Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The syntax of a toy programming language that only supports -- allocation and deallocation of memory ------------------------------------------------------------------------ module Only-allocation where open import Equality.Propositional open import Prelude open import Prelude.Size open import Colist equality-with-J ------------------------------------------------------------------------ -- Programs -- Statements. data Stmt : Type where alloc dealloc : Stmt -- Programs are potentially infinite sequences of statements. Program : Size → Type Program i = Colist Stmt i ------------------------------------------------------------------------ -- Some examples -- A program that runs in bounded space. bounded : ∀ {i} → Program i bounded = alloc ∷′ dealloc ∷ λ { .force → bounded } -- Another program that runs in bounded space. bounded₂ : ∀ {i} → Program i bounded₂ = alloc ∷′ alloc ∷′ dealloc ∷′ dealloc ∷ λ { .force → bounded₂ } -- A program that does not run in bounded space. unbounded : ∀ {i} → Program i unbounded = alloc ∷ λ { .force → unbounded }
{ "alphanum_fraction": 0.530224525, "avg_line_length": 25.1739130435, "ext": "agda", "hexsha": "515eaa0614650ab8612a53ae01304d8b185840cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Only-allocation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Only-allocation.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Only-allocation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 225, "size": 1158 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Instance.PosetCore where -- The adjunction between the "forgetful" functor from Posets to -- Setoids and the core functor for posets. open import Level using (_⊔_) import Function open import Function.Equality using (Π; _⟶_) open import Relation.Binary using (Setoid; Poset) open import Relation.Binary.OrderMorphism using (_⇒-Poset_) renaming (_∘_ to _∙_) open import Categories.Adjoint using (_⊣_) import Categories.Adjoint.Instance.0-Truncation as Setd import Categories.Adjoint.Instance.01-Truncation as Pos open import Categories.Category using (Category) open import Categories.Category.Construction.Thin open import Categories.Category.Instance.Posets using (fun-resp-≈; Posets) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor.Instance.Core using () renaming (Core to CatCore) import Categories.Functor.Instance.Core as Cat open import Categories.Functor using (Functor; _∘F_; id) import Categories.Morphism as Morphism open import Categories.Morphism.IsoEquiv using (⌞_⌟) open import Categories.NaturalTransformation using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper) open Π open _⇒-Poset_ -- The "forgetful" functor from Setoids to Posets (forgetting symmetry). Forgetful : ∀ {c ℓ} → Functor (Setoids c ℓ) (Posets c ℓ ℓ) Forgetful = record { F₀ = Forgetful₀ ; F₁ = λ f → record { fun = _⟨$⟩_ f ; monotone = cong f } ; identity = λ {S} → refl S ; homomorphism = λ {_ _ S} → refl S ; F-resp-≈ = λ {S _} f≗g → f≗g (refl S) } where Forgetful₀ : ∀ {c ℓ} → Setoid c ℓ → Poset c ℓ ℓ Forgetful₀ S = record { _≈_ = _≈_ ; _≤_ = _≈_ ; isPartialOrder = record { isPreorder = record { isEquivalence = isEquivalence ; reflexive = Function.id ; trans = trans } ; antisym = Function.const } } where open Setoid S open Setoid -- The "core" functor from Posets to Setoids. -- -- This functor simply forgets the _≤_ relation, mapping a Poset to -- the Setoid over which it is defined. This Setoid is the "core" of -- the Poset in the sense that the "equality" _≈_ associated with the -- Poset is really an equivalence, and antisymmetry ensures that this -- equivalence is equivalent to the symmetric core of _≤_. Core : ∀ {c ℓ₁ ℓ₂} → Functor (Posets c ℓ₁ ℓ₂) (Setoids c ℓ₁) Core = record { F₀ = λ A → record { isEquivalence = isEquivalence A } ; F₁ = λ f → record { _⟨$⟩_ = fun f ; cong = fun-resp-≈ f } ; identity = Function.id ; homomorphism = λ {_ _ _ f g} → fun-resp-≈ (g ∙ f) ; F-resp-≈ = λ {_ B} {f _} f≗g x≈y → Eq.trans B (fun-resp-≈ f x≈y) f≗g } where open Poset -- Core is right-adjoint to the forgetful functor CoreAdj : ∀ {o ℓ} → Forgetful ⊣ Core {o} {ℓ} {ℓ} CoreAdj = record { unit = ntHelper record { η = unit ; commute = cong } ; counit = ntHelper record { η = counit ; commute = λ {_ B} _ → Eq.refl B } ; zig = λ {S} → Setoid.refl S ; zag = Function.id } where open Poset open Functor Core using () renaming (F₀ to Core₀; F₁ to Core₁) open Functor Forgetful using () renaming (F₀ to U₀ ; F₁ to U₁) unit : ∀ S → S ⟶ Core₀ (U₀ S) unit S = record { _⟨$⟩_ = Function.id ; cong = Function.id } counit : ∀ A → U₀ (Core₀ A) ⇒-Poset A counit C = record { fun = Function.id ; monotone = reflexive C } -- The core functor commutes with inclusion, i.e. the core of a thin -- category is the 0-Groupoid generated by the associated equivalence. -- -- Note that the core functor does not commute with truncation, -- because the latter forgets too much (there are many more isos in -- the (0,1)-truncated category). Core-commutes : ∀ {c ℓ} e → Setd.Inclusion e ∘F Core ≃ Cat.Core ∘F Pos.Inclusion {c} {ℓ ⊔ e} {ℓ} e Core-commutes e = niHelper record { η = λ A → record { F₀ = Function.id ; F₁ = EqIsIso.≈⇒≅ e A } ; η⁻¹ = λ A → record { F₀ = Function.id ; F₁ = EqIsIso.≅⇒≈ e A } ; commute = λ {A B} f → let open Morphism (Thin e B) in niHelper record { η = λ _ → ≅.refl ; η⁻¹ = λ _ → ≅.refl } ; iso = λ A → let open Poset A open Morphism (Thin e A) in record { isoˡ = niHelper record { η = λ _ → Eq.refl ; η⁻¹ = λ _ → Eq.refl } ; isoʳ = niHelper record { η = λ _ → ≅.refl ; η⁻¹ = λ _ → ≅.refl } } }
{ "alphanum_fraction": 0.6300679378, "avg_line_length": 37.4016393443, "ext": "agda", "hexsha": "dc2195168e2cf1aa46609141717a6b6e09817bc1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Instance/PosetCore.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Instance/PosetCore.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Instance/PosetCore.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1483, "size": 4563 }
--#include "prelude.agda" --#include "PropPrelude.agda" proof_reverse_nil :: PropPrelude.prop_reverse_nil = ref@_ (reverse Unit Nil@_) proof_append_nil_1 :: PropPrelude.prop_append_nil_1 = ? proof_append_nil_2 :: PropPrelude.prop_append_nil_2 = \ (xs::List Unit) -> ref@_ (append Unit Nil@_ xs)
{ "alphanum_fraction": 0.7401315789, "avg_line_length": 25.3333333333, "ext": "agda", "hexsha": "9e74606339a31c6d41af83445d186a028bd101f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "siddharthist/hs2agda", "max_forks_repo_path": "examples/queue/PropPrelude.proof.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c", "max_issues_repo_issues_event_max_datetime": "2016-10-25T17:50:18.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-25T02:27:55.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "siddharthist/CoverTranslator", "max_issues_repo_path": "examples/queue/PropPrelude.proof.agda", "max_line_length": 53, "max_stars_count": 17, "max_stars_repo_head_hexsha": "4172bef9f4eede7e45dc002a70bf8c6dd9a56b5c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "siddharthist/hs2agda", "max_stars_repo_path": "examples/queue/PropPrelude.proof.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-25T19:54:48.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-25T10:07:49.000Z", "num_tokens": 96, "size": 304 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Adjunction.CompositionLaws where open import Level open import Relation.Binary using (Rel; IsEquivalence) open import Data.Sum open import Data.Product open import Function using (flip) open import Categories.Category open import Categories.Functor hiding (equiv; assoc; identityˡ; identityʳ; ∘-resp-≡) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_) open import Categories.NaturalTransformation hiding (equiv; setoid) renaming (id to idT; _≡_ to _≡T_) open import Categories.Monad open import Categories.Support.Equivalence open import Categories.Adjunction open import Categories.Adjunction.Composition .assoc : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} {C₀ : Category o₀ ℓ₀ e₀} {C₁ : Category o₁ ℓ₁ e₁} {C₂ : Category o₂ ℓ₂ e₂} {C₃ : Category o₃ ℓ₃ e₃} {F : Functor C₀ C₁} {G : Functor C₁ C₂} {H : Functor C₂ C₃} {F′ : Functor C₁ C₀} {G′ : Functor C₂ C₁} {H′ : Functor C₃ C₂} {T : F ⊣ F′} {U : G ⊣ G′} {V : H ⊣ H′} → (V ∘ U) ∘ T ≡ V ∘ (U ∘ T) assoc {C₀ = C₀} {C₁} {C₂} {C₃} {F} {G} {H} {F′} {G′} {H′} {T} {U} {V} = (λ {x} → pf₀ {x}) , λ {x} → pf₁ {x} where module C₀ = Category C₀ module C₁ = Category C₁ module C₂ = Category C₂ module C₃ = Category C₃ module F = Functor F module G = Functor G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡) module H = Functor H renaming (F₀ to H₀; F₁ to H₁; F-resp-≡ to H-resp-≡) module F′ = Functor F′ renaming (F₀ to F′₀; F₁ to F′₁; F-resp-≡ to F′-resp-≡) module G′ = Functor G′ renaming (F₀ to G′₀; F₁ to G′₁; F-resp-≡ to G′-resp-≡) module H′ = Functor H′ renaming (F₀ to H′₀; F₁ to H′₁; F-resp-≡ to H′-resp-≡) module T = Adjunction T renaming (unit to Tη′; counit to Tε′) module U = Adjunction U renaming (unit to Uη′; counit to Uε′) module V = Adjunction V renaming (unit to Vη′; counit to Vε′) module Tη = NaturalTransformation (Adjunction.unit T) module Tε = NaturalTransformation (Adjunction.counit T) module Uη = NaturalTransformation (Adjunction.unit U) module Uε = NaturalTransformation (Adjunction.counit U) module Vη = NaturalTransformation (Adjunction.unit V) module Vε = NaturalTransformation (Adjunction.counit V) pf₀ : {x : C₀.Obj} → F′.F′₁ (G′.G′₁ (Vη.η (G.G₀ (F.F₀ x))) C₁.∘ Uη.η (F.F₀ x)) C₀.∘ Tη.η x C₀.≡ F′.F′₁ (G′.G′₁ (Vη.η (G.G₀ (F.F₀ x)))) C₀.∘ F′.F′₁ (Uη.η (F.F₀ x)) C₀.∘ Tη.η x pf₀ {x} = begin F′.F′₁ (G′.G′₁ (Vη.η (G.G₀ (F.F₀ x))) C₁.∘ Uη.η (F.F₀ x)) C₀.∘ Tη.η x ↓⟨ C₀.∘-resp-≡ˡ F′.homomorphism ⟩ C₀ [ F′.F′₁ (G′.G′₁ (Vη.η (G.G₀ (F.F₀ x)))) ∘ F′.F′₁ (Uη.η (F.F₀ x)) ] C₀.∘ Tη.η x ↓⟨ C₀.assoc ⟩ F′.F′₁ (G′.G′₁ (Vη.η (G.G₀ (F.F₀ x)))) C₀.∘ F′.F′₁ (Uη.η (F.F₀ x)) C₀.∘ Tη.η x ∎ where open C₀.HomReasoning pf₁ : {x : C₃.Obj} → (Vε.η x C₃.∘ H.H₁ (Uε.η (H′.H′₀ x))) C₃.∘ H.H₁ (G.G₁ (Tε.η (G′.G′₀ (H′.H′₀ x)))) C₃.≡ Vε.η x C₃.∘ H.H₁ (Uε.η (H′.H′₀ x) C₂.∘ G.G₁ (Tε.η (G′.G′₀ (H′.H′₀ x)))) pf₁ {x} = begin (Vε.η x C₃.∘ H.H₁ (Uε.η (H′.H′₀ x))) C₃.∘ H.H₁ (G.G₁ (Tε.η (G′.G′₀ (H′.H′₀ x)))) ↓⟨ C₃.assoc ⟩ Vε.η x C₃.∘ H.H₁ (Uε.η (H′.H′₀ x)) C₃.∘ H.H₁ (G.G₁ (Tε.η (G′.G′₀ (H′.H′₀ x)))) ↑⟨ C₃.∘-resp-≡ʳ H.homomorphism ⟩ Vε.η x C₃.∘ H.H₁ (C₂ [ Uε.η (H′.H′₀ x) ∘ G.G₁ (Tε.η (G′.G′₀ (H′.H′₀ x))) ]) ∎ where open C₃.HomReasoning .identityˡ : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F : Functor C D} {G : Functor D C} {T : F ⊣ G} → id ∘ T ≡ T identityˡ {C = C} {D} {F} {G} {T} = ( (λ {x} → pf₀ {x}) , D.identityˡ ) where module C = Category C module D = Category D module F = Functor F module G = Functor G module T = Adjunction T renaming (unit to Tη′; counit to Tε′) module Tη = NaturalTransformation T.Tη′ module Tε = NaturalTransformation T.Tε′ pf₀ : {x : C.Obj} → G.F₁ D.id C.∘ NaturalTransformation.η Tη.op x C.≡ NaturalTransformation.η Tη.op x pf₀ {x} = begin G.F₁ D.id C.∘ NaturalTransformation.η Tη.op x ↓⟨ C.∘-resp-≡ˡ G.identity ⟩ C.id C.∘ NaturalTransformation.η Tη.op x ↓⟨ C.identityˡ ⟩ NaturalTransformation.η Tη.op x ∎ where open C.HomReasoning .identityʳ : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F : Functor C D} {G : Functor D C} {T : F ⊣ G} → T ∘ id ≡ T identityʳ {C = C} {D} {F} {G} {T} = (λ {x} → C.identityʳ) , (λ {x} → pf₀ {x}) where module C = Category C module D = Category D module F = Functor F module G = Functor G module T = Adjunction T renaming (unit to Tη′; counit to Tε′) module Tη = NaturalTransformation T.Tη′ module Tε = NaturalTransformation T.Tε′ pf₀ : {x : D.Obj} → NaturalTransformation.η Tε.op x D.∘ F.F₁ C.id D.≡ NaturalTransformation.η Tε.op x pf₀ {x} = begin NaturalTransformation.η Tε.op x D.∘ F.F₁ C.id ↓⟨ D.∘-resp-≡ʳ F.identity ⟩ NaturalTransformation.η Tε.op x D.∘ D.id ↓⟨ D.identityʳ ⟩ NaturalTransformation.η Tε.op x ∎ where open D.HomReasoning .∘-resp-≡ : ∀ {o₀ ℓ₀ e₀ o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {A : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} {C : Category o₂ ℓ₂ e₂} {F : Functor B C} {G : Functor A B} {F′ : Functor C B} {G′ : Functor B A} {T T′ : G ⊣ G′} {U U′ : F ⊣ F′} → T ≡ T′ → U ≡ U′ → U ∘ T ≡ U′ ∘ T′ ∘-resp-≡ {A = A} {B} {C} {F} {G} {F′} {G′} {T} {T′} {U} {U′} (Tη≡T′η , Tε≡T′ε) (Uη≡U′η , Uε≡U′ε) = (λ {x} → A.∘-resp-≡ (G′.F-resp-≡ Uη≡U′η) Tη≡T′η) , (λ {x} → C.∘-resp-≡ Uε≡U′ε (F.F-resp-≡ Tε≡T′ε)) where module A = Category A module B = Category B module C = Category C module F = Functor F module G = Functor G module F′ = Functor F′ module G′ = Functor G′ module T = Adjunction T renaming (unit to Tη′; counit to Tε′) module U = Adjunction U renaming (unit to Uη′; counit to Uε′) module T′ = Adjunction T′ renaming (unit to T′η′; counit to T′ε′) module U′ = Adjunction U′ renaming (unit to U′η′; counit to U′ε′) module Tη = NaturalTransformation (Adjunction.unit T) module Tε = NaturalTransformation (Adjunction.counit T) module Uη = NaturalTransformation (Adjunction.unit U) module Uε = NaturalTransformation (Adjunction.counit U) module T′η = NaturalTransformation (Adjunction.unit T′) module T′ε = NaturalTransformation (Adjunction.counit T′) module U′η = NaturalTransformation (Adjunction.unit U′) module U′ε = NaturalTransformation (Adjunction.counit U′)
{ "alphanum_fraction": 0.5284894302, "avg_line_length": 45.2088607595, "ext": "agda", "hexsha": "7562f82d5a2414e9703f1cff1f15ecfc61447bd0", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Adjunction/CompositionLaws.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Adjunction/CompositionLaws.agda", "max_line_length": 131, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Adjunction/CompositionLaws.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2867, "size": 7143 }
{-# OPTIONS --without-K #-} -- Some basic theorms about natural numbers. module hott.types.nat.theorems where open import hott.core open import hott.functions open import hott.types.nat -- 0 is the right identity of addition. x+0≡x : ∀(x : ℕ) → x + 0 ≡ x x+0≡x 0 = begin 0 + 0 ≡ 0 by definition ∎ x+0≡x (succ n) = begin succ n + 0 ≡ succ (n + 0) by definition ≡ succ n by ap succ (x+0≡x (n)) ∎ -- Alternate from of 0 being right identity. x≡x+0 : ∀(x : ℕ) → x ≡ x + 0 x≡x+0 n = x+0≡x n ⁻¹ -- This is really refl but it is better to use these when proving -- properties about ℕ. One does not have to remember which is -- definitional equality and which is not. 0+x≡x : ∀ (x : ℕ) → 0 + x ≡ x 0+x≡x n = begin 0 + n ≡ n by definition ∎ -- This is really refl but it is better to use these when proving -- properties about ℕ. One does not have to remember which is -- definitional equality and which is not. x≡0+x : ∀ (x : ℕ) → x ≡ 0 + x x≡0+x n = begin n ≡ 0 + n by definition ∎ -- Commutativity of addition. x+y≡y+x : ∀ (x y : ℕ) → x + y ≡ y + x x+y≡y+x 0 n = begin 0 + n ≡ n by definition ≡ n + 0 by x≡x+0 (n) ∎ x+y≡y+x n 0 = begin n + 0 ≡ n by x+0≡x (n) ≡ 0 + n by definition ∎ x+y≡y+x (succ m) (succ n) = begin succ m + succ n ≡ succ (m + succ n) by definition ≡ succ (succ n + m) by applying succ on x+y≡y+x m (succ n) ≡ succ (succ (n + m)) by definition ≡ succ (succ (m + n)) by applying succ ∘ succ on (x+y≡y+x n m) ≡ succ (succ m + n) by applying succ on definition ≡ succ (n + succ m) by applying succ on x+y≡y+x (succ m) n ≡ succ n + succ m by definition ∎ -- Associativity of + x+[y+z]≡[x+y]+z : ∀ (x y z : ℕ) → x + (y + z) ≡ (x + y) + z x+[y+z]≡[x+y]+z zero y z = begin 0 + (y + z) ≡ y + z by definition ≡ (0 + y) + z by definition ∎ x+[y+z]≡[x+y]+z (succ x) y z = begin succ x + (y + z) ≡ succ (x + (y + z)) by definition ≡ succ ((x + y) + z) by applying succ on x+[y+z]≡[x+y]+z x y z ≡ succ (x + y) + z by definition ≡ (succ x + y) + z by definition ∎
{ "alphanum_fraction": 0.5002139495, "avg_line_length": 34.3676470588, "ext": "agda", "hexsha": "0ca782ed9a1f13c569bc58075551a95a7e8d60e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/types/nat/theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/types/nat/theorems.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/types/nat/theorems.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 867, "size": 2337 }
{-# OPTIONS --cubical #-} module Type.Cubical.InductivePath where open import Functional import Lvl open import Type import Type.Cubical as Cubical open import Type.Cubical.InductiveInterval private variable ℓ : Lvl.Level private variable A B P : Type{ℓ} private variable x y z : A data Path {P : Type{ℓ}} : P → P → Type{ℓ} where intro : (p : Interval → P) → Path(p(𝟎)) (p(𝟏)) point : (x : P) → Path x x point x = intro(const x) pointOn : ∀{x y : A} → Path x y → (Interval → A) pointOn (intro p) = p reverse : Path x y → Path y x reverse(intro f) = intro(f ∘ flip) spaceMap : Path A B → (A → B) spaceMap (intro p) = transp p {- concat : Path x y → Path y z → Path x z concat xy yz = {!xy yz!} -} module _ where private variable X : Type{ℓ} private variable Y : X → Type{ℓ} {- TODO: Define an eliminator for Path and use it to prove this? mapping : ∀{f g : (x : X) → Y(x)} → (∀{x} → Path(f(x)) (g(x))) → Path f g mapping {X = X}{Y = Y}{f = f}{g = g} ppt = intro(i ↦ x ↦ {!pointOn(ppt{x}) i!}) where p : (∀{x} → Path(f(x)) (g(x))) → Interval → (x : X) → Y(x) p ppt i x with ppt{x} ... | q = {!q!} -} mappingPoint : ∀{f g : (x : X) → Y(x)} → Path f g → (∀{x} → Path(f(x)) (g(x))) mappingPoint (intro pfg) {x} = intro (i ↦ pfg i x) module _ where private variable X X₁ X₂ Y Y₁ Y₂ : Type{ℓ} map : (f : X → Y) → ∀{a b} → Path a b → Path (f(a)) (f(b)) map f (intro ab) = intro(f ∘ ab) liftedSpaceMap : (S : X → Type{ℓ}) → ∀{a b} → Path a b → S(a) → S(b) liftedSpaceMap S p = spaceMap(map S p)
{ "alphanum_fraction": 0.5653573728, "avg_line_length": 26.775862069, "ext": "agda", "hexsha": "f412892be2ca2388dd54b2917f32d7fc60b749c5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Cubical/InductivePath.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Cubical/InductivePath.agda", "max_line_length": 87, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Cubical/InductivePath.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 592, "size": 1553 }
------------------------------------------------------------------------ -- Some results related to strong bisimilarity for the delay monad ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Bisimilarity.Delay-monad {a} {A : Type a} where open import Delay-monad open import Delay-monad.Bisimilarity as D using (force) open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Function-universe equality-with-J hiding (id; _∘_) open import Labelled-transition-system open import Labelled-transition-system.Delay-monad A open import Bisimilarity delay-monad import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning ------------------------------------------------------------------------ -- The direct and the indirect definitions of strong bisimilarity are -- pointwise logically equivalent -- An emulation of the constructor D.later. later-cong : ∀ {i x y} → [ i ] force x ∼′ force y → [ i ] later x ∼ later y later-cong x∼′y = ⟨ (λ { later → _ , later , x∼′y }) , (λ { later → _ , later , x∼′y }) ⟩ -- The direct definition of strong bisimilarity is contained in the -- one obtained from the transition relation. direct→indirect : ∀ {i x y} → D.[ i ] x ∼ y → [ i ] x ∼ y direct→indirect D.now = reflexive direct→indirect (D.later p) = later-cong λ { .force → direct→indirect (force p) } -- The definition of strong bisimilarity obtained from the transition -- relation is contained in the direct one. indirect→direct : ∀ {i} x y → [ i ] x ∼ y → D.[ i ] x ∼ y indirect→direct (now x) (now y) nx∼ny with left-to-right nx∼ny now ... | _ , now , _ = D.now indirect→direct (later x) (later y) lx∼ly with left-to-right lx∼ly later ... | _ , later , x∼′y = D.later λ { .force → indirect→direct _ _ (force x∼′y) } indirect→direct (now x) (later y) nx∼ly with left-to-right nx∼ly now ... | _ , () , _ indirect→direct (later x) (now y) lx∼ny with left-to-right lx∼ny later ... | _ , () , _ -- The direct definition of strong bisimilarity is pointwise logically -- equivalent to the one obtained from the transition relation. -- -- TODO: Are the two definitions isomorphic? direct⇔indirect : ∀ {i x y} → D.[ i ] x ∼ y ⇔ [ i ] x ∼ y direct⇔indirect = record { to = direct→indirect ; from = indirect→direct _ _ }
{ "alphanum_fraction": 0.5991935484, "avg_line_length": 31.7948717949, "ext": "agda", "hexsha": "3f2b17d38ea526355b8a194e120887bcfedf2988", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Delay-monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Delay-monad.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Delay-monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 683, "size": 2480 }
-- Andreas, 2018-04-16, inspired by issue #3032 reported by sattlerc -- A termination issue without visible recursion. postulate A : Set B : Set t : B mutual data C : (b : B) → Set where c : (x : C t) → C (foo t bar) postulate bar : C t foo : (b : B) → C b → B foo y (c x) = y -- Should not termination check. -- y is actually "foo t bar" here, a potentially non-terminating recursive call.
{ "alphanum_fraction": 0.6166666667, "avg_line_length": 18.2608695652, "ext": "agda", "hexsha": "753256b265c3bcb9b42d5f108645c1382cd4de12", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3032-termination.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3032-termination.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3032-termination.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 142, "size": 420 }
------------------------------------------------------------------------------ -- Testing Agda internal term: @Def@ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Agda.InternalTerms.DefTerm1 where ------------------------------------------------------------------------------ postulate D : Set _≡_ : D → D → Set P : D → Set a : D -- A definition with one argument. postulate foo : P a {-# ATP axiom foo #-} -- We need to have at least one conjecture to generate a TPTP file. postulate bar : ∀ d → d ≡ d {-# ATP prove bar #-}
{ "alphanum_fraction": 0.3928571429, "avg_line_length": 28, "ext": "agda", "hexsha": "bf8da4247c4a93b4970ed4bd740e7377ea7e591a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/DefTerm1.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/DefTerm1.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/DefTerm1.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 147, "size": 756 }
{-# OPTIONS --safe #-} module Cubical.HITs.Wedge where open import Cubical.HITs.Wedge.Base public
{ "alphanum_fraction": 0.7474747475, "avg_line_length": 19.8, "ext": "agda", "hexsha": "1cf2e974757279808ed2b1771fdbaa98afe5afeb", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/HITs/Wedge.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/HITs/Wedge.agda", "max_line_length": 42, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/HITs/Wedge.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 27, "size": 99 }
------------------------------------------------------------------------------ -- CS410 Exercise 5 -- -- Given the overrunning of exercise 4, I've decided to shift the deadline -- for exercise 5 back to the end of semester 2, so you can have a wee go -- in the last week of semester 1, but then focus on your CS408 projects. -- -- Exercise 6 will follow directly on from this and share the deadline, but -- it will be issued at Easter. -- -- I don't know the precise deadline, because I have not yet been told the -- mark upload deadline for the semester 2 exam board. I will give you as -- much time as I can. Usually, I can make the deadline after the last -- exam, but I haven't seen the timetable yet. -- -- It's a good idea to start well before the exams, get the basics sorted, -- then come back to it after the exams and apply polish. ------------------------------------------------------------------------------ module Ex5 where -- Conor: 1.5/15 open import CS410-Prelude open import CS410-Nat open import CS410-Vec open import CS410-Indexed open import CS410-Monoid ------------------------------------------------------------------------------ -- CHARACTERS AND STRINGS ------------------------------------------------------------------------------ {- data List (X : Set) : Set where -- X scopes over the whole declaration... [] : List X -- ...so you can use it here... _::_ : X -> List X -> List X -- ...and here. infixr 3 _::_ {-# BUILTIN BOOL Two #-} {-# BUILTIN TRUE tt #-} {-# BUILTIN FALSE ff #-} {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _::_ #-} {-# COMPILED_DATA List [] [] (:) #-} postulate -- this means that we just suppose the following things exist... Char : Set String : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} primitive -- these are baked in; they even work! primCharEquality : Char -> Char -> Two primStringAppend : String -> String -> String primStringToList : String -> List Char primStringFromList : List Char -> String -} ------------------------------------------------------------------------------ -- THE TILING MONAD (from lectures) ------------------------------------------------------------------------------ WH : Set WH = Nat * Nat data Tiling (X : WH -> Set)(wh : WH) : Set where ! : X wh -> Tiling X wh joinH : (wl wr : Nat)(wq : wl +N wr == fst wh) -> Tiling X (wl , snd wh) -> Tiling X (wr , snd wh) -> Tiling X wh joinV : (ht hb : Nat)(hq : ht +N hb == snd wh) -> Tiling X (fst wh , ht) -> Tiling X (fst wh , hb) -> Tiling X wh TilingMonadIx : MonadIx Tiling TilingMonadIx = record { retIx = ! ; extendIx = help } where help : {P Q : WH -> Set} -> [ P -:> Tiling Q ] -> [ Tiling P -:> Tiling Q ] help f (! p) = f p help f (joinH wl wr wq t-l t-r) = joinH wl wr wq (help f t-l) (help f t-r) help f (joinV ht hb hq t-t t-b) = joinV ht hb hq (help f t-t) (help f t-b) -- That's the monad you'll need in this file, so let's open it. open MonadIx TilingMonadIx open FunctorIx (monadFunctorIx TilingMonadIx) ------------------------------------------------------------------------------ -- PASTE KITS ------------------------------------------------------------------------------ -- A PasteKit equips rectangular stuff with the means to stick -- things the same height side-by-side, or things the same width -- one-on-top-of-the-other record PasteKit (X : WH -> Set) : Set where field pasteH : {wh : WH}(wl wr : Nat)(wq : wl +N wr == fst wh) -> X (wl , snd wh) -> X (wr , snd wh) -> X wh pasteV : {wh : WH}(ht hb : Nat)(hq : ht +N hb == snd wh) -> X (fst wh , ht) -> X (fst wh , hb) -> X wh -- ??? 5.1 (1 mark) -- Conor: 1/1 -- Show that if you have a PasteKit for X tiles, you can turn a -- Tiling X into one big X. paste : forall {X} -> PasteKit X -> [ Tiling X -:> X ] paste {X} pk = go where open PasteKit pk go : [ Tiling X -:> X ] go (! x) = x go (joinH wl wr wq t0 t1) = pasteH wl wr wq (go t0 ) (go t1) go (joinV ht hb hq t0 t1) = pasteV ht hb hq (go t0) (go t1) ------------------------------------------------------------------------------ -- CUT KITS ------------------------------------------------------------------------------ -- A CutKit consists of functions which split a rectangular thing in two, -- horizontally or vertically. record CutKit (X : WH -> Set) : Set where field cutH : {wh : WH}(wl wr : Nat)(wq : wl +N wr == fst wh) -> X wh -> X (wl , snd wh) * X (wr , snd wh) cutV : {wh : WH}(ht hb : Nat)(hq : ht +N hb == snd wh) -> X wh -> X (fst wh , ht) * X (fst wh , hb) ------------------------------------------------------------------------------ -- MATRICES ------------------------------------------------------------------------------ Matrix : Set -> WH -> Set Matrix C (w , h) = Vec (Vec C w) h -- ??? 5.2 (2 marks) -- 0/2 -- Equip matrices with a PasteKit and a CutKit. Try to make good use of -- the operations developed for vectors. matrixPaste : {C : Set} -> PasteKit (Matrix C) matrixPaste {C} = record { pasteH = mPH ; pasteV = mPV } where mPH : {wh : WH} (wl wr : Nat) -> wl +N wr == fst wh -> Matrix C (wl , snd wh) -> Matrix C (wr , snd wh) -> Matrix C wh mPH wl wr wq ml mr = {!!} mPV : {wh : WH} (ht hb : Nat) -> ht +N hb == snd wh -> Matrix C (fst wh , ht) -> Matrix C (fst wh , hb) -> Matrix C wh mPV ht hb hq mt mb = {!vec !} matrixCut : {C : Set} -> CutKit (Matrix C) matrixCut {C} = record { cutH = mCH ; cutV = mCV } where mCH : {wh : WH} (wl wr : Nat) -> wl +N wr == fst wh -> Matrix C wh -> Matrix C (wl , snd wh) * Matrix C (wr , snd wh) mCH wl wr wq m = {!!} mCV : {wh : WH} (ht hb : Nat) -> ht +N hb == snd wh -> Matrix C wh -> Matrix C (fst wh , ht) * Matrix C (fst wh , hb) mCV ht hb hq m = {!!} --------------------------------------------------------------------------- -- COLOURS --------------------------------------------------------------------------- -- We're going to be making displays from coloured text. {- data Colour : Set where black red green yellow blue magenta cyan white : Colour {-# COMPILED_DATA Colour HaskellSetup.Colour HaskellSetup.Black HaskellSetup.Red HaskellSetup.Green HaskellSetup.Yellow HaskellSetup.Blue HaskellSetup.Magenta HaskellSetup.Cyan HaskellSetup.White #-} -} -- Each cell in a display has this information: record Cell : Set where constructor _-_/_ field fgCo : Colour -- foreground colour char : Char -- character to display in cell bgCo : Colour -- background colour -- e.g. white - '*' / black -- Now, -- Matrix Cell : WH -> Set -- is a suitable notion of sized display --------------------------------------------------------------------------- -- INTERLUDE: TESTING WITH TEXT --------------------------------------------------------------------------- -- I've written some code which should help you see what you're doing. -- Turn a list into a vector, either by truncating or padding with -- a given dummy element. paddy : {X : Set} -> X -> List X -> {n : Nat} -> Vec X n paddy _ _ {zero} = [] paddy x [] {suc n} = x :: paddy x [] {n} paddy x (y :: ys) {suc n} = y :: paddy x ys {n} -- Turn some colours and a string into a vector of cells _-_//_ : Colour -> String -> Colour -> {n : Nat} -> Vec Cell n f - s // b = vapp (vapp (vec (_-_/_ f)) (paddy ' ' (primStringToList s))) (vec b) infixr 4 _-_//_ -- Build an example matrix example1 : Matrix Cell (10 , 5) example1 = black - "hydrogen" // white :: black - "helium" // white :: black - "lithium" // white :: black - "beryllium" // white :: black - "boron" // white :: [] -- Cut it up example23 : Matrix Cell (5 , 5) * Matrix Cell (5 , 5) example23 = cutH 5 5 refl example1 where open CutKit matrixCut -- Stick the bits back together, vertically example4 : Matrix Cell (5 , 10) example4 = pasteV 5 5 refl (fst example23) (snd example23) where open PasteKit matrixPaste --------------------------------------------------------------------------- -- CUTTING UP TILINGS --------------------------------------------------------------------------- -- Previously... -- ... we established what it is to be a CutKit, and we built CutKits -- for some sorts of basic tile. Now we need to build the CutKit for -- Tilings. Let's think about what that involves for a moment. We're going -- to need a CutKit for basic tiles to stand a chance. But how do we -- cut compound tiles? -- -- Suppose we're writing cutH, and we have some -- cq : cwl + cwr == w -- the "cut widths" equation -- telling us where we want to make the cut in something of width w. -- -- v -- +--------:------+ -- | : | -- | : | -- +--cwl---:-cwr--+ -- : ^ : -- :.......w.......: -- -- The tricky part is when the tiling we're cutting here is built with -- joinH twl twr tq tl tr -- where -- tq : twl + twr == w -- the "tiling widths" equation -- -- There are three possible situations, all of which you must detect -- and handle. -- -- (i) you hit the sweet spot... -- -- v -- +--bwl---+-bwr--+ -- | | | -- | | | -- +--cwl---+-cwr--+ -- : ^ : -- :.......w.......: -- -- ...where the box is already divided in the place where the cut -- has to go. Happy days. -- -- (ii) you're cutting to the left of the join... -- -- v -- +--bwl-----+bwr-+ -- | : | | -- | : | | -- +--cwl---:-cwr--+ -- : ^ : -- :.......w.......: -- -- ...so you'll need to cut the left box in the correct place. You -- will need some evidence about widths to do that. And then you'll -- the have three pieces you can see in my diagram, so to complete -- the cut, you will need to put two of those pieces together, which -- will take more evidence. -- -- (iii) you're cutting to the right of the join... -- -- v -- +--bwl-+--bwr---+ -- | | : | -- | | : | -- +--cwl---:-cwr--+ -- : ^ : -- :.......w.......: -- -- ...so you'll need to cut the right box in the correct place, and -- reassemble the bits. -- -- HINT: The next three tasks go together. -- ??? 5.3.1 (1 mark) -- Conor: 0.5/1 -- COMPARING THE CUT POSITION data CutComparable (x x' y y' n : Nat) : Set where cutC : y == x -> CutComparable x x' y y' n -- cutL : -- cutR : -- Give three constructors for this type which characterize the three -- possibilities described above whenever -- x + x' == n and y + y' == n -- (E.g., take n to be w, x and x' to be cwl and cwr, y and y' to be -- twl and twr. But later, you'll need to do use the same tool for -- heights.) -- -- You will need to investigate what evidence must be packaged in each -- situation. On the one hand, you need to be able to *generate* the -- evidence, with cutCompare, below. On the other hand, the evidence -- must be *useful* when you come to write tilingCut, further below. -- Don't expect to know what to put here from the get-go. Figure it -- out by discovering what you *need*. -- YOUR CONSTRUCTORS GO HERE -- The following facts may come in handy. sucInject : {m n : Nat} -> suc m == suc n -> m == n sucInject refl = refl sucRespect : {m n : Nat} -> m == n -> suc m == suc n sucRespect refl = refl -- ??? 5.3.2 (1 mark) -- Conor: 0/1 -- Show that whenever you have two ways to express the same n as a sum, -- you can always deliver the CutComparable evidence. cutCompare : (x x' y y' n : Nat) -> x +N x' == n -> y +N y' == n -> CutComparable x x' y y' n cutCompare x x' y y' n xq yq = {!!} -- ??? 5.3.3 (2 marks) -- Conor: 0/2 -- A CUTKIT FOR TILINGS -- Now, show that you can construct a CutKit for Tiling X, given a CutKit -- for X. There will be key points where you get stuck for want of crucial -- information. The purpose of CutCompare is to *describe* that -- information. The purpose of cutCompare is to *compute* that information. -- Note that cutH and cutV will work out very similarly, just exchanging -- the roles of width and height. -- Hint: good solutions are likely to use "with" a lot. tilingCut : {X : WH -> Set} -> CutKit X -> CutKit (Tiling X) tilingCut {X} ck = record { cutH = cH ; cutV = cV } where open CutKit ck cH : {wh : WH}(wl wr : Nat)(wq : wl +N wr == fst wh) -> Tiling X wh -> Tiling X (wl , snd wh) * Tiling X (wr , snd wh) cH cwl cwr cq t = {!!} cV : {wh : WH}(ht hb : Nat)(hq : ht +N hb == snd wh) -> Tiling X wh -> Tiling X (fst wh , ht) * Tiling X (fst wh , hb) cV cht chb cq t = {!!} --------------------------------------------------------------------------- -- SUPERIMPOSITION --------------------------------------------------------------------------- -- ??? 5.4 (2 marks) -- Conor: 0/2 -- Suppose you have a tiling made of X tiles in front of a tiling made of -- Y tiles. Suppose you have a CutKit for Y. Suppose you know how to -- superimpose *one* X tile on a Y tiling to make a Z tiling. You should be -- able to superimpose X tilings on Y tilings to get a Z tiling: you can but -- the back Y tiling into pieces which fit with the individual X tiles in -- front. super : {X Y Z : WH -> Set} -> CutKit Y -> [ X -:> Tiling Y -:> Tiling Z ] -> [ Tiling X -:> Tiling Y -:> Tiling Z ] super {X}{Y}{Z} ck m = go where open CutKit (tilingCut ck) go : [ Tiling X -:> Tiling Y -:> Tiling Z ] go xt yt = {!!} -- HINT: no new recursive operations are needed in the rest of this file. -- You've done the hard work. Now get paid. --------------------------------------------------------------------------- -- HOLES --------------------------------------------------------------------------- -- ??? 5.5 (2 marks) -- Conor: 0/2 -- In order to build up displays in layers, we will need to work with -- tilings where one sort of primitive tile is, in fact, a hole! data HoleOr (X : WH -> Set)(wh : WH) : Set where hole : HoleOr X wh -- a hole you can see through block : X wh -> HoleOr X wh -- a block of stuff you can't see through -- Explain how to see through a hole but not through a block seeThrough : {X : WH -> Set} -> [ HoleOr X -:> Tiling (HoleOr X) -:> Tiling (HoleOr X) ] seeThrough hx thx = {!!} -- Show that if X has a CutKit, then so has HoleOr X. Cutting up holes is -- very easy as they don't put up much resistance. holeCut : {X : WH -> Set} -> CutKit X -> CutKit (HoleOr X) holeCut ck = record { cutH = {!!} ; cutV = {!!} } where open CutKit ck -- Now, a rectangular layer is a tiling whose pieces are either holes or -- blocks of coloured text. Layer : WH -> Set Layer = Tiling (HoleOr (Matrix Cell)) -- By making careful use of super and seeThrough, show how layers of a given -- size have monoid structure, where the operation combines "front" and "back" -- layers by making the back layer visible only through the holes in the front. layerId : [ Layer ] layerId = {!!} layerOp : [ Layer -:> Layer -:> Layer ] layerOp = super {!!} {!!} -- I'd ask you to prove that the monoid laws hold (they do), but when I did it, -- it was too much of a slog for too few ideas. -- A typical display is made by superimposing a bunch of layers, but you might -- still leave some holes, so we need to fill in a background. Use the MonadIx -- structure of tilings to fill in each hole in a Layer with a matrix of black -- (but who can tell?) spaces on a white background. background : [ Layer -:> Tiling (Matrix Cell) ] background = mapIx {!!} --------------------------------------------------------------------------- -- CHANGES --------------------------------------------------------------------------- -- Applications change what they display as you use them, of course. Often -- they change a little at a time, so it's not necessary to repaint the -- whole thing. Let's build tilings to represent just what changes. data Change (wh : WH) : Set where new : Layer wh -> Change wh old : Change wh -- The idea is that you make a top-level tiling to show which regions have -- changed, and for the ones with new content, you give the layer which is -- that content. So a Tiling Change tells you the difference between the -- old layer and the new layer. -- ??? 5.6 (1 mark) -- Conor: 0/1 -- You should be able to compute the changed layer given the change and the old -- layer. Hint: This, also, is a job for super. changed : [ Tiling Change -:> Layer -:> Layer ] changed = super {!!} {!!} --------------------------------------------------------------------------- -- UPDATA --------------------------------------------------------------------------- -- ??? 5.7 (3 marks) -- Conor: 0/3 -- A notion related to "Change" is "Updata", but they're subtly different: -- the actual content in a change is just the new stuff, and we've seen we -- can grab any old parts from the old layer; -- the Updata structure stores *all* the content, but each tile is tagged -- with a bit which tells you if it comes from the change or was there -- before. record Updata (wh : WH) : Set where constructor _-:_ field updated : Two -- has it changed content : HoleOr (Matrix Cell) wh -- what is it, anyway? -- Correspondingly, you should be able to generate a Tiling Updata -- from a Tiling Change and the old Layer. Work in two stages. First, -- make a thing that generates a Tiling Updata from a Layer by -- applying the same tag to all tiles. tagLayer : Two -> [ Layer -:> Tiling Updata ] tagLayer u = {!!} -- Now you should be able to generate a version of "changed" that adds tags. updata : [ Tiling Change -:> Layer -:> Tiling Updata ] updata = {!!} -- Last but not least, develop the monoid operations for Updata. Here's where -- you sort out the logic for displaying changing layers. Content-wise, it should -- be a lot like the Layer monoid, in that you can see the back stuff through -- the holes in the front stuff. But what about the "updated" tags? Is there a -- difference between an "old" hole in the front and a "new" hole in the front? -- You will need to build a CutKit in order to use super appropriately. updataId : [ Tiling Updata ] updataId = {!!} updataCut : CutKit Updata updataCut = {!!} updataOp : [ Tiling Updata -:> Tiling Updata -:> Tiling Updata ] updataOp = {!!} --------------------------------------------------------------------------- -- NEXT TIME... --------------------------------------------------------------------------- -- We'll develop a notion of "Application" which can each display -- their Layer, and respond to events by delivering a Tiling -- Change. We'll develop a notion of "Desktop" which amounts to a -- front-to-back stack of applications. The Desktop display updates -- by superimposing the Tiling Updata which comes from the change made -- by each application in the stack. -- Once we've got that setup, we can run applications by getting events -- from the keyboard, generating the Tiling Updata for the whole Desktop, -- then use cursor movement to skip the unchanged parts and just rewrite -- the regions which need it. It'll actually go!
{ "alphanum_fraction": 0.5459440057, "avg_line_length": 35.3297101449, "ext": "agda", "hexsha": "d921a9f84131e8a3e178435e18d5f95b9f1773a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Ex5.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Ex5.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Ex5.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5251, "size": 19502 }
-- Jesper, 2018-05-14: constructor patterns of the parent clause can -- now be replaced by a variable in the with clause. open import Common.Prelude f : List Nat → List Nat f [] = [] f (x ∷ xs) with Set f xs | p = xs
{ "alphanum_fraction": 0.6757990868, "avg_line_length": 21.9, "ext": "agda", "hexsha": "85d54f0d1d57e54aefc9e5321e778c10e5175a2c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WithConstructorToVariable.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WithConstructorToVariable.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WithConstructorToVariable.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 219 }
private record Dummy : Set₁ where constructor ⟨_⟩ field {h} : Set nh : Set pattern ⟪_,_⟫ h s = ⟨_⟩ {h} s pattern ⟪_⟫ h = (⟨_⟩ {h} _)
{ "alphanum_fraction": 0.5064102564, "avg_line_length": 15.6, "ext": "agda", "hexsha": "ea6ce6515fba02c59895e5e8a7990632b2453d7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/OscarPattern.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/OscarPattern.agda", "max_line_length": 29, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/OscarPattern.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 67, "size": 156 }
{-# OPTIONS --without-K --exact-split --safe #-} module Fragment.Extensions.CSemigroup.Nat where open import Relation.Binary.PropositionalEquality as PE using (_≡_) data ℕ⁺ : Set where one : ℕ⁺ suc : ℕ⁺ → ℕ⁺ infixl 6 _+_ _+_ : ℕ⁺ → ℕ⁺ → ℕ⁺ one + x = suc x suc x + y = suc (x + y) +-suc : ∀ x y → x + suc y ≡ suc (x + y) +-suc one y = PE.refl +-suc (suc x) y = PE.cong suc (+-suc x y) +-one : ∀ x → x + one ≡ suc x +-one one = PE.refl +-one (suc x) = PE.cong suc (+-one x) +-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) +-assoc one _ _ = PE.refl +-assoc (suc x) y z = PE.cong suc (+-assoc x y z) open PE.≡-Reasoning +-comm : ∀ x y → x + y ≡ y + x +-comm one one = PE.refl +-comm one (suc y) = begin one + (suc y) ≡⟨⟩ suc (suc y) ≡⟨ PE.sym (PE.cong suc (+-one y)) ⟩ suc (y + one) ≡⟨ PE.sym PE.refl ⟩ suc y + one ∎ +-comm (suc x) y = begin suc x + y ≡⟨⟩ suc (x + y) ≡⟨ PE.cong suc (+-comm x y) ⟩ suc (y + x) ≡⟨ PE.sym (+-suc y x) ⟩ y + suc x ∎
{ "alphanum_fraction": 0.4960784314, "avg_line_length": 23.7209302326, "ext": "agda", "hexsha": "3cd6e613007cc05b2011f3e033aafb3d259b6eef", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Extensions/CSemigroup/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Extensions/CSemigroup/Nat.agda", "max_line_length": 67, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Extensions/CSemigroup/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 450, "size": 1020 }
open import Agda.Builtin.Float open import Agda.Builtin.Unit open import Agda.Builtin.Reflection open import Agda.Builtin.String open import Agda.Builtin.Bool open import Common.IO data It (a : Float) : Set where it : It a Inf : Float Inf = primFloatDiv 1.0 0.0 -Inf : Float -Inf = primFloatNegate Inf NaN : Float NaN = primFloatDiv 0.0 0.0 -NaN : Float -NaN = primFloatNegate NaN _==_ = primFloatEquality macro literal : Float → Term → TC ⊤ literal x hole = unify hole (lit (float x)) nl = putStrLn "" header = putStrLn " Inf -Inf NaN -NaN | x" tick : Bool → String tick true = " x " tick false = " - " check : Float → IO _ check x = putStr (tick (x == Inf)) ,, putStr (tick (x == -Inf)) ,, putStr (tick (x == NaN)) ,, putStr (tick (x == -NaN)) ,, putStr "| " ,, printFloat x ,, nl main : IO _ main = header ,, check (literal Inf) ,, check (literal -Inf) ,, check (literal NaN) ,, check (literal -NaN)
{ "alphanum_fraction": 0.601, "avg_line_length": 18.8679245283, "ext": "agda", "hexsha": "fe0bcb356ff9e01202ef6bee0599354e03bd4406", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2218.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2218.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2218.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 325, "size": 1000 }
{-# OPTIONS --without-K --exact-split --rewriting #-} open import lib.Basics open import lib.PathGroupoid open import lib.types.Bool open import lib.types.Sigma open import lib.types.Pi open import lib.types.Coproduct open import lib.types.Unit open import lib.types.Empty open import lib.NConnected open import lib.NType open import lib.NType2 open import lib.Equivalence open import lib.types.Truncation open import Util.Misc open import Graphs.Definition open import Graphs.Properties open import Coequalizers.Definition open import Coequalizers.EdgeCoproduct open import Coequalizers.PreserveEquivalence open import Coequalizers.TrivialExtension {- Contains a useful lemma about extending subtrees used in the construction of spanning trees. -} module Graphs.SubTrees where {- We fix a graph E ⇉ V together with a family of types P over the vertex set. -} module _ {i j k : ULevel} (E : Type i) (V : Type j) ⦃ gph : Graph E V ⦄ (P : V → Type k) where private ijk' = lmax i (lmax j k) {- A crossing edge is an edge that has one end in P and one end outside P. -} record Crossingedge : Type ijk' where constructor crossingedge field edge : E dir : Bool end-in-P : P (Bool-rec (π₀ edge) (π₁ edge) dir) end-notin-P : ¬ (P (Bool-rec (π₁ edge) (π₀ edge) dir)) {- If the graph is connected, P is decidable and we are given a vertex in P and a vertex outside P, then we can show there mereley exists an edge that crosses from P to ¬ P or vice versa. -} findedge : (dec : (v : V) → Dec (P v)) (u v : V) (uInP : P u) (vNotinP : ¬ (P v)) (p : c[ u ] == c[ v ] :> V / E) → ∥ Crossingedge ∥ findedge dec u v uInP vNotinP p = equal-to-X c[ v ] p vNotinP where edgeequiv : (e : E) → ((¬ (P (π₀ e)) → ∥ Crossingedge ∥) ↔ (¬ (P (π₁ e)) → ∥ Crossingedge ∥)) edgeequiv e = ⊔-rec (λ p0 → ⊔-rec (λ p1 → (λ _ f → ⊥-elim (f p1)) , λ _ f → ⊥-elim (f p0)) (λ np1 → haveedge (crossingedge e true p0 np1)) (dec (π₁ e))) (λ np0 → ⊔-rec (λ p1 → haveedge (crossingedge e false p1 np0)) (λ np1 → (λ f _ → f np0) , λ f _ → f np1) (dec (π₁ e))) (dec ((π₀ e))) where haveedge : Crossingedge → ((¬ (P (π₀ e)) → ∥ Crossingedge ∥) ↔ (¬ (P (π₁ e)) → ∥ Crossingedge ∥)) haveedge ce = (λ _ _ → [ ce ]) , λ _ _ → [ ce ] {- The key to the proof is to define a family of propositions X over the coequalizer of the graph. For this to be well defined we need the lemma edgeequiv above, together with propositional extensionality. -} X : V / E → Type (lmax j (lmax i k)) X = Coeq-rec (λ v' → ¬ (P v') → ∥ Crossingedge ∥ ) (λ e → prop-extensionality (edgeequiv e)) equal-to-X : (z : V / E) (p : c[ u ] == z) → X z equal-to-X .(c[ u ]) idp = λ nu → ⊥-elim (nu uInP) module _ {i j k l : ULevel} (E : Type i) (V : Type j) ⦃ gph : Graph E V ⦄ where {- A subtree of E ⇉ V consists of a graph D ⇉ U such that U / D is contractible together with injection D ↪ E and decidable injection U ↪ V making the obvious squares commute. -} record SubTree (D : Type k) (U : Type l) : Type (lmax (lmax i j) (lmax k l)) where constructor subtree field ⦃ gphDU ⦄ : Graph D U inD : D → E inU : U → V D-inj : is-inj inD U-inj : is-inj inU U-dec : (v : V) → Dec (hfiber inU v) comm₀ : π₀ ∘ inD ∼ inU ∘ π₀ comm₁ : π₁ ∘ inD ∼ inU ∘ π₁ ⦃ DUistree ⦄ : is-tree gphDU {- If we are given subtree D ⇉ U and a vertex in V ∖ U, then we can extend the subtree to a slightly larger one that contains one new vertex. -} extend-subtree : {D : Type k} {U : Type l} ⦃ conn : gph-is-connected gph ⦄ (decV : has-dec-eq V) → (t : SubTree D U) → (v : V) → ¬ (hfiber (SubTree.inU t) v) → ∥ SubTree (⊤ ⊔ D) (U ⊔ ⊤) ∥ extend-subtree {D} {U} decV record { gphDU = gphDU ; inD = inD ; inU = inU ; D-inj = D-inj ; U-inj = U-inj ; comm₀ = comm₀ ; comm₁ = comm₁ ; U-dec = U-dec} v f = do -- we use do notation to help deal with iterated recursion on propositional truncation (see the definion of >>= in Util/Misc.agda) u ← (Coeq-rec [_] (λ e → prop-has-all-paths _ _) (contr-center (⟨⟩ :> is-tree gphDU))) p ← (conn-to-path c[ inU u ] c[ v ]) ce ← (findedge E V (hfiber inU) U-dec (inU u) v (u , idp) f p) [ from-ce ce ] where from-ce : Crossingedge E V (λ v → (hfiber inU v)) → (SubTree (⊤ ⊔ D) (U ⊔ ⊤)) from-ce (crossingedge edge true end-in-P end-notin-P) = record { inD = λ { (inl _) → edge ; (inr d) → inD d} ; inU = λ { (inl u) → inU u ; (inr _) → π₁ edge} ; D-inj = λ { (inl unit) → λ { (inl unit) _ → idp ; (inr d) p → ⊥-elim (end-notin-P ((π₁ d) , ! (ap π₁ p ∙ comm₁ d)))} ; (inr d) → λ { (inl unit) p → ⊥-elim (end-notin-P ((π₁ d) , ! (comm₁ d) ∙ ap π₁ p)) ; (inr d') p → ap inr (D-inj _ _ p)}} ; U-inj = λ { (inl u) → λ { (inl u') p → ap inl (U-inj _ _ p) ; (inr unit) p → ⊥-elim (end-notin-P (u , p))} ; (inr unit) → λ { (inl u) p → ⊥-elim (end-notin-P (u , (! p))) ; (inr unit) _ → idp}} ; U-dec = λ v → ⊔-rec (λ {(u , p) → inl ((inl u) , p)}) (λ f → ⊔-rec (λ p → inl ((inr unit) , ! p)) (λ g → inr (λ {(inl u , p) → f ((u , p)) ; (inr unit , p) → g (! p)})) (decV v (π₁ edge))) (U-dec v) ; comm₀ = λ { (inl x) → ! (snd end-in-P) ; (inr d) → comm₀ d} ; comm₁ = λ { (inl _) → idp ; (inr d) → comm₁ d} ; DUistree = equiv-preserves-level (extn-equiv ⁻¹) } where instance gphDU' : Graph (⊤ ⊔ D) (U ⊔ ⊤) gphDU' = record { π₀ = λ { (inl _) → inl (fst end-in-P) ; (inr x) → inl (π₀ x) } ; π₁ = λ { (inl _) → inr unit ; (inr x) → inl (π₁ x) }} extn-equiv : (U ⊔ ⊤) / (⊤ ⊔ D) ≃ U / D extn-equiv = (U ⊔ ⊤) / (⊤ ⊔ D) ≃⟨ edge-coproduct-expand ⟩ ((U ⊔ ⊤) / ⊤) / D ≃⟨ (Coeq-emap (TExtensionCoeq-l.extn-equiv (fst end-in-P)) (ide D) (λ _ → idp) λ _ → idp) ⁻¹ ⟩ U / D ≃∎ where open CoeqCoprodEquiv (U ⊔ ⊤) ⊤ D -- also defines instances for (U ⊔ ⊤) / ⊤) / D from-ce (crossingedge edge false end-in-P end-notin-P) = record { inD = λ { (inl _) → edge ; (inr d) → inD d} ; inU = λ { (inl u) → inU u ; (inr _) → π₀ edge} ; D-inj = λ { (inl unit) → λ { (inl unit) _ → idp ; (inr d) p → ⊥-elim (end-notin-P ((π₀ d) , ! (ap π₀ p ∙ comm₀ d)))} ; (inr d) → λ { (inl unit) p → ⊥-elim (end-notin-P ((π₀ d) , ! (comm₀ d) ∙ ap π₀ p)) ; (inr d') p → ap inr (D-inj _ _ p)}} ; U-inj = λ { (inl u) → λ { (inl u') p → ap inl (U-inj _ _ p) ; (inr unit) p → ⊥-elim (end-notin-P (u , p))} ; (inr unit) → λ { (inl u) p → ⊥-elim (end-notin-P (u , (! p))) ; (inr unit) _ → idp}} ; U-dec = λ v → ⊔-rec (λ {(u , p) → inl ((inl u) , p)}) (λ f → ⊔-rec (λ p → inl ((inr unit) , ! p)) (λ g → inr (λ {(inl u , p) → f ((u , p)) ; (inr unit , p) → g (! p)})) (decV v (π₀ edge))) (U-dec v) ; comm₀ = λ { (inl _) → idp ; (inr d) → comm₀ d} ; comm₁ = λ { (inl x) → ! (snd end-in-P) ; (inr d) → comm₁ d} ; DUistree = equiv-preserves-level (extn-equiv ⁻¹) } where instance gphDU' : Graph (⊤ ⊔ D) (U ⊔ ⊤) gphDU' = record { π₀ = λ { (inl _) → inr unit ; (inr x) → inl (π₀ x) } ; π₁ = λ { (inl _) → inl (fst end-in-P) ; (inr x) → inl (π₁ x) }} extn-equiv : (U ⊔ ⊤) / (⊤ ⊔ D) ≃ U / D extn-equiv = (U ⊔ ⊤) / (⊤ ⊔ D) ≃⟨ edge-coproduct-expand ⟩ ((U ⊔ ⊤) / ⊤) / D ≃⟨ Coeq-emap (TExtensionCoeq-r.extn-equiv (fst end-in-P)) (ide D) (λ _ → idp) (λ _ → idp) ⁻¹ ⟩ U / D ≃∎ where open CoeqCoprodEquiv (U ⊔ ⊤) ⊤ D -- also defines instances for (U ⊔ ⊤) / ⊤) / D
{ "alphanum_fraction": 0.4661937993, "avg_line_length": 46.2486772487, "ext": "agda", "hexsha": "8dec64b33e12b4f847ba9c7a93c74aa5f7d005c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Graphs/SubTrees.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Graphs/SubTrees.agda", "max_line_length": 163, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Graphs/SubTrees.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3103, "size": 8741 }
open import Categories open import Monads import Monads.CatofAdj import Monads.CatofAdj.TermAdjObj module Monads.CatofAdj.TermAdjUniq {a b} {C : Cat {a}{b}} (M : Monad C) (A : Monads.CatofAdj.ObjAdj M) (V : Monads.CatofAdj.HomAdj M A (Monads.CatofAdj.TermAdjObj.EMObj M)) where open import Library open import Functors open import Adjunctions open Monads.CatofAdj M open import Monads.EM M open Monads.CatofAdj.TermAdjObj M open import Monads.CatofAdj.TermAdjHom M A open import Categories.Terminal open Fun open Adj open ObjAdj open Cat omaplem : OMap (HomAdj.K EMHom ) ≅ OMap (HomAdj.K V) omaplem = ext λ X → AlgEq (fcong X (cong OMap (HomAdj.Rlaw V))) ((ext λ Y → dext (λ {f} {f'} p → trans (trans (trans (stripsubst (λ Z → Hom C Z (OMap (R (adj A)) X)) (HMap (R (adj A)) (right (adj A) f)) (fcong Y (cong OMap (law A)))) (cong' refl (cong (λ (F : Obj (D A) → Obj C) → λ (_ : Hom (D A) (OMap (L (adj A)) Y) X) → Hom C (F (OMap (L (adj A)) Y)) (F X)) (cong OMap (HomAdj.Rlaw V))) (icong' refl (cong (λ (F : Obj (D A) → Obj C) → λ (z : Obj (D A)) → Hom (D A) (OMap (L (adj A)) Y) z → Hom C (F (OMap (L (adj A)) Y)) (F z)) (cong OMap (HomAdj.Rlaw V))) (icong' refl (cong (λ (F : Obj (D A) → Obj C) → λ (z : Obj (D A)) → {Y₁ : Obj (D A)} → Hom (D A) z Y₁ → Hom C (F z) (F Y₁)) (cong OMap (HomAdj.Rlaw V))) (cong HMap (HomAdj.Rlaw V)) (refl {x = OMap (L (adj A)) Y})) (refl {x = X})) (refl {x = right (adj A) f}))) (cong₃ (λ A₁ B → AlgMorph.amor {A₁} {B}) (fcong Y (cong OMap (HomAdj.Llaw V))) refl (HomAdj.rightlaw V {Y} {X} {f}))) (cong (Alg.astr (OMap (HomAdj.K V) X) Y) (trans (stripsubst (Hom C Y) f (fcong X (cong OMap (HomAdj.Rlaw V)))) p))))) hmaplem : {X Y : Obj (D A)} (f : Hom (D A) X Y) → HMap (HomAdj.K EMHom) f ≅ HMap (HomAdj.K V) f hmaplem {X}{Y} f = AlgMorphEq' (fcong X omaplem) (fcong Y omaplem) (cong' refl (cong (λ (F : Obj (D A) → Obj C) → λ (_ : Hom (D A) X Y) → Hom C (F X) (F Y)) (cong OMap (HomAdj.Rlaw V))) (icong' refl (cong (λ (F : Obj (D A) → Obj C) → λ (z : Obj (D A)) → Hom (D A) X z → Hom C (F X) (F z)) (cong OMap (HomAdj.Rlaw V))) (icong' refl (cong (λ (F : Obj (D A) → Obj C) → λ (z : Obj (D A)) → {Y₁ : Obj (D A)} → Hom (D A) z Y₁ → Hom C (F z) (F Y₁)) (cong OMap (HomAdj.Rlaw V))) (cong HMap (HomAdj.Rlaw V)) (refl {x = X})) (refl {x = Y})) (refl {x = f}))
{ "alphanum_fraction": 0.43648, "avg_line_length": 32.5520833333, "ext": "agda", "hexsha": "0723de25b4c086ce8e658f89551ff5d7b1aa9deb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/CatofAdj/TermAdjUniq.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/CatofAdj/TermAdjUniq.agda", "max_line_length": 79, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/CatofAdj/TermAdjUniq.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1112, "size": 3125 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties about signs ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Sign.Properties where open import Algebra open import Data.Empty open import Data.Sign open import Data.Product using (_,_) open import Function open import Level using (0ℓ) open import Relation.Binary.PropositionalEquality open import Algebra.Structures {A = Sign} _≡_ open import Algebra.FunctionProperties {A = Sign} _≡_ -- The opposite of a sign is not equal to the sign. s≢opposite[s] : ∀ s → s ≢ opposite s s≢opposite[s] - () s≢opposite[s] + () opposite-injective : ∀ {s t} → opposite s ≡ opposite t → s ≡ t opposite-injective { - } { - } refl = refl opposite-injective { - } { + } () opposite-injective { + } { - } () opposite-injective { + } { + } refl = refl ------------------------------------------------------------------------ -- _*_ -- Algebraic properties of _*_ *-identityˡ : LeftIdentity + _*_ *-identityˡ _ = refl *-identityʳ : RightIdentity + _*_ *-identityʳ - = refl *-identityʳ + = refl *-identity : Identity + _*_ *-identity = *-identityˡ , *-identityʳ *-comm : Commutative _*_ *-comm + + = refl *-comm + - = refl *-comm - + = refl *-comm - - = refl *-assoc : Associative _*_ *-assoc + + _ = refl *-assoc + - _ = refl *-assoc - + _ = refl *-assoc - - + = refl *-assoc - - - = refl *-cancelʳ-≡ : RightCancellative _*_ *-cancelʳ-≡ - - _ = refl *-cancelʳ-≡ - + eq = ⊥-elim (s≢opposite[s] _ $ sym eq) *-cancelʳ-≡ + - eq = ⊥-elim (s≢opposite[s] _ eq) *-cancelʳ-≡ + + _ = refl *-cancelˡ-≡ : LeftCancellative _*_ *-cancelˡ-≡ - eq = opposite-injective eq *-cancelˡ-≡ + eq = eq *-cancel-≡ : Cancellative _*_ *-cancel-≡ = *-cancelˡ-≡ , *-cancelʳ-≡ *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-isMonoid : IsMonoid _*_ + *-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-monoid : Monoid 0ℓ 0ℓ *-monoid = record { isMonoid = *-isMonoid } -- Other properties of _*_ s*s≡+ : ∀ s → s * s ≡ + s*s≡+ + = refl s*s≡+ - = refl ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. opposite-not-equal = s≢opposite[s] {-# WARNING_ON_USAGE opposite-not-equal "Warning: opposite-not-equal was deprecated in v0.15. Please use s≢opposite[s] instead." #-} opposite-cong = opposite-injective {-# WARNING_ON_USAGE opposite-cong "Warning: opposite-cong was deprecated in v0.15. Please use opposite-injective instead." #-} cancel-*-left = *-cancelˡ-≡ {-# WARNING_ON_USAGE cancel-*-left "Warning: cancel-*-left was deprecated in v0.15. Please use *-cancelˡ-≡ instead." #-} cancel-*-right = *-cancelʳ-≡ {-# WARNING_ON_USAGE cancel-*-right "Warning: cancel-*-right was deprecated in v0.15. Please use *-cancelʳ-≡ instead." #-} *-cancellative = *-cancel-≡ {-# WARNING_ON_USAGE *-cancellative "Warning: *-cancellative was deprecated in v0.15. Please use *-cancel-≡ instead." #-}
{ "alphanum_fraction": 0.5813689293, "avg_line_length": 24.2827586207, "ext": "agda", "hexsha": "2491515a382409ee6a46138677da2ea8db5429ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sign/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sign/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sign/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1111, "size": 3521 }
{-# OPTIONS --universe-polymorphism #-} -- It's possible to compute levels module ComputedLevels where open import Common.Level data ℕ : Set where zero : ℕ suc : ℕ → ℕ N-ary-level : Level → Level → ℕ → Level N-ary-level ℓ₁ ℓ₂ zero = ℓ₂ N-ary-level ℓ₁ ℓ₂ (suc n) = ℓ₁ ⊔ N-ary-level ℓ₁ ℓ₂ n N-ary : ∀ {ℓ₁ ℓ₂} (n : ℕ) → Set ℓ₁ → Set ℓ₂ → Set (N-ary-level ℓ₁ ℓ₂ n) N-ary zero A B = B N-ary (suc n) A B = A → N-ary n A B
{ "alphanum_fraction": 0.6120092379, "avg_line_length": 21.65, "ext": "agda", "hexsha": "9aefcbcde376e2382f4d5bdc6b7354bb7e9289d1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ComputedLevels.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ComputedLevels.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ComputedLevels.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 183, "size": 433 }
module Ex2 where open import Ex1
{ "alphanum_fraction": 0.7714285714, "avg_line_length": 7, "ext": "agda", "hexsha": "b340682502da61354768677a106119985a56b5ba", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Ex2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Ex2.agda", "max_line_length": 16, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Ex2.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 10, "size": 35 }
module Examples.OpSem where open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; subst) open import Luau.Syntax using (var; nil; local_←_; _∙_; done; return) open import Luau.Heap using (emp) x = var "x" ex1 : emp ⊢ (local "x" ← nil ∙ return x ∙ done) ⟶ᴮ (return nil ∙ done) ⊣ emp ex1 = subst
{ "alphanum_fraction": 0.6632653061, "avg_line_length": 24.5, "ext": "agda", "hexsha": "4043869ed3ff21c5b222eb7ff17d514d906e0d1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/Examples/OpSem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/Examples/OpSem.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FreakingBarbarians/luau", "max_stars_repo_path": "prototyping/Examples/OpSem.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 126, "size": 294 }
-- Proof that consistent negative axioms do not jeopardize canonicity. -- https://www.cs.bham.ac.uk/~mhe/papers/negative-axioms.pdf {-# OPTIONS --without-K --safe #-} module Application.NegativeAxioms.Canonicity where open import Definition.Untyped as U open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T open import Definition.Typed.Consequences.Inequality open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.Syntactic open import Definition.Conversion.Consequences.Completeness open import Definition.Conversion.FullReduction open import Tools.Empty open import Tools.Fin open import Tools.Nat open import Tools.Product open import Tools.Sum using (_⊎_; inj₁; inj₂) open import Tools.Unit -- Preliminaries --------------------------------------------------------------------------- private Ty = Term Cxt = Con Ty variable m m' : Nat x : Fin m ρ : Wk m m' σ : Subst m m' Γ Δ : Con Term m A B C : Term m t u : Term m -- Numerals data Numeral {m : Nat} : Term m → Set where zeroₙ : Numeral zero sucₙ : Numeral t → Numeral (suc t) -- Negative types --------------------------------------------------------------------------- -- A type is negative if all of its branches end in ⊥. -- The prime example is negation ¬A. data NegativeType (Γ : Cxt m) : Ty m → Set where empty : NegativeType Γ Empty pi : Γ ⊢ A → NegativeType (Γ ∙ A) B → NegativeType Γ (Π A ▹ B) sigma : Γ ⊢ A → NegativeType Γ A → NegativeType (Γ ∙ A) B → NegativeType Γ (Σ A ▹ B) conv : NegativeType Γ A → Γ ⊢ A ≡ B → NegativeType Γ B -- Lemma: Negative types are closed under weakening. wkNeg : ρ ∷ Δ ⊆ Γ → ⊢ Δ → NegativeType Γ A → NegativeType Δ (U.wk ρ A) wkNeg w ⊢Δ empty = empty wkNeg w ⊢Δ (pi dA nB) = pi dA' (wkNeg (lift w) (⊢Δ ∙ dA') nB) where dA' = T.wk w ⊢Δ dA wkNeg w ⊢Δ (sigma dA nA nB) = sigma dA' (wkNeg w ⊢Δ nA) (wkNeg (lift w) (⊢Δ ∙ dA') nB) where dA' = T.wk w ⊢Δ dA wkNeg w ⊢Δ (conv n c) = conv (wkNeg w ⊢Δ n) (wkEq w ⊢Δ c) -- Lemma: Negative types are closed under parallel substitution. subNeg : NegativeType Γ A → Δ ⊢ˢ σ ∷ Γ → ⊢ Δ → NegativeType Δ (subst σ A) subNeg empty _ _ = empty subNeg (pi ⊢A n) s ⊢Δ = pi ⊢σA (subNeg n (liftSubst′ (wf ⊢A) ⊢Δ ⊢A s) (⊢Δ ∙ ⊢σA)) where ⊢σA = substitution ⊢A s ⊢Δ subNeg (sigma ⊢A nA nB) s ⊢Δ = sigma ⊢σA (subNeg nA s ⊢Δ) (subNeg nB (liftSubst′ (wf ⊢A) ⊢Δ ⊢A s) (⊢Δ ∙ ⊢σA)) where ⊢σA = substitution ⊢A s ⊢Δ subNeg (conv n c) s ⊢Δ = conv (subNeg n s ⊢Δ) (substitutionEq c (substRefl s) ⊢Δ) -- Corollary: Negative types are closed under single substitution. subNeg1 : NegativeType (Γ ∙ A) B → Γ ⊢ t ∷ A → NegativeType Γ (B [ t ]) subNeg1 n ⊢t = subNeg n (singleSubst ⊢t) (wfTerm ⊢t) -- Lemma: The first component of a negative Σ-type is negative. fstNeg : NegativeType Γ C → Γ ⊢ C ≡ Σ A ▹ B → NegativeType Γ A fstNeg empty c = ⊥-elim (Empty≢Σⱼ c) fstNeg (pi _ _) c = ⊥-elim (Π≢Σ c) fstNeg (sigma _ nA _) c = conv nA (proj₁ (Σ-injectivity c)) fstNeg (conv n c) c' = fstNeg n (trans c c') -- Lemma: Any instance of the second component of a negative Σ-type is negative. sndNeg : NegativeType Γ C → Γ ⊢ C ≡ Σ A ▹ B → Γ ⊢ t ∷ A → NegativeType Γ (B [ t ]) sndNeg empty c = ⊥-elim (Empty≢Σⱼ c) sndNeg (pi _ _) c = ⊥-elim (Π≢Σ c) sndNeg (sigma _ _ nB) c ⊢t = let (cA , cB) = Σ-injectivity c in subNeg (conv nB cB) (singleSubst (conv ⊢t (sym cA))) (wfTerm ⊢t) sndNeg (conv n c) c' = sndNeg n (trans c c') -- Lemma: Any instance of the codomain of a negative Π-type is negative. appNeg : NegativeType Γ C → Γ ⊢ C ≡ Π A ▹ B → Γ ⊢ t ∷ A → NegativeType Γ (B [ t ]) appNeg empty c = ⊥-elim (Empty≢Πⱼ c) appNeg (sigma _ _ _) c = ⊥-elim (Π≢Σ (sym c)) appNeg (pi _ nB) c ⊢t = let (cA , cB) = injectivity c in subNeg (conv nB cB) (singleSubst (conv ⊢t (sym cA))) (wfTerm ⊢t) appNeg (conv n c) c' = appNeg n (trans c c') -- Lemma: The type ℕ is not negative. ¬negℕ : NegativeType Γ C → Γ ⊢ C ≡ ℕ → ⊥ ¬negℕ empty c = ℕ≢Emptyⱼ (sym c) ¬negℕ (pi _ _) c = ℕ≢Π (sym c) ¬negℕ (sigma _ _ _) c = ℕ≢Σ (sym c) ¬negℕ (conv n c) c' = ¬negℕ n (trans c c') -- Negative contexts --------------------------------------------------------------------------- -- A context is negative if all of its type entries are negative. data NegativeContext : Con Ty m → Set where ε : NegativeContext ε _∙_ : NegativeContext Γ → NegativeType Γ A → NegativeContext (Γ ∙ A) -- Lemma: Any entry in negative context is a negative type (needs weakening). lookupNegative : ⊢ Γ → NegativeContext Γ → (x ∷ A ∈ Γ) → NegativeType Γ A lookupNegative ⊢Γ∙A (nΓ ∙ nA) here = wkNeg (step id) ⊢Γ∙A nA lookupNegative ⊢Γ∙A@(⊢Γ ∙ Γ⊢A) (nΓ ∙ nA) (there h) = wkNeg (step id) ⊢Γ∙A (lookupNegative ⊢Γ nΓ h) -- Main results --------------------------------------------------------------------------- -- We assume a negative, consistent context. module Main (nΓ : NegativeContext Γ) (consistent : ∀{t} → Γ ⊢ t ∷ Empty → ⊥) where -- Lemma: A neutral has negative type in a consistent negative context. neNeg : (d : Γ ⊢ u ∷ A) (n : NfNeutral u) → NegativeType Γ A neNeg (var ⊢Γ h ) (var _ ) = lookupNegative ⊢Γ nΓ h neNeg (d ∘ⱼ ⊢t ) (∘ₙ n _ ) = appNeg (neNeg d n) (refl (syntacticTerm d)) ⊢t neNeg (fstⱼ ⊢A A⊢B d ) (fstₙ n ) = fstNeg (neNeg d n) (refl (Σⱼ ⊢A ▹ A⊢B)) neNeg (sndⱼ ⊢A A⊢B d ) (sndₙ n ) = sndNeg (neNeg d n) (refl (Σⱼ ⊢A ▹ A⊢B)) (fstⱼ ⊢A A⊢B d) neNeg (natrecⱼ _ _ _ d) (natrecₙ _ _ _ n ) = ⊥-elim (¬negℕ (neNeg d n) ⊢ℕ) where ⊢ℕ = refl (ℕⱼ (wfTerm d)) neNeg (Emptyrecⱼ _ d ) (Emptyrecₙ _ _ ) = ⊥-elim (consistent d) neNeg (conv d c ) n = conv (neNeg d n) c -- Lemma: A normal form of type ℕ is a numeral in a consistent negative context. nfN : (d : Γ ⊢ u ∷ A) → (n : Nf u) → (c : Γ ⊢ A ≡ ℕ) → Numeral u -- Case: neutrals. The type cannot be ℕ since it must be negative. nfN d (ne n) c = ⊥-elim (¬negℕ (neNeg d n) c) -- Case: numerals. nfN (zeroⱼ x) zeroₙ c = zeroₙ nfN (sucⱼ d) (sucₙ n) c = sucₙ (nfN d n c) -- Case: conversion. nfN (conv d c) n c' = nfN d n (trans c c') -- Impossible cases: type is not ℕ. -- * Canonical types nfN (Πⱼ _ ▹ _) (Πₙ _ _) c = ⊥-elim (U≢ℕ c) nfN (Σⱼ _ ▹ _) (Σₙ _ _) c = ⊥-elim (U≢ℕ c) nfN (ℕⱼ _) ℕₙ c = ⊥-elim (U≢ℕ c) nfN (Emptyⱼ _) Emptyₙ c = ⊥-elim (U≢ℕ c) nfN (Unitⱼ _) Unitₙ c = ⊥-elim (U≢ℕ c) -- * Canonical forms nfN (lamⱼ _ _) (lamₙ _) c = ⊥-elim (ℕ≢Π (sym c)) nfN (prodⱼ _ _ _ _) (prodₙ _ _) c = ⊥-elim (ℕ≢Σ (sym c)) nfN (starⱼ _) starₙ c = ⊥-elim (ℕ≢Unitⱼ (sym c)) -- q.e.d -- Canonicity theorem: Any well-typed term Γ ⊢ t : ℕ is convertible to a numeral. thm : (⊢t : Γ ⊢ t ∷ ℕ) → ∃ λ u → Numeral u × Γ ⊢ t ≡ u ∷ ℕ thm ⊢t with fullRedTerm (completeEqTerm (refl ⊢t)) ... | u , nf , eq = u , nfN (proj₂ (proj₂ (syntacticEqTerm eq))) nf (refl (ℕⱼ (wfTerm ⊢t))) , eq -- Q.E.D. 2021-05-27
{ "alphanum_fraction": 0.5711343038, "avg_line_length": 32.9502262443, "ext": "agda", "hexsha": "547c75729487b6d3dc677cb7db2a1402e3e7932d", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "8bae792e335fb6b04ae2d8e162d472aa84c10343", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mr-ohman/logrel-ml", "max_forks_repo_path": "Application/NegativeAxioms/Canonicity.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8bae792e335fb6b04ae2d8e162d472aa84c10343", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mr-ohman/logrel-ml", "max_issues_repo_path": "Application/NegativeAxioms/Canonicity.agda", "max_line_length": 108, "max_stars_count": 30, "max_stars_repo_head_hexsha": "8bae792e335fb6b04ae2d8e162d472aa84c10343", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mr-ohman/logrel-ml", "max_stars_repo_path": "Application/NegativeAxioms/Canonicity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 2851, "size": 7282 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Discrete where open import Level open import Data.Unit open import Function open import Relation.Binary.PropositionalEquality as ≡ open import Categories.Category open import Categories.Functor Discrete : ∀ {a} (A : Set a) → Category a a a Discrete A = record { Obj = A ; _⇒_ = _≡_ ; _≈_ = _≡_ ; id = refl ; _∘_ = flip ≡.trans ; assoc = λ {_ _ _ _ g} → sym (trans-assoc g) ; sym-assoc = λ {_ _ _ _ g} → trans-assoc g ; identityˡ = λ {_ _ f} → trans-reflʳ f ; identityʳ = refl ; identity² = refl ; equiv = isEquivalence ; ∘-resp-≈ = λ where refl refl → refl } module _ {a o ℓ e} {A : Set a} (C : Category o ℓ e) where open Category C renaming (id to one) module _ (f : A → Obj) where lift-func : Functor (Discrete A) C lift-func = record { F₀ = f ; F₁ = λ { refl → one } ; identity = Equiv.refl ; homomorphism = λ { {_} {_} {_} {refl} {refl} → Equiv.sym identity² } ; F-resp-≈ = λ { {_} {_} {refl} refl → Equiv.refl } }
{ "alphanum_fraction": 0.5569285084, "avg_line_length": 26.9761904762, "ext": "agda", "hexsha": "1ee8b52c3c76d22bc329446faccbf4527d45b045", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Discrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Discrete.agda", "max_line_length": 76, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 390, "size": 1133 }
{-# OPTIONS --without-K #-} module Equivalence where open import Homotopy open import PathOperations open import Types infix 1 _≃_ qinv : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → Set _ qinv {A = A} {B = B} f = Σ (B → A) λ g → (f ∘ g ∼ id) × (g ∘ f ∼ id) isequiv : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → Set _ isequiv {A = A} {B = B} f = (Σ (B → A) λ g → f ∘ g ∼ id) × (Σ (B → A) λ h → h ∘ f ∼ id) _≃_ : ∀ {a b} (A : Set a) (B : Set b) → Set _ A ≃ B = Σ (A → B) isequiv qi→eq : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} → qinv f → isequiv f qi→eq (g , p , q) = (g , p) , (g , q) eq→qi : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} → isequiv f → qinv f eq→qi {f = f} ((g , p) , (h , q)) = g , p , λ _ → q _ ⁻¹ · ap h (p _) · q _ ≡→eq : ∀ {ℓ} {A : Set ℓ} {B : Set ℓ} → A ≡ B → A ≃ B ≡→eq p = tr id p , (tr id (p ⁻¹) , λ b → J (λ _ B p → (b : B) → tr id p (tr id (p ⁻¹) b) ≡ b) (λ _ _ → refl) _ _ p b) , (tr id (p ⁻¹) , λ a → J (λ A _ p → (a : A) → tr id (p ⁻¹) (tr id p a) ≡ a) (λ _ _ → refl) _ _ p a) refl-equiv : ∀ {a} {A : Set a} → A ≃ A refl-equiv = id , (id , λ _ → refl) , (id , λ _ → refl) sym-equiv : ∀ {a b} {A : Set a} {B : Set b} → A ≃ B → B ≃ A sym-equiv (f , (g , p) , (h , q)) = g , (f , λ _ → q _ ⁻¹ · ap h (p _) · q _) , (f , p) trans-equiv : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A ≃ B → B ≃ C → A ≃ C trans-equiv (f₁ , (g₁ , p₁) , (h₁ , q₁)) (f₂ , (g₂ , p₂) , (h₂ , q₂)) = f₂ ∘ f₁ , (g₁ ∘ g₂ , λ _ → ap f₂ (p₁ _) · p₂ _) , (h₁ ∘ h₂ , λ _ → ap h₁ (q₂ _) · q₁ _)
{ "alphanum_fraction": 0.3977344242, "avg_line_length": 25.6290322581, "ext": "agda", "hexsha": "33154bffbe1e68e0e32dc857033a0e66e4ea8eb0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/Equivalence.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 821, "size": 1589 }
module RTN where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-}
{ "alphanum_fraction": 0.5521472393, "avg_line_length": 16.3, "ext": "agda", "hexsha": "7f0facb8ec611c148f7c8972fc751260bc16982c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/rts/RTN.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/rts/RTN.agda", "max_line_length": 29, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "src/rts/RTN.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 51, "size": 163 }
{-# OPTIONS --without-K #-} open import Data.Nat open import Data.List using (List ; [] ; _∷_ ; length) renaming (_++_ to _++L_ ) open import Data.Vec using (Vec ; [] ; _∷_ ) renaming (_++_ to _++V_ ) open import Data.Fin hiding (_+_ ; _≤_ ) open import Data.Product open import Data.Maybe open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Algebra open import Level renaming (zero to lzero ; suc to lsuc) open import Function using () renaming (case_of_ to CASE_OF_) data Multiplicity : Set where one : Multiplicity omega : Multiplicity -- Multiplicities with 0. -- This is a deviation from the papers. Having 0 is convenient for handling uses of variables. data Multiplicity₀ : Set where zero : Multiplicity₀ one : Multiplicity₀ omega : Multiplicity₀ -- Embedding M→M₀ : Multiplicity -> Multiplicity₀ M→M₀ one = one M→M₀ omega = omega -- Instead of having constructors, we have (additive) sums and -- (multiplicative) products, together with iso-recursive types. The -- type constructor Many can be used for representing non-linear -- constructors. data Ty : ℕ -> Set where _⊕_ : ∀ {n} -> Ty n -> Ty n -> Ty n tunit : ∀ {n} -> Ty n _⊗_ : ∀ {n} -> Ty n -> Ty n -> Ty n Many : ∀ {n} -> Multiplicity -> Ty n -> Ty n _#_~>_ : ∀ {n} -> Ty n -> Multiplicity -> Ty n -> Ty n _● : ∀ {n} -> Ty n -> Ty n μ_ : ∀ {n} -> Ty (suc n) -> Ty n tvar : ∀ {n} -> Fin n -> Ty n _↔_ : ∀ {n} -> Ty n -> Ty n -> Ty n _⊸_ : ∀ {n} -> Ty n -> Ty n -> Ty n t ⊸ t' = t # one ~> t' infixr 4 _⊗_ infixr 1 _⊕_ infixr 0 _#_~>_ infixr 0 _⊸_ tbool : Ty zero tbool = tunit ⊕ tunit module _ where -- Several properties to handle recursive types. open import Data.Nat.Properties private lemma : ∀ {m n} -> m ≤ n -> ∃[ k ] (k + m ≡ n) lemma {n = n} z≤n = n , +-identityʳ n lemma (s≤s r) with lemma r ... | k , refl = k , +-suc k _ weakenVarK : ∀ {m n k} -> k + m ≡ n -> Fin m -> Fin (k + m) weakenVarK {k = zero} refl x = x weakenVarK {n = suc n} {suc k} eq x = suc (weakenVarK {n = n} {k = k} (suc-injective eq) x) weakenVar : ∀ {m n} -> m ≤ n -> Fin m -> Fin n weakenVar r x with lemma r ... | k , r' = subst Fin r' (weakenVarK r' x) substTyVar : ∀ {m n k} -> m + n ≤ k -> Fin (m + suc n) -> Ty k -> Ty k substTyVar {zero} r zero t = t substTyVar {zero} r (suc x) t = tvar (weakenVar r x) substTyVar {suc m} {k = suc k} r zero t = tvar zero substTyVar {suc m} (s≤s r) (suc x) t = substTyVar {m} (≤-trans r (≤-step ≤-refl)) x t weaken : ∀ {m n} -> m ≤ n -> Ty m -> Ty n weaken r (t ⊕ t₁) = weaken r t ⊕ weaken r t₁ weaken r tunit = tunit weaken r (t ⊗ t₁) = weaken r t ⊗ weaken r t₁ weaken r (Many x t) = Many x (weaken r t) weaken r (t # x ~> t₁) = weaken r t # x ~> weaken r t₁ weaken r (t ●) = weaken r t ● weaken r (μ t) = μ (weaken (s≤s r) t) weaken r (tvar x) = tvar (weakenVar r x) weaken r (t₁ ↔ t₂) = weaken r t₁ ↔ weaken r t₂ substTyGen : ∀ {m n} -> Ty (m + suc n) -> Ty (m + n) -> Ty (m + n) substTyGen (s₁ ⊕ s₂) t = substTyGen s₁ t ⊕ substTyGen s₂ t substTyGen tunit t = tunit substTyGen (s₁ ⊗ s₂) t = substTyGen s₁ t ⊗ substTyGen s₂ t substTyGen (Many x s) t = Many x (substTyGen s t) substTyGen (s # x ~> s₁) t = substTyGen s t # x ~> substTyGen s₁ t substTyGen (s ●) t = (substTyGen s t) ● substTyGen {m} (μ s) t = μ (substTyGen {m = suc m} s (weaken (n≤1+n _) t)) substTyGen (tvar x) t = substTyVar ≤-refl x t substTyGen (s₁ ↔ s₂) t = substTyGen s₁ t ↔ substTyGen s₂ t substTy : ∀ {n} -> Ty (suc n) -> Ty n -> Ty n substTy = substTyGen {zero} module TyExamples where nat : ∀ {n} -> Ty n nat = μ (tunit ⊕ tvar zero) natlist : ∀ {n} -> Ty n natlist = μ (tunit ⊕ (nat ⊗ tvar zero)) -- Instead of using environments that maps variables to pairs of types -- and multiplicities, we use two sort of environments: one maps -- variables to types and the other maps variables to multiplicities. -- -- We will use de Bruijn indices for variables, and thus type -- environments are represented as a list of types. The treatment of -- multiplicity environment is similar but we assume that it has the -- same length with the corresponding type environment; so we use Vec -- for multiplicity environments. TyEnv : Set TyEnv = List (Ty zero) MultEnv : ∀ ℕ -> Set MultEnv n = Vec Multiplicity₀ n ----------------------------------------------------------------------------- -- Operations and properties for multiplicities mul : Multiplicity -> Multiplicity -> Multiplicity mul one y = y mul omega y = omega mul₀ : Multiplicity₀ -> Multiplicity₀ -> Multiplicity₀ mul₀ zero y = zero mul₀ one y = y mul₀ omega zero = zero mul₀ omega one = omega mul₀ omega omega = omega mul₀-m-zero : ∀ m -> mul₀ m zero ≡ zero mul₀-m-zero zero = refl mul₀-m-zero one = refl mul₀-m-zero omega = refl _×ₘ_ : ∀{n} -> Multiplicity -> MultEnv n -> MultEnv n m ×ₘ Γ = Data.Vec.map (mul₀ (M→M₀ m)) Γ add₀ : Multiplicity₀ -> Multiplicity₀ -> Multiplicity₀ add₀ zero m = m add₀ one zero = one add₀ one one = omega add₀ one omega = omega add₀ omega _ = omega add₀-m-zero : ∀ m -> add₀ m zero ≡ m add₀-m-zero zero = refl add₀-m-zero one = refl add₀-m-zero omega = refl add₀-comm : ∀ x y -> add₀ x y ≡ add₀ y x add₀-comm zero zero = refl add₀-comm zero one = refl add₀-comm zero omega = refl add₀-comm one zero = refl add₀-comm one one = refl add₀-comm one omega = refl add₀-comm omega zero = refl add₀-comm omega one = refl add₀-comm omega omega = refl add₀-assoc : ∀ x y z -> add₀ (add₀ x y) z ≡ add₀ x (add₀ y z) add₀-assoc zero y z = refl add₀-assoc one zero z = refl add₀-assoc one one zero = refl add₀-assoc one one one = refl add₀-assoc one one omega = refl add₀-assoc one omega z = refl add₀-assoc omega y z = refl mul₀-dist-add₀ : ∀ x y z -> mul₀ x (add₀ y z) ≡ add₀ (mul₀ x y) (mul₀ x z) mul₀-dist-add₀ zero y z = refl mul₀-dist-add₀ one y z = refl mul₀-dist-add₀ omega zero z = refl mul₀-dist-add₀ omega one zero = refl mul₀-dist-add₀ omega one one = refl mul₀-dist-add₀ omega one omega = refl mul₀-dist-add₀ omega omega z = refl ----------------------------------------------------------------------------- -- Operations and properties for multiplicity environments infixr 7 _×ₘ_ infixl 6 _+ₘ_ _+ₘ_ : ∀ {n} -> MultEnv n -> MultEnv n -> MultEnv n [] +ₘ [] = [] (m₁ ∷ Δ₁) +ₘ (m₂ ∷ Δ₂) = add₀ m₁ m₂ ∷ (Δ₁ +ₘ Δ₂) +ₘ-comm : ∀ {n} -> ∀ (Δ₁ Δ₂ : MultEnv n) -> Δ₁ +ₘ Δ₂ ≡ Δ₂ +ₘ Δ₁ +ₘ-comm [] [] = refl +ₘ-comm (x₁ ∷ Δ₁) (x₂ ∷ Δ₂) = begin add₀ x₁ x₂ ∷ Δ₁ +ₘ Δ₂ ≡⟨ cong (_∷ Δ₁ +ₘ Δ₂) (add₀-comm x₁ x₂) ⟩ add₀ x₂ x₁ ∷ Δ₁ +ₘ Δ₂ ≡⟨ cong (add₀ x₂ x₁ ∷_) (+ₘ-comm Δ₁ Δ₂) ⟩ add₀ x₂ x₁ ∷ Δ₂ +ₘ Δ₁ ∎ +ₘ-assoc : ∀ {n} -> ∀ (Δ₁ Δ₂ Δ₃ : MultEnv n) -> (Δ₁ +ₘ Δ₂) +ₘ Δ₃ ≡ Δ₁ +ₘ (Δ₂ +ₘ Δ₃) +ₘ-assoc [] [] [] = refl +ₘ-assoc (x₁ ∷ Δ₁) (x₂ ∷ Δ₂) (x₃ ∷ Δ₃) = begin add₀ (add₀ x₁ x₂) x₃ ∷ Δ₁ +ₘ Δ₂ +ₘ Δ₃ ≡⟨ cong₂ (_∷_) (add₀-assoc x₁ x₂ _) (+ₘ-assoc Δ₁ Δ₂ _) ⟩ add₀ x₁ (add₀ x₂ x₃) ∷ Δ₁ +ₘ (Δ₂ +ₘ Δ₃) ∎ -- The multiplicity environment that maps all variables into 0. ∅ : ∀ {n} -> MultEnv n ∅ = Data.Vec.replicate zero ∅-lid : ∀ {n} (Δ : MultEnv n) -> ∅ +ₘ Δ ≡ Δ ∅-lid [] = refl ∅-lid (x ∷ Δ) = cong (x ∷_) (∅-lid Δ) ∅-rid : ∀ {n} (Δ : MultEnv n) -> Δ +ₘ ∅ ≡ Δ ∅-rid [] = refl ∅-rid (x ∷ Δ) = cong₂ (_∷_) (add₀-m-zero x) (∅-rid Δ) +ₘ-commutativeMonoid : ∀ (n : ℕ) -> CommutativeMonoid 0ℓ 0ℓ +ₘ-commutativeMonoid n = record { Carrier = MultEnv n ; _≈_ = _≡_ ; _∙_ = _+ₘ_ ; ε = ∅ ; isCommutativeMonoid = record { isMonoid = +ₘ-isMonoid ; comm = +ₘ-comm } -- record { -- isSemigroup = record { isMagma = record { isEquivalence = Relation.Binary.PropositionalEquality.isEquivalence ; -- ∙-cong = cong₂ (_+ₘ_) } ; -- assoc = +ₘ-assoc } ; -- ; identityˡ = ∅-lid -- ; comm = +ₘ-comm } } where +ₘ-isMonoid : IsMonoid _≡_ _+ₘ_ ∅ +ₘ-isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = Relation.Binary.PropositionalEquality.isEquivalence ; ∙-cong = cong₂ (_+ₘ_) } ; assoc = +ₘ-assoc } ; identity = ∅-lid , ∅-rid } +ₘ-transpose : ∀ {n} (Δ₁ Δ₂ Δ₃ Δ₄ : MultEnv n) -> ((Δ₁ +ₘ Δ₂) +ₘ (Δ₃ +ₘ Δ₄)) ≡ ((Δ₁ +ₘ Δ₃) +ₘ (Δ₂ +ₘ Δ₄)) +ₘ-transpose Δ₁ Δ₂ Δ₃ Δ₄ = begin (Δ₁ +ₘ Δ₂) +ₘ (Δ₃ +ₘ Δ₄) ≡⟨ +ₘ-assoc Δ₁ Δ₂ _ ⟩ Δ₁ +ₘ (Δ₂ +ₘ (Δ₃ +ₘ Δ₄)) ≡⟨ cong (Δ₁ +ₘ_) (+ₘ-comm Δ₂ _) ⟩ (Δ₁ +ₘ ((Δ₃ +ₘ Δ₄) +ₘ Δ₂)) ≡⟨ cong (Δ₁ +ₘ_) (+ₘ-assoc Δ₃ Δ₄ _) ⟩ (Δ₁ +ₘ (Δ₃ +ₘ (Δ₄ +ₘ Δ₂))) ≡⟨ cong (Δ₁ +ₘ_) (cong (Δ₃ +ₘ_) (+ₘ-comm Δ₄ _)) ⟩ (Δ₁ +ₘ (Δ₃ +ₘ (Δ₂ +ₘ Δ₄))) ≡⟨ sym (+ₘ-assoc Δ₁ Δ₃ _) ⟩ ((Δ₁ +ₘ Δ₃) +ₘ (Δ₂ +ₘ Δ₄)) ∎ one×ₘ : ∀ {n} (Δ : MultEnv n) -> one ×ₘ Δ ≡ Δ one×ₘ [] = refl one×ₘ (x ∷ Δ) = cong (_∷_ x) (one×ₘ Δ) ×ₘ∅ : ∀ {n} m -> m ×ₘ ∅ {n} ≡ ∅ {n} ×ₘ∅ {zero} m = refl ×ₘ∅ {suc n} one = cong (_∷_ zero) (×ₘ∅ one) ×ₘ∅ {suc n} omega = cong (_∷_ zero) (×ₘ∅ omega) omega×ₘm×ₘ-omega×ₘ : ∀ {n} (m : Multiplicity) (Δ : MultEnv n) -> omega ×ₘ m ×ₘ Δ ≡ omega ×ₘ Δ omega×ₘm×ₘ-omega×ₘ {zero} m [] = refl omega×ₘm×ₘ-omega×ₘ {suc n} m (zero ∷ Δ) rewrite mul₀-m-zero (M→M₀ m) = cong (zero ∷_) (omega×ₘm×ₘ-omega×ₘ {n} m Δ) omega×ₘm×ₘ-omega×ₘ {suc n} one (one ∷ Δ) = cong (omega ∷_) (omega×ₘm×ₘ-omega×ₘ {n} one Δ) omega×ₘm×ₘ-omega×ₘ {suc n} omega (one ∷ Δ) = cong (omega ∷_) (omega×ₘm×ₘ-omega×ₘ {n} omega Δ) omega×ₘm×ₘ-omega×ₘ {suc n} one (omega ∷ Δ) = cong (omega ∷_) (omega×ₘm×ₘ-omega×ₘ {n} one Δ) omega×ₘm×ₘ-omega×ₘ {suc n} omega (omega ∷ Δ) = cong (omega ∷_) (omega×ₘm×ₘ-omega×ₘ {n} omega Δ) mul-×ₘ : ∀ {n} m₁ m₂ (Δ : MultEnv n) -> mul m₁ m₂ ×ₘ Δ ≡ m₁ ×ₘ (m₂ ×ₘ Δ) mul-×ₘ one m₂ Δ = sym (one×ₘ _) mul-×ₘ omega m₂ Δ = sym (omega×ₘm×ₘ-omega×ₘ m₂ Δ) module _ where open import Data.Vec.Properties omega×ₘ∅-inv : ∀ {n} (Δ : MultEnv n) -> omega ×ₘ Δ ≡ ∅ -> Δ ≡ ∅ omega×ₘ∅-inv [] eq = refl omega×ₘ∅-inv (x ∷ Δ) eq with ∷-injective eq omega×ₘ∅-inv (zero ∷ Δ) eq | eq₁ , eq₂ = cong (zero ∷_) (omega×ₘ∅-inv Δ eq₂) add₀-0-0-inv : ∀ x y -> add₀ x y ≡ zero -> x ≡ zero × y ≡ zero add₀-0-0-inv zero zero eq = refl , refl add₀-0-0-inv one zero () add₀-0-0-inv one one () add₀-0-0-inv one omega () ∅+ₘ∅-inv : ∀ {n} (Δ₁ Δ₂ : MultEnv n) -> Δ₁ +ₘ Δ₂ ≡ ∅ -> Δ₁ ≡ ∅ × Δ₂ ≡ ∅ ∅+ₘ∅-inv [] [] eq = refl , refl ∅+ₘ∅-inv (x₁ ∷ Δ₁) (x₂ ∷ Δ₂) eq with ∷-injective eq ... | eq₁ , eq₂ with add₀-0-0-inv x₁ x₂ eq₁ | ∅+ₘ∅-inv Δ₁ Δ₂ eq₂ ... | refl , refl | refl , refl = refl , refl ×ₘ-dist : ∀ {n} m (Δ₁ Δ₂ : MultEnv n) -> (m ×ₘ (Δ₁ +ₘ Δ₂)) ≡ (m ×ₘ Δ₁) +ₘ (m ×ₘ Δ₂) ×ₘ-dist m [] [] = refl ×ₘ-dist m (x₁ ∷ Δ₁) (x₂ ∷ Δ₂) = cong₂ (_∷_) (mul₀-dist-add₀ (M→M₀ m) x₁ x₂) (×ₘ-dist m Δ₁ Δ₂) ×ₘ-split : ∀ {n} m (Δ : MultEnv n) -> ∃[ Δ' ] (m ×ₘ Δ ≡ Δ +ₘ Δ' ) ×ₘ-split m [] = [] , refl ×ₘ-split m (x ∷ Δ) with ×ₘ-split m Δ ×ₘ-split one (x ∷ Δ) | Δ' , eq = zero ∷ Δ' , cong₂ (_∷_) (sym (add₀-m-zero x)) eq ×ₘ-split omega (zero ∷ Δ) | Δ' , eq = zero ∷ Δ' , cong (_∷_ zero) eq ×ₘ-split omega (one ∷ Δ) | Δ' , eq = one ∷ Δ' , cong (_∷_ omega) eq ×ₘ-split omega (omega ∷ Δ) | Δ' , eq = one ∷ Δ' , cong (_∷_ omega) eq ----------------------------------------------------------------------------- -- Constraints on multiplicity environments open import Data.Vec.Relation.Unary.All -- all-zero Δ essentially asserts that Δ is ∅ all-zero : ∀ {n} -> Vec Multiplicity₀ n -> Set all-zero = All (λ x -> x ≡ zero) all-zero-∅ : ∀ {n} -> all-zero {n} ∅ all-zero-∅ {zero} = [] all-zero-∅ {suc n} = refl ∷ all-zero-∅ {n} all-zero-∅-inv : ∀ {n} -> (Δ : MultEnv n) -> all-zero {n} Δ -> Δ ≡ ∅ all-zero-∅-inv .[] [] = refl all-zero-∅-inv .(zero ∷ _) (refl ∷ az) = cong (_∷_ zero) (all-zero-∅-inv _ az) data no-omega : (m : Multiplicity₀) -> Set where zero : no-omega zero one : no-omega one no-omega-dist : ∀ x y -> no-omega (add₀ x y) -> no-omega x × no-omega y no-omega-dist zero y noω = zero , noω no-omega-dist one zero noω = one , zero -- all-no-omega Δ asserts that Δ(x) cannot be omega. all-no-omega : ∀ {n} -> Vec Multiplicity₀ n -> Set all-no-omega = All no-omega -- Several properties of all-no-omega. all-no-omega-∅ : ∀ {n} -> all-no-omega (∅ {n}) all-no-omega-∅ {zero} = [] all-no-omega-∅ {suc n} = zero ∷ all-no-omega-∅ all-no-omega-dist : ∀ {n} (Δ₁ Δ₂ : MultEnv n) -> all-no-omega (Δ₁ +ₘ Δ₂) -> all-no-omega Δ₁ × all-no-omega Δ₂ all-no-omega-dist [] [] ano = [] , [] all-no-omega-dist (x₁ ∷ Δ₁) (x₂ ∷ Δ₂) (noω ∷ ano) with no-omega-dist x₁ x₂ noω | all-no-omega-dist Δ₁ Δ₂ ano ... | no₁ , no₂ | ano₁ , ano₂ = no₁ ∷ ano₁ , no₂ ∷ ano₂ all-no-omega-dist-×ₘ : ∀ {n} m (Δ : MultEnv n) -> all-no-omega (m ×ₘ Δ) -> all-no-omega Δ all-no-omega-dist-×ₘ m [] ano = [] all-no-omega-dist-×ₘ one (x ∷ Δ) (px ∷ ano) = px ∷ (all-no-omega-dist-×ₘ one Δ ano) all-no-omega-dist-×ₘ omega (zero ∷ Δ) (px ∷ ano) = zero ∷ all-no-omega-dist-×ₘ omega Δ ano all-no-omega-weaken-right : ∀ {n} {Δ₁ Δ₂ : MultEnv n} {m} -> all-no-omega (Δ₁ +ₘ m ×ₘ Δ₂) -> all-no-omega (Δ₁ +ₘ Δ₂) all-no-omega-weaken-right {Δ₁ = Δ₁} {Δ₂} {m} ano with ×ₘ-split m Δ₂ ... | Δ' , eq with all-no-omega-dist (Δ₁ +ₘ Δ₂) Δ' (subst all-no-omega lemma ano) where lemma : Δ₁ +ₘ m ×ₘ Δ₂ ≡ Δ₁ +ₘ Δ₂ +ₘ Δ' lemma = begin Δ₁ +ₘ m ×ₘ Δ₂ ≡⟨ cong (Δ₁ +ₘ_) eq ⟩ Δ₁ +ₘ (Δ₂ +ₘ Δ') ≡⟨ sym (+ₘ-assoc Δ₁ Δ₂ _) ⟩ Δ₁ +ₘ Δ₂ +ₘ Δ' ∎ ... | ano₁ , _ = ano₁ all-no-omega-omega×ₘ : ∀ {n} (Δ : MultEnv n) -> all-no-omega (omega ×ₘ Δ) -> Δ ≡ ∅ all-no-omega-omega×ₘ [] ano = refl all-no-omega-omega×ₘ (zero ∷ Δ) (px ∷ ano) = cong (_∷_ zero) (all-no-omega-omega×ₘ Δ ano) ----------------------------------------------------------------------------- -- Variables, or de Bruijn indices data _∋_ : ∀ TyEnv -> Ty zero -> Set where vz : ∀ {Γ : TyEnv} {a : Ty zero} -> (a ∷ Γ) ∋ a vs : ∀ {Γ : TyEnv} {a b : Ty zero} -> Γ ∋ a -> (b ∷ Γ) ∋ a -- 'discardable' means that a corresponding variable need not be used. data discardable : Multiplicity₀ -> Set where omega : discardable omega zero : discardable zero omega×ₘ-discardable : ∀ {n} (Δ : MultEnv n) -> All discardable (omega ×ₘ Δ) omega×ₘ-discardable [] = [] omega×ₘ-discardable (zero ∷ Δ) = zero ∷ omega×ₘ-discardable Δ omega×ₘ-discardable (one ∷ Δ) = omega ∷ omega×ₘ-discardable Δ omega×ₘ-discardable (omega ∷ Δ) = omega ∷ omega×ₘ-discardable Δ -- 'usable' means that a corresponding variable can be used. data usable : Multiplicity₀ -> Set where omega : usable omega one : usable one -- varOk means that the use of variable x in Γ is compatible with Δ; that is, -- x is usable in Δ and other variables must be discardable in Δ. data varOk : (Γ : TyEnv) {a : Ty zero} -> Γ ∋ a -> (Δ : MultEnv (length Γ)) -> Set where there : ∀ {Γ : TyEnv} {m a b} {x : Γ ∋ a} {Δ} -> (d : discardable m) -> (ok : varOk Γ x Δ) -> varOk (b ∷ Γ) (vs x) (m ∷ Δ) here : ∀ {Γ : TyEnv} {a} {Δ} {m} -> (u : usable m) -> (ad : All discardable Δ) -> varOk (a ∷ Γ) vz (m ∷ Δ) -- varOk● is similar to varOk but is for invertible variables. The definition is simplified as -- we assume Ξ cannot contain omega. data varOk● : (Θ : TyEnv) {a : Ty zero} -> Θ ∋ a -> (Ξ : MultEnv (length Θ)) -> Set where there : ∀ {Θ : TyEnv} {a b} {x : Θ ∋ a} {Ξ} -> (ok : varOk● Θ x Ξ) -> varOk● (b ∷ Θ) (vs x) (zero ∷ Ξ) here : ∀ {Θ : TyEnv} {a} {Ξ} -> (ad : all-zero Ξ) -> varOk● (a ∷ Θ) vz (one ∷ Ξ) -- Now, we are ready to define the intrinsically-typed syntax of Sparcl. data Term : ∀ (Γ : TyEnv) -> MultEnv (length Γ) -> (Θ : TyEnv) -> MultEnv (length Θ) -> Ty zero -> Set where var : ∀ {Γ Δ Θ A} -> (x : Γ ∋ A) -> (ok : varOk Γ x Δ) -> Term Γ Δ Θ ∅ A abs : ∀ {Γ Δ Θ Ξ A B} -> (m : Multiplicity) -> Term (A ∷ Γ) (M→M₀ m ∷ Δ) Θ Ξ B -> Term Γ Δ Θ Ξ (A # m ~> B) app : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B m} -> Term Γ Δ₁ Θ Ξ₁ (A # m ~> B) -> Term Γ Δ₂ Θ Ξ₂ A -> Term Γ (Δ₁ +ₘ m ×ₘ Δ₂) Θ (Ξ₁ +ₘ m ×ₘ Ξ₂) B unit : ∀ {Γ Δ Θ} -> (ad : All discardable Δ) -> Term Γ Δ Θ ∅ tunit letunit : ∀ {Γ Δ₀ Δ Θ Ξ₀ Ξ A} -> (m : Multiplicity) -> Term Γ Δ₀ Θ Ξ₀ tunit -> Term Γ Δ Θ Ξ A -> Term Γ (m ×ₘ Δ₀ +ₘ Δ) Θ (m ×ₘ Ξ₀ +ₘ Ξ) A pair : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ A -> Term Γ Δ₂ Θ Ξ₂ B -> Term Γ (Δ₁ +ₘ Δ₂) Θ (Ξ₁ +ₘ Ξ₂) (A ⊗ B) letpair : ∀ {Γ Δ₀ Δ Θ Ξ₀ Ξ A B C} -> (m : Multiplicity) -> Term Γ Δ₀ Θ Ξ₀ (A ⊗ B) -> Term (A ∷ B ∷ Γ) (M→M₀ m ∷ M→M₀ m ∷ Δ) Θ Ξ C -> Term Γ (m ×ₘ Δ₀ +ₘ Δ) Θ (m ×ₘ Ξ₀ +ₘ Ξ) C many : ∀ {Γ Δ Θ Ξ A} -> (m : Multiplicity) -> Term Γ Δ Θ Ξ A -> Term Γ (m ×ₘ Δ) Θ (m ×ₘ Ξ) (Many m A) unmany : ∀ {Γ Δ₀ Δ Θ Ξ₀ Ξ m₀ A B} -> (m : Multiplicity) -> Term Γ Δ₀ Θ Ξ₀ (Many m₀ A) -> Term (A ∷ Γ) (M→M₀ (mul m m₀) ∷ Δ) Θ Ξ B -> Term Γ (m ×ₘ Δ₀ +ₘ Δ) Θ (m ×ₘ Ξ₀ +ₘ Ξ) B inl : ∀ {Γ Δ Θ Ξ} {A B} -> Term Γ Δ Θ Ξ A -> Term Γ Δ Θ Ξ (A ⊕ B) inr : ∀ {Γ Δ Θ Ξ} {A B} -> Term Γ Δ Θ Ξ B -> Term Γ Δ Θ Ξ (A ⊕ B) case : ∀ {Γ Δ₀ Δ Θ Ξ₀ Ξ A B C} -> (m : Multiplicity) -> Term Γ Δ₀ Θ Ξ₀ (A ⊕ B) -> Term (A ∷ Γ) (M→M₀ m ∷ Δ) Θ Ξ C -> Term (B ∷ Γ) (M→M₀ m ∷ Δ) Θ Ξ C -> Term Γ (m ×ₘ Δ₀ +ₘ Δ) Θ (m ×ₘ Ξ₀ +ₘ Ξ) C roll : ∀ {Γ Δ Θ Ξ F} -> Term Γ Δ Θ Ξ (substTy F (μ F)) -> Term Γ Δ Θ Ξ (μ F) unroll : ∀ {Γ Δ Θ Ξ F} -> Term Γ Δ Θ Ξ (μ F) -> Term Γ Δ Θ Ξ (substTy F (μ F)) unit● : ∀ {Γ Δ Θ} -> (ad : All discardable Δ) -> Term Γ Δ Θ ∅ (tunit ●) letunit● : ∀ {Γ Δ₀ Δ Θ Ξ₀ Ξ A} -> Term Γ Δ₀ Θ Ξ₀ (tunit ●) -> Term Γ Δ Θ Ξ (A ●) -> Term Γ (Δ₀ +ₘ Δ) Θ (Ξ₀ +ₘ Ξ) (A ●) pair● : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ (A ●) -> Term Γ Δ₂ Θ Ξ₂ (B ●) -> Term Γ (Δ₁ +ₘ Δ₂) Θ (Ξ₁ +ₘ Ξ₂) ((A ⊗ B) ●) letpair● : ∀ {Γ Δ₀ Δ Θ Ξ₀ Ξ A B C} -> Term Γ Δ₀ Θ Ξ₀ ((A ⊗ B) ●) -> Term Γ Δ (A ∷ B ∷ Θ) (one ∷ one ∷ Ξ) (C ●) -> Term Γ (Δ₀ +ₘ Δ) Θ (Ξ₀ +ₘ Ξ) (C ●) inl● : ∀ {Γ Δ Θ Ξ} {A B} -> Term Γ Δ Θ Ξ (A ●) -> Term Γ Δ Θ Ξ ((A ⊕ B) ●) inr● : ∀ {Γ Δ Θ Ξ} {A B} -> Term Γ Δ Θ Ξ (B ●) -> Term Γ Δ Θ Ξ ((A ⊕ B) ●) case● : ∀ {Γ Δ₀ Δ Δ' Θ Ξ₀ Ξ Ξ' A B C} -> Term Γ Δ₀ Θ Ξ₀ ((A ⊕ B) ●) -> Term Γ Δ (A ∷ Θ) (one ∷ Ξ) (C ●) -> Term Γ Δ (B ∷ Θ) (one ∷ Ξ) (C ●) -> Term Γ Δ' Θ Ξ' (C # omega ~> tbool) -> Term Γ (Δ₀ +ₘ Δ +ₘ omega ×ₘ Δ') Θ (Ξ₀ +ₘ Ξ +ₘ omega ×ₘ Ξ') (C ●) var● : ∀ {Γ Δ Θ Ξ A} -> (x : Θ ∋ A) -> (ad : All discardable Δ) -> varOk● Θ x Ξ -> Term Γ Δ Θ Ξ (A ●) pin : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ (A ●) -> Term Γ Δ₂ Θ Ξ₂ (A # omega ~> B ●) -> Term Γ (Δ₁ +ₘ Δ₂) Θ (Ξ₁ +ₘ Ξ₂) ((A ⊗ B) ●) unlift : ∀ {Γ Δ Θ Ξ A B} -> Term Γ Δ Θ Ξ (A ● ⊸ B ●) -> Term Γ (omega ×ₘ Δ) Θ (omega ×ₘ Ξ) (A ↔ B) fapp : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ (A ↔ B) -> Term Γ Δ₂ Θ Ξ₂ A -> Term Γ (Δ₁ +ₘ omega ×ₘ Δ₂) Θ (Ξ₁ +ₘ omega ×ₘ Ξ₂) B bapp : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ (A ↔ B) -> Term Γ Δ₂ Θ Ξ₂ B -> Term Γ (Δ₁ +ₘ omega ×ₘ Δ₂) Θ (Ξ₁ +ₘ omega ×ₘ Ξ₂) A -- fwd and bwd are obtained as derived constructs. fwd : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ (A ● ⊸ B ●) -> Term Γ Δ₂ Θ Ξ₂ A -> Term Γ (omega ×ₘ Δ₁ +ₘ omega ×ₘ Δ₂) Θ (omega ×ₘ Ξ₁ +ₘ omega ×ₘ Ξ₂) B fwd e1 e2 = fapp (unlift e1) e2 bwd : ∀ {Γ Δ₁ Δ₂ Θ Ξ₁ Ξ₂ A B} -> Term Γ Δ₁ Θ Ξ₁ (A ● ⊸ B ●) -> Term Γ Δ₂ Θ Ξ₂ B -> Term Γ (omega ×ₘ Δ₁ +ₘ omega ×ₘ Δ₂) Θ (omega ×ₘ Ξ₁ +ₘ omega ×ₘ Ξ₂) A bwd e1 e2 = bapp (unlift e1) e2 -- compatΘ Θ Ξ Θ' Ξ' asserts that environments ((Θ , Ξ) and -- (Θ' , Ξ')) differ only in variables with multiplicity zero. That -- is, (Θ , Ξ) and (Θ' , Ξ') denote the same environement in -- paper's representation. data compatΘ : (Θ : TyEnv) (Ξ : MultEnv (length Θ)) (Θ' : TyEnv) (Ξ' : MultEnv (length Θ')) -> Set where compat-[] : compatΘ [] [] [] [] compat-ext-here : ∀ {Θ Ξ Θ' Ξ' A} -> compatΘ Θ Ξ Θ' Ξ' -> compatΘ Θ Ξ (A ∷ Θ') (zero ∷ Ξ') compat-reduce-here : ∀ {Θ Ξ Θ' Ξ' A} -> compatΘ Θ Ξ Θ' Ξ' -> compatΘ (A ∷ Θ) (zero ∷ Ξ) Θ' Ξ' compat-skip : ∀ {Θ Ξ Θ' Ξ' A m } -> compatΘ Θ Ξ Θ' Ξ' -> compatΘ (A ∷ Θ) (m ∷ Ξ) (A ∷ Θ') (m ∷ Ξ') -- Some useful examples of compatΘ ext-id : ∀ {Θ Ξ} -> compatΘ Θ Ξ Θ Ξ ext-id {[]} {[]} = compat-[] ext-id {_ ∷ Θ} {_ ∷ Ξ} = compat-skip (ext-id {Θ} {Ξ}) smashΘ : ∀ {Θ} -> compatΘ Θ ∅ [] ∅ smashΘ {[]} = compat-[] smashΘ {_ ∷ Θ} = compat-reduce-here smashΘ extendΘ : ∀ {Θ} -> compatΘ [] ∅ Θ ∅ extendΘ {[]} = compat-[] extendΘ {_ ∷ Θ} = compat-ext-here extendΘ adjust∅Θ : ∀ {Θ Θ'} -> compatΘ Θ ∅ Θ' ∅ adjust∅Θ {[]} = extendΘ adjust∅Θ {_ ∷ Θ} = compat-reduce-here adjust∅Θ -- Some properties on compatΘ compatΘ-∅ : ∀ {Θ Θ' Ξ'} -> compatΘ Θ ∅ Θ' Ξ' -> Ξ' ≡ ∅ compatΘ-∅ compat-[] = refl compatΘ-∅ (compat-reduce-here ext) = compatΘ-∅ ext compatΘ-∅ (compat-ext-here ext) = cong (_∷_ zero) (compatΘ-∅ ext) compatΘ-∅ (compat-skip ext) = cong (_∷_ zero) (compatΘ-∅ ext) compatΘ-split : ∀ {Θ Ξ₁ Ξ₂ Θ' Ξ'} -> compatΘ Θ (Ξ₁ +ₘ Ξ₂) Θ' Ξ' -> ∃ λ (Ξ₁' : MultEnv (length Θ')) -> ∃ λ (Ξ₂' : MultEnv (length Θ')) -> compatΘ Θ Ξ₁ Θ' Ξ₁' × compatΘ Θ Ξ₂ Θ' Ξ₂' × Ξ₁' +ₘ Ξ₂' ≡ Ξ' compatΘ-split {[]} {[]} {[]} {.[]} {.[]} compat-[] = ∅ , ∅ , compat-[] , compat-[] , refl compatΘ-split {[]} {[]} {[]} {.(_ ∷ _)} {.(zero ∷ _)} (compat-ext-here ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , zero ∷ Ξ₂' , compat-ext-here ext₁ , compat-ext-here ext₂ , refl compatΘ-split {x ∷ Θ} {zero ∷ Ξ₁} {.zero ∷ Ξ₂} {[]} {[]} (compat-reduce-here ext) with compatΘ-split ext ... | [] , [] , ext₁ , ext₂ , eq = [] , [] , compat-reduce-here ext₁ , compat-reduce-here ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} {[]} {[]} () compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {one ∷ Ξ₂} {[]} {[]} () compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {omega ∷ Ξ₂} {[]} {[]} () compatΘ-split {x ∷ Θ} {zero ∷ Ξ₁} {x₂ ∷ Ξ₂} {x₃ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-split {x ∷ Θ} {zero ∷ Ξ₁} {x₂ ∷ Ξ₂} ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , zero ∷ Ξ₂' , compat-ext-here ext₁ , compat-ext-here ext₂ , refl compatΘ-split {x ∷ Θ} {zero ∷ Ξ₁} {.zero ∷ Ξ₂} {x₃ ∷ Θ'} {x₄ ∷ Ξ'} (compat-reduce-here ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , eq = Ξ₁' , Ξ₂' , compat-reduce-here ext₁ , compat-reduce-here ext₂ , eq compatΘ-split {x ∷ Θ} {zero ∷ Ξ₁} {x₂ ∷ Ξ₂} {.x ∷ Θ'} {.x₂ ∷ Ξ'} (compat-skip ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , x₂ ∷ Ξ₂' , compat-skip ext₁ , compat-skip ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} {x₃ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , zero ∷ Ξ₂' , compat-ext-here ext₁ , compat-ext-here ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {zero ∷ Ξ₂} {.x ∷ Θ'} {.one ∷ Ξ'} (compat-skip ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = one ∷ Ξ₁' , zero ∷ Ξ₂' , compat-skip ext₁ , compat-skip ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {one ∷ Ξ₂} {x₃ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {one ∷ Ξ₂} ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , zero ∷ Ξ₂' , compat-ext-here ext₁ , compat-ext-here ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {one ∷ Ξ₂} {.x ∷ Θ'} {.omega ∷ Ξ'} (compat-skip ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = one ∷ Ξ₁' , one ∷ Ξ₂' , compat-skip ext₁ , compat-skip ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {omega ∷ Ξ₂} {x₃ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {omega ∷ Ξ₂} ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , zero ∷ Ξ₂' , compat-ext-here ext₁ , compat-ext-here ext₂ , refl compatΘ-split {x ∷ Θ} {one ∷ Ξ₁} {omega ∷ Ξ₂} {.x ∷ Θ'} {.omega ∷ Ξ'} (compat-skip ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = one ∷ Ξ₁' , omega ∷ Ξ₂' , compat-skip ext₁ , compat-skip ext₂ , refl compatΘ-split {x ∷ Θ} {omega ∷ Ξ₁} {x₂ ∷ Ξ₂} {x₃ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-split {x ∷ Θ} {omega ∷ Ξ₁} {x₂ ∷ Ξ₂} ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = zero ∷ Ξ₁' , zero ∷ Ξ₂' , compat-ext-here ext₁ , compat-ext-here ext₂ , refl compatΘ-split {x ∷ Θ} {omega ∷ Ξ₁} {x₂ ∷ Ξ₂} {.x ∷ Θ'} {.omega ∷ Ξ'} (compat-skip ext) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = omega ∷ Ξ₁' , x₂ ∷ Ξ₂' , compat-skip ext₁ , compat-skip ext₂ , refl compatΘ-preserves-all-no-omega : ∀ {Θ Ξ Θ' Ξ'} -> compatΘ Θ Ξ Θ' Ξ' -> all-no-omega Ξ -> all-no-omega Ξ' compatΘ-preserves-all-no-omega compat-[] ano = ano compatΘ-preserves-all-no-omega (compat-ext-here ext) ano = zero ∷ compatΘ-preserves-all-no-omega ext ano compatΘ-preserves-all-no-omega (compat-reduce-here ext) (px ∷ ano) = compatΘ-preserves-all-no-omega ext ano compatΘ-preserves-all-no-omega (compat-skip ext) (px ∷ ano) = px ∷ compatΘ-preserves-all-no-omega ext ano compatΘ-preserves-all-zero : ∀ {Θ Ξ Θ' Ξ'} -> compatΘ Θ Ξ Θ' Ξ' -> all-zero Ξ -> all-zero Ξ' compatΘ-preserves-all-zero compat-[] az = az compatΘ-preserves-all-zero (compat-ext-here ext) az = refl ∷ compatΘ-preserves-all-zero ext az compatΘ-preserves-all-zero (compat-reduce-here ext) (px ∷ az) = compatΘ-preserves-all-zero ext az compatΘ-preserves-all-zero (compat-skip ext) (px ∷ az) = px ∷ compatΘ-preserves-all-zero ext az compatΘ-preserves-varOk● : ∀ {Θ Ξ Θ' Ξ' A} {x : Θ ∋ A} -> compatΘ Θ Ξ Θ' Ξ' -> varOk● Θ x Ξ -> ∃ λ (x' : Θ' ∋ A) -> varOk● Θ' x' Ξ' compatΘ-preserves-varOk● (compat-ext-here ext) ok with compatΘ-preserves-varOk● ext ok ... | x' , ok' = vs x' , there ok' compatΘ-preserves-varOk● (compat-reduce-here ext) (there ok) = compatΘ-preserves-varOk● ext ok compatΘ-preserves-varOk● (compat-skip ext) (there ok) with compatΘ-preserves-varOk● ext ok ... | x' , ok' = vs x' , there ok' compatΘ-preserves-varOk● (compat-skip ext) (here ad) = vz , here (compatΘ-preserves-all-zero ext ad) compatΘ-×ₘ : ∀ {Θ m Ξ Θ' Ξ'} -> compatΘ Θ (m ×ₘ Ξ) Θ' Ξ' -> ∃ λ (Ξ'' : MultEnv (length Θ')) -> compatΘ Θ Ξ Θ' Ξ'' × m ×ₘ Ξ'' ≡ Ξ' compatΘ-×ₘ {[]} {m} {[]} {.[]} {.[]} compat-[] = [] , compat-[] , refl compatΘ-×ₘ {[]} {m} {[]} {.(_ ∷ _)} {.(zero ∷ _)} (compat-ext-here ext) with compatΘ-×ₘ {[]} {m} {[]} ext ... | Ξ' , ext' , refl = zero ∷ Ξ' , compat-ext-here ext' , cong (_∷ m ×ₘ Ξ') (mul₀-m-zero _) compatΘ-×ₘ {_ ∷ Θ} {one} {.zero ∷ Ξ} {[]} {[]} (compat-reduce-here ext) with compatΘ-×ₘ ext ... | [] , ext' , eq = [] , compat-reduce-here ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {zero ∷ Ξ} {[]} {[]} (compat-reduce-here ext) with compatΘ-×ₘ ext ... | [] , ext' , eq = [] , compat-reduce-here ext' , refl compatΘ-×ₘ {_ ∷ Θ} {one} {n ∷ Ξ} {_ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , refl = zero ∷ Ξ'' , compat-ext-here ext' , refl compatΘ-×ₘ {_ ∷ Θ} {one} {.zero ∷ Ξ} {_ ∷ Θ'} {n' ∷ Ξ'} (compat-reduce-here ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , eq = Ξ'' , compat-reduce-here ext' , eq compatΘ-×ₘ {_ ∷ Θ} {one} {n ∷ Ξ} {_ ∷ Θ'} {.n ∷ Ξ'} (compat-skip ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , refl = n ∷ Ξ'' , compat-skip ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {zero ∷ Ξ} {_ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-×ₘ {m = omega} {zero ∷ Ξ} ext ... | Ξ'' , ext' , refl = zero ∷ Ξ'' , compat-ext-here ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {zero ∷ Ξ} {_ ∷ Θ'} {n' ∷ Ξ'} (compat-reduce-here ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , eq = Ξ'' , compat-reduce-here ext' , eq compatΘ-×ₘ {_ ∷ Θ} {omega} {zero ∷ Ξ} {_ ∷ Θ'} {.zero ∷ Ξ'} (compat-skip ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , refl = zero ∷ Ξ'' , compat-skip ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {one ∷ Ξ} {_ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-×ₘ {m = omega} {one ∷ Ξ} ext ... | Ξ'' , ext' , refl = zero ∷ Ξ'' , compat-ext-here ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {one ∷ Ξ} {_ ∷ Θ'} {.omega ∷ Ξ'} (compat-skip ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , refl = one ∷ Ξ'' , compat-skip ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {omega ∷ Ξ} {_ ∷ Θ'} {.zero ∷ Ξ'} (compat-ext-here ext) with compatΘ-×ₘ {m = omega} {omega ∷ Ξ} ext ... | Ξ'' , ext' , refl = zero ∷ Ξ'' , compat-ext-here ext' , refl compatΘ-×ₘ {_ ∷ Θ} {omega} {omega ∷ Ξ} {_ ∷ Θ'} {.omega ∷ Ξ'} (compat-skip ext) with compatΘ-×ₘ ext ... | Ξ'' , ext' , refl = omega ∷ Ξ'' , compat-skip ext' , refl -- Well-typed terms can also be typed compatible environments.Due to a -- historical reason, this property is called weakenΘ-term as -- compatΘ was initially used only for adding variables with -- multiplicity zero. weakenΘ-term : ∀ {Γ Δ Θ Ξ Θ' Ξ' A} -> compatΘ Θ Ξ Θ' Ξ' -> Term Γ Δ Θ Ξ A -> Term Γ Δ Θ' Ξ' A weakenΘ-term ext (var x ok) with compatΘ-∅ ext ... | refl = var x ok weakenΘ-term ext (abs m t) = abs m (weakenΘ-term ext t) weakenΘ-term ext (app t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl with compatΘ-×ₘ ext₂ ... | Ξ₂'' , ext₂' , refl = app (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂' t₂) weakenΘ-term ext (unit ad) with compatΘ-∅ ext ... | refl = unit ad weakenΘ-term ext (letunit m t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl with compatΘ-×ₘ ext₁ ... | Ξ₁'' , ext₁' , refl = letunit m (weakenΘ-term ext₁' t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (pair t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = pair (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (letpair m t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl with compatΘ-×ₘ ext₁ ... | Ξ₁'' , ext₁' , refl = letpair m (weakenΘ-term ext₁' t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (many m t) with compatΘ-×ₘ ext ... | Ξ'' , ext' , refl = many m (weakenΘ-term ext' t) weakenΘ-term ext (unmany m' t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl with compatΘ-×ₘ ext₁ ... | Ξ₁'' , ext₁' , refl = unmany m' (weakenΘ-term ext₁' t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (inl t) = inl (weakenΘ-term ext t) weakenΘ-term ext (inr t) = inr (weakenΘ-term ext t) weakenΘ-term ext (case m t₀ t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl with compatΘ-×ₘ ext₁ ... | Ξ₁'' , ext₁' , refl = case m (weakenΘ-term ext₁' t₀) (weakenΘ-term ext₂ t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (roll t) = roll (weakenΘ-term ext t) weakenΘ-term ext (unroll t) = unroll (weakenΘ-term ext t) weakenΘ-term ext (unit● ad) with compatΘ-∅ ext ... | refl = unit● ad weakenΘ-term ext (letunit● t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = letunit● (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (pair● t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = pair● (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (letpair● t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = letpair● (weakenΘ-term ext₁ t₁) (weakenΘ-term (compat-skip (compat-skip ext₂)) t₂) weakenΘ-term ext (inl● t) = inl● (weakenΘ-term ext t) weakenΘ-term ext (inr● t) = inr● (weakenΘ-term ext t) weakenΘ-term ext (case● t t₁ t₂ t₃) with compatΘ-split ext ... | _ , _ , ext₁₂ , ext₃ , refl with compatΘ-split ext₁₂ ... | _ , _ , ext₁ , ext₂ , refl with compatΘ-×ₘ ext₃ ... | _ , ext₃' , refl = case● (weakenΘ-term ext₁ t) (weakenΘ-term (compat-skip ext₂) t₁) (weakenΘ-term (compat-skip ext₂) t₂) (weakenΘ-term ext₃' t₃) weakenΘ-term ext (var● x ad ok) with compatΘ-preserves-varOk● ext ok ... | x' , ok' = var● x' ad ok' weakenΘ-term ext (pin t₁ t₂) with compatΘ-split ext ... | Ξ₁' , Ξ₂' , ext₁ , ext₂ , refl = pin (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂ t₂) weakenΘ-term ext (unlift t) = CASE compatΘ-×ₘ ext OF λ { (_ , ext' , refl) -> unlift (weakenΘ-term ext' t) } weakenΘ-term ext (fapp t₁ t₂) = CASE compatΘ-split ext OF λ { (_ , _ , ext₁ , ext₂ , refl) -> CASE compatΘ-×ₘ ext₂ OF λ { (_ , ext₂' , refl) -> fapp (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂' t₂) } } weakenΘ-term ext (bapp t₁ t₂) = CASE compatΘ-split ext OF λ { (_ , _ , ext₁ , ext₂ , refl) -> CASE compatΘ-×ₘ ext₂ OF λ { (_ , ext₂' , refl) -> bapp (weakenΘ-term ext₁ t₁) (weakenΘ-term ext₂' t₂) } }
{ "alphanum_fraction": 0.5367338941, "avg_line_length": 36.938752784, "ext": "agda", "hexsha": "bf95c673d500a82dbb8afb606fd2a78a180d4f71", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kztk-m/sparcl-agda", "max_forks_repo_path": "Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kztk-m/sparcl-agda", "max_issues_repo_path": "Syntax.agda", "max_line_length": 213, "max_stars_count": null, "max_stars_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kztk-m/sparcl-agda", "max_stars_repo_path": "Syntax.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14908, "size": 33171 }
module GUIgeneric.GUIDefinitions where open import GUIgeneric.Prelude open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) open import Relation.Nullary data _⊎Comp_ {a b} (A : Set a) (B : Set b) : Set (a ⊔Level b) where button : (x : A) → A ⊎Comp B txtbox : (y : B) → A ⊎Comp B data Direction : Set where left right : Direction data Comp : Set where frame atomicComp : Comp SubCompsIndex : Comp → Set SubCompsIndex frame = ⊤ SubCompsIndex atomicComp = ⊥ data isSubComp : (c c' : Comp) → Set where buttonFrame : isSubComp atomicComp frame subComp : (c : Comp){c' : Comp} (is : isSubComp c' c) → Comp subComp .frame {cButton} buttonFrame = cButton createParameters : Comp → Set createParameters atomicComp = String ⊎Comp String createParameters _ = ⊤ data IsOptimized : Set where optimized notOptimzed : IsOptimized data CompEls (c : Comp) : Set where createC : createParameters c → CompEls c add : {c' : Comp}(c'c : isSubComp c' c) (e' : CompEls c')(e : CompEls c)(isOpt : IsOptimized) → CompEls c data _<c_ : {c c' : Comp}(e : CompEls c)(e' : CompEls c') → Set where addsub : {c' c : Comp}(c'c : isSubComp c' c) (e' : CompEls c') (e : CompEls c) (isOpt : IsOptimized) → e' <c add c'c e' e isOpt addlift : {c' c : Comp}(c'c : isSubComp c' c) (e' : CompEls c') (e : CompEls c) (isOpt : IsOptimized) → e <c add c'c e' e isOpt data _<c+_ : {c c' : Comp}(e : CompEls c)(e' : CompEls c') → Set where in1 : {c c' : Comp} (e : CompEls c)(e' : CompEls c') (ee' : e <c e') → e <c+ e' in2 : {c c' c'' : Comp} (e : CompEls c)(e' : CompEls c')(e'' : CompEls c'') (ee' : e <c e')(e'e'' : e' <c+ e'') → (e <c+ e'') data _<=c+_ : {c c' : Comp}(e : CompEls c)(e' : CompEls c') → Set where in0= : {c : Comp} (e : CompEls c) → e <=c+ e in2= : {c c' c'' : Comp} (e : CompEls c)(e' : CompEls c') (e'' : CompEls c'') → e <c e' → e' <=c+ e'' → e <=c+ e'' in1= : {c c' : Comp} (e : CompEls c)(e' : CompEls c') (ee' : e <c e') → e <=c+ e' in1= e e' ee' = in2= e e' e' ee' (in0= e') trans<=c+ : {c c' c'' : Comp} (e : CompEls c)(e' : CompEls c') (e'' : CompEls c'') (ee' : e <=c+ e') (e'e'' : e' <=c+ e'') → e <=c+ e'' trans<=c+ {c} {.c} {c''} e .e e'' (in0= .e) e'e'' = e'e'' trans<=c+ {c} {c'} {c''} e e' e'' (in2= .e e'₁ .e' ee'₁ e'₁e') e'e'' = in2= e e'₁ e'' ee'₁ (trans<=c+ e'₁ e' e'' e'₁e' e'e'') -- -- DEC Equality -- module _ where sameOptimized : IsOptimized → IsOptimized → Bool sameOptimized optimized optimized = true sameOptimized notOptimzed notOptimzed = true sameOptimized _ _ = false _≟CompBool_ : {c c' : Comp} → CompEls c → CompEls c' → Bool _≟CompBool_ {frame} {frame} (add c₁c₂ c₁ c₂ isOpt) (add c₃c₄ c₃ c₄ isOpt') = (c₁ ≟CompBool c₃) ∧ (c₂ ≟CompBool c₄) ∧ (sameOptimized isOpt isOpt') _≟CompBool_ {atomicComp} {atomicComp} (add {frame} () _ _ _) _≟CompBool_ {atomicComp} {atomicComp} (add {atomicComp} () _ _ _) _≟CompBool_ {frame} {frame} (createC tt) (createC tt) = true _≟CompBool_ {atomicComp} {atomicComp} (createC (button x)) (createC (button y)) = x ==Str y _≟CompBool_ {atomicComp} {atomicComp} (createC (txtbox x)) (createC (txtbox y)) = x ==Str y _≟CompBool_ {atomicComp} {atomicComp} (createC (button x)) (createC (txtbox y)) = false _≟CompBool_ {atomicComp} {atomicComp} (createC (txtbox x)) (createC (button y)) = false _≟CompBool_ {frame} {atomicComp} _ _ = false _≟CompBool_ {atomicComp} {frame} _ _ = false createC _ ≟CompBool add _ _ _ _ = false add _ _ _ _ ≟CompBool createC _ = false unused = Dec {- add buttonFrame a c notOptimzed ≡ add buttonFrame b d notOptimzedadd buttonFrame a c notOptimzed ≡ add buttonFrame b d notOptimzed -} lemmaAddEqProj1 : ∀ {a} {c} {opt} {b} {d} {opt'} → add buttonFrame a c opt ≡ add buttonFrame b d opt' → a ≡ b lemmaAddEqProj1 refl = refl lemmaAddEqProj2 : ∀ {a} {c} {opt} {b} {d} {opt'} → add buttonFrame a c opt ≡ add buttonFrame b d opt' → c ≡ d lemmaAddEqProj2 refl = refl lemmaCreateCBtnEq : ∀ {s1} {s2} → ((createC (button s1)) ≡ (createC (button s2))) → (s1 ≡ s2) lemmaCreateCBtnEq refl = refl lemmaCreateCTxtbxEq : ∀ {s1} {s2} → ((createC (txtbox s1)) ≡ (createC (txtbox s2))) → (s1 ≡ s2) lemmaCreateCTxtbxEq refl = refl mutual _≟CompFr_ : Decidable {A = CompEls frame} _≡_ createC tt ≟CompFr createC tt = Dec.yes refl createC tt ≟CompFr add _ _ _ _ = Dec.no (λ ()) add _ _ _ _ ≟CompFr createC _ = Dec.no (λ ()) add _ _ _ optimized ≟CompFr add _ _ _ notOptimzed = Dec.no (λ ()) add _ _ _ notOptimzed ≟CompFr add _ _ _ optimized = Dec.no (λ ()) add buttonFrame a c optimized ≟CompFr add buttonFrame b d optimized with (a ≟Comp b) | (c ≟Comp d) ... | Dec.yes p | Dec.yes q = yes (cong₂ (λ x y → add buttonFrame x y optimized ) p q) ... | Dec.yes p | Dec.no ¬p = no (λ addp → ¬p (lemmaAddEqProj2 addp)) ... | Dec.no ¬p | _ = no ((λ addp → ¬p (lemmaAddEqProj1 addp))) add buttonFrame a c notOptimzed ≟CompFr add buttonFrame b d notOptimzed with (a ≟Comp b) | (c ≟Comp d) ... | yes p | yes q = yes (cong₂ (λ x y → add buttonFrame x y notOptimzed ) p q) ... | yes p | no ¬p = no (λ addp → ¬p (lemmaAddEqProj2 addp)) ... | no ¬p | q = no ((λ addp → ¬p (lemmaAddEqProj1 addp))) _≟Comp_ : {c : Comp} → Decidable {A = CompEls c} _≡_ _≟Comp_ (createC _) (add _ _ _ isOpt) = Dec.no (λ ()) _≟Comp_ (add _ _ _ isOpt) (createC _) = Dec.no (λ ()) _≟Comp_ {atomicComp} (add () a b isOpt) (add cd c d isOpt') _≟Comp_ {frame} (createC tt) (createC tt) = Dec.yes refl _≟Comp_ {atomicComp} (createC (button s1)) (createC (button s2)) with (s1 ≟Str s2) ... | Dec.yes p = Dec.yes (cong (createC ∘ button) p) ... | Dec.no q = Dec.no (λ neq → q (lemmaCreateCBtnEq neq) ) _≟Comp_ {atomicComp} (createC (txtbox s1)) (createC (txtbox s2)) with (s1 ≟Str s2) ... | Dec.yes p = Dec.yes (cong (createC ∘ txtbox) p) ... | Dec.no q = Dec.no (λ neq → q (lemmaCreateCTxtbxEq neq) ) _≟Comp_ {atomicComp} (createC (button s1)) (createC (txtbox s2)) = Dec.no (λ ()) _≟Comp_ {atomicComp} (createC (txtbox s1)) (createC (button s2)) = Dec.no (λ ()) _≟Comp_ {frame} (add c'c x x₁ isOpt) (add c'c₁ y y₁ isOpt₁) = _≟CompFr_ (add c'c x x₁ isOpt) (add c'c₁ y y₁ isOpt₁) create-frame : CompEls frame create-frame = createC{frame} tt create-button : (s : String) → CompEls atomicComp create-button s = createC{atomicComp} (button s) create-txtbox : (s : String) → CompEls atomicComp create-txtbox s = createC{atomicComp} (txtbox s) validAdd : (c c' : Comp) → Set validAdd atomicComp frame = ⊤ validAdd _ _ = ⊥ addReturnType : (c c' : Comp){_ : validAdd c c'} → Set addReturnType atomicComp frame = CompEls frame addReturnType frame frame {()} addReturnType frame atomicComp {()} addReturnType atomicComp atomicComp {()} add' : {c c' : Comp}{va : validAdd c c'} → CompEls c → CompEls c' → (isOpt : IsOptimized) → addReturnType c c'{va} add' {atomicComp} {frame} bt fr isOpt = add buttonFrame bt fr isOpt add' {frame} {frame} {()} isOpt add' {frame} {atomicComp} {()} isOpt add' {atomicComp} {atomicComp} {()} isOpt properties : {c : Comp}(e : CompEls c) → Set properties {c} (add c'c e e' isOpt) = properties e × properties e' properties {frame} (createC x) = (ℕ × ℕ × ℕ × ℕ) properties {atomicComp} (createC x) = WxColor ComponentEls : Comp → Set ComponentEls = CompEls Component : Set Component = Comp
{ "alphanum_fraction": 0.5940465358, "avg_line_length": 32.8760683761, "ext": "agda", "hexsha": "b9af2b8e34705d69726a188645a419e5267f0052", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "stephanadls/state-dependent-gui", "max_forks_repo_path": "examples/GUIgeneric/GUIDefinitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "stephanadls/state-dependent-gui", "max_issues_repo_path": "examples/GUIgeneric/GUIDefinitions.agda", "max_line_length": 136, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "stephanadls/state-dependent-gui", "max_stars_repo_path": "examples/GUIgeneric/GUIDefinitions.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z", "num_tokens": 2962, "size": 7693 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Natural numbers with fast addition (for use together with -- DifferenceVec) ------------------------------------------------------------------------ module Data.DifferenceNat where open import Data.Nat as N using (ℕ) open import Function infixl 6 _+_ Diffℕ : Set Diffℕ = ℕ → ℕ 0# : Diffℕ 0# = λ k → k suc : Diffℕ → Diffℕ suc n = λ k → N.suc (n k) 1# : Diffℕ 1# = suc 0# _+_ : Diffℕ → Diffℕ → Diffℕ m + n = λ k → m (n k) toℕ : Diffℕ → ℕ toℕ n = n 0 -- fromℕ n is linear in the size of n. fromℕ : ℕ → Diffℕ fromℕ n = λ k → n ⟨ N._+_ ⟩ k
{ "alphanum_fraction": 0.4801223242, "avg_line_length": 17.6756756757, "ext": "agda", "hexsha": "e60e38bdd6db89e70236a500c86b80ace003656e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/DifferenceNat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/DifferenceNat.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/DifferenceNat.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 213, "size": 654 }
{-# OPTIONS --safe #-} module Generics where open import Data.Unit public using (⊤; tt) open import Generics.Prelude public using (liftω; liftω-inst) open import Generics.HasDesc public using (HasDesc) open import Generics.Reflection public using (deriveDesc) open import Generics.Helpers public open import Generics.Constructions.Case public using (deriveCase) open import Generics.Constructions.Cong public using (deriveCong) open import Generics.Constructions.DecEq public using (DecEq; _≟_; deriveDecEq) open import Generics.Constructions.Elim public using (deriveElim) open import Generics.Constructions.Fold public using (deriveFold) open import Generics.Constructions.Recursion public using (rec; Below) open import Generics.Constructions.Show public using (Show; show; deriveShow)
{ "alphanum_fraction": 0.7250280584, "avg_line_length": 52.4117647059, "ext": "agda", "hexsha": "f448f54574734af232b1de981a647f0b0e139b63", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics.agda", "max_line_length": 84, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 191, "size": 891 }
module Data.BitVector.NumericOrder where open import Data.Empty open import Data.Sum open import Data.Vec open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Data.Nat hiding (decTotalOrder; _≟_; _<_; _≤_; module _≤_; _≤?_; compare) renaming (zero to Nzero; suc to Nsuc) open import Data.BitVector open import Function infix 4 _<_ infix 4 _≤_ mutual data _<_ : ∀ {n} → BitVector n → BitVector n → Set where b#<b# : ∀ {n} {x y : BitVector n} {b#} → (pf : x < y) → (b# ∷ x) < (b# ∷ y) 0#<1# : ∀ {n} {x y : BitVector n} → (pf : x ≤ y) → (0# ∷ x) < (1# ∷ y) 1#<0# : ∀ {n} {x y : BitVector n} → (pf : x < y) → (1# ∷ x) < (0# ∷ y) -- Silly agda bug is preventing me from using the _≤_ name even though it's not in scope :( data _≤_ : ∀ {n} → BitVector n → BitVector n → Set where []≤[] : [] ≤ [] b#≤b# : ∀ {n} {x y : BitVector n} {b#} → (pf : x ≤ y) → (b# ∷ x) ≤ (b# ∷ y) 0#≤1# : ∀ {n} {x y : BitVector n} → (pf : x ≤ y) → (0# ∷ x) ≤ (1# ∷ y) 1#≤0# : ∀ {n} {x y : BitVector n} → (pf : x < y) → (1# ∷ x) ≤ (0# ∷ y) <-irr : ∀ {n} {x : BitVector n} → ¬ x < x <-irr {0} () <-irr (b#<b# pf) = <-irr pf ≤-refl : ∀ {n} → _≡_ ⇒ (_≤_ {n}) ≤-refl {0} {[]} refl = []≤[] ≤-refl {Nsuc n} {b# ∷ xs} refl = b#≤b# (≤-refl refl) opposites : ∀ {n} {x y : BitVector n} → x ≤ y → y < x → ⊥ opposites []≤[] () opposites (b#≤b# pf₀) (b#<b# pf₁) = opposites pf₀ pf₁ opposites (0#≤1# pf₀) (1#<0# pf₁) = opposites pf₀ pf₁ opposites (1#≤0# pf₀) (0#<1# pf₁) = opposites pf₁ pf₀ ≤-antisym : ∀ {n} → Antisymmetric _≡_ (_≤_ {n}) ≤-antisym []≤[] q = refl ≤-antisym (b#≤b# pf₀) (b#≤b# pf₁) rewrite ≤-antisym pf₀ pf₁ = refl ≤-antisym (0#≤1# (b#≤b# pf₀)) (1#≤0# (b#<b# pf₁)) = ⊥-elim (opposites pf₀ pf₁) ≤-antisym (0#≤1# (1#≤0# pf₀)) (1#≤0# (0#<1# pf₁)) = ⊥-elim (opposites pf₁ pf₀) ≤-antisym (0#≤1# (0#≤1# pf₀)) (1#≤0# (1#<0# pf₁)) = ⊥-elim (opposites pf₀ pf₁) ≤-antisym (0#≤1# pf₀) (1#≤0# pf₁) = ⊥-elim (opposites pf₀ pf₁) ≤-antisym (1#≤0# pf₀) (0#≤1# pf₁) = ⊥-elim (opposites pf₁ pf₀) mutual ≤-<-trans-< : ∀ {n} {x y z : BitVector n} → x ≤ y → y < z → x < z ≤-<-trans-< []≤[] () ≤-<-trans-< (b#≤b# pf₀) (b#<b# pf₁) = b#<b# (≤-<-trans-< pf₀ pf₁) ≤-<-trans-< (b#≤b# pf₀) (0#<1# pf₁) = 0#<1# (≤-trans pf₀ pf₁) ≤-<-trans-< (b#≤b# pf₀) (1#<0# pf₁) = 1#<0# (≤-<-trans-< pf₀ pf₁) ≤-<-trans-< (0#≤1# pf₀) (b#<b# pf₁) = 0#<1# (≤-<-trans-≤ pf₀ pf₁) ≤-<-trans-< (0#≤1# pf₀) (1#<0# pf₁) = b#<b# (≤-<-trans-< pf₀ pf₁) ≤-<-trans-< (1#≤0# pf₀) (b#<b# pf₁) = 1#<0# (<-trans pf₀ pf₁) ≤-<-trans-< (1#≤0# pf₀) (0#<1# pf₁) = b#<b# (<-≤-trans-< pf₀ pf₁) <-≤-trans-< : ∀ {n} {x y z : BitVector n} → x < y → y ≤ z → x < z <-≤-trans-< (b#<b# pf₀) (b#≤b# pf₁) = b#<b# (<-≤-trans-< pf₀ pf₁) <-≤-trans-< (b#<b# pf₀) (0#≤1# pf₁) = 0#<1# (<-≤-trans-≤ pf₀ pf₁) <-≤-trans-< (b#<b# pf₀) (1#≤0# pf₁) = 1#<0# (<-trans pf₀ pf₁) <-≤-trans-< (0#<1# pf₀) (b#≤b# pf₁) = 0#<1# (≤-trans pf₀ pf₁) <-≤-trans-< (0#<1# pf₀) (1#≤0# pf₁) = b#<b# (≤-<-trans-< pf₀ pf₁) <-≤-trans-< (1#<0# pf₀) (b#≤b# pf₁) = 1#<0# (<-≤-trans-< pf₀ pf₁) <-≤-trans-< (1#<0# pf₀) (0#≤1# pf₁) = b#<b# (<-≤-trans-< pf₀ pf₁) ≤-<-trans-≤ : ∀ {n} {x y z : BitVector n} → x ≤ y → y < z → x ≤ z ≤-<-trans-≤ []≤[] () ≤-<-trans-≤ (b#≤b# pf₀) (b#<b# pf₁) = b#≤b# (≤-<-trans-≤ pf₀ pf₁) ≤-<-trans-≤ (b#≤b# pf₀) (0#<1# pf₁) = 0#≤1# (≤-trans pf₀ pf₁) ≤-<-trans-≤ (b#≤b# pf₀) (1#<0# pf₁) = 1#≤0# (≤-<-trans-< pf₀ pf₁) ≤-<-trans-≤ (0#≤1# pf₀) (b#<b# pf₁) = 0#≤1# (≤-<-trans-≤ pf₀ pf₁) ≤-<-trans-≤ (0#≤1# pf₀) (1#<0# pf₁) = b#≤b# (≤-<-trans-≤ pf₀ pf₁) ≤-<-trans-≤ (1#≤0# pf₀) (b#<b# pf₁) = 1#≤0# (<-trans pf₀ pf₁) ≤-<-trans-≤ (1#≤0# pf₀) (0#<1# pf₁) = b#≤b# (<-≤-trans-≤ pf₀ pf₁) <-≤-trans-≤ : ∀ {n} {x y z : BitVector n} → x < y → y ≤ z → x ≤ z <-≤-trans-≤ (b#<b# pf₀) (b#≤b# pf₁) = b#≤b# (<-≤-trans-≤ pf₀ pf₁) <-≤-trans-≤ (b#<b# pf₀) (0#≤1# pf₁) = 0#≤1# (<-≤-trans-≤ pf₀ pf₁) <-≤-trans-≤ (b#<b# pf₀) (1#≤0# pf₁) = 1#≤0# (<-trans pf₀ pf₁) <-≤-trans-≤ (0#<1# pf₀) (b#≤b# pf₁) = 0#≤1# (≤-trans pf₀ pf₁) <-≤-trans-≤ (0#<1# pf₀) (1#≤0# pf₁) = b#≤b# (≤-<-trans-≤ pf₀ pf₁) <-≤-trans-≤ (1#<0# pf₀) (b#≤b# pf₁) = 1#≤0# (<-≤-trans-< pf₀ pf₁) <-≤-trans-≤ (1#<0# pf₀) (0#≤1# pf₁) = b#≤b# (<-≤-trans-≤ pf₀ pf₁) <-trans : ∀ {n} → Transitive (_<_ {n}) <-trans (b#<b# pf₀) (b#<b# pf₁) = b#<b# (<-trans pf₀ pf₁) <-trans (b#<b# pf₀) (0#<1# pf₁) = 0#<1# (<-≤-trans-≤ pf₀ pf₁) <-trans (b#<b# pf₀) (1#<0# pf₁) = 1#<0# (<-trans pf₀ pf₁) <-trans (0#<1# pf₀) (b#<b# pf₁) = 0#<1# (≤-<-trans-≤ pf₀ pf₁) <-trans (0#<1# pf₀) (1#<0# pf₁) = b#<b# (≤-<-trans-< pf₀ pf₁) <-trans (1#<0# pf₀) (b#<b# pf₁) = 1#<0# (<-trans pf₀ pf₁) <-trans (1#<0# pf₀) (0#<1# pf₁) = b#<b# (<-≤-trans-< pf₀ pf₁) ≤-trans : ∀ {n} → Transitive (_≤_ {n}) ≤-trans []≤[] []≤[] = []≤[] ≤-trans (b#≤b# pf₀) (b#≤b# pf₁) = b#≤b# (≤-trans pf₀ pf₁) ≤-trans (b#≤b# pf₀) (0#≤1# pf₁) = 0#≤1# (≤-trans pf₀ pf₁) ≤-trans (b#≤b# pf₀) (1#≤0# pf₁) = 1#≤0# (≤-<-trans-< pf₀ pf₁) ≤-trans (0#≤1# pf₀) (b#≤b# pf₁) = 0#≤1# (≤-trans pf₀ pf₁) ≤-trans (0#≤1# pf₀) (1#≤0# pf₁) = b#≤b# (≤-<-trans-≤ pf₀ pf₁) ≤-trans (1#≤0# pf₀) (b#≤b# pf₁) = 1#≤0# (<-≤-trans-< pf₀ pf₁) ≤-trans (1#≤0# pf₀) (0#≤1# pf₁) = b#≤b# (<-≤-trans-≤ pf₀ pf₁) <⇒≤ : ∀ {n} {x y : BitVector n} → x < y → x ≤ y <⇒≤ (b#<b# pf) = b#≤b# (<⇒≤ pf) <⇒≤ (0#<1# pf) = 0#≤1# pf <⇒≤ (1#<0# pf) = 1#≤0# pf ≤⇒≡⊎< : ∀ {n} → {x y : BitVector n} → x ≤ y → x ≡ y ⊎ x < y ≤⇒≡⊎< []≤[] = inj₁ refl ≤⇒≡⊎< (b#≤b# pf) with ≤⇒≡⊎< pf ... | inj₁ refl = inj₁ refl ... | inj₂ x<y = inj₂ (b#<b# x<y) ≤⇒≡⊎< (0#≤1# pf) = inj₂ (0#<1# pf) ≤⇒≡⊎< (1#≤0# pf) = inj₂ (1#<0# pf) helper≢ : ∀ {n} {x y} {xs ys : BitVector n} → ¬ xs < ys → xs ≢ ys → ¬ x ∷ xs < y ∷ ys helper≢ xs≮ys xs≢ys (b#<b# pf) = xs≮ys pf helper≢ xs≮ys xs≢ys (1#<0# pf) = xs≮ys pf helper≢ xs≮ys xs≢ys (0#<1# pf) with ≤⇒≡⊎< pf ... | inj₁ x≡y = xs≢ys x≡y ... | inj₂ x<y = xs≮ys x<y helper≡ : ∀ {n} {xs : BitVector n} → ¬ 1# ∷ xs < 0# ∷ xs helper≡ (1#<0# pf) = <-irr pf compare : ∀ {n} → Trichotomous _≡_ (_<_ {n}) compare [] [] = tri≈ (λ ()) refl (λ ()) compare (x ∷ xs) (y ∷ ys) with compare xs ys compare (0# ∷ xs) (0# ∷ ys) | tri< a ¬b ¬c = tri< (b#<b# a) (¬b ∘ cong tail) (helper≢ ¬c (¬b ∘ sym)) compare (0# ∷ xs) (1# ∷ ys) | tri< a ¬b ¬c = tri< (0#<1# (<⇒≤ a)) (¬b ∘ cong tail) (helper≢ ¬c (¬b ∘ sym)) compare (1# ∷ xs) (0# ∷ ys) | tri< a ¬b ¬c = tri< (1#<0# a) (¬b ∘ cong tail) (helper≢ ¬c (¬b ∘ sym)) compare (1# ∷ xs) (1# ∷ ys) | tri< a ¬b ¬c = tri< (b#<b# a) (¬b ∘ cong tail) (helper≢ ¬c (¬b ∘ sym)) compare (0# ∷ xs) (0# ∷ ._) | tri≈ ¬a refl ¬c = tri≈ <-irr refl <-irr compare (0# ∷ xs) (1# ∷ ._) | tri≈ ¬a refl ¬c = tri< (0#<1# (≤-refl refl)) (λ ()) helper≡ compare (1# ∷ xs) (0# ∷ ._) | tri≈ ¬a refl ¬c = tri> helper≡ (λ ()) (0#<1# (≤-refl refl)) compare (1# ∷ xs) (1# ∷ ._) | tri≈ ¬a refl ¬c = tri≈ <-irr refl <-irr compare (0# ∷ xs) (0# ∷ ys) | tri> ¬a ¬b c = tri> (helper≢ ¬a ¬b) (¬b ∘ cong tail) (b#<b# c) compare (0# ∷ xs) (1# ∷ ys) | tri> ¬a ¬b c = tri> (helper≢ ¬a ¬b) (λ ()) (1#<0# c) compare (1# ∷ xs) (0# ∷ ys) | tri> ¬a ¬b c = tri> (helper≢ ¬a ¬b) (λ ()) (0#<1# (<⇒≤ c)) compare (1# ∷ xs) (1# ∷ ys) | tri> ¬a ¬b c = tri> (helper≢ ¬a ¬b) (¬b ∘ cong tail) (b#<b# c) ≤-total : ∀ {n} → Total (_≤_ {n}) ≤-total [] [] = inj₁ []≤[] ≤-total (x ∷ xs) (y ∷ ys) with compare xs ys ≤-total (0# ∷ xs) (0# ∷ ys) | tri< a ¬b ¬c = inj₁ (b#≤b# (<⇒≤ a)) ≤-total (0# ∷ xs) (1# ∷ ys) | tri< a ¬b ¬c = inj₁ (0#≤1# (<⇒≤ a)) ≤-total (1# ∷ xs) (0# ∷ ys) | tri< a ¬b ¬c = inj₁ (1#≤0# a) ≤-total (1# ∷ xs) (1# ∷ ys) | tri< a ¬b ¬c = inj₁ (b#≤b# (<⇒≤ a)) ≤-total (0# ∷ xs) (0# ∷ ys) | tri≈ ¬a b ¬c = inj₁ (b#≤b# (≤-refl b)) ≤-total (0# ∷ xs) (1# ∷ ys) | tri≈ ¬a b ¬c = inj₁ (0#≤1# (≤-refl b)) ≤-total (1# ∷ xs) (0# ∷ ys) | tri≈ ¬a b ¬c = inj₂ (0#≤1# (≤-refl (sym b))) ≤-total (1# ∷ xs) (1# ∷ ys) | tri≈ ¬a b ¬c = inj₁ (b#≤b# (≤-refl b)) ≤-total (0# ∷ xs) (0# ∷ ys) | tri> ¬a ¬b c = inj₂ (b#≤b# (<⇒≤ c)) ≤-total (0# ∷ xs) (1# ∷ ys) | tri> ¬a ¬b c = inj₂ (1#≤0# c) ≤-total (1# ∷ xs) (0# ∷ ys) | tri> ¬a ¬b c = inj₂ (0#≤1# (<⇒≤ c)) ≤-total (1# ∷ xs) (1# ∷ ys) | tri> ¬a ¬b c = inj₂ (b#≤b# (<⇒≤ c)) _≤?_ : ∀ {n} → Decidable (_≤_ {n}) x ≤? y with compare x y ... | tri< a ¬b ¬c = yes (<⇒≤ a) ... | tri≈ ¬a b ¬c = yes (≤-refl b) ... | tri> ¬a ¬b c = no helper where helper : ¬ x ≤ y helper x≤y with ≤⇒≡⊎< x≤y ... | inj₁ x≡y = ¬b x≡y ... | inj₂ x<y = ¬a x<y decTotalOrder : ∀ {n} → DecTotalOrder _ _ _ decTotalOrder {n} = record { Carrier = BitVector n ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = record { isTotalOrder = record { isPartialOrder = record { isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-refl ; trans = ≤-trans } ; antisym = ≤-antisym } ; total = ≤-total } ; _≟_ = _≟_ ; _≤?_ = _≤?_ } } strictTotalOrder : ∀ {n} → StrictTotalOrder _ _ _ strictTotalOrder {n} = record { Carrier = BitVector n ; _≈_ = _≡_ ; _<_ = _<_ ; isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = <-trans ; compare = compare } }
{ "alphanum_fraction": 0.4379292129, "avg_line_length": 43.2191780822, "ext": "agda", "hexsha": "7ab7df40218216352a370b17a5452ba1b2e1a3d5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z", "max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/bitvector", "max_forks_repo_path": "Data/BitVector/NumericOrder.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/bitvector", "max_issues_repo_path": "Data/BitVector/NumericOrder.agda", "max_line_length": 123, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/bitvector", "max_stars_repo_path": "Data/BitVector/NumericOrder.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z", "num_tokens": 5250, "size": 9465 }
{-# OPTIONS --cubical --safe #-} open import Prelude open import Relation.Binary open import Function.Injective module Relation.Binary.Construct.On {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} (f : A → B) (f-inj : Injective f) (ord : TotalOrder B ℓ₁ ℓ₂) where open TotalOrder ord renaming (refl to ≤-refl) _<′_ : A → A → Type _ x <′ y = f x < f y _≤′_ : A → A → Type _ x ≤′ y = f x ≤ f y on-ord : TotalOrder A ℓ₁ ℓ₂ StrictPreorder._<_ (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder on-ord)) = _<′_ StrictPreorder.trans (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder on-ord)) = <-trans StrictPreorder.irrefl (StrictPartialOrder.strictPreorder (TotalOrder.strictPartialOrder on-ord)) = irrefl StrictPartialOrder.conn (TotalOrder.strictPartialOrder on-ord) p q = f-inj _ _ (conn p q) Preorder._≤_ (PartialOrder.preorder (TotalOrder.partialOrder on-ord)) = _≤′_ Preorder.refl (PartialOrder.preorder (TotalOrder.partialOrder on-ord)) = ≤-refl Preorder.trans (PartialOrder.preorder (TotalOrder.partialOrder on-ord)) = ≤-trans PartialOrder.antisym (TotalOrder.partialOrder on-ord) p q = f-inj _ _ (antisym p q) TotalOrder._<?_ on-ord x y = f x <? f y TotalOrder.≰⇒> on-ord = ≰⇒> TotalOrder.≮⇒≥ on-ord = ≮⇒≥
{ "alphanum_fraction": 0.7154276579, "avg_line_length": 37.9090909091, "ext": "agda", "hexsha": "abb2c0a19167187ef6242032379578fa3494d5ba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Binary/Construct/On.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Binary/Construct/On.agda", "max_line_length": 106, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Binary/Construct/On.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 429, "size": 1251 }
-- Andreas, 2015-06-17 -- Postponing checkArguments dropped already inserted implicit arguments. {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.def.alias:100 -v tc.decl:10 -v tc.term.expr:20 -v tc.data.con:20 #-} -- {-# OPTIONS -v tc.meta.assign:10 #-} -- {-# OPTIONS -v tc.term.expr.args:80 #-} -- {-# OPTIONS -v tc.term.args:30 #-} postulate S : Set Cxt : Set N : (Γ : Cxt) → Set NeP : ∀ (i : S) Δ (n : N Δ) → Set inhN : ∀ i Δ (v : N Δ) → NeP i Δ v data Val (Δ : Cxt) : Set where ne : ∀ (n : N Δ) → Val Δ -- BEGIN mutual data ValP i Δ : (v : Val Δ) → Set NeO : _ data ValP i Δ where cn : ∀ (n : N Δ) → NeO n i → ValP i Δ (ne n) -- adding constructor cn : (n : N Δ) → _24 i Δ n → ValP i Δ (ne n) -- LATER : term _24 i Δ n := NeO n i -- SHOULD BE: term _24 i Δ n := NeO {Δ} i n -- must be last in mutual block for error -- implicit argument needed for error -- NeO_[_] : ∀ {Δ} (n : N Δ) (i : S) → Set -- full type signature removes error NeO = λ {Δ} n i → NeP i Δ n -- END mutual inhVal : ∀ i Δ (v : Val Δ) → ValP i Δ v inhVal i Δ (ne n) = cn n (inhN i Δ n) -- Checking inhN i Δ n : NeO n [ i ] --> λ i₁ → NeP i₁ n i -- ANALYSIS: -- checked type signature NeO : _20 -- checking constructor cn : (n : N Δ) → NeO n i → ValP i Δ (ne n) -- adding constructor cn : (n : N Δ) → _24 i Δ n → ValP i Δ (ne n) -- postponed checking arguments [n, i] against _20 -- progress: checked [] remaining [n, i] : _20 -- term _20 :>= {Δ : _27} → _29 {Δ} -- term _20 :>= {Δ : _27} → _29 {Δ} -- solving _20 := {Δ : _27} → _29 {Δ} -- postponed checking arguments [n, i] against _29 {_Δ_30 i Δ n} -- progress: checked [] remaining [n, i] : _29 {_Δ_30 i Δ n} -- Checking λ n i → NeP i Δ n : _29 {Δ} -- solving _29 := λ {Δ} → (n : N Δ) (i : S) → Set -- solving _24 := (λ i Δ n → NeO n i)
{ "alphanum_fraction": 0.5606648199, "avg_line_length": 31.1206896552, "ext": "agda", "hexsha": "6111fa0d0e7ed9edc02eeb7f88ede2cf8c2035a9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1545.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1545.agda", "max_line_length": 89, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1545.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 706, "size": 1805 }
{-# OPTIONS --cubical --safe #-} module WellFounded where open import Level data Acc {a r} {A : Type a} (R : A → A → Type r) (x : A) : Type (a ℓ⊔ r) where acc : (∀ y → R y x → Acc R y) → Acc R x -- record Acc {a r} {A : Type a} (R : A → A → Type r) (x : A) : Type (a ℓ⊔ r) where -- inductive -- constructor acc -- field step : ∀ y → R y x → Acc R y -- open Acc public WellFounded : ∀ {r} → (A → A → Type r) → Type _ WellFounded R = ∀ x → Acc R x open import HLevels open import Path isPropAcc : ∀ {r} {R : A → A → Type r} {x : A} → isProp (Acc R x) isPropAcc (acc x) (acc y) = cong acc (funExt λ n → funExt λ p → isPropAcc (x n p) (y n p))
{ "alphanum_fraction": 0.550304878, "avg_line_length": 26.24, "ext": "agda", "hexsha": "9536ee891068c1784fe32b8a311d5ce5a633298a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "WellFounded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "WellFounded.agda", "max_line_length": 90, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "WellFounded.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 258, "size": 656 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Fixed-size tables of values, implemented as functions from 'Fin n'. -- Similar to 'Data.Vec', but focusing on ease of retrieval instead of -- ease of adding and removing elements. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Table where open import Data.Table.Base public open import Data.Bool using (true; false) open import Data.Fin using (Fin; _≟_) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse using (Inverse; _↔_) open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) -------------------------------------------------------------------------------- -- Combinators -------------------------------------------------------------------------------- -- Changes the order of elements in the table according to a permutation (i.e. -- an 'Inverse' object on the indices). permute : ∀ {m n a} {A : Set a} → Fin m ↔ Fin n → Table A n → Table A m permute π = rearrange (Inverse.to π ⟨$⟩_) -- The result of 'select z i t' takes the value of 'lookup t i' at index 'i', -- and 'z' everywhere else. select : ∀ {n} {a} {A : Set a} → A → Fin n → Table A n → Table A n lookup (select z i t) j with j ≟ i ... | yes _ = lookup t i ... | no _ = z
{ "alphanum_fraction": 0.5272596844, "avg_line_length": 35.7435897436, "ext": "agda", "hexsha": "4d0fc4f3a9e57ec24290c80a972bad445367cc28", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Table.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Table.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Table.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 322, "size": 1394 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module provides some scaffolding to define the handlers for our -- implementation and connect them to the interface of the SystemModel. open import LibraBFT.ImplShared.Base.Types open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import LibraBFT.Concrete.Records open import LibraBFT.Concrete.System open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.IO.OBM.InputOutputHandlers open import LibraBFT.Impl.IO.OBM.Properties.InputOutputHandlers open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochDep open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.ByteString open import Util.Encode open import Util.KVMap open import Util.Hash open import Util.Lemmas open import Util.PKCS open import Util.Prelude module LibraBFT.Impl.Handle.Properties where open EpochConfig import LibraBFT.Impl.Handle as Handle open import LibraBFT.Impl.Handle.InitProperties open initHandlerSpec open ParamsWithInitAndHandlers Handle.InitHandler.initAndHandlers open PeerCanSignForPK open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms Handle.InitHandler.initAndHandlers PeerCanSignForPK PeerCanSignForPK-stable open Invariants open RoundManagerTransProps -- TODO-1: Should 'invariantsCorrect' and direct corollaries be in a `Properties.Invariants` module? ------------------------------------------------------------------------------ -- For any peer in a reachable state, show that it respects RoundManager invariants. invariantsCorrect : ∀ pid (pre : SystemState) → initialised pre pid ≡ initd → ReachableSystemState pre → RoundManagerInv (peerStates pre pid) -------------------------------------------------- -- AN UNINITIALIZED PEER. -- A peer has NOT been initialized at 'step-0', therefore it cannot be initialized (i.e., absurd). invariantsCorrect _ _ () step-0 -------------------------------------------------- -- A CHEATER DOES NOT MODIFY STATE NOR INITIALIZED. -- pid : the peer we are reasoning about -- pid' : the peer taking the step -- in the cheat step case, if does not matter if pid == pid' -- pre : the prestate of pid -- pre' : pre state for this reachable state (before the step, i.e., cheat here) -- preach : evidence that pre' is reachable -- cheatStepDNMPeerStates₁ : Does Not Modify state -- cheatStepDNMInitialised₁ : Does Not Modify initialized invariantsCorrect pid pre ini (step-s {pre = pre'} preach (step-peer step@(step-cheat {pid'} _))) -- Goal: RoundManagerInv (override (peerStates pre') pid' (peerStates pre' pid') pid) rewrite cheatStepDNMPeerStates₁ {pid'} {pid} {pre = pre'} step unit -- Goal: RoundManagerInv (peerStates pre' pid) with trans (sym $ cheatStepDNMInitialised₁ step unit) ini ...| initialised-pre'-pid≡-initd -- preach : ReachableSystemState pre' = invariantsCorrect pid pre' initialised-pre'-pid≡-initd preach -------------------------------------------------- -- Honest steps for the rest of the proof. -- Note: all these top-level 'invariantsCorrect' are the SAME clause, -- each with different pattern matching. -------------------------------------------------- -- PEERS CANNOT MODIFY EACH OTHER'S STATE NOR INITIALIZED STATUS. -- Reasoning about pid. -- Peer taking step is different (pid'). invariantsCorrect pid pre ini (step-s {pre = pre'} preach (step-peer step@(step-honest {pid'} sps))) with pid ≟ pid' ...| no pid≢pid' -- NO case : step is for a different peer (pid') not this peer (pid). -- In that case pid' cannot modify pid's state, rewrite sym (pids≢StepDNMPeerStates {pre = pre'} sps pid≢pid') -- nor pid's initialized status. = invariantsCorrect pid pre' (trans (pids≢StepDNMInitialised {pre = pre'} sps pid≢pid') ini) preach -------------------------------------------------- -- INITIALIZATION STEP -- pre' is pre state of this init step invariantsCorrect pid _ _ (step-s {pre = pre'} preach (step-peer (step-honest {outs = outs} (step-init {rm} rm×acts _)))) | yes refl -- YES is from the 'with' above -- because this is the SAME clause except pattern matching deeper to get 'step-init'. -- Goal: RoundManagerInv ... where peerStates pre' pid "contains" the 'rm' from init rewrite override-target-≡ {a = pid} {b = rm} {f = peerStates pre'} -- Goal: RoundManagerInv rm with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts ...| init-contract = initHandlerSpec.ContractOk.rmInv init-contract -------------------------------------------------- -- PROPOSAL MSG invariantsCorrect pid _ _ (step-s {pre = pre'} preach (step-peer (step-honest (step-msg {sndr , P pm} m∈pool ini)))) | yes refl -- pid≡pid' -- Goal: RoundManagerInv ... where peerStates pre' pid "contains" the proposal msg with handleProposalSpec.contract! 0 pm (msgPool pre') (peerStates pre' pid) ...| c -- contract that says proposal has been handled with handleProposalSpec.Contract.rmInv c ...| invPres -- RoundManagerInv (peerStates pre' pid) -- → RoundManagerInv where state is updated from proposal message with invariantsCorrect pid pre' ini preach ...| ic -- RoundManagerInv (peerStates pre' pid) -- Modify state to contain "results" of handling the proposal. rewrite override-target-≡ {a = pid} {b = LBFT-post (handleProposal 0 pm) (peerStates pre' pid)} {f = peerStates pre'} = invPres ic -------------------------------------------------- -- VOTE MSG invariantsCorrect pid _ _ (step-s {pre = pre'} preach (step-peer (step-honest (step-msg {sndr , V vm} m∈pool ini)))) | yes refl -- pid≡pid' with handleVoteSpec.Contract.rmInv $ handleVoteSpec.contract! 0 vm (msgPool pre') (peerStates pre' pid) ...| invPres rewrite override-target-≡ {a = pid} {b = LBFT-post (handleVote 0 vm) (peerStates pre' pid)} {f = peerStates pre'} = invPres (invariantsCorrect pid pre' ini preach) -------------------------------------------------- -- COMMIT MSG invariantsCorrect pid _ _ (step-s {pre = pre'} preach (step-peer (step-honest (step-msg {sndr , C cm} m∈pool ini)))) | yes refl -- pid≡pid' rewrite override-target-≡ {a = pid} {b = LBFT-post (handle pid (C cm) 0) (peerStates pre' pid)} {f = peerStates pre'} = invariantsCorrect pid pre' ini preach ------------------------------------------------------------------------------ -- All signatures represented in QCs that are in the RoundManager for each peer -- have been sent before (i.e., no peer conjures a signature and makes a QC out of it -- and stores it). qcVoteSigsSentB4 : ∀ pid (st : SystemState) → initialised st pid ≡ initd → ReachableSystemState st → QCProps.SigsForVotes∈Rm-SentB4 (msgPool st) (peerStates st pid) ------------------------------------------------------------------------------ -- Handling any messages preserves the above 'qcVoteSigsSentB4' property. -- Says this indirectly, via ReachableSystemState -- then says the property holds after executing a handler from that ReachableSystemState. -- "preserves" -- - know it is true in the prestate (from qcVoteSigsSendB4) -- - proving it's true in the poststate. handlePreservesSigsB4 : ∀ {nm pid pre sndr} → initialised pre pid ≡ initd → ReachableSystemState pre → (sndr , nm) ∈ msgPool pre → QCProps.SigsForVotes∈Rm-SentB4 (msgPool pre) (LBFT-post (handle pid nm 0) (peerStates pre pid)) handlePreservesSigsB4 {nm} {pid} {pre} {sndr} ini preach m∈pool {qc} {v} {pk} = hyp where hPool = msgPool pre hPre = peerStates pre pid hPost = LBFT-post (handle pid nm 0) hPre qcPost' : (nm' : NetworkMsg) → nm' ≡ nm → QCProps.∈Post⇒∈PreOr (_QC∈NM nm) hPre hPost qcPost' (P pm) refl = qcPost where open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hPool hPre) qcPost' (V vm) refl = qcPost where open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm hPool hPre) qcPost' (C cm) refl qc qc∈pre = Left qc∈pre hyp : QCProps.SigForVote∈Rm-SentB4 v pk qc hPost hPool hyp qc∈hpPst sig {vs} vs∈qcvs ≈v ¬bootstrap with qcPost' nm refl qc qc∈hpPst ...| Left qc∈hpPre = qcVoteSigsSentB4 pid pre ini preach qc∈hpPre sig vs∈qcvs ≈v ¬bootstrap ...| Right qc∈m = mkMsgWithSig∈ nm v (vote∈qc vs∈qcvs ≈v qc∈m) sndr m∈pool sig (cong (_^∙ vSignature) ≈v) ------------------------------------------------------------------------------ qcVoteSigsSentB4 pid st () step-0 qcVoteSigsSentB4 pid st ini (step-s rss (step-peer {pid'} {pre = pre} step@(step-cheat cmc))) rewrite cheatStepDNMPeerStates₁ {pid'} {pid} {pre = pre} step unit with trans (sym $ cheatStepDNMInitialised₁ step unit) ini ...| initialised-pre-pid≡-initd = QCProps.++-SigsForVote∈Rm-SentB4 {rm = peerStates pre pid} _ (qcVoteSigsSentB4 pid pre initialised-pre-pid≡-initd rss) qcVoteSigsSentB4 pid st ini (step-s rss (step-peer {pid'} {pre = pre} (step-honest sps))) with pid ≟ pid' -- DIFFERENT PEER CASE ...| no pid≢pid' rewrite sym (pids≢StepDNMPeerStates {pre = pre} sps pid≢pid') = QCProps.++-SigsForVote∈Rm-SentB4 {rm = peerStates pre pid} _ (qcVoteSigsSentB4 pid pre (trans (pids≢StepDNMInitialised {pre = pre} sps pid≢pid') ini) rss) ...| yes refl with sps -- INIT CASE ...| step-init {rm} rm×acts _ = ret where ret : QCProps.SigsForVotes∈Rm-SentB4 (msgPool st) (peerStates st pid) ret with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts ...| init-contract rewrite override-target-≡ {a = pid} {b = rm} {f = peerStates pre} = λ qc∈rm sig vs∈qc rbld≈ ¬bootstrap → ⊥-elim $ ¬bootstrap (initHandlerSpec.ContractOk.sigs∈bs init-contract vs∈qc qc∈rm) -- MSG CASE ...| step-msg {sndr , nm} m∈pool init rewrite override-target-≡ {a = pid} {b = LBFT-post (handle pid nm 0) (peerStates pre pid)} {f = peerStates pre} = QCProps.++-SigsForVote∈Rm-SentB4 {rm = LBFT-post (handle pid nm 0) (peerStates pre pid)} _ (handlePreservesSigsB4 init rss m∈pool) ------------------------------------------------------------------------------ qcVoteSigsSentB4-sps : ∀ pid (pre : SystemState) {s acts} → ReachableSystemState pre → (StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s , acts)) → ∀ {qc v pk} → qc QCProps.∈RoundManager s → WithVerSig pk v → ∀ {vs : Author × Signature} → let (pid , sig) = vs in vs ∈ qcVotes qc → rebuildVote qc vs ≈Vote v → ¬ ∈BootstrapInfo-impl fakeBootstrapInfo sig → MsgWithSig∈ pk sig (msgPool pre) qcVoteSigsSentB4-sps pid pre rss (step-init {rm} rm×acts _) qc∈s sig vs∈qcvs ≈v ¬bootstrap with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts ...| init-contract rewrite sym $ ++-identityʳ (msgPool pre) = QCProps.++-SigsForVote∈Rm-SentB4 {rm = rm} (msgPool pre) (λ qc∈rm sig vs∈qc rbld≈ ¬bootstrap → ⊥-elim $ ¬bootstrap (initHandlerSpec.ContractOk.sigs∈bs init-contract vs∈qc qc∈rm)) qc∈s sig vs∈qcvs ≈v ¬bootstrap qcVoteSigsSentB4-sps pid pre rss (step-msg {sndr , m} m∈pool ini) {qc} {v} {pk} qc∈s sig {vs} vs∈qcvs ≈v ¬bootstrap with m -- TODO-2: refactor for DRY ...| P pm = help where hpPre = peerStates pre pid open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm (msgPool pre) hpPre) help : MsgWithSig∈ pk (proj₂ vs) (msgPool pre) help with qcPost qc qc∈s ...| Left qc∈pre = qcVoteSigsSentB4 pid pre ini rss qc∈pre sig vs∈qcvs ≈v ¬bootstrap ...| Right qc∈pm = mkMsgWithSig∈ (P pm) v (vote∈qc vs∈qcvs ≈v qc∈pm) sndr m∈pool sig (cong (_^∙ vSignature) ≈v) -- TODO-2: refactor for DRY ...| V vm = help where hvPre = peerStates pre pid open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre) help : MsgWithSig∈ pk (proj₂ vs) (msgPool pre) help with qcPost qc qc∈s ...| Left qc∈pre = qcVoteSigsSentB4 pid pre ini rss qc∈pre sig vs∈qcvs ≈v ¬bootstrap ...| Right qc∈vm = mkMsgWithSig∈ (V vm) v (vote∈qc vs∈qcvs ≈v qc∈vm) sndr m∈pool sig (cong (_^∙ vSignature) ≈v) ...| C cm = qcVoteSigsSentB4 pid pre ini rss qc∈s sig vs∈qcvs ≈v ¬bootstrap ------------------------------------------------------------------------------ lastVotedRound-mono : ∀ pid (pre : SystemState) {ppost} {msgs} → ReachableSystemState pre → initialised pre pid ≡ initd → StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (ppost , msgs) → peerStates pre pid ≡L ppost at rmEpoch → Meta.getLastVoteRound ((peerStates pre pid) ^∙ pssSafetyData-rm) ≤ Meta.getLastVoteRound (ppost ^∙ pssSafetyData-rm) lastVotedRound-mono pid pre preach ini (step-init _ uni) epoch≡ = case (trans (sym ini) uni) of λ () lastVotedRound-mono pid pre {ppost} preach ini₀ (step-msg {_ , m} m∈pool ini₁) epoch≡ with m ...| P pm rewrite sym $ StepPeer-post-lemma {pre = pre} (step-honest (step-msg m∈pool ini₁)) = help where hpPool = msgPool pre hpPre = peerStates pre pid hpPst = LBFT-post (handleProposal 0 pm) hpPre hpOut = LBFT-outs (handleProposal 0 pm) hpPre open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hpPool hpPre {- hpReq -} ) open RoundManagerInv (invariantsCorrect pid pre ini₁ preach) module VoteOld (lv≡ : hpPre ≡L hpPst at pssSafetyData-rm ∙ sdLastVote) where help : Meta.getLastVoteRound (hpPre ^∙ pssSafetyData-rm) ≤ Meta.getLastVoteRound (hpPst ^∙ pssSafetyData-rm) help = ≡⇒≤ (cong (Maybe-maybe {B = const ℕ} (_^∙ vRound) 0) lv≡) module VoteNew {vote : Vote} (lv≡v : just vote ≡ hpPst ^∙ pssSafetyData-rm ∙ sdLastVote) (lvr< : hpPre [ _<_ ]L hpPst at pssSafetyData-rm ∙ sdLastVotedRound) (lvr≡ : vote ^∙ vRound ≡ hpPst ^∙ pssSafetyData-rm ∙ sdLastVotedRound ) where help : Meta.getLastVoteRound (hpPre ^∙ pssSafetyData-rm) ≤ Meta.getLastVoteRound (hpPst ^∙ pssSafetyData-rm) help = ≤-trans (SafetyDataInv.lvRound≤ ∘ SafetyRulesInv.sdInv $ rmSafetyRulesInv ) (≤-trans (<⇒≤ lvr<) (≡⇒≤ (trans (sym lvr≡) $ cong (Maybe-maybe {B = const ℕ} (_^∙ vRound) 0) lv≡v))) open Invariants open Reqs (pm ^∙ pmProposal) (hpPre ^∙ lBlockTree) open BlockTreeInv open BlockStoreInv open RoundManagerInv rmi : _ rmi = invariantsCorrect pid pre ini₁ preach help : Meta.getLastVoteRound (hpPre ^∙ pssSafetyData-rm) ≤ Meta.getLastVoteRound (hpPst ^∙ pssSafetyData-rm) help with BlockId-correct? (pm ^∙ pmProposal) ...| no ¬validProposal = VoteOld.help (cong (_^∙ pssSafetyData-rm ∙ sdLastVote) (proj₁ $ invalidProposal ¬validProposal)) ...| yes pmIdCorr with voteAttemptCorrect pmIdCorr (nohc preach m∈pool pid ini₀ rmi refl pmIdCorr) ...| Voting.mkVoteAttemptCorrectWithEpochReq (inj₁ (_ , Voting.mkVoteUnsentCorrect noVoteMsgOuts nvg⊎vgusc)) sdEpoch≡? with nvg⊎vgusc ...| inj₁ (mkVoteNotGenerated lv≡ lvr≤) = VoteOld.help lv≡ ...| inj₂ (Voting.mkVoteGeneratedUnsavedCorrect vote (Voting.mkVoteGeneratedCorrect (mkVoteGenerated lv≡v voteSrc) blockTriggered)) with voteSrc ...| inj₁ (mkVoteOldGenerated lvr≡ lv≡) = VoteOld.help lv≡ ...| inj₂ (mkVoteNewGenerated lvr< lvr≡) = VoteNew.help lv≡v lvr< lvr≡ help | yes refl | Voting.mkVoteAttemptCorrectWithEpochReq (Right (Voting.mkVoteSentCorrect vm _ _ (Voting.mkVoteGeneratedCorrect (mkVoteGenerated lv≡v voteSrc) _))) sdEpoch≡? with voteSrc ...| Left (mkVoteOldGenerated lvr≡ lv≡) = VoteOld.help lv≡ ...| Right (mkVoteNewGenerated lvr< lvr≡) = VoteNew.help lv≡v lvr< lvr≡ -- Receiving a vote or commit message does not update the last vote ...| V vm = ≡⇒≤ $ cong (Maybe-maybe (_^∙ vRound) 0 ∘ (_^∙ sdLastVote)) noSDChange where hvPre = peerStates pre pid hvPst = LBFT-post (handle pid (V vm) 0) hvPre open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre) ...| C cm = ≤-refl ------------------------------------------------------------------------------ qcVoteSigsSentB4-handle : ∀ pid {pre m s acts} → ReachableSystemState pre → (StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s , acts)) → send m ∈ acts → ∀ {qc v pk} → qc QC∈NM m → WithVerSig pk v → ∀ {vs : Author × Signature} → let (pid , sig) = vs in vs ∈ qcVotes qc → rebuildVote qc vs ≈Vote v → ¬ ∈BootstrapInfo-impl fakeBootstrapInfo sig → MsgWithSig∈ pk sig (msgPool pre) qcVoteSigsSentB4-handle pid {pre} {m} {s} {acts} preach (step-init {rm} rm×acts _) send∈acts {qc} qc∈m sig vs∈qc v≈rbld ¬bootstrap with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts ...| init-contract with initHandlerSpec.ContractOk.isInitPM init-contract send∈acts ...| _ , refl , noSigs = ⊥-elim (noSigs vs∈qc qc∈m) qcVoteSigsSentB4-handle pid {pre} {m} {s} {acts} preach sps@(step-msg {_ , nm} m∈pool ini) m∈acts {qc} qc∈m sig vs∈qc v≈rbld ¬bootstrap = qcVoteSigsSentB4-sps pid pre preach sps qc∈rm sig vs∈qc v≈rbld ¬bootstrap where hdPool = msgPool pre hdPre = peerStates pre pid hdPst = LBFT-post (handle pid nm 0) hdPre hdOut = LBFT-outs (handle pid nm 0) hdPre qc∈rm : qc QCProps.∈RoundManager hdPst qc∈rm with sendMsg∈actions {hdOut} {st = hdPre} m∈acts ...| out , out∈hdOut , m∈out = All-lookup (outQcs∈RM1 nm refl) out∈hdOut qc m qc∈m m∈out where outQcs∈RM1 : (nm' : NetworkMsg) → nm ≡ nm' → QCProps.OutputQc∈RoundManager hdOut hdPst outQcs∈RM1 (P pm) refl = outQcs∈RM where open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hdPool hdPre) outQcs∈RM1 (V vm) refl = outQcs∈RM where open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm hdPool hdPre)
{ "alphanum_fraction": 0.6526022, "avg_line_length": 44.0313253012, "ext": "agda", "hexsha": "858aa312e2ff1e1a07059515eb0016ada419f44c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Handle/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Handle/Properties.agda", "max_line_length": 187, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Handle/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5690, "size": 18273 }
{-# OPTIONS --prop --without-K --rewriting #-} -- Common cost monoids. module Calf.CostMonoids where open import Calf.CostMonoid open import Data.Product open import Relation.Binary.PropositionalEquality ℕ-CostMonoid : CostMonoid ℕ-CostMonoid = record { ℂ = ℕ ; _+_ = _+_ ; zero = zero ; _≤_ = _≤_ ; isCostMonoid = record { isMonoid = +-0-isMonoid ; isCancellative = record { ∙-cancel-≡ = +-cancel-≡ } ; isPreorder = ≤-isPreorder ; isMonotone = record { ∙-mono-≤ = +-mono-≤ } } } where open import Data.Nat open import Data.Nat.Properties ℕ-Work-ParCostMonoid : ParCostMonoid ℕ-Work-ParCostMonoid = record { ℂ = ℕ ; _⊕_ = _+_ ; 𝟘 = 0 ; _⊗_ = _+_ ; 𝟙 = 0 ; _≤_ = _≤_ ; isParCostMonoid = record { isMonoid = +-0-isMonoid ; isCommutativeMonoid = +-0-isCommutativeMonoid ; isCancellative = record { ∙-cancel-≡ = +-cancel-≡ } ; isPreorder = ≤-isPreorder ; isMonotone-⊕ = record { ∙-mono-≤ = +-mono-≤ } ; isMonotone-⊗ = record { ∙-mono-≤ = +-mono-≤ } } } where open import Data.Nat open import Data.Nat.Properties ℕ-Span-ParCostMonoid : ParCostMonoid ℕ-Span-ParCostMonoid = record { ℂ = ℕ ; _⊕_ = _+_ ; 𝟘 = 0 ; _⊗_ = _⊔_ ; 𝟙 = 0 ; _≤_ = _≤_ ; isParCostMonoid = record { isMonoid = +-0-isMonoid ; isCommutativeMonoid = ⊔-0-isCommutativeMonoid ; isPreorder = ≤-isPreorder ; isCancellative = record { ∙-cancel-≡ = +-cancel-≡ } ; isMonotone-⊕ = record { ∙-mono-≤ = +-mono-≤ } ; isMonotone-⊗ = record { ∙-mono-≤ = ⊔-mono-≤ } } } where open import Data.Nat open import Data.Nat.Properties combineParCostMonoids : ParCostMonoid → ParCostMonoid → ParCostMonoid combineParCostMonoids pcm₁ pcm₂ = record { ℂ = ℂ pcm₁ × ℂ pcm₂ ; _⊕_ = λ (a₁ , a₂) (b₁ , b₂) → _⊕_ pcm₁ a₁ b₁ , _⊕_ pcm₂ a₂ b₂ ; 𝟘 = 𝟘 pcm₁ , 𝟘 pcm₂ ; _⊗_ = λ (a₁ , a₂) (b₁ , b₂) → _⊗_ pcm₁ a₁ b₁ , _⊗_ pcm₂ a₂ b₂ ; 𝟙 = 𝟙 pcm₁ , 𝟙 pcm₂ ; _≤_ = λ (a₁ , a₂) (b₁ , b₂) → _≤_ pcm₁ a₁ b₁ × _≤_ pcm₂ a₂ b₂ ; isParCostMonoid = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ h₁ h₂ → cong₂ _,_ (cong₂ (_⊕_ pcm₁) (cong proj₁ h₁) (cong proj₁ h₂)) (cong₂ (_⊕_ pcm₂) (cong proj₂ h₁) (cong proj₂ h₂)) } ; assoc = λ (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) → cong₂ _,_ (⊕-assoc pcm₁ a₁ b₁ c₁) (⊕-assoc pcm₂ a₂ b₂ c₂) } ; identity = (λ (a₁ , a₂) → cong₂ _,_ (⊕-identityˡ pcm₁ a₁) (⊕-identityˡ pcm₂ a₂)) , (λ (a₁ , a₂) → cong₂ _,_ (⊕-identityʳ pcm₁ a₁) (⊕-identityʳ pcm₂ a₂)) } ; isCommutativeMonoid = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ h₁ h₂ → cong₂ _,_ (cong₂ (_⊗_ pcm₁) (cong proj₁ h₁) (cong proj₁ h₂)) (cong₂ (_⊗_ pcm₂) (cong proj₂ h₁) (cong proj₂ h₂)) } ; assoc = λ (a₁ , a₂) (b₁ , b₂) (c₁ , c₂) → cong₂ _,_ (⊗-assoc pcm₁ a₁ b₁ c₁) (⊗-assoc pcm₂ a₂ b₂ c₂) } ; identity = (λ (a₁ , a₂) → cong₂ _,_ (⊗-identityˡ pcm₁ a₁) (⊗-identityˡ pcm₂ a₂)) , (λ (a₁ , a₂) → cong₂ _,_ (⊗-identityʳ pcm₁ a₁) (⊗-identityʳ pcm₂ a₂)) } ; comm = λ (a₁ , a₂) (b₁ , b₂) → cong₂ _,_ (⊗-comm pcm₁ a₁ b₁) (⊗-comm pcm₂ a₂ b₂) } ; isCancellative = record { ∙-cancel-≡ = (λ (x₁ , x₂) h → cong₂ _,_ (⊕-cancelˡ-≡ pcm₁ x₁ (cong proj₁ h)) (⊕-cancelˡ-≡ pcm₂ x₂ (cong proj₂ h))) , (λ (y₁ , y₂) (z₁ , z₂) h → cong₂ _,_ (⊕-cancelʳ-≡ pcm₁ y₁ z₁ (cong proj₁ h)) (⊕-cancelʳ-≡ pcm₂ y₂ z₂ (cong proj₂ h))) } ; isPreorder = record { isEquivalence = isEquivalence ; reflexive = λ { refl → ≤-refl pcm₁ , ≤-refl pcm₂ } ; trans = λ (h₁ , h₂) (h₁' , h₂') → ≤-trans pcm₁ h₁ h₁' , ≤-trans pcm₂ h₂ h₂' } ; isMonotone-⊕ = record { ∙-mono-≤ = λ (h₁ , h₂) (h₁' , h₂') → ⊕-mono-≤ pcm₁ h₁ h₁' , ⊕-mono-≤ pcm₂ h₂ h₂' } ; isMonotone-⊗ = record { ∙-mono-≤ = λ (h₁ , h₂) (h₁' , h₂') → ⊗-mono-≤ pcm₁ h₁ h₁' , ⊗-mono-≤ pcm₂ h₂ h₂' } } } where open ParCostMonoid ℕ²-ParCostMonoid : ParCostMonoid ℕ²-ParCostMonoid = combineParCostMonoids ℕ-Work-ParCostMonoid ℕ-Span-ParCostMonoid
{ "alphanum_fraction": 0.5407373691, "avg_line_length": 32.7910447761, "ext": "agda", "hexsha": "1331be2d113fc8d95ee85205b6575fe19a92d783", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Calf/CostMonoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Calf/CostMonoids.agda", "max_line_length": 127, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Calf/CostMonoids.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 1960, "size": 4394 }
module Data.Sum.Instance where open import Class.Equality open import Class.Monoid open import Class.Show open import Data.Bool using (false) open import Data.String.Instance open import Data.Sum open import Data.Sum.Properties open import Relation.Binary.PropositionalEquality open import Relation.Nullary instance Sum-Eq : {A B : Set} -> {{_ : Eq A}} -> {{_ : Eq B}} -> Eq (A ⊎ B) Sum-Eq = record { _≟_ = ≡-dec _≟_ _≟_ } Sum-Show : {A B : Set} -> {{_ : Show A}} -> {{_ : Show B}} -> Show (A ⊎ B) Sum-Show = record { show = λ { (inj₁ x) → "inj₁ " + show x ; (inj₂ y) → "inj₂ " + show y } } Sum-EqB : {A B : Set} -> {{_ : EqB A}} -> {{_ : EqB B}} -> EqB (A ⊎ B) Sum-EqB = record { _≣_ = λ { (inj₁ x) (inj₁ y) → x ≣ y ; (inj₁ x) (inj₂ y) → false ; (inj₂ x) (inj₁ y) → false ; (inj₂ x) (inj₂ y) → x ≣ y } }
{ "alphanum_fraction": 0.5286343612, "avg_line_length": 36.32, "ext": "agda", "hexsha": "c1241b4a479bc25e2368010ea7ea9b6a1dc4c12c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/Sum/Instance.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/Sum/Instance.agda", "max_line_length": 94, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/Sum/Instance.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 325, "size": 908 }
open import Data.Bool using (Bool; true; false) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) open import Relation.Nullary using (¬_) --data _≡_ {A : Set} (x : A) : A → Set where -- refl : x ≡ x trans : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl -- This can be done in Coq but not in Agda? --disc'' : ∀ {x : Bool} → x ≡ x → x ≡ (¬ x) → ⊥ --disc'' = ? -- How to prove this??? disc' : ∀ {a} {x : Set a} → x ≡ x → x ≡ (¬ x) → ⊥ disc' refl = ? disc : ∀ {a} {x : Set a} → ¬ (x ≡ (¬ x)) disc {x} x≡¬x = ? -- disc' ? ? -- (refl {x}) x≡¬x open import Data.Nat using (ℕ; suc; zero; _+_) right-zero : ∀ n → n + 0 ≡ n right-zero 0 = refl right-zero (suc n) = cong suc (right-zero n) comm : ∀ m n p → m + (n + p) ≡ (m + n) + p comm 0 _ _ = refl comm (suc m) n p = cong suc (comm m n p)
{ "alphanum_fraction": 0.5366120219, "avg_line_length": 26.9117647059, "ext": "agda", "hexsha": "873e1c9b1fd72af1bd095292e94a30c5b168d262", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Coq/agdag.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Coq/agdag.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Coq/agdag.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 374, "size": 915 }
{-# OPTIONS --allow-unsolved-metas #-} module Avionics.Probability where --open import Data.Fin using (Fin; fromℕ<) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_×_; _,_) open import Data.Vec using (Vec; lookup) open import Relation.Binary.PropositionalEquality using (refl) open import Relation.Unary using (_∈_) open import Avionics.Real using ( ℝ; _+_; _-_; _*_; _÷_; _^_; √_; 1/_; _^2; -1/2; π; e; 2ℝ; 1ℝ; 0ℝ; ⟨0,∞⟩; [0,∞⟩; [0,1]) record Dist (Input : Set) : Set where field pdf : Input → ℝ cdf : Input → ℝ pdf→[0,∞⟩ : ∀ x → pdf x ∈ [0,∞⟩ cdf→[0,1] : ∀ x → cdf x ∈ [0,1] --∫pdf≡cdf : ∫ pdf ≡ cdf --∫pdf[-∞,∞]≡1ℝ : ∫ pdf [ -∞ , ∞ ] ≡ 1ℝ record NormalDist : Set where constructor ND field μ : ℝ σ : ℝ --.0<σ : 0ℝ <? σ dist : Dist ℝ dist = record { pdf = pdf ; cdf = ? ; pdf→[0,∞⟩ = ? ; cdf→[0,1] = ? } where √2π = (√ (2ℝ * π)) 1/⟨σ√2π⟩ = (1/ (σ * √2π)) pdf : ℝ → ℝ pdf x = 1/⟨σ√2π⟩ * e ^ (-1/2 * (⟨x-μ⟩÷σ ^2)) where ⟨x-μ⟩÷σ = ((x - μ) ÷ σ) -- Bivariate Normal Distribution -- Representation taken from: https://upload.wikimedia.org/wikipedia/commons/a/a2/Cumulative_function_n_dimensional_Gaussians_12.2013.pdf record BiNormalDist : Set where constructor ND field μ₁ : ℝ μ₂ : ℝ σ₁ : ℝ σ₂ : ℝ ρ : ℝ μ : ℝ × ℝ μ = μ₁ , μ₂ Σ : ℝ × ℝ × ℝ × ℝ Σ = σ₁ , (ρ * σ₁ * σ₂) , (ρ * σ₁ * σ₂) , σ₂ Σ-¹ : ℝ × ℝ × ℝ × ℝ Σ-¹ = ( 1/1-ρ² * (1ℝ ÷ σ₁) , 1/1-ρ² * -ρ/σ₁σ₂ , 1/1-ρ² * -ρ/σ₁σ₂ , 1/1-ρ² * (1ℝ ÷ σ₂)) where 1/1-ρ² = 1ℝ ÷ (1ℝ - ρ * ρ) -ρ/σ₁σ₂ = (0ℝ - ρ) ÷ (σ₁ * σ₂) dist : Dist ℝ dist = record { pdf = ? ; cdf = ? ; pdf→[0,∞⟩ = ? ; cdf→[0,1] = ? } Mat : ℕ → Set Mat n = Vec (Vec ℝ n) n -- Multivariate Normal Distribution record MultiNormal : Set where constructor MultiND field n : ℕ μ : Vec ℝ n Σ : Mat n dist : Dist (Vec ℝ n) dist = record { pdf = ? ; cdf = ? ; pdf→[0,∞⟩ = ? ; cdf→[0,1] = ? } --num : Vec ℕ 2 → ℕ --num vec = lookup vec (fromℕ< {0} _) --num2 : MultiNormal → ℝ --num2 mn = lookup μ (fromℕ< {0} _) -- where open MultiNormal mn using (n; μ; Σ) --; dist) -- --open Dist dist using (pdf)
{ "alphanum_fraction": 0.4948409286, "avg_line_length": 20.954954955, "ext": "agda", "hexsha": "9f1ce6344719b71b44100c6a50ba46b48bf7f0bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-09-20T00:36:09.000Z", "max_forks_repo_forks_event_min_datetime": "2020-09-20T00:36:09.000Z", "max_forks_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "helq/safety-envelopes-sentinels", "max_forks_repo_path": "agda/Avionics/Probability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "helq/safety-envelopes-sentinels", "max_issues_repo_path": "agda/Avionics/Probability.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "helq/safety-envelopes-sentinels", "max_stars_repo_path": "agda/Avionics/Probability.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1027, "size": 2326 }
{-# IMPORT Issue223 #-} data A : Set {-# COMPILED_DECLARE_DATA A Issue223.A #-} data B : Set {-# COMPILED_DECLARE_DATA B Issue223.B #-} data A where BA : B → A {-# COMPILED_DATA A Issue223.A Issue223.BA #-} data B where AB : A → B BB : B {-# COMPILED_DATA B Issue223.B Issue223.AB Issue223.BB #-}
{ "alphanum_fraction": 0.6482084691, "avg_line_length": 18.0588235294, "ext": "agda", "hexsha": "69e4f62521e2fb1e0dbbf8785aa511e8345f1155", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Compiler/simple/Issue223.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Compiler/simple/Issue223.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Compiler/simple/Issue223.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 96, "size": 307 }
{-# OPTIONS --cubical --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Cubical.Path where open import Agda.Primitive.Cubical postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-} infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ _≡_ {A = A} = PathP (λ _ → A) {-# BUILTIN PATH _≡_ #-}
{ "alphanum_fraction": 0.5234375, "avg_line_length": 24, "ext": "agda", "hexsha": "7e8e4d4856b883cb9a82c273f23a661f589918c3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Path.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/Path.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 154, "size": 384 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal.Core using (Monoidal) module Categories.Category.Monoidal.Braided {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open import Level open import Data.Product using (Σ; _,_) open import Categories.Functor.Bifunctor open import Categories.NaturalTransformation.NaturalIsomorphism open Category C open Commutation private variable X Y Z : Obj -- braided monoidal category -- it has a braiding natural isomorphism has two hexagon identities. -- these two identities are directly expressed in the morphism level. record Braided : Set (levelOfTerm M) where open Monoidal M public field braiding : NaturalIsomorphism ⊗ (flip-bifunctor ⊗) module braiding = NaturalIsomorphism braiding private B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) field hexagon₁ : [ (X ⊗₀ Y) ⊗₀ Z ⇒ Y ⊗₀ Z ⊗₀ X ]⟨ B ⊗₁ id ⇒⟨ (Y ⊗₀ X) ⊗₀ Z ⟩ associator.from ⇒⟨ Y ⊗₀ X ⊗₀ Z ⟩ id ⊗₁ B ≈ associator.from ⇒⟨ X ⊗₀ Y ⊗₀ Z ⟩ B ⇒⟨ (Y ⊗₀ Z) ⊗₀ X ⟩ associator.from ⟩ hexagon₂ : [ X ⊗₀ Y ⊗₀ Z ⇒ (Z ⊗₀ X) ⊗₀ Y ]⟨ id ⊗₁ B ⇒⟨ X ⊗₀ Z ⊗₀ Y ⟩ (associator.to ⇒⟨ (X ⊗₀ Z) ⊗₀ Y ⟩ B ⊗₁ id) ≈ associator.to ⇒⟨ (X ⊗₀ Y) ⊗₀ Z ⟩ (B ⇒⟨ Z ⊗₀ X ⊗₀ Y ⟩ associator.to) ⟩
{ "alphanum_fraction": 0.5039274924, "avg_line_length": 30.6481481481, "ext": "agda", "hexsha": "58a26aa4b56b4098d8df7d97e504415eb528bab8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Braided.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Braided.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Braided.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 524, "size": 1655 }
-- this is the first test I run -- Its been a while since i used my brain, @KMx404 module test1 where data 𝕟 : Set where --zero : 𝕟 --its not practical to do so, we can use more efficient math formulas suc : 𝕟 → 𝕟 -- since We have the value of zero => n, any next item succ will consider it as n.num _+_ : 𝕟 → 𝕟 → 𝕟 -- Defining addition? I guess (wtf is guess? haha) -- zero : zero --zero + zero = zero --zero + 𝕟 = 𝕟 -- Zero has no effect in addition
{ "alphanum_fraction": 0.6293995859, "avg_line_length": 21.9545454545, "ext": "agda", "hexsha": "fae155c55e7162ac9cb57f6bf638a8024888c9a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "KMx404/selfev.agda", "max_forks_repo_path": "intro/tests/test1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "KMx404/selfev.agda", "max_issues_repo_path": "intro/tests/test1.agda", "max_line_length": 100, "max_stars_count": 2, "max_stars_repo_head_hexsha": "b2cf336215025de01b3b3f4b2296f9afd7c2d295", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "KMx404/selfev.agda", "max_stars_repo_path": "intro/tests/test1.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-12T15:57:18.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-18T11:22:21.000Z", "num_tokens": 160, "size": 483 }
module Base.Free.Instance.Identity where open import Data.Empty using (⊥) open import Base.Free using (Free) -- Representation of the `Identity` monad using free. Shape : Set Shape = ⊥ Position : Shape → Set Position _ = ⊥ Identity : Set → Set Identity = Free Shape Position
{ "alphanum_fraction": 0.7234042553, "avg_line_length": 16.5882352941, "ext": "agda", "hexsha": "6e7a51e64916a78f7db0cf8b7ecb69ebc6a4c0b9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-14T07:48:41.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-08T11:23:46.000Z", "max_forks_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "FreeProving/free-compiler", "max_forks_repo_path": "base/agda/Base/Free/Instance/Identity.agda", "max_issues_count": 120, "max_issues_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_issues_repo_issues_event_max_datetime": "2020-12-08T07:46:01.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-09T09:40:39.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "FreeProving/free-compiler", "max_issues_repo_path": "base/agda/Base/Free/Instance/Identity.agda", "max_line_length": 53, "max_stars_count": 36, "max_stars_repo_head_hexsha": "6931b9ca652a185a92dd824373f092823aea4ea9", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "FreeProving/free-compiler", "max_stars_repo_path": "base/agda/Base/Free/Instance/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-21T13:38:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-06T11:03:34.000Z", "num_tokens": 71, "size": 282 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Groups.Sn where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Connected open import Cubical.ZCohomology.KcompPrelims open import Cubical.ZCohomology.Groups.Prelims open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) hiding (map) open import Cubical.Data.Bool open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec) open import Cubical.Data.Unit open import Cubical.Homotopy.Connected open import Cubical.Algebra.Group infixr 31 _□_ _□_ : _ _□_ = compGroupIso open GroupEquiv open vSES open GroupIso open GroupHom open BijectionIso Sn-connected : (n : ℕ) (x : typ (S₊∙ (suc n))) → ∥ pt (S₊∙ (suc n)) ≡ x ∥₁ Sn-connected zero = toPropElim (λ _ → propTruncIsProp) ∣ refl ∣₁ Sn-connected (suc zero) = suspToPropElim base (λ _ → propTruncIsProp) ∣ refl ∣₁ Sn-connected (suc (suc n)) = suspToPropElim north (λ _ → propTruncIsProp) ∣ refl ∣₁ H⁰-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr 0 (S₊ (suc n))) intGroup H⁰-Sⁿ≅ℤ zero = H⁰-connected base (Sn-connected 0) H⁰-Sⁿ≅ℤ (suc n) = H⁰-connected north (Sn-connected (suc n)) -- -- ---------------------------------------------------------------------- --- We will need to switch between Sⁿ defined using suspensions and using pushouts --- in order to apply Mayer Vietoris. S1Iso : Iso S¹ (Pushout {A = Bool} (λ _ → tt) λ _ → tt) S1Iso = S¹IsoSuspBool ⋄ invIso PushoutSuspIsoSusp coHomPushout≅coHomSn : (n m : ℕ) → GroupIso (coHomGr m (S₊ (suc n))) (coHomGr m (Pushout {A = S₊ n} (λ _ → tt) λ _ → tt)) coHomPushout≅coHomSn zero m = Iso+Hom→GrIso (setTruncIso (domIso S1Iso)) (sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl)) coHomPushout≅coHomSn (suc n) m = Iso+Hom→GrIso (setTruncIso (domIso (invIso PushoutSuspIsoSusp))) (sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl)) -------------------------- H⁰(S⁰) ----------------------------- S0→Int : (a : Int × Int) → S₊ 0 → Int S0→Int a true = fst a S0→Int a false = snd a H⁰-S⁰≅ℤ×ℤ : GroupIso (coHomGr 0 (S₊ 0)) (dirProd intGroup intGroup) fun (map H⁰-S⁰≅ℤ×ℤ) = sRec (isSet× isSetInt isSetInt) λ f → (f true) , (f false) isHom (map H⁰-S⁰≅ℤ×ℤ) = sElim2 (λ _ _ → isSet→isGroupoid (isSet× isSetInt isSetInt) _ _) λ a b i → addLemma (a true) (b true) i , addLemma (a false) (b false) i inv H⁰-S⁰≅ℤ×ℤ a = ∣ S0→Int a ∣₂ rightInv H⁰-S⁰≅ℤ×ℤ _ = refl leftInv H⁰-S⁰≅ℤ×ℤ = sElim (λ _ → isSet→isGroupoid setTruncIsSet _ _) λ f → cong ∣_∣₂ (funExt (λ {true → refl ; false → refl})) ------------------------- H¹(S⁰) ≅ 0 ------------------------------- private Hⁿ-S0≃Kₙ×Kₙ : (n : ℕ) → Iso (S₊ 0 → coHomK (suc n)) (coHomK (suc n) × coHomK (suc n)) Iso.fun (Hⁿ-S0≃Kₙ×Kₙ n) f = (f true) , (f false) Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) true = a Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) false = b Iso.rightInv (Hⁿ-S0≃Kₙ×Kₙ n) a = refl Iso.leftInv (Hⁿ-S0≃Kₙ×Kₙ n) b = funExt λ {true → refl ; false → refl} isContrHⁿ-S0 : (n : ℕ) → isContr (coHom (suc n) (S₊ 0)) isContrHⁿ-S0 n = isContrRetract (Iso.fun (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n))) (Iso.inv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n))) (Iso.leftInv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n))) (isContrHelper n) where isContrHelper : (n : ℕ) → isContr (∥ (coHomK (suc n) × coHomK (suc n)) ∥₂) fst (isContrHelper zero) = ∣ (0₁ , 0₁) ∣₂ snd (isContrHelper zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ y → elim2 {B = λ x y → ∣ (0₁ , 0₁) ∣₂ ≡ ∣(x , y) ∣₂ } (λ _ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet _ _) (toPropElim2 (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y) isContrHelper (suc zero) = ∣ (0₂ , 0₂) ∣₂ , sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ y → elim2 {B = λ x y → ∣ (0₂ , 0₂) ∣₂ ≡ ∣(x , y) ∣₂ } (λ _ _ → isOfHLevelPlus {n = 2} 3 setTruncIsSet _ _) (suspToPropElim2 base (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y) isContrHelper (suc (suc n)) = ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ , sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ y → elim2 {B = λ x y → ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ ≡ ∣(x , y) ∣₂ } (λ _ _ → isProp→isOfHLevelSuc (4 + n) (setTruncIsSet _ _)) (suspToPropElim2 north (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y) H¹-S⁰≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ 0)) trivialGroup H¹-S⁰≅0 n = IsoContrGroupTrivialGroup (isContrHⁿ-S0 n) ------------------------- H²(S¹) ≅ 0 ------------------------------- Hⁿ-S¹≅0 : (n : ℕ) → GroupIso (coHomGr (2 + n) (S₊ 1)) trivialGroup Hⁿ-S¹≅0 n = IsoContrGroupTrivialGroup (isOfHLevelRetractFromIso 0 helper (_ , helper2)) where helper : Iso ⟨ coHomGr (2 + n) (S₊ 1)⟩ ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂ helper = compIso (setTruncIso IsoFunSpaceS¹) IsoSetTruncateSndΣ helper2 : (x : ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂) → ∣ ∣ north ∣ , ∣ refl ∣₂ ∣₂ ≡ x helper2 = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry (trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isProp→isOfHLevelSuc (3 + n) (setTruncIsSet _ _)) (suspToPropElim (ptSn (suc n)) (λ _ → isPropΠ λ _ → setTruncIsSet _ _) (sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ p → cong ∣_∣₂ (ΣPathP (refl , isContr→isProp helper3 _ _)))))) where helper4 : isConnected (n + 3) (hLevelTrunc (4 + n) (S₊ (2 + n))) helper4 = subst (λ m → isConnected m (hLevelTrunc (4 + n) (S₊ (2 + n)))) (+-comm 3 n) (isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (3 + n) 1)) (sphereConnected (2 + n))) helper3 : isContr ∥ ∣ north ∣ ≡ ∣ north ∣ ∥₂ helper3 = isOfHLevelRetractFromIso 0 setTruncTrunc2Iso (isConnectedPath 2 (isConnectedSubtr 3 n helper4) _ _) -- --------------- H¹(Sⁿ), n ≥ 1 -------------------------------------------- H¹-Sⁿ≅0 : (n : ℕ) → GroupIso (coHomGr 1 (S₊ (2 + n))) trivialGroup H¹-Sⁿ≅0 zero = IsoContrGroupTrivialGroup isContrH¹S² where isContrH¹S² : isContr ⟨ coHomGr 1 (S₊ 2) ⟩ isContrH¹S² = ∣ (λ _ → ∣ base ∣) ∣₂ , coHomPointedElim 0 north (λ _ → setTruncIsSet _ _) λ f p → cong ∣_∣₂ (funExt λ x → sym p ∙∙ sym (spoke f north) ∙∙ spoke f x) H¹-Sⁿ≅0 (suc n) = IsoContrGroupTrivialGroup isContrH¹S³⁺ⁿ where anIso : Iso ⟨ coHomGr 1 (S₊ (3 + n)) ⟩ ∥ (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1)) ∥₂ anIso = setTruncIso (codomainIso (invIso (truncIdempotentIso (4 + n) (isOfHLevelPlus' {n = 1 + n} 3 (isOfHLevelTrunc 3))))) isContrH¹S³⁺ⁿ-ish : (f : (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1))) → ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂ isContrH¹S³⁺ⁿ-ish f = ind (f north) refl where ind : (x : hLevelTrunc (4 + n) (coHomK 1)) → x ≡ f north → ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂ ind = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPlus' {n = (3 + n)} 1 (setTruncIsSet _ _)) (trElim (λ _ → isOfHLevelΠ 3 λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _)) (toPropElim (λ _ → isPropΠ λ _ → setTruncIsSet _ _) λ p → cong ∣_∣₂ (funExt λ x → p ∙∙ sym (spoke f north) ∙∙ spoke f x))) isContrH¹S³⁺ⁿ : isContr ⟨ coHomGr 1 (S₊ (3 + n)) ⟩ isContrH¹S³⁺ⁿ = isOfHLevelRetractFromIso 0 anIso (∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ , sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) isContrH¹S³⁺ⁿ-ish) --------- Direct proof of H¹(S¹) ≅ ℤ without Mayer-Vietoris ------- -- The strategy is to use the proof that ΩS¹ ≃ ℤ. Since we only have this for S¹ with the base/loop definition -- we begin with some functions translating between H¹(S₊ 1) and ∥ S¹ → S¹ ∥₀. The latter type is easy to characterise, -- by (S¹ → S¹) ≃ S¹ × ℤ (see Cubical.ZCohomology.Groups.Prelims). Truncating this leaves only ℤ, since S¹ is connected. -- The translation mentioned above uses the basechange function. We use basechange-lemma (Cubical.ZCohomology.Groups.Prelims) to prove the basechange2⁻ preserves -- path composition (in a more general sense than what is proved in basechange2⁻-morph) -- We can now give the group equivalence. The first bit is just a big composition of our previously defined translations and is pretty uninteresting. -- The harder step is proving that the equivalence is a morphism. This relies heavily on the fact that addition the cohomology groups essentially is defined using an -- application of cong₂, which allows us to use basechange-lemma. coHom1S1≃ℤ : GroupIso (coHomGr 1 (S₊ 1)) intGroup coHom1S1≃ℤ = theIso where F = Iso.fun S¹→S¹≡S¹×Int F⁻ = Iso.inv S¹→S¹≡S¹×Int theIso : GroupIso (coHomGr 1 (S₊ 1)) intGroup fun (map theIso) = sRec isSetInt (λ f → snd (F f)) isHom (map theIso) = sElim2 (λ _ _ → isOfHLevelPath 2 isSetInt _ _) λ f g → ((λ i → winding (guy (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f base) ∙ Kn→ΩKn+1 1 (g base))) (λ i → S¹map (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f (loop i)) ∙ Kn→ΩKn+1 1 (g (loop i)))))))) ∙∙ cong winding (helper (f base) (g base) f g refl refl) ∙∙ winding-hom (guy (f base) (λ i → S¹map (f (loop i)))) (guy (g base) (λ i → S¹map (g (loop i)))) where guy = basechange2⁻ ∘ S¹map helper : (x y : coHomK 1) (f g : S₊ 1 → coHomK 1) → (f base) ≡ x → (g base) ≡ y → (guy (ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f base) ∙ Kn→ΩKn+1 1 (g base))) (λ i → S¹map ((ΩKn+1→Kn 1 (Kn→ΩKn+1 1 (f (loop i)) ∙ Kn→ΩKn+1 1 (g (loop i))))))) ≡ (guy (f base) (λ i → S¹map (f (loop i)))) ∙ (guy (g base) (λ i → S¹map ((g (loop i))))) helper = elim2 (λ _ _ → isGroupoidΠ4 λ _ _ _ _ → isOfHLevelPath 3 (isOfHLevelSuc 3 (isGroupoidS¹) base base) _ _) (toPropElim2 (λ _ _ → isPropΠ4 λ _ _ _ _ → isGroupoidS¹ _ _ _ _) λ f g reflf reflg → basechange-lemma base base (S¹map ∘ (ΩKn+1→Kn 1)) ((Kn→ΩKn+1 1) ∘ f) ((Kn→ΩKn+1 1) ∘ g) (cong (Kn→ΩKn+1 1) reflf ∙ Kn→ΩKn+10ₖ 1) (cong (Kn→ΩKn+1 1) reflg ∙ Kn→ΩKn+10ₖ 1) ∙ λ j → guy (Iso.leftInv (Iso-Kn-ΩKn+1 1) (f base) j) (λ i → S¹map (Iso.leftInv (Iso-Kn-ΩKn+1 1) (f (loop i)) j)) ∙ guy (Iso.leftInv (Iso-Kn-ΩKn+1 1) (g base) j) (λ i → S¹map (Iso.leftInv (Iso-Kn-ΩKn+1 1) (g (loop i)) j))) inv theIso a = ∣ (F⁻ (base , a)) ∣₂ rightInv theIso a = cong snd (Iso.rightInv S¹→S¹≡S¹×Int (base , a)) leftInv theIso = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f → cong ((sRec setTruncIsSet ∣_∣₂) ∘ sRec setTruncIsSet λ x → ∣ F⁻ (x , (snd (F f))) ∣₂) (Iso.inv PathIdTrunc₀Iso (isConnectedS¹ (fst (F f)))) ∙ cong ∣_∣₂ (Iso.leftInv S¹→S¹≡S¹×Int f) ---------------------------- Hⁿ(Sⁿ) ≅ ℤ , n ≥ 1 ------------------- Hⁿ-Sⁿ≅ℤ : (n : ℕ) → GroupIso intGroup (coHomGr (suc n) (S₊ (suc n))) Hⁿ-Sⁿ≅ℤ zero = invGroupIso coHom1S1≃ℤ Hⁿ-Sⁿ≅ℤ (suc n) = Hⁿ-Sⁿ≅ℤ n □ vSES→GroupIso _ _ theIso □ invGroupIso (coHomPushout≅coHomSn (suc n) (suc (suc n))) where module K = MV Unit Unit (S₊ (suc n)) (λ _ → tt) (λ _ → tt) theIso : vSES (coHomGr (suc n) (S₊ (suc n))) (coHomGr (suc (suc n)) (Pushout {A = S₊ (suc n)} (λ _ → tt) (λ _ → tt))) _ _ isTrivialLeft theIso p q = ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit n) (fst p) (fst q) , isOfHLevelSuc 0 (isContrHⁿ-Unit n) (snd p) (snd q)) isTrivialRight theIso p q = ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n)) (fst p) (fst q) , isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n)) (snd p) (snd q)) left theIso = K.Δ (suc n) right theIso = K.i (2 + n) vSES.ϕ theIso = K.d (suc n) Ker-ϕ⊂Im-left theIso = K.Ker-d⊂Im-Δ (suc n) Ker-right⊂Im-ϕ theIso = K.Ker-i⊂Im-d (suc n) {- More standard proof of H¹(S¹) ≅ ℤ using Mayer-Vietoris. This is much slower than the direct proof, but let's keep it here for completeness. -- --------------------------H¹(S¹) ----------------------------------- {- In order to apply Mayer-Vietoris, we need the following lemma. Given the following diagram a ↦ (a , 0) ψ ϕ A --> A × A -------> B ---> C If ψ is an isomorphism and ϕ is surjective with ker ϕ ≡ {ψ (a , a) ∣ a ∈ A}, then C ≅ B -} diagonalIso : ∀ {ℓ ℓ' ℓ''} {A : Group {ℓ}} (B : Group {ℓ'}) {C : Group {ℓ''}} (ψ : GroupIso (dirProd A A) B) (ϕ : GroupHom B C) → isSurjective _ _ ϕ → ((x : ⟨ B ⟩) → isInKer B C ϕ x → ∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y)) → ((x : ⟨ B ⟩) → (∃[ y ∈ ⟨ A ⟩ ] x ≡ (fun (map ψ)) (y , y)) → isInKer B C ϕ x) → GroupIso A C diagonalIso {A = A} B {C = C} ψ ϕ issurj ker→diag diag→ker = BijectionIsoToGroupIso bijIso where open GroupStr module A = GroupStr (snd A) module B = GroupStr (snd B) module C = GroupStr (snd C) module A×A = GroupStr (snd (dirProd A A)) module ψ = GroupIso ψ module ϕ = GroupHom ϕ ψ⁻ = inv ψ fstProj : GroupHom A (dirProd A A) fun fstProj a = a , GroupStr.0g (snd A) isHom fstProj g0 g1 i = (g0 A.+ g1) , GroupStr.lid (snd A) (GroupStr.0g (snd A)) (~ i) bijIso : BijectionIso A C map' bijIso = compGroupHom fstProj (compGroupHom (map ψ) ϕ) inj bijIso a inker = pRec (isSetCarrier A _ _) (λ {(a' , id) → (cong fst (sym (leftInv ψ (a , GroupStr.0g (snd A))) ∙∙ cong ψ⁻ id ∙∙ leftInv ψ (a' , a'))) ∙ cong snd (sym (leftInv ψ (a' , a')) ∙∙ cong ψ⁻ (sym id) ∙∙ leftInv ψ (a , GroupStr.0g (snd A)))}) (ker→diag _ inker) surj bijIso c = pRec propTruncIsProp (λ { (b , id) → ∣ (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b))) , ((sym (GroupStr.rid (snd C) _) ∙∙ cong ((fun ϕ) ((fun (map ψ)) (fst (ψ⁻ b) A.+ (A.- snd (ψ⁻ b)) , GroupStr.0g (snd A))) C.+_) (sym (diag→ker (fun (map ψ) ((snd (ψ⁻ b)) , (snd (ψ⁻ b)))) ∣ (snd (ψ⁻ b)) , refl ∣₁)) ∙∙ sym ((isHom ϕ) _ _)) ∙∙ cong (fun ϕ) (sym ((isHom (map ψ)) _ _) ∙∙ cong (fun (map ψ)) (ΣPathP (sym (GroupStr.assoc (snd A) _ _ _) ∙∙ cong (fst (ψ⁻ b) A.+_) (GroupStr.invl (snd A) _) ∙∙ GroupStr.rid (snd A) _ , (GroupStr.lid (snd A) _))) ∙∙ rightInv ψ b) ∙∙ id) ∣₁ }) (issurj c) H¹-S¹≅ℤ : GroupIso intGroup (coHomGr 1 (S₊ 1)) H¹-S¹≅ℤ = diagonalIso (coHomGr 0 (S₊ 0)) (invGroupIso H⁰-S⁰≅ℤ×ℤ) (K.d 0) (λ x → K.Ker-i⊂Im-d 0 x (ΣPathP (isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _ , isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _))) ((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) (λ x inker → pRec propTruncIsProp (λ {((f , g) , id') → helper x f g id' inker}) ((K.Ker-d⊂Im-Δ 0 ∣ x ∣₂ inker))))) ((sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ F surj → pRec (setTruncIsSet _ _) (λ { (x , id) → K.Im-Δ⊂Ker-d 0 ∣ F ∣₂ ∣ (∣ (λ _ → x) ∣₂ , ∣ (λ _ → 0) ∣₂) , (cong ∣_∣₂ (funExt (surjHelper x))) ∙ sym id ∣₁ }) surj) ) □ invGroupIso (coHomPushout≅coHomSn 0 1) where module K = MV Unit Unit (S₊ 0) (λ _ → tt) (λ _ → tt) surjHelper : (x : Int) (x₁ : S₊ 0) → x -[ 0 ]ₖ 0 ≡ S0→Int (x , x) x₁ surjHelper x true = Iso.leftInv (Iso-Kn-ΩKn+1 0) x surjHelper x false = Iso.leftInv (Iso-Kn-ΩKn+1 0) x helper : (F : S₊ 0 → Int) (f g : ∥ (Unit → Int) ∥₂) (id : GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂) → isInKer (coHomGr 0 (S₊ 0)) (coHomGr 1 (Pushout (λ _ → tt) (λ _ → tt))) (K.d 0) ∣ F ∣₂ → ∃[ x ∈ Int ] ∣ F ∣₂ ≡ inv H⁰-S⁰≅ℤ×ℤ (x , x) helper F = sElim2 (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) λ f g id inker → pRec propTruncIsProp (λ ((a , b) , id2) → sElim2 {C = λ f g → GroupHom.fun (K.Δ 0) (f , g) ≡ ∣ F ∣₂ → _ } (λ _ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) (λ f g id → ∣ (helper2 f g .fst) , (sym id ∙ sym (helper2 f g .snd)) ∣₁) a b id2) (MV.Ker-d⊂Im-Δ _ _ (S₊ 0) (λ _ → tt) (λ _ → tt) 0 ∣ F ∣₂ inker) where helper2 : (f g : Unit → Int) → Σ[ x ∈ Int ] (inv H⁰-S⁰≅ℤ×ℤ (x , x)) ≡ GroupHom.fun (K.Δ 0) (∣ f ∣₂ , ∣ g ∣₂) helper2 f g = (f _ -[ 0 ]ₖ g _) , cong ∣_∣₂ (funExt λ {true → refl ; false → refl}) -}
{ "alphanum_fraction": 0.5069498269, "avg_line_length": 49.7506426735, "ext": "agda", "hexsha": "76ce1a137faf75587a7ea5e7bc9301bc9d90fe00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Sn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Sn.agda", "max_line_length": 165, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Sn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7412, "size": 19353 }
{-# OPTIONS --without-K #-} module Coinduction where infix 1000 ♯_ postulate ∞ : ∀ {i} (A : Set i) → Set i ♯_ : ∀ {i} {A : Set i} → A → ∞ A ♭ : ∀ {i} {A : Set i} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-}
{ "alphanum_fraction": 0.4552238806, "avg_line_length": 17.8666666667, "ext": "agda", "hexsha": "6e4332f385c13416a2ac36c39a3636f987c0aed3", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Coinduction.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Coinduction.agda", "max_line_length": 34, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Coinduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 115, "size": 268 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Empty.Polymorphic where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude import Cubical.Data.Empty as Empty ⊥ : ∀ {ℓ} → Type ℓ ⊥ = Lift Empty.⊥ ⊥-elim : ∀ {w ℓ} {Whatever : ⊥ {ℓ} → Type w} → (witness : ⊥ {ℓ}) → Whatever witness ⊥-elim () isProp⊥ : ∀ {ℓ} → isProp (⊥ {ℓ}) isProp⊥ () isContr⊥→A : ∀ {ℓ ℓ′} {A : Type ℓ′} → isContr (⊥ {ℓ} → A) fst isContr⊥→A () snd isContr⊥→A f i ()
{ "alphanum_fraction": 0.6095041322, "avg_line_length": 23.0476190476, "ext": "agda", "hexsha": "eeb0e840271126f5e72cc95c660b21d8d871d5a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Data/Empty/Polymorphic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Data/Empty/Polymorphic.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Data/Empty/Polymorphic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 209, "size": 484 }
{-# OPTIONS --safe #-} module Cubical.Algebra.GradedRing.DirectSumHIT where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.AbGroup.Instances.DirectSumHIT open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing private variable ℓ ℓ' : Level ----------------------------------------------------------------------------- -- Def, notation, lemma module GradedRing-⊕HIT-index (IdM@(Idx , IdxStr) : Monoid ℓ) (G : (n : Idx) → Type ℓ') (Gstr : (n : Idx) → AbGroupStr (G n)) where ⊕G-AbGroup = ⊕HIT-AbGr Idx G Gstr ⊕G = ⊕HIT Idx G Gstr open MonoidStr IdxStr renaming (is-set to isSetIdx) open AbGroupStr (snd ⊕G-AbGroup) renaming ( 0g to 0⊕ ; _+_ to _+⊕_ ; -_ to -⊕_ ; +Assoc to +⊕Assoc ; +IdR to +⊕IdR ; +IdL to +⊕IdL ; +InvR to +⊕InvR ; +InvL to +⊕InvL ; +Comm to +⊕Comm ; is-set to isSet⊕G ) open AbGroupTheory ⊕G-AbGroup open AbGroupStr renaming ( +Assoc to +Assoc ; +IdR to +IdR ; +IdL to +IdL ; +InvR to +InvR ; +InvL to +InvL ; +Comm to +Comm ; is-set to isSetG ) module GradedRing-⊕HIT-⋆ (1⋆ : G ε) (_⋆_ : {k l : Idx} → G k → G l → G (k · l)) (0-⋆ : {k l : Idx} → (b : G l) → (0g (Gstr k)) ⋆ b ≡ 0g (Gstr (k · l))) (⋆-0 : {k l : Idx} → (a : G k) → a ⋆ (0g (Gstr l)) ≡ 0g (Gstr (k · l))) (⋆Assoc : {k l m : Idx} → (a : G k) → (b : G l) → (c : G m) → _≡_ {A = Σ[ k ∈ Idx ] G k} ((k · (l · m)) , (a ⋆ (b ⋆ c))) (((k · l) · m) , ((a ⋆ b) ⋆ c))) (⋆IdR : {k : Idx} → (a : G k) → _≡_ {A = Σ[ k ∈ Idx ] G k} ( k · ε , a ⋆ 1⋆ ) (k , a)) (⋆IdL : {l : Idx} → (b : G l) → _≡_ {A = Σ[ k ∈ Idx ] G k} ( ε · l , 1⋆ ⋆ b ) (l , b)) (⋆DistR+ : {k l : Idx} → (a : G k) → (b c : G l) → a ⋆ ((Gstr l) ._+_ b c) ≡ Gstr (k · l) ._+_ (a ⋆ b) (a ⋆ c)) (⋆DistL+ : {k l : Idx} → (a b : G k) → (c : G l) → ((Gstr k) ._+_ a b) ⋆ c ≡ Gstr (k · l) ._+_ (a ⋆ c) (b ⋆ c)) where ----------------------------------------------------------------------------- -- Ring Properties _prod_ : ⊕G → ⊕G → ⊕G _prod_ = DS-Rec-Set.f _ _ _ _ (isSetΠ λ _ → isSet⊕G) (λ _ → 0⊕) (λ k a → DS-Rec-Set.f _ _ _ _ isSet⊕G 0⊕ (λ l b → base (k · l) (a ⋆ b)) _+⊕_ +⊕Assoc +⊕IdR +⊕Comm (λ l → cong (base (k · l)) (⋆-0 a) ∙ base-neutral _) λ l b c → base-add _ _ _ ∙ cong (base (k · l)) (sym (⋆DistR+ _ _ _))) (λ xs ys y → (xs y) +⊕ (ys y)) (λ xs ys zs i y → +⊕Assoc (xs y) (ys y) (zs y) i) (λ xs i y → +⊕IdR (xs y) i) (λ xs ys i y → +⊕Comm (xs y) (ys y) i) (λ k → funExt (DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕G _ _) refl (λ l b → cong (base (k · l)) (0-⋆ _) ∙ base-neutral _) λ {U V} ind-U ind-V → cong₂ _+⊕_ ind-U ind-V ∙ +⊕IdR _)) λ k a b → funExt (DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕G _ _) (+⊕IdR _) (λ l c → base-add _ _ _ ∙ cong (base (k · l)) (sym (⋆DistL+ _ _ _))) (λ {U V} ind-U ind-V → comm-4 _ _ _ _ ∙ cong₂ _+⊕_ ind-U ind-V)) 1⊕ : ⊕G 1⊕ = base ε 1⋆ prodAssoc : (x y z : ⊕G) → x prod (y prod z) ≡ (x prod y) prod z prodAssoc = DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ2 λ _ _ → isSet⊕G _ _) (λ _ _ → refl) (λ k a → DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ (λ _ → isSet⊕G _ _)) (λ z → refl) (λ l b → DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕G _ _) refl (λ m c → cong₂ base (cong fst (⋆Assoc _ _ _)) (cong snd (⋆Assoc _ _ _))) λ {U V} ind-U ind-V → cong₂ _+⊕_ ind-U ind-V) λ {U V} ind-U ind-V z → cong₂ _+⊕_ (ind-U z) (ind-V z)) λ {U V} ind-U ind-V y z → cong₂ _+⊕_ (ind-U y z) (ind-V y z) prodIdR : (x : ⊕G) → x prod 1⊕ ≡ x prodIdR = DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕G _ _) refl (λ k a → cong₂ base (cong fst (⋆IdR _)) (cong snd (⋆IdR _)) ) λ {U V} ind-U ind-V → (cong₂ _+⊕_ ind-U ind-V) prodIdL : (y : ⊕G) → 1⊕ prod y ≡ y prodIdL = DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕G _ _) refl (λ l b → cong₂ base (cong fst (⋆IdL _)) (cong snd (⋆IdL _)) ) λ {U V} ind-U ind-V → (cong₂ _+⊕_ ind-U ind-V) prodDistR+ : (x y z : ⊕G) → x prod (y +⊕ z) ≡ (x prod y) +⊕ (x prod z) prodDistR+ = DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ2 (λ _ _ → isSet⊕G _ _)) (λ _ _ → sym (+⊕IdR _)) (λ k a y z → refl) λ {U V} ind-U ind-V y z → cong₂ _+⊕_ (ind-U y z) (ind-V y z) ∙ comm-4 _ _ _ _ prodDistL+ : (x y z : ⊕G) → (x +⊕ y) prod z ≡ (x prod z) +⊕ (y prod z) prodDistL+ = λ x y z → refl ----------------------------------------------------------------------------- -- Ring Instances ⊕HITgradedRing-Ring : Ring (ℓ-max ℓ ℓ') fst ⊕HITgradedRing-Ring = ⊕G RingStr.0r (snd ⊕HITgradedRing-Ring) = 0⊕ RingStr.1r (snd ⊕HITgradedRing-Ring) = 1⊕ RingStr._+_ (snd ⊕HITgradedRing-Ring) = _+⊕_ RingStr._·_ (snd ⊕HITgradedRing-Ring) = _prod_ RingStr.- snd ⊕HITgradedRing-Ring = -⊕_ RingStr.isRing (snd ⊕HITgradedRing-Ring) = makeIsRing isSet⊕G +⊕Assoc +⊕IdR +⊕InvR +⊕Comm prodAssoc prodIdR prodIdL prodDistR+ prodDistL+ ----------------------------------------------------------------------------- -- CommRing extension module ExtensionCommRing (⋆Comm : {k l : Idx} → (a : G k) → (b : G l) → _≡_ {A = Σ[ k ∈ Idx ] G k} ((k · l) , (a ⋆ b)) ((l · k) , (b ⋆ a))) where open RingTheory ⊕HITgradedRing-Ring prodComm : (x y : ⊕G) → x prod y ≡ y prod x prodComm = DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ (λ _ → isSet⊕G _ _)) (λ y → sym (0RightAnnihilates y)) (λ k a → DS-Ind-Prop.f _ _ _ _ (λ _ → isSet⊕G _ _) refl (λ l b → cong₂ base (cong fst (⋆Comm _ _)) (cong snd (⋆Comm _ _))) λ {U V} ind-U ind-V → cong₂ _+⊕_ ind-U ind-V) λ {U V} ind-U ind-V Q → ((cong₂ _+⊕_ (ind-U Q) (ind-V Q)) ∙ sym (prodDistR+ Q U V)) ⊕HITgradedRing-CommRing : CommRing (ℓ-max ℓ ℓ') ⊕HITgradedRing-CommRing = Ring→CommRing ⊕HITgradedRing-Ring prodComm
{ "alphanum_fraction": 0.4235563834, "avg_line_length": 40.1091954023, "ext": "agda", "hexsha": "01928fbbc44823a3fd38df18d63b9e4e371686e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/GradedRing/DirectSumHIT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/GradedRing/DirectSumHIT.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/GradedRing/DirectSumHIT.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2817, "size": 6979 }
{-# OPTIONS --without-K --safe #-} open import Axiom.Extensionality.Propositional using (Extensionality) module Cats.Category.Sets.Facts (funext : ∀ {a b} → Extensionality a b) where open import Cats.Category.Sets.Facts.Exponential funext public using (hasExponentials) open import Cats.Category.Sets.Facts.Initial public using (hasInitial) open import Cats.Category.Sets.Facts.Product public using (hasBinaryProducts ; hasFiniteProducts) open import Cats.Category.Sets.Facts.Terminal public using (hasTerminal) open import Cats.Category open import Cats.Category.Sets using (Sets) instance isCCC : ∀ {l} → IsCCC (Sets l) isCCC = record {}
{ "alphanum_fraction": 0.7709923664, "avg_line_length": 31.1904761905, "ext": "agda", "hexsha": "2aec184ba449722ace5155ca4d558c02225619f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Sets/Facts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Sets/Facts.agda", "max_line_length": 86, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Sets/Facts.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 161, "size": 655 }
{-# OPTIONS --cubical --safe #-} module Relation.Unary where open import Relation.Nullary.Decidable open import Level open import Path Decidable : (A → Type b) → Type _ Decidable P = ∀ x → Dec (P x) AtMostOne : (A → Type b) → Type _ AtMostOne P = ∀ x y → P x → P y → x ≡ y
{ "alphanum_fraction": 0.6462093863, "avg_line_length": 19.7857142857, "ext": "agda", "hexsha": "b19f5c0767e8fb23f659e0b881edf5c1a5f24dc2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Relation/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Relation/Unary.agda", "max_line_length": 39, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Relation/Unary.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 88, "size": 277 }
open import Common.Prelude hiding (pred) open import Common.Reflection open import Common.Equality un-function : Definition → FunDef un-function (funDef cs) = funDef unknown cs un-function _ = funDef unknown [] data Is-suc : Nat → Set where is-suc : ∀ n → Is-suc (suc n) pred : (n : Nat) → Is-suc n → Nat pred ._ (is-suc n) = n pred-def : FunDef pred-def = funDef (quoteTerm ((n : Nat) → Is-suc n → Nat)) (clause (vArg dot ∷ vArg (con (quote is-suc) (vArg (var "n") ∷ [])) ∷ []) (var 0 []) ∷ []) data Is-zero : Nat → Set where is-zero : Is-zero zero f : (n : Nat) → Is-zero n → Nat f ._ is-zero = zero f-def : FunDef f-def = funDef (quoteTerm ((n : Nat) → Is-zero n → Nat)) (clause (vArg dot ∷ vArg (con (quote is-zero) []) ∷ []) (con (quote zero) []) ∷ []) unquoteDecl pred' = define (vArg pred') pred-def unquoteDecl f' = define (vArg f') f-def check-pred : pred' 4 (is-suc _) ≡ 3 check-pred = refl check-f : f' 0 is-zero ≡ 0 check-f = refl
{ "alphanum_fraction": 0.5747572816, "avg_line_length": 24.5238095238, "ext": "agda", "hexsha": "0381bcd3202baa6897123c389e8136e3f49c6bf8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1227.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue1227.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue1227.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 347, "size": 1030 }
open import Prelude renaming (_<_ to _N<_) module Implicits.Resolution.GenericFinite.Algorithm where open import Induction.WellFounded open import Induction.Nat open import Data.Vec open import Data.List open import Data.Fin.Substitution open import Data.Nat.Base using (_<′_) open import Data.Maybe open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.GenericFinite.Resolution open import Implicits.Resolution.GenericFinite.TerminationCondition open import Implicits.Resolution.Termination private module M = MetaTypeMetaSubst module Lemmas where m<-Acc : ∀ {m ν} → MetaType m ν → Set m<-Acc {m} {ν} r = Acc _m<_ (m , ν , r) ρ<-Acc : ∀ {ν} → Type ν → Set ρ<-Acc {ν} r = Acc _ρ<_ (ν , r) module Arg<-well-founded where open Lexicographic (_N<_) (const _ρ<_) open import Induction.Nat open import Data.Nat.Properties module image = Subrelation {A = ℕ} {_N<_} {_<′_} ≤⇒≤′ arg<-well-founded : Well-founded _<_ arg<-well-founded = well-founded (image.well-founded <-well-founded) ρ<-well-founded _arg<_ = _<_ -- Accessibility of the 'goal' type during resolution. -- Either the *head* of the goal shrinks (Oliveira's termination condition) -- Or the head size remains equal and the goal shrinks in an absolute sense. Arg<-Acc : ∀ {ν} → Type ν → Set Arg<-Acc a = Acc _arg<_ (h|| a || , (, a)) open Arg<-well-founded using (Arg<-Acc; arg<-well-founded) public open Lemmas module ResolutionAlgorithm (cond : TerminationCondition) where open TerminationCondition cond open ResolutionRules cond mutual match' : ∀ {m ν} (Δ : ICtx ν) (Φ : TCtx) τ → (r : MetaType m ν) → T-Acc Φ → m<-Acc r → Maybe (Sub (flip MetaType ν) m zero) match' Δ Φ τ (simpl x) f g = mgu (simpl x) τ match' Δ Φ τ (a ⇒ b) f (acc g) with match' Δ Φ τ b f (g _ (b-m<-a⇒b a b)) match' Δ Φ τ (a ⇒ b) f (acc g) | nothing = nothing match' Δ Φ τ (a ⇒ b) f (acc g) | just u with (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) <? Φ match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< with resolve' Δ (step Φ Δ (from-meta (a M./ u)) (from-meta (b M./ u)) τ) (from-meta (a M./ u)) (f _ Φ<) match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< | true = just u match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | yes Φ< | false = nothing match' Δ Φ τ (a ⇒ b) (acc f) (acc g) | just u | no φ> = nothing match' Δ Φ τ (∀' a) f (acc g) with match' Δ Φ τ (open-meta a) f (g _ (open-meta-a-m<-∀'a a)) match' Δ Φ τ (∀' a) f (acc g) | just p = just (tail p) match' Δ Φ τ (∀' r) f (acc g) | nothing = nothing -- match defers to match', which concerns itself with MetaTypes. -- If match' finds a match, we can use the fact that we have zero unification variables open here -- to show that we found the right thing. match : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) τ r → T-Acc Φ → Bool match Δ Φ τ a f = is-just (match' Δ Φ τ (to-meta {zero} a) f (m<-well-founded _)) match1st : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) (ρs : ICtx ν) → (τ : SimpleType ν) → T-Acc Φ → Bool match1st Δ Φ [] τ Φ↓ = false match1st Δ Φ (x ∷ xs) τ Φ↓ with match Δ Φ τ x Φ↓ match1st Δ Φ (x ∷ xs) τ Φ↓ | true = true match1st Δ Φ (x ∷ xs) τ Φ↓ | false = match1st Δ Φ xs τ Φ↓ resolve' : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) r → T-Acc Φ → Bool resolve' Δ Φ (simpl x) Φ↓ = match1st Δ Φ Δ x Φ↓ resolve' Δ Φ (a ⇒ b) Φ↓ = resolve' (a ∷ Δ) Φ b Φ↓ resolve' Δ Φ (∀' r) Φ↓ = resolve' (ictx-weaken Δ) Φ r Φ↓ resolve : ∀ {ν} (Δ : ICtx ν) (Φ : TCtx) r → Bool resolve Δ Φ r = resolve' Δ Φ r (wf-< Φ)
{ "alphanum_fraction": 0.6142678348, "avg_line_length": 38.786407767, "ext": "agda", "hexsha": "2377d1eb8d548ba65cd0f1e56248495f0bdf286a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm.agda", "max_line_length": 101, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/Algorithm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1436, "size": 3995 }
------------------------------------------------------------------------ -- The Agda standard library -- -- List Zipper-related properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Zipper.Properties where open import Data.List.Base as List using (List ; [] ; _∷_) open import Data.List.Properties open import Data.List.Zipper open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.All using (All; just; nothing) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Function -- Invariant: Zipper represents a given list ------------------------------------------------------------------------ module _ {a} {A : Set a} where -- Stability under moving left or right toList-left-identity : (zp : Zipper A) → All ((_≡_ on toList) zp) (left zp) toList-left-identity (mkZipper [] val) = nothing toList-left-identity (mkZipper (x ∷ ctx) val) = just $′ begin List.reverse (x ∷ ctx) List.++ val ≡⟨ cong (List._++ val) (unfold-reverse x ctx) ⟩ (List.reverse ctx List.++ List.[ x ]) List.++ val ≡⟨ ++-assoc (List.reverse ctx) List.[ x ] val ⟩ toList (mkZipper ctx (x ∷ val)) ∎ toList-right-identity : (zp : Zipper A) → All ((_≡_ on toList) zp) (right zp) toList-right-identity (mkZipper ctx []) = nothing toList-right-identity (mkZipper ctx (x ∷ val)) = just $′ begin List.reverse ctx List.++ x ∷ val ≡⟨ sym (++-assoc (List.reverse ctx) List.[ x ] val) ⟩ (List.reverse ctx List.++ List.[ x ]) List.++ val ≡⟨ cong (List._++ val) (sym (unfold-reverse x ctx)) ⟩ List.reverse (x ∷ ctx) List.++ val ∎ -- Applying reverse does correspond to reversing the represented list toList-reverse-commute : (zp : Zipper A) → toList (reverse zp) ≡ List.reverse (toList zp) toList-reverse-commute (mkZipper ctx val) = begin List.reverse val List.++ ctx ≡⟨ cong (List.reverse val List.++_) (sym (reverse-involutive ctx)) ⟩ List.reverse val List.++ List.reverse (List.reverse ctx) ≡⟨ sym (reverse-++-commute (List.reverse ctx) val) ⟩ List.reverse (List.reverse ctx List.++ val) ∎ -- Properties of the insertion functions ------------------------------------------------------------------------ -- _ˡ++_ properties toList-ˡ++-commute : ∀ xs (zp : Zipper A) → toList (xs ˡ++ zp) ≡ xs List.++ toList zp toList-ˡ++-commute xs (mkZipper ctx val) = begin List.reverse (ctx List.++ List.reverse xs) List.++ val ≡⟨ cong (List._++ _) (reverse-++-commute ctx (List.reverse xs)) ⟩ (List.reverse (List.reverse xs) List.++ List.reverse ctx) List.++ val ≡⟨ ++-assoc (List.reverse (List.reverse xs)) (List.reverse ctx) val ⟩ List.reverse (List.reverse xs) List.++ List.reverse ctx List.++ val ≡⟨ cong (List._++ _) (reverse-involutive xs) ⟩ xs List.++ List.reverse ctx List.++ val ∎ ˡ++-assoc : ∀ xs ys (zp : Zipper A) → xs ˡ++ (ys ˡ++ zp) ≡ (xs List.++ ys) ˡ++ zp ˡ++-assoc xs ys (mkZipper ctx val) = cong (λ ctx → mkZipper ctx val) $ begin (ctx List.++ List.reverse ys) List.++ List.reverse xs ≡⟨ ++-assoc ctx _ _ ⟩ ctx List.++ List.reverse ys List.++ List.reverse xs ≡⟨ cong (ctx List.++_) (sym (reverse-++-commute xs ys)) ⟩ ctx List.++ List.reverse (xs List.++ ys) ∎ -- _ʳ++_ properties ʳ++-assoc : ∀ xs ys (zp : Zipper A) → xs ʳ++ (ys ʳ++ zp) ≡ (ys List.++ xs) ʳ++ zp ʳ++-assoc xs ys (mkZipper ctx val) = cong (λ ctx → mkZipper ctx val) $ begin List.reverse xs List.++ List.reverse ys List.++ ctx ≡⟨ sym (++-assoc (List.reverse xs) (List.reverse ys) ctx) ⟩ (List.reverse xs List.++ List.reverse ys) List.++ ctx ≡⟨ cong (List._++ ctx) (sym (reverse-++-commute ys xs)) ⟩ List.reverse (ys List.++ xs) List.++ ctx ∎ -- _++ˡ_ properties ++ˡ-assoc : ∀ xs ys (zp : Zipper A) → zp ++ˡ xs ++ˡ ys ≡ zp ++ˡ (ys List.++ xs) ++ˡ-assoc xs ys (mkZipper ctx val) = cong (mkZipper ctx) $ sym $ ++-assoc ys xs val -- _++ʳ_ properties toList-++ʳ-commute : ∀ (zp : Zipper A) xs → toList (zp ++ʳ xs) ≡ toList zp List.++ xs toList-++ʳ-commute (mkZipper ctx val) xs = begin List.reverse ctx List.++ val List.++ xs ≡⟨ sym (++-assoc (List.reverse ctx) val xs) ⟩ (List.reverse ctx List.++ val) List.++ xs ∎ ++ʳ-assoc : ∀ xs ys (zp : Zipper A) → zp ++ʳ xs ++ʳ ys ≡ zp ++ʳ (xs List.++ ys) ++ʳ-assoc xs ys (mkZipper ctx val) = cong (mkZipper ctx) $ ++-assoc val xs ys -- List-like operations indeed correspond to their counterparts ------------------------------------------------------------------------ module _ {a b} {A : Set a} {B : Set b} where toList-map-commute : ∀ (f : A → B) zp → toList (map f zp) ≡ List.map f (toList zp) toList-map-commute f zp@(mkZipper ctx val) = begin List.reverse (List.map f ctx) List.++ List.map f val ≡⟨ cong (List._++ _) (sym (reverse-map-commute f ctx)) ⟩ List.map f (List.reverse ctx) List.++ List.map f val ≡⟨ sym (map-++-commute f (List.reverse ctx) val) ⟩ List.map f (List.reverse ctx List.++ val) ∎ toList-foldr-commute : ∀ (c : A → B → B) n zp → foldr c n zp ≡ List.foldr c n (toList zp) toList-foldr-commute c n (mkZipper ctx val) = begin List.foldl (flip c) (List.foldr c n val) ctx ≡⟨ sym (reverse-foldr c (List.foldr c n val) ctx) ⟩ List.foldr c (List.foldr c n val) (List.reverse ctx) ≡⟨ sym (foldr-++ c n (List.reverse ctx) val) ⟩ List.foldr c n (List.reverse ctx List.++ val) ∎
{ "alphanum_fraction": 0.5787079163, "avg_line_length": 40.7037037037, "ext": "agda", "hexsha": "7da32c5b89ccceaf1678d8c678dddb6d1e747062", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Zipper/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Zipper/Properties.agda", "max_line_length": 90, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Zipper/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1817, "size": 5495 }
module ImplicitRecordFields where record R (X Y : Set) : Set₁ where field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E → X → Y postulate A : Set r : R A A r = record { f = f ; B = A ; D = A ; g = λ (_ _ _ : _) → f } where f : A → A f x = x data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x lemma₁ : r ≡ record {} lemma₁ = refl lemma₂ : R.B r ≡ A lemma₂ = refl
{ "alphanum_fraction": 0.4414414414, "avg_line_length": 14.3225806452, "ext": "agda", "hexsha": "13c84a010a089bdbd5e91fc7a91710f439c49112", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ImplicitRecordFields.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ImplicitRecordFields.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ImplicitRecordFields.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 187, "size": 444 }
-- Interpretation of partial weakenings as partial finite maps. module Dimension.PartialWeakening.Model (E : Set) where import Level open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Fin using (Fin; zero; suc) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Axiom.FunctionExtensionality open import Control.Category open import Control.Category.Functor open import Control.Kleisli open import Control.Monad using (IsMonad; module IsMonad) import Control.Monad.Error as Err open module Error = Err E using (Error; fail; return; errorIsMonad) -- open import Dimension.PartialWeakening E -- horrible names import Dimension.PartialWeakening as PW open module PWeak = PW E open IsMonad errorIsMonad hiding (return) module Kl = IsCategory (kleisliIsCategory errorIsMonad) -- Semantics given by application to a name in Fin n apply : ∀ {n m} (f : PWeak n m) (i : Fin n) → Error (Fin m) apply [] () apply (e ∷ f) zero = fail e apply (e ∷ f) (suc i) = apply f i apply (lift f) zero = return zero apply (lift f) (suc i) = suc <$> apply f i apply (weak f) i = suc <$> apply f i -- Soundness of id abstract apply-id : ∀ n (i : Fin n) → apply id i ≡ return i apply-id 0 () apply-id (suc n) zero = refl apply-id (suc n) (suc i) with (apply id i) | (apply-id n i) apply-id (suc n) (suc i) | .(return i) | refl = refl -- Lemma: one inductive step abstract lift-lift-suc : ∀ {n m l} (f : PWeak n m) {g : PWeak m l} {i : Fin n} → (ih : apply (comp f g) i ≡ apply f i >>= apply g) → apply (comp (lift f) (lift g)) (suc i) ≡ apply (lift f) (suc i) >>= apply (lift g) lift-lift-suc f {g = g} {i = i} ih = begin apply (comp (lift f) (lift g)) (suc i) ≡⟨⟩ -- definition of comp apply (lift (comp f g)) (suc i) ≡⟨⟩ -- definition of apply suc <$> apply (comp f g) i ≡⟨ cong (_<$>_ suc) ih ⟩ -- induction hypothesis suc <$> (apply f i >>= apply g) ≡⟨ map-after-bind (apply f i) ⟩ -- map commutes with bind I (apply f i >>= λ j → suc <$> apply g j) ≡⟨⟩ -- definition of apply (apply f i >>= λ j → apply (lift g) (suc j)) ≡⟨ sym (bind-after-map (apply f i)) ⟩ -- map commutes with bind II (suc <$> apply f i) >>= apply (lift g) ≡⟨⟩ -- definition of apply apply (lift f) (suc i) >>= apply (lift g) ∎ -- Soundness of comp abstract apply-comp : ∀ {n m l} (f : PWeak n m) (g : PWeak m l) (i : Fin n) → apply (comp f g) i ≡ apply f i >>= apply g apply-comp [] g () apply-comp (e ∷ f) g zero = refl apply-comp (e ∷ f) g (suc i) = apply-comp f g i apply-comp (lift f) (e ∷ g) zero = refl apply-comp (lift f) (e ∷ g) (suc i) rewrite apply-comp f g i with apply f i ... | fail e′ = refl ... | return j = refl apply-comp (lift f) (lift g) zero = refl apply-comp (lift f) (lift g) (suc i) = lift-lift-suc f (apply-comp f g i) apply-comp (lift f) (weak g) i = begin suc <$> apply (comp (lift f) g) i ≡⟨ cong (_<$>_ suc) (apply-comp (lift f) g i) ⟩ -- ind. hyp. suc <$> (apply (lift f) i >>= apply g) ≡⟨ map-after-bind (apply (lift f) i) ⟩ -- move map apply (lift f) i >>= (λ j → suc <$> apply g j) ∎ apply-comp (weak f) (e ∷ g) i rewrite apply-comp f g i = sym (bind-after-map (apply f i)) apply-comp (weak f) (lift g) i rewrite apply-comp f g i = begin suc <$> (apply f i >>= apply g) ≡⟨ map-after-bind (apply f i) ⟩ apply f i >>= (λ j → suc <$> apply g j) ≡⟨⟩ apply f i >>= (λ j → apply (lift g) (suc j)) ≡⟨ sym (bind-after-map (apply f i)) ⟩ (suc <$> apply f i) >>= apply (lift g) ∎ apply-comp (weak f) (weak g) i rewrite apply-comp (weak f) g i = map-after-bind (apply (weak f) i) -- The Kleisli category of partial finite maps Fin n → Error (Fin m) PFin : (n m : ℕ) → Set PFin n m = Fin n → Error (Fin m) SPFin = λ n m → setoid (PFin n m) pFinIsCategory : IsCategory SPFin pFinIsCategory = record { ops = record { id = return ; _⟫_ = λ f g a → f a >>= g } ; laws = record { id-first = fun-ext (bind-β _) ; id-last = fun-ext (λ a → bind-η _) ; ∘-assoc = λ f → fun-ext (λ a → bind-assoc (f a)) ; ∘-cong = λ{ refl refl → refl } } } PFIN : Category _ _ _ PFIN = record { Hom = SPFin; isCategory = pFinIsCategory } -- The evaluation functor -- ⟦_⟧ : ∀ {n m} → PWeak n m → PFin n m -- ⟦ f ⟧ = apply f applyIsFunctor : IsFunctor {C = PWEAK} {D = PFIN} (λ n → n) applyIsFunctor = record { ops = record { map = apply } ; laws = record { map-id = fun-ext (apply-id _) ; map-∘ = λ f → fun-ext (apply-comp f _) } }
{ "alphanum_fraction": 0.5558063192, "avg_line_length": 26.9281767956, "ext": "agda", "hexsha": "98290ecb9e24dbe46f94281644cc7ad55b7360d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Dimension/PartialWeakening/Model.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Dimension/PartialWeakening/Model.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Dimension/PartialWeakening/Model.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1640, "size": 4874 }
{-# OPTIONS --no-universe-polymorphism #-} open import Induction.WellFounded as WF open import Data.Product open import Relation.Binary.Core open import Relation.Unary as U using (Decidable) open import Relation.Nullary import Level as L using (zero) module DivideEtImpera where {-- This module implements a quite general version of Divide and Conquer as desribed by Douglas R. Smith in his paper "The Design of Divide and Conquer Algorithms" 1984. the function makeD&C requires a well founded relation, a decidable proposition of whether a given input is primitive, a composition and a decomposition function, a special function g and a function dirSolve. All of these functions have to fullfill certain conditions and lastly you also need an "induction principle" that describes that these functions work well together. After putting in all this work, you can finally reap your reward: an algorithm that does what you want: takes inputs that satisfy the input condition and returns results that satisfy the output condition. --} {-- these 2 functions should be somewhere in the agda standard libraries but i couln't find them so i just wrote them again --} foldAcc : {A : Set} → {_<_ : Rel A L.zero} → {R : A → Set} → (step : (x : A) → ((y : A) → _<_ y x → R y) → R x) → (z : A) → Acc _<_ z → R z foldAcc step z (acc a) = step z (λ y y<z → foldAcc step y (a y y<z)) wfInd : {A : Set} {_<_ : Rel A _} → (WellFounded _<_) → {R : A → Set} → (step : (x : A) → ((y : A) → _<_ y x → R y) → R x) → (z : A) → R z wfInd wf step z = foldAcc step z (wf z) {- the algorithm itself as one huge function: instead of requiring all the functions and then five axioms describing their behaiviour, i use dependent types to embedd four of the axions in therespective function they describe and only the last one (called "lemma" here) as an extra. See the paper for details -} makeD&C1 : {D₁ R₁ D₂ R₂ : Set} {I₁ : D₁ → Set} {O₁ : D₁ → R₁ → Set} {I₂ : D₂ → Set} {O₂ : D₂ → R₂ → Set} {O₃ : D₁ → (D₂ × D₁) → Set} {O₄ : (R₂ × R₁) → R₁ → Set} {_<_ : Rel D₁ _} → (wf : Well-founded _<_) → {Prim : D₁ → Set} → (pDec : U.Decidable Prim) → (decomp : (x : D₁) → I₁ x → ¬ Prim x → Σ (D₂ × D₁) λ y → I₂ (proj₁ y) × (I₁ (proj₂ y)) × (_<_ (proj₂ y) x) × (O₃ x y) ) → (comp : (u : (R₂ × R₁)) → Σ R₁ (O₄ u)) → (g : (x : D₂) → I₂ x → Σ R₂ (O₂ x)) → (dirSolve : (x : D₁) → I₁ x → Prim x → Σ R₁ (O₁ x)) → (lemma : ∀{x₀ x₁ x₂ z₀ z₁ z₂} → O₃ x₀ (x₁ , x₂) → O₂ x₁ z₁ → O₁ x₂ z₂ → O₄ (z₁ , z₂) z₀ → O₁ x₀ z₀) → (x : D₁) → I₁ x → Σ R₁ (O₁ x) makeD&C1 {D₁ = D₁} {R₁ = R₁} {I₁ = I₁} {O₁ = O₁} {_<_ = _<_} wf {Prim} pDec decomp comp g dirSolve lemma x = wfInd wf step x where step : (x : D₁) → ((y : D₁) → _<_ y x → I₁ y → Σ R₁ (O₁ y)) → I₁ x → Σ R₁ (O₁ x) step x rec ix with (pDec x) step x rec ix | (yes pfY) = dirSolve x ix pfY step x rec ix | (no pfN) = let dec = decomp x ix pfN decV = proj₁ dec decV1 = proj₁ decV decV2 = proj₂ decV decP = proj₂ dec decP1 = proj₁ decP decP2 = proj₁ (proj₂ decP) decP3 = proj₁ (proj₂ (proj₂ decP)) decP4 = proj₂ (proj₂ (proj₂ decP)) gRes = g decV1 decP1 gV = proj₁ gRes gP = proj₂ gRes fRes = rec decV2 decP3 decP2 fV = proj₁ fRes fP = proj₂ fRes com = comp (gV , fV) comV = proj₁ com comP = proj₂ com proof = lemma decP4 gP fP comP in (comV , proof) {- it occurred to me, that a proper Divide and conquer algorithm should make (at least) two recursive calls, the algorithm describen inthe pape, however, only makes one! So slightly modified it to fit in that extra recursive calls but left the basic principle exactly the same in this second version -} makeD&C2 : {D₁ R₁ D₂ R₂ : Set} {I₁ : D₁ → Set} {O₁ : D₁ → R₁ → Set} {I₂ : D₂ → Set} {O₂ : D₂ → R₂ → Set} {O₃ : D₁ → (D₂ × (D₁ × D₁)) → Set} {O₄ : (R₂ × (R₁ × R₁)) → R₁ → Set} {_<_ : Rel D₁ _} → (wf : Well-founded _<_) → {Prim : D₁ → Set} → (pDec : U.Decidable Prim) → (decomp : (x : D₁) → I₁ x → ¬ Prim x → Σ (D₂ × (D₁ × D₁)) λ y → (I₂ (proj₁ y)) × (I₁ (proj₁ (proj₂ y))) × (I₁ (proj₂ (proj₂ y))) × (_<_ (proj₁ (proj₂ y)) x) × (_<_ (proj₂ (proj₂ y)) x) × (O₃ x y) ) → (comp : (u : (R₂ × (R₁ × R₁)) ) → Σ R₁ (O₄ u)) → (g : (x : D₂) → I₂ x → Σ R₂ (O₂ x)) → (dirSolve : (x : D₁) → I₁ x → Prim x → Σ R₁ (O₁ x)) → (lemma : ∀{x₀ x₁ x₂ x₃ z₀ z₁ z₂ z₃} → O₃ x₀ (x₁ , (x₂ , x₃ )) → O₂ x₁ z₁ → O₁ x₂ z₂ → O₁ x₃ z₃ → O₄ (z₁ , (z₂ , z₃)) z₀ → O₁ x₀ z₀) → (x : D₁) → I₁ x → Σ R₁ (O₁ x) makeD&C2 {D₁ = D₁} {R₁ = R₁} {I₁ = I₁} {O₁ = O₁} {_<_ = _<_} wf {Prim} pDec decomp comp g dirSolve lemma x = wfInd wf step x where step : (x : D₁) → ((y : D₁) → _<_ y x → I₁ y → Σ R₁ (O₁ y)) → I₁ x → Σ R₁ (O₁ x) step x rec ix with (pDec x) step x rec ix | (yes pfY) = dirSolve x ix pfY step x rec ix | (no pfN) = let dec = decomp x ix pfN decV = proj₁ dec decV1 = proj₁ decV decV2 = proj₁ (proj₂ decV) decV3 = proj₂ (proj₂ decV) decP = proj₂ dec decP1 = proj₁ decP decP2 = proj₁ (proj₂ decP) decP3 = proj₁ (proj₂ (proj₂ decP)) decP4 = proj₁ (proj₂ (proj₂ (proj₂ decP))) decP5 = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ decP)))) decP6 = proj₂ (proj₂ (proj₂ (proj₂ (proj₂ decP)))) gRes = g decV1 decP1 gV = proj₁ gRes gP = proj₂ gRes f1Res = rec decV2 decP4 decP2 f1V = proj₁ f1Res f1P = proj₂ f1Res f2Res = rec decV3 decP5 decP3 f2V = proj₁ f2Res f2P = proj₂ f2Res com = comp (gV , (f1V , f2V)) comV = proj₁ com comP = proj₂ com proof = lemma decP6 gP f1P f2P comP in (comV , proof)
{ "alphanum_fraction": 0.3127395084, "avg_line_length": 81.053030303, "ext": "agda", "hexsha": "4e85b2ceaa9d1708f27881d9ea01f8fa9b6ffb4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_forks_repo_path": "DivideEtImpera.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_issues_repo_path": "DivideEtImpera.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda", "max_stars_repo_path": "DivideEtImpera.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2311, "size": 10699 }
------------------------------------------------------------------------------ -- Totality properties for Tree ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Mirror.Tree.TotalityI where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Program.Mirror.Forest.TotalityI open import FOTC.Program.Mirror.Mirror open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ mirror-Tree : ∀ {t} → Tree t → Tree (mirror · t) mirror-Tree = Tree-mutual-ind {A} {B} hA B[] hB where A : D → Set A t = Tree (mirror · t) B : D → Set B ts = Forest (map mirror ts) hA : ∀ d {ts} → Forest ts → B ts → A (node d ts) hA d {ts} Fts Bts = subst Tree (sym (mirror-eq d ts)) (tree d (reverse-Forest Bts)) B[] : B [] B[] = subst Forest (sym (map-[] mirror)) fnil hB : ∀ {t ts} → Tree t → A t → Forest ts → B ts → B (t ∷ ts) hB {t} {ts} Tt At Fts Bts = subst Forest (sym (map-∷ mirror t ts)) (fcons At Bts)
{ "alphanum_fraction": 0.467953668, "avg_line_length": 31.5853658537, "ext": "agda", "hexsha": "99b76bc9f7ed01c7703a256da99ea8effd5d72fc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Tree/TotalityI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Tree/TotalityI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Tree/TotalityI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 341, "size": 1295 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Testers where open import Prelude open import Data.Binary.Conversion.Fast.Strict open import Data.Binary.Definition open import Data.List using (List; _⋯_) open import Data.List.Sugar using (liftA2) test : (𝔹 → 𝔹 → 𝔹) → (ℕ → ℕ → ℕ) → ℕ → Type test bf nf n = let ns = 0 ⋯ n in liftA2 (λ n m → bf ⟦ n ⇑⟧ ⟦ m ⇑⟧) ns ns ≡ liftA2 (λ n m → ⟦ nf n m ⇑⟧) ns ns import Data.Nat as ℕ open import Data.Binary.Addition using (_+_) open import Data.Binary.Multiplication using (_*_) _ : test _+_ ℕ._+_ 15 _ = refl _ : test _*_ ℕ._*_ 15 _ = refl
{ "alphanum_fraction": 0.6387520525, "avg_line_length": 21.75, "ext": "agda", "hexsha": "f81148f8b3847913e886d65c0b7f444d8589c227", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Testers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Testers.agda", "max_line_length": 50, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Testers.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 221, "size": 609 }
module FFI.Data.Either where {-# FOREIGN GHC import qualified Data.Either #-} data Either (A B : Set) : Set where Left : A → Either A B Right : B → Either A B {-# COMPILE GHC Either = data Data.Either.Either (Data.Either.Left|Data.Either.Right) #-} mapLeft : ∀ {A B C} → (A → B) → (Either A C) → (Either B C) mapLeft f (Left x) = Left (f x) mapLeft f (Right x) = Right x mapRight : ∀ {A B C} → (B → C) → (Either A B) → (Either A C) mapRight f (Left x) = Left x mapRight f (Right x) = Right (f x)
{ "alphanum_fraction": 0.6170634921, "avg_line_length": 29.6470588235, "ext": "agda", "hexsha": "d024c695574f5e2ea911b641290be28fbd69fa29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/Either.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/Either.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/FFI/Data/Either.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 173, "size": 504 }
module Prelude.Data.Natural where open import Prelude.Core open import Prelude.Classes open import Prelude.Orders ---------------- -- Conversion -- ---------------- record ToNatural {ℓ} (A : Set ℓ) : Set ℓ where constructor mk[ToNatural] field 𝕟 : A → ℕ open ToNatural {{…}} ----------- -- Order -- ----------- data _≤ⁿ_ : ℕ → ℕ → Set where Zero : ∀ {n} → Zero ≤ⁿ n Succ : ∀ {n₁ n₂} → n₁ ≤ⁿ n₂ → Succ n₁ ≤ⁿ Succ n₂ xRx⸢≤ⁿ⸣ : reflexive _≤ⁿ_ xRx⸢≤ⁿ⸣ {Zero} = Zero xRx⸢≤ⁿ⸣ {Succ n} = Succ xRx⸢≤ⁿ⸣ ⋈⸢≤ⁿ⸣ : antisymmetric _≤ⁿ_ ⋈⸢≤ⁿ⸣ Zero Zero = ↯ ⋈⸢≤ⁿ⸣ (Succ n₁≤n₂) (Succ n₂≤n₁) = res[•x] $ ⋈⸢≤ⁿ⸣ n₁≤n₂ n₂≤n₁ _⊚⸢≤ⁿ⸣_ : transitive _≤ⁿ_ n₁≤n₂ ⊚⸢≤ⁿ⸣ Zero = Zero Succ n₂≤n₃ ⊚⸢≤ⁿ⸣ Succ n₁≤n₂ = Succ (n₂≤n₃ ⊚⸢≤ⁿ⸣ n₁≤n₂) data _<ⁿ_ : ℕ → ℕ → Set where Zero : ∀ {n} → Zero <ⁿ Succ n Succ : ∀ {n₁ n₂} → n₁ <ⁿ n₂ → Succ n₁ <ⁿ Succ n₂ weaken[<]ⁿ : ∀ {n₁ n₂} → n₁ <ⁿ n₂ → n₁ ≤ⁿ n₂ weaken[<]ⁿ Zero = Zero weaken[<]ⁿ (Succ <₁) = Succ (weaken[<]ⁿ <₁) strict[<]ⁿ : ∀ {n₁ n₂} → n₁ <ⁿ n₂ → ¬ (n₂ ≤ⁿ n₁) strict[<]ⁿ Zero () strict[<]ⁿ (Succ <₁) (Succ ≤₁) = strict[<]ⁿ <₁ ≤₁ complete[<]ⁿ : ∀ {n₁ n₂} → n₁ ≤ⁿ n₂ → ¬ (n₂ ≤ⁿ n₁) → n₁ <ⁿ n₂ complete[<]ⁿ {n₂ = Zero} Zero ¬≤ = exfalso (¬≤ Zero) complete[<]ⁿ {n₂ = Succ n₂} Zero ¬≤ = Zero complete[<]ⁿ (Succ ≤₁) ¬≤ = Succ (complete[<]ⁿ ≤₁ (λ ≤₂ → ¬≤ (Succ ≤₂))) _⋚ⁿ_ : ℕ → ℕ → ⪥! Zero ⋚ⁿ Zero = [≡] Zero ⋚ⁿ Succ n₂ = [<] Succ n₁ ⋚ⁿ Zero = [>] Succ n₁ ⋚ⁿ Succ n₂ = n₁ ⋚ⁿ n₂ _⋚ⁿᴾ_ : ∀ n₁ n₂ → n₁ ⪥!ᴾ[ _<ⁿ_ ] n₂ Zero ⋚ⁿᴾ Zero = [≡] ↯ Zero ⋚ⁿᴾ Succ n₂ = [<] Zero Succ n₁ ⋚ⁿᴾ Zero = [>] Zero Succ n₁ ⋚ⁿᴾ Succ n₂ with n₁ ⋚ⁿᴾ n₂ … | [<] <₀ = [<] (Succ <₀) … | [≡] ≡₀ rewrite ≡₀ = [≡] ↯ … | [>] >₀ = [>] (Succ >₀) _⋚ⁿᴸ_ : ∀ n₁ n₂ → n₁ ⪥!ᴸ[ _<ⁿ_ ] n₂ ‖[ n₁ ⋚ⁿ n₂ , n₁ ⋚ⁿᴾ n₂ ] Zero ⋚ⁿᴸ Zero = [≡] Zero ⋚ⁿᴸ Succ n₂ = [<] Succ n₁ ⋚ⁿᴸ Zero = [>] Succ n₁ ⋚ⁿᴸ Succ n₂ with n₁ ⋚ⁿ n₂ | n₁ ⋚ⁿᴾ n₂ | n₁ ⋚ⁿᴸ n₂ … | [<] | [<] <₀ | [<] = [<] … | [≡] | [≡] ≡₀ | [≡] rewrite ≡₀ = [≡] … | [>] | [>] >₀ | [>] = [>] instance Reflexive[≤]ⁿ : Reflexive _≤ⁿ_ Reflexive[≤]ⁿ = record { xRx = xRx⸢≤ⁿ⸣ } Antisymmetric[≤]ⁿ : Antisymmetric _≤ⁿ_ Antisymmetric[≤]ⁿ = record { ⋈ = ⋈⸢≤ⁿ⸣ } Transitive[≤]ⁿ : Transitive _≤ⁿ_ Transitive[≤]ⁿ = record { _⊚_ = _⊚⸢≤ⁿ⸣_ } Strict[<]ⁿ : Strict _≤ⁿ_ _<ⁿ_ Strict[<]ⁿ = record { weaken[≺] = weaken[<]ⁿ ; strict[≺] = strict[<]ⁿ ; complete[≺] = complete[<]ⁿ } Irreflexive[<]ⁿ : Irreflexive _<ⁿ_ Irreflexive[<]ⁿ = Irreflexive[<]/≤ _≤ⁿ_ _<ⁿ_ Asymmetric[<]ⁿ : Asymmetric _<ⁿ_ Asymmetric[<]ⁿ = Asymmetric[<]/≤ _≤ⁿ_ _<ⁿ_ Transitive[<]ⁿ : Transitive _<ⁿ_ Transitive[<]ⁿ = Transitive[<]/≤ _≤ⁿ_ _<ⁿ_ Totally[<]ⁿ : Totally _<ⁿ_ Totally[<]ⁿ = record { _⪥_ = _⋚ⁿ_ ; _⪥ᴾ_ = _⋚ⁿᴾ_ ; _⪥ᴸ_ = _⋚ⁿᴸ_ } Order[ℕ] : Order 0ᴸ ℕ Order[ℕ] = mk[Order] _≤ⁿ_ _<ⁿ_ weaken[≤]ⁿ : ∀ {n₁ n₂} → n₁ ≤ⁿ n₂ → n₁ ≤ⁿ Succ n₂ weaken[≤]ⁿ Zero = Zero weaken[≤]ⁿ (Succ n₁≤n₂) = Succ (weaken[≤]ⁿ n₁≤n₂) pred[≤]ⁿ : ∀ {n₁ n₂} → Succ n₁ ≤ⁿ n₂ → n₁ ≤ⁿ n₂ pred[≤]ⁿ (Succ x) = weaken[≤]ⁿ x n≤succ : ∀ {n : ℕ} → n ≤ⁿ Succ n n≤succ = weaken[≤]ⁿ xRx rel[</≤]ⁿ : ∀ {n₁ n₂} → n₁ <ⁿ n₂ ↔ Succ n₁ ≤ⁿ n₂ rel[</≤]ⁿ = ⟨ LHS , RHS ⟩ where LHS : ∀ {n₁ n₂} → n₁ <ⁿ n₂ → Succ n₁ ≤ⁿ n₂ LHS Zero = Succ Zero LHS (Succ <₁) = Succ (LHS <₁) RHS : ∀ {n₁ n₂} → Succ n₁ ≤ⁿ n₂ → n₁ <ⁿ n₂ RHS {Zero} (Succ ≤₁) = Zero RHS {Succ n₃} (Succ ≤₁) = Succ (RHS ≤₁) ------------------ -- ≤ⁿ Decidable -- ------------------ instance DecRel[≡]ⁿ : DecRel (_≡_ {A = ℕ}) DecRel[≡]ⁿ = record { _⁇_ = ⁇[≡]/⪥[] _≤_ _<_ ; _⁇ᴾ_ = ⁇ᴾ[≡]/⪥[] _≤_ _<_ ; _⁇ᴸ_ = ⁇ᴸ[≡]/⪥[] _≤_ _<_ } DecRel[≤]ⁿ : DecRel _≤ⁿ_ DecRel[≤]ⁿ = record { _⁇_ = ⁇[≤]/⪥[] _≤_ _<_ ; _⁇ᴾ_ = ⁇ᴾ[≤]/⪥[] _≤_ _<_ ; _⁇ᴸ_ = ⁇ᴸ[≤]/⪥[] _≤_ _<_ } DecRel[<]ⁿ : DecRel _<ⁿ_ DecRel[<]ⁿ = record { _⁇_ = ⁇[<]/⪥[] _≤_ _<_ ; _⁇ᴾ_ = ⁇ᴾ[<]/⪥[] _≤_ _<_ ; _⁇ᴸ_ = ⁇ᴸ[<]/⪥[] _≤_ _<_ } -------------- -- Addition -- -------------- _+ⁿ_ : ℕ → ℕ → ℕ Zero +ⁿ n₂ = n₂ Succ n₁ +ⁿ n₂ = Succ (n₁ +ⁿ n₂) left-unit[+]ⁿ : ∀ (n : ℕ) → 0 +ⁿ n ≡ n left-unit[+]ⁿ n = ↯ right-unit[+]ⁿ : ∀ (n : ℕ) → n +ⁿ 0 ≡ n right-unit[+]ⁿ Zero = ↯ right-unit[+]ⁿ (Succ n) rewrite right-unit[+]ⁿ n = ↯ associative[+]ⁿ : ∀ (n₁ n₂ n₃ : ℕ) → (n₁ +ⁿ n₂) +ⁿ n₃ ≡ n₁ +ⁿ (n₂ +ⁿ n₃) associative[+]ⁿ Zero n₂ n₃ = ↯ associative[+]ⁿ (Succ n₁) n₂ n₃ rewrite associative[+]ⁿ n₁ n₂ n₃ = ↯ m+suc[n]=suc[m+n] : ∀ (n₁ n₂ : ℕ) → n₁ +ⁿ Succ n₂ ≡ Succ (n₁ +ⁿ n₂) m+suc[n]=suc[m+n] Zero n₂ = ↯ m+suc[n]=suc[m+n] (Succ n₁) n₂ rewrite m+suc[n]=suc[m+n] n₁ n₂ = ↯ suc[m+n]=m+suc[n] : ∀ (n₁ n₂ : ℕ) → Succ (n₁ +ⁿ n₂) ≡ n₁ +ⁿ Succ n₂ suc[m+n]=m+suc[n] n₁ n₂ = ◇ $ m+suc[n]=suc[m+n] n₁ n₂ commutative[+]ⁿ : ∀ (n₁ n₂ : ℕ) → n₁ +ⁿ n₂ ≡ n₂ +ⁿ n₁ commutative[+]ⁿ Zero n₂ rewrite right-unit[+]ⁿ n₂ = ↯ commutative[+]ⁿ (Succ n₁) n₂ rewrite commutative[+]ⁿ n₁ n₂ | suc[m+n]=m+suc[n] n₂ n₁ = ↯ instance Additive[ℕ] : Additive ℕ Additive[ℕ] = record { zero = Zero ; _+_ = _+ⁿ_ ; left-unit[+] = left-unit[+]ⁿ ; right-unit[+] = right-unit[+]ⁿ ; associative[+] = associative[+]ⁿ ; commutative[+] = commutative[+]ⁿ } -------------------- -- Multiplication -- -------------------- oneⁿ : ℕ oneⁿ = Succ Zero _×ⁿ_ : ℕ → ℕ → ℕ Zero ×ⁿ n₂ = Zero Succ n₁ ×ⁿ n₂ = n₂ +ⁿ (n₁ ×ⁿ n₂) left-zero[×]ⁿ : ∀ n → zero ×ⁿ n ≡ zero left-zero[×]ⁿ n = ↯ right-zero[×]ⁿ : ∀ n → n ×ⁿ zero ≡ zero right-zero[×]ⁿ Zero = ↯ right-zero[×]ⁿ (Succ n) rewrite right-zero[×]ⁿ n = ↯ left-unit[×]ⁿ : ∀ n → oneⁿ ×ⁿ n ≡ n left-unit[×]ⁿ n = right-unit[+]ⁿ n right-unit[×]ⁿ : ∀ n → n ×ⁿ oneⁿ ≡ n right-unit[×]ⁿ Zero = ↯ right-unit[×]ⁿ (Succ n) rewrite right-unit[×]ⁿ n = ↯ distributive[×]ⁿ : ∀ n₁ n₂ n₃ → (n₁ +ⁿ n₂) ×ⁿ n₃ ≡ (n₁ ×ⁿ n₃) +ⁿ (n₂ ×ⁿ n₃) distributive[×]ⁿ Zero n₂ n₃ = ↯ distributive[×]ⁿ (Succ n₁) n₂ n₃ rewrite distributive[×]ⁿ n₁ n₂ n₃ | associative[+]ⁿ n₃ (n₁ ×ⁿ n₃) (n₂ ×ⁿ n₃) = ↯ associative[×]ⁿ : ∀ n₁ n₂ n₃ → (n₁ ×ⁿ n₂) ×ⁿ n₃ ≡ n₁ ×ⁿ (n₂ ×ⁿ n₃) associative[×]ⁿ Zero n₂ n₃ = ↯ associative[×]ⁿ (Succ n₁) n₂ n₃ rewrite distributive[×]ⁿ n₂ (n₁ ×ⁿ n₂) n₃ | associative[×]ⁿ n₁ n₂ n₃ = ↯ commutative[×]ⁿ : ∀ n₁ n₂ → n₁ ×ⁿ n₂ ≡ n₂ ×ⁿ n₁ commutative[×]ⁿ Zero n₂ rewrite right-zero[×]ⁿ n₂ = ↯ commutative[×]ⁿ n₁ Zero rewrite right-zero[×]ⁿ n₁ = ↯ commutative[×]ⁿ (Succ n₁) (Succ n₂) rewrite commutative[×]ⁿ n₁ (Succ n₂) | commutative[×]ⁿ n₂ (Succ n₁) | commutative[×]ⁿ n₁ n₂ | ◇ $ associative[+]ⁿ n₁ n₂ (n₂ ×ⁿ n₁) | commutative[+]ⁿ n₁ n₂ | associative[+]ⁿ n₂ n₁ (n₂ ×ⁿ n₁) = ↯ instance Multiplicative[ℕ] : Multiplicative ℕ Multiplicative[ℕ] = record { one = oneⁿ ; _×_ = _×ⁿ_ ; left-zero[×] = left-zero[×]ⁿ ; right-zero[×] = right-zero[×]ⁿ ; left-unit[×] = left-unit[×]ⁿ ; right-unit[×] = right-unit[×]ⁿ ; associative[×] = associative[×]ⁿ ; commutative[×] = commutative[×]ⁿ ; distributive[×] = distributive[×]ⁿ } ----------------- -- Subtraction -- ----------------- _-ⁿ_‖_ : ∀ (n₁ n₂ : ℕ) → n₂ ≤ n₁ → ℕ n₁ -ⁿ Zero ‖ Zero = n₁ Succ n₁ -ⁿ Succ n₂ ‖ Succ n₁≤n₂ = n₁ -ⁿ n₂ ‖ n₁≤n₂ correct[-ⁿ‖] : ∀ n₁ n₂ (n₂≤n₁ : n₂ ≤ n₁) → n₂ + (n₁ -ⁿ n₂ ‖ n₂≤n₁) ≡ n₁ correct[-ⁿ‖] n₁ Zero Zero = ↯ correct[-ⁿ‖] (Succ n₁) (Succ n₂) (Succ n₂≤n₁) rewrite correct[-ⁿ‖] n₁ n₂ n₂≤n₁ = ↯ n-n=0 : ∀ n → n -ⁿ n ‖ xRx ≡ Zero n-n=0 Zero = ↯ n-n=0 (Succ n) rewrite n-n=0 n = ↯ n-0=n : ∀ n → n -ⁿ 0 ‖ Zero ≡ n n-0=n n = ↯ suc[m-n]=suc[m]-n : ∀ n₁ n₂ (n₂≤n₁ : n₂ ≤ n₁) → Succ (n₁ -ⁿ n₂ ‖ n₂≤n₁) ≡ Succ n₁ -ⁿ n₂ ‖ weaken[≤]ⁿ n₂≤n₁ suc[m-n]=suc[m]-n n₁ Zero Zero = ↯ suc[m-n]=suc[m]-n (Succ n₁) (Succ n₂) (Succ n₂≤n₁) rewrite suc[m-n]=suc[m]-n n₁ n₂ n₂≤n₁ = ↯ instance Subtractive/OK[ℕ] : Subtractive/OK ℕ Subtractive/OK[ℕ] = record { ok[_-_] = _≥_ } Subtractive[ℕ] : Subtractive/P ℕ Subtractive[ℕ] = record { _-_‖_ = _-ⁿ_‖_ ; correct[-‖] = correct[-ⁿ‖] } _-%ⁿ_ : ∀ (n₁ n₂ : ℕ) → ℕ ∨ ℕ Zero -%ⁿ n₂ = Inr n₂ n₁ -%ⁿ Zero = Inl n₁ Succ n₁ -%ⁿ Succ n₂ = n₁ -%ⁿ n₂ correct[-%ⁿ]/spec : ℕ → ℕ → Set correct[-%ⁿ]/spec n₁ n₂ with n₁ -%ⁿ n₂ … | Inl n = n₂ + n ≡ n₁ … | Inr n = n₁ + n ≡ n₂ correct[-%ⁿ] : ∀ n₁ n₂ → correct[-%ⁿ]/spec n₁ n₂ correct[-%ⁿ] Zero Zero = ↯ correct[-%ⁿ] Zero (Succ n₂) = ↯ correct[-%ⁿ] (Succ n₁) Zero = ↯ correct[-%ⁿ] (Succ n₁) (Succ n₂) with n₁ -%ⁿ n₂ | correct[-%ⁿ] n₁ n₂ … | Inl x | IH rewrite IH = ↯ … | Inr x | IH rewrite IH = ↯ -------------------------- -- Division and Modulus -- -------------------------- divmod-loop : ∀ (n₁ n₂ quo n₂-rem : ℕ) → n₂-rem ≤ n₂ → ∃ quo,n₂-rem ⦂ ℕ ∧ ℕ 𝑠𝑡 let ⟨ quo' , n₂-rem' ⟩ = quo,n₂-rem in n₂-rem' ≤ n₂ divmod-loop Zero n₂ quo n₂-rem n₂-rem≤n₂ = ⟨∃ ⟨ quo , n₂-rem ⟩ , n₂-rem≤n₂ ⟩ divmod-loop (Succ n₁) n₂ quo Zero n₂-rem≤n₂ = divmod-loop n₁ n₂ (Succ quo) n₂ xRx divmod-loop (Succ n₁) n₂ quo (Succ n₂-rem) n₂-rem≤n₂ = divmod-loop n₁ n₂ quo n₂-rem (pred[≤]ⁿ n₂-rem≤n₂) correct[divmod-loop] : ∀ (n₁ n₂ quo n₂-rem : ℕ) (n₂-rem≤n₂ : n₂-rem ≤ n₂) → let ⟨∃ ⟨ quo' , n₂-rem' ⟩ , n₂-rem'≤n₂ ⟩ = divmod-loop n₁ n₂ quo n₂-rem n₂-rem≤n₂ in quo' × Succ n₂ + (n₂ - n₂-rem' ‖ n₂-rem'≤n₂) ≡ n₁ + (quo × Succ n₂) + (n₂ - n₂-rem ‖ n₂-rem≤n₂) correct[divmod-loop] Zero n₂ quo n₂-rem n₂-rem≤n₂ = ↯ correct[divmod-loop] (Succ n₁) n₂ quo Zero Zero with divmod-loop n₁ n₂ (Succ quo) n₂ xRx | correct[divmod-loop] n₁ n₂ (Succ quo) n₂ xRx … | ⟨∃ ⟨ quo' , n₂-rem' ⟩ , n₂-rem'≤n₂ ⟩ | IH rewrite suc[m+n]=m+suc[n] n₁ (quo × Succ n₂ + n₂ - Zero ‖ Zero) | n-n=0 n₂ | commutative[+] (quo × Succ n₂) n₂ | right-unit[+] (n₂ + quo × Succ n₂) = IH correct[divmod-loop] (Succ n₁) (Succ n₂) quo (Succ n₂-rem) (Succ n₂-rem≤n₂) with divmod-loop n₁ (Succ n₂) quo n₂-rem (weaken[≤]ⁿ n₂-rem≤n₂) | correct[divmod-loop] n₁ (Succ n₂) quo n₂-rem (weaken[≤]ⁿ n₂-rem≤n₂) … | ⟨∃ ⟨ quo' , n₂-rem' ⟩ , n₂-rem'≤n₂ ⟩ | IH rewrite suc[m+n]=m+suc[n] n₁ (quo × Succ (Succ n₂) + n₂ - n₂-rem ‖ n₂-rem≤n₂) | suc[m+n]=m+suc[n] (quo × Succ (Succ n₂)) (n₂ - n₂-rem ‖ n₂-rem≤n₂) | suc[m-n]=suc[m]-n n₂ n₂-rem n₂-rem≤n₂ = IH _/%ⁿ_‖_ : ∀ (n₁ n₂ : ℕ) (0<n₂ : 0 < n₂) → ℕ ∧ ℕ n₁ /%ⁿ Succ n₂ ‖ Zero with divmod-loop n₁ n₂ 0 n₂ xRx⸢≤ⁿ⸣ … | ⟨∃ ⟨ quo , n₂-rem ⟩ , n₂-rem≤n₂ ⟩ = ⟨ quo , n₂ - n₂-rem ‖ n₂-rem≤n₂ ⟩ correct[/%‖]ⁿ : ∀ n₁ n₂ (0<n₂ : 0 < n₂) → let ⟨ quo , rem ⟩ = n₁ /%ⁿ n₂ ‖ 0<n₂ in n₂ × quo + rem ≡ n₁ correct[/%‖]ⁿ n₁ (Succ n₂) Zero with divmod-loop n₁ n₂ 0 n₂ xRx | correct[divmod-loop] n₁ n₂ 0 n₂ xRx … | ⟨∃ ⟨ quo , n₂-rem ⟩ , n₂-rem≤n₂ ⟩ | H rewrite n-n=0 n₂ | right-unit[+] n₁ | commutative[×] quo (Succ n₂) = H instance DivMod/OK[ℕ] : DivMod/OK ℕ DivMod/OK[ℕ] = record { ok[_/%_] = (λ n₁ n₂ → 0 < n₂) } DivMod[ℕ] : DivMod/P ℕ DivMod[ℕ] = record { _/%_‖_ = _/%ⁿ_‖_ ; correct[/%‖] = correct[/%‖]ⁿ } ------------- -- Bounded -- ------------- record ℕ≤[_] (nᵇ : ℕ) : Set where constructor mk[ℕ≤] field n : ℕ n≤nᵇ : n ≤ nᵇ -- mk↯[ℕ≤] : ∀ {nᵇ} n → {{_ : ✓‼ (n ⁇[ _≤_ ] nᵇ)}} → ℕ≤[ nᵇ ] -- mk↯[ℕ≤] {nᵇ} n {{_}} with n ⁇[ _≤_ ] nᵇ | -- mk↯[ℕ≤] {nᵇ} n {{↯Rel}} | Rel n≤nᵇ = mk[ℕ≤] n n≤nᵇ weaken[ℕ≤] : ∀ {nᵇ₁ nᵇ₂} → nᵇ₁ ≤ nᵇ₂ → ℕ≤[ nᵇ₁ ] → ℕ≤[ nᵇ₂ ] weaken[ℕ≤] nᵇ₁≤nᵇ₂ (mk[ℕ≤] n n≤nᵇ₁) = mk[ℕ≤] n (nᵇ₁≤nᵇ₂ ⊚ n≤nᵇ₁) instance ToNatural[ℕ≤] : ∀ {nᵇ} → ToNatural ℕ≤[ nᵇ ] ToNatural[ℕ≤] = mk[ToNatural] ℕ≤[_].n record ℕ<[_] (nᵇ : ℕ) : Set where constructor mk[ℕ<] field n : ℕ n<nᵇ : n < nᵇ -- mk↯[ℕ<] : ∀ {nᵇ} n → {{_ : rel (dec-rel[ _<_ ] n nᵇ)}} → ℕ<[ nᵇ ] -- mk↯[ℕ<] {nᵇ} n {{_}} with dec-rel[ _<_ ] n nᵇ -- mk↯[ℕ<] {nᵇ} n {{↯Rel}} | Rel n<nᵇ = mk[ℕ<] n n<nᵇ weaken[ℕ<] : ∀ {nᵇ₁ nᵇ₂} → nᵇ₁ ≤ nᵇ₂ → ℕ<[ nᵇ₁ ] → ℕ<[ nᵇ₂ ] weaken[ℕ<] nᵇ₁≤nᵇ₂ (mk[ℕ<] n n<nᵇ₁) = mk[ℕ<] n $ π₂ rel[</≤]ⁿ $ nᵇ₁≤nᵇ₂ ⊚ π₁ rel[</≤]ⁿ n<nᵇ₁ instance ToNatural[ℕ<] : ∀ {nᵇ} → ToNatural ℕ<[ nᵇ ] ToNatural[ℕ<] = mk[ToNatural] ℕ<[_].n data fin : ℕ → Set where Zero : ∀ {n} → fin (Succ n) Succ : ∀ {n} → fin n → fin (Succ n) mk[fin/<] : ∀ {nᵇ} n → n < nᵇ → fin nᵇ mk[fin/<] Zero Zero = Zero mk[fin/<] (Succ n) (Succ <₁) = Succ (mk[fin/<] n <₁) mk[fin/ℕ<] : ∀ {nᵇ} → ℕ<[ nᵇ ] → fin nᵇ mk[fin/ℕ<] (mk[ℕ<] n n<nᵇ) = mk[fin/<] n n<nᵇ record ℕ⁺ : Set where constructor mk[ℕ⁺] field n : ℕ 0<n : 0 < n -- mk↯[ℕ⁺] : ∀ n {{_ : rel (dec-rel[ _<_ ] 0 n)}} → ℕ⁺ -- mk↯[ℕ⁺] n {{_}} with dec-rel[ _<_ ] 0 n -- mk↯[ℕ⁺] n {{↯Rel}} | Rel 0<n = mk[ℕ⁺] n 0<n instance ToNatural[ℕ⁺] : ToNatural ℕ⁺ ToNatural[ℕ⁺] = mk[ToNatural] ℕ⁺.n
{ "alphanum_fraction": 0.5128079621, "avg_line_length": 29.6803874092, "ext": "agda", "hexsha": "45f71daa9f9b2cbba6ef1912560a615d87c67e86", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/plum-umd/cgc/511fa41d8b635bbfe5779fa7fb24d5777dbcaaa5/Prelude/Data/Natural.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/plum-umd/cgc/511fa41d8b635bbfe5779fa7fb24d5777dbcaaa5/Prelude/Data/Natural.agda", "max_line_length": 130, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/plum-umd/cgc/511fa41d8b635bbfe5779fa7fb24d5777dbcaaa5/Prelude/Data/Natural.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 6979, "size": 12258 }
module Issue591.M where
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 12, "ext": "agda", "hexsha": "2292e6815c2a3851a5644767dffc83ef89f4f409", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue591/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue591/M.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue591/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 6, "size": 24 }
{-# OPTIONS --without-K --safe #-} module Experiment.TTG where {- data Phase : Set where parse : Phase scopecheck : Phase typecheck : Phase xVar : Phase → Set xVar p = ? idP : Phase → Set idP p = ? xNew : Phase → Set data Exp (p : Phase) : Set where var : xVar p → idP p → Exp p new : xNew p → Exp p -}
{ "alphanum_fraction": 0.6018808777, "avg_line_length": 13.8695652174, "ext": "agda", "hexsha": "92d196d53bbba519a5ae8e47302591b80dbbf8c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/TTG.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/TTG.agda", "max_line_length": 34, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/TTG.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 107, "size": 319 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Permutation.Inductive.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Permutation.Inductive.Properties where open import Data.List.Relation.Binary.Permutation.Inductive.Properties public {-# WARNING_ON_IMPORT "Data.List.Relation.Permutation.Inductive.Properties was deprecated in v1.0. Use Data.List.Relation.Binary.Permutation.Inductive.Properties instead." #-}
{ "alphanum_fraction": 0.6144393241, "avg_line_length": 34.2631578947, "ext": "agda", "hexsha": "2fd544c333ac3d344d816ff501483389687d6405", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Permutation/Inductive/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Permutation/Inductive/Properties.agda", "max_line_length": 76, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Permutation/Inductive/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 120, "size": 651 }
module _ where open import Agda.Builtin.Float open import Common.Prelude hiding (_+_; _*_) print : Float → IO Unit print x = putStrLn (primShowFloat x) printB : Bool → IO Unit printB true = putStrLn "true" printB false = putStrLn "false" _+_ = primFloatPlus _*_ = primFloatTimes _/_ = primFloatDiv _==_ = primFloatEquality _<_ = primFloatLess NaN : Float NaN = 0.0 / 0.0 Inf : Float Inf = 1.0 / 0.0 -Inf : Float -Inf = -1.0 / 0.0 pi : Float pi = 3.141592653589793 main : IO Unit main = putStr "123.0 = " ,, print 123.0 ,, putStr "NaN = " ,, print NaN ,, putStr "Inf = " ,, print Inf ,, putStr "-Inf = " ,, print -Inf ,, putStr "-0.0 = " ,, print -0.0 ,, -- Disabled due to #1856 and #1857 -- putStr "√2 = " ,, print (primFloatTimes 2.0 (primSin (primFloatDiv pi 4.0))) ,, -- putStr "e = " ,, print (primExp 1.0) ,, putStr "NaN == NaN = " ,, printB (NaN == NaN) ,, putStr "Inf == Inf = " ,, printB (Inf == Inf) ,, putStr "NaN < -Inf = " ,, printB (NaN < -Inf) ,, putStr "NaN < -5.0 = " ,, printB (NaN < -5.0) ,, return unit
{ "alphanum_fraction": 0.5787037037, "avg_line_length": 22.5, "ext": "agda", "hexsha": "d9d5d346cee324b45b7cba4ee6433cd8bc4e73ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Compiler/simple/Floats.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Compiler/simple/Floats.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Compiler/simple/Floats.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 412, "size": 1080 }
-- Andreas, 2015-07-01 polarity of the size argument to data -- needs to be considered for polarity of later definitions. -- {-# OPTIONS -v tc.pos:10 -v tc.polarity:20 #-} open import Common.Size open import Common.Prelude data D : (i : Size) → Set where c : ∀ i → D (↑ i) E : Bool → Size → Set E true i = D i E false i = D i cast : ∀{i b} → E b i → E b (↑ i) cast x = x -- should succeed
{ "alphanum_fraction": 0.6206030151, "avg_line_length": 19.9, "ext": "agda", "hexsha": "90d53258e9c959629dccf7a4432ccac3cde62be3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/PolaritySucSizeData.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/PolaritySucSizeData.agda", "max_line_length": 60, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/PolaritySucSizeData.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 131, "size": 398 }
-- issue 685 module ShadowedLetBoundVar where import Common.Level record Wrap {a}(A : Set a) : Set a where constructor wrap field wrapped : A -- let is not recursive works : Set → Set works x = let x = x in x fails : Set → Set fails A = let wrap A = wrap A in A -- works now
{ "alphanum_fraction": 0.6725352113, "avg_line_length": 15.7777777778, "ext": "agda", "hexsha": "32f3631a357595f1173c2996d47d644bda55088e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ShadowedLetBoundVar.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ShadowedLetBoundVar.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ShadowedLetBoundVar.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 86, "size": 284 }
module hott.topology where open import hott.topology.loopspace public
{ "alphanum_fraction": 0.8450704225, "avg_line_length": 17.75, "ext": "agda", "hexsha": "b4d6fa535aebaf33c71a1a2c629ce1a673538a86", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/topology.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/topology.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/topology.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 16, "size": 71 }
{-# OPTIONS --without-K --safe #-} module Codiscrete where open import Level using (Level; 0ℓ; lift; lower) open import Data.Nat using (ℕ; suc) open import Data.Fin hiding (lift) open import Data.Unit open import Function renaming (id to idf) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans) open import Categories.Category.Groupoid open import Categories.Category.Instance.One open import Categories.Category.Equivalence using (StrongEquivalence; WeakInverse) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Category using (Category) open import Categories.NaturalTransformation using (NaturalTransformation) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) -- Codiscrete Groupoid on (n+1) points CodiscreteGroupoid : (n : ℕ) → Groupoid 0ℓ 0ℓ 0ℓ CodiscreteGroupoid n = record { category = record { Obj = Fin (suc n) ; _⇒_ = λ _ _ → ⊤ ; _≈_ = _≡_ ; assoc = refl ; sym-assoc = refl ; identityˡ = refl ; identityʳ = refl ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = λ _ _ → refl } ; isGroupoid = record { _⁻¹ = idf ; iso = record { isoˡ = refl ; isoʳ = refl } } } open Groupoid Contractible : (n : ℕ) → (k : Fin (suc n)) → StrongEquivalence (category (CodiscreteGroupoid n)) (One {0ℓ} {0ℓ} {0ℓ}) Contractible n k = record { F = F ; G = G ; weak-inverse = record { F∘G≈id = F∘G≃id ; G∘F≈id = G∘F≃id } } where C : Category _ _ _ C = category (CodiscreteGroupoid n) O : Category 0ℓ 0ℓ 0ℓ O = One F : Functor C O F = record { F₀ = λ _ → lift tt -- This is our 'GC' function ; F₁ = lift ; identity = lift tt ; homomorphism = lift tt ; F-resp-≈ = λ _ → lift tt } -- This is where 'k' is used: G : Functor O C G = record { F₀ = λ _ → k ; F₁ = lower ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ _ → refl } F∘G≃id : F ∘F G ≃ idF F∘G≃id = record { F⇒G = record { η = idf ; commute = idf } ; F⇐G = record { η = idf ; commute = idf } } G∘F≃id : G ∘F F ≃ idF G∘F≃id = record { F⇒G = record { η = λ _ → tt ; commute = λ _ → refl } ; F⇐G = record { η = λ _ → tt ; commute = λ _ → refl } ; iso = λ X → record { isoˡ = refl ; isoʳ = refl } }
{ "alphanum_fraction": 0.6077933079, "avg_line_length": 27.4534883721, "ext": "agda", "hexsha": "b67c42b9ad51c8c500c683778ef942a586f9211b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/Codiscrete.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/Codiscrete.agda", "max_line_length": 82, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/Codiscrete.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 857, "size": 2361 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Basic types related to coinduction ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Codata.Musical.Notation where open import Agda.Builtin.Coinduction public
{ "alphanum_fraction": 0.4208955224, "avg_line_length": 27.9166666667, "ext": "agda", "hexsha": "98bb2e780614b9dce401b06a3420d1103d196a9e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Notation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Notation.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Notation.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 50, "size": 335 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Core definitions for Strings ------------------------------------------------------------------------ module Data.String.Core where open import Data.List using (List) open import Data.Bool using (Bool; true; false) open import Data.Char.Core using (Char) ------------------------------------------------------------------------ -- The type postulate String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} ------------------------------------------------------------------------ -- Primitive operations primitive primStringAppend : String → String → String primStringToList : String → List Char primStringFromList : List Char → String primStringEquality : String → String → Bool primShowString : String → String -- Here instead of Data.Char.Core to avoid an import cycle primShowChar : Char → String
{ "alphanum_fraction": 0.5015479876, "avg_line_length": 28.5, "ext": "agda", "hexsha": "718bf0dd099c854f6390de90fe944c7fca136820", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/String/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/String/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/String/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 168, "size": 969 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some basic properties of Rings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.Ring {r₁ r₂} (R : Ring r₁ r₂) where open Ring R import Algebra.Properties.AbelianGroup as AbelianGroupProperties open import Function using (_$_) open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Export properties of abelian groups open AbelianGroupProperties +-abelianGroup public renaming ( ε⁻¹≈ε to -0#≈0# ; ∙-cancelˡ to +-cancelˡ ; ∙-cancelʳ to +-cancelʳ ; ∙-cancel to +-cancel ; ⁻¹-involutive to -‿involutive ; ⁻¹-injective to -‿injective ; ⁻¹-anti-homo-∙ to -‿anti-homo-+ ; identityˡ-unique to +-identityˡ-unique ; identityʳ-unique to +-identityʳ-unique ; identity-unique to +-identity-unique ; inverseˡ-unique to +-inverseˡ-unique ; inverseʳ-unique to +-inverseʳ-unique ; ⁻¹-∙-comm to -‿+-comm -- DEPRECATED ; left-identity-unique to +-left-identity-unique ; right-identity-unique to +-right-identity-unique ; left-inverse-unique to +-left-inverse-unique ; right-inverse-unique to +-right-inverse-unique ) ------------------------------------------------------------------------ -- Properties of -_ -‿distribˡ-* : ∀ x y → - (x * y) ≈ - x * y -‿distribˡ-* x y = sym $ begin - x * y ≈⟨ sym $ +-identityʳ _ ⟩ - x * y + 0# ≈⟨ +-congˡ $ sym (-‿inverseʳ _) ⟩ - x * y + (x * y + - (x * y)) ≈⟨ sym $ +-assoc _ _ _ ⟩ - x * y + x * y + - (x * y) ≈⟨ +-congʳ $ sym (distribʳ _ _ _) ⟩ (- x + x) * y + - (x * y) ≈⟨ +-congʳ $ *-congʳ $ -‿inverseˡ _ ⟩ 0# * y + - (x * y) ≈⟨ +-congʳ $ zeroˡ _ ⟩ 0# + - (x * y) ≈⟨ +-identityˡ _ ⟩ - (x * y) ∎ -‿distribʳ-* : ∀ x y → - (x * y) ≈ x * - y -‿distribʳ-* x y = sym $ begin x * - y ≈⟨ sym $ +-identityˡ _ ⟩ 0# + x * - y ≈⟨ +-congʳ $ sym (-‿inverseˡ _) ⟩ - (x * y) + x * y + x * - y ≈⟨ +-assoc _ _ _ ⟩ - (x * y) + (x * y + x * - y) ≈⟨ +-congˡ $ sym (distribˡ _ _ _) ⟩ - (x * y) + x * (y + - y) ≈⟨ +-congˡ $ *-congˡ $ -‿inverseʳ _ ⟩ - (x * y) + x * 0# ≈⟨ +-congˡ $ zeroʳ _ ⟩ - (x * y) + 0# ≈⟨ +-identityʳ _ ⟩ - (x * y) ∎ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 -‿*-distribˡ : ∀ x y → - x * y ≈ - (x * y) -‿*-distribˡ x y = sym (-‿distribˡ-* x y) {-# WARNING_ON_USAGE -‿*-distribˡ "Warning: -‿*-distribˡ was deprecated in v1.1. Please use -‿distribˡ-* instead. NOTE: the equality is flipped so you will need sym (-‿distribˡ-* ...)." #-} -‿*-distribʳ : ∀ x y → x * - y ≈ - (x * y) -‿*-distribʳ x y = sym (-‿distribʳ-* x y) {-# WARNING_ON_USAGE -‿*-distribʳ "Warning: -‿*-distribʳ was deprecated in v1.1. Please use -‿distribʳ-* instead. NOTE: the equality is flipped so you will need sym (-‿distribʳ-* ...)." #-}
{ "alphanum_fraction": 0.458788774, "avg_line_length": 36.7934782609, "ext": "agda", "hexsha": "a16f302cd11d2409538d58165a44e540572965ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Algebra/Properties/Ring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Algebra/Properties/Ring.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Algebra/Properties/Ring.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1207, "size": 3385 }
module Generic.Lib.Decidable where open import Relation.Nullary public open import Relation.Nullary.Decidable hiding (map) public open import Relation.Binary using (Decidable) public open import Generic.Lib.Intro open import Generic.Lib.Equality.Propositional open import Generic.Lib.Equality.Heteroindexed open import Generic.Lib.Data.Sum open import Generic.Lib.Data.Product open import Relation.Nullary import Data.String as String infix 3 _#_ IsSet : ∀ {α} -> Set α -> Set α IsSet A = Decidable {A = A} _≡_ record Eq {α} (A : Set α) : Set α where infixl 5 _≟_ _==_ field _≟_ : IsSet A _==_ : A -> A -> Bool x == y = ⌊ x ≟ y ⌋ open Eq {{...}} public record _↦_ {α} (A B : Set α) : Set α where constructor packInj field to : A -> B from : B -> A from-to : from ∘ to ≗ id -- Can't make it an instance, because otherwise it unreasonably breaks instance search. viaInj : ∀ {α} {A B : Set α} {{bEq : Eq B}} -> A ↦ B -> Eq A viaInj {A = A} {B} inj = record { _≟_ = flip (via-injection {A = ≡-Setoid A} {B = ≡-Setoid B}) _≟_ $ record { to = record { _⟨$⟩_ = to ; cong = cong to } ; injective = λ q -> right (from-to _) (trans (cong from q) (from-to _)) } } where open _↦_ inj _#_ : ∀ {α} {A : Set α} -> A -> A -> Set x # y = Dec (x ≡ y) delim : ∀ {α π} {A : Set α} {P : Dec A -> Set π} -> (∀ x -> P (yes x)) -> (∀ c -> P (no c)) -> (d : Dec A) -> P d delim f g (yes x) = f x delim f g (no c) = g c drec : ∀ {α β} {A : Set α} {B : Set β} -> (A -> B) -> (¬ A -> B) -> Dec A -> B drec = delim dmap : ∀ {α β} {A : Set α} {B : Set β} -> (A -> B) -> (¬ A -> ¬ B) -> Dec A -> Dec B dmap f g = drec (yes ∘ f) (no ∘ g) sumM2 : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} -> (A -> Dec C) -> (B -> Dec C) -> (¬ A -> ¬ B -> Dec C) -> Dec A -> Dec B -> Dec C sumM2 f g h d e = drec f (λ c -> drec g (h c) e) d prodM2 : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} -> (A -> B -> Dec C) -> (¬ A -> Dec C) -> (¬ B -> Dec C) -> Dec A -> Dec B -> Dec C prodM2 h f g d e = drec (λ x -> drec (h x) g e) f d sumF2 : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} -> (A -> C) -> (B -> C) -> (¬ A -> ¬ B -> ¬ C) -> Dec A -> Dec B -> Dec C sumF2 f g h = sumM2 (yes ∘ f) (yes ∘ g) (no % ∘ h) prodF2 : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} -> (A -> B -> C) -> (¬ A -> ¬ C) -> (¬ B -> ¬ C) -> Dec A -> Dec B -> Dec C prodF2 h f g = prodM2 (yes % ∘ h) (no ∘ f) (no ∘ g) dcong : ∀ {α β} {A : Set α} {B : Set β} {x y} -> (f : A -> B) -> (f x ≡ f y -> x ≡ y) -> x # y -> f x # f y dcong f inj = dmap (cong f) (_∘ inj) dcong₂ : ∀ {α β γ} {A : Set α} {B : Set β} {C : Set γ} {x₁ x₂ y₁ y₂} -> (f : A -> B -> C) -> (f x₁ y₁ ≡ f x₂ y₂ -> x₁ ≡ x₂ × y₁ ≡ y₂) -> x₁ # x₂ -> y₁ # y₂ -> f x₁ y₁ # f x₂ y₂ dcong₂ f inj = prodF2 (cong₂ f) (λ c -> c ∘ proj₁ ∘ inj) (λ c -> c ∘ proj₂ ∘ inj) dhcong₂ : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : Set γ} {x₁ x₂ y₁ y₂} -> (f : ∀ x -> B x -> C) -> (f x₁ y₁ ≡ f x₂ y₂ -> [ B ] y₁ ≅ y₂) -> x₁ # x₂ -> (∀ y₂ -> y₁ # y₂) -> f x₁ y₁ # f x₂ y₂ dhcong₂ f inj (yes refl) q = dcong (f _) (homo ∘ inj) (q _) dhcong₂ f inj (no c) q = no (c ∘ inds ∘ inj) dsubst : ∀ {α β γ} {A : Set α} {x y} -> (B : A -> Set β) -> (C : ∀ {x} -> B x -> Set γ) -> x # y -> (z : B x) -> ((z : B y) -> C z) -> (x ≢ y -> C z) -> C z dsubst B C (yes refl) z g h = g z dsubst B C (no c) z g h = h c dsubst′ : ∀ {α β γ} {A : Set α} {C : Set γ} {x y} -> (B : A -> Set β) -> x # y -> B x -> (B y -> C) -> (x ≢ y -> C) -> C dsubst′ B = dsubst B _ ,-inj : ∀ {α β} {A : Set α} {B : A -> Set β} {x₁ x₂} {y₁ : B x₁} {y₂ : B x₂} -> (x₁ , y₁) ≡ (x₂ , y₂) -> [ B ] y₁ ≅ y₂ ,-inj refl = irefl inj₁-inj : ∀ {α β} {A : Set α} {B : Set β} {x₁ x₂ : A} -> inj₁ {B = B} x₁ ≡ inj₁ x₂ -> x₁ ≡ x₂ inj₁-inj refl = refl inj₂-inj : ∀ {α β} {A : Set α} {B : Set β} {y₁ y₂ : B} -> inj₂ {A = A} y₁ ≡ inj₂ y₂ -> y₁ ≡ y₂ inj₂-inj refl = refl -- _<,>ᵈ_ : ∀ {α β} {A : Set α} {B : Set β} {x₁ x₂ : A} {y₁ y₂ : B} -- -> x₁ # x₂ -> y₁ # y₂ -> x₁ , y₁ # x₂ , y₂ -- _<,>ᵈ_ = dcong₂ _,_ (inds-homo ∘ ,-inj) -- _<,>ᵈᵒ_ : ∀ {α β} {A : Set α} {B : A -> Set β} {x₁ x₂} {y₁ : B x₁} {y₂ : B x₂} -- -> x₁ # x₂ -> (∀ y₂ -> y₁ # y₂) -> x₁ , y₁ # x₂ , y₂ -- _<,>ᵈᵒ_ = dhcong₂ _,_ ,-inj decSum : ∀ {α β} {A : Set α} {B : Set β} -> IsSet A -> IsSet B -> IsSet (A ⊎ B) decSum f g (inj₁ x₁) (inj₁ x₂) = dcong inj₁ inj₁-inj (f x₁ x₂) decSum f g (inj₂ y₁) (inj₂ y₂) = dcong inj₂ inj₂-inj (g y₁ y₂) decSum f g (inj₁ x₁) (inj₂ y₂) = no λ() decSum f g (inj₂ y₁) (inj₁ x₂) = no λ() decProd : ∀ {α β} {A : Set α} {B : A -> Set β} -> IsSet A -> (∀ {x} -> IsSet (B x)) -> IsSet (Σ A B) decProd f g (x₁ , y₁) (x₂ , y₂) = dhcong₂ _,_ ,-inj (f x₁ x₂) (g y₁) module _ where import Relation.Binary.PropositionalEquality as B liftBase : ∀ {α} {A : Set α} {x y : A} -> x B.≡ y -> x ≡ y liftBase B.refl = refl lowerBase : ∀ {α} {A : Set α} {x y : A} -> x ≡ y -> x B.≡ y lowerBase refl = B.refl viaBase : ∀ {α} {A : Set α} -> Decidable (B._≡_ {A = A}) -> Eq A viaBase d = record { _≟_ = flip (via-injection {A = ≡-Setoid _} {B = B.setoid _}) d $ record { to = record { _⟨$⟩_ = id ; cong = lowerBase } ; injective = liftBase } }
{ "alphanum_fraction": 0.453532956, "avg_line_length": 33.1939393939, "ext": "agda", "hexsha": "615407607b573ae913b33fb28a595f00b4843467", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Decidable.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Decidable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2468, "size": 5477 }
-- The following deeply left-nested expression illustrates a problem -- in a previous implementation of the occurrence machinery. postulate A : Set data List : Set where nil : List snoc : List → A → List f : A → List f x = snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc (snoc nil x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x) x
{ "alphanum_fraction": 0.5561755826, "avg_line_length": 4913.1666666667, "ext": "agda", "hexsha": "b87d82833a98c4e8e72da4ef9d86a48b8b66aab9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "benchmark/misc/SlowOccurrences2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "benchmark/misc/SlowOccurrences2.agda", "max_line_length": 58732, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "benchmark/misc/SlowOccurrences2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32684, "size": 58958 }
{-# OPTIONS --show-implicit #-} module PragmasRespected where postulate Foo : {A : Set₁} → Set Bar : Foo {A = Set}
{ "alphanum_fraction": 0.6280991736, "avg_line_length": 15.125, "ext": "agda", "hexsha": "55d06672d58b9f2d4bc6a6b30968eb04ae86b594", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/PragmasRespected.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/PragmasRespected.agda", "max_line_length": 31, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/interaction/PragmasRespected.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 39, "size": 121 }
{-# OPTIONS --allow-unsolved-metas #-} module gcd where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions open import nat open import logic open Factor gcd1 : ( i i0 j j0 : ℕ ) → ℕ gcd1 zero i0 zero j0 with <-cmp i0 j0 ... | tri< a ¬b ¬c = i0 ... | tri≈ ¬a refl ¬c = i0 ... | tri> ¬a ¬b c = j0 gcd1 zero i0 (suc zero) j0 = 1 gcd1 zero zero (suc (suc j)) j0 = j0 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j)) gcd1 (suc zero) i0 zero j0 = 1 gcd1 (suc (suc i)) i0 zero zero = i0 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0) gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0 gcd : ( i j : ℕ ) → ℕ gcd i j = gcd1 i i j j gcd20 : (i : ℕ) → gcd i 0 ≡ i gcd20 zero = refl gcd20 (suc i) = gcd201 (suc i) where gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i gcd201 zero = refl gcd201 (suc zero) = refl gcd201 (suc (suc i)) = refl gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0 gcd22 zero i0 zero o0 = refl gcd22 zero i0 (suc o) o0 = refl gcd22 (suc i) i0 zero o0 = refl gcd22 (suc i) i0 (suc o) o0 = refl gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m gcdmm zero m with <-cmp m m ... | tri< a ¬b ¬c = refl ... | tri≈ ¬a refl ¬c = refl ... | tri> ¬a ¬b c = refl gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m ) gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i gcdsym2 i j with <-cmp i j | <-cmp j i ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a) ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c) ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c) ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0 gcdsym1 zero zero zero zero = refl gcdsym1 zero zero zero (suc j0) = refl gcdsym1 zero (suc i0) zero zero = refl gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0) gcdsym1 zero zero (suc zero) j0 = refl gcdsym1 zero zero (suc (suc j)) j0 = refl gcdsym1 zero (suc i0) (suc zero) j0 = refl gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j)) gcdsym1 (suc zero) i0 zero j0 = refl gcdsym1 (suc (suc i)) i0 zero zero = refl gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0) gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 ) gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n gcdsym {n} {m} = gcdsym1 n n m m gcd11 : ( i : ℕ ) → gcd i i ≡ i gcd11 i = gcdmm i i gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1 gcd203 zero = refl gcd203 (suc i) = gcd205 (suc i) where gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1 gcd205 zero = refl gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j) gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1 gcd204 zero = refl gcd204 (suc zero) = refl gcd204 (suc (suc zero)) = refl gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i)) gcd+j : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j gcd+j i j = gcd200 i i j j refl refl where gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1) gcd202 zero j1 = refl gcd202 (suc i) j1 = cong suc (gcd202 i j1) gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl gcd201 i i0 j j0 (suc j1) = begin gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩ gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩ gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩ gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j) gcd200 zero zero (suc zero) .1 i=i0 refl = refl gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩ suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩ gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning gcd200 zero (suc i0) (suc j) .(suc j) () refl gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩ 1 ≡⟨ sym ( gcd204 (suc j)) ⟩ gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning gcd200 (suc (suc i)) i0 (suc j) zero i=i0 () open _∧_ gcd-gt : ( i i0 j j0 k : ℕ ) → k > 1 → (if : Factor k i) (i0f : Dividable k i0 ) (jf : Factor k j ) (j0f : Dividable k j0) → Dividable k (i - j) ∧ Dividable k (j - i) → Dividable k ( gcd1 i i0 j j0 ) gcd-gt zero i0 zero j0 k k>1 if i0f jf j0f i-j with <-cmp i0 j0 ... | tri< a ¬b ¬c = i0f ... | tri≈ ¬a refl ¬c = i0f ... | tri> ¬a ¬b c = j0f gcd-gt zero i0 (suc zero) j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj2 i-j)) -- can't happen gcd-gt zero zero (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = j0f gcd-gt zero (suc i0) (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k k>1 (decf (DtoF i0f)) i0f (decf jf) (proj2 i-j) (div-div k>1 i0f (proj2 i-j)) gcd-gt (suc zero) i0 zero j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj1 i-j)) -- can't happen gcd-gt (suc (suc i)) i0 zero zero k k>1 if i0f jf j0f i-j = i0f gcd-gt (suc (suc i)) i0 zero (suc j0) k k>1 if i0f jf j0f i-j = -- gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k k>1 (decf if) (proj1 i-j) (decf (DtoF j0f)) j0f (div-div k>1 (proj1 i-j) j0f ) gcd-gt (suc zero) i0 (suc j) j0 k k>1 if i0f jf j0f i-j = gcd-gt zero i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j gcd-gt (suc (suc i)) i0 (suc j) j0 k k>1 if i0f jf j0f i-j = gcd-gt (suc i) i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j gcd-div : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j ) → Dividable k ( gcd i j ) gcd-div i j k k>1 if jf = gcd-gt i i j j k k>1 (DtoF if) if (DtoF jf) jf (div-div k>1 if jf) di-next : {i i0 j j0 : ℕ} → Dividable i0 ((j0 + suc i) - suc j ) ∧ Dividable j0 ((i0 + suc j) - suc i) → Dividable i0 ((j0 + i) - j ) ∧ Dividable j0 ((i0 + j) - i) di-next {i} {i0} {j} {j0} x = ⟪ ( subst (λ k → Dividable i0 (k - suc j)) ( begin j0 + suc i ≡⟨ sym (+-assoc j0 1 i ) ⟩ (j0 + 1) + i ≡⟨ cong (λ k → k + i) (+-comm j0 _ ) ⟩ suc (j0 + i) ∎ ) (proj1 x) ) , ( subst (λ k → Dividable j0 (k - suc i)) ( begin i0 + suc j ≡⟨ sym (+-assoc i0 1 j ) ⟩ (i0 + 1) + j ≡⟨ cong (λ k → k + j) (+-comm i0 _ ) ⟩ suc (i0 + j) ∎ ) (proj2 x) ) ⟫ where open ≡-Reasoning di-next1 : {i0 j j0 : ℕ} → Dividable (suc i0) ((j0 + 0) - (suc (suc j))) ∧ Dividable j0 (suc (i0 + suc (suc j))) → Dividable (suc i0) ((suc (suc j) + i0) - suc j) ∧ Dividable (suc (suc j)) ((suc i0 + suc j) - i0) di-next1 {i0} {j} {j0} x = ⟪ record { factor = 1 ; is-factor = begin 1 * suc i0 + 0 ≡⟨ cong suc ( trans (+-comm _ 0) (+-comm _ 0) ) ⟩ suc i0 ≡⟨ sym (minus+y-y {suc i0} {j}) ⟩ (suc i0 + j) - j ≡⟨ cong (λ k → k - j ) (+-comm (suc i0) _ ) ⟩ (suc j + suc i0 ) - suc j ≡⟨ cong (λ k → k - suc j) (sym (+-assoc (suc j) 1 i0 )) ⟩ ((suc j + 1) + i0) - suc j ≡⟨ cong (λ k → (k + i0) - suc j) (+-comm _ 1) ⟩ (suc (suc j) + i0) - suc j ∎ } , subst (λ k → Dividable (suc (suc j)) k) ( begin suc (suc j) ≡⟨ sym ( minus+y-y {suc (suc j)}{i0} ) ⟩ (suc (suc j) + i0 ) - i0 ≡⟨ cong (λ k → (k + i0) - i0) (cong suc (+-comm 1 _ )) ⟩ ((suc j + 1) + i0 ) - i0 ≡⟨ cong (λ k → k - i0) (+-assoc (suc j) 1 _ ) ⟩ (suc j + suc i0 ) - i0 ≡⟨ cong (λ k → k - i0) (+-comm (suc j) _) ⟩ ((suc i0 + suc j) - i0) ∎ ) div= ⟫ where open ≡-Reasoning gcd>0 : ( i j : ℕ ) → 0 < i → 0 < j → 0 < gcd i j gcd>0 i j 0<i 0<j = gcd>01 i i j j 0<i 0<j where gcd>01 : ( i i0 j j0 : ℕ ) → 0 < i0 → 0 < j0 → gcd1 i i0 j j0 > 0 gcd>01 zero i0 zero j0 0<i 0<j with <-cmp i0 j0 ... | tri< a ¬b ¬c = 0<i ... | tri≈ ¬a refl ¬c = 0<i ... | tri> ¬a ¬b c = 0<j gcd>01 zero i0 (suc zero) j0 0<i 0<j = s≤s z≤n gcd>01 zero zero (suc (suc j)) j0 0<i 0<j = 0<j gcd>01 zero (suc i0) (suc (suc j)) j0 0<i 0<j = gcd>01 i0 (suc i0) (suc j) (suc (suc j)) 0<i (s≤s z≤n) -- 0 < suc (suc j) gcd>01 (suc zero) i0 zero j0 0<i 0<j = s≤s z≤n gcd>01 (suc (suc i)) i0 zero zero 0<i 0<j = 0<i gcd>01 (suc (suc i)) i0 zero (suc j0) 0<i 0<j = gcd>01 (suc i) (suc (suc i)) j0 (suc j0) (s≤s z≤n) 0<j gcd>01 (suc i) i0 (suc j) j0 0<i 0<j = subst (λ k → 0 < k ) (sym (gcd033 i i0 j j0 )) (gcd>01 i i0 j j0 0<i 0<j ) where gcd033 : (i i0 j j0 : ℕ) → gcd1 (suc i) i0 (suc j) j0 ≡ gcd1 i i0 j j0 gcd033 zero zero zero zero = refl gcd033 zero zero (suc j) zero = refl gcd033 (suc i) zero j zero = refl gcd033 zero zero zero (suc j0) = refl gcd033 (suc i) zero zero (suc j0) = refl gcd033 zero zero (suc j) (suc j0) = refl gcd033 (suc i) zero (suc j) (suc j0) = refl gcd033 zero (suc i0) j j0 = refl gcd033 (suc i) (suc i0) j j0 = refl -- gcd loop invariant -- record GCD ( i i0 j j0 : ℕ ) : Set where field i<i0 : i ≤ i0 j<j0 : j ≤ j0 div-i : Dividable i0 ((j0 + i) - j) div-j : Dividable j0 ((i0 + j) - i) div-11 : {i j : ℕ } → Dividable i ((j + i) - j) div-11 {i} {j} = record { factor = 1 ; is-factor = begin 1 * i + 0 ≡⟨ +-comm _ 0 ⟩ i + 0 ≡⟨ +-comm _ 0 ⟩ i ≡⟨ sym (minus+y-y {i} {j}) ⟩ (i + j ) - j ≡⟨ cong (λ k → k - j ) (+-comm i j ) ⟩ (j + i) - j ∎ } where open ≡-Reasoning div→gcd : {n k : ℕ } → k > 1 → Dividable k n → gcd n k ≡ k div→gcd {n} {k} k>1 = n-induction {_} {_} {ℕ} {λ m → Dividable k m → gcd m k ≡ k } (λ x → x) I n where decl : {m : ℕ } → 0 < m → m - k < m decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m ind : (m : ℕ ) → (Dividable k (m - k) → gcd (m - k) k ≡ k) → Dividable k m → gcd m k ≡ k ind m prev d with <-cmp (suc m) k ... | tri≈ ¬a refl ¬c = ⊥-elim ( div+1 k>1 d div= ) ... | tri> ¬a ¬b c = subst (λ g → g ≡ k) ind1 ( prev (proj2 (div-div k>1 div= d))) where ind1 : gcd (m - k) k ≡ gcd m k ind1 = begin gcd (m - k) k ≡⟨ sym (gcd+j (m - k) _) ⟩ gcd (m - k + k) k ≡⟨ cong (λ g → gcd g k) (minus+n {m} {k} c) ⟩ gcd m k ∎ where open ≡-Reasoning ... | tri< a ¬b ¬c with <-cmp 0 m ... | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim ( div<k k>1 a₁ (<-trans a<sa a) d ) ... | tri≈ ¬a refl ¬c₁ = subst (λ g → g ≡ k ) (gcdsym {k} {0} ) (gcd20 k) fzero : (m : ℕ) → (m - k) ≡ zero → Dividable k m → gcd m k ≡ k fzero 0 eq d = trans (gcdsym {0} {k} ) (gcd20 k) fzero (suc m) eq d with <-cmp (suc m) k ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 (s≤s z≤n) a d ) ... | tri≈ ¬a refl ¬c = gcdmm k k ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym eq) (minus>0 c) ) I : Ninduction ℕ _ (λ x → x) I = record { pnext = λ p → p - k ; fzero = λ {m} eq → fzero m eq ; decline = λ {m} lt → decl lt ; ind = λ {p} prev → ind p prev } GCDi : {i j : ℕ } → GCD i i j j GCDi {i} {j} = record { i<i0 = refl-≤ ; j<j0 = refl-≤ ; div-i = div-11 {i} {j} ; div-j = div-11 {j} {i} } GCD-sym : {i i0 j j0 : ℕ} → GCD i i0 j j0 → GCD j j0 i i0 GCD-sym g = record { i<i0 = GCD.j<j0 g ; j<j0 = GCD.i<i0 g ; div-i = GCD.div-j g ; div-j = GCD.div-i g } pred-≤ : {i i0 : ℕ } → suc i ≤ suc i0 → i ≤ suc i0 pred-≤ {i} {i0} (s≤s lt) = ≤-trans lt refl-≤s gcd-next : {i i0 j j0 : ℕ} → GCD (suc i) i0 (suc j) j0 → GCD i i0 j j0 gcd-next {i} {0} {j} {0} () gcd-next {i} {suc i0} {j} {suc j0} g = record { i<i0 = pred-≤ (GCD.i<i0 g) ; j<j0 = pred-≤ (GCD.j<j0 g) ; div-i = proj1 (di-next {i} {suc i0} {j} {suc j0} ⟪ GCD.div-i g , GCD.div-j g ⟫ ) ; div-j = proj2 (di-next {i} {suc i0} {j} {suc j0} ⟪ GCD.div-i g , GCD.div-j g ⟫ ) } gcd-next1 : {i0 j j0 : ℕ} → GCD 0 (suc i0) (suc (suc j)) j0 → GCD i0 (suc i0) (suc j) (suc (suc j)) gcd-next1 {i0} {j} {j0} g = record { i<i0 = refl-≤s ; j<j0 = refl-≤s ; div-i = proj1 (di-next1 ⟪ GCD.div-i g , GCD.div-j g ⟫ ) ; div-j = proj2 (di-next1 ⟪ GCD.div-i g , GCD.div-j g ⟫ ) } -- gcd-dividable1 : ( i i0 j j0 : ℕ ) -- → Dividable i0 (j0 + i - j ) ∨ Dividable j0 (i0 + j - i) -- → Dividable ( gcd1 i i0 j j0 ) i0 ∧ Dividable ( gcd1 i i0 j j0 ) j0 -- gcd-dividable1 zero i0 zero j0 with <-cmp i0 j0 -- ... | tri< a ¬b ¬c = ⟪ div= , {!!} ⟫ -- Dividable i0 (j0 + i - j ) ∧ Dividable j0 (i0 + j - i) -- ... | tri≈ ¬a refl ¬c = {!!} -- ... | tri> ¬a ¬b c = {!!} -- gcd-dividable1 zero i0 (suc zero) j0 = {!!} -- gcd-dividable1 i i0 j j0 = {!!} gcd-dividable : ( i j : ℕ ) → Dividable ( gcd i j ) i ∧ Dividable ( gcd i j ) j gcd-dividable i j = f-induction {_} {_} {ℕ ∧ ℕ} {λ p → Dividable ( gcd (proj1 p) (proj2 p) ) (proj1 p) ∧ Dividable ( gcd (proj1 p) (proj2 p) ) (proj2 p)} F I ⟪ i , j ⟫ where F : ℕ ∧ ℕ → ℕ F ⟪ 0 , 0 ⟫ = 0 F ⟪ 0 , suc j ⟫ = 0 F ⟪ suc i , 0 ⟫ = 0 F ⟪ suc i , suc j ⟫ with <-cmp i j ... | tri< a ¬b ¬c = suc j ... | tri≈ ¬a b ¬c = 0 ... | tri> ¬a ¬b c = suc i F0 : { i j : ℕ } → F ⟪ i , j ⟫ ≡ 0 → (i ≡ j) ∨ (i ≡ 0 ) ∨ (j ≡ 0) F0 {zero} {zero} p = case1 refl F0 {zero} {suc j} p = case2 (case1 refl) F0 {suc i} {zero} p = case2 (case2 refl) F0 {suc i} {suc j} p with <-cmp i j ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n )) ... | tri≈ ¬a refl ¬c = case1 refl ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n )) F00 : {p : ℕ ∧ ℕ} → F p ≡ zero → Dividable (gcd (proj1 p) (proj2 p)) (proj1 p) ∧ Dividable (gcd (proj1 p) (proj2 p)) (proj2 p) F00 {⟪ i , j ⟫} eq with F0 {i} {j} eq ... | case1 refl = ⟪ subst (λ k → Dividable k i) (sym (gcdmm i i)) div= , subst (λ k → Dividable k i) (sym (gcdmm i i)) div= ⟫ ... | case2 (case1 refl) = ⟪ subst (λ k → Dividable k i) (sym (trans (gcdsym {0} {j} ) (gcd20 j)))div0 , subst (λ k → Dividable k j) (sym (trans (gcdsym {0} {j}) (gcd20 j))) div= ⟫ ... | case2 (case2 refl) = ⟪ subst (λ k → Dividable k i) (sym (gcd20 i)) div= , subst (λ k → Dividable k j) (sym (gcd20 i)) div0 ⟫ Fsym : {i j : ℕ } → F ⟪ i , j ⟫ ≡ F ⟪ j , i ⟫ Fsym {0} {0} = refl Fsym {0} {suc j} = refl Fsym {suc i} {0} = refl Fsym {suc i} {suc j} with <-cmp i j | <-cmp j i ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁) ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (¬b (sym b)) ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl ... | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = ⊥-elim (¬b refl) ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl ... | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ⊥-elim (¬b refl) ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬b (sym b)) ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁) record Fdec ( i j : ℕ ) : Set where field ni : ℕ nj : ℕ fdec : 0 < F ⟪ i , j ⟫ → F ⟪ ni , nj ⟫ < F ⟪ i , j ⟫ fd1 : ( i j k : ℕ ) → i < j → k ≡ j - i → F ⟪ suc i , k ⟫ < F ⟪ suc i , suc j ⟫ fd1 i j 0 i<j eq = ⊥-elim ( nat-≡< eq (minus>0 {i} {j} i<j )) fd1 i j (suc k) i<j eq = fd2 i j k i<j eq where fd2 : ( i j k : ℕ ) → i < j → suc k ≡ j - i → F ⟪ suc i , suc k ⟫ < F ⟪ suc i , suc j ⟫ fd2 i j k i<j eq with <-cmp i k | <-cmp i j ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = fd3 where fd3 : suc k < suc j -- suc j - suc i < suc j fd3 = subst (λ g → g < suc j) (sym eq) (y-x<y {suc i} {suc j} (s≤s z≤n) (s≤s z≤n)) ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (⊥-elim (¬a i<j)) ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim (⊥-elim (¬a i<j)) ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = s≤s z≤n ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (¬a₁ i<j) ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = s≤s z≤n -- i > j ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = fd4 where fd4 : suc i < suc j fd4 = s≤s a ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬a₁ i<j) ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (¬a₁ i<j) fedc0 : (i j : ℕ ) → Fdec i j fedc0 0 0 = record { ni = 0 ; nj = 0 ; fdec = λ () } fedc0 (suc i) 0 = record { ni = suc i ; nj = 0 ; fdec = λ () } fedc0 0 (suc j) = record { ni = 0 ; nj = suc j ; fdec = λ () } fedc0 (suc i) (suc j) with <-cmp i j ... | tri< i<j ¬b ¬c = record { ni = suc i ; nj = j - i ; fdec = λ lt → fd1 i j (j - i) i<j refl } ... | tri≈ ¬a refl ¬c = record { ni = suc i ; nj = suc j ; fdec = λ lt → ⊥-elim (nat-≡< fd0 lt) } where fd0 : {i : ℕ } → 0 ≡ F ⟪ suc i , suc i ⟫ fd0 {i} with <-cmp i i ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = ⊥-elim ( ¬b refl ) ... | tri> ¬a ¬b c = record { ni = i - j ; nj = suc j ; fdec = λ lt → subst₂ (λ s t → s < t) (Fsym {suc j} {i - j}) (Fsym {suc j} {suc i}) (fd1 j i (i - j) c refl ) } ind3 : {i j : ℕ } → i < j → Dividable (gcd (suc i) (j - i)) (suc i) → Dividable (gcd (suc i) (suc j)) (suc i) ind3 {i} {j} a prev = subst (λ k → Dividable k (suc i)) ( begin gcd (suc i) (j - i) ≡⟨ gcdsym {suc i} {j - i} ⟩ gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i) (suc i)) ⟩ gcd ((j - i) + suc i) (suc i) ≡⟨ cong (λ k → gcd k (suc i)) ( begin (suc j - suc i) + suc i ≡⟨ minus+n {suc j} {suc i} (<-trans ( s≤s a) a<sa ) ⟩ -- i ≤ n → suc (suc i) ≤ suc (suc (suc n)) suc j ∎ ) ⟩ gcd (suc j) (suc i) ≡⟨ gcdsym {suc j} {suc i} ⟩ gcd (suc i) (suc j) ∎ ) prev where open ≡-Reasoning ind7 : {i j : ℕ } → (i < j ) → (j - i) + suc i ≡ suc j ind7 {i} {j} a = begin (suc j - suc i) + suc i ≡⟨ minus+n {suc j} {suc i} (<-trans (s≤s a) a<sa) ⟩ suc j ∎ where open ≡-Reasoning ind6 : {i j k : ℕ } → i < j → Dividable k (j - i) → Dividable k (suc i) → Dividable k (suc j) ind6 {i} {j} {k} i<j dj di = subst (λ g → Dividable k g ) (ind7 i<j) (proj1 (div+div dj di)) ind4 : {i j : ℕ } → i < j → Dividable (gcd (suc i) (j - i)) (j - i) → Dividable (gcd (suc i) (suc j)) (j - i) ind4 {i} {j} i<j prev = subst (λ k → k) ( begin Dividable (gcd (suc i) (j - i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc i} ) ⟩ Dividable (gcd (j - i ) (suc i) ) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) ( sym (gcd+j (j - i) (suc i))) ⟩ Dividable (gcd ((j - i) + suc i) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable (gcd k (suc i)) (j - i)) (ind7 i<j ) ⟩ Dividable (gcd (suc j) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc j} ) ⟩ Dividable (gcd (suc i) (suc j)) (j - i) ∎ ) prev where open ≡-Reasoning ind : ( i j : ℕ ) → Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.ni (fedc0 i j)) ∧ Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.nj (fedc0 i j)) → Dividable (gcd i j) i ∧ Dividable (gcd i j) j ind zero zero prev = ind0 where ind0 : Dividable (gcd zero zero) zero ∧ Dividable (gcd zero zero) zero ind0 = ⟪ div0 , div0 ⟫ ind zero (suc j) prev = ind1 where ind1 : Dividable (gcd zero (suc j)) zero ∧ Dividable (gcd zero (suc j)) (suc j) ind1 = ⟪ div0 , subst (λ k → Dividable k (suc j)) (sym (trans (gcdsym {zero} {suc j}) (gcd20 (suc j)))) div= ⟫ ind (suc i) zero prev = ind2 where ind2 : Dividable (gcd (suc i) zero) (suc i) ∧ Dividable (gcd (suc i) zero) zero ind2 = ⟪ subst (λ k → Dividable k (suc i)) (sym (trans refl (gcd20 (suc i)))) div= , div0 ⟫ ind (suc i) (suc j) prev with <-cmp i j ... | tri< a ¬b ¬c = ⟪ ind3 a (proj1 prev) , ind6 a (ind4 a (proj2 prev)) (ind3 a (proj1 prev) ) ⟫ ... | tri≈ ¬a refl ¬c = ⟪ ind5 , ind5 ⟫ where ind5 : Dividable (gcd (suc i) (suc i)) (suc i) ind5 = subst (λ k → Dividable k (suc j)) (sym (gcdmm (suc i) (suc i))) div= ... | tri> ¬a ¬b c = ⟪ ind8 c (proj1 prev) (proj2 prev) , ind10 c (proj2 prev) ⟫ where ind9 : {i j : ℕ} → i < j → gcd (j - i) (suc i) ≡ gcd (suc j) (suc i) ind9 {i} {j} i<j = begin gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i ) (suc i) ) ⟩ gcd (j - i + suc i) (suc i) ≡⟨ cong (λ k → gcd k (suc i)) (ind7 i<j ) ⟩ gcd (suc j) (suc i) ∎ where open ≡-Reasoning ind8 : { i j : ℕ } → i < j → Dividable (gcd (j - i) (suc i)) (j - i) → Dividable (gcd (j - i) (suc i)) (suc i) → Dividable (gcd (suc j) (suc i)) (suc j) ind8 {i} {j} i<j dji di = ind6 i<j (subst (λ k → Dividable k (j - i)) (ind9 i<j) dji) (subst (λ k → Dividable k (suc i)) (ind9 i<j) di) ind10 : { i j : ℕ } → j < i → Dividable (gcd (i - j) (suc j)) (suc j) → Dividable (gcd (suc i) (suc j)) (suc j) ind10 {i} {j} j<i dji = subst (λ g → Dividable g (suc j) ) (begin gcd (i - j) (suc j) ≡⟨ sym (gcd+j (i - j) (suc j)) ⟩ gcd (i - j + suc j) (suc j) ≡⟨ cong (λ k → gcd k (suc j)) (ind7 j<i ) ⟩ gcd (suc i) (suc j) ∎ ) dji where open ≡-Reasoning I : Finduction (ℕ ∧ ℕ) _ F I = record { fzero = F00 ; pnext = λ p → ⟪ Fdec.ni (fedc0 (proj1 p) (proj2 p)) , Fdec.nj (fedc0 (proj1 p) (proj2 p)) ⟫ ; decline = λ {p} lt → Fdec.fdec (fedc0 (proj1 p) (proj2 p)) lt ; ind = λ {p} prev → ind (proj1 p ) ( proj2 p ) prev } f-div>0 : { k i : ℕ } → (d : Dividable k i ) → 0 < i → 0 < Dividable.factor d f-div>0 {k} {i} d 0<i with <-cmp 0 (Dividable.factor d) ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (begin 0 * k + 0 ≡⟨ cong (λ g → g * k + 0) b ⟩ Dividable.factor d * k + 0 ≡⟨ Dividable.is-factor d ⟩ i ∎ ) 0<i ) where open ≡-Reasoning gcd-≤i : ( i j : ℕ ) → 0 < i → i ≤ j → gcd i j ≤ i gcd-≤i zero _ () z≤n gcd-≤i (suc i) (suc j) _ (s≤s i<j) = begin gcd (suc i) (suc j) ≡⟨ sym m*1=m ⟩ gcd (suc i) (suc j) * 1 ≤⟨ *-monoʳ-≤ (gcd (suc i) (suc j)) (f-div>0 d (s≤s z≤n)) ⟩ gcd (suc i) (suc j) * f ≡⟨ +-comm 0 _ ⟩ gcd (suc i) (suc j) * f + 0 ≡⟨ cong (λ k → k + 0) (*-comm (gcd (suc i) (suc j)) _ ) ⟩ Dividable.factor (proj1 (gcd-dividable (suc i) (suc j))) * gcd (suc i) (suc j) + 0 ≡⟨ Dividable.is-factor (proj1 (gcd-dividable (suc i) (suc j))) ⟩ suc i ∎ where d = proj1 (gcd-dividable (suc i) (suc j)) f = Dividable.factor (proj1 (gcd-dividable (suc i) (suc j))) open ≤-Reasoning gcd-≤ : { i j : ℕ } → 0 < i → 0 < j → gcd i j ≤ i gcd-≤ {i} {j} 0<i 0<j with <-cmp i j ... | tri< a ¬b ¬c = gcd-≤i i j 0<i (<to≤ a) ... | tri≈ ¬a refl ¬c = gcd-≤i i j 0<i refl-≤ ... | tri> ¬a ¬b c = ≤-trans (subst (λ k → k ≤ j) (gcdsym {j} {i}) (gcd-≤i j i 0<j (<to≤ c))) (<to≤ c) record Euclid (i j gcd : ℕ ) : Set where field eqa : ℕ eqb : ℕ is-equ< : eqa * i > eqb * j → (eqa * i) - (eqb * j) ≡ gcd is-equ> : eqb * j > eqa * i → (eqb * j) - (eqa * i) ≡ gcd is-equ= : eqa * i ≡ eqb * j → 0 ≡ gcd ge3 : {a b c d : ℕ } → b > a → b - a ≡ d - c → d > c ge3 {a} {b} {c} {d} b>a eq = minus>0→x<y (subst (λ k → 0 < k ) eq (minus>0 b>a)) ge01 : ( i0 j j0 ea eb : ℕ ) → ( di : GCD 0 (suc i0) (suc (suc j)) j0 ) → (((ea + eb * (Dividable.factor (GCD.div-i di))) * suc i0) ≡ (ea * suc i0) + (eb * (Dividable.factor (GCD.div-i di)) ) * suc i0 ) ∧ ( (eb * j0) ≡ (eb * suc (suc j) + (eb * (Dividable.factor (GCD.div-i di)) ) * suc i0) ) ge01 i0 j j0 ea eb di = ⟪ ge011 , ge012 ⟫ where f = Dividable.factor (GCD.div-i di) ge4 : suc (j0 + 0) > suc (suc j) ge4 = subst (λ k → k > suc (suc j)) (+-comm 0 _ ) ( s≤s (GCD.j<j0 di )) ge011 : (ea + eb * f) * suc i0 ≡ ea * suc i0 + eb * f * suc i0 ge011 = begin (ea + eb * f) * suc i0 ≡⟨ *-distribʳ-+ (suc i0) ea _ ⟩ ea * suc i0 + eb * f * suc i0 ∎ where open ≡-Reasoning ge012 : eb * j0 ≡ eb * suc (suc j) + eb * f * suc i0 ge012 = begin eb * j0 ≡⟨ cong (λ k → eb * k) ( begin j0 ≡⟨ +-comm 0 _ ⟩ j0 + 0 ≡⟨ sym (minus+n {j0 + 0} {suc (suc j)} ge4) ⟩ ((j0 + 0) - (suc (suc j))) + suc (suc j) ≡⟨ +-comm _ (suc (suc j)) ⟩ suc (suc j) + ((j0 + 0) - suc (suc j)) ≡⟨ cong (λ k → suc (suc j) + k ) (sym (Dividable.is-factor (GCD.div-i di))) ⟩ suc (suc j) + (f * suc i0 + 0) ≡⟨ cong (λ k → suc (suc j) + k ) ( +-comm _ 0 ) ⟩ suc (suc j) + (f * suc i0 ) ∎ ) ⟩ eb * (suc (suc j) + (f * suc i0 ) ) ≡⟨ *-distribˡ-+ eb (suc (suc j)) (f * suc i0) ⟩ eb * suc (suc j) + eb * (f * suc i0) ≡⟨ cong (λ k → eb * suc (suc j) + k ) ((sym (*-assoc eb _ _ )) ) ⟩ eb * suc (suc j) + eb * f * suc i0 ∎ where open ≡-Reasoning ge20 : {i0 j0 : ℕ } → i0 ≡ 0 → 0 ≡ gcd1 zero i0 zero j0 ge20 {i0} {zero} refl = refl ge20 {i0} {suc j0} refl = refl gcd-euclid1 : ( i i0 j j0 : ℕ ) → GCD i i0 j j0 → Euclid i0 j0 (gcd1 i i0 j j0) gcd-euclid1 zero i0 zero j0 di with <-cmp i0 j0 ... | tri< a' ¬b ¬c = record { eqa = 1 ; eqb = 0 ; is-equ< = λ _ → +-comm _ 0 ; is-equ> = λ () ; is-equ= = ge21 } where ge21 : 1 * i0 ≡ 0 * j0 → 0 ≡ i0 ge21 eq = trans (sym eq) (+-comm i0 0) ... | tri≈ ¬a refl ¬c = record { eqa = 1 ; eqb = 0 ; is-equ< = λ _ → +-comm _ 0 ; is-equ> = λ () ; is-equ= = λ eq → trans (sym eq) (+-comm i0 0) } ... | tri> ¬a ¬b c = record { eqa = 0 ; eqb = 1 ; is-equ< = λ () ; is-equ> = λ _ → +-comm _ 0 ; is-equ= = ge22 } where ge22 : 0 * i0 ≡ 1 * j0 → 0 ≡ j0 ge22 eq = trans eq (+-comm j0 0) -- i<i0 : zero ≤ i0 -- j<j0 : 1 ≤ j0 -- div-i : Dividable i0 ((j0 + zero) - 1) -- fi * i0 ≡ (j0 + zero) - 1 -- div-j : Dividable j0 ((i0 + 1) - zero) -- fj * j0 ≡ (i0 + 1) - zero gcd-euclid1 zero i0 (suc zero) j0 di = record { eqa = 1 ; eqb = Dividable.factor (GCD.div-j di) ; is-equ< = λ lt → ⊥-elim ( ge7 lt) ; is-equ> = λ _ → ge6 ; is-equ= = λ eq → ⊥-elim (nat-≡< (sym (minus<=0 (subst (λ k → k ≤ 1 * i0) eq refl-≤ ))) (subst (λ k → 0 < k) (sym ge6) a<sa )) } where ge6 : (Dividable.factor (GCD.div-j di) * j0) - (1 * i0) ≡ gcd1 zero i0 1 j0 ge6 = begin (Dividable.factor (GCD.div-j di) * j0) - (1 * i0) ≡⟨ cong (λ k → k - (1 * i0)) (+-comm 0 _) ⟩ (Dividable.factor (GCD.div-j di) * j0 + 0) - (1 * i0) ≡⟨ cong (λ k → k - (1 * i0)) (Dividable.is-factor (GCD.div-j di) ) ⟩ ((i0 + 1) - zero) - (1 * i0) ≡⟨ refl ⟩ (i0 + 1) - (i0 + 0) ≡⟨ minus+yx-yz {_} {i0} {0} ⟩ 1 ∎ where open ≡-Reasoning ge7 : ¬ ( 1 * i0 > Dividable.factor (GCD.div-j di) * j0 ) ge7 lt = ⊥-elim ( nat-≡< (sym ( minus<=0 (<to≤ lt))) (subst (λ k → 0 < k) (sym ge6) (s≤s z≤n))) gcd-euclid1 zero zero (suc (suc j)) j0 di = record { eqa = 0 ; eqb = 1 ; is-equ< = λ () ; is-equ> = λ _ → +-comm _ 0 ; is-equ= = λ eq → subst (λ k → 0 ≡ k) (+-comm _ 0) eq } gcd-euclid1 zero (suc i0) (suc (suc j)) j0 di with gcd-euclid1 i0 (suc i0) (suc j) (suc (suc j)) ( gcd-next1 di ) ... | e = record { eqa = ea + eb * f ; eqb = eb ; is-equ= = λ eq → Euclid.is-equ= e (ge23 eq) ; is-equ< = λ lt → subst (λ k → ((ea + eb * f) * suc i0) - (eb * j0) ≡ k ) (Euclid.is-equ< e (ge3 lt (ge1 ))) (ge1 ) ; is-equ> = λ lt → subst (λ k → (eb * j0) - ((ea + eb * f) * suc i0) ≡ k ) (Euclid.is-equ> e (ge3 lt (ge2 ))) (ge2 ) } where ea = Euclid.eqa e eb = Euclid.eqb e f = Dividable.factor (GCD.div-i di) ge1 : ((ea + eb * f) * suc i0) - (eb * j0) ≡ (ea * suc i0) - (eb * suc (suc j)) ge1 = begin ((ea + eb * f) * suc i0) - (eb * j0) ≡⟨ cong₂ (λ j k → j - k ) (proj1 (ge01 i0 j j0 ea eb di)) (proj2 (ge01 i0 j j0 ea eb di)) ⟩ (ea * suc i0 + (eb * f ) * suc i0 ) - ( eb * suc (suc j) + ((eb * f) * (suc i0)) ) ≡⟨ minus+xy-zy {ea * suc i0} {(eb * f ) * suc i0} {eb * suc (suc j)} ⟩ (ea * suc i0) - (eb * suc (suc j)) ∎ where open ≡-Reasoning ge2 : (eb * j0) - ((ea + eb * f) * suc i0) ≡ (eb * suc (suc j)) - (ea * suc i0) ge2 = begin (eb * j0) - ((ea + eb * f) * suc i0) ≡⟨ cong₂ (λ j k → j - k ) (proj2 (ge01 i0 j j0 ea eb di)) (proj1 (ge01 i0 j j0 ea eb di)) ⟩ ( eb * suc (suc j) + ((eb * f) * (suc i0)) ) - (ea * suc i0 + (eb * f ) * suc i0 ) ≡⟨ minus+xy-zy {eb * suc (suc j)}{(eb * f ) * suc i0} {ea * suc i0} ⟩ (eb * suc (suc j)) - (ea * suc i0) ∎ where open ≡-Reasoning ge23 : (ea + eb * f) * suc i0 ≡ eb * j0 → ea * suc i0 ≡ eb * suc (suc j) ge23 eq = begin ea * suc i0 ≡⟨ sym (minus+y-y {_} {(eb * f ) * suc i0} ) ⟩ (ea * suc i0 + ((eb * f ) * suc i0 )) - ((eb * f ) * suc i0 ) ≡⟨ cong (λ k → k - ((eb * f ) * suc i0 )) (sym ( proj1 (ge01 i0 j j0 ea eb di))) ⟩ ((ea + eb * f) * suc i0) - ((eb * f ) * suc i0 ) ≡⟨ cong (λ k → k - ((eb * f ) * suc i0 )) eq ⟩ (eb * j0) - ((eb * f ) * suc i0 ) ≡⟨ cong (λ k → k - ((eb * f ) * suc i0 )) ( proj2 (ge01 i0 j j0 ea eb di)) ⟩ (eb * suc (suc j) + ((eb * f ) * suc i0 )) - ((eb * f ) * suc i0 ) ≡⟨ minus+y-y {_} {(eb * f ) * suc i0 } ⟩ eb * suc (suc j) ∎ where open ≡-Reasoning gcd-euclid1 (suc zero) i0 zero j0 di = record { eqb = 1 ; eqa = Dividable.factor (GCD.div-i di) ; is-equ> = λ lt → ⊥-elim ( ge7' lt) ; is-equ< = λ _ → ge6' ; is-equ= = λ eq → ⊥-elim (nat-≡< (sym (minus<=0 (subst (λ k → k ≤ 1 * j0) (sym eq) refl-≤ ))) (subst (λ k → 0 < k) (sym ge6') a<sa )) } where ge6' : (Dividable.factor (GCD.div-i di) * i0) - (1 * j0) ≡ gcd1 (suc zero) i0 zero j0 ge6' = begin (Dividable.factor (GCD.div-i di) * i0) - (1 * j0) ≡⟨ cong (λ k → k - (1 * j0)) (+-comm 0 _) ⟩ (Dividable.factor (GCD.div-i di) * i0 + 0) - (1 * j0) ≡⟨ cong (λ k → k - (1 * j0)) (Dividable.is-factor (GCD.div-i di) ) ⟩ ((j0 + 1) - zero) - (1 * j0) ≡⟨ refl ⟩ (j0 + 1) - (j0 + 0) ≡⟨ minus+yx-yz {_} {j0} {0} ⟩ 1 ∎ where open ≡-Reasoning ge7' : ¬ ( 1 * j0 > Dividable.factor (GCD.div-i di) * i0 ) ge7' lt = ⊥-elim ( nat-≡< (sym ( minus<=0 (<to≤ lt))) (subst (λ k → 0 < k) (sym ge6') (s≤s z≤n))) gcd-euclid1 (suc (suc i)) i0 zero zero di = record { eqb = 0 ; eqa = 1 ; is-equ> = λ () ; is-equ< = λ _ → +-comm _ 0 ; is-equ= = λ eq → subst (λ k → 0 ≡ k) (+-comm _ 0) (sym eq) } gcd-euclid1 (suc (suc i)) i0 zero (suc j0) di with gcd-euclid1 (suc i) (suc (suc i)) j0 (suc j0) (GCD-sym (gcd-next1 (GCD-sym di))) ... | e = record { eqa = ea ; eqb = eb + ea * f ; is-equ= = λ eq → Euclid.is-equ= e (ge24 eq) ; is-equ< = λ lt → subst (λ k → ((ea * i0) - ((eb + ea * f) * suc j0)) ≡ k ) (Euclid.is-equ< e (ge3 lt ge4)) ge4 ; is-equ> = λ lt → subst (λ k → (((eb + ea * f) * suc j0) - (ea * i0)) ≡ k ) (Euclid.is-equ> e (ge3 lt ge5)) ge5 } where ea = Euclid.eqa e eb = Euclid.eqb e f = Dividable.factor (GCD.div-j di) ge5 : (((eb + ea * f) * suc j0) - (ea * i0)) ≡ ((eb * suc j0) - (ea * suc (suc i))) ge5 = begin ((eb + ea * f) * suc j0) - (ea * i0) ≡⟨ cong₂ (λ j k → j - k ) (proj1 (ge01 j0 i i0 eb ea (GCD-sym di) )) (proj2 (ge01 j0 i i0 eb ea (GCD-sym di) )) ⟩ ( eb * suc j0 + (ea * f )* suc j0) - (ea * suc (suc i) + (ea * f )* suc j0) ≡⟨ minus+xy-zy {_} {(ea * f )* suc j0} {ea * suc (suc i)} ⟩ (eb * suc j0) - (ea * suc (suc i)) ∎ where open ≡-Reasoning ge4 : ((ea * i0) - ((eb + ea * f) * suc j0)) ≡ ((ea * suc (suc i)) - (eb * suc j0)) ge4 = begin (ea * i0) - ((eb + ea * f) * suc j0) ≡⟨ cong₂ (λ j k → j - k ) (proj2 (ge01 j0 i i0 eb ea (GCD-sym di) )) (proj1 (ge01 j0 i i0 eb ea (GCD-sym di) )) ⟩ (ea * suc (suc i) + (ea * f )* suc j0) - ( eb * suc j0 + (ea * f )* suc j0) ≡⟨ minus+xy-zy {ea * suc (suc i)} {(ea * f )* suc j0} { eb * suc j0} ⟩ (ea * suc (suc i)) - (eb * suc j0) ∎ where open ≡-Reasoning ge24 : ea * i0 ≡ (eb + ea * f) * suc j0 → ea * suc (suc i) ≡ eb * suc j0 ge24 eq = begin ea * suc (suc i) ≡⟨ sym ( minus+y-y {_} {(ea * f ) * suc j0 }) ⟩ (ea * suc (suc i) + (ea * f ) * suc j0 ) - ((ea * f ) * suc j0) ≡⟨ cong (λ k → k - ((ea * f ) * suc j0 )) (sym (proj2 (ge01 j0 i i0 eb ea (GCD-sym di) ))) ⟩ (ea * i0) - ((ea * f ) * suc j0) ≡⟨ cong (λ k → k - ((ea * f ) * suc j0 )) eq ⟩ ((eb + ea * f) * suc j0) - ((ea * f ) * suc j0) ≡⟨ cong (λ k → k - ((ea * f ) * suc j0 )) ((proj1 (ge01 j0 i i0 eb ea (GCD-sym di)))) ⟩ ( eb * suc j0 + (ea * f ) * suc j0 ) - ((ea * f ) * suc j0) ≡⟨ minus+y-y {_} {(ea * f ) * suc j0 } ⟩ eb * suc j0 ∎ where open ≡-Reasoning gcd-euclid1 (suc zero) i0 (suc j) j0 di = gcd-euclid1 zero i0 j j0 (gcd-next di) gcd-euclid1 (suc (suc i)) i0 (suc j) j0 di = gcd-euclid1 (suc i) i0 j j0 (gcd-next di) ge12 : (p x : ℕ) → 0 < x → 1 < p → ((i : ℕ ) → i < p → 0 < i → gcd p i ≡ 1) → ( gcd p x ≡ 1 ) ∨ ( Dividable p x ) ge12 p x 0<x 1<p prime with decD {p} {x} 1<p ... | yes y = case2 y ... | no nx with <-cmp (gcd p x ) 1 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≤> a (s≤s (gcd>0 p x (<-trans a<sa 1<p) 0<x) ) ) ... | tri≈ ¬a b ¬c = case1 b ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (prime (gcd p x) ge13 (<to≤ c) )) ge18 ) where -- 1 < gcd p x ge13 : gcd p x < p -- gcd p x ≡ p → ¬ nx ge13 with <-cmp (gcd p x ) p ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( nx (subst (λ k → Dividable k x) b (proj2 (gcd-dividable p x )))) ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (gcd-≤ (<-trans a<sa 1<p) 0<x) c ) ge19 : Dividable (gcd p x) p ge19 = proj1 (gcd-dividable p x ) ge18 : 1 < gcd p (gcd p x) -- Dividable p (gcd p x) → gcd p (gcd p x) ≡ (gcd p x) > 1 ge18 = subst (λ k → 1 < k ) (sym (div→gcd {p} {gcd p x} c ge19 )) c gcd-euclid : ( p a b : ℕ ) → 1 < p → 0 < a → 0 < b → ((i : ℕ ) → i < p → 0 < i → gcd p i ≡ 1) → Dividable p (a * b) → Dividable p a ∨ Dividable p b gcd-euclid p a b 1<p 0<a 0<b prime div-ab with decD {p} {a} 1<p ... | yes y = case1 y ... | no np = case2 ge16 where f = Dividable.factor div-ab ge10 : gcd p a ≡ 1 ge10 with ge12 p a 0<a 1<p prime ... | case1 x = x ... | case2 x = ⊥-elim ( np x ) ge11 : Euclid p a (gcd p a) ge11 = gcd-euclid1 p p a a GCDi ea = Euclid.eqa ge11 eb = Euclid.eqb ge11 ge18 : (f * eb) * p ≡ b * (a * eb ) ge18 = begin (f * eb) * p ≡⟨ *-assoc (f) (eb) p ⟩ f * (eb * p) ≡⟨ cong (λ k → f * k) (*-comm _ p) ⟩ f * (p * eb ) ≡⟨ sym (*-assoc (f) p (eb) ) ⟩ (f * p ) * eb ≡⟨ cong (λ k → k * eb ) (+-comm 0 (f * p )) ⟩ (f * p + 0) * eb ≡⟨ cong (λ k → k * eb) (((Dividable.is-factor div-ab))) ⟩ (a * b) * eb ≡⟨ cong (λ k → k * eb) (*-comm a b) ⟩ (b * a) * eb ≡⟨ *-assoc b a (eb ) ⟩ b * (a * eb ) ∎ where open ≡-Reasoning ge19 : ( ea * p ) ≡ ( eb * a ) → ((b * ea) - (f * eb)) * p + 0 ≡ b ge19 eq = ⊥-elim ( nat-≡< (Euclid.is-equ= ge11 eq) (subst (λ k → 0 < k ) (sym ge10) a<sa ) ) ge14 : ( ea * p ) > ( eb * a ) → ((b * ea) - (f * eb)) * p + 0 ≡ b ge14 lt = begin (((b * ea) - (f * eb)) * p) + 0 ≡⟨ +-comm _ 0 ⟩ ((b * ea) - ((f * eb)) * p) ≡⟨ distr-minus-* {_} {f * eb} {p} ⟩ ((b * ea) * p) - (((f * eb) * p)) ≡⟨ cong (λ k → ((b * ea) * p) - k ) ge18 ⟩ ((b * ea) * p) - (b * (a * eb )) ≡⟨ cong (λ k → k - (b * (a * eb)) ) (*-assoc b _ p) ⟩ (b * (ea * p)) - (b * (a * eb )) ≡⟨ sym ( distr-minus-*' {b} {ea * p} {a * eb} ) ⟩ b * (( ea * p) - (a * eb) ) ≡⟨ cong (λ k → b * ( ( ea * p) - k)) (*-comm a (eb)) ⟩ (b * ( (ea * p)) - (eb * a) ) ≡⟨ cong (b *_) (Euclid.is-equ< ge11 lt )⟩ b * gcd p a ≡⟨ cong (b *_) ge10 ⟩ b * 1 ≡⟨ m*1=m ⟩ b ∎ where open ≡-Reasoning ge15 : ( ea * p ) < ( eb * a ) → ((f * eb) - (b * ea ) ) * p + 0 ≡ b ge15 lt = begin ((f * eb) - (b * ea) ) * p + 0 ≡⟨ +-comm _ 0 ⟩ ((f * eb) - (b * ea) ) * p ≡⟨ distr-minus-* {_} {b * ea} {p} ⟩ ((f * eb) * p) - ((b * ea) * p) ≡⟨ cong (λ k → k - ((b * ea) * p) ) ge18 ⟩ (b * (a * eb )) - ((b * ea) * p ) ≡⟨ cong (λ k → (b * (a * eb)) - k ) (*-assoc b _ p) ⟩ (b * (a * eb )) - (b * (ea * p) ) ≡⟨ sym ( distr-minus-*' {b} {a * eb} {ea * p} ) ⟩ b * ( (a * eb) - (ea * p) ) ≡⟨ cong (λ k → b * ( k - ( ea * p) )) (*-comm a (eb)) ⟩ b * ( (eb * a) - (ea * p) ) ≡⟨ cong (b *_) (Euclid.is-equ> ge11 lt) ⟩ b * gcd p a ≡⟨ cong (b *_) ge10 ⟩ b * 1 ≡⟨ m*1=m ⟩ b ∎ where open ≡-Reasoning ge17 : (x y : ℕ ) → x ≡ y → x ≤ y ge17 x x refl = refl-≤ ge16 : Dividable p b ge16 with <-cmp ( ea * p ) ( eb * a ) ... | tri< a ¬b ¬c = record { factor = (f * eb) - (b * ea) ; is-factor = ge15 a } ... | tri≈ ¬a eq ¬c = record { factor = (b * ea) - ( f * eb) ; is-factor = ge19 eq } ... | tri> ¬a ¬b c = record { factor = (b * ea) - (f * eb) ; is-factor = ge14 c } gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1 gcdmul+1 zero n = gcd204 n gcdmul+1 (suc m) n = begin gcd (suc m * n + 1) n ≡⟨⟩ gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩ m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩ m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩ m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩ m * n + 1 + n ∎ ) ⟩ gcd (m * n + 1 + n) n ≡⟨ gcd+j (m * n + 1) n ⟩ gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩ 1 ∎ where open ≡-Reasoning m*n=m→n : {m n : ℕ } → 0 < m → m * n ≡ m * 1 → n ≡ 1 m*n=m→n {suc m} {n} (s≤s lt) eq = *-cancelˡ-≡ m eq
{ "alphanum_fraction": 0.4469372322, "avg_line_length": 56.7525035765, "ext": "agda", "hexsha": "6d0919825d4923f005613119e17436c6c8df4e91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/gcd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/gcd.agda", "max_line_length": 165, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/gcd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 18378, "size": 39670 }
module Dave.Algebra.Naturals.Exponentiation where open import Dave.Algebra.Naturals.Definition open import Dave.Algebra.Naturals.Multiplication open import Dave.Algebra.Naturals.Addition _^_ : ℕ → ℕ → ℕ a ^ zero = 1 a ^ suc b = (a ^ b) * a infixl 8 _^_ ^-distribₗ : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p) ^-distribₗ m zero p = refl ^-distribₗ m (suc n) p = begin m ^ (suc n + p) ≡⟨⟩ m ^ suc (n + p) ≡⟨⟩ (m ^ (n + p)) * m ≡⟨ cong (λ a → a * m) (^-distribₗ m n p) ⟩ (m ^ n) * (m ^ p) * m ≡⟨ IsCommutativeMonoid.swap021 ℕ-*-IsCommutativeMonoid (m ^ n) (m ^ p) m ⟩ (m ^ n) * m * (m ^ p) ≡⟨⟩ (m ^ n) * (m ^ 1) * (m ^ p) ≡⟨ cong (λ a → a * (m ^ p)) (sym (^-distribₗ m n 1)) ⟩ (m ^ (n + 1)) * (m ^ p) ≡⟨ cong (λ a → (m ^ a) * (m ^ p)) (+-add1ᵣ n) ⟩ (m ^ suc n) * (m ^ p) ∎ ^-distribᵣ : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) ^-distribᵣ m n zero = refl ^-distribᵣ m n (suc p) = begin (m * n) ^ suc p ≡⟨⟩ ((m * n) ^ p) * (m * n) ≡⟨ cong (λ a → a * (m * n)) (^-distribᵣ m n p) ⟩ (m ^ p) * (n ^ p) * (m * n) ≡⟨ sym (IsSemigroup.assoc ℕ-*-IsSemigroup ((m ^ p) * (n ^ p)) m n) ⟩ (m ^ p) * (n ^ p) * m * n ≡⟨ cong (λ a → a * n) (IsCommutativeMonoid.swap021 ℕ-*-IsCommutativeMonoid (m ^ p) (n ^ p) m) ⟩ (m ^ p) * m * (n ^ p) * n ≡⟨ IsSemigroup.assoc ℕ-*-IsSemigroup ((m ^ p) * m) (n ^ p) n ⟩ (m ^ p) * m * ((n ^ p) * n) ≡⟨⟩ (m ^ p) * (m ^ 1) * ((n ^ p) * (n ^ 1)) ≡⟨ cong (λ a → a * ((n ^ p) * (n ^ 1))) (sym (^-distribₗ m p 1)) ⟩ (m ^ (p + 1)) * ((n ^ p) * (n ^ 1)) ≡⟨ cong (λ a → (m ^ a) * ((n ^ p) * (n ^ 1))) (+-add1ᵣ p) ⟩ (m ^ suc p) * ((n ^ p) * (n ^ 1)) ≡⟨ cong (λ a → (m ^ suc p) * a) (sym (^-distribₗ n p 1)) ⟩ (m ^ suc p) * (n ^ (p + 1)) ≡⟨ cong (λ a → (m ^ suc p) * (n ^ a)) (+-add1ᵣ p) ⟩ (m ^ suc p) * (n ^ suc p) ∎ ^-*-assoc : ∀ (m n p : ℕ) → (m ^ n) ^ p ≡ m ^ (n * p) ^-*-assoc m n zero = sym (begin m ^ (n * zero) ≡⟨ cong (λ a → m ^ a) (*-zero n) ⟩ 1 ∎) ^-*-assoc m n (suc p) = begin (m ^ n) ^ suc p ≡⟨⟩ (m ^ n) ^ p * (m ^ n) ≡⟨ cong (λ a → a * (m ^ n)) (^-*-assoc m n p) ⟩ m ^ (n * p) * (m ^ n) ≡⟨ sym (^-distribₗ m (n * p) n) ⟩ m ^ (n * p + n) ≡⟨ cong (λ a → m ^ a ) (sym (*-distrib1ᵣ-+ₗ n p)) ⟩ m ^ (n * (p + 1)) ≡⟨ cong (λ a → m ^ (n * a)) (+-add1ᵣ p) ⟩ m ^ (n * suc p) ∎
{ "alphanum_fraction": 0.3992363174, "avg_line_length": 48.1020408163, "ext": "agda", "hexsha": "d7eadb1cd7c971af523b38211a8cc6ec700a3df2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Algebra/Naturals/Exponentiation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Algebra/Naturals/Exponentiation.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Algebra/Naturals/Exponentiation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1246, "size": 2357 }
------------------------------------------------------------------------------ -- Lists of natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.List where open import FOTC.Base -- The FOTC lists of natural numbers type (inductive predicate for -- total lists of natural numbers). open import FOTC.Data.Nat.List.Type public
{ "alphanum_fraction": 0.4608540925, "avg_line_length": 33.0588235294, "ext": "agda", "hexsha": "bc3daf07d730f44a61c9b048763125a293b65d1e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Nat/List.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Nat/List.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Nat/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 94, "size": 562 }
open import Agda.Builtin.IO open import Agda.Builtin.Unit open import Agda.Builtin.Nat data Unit : Set where c : ⊤ → Nat → ⊤ → Unit -- Note that the ⊤ arguments get erased and shouldn't be present in -- the Haskell version of Unit. {-# FOREIGN GHC data Unit = Unit Integer #-} {-# COMPILE GHC Unit = data Unit (Unit) #-} postulate print : Nat → IO ⊤ {-# COMPILE GHC print = print #-} {-# COMPILE JS print = function (x) { return function(cb) { process.stdout.write(x + "\n"); cb(0) } } #-} foo : Unit → IO ⊤ foo (c _ n _) = print n main : IO ⊤ main = foo (c _ 12345 _)
{ "alphanum_fraction": 0.6384083045, "avg_line_length": 25.1304347826, "ext": "agda", "hexsha": "0aff73a92646d97f720531a0758048a30249628e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2921.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2921.agda", "max_line_length": 106, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2921.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 174, "size": 578 }
-- Andreas, 2018-06-12, issue #2170 -- Reported by tomjack {-# OPTIONS --irrelevant-projections --subtyping #-} open import Agda.Builtin.Equality open import Agda.Builtin.Bool infixr 42 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A snd : B fst open Σ record Irr (A : Set) : Set where constructor irr field .unirr : A open Irr -- Usually, unirr (irr a) = .(a) which is DontCare a in internal syntax. -- The DontCare protection of an irrelevant field could be circumvented -- using subtyping irr : (.Bool → Irr Bool) ≤ (Bool → Irr Bool): -- The argument a in (i a) would not have ArgInfo Irrelevant, even -- after substitution irr/i. Since the DontCare came from the ArgInfo of a, -- there was none. Now, the record constructor name also carries ArgInfo for -- each of its fields, which is used to produce a DontCare. bizarre : Irr (Σ (Bool → Irr Bool) (λ i → Σ (Irr Bool → Bool) (λ u → (a : Bool) → u (i a) ≡ a))) bizarre = irr (irr , unirr , λ a → refl) -- Should not pass -- Expected error: -- .(a) != a of type Bool -- when checking that the expression refl has type .(a) ≡ a -- The rest is proving False. data ⊥ : Set where ¬_ : Set → Set ¬ A = (A → ⊥) true≠false : ¬ (true ≡ false) true≠false () infixr 30 _∙_ _∙_ : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z refl ∙ q = q infix 42 !_ !_ : {A : Set} {x y : A} → x ≡ y → y ≡ x ! refl = refl map-irr : {A B : Set} → (A → B) → Irr A → Irr B map-irr f (irr x) = irr (f x) factivity : ¬ (Irr ⊥) factivity (irr ()) bad : Irr (true ≡ false) bad = map-irr (λ { (i , u , s) → ! (s true) ∙ s false }) bizarre boom : ⊥ boom = factivity (map-irr true≠false bad) -- the hole here is is .(a) ≡ a -- bizarre' : Irr (Σ (Irr Bool → Bool) (λ u → (a : Bool) → u (irr a) ≡ a)) -- bizarre' = irr (unirr , (λ a → {!!})) -- also fails, unirr (irr a) = .(a) -- bizarre' : Irr (Σ (Bool → Irr Bool) (λ i → Σ (Irr Bool → Bool) (λ u → (a : Bool) → u (i a) ≡ a))) -- bizarre' = irr (irr , unirr , (λ a → refl {x = unirr (irr a)})
{ "alphanum_fraction": 0.5886385896, "avg_line_length": 26.8684210526, "ext": "agda", "hexsha": "1b388f3455c9b2fa23f8795c858cae1c58c0f8fa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2170-subtyping.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z", "max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2170-subtyping.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2170-subtyping.agda", "max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z", "num_tokens": 770, "size": 2042 }
module Issue73 where record ImplicitField (a : Set) : Set where field aField : a {anImplicitField} : a open ImplicitField public {-# COMPILE AGDA2HS ImplicitField class #-}
{ "alphanum_fraction": 0.6804123711, "avg_line_length": 21.5555555556, "ext": "agda", "hexsha": "cc2139e5ae38f66c4457a5b6469fc1c5e17c87f8", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Issue73.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Issue73.agda", "max_line_length": 43, "max_stars_count": 55, "max_stars_repo_head_hexsha": "703c66db29023f5538eaa841f38dc34e89473a3e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jespercockx/agda2hs", "max_stars_repo_path": "test/Issue73.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 51, "size": 194 }
module nfa136 where open import logic open import nfa open import automaton open import Data.List open import finiteSet open import Data.Fin open import Relation.Binary.PropositionalEquality hiding ( [_] ) data StatesQ : Set where q1 : StatesQ q2 : StatesQ q3 : StatesQ data A2 : Set where a0 : A2 b0 : A2 finStateQ : FiniteSet StatesQ finStateQ = record { Q←F = Q←F ; F←Q = F←Q ; finiso→ = finiso→ ; finiso← = finiso← } where Q←F : Fin 3 → StatesQ Q←F zero = q1 Q←F (suc zero) = q2 Q←F (suc (suc zero)) = q3 F←Q : StatesQ → Fin 3 F←Q q1 = zero F←Q q2 = suc zero F←Q q3 = suc (suc zero) finiso→ : (q : StatesQ) → Q←F (F←Q q) ≡ q finiso→ q1 = refl finiso→ q2 = refl finiso→ q3 = refl finiso← : (f : Fin 3) → F←Q (Q←F f) ≡ f finiso← zero = refl finiso← (suc zero) = refl finiso← (suc (suc zero)) = refl finiso← (suc (suc (suc ()))) transition136 : StatesQ → A2 → StatesQ → Bool transition136 q1 b0 q2 = true transition136 q1 a0 q1 = true -- q1 → ep → q3 transition136 q2 a0 q2 = true transition136 q2 a0 q3 = true transition136 q2 b0 q3 = true transition136 q3 a0 q1 = true transition136 _ _ _ = false end136 : StatesQ → Bool end136 q1 = true end136 _ = false start136 : StatesQ → Bool start136 q1 = true start136 _ = false exists136 : (StatesQ → Bool) → Bool exists136 f = f q1 \/ f q2 \/ f q3 to-list-136 : (StatesQ → Bool) → List StatesQ to-list-136 f = tl1 where tl3 : List StatesQ tl3 with f q3 ... | true = q3 ∷ [] ... | false = [] tl2 : List StatesQ tl2 with f q2 ... | true = q2 ∷ tl3 ... | false = tl3 tl1 : List StatesQ tl1 with f q1 ... | true = q1 ∷ tl2 ... | false = tl2 nfa136 : NAutomaton StatesQ A2 nfa136 = record { Nδ = transition136; Nend = end136 } example136-1 = Naccept nfa136 exists136 start136( a0 ∷ b0 ∷ a0 ∷ a0 ∷ [] ) t146-1 = Ntrace nfa136 exists136 to-list-136 start136( a0 ∷ b0 ∷ a0 ∷ a0 ∷ [] ) example136-0 = Naccept nfa136 exists136 start136( a0 ∷ [] ) example136-2 = Naccept nfa136 exists136 start136( b0 ∷ a0 ∷ b0 ∷ a0 ∷ b0 ∷ [] ) t146-2 = Ntrace nfa136 exists136 to-list-136 start136( b0 ∷ a0 ∷ b0 ∷ a0 ∷ b0 ∷ [] ) open FiniteSet nx : (StatesQ → Bool) → (List A2 ) → StatesQ → Bool nx now [] = now nx now ( i ∷ ni ) = (Nmoves nfa136 exists136 (nx now ni) i ) example136-3 = to-list-136 start136 example136-4 = to-list-136 (nx start136 ( a0 ∷ b0 ∷ a0 ∷ [] )) open import sbconst2 fm136 : Automaton ( StatesQ → Bool ) A2 fm136 = subset-construction exists136 nfa136 open NAutomaton lemma136 : ( x : List A2 ) → Naccept nfa136 exists136 start136 x ≡ accept fm136 start136 x lemma136 x = lemma136-1 x start136 where lemma136-1 : ( x : List A2 ) → ( states : StatesQ → Bool ) → Naccept nfa136 exists136 states x ≡ accept fm136 states x lemma136-1 [] _ = refl lemma136-1 (h ∷ t) states = lemma136-1 t (δconv exists136 (Nδ nfa136) states h)
{ "alphanum_fraction": 0.6055737705, "avg_line_length": 26.7543859649, "ext": "agda", "hexsha": "b4ee9c4ffbd31dbb1a211fb78e7d06bf4ced11e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/nfa136.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/nfa136.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/nfa136.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1164, "size": 3050 }
open import Agda.Builtin.Sigma open import Agda.Builtin.Equality infix 1 Σ-syntax Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B pair : Set → Set pair A = Σ[ _ ∈ A ] A diag : Set → Set diag A = Σ[ p ∈ pair A ] fst p ≡ snd p diag-pat : Set → Set diag-pat A = Σ[ p@(x , y) ∈ pair A ] p ≡ (y , x) -- WAS: parse error for p@(x , y) -- WANT: success
{ "alphanum_fraction": 0.5821727019, "avg_line_length": 18.8947368421, "ext": "agda", "hexsha": "44b4b063e5df023b89f66e2e241e1a7242a6e87c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1182.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1182.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1182.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 147, "size": 359 }
{-# OPTIONS --without-K #-} -- -- A pointed type is a type together with a point in it. This module -- defines the universe of pointed types which we denote by Type● ℓ. -- Like the type universe Type ℓ, it is an inhabitant of Type (ℓ + 1). -- -- Editing notes: -- ● : \ci followed by selecting the 1 option -- ∙ : \. module hott.core.universe.pointed where open import hott.core.sigma open import hott.core.universe -- The pointed type is nothing but a dependent pair where the first -- component is itself a type. Type● : (ℓ : Level) → Type (lsuc ℓ) Type● ℓ = Σ λ x → x -- The level 0 of pointed types. Type∙ = Type● lzero Type∙₀ = Type● lzero Type∙₁ = Type● lone Type∙₂ = Type● ltwo Type∙₃ = Type● lthree Type∙₄ = Type● lfour Type∙₅ = Type● lfive Type∙₆ = Type● lsix Type∙₇ = Type● lseven Type∙₈ = Type● leight Type∙₉ = Type● lnine -- -- Topologically pointed types are spaces with a distinguished point -- called the base. We give function to recover the space and the base -- point from it. These are essentially the projections but we give -- better names for it. -- space : ∀{ℓ} → Type● ℓ → Type ℓ space = fst base : ∀{ℓ} → (A● : Type● ℓ) → space A● base = snd
{ "alphanum_fraction": 0.6742616034, "avg_line_length": 24.6875, "ext": "agda", "hexsha": "b37eac8e5b0ea445db5e3ddf26d55a1bb9c91418", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "piyush-kurur/hott", "max_forks_repo_path": "agda/hott/core/universe/pointed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "piyush-kurur/hott", "max_issues_repo_path": "agda/hott/core/universe/pointed.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "piyush-kurur/hott", "max_stars_repo_path": "agda/hott/core/universe/pointed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 383, "size": 1185 }
{-# OPTIONS --universe-polymorphism #-} module Graphs.Graph where open import Level open import Categories.Support.Equivalence open import Relation.Binary using (Rel; IsEquivalence; module IsEquivalence; Reflexive; Symmetric; Transitive) renaming (_⇒_ to _⊆_) open import Relation.Binary.PropositionalEquality using () renaming (_≡_ to _≣_) record Graph (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where field Obj : Set o _↝_ : Obj → Obj → Set ℓ _≈_ : {A B : Obj} → Rel (A ↝ B) e .equiv : ∀ {A B : Obj} → IsEquivalence (_≈_ {A}{B}) edge-setoid : ∀ {A B : Obj} → Setoid ℓ e edge-setoid {A}{B} = record { Carrier = A ↝ B ; _≈_ = _≈_ ; isEquivalence = equiv } module Equiv {A B : Obj} where private module e = IsEquivalence .q : IsEquivalence _≈_ q = equiv {A} {B} .refl : Reflexive _≈_ refl = e.refl q .trans : Transitive _≈_ trans = e.trans q .sym : Symmetric _≈_ sym = e.sym q .reflexive : _≣_ ⊆ _≈_ reflexive = e.reflexive q _[_↝_] : ∀ {o ℓ e} → (G : Graph o ℓ e) → Graph.Obj G → Graph.Obj G → Set ℓ G [ A ↝ B ] = Graph._↝_ G A B _[_≈_] : ∀ {o ℓ e} → (G : Graph o ℓ e) → {A B : Graph.Obj G} → Rel (G [ A ↝ B ]) e G [ f ≈ g ] = Graph._≈_ G f g module Heterogeneous {o ℓ e} (G : Graph o ℓ e) where open Graph G open Equiv renaming (refl to refl′; sym to sym′; trans to trans′) data _~_ {A B} (f : A ↝ B) : ∀ {X Y} → (X ↝ Y) → Set (ℓ ⊔ e) where ≈⇒~ : {g : A ↝ B} → .(f ≈ g) → f ~ g refl : ∀ {A B} {f : A ↝ B} → f ~ f refl = ≈⇒~ refl′ sym : ∀ {A B} {f : A ↝ B} {D E} {g : D ↝ E} → f ~ g → g ~ f sym (≈⇒~ f≈g) = ≈⇒~ (sym′ f≈g) trans : ∀ {A B} {f : A ↝ B} {D E} {g : D ↝ E} {F G} {h : F ↝ G} → f ~ g → g ~ h → f ~ h trans (≈⇒~ f≈g) (≈⇒~ g≈h) = ≈⇒~ (trans′ f≈g g≈h) _[_~_] : ∀ {o ℓ e} (G : Graph o ℓ e) {A B} (f : G [ A ↝ B ]) {X Y} (g : G [ X ↝ Y ]) → Set (ℓ ⊔ e) G [ f ~ g ] = Heterogeneous._~_ G f g
{ "alphanum_fraction": 0.4932466233, "avg_line_length": 29.3970588235, "ext": "agda", "hexsha": "89c9d2825d4d0f93a878567befadeb7bf5777ec0", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Graphs/Graph.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Graphs/Graph.agda", "max_line_length": 98, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Graphs/Graph.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 887, "size": 1999 }
------------------------------------------------------------------------ -- Up-to techniques for strong bisimilarity ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Bisimilarity.Up-to {ℓ} (lts : LTS ℓ) where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Bisimilarity lts import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning open import Relation import Up-to open LTS lts ------------------------------------------------------------------------ -- The general up-to machinery, instantiated with the StepC container open Up-to StepC public ------------------------------------------------------------------------ -- Some examples (based on techniques presented by Pous and Sangiorgi -- in "Enhancements of the bisimulation proof method") -- Up to bisimilarity. Up-to-bisimilarity : Trans₂ ℓ Proc Up-to-bisimilarity R = Bisimilarity ∞ ⊙ R ⊙ Bisimilarity ∞ -- Up to bisimilarity is monotone. up-to-bisimilarity-monotone : Monotone Up-to-bisimilarity up-to-bisimilarity-monotone R⊆S = Σ-map id (Σ-map id (Σ-map id (Σ-map R⊆S id))) -- Up to bisimilarity is size-preserving. up-to-bisimilarity-size-preserving : Size-preserving Up-to-bisimilarity up-to-bisimilarity-size-preserving R⊆∼i {p₁ , p₄} (p₂ , p₁∼p₂ , p₃ , p₂Rp₃ , p₃∼p₄) = p₁ ∼⟨ p₁∼p₂ ⟩ p₂ ∼⟨ R⊆∼i p₂Rp₃ ⟩ p₃ ∼⟨ p₃∼p₄ ⟩■ p₄ -- Up to union with bisimilarity. Up-to-∪∼ : Trans₂ ℓ Proc Up-to-∪∼ R = R ∪ Bisimilarity ∞ -- Up to union with bisimilarity is monotone. up-to-∪∼-monotone : Monotone Up-to-∪∼ up-to-∪∼-monotone R⊆S = ⊎-map R⊆S id -- Up to union with bisimilarity is size-preserving. -- -- The proof is similar to parts of the proof of Corollary 6.3.15 from -- Pous and Sangiorgi's "Enhancements of the bisimulation proof -- method". up-to-∪∼-size-preserving : Size-preserving Up-to-∪∼ up-to-∪∼-size-preserving = ∪-closure id-size-preserving (const-size-preserving (Bisimilarity ∞ ⊆⟨ id ⟩∎ Bisimilarity ∞ ∎)) -- Up to transitive closure. Up-to-* : Trans₂ ℓ Proc Up-to-* R = R * -- Up to transitive closure is monotone. up-to-*-monotone : Monotone Up-to-* up-to-*-monotone R⊆S = Σ-map id (λ {n} → ^^-mono R⊆S n) where ^^-mono : ∀ {R S} → R ⊆ S → ∀ n → R ^^ n ⊆ S ^^ n ^^-mono R⊆S zero = id ^^-mono R⊆S (suc n) = Σ-map id (Σ-map R⊆S (^^-mono R⊆S n)) -- Up to transitive closure is size-preserving. up-to-*-size-preserving : Size-preserving Up-to-* up-to-*-size-preserving = _⇔_.from (monotone→⇔ up-to-*-monotone) drop-* where drop-* : ∀ {i} → Bisimilarity i * ⊆ Bisimilarity i drop-* {x = p , .p} (zero , refl) = p ■ drop-* {x = p , r} (suc n , q , p∼q , ∼ⁿqr) = p ∼⟨ p∼q ⟩ q ∼⟨ drop-* (n , ∼ⁿqr) ⟩■ r
{ "alphanum_fraction": 0.5851826562, "avg_line_length": 28.1634615385, "ext": "agda", "hexsha": "6b7aeb0559c91ffa6272d6f474580af28ba06de2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Up-to.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Up-to.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Up-to.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1020, "size": 2929 }
module Issue1232.List where import Issue1232.Nat
{ "alphanum_fraction": 0.8235294118, "avg_line_length": 10.2, "ext": "agda", "hexsha": "8b8339cdcde0328529c8151707502c427d9069e5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1232/List.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1232/List.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1232/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 51 }
record C (A : Set) : Set where field f : A → A open C {{...}} module M (A : Set) where data D : Set where d : A → D instance CD : C D CD = record { f = λ x → x } data Bool : Set where false true : Bool open M Bool -- Bug: M.CD is not considered in instance search x : D x = f (M.d false)
{ "alphanum_fraction": 0.5523809524, "avg_line_length": 13.6956521739, "ext": "agda", "hexsha": "bcdb95762a64178703761d82fe80d71a652c6a17", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1238.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1238.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1238.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 110, "size": 315 }
{-# OPTIONS --cubical #-} open import Cubical.Core.Everything Sq : {A : Set} {a0 a1 b0 b1 : A} (u : a0 ≡ a1) (v : b0 ≡ b1) (r0 : a0 ≡ b0) (r1 : a1 ≡ b1) → Set Sq u v r0 r1 = PathP (λ i → r0 i ≡ r1 i) u v ConstSq : {A : Set} {a : A} (p : a ≡ a) → Sq p p p p ConstSq {A} p i j = compCCHM (λ _ → A) (~ i ∨ i ∨ ~ j ∨ j) (λ k → λ { (i = i0) → p j ; (i = i1) → p (k ∧ j) ; (j = i0) → p i ; (j = i1) → p (k ∧ i) }) (p (i ∨ j))
{ "alphanum_fraction": 0.368, "avg_line_length": 23.8095238095, "ext": "agda", "hexsha": "e63973a5e2ef010e1608ff0256510fdb00b4dd7b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z", "max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "dubinsky/intellij-dtlc", "max_forks_repo_path": "testData/parse/agda/ConstSquare.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "dubinsky/intellij-dtlc", "max_issues_repo_path": "testData/parse/agda/ConstSquare.agda", "max_line_length": 44, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "dubinsky/intellij-dtlc", "max_stars_repo_path": "testData/parse/agda/ConstSquare.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z", "num_tokens": 244, "size": 500 }
open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; _≟_) open import Data.Nat using (ℕ) open import Data.Product using (∃-syntax; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec using (lookup; _[_]≔_) open import Data.Vec.Properties using (lookup∘update; lookup∘update′) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Binary.PropositionalEquality using (sym; trans; _≡_; refl; cong; _≢_; module ≡-Reasoning) open import Data.Product using (∃-syntax; _,_; proj₁; proj₂; _×_) open ≡-Reasoning open import Common open import Global open import Local private variable n : ℕ l : Label p q : Fin n g gSub : Global n lSub : Local n project : Global n -> Fin n -> Local n project endG _ = endL project (msgSingle p q p≢q l gSub) r with p ≟ r | q ≟ r ... | yes _ | no _ = sendSingle q l (project gSub r) ... | no _ | yes _ = recvSingle p l (project gSub r) ... | no _ | no _ = project gSub r ... | yes refl | yes refl = ⊥-elim (p≢q refl) proj-prefix-other : (r s t : Fin n) -> ∀{ r≢s } -> (gSub : Global n) -> r ≢ t -> s ≢ t -> project (msgSingle r s r≢s l gSub) t ≡ project gSub t proj-prefix-other r s t _ r≢t s≢t with r ≟ t | s ≟ t ... | yes refl | _ = ⊥-elim (r≢t refl) ... | _ | yes refl = ⊥-elim (s≢t refl) ... | no _ | no _ = refl proj-prefix-send : (r s : Fin n) -> (gSub : Global n) -> (r≢s : r ≢ s) -> project (msgSingle r s r≢s l gSub) r ≡ sendSingle s l (project gSub r) proj-prefix-send r s _ r≢s with r ≟ r | s ≟ r ... | yes _ | no _ = refl ... | _ | yes refl = ⊥-elim (r≢s refl) ... | no r≢r | no _ = ⊥-elim (r≢r refl) proj-prefix-recv : (r s : Fin n) -> (gSub : Global n) -> (r≢s : r ≢ s) -> project (msgSingle r s r≢s l gSub) s ≡ recvSingle r l (project gSub s) proj-prefix-recv r s _ r≢s with r ≟ s | s ≟ s ... | no _ | yes _ = refl ... | yes refl | _ = ⊥-elim (r≢s refl) ... | _ | no s≢s = ⊥-elim (s≢s refl) record _↔_ { n : ℕ } (g : Global n) (c : Configuration n) : Set where field isProj : ∀(p : Fin n) -> lookup c p ≡ project g p proj-inv-send : project {n} g p ≡ sendSingle q l lSub -> ∃[ p≢q ] ∃[ gSub ] g ≡ msgSingle p q p≢q l gSub × project gSub p ≡ lSub ⊎ ∃[ r ] ∃[ s ] ∃[ r≢s ] ∃[ l′ ] ∃[ gSub ] g ≡ msgSingle r s r≢s l′ gSub × r ≢ p × s ≢ p × project gSub p ≡ sendSingle q l lSub proj-inv-send {g = g@endG} projSend = ⊥-elim (endL≢sendSingle projSend) proj-inv-send {n} {g = g@(msgSingle r s r≢s l′ gSub)} {p} {q} {l} {ltSub} projSend with r ≟ p | s ≟ p ... | yes refl | yes refl = ⊥-elim (r≢s refl) ... | no r≢p | no s≢p = inj₂ (r , s , r≢s , l′ , gSub , refl , r≢p , s≢p , projSend) ... | yes refl | no s≢p with sendSingle-injective projSend ... | refl , refl , refl = inj₁ (r≢s , gSub , refl , refl) proj-inv-recv : project {n} g p ≡ recvSingle q l lSub -> ∃[ p≢q ] ∃[ gSub ] g ≡ msgSingle q p p≢q l gSub × project gSub p ≡ lSub ⊎ ∃[ r ] ∃[ s ] ∃[ r≢s ] ∃[ l′ ] ∃[ gSub ] g ≡ msgSingle r s r≢s l′ gSub × r ≢ p × s ≢ p × project gSub p ≡ recvSingle q l lSub proj-inv-recv {g = g@endG} projRecv = ⊥-elim (endL≢recvSingle projRecv) proj-inv-recv {n} {g = g@(msgSingle r s r≢s l′ gSub)} {p} {q} {l} {lSub} projRecv with r ≟ p | s ≟ p ... | yes refl | yes refl = ⊥-elim (r≢s refl) ... | no r≢p | no s≢p = inj₂ (r , s , r≢s , l′ , gSub , refl , r≢p , s≢p , projRecv) ... | no r≢p | yes refl with recvSingle-injective projRecv ... | refl , refl , refl = inj₁ (r≢s , gSub , refl , refl) proj-inv-send-recv : ∀ { lpSub lqSub } -> project {n} g p ≡ sendSingle q l lpSub -> project {n} g q ≡ recvSingle p l lqSub -> ∃[ p≢q ] ∃[ gSub ] g ≡ msgSingle p q p≢q l gSub × project gSub p ≡ lpSub × project gSub q ≡ lqSub ⊎ ∃[ r ] ∃[ s ] ∃[ r≢s ] ∃[ l′ ] ∃[ gSub ] g ≡ msgSingle r s r≢s l′ gSub × r ≢ p × s ≢ p × r ≢ q × s ≢ q × project gSub p ≡ sendSingle q l lpSub × project gSub q ≡ recvSingle p l lqSub proj-inv-send-recv {n} {g} {p} {q} {l} {lpSub} {lqSub} projSend projRecv with proj-inv-send {n} {g} projSend | proj-inv-recv {n} {g} projRecv ... | inj₁ (p≢q₁ , gSub₁ , refl , proj-g₁-p) | inj₁ (_ , _ , refl , proj-g₂-q) = inj₁ (p≢q₁ , gSub₁ , refl , proj-g₁-p , proj-g₂-q) proj-inv-send-recv {n} {g} {p} {q} {l} {ltp′} {ltq′} projSend projRecv | inj₁ (_ , _ , refl , _) | inj₂ (_ , _ , _ , _ , _ , refl , _ , s≢q , _) = ⊥-elim (s≢q refl) proj-inv-send-recv {n} {g} {p} {q} {l} {ltp′} {ltq′} projSend projRecv | inj₂ (_ , _ , _ , _ , _ , refl , r≢p , _ , _) | inj₁ (_ , _ , refl , _) = ⊥-elim (r≢p refl) proj-inv-send-recv {n} {g} {p} {q} {l} {ltp′} {ltq′} projSend projRecv | inj₂ (r , s , r≢s , l′ , gSub₁ , refl , r≢p , s≢p , proj-g₁-p) | inj₂ (_ , _ , _ , _ , gSub₂ , refl , r≢q , s≢q , proj-g₂-q) = inj₂ (r , s , r≢s , l′ , gSub₁ , refl , r≢p , s≢p , r≢q , s≢q , proj-g₁-p , proj-g₂-q) config-gt-remove-prefix : ∀ { p≢q gSub } -> (g : Global n) -> (c : Configuration n) -> g ↔ c -> g ≡ msgSingle p q p≢q l gSub -> ∃[ cSub ] cSub ≡ (c [ p ]≔ project gSub p) [ q ]≔ project gSub q × gSub ↔ cSub config-gt-remove-prefix {n} {p} {q} {_} {p≢q} {gSub} g c assoc refl = cSub , refl , (record { isProj = isProj-gSub }) where lpSub = project gSub p lqSub = project gSub q cSub = (c [ p ]≔ lpSub) [ q ]≔ lqSub isProj-gSub : ∀ (r : Fin n) -> lookup cSub r ≡ project gSub r isProj-gSub r with p ≟ r | q ≟ r ... | yes refl | yes refl = ⊥-elim (p≢q refl) ... | yes refl | no _ rewrite lookup∘update′ p≢q (c [ p ]≔ lpSub) lqSub rewrite lookup∘update p c lpSub = refl ... | no _ | yes refl rewrite lookup∘update q (c [ p ]≔ lpSub) lqSub = refl ... | no p≢r | no q≢r rewrite lookup∘update′ (¬≡-flip q≢r) (c [ p ]≔ lpSub) lqSub rewrite lookup∘update′ (¬≡-flip p≢r) c lpSub rewrite _↔_.isProj assoc r = proj-prefix-other p q r gSub p≢r q≢r
{ "alphanum_fraction": 0.5223279059, "avg_line_length": 36.2748538012, "ext": "agda", "hexsha": "0bd84c0d578a70287c4022d247b8be50a7fda246", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fangyi-zhou/mpst-in-agda", "max_forks_repo_path": "Projection.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fangyi-zhou/mpst-in-agda", "max_issues_repo_path": "Projection.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fangyi-zhou/mpst-in-agda", "max_stars_repo_path": "Projection.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z", "num_tokens": 2605, "size": 6203 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on strings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.String.Properties where open import Data.Bool.Base open import Data.String.Base import Data.Char.Properties as Charₚ import Data.List.Properties as Listₚ open import Function open import Relation.Nullary using (yes; no) open import Relation.Nullary.Decidable using (map′; ⌊_⌋) open import Relation.Binary using (Decidable; Setoid; DecSetoid; StrictTotalOrder) open import Relation.Binary.PropositionalEquality.Core open import Data.List.Relation.Binary.Lex.Strict as StrictLex import Relation.Binary.Construct.On as On import Relation.Binary.PropositionalEquality as PropEq ------------------------------------------------------------------------ -- Primitive properties open import Agda.Builtin.String.Properties public renaming ( primStringToListInjective to toList-injective) ------------------------------------------------------------------------ -- Equality infix 4 _≟_ _≟_ : Decidable {A = String} _≡_ x ≟ y = map′ (toList-injective x y) (cong toList) $ Listₚ.≡-dec Charₚ._≟_ (toList x) (toList y) setoid : Setoid _ _ setoid = PropEq.setoid String decSetoid : DecSetoid _ _ decSetoid = PropEq.decSetoid _≟_ ------------------------------------------------------------------------ -- Lexicographic ordering on strings. strictTotalOrder : StrictTotalOrder _ _ _ strictTotalOrder = On.strictTotalOrder (StrictLex.<-strictTotalOrder Charₚ.strictTotalOrder) toList ------------------------------------------------------------------------ -- Alternative Boolean equality test. -- -- Why is the definition _==_ = primStringEquality not used? One -- reason is that the present definition can sometimes improve type -- inference, at least with the version of Agda that is current at the -- time of writing: see unit-test below. infix 4 _==_ _==_ : String → String → Bool s₁ == s₂ = ⌊ s₁ ≟ s₂ ⌋ private -- The following unit test does not type-check (at the time of -- writing) if _==_ is replaced by primStringEquality. data P : (String → Bool) → Set where p : (c : String) → P (_==_ c) unit-test : P (_==_ "") unit-test = p _
{ "alphanum_fraction": 0.6008547009, "avg_line_length": 30.3896103896, "ext": "agda", "hexsha": "6f844b536057d86edfc12b00e6c07b758a736a8f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Properties.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/String/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 533, "size": 2340 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.FiniteMultiset.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.Empty as ⊥ open import Cubical.Relation.Nullary open import Cubical.HITs.FiniteMultiset.Base open import Cubical.Structures.MultiSet open import Cubical.Relation.Nullary.DecidableEq private variable ℓ : Level A : Type ℓ infixr 30 _++_ _++_ : ∀ (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j unitl-++ : ∀ (xs : FMSet A) → [] ++ xs ≡ xs unitl-++ xs = refl unitr-++ : ∀ (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ = ElimProp.f (trunc _ _) refl (λ x p → cong (_∷_ x) p) assoc-++ : ∀ (xs ys zs : FMSet A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs assoc-++ = ElimProp.f (isPropΠ2 (λ _ _ → trunc _ _)) (λ ys zs → refl) (λ x p ys zs → cong (_∷_ x) (p ys zs)) cons-++ : ∀ (x : A) (xs : FMSet A) → x ∷ xs ≡ xs ++ [ x ] cons-++ x = ElimProp.f (trunc _ _) refl (λ y {xs} p → comm x y xs ∙ cong (_∷_ y) p) comm-++ : ∀ (xs ys : FMSet A) → xs ++ ys ≡ ys ++ xs comm-++ = ElimProp.f (isPropΠ (λ _ → trunc _ _)) (λ ys → sym (unitr-++ ys)) (λ x {xs} p ys → cong (x ∷_) (p ys) ∙ cong (_++ xs) (cons-++ x ys) ∙ sym (assoc-++ ys [ x ] xs)) module FMSetUniversal {ℓ} {M : Type ℓ} (MSet : isSet M) (e : M) (_⊗_ : M → M → M) (comm-⊗ : ∀ x y → x ⊗ y ≡ y ⊗ x) (assoc-⊗ : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z) (unit-⊗ : ∀ x → e ⊗ x ≡ x) (f : A → M) where f-extend : FMSet A → M f-extend = Rec.f MSet e (λ x m → f x ⊗ m) (λ x y m → comm-⊗ (f x) (f y ⊗ m) ∙ sym (assoc-⊗ (f y) m (f x)) ∙ cong (f y ⊗_) (comm-⊗ m (f x))) f-extend-nil : f-extend [] ≡ e f-extend-nil = refl f-extend-cons : ∀ x xs → f-extend (x ∷ xs) ≡ f x ⊗ f-extend xs f-extend-cons x xs = refl f-extend-sing : ∀ x → f-extend [ x ] ≡ f x f-extend-sing x = comm-⊗ (f x) e ∙ unit-⊗ (f x) f-extend-++ : ∀ xs ys → f-extend (xs ++ ys) ≡ f-extend xs ⊗ f-extend ys f-extend-++ = ElimProp.f (isPropΠ λ _ → MSet _ _) (λ ys → sym (unit-⊗ (f-extend ys))) (λ x {xs} p ys → cong (f x ⊗_) (p ys) ∙ assoc-⊗ (f x) (f-extend xs) (f-extend ys)) module _ (h : FMSet A → M) (h-nil : h [] ≡ e) (h-sing : ∀ x → h [ x ] ≡ f x) (h-++ : ∀ xs ys → h (xs ++ ys) ≡ h xs ⊗ h ys) where f-extend-unique : h ≡ f-extend f-extend-unique = funExt (ElimProp.f (MSet _ _) h-nil (λ x {xs} p → (h-++ [ x ] xs) ∙ cong (_⊗ h xs) (h-sing x) ∙ cong (f x ⊗_) p)) -- We want to construct a multiset-structure on FMSet A, the empty set and insertion are given by the constructors, -- for the count part we use the recursor -- If A has decidable equality we can define the count-function: module _(discA : Discrete A) where FMScount-∷* : A → A → ℕ → ℕ FMScount-∷* a x n with discA a x ... | yes a≡x = suc n ... | no a≢x = n FMScount-comm* : (a x y : A) (n : ℕ) → FMScount-∷* a x (FMScount-∷* a y n) ≡ FMScount-∷* a y (FMScount-∷* a x n) FMScount-comm* a x y n with discA a x | discA a y ... | yes a≡x | yes a≡y = refl ... | yes a≡x | no a≢y = refl ... | no a≢x | yes a≡y = refl ... | no a≢x | no a≢y = refl FMScount : A → FMSet A → ℕ FMScount a = Rec.f isSetℕ 0 (FMScount-∷* a) (FMScount-comm* a) FMS-with-str : MultiSet A (Discrete→isSet discA) FMS-with-str = (FMSet A , [] , _∷_ , FMScount) -- We prove some useful properties of the FMScount function FMScount-≡-lemma : ∀ {a} {x} xs → a ≡ x → FMScount a (x ∷ xs) ≡ suc (FMScount a xs) FMScount-≡-lemma {a} {x} xs a≡x with discA a x ... | yes _ = refl ... | no a≢x = ⊥.rec (a≢x a≡x) FMScount-≡-lemma-refl : ∀ {x} xs → FMScount x (x ∷ xs) ≡ suc (FMScount x xs) FMScount-≡-lemma-refl {x} xs = FMScount-≡-lemma xs refl FMScount-≢-lemma : ∀ {a} {x} xs → ¬ a ≡ x → FMScount a (x ∷ xs) ≡ FMScount a xs FMScount-≢-lemma {a} {x} xs a≢x with discA a x ... | yes a≡x = ⊥.rec (a≢x a≡x) ... | no _ = refl FMScount-0-lemma : ∀ xs → (∀ a → FMScount a xs ≡ 0) → xs ≡ [] FMScount-0-lemma = ElimProp.f (isPropΠ λ _ → trunc _ _) (λ _ → refl) θ where θ : ∀ x {xs} → ((∀ a → FMScount a xs ≡ 0) → xs ≡ []) → ((∀ a → FMScount a (x ∷ xs) ≡ 0) → (x ∷ xs) ≡ []) θ x {xs} _ p = ⊥.rec (snotz (sym (FMScount-≡-lemma-refl xs) ∙ p x)) -- we define a function that removes an element a from a finite multiset once -- by simultaneously defining two lemmas about it remove1 : A → FMSet A → FMSet A remove1 a [] = [] remove1 a (x ∷ xs) with (discA a x) ... | yes _ = xs ... | no _ = x ∷ remove1 a xs remove1 a (comm x y xs i) with discA a x with discA a y ... | yes a≡x | yes a≡y = ((sym a≡y ∙ a≡x) i) ∷ xs ... | yes a≡x | no _ = y ∷ (eq i) where eq : xs ≡ remove1 a (x ∷ xs) eq with discA a x eq | yes _ = refl eq | no a≢x = ⊥.rec (a≢x a≡x) remove1 a (comm x y xs i) | no _ | yes a≡y = x ∷ (eq i) where eq : remove1 a (y ∷ xs) ≡ xs eq with discA a y eq | yes _ = refl eq | no a≢y = ⊥.rec (a≢y a≡y) remove1 a (comm x y xs i) | no a≢x | no a≢y = ((λ i → x ∷ (p i)) ∙∙ comm x y (remove1 a xs) ∙∙ (λ i → y ∷ (sym q i))) i where p : remove1 a (y ∷ xs) ≡ y ∷ (remove1 a xs) p with discA a y p | yes a≡y = ⊥.rec (a≢y a≡y) p | no _ = refl q : remove1 a (x ∷ xs) ≡ x ∷ (remove1 a xs) q with discA a x q | yes a≡x = ⊥.rec (a≢x a≡x) q | no _ = refl remove1 a (trunc xs ys p q i j) = trunc (remove1 a xs) (remove1 a ys) (cong (remove1 a) p) (cong (remove1 a) q) i j remove1-≡-lemma : ∀ {a} {x} xs → a ≡ x → xs ≡ remove1 a (x ∷ xs) remove1-≡-lemma {a} {x} xs a≡x with discA a x ... | yes _ = refl ... | no a≢x = ⊥.rec (a≢x a≡x) remove1-≢-lemma : ∀ {a} {x} xs → ¬ a ≡ x → remove1 a (x ∷ xs) ≡ x ∷ remove1 a xs remove1-≢-lemma {a} {x} xs a≢x with discA a x ... | yes a≡x = ⊥.rec (a≢x a≡x) ... | no _ = refl remove1-predℕ-lemma : ∀ a xs → FMScount a (remove1 a xs) ≡ predℕ (FMScount a xs) remove1-predℕ-lemma a = ElimProp.f (isSetℕ _ _) refl θ where θ : ∀ x {xs} → FMScount a (remove1 a xs) ≡ predℕ (FMScount a xs) → FMScount a (remove1 a (x ∷ xs)) ≡ predℕ (FMScount a (x ∷ xs)) θ x {xs} p with discA a x ... | yes _ = refl ... | no a≢x = FMScount-≢-lemma (remove1 a xs) a≢x ∙ p remove1-zero-lemma : ∀ a xs → FMScount a xs ≡ zero → xs ≡ remove1 a xs remove1-zero-lemma a = ElimProp.f (isPropΠ λ _ → trunc _ _) (λ _ → refl) θ where θ : ∀ x {xs} → (FMScount a xs ≡ zero → xs ≡ remove1 a xs) → FMScount a (x ∷ xs) ≡ zero → x ∷ xs ≡ remove1 a (x ∷ xs) θ x {xs} hyp p with discA a x ... | yes _ = ⊥.rec (snotz p) ... | no _ = cong (x ∷_) (hyp p) remove1-suc-lemma : ∀ a n xs → FMScount a xs ≡ suc n → xs ≡ a ∷ (remove1 a xs) remove1-suc-lemma a n = ElimProp.f (isPropΠ λ _ → trunc _ _) (λ p → ⊥.rec (znots p)) θ where θ : ∀ x {xs} → (FMScount a xs ≡ suc n → xs ≡ a ∷ (remove1 a xs)) → FMScount a (x ∷ xs) ≡ suc n → x ∷ xs ≡ a ∷ (remove1 a (x ∷ xs)) θ x {xs} hyp p with discA a x ... | yes a≡x = (λ i → (sym a≡x i) ∷ xs) ... | no a≢x = cong (x ∷_) (hyp p) ∙ comm x a (remove1 a xs) FMScount-remove1-≢-lemma : ∀ {a} {x} xs → ¬ a ≡ x → FMScount a (remove1 x xs) ≡ FMScount a xs FMScount-remove1-≢-lemma {a} {x} xs a≢x with discreteℕ (FMScount x xs) zero ... | yes p = cong (FMScount a) (sym (remove1-zero-lemma x xs p)) ... | no ¬p = sym (FMScount-≢-lemma (remove1 x xs) a≢x) ∙ cong (FMScount a) eq₁ where eq₁ : (x ∷ remove1 x xs) ≡ xs eq₁ = sym (remove1-suc-lemma x (predℕ (FMScount x xs)) xs (suc-predℕ (FMScount x xs) ¬p))
{ "alphanum_fraction": 0.5004247057, "avg_line_length": 37.4590909091, "ext": "agda", "hexsha": "66339011dc30820fa8a3bc9349e1f47197841af8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/FiniteMultiset/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/FiniteMultiset/Properties.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/FiniteMultiset/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3484, "size": 8241 }
{-# OPTIONS --show-implicit --verbose=tc.reconstruct:50 #-} open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) open import Data.Fin using (Fin; zero; suc; #_) open import Relation.Binary.PropositionalEquality open import Reflection open import Structures open import ReflHelper open import Function open import Array.Base -- Check that Vec² and List ∘ Vec are treated correctly. -- Here we transpose a 2d array using Vec operations. -- Note that we are using local where-defined functions. test-20f : ∀ m n → Vec (Vec ℕ n) m → Vec (Vec ℕ m) n test-20f 0 n [] = repl [] where repl : ∀ {k} → Vec ℕ 0 → Vec _ k repl {0} x = [] repl {suc _} x = x ∷ repl x test-20f (suc _) n (x ∷ xs) = xzip x (test-20f _ n xs) where xzip : ∀ {n} → Vec _ n → Vec _ n → Vec _ n xzip [] [] = [] xzip (x ∷ xs) (y ∷ ys) = (x ∷ y) ∷ xzip xs ys test₂₀ : kompile test-20f [] [] ≡ ok _ test₂₀ = refl -- simplified version of the test20 for debugging purposes. test-20f′ : ∀ n → Vec ℕ n → Vec (Vec ℕ 1) n → Vec (Vec ℕ 2) n test-20f′ n xs ys = xzip xs ys where xzip : ∀ {n} → Vec _ n → Vec _ n → Vec _ n xzip [] [] = [] xzip (x ∷ xs) (y ∷ ys) = (x ∷ y) ∷ xzip xs ys test₂₀′ : kompile test-20f′ [] [] ≡ ok _ test₂₀′ = refl -- Make sure that we can handle lists of hom. objects test-21f : ∀ n → List (Vec ℕ n) test-21f n = [] test₂₁ : kompile test-21f [] [] ≡ ok _ test₂₁ = refl -- Test that cons and friends work on a simple example test-22f : ∀ n → Vec (Vec ℕ n) 1 test-22f n = repl 0 ∷ [] where repl : ∀ {m} → ℕ → Vec ℕ m repl {0} x = [] repl {suc _} x = x ∷ repl x test₂₂ : kompile test-22f [] [] ≡ ok _ test₂₂ = refl -- Test that polymorphic functions are failing with a reasonable error test-23f : ∀ {X : Set} → X → X test-23f x = x test₂₃ : _≡_ {A = Prog} (kompile test-23f [] []) $ error _ test₂₃ = refl -- FIXME: This gives a buggy assertion on the argument (that is not present) test-24f : Vec ℕ (1 + 2) test-24f = 1 ∷ 2 ∷ 3 ∷ [] test₂₄ : kompile test-24f [] [] ≡ ok _ test₂₄ = refl -- Array stuff test-25f : ℕ → Ar ℕ 1 V.[ 5 ] test-25f n = cst n test₂₅ : kompile test-25f [] [] ≡ ok _ test₂₅ = refl -- Element-wise addition. test-26f : ∀ {d s} → (a b : Ar ℕ d s) → Ar ℕ d s test-26f a b = imap λ iv → sel a iv + sel b iv test₂₆ : kompile test-26f [] [] ≡ ok _ test₂₆ = refl test-27f : ∀ {d s} → (a b : Ar ℕ d s) → Ar ℕ d s test-27f (imap a) (imap b) = imap λ iv → a iv + b iv test₂₇ : kompile test-27f [] [] ≡ ok _ test₂₇ = refl test-28f : ∀ {d s} → (a b : Ar ℕ d s) → Ar ℕ d s test-28f (imap _) (imap a) = imap λ iv → a iv + 1 test₂₈ : kompile test-28f [] [] ≡ ok _ test₂₈ = refl -- Testing for dot and absurd arguments of the imap. test-29f : ∀ {d s} → (a b : Ar ℕ d s) → a ≡ b → Ar ℕ d s test-29f (imap .a) (imap a) refl = imap λ iv → a iv + 1 test₂₉ : kompile test-29f [] [] ≡ ok _ test₂₉ = refl -- We cannot write this: -- -- open import Data.Empty -- test-30f : Ar ⊥ 1 V.[ 1 ] → ⊥ -- test-30f (imap ()) -- -- even though `f` in imap has type Ix 1 [1] → ⊥, which doesn't exist. -- If non-lambda is found as an argument of the imap. test-31f : Ar ℕ 1 V.[ 10 ] → Ar ℕ 1 V.[ 10 ] test-31f (imap f) = imap f test₃₁ : kompile test-31f [] [] ≡ ok _ test₃₁ = refl -- Index types test-32f : Ix 2 (3 ∷ 4 ∷ []) → Fin 3 test-32f ix = ix-lookup ix (# 0) test₃₂ : kompile test-32f [] [] ≡ ok _ test₃₂ = refl module mat-mul where postulate asum : ∀ {n} → Ar ℕ 1 (n ∷ []) → ℕ mm : ∀ {m n k} → let Mat a b = Ar ℕ 2 (a ∷ b ∷ []) in Mat m n → Mat n k → Mat m k mm (imap a) (imap b) = imap λ iv → let i = ix-lookup iv (# 0) j = ix-lookup iv (# 1) in asum (imap λ kv → let k = ix-lookup kv (# 0) in a (i ∷ k ∷ []) * b (k ∷ j ∷ [])) mm-kompiled = kompile mm [] (quote asum ∷ []) test₃₃ : mm-kompiled ≡ ok _ test₃₃ = refl -- This test ensurest that even if bound variables appear in -- different order than in the telescope, we can still use them. test-34f : ∀ {d s} → Ix (suc d) s → ℕ test-34f {_}{x ∷ s} (_∷_ i ix) = x test-34t = kompile test-34f [] [] test₃₄ : test-34t ≡ ok ("\n\n// Function Example-02.test-34f\n" ++ "int\nExample_02_test_34f(int x_1, int[.] x_2, int[.] x_4) {\n" ++ "/* assert (dim (x_4) == (1 + x_1)) */\n/* assert (x_4 < x_2) */\n" ++ "/* assert (shape (x_2)[[0]] == (1 + x_1)) */" ++ "int __ret;\nd = x_1;\nx = hd (x_2);\ns = tl (x_2);\n" ++ "i = hd (x_4);\nix = tl (x_4);\n__ret = x;\n" ++ "return __ret;\n}\n\n") test₃₄ = refl test-35f : ∀ {d s} → Ix (suc d) s → ℕ test-35f {_} (_∷_ {d}{s}{x} i ix) = x test₃₅ : kompile test-35f [] [] ≡ ok ("\n\n// Function Example-02.test-35f\n" ++ "int\nExample_02_test_35f(int x_1, int[.] x_2, int[.] x_4) {\n" ++ "/* assert (dim (x_4) == (1 + x_1)) */\n/* assert (x_4 < x_2) */\n" ++ "/* assert (shape (x_2)[[0]] == (1 + x_1)) */" ++ "int __ret;\nd = x_1;\nx = hd (x_2);\ns = tl (x_2);\n" ++ "i = hd (x_4);\nix = tl (x_4);\n__ret = x;\n" ++ "return __ret;\n}\n\n") test₃₅ = refl test-fold1 : ∀ {n} → Ar ℕ 1 V.[ n ] → Ar ℕ 1 V.[ n ] test-fold1 a = imap λ iv → sel a iv + 5 test-fold : ∀ {n} → Ar ℕ 1 V.[ n ] → Ar ℕ 1 V.[ n ] test-fold a = imap λ iv → sel (test-fold1 a) iv + 6
{ "alphanum_fraction": 0.5141146279, "avg_line_length": 29.5202020202, "ext": "agda", "hexsha": "870ebe990a69f5d4083847f936c447979b74789f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Example-02.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Example-02.agda", "max_line_length": 105, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Example-02.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 2188, "size": 5845 }
module Golden.Factorial where open import Agda.Builtin.Nat fac : Nat -> Nat fac 0 = 1 fac (suc n) = suc n * fac n a = fac 0 b = fac 10
{ "alphanum_fraction": 0.652173913, "avg_line_length": 12.5454545455, "ext": "agda", "hexsha": "d3429e6c71279e2ad1559dce828faaeec4f218b0", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z", "max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-ocaml", "max_forks_repo_path": "test/agda-ocaml/Golden/Factorial.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-ocaml", "max_issues_repo_path": "test/agda-ocaml/Golden/Factorial.agda", "max_line_length": 29, "max_stars_count": 48, "max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-ocaml", "max_stars_repo_path": "test/agda-ocaml/Golden/Factorial.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z", "num_tokens": 54, "size": 138 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The binary relation defined by a constant ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Construct.Constant where open import Relation.Binary ------------------------------------------------------------------------ -- Definition Const : ∀ {a b c} {A : Set a} {B : Set b} → Set c → REL A B c Const I = λ _ _ → I ------------------------------------------------------------------------ -- Properties module _ {a c} (A : Set a) {C : Set c} where refl : C → Reflexive {A = A} (Const C) refl c = c sym : Symmetric {A = A} (Const C) sym c = c trans : Transitive {A = A} (Const C) trans c d = c isEquivalence : C → IsEquivalence {A = A} (Const C) isEquivalence c = record { refl = λ {x} → refl c {x} ; sym = λ {x} {y} → sym {x} {y} ; trans = λ {x} {y} {z} → trans {x} {y} {z} } setoid : C → Setoid a c setoid x = record { isEquivalence = isEquivalence x }
{ "alphanum_fraction": 0.4194139194, "avg_line_length": 26, "ext": "agda", "hexsha": "93e9461310b2814c67d0fc8eda4ac781304a1a09", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Constant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Constant.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Constant.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 289, "size": 1092 }
module HOAny where open import Agda.Builtin.Nat open import Agda.Builtin.Bool data Wrapper (M : Set → Set) : Set where mnat : M Nat → Wrapper M mbool : M Bool → Wrapper M {-# FOREIGN GHC data AgdaWrapper m = Mnat (m Integer) | Mbool (m Bool) #-} {-# COMPILE GHC Wrapper = data AgdaWrapper (Mnat | Mbool) #-} map : ∀ {M N} → (∀ {n} → M n → N n) → Wrapper M → Wrapper N map f (mnat mn) = mnat (f mn) map f (mbool mb) = mbool (f mb) -- Higher-order use of Any in the compiled code: -- data AgdaWrapper m = Mnat (m Integer) | Mbool (m Bool) -- map :: -- (() -> ()) -> -- (() -> ()) -> -- (() -> AgdaAny -> AgdaAny) -> AgdaWrapper AgdaAny -> AgdaWrapper AgdaAny -- WAS: -- The expected kind to AgdaWrapper's argument is * -> * -- but AgdaAny's kind is * -- WANT: SUCCESS -- made possible by making AgdaAny poly-kinded open import Common.Prelude main : IO Unit main = putStrLn ""
{ "alphanum_fraction": 0.6208053691, "avg_line_length": 24.1621621622, "ext": "agda", "hexsha": "0081f7d04fcdd98d0d7320f2a15db3a867f7fa24", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/HOAny.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/HOAny.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/HOAny.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 284, "size": 894 }
open import Algebra using (CommutativeRing) module AKS.Polynomial {c ℓ} (R : CommutativeRing c ℓ) where open import AKS.Polynomial.Properties R public
{ "alphanum_fraction": 0.7857142857, "avg_line_length": 22, "ext": "agda", "hexsha": "cca6922337eb31e72676c7af54e043f909db754b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Polynomial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Polynomial.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Polynomial.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 43, "size": 154 }
-- Andreas, 2016-06-02 -- The filename "Issue.1947.agda" is invalid as "1947" is not a valid name. module _ where
{ "alphanum_fraction": 0.7043478261, "avg_line_length": 23, "ext": "agda", "hexsha": "35a7d01af419e6a37f11c4bac8e3a40feffd1a00", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue.1947.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue.1947.agda", "max_line_length": 75, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue.1947.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 115 }
import Lvl module Structure.Groupoid {ℓₒ ℓₘ ℓₑ : Lvl.Level} where open import Functional using (swap) open import Logic open import Logic.Predicate open import Logic.Propositional import Structure.Categorical.Names as Names open import Structure.Categorical.Properties open import Structure.Category{ℓₒ}{ℓₘ}{ℓₑ} open import Structure.Operator open import Structure.Relator.Equivalence import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Structure.Setoid open import Type {- TODO: It would be nice if groupoids were defined using a category as a record field and if categories were defined using a semicategory as a record field (they are "substructures" of each other) so that no code-duplication is necessary, but the problem is how long the projections/copatterns become with this approach. postulate A B C : Type{Lvl.𝟎} record R : Type{Lvl.𝟎} where field a : A b : B record R2 : Type{Lvl.𝟎} where field r : R c : C open R(r) public -- a = R.a r -- This is not possible, but would be nice: r2 : R2 R2.a r2 = ? R2.b r2 = ? R2.c r2 = ? -- One must write this: r2 : R2 R2.r(R.a r2) = ? R2.r(R.b r2) = ? R2.c r2 = ? which means that the copatterns would be longer and longer for each nesting a record has. If Agda had support for "copattern/projection synonyms" or if the example above worked, then -} -- Obj is the collection of objects. -- _⟶_ is the collection of morphisms. module _ {Obj : Type{ℓₒ}} (_⟶_ : Obj → Obj → Type{ℓₘ}) ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(x ⟶ y) ⦄ where -- A groupoid is a structure on a relation called a morphism. -- -- It can be seen as a generalization of the structure in invertible functions between a collection of types/sets. -- More specifically, the algebraic properties of functions regarding composition and the identity function together with an function inverter. -- In this case, sets are objects and functions are morphisms. -- -- It can also be seen as a generalized algebraic structure, or more specifically a generalization of groups. -- The type of a group's operator is usually restricted to a single type, but a groupoid allows it to vary (depending on the rules of morphism instead). -- (One can loosely call a groupoid to be a group without the "closed" property of algebraic structures). -- In this case, the binary operation is (_∘_) and the laws are the usual identity, associative and inverse laws. -- -- An alternative interpretation of the definition: -- A type (Obj) and a binary relation (Morphism) on this type is a groupoid when: -- • The relator is transitive. -- • The relator is reflexive. -- • The relator is symmetric. -- • The reflexivity proof inside the transitivity proof does not result in a new proof. -- • Chains of the transitivity proofs can be applied in any order and the resulting proof will be the same. -- • Transitivity of a proof of a pair and its symmetry is the reflexivity proof. -- In other words, this is a specialized equivalence relation/setoid on `Obj`. If the morphism equivalence is trivial (always true) for a groupoid, then the groupoid describes the same structure as an equivalence relation does. -- See `Relator.Equals.Category` for an example of this kind of binary relation. -- -- A groupoid is the common pattern seen in all the examples above. record Groupoid : Stmt{ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where field _∘_ : Names.SwappedTransitivity(_⟶_) id : Names.Reflexivity(_⟶_) inv : Names.Symmetry(_⟶_) infixr 20 _∘_ field ⦃ binaryOperator ⦄ : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z}) ⦃ associativity ⦄ : Morphism.Associativity(\{x} → _∘_ {x}) ⦃ identity ⦄ : Morphism.Identity(_∘_)(\{x} → id{x}) ⦃ inverter ⦄ : Polymorphism.Inverter(_∘_)(\{x} → id{x})(inv) -- This can be interpreted as proof of symmetry when `Morphism` is interpreted as a binary relation. morphism-symmetry : Symmetry(_⟶_) morphism-symmetry = intro inv category : Category(_⟶_) Category._∘_ category = _∘_ Category.id category = id Category.binaryOperator category = binaryOperator Category.associativity category = associativity Category.identity category = identity open Category(category) hiding (_∘_ ; id ; binaryOperator ; associativity ; identity) public open Polymorphism.Inverter(_∘_)(\{x} → id{x})(inv)(inverter) renaming (left to inverterₗ ; right to inverterᵣ) public morphism-equivalence : Equivalence(_⟶_) Equivalence.reflexivity morphism-equivalence = morphism-reflexivity Equivalence.symmetry morphism-equivalence = morphism-symmetry Equivalence.transitivity morphism-equivalence = morphism-transitivity object-equiv : Equiv(Obj) object-equiv = intro(_⟶_) ⦃ morphism-equivalence ⦄ morphism-setoid : Setoid morphism-setoid = [∃]-intro Obj ⦃ object-equiv ⦄ -- A category object can be used when one refers to a category as an object. -- Examples of usage are in functors (morphism between categories) or in equivalences of categories. record GroupoidObject : Stmt{Lvl.𝐒(ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ)} where constructor intro field {Object} : Type{ℓₒ} {Morphism} : Object → Object → Type{ℓₘ} ⦃ morphism-equiv ⦄ : ∀{x y} → Equiv{ℓₑ}(Morphism x y) groupoid : Groupoid(Morphism) open Groupoid(groupoid) public instance groupoid-instance = groupoid
{ "alphanum_fraction": 0.7086901075, "avg_line_length": 41.5833333333, "ext": "agda", "hexsha": "3aedbaa78187115e94d2b9d60d4e86278c4a4d33", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Groupoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Groupoid.agda", "max_line_length": 321, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1559, "size": 5489 }
{-# OPTIONS --universe-polymorphism #-} module tests.Coind where open import Prelude.IO open import Prelude.Level open import Prelude.Nat open import Prelude.Unit infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} data Stream (A : Set) : Set where _::_ : (x : A) (xs : ∞ (Stream A)) → Stream A ones : Stream Nat ones = 1 :: (♯ ones) twos : Stream Nat twos = 2 :: (♯ twos) incr : Nat -> Stream Nat incr n = n :: (♯ (incr (n + 1))) printStream : Nat -> Stream Nat -> IO Unit printStream Z _ = putStrLn "" printStream (S steps) (n :: ns) = printNat n ,, printStream steps (♭ ns) main : IO Unit main = printStream 10 twos ,, printStream 10 ones ,, printStream 10 (incr Z)
{ "alphanum_fraction": 0.5720930233, "avg_line_length": 20, "ext": "agda", "hexsha": "b8efdfcf260fa625435dc343a667465729a2521f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/epic/tests/Coind.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/epic/tests/Coind.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/epic/tests/Coind.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 306, "size": 860 }
module Logic.Propositional.Equiv where import Lvl open import Logic open import Logic.Propositional import Logic.Propositional.Theorems as Theorems open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable T A B : Type{ℓ} instance [↔]-reflexivity : Reflexivity{ℓ₂ = ℓ}(_↔_) [↔]-reflexivity = intro Theorems.[↔]-reflexivity instance [↔]-symmetry : Symmetry{ℓ₂ = ℓ}(_↔_) [↔]-symmetry = intro Theorems.[↔]-symmetry instance [↔]-transitivity : Transitivity{ℓ₂ = ℓ}(_↔_) [↔]-transitivity = intro Theorems.[↔]-transitivity instance [↔]-equivalence : Equivalence{ℓ₂ = ℓ}(_↔_) [↔]-equivalence = intro instance [↔]-equiv : Equiv(Stmt{ℓ}) [↔]-equiv = intro(_↔_) ⦃ [↔]-equivalence ⦄
{ "alphanum_fraction": 0.7076923077, "avg_line_length": 24.8529411765, "ext": "agda", "hexsha": "5934f78cdb3ea6c9c4cb99278bbffa5ffaf2d11d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/Propositional/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/Propositional/Equiv.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/Propositional/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 313, "size": 845 }