∀ {w w′} → w ⊩ • → w′ ⊒ w → 𝒢 w′
(⟦𝒢⟧ f) ⟦g⟧⟨ c ⟩ = f c
_⟦∙⟧⟨_⟩_ : ∀ {w w′ A B} → w ⊩ A ⊃ B → w′ ⊒ w → w′ ⊩ A → w′ ⊩ B
(⟦ƛ⟧ f) ⟦∙⟧⟨ c ⟩ a = f c a
-- The monotonicity function `↑⟨_⟩⊩` lifts a semantic object in one world into a semantic object
-- in a bigger world and is defined by induction on the type. (…)
module _ {{_ : Model}} where
↑⟨_⟩⊩ : ∀ {A w w′} → w′ ⊒ w → w ⊩ A → w′ ⊩ A
↑⟨_⟩⊩ {•} c f = ⟦𝒢⟧ (λ c′ → f ⟦g⟧⟨ c ◇ c′ ⟩)
↑⟨_⟩⊩ {A ⊃ B} c f = ⟦ƛ⟧ (λ c′ a → f ⟦∙⟧⟨ c ◇ c′ ⟩ a)
instance
raise⊩ : ∀ {A} → Raiseable (_⊩ A)
raise⊩ = record { ↑⟨_⟩ = ↑⟨_⟩⊩ }
-- We also need to define an equality, `Eq`, on semantic objects. For the soundness of the
-- η-rule we need `f : w ⊩ A ⊃ B` to be equal to `⟦ƛ⟧ (λ c a → f ⟦∙⟧⟨ c ⟩ a)`, which corresponds
-- to η-expansion on the semantic level. This means that the equality on our model must be
-- extensional and that application and the monotonicity function commutes, i.e., lifting the
-- result of an application up to a bigger world should be equal to first lifting the arguments and
-- then doing the application. We say that a semantic object is uniform, `𝒰`, if the application and
-- monotonicity functions commute for this object (see Scott [17] for a discussion regarding
-- commutativity). The predicates `Eq` and `𝒰` are mutually defined.
--
-- They both are defined by induction on the types; this way of defining extensionality is
-- presented by Gandy [10]. Two semantic objects of base type are equal if they are intensionally
-- equal in all bigger worlds and two semantic objects of function type are equal if the
-- application of them to a uniform semantic object in a bigger world is extensionally equal.
--
-- A semantic object of base type is always uniform. A semantic object of function type is uniform
-- if it sends a uniform semantic object in a bigger world to a uniform semantic object,
-- if it sends two extensionally equal uniform objects in a bigger worlds to extensionally equal
-- semantic objects and if application and monotonicity commute for the semantic object.
--
-- The sets `Eq` and `𝒰` are defined by: (…)
module _ {{_ : Model}} where
mutual
data Eq : ∀ {A w} → w ⊩ A → w ⊩ A → Set where
eq• : ∀ {w} {f f′ : w ⊩ •} →
(∀ {w′} →
(c : w′ ⊒ w) →
f ⟦g⟧⟨ c ⟩ ≡ f′ ⟦g⟧⟨ c ⟩) →
Eq f f′
eq⊃ : ∀ {A B w} {f f′ : w ⊩ A ⊃ B} →
(∀ {w′} →
(c : w′ ⊒ w) → {a : w′ ⊩ A} → 𝒰 a →
Eq (f ⟦∙⟧⟨ c ⟩ a) (f′ ⟦∙⟧⟨ c ⟩ a)) →
Eq f f′
data 𝒰 : ∀ {A w} → w ⊩ A → Set where
𝓊• : ∀ {w} {f : w ⊩ •} →
𝒰 f
𝓊⊃ : ∀ {A B w} {f : w ⊩ A ⊃ B} →
(∀ {w′} →
(c : w′ ⊒ w) → {a : w′ ⊩ A} → 𝒰 a →
𝒰 (f ⟦∙⟧⟨ c ⟩ a)) →
(∀ {w′} →
(c : w′ ⊒ w) → {a a′ : w′ ⊩ A} → Eq a a′ → 𝒰 a → 𝒰 a′ →
Eq (f ⟦∙⟧⟨ c ⟩ a) (f ⟦∙⟧⟨ c ⟩ a′)) →
(∀ {w′ w″} →
(c : w′ ⊒ w) (c′ : w″ ⊒ w′) (c″ : w″ ⊒ w) → {a : w′ ⊩ A} → 𝒰 a →
Eq (↑⟨ c′ ⟩ (f ⟦∙⟧⟨ c ⟩ a)) (f ⟦∙⟧⟨ c″ ⟩ (↑⟨ c′ ⟩ a))) →
𝒰 f
-- The equality `Eq` is transitive and symmetric and it is reflexive for uniform objects.
module _ {{_ : Model}} where
reflEq : ∀ {A w} {a : w ⊩ A} → 𝒰 a → Eq a a
reflEq 𝓊• = eq• (λ c → refl)
reflEq (𝓊⊃ h₀ h₁ h₂) = eq⊃ (λ c uₐ → reflEq (h₀ c uₐ))
-- TODO: Why do we restrict `Eq` so that it is reflexive only for uniform objects?
reflEq′ : ∀ {A w} {a : w ⊩ A} → Eq a a
reflEq′ {•} = eq• (λ c → refl)
reflEq′ {A ⊃ B} = eq⊃ (λ c uₐ → reflEq′)
symEq : ∀ {A w} {a a′ : w ⊩ A} → Eq a a′ → Eq a′ a
symEq {•} (eq• h) = eq• (λ c → sym (h c))
symEq {A ⊃ B} (eq⊃ h) = eq⊃ (λ c uₐ → symEq (h c uₐ))
transEq : ∀ {A w} {a a′ a″ : w ⊩ A} → Eq a a′ → Eq a′ a″ → Eq a a″
transEq {•} (eq• h) (eq• h′) = eq• (λ c → trans (h c) (h′ c))
transEq {A ⊃ B} (eq⊃ h) (eq⊃ h′) = eq⊃ (λ c uₐ → transEq (h c uₐ) (h′ c uₐ))
module _ {{_ : Model}} where
≡→Eq : ∀ {A w} {a a′ : w ⊩ A} → 𝒰 a → a ≡ a′ → Eq a a′
≡→Eq u refl = reflEq u
module EqReasoning where
infix 1 begin_
begin_ : ∀ {A w} {a a′ : w ⊩ A} → Eq a a′ → Eq a a′
begin eq = eq
infixr 2 _Eq⟨⟩_
_Eq⟨⟩_ : ∀ {A w} (a {a′} : w ⊩ A) → Eq a a′ → Eq a a′
a Eq⟨⟩ eq = eq
infixr 2 _Eq⟨_⟩_
_Eq⟨_⟩_ : ∀ {A w} (a {a′ a″} : w ⊩ A) → Eq a a′ → Eq a′ a″ → Eq a a″
a Eq⟨ eq ⟩ eq′ = transEq eq eq′
infixr 2 _≡⟨⟩_
_≡⟨⟩_ : ∀ {A w} (a {a′} : w ⊩ A) → Eq a a′ → Eq a a′
a ≡⟨⟩ eq = eq
infixr 2 _≡⟨_∣_⟩_
_≡⟨_∣_⟩_ : ∀ {A w} (a {a′ a″} : w ⊩ A) → a ≡ a′ → 𝒰 a → Eq a′ a″ → Eq a a″
a ≡⟨ eq ∣ u ⟩ eq′ = transEq (≡→Eq u eq) eq′
infix 3 _∎⟨_⟩
_∎⟨_⟩ : ∀ {A w} (a : w ⊩ A) → 𝒰 a → Eq a a
a ∎⟨ u ⟩ = reflEq u
-- Equal uniform values can be substituted in `⟦∙⟧⟨_⟩` and the function `↑⟨_⟩` returns uniform objects
-- for uniform input and equal results for equal input.
module _ {{_ : Model}} where
cong⟦∙⟧⟨_⟩Eq : ∀ {A B w w′} {f f′ : w ⊩ A ⊃ B} {a a′ : w′ ⊩ A} →
(c : w′ ⊒ w) → Eq f f′ → 𝒰 f → 𝒰 f′ → Eq a a′ → 𝒰 a → 𝒰 a′ →
Eq (f ⟦∙⟧⟨ c ⟩ a) (f′ ⟦∙⟧⟨ c ⟩ a′)
cong⟦∙⟧⟨ c ⟩Eq (eq⊃ h) (𝓊⊃ h₀ h₁ h₂) (𝓊⊃ h₀′ h₁′ h₂′) eqₐ uₐ uₐ′ =
transEq (h₁ c eqₐ uₐ uₐ′) (h c uₐ′)
cong↑⟨_⟩Eq : ∀ {A w w′} {a a′ : w ⊩ A} →
(c : w′ ⊒ w) → Eq a a′ →
Eq (↑⟨ c ⟩ a) (↑⟨ c ⟩ a′)
cong↑⟨ c ⟩Eq (eq• h) = eq• (λ c′ → h (c ◇ c′))
cong↑⟨ c ⟩Eq (eq⊃ h) = eq⊃ (λ c′ uₐ → h (c ◇ c′) uₐ)
cong↑⟨_⟩𝒰 : ∀ {A w w′} {a : w ⊩ A} →
(c : w′ ⊒ w) → 𝒰 a →
𝒰 (↑⟨ c ⟩ a)
cong↑⟨ c ⟩𝒰 𝓊• = 𝓊•
cong↑⟨ c ⟩𝒰 (𝓊⊃ h₀ h₁ h₂) = 𝓊⊃ (λ c′ uₐ → h₀ (c ◇ c′) uₐ)
(λ c′ eqₐ uₐ uₐ′ → h₁ (c ◇ c′) eqₐ uₐ uₐ′)
(λ c′ c″ c‴ uₐ → h₂ (c ◇ c′) c″ (c ◇ c‴) uₐ)
-- We also need to prove the following properties about `Eq` and `𝒰` which are used in the proofs of
-- soundness and completeness below.
module _ {{_ : Model}} where
aux₄₁₁⟨_⟩ : ∀ {A w} →
(c : w ⊒ w) → {a : w ⊩ A} → 𝒰 a →
Eq (↑⟨ c ⟩ a) a
aux₄₁₁⟨ c ⟩ {f} 𝓊• = eq• (λ c′ → cong (f ⟦g⟧⟨_⟩)
(id₁◇ c c′))
aux₄₁₁⟨ c ⟩ {f} (𝓊⊃ h₀ h₁ h₂) = eq⊃ (λ c′ {a} uₐ → ≡→Eq (h₀ (c ◇ c′) uₐ)
(cong (f ⟦∙⟧⟨_⟩ a)
(id₁◇ c c′)))
aux₄₁₂ : ∀ {A w w′ w″} →
(c : w′ ⊒ w) (c′ : w″ ⊒ w′) (c″ : w″ ⊒ w) → {a : w ⊩ A} → 𝒰 a →
Eq (↑⟨ c′ ⟩ (↑⟨ c ⟩ a)) (↑⟨ c″ ⟩ a)
aux₄₁₂ c c′ c″ {f} 𝓊• = eq• (λ c‴ → cong (f ⟦g⟧⟨_⟩)
(trans (assoc◇ c c′ c‴)
(comp◇ (c ◇ c′) c‴ (c″ ◇ c‴))))
aux₄₁₂ c c′ c″ {f} (𝓊⊃ h₀ h₁ h₂) = eq⊃ (λ c‴ {a} uₐ → ≡→Eq (h₀ (c ◇ (c′ ◇ c‴)) uₐ)
(cong (f ⟦∙⟧⟨_⟩ a)
(trans (assoc◇ c c′ c‴)
(comp◇ (c ◇ c′) c‴ (c″ ◇ c‴)))))
aux₄₁₃ : ∀ {A B w w′} →
(c : w′ ⊒ w) (c′ : w′ ⊒ w′) → {f : w ⊩ A ⊃ B} → 𝒰 f → {a : w′ ⊩ A} → 𝒰 a →
Eq (f ⟦∙⟧⟨ c ⟩ a) (↑⟨ c ⟩ f ⟦∙⟧⟨ c′ ⟩ a)
aux₄₁₃ c c′ {f} (𝓊⊃ h₀ h₁ h₂) {a} uₐ = ≡→Eq (h₀ c uₐ)
(cong (f ⟦∙⟧⟨_⟩ a)
(sym (id₂◇ c c′)))
-- 4.2. Semantic environments
-- --------------------------
--
-- We define the set of environments `_⊩⋆_`
-- where each variable in a context is associated with a semantic object. (…)
--
-- The set is introduced by: (…)
module _ {{_ : Model}} where
infix 3 _⊩⋆_
data _⊩⋆_ : 𝒲 → 𝒞 → Set where
[] : ∀ {w} →
w ⊩⋆ []
[_,_≔_] : ∀ {Γ A w} →
w ⊩⋆ Γ → (x : Name) {{_ : T (fresh x Γ)}} → w ⊩ A →
w ⊩⋆ [ Γ , x ∷ A ]
-- We write `[]` for the empty environment and `[ ρ , x ≔ a ]` for updating an environment.
-- We define the following operations on semantic environments:
--
-- The function `lookup` is defined by induction on the environment. (…)
module _ {{_ : Model}} where
lookup : ∀ {Γ A w x} → w ⊩⋆ Γ → Γ ∋ x ∷ A → w ⊩ A
lookup [ ρ , x ≔ a ] zero = a
lookup [ ρ , y ≔ b ] (suc i) = lookup ρ i
-- The function `↑⟨_⟩⊩⋆` that lifts
-- an environment into a bigger world is also defined by induction on the environment. (…)
module _ {{_ : Model}} where
↑⟨_⟩⊩⋆ : ∀ {Γ w w′} → w′ ⊒ w → w ⊩⋆ Γ → w′ ⊩⋆ Γ
↑⟨ c ⟩⊩⋆ [] = []
↑⟨ c ⟩⊩⋆ [ ρ , x ≔ a ] = [ ↑⟨ c ⟩⊩⋆ ρ , x ≔ ↑⟨ c ⟩ a ]
instance
raise⊩⋆ : ∀ {Γ} → Raiseable (_⊩⋆ Γ)
raise⊩⋆ = record { ↑⟨_⟩ = ↑⟨_⟩⊩⋆ }
-- The last function `↓⟨_⟩⊩⋆` is the projection on
-- environments and it is defined by induction on the proof of `Γ ⊇ Δ`. (…)
module _ {{_ : Model}} where
↓⟨_⟩⊩⋆ : ∀ {Γ Δ w} → Γ ⊇ Δ → w ⊩⋆ Γ → w ⊩⋆ Δ
↓⟨ done ⟩⊩⋆ ρ = []
↓⟨ step {x = x} c i ⟩⊩⋆ ρ = [ ↓⟨ c ⟩⊩⋆ ρ , x ≔ lookup ρ i ]
instance
lower⊩⋆ : ∀ {w} → Lowerable (w ⊩⋆_)
lower⊩⋆ = record { ↓⟨_⟩ = ↓⟨_⟩⊩⋆ }
-- We say that an environment is uniform `𝒰⋆ ρ : Set`, where `ρ : w ⊩⋆ Γ`, if each semantic
-- object in the environment is uniform. Two environments are equal `Eq⋆ ρ ρ′ : Set`,
-- where `ρ, ρ′ : w ⊩⋆ Γ`, if they are equal component-wise.
module _ {{_ : Model}} where
data Eq⋆ : ∀ {Γ w} → w ⊩⋆ Γ → w ⊩⋆ Γ → Set where
eq⋆[] : ∀ {w} →
Eq⋆ ([] {w}) ([] {w})
eq⋆≔ : ∀ {Γ A w x} {{_ : T (fresh x Γ)}} {ρ ρ′ : w ⊩⋆ Γ} {a a′ : w ⊩ A} →
Eq⋆ ρ ρ′ → Eq a a′ →
Eq⋆ [ ρ , x ≔ a ] [ ρ′ , x ≔ a′ ]
data 𝒰⋆ : ∀ {Γ w} → w ⊩⋆ Γ → Set where
𝓊⋆[] : ∀ {w} →
𝒰⋆ ([] {w})
𝓊⋆≔ : ∀ {Γ A w x} {{_ : T (fresh x Γ)}} {ρ : w ⊩⋆ Γ} {a : w ⊩ A} →
𝒰⋆ ρ → 𝒰 a →
𝒰⋆ [ ρ , x ≔ a ]
-- The equality on semantic environments, `Eq⋆`, is transitive, symmetric, and for uniform
-- environments also reflexive.
module _ {{_ : Model}} where
reflEq⋆ : ∀ {Γ w} {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ → Eq⋆ ρ ρ
reflEq⋆ 𝓊⋆[] = eq⋆[]
reflEq⋆ (𝓊⋆≔ u⋆ u) = eq⋆≔ (reflEq⋆ u⋆) (reflEq u)
symEq⋆ : ∀ {Γ w} {ρ ρ′ : w ⊩⋆ Γ} → Eq⋆ ρ ρ′ → Eq⋆ ρ′ ρ
symEq⋆ eq⋆[] = eq⋆[]
symEq⋆ (eq⋆≔ eq⋆ eq) = eq⋆≔ (symEq⋆ eq⋆) (symEq eq)
transEq⋆ : ∀ {Γ w} {ρ ρ′ ρ″ : w ⊩⋆ Γ} → Eq⋆ ρ ρ′ → Eq⋆ ρ′ ρ″ → Eq⋆ ρ ρ″
transEq⋆ eq⋆[] eq⋆[] = eq⋆[]
transEq⋆ (eq⋆≔ eq⋆ eq) (eq⋆≔ eq⋆′ eq′) = eq⋆≔ (transEq⋆ eq⋆ eq⋆′) (transEq eq eq′)
module _ {{_ : Model}} where
≡→Eq⋆ : ∀ {Γ w} {ρ ρ′ : w ⊩⋆ Γ} → 𝒰⋆ ρ → ρ ≡ ρ′ → Eq⋆ ρ ρ′
≡→Eq⋆ u⋆ refl = reflEq⋆ u⋆
module Eq⋆Reasoning where
infix 1 begin_
begin_ : ∀ {Γ w} {ρ ρ′ : w ⊩⋆ Γ} → Eq⋆ ρ ρ′ → Eq⋆ ρ ρ′
begin eq⋆ = eq⋆
infixr 2 _Eq⋆⟨⟩_
_Eq⋆⟨⟩_ : ∀ {Γ w} (ρ {ρ′} : w ⊩⋆ Γ) → Eq⋆ ρ ρ′ → Eq⋆ ρ ρ′
ρ Eq⋆⟨⟩ eq⋆ = eq⋆
infixr 2 _Eq⋆⟨_⟩_
_Eq⋆⟨_⟩_ : ∀ {Γ w} (ρ {ρ′ ρ″} : w ⊩⋆ Γ) → Eq⋆ ρ ρ′ → Eq⋆ ρ′ ρ″ → Eq⋆ ρ ρ″
ρ Eq⋆⟨ eq⋆ ⟩ eq⋆′ = transEq⋆ eq⋆ eq⋆′
infixr 2 _≡⟨⟩_
_≡⟨⟩_ : ∀ {Γ w} (ρ {ρ′} : w ⊩⋆ Γ) → Eq⋆ ρ ρ′ → Eq⋆ ρ ρ′
ρ ≡⟨⟩ eq⋆ = eq⋆
infixr 2 _≡⟨_∣_⟩_
_≡⟨_∣_⟩_ : ∀ {Γ w} (ρ {ρ′ ρ″} : w ⊩⋆ Γ) → ρ ≡ ρ′ → 𝒰⋆ ρ → Eq⋆ ρ′ ρ″ → Eq⋆ ρ ρ″
ρ ≡⟨ eq⋆ ∣ u⋆ ⟩ eq⋆′ = transEq⋆ (≡→Eq⋆ u⋆ eq⋆) eq⋆′
infix 3 _∎⟨_⟩
_∎⟨_⟩ : ∀ {Γ w} (ρ : w ⊩⋆ Γ) → 𝒰⋆ ρ → Eq⋆ ρ ρ
ρ ∎⟨ u⋆ ⟩ = reflEq⋆ u⋆
-- We can substitute equal semantic environments in `lookup`, `↑⟨_⟩`, `↓⟨_⟩`
-- and the result of applying these functions to uniform environments is also uniform.
module _ {{_ : Model}} where
conglookupEq : ∀ {Γ A w x} →
{ρ ρ′ : w ⊩⋆ Γ} → Eq⋆ ρ ρ′ → (i : Γ ∋ x ∷ A) →
Eq (lookup ρ i) (lookup ρ′ i)
conglookupEq eq⋆[] ()
conglookupEq (eq⋆≔ eq⋆ eq) zero = eq
conglookupEq (eq⋆≔ eq⋆ eq) (suc i) = conglookupEq eq⋆ i
cong↑⟨_⟩Eq⋆ : ∀ {Γ w w′} →
(c : w′ ⊒ w) → {ρ ρ′ : w ⊩⋆ Γ} → Eq⋆ ρ ρ′ →
Eq⋆ (↑⟨ c ⟩ ρ) (↑⟨ c ⟩ ρ′)
cong↑⟨ c ⟩Eq⋆ eq⋆[] = eq⋆[]
cong↑⟨ c ⟩Eq⋆ (eq⋆≔ eq⋆ eq) = eq⋆≔ (cong↑⟨ c ⟩Eq⋆ eq⋆) (cong↑⟨ c ⟩Eq eq)
cong↓⟨_⟩Eq⋆ : ∀ {Γ Δ w} →
(c : Γ ⊇ Δ) → {ρ ρ′ : w ⊩⋆ Γ} → Eq⋆ ρ ρ′ →
Eq⋆ (↓⟨ c ⟩ ρ) (↓⟨ c ⟩ ρ′)
cong↓⟨ done ⟩Eq⋆ eq⋆ = eq⋆[]
cong↓⟨ step c i ⟩Eq⋆ eq⋆ = eq⋆≔ (cong↓⟨ c ⟩Eq⋆ eq⋆) (conglookupEq eq⋆ i)
conglookup𝒰 : ∀ {Γ A w x} →
{ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ → (i : Γ ∋ x ∷ A) →
𝒰 (lookup ρ i)
conglookup𝒰 𝓊⋆[] ()
conglookup𝒰 (𝓊⋆≔ u⋆ u) zero = u
conglookup𝒰 (𝓊⋆≔ u⋆ u) (suc i) = conglookup𝒰 u⋆ i
cong↑⟨_⟩𝒰⋆ : ∀ {Γ w w′} →
(c : w′ ⊒ w) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ →
𝒰⋆ (↑⟨ c ⟩ ρ)
cong↑⟨ c ⟩𝒰⋆ 𝓊⋆[] = 𝓊⋆[]
cong↑⟨ c ⟩𝒰⋆ (𝓊⋆≔ u⋆ u) = 𝓊⋆≔ (cong↑⟨ c ⟩𝒰⋆ u⋆) (cong↑⟨ c ⟩𝒰 u)
cong↓⟨_⟩𝒰⋆ : ∀ {Γ Δ w} →
(c : Γ ⊇ Δ) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ →
𝒰⋆ (↓⟨ c ⟩ ρ)
cong↓⟨ done ⟩𝒰⋆ u⋆ = 𝓊⋆[]
cong↓⟨ step c i ⟩𝒰⋆ u⋆ = 𝓊⋆≔ (cong↓⟨ c ⟩𝒰⋆ u⋆) (conglookup𝒰 u⋆ i)
-- We also
-- need to prove the following properties about `Eq⋆` for semantic environments which basically
-- say that it doesn’t matter in which order we lift and project the substitution:
module _ {{_ : Model}} where
aux₄₂₁⟨_⟩ : ∀ {Γ Δ A w x} →
(c : Γ ⊇ Δ) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ → (i : Γ ∋ x ∷ A) (j : Δ ∋ x ∷ A) →
Eq (lookup ρ i) (lookup (↓⟨ c ⟩ ρ) j)
aux₄₂₁⟨ done ⟩ u⋆ i ()
aux₄₂₁⟨ step c i′ ⟩ u⋆ i zero rewrite uniq∋ i′ i
= conglookupEq (reflEq⋆ u⋆) i
aux₄₂₁⟨ step c i′ ⟩ u⋆ i (suc j) = aux₄₂₁⟨ c ⟩ u⋆ i j
conglookup↑⟨_⟩Eq : ∀ {Γ A w w′ x} {ρ : w ⊩⋆ Γ} →
(c : w′ ⊒ w) → 𝒰⋆ ρ → (i : Γ ∋ x ∷ A) →
Eq (↑⟨ c ⟩ (lookup ρ i)) (lookup (↑⟨ c ⟩ ρ) i)
conglookup↑⟨ c ⟩Eq 𝓊⋆[] ()
conglookup↑⟨ c ⟩Eq (𝓊⋆≔ u⋆ u) zero = cong↑⟨ c ⟩Eq (reflEq u)
conglookup↑⟨ c ⟩Eq (𝓊⋆≔ u⋆ u) (suc i) = conglookup↑⟨ c ⟩Eq u⋆ i
aux₄₂₃ : ∀ {Γ Δ A w x} {{_ : T (fresh x Δ)}} {{_ : T (fresh x Γ)}} →
(c : Γ ⊇ Δ) (c′ : [ Γ , x ∷ A ] ⊇ Δ) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ → {a : w ⊩ A} →
Eq⋆ (↓⟨ c′ ⟩ [ ρ , x ≔ a ]) (↓⟨ c ⟩ ρ)
aux₄₂₃ done done u⋆ = eq⋆[]
aux₄₂₃ {x = x} {{φ}} (step c i) (step c′ zero) u⋆ = elim⊥ (freshlem₁ x φ)
aux₄₂₃ {x = x} {{φ}} (step c i) (step c′ (suc i′)) u⋆ rewrite uniq∋ i′ i
= eq⋆≔ (aux₄₂₃ {{freshlem₂ x φ}} c c′ u⋆)
(reflEq (conglookup𝒰 u⋆ i))
aux₄₂₄⟨_⟩ : ∀ {Γ w} →
(c : Γ ⊇ Γ) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ →
Eq⋆ (↓⟨ c ⟩ ρ) ρ
aux₄₂₄⟨ done ⟩ 𝓊⋆[] = eq⋆[]
aux₄₂₄⟨ step c i ⟩ (𝓊⋆≔ u⋆ u) = eq⋆≔ (transEq⋆ (aux₄₂₃ refl⊇ c u⋆)
(aux₄₂₄⟨ refl⊇ ⟩ u⋆))
(aux₄₂₁⟨ refl⊇ ⟩ (𝓊⋆≔ u⋆ u) i zero)
aux₄₂₅⟨_⟩ : ∀ {Γ w} →
(c : w ⊒ w) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ →
Eq⋆ (↑⟨ c ⟩ ρ) ρ
aux₄₂₅⟨ c ⟩ 𝓊⋆[] = eq⋆[]
aux₄₂₅⟨ c ⟩ (𝓊⋆≔ u⋆ u) = eq⋆≔ (aux₄₂₅⟨ c ⟩ u⋆) (aux₄₁₁⟨ c ⟩ u)
aux₄₂₆ : ∀ {Γ Δ Θ w} →
(c : Δ ⊇ Γ) (c′ : Θ ⊇ Δ) (c″ : Θ ⊇ Γ) → {ρ : w ⊩⋆ Θ} → 𝒰⋆ ρ →
Eq⋆ (↓⟨ c ⟩ (↓⟨ c′ ⟩ ρ)) (↓⟨ c″ ⟩ ρ)
aux₄₂₆ done c′ done u⋆ = eq⋆[]
aux₄₂₆ (step c i) c′ (step c″ i″) u⋆ = eq⋆≔ (aux₄₂₆ c c′ c″ u⋆)
(symEq (aux₄₂₁⟨ c′ ⟩ u⋆ i″ i))
aux₄₂₇ : ∀ {Γ w w′ w″} →
(c : w′ ⊒ w) (c′ : w″ ⊒ w′) (c″ : w″ ⊒ w) → {ρ : w ⊩⋆ Γ} → 𝒰⋆ ρ →
Eq⋆ (↑⟨ c′ ⟩ (↑⟨ c ⟩ ρ)) (↑⟨ c″ ⟩ ρ)
aux₄₂₇ c c′ c″ 𝓊⋆[] = eq⋆[]
aux₄₂₇ c c′ c″ (𝓊⋆≔ u⋆ u) = eq⋆≔ (aux₄₂₇ c c′ c″ u⋆) (aux₄₁₂ c c′ c″ u)
aux₄₂₈ : ∀ {Γ Δ w w′} →
(c : Δ ⊇ Γ) (c′ : w′ ⊒ w) → {ρ : w ⊩⋆ Δ} → 𝒰⋆ ρ →
Eq⋆ (↑⟨ c′ ⟩ (↓⟨ c ⟩ ρ)) (↓⟨ c ⟩ (↑⟨ c′ ⟩ ρ))
aux₄₂₈ done c′ u⋆ = eq⋆[]
aux₄₂₈ (step c i) c′ u⋆ = eq⋆≔ (aux₄₂₈ c c′ u⋆) (conglookup↑⟨ c′ ⟩Eq u⋆ i)
-- These properties are used in the proofs of soundness and completeness below.
-- 4.3. The semantics of the λ-calculus
-- ------------------------------------
--
-- We define evaluation functions for proof trees and substitutions in a given environment: (…)
module _ {{_ : Model}} where
mutual
⟦_⟧ : ∀ {Γ A w} → Γ ⊢ A → w ⊩⋆ Γ → w ⊩ A
⟦ ν x i ⟧ ρ = lookup ρ i
⟦ ƛ x M ⟧ ρ = ⟦ƛ⟧ (λ c a → ⟦ M ⟧ [ ↑⟨ c ⟩ ρ , x ≔ a ])
⟦ M ∙ N ⟧ ρ = ⟦ M ⟧ ρ ⟦∙⟧⟨ refl⊒ ⟩ ⟦ N ⟧ ρ
⟦ M ▶ γ ⟧ ρ = ⟦ M ⟧ (⟦ γ ⟧ₛ ρ)
⟦_⟧ₛ : ∀ {Γ Δ w} → Δ ⋙ Γ → w ⊩⋆ Δ → w ⊩⋆ Γ
⟦ π⟨ c ⟩ ⟧ₛ ρ = ↓⟨ c ⟩ ρ
⟦ γ ● γ′ ⟧ₛ ρ = ⟦ γ ⟧ₛ (⟦ γ′ ⟧ₛ ρ)
⟦ [ γ , x ≔ M ] ⟧ₛ ρ = [ ⟦ γ ⟧ₛ ρ , x ≔ ⟦ M ⟧ ρ ]
|
{
"alphanum_fraction": 0.4090485075,
"avg_line_length": 39.7855670103,
"ext": "agda",
"hexsha": "ee3679d531ab6f4e50a122ce4cfc202d80773f42",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand",
"max_forks_repo_path": "src/Section4a.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand",
"max_issues_repo_path": "src/Section4a.agda",
"max_line_length": 102,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand",
"max_stars_repo_path": "src/Section4a.agda",
"max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z",
"num_tokens": 9835,
"size": 19296
}
|
{-# OPTIONS --without-K #-}
module sets.list where
open import sets.list.core public
|
{
"alphanum_fraction": 0.7209302326,
"avg_line_length": 17.2,
"ext": "agda",
"hexsha": "d9aeac399cd3d781cbab441ad04f24c8b208b2e4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/list.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/list.agda",
"max_line_length": 33,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/list.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 18,
"size": 86
}
|
module UnicodeSetIndex where
X : Set₁₄₀
X = Set₁₃₉
|
{
"alphanum_fraction": 0.7547169811,
"avg_line_length": 8.8333333333,
"ext": "agda",
"hexsha": "3ed980f479d8a8e999fb39d67b3742aa7f9643cc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/UnicodeSetIndex.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/UnicodeSetIndex.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/UnicodeSetIndex.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 24,
"size": 53
}
|
-- Andreas, 2015-05-09 trigger some option errors
{-# OPTIONS
--dont-termination-check
--not-termination-check
--without-K=4
--without-k
--senf-gurke
#-}
{- Expected error:
Unrecognized options:
--dont-termination-check (did you mean --no-termination-check ?)
--not-termination-check (did you mean --no-termination-check ?)
--without-k (did you mean --without-K ?)
--senf-gurke
Option error:
option `--without-K' doesn't allow an argument
-}
|
{
"alphanum_fraction": 0.6973684211,
"avg_line_length": 22.8,
"ext": "agda",
"hexsha": "76617de30c7610045aee1fe8e65268c0b9501c89",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UnrecognizedOption.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UnrecognizedOption.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UnrecognizedOption.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 130,
"size": 456
}
|
module utility where
open import Algebra
using (Monoid)
open import Algebra.Structures
using (IsMonoid ; IsSemigroup)
open import Data.Empty
open import Function
using (_∘_)
open import Relation.Binary
using (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; setoid ; sym ; cong)
open import Relation.Nullary
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Data.Bool
using (not)
open import Data.List
open import Data.List.Properties
using (map-id ; map-compose ; map-cong)
open import Data.List.Any as ListAny
using (Any ; any ; here ; there)
open import Data.List.Any.Properties using ( ∷↔ ; ++⁻)
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Nat
using (ℕ ; zero ; suc ; _≟_ ; _+_ ; _∸_)
open import Data.Nat.Properties.Simple
using (+-comm)
open import Data.Nat.Properties
using (n∸n≡0 ; m+n∸n≡m)
open import Data.Product
using (_,_ ; _,′_ ; _×_ ; proj₁ ; proj₂ ; ∃)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; id)
import Data.List.Membership.Setoid
++-assoc : ∀{A : Set} → (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
++-assoc {_} xs ys zs =
IsSemigroup.assoc (IsMonoid.isSemigroup (Monoid.isMonoid (Data.List.Properties.++-monoid _))) xs _ _
_∈_ : {A : Set} → (x : A) → (xs : List A) → Set
_∈_ {A} x xs = Data.List.Membership.Setoid._∈_ (setoid A) x xs
_∉_ : {A : Set} → (x : A) → (xs : List A) → Set
_∉_ {A} x xs = Data.List.Membership.Setoid._∉_ (setoid A) x xs
map-second : {A B C D : Set} →
(f : B → D) →
A × B × C → A × D × C
map-second f = Data.Product.map id (Data.Product.map f id)
any-map⁺ : ∀ {A B} {xs : List A} {x} (f : A → B) →
x ∈ xs → f x ∈ map f xs
any-map⁺ f (here refl) = here refl
any-map⁺ f (there x∈xs) = there (any-map⁺ f x∈xs)
-- the map-mono like the one in Data.List.Any.Membership
-- idk why I can't import that module so I just implement one here
map-mono : ∀ {A B} {ys zs : List A} (f : A → B) →
(∀ x → x ∈ ys → x ∈ zs) → ∀ fx → fx ∈ map f ys → fx ∈ map f zs
map-mono {ys = []} f ys⊆zs fx ()
map-mono {ys = y ∷ ys} {zs} f ys⊆zs .(f y) (here refl) =
any-map⁺ f (ys⊆zs y (here refl))
map-mono {ys = y ∷ ys} {zs} f ys⊆zs fx (there fx∈map-f-ys) =
map-mono f (λ x z → ys⊆zs x (there z)) fx fx∈map-f-ys
any-map⁺² : ∀ {A B : Set} {xs x fxy} (f : A → List B) →
x ∈ xs → fxy ∈ f x → fxy ∈ concatMap f xs
any-map⁺² f (here refl) fxy∈fx = ++ˡ fxy∈fx
any-map⁺² f (there x∈xs) fxy∈fx = ++ʳ (f _) (any-map⁺² f x∈xs fxy∈fx)
map-mono² : ∀ {A B C} {xs xs' : List A} {ys ys' : List B} (f : A → B → C) →
(∀ u → u ∈ xs → u ∈ xs') →
(∀ v → v ∈ ys → v ∈ ys') →
∀ fuv →
fuv ∈ concatMap (λ u → map (f u) ys) xs →
fuv ∈ concatMap (λ u → map (f u) ys') xs'
map-mono² {xs = []} {xs'} {ys} {ys'} f xs⊆xs' ys⊆ys' fuv ()
map-mono² {xs = x ∷ xs} {xs'} {ys} {ys'} f xs⊆xs' ys⊆ys' fuv fuv∈[[fuv|ys]|x∷xs]
with ++⁻ (map (f x) ys) fuv∈[[fuv|ys]|x∷xs]
... | inj₂ fuv∈[[fuv|ys]|xs] =
map-mono² f (λ u → xs⊆xs' u ∘ there) ys⊆ys' fuv fuv∈[[fuv|ys]|xs]
... | inj₁ fuv∈[fxv|ys] =
any-map⁺² (λ u → map (f u) ys')
(xs⊆xs' x (here refl))
(map-mono (f x) ys⊆ys' fuv fuv∈[fxv|ys])
module ListSet {A : Set} (_≟_ : Decidable {A = A} _≡_) where
open import Relation.Nullary.Negation using (¬?)
ST : Set
ST = List A
set-subtract : List A → List A → List A
set-subtract S T = filter (λ x → ¬? (ListAny.any (_≟_ x) T)) S
set-remove : List A → A → List A
set-remove S x = filter (¬? ∘ _≟_ x) S
set-remove-removed : ∀{S L} → S ∉ set-remove L S
set-remove-removed {S} {[]} ()
set-remove-removed {S} {x ∷ L} Sin with S ≟ x | set-remove-removed{S}{L}
set-remove-removed {S} {x ∷ L} Sin | yes refl | r = r Sin
set-remove-removed {S} {x ∷ L} (here px) | no ¬p | r = ¬p px
set-remove-removed {S} {x ∷ L} (there Sin) | no ¬p | r = r Sin
set-remove-not-eq : ∀{a a' xs} → a ∈ set-remove xs a' → ¬ a' ≡ a
set-remove-not-eq {a}{a'}{xs} a∈xs-a' with a' ≟ a
... | yes refl = ⊥-elim (set-remove-removed{a}{xs} a∈xs-a')
... | no ¬refl = ¬refl
set-remove-mono-∈ : ∀ {xs a} a' → a ∈ set-remove xs a' → a ∈ xs
set-remove-mono-∈ {[]} {a} a' ()
set-remove-mono-∈ {(x ∷ xs)} {a} a' a∈xs-[a'] with a' ≟ x
set-remove-mono-∈ {(x ∷ xs)} {a} a' a∈xs-[a']
| yes a'≡x = there (set-remove-mono-∈ a' a∈xs-[a'])
set-remove-mono-∈ {(x ∷ xs)} {a} a' (here refl)
| no ¬a'≡x = here refl
set-remove-mono-∈ {(x ∷ xs)} {a} a' (there a∈xs-[a'])
| no ¬a'≡x = there (set-remove-mono-∈ a' a∈xs-[a'])
set-remove-not-removed : ∀ {a' a xs} → ¬ (a' ≡ a) → a ∈ xs → a ∈ set-remove xs a'
set-remove-not-removed {a'} {a} {.a ∷ xs} a'≢a (here refl) with a' ≟ a
... | yes a'≡a = ⊥-elim (a'≢a a'≡a)
... | no ¬a'≡a = here refl
set-remove-not-removed {a'} {a} {x ∷ xs} a'≢a (there a∈xs) with a' ≟ x
... | yes a'≡x = set-remove-not-removed a'≢a a∈xs
... | no ¬a'≡x = there (set-remove-not-removed a'≢a a∈xs)
set-subtract-[] : ∀ xs → set-subtract xs [] ≡ xs
set-subtract-[] [] = refl
set-subtract-[] (x ∷ xs) rewrite set-subtract-[] xs = refl
set-subtract-[a]≡set-remove : ∀ xs a → set-subtract xs (a ∷ []) ≡ set-remove xs a
set-subtract-[a]≡set-remove [] a = refl
set-subtract-[a]≡set-remove (x ∷ xs) a
with x ≟ a | a ≟ x
... | yes refl | no a≢x = ⊥-elim (a≢x refl)
... | no x≢a | yes refl = ⊥-elim (x≢a refl)
... | yes refl | yes a≡x = set-subtract-[a]≡set-remove xs x
... | no x≢a | no a≢x rewrite set-subtract-[a]≡set-remove xs a = refl
set-subtract-merge : ∀ {xs ys z} → z ∈ set-subtract xs ys → (z ∈ xs) × (z ∉ ys)
set-subtract-merge {[]} ()
set-subtract-merge {x ∷ xs} {ys} z∈xs-ys with ListAny.any (_≟_ x) ys
set-subtract-merge {x ∷ xs} {ys} (here refl) | no x∉ys = here refl ,′ x∉ys
set-subtract-merge {x ∷ xs} {ys} (there z∈xs-ys) | no x∉ys = there z∈xs , z∉ys
where z∈xs,z∉ys = set-subtract-merge {xs} {ys} z∈xs-ys
z∈xs = proj₁ z∈xs,z∉ys
z∉ys = proj₂ z∈xs,z∉ys
... | yes x∈ys = there z∈xs , z∉ys
where z∈xs,z∉ys = set-subtract-merge {xs} {ys} z∈xs-ys
z∈xs = proj₁ z∈xs,z∉ys
z∉ys = proj₂ z∈xs,z∉ys
set-subtract-split : ∀ {xs ys z} → z ∈ xs → z ∈ set-subtract xs ys ⊎ z ∈ ys
set-subtract-split {[]} ()
set-subtract-split {x ∷ xs} {ys} (here refl) with ListAny.any (_≟_ x) ys
... | yes x∈ys = inj₂ x∈ys
... | no x∉ys = inj₁ ( (here refl) )
set-subtract-split {x ∷ xs} {ys} (there x∈xs)
with ListAny.any (_≟_ x) ys | set-subtract-split x∈xs
... | x∈ys⊎x∉ys | inj₂ z∈ys = inj₂ z∈ys
... | yes x∈ys | inj₁ z∈xs-ys = inj₁ z∈xs-ys
... | no x∉ys | inj₁ z∈xs-ys = inj₁ ( (there z∈xs-ys) )
set-subtract-notin : ∀ {xs ys z} → z ∈ xs → z ∉ ys → z ∈ set-subtract xs ys
set-subtract-notin{xs}{ys}{z} z∈ z∉ with set-subtract-split{xs}{ys}{z} z∈
... | inj₁ a = a
... | inj₂ b = ⊥-elim (z∉ b)
-- note: the fixity of our triple-apply _#_ combinator
-- is different from the usual fixity of _$_.
infixl 1 _#_
-- applying three functions to three values in parallel
_#_ : {A B C : Set} → {D : A → Set} → {E : B → Set} → {F : C → Set} →
((a : A) → D a) × ((b : B) → E b) × ((c : C) → F c) →
(abc : A × B × C) → D (proj₁ abc) × E (proj₁ (proj₂ abc)) × F (proj₂ (proj₂ abc))
(f , g , h) # (x , y , z) = f x ,′ g y ,′ h z
infix 6 _U̬_
_U̬_ : List ℕ × List ℕ × List ℕ → List ℕ × List ℕ × List ℕ → List ℕ × List ℕ × List ℕ
(S , s , v) U̬ (S1 , s1 , v1) = S ++ S1 ,′ s ++ s1 ,′ v ++ v1
infixr 6 _|̌_
infixr 6 _|¹_
_|¹_ = ListSet.set-subtract Data.Nat._≟_
_|̌_ : List ℕ × List ℕ × List ℕ → List ℕ × List ℕ × List ℕ → List ℕ × List ℕ × List ℕ
(S , s , x) |̌ (S1 , s1 , x1)
= (S |¹ S1) , (s |¹ s1) , (x |¹ x1)
∪-assoc : ∀ xs³ ys³ zs³ → (xs³ U̬ ys³) U̬ zs³ ≡ xs³ U̬ (ys³ U̬ zs³)
∪-assoc xs³ ys³ zs³
rewrite ++-assoc (proj₁ xs³) (proj₁ ys³) (proj₁ zs³)
| ++-assoc (proj₁ (proj₂ xs³)) (proj₁ (proj₂ ys³)) (proj₁ (proj₂ zs³))
| ++-assoc (proj₂ (proj₂ xs³)) (proj₂ (proj₂ ys³)) (proj₂ (proj₂ zs³)) = refl
xs++[]≡xs : ∀{A : Set} → (xs : List A) → xs ++ [] ≡ xs
xs++[]≡xs xs = proj₂ (Monoid.identity (Data.List.Properties.++-monoid _)) xs
x∈xs++[]→x∈xs : ∀{A} → {x : A} → {xs : List A} → x ∈ (xs ++ []) → x ∈ xs
x∈xs++[]→x∈xs {xs = xs} x∈xs rewrite xs++[]≡xs xs = x∈xs
_⊆¹_ : List ℕ → List ℕ → Set
xs ⊆¹ ys = ∀ x → x ∈ xs → x ∈ ys
_⊆_ : List ℕ × List ℕ × List ℕ → List ℕ × List ℕ × List ℕ → Set
(Ss₁ , ss₁ , xs₁) ⊆ (Ss₂ , ss₂ , xs₂) =
(Ss₁ ⊆¹ Ss₂) × (ss₁ ⊆¹ ss₂) × (xs₁ ⊆¹ xs₂)
⊆¹-refl : ∀ {xs} → xs ⊆¹ xs
⊆¹-refl _ p = p
⊆-refl : ∀ {xs³} → xs³ ⊆ xs³
⊆-refl = ⊆¹-refl ,′ ⊆¹-refl ,′ ⊆¹-refl
⊆-empty-left : ∀ {xs³} → ([] ,′ [] ,′ []) ⊆ xs³
⊆-empty-left = (λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())
⊆¹-trans : ∀{xs ys zs} → xs ⊆¹ ys → ys ⊆¹ zs → xs ⊆¹ zs
⊆¹-trans xs⊆ys ys⊆zs w w∈xs = ys⊆zs _ (xs⊆ys _ w∈xs)
⊆-trans : ∀{xs³ ys³ zs³} → xs³ ⊆ ys³ → ys³ ⊆ zs³ → xs³ ⊆ zs³
⊆-trans xs³⊆ys³ ys³⊆zs³ = ⊆¹-trans ,′ ⊆¹-trans ,′ ⊆¹-trans # xs³⊆ys³ # ys³⊆zs³
⊆¹-respect-|¹ : ∀{xs ys} zs → xs ⊆¹ ys → (xs |¹ zs) ⊆¹ (ys |¹ zs)
⊆¹-respect-|¹{xs}{ys} zs xs⊂ys a a∈ with ListSet.set-subtract-merge Data.Nat._≟_ {xs}{zs}{a} a∈
... | (a∈xs , a∉zs) = ListSet.set-subtract-notin Data.Nat._≟_ (xs⊂ys a a∈xs) a∉zs
⊆-respect-|̌ : ∀{xs ys} zs → xs ⊆ ys → (xs |̌ zs) ⊆ (ys |̌ zs)
⊆-respect-|̌ zs sub = ⊆¹-respect-|¹ , ⊆¹-respect-|¹ , ⊆¹-respect-|¹ # zs # sub
∷-respect-⊆¹ : ∀{xs ys} z → xs ⊆¹ ys → (z ∷ xs) ⊆¹ (z ∷ ys)
∷-respect-⊆¹ z sub .z (here refl) = here refl
∷-respect-⊆¹ z sub a (there a∈) = there (sub a a∈)
∪ˡ : ∀{xs³ ys³ zs³} → xs³ ⊆ ys³ → xs³ ⊆ (ys³ U̬ zs³)
∪ˡ (Ss₁⊆Ss₂ , ss₁⊆ss₂ , xs₁⊆xs₂) =
(λ S → ++ˡ ∘ Ss₁⊆Ss₂ S) ,′
(λ s → ++ˡ ∘ ss₁⊆ss₂ s) ,′
(λ x → ++ˡ ∘ xs₁⊆xs₂ x)
∪ʳ : ∀{xs³ ys³} → (zs³ : List ℕ × List ℕ × List ℕ) → xs³ ⊆ ys³ → xs³ ⊆ (zs³ U̬ ys³)
∪ʳ xs (Ss₁⊆Ss₂ , ss₁⊆ss₂ , xs₁⊆xs₂) =
(λ S → ++ʳ (proj₁ xs) ∘ Ss₁⊆Ss₂ S) ,′
(λ s → ++ʳ (proj₁ (proj₂ xs)) ∘ ss₁⊆ss₂ s) ,′
(λ x → ++ʳ (proj₂ (proj₂ xs)) ∘ xs₁⊆xs₂ x)
∪¹-unjoin-⊆¹ : ∀ {ys zs} xs → (xs ++ ys) ⊆¹ zs → xs ⊆¹ zs × ys ⊆¹ zs
∪¹-unjoin-⊆¹ xs xs++ys⊆zs = (λ x x∈xs → xs++ys⊆zs x (++ˡ x∈xs)) ,′
(λ x x∈ys → xs++ys⊆zs x (++ʳ xs x∈ys))
∪-unjoin-⊆ : ∀ {ys³ zs³} xs³ → (xs³ U̬ ys³) ⊆ zs³ → xs³ ⊆ zs³ × ys³ ⊆ zs³
∪-unjoin-⊆ xs³ xs³∪ys³⊆zs³ = unzip³ (∪¹-unjoin-⊆¹ ,′ ∪¹-unjoin-⊆¹ ,′ ∪¹-unjoin-⊆¹ #
xs³ # xs³∪ys³⊆zs³)
where unzip³ : {A B C D E F : Set} → (A × D) × (B × E) × (C × F) → (A × B × C) × (D × E × F)
unzip³ ((a , d) , (b , e) , (c , f)) = (a , b , c) , (d , e , f)
∪-unjoin-⊆ˡ : ∀{xs³ ys³ zs³} → (xs³ U̬ ys³) ⊆ zs³ → xs³ ⊆ zs³
∪-unjoin-⊆ˡ {xs³} = proj₁ ∘ ∪-unjoin-⊆ xs³
∪-unjoin-⊆ʳ : ∀ {ys³ zs³} xs³ → (xs³ U̬ ys³) ⊆ zs³ → ys³ ⊆ zs³
∪-unjoin-⊆ʳ xs³ = proj₂ ∘ ∪-unjoin-⊆ xs³
∪¹-join-⊆¹ : ∀{xs ys zs} → xs ⊆¹ zs → ys ⊆¹ zs → (xs ++ ys) ⊆¹ zs
∪¹-join-⊆¹ {xs} xs⊆zs ys⊆zs w w∈xs++ys with ++⁻ xs w∈xs++ys
... | inj₁ w∈xs = xs⊆zs _ w∈xs
... | inj₂ w∈ys = ys⊆zs _ w∈ys
∪-join-⊆ : ∀{xs³ ys³ zs³} → xs³ ⊆ zs³ → ys³ ⊆ zs³ → (xs³ U̬ ys³) ⊆ zs³
∪-join-⊆ xs³⊆zs³ ys³⊆zs³ = ∪¹-join-⊆¹ ,′ ∪¹-join-⊆¹ ,′ ∪¹-join-⊆¹ # xs³⊆zs³ # ys³⊆zs³
∪-respect-⊆-left : ∀{xs³ ys³ zs³} → xs³ ⊆ ys³ → (xs³ U̬ zs³) ⊆ (ys³ U̬ zs³)
∪-respect-⊆-left {xs³} {ys³} {zs³} xs³⊆ys³ = ∪-join-⊆ (∪ˡ xs³⊆ys³) (∪ʳ ys³ ⊆-refl)
∪-respect-⊆-right : ∀{xs³ ys³} zs³ → xs³ ⊆ ys³ → (zs³ U̬ xs³) ⊆ (zs³ U̬ ys³)
∪-respect-⊆-right {xs³} {ys³} zs³ xs³⊆ys³ = ∪-join-⊆ (∪ˡ (⊆-refl {zs³})) (∪ʳ zs³ xs³⊆ys³)
∪¹-respect-⊆¹-right : ∀ {xs ys} zs → xs ⊆¹ ys → (zs ++ xs) ⊆¹ (zs ++ ys)
∪¹-respect-⊆¹-right zs xs⊆ys = proj₁ (∪-respect-⊆-right (zs ,′ [] ,′ []) (xs⊆ys ,′ ⊆¹-refl {[]} ,′ ⊆¹-refl {[]}))
∪¹-respect-⊆¹-left : ∀ {xs ys zs} → xs ⊆¹ ys → (xs ++ zs) ⊆¹ (ys ++ zs)
∪¹-respect-⊆¹-left{zs = zs} xs⊆ys = proj₁ (∪-respect-⊆-left{zs³ = (zs ,′ [] ,′ [])} (xs⊆ys ,′ ⊆¹-refl {[]} ,′ ⊆¹-refl {[]}))
⊆-subst-left : ∀{xs³ ys³ zs³} → xs³ ≡ ys³ → xs³ ⊆ zs³ → ys³ ⊆ zs³
⊆-subst-left refl xs³⊆zs³ = xs³⊆zs³
∪-comm-⊆-left : ∀ {ys³ zs³} xs³ → (xs³ U̬ ys³) ⊆ zs³ → (ys³ U̬ xs³) ⊆ zs³
∪-comm-⊆-left xs³ xs³∪ys³⊆zs³ =
∪-join-⊆ (proj₂ (∪-unjoin-⊆ xs³ xs³∪ys³⊆zs³)) (proj₁ (∪-unjoin-⊆ xs³ xs³∪ys³⊆zs³))
∪-comm-⊆-right : ∀ {xs³ ys³} zs³ → xs³ ⊆ (ys³ U̬ zs³) → xs³ ⊆ (zs³ U̬ ys³)
∪-comm-⊆-right zs³ xs³⊆ys³∪zs³ = ⊆-trans xs³⊆ys³∪zs³ (∪-join-⊆ (∪ʳ zs³ ⊆-refl) (∪ˡ ⊆-refl))
distinct' : ∀{A : Set} -> (xs : List A) -> (ys : List A) -> Set
distinct'{A} xs ys = (z : A) -> z ∈ xs -> z ∈ ys -> ⊥
distinct : (xs : List ℕ × List ℕ × List ℕ) -> (ys : List ℕ × List ℕ × List ℕ) -> Set
distinct (S , s , v) (S1 , s1 , v1) = distinct' S S1 × distinct' s s1 × distinct' v v1
distinct-empty-left : ∀ {xs³} → distinct ([] ,′ [] ,′ []) xs³
distinct-empty-left = (λ _ ()) ,′ (λ _ ()) ,′ (λ _ ())
distinct-empty-right : ∀ {xs³} → distinct xs³ ([] ,′ [] ,′ [])
distinct-empty-right = (λ _ _ ()) ,′ (λ _ _ ()) ,′ (λ _ _ ())
distinct'-sym : ∀{A L1 L2} → (distinct'{A} L1 L2) → (distinct'{A} L2 L1)
distinct'-sym d = λ z x x₁ → d z x₁ x
distinct'-to-left : {xs ys zs : List ℕ} →
(distinct' xs ys → distinct' xs zs) →
distinct' ys xs → distinct' zs xs
distinct'-to-left f ys≠xs = distinct'-sym (f (distinct'-sym ys≠xs))
distinct-sym : ∀{VL1 VL2} → distinct VL1 VL2 → distinct VL2 VL1
distinct-sym (a , b , c) = (distinct'-sym a) , ((distinct'-sym b) , (distinct'-sym c))
dist'++ˡ : ∀{A V1 V2 V3} → (distinct'{A} V1 (V2 ++ V3)) → (distinct'{A} V1 V2)
dist'++ˡ {A} {V1} {V2} {V3} d = λ z x x₁ → d z x (++ˡ x₁)
dist'++ʳ : ∀{A V1 V2 V3} → (distinct'{A} V1 (V2 ++ V3)) → (distinct'{A} V1 V3)
dist'++ʳ {A} {V1} {V2} {V3} d = λ z x x₁ → d z x (++ʳ V2 x₁)
dist'++b : ∀{A V1 V2 V3 V4} → (distinct'{A} (V1 ++ V2) (V3 ++ V4)) → (distinct'{A} V1 V3)
dist'++b d = λ z x x₁ → d z (++ˡ x) (++ˡ x₁)
dist':: : ∀{A V1 V2 S} → (distinct'{A} V1 (S ∷ V2)) → (distinct' V1 V2)
dist'::{A}{V1}{V2}{S} d = dist'++ʳ{A}{V1}{[ S ]}{V2} d
dist'-sym : ∀{A L1 L2} → (distinct'{A} L1 L2) → (distinct' L2 L1)
dist'-sym d = λ z x x₁ → d z x₁ x
distinct'-union-left : ∀ {xs ys zs : List ℕ} →
distinct' xs zs → distinct' ys zs → distinct' (xs ++ ys) zs
distinct'-union-left {xs} xs≠zs ys≠zs x x∈xs++ys x∈zs with ++⁻ xs x∈xs++ys
... | inj₁ x∈xs = xs≠zs x x∈xs x∈zs
... | inj₂ x∈ys = ys≠zs x x∈ys x∈zs
distinct-union-left : ∀ {xs ys zs} →
distinct xs zs → distinct ys zs → distinct (xs U̬ ys) zs
distinct-union-left xs≠zs xs≠ys =
distinct'-union-left ,′ distinct'-union-left ,′ distinct'-union-left #
xs≠zs # xs≠ys
distinct-union-right : ∀ {xs ys zs} →
distinct zs xs → distinct zs ys → distinct zs (xs U̬ ys)
distinct-union-right zs≠xs zs≠ys =
distinct-sym (distinct-union-left (distinct-sym zs≠xs) (distinct-sym zs≠ys))
⊆¹-respect-distinct'-left : ∀{xs ys zs} → xs ⊆¹ ys → distinct' ys zs → distinct' xs zs
⊆¹-respect-distinct'-left xs⊆ys ys≠zs x x∈xs x∈zs = ys≠zs x (xs⊆ys x x∈xs) x∈zs
⊆-respect-distinct-left : ∀{xs³ ys³ zs³} → xs³ ⊆ ys³ → distinct ys³ zs³ → distinct xs³ zs³
⊆-respect-distinct-left {xs³} {ys³} {zs³} xs³⊆ys³ ys³≠zs³ =
⊆¹-respect-distinct'-left ,′ ⊆¹-respect-distinct'-left ,′ ⊆¹-respect-distinct'-left #
xs³⊆ys³ # ys³≠zs³
⊆¹-respect-distinct'-right : ∀{xs ys zs} → xs ⊆¹ ys → distinct' zs ys → distinct' zs xs
⊆¹-respect-distinct'-right xs⊆ys zs≠ys =
distinct'-sym (⊆¹-respect-distinct'-left xs⊆ys (distinct'-sym zs≠ys))
⊆-respect-distinct-right : ∀{xs³ ys³ zs³} → xs³ ⊆ ys³ → distinct zs³ ys³ → distinct zs³ xs³
⊆-respect-distinct-right {xs³} {ys³} {zs³} xs³⊆ys³ zs³≠ys³ =
distinct-sym (⊆-respect-distinct-left xs³⊆ys³ (distinct-sym zs³≠ys³))
distinct'-dec : (xs ys : List ℕ) -> Dec (∃ λ z -> z ∈ xs × z ∈ ys)
distinct'-dec [] ys = no λ { (z , () , z∈ys) }
distinct'-dec (x ∷ xs) ys with ListAny.any (\ x' -> x Data.Nat.≟ x') ys
distinct'-dec (x ∷ xs) ys | yes p = yes (x , here refl , p)
distinct'-dec (x ∷ xs) ys | no ¬p with distinct'-dec xs ys
distinct'-dec (x ∷ xs) ys | no ¬p | yes (z , z∈xs , x∈ys) = yes (z , there z∈xs , x∈ys)
distinct'-dec (x ∷ xs) ys | no ¬p₁ | no ¬p =
no (\ { (.x , here refl , z∈ys) → ¬p₁ z∈ys ;
(z , there z∈xs , z∈ys) → ¬p (z , z∈xs , z∈ys) } )
distinct-dec : (xs ys : List ℕ × List ℕ × List ℕ) ->
Dec ((∃ λ S → (S ∈ proj₁ xs) × (S ∈ proj₁ ys)) ⊎
(∃ λ s → (s ∈ proj₁ (proj₂ xs)) × (s ∈ proj₁ (proj₂ ys))) ⊎
(∃ λ x → (x ∈ proj₂ (proj₂ xs)) × (x ∈ proj₂ (proj₂ ys))))
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) with distinct'-dec S1 S2
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) | yes S1S2 = yes (inj₁ S1S2)
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) | no ¬S1S2 with distinct'-dec s1 s2
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) | no ¬S1S2 | yes s1s2 =
yes (inj₂ (inj₁ s1s2))
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) | no ¬S1S2 | no ¬s1s2 with distinct'-dec x1 x2
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) | no ¬S1S2 | no ¬s1s2 | yes x1x2 =
yes (inj₂ (inj₂ x1x2))
distinct-dec (S1 , s1 , x1) (S2 , s2 , x2) | no ¬S1S2 | no ¬s1s2 | no ¬x1x2 =
no (λ { (inj₁ x) → ¬S1S2 x ; (inj₂ (inj₁ x)) → ¬s1s2 x ; (inj₂ (inj₂ y)) → ¬x1x2 y })
distinct-not-distinct-dec : ∀ {xs ys} -> distinct xs ys ->
((∃ λ S → (S ∈ proj₁ xs) × (S ∈ proj₁ ys)) ⊎
(∃ λ s → (s ∈ proj₁ (proj₂ xs)) × (s ∈ proj₁ (proj₂ ys))) ⊎
(∃ λ x → (x ∈ proj₂ (proj₂ xs)) × (x ∈ proj₂ (proj₂ ys))))
-> ⊥
distinct-not-distinct-dec {xs} {ys} DXY (inj₁ (NDXYS , NDXYs , NDXYx)) = (proj₁ DXY) NDXYS NDXYs NDXYx
distinct-not-distinct-dec {xs} {ys} DXY (inj₂ (inj₁ (NDXYS , NDXYs , NDXYx))) = (proj₁ (proj₂ DXY)) NDXYS NDXYs NDXYx
distinct-not-distinct-dec {xs} {ys} DXY (inj₂ (inj₂ (NDXYS , NDXYs , NDXYx))) = (proj₂ (proj₂ DXY)) NDXYS NDXYs NDXYx
distinct-dec-is-distinct : ∀ {xs ys} ->
(((∃ λ S → (S ∈ proj₁ xs) × (S ∈ proj₁ ys)) ⊎
(∃ λ s → (s ∈ proj₁ (proj₂ xs)) × (s ∈ proj₁ (proj₂ ys))) ⊎
(∃ λ x → (x ∈ proj₂ (proj₂ xs)) × (x ∈ proj₂ (proj₂ ys))))
-> ⊥) -> distinct xs ys
distinct-dec-is-distinct {xs} {ys} FAIL =
((λ z z∈xs z∈ys → FAIL (inj₁ (z , z∈xs , z∈ys))) ,
(λ z z∈xs z∈ys → FAIL (inj₂ (inj₁ (z , z∈xs , z∈ys)))) ,
(λ z z∈xs z∈ys → FAIL (inj₂ (inj₂ (z , z∈xs , z∈ys)))))
case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → (∀ x → B x) → B x
case x return B of f = f x
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
typeof : ∀{𝕝}{A : Set 𝕝} → A → Set 𝕝
typeof{_}{A} _ = A
fst : ∀{l} {A B C : Set l} → A × B × C → A
fst = proj₁
snd : ∀{l} {A B C : Set l} → A × B × C → B
snd = proj₁ ∘ proj₂
thd : ∀{l} {A B C : Set l} → A × B × C → C
thd = proj₂ ∘ proj₂
∈:: : ∀{A} {x y : A} → x ∈ (y ∷ []) → x ≡ y
∈:: (here px) = px
∈:: (there ())
n∉map-suc-n-+ : ∀ n xs → ¬ (n ∈ map (suc n +_) xs)
n∉map-suc-n-+ n [] ()
n∉map-suc-n-+ n (x ∷ xs) (here n≡suc⟨n+x⟩) with cong (_∸ n) n≡suc⟨n+x⟩
... | n∸n≡suc⟨n+x⟩∸n rewrite n∸n≡0 n | +-comm n x | m+n∸n≡m (suc x) n with n∸n≡suc⟨n+x⟩∸n
... | ()
n∉map-suc-n-+ n (x ∷ xs) (there n∈map-suc-n-+) = n∉map-suc-n-+ n xs n∈map-suc-n-+
map-+-swap-suc : ∀ n xs →
map (_+_ n) (map suc xs) ≡ map suc (map (_+_ n) xs)
map-+-swap-suc n xs
rewrite sym (map-compose {g = _+_ n} {f = suc} xs)
| map-cong (λ m → +-comm n (suc m)) xs
| map-cong (λ m → cong suc (+-comm m n)) xs
| map-compose {g = suc} {f = _+_ n} xs
= refl
map-+-compose-suc : ∀ n xs →
map (_+_ n) (map suc xs) ≡ map (_+_ (suc n)) xs
map-+-compose-suc n xs
rewrite map-+-swap-suc n xs
| sym (map-compose {g = suc} {f = _+_ n} xs)
= refl
|
{
"alphanum_fraction": 0.5294725957,
"avg_line_length": 40.8016877637,
"ext": "agda",
"hexsha": "b8f626be45eae343848835c0dcb270508e9b6b5b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/utility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/utility.agda",
"max_line_length": 126,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/utility.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 9361,
"size": 19340
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties, related to reflexive transitive closures, that rely on
-- the K rule
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module
Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties.WithK
where
open import Function
open import Relation.Binary
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Equality
module _ {i t} {I : Set i} {T : Rel I t} {i j k} {x y : T i j} {xs ys}
where
◅-injectiveˡ : (Star T i k ∋ x ◅ xs) ≡ y ◅ ys → x ≡ y
◅-injectiveˡ refl = refl
◅-injectiveʳ : (Star T i k ∋ x ◅ xs) ≡ y ◅ ys → xs ≡ ys
◅-injectiveʳ refl = refl
|
{
"alphanum_fraction": 0.5146726862,
"avg_line_length": 29.5333333333,
"ext": "agda",
"hexsha": "c88cf76c8aa3774523e3e42d7d5830cd81426c71",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/ReflexiveTransitive/Properties/WithK.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/ReflexiveTransitive/Properties/WithK.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/ReflexiveTransitive/Properties/WithK.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 227,
"size": 886
}
|
{-# OPTIONS --without-K #-}
module PointedTypes where
open import Agda.Prim
open import Data.Unit
open import Data.Bool
open import Data.Nat hiding (_⊔_)
open import Data.Sum
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
-- Pointed types
-- We need pointed types because paths are ultimately between points. A path
-- between false and 0 for example would be expressed as a path between
-- (pt false) and (pt 0) which expand to •[ Bool , false ] and •[ ℕ , 0 ]
-- First we define a pointed set as a carrier with a distinguished point
record Set• (ℓ : Level) : Set (lsuc ℓ) where
constructor •[_,_]
field
∣_∣ : Set ℓ
• : ∣_∣
open Set• public
⊤• : Set• lzero
⊤• = •[ ⊤ , tt ]
_⊎•₁_ : {ℓ ℓ' : Level} → (A• : Set• ℓ) → (B• : Set• ℓ') → Set• (ℓ ⊔ ℓ')
A• ⊎•₁ B• = •[ ∣ A• ∣ ⊎ ∣ B• ∣ , inj₁ (• A•) ]
_⊎•₂_ : {ℓ ℓ' : Level} → (A• : Set• ℓ) → (B• : Set• ℓ') → Set• (ℓ ⊔ ℓ')
A• ⊎•₂ B• = •[ ∣ A• ∣ ⊎ ∣ B• ∣ , inj₂ (• B•) ]
_ו_ : {ℓ ℓ' : Level} → (A• : Set• ℓ) → (B• : Set• ℓ') → Set• (ℓ ⊔ ℓ')
A• ו B• = •[ ∣ A• ∣ × ∣ B• ∣ , (• A• , • B•) ]
test0 : Set• lzero
test0 = •[ ℕ , 3 ]
test1 : Set• (lsuc lzero)
test1 = •[ Set , ℕ ]
test2 : {ℓ ℓ' : Level} {A : Set ℓ} {B : Set ℓ'} {a : A} → Set• (ℓ ⊔ ℓ')
test2 {ℓ} {ℓ'} {A} {B} {a} = •[ A ⊎ B , inj₁ a ]
test3 : ∀ {ℓ} → Set• (lsuc (lsuc ℓ))
test3 {ℓ} = •[ Set (lsuc ℓ) , Set ℓ ]
test4 : Set• lzero
test4 = •[ (Bool → Bool) , not ]
-- Now we focus on the points and move the carriers to the background
pt : {ℓ : Level} {A : Set ℓ} → (a : A) → Set• ℓ
pt {ℓ} {A} a = •[ A , a ]
test5 : Set• lzero
test5 = pt 3
test6 : Set• (lsuc lzero)
test6 = pt ℕ
test7 : {ℓ : Level} → Set• (lsuc (lsuc ℓ))
test7 {ℓ} = pt (Set ℓ)
-- See:
-- http://homotopytypetheory.org/2012/11/21/on-heterogeneous-equality/
beta : {ℓ : Level} {A : Set ℓ} {a : A} → • •[ A , a ] ≡ a
beta {ℓ} {A} {a} = refl
eta : {ℓ : Level} → (A• : Set• ℓ) → •[ ∣ A• ∣ , • A• ] ≡ A•
eta {ℓ} A• = refl
------------------------------------------------------------------------------
-- Functions between pointed types; our focus is on how the functions affect
-- the basepoint. We don't care what the functions do on the rest of the type.
record _→•_ {ℓ ℓ' : Level} (A• : Set• ℓ) (B• : Set• ℓ') : Set (ℓ ⊔ ℓ') where
field
fun : ∣ A• ∣ → ∣ B• ∣
resp• : fun (• A•) ≡ • B•
open _→•_ public
id• : {ℓ : Level} {A• : Set• ℓ} → (A• →• A•)
id• = record { fun = id ; resp• = refl }
f1 : pt 2 →• pt 4
f1 = record { fun = suc ∘ suc ; resp• = refl }
f2 : pt 2 →• pt 4
f2 = record { fun = λ x → 2 * x ; resp• = refl }
-- composition of functions between pointed types
_⊚_ : {ℓ₁ ℓ₂ ℓ₃ : Level} {A• : Set• ℓ₁} {B• : Set• ℓ₂} {C• : Set• ℓ₃} →
(B• →• C•) → (A• →• B•) → (A• →• C•)
h ⊚ g = record {
fun = fun h ∘ fun g ;
resp• = trans (cong (fun h) (resp• g)) (resp• h)
}
f3 : pt 4 →• pt 2
f3 = record { fun = pred ∘ pred ; resp• = refl }
f1∘f3 : pt 4 →• pt 4
f1∘f3 = f1 ⊚ f3
-- two pointed functions are ∼ if they agree on the basepoints; we DON'T CARE
-- what they do on the rest of the type.
_∼•_ : {ℓ ℓ' : Level} {A• : Set• ℓ} {B• : Set• ℓ'} →
(f• g• : A• →• B•) → Set ℓ'
_∼•_ {ℓ} {ℓ'} {A•} {B•} f• g• = fun f• (• A•) ≡ fun g• (• A•)
f1∼f2 : f1 ∼• f2
f1∼f2 = refl
f1∘f3∼id : f1∘f3 ∼• id•
f1∘f3∼id = refl
-- quasi-inverses
record qinv• {ℓ ℓ'} {A• : Set• ℓ} {B• : Set• ℓ'} (f• : A• →• B•) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv•
field
g• : B• →• A•
α• : (f• ⊚ g•) ∼• id•
β• : (g• ⊚ f•) ∼• id•
idqinv• : ∀ {ℓ} → {A• : Set• ℓ} → qinv• {ℓ} {ℓ} {A•} {A•} id•
idqinv• = record { g• = id• ; α• = refl ; β• = refl }
f1qinv : qinv• f1
f1qinv = record { g• = f3 ; α• = refl ; β• = refl }
-- equivalences
record isequiv• {ℓ ℓ'} {A• : Set• ℓ} {B• : Set• ℓ'} (f• : A• →• B•) :
Set (ℓ ⊔ ℓ') where
constructor mkisequiv•
field
g• : B• →• A•
α• : (f• ⊚ g•) ∼• id•
h• : B• →• A•
β• : (h• ⊚ f•) ∼• id•
equiv•₁ : ∀ {ℓ ℓ'} {A• : Set• ℓ} {B• : Set• ℓ'} {f• : A• →• B•} →
qinv• f• → isequiv• f•
equiv•₁ (mkqinv• qg qα qβ) = mkisequiv• qg qα qg qβ
f1equiv : isequiv• f1
f1equiv = equiv•₁ f1qinv
_≃•_ : ∀ {ℓ ℓ'} (A• : Set• ℓ) (B• : Set• ℓ') → Set (ℓ ⊔ ℓ')
A ≃• B = Σ (A →• B) isequiv•
idequiv• : ∀ {ℓ} {A• : Set• ℓ} → A• ≃• A•
idequiv• = ( id• , equiv•₁ idqinv•)
pt24equiv : pt 2 ≃• pt 4
pt24equiv = (f1 , f1equiv)
------------------------------------------------------------------------------
{-- old stuff which we might need again
idright : {A B : Set} {a : A} {b : B} {p : •[ A , a ] ⇛ •[ B , b ]} →
(trans⇛ p (id⇛ {B} {b})) 2⇛ p
idright = 2Path id⇛ id⇛
idleft : {A B : Set} {a : A} {b : B} {p : •[ A , a ] ⇛ •[ B , b ]} →
(trans⇛ (id⇛ {A} {a}) p) 2⇛ p
idleft = 2Path id⇛ id⇛
assoc : {A B C D : Set} {a : A} {b : B} {c : C} {d : D}
{p : •[ A , a ] ⇛ •[ B , b ]}
{q : •[ B , b ] ⇛ •[ C , c ]}
{r : •[ C , c ] ⇛ •[ D , d ]} →
(trans⇛ p (trans⇛ q r)) 2⇛ (trans⇛ (trans⇛ p q) r)
assoc = 2Path id⇛ id⇛
bifunctorid⋆ : {A B : Set} {a : A} {b : B} →
(times⇛ (id⇛ {A} {a}) (id⇛ {B} {b})) 2⇛ (id⇛ {A × B} {(a , b)})
bifunctorid⋆ = 2Path id⇛ id⇛
bifunctorid₊₁ : {A B : Set} {a : A} →
(plus₁⇛ {A} {B} {A} {B} (id⇛ {A} {a})) 2⇛ (id⇛ {A ⊎ B} {inj₁ a})
bifunctorid₊₁ = 2Path id⇛ id⇛
bifunctorid₊₂ : {A B : Set} {b : B} →
(plus₂⇛ {A} {B} {A} {B} (id⇛ {B} {b})) 2⇛ (id⇛ {A ⊎ B} {inj₂ b})
bifunctorid₊₂ = 2Path id⇛ id⇛
bifunctorC⋆ : {A B C D E F : Set}
{a : A} {b : B} {c : C} {d : D} {e : E} {f : F}
{p : •[ A , a ] ⇛ •[ B , b ]}
{q : •[ B , b ] ⇛ •[ C , c ]}
{r : •[ D , d ] ⇛ •[ E , e ]}
{s : •[ E , e ] ⇛ •[ F , f ]} →
(trans⇛ (times⇛ p r) (times⇛ q s)) 2⇛ (times⇛ (trans⇛ p q) (trans⇛ r s))
bifunctorC⋆ = 2Path id⇛ id⇛
bifunctorC₊₁₁ : {A B C D E F : Set}
{a : A} {b : B} {c : C}
{p : •[ A , a ] ⇛ •[ B , b ]}
{q : •[ B , b ] ⇛ •[ C , c ]} →
(trans⇛ (plus₁⇛ {A} {D} {B} {E} p) (plus₁⇛ {B} {E} {C} {F} q)) 2⇛
(plus₁⇛ {A} {D} {C} {F} (trans⇛ p q))
bifunctorC₊₁₁ = 2Path id⇛ id⇛
bifunctorC₊₂₂ : {A B C D E F : Set}
{d : D} {e : E} {f : F}
{r : •[ D , d ] ⇛ •[ E , e ]}
{s : •[ E , e ] ⇛ •[ F , f ]} →
(trans⇛ (plus₂⇛ {A} {D} {B} {E} r) (plus₂⇛ {B} {E} {C} {F} s)) 2⇛
(plus₂⇛ {A} {D} {C} {F} (trans⇛ r s))
bifunctorC₊₂₂ = 2Path id⇛ id⇛
triangle : {A B : Set} {a : A} {b : B} →
(trans⇛ (assocr⋆⇛ {A} {⊤} {B} {a} {tt} {b}) (times⇛ id⇛ unite⋆⇛)) 2⇛
(times⇛ (trans⇛ swap⋆⇛ unite⋆⇛) id⇛)
triangle = 2Path id⇛ id⇛
-- Now interpret a path (x ⇛ y) as a value of type (1/x , y)
Recip : {A : Set} → (x : • A) → Set₁
Recip {A} x = (x ⇛ x)
η : {A : Set} {x : • A} → ⊤ → Recip x × • A
η {A} {x} tt = (id⇛ x , x)
lower : {A : Set} {x : • A} → x ⇛ x -> ⊤
lower c = tt
-- The problem here is that we can't assert that y == x.
ε : {A : Set} {x : • A} → Recip x × • A → ⊤
ε {A} {x} (rx , y) = lower (id⇛ ( ↑ (fun (ap rx) (focus y)) )) -- makes insufficient sense
apr : {A B : Set} {x : • A} {y : • B} → (x ⇛ y) → Recip y → Recip x
apr {A} {B} {x} {y} q ry = trans⇛ q (trans⇛ ry (sym⇛ q))
x
≡⟨ q ⟩
y
≡⟨ ry ⟩
y
≡⟨ sym⇛ q ⟩
x ∎
ε : {A B : Set} {x : A} {y : B} → Recip x → Singleton y → x ⇛ y
ε rx (singleton y) = rx y
pathV : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip x × Singleton y
pathV unite₊⇛ = {!!}
pathV uniti₊⇛ = {!!}
-- swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x)
pathV (swap₁₊⇛ {A} {B} {x}) = ((λ x' → {!!}) , singleton (inj₂ x))
pathV swap₂₊⇛ = {!!}
pathV assocl₁₊⇛ = {!!}
pathV assocl₂₁₊⇛ = {!!}
pathV assocl₂₂₊⇛ = {!!}
pathV assocr₁₁₊⇛ = {!!}
pathV assocr₁₂₊⇛ = {!!}
pathV assocr₂₊⇛ = {!!}
pathV unite⋆⇛ = {!!}
pathV uniti⋆⇛ = {!!}
pathV swap⋆⇛ = {!!}
pathV assocl⋆⇛ = {!!}
pathV assocr⋆⇛ = {!!}
pathV dist₁⇛ = {!!}
pathV dist₂⇛ = {!!}
pathV factor₁⇛ = {!!}
pathV factor₂⇛ = {!!}
pathV dist0⇛ = {!!}
pathV factor0⇛ = {!!}
pathV {A} {.A} {x} (id⇛ .x) = {!!}
pathV (sym⇛ p) = {!!}
pathV (trans⇛ p p₁) = {!!}
pathV (plus₁⇛ p) = {!!}
pathV (plus₂⇛ p) = {!!}
pathV (times⇛ p p₁) = {!!}
-- these are individual paths so to speak
-- should we represent a path like swap+ as a family explicitly:
-- swap+ : (x : A) -> x ⇛ swapF x
-- I guess we can: swap+ : (x : A) -> case x of inj1 -> swap1 x else swap2 x
If A={x0,x1,x2}, 1/A has three values:
(x0<-x0, x0<-x1, x0<-x2)
(x1<-x0, x1<-x1, x1<-x2)
(x2<-x0, x2<-x1, x2<-x2)
It is a fake choice between x0, x1, and x2 (some negative information). You base
yourself at x0 for example and enforce that any other value can be mapped to x0.
So think of a value of type 1/A as an uncertainty about which value of A we
have. It could be x0, x1, or x2 but at the end it makes no difference. There is
no choice.
You can manipulate a value of type 1/A (x0<-x0, x0<-x1, x0<-x2) by with a
path to some arbitrary path to b0 for example:
(b0<-x0<-x0, b0<-x0<-x1, b0<-x0<-x2)
eta_3 will give (x0<-x0, x0<-x1, x0<-x2, x0) for example but any other
combination is equivalent.
epsilon_3 will take (x0<-x0, x0<-x1, x0<-x2) and one actual xi which is now
certain; we can resolve our previous uncertainty by following the path from
xi to x0 thus eliminating the fake choice we seemed to have.
Explain connection to negative information.
Knowing head or tails is 1 bits. Giving you a choice between heads and tails
and then cooking this so that heads=tails takes away your choice.
-- transp⇛ : {A B : Set} {x y : • A} →
-- (f : A → B) → x ⇛ y → ↑ (f (focus x)) ⇛ ↑ (f (focus y))
-- Morphism of pointed space: contains a path!
record _⟶_ {A B : Set} (pA : • A) (pB : • B) : Set₁ where
field
fun : A → B
eq : ↑ (fun (focus pA)) ⇛ pB
open _⟶_
_○_ : {A B C : Set} {pA : • A} {pB : • B} {pC : • C} → pA ⟶ pB → pB ⟶ pC → pA ⟶ pC
f ○ g = record { fun = λ x → (fun g) ((fun f) x) ; eq = trans⇛ (transp⇛ (fun g) (eq f)) (eq g)}
mutual
ap : {A B : Set} {x : • A} {y : • B} → x ⇛ y → x ⟶ y
ap {y = y} unite₊⇛ = record { fun = λ { (inj₁ ())
; (inj₂ x) → x } ; eq = id⇛ y }
ap uniti₊⇛ (singleton x) = singleton (inj₂ x)
ap (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₁ x)) = singleton (inj₂ x)
ap (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₂ y)) = singleton (inj₁ y)
ap (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) =
singleton (inj₁ (inj₁ x))
ap (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) =
singleton (inj₁ (inj₂ y))
ap (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) =
singleton (inj₂ z)
ap (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) =
singleton (inj₁ x)
ap (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) =
singleton (inj₂ (inj₁ y))
ap (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) =
singleton (inj₂ (inj₂ z))
ap {.(⊤ × A)} {A} {.(tt , x)} {x} unite⋆⇛ (singleton .(tt , x)) =
singleton x
ap uniti⋆⇛ (singleton x) = singleton (tt , x)
ap (swap⋆⇛ {A} {B} {x} {y}) (singleton .(x , y)) = singleton (y , x)
ap (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) =
singleton ((x , y) , z)
ap (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) =
singleton (x , (y , z))
ap (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) =
singleton (inj₁ (x , z))
ap (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) =
singleton (inj₂ (y , z))
ap (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) =
singleton (inj₁ x , z)
ap (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) =
singleton (inj₂ y , z)
ap {.(⊥ × A)} {.⊥} {.(• , x)} {•} (dist0⇛ {A} {.•} {x}) (singleton .(• , x)) =
singleton •
ap factor0⇛ (singleton ())
ap {x = x} (id⇛ .x) = record { fun = λ x → x; eq = id⇛ x }
ap (sym⇛ c) = apI c
ap (trans⇛ c₁ c₂) = (ap c₁) ○ (ap c₂)
ap (transp⇛ f a) = record { fun = λ x → x; eq = transp⇛ f a }
ap (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ x))
with ap c (singleton x)
... | singleton .z = singleton (inj₁ z)
ap (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ y))
with ap c (singleton y)
... | singleton .w = singleton (inj₂ w)
ap (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(x , y))
with ap c₁ (singleton x) | ap c₂ (singleton y)
... | singleton .z | singleton .w = singleton (z , w)
apI : {A B : Set} {x : • A} {y : • B} → x ⇛ y → y ⟶ x
apI {y = y} unite₊⇛ = record { fun = inj₂; eq = id⇛ (↑ (inj₂ (focus y))) }
apI {A} {.(⊥ ⊎ A)} {x} uniti₊⇛ (singleton .(inj₂ x)) = singleton x
apI (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₂ x)) = singleton (inj₁ x)
apI (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₁ y)) = singleton (inj₂ y)
apI (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) =
singleton (inj₁ x)
apI (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) =
singleton (inj₂ (inj₁ y))
apI (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) =
singleton (inj₂ (inj₂ z))
apI (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) =
singleton (inj₁ (inj₁ x))
apI (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) =
singleton (inj₁ (inj₂ y))
apI (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) =
singleton (inj₂ z)
apI unite⋆⇛ (singleton x) = singleton (tt , x)
apI {A} {.(⊤ × A)} {x} uniti⋆⇛ (singleton .(tt , x)) = singleton x
apI (swap⋆⇛ {A} {B} {x} {y}) (singleton .(y , x)) = singleton (x , y)
apI (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) =
singleton (x , (y , z))
apI (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) =
singleton ((x , y) , z)
apI (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) =
singleton (inj₁ x , z)
apI (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) =
singleton (inj₂ y , z)
apI (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) =
singleton (inj₁ (x , z))
apI (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) =
singleton (inj₂ (y , z))
apI dist0⇛ (singleton ())
apI {.⊥} {.(⊥ × A)} {•} (factor0⇛ {A} {.•} {x}) (singleton .(• , x)) =
singleton •
apI {x = x} (id⇛ .x) = record { fun = λ x → x; eq = id⇛ x }
apI (sym⇛ c) = ap c
apI (trans⇛ c₁ c₂) = (apI c₂) ○ (apI c₁)
apI (transp⇛ f a) = record { fun = λ x → x; eq = transp⇛ f (sym⇛ a) }
apI (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ z))
with apI c (singleton z)
... | singleton .x = singleton (inj₁ x)
apI (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ w))
with apI c (singleton w)
... | singleton .y = singleton (inj₂ y)
apI (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(z , w))
with apI c₁ (singleton z) | apI c₂ (singleton w)
... | singleton .x | singleton .y = singleton (x , y)
--}
|
{
"alphanum_fraction": 0.4745150502,
"avg_line_length": 33.5201793722,
"ext": "agda",
"hexsha": "ad427e47db742b99c9084f315ed3e6dc7cdad518",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "PointedTypes.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "PointedTypes.agda",
"max_line_length": 95,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "PointedTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 7289,
"size": 14950
}
|
------------------------------------------------------------------------------
-- Properties for the equality on Conat
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Conat.Equality.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Conat
open import FOTC.Data.Conat.Equality.Type
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the
-- relation _≈N_ is also a pre-fixed point of the functional ≈-F, i.e.
--
-- ≈-F _≈_ ≤ _≈_ (see FOTC.Data.Conat.Equality.Type).
-- See Issue https://github.com/asr/apia/issues/81 .
≈-inR : D → D → Set
≈-inR m n = m ≡ zero ∧ n ≡ zero
∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ m' ≈ n')
{-# ATP definition ≈-inR #-}
≈-in :
∀ {m n} →
m ≡ zero ∧ n ≡ zero
∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ m' ≈ n') →
m ≈ n
≈-in h = ≈-coind ≈-inR h' h
where
postulate
h' : ∀ {m n} → ≈-inR m n →
m ≡ zero ∧ n ≡ zero
∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ ≈-inR m' n')
{-# ATP prove h' #-}
-- See Issue https://github.com/asr/apia/issues/81 .
≈-reflR : D → D → Set
≈-reflR a b = Conat a ∧ Conat b ∧ a ≡ b
{-# ATP definition ≈-reflR #-}
≈-refl : ∀ {n} → Conat n → n ≈ n
≈-refl {n} Cn = ≈-coind ≈-reflR h₁ h₂
where
postulate
h₁ : ∀ {a b} → ≈-reflR a b →
a ≡ zero ∧ b ≡ zero
∨ (∃[ a' ] ∃[ b' ] a ≡ succ₁ a' ∧ b ≡ succ₁ b' ∧ ≈-reflR a' b')
{-# ATP prove h₁ #-}
postulate h₂ : ≈-reflR n n
{-# ATP prove h₂ #-}
postulate ≡→≈ : ∀ {m n} → Conat m → Conat n → m ≡ n → m ≈ n
{-# ATP prove ≡→≈ ≈-refl #-}
|
{
"alphanum_fraction": 0.4419354839,
"avg_line_length": 31,
"ext": "agda",
"hexsha": "285b995b9bc1ef9e6522fef700fbdf8f9a3bfa21",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Conat/Equality/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Conat/Equality/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Conat/Equality/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 686,
"size": 1860
}
|
{-
Product of structures S and T: X ↦ S X × T X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.Product where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients
open import Cubical.Structures.Product
private
variable
ℓ ℓ₁ ℓ₁' ℓ₂ ℓ₂' : Level
-- Structured relations
preservesSetsProduct : {S₁ : Type ℓ → Type ℓ₁} {S₂ : Type ℓ → Type ℓ₂}
→ preservesSets S₁ → preservesSets S₂ → preservesSets (ProductStructure S₁ S₂)
preservesSetsProduct p₁ p₂ setX = isSet× (p₁ setX) (p₂ setX)
ProductRelStr :
{S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁')
{S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂')
→ StrRel (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂')
ProductRelStr ρ₁ ρ₂ R (s₁ , s₂) (t₁ , t₂) =
ρ₁ R s₁ t₁ × ρ₂ R s₂ t₂
open SuitableStrRel
productSuitableRel :
{S₁ : Type ℓ → Type ℓ₁} {ρ₁ : StrRel S₁ ℓ₁'}
{S₂ : Type ℓ → Type ℓ₂} {ρ₂ : StrRel S₂ ℓ₂'}
→ SuitableStrRel S₁ ρ₁ → SuitableStrRel S₂ ρ₂
→ SuitableStrRel (ProductStructure S₁ S₂) (ProductRelStr ρ₁ ρ₂)
productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .fst .fst =
θ₁ .quo (X , s₁) R r₁ .fst .fst , θ₂ .quo (X , s₂) R r₂ .fst .fst
productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .fst .snd =
θ₁ .quo (X , s₁) R r₁ .fst .snd , θ₂ .quo (X , s₂) R r₂ .fst .snd
productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .snd ((q₁ , q₂) , (c₁ , c₂)) i .fst =
θ₁ .quo (X , s₁) R r₁ .snd (q₁ , c₁) i .fst , θ₂ .quo (X , s₂) R r₂ .snd (q₂ , c₂) i .fst
productSuitableRel θ₁ θ₂ .quo (X , s₁ , s₂) R (r₁ , r₂) .snd ((q₁ , q₂) , (c₁ , c₂)) i .snd =
θ₁ .quo (X , s₁) R r₁ .snd (q₁ , c₁) i .snd , θ₂ .quo (X , s₂) R r₂ .snd (q₂ , c₂) i .snd
productSuitableRel θ₁ θ₂ .symmetric R (r₁ , r₂) =
θ₁ .symmetric R r₁ , θ₂ .symmetric R r₂
productSuitableRel θ₁ θ₂ .transitive R R' (r₁ , r₂) (r₁' , r₂') =
θ₁ .transitive R R' r₁ r₁' , θ₂ .transitive R R' r₂ r₂'
productSuitableRel θ₁ θ₂ .prop propR (s₁ , s₂) (t₁ , t₂) =
isProp× (θ₁ .prop propR s₁ t₁) (θ₂ .prop propR s₂ t₂)
productRelMatchesEquiv :
{S₁ : Type ℓ → Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {ι₁ : StrEquiv S₁ ℓ₁'}
{S₂ : Type ℓ → Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') {ι₂ : StrEquiv S₂ ℓ₂'}
→ StrRelMatchesEquiv ρ₁ ι₁ → StrRelMatchesEquiv ρ₂ ι₂
→ StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (ProductEquivStr ι₁ ι₂)
productRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ A B e =
Σ-cong-equiv (μ₁ _ _ e) (λ _ → μ₂ _ _ e)
|
{
"alphanum_fraction": 0.6621873834,
"avg_line_length": 39.9850746269,
"ext": "agda",
"hexsha": "03106a480cad0c6309ac6c51045cd7f78739a526",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/Product.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1182,
"size": 2679
}
|
module Issue498b where
record ⊤ : Set where
constructor tt
postulate
U : Set → Set
pr : ∀ {A} → A → U A
_*_ : ∀ {A B} → U A → (A → U B) → U B
module M (I : Set)(J : I → Set)(K : (i : I)(j : J i) → Set) where
data D (P : I → Set) : I → Set where
r : ∀ {i} → P i → D P i
d : (i : I)(j : J i)
(f : K i j → D P i) → D P i
module N (e : (i : I)(j : J i) → U (K i j)) where
du : ∀ {P}{i : I} → D P i → U (P i)
du (r p) = pr p
du (d i j f) = e i j * λ k → du (f k)
data j : ⊤ → Set where
cj : j _
k : (i : ⊤)(j : j i) → Set
k _ j = ⊤
e : (i : ⊤)(j : j i) → U (k i j)
e tt cj = pr tt
open M ⊤ j k
open N e
|
{
"alphanum_fraction": 0.4036418816,
"avg_line_length": 17.8108108108,
"ext": "agda",
"hexsha": "f23b0e42672dab4492067a0f7cac41f3db11faeb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue498b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue498b.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue498b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 310,
"size": 659
}
|
-- Andreas, 2016-10-08 issue #2243
-- This is a test case reported at #708 by pepijnkokke
open import Common.Bool using (Bool; true; false)
open import Common.Reflection using (QName)
example : QName → Bool
example (quote Bool) = true
example (quote Bool) = false
example _ = false
|
{
"alphanum_fraction": 0.7084745763,
"avg_line_length": 26.8181818182,
"ext": "agda",
"hexsha": "42cd6734232bad57308f382f2bba43e410d61e79",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue708quote.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue708quote.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue708quote.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 80,
"size": 295
}
|
module Data.Unsigned where
open import Data.Bit using
(Bit
; b0
; b1
; Bits-num
; Overflowing
; _overflow:_
; result
; carry
; WithCarry
; _with-carry:_
; toBool
; tryToFinₙ
; !ₙ
) renaming
( _+_ to bit+
; _-_ to bit-
; ! to bit!
; _&_ to bit&
; _~|_ to bit|
; _^_ to bit^
; _>>_ to bit>>
; _<<_ to bit<<
)
open import Data.Unit using (⊤)
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; head; replicate)
open import Data.Nat.Literal using (Number)
open import Data.Maybe using (just; nothing)
infixl 8 _-_ _+_
infixl 7 _<<_ _>>_
infixl 6 _&_
infixl 5 _^_
infixl 4 _~|_
record Unsigned (n : ℕ) : Set where
constructor mk-uint
field
bits : Vec Bit n
open Unsigned public
instance
Unsigned-num : {m : ℕ} → Number (Unsigned m)
Unsigned-num {m} .Number.Constraint = Number.Constraint (Bits-num {m})
Unsigned-num {m} .Number.fromNat n ⦃ p ⦄ = mk-uint (mk-bits p) where
mk-bits : Number.Constraint (Bits-num {m}) n → Vec Bit m
mk-bits p = Number.fromNat Bits-num n ⦃ p ⦄
_+_ : {n : ℕ} → Unsigned n → Unsigned n → Overflowing (Unsigned n)
p + q = mk-uint (result sum) overflow: toBool (head (carry sum)) where
sum = bit+ (bits p) (bits q)
_-_ : {n : ℕ} → Unsigned n → Unsigned n → Overflowing (Unsigned n)
p - q = mk-uint (result sub) overflow: toBool (bit! (head (carry sub))) where
sub = bit- (bits p) (bits q)
rotr : {n : ℕ} → Unsigned n → Unsigned n → WithCarry (Unsigned n) (Unsigned n)
rotr {n} (mk-uint ps) (mk-uint qs) = new-result with-carry: new-carry where
shifted : WithCarry (Vec Bit n) (Vec Bit n)
shifted with tryToFinₙ qs
... | just i = bit>> ps i
... | nothing = replicate b0 with-carry: ps
new-result : Unsigned n
new-result = mk-uint (result shifted)
new-carry : Unsigned n
new-carry = mk-uint (carry shifted)
rotl : {n : ℕ} → Unsigned n → Unsigned n → WithCarry (Unsigned n) (Unsigned n)
rotl {n} (mk-uint ps) (mk-uint qs) = new-result with-carry: new-carry where
shifted : WithCarry (Vec Bit n) (Vec Bit n)
shifted with tryToFinₙ qs
... | just i = bit<< ps i
... | nothing = replicate b0 with-carry: ps
new-result : Unsigned n
new-result = mk-uint (result shifted)
new-carry : Unsigned n
new-carry = mk-uint (carry shifted)
_>>_ : {n : ℕ} → Unsigned n → Unsigned n → Unsigned n
ps >> qs = result (rotr ps qs)
_<<_ : {n : ℕ} → Unsigned n → Unsigned n → Unsigned n
ps << qs = result (rotl ps qs)
! : {n : ℕ} → Unsigned n → Unsigned n
! (mk-uint ps) = mk-uint (!ₙ ps)
_&_ : {n : ℕ} → Unsigned n → Unsigned n → Unsigned n
(mk-uint ps) & (mk-uint qs) = mk-uint (bit& ps qs)
_~|_ : {n : ℕ} → Unsigned n → Unsigned n → Unsigned n
(mk-uint ps) ~| (mk-uint qs) = mk-uint (bit| ps qs)
_^_ : {n : ℕ} → Unsigned n → Unsigned n → Unsigned n
(mk-uint ps) ^ (mk-uint qs) = mk-uint (bit^ ps qs)
|
{
"alphanum_fraction": 0.6175647306,
"avg_line_length": 28.58,
"ext": "agda",
"hexsha": "7c9bad78a86a82edd29eaa3b08f868fc4ec30cc1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "brunoczim/Celeste",
"max_forks_repo_path": "formalization/Data/Unsigned.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "brunoczim/Celeste",
"max_issues_repo_path": "formalization/Data/Unsigned.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9f5129d97ee7b89fb8e43136779a78806b7506ab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "brunoczim/Celeste",
"max_stars_repo_path": "formalization/Data/Unsigned.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-16T17:31:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-16T17:31:57.000Z",
"num_tokens": 1012,
"size": 2858
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Universe where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Conversion
open import Definition.Conversion.Reduction
open import Definition.Conversion.Lift
import Tools.PropositionalEquality as PE
-- Algorithmic equality of terms in WHNF of type U are equal as types.
univConv↓ : ∀ {A B Γ}
→ Γ ⊢ A [conv↓] B ∷ U
→ Γ ⊢ A [conv↓] B
univConv↓ (ne-ins t u () x)
univConv↓ (univ x x₁ x₂) = x₂
-- Algorithmic equality of terms of type U are equal as types.
univConv↑ : ∀ {A B Γ}
→ Γ ⊢ A [conv↑] B ∷ U
→ Γ ⊢ A [conv↑] B
univConv↑ ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
rewrite PE.sym (whnfRed* D Uₙ) =
reductionConv↑ (univ* d) (univ* d′) (liftConv (univConv↓ t<>u))
|
{
"alphanum_fraction": 0.6748878924,
"avg_line_length": 29.7333333333,
"ext": "agda",
"hexsha": "94696de098ec3a221effa932d2b74c36c8c467ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Universe.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Universe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 286,
"size": 892
}
|
{-# OPTIONS --without-K #-}
{- Here, we derive our main theorem: there is a type in the n-th universe
that is not an n-type, implying the n-th universe is not n-truncated.
The n-th universe restricted to n-types is hence a 'strict' n-type.
For this, we first derive local-global looping in a modular way.
A technical point worth noting is that Agda does not implement
cumulative universes. Since that means the crucial steps in our
transformations (where we pass between universes uning univalence)
can not be expressed using equality without resorting to explicit lifting,
we decide to explicitely uses equivalences (and pointed equivalences,
respectively) instead where possible.
As a drawback, we have to use lemmata showing preservation of
(pointed) equivalences of various (pointed) type constructions,
a parametricity property derived for free
from univalence-induced equalities. -}
module HHHUU-ComplicatedTypes where
open import lib.Basics hiding (_⊔_)
open import lib.Equivalences2
open import lib.NType2
open import lib.types.Bool
open import lib.types.Nat hiding (_+_)
open import lib.types.Paths
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.TLevel
open import Preliminaries
open import Pointed
open import UniverseOfNTypes
-- The argument that (Type lzero) is not a set is standard.
-- We omit it and the argument that (Type (S lzero)) is not a 1-Type:
-- they are both special cases of the general theorem we prove.
-- The general theorem is formalised in this file.
--Definition 7.3.1
-- We have fibered notions of the loop space contruction and n-truncatedness.
module _ {i} {X : Type• i} {j} where
{- Note that the definition of the family of path types differs slightly from
that in the thesis, which would correspond to transport P p x == x.
We use dependent paths since this follows the design of the HoTT
community's Agda library. There is no actual difference;
both types are equivalent. -}
Ω̃ : Fam• X j → Fam• (Ω X) j
Ω̃ (P , x) = ((λ p → x == x [ P ↓ p ]) , idp)
fam-has-level : ℕ₋₂ → Fam• X j → Type (i ⊔ j)
fam-has-level n Q = (a : base X) → has-level n (fst Q a)
{- == Pointed dependent sums ==
Pointed families as defined above enable us to introduce a Σ-connective
for pointed types. Because of the abstract nature of some of our lemmata, we
give Σ• in its uncurried form and first define the type of its parameter. -}
Σ•-param : ∀ i j → Type (lsucc (i ⊔ j))
Σ•-param i j = Σ (Type• i) (λ X → Fam• X j)
module _ {i j} where
Ω-Σ•-param : Σ•-param i j → Σ•-param i j
Ω-Σ•-param (X , W) = (Ω X , Ω̃ W)
-- Definition 7.3.2
Σ• : Σ•-param i j → Type• (i ⊔ j)
Σ• (X , Q) = (Σ (base X) (fst Q) , (pt X , snd Q))
-- Lemma 7.3.3
{- Commutativity of pointed dependent sums and the loop space construction
will become an important technical tool, enabling us to work at a more
abstract level later on. -}
Ω-Σ•-comm : (R : Σ•-param i j) → Ω (Σ• R) ≃• Σ• (Ω-Σ•-param R)
Ω-Σ•-comm _ = (=Σ-eqv _ _ , idp) ⁻¹•
{- Pointed dependent products.
This is not quite the equivalent of Π for pointed types: the domain parameter
is just an ordinary non-pointed type. However, to enable our goal of
abstractly working with pointed types, defining this notion is useful. -}
Π•-param : ∀ i j → Type (lsucc (i ⊔ j))
Π•-param i j = Σ (Type i) (λ A → A → Type• j)
module _ {i j} where
Ω-Π•-param : Π•-param i j → Π•-param i j
Ω-Π•-param (A , F) = (A , Ω ∘ F)
-- Definition 7.3.4
Π• : Π•-param i j → Type• (i ⊔ j)
Π• (A , Y) = (Π A (base ∘ Y) , pt ∘ Y)
-- Lemma 7.3.5
{- Pointed dependent products and loop space construction on
its codomain parameter commute as well. -}
Ω-Π•-comm : (R : Π•-param i j) → Ω (Π• R) ≃• Π• (Ω-Π•-param R)
Ω-Π•-comm _ = (app=-equiv , idp)
Ω^-Π•-comm : (C : Type i) (F : C → Type• j) (n : ℕ)
→ (Ω ^ n) (Π• (C , F)) ≃• Π• (C , ((Ω ^ n) ∘ F))
Ω^-Π•-comm C F 0 = ide• _
Ω^-Π•-comm C F (S n) = Ω^-Π•-comm C _ n ∘e• equiv-Ω^ n (Ω-Π•-comm _)
equiv-Π• : ∀ {i₀ i₁ j₀ j₁} {R₀ : Π•-param i₀ j₀} {R₁ : Π•-param i₁ j₁}
→ Σ (fst R₀ ≃ fst R₁) (λ u → ∀ a → snd R₀ (<– u a) ≃• snd R₁ a)
→ Π• R₀ ≃• Π• R₁
equiv-Π• (u , v) = (equiv-Π u (fst ∘ v) , λ= (snd ∘ v))
-- Lemma 7.4.1
-- In an n-th loop space, we can forget components of truncation level n.
forget-Ω^-Σ•₂ : ∀ {i j} {X : Type• i} (Q : Fam• X j) (n : ℕ)
→ fam-has-level (n -2) Q → (Ω ^ n) (Σ• (X , Q)) ≃• (Ω ^ n) X
forget-Ω^-Σ•₂ {X = X} Q O h = (Σ₂-contr h , idp)
forget-Ω^-Σ•₂ {i} {X = X} Q (S n) h =
(Ω ^ (S n)) (Σ• (X , Q)) ≃•⟨ equiv-Ω^ n (Ω-Σ•-comm _) ⟩
(Ω ^ n) (Σ• (Ω X , Ω̃ Q)) ≃•⟨ forget-Ω^-Σ•₂ {i} _ n (λ _ → ↓-level h) ⟩
(Ω ^ (S n)) X ≃•∎
-- Lemma 7.4.2
{- Our Local-global looping principle.
We would like to state this principle in the form of
Ωⁿ⁺¹ (Type i , A) == ∀• a → Ωⁿ (A , a)
for n ≥ 1. Unfortunately, the two sides have different universe
levels since (Type i , A) lives in Type• (suc i) instead of Type• i.
Morally, this is outbalanced by the extra Ω on the left-hand side,
which might help explain on an intuitive level why
the n-th universe ends up being not an n-type.
The reason why the univalence principle (A ≡ B) ≃ (A ≃ B)
cannot be written as (A ≡ B) ≡ (A ≃ B) is precisely the same. -}
module _ {i} {A : Type i} where
-- The degenerate pre-base case carries around a propositional component.
Ω-Type : Ω (Type i , A) ≃• Σ• (Π• (A , λ a → (A , a))
, (is-equiv , idf-is-equiv _))
Ω-Type =
Ω (Type i , A)
≃•⟨ ide• _ ⟩
((A == A) , idp)
≃•⟨ ua-equiv• ⁻¹• ⟩
((A ≃ A) , ide _)
≃•⟨ ide• _ ⟩
((Σ (A → A) is-equiv) , (idf _ , idf-is-equiv _))
≃•⟨ ide• _ ⟩
Σ• (Π• (A , λ a → (A , a)) , (is-equiv , idf-is-equiv _))
≃•∎
-- The base case.
Ω²-Type : (Ω ^ 2) (Type i , A) ≃• Π• (A , λ a → Ω (A , a))
Ω²-Type =
(Ω ^ 2) (Type i , A)
≃•⟨ equiv-Ω Ω-Type ⟩
Ω (Σ• (Π• (A , λ a → (A , a)) , (is-equiv , idf-is-equiv _)))
≃•⟨ forget-Ω^-Σ•₂ {i} _ 1 (is-equiv-is-prop ∘ _) ⟩
Ω (Π• (A , λ a → (A , a)))
≃•⟨ Ω-Π•-comm _ ⟩
Π• (A , λ a → Ω (A , a))
≃•∎
-- The general case follows by permuting Ω and Π• repeatedly.
Ω^-Type : (n : ℕ) → (Ω ^ (n + 2)) (Type i , A)
≃• Π• (A , λ a → (Ω ^ (n + 1)) (A , a))
Ω^-Type n = Ω^-Π•-comm _ _ n ∘e• equiv-Ω^ n Ω²-Type
-- Lemma 7.4.3 is taken from the library
-- lib.NType2._-Type-level_
{- The pointed family P (see thesis).
It takes an n-type A and returns the space of (n+1)-loops
with basepoint A in U_n^n (the n-th universe restricted to n-types).
This crucial restriction to n-types implies it is just a set. -}
module _ (n : ℕ) (A : ⟨ n ⟩ -Type 「 n 」) where
-- Definition of P and
-- Corollary 7.4.4
P : ⟨0⟩ -Type• 「 n + 1 」
P = Ω^-≤' (n + 1) q where
q : ⟨ n + 1 ⟩ -Type• 「 n + 1 」
q = –> Σ-comm-snd (((⟨ n ⟩ -Type-≤ 「 n 」) , A))
-- Forgetting about the truncation level, we may present P as follows:
Q : Type• 「 n + 1 」
Q = (Ω ^ (n + 1)) (Type 「 n 」 , fst A)
P-is-Q : fst P ≃• Q
P-is-Q = equiv-Ω^ n (forget-Ω^-Σ•₂ _ 1 (λ _ → has-level-is-prop))
-- Definition of the type 'Loop' and
-- Lemma 7.4.5
{- The type 'Loop' of (images of) n-loops in U_(n-1)^(n-1) is
just the dependent sum over P except for the special case n ≡ 0,
where we take U_(-1)^(-1) (and hence Loop) to be the booleans.
The boilerplate with raise-≤T is just to verify that Loop n is
n-truncated.
The bulk of the rest of this module consists of showing
the n-th universe is not n-truncated at basepoint Loop n,
i.e. that Q n (Loop n) is not contractible.
Warning: The indexing of Loop starts at -1 in the thesis,
but we use natural numbers here (starting at 0),
thus everything is shifted by one. -}
Loop : (n : ℕ) → ⟨ n ⟩ -Type 「 n 」
Loop 0 = (Bool , Bool-is-set)
Loop (S n) = Σ-≤ (⟨ n ⟩ -Type-≤ 「 n 」) (λ A →
raise-≤T {n = ⟨ n + 1 ⟩} (≤T-+2+-l ⟨0⟩ (-2≤T _))
(fst (<– Σ-comm-snd (P n A))))
-- Lemma 7.4.6, preparations
-- The base case is given in Section 7.2 or the thesis.
-- It is done as usual (there is a non-trivial automorphism on booleans).
-- Let us go slowly.
module negation where
-- Negation.
~ : Bool → Bool
~ = λ {true → false; false → true}
-- Negation is an equivalence.
e : Bool ≃ Bool
e = equiv ~ ~ inv inv where
inv = λ {true → idp; false → idp}
base-case : ¬ (is-contr• (Q 0 (Loop 0)))
base-case c = Bool-false≠true false-is-true where
-- Negation being equal to the identity yields a contradiction.
false-is-true =
false =⟨ ! (coe-β e true) ⟩
coe (ua e) true =⟨ ap (λ p → coe p true) (! (c (ua e))) ⟩
coe idp true =⟨ idp ⟩
true ∎
-- Let us now turn towards the successor case.
module _ (m : ℕ) where
-- We expand the type we are later going to assume contractible.
Q-L-is-… =
Q (m + 1) (Loop (m + 1))
≃•⟨ ide• _ ⟩
(Ω ^ (m + 2)) (_ , ⟦ Loop (m + 1) ⟧)
≃•⟨ (Ω^-Type m) ⟩
Π• (_ , λ {(A , q) → Ω ^ (m + 1) $ (⟦ Loop (m + 1) ⟧ , (A , q))})
≃•⟨ ide• _ ⟩
Π• (_ , λ {(A , q) → Ω ^ (m + 1) $ Σ• ((_ , A) , (base ∘ fst ∘ P m , q))})
≃•∎
-- What we really want is to arrive at contractibility of E (m ≥ 1)...
E = Π• (⟦ Loop (m + 1) ⟧ , λ {(A , q) → Ω ^ (m + 1) $ ((⟨ m ⟩ -Type 「 m 」) , A)})
-- ...or at least show that the following element f of E is trivial (m ≡ 0).
f : base E
f (_ , q) = q
-- We want to use our assumption of contractibility of Q (n + 1) (Loop (n + 1))
-- to show that f is trivial, i.e. constant with value the basepoint.
f-is-trivial : (m : ℕ) → is-contr• (Q (m + 1) (Loop (m + 1))) → f m == pt (E m)
-- m ≡ 0
f-is-trivial 0 c = ap (λ f' → fst ∘ f')
(! (–> (equiv-is-contr• …-is-E') c f')) where
-- This is almost E, except for the additional component
-- specifying that the first component p should commute with q.
E' = Π• (_ , λ {(A , q) → (Σ (A == A) (λ p → q == q [ (λ x → x == x) ↓ p ])
, (idp , idp))})
-- This "almost" E comes from Q 1 (Loop 1), hence can be shown contractible.
…-is-E' : Q 1 (Loop 1) ≃• E'
…-is-E' = equiv-Π• (ide _ , Ω-Σ•-comm ∘ _) ∘e• Q-L-is-… 0
-- Fortunately, f can be 'extended' to an element f' of E',
-- and triviality of f' implies triviality of f.
f' = λ {(_ , q) → (q , ↓-idf=idf-in (∙=∙' q q))}
-- m ≥ 1: We can show Q (k + 2) (Loop (k + 2)) ≃ E (k + 1),
-- thus E is contractible, hence f trivial.
f-is-trivial (S k) c = ! (–> (equiv-is-contr• (…-is-E ∘e• Q-L-is-… (k + 1)))
c
(f (k + 1))) where
…-is-E : _ ≃• E (k + 1)
…-is-E = equiv-Π• (ide _ , equiv-Ω^ k ∘ (λ {(A , q) → forget-Ω^-Σ•₂
{「 k + 2 」} (base ∘ fst ∘ P (k + 1) , q) 2
(snd ∘ P (k + 1))}))
-- Lemma 7.4.6, part 1
-- Our main lemma: like in the thesis, but in negative form.
-- This is sufficient to prove our results, and easier to formalise.
main : (n : ℕ) → ¬ (is-contr• (Q n (Loop n)))
main 0 = negation.base-case
main (S m) c = main m step where
{- We know Q (m + 1) (Loop (m + 1)) is contractible,
use that to show that the above f is trivial,
deduce f (Loop m , p) ≡ p is trivial for all p in P m (Loop m),
which implies P m (Loop m) is contractible.
But this is just another form of Q m (Loop m),
so the conclusion follows by induction hypothesis. -}
step : is-contr• (Q m (Loop m))
step = –> (equiv-is-contr• (P-is-Q m (Loop m)))
(λ q → app= (! (f-is-trivial m c)) (Loop m , q))
-- Lemma 7.4.6, part 2
-- Alternate form of the main lemma
main' : (n : ℕ) → ¬ (is-contr• ((Ω ^ (n + 1)) ((⟨ n ⟩ -Type 「 n 」) , Loop n )))
main' n = main n ∘ –> (equiv-is-contr• (P-is-Q n (Loop n)))
-- Small helper thingy
helpy : ∀ {i} {n : ℕ} {X : Type• i}
→ has-level• (n -1) X → is-contr• ((Ω ^ n) X)
helpy {n = n} {X} = <– contr•-equiv-prop
∘ trunc-many n
∘ transport (λ k → has-level• (k -2) X)
(+-comm 1 n)
-- Main theorems now fall out as corollaries.
module _ (n : ℕ) where
{- Recall that L n is n-truncated.
We also know it is not (n-1)-truncated, it is thus a 'strict' n-type. -}
Loop-is-not-trunc : ¬ (has-level (n -1) ⟦ Loop n ⟧)
Loop-is-not-trunc = main n ∘ helpy ∘ (λ t → universe-=-level t t)
-- Theorem 7.4.7
-- The n-th universe is not n-truncated.
Type-is-not-trunc : ¬ (has-level ⟨ n ⟩ (Type 「 n 」))
Type-is-not-trunc = main n ∘ helpy
-- Theorem 7.4.8
-- MAIN RESULT:
-- The n-th universe restricted to n-types is a 'strict' (n+1)-type.
-- We do not repeat that it is (n+1)-truncated; this is formalised above
-- (7.4.3). Instead, we only show that it is not an n-type.
Type-≤-is-not-trunc : ¬ (has-level ⟨ n ⟩ (⟨ n ⟩ -Type 「 n 」))
Type-≤-is-not-trunc = main' n ∘ helpy
|
{
"alphanum_fraction": 0.5561823449,
"avg_line_length": 38.6961651917,
"ext": "agda",
"hexsha": "18df341da36d566d78e8c81528bd3e7f95dc6b53",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/thesis/HHHUU-ComplicatedTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/thesis/HHHUU-ComplicatedTypes.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/thesis/HHHUU-ComplicatedTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 5027,
"size": 13118
}
|
module Issue478c where
record Ko (Q : Set) : Set₁ where
field
T : Set
foo : (Q : Set)(ko : Ko Q) → Ko.T ko
foo Q ko = Set
-- We should make sure not to destroy printing
-- outside the record module. Type should be
-- printed as it's given: Ko.T ko
|
{
"alphanum_fraction": 0.6614173228,
"avg_line_length": 19.5384615385,
"ext": "agda",
"hexsha": "4528378e65a57c99e42ac103b3ecbd19eebc2799",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue478c.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue478c.agda",
"max_line_length": 46,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue478c.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 79,
"size": 254
}
|
module NoSuchPrimitiveFunction where
postulate
X : Set
primitive
fooBar : X
|
{
"alphanum_fraction": 0.7682926829,
"avg_line_length": 10.25,
"ext": "agda",
"hexsha": "ab61f53a2409e608000b85744ee5f8a2417fc21b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NoSuchPrimitiveFunction.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NoSuchPrimitiveFunction.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NoSuchPrimitiveFunction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 82
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change Structures.
--
-- This module defines the notion of change structures,
-- as well as change structures for groups, functions and lists.
--
-- This module corresponds to Section 2 of the PLDI paper.
------------------------------------------------------------------------
module Base.Change.Algebra where
open import Relation.Binary.PropositionalEquality
open import Level
-- Change Algebras
-- ===============
--
-- In the paper, change algebras are called "change structures"
-- and they are described in Section 2.1. We follow the design of
-- the Agda standard library and define change algebras as two
-- records, so Definition 2.1 from the PLDI paper maps to the
-- records IsChangeAlgebra and ChangeAlgebra.
--
-- A value of type (IsChangeAlgebra Change update diff) proves that
-- Change, update and diff together form a change algebra.
--
-- A value of type (ChangeAlgebra Carrier) contains the necessary
-- ingredients to create a change algebra for a carrier set.
--
-- In the paper, Carrier is called V (Def. 2.1a),
-- Change is called Δ (Def. 2.1b),
-- update is written as infix ⊕ (Def. 2.1c),
-- diff is written as infix ⊝ (Def. 2.1d),
-- and update-diff is specified in Def. 2.1e.
record IsChangeAlgebra
{c}
{Carrier : Set c}
(Change : Carrier → Set c)
(update : (v : Carrier) (dv : Change v) → Carrier)
(diff : (u v : Carrier) → Change v)
(nil : (u : Carrier) → Change u) : Set (c) where
field
update-diff : ∀ u v → update v (diff u v) ≡ u
-- This corresponds to Lemma 2.3 from the paper.
update-nil : ∀ v → update v (nil v) ≡ v
-- abbreviations
before : ∀ {v} → Change v → Carrier
before {v} _ = v
after : ∀ {v} → Change v → Carrier
after {v} dv = update v dv
record ChangeAlgebra {c}
(Carrier : Set c) : Set (suc c) where
field
Change : Carrier → Set c
update : (v : Carrier) (dv : Change v) → Carrier
diff : (u v : Carrier) → Change v
-- This generalizes Def. 2.2. from the paper.
nil : (u : Carrier) → Change u
isChangeAlgebra : IsChangeAlgebra Change update diff nil
infixl 6 update diff
open IsChangeAlgebra isChangeAlgebra public
-- The following open ... public statement lets us use infix ⊞
-- and ⊟ for update and diff. In the paper, we use infix ⊕ and
-- ⊝.
open ChangeAlgebra {{...}} public
using
( update-diff
; update-nil
; nil
; before
; after
)
renaming
( Change to Δ
; update to _⊞_
; diff to _⊟_
)
-- Families of Change Algebras
-- ===========================
--
-- This is some Agda machinery to allow subscripting change
-- algebra operations to avoid ambiguity. In the paper,
-- we simply write (in the paragraph after Def. 2.1):
--
-- We overload operators ∆, ⊝ and ⊕ to refer to the
-- corresponding operations of different change structures; we
-- will subscript these symbols when needed to prevent
-- ambiguity.
--
-- The following definitions implement this idea formally.
record ChangeAlgebraFamily {a p} {A : Set a} (P : A → Set p): Set (suc p ⊔ a) where
constructor
family
field
change-algebra : ∀ x → ChangeAlgebra (P x)
module _ x where
open ChangeAlgebra (change-algebra x) public
module Family = ChangeAlgebraFamily {{...}}
open Family public
using
(
)
renaming
( Change to Δ₍_₎
; nil to nil₍_₎
; update-diff to update-diff₍_₎
; update-nil to update-nil₍_₎
; change-algebra to change-algebra₍_₎
; before to before₍_₎
; after to after₍_₎
)
-- XXX not clear this is ever used
instance
change-algebra-family-inst = change-algebra₍_₎
infixl 6 update′ diff′
update′ = Family.update
syntax update′ x v dv = v ⊞₍ x ₎ dv
diff′ = Family.diff
syntax diff′ x u v = u ⊟₍ x ₎ v
-- Derivatives
-- ===========
--
-- This corresponds to Def. 2.4 in the paper.
RawChange : ∀ {a b} {A : Set a} {B : Set b} →
{{CA : ChangeAlgebra A}} →
{{CB : ChangeAlgebra B}} →
(f : A → B) →
Set (a ⊔ b)
RawChange f = ∀ a (da : Δ a) → Δ (f a)
IsDerivative : ∀ {a b} {A : Set a} {B : Set b} →
{{CA : ChangeAlgebra A}} →
{{CB : ChangeAlgebra B}} →
(f : A → B) →
(df : RawChange f) →
Set (a ⊔ b)
IsDerivative f df = ∀ a da → f a ⊞ df a da ≡ f (a ⊞ da)
-- This is a variant of IsDerivative for change algebra families.
RawChange₍_,_₎ : ∀ {a b p q} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} →
{{CP : ChangeAlgebraFamily P}} →
{{CQ : ChangeAlgebraFamily Q}} →
(x : A) →
(y : B) →
(f : P x → Q y) → Set (p ⊔ q)
RawChange₍ x , y ₎ f = ∀ px (dpx : Δ₍ x ₎ px) → Δ₍ y ₎ (f px)
IsDerivative₍_,_₎ : ∀ {a b p q} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} →
{{CP : ChangeAlgebraFamily P}} →
{{CQ : ChangeAlgebraFamily Q}} →
(x : A) →
(y : B) →
(f : P x → Q y) →
(df : RawChange₍_,_₎ x y f) →
Set (p ⊔ q)
IsDerivative₍_,_₎ {P = P} {{CP}} {{CQ}} x y f df = IsDerivative {{change-algebra₍ _ ₎}} {{change-algebra₍ _ ₎}} f df where
CPx = change-algebra₍_₎ {{CP}} x
CQy = change-algebra₍_₎ {{CQ}} y
-- Lemma 2.5 appears in Base.Change.Equivalence.
-- Abelian Groups Induce Change Algebras
-- =====================================
--
-- In the paper, as the first example for change structures after
-- Def. 2.1, we mention that "each abelian group ... induces a
-- change structure". This is the formalization of this result.
--
-- The module GroupChanges below takes a proof that A forms an
-- abelian group and provides a changeAlgebra for A. The proof of
-- Def 2.1e is by equational reasoning using the group axioms, in
-- the definition of changeAlgebra.isChangeAlgebra.update-diff.
open import Algebra.Structures
open import Data.Product
open import Function
-- For non-abelian groups
module PlainGroupChanges
{a} (A : Set a) {_⊕_} {ε} {_⁻¹}
{{isGroup : IsGroup {A = A} _≡_ _⊕_ ε _⁻¹}}
where
open IsGroup isGroup
hiding
( refl
; sym
)
renaming
( ∙-cong to _⟨⊕⟩_
)
open ≡-Reasoning
_⊝_ : A → A → A
v ⊝ u = (u ⁻¹) ⊕ v
changeAlgebraGroup : ChangeAlgebra A
changeAlgebraGroup = record
{ Change = const A
; update = _⊕_
; diff = _⊝_
; nil = const ε
; isChangeAlgebra = record
{ update-diff = λ u v →
begin
v ⊕ (u ⊝ v)
≡⟨⟩
v ⊕ ((v ⁻¹) ⊕ u)
≡⟨ sym (assoc _ _ _) ⟩
(v ⊕ (v ⁻¹)) ⊕ u
≡⟨ proj₂ inverse v ⟨⊕⟩ refl ⟩
ε ⊕ u
≡⟨ proj₁ identity u ⟩
u
∎
; update-nil = proj₂ identity
}
}
module GroupChanges
{a} (A : Set a) {_⊕_} {ε} {_⁻¹}
{{isAbelianGroup : IsAbelianGroup {A = A} _≡_ _⊕_ ε _⁻¹}}
where
open IsAbelianGroup isAbelianGroup
hiding
( refl
)
renaming
( _-_ to _⊝_
; ∙-cong to _⟨⊕⟩_
)
open ≡-Reasoning
changeAlgebraGroup : ChangeAlgebra A
changeAlgebraGroup = record
{ Change = const A
; update = _⊕_
; diff = _⊝_
; nil = const ε
; isChangeAlgebra = record
{ update-diff = λ u v →
begin
v ⊕ (u ⊝ v)
≡⟨ comm _ _ ⟩
(u ⊝ v ) ⊕ v
≡⟨⟩
(u ⊕ (v ⁻¹)) ⊕ v
≡⟨ assoc _ _ _ ⟩
u ⊕ ((v ⁻¹) ⊕ v)
≡⟨ refl ⟨⊕⟩ proj₁ inverse v ⟩
u ⊕ ε
≡⟨ proj₂ identity u ⟩
u
∎
; update-nil = proj₂ identity
}
}
-- Function Changes
-- ================
--
-- This is one of our most important results: Change structures
-- can be lifted to function spaces. We formalize this as a module
-- FunctionChanges that takes the change algebras for A and B as
-- arguments, and provides a changeAlgebra for (A → B). The proofs
-- are by equational reasoning using 2.1e for A and B.
module FunctionChanges
{a} {b} (A : Set a) (B : Set b) {{CA : ChangeAlgebra A}} {{CB : ChangeAlgebra B}}
where
-- This corresponds to Definition 2.6 in the paper.
record FunctionChange (f : A → B) : Set (a ⊔ b) where
field
-- Definition 2.6a
apply : RawChange f
-- Definition 2.6b.
-- (for some reason, the version in the paper has the arguments of ≡
-- flipped. Since ≡ is symmetric, this doesn't matter).
correct : (a : A) (da : Δ a) →
f (a ⊞ da) ⊞ apply (a ⊞ da) (nil (a ⊞ da)) ≡ f a ⊞ apply a da
open FunctionChange public
open ≡-Reasoning
open import Postulate.Extensionality
funDiff : (g f : A → B) → FunctionChange f
funDiff = λ g f → record
{ apply = λ a da → g (a ⊞ da) ⊟ f a
-- the proof of correct is the first half of what we
-- have to prove for Theorem 2.7.
; correct = λ a da →
begin
f (a ⊞ da) ⊞ (g (a ⊞ da ⊞ nil (a ⊞ da)) ⊟ f (a ⊞ da))
≡⟨ cong (λ □ → f (a ⊞ da) ⊞ (g □ ⊟ f (a ⊞ da)))
(update-nil (a ⊞ da)) ⟩
f (a ⊞ da) ⊞ (g (a ⊞ da) ⊟ f (a ⊞ da))
≡⟨ update-diff (g (a ⊞ da)) (f (a ⊞ da)) ⟩
g (a ⊞ da)
≡⟨ sym (update-diff (g (a ⊞ da)) (f a)) ⟩
f a ⊞ (g (a ⊞ da) ⊟ f a)
∎
}
funUpdate : ∀ (f : A → B) (df : FunctionChange f) → A → B
funUpdate = λ f df a → f a ⊞ apply df a (nil a)
funNil : (f : A → B) → FunctionChange f
funNil = λ f → funDiff f f
private
-- Realizer for funNil
funNil-realizer : (f : A → B) → RawChange f
funNil-realizer f = λ a da → f (a ⊞ da) ⊟ f a
-- Note that it cannot use nil (f a), that would not be a correct function change!
funNil-correct : ∀ f a da → funNil-realizer f a da ≡ apply (funNil f) a da
funNil-correct f a da = refl
mutual
-- I have to write the type of funUpdateDiff without using changeAlgebra,
-- so I just use the underlying implementations.
funUpdateDiff : ∀ u v → funUpdate v (funDiff u v) ≡ u
instance
changeAlgebraFun : ChangeAlgebra (A → B)
changeAlgebraFun = record
{ Change = FunctionChange
-- in the paper, update and diff below are in Def. 2.7
; update = funUpdate
; diff = funDiff
; nil = funNil
; isChangeAlgebra = record
-- the proof of update-diff is the second half of what
-- we have to prove for Theorem 2.8.
{ update-diff = funUpdateDiff
; update-nil = λ v → funUpdateDiff v v
}
}
-- XXX remove mutual recursion by inlining the algebra in here?
funUpdateDiff = λ g f → ext (λ a →
begin
f a ⊞ (g (a ⊞ (nil a)) ⊟ f a)
≡⟨ cong (λ □ → f a ⊞ (g □ ⊟ f a)) (update-nil a) ⟩
f a ⊞ (g a ⊟ f a)
≡⟨ update-diff (g a) (f a) ⟩
g a
∎)
-- This is Theorem 2.9 in the paper.
incrementalization : ∀ (f : A → B) df a da →
(f ⊞ df) (a ⊞ da) ≡ f a ⊞ apply df a da
incrementalization f df a da = correct df a da
-- This is Theorem 2.10 in the paper. However, the derivative of f is just
-- the apply component of `nil f`, not the full `nil f`, which also includes
-- a proof. This is not an issue in the paper, which is formulated in a
-- proof-irrelevant metalanguage.
nil-is-derivative : ∀ (f : A → B) →
IsDerivative f (apply (nil f))
nil-is-derivative f a da =
begin
f a ⊞ apply (nil f) a da
≡⟨ sym (incrementalization f (nil f) a da) ⟩
(f ⊞ nil f) (a ⊞ da)
≡⟨ cong (λ □ → □ (a ⊞ da))
(update-nil f) ⟩
f (a ⊞ da)
∎
-- Show that any derivative is a valid function change.
-- In the paper, this is never actually stated. We just prove that nil
-- changes are derivatives; the paper keeps talking about "the derivative",
-- suggesting derivatives are unique. If derivatives were unique, we could
-- say that the nil change is *the* derivative, hence the derivative is the
-- nil change (hence also a change).
--
-- In fact, derivatives are only unique up to change equivalence and
-- extensional equality; this is proven in Base.Change.Equivalence.derivative-unique.
--
Derivative-is-valid : ∀ {f : A → B} df (IsDerivative-f-df : IsDerivative f df) a da →
f (a ⊞ da) ⊞ (df (a ⊞ da) (nil (a ⊞ da))) ≡ f a ⊞ df a da
Derivative-is-valid {f} df IsDerivative-f-df a da rewrite IsDerivative-f-df (a ⊞ da) (nil (a ⊞ da)) | update-nil (a ⊞ da) = sym (IsDerivative-f-df a da)
DerivativeAsChange : ∀ {f : A → B} {df} (IsDerivative-f-df : IsDerivative f df) → Δ f
DerivativeAsChange {df = df} IsDerivative-f-df = record { apply = df ; correct = Derivative-is-valid df IsDerivative-f-df }
-- In Equivalence.agda, derivative-is-nil-alternative then proves that a derivative is also a nil change.
-- Reexport a few members with A and B marked as implicit parameters. This
-- matters especially for changeAlgebra, since otherwise it can't be used for
-- instance search.
module _
{a} {b} {A : Set a} {B : Set b} {{CA : ChangeAlgebra A}} {{CB : ChangeAlgebra B}}
where
open FunctionChanges A B {{CA}} {{CB}} public
using
( changeAlgebraFun
; apply
; correct
; incrementalization
; DerivativeAsChange
; FunctionChange
; nil-is-derivative
)
module BinaryFunctionChanges
{a} {b} {c} (A : Set a) (B : Set b) (C : Set c) {{CA : ChangeAlgebra A}} {{CB : ChangeAlgebra B}} {{CC : ChangeAlgebra C}} where
incrementalization-binary : ∀ (f : A → B → C) df a da b db →
(f ⊞ df) (a ⊞ da) (b ⊞ db) ≡ f a b ⊞ apply (apply df a da) b db
incrementalization-binary f df x dx y dy
rewrite cong (λ □ → □ (y ⊞ dy)) (incrementalization f df x dx)
= incrementalization (f x) (apply df x dx) y dy
-- List (== Environment) Changes
-- =============================
--
-- Here, we define a change structure on environments, given a
-- change structure on the values in the environments. In the
-- paper, we describe this in Definition 3.5. But note that this
-- Agda formalization uses de Bruijn indices instead of names, so
-- environments are just lists. Therefore, when we use Definition
-- 3.5 in the paper, in this formalization, we use the list-like
-- change structure defined here.
open import Data.List
open import Data.List.All
data All′ {a p q} {A : Set a}
{P : A → Set p}
(Q : {x : A} → P x → Set q)
: {xs : List A} (pxs : All P xs) → Set (p ⊔ q ⊔ a) where
[] : All′ Q []
_∷_ : ∀ {x xs} {px : P x} {pxs : All P xs} (qx : Q px) (qxs : All′ Q pxs) → All′ Q (px ∷ pxs)
module ListChanges
{a} {A : Set a} (P : A → Set) {{C : ChangeAlgebraFamily P}}
where
update-all : ∀ {xs} → (pxs : All P xs) → All′ Δ pxs → All P xs
update-all {[]} [] [] = []
update-all {x ∷ xs} (px ∷ pxs) (dpx ∷ dpxs) = (px ⊞ dpx) ∷ update-all pxs dpxs
diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → All′ Δ pxs
diff-all [] [] = []
diff-all (px′ ∷ pxs′) (px ∷ pxs) = (px′ ⊟ px) ∷ diff-all pxs′ pxs
update-diff-all : ∀ {xs} → (pxs′ pxs : All P xs) → update-all pxs (diff-all pxs′ pxs) ≡ pxs′
update-diff-all [] [] = refl
update-diff-all (px′ ∷ pxs′) (px ∷ pxs) = cong₂ _∷_ (update-diff px′ px) (update-diff-all pxs′ pxs)
instance
changeAlgebraListChanges : ChangeAlgebraFamily (All P)
changeAlgebraListChanges = record
{ change-algebra = λ xs → record
{ Change = All′ Δ
; update = update-all
; diff = diff-all
; nil = λ xs → diff-all xs xs
; isChangeAlgebra = record
{ update-diff = update-diff-all
; update-nil = λ xs₁ → update-diff-all xs₁ xs₁
}
}
}
|
{
"alphanum_fraction": 0.5637813212,
"avg_line_length": 32.3190184049,
"ext": "agda",
"hexsha": "8706bf52d4f7e98946b535703f30ee16bd6422a7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Base/Change/Algebra.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Base/Change/Algebra.agda",
"max_line_length": 156,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Base/Change/Algebra.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 5169,
"size": 15804
}
|
module Web.URI.Port.Primitive where
postulate Port? : Set
{-# COMPILED_TYPE Port? String #-}
postulate :80 : Port?
{-# COMPILED :80 ":80" #-}
postulate ε : Port?
{-# COMPILED ε "" #-}
|
{
"alphanum_fraction": 0.6363636364,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "1fe5c2b0e8f9d3907ecc02018e4d6a0c690ceeed",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z",
"max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-uri",
"max_forks_repo_path": "src/Web/URI/Port/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-uri",
"max_issues_repo_path": "src/Web/URI/Port/Primitive.agda",
"max_line_length": 35,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-uri",
"max_stars_repo_path": "src/Web/URI/Port/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z",
"num_tokens": 54,
"size": 187
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
module Cubical.Algebra.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Relation.Binary.Base using (Rel)
open import Cubical.Relation.Binary.Definitions
open import Cubical.Algebra.Base
open import Cubical.Algebra.Definitions
open import Cubical.Data.Sum.Base using (inl; inr)
open import Cubical.Data.Sigma using (_,_)
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Relation.Binary.Reasoning.Equality
private
variable
ℓ : Level
A : Type ℓ
----------------------------------------------------------------------
-- Operation properties are propositions
private
isPropImpΠ2 : ∀ {ℓ′ ℓ′′} {B : A → Type ℓ′} {C : ∀ x → B x → Type ℓ′′} →
(∀ x y → isProp (C x y)) → isProp (∀ {x y} → C x y)
isPropImpΠ2 isPropC f g i {x} {y} = isPropC x y (f {x} {y}) (g {x} {y}) i
module _ (isSetA : isSet A) where
isPropAssociative : (_•_ : Op₂ A) → isProp (Associative _•_)
isPropAssociative _ = isPropΠ3 λ _ _ _ → isSetA _ _
isPropCommutative : (_•_ : Op₂ A) → isProp (Commutative _•_)
isPropCommutative _ = isPropΠ2 λ _ _ → isSetA _ _
isPropLeftIdentity : (_•_ : Op₂ A) (e : A) → isProp (LeftIdentity e _•_)
isPropLeftIdentity _ _ = isPropΠ λ _ → isSetA _ _
isPropRightIdentity : (_•_ : Op₂ A) (e : A) → isProp (RightIdentity e _•_)
isPropRightIdentity _ _ = isPropΠ λ _ → isSetA _ _
isPropIdentity : (_•_ : Op₂ A) (e : A) → isProp (Identity e _•_)
isPropIdentity _•_ e = isProp× (isPropLeftIdentity _•_ e) (isPropRightIdentity _•_ e)
isPropLeftZero : (_•_ : Op₂ A) (z : A) → isProp (LeftZero z _•_)
isPropLeftZero _ _ = isPropΠ λ _ → isSetA _ _
isPropRightZero : (_•_ : Op₂ A) (z : A) → isProp (RightZero z _•_)
isPropRightZero _ _ = isPropΠ λ _ → isSetA _ _
isPropZero : (_•_ : Op₂ A) (z : A) → isProp (Zero z _•_)
isPropZero _•_ z = isProp× (isPropLeftZero _•_ z) (isPropRightZero _•_ z)
isPropLeftInverse : (_•_ : Op₂ A) (_⁻¹ : Op₁ A) (e : A) → isProp (LeftInverse e _⁻¹ _•_)
isPropLeftInverse _ _ _ = isPropΠ λ _ → isSetA _ _
isPropRightInverse : (_•_ : Op₂ A) (_⁻¹ : Op₁ A) (e : A) → isProp (RightInverse e _⁻¹ _•_)
isPropRightInverse _ _ _ = isPropΠ λ _ → isSetA _ _
isPropInverse : (_•_ : Op₂ A) (_⁻¹ : Op₁ A) (e : A) → isProp (Inverse e _⁻¹ _•_)
isPropInverse _•_ _⁻¹ e = isProp× (isPropLeftInverse _•_ _⁻¹ e) (isPropRightInverse _•_ _⁻¹ e)
isPropLeftConical : (_•_ : Op₂ A) (e : A) → isProp (LeftConical e _•_)
isPropLeftConical _ _ = isPropΠ3 λ _ _ _ → isSetA _ _
isPropRightConical : (_•_ : Op₂ A) (e : A) → isProp (RightConical e _•_)
isPropRightConical _ _ = isPropΠ3 λ _ _ _ → isSetA _ _
isPropConical : (_•_ : Op₂ A) (e : A) → isProp (Conical e _•_)
isPropConical _•_ e = isProp× (isPropLeftConical _•_ e) (isPropRightConical _•_ e)
isPropDistrˡ : (_*_ _+_ : Op₂ A) → isProp (_*_ DistributesOverˡ _+_)
isPropDistrˡ _ _ = isPropΠ3 λ _ _ _ → isSetA _ _
isPropDistrʳ : (_*_ _+_ : Op₂ A) → isProp (_*_ DistributesOverʳ _+_)
isPropDistrʳ _ _ = isPropΠ3 λ _ _ _ → isSetA _ _
isPropDistr : (_*_ _+_ : Op₂ A) → isProp (_*_ DistributesOver _+_)
isPropDistr _*_ _+_ = isProp× (isPropDistrˡ _*_ _+_) (isPropDistrʳ _*_ _+_)
isPropIdempotentOn : (_•_ : Op₂ A) (x : A) → isProp (_•_ IdempotentOn x)
isPropIdempotentOn _ _ = isSetA _ _
isPropIdempotent : (_•_ : Op₂ A) → isProp (Idempotent _•_)
isPropIdempotent _•_ = isPropΠ λ x → isPropIdempotentOn _•_ x
isPropIdempotentFun : (f : Op₁ A) → isProp (IdempotentFun f)
isPropIdempotentFun _ = isPropΠ λ _ → isSetA _ _
isPropSelective : (_•_ : Op₂ A) → isProp (Selective _•_)
isPropSelective _ = isPropΠ2 λ _ _ → squash
isPropAbsorbs : (_⋀_ _⋁_ : Op₂ A) → isProp (_⋀_ Absorbs _⋁_)
isPropAbsorbs _ _ = isPropΠ2 λ _ _ → isSetA _ _
isPropAbsorptive : (_⋀_ _⋁_ : Op₂ A) → isProp (Absorptive _⋀_ _⋁_)
isPropAbsorptive _⋀_ _⋁_ = isProp× (isPropAbsorbs _⋀_ _⋁_) (isPropAbsorbs _⋁_ _⋀_)
isPropInvolutive : (f : Op₁ A) → isProp (Involutive f)
isPropInvolutive _ = isPropΠ λ _ → isSetA _ _
isPropLeftCancel : (_•_ : Op₂ A) → isProp (LeftCancellative _•_)
isPropLeftCancel _ = isPropΠ λ _ → isPropImpΠ2 λ _ _ → isPropΠ λ _ → isSetA _ _
isPropRightCancel : (_•_ : Op₂ A) → isProp (RightCancellative _•_)
isPropRightCancel _ = isPropImpΠ2 λ _ _ → isPropΠ2 λ _ _ → isSetA _ _
isPropCancellative : (_•_ : Op₂ A) → isProp (Cancellative _•_)
isPropCancellative _•_ = isProp× (isPropLeftCancel _•_) (isPropRightCancel _•_)
isPropInterchangeable : (_•_ _◦_ : Op₂ A) → isProp (Interchangeable _•_ _◦_)
isPropInterchangeable _ _ = isPropΠ2 λ _ _ → isPropΠ2 λ _ _ → isSetA _ _
sel⇒idem : {_•_ : Op₂ A} → Selective _•_ → Idempotent _•_
sel⇒idem {_•_ = _•_} sel x = rec (isPropIdempotentOn _•_ x)
(λ { (inl p) → p
; (inr p) → p
})
(sel x x)
module _ {ℓ′} {B : Type ℓ′} (isSetB : isSet B) where
isPropHomomorphic₀ : (f : A → B) (x : A) (y : B) → isProp (Homomorphic₀ f x y)
isPropHomomorphic₀ _ _ _ = isSetB _ _
isPropHomomorphic₁ : (f : A → B) (g : Op₁ A) (h : Op₁ B) → isProp (Homomorphic₁ f g h)
isPropHomomorphic₁ _ _ _ = isPropΠ λ _ → isSetB _ _
isPropHomomorphic₂ : (f : A → B) (• : Op₂ A) (◦ : Op₂ B) → isProp (Homomorphic₂ f • ◦)
isPropHomomorphic₂ _ _ _ = isPropΠ2 λ _ _ → isSetB _ _
id-unique′ : ∀ {_•_ : Op₂ A} {e i} → LeftIdentity e _•_ → RightIdentity i _•_ → e ≡ i
id-unique′ {_} {_} {_•_} {e} {i} idˡ idʳ =
e ≡˘⟨ idʳ e ⟩
e • i ≡⟨ idˡ i ⟩
i ∎
id-unique : ∀ {_•_ : Op₂ A} {e i} → Identity e _•_ → Identity i _•_ → e ≡ i
id-unique (idˡ , _) (_ , idʳ) = id-unique′ idˡ idʳ
id-collapseʳ : ∀ {_•_ : Op₂ A} {e i} → LeftIdentity e _•_ → RightIdentity i _•_ → Identity e _•_
id-collapseʳ {_} {_} {_•_} idˡ idʳ = idˡ , subst (λ e → RightIdentity e _•_) (sym (id-unique′ idˡ idʳ)) idʳ
id-collapseˡ : ∀ {_•_ : Op₂ A} {e i} → LeftIdentity e _•_ → RightIdentity i _•_ → Identity i _•_
id-collapseˡ {_} {_} {_•_} idˡ idʳ = subst (λ e → LeftIdentity e _•_) (id-unique′ idˡ idʳ) idˡ , idʳ
------------------------------------------------------------------------
-- Magma-like Algebra
module _ {_•_ : Op₂ A} (comm : Commutative _•_) where
comm+cancelˡ⇒cancelʳ : LeftCancellative _•_ → RightCancellative _•_
comm+cancelˡ⇒cancelʳ cancelˡ {x = x} {y} z eq = cancelˡ z (
z • x ≡⟨ comm z x ⟩
x • z ≡⟨ eq ⟩
y • z ≡⟨ comm y z ⟩
z • y ∎)
comm+cancelʳ⇒cancelˡ : RightCancellative _•_ → LeftCancellative _•_
comm+cancelʳ⇒cancelˡ cancelʳ x {y} {z} eq = cancelʳ x (
y • x ≡⟨ comm y x ⟩
x • y ≡⟨ eq ⟩
x • z ≡⟨ comm x z ⟩
z • x ∎)
------------------------------------------------------------------------
-- Monoid-like Algebra
module _ {_•_ : Op₂ A} (comm : Commutative _•_) {e : A} where
comm+idˡ⇒idʳ : LeftIdentity e _•_ → RightIdentity e _•_
comm+idˡ⇒idʳ idˡ x =
x • e ≡⟨ comm x e ⟩
e • x ≡⟨ idˡ x ⟩
x ∎
comm+idʳ⇒idˡ : RightIdentity e _•_ → LeftIdentity e _•_
comm+idʳ⇒idˡ idʳ x =
e • x ≡⟨ comm e x ⟩
x • e ≡⟨ idʳ x ⟩
x ∎
comm+zeˡ⇒zeʳ : LeftZero e _•_ → RightZero e _•_
comm+zeˡ⇒zeʳ zeˡ x =
x • e ≡⟨ comm x e ⟩
e • x ≡⟨ zeˡ x ⟩
e ∎
comm+zeʳ⇒zeˡ : RightZero e _•_ → LeftZero e _•_
comm+zeʳ⇒zeˡ zeʳ x =
e • x ≡⟨ comm e x ⟩
x • e ≡⟨ zeʳ x ⟩
e ∎
------------------------------------------------------------------------
-- Group-like Algebra
module _ {_•_ : Op₂ A} {_⁻¹ : Op₁ A} {e} (comm : Commutative _•_) where
comm+invˡ⇒invʳ : LeftInverse e _⁻¹ _•_ → RightInverse e _⁻¹ _•_
comm+invˡ⇒invʳ invˡ x =
x • (x ⁻¹) ≡⟨ comm x (x ⁻¹) ⟩
(x ⁻¹) • x ≡⟨ invˡ x ⟩
e ∎
comm+invʳ⇒invˡ : RightInverse e _⁻¹ _•_ → LeftInverse e _⁻¹ _•_
comm+invʳ⇒invˡ invʳ x =
(x ⁻¹) • x ≡⟨ comm (x ⁻¹) x ⟩
x • (x ⁻¹) ≡⟨ invʳ x ⟩
e ∎
module _ {_•_ : Op₂ A} {_⁻¹ : Op₁ A} {e} where
assoc+id+invʳ⇒invʳ-unique : Associative _•_ →
Identity e _•_ → RightInverse e _⁻¹ _•_ →
∀ x y → (x • y) ≡ e → x ≡ (y ⁻¹)
assoc+id+invʳ⇒invʳ-unique assoc (idˡ , idʳ) invʳ x y eq =
x ≡⟨ sym (idʳ x) ⟩
x • e ≡˘⟨ cong (x •_) (invʳ y) ⟩
x • (y • (y ⁻¹)) ≡˘⟨ assoc x y (y ⁻¹) ⟩
(x • y) • (y ⁻¹) ≡⟨ cong (_• (y ⁻¹)) eq ⟩
e • (y ⁻¹) ≡⟨ idˡ (y ⁻¹) ⟩
y ⁻¹ ∎
assoc+id+invˡ⇒invˡ-unique : Associative _•_ →
Identity e _•_ → LeftInverse e _⁻¹ _•_ →
∀ x y → (x • y) ≡ e → y ≡ (x ⁻¹)
assoc+id+invˡ⇒invˡ-unique assoc (idˡ , idʳ) invˡ x y eq =
y ≡˘⟨ idˡ y ⟩
e • y ≡˘⟨ cong (_• y) (invˡ x) ⟩
((x ⁻¹) • x) • y ≡⟨ assoc (x ⁻¹) x y ⟩
(x ⁻¹) • (x • y) ≡⟨ cong ((x ⁻¹) •_) eq ⟩
(x ⁻¹) • e ≡⟨ idʳ (x ⁻¹) ⟩
x ⁻¹ ∎
assoc+idˡ+invˡ⇒cancelˡ : Associative _•_ →
LeftIdentity e _•_ → LeftInverse e _⁻¹ _•_ →
LeftCancellative _•_
assoc+idˡ+invˡ⇒cancelˡ assoc idˡ invˡ x {y} {z} eq =
y ≡˘⟨ idˡ y ⟩
e • y ≡˘⟨ cong (_• y) (invˡ x) ⟩
((x ⁻¹) • x) • y ≡⟨ assoc (x ⁻¹) x y ⟩
(x ⁻¹) • (x • y) ≡⟨ cong ((x ⁻¹) •_) eq ⟩
(x ⁻¹) • (x • z) ≡˘⟨ assoc (x ⁻¹) x z ⟩
((x ⁻¹) • x) • z ≡⟨ cong (_• z) (invˡ x) ⟩
e • z ≡⟨ idˡ z ⟩
z ∎
assoc+idʳ+invʳ⇒cancelʳ : Associative _•_ →
RightIdentity e _•_ → RightInverse e _⁻¹ _•_ →
RightCancellative _•_
assoc+idʳ+invʳ⇒cancelʳ assoc idʳ invʳ {x} {y} z eq =
x ≡˘⟨ idʳ x ⟩
x • e ≡˘⟨ cong (x •_) (invʳ z) ⟩
x • (z • (z ⁻¹)) ≡˘⟨ assoc x z (z ⁻¹) ⟩
(x • z) • (z ⁻¹) ≡⟨ cong (_• (z ⁻¹)) eq ⟩
(y • z) • (z ⁻¹) ≡⟨ assoc y z (z ⁻¹) ⟩
y • (z • (z ⁻¹)) ≡⟨ cong (y •_) (invʳ z) ⟩
y • e ≡⟨ idʳ y ⟩
y ∎
----------------------------------------------------------------------
-- Bisemigroup-like Algebra
module _ {_*_ _+_ : Op₂ A} (*-comm : Commutative _*_) where
comm+distrˡ⇒distrʳ : _*_ DistributesOverˡ _+_ → _*_ DistributesOverʳ _+_
comm+distrˡ⇒distrʳ distrˡ x y z =
(y + z) * x ≡⟨ *-comm (y + z) x ⟩
x * (y + z) ≡⟨ distrˡ x y z ⟩
(x * y) + (x * z) ≡⟨ cong₂ _+_ (*-comm x y) (*-comm x z) ⟩
(y * x) + (z * x) ∎
comm+distrʳ⇒distrˡ : _*_ DistributesOverʳ _+_ → _*_ DistributesOverˡ _+_
comm+distrʳ⇒distrˡ distrʳ x y z =
x * (y + z) ≡⟨ *-comm x (y + z) ⟩
(y + z) * x ≡⟨ distrʳ x y z ⟩
(y * x) + (z * x) ≡⟨ cong₂ _+_ (*-comm y x) (*-comm z x) ⟩
(x * y) + (x * z) ∎
----------------------------------------------------------------------
-- Ring-like Algebra
module _ {_+_ _*_ : Op₂ A} { -_ : Op₁ A} {0# : A} where
assoc+distribʳ+idʳ+invʳ⇒zeˡ : Associative _+_ → _*_ DistributesOverʳ _+_ →
RightIdentity 0# _+_ → RightInverse 0# -_ _+_ →
LeftZero 0# _*_
assoc+distribʳ+idʳ+invʳ⇒zeˡ +-assoc distribʳ idʳ invʳ x =
0# * x ≡⟨ sym (idʳ _) ⟩
(0# * x) + 0# ≡˘⟨ cong ((0# * x) +_) (invʳ _) ⟩
(0# * x) + ((0# * x) + (-(0# * x))) ≡˘⟨ +-assoc _ _ _ ⟩
((0# * x) + (0# * x)) + (-(0# * x)) ≡˘⟨ cong (_+ (-(0# * x))) (distribʳ _ _ _) ⟩
((0# + 0#) * x) + (-(0# * x)) ≡⟨ cong (λ v → (v * x) + (-(0# * x))) (idʳ 0#) ⟩
(0# * x) + (-(0# * x)) ≡⟨ invʳ _ ⟩
0# ∎
assoc+distribˡ+idʳ+invʳ⇒zeʳ : Associative _+_ → _*_ DistributesOverˡ _+_ →
RightIdentity 0# _+_ → RightInverse 0# -_ _+_ →
RightZero 0# _*_
assoc+distribˡ+idʳ+invʳ⇒zeʳ +-assoc distribˡ idʳ invʳ x =
x * 0# ≡⟨ sym (idʳ _) ⟩
(x * 0#) + 0# ≡˘⟨ cong ((x * 0#) +_) (invʳ _) ⟩
(x * 0#) + ((x * 0#) + (-(x * 0#))) ≡˘⟨ +-assoc _ _ _ ⟩
((x * 0#) + (x * 0#)) + (-(x * 0#)) ≡˘⟨ cong (_+ (-(x * 0#))) (distribˡ _ _ _) ⟩
(x * (0# + 0#)) + (-(x * 0#)) ≡⟨ cong (λ v → (x * v) + (-(x * 0#))) (idʳ 0#) ⟩
(x * 0#) + (-(x * 0#)) ≡⟨ invʳ _ ⟩
0# ∎
----------------------------------------------------------------------
-- Other
module _ {c ℓ} {A : Type c} (R : Rel A ℓ) (reflexive : Reflexive R) (• : Op₂ A) where
cong₂⇒lcong : Congruent₂ R • → LeftCongruent R •
cong₂⇒lcong cong₂ {x} {y} {z} yRz = cong₂ reflexive yRz
cong₂⇒rcong : Congruent₂ R • → RightCongruent R •
cong₂⇒rcong cong₂ {x} {y} {z} yRz = cong₂ yRz reflexive
module _ {c ℓ} {A : Type c} (R : Rel A ℓ) (transitive : Transitive R) (• : Op₂ A) where
lcong+rcong⇒cong₂ : LeftCongruent R • → RightCongruent R • → Congruent₂ R •
lcong+rcong⇒cong₂ lcong rcong xRy uRv = transitive (lcong uRv) (rcong xRy)
|
{
"alphanum_fraction": 0.5158049308,
"avg_line_length": 38.8558558559,
"ext": "agda",
"hexsha": "f2117e6774f70a92051f0d48d09e651c6b53d96e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Properties.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5678,
"size": 12939
}
|
{-
Macros (autoDesc, AutoStructure, AutoEquivStr, autoUnivalentStr) for automatically generating structure definitions.
For example:
autoDesc (λ (X : Type₀) → X → X × ℕ) ↦ function+ var (var , constant ℕ)
We prefer to use the constant structure whenever possible, e.g., [autoDesc (λ (X : Type₀) → ℕ → ℕ)]
is [constant (ℕ → ℕ)] rather than [function (constant ℕ) (constant ℕ)].
Writing [auto* (λ X → ⋯)] doesn't seem to work, but [auto* (λ (X : Type ℓ) → ⋯)] does.
-}
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Structures.Auto where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
open import Cubical.Data.List
open import Cubical.Data.Bool
open import Cubical.Data.Maybe
open import Cubical.Structures.Macro as Macro
import Agda.Builtin.Reflection as R
-- Magic number
private
FUEL = 10000
-- Mark part of a structure definition to use transport-based structured equivalences
abstract
Transp[_] : ∀ {ℓ} → Type ℓ → Type ℓ
Transp[ A ] = A
-- Some reflection utilities
private
_>>=_ = R.bindTC
_<|>_ = R.catchTC
_>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B
f >> g = f >>= λ _ → g
infixl 4 _>>=_ _>>_ _<|>_
varg : ∀ {ℓ} {A : Type ℓ} → A → R.Arg A
varg = R.arg (R.arg-info R.visible R.relevant)
tLevel = R.def (quote Level) []
tType : R.Term → R.Term
tType ℓ = R.def (quote Type) [ varg ℓ ]
tTranspDesc : R.Term → R.Term
tTranspDesc ℓ = R.def (quote TranspDesc) [ varg ℓ ]
tDesc : R.Term → R.Term
tDesc ℓ = R.def (quote Desc) [ varg ℓ ]
func : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ'))
func ℓ ℓ' = Type ℓ → Type ℓ'
tStruct : R.Term → R.Term → R.Term
tStruct ℓ ℓ' = R.def (quote func) (varg ℓ ∷ varg ℓ' ∷ [])
newMeta = R.checkType R.unknown
-- We try to build a descriptor by unifying the provided structure with combinators we're aware of. We
-- redefine the structure combinators as the *Shape terms below so that we don't depend on the specific way
-- these are defined in other files (order of implicit arguments and so on); the syntactic analysis that goes
-- on here means that we would get mysterious errors if those changed.
private
constantShape : ∀ {ℓ'} (ℓ : Level) (A : Type ℓ') → (Type ℓ → Type ℓ')
constantShape _ A _ = A
pointedShape : (ℓ : Level) → Type ℓ → Type ℓ
pointedShape _ X = X
productShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁)
productShape _ A₀ A₁ X = A₀ X × A₁ X
functionShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁)
functionShape _ A₀ A₁ X = A₀ X → A₁ X
maybeShape : ∀ {ℓ₀} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → Type ℓ → Type ℓ₀
maybeShape _ A₀ X = Maybe (A₀ X)
transpShape : ∀ {ℓ₀} (ℓ : Level)
→ (Type ℓ → Type ℓ₀) → Type ℓ → Type ℓ₀
transpShape _ A₀ X = Transp[ A₀ X ]
private
-- Build transport structure descriptor from a function [t : Type ℓ → Type ℓ']
buildTranspDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term
buildTranspDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ [])
buildTranspDesc (suc fuel) ℓ ℓ' t =
tryConstant t <|> tryPointed t <|> tryProduct t <|> tryFunction t <|> tryMaybe t <|>
R.typeError (R.strErr "Can't automatically generate a transp structure for\n" ∷ R.termErr t ∷ [])
where
tryConstant : R.Term → R.TC R.Term
tryConstant t =
newMeta (tType ℓ') >>= λ A →
R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >>
R.returnTC (R.con (quote TranspDesc.constant) (varg A ∷ []))
tryPointed : R.Term → R.TC R.Term
tryPointed t =
R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >>
R.returnTC (R.con (quote TranspDesc.var) [])
tryFunction : R.Term → R.TC R.Term
tryFunction t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote functionShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildTranspDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildTranspDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote TranspDesc.function) (varg d₀ ∷ varg d₁ ∷ []))
tryProduct : R.Term → R.TC R.Term
tryProduct t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote productShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildTranspDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildTranspDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote TranspDesc._,_) (varg d₀ ∷ varg d₁ ∷ []))
tryMaybe : R.Term → R.TC R.Term
tryMaybe t =
newMeta tLevel >>= λ ℓ₀ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >>
buildTranspDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
R.returnTC (R.con (quote TranspDesc.maybe) (varg d₀ ∷ []))
autoTranspDesc' : R.Term → R.Term → R.TC Unit
autoTranspDesc' t hole =
R.inferType hole >>= λ H →
newMeta tLevel >>= λ ℓ →
newMeta tLevel >>= λ ℓ' →
R.unify (tTranspDesc ℓ) H >>
R.checkType t (tStruct ℓ ℓ') >>
buildTranspDesc FUEL ℓ ℓ' t >>= R.unify hole
-- Build structure descriptor from a function [t : Type ℓ → Type ℓ']
buildDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term
buildDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ [])
buildDesc (suc fuel) ℓ ℓ' t =
tryConstant t <|> tryPointed t <|> tryProduct t <|> tryFunction t <|>
tryMaybe t <|> tryTransp t <|>
R.typeError (R.strErr "Can't automatically generate a structure for\n" ∷ R.termErr t ∷ [])
where
tryConstant : R.Term → R.TC R.Term
tryConstant t =
newMeta (tType ℓ') >>= λ A →
R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >>
R.returnTC (R.con (quote Desc.constant) (varg A ∷ []))
tryPointed : R.Term → R.TC R.Term
tryPointed t =
R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >>
R.returnTC (R.con (quote Desc.var) [])
tryProduct : R.Term → R.TC R.Term
tryProduct t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote productShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote Desc._,_) (varg d₀ ∷ varg d₁ ∷ []))
tryFunction : R.Term → R.TC R.Term
tryFunction t =
newMeta tLevel >>= λ ℓ₀ →
newMeta tLevel >>= λ ℓ₁ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
newMeta (tStruct ℓ ℓ₁) >>= λ A₁ →
R.unify t (R.def (quote functionShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >>
buildTranspDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
buildDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ →
R.returnTC (R.con (quote Desc.function+) (varg d₀ ∷ varg d₁ ∷ []))
tryMaybe : R.Term → R.TC R.Term
tryMaybe t =
newMeta tLevel >>= λ ℓ₀ →
newMeta (tStruct ℓ ℓ₀) >>= λ A₀ →
R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >>
buildDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ →
R.returnTC (R.con (quote Desc.maybe) (varg d₀ ∷ []))
tryTransp : R.Term → R.TC R.Term
tryTransp t =
newMeta (tStruct ℓ ℓ') >>= λ A₀ →
R.unify t (R.def (quote transpShape) (varg ℓ ∷ varg A₀ ∷ [])) >>
buildTranspDesc fuel ℓ ℓ' A₀ >>= λ d₀ →
R.returnTC (R.con (quote Desc.transpDesc) (varg d₀ ∷ []))
autoDesc' : R.Term → R.Term → R.TC Unit
autoDesc' t hole =
R.inferType hole >>= λ H →
newMeta tLevel >>= λ ℓ →
newMeta tLevel >>= λ ℓ' →
R.unify (tDesc ℓ) H >>
R.checkType t (tStruct ℓ ℓ') >>
buildDesc FUEL ℓ ℓ' t >>= R.unify hole
macro
-- (Type ℓ → Type ℓ₁) → TranspDesc ℓ
autoTranspDesc : R.Term → R.Term → R.TC Unit
autoTranspDesc = autoTranspDesc'
-- (S : Type ℓ → Type ℓ₁) → EquivAction (AutoStructure S)
autoEquivAction : R.Term → R.Term → R.TC Unit
autoEquivAction t hole =
newMeta (tTranspDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote transpMacroAction) [ varg d ]) >>
autoTranspDesc' t d
-- (S : Type ℓ → Type ℓ₁) → TransportStr (autoEquivAction S)
autoTransportStr : R.Term → R.Term → R.TC Unit
autoTransportStr t hole =
newMeta (tTranspDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote transpMacroTransportStr) [ varg d ]) >>
autoTranspDesc' t d
-- (S : Type ℓ → Type ℓ₁) → Desc ℓ
autoDesc : R.Term → R.Term → R.TC Unit
autoDesc = autoDesc'
-- (S : Type ℓ → Type ℓ₁) → (Type ℓ → Type ℓ₁)
-- Removes Transp[_] annotations
AutoStructure : R.Term → R.Term → R.TC Unit
AutoStructure t hole =
newMeta (tDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote MacroStructure) [ varg d ]) >>
autoDesc' t d
-- (S : Type ℓ → Type ℓ₁) → StrEquiv (AutoStructure S) _
AutoEquivStr : R.Term → R.Term → R.TC Unit
AutoEquivStr t hole =
newMeta (tDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote MacroEquivStr) [ varg d ]) >>
autoDesc' t d
-- (S : Type ℓ → Type ℓ₁) → UnivalentStr (AutoStructure S) (AutoEquivStr S)
autoUnivalentStr : R.Term → R.Term → R.TC Unit
autoUnivalentStr t hole =
newMeta (tDesc R.unknown) >>= λ d →
R.unify hole (R.def (quote MacroUnivalentStr) [ varg d ]) >>
autoDesc' t d
|
{
"alphanum_fraction": 0.6010138346,
"avg_line_length": 35.8674242424,
"ext": "agda",
"hexsha": "9726285ec22334cc9338fd91d2967599b02de473",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/Structures/Auto.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/Structures/Auto.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/Structures/Auto.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3489,
"size": 9469
}
|
{-
Please do not move this file. Changes should only be made if
necessary.
This file contains benchmarks for the paper:
Synthetic Cohomology Theory in Cubical Agda
Command to run the benchmarks and get timings:
agda -v profile.definitions:10 Benchmarks.agda
This assumes that there is no Benchmarks.agdai file. If there is one,
then it should be removed before the above command is run.
-}
{-# OPTIONS --no-exact-split --safe #-}
module Cubical.Experiments.ZCohomology.Benchmarks where
open import Cubical.Foundations.Everything
open import Cubical.Data.Nat
open import Cubical.Data.Bool
open import Cubical.Data.Int
open import Cubical.HITs.Sn
open import Cubical.Algebra.Group hiding (ℤ ; Bool)
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.ZCohomology.Groups.Wedge
open import Cubical.ZCohomology.Groups.Torus
open import Cubical.ZCohomology.Groups.KleinBottle
open import Cubical.ZCohomology.Groups.WedgeOfSpheres
open import Cubical.ZCohomology.Groups.RP2
open import Cubical.Data.Sigma
open import Cubical.HITs.KleinBottle
open import Cubical.HITs.RPn.Base
open IsGroupHom
open Iso
-- S¹ (everything fast)
module S1-tests where
ϕ : coHom 1 (S₊ 1) → ℤ
ϕ = fun (fst (Hⁿ-Sⁿ≅ℤ 0))
ϕ⁻¹ : ℤ → coHom 1 (S₊ 1)
ϕ⁻¹ = inv (fst (Hⁿ-Sⁿ≅ℤ 0))
test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 30ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- <10ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- <10ms
test₃ = refl
test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 10ms
test₄ = refl
test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 11ms
test₅ = refl
test₆ : ϕ (ϕ⁻¹ -3 +ₕ ϕ⁻¹ 4) ≡ 1 -- 29ms
test₆ = refl
test₇ : ϕ (ϕ⁻¹ -5 +ₕ ϕ⁻¹ -2) ≡ -7 -- 28ms
test₇ = refl
-- S²
module S2-tests where
ϕ : coHom 2 (S₊ 2) → ℤ
ϕ = fun (fst (Hⁿ-Sⁿ≅ℤ 1))
ϕ⁻¹ : ℤ → coHom 2 (S₊ 2)
ϕ⁻¹ = inv (fst (Hⁿ-Sⁿ≅ℤ 1))
test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 13ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ 1) ≡ 1 -- 16ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 278ms
test₃ = refl
test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 290ms
test₄ = refl
{-
test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- nope
test₅ = refl
test₆ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 1) ≡ 2 -- nope
test₆ = refl
test₇ : ϕ (ϕ⁻¹ 2 +ₕ ϕ⁻¹ 4) ≡ 6 -- nope
test₇ = refl
-}
module S1∨S1∨S2-tests₁ where -- everything fast
ϕ : coHom 1 S²⋁S¹⋁S¹ → ℤ × ℤ
ϕ = fun (fst H¹-S²⋁S¹⋁S¹)
ϕ⁻¹ : ℤ × ℤ → coHom 1 S²⋁S¹⋁S¹
ϕ⁻¹ = inv (fst H¹-S²⋁S¹⋁S¹)
test₁ : ϕ (ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- <10ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ (3 , 1)) ≡ (3 , 1) -- 21ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ (0 , 0) +ₕ ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 15ms
test₃ = refl
test₄ : ϕ (ϕ⁻¹ (0 , 1) +ₕ ϕ⁻¹ (1 , 0)) ≡ (1 , 1) -- 21ms
test₄ = refl
test₅ : ϕ (ϕ⁻¹ (3 , 2) +ₕ ϕ⁻¹ (-1 , 5)) ≡ (2 , 7) -- 47ms
test₅ = refl
module S1∨S1∨S2-tests₂ where
ϕ : coHom 2 S²⋁S¹⋁S¹ → ℤ
ϕ = fun (fst H²-S²⋁S¹⋁S¹)
ϕ⁻¹ : ℤ → coHom 2 S²⋁S¹⋁S¹
ϕ⁻¹ = inv (fst H²-S²⋁S¹⋁S¹)
test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 157ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 119ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 1,820ms
test₃ = refl
module Torus-test₁ where -- fast
ϕ : coHom 1 (S₊ 1 × S₊ 1) → ℤ × ℤ
ϕ = fun (fst H¹-T²≅ℤ×ℤ)
ϕ⁻¹ : ℤ × ℤ → coHom 1 (S₊ 1 × S₊ 1)
ϕ⁻¹ = inv (fst H¹-T²≅ℤ×ℤ)
test₁ : ϕ (ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- <10ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ (3 , 1)) ≡ (3 , 1) -- 18ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ (0 , 0) +ₕ ϕ⁻¹ (0 , 0)) ≡ (0 , 0) -- 15ms
test₃ = refl
test₄ : ϕ (ϕ⁻¹ (0 , 1) +ₕ ϕ⁻¹ (1 , 0)) ≡ (1 , 1) -- 20ms
test₄ = refl
test₅ : ϕ (ϕ⁻¹ (-3 , 2) +ₕ ϕ⁻¹ (-1 , 5)) ≡ (-4 , 7) -- 44ms
test₅ = refl
module Torus-test₂ where
ϕ : coHom 2 (S₊ 1 × S₊ 1) → ℤ
ϕ = fun (fst H²-T²≅ℤ)
ϕ⁻¹ : ℤ → coHom 2 (S₊ 1 × S₊ 1)
ϕ⁻¹ = inv (fst H²-T²≅ℤ)
test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- 121ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 142ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- 3,674ms
test₃ = refl
test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 3,772ms
test₄ = refl
{-
test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- nope
test₅ = refl
-}
module Klein-test₁ where -- fast
ϕ : coHom 1 KleinBottle → ℤ
ϕ = fun (fst H¹-𝕂²≅ℤ)
ϕ⁻¹ : ℤ → coHom 1 KleinBottle
ϕ⁻¹ = inv (fst H¹-𝕂²≅ℤ)
test₁ : ϕ (ϕ⁻¹ 0) ≡ 0 -- <10ms
test₁ = refl
test₂ : ϕ (ϕ⁻¹ 3) ≡ 3 -- 12ms
test₂ = refl
test₃ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 0) ≡ 0 -- <10ms
test₃ = refl
test₄ : ϕ (ϕ⁻¹ 0 +ₕ ϕ⁻¹ 1) ≡ 1 -- 11ms
test₄ = refl
test₅ : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 0) ≡ 1 -- 12ms
test₅ = refl
test₆ : ϕ (ϕ⁻¹ -3 +ₕ ϕ⁻¹ 4) ≡ 1 -- 29ms
test₆ = refl
test₇ : ϕ (ϕ⁻¹ -5 +ₕ ϕ⁻¹ -2) ≡ -7 -- 29ms
test₇ = refl
-- The example in the paper:
test : ϕ (ϕ⁻¹ 1 +ₕ ϕ⁻¹ 2) ≡ 3 -- 15ms
test = refl
module Klein-test₂ where
ϕ : coHom 2 KleinBottle → Bool
ϕ = fun (fst H²-𝕂²≅Bool)
ϕ⁻¹ : Bool → coHom 2 KleinBottle
ϕ⁻¹ = inv (fst H²-𝕂²≅Bool)
{-
test₀ : ϕ (0ₕ _) ≡ true -- fails already here...
test₀ = refl
-}
module RP2-test₂ where
ϕ : coHom 2 RP² → Bool
ϕ = fun (fst H²-RP²≅Bool)
ϕ⁻¹ : Bool → coHom 2 RP²
ϕ⁻¹ = inv (fst H²-RP²≅Bool)
test₀ : ϕ (0ₕ _) ≡ true -- 1,210ms (unlike for Klein, this works)
test₀ = refl
{-
test₁ : ϕ (ϕ⁻¹ true) ≡ true -- nope
test₁ = refl
-}
|
{
"alphanum_fraction": 0.5561176691,
"avg_line_length": 20.5269230769,
"ext": "agda",
"hexsha": "1378e360fc9a88c54845b45e122a2e7cc8c54b14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kl-i/cubical-0.3",
"max_forks_repo_path": "Cubical/Experiments/ZCohomology/Benchmarks.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kl-i/cubical-0.3",
"max_issues_repo_path": "Cubical/Experiments/ZCohomology/Benchmarks.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kl-i/cubical-0.3",
"max_stars_repo_path": "Cubical/Experiments/ZCohomology/Benchmarks.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2947,
"size": 5337
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Instance.Core where
-- Core Functor (from Cats to Groupoids).
-- This is the right-adjoint of the forgetful functor from Groupoids to
-- Cats (see Categories.Functor.Adjoint.Instance.Core)
open import Level using (_⊔_)
open import Categories.Category using (Category)
import Categories.Category.Construction.Core as C
open import Categories.Category.Groupoid using (Groupoid)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Instance.Groupoids using (Groupoids)
open import Categories.Functor using (Functor; _∘F_; id)
open import Categories.Functor.Properties using ([_]-resp-≅; [_]-resp-≃)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism)
import Categories.Morphism as Morphism
open import Categories.Morphism.IsoEquiv using (⌞_⌟)
import Categories.Morphism.Reasoning as MR
Core : ∀ {o ℓ e} → Functor (Cats o ℓ e) (Groupoids o (ℓ ⊔ e) e)
Core {o} {ℓ} {e} = record
{ F₀ = CoreGrpd
; F₁ = CoreFunctor
; identity = CoreId
; homomorphism = λ {A B C F G} → CoreHom {A} {B} {C} {F} {G}
; F-resp-≈ = CoreRespNI
}
where
CoreGrpd : Category o ℓ e → Groupoid o (ℓ ⊔ e) e
CoreGrpd C = record
{ category = C.Core C
; isGroupoid = C.Core-isGroupoid C
}
CoreFunctor : {A B : Category o ℓ e} →
Functor A B → Functor (C.Core A) (C.Core B)
CoreFunctor {A} {B} F = record
{ F₀ = F₀
; F₁ = [ F ]-resp-≅
; identity = ⌞ identity ⌟
; homomorphism = ⌞ homomorphism ⌟
; F-resp-≈ = [ F ]-resp-≃
}
where open Functor F
CoreId : {A : Category o ℓ e} → NaturalIsomorphism (CoreFunctor {A} id) id
CoreId {A} = record
{ F⇒G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym A ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm A ⌟ }
; F⇐G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym A ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm A ⌟ }
; iso = λ _ → record { isoˡ = ⌞ identity² ⌟ ; isoʳ = ⌞ identity² ⌟ }
}
where
open Category A
open Morphism A
CoreHom : {A B C : Category o ℓ e}
{F : Functor A B} {G : Functor B C} →
NaturalIsomorphism (CoreFunctor (G ∘F F))
(CoreFunctor G ∘F CoreFunctor F)
CoreHom {A} {B} {C} {F} {G} = record
{ F⇒G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym C ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm C ⌟ }
; F⇐G = record { η = λ _ → ≅.refl ; commute = λ _ → ⌞ MR.id-comm-sym C ⌟ ; sym-commute = λ _ → ⌞ MR.id-comm C ⌟ }
; iso = λ _ → record { isoˡ = ⌞ identity² ⌟ ; isoʳ = ⌞ identity² ⌟ }
}
where
open Category C
open Morphism C
CoreRespNI : {A B : Category o ℓ e} {F G : Functor A B} →
NaturalIsomorphism F G →
NaturalIsomorphism (CoreFunctor F) (CoreFunctor G)
CoreRespNI {A} {B} {F} {G} μ = record
{ F⇒G = record { η = λ _ → FX≅GX ; commute = λ _ → ⌞ ⇒.commute _ ⌟ ; sym-commute = λ _ → ⌞ ⇒.sym-commute _ ⌟ }
; F⇐G = record { η = λ _ → ≅.sym FX≅GX ; commute = λ _ → ⌞ ⇐.commute _ ⌟ ; sym-commute = λ _ → ⌞ ⇐.sym-commute _ ⌟ }
; iso = λ X → record { isoˡ = ⌞ iso.isoˡ X ⌟ ; isoʳ = ⌞ iso.isoʳ X ⌟ }
}
where
open NaturalIsomorphism μ
open Morphism B
|
{
"alphanum_fraction": 0.5655053268,
"avg_line_length": 41.3452380952,
"ext": "agda",
"hexsha": "de66da1b4a2364b52e7ca12c93ac5ea1fecfd93d",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Instance/Core.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Instance/Core.agda",
"max_line_length": 123,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Instance/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1231,
"size": 3473
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Results concerning the excluded middle axiom.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Axiom.ExcludedMiddle where
open import Level
open import Relation.Nullary
------------------------------------------------------------------------
-- Definition
-- The classical statement of excluded middle says that every
-- statement/set is decidable (i.e. it either holds or it doesn't hold).
ExcludedMiddle : (ℓ : Level) → Set (suc ℓ)
ExcludedMiddle ℓ = {P : Set ℓ} → Dec P
|
{
"alphanum_fraction": 0.4793261868,
"avg_line_length": 29.6818181818,
"ext": "agda",
"hexsha": "8ac27d22b405fcc0f84db1e29b8a3bc9651833b2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Axiom/ExcludedMiddle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Axiom/ExcludedMiddle.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Axiom/ExcludedMiddle.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 117,
"size": 653
}
|
module CyclicModuleDependency where
import CyclicModuleDependency
|
{
"alphanum_fraction": 0.8970588235,
"avg_line_length": 13.6,
"ext": "agda",
"hexsha": "d556ae966ae6819d3a85e2199d741f9370d62f8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/CyclicModuleDependency.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/CyclicModuleDependency.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/CyclicModuleDependency.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 68
}
|
-- Andreas, 2013-05-02 This ain't a bug, it is a feature.
-- {-# OPTIONS -v scope.name:10 #-}
-- {-# OPTIONS -v scope:10 #-}
-- {-# OPTIONS -v scope.mod.inst:30 #-}
module _ where
module M (_ : Set₁) where
record R : Set₁ where
field
X : Set
open M Set using (R)
X : R → Set
X = R.X
-- A glimpse at the scope (showing only concrete names, though)
-- modules
-- * scope Issue836a
-- private names R --> [Issue836a._.R]
-- public modules M --> [Issue836a.M]
-- * scope Issue836a.M
-- public names R --> [Issue836a.M.R]
-- public modules R --> [Issue836a.M.R]
-- * scope Issue836a.M.R
-- public names X --> [Issue836a.M.R.X]
-- * scope Issue836a._
-- public names R --> [Issue836a._.R]
-- public modules R --> [Issue836a._.R]
-- * scope Issue836a._.R
-- public names X --> [Issue836a._.R.X]
-- Nisse:
-- The open directive did not mention the /module/ R, so (I think
-- that) the code above should be rejected.
-- Andreas
-- NO, it is a feature that projections can also be accessed via
-- the record /type/.
-- The following directive is (and should be) rejected:
-- open R
-- Bug.agda:19,6-7
-- No such module R
-- when scope checking the declaration
-- open R
|
{
"alphanum_fraction": 0.6061093248,
"avg_line_length": 24.88,
"ext": "agda",
"hexsha": "dc636f2800d99b19e9a9198688b784e1704b2089",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue836a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue836a.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue836a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 388,
"size": 1244
}
|
-- There was a bug where the arguments to a let function got reversed.
module LetLHS where
f : {A B : Set} -> A -> B -> A
f {A}{B} = let const : A -> B -> A
const x y = x
in const
|
{
"alphanum_fraction": 0.5240384615,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "e389a704e11e7cdb55c8da40c5a96887984bd792",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/LetLHS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/LetLHS.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/LetLHS.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 63,
"size": 208
}
|
------------------------------------------------------------------------------
-- Testing the translation of the propositional functions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PropositionalFunction2 where
------------------------------------------------------------------------------
postulate
D : Set
P : D → Set
a : D
_∨_ : Set → Set → Set
A : D → Set
A x = P x ∨ P x
{-# ATP definition A #-}
-- In this case the propositional function uses predicates and logical
-- constants.
postulate foo : A a → A a
{-# ATP prove foo #-}
|
{
"alphanum_fraction": 0.4054758801,
"avg_line_length": 27.3928571429,
"ext": "agda",
"hexsha": "b7fd20554c5936675c02beef941dbb1e67454a24",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/PropositionalFunction2.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/PropositionalFunction2.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/PropositionalFunction2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 142,
"size": 767
}
|
module Examples.Max where
open import Data.Empty
open import Data.Bool
open import Data.Nat
open import Data.Product
open import Data.List hiding (sum)
open import Data.Vec hiding (init)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
import DTGP
data Word : Set where
nat : ℕ → Word
sucSuc times : Word
pre : Word → ℕ → ℕ
pre (nat _) n = n
pre sucSuc n = 1 + n
pre times n = 2 + n
post : Word → ℕ → ℕ
post (nat _) n = 1 + n
post sucSuc n = 1 + n
post times n = 1 + n
open DTGP pre post Data.Nat._≟_
eval : ∀ {inp out} → Term inp out → Vec ℕ inp → Vec ℕ out
eval [] is = is
eval (nat o ∷ xs) is with eval xs is
... | os = o ∷ os
eval (sucSuc ∷ xs) is with eval xs is
... | o ∷ os = (2 + o) ∷ os
eval (times ∷ xs) is with eval xs is
... | o₂ ∷ o₁ ∷ os = (o₁ * o₂) ∷ os
score : Term 0 1 → ℕ
score xs = sum (eval xs [])
open Evolution score
match : (w : Word) (out : ℕ) → Dec (∃ λ n → out ≡ pre w n)
match (nat _) n = yes (n , refl)
match sucSuc zero = no ¬p where
¬p : Σ ℕ (λ n → 0 ≡ suc n) → ⊥
¬p (_ , ())
match sucSuc (suc n) = yes (n , refl)
match times zero = no ¬p where
¬p : Σ ℕ (λ n → 0 ≡ suc (suc n)) → ⊥
¬p (_ , ())
match times (suc zero) = no ¬p where
¬p : Σ ℕ (λ n → 1 ≡ suc (suc n)) → ⊥
¬p (_ , ())
match times (suc (suc n)) = yes (n , refl)
open Initialization match
choices : List Word
choices = nat 1 ∷ nat 2 ∷ nat 3 ∷ sucSuc ∷ times ∷ []
population : Population _ _ _
population = fromList (init 4 0 1 choices)
answer : Population _ _ _
answer = evolve 1337 1 population
|
{
"alphanum_fraction": 0.6097087379,
"avg_line_length": 23.0597014925,
"ext": "agda",
"hexsha": "69b6bf6c581698ee8887c02eb579ad372fc32e25",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-04-17T02:02:58.000Z",
"max_forks_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/dtgp",
"max_forks_repo_path": "src/Examples/Max.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/dtgp",
"max_issues_repo_path": "src/Examples/Max.agda",
"max_line_length": 58,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "31d79242908f2d80ea8e0c02931f4fdc5a3e5d1f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/dtgp",
"max_stars_repo_path": "src/Examples/Max.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T21:39:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-20T16:46:00.000Z",
"num_tokens": 567,
"size": 1545
}
|
------------------------------------------------------------------------------
-- Testing the use of numeric literals
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.NumericLiterals where
open import FOTC.Base
open import FOTC.Data.Nat
------------------------------------------------------------------------------
data ℕ : Set where
z : ℕ
s : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
toD : ℕ → D
toD z = zero
toD (s n) = succ₁ (toD n)
ten : D
ten = toD 10
|
{
"alphanum_fraction": 0.3771676301,
"avg_line_length": 23.8620689655,
"ext": "agda",
"hexsha": "252ec56c191fecd07541f5d5a3326855f7bc5443",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/NumericLiterals.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/NumericLiterals.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/NumericLiterals.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 141,
"size": 692
}
|
module RW.Data.RTrie where
open import RW.Data.RTrie.Decl public
open import RW.Data.RTrie.Insert
using (insertTerm) public
open import RW.Data.RTrie.Lookup
renaming (lookup to lookupTerm) public
|
{
"alphanum_fraction": 0.7511737089,
"avg_line_length": 26.625,
"ext": "agda",
"hexsha": "3419cacb308908cff9e6590f9bddf3d1e8ab9290",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Data/RTrie.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Data/RTrie.agda",
"max_line_length": 42,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Data/RTrie.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 58,
"size": 213
}
|
open import Data.String using ( String )
open import Data.ByteString using ( ByteString ; Style ; lazy ; strict )
open import Data.ByteString.UTF8 using ( toString ; fromString )
open import System.IO.Primitive using ( HandleR ; HandleW ; hOpenR ; hOpenW ; hCloseR ; hCloseW ; hGetStrict ; hGetLazy ; hPutStrict ; hPutLazy )
-- A proposed binding for the Haskell IO library.
-- The semantics is strict IO, there is no visibility for semi-closed handles.
module System.IO where
open System.IO.Primitive public using ( Unit ; IO ; unit ; return ; _>>=_ ; commit ; onCommit ; stdin ; stdout ; stderr )
-- Command is a synonym for IO Unit
Command : Set
Command = IO Unit
skip : Command
skip = return unit
-- Other operations are defined in terms of _>>=_
infixl 1 _>>_
infixl 4 _<$>_ _<*>_
_>>_ : {A B : Set} → (IO A) → (IO B) → (IO B)
a >> b = a >>= (λ x → b)
_<$>_ : {A B : Set} → (A → B) → (IO A) → (IO B)
_<$>_ f a = a >>= (λ x → return (f x))
_<*>_ : {A B : Set} → (IO (A → B)) → (IO A) → (IO B)
_<*>_ f a = f >>= (λ x → x <$> a)
-- TODO: Use the new "syntax" construct to define do-like notation?
-- TODO: RW and Append mode?
data IOMode : Set where
read write : IOMode
Handle : IOMode → Set
Handle read = HandleR
Handle write = HandleW
-- TODO: There should really be a separate type for file paths,
-- and some sanity-checking to support protection against
-- injection attacks.
hOpen : {m : IOMode} → String → IO (Handle m)
hOpen {read} = hOpenR
hOpen {write} = hOpenW
hGetBytes : {s : Style} → (Handle read) → IO (ByteString s)
hGetBytes {lazy} = hGetLazy
hGetBytes {strict} = hGetStrict
getBytes : {s : Style} → IO (ByteString s)
getBytes = hGetBytes stdin
hPutBytes : {s : Style} → (Handle write) → (ByteString s) → Command
hPutBytes {lazy} = hPutLazy
hPutBytes {strict} = hPutStrict
putBytes : {s : Style} → (ByteString s) → Command
putBytes = hPutBytes stdout
hClose : {m : IOMode} → (Handle m) → Command
hClose {read} = hCloseR
hClose {write} = hCloseW
-- TODO: Better handling of codecs, don't just hard-wire UTF-8!
-- TODO: Lazy vs strict strings?
-- Default arguments would help a lot here.
hGetStr : (Handle read) → (IO String)
hGetStr hdl = toString <$> hGetBytes {lazy} hdl
getStr : (IO String)
getStr = hGetStr stdin
hPutStr : (Handle write) → String → Command
hPutStr hdl s = hPutBytes {lazy} hdl (fromString s)
putStr : String → Command
putStr = hPutStr stdout
|
{
"alphanum_fraction": 0.667218543,
"avg_line_length": 27.1460674157,
"ext": "agda",
"hexsha": "98277125f147e11fe61765592042edc2107095cb",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO.agda",
"max_line_length": 145,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 756,
"size": 2416
}
|
module Implicits.Resolution.Infinite.Undecidable where
open import Prelude hiding (Bool; Dec)
open import Data.Fin.Substitution
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Nullary.Decidable as DecM using ()
open import Relation.Nullary
open import Extensions.ListFirst
open import SystemF.Everything as F using ()
open import Implicits.Resolution.Ambiguous.Resolution as A
open import Implicits.Resolution.Deterministic.Resolution as D
open import Implicits.Resolution.Infinite.Resolution as I
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Resolution.Ambiguous.Undecidable using () renaming (module Undecidable to AUndec)
open import Implicits.Resolution.Infinite.Expressiveness
private
-- type of inhabitation problem decider
?:-dec : Set
?:-dec = ∀ {n ν} (Γ : F.Ctx ν n) (a : F.Type ν) → Dec (∃ λ t → Γ F.⊢ t ∈ a)
-- assuming that System F have an EBNF form
-- and assuming that System F type inhabitation is undecidable,
-- we prove that Infinite resolution is undecidable
module Undecidable
(?:-undec : ¬ ?:-dec)
(nf : ∀ {ν n} {Γ : F.Ctx ν n} {t a} → Γ F.⊢ t ∈ a → ∃ λ (t₂ : F.Term ν n) → Γ F.⊢ t₂ ⇑ a)
where
open Infinite⇔Ambiguous nf
open AUndec ?:-undec using () renaming (undecidable to ⊢ᵣᵃ-undec; ⊢ᵣ-Dec to ⊢ᵣᵃ-Dec)
-- type of decider for infinite resolution
⊢ᵣ-Dec : Set
⊢ᵣ-Dec = ∀ {ν} (Δ : ICtx ν) (a : Type ν) → Dec (Δ I.⊢ᵣ a)
-- proof that such a decider would imply a decider for ambiguous resolution
reduction : ⊢ᵣ-Dec → ⊢ᵣᵃ-Dec
reduction f Δ x = DecM.map (equivalent Δ x) (f Δ x)
-- completing the proof
undecidable : ¬ ⊢ᵣ-Dec
undecidable f = ⊢ᵣᵃ-undec (reduction f)
|
{
"alphanum_fraction": 0.7177230047,
"avg_line_length": 35.5,
"ext": "agda",
"hexsha": "ebf77e70d36097d171897df5435ed6ad2547c9f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Infinite/Undecidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Infinite/Undecidable.agda",
"max_line_length": 103,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Infinite/Undecidable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 574,
"size": 1704
}
|
{-# OPTIONS --without-K #-}
open import Base
module Spaces.Interval where
private
data #I : Set where
#zer : #I
#one : #I
I : Set
I = #I
zer : I
zer = #zer
one : I
one = #one
postulate -- HIT
seg : zer ≡ one
I-rec : ∀ {i} (P : I → Set i) (x₀ : P zer) (x₁ : P one)
(p : transport P seg x₀ ≡ x₁)
→ ((t : I) → P t)
I-rec P x₀ x₁ p #zer = x₀
I-rec P x₀ x₁ p #one = x₁
postulate -- HIT
β : ∀ {i} (P : I → Set i) (x₀ : P zer) (x₁ : P one)
(p : transport P seg x₀ ≡ x₁)
→ apd (I-rec P x₀ x₁ p) seg ≡ p
I-rec-nondep : ∀ {i} (C : Set i) (x₀ x₁ : C) (p : x₀ ≡ x₁) → (I → C)
I-rec-nondep C x₀ x₁ p #zer = x₀
I-rec-nondep C x₀ x₁ p #one = x₁
postulate -- HIT
β-nondep : ∀ {i} (C : Set i) (x₀ x₁ : C) (p : x₀ ≡ x₁)
→ ap (I-rec-nondep C x₀ x₁ p) seg ≡ p
|
{
"alphanum_fraction": 0.4981226533,
"avg_line_length": 19.0238095238,
"ext": "agda",
"hexsha": "543adc9826ca5906395c5026349f5c04961d1539",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Spaces/Interval.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Spaces/Interval.agda",
"max_line_length": 68,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Spaces/Interval.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 360,
"size": 799
}
|
-- {-# OPTIONS --show-implicit --show-irrelevant #-}
module Data.QuadTree.FunctorProofs.Valid-QuadrantFunctor where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Logic
open import Data.QuadTree.InternalAgda
open import Agda.Primitive
open import Data.QuadTree.FunctorProofs.FunctorLaws
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.Functors
open import Data.QuadTree.Implementation.QuadrantLenses
ValidFunctor-Quadrant-IdentityLaw : (dep : Nat) -> IdentityLaw (λ y -> VQuadrant y {dep}) {{quadrantFunctor dep}}
ValidFunctor-Quadrant-IdentityLaw dep (CVQuadrant (Leaf v)) = refl
ValidFunctor-Quadrant-IdentityLaw dep@(S deps) (CVQuadrant qd@(Node (Leaf a) (Leaf b) (Leaf c) (Leaf d)) {p}) =
ifcFalse (a == b && b == c && c == d) (notTrueToFalse $ andSndI {a = (depth qd <= dep)} p)
ValidFunctor-Quadrant-IdentityLaw dep@(S deps) (CVQuadrant (Node a@(Leaf _) b@(Leaf _) c@(Leaf _) d@(Node _ _ _ _)) {p}) =
cong4 combine
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant a))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant b))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant c))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant d))
ValidFunctor-Quadrant-IdentityLaw dep@(S deps) (CVQuadrant (Node a@(Leaf _) b@(Leaf _) c@(Node _ _ _ _) d) {p}) =
cong4 combine
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant a))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant b))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant c))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant d))
ValidFunctor-Quadrant-IdentityLaw dep@(S deps) (CVQuadrant (Node a@(Leaf _) b@(Node _ _ _ _) c d) {p}) =
cong4 combine
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant a))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant b))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant c))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant d))
ValidFunctor-Quadrant-IdentityLaw dep@(S deps) (CVQuadrant (Node a@(Node _ _ _ _) b c d) {p}) =
cong4 combine
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant a))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant b))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant c))
(ValidFunctor-Quadrant-IdentityLaw deps (CVQuadrant d))
postulate
eq-subst : {a b : Set} {{eqA : Eq a}} {{eqB : Eq b}} -> (f : a -> b) -> (x y : a)
-> (x == y) ≡ (f x == f y)
combine-fmap : {t s : Set} {{eqT : Eq t}} {{eqS : Eq s}} {dep : Nat} -> (a b c d : VQuadrant t {dep})
-> (f : t -> s)
-> combine (fmapₑ (quadrantFunctor dep) f a) (fmapₑ (quadrantFunctor dep) f b) (fmapₑ (quadrantFunctor dep) f c) (fmapₑ (quadrantFunctor dep) f d)
≡ fmapₑ (quadrantFunctor (S dep)) f (combine a b c d)
combine-fmap {t} {s} {dep = dep} (CVQuadrant a@(Leaf va)) (CVQuadrant b@(Leaf vb)) (CVQuadrant c@(Leaf vc)) (CVQuadrant d@(Leaf vd)) f =
ifc (va == vb && vb == vc && vc == vd)
then (λ {{p}} ->
begin
(ifc (f va == f vb) && (f vb == f vc) && (f vc == f vd) then _ else _)
=⟨ ifcTrue _ (useEq (cong3 (λ e1 e2 e3 -> e1 && e2 && e3) (eq-subst f va vb) (eq-subst f vb vc) (eq-subst f vc vd)) p) ⟩
fmapₑ (quadrantFunctor (S dep)) f (CVQuadrant (Leaf va))
=⟨ cong (fmapₑ (quadrantFunctor (S dep)) f) (sym $ ifcTrue ((va == vb) && (vb == vc) && (vc == vd)) p) ⟩
fmapₑ (quadrantFunctor (S dep)) f (ifc (va == vb) && (vb == vc) && (vc == vd) then CVQuadrant (Leaf va) else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)))
end)
else (λ {{p}} ->
begin
(ifc (f va == f vb) && (f vb == f vc) && (f vc == f vd) then _ else _)
=⟨ sym $ cong
{y = (CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)) {andCombine (zeroLteAny dep) (falseToNotTrue p)})}
p1 (ifcFalse ((va == vb) && (vb == vc) && (vc == vd)) p) ⟩
fmapₑ (quadrantFunctor (S dep)) f (ifc (va == vb) && (vb == vc) && (vc == vd) then CVQuadrant (Leaf va) else CVQuadrant (Node (Leaf va) (Leaf vb) (Leaf vc) (Leaf vd)))
end) where
p1 : VQuadrant t {S dep} -> VQuadrant s {S dep}
p1 q = (fmapₑ (quadrantFunctor (S dep)) f) q
combine-fmap (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) f = refl
combine-fmap (CVQuadrant (Leaf _)) (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) (CVQuadrant d) f = refl
combine-fmap (CVQuadrant (Leaf _)) (CVQuadrant (Node _ _ _ _)) (CVQuadrant c) (CVQuadrant d) f = refl
combine-fmap (CVQuadrant (Node _ _ _ _)) (CVQuadrant b) (CVQuadrant c) (CVQuadrant d) f = refl
ValidFunctor-Quadrant-CompositionLaw : (dep : Nat) -> CompositionLaw (λ y -> VQuadrant y {dep}) {{quadrantFunctor dep}}
ValidFunctor-Quadrant-CompositionLaw dep (CVQuadrant (Leaf x)) f g = refl
ValidFunctor-Quadrant-CompositionLaw dep@(S deps) {t1} {t2} {t3} cvq@(CVQuadrant qd@(Node a@(Leaf va) b@(Leaf vb) c@(Leaf vc) d@(Leaf vd)) {p}) f g =
begin
combine (mgf sa) (mgf sb) (mgf sc) (mgf sd)
=⟨ cong4 combine
(ValidFunctor-Quadrant-CompositionLaw deps sa f g)
(ValidFunctor-Quadrant-CompositionLaw deps sb f g)
(ValidFunctor-Quadrant-CompositionLaw deps sc f g)
(ValidFunctor-Quadrant-CompositionLaw deps sd f g) ⟩
combine (mg $ mf sa) (mg $ mf sb) (mg $ mf sc) (mg $ mf sd)
=⟨ combine-fmap (mf sa) (mf sb) (mf sc) (mf sd) g ⟩
fmapₑ (quadrantFunctor dep) g (combine (mf sa) (mf sb) (mf sc) (mf sd))
end where
mf = fmapₑ (quadrantFunctor deps) f
mg = fmapₑ (quadrantFunctor deps) g
mgf = fmapₑ (quadrantFunctor deps) (g ∘ f)
sa = (CVQuadrant a {aSub {dep = deps} a b c d p})
sb = (CVQuadrant b {bSub {dep = deps} a b c d p})
sc = (CVQuadrant c {cSub {dep = deps} a b c d p})
sd = (CVQuadrant d {dSub {dep = deps} a b c d p})
ValidFunctor-Quadrant-CompositionLaw dep@(S deps) cvq@(CVQuadrant (Node a@(Leaf va) b@(Leaf vb) c@(Leaf vc) d@(Node _ _ _ _)) {p}) f g =
begin
combine (mgf sa) (mgf sb) (mgf sc) (mgf sd)
=⟨ cong4 combine
(ValidFunctor-Quadrant-CompositionLaw deps sa f g)
(ValidFunctor-Quadrant-CompositionLaw deps sb f g)
(ValidFunctor-Quadrant-CompositionLaw deps sc f g)
(ValidFunctor-Quadrant-CompositionLaw deps sd f g) ⟩
combine (mg $ mf sa) (mg $ mf sb) (mg $ mf sc) (mg $ mf sd)
=⟨ combine-fmap (mf sa) (mf sb) (mf sc) (mf sd) g ⟩
fmapₑ (quadrantFunctor dep) g (combine (mf sa) (mf sb) (mf sc) (mf sd))
end where
mf = fmapₑ (quadrantFunctor deps) f
mg = fmapₑ (quadrantFunctor deps) g
mgf = fmapₑ (quadrantFunctor deps) (g ∘ f)
sa = (CVQuadrant a {aSub {dep = deps} a b c d p})
sb = (CVQuadrant b {bSub {dep = deps} a b c d p})
sc = (CVQuadrant c {cSub {dep = deps} a b c d p})
sd = (CVQuadrant d {dSub {dep = deps} a b c d p})
ValidFunctor-Quadrant-CompositionLaw dep@(S deps) cvq@(CVQuadrant (Node a@(Leaf _) b@(Leaf _) c@(Node _ _ _ _) d) {p}) f g =
trans
(cong4 combine
(ValidFunctor-Quadrant-CompositionLaw deps sa f g)
(ValidFunctor-Quadrant-CompositionLaw deps sb f g)
(ValidFunctor-Quadrant-CompositionLaw deps sc f g)
(ValidFunctor-Quadrant-CompositionLaw deps sd f g))
(combine-fmap (mf sa) (mf sb) (mf sc) (mf sd) g)
where
mf = fmapₑ (quadrantFunctor deps) f
sa = (CVQuadrant a {aSub {dep = deps} a b c d p})
sb = (CVQuadrant b {bSub {dep = deps} a b c d p})
sc = (CVQuadrant c {cSub {dep = deps} a b c d p})
sd = (CVQuadrant d {dSub {dep = deps} a b c d p})
ValidFunctor-Quadrant-CompositionLaw dep@(S deps) cvq@(CVQuadrant (Node a@(Leaf _) b@(Node _ _ _ _) c d) {p}) f g =
trans
(cong4 combine
(ValidFunctor-Quadrant-CompositionLaw deps sa f g)
(ValidFunctor-Quadrant-CompositionLaw deps sb f g)
(ValidFunctor-Quadrant-CompositionLaw deps sc f g)
(ValidFunctor-Quadrant-CompositionLaw deps sd f g))
(combine-fmap (mf sa) (mf sb) (mf sc) (mf sd) g)
where
mf = fmapₑ (quadrantFunctor deps) f
sa = (CVQuadrant a {aSub {dep = deps} a b c d p})
sb = (CVQuadrant b {bSub {dep = deps} a b c d p})
sc = (CVQuadrant c {cSub {dep = deps} a b c d p})
sd = (CVQuadrant d {dSub {dep = deps} a b c d p})
ValidFunctor-Quadrant-CompositionLaw dep@(S deps) cvq@(CVQuadrant (Node a@(Node _ _ _ _) b c d) {p}) f g =
trans
(cong4 combine
(ValidFunctor-Quadrant-CompositionLaw deps sa f g)
(ValidFunctor-Quadrant-CompositionLaw deps sb f g)
(ValidFunctor-Quadrant-CompositionLaw deps sc f g)
(ValidFunctor-Quadrant-CompositionLaw deps sd f g))
(combine-fmap (mf sa) (mf sb) (mf sc) (mf sd) g)
where
mf = fmapₑ (quadrantFunctor deps) f
sa = (CVQuadrant a {aSub {dep = deps} a b c d p})
sb = (CVQuadrant b {bSub {dep = deps} a b c d p})
sc = (CVQuadrant c {cSub {dep = deps} a b c d p})
sd = (CVQuadrant d {dSub {dep = deps} a b c d p})
|
{
"alphanum_fraction": 0.6148988548,
"avg_line_length": 58.7610062893,
"ext": "agda",
"hexsha": "c22ffa22fe53f2b88bad1e56c2565a2dc2706601",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/FunctorProofs/Valid-QuadrantFunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/FunctorProofs/Valid-QuadrantFunctor.agda",
"max_line_length": 179,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/FunctorProofs/Valid-QuadrantFunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 3360,
"size": 9343
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.