Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Instance.SetoidDiscrete where -- Discrete Functor -- from Setoids to Cats. open import Categories.Category open import Categories.Functor open import Categories.Category.Instance.Setoids open import Categories.Category.Instance.Cats open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl) import Categories.Category.SetoidDiscrete as D open import Relation.Binary open import Function renaming (id to idf; _∘_ to _●_) open import Function.Equality renaming (id to id⟶) Discrete : ∀ {o ℓ e} → Functor (Setoids o ℓ) (Cats o ℓ e) Discrete {o} {ℓ} {e} = record { F₀ = D.Discrete ; F₁ = DiscreteFunctor ; identity = λ {A} → DiscreteId {A} ; homomorphism = λ {X} {Y} {Z} {g} {h} → PointwiseHom {X} {Y} {Z} {g} {h} ; F-resp-≈ = λ {A} {B} {f} {g} → ExtensionalityNI {A} {B} {f} {g} } where DiscreteFunctor : {A B : Setoid o ℓ} → (A ⟶ B) → Cats o ℓ e [ D.Discrete A , D.Discrete B ] DiscreteFunctor f = record { F₀ = f ⟨$⟩_ ; F₁ = cong f ; identity = _ ; homomorphism = _ ; F-resp-≈ = _ } DiscreteId : {A : Setoid o ℓ} → NaturalIsomorphism (DiscreteFunctor {A} id⟶) id DiscreteId {A} = record { F⇒G = record { η = λ _ → refl ; commute = _ } ; F⇐G = record { η = λ _ → refl ; commute = _ } } where open Setoid A PointwiseHom : {X Y Z : Setoid o ℓ} {g : X ⟶ Y} {h : Y ⟶ Z} → NaturalIsomorphism (DiscreteFunctor (h ∘ g)) (DiscreteFunctor h ∘F DiscreteFunctor g) PointwiseHom {_} {_} {Z} = record { F⇒G = record { η = λ _ → refl } ; F⇐G = record { η = λ _ → refl } } where open Setoid Z ExtensionalityNI : {A B : Setoid o ℓ} {f g : A ⟶ B} → let open Setoid A in ({x y : Carrier} → x ≈ y → Setoid._≈_ B (f ⟨$⟩ x) (g ⟨$⟩ y)) → NaturalIsomorphism (DiscreteFunctor f) (DiscreteFunctor g) ExtensionalityNI {A} {B} cong≈ = record { F⇒G = record { η = λ X → cong≈ A.refl } ; F⇐G = record { η = λ X → B.sym (cong≈ A.refl) } } where module A = Setoid A module B = Setoid B
{ "alphanum_fraction": 0.5856148492, "avg_line_length": 37.1551724138, "ext": "agda", "hexsha": "c42ddc3887c9675bff14a7c446af86939c332e7e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Instance/SetoidDiscrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Instance/SetoidDiscrete.agda", "max_line_length": 96, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Instance/SetoidDiscrete.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 770, "size": 2155 }
module plfa.part1.Relations where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-comm) -- z≤n, s≤s - constructor names (with no spaces) -- zero ≤ n - types (with spaces) indexed by -- suc m ≤ suc n - 2 naturals: m and n -- "-----------" - is just a comment (to make it look -- like math notation for inference rule) data _≤_ : ℕ → ℕ → Set where -- base case z≤n : ∀ {n : ℕ} ------------- → zero ≤ n -- inductive case s≤s : ∀ {m n : ℕ} → m ≤ n ------------- → suc m ≤ suc n -- Base case: for all naturals n, the constructor -- z≤n produces evidence that zero ≤ n holds. -- Inductive case: for all naturals m and n, -- the constructor s≤s takes evidence that m ≤ n -- holds into evidence that suc m ≤ suc n holds. _ : 2 ≤ 4 _ = s≤s (s≤s z≤n) -- z≤n ----- -- 0 ≤ 2 -- s≤s ------- -- 1 ≤ 3 -- s≤s --------- -- 2 ≤ 4 -- We can provide implicit arguments -- explicitly by writing them inside curly braces _ : 2 ≤ 4 _ = s≤s {1} {3} (s≤s {0} {2} (z≤n {2})) -- 2 ≤ 4 -- suc m ≤ suc n -- suc 1 ≤ suc 3 -- One may also identify implicit arugments by name _ : 2 ≤ 4 _ = s≤s {n = 3} (s≤s {n = 2} z≤n) -- Precedence infix 4 _≤_ inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n -------------- → m ≤ n inv-s≤s (s≤s m≤n) = m≤n inv-z≤n : ∀ {m : ℕ} → m ≤ zero -------- → m ≡ zero inv-z≤n z≤n = refl -- z≤n : zero ≤ n -- z≤n : zero ≤ (n : ℕ) -- (zero : ℕ) -- z≤n : zero ≤ zero -- refl : m ≡ m -- refl : zero ≡ zero
{ "alphanum_fraction": 0.4958530806, "avg_line_length": 21.1, "ext": "agda", "hexsha": "05c38ce459c3f6ee0dfef07d7fa8c66639175f77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3429c5ef0a2636330f2d4e5e77b22605102a2247", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "vyorkin/plfa", "max_forks_repo_path": "part1/Relations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3429c5ef0a2636330f2d4e5e77b22605102a2247", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "vyorkin/plfa", "max_issues_repo_path": "part1/Relations.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "3429c5ef0a2636330f2d4e5e77b22605102a2247", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "vyorkin/plfa", "max_stars_repo_path": "part1/Relations.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 639, "size": 1688 }
module Type{ℓ} where open import Agda.Primitive public using () renaming (Set to TYPE ; Setω to Typeω) Type : TYPE(_) Type = TYPE(ℓ) {-# INLINE Type #-} module Type where -- Returns the type of a certain value of : ∀{T : Type} → T → Type of {T} _ = T {-# INLINE of #-}
{ "alphanum_fraction": 0.6161971831, "avg_line_length": 17.75, "ext": "agda", "hexsha": "4ea42d201de8c6d9727bcf83986fe00c4e1eea55", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type.agda", "max_line_length": 40, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 91, "size": 284 }
module _ where open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Unit postulate A : Set module _ (X : Set) where macro give : Name → Term → TC ⊤ give x goal = unify (def x []) goal B : Set B = give A
{ "alphanum_fraction": 0.6577946768, "avg_line_length": 13.8421052632, "ext": "agda", "hexsha": "071d631a445053aae17eddb8b0d196c172e663cc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2240.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2240.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2240.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 263 }
{-# OPTIONS --copatterns #-} module Issue1290 where record R : Set1 where constructor con field A : Set open R postulate X : Set x : R A x = X exp : R -> R A (exp x) = A x
{ "alphanum_fraction": 0.5935828877, "avg_line_length": 9.8421052632, "ext": "agda", "hexsha": "42b0deeb81b8bb92183500c3620d34526c860773", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1290.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1290.agda", "max_line_length": 28, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1290.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 187 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.FamilyOfSetoids where -- The Category of "Families of Setoids" -- This fits into this library much better than the Families of Sets -- This particular formalization should be considered alpha, i.e. its -- names will change once things settle. open import Level open import Relation.Binary using (Rel; Setoid; module Setoid; Reflexive; Symmetric; Transitive) open import Function.Base renaming (id to idf; _∘_ to _⊚_) open import Function.Equality open import Function.Inverse using (_InverseOf_) import Relation.Binary.Reasoning.Setoid as SetoidR open import Categories.Category module _ {a b c d : Level} where record Fam : Set (suc (a ⊔ b ⊔ c ⊔ d)) where constructor fam open Setoid using () renaming (Carrier to ∣_∣; _≈_ to _≈≈_) field U : Setoid a b open Setoid U hiding (Carrier) field T : ∣ U ∣ → Setoid c d reindex : {x y : ∣ U ∣} (P : x ≈ y) → T y ⟶ T x -- the following coherence laws are needed to make _≃_ below an equivalence reindex-refl : {x : ∣ U ∣} {bx : ∣ T x ∣} → _≈≈_ (T x) (reindex refl ⟨$⟩ bx) bx reindex-sym : {x y : ∣ U ∣} → (p : x ≈ y) → (reindex (sym p)) InverseOf (reindex p) reindex-trans : {x y z : ∣ U ∣} {b : ∣ T z ∣} → (p : x ≈ y) → (q : y ≈ z) → Setoid._≈_ (T x) (reindex (trans p q) ⟨$⟩ b) (reindex p ∘ reindex q ⟨$⟩ b) open Fam record Hom (B B′ : Fam) : Set (a ⊔ b ⊔ c ⊔ d) where constructor fhom open Setoid (U B) using (_≈_) field map : U B ⟶ U B′ transport : (x : Setoid.Carrier (U B)) → T B x ⟶ T B′ (map ⟨$⟩ x) transport-coh : {x y : Setoid.Carrier (U B)} → (p : x ≈ y) → Setoid._≈_ (T B y ⇨ T B′ (map ⟨$⟩ x)) (transport x ∘ reindex B p) (reindex B′ (Π.cong map p) ∘ transport y) record _≈≈_ {X Y} (F F′ : (Hom X Y)) : Set (a ⊔ b ⊔ c ⊔ d) where constructor feq open Hom open Setoid (U X) renaming (Carrier to A) hiding (refl; _≈_) open Setoid (U Y) -- the order below is chosen to simplify some of the later reasoning field g≈f : {x : A} → map F ⟨$⟩ x ≈ map F′ ⟨$⟩ x φ≈γ : {x : A} → let C = T X x D = T Y (map F ⟨$⟩ x) in {bx : Setoid.Carrier C} → Setoid._≈_ D ((reindex Y g≈f ∘ transport F′ x) ⟨$⟩ bx) (transport F x ⟨$⟩ bx) fam-id : {A : Fam} → Hom A A fam-id {A} = fhom id (λ _ → id) λ p x≈y → Π.cong (reindex A p) x≈y comp : {A B C : Fam} → Hom B C → Hom A B → Hom A C comp {B = B} {C} (fhom map₀ trans₀ coh₀) (fhom map₁ trans₁ coh₁) = fhom (map₀ ∘ map₁) (λ x → trans₀ (map₁ ⟨$⟩ x) ∘ (trans₁ x)) λ {a} {b} p {x} {y} x≈y → let open Setoid (T C (map₀ ∘ map₁ ⟨$⟩ a)) renaming (trans to _⟨≈⟩_) in Π.cong (trans₀ (map₁ ⟨$⟩ a)) (coh₁ p x≈y) ⟨≈⟩ coh₀ (Π.cong map₁ p) (Setoid.refl (T B (map₁ ⟨$⟩ b))) ≈≈-refl : ∀ {A B} → Reflexive (_≈≈_ {A} {B}) ≈≈-refl {B = B} = feq refl (reindex-refl B) where open Setoid (U B) ≈≈-sym : ∀ {A B} → Symmetric (_≈≈_ {A} {B}) ≈≈-sym {A} {B} {F} {G} (feq g≈f φ≈γ) = feq (sym g≈f) λ {x} {bx} → Setoid.trans ( T B (map G ⟨$⟩ x) ) (Π.cong (reindex B (sym g≈f)) (Setoid.sym (T B (map F ⟨$⟩ x)) φ≈γ)) (left-inverse-of (reindex-sym B g≈f) (transport G x ⟨$⟩ bx)) where open Setoid (U B) using (sym; Carrier) open Hom open _InverseOf_ ≈≈-trans : ∀ {A B} → Transitive (_≈≈_ {A} {B}) ≈≈-trans {A} {B} {F} {G} {H} (feq ≈₁ t₁) (feq ≈₂ t₂) = feq (trans ≈₁ ≈₂) (λ {x} {bx} → let open Setoid (T B (Hom.map F ⟨$⟩ x)) renaming (trans to _⟨≈⟩_) in reindex-trans B ≈₁ ≈₂ ⟨≈⟩ (Π.cong (reindex B ≈₁) t₂ ⟨≈⟩ t₁)) where open Setoid (U B) using (trans) comp-resp-≈≈ : {A B C : Fam} {f h : Hom B C} {g i : Hom A B} → f ≈≈ h → g ≈≈ i → comp f g ≈≈ comp h i comp-resp-≈≈ {A} {B} {C} {f} {h} {g} {i} (feq f≈h t-f≈h) (feq g≈i t-g≈i) = feq (trans (Π.cong (map f) g≈i) f≈h) λ {x} → let open Setoid (T C (map (comp f g) ⟨$⟩ x)) renaming (trans to _⟨≈⟩_; sym to ≈sym) in reindex-trans C (cong (map f) g≈i) f≈h ⟨≈⟩ (Π.cong (reindex C (cong (map f) g≈i)) t-f≈h ⟨≈⟩ (≈sym (transport-coh {B} {C} f g≈i (Setoid.refl (T B (map i ⟨$⟩ x)))) ⟨≈⟩ Π.cong (transport f (map g ⟨$⟩ x)) t-g≈i)) where open _≈≈_ open Setoid (U C) open Hom Cat : Category (suc (a ⊔ b ⊔ c ⊔ d)) (a ⊔ b ⊔ c ⊔ d) (a ⊔ b ⊔ c ⊔ d) Cat = record { Obj = Fam ; _⇒_ = Hom ; _≈_ = _≈≈_ ; id = fam-id ; _∘_ = comp ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assoc′ {f = f} {g} {h} ; sym-assoc = λ {_} {_} {_} {_} {f} {g} {h} → ≈≈-sym (assoc′ {f = f} {g} {h}) ; identityˡ = λ {_} {B} → feq (Setoid.refl (U B)) (reindex-refl B) ; identityʳ = λ {_} {B} → feq (Setoid.refl (U B)) (reindex-refl B) ; identity² = λ {A} → feq (Setoid.refl (U A)) (reindex-refl A) ; equiv = λ {A} {B} → let open Setoid (U B) in record { refl = ≈≈-refl ; sym = ≈≈-sym ; trans = ≈≈-trans } ; ∘-resp-≈ = comp-resp-≈≈ } where open _InverseOf_ assoc′ : {A B C D : Fam} {f : Hom A B} {g : Hom B C} {h : Hom C D} → comp (comp h g) f ≈≈ comp h (comp g f) assoc′ {D = D} = feq (Setoid.refl (U D)) (reindex-refl D) open Category Cat public FamilyOfSetoids : ∀ a b c d → Category (suc (a ⊔ b ⊔ c ⊔ d)) (a ⊔ b ⊔ c ⊔ d) (a ⊔ b ⊔ c ⊔ d) FamilyOfSetoids a b c d = Cat {a} {b} {c} {d}
{ "alphanum_fraction": 0.5138253067, "avg_line_length": 39.5724637681, "ext": "agda", "hexsha": "cdd98317cf042b558cc643eb0b4ae4df07a574bb", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/FamilyOfSetoids.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/FamilyOfSetoids.agda", "max_line_length": 115, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/FamilyOfSetoids.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2365, "size": 5461 }
-- | In this module, we proof that the 2-category of endofunctors -- inherits locally all colimits from underlying category. -- More precisely, for a functor F : C → C, we compute in Endo(F, F) -- colimits point-wise from those in C. module UpToColim where open import Level open import Relation.Binary using (Rel; IsEquivalence) open import Data.Product open import Categories.Support.Equivalence open import Categories.Category open import Categories.2-Category open import Categories.Functor open import Categories.NaturalTransformation renaming (id to natId; _≡_ to _≡N_; setoid to natSetoid) hiding (_∘ˡ_; _∘ʳ_) open import Categories.Support.EqReasoning open import Categories.Colimit open import Categories.Cocones open import Categories.Cocone open import Categories.Object.Initial open import Categories.Functor.Constant open import NaturalTransFacts open import UpTo -- _⇒_ = NaturalTransformation EndoDiagram : (C : Cat₀) → (F : EndoFunctor C) → (I : Cat₀) → Set EndoDiagram C F I = Functor I (EndoMor (C , F) (C , F)) PW-Diagram : {C : Cat₀} → {F : EndoFunctor C} → {I : Cat₀} → EndoDiagram C F I → (X : Category.Obj C) → Functor I C PW-Diagram {C} {F} {I} D X = record { F₀ = λ i → Functor.F₀ (Endo⇒.T (D.F₀ i)) X ; F₁ = λ h → NaturalTransformation.η (UpTo⇒.γ (D.F₁ h)) X ; identity = ≡U-proof D.identity ; homomorphism = ≡U-proof D.homomorphism ; F-resp-≡ = λ x → ≡U-proof (D.F-resp-≡ x) } where module C = Category C module D = Functor D module I = Category I open _≡U_ EndoMor-inherit-colim : {C : Cat₀} → (F : EndoFunctor C) → {I : Cat₀} → (D : EndoDiagram C F I) → ((X : Category.Obj C) → Colimit (PW-Diagram D X)) → Colimit D EndoMor-inherit-colim {C} F {I} D c = record { initial = record { ⊥ = colim-D ; ! = out ; !-unique = out-unique } } where -- Notations module C = Category C module I = Category I module CC-D = Category (Cocones D) -- Components of F F₀ = Functor.F₀ F F₁ = Functor.F₁ F -- Components of the diagram D D₀ = Functor.F₀ D D₁ = Functor.F₁ D -- Tᵢ = π₁(D(i)) T : (i : I.Obj) → Functor C C T i = Endo⇒.T (D₀ i) -- Components of T T₀ = λ i → Functor.F₀ (T i) T₁ = λ i {A} {B} → Functor.F₁ (T i) {A} {B} -- ρ‌ᵢA = π₂(D(i)) ρ : (i : I.Obj) → (T i ∘ F) ⇒ (F ∘ T i) ρ i = Endo⇒.ρ (D₀ i) ρη : (i : I.Obj) → (A : C.Obj) → C [ T₀ i (F₀ A) , F₀ (T₀ i A) ] ρη i A = NaturalTransformation.η (ρ i) A -- The natural transformation (w/o proof) D(f) : D(i) ⇒ D(i) D₁η : ∀ {i j} → (f : I [ i , j ]) → (A : C.Obj) → C [ T₀ i A , T₀ j A ] D₁η f A = NaturalTransformation.η (UpTo⇒.γ (D₁ f)) A ----- Construction of the colimit ----- -- It is given by the cocone (colim-T, ρ). -- Action of colim-T on objects colim-T₀ : C.Obj → C.Obj colim-T₀ A = CL.∃F where module CL = Colimit (c A) -- Injection into colim DX κ : (i : I.Obj) → (X : C.Obj) → C [ T₀ i X , Colimit.∃F (c X) ] κ i X = Colimit.Ic.ψ (c X) i -- Given a morphism u : A → B in C, we construct a cocone DA ⇒ colim DB, -- which will give us then T(u) by the universal property of colim DA. -- The components of the cocone are given by κBᵢ ∘ Tᵢ(u) : T₁(A) → colim DB, -- where we use that Tᵢ(A) = DA(i). cocone-T₁ : {A B : C.Obj} → C [ A , B ] → Category.Obj (Cocones (PW-Diagram D A)) cocone-T₁ {A} {B} u = record { N = colim-T₀ B ; ψ = λ i → C [ κB i ∘ T₁ i u ] ; commute = comm } where module CA = Colimit (c A) module PW-Cocones-A = Category (Cocones (PW-Diagram D A)) module CB = Colimit (c B) DA = PW-Diagram D A module DA = Functor DA DB = PW-Diagram D B module DB = Functor DB -- Injection into colim DB κB : (i : I.Obj) → C [ T₀ i B , CB.∃F ] κB i = NaturalTransformation.η CB.ι i .comm : {i j : I.Obj} (f : I [ i , j ]) → C [ κB i ∘ T₁ i u ] C.≡ C [ κB j ∘ T₁ j u ] C.∘ DA.F₁ f comm {i} {j} f = begin C [ κB i ∘ T₁ i u ] ↓⟨ C.∘-resp-≡ˡ (Colimit.Ic.commute (c B) f) ⟩ (κB j C.∘ DB.F₁ f) C.∘ T₁ i u ↓⟨ C.assoc ⟩ κB j C.∘ (DB.F₁ f C.∘ T₁ i u) ↓⟨ C.∘-resp-≡ʳ (NaturalTransformation.commute (UpTo⇒.γ (D₁ f)) u) ⟩ κB j C.∘ (T₁ j u C.∘ DA.F₁ f) ↑⟨ C.assoc ⟩ C [ κB j ∘ T₁ j u ] C.∘ DA.F₁ f ∎ where open SetoidReasoning (C.hom-setoid {DA.F₀ i} {colim-T₀ B}) -- Action of colim-T on morphisms colim-T₁ : {A B : C.Obj} → C [ A , B ] → C [ colim-T₀ A , colim-T₀ B ] colim-T₁ {A} {B} u = CoconeMorphism.f (CA.I.! {cocone-T₁ u}) where module CA = Colimit (c A) -- Proof that T(id_A) = id_{T(A)} .colim-T-id : ∀ {A : C.Obj} → C [ colim-T₁ (C.id {A}) ≡ C.id {colim-T₀ A} ] colim-T-id {A} = CA.I.⊥-id (record { f = colim-T₁ (C.id {A}) ; commute = λ {i} → let open SetoidReasoning (C.hom-setoid {DA.F₀ i} {colim-T₀ A}) in begin C [ colim-T₁ (C.id {A}) ∘ κ i A ] -- colimit property of T(id) = [κ i A ∘ id]_{i ∈ I} ↓⟨ CoconeMorphism.commute (CA.I.! {cocone-T₁ (C.id {A})}) ⟩ C [ κ i A ∘ T₁ i (C.id {A}) ] -- Functoriality of Tᵢ ↓⟨ C.∘-resp-≡ʳ (Functor.identity (T i)) ⟩ C [ κ i A ∘ C.id {T₀ i A} ] ↓⟨ C.identityʳ ⟩ κ i A ∎ }) where module CA = Colimit (c A) module DA = Functor (PW-Diagram D A) -- Proof that T(g ∘ f) = Tg ∘ Tf .colim-T-hom : {X Y Z : C.Obj} {f : C [ X , Y ]} {g : C [ Y , Z ]} → colim-T₁ (C [ g ∘ f ]) C.≡ C [ colim-T₁ g ∘ colim-T₁ f ] colim-T-hom {X} {Y} {Z} {f} {g} = CX.I.!-unique CX⇒TgTf where module CX = Colimit (c X) module CY = Colimit (c Y) module DX = Functor (PW-Diagram D X) module CC-DX = Category (Cocones (PW-Diagram D X)) -- Show that Tg ∘ Tf is a cocone for T(g ∘ f), which implies that -- Tg ∘ Tf = T(g ∘ f). -- To achieve this, we need to show that for each i ∈ I, we have -- Tg ∘ Tf ∘ κ i X = κ i Z ∘ Tᵢ (g ∘ f). CX⇒TgTf : Colimit.I.⊥ (c X) CC-DX.⇒ cocone-T₁ (C [ g ∘ f ]) CX⇒TgTf = record { f = C [ colim-T₁ g ∘ colim-T₁ f ] ; commute = λ {i : I.Obj} → let open SetoidReasoning (C.hom-setoid {DX.F₀ i} {colim-T₀ Z}) in begin C [ colim-T₁ g ∘ colim-T₁ f ] C.∘ κ i X ↓⟨ C.assoc ⟩ colim-T₁ g C.∘ (colim-T₁ f C.∘ κ i X) ↓⟨ C.∘-resp-≡ʳ (CoconeMorphism.commute (CX.I.! {cocone-T₁ f})) ⟩ colim-T₁ g C.∘ (κ i Y C.∘ T₁ i f) ↑⟨ C.assoc ⟩ (colim-T₁ g C.∘ κ i Y) C.∘ T₁ i f ↓⟨ C.∘-resp-≡ˡ (CoconeMorphism.commute (CY.I.! {cocone-T₁ g})) ⟩ (κ i Z C.∘ T₁ i g) C.∘ T₁ i f ↓⟨ C.assoc ⟩ κ i Z C.∘ (T₁ i g C.∘ T₁ i f) ↑⟨ C.∘-resp-≡ʳ (Functor.homomorphism (T i)) ⟩ C [ κ i Z ∘ T₁ i (g C.∘ f) ] ∎ } -- Proof that T respects the equality of C. .colim-T-resp-≡ : {A B : C.Obj} {f : C [ A , B ]} {g : C [ A , B ]} → C [ f ≡ g ] → C [ colim-T₁ f ≡ colim-T₁ g ] colim-T-resp-≡ {A} {B} {f} {g} f≡g = CA.I.!-unique CA⇒Tg where module CA = Colimit (c A) module DA = Functor (PW-Diagram D A) module CC-DA = Category (Cocones (PW-Diagram D A)) -- That T respects ≡ is inherited point-wise from the fact that -- each Tᵢ respects ≡. CA⇒Tg : Colimit.I.⊥ (c A) CC-DA.⇒ cocone-T₁ f CA⇒Tg = record { f = colim-T₁ g ; commute = λ {i} → let open SetoidReasoning (C.hom-setoid {DA.F₀ i} {colim-T₀ B}) in begin C [ colim-T₁ g ∘ κ i A ] ↓⟨ CoconeMorphism.commute (CA.I.! {cocone-T₁ g}) ⟩ C [ κ i B ∘ T₁ i g ] ↑⟨ C.∘-resp-≡ʳ (Functor.F-resp-≡ (T i) f≡g) ⟩ C [ κ i B ∘ T₁ i f ] ∎ } -- The colimiting up-to technique colim-T : Functor C C colim-T = record { F₀ = colim-T₀ ; F₁ = colim-T₁ ; identity = colim-T-id ; homomorphism = colim-T-hom ; F-resp-≡ = colim-T-resp-≡ } -- Cocone to construct ρ = [F₁ (κᵢ A) ∘ ρᵢ A]_{i ‌∈ I} cocone-ρ : {A : C.Obj} → Category.Obj (Cocones (PW-Diagram D (F₀ A))) cocone-ρ {A} = record { N = F₀ (colim-T₀ A) ; ψ = λ i → C [ F₁ (κ i A) ∘ ρη i A ] ; commute = λ {i} {j} f → let open SetoidReasoning (C.hom-setoid {T₀ i (F₀ A)} {F₀ (colim-T₀ A)}) in begin C [ F₁ (κ i A) ∘ ρη i A ] ↓⟨ C.∘-resp-≡ˡ (Functor.F-resp-≡ F (CA.Ic.commute f)) ⟩ C [ F₁ ((κ j A) C.∘ (DA.F₁ f)) ∘ ρη i A ] ↓⟨ C.∘-resp-≡ˡ (Functor.homomorphism F) ⟩ C [ C [ F₁ (κ j A) ∘ F₁ (DA.F₁ f) ] ∘ ρη i A ] ↓⟨ C.assoc ⟩ C [ F₁ (κ j A) ∘ C [ F₁ (DA.F₁ f) ∘ ρη i A ] ] ↓⟨ C.∘-resp-≡ʳ (lemma f) ⟩ C [ F₁ (κ j A) ∘ C [ ρη j A ∘ DFA.F₁ f ] ] ↑⟨ C.assoc ⟩ C [ F₁ (κ j A) ∘ ρη j A ] C.∘ DFA.F₁ f ∎ } where module CA = Colimit (c A) module DA = Functor (PW-Diagram D A) module DFA = Functor (PW-Diagram D (F₀ A)) -- Lemma to turn the commuting square for ρ into the equation we need .lemma : {i j : I.Obj} → (f : I [ i , j ]) → C [ F₁ (DA.F₁ f) ∘ ρη i A ] C.≡ C [ ρη j A ∘ DFA.F₁ f ] lemma {i} {j} f = begin C [ F₁ (DA.F₁ f) ∘ ρη i A ] ↑⟨ C.∘-resp-≡ˡ C.identityʳ ⟩ C [ C [ F₁ (DA.F₁ f) ∘ C.id {F₀ (DA.F₀ i)} ] ∘ ρη i A ] ↑⟨ UpTo⇒.square (D₁ f) {A} ⟩ C [ ρη j A ∘ C [ T₁ j (C.id {F₀ A}) ∘ (DFA.F₁ f) ] ] ↓⟨ C.∘-resp-≡ʳ (C.∘-resp-≡ˡ (Functor.identity (T j))) ⟩ C [ ρη j A ∘ C [ C.id {T₀ j (F₀ A)} ∘ (DFA.F₁ f) ] ] ↓⟨ C.∘-resp-≡ʳ C.identityˡ ⟩ C [ ρη j A ∘ DFA.F₁ f ] ∎ where open SetoidReasoning (C.hom-setoid {T₀ i (F₀ A)} {F₀ (T₀ j A)}) colim-ρ-η : (A : C.Obj) → C [ colim-T₀ (F₀ A) , F₀ (colim-T₀ A) ] colim-ρ-η A = CoconeMorphism.f (CFA.I.! {cocone-ρ}) where module CFA = Colimit (c (F₀ A)) -- Natural transformation to make colim-T indeed an up-to technique colim-ρ : (colim-T ∘ F) ⇒ (F ∘ colim-T) colim-ρ = record { η = colim-ρ-η ; commute = λ {A} {B} f → let open SetoidReasoning (C.hom-setoid {colim-T₀ (F₀ A)} {F₀ (colim-T₀ B)}) in begin C [ colim-ρ-η B ∘ colim-T₁ (F₁ f) ] ↓⟨ {!!} ⟩ C [ F₁ (colim-T₁ f) ∘ colim-ρ-η A ] ∎ } where colim-Endo : Endo⇒ C F C F colim-Endo = record { T = colim-T ; ρ = colim-ρ } colim-ψ : (i : I.Obj) → UpTo⇒ (D₀ i) colim-Endo colim-ψ i = record { γ = record { η = λ X → κ i X ; commute = {!!} } ; square = {!!} } colim-D : CC-D.Obj colim-D = record { N = colim-Endo ; ψ = colim-ψ ; commute = {!!} } out : ∀ {A : CC-D.Obj} → colim-D CC-D.⇒ A out = {!!} out-unique : {A : CC-D.Obj} (f : colim-D CC-D.⇒ A) → out CC-D.≡ f out-unique = {!!}
{ "alphanum_fraction": 0.4713212701, "avg_line_length": 33.1898016997, "ext": "agda", "hexsha": "60ea5973410aa6f3419935e9e767c08513344880", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "UpTo-Properties/UpToColim.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "UpTo-Properties/UpToColim.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "UpTo-Properties/UpToColim.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4627, "size": 11716 }
module _ where open import Agda.Builtin.Equality module MM1 (A : Set) where postulate a0 : A module M1 (a : A) where postulate x : A module M = M1 a0 module MM2 (A : Set) where open module MM1A = MM1 A check : M1.x ≡ (λ a → a) check = refl -- used to be internal error
{ "alphanum_fraction": 0.618729097, "avg_line_length": 14.95, "ext": "agda", "hexsha": "a1565b8be26fddded38020b93f43474be2252de7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2247.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2247.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2247.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 299 }
{-# OPTIONS --without-K --rewriting #-} {- Remember to keep CodeAP.agda in sync. -} open import HoTT import homotopy.RelativelyConstantToSetExtendsViaSurjection as SurjExt module homotopy.vankampen.CodeBP {i j k l} (span : Span {i} {j} {k}) {D : Type l} (h : D → Span.C span) (h-is-surj : is-surj h) where open Span span data precodeBB (b₀ : B) : B → Type (lmax (lmax (lmax i j) k) l) data precodeBA (b₀ : B) (a₁ : A) : Type (lmax (lmax (lmax i j) k) l) data precodeBB b₀ where pc-b : ∀ {b₁} (pB : b₀ =₀ b₁) → precodeBB b₀ b₁ pc-bab : ∀ d {b₁} (pc : precodeBA b₀ (f (h d))) (pB : g (h d) =₀ b₁) → precodeBB b₀ b₁ infix 66 pc-b syntax pc-b p = ⟧b p infixl 65 pc-bab syntax pc-bab d pcBA pB = pcBA ba⟦ d ⟧b pB data precodeBA b₀ a₁ where pc-bba : ∀ d (pc : precodeBB b₀ (g (h d))) (pA : f (h d) =₀ a₁) → precodeBA b₀ a₁ infixl 65 pc-bba syntax pc-bba d pcBB pA = pcBB bb⟦ d ⟧a pA data precodeBB-rel {b₀ : B} : {b₁ : B} → precodeBB b₀ b₁ → precodeBB b₀ b₁ → Type (lmax (lmax (lmax i j) k) l) data precodeBA-rel {b₀ : B} : {a₁ : A} → precodeBA b₀ a₁ → precodeBA b₀ a₁ → Type (lmax (lmax (lmax i j) k) l) data precodeBB-rel {b₀} where pcBBr-idp₀-idp₀ : ∀ {d} pcBB → precodeBB-rel (pcBB bb⟦ d ⟧a idp₀ ba⟦ d ⟧b idp₀) pcBB pcBBr-switch : ∀ {d₀ d₁ : D} pcBB (pC : h d₀ =₀ h d₁) → precodeBB-rel (pcBB bb⟦ d₀ ⟧a ap₀ f pC ba⟦ d₁ ⟧b idp₀) (pcBB bb⟦ d₀ ⟧a idp₀ ba⟦ d₀ ⟧b ap₀ g pC) pcBBr-cong : ∀ {d b₁ pcBA₁ pcBA₂} (r : precodeBA-rel pcBA₁ pcBA₂) (pB : g (h d) =₀ b₁) → precodeBB-rel (pcBA₁ ba⟦ d ⟧b pB) (pcBA₂ ba⟦ d ⟧b pB) data precodeBA-rel {b₀} where pcBAr-idp₀-idp₀ : ∀ {d} pcBA → precodeBA-rel (pcBA ba⟦ d ⟧b idp₀ bb⟦ d ⟧a idp₀) pcBA pcBAr-cong : ∀ {d a₁ pcBB₁ pcBB₂} (r : precodeBB-rel pcBB₁ pcBB₂) (pA : f (h d) =₀ a₁) → precodeBA-rel (pcBB₁ bb⟦ d ⟧a pA) (pcBB₂ bb⟦ d ⟧a pA) codeBB : B → B → Type (lmax (lmax (lmax i j) k) l) codeBB b₀ b₁ = SetQuot (precodeBB-rel {b₀} {b₁}) codeBA : B → A → Type (lmax (lmax (lmax i j) k) l) codeBA b₀ a₁ = SetQuot (precodeBA-rel {b₀} {a₁}) c-bba : ∀ {a₀} d {a₁} (pc : codeBB a₀ (g (h d))) (pA : f (h d) =₀ a₁) → codeBA a₀ a₁ c-bba d {a₁} c pA = SetQuot-rec SetQuot-is-set (λ pc → q[ pc-bba d pc pA ]) (λ r → quot-rel $ pcBAr-cong r pA) c c-bab : ∀ {a₀} d {b₁} (pc : codeBA a₀ (f (h d))) (pB : g (h d) =₀ b₁) → codeBB a₀ b₁ c-bab d {a₁} c pB = SetQuot-rec SetQuot-is-set (λ pc → q[ pc-bab d pc pB ]) (λ r → quot-rel $ pcBBr-cong r pB) c -- codeBP abstract pcBB-idp₀-idp₀-head : ∀ {d₀ b} (pB : g (h d₀) =₀ b) → q[ ⟧b idp₀ bb⟦ d₀ ⟧a idp₀ ba⟦ d₀ ⟧b pB ] == q[ ⟧b pB ] :> codeBB _ b pcBB-idp₀-idp₀-head {d₀} = Trunc-elim (λ _ → =-preserves-set SetQuot-is-set) lemma where lemma : ∀ {b} (pB : g (h d₀) == b) → q[ ⟧b idp₀ bb⟦ d₀ ⟧a idp₀ ba⟦ d₀ ⟧b [ pB ] ] == q[ ⟧b [ pB ] ] :> codeBB _ b lemma idp = quot-rel $ pcBBr-idp₀-idp₀ (⟧b idp₀) pcBA-prepend : ∀ {b₀} d₁ {b₂} → b₀ =₀ g (h d₁) → precodeBA (g (h d₁)) b₂ → precodeBA b₀ b₂ pcBB-prepend : ∀ {b₀} d₁ {a₂} → b₀ =₀ g (h d₁) → precodeBB (g (h d₁)) a₂ → precodeBB b₀ a₂ pcBA-prepend d₁ pB (pc-bba d pc pA) = pc-bba d (pcBB-prepend d₁ pB pc) pA pcBB-prepend d₁ pB (pc-b pB₁) = pc-bab d₁ (pc-bba d₁ (pc-b pB) idp₀) pB₁ pcBB-prepend d₁ pB (pc-bab d pc pB₁) = pc-bab d (pcBA-prepend d₁ pB pc) pB₁ abstract pcBA-prepend-idp₀ : ∀ {d₀ b₁} (pcBA : precodeBA (g (h d₀)) b₁) → q[ pcBA-prepend d₀ idp₀ pcBA ] == q[ pcBA ] :> codeBA (g (h d₀)) b₁ pcBB-prepend-idp₀ : ∀ {d₀ a₁} (pcBB : precodeBB (g (h d₀)) a₁) → q[ pcBB-prepend d₀ idp₀ pcBB ] == q[ pcBB ] :> codeBB (g (h d₀)) a₁ pcBA-prepend-idp₀ (pc-bba d pc pB) = pcBB-prepend-idp₀ pc |in-ctx λ c → c-bba d c pB pcBB-prepend-idp₀ (pc-b pB) = pcBB-idp₀-idp₀-head pB pcBB-prepend-idp₀ (pc-bab d pc pB) = pcBA-prepend-idp₀ pc |in-ctx λ c → c-bab d c pB transp-cBA-l : ∀ d {b₀ a₁} (p : g (h d) == b₀) (pcBA : precodeBA (g (h d)) a₁) → transport (λ x → codeBA x a₁) p q[ pcBA ] == q[ pcBA-prepend d [ ! p ] pcBA ] transp-cBA-l d idp pcBA = ! $ pcBA-prepend-idp₀ pcBA transp-cBB-l : ∀ d {b₀ b₁} (p : g (h d) == b₀) (pcBB : precodeBB (g (h d)) b₁) → transport (λ x → codeBB x b₁) p q[ pcBB ] == q[ pcBB-prepend d [ ! p ] pcBB ] transp-cBB-l d idp pcBB = ! $ pcBB-prepend-idp₀ pcBB transp-cBA-r : ∀ d {b₀ a₁} (p : f (h d) == a₁) (pcBA : precodeBA b₀ (f (h d))) → transport (λ x → codeBA b₀ x) p q[ pcBA ] == q[ pcBA ba⟦ d ⟧b idp₀ bb⟦ d ⟧a [ p ] ] transp-cBA-r d idp pcBA = ! $ quot-rel $ pcBAr-idp₀-idp₀ pcBA transp-cBB-r : ∀ d {b₀ b₁} (p : g (h d) == b₁) (pcBB : precodeBB b₀ (g (h d))) → transport (λ x → codeBB b₀ x) p q[ pcBB ] == q[ pcBB bb⟦ d ⟧a idp₀ ba⟦ d ⟧b [ p ] ] transp-cBB-r d idp pcBB = ! $ quot-rel $ pcBBr-idp₀-idp₀ pcBB module CodeBAEquivCodeBB (b₀ : B) where eqv-on-image : (d : D) → codeBA b₀ (f (h d)) ≃ codeBB b₀ (g (h d)) eqv-on-image d = equiv to from to-from from-to where to = λ c → c-bab d c idp₀ from = λ c → c-bba d c idp₀ abstract from-to : ∀ cBA → from (to cBA) == cBA from-to = SetQuot-elim (λ _ → =-preserves-set SetQuot-is-set) (λ pcBA → quot-rel (pcBAr-idp₀-idp₀ pcBA)) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) to-from : ∀ cBB → to (from cBB) == cBB to-from = SetQuot-elim (λ _ → =-preserves-set SetQuot-is-set) (λ pcBB → quot-rel (pcBBr-idp₀-idp₀ pcBB)) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) abstract eqv-is-const : ∀ d₁ d₂ (p : h d₁ == h d₂) → eqv-on-image d₁ == eqv-on-image d₂ [ (λ c → codeBA b₀ (f c) ≃ codeBB b₀ (g c)) ↓ p ] eqv-is-const d₁ d₂ p = ↓-Subtype-in (λ d → is-equiv-prop) $ ↓-→-from-transp $ λ= $ SetQuot-elim (λ _ → =-preserves-set SetQuot-is-set) (λ pcBA → transport (λ c → codeBB b₀ (g c)) p q[ pcBA ba⟦ d₁ ⟧b idp₀ ] =⟨ ap-∘ (codeBB b₀) g p |in-ctx (λ p → coe p q[ pcBA ba⟦ d₁ ⟧b idp₀ ]) ⟩ transport (codeBB b₀) (ap g p) q[ pcBA ba⟦ d₁ ⟧b idp₀ ] =⟨ transp-cBB-r d₁ (ap g p) (pcBA ba⟦ d₁ ⟧b idp₀) ⟩ q[ pcBA ba⟦ d₁ ⟧b idp₀ bb⟦ d₁ ⟧a idp₀ ba⟦ d₁ ⟧b [ ap g p ] ] =⟨ ! $ quot-rel $ pcBBr-switch (pcBA ba⟦ d₁ ⟧b idp₀) [ p ] ⟩ q[ pcBA ba⟦ d₁ ⟧b idp₀ bb⟦ d₁ ⟧a [ ap f p ] ba⟦ d₂ ⟧b idp₀ ] =⟨ ! $ transp-cBA-r d₁ (ap f p) pcBA |in-ctx (λ c → c-bab d₂ c idp₀) ⟩ c-bab d₂ (transport (codeBA b₀) (ap f p) q[ pcBA ]) idp₀ =⟨ ∘-ap (codeBA b₀) f p |in-ctx (λ p → coe p q[ pcBA ]) |in-ctx (λ c → c-bab d₂ c idp₀) ⟩ c-bab d₂ (transport (λ c → codeBA b₀ (f c)) p q[ pcBA ]) idp₀ =∎) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) module SE = SurjExt (λ c → ≃-is-set SetQuot-is-set SetQuot-is-set) h h-is-surj eqv-on-image eqv-is-const abstract eqv : ∀ c → codeBA b₀ (f c) ≃ codeBB b₀ (g c) eqv = SE.ext eqv-β : ∀ d → eqv (h d) == eqv-on-image d eqv-β = SE.β module CodeBP (b₀ : B) = PushoutRec (codeBA b₀) (codeBB b₀) (ua ∘ CodeBAEquivCodeBB.eqv b₀) codeBP : B → Pushout span → Type (lmax (lmax (lmax i j) k) l) codeBP = CodeBP.f abstract codeBP-level : ∀ {a₀ p₁} → is-set (codeBP a₀ p₁) codeBP-level {a₀} {p₁} = Pushout-elim {P = λ p₁ → is-set (codeBP a₀ p₁)} (λ a₁ → SetQuot-is-set) (λ b₁ → SetQuot-is-set) (λ c₁ → prop-has-all-paths-↓ is-set-is-prop) p₁ codeBP-is-set = codeBP-level abstract transp-cBP-glue : ∀ {b₀} d₁ (pcBA : precodeBA b₀ (f (h d₁))) → transport (codeBP b₀) (glue (h d₁)) q[ pcBA ] == q[ pcBA ba⟦ d₁ ⟧b idp₀ ] transp-cBP-glue {b₀} d₁ pcBA = transport (codeBP b₀) (glue (h d₁)) q[ pcBA ] =⟨ ap (λ e → coe e q[ pcBA ]) (CodeBP.glue-β b₀ (h d₁) ∙ ap ua (CodeBAEquivCodeBB.eqv-β b₀ d₁)) ⟩ coe (ua (CodeBAEquivCodeBB.eqv-on-image b₀ d₁)) q[ pcBA ] =⟨ coe-β (CodeBAEquivCodeBB.eqv-on-image b₀ d₁) q[ pcBA ] ⟩ q[ pcBA ba⟦ d₁ ⟧b idp₀ ] =∎ transp-cBP-!glue : ∀ {b₀} d₁ (pcBB : precodeBB b₀ (g (h d₁))) → transport (codeBP b₀) (! (glue (h d₁))) q[ pcBB ] == q[ pcBB bb⟦ d₁ ⟧a idp₀ ] transp-cBP-!glue {b₀} d₁ pcBB = transport (codeBP b₀) (! (glue (h d₁))) q[ pcBB ] =⟨ ap (λ e → coe e q[ pcBB ]) (ap-! (codeBP b₀) (glue (h d₁))) ∙ coe-! (ap (codeBP b₀) (glue (h d₁))) q[ pcBB ] ⟩ transport! (codeBP b₀) (glue (h d₁)) q[ pcBB ] =⟨ ap (λ e → coe! e q[ pcBB ]) (CodeBP.glue-β b₀ (h d₁) ∙ ap ua (CodeBAEquivCodeBB.eqv-β b₀ d₁)) ⟩ coe! (ua (CodeBAEquivCodeBB.eqv-on-image b₀ d₁)) q[ pcBB ] =⟨ coe!-β (CodeBAEquivCodeBB.eqv-on-image b₀ d₁) q[ pcBB ] ⟩ q[ pcBB bb⟦ d₁ ⟧a idp₀ ] =∎ -- code to path pcBA-to-path : ∀ {b₀ a₁} → precodeBA b₀ a₁ → right b₀ =₀ left a₁ :> Pushout span pcBB-to-path : ∀ {b₀ b₁} → precodeBB b₀ b₁ → right b₀ =₀ right b₁ :> Pushout span pcBA-to-path (pc-bba d pc pA) = pcBB-to-path pc ∙₀' !₀ [ glue (h d) ] ∙₀' ap₀ left pA pcBB-to-path (pc-b pB) = ap₀ right pB pcBB-to-path (pc-bab d pc pB) = pcBA-to-path pc ∙₀' [ glue (h d) ] ∙₀' ap₀ right pB abstract pcBA-to-path-rel : ∀ {b₀ a₁} {pcBA₀ pcBA₁ : precodeBA b₀ a₁} → precodeBA-rel pcBA₀ pcBA₁ → pcBA-to-path pcBA₀ == pcBA-to-path pcBA₁ pcBB-to-path-rel : ∀ {b₀ b₁} {pcBB₀ pcBB₁ : precodeBB b₀ b₁} → precodeBB-rel pcBB₀ pcBB₁ → pcBB-to-path pcBB₀ == pcBB-to-path pcBB₁ pcBA-to-path-rel (pcBAr-idp₀-idp₀ pcBA) = ∙₀'-assoc (pcBA-to-path pcBA) [ glue (h _) ] [ ! (glue (h _)) ] ∙ ap (λ p → pcBA-to-path pcBA ∙₀' [ p ]) (!-inv'-r (glue (h _))) ∙ ∙₀'-unit-r (pcBA-to-path pcBA) pcBA-to-path-rel (pcBAr-cong pcBB pA) = pcBB-to-path-rel pcBB |in-ctx _∙₀' !₀ [ glue (h _) ] ∙₀' ap₀ left pA pcBB-to-path-rel (pcBBr-idp₀-idp₀ pcBB) = ∙₀'-assoc (pcBB-to-path pcBB) [ ! (glue (h _)) ] [ glue (h _) ] ∙ ap (λ p → pcBB-to-path pcBB ∙₀' [ p ]) (!-inv'-l (glue (h _))) ∙ ∙₀'-unit-r (pcBB-to-path pcBB) pcBB-to-path-rel (pcBBr-switch pcBB pC) = ap (_∙₀' [ glue (h _) ]) (! (∙₀'-assoc (pcBB-to-path pcBB) [ ! (glue (h _)) ] (ap₀ left (ap₀ f pC)))) ∙ ∙₀'-assoc (pcBB-to-path pcBB ∙₀' [ ! (glue (h _)) ]) (ap₀ left (ap₀ f pC)) [ glue (h _) ] ∙ ap ((pcBB-to-path pcBB ∙₀' [ ! (glue (h _)) ]) ∙₀'_) (natural₀ pC) where natural : ∀ {c₀ c₁} (p : c₀ == c₁) → (ap left (ap f p) ∙' glue c₁) == (glue c₀ ∙' ap right (ap g p)) :> (left (f c₀) == right (g c₁) :> Pushout span) natural idp = ∙'-unit-l (glue _) natural₀ : ∀ {c₀ c₁} (p : c₀ =₀ c₁) → (ap₀ left (ap₀ f p) ∙₀' [ glue c₁ ]) == ([ glue c₀ ] ∙₀' ap₀ right (ap₀ g p)) :> (left (f c₀) =₀ right (g c₁) :> Pushout span) natural₀ = Trunc-elim (λ _ → =-preserves-set Trunc-level) (ap [_] ∘ natural) pcBB-to-path-rel (pcBBr-cong pcBA pB) = pcBA-to-path-rel pcBA |in-ctx _∙₀' [ glue (h _) ] ∙₀' ap₀ right pB decodeBA : ∀ {b₀ a₁} → codeBA b₀ a₁ → right b₀ =₀ left a₁ :> Pushout span decodeBB : ∀ {b₀ b₁} → codeBB b₀ b₁ → right b₀ =₀ right b₁ :> Pushout span decodeBA = SetQuot-rec Trunc-level pcBA-to-path pcBA-to-path-rel decodeBB = SetQuot-rec Trunc-level pcBB-to-path pcBB-to-path-rel abstract decodeBA-is-decodeBB : ∀ {b₀} c₁ → decodeBA {b₀} {f c₁} == decodeBB {b₀} {g c₁} [ (λ p₁ → codeBP b₀ p₁ → right b₀ =₀ p₁) ↓ glue c₁ ] decodeBA-is-decodeBB {b₀ = b₀} = SurjExt.ext (λ _ → ↓-preserves-level $ Π-is-set λ _ → Trunc-level) h h-is-surj (λ d₁ → ↓-→-from-transp $ λ= $ SetQuot-elim {P = λ cBA → transport (right b₀ =₀_) (glue (h d₁)) (decodeBA cBA) == decodeBB (transport (codeBP b₀) (glue (h d₁)) cBA)} (λ _ → =-preserves-set Trunc-level) (λ pcBA → transport (right b₀ =₀_) (glue (h d₁)) (pcBA-to-path pcBA) =⟨ transp₀-cst=₀idf [ glue (h d₁) ] (pcBA-to-path pcBA) ⟩ pcBA-to-path pcBA ∙₀' [ glue (h d₁) ] =⟨ ! $ ap (λ e → decodeBB (–> e q[ pcBA ])) (CodeBAEquivCodeBB.eqv-β b₀ d₁) ⟩ decodeBB (–> (CodeBAEquivCodeBB.eqv b₀ (h d₁)) q[ pcBA ]) =⟨ ! $ ap decodeBB (coe-β (CodeBAEquivCodeBB.eqv b₀ (h d₁)) q[ pcBA ]) ⟩ decodeBB (coe (ua (CodeBAEquivCodeBB.eqv b₀ (h d₁))) q[ pcBA ]) =⟨ ! $ ap (λ p → decodeBB (coe p q[ pcBA ])) (CodeBP.glue-β b₀ (h d₁)) ⟩ decodeBB (transport (codeBP b₀) (glue (h d₁)) q[ pcBA ]) =∎) (λ _ → prop-has-all-paths-↓ $ Trunc-level {n = 0} _ _)) (λ _ _ _ → prop-has-all-paths-↓ $ ↓-level $ Π-is-set λ _ → Trunc-level) decodeBP : ∀ {b₀ p₁} → codeBP b₀ p₁ → right b₀ =₀ p₁ decodeBP {p₁ = p₁} = Pushout-elim (λ a₁ → decodeBA) (λ b₁ → decodeBB) decodeBA-is-decodeBB p₁
{ "alphanum_fraction": 0.5407482148, "avg_line_length": 47.7185185185, "ext": "agda", "hexsha": "18db204ee459d244d3352f9fb864451465b18c7a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/vankampen/CodeBP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/vankampen/CodeBP.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/vankampen/CodeBP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5715, "size": 12884 }
------------------------------------------------------------------------ -- Two eliminators for Delay-monad.Alternative.Delay (A / R) ------------------------------------------------------------------------ -- This module is largely based on (but perhaps not quite identical -- to) the development underlying Theorem 1 in "Quotienting the Delay -- Monad by Weak Bisimilarity" by Chapman, Uustalu and Veltri. {-# OPTIONS --cubical --sized-types #-} module Delay-monad.Alternative.Eliminators where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (↑) open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms.Univalence equality-with-paths import Equivalence equality-with-J as Eq open import Equivalence-relation equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Truncation.Propositional equality-with-paths open import Quotient equality-with-paths open import Surjection equality-with-J using (_↠_) open import Univalence-axiom equality-with-J open import Delay-monad.Alternative open import Delay-monad.Alternative.Equivalence open import Delay-monad.Alternative.Properties ------------------------------------------------------------------------ -- A map function private module _ {a b} {A : Type a} {B : Type b} where -- A map function for Maybe. mapᴹ : (A → B) → Maybe A → Maybe B mapᴹ = ⊎-map id -- If mapᴹ f x does not have a value, then x does not have a -- value. mapᴹ-↑ : ∀ {f : A → B} x → mapᴹ f x ↑ → x ↑ mapᴹ-↑ nothing _ = refl mapᴹ-↑ (just _) () -- The function mapᴹ f preserves LE. mapᴹ-LE : ∀ {f : A → B} {x y} → LE x y → LE (mapᴹ f x) (mapᴹ f y) mapᴹ-LE = ⊎-map (cong (mapᴹ _)) (Σ-map (cong (mapᴹ _)) (_∘ mapᴹ-↑ _)) -- The function mapᴹ f ∘_ preserves Increasing. mapᴹ-Increasing : ∀ {f : A → B} {g} → Increasing g → Increasing (mapᴹ f ∘ g) mapᴹ-Increasing = mapᴹ-LE ∘_ -- A map function for Delay. map : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → Delay A → Delay B map f = Σ-map (mapᴹ f ∘_) mapᴹ-Increasing ------------------------------------------------------------------------ -- The first eliminator private variable a r : Level A B : Type a R : A → A → Type r f : A → B -- Some abstract redefinitions, intended to make the code type-check -- faster. private abstract ℕ→/-comm-to′ : (ℕ → A) / (ℕ →ᴾ R) → (ℕ → A / R) ℕ→/-comm-to′ = ℕ→/-comm-to ℕ→/-comm-to′-[] : ℕ→/-comm-to′ {R = R} [ f ] ≡ [_] ∘ f ℕ→/-comm-to′-[] = refl ℕ→/-comm′ : {A : Type a} {R : A → A → Type r} → Axiom-of-countable-choice (a ⊔ r) → Is-equivalence-relation R → (∀ {x y} → Is-proposition (R x y)) → (ℕ → A) / (ℕ →ᴾ R) ↔ (ℕ → A / R) ℕ→/-comm′ {A = A} {R} cc R-equiv R-prop = record { surjection = record { logical-equivalence = record { to = ℕ→/-comm-to′ ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where iso = ℕ→/-comm cc prop-ext R-equiv R-prop abstract from : (ℕ → A / R) → (ℕ → A) / (ℕ →ᴾ R) from = _↔_.from iso to∘from : ∀ f → ℕ→/-comm-to′ (from f) ≡ f to∘from = _↔_.right-inverse-of iso from∘to : ∀ f → from (ℕ→/-comm-to′ f) ≡ f from∘to = _↔_.left-inverse-of iso abstract Maybe/-comm′ : Maybe A / Maybeᴾ R ↔ Maybe (A / R) Maybe/-comm′ = Maybe/-comm Maybe/-comm′-[] : _↔_.to Maybe/-comm′ ∘ [_] ≡ ⊎-map id ([_] {R = R}) Maybe/-comm′-[] = Maybe/-comm-[] -- There is a function from (ℕ → Maybe A) / (ℕ →ᴾ Maybeᴾ R) to -- Delay (A / R). →Maybe/→ : (ℕ → Maybe A) / (ℕ →ᴾ Maybeᴾ R) → Delay (A / R) →Maybe/→ f = _↠_.to →↠Delay-function (_↔_.to Maybe/-comm′ ∘ ℕ→/-comm-to′ f) -- A "computation" rule for →Maybe/→. →Maybe/→-[] : →Maybe/→ [ f ] ≡ _↠_.to →↠Delay-function (_↔_.to (Maybe/-comm′ {R = R}) ∘ [_] ∘ f) →Maybe/→-[] = cong (λ g → _↠_.to →↠Delay-function (_↔_.to Maybe/-comm′ ∘ g)) ℕ→/-comm-to′-[] -- The definitions below make use of some assumptions: countable -- choice and a propositional equivalence relation R. module _ {a r} {A : Type a} {R : A → A → Type r} (cc : Axiom-of-countable-choice (a ⊔ r)) (R-equiv : Is-equivalence-relation R) (R-prop : ∀ {x y} → Is-proposition (R x y)) where private -- An abbreviation. ℕ→/-comm″ = ℕ→/-comm′ cc (Maybeᴾ-preserves-Is-equivalence-relation R-equiv) (λ {x} → Maybeᴾ-preserves-Is-proposition R-prop {x = x}) -- →Maybe/→ has a right inverse. →Maybe/↠ : (ℕ → Maybe A) / (ℕ →ᴾ Maybeᴾ R) ↠ Delay (A / R) →Maybe/↠ = (ℕ → Maybe A) / (ℕ →ᴾ Maybeᴾ R) ↔⟨ ℕ→/-comm″ ⟩ (ℕ → Maybe A / Maybeᴾ R) ↔⟨ ∀-cong ext (λ _ → Maybe/-comm′) ⟩ (ℕ → Maybe (A / R)) ↝⟨ →↠Delay-function ⟩□ Delay (A / R) □ private to-→Maybe/↠ : _↠_.to →Maybe/↠ ≡ →Maybe/→ to-→Maybe/↠ = refl -- On part of the domain of →Maybe/→ the right inverse is also a -- left inverse. →Maybe/↠-partial-left-inverse : (x : Delay A) → _↠_.from →Maybe/↠ (→Maybe/→ [ proj₁ x ]) ≡ [ proj₁ x ] →Maybe/↠-partial-left-inverse (f , inc) = _↠_.from →Maybe/↠ (→Maybe/→ [ f ]) ≡⟨ cong (_↠_.from →Maybe/↠) →Maybe/→-[] ⟩ _↔_.from ℕ→/-comm″ (λ n → _↔_.from Maybe/-comm′ $ _↠_.from →↠Delay-function (_↠_.to →↠Delay-function (_↔_.to Maybe/-comm′ ∘ [_] ∘ f)) n) ≡⟨ cong (λ g → _↔_.from ℕ→/-comm″ λ n → _↔_.from Maybe/-comm′ (_↠_.from →↠Delay-function (_↠_.to →↠Delay-function (g ∘ f)) n)) $ Maybe/-comm′-[] ⟩ _↔_.from ℕ→/-comm″ (λ n → _↔_.from Maybe/-comm′ $ _↠_.from →↠Delay-function (_↠_.to →↠Delay-function (mapᴹ [_] ∘ f)) n) ≡⟨⟩ _↔_.from ℕ→/-comm″ (λ n → _↔_.from Maybe/-comm′ $ _↠_.from →↠Delay-function (_↠_.to →↠Delay-function (_↠_.from →↠Delay-function (map [_] (f , inc)))) n) ≡⟨ cong (λ x → _↔_.from ℕ→/-comm″ λ n → _↔_.from Maybe/-comm′ (_↠_.from →↠Delay-function x n)) $ _↠_.right-inverse-of →↠Delay-function (map [_] (f , inc)) ⟩ _↔_.from ℕ→/-comm″ (λ n → _↔_.from Maybe/-comm′ $ _↠_.from →↠Delay-function (map [_] (f , inc)) n) ≡⟨⟩ _↔_.from ℕ→/-comm″ (λ n → _↔_.from Maybe/-comm′ $ mapᴹ [_] (f n)) ≡⟨ cong (λ g → _↔_.from ℕ→/-comm″ λ n → _↔_.from Maybe/-comm′ (g (f n))) $ sym Maybe/-comm′-[] ⟩ _↔_.from ℕ→/-comm″ (λ n → _↔_.from Maybe/-comm′ (_↔_.to Maybe/-comm′ [ f n ])) ≡⟨ cong (_↔_.from ℕ→/-comm″) (⟨ext⟩ λ n → _↔_.left-inverse-of Maybe/-comm′ [ f n ]) ⟩ _↔_.from ℕ→/-comm″ (λ n → [ f n ]) ≡⟨ cong (_↔_.from ℕ→/-comm″) $ sym ℕ→/-comm-to′-[] ⟩ _↔_.from ℕ→/-comm″ (ℕ→/-comm-to′ [ f ]) ≡⟨ _↔_.left-inverse-of ℕ→/-comm″ [ f ] ⟩∎ [ f ] ∎ -- A quotient-like eliminator for Delay (A / R). Delay/-elim₁ : ∀ {p} (P : Delay (A / R) → Type p) (p-[] : (f : ℕ → Maybe A) → P (→Maybe/→ [ f ])) → (∀ {f g} (r : (ℕ →ᴾ Maybeᴾ R) f g) → subst P (cong →Maybe/→ ([]-respects-relation {x = f} {y = g} r)) (p-[] f) ≡ p-[] g) → (∀ x → Is-set (P x)) → ∀ x → P x Delay/-elim₁ = ↠-eliminator →Maybe/↠ -- Simplification lemma for Delay/-elim₁. Delay/-elim₁-[] : ∀ {p} (P : Delay (A / R) → Type p) (p-[] : (f : ℕ → Maybe A) → P (→Maybe/→ [ f ])) (ok : ∀ {f g} (r : (ℕ →ᴾ Maybeᴾ R) f g) → subst P (cong →Maybe/→ ([]-respects-relation {x = f} {y = g} r)) (p-[] f) ≡ p-[] g) (P-set : ∀ x → Is-set (P x)) (x : Delay A) → Delay/-elim₁ P p-[] ok P-set (→Maybe/→ [ proj₁ x ]) ≡ p-[] (proj₁ x) Delay/-elim₁-[] P p-[] ok P-set x = ↠-eliminator-[] →Maybe/↠ P p-[] ok P-set (_↠_.from →↠Delay-function x) (→Maybe/↠-partial-left-inverse x) ------------------------------------------------------------------------ -- The second eliminator -- Pointwise lifting of binary relations to the delay monad. Delayᴾ : ∀ {a r} {A : Type a} → (A → A → Type r) → Delay A → Delay A → Type r Delayᴾ R = (ℕ →ᴾ Maybeᴾ R) on proj₁ module _ {a r} {A : Type a} {R : A → A → Type r} where -- The function map ([_] {R = R}) respects Delayᴾ R. map-[]-cong : ∀ x y → Delayᴾ R x y → map ([_] {R = R}) x ≡ map [_] y map-[]-cong x y r = _↔_.to (equality-characterisation /-is-set) (⟨ext⟩ λ n → lemma (proj₁ x n) (proj₁ y n) (r n)) where lemma : ∀ x y → Maybeᴾ R x y → mapᴹ [_] x ≡ mapᴹ [_] y lemma nothing nothing = const refl lemma (just x) (just y) = cong inj₂ ∘ []-respects-relation lemma nothing (just y) () lemma (just x) nothing () -- The function -- _↠_.from →↠Delay-function ∘ _↠_.to →↠Delay-function respects -- ℕ →ᴾ Maybeᴾ R. from-to-→↠Delay-function-cong : let open _↠_ →↠Delay-function in (f g : ℕ → Maybe A) → (ℕ →ᴾ Maybeᴾ R) f g → (ℕ →ᴾ Maybeᴾ R) (from (to f)) (from (to g)) from-to-→↠Delay-function-cong f g r = helper f g r (f 0) (g 0) (r 0) where helper : ∀ f g → (ℕ →ᴾ Maybeᴾ R) f g → ∀ x y → Maybeᴾ R x y → (ℕ →ᴾ Maybeᴾ R) (proj₁ (Delay⇔Delay.from (Delay⇔Delay.To.to′ f x))) (proj₁ (Delay⇔Delay.from (Delay⇔Delay.To.to′ g y))) helper f g rs (just x) (just y) r n = r helper f g rs nothing nothing r zero = r helper f g rs nothing nothing r (suc n) = helper (f ∘ suc) (g ∘ suc) (rs ∘ suc) (f 1) (g 1) (rs 1) n helper _ _ _ (just _) nothing () helper _ _ _ nothing (just _) () -- A simplification lemma for →Maybe/→. →Maybe/→-[]′ : (f : ℕ → Maybe A) → →Maybe/→ [ f ] ≡ map ([_] {R = R}) (_↠_.to →↠Delay-function f) →Maybe/→-[]′ f = _↔_.to (equality-characterisation /-is-set) (proj₁ (→Maybe/→ [ f ]) ≡⟨ cong proj₁ →Maybe/→-[] ⟩ proj₁ (_↠_.to →↠Delay-function (_↔_.to Maybe/-comm′ ∘ [_] ∘ f)) ≡⟨ cong (λ g → proj₁ (_↠_.to →↠Delay-function (g ∘ f))) $ Maybe/-comm′-[] ⟩ proj₁ (_↠_.to →↠Delay-function (mapᴹ [_] ∘ f)) ≡⟨ ⟨ext⟩ (helper f (f 0)) ⟩ mapᴹ [_] ∘ proj₁ (_↠_.to →↠Delay-function f) ≡⟨⟩ proj₁ (map [_] (_↠_.to →↠Delay-function f)) ∎) where helper : ∀ f x n → proj₁ (Delay⇔Delay.from (Delay⇔Delay.To.to′ (mapᴹ [_] ∘ f) (mapᴹ [_] x))) n ≡ mapᴹ [_] (proj₁ (Delay⇔Delay.from (Delay⇔Delay.To.to′ f x)) n) helper f (just x) n = refl helper f nothing zero = refl helper f nothing (suc n) = helper (f ∘ suc) (f 1) n -- The definitions below make use of some assumptions: countable -- choice and a propositional equivalence relation R. module _ {a p r} {A : Type a} {R : A → A → Type r} (cc : Axiom-of-countable-choice (a ⊔ r)) (R-equiv : Is-equivalence-relation R) (R-prop : ∀ {x y} → Is-proposition (R x y)) (P : Delay (A / R) → Type p) (p-[] : (x : Delay A) → P (map [_] x)) (ok : ∀ {x y} (r : Delayᴾ R x y) → subst P (map-[]-cong x y r) (p-[] x) ≡ p-[] y) (P-set : ∀ x → Is-set (P x)) where private lemma₁ = sym ∘ →Maybe/→-[]′ {R = R} lemma₂ : ∀ {f g} r → subst P (cong →Maybe/→ ([]-respects-relation {x = f} {y = g} r)) (subst P (lemma₁ f) (p-[] (_↠_.to →↠Delay-function f))) ≡ subst P (lemma₁ g) (p-[] (_↠_.to →↠Delay-function g)) lemma₂ {f} {g} r = let p = p-[] (_↠_.to →↠Delay-function f) r′ = cong →Maybe/→ ([]-respects-relation {x = f} {y = g} r) r″ = trans (trans (lemma₁ f) r′) (sym (lemma₁ g)) in subst P r′ (subst P (lemma₁ f) p) ≡⟨ subst-subst P (lemma₁ f) r′ p ⟩ subst P (trans (lemma₁ f) r′) p ≡⟨ cong (λ eq → subst P eq p) $ sym $ trans-[trans-sym]- _ (lemma₁ g) ⟩ subst P (trans r″ (lemma₁ g)) p ≡⟨ sym $ subst-subst P (trans (trans (lemma₁ f) r′) (sym (lemma₁ g))) (lemma₁ g) p ⟩ subst P (lemma₁ g) (subst P r″ p) ≡⟨ cong (λ eq → subst P (lemma₁ g) (subst P eq p)) $ Delay-closure 0 /-is-set r″ (map-[]-cong (_↠_.to →↠Delay-function f) (_↠_.to →↠Delay-function g) (from-to-→↠Delay-function-cong f g r)) ⟩ subst P (lemma₁ g) (subst P (map-[]-cong (_↠_.to →↠Delay-function f) (_↠_.to →↠Delay-function g) (from-to-→↠Delay-function-cong f g r)) p) ≡⟨ cong (subst P (lemma₁ g)) (ok _) ⟩∎ subst P (lemma₁ g) (p-[] (_↠_.to →↠Delay-function g)) ∎ -- A second quotient-like eliminator for Delay (A / R). -- -- This eliminator corresponds to Theorem 1 in "Quotienting the -- Delay Monad by Weak Bisimilarity" by Chapman, Uustalu and -- Veltri. Delay/-elim₂ : ∀ x → P x Delay/-elim₂ = Delay/-elim₁ cc R-equiv R-prop P (λ f → subst P (lemma₁ f) (p-[] (_↠_.to →↠Delay-function f))) lemma₂ P-set -- Simplification lemma for Delay/-elim₂. Delay/-elim₂-[] : ∀ x → Delay/-elim₂ (map [_] x) ≡ p-[] x Delay/-elim₂-[] x = Delay/-elim₁ cc R-equiv R-prop P (λ f → subst P (lemma₁ f) (p-[] (_↠_.to →↠Delay-function f))) lemma₂ P-set (map [_] x) ≡⟨ sym $ dcong (Delay/-elim₁ cc R-equiv R-prop P (λ f → subst P (lemma₁ f) (p-[] (_↠_.to →↠Delay-function f))) lemma₂ P-set) lemma₃ ⟩ subst P lemma₃ (Delay/-elim₁ cc R-equiv R-prop P (λ f → subst P (lemma₁ f) (p-[] (_↠_.to →↠Delay-function f))) lemma₂ P-set (→Maybe/→ [ proj₁ x ])) ≡⟨ cong (subst P lemma₃) $ Delay/-elim₁-[] cc R-equiv R-prop P _ lemma₂ P-set x ⟩ subst P lemma₃ (subst P (lemma₁ (proj₁ x)) (p-[] (_↠_.to →↠Delay-function (proj₁ x)))) ≡⟨ subst-subst P (lemma₁ (proj₁ x)) lemma₃ _ ⟩ subst P (trans (lemma₁ (proj₁ x)) lemma₃) (p-[] (_↠_.to →↠Delay-function (proj₁ x))) ≡⟨ cong (λ p → subst P p (p-[] (_↠_.to →↠Delay-function (proj₁ x)))) $ trans--[trans-sym] (lemma₁ (proj₁ x)) (cong (map [_]) $ _↠_.right-inverse-of →↠Delay-function x) ⟩ subst P (cong (map [_]) $ _↠_.right-inverse-of →↠Delay-function x) (p-[] (_↠_.to →↠Delay-function (proj₁ x))) ≡⟨ sym $ subst-∘ P (map [_]) (_↠_.right-inverse-of →↠Delay-function x) ⟩ subst (P ∘ map [_]) (_↠_.right-inverse-of →↠Delay-function x) (p-[] (_↠_.to →↠Delay-function (proj₁ x))) ≡⟨ dcong p-[] (_↠_.right-inverse-of →↠Delay-function x) ⟩∎ p-[] x ∎ where lemma₃ = →Maybe/→ [ proj₁ x ] ≡⟨ sym $ lemma₁ (proj₁ x) ⟩ map [_] (_↠_.to →↠Delay-function (proj₁ x)) ≡⟨ cong (map [_]) $ _↠_.right-inverse-of →↠Delay-function x ⟩∎ map [_] x ∎
{ "alphanum_fraction": 0.4272289839, "avg_line_length": 39.8758465011, "ext": "agda", "hexsha": "7f66710aa14cc415be8acedfcf8ab01cca4abb54", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Delay-monad/Alternative/Eliminators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Delay-monad/Alternative/Eliminators.agda", "max_line_length": 146, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Delay-monad/Alternative/Eliminators.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 5756, "size": 17665 }
module test.Negation where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ -- zerepoch/zerepoch-core/test/data/negation.plc open import Declarative.StdLib.Bool negate : ∀{Γ} → Γ ⊢ boolean ⇒ boolean negate {Γ} = ƛ (if ·⋆ boolean · ` Z · false · true)
{ "alphanum_fraction": 0.7362637363, "avg_line_length": 24.2666666667, "ext": "agda", "hexsha": "7c411a69241eb336b9b50d680142e1a899bccff9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-21T16:38:59.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-13T21:25:19.000Z", "max_forks_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Quantum-One-DLT/zerepoch", "max_forks_repo_path": "zerepoch-metatheory/test/Negation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Quantum-One-DLT/zerepoch", "max_issues_repo_path": "zerepoch-metatheory/test/Negation.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8cf4619e6e496930c9092cf6d64493eff300177", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Quantum-One-DLT/zerepoch", "max_stars_repo_path": "zerepoch-metatheory/test/Negation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 125, "size": 364 }
module Structure.Logic where
{ "alphanum_fraction": 0.8620689655, "avg_line_length": 14.5, "ext": "agda", "hexsha": "76e5e6513666f522368cc5819fb25262e0cb693e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Logic.agda", "max_line_length": 28, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5, "size": 29 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Int.Base where open import Cubical.Core.Everything open import Cubical.Data.Nat data Int : Type₀ where pos : (n : ℕ) → Int negsuc : (n : ℕ) → Int neg : (n : ℕ) → Int neg zero = pos zero neg (suc n) = negsuc n sucInt : Int → Int sucInt (pos n) = pos (suc n) sucInt (negsuc zero) = pos zero sucInt (negsuc (suc n)) = negsuc n predInt : Int → Int predInt (pos zero) = negsuc zero predInt (pos (suc n)) = pos n predInt (negsuc n) = negsuc (suc n) -- Natural number and negative integer literals for Int open import Cubical.Data.Nat.Literals public instance fromNatInt : HasFromNat Int fromNatInt = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n } instance fromNegInt : HasFromNeg Int fromNegInt = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
{ "alphanum_fraction": 0.6575342466, "avg_line_length": 23.6756756757, "ext": "agda", "hexsha": "4ebe23f9b5e55544f59f879d02d967b2266f505c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Int/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Int/Base.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Int/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 296, "size": 876 }
{- This file proves the higher groupoid structure of types for homogeneous and heterogeneous paths -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.GroupoidLaws where open import Cubical.Foundations.Prelude private variable ℓ : Level A : Type ℓ x y z w v : A _⁻¹ : (x ≡ y) → (y ≡ x) x≡y ⁻¹ = sym x≡y infix 40 _⁻¹ -- homogeneous groupoid laws symInvo : (p : x ≡ y) → p ≡ p ⁻¹ ⁻¹ symInvo p = refl rUnit : (p : x ≡ y) → p ≡ p ∙ refl rUnit p j i = compPath-filler p refl j i -- The filler of left unit: lUnit-filler p = -- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∨ i))) -- (refl i) (λ j → compPath-filler refl p i j)) (λ k i → (p (~ k ∧ i ))) (lUnit p) lUnit-filler : {x y : A} (p : x ≡ y) → I → I → I → A lUnit-filler {x = x} p j k i = hfill (λ j → λ { (i = i0) → x ; (i = i1) → p (~ k ∨ j ) ; (k = i0) → p i -- ; (k = i1) → compPath-filler refl p j i }) (inS (p (~ k ∧ i ))) j lUnit : (p : x ≡ y) → p ≡ refl ∙ p lUnit p j i = lUnit-filler p i1 j i symRefl : refl {x = x} ≡ refl ⁻¹ symRefl i = refl compPathRefl : refl {x = x} ≡ refl ∙ refl compPathRefl = rUnit refl -- The filler of right cancellation: rCancel-filler p = -- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∧ ~ i))) -- (λ j → compPath-filler p (p ⁻¹) i j) (refl i)) (λ j i → (p (i ∧ ~ j))) (rCancel p) rCancel-filler : ∀ {x y : A} (p : x ≡ y) → (k j i : I) → A rCancel-filler {x = x} p k j i = hfill (λ k → λ { (i = i0) → x ; (i = i1) → p (~ k ∧ ~ j) -- ; (j = i0) → compPath-filler p (p ⁻¹) k i ; (j = i1) → x }) (inS (p (i ∧ ~ j))) k rCancel : (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl rCancel {x = x} p j i = rCancel-filler p i1 j i rCancel-filler' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → (i j k : I) → A rCancel-filler' {x = x} {y} p i j k = hfill (λ i → λ { (j = i1) → p (~ i ∧ k) ; (k = i0) → x ; (k = i1) → p (~ i) }) (inS (p k)) (~ i) rCancel' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl rCancel' p j k = rCancel-filler' p i0 j k lCancel : (p : x ≡ y) → p ⁻¹ ∙ p ≡ refl lCancel p = rCancel (p ⁻¹) assoc : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → p ∙ q ∙ r ≡ (p ∙ q) ∙ r assoc p q r k = (compPath-filler p q k) ∙ compPath-filler' q r (~ k) -- heterogeneous groupoid laws symInvoP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → symInvo (λ i → A i) j i) x y) p (symP (symP p)) symInvoP p = refl rUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → rUnit (λ i → A i) j i) x y) p (compPathP p refl) rUnitP p j i = compPathP-filler p refl j i lUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → lUnit (λ i → A i) j i) x y) p (compPathP refl p) lUnitP {A = A} {x = x} p k i = comp (λ j → lUnit-filler (λ i → A i) j k i) (λ j → λ { (i = i0) → x ; (i = i1) → p (~ k ∨ j ) ; (k = i0) → p i }) (p (~ k ∧ i )) rCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → rCancel (λ i → A i) j i) x x) (compPathP p (symP p)) refl rCancelP {A = A} {x = x} p j i = comp (λ k → rCancel-filler (λ i → A i) k j i) (λ k → λ { (i = i0) → x ; (i = i1) → p (~ k ∧ ~ j) ; (j = i1) → x }) (p (i ∧ ~ j)) lCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ j → PathP (λ i → lCancel (λ i → A i) j i) y y) (compPathP (symP p) p) refl lCancelP p = rCancelP (symP p) assocP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1} {C_i1 : Type ℓ} {C : (B i1) ≡ C_i1} {w : C i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) (r : PathP (λ i → C i) z w) → PathP (λ j → PathP (λ i → assoc (λ i → A i) B C j i) x w) (compPathP p (compPathP q r)) (compPathP (compPathP p q) r) assocP {A = A} {B = B} {C = C} p q r k i = comp (\ j' → hfill (λ j → λ { (i = i0) → A i0 ; (i = i1) → compPath-filler' (λ i₁ → B i₁) (λ i₁ → C i₁) (~ k) j }) (inS (compPath-filler (λ i₁ → A i₁) (λ i₁ → B i₁) k i)) j') (λ j → λ { (i = i0) → p i0 ; (i = i1) → comp (\ j' → hfill ((λ l → λ { (j = i0) → B k ; (j = i1) → C l ; (k = i1) → C (j ∧ l) })) (inS (B ( j ∨ k)) ) j') (λ l → λ { (j = i0) → q k ; (j = i1) → r l ; (k = i1) → r (j ∧ l) }) (q (j ∨ k)) }) (compPathP-filler p q k i) -- Loic's code below -- some exchange law for doubleCompPath and refl invSides-filler : {x y z : A} (p : x ≡ y) (q : x ≡ z) → Square p (sym q) q (sym p) invSides-filler {x = x} p q i j = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (~ j ∧ k) ; (j = i0) → q (i ∧ k) ; (j = i1) → p (~ i ∧ k)}) x leftright : {ℓ : Level} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → (refl ∙∙ p ∙∙ q) ≡ (p ∙∙ q ∙∙ refl) leftright p q i j = hcomp (λ t → λ { (j = i0) → p (i ∧ (~ t)) ; (j = i1) → q (t ∨ i) }) (invSides-filler q (sym p) (~ i) j) -- equating doubleCompPath and a succession of two compPath split-leftright : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (refl ∙∙ (p ∙∙ q ∙∙ refl) ∙∙ r) split-leftright p q r j i = hcomp (λ t → λ { (i = i0) → p (~ j ∧ ~ t) ; (i = i1) → r t }) (doubleCompPath-filler p q refl j i) split-leftright' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙∙ (refl ∙∙ q ∙∙ r) ∙∙ refl) split-leftright' p q r j i = hcomp (λ t → λ { (i = i0) → p (~ t) ; (i = i1) → r (j ∨ t) }) (doubleCompPath-filler refl q r j i) doubleCompPath-elim : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙ q) ∙ r doubleCompPath-elim p q r = (split-leftright p q r) ∙ (λ i → (leftright p q (~ i)) ∙ r) doubleCompPath-elim' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ p ∙ (q ∙ r) doubleCompPath-elim' p q r = (split-leftright' p q r) ∙ (sym (leftright p (q ∙ r))) cong-∙ : ∀ {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ (cong f p) ∙ (cong f q) cong-∙ f p q j i = hcomp (λ k → λ { (j = i0) → f (compPath-filler p q k i) ; (i = i0) → f (p i0) ; (i = i1) → f (q k) }) (f (p i)) cong-∙∙ : ∀ {B : Type ℓ} (f : A → B) (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) → cong f (p ∙∙ q ∙∙ r) ≡ (cong f p) ∙∙ (cong f q) ∙∙ (cong f r) cong-∙∙ f p q r j i = hcomp (λ k → λ { (j = i0) → f (doubleCompPath-filler p q r k i) ; (i = i0) → f (p (~ k)) ; (i = i1) → f (r k) }) (f (q i)) hcomp-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ]) → (hcomp u (outS u0) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ] hcomp-unique {φ = φ} u u0 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1 ; (i = i1) → outS (h2 k) }) (outS u0)) lid-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (h1 h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ]) → (outS (h1 i1) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ] lid-unique {φ = φ} u u0 h1 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1 ; (i = i0) → outS (h1 k) ; (i = i1) → outS (h2 k) }) (outS u0)) transp-hcomp : ∀ {ℓ} (φ : I) {A' : Type ℓ} (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A') ]) (let B = \ (i : I) → outS (A i)) → ∀ {ψ} (u : I → Partial ψ (B i0)) → (u0 : B i0 [ ψ ↦ u i0 ]) → (transp (\ i → B i) φ (hcomp u (outS u0)) ≡ hcomp (\ i o → transp (\ i → B i) φ (u i o)) (transp (\ i → B i) φ (outS u0))) [ ψ ↦ (\ { (ψ = i1) → (\ i → transp (\ i → B i) φ (u i1 1=1))}) ] transp-hcomp φ A u u0 = inS (sym (outS (hcomp-unique ((\ i o → transp (\ i → B i) φ (u i o))) (inS (transp (\ i → B i) φ (outS u0))) \ i → inS (transp (\ i → B i) φ (hfill u u0 i))))) where B = \ (i : I) → outS (A i) hcomp-cong : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) → (u' : I → Partial φ A) → (u0' : A [ φ ↦ u' i0 ]) → (ueq : ∀ i → PartialP φ (\ o → u i o ≡ u' i o)) → (outS u0 ≡ outS u0') [ φ ↦ (\ { (φ = i1) → ueq i0 1=1}) ] → (hcomp u (outS u0) ≡ hcomp u' (outS u0')) [ φ ↦ (\ { (φ = i1) → ueq i1 1=1 }) ] hcomp-cong u u0 u' u0' ueq 0eq = inS (\ j → hcomp (\ i o → ueq i o j) (outS 0eq j)) congFunct-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y z : A} (f : A → B) (p : x ≡ y) (q : y ≡ z) → I → I → I → B congFunct-filler {x = x} f p q i j z = hfill (λ k → λ { (i = i0) → f x ; (i = i1) → f (q k) ; (j = i0) → f (compPath-filler p q k i)}) (inS (f (p i))) z congFunct : ∀ {ℓ} {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ cong f p ∙ cong f q congFunct f p q j i = congFunct-filler f p q i j i1 -- congFunct for dependent types congFunct-dep : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} (f : (a : A) → B a) (p : x ≡ y) (q : y ≡ z) → PathP (λ i → PathP (λ j → B (compPath-filler p q i j)) (f x) (f (q i))) (cong f p) (cong f (p ∙ q)) congFunct-dep {B = B} {x = x} f p q i j = f (compPath-filler p q i j) cong₂Funct : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} {B : Type ℓ'} (f : A → A → B) → (p : x ≡ y) → {u v : A} (q : u ≡ v) → cong₂ f p q ≡ cong (λ x → f x u) p ∙ cong (f y) q cong₂Funct {x = x} {y = y} f p {u = u} {v = v} q j i = hcomp (λ k → λ { (i = i0) → f x u ; (i = i1) → f y (q k) ; (j = i0) → f (p i) (q (i ∧ k))}) (f (p i) u) symDistr-filler : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → I → I → I → A symDistr-filler {A = A} {z = z} p q i j k = hfill (λ k → λ { (i = i0) → q (k ∨ j) ; (i = i1) → p (~ k ∧ j) }) (inS (invSides-filler q (sym p) i j)) k symDistr : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → sym (p ∙ q) ≡ sym q ∙ sym p symDistr p q i j = symDistr-filler p q j i i1 -- we can not write hcomp-isEquiv : {ϕ : I} → (p : I → Partial ϕ A) → isEquiv (λ (a : A [ ϕ ↦ p i0 ]) → hcomp p a) -- due to size issues. But what we can write (compare to hfill) is: hcomp-equivFillerSub : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ]) → (i : I) → A [ ϕ ∨ i ∨ ~ i ↦ (λ { (i = i0) → outS a ; (i = i1) → hcomp (λ i → p (~ i)) (hcomp p (outS a)) ; (ϕ = i1) → p i0 1=1 }) ] hcomp-equivFillerSub {ϕ = ϕ} p a i = inS (hcomp (λ k → λ { (i = i1) → hfill (λ j → p (~ j)) (inS (hcomp p (outS a))) k ; (i = i0) → outS a ; (ϕ = i1) → p (~ k ∧ i) 1=1 }) (hfill p a i)) hcomp-equivFiller : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ]) → (i : I) → A hcomp-equivFiller p a i = outS (hcomp-equivFillerSub p a i) pentagonIdentity : (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) → (s : w ≡ v) → (assoc p q (r ∙ s) ∙ assoc (p ∙ q) r s) ≡ cong (p ∙_) (assoc q r s) ∙∙ assoc p (q ∙ r) s ∙∙ cong (_∙ s) (assoc p q r) pentagonIdentity {x = x} {y} p q r s = (λ i → (λ j → cong (p ∙_) (assoc q r s) (i ∧ j)) ∙∙ (λ j → lemma₀₀ i j ∙ lemma₀₁ i j) ∙∙ (λ j → lemma₁₀ i j ∙ lemma₁₁ i j) ) where lemma₀₀ : ( i j : I) → _ ≡ _ lemma₀₀ i j i₁ = hcomp (λ k → λ { (j = i0) → p i₁ ; (i₁ = i0) → x ; (i₁ = i1) → hcomp (λ k₁ → λ { (i = i0) → (q (j ∧ k)) ; (k = i0) → y ; (j = i0) → y ; (j = i1)(k = i1) → r (k₁ ∧ i)}) (q (j ∧ k)) }) (p i₁) lemma₀₁ : ( i j : I) → hcomp (λ k → λ {(i = i0) → q j ; (j = i0) → y ; (j = i1) → r (k ∧ i) }) (q j) ≡ _ lemma₀₁ i j i₁ = (hcomp (λ k → λ { (j = i1) → hcomp (λ k₁ → λ { (i₁ = i0) → r i ; (k = i0) → r i ; (i = i1) → s (k₁ ∧ k ∧ i₁) ; (i₁ = i1)(k = i1) → s k₁ }) (r ((i₁ ∧ k) ∨ i)) ; (i₁ = i0) → compPath-filler q r i j ; (i₁ = i1) → hcomp (λ k₁ → λ { (k = i0) → r i ; (k = i1) → s k₁ ; (i = i1) → s (k ∧ k₁)}) (r (i ∨ k))}) (hfill (λ k → λ { (j = i1) → r k ; (i₁ = i1) → r k ; (i₁ = i0)(j = i0) → y }) (inS (q (i₁ ∨ j))) i)) lemma₁₁ : ( i j : I) → (r (i ∨ j)) ≡ _ lemma₁₁ i j i₁ = hcomp (λ k → λ { (i = i1) → s (i₁ ∧ k) ; (j = i1) → s (i₁ ∧ k) ; (i₁ = i0) → r (i ∨ j) ; (i₁ = i1) → s k }) (r (i ∨ j ∨ i₁)) lemma₁₀-back : I → I → I → _ lemma₁₀-back i j i₁ = hcomp (λ k → λ { (i₁ = i0) → x ; (i₁ = i1) → hcomp (λ k₁ → λ { (k = i0) → q (j ∨ ~ i) ; (k = i1) → r (k₁ ∧ j) ; (j = i0) → q (k ∨ ~ i) ; (j = i1) → r (k₁ ∧ k) ; (i = i0) → r (k ∧ j ∧ k₁) }) (q (k ∨ j ∨ ~ i)) ; (i = i0)(j = i0) → (p ∙ q) i₁ }) (hcomp (λ k → λ { (i₁ = i0) → x ; (i₁ = i1) → q ((j ∨ ~ i ) ∧ k) ; (j = i0)(i = i1) → p i₁ }) (p i₁)) lemma₁₀-front : I → I → I → _ lemma₁₀-front i j i₁ = (((λ _ → x) ∙∙ compPath-filler p q j ∙∙ (λ i₁ → hcomp (λ k → λ { (i₁ = i0) → q j ; (i₁ = i1) → r (k ∧ (j ∨ i)) ; (j = i0)(i = i0) → q i₁ ; (j = i1) → r (i₁ ∧ k) }) (q (j ∨ i₁)) )) i₁) compPath-filler-in-filler : (p : _ ≡ y) → (q : _ ≡ _ ) → _≡_ {A = Square (p ∙ q) (p ∙ q) (λ _ → x) (λ _ → z)} (λ i j → hcomp (λ i₂ → λ { (j = i0) → x ; (j = i1) → q (i₂ ∨ ~ i) ; (i = i0) → (p ∙ q) j }) (compPath-filler p q (~ i) j)) (λ _ → p ∙ q) compPath-filler-in-filler p q z i j = hcomp (λ k → λ { (j = i0) → p i0 ; (j = i1) → q (k ∨ ~ i ∧ ~ z) ; (i = i0) → hcomp (λ i₂ → λ { (j = i0) → p i0 ;(j = i1) → q ((k ∨ ~ z) ∧ i₂) ;(z = i1) (k = i0) → p j }) (p j) ; (i = i1) → compPath-filler p (λ i₁ → q (k ∧ i₁)) k j ; (z = i0) → hfill ((λ i₂ → λ { (j = i0) → p i0 ; (j = i1) → q (i₂ ∨ ~ i) ; (i = i0) → (p ∙ q) j })) (inS ((compPath-filler p q (~ i) j))) k ; (z = i1) → compPath-filler p q k j }) (compPath-filler p q (~ i ∧ ~ z) j) cube-comp₋₀₋ : (c : I → I → I → A) → {a' : Square _ _ _ _} → (λ i i₁ → c i i0 i₁) ≡ a' → (I → I → I → A) cube-comp₋₀₋ c p i j k = hcomp (λ l → λ { (i = i0) → c i0 j k ;(i = i1) → c i1 j k ;(j = i0) → p l i k ;(j = i1) → c i i1 k ;(k = i0) → c i j i0 ;(k = i1) → c i j i1 }) (c i j k) cube-comp₀₋₋ : (c : I → I → I → A) → {a' : Square _ _ _ _} → (λ i i₁ → c i0 i i₁) ≡ a' → (I → I → I → A) cube-comp₀₋₋ c p i j k = hcomp (λ l → λ { (i = i0) → p l j k ;(i = i1) → c i1 j k ;(j = i0) → c i i0 k ;(j = i1) → c i i1 k ;(k = i0) → c i j i0 ;(k = i1) → c i j i1 }) (c i j k) lemma₁₀-back' : _ lemma₁₀-back' k j i₁ = (cube-comp₋₀₋ (lemma₁₀-back) (compPath-filler-in-filler p q)) k j i₁ lemma₁₀ : ( i j : I) → _ ≡ _ lemma₁₀ i j i₁ = (cube-comp₀₋₋ lemma₁₀-front (sym lemma₁₀-back')) i j i₁
{ "alphanum_fraction": 0.3327557264, "avg_line_length": 38.5532359081, "ext": "agda", "hexsha": "0e3686e5f8340df0a230d8c0eb3c39bf966149e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Foundations/GroupoidLaws.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Foundations/GroupoidLaws.agda", "max_line_length": 139, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Foundations/GroupoidLaws.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7503, "size": 18467 }
{-# OPTIONS --rewriting #-} -- {-# OPTIONS -v rewriting:100 -v tc.conv.atom:30 -v tc.inj.use:30 #-} open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + n = n (suc m) + n = suc (m + n) postulate plus-zero : ∀ x → (x + zero) ≡ x {-# REWRITE plus-zero #-} mutual secret-number : Nat secret-number = _ test : ∀ x → (x + secret-number) ≡ x test x = refl reveal : secret-number ≡ zero reveal = refl
{ "alphanum_fraction": 0.578528827, "avg_line_length": 16.2258064516, "ext": "agda", "hexsha": "aa4b205a55a464ca6e5eb83a71611909984dcce8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/RewritingBlocked.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/RewritingBlocked.agda", "max_line_length": 71, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/RewritingBlocked.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 169, "size": 503 }
-- Andreas and James, 2013-11-19 {-# OPTIONS --copatterns #-} -- {-# OPTIONS -v tc.cover.splittree:15 -v tc.cc:15 #-} open import Common.Level open import Common.Product mutual data Delay (A : Set) : Set where later : ∞Delay A → Delay A record ∞Delay (A : Set) : Set where coinductive constructor delay field force : Delay A open ∞Delay public data Def {A : Set} : Delay A → Set where later⇓ : ∀ (x : ∞Delay A) → Def (force x) → Def (later x) data Ty : Set where _⇒_ : (a b : Ty) → Ty data Tm (Γ : Ty) : (a : Ty) → Set where abs : ∀ a b (t : Tm (Γ ⇒ a) b) → Tm Γ (a ⇒ b) data Val : (a : Ty) → Set where lam : ∀ Γ a b (t : Tm (Γ ⇒ a) b) → Val (a ⇒ b) postulate eval : ∀ Γ a → Tm Γ a → Delay (Val a) ∞apply : ∀ a b → Val (a ⇒ b) → ∞Delay (Val b) force (∞apply .a .b (lam Γ a b t)) = eval (Γ ⇒ a) b t β-expand : ∀ Γ a b (t : Tm (Γ ⇒ a) b) → Def (eval (Γ ⇒ a) b t) → Def (later (∞apply a b (lam Γ a b t))) β-expand Γ a b t = later⇓ (∞apply a b (lam Γ a b t)) -- This line failed because of a missing reduction (due to wrong split tree).
{ "alphanum_fraction": 0.557195572, "avg_line_length": 25.2093023256, "ext": "agda", "hexsha": "429fd89c69b3acde3f9d5cbc8bbd2c86f1a12031", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/CopatternsAndDotPatterns.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/CopatternsAndDotPatterns.agda", "max_line_length": 77, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/CopatternsAndDotPatterns.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 423, "size": 1084 }
open import Prelude open import Level using (Level) renaming (zero to lz; suc to ls) open import Data.List.Properties as ListProps renaming (∷-injective to ∷-inj) open import Data.String open import Data.Nat as Nat using (decTotalOrder; _≤_; s≤s; z≤n) open import Relation.Binary using (module DecTotalOrder) module RW.Language.RTerm where open import Reflection renaming (Term to AgTerm; Type to AgType) public open DecTotalOrder Nat.decTotalOrder using (total) postulate unsuportedSyntax : ∀{a}{A : Set a} → String → A error : ∀{a}{A : Set a} → String → A open Eq {{...}} -- We'll consider constructor and definitions -- as just names; we just need to know how to -- translate them back into a correct AgTerm. -- -- Function type is represented with the impl constructor. data RTermName : Set where rcon : Name → RTermName rdef : Name → RTermName impl : RTermName showRTermName : RTermName → String showRTermName (rcon x) = showName x showRTermName (rdef x) = showName x showRTermName impl = "→" ---------------------------------------- -- Equalities associated with RTermNames rcon-inj : ∀{x y} → rcon x ≡ rcon y → x ≡ y rcon-inj refl = refl rdef-inj : ∀{x y} → rdef x ≡ rdef y → x ≡ y rdef-inj refl = refl _≟-RTermName_ : (n m : RTermName) → Dec (n ≡ m) rcon x ≟-RTermName rcon y with x ≟-Name y ...| yes x≡y = yes (cong rcon x≡y) ...| no x≢y = no (x≢y ∘ rcon-inj) rdef x ≟-RTermName rdef y with x ≟-Name y ...| yes x≡y = yes (cong rdef x≡y) ...| no x≢y = no (x≢y ∘ rdef-inj) impl ≟-RTermName impl = yes refl rcon _ ≟-RTermName rdef _ = no (λ ()) rcon _ ≟-RTermName impl = no (λ ()) rdef _ ≟-RTermName rcon _ = no (λ ()) rdef _ ≟-RTermName impl = no (λ ()) impl ≟-RTermName rcon _ = no (λ ()) impl ≟-RTermName rdef _ = no (λ ()) -- Now we'll define a very handy term representation. -- We aim to reduce the amount of boilerplate code -- needed to handle Agda's complex term representation. -- -- The phantom A will allow us to use multiple representations -- for unification variables and still prove termination -- by using a (Fin n), before unifying. data RTerm {a}(A : Set a) : Set a where -- Out-of-bound variables. We use a phantom type A -- to be able to (almost) seamless convert from -- ℕ to (Fin n). ovar : (x : A) → RTerm A -- Variables bound inside the term itself, from -- rlam's. ivar : (n : ℕ) → RTerm A -- Agda Literals rlit : (l : Literal) → RTerm A -- Lambda Abstraction rlam : RTerm A → RTerm A -- Applications rapp : (n : RTermName)(ts : List (RTerm A)) → RTerm A -- Equality Rules induced by RTerm's constructors ovar-inj : ∀{a}{A : Set a}{x y : A} → ovar {a} {A} x ≡ ovar {a} {A} y → x ≡ y ovar-inj refl = refl ivar-inj : ∀{a A x y} → ivar {a} {A} x ≡ ivar {a} {A} y → x ≡ y ivar-inj refl = refl rlit-inj : ∀{a A x y} → rlit {a} {A} x ≡ rlit {a} {A} y → x ≡ y rlit-inj refl = refl rlam-inj : ∀{a A x y} → rlam {a} {A} x ≡ rlam {a} {A} y → x ≡ y rlam-inj refl = refl rapp-inj : ∀{a A n₁ n₂ l₁ l₂} → rapp {a} {A} n₁ l₁ ≡ rapp {a} {A} n₂ l₂ → n₁ ≡ n₂ × l₁ ≡ l₂ rapp-inj refl = refl , refl -------------------------- -- Generalized Comparison mutual compRTerm : ∀{A} ⦃ eqA : Eq A ⦄ → (m n : RTerm A) → Dec (m ≡ n) compRTerm ⦃ eq f ⦄ (ovar x) (ovar y) with f x y ...| yes x≡y = yes (cong ovar x≡y) ...| no x≢y = no (x≢y ∘ ovar-inj) compRTerm (ivar x) (ivar y) with x ≟-ℕ y ...| yes x≡y = yes (cong ivar x≡y) ...| no x≢y = no (x≢y ∘ ivar-inj) compRTerm (rlit x) (rlit y) with x ≟-Lit y ...| yes x≡y = yes (cong rlit x≡y) ...| no x≢y = no (x≢y ∘ rlit-inj) compRTerm (rlam x) (rlam y) with compRTerm x y ...| yes x≡y = yes (cong rlam x≡y) ...| no x≢y = no (x≢y ∘ rlam-inj) compRTerm (rapp x ax) (rapp y ay) with x ≟-RTermName y ...| no x≢y = no (x≢y ∘ p1 ∘ rapp-inj) ...| yes x≡y rewrite x≡y with compRTerm* ax ay ...| no ax≢ay = no (ax≢ay ∘ p2 ∘ rapp-inj) ...| yes ax≡ay = yes (cong (rapp y) ax≡ay) compRTerm (ovar _) (ivar _) = no (λ ()) compRTerm (ovar _) (rlit _) = no (λ ()) compRTerm (ovar _) (rlam _) = no (λ ()) compRTerm (ovar _) (rapp _ _) = no (λ ()) compRTerm (ivar _) (ovar _) = no (λ ()) compRTerm (ivar _) (rlit _) = no (λ ()) compRTerm (ivar _) (rlam _) = no (λ ()) compRTerm (ivar _) (rapp _ _) = no (λ ()) compRTerm (rlit _) (ovar _) = no (λ ()) compRTerm (rlit _) (ivar _) = no (λ ()) compRTerm (rlit _) (rlam _) = no (λ ()) compRTerm (rlit _) (rapp _ _) = no (λ ()) compRTerm (rlam _) (ovar _) = no (λ ()) compRTerm (rlam _) (ivar _) = no (λ ()) compRTerm (rlam _) (rlit _) = no (λ ()) compRTerm (rlam _) (rapp _ _) = no (λ ()) compRTerm (rapp _ _) (ovar _) = no (λ ()) compRTerm (rapp _ _) (ivar _) = no (λ ()) compRTerm (rapp _ _) (rlit _) = no (λ ()) compRTerm (rapp _ _) (rlam _) = no (λ ()) compRTerm* : ∀{A} ⦃ eqA : Eq A ⦄ → (x y : List (RTerm A)) → Dec (x ≡ y) compRTerm* [] [] = yes refl compRTerm* (_ ∷ _) [] = no (λ ()) compRTerm* [] (_ ∷ _) = no (λ ()) compRTerm* (x ∷ xs) (y ∷ ys) with compRTerm x y ...| no x≢y = no (x≢y ∘ p1 ∘ ∷-inj) ...| yes x≡y rewrite x≡y with compRTerm* xs ys ...| no xs≢ys = no (xs≢ys ∘ p2 ∘ ∷-inj) ...| yes xs≡ys = yes (cong (_∷_ y) xs≡ys) instance eq-RTerm : {A : Set}{{ eqA : Eq A }} → Eq (RTerm A) eq-RTerm = eq compRTerm -- Infix version _≟-RTerm_ : ∀{A} ⦃ eqA : Eq A ⦄ → (x y : RTerm A) → Dec (x ≡ y) _≟-RTerm_ = compRTerm ------------------------------ -- Term Replacement Functions {-# TERMINATING #-} replace : ∀{a b}{A : Set a}{B : Set b} → (ovar-f : A → RTerm B) → (ivar-f : ℕ → RTerm B) → RTerm A → RTerm B replace f g (ovar x) = f x replace f g (ivar n) = g n replace _ _ (rlit l) = rlit l replace f g (rlam x) = rlam (replace f g x) replace f g (rapp n ts) = rapp n (map (replace f g) ts) -- This is basically fmap... replace-A : ∀{a b}{A : Set a}{B : Set b} → (A → RTerm B) → RTerm A → RTerm B replace-A f = replace f ivar -- equipped with a few usefull functor lemmas. lemma-replace-rlam : ∀{a b}{A : Set a}{B : Set b}{f : A → RTerm B}{t : RTerm A} → replace-A f (rlam t) ≡ rlam (replace-A f t) lemma-replace-rlam = refl lemma-replace-rapp : ∀{a b}{A : Set a}{B : Set b}{f : A → RTerm B}{ts : List (RTerm A)}{n : RTermName} → replace-A f (rapp n ts) ≡ rapp n (map (replace-A f) ts) lemma-replace-rapp = refl _◇-A_ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → (B → RTerm C) → (A → RTerm B) → A → RTerm C f ◇-A g = replace-A f ∘ g replace-ivar : ∀{a}{A : Set a} → (ℕ → RTerm A) → RTerm A → RTerm A replace-ivar f = replace ovar f ---------------------- -- Counting utilities {-# TERMINATING #-} count : ∀{a}{A : Set a} → RTerm A → ℕ × ℕ count (ovar _) = 1 , 0 count (ivar _) = 0 , 1 count (rlit _) = 0 , 0 count (rlam x) = count x count (rapp _ xs) = sum2 (map count xs) where sum2 : List (ℕ × ℕ) → ℕ × ℕ sum2 [] = 0 , 0 sum2 ((a , b) ∷ xs) with sum2 xs ...| a' , b' = a + a' , b + b' #-A : ∀{a}{A : Set a} → RTerm A → ℕ #-A = p1 ∘ count #-ivar : ∀{a}{A : Set a} → RTerm A → ℕ #-ivar = p2 ∘ count ----------------------------------- -- Conversion from AgTerm to RTerm -- compute the difference between two natural numbers, given an -- ordering between them. Δ_ : ∀ {m n} → m ≤ n → ℕ Δ z≤n {k} = k Δ s≤s p = Δ p -- correctness proof of the difference operator Δ. Δ-correct : ∀ {m n} (p : m ≤ n) → n ≡ m + Δ p Δ-correct z≤n = refl Δ-correct (s≤s p) = cong suc (Δ-correct p) _-Δ-_ : ∀{m}(n : ℕ)(p : m ≤ n) → ℕ n -Δ- z≤n = n (suc n) -Δ- s≤s prf = n -Δ- prf private convertℕ : ∀{a}{A : Set a} → ℕ → RTerm A convertℕ zero = rapp (rcon (quote zero)) [] convertℕ (suc n) = rapp (rcon (quote suc)) (convertℕ n ∷ []) mutual convert' : ℕ → AgTerm → RTerm ⊥ convert' d (var x []) with total d x ...| i1 d≤x = ivar (x ∸ d) ...| i2 d>x = ivar x convert' d (lit (nat n)) = convertℕ n convert' d (con c args) = rapp (rcon c) (convertChildren d args) convert' d (def c args) = rapp (rdef c) (convertChildren d args) convert' d (pi (arg (arg-info visible _) (el _ t₁)) (abs _ (el _ t₂))) = rapp impl (convert' d t₁ ∷ convert' (suc d) t₂ ∷ []) convert' d (pi _ (abs _ (el _ t₂))) = convert' (suc d) t₂ convert' d (lam _ (abs _ l)) = rlam (convert' (suc d) l) convert' _ (pat-lam _ _) = unsuportedSyntax "Pattern-Matching lambdas." convert' _ (sort _) = unsuportedSyntax "Sorts." convert' _ unknown = unsuportedSyntax "Unknown." convert' _ (var _ (_ ∷ _)) = unsuportedSyntax "Variables with arguments." convert' _ (lit _) = unsuportedSyntax "Non-ℕ literals." convert' _ (quote-goal _) = unsuportedSyntax "Reflection constructs not supported" convert' _ (quote-term _) = unsuportedSyntax "Reflection constructs not supported" convert' _ quote-context = unsuportedSyntax "Reflection constructs not supported" convert' _ (unquote-term _ _) = unsuportedSyntax "Reflection constructs not supported" convertChildren : ℕ → List (Arg AgTerm) → List (RTerm ⊥) convertChildren d [] = [] convertChildren d (arg (arg-info visible _) x ∷ xs) = convert' d x ∷ convertChildren d xs convertChildren d (_ ∷ xs) = convertChildren d xs Ag2RTerm : AgTerm → RTerm ⊥ Ag2RTerm a = convert' 0 a ------------------------------------------ -- Handling Types Ag2RType : AgType → RTerm ⊥ Ag2RType (el _ t) = Ag2RTerm t ----------------------------------------- -- Converting Back to Agda open import RW.Utils.Monads using (MonadState; ST; get; inc) renaming (module Monad to MonadClass) open MonadClass {{...}} private mutual trevnoc' : RTerm ⊥ → AgTerm trevnoc' (ovar ()) trevnoc' (ivar n) = var n [] trevnoc' (rlit l) = lit l trevnoc' (rlam t) = lam visible (abs "_" (trevnoc' t)) trevnoc' (rapp (rcon x) ts) = con x (trevnocChildren ts) trevnoc' (rapp (rdef x) ts) = def x (trevnocChildren ts) trevnoc' (rapp impl (t1 ∷ t2 ∷ [])) = pi (arg (arg-info visible relevant) (el unknown (trevnoc' t1))) (abs "_" (el unknown (trevnoc' t2))) trevnoc' (rapp impl _) = error "impl should have two arguments... always." trevnocChildren : List (RTerm ⊥) → List (Arg AgTerm) trevnocChildren [] = [] trevnocChildren (x ∷ xs) = arg (arg-info visible relevant) (trevnoc' x) ∷ trevnocChildren xs R2AgTerm : RTerm ⊥ → AgTerm R2AgTerm = trevnoc'
{ "alphanum_fraction": 0.5353109876, "avg_line_length": 33.914893617, "ext": "agda", "hexsha": "844a10d75633493ceb528386d554cdda9e46e95a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "RW/Language/RTerm.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "RW/Language/RTerm.agda", "max_line_length": 104, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "RW/Language/RTerm.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 4148, "size": 11158 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 21-image where import 20-sequences open 20-sequences public {- We give the formal specification of propositional truncation. -} precomp-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : hProp l2) → (A → type-Prop P) → (Q : hProp l3) → (type-Prop P → type-Prop Q) → A → type-Prop Q precomp-Prop P f Q g = g ∘ f universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : hProp l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation l P f = (Q : hProp l) → is-equiv (precomp-Prop P f Q) universal-property-propositional-truncation' : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : hProp l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-propositional-truncation' l {A = A} P f = (Q : hProp l) → (A → type-Prop Q) → (type-Prop P → type-Prop Q) universal-property-propositional-truncation-simplify : { l1 l2 : Level} {A : UU l1} (P : hProp l2) ( f : A → type-Prop P) → ( (l : Level) → universal-property-propositional-truncation' l P f) → ( (l : Level) → universal-property-propositional-truncation l P f) universal-property-propositional-truncation-simplify P f up-P l Q = is-equiv-is-prop ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( is-prop-Π (λ x → is-prop-type-Prop Q)) ( up-P l Q) precomp-Π-Prop : { l1 l2 l3 : Level} {A : UU l1} (P : hProp l2) → ( f : A → type-Prop P) (Q : type-Prop P → hProp l3) → ( g : (p : type-Prop P) → type-Prop (Q p)) → (x : A) → type-Prop (Q (f x)) precomp-Π-Prop P f Q g x = g (f x) dependent-universal-property-propositional-truncation : ( l : Level) {l1 l2 : Level} {A : UU l1} (P : hProp l2) → ( A → type-Prop P) → UU (lsuc l ⊔ l1 ⊔ l2) dependent-universal-property-propositional-truncation l P f = (Q : type-Prop P → hProp l) → is-equiv (precomp-Π-Prop P f Q) {- We introduce the image inclusion of a map. -} precomp-emb : { l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} ( i : B ↪ X) (q : hom-slice f (map-emb i)) → {C : UU l4} ( j : C ↪ X) (r : hom-slice (map-emb i) (map-emb j)) → hom-slice f (map-emb j) precomp-emb f i q j r = pair ( ( map-hom-slice (map-emb i) (map-emb j) r) ∘ ( map-hom-slice f (map-emb i) q)) ( ( triangle-hom-slice f (map-emb i) q) ∙h ( ( triangle-hom-slice (map-emb i) (map-emb j) r) ·r ( map-hom-slice f (map-emb i) q))) is-prop-hom-slice : { l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) → is-prop (hom-slice f (map-emb i)) is-prop-hom-slice {X = X} f i = is-prop-is-equiv ( (x : X) → fib f x → fib (map-emb i) x) ( fiberwise-hom-hom-slice f (map-emb i)) ( is-equiv-fiberwise-hom-hom-slice f (map-emb i)) ( is-prop-Π ( λ x → is-prop-Π ( λ p → is-prop-map-is-emb (map-emb i) (is-emb-map-emb i) x))) universal-property-image : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-image l {X = X} f i q = ( C : UU l) (j : C ↪ X) → is-equiv (precomp-emb f i q j) universal-property-image' : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-image' l {X = X} f i q = ( C : UU l) (j : C ↪ X) → hom-slice f (map-emb j) → hom-slice (map-emb i) (map-emb j) universal-property-image-universal-property-image' : ( l : Level) {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → universal-property-image' l f i q → universal-property-image l f i q universal-property-image-universal-property-image' l f i q up' C j = is-equiv-is-prop ( is-prop-hom-slice (map-emb i) j) ( is-prop-hom-slice f j) ( up' C j)
{ "alphanum_fraction": 0.5737041719, "avg_line_length": 38.0288461538, "ext": "agda", "hexsha": "c5e80facfd6612ae63401016388fd6c7d91fa432", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/21-image.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/21-image.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/21-image.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1637, "size": 3955 }
open import Agda.Primitive open import Common.Reflection open import Common.Prelude macro deBruijn : Nat → Term → TC ⊤ deBruijn n = unify (lam visible (abs "x" (var n []))) data Vec {a} (A : Set a) : Nat → Set a where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) module _ {n} {a} {A : Set a} (xs : Vec A n) where ok : Nat → Nat → Nat ok k = deBruijn 5 -- Should give a nice error, not 'panic: variable @6 out of scope'. not-ok : Nat → Nat → Nat not-ok k = deBruijn 6
{ "alphanum_fraction": 0.5948103792, "avg_line_length": 22.7727272727, "ext": "agda", "hexsha": "6a27d80f840b5ec49e1bedf09e9e7049481d915b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2006.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2006.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2006.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 190, "size": 501 }
{- Other common operations and lemmas. -} module TemporalOps.Common.Other where open import Relation.Binary.HeterogeneousEquality as ≅ hiding (inspect) open import Relation.Binary.PropositionalEquality hiding (inspect) -- Time indexing (for clarity, synonym of function appliation at any level) _at_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f at n = f n infixl 45 _at_ -- Inspect idiom data Singleton {a} {A : Set a} (x : A) : Set a where _with≡_ : (y : A) → x ≡ y → Singleton x inspect : ∀ {a} {A : Set a} (x : A) → Singleton x inspect x = x with≡ refl
{ "alphanum_fraction": 0.6439267887, "avg_line_length": 28.619047619, "ext": "agda", "hexsha": "0e9264be68f7f26e811519ba29cd8eb2fe6877d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/TemporalOps/Common/Other.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/TemporalOps/Common/Other.agda", "max_line_length": 75, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/TemporalOps/Common/Other.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 199, "size": 601 }
module Selective.Examples.Fibonacci where open import Selective.ActorMonad open import Prelude open import Debug open import Data.Nat.Show using (show) data End : Set where END : End ℕ-message : MessageType ℕ-message = [ ValueType ℕ ]ˡ End-message : MessageType End-message = [ ValueType End ]ˡ Client-to-Server : InboxShape Client-to-Server = ℕ-message ∷ [ End-message ]ˡ Server-to-Client : InboxShape Server-to-Client = [ ℕ-message ]ˡ ServerInterface : InboxShape ServerInterface = [ ReferenceType Server-to-Client ]ˡ ∷ Client-to-Server ClientInterface : InboxShape ClientInterface = [ ReferenceType Client-to-Server ]ˡ ∷ Server-to-Client ServerRefs : TypingContext ServerRefs = [ Server-to-Client ]ˡ constServerRefs : {A : Set₁} → (A → TypingContext) constServerRefs _ = ServerRefs data ServerAction : Set₁ where Next : ℕ → ServerAction Done : ServerAction server : ∀ {i} → ActorM i ServerInterface ⊤₁ [] constServerRefs server = wait-for-client ∞>> run-fibonacci 1 where wait-for-client = selective-receive (λ { (Msg Z _) → true ; (Msg (S _) _) → false }) >>= λ { record { msg = (Msg Z _) } → return tt ; record { msg = (Msg (S _) _) ; msg-ok = () } } wait-for-value : ∀ {i} → ∞ActorM i ServerInterface ServerAction ServerRefs constServerRefs wait-for-value = selective-receive (λ { (Msg Z _) → false ; (Msg (S Z) _) → true ; (Msg (S (S Z)) _) → true ; (Msg (S (S (S ()))) x₁) }) >>= λ { record { msg = (Msg Z _) ; msg-ok = () } ; record { msg = (Msg (S Z) (n ∷ [])) } → return₁ (Next n) ; record { msg = (Msg (S (S Z)) _) } → return₁ Done ; record { msg = (Msg (S (S (S ()))) _) } } run-fibonacci : ℕ → ∀ {i} → ∞ActorM i ServerInterface ⊤₁ ServerRefs constServerRefs run-fibonacci x .force = begin do Next n ← wait-for-value where Done → return _ let next = x + n Z ![t: Z ] [ lift next ]ᵃ (run-fibonacci next) ClientRefs : TypingContext ClientRefs = [ Client-to-Server ]ˡ constClientRefs : {A : Set₁} → (A → TypingContext) constClientRefs _ = ClientRefs client : ∀ {i} → ActorM i ClientInterface ⊤₁ [] constClientRefs client = wait-for-server ∞>> run 10 0 where wait-for-server : ∀ {i} → ∞ActorM i ClientInterface ⊤₁ [] constClientRefs wait-for-server = selective-receive (λ { (Msg Z _) → true ; (Msg (S _) _) → false }) >>= λ { record { msg = (Msg Z _) ; msg-ok = msg-ok } → return tt ; record { msg = (Msg (S _) _) ; msg-ok = () } } wait-for-value : ∀ {i} → ∞ActorM i ClientInterface (Lift (lsuc lzero) ℕ) ClientRefs constClientRefs wait-for-value = do record { msg = Msg (S Z) (n ∷ []) } ← selective-receive (λ { (Msg Z _) → false ; (Msg (S Z) _) → true ; (Msg (S (S ())) _) }) where record { msg = (Msg Z _) ; msg-ok = () } record { msg = (Msg (S (S ())) x₁) } return n run : ℕ → ℕ → ∀ {i} → ∞ActorM i ClientInterface ⊤₁ ClientRefs constClientRefs run zero x = Z ![t: S Z ] [ lift END ]ᵃ run (suc todo) x .force = begin do (Z ![t: Z ] ((lift x) ∷ [])) (lift n) ← wait-for-value let next = x + n run (debug (show next) todo) next spawner : ∀ {i} → ∞ActorM i [] ⊤₁ [] (λ _ → ClientInterface ∷ [ ServerInterface ]ˡ) spawner = do spawn server spawn client S Z ![t: Z ] [ [ Z ]>: ⊆-suc ⊆-refl ]ᵃ Z ![t: Z ] [ [ S Z ]>: ⊆-suc ⊆-refl ]ᵃ
{ "alphanum_fraction": 0.564124057, "avg_line_length": 33.1388888889, "ext": "agda", "hexsha": "ebc5743c98759bc15700f2ea7e3382a371638bf6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/Fibonacci.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/Fibonacci.agda", "max_line_length": 104, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Selective/Examples/Fibonacci.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 1127, "size": 3579 }
module Issue427 where data T : Set where tt : T test = (λ {s : T} {t : T} → t) {tt} {tt} f : {s t : T} → T f = tt test₂ = (let x = tt in λ {s : T} {t : T} → x) {tt} {tt}
{ "alphanum_fraction": 0.4494382022, "avg_line_length": 12.7142857143, "ext": "agda", "hexsha": "fdaebb196f18a0040742d3acfcfbc7cc8c958e42", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue427.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue427.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue427.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 178 }
module ColDivSeq where open import Data.Nat using (ℕ; zero; suc) -- ----------------------------------------------- data OneCounter : Set where ZeroCounter : OneCounter data LTOneCounter : ℕ → Set where Is : (ℕ → LTOneCounter 0) → OneCounter → LTOneCounter 0 data CollatzIsTrue : Set where -- 再帰する時に引数を減らしたから、こっちも減らすべき? -- いやちがうな Is : (LTOneCounter 0) → CollatzIsTrue data Hoge : Set where Is : CollatzIsTrue → Hoge -- 1x+1&3x+1DoNotHave2Counter : ℕ → (m : ℕ) → n:ℕ → (Hoge) →「R(m)=1かつR(n)=1かつm≠nかつR(m)≠R(n)」🔴 --                                      ↑ m, nは存在量化する 1x+1&3x+1isLT1Counter : ℕ → (m : ℕ) → ℕ → (Hoge) → LTOneCounter m 1x+1&3x+1isLT1Counter d m n = {!!} fToA : ℕ → Hoge -- ↓CollatzIsTrueにdがあらわれてないと、 -- 1x+1と3x+1のどちらを証明したか分からない final : ℕ → CollatzIsTrue fToA d = Is (final d) final zero = {!!} final (suc d) = Is (1x+1&3x+1isLT1Counter 1 0 2 (fToA d))
{ "alphanum_fraction": 0.5928008999, "avg_line_length": 22.7948717949, "ext": "agda", "hexsha": "02810a92e349e85241c7f8e6bbcc297477717bda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "ColDivSeq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "ColDivSeq.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "ColDivSeq.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 417, "size": 889 }
module Numeral.Natural.Coprime where open import Logic import Lvl open import Numeral.Natural open import Numeral.Natural.Relation.Divisibility open import Relator.Equals private variable n x y : ℕ -- Two numbers are coprime when their only divisor is 1. record Coprime (x : ℕ) (y : ℕ) : Stmt{Lvl.𝟎} where constructor intro field proof : (n ∣ x) → (n ∣ y) → (n ≡ 1)
{ "alphanum_fraction": 0.7150395778, "avg_line_length": 23.6875, "ext": "agda", "hexsha": "99a2c02eb7456822dcbbb7eb139f90e6d49bd844", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Coprime.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Coprime.agda", "max_line_length": 56, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Coprime.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 122, "size": 379 }
open import Data.Empty open import Data.List renaming (_∷_ to _∷ₗ_ ; [_] to [_]ₗ) open import Data.Maybe open import Data.Product open import Data.Sum open import Data.Unit open import AEff open import AwaitingComputations open import EffectAnnotations open import Finality open import Preservation open import ProcessPreservation open import ProcessProgress open import Progress open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation module ProcessFinality where -- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED PROCESSES -- WITH INLINED EVALUATION CONTEXT RULES infix 10 _[_]↝↝_ data _[_]↝↝_ {Γ : Ctx} : {o o' : O} {PP : PType o} {QQ : PType o'} → Γ ⊢P⦂ PP → PP ⇝ QQ → Γ ⊢P⦂ QQ → Set where -- RUNNING INDIVIDUAL COMPUTATIONS run : {X : VType} {o : O} {i : I} {M N : Γ ⊢M⦂ X ! (o , i)} → M ↝↝ N → --------------------------- (run M) [ id ]↝↝ (run N) -- BROADCAST RULES ↑-∥ₗ : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ `` (payload op)) → (P : Γ ⊢P⦂ PP) → (Q : Γ ⊢P⦂ QQ) → ------------------------------------------ ((↑ op p V P) ∥ Q) [ par ⇝-refl (⇝-↓ₚ {op = op}) ]↝↝ ↑ op (∪ₒ-inl op p) V (P ∥ ↓ op V Q) ↑-∥ᵣ : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} → (p : op ∈ₒ o') → (V : Γ ⊢V⦂ `` (payload op)) → (P : Γ ⊢P⦂ PP) → (Q : Γ ⊢P⦂ QQ) → ------------------------------------------ (P ∥ (↑ op p V Q)) [ par (⇝-↓ₚ {op = op}) ⇝-refl ]↝↝ ↑ op (∪ₒ-inr op p) V (↓ op V P ∥ Q) -- INTERRUPT PROPAGATION RULES ↓-run : {X : VType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ `` (payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → ----------------------------- ↓ op V (run M) [ id ]↝↝ run (↓ op V M) ↓-∥ : {o o' : O} {PP : PType o} {QQ : PType o'} {op : Σₛ} (V : Γ ⊢V⦂ `` (payload op)) → (P : Γ ⊢P⦂ PP) → (Q : Γ ⊢P⦂ QQ) → ----------------------------- ↓ op V (P ∥ Q) [ ⇝-refl ]↝↝ ((↓ op V P) ∥ (↓ op V Q)) ↓-↑ : {o : O} {PP : PType o} {op : Σₛ} {op' : Σₛ} → (p : op' ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (W : Γ ⊢V⦂ ``(payload op')) → (P : Γ ⊢P⦂ PP) → ----------------------------------- ↓ op V (↑ op' p W P) [ ⇝-refl ]↝↝ ↑ op' (↓ₚₚ-⊑ₒ PP op' p) W (↓ op V P) -- SIGNAL HOISTING RULE ↑ : {X : VType} {o : O} {i : I} → {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ `` (payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → ----------------------------- run (↑ op p V M) [ id ]↝↝ ↑ op p V (run M) -- EVALUATION CONTEXT RULES context-∥ₗ : {o o' o'' : O} {PP : PType o} {PP' : PType o''} {QQ : PType o'} {P : Γ ⊢P⦂ PP} {P' : Γ ⊢P⦂ PP'} {Q : Γ ⊢P⦂ QQ} {p : PP ⇝ PP'} → P [ p ]↝↝ P' → ------------------ P ∥ Q [ par p ⇝-refl ]↝↝ P' ∥ Q context-∥ᵣ : {o o' o'' : O} {PP : PType o} {QQ : PType o'} {QQ' : PType o''} {P : Γ ⊢P⦂ PP} {Q : Γ ⊢P⦂ QQ} {Q' : Γ ⊢P⦂ QQ'} {r : QQ ⇝ QQ'} → Q [ r ]↝↝ Q' → ------------------ P ∥ Q [ par ⇝-refl r ]↝↝ P ∥ Q' context-↑ : {o o' : O} {PP : PType o} {PP' : PType o'} {op : Σₛ} {p : op ∈ₒ o} → {V : Γ ⊢V⦂ ``(payload op)} {P : Γ ⊢P⦂ PP} {P' : Γ ⊢P⦂ PP'} {r : PP ⇝ PP'} → P [ r ]↝↝ P' → -------------------------- ↑ op p V P [ r ]↝↝ ↑ op (⇝-⊑ₒ r op p) V P' context-↓ : {o o' : O} {PP : PType o} {PP' : PType o'} {op : Σₛ} {V : Γ ⊢V⦂ ``(payload op)} {P : Γ ⊢P⦂ PP} {P' : Γ ⊢P⦂ PP'} {r : PP ⇝ PP'} → P [ r ]↝↝ P' → ---------------------- ↓ op V P [ ⇝-↓ₚ-cong r ]↝↝ ↓ op V P' -- ONE-TO-ONE CORRESPONDENCE BETWEEN THE TWO SETS OF REDUCTION RULES []↝↝-to-[]↝ : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} {P : Γ ⊢P⦂ PP} {Q : Γ ⊢P⦂ QQ} {r : PP ⇝ QQ} → P [ r ]↝↝ Q → ----------------- P [ r ]↝ Q []↝↝-to-[]↝ (run r) = run (↝↝-to-↝ r) []↝↝-to-[]↝ (↑-∥ₗ p V P Q) = ↑-∥ₗ p V P Q []↝↝-to-[]↝ (↑-∥ᵣ p V P Q) = ↑-∥ᵣ p V P Q []↝↝-to-[]↝ (↓-run V M) = ↓-run V M []↝↝-to-[]↝ (↓-∥ V P Q) = ↓-∥ V P Q []↝↝-to-[]↝ (↓-↑ p V W P) = ↓-↑ p V W P []↝↝-to-[]↝ (↑ p V M) = ↑ p V M []↝↝-to-[]↝ (context-∥ₗ r) = context (_ ∥ₗ _) ([]↝↝-to-[]↝ r) []↝↝-to-[]↝ (context-∥ᵣ r) = context (_ ∥ᵣ _) ([]↝↝-to-[]↝ r) []↝↝-to-[]↝ (context-↑ r) = context (↑ _ _ _ _) ([]↝↝-to-[]↝ r) []↝↝-to-[]↝ (context-↓ r) = context (↓ _ _ _) ([]↝↝-to-[]↝ r) ≡-app₂ : {X : Set} {Y Z : X → Set} {f g : (x : X) → Y x → Z x} → f ≡ g → (x : X) → (y : Y x) → ----------------------------- f x y ≡ g x y ≡-app₂ refl x y = refl []↝-context-to-[]↝↝-aux : {Γ : Ctx} {o o' : O} {op : Σₛ} {p : op ∈ₒ o} {PP : PType o} {QQ : PType o'} → (F : Γ ⊢F⦂ PP) → (r : proj₂ (hole-ty-f F) ⇝ QQ) → ---------------------------------------------------------- ⇝-⊑ₒ (proj₂ (proj₂ (⇝-f-⇝ F r))) op p ≡ ⇝-f-∈ₒ F r op p []↝-context-to-[]↝↝-aux {Γ} {o} {o'} {op} {p} F r = ≡-app₂ (⊑ₒ-irrelevant (⇝-⊑ₒ (proj₂ (proj₂ (⇝-f-⇝ F r)))) (⇝-f-∈ₒ F r)) op p mutual []↝-context-to-[]↝↝ : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} → (F : Γ ⊢F⦂ PP) → {P : Γ ⊢P⦂ proj₂ (hole-ty-f F)} {Q : Γ ⊢P⦂ QQ} {r : proj₂ (hole-ty-f F) ⇝ QQ} → P [ r ]↝ Q → ----------------------------------------------------------------------------- F [ P ]f [ proj₂ (proj₂ (⇝-f-⇝ F r)) ]↝↝ (⇝-f F r) [ subst-i PType (λ o QQ → Γ ⊢P⦂ QQ) (⇝-f-tyₒ F r) (⇝-f-ty F r) Q ]f []↝-context-to-[]↝↝ [-] r = []↝-to-[]↝↝ r []↝-context-to-[]↝↝ (F ∥ₗ Q) r = context-∥ₗ ([]↝-context-to-[]↝↝ F r) []↝-context-to-[]↝↝ (P ∥ᵣ F) r = context-∥ᵣ ([]↝-context-to-[]↝↝ F r) []↝-context-to-[]↝↝ {Γ} {o} {o'} {PP} {QQ} (↑ op p V F) {P} {Q} {r'} r rewrite sym ([]↝-context-to-[]↝↝-aux {op = op} {p = p} F r') = context-↑ ([]↝-context-to-[]↝↝ F r) []↝-context-to-[]↝↝ (↓ op V F) r = context-↓ ([]↝-context-to-[]↝↝ F r) []↝-to-[]↝↝ : {Γ : Ctx} {o o' : O} {PP : PType o} {QQ : PType o'} {P : Γ ⊢P⦂ PP} {Q : Γ ⊢P⦂ QQ} {r : PP ⇝ QQ} → P [ r ]↝ Q → ----------------- P [ r ]↝↝ Q []↝-to-[]↝↝ (run r) = run (↝-to-↝↝ r) []↝-to-[]↝↝ (↑-∥ₗ p V P Q) = ↑-∥ₗ p V P Q []↝-to-[]↝↝ (↑-∥ᵣ p V P Q) = ↑-∥ᵣ p V P Q []↝-to-[]↝↝ (↓-run V M) = ↓-run V M []↝-to-[]↝↝ (↓-∥ V P Q) = ↓-∥ V P Q []↝-to-[]↝↝ (↓-↑ p V W P) = ↓-↑ p V W P []↝-to-[]↝↝ (↑ p V M) = ↑ p V M []↝-to-[]↝↝ (context F r) = []↝-context-to-[]↝↝ _ r -- FINALITY OF RESULT FORMS par-finality-↝↝ : {o o' : O} {PP : PType o} {QQ : PType o'} {P : [] ⊢P⦂ PP} → {Q : [] ⊢P⦂ QQ} → ParResult⟨ P ⟩ → (r : PP ⇝ QQ) → P [ r ]↝↝ Q → ----------------- ⊥ par-finality-↝↝ (run R) .id (run r) = run-finality-↝↝ R r par-finality-↝↝ (run R) .id (↑ p V M) = run-↑-⊥ R par-finality-↝↝ (par R S) .(par _ ⇝-refl) (context-∥ₗ r') = par-finality-↝↝ R _ r' par-finality-↝↝ (par R S) .(par ⇝-refl _) (context-∥ᵣ r') = par-finality-↝↝ S _ r' proc-finality-↝↝ : {o o' : O} {PP : PType o} {QQ : PType o'} {P : [] ⊢P⦂ PP} → {Q : [] ⊢P⦂ QQ} → ProcResult⟨ P ⟩ → (r : PP ⇝ QQ) → P [ r ]↝↝ Q → ----------------- ⊥ proc-finality-↝↝ (proc R) r r' = par-finality-↝↝ R r r' proc-finality-↝↝ (signal R) r (context-↑ r') = proc-finality-↝↝ R r r' {- LEMMA 4.2 -} proc-finality : {o o' : O} {PP : PType o} {QQ : PType o'} {P : [] ⊢P⦂ PP} → {Q : [] ⊢P⦂ QQ} → ProcResult⟨ P ⟩ → (r : PP ⇝ QQ) → P [ r ]↝ Q → ----------------- ⊥ proc-finality R r r' = proc-finality-↝↝ R r ([]↝-to-[]↝↝ r')
{ "alphanum_fraction": 0.2910485417, "avg_line_length": 27.4487534626, "ext": "agda", "hexsha": "9404f0da5e93684f90e76a60d22024ae98cdd912", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "ProcessFinality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "ProcessFinality.agda", "max_line_length": 110, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "ProcessFinality.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 3957, "size": 9909 }
{- This file contains: - Properties of groupoid truncations -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.GroupoidTruncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.HITs.GroupoidTruncation.Base recGroupoidTrunc : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (gB : isGroupoid B) → (A → B) → (∥ A ∥₁ → B) recGroupoidTrunc gB f ∣ x ∣₁ = f x recGroupoidTrunc gB f (squash₁ _ _ _ _ r s i j k) = gB _ _ _ _ (λ m n → recGroupoidTrunc gB f (r m n)) (λ m n → recGroupoidTrunc gB f (s m n)) i j k groupoidTruncFib : ∀ {ℓ ℓ'} {A : Type ℓ} (P : A → Type ℓ') {a b : A} (sPb : isGroupoid (P b)) {p q : a ≡ b} {r s : p ≡ q} (u : r ≡ s) {a1 : P a} {b1 : P b} {p1 : PathP (λ i → P (p i)) a1 b1} {q1 : PathP (λ i → P (q i)) a1 b1} (r1 : PathP (λ i → PathP (λ j → P (r i j)) a1 b1) p1 q1) (s1 : PathP (λ i → PathP (λ j → P (s i j)) a1 b1) p1 q1) → PathP (λ i → PathP (λ j → PathP (λ k → P (u i j k)) a1 b1) p1 q1) r1 s1 groupoidTruncFib P {a} {b} sPb u {a1} {b1} {p1} {q1} r1 s1 i j k = hcomp (λ l → λ { (i = i0) → r1 j k ; (i = i1) → s1 j k ; (j = i0) → p1 k ; (j = i1) → q1 k ; (k = i0) → a1 ; (k = i1) → sPb b1 b1 refl refl (λ i j → Lb i j i1) refl l i j }) (Lb i j k) where L : (i j : I) → P b L i j = comp (λ k → P (u i j k)) (λ k → λ { (i = i0) → r1 j k ; (i = i1) → s1 j k ; (j = i0) → p1 k ; (j = i1) → q1 k }) a1 Lb : PathP (λ i → PathP (λ j → PathP (λ k → P (u i j k)) a1 (L i j)) p1 q1) r1 s1 Lb i j k = fill (λ k → P (u i j k)) (λ k → λ { (i = i0) → r1 j k ; (i = i1) → s1 j k ; (j = i0) → p1 k ; (j = i1) → q1 k }) (inS a1) k groupoidTruncElim : ∀ {ℓ ℓ'} (A : Type ℓ) (B : ∥ A ∥₁ → Type ℓ') (bG : (x : ∥ A ∥₁) → isGroupoid (B x)) (f : (x : A) → B ∣ x ∣₁) (x : ∥ A ∥₁) → B x groupoidTruncElim A B bG f (∣ x ∣₁) = f x groupoidTruncElim A B bG f (squash₁ x y p q r s i j k) = groupoidTruncFib B (bG y) (squash₁ x y p q r s) (λ i j → groupoidTruncElim A B bG f (r i j)) (λ i j → groupoidTruncElim A B bG f (s i j)) i j k
{ "alphanum_fraction": 0.4091089109, "avg_line_length": 38.8461538462, "ext": "agda", "hexsha": "e792c409e9edbe38227869aa6fa50ba06fb1fbb6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/GroupoidTruncation/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1041, "size": 2525 }
module Thesis.SIRelBigStep.Lang where open import Thesis.SIRelBigStep.Types public open import Thesis.SIRelBigStep.Syntax public open import Thesis.SIRelBigStep.DenSem public open import Thesis.SIRelBigStep.OpSem public open import Thesis.SIRelBigStep.SemEquiv public
{ "alphanum_fraction": 0.8661710037, "avg_line_length": 33.625, "ext": "agda", "hexsha": "ecbbdad55ede7fbf080e31773eef7a7fe8aad1af", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/SIRelBigStep/Lang.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/SIRelBigStep/Lang.agda", "max_line_length": 47, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/SIRelBigStep/Lang.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 71, "size": 269 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.CartesianClosed.Locally module Categories.Category.CartesianClosed.Locally.Properties {o ℓ e} {C : Category o ℓ e} (LCCC : Locally C) where open import Categories.Category.CartesianClosed open import Categories.Category.Slice open import Categories.Category.Slice.Properties open import Categories.Functor open import Categories.Functor.Slice private module C = Category C open C open Locally LCCC variable A B : Obj module _ (f : A ⇒ B) where open CartesianClosed (sliceCCC B) private C/A = Slice C A C/B = Slice C B C/B/f = Slice C/B (sliceobj f) fObj : SliceObj C B fObj = sliceobj f i : Slice⇒ C ⊤ (fObj ^ fObj) i = λg π₂ J : Functor C/A C/B/f J = slice⇒slice-slice C f I : Functor (Slice C/B (fObj ^ fObj)) C/B I = pullback-functorial C/B slice-pullbacks i K : Functor C/B/f (Slice C/B (fObj ^ fObj)) K = Base-F C/B (fObj ⇨-) -- this functor should be the right adjoint functor of (BaseChange* C pullbacks f). BaseChange⁎ : Functor C/A C/B BaseChange⁎ = I ∘F K ∘F J
{ "alphanum_fraction": 0.6669505963, "avg_line_length": 24.4583333333, "ext": "agda", "hexsha": "d66eb61ed5dbcd8d19d804ed2a0aeb790a6bdbb1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/CartesianClosed/Locally/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/CartesianClosed/Locally/Properties.agda", "max_line_length": 90, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/CartesianClosed/Locally/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 360, "size": 1174 }
------------------------------------------------------------------------ -- Types used (only) when calling out to Haskell via the FFI ------------------------------------------------------------------------ module Foreign.Haskell where open import Coinduction open import Data.Colist as C using ([]; _∷_) ------------------------------------------------------------------------ -- Simple types -- A unit type. data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-} -- Potentially infinite lists. infixr 5 _∷_ codata Colist (A : Set) : Set where [] : Colist A _∷_ : (x : A) (xs : Colist A) → Colist A {-# COMPILED_DATA Colist [] [] (:) #-} fromColist : ∀ {A} → C.Colist A → Colist A fromColist [] = [] fromColist (x ∷ xs) = x ∷ fromColist (♭ xs) toColist : ∀ {A} → Colist A → C.Colist A toColist [] = [] toColist (x ∷ xs) = x ∷ ♯ toColist xs
{ "alphanum_fraction": 0.4536199095, "avg_line_length": 23.8918918919, "ext": "agda", "hexsha": "5e31433dab42d82a85b04acd0c8ef470999868fd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Foreign/Haskell.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Foreign/Haskell.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Foreign/Haskell.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 240, "size": 884 }
-- {-# OPTIONS -v tc.meta:100 #-} -- Andreas, 2011-04-20 -- see Abel Pientka TLCA 2011 module PruningNonMillerPattern where data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a data Nat : Set where zero : Nat suc : Nat -> Nat test : let X : Nat -> Nat -> Nat X = _ Y : Nat -> Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x x ≡ suc (Y x y)) -> ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x y) y ≡ X x x) -> C) -> C test C k = k refl refl refl {- none of these equations is immediately solvable. However, from 1. we deduce that Y does not depend on its second argument, thus from 2. we solve Y x y = x, and then eqn. 3. simplifies to X x y = X x x, thus, X does not depend on its second arg, we can then solve using 1. X x y = suc x -} -- a variant, where pruning is even triggered from a non-pattern test' : let X : Nat -> Nat -> Nat X = _ Y : Nat -> Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x (suc x) ≡ suc (Y x y)) -> -- non-pattern lhs ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x y) y ≡ X x x) -> C) -> C test' C k = k refl refl refl
{ "alphanum_fraction": 0.4734375, "avg_line_length": 32.8205128205, "ext": "agda", "hexsha": "1b57b2289bf5504aeb7b3da9e6b7776f211b5bf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/PruningNonMillerPattern.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/PruningNonMillerPattern.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/PruningNonMillerPattern.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 436, "size": 1280 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Cocomplete where open import Level open import Categories.Category using (Category) open import Categories.Functor using (Functor) open import Categories.Diagram.Colimit using (Colimit) Cocomplete : (o ℓ e : Level) {o′ ℓ′ e′ : Level} (C : Category o′ ℓ′ e′) → Set _ Cocomplete o ℓ e C = ∀ {J : Category o ℓ e} (F : Functor J C) → Colimit F
{ "alphanum_fraction": 0.7019704433, "avg_line_length": 31.2307692308, "ext": "agda", "hexsha": "13afc28ca4e2899bdde637a0d7521e11c9baced7", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Cocomplete.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Cocomplete.agda", "max_line_length": 79, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Cocomplete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 117, "size": 406 }
------------------------------------------------------------------------------ -- Some proofs related to the power function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.Pow.PropertiesATP where open import FOT.FOTC.Data.Nat.Pow open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityATP ------------------------------------------------------------------------------ postulate 0^0≡1 : 0' ^ 0' ≡ 1' {-# ATP prove 0^0≡1 #-} 0^Sx≡0 : ∀ {n} → N n → 0' ^ succ₁ n ≡ 0' 0^Sx≡0 {.zero} nzero = prf where postulate prf : 0' ^ succ₁ zero ≡ 0' {-# ATP prove prf #-} 0^Sx≡0 (nsucc {n} Nn) = prf where postulate prf : 0' ^ succ₁ (succ₁ n) ≡ 0' {-# ATP prove prf #-} thm₁ : ∀ {n} → N n → 5' ≤ n → n ^ 5' ≤ 5' ^ n thm₁ nzero h = prf where postulate prf : zero ^ 5' ≤ 5' ^ zero {-# ATP prove prf #-} thm₁ (nsucc {n} Nn) h = prf (thm₁ Nn) h where postulate prf : (5' ≤ n → n ^ 5' ≤ 5' ^ n) → 5' ≤ succ₁ n → succ₁ n ^ 5' ≤ 5' ^ succ₁ n -- 2018-06-28: The ATPs could not prove the theorem (300 sec). -- {-# ATP prove prf 5-N #-} thm₂ : ∀ {n} → N n → ((2' ^ n) ∸ 1') + 1' + ((2' ^ n) ∸ 1') ≡ 2' ^ (n + 1') ∸ 1' thm₂ nzero = prf where postulate prf : ((2' ^ zero) ∸ 1') + 1' + ((2' ^ zero) ∸ 1') ≡ 2' ^ (zero + 1') ∸ 1' {-# ATP prove prf #-} thm₂ (nsucc {n} Nn) = prf (thm₂ Nn) where postulate prf : ((2' ^ n) ∸ 1') + 1' + ((2' ^ n) ∸ 1') ≡ 2' ^ (n + 1') ∸ 1' → ((2' ^ succ₁ n) ∸ 1') + 1' + ((2' ^ succ₁ n) ∸ 1') ≡ 2' ^ (succ₁ n + 1') ∸ 1' -- 2018-06-28: The ATPs could not prove the theorem (300 sec). -- {-# ATP prove prf #-}
{ "alphanum_fraction": 0.4330708661, "avg_line_length": 33.3114754098, "ext": "agda", "hexsha": "b2e5c5fdcc23ae40249d1f7c7a713e73d5d27c97", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Pow/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Pow/PropertiesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Pow/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 761, "size": 2032 }
module induction where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_) -- ------------------------------- -- (zero + n) + p ≡ zero + (n + p) -- -- (m + n) + p ≡ m + (n + p) -- --------------------------------- -- (suc m + n) + p ≡ suc m + (n + p) -- 1) -- In the beginning, we know nothing. -- On the first day, we know zero. -- 0 : ℕ -- On the second day, we know one and about associativity of 0. -- 0 : ℕ -- 1 : ℕ (0 + 0) + 0 ≡ 0 + (0 + 0) -- On the third day, we know two and about associativity of 1. -- 0 : ℕ -- 1 : ℕ (0 + 0) + 0 ≡ 0 + (0 + 0) -- 2 : ℕ (0 + 1) + 0 ≡ 0 + (1 + 0) (0 + 1) + 1 ≡ 0 + (1 + 1) (0 + 0) + 1 ≡ 0 + (0 + 1) (1 + 0) + 0 ≡ 1 + (0 + 0) -- On the fourth day, we know two and about associativity of 2. -- 0 : ℕ -- 1 : ℕ (0 + 0) + 0 ≡ 0 + (0 + 0) -- 2 : ℕ (0 + 1) + 0 ≡ 0 + (1 + 0) (0 + 1) + 1 ≡ 0 + (1 + 1) (0 + 0) + 1 ≡ 0 + (0 + 1) (1 + 0) + 0 ≡ 1 + (0 + 0) (1 + 0) + 1 ≡ 1 + (0 + 1) (1 + 1) + 0 ≡ 1 + (1 + 0) (1 + 1) + 1 ≡ 1 + (1 + 1) -- 3 : ℕ (0 + 2) + 0 ≡ 0 + (2 + 0) (0 + 2) + 2 ≡ 0 + (2 + 2) (0 + 0) + 2 ≡ 0 + (0 + 2) (0 + 2) + 1 ≡ 0 + (2 + 1) (0 + 1) + 2 ≡ 0 + (1 + 2) (2 + 0) + 0 ≡ 2 + (0 + 0) (2 + 1) + 0 ≡ 2 + (1 + 0) (2 + 2) + 0 ≡ 2 + (2 + 0) (2 + 0) + 1 ≡ 2 + (0 + 1) (2 + 0) + 2 ≡ 2 + (0 + 2) (2 + 1) + 1 ≡ 2 + (1 + 1) (2 + 1) + 2 ≡ 2 + (1 + 2) (2 + 2) + 1 ≡ 2 + (2 + 1) (2 + 2) + 2 ≡ 2 + (2 + 2) -- 2) +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc zero n p = begin (zero + n) + p ≡⟨⟩ n + p ≡⟨⟩ zero + (n + p) ∎ +-assoc (suc m) n p = begin (suc m + n) + p ≡⟨⟩ suc (m + n) + p ≡⟨⟩ suc ((m + n) + p) ≡⟨ cong suc (+-assoc m n p) ⟩ suc (m + (n + p)) ≡⟨⟩ suc m + (n + p) ∎ +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m +-identityʳ zero = begin zero + zero ≡⟨⟩ zero ∎ +-identityʳ (suc m) = begin suc m + zero ≡⟨⟩ suc (m + zero) ≡⟨ cong suc (+-identityʳ m) ⟩ suc m ∎ +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc zero n = begin zero + suc n ≡⟨⟩ suc n ≡⟨⟩ suc (zero + n) ∎ +-suc (suc m) n = begin suc m + suc n ≡⟨⟩ suc (m + suc n) ≡⟨ cong suc (+-suc m n) ⟩ suc (suc (m + n)) ≡⟨⟩ suc (suc m + n) ∎ +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m zero = begin m + zero ≡⟨ +-identityʳ m ⟩ m ≡⟨⟩ zero + m ∎ +-comm m (suc n) = begin m + suc n ≡⟨ +-suc m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ suc (n + m) ≡⟨⟩ suc n + m ∎ +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m n p = begin m + (n + p) ≡⟨ sym (+-assoc m n p) ⟩ (m + n) + p ≡⟨ cong (_+ p) (+-comm m n) ⟩ (n + m) + p ≡⟨ +-assoc n m p ⟩ n + (m + p) ∎ -- +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) -- +-swap m n p rewrite sym (+-assoc m n p) -- | cong (_+ p) (+-comm m n) -- | +-assoc n m p -- = refl -- 3) *-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+ zero n p = begin (zero + n) * p ≡⟨⟩ n * p ≡⟨⟩ zero * p + n * p ∎ *-distrib-+ (suc m) n p = begin ((suc m) + n) * p ≡⟨⟩ suc (m + n) * p ≡⟨⟩ p + ((m + n) * p) ≡⟨ cong (p +_) (*-distrib-+ m n p) ⟩ p + (m * p + n * p) ≡⟨ sym (+-assoc p (m * p) (n * p))⟩ (p + m * p) + n * p ≡⟨⟩ (suc m) * p + n * p ∎ -- 4) *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) *-assoc zero n p = begin (zero * n) * p ≡⟨⟩ zero * p ≡⟨⟩ zero ≡⟨⟩ zero * n ≡⟨⟩ zero * (n * p) ∎ *-assoc (suc m) n p = begin (suc m * n) * p ≡⟨⟩ (n + m * n) * p ≡⟨ *-distrib-+ n (m * n) p ⟩ (n * p) + (m * n) * p ≡⟨ cong ((n * p) +_) (*-assoc m n p) ⟩ (n * p) + m * (n * p) ≡⟨⟩ suc m * (n * p) ∎ -- 5) *-absorbingʳ : ∀ (m : ℕ) → m * zero ≡ zero *-absorbingʳ zero = begin zero * zero ≡⟨⟩ zero ∎ *-absorbingʳ (suc m) = begin suc m * zero ≡⟨⟩ zero + m * zero ≡⟨ cong (zero +_) (*-absorbingʳ m) ⟩ zero + zero ≡⟨⟩ zero ∎ *-suc : ∀ (m n : ℕ) → m * suc n ≡ m + m * n *-suc zero n = begin zero * (suc n) ≡⟨⟩ zero ≡⟨⟩ zero * n ≡⟨⟩ zero + zero * n ∎ *-suc (suc m) n = begin suc m * suc n ≡⟨⟩ (suc n) + (m * suc n) ≡⟨ cong ((suc n) +_) (*-suc m n) ⟩ (suc n) + (m + m * n) ≡⟨⟩ suc (n + (m + m * n)) ≡⟨ cong suc (sym (+-assoc n m (m * n))) ⟩ suc ((n + m) + m * n) ≡⟨ cong (λ {term → suc (term + m * n)}) (+-comm n m) ⟩ suc ((m + n) + m * n) ≡⟨ cong suc (+-assoc m n (m * n)) ⟩ suc (m + (n + m * n)) ≡⟨⟩ suc (m + (suc m * n)) ≡⟨⟩ suc m + suc m * n ∎ *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm m zero = begin m * zero ≡⟨ *-absorbingʳ m ⟩ zero ≡⟨⟩ zero * m ∎ *-comm m (suc n) = begin m * suc n ≡⟨ *-suc m n ⟩ m + m * n ≡⟨ cong (m +_) (*-comm m n) ⟩ m + n * m ≡⟨⟩ suc n * m ∎ -- 6) 0∸n≡0 : ∀ (n : ℕ) → zero ∸ n ≡ zero 0∸n≡0 zero = begin zero ∸ zero ≡⟨⟩ zero ∎ 0∸n≡0 (suc n) = begin zero ∸ suc n ≡⟨⟩ zero ∎ -- No induction needed, just prove it holds for 0 and for suc n. (Holds because of definition of ∸) -- 7) 0∸n≡0∸n+p : ∀ (n p : ℕ) → zero ∸ n ≡ zero ∸ (n + p) 0∸n≡0∸n+p n zero = begin zero ∸ n ≡⟨ cong (zero ∸_) (sym (+-identityʳ n)) ⟩ zero ∸ (n + zero) ∎ 0∸n≡0∸n+p n (suc p) = begin zero ∸ n ≡⟨ 0∸n≡0 n ⟩ zero ≡⟨⟩ zero ∸ suc (n + p) ≡⟨ cong (zero ∸_) (sym (+-suc n p)) ⟩ zero ∸ (n + suc p) ∎ ∸-+-assoc : ∀ (m n p : ℕ) → (m ∸ n) ∸ p ≡ m ∸ (n + p) ∸-+-assoc zero n p = begin (zero ∸ n) ∸ p ≡⟨ cong (_∸ p) (0∸n≡0 n) ⟩ zero ∸ p ≡⟨ 0∸n≡0 p ⟩ zero ≡⟨ sym (0∸n≡0 n) ⟩ zero ∸ n ≡⟨ 0∸n≡0∸n+p n p ⟩ zero ∸ (n + p) ∎ ∸-+-assoc (suc m) zero p = begin (suc m ∸ zero) ∸ p ≡⟨⟩ suc m ∸ (zero + p) ∎ ∸-+-assoc (suc m) (suc n) p = begin (suc m ∸ suc n) ∸ p ≡⟨⟩ (m ∸ n) ∸ p ≡⟨ ∸-+-assoc m n p ⟩ m ∸ (n + p) ≡⟨⟩ suc m ∸ suc (n + p) ≡⟨⟩ suc m ∸ (suc n + p) ∎ -- 8) *-identityˡ : ∀ (n : ℕ) → 1 * n ≡ n *-identityˡ n = begin 1 * n ≡⟨⟩ (suc zero) * n ≡⟨⟩ n + (zero * n) ≡⟨⟩ n + zero ≡⟨ +-identityʳ n ⟩ n ∎ ^-distribˡ-+-* : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p) ^-distribˡ-+-* m zero p = begin m ^ (zero + p) ≡⟨⟩ m ^ p ≡⟨ sym (*-identityˡ (m ^ p)) ⟩ 1 * m ^ p ≡⟨⟩ (m ^ zero) * (m ^ p) ∎ ^-distribˡ-+-* m (suc n) p = begin m ^ (suc n + p) ≡⟨⟩ m ^ suc (n + p) ≡⟨⟩ m * (m ^ (n + p)) ≡⟨ cong (m *_) (^-distribˡ-+-* m n p) ⟩ m * (m ^ n * m ^ p) ≡⟨ sym (*-assoc m (m ^ n) (m ^ p)) ⟩ (m * m ^ n) * m ^ p ≡⟨⟩ (m ^ suc n) * (m ^ p) ∎ ^-distribʳ-* : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) ^-distribʳ-* m n zero = begin (m * n) ^ zero ≡⟨⟩ 1 ≡⟨⟩ 1 * 1 ≡⟨⟩ (m ^ zero) * (n ^ zero) ∎ ^-distribʳ-* m n (suc p) = begin (m * n) ^ (suc p) ≡⟨⟩ (m * n) * (m * n) ^ p ≡⟨ cong ((m * n) *_) (^-distribʳ-* m n p) ⟩ (m * n) * ((m ^ p) * (n ^ p)) ≡⟨ sym (*-assoc (m * n) (m ^ p) (n ^ p)) ⟩ ((m * n) * (m ^ p)) * (n ^ p) ≡⟨ cong (_* (n ^ p)) (*-assoc m n (m ^ p)) ⟩ (m * (n * (m ^ p))) * (n ^ p) ≡⟨ cong (λ {term → (m * term) * (n ^ p)}) (*-comm n (m ^ p)) ⟩ (m * ((m ^ p) * n)) * (n ^ p) ≡⟨ cong (_* (n ^ p)) (sym (*-assoc m (m ^ p) n)) ⟩ (m * (m ^ p) * n) * (n ^ p) ≡⟨ *-assoc (m * (m ^ p)) n (n ^ p) ⟩ m * (m ^ p) * (n * (n ^ p)) ≡⟨⟩ (m ^ suc p) * (n ^ suc p) ∎ ^-*-assoc : ∀ (m n p : ℕ) → (m ^ n) ^ p ≡ m ^ (n * p) ^-*-assoc m n zero = begin (m ^ n) ^ zero ≡⟨⟩ 1 ≡⟨⟩ m ^ zero ≡⟨ cong (m ^_) (sym (*-absorbingʳ n)) ⟩ m ^ (n * zero) ∎ ^-*-assoc m n (suc p) = begin (m ^ n) ^ suc p ≡⟨⟩ (m ^ n) * (m ^ n) ^ p ≡⟨ cong ((m ^ n) *_) (^-*-assoc m n p) ⟩ (m ^ n) * (m ^ (n * p)) ≡⟨ cong (λ {term → (m ^ n) * (m ^ term)}) (*-comm n p) ⟩ (m ^ n) * (m ^ (p * n)) ≡⟨ sym (^-distribˡ-+-* m n (p * n)) ⟩ m ^ (n + p * n) ≡⟨⟩ m ^ (suc p * n) ≡⟨ cong (m ^_) (*-comm (suc p) n) ⟩ m ^ (n * suc p) ∎ -- 9) data Bin : Set where - : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc - = - I inc (rest O) = rest I inc (rest I) = (inc rest) O to : ℕ → Bin to zero = - O to (suc n) = inc (to n) from : Bin → ℕ from - = 0 from (rest O) = 2 * from rest from (rest I) = 2 * from rest + 1 bin-inverse-suc-inc : ∀ (b : Bin) → from (inc b) ≡ suc (from b) bin-inverse-suc-inc - = begin from (inc -) ≡⟨⟩ from (- I) ≡⟨⟩ 2 * from - + 1 ≡⟨⟩ 2 * 0 + 1 ≡⟨⟩ 0 + 1 ≡⟨⟩ 1 ≡⟨⟩ suc 0 ≡⟨⟩ suc (from -) ∎ bin-inverse-suc-inc (b O) = begin from (inc (b O)) ≡⟨⟩ from (b I) ≡⟨⟩ 2 * from b + 1 ≡⟨ +-comm (2 * from b) 1 ⟩ suc (2 * from b) ≡⟨⟩ suc (from (b O)) ∎ bin-inverse-suc-inc (b I) = begin from (inc (b I)) ≡⟨⟩ from ((inc b) O) ≡⟨⟩ 2 * from (inc b) ≡⟨ cong (2 *_) (bin-inverse-suc-inc b) ⟩ 2 * suc (from b) ≡⟨ *-comm 2 (suc (from b)) ⟩ suc (from b) * 2 ≡⟨⟩ (1 + from b) * 2 ≡⟨ *-distrib-+ 1 (from b) 2 ⟩ 1 * 2 + from b * 2 ≡⟨ cong (1 * 2 +_) (*-comm (from b) 2) ⟩ 1 * 2 + 2 * from b ≡⟨⟩ 2 + 2 * from b ≡⟨⟩ suc 1 + 2 * from b ≡⟨⟩ suc (1 + 2 * from b) ≡⟨ cong (suc) (+-comm 1 (2 * from b)) ⟩ suc (2 * from b + 1) ≡⟨⟩ suc (from (b I)) ∎ -- ∀ (b : Bin) → to (from b) ≡ b -- This does not work, as "from" is a surjective function. Both "-" and "- O" from Bin map into 0 from ℕ. Surjective functions have no left inverse. -- 0 would have to map into two values, making the inverse of "from" not a function. -- This works, as "to" is an injective function. 0 from ℕ maps (according to our definition) into "- O" in Bin. Injective functions have a left inverse. -- "from" is a left inverse to "to". Note that there are infinitely many left inverses, since "-" could be mapped to any value in ℕ. from∘to≡idₗ : ∀ (n : ℕ) → from (to n) ≡ n from∘to≡idₗ zero = begin from (to zero) ≡⟨⟩ from (- O) ≡⟨⟩ 2 * from - ≡⟨⟩ 2 * 0 ≡⟨⟩ zero ∎ from∘to≡idₗ (suc n) = begin from (to (suc n)) ≡⟨⟩ from (inc (to n)) ≡⟨ bin-inverse-suc-inc (to n) ⟩ suc (from (to n)) ≡⟨ cong suc (from∘to≡idₗ n) ⟩ suc n ∎
{ "alphanum_fraction": 0.3785796105, "avg_line_length": 19.6179775281, "ext": "agda", "hexsha": "7300e638625217f9bbee465ffc9dff0a2751f4e3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "aronerben/agda-playground", "max_forks_repo_path": "plfa/induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "aronerben/agda-playground", "max_issues_repo_path": "plfa/induction.agda", "max_line_length": 414, "max_stars_count": null, "max_stars_repo_head_hexsha": "64a00f1f97f053d246d5b9deab090e75d923fe8f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "aronerben/agda-playground", "max_stars_repo_path": "plfa/induction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5575, "size": 10476 }
module LecDiff where open import CS410-Prelude open import CS410-Nat open import LecSigma data Data : Set1 where _+D_ _*D_ : Data -> Data -> Data label : Set -> Data rec : Data infixr 4 _+D_ infixr 5 _*D_ [[_]] : Data -> Set -> Set [[ S +D T ]] R = [[ S ]] R + [[ T ]] R [[ S *D T ]] R = [[ S ]] R * [[ T ]] R [[ label X ]] R = X [[ rec ]] R = R data Mu (D : Data) : Set where <_> : [[ D ]] (Mu D) -> Mu D -- example: Natural Numbers NAT : Data NAT = label One +D rec pattern ZERO = < inl <> > pattern SUC n = < inr n > #_ : Nat -> Mu NAT # zero = ZERO # (suc n) = SUC (# n) _+DN_ : Mu NAT -> Mu NAT -> Mu NAT ZERO +DN n = n SUC m +DN n = SUC (m +DN n) _<=DN_ : Mu NAT -> Mu NAT -> Two ZERO <=DN n = tt SUC m <=DN ZERO = ff SUC m <=DN SUC n = m <=DN n -- example: binary trees with nodes labelled by numbers BST : Data BST = label One +D rec *D label (Mu NAT) *D rec pattern LEAF = < inl <> > pattern NODE l n r = < inr (l , n , r) > insert : Mu NAT -> Mu BST -> Mu BST insert x LEAF = NODE LEAF x LEAF insert x (NODE l y r) with x <=DN y insert x (NODE l y r) | tt = NODE (insert x l) y r insert x (NODE l y r) | ff = NODE l y (insert x r) myBST : Mu BST myBST = NODE (NODE (NODE LEAF (# 1) LEAF) (# 2) LEAF) (# 4) (NODE (NODE LEAF (# 5) LEAF) (# 7) LEAF) myBST' : Mu BST myBST' = insert (# 3) myBST ------------------------ Diff : Data -> Data Diff (S +D T) = Diff S +D Diff T Diff (S *D T) = Diff S *D T +D S *D Diff T Diff (label X) = label Zero Diff rec = label One plug : {R : Set}(D : Data) -> [[ Diff D ]] R -> R -> [[ D ]] R plug (S +D T) (inl s') r = inl (plug S s' r) plug (S +D T) (inr t') r = inr (plug T t' r) plug (S *D T) (inl (s' , t)) r = plug S s' r , t plug (S *D T) (inr (s , t')) r = s , plug T t' r plug (label X) () r plug rec <> r = r Shape : Data -> Set Shape D = [[ D ]] One Positions : (D : Data) -> Shape D -> Set Positions (D +D E) (inl d) = Positions D d Positions (D +D E) (inr e) = Positions E e Positions (D *D E) (d , e) = Positions D d + Positions E e Positions (label X) x = Zero Positions rec <> = One
{ "alphanum_fraction": 0.5155963303, "avg_line_length": 23.4408602151, "ext": "agda", "hexsha": "a6ad7b385647eeeaf765cf2a946d3b37f9462a74", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "LecDiff.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "LecDiff.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "LecDiff.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 851, "size": 2180 }
module Integer8 where open import Data.Nat open import Data.Nat.Properties open import Data.Product open import Relation.Binary.PropositionalEquality as PropEq -- ---------- record ---------- record IsSemiGroup (A : Set) (_∙_ : A → A → A) : Set where field assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) record IsMonoid (A : Set) (_∙_ : A → A → A) (e : A) : Set where field isSemiGroup : IsSemiGroup A _∙_ identity : (∀ x → e ∙ x ≡ x) × (∀ x → x ∙ e ≡ x) record IsGroup (A : Set) (_∙_ : A → A → A) (e : A) (iF : A → A) : Set where field isMonoid : IsMonoid A _∙_ e inv : (∀ x → (iF x) ∙ x ≡ e) × (∀ x → x ∙ (iF x) ≡ e) record IsAbelianGroup (A : Set) (_∙_ : A → A → A) (e : A) (iF : A → A) : Set where field isGroup : IsGroup A _∙_ e iF comm : ∀ x y → x ∙ y ≡ y ∙ x record IsRing (A : Set) (_⊕_ _⊗_ : A → A → A) (eP eT : A) (iF : A → A) : Set where field ⊕isAbelianGroup : IsAbelianGroup A _⊕_ eP iF ⊗isMonoid : IsMonoid A _⊗_ eT isDistR : (x y z : A) → (x ⊕ y) ⊗ z ≡ (x ⊗ z) ⊕ (y ⊗ z) isDistL : (x y z : A) → x ⊗ (y ⊕ z) ≡ (x ⊗ y) ⊕ (x ⊗ z) -- ---------------------------- -- ---------- practice nat ---------- ℕ+-isSemiGroup : IsSemiGroup ℕ _+_ ℕ+-isSemiGroup = record { assoc = ℕ+-assoc } where ℕ+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) ℕ+-assoc zero y z = refl ℕ+-assoc (suc x) y z = cong suc (ℕ+-assoc x y z) ℕ+0-isMonoid : IsMonoid ℕ _+_ 0 ℕ+0-isMonoid = record { isSemiGroup = ℕ+-isSemiGroup ; identity = (0+x≡x , x+0≡x) } where 0+x≡x : ∀ x → 0 + x ≡ x 0+x≡x x = refl x+0≡x : ∀ x → x + 0 ≡ x x+0≡x zero = refl x+0≡x (suc x) = cong suc (x+0≡x x) -- ------------------------- -- ---------- Int ---------- data ℤ : Set where O : ℤ I : ℕ → ℕ → ℤ postulate zeroZ : (x : ℕ) → I x x ≡ O zeroZ₂ : (x y : ℕ) → I (x + y) (y + x) ≡ O -- plusInt _++_ : ℤ → ℤ → ℤ O ++ O = O O ++ X = X X ++ O = X I x y ++ I z w = I (x + z) (y + w) -- productInt _**_ : ℤ → ℤ → ℤ O ** O = O O ** _ = O _ ** O = O I x y ** I z w = I (x * z + y * w) (x * w + y * z) -- ------------------------- -- ---------- Int + ---------- ℤ++-isSemiGroup : IsSemiGroup ℤ _++_ ℤ++-isSemiGroup = record { assoc = ℤ++-assoc } where open IsSemiGroup ℤ++-assoc : ∀ x y z → (x ++ y) ++ z ≡ x ++ (y ++ z) ℤ++-assoc O O O = refl ℤ++-assoc O O (I x x₁) = refl ℤ++-assoc O (I x x₁) O = refl ℤ++-assoc O (I x x₁) (I x₂ x₃) = refl ℤ++-assoc (I x x₁) O O = refl ℤ++-assoc (I x x₁) O (I x₂ x₃) = refl ℤ++-assoc (I x x₁) (I x₂ x₃) O = refl ℤ++-assoc (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I ((assoc ℕ+-isSemiGroup) x x₂ x₄) ((assoc ℕ+-isSemiGroup) x₁ x₃ x₅) ℤ++O-isMonoid : IsMonoid ℤ _++_ O ℤ++O-isMonoid = record { isSemiGroup = ℤ++-isSemiGroup ; identity = (O++x≡x , x++O≡x) } where O++x≡x : (x : ℤ) → (O ++ x) ≡ x O++x≡x O = refl O++x≡x (I x x₁) = refl x++O≡x : (x : ℤ) → (x ++ O) ≡ x x++O≡x O = refl x++O≡x (I x x₁) = refl invℤ : ℤ → ℤ invℤ O = O invℤ (I x x₁) = I x₁ x ℤ++Oinvℤ-isGroup : IsGroup ℤ _++_ O invℤ ℤ++Oinvℤ-isGroup = record { isMonoid = ℤ++O-isMonoid ; inv = (leftInv , rightInv) } where leftInv : (x : ℤ) → (invℤ x ++ x) ≡ O leftInv O = refl leftInv (I x x₁) = zeroZ₂ x₁ x rightInv : (x : ℤ) → (x ++ invℤ x) ≡ O rightInv O = refl rightInv (I x x₁) = zeroZ₂ x x₁ ℤ++Oinvℤ-isAbelianGroup : IsAbelianGroup ℤ _++_ O invℤ ℤ++Oinvℤ-isAbelianGroup = record { isGroup = ℤ++Oinvℤ-isGroup ; comm = ℤ++Oinvℤ-Comm } where ℤ++Oinvℤ-Comm : (x y : ℤ) → (x ++ y) ≡ (y ++ x) ℤ++Oinvℤ-Comm O O = refl ℤ++Oinvℤ-Comm O (I x x₁) = refl ℤ++Oinvℤ-Comm (I x x₁) O = refl ℤ++Oinvℤ-Comm (I x x₁) (I x₂ x₃) = cong₂ I (+-comm x x₂) (+-comm x₁ x₃) -- --------------------------- -- ---------- Int * ---------- ℤ**-isSemiGroup : IsSemiGroup ℤ _**_ ℤ**-isSemiGroup = record { assoc = ℤ**-assoc } where ℤ**-assoc : ∀ x y z → (x ** y) ** z ≡ x ** (y ** z) ℤ**-assoc O O O = refl ℤ**-assoc O O (I x x₁) = refl ℤ**-assoc O (I x x₁) O = refl ℤ**-assoc O (I x x₁) (I x₂ x₃) = refl ℤ**-assoc (I x x₁) O O = refl ℤ**-assoc (I x x₁) O (I x₂ x₃) = refl ℤ**-assoc (I x x₁) (I x₂ x₃) O = refl ℤ**-assoc (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I (ℤ**-assoc₁ x x₁ x₂ x₃ x₄ x₅) (ℤ**-assoc₁ x x₁ x₂ x₃ x₅ x₄) where open PropEq.≡-Reasoning open IsSemiGroup ℤ**-assoc₁ : ∀ x y z u v w → (x * z + y * u) * v + (x * u + y * z) * w ≡ x * (z * v + u * w) + y * (z * w + u * v) ℤ**-assoc₁ x y z u v w = begin (x * z + y * u) * v + (x * u + y * z) * w ≡⟨ cong (\ t → (t + (x * u + y * z) * w)) (*-distribʳ-+ v (x * z) (y * u)) ⟩ x * z * v + y * u * v + (x * u + y * z) * w ≡⟨ cong (\ t → (x * z * v + y * u * v + t)) (*-distribʳ-+ w (x * u) (y * z)) ⟩ x * z * v + y * u * v + (x * u * w + y * z * w) ≡⟨ +-assoc (x * z * v) (y * u * v) (x * u * w + y * z * w) ⟩ x * z * v + (y * u * v + (x * u * w + y * z * w)) ≡⟨ cong (\ t → ((x * z * v) + t)) (+-comm (y * u * v) (x * u * w + y * z * w)) ⟩ x * z * v + ((x * u * w + y * z * w) + y * u * v) ≡⟨ sym (+-assoc (x * z * v) (x * u * w + y * z * w) (y * u * v)) ⟩ x * z * v + (x * u * w + y * z * w) + y * u * v ≡⟨ sym (cong (\ t → (t + y * u * v)) ((assoc ℕ+-isSemiGroup) (x * z * v) (x * u * w) (y * z * w))) ⟩ x * z * v + x * u * w + y * z * w + y * u * v ≡⟨ cong (\ t → t + x * u * w + y * z * w + y * u * v) (*-assoc x z v) ⟩ x * (z * v) + x * u * w + y * z * w + y * u * v ≡⟨ cong (\ t → x * (z * v) + t + y * z * w + y * u * v) (*-assoc x u w) ⟩ x * (z * v) + x * (u * w) + y * z * w + y * u * v ≡⟨ cong (\ t → x * (z * v) + x * (u * w) + t + y * u * v) (*-assoc y z w) ⟩ x * (z * v) + x * (u * w) + y * (z * w) + y * u * v ≡⟨ cong (\ t → x * (z * v) + x * (u * w) + y * (z * w) + t) (*-assoc y u v) ⟩ x * (z * v) + x * (u * w) + y * (z * w) + y * (u * v) ≡⟨ sym (cong (\ t → (t + y * (z * w) + y * (u * v))) (*-distribˡ-+ x (z * v) (u * w))) ⟩ x * (z * v + u * w) + y * (z * w) + y * (u * v) ≡⟨ +-assoc (x * (z * v + u * w)) (y * (z * w)) (y * (u * v)) ⟩ x * (z * v + u * w) + (y * (z * w) + y * (u * v)) ≡⟨ sym (cong (\ t → (x * (z * v + u * w) + t)) (*-distribˡ-+ y (z * w) (u * v))) ⟩ x * (z * v + u * w) + y * (z * w + u * v) ∎ ℤ**1-isMonoid : IsMonoid ℤ _**_ (I 1 0) ℤ**1-isMonoid = record { isSemiGroup = ℤ**-isSemiGroup ; identity = (1**x≡x , x**1≡x) } where 1**x≡x : (x : ℤ) → (I 1 0 ** x) ≡ x 1**x≡x O = refl 1**x≡x (I x x₁) = cong₂ I (x+z+z≡x x) (x+z+z≡x x₁) where x+z+z≡x : (x : ℕ) → x + 0 + 0 ≡ x x+z+z≡x zero = refl x+z+z≡x (suc x) = cong suc (x+z+z≡x x) x**1≡x : (x : ℤ) → (x ** I 1 0) ≡ x x**1≡x O = refl x**1≡x (I x x₁) = cong₂ I (x*1+x*0≡x x x₁) (x*0+x*1=x x x₁) where x*1+x*0≡x : (x x₁ : ℕ) → x * 1 + x₁ * 0 ≡ x x*1+x*0≡x zero zero = refl x*1+x*0≡x zero (suc x₁) = x*1+x*0≡x zero x₁ x*1+x*0≡x (suc x) zero = cong suc (x*1+x*0≡x x zero) x*1+x*0≡x (suc x) (suc x₁) = x*1+x*0≡x (suc x) x₁ x*0+x*1=x : (x x₁ : ℕ) → x * 0 + x₁ * 1 ≡ x₁ x*0+x*1=x zero zero = refl x*0+x*1=x zero (suc x₁) = cong suc (x*0+x*1=x zero x₁) x*0+x*1=x (suc x) zero = x*0+x*1=x x zero x*0+x*1=x (suc x) (suc x₁) = x*0+x*1=x x (suc x₁) -- --------------------------- -- ---------- Int + * ---------- ℤ++0invℤ-**1-isRing : IsRing ℤ _++_ _**_ O (I 1 0) invℤ ℤ++0invℤ-**1-isRing = record { ⊕isAbelianGroup = ℤ++Oinvℤ-isAbelianGroup ; ⊗isMonoid = ℤ**1-isMonoid ; isDistR = ℤdistR ; isDistL = ℤdistL } where ℤdistR : (x y z : ℤ) → (x ++ y) ** z ≡ (x ** z) ++ (y ** z) ℤdistR O O O = refl ℤdistR O O (I x x₁) = refl ℤdistR O (I x x₁) O = refl ℤdistR O (I x x₁) (I x₂ x₃) = refl ℤdistR (I x x₁) O O = refl ℤdistR (I x x₁) O (I x₂ x₃) = refl ℤdistR (I x x₁) (I x₂ x₃) O = refl ℤdistR (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I (ℤdistR₁ x x₂ x₄ x₁ x₃ x₅) (ℤdistR₁ x x₂ x₅ x₁ x₃ x₄) where open PropEq.≡-Reasoning open IsSemiGroup ℤdistR₁ : (x y z u v w : ℕ) → (x + y) * z + (u + v) * w ≡ x * z + u * w + (y * z + v * w) ℤdistR₁ x y z u v w = begin (x + y) * z + (u + v) * w ≡⟨ cong (\ t → t + (u + v) * w) (*-distribʳ-+ z x y) ⟩ x * z + y * z + (u + v) * w ≡⟨ cong (\ t → (x * z + y * z + t)) (*-distribʳ-+ w u v) ⟩ x * z + y * z + (u * w + v * w) ≡⟨ +-assoc (x * z) (y * z) (u * w + v * w) ⟩ x * z + (y * z + (u * w + v * w)) ≡⟨ cong (\ t → x * z + t) (+-comm (y * z) (u * w + v * w)) ⟩ x * z + ((u * w + v * w) + y * z) ≡⟨ cong (\ t → x * z + t) ((assoc ℕ+-isSemiGroup) (u * w) (v * w) (y * z)) ⟩ x * z + (u * w + (v * w + y * z)) ≡⟨ cong (\ t → x * z + (u * w + t)) (+-comm (v * w) (y * z)) ⟩ x * z + (u * w + (y * z + v * w)) ≡⟨ sym ((assoc ℕ+-isSemiGroup) (x * z) (u * w) (y * z + v * w)) ⟩ x * z + u * w + (y * z + v * w) ∎ ℤdistL : (x y z : ℤ) → x ** (y ++ z) ≡ (x ** y) ++ (x ** z) ℤdistL O O O = refl ℤdistL O O (I x x₁) = refl ℤdistL O (I x x₁) O = refl ℤdistL O (I x x₁) (I x₂ x₃) = refl ℤdistL (I x x₁) O O = refl ℤdistL (I x x₁) O (I x₂ x₃) = refl ℤdistL (I x x₁) (I x₂ x₃) O = refl ℤdistL (I x x₁) (I x₂ x₃) (I x₄ x₅) = cong₂ I (ℤdistL₁ x x₁ x₂ x₃ x₄ x₅) (ℤdistL₁ x x₁ x₃ x₂ x₅ x₄) where open PropEq.≡-Reasoning open IsSemiGroup ℤdistL₁ : (x y z u v w : ℕ) → x * (z + v) + y * (u + w) ≡ x * z + y * u + (x * v + y * w) ℤdistL₁ x y z u v w = begin x * (z + v) + y * (u + w) ≡⟨ cong (\ t → t + y * (u + w)) (*-distribˡ-+ x z v) ⟩ x * z + x * v + y * (u + w) ≡⟨ cong (\ t → x * z + x * v + t) (*-distribˡ-+ y u w) ⟩ x * z + x * v + (y * u + y * w) ≡⟨ +-assoc (x * z) (x * v) (y * u + y * w) ⟩ x * z + (x * v + (y * u + y * w)) ≡⟨ sym (cong (\ t → x * z + t) ((assoc ℕ+-isSemiGroup) (x * v) (y * u) (y * w))) ⟩ x * z + ((x * v + y * u) + y * w) ≡⟨ cong (\ t → x * z + (t + y * w)) (+-comm (x * v) (y * u)) ⟩ x * z + ((y * u + x * v) + y * w) ≡⟨ cong (\ t → x * z + t) ((assoc ℕ+-isSemiGroup) (y * u) (x * v) (y * w)) ⟩ x * z + (y * u + (x * v + y * w)) ≡⟨ sym ((assoc ℕ+-isSemiGroup) (x * z) (y * u) (x * v + y * w)) ⟩ x * z + y * u + (x * v + y * w) ∎ -- --------------------------- -- (-1) * (-1) = 1 minus : I 0 1 ** I 0 1 ≡ I 1 0 minus = refl
{ "alphanum_fraction": 0.3741838715, "avg_line_length": 40.623655914, "ext": "agda", "hexsha": "59f43c2cfe62b9ea4d3adeaf9a8fb21a3011b4ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "Integer8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "Integer8.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "Integer8.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5335, "size": 11334 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Agda.Builtin.Nat {-# BUILTIN REWRITE _≡_ #-} not : Bool → Bool not true = false not false = true data Unit : Set where unit : Unit postulate X : Unit → Set X-Nat : X unit ≡ Nat X-Bool : (u : Unit) → X u ≡ Bool {-# REWRITE X-Nat #-} 0' : (u : Unit) → X u 0' unit = 0 {-# REWRITE X-Bool #-} test : (u : Unit) → not (0' u) ≡ true test unit = refl
{ "alphanum_fraction": 0.6056034483, "avg_line_length": 16, "ext": "agda", "hexsha": "b0c2ff4d0af1d87087f4f75a941bac93b2f7e0da", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5396.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5396.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5396.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 163, "size": 464 }
open import Data.String using ( _++_ ) open import System.IO using ( _>>_ ; _>>=_ ; getStr ; putStr ; commit ) module System.IO.Examples.HelloUser where main = putStr "What is your name?\n" >> commit >> getStr >>= λ name → putStr ("Hello, " ++ name ++ "\n") >> commit
{ "alphanum_fraction": 0.6077738516, "avg_line_length": 23.5833333333, "ext": "agda", "hexsha": "5b0ffd1153e7e391d039896f02a4361941233cc4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Examples/HelloUser.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Examples/HelloUser.agda", "max_line_length": 71, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Examples/HelloUser.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 88, "size": 283 }
{- Agda Implementors' Meeting VI Göteborg May 24 - 30, 2007 Hello Agda! Ulf Norell -} -- This is where the fun begins. -- Unleashing datatypes, pattern matching and recursion. module Datatypes where {- Simple datatypes. -} -- Now which datatype should we start with...? data Nat : Set where zero : Nat suc : Nat -> Nat -- Let's start simple. pred : Nat -> Nat pred zero = zero pred (suc n) = n -- Now let's do recursion. _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- An aside on infix operators: -- Any name containing _ can be used as a mixfix operator. -- The arguments simply go in place of the _. For instance: data Bool : Set where true : Bool false : Bool if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y -- To declare the associativity and precedence of an operator -- we write. In this case we need parenthesis around the else branch -- if its precedence is lower than 10. For the condition and the then -- branch we only need parenthesis for things like λs. infix 10 if_then_else_ {- Parameterised datatypes -} data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 50 _::_ -- The parameters are implicit arguments to the constructors. nil : (A : Set) -> List A nil A = [] {A} map : {A B : Set} -> (A -> B) -> List A -> List B map f [] = [] map f (x :: xs) = f x :: map f xs {- Empty datatypes -} -- A very useful guy is the empty datatype. data False : Set where -- When pattern matching on an element of an empty type, something -- interesting happens: elim-False : {A : Set} -> False -> A elim-False () -- Look Ma, no right hand side! -- The pattern () is called an absurd pattern and matches elements -- of an empty type. {- What's next? -} -- Fun as they are, eventually you'll get bored with -- inductive datatypes. -- Move on to: Families.agda
{ "alphanum_fraction": 0.6243756244, "avg_line_length": 18.537037037, "ext": "agda", "hexsha": "4dba1b778b155dca3d1ffb370adc9d4780dc60c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/AIM6/HelloAgda/Datatypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/AIM6/HelloAgda/Datatypes.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/AIM6/HelloAgda/Datatypes.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 564, "size": 2002 }
{-# OPTIONS --safe --warning=error #-} open import Numbers.Naturals.Semiring open import Groups.FreeProduct.Definition open import Groups.FreeProduct.Setoid open import Groups.FreeProduct.Group open import Groups.Definition open import Groups.Homomorphisms.Definition open import Groups.Isomorphisms.Definition open import LogicalFormulae open import Numbers.Integers.Addition open import Numbers.Integers.Definition open import Groups.FreeGroup.Definition open import Groups.FreeGroup.Word open import Groups.FreeGroup.Group open import Groups.FreeGroup.UniversalProperty open import Setoids.Setoids module Groups.FreeProduct.Lemmas {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) where private f : ReducedWord decidableIndex → ReducedSequence decidableIndex (λ _ → ℤDecideEquality) (λ _ → ℤGroup) f = universalPropertyFunction decidableIndex (FreeProductGroup decidableIndex (λ _ → ℤDecideEquality) (λ _ → ℤGroup)) λ i → nonempty i (ofEmpty i (nonneg 1) λ ()) freeProductIso : GroupHom (freeGroup decidableIndex) (FreeProductGroup decidableIndex (λ _ → ℤDecideEquality) (λ _ → ℤGroup)) f freeProductIso = universalPropertyHom decidableIndex (FreeProductGroup decidableIndex (λ _ → ℤDecideEquality) (λ _ → ℤGroup)) (λ i → nonempty i (ofEmpty i (nonneg 1) λ ())) freeProductInj : (x y : ReducedWord decidableIndex) → (decidableIndex =RP λ _ → ℤDecideEquality) (λ _ → ℤGroup) (f x) (f y) → x ≡ y freeProductInj empty empty pr = refl freeProductInj empty (prependLetter (ofLetter x₁) y x) pr = exFalso {!!} freeProductInj empty (prependLetter (ofInv x₁) y x) pr = {!!} freeProductInj (prependLetter letter x x₁) y pr = {!!} freeProductZ : GroupsIsomorphic (freeGroup decidableIndex) (FreeProductGroup decidableIndex (λ _ → ℤDecideEquality) (λ _ → ℤGroup)) GroupsIsomorphic.isomorphism (freeProductZ) = universalPropertyFunction decidableIndex (FreeProductGroup decidableIndex (λ _ → ℤDecideEquality) (λ _ → ℤGroup)) λ i → nonempty i (ofEmpty i (nonneg 1) λ ()) GroupIso.groupHom (GroupsIsomorphic.proof (freeProductZ)) = freeProductIso SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) = GroupHom.wellDefined (freeProductIso) SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {x} {y} = freeProductInj x y SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) = GroupHom.wellDefined freeProductIso SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {empty} = empty , record {} SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (ofEmpty .i (nonneg zero) nonZero)} = exFalso (nonZero refl) SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (ofEmpty .i (nonneg (succ x)) nonZero)} = prependLetter (ofLetter i) empty (wordEmpty refl) , {!!} SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (ofEmpty .i (negSucc x) nonZero)} = {!!} SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (prependLetter .i g nonZero x x₁)} = {!!} freeProductNonAbelian : {!!} freeProductNonAbelian = {!!}
{ "alphanum_fraction": 0.7735242548, "avg_line_length": 71.2916666667, "ext": "agda", "hexsha": "0dcee7e1078dab604e2fedec478478e758d5de8c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FreeProduct/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FreeProduct/Lemmas.agda", "max_line_length": 216, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FreeProduct/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1023, "size": 3422 }
module Issue121 where bad : Set → Set bad A = A → A data Bool : Set where true : Bool false : Bool F : Bool → Set → Set F true = bad F false = λ A → A data D : Set where nop : (b : Bool) → F b D → D
{ "alphanum_fraction": 0.5633802817, "avg_line_length": 11.8333333333, "ext": "agda", "hexsha": "01f85e6caf80381118cf7cbd09989fce1c43feb9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue121.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue121.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue121.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 79, "size": 213 }
open import Relation.Binary.Core module PLRTree.Insert.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Product renaming (_×_ to _∧_) open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import PLRTree {A} open import PLRTree.Complete {A} open import PLRTree.Compound {A} open import PLRTree.Insert _≤_ tot≤ open import PLRTree.Insert.Properties _≤_ tot≤ mutual lemma-insert-/ : {t : PLRTree}(x : A) → Complete t → ∃ (λ xs → flatten (insert x t) / x ⟶ xs ∧ xs ∼ flatten t) lemma-insert-/ x leaf = [] , /head , ∼[] lemma-insert-/ x (perfect {l} {r} y cl _ l≃r) with tot≤ x y | l | r | l≃r ... | inj₁ x≤y | leaf | leaf | _ = y ∷ [] , /head , refl∼ ... | inj₁ x≤y | leaf | node _ _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | leaf | () ... | inj₁ x≤y | node perfect y' l' r' | node perfect y'' l'' r'' | _ = let _l = node perfect y' l' r' ; _r = node perfect y'' l'' r'' ; flᵢfr∼yflfr = lemma++∼r (lemma-insert-∼ y cl) in flatten (insert y _l) ++ flatten _r , /head , flᵢfr∼yflfr ... | inj₁ x≤y | node perfect _ _ _ | node left _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | node right _ _ _ | () ... | inj₁ x≤y | node left _ _ _ | _ | () ... | inj₁ x≤y | node right _ _ _ | _ | () ... | inj₂ y≤x | leaf | leaf | _ = y ∷ [] , /tail /head , refl∼ ... | inj₂ y≤x | leaf | node _ _ _ _ | () ... | inj₂ y≤x | node perfect _ _ _ | leaf | () ... | inj₂ y≤x | node perfect y' l' r' | node perfect y'' l'' r'' | _ with lemma-insert-/ x cl ... | xs , flᵢ/x⟶xs , xs∼fl = let _l = node perfect y' l' r' ; _r = node perfect y'' l'' r'' ; yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten _r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node left _ _ _ | () lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node right _ _ _ | () lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node left _ _ _ | _ | () lemma-insert-/ x (perfect y cl _ l≃r) | inj₂ y≤x | node right _ _ _ | _ | () lemma-insert-/ x (left {l} {r} y cl _ _) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-∼ y cl | lemma-insert-compound y l ... | node perfect y' l' r' | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in flatten (node perfect y' l' r') ++ flatten r , /head , flᵢfr∼yflfr ... | node left y' l' r' | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in flatten (node left y' l' r') ++ flatten r , /head , flᵢfr∼yflfr ... | node right y' l' r' | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in flatten (node right y' l' r') ++ flatten r , /head , flᵢfr∼yflfr lemma-insert-/ x (left {l} {r} y cl _ _) | inj₂ y≤x with insert x l | lemma-insert-/ x cl | lemma-insert-compound x l ... | node perfect _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr ... | node left _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr ... | node right _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yflᵢfr∼yxsfr = ∼x /head /head (lemma++∼r xs∼fl) in y ∷ xs ++ flatten r , yflᵢfr/x⟶yxsfr , yflᵢfr∼yxsfr lemma-insert-/ x (right {l} {r} y _ cr _) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-∼ y cr | lemma-insert-compound y r ... | node perfect y' l' r' | frᵢ∼yfr | compound = let flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in flatten l ++ flatten (node perfect y' l' r') , /head , flfrᵢ∼yflfr ... | node left y' l' r' | frᵢ∼yfr | compound = let flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in flatten l ++ flatten (node left y' l' r') , /head , flfrᵢ∼yflfr ... | node right y' l' r' | frᵢ∼yfr | compound = let flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in flatten l ++ flatten (node right y' l' r') , /head , flfrᵢ∼yflfr lemma-insert-/ x (right {l} {r} y _ cr _) | inj₂ y≤x with insert x r | lemma-insert-/ x cr | lemma-insert-compound x r ... | node perfect y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflfrᵢ∼yflxs = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in y ∷ flatten l ++ xs , yflfrᵢ/x⟶yflxs , yflfrᵢ∼yflxs ... | node left y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflfrᵢ∼yflxs = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in y ∷ flatten l ++ xs , yflfrᵢ/x⟶yflxs , yflfrᵢ∼yflxs ... | node right y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflfrᵢ∼yflxs = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in y ∷ flatten l ++ xs , yflfrᵢ/x⟶yflxs , yflfrᵢ∼yflxs lemma-insert-∼ : {t : PLRTree}(x : A) → Complete t → flatten (insert x t) ∼ (x ∷ flatten t) lemma-insert-∼ x leaf = ∼x /head /head ∼[] lemma-insert-∼ x (perfect {l} {r} y cl _ l≃r) with tot≤ x y | l | r | l≃r ... | inj₁ x≤y | leaf | leaf | _ = ∼x /head /head (∼x /head /head ∼[]) ... | inj₁ x≤y | leaf | node _ _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | leaf | () ... | inj₁ x≤y | node perfect _ _ _ | node perfect _ _ _ | _ = let flᵢfr∼yflfr = lemma++∼r (lemma-insert-∼ y cl) in ∼x /head /head flᵢfr∼yflfr ... | inj₁ x≤y | node perfect _ _ _ | node left _ _ _ | () ... | inj₁ x≤y | node perfect _ _ _ | node right _ _ _ | () ... | inj₁ x≤y | node left _ _ _ | _ | () ... | inj₁ x≤y | node right _ _ _ | _ | () ... | inj₂ y≤x | leaf | leaf | _ = ∼x /head (/tail /head) (∼x /head /head ∼[]) ... | inj₂ y≤x | leaf | node _ _ _ _ | () ... | inj₂ y≤x | node perfect _ _ _ | leaf | () ... | inj₂ y≤x | node perfect _ _ _ | node perfect _ _ _ | _ with lemma-insert-/ x cl ... | xs , flᵢ/x⟶xs , xs∼fl = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node left _ _ _ | () lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node perfect _ _ _ | node right _ _ _ | () lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node left _ _ _ | _ | () lemma-insert-∼ x (perfect y cl _ l≃r) | inj₂ y≤x | node right _ _ _ | _ | () lemma-insert-∼ x (left {l} {r} y cl _ _) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-∼ y cl | lemma-insert-compound y l ... | node perfect _ _ _ | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in ∼x /head /head flᵢfr∼yflfr ... | node left _ _ _ | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in ∼x /head /head flᵢfr∼yflfr ... | node right _ _ _ | flᵢ∼yfl | compound = let flᵢfr∼yflfr = lemma++∼r flᵢ∼yfl in ∼x /head /head flᵢfr∼yflfr lemma-insert-∼ x (left {l} {r} y cl _ _) | inj₂ y≤x with insert x l | lemma-insert-/ x cl | lemma-insert-compound x l ... | node perfect _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr ... | node left _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr ... | node right _ _ _ | xs , flᵢ/x⟶xs , xs∼fl | compound = let yflᵢfr/x⟶yxsfr = /tail (lemma++/r flᵢ/x⟶xs) ; yxsfr∼yflfr = ∼x /head /head (lemma++∼r xs∼fl) in ∼x yflᵢfr/x⟶yxsfr /head yxsfr∼yflfr lemma-insert-∼ x (right {l} {r} y _ cr _) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-∼ y cr | lemma-insert-compound y r ... | node perfect _ _ _ | frᵢ∼yfr | compound = let flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in ∼x /head /head flfrᵢ∼yflfr ... | node left _ _ _ | frᵢ∼yfr | compound = let flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in ∼x /head /head flfrᵢ∼yflfr ... | node right _ _ _ | frᵢ∼yfr | compound = let flyfr∼yflfr = ∼x (lemma++/ {y} {flatten l}) /head refl∼ ; flfrᵢ∼flyfr = lemma++∼l {flatten l} frᵢ∼yfr ; flfrᵢ∼yflfr = trans∼ flfrᵢ∼flyfr flyfr∼yflfr in ∼x /head /head flfrᵢ∼yflfr lemma-insert-∼ x (right {l} {r} y _ cr _) | inj₂ y≤x with insert x r | lemma-insert-/ x cr | lemma-insert-compound x r ... | node perfect y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflxs∼yflfr = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in ∼x yflfrᵢ/x⟶yflxs /head yflxs∼yflfr ... | node left y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflxs∼yflfr = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in ∼x yflfrᵢ/x⟶yflxs /head yflxs∼yflfr ... | node right y' l' r' | xs , frᵢ/x⟶xs , xs∼fr | compound = let yflfrᵢ/x⟶yflxs = /tail (lemma++/l {x} {flatten l} frᵢ/x⟶xs) ; yflxs∼yflfr = ∼x /head /head (lemma++∼l {flatten l} xs∼fr) in ∼x yflfrᵢ/x⟶yflxs /head yflxs∼yflfr
{ "alphanum_fraction": 0.4977379428, "avg_line_length": 58.575, "ext": "agda", "hexsha": "1abd86ae5996eb556e0475a845fb4967a92b7605", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Insert/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Insert/Permutation.agda", "max_line_length": 112, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Insert/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 4841, "size": 11715 }
-- Andreas, 2020-09-09, issue #4880 -- Parse all interleavings of hiding and irrelevance in non-dependent function space module Issue4880 (A B : Set) where postulate -- dependent -- * visible _ : A → (_ : B) → A _ : A → .(_ : B) → A _ : A → ..(_ : B) → A -- * hidden _ : A → {_ : B} → A _ : A → .{_ : B} → A _ : A → ..{_ : B} → A -- * instance _ : A → ⦃ _ : B ⦄ → A _ : A → .⦃ _ : B ⦄ → A _ : A → ..⦃ _ : B ⦄ → A -- non-dependent -- * visible _ : A → B → A _ : A → .B → A _ : A → ..B → A -- * visible, parenthesized _ : A → .(B) → A _ : A → ..(B) → A _ : A → (.B) → A _ : A → (..B) → A -- * hidden _ : A → {B} → A _ : A → .{B} → A _ : A → ..{B} → A _ : A → {.B} → A _ : A → {..B} → A -- * instance _ : A → ⦃ B ⦄ → A _ : A → .⦃ B ⦄ → A _ : A → ..⦃ B ⦄ → A _ : A → ⦃ .B ⦄ → A _ : A → ⦃ ..B ⦄ → A
{ "alphanum_fraction": 0.3644544432, "avg_line_length": 20.6744186047, "ext": "agda", "hexsha": "1b202986808d0d0b17245dc46b6961338573e3de", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4880.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4880.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4880.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 452, "size": 889 }
module OverloadedConstructors where data Nat : Set where zero : Nat suc : Nat -> Nat data Fin : Nat -> Set where zero : {n : Nat} -> Fin (suc n) suc : {n : Nat} -> Fin n -> Fin (suc n) three : Nat three = suc (suc (suc zero)) ftwo : Fin three ftwo = suc (suc zero) inc : Nat -> Nat inc = suc {- {-# BUILTIN NATURAL Nat #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} -}
{ "alphanum_fraction": 0.5790816327, "avg_line_length": 15.0769230769, "ext": "agda", "hexsha": "cdb132893a5715b43acd1d854ac6df5c91bae5b3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/OverloadedConstructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/OverloadedConstructors.agda", "max_line_length": 42, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/OverloadedConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 132, "size": 392 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Truncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Equiv.PathSplit open isPathSplitEquiv open import Cubical.Modalities.Modality open Modality open import Cubical.Data.Empty as ⊥ using (⊥) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.NatMinusOne as ℕ₋₁ open import Cubical.Data.Sigma open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.Truncation.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc renaming (∥_∥ to ∥_∥₁; ∣_∣ to ∣_∣₁; squash to squash₁) using () open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₃; ∣_∣₃; squash₃) open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₄; ∣_∣₄; squash₄) private variable ℓ ℓ' : Level A B : Type ℓ sphereFill : (n : ℕ₋₁) (f : S n → A) → Type _ sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S n) → top ≡ f x) isSphereFilled : ℕ₋₁ → Type ℓ → Type ℓ isSphereFilled n A = (f : S n → A) → sphereFill n f isSphereFilledTrunc : {n : HLevel} → isSphereFilled (-1+ n) (hLevelTrunc n A) isSphereFilledTrunc {n = zero} f = hub f , ⊥.elim isSphereFilledTrunc {n = suc n} f = hub f , spoke f isSphereFilled→isOfHLevelSuc : {n : HLevel} → isSphereFilled (ℕ→ℕ₋₁ n) A → isOfHLevel (suc n) A isSphereFilled→isOfHLevelSuc {A = A} {zero} h x y = sym (snd (h f) north) ∙ snd (h f) south where f : Susp ⊥ → A f north = x f south = y isSphereFilled→isOfHLevelSuc {A = A} {suc n} h x y = isSphereFilled→isOfHLevelSuc (helper h x y) where helper : isSphereFilled (ℕ→ℕ₋₁ (suc n)) A → (x y : A) → isSphereFilled (ℕ→ℕ₋₁ n) (x ≡ y) helper h x y f = sym p ∙ q , r where f' : Susp (S (ℕ→ℕ₋₁ n)) → A f' north = x f' south = y f' (merid u i) = f u i p = snd (h f') north q = snd (h f') south r : (s : S (ℕ→ℕ₋₁ n)) → sym p ∙ q ≡ f s r s i j = hcomp (λ k → λ { (i = i0) → compPath-filler (sym p) q k j ; (i = i1) → snd (h f') (merid s j) k ; (j = i0) → p (k ∨ ~ i) ; (j = i1) → q k }) (p (~ i ∧ ~ j)) isOfHLevel→isSphereFilled : {n : HLevel} → isOfHLevel n A → isSphereFilled (-1+ n) A isOfHLevel→isSphereFilled {n = zero} h f = fst h , λ _ → snd h _ isOfHLevel→isSphereFilled {n = suc zero} h f = f north , λ _ → h _ _ isOfHLevel→isSphereFilled {A = A} {suc (suc n)} h = helper λ x y → isOfHLevel→isSphereFilled (h x y) where helper : {n : HLevel} → ((x y : A) → isSphereFilled (-1+ n) (x ≡ y)) → isSphereFilled (suc₋₁ (-1+ n)) A helper {n} h f = l , r where l : A l = f north f' : S (-1+ n) → f north ≡ f south f' x i = f (merid x i) h' : sphereFill (-1+ n) f' h' = h (f north) (f south) f' r : (x : S (suc₋₁ (-1+ n))) → l ≡ f x r north = refl r south = h' .fst r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north ; (i = i1) → h' .snd x (~ k) j ; (j = i0) → f north ; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j))) -- isNull (S n) A ≃ (isSphereFilled n A) × (∀ (x y : A) → isSphereFilled n (x ≡ y)) isOfHLevel→isSnNull : {n : HLevel} → isOfHLevel n A → isNull (S (-1+ n)) A fst (sec (isOfHLevel→isSnNull h)) f = fst (isOfHLevel→isSphereFilled h f) snd (sec (isOfHLevel→isSnNull h)) f i s = snd (isOfHLevel→isSphereFilled h f) s i fst (secCong (isOfHLevel→isSnNull h) x y) p = fst (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) snd (secCong (isOfHLevel→isSnNull h) x y) p i j s = snd (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) s i j isSnNull→isOfHLevel : {n : HLevel} → isNull (S (-1+ n)) A → isOfHLevel n A isSnNull→isOfHLevel {n = zero} nA = fst (sec nA) ⊥.rec , λ y → fst (secCong nA _ y) (funExt ⊥.elim) isSnNull→isOfHLevel {n = suc n} nA = isSphereFilled→isOfHLevelSuc (λ f → fst (sec nA) f , λ s i → snd (sec nA) f i s) isOfHLevelTrunc : (n : HLevel) → isOfHLevel n (hLevelTrunc n A) isOfHLevelTrunc zero = hub ⊥.rec , λ _ → ≡hub ⊥.rec isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevelSuc isSphereFilledTrunc -- isOfHLevelTrunc n = isSnNull→isOfHLevel isNull-Null -- hLevelTrunc n is a modality rec : {n : HLevel} {B : Type ℓ'} → isOfHLevel n B → (A → B) → hLevelTrunc n A → B rec h = Null.rec (isOfHLevel→isSnNull h) elim : {n : HLevel} {B : hLevelTrunc n A → Type ℓ'} (hB : (x : hLevelTrunc n A) → isOfHLevel n (B x)) (g : (a : A) → B (∣ a ∣)) (x : hLevelTrunc n A) → B x elim hB = Null.elim (λ x → isOfHLevel→isSnNull (hB x)) elim2 : {n : HLevel} {B : hLevelTrunc n A → hLevelTrunc n A → Type ℓ'} (hB : ((x y : hLevelTrunc n A) → isOfHLevel n (B x y))) (g : (a b : A) → B ∣ a ∣ ∣ b ∣) (x y : hLevelTrunc n A) → B x y elim2 {n = n} hB g = elim (λ _ → isOfHLevelΠ n (λ _ → hB _ _)) (λ a → elim (λ _ → hB _ _) (λ b → g a b)) elim3 : {n : HLevel} {B : (x y z : hLevelTrunc n A) → Type ℓ'} (hB : ((x y z : hLevelTrunc n A) → isOfHLevel n (B x y z))) (g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : hLevelTrunc n A) → B x y z elim3 {n = n} hB g = elim2 (λ _ _ → isOfHLevelΠ n (hB _ _)) (λ a b → elim (λ _ → hB _ _ _) (λ c → g a b c)) HLevelTruncModality : ∀ {ℓ} (n : HLevel) → Modality ℓ isModal (HLevelTruncModality n) = isOfHLevel n isModalIsProp (HLevelTruncModality n) = isPropIsOfHLevel n ◯ (HLevelTruncModality n) = hLevelTrunc n ◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n η (HLevelTruncModality n) = ∣_∣ ◯-elim (HLevelTruncModality n) = elim ◯-elim-β (HLevelTruncModality n) = λ _ _ _ → refl ◯-=-isModal (HLevelTruncModality n) = isOfHLevelPath n (isOfHLevelTrunc n) truncIdempotentIso : (n : HLevel) → isOfHLevel n A → Iso A (hLevelTrunc n A) truncIdempotentIso n hA = isModalToIso (HLevelTruncModality n) hA truncIdempotent≃ : (n : HLevel) → isOfHLevel n A → A ≃ hLevelTrunc n A truncIdempotent≃ n hA = ∣_∣ , isModalToIsEquiv (HLevelTruncModality n) hA truncIdempotent : (n : HLevel) → isOfHLevel n A → hLevelTrunc n A ≡ A truncIdempotent n hA = ua (invEquiv (truncIdempotent≃ n hA)) -- universal property univTrunc : ∀ {ℓ} (n : HLevel) {B : TypeOfHLevel ℓ n} → Iso (hLevelTrunc n A → B .fst) (A → B .fst) Iso.fun (univTrunc n {B , lev}) g a = g ∣ a ∣ Iso.inv (univTrunc n {B , lev}) = elim λ _ → lev Iso.rightInv (univTrunc n {B , lev}) b = refl Iso.leftInv (univTrunc n {B , lev}) b = funExt (elim (λ x → isOfHLevelPath _ lev _ _) λ a → refl) -- functorial action map : {n : HLevel} {B : Type ℓ'} (g : A → B) → hLevelTrunc n A → hLevelTrunc n B map g = rec (isOfHLevelTrunc _) (λ a → ∣ g a ∣) mapCompIso : {n : HLevel} {B : Type ℓ'} → (Iso A B) → Iso (hLevelTrunc n A) (hLevelTrunc n B) Iso.fun (mapCompIso g) = map (Iso.fun g) Iso.inv (mapCompIso g) = map (Iso.inv g) Iso.rightInv (mapCompIso g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ b → cong ∣_∣ (Iso.rightInv g b) Iso.leftInv (mapCompIso g) = elim (λ x → isOfHLevelPath _ (isOfHLevelTrunc _) _ _) λ a → cong ∣_∣ (Iso.leftInv g a) mapId : {n : HLevel} → ∀ t → map {n = n} (idfun A) t ≡ t mapId {n = n} = elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) (λ _ → refl) -- equivalences to prop/set/groupoid truncations propTruncTrunc1Iso : Iso ∥ A ∥₁ (∥ A ∥ 1) Iso.fun propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelTrunc 1) ∣_∣ Iso.inv propTruncTrunc1Iso = elim (λ _ → squash₁) ∣_∣₁ Iso.rightInv propTruncTrunc1Iso = elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl) Iso.leftInv propTruncTrunc1Iso = PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₁ _ _) (λ _ → refl) propTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1 propTrunc≃Trunc1 = isoToEquiv propTruncTrunc1Iso propTrunc≡Trunc1 : ∥ A ∥₁ ≡ ∥ A ∥ 1 propTrunc≡Trunc1 = ua propTrunc≃Trunc1 setTruncTrunc2Iso : Iso ∥ A ∥₂ (∥ A ∥ 2) Iso.fun setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelTrunc 2) ∣_∣ Iso.inv setTruncTrunc2Iso = elim (λ _ → squash₂) ∣_∣₂ Iso.rightInv setTruncTrunc2Iso = elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl) Iso.leftInv setTruncTrunc2Iso = SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ → refl) setTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2 setTrunc≃Trunc2 = isoToEquiv setTruncTrunc2Iso propTrunc≡Trunc2 : ∥ A ∥₂ ≡ ∥ A ∥ 2 propTrunc≡Trunc2 = ua setTrunc≃Trunc2 groupoidTrunc≃Trunc3Iso : Iso ∥ A ∥₃ (∥ A ∥ 3) Iso.fun groupoidTrunc≃Trunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelTrunc 3) ∣_∣ Iso.inv groupoidTrunc≃Trunc3Iso = elim (λ _ → squash₃) ∣_∣₃ Iso.rightInv groupoidTrunc≃Trunc3Iso = elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl) Iso.leftInv groupoidTrunc≃Trunc3Iso = GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₃ _ _) (λ _ → refl) groupoidTrunc≃Trunc3 : ∥ A ∥₃ ≃ ∥ A ∥ 3 groupoidTrunc≃Trunc3 = isoToEquiv groupoidTrunc≃Trunc3Iso groupoidTrunc≡Trunc3 : ∥ A ∥₃ ≡ ∥ A ∥ 3 groupoidTrunc≡Trunc3 = ua groupoidTrunc≃Trunc3 2GroupoidTrunc≃Trunc4Iso : Iso ∥ A ∥₄ (∥ A ∥ 4) Iso.fun 2GroupoidTrunc≃Trunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣ Iso.inv 2GroupoidTrunc≃Trunc4Iso = elim (λ _ → squash₄) ∣_∣₄ Iso.rightInv 2GroupoidTrunc≃Trunc4Iso = elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl) Iso.leftInv 2GroupoidTrunc≃Trunc4Iso = 2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl) 2GroupoidTrunc≃Trunc4 : ∥ A ∥₄ ≃ ∥ A ∥ 4 2GroupoidTrunc≃Trunc4 = isoToEquiv (iso (2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣) (elim (λ _ → squash₄) ∣_∣₄) (elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl)) (2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₄ _ _) (λ _ → refl))) 2GroupoidTrunc≡Trunc4 : ∥ A ∥₄ ≡ ∥ A ∥ 4 2GroupoidTrunc≡Trunc4 = ua 2GroupoidTrunc≃Trunc4 isContr→isContrTrunc : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isContr A → isContr (hLevelTrunc n A) isContr→isContrTrunc n contr = ∣ fst contr ∣ , (elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → cong ∣_∣ (snd contr a)) truncOfProdIso : (n : ℕ) → Iso (hLevelTrunc n (A × B)) (hLevelTrunc n A × hLevelTrunc n B) Iso.fun (truncOfProdIso n) = rec (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) λ {(a , b) → ∣ a ∣ , ∣ b ∣} Iso.inv (truncOfProdIso n) (a , b) = rec (isOfHLevelTrunc n) (λ a → rec (isOfHLevelTrunc n) (λ b → ∣ a , b ∣) b) a Iso.rightInv (truncOfProdIso n) (a , b) = elim {B = λ a → Iso.fun (truncOfProdIso n) (Iso.inv (truncOfProdIso n) (a , b)) ≡ (a , b)} (λ _ → isOfHLevelPath n (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) _ _) (λ a → elim {B = λ b → Iso.fun (truncOfProdIso n) (Iso.inv (truncOfProdIso n) (∣ a ∣ , b)) ≡ (∣ a ∣ , b)} (λ _ → isOfHLevelPath n (isOfHLevelΣ n (isOfHLevelTrunc n) (λ _ → isOfHLevelTrunc n)) _ _) (λ b → refl) b) a Iso.leftInv (truncOfProdIso n) = elim (λ _ → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → refl ---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ---- abstract isOfHLevelTypeOfHLevel2 : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n) isOfHLevelTypeOfHLevel2 n = isOfHLevelTypeOfHLevel n {- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -} module ΩTrunc where {- We define the fibration P to show a more general result -} P : {X : Type ℓ} {n : HLevel} → ∥ X ∥ (suc n) → ∥ X ∥ (suc n) → Type ℓ P {n = n} x y = elim2 (λ _ _ → isOfHLevelTypeOfHLevel2 (n)) (λ a b → ∥ a ≡ b ∥ n , isOfHLevelTrunc (n)) x y .fst {- We will need P to be of hLevel n + 3 -} hLevelP : {n : HLevel} (a b : ∥ B ∥ (suc n)) → isOfHLevel ((suc n)) (P a b) hLevelP {n = n} = elim2 (λ x y → isProp→isOfHLevelSuc (n) (isPropIsOfHLevel (suc n))) (λ a b → isOfHLevelSuc (n) (isOfHLevelTrunc (n))) {- decode function from P x y to x ≡ y -} decode-fun : {n : HLevel} (x y : ∥ B ∥ (suc n)) → P x y → x ≡ y decode-fun {n = n} = elim2 (λ u v → isOfHLevelΠ (suc n) (λ _ → isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)) u v)) decode* where decode* : ∀ {n : HLevel} (u v : B) → P {n = n} ∣ u ∣ ∣ v ∣ → Path (∥ B ∥ (suc n)) ∣ u ∣ ∣ v ∣ decode* {B = B} {n = zero} u v = rec ( isOfHLevelTrunc 1 ∣ u ∣ ∣ v ∣ , λ _ → isOfHLevelSuc 1 (isOfHLevelTrunc 1) _ _ _ _) (cong ∣_∣) decode* {n = suc n} u v = rec (isOfHLevelTrunc (suc (suc n)) ∣ u ∣ ∣ v ∣) (cong ∣_∣) {- auxiliary function r used to define encode -} r : {m : HLevel} (u : ∥ B ∥ (suc m)) → P u u r = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣) {- encode function from x ≡ y to P x y -} encode-fun : {n : HLevel} (x y : ∥ B ∥ (suc n)) → x ≡ y → P x y encode-fun x y p = transport (λ i → P x (p i)) (r x) {- We need the following two lemmas on the functions behaviour for refl -} dec-refl : {n : HLevel} (x : ∥ B ∥ (suc n)) → decode-fun x x (r x) ≡ refl dec-refl {n = zero} = elim (λ x → isOfHLevelSuc 1 (isOfHLevelSuc 1 (isOfHLevelTrunc 1) x x) _ _) (λ _ → refl) dec-refl {n = suc n} = elim (λ x → isOfHLevelSuc (suc n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc (suc n)) x x) (decode-fun x x (r x)) refl)) (λ _ → refl) enc-refl : {n : HLevel} (x : ∥ B ∥ (suc n)) → encode-fun x x refl ≡ r x enc-refl x j = transp (λ _ → P x x) j (r x) {- decode-fun is a right-inverse -} P-rinv : {n : HLevel} (u v : ∥ B ∥ (suc n)) (x : Path (∥ B ∥ (suc n)) u v) → decode-fun u v (encode-fun u v x) ≡ x P-rinv u v = J (λ y p → decode-fun u y (encode-fun u y p) ≡ p) (cong (decode-fun u u) (enc-refl u) ∙ dec-refl u) {- decode-fun is a left-inverse -} P-linv : {n : HLevel} (u v : ∥ B ∥ (suc n )) (x : P u v) → encode-fun u v (decode-fun u v x) ≡ x P-linv {n = n} = elim2 (λ x y → isOfHLevelΠ (suc n) (λ z → isOfHLevelSuc (suc n) (hLevelP x y) _ _)) helper where helper : {n : HLevel} (a b : B) (p : P {n = n} ∣ a ∣ ∣ b ∣) → encode-fun _ _ (decode-fun ∣ a ∣ ∣ b ∣ p) ≡ p helper {n = zero} a b = elim (λ x → ( sym (isOfHLevelTrunc 0 .snd _) ∙ isOfHLevelTrunc 0 .snd x , λ y → isOfHLevelSuc 1 (isOfHLevelSuc 0 (isOfHLevelTrunc 0)) _ _ _ _)) (J (λ y p → encode-fun ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) helper {n = suc n} a b = elim (λ x → hLevelP {n = suc n} ∣ a ∣ ∣ b ∣ _ _) (J (λ y p → encode-fun {n = suc n} ∣ a ∣ ∣ y ∣ (decode-fun _ _ ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) {- The final Iso established -} IsoFinal : (n : HLevel) (x y : ∥ B ∥ (suc n)) → Iso (x ≡ y) (P x y) Iso.fun (IsoFinal _ x y) = encode-fun x y Iso.inv (IsoFinal _ x y) = decode-fun x y Iso.rightInv (IsoFinal _ x y) = P-linv x y Iso.leftInv (IsoFinal _ x y) = P-rinv x y PathIdTrunc : {a b : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n) PathIdTrunc n = isoToPath (ΩTrunc.IsoFinal n _ _) PathΩ : {a : A} (n : HLevel) → (Path (∥ A ∥ (suc n)) ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n) PathΩ n = PathIdTrunc n {- Special case using direct defs of truncations -} PathIdTrunc₀Iso : {a b : A} → Iso (∣ a ∣₂ ≡ ∣ b ∣₂) ∥ a ≡ b ∥₁ PathIdTrunc₀Iso = compIso (congIso setTruncTrunc2Iso) (compIso (ΩTrunc.IsoFinal _ ∣ _ ∣ ∣ _ ∣) (invIso propTruncTrunc1Iso)) ------------------------- truncOfTruncIso : (n m : HLevel) → Iso (hLevelTrunc n A) (hLevelTrunc n (hLevelTrunc (m + n) A)) Iso.fun (truncOfTruncIso n m) = elim (λ _ → isOfHLevelTrunc n) λ a → ∣ ∣ a ∣ ∣ Iso.inv (truncOfTruncIso {A = A} n m) = elim (λ _ → isOfHLevelTrunc n) (elim (λ _ → (isOfHLevelPlus m (isOfHLevelTrunc n ))) λ a → ∣ a ∣) Iso.rightInv (truncOfTruncIso {A = A} n m) = elim (λ x → isOfHLevelPath n (isOfHLevelTrunc n) _ _ ) (elim (λ x → isOfHLevelPath (m + n) (isOfHLevelPlus m (isOfHLevelTrunc n)) _ _ ) λ a → refl) Iso.leftInv (truncOfTruncIso n m) = elim (λ x → isOfHLevelPath n (isOfHLevelTrunc n) _ _) λ a → refl truncOfTruncEq : (n m : ℕ) → (hLevelTrunc n A) ≃ (hLevelTrunc n (hLevelTrunc (m + n) A)) truncOfTruncEq n m = isoToEquiv (truncOfTruncIso n m)
{ "alphanum_fraction": 0.5787047841, "avg_line_length": 43.1738035264, "ext": "agda", "hexsha": "dcf4e68d4b2f3eb99fba732a19a1cadf54fb742d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/HITs/Truncation/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/HITs/Truncation/Properties.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/HITs/Truncation/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7155, "size": 17140 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory open import cohomology.PtdMapSequence open import groups.ExactSequence open import groups.Exactness open import groups.HomSequence open import groups.KernelImageUniqueFactorization open import cw.CW module cw.cohomology.FirstCohomologyGroup {i} (OT : OrdinaryTheory i) (⊙skel : ⊙Skeleton {i} 2) (ac : ⊙has-cells-with-choice 0 ⊙skel i) where open OrdinaryTheory OT open import cw.cohomology.TipAndAugment OT (⊙cw-take (lteSR lteS) ⊙skel) open import cw.cohomology.WedgeOfCells OT open import cw.cohomology.TipCoboundary OT (⊙cw-init ⊙skel) open import cw.cohomology.HigherCoboundary OT ⊙skel open import cw.cohomology.HigherCoboundaryGrid OT ⊙skel ac open import cw.cohomology.GridPtdMap (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel) open import cw.cohomology.TipGrid OT (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac) open import cw.cohomology.TopGrid OT 1 (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel) open import cohomology.LongExactSequence cohomology-theory private 0≤2 : 0 ≤ 2 0≤2 = lteSR lteS ac₀ = ⊙take-has-cells-with-choice 0≤2 ⊙skel ac {- H Coker ≃ C(X₁)<------C(X₂) = C(X) ^ ^ | | | | C(X₁/X₀)<---C(X₂/X₀) ≃ Ker WoC G WoC := Wedges of Cells -} private G : Group i G = C 1 (⊙Cofiber (⊙cw-incl-tail 0≤2 ⊙skel)) G-iso-Ker : G ≃ᴳ Ker.grp cw-co∂-last G-iso-Ker = Ker-cw-co∂-last H : Group i H = C 1 ⊙⟦ ⊙cw-init ⊙skel ⟧ Coker-iso-H : CokerCo∂Head.grp ≃ᴳ H Coker-iso-H = Coker-cw-co∂-head G-to-C-cw : G →ᴳ C 1 ⊙⟦ ⊙skel ⟧ G-to-C-cw = C-fmap 1 (⊙cfcod' (⊙cw-incl-tail 0≤2 ⊙skel)) abstract G-to-C-cw-is-surj : is-surjᴳ G-to-C-cw G-to-C-cw-is-surj = Exact.K-trivial-implies-φ-is-surj (exact-seq-index 2 $ C-cofiber-exact-seq 0 (⊙cw-incl-tail 0≤2 ⊙skel)) (CX₀-≠-is-trivial (pos-≠ (ℕ-S≠O 0)) ac₀) C-cw-to-H : C 1 ⊙⟦ ⊙skel ⟧ →ᴳ H C-cw-to-H = C-fmap 1 (⊙cw-incl-last ⊙skel) abstract C-cw-to-H-is-inj : is-injᴳ C-cw-to-H C-cw-to-H-is-inj = Exact.G-trivial-implies-ψ-is-inj (exact-seq-index 2 $ C-cofiber-exact-seq 0 (⊙cw-incl-last ⊙skel)) (CXₙ/Xₙ₋₁-<-is-trivial ⊙skel ltS ac) C-WoC : Group i C-WoC = C 1 (⊙Cofiber (⊙cw-incl-last (⊙cw-init ⊙skel))) G-to-C-WoC : G →ᴳ C-WoC G-to-C-WoC = C-fmap 1 Y/X-to-Z/X C-WoC-to-H : C-WoC →ᴳ H C-WoC-to-H = C-fmap 1 (⊙cfcod' (⊙cw-incl-last (⊙cw-init ⊙skel))) open import groups.KernelImage cw-co∂-last cw-co∂-head CX₁/X₀-is-abelian C-cw-iso-ker/im : C 1 ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im C-cw-iso-ker/im = H-iso-Ker/Im cw-co∂-last cw-co∂-head CX₁/X₀-is-abelian φ₁ φ₁-is-surj φ₂ φ₂-is-inj lemma-comm where φ₁ = G-to-C-cw ∘ᴳ GroupIso.g-hom G-iso-Ker abstract φ₁-is-surj : is-surjᴳ φ₁ φ₁-is-surj = ∘-is-surj G-to-C-cw-is-surj (equiv-is-surj (GroupIso.g-is-equiv G-iso-Ker)) φ₂ = GroupIso.g-hom Coker-iso-H ∘ᴳ C-cw-to-H abstract φ₂-is-inj : is-injᴳ φ₂ φ₂-is-inj = ∘-is-inj (equiv-is-inj (GroupIso.g-is-equiv Coker-iso-H)) C-cw-to-H-is-inj abstract lemma-comm : ∀ g → GroupIso.g Coker-iso-H (GroupHom.f (C-cw-to-H ∘ᴳ G-to-C-cw) (GroupIso.g G-iso-Ker g)) == q[ fst g ] lemma-comm g = GroupIso.g Coker-iso-H (GroupHom.f C-cw-to-H (GroupHom.f G-to-C-cw (GroupIso.g G-iso-Ker g))) =⟨ ap (GroupIso.g Coker-iso-H) (! (C-top-grid-commutes □$ᴳ GroupIso.g G-iso-Ker g)) ⟩ GroupIso.g Coker-iso-H (GroupHom.f C-WoC-to-H (GroupHom.f G-to-C-WoC (GroupIso.g G-iso-Ker g))) =⟨ ap (GroupIso.g Coker-iso-H ∘ GroupHom.f C-WoC-to-H ∘ fst) (GroupIso.f-g G-iso-Ker g) ⟩ GroupIso.g Coker-iso-H (GroupHom.f C-WoC-to-H (fst g)) =⟨ GroupIso.g-f Coker-iso-H q[ fst g ] ⟩ q[ fst g ] =∎
{ "alphanum_fraction": 0.6129032258, "avg_line_length": 33.6956521739, "ext": "agda", "hexsha": "3e6b3b632c2d653f654bd57a170637e11b6488ae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/FirstCohomologyGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/FirstCohomologyGroup.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/FirstCohomologyGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1682, "size": 3875 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Module.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open import Cubical.Algebra.Ring open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Group open Iso private variable ℓ ℓ' : Level record IsLeftModule (R : Ring ℓ) {M : Type ℓ'} (0m : M) (_+_ : M → M → M) (-_ : M → M) (_⋆_ : ⟨ R ⟩ → M → M) : Type (ℓ-max ℓ ℓ') where constructor ismodule open RingStr (snd R) using (_·_; 1r) renaming (_+_ to _+r_) field +-isAbGroup : IsAbGroup 0m _+_ -_ ⋆-assoc : (r s : ⟨ R ⟩) (x : M) → (r · s) ⋆ x ≡ r ⋆ (s ⋆ x) ⋆-ldist : (r s : ⟨ R ⟩) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x) ⋆-rdist : (r : ⟨ R ⟩) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y) ⋆-lid : (x : M) → 1r ⋆ x ≡ x open IsAbGroup +-isAbGroup public renaming ( assoc to +-assoc ; identity to +-identity ; lid to +-lid ; rid to +-rid ; inverse to +-inv ; invl to +-linv ; invr to +-rinv ; comm to +-comm ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isGroup to +-isGroup ) unquoteDecl IsLeftModuleIsoΣ = declareRecordIsoΣ IsLeftModuleIsoΣ (quote IsLeftModule) record LeftModuleStr (R : Ring ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ') where constructor leftmodulestr field 0m : A _+_ : A → A → A -_ : A → A _⋆_ : ⟨ R ⟩ → A → A isLeftModule : IsLeftModule R 0m _+_ -_ _⋆_ open IsLeftModule isLeftModule public LeftModule : (R : Ring ℓ) → ∀ ℓ' → Type (ℓ-max ℓ (ℓ-suc ℓ')) LeftModule R ℓ' = Σ[ A ∈ Type ℓ' ] LeftModuleStr R A module _ {R : Ring ℓ} where LeftModule→AbGroup : (M : LeftModule R ℓ') → AbGroup ℓ' LeftModule→AbGroup (_ , leftmodulestr _ _ _ _ isLeftModule) = _ , abgroupstr _ _ _ (IsLeftModule.+-isAbGroup isLeftModule) isSetLeftModule : (M : LeftModule R ℓ') → isSet ⟨ M ⟩ isSetLeftModule M = isSetAbGroup (LeftModule→AbGroup M) open RingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·s_) makeIsLeftModule : {M : Type ℓ'} {0m : M} {_+_ : M → M → M} { -_ : M → M} {_⋆_ : ⟨ R ⟩ → M → M} (isSet-M : isSet M) (+-assoc : (x y z : M) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : M) → x + 0m ≡ x) (+-rinv : (x : M) → x + (- x) ≡ 0m) (+-comm : (x y : M) → x + y ≡ y + x) (⋆-assoc : (r s : ⟨ R ⟩) (x : M) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆-ldist : (r s : ⟨ R ⟩) (x : M) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆-rdist : (r : ⟨ R ⟩) (x y : M) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆-lid : (x : M) → 1r ⋆ x ≡ x) → IsLeftModule R 0m _+_ -_ _⋆_ makeIsLeftModule isSet-M +-assoc +-rid +-rinv +-comm ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid = ismodule (makeIsAbGroup isSet-M +-assoc +-rid +-rinv +-comm) ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid record IsLeftModuleHom {R : Ring ℓ} {A B : Type ℓ'} (M : LeftModuleStr R A) (f : A → B) (N : LeftModuleStr R B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module M = LeftModuleStr M module N = LeftModuleStr N field pres0 : f M.0m ≡ N.0m pres+ : (x y : A) → f (x M.+ y) ≡ f x N.+ f y pres- : (x : A) → f (M.- x) ≡ N.- (f x) pres⋆ : (r : ⟨ R ⟩) (y : A) → f (r M.⋆ y) ≡ r N.⋆ f y LeftModuleHom : {R : Ring ℓ} (M N : LeftModule R ℓ') → Type (ℓ-max ℓ ℓ') LeftModuleHom M N = Σ[ f ∈ (⟨ M ⟩ → ⟨ N ⟩) ] IsLeftModuleHom (M .snd) f (N .snd) IsLeftModuleEquiv : {R : Ring ℓ} {A B : Type ℓ'} (M : LeftModuleStr R A) (e : A ≃ B) (N : LeftModuleStr R B) → Type (ℓ-max ℓ ℓ') IsLeftModuleEquiv M e N = IsLeftModuleHom M (e .fst) N LeftModuleEquiv : {R : Ring ℓ} (M N : LeftModule R ℓ') → Type (ℓ-max ℓ ℓ') LeftModuleEquiv M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] IsLeftModuleEquiv (M .snd) e (N .snd) isPropIsLeftModule : (R : Ring ℓ) {M : Type ℓ'} (0m : M) (_+_ : M → M → M) (-_ : M → M) (_⋆_ : ⟨ R ⟩ → M → M) → isProp (IsLeftModule R 0m _+_ -_ _⋆_) isPropIsLeftModule R _ _ _ _ = isOfHLevelRetractFromIso 1 IsLeftModuleIsoΣ (isPropΣ (isPropIsAbGroup _ _ _) (λ ab → isProp× (isPropΠ3 λ _ _ _ → ab .is-set _ _) (isProp× (isPropΠ3 λ _ _ _ → ab .is-set _ _) (isProp× (isPropΠ3 λ _ _ _ → ab .is-set _ _) (isPropΠ λ _ → ab .is-set _ _))))) where open IsAbGroup 𝒮ᴰ-LeftModule : (R : Ring ℓ) → DUARel (𝒮-Univ ℓ') (LeftModuleStr R) (ℓ-max ℓ ℓ') 𝒮ᴰ-LeftModule R = 𝒮ᴰ-Record (𝒮-Univ _) (IsLeftModuleEquiv {R = R}) (fields: data[ 0m ∣ autoDUARel _ _ ∣ pres0 ] data[ _+_ ∣ autoDUARel _ _ ∣ pres+ ] data[ -_ ∣ autoDUARel _ _ ∣ pres- ] data[ _⋆_ ∣ autoDUARel _ _ ∣ pres⋆ ] prop[ isLeftModule ∣ (λ _ _ → isPropIsLeftModule _ _ _ _ _) ]) where open LeftModuleStr open IsLeftModuleHom LeftModulePath : {R : Ring ℓ} (M N : LeftModule R ℓ') → (LeftModuleEquiv M N) ≃ (M ≡ N) LeftModulePath {R = R} = ∫ (𝒮ᴰ-LeftModule R) .UARel.ua
{ "alphanum_fraction": 0.5402903811, "avg_line_length": 33.1927710843, "ext": "agda", "hexsha": "4c9eaab428f9cf2286445e6a24022f0c60774fbd", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/Module/Base.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/Module/Base.agda", "max_line_length": 94, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/Module/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 2278, "size": 5510 }
open import Prelude open import Nat open import List open import Int open import Bij open import delta-lemmas open import Delta open import NatDelta
{ "alphanum_fraction": 0.8322147651, "avg_line_length": 16.5555555556, "ext": "agda", "hexsha": "09af0e0c576c6798fc9d10e06ba01df502711561", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nickcollins/dependent-dicts-agda", "max_forks_repo_path": "all.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nickcollins/dependent-dicts-agda", "max_issues_repo_path": "all.agda", "max_line_length": 24, "max_stars_count": null, "max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nickcollins/dependent-dicts-agda", "max_stars_repo_path": "all.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 36, "size": 149 }
module BasicIPC.Metatheory.Gentzen-BasicTarski where open import BasicIPC.Syntax.Gentzen public open import BasicIPC.Semantics.BasicTarski public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (lam t) γ = λ a → eval t (γ , a) eval (app t u) γ = eval t γ $ eval u γ eval (pair t u) γ = eval t γ , eval u γ eval (fst t) γ = π₁ (eval t γ) eval (snd t) γ = π₂ (eval t γ) eval unit γ = ∙ -- Correctness of evaluation with respect to conversion. -- FIXME: How to show this? postulate oops₁ : ∀ {{_ : Model}} {A B Γ} {t : Γ , A ⊢ B} {u : Γ ⊢ A} → eval ([ top ≔ u ] t) ≡ (λ γ → eval t (γ , eval u γ)) oops₂ : ∀ {{_ : Model}} {A B Γ} {t : Γ ⊢ A ▻ B} → eval t ≡ (λ γ a → eval (mono⊢ (weak⊆ {A = A}) t) (γ , a) a) eval✓ : ∀ {{_ : Model}} {A Γ} {t t′ : Γ ⊢ A} → t ⋙ t′ → eval t ≡ eval t′ eval✓ refl⋙ = refl eval✓ (trans⋙ p q) = trans (eval✓ p) (eval✓ q) eval✓ (sym⋙ p) = sym (eval✓ p) eval✓ (conglam⋙ {A} {B} p) = cong (⟦λ⟧ {A} {B}) (eval✓ p) eval✓ (congapp⋙ {A} {B} p q) = cong² (_⟦$⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congpair⋙ {A} {B} p q) = cong² (_⟦,⟧_ {A} {B}) (eval✓ p) (eval✓ q) eval✓ (congfst⋙ {A} {B} p) = cong (⟦π₁⟧ {A} {B}) (eval✓ p) eval✓ (congsnd⋙ {A} {B} p) = cong (⟦π₂⟧ {A} {B}) (eval✓ p) eval✓ (beta▻⋙ {A} {B} {t} {u}) = sym (oops₁ {A} {B} {_} {t} {u}) eval✓ (eta▻⋙ {A} {B} {t}) = oops₂ {A} {B} {_} {t} eval✓ beta∧₁⋙ = refl eval✓ beta∧₂⋙ = refl eval✓ eta∧⋙ = refl eval✓ eta⊤⋙ = refl
{ "alphanum_fraction": 0.4767090139, "avg_line_length": 38.4418604651, "ext": "agda", "hexsha": "4dafe24d626379cda66d4c38bd7f8897416ce5da", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicIPC/Metatheory/Gentzen-BasicTarski.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicIPC/Metatheory/Gentzen-BasicTarski.agda", "max_line_length": 74, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicIPC/Metatheory/Gentzen-BasicTarski.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 757, "size": 1653 }
module Functional.Combinations where open import Type -- TODO: Generalize these. Probably by lists and foldᵣ of combination and rotation construction functions. Also categorically or dependently rotate₃Fn₃Op₂ : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → A → A → B) → (B → B → B) → (A → A → A → B) rotate₃Fn₃Op₂(F)(_▫_) a b c = (F a b c) ▫ ((F b c a) ▫ (F c a b)) combine₃Fn₂Op₂ : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → A → B) → (B → B → B) → (A → A → A → B) combine₃Fn₂Op₂(F)(_▫_) a b c = (F a b) ▫ ((F a c) ▫ (F b c)) all₃Fn₁Op₂ : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → B) → (B → B → B) → (A → A → A → B) all₃Fn₁Op₂(F)(_▫_) a b c = (F a) ▫ ((F b) ▫ (F c)) combine₄Fn₃Op₂ : ∀{ℓ₁ ℓ₂}{A : Type{ℓ₁}}{B : Type{ℓ₂}} → (A → A → A → B) → (B → B → B) → (A → A → A → A → B) combine₄Fn₃Op₂(F)(_▫_) a b c d = (F a b c) ▫ ((F a b d) ▫ ((F a c d) ▫ (F b c d)))
{ "alphanum_fraction": 0.5185185185, "avg_line_length": 50.8235294118, "ext": "agda", "hexsha": "3daa4936860ce8a7b51f6b72243e615a90b4ce91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Functional/Combinations.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Functional/Combinations.agda", "max_line_length": 140, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Functional/Combinations.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 440, "size": 864 }
-- Andreas, 2013-03-15 -- Paolo Capriotti's formalization of Russell's paradox {-# OPTIONS --cubical-compatible --type-in-type #-} module Russell where open import Common.Product open import Common.Equality data ⊥ : Set where ¬ : Set → Set ¬ A = A → ⊥ -- a model of set theory, uses Set : Set data U : Set where set : (I : Set) → (I → U) → U -- a set is regular if it doesn't contain itself regular : U → Set regular (set I f) = (i : I) → ¬ (f i ≡ set I f) -- Russell's set: the set of all regular sets R : U R = set (Σ U regular) proj₁ -- R is not regular R-nonreg : ¬ (regular R) R-nonreg reg = reg (R , reg) refl -- R is regular R-reg : regular R R-reg (x , reg) p = subst regular p reg (x , reg) p -- contradiction absurd : ⊥ absurd = R-nonreg R-reg
{ "alphanum_fraction": 0.635770235, "avg_line_length": 20.1578947368, "ext": "agda", "hexsha": "6690cbaf1196a60f475d457e01de1eae135dde99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Russell.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Russell.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Russell.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 253, "size": 766 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary module Cubical.Relation.Binary.Construct.NonStrictToStrict {a ℓ} {A : Type a} (_≤_ : Rel A ℓ) where open import Cubical.Relation.Binary.Properties open import Cubical.Foundations.Prelude open import Cubical.Foundations.Logic hiding (_⇒_; ¬_) open import Cubical.Data.Sigma open import Cubical.Data.Sum.Base using (inl; inr) open import Cubical.Data.Empty open import Cubical.Foundations.Function using (_∘_; flip; id) open import Cubical.Relation.Nullary import Cubical.HITs.PropositionalTruncation as PT ------------------------------------------------------------------------ -- _≤_ can be turned into _<_ as follows: _<_ : Rel A _ x < y = x ≤ y ⊓ x ≢ₚ y ------------------------------------------------------------------------ -- Relationship between relations <⇒≤ : _<_ ⇒ _≤_ <⇒≤ = fst <⇒≢ : _<_ ⇒ _≢ₚ_ <⇒≢ = snd ≤∧≢⇒< : ∀ {x y} → ⟨ x ≤ y ⟩ → ⟨ x ≢ₚ y ⟩ → ⟨ x < y ⟩ ≤∧≢⇒< = _,_ <⇒≱ : Antisymmetric _≤_ → ∀ {x y} → ⟨ x < y ⟩ → ¬ ⟨ y ≤ x ⟩ <⇒≱ antisym (x≤y , x≢y) y≤x = x≢y (antisym x≤y y≤x) ≤⇒≯ : Antisymmetric _≤_ → ∀ {x y} → ⟨ x ≤ y ⟩ → ¬ ⟨ y < x ⟩ ≤⇒≯ antisym x≤y y<x = <⇒≱ antisym y<x x≤y ≰⇒> : Reflexive _≤_ → Total _≤_ → ∀ {x y} → ¬ ⟨ x ≤ y ⟩ → ⟨ y < x ⟩ ≰⇒> rfl total {x} {y} x≰y = PT.rec ((y < x) .snd) (λ { (inl x≤y) → elim (x≰y x≤y) ; (inr y≤x) → y≤x , x≰y ∘ reflx→fromeq _≤_ rfl ∘ PT.map sym }) (total x y) ≮⇒≥ : Discrete A → Reflexive _≤_ → Total _≤_ → ∀ {x y} → ¬ ⟨ x < y ⟩ → ⟨ y ≤ x ⟩ ≮⇒≥ _≟_ ≤-refl _≤?_ {x} {y} x≮y with x ≟ y ... | yes x≈y = reflx→fromeq _≤_ ≤-refl ∣ sym x≈y ∣ ... | no x≢y = PT.rec ((y ≤ x) .snd) (λ { (inl y≤x) → y≤x ; (inr x≤y) → elim (x≮y (x≤y , x≢y ∘ PT.rec (Discrete→isSet _≟_ _ _) id)) }) (y ≤? x) ------------------------------------------------------------------------ -- Relational properties <-toNotEq : ToNotEq _<_ <-toNotEq (_ , x≢y) x≡y = x≢y x≡y <-irrefl : Irreflexive _<_ <-irrefl = tonoteq→irrefl _<_ <-toNotEq <-transitive : IsPartialOrder _≤_ → Transitive _<_ <-transitive po (x≤y , x≢y) (y≤z , y≉z) = (transitive x≤y y≤z , x≢y ∘ antisym x≤y ∘ transitive y≤z ∘ fromEq ∘ PT.map sym) where open IsPartialOrder po <-≤-trans : Transitive _≤_ → Antisymmetric _≤_ → Trans _<_ _≤_ _<_ <-≤-trans transitive antisym (x≤y , x≢y) y≤z = transitive x≤y y≤z , (λ x≡z → x≢y (antisym x≤y (Respectsʳ≡ₚ _≤_ (PT.map sym x≡z) y≤z))) ≤-<-trans : Transitive _≤_ → Antisymmetric _≤_ → Trans _≤_ _<_ _<_ ≤-<-trans trans antisym x≤y (y≤z , y≢z) = trans x≤y y≤z , (λ x≡z → y≢z (antisym y≤z (Respectsˡ≡ₚ _≤_ x≡z x≤y))) <-asym : Antisymmetric _≤_ → Asymmetric _<_ <-asym antisym (x≤y , x≢y) (y≤x , _) = x≢y (antisym x≤y y≤x) {- <-trichotomous : Discrete A → Antisymmetric _≤_ → Total _≤_ → Trichotomous _<_ <-trichotomous _≟_ antisym total x y with x ≟ y ... | yes x≡y = tri≡ (λ x<y → ?) x≡y (λ y<x → <-toNotEq y<x (PT.map sym x≡y)) ... | no x≢y with total x y ... | inl x≤y = tri< (x≤y , x≢y) x≢y (x≢y ∘ antisym x≤y ∘ proj₁) ... | inr y≤x = tri> (x≢y ∘ flip antisym y≤x ∘ proj₁) x≢y (y≤x , x≢y ∘ sym) -} <-decidable : Discrete A → Decidable _≤_ → Decidable _<_ <-decidable _≟_ _≤?_ x y with x ≤? y ... | no ¬p = no (¬p ∘ fst) ... | yes p with x ≟ y ... | yes q = no (λ x<y → snd x<y ∣ q ∣) ... | no ¬q = yes (p , ¬q ∘ PT.rec (Discrete→isSet _≟_ _ _) id) ------------------------------------------------------------------------ -- Structures {- isStrictPartialOrder : IsPartialOrder _≤_ → IsStrictPartialOrder _<_ isStrictPartialOrder po = record { irrefl = <-irrefl ; transitive = <-transitive po } where open IsPartialOrder po isStrictTotalOrder₁ : Discrete A → IsTotalOrder _≤_ → IsStrictTotalOrder _<_ isStrictTotalOrder₁ ≟ tot = record { transitive = <-transitive isPartialOrder ; compare = <-trichotomous ≟ antisym total } where open IsTotalOrder tot isStrictTotalOrder₂ : IsDecTotalOrder _≤_ → IsStrictTotalOrder _<_ isStrictTotalOrder₂ dtot = isStrictTotalOrder₁ _≟_ isTotalOrder where open IsDecTotalOrder dtot -}
{ "alphanum_fraction": 0.5479020131, "avg_line_length": 34.0743801653, "ext": "agda", "hexsha": "4f782afe47437221a8ec4cc5438b30077ee95fa1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Construct/NonStrictToStrict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Construct/NonStrictToStrict.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Construct/NonStrictToStrict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1780, "size": 4123 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Connecting Nehemiah.Change.Term and Nehemiah.Change.Value. ------------------------------------------------------------------------ module Nehemiah.Change.Evaluation where open import Nehemiah.Syntax.Type open import Nehemiah.Syntax.Term open import Nehemiah.Change.Type open import Nehemiah.Change.Term open import Nehemiah.Change.Value open import Nehemiah.Denotation.Value open import Nehemiah.Denotation.Evaluation open import Relation.Binary.PropositionalEquality open import Base.Denotation.Notation import Parametric.Change.Evaluation ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base nil-base ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧ as ChangeEvaluation meaning-⊕-base : ChangeEvaluation.ApplyStructure meaning-⊕-base base-int = refl meaning-⊕-base base-bag = refl meaning-⊝-base : ChangeEvaluation.DiffStructure meaning-⊝-base base-int = refl meaning-⊝-base base-bag = refl meaning-onil-base : ChangeEvaluation.NilStructure meaning-onil-base base-int = refl meaning-onil-base base-bag = refl open ChangeEvaluation.Structure meaning-⊕-base meaning-⊝-base meaning-onil-base public
{ "alphanum_fraction": 0.7056856187, "avg_line_length": 32.3243243243, "ext": "agda", "hexsha": "764a6d22eb463517d4f713a2e073d4f6ebfa1e63", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Change/Evaluation.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Change/Evaluation.agda", "max_line_length": 92, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Change/Evaluation.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 290, "size": 1196 }
module Data.String where import Data.List import Data.Char open Data.List using (List) open Data.Char postulate String : Set {-# BUILTIN STRING String #-} infixr 50 _++_ private primitive primStringAppend : String -> String -> String primStringToList : String -> List Char primStringFromList : List Char -> String _++_ = primStringAppend toList = primStringToList fromList = primStringFromList
{ "alphanum_fraction": 0.7139534884, "avg_line_length": 17.2, "ext": "agda", "hexsha": "cf5c1d55659481ebb1d3261e1a50594ca502e46b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/String.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/String.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/String.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 110, "size": 430 }
module Dave.Algebra.Naturals.Excercises where open import Dave.Algebra.Naturals.Addition +-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q +-rearrange m n p q = begin (m + n) + (p + q) ≡⟨ IsSemigroup.assoc ℕ-+-IsSemigroup m n (p + q) ⟩ m + (n + (p + q)) ≡⟨ cong (λ a → m + a) (sym (IsSemigroup.assoc ℕ-+-IsSemigroup n p q)) ⟩ m + ((n + p) + q) ≡⟨ sym (IsSemigroup.assoc ℕ-+-IsSemigroup m (n + p) q) ⟩ (m + (n + p)) + q ∎ +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m n p = begin m + (n + p) ≡⟨ +-comm m (n + p) ⟩ (n + p) + m ≡⟨ IsSemigroup.assoc ℕ-+-IsSemigroup n p m ⟩ n + (p + m) ≡⟨ cong (λ a → n + a) (+-comm p m) ⟩ n + (m + p) ∎
{ "alphanum_fraction": 0.4689265537, "avg_line_length": 44.25, "ext": "agda", "hexsha": "35c337cd42c463e91dfd7978f68e5f032bbe5251", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DavidStahl97/formal-proofs", "max_forks_repo_path": "Dave/Algebra/Naturals/Excercises.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DavidStahl97/formal-proofs", "max_issues_repo_path": "Dave/Algebra/Naturals/Excercises.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DavidStahl97/formal-proofs", "max_stars_repo_path": "Dave/Algebra/Naturals/Excercises.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 340, "size": 708 }
------------------------------------------------------------------------ -- Canonically kinded hereditary substitutions in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Kinding.Canonical.HereditarySubstitution where open import Data.Fin using (Fin; zero; suc; raise; lift) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Typed open import Data.Product as Prod using (∃; _,_; _×_; proj₁; proj₂) open import Data.Vec as Vec using ([]; _∷_) import Data.Vec.Properties as VecProps open import Function using (_∘_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import FOmegaInt.Syntax open import FOmegaInt.Syntax.SingleVariableSubstitution open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization open import FOmegaInt.Kinding.Canonical as CanonicalKinding open import FOmegaInt.Kinding.Simple as SimpleKinding open Syntax open ElimCtx open SimpleCtx using (⌊_⌋Asc; kd; tp) open ContextConversions using (⌊_⌋Ctx) open Substitution hiding (_↑; sub; subst) open RenamingCommutes open SimpHSubstLemmas open SimpleKinding.Kinding using (_⊢_kds; kds-Π) open CanonicalKinding.Kinding open KindedHereditarySubstitution using (_⊢/⟨_⟩_∈_; ∈-hsub; ∈-H↑; kds-/⟨⟩; kds-[]-/⟨⟩-↑⋆) open CanonicalKinding.KindedRenaming using (typedVarSubst; kd-/Var; ≃-/Var; <∷-/Var; kd-weaken; <∷-weaken) module TV = TypedVarSubst typedVarSubst open ContextNarrowing ---------------------------------------------------------------------- -- Ascription order: a wrapper judgment that combines subtyping and -- subkinding. -- -- NOTE. Subtyping instances are always trivial, i.e. they only -- support (syntactic) reflexivity. infix 4 _⊢_≤_ data _⊢_≤_ {n} (Γ : Ctx n) : ElimAsc n → ElimAsc n → Set where ≤-<∷ : ∀ {j k} → Γ ⊢ j <∷ k → Γ ⊢ k kd → Γ ⊢ kd j ≤ kd k ≤-refl : ∀ {a} → Γ ⊢ a ≤ a -- Transitivity of the ascription order. ≤-trans : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a ≤ b → Γ ⊢ b ≤ c → Γ ⊢ a ≤ c ≤-trans (≤-<∷ j<∷k _) (≤-<∷ k<∷l l-kd) = ≤-<∷ (<∷-trans j<∷k k<∷l) l-kd ≤-trans (≤-<∷ j<∷k k-kd) ≤-refl = ≤-<∷ j<∷k k-kd ≤-trans ≤-refl a≤c = a≤c -- Kinds in related ascriptions have the same shape. ≤-⌊⌋ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ kd j ≤ kd k → ⌊ j ⌋ ≡ ⌊ k ⌋ ≤-⌊⌋ (≤-<∷ j<∷k _) = <∷-⌊⌋ j<∷k ≤-⌊⌋ ≤-refl = refl -- Renamings preserve the ascription order. ≤-/Var : ∀ {m n Γ Δ a b} {ρ : Sub Fin m n} → Γ ⊢ a ≤ b → Δ TV.⊢/Var ρ ∈ Γ → Δ ⊢ a ElimAsc/Var ρ ≤ b ElimAsc/Var ρ ≤-/Var (≤-<∷ j<∷k k-kd) ρ∈Γ = ≤-<∷ (<∷-/Var j<∷k ρ∈Γ) (kd-/Var k-kd ρ∈Γ) ≤-/Var ≤-refl ρ∈Γ = ≤-refl -- Admissible subsumption rules w.r.t. the ascription order. Nf⇇-⇑-≤ : ∀ {n} {Γ : Ctx n} {a k j} → Γ ⊢Nf a ⇇ k → Γ ⊢ kd k ≤ kd j → Γ ⊢Nf a ⇇ j Nf⇇-⇑-≤ a⇇k (≤-<∷ k<∷j j-kd) = Nf⇇-⇑ a⇇k k<∷j Nf⇇-⇑-≤ a⇇k ≤-refl = a⇇k ≃-⇑-≤ : ∀ {n} {Γ : Ctx n} {a b k j} → Γ ⊢ a ≃ b ⇇ k → Γ ⊢ kd k ≤ kd j → Γ ⊢ a ≃ b ⇇ j ≃-⇑-≤ a≃b⇇k (≤-<∷ k<∷j j-kd) = ≃-⇑ a≃b⇇k k<∷j j-kd ≃-⇑-≤ a≃b⇇k ≤-refl = a≃b⇇k -- An admissible variable rule based on the ascription order. Var∈-⇑-≤ : ∀ {n} {Γ : Ctx n} {a k} x → Γ ctx → lookup Γ x ≡ a → Γ ⊢ a ≤ kd k → Γ ⊢Var x ∈ k Var∈-⇑-≤ x Γ-ctx Γ[x]≡j (≤-<∷ j<∷k k-kd) = ⇇-⇑ (⇉-var x Γ-ctx Γ[x]≡j) j<∷k k-kd Var∈-⇑-≤ x Γ-ctx Γ[x]≡k ≤-refl = ⇉-var x Γ-ctx Γ[x]≡k ---------------------------------------------------------------------- -- Well-kinded hereditary substitutions (i.e. substitution lemmas) in -- canonical types infix 4 _⊢/⟨_⟩_⇇_ _⊢/⟨_⟩_≃_⇇_ _⊢?⟨_⟩_⇇_ _⊢?⟨_⟩_≃_⇇_ -- Well-kinded pointwise equality of hereditary substitutions and -- their lookup results. data _⊢/⟨_⟩_≃_⇇_ : ∀ {m n} → Ctx n → SKind → SVSub m n → SVSub m n → Ctx m → Set where ≃-hsub : ∀ {n} {Γ : Ctx n} {k a b j} → Γ ⊢ a ≃ b ⇇ j → ⌊ j ⌋≡ k → Γ ⊢/⟨ k ⟩ sub a ≃ sub b ⇇ kd j ∷ Γ ≃-H↑ : ∀ {m n Δ k Γ} {σ τ : SVSub m n} {j l} → Δ ⊢ j ≅ l Kind/⟨ k ⟩ σ → Δ ⊢ j ≅ l Kind/⟨ k ⟩ τ → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → kd j ∷ Δ ⊢/⟨ k ⟩ σ ↑ ≃ τ ↑ ⇇ kd l ∷ Γ data _⊢?⟨_⟩_≃_⇇_ {n} (Γ : Ctx n) (k : SKind) : SVRes n → SVRes n → ElimAsc n → Set where ≃-hit : ∀ {a b j} → Γ ⊢ a ≃ b ⇇ j → ⌊ j ⌋≡ k → Γ ⊢?⟨ k ⟩ hit a ≃ hit b ⇇ kd j ≃-miss : ∀ y {a b} → Γ ctx → lookup Γ y ≡ a → Γ ⊢ a ≤ b → Γ ⊢?⟨ k ⟩ miss y ≃ miss y ⇇ b -- Well-kinded suspended hereditary substations are just a degenerate -- case of equal hereditary substitutions where the underlying -- substitutions coincide (syntactically). _⊢/⟨_⟩_⇇_ : ∀ {m n} → Ctx n → SKind → SVSub m n → Ctx m → Set Δ ⊢/⟨ k ⟩ σ ⇇ Γ = Δ ⊢/⟨ k ⟩ σ ≃ σ ⇇ Γ ⇇-hsub : ∀ {n} {Γ : Ctx n} {k a j} → Γ ⊢Nf a ⇇ j → Γ ⊢ j kd → ⌊ j ⌋≡ k → Γ ⊢/⟨ k ⟩ sub a ⇇ kd j ∷ Γ ⇇-hsub a⇇j j-kd ⌊j⌋≡k = ≃-hsub (≃-reflNf⇇ a⇇j j-kd) ⌊j⌋≡k ⇇-H↑ : ∀ {m n Δ k Γ} {σ : SVSub m n} {j l} → Δ ⊢ j ≅ l Kind/⟨ k ⟩ σ → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → kd j ∷ Δ ⊢/⟨ k ⟩ σ ↑ ⇇ kd l ∷ Γ ⇇-H↑ j≅l/σ σ⇇Γ = ≃-H↑ j≅l/σ j≅l/σ σ⇇Γ _⊢?⟨_⟩_⇇_ : ∀ {n} → Ctx n → SKind → SVRes n → ElimAsc n → Set Δ ⊢?⟨ k ⟩ σ ⇇ Γ = Δ ⊢?⟨ k ⟩ σ ≃ σ ⇇ Γ ⇇-hit : ∀ {n} {Γ : Ctx n} {k a j} → Γ ⊢Nf a ⇇ j → Γ ⊢ j kd → ⌊ j ⌋≡ k → Γ ⊢?⟨ k ⟩ hit a ⇇ kd j ⇇-hit a⇇j j-kd ⌊j⌋≡k = ≃-hit (≃-reflNf⇇ a⇇j j-kd) ⌊j⌋≡k ⇇-miss = λ {n} {Γ} {k} → ≃-miss {n} {Γ} {k} -- Renamings preserve equality of SV results. ?≃-/Var : ∀ {m n Γ k Δ r₁ r₂ a} {ρ : Sub Fin m n} → Γ ⊢?⟨ k ⟩ r₁ ≃ r₂ ⇇ a → Δ TV.⊢/Var ρ ∈ Γ → Δ ⊢?⟨ k ⟩ r₁ ?/Var ρ ≃ r₂ ?/Var ρ ⇇ a ElimAsc/Var ρ ?≃-/Var (≃-hit a≃b∈k ⌊j⌋≡k) ρ∈Γ = ≃-hit (≃-/Var a≃b∈k ρ∈Γ) (⌊⌋≡-/Var ⌊j⌋≡k) ?≃-/Var {Γ = Γ} {k} {Δ} {ρ = ρ} (≃-miss y {a} {b} _ Γ[x]≡a a≤b) ρ∈Γ = helper (cong (_ElimAsc/Var ρ) Γ[x]≡a) (TV.lookup ρ∈Γ y) where helper : ∀ {x c} → c ≡ a ElimAsc/Var ρ → Δ TV.⊢Var x ∈ c → Δ ⊢?⟨ k ⟩ miss x ≃ miss x ⇇ b ElimAsc/Var ρ helper Δ[x]≡a/ρ (TV.∈-var x Δ-ctx) = ≃-miss x (TV./∈-wf ρ∈Γ) Δ[x]≡a/ρ (≤-/Var a≤b ρ∈Γ) ?≃-weaken : ∀ {n} {Γ : Ctx n} {k r₁ r₂ a b} → Γ ⊢ a wf → Γ ⊢?⟨ k ⟩ r₁ ≃ r₂ ⇇ b → (a ∷ Γ) ⊢?⟨ k ⟩ weakenSVRes r₁ ≃ weakenSVRes r₂ ⇇ weakenElimAsc b ?≃-weaken a-wf r₁≃r₂⇇a = ?≃-/Var r₁≃r₂⇇a (TV.∈-wk a-wf) -- Look up a variable in a pair of well-kinded pointwise equal -- hereditary substitution. lookup-/⟨⟩≃ : ∀ {m n Δ k Γ} {σ τ : SVSub m n} → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → (x : Fin m) → Δ ⊢?⟨ k ⟩ lookupSV σ x ≃ lookupSV τ x ⇇ lookup Γ x Asc/⟨ k ⟩ σ lookup-/⟨⟩≃ (≃-hsub {_} {Γ} {k} {a} {b} {j} a≃b⇇k ⌊j⌋≡k) zero = subst (Γ ⊢?⟨ k ⟩ hit a ≃ hit b ⇇_) (cong kd (sym (Kind/Var-wk-↑⋆-hsub-vanishes 0 j))) (≃-hit a≃b⇇k ⌊j⌋≡k) lookup-/⟨⟩≃ (≃-hsub {Γ = Γ} {k} {a} {_} {j} a≃b⇇k ⌊j⌋≡k) (suc x) = subst (Γ ⊢?⟨ k ⟩ miss x ≃ miss x ⇇_) (begin lookup Γ x ≡˘⟨ Asc/Var-wk-↑⋆-hsub-vanishes 0 (lookup Γ x) ⟩ weakenElimAsc (lookup Γ x) Asc/⟨ k ⟩ sub a ≡˘⟨ cong (_Asc/⟨ k ⟩ sub a) (VecProps.lookup-map x weakenElimAsc (toVec Γ)) ⟩ lookup (kd j ∷ Γ) (suc x) Asc/⟨ k ⟩ sub a ∎) (≃-miss x (≃-ctx a≃b⇇k) refl ≤-refl) lookup-/⟨⟩≃ (≃-H↑ {Δ = Δ} {k} {j = j} {l} j≅l/σ j≅l/τ σ≃τ⇇Γ) zero = let j-kd , l/σ-kd = ≅-valid j≅l/σ j-wf = wf-kd j-kd j≤l/σ = ≤-<∷ (<∷-weaken j-wf (≅⇒<∷ j≅l/σ)) (kd-weaken j-wf l/σ-kd) in subst (kd j ∷ Δ ⊢?⟨ k ⟩ miss zero ≃ miss zero ⇇_) (sym (wk-Asc/⟨⟩-↑⋆ 0 (kd l))) (≃-miss zero (j-wf ∷ (kd-ctx j-kd)) refl j≤l/σ) lookup-/⟨⟩≃ (≃-H↑ {k = k} {Γ} {σ} {_} {_} {l} j≅l/σ _ σ≃τ⇇Γ) (suc x) = subst (_ ⊢?⟨ k ⟩ _ ≃ _ ⇇_) (begin weakenElimAsc (lookup Γ x Asc/⟨ k ⟩ σ) ≡˘⟨ wk-Asc/⟨⟩-↑⋆ 0 (lookup Γ x) ⟩ weakenElimAsc (lookup Γ x) Asc/⟨ k ⟩ σ ↑ ≡˘⟨ cong (_Asc/⟨ k ⟩ σ ↑) (VecProps.lookup-map x weakenElimAsc (toVec Γ)) ⟩ lookup (kd l ∷ Γ) (suc x) Asc/⟨ k ⟩ σ ↑ ∎) (?≃-weaken (wf-kd (proj₁ (≅-valid j≅l/σ))) (lookup-/⟨⟩≃ σ≃τ⇇Γ x)) -- Equation and context validity lemmas for hereditary substitutions. /⟨⟩≃-valid₁ : ∀ {k m n Δ Γ} {σ τ : SVSub m n} → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢/⟨ k ⟩ σ ⇇ Γ /⟨⟩≃-valid₁ (≃-hsub a≃b⇇j ⌊j⌋≡k) = ⇇-hsub (proj₁ (≃-valid a≃b⇇j)) (≃-valid-kd a≃b⇇j) ⌊j⌋≡k /⟨⟩≃-valid₁ (≃-H↑ a≅b/σ _ σ≃τ∈Γ) = ⇇-H↑ a≅b/σ (/⟨⟩≃-valid₁ σ≃τ∈Γ) /⟨⟩≃-valid₂ : ∀ {k m n Δ Γ} {σ τ : SVSub m n} → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢/⟨ k ⟩ τ ⇇ Γ /⟨⟩≃-valid₂ (≃-hsub a≃b⇇j ⌊j⌋≡k) = ⇇-hsub (proj₂ (≃-valid a≃b⇇j)) (≃-valid-kd a≃b⇇j) ⌊j⌋≡k /⟨⟩≃-valid₂ (≃-H↑ _ a≅b/τ σ≃τ∈Γ) = ⇇-H↑ a≅b/τ (/⟨⟩≃-valid₂ σ≃τ∈Γ) /⟨⟩≃-ctx : ∀ {k m n Γ Δ} {σ τ : SVSub m n} → Γ ctx → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ctx /⟨⟩≃-ctx j∷Γ-ctx (≃-hsub a≃b⇇j ⌊j⌋≡k) = wf-∷₂ j∷Γ-ctx /⟨⟩≃-ctx l∷Γ-ctx (≃-H↑ j≅l/σ j≅l/τ σ≃τ⇇Γ) = let j-kd , _ = ≅-valid j≅l/σ Γ-ctx = wf-∷₂ l∷Γ-ctx in (wf-kd j-kd) ∷ /⟨⟩≃-ctx Γ-ctx σ≃τ⇇Γ -- Symmetry of hereditary substitution equality. /⟨⟩≃-sym : ∀ {k m n Δ Γ} {σ τ : SVSub m n} → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢/⟨ k ⟩ τ ≃ σ ⇇ Γ /⟨⟩≃-sym (≃-hsub a≃b⇇j ⌊j⌋≡k) = ≃-hsub (≃-sym a≃b⇇j) ⌊j⌋≡k /⟨⟩≃-sym (≃-H↑ a≅b/σ a≅b/τ σ≃τ∈Γ) = ≃-H↑ a≅b/τ a≅b/σ (/⟨⟩≃-sym σ≃τ∈Γ) -- Simplification of kinded substitutions. -- -- NOTE. The second substitution τ is ignored by the simplification. -- It is tempting to rephrase the lemma in terms of _⊢/⟨_⟩_⇇_ instead -- of _⊢/⟨_⟩_≃_⇇_ but that introduces extra constraints for the Agda -- pattern matcher that require UIP (aka axiom K) to resolve. Since -- this assumption is unnecessary, we prove the more general version -- instead. (See the Agda documentation about the --without-K option -- for more info). /⟨⟩⇇-/⟨⟩∈ : ∀ {k m n Δ Γ} {σ τ : SVSub m n} → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → ⌊ Δ ⌋Ctx ⊢/⟨ k ⟩ σ ∈ ⌊ Γ ⌋Ctx /⟨⟩⇇-/⟨⟩∈ (≃-hsub a≃b⇇j ⌊j⌋≡k) = subst (_ ⊢/⟨_⟩ _ ∈ _) (⌊⌋≡⇒⌊⌋-≡ ⌊j⌋≡k) (∈-hsub (Nf⇇-Nf∈ (proj₁ (≃-valid a≃b⇇j)))) /⟨⟩⇇-/⟨⟩∈ (≃-H↑ {Δ = Δ} {k} {Γ} {σ} {_} {j} {l} j≅l/σ _ σ≃σ∈Γ) = subst ((_⊢/⟨ k ⟩ σ ↑ ∈ ⌊ kd l ∷ Γ ⌋Ctx) ∘ (_∷ ⌊ Δ ⌋Ctx)) (begin ⌊ kd l ⌋Asc ≡˘⟨ ⌊⌋-Asc/⟨⟩ (kd l) ⟩ ⌊ kd l Asc/⟨ k ⟩ σ ⌋Asc ≡˘⟨ cong kd (≅-⌊⌋ j≅l/σ) ⟩ ⌊ kd j ⌋Asc ∎) (∈-H↑ (/⟨⟩⇇-/⟨⟩∈ σ≃σ∈Γ)) -- TODO: explain why we need to track shapes explicitly. module TrackSimpleKindsSubst where -- TODO: explain how/why preservation of (sub)kinding/subtyping -- under reducing applications, hereditary substitution and equal -- hereditary substitutions circularly depend on each other. mutual -- Hereditary substitutions preserve well-formedness of kinds. kd-/⟨⟩ : ∀ {k m n Γ Δ} {σ : SVSub m n} {j} → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → Δ ⊢ j Kind/⟨ k ⟩ σ kd kd-/⟨⟩ (kd-⋯ a⇉a⋯a b⇉b⋯b) σ⇇Γ = kd-⋯ (Nf⇉-/⟨⟩ a⇉a⋯a σ⇇Γ) (Nf⇉-/⟨⟩ b⇉b⋯b σ⇇Γ) kd-/⟨⟩ (kd-Π j-kd k-kd) σ⇇Γ = let j/σ-kd = kd-/⟨⟩ j-kd σ⇇Γ in kd-Π j/σ-kd (kd-/⟨⟩ k-kd (⇇-H↑ (≅-refl j/σ-kd) σ⇇Γ)) -- Hereditary substitutions preserve synthesized kinds of normal -- types. Nf⇉-/⟨⟩ : ∀ {k m n Γ Δ} {σ : SVSub m n} {a j} → Γ ⊢Nf a ⇉ j → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → Δ ⊢Nf a /⟨ k ⟩ σ ⇉ j Kind/⟨ k ⟩ σ Nf⇉-/⟨⟩ (⇉-⊥-f Γ-ctx) σ⇇Γ = ⇉-⊥-f (/⟨⟩≃-ctx Γ-ctx σ⇇Γ) Nf⇉-/⟨⟩ (⇉-⊤-f Γ-ctx) σ⇇Γ = ⇉-⊤-f (/⟨⟩≃-ctx Γ-ctx σ⇇Γ) Nf⇉-/⟨⟩ (⇉-∀-f k-kd a⇉a⋯a) σ⇇Γ = let k/σ-kd = kd-/⟨⟩ k-kd σ⇇Γ in ⇉-∀-f k/σ-kd (Nf⇉-/⟨⟩ a⇉a⋯a (⇇-H↑ (≅-refl k/σ-kd) σ⇇Γ)) Nf⇉-/⟨⟩ (⇉-→-f a⇉a⋯a b⇉b⋯b) σ⇇Γ = ⇉-→-f (Nf⇉-/⟨⟩ a⇉a⋯a σ⇇Γ) (Nf⇉-/⟨⟩ b⇉b⋯b σ⇇Γ) Nf⇉-/⟨⟩ (⇉-Π-i k-kd a⇉a⋯a) σ⇇Γ = let k/σ-kd = kd-/⟨⟩ k-kd σ⇇Γ in ⇉-Π-i k/σ-kd (Nf⇉-/⟨⟩ a⇉a⋯a (⇇-H↑ (≅-refl k/σ-kd) σ⇇Γ)) Nf⇉-/⟨⟩ (⇉-s-i a∈b⋯c) σ⇇Γ = Nf⇇-s-i (Ne∈-/⟨⟩ a∈b⋯c σ⇇Γ) -- Neutral proper types kind-check against their synthesized kinds -- after substitution. Ne∈-/⟨⟩ : ∀ {k m n Γ Δ} {σ : SVSub m n} {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → Δ ⊢Nf a /⟨ k ⟩ σ ⇇ b /⟨ k ⟩ σ ⋯ c /⟨ k ⟩ σ Ne∈-/⟨⟩ (∈-∙ {x} x∈j j⇉as⇉b⋯c) σ⇇Γ = let j-kds = kd-kds (Var∈-valid x∈j) in Var∈-/⟨⟩-⇑-?∙∙ x∈j σ⇇Γ ≤-refl (Sp⇉-/⟨⟩ j-kds j⇉as⇉b⋯c σ⇇Γ) Var∈-/⟨⟩-⇑-?∙∙ : ∀ {k m n Γ Δ} {σ : SVSub m n} {x j l as b c} → Γ ⊢Var x ∈ j → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → Δ ⊢ kd j Asc/⟨ k ⟩ σ ≤ kd l → Δ ⊢ l ⇉∙ as ⇉ b ⋯ c → Δ ⊢Nf lookupSV σ x ?∙∙⟨ k ⟩ as ⇇ b ⋯ c Var∈-/⟨⟩-⇑-?∙∙ (⇉-var x _ Γ[x]≡kd-j) σ⇇Γ j/σ≤l l⇉as⇉b⋯c = ?⇇-⇑-?∙∙ (subst (_ ⊢?⟨ _ ⟩ _ ⇇_) (cong (_Asc/⟨ _ ⟩ _) Γ[x]≡kd-j) (lookup-/⟨⟩≃ σ⇇Γ x)) j/σ≤l l⇉as⇉b⋯c Var∈-/⟨⟩-⇑-?∙∙ (⇇-⇑ x∈j₁ j₁<∷j₂ j₂-kd) σ⇇Γ j₂/σ≤l l⇉as⇉b⋯c = let j₁/σ≤j₂/σ = ≤-<∷ (<∷-/⟨⟩≃ j₁<∷j₂ σ⇇Γ) (kd-/⟨⟩ j₂-kd σ⇇Γ) in Var∈-/⟨⟩-⇑-?∙∙ x∈j₁ σ⇇Γ (≤-trans j₁/σ≤j₂/σ j₂/σ≤l) l⇉as⇉b⋯c -- Hereditary substitutions preserve synthesized kinds of spines. Sp⇉-/⟨⟩ : ∀ {k m n Γ Δ} {σ : SVSub m n} {as j₁ j₂} → ⌊ Γ ⌋Ctx ⊢ j₁ kds → Γ ⊢ j₁ ⇉∙ as ⇉ j₂ → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → Δ ⊢ j₁ Kind/⟨ k ⟩ σ ⇉∙ as //⟨ k ⟩ σ ⇉ j₂ Kind/⟨ k ⟩ σ Sp⇉-/⟨⟩ _ ⇉-[] σ⇇Γ = ⇉-[] Sp⇉-/⟨⟩ {k} (kds-Π j₁-kds j₂-kds) (⇉-∷ {a} {_} {j₁} {j₂} a⇇j₁ j₁-kd j₂[a]⇉as⇉j₃) σ⇇Γ = ⇉-∷ (Nf⇇-/⟨⟩ a⇇j₁ σ⇇Γ) (kd-/⟨⟩ j₁-kd σ⇇Γ) (subst (_ ⊢_⇉∙ _ ⇉ _) j₂[a]/σ≡j₂/σ[a/σ] (Sp⇉-/⟨⟩ (kds-/⟨⟩ j₂-kds (∈-hsub a∈⌊j₁⌋)) j₂[a]⇉as⇉j₃ σ⇇Γ)) where a∈⌊j₁⌋ = Nf⇇-Nf∈ a⇇j₁ j₂[a]/σ≡j₂/σ[a/σ] = begin j₂ Kind[ a ∈ ⌊ j₁ ⌋ ] Kind/⟨ k ⟩ _ ≡⟨ kds-[]-/⟨⟩-↑⋆ [] j₂-kds a∈⌊j₁⌋ (/⟨⟩⇇-/⟨⟩∈ σ⇇Γ) ⟩ j₂ Kind/⟨ k ⟩ _ ↑ Kind/⟨ ⌊ j₁ ⌋ ⟩ sub (a /⟨ k ⟩ _) ≡⟨ cong (_ Kind[ a /⟨ k ⟩ _ ∈_]) (sym (⌊⌋-Kind/⟨⟩ j₁)) ⟩ (j₂ Kind/⟨ k ⟩ _ ↑) Kind[ a /⟨ k ⟩ _ ∈ ⌊ j₁ Kind/⟨ k ⟩ _ ⌋ ] ∎ -- Hereditary substitutions preserve checked kinds of normal -- types. Nf⇇-/⟨⟩ : ∀ {k m n Γ Δ} {σ : SVSub m n} {a j} → Γ ⊢Nf a ⇇ j → Δ ⊢/⟨ k ⟩ σ ⇇ Γ → Δ ⊢Nf a /⟨ k ⟩ σ ⇇ j Kind/⟨ k ⟩ σ Nf⇇-/⟨⟩ (⇇-⇑ a⇉j j<∷k) σ⇇Γ = ⇇-⇑ (Nf⇉-/⟨⟩ a⇉j σ⇇Γ) (<∷-/⟨⟩≃ j<∷k σ⇇Γ) -- Equal hereditary substitutions well-formed kinds to subkinds. kd-/⟨⟩≃-<∷ : ∀ {m n Γ k Δ} {σ τ : SVSub m n} {j} → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ k ⟩ σ <∷ j Kind/⟨ k ⟩ τ kd-/⟨⟩≃-<∷ (kd-⋯ a⇉a⋯a b⇉b⋯b) σ≃τ⇇Γ = <∷-⋯ (Nf⇉-⋯-/⟨⟩≃ a⇉a⋯a (/⟨⟩≃-sym σ≃τ⇇Γ)) (Nf⇉-⋯-/⟨⟩≃ b⇉b⋯b σ≃τ⇇Γ) kd-/⟨⟩≃-<∷ (kd-Π j-kd k-kd) σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ j/σ≅j/σ = kd-/⟨⟩≃-≅ j-kd σ⇇Γ j/τ≅j/τ = kd-/⟨⟩≃-≅ j-kd τ⇇Γ j/τ≅j/σ = kd-/⟨⟩≃-≅ j-kd τ≃σ⇇Γ in <∷-Π (kd-/⟨⟩≃-<∷ j-kd τ≃σ⇇Γ) (kd-/⟨⟩≃-<∷ k-kd (≃-H↑ j/τ≅j/σ j/τ≅j/τ σ≃τ⇇Γ)) (kd-Π (kd-/⟨⟩ j-kd σ⇇Γ) (kd-/⟨⟩ k-kd (⇇-H↑ j/σ≅j/σ σ⇇Γ))) -- Equal hereditary substitutions map well-formed kinds to kind -- identities. kd-/⟨⟩≃-≅ : ∀ {m n Γ k Δ} {σ τ : SVSub m n} {j} → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ k ⟩ σ ≅ j Kind/⟨ k ⟩ τ kd-/⟨⟩≃-≅ k-kd σ≃τ⇇Γ = <∷-antisym (kd-/⟨⟩ k-kd (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) (kd-/⟨⟩ k-kd (/⟨⟩≃-valid₂ σ≃τ⇇Γ)) (kd-/⟨⟩≃-<∷ k-kd σ≃τ⇇Γ) (kd-/⟨⟩≃-<∷ k-kd (/⟨⟩≃-sym σ≃τ⇇Γ)) -- Equal hereditary substitutions map normal forms to subtypes. Nf⇉-⋯-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a b c} → Γ ⊢Nf a ⇉ b ⋯ c → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a /⟨ k ⟩ σ <: a /⟨ k ⟩ τ Nf⇉-⋯-/⟨⟩≃ (⇉-⊥-f Γ-ctx) σ≃τ⇇Γ = <:-⊥ (⇉-⊥-f (/⟨⟩≃-ctx Γ-ctx (/⟨⟩≃-valid₁ σ≃τ⇇Γ))) Nf⇉-⋯-/⟨⟩≃ (⇉-⊤-f Γ-ctx) σ≃τ⇇Γ = <:-⊤ (⇉-⊤-f (/⟨⟩≃-ctx Γ-ctx (/⟨⟩≃-valid₂ σ≃τ⇇Γ))) Nf⇉-⋯-/⟨⟩≃ (⇉-∀-f k-kd a⇉a⋯a) σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ k/τ≅k/τ = kd-/⟨⟩≃-≅ k-kd τ⇇Γ k/σ≅k/σ = kd-/⟨⟩≃-≅ k-kd σ⇇Γ k/τ≅k/σ = kd-/⟨⟩≃-≅ k-kd τ≃σ⇇Γ σ≃τ⇇j/τ∷Γ = ≃-H↑ k/τ≅k/σ k/τ≅k/τ σ≃τ⇇Γ in <:-∀ (≅⇒<∷ k/τ≅k/σ) (Nf⇉-⋯-/⟨⟩≃ a⇉a⋯a σ≃τ⇇j/τ∷Γ) (⇉-∀-f (kd-/⟨⟩ k-kd σ⇇Γ) (Nf⇉-/⟨⟩ a⇉a⋯a (⇇-H↑ k/σ≅k/σ σ⇇Γ))) Nf⇉-⋯-/⟨⟩≃ (⇉-→-f a⇉a⋯a b⇉b⋯b) σ≃τ⇇Γ = <:-→ (Nf⇉-⋯-/⟨⟩≃ a⇉a⋯a (/⟨⟩≃-sym σ≃τ⇇Γ)) (Nf⇉-⋯-/⟨⟩≃ b⇉b⋯b σ≃τ⇇Γ) Nf⇉-⋯-/⟨⟩≃ (⇉-s-i a∈b⋯c) σ≃τ⇇Γ = Ne∈-/⟨⟩≃ a∈b⋯c σ≃τ⇇Γ Nf⇉-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a j} → Γ ⊢Nf a ⇉ j → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a /⟨ k ⟩ σ <: a /⟨ k ⟩ τ ⇇ j Kind/⟨ k ⟩ σ Nf⇉-/⟨⟩≃ a⇉b⋯c (kd-⋯ b⇉b⋯b c⇉c⋯c) σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ in <:-⇇ (Nf⇉⇒Nf⇇ (Nf⇉-/⟨⟩ a⇉b⋯c σ⇇Γ)) (⇇-⇑ (Nf⇉-/⟨⟩ a⇉b⋯c τ⇇Γ) (<∷-⋯ (Nf⇉-⋯-/⟨⟩≃ b⇉b⋯b σ≃τ⇇Γ) (Nf⇉-⋯-/⟨⟩≃ c⇉c⋯c τ≃σ⇇Γ))) (Nf⇉-⋯-/⟨⟩≃ a⇉b⋯c σ≃τ⇇Γ) Nf⇉-/⟨⟩≃ (⇉-Π-i _ a⇉l) (kd-Π j-kd l-kd) σ≃τ⇇Γ = let τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ j/σ-kd = kd-/⟨⟩ j-kd σ⇇Γ j/τ-kd = kd-/⟨⟩ j-kd τ⇇Γ j/σ≅j/σ = kd-/⟨⟩≃-≅ j-kd σ⇇Γ j/τ≅j/τ = kd-/⟨⟩≃-≅ j-kd τ⇇Γ j/σ≅j/τ = kd-/⟨⟩≃-≅ j-kd σ≃τ⇇Γ a/σ⇉l/σ = Nf⇉-/⟨⟩ a⇉l (⇇-H↑ j/σ≅j/σ σ⇇Γ) a/τ⇉l/τ = Nf⇉-/⟨⟩ a⇉l (⇇-H↑ j/τ≅j/τ τ⇇Γ) a/σ<:a/τ⇇l/σ = Nf⇉-/⟨⟩≃ a⇉l l-kd (≃-H↑ j/σ≅j/σ j/σ≅j/τ σ≃τ⇇Γ) Πjl/τ<∷Πjl/σ = kd-/⟨⟩≃-<∷ (kd-Π j-kd l-kd) τ≃σ⇇Γ Λja/σ⇇Πjl/σ = Nf⇉⇒Nf⇇ (⇉-Π-i j/σ-kd a/σ⇉l/σ) Λja/τ⇇Πjl/σ = ⇇-⇑ (⇉-Π-i j/τ-kd a/τ⇉l/τ) Πjl/τ<∷Πjl/σ in <:-λ a/σ<:a/τ⇇l/σ Λja/σ⇇Πjl/σ Λja/τ⇇Πjl/σ -- Equal hereditary substitutions map proper neutrals to subtypes. Ne∈-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a b c} → Γ ⊢Ne a ∈ b ⋯ c → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a /⟨ k ⟩ σ <: a /⟨ k ⟩ τ Ne∈-/⟨⟩≃ (∈-∙ {x} x∈j j⇉as⇉b⋯c) σ≃τ⇇Γ = let j-kds = kd-kds (Var∈-valid x∈j) in Var∈-/⟨⟩≃-⇑-?∙∙ x∈j σ≃τ⇇Γ ≤-refl (Sp⇉-/⟨⟩≃ j-kds j⇉as⇉b⋯c σ≃τ⇇Γ) Var∈-/⟨⟩≃-⇑-?∙∙ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {x j l as bs b c} → Γ ⊢Var x ∈ j → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ kd j Asc/⟨ k ⟩ σ ≤ kd l → Δ ⊢ l ⇉∙ as ≃ bs ⇉ b ⋯ c → Δ ⊢ lookupSV σ x ?∙∙⟨ k ⟩ as <: lookupSV τ x ?∙∙⟨ k ⟩ bs Var∈-/⟨⟩≃-⇑-?∙∙ (⇉-var x _ Γ[x]≡kd-j) σ≃τ⇇Γ j/σ≤l l⇉as≃bs⇉b⋯c = ?≃-⇑-?∙∙ (subst (_ ⊢?⟨ _ ⟩ _ ≃ _ ⇇_) (cong (_Asc/⟨ _ ⟩ _) Γ[x]≡kd-j) (lookup-/⟨⟩≃ σ≃τ⇇Γ x)) j/σ≤l l⇉as≃bs⇉b⋯c Var∈-/⟨⟩≃-⇑-?∙∙ (⇇-⇑ x∈j₁ j₁<∷j₂ j₂-kd) σ≃τ⇇Γ j₂/σ≤l l⇉as≃bs⇉b⋯c = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ j₁/σ≤j₂/σ = ≤-<∷ (<∷-/⟨⟩≃ j₁<∷j₂ σ⇇Γ) (kd-/⟨⟩ j₂-kd σ⇇Γ) in Var∈-/⟨⟩≃-⇑-?∙∙ x∈j₁ σ≃τ⇇Γ (≤-trans j₁/σ≤j₂/σ j₂/σ≤l) l⇉as≃bs⇉b⋯c -- Equal hereditary substitutions map spines to spine identities. Sp⇉-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {as j₁ j₂} → ⌊ Γ ⌋Ctx ⊢ j₁ kds → Γ ⊢ j₁ ⇉∙ as ⇉ j₂ → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j₁ Kind/⟨ k ⟩ σ ⇉∙ as //⟨ k ⟩ σ ≃ as //⟨ k ⟩ τ ⇉ j₂ Kind/⟨ k ⟩ σ Sp⇉-/⟨⟩≃ _ ⇉-[] σ⇇Γ = ≃-[] Sp⇉-/⟨⟩≃ {k} (kds-Π j₁-kds j₂-kds) (⇉-∷ {a} {_} {j₁} {j₂} a⇇j₁ j₁-kd j₂[a]⇉as⇉j₃) σ⇇Γ = ≃-∷ (Nf⇇-/⟨⟩≃-≃ a⇇j₁ j₁-kd σ⇇Γ) (subst (_ ⊢_⇉∙ _ ≃ _ ⇉ _) j₂[a]/σ≡j₂/σ[a/σ] (Sp⇉-/⟨⟩≃ (kds-/⟨⟩ j₂-kds (∈-hsub a∈⌊j₁⌋)) j₂[a]⇉as⇉j₃ σ⇇Γ)) where a∈⌊j₁⌋ = Nf⇇-Nf∈ a⇇j₁ j₂[a]/σ≡j₂/σ[a/σ] = begin j₂ Kind[ a ∈ ⌊ j₁ ⌋ ] Kind/⟨ k ⟩ _ ≡⟨ kds-[]-/⟨⟩-↑⋆ [] j₂-kds a∈⌊j₁⌋ (/⟨⟩⇇-/⟨⟩∈ (/⟨⟩≃-valid₁ σ⇇Γ)) ⟩ j₂ Kind/⟨ k ⟩ _ ↑ Kind/⟨ ⌊ j₁ ⌋ ⟩ sub (a /⟨ k ⟩ _) ≡⟨ cong (_ Kind[ a /⟨ k ⟩ _ ∈_]) (sym (⌊⌋-Kind/⟨⟩ j₁)) ⟩ (j₂ Kind/⟨ k ⟩ _ ↑) Kind[ a /⟨ k ⟩ _ ∈ ⌊ j₁ Kind/⟨ k ⟩ _ ⌋ ] ∎ -- Equal hereditary substitutions map checked normal forms to -- subtypes. Nf⇇-/⟨⟩≃-<: : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a j} → Γ ⊢Nf a ⇇ j → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a /⟨ k ⟩ σ <: a /⟨ k ⟩ τ ⇇ j Kind/⟨ k ⟩ σ Nf⇇-/⟨⟩≃-<: (⇇-⇑ a⇉b₁⋯c₁ (<∷-⋯ b₂<:b₁ c₁<:c₂)) _ σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ in <:-⇇ (⇇-⇑ (Nf⇉-/⟨⟩ a⇉b₁⋯c₁ σ⇇Γ) (<∷-/⟨⟩≃ (<∷-⋯ b₂<:b₁ c₁<:c₂) σ⇇Γ)) (⇇-⇑ (Nf⇉-/⟨⟩ a⇉b₁⋯c₁ τ⇇Γ) (<∷-/⟨⟩≃ (<∷-⋯ b₂<:b₁ c₁<:c₂) τ≃σ⇇Γ)) (Nf⇉-⋯-/⟨⟩≃ a⇉b₁⋯c₁ σ≃τ⇇Γ) Nf⇇-/⟨⟩≃-<: (⇇-⇑ a⇉Πj₁l₁ (<∷-Π j₂<∷j₁ l₁<∷l₂ Πj₁l₁-kd)) Πj₂k₂-kd σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ Πj₁l₁/σ<∷Πj₂l₂/σ = <∷-/⟨⟩≃ (<∷-Π j₂<∷j₁ l₁<∷l₂ Πj₁l₁-kd) σ⇇Γ Πj₂l₂/σ-kd = kd-/⟨⟩ Πj₂k₂-kd σ⇇Γ in <:⇇-⇑ (Nf⇉-/⟨⟩≃ a⇉Πj₁l₁ Πj₁l₁-kd σ≃τ⇇Γ) Πj₁l₁/σ<∷Πj₂l₂/σ Πj₂l₂/σ-kd -- Equal hereditary substitutions map checked normal forms to type -- identities. Nf⇇-/⟨⟩≃-≃ : ∀ {m n Γ k Δ} {σ τ : SVSub m n} {a j} → Γ ⊢Nf a ⇇ j → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a /⟨ k ⟩ σ ≃ a /⟨ k ⟩ τ ⇇ j Kind/⟨ k ⟩ σ Nf⇇-/⟨⟩≃-≃ a⇇k k-kd σ≃τ⇇Γ = let τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ k/σ-kd = kd-/⟨⟩ k-kd (/⟨⟩≃-valid₁ σ≃τ⇇Γ) in <:-antisym k/σ-kd (Nf⇇-/⟨⟩≃-<: a⇇k k-kd σ≃τ⇇Γ) (<:⇇-⇑ (Nf⇇-/⟨⟩≃-<: a⇇k k-kd τ≃σ⇇Γ) (kd-/⟨⟩≃-<∷ k-kd τ≃σ⇇Γ) k/σ-kd) -- Equal hereditary substitutions preserve subkinding. <∷-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {j₁ j₂} → Γ ⊢ j₁ <∷ j₂ → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j₁ Kind/⟨ k ⟩ σ <∷ j₂ Kind/⟨ k ⟩ τ <∷-/⟨⟩≃ (<∷-⋯ a₂<:a₁ b₁<:b₂) σ≃τ⇇Γ = <∷-⋯ (<:-/⟨⟩≃ a₂<:a₁ (/⟨⟩≃-sym σ≃τ⇇Γ)) (<:-/⟨⟩≃ b₁<:b₂ σ≃τ⇇Γ) <∷-/⟨⟩≃ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) σ≃τ⇇Γ = let τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ τ≃τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ in <∷-Π (<∷-/⟨⟩≃ j₂<∷j₁ (/⟨⟩≃-sym σ≃τ⇇Γ)) (<∷-/⟨⟩≃ k₁<∷k₂ (≃-H↑ (<∷-/⟨⟩≃-wf k₁<∷k₂ τ≃σ⇇Γ) (<∷-/⟨⟩≃-wf k₁<∷k₂ τ≃τ⇇Γ) σ≃τ⇇Γ)) (kd-/⟨⟩ Πj₁k₁-kd (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) -- Equal hereditary substitutions preserve subtyping. <:-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a₁ a₂} → Γ ⊢ a₁ <: a₂ → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a₁ /⟨ k ⟩ σ <: a₂ /⟨ k ⟩ τ <:-/⟨⟩≃ (<:-trans a<:b b<:c) σ≃τ⇇Γ = <:-trans (<:-/⟨⟩≃ a<:b (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) (<:-/⟨⟩≃ b<:c σ≃τ⇇Γ) <:-/⟨⟩≃ (<:-⊥ a⇉a⋯a) σ≃τ⇇Γ = <:-⊥ (Nf⇉-/⟨⟩ a⇉a⋯a (/⟨⟩≃-valid₂ σ≃τ⇇Γ)) <:-/⟨⟩≃ (<:-⊤ a⇉a⋯a) σ≃τ⇇Γ = <:-⊤ (Nf⇉-/⟨⟩ a⇉a⋯a (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) <:-/⟨⟩≃ (<:-∀ k₂<∷k₁ a₁<:a₂ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁) σ≃τ⇇Γ = let τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ τ≃τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ in <:-∀ (<∷-/⟨⟩≃ k₂<∷k₁ τ≃σ⇇Γ) (<:-/⟨⟩≃ a₁<:a₂ (≃-H↑ (<:-/⟨⟩≃-wf a₁<:a₂ τ≃σ⇇Γ) (<:-/⟨⟩≃-wf a₁<:a₂ τ≃τ⇇Γ) σ≃τ⇇Γ)) (Nf⇉-/⟨⟩ Πk₁a₁⇉Πk₁a₁⋯Πk₁a₁ (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) <:-/⟨⟩≃ (<:-→ a₂<:a₁ b₁<:b₂) σ≃τ⇇Γ = <:-→ (<:-/⟨⟩≃ a₂<:a₁ (/⟨⟩≃-sym σ≃τ⇇Γ)) (<:-/⟨⟩≃ b₁<:b₂ σ≃τ⇇Γ) <:-/⟨⟩≃ {σ = σ} (<:-∙ {x} x∈j j⇉as≃bs⇉c⋯d) σ≃τ⇇Γ = let j-kds = kd-kds (Var∈-valid x∈j) in Var∈-/⟨⟩≃-⇑-?∙∙ x∈j σ≃τ⇇Γ ≤-refl (Sp≃-/⟨⟩≃ j-kds j⇉as≃bs⇉c⋯d σ≃τ⇇Γ) <:-/⟨⟩≃ (<:-⟨| a∈b⋯c) σ≃τ⇇Γ = let a/σ⇉b/σ⋯c/σ = Ne∈-/⟨⟩ a∈b⋯c (/⟨⟩≃-valid₁ σ≃τ⇇Γ) in <:-trans (<:-⟨|-Nf⇇ a/σ⇉b/σ⋯c/σ) (Ne∈-/⟨⟩≃ a∈b⋯c σ≃τ⇇Γ) <:-/⟨⟩≃ (<:-|⟩ a∈b⋯c) σ≃τ⇇Γ = let a/τ⇉b/τ⋯c/τ = Ne∈-/⟨⟩ a∈b⋯c (/⟨⟩≃-valid₂ σ≃τ⇇Γ) in <:-trans (Ne∈-/⟨⟩≃ a∈b⋯c σ≃τ⇇Γ) (<:-|⟩-Nf⇇ a/τ⇉b/τ⋯c/τ) <:⇇-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a₁ a₂ j} → Γ ⊢ a₁ <: a₂ ⇇ j → Γ ⊢ j kd → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a₁ /⟨ k ⟩ σ <: a₂ /⟨ k ⟩ τ ⇇ j Kind/⟨ k ⟩ σ <:⇇-/⟨⟩≃ (<:-⇇ a₁⇇b⋯c a₂⇇b⋯c a₁<:a₂) b⋯c-kd σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ in <:-⇇ (Nf⇇-/⟨⟩ a₁⇇b⋯c σ⇇Γ) (Nf⇇-⇑ (Nf⇇-/⟨⟩ a₂⇇b⋯c τ⇇Γ) (kd-/⟨⟩≃-<∷ b⋯c-kd τ≃σ⇇Γ)) (<:-/⟨⟩≃ a₁<:a₂ σ≃τ⇇Γ) <:⇇-/⟨⟩≃ (<:-λ a₁<:a₂⇇l Λj₁a₁⇇Πjl Λj₂a₂⇇Πjl) (kd-Π j-kd l-kd) σ≃τ⇇Γ = let σ⇇Γ = /⟨⟩≃-valid₁ σ≃τ⇇Γ τ⇇Γ = /⟨⟩≃-valid₂ σ≃τ⇇Γ τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ j/σ≅j/σ = kd-/⟨⟩≃-≅ j-kd σ⇇Γ j/σ≅j/τ = kd-/⟨⟩≃-≅ j-kd σ≃τ⇇Γ in <:-λ (<:⇇-/⟨⟩≃ a₁<:a₂⇇l l-kd (≃-H↑ j/σ≅j/σ j/σ≅j/τ σ≃τ⇇Γ)) (Nf⇇-/⟨⟩ Λj₁a₁⇇Πjl σ⇇Γ) (Nf⇇-⇑ (Nf⇇-/⟨⟩ Λj₂a₂⇇Πjl τ⇇Γ) (kd-/⟨⟩≃-<∷ (kd-Π j-kd l-kd) τ≃σ⇇Γ)) -- Equal hereditary substitutions preserve spine equality. Sp≃-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {as₁ as₂ j₁ j₂} → ⌊ Γ ⌋Ctx ⊢ j₁ kds → Γ ⊢ j₁ ⇉∙ as₁ ≃ as₂ ⇉ j₂ → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j₁ Kind/⟨ k ⟩ σ ⇉∙ as₁ //⟨ k ⟩ σ ≃ as₂ //⟨ k ⟩ τ ⇉ j₂ Kind/⟨ k ⟩ σ Sp≃-/⟨⟩≃ _ ≃-[] σ≃τ⇇Γ = ≃-[] Sp≃-/⟨⟩≃ {k} (kds-Π j₁-kds j₂-kds) (≃-∷ {a} {j = j₁} {j₂} a≃b as≃bs) σ≃τ⇇Γ = let a∈⌊j₁⌋ = Nf⇇-Nf∈ (proj₁ (≃-valid a≃b)) j₂[a]/σ≡j₂/σ[a/σ] = begin j₂ Kind[ a ∈ ⌊ j₁ ⌋ ] Kind/⟨ k ⟩ _ ≡⟨ kds-[]-/⟨⟩-↑⋆ [] j₂-kds a∈⌊j₁⌋ (/⟨⟩⇇-/⟨⟩∈ (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) ⟩ j₂ Kind/⟨ k ⟩ _ ↑ Kind/⟨ ⌊ j₁ ⌋ ⟩ sub (a /⟨ k ⟩ _) ≡⟨ cong (_ Kind[ a /⟨ k ⟩ _ ∈_]) (sym (⌊⌋-Kind/⟨⟩ j₁)) ⟩ (j₂ Kind/⟨ k ⟩ _ ↑) Kind[ a /⟨ k ⟩ _ ∈ ⌊ j₁ Kind/⟨ k ⟩ _ ⌋ ] ∎ in ≃-∷ (≃-/⟨⟩≃ a≃b σ≃τ⇇Γ) (subst (_ ⊢_⇉∙ _ ≃ _ ⇉ _) j₂[a]/σ≡j₂/σ[a/σ] (Sp≃-/⟨⟩≃ (kds-/⟨⟩ j₂-kds (∈-hsub a∈⌊j₁⌋)) as≃bs σ≃τ⇇Γ)) -- Equal hereditary substitutions preserve type equality. ≃-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {a₁ a₂ j} → Γ ⊢ a₁ ≃ a₂ ⇇ j → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ a₁ /⟨ k ⟩ σ ≃ a₂ /⟨ k ⟩ τ ⇇ j Kind/⟨ k ⟩ σ ≃-/⟨⟩≃ (<:-antisym k-kd a<:b⇇k b<:a⇇k) σ≃τ⇇Γ = let τ≃σ⇇Γ = /⟨⟩≃-sym σ≃τ⇇Γ k/σ-kd = kd-/⟨⟩ k-kd (/⟨⟩≃-valid₁ σ≃τ⇇Γ) in <:-antisym k/σ-kd (<:⇇-/⟨⟩≃ a<:b⇇k k-kd σ≃τ⇇Γ) (<:⇇-⇑ (<:⇇-/⟨⟩≃ b<:a⇇k k-kd τ≃σ⇇Γ) (kd-/⟨⟩≃-<∷ k-kd τ≃σ⇇Γ) k/σ-kd) -- Applications in canonical kind checking are admissible. -- -- NOTE. In the ?⇇-⇑-?∙∙ lemma, the second result r₂ is ignored. -- See the comment above on /⟨⟩⇇-/⟨⟩∈ for an explanation. ?⇇-⇑-?∙∙ : ∀ {k n} {Γ : Ctx n} {r₁ r₂ a j as b c} → Γ ⊢?⟨ k ⟩ r₁ ≃ r₂ ⇇ a → Γ ⊢ a ≤ kd j → Γ ⊢ j ⇉∙ as ⇉ b ⋯ c → Γ ⊢Nf r₁ ?∙∙⟨ k ⟩ as ⇇ b ⋯ c ?⇇-⇑-?∙∙ (≃-hit a≃a⇇j ⌊j⌋≡k) j≤l l⇉as⇉b⋯c = Nf⇇-∙∙ (Nf⇇-⇑-≤ (proj₁ (≃-valid a≃a⇇j)) j≤l) l⇉as⇉b⋯c (⌊⌋≡-trans (sym (≤-⌊⌋ j≤l)) ⌊j⌋≡k) ?⇇-⇑-?∙∙ (≃-miss y Γ-ctx Γ[y]≡a₁ a₁≤a₂) a₂≤l l⇉as⇉b⋯c = Nf⇇-ne (∈-∙ (Var∈-⇑-≤ y Γ-ctx Γ[y]≡a₁ (≤-trans a₁≤a₂ a₂≤l)) l⇉as⇉b⋯c) Nf⇇-∙∙ : ∀ {n} {Γ : Ctx n} {a as j₁ j₂ k} → Γ ⊢Nf a ⇇ j₁ → Γ ⊢ j₁ ⇉∙ as ⇉ j₂ → ⌊ j₁ ⌋≡ k → Γ ⊢Nf a ∙∙⟨ k ⟩ as ⇇ j₂ Nf⇇-∙∙ a⇇j₁ ⇉-[] ⌊j₁⌋≡k = a⇇j₁ Nf⇇-∙∙ a⇇Πj₁j₂ (⇉-∷ b⇇j₁ j₁-kd j₂[b]⇉as⇉j₃) (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) = Nf⇇-∙∙ (Nf⇇-Π-e a⇇Πj₁j₂ b⇇j₁ j₁-kd (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂)) j₂[b]⇉as⇉j₃ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) Nf⇇-Π-e : ∀ {n} {Γ : Ctx n} {a b j₁ j₂ k} → Γ ⊢Nf a ⇇ Π j₁ j₂ → Γ ⊢Nf b ⇇ j₁ → Γ ⊢ j₁ kd → ⌊ Π j₁ j₂ ⌋≡ k → Γ ⊢Nf a ⌜·⌝⟨ k ⟩ b ⇇ j₂ Kind[ b ∈ ⌊ j₁ ⌋ ] Nf⇇-Π-e {_} {Γ} {_} {b} (⇇-⇑ (⇉-Π-i j₁-kd a⇉l₁) (<∷-Π {j₁} {j₂} {l₁} {l₂} j₂<∷j₁ l₁<∷l₂ Πj₁l₁-kd)) b⇇j₂ j₂-kd (is-⇒ {_} {_} {k₁} ⌊j₂⌋≡k₁ ⌊l₂⌋≡k₂) = let σ⇇j₂∷Γ = ⇇-hsub b⇇j₂ j₂-kd ⌊j₂⌋≡k₁ in ⇇-⇑ (Nf⇉-/⟨⟩ (⇓-Nf⇉ j₂-kd j₂<∷j₁ a⇉l₁) σ⇇j₂∷Γ) (subst (λ k → Γ ⊢ l₁ Kind[ b ∈ k₁ ] <∷ l₂ Kind[ b ∈ k ]) (sym (⌊⌋≡⇒⌊⌋-≡ ⌊j₂⌋≡k₁)) (<∷-/⟨⟩≃ l₁<∷l₂ σ⇇j₂∷Γ)) -- Applications in checked type equality are admissible. ?≃-⇑-?∙∙ : ∀ {k n} {Γ : Ctx n} {r₁ r₂ a j as bs c d} → Γ ⊢?⟨ k ⟩ r₁ ≃ r₂ ⇇ a → Γ ⊢ a ≤ kd j → Γ ⊢ j ⇉∙ as ≃ bs ⇉ c ⋯ d → Γ ⊢ r₁ ?∙∙⟨ k ⟩ as <: r₂ ?∙∙⟨ k ⟩ bs ?≃-⇑-?∙∙ (≃-hit a≃b⇇j ⌊j⌋≡k) j≤l l⇉as≃bs⇉c⋯d = ≃⇒<:-⋯ (≃-∙∙ (≃-⇑-≤ a≃b⇇j j≤l) l⇉as≃bs⇉c⋯d (⌊⌋≡-trans (sym (≤-⌊⌋ j≤l)) ⌊j⌋≡k)) ?≃-⇑-?∙∙ (≃-miss y Γ-ctx Γ[y]≡a₁ a₁≤a₂) a₂≤l l⇉as≃bs⇉c⋯d = <:-∙ (Var∈-⇑-≤ y Γ-ctx Γ[y]≡a₁ (≤-trans a₁≤a₂ a₂≤l)) l⇉as≃bs⇉c⋯d ≃-∙∙ : ∀ {n} {Γ : Ctx n} {a b as bs j₁ j₂ k} → Γ ⊢ a ≃ b ⇇ j₁ → Γ ⊢ j₁ ⇉∙ as ≃ bs ⇉ j₂ → ⌊ j₁ ⌋≡ k → Γ ⊢ a ∙∙⟨ k ⟩ as ≃ b ∙∙⟨ k ⟩ bs ⇇ j₂ ≃-∙∙ a≃b⇇j₁ ≃-[] ⌊j₁⌋≡k = a≃b⇇j₁ ≃-∙∙ a≃b⇇Πj₁j₂ (≃-∷ c≃d⇇j₁ j₂[b]⇉cs≃ds⇉j₃) (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) = ≃-∙∙ (≃-Π-e a≃b⇇Πj₁j₂ c≃d⇇j₁ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂)) j₂[b]⇉cs≃ds⇉j₃ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) ≃-Π-e : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ j₁ j₂ k} → Γ ⊢ a₁ ≃ a₂ ⇇ Π j₁ j₂ → Γ ⊢ b₁ ≃ b₂ ⇇ j₁ → ⌊ Π j₁ j₂ ⌋≡ k → Γ ⊢ a₁ ⌜·⌝⟨ k ⟩ b₁ ≃ a₂ ⌜·⌝⟨ k ⟩ b₂ ⇇ j₂ Kind[ b₁ ∈ ⌊ j₁ ⌋ ] ≃-Π-e a₁≃a₂⇇Πj₁j₂ b₁≃b₂⇇j₂ (is-⇒ ⌊j₂⌋≡k₁ ⌊j₂⌋≡k₂) with ≃-Π-can a₁≃a₂⇇Πj₁j₂ ≃-Π-e {_} {Γ} {_} {_} {b₁} {b₂} Λl₁a₁≃Λl₂a₂⇇Πj₁j₂ b₁≃b₂⇇j₁ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) | l₁ , a₁ , l₂ , a₂ , Λl₁a₁⇇Πj₁j₂ , Λl₂a₂⇇Πj₁j₂ , kd-Π j₁-kd j₂-kd , j₁<∷l₁ , l₁≅l₂ , a₁<:a₂⇇j₂ , a₂<:a₁⇇j₂ , refl , refl = let ⌊Πj₁j₂⌋≡k = is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂ k₁≡⌊j₁⌋ = sym (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁) b₁⇇j₁ , b₂⇇j₁ = ≃-valid b₁≃b₂⇇j₁ σ≃τ⇇j₁∷Γ = ≃-hsub b₁≃b₂⇇j₁ ⌊j₁⌋≡k₁ τ≃σ⇇j₁∷Γ = /⟨⟩≃-sym σ≃τ⇇j₁∷Γ σ⇇j₁∷Γ = /⟨⟩≃-valid₁ σ≃τ⇇j₁∷Γ in <:-antisym (subst (λ k → _ ⊢ _ Kind[ _ ∈ k ] kd) (sym (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋≡k₁)) (kd-/⟨⟩ j₂-kd (/⟨⟩≃-valid₁ σ≃τ⇇j₁∷Γ))) (subst (λ k → _ ⊢ _ <: _ ⇇ _ Kind[ _ ∈ k ]) k₁≡⌊j₁⌋ (<:⇇-/⟨⟩≃ a₁<:a₂⇇j₂ j₂-kd σ≃τ⇇j₁∷Γ)) (<:⇇-⇑ (<:⇇-/⟨⟩≃ a₂<:a₁⇇j₂ j₂-kd τ≃σ⇇j₁∷Γ) (subst (λ k → Γ ⊢ _ <∷ _ Kind[ _ ∈ k ]) k₁≡⌊j₁⌋ (kd-/⟨⟩≃-<∷ j₂-kd τ≃σ⇇j₁∷Γ)) (subst (λ k → Γ ⊢ _ Kind[ _ ∈ k ] kd) k₁≡⌊j₁⌋ (kd-/⟨⟩ j₂-kd σ⇇j₁∷Γ))) -- Helpers (to satisfy the termination checker). -- -- These are simply (manual) expansions of the form -- -- XX-/⟨⟩≃-wf x σ≃τ⇇Γ = kd-/⟨⟩≃-≅ (wf-kd-inv (wf-∷₁ (XX-ctx x))) σ≃τ⇇Γ -- -- to ensure the above definitions remain structurally recursive -- in the various derivations. kd-/⟨⟩≃-wf : ∀ {m n Γ l Δ} {σ τ : SVSub m n} {j k} → kd j ∷ Γ ⊢ k kd → Δ ⊢/⟨ l ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ l ⟩ σ ≅ j Kind/⟨ l ⟩ τ kd-/⟨⟩≃-wf (kd-⋯ a⇉a⋯a _) σ≃τ⇇Γ = Nf⇉-/⟨⟩≃-wf a⇉a⋯a σ≃τ⇇Γ kd-/⟨⟩≃-wf (kd-Π j-kd _) σ≃τ⇇Γ = kd-/⟨⟩≃-wf j-kd σ≃τ⇇Γ Nf⇉-/⟨⟩≃-wf : ∀ {m n Γ l Δ} {σ τ : SVSub m n} {j a k} → kd j ∷ Γ ⊢Nf a ⇉ k → Δ ⊢/⟨ l ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ l ⟩ σ ≅ j Kind/⟨ l ⟩ τ Nf⇉-/⟨⟩≃-wf (⇉-⊥-f (wf-kd j-kd ∷ Γ-ctx)) σ≃τ⇇Γ = kd-/⟨⟩≃-≅ j-kd σ≃τ⇇Γ Nf⇉-/⟨⟩≃-wf (⇉-⊤-f (wf-kd j-kd ∷ Γ-ctx)) σ≃τ⇇Γ = kd-/⟨⟩≃-≅ j-kd σ≃τ⇇Γ Nf⇉-/⟨⟩≃-wf (⇉-∀-f k-kd _) σ≃τ⇇Γ = kd-/⟨⟩≃-wf k-kd σ≃τ⇇Γ Nf⇉-/⟨⟩≃-wf (⇉-→-f a⇉a⋯a _) σ≃τ⇇Γ = Nf⇉-/⟨⟩≃-wf a⇉a⋯a σ≃τ⇇Γ Nf⇉-/⟨⟩≃-wf (⇉-Π-i j-kd _) σ≃τ⇇Γ = kd-/⟨⟩≃-wf j-kd σ≃τ⇇Γ Nf⇉-/⟨⟩≃-wf (⇉-s-i a∈b⋯c) σ≃τ⇇Γ = Ne∈-/⟨⟩≃-wf a∈b⋯c σ≃τ⇇Γ Ne∈-/⟨⟩≃-wf : ∀ {m n Γ l Δ} {σ τ : SVSub m n} {j a k} → kd j ∷ Γ ⊢Ne a ∈ k → Δ ⊢/⟨ l ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ l ⟩ σ ≅ j Kind/⟨ l ⟩ τ Ne∈-/⟨⟩≃-wf (∈-∙ x∈k _) σ≃τ⇇Γ = Var∈-/⟨⟩≃-wf x∈k σ≃τ⇇Γ Var∈-/⟨⟩≃-wf : ∀ {m n Γ l Δ} {σ τ : SVSub m n} {j a k} → kd j ∷ Γ ⊢Var a ∈ k → Δ ⊢/⟨ l ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ l ⟩ σ ≅ j Kind/⟨ l ⟩ τ Var∈-/⟨⟩≃-wf (⇉-var x (wf-kd j-kd ∷ Γ-ctx) _) σ≃τ⇇Γ = kd-/⟨⟩≃-≅ j-kd σ≃τ⇇Γ Var∈-/⟨⟩≃-wf (⇇-⇑ x∈k _ _) σ≃τ⇇Γ = Var∈-/⟨⟩≃-wf x∈k σ≃τ⇇Γ <∷-/⟨⟩≃-wf : ∀ {m n Γ l Δ} {σ τ : SVSub m n} {j k₁ k₂} → kd j ∷ Γ ⊢ k₁ <∷ k₂ → Δ ⊢/⟨ l ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ l ⟩ σ ≅ j Kind/⟨ l ⟩ τ <∷-/⟨⟩≃-wf (<∷-⋯ a₂<:a₁ _) σ≃τ⇇Γ = <:-/⟨⟩≃-wf a₂<:a₁ σ≃τ⇇Γ <∷-/⟨⟩≃-wf (<∷-Π j₁<∷j₂ _ _) σ≃τ⇇Γ = <∷-/⟨⟩≃-wf j₁<∷j₂ σ≃τ⇇Γ <:-/⟨⟩≃-wf : ∀ {m n Γ l Δ} {σ τ : SVSub m n} {j a₁ a₂} → kd j ∷ Γ ⊢ a₁ <: a₂ → Δ ⊢/⟨ l ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ j Kind/⟨ l ⟩ σ ≅ j Kind/⟨ l ⟩ τ <:-/⟨⟩≃-wf (<:-trans a<:b _) σ≃τ⇇Γ = <:-/⟨⟩≃-wf a<:b σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-⊥ a⇉a⋯a) σ≃τ⇇Γ = Nf⇉-/⟨⟩≃-wf a⇉a⋯a σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-⊤ a⇉a⋯a) σ≃τ⇇Γ = Nf⇉-/⟨⟩≃-wf a⇉a⋯a σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-∀ k₂<∷k₁ _ _) σ≃τ⇇Γ = <∷-/⟨⟩≃-wf k₂<∷k₁ σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-→ a₂<:a₁ _) σ≃τ⇇Γ = <:-/⟨⟩≃-wf a₂<:a₁ σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-∙ x∈j _) σ≃τ⇇Γ = Var∈-/⟨⟩≃-wf x∈j σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-⟨| a∈b⋯c) σ≃τ⇇Γ = Ne∈-/⟨⟩≃-wf a∈b⋯c σ≃τ⇇Γ <:-/⟨⟩≃-wf (<:-|⟩ a∈b⋯c) σ≃τ⇇Γ = Ne∈-/⟨⟩≃-wf a∈b⋯c σ≃τ⇇Γ -- Equal hereditary substitutions preserve kind equality. ≅-/⟨⟩≃ : ∀ {k m n Γ Δ} {σ τ : SVSub m n} {k₁ k₂} → Γ ⊢ k₁ ≅ k₂ → Δ ⊢/⟨ k ⟩ σ ≃ τ ⇇ Γ → Δ ⊢ k₁ Kind/⟨ k ⟩ σ ≅ k₂ Kind/⟨ k ⟩ τ ≅-/⟨⟩≃ (<∷-antisym j-kd k-kd j<∷k k<∷j) σ≃τ⇇Γ = <∷-antisym (kd-/⟨⟩ j-kd (/⟨⟩≃-valid₁ σ≃τ⇇Γ)) (kd-/⟨⟩ k-kd (/⟨⟩≃-valid₂ σ≃τ⇇Γ)) (<∷-/⟨⟩≃ j<∷k σ≃τ⇇Γ) (<∷-/⟨⟩≃ k<∷j (/⟨⟩≃-sym σ≃τ⇇Γ))
{ "alphanum_fraction": 0.3881505925, "avg_line_length": 45.7898351648, "ext": "agda", "hexsha": "6ce55a05f792b26ae93af08f5a97652d72ca8b4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Kinding/Canonical/HereditarySubstitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Kinding/Canonical/HereditarySubstitution.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Kinding/Canonical/HereditarySubstitution.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 22074, "size": 33335 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Equivalence open import HoTT.Identity.Product module HoTT.Equivalence.Product where private variable i : Level A A' B B' : 𝒰 i ×-swap : A × B → B × A ×-swap x = pr₂ x , pr₁ x ×-comm : A × B ≃ B × A ×-comm = ×-swap , qinv→isequiv (×-swap , ×-uniq , ×-uniq) ×-equiv₁ : A ≃ A' → A × B ≃ A' × B ×-equiv₁ {A = A} {A' = A'} {B = B} (f₁ , e₁) = f , qinv→isequiv (g , η , ε) where open qinv (isequiv→qinv e₁) renaming (g to g₁ ; η to η₁ ; ε to ε₁) f : A × B → A' × B f (a , b) = f₁ a , b g : A' × B → A × B g (a' , b) = g₁ a' , b η : g ∘ f ~ id η (a , b) = ×-pair⁼ (η₁ a , refl) ε : f ∘ g ~ id ε (a' , b) = ×-pair⁼ (ε₁ a' , refl) ×-equiv₂ : B ≃ B' → A × B ≃ A × B' ×-equiv₂ {B = B} {B' = B'} {A = A} (f₂ , e₂) = f , qinv→isequiv (g , η , ε) where open qinv (isequiv→qinv e₂) renaming (g to g₂ ; η to η₂ ; ε to ε₂) f : A × B → A × B' f (a , b) = a , f₂ b g : A × B' → A × B g (a , b') = a , g₂ b' η : g ∘ f ~ id η (a , b) = ×-pair⁼ (refl , η₂ b) ε : f ∘ g ~ id ε (a , b') = ×-pair⁼ (refl , ε₂ b')
{ "alphanum_fraction": 0.4635463546, "avg_line_length": 25.25, "ext": "agda", "hexsha": "bd9ca10fb77570c9a883b26f42ef87c4aa54f31a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Equivalence/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Equivalence/Product.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Equivalence/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 554, "size": 1111 }
{-# OPTIONS --cubical --safe #-} module Algebra where open import Prelude module _ {a} {A : Type a} (_∙_ : A → A → A) where Associative : Type a Associative = ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) Commutative : Type _ Commutative = ∀ x y → x ∙ y ≡ y ∙ x Idempotent : Type _ Idempotent = ∀ x → x ∙ x ≡ x module _ {a b} {A : Type a} {B : Type b} where Identityˡ : (A → B → B) → A → Type _ Identityˡ _∙_ x = ∀ y → x ∙ y ≡ y Zeroˡ : (A → B → A) → A → Type _ Zeroˡ _∙_ x = ∀ y → x ∙ y ≡ x Zeroʳ : (A → B → B) → B → Type _ Zeroʳ _∙_ x = ∀ y → y ∙ x ≡ x Identityʳ : (A → B → A) → B → Type _ Identityʳ _∙_ x = ∀ y → y ∙ x ≡ y _Distributesʳ_ : (A → B → B) → (B → B → B) → Type _ _⊗_ Distributesʳ _⊕_ = ∀ x y z → x ⊗ (y ⊕ z) ≡ (x ⊗ y) ⊕ (x ⊗ z) _Distributesˡ_ : (B → A → B) → (B → B → B) → Type _ _⊗_ Distributesˡ _⊕_ = ∀ x y z → (x ⊕ y) ⊗ z ≡ (x ⊗ z) ⊕ (y ⊗ z) record Semigroup ℓ : Type (ℓsuc ℓ) where infixl 6 _∙_ field 𝑆 : Type ℓ _∙_ : 𝑆 → 𝑆 → 𝑆 assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) record Monoid ℓ : Type (ℓsuc ℓ) where infixl 6 _∙_ field 𝑆 : Type ℓ _∙_ : 𝑆 → 𝑆 → 𝑆 ε : 𝑆 assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) ε∙ : ∀ x → ε ∙ x ≡ x ∙ε : ∀ x → x ∙ ε ≡ x semigroup : Semigroup ℓ semigroup = record { 𝑆 = 𝑆; _∙_ = _∙_; assoc = assoc } record MonoidHomomorphism_⟶_ {ℓ₁ ℓ₂} (from : Monoid ℓ₁) (to : Monoid ℓ₂) : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where open Monoid from open Monoid to renaming ( 𝑆 to 𝑅 ; _∙_ to _⊙_ ; ε to ⓔ ) field f : 𝑆 → 𝑅 ∙-homo : ∀ x y → f (x ∙ y) ≡ f x ⊙ f y ε-homo : f ε ≡ ⓔ record Group ℓ : Type (ℓsuc ℓ) where field monoid : Monoid ℓ open Monoid monoid public field inv : 𝑆 → 𝑆 ∙⁻ : ∀ x → x ∙ inv x ≡ ε ⁻∙ : ∀ x → inv x ∙ x ≡ ε record CommutativeMonoid ℓ : Type (ℓsuc ℓ) where field monoid : Monoid ℓ open Monoid monoid public field comm : Commutative _∙_ record Semilattice ℓ : Type (ℓsuc ℓ) where field commutativeMonoid : CommutativeMonoid ℓ open CommutativeMonoid commutativeMonoid public field idem : Idempotent _∙_ record NearSemiring ℓ : Type (ℓsuc ℓ) where infixl 6 _+_ infixl 7 _*_ field 𝑅 : Type ℓ _+_ : 𝑅 → 𝑅 → 𝑅 _*_ : 𝑅 → 𝑅 → 𝑅 1# : 𝑅 0# : 𝑅 +-assoc : Associative _+_ *-assoc : Associative _*_ 0+ : Identityˡ _+_ 0# +0 : Identityʳ _+_ 0# 1* : Identityˡ _*_ 1# *1 : Identityʳ _*_ 1# 0* : Zeroˡ _*_ 0# ⟨+⟩* : _*_ Distributesˡ _+_ record Semiring ℓ : Type (ℓsuc ℓ) where field nearSemiring : NearSemiring ℓ open NearSemiring nearSemiring public field +-comm : Commutative _+_ *0 : Zeroʳ _*_ 0# *⟨+⟩ : _*_ Distributesʳ _+_ record IdempotentSemiring ℓ : Type (ℓsuc ℓ) where field semiring : Semiring ℓ open Semiring semiring public field +-idem : Idempotent _+_ record CommutativeSemiring ℓ : Type (ℓsuc ℓ) where field semiring : Semiring ℓ open Semiring semiring public field *-comm : Commutative _*_ record LeftSemimodule ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field semiring : Semiring ℓ₁ open Semiring semiring public field semimodule : CommutativeMonoid ℓ₂ open CommutativeMonoid semimodule renaming (_∙_ to _∪_) public renaming (𝑆 to 𝑉 ; assoc to ∪-assoc ; ε∙ to ∅∪ ; ∙ε to ∪∅ ; ε to ∅ ) infixr 7 _⋊_ field _⋊_ : 𝑅 → 𝑉 → 𝑉 ⟨*⟩⋊ : ∀ x y z → (x * y) ⋊ z ≡ x ⋊ (y ⋊ z) ⟨+⟩⋊ : ∀ x y z → (x + y) ⋊ z ≡ (x ⋊ z) ∪ (y ⋊ z) ⋊⟨∪⟩ : _⋊_ Distributesʳ _∪_ 1⋊ : Identityˡ _⋊_ 1# 0⋊ : ∀ x → 0# ⋊ x ≡ ∅ record StarSemiring ℓ : Type (ℓsuc ℓ) where field semiring : Semiring ℓ open Semiring semiring public field _⋆ : 𝑅 → 𝑅 star-iterʳ : ∀ x → x ⋆ ≡ 1# + x * x ⋆ star-iterˡ : ∀ x → x ⋆ ≡ 1# + x ⋆ * x _⁺ : 𝑅 → 𝑅 x ⁺ = x * x ⋆ record Functor ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field 𝐹 : Type ℓ₁ → Type ℓ₂ map : (A → B) → 𝐹 A → 𝐹 B map-id : map (id {ℓ₁} {A}) ≡ id map-comp : (f : B → C) → (g : A → B) → map (f ∘ g) ≡ map f ∘ map g record Applicative ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field functor : Functor ℓ₁ ℓ₂ open Functor functor public infixl 5 _<*>_ field pure : A → 𝐹 A _<*>_ : 𝐹 (A → B) → 𝐹 A → 𝐹 B map-ap : (f : A → B) → map f ≡ pure f <*>_ pure-homo : (f : A → B) → (x : A) → map f (pure x) ≡ pure (f x) <*>-interchange : (u : 𝐹 (A → B)) → (y : A) → u <*> pure y ≡ map (_$ y) u <*>-comp : (u : 𝐹 (B → C)) → (v : 𝐹 (A → B)) → (w : 𝐹 A) → pure _∘′_ <*> u <*> v <*> w ≡ u <*> (v <*> w) record Monad ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field applicative : Applicative ℓ₁ ℓ₂ open Applicative applicative public infixl 1 _>>=_ field _>>=_ : 𝐹 A → (A → 𝐹 B) → 𝐹 B >>=-idˡ : (f : A → 𝐹 B) → (x : A) → (pure x >>= f) ≡ f x >>=-idʳ : (x : 𝐹 A) → (x >>= pure) ≡ x >>=-assoc : (xs : 𝐹 A) (f : A → 𝐹 B) (g : B → 𝐹 C) → ((xs >>= f) >>= g) ≡ (xs >>= (λ x → f x >>= g)) return : A → 𝐹 A return = pure record Alternative ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field applicative : Applicative ℓ₁ ℓ₂ open Applicative applicative public field 0# : 𝐹 A _<|>_ : 𝐹 A → 𝐹 A → 𝐹 A <|>-idˡ : (x : 𝐹 A) → 0# <|> x ≡ x <|>-idʳ : (x : 𝐹 A) → x <|> 0# ≡ x 0-annˡ : (x : 𝐹 A) → 0# <*> x ≡ 0# {B} <|>-distrib : (x y : 𝐹 (A → B)) → (z : 𝐹 A) → (x <|> y) <*> z ≡ (x <*> z) <|> (y <*> z) record MonadPlus ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field monad : Monad ℓ₁ ℓ₂ open Monad monad public field 0# : 𝐹 A _<|>_ : 𝐹 A → 𝐹 A → 𝐹 A <|>-idˡ : (x : 𝐹 A) → 0# <|> x ≡ x <|>-idʳ : (x : 𝐹 A) → x <|> 0# ≡ x 0-annˡ : (x : A → 𝐹 B) → (0# >>= x) ≡ 0# <|>-distrib : (x y : 𝐹 A) → (z : A → 𝐹 B) → ((x <|> y) >>= z) ≡ (x >>= z) <|> (y >>= z) Endo : Type a → Type a Endo A = A → A endoMonoid : ∀ {a} → Type a → Monoid a endoMonoid A .Monoid.𝑆 = Endo A endoMonoid A .Monoid.ε x = x endoMonoid A .Monoid._∙_ f g x = f (g x) endoMonoid A .Monoid.assoc _ _ _ = refl endoMonoid A .Monoid.ε∙ _ = refl endoMonoid A .Monoid.∙ε _ = refl record Foldable ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field 𝐹 : Type ℓ₁ → Type ℓ₂ open Monoid ⦃ ... ⦄ field foldMap : {A : Type ℓ₁} ⦃ _ : Monoid ℓ₁ ⦄ → (A → 𝑆) → 𝐹 A → 𝑆 foldr : {A B : Type ℓ₁} → (A → B → B) → B → 𝐹 A → B foldr f b xs = foldMap ⦃ endoMonoid _ ⦄ f xs b
{ "alphanum_fraction": 0.4945258288, "avg_line_length": 26.3617886179, "ext": "agda", "hexsha": "d48508cbb1a8525dbd484d2b8e0c66d2ce42124f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra.agda", "max_line_length": 108, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 3214, "size": 6485 }
module syntax-util where open import lib open import cedille-types open import general-util open import constants posinfo-gen : posinfo posinfo-gen = "generated" first-position : posinfo first-position = "1" dummy-var : var dummy-var = "_dummy" id-term : term id-term = Lam posinfo-gen NotErased posinfo-gen "x" NoClass (Var posinfo-gen "x") compileFailType : type compileFailType = Abs posinfo-gen Erased posinfo-gen "X" (Tkk (Star posinfo-gen)) (TpVar posinfo-gen "X") qualif-info : Set qualif-info = var × args qualif : Set qualif = trie qualif-info tag : Set tag = string × rope tagged-val : Set tagged-val = string × rope × 𝕃 tag tags-to-rope : 𝕃 tag → rope tags-to-rope [] = [[]] tags-to-rope ((t , v) :: []) = [[ "\"" ^ t ^ "\":" ]] ⊹⊹ v tags-to-rope ((t , v) :: ts) = [[ "\"" ^ t ^ "\":" ]] ⊹⊹ v ⊹⊹ [[ "," ]] ⊹⊹ tags-to-rope ts -- We number these when so we can sort them back in emacs tagged-val-to-rope : ℕ → tagged-val → rope tagged-val-to-rope n (t , v , []) = [[ "\"" ^ t ^ "\":[\"" ^ ℕ-to-string n ^ "\",\"" ]] ⊹⊹ v ⊹⊹ [[ "\"]" ]] tagged-val-to-rope n (t , v , tags) = [[ "\"" ^ t ^ "\":[\"" ^ ℕ-to-string n ^ "\",\"" ]] ⊹⊹ v ⊹⊹ [[ "\",{" ]] ⊹⊹ tags-to-rope tags ⊹⊹ [[ "}]" ]] tagged-vals-to-rope : ℕ → 𝕃 tagged-val → rope tagged-vals-to-rope n [] = [[]] tagged-vals-to-rope n (s :: []) = tagged-val-to-rope n s tagged-vals-to-rope n (s :: (s' :: ss)) = tagged-val-to-rope n s ⊹⊹ [[ "," ]] ⊹⊹ tagged-vals-to-rope (suc n) (s' :: ss) make-tag : (name : string) → (values : 𝕃 tag) → (start : ℕ) → (end : ℕ) → tag make-tag name vs start end = name , [[ "{\"start\":\"" ^ ℕ-to-string start ^ "\",\"end\":\"" ^ ℕ-to-string end ^ "\"" ]] ⊹⊹ vs-to-rope vs ⊹⊹ [[ "}" ]] where vs-to-rope : 𝕃 tag → rope vs-to-rope [] = [[]] vs-to-rope ((t , v) :: ts) = [[ ",\"" ^ t ^ "\":\"" ]] ⊹⊹ v ⊹⊹ [[ "\"" ]] ⊹⊹ vs-to-rope ts posinfo-to-ℕ : posinfo → ℕ posinfo-to-ℕ pi with string-to-ℕ pi posinfo-to-ℕ pi | just n = n posinfo-to-ℕ pi | nothing = 0 -- should not happen posinfo-plus : posinfo → ℕ → posinfo posinfo-plus pi n = ℕ-to-string (posinfo-to-ℕ pi + n) posinfo-plus-str : posinfo → string → posinfo posinfo-plus-str pi s = posinfo-plus pi (string-length s) star : kind star = Star posinfo-gen -- qualify variable by module name _#_ : string → string → string fn # v = fn ^ qual-global-str ^ v _%_ : posinfo → var → string pi % v = pi ^ qual-local-str ^ v compileFail : var compileFail = "compileFail" compileFail-qual = "" % compileFail mk-inst : params → args → trie arg × params mk-inst (ParamsCons (Decl _ _ _ x _ _) ps) (ArgsCons a as) with mk-inst ps as ...| σ , ps' = trie-insert σ x a , ps' mk-inst ps as = empty-trie , ps apps-term : term → args → term apps-term f (ArgsNil) = f apps-term f (ArgsCons (TermArg me t) as) = apps-term (App f me t) as apps-term f (ArgsCons (TypeArg t) as) = apps-term (AppTp f t) as apps-type : type → args → type apps-type f (ArgsNil) = f apps-type f (ArgsCons (TermArg _ t) as) = apps-type (TpAppt f t) as apps-type f (ArgsCons (TypeArg t) as) = apps-type (TpApp f t) as append-params : params → params → params append-params (ParamsCons p ps) qs = ParamsCons p (append-params ps qs) append-params ParamsNil qs = qs append-args : args → args → args append-args (ArgsCons p ps) qs = ArgsCons p (append-args ps qs) append-args (ArgsNil) qs = qs append-cmds : cmds → cmds → cmds append-cmds CmdsStart = id append-cmds (CmdsNext c cs) = CmdsNext c ∘ append-cmds cs qualif-lookup-term : qualif → string → term qualif-lookup-term σ x with trie-lookup σ x ... | just (x' , as) = apps-term (Var posinfo-gen x') as ... | _ = Var posinfo-gen x qualif-lookup-type : qualif → string → type qualif-lookup-type σ x with trie-lookup σ x ... | just (x' , as) = apps-type (TpVar posinfo-gen x') as ... | _ = TpVar posinfo-gen x qualif-lookup-kind : args → qualif → string → kind qualif-lookup-kind xs σ x with trie-lookup σ x ... | just (x' , as) = KndVar posinfo-gen x' (append-args as xs) ... | _ = KndVar posinfo-gen x xs inst-lookup-term : trie arg → string → term inst-lookup-term σ x with trie-lookup σ x ... | just (TermArg me t) = t ... | _ = Var posinfo-gen x inst-lookup-type : trie arg → string → type inst-lookup-type σ x with trie-lookup σ x ... | just (TypeArg t) = t ... | _ = TpVar posinfo-gen x params-to-args : params → args params-to-args ParamsNil = ArgsNil params-to-args (ParamsCons (Decl _ p me v (Tkt t) _) ps) = ArgsCons (TermArg me (Var posinfo-gen v)) (params-to-args ps) params-to-args (ParamsCons (Decl _ p _ v (Tkk k) _) ps) = ArgsCons (TypeArg (TpVar posinfo-gen v)) (params-to-args ps) qualif-insert-params : qualif → var → var → params → qualif qualif-insert-params σ qv v ps = trie-insert σ v (qv , params-to-args ps) qualif-insert-import : qualif → var → optAs → 𝕃 string → args → qualif qualif-insert-import σ mn oa [] as = σ qualif-insert-import σ mn oa (v :: vs) as = qualif-insert-import (trie-insert σ (import-as v oa) (mn # v , as)) mn oa vs as where import-as : var → optAs → var import-as v NoOptAs = v import-as v (SomeOptAs _ pfx) = pfx # v tk-is-type : tk → 𝔹 tk-is-type (Tkt _) = tt tk-is-type (Tkk _) = ff me-unerased : maybeErased → 𝔹 me-unerased Erased = ff me-unerased NotErased = tt me-erased : maybeErased → 𝔹 me-erased x = ~ (me-unerased x) term-start-pos : term → posinfo type-start-pos : type → posinfo kind-start-pos : kind → posinfo liftingType-start-pos : liftingType → posinfo term-start-pos (App t x t₁) = term-start-pos t term-start-pos (AppTp t tp) = term-start-pos t term-start-pos (Hole pi) = pi term-start-pos (Lam pi x _ x₁ x₂ t) = pi term-start-pos (Let pi _ _) = pi term-start-pos (Open pi _ _) = pi term-start-pos (Parens pi t pi') = pi term-start-pos (Var pi x₁) = pi term-start-pos (Beta pi _ _) = pi term-start-pos (IotaPair pi _ _ _ _) = pi term-start-pos (IotaProj t _ _) = term-start-pos t term-start-pos (Epsilon pi _ _ _) = pi term-start-pos (Phi pi _ _ _ _) = pi term-start-pos (Rho pi _ _ _ _ _) = pi term-start-pos (Chi pi _ _) = pi term-start-pos (Delta pi _ _) = pi term-start-pos (Sigma pi _) = pi term-start-pos (Theta pi _ _ _) = pi term-start-pos (Mu pi _ _ _ _ _ _) = pi term-start-pos (Mu' pi _ _ _ _ _) = pi type-start-pos (Abs pi _ _ _ _ _) = pi type-start-pos (TpLambda pi _ _ _ _) = pi type-start-pos (Iota pi _ _ _ _) = pi type-start-pos (Lft pi _ _ _ _) = pi type-start-pos (TpApp t t₁) = type-start-pos t type-start-pos (TpAppt t x) = type-start-pos t type-start-pos (TpArrow t _ t₁) = type-start-pos t type-start-pos (TpEq pi _ _ pi') = pi type-start-pos (TpParens pi _ pi') = pi type-start-pos (TpVar pi x₁) = pi type-start-pos (NoSpans t _) = type-start-pos t -- we are not expecting this on input type-start-pos (TpHole pi) = pi --ACG type-start-pos (TpLet pi _ _) = pi kind-start-pos (KndArrow k k₁) = kind-start-pos k kind-start-pos (KndParens pi k pi') = pi kind-start-pos (KndPi pi _ x x₁ k) = pi kind-start-pos (KndTpArrow x k) = type-start-pos x kind-start-pos (KndVar pi x₁ _) = pi kind-start-pos (Star pi) = pi liftingType-start-pos (LiftArrow l l') = liftingType-start-pos l liftingType-start-pos (LiftParens pi l pi') = pi liftingType-start-pos (LiftPi pi x₁ x₂ l) = pi liftingType-start-pos (LiftStar pi) = pi liftingType-start-pos (LiftTpArrow t l) = type-start-pos t term-end-pos : term → posinfo type-end-pos : type → posinfo kind-end-pos : kind → posinfo liftingType-end-pos : liftingType → posinfo tk-end-pos : tk → posinfo lterms-end-pos : lterms → posinfo args-end-pos : (if-nil : posinfo) → args → posinfo arg-end-pos : arg → posinfo kvar-end-pos : posinfo → var → args → posinfo term-end-pos (App t x t') = term-end-pos t' term-end-pos (AppTp t tp) = type-end-pos tp term-end-pos (Hole pi) = posinfo-plus pi 1 term-end-pos (Lam pi x _ x₁ x₂ t) = term-end-pos t term-end-pos (Let _ _ t) = term-end-pos t term-end-pos (Open pi _ t) = term-end-pos t term-end-pos (Parens pi t pi') = pi' term-end-pos (Var pi x) = posinfo-plus-str pi x term-end-pos (Beta pi _ (SomeTerm t pi')) = pi' term-end-pos (Beta pi (SomeTerm t pi') _) = pi' term-end-pos (Beta pi NoTerm NoTerm) = posinfo-plus pi 1 term-end-pos (IotaPair _ _ _ _ pi) = pi term-end-pos (IotaProj _ _ pi) = pi term-end-pos (Epsilon pi _ _ t) = term-end-pos t term-end-pos (Phi _ _ _ _ pi) = pi term-end-pos (Rho pi _ _ _ t t') = term-end-pos t' term-end-pos (Chi pi T t') = term-end-pos t' term-end-pos (Delta pi oT t) = term-end-pos t term-end-pos (Sigma pi t) = term-end-pos t term-end-pos (Theta _ _ _ ls) = lterms-end-pos ls term-end-pos (Mu _ _ _ _ _ _ pi) = pi term-end-pos (Mu' _ _ _ _ _ pi) = pi type-end-pos (Abs pi _ _ _ _ t) = type-end-pos t type-end-pos (TpLambda _ _ _ _ t) = type-end-pos t type-end-pos (Iota _ _ _ _ tp) = type-end-pos tp type-end-pos (Lft pi _ _ _ t) = liftingType-end-pos t type-end-pos (TpApp t t') = type-end-pos t' type-end-pos (TpAppt t x) = term-end-pos x type-end-pos (TpArrow t _ t') = type-end-pos t' type-end-pos (TpEq pi _ _ pi') = pi' type-end-pos (TpParens pi _ pi') = pi' type-end-pos (TpVar pi x) = posinfo-plus-str pi x type-end-pos (TpHole pi) = posinfo-plus pi 1 type-end-pos (NoSpans t pi) = pi type-end-pos (TpLet _ _ t) = type-end-pos t kind-end-pos (KndArrow k k') = kind-end-pos k' kind-end-pos (KndParens pi k pi') = pi' kind-end-pos (KndPi pi _ x x₁ k) = kind-end-pos k kind-end-pos (KndTpArrow x k) = kind-end-pos k kind-end-pos (KndVar pi x ys) = args-end-pos (posinfo-plus-str pi x) ys kind-end-pos (Star pi) = posinfo-plus pi 1 tk-end-pos (Tkt T) = type-end-pos T tk-end-pos (Tkk k) = kind-end-pos k args-end-pos pi (ArgsCons x ys) = args-end-pos (arg-end-pos x) ys args-end-pos pi ArgsNil = pi arg-end-pos (TermArg me t) = term-end-pos t arg-end-pos (TypeArg T) = type-end-pos T kvar-end-pos pi v = args-end-pos (posinfo-plus-str pi v) liftingType-end-pos (LiftArrow l l') = liftingType-end-pos l' liftingType-end-pos (LiftParens pi l pi') = pi' liftingType-end-pos (LiftPi x x₁ x₂ l) = liftingType-end-pos l liftingType-end-pos (LiftStar pi) = posinfo-plus pi 1 liftingType-end-pos (LiftTpArrow x l) = liftingType-end-pos l lterms-end-pos (LtermsNil pi) = posinfo-plus pi 1 -- must add one for the implicit Beta that we will add at the end lterms-end-pos (LtermsCons _ _ ls) = lterms-end-pos ls {- return the end position of the given term if it is there, otherwise the given posinfo -} optTerm-end-pos : posinfo → optTerm → posinfo optTerm-end-pos pi NoTerm = pi optTerm-end-pos pi (SomeTerm x x₁) = x₁ optTerm-end-pos-beta : posinfo → optTerm → optTerm → posinfo optTerm-end-pos-beta pi _ (SomeTerm x pi') = pi' optTerm-end-pos-beta pi (SomeTerm x pi') NoTerm = pi' optTerm-end-pos-beta pi NoTerm NoTerm = posinfo-plus pi 1 optAs-or : optAs → posinfo → var → posinfo × var optAs-or NoOptAs pi x = pi , x optAs-or (SomeOptAs pi x) _ _ = pi , x tk-arrow-kind : tk → kind → kind tk-arrow-kind (Tkk k) k' = KndArrow k k' tk-arrow-kind (Tkt t) k = KndTpArrow t k TpApp-tk : type → var → tk → type TpApp-tk tp x (Tkk _) = TpApp tp (TpVar posinfo-gen x) TpApp-tk tp x (Tkt _) = TpAppt tp (Var posinfo-gen x) -- expression descriptor data exprd : Set where TERM : exprd TYPE : exprd KIND : exprd LIFTINGTYPE : exprd TK : exprd ARG : exprd QUALIF : exprd ⟦_⟧ : exprd → Set ⟦ TERM ⟧ = term ⟦ TYPE ⟧ = type ⟦ KIND ⟧ = kind ⟦ LIFTINGTYPE ⟧ = liftingType ⟦ TK ⟧ = tk ⟦ ARG ⟧ = arg ⟦ QUALIF ⟧ = qualif-info exprd-name : exprd → string exprd-name TERM = "term" exprd-name TYPE = "type" exprd-name KIND = "kind" exprd-name LIFTINGTYPE = "lifting type" exprd-name TK = "type-kind" exprd-name ARG = "argument" exprd-name QUALIF = "qualification" -- checking-sythesizing enum data checking-mode : Set where checking : checking-mode synthesizing : checking-mode untyped : checking-mode maybe-to-checking : {A : Set} → maybe A → checking-mode maybe-to-checking (just _) = checking maybe-to-checking nothing = synthesizing is-app : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-app{TERM} (App _ _ _) = tt is-app{TERM} (AppTp _ _) = tt is-app{TYPE} (TpApp _ _) = tt is-app{TYPE} (TpAppt _ _) = tt is-app _ = ff is-term-level-app : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-term-level-app{TERM} (App _ _ _) = tt is-term-level-app{TERM} (AppTp _ _) = tt is-term-level-app _ = ff is-type-level-app : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-type-level-app{TYPE} (TpApp _ _) = tt is-type-level-app{TYPE} (TpAppt _ _) = tt is-type-level-app _ = ff is-parens : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-parens{TERM} (Parens _ _ _) = tt is-parens{TYPE} (TpParens _ _ _) = tt is-parens{KIND} (KndParens _ _ _) = tt is-parens{LIFTINGTYPE} (LiftParens _ _ _) = tt is-parens _ = ff is-arrow : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-arrow{TYPE} (TpArrow _ _ _) = tt is-arrow{KIND} (KndTpArrow _ _) = tt is-arrow{KIND} (KndArrow _ _) = tt is-arrow{LIFTINGTYPE} (LiftArrow _ _) = tt is-arrow{LIFTINGTYPE} (LiftTpArrow _ _) = tt is-arrow _ = ff is-abs : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-abs{TERM} (Let _ _ _) = tt is-abs{TERM} (Lam _ _ _ _ _ _) = tt is-abs{TYPE} (Abs _ _ _ _ _ _) = tt is-abs{TYPE} (TpLambda _ _ _ _ _) = tt is-abs{TYPE} (Iota _ _ _ _ _) = tt is-abs{KIND} (KndPi _ _ _ _ _) = tt is-abs{LIFTINGTYPE} (LiftPi _ _ _ _) = tt is-abs _ = ff is-eq-op : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-eq-op{TERM} (Sigma _ _) = tt is-eq-op{TERM} (Epsilon _ _ _ _) = tt is-eq-op{TERM} (Rho _ _ _ _ _ _) = tt is-eq-op{TERM} (Chi _ _ _) = tt is-eq-op{TERM} (Phi _ _ _ _ _) = tt is-eq-op{TERM} (Delta _ _ _) = tt is-eq-op _ = ff is-beta : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-beta{TERM} (Beta _ _ _) = tt is-beta _ = ff is-hole : {ed : exprd} → ⟦ ed ⟧ → 𝔹 is-hole{TERM} (Hole _) = tt is-hole{TERM} _ = ff is-hole{TYPE} (TpHole _) = tt is-hole{TYPE} _ = ff is-hole{KIND} e = ff is-hole{LIFTINGTYPE} e = ff is-hole{TK} (Tkk x) = is-hole x is-hole{TK} (Tkt x) = is-hole x is-hole{ARG} (TermArg e? t) = is-hole t is-hole{ARG} (TypeArg tp) = is-hole tp is-hole{QUALIF} _ = ff eq-maybeErased : maybeErased → maybeErased → 𝔹 eq-maybeErased Erased Erased = tt eq-maybeErased Erased NotErased = ff eq-maybeErased NotErased Erased = ff eq-maybeErased NotErased NotErased = tt eq-checking-mode : (m₁ m₂ : checking-mode) → 𝔹 eq-checking-mode checking checking = tt eq-checking-mode checking synthesizing = ff eq-checking-mode checking untyped = ff eq-checking-mode synthesizing checking = ff eq-checking-mode synthesizing synthesizing = tt eq-checking-mode synthesizing untyped = ff eq-checking-mode untyped checking = ff eq-checking-mode untyped synthesizing = ff eq-checking-mode untyped untyped = tt optPublic-is-public : optPublic → 𝔹 optPublic-is-public IsPublic = tt optPublic-is-public NotPublic = ff ------------------------------------------------------ -- functions intended for building terms for testing ------------------------------------------------------ mlam : var → term → term mlam x t = Lam posinfo-gen NotErased posinfo-gen x NoClass t Mlam : var → term → term Mlam x t = Lam posinfo-gen Erased posinfo-gen x NoClass t mappe : term → term → term mappe t1 t2 = App t1 Erased t2 mapp : term → term → term mapp t1 t2 = App t1 NotErased t2 mvar : var → term mvar x = Var posinfo-gen x mtpvar : var → type mtpvar x = TpVar posinfo-gen x mall : var → tk → type → type mall x tk tp = Abs posinfo-gen All posinfo-gen x tk tp mtplam : var → tk → type → type mtplam x tk tp = TpLambda posinfo-gen posinfo-gen x tk tp {- strip off lambda-abstractions from the term, return the lambda-bound vars and the innermost body. The intention is to call this with at least the erasure of a term, if not the hnf -- so we do not check for parens, etc. -} decompose-lams : term → (𝕃 var) × term decompose-lams (Lam _ _ _ x _ t) with decompose-lams t decompose-lams (Lam _ _ _ x _ t) | vs , body = (x :: vs) , body decompose-lams t = [] , t {- decompose a term into spine form consisting of a non-applications head and arguments. The outer arguments will come earlier in the list than the inner ones. As for decompose-lams, we assume the term is at least erased. -} decompose-apps : term → term × (𝕃 term) decompose-apps (App t _ t') with decompose-apps t decompose-apps (App t _ t') | h , args = h , (t' :: args) decompose-apps t = t , [] decompose-var-headed : (var → 𝔹) → term → maybe (var × (𝕃 term)) decompose-var-headed is-bound t with decompose-apps t decompose-var-headed is-bound t | Var _ x , args = if is-bound x then nothing else (just (x , args)) decompose-var-headed is-bound t | _ = nothing data tty : Set where tterm : term → tty ttype : type → tty decompose-tpapps : type → type × 𝕃 tty decompose-tpapps (TpApp t t') with decompose-tpapps t decompose-tpapps (TpApp t t') | h , args = h , (ttype t') :: args decompose-tpapps (TpAppt t t') with decompose-tpapps t decompose-tpapps (TpAppt t t') | h , args = h , (tterm t') :: args decompose-tpapps (TpParens _ t _) = decompose-tpapps t decompose-tpapps t = t , [] recompose-tpapps : type × 𝕃 tty → type recompose-tpapps (h , []) = h recompose-tpapps (h , ((tterm t') :: args)) = TpAppt (recompose-tpapps (h , args)) t' recompose-tpapps (h , ((ttype t') :: args)) = TpApp (recompose-tpapps (h , args)) t' recompose-apps : maybeErased → 𝕃 tty → term → term recompose-apps me [] h = h recompose-apps me ((tterm t') :: args) h = App (recompose-apps me args h) me t' recompose-apps me ((ttype t') :: args) h = AppTp (recompose-apps me args h) t' vars-to-𝕃 : vars → 𝕃 var vars-to-𝕃 (VarsStart v) = [ v ] vars-to-𝕃 (VarsNext v vs) = v :: vars-to-𝕃 vs {- lambda-abstract the input variables in reverse order around the given term (so closest to the top of the list is bound deepest in the resulting term). -} Lam* : 𝕃 var → term → term Lam* [] t = t Lam* (x :: xs) t = Lam* xs (Lam posinfo-gen NotErased posinfo-gen x NoClass t) App* : term → 𝕃 (maybeErased × term) → term App* t [] = t App* t ((m , arg) :: args) = App (App* t args) m arg App*' : term → 𝕃 term → term App*' t [] = t App*' t (arg :: args) = App*' (App t NotErased arg) args TpApp* : type → 𝕃 type → type TpApp* t [] = t TpApp* t (arg :: args) = (TpApp (TpApp* t args) arg) LiftArrow* : 𝕃 liftingType → liftingType → liftingType LiftArrow* [] l = l LiftArrow* (l' :: ls) l = LiftArrow* ls (LiftArrow l' l) is-intro-form : term → 𝔹 is-intro-form (Lam _ _ _ _ _ _) = tt --is-intro-form (IotaPair _ _ _ _ _) = tt is-intro-form _ = ff erase : { ed : exprd } → ⟦ ed ⟧ → ⟦ ed ⟧ erase-term : term → term erase-type : type → type erase-kind : kind → kind erase-lterms : term → lterms → term erase-tk : tk → tk -- erase-optType : optType → optType erase-liftingType : liftingType → liftingType erase-cases : cases → cases erase-varargs : varargs → varargs erase-if : 𝔹 → { ed : exprd } → ⟦ ed ⟧ → ⟦ ed ⟧ erase-if tt = erase erase-if ff = id erase-term (Parens _ t _) = erase-term t erase-term (App t1 Erased t2) = erase-term t1 erase-term (App t1 NotErased t2) = App (erase-term t1) NotErased (erase-term t2) erase-term (AppTp t tp) = erase-term t erase-term (Lam _ Erased _ _ _ t) = erase-term t erase-term (Lam _ NotErased _ x oc t) = Lam posinfo-gen NotErased posinfo-gen x NoClass (erase-term t) erase-term (Let _ (DefTerm _ x _ t) t') = Let posinfo-gen (DefTerm posinfo-gen x NoType (erase-term t)) (erase-term t') erase-term (Let _ (DefType _ _ _ _) t) = erase-term t erase-term (Open _ _ t) = erase-term t erase-term (Var _ x) = Var posinfo-gen x erase-term (Beta _ _ NoTerm) = id-term erase-term (Beta _ _ (SomeTerm t _)) = erase-term t erase-term (IotaPair _ t1 t2 _ _) = erase-term t1 erase-term (IotaProj t n _) = erase-term t erase-term (Epsilon _ lr _ t) = erase-term t erase-term (Sigma _ t) = erase-term t erase-term (Hole _) = Hole posinfo-gen erase-term (Phi _ t t₁ t₂ _) = erase-term t₂ erase-term (Rho _ _ _ t _ t') = erase-term t' erase-term (Chi _ T t') = erase-term t' erase-term (Delta _ T t) = id-term erase-term (Theta _ u t ls) = erase-lterms (erase-term t) ls erase-term (Mu _ x t ot _ c _) = Mu posinfo-gen x (erase-term t) NoType posinfo-gen (erase-cases c) posinfo-gen erase-term (Mu' _ t ot _ c _) = Mu' posinfo-gen (erase-term t) NoType posinfo-gen (erase-cases c) posinfo-gen erase-cases NoCase = NoCase erase-cases (SomeCase _ x varargs t cs) = SomeCase posinfo-gen x (erase-varargs varargs) (erase-term t) (erase-cases cs) erase-varargs NoVarargs = NoVarargs erase-varargs (NormalVararg x varargs) = NormalVararg x (erase-varargs varargs) erase-varargs (ErasedVararg x varargs) = erase-varargs varargs erase-varargs (TypeVararg x varargs ) = erase-varargs varargs -- Only erases TERMS in types, leaving the structure of types the same erase-type (Abs _ b _ v atk tp) = Abs posinfo-gen b posinfo-gen v (erase-tk atk) (erase-type tp) erase-type (Iota _ _ v otp tp) = Iota posinfo-gen posinfo-gen v (erase-type otp) (erase-type tp) erase-type (Lft _ _ v t lt) = Lft posinfo-gen posinfo-gen v (erase-term t) (erase-liftingType lt) erase-type (NoSpans tp _) = NoSpans (erase-type tp) posinfo-gen erase-type (TpApp tp tp') = TpApp (erase-type tp) (erase-type tp') erase-type (TpAppt tp t) = TpAppt (erase-type tp) (erase-term t) erase-type (TpArrow tp at tp') = TpArrow (erase-type tp) at (erase-type tp') erase-type (TpEq _ t t' _) = TpEq posinfo-gen (erase-term t) (erase-term t') posinfo-gen erase-type (TpLambda _ _ v atk tp) = TpLambda posinfo-gen posinfo-gen v (erase-tk atk) (erase-type tp) erase-type (TpParens _ tp _) = erase-type tp erase-type (TpHole _) = TpHole posinfo-gen erase-type (TpVar _ x) = TpVar posinfo-gen x erase-type (TpLet _ (DefTerm _ x _ t) T) = TpLet posinfo-gen (DefTerm posinfo-gen x NoType (erase-term t)) (erase-type T) erase-type (TpLet _ (DefType _ x k T) T') = TpLet posinfo-gen (DefType posinfo-gen x (erase-kind k) (erase-type T)) (erase-type T') -- Only erases TERMS in types in kinds, leaving the structure of kinds and types in those kinds the same erase-kind (KndArrow k k') = KndArrow (erase-kind k) (erase-kind k') erase-kind (KndParens _ k _) = erase-kind k erase-kind (KndPi _ _ v atk k) = KndPi posinfo-gen posinfo-gen v (erase-tk atk) (erase-kind k) erase-kind (KndTpArrow tp k) = KndTpArrow (erase-type tp) (erase-kind k) erase-kind (KndVar _ x ps) = KndVar posinfo-gen x ps erase-kind (Star _) = Star posinfo-gen erase{TERM} t = erase-term t erase{TYPE} tp = erase-type tp erase{KIND} k = erase-kind k erase{LIFTINGTYPE} lt = erase-liftingType lt erase{TK} atk = erase-tk atk erase{ARG} a = a erase{QUALIF} q = q erase-tk (Tkt tp) = Tkt (erase-type tp) erase-tk (Tkk k) = Tkk (erase-kind k) erase-liftingType (LiftArrow lt lt') = LiftArrow (erase-liftingType lt) (erase-liftingType lt') erase-liftingType (LiftParens _ lt _) = erase-liftingType lt erase-liftingType (LiftPi _ v tp lt) = LiftPi posinfo-gen v (erase-type tp) (erase-liftingType lt) erase-liftingType (LiftTpArrow tp lt) = LiftTpArrow (erase-type tp) (erase-liftingType lt) erase-liftingType lt = lt erase-lterms t (LtermsNil _) = t erase-lterms t (LtermsCons Erased t' ls) = erase-lterms t ls erase-lterms t (LtermsCons NotErased t' ls) = erase-lterms (App t NotErased (erase-term t')) ls lterms-to-term : theta → term → lterms → term lterms-to-term AbstractEq t (LtermsNil _) = App t Erased (Beta posinfo-gen NoTerm NoTerm) lterms-to-term _ t (LtermsNil _) = t lterms-to-term u t (LtermsCons e t' ls) = lterms-to-term u (App t e t') ls imps-to-cmds : imports → cmds imps-to-cmds ImportsStart = CmdsStart imps-to-cmds (ImportsNext i is) = CmdsNext (ImportCmd i) (imps-to-cmds is) -- TODO handle qualif & module args get-imports : start → 𝕃 string get-imports (File _ is _ _ mn _ cs _) = imports-to-include is ++ get-imports-cmds cs where import-to-include : imprt → string import-to-include (Import _ _ _ x oa _ _) = x imports-to-include : imports → 𝕃 string imports-to-include ImportsStart = [] imports-to-include (ImportsNext x is) = import-to-include x :: imports-to-include is singleton-if-include : cmd → 𝕃 string singleton-if-include (ImportCmd imp) = [ import-to-include imp ] singleton-if-include _ = [] get-imports-cmds : cmds → 𝕃 string get-imports-cmds (CmdsNext c cs) = singleton-if-include c ++ get-imports-cmds cs get-imports-cmds CmdsStart = [] data language-level : Set where ll-term : language-level ll-type : language-level ll-kind : language-level ll-to-string : language-level → string ll-to-string ll-term = "term" ll-to-string ll-type = "type" ll-to-string ll-kind = "kind" is-rho-plus : optPlus → 𝔹 is-rho-plus RhoPlus = tt is-rho-plus _ = ff split-var-h : 𝕃 char → 𝕃 char × 𝕃 char split-var-h [] = [] , [] split-var-h (qual-global-chr :: xs) = [] , xs split-var-h (x :: xs) with split-var-h xs ... | xs' , ys = (x :: xs') , ys split-var : var → var × var split-var v with split-var-h (reverse (string-to-𝕃char v)) ... | xs , ys = 𝕃char-to-string (reverse ys) , 𝕃char-to-string (reverse xs) var-suffix : var → maybe var var-suffix v with split-var v ... | "" , _ = nothing ... | _ , sfx = just sfx -- unique qualif domain prefixes qual-pfxs : qualif → 𝕃 var qual-pfxs q = uniq (prefixes (trie-strings q)) where uniq : 𝕃 var → 𝕃 var uniq vs = stringset-strings (stringset-insert* empty-stringset vs) prefixes : 𝕃 var → 𝕃 var prefixes [] = [] prefixes (v :: vs) with split-var v ... | "" , sfx = vs ... | pfx , sfx = pfx :: prefixes vs unqual-prefix : qualif → 𝕃 var → var → var → var unqual-prefix q [] sfx v = v unqual-prefix q (pfx :: pfxs) sfx v with trie-lookup q (pfx # sfx) ... | just (v' , _) = if v =string v' then pfx # sfx else v ... | nothing = v unqual-bare : qualif → var → var → var unqual-bare q sfx v with trie-lookup q sfx ... | just (v' , _) = if v =string v' then sfx else v ... | nothing = v unqual-local : var → var unqual-local v = f' (string-to-𝕃char v) where f : 𝕃 char → maybe (𝕃 char) f [] = nothing f ('@' :: t) = f t maybe-or just t f (h :: t) = f t f' : 𝕃 char → string f' (meta-var-pfx :: t) = maybe-else' (f t) v (𝕃char-to-string ∘ _::_ meta-var-pfx) f' t = maybe-else' (f t) v 𝕃char-to-string unqual-all : qualif → var → string unqual-all q v with var-suffix v ... | nothing = v ... | just sfx = unqual-bare q sfx (unqual-prefix q (qual-pfxs q) sfx v) erased-params : params → 𝕃 string erased-params (ParamsCons (Decl _ _ Erased x (Tkt _) _) ps) with var-suffix x ... | nothing = x :: erased-params ps ... | just x' = x' :: erased-params ps erased-params (ParamsCons p ps) = erased-params ps erased-params ParamsNil = [] lam-expand-term : params → term → term lam-expand-term (ParamsCons (Decl _ _ me x tk _) ps) t = Lam posinfo-gen (if tk-is-type tk then me else Erased) posinfo-gen x (SomeClass tk) (lam-expand-term ps t) lam-expand-term ParamsNil t = t lam-expand-type : params → type → type lam-expand-type (ParamsCons (Decl _ _ me x tk _) ps) t = TpLambda posinfo-gen posinfo-gen x tk (lam-expand-type ps t) lam-expand-type ParamsNil t = t abs-expand-type : params → type → type abs-expand-type (ParamsCons (Decl _ _ me x tk _) ps) t = Abs posinfo-gen (if tk-is-type tk then me else All) posinfo-gen x tk (abs-expand-type ps t) abs-expand-type ParamsNil t = t abs-expand-type' : params → type → type abs-expand-type' (ParamsCons (Decl _ _ me x tk _) ps) t = Abs posinfo-gen (if tk-is-type tk then me else All) posinfo-gen x tk (abs-expand-type' ps t) abs-expand-type' ParamsNil t = t abs-expand-kind : params → kind → kind abs-expand-kind (ParamsCons (Decl _ _ me x tk _) ps) k = KndPi posinfo-gen posinfo-gen x tk (abs-expand-kind ps k) abs-expand-kind ParamsNil k = k args-length : args → ℕ args-length (ArgsCons p ps) = suc (args-length ps) args-length ArgsNil = 0 erased-args-length : args → ℕ erased-args-length (ArgsCons (TermArg NotErased _) ps) = suc (erased-args-length ps) erased-args-length (ArgsCons (TermArg Erased _) ps) = erased-args-length ps erased-args-length (ArgsCons (TypeArg _) ps) = erased-args-length ps erased-args-length ArgsNil = 0 me-args-length : maybeErased → args → ℕ me-args-length Erased = erased-args-length me-args-length NotErased = args-length spineApp : Set spineApp = qvar × 𝕃 arg term-to-spapp : term → maybe spineApp term-to-spapp (App t me t') = term-to-spapp t ≫=maybe (λ { (v , as) → just (v , TermArg me t' :: as) }) term-to-spapp (AppTp t T) = term-to-spapp t ≫=maybe (λ { (v , as) → just (v , TypeArg T :: as) }) term-to-spapp (Var _ v) = just (v , []) term-to-spapp _ = nothing type-to-spapp : type → maybe spineApp type-to-spapp (TpApp T T') = type-to-spapp T ≫=maybe (λ { (v , as) → just (v , TypeArg T' :: as) }) type-to-spapp (TpAppt T t) = type-to-spapp T ≫=maybe (λ { (v , as) → just (v , TermArg NotErased t :: as) }) type-to-spapp (TpVar _ v) = just (v , []) type-to-spapp _ = nothing spapp-term : spineApp → term spapp-term (v , []) = Var posinfo-gen v spapp-term (v , TermArg me t :: as) = App (spapp-term (v , as)) me t spapp-term (v , TypeArg T :: as) = AppTp (spapp-term (v , as)) T spapp-type : spineApp → type spapp-type (v , []) = TpVar posinfo-gen v spapp-type (v , TermArg me t :: as) = TpAppt (spapp-type (v , as)) t spapp-type (v , TypeArg T :: as) = TpApp (spapp-type (v , as)) T num-gt : num → ℕ → 𝕃 string num-gt n n' = maybe-else [] (λ n'' → if n'' > n' then [ n ] else []) (string-to-ℕ n) nums-gt : nums → ℕ → 𝕃 string nums-gt (NumsStart n) n' = num-gt n n' nums-gt (NumsNext n ns) n' = maybe-else [] (λ n'' → if n'' > n' || iszero n'' then [ n ] else []) (string-to-ℕ n) ++ nums-gt ns n' nums-to-stringset : nums → stringset × 𝕃 string {- Repeated numbers -} nums-to-stringset (NumsStart n) = stringset-insert empty-stringset n , [] nums-to-stringset (NumsNext n ns) with nums-to-stringset ns ...| ss , rs = if stringset-contains ss n then ss , n :: rs else stringset-insert ss n , rs optNums-to-stringset : optNums → maybe stringset × (ℕ → maybe string) optNums-to-stringset NoNums = nothing , λ _ → nothing optNums-to-stringset (SomeNums ns) with nums-to-stringset ns ...| ss , [] = just ss , λ n → case nums-gt ns n of λ where [] → nothing ns-g → just ("Occurrences not found: " ^ 𝕃-to-string id ", " ns-g ^ " (total occurrences: " ^ ℕ-to-string n ^ ")") ...| ss , rs = just ss , λ n → just ("The list of occurrences contains the following repeats: " ^ 𝕃-to-string id ", " rs) ------------------------------------------------------ -- any delta contradiction → boolean contradiction ------------------------------------------------------ nlam : ℕ → term → term nlam 0 t = t nlam (suc n) t = mlam ignored-var (nlam n t) delta-contra-app : ℕ → (ℕ → term) → term delta-contra-app 0 nt = mvar "x" delta-contra-app (suc n) nt = mapp (delta-contra-app n nt) (nt n) delta-contrahh : ℕ → trie ℕ → trie ℕ → var → var → 𝕃 term → 𝕃 term → maybe term delta-contrahh n ls rs x1 x2 as1 as2 with trie-lookup ls x1 | trie-lookup rs x2 ...| just n1 | just n2 = let t1 = nlam (length as1) (mlam "x" (mlam "y" (mvar "x"))) t2 = nlam (length as2) (mlam "x" (mlam "y" (mvar "y"))) in if n1 =ℕ n2 then nothing else just (mlam "x" (delta-contra-app n (λ n → if n =ℕ n1 then t1 else if n =ℕ n2 then t2 else id-term))) ...| _ | _ = nothing {-# TERMINATING #-} delta-contrah : ℕ → trie ℕ → trie ℕ → term → term → maybe term delta-contrah n ls rs (Lam _ _ _ x1 _ t1) (Lam _ _ _ x2 _ t2) = delta-contrah (suc n) (trie-insert ls x1 n) (trie-insert rs x2 n) t1 t2 delta-contrah n ls rs (Lam _ _ _ x1 _ t1) t2 = delta-contrah (suc n) (trie-insert ls x1 n) (trie-insert rs x1 n) t1 (mapp t2 (mvar x1)) delta-contrah n ls rs t1 (Lam _ _ _ x2 _ t2) = delta-contrah (suc n) (trie-insert ls x2 n) (trie-insert rs x2 n) (mapp t1 (mvar x2)) t2 delta-contrah n ls rs t1 t2 with decompose-apps t1 | decompose-apps t2 ...| Var _ x1 , as1 | Var _ x2 , as2 = delta-contrahh n ls rs x1 x2 as1 as2 ...| _ | _ = nothing -- For terms t1 and t2, given that check-beta-inequiv t1 t2 ≡ tt, -- delta-contra produces a function f such that f t1 ≡ tt and f t2 ≡ ff -- If it returns nothing, no contradiction could be found delta-contra : term → term → maybe term delta-contra = delta-contrah 0 empty-trie empty-trie -- postulate: check-beta-inequiv t1 t2 ≡ isJust (delta-contra t1 t2) check-beta-inequiv : term → term → 𝔹 check-beta-inequiv t1 t2 = isJust (delta-contra t1 t2) tk-map : tk → (type → type) → (kind → kind) → tk tk-map (Tkt T) fₜ fₖ = Tkt $ fₜ T tk-map (Tkk k) fₜ fₖ = Tkk $ fₖ k tk-map2 : tk → (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → tk tk-map2 atk f = tk-map atk f f optTerm-map : optTerm → (term → term) → optTerm optTerm-map NoTerm f = NoTerm optTerm-map (SomeTerm t pi) f = SomeTerm (f t) pi optType-map : optType → (type → type) → optType optType-map NoType f = NoType optType-map (SomeType T) f = SomeType $ f T optGuide-map : optGuide → (var → type → type) → optGuide optGuide-map NoGuide f = NoGuide optGuide-map (Guide pi x T) f = Guide pi x $ f x T optClass-map : optClass → (tk → tk) → optClass optClass-map NoClass f = NoClass optClass-map (SomeClass atk) f = SomeClass $ f atk
{ "alphanum_fraction": 0.6549752076, "avg_line_length": 36.8531390135, "ext": "agda", "hexsha": "50d25037fc1fedd9c144f0a64779d626e3360cff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/syntax-util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/syntax-util.agda", "max_line_length": 150, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/syntax-util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11486, "size": 32873 }
module SizedPolyIO.Object where open import Data.Product open import Level using (_⊔_) renaming (suc to lsuc) record Interface μ ρ : Set (lsuc (μ ⊔ ρ)) where field Method : Set μ Result : (m : Method) → Set ρ open Interface public -- A simple object just returns for a method the response -- and the object itself record Object {μ ρ} (i : Interface μ ρ) : Set (μ ⊔ ρ) where coinductive field objectMethod : (m : Method i) → Result i m × Object i open Object public
{ "alphanum_fraction": 0.6857142857, "avg_line_length": 23.3333333333, "ext": "agda", "hexsha": "3d3fd86dc6f55a9e1f4792efb174014130cf7cd0", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/SizedPolyIO/Object.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/SizedPolyIO/Object.agda", "max_line_length": 59, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedPolyIO/Object.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 150, "size": 490 }
open import Prelude module Implicits.Resolution.Stack.Algorithm where open import Induction.WellFounded open import Induction.Nat open import Data.Fin.Substitution open import Data.Nat.Base using (_<′_) open import Data.List.Any open Membership-≡ open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Substitutions.Lemmas open import Implicits.Resolution.Stack.Resolution open import Implicits.Resolution.Termination open import Implicits.Syntax.Type.Unification open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Equality hiding (cong; flip; const) open import Data.List.Any.Properties using (Any↔) open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl) module M = MetaTypeMetaSubst module Lemmas where postulate lem₄ : ∀ {m ν} (a : MetaType m (suc ν)) u us → from-meta ((M.open-meta a) M./ (us M.↑) M./ (M.sub u)) ≡ (from-meta (a M./ (us M.↑tp))) tp[/tp from-meta u ] open Lemmas _s<'_ : ∀ {ν} → (∃ λ (Δ : ICtx ν) → Stack Δ) → (∃ λ (Δ' : ICtx ν) → Stack Δ') → Set s s<' t = {!!} module Arg<-well-founded where open Lexicographic (_s<_) (const _sρ<_) arg<-well-founded : Well-founded _<_ arg<-well-founded = well-founded s<-well-founded sρ<-well-founded _arg<_ = _<_ open Lexicographic using (left; right) open Arg<-well-founded {-# NO_TERMINATION_CHECK #-} mutual match' : ∀ {m ν ρ} (Δ : ICtx ν) s (r∈Δ : ρ List.∈ Δ) τ → (r : MetaType m ν) → Acc _arg<_ (s , (, simpl τ)) → Acc _m<_ (, , r) → Maybe (∃ λ u → Δ & s , r∈Δ ⊢ from-meta (r M./ u) ↓ τ) match' Δ s r∈Δ τ (simpl x) (acc f) _ with mgu (simpl x) τ match' Δ s r∈Δ τ (simpl x) (acc f) _ | just (u , p) = just ( (asub u) , subst (λ a → Δ & s , r∈Δ ⊢ a ↓ τ) (sym $ mgu-unifies (simpl x) τ (u , p)) (i-simp τ) ) match' Δ s r∈Δ τ (simpl x) (acc f) _ | nothing = nothing match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) with match' Δ s r∈Δ τ b (acc f) (g _ (b-m<-a⇒b a b)) match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) | nothing = nothing match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) with (from-meta (a M./ u)) for r∈Δ ?⊬dom s match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | yes p with let a' = from-meta (a M./ u) in let s' = (s push a' for r∈Δ) in resolve' Δ s' a' (f (s' , _ , a') (left {!!})) match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | yes p | just ⊢ᵣa = just (u , i-iabs p ⊢ᵣa b/u↓τ) match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | yes p | nothing = nothing match' Δ s r∈Δ τ (a ⇒ b) (acc f) (acc g) | just (u , b/u↓τ) | no ¬p = nothing -- The following with clause fails to satisfy termination checking. -- Somehow we have to prove to Agda that (open-meta a) is structurally smaller than (∀' a) match' Δ s r∈Δ τ (∀' a) (acc f) (acc g) with match' Δ s r∈Δ τ (open-meta a) (acc f) (g _ (open-meta-a-m<-∀'a a)) match' Δ s r∈Δ τ (∀' a) (acc f) (acc g) | just p = just $ lem p where lem : (∃ λ u → Δ & s , r∈Δ ⊢ (from-meta ((open-meta a) M./ u)) ↓ τ) → ∃ λ u' → Δ & s , r∈Δ ⊢ (from-meta (∀' a M./ u')) ↓ τ lem (u ∷ us , p) = us , (i-tabs (from-meta u) (subst (λ v → Δ & s , r∈Δ ⊢ v ↓ τ) (begin from-meta (M._/_ (open-meta a) (u ∷ us)) ≡⟨ cong (λ v → from-meta (M._/_ (open-meta a) v)) (sym $ us↑-⊙-sub-u≡u∷us u us) ⟩ from-meta ((open-meta a) M./ (us M.↑ M.⊙ (M.sub u))) ≡⟨ cong from-meta (/-⊙ (open-meta a)) ⟩ from-meta ((open-meta a) M./ us M.↑ M./ (M.sub u)) ≡⟨ lem₄ a u us ⟩ from-meta (a M./ (us M.↑tp)) tp[/tp from-meta u ] ∎) p)) where open MetaTypeMetaLemmas hiding (subst) match' Δ s r∈Δ τ (∀' r) (acc f) (acc g) | nothing = nothing -- match defers to match', which concerns itself with MetaTypes. -- If match' finds a match, we can use the fact that we have zero unification variables open here -- to show that we found the right thing. match : ∀ {ν ρ} (Δ : ICtx ν) s (r∈Δ : ρ List.∈ Δ) r τ → Acc _arg<_ (s , _ , simpl τ) → Maybe (Δ & s , r∈Δ ⊢ r ↓ τ) match Δ s r∈Δ a τ ac with match' Δ s r∈Δ τ (to-meta {zero} a) ac (m<-well-founded _) match Δ s r∈Δ a τ ac | just x = just (lem x) where eq : ∀ {ν} {a : Type ν} {s} → from-meta (to-meta {zero} a M./ s) ≡ a eq {a = a} {s = []} = begin from-meta (M._/_ (to-meta {zero} a) []) ≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩ from-meta (to-meta {zero} a) ≡⟨ to-meta-zero-vanishes ⟩ a ∎ lem : ∃ (λ u → Δ & s , r∈Δ ⊢ from-meta (to-meta {zero} a M./ u) ↓ τ) → Δ & s , r∈Δ ⊢ a ↓ τ lem ([] , proj₂) = subst (λ u → Δ & s , r∈Δ ⊢ u ↓ τ) eq proj₂ match Δ s r∈Δ a τ ac | nothing = nothing match1st : ∀ {ν} (Δ : ICtx ν) (s : Stack Δ) τ → Acc _arg<_ (s , _ , simpl τ) → Maybe (∃₂ λ r (r∈Δ : r List.∈ Δ) → Δ & s , r∈Δ ⊢ r ↓ τ) match1st Δ s τ ac = match1st' Δ Δ Prelude.id s τ ac -- any (λ r → match Δ r τ) where match1st' : ∀ {ν} (Δ ρs : ICtx ν) → ρs ⊆ Δ → (s : Stack Δ) → (τ : SimpleType ν) → Acc _arg<_ (s , _ , simpl τ) → Maybe (∃₂ λ r (r∈Δ : r List.∈ Δ) → Δ & s , r∈Δ ⊢ r ↓ τ) match1st' Δ List.[] sub s τ ac = nothing match1st' Δ (x List.∷ xs) sub s τ ac with match Δ s (sub (here refl)) x τ ac match1st' Δ (x List.∷ xs) sub s τ ac | just px = just (x , ((sub (here refl)) , px)) match1st' Δ (x List.∷ xs) sub s τ ac | nothing with match1st' Δ xs {!!} s τ ac match1st' Δ (x List.∷ xs) sub s τ ac | nothing | just p = just p match1st' Δ (x List.∷ xs) sub s τ ac | nothing | nothing = nothing resolve' : ∀ {ν} (Δ : ICtx ν) s r → Acc _arg<_ (s , _ , r) → (Maybe (Δ & s ⊢ᵣ r)) resolve' Δ s (simpl x) ac with match1st Δ s x ac resolve' Δ s (simpl x) ac | just (_ , r∈Δ , r↓x) = just (r-simp r∈Δ r↓x) resolve' Δ s (simpl x) ac | nothing = nothing -- no (λ{ (r-simp x₁ x₂) → ¬p (_⟨$⟩_ (Inverse.to Any↔) (_ , (x₁ , x₂))) }) resolve' Δ s (a ⇒ b) (acc f) with resolve' (a List.∷ Δ) (s prepend a) b {!f!} resolve' Δ s (a ⇒ b) (acc f) | just p = just (r-iabs p) resolve' Δ s (a ⇒ b) (acc f) | nothing = nothing -- no (λ{ (r-iabs x) → ¬p x }) resolve' Δ s (∀' r) (acc f) with resolve' (ictx-weaken Δ) (stack-weaken s) r {!f ? ?!} resolve' Δ s (∀' r) (acc f) | just p = just (r-tabs p) resolve' Δ s (∀' r) (acc f) | nothing = nothing --no (λ{ (r-tabs x) → ¬p x }) resolve : ∀ {ν} (Δ : ICtx ν) r → (Maybe (Δ ⊢ᵣ r)) resolve Δ r = resolve' Δ (All.tabulate (const r)) r (arg<-well-founded _)
{ "alphanum_fraction": 0.5447585395, "avg_line_length": 47.4965034965, "ext": "agda", "hexsha": "5f9b8361af298497f0b47011acb5f8066e037379", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Stack/Algorithm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Stack/Algorithm.agda", "max_line_length": 167, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Stack/Algorithm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2730, "size": 6792 }
{-# OPTIONS --cubical-compatible #-} module Common.Bool where open import Agda.Builtin.Bool public not : Bool -> Bool not true = false not false = true notnot : Bool -> Bool notnot true = not (not true) notnot false = not (not false) if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if true then t else f = t if false then t else f = f
{ "alphanum_fraction": 0.6551724138, "avg_line_length": 19.3333333333, "ext": "agda", "hexsha": "0b23c146cc2c04909f07dd492cef030970354b0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Common/Bool.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Common/Bool.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Common/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 108, "size": 348 }
{- This file shows a natural attempt to do formatted printing, and where that attempt goes wrong. See string-format.agda for a (working) solution to this problem. -} module string-format-issue where open import char open import eq open import list open import nat open import nat-to-string open import string format-th : 𝕃 char → Set format-th ('%' :: 'n' :: f) = ℕ → format-th f format-th ('%' :: 's' :: f) = string → format-th f format-th (c :: f) = format-th f format-th [] = string format-t : string → Set format-t s = format-th (string-to-𝕃char s) test-format-t : format-t "The %n% %s are %s." ≡ (ℕ → string → string → string) test-format-t = refl format-h : 𝕃 char → (f : 𝕃 char) → format-th f format-h s ('%' :: 'n' :: f) = λ n → format-h (s ++ (string-to-𝕃char (ℕ-to-string n))) f format-h s ('%' :: 's' :: f) = λ s' → format-h (s ++ (string-to-𝕃char s')) f format-h s (c :: f) = {!!} format-h s [] = 𝕃char-to-string s format : (f : string) → format-t f format f = format-h [] (string-to-𝕃char f)
{ "alphanum_fraction": 0.6209598433, "avg_line_length": 29.1714285714, "ext": "agda", "hexsha": "e28ac162e0a0829e337565a333093527506bbf9f", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "string-format-issue.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "string-format-issue.agda", "max_line_length": 88, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "string-format-issue.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 341, "size": 1021 }
{-# OPTIONS --safe #-} {- This uses ideas from Floris van Doorn's phd thesis and the code in https://github.com/cmu-phil/Spectral/blob/master/spectrum/basic.hlean -} module Cubical.Homotopy.Prespectrum where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Pointed open import Cubical.Data.Unit.Pointed open import Cubical.Structures.Successor open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.HITs.Susp open import Cubical.Homotopy.Loopspace private variable ℓ ℓ' : Level record GenericPrespectrum (S : SuccStr ℓ) (ℓ' : Level) : Type (ℓ-max (ℓ-suc ℓ') ℓ) where open SuccStr S field space : Index → Pointed ℓ' map : (i : Index) → (space i →∙ Ω (space (succ i))) Prespectrum = GenericPrespectrum ℤ+ Unit∙→ΩUnit∙ : {ℓ : Level} → (Unit∙ {ℓ = ℓ}) →∙ Ω (Unit∙ {ℓ = ℓ}) Unit∙→ΩUnit∙ = (λ {tt* → refl}) , refl makeℤPrespectrum : (space : ℕ → Pointed ℓ) (map : (i : ℕ) → (space i) →∙ Ω (space (suc i))) → Prespectrum ℓ GenericPrespectrum.space (makeℤPrespectrum space map) (pos n) = space n GenericPrespectrum.space (makeℤPrespectrum space map) (negsuc n) = Unit∙ GenericPrespectrum.map (makeℤPrespectrum space map) (pos n) = map n GenericPrespectrum.map (makeℤPrespectrum space map) (negsuc zero) = (λ {tt* → refl}) , refl GenericPrespectrum.map (makeℤPrespectrum space map) (negsuc (suc n)) = Unit∙→ΩUnit∙ SuspensionPrespectrum : Pointed ℓ → Prespectrum ℓ SuspensionPrespectrum A = makeℤPrespectrum space map where space : ℕ → Pointed _ space zero = A space (suc n) = Susp∙ (typ (space n)) map : (n : ℕ) → _ map n = toSuspPointed (space n)
{ "alphanum_fraction": 0.6730769231, "avg_line_length": 32.1454545455, "ext": "agda", "hexsha": "7e41ae0d5c203282fbafcbd877fe844a966e8d4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/Prespectrum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/Prespectrum.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/Prespectrum.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 578, "size": 1768 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Alternative definition of divisibility without using modulus. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Divisibility.Signed where open import Function open import Data.Integer open import Data.Integer.Properties open import Data.Integer.Divisibility as Unsigned using (divides) renaming (_∣_ to _∣ᵤ_) import Data.Nat as ℕ import Data.Nat.Divisibility as ℕ import Data.Nat.Coprimality as ℕ import Data.Nat.Properties as ℕ import Data.Sign as S import Data.Sign.Properties as SProp open import Level open import Relation.Binary open import Relation.Binary.PropositionalEquality import Relation.Binary.Reasoning.Preorder as PreorderReasoning open import Relation.Nullary using (yes; no) import Relation.Nullary.Decidable as DEC ------------------------------------------------------------------------ -- Type infix 4 _∣_ record _∣_ (k z : ℤ) : Set where constructor divides field quotient : ℤ equality : z ≡ quotient * k open _∣_ using (quotient) public ------------------------------------------------------------------------ -- Conversion between signed and unsigned divisibility ∣ᵤ⇒∣ : ∀ {k i} → k ∣ᵤ i → k ∣ i ∣ᵤ⇒∣ {k} {i} (divides 0 eq) = divides (+ 0) (∣n∣≡0⇒n≡0 eq) ∣ᵤ⇒∣ {k} {i} (divides q@(ℕ.suc q') eq) with k ≟ + 0 ... | yes refl = divides (+ 0) (∣n∣≡0⇒n≡0 (trans eq (ℕ.*-zeroʳ q))) ... | no ¬k≠0 = divides ((S._*_ on sign) i k ◃ q) (◃-≡ sign-eq abs-eq) where k' = ℕ.suc (ℕ.pred ∣ k ∣) ikq' = sign i S.* sign k ◃ ℕ.suc q' sign-eq : sign i ≡ sign (((S._*_ on sign) i k ◃ q) * k) sign-eq = sym $ begin sign (((S._*_ on sign) i k ◃ ℕ.suc q') * k) ≡⟨ cong (λ m → sign (sign ikq' S.* sign k ◃ ∣ ikq' ∣ ℕ.* m)) (sym (ℕ.m≢0⇒suc[pred[m]]≡m (¬k≠0 ∘ ∣n∣≡0⇒n≡0))) ⟩ sign (sign ikq' S.* sign k ◃ ∣ ikq' ∣ ℕ.* k') ≡⟨ cong (λ m → sign (sign ikq' S.* sign k ◃ m ℕ.* k')) (abs-◃ (sign i S.* sign k) (ℕ.suc q')) ⟩ sign (sign ikq' S.* sign k ◃ _) ≡⟨ sign-◃ (sign ikq' S.* sign k) (ℕ.pred ∣ k ∣ ℕ.+ q' ℕ.* k') ⟩ sign ikq' S.* sign k ≡⟨ cong (S._* sign k) (sign-◃ (sign i S.* sign k) q') ⟩ sign i S.* sign k S.* sign k ≡⟨ SProp.*-assoc (sign i) (sign k) (sign k) ⟩ sign i S.* (sign k S.* sign k) ≡⟨ cong (sign i S.*_) (SProp.s*s≡+ (sign k)) ⟩ sign i S.* S.+ ≡⟨ SProp.*-identityʳ (sign i) ⟩ sign i ∎ where open ≡-Reasoning abs-eq : ∣ i ∣ ≡ ∣ ((S._*_ on sign) i k ◃ q) * k ∣ abs-eq = sym $ begin ∣ ((S._*_ on sign) i k ◃ ℕ.suc q') * k ∣ ≡⟨ abs-◃ (sign ikq' S.* sign k) (∣ ikq' ∣ ℕ.* ∣ k ∣) ⟩ ∣ ikq' ∣ ℕ.* ∣ k ∣ ≡⟨ cong (ℕ._* ∣ k ∣) (abs-◃ (sign i S.* sign k) (ℕ.suc q')) ⟩ ℕ.suc q' ℕ.* ∣ k ∣ ≡⟨ sym eq ⟩ ∣ i ∣ ∎ where open ≡-Reasoning ∣⇒∣ᵤ : ∀ {k i} → k ∣ i → k ∣ᵤ i ∣⇒∣ᵤ {k} {i} (divides q eq) = divides ∣ q ∣ $′ begin ∣ i ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ q * k ∣ ≡⟨ abs-*-commute q k ⟩ ∣ q ∣ ℕ.* ∣ k ∣ ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- _∣_ is a preorder ∣-refl : Reflexive _∣_ ∣-refl = ∣ᵤ⇒∣ ℕ.∣-refl ∣-reflexive : _≡_ ⇒ _∣_ ∣-reflexive refl = ∣-refl ∣-trans : Transitive _∣_ ∣-trans i∣j j∣k = ∣ᵤ⇒∣ (ℕ.∣-trans (∣⇒∣ᵤ i∣j) (∣⇒∣ᵤ j∣k)) ∣-isPreorder : IsPreorder _≡_ _∣_ ∣-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ∣-reflexive ; trans = ∣-trans } ∣-preorder : Preorder _ _ _ ∣-preorder = record { isPreorder = ∣-isPreorder } module ∣-Reasoning = PreorderReasoning ∣-preorder hiding (_≈⟨_⟩_) renaming (_∼⟨_⟩_ to _∣⟨_⟩_) ------------------------------------------------------------------------ -- Other properties of _∣_ _∣?_ : Decidable _∣_ k ∣? m = DEC.map′ ∣ᵤ⇒∣ ∣⇒∣ᵤ (∣ k ∣ ℕ.∣? ∣ m ∣) 0∣⇒≡0 : ∀ {m} → + 0 ∣ m → m ≡ + 0 0∣⇒≡0 0|m = ∣n∣≡0⇒n≡0 (ℕ.0∣⇒≡0 (∣⇒∣ᵤ 0|m)) m∣∣m∣ : ∀ {m} → m ∣ (+ ∣ m ∣) m∣∣m∣ = ∣ᵤ⇒∣ ℕ.∣-refl ∣m∣∣m : ∀ {m} → (+ ∣ m ∣) ∣ m ∣m∣∣m = ∣ᵤ⇒∣ ℕ.∣-refl ∣m∣n⇒∣m+n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n ∣m∣n⇒∣m+n (divides q refl) (divides p refl) = divides (q + p) (sym (*-distribʳ-+ _ q p)) ∣m⇒∣-m : ∀ {i m} → i ∣ m → i ∣ - m ∣m⇒∣-m {i} {m} i∣m = ∣ᵤ⇒∣ $′ begin ∣ i ∣ ∣⟨ ∣⇒∣ᵤ i∣m ⟩ ∣ m ∣ ≡⟨ sym (∣-n∣≡∣n∣ m) ⟩ ∣ - m ∣ ∎ where open ℕ.∣-Reasoning ∣m∣n⇒∣m-n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m - n ∣m∣n⇒∣m-n i∣m i∣n = ∣m∣n⇒∣m+n i∣m (∣m⇒∣-m i∣n) ∣m+n∣m⇒∣n : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n ∣m+n∣m⇒∣n {i} {m} {n} i∣m+n i∣m = begin i ∣⟨ ∣m∣n⇒∣m-n i∣m+n i∣m ⟩ m + n - m ≡⟨ +-comm (m + n) (- m) ⟩ - m + (m + n) ≡⟨ sym (+-assoc (- m) m n) ⟩ - m + m + n ≡⟨ cong (_+ n) (+-inverseˡ m) ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ∣-Reasoning ∣m+n∣n⇒∣m : ∀ {i m n} → i ∣ m + n → i ∣ n → i ∣ m ∣m+n∣n⇒∣m {i} {m} {n} i|m+n i|n rewrite +-comm m n = ∣m+n∣m⇒∣n i|m+n i|n ∣n⇒∣m*n : ∀ {i} m {n} → i ∣ n → i ∣ m * n ∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $′ begin m * n ≡⟨ cong (m *_) eq ⟩ m * (q * i) ≡⟨ sym (*-assoc m q i) ⟩ m * q * i ∎ where open ≡-Reasoning ∣m⇒∣m*n : ∀ {i m} n → i ∣ m → i ∣ m * n ∣m⇒∣m*n {i} {m} n i|m rewrite *-comm m n = ∣n⇒∣m*n {i} n {m} i|m *-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_ *-monoʳ-∣ k i∣j = ∣ᵤ⇒∣ (Unsigned.*-monoʳ-∣ k (∣⇒∣ᵤ i∣j)) *-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_ *-monoˡ-∣ k {i} {j} i∣j = ∣ᵤ⇒∣ (Unsigned.*-monoˡ-∣ k {i} {j} (∣⇒∣ᵤ i∣j)) *-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelˡ-∣ k k≢0 = ∣ᵤ⇒∣ ∘ Unsigned.*-cancelˡ-∣ k k≢0 ∘ ∣⇒∣ᵤ *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j *-cancelʳ-∣ k {i} {j} k≢0 = ∣ᵤ⇒∣ ∘′ Unsigned.*-cancelʳ-∣ k {i} {j} k≢0 ∘′ ∣⇒∣ᵤ
{ "alphanum_fraction": 0.448908902, "avg_line_length": 31.3804347826, "ext": "agda", "hexsha": "494eef8291861dab72e967a37143b1a594fe704b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Divisibility/Signed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Divisibility/Signed.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Divisibility/Signed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2975, "size": 5774 }
module Numeral.Natural.Relation.Order.Classical where import Lvl open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator.Properties open import Relator.Ordering.Proofs open import Type.Properties.Decidable.Proofs open import Type instance [≰][>]-sub : (_≰_) ⊆₂ (_>_) [≰][>]-sub = From-[≤][<].ByReflTriSub.[≰][>]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [<]-classical = decider-classical _ ⦄ instance [≯][≤]-sub : (_≯_) ⊆₂ (_≤_) [≯][≤]-sub = From-[≤][<].ByReflTriSub.[≯][≤]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ instance [≱][<]-sub : (_≱_) ⊆₂ (_<_) [≱][<]-sub = From-[≤][<].ByReflTriSub.[≱][<]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [<]-classical = decider-classical _ ⦄ instance [≮][≥]-sub : (_≮_) ⊆₂ (_≥_) [≮][≥]-sub = From-[≤][<].ByReflTriSub.[≮][≥]-sub (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ [≤]-or-[>] : ∀{a b : ℕ} → (a ≤ b) ∨ (a > b) [≤]-or-[>] = From-[≤][<].ByReflTriSub.[≤]-or-[>] (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ ⦃ [<]-classical = decider-classical _ ⦄ [≥]-or-[<] : ∀{a b : ℕ} → (a ≥ b) ∨ (a < b) [≥]-or-[<] = From-[≤][<].ByReflTriSub.[≥]-or-[<] (_≤_)(_<_) ⦃ [<][≤]-sub = intro(sub₂(_<_)(_≤_)) ⦄ ⦃ [≤]-classical = decider-classical _ ⦄ ⦃ [<]-classical = decider-classical _ ⦄
{ "alphanum_fraction": 0.5742092457, "avg_line_length": 44.4324324324, "ext": "agda", "hexsha": "1283623cd7d638ee7eebcb463b8e2e1386f3877c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Order/Classical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Order/Classical.agda", "max_line_length": 178, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Order/Classical.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 746, "size": 1644 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Base where open import Cubical.Core.Everything ------------------------------------------------------------------------ -- Unary and binary operations Op₁ : ∀ {ℓ} → Type ℓ → Type ℓ Op₁ A = A → A Op₂ : ∀ {ℓ} → Type ℓ → Type ℓ Op₂ A = A → A → A ------------------------------------------------------------------------ -- Left and right actions Opₗ : ∀ {a b} → Type a → Type b → Type _ Opₗ A B = A → B → B Opᵣ : ∀ {a b} → Type a → Type b → Type _ Opᵣ A B = B → A → B
{ "alphanum_fraction": 0.423853211, "avg_line_length": 23.6956521739, "ext": "agda", "hexsha": "6a51daa2b67604241c5faca49481b1c0d5691a4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 161, "size": 545 }
------------------------------------------------------------------------ -- Safe modules that use --erased-cubical and --prop ------------------------------------------------------------------------ {-# OPTIONS --safe --erased-cubical --prop #-} module README.Safe.Cubical.Erased.Prop where -- Squashing. import Squash
{ "alphanum_fraction": 0.386996904, "avg_line_length": 26.9166666667, "ext": "agda", "hexsha": "1686b2d273976a73a328f0d5fe22b7fbc344acca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "README/Safe/Cubical/Erased/Prop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "README/Safe/Cubical/Erased/Prop.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "README/Safe/Cubical/Erased/Prop.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 52, "size": 323 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst; setoid) open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂; zip; map; <_,_>; swap) import Function.Equality open import Relation.Binary using (Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Monad.Relative import Categories.Category.Equivalence import Categories.Category.Cocartesian import Categories.Category.Construction.Functors import Categories.Category.Product import Categories.NaturalTransformation import Categories.NaturalTransformation.NaturalIsomorphism import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.MRenaming import SecondOrder.Term import SecondOrder.Substitution import SecondOrder.RelativeMonadMorphism import SecondOrder.Instantiation import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli import SecondOrder.Mslot import SecondOrder.MRelativeMonad import SecondOrder.VRelativeMonad module SecondOrder.VRelMonMorphism {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.RelativeMonadMorphism open SecondOrder.Metavariable Σ open SecondOrder.VRelativeMonad Σ open SecondOrder.Instantiation Σ open SecondOrder.MRenaming Σ open SecondOrder.VRenaming Σ open SecondOrder.Term Σ open SecondOrder.Substitution Σ -- In this file, the goal is to show that given two variable relative monads -- on different metacontexts, metarenaming from one of the metacontexts to the other -- we can define a relative monad morphism between the two variable relative monads Fⱽ : ∀ (Θ Θ′ : MContext) (μ : Θ ⇒ᵐ Θ′) → RMonadMorph (VMonad {Θ}) (VMonad {Θ′}) Fⱽ Θ Θ′ μ = record { morph = λ A → record { _⟨$⟩_ = [ μ ]ᵐ_ ; cong = λ s≈t → []ᵐ-resp-≈ s≈t } ; law-unit = λ A x≡y → ≈-≡ (σ-resp-≡ {σ = tm-var} x≡y) ; law-extend = λ {Γ} {Δ} {k} A {s} {t} s≈t → ≈-trans (≈-sym ([ᵐ∘ˢ] s)) (≈-trans ([]ˢ-resp-≈ˢ ([ μ ]ᵐ s) λ x → ≈-refl ) ([]ˢ-resp-≈ (λ {B} x → [ μ ]ᵐ (k B Function.Equality.⟨$⟩ x)) ([]ᵐ-resp-≈ s≈t))) }
{ "alphanum_fraction": 0.6498493976, "avg_line_length": 38.4927536232, "ext": "agda", "hexsha": "c5856fe59e30c160bdfd614aa8657a2145049de3", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cilinder/formaltt", "max_forks_repo_path": "src/SecondOrder/VRelMonMorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cilinder/formaltt", "max_issues_repo_path": "src/SecondOrder/VRelMonMorphism.agda", "max_line_length": 126, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/VRelMonMorphism.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 745, "size": 2656 }
module Example1 where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} data _==_ {l} {a : Set l} : a -> a -> Set l where refl : ∀{x} -> x == x {-# BUILTIN EQUALITY _==_ #-} cong : ∀{l} -> {A B : Set l} {x y : A} -> (f : A -> B) -> x == y -> f x == f y cong f refl = refl sym : ∀{l} {A : Set l} {x y : A} -> x == y -> y == x sym refl = refl _+_ : Nat -> Nat -> Nat x + zero = x x + suc y = suc (x + y) _+₂_ : Nat -> Nat -> Nat zero +₂ y = y suc x +₂ y = {!!} plus-right-identity : ∀{n} -> (n + 0) == n plus-right-identity {n} = refl plus-left-identity : (n : Nat) -> (0 + n) == n plus-left-identity zero = refl plus-left-identity (suc n) = cong suc (plus-left-identity n) plus-comm : (m n : Nat) -> (m + n) == (n + m) plus-comm m zero = sym (plus-left-identity m) plus-comm m (suc n) = {!!} plus-succ : ∀{m n} -> (m + suc n) == suc (m + n) plus-succ = refl data Vec (A : Set) : Nat -> Set where [] : Vec A 0 _∷_ : ∀{n} -> A -> Vec A n -> Vec A (suc n) replicate : ∀{A} -> (n : Nat) -> A -> Vec A n replicate zero x = [] replicate (suc n) x = x ∷ replicate n x data Pair (A B : Set) : Set where _,_ : A -> B -> Pair A B zip : ∀{n A B} -> Vec A n -> Vec B n -> Vec (Pair A B) n zip [] ys = [] zip {suc n} (x ∷ xs) (y ∷ ys) = replicate (suc n) (x , y) map : ∀{n A B} -> (A -> B) -> Vec A n -> Vec B n map f [] = [] map {suc n} f (x ∷ xs) = (f x) ∷ (map f xs) -- f x ∷ map f xs -- replicate (suc n) (f x) id : {A : Set} -> A -> A id x = x map-id : ∀{n A} (xs : Vec A n) -> map id xs == xs map-id [] = refl map-id (x ∷ xs) = cong (_∷_ x) (map-id xs) data Bool : Set where false true : Bool not : Bool -> Bool not false = true not true = false not-self-inverse : {x : Bool} -> not (not x) == x not-self-inverse {false} = refl not-self-inverse {true} = refl data Empty : Set where not-not-id : {x : Bool} -> not x == id x -> Empty not-not-id {false} () not-not-id {true} ()
{ "alphanum_fraction": 0.5095706156, "avg_line_length": 23.0119047619, "ext": "agda", "hexsha": "5586865352c18aab03db173bf77f5015c6dc1174", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "carlostome/martin", "max_forks_repo_path": "doc/Example1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "carlostome/martin", "max_issues_repo_path": "doc/Example1.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "carlostome/martin", "max_stars_repo_path": "doc/Example1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 766, "size": 1933 }
module Issue482 where open import Common.Level using (_⊔_) postulate P : ∀ a b → Set a → Set b → Set (a ⊔ b) F : ∀ ℓ → Set ℓ p : ∀ a (A : Set a) → P a a A (F a) Q : ∀ a → Set a → ∀ b → Set (a ⊔ b) P-to-Q : ∀ a b (A : Set a) (B : Set b) → P a b A B → Q a A b q : ∀ a (A : Set a) → Q a A _ q a A = P-to-Q _ _ _ _ (p _ _) {- There was a bug in the level constraint solver that looks at pairs of constraints. -}
{ "alphanum_fraction": 0.4910714286, "avg_line_length": 21.3333333333, "ext": "agda", "hexsha": "f78069593b8063ecf296ebe45999e3ddb2789863", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue482.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue482.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue482.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 180, "size": 448 }
{-# OPTIONS --cubical --safe #-} module Demos.Cantor where open import Prelude open import Data.Bool.Properties using (false≢true; true≢false) Stream : Type a → Type a Stream A = ℕ → A _∈_ : ∀ {A : Type a} (x : A) → Stream A → Type a x ∈ xs = ∃ i × (xs i ≡ x) Countable : Type a → Type a Countable A = Σ[ xs ⦂ Stream A ] × (∀ x → x ∈ xs) x≢¬x : ∀ x → x ≢ not x x≢¬x false = false≢true x≢¬x true = true≢false cantor : ¬ (Countable (Stream Bool)) cantor (support , cover) = let p , ps = cover (λ i → not (support i i)) q = cong (_$ p) ps in x≢¬x _ q
{ "alphanum_fraction": 0.5795053004, "avg_line_length": 21.7692307692, "ext": "agda", "hexsha": "22f39244a257302012a37762afefd41bf6a9de36", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Demos/Cantor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Demos/Cantor.agda", "max_line_length": 63, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Demos/Cantor.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 218, "size": 566 }
{-# OPTIONS --rewriting --prop #-} open import common open import syntx {- The sort corresponding to judgments -} data JudgmentSort : Set where Ty : JudgmentSort Tm : JudgmentSort Ty= : JudgmentSort Tm= : JudgmentSort JudgmentArityArgs = ArityArgs JudgmentSort JudgmentArity = Arity JudgmentSort {- Judgments are indexed by the signature, their ambient context, the length of their local context, and their sort. We can see judgments as consisting of two contexts, one normal context (the ambient context) and then one dependent context (the local context). The reason is that all typing rules occur in an ambient context which never changes, and sometimes add new assumptions (to the local context). Therefore we will never have to check that the ambient contexts are equal, it will be forced by the typing. Indexing judgments by sorts is very good to get rid of absurd cases, when giving typing rules and that some judgments are supposed to have certain sorts. -} data Judgment (Σ : Signature) {m : ℕ} (Γ : Ctx Σ m) (n : ℕ) : JudgmentSort → Set where _⊢_ : (Δ : DepCtx Σ m n) → TyExpr Σ (m + n) → Judgment Σ Γ n Ty _⊢_:>_ : (Δ : DepCtx Σ m n) → TmExpr Σ (m + n) → TyExpr Σ (m + n) → Judgment Σ Γ n Tm _⊢_==_ : (Δ : DepCtx Σ m n) → TyExpr Σ (m + n) → TyExpr Σ (m + n) → Judgment Σ Γ n Ty= _⊢_==_:>_ : (Δ : DepCtx Σ m n) → TmExpr Σ (m + n) → TmExpr Σ (m + n) → TyExpr Σ (m + n) → Judgment Σ Γ n Tm= {- A derivation rule consists of a partial function taking a tuple of judgments (of the correct arities) and returning another judgment. Moreover, a derivation rule is extendable to any other signature the original signature maps to. The type [DerivationRulePremises Σ Γ args] represents tuples of judgments of arities [args] (and in signature [Σ] and with ambient context [Γ]) The type [DerivationRule Σ ar n] represents derivation rules in signature [Σ], of arity [ar] and in scope [n]. It lives in [Set₁] because it quantifies over arbitrary signatures that [Σ] maps into. -} data DerivationRulePremises (Σ : Signature) {n : ℕ} (Γ : Ctx Σ n) : JudgmentArityArgs → Set where [] : DerivationRulePremises Σ Γ [] _,_ : {m : ℕ} {k : JudgmentSort} {args : JudgmentArityArgs} → DerivationRulePremises Σ Γ args → Judgment Σ Γ m k → DerivationRulePremises Σ Γ (args , (m , k)) record DerivationRule (Σ : Signature) (ar : JudgmentArity) : Set₁ where field rule : {Σ' : Signature} {n : ℕ} → (Σ →Sig Σ') n → (Γ : Ctx Σ' n) → DerivationRulePremises Σ' Γ (args ar) → Partial (Judgment Σ' Γ 0 (sort ar)) open DerivationRule public {- A derivability structure consists of a bunch of derivation rules, indexed by their arities -} data Tag : Set where S T C Eq : Tag record DerivabilityStructure (Σ : Signature) : Set₁ where field Rules : Tag → JudgmentArity → Set derivationRule : {t : Tag} {ar : JudgmentArity} (r : Rules t ar) → DerivationRule Σ ar open DerivabilityStructure public {- We can move the local context to the end of the ambient context -} module _ {Σ : Signature} {m : ℕ} {Γ : Ctx Σ m} where Γ+ : {l : ℕ} (Δ : DepCtx Σ m l) → Ctx Σ (m + l) Γ+ ◇ = Γ Γ+ (Δ , A) = (Γ+ Δ , A) exchangeCtx : {n : ℕ} {k : JudgmentSort} → Judgment Σ Γ n k → Ctx Σ (m + n) exchangeCtx (Δ ⊢ A) = Γ+ Δ exchangeCtx (Δ ⊢ u :> A) = Γ+ Δ exchangeCtx (Δ ⊢ A == B) = Γ+ Δ exchangeCtx (Δ ⊢ u == v :> A) = Γ+ Δ exchange : {n : ℕ} {k : JudgmentSort} → (j : Judgment Σ Γ n k) → Judgment Σ (exchangeCtx j) 0 k exchange (Δ ⊢ A) = ◇ ⊢ A exchange (Δ ⊢ u :> A) = ◇ ⊢ u :> A exchange (Δ ⊢ A == B) = ◇ ⊢ A == B exchange (Δ ⊢ u == v :> A) = ◇ ⊢ u == v :> A {- A judgment can be derivable in one different way: - if it has a trivial local context, then it should be obtained by applying a rule [r] from the derivability structure to a list of judgments [js] which are all derivable [js-der] and for which the rule is defined [def]. The type [DerivableArgs E js] represents the fact that all of the judgments in [js] are derivables. The type [Derivable E j] represents the fact that the judgment [j] is derivable. -} data Derivable {Σ : Signature} (E : DerivabilityStructure Σ) : {m : ℕ} {Γ : Ctx Σ m} {k : JudgmentSort} → Judgment Σ Γ 0 k → Prop data DerivableArgs {Σ : Signature} (E : DerivabilityStructure Σ) {m : ℕ} {Γ : Ctx Σ m} : {ar : JudgmentArityArgs} → DerivationRulePremises Σ Γ ar → Prop where [] : DerivableArgs E [] _,_ : {n : ℕ} {k : JudgmentSort} {j : Judgment Σ Γ n k} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (exchange j) → DerivableArgs E (js , j) data Derivable {Σ} E where apr : (t : Tag) {ar : JudgmentArity} (r : Rules E t ar) {m : ℕ} {Γ : Ctx Σ m} {js : DerivationRulePremises Σ Γ (args ar)} (js-der : DerivableArgs E js) {{def : isDefined (rule (derivationRule E r) idSig Γ js)}} → Derivable E (rule (derivationRule E r) idSig Γ js $ def) {- Special cases of [_,_], used to make Agda not blow up -} _,0Ty_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {A : TyExpr Σ m} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (◇ ⊢ A) → DerivableArgs E (js , ◇ ⊢ A) djs ,0Ty dj = djs , dj _,0Ty=_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {A B : _} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (◇ ⊢ A == B) → DerivableArgs E (js , ◇ ⊢ A == B) djs ,0Ty= dj = djs , dj _,0Tm_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {u : _} {A : _} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (◇ ⊢ u :> A) → DerivableArgs E (js , ◇ ⊢ u :> A) djs ,0Tm dj = djs , dj _,0Tm=_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {u v : _} {A : _} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (◇ ⊢ u == v :> A) → DerivableArgs E (js , ◇ ⊢ u == v :> A) djs ,0Tm= dj = djs , dj _,1Ty_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {A} {B} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (exchange ((◇ , A) ⊢ B)) → DerivableArgs E (js , (◇ , A) ⊢ B) djs ,1Ty dj = djs , dj _,1Ty=_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {A} {B C} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (exchange ((◇ , A) ⊢ B == C)) → DerivableArgs E (js , (◇ , A) ⊢ B == C) djs ,1Ty= dj = djs , dj _,1Tm_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {u : _} {A : _} {B : _} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (exchange ((◇ , B) ⊢ u :> A)) → DerivableArgs E (js , (◇ , B) ⊢ u :> A) djs ,1Tm dj = djs , dj _,1Tm=_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {u v : _} {A : _} {B : _} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (exchange ((◇ , B) ⊢ u == v :> A)) → DerivableArgs E (js , (◇ , B) ⊢ u == v :> A) djs ,1Tm= dj = djs , dj _,2Tm_ : ∀ {Σ} {E} {m} {Γ : Ctx Σ m} {u : _} {A : _} {B : _} {C : _} {ar : JudgmentArityArgs} {js : DerivationRulePremises Σ Γ ar} → DerivableArgs E js → Derivable E (exchange ((◇ , B , C) ⊢ u :> A)) → DerivableArgs E (js , (◇ , B , C) ⊢ u :> A) djs ,2Tm dj = djs , dj infixl 4 _,0Ty_ _,0Ty=_ _,0Tm_ _,0Tm=_ _,1Ty_ _,1Ty=_ _,1Tm_ _,1Tm=_ _,2Tm_
{ "alphanum_fraction": 0.5943581037, "avg_line_length": 39.0663265306, "ext": "agda", "hexsha": "3e0c63e785baaf2836658e4087760b60f6c49827", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "derivability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "derivability.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "derivability.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2801, "size": 7657 }
{-# OPTIONS --cubical --safe #-} module Path where open import Cubical.Foundations.Everything using ( _≡_ ; sym ; refl ; subst ; transport ; Path ; PathP ; I ; i0 ; i1 ; funExt ; cong ; toPathP ; cong₂ ; ~_ ; _∧_ ; _∨_ ; hcomp ; transp ; J ) renaming (_∙_ to _;_) public open import Data.Empty using (¬_) open import Level infix 4 _≢_ _≢_ : {A : Type a} → A → A → Type a x ≢ y = ¬ (x ≡ y) infix 4 PathP-syntax PathP-syntax = PathP syntax PathP-syntax (λ i → Ty) lhs rhs = lhs ≡[ i ≔ Ty ]≡ rhs
{ "alphanum_fraction": 0.4631578947, "avg_line_length": 16.2195121951, "ext": "agda", "hexsha": "784047c5f24bfea8209c0d4b58b7fae864b20363", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Path.agda", "max_line_length": 61, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Path.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 228, "size": 665 }
{-# OPTIONS --without-K #-} module overloading.core where -- ## Coercions -- -- The overloading system implemented in this module is based on -- **coercions**. A coercion is simply a function converting a type into -- another. In object-oriented parliance, a coercion embodies an *is-a* -- relationship. The two types involved in a coercions are called `Source` and -- `Target` respectively, and the coercion itself is a function `Source → -- Target`. -- -- Coercions are implemented as terms of type `Coercion`, which is a record -- parameterized over the `Source` and `Target` types, with a single field for -- the actual coercion function. Of course, the type `Coercion X Y` is -- isomorphic to `X → Y`, but using a record prevents possible ambiguities when -- using coercions as implicit parameters, and potentially makes instance -- resolution faster. -- -- The typical scenario where coercions are used is when defining a subtype -- relationships between types. Although Agda has no built-in support for -- subtypes, it is possible to achieve a reasonable level of syntactical -- convenience with the help of some boilerplace code that specifies the -- subtyping relation explicitly. See `category.graph.core` for a detailed -- example. -- -- This module also contains some functions to help reduce the amount of -- boilerplate needed for defining all the coercions necessary for a given type. -- See `coerce-self` and `coerce-parent` below. -- -- ## Methods -- -- The strategy employed by this library to implement overloading goes as -- follows. Every type (denoted by `Target` in the following) defines a set of -- "methods" that constitute its interface, and are inherited by every subtype -- of `Target`. Methods are divided into 2 groups: -- -- - **static methods** are functions that take an argument `X` of a type -- convertible to `Target`. The typical example of a static method is an -- explicit coercion function, like `∣_∣` below, which returns the "underlying -- set" of `X`. Another example of static method is the `total` function for -- graphs (see `category.graph.core`). -- -- - **instance methods** are functions that work without requiring an explicit -- parameter of type `Target`. A typical example of instance method is -- composition in a category (`_∘_`): there's no need to pass the category -- itself when composing two morphisms. In order to use instance methods, they -- have to be enabled explicitly for each instance for which they are used. -- Every type defines a special module (whose name is by convention always -- `as-target`, where `target` is replaced with the actual lowercase name of -- type) which allows instance methods to be enabled. For example, to use the -- composition operator for morphisms of a category `C`, one can write: -- -- open as-category C -- -- The `as-target` module itself behaves like a *static* method, so it can be -- used to enable instance methods for any superclass of a given instance. -- Furthermore, enabling instance methods for `Target` enables instance methods -- for all superclasses of it in its principal inheritance path (see -- "Inheritance Model" below). -- -- ## Implementation -- -- The implementation of static methods is relatively straightforward. A static -- method is defined as a function taking a coercion to `Target` as an instance -- argument, and uses the coercion to convert its argument to the correct type. -- -- As for instance methods, they are implemented as functions that take a record -- with the full interface of `Target` (called **instance record** below) as an -- implicit argument (see "Alternative Notations" below for details), and just -- return the appropriate field. This can be accomplished very easily using -- Agda's module system. -- -- The `as-target` module, used to enable instance methods, is defined as a -- static method, and works simply by putting the record above into scope. -- -- ## Alternative Notations -- -- Some types have an interface which supports alternative notations. For -- example, monoids have a "default" notation (`unit` and `_*_`), and an -- additive notation (`zero` and `_+_`). -- -- To implement multiple notations, a `Styled` record is used as the implicit -- parameter for instance methods. The `Styled` record is parameterized over a -- `style` parameter (normally `default`), and contains the interface record as -- its only field. -- -- The `Styled` record thus serves two purposes: -- -- - It prevents ambiguities in the resolution of instance arguments: if an -- interface record is in scope for reasons unrelated to the overloading system, -- then it will not be accidentally used as the argument of an instance methods, -- as it's not wrapped in a `Styled` record. -- -- - It allows instance methods to specify an alternative style parameter for -- the record in which the interface record is wrapped. Thus, multiple -- `as-target` module can be defined, one per supported style, that put the -- interface record in scope wrapped in the appropriate `Styled` record. The -- `styled` function can be used to wrap an interface record using a given -- style. -- -- ## Inheritance Model -- -- Subtyping relations can form an arbitrary directed graph, with a -- distinguished spanning forest, whose edges we call *principal*. -- -- Coercions are defined for every pair of connected nodes in the full graph. -- Exactly one coercion per pair should be defined, regardless of the number of -- paths that connect it. Static methods are inherited automatically through -- paths in the full DAG, since the existence of a coercion is enough for static -- methods to propagate. -- -- The principal subgraph is used for inheritance of instance methods. Namely, -- the `as-target` record enables all instance methods for the ancestors of -- `Target` in the principal subgraph. This is accomplished by simply -- re-exporting the `as-target` module for the immediate parent of -- `Target`. Extra edges coming out of `Target` can optionally be added as well -- for convenience. open import level open import overloading.bundle record Coercion {i}{j}(Source : Set i)(Target : Set j) : Set (i ⊔ j) where constructor coercion field coerce : Source → Target open Coercion public data Style : Set where default : Style record Styled {i}(style : Style)(X : Set i) : Set i where field value : X styled : ∀ {i}{X : Set i} → (s : Style) → X → Styled s X styled s x = record { value = x } -- Trivial coercion: any type can be coerced into itself. coerce-self : ∀ {i} (X : Set i) → Coercion X X coerce-self {i} _ = record { coerce = λ x → x } -- Transport a coercion to a `Bundle` subtype. See `overloading.bundle` for -- more details on bundles. coerce-parent : ∀ {i j k} {X : Set i} {Y : Set j} → ⦃ c : Coercion X Y ⦄ → {Struct : X → Set k} → Coercion (Bundle Struct) Y coerce-parent ⦃ c ⦄ = record { coerce = λ x → coerce c (Bundle.parent x) } instance set-is-set : ∀ {i} → Coercion (Set i) (Set i) set-is-set {i} = coerce-self _ ∣_∣ : ∀ {i j}{Source : Set i} ⦃ o : Coercion Source (Set j) ⦄ → Source → Set j ∣_∣ ⦃ c ⦄ = coerce c
{ "alphanum_fraction": 0.7200444815, "avg_line_length": 44.9625, "ext": "agda", "hexsha": "d8788e790b0be20360dcff3726a79c0424f9606b", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "overloading/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/overloading/core.agda", "max_line_length": 80, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "overloading/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1753, "size": 7194 }
module Issue606 where infixr 1 _,_ record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B postulate A B C : Set test : A × (B × C) test = {!!} , {!!} -- refining the second hole should give "? , ?" (no enclosing parens!)
{ "alphanum_fraction": 0.58203125, "avg_line_length": 17.0666666667, "ext": "agda", "hexsha": "639d909843041beb31dadea3276a2e057db793a1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue606.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue606.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue606.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 256 }
{-# OPTIONS --no-positivity-check #-} module Section7 where open import Section6 public -- 7. Correspondence between proof trees and terms -- =============================================== -- -- We define a function that translates the proof trees to the corresponding untyped terms nad -- likewise for the substitutions, we write `M ⁻` and `γ ⁻ˢ` for these operations. The definitions -- are: mutual _⁻ : ∀ {Γ A} → Γ ⊢ A → 𝕋 (ν x i) ⁻ = ν x (ƛ x M) ⁻ = ƛ x (M ⁻) (M ∙ N) ⁻ = (M ⁻) ∙ (N ⁻) (M ▶ γ) ⁻ = (M ⁻) ▶ (γ ⁻ˢ) _⁻ˢ : ∀ {Δ Γ} → Δ ⋙ Γ → 𝕊 π⟨ c ⟩ ⁻ˢ = [] (γ ● γ′) ⁻ˢ = (γ ⁻ˢ) ● (γ′ ⁻ˢ) [ γ , x ≔ M ] ⁻ˢ = [ γ ⁻ˢ , x ≔ M ⁻ ] -- It is easy to prove that the translation of a proof tree is well-typed: -- Lemma 12. mutual lem₁₂ : ∀ {Γ A} → (M : Γ ⊢ A) → Γ ⊢ M ⁻ ∷ A lem₁₂ (ν x i) = ν x i lem₁₂ (ƛ x M) = ƛ x (lem₁₂ M) lem₁₂ (M ∙ N) = lem₁₂ M ∙ lem₁₂ N lem₁₂ (M ▶ γ) = lem₁₂ M ▶ lem₁₂ₛ γ lem₁₂ₛ : ∀ {Γ Γ′} → (γ : Γ′ ⋙ Γ) → Γ′ ⋙ γ ⁻ˢ ∷ Γ lem₁₂ₛ π⟨ c ⟩ = ↑⟨ c ⟩ refl⋙∷ lem₁₂ₛ (γ ● γ′) = lem₁₂ₛ γ ● lem₁₂ₛ γ′ lem₁₂ₛ [ γ , x ≔ M ] = [ lem₁₂ₛ γ , x ≔ lem₁₂ M ] -- In general, we may have `M ⁻ ≡ N ⁻` but `M` different from `N`. Take for example -- `(λ(y : B ⊃ B).z) ∙ λ(x : B).x : [ z : A ] ⊢ A` and `(λ(y : C ⊃ C).z ∙ λ(x : C).x : [ z : A ] ⊢ A` -- which are both -- translated into `(λ y.z) ∙ λ x.x`. This shows that a given term can be decorated into different -- proof trees. -- -- We define a relation between terms and their possible decorations (and likewise for the -- substitutions) as an inductively defined set. (…) -- -- The introduction rules are: (…) mutual infix 3 _𝒟_ data _𝒟_ : ∀ {Γ A} → 𝕋 → Γ ⊢ A → Set where ν : ∀ {Γ A} → (x : Name) (i : Γ ∋ x ∷ A) → ν x 𝒟 ν x i _∙_ : ∀ {Γ A B t₁ t₂} {M : Γ ⊢ A ⊃ B} {N : Γ ⊢ A} → t₁ 𝒟 M → t₂ 𝒟 N → t₁ ∙ t₂ 𝒟 M ∙ N π⟨_⟩ : ∀ {Γ Δ A t} {M : Δ ⊢ A} → (c : Γ ⊇ Δ) → t 𝒟 M → t 𝒟 M ▶ π⟨ c ⟩ _▶_ : ∀ {Γ Δ A s t} {M : Δ ⊢ A} {γ : Γ ⋙ Δ} → t 𝒟 M → s 𝒟ₛ γ → t ▶ s 𝒟 M ▶ γ ƛ : ∀ {Γ A B t} → (x : Name) {{_ : T (fresh x Γ)}} {M : [ Γ , x ∷ A ] ⊢ B} → t 𝒟 M → ƛ x t 𝒟 ƛ x M infix 3 _𝒟ₛ_ data _𝒟ₛ_ : ∀ {Γ Δ} → 𝕊 → Γ ⋙ Δ → Set where π⟨_⟩ : ∀ {Γ Δ} → (c : Γ ⊇ Δ) → [] 𝒟ₛ π⟨ c ⟩ [_,_≔_] : ∀ {Γ Δ A s t} {γ : Δ ⋙ Γ} {M : Δ ⊢ A} → s 𝒟ₛ γ → (x : Name) {{_ : T (fresh x Γ)}} → t 𝒟 M → [ s , x ≔ t ] 𝒟ₛ [ γ , x ≔ M ] ↓⟨_⟩𝒟ₛ : ∀ {Γ Δ Θ s} {γ : Θ ⋙ Γ} → (c : Γ ⊇ Δ) → s 𝒟ₛ γ → s 𝒟ₛ ↓⟨ c ⟩ γ ↑⟨_⟩𝒟ₛ : ∀ {Γ Δ Θ s} {γ : Γ ⋙ Δ} → (c : Θ ⊇ Γ) → s 𝒟ₛ γ → s 𝒟ₛ ↑⟨ c ⟩ γ _●_ : ∀ {Γ Δ Θ s₁ s₂} {γ₂ : Γ ⋙ Δ} {γ₁ : Θ ⋙ Γ} → s₂ 𝒟ₛ γ₂ → s₁ 𝒟ₛ γ₁ → s₂ ● s₁ 𝒟ₛ γ₂ ● γ₁ -- It is straightforward to prove Lemma 13 -- mutually with a corresponding lemma for substitutions. -- Lemma 13. mutual lem₁₃ : ∀ {Γ A} → (M : Γ ⊢ A) → M ⁻ 𝒟 M lem₁₃ (ν x i) = ν x i lem₁₃ (ƛ x M) = ƛ x (lem₁₃ M) lem₁₃ (M ∙ N) = lem₁₃ M ∙ lem₁₃ N lem₁₃ (M ▶ γ) = lem₁₃ M ▶ lem₁₃ₛ γ lem₁₃ₛ : ∀ {Γ Γ′} → (γ : Γ′ ⋙ Γ) → γ ⁻ˢ 𝒟ₛ γ lem₁₃ₛ π⟨ c ⟩ = π⟨ c ⟩ lem₁₃ₛ (γ ● γ′) = lem₁₃ₛ γ ● lem₁₃ₛ γ′ lem₁₃ₛ [ γ , x ≔ M ] = [ lem₁₃ₛ γ , x ≔ lem₁₃ M ] -- Using the discussion in Section 3.3 on how to define the monotonicity and projection -- rules with `π⟨_⟩` we can find a proof tree that corresponds to a well-typed term: -- Lemma 14. postulate lem₁₄ : ∀ {Γ A t} → Γ ⊢ t ∷ A → Σ (Γ ⊢ A) (λ M → M ⁻ ≡ t) -- As a direct consequence of this lemma and Lemma 13 we know that every well-typed term -- has a decoration. -- Lemma 15. lem₁₅ : ∀ {Γ A t} → Γ ⊢ t ∷ A → Σ (Γ ⊢ A) (λ M → t 𝒟 M) lem₁₅ D with lem₁₄ D … | (M , refl) = M , lem₁₃ M -- As a consequence of this lemma we can now define the semantics of a well-typed term in -- a Kripke model as the semantics of the decorated term. In the remaining text, however, we -- study only the correspondence between terms and proof trees since the translation to the -- semantics is direct. -- -- TODO: What to do about the above paragraph? -- -- As we mentioned above a well-typed term may be decorated to several proof trees. We -- can however prove that if two proof trees are in η-normal form and they are decorations of -- the same term, then the two proof trees are convertible. We prove Lemma 16 -- together with two corresponding lemmas for proof trees in applicative normal form: -- Lemma 16. mutual postulate lem₁₆ : ∀ {Γ A t} {M M′ : Γ ⊢ A} {{_ : enf M}} {{_ : enf M′}} → t 𝒟 M → t 𝒟 M′ → M ≡ M′ postulate lem₁₆′ : ∀ {Γ A A′ t} {M : Γ ⊢ A} {N : Γ ⊢ A′} {{_ : anf M}} {{_ : anf N}} → t 𝒟 M → t 𝒟 N → A ≡ A′ -- TODO: Uh oh. Heterogeneous equality? -- postulate -- lem₁₆″ : ∀ {Γ A A′ t} {M : Γ ⊢ A} {M′ : Γ ⊢ A′} {{_ : anf M}} {{_ : anf M′}} → -- t 𝒟 M → t 𝒟 M′ → -- M ≡ M′ postulate lem₁₆″ : ∀ {Γ A t} {M M′ : Γ ⊢ A} {{_ : anf M}} {{_ : anf M′}} → t 𝒟 M → t 𝒟 M′ → M ≡ M′ -- As a consequence we get that if `nf M ⁻` and `nf N ⁻` are the same, then `M ≅ N`. -- Corollary 2. postulate cor₂ : ∀ {Γ A} → (M M′ : Γ ⊢ A) → nf M ⁻ ≡ nf M′ ⁻ → M ≅ M′ -- Proof: By Lemma 16 and Theorem 7 we get `nf N ≡ nf M` and by Theorem 5 we get `M ≅ N`. -- 7.1. Reduction -- -------------- -- -- We mutually inductively define when a term is in weak head normal form (abbreviated -- `whnf`) and in weak head applicative normal form (abbreviated `whanf`) by: mutual data whnf : 𝕋 → Set where ƛ : ∀ {t} → (x : Name) → whnf t → whnf (ƛ x t) α : ∀ {t} → whanf t → whnf t data whanf : 𝕋 → Set where ν : (x : Name) → whanf (ν x) _∙_ : ∀ {t u} → whanf t → whnf u → whanf (t ∙ u) -- We inductively define a deterministic untyped one-step reduction on terms and -- substitutions: (…) mutual infix 3 _⟶_ data _⟶_ : 𝕋 → 𝕋 → Set where red₁ : ∀ {a s t x} → (ƛ x t ▶ s) ∙ a ⟶ t ▶ [ s , x ≔ a ] red₂ : ∀ {t t₁ t₂} → t₁ ⟶ t₂ → t₁ ∙ t ⟶ t₂ ∙ t red₃ : ∀ {s t x} → ν x ▶ [ s , x ≔ t ] ⟶ t red₄ : ∀ {s t x y} {{_ : x ≢ y}} → ν x ▶ [ s , y ≔ t ] ⟶ ν x ▶ s red₅ : ∀ {x} → ν x ▶ [] ⟶ ν x red₆ : ∀ {s₁ s₂ x} → s₁ ⟶ₛ s₂ → x ▶ s₁ ⟶ x ▶ s₂ red₇ : ∀ {s t₁ t₂} → (t₁ ∙ t₂) ▶ s ⟶ (t₁ ▶ s) ∙ (t₂ ▶ s) red₈ : ∀ {s₁ s₂ t} → (t ▶ s₁) ▶ s₂ ⟶ t ▶ (s₁ ● s₂) infix 3 _⟶ₛ_ data _⟶ₛ_ : 𝕊 → 𝕊 → Set where red₁ₛ : ∀ {s₀ s₁ t x} → [ s₀ , x ≔ t ] ● s₁ ⟶ₛ [ s₀ ● s₁ , x ≔ t ▶ s₁ ] red₂ₛ : ∀ {s₁ s₂ s₃} → (s₁ ● s₂) ● s₃ ⟶ₛ s₁ ● (s₂ ● s₃) red₃ₛ : ∀ {s} → [] ● s ⟶ₛ s -- The untyped evaluation to `whnf`, `_⟹_`, is inductively defined by: infix 3 _⟹_ data _⟹_ : 𝕋 → 𝕋 → Set where eval₁ : ∀ {t} {{_ : whnf t}} → t ⟹ t eval₂ : ∀ {t₁ t₂ t₃} → t₁ ⟶ t₂ → t₂ ⟹ t₃ → t₁ ⟹ t₃ -- It is easy to see that this relation is deterministic. -- -- TODO: What to do about the above paragraph? -- -- In order to define a deterministic reduction that gives a term on long η-normal form -- we need to use its type. We define this typed reduction, `_⊢_↓_∷_`, simultaneously with `_⊢_↓ₛ_∷_` which -- η-expands the arguments in an application on `whnf`: mutual infix 3 _⊢_↓_∷_ data _⊢_↓_∷_ : 𝒞 → 𝕋 → 𝕋 → 𝒯 → Set where red₁ : ∀ {Γ t₀ t₂} → Σ 𝕋 (λ t₁ → t₀ ⟹ t₁ × Γ ⊢ t₁ ↓ₛ t₂ ∷ •) → Γ ⊢ t₀ ↓ t₂ ∷ • red₂ : ∀ {Γ A B t₁ t₂} → let z , φ = gensym Γ in let instance _ = φ in [ Γ , z ∷ A ] ⊢ t₁ ∙ ν z ↓ t₂ ∷ B → Γ ⊢ t₁ ↓ ƛ z t₂ ∷ A ⊃ B infix 3 _⊢_↓ₛ_∷_ data _⊢_↓ₛ_∷_ : 𝒞 → 𝕋 → 𝕋 → 𝒯 → Set where red₁ₛ : ∀ {Γ A x} → Γ ∋ x ∷ A → Γ ⊢ ν x ↓ₛ ν x ∷ A red₂ₛ : ∀ {Γ B t₁ t₂ t₁′ t₂′} → Σ 𝒯 (λ A → Γ ⊢ t₁ ↓ₛ t₁′ ∷ A ⊃ B × Γ ⊢ t₂ ↓ t₂′ ∷ A) → Γ ⊢ t₁ ∙ t₂ ↓ₛ t₁′ ∙ t₂′ ∷ B -- Finally we define `Γ ⊢ t ⇓ t′ ∷ A` to hold if `Γ ⊢ t [] ↓ t′ ∷ A`. _⊢_⇓_∷_ : 𝒞 → 𝕋 → 𝕋 → 𝒯 → Set Γ ⊢ t ⇓ t′ ∷ A = Γ ⊢ t ▶ [] ↓ t′ ∷ A -- 7.2. Equivalence between proof trees and terms -- ---------------------------------------------- -- -- We can prove that if `M : Γ ⊢ A`, then `Γ ⊢ M ⁻ ⇓ nf M ⁻ ∷ A`. This we do by defining a -- Kripke logical relation, `_ℛ_`. (…) -- -- When `f : Γ ⊩ •` we intuitively have that `t ℛ f` holds if `Γ ⊢ t ↓ f ⁻`. -- -- When `f : Γ ⊩ A ⊃ B`, then `t ℛ f` holds if for all `t′` and `a : Γ ⊩ A` such that `t′ ℛ a`, we -- have that `t ∙ t′ ℛ f ⟦∙⟧ a`. infix 3 _ℛ_ data _ℛ_ : ∀ {Γ A} → 𝕋 → Γ ⊩ A → Set where 𝓇• : ∀ {Δ} → (t : 𝕋) (f : Δ ⊩ •) → (∀ {Γ} → (c : Γ ⊇ Δ) (t′ : 𝕋) → t′ 𝒟 f ⟦g⟧⟨ c ⟩ → Γ ⊢ t ↓ t′ ∷ •) → t ℛ f 𝓇⊃ : ∀ {Δ A B} → (t : 𝕋) (f : Δ ⊩ A ⊃ B) → (∀ {Γ} → (c : Γ ⊇ Δ) (a : Γ ⊩ A) (t′ : 𝕋) → Γ ⊢ t′ ∷ A → t′ ℛ a → t ∙ t′ ℛ f ⟦∙⟧⟨ c ⟩ a) → t ℛ f -- For the substitutions we define correspondingly: infix 3 _ℛₛ_ data _ℛₛ_ : ∀ {Γ Δ} → 𝕊 → Γ ⊩⋆ Δ → Set where 𝓇ₛ[] : ∀ {Δ s} → Δ ⋙ s ∷ [] → s ℛₛ ([] {w = Δ}) -- NOTE: Mistake in paper? Changed `v : Δ ⊩ A` to `a : Γ ⊩ A`. rₛ≔ : ∀ {Γ Δ A s x} {{_ : T (fresh x Γ)}} {{_ : T (fresh x Δ)}} → Δ ⋙ s ∷ [ Γ , x ∷ A ] → (ρ : Γ ⊩⋆ Δ) (a : Γ ⊩ A) → s ℛₛ ρ → ν x ▶ s ℛ a → s ℛₛ [ ρ , x ≔ a ] -- The following lemmas are straightforward to prove: postulate aux₇₂₁ : ∀ {Γ A t₁ t₂} → (a : Γ ⊩ A) → t₁ ℛ a → t₂ ⟶ t₁ → t₂ ℛ a postulate aux₇₂₂ : ∀ {Γ Δ s₁ s₂} → (ρ : Γ ⊩⋆ Δ) → Δ ⋙ s₁ ∷ Γ → s₁ ⟶ₛ s₂ → s₂ ℛₛ ρ → s₁ ℛₛ ρ -- NOTE: Mistake in paper? Changed `Occur(x, A, Γ)` to `Δ ∋ x ∷ A`. postulate aux₇₂₃ : ∀ {Γ Δ A s x} → (ρ : Γ ⊩⋆ Δ) (i : Δ ∋ x ∷ A) → Δ ⋙ s ∷ Γ → ν x ▶ s ℛ lookup ρ i postulate aux₇₂₄⟨_⟩ : ∀ {Γ Δ A t} → (c : Γ ⊇ Δ) (a : Δ ⊩ A) → t ℛ a → t ℛ ↑⟨ c ⟩ a -- NOTE: Mistake in paper? Changed `ρ ∈ Γ ⊩ Δ` to `ρ : Δ ⊩⋆ Γ`. postulate aux₇₂₅⟨_⟩ : ∀ {Γ Δ Θ s} → (c : Θ ⊇ Δ) → Δ ⋙ s ∷ Γ → (ρ : Δ ⊩⋆ Γ) → s ℛₛ ρ → s ℛₛ ↑⟨ c ⟩ ρ -- NOTE: Mistake in paper? Changed `ρ ∈ Γ ⊩ Δ` to `ρ : Δ ⊩⋆ Γ`. postulate aux₇₂₆⟨_⟩ : ∀ {Γ Δ Θ s} → (c : Γ ⊇ Θ) → Δ ⋙ s ∷ Γ → (ρ : Δ ⊩⋆ Γ) → s ℛₛ ρ → s ℛₛ ↓⟨ c ⟩ ρ postulate aux₇₂₇ : ∀ {Γ Δ A s t x} → Γ ⊢ t ∷ A → Γ ⋙ s ∷ Δ → (ρ : Γ ⊩⋆ Δ) → s ℛₛ ρ → [ s , x ≔ t ] ℛₛ ρ -- Using these lemmas we can prove by mutual induction on the proof tree of terms and -- substitutions that: -- NOTE: Mistake in paper? Changed `ρ ∈ Γ ⊩ Δ` to `ρ : Δ ⊩⋆ Γ`. postulate aux₇₂₈ : ∀ {Γ Δ A s t} → (M : Γ ⊢ A) (ρ : Δ ⊩⋆ Γ) → Δ ⋙ s ∷ Γ → t 𝒟 M → s ℛₛ ρ → t ▶ s ℛ ⟦ M ⟧ ρ postulate aux₇₂₉ : ∀ {Γ Δ Θ s₁ s₂} → (γ : Γ ⋙ Θ) (ρ : Δ ⊩⋆ Γ) → Δ ⋙ s₂ ∷ Γ → s₁ 𝒟ₛ γ → s₂ ℛₛ ρ → s₂ ● s₁ ℛₛ ⟦ γ ⟧ₛ ρ -- We also show, intuitively, that if `t ℛ a`, `a : Γ ⊩ A`, then `Γ ⊢ t ↓ reify a ⁻ ∷ A` -- together with a corresponding lemma for `val`: -- Lemma 17. mutual postulate lem₁₇ : ∀ {Γ A t₀ t₁} → Γ ⊢ t₀ ∷ A → (a : Γ ⊩ A) → t₀ ℛ a → t₁ 𝒟 reify a → Γ ⊢ t₀ ↓ t₁ ∷ A -- NOTE: Mistake in paper? Changed `t ℛ val(f)` to `t₀ ℛ val f`. postulate aux₇₂₁₀ : ∀ {Γ A t₀} → Γ ⊢ t₀ ∷ A → whanf t₀ → (f : ∀ {Δ} → (c : Δ ⊇ Γ) → Δ ⊢ A) → (∀ {Δ} → (c : Δ ⊇ Γ) → Δ ⊢ t₀ ↓ₛ f c ⁻ ∷ A) → t₀ ℛ val f -- The proof that the translation of proof trees reduces to the translation of its normal form -- follows directly: -- Theorem 8. postulate thm₈ : ∀ {Γ A t} → (M : Γ ⊢ A) → t 𝒟 M → Γ ⊢ t ⇓ nf M ⁻ ∷ A -- As a consequence we get that if two proof trees are decorations of the same term, then they -- are convertible with each other: -- Corollary 3. postulate cor₃ : ∀ {Γ A t} → (M N : Γ ⊢ A) → t 𝒟 M → t 𝒟 N → M ≅ N -- Proof: By Theorem 8 we get that `Γ ⊢ t ⇓ nf M ⁻ ∷ A` and `Γ ⊢ t ⇓ nf N ⁻ ∷ A`. Since -- the reduction is deterministic we get `nf M ⁻ ≡ nf N ⁻` and by Corollary 2 we get that -- `M ≅ N`.
{ "alphanum_fraction": 0.4419796588, "avg_line_length": 31.5328282828, "ext": "agda", "hexsha": "de7be3e41add2d065a688daabba426f045e41f5f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand", "max_forks_repo_path": "src/Section7.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand", "max_issues_repo_path": "src/Section7.agda", "max_line_length": 108, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand", "max_stars_repo_path": "src/Section7.agda", "max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z", "num_tokens": 5847, "size": 12487 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Support.Equivalence module Categories.Object.Indexed {o ℓ e c q} (C : Category o ℓ e) (B : Setoid c q) where open import Categories.Support.SetoidFunctions open Category C open _⟶_ public using () renaming (cong to cong₀; _⟨$⟩_ to _!_) Objoid = set→setoid Obj Dust = B ⟶ Objoid dust-setoid = B ⇨ Objoid
{ "alphanum_fraction": 0.736318408, "avg_line_length": 26.8, "ext": "agda", "hexsha": "294f6a6f1a826f6c98df878eec1e18df8dfdcc5b", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Indexed.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Indexed.agda", "max_line_length": 88, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 121, "size": 402 }
-- Andreas, 2018-10-16, erased lambda-arguments applyErased : {@0 A B : Set} → (@0 A → B) → @0 A → B applyErased f x = f x test : {A : Set} → A → A test x = applyErased (λ y → y) x -- Expected error: -- -- Variable y is declared erased, so it cannot be used here -- when checking that the expression y has type _B_7
{ "alphanum_fraction": 0.6363636364, "avg_line_length": 24.5384615385, "ext": "agda", "hexsha": "5b9f40710e265cdfe37b5f574e201d098bdae524", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Erasure-Lambda.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Erasure-Lambda.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Erasure-Lambda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 319 }
module RandomAccessList.Standard.Numeral where open import Data.List open import Data.Nat open import Data.Nat.Properties.Simple open import Data.Unit using (⊤) open import Data.Empty using (⊥; ⊥-elim) open import Relation.Nullary.Negation using (contraposition) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; trans; sym; inspect) open PropEq.≡-Reasoning data Digit : Set where zero : Digit one : Digit Binary : Set Binary = List Digit incr : Binary → Binary incr [] = one ∷ [] incr (zero ∷ xs) = one ∷ xs incr (one ∷ xs) = zero ∷ incr xs ⟦_⟧ : Binary → ℕ ⟦ [] ⟧ = 0 ⟦ zero ∷ xs ⟧ = 2 * ⟦ xs ⟧ ⟦ one ∷ xs ⟧ = 1 + 2 * ⟦ xs ⟧ *-0-absorb : (n m : ℕ) → n ≡ 0 → m * n ≡ 0 *-0-absorb n m p = begin m * n ≡⟨ cong (_*_ m) p ⟩ m * 0 ≡⟨ *-right-zero m ⟩ 0 ∎ decr : (xs : Binary) → ⟦ xs ⟧ ≢ 0 → Binary decr [] p = ⊥-elim (p refl) decr (zero ∷ xs) p = one ∷ decr xs (contraposition (*-0-absorb ⟦ xs ⟧ 2) p) decr (one ∷ xs) p = zero ∷ xs
{ "alphanum_fraction": 0.5725047081, "avg_line_length": 24.1363636364, "ext": "agda", "hexsha": "afd17efcddbda6679b52dc67f6c5f984ab4e1db8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/RandomAccessList/Standard/Numeral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/RandomAccessList/Standard/Numeral.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/RandomAccessList/Standard/Numeral.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 410, "size": 1062 }
open import Prelude open import core module ground-decidable where -- every type is either ground or not ground-decidable : (τ : typ) → (τ ground) + ((τ ground) → ⊥) ground-decidable b = Inl GBase ground-decidable ⦇·⦈ = Inr (λ ()) ground-decidable (b ==> b) = Inr (λ ()) ground-decidable (b ==> ⦇·⦈) = Inr (λ ()) ground-decidable (b ==> τ' ==> τ'') = Inr (λ ()) ground-decidable (b ==> τ₁ ⊗ τ₂) = Inr (λ ()) ground-decidable (⦇·⦈ ==> b) = Inr (λ ()) ground-decidable (⦇·⦈ ==> ⦇·⦈) = Inl GHole ground-decidable (⦇·⦈ ==> τ' ==> τ'') = Inr (λ ()) ground-decidable ((τ ==> τ₁) ==> b) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ==> ⦇·⦈) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ==> τ' ==> τ'') = Inr (λ ()) ground-decidable ((τ ⊗ τ₂) ==> τ₁) = Inr (λ ()) ground-decidable (τ ⊗ b) = Inr (λ ()) ground-decidable (b ⊗ ⦇·⦈) = Inr (λ ()) ground-decidable (⦇·⦈ ⊗ ⦇·⦈) = Inl GProd ground-decidable (⦇·⦈ ==> τ₁ ⊗ τ₂) = Inr (λ ()) ground-decidable ((τ ⊗ τ₁) ⊗ ⦇·⦈) = Inr (λ ()) ground-decidable ((τ ==> τ₁) ⊗ ⦇·⦈) = Inr (λ ()) ground-decidable ((τ ==> τ₂) ==> τ₁ ⊗ τ₃) = Inr (λ ()) ground-decidable (τ ⊗ τ₁ ==> τ₂) = Inr (λ ()) ground-decidable (τ ⊗ τ₁ ⊗ τ₂) = Inr (λ ())
{ "alphanum_fraction": 0.5053852527, "avg_line_length": 41.6206896552, "ext": "agda", "hexsha": "ce87fd6d0a944d22d071d865b3c4ee77672e6cf5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "ground-decidable.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "ground-decidable.agda", "max_line_length": 62, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "ground-decidable.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 547, "size": 1207 }
-- Generated by src/templates/TemplatesCompiler module templates where open import lib open import cedille-types -- src/templates/Mendler.ced MendlerTemplate = File "1" ImportsStart "1" "8" "Mendler" (ParamsCons (Decl "16" "17" NotErased "Indices" (Tkk (Star "27")) "29") ParamsNil) (CmdsNext (DefTermOrType OpacTrans (DefType "32" "Sigma" (KndPi "40" "42" "A" (Tkk (Star "46")) (KndArrow (KndParens "49" (KndTpArrow (TpVar "50" "A") (Star "54")) "56") (Star "59"))) (TpLambda "63" "65" "A" (Tkk (Star "69")) (TpLambda "72" "74" "B" (Tkk (KndTpArrow (TpVar "78" "A") (Star "82"))) (Iota "87" "89" "x" (TpEq "93" (Beta "94" NoTerm NoTerm) (Beta "98" NoTerm NoTerm) "100") (Abs "102" Erased "104" "X" (Tkk (KndTpArrow (TpEq "108" (Beta "109" NoTerm NoTerm) (Beta "113" NoTerm NoTerm) "115") (Star "118"))) (TpArrow (TpParens "121" (Abs "122" NotErased "124" "a" (Tkt (TpVar "128" "A")) (Abs "131" NotErased "133" "b" (Tkt (TpAppt (TpVar "137" "B") (Var "139" "a"))) (TpAppt (TpVar "142" "X") (Beta "144" NoTerm (SomeTerm (Lam "146" NotErased "148" "f" NoClass (App (App (Var "151" "f") NotErased (Var "153" "a")) NotErased (Var "155" "b"))) "157"))))) "158") NotErased (TpAppt (TpVar "161" "X") (Var "163" "x")))))))) "165") (CmdsNext (DefTermOrType OpacTrans (DefType "166" "Product" (KndArrow (Star "176") (KndArrow (Star "180") (Star "184"))) (TpLambda "188" "190" "A" (Tkk (Star "194")) (TpLambda "197" "199" "B" (Tkk (Star "203")) (TpApp (TpApp (TpVar "206" "Sigma") (TpVar "214" "A")) (TpParens "218" (TpLambda "219" "221" "_" (Tkt (TpVar "225" "A")) (TpVar "228" "B")) "230"))))) "231") (CmdsNext (DefTermOrType OpacTrans (DefTerm "233" "sigma" (SomeType (Abs "241" Erased "243" "A" (Tkk (Star "247")) (Abs "250" Erased "252" "B" (Tkk (KndTpArrow (TpVar "256" "A") (Star "260"))) (Abs "263" NotErased "265" "a" (Tkt (TpVar "269" "A")) (TpArrow (TpAppt (TpVar "272" "B") (Var "274" "a")) NotErased (TpApp (TpApp (TpVar "278" "Sigma") (TpVar "286" "A")) (TpVar "290" "B"))))))) (Lam "296" Erased "298" "A" NoClass (Lam "301" Erased "303" "B" NoClass (Lam "306" NotErased "308" "a" NoClass (Lam "311" NotErased "313" "b" NoClass (IotaPair "316" (Beta "317" NoTerm (SomeTerm (Lam "319" NotErased "321" "f" NoClass (App (App (Var "324" "f") NotErased (Var "326" "a")) NotErased (Var "328" "b"))) "330")) (Lam "332" Erased "334" "X" NoClass (Lam "337" NotErased "339" "f" NoClass (App (App (Var "342" "f") NotErased (Var "344" "a")) NotErased (Var "346" "b")))) NoGuide "348")))))) "349") (CmdsNext (DefTermOrType OpacTrans (DefTerm "351" "SigmaInd" (SomeType (Abs "366" Erased "368" "A" (Tkk (Star "372")) (Abs "379" Erased "381" "B" (Tkk (KndTpArrow (TpVar "385" "A") (Star "389"))) (Abs "396" NotErased "398" "x" (Tkt (TpApp (TpApp (TpVar "402" "Sigma") (TpVar "410" "A")) (TpVar "414" "B"))) (Abs "421" Erased "423" "Q" (Tkk (KndTpArrow (TpApp (TpApp (TpVar "427" "Sigma") (TpVar "435" "A")) (TpVar "439" "B")) (Star "443"))) (TpArrow (TpParens "450" (Abs "451" NotErased "453" "a" (Tkt (TpVar "457" "A")) (Abs "460" NotErased "462" "b" (Tkt (TpAppt (TpVar "466" "B") (Var "468" "a"))) (TpAppt (TpVar "471" "Q") (Parens "473" (App (App (AppTp (AppTp (Var "474" "sigma") (TpVar "482" "A")) (TpVar "486" "B")) NotErased (Var "488" "a")) NotErased (Var "490" "b")) "492")))) "493") NotErased (TpAppt (TpVar "500" "Q") (Var "502" "x")))))))) (Lam "508" Erased "510" "A" NoClass (Lam "513" Erased "515" "B" NoClass (Lam "518" NotErased "520" "x" NoClass (Lam "523" Erased "525" "Q" NoClass (Lam "528" NotErased "530" "f" NoClass (App (App (App (AppTp (IotaProj (Var "537" "x") "2" "540") (TpParens "543" (TpLambda "544" "546" "x" (Tkt (TpEq "550" (Beta "551" NoTerm NoTerm) (Beta "555" NoTerm NoTerm) "557")) (Abs "559" Erased "561" "x'" (Tkt (TpApp (TpApp (TpVar "566" "Sigma") (TpVar "574" "A")) (TpVar "578" "B"))) (TpArrow (TpEq "581" (Var "582" "x'") (Var "587" "x") "589") Erased (TpAppt (TpVar "592" "Q") (Var "594" "x'"))))) "597")) NotErased (Parens "604" (Lam "605" NotErased "607" "a" NoClass (Lam "610" NotErased "612" "b" NoClass (Lam "615" Erased "617" "x'" NoClass (Lam "621" Erased "623" "e" NoClass (Rho "626" RhoPlain NoNums (Var "628" "e") NoGuide (App (App (Var "632" "f") NotErased (Var "634" "a")) NotErased (Var "636" "b"))))))) "638")) Erased (Var "640" "x")) Erased (Beta "643" NoTerm NoTerm)))))))) "645") (CmdsNext (DefTermOrType OpacTrans (DefTerm "647" "fst" (SomeType (Abs "653" Erased "655" "A" (Tkk (Star "659")) (Abs "662" Erased "664" "B" (Tkk (KndTpArrow (TpVar "668" "A") (Star "672"))) (TpArrow (TpApp (TpApp (TpVar "675" "Sigma") (TpVar "683" "A")) (TpVar "687" "B")) NotErased (TpVar "691" "A"))))) (Lam "695" Erased "697" "A" NoClass (Lam "700" Erased "702" "B" NoClass (Lam "705" NotErased "707" "x" NoClass (App (AppTp (App (Var "712" "SigmaInd") NotErased (Var "721" "x")) (TpParens "725" (TpLambda "726" "728" "x" (Tkt (TpApp (TpApp (TpVar "732" "Sigma") (TpVar "740" "A")) (TpVar "744" "B"))) (TpVar "747" "A")) "749")) NotErased (Parens "750" (Lam "751" NotErased "753" "a" NoClass (Lam "756" NotErased "758" "b" NoClass (Var "761" "a"))) "763")))))) "764") (CmdsNext (DefTermOrType OpacTrans (DefTerm "766" "snd" (SomeType (Abs "772" Erased "774" "A" (Tkk (Star "778")) (Abs "781" Erased "783" "B" (Tkk (KndTpArrow (TpVar "787" "A") (Star "791"))) (Abs "794" NotErased "796" "x" (Tkt (TpApp (TpApp (TpVar "800" "Sigma") (TpVar "808" "A")) (TpVar "812" "B"))) (TpAppt (TpVar "815" "B") (Parens "817" (App (Var "818" "fst") NotErased (Var "822" "x")) "824")))))) (Lam "827" Erased "829" "A" NoClass (Lam "832" Erased "834" "B" NoClass (Lam "837" NotErased "839" "x" NoClass (App (AppTp (App (Var "844" "SigmaInd") NotErased (Var "853" "x")) (TpParens "857" (TpLambda "858" "860" "x" (Tkt (TpApp (TpApp (TpVar "864" "Sigma") (TpVar "872" "A")) (TpVar "876" "B"))) (TpAppt (TpVar "879" "B") (Parens "881" (App (Var "882" "fst") NotErased (Var "886" "x")) "888"))) "889")) NotErased (Parens "890" (Lam "891" NotErased "893" "a" NoClass (Lam "896" NotErased "898" "b" NoClass (Var "901" "b"))) "903")))))) "904") (CmdsNext (DefTermOrType OpacTrans (DefType "907" "Cast" (KndArrow (KndParens "914" (KndTpArrow (TpVar "915" "Indices") (Star "925")) "927") (KndArrow (KndParens "930" (KndTpArrow (TpVar "931" "Indices") (Star "941")) "943") (Star "946"))) (TpLambda "950" "952" "A" (Tkk (KndTpArrow (TpVar "956" "Indices") (Star "966"))) (TpLambda "969" "971" "B" (Tkk (KndTpArrow (TpVar "975" "Indices") (Star "985"))) (Iota "990" "992" "cast" (Abs "999" Erased "1001" "indices" (Tkt (TpVar "1011" "Indices")) (TpArrow (TpAppt (TpVar "1020" "A") (Var "1022" "indices")) NotErased (TpAppt (TpVar "1032" "B") (Var "1034" "indices")))) (TpEq "1043" (Var "1044" "cast") (Lam "1051" NotErased "1053" "x" NoClass (Var "1056" "x")) "1058"))))) "1059") (CmdsNext (DefTermOrType OpacTrans (DefTerm "1061" "cast" (SomeType (Abs "1072" Erased "1074" "A" (Tkk (KndTpArrow (TpVar "1078" "Indices") (Star "1088"))) (Abs "1091" Erased "1093" "B" (Tkk (KndTpArrow (TpVar "1097" "Indices") (Star "1107"))) (TpArrow (TpApp (TpApp (TpVar "1110" "Cast") (TpVar "1117" "A")) (TpVar "1121" "B")) Erased (Abs "1129" Erased "1131" "indices" (Tkt (TpVar "1141" "Indices")) (TpArrow (TpAppt (TpVar "1150" "A") (Var "1152" "indices")) NotErased (TpAppt (TpVar "1162" "B") (Var "1164" "indices")))))))) (Lam "1176" Erased "1178" "A" NoClass (Lam "1181" Erased "1183" "B" NoClass (Lam "1186" Erased "1188" "c" NoClass (Phi "1191" (IotaProj (Var "1193" "c") "2" "1196") (IotaProj (Var "1199" "c") "1" "1202") (Lam "1204" NotErased "1206" "x" NoClass (Var "1209" "x")) "1211"))))) "1212") (CmdsNext (DefTermOrType OpacTrans (DefType "1214" "Functor" (KndArrow (KndParens "1224" (KndArrow (KndParens "1225" (KndTpArrow (TpVar "1226" "Indices") (Star "1236")) "1238") (KndTpArrow (TpVar "1241" "Indices") (Star "1251"))) "1253") (Star "1256")) (TpLambda "1262" "1264" "F" (Tkk (KndArrow (KndParens "1268" (KndTpArrow (TpVar "1269" "Indices") (Star "1279")) "1281") (KndTpArrow (TpVar "1284" "Indices") (Star "1294")))) (Abs "1297" Erased "1299" "X" (Tkk (KndTpArrow (TpVar "1303" "Indices") (Star "1313"))) (Abs "1316" Erased "1318" "Y" (Tkk (KndTpArrow (TpVar "1322" "Indices") (Star "1332"))) (TpArrow (TpApp (TpApp (TpVar "1339" "Cast") (TpVar "1346" "X")) (TpVar "1350" "Y")) Erased (TpApp (TpApp (TpVar "1354" "Cast") (TpParens "1361" (TpApp (TpVar "1362" "F") (TpVar "1366" "X")) "1368")) (TpParens "1371" (TpApp (TpVar "1372" "F") (TpVar "1376" "Y")) "1378"))))))) "1379") (CmdsNext (DefTermOrType OpacTrans (DefType "1382" "AlgM" (KndArrow (KndParens "1389" (KndArrow (KndParens "1390" (KndTpArrow (TpVar "1391" "Indices") (Star "1401")) "1403") (KndTpArrow (TpVar "1406" "Indices") (Star "1416"))) "1418") (KndArrow (Star "1421") (KndTpArrow (TpVar "1425" "Indices") (Star "1435")))) (TpLambda "1441" "1443" "F" (Tkk (KndArrow (KndParens "1447" (KndTpArrow (TpVar "1448" "Indices") (Star "1458")) "1460") (KndTpArrow (TpVar "1463" "Indices") (Star "1473")))) (TpLambda "1476" "1478" "A" (Tkk (Star "1482")) (TpLambda "1485" "1487" "indices" (Tkt (TpVar "1497" "Indices")) (Abs "1510" Erased "1512" "R" (Tkk (KndTpArrow (TpVar "1516" "Indices") (Star "1526"))) (TpArrow (TpParens "1529" (TpArrow (TpAppt (TpVar "1530" "R") (Var "1532" "indices")) NotErased (TpVar "1542" "A")) "1544") NotErased (TpArrow (TpAppt (TpApp (TpVar "1547" "F") (TpVar "1551" "R")) (Var "1553" "indices")) NotErased (TpVar "1563" "A")))))))) "1565") (CmdsNext (DefTermOrType OpacTrans (DefType "1567" "FixM" (KndArrow (KndParens "1574" (KndArrow (KndParens "1575" (KndTpArrow (TpVar "1576" "Indices") (Star "1586")) "1588") (KndTpArrow (TpVar "1591" "Indices") (Star "1601"))) "1603") (KndTpArrow (TpVar "1606" "Indices") (Star "1616"))) (TpLambda "1622" "1624" "F" (Tkk (KndArrow (KndParens "1628" (KndTpArrow (TpVar "1629" "Indices") (Star "1639")) "1641") (KndTpArrow (TpVar "1644" "Indices") (Star "1654")))) (TpLambda "1657" "1659" "indices" (Tkt (TpVar "1669" "Indices")) (Abs "1678" Erased "1680" "A" (Tkk (Star "1684")) (TpArrow (TpAppt (TpApp (TpApp (TpVar "1687" "AlgM") (TpVar "1694" "F")) (TpVar "1698" "A")) (Var "1700" "indices")) NotErased (TpVar "1710" "A")))))) "1712") (CmdsNext (DefTermOrType OpacTrans (DefTerm "1714" "foldM" (SomeType (Abs "1726" Erased "1728" "F" (Tkk (KndArrow (KndParens "1732" (KndTpArrow (TpVar "1733" "Indices") (Star "1743")) "1745") (KndTpArrow (TpVar "1748" "Indices") (Star "1758")))) (Abs "1761" Erased "1763" "A" (Tkk (Star "1767")) (Abs "1770" Erased "1772" "indices" (Tkt (TpVar "1782" "Indices")) (TpArrow (TpAppt (TpApp (TpApp (TpVar "1795" "AlgM") (TpVar "1802" "F")) (TpVar "1806" "A")) (Var "1808" "indices")) NotErased (TpArrow (TpAppt (TpApp (TpVar "1818" "FixM") (TpVar "1825" "F")) (Var "1827" "indices")) NotErased (TpVar "1837" "A"))))))) (Lam "1843" Erased "1845" "F" NoClass (Lam "1848" Erased "1850" "A" NoClass (Lam "1853" Erased "1855" "indices" NoClass (Lam "1864" NotErased "1866" "alg" NoClass (Lam "1871" NotErased "1873" "fix" NoClass (App (Var "1878" "fix") NotErased (Var "1882" "alg")))))))) "1886") (CmdsNext (DefTermOrType OpacTrans (DefTerm "1888" "inFixM" (SomeType (Abs "1901" Erased "1903" "F" (Tkk (KndArrow (KndParens "1907" (KndTpArrow (TpVar "1908" "Indices") (Star "1918")) "1920") (KndTpArrow (TpVar "1923" "Indices") (Star "1933")))) (Abs "1936" Erased "1938" "indices" (Tkt (TpVar "1948" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "1961" "F") (TpParens "1965" (TpApp (TpVar "1966" "FixM") (TpVar "1973" "F")) "1975")) (Var "1976" "indices")) NotErased (TpAppt (TpApp (TpVar "1986" "FixM") (TpVar "1993" "F")) (Var "1995" "indices")))))) (Lam "2007" Erased "2009" "F" NoClass (Lam "2012" Erased "2014" "indices" NoClass (Lam "2023" NotErased "2025" "fexp" NoClass (Lam "2031" Erased "2033" "A" NoClass (Lam "2036" NotErased "2038" "alg" NoClass (App (App (Var "2043" "alg") NotErased (Parens "2047" (App (App (AppTp (AppTp (Var "2048" "foldM") (TpVar "2056" "F")) (TpVar "2060" "A")) Erased (Var "2063" "indices")) NotErased (Var "2071" "alg")) "2075")) NotErased (Var "2076" "fexp")))))))) "2081") (CmdsNext (DefTermOrType OpacTrans (DefType "2083" "PrfAlgM" (KndPi "2097" "2099" "F" (Tkk (KndArrow (KndParens "2103" (KndTpArrow (TpVar "2104" "Indices") (Star "2114")) "2116") (KndTpArrow (TpVar "2119" "Indices") (Star "2129")))) (KndTpArrow (TpApp (TpVar "2136" "Functor") (TpVar "2146" "F")) (KndPi "2154" "2156" "X" (Tkk (KndTpArrow (TpVar "2160" "Indices") (Star "2170"))) (KndArrow (KndParens "2177" (KndPi "2178" "2180" "indices" (Tkt (TpVar "2190" "Indices")) (KndTpArrow (TpAppt (TpVar "2199" "X") (Var "2201" "indices")) (Star "2211"))) "2213") (KndTpArrow (TpParens "2220" (Abs "2221" Erased "2223" "indices" (Tkt (TpVar "2233" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "2242" "F") (TpVar "2246" "X")) (Var "2248" "indices")) NotErased (TpAppt (TpVar "2258" "X") (Var "2260" "indices")))) "2268") (Star "2275")))))) (TpLambda "2281" "2283" "F" (Tkk (KndArrow (KndParens "2287" (KndTpArrow (TpVar "2288" "Indices") (Star "2298")) "2300") (KndTpArrow (TpVar "2303" "Indices") (Star "2313")))) (TpLambda "2316" "2318" "fmap" (Tkt (TpApp (TpVar "2325" "Functor") (TpVar "2335" "F"))) (TpLambda "2338" "2340" "X" (Tkk (KndTpArrow (TpVar "2344" "Indices") (Star "2354"))) (TpLambda "2361" "2363" "Q" (Tkk (KndPi "2367" "2369" "indices" (Tkt (TpVar "2379" "Indices")) (KndTpArrow (TpAppt (TpVar "2388" "X") (Var "2390" "indices")) (Star "2400")))) (TpLambda "2409" "2411" "alg" (Tkt (TpParens "2417" (Abs "2418" Erased "2420" "indices" (Tkt (TpVar "2430" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "2439" "F") (TpVar "2443" "X")) (Var "2445" "indices")) NotErased (TpAppt (TpVar "2455" "X") (Var "2457" "indices")))) "2465")) (Abs "2476" Erased "2478" "R" (Tkk (KndTpArrow (TpVar "2482" "Indices") (Star "2492"))) (Abs "2495" Erased "2497" "c" (Tkt (TpApp (TpApp (TpVar "2501" "Cast") (TpVar "2508" "R")) (TpVar "2512" "X"))) (TpArrow (TpParens "2524" (Abs "2525" Erased "2527" "indices" (Tkt (TpVar "2537" "Indices")) (Abs "2546" NotErased "2548" "r" (Tkt (TpAppt (TpVar "2552" "R") (Var "2554" "indices"))) (TpAppt (TpAppt (TpVar "2563" "Q") (Var "2565" "indices")) (Parens "2573" (App (App (App (Var "2574" "cast") Erased (Var "2580" "c")) Erased (Var "2583" "indices")) NotErased (Var "2591" "r")) "2593")))) "2594") NotErased (Abs "2605" Erased "2607" "indices" (Tkt (TpVar "2617" "Indices")) (Abs "2626" NotErased "2628" "gr" (Tkt (TpAppt (TpApp (TpVar "2633" "F") (TpVar "2637" "R")) (Var "2639" "indices"))) (TpAppt (TpAppt (TpVar "2656" "Q") (Var "2658" "indices")) (Parens "2666" (App (App (Var "2667" "alg") Erased (Var "2672" "indices")) NotErased (Parens "2680" (App (App (App (Var "2681" "cast") Erased (Parens "2687" (App (Var "2688" "fmap") Erased (Var "2694" "c")) "2696")) Erased (Var "2698" "indices")) NotErased (Var "2706" "gr")) "2709")) "2710"))))))))))))) "2711") (CmdsNext (DefTermOrType OpacTrans (DefType "2713" "IsIndFixM" (KndPi "2729" "2731" "F" (Tkk (KndArrow (KndParens "2735" (KndTpArrow (TpVar "2736" "Indices") (Star "2746")) "2748") (KndTpArrow (TpVar "2751" "Indices") (Star "2761")))) (KndTpArrow (TpApp (TpVar "2768" "Functor") (TpVar "2778" "F")) (KndPi "2786" "2788" "indices" (Tkt (TpVar "2798" "Indices")) (KndTpArrow (TpAppt (TpApp (TpVar "2811" "FixM") (TpVar "2818" "F")) (Var "2820" "indices")) (Star "2834"))))) (TpLambda "2840" "2842" "F" (Tkk (KndArrow (KndParens "2846" (KndTpArrow (TpVar "2847" "Indices") (Star "2857")) "2859") (KndTpArrow (TpVar "2862" "Indices") (Star "2872")))) (TpLambda "2875" "2877" "fmap" (Tkt (TpApp (TpVar "2884" "Functor") (TpVar "2894" "F"))) (TpLambda "2901" "2903" "indices" (Tkt (TpVar "2913" "Indices")) (TpLambda "2922" "2924" "x" (Tkt (TpAppt (TpApp (TpVar "2928" "FixM") (TpVar "2935" "F")) (Var "2937" "indices"))) (Abs "2952" Erased "2954" "Q" (Tkk (KndPi "2958" "2960" "indices" (Tkt (TpVar "2970" "Indices")) (KndTpArrow (TpAppt (TpApp (TpVar "2979" "FixM") (TpVar "2986" "F")) (Var "2988" "indices")) (Star "2998")))) (TpArrow (TpAppt (TpApp (TpApp (TpAppt (TpApp (TpVar "3007" "PrfAlgM") (TpVar "3017" "F")) (Var "3019" "fmap")) (TpParens "3026" (TpApp (TpVar "3027" "FixM") (TpVar "3034" "F")) "3036")) (TpVar "3039" "Q")) (Parens "3041" (AppTp (Var "3042" "inFixM") (TpVar "3051" "F")) "3053")) NotErased (TpAppt (TpAppt (TpVar "3056" "Q") (Var "3058" "indices")) (Var "3066" "x"))))))))) "3068") (CmdsNext (DefTermOrType OpacTrans (DefType "3070" "FixIndM" (KndPi "3080" "3082" "F" (Tkk (KndArrow (KndParens "3086" (KndTpArrow (TpVar "3087" "Indices") (Star "3097")) "3099") (KndTpArrow (TpVar "3102" "Indices") (Star "3112")))) (KndTpArrow (TpApp (TpVar "3115" "Functor") (TpVar "3125" "F")) (KndTpArrow (TpVar "3129" "Indices") (Star "3139")))) (TpLambda "3145" "3147" "F" (Tkk (KndArrow (KndParens "3151" (KndTpArrow (TpVar "3152" "Indices") (Star "3162")) "3164") (KndTpArrow (TpVar "3167" "Indices") (Star "3177")))) (TpLambda "3180" "3182" "fmap" (Tkt (TpApp (TpVar "3189" "Functor") (TpVar "3199" "F"))) (TpLambda "3202" "3204" "indices" (Tkt (TpVar "3214" "Indices")) (Iota "3227" "3229" "x" (TpAppt (TpApp (TpVar "3233" "FixM") (TpVar "3240" "F")) (Var "3242" "indices")) (TpAppt (TpAppt (TpAppt (TpApp (TpVar "3251" "IsIndFixM") (TpVar "3263" "F")) (Var "3265" "fmap")) (Var "3270" "indices")) (Var "3278" "x"))))))) "3280") (CmdsNext (DefTermOrType OpacTrans (DefTerm "3282" "inFixIndM" (SomeType (Abs "3294" Erased "3296" "F" (Tkk (KndArrow (KndParens "3300" (KndTpArrow (TpVar "3301" "Indices") (Star "3311")) "3313") (KndTpArrow (TpVar "3316" "Indices") (Star "3326")))) (Abs "3329" Erased "3331" "fmap" (Tkt (TpApp (TpVar "3338" "Functor") (TpVar "3348" "F"))) (Abs "3355" Erased "3357" "indices" (Tkt (TpVar "3367" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "3376" "F") (TpParens "3380" (TpAppt (TpApp (TpVar "3381" "FixIndM") (TpVar "3391" "F")) (Var "3393" "fmap")) "3398")) (Var "3399" "indices")) NotErased (TpAppt (TpAppt (TpApp (TpVar "3409" "FixIndM") (TpVar "3419" "F")) (Var "3421" "fmap")) (Var "3426" "indices"))))))) (Lam "3438" Erased "3440" "F" NoClass (Lam "3443" Erased "3445" "fmap" NoClass (Lam "3451" Erased "3453" "indices" NoClass (Lam "3462" NotErased "3464" "v" NoClass (Let "3471" (DefTerm "3472" "outInd" (SomeType (TpApp (TpApp (TpVar "3481" "Cast") (TpParens "3488" (TpAppt (TpApp (TpVar "3489" "FixIndM") (TpVar "3499" "F")) (Var "3501" "fmap")) "3506")) (TpParens "3509" (TpApp (TpVar "3510" "FixM") (TpVar "3517" "F")) "3519"))) (IotaPair "3522" (Lam "3523" Erased "3525" "indices" NoClass (Lam "3534" NotErased "3536" "x" NoClass (IotaProj (Var "3539" "x") "1" "3542"))) (Beta "3544" NoTerm NoTerm) NoGuide "3546")) (IotaPair "3554" (App (App (AppTp (Var "3555" "inFixM") (TpVar "3564" "F")) Erased (Var "3567" "indices")) NotErased (Parens "3575" (App (App (App (Var "3576" "cast") Erased (Parens "3582" (App (Var "3583" "fmap") Erased (Var "3589" "outInd")) "3596")) Erased (Var "3598" "indices")) NotErased (Var "3606" "v")) "3608")) (Lam "3615" Erased "3617" "Q" NoClass (Lam "3620" NotErased "3622" "q" NoClass (App (App (App (App (Var "3625" "q") Erased (Var "3628" "outInd")) NotErased (Parens "3635" (Lam "3636" Erased "3638" "indices" NoClass (Lam "3647" NotErased "3649" "r" NoClass (App (IotaProj (Var "3652" "r") "2" "3655") NotErased (Var "3656" "q")))) "3658")) Erased (Var "3660" "indices")) NotErased (Var "3668" "v")))) NoGuide "3671"))))))) "3672") (CmdsNext (DefTermOrType OpacTrans (DefType "3674" "WithWitness" (KndPi "3688" "3690" "X" (Tkk (Star "3694")) (KndPi "3697" "3699" "Y" (Tkk (Star "3703")) (KndArrow (KndParens "3706" (KndTpArrow (TpVar "3707" "X") (Star "3711")) "3713") (KndTpArrow (TpVar "3716" "Y") (Star "3720"))))) (TpLambda "3726" "3728" "X" (Tkk (Star "3732")) (TpLambda "3735" "3737" "Y" (Tkk (Star "3741")) (TpLambda "3744" "3746" "Q" (Tkk (KndTpArrow (TpVar "3750" "X") (Star "3754"))) (TpLambda "3757" "3759" "y" (Tkt (TpVar "3763" "Y")) (TpApp (TpApp (TpVar "3770" "Sigma") (TpParens "3778" (Iota "3779" "3781" "x" (TpVar "3785" "X") (TpEq "3788" (Var "3789" "y") (Var "3793" "x") "3795")) "3796")) (TpParens "3799" (TpLambda "3800" "3802" "x" (Tkt (TpParens "3806" (Iota "3807" "3809" "x" (TpVar "3813" "X") (TpEq "3816" (Var "3817" "y") (Var "3821" "x") "3823")) "3824")) (TpAppt (TpVar "3826" "Q") (IotaProj (Var "3828" "x") "1" "3831"))) "3832"))))))) "3833") (CmdsNext (DefTermOrType OpacTrans (DefType "3835" "Lift" (KndPi "3846" "3848" "F" (Tkk (KndArrow (KndParens "3852" (KndTpArrow (TpVar "3853" "Indices") (Star "3863")) "3865") (KndTpArrow (TpVar "3868" "Indices") (Star "3878")))) (KndPi "3881" "3883" "fmap" (Tkt (TpApp (TpVar "3890" "Functor") (TpVar "3900" "F"))) (KndArrow (KndParens "3907" (KndPi "3908" "3910" "indices" (Tkt (TpVar "3920" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "3929" "FixIndM") (TpVar "3939" "F")) (Var "3941" "fmap")) (Var "3946" "indices")) (Star "3956"))) "3958") (KndPi "3965" "3967" "indices" (Tkt (TpVar "3977" "Indices")) (KndTpArrow (TpAppt (TpApp (TpVar "3986" "FixM") (TpVar "3993" "F")) (Var "3995" "indices")) (Star "4009")))))) (TpLambda "4015" "4017" "F" (Tkk (KndArrow (KndParens "4021" (KndTpArrow (TpVar "4022" "Indices") (Star "4032")) "4034") (KndTpArrow (TpVar "4037" "Indices") (Star "4047")))) (TpLambda "4050" "4052" "fmap" (Tkt (TpApp (TpVar "4059" "Functor") (TpVar "4069" "F"))) (TpLambda "4076" "4078" "Q" (Tkk (KndPi "4082" "4084" "indices" (Tkt (TpVar "4094" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "4103" "FixIndM") (TpVar "4113" "F")) (Var "4115" "fmap")) (Var "4120" "indices")) (Star "4130")))) (TpLambda "4139" "4141" "indices" (Tkt (TpVar "4151" "Indices")) (TpLambda "4160" "4162" "e" (Tkt (TpAppt (TpApp (TpVar "4166" "FixM") (TpVar "4173" "F")) (Var "4175" "indices"))) (TpAppt (TpApp (TpApp (TpApp (TpVar "4192" "WithWitness") (TpParens "4206" (TpAppt (TpAppt (TpApp (TpVar "4207" "FixIndM") (TpVar "4217" "F")) (Var "4219" "fmap")) (Var "4224" "indices")) "4232")) (TpParens "4235" (TpAppt (TpApp (TpVar "4236" "FixM") (TpVar "4243" "F")) (Var "4245" "indices")) "4253")) (TpParens "4256" (TpAppt (TpVar "4257" "Q") (Var "4259" "indices")) "4267")) (Var "4268" "e")))))))) "4270") (CmdsNext (DefTermOrType OpacTrans (DefTerm "4272" "LiftProp1" (SomeType (Abs "4288" Erased "4290" "F" (Tkk (KndArrow (KndParens "4294" (KndTpArrow (TpVar "4295" "Indices") (Star "4305")) "4307") (KndTpArrow (TpVar "4310" "Indices") (Star "4320")))) (Abs "4323" Erased "4325" "fmap" (Tkt (TpApp (TpVar "4332" "Functor") (TpVar "4342" "F"))) (Abs "4349" Erased "4351" "Q" (Tkk (KndPi "4355" "4357" "indices" (Tkt (TpVar "4367" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "4376" "FixIndM") (TpVar "4386" "F")) (Var "4388" "fmap")) (Var "4393" "indices")) (Star "4403")))) (Abs "4410" Erased "4412" "indices" (Tkt (TpVar "4422" "Indices")) (Abs "4431" Erased "4433" "e" (Tkt (TpAppt (TpAppt (TpApp (TpVar "4437" "FixIndM") (TpVar "4447" "F")) (Var "4449" "fmap")) (Var "4454" "indices"))) (TpArrow (TpAppt (TpAppt (TpApp (TpAppt (TpApp (TpVar "4467" "Lift") (TpVar "4474" "F")) (Var "4476" "fmap")) (TpVar "4483" "Q")) (Var "4485" "indices")) (IotaProj (Var "4493" "e") "1" "4496")) NotErased (TpAppt (TpAppt (TpVar "4499" "Q") (Var "4501" "indices")) (Var "4509" "e"))))))))) (Lam "4515" Erased "4517" "F" NoClass (Lam "4520" Erased "4522" "fmap" NoClass (Lam "4528" Erased "4530" "Q" NoClass (Lam "4533" Erased "4535" "indices" NoClass (Lam "4544" Erased "4546" "e" NoClass (Lam "4549" NotErased "4551" "pr" NoClass (Rho "4555" RhoPlain NoNums (IotaProj (Parens "4557" (App (Var "4558" "fst") NotErased (Var "4562" "pr")) "4565") "2" "4567") NoGuide (App (Var "4570" "snd") NotErased (Var "4574" "pr")))))))))) "4577") (CmdsNext (DefTermOrType OpacTrans (DefTerm "4579" "LiftProp2" (SomeType (Abs "4595" Erased "4597" "F" (Tkk (KndArrow (KndParens "4601" (KndTpArrow (TpVar "4602" "Indices") (Star "4612")) "4614") (KndTpArrow (TpVar "4617" "Indices") (Star "4627")))) (Abs "4630" Erased "4632" "fmap" (Tkt (TpApp (TpVar "4639" "Functor") (TpVar "4649" "F"))) (Abs "4656" Erased "4658" "Q" (Tkk (KndPi "4662" "4664" "indices" (Tkt (TpVar "4674" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "4683" "FixIndM") (TpVar "4693" "F")) (Var "4695" "fmap")) (Var "4700" "indices")) (Star "4710")))) (Abs "4717" Erased "4719" "indices" (Tkt (TpVar "4729" "Indices")) (Abs "4738" NotErased "4740" "e" (Tkt (TpAppt (TpAppt (TpApp (TpVar "4744" "FixIndM") (TpVar "4754" "F")) (Var "4756" "fmap")) (Var "4761" "indices"))) (TpArrow (TpAppt (TpAppt (TpVar "4774" "Q") (Var "4776" "indices")) (Var "4784" "e")) NotErased (TpAppt (TpAppt (TpApp (TpAppt (TpApp (TpVar "4788" "Lift") (TpVar "4795" "F")) (Var "4797" "fmap")) (TpVar "4804" "Q")) (Var "4806" "indices")) (IotaProj (Var "4814" "e") "1" "4817"))))))))) (Lam "4822" Erased "4824" "F" NoClass (Lam "4827" Erased "4829" "fmap" NoClass (Lam "4835" Erased "4837" "Q" NoClass (Lam "4840" Erased "4842" "indices" NoClass (Lam "4851" NotErased "4853" "e" NoClass (App (AppTp (AppTp (Var "4856" "sigma") (TpParens "4868" (Iota "4869" "4871" "x" (TpAppt (TpAppt (TpApp (TpVar "4875" "FixIndM") (TpVar "4885" "F")) (Var "4887" "fmap")) (Var "4892" "indices")) (TpEq "4901" (Var "4902" "e") (Var "4906" "x") "4908")) "4909")) (TpParens "4916" (TpLambda "4917" "4919" "x" (Tkt (Iota "4923" "4925" "x" (TpAppt (TpAppt (TpApp (TpVar "4929" "FixIndM") (TpVar "4939" "F")) (Var "4941" "fmap")) (Var "4946" "indices")) (TpEq "4955" (Var "4956" "e") (Var "4960" "x") "4962"))) (TpAppt (TpAppt (TpVar "4964" "Q") (Var "4966" "indices")) (IotaProj (Var "4974" "x") "1" "4977"))) "4978")) NotErased (IotaPair "4983" (Var "4984" "e") (Beta "4987" NoTerm (SomeTerm (Var "4989" "e") "4991")) NoGuide "4992")))))))) "4993") (CmdsNext (DefTermOrType OpacTrans (DefTerm "4995" "LiftProp3" (SomeType (Abs "5011" Erased "5013" "F" (Tkk (KndArrow (KndParens "5017" (KndTpArrow (TpVar "5018" "Indices") (Star "5028")) "5030") (KndTpArrow (TpVar "5033" "Indices") (Star "5043")))) (Abs "5046" Erased "5048" "fmap" (Tkt (TpApp (TpVar "5055" "Functor") (TpVar "5065" "F"))) (Abs "5072" Erased "5074" "Q" (Tkk (KndPi "5078" "5080" "indices" (Tkt (TpVar "5090" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "5099" "FixIndM") (TpVar "5109" "F")) (Var "5111" "fmap")) (Var "5116" "indices")) (Star "5126")))) (Abs "5133" Erased "5135" "indices" (Tkt (TpVar "5145" "Indices")) (Abs "5154" Erased "5156" "e" (Tkt (TpAppt (TpApp (TpVar "5160" "FixM") (TpVar "5167" "F")) (Var "5169" "indices"))) (TpArrow (TpAppt (TpAppt (TpApp (TpAppt (TpApp (TpVar "5182" "Lift") (TpVar "5189" "F")) (Var "5191" "fmap")) (TpVar "5198" "Q")) (Var "5200" "indices")) (Var "5208" "e")) NotErased (TpAppt (TpAppt (TpApp (TpVar "5212" "FixIndM") (TpVar "5222" "F")) (Var "5224" "fmap")) (Var "5229" "indices"))))))))) (Lam "5241" Erased "5243" "F" NoClass (Lam "5246" Erased "5248" "fmap" NoClass (Lam "5254" Erased "5256" "Q" NoClass (Lam "5259" Erased "5261" "indices" NoClass (Lam "5270" Erased "5272" "e" NoClass (Lam "5275" NotErased "5277" "pr" NoClass (IotaProj (Parens "5281" (App (Var "5282" "fst") NotErased (Var "5286" "pr")) "5289") "1" "5291")))))))) "5292") (CmdsNext (DefTermOrType OpacTrans (DefTerm "5294" "LiftProp4" (SomeType (Abs "5310" Erased "5312" "F" (Tkk (KndArrow (KndParens "5316" (KndTpArrow (TpVar "5317" "Indices") (Star "5327")) "5329") (KndTpArrow (TpVar "5332" "Indices") (Star "5342")))) (Abs "5345" Erased "5347" "fmap" (Tkt (TpApp (TpVar "5354" "Functor") (TpVar "5364" "F"))) (Abs "5371" Erased "5373" "Q" (Tkk (KndPi "5377" "5379" "indices" (Tkt (TpVar "5389" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "5398" "FixIndM") (TpVar "5408" "F")) (Var "5410" "fmap")) (Var "5415" "indices")) (Star "5425")))) (Abs "5432" Erased "5434" "indices" (Tkt (TpVar "5444" "Indices")) (Abs "5453" Erased "5455" "e" (Tkt (TpAppt (TpApp (TpVar "5459" "FixM") (TpVar "5466" "F")) (Var "5468" "indices"))) (Abs "5481" Erased "5483" "p" (Tkt (TpAppt (TpAppt (TpApp (TpAppt (TpApp (TpVar "5487" "Lift") (TpVar "5494" "F")) (Var "5496" "fmap")) (TpVar "5503" "Q")) (Var "5505" "indices")) (Var "5513" "e"))) (TpEq "5516" (App (Var "5517" "LiftProp3") NotErased (Var "5527" "p")) (Var "5531" "e") "5533")))))))) (Lam "5538" Erased "5540" "F" NoClass (Lam "5543" Erased "5545" "fmap" NoClass (Lam "5551" Erased "5553" "Q" NoClass (Lam "5556" Erased "5558" "indices" NoClass (Lam "5567" Erased "5569" "e" NoClass (Lam "5572" Erased "5574" "pr" NoClass (Rho "5578" RhoPlain NoNums (IotaProj (Parens "5580" (App (Var "5581" "fst") NotErased (Var "5585" "pr")) "5588") "2" "5590") NoGuide (Beta "5593" NoTerm NoTerm))))))))) "5595") (CmdsNext (DefTermOrType OpacTrans (DefTerm "5597" "convIH" (SomeType (Abs "5607" Erased "5609" "F" (Tkk (KndArrow (KndParens "5613" (KndTpArrow (TpVar "5614" "Indices") (Star "5624")) "5626") (KndTpArrow (TpVar "5629" "Indices") (Star "5639")))) (Abs "5642" Erased "5644" "fmap" (Tkt (TpApp (TpVar "5651" "Functor") (TpVar "5661" "F"))) (Abs "5665" Erased "5667" "Q" (Tkk (KndPi "5671" "5673" "indices" (Tkt (TpVar "5683" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "5692" "FixIndM") (TpVar "5702" "F")) (Var "5704" "fmap")) (Var "5709" "indices")) (Star "5719")))) (Abs "5723" Erased "5725" "Y" (Tkk (KndPi "5729" "5731" "indices" (Tkt (TpVar "5741" "Indices")) (KndTpArrow (TpAppt (TpApp (TpVar "5750" "FixM") (TpVar "5757" "F")) (Var "5759" "indices")) (Star "5769")))) (Abs "5773" NotErased "5775" "Yprop1" (Tkt (Abs "5784" Erased "5786" "indices" (Tkt (TpVar "5796" "Indices")) (Abs "5805" Erased "5807" "e" (Tkt (TpAppt (TpAppt (TpApp (TpVar "5811" "FixIndM") (TpVar "5821" "F")) (Var "5823" "fmap")) (Var "5828" "indices"))) (TpArrow (TpAppt (TpAppt (TpVar "5837" "Y") (Var "5839" "indices")) (IotaProj (Var "5847" "e") "1" "5850")) NotErased (TpAppt (TpAppt (TpVar "5853" "Q") (Var "5855" "indices")) (Var "5863" "e")))))) (Abs "5867" NotErased "5869" "Yprop2" (Tkt (Abs "5878" Erased "5880" "indices" (Tkt (TpVar "5890" "Indices")) (Abs "5899" NotErased "5901" "e" (Tkt (TpAppt (TpAppt (TpApp (TpVar "5905" "FixIndM") (TpVar "5915" "F")) (Var "5917" "fmap")) (Var "5922" "indices"))) (TpArrow (TpAppt (TpAppt (TpVar "5931" "Q") (Var "5933" "indices")) (Var "5941" "e")) NotErased (TpAppt (TpAppt (TpVar "5945" "Y") (Var "5947" "indices")) (IotaProj (Var "5955" "e") "1" "5958")))))) (Abs "5961" NotErased "5963" "Yprop3" (Tkt (Abs "5972" Erased "5974" "indices" (Tkt (TpVar "5984" "Indices")) (Abs "5993" Erased "5995" "e" (Tkt (TpAppt (TpApp (TpVar "5999" "FixM") (TpVar "6006" "F")) (Var "6008" "indices"))) (TpArrow (TpAppt (TpAppt (TpVar "6017" "Y") (Var "6019" "indices")) (Var "6027" "e")) NotErased (TpAppt (TpAppt (TpApp (TpVar "6031" "FixIndM") (TpVar "6041" "F")) (Var "6043" "fmap")) (Var "6048" "indices")))))) (Abs "6058" NotErased "6060" "Yprop4" (Tkt (Abs "6069" Erased "6071" "indices" (Tkt (TpVar "6081" "Indices")) (Abs "6090" Erased "6092" "e" (Tkt (TpAppt (TpApp (TpVar "6096" "FixM") (TpVar "6103" "F")) (Var "6105" "indices"))) (Abs "6114" Erased "6116" "p" (Tkt (TpAppt (TpAppt (TpVar "6120" "Y") (Var "6122" "indices")) (Var "6130" "e"))) (TpEq "6133" (App (Var "6134" "Yprop3") NotErased (Var "6141" "p")) (Var "6145" "e") "6147"))))) (TpArrow (TpAppt (TpApp (TpApp (TpAppt (TpApp (TpVar "6150" "PrfAlgM") (TpVar "6160" "F")) (Var "6162" "fmap")) (TpParens "6169" (TpAppt (TpApp (TpVar "6170" "FixIndM") (TpVar "6180" "F")) (Var "6182" "fmap")) "6187")) (TpVar "6190" "Q")) (Parens "6192" (App (AppTp (Var "6193" "inFixIndM") (TpVar "6205" "F")) Erased (Var "6208" "fmap")) "6213")) NotErased (TpAppt (TpApp (TpApp (TpAppt (TpApp (TpVar "6217" "PrfAlgM") (TpVar "6227" "F")) (Var "6229" "fmap")) (TpParens "6236" (TpApp (TpVar "6237" "FixM") (TpVar "6244" "F")) "6246")) (TpVar "6249" "Y")) (Parens "6251" (AppTp (Var "6252" "inFixM") (TpVar "6261" "F")) "6263")))))))))))) (Lam "6268" Erased "6270" "F" NoClass (Lam "6273" Erased "6275" "fmap" NoClass (Lam "6281" Erased "6283" "Q" NoClass (Lam "6286" Erased "6288" "Y" NoClass (Lam "6291" NotErased "6293" "qp3" NoClass (Lam "6298" NotErased "6300" "qp4" NoClass (Lam "6305" NotErased "6307" "qp1" NoClass (Lam "6312" NotErased "6314" "qp2" NoClass (Lam "6319" NotErased "6321" "q" NoClass (Lam "6324" Erased "6326" "R" NoClass (Lam "6329" Erased "6331" "cst" NoClass (Lam "6336" NotErased "6338" "ih" NoClass (Lam "6342" Erased "6344" "indices" NoClass (Lam "6353" NotErased "6355" "gr" NoClass (Let "6363" (DefTerm "6364" "cst2" (SomeType (TpApp (TpApp (TpVar "6371" "Cast") (TpVar "6378" "R")) (TpParens "6382" (TpAppt (TpApp (TpVar "6383" "FixIndM") (TpVar "6393" "F")) (Var "6395" "fmap")) "6400"))) (IotaPair "6409" (Lam "6410" Erased "6412" "indices" NoClass (Lam "6421" NotErased "6423" "r" NoClass (Phi "6426" (Parens "6428" (App (App (App (Var "6429" "qp2") Erased (Var "6434" "indices")) Erased (Parens "6443" (App (App (App (Var "6444" "cast") Erased (Var "6450" "cst")) Erased (Var "6455" "indices")) NotErased (Var "6463" "r")) "6465")) Erased (Parens "6467" (App (App (Var "6468" "ih") Erased (Var "6472" "indices")) NotErased (Var "6480" "r")) "6482")) "6483") (Parens "6494" (App (App (App (Var "6495" "qp1") Erased (Var "6500" "indices")) Erased (Parens "6509" (App (App (App (Var "6510" "cast") Erased (Var "6516" "cst")) Erased (Var "6521" "indices")) NotErased (Var "6529" "r")) "6531")) NotErased (Parens "6532" (App (App (Var "6533" "ih") Erased (Var "6537" "indices")) NotErased (Var "6545" "r")) "6547")) "6548") (Var "6550" "r") "6552"))) (Beta "6554" NoTerm NoTerm) NoGuide "6556")) (App (App (App (Var "6564" "qp4") Erased (Var "6569" "indices")) NotErased (Parens "6577" (App (App (App (Var "6578" "inFixIndM") Erased (Var "6589" "fmap")) Erased (Var "6595" "indices")) NotErased (Parens "6603" (App (App (App (Var "6604" "cast") Erased (Parens "6610" (App (Var "6611" "fmap") Erased (Var "6617" "cst2")) "6622")) Erased (Var "6624" "indices")) NotErased (Var "6632" "gr")) "6635")) "6636")) NotErased (Parens "6643" (App (App (App (App (Var "6644" "q") Erased (Var "6647" "cst2")) NotErased (Parens "6652" (Lam "6653" Erased "6655" "indices" NoClass (Lam "6664" NotErased "6666" "r" NoClass (App (App (App (Var "6669" "qp3") Erased (Var "6674" "indices")) Erased (Parens "6683" (App (App (App (Var "6684" "cast") Erased (Var "6690" "cst2")) Erased (Var "6696" "indices")) NotErased (Var "6704" "r")) "6706")) NotErased (Parens "6707" (App (App (Var "6708" "ih") Erased (Var "6712" "indices")) NotErased (Var "6720" "r")) "6722")))) "6723")) Erased (Var "6733" "indices")) NotErased (Var "6741" "gr")) "6744")))))))))))))))))) "6745") (CmdsNext (DefTermOrType OpacTrans (DefTerm "6747" "indFixIndM" (SomeType (Abs "6760" Erased "6762" "F" (Tkk (KndArrow (KndParens "6766" (KndTpArrow (TpVar "6767" "Indices") (Star "6777")) "6779") (KndTpArrow (TpVar "6782" "Indices") (Star "6792")))) (Abs "6795" Erased "6797" "fmap" (Tkt (TpApp (TpVar "6804" "Functor") (TpVar "6814" "F"))) (Abs "6830" Erased "6832" "indices" (Tkt (TpVar "6842" "Indices")) (Abs "6851" NotErased "6853" "e" (Tkt (TpAppt (TpAppt (TpApp (TpVar "6857" "FixIndM") (TpVar "6867" "F")) (Var "6869" "fmap")) (Var "6874" "indices"))) (Abs "6896" Erased "6898" "Q" (Tkk (KndPi "6902" "6904" "indices" (Tkt (TpVar "6914" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "6923" "FixIndM") (TpVar "6933" "F")) (Var "6935" "fmap")) (Var "6940" "indices")) (Star "6950")))) (TpArrow (TpAppt (TpApp (TpApp (TpAppt (TpApp (TpVar "6966" "PrfAlgM") (TpVar "6976" "F")) (Var "6978" "fmap")) (TpParens "6985" (TpAppt (TpApp (TpVar "6986" "FixIndM") (TpVar "6996" "F")) (Var "6998" "fmap")) "7003")) (TpVar "7006" "Q")) (Parens "7008" (App (AppTp (Var "7009" "inFixIndM") (TpVar "7021" "F")) Erased (Var "7024" "fmap")) "7029")) NotErased (TpAppt (TpAppt (TpVar "7045" "Q") (Var "7047" "indices")) (Var "7055" "e"))))))))) (Lam "7062" Erased "7064" "F" NoClass (Lam "7067" Erased "7069" "fmap" NoClass (Lam "7075" Erased "7077" "indices" NoClass (Lam "7086" NotErased "7088" "e" NoClass (Lam "7091" Erased "7093" "Q" NoClass (Lam "7096" NotErased "7098" "q" NoClass (App (App (App (AppTp (App (Var "7101" "LiftProp1") Erased (Var "7112" "fmap")) (TpVar "7119" "Q")) Erased (Var "7122" "indices")) Erased (Var "7131" "e")) NotErased (Parens "7137" (App (IotaProj (Var "7138" "e") "2" "7141") NotErased (Parens "7142" (App (App (App (App (App (App (Var "7143" "convIH") Erased (Var "7151" "fmap")) NotErased (Parens "7162" (AppTp (App (Var "7163" "LiftProp1") Erased (Var "7174" "fmap")) (TpVar "7181" "Q")) "7183")) NotErased (Parens "7190" (AppTp (App (Var "7191" "LiftProp2") Erased (Var "7202" "fmap")) (TpVar "7209" "Q")) "7211")) NotErased (Parens "7218" (AppTp (App (Var "7219" "LiftProp3") Erased (Var "7230" "fmap")) (TpVar "7237" "Q")) "7239")) NotErased (Parens "7246" (AppTp (App (Var "7247" "LiftProp4") Erased (Var "7258" "fmap")) (TpVar "7265" "Q")) "7267")) NotErased (Var "7274" "q")) "7276")) "7277"))))))))) "7278") (CmdsNext (DefTermOrType OpacTrans (DefTerm "7281" "outAlgM" (SomeType (Abs "7295" Erased "7297" "F" (Tkk (KndArrow (KndParens "7301" (KndTpArrow (TpVar "7302" "Indices") (Star "7312")) "7314") (KndTpArrow (TpVar "7317" "Indices") (Star "7327")))) (Abs "7330" Erased "7332" "fmap" (Tkt (TpApp (TpVar "7339" "Functor") (TpVar "7349" "F"))) (TpAppt (TpApp (TpApp (TpAppt (TpApp (TpVar "7352" "PrfAlgM") (TpVar "7362" "F")) (Var "7364" "fmap")) (TpParens "7377" (TpAppt (TpApp (TpVar "7378" "FixIndM") (TpVar "7388" "F")) (Var "7390" "fmap")) "7395")) (TpParens "7398" (TpLambda "7399" "7401" "indices" (Tkt (TpVar "7411" "Indices")) (TpLambda "7420" "7422" "_" (Tkt (TpAppt (TpAppt (TpApp (TpVar "7426" "FixIndM") (TpVar "7436" "F")) (Var "7438" "fmap")) (Var "7443" "indices"))) (TpAppt (TpApp (TpVar "7483" "F") (TpParens "7487" (TpAppt (TpApp (TpVar "7488" "FixIndM") (TpVar "7498" "F")) (Var "7500" "fmap")) "7505")) (Var "7506" "indices")))) "7514")) (Parens "7515" (App (AppTp (Var "7516" "inFixIndM") (TpVar "7528" "F")) Erased (Var "7531" "fmap")) "7536"))))) (Lam "7541" Erased "7543" "F" NoClass (Lam "7546" Erased "7548" "fmap" NoClass (Lam "7554" Erased "7556" "R" NoClass (Lam "7559" Erased "7561" "c" NoClass (Lam "7564" NotErased "7566" "x" NoClass (App (Var "7569" "cast") Erased (Parens "7575" (App (Var "7576" "fmap") Erased (Var "7582" "c")) "7584")))))))) "7585") (CmdsNext (DefTermOrType OpacTrans (DefTerm "7587" "outFixIndM" (SomeType (Abs "7604" Erased "7606" "F" (Tkk (KndArrow (KndParens "7610" (KndTpArrow (TpVar "7611" "Indices") (Star "7621")) "7623") (KndTpArrow (TpVar "7626" "Indices") (Star "7636")))) (Abs "7639" Erased "7641" "fmap" (Tkt (TpApp (TpVar "7648" "Functor") (TpVar "7658" "F"))) (Abs "7661" Erased "7663" "indices" (Tkt (TpVar "7673" "Indices")) (TpArrow (TpAppt (TpAppt (TpApp (TpVar "7686" "FixIndM") (TpVar "7696" "F")) (Var "7698" "fmap")) (Var "7703" "indices")) NotErased (TpAppt (TpApp (TpVar "7713" "F") (TpParens "7717" (TpAppt (TpApp (TpVar "7718" "FixIndM") (TpVar "7728" "F")) (Var "7730" "fmap")) "7735")) (Var "7736" "indices"))))))) (Lam "7748" Erased "7750" "F" NoClass (Lam "7753" Erased "7755" "fmap" NoClass (Lam "7761" Erased "7763" "indices" NoClass (Lam "7772" NotErased "7774" "e" NoClass (App (AppTp (App (App (App (Var "7777" "indFixIndM") Erased (Var "7789" "fmap")) Erased (Var "7795" "indices")) NotErased (Var "7803" "e")) (TpParens "7811" (TpLambda "7812" "7814" "indices" (Tkt (TpVar "7824" "Indices")) (TpLambda "7833" "7835" "_" (Tkt (TpAppt (TpAppt (TpApp (TpVar "7839" "FixIndM") (TpVar "7849" "F")) (Var "7851" "fmap")) (Var "7856" "indices"))) (TpAppt (TpApp (TpVar "7865" "F") (TpParens "7869" (TpAppt (TpApp (TpVar "7870" "FixIndM") (TpVar "7880" "F")) (Var "7882" "fmap")) "7887")) (Var "7888" "indices")))) "7896")) NotErased (Parens "7901" (App (AppTp (Var "7902" "outAlgM") (TpVar "7912" "F")) Erased (Var "7915" "fmap")) "7920"))))))) "7921") (CmdsNext (DefTermOrType OpacTrans (DefType "7924" "Cowedge" (KndArrow (KndParens "7934" (KndArrow (KndParens "7935" (KndTpArrow (TpVar "7936" "Indices") (Star "7946")) "7948") (KndTpArrow (TpVar "7951" "Indices") (Star "7961"))) "7963") (KndArrow (KndParens "7966" (KndTpArrow (TpVar "7967" "Indices") (Star "7977")) "7979") (KndTpArrow (TpVar "7982" "Indices") (Star "7992")))) (TpLambda "7998" "8000" "F" (Tkk (KndArrow (KndParens "8004" (KndTpArrow (TpVar "8005" "Indices") (Star "8015")) "8017") (KndTpArrow (TpVar "8020" "Indices") (Star "8030")))) (TpLambda "8033" "8035" "D" (Tkk (KndTpArrow (TpVar "8039" "Indices") (Star "8049"))) (TpLambda "8052" "8054" "indices" (Tkt (TpVar "8064" "Indices")) (Abs "8077" Erased "8079" "A" (Tkk (KndTpArrow (TpVar "8083" "Indices") (Star "8093"))) (TpArrow (TpParens "8100" (Abs "8101" Erased "8103" "indices" (Tkt (TpVar "8113" "Indices")) (TpArrow (TpAppt (TpVar "8122" "A") (Var "8124" "indices")) NotErased (TpAppt (TpVar "8134" "D") (Var "8136" "indices")))) "8144") NotErased (TpArrow (TpAppt (TpApp (TpVar "8151" "F") (TpVar "8155" "A")) (Var "8157" "indices")) NotErased (TpAppt (TpVar "8171" "D") (Var "8173" "indices"))))))))) "8181") (CmdsNext (DefTermOrType OpacTrans (DefType "8182" "Coend" (KndArrow (KndParens "8190" (KndArrow (KndParens "8191" (KndTpArrow (TpVar "8192" "Indices") (Star "8202")) "8204") (KndTpArrow (TpVar "8207" "Indices") (Star "8217"))) "8219") (KndArrow (KndParens "8222" (KndTpArrow (TpVar "8223" "Indices") (Star "8233")) "8235") (KndTpArrow (TpVar "8238" "Indices") (Star "8248")))) (TpLambda "8254" "8256" "F" (Tkk (KndArrow (KndParens "8260" (KndTpArrow (TpVar "8261" "Indices") (Star "8271")) "8273") (KndTpArrow (TpVar "8276" "Indices") (Star "8286")))) (TpLambda "8289" "8291" "A" (Tkk (KndTpArrow (TpVar "8295" "Indices") (Star "8305"))) (TpLambda "8308" "8310" "indices" (Tkt (TpVar "8320" "Indices")) (Abs "8333" Erased "8335" "Y" (Tkk (Star "8339")) (TpArrow (TpParens "8346" (Abs "8347" Erased "8349" "R" (Tkk (KndTpArrow (TpVar "8353" "Indices") (Star "8363"))) (TpArrow (TpParens "8366" (Abs "8367" Erased "8369" "indices" (Tkt (TpVar "8379" "Indices")) (TpArrow (TpAppt (TpVar "8388" "R") (Var "8390" "indices")) NotErased (TpAppt (TpVar "8400" "A") (Var "8402" "indices")))) "8410") NotErased (TpArrow (TpAppt (TpApp (TpVar "8413" "F") (TpVar "8417" "R")) (Var "8419" "indices")) NotErased (TpVar "8429" "Y")))) "8431") NotErased (TpVar "8438" "Y"))))))) "8440") (CmdsNext (DefTermOrType OpacTrans (DefTerm "8442" "intrCoend" (SomeType (Abs "8458" Erased "8460" "F" (Tkk (KndArrow (KndParens "8464" (KndTpArrow (TpVar "8465" "Indices") (Star "8475")) "8477") (KndTpArrow (TpVar "8480" "Indices") (Star "8490")))) (Abs "8497" Erased "8499" "C" (Tkk (KndTpArrow (TpVar "8503" "Indices") (Star "8513"))) (Abs "8520" Erased "8522" "R" (Tkk (KndTpArrow (TpVar "8526" "Indices") (Star "8536"))) (Abs "8543" Erased "8545" "indices" (Tkt (TpVar "8555" "Indices")) (TpArrow (TpParens "8568" (Abs "8569" Erased "8571" "indices" (Tkt (TpVar "8581" "Indices")) (TpArrow (TpAppt (TpVar "8590" "R") (Var "8592" "indices")) NotErased (TpAppt (TpVar "8602" "C") (Var "8604" "indices")))) "8612") NotErased (TpArrow (TpAppt (TpApp (TpVar "8619" "F") (TpVar "8623" "R")) (Var "8625" "indices")) NotErased (TpAppt (TpApp (TpApp (TpVar "8639" "Coend") (TpVar "8647" "F")) (TpVar "8651" "C")) (Var "8653" "indices"))))))))) (Lam "8665" Erased "8667" "F" NoClass (Lam "8670" Erased "8672" "C" NoClass (Lam "8675" Erased "8677" "R" NoClass (Lam "8680" Erased "8682" "indices" NoClass (Lam "8691" NotErased "8693" "ac" NoClass (Lam "8697" NotErased "8699" "ga" NoClass (Lam "8703" Erased "8705" "Y" NoClass (Lam "8708" NotErased "8710" "q" NoClass (App (App (Var "8713" "q") NotErased (Var "8715" "ac")) NotErased (Var "8718" "ga"))))))))))) "8721") (CmdsNext (DefTermOrType OpacTrans (DefTerm "8723" "elimCoend" (SomeType (Abs "8739" Erased "8741" "F" (Tkk (KndArrow (KndParens "8745" (KndTpArrow (TpVar "8746" "Indices") (Star "8756")) "8758") (KndTpArrow (TpVar "8761" "Indices") (Star "8771")))) (Abs "8778" Erased "8780" "A" (Tkk (KndTpArrow (TpVar "8784" "Indices") (Star "8794"))) (Abs "8801" Erased "8803" "D" (Tkk (Star "8807")) (Abs "8814" Erased "8816" "indices" (Tkt (TpVar "8826" "Indices")) (TpArrow (TpParens "8839" (Abs "8840" Erased "8842" "R" (Tkk (KndTpArrow (TpVar "8846" "Indices") (Star "8856"))) (TpArrow (TpParens "8859" (Abs "8860" Erased "8862" "indices" (Tkt (TpVar "8872" "Indices")) (TpArrow (TpAppt (TpVar "8881" "R") (Var "8883" "indices")) NotErased (TpAppt (TpVar "8893" "A") (Var "8895" "indices")))) "8903") NotErased (TpArrow (TpAppt (TpApp (TpVar "8906" "F") (TpVar "8910" "R")) (Var "8912" "indices")) NotErased (TpVar "8922" "D")))) "8924") NotErased (TpArrow (TpAppt (TpApp (TpApp (TpVar "8931" "Coend") (TpVar "8939" "F")) (TpVar "8943" "A")) (Var "8945" "indices")) NotErased (TpVar "8959" "D")))))))) (Lam "8965" Erased "8967" "F" NoClass (Lam "8970" Erased "8972" "A" NoClass (Lam "8975" Erased "8977" "D" NoClass (Lam "8980" Erased "8982" "indices" NoClass (Lam "8991" NotErased "8993" "phi" NoClass (Lam "8998" NotErased "9000" "e" NoClass (App (Var "9003" "e") NotErased (Var "9005" "phi"))))))))) "9009") (CmdsNext (DefTermOrType OpacTrans (DefType "9011" "CoendInductive" (KndPi "9032" "9034" "F" (Tkk (KndArrow (KndParens "9038" (KndTpArrow (TpVar "9039" "Indices") (Star "9049")) "9051") (KndTpArrow (TpVar "9054" "Indices") (Star "9064")))) (KndPi "9067" "9069" "C" (Tkk (KndTpArrow (TpVar "9073" "Indices") (Star "9083"))) (KndPi "9090" "9092" "indices" (Tkt (TpVar "9102" "Indices")) (KndTpArrow (TpAppt (TpApp (TpApp (TpVar "9111" "Coend") (TpVar "9119" "F")) (TpVar "9123" "C")) (Var "9125" "indices")) (Star "9135"))))) (TpLambda "9141" "9143" "F" (Tkk (KndArrow (KndParens "9147" (KndTpArrow (TpVar "9148" "Indices") (Star "9158")) "9160") (KndTpArrow (TpVar "9163" "Indices") (Star "9173")))) (TpLambda "9176" "9178" "C" (Tkk (KndTpArrow (TpVar "9182" "Indices") (Star "9192"))) (TpLambda "9199" "9201" "indices" (Tkt (TpVar "9211" "Indices")) (TpLambda "9220" "9222" "e" (Tkt (TpAppt (TpApp (TpApp (TpVar "9226" "Coend") (TpVar "9234" "F")) (TpVar "9238" "C")) (Var "9240" "indices"))) (Abs "9255" Erased "9257" "Q" (Tkk (KndPi "9261" "9263" "indices" (Tkt (TpVar "9273" "Indices")) (KndTpArrow (TpAppt (TpApp (TpApp (TpVar "9282" "Coend") (TpVar "9290" "F")) (TpVar "9294" "C")) (Var "9296" "indices")) (Star "9306")))) (TpArrow (TpParens "9315" (Abs "9316" Erased "9318" "R" (Tkk (KndTpArrow (TpVar "9322" "Indices") (Star "9332"))) (Abs "9335" Erased "9337" "indices" (Tkt (TpVar "9347" "Indices")) (Abs "9356" NotErased "9358" "c" (Tkt (TpApp (TpApp (TpVar "9362" "Cast") (TpVar "9369" "R")) (TpVar "9373" "C"))) (Abs "9384" NotErased "9386" "gr" (Tkt (TpAppt (TpApp (TpVar "9391" "F") (TpVar "9395" "R")) (Var "9397" "indices"))) (TpAppt (TpAppt (TpVar "9406" "Q") (Var "9408" "indices")) (Parens "9416" (App (App (App (AppTp (AppTp (AppTp (Var "9417" "intrCoend") (TpVar "9429" "F")) (TpVar "9433" "C")) (TpVar "9437" "R")) Erased (Var "9440" "indices")) NotErased (Parens "9448" (App (Var "9449" "cast") Erased (Var "9455" "c")) "9457")) NotErased (Var "9458" "gr")) "9461")))))) "9462") NotErased (TpAppt (TpAppt (TpVar "9471" "Q") (Var "9473" "indices")) (Var "9481" "e"))))))))) "9483") (CmdsNext (DefTermOrType OpacTrans (DefType "9485" "CoendInd" (KndArrow (KndParens "9496" (KndArrow (KndParens "9497" (KndTpArrow (TpVar "9498" "Indices") (Star "9508")) "9510") (KndTpArrow (TpVar "9513" "Indices") (Star "9523"))) "9525") (KndArrow (KndParens "9528" (KndTpArrow (TpVar "9529" "Indices") (Star "9539")) "9541") (KndTpArrow (TpVar "9544" "Indices") (Star "9554")))) (TpLambda "9560" "9562" "G" (Tkk (KndArrow (KndParens "9566" (KndTpArrow (TpVar "9567" "Indices") (Star "9577")) "9579") (KndTpArrow (TpVar "9582" "Indices") (Star "9592")))) (TpLambda "9595" "9597" "C" (Tkk (KndTpArrow (TpVar "9601" "Indices") (Star "9611"))) (TpLambda "9614" "9616" "indices" (Tkt (TpVar "9626" "Indices")) (Iota "9639" "9641" "x" (TpAppt (TpApp (TpApp (TpVar "9645" "Coend") (TpVar "9653" "G")) (TpVar "9657" "C")) (Var "9659" "indices")) (TpAppt (TpAppt (TpApp (TpApp (TpVar "9668" "CoendInductive") (TpVar "9686" "G")) (TpVar "9690" "C")) (Var "9692" "indices")) (Var "9700" "x"))))))) "9702") (CmdsNext (DefTermOrType OpacTrans (DefTerm "9705" "intrCoendInd" (SomeType (Abs "9724" Erased "9726" "F" (Tkk (KndArrow (KndParens "9730" (KndTpArrow (TpVar "9731" "Indices") (Star "9741")) "9743") (KndTpArrow (TpVar "9746" "Indices") (Star "9756")))) (Abs "9763" Erased "9765" "C" (Tkk (KndTpArrow (TpVar "9769" "Indices") (Star "9779"))) (Abs "9782" Erased "9784" "R" (Tkk (KndTpArrow (TpVar "9788" "Indices") (Star "9798"))) (Abs "9801" Erased "9803" "indices" (Tkt (TpVar "9813" "Indices")) (TpArrow (TpApp (TpApp (TpVar "9826" "Cast") (TpVar "9833" "R")) (TpVar "9837" "C")) Erased (TpArrow (TpAppt (TpApp (TpVar "9841" "F") (TpVar "9845" "R")) (Var "9847" "indices")) NotErased (TpAppt (TpApp (TpApp (TpVar "9857" "CoendInd") (TpVar "9868" "F")) (TpVar "9872" "C")) (Var "9874" "indices"))))))))) (Lam "9886" Erased "9888" "F" NoClass (Lam "9891" Erased "9893" "C" NoClass (Lam "9896" Erased "9898" "R" NoClass (Lam "9901" Erased "9903" "indices" NoClass (Lam "9912" Erased "9914" "f" NoClass (Lam "9917" NotErased "9919" "gr" NoClass (IotaPair "9927" (App (App (App (AppTp (AppTp (AppTp (Var "9928" "intrCoend") (TpVar "9940" "F")) (TpVar "9944" "C")) (TpVar "9948" "R")) Erased (Var "9951" "indices")) NotErased (Parens "9959" (App (Var "9960" "cast") Erased (Var "9966" "f")) "9968")) NotErased (Var "9969" "gr")) (Lam "9973" Erased "9975" "Q" NoClass (Lam "9978" NotErased "9980" "q" NoClass (App (App (App (AppTp (Var "9983" "q") (TpVar "9987" "R")) Erased (Var "9990" "indices")) NotErased (IotaPair "9998" (App (Var "9999" "cast") Erased (Var "10005" "f")) (Beta "10008" NoTerm NoTerm) NoGuide "10010")) NotErased (Var "10011" "gr")))) NoGuide "10014")))))))) "10015") (CmdsNext (DefTermOrType OpacTrans (DefTerm "10018" "indCoend'" (SomeType (Abs "10034" Erased "10036" "F" (Tkk (KndArrow (KndParens "10040" (KndTpArrow (TpVar "10041" "Indices") (Star "10051")) "10053") (KndTpArrow (TpVar "10056" "Indices") (Star "10066")))) (Abs "10069" Erased "10071" "C" (Tkk (KndTpArrow (TpVar "10075" "Indices") (Star "10085"))) (Abs "10088" Erased "10090" "indices" (Tkt (TpVar "10100" "Indices")) (Abs "10113" NotErased "10115" "e" (Tkt (TpAppt (TpApp (TpApp (TpVar "10119" "CoendInd") (TpVar "10130" "F")) (TpVar "10134" "C")) (Var "10136" "indices"))) (Abs "10149" Erased "10151" "Q" (Tkk (KndPi "10155" "10157" "indices" (Tkt (TpVar "10167" "Indices")) (KndTpArrow (TpAppt (TpApp (TpApp (TpVar "10176" "CoendInd") (TpVar "10187" "F")) (TpVar "10191" "C")) (Var "10193" "indices")) (Star "10203")))) (TpArrow (TpParens "10210" (Abs "10211" Erased "10213" "R" (Tkk (KndTpArrow (TpVar "10217" "Indices") (Star "10227"))) (Abs "10230" Erased "10232" "indices" (Tkt (TpVar "10242" "Indices")) (Abs "10251" Erased "10253" "c" (Tkt (TpApp (TpApp (TpVar "10257" "Cast") (TpVar "10264" "R")) (TpVar "10268" "C"))) (Abs "10277" NotErased "10279" "gr" (Tkt (TpAppt (TpApp (TpVar "10284" "F") (TpVar "10288" "R")) (Var "10290" "indices"))) (TpAppt (TpAppt (TpVar "10299" "Q") (Var "10301" "indices")) (Parens "10309" (App (App (App (AppTp (AppTp (AppTp (Var "10310" "intrCoendInd") (TpVar "10325" "F")) (TpVar "10329" "C")) (TpVar "10333" "R")) Erased (Var "10336" "indices")) Erased (Var "10345" "c")) NotErased (Var "10347" "gr")) "10350")))))) "10351") NotErased (Abs "10358" Erased "10360" "X" (Tkk (KndPi "10364" "10366" "indices" (Tkt (TpVar "10376" "Indices")) (KndTpArrow (TpAppt (TpApp (TpApp (TpVar "10385" "CoendInd") (TpVar "10396" "F")) (TpVar "10400" "C")) (Var "10402" "indices")) (Star "10412")))) (TpArrow (TpParens "10419" (Abs "10420" Erased "10422" "indices" (Tkt (TpVar "10432" "Indices")) (Abs "10441" Erased "10443" "x'" (Tkt (TpAppt (TpApp (TpApp (TpVar "10448" "CoendInd") (TpVar "10459" "F")) (TpVar "10463" "C")) (Var "10465" "indices"))) (TpArrow (TpAppt (TpAppt (TpVar "10474" "Q") (Var "10476" "indices")) (Var "10484" "x'")) NotErased (TpAppt (TpAppt (TpVar "10489" "X") (Var "10491" "indices")) (Var "10499" "x'"))))) "10502") NotErased (TpAppt (TpAppt (TpVar "10509" "X") (Var "10511" "indices")) (Var "10519" "e"))))))))))) (Lam "10525" Erased "10527" "F" NoClass (Lam "10530" Erased "10532" "C" NoClass (Lam "10535" Erased "10537" "indices" NoClass (Lam "10546" NotErased "10548" "e" NoClass (Lam "10551" Erased "10553" "Q" NoClass (Lam "10556" NotErased "10558" "q" NoClass (Theta "10561" (AbstractVars (VarsNext "indices" (VarsStart "e"))) (IotaProj (Var "10574" "e") "2" "10577") (LtermsCons NotErased (Parens "10582" (Lam "10583" Erased "10585" "R" NoClass (Lam "10588" Erased "10590" "indices" NoClass (Lam "10599" NotErased "10601" "ar" NoClass (Lam "10605" NotErased "10607" "gr" NoClass (Lam "10611" Erased "10613" "X" NoClass (Lam "10616" NotErased "10618" "qq" NoClass (App (App (App (Var "10622" "qq") Erased (Var "10626" "indices")) Erased (Parens "10641" (App (App (App (AppTp (AppTp (AppTp (Var "10642" "intrCoendInd") (TpVar "10657" "F")) (TpVar "10661" "C")) (TpVar "10665" "R")) Erased (Var "10668" "indices")) Erased (Var "10677" "ar")) NotErased (Var "10680" "gr")) "10683")) NotErased (Parens "10684" (App (App (App (AppTp (Var "10685" "q") (TpVar "10689" "R")) Erased (Var "10692" "indices")) Erased (Var "10701" "ar")) NotErased (Var "10704" "gr")) "10707")))))))) "10708") (LtermsNil "10707")))))))))) "10709") (CmdsNext (DefTermOrType OpacTrans (DefTerm "10712" "indCoend" (SomeType (Abs "10727" Erased "10729" "F" (Tkk (KndArrow (KndParens "10733" (KndTpArrow (TpVar "10734" "Indices") (Star "10744")) "10746") (KndTpArrow (TpVar "10749" "Indices") (Star "10759")))) (Abs "10762" Erased "10764" "C" (Tkk (KndTpArrow (TpVar "10768" "Indices") (Star "10778"))) (Abs "10781" Erased "10783" "indices" (Tkt (TpVar "10793" "Indices")) (Abs "10806" NotErased "10808" "e" (Tkt (TpAppt (TpApp (TpApp (TpVar "10812" "CoendInd") (TpVar "10823" "F")) (TpVar "10827" "C")) (Var "10829" "indices"))) (Abs "10842" Erased "10844" "Q" (Tkk (KndPi "10848" "10850" "indices" (Tkt (TpVar "10860" "Indices")) (KndTpArrow (TpAppt (TpApp (TpApp (TpVar "10869" "CoendInd") (TpVar "10880" "F")) (TpVar "10884" "C")) (Var "10886" "indices")) (Star "10896")))) (TpArrow (TpParens "10903" (Abs "10904" Erased "10906" "R" (Tkk (KndTpArrow (TpVar "10910" "Indices") (Star "10920"))) (Abs "10923" Erased "10925" "indices" (Tkt (TpVar "10935" "Indices")) (Abs "10944" Erased "10946" "c" (Tkt (TpApp (TpApp (TpVar "10950" "Cast") (TpVar "10957" "R")) (TpVar "10961" "C"))) (Abs "10970" NotErased "10972" "gr" (Tkt (TpAppt (TpApp (TpVar "10977" "F") (TpVar "10981" "R")) (Var "10983" "indices"))) (TpAppt (TpAppt (TpVar "10992" "Q") (Var "10994" "indices")) (Parens "11002" (App (App (App (AppTp (AppTp (AppTp (Var "11003" "intrCoendInd") (TpVar "11018" "F")) (TpVar "11022" "C")) (TpVar "11026" "R")) Erased (Var "11029" "indices")) Erased (Var "11038" "c")) NotErased (Var "11040" "gr")) "11043")))))) "11044") NotErased (TpAppt (TpAppt (TpVar "11051" "Q") (Var "11053" "indices")) (Var "11061" "e"))))))))) (Lam "11067" Erased "11069" "F" NoClass (Lam "11072" Erased "11074" "C" NoClass (Lam "11077" Erased "11079" "indices" NoClass (Lam "11088" NotErased "11090" "e" NoClass (Lam "11093" Erased "11095" "Q" NoClass (Lam "11098" NotErased "11100" "i" NoClass (App (AppTp (App (AppTp (App (App (AppTp (AppTp (Var "11107" "indCoend'") (TpVar "11119" "F")) (TpVar "11123" "C")) Erased (Var "11126" "indices")) NotErased (Var "11134" "e")) (TpVar "11138" "Q")) NotErased (Var "11140" "i")) (TpVar "11144" "Q")) NotErased (Parens "11146" (Lam "11147" Erased "11149" "indices" NoClass (Lam "11158" Erased "11160" "x'" NoClass (Lam "11164" NotErased "11166" "u" NoClass (Var "11169" "u")))) "11171"))))))))) "11172") (CmdsNext (DefTermOrType OpacTrans (DefTerm "11174" "fmapCoend" (SomeType (Abs "11186" Erased "11188" "F" (Tkk (KndArrow (KndParens "11192" (KndTpArrow (TpVar "11193" "Indices") (Star "11203")) "11205") (KndTpArrow (TpVar "11208" "Indices") (Star "11218")))) (TpApp (TpVar "11221" "Functor") (TpParens "11231" (TpApp (TpVar "11232" "CoendInd") (TpVar "11243" "F")) "11245")))) (Lam "11250" Erased "11252" "F" NoClass (Lam "11255" Erased "11257" "A" NoClass (Lam "11260" Erased "11262" "B" NoClass (Lam "11265" Erased "11267" "f" NoClass (IotaPair "11274" (Lam "11275" Erased "11277" "indices" NoClass (Lam "11286" NotErased "11288" "c" NoClass (Phi "11297" (Parens "11299" (Theta "11300" (AbstractVars (VarsNext "indices" (VarsStart "c"))) (Parens "11313" (App (App (AppTp (AppTp (Var "11314" "indCoend") (TpVar "11325" "F")) (TpVar "11329" "A")) Erased (Var "11332" "indices")) NotErased (Var "11340" "c")) "11342") (LtermsCons NotErased (Parens "11343" (Lam "11344" Erased "11346" "R" NoClass (Lam "11349" Erased "11351" "indices" NoClass (Lam "11360" Erased "11362" "i" NoClass (Lam "11365" NotErased "11367" "gr" NoClass (Beta "11371" NoTerm NoTerm))))) "11373") (LtermsNil "11372"))) "11374") (Theta "11386" (AbstractVars (VarsNext "indices" (VarsStart "c"))) (Parens "11399" (App (App (AppTp (AppTp (Var "11400" "indCoend") (TpVar "11411" "F")) (TpVar "11415" "A")) Erased (Var "11418" "indices")) NotErased (Var "11426" "c")) "11428") (LtermsCons NotErased (Parens "11429" (Lam "11430" Erased "11432" "R" NoClass (Lam "11435" Erased "11437" "indices" NoClass (Lam "11446" Erased "11448" "i" NoClass (Lam "11451" NotErased "11453" "gr" NoClass (App (App (App (AppTp (AppTp (AppTp (Var "11468" "intrCoendInd") (TpVar "11483" "F")) (TpVar "11487" "B")) (TpVar "11491" "R")) Erased (Var "11494" "indices")) Erased (IotaPair "11516" (Lam "11517" Erased "11519" "indices" NoClass (Lam "11528" NotErased "11530" "r" NoClass (App (App (App (Var "11533" "cast") Erased (Var "11539" "f")) Erased (Var "11542" "indices")) NotErased (Parens "11550" (App (App (App (Var "11551" "cast") Erased (Var "11557" "i")) Erased (Var "11560" "indices")) NotErased (Var "11568" "r")) "11570")))) (Beta "11572" NoTerm NoTerm) NoGuide "11574")) NotErased (Var "11575" "gr")))))) "11578") (LtermsNil "11578"))) (Var "11580" "c") "11582"))) (Beta "11584" NoTerm NoTerm) NoGuide "11586")))))) "11587") (CmdsNext (DefTermOrType OpacTrans (DefType "11590" "AlgCVM" (KndArrow (KndParens "11599" (KndArrow (KndParens "11600" (KndTpArrow (TpVar "11601" "Indices") (Star "11611")) "11613") (KndTpArrow (TpVar "11616" "Indices") (Star "11626"))) "11628") (KndArrow (Star "11631") (KndTpArrow (TpVar "11635" "Indices") (Star "11645")))) (TpLambda "11651" "11653" "F" (Tkk (KndArrow (KndParens "11657" (KndTpArrow (TpVar "11658" "Indices") (Star "11668")) "11670") (KndTpArrow (TpVar "11673" "Indices") (Star "11683")))) (TpLambda "11686" "11688" "X" (Tkk (Star "11692")) (TpLambda "11695" "11697" "indices" (Tkt (TpVar "11707" "Indices")) (Abs "11720" Erased "11722" "R" (Tkk (KndTpArrow (TpVar "11726" "Indices") (Star "11736"))) (TpArrow (TpParens "11739" (TpArrow (TpAppt (TpVar "11740" "R") (Var "11742" "indices")) NotErased (TpAppt (TpApp (TpVar "11752" "F") (TpVar "11756" "R")) (Var "11758" "indices"))) "11766") NotErased (TpArrow (TpParens "11769" (TpArrow (TpAppt (TpVar "11770" "R") (Var "11772" "indices")) NotErased (TpVar "11782" "X")) "11784") NotErased (TpArrow (TpAppt (TpApp (TpVar "11787" "F") (TpVar "11791" "R")) (Var "11793" "indices")) NotErased (TpVar "11803" "X"))))))))) "11805") (CmdsNext (DefTermOrType OpacTrans (DefType "11808" "FixCVM" (KndArrow (KndParens "11817" (KndArrow (KndParens "11818" (KndTpArrow (TpVar "11819" "Indices") (Star "11829")) "11831") (KndTpArrow (TpVar "11834" "Indices") (Star "11844"))) "11846") (KndTpArrow (TpVar "11849" "Indices") (Star "11859"))) (TpLambda "11865" "11867" "F" (Tkk (KndArrow (KndParens "11871" (KndTpArrow (TpVar "11872" "Indices") (Star "11882")) "11884") (KndTpArrow (TpVar "11887" "Indices") (Star "11897")))) (TpLambda "11900" "11902" "indices" (Tkt (TpVar "11912" "Indices")) (Abs "11925" Erased "11927" "R" (Tkk (Star "11931")) (TpArrow (TpAppt (TpApp (TpApp (TpVar "11934" "AlgCVM") (TpVar "11943" "F")) (TpVar "11947" "R")) (Var "11949" "indices")) NotErased (TpVar "11959" "R")))))) "11961") (CmdsNext (DefTermOrType OpacTrans (DefTerm "11963" "foldCVM" (SomeType (Abs "11977" Erased "11979" "F" (Tkk (KndArrow (KndParens "11983" (KndTpArrow (TpVar "11984" "Indices") (Star "11994")) "11996") (KndTpArrow (TpVar "11999" "Indices") (Star "12009")))) (Abs "12012" Erased "12014" "A" (Tkk (Star "12018")) (Abs "12021" Erased "12023" "indices" (Tkt (TpVar "12033" "Indices")) (TpArrow (TpAppt (TpApp (TpApp (TpVar "12046" "AlgCVM") (TpVar "12055" "F")) (TpVar "12059" "A")) (Var "12061" "indices")) NotErased (TpArrow (TpAppt (TpApp (TpVar "12071" "FixCVM") (TpVar "12080" "F")) (Var "12082" "indices")) NotErased (TpVar "12092" "A"))))))) (Lam "12098" Erased "12100" "F" NoClass (Lam "12103" Erased "12105" "A" NoClass (Lam "12108" Erased "12110" "indices" NoClass (Lam "12119" NotErased "12121" "alg" NoClass (Lam "12126" NotErased "12128" "fix" NoClass (App (Var "12133" "fix") NotErased (Var "12137" "alg")))))))) "12141") (CmdsNext (DefTermOrType OpacTrans (DefType "12143" "CVProduct'" (KndArrow (KndParens "12157" (KndArrow (KndParens "12158" (KndTpArrow (TpVar "12159" "Indices") (Star "12169")) "12171") (KndTpArrow (TpVar "12174" "Indices") (Star "12184"))) "12186") (KndArrow (KndParens "12189" (KndTpArrow (TpVar "12190" "Indices") (Star "12200")) "12202") (KndTpArrow (TpVar "12205" "Indices") (Star "12215")))) (TpLambda "12221" "12223" "F" (Tkk (KndArrow (KndParens "12227" (KndTpArrow (TpVar "12228" "Indices") (Star "12238")) "12240") (KndTpArrow (TpVar "12243" "Indices") (Star "12253")))) (TpLambda "12256" "12258" "X" (Tkk (KndTpArrow (TpVar "12262" "Indices") (Star "12272"))) (TpLambda "12275" "12277" "indices" (Tkt (TpVar "12287" "Indices")) (TpApp (TpApp (TpVar "12300" "Sigma") (TpParens "12308" (TpAppt (TpApp (TpVar "12309" "F") (TpVar "12313" "X")) (Var "12315" "indices")) "12323")) (TpParens "12326" (TpLambda "12327" "12329" "_" (Tkt (TpAppt (TpApp (TpVar "12333" "F") (TpVar "12337" "X")) (Var "12339" "indices"))) (TpArrow (TpAppt (TpVar "12348" "X") (Var "12350" "indices")) NotErased (TpAppt (TpApp (TpVar "12360" "F") (TpVar "12364" "X")) (Var "12366" "indices")))) "12374")))))) "12375") (CmdsNext (DefTermOrType OpacTrans (DefType "12376" "CVF'" (KndArrow (KndParens "12389" (KndArrow (KndParens "12390" (KndTpArrow (TpVar "12391" "Indices") (Star "12401")) "12403") (KndTpArrow (TpVar "12406" "Indices") (Star "12416"))) "12418") (KndArrow (KndParens "12421" (KndTpArrow (TpVar "12422" "Indices") (Star "12432")) "12434") (KndTpArrow (TpVar "12437" "Indices") (Star "12447")))) (TpLambda "12453" "12455" "F" (Tkk (KndArrow (KndParens "12459" (KndTpArrow (TpVar "12460" "Indices") (Star "12470")) "12472") (KndTpArrow (TpVar "12475" "Indices") (Star "12485")))) (TpApp (TpVar "12488" "CoendInd") (TpParens "12499" (TpApp (TpVar "12500" "CVProduct'") (TpVar "12513" "F")) "12515")))) "12516") (CmdsNext (DefTermOrType OpacTrans (DefType "12517" "CVFixIndM'" (KndArrow (KndParens "12530" (KndArrow (KndParens "12531" (KndTpArrow (TpVar "12532" "Indices") (Star "12542")) "12544") (KndTpArrow (TpVar "12547" "Indices") (Star "12557"))) "12559") (KndTpArrow (TpVar "12562" "Indices") (Star "12572"))) (TpLambda "12578" "12580" "F" (Tkk (KndArrow (KndParens "12584" (KndTpArrow (TpVar "12585" "Indices") (Star "12595")) "12597") (KndTpArrow (TpVar "12600" "Indices") (Star "12610")))) (TpAppt (TpApp (TpVar "12613" "FixIndM") (TpParens "12623" (TpApp (TpVar "12624" "CVF'") (TpVar "12631" "F")) "12633")) (Parens "12634" (AppTp (Var "12635" "fmapCoend") (TpParens "12647" (TpApp (TpVar "12648" "CVProduct'") (TpVar "12661" "F")) "12663")) "12664")))) "12665") (CmdsNext (DefTermOrType OpacTrans (DefTerm "12667" "cvOutFixIndM'" (SomeType (Abs "12687" Erased "12689" "F" (Tkk (KndArrow (KndParens "12693" (KndTpArrow (TpVar "12694" "Indices") (Star "12704")) "12706") (KndTpArrow (TpVar "12709" "Indices") (Star "12719")))) (Abs "12722" Erased "12724" "fmap" (Tkt (TpApp (TpVar "12731" "Functor") (TpVar "12741" "F"))) (Abs "12744" Erased "12746" "indices" (Tkt (TpVar "12756" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "12769" "CVFixIndM'") (TpVar "12782" "F")) (Var "12784" "indices")) NotErased (TpAppt (TpApp (TpVar "12794" "F") (TpParens "12798" (TpApp (TpVar "12799" "CVFixIndM'") (TpVar "12812" "F")) "12814")) (Var "12815" "indices"))))))) (Lam "12827" Erased "12829" "F" NoClass (Lam "12832" Erased "12834" "fmap" NoClass (Lam "12840" Erased "12842" "indices" NoClass (Lam "12851" NotErased "12853" "v" NoClass (App (AppTp (App (App (AppTp (AppTp (Var "12856" "indCoend") (TpParens "12871" (TpApp (TpVar "12872" "CVProduct'") (TpVar "12885" "F")) "12887")) (TpParens "12894" (TpAppt (TpApp (TpVar "12895" "FixIndM") (TpParens "12905" (TpApp (TpVar "12906" "CoendInd") (TpParens "12917" (TpApp (TpVar "12918" "CVProduct'") (TpVar "12931" "F")) "12933")) "12934")) (Parens "12935" (AppTp (Var "12936" "fmapCoend") (TpParens "12948" (TpApp (TpVar "12949" "CVProduct'") (TpVar "12962" "F")) "12964")) "12965")) "12966")) Erased (Var "12972" "indices")) NotErased (Parens "12980" (App (App (App (Var "12981" "outFixIndM") Erased (Parens "12993" (AppTp (Var "12994" "fmapCoend") (TpParens "13006" (TpApp (TpVar "13007" "CVProduct'") (TpVar "13020" "F")) "13022")) "13023")) Erased (Var "13025" "indices")) NotErased (Var "13033" "v")) "13035")) (TpParens "13043" (TpLambda "13044" "13046" "indices" (Tkt (TpVar "13056" "Indices")) (TpLambda "13065" "13067" "_" (Tkt (TpAppt (TpApp (TpApp (TpVar "13071" "CoendInd") (TpParens "13082" (TpApp (TpVar "13083" "CVProduct'") (TpVar "13096" "F")) "13098")) (TpParens "13101" (TpApp (TpVar "13102" "CVFixIndM'") (TpVar "13115" "F")) "13117")) (Var "13118" "indices"))) (TpAppt (TpApp (TpVar "13135" "F") (TpParens "13139" (TpApp (TpVar "13140" "CVFixIndM'") (TpVar "13153" "F")) "13155")) (Var "13156" "indices")))) "13164")) NotErased (Parens "13166" (Lam "13167" Erased "13169" "R" NoClass (Lam "13172" Erased "13174" "indices" NoClass (Lam "13183" Erased "13185" "c" NoClass (Lam "13188" NotErased "13190" "v" NoClass (App (App (App (Var "13193" "cast") Erased (Parens "13199" (App (Var "13200" "fmap") Erased (Var "13206" "c")) "13208")) Erased (Var "13210" "indices")) NotErased (Parens "13218" (App (Var "13219" "fst") NotErased (Var "13223" "v")) "13225")))))) "13226"))))))) "13227") (CmdsNext (DefTermOrType OpacTrans (DefType "13229" "CVProduct" (KndArrow (KndParens "13241" (KndArrow (KndParens "13242" (KndTpArrow (TpVar "13243" "Indices") (Star "13253")) "13255") (KndTpArrow (TpVar "13258" "Indices") (Star "13268"))) "13270") (KndArrow (KndParens "13273" (KndTpArrow (TpVar "13274" "Indices") (Star "13284")) "13286") (KndTpArrow (TpVar "13289" "Indices") (Star "13299")))) (TpLambda "13305" "13307" "F" (Tkk (KndArrow (KndParens "13311" (KndTpArrow (TpVar "13312" "Indices") (Star "13322")) "13324") (KndTpArrow (TpVar "13327" "Indices") (Star "13337")))) (TpLambda "13340" "13342" "X" (Tkk (KndTpArrow (TpVar "13346" "Indices") (Star "13356"))) (TpLambda "13359" "13361" "indices" (Tkt (TpVar "13371" "Indices")) (TpApp (TpApp (TpVar "13380" "Product") (TpParens "13394" (TpAppt (TpApp (TpVar "13395" "F") (TpVar "13399" "X")) (Var "13401" "indices")) "13409")) (TpParens "13416" (Iota "13417" "13419" "o" (Abs "13423" Erased "13425" "indices" (Tkt (TpVar "13435" "Indices")) (TpArrow (TpAppt (TpVar "13444" "X") (Var "13446" "indices")) NotErased (TpAppt (TpApp (TpVar "13456" "F") (TpVar "13460" "X")) (Var "13462" "indices")))) (TpEq "13471" (Var "13472" "o") (Var "13476" "cvOutFixIndM'") "13490")) "13491")))))) "13492") (CmdsNext (DefTermOrType OpacTrans (DefType "13493" "CVF" (KndArrow (KndParens "13500" (KndArrow (KndParens "13501" (KndTpArrow (TpVar "13502" "Indices") (Star "13512")) "13514") (KndTpArrow (TpVar "13517" "Indices") (Star "13527"))) "13529") (KndArrow (KndParens "13532" (KndTpArrow (TpVar "13533" "Indices") (Star "13543")) "13545") (KndTpArrow (TpVar "13548" "Indices") (Star "13558")))) (TpLambda "13564" "13566" "F" (Tkk (KndArrow (KndParens "13570" (KndTpArrow (TpVar "13571" "Indices") (Star "13581")) "13583") (KndTpArrow (TpVar "13586" "Indices") (Star "13596")))) (TpApp (TpVar "13599" "CoendInd") (TpParens "13610" (TpApp (TpVar "13611" "CVProduct") (TpVar "13623" "F")) "13625")))) "13626") (CmdsNext (DefTermOrType OpacTrans (DefType "13627" "CVFixIndM" (KndPi "13639" "13641" "F" (Tkk (KndArrow (KndParens "13645" (KndTpArrow (TpVar "13646" "Indices") (Star "13656")) "13658") (KndTpArrow (TpVar "13661" "Indices") (Star "13671")))) (KndTpArrow (TpApp (TpVar "13674" "Functor") (TpVar "13684" "F")) (KndTpArrow (TpVar "13688" "Indices") (Star "13698")))) (TpLambda "13704" "13706" "F" (Tkk (KndArrow (KndParens "13710" (KndTpArrow (TpVar "13711" "Indices") (Star "13721")) "13723") (KndTpArrow (TpVar "13726" "Indices") (Star "13736")))) (TpLambda "13739" "13741" "fmap" (Tkt (TpApp (TpVar "13748" "Functor") (TpVar "13758" "F"))) (TpAppt (TpApp (TpVar "13765" "FixIndM") (TpParens "13775" (TpApp (TpVar "13776" "CVF") (TpVar "13782" "F")) "13784")) (Parens "13785" (AppTp (Var "13786" "fmapCoend") (TpParens "13798" (TpApp (TpVar "13799" "CVProduct") (TpVar "13811" "F")) "13813")) "13814"))))) "13815") (CmdsNext (DefTermOrType OpacTrans (DefTerm "13817" "cvOutFixIndM" (SomeType (Abs "13836" Erased "13838" "F" (Tkk (KndArrow (KndParens "13842" (KndTpArrow (TpVar "13843" "Indices") (Star "13853")) "13855") (KndTpArrow (TpVar "13858" "Indices") (Star "13868")))) (Abs "13871" Erased "13873" "fmap" (Tkt (TpApp (TpVar "13880" "Functor") (TpVar "13890" "F"))) (Abs "13893" Erased "13895" "indices" (Tkt (TpVar "13905" "Indices")) (TpArrow (TpAppt (TpAppt (TpApp (TpVar "13918" "CVFixIndM") (TpVar "13930" "F")) (Var "13932" "fmap")) (Var "13937" "indices")) NotErased (TpAppt (TpApp (TpVar "13947" "F") (TpParens "13951" (TpAppt (TpApp (TpVar "13952" "CVFixIndM") (TpVar "13964" "F")) (Var "13966" "fmap")) "13971")) (Var "13972" "indices"))))))) (Lam "13984" Erased "13986" "F" NoClass (Lam "13989" Erased "13991" "fmap" NoClass (Lam "13997" Erased "13999" "indices" NoClass (Lam "14008" NotErased "14010" "v" NoClass (App (AppTp (App (App (AppTp (AppTp (Var "14013" "indCoend") (TpParens "14028" (TpApp (TpVar "14029" "CVProduct") (TpVar "14041" "F")) "14043")) (TpParens "14050" (TpAppt (TpApp (TpVar "14051" "FixIndM") (TpParens "14061" (TpApp (TpVar "14062" "CoendInd") (TpParens "14073" (TpApp (TpVar "14074" "CVProduct") (TpVar "14086" "F")) "14088")) "14089")) (Parens "14090" (AppTp (Var "14091" "fmapCoend") (TpParens "14103" (TpApp (TpVar "14104" "CVProduct") (TpVar "14116" "F")) "14118")) "14119")) "14120")) Erased (Var "14126" "indices")) NotErased (Parens "14138" (App (App (App (Var "14139" "outFixIndM") Erased (Parens "14151" (AppTp (Var "14152" "fmapCoend") (TpParens "14164" (TpApp (TpVar "14165" "CVProduct") (TpVar "14177" "F")) "14179")) "14180")) Erased (Var "14182" "indices")) NotErased (Var "14190" "v")) "14192")) (TpParens "14199" (TpLambda "14200" "14202" "indices" (Tkt (TpVar "14212" "Indices")) (TpLambda "14221" "14223" "_" (Tkt (TpAppt (TpApp (TpApp (TpVar "14227" "CoendInd") (TpParens "14238" (TpApp (TpVar "14239" "CVProduct") (TpVar "14251" "F")) "14253")) (TpParens "14256" (TpAppt (TpApp (TpVar "14257" "CVFixIndM") (TpVar "14269" "F")) (Var "14271" "fmap")) "14276")) (Var "14277" "indices"))) (TpAppt (TpApp (TpVar "14294" "F") (TpParens "14298" (TpAppt (TpApp (TpVar "14299" "CVFixIndM") (TpVar "14311" "F")) (Var "14313" "fmap")) "14318")) (Var "14319" "indices")))) "14327")) NotErased (Parens "14332" (Lam "14333" Erased "14335" "R" NoClass (Lam "14338" Erased "14340" "indices" NoClass (Lam "14349" Erased "14351" "c" NoClass (Lam "14354" NotErased "14356" "v" NoClass (App (App (App (Var "14359" "cast") Erased (Parens "14365" (App (Var "14366" "fmap") Erased (Var "14372" "c")) "14374")) Erased (Var "14376" "indices")) NotErased (Parens "14384" (App (Var "14385" "fst") NotErased (Var "14389" "v")) "14391")))))) "14392"))))))) "14393") (CmdsNext (DefTermOrType OpacTrans (DefTerm "14395" "cvInFixIndM" (SomeType (Abs "14413" Erased "14415" "F" (Tkk (KndArrow (KndParens "14419" (KndTpArrow (TpVar "14420" "Indices") (Star "14430")) "14432") (KndTpArrow (TpVar "14435" "Indices") (Star "14445")))) (Abs "14448" Erased "14450" "fmap" (Tkt (TpApp (TpVar "14457" "Functor") (TpVar "14467" "F"))) (Abs "14470" Erased "14472" "indices" (Tkt (TpVar "14482" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "14495" "F") (TpParens "14499" (TpAppt (TpApp (TpVar "14500" "CVFixIndM") (TpVar "14512" "F")) (Var "14514" "fmap")) "14519")) (Var "14520" "indices")) NotErased (TpAppt (TpAppt (TpApp (TpVar "14530" "CVFixIndM") (TpVar "14542" "F")) (Var "14544" "fmap")) (Var "14549" "indices"))))))) (Lam "14561" Erased "14563" "F" NoClass (Lam "14566" Erased "14568" "fmap" NoClass (Lam "14574" Erased "14576" "indices" NoClass (Lam "14585" NotErased "14587" "fcv" NoClass (App (App (App (Var "14592" "inFixIndM") Erased (Parens "14603" (AppTp (Var "14604" "fmapCoend") (TpParens "14616" (TpApp (TpVar "14617" "CVProduct") (TpVar "14629" "F")) "14631")) "14632")) Erased (Var "14634" "indices")) NotErased (Parens "14646" (App (App (App (AppTp (AppTp (AppTp (Var "14647" "intrCoendInd") (TpParens "14662" (TpApp (TpVar "14663" "CVProduct") (TpVar "14675" "F")) "14677")) (TpParens "14680" (TpAppt (TpApp (TpVar "14681" "CVFixIndM") (TpVar "14693" "F")) (Var "14695" "fmap")) "14700")) (TpParens "14703" (TpAppt (TpApp (TpVar "14704" "CVFixIndM") (TpVar "14716" "F")) (Var "14718" "fmap")) "14723")) Erased (Var "14731" "indices")) Erased (IotaPair "14740" (Lam "14741" Erased "14743" "indices" NoClass (Lam "14752" NotErased "14754" "x" NoClass (Var "14757" "x"))) (Beta "14760" NoTerm NoTerm) NoGuide "14762")) NotErased (Parens "14769" (App (App (Var "14770" "sigma") NotErased (Var "14776" "fcv")) NotErased (IotaPair "14780" (App (Var "14781" "cvOutFixIndM") Erased (Var "14795" "fmap")) (Beta "14801" NoTerm (SomeTerm (Var "14803" "cvOutFixIndM") "14816")) NoGuide "14817")) "14818")) "14819"))))))) "14820") (CmdsNext (DefTermOrType OpacTrans (DefTerm "14822" "cvIndFixIndM" (SomeType (Abs "14841" Erased "14843" "F" (Tkk (KndArrow (KndParens "14847" (KndTpArrow (TpVar "14848" "Indices") (Star "14858")) "14860") (KndTpArrow (TpVar "14863" "Indices") (Star "14873")))) (Abs "14876" Erased "14878" "fmap" (Tkt (TpApp (TpVar "14885" "Functor") (TpVar "14895" "F"))) (Abs "14902" Erased "14904" "indices" (Tkt (TpVar "14914" "Indices")) (Abs "14923" NotErased "14925" "e" (Tkt (TpAppt (TpAppt (TpApp (TpVar "14929" "CVFixIndM") (TpVar "14941" "F")) (Var "14943" "fmap")) (Var "14948" "indices"))) (Abs "14961" Erased "14963" "Q" (Tkk (KndPi "14967" "14969" "indices" (Tkt (TpVar "14979" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "14988" "CVFixIndM") (TpVar "15000" "F")) (Var "15002" "fmap")) (Var "15007" "indices")) (Star "15017")))) (TpArrow (TpParens "15024" (Abs "15025" Erased "15027" "R" (Tkk (KndTpArrow (TpVar "15031" "Indices") (Star "15041"))) (Abs "15044" Erased "15046" "c" (Tkt (TpApp (TpApp (TpVar "15050" "Cast") (TpVar "15057" "R")) (TpParens "15061" (TpAppt (TpApp (TpVar "15062" "CVFixIndM") (TpVar "15074" "F")) (Var "15076" "fmap")) "15081"))) (Abs "15088" Erased "15090" "out" (Tkt (Abs "15096" Erased "15098" "indices" (Tkt (TpVar "15108" "Indices")) (TpArrow (TpAppt (TpVar "15117" "R") (Var "15119" "indices")) NotErased (TpAppt (TpApp (TpVar "15129" "F") (TpVar "15133" "R")) (Var "15135" "indices"))))) (TpArrow (TpEq "15144" (Var "15145" "out") (Var "15151" "cvOutFixIndM") "15164") Erased (TpArrow (TpParens "15172" (Abs "15173" Erased "15175" "indices" (Tkt (TpVar "15185" "Indices")) (Abs "15194" NotErased "15196" "r" (Tkt (TpAppt (TpVar "15200" "R") (Var "15202" "indices"))) (TpAppt (TpAppt (TpVar "15211" "Q") (Var "15213" "indices")) (Parens "15221" (App (App (App (Var "15222" "cast") Erased (Var "15228" "c")) Erased (Var "15231" "indices")) NotErased (Var "15239" "r")) "15241")))) "15242") NotErased (Abs "15250" Erased "15252" "indices" (Tkt (TpVar "15262" "Indices")) (Abs "15271" NotErased "15273" "gr" (Tkt (TpAppt (TpApp (TpVar "15278" "F") (TpVar "15282" "R")) (Var "15284" "indices"))) (TpAppt (TpAppt (TpVar "15298" "Q") (Var "15300" "indices")) (Parens "15308" (App (App (App (Var "15309" "cvInFixIndM") Erased (Var "15322" "fmap")) Erased (Var "15328" "indices")) NotErased (Parens "15336" (App (App (App (Var "15337" "cast") Erased (Parens "15343" (App (Var "15344" "fmap") Erased (Var "15350" "c")) "15352")) Erased (Var "15354" "indices")) NotErased (Var "15362" "gr")) "15365")) "15366"))))))))) "15367") NotErased (TpAppt (TpAppt (TpVar "15374" "Q") (Var "15376" "indices")) (Var "15384" "e"))))))))) (Lam "15390" Erased "15392" "F" NoClass (Lam "15395" Erased "15397" "fmap" NoClass (Lam "15403" Erased "15405" "indices" NoClass (Lam "15414" NotErased "15416" "e" NoClass (Lam "15419" Erased "15421" "Q" NoClass (Lam "15424" NotErased "15426" "prf" NoClass (App (AppTp (App (App (App (Var "15435" "indFixIndM") Erased (Parens "15447" (AppTp (Var "15448" "fmapCoend") (TpParens "15460" (TpApp (TpVar "15461" "CVProduct") (TpVar "15473" "F")) "15475")) "15476")) Erased (Var "15478" "indices")) NotErased (Var "15486" "e")) (TpVar "15490" "Q")) NotErased (Parens "15498" (Lam "15499" Erased "15501" "R" NoClass (Lam "15504" Erased "15506" "i" NoClass (Lam "15509" NotErased "15511" "ih" NoClass (Lam "15515" Erased "15517" "indices" NoClass (Lam "15526" NotErased "15528" "gr" NoClass (Theta "15540" (AbstractVars (VarsNext "indices" (VarsStart "gr"))) (Parens "15554" (App (App (AppTp (AppTp (Var "15555" "indCoend") (TpParens "15566" (TpApp (TpVar "15567" "CVProduct") (TpVar "15579" "F")) "15581")) (TpVar "15584" "R")) Erased (Var "15587" "indices")) NotErased (Var "15595" "gr")) "15598") (LtermsCons NotErased (Parens "15609" (Lam "15610" Erased "15612" "R'" NoClass (Lam "15616" Erased "15618" "indices" NoClass (Lam "15627" Erased "15629" "i2" NoClass (Lam "15633" NotErased "15635" "fr" NoClass (Theta "15639" (AbstractVars (VarsStart "fr")) (Parens "15645" (App (Var "15646" "SigmaInd") NotErased (Var "15655" "fr")) "15658") (LtermsCons NotErased (Parens "15671" (Lam "15672" NotErased "15674" "a" NoClass (Lam "15677" NotErased "15679" "b" NoClass (Rho "15682" RhoPlain NoNums (IotaProj (Var "15684" "b") "2" "15687") NoGuide (App (App (App (App (App (App (AppTp (Var "15690" "prf") (TpVar "15696" "R'")) Erased (IotaPair "15714" (Lam "15715" Erased "15717" "indices" NoClass (Lam "15726" NotErased "15728" "r" NoClass (App (App (App (Var "15731" "cast") Erased (Var "15737" "i")) Erased (Var "15740" "indices")) NotErased (Parens "15748" (App (App (App (Var "15749" "cast") Erased (Var "15755" "i2")) Erased (Var "15759" "indices")) NotErased (Var "15767" "r")) "15769")))) (Beta "15771" NoTerm NoTerm) NoGuide "15773")) Erased (IotaProj (Var "15775" "b") "1" "15778")) Erased (IotaProj (Var "15780" "b") "2" "15783")) NotErased (Parens "15798" (Lam "15799" Erased "15801" "indices" NoClass (Lam "15810" NotErased "15812" "r'" NoClass (App (App (Var "15816" "ih") Erased (Var "15820" "indices")) NotErased (Parens "15828" (App (App (App (Var "15829" "cast") Erased (Var "15835" "i2")) Erased (Var "15839" "indices")) NotErased (Var "15847" "r'")) "15850")))) "15851")) Erased (Var "15853" "indices")) NotErased (Var "15861" "a"))))) "15863") (LtermsNil "15862"))))))) "15864") (LtermsNil "15863")))))))) "15865"))))))))) "15866") CmdsStart)))))))))))))))))))))))))))))))))))))))))))))))))) "15866" -- src/templates/MendlerSimple.ced MendlerSimpleTemplate = File "1" ImportsStart "1" "8" "MendlerSimple" (ParamsCons (Decl "22" "23" NotErased "Indices" (Tkk (Star "33")) "35") ParamsNil) (CmdsNext (DefTermOrType OpacTrans (DefType "38" "Top" (Star "44") (TpEq "48" (Beta "49" NoTerm NoTerm) (Beta "53" NoTerm NoTerm) "55")) "56") (CmdsNext (DefTermOrType OpacTrans (DefType "58" "Cast" (KndArrow (KndParens "65" (KndTpArrow (TpVar "66" "Indices") (Star "76")) "78") (KndArrow (KndParens "81" (KndTpArrow (TpVar "82" "Indices") (Star "92")) "94") (Star "97"))) (TpLambda "101" "103" "A" (Tkk (KndTpArrow (TpVar "107" "Indices") (Star "117"))) (TpLambda "120" "122" "B" (Tkk (KndTpArrow (TpVar "126" "Indices") (Star "136"))) (Iota "141" "143" "cast" (Abs "150" Erased "152" "indices" (Tkt (TpVar "162" "Indices")) (TpArrow (TpAppt (TpVar "171" "A") (Var "173" "indices")) NotErased (TpAppt (TpVar "183" "B") (Var "185" "indices")))) (TpEq "194" (Var "195" "cast") (Lam "202" NotErased "204" "x" NoClass (Var "207" "x")) "209"))))) "210") (CmdsNext (DefTermOrType OpacTrans (DefTerm "212" "cast" (SomeType (Abs "219" Erased "221" "A" (Tkk (KndTpArrow (TpVar "225" "Indices") (Star "235"))) (Abs "238" Erased "240" "B" (Tkk (KndTpArrow (TpVar "244" "Indices") (Star "254"))) (TpArrow (TpApp (TpApp (TpVar "257" "Cast") (TpVar "264" "A")) (TpVar "268" "B")) Erased (Abs "276" Erased "278" "indices" (Tkt (TpVar "288" "Indices")) (TpArrow (TpAppt (TpVar "297" "A") (Var "299" "indices")) NotErased (TpAppt (TpVar "309" "B") (Var "311" "indices")))))))) (Lam "323" Erased "325" "A" NoClass (Lam "328" Erased "330" "B" NoClass (Lam "333" Erased "335" "c" NoClass (Phi "338" (IotaProj (Var "340" "c") "2" "343") (IotaProj (Var "346" "c") "1" "349") (Lam "351" NotErased "353" "x" NoClass (Var "356" "x")) "358"))))) "359") (CmdsNext (DefTermOrType OpacTrans (DefType "361" "RecFunctor" (KndArrow (KndParens "374" (KndArrow (KndParens "375" (KndTpArrow (TpVar "376" "Indices") (Star "386")) "388") (KndTpArrow (TpVar "391" "Indices") (Star "401"))) "403") (Star "406")) (TpLambda "412" "414" "F" (Tkk (KndArrow (KndParens "418" (KndTpArrow (TpVar "419" "Indices") (Star "429")) "431") (KndTpArrow (TpVar "434" "Indices") (Star "444")))) (Abs "447" Erased "449" "X" (Tkk (KndTpArrow (TpVar "453" "Indices") (Star "463"))) (Abs "466" Erased "468" "Y" (Tkk (KndTpArrow (TpVar "472" "Indices") (Star "482"))) (TpArrow (TpApp (TpApp (TpVar "489" "Cast") (TpVar "496" "X")) (TpVar "500" "Y")) Erased (TpApp (TpApp (TpVar "504" "Cast") (TpParens "511" (TpApp (TpVar "512" "F") (TpVar "516" "X")) "518")) (TpParens "521" (TpApp (TpVar "522" "F") (TpVar "526" "Y")) "528"))))))) "529") (CmdsNext (DefTermOrType OpacTrans (DefType "531" "Rec" (KndArrow (KndParens "537" (KndArrow (KndParens "538" (KndTpArrow (TpVar "539" "Indices") (Star "549")) "551") (KndTpArrow (TpVar "554" "Indices") (Star "564"))) "566") (KndTpArrow (TpVar "569" "Indices") (Star "579"))) (TpLambda "585" "587" "F" (Tkk (KndArrow (KndParens "591" (KndTpArrow (TpVar "592" "Indices") (Star "602")) "604") (KndTpArrow (TpVar "607" "Indices") (Star "617")))) (TpLambda "620" "622" "indices" (Tkt (TpVar "632" "Indices")) (Abs "645" Erased "647" "X" (Tkk (KndTpArrow (TpVar "651" "Indices") (Star "661"))) (TpArrow (TpApp (TpApp (TpVar "664" "Cast") (TpParens "671" (TpApp (TpVar "672" "F") (TpVar "676" "X")) "678")) (TpVar "681" "X")) Erased (TpAppt (TpVar "685" "X") (Var "687" "indices"))))))) "695") (CmdsNext (DefTermOrType OpacTrans (DefTerm "698" "recCast" (SomeType (Abs "708" Erased "710" "F" (Tkk (KndArrow (KndParens "714" (KndTpArrow (TpVar "715" "Indices") (Star "725")) "727") (KndTpArrow (TpVar "730" "Indices") (Star "740")))) (Abs "743" Erased "745" "X" (Tkk (KndTpArrow (TpVar "749" "Indices") (Star "759"))) (TpArrow (TpApp (TpApp (TpVar "766" "Cast") (TpParens "773" (TpApp (TpVar "774" "F") (TpVar "778" "X")) "780")) (TpVar "783" "X")) Erased (TpApp (TpApp (TpVar "787" "Cast") (TpParens "794" (TpApp (TpVar "795" "Rec") (TpVar "801" "F")) "803")) (TpVar "806" "X")))))) (Lam "812" Erased "814" "F" NoClass (Lam "817" Erased "819" "X" NoClass (Lam "822" Erased "824" "c" NoClass (IotaPair "827" (Lam "828" Erased "830" "indices" NoClass (Lam "839" NotErased "841" "a" NoClass (App (AppTp (Var "844" "a") (TpVar "848" "X")) Erased (Var "851" "c")))) (Beta "854" NoTerm NoTerm) NoGuide "856"))))) "857") (CmdsNext (DefTermOrType OpacTrans (DefTerm "859" "recIn" (SomeType (Abs "867" Erased "869" "F" (Tkk (KndArrow (KndParens "873" (KndTpArrow (TpVar "874" "Indices") (Star "884")) "886") (KndTpArrow (TpVar "889" "Indices") (Star "899")))) (TpArrow (TpApp (TpVar "902" "RecFunctor") (TpVar "915" "F")) Erased (TpApp (TpApp (TpVar "923" "Cast") (TpParens "930" (TpApp (TpVar "931" "F") (TpParens "935" (TpApp (TpVar "936" "Rec") (TpVar "942" "F")) "944")) "945")) (TpParens "948" (TpApp (TpVar "949" "Rec") (TpVar "955" "F")) "957"))))) (Lam "962" Erased "964" "F" NoClass (Lam "967" Erased "969" "fmap" NoClass (IotaPair "979" (Lam "980" Erased "982" "indices" NoClass (Lam "991" NotErased "993" "a" NoClass (Lam "996" Erased "998" "X" NoClass (Lam "1001" Erased "1003" "c" NoClass (App (App (App (Var "1006" "cast") Erased (Var "1012" "c")) Erased (Var "1015" "indices")) NotErased (Parens "1023" (App (App (App (Var "1024" "cast") Erased (Parens "1030" (App (Var "1031" "fmap") Erased (Parens "1037" (App (Var "1038" "recCast") Erased (Var "1047" "c")) "1049")) "1050")) Erased (Var "1052" "indices")) NotErased (Var "1060" "a")) "1062")))))) (Beta "1064" NoTerm NoTerm) NoGuide "1066")))) "1067") (CmdsNext (DefTermOrType OpacTrans (DefTerm "1069" "recOut" (SomeType (Abs "1078" Erased "1080" "F" (Tkk (KndArrow (KndParens "1084" (KndTpArrow (TpVar "1085" "Indices") (Star "1095")) "1097") (KndTpArrow (TpVar "1100" "Indices") (Star "1110")))) (TpArrow (TpApp (TpVar "1113" "RecFunctor") (TpVar "1126" "F")) Erased (TpApp (TpApp (TpVar "1140" "Cast") (TpParens "1147" (TpApp (TpVar "1148" "Rec") (TpVar "1154" "F")) "1156")) (TpParens "1159" (TpApp (TpVar "1160" "F") (TpParens "1164" (TpApp (TpVar "1165" "Rec") (TpVar "1171" "F")) "1173")) "1174"))))) (Lam "1179" Erased "1181" "F" NoClass (Lam "1184" Erased "1186" "fmap" NoClass (IotaPair "1192" (Lam "1193" Erased "1195" "indices" NoClass (Lam "1204" NotErased "1206" "a" NoClass (App (Var "1209" "a") Erased (Parens "1212" (App (Var "1213" "fmap") Erased (Parens "1219" (App (Var "1220" "recIn") Erased (Var "1227" "fmap")) "1232")) "1233")))) (Beta "1235" NoTerm NoTerm) NoGuide "1237")))) "1238") (CmdsNext (DefTermOrType OpacTrans (DefType "1240" "FixMF" (KndPi "1248" "1250" "F" (Tkk (KndArrow (KndParens "1254" (KndTpArrow (TpVar "1255" "Indices") (Star "1265")) "1267") (KndTpArrow (TpVar "1270" "Indices") (Star "1280")))) (KndTpArrow (TpApp (TpVar "1283" "RecFunctor") (TpVar "1296" "F")) (KndArrow (KndParens "1300" (KndTpArrow (TpVar "1301" "Indices") (Star "1311")) "1313") (KndTpArrow (TpVar "1316" "Indices") (Star "1326"))))) (TpLambda "1332" "1334" "F" (Tkk (KndArrow (KndParens "1338" (KndTpArrow (TpVar "1339" "Indices") (Star "1349")) "1351") (KndTpArrow (TpVar "1354" "Indices") (Star "1364")))) (TpLambda "1367" "1369" "fm" (Tkt (TpApp (TpVar "1374" "RecFunctor") (TpVar "1387" "F"))) (TpLambda "1394" "1396" "FixM" (Tkk (KndTpArrow (TpVar "1403" "Indices") (Star "1413"))) (TpLambda "1416" "1418" "indices" (Tkt (TpVar "1428" "Indices")) (Iota "1444" "1446" "x" (TpVar "1450" "Top") (Abs "1455" Erased "1457" "X" (Tkk (KndTpArrow (TpVar "1461" "Top") (KndTpArrow (TpVar "1467" "Indices") (Star "1477")))) (TpArrow (TpParens "1488" (Iota "1489" "1491" "alg" (TpVar "1497" "Top") (Abs "1511" Erased "1513" "R" (Tkk (KndTpArrow (TpVar "1517" "Indices") (Star "1527"))) (TpArrow (TpApp (TpApp (TpVar "1539" "Cast") (TpVar "1546" "R")) (TpVar "1550" "FixM")) Erased (TpArrow (TpParens "1566" (Iota "1567" "1569" "o" (Abs "1573" Erased "1575" "indices" (Tkt (TpVar "1585" "Indices")) (TpArrow (TpAppt (TpVar "1594" "R") (Var "1596" "indices")) NotErased (TpAppt (TpApp (TpVar "1606" "F") (TpVar "1610" "R")) (Var "1612" "indices")))) (TpEq "1632" (Var "1633" "o") (Lam "1637" NotErased "1639" "d" NoClass (App (Var "1642" "d") NotErased (Parens "1644" (Lam "1645" NotErased "1647" "e" NoClass (Lam "1650" NotErased "1652" "p" NoClass (Lam "1655" NotErased "1657" "d" NoClass (Var "1660" "d")))) "1662"))) "1663")) "1664") NotErased (TpArrow (TpParens "1676" (Iota "1677" "1679" "ih" (Abs "1684" Erased "1686" "indices" (Tkt (TpVar "1696" "Indices")) (Abs "1705" NotErased "1707" "r" (Tkt (TpAppt (TpVar "1711" "R") (Var "1713" "indices"))) (TpAppt (TpAppt (TpVar "1722" "X") (Beta "1724" NoTerm (SomeTerm (Var "1726" "r") "1728"))) (Var "1729" "indices")))) (TpEq "1738" (Var "1739" "ih") (Lam "1744" NotErased "1746" "d" NoClass (App (Var "1749" "d") NotErased (Var "1751" "alg"))) "1755")) "1756") NotErased (Abs "1768" Erased "1770" "indices" (Tkt (TpVar "1780" "Indices")) (Abs "1798" NotErased "1800" "x" (Tkt (TpAppt (TpApp (TpVar "1804" "F") (TpVar "1808" "R")) (Var "1810" "indices"))) (TpAppt (TpAppt (TpVar "1828" "X") (Beta "1830" NoTerm (SomeTerm (Lam "1832" NotErased "1834" "alg" NoClass (App (App (App (Var "1839" "alg") NotErased (Parens "1843" (Lam "1844" NotErased "1846" "d" NoClass (App (Var "1849" "d") NotErased (Parens "1851" (Lam "1852" NotErased "1854" "p" NoClass (Lam "1857" NotErased "1859" "e" NoClass (Lam "1862" NotErased "1864" "d" NoClass (Var "1867" "d")))) "1869"))) "1870")) NotErased (Parens "1871" (Lam "1872" NotErased "1874" "d" NoClass (App (Var "1877" "d") NotErased (Var "1879" "alg"))) "1883")) NotErased (Var "1884" "x"))) "1886"))) (Var "1887" "indices"))))))))) "1895") NotErased (TpAppt (TpAppt (TpVar "1906" "X") (Var "1908" "x")) (Var "1910" "indices")))))))))) "1918") (CmdsNext (DefTermOrType OpacTrans (DefType "1920" "FixM" (KndPi "1927" "1929" "F" (Tkk (KndArrow (KndParens "1933" (KndTpArrow (TpVar "1934" "Indices") (Star "1944")) "1946") (KndTpArrow (TpVar "1949" "Indices") (Star "1959")))) (KndTpArrow (TpApp (TpVar "1962" "RecFunctor") (TpVar "1975" "F")) (KndTpArrow (TpVar "1979" "Indices") (Star "1989")))) (TpLambda "1995" "1997" "F" (Tkk (KndArrow (KndParens "2001" (KndTpArrow (TpVar "2002" "Indices") (Star "2012")) "2014") (KndTpArrow (TpVar "2017" "Indices") (Star "2027")))) (TpLambda "2030" "2032" "fm" (Tkt (TpApp (TpVar "2037" "RecFunctor") (TpVar "2050" "F"))) (TpApp (TpVar "2053" "Rec") (TpParens "2059" (TpAppt (TpApp (TpVar "2060" "FixMF") (TpVar "2068" "F")) (Var "2070" "fm")) "2073"))))) "2074") (CmdsNext (DefTermOrType OpacTrans (DefTerm "2076" "FixFmap" (SomeType (Abs "2090" Erased "2092" "F" (Tkk (KndArrow (KndParens "2096" (KndTpArrow (TpVar "2097" "Indices") (Star "2107")) "2109") (KndTpArrow (TpVar "2112" "Indices") (Star "2122")))) (Abs "2125" Erased "2127" "fm" (Tkt (TpApp (TpVar "2132" "RecFunctor") (TpVar "2145" "F"))) (TpApp (TpVar "2148" "RecFunctor") (TpParens "2161" (TpAppt (TpApp (TpVar "2162" "FixMF") (TpVar "2170" "F")) (Var "2172" "fm")) "2175"))))) (Lam "2180" Erased "2182" "F" NoClass (Lam "2185" Erased "2187" "fm" NoClass (Lam "2191" Erased "2193" "D" NoClass (Lam "2196" Erased "2198" "D'" NoClass (Lam "2202" Erased "2204" "c" NoClass (IotaPair "2211" (Lam "2212" Erased "2214" "indices" NoClass (Lam "2223" NotErased "2225" "d" NoClass (IotaPair "2228" (IotaProj (Var "2229" "d") "1" "2232") (Lam "2234" Erased "2236" "X" NoClass (Lam "2239" NotErased "2241" "alg" NoClass (App (AppTp (IotaProj (Var "2246" "d") "2" "2249") (TpVar "2252" "X")) NotErased (IotaPair "2260" (IotaProj (Var "2261" "alg") "1" "2266") (Lam "2268" Erased "2270" "R" NoClass (Lam "2273" Erased "2275" "reveal" NoClass (App (AppTp (IotaProj (Var "2283" "alg") "2" "2288") (TpVar "2291" "R")) Erased (IotaPair "2302" (Lam "2303" Erased "2305" "indices" NoClass (Lam "2314" NotErased "2316" "r" NoClass (App (App (App (Var "2319" "cast") Erased (Var "2325" "c")) Erased (Var "2328" "indices")) NotErased (Parens "2336" (App (App (App (Var "2337" "cast") Erased (Var "2343" "reveal")) Erased (Var "2351" "indices")) NotErased (Var "2359" "r")) "2361")))) (Beta "2363" NoTerm NoTerm) NoGuide "2365")))) NoGuide "2366")))) NoGuide "2367"))) (Beta "2369" NoTerm NoTerm) NoGuide "2371"))))))) "2372") (CmdsNext (DefTermOrType OpacTrans (DefTerm "2374" "inFixM" (SomeType (Abs "2387" Erased "2389" "F" (Tkk (KndArrow (KndParens "2393" (KndTpArrow (TpVar "2394" "Indices") (Star "2404")) "2406") (KndTpArrow (TpVar "2409" "Indices") (Star "2419")))) (Abs "2422" Erased "2424" "fm" (Tkt (TpApp (TpVar "2429" "RecFunctor") (TpVar "2442" "F"))) (Abs "2449" Erased "2451" "indices" (Tkt (TpVar "2461" "Indices")) (TpArrow (TpAppt (TpApp (TpAppt (TpApp (TpVar "2470" "FixMF") (TpVar "2478" "F")) (Var "2480" "fm")) (TpParens "2485" (TpAppt (TpApp (TpVar "2486" "FixM") (TpVar "2493" "F")) (Var "2495" "fm")) "2498")) (Var "2499" "indices")) NotErased (TpAppt (TpAppt (TpApp (TpVar "2509" "FixM") (TpVar "2516" "F")) (Var "2518" "fm")) (Var "2521" "indices"))))))) (Lam "2533" Erased "2535" "F" NoClass (Lam "2538" Erased "2540" "fm" NoClass (App (Var "2544" "cast") Erased (Parens "2550" (App (Var "2551" "recIn") Erased (Parens "2558" (App (Var "2559" "FixFmap") NotErased (Var "2567" "fm")) "2570")) "2571"))))) "2572") (CmdsNext (DefTermOrType OpacTrans (DefTerm "2573" "outFixM" (SomeType (Abs "2583" Erased "2585" "F" (Tkk (KndArrow (KndParens "2589" (KndTpArrow (TpVar "2590" "Indices") (Star "2600")) "2602") (KndTpArrow (TpVar "2605" "Indices") (Star "2615")))) (Abs "2618" Erased "2620" "fm" (Tkt (TpApp (TpVar "2625" "RecFunctor") (TpVar "2638" "F"))) (Abs "2645" Erased "2647" "indices" (Tkt (TpVar "2657" "Indices")) (TpArrow (TpAppt (TpAppt (TpApp (TpVar "2666" "FixM") (TpVar "2673" "F")) (Var "2675" "fm")) (Var "2678" "indices")) NotErased (TpAppt (TpApp (TpAppt (TpApp (TpVar "2688" "FixMF") (TpVar "2696" "F")) (Var "2698" "fm")) (TpParens "2703" (TpAppt (TpApp (TpVar "2704" "FixM") (TpVar "2711" "F")) (Var "2713" "fm")) "2716")) (Var "2717" "indices"))))))) (Lam "2729" Erased "2731" "F" NoClass (Lam "2734" Erased "2736" "fm" NoClass (App (Var "2740" "cast") Erased (Parens "2746" (App (Var "2747" "recOut") Erased (Parens "2755" (App (Var "2756" "FixFmap") NotErased (Var "2764" "fm")) "2767")) "2768"))))) "2769") (CmdsNext (DefTermOrType OpacTrans (DefTerm "2771" "inFix" (SomeType (Abs "2783" Erased "2785" "F" (Tkk (KndArrow (KndParens "2789" (KndTpArrow (TpVar "2790" "Indices") (Star "2800")) "2802") (KndTpArrow (TpVar "2805" "Indices") (Star "2815")))) (Abs "2818" Erased "2820" "fm" (Tkt (TpApp (TpVar "2825" "RecFunctor") (TpVar "2838" "F"))) (Abs "2845" Erased "2847" "indices" (Tkt (TpVar "2857" "Indices")) (TpArrow (TpAppt (TpApp (TpVar "2866" "F") (TpParens "2870" (TpAppt (TpApp (TpVar "2871" "FixM") (TpVar "2878" "F")) (Var "2880" "fm")) "2883")) (Var "2884" "indices")) NotErased (TpAppt (TpAppt (TpApp (TpVar "2894" "FixM") (TpVar "2901" "F")) (Var "2903" "fm")) (Var "2906" "indices"))))))) (Lam "2918" Erased "2920" "F" NoClass (Lam "2923" Erased "2925" "fm" NoClass (Lam "2929" Erased "2931" "indices" NoClass (Lam "2940" NotErased "2942" "d" NoClass (App (App (App (Var "2945" "inFixM") Erased (Var "2953" "fm")) Erased (Var "2957" "indices")) NotErased (IotaPair "2967" (Beta "2968" NoTerm (SomeTerm (Lam "2970" NotErased "2972" "alg" NoClass (App (App (App (Var "2977" "alg") NotErased (Parens "2981" (Lam "2982" NotErased "2984" "d" NoClass (App (Var "2987" "d") NotErased (Parens "2989" (Lam "2990" NotErased "2992" "p" NoClass (Lam "2995" NotErased "2997" "e" NoClass (Lam "3000" NotErased "3002" "d" NoClass (Var "3005" "d")))) "3007"))) "3008")) NotErased (Parens "3009" (Lam "3010" NotErased "3012" "d" NoClass (App (Var "3015" "d") NotErased (Var "3017" "alg"))) "3021")) NotErased (Var "3022" "d"))) "3024")) (Lam "3029" Erased "3031" "X" NoClass (Lam "3034" NotErased "3036" "alg" NoClass (App (App (App (App (App (AppTp (IotaProj (Var "3041" "alg") "2" "3046") (TpParens "3049" (TpAppt (TpApp (TpVar "3050" "FixM") (TpVar "3057" "F")) (Var "3059" "fm")) "3062")) Erased (IotaPair "3064" (Lam "3065" Erased "3067" "indices" NoClass (Lam "3076" NotErased "3078" "d" NoClass (Var "3081" "d"))) (Beta "3084" NoTerm NoTerm) NoGuide "3086")) NotErased (IotaPair "3092" (Lam "3093" Erased "3095" "indices" NoClass (Lam "3104" NotErased "3106" "d" NoClass (App (AppTp (IotaProj (Parens "3109" (App (App (App (Var "3110" "outFixM") Erased (Var "3119" "fm")) Erased (Var "3123" "indices")) NotErased (Var "3131" "d")) "3133") "2" "3135") (TpParens "3138" (TpLambda "3139" "3141" "x" (Tkt (TpVar "3145" "Top")) (TpApp (TpVar "3150" "F") (TpParens "3154" (TpAppt (TpApp (TpVar "3155" "FixM") (TpVar "3162" "F")) (Var "3164" "fm")) "3167"))) "3168")) NotErased (IotaPair "3176" (Beta "3177" NoTerm (SomeTerm (Lam "3179" NotErased "3181" "p" NoClass (Lam "3184" NotErased "3186" "e" NoClass (Lam "3189" NotErased "3191" "d" NoClass (Var "3194" "d")))) "3196")) (Lam "3198" Erased "3200" "X" NoClass (Lam "3203" Erased "3205" "reveal" NoClass (Lam "3213" NotErased "3215" "p" NoClass (Lam "3218" NotErased "3220" "e" NoClass (App (Var "3223" "cast") Erased (Parens "3229" (App (Var "3230" "fm") Erased (Var "3234" "reveal")) "3241")))))) NoGuide "3242")))) (Beta "3252" NoTerm (SomeTerm (Lam "3254" NotErased "3256" "d" NoClass (App (Var "3259" "d") NotErased (Parens "3261" (Lam "3262" NotErased "3264" "p" NoClass (Lam "3267" NotErased "3269" "e" NoClass (Lam "3272" NotErased "3274" "d" NoClass (Var "3277" "d")))) "3279"))) "3280")) NoGuide "3281")) NotErased (IotaPair "3287" (Lam "3288" Erased "3290" "indices" NoClass (Lam "3299" NotErased "3301" "d" NoClass (App (AppTp (IotaProj (Parens "3304" (App (App (App (Var "3305" "outFixM") Erased (Var "3314" "fm")) Erased (Var "3318" "indices")) NotErased (Var "3326" "d")) "3328") "2" "3330") (TpVar "3333" "X")) NotErased (Var "3335" "alg")))) (Beta "3340" NoTerm (SomeTerm (Lam "3342" NotErased "3344" "d" NoClass (App (Var "3347" "d") NotErased (Var "3349" "alg"))) "3353")) NoGuide "3354")) Erased (Var "3356" "indices")) NotErased (Var "3364" "d")))) NoGuide "3366"))))))) "3367") (CmdsNext (DefTermOrType OpacTrans (DefTerm "3369" "IndFixM" (SomeType (Abs "3383" Erased "3385" "F" (Tkk (KndArrow (KndParens "3389" (KndTpArrow (TpVar "3390" "Indices") (Star "3400")) "3402") (KndTpArrow (TpVar "3405" "Indices") (Star "3415")))) (Abs "3422" Erased "3424" "fm" (Tkt (TpApp (TpVar "3429" "RecFunctor") (TpVar "3442" "F"))) (Abs "3449" Erased "3451" "indices" (Tkt (TpVar "3461" "Indices")) (Abs "3474" NotErased "3476" "d" (Tkt (TpAppt (TpAppt (TpApp (TpVar "3480" "FixM") (TpVar "3487" "F")) (Var "3489" "fm")) (Var "3492" "indices"))) (Abs "3505" Erased "3507" "Q" (Tkk (KndPi "3511" "3513" "indices" (Tkt (TpVar "3523" "Indices")) (KndTpArrow (TpAppt (TpAppt (TpApp (TpVar "3532" "FixM") (TpVar "3539" "F")) (Var "3541" "fm")) (Var "3544" "indices")) (Star "3554")))) (TpArrow (TpParens "3561" (Iota "3562" "3564" "alg" (TpVar "3570" "Top") (Abs "3582" Erased "3584" "R" (Tkk (KndTpArrow (TpVar "3588" "Indices") (Star "3598"))) (Abs "3608" Erased "3610" "reveal" (Tkt (TpApp (TpApp (TpVar "3619" "Cast") (TpVar "3626" "R")) (TpParens "3630" (TpAppt (TpApp (TpVar "3631" "FixM") (TpVar "3638" "F")) (Var "3640" "fm")) "3643"))) (TpArrow (TpParens "3652" (Iota "3653" "3655" "o" (Abs "3659" Erased "3661" "indices" (Tkt (TpVar "3671" "Indices")) (TpArrow (TpAppt (TpVar "3680" "R") (Var "3682" "indices")) NotErased (TpAppt (TpApp (TpVar "3692" "F") (TpVar "3696" "R")) (Var "3698" "indices")))) (TpEq "3717" (Var "3718" "o") (Lam "3722" NotErased "3724" "d" NoClass (App (Var "3727" "d") NotErased (Parens "3729" (Lam "3730" NotErased "3732" "p" NoClass (Lam "3735" NotErased "3737" "e" NoClass (Lam "3740" NotErased "3742" "d" NoClass (Var "3745" "d")))) "3747"))) "3748")) "3749") NotErased (TpArrow (TpParens "3759" (Iota "3760" "3762" "ih" (Abs "3767" Erased "3769" "indices" (Tkt (TpVar "3779" "Indices")) (Abs "3788" NotErased "3790" "r" (Tkt (TpAppt (TpVar "3794" "R") (Var "3796" "indices"))) (TpAppt (TpAppt (TpVar "3814" "Q") (Var "3816" "indices")) (Parens "3824" (App (App (App (Var "3825" "cast") Erased (Var "3831" "reveal")) Erased (Var "3839" "indices")) NotErased (Var "3847" "r")) "3849")))) (TpEq "3851" (Var "3852" "ih") (Lam "3857" NotErased "3859" "d" NoClass (App (Var "3862" "d") NotErased (Var "3864" "alg"))) "3868")) "3869") NotErased (Abs "3879" Erased "3881" "indices" (Tkt (TpVar "3891" "Indices")) (Abs "3907" NotErased "3909" "x" (Tkt (TpAppt (TpApp (TpVar "3913" "F") (TpVar "3917" "R")) (Var "3919" "indices"))) (TpAppt (TpAppt (TpVar "3935" "Q") (Var "3937" "indices")) (Parens "3945" (App (App (App (Var "3946" "inFix") Erased (Var "3953" "fm")) Erased (Var "3957" "indices")) NotErased (Parens "3965" (App (App (App (Var "3966" "cast") Erased (Parens "3972" (App (Var "3973" "fm") Erased (Var "3977" "reveal")) "3984")) Erased (Var "3986" "indices")) NotErased (Var "3994" "x")) "3996")) "3997"))))))))) "3998") NotErased (TpAppt (TpAppt (TpVar "4005" "Q") (Var "4007" "indices")) (Var "4015" "d"))))))))) (Lam "4021" Erased "4023" "F" NoClass (Lam "4026" Erased "4028" "fm" NoClass (Lam "4032" Erased "4034" "indices" NoClass (Lam "4043" NotErased "4045" "d" NoClass (Lam "4048" Erased "4050" "Q" NoClass (Lam "4053" NotErased "4055" "alg" NoClass (App (App (App (AppTp (IotaProj (Parens "4060" (App (App (App (Var "4061" "outFixM") Erased (Var "4070" "fm")) Erased (Var "4074" "indices")) NotErased (Var "4082" "d")) "4084") "2" "4086") (TpParens "4093" (TpLambda "4094" "4096" "d" (Tkt (TpVar "4100" "Top")) (TpLambda "4105" "4107" "indices" (Tkt (TpVar "4117" "Indices")) (Abs "4135" Erased "4137" "d'" (Tkt (TpAppt (TpAppt (TpApp (TpVar "4142" "FixM") (TpVar "4149" "F")) (Var "4151" "fm")) (Var "4154" "indices"))) (Abs "4163" Erased "4165" "e" (Tkt (TpEq "4169" (Var "4170" "d'") (Var "4175" "d") "4177")) (TpAppt (TpAppt (TpVar "4179" "Q") (Var "4181" "indices")) (Parens "4189" (Phi "4190" (Var "4192" "e") (Var "4196" "d'") (Var "4200" "d") "4202") "4203")))))) "4204")) NotErased (IotaPair "4209" (Beta "4210" NoTerm (SomeTerm (Var "4212" "alg") "4216")) (Lam "4218" Erased "4220" "R" NoClass (Lam "4223" Erased "4225" "reveal" NoClass (Lam "4233" NotErased "4235" "out" NoClass (Lam "4240" NotErased "4242" "ih" NoClass (Lam "4246" Erased "4248" "indices" NoClass (Lam "4257" NotErased "4259" "d" NoClass (Lam "4262" Erased "4264" "d'" NoClass (Lam "4268" Erased "4270" "e" NoClass (App (App (App (App (App (AppTp (IotaProj (Var "4273" "alg") "2" "4278") (TpVar "4281" "R")) Erased (Var "4284" "reveal")) NotErased (Var "4291" "out")) NotErased (IotaPair "4301" (Lam "4302" Erased "4304" "indices" NoClass (Lam "4313" NotErased "4315" "r" NoClass (App (App (App (App (IotaProj (Var "4318" "ih") "1" "4322") Erased (Var "4324" "indices")) NotErased (Var "4332" "r")) Erased (Parens "4335" (App (App (App (Var "4336" "cast") Erased (Var "4342" "reveal")) Erased (Var "4350" "indices")) NotErased (Var "4358" "r")) "4360")) Erased (Beta "4362" NoTerm NoTerm)))) (IotaProj (Var "4365" "ih") "2" "4369") NoGuide "4370")) Erased (Var "4372" "indices")) NotErased (Var "4380" "d")))))))))) NoGuide "4382")) Erased (Var "4389" "d")) Erased (Beta "4392" NoTerm NoTerm))))))))) "4394") CmdsStart))))))))))))))) "4394"
{ "alphanum_fraction": 0.6312593514, "avg_line_length": 7917.3846153846, "ext": "agda", "hexsha": "113b5a1fc1f10318a0ba8c4867231ae6fa9e0150", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/templates.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/templates.agda", "max_line_length": 79494, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/templates.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45097, "size": 102926 }
module Esterel.Lang.CanFunction.MergePotentialRuleLeftInductive where open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Base open import Esterel.Lang.CanFunction.CanThetaContinuation open import Esterel.Lang.CanFunction.MergePotentialRuleCan open import Esterel.Lang.CanFunction.MergePotentialRuleLeftBase open import Esterel.Context using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e) open import Esterel.Context.Properties using (plug ; unplug) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open EvaluationContext1 open _≐_⟦_⟧e open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using () renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge ; set-subtract-notin ; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ≡-Reasoning canθₖ-mergeˡ-E-induction : ∀ {E E⟦nothin⟧ BV FV A} sigs' shrs' vars' r θ → E⟦nothin⟧ ≐ E ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧ BV FV → distinct' (SigMap.keys sigs') (proj₁ FV) → Canθₖ sigs' 0 (E ⟦ r ⟧e) θ ≡ Canₖ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ canθₖ-mergeˡ-sigs-induction : ∀ {E E⟦nothin⟧ BV FV A} sigs S sigs' shrs' vars' r θ → E⟦nothin⟧ ≐ E ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧ BV FV → distinct' (SigMap.keys sigs') (proj₁ FV) → ∀ k → k ∈ proj₁ (proj₂ (Canθ' sigs S (Canθ sigs' 0 (E ⟦ r ⟧e)) θ)) → k ∈ Canθₖ sigs S (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ canθₛ-mergeˡ-E-induction : ∀ {E E⟦nothin⟧ BV FV A} sigs' shrs' vars' r θ → E⟦nothin⟧ ≐ E ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧ BV FV → distinct' (SigMap.keys sigs') (proj₁ FV) → ∀ S' → S' ∉ SigMap.keys sigs' → S' ∈ Canθₛ sigs' 0 (E ⟦ r ⟧e) θ → S' ∈ Canₛ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ canθₛ-mergeˡ-E-induction {[]} sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ = set-subtract-notin S'∈canθ-sigs'-E⟦r⟧-θ S'∉sigs' canθₛ-mergeˡ-E-induction {epar₁ q ∷ E} {A = A} sigs' shrs' vars' r θ (depar₁ E⟦nothin⟧) cb@(CBpar cbp _ _ _ _ _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ rewrite Env.←-comm Env.[]env θ distinct-empty-left with canθₛ-mergeˡ-E-induction-base-par₁ sigs' 0 r θ Env.[]env (depar₁ E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) S' S'∈canθ-sigs'-E⟦r⟧-θ ... | inj₁ S'∈canθ'-sigs'-E⟦r⟧-θ←[] = ++ˡ (canθₛ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) S' S'∉sigs' S'∈canθ'-sigs'-E⟦r⟧-θ←[]) ... | inj₂ S'∈can-q-θ←[] = ++ʳ (Canₛ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) S'∈can-q-θ←[] canθₛ-mergeˡ-E-induction {epar₂ p ∷ E} sigs' shrs' vars' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ rewrite Env.←-comm Env.[]env θ distinct-empty-left with canθₛ-mergeˡ-E-induction-base-par₂ sigs' 0 r θ Env.[]env (depar₂ E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) S' S'∈canθ-sigs'-E⟦r⟧-θ ... | inj₁ S'∈canθ'-sigs'-E⟦r⟧-θ←[] = ++ʳ (Canₛ p (θ ← Env.[]env)) (canθₛ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbq (dist'++ʳ {V2 = proj₁ FVp} sigs'≠FV) S' S'∉sigs' S'∈canθ'-sigs'-E⟦r⟧-θ←[]) ... | inj₂ S'∈can-q-θ←[] = ++ˡ S'∈can-q-θ←[] canθₛ-mergeˡ-E-induction {eseq q ∷ E} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp _ _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ rewrite Env.←-comm Env.[]env θ distinct-empty-left with canθₛ-mergeˡ-E-induction-base-seq sigs' 0 r θ Env.[]env (deseq E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) S' S'∈canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-E-induction {eseq q ∷ E} {A = A} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp _ _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ | inj₁ S'∈canθ'-sigs'-E⟦r⟧-θ←[] with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) ... | yes nothin∈can-E⟦ρΘ⟧-θ←[] = ++ˡ (canθₛ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) S' S'∉sigs' S'∈canθ'-sigs'-E⟦r⟧-θ←[]) ... | no nothin∉can-E⟦ρΘ⟧-θ←[] = canθₛ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) S' S'∉sigs' S'∈canθ'-sigs'-E⟦r⟧-θ←[] canθₛ-mergeˡ-E-induction {eseq q ∷ E} {A = A} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp _ _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ | inj₂ (S'∈can-q-θ←[] , nothin∈canθ-sigs'-E⟦r⟧-θ←[]) with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) ... | yes nothin∈can-E⟦ρΘ⟧-θ←[] = ++ʳ (Canₛ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) S'∈can-q-θ←[] ... | no nothin∉can-E⟦ρΘ⟧-θ←[] rewrite canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) = ⊥-elim (nothin∉can-E⟦ρΘ⟧-θ←[] nothin∈canθ-sigs'-E⟦r⟧-θ←[]) canθₛ-mergeˡ-E-induction {eloopˢ q ∷ E} sigs' shrs' vars' r θ (deloopˢ E⟦nothin⟧) cb@(CBloopˢ cbp cbq _ _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ rewrite unfold sigs' 0 (loopˢ (E ⟦ r ⟧e) q) θ | sym (unfold sigs' 0 (E ⟦ r ⟧e) θ) = canθₛ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-E-induction {esuspend S ∷ E} sigs' shrs' vars' r θ (desuspend E⟦nothin⟧) cb@(CBsusp cb' _) sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ rewrite unfold sigs' 0 (suspend (E ⟦ r ⟧e) S) θ | sym (unfold sigs' 0 (E ⟦ r ⟧e) θ) = canθₛ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cb' (dist'++ʳ {V2 = Signal.unwrap S ∷ []} sigs'≠FV) S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-E-induction {etrap ∷ E} sigs' shrs' vars' r θ (detrap E⟦nothin⟧) cb@(CBtrap cb') sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ rewrite unfold sigs' 0 (trap (E ⟦ r ⟧e)) θ | canθ'-map-comm (map Code.↓*) sigs' 0 (Can (E ⟦ r ⟧e)) θ | sym (unfold sigs' 0 (E ⟦ r ⟧e) θ) = canθₛ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cb' sigs'≠FV S' S'∉sigs' S'∈canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-sigs-induction : ∀ {E E⟦nothin⟧ BV FV A} sigs S sigs' shrs' vars' r θ → E⟦nothin⟧ ≐ E ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧ BV FV → distinct' (SigMap.keys sigs') (proj₁ FV) → ∀ S' → S' ∉ SigMap.keys sigs' → S' ∈ proj₁ (Canθ' sigs S (Canθ sigs' 0 (E ⟦ r ⟧e)) θ) → S' ∈ Canθₛ sigs S (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ canθₛ-mergeˡ-sigs-induction [] S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-sigs-induction (nothing ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-sigs-induction (just Signal.present ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-present (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-sigs-induction (just Signal.absent ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛ-mergeˡ-sigs-induction {E} {A = A} (just Signal.unknown ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 (E ⟦ r ⟧e)) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ sigs (suc S) (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | yes S∈canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ ... | no S∉canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | no S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ ... | no S∉canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | yes S∈canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₛ-add-sig-monotonic sigs (suc S) (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ (S ₛ) Signal.absent S' (canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ) ... | yes S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | no S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' = canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S' S'∉sigs' (subst (S' ∈_) (cong proj₁ (trans (canθ'-inner-shadowing-irr sigs (suc S) sigs' (E ⟦ r ⟧e) S Signal.unknown θ S∈sigs') (sym (canθ'-inner-shadowing-irr sigs (suc S) sigs' (E ⟦ r ⟧e) S Signal.absent θ S∈sigs')))) S'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ) ... | no S∉sigs' = ⊥-elim (S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] (canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S S∉sigs' S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S])) canθₛₕ-mergeˡ-E-induction : ∀ {E E⟦nothin⟧ BV FV A} sigs' shrs' vars' r θ → E⟦nothin⟧ ≐ E ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧ BV FV → distinct' (SigMap.keys sigs') (proj₁ FV) → ∀ s' → s' ∉ ShrMap.keys shrs' → s' ∈ Canθₛₕ sigs' 0 (E ⟦ r ⟧e) θ → s' ∈ Canₛₕ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ canθₛₕ-mergeˡ-E-induction {[]} sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ = set-subtract-notin s'∈canθ-sigs'-E⟦r⟧-θ s'∉shrs' canθₛₕ-mergeˡ-E-induction {epar₁ q ∷ E} {A = A} sigs' shrs' vars' r θ (depar₁ E⟦nothin⟧) cb@(CBpar cbp _ _ _ _ _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ rewrite Env.←-comm Env.[]env θ distinct-empty-left with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' 0 r θ Env.[]env (depar₁ E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) s' s'∈canθ-sigs'-E⟦r⟧-θ ... | inj₁ s'∈canθ'-sigs'-E⟦r⟧-θ←[] = ++ˡ (canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) s' s'∉shrs' s'∈canθ'-sigs'-E⟦r⟧-θ←[]) ... | inj₂ s'∈can-q-θ←[] = ++ʳ (Canₛₕ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) s'∈can-q-θ←[] canθₛₕ-mergeˡ-E-induction {epar₂ p ∷ E} sigs' shrs' vars' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ rewrite Env.←-comm Env.[]env θ distinct-empty-left with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' 0 r θ Env.[]env (depar₂ E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) s' s'∈canθ-sigs'-E⟦r⟧-θ ... | inj₁ s'∈canθ'-sigs'-E⟦r⟧-θ←[] = ++ʳ (Canₛₕ p (θ ← Env.[]env)) (canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbq (dist'++ʳ {V2 = proj₁ FVp} sigs'≠FV) s' s'∉shrs' s'∈canθ'-sigs'-E⟦r⟧-θ←[]) ... | inj₂ s'∈can-q-θ←[] = ++ˡ s'∈can-q-θ←[] canθₛₕ-mergeˡ-E-induction {eseq q ∷ E} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp _ _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ rewrite Env.←-comm Env.[]env θ distinct-empty-left with canθₛₕ-mergeˡ-E-induction-base-seq sigs' 0 r θ Env.[]env (deseq E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) s' s'∈canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-E-induction {eseq q ∷ E} {A = A} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp _ _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ | inj₁ s'∈canθ'-sigs'-E⟦r⟧-θ←[] with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) ... | yes nothin∈can-E⟦ρΘ⟧-θ←[] = ++ˡ (canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) s' s'∉shrs' s'∈canθ'-sigs'-E⟦r⟧-θ←[]) ... | no nothin∉can-E⟦ρΘ⟧-θ←[] = canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) s' s'∉shrs' s'∈canθ'-sigs'-E⟦r⟧-θ←[] canθₛₕ-mergeˡ-E-induction {eseq q ∷ E} {A = A} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp _ _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ | inj₂ (s'∈can-q-θ←[] , nothin∈canθ-sigs'-E⟦r⟧-θ←[]) with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) ... | yes nothin∈can-E⟦ρΘ⟧-θ←[] = ++ʳ (Canₛₕ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← Env.[]env)) s'∈can-q-θ←[] ... | no nothin∉can-E⟦ρΘ⟧-θ←[] rewrite canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r (θ ← Env.[]env) E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) = ⊥-elim (nothin∉can-E⟦ρΘ⟧-θ←[] nothin∈canθ-sigs'-E⟦r⟧-θ←[]) canθₛₕ-mergeˡ-E-induction {eloopˢ q ∷ E} sigs' shrs' vars' r θ (deloopˢ E⟦nothin⟧) cb@(CBloopˢ cbp cbq _ _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ rewrite unfold sigs' 0 (loopˢ (E ⟦ r ⟧e) q) θ | sym (unfold sigs' 0 (E ⟦ r ⟧e) θ) = canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-E-induction {esuspend S ∷ E} sigs' shrs' vars' r θ (desuspend E⟦nothin⟧) cb@(CBsusp cb' _) sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ rewrite unfold sigs' 0 (suspend (E ⟦ r ⟧e) S) θ | sym (unfold sigs' 0 (E ⟦ r ⟧e) θ) = canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cb' (dist'++ʳ {V2 = Signal.unwrap S ∷ []} sigs'≠FV) s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-E-induction {etrap ∷ E} sigs' shrs' vars' r θ (detrap E⟦nothin⟧) cb@(CBtrap cb') sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ rewrite unfold sigs' 0 (trap (E ⟦ r ⟧e)) θ | canθ'-map-comm (map Code.↓*) sigs' 0 (Can (E ⟦ r ⟧e)) θ | sym (unfold sigs' 0 (E ⟦ r ⟧e) θ) = canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cb' sigs'≠FV s' s'∉shrs' s'∈canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-sigs-induction : ∀ {E E⟦nothin⟧ BV FV A} sigs S sigs' shrs' vars' r θ → E⟦nothin⟧ ≐ E ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧ BV FV → distinct' (SigMap.keys sigs') (proj₁ FV) → ∀ s' → s' ∉ ShrMap.keys shrs' → s' ∈ proj₂ (proj₂ (Canθ' sigs S (Canθ sigs' 0 (E ⟦ r ⟧e)) θ)) → s' ∈ Canθₛₕ sigs S (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ canθₛₕ-mergeˡ-sigs-induction [] S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛₕ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-sigs-induction (nothing ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-sigs-induction (just Signal.present ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-present (S ₛ)) E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-sigs-induction (just Signal.absent ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₛₕ-mergeˡ-sigs-induction {E} {A = A} (just Signal.unknown ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 (E ⟦ r ⟧e)) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ sigs (suc S) (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | yes S∈canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env (S ₛ)) E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ ... | no S∉canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | no S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ ... | no S∉canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | yes S∈canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₛₕ-add-sig-monotonic sigs (suc S) (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ (S ₛ) Signal.absent s' (canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ) ... | yes S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | no S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' = canθₛₕ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV s' s'∉shrs' (subst (s' ∈_) (cong (proj₂ ∘ proj₂) (trans (canθ'-inner-shadowing-irr sigs (suc S) sigs' (E ⟦ r ⟧e) S Signal.unknown θ S∈sigs') (sym (canθ'-inner-shadowing-irr sigs (suc S) sigs' (E ⟦ r ⟧e) S Signal.absent θ S∈sigs')))) s'∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ) ... | no S∉sigs' = ⊥-elim (S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] (canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S S∉sigs' S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S])) canθₖ-mergeˡ-E-induction {[]} sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV = refl canθₖ-mergeˡ-E-induction {epar₁ q ∷ E} sigs' shrs' vars' r θ (depar₁ E⟦nothin⟧) cb@(CBpar cbp cbq _ _ _ _) sigs'≠FV rewrite canθₖ-mergeˡ-E-induction-base-par₁ sigs' 0 r θ (depar₁ E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) | canθₖ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV) = refl canθₖ-mergeˡ-E-induction {epar₂ p ∷ E} sigs' shrs' vars' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) sigs'≠FV rewrite canθₖ-mergeˡ-E-induction-base-par₂ sigs' 0 r θ (depar₂ E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) | canθₖ-mergeˡ-E-induction sigs' shrs' vars' r θ E⟦nothin⟧ cbq (dist'++ʳ {V2 = proj₁ FVp} sigs'≠FV) = refl canθₖ-mergeˡ-E-induction {eseq q ∷ E} {A = A} sigs' shrs' vars' r θ (deseq E⟦nothin⟧) cb@(CBseq cbp cbq _) sigs'≠FV with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ) ... | no nothin∉can-E⟦ρΘ⟧-θ rewrite sym (canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r θ E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV)) | canθₖ-mergeˡ-E-induction-base-seq-notin sigs' 0 r θ (deseq E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) nothin∉can-E⟦ρΘ⟧-θ = refl ... | yes nothin∈can-E⟦ρΘ⟧-θ rewrite sym (canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r θ E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV)) | canθₖ-mergeˡ-E-induction-base-seq-in sigs' 0 r θ (deseq E⟦nothin⟧) cb (subst (distinct' _) (sym (map-id (SigMap.keys sigs'))) (distinct'-sym sigs'≠FV)) nothin∈can-E⟦ρΘ⟧-θ = refl canθₖ-mergeˡ-E-induction {eloopˢ q ∷ E} {A = A} sigs' shrs' vars' r θ (deloopˢ E⟦nothin⟧) cb@(CBloopˢ cbp cbq _ _) sigs'≠FV rewrite sym (canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r θ E⟦nothin⟧ cbp (dist'++ˡ sigs'≠FV)) | unfold sigs' 0 (loopˢ (E ⟦ r ⟧e) q) θ | unfold sigs' 0 (E ⟦ r ⟧e) θ = refl canθₖ-mergeˡ-E-induction {esuspend S ∷ E} {A = A} sigs' shrs' vars' r θ (desuspend E⟦nothin⟧) cb@(CBsusp cb' _) sigs'≠FV rewrite sym (canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r θ E⟦nothin⟧ cb' (dist'++ʳ {V2 = Signal.unwrap S ∷ []} sigs'≠FV)) | unfold sigs' 0 (suspend (E ⟦ r ⟧e) S) θ | unfold sigs' 0 (E ⟦ r ⟧e) θ = refl canθₖ-mergeˡ-E-induction {etrap ∷ E} {A = A} sigs' shrs' vars' r θ (detrap E⟦nothin⟧) cb@(CBtrap cb') sigs'≠FV rewrite sym (canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r θ E⟦nothin⟧ cb' sigs'≠FV) | unfold sigs' 0 (trap (E ⟦ r ⟧e)) θ | unfold sigs' 0 (E ⟦ r ⟧e) θ | canθ'-map-comm (map Code.↓*) sigs' 0 (Can (E ⟦ r ⟧e)) θ = refl canθₖ-mergeˡ-sigs-induction {A = A} [] S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ rewrite canθₖ-mergeˡ-E-induction {A = A} sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV = k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₖ-mergeˡ-sigs-induction (nothing ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₖ-mergeˡ-sigs-induction (just Signal.present ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-present (S ₛ)) E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₖ-mergeˡ-sigs-induction (just Signal.absent ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ = canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ canθₖ-mergeˡ-sigs-induction {E} {A = A} (just Signal.unknown ∷ sigs) S sigs' shrs' vars' r θ E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ with any (_≟_ S) (proj₁ (Canθ' sigs (suc S) (Canθ sigs' 0 (E ⟦ r ⟧e)) (θ ← [S]-env (S ₛ)))) | any (_≟_ S) (proj₁ (Canθ sigs (suc S) (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) (θ ← [S]-env (S ₛ)))) ... | yes S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | yes S∈canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env (S ₛ)) E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ ... | no S∉canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | no S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ ... | no S∉canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | yes S∈canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] = canθₖ-add-sig-monotonic sigs (suc S) (E ⟦ ρ⟨ Θ sigs' shrs' vars' , A ⟩· r ⟧e) θ (S ₛ) Signal.absent k (canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV k k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ) ... | yes S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S] | no S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] with any (_≟_ S) (SigMap.keys sigs') ... | yes S∈sigs' = canθₖ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env-absent (S ₛ)) E⟦nothin⟧ cb sigs'≠FV k (subst (k ∈_) (cong (proj₁ ∘ proj₂) (trans (canθ'-inner-shadowing-irr sigs (suc S) sigs' (E ⟦ r ⟧e) S Signal.unknown θ S∈sigs') (sym (canθ'-inner-shadowing-irr sigs (suc S) sigs' (E ⟦ r ⟧e) S Signal.absent θ S∈sigs')))) k∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ) ... | no S∉sigs' = ⊥-elim (S∉canθ-sigs-E⟦ρΘsigs'⟧-θ←[S] (canθₛ-mergeˡ-sigs-induction sigs (suc S) sigs' shrs' vars' r (θ ← [S]-env (S ₛ)) E⟦nothin⟧ cb sigs'≠FV S S∉sigs' S∈canθ'-sigs-canθ-sigs'-E⟦r⟧-θ←[S]))
{ "alphanum_fraction": 0.5742816308, "avg_line_length": 46.1597222222, "ext": "agda", "hexsha": "86ed74f1deb0dc549594c891841460a050850f3d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftInductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftInductive.agda", "max_line_length": 97, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftInductive.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 13686, "size": 26588 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Equivalences.PreXModReflGraph where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Relation.Binary open import Cubical.Structures.Subtype open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.Algebra.Group.Semidirect open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Meta.Isomorphism open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group open import Cubical.DStructures.Structures.SplitEpi open import Cubical.DStructures.Structures.ReflGraph open import Cubical.DStructures.Structures.Action open import Cubical.DStructures.Structures.XModule open import Cubical.DStructures.Equivalences.GroupSplitEpiAction private variable ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓ≅B' : Level open Kernel open GroupHom -- such .fun! open GroupLemmas open MorphismLemmas open ActionLemmas {- After associating, we have B × isEqui - B × isSecRet | / | | / | Action ≃ SplitMono Fix any action and its corresponding split mono α π₂ G₀ --> H ↦ G₀ ↔ H ⋊⟨ α ⟩ G₀ ι₂ Precrossed module α : G₀ --> H φ : G₀ ← H isEquivariant (α , φ) gives internal reflexive graph ι₂ : G₀ → H⋊⟨ α ⟩ G₀ G₀ ← H⋊⟨ α ⟩ G₀ : π₂ G₀ ← H⋊⟨ α ⟩ G₀ : τ_φ τ_φ (h , g) := φ h + g isSecRet (ι₂ , π₂) isSecRet (ι₂ , τ_φ) Conversely, a internal reflexive graph ι₂ : G₀ → H⋊⟨ α ⟩ G₀ G₀ ← H⋊⟨ α ⟩ G₀ : π₂ G₀ ← H⋊⟨ α ⟩ G₀ : τ isSecRet (ι₂ , π₂) isSecRet (ι₂ , τ) Then ι₁ : H ≃ ker σ ↪ H ⋊⟨ α ⟩ G₀ α : G₀ --> H G₀ ← H : φ φ := τ ∘ ι₁ is equivariant -} module _ (ℓ ℓ' : Level) where private ℓℓ' = ℓ-max ℓ ℓ' F = Iso.fun (IsoActionSplitEpi ℓ ℓℓ') -- reassociate: Display B + isSplitEpi over SplitEpi ReflGraph' = Σ[ (((G₀ , G₁) , (ι , σ)) , split-σ) ∈ SplitEpi ℓ ℓℓ' ] Σ[ τ ∈ GroupHom G₁ G₀ ] isGroupSplitEpi ι τ 𝒮ᴰ-ReflGraph' : URGStrᴰ (𝒮-SplitEpi ℓ ℓℓ') (λ (((G₀ , G₁) , (ι , σ)) , split-σ) → Σ[ τ ∈ GroupHom G₁ G₀ ] isGroupSplitEpi ι τ) ℓℓ' 𝒮ᴰ-ReflGraph' = splitTotal-𝒮ᴰ (𝒮-SplitEpi ℓ ℓℓ') (𝒮ᴰ-G²FBSplit\B ℓ ℓℓ') (𝒮ᴰ-ReflGraph ℓ ℓℓ') -- reassociate: Display B + isEquivar over Action PreXModule' = Σ[ (((G₀ , H) , _α_) , isAct) ∈ Action ℓ ℓℓ' ] Σ[ φ ∈ GroupHom H G₀ ] (isEquivariant (((G₀ , H) , _α_) , isAct) φ) 𝒮ᴰ-PreXModule' : URGStrᴰ (𝒮-Action ℓ ℓℓ') (λ (((G₀ , H) , _α_) , isAct) → Σ[ φ ∈ GroupHom H G₀ ] (isEquivariant (((G₀ , H) , _α_) , isAct) φ)) ℓℓ' 𝒮ᴰ-PreXModule' = splitTotal-𝒮ᴰ (𝒮-Action ℓ ℓℓ') (𝒮ᴰ-Action\PreXModuleStr ℓ ℓℓ') (𝒮ᴰ-PreXModule ℓ ℓℓ') -- Establish ♭-relational isomorphism of precrossed modules and reflexive graphs -- over the isomorphism of actions and split epis 𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' : 𝒮ᴰ-♭PIso F 𝒮ᴰ-PreXModule' 𝒮ᴰ-ReflGraph' RelIso.fun (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) .fst = τ where -- notation open GroupNotation₀ G₀ open GroupNotationᴴ H f = GroupHom.fun φ A = groupaction _α_ isAct H⋊G₀ : Group {ℓ-max ℓ ℓ'} H⋊G₀ = H ⋊⟨ A ⟩ G₀ -- define the morphism τ τ : GroupHom H⋊G₀ G₀ τ .fun (h , g) = f h +₀ g τ .isHom (h , g) (h' , g') = q where abstract q = f (h +ᴴ (g α h')) +₀ (g +₀ g') ≡⟨ cong (_+₀ (g +₀ g')) (φ .isHom h (g α h')) ⟩ (f h +₀ f (g α h')) +₀ (g +₀ g') ≡⟨ cong (λ z → (f h +₀ z) +₀ (g +₀ g')) (isEqui g h') ⟩ (f h +₀ ((g +₀ (f h')) -₀ g)) +₀ (g +₀ g') ≡⟨ cong (λ z → (f h +₀ z) +₀ (g +₀ g') ) (sym (assoc₀ g (f h') (-₀ g))) ⟩ (f h +₀ (g +₀ (f h' +₀ (-₀ g)))) +₀ (g +₀ g') ≡⟨ cong (_+₀ (g +₀ g')) (assoc₀ (f h) g (f h' +₀ (-₀ g))) ⟩ ((f h +₀ g) +₀ (f h' +₀ (-₀ g))) +₀ (g +₀ g') ≡⟨ sym (assoc₀ (f h +₀ g) (f h' +₀ (-₀ g)) (g +₀ g')) ⟩ (f h +₀ g) +₀ ((f h' +₀ (-₀ g)) +₀ (g +₀ g')) ≡⟨ cong ((f h +₀ g) +₀_) (sym (assoc₀ (f h') (-₀ g) (g +₀ g')) ∙ (cong (f h' +₀_) (assoc₀ (-₀ g) g g' ∙∙ cong (_+₀ g') (lCancel₀ g) ∙∙ lId₀ g')))⟩ (f h +₀ g) +₀ (f h' +₀ g') ∎ RelIso.fun (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) .snd = q where -- notation open GroupNotation₀ G₀ open GroupNotationᴴ H f = GroupHom.fun φ τ = RelIso.fun (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) .fst ι = Iso.fun (IsoActionSplitEpi ℓ ℓℓ') (((G₀ , H) , _α_) , isAct) .fst .snd .fst -- prove that τ as constructed above is split abstract q : isGroupSplitEpi ι τ q = GroupMorphismExt λ g → f 0ᴴ +₀ g ≡⟨ cong (_+₀ g) (mapId φ) ⟩ 0₀ +₀ g ≡⟨ lId₀ g ⟩ g ∎ -- end of RelIso.fun (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) RelIso.inv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (τ , split-τ) = φ , isEqui where -- notation ℬ = F (((G₀ , H) , _α_) , isAct) A = groupaction _α_ isAct -- σ = snd (snd (fst ℬ)) -- φ should be τ| ker σ -- but ker σ ≅ H so we "restrict" τ to that -- by precomposing with the inclusion H → H⋊G₀ ι1 = ι₁ A 𝒾 = ι1 .fun t = τ .fun H⋊G₀ = H ⋊⟨ A ⟩ G₀ _+α_ = GroupStr._+_ (snd H⋊G₀) open GroupNotationᴴ H open GroupNotation₀ G₀ -- define φ φ : GroupHom H G₀ φ = compGroupHom ι1 τ f = φ .fun -- prove equivariance abstract isEqui : isEquivariant (((G₀ , H) , _α_) , isAct) φ isEqui g h = f (g α h) ≡⟨ refl ⟩ t (g α h , 0₀) ≡⟨ cong t (g α h , 0₀ ≡⟨ ΣPathP (sym ((cong (_+ᴴ ((g +₀ 0₀) α 0ᴴ)) (lIdᴴ (g α h))) ∙∙ cong ((g α h) +ᴴ_) (actOnUnit A (g +₀ 0₀)) ∙∙ rIdᴴ (g α h)) , sym (cong (_+₀ (-₀ g)) (rId₀ g) ∙ rCancel₀ g)) ⟩ (0ᴴ +ᴴ (g α h)) +ᴴ ((g +₀ 0₀) α 0ᴴ) , (g +₀ 0₀) -₀ g ≡⟨ refl ⟩ ((0ᴴ , g) +α (h , 0₀)) +α (0ᴴ , -₀ g) ∎) ⟩ t (((0ᴴ , g) +α (h , 0₀)) +α (0ᴴ , -₀ g)) ≡⟨ hom-homl τ (0ᴴ , g) (h , 0₀) (0ᴴ , -₀ g) ⟩ ((t (0ᴴ , g)) +₀ t (h , 0₀)) +₀ t (0ᴴ , -₀ g) ≡⟨ cong (((t (0ᴴ , g)) +₀ t (h , 0₀)) +₀_) (funExt⁻ (cong fun split-τ) (-₀ g)) ⟩ ((t (0ᴴ , g)) +₀ t (h , 0₀)) -₀ g ≡⟨ cong (λ z → (z +₀ t (h , 0₀)) -₀ g) (funExt⁻ (cong fun split-τ) g) ⟩ (g +₀ f h) -₀ g ∎ -- RelIso.inv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (τ , split-τ) RelIso.leftInv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) .fst = φ-≅ where open GroupNotation₀ G₀ abstract -- φ ≅ inv (fun φ) ≡ τ ∘ ι₁ φ-≅ : (h : ⟨ H ⟩) → φ .fun h +₀ 0₀ ≡ φ .fun h φ-≅ h = rId₀ (φ .fun h) RelIso.leftInv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) .snd = isEqui-≅ where abstract isEqui-≅ : Unit isEqui-≅ = tt -- end of RelIso.leftInv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (φ , isEqui) RelIso.rightInv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (τ , split-τ) .fst = τ-≅ where A = groupaction _α_ isAct H⋊G₀ = H ⋊⟨ A ⟩ G₀ t = τ .fun open GroupNotation₀ G₀ open GroupNotationᴴ H abstract τ-≅ : ((h , g) : ⟨ H⋊G₀ ⟩) → t (h , 0₀) +₀ g ≡ t (h , g) τ-≅ (h , g) = t (h , 0₀) +₀ g ≡⟨ cong (t (h , 0₀) +₀_) (sym (funExt⁻ (cong GroupHom.fun split-τ) g)) ⟩ t (h , 0₀) +₀ t (0ᴴ , g) ≡⟨ sym (τ .isHom (h , 0₀) (0ᴴ , g)) ⟩ t (h +ᴴ (0₀ α 0ᴴ) , 0₀ +₀ g) ≡⟨ cong t (ΣPathP (cong (h +ᴴ_) (actOnUnit A 0₀) ∙ rIdᴴ h , lId₀ g)) ⟩ t (h , g) ∎ RelIso.rightInv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (τ , split-τ) .snd = split-τ-≅ where abstract split-τ-≅ : Unit split-τ-≅ = tt -- end of RelIso.rightInv (𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' (((G₀ , H) , _α_) , isAct)) (τ , split-τ) -- end of 𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' : 𝒮ᴰ-♭PIso F 𝒮ᴰ-PreXModule' 𝒮ᴰ-ReflGraph' -- turn the ♭-relational isomorphism into a (normal) iso Iso-PreXModule-ReflGraph' : Iso PreXModule' ReflGraph' Iso-PreXModule-ReflGraph' = 𝒮ᴰ-♭PIso-Over→TotalIso (IsoActionSplitEpi ℓ ℓℓ') 𝒮ᴰ-PreXModule' 𝒮ᴰ-ReflGraph' 𝒮ᴰ-♭PIso-PreXModule'-ReflGraph' -- reassociate on both sides Iso-PreXModule-ReflGraph : Iso (PreXModule ℓ ℓℓ') (ReflGraph ℓ ℓℓ') Iso-PreXModule-ReflGraph = compIso (compIso Σ-assoc-Iso Iso-PreXModule-ReflGraph') (invIso Σ-assoc-Iso)
{ "alphanum_fraction": 0.4953151198, "avg_line_length": 35.5754385965, "ext": "agda", "hexsha": "c2d15e6f95f52bde87bba02899ef6dfb50595209", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Equivalences/PreXModReflGraph.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Equivalences/PreXModReflGraph.agda", "max_line_length": 139, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Equivalences/PreXModReflGraph.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4211, "size": 10139 }
------------------------------------------------------------------------ -- Well-typed polymorphic and iso-recursive lambda terms ------------------------------------------------------------------------ module SystemF.WtTerm where import Category.Functor as Functor import Category.Applicative.Indexed as Applicative open Functor.Morphism using (op-<$>) open import Data.Fin using (Fin; zero; suc; inject+) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.List using (List; _∷_) open import Data.List.All using (All; []; _∷_) open import Data.Nat using (zero; suc; ℕ; _+_) open import Data.Product using (_,_) open import Data.Vec using (Vec; []; _∷_; _++_; lookup; map; toList; zip) open import Data.Vec.Properties using (map-∘; map-cong; lookup-++-inject+) open import Data.Vec.Categorical using (lookup-functor-morphism) open import Function as Fun using (_∘_) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; cong; cong₂; subst; sym) open PropEq.≡-Reasoning open import Relation.Nullary using (¬_) open import SystemF.Type open import SystemF.Term ------------------------------------------------------------------------ -- Typing derivations for polymorphic and iso-recursive lambda terms -- Typing contexts mapping free (term) variables to types. A context -- of type Ctx m n maps m free variables to types containing up to n -- free type variables each. Ctx : ℕ → ℕ → Set Ctx m n = Vec (Type n) m -- Type and variable substitutions lifted to typing contexts module CtxSubst where infixl 8 _/_ _/Var_ -- Type substitution lifted to typing contexts _/_ : ∀ {m n k} → Ctx m n → Sub Type n k → Ctx m k Γ / σ = Γ TypeSubst.⊙ σ -- Weakening of typing contexts with additional type variables weaken : ∀ {m n} → Ctx m n → Ctx m (1 + n) weaken Γ = map TypeSubst.weaken Γ -- Variable substitution (renaming) lifted to typing contexts _/Var_ : ∀ {m n k} → Sub Fin m k → Ctx k n → Ctx m n σ /Var Γ = map (λ x → lookup Γ x) σ open TypeSubst using () renaming (_[/_] to _[/tp_]) open CtxSubst using () renaming (weaken to weakenCtx) infix 4 _⊢_∈_ _⊢_∉_ _⊢val_∈_ _⊢ⁿ_∈_ infixl 9 _·_ _[_] -- Typing derivations for well-typed terms data _⊢_∈_ {m n} (Γ : Ctx m n) : Term m n → Type n → Set where var : (x : Fin m) → Γ ⊢ var x ∈ lookup Γ x Λ : ∀ {t a} → (weakenCtx Γ) ⊢ t ∈ a → Γ ⊢ Λ t ∈ ∀' a λ' : ∀ {t b} → (a : Type n) → a ∷ Γ ⊢ t ∈ b → Γ ⊢ λ' a t ∈ a →' b μ : ∀ {t} → (a : Type n) → a ∷ Γ ⊢ t ∈ a → Γ ⊢ μ a t ∈ a _[_] : ∀ {t a} → Γ ⊢ t ∈ ∀' a → (b : Type n) → Γ ⊢ t [ b ] ∈ a [/tp b ] _·_ : ∀ {s t a b} → Γ ⊢ s ∈ a →' b → Γ ⊢ t ∈ a → Γ ⊢ s · t ∈ b fold : ∀ {t} → (a : Type (1 + n)) → Γ ⊢ t ∈ a [/tp μ a ] → Γ ⊢ fold a t ∈ μ a unfold : ∀ {t} → (a : Type (1 + n)) → Γ ⊢ t ∈ μ a → Γ ⊢ unfold a t ∈ a [/tp μ a ] -- Negation of well-typedness. _⊢_∉_ : ∀ {m n} → Ctx m n → Term m n → Type n → Set Γ ⊢ t ∉ a = ¬ Γ ⊢ t ∈ a -- Typing derivations for well-typed values. data _⊢val_∈_ {m n} (Γ : Ctx m n) : Val m n → Type n → Set where Λ : ∀ {t a} → (weakenCtx Γ) ⊢ t ∈ a → Γ ⊢val Λ t ∈ ∀' a λ' : ∀ {t b} → (a : Type n) → a ∷ Γ ⊢ t ∈ b → Γ ⊢val λ' a t ∈ a →' b fold : ∀ {v} → (a : Type (1 + n)) → Γ ⊢val v ∈ a [/tp μ a ] → Γ ⊢val fold a v ∈ μ a -- Conversion from well-typed values to well-typed terms. ⊢⌜_⌝ : ∀ {m n} {Γ : Ctx m n} {v a} → Γ ⊢val v ∈ a → Γ ⊢ ⌜ v ⌝ ∈ a ⊢⌜ Λ x ⌝ = Λ x ⊢⌜ λ' a t ⌝ = λ' a t ⊢⌜ fold a t ⌝ = fold a ⊢⌜ t ⌝ -- Collections of typing derivations for well-typed terms. data _⊢ⁿ_∈_ {m n} (Γ : Ctx m n) : ∀ {k} → Vec (Term m n) k → Vec (Type n) k → Set where [] : Γ ⊢ⁿ [] ∈ [] _∷_ : ∀ {t a k} {ts : Vec (Term m n) k} {as : Vec (Type n) k} → Γ ⊢ t ∈ a → Γ ⊢ⁿ ts ∈ as → Γ ⊢ⁿ t ∷ ts ∈ a ∷ as -- Lookup a well-typed term in a collection thereof. lookup-⊢ : ∀ {m n k} {Γ : Ctx m n} {ts : Vec (Term m n) k} {as : Vec (Type n) k} → (x : Fin k) → Γ ⊢ⁿ ts ∈ as → Γ ⊢ lookup ts x ∈ lookup as x lookup-⊢ zero (⊢t ∷ ⊢ts) = ⊢t lookup-⊢ (suc x) (⊢t ∷ ⊢ts) = lookup-⊢ x ⊢ts ------------------------------------------------------------------------ -- Lemmas about type and variable substitutions (renaming) lifted to -- typing contexts module CtxLemmas where open CtxSubst public private module Tp = TypeLemmas private module Var = VarSubst -- Term variable substitution (renaming) commutes with type -- substitution. /Var-/ : ∀ {m n k l} (ρ : Sub Fin m k) (Γ : Ctx k n) (σ : Sub Type n l) → (ρ /Var Γ) / σ ≡ ρ /Var (Γ / σ) /Var-/ ρ Γ σ = begin (ρ /Var Γ) / σ ≡⟨ sym (map-∘ _ _ ρ) ⟩ map (λ x → (lookup Γ x) Tp./ σ) ρ ≡⟨ map-cong (λ x → sym (Tp.lookup-⊙ x {ρ₁ = Γ})) ρ ⟩ map (λ x → lookup (Γ / σ) x) ρ ∎ -- Term variable substitution (renaming) commutes with weakening of -- typing contexts with an additional type variable. /Var-weaken : ∀ {m n k} (ρ : Sub Fin m k) (Γ : Ctx k n) → weaken (ρ /Var Γ) ≡ ρ /Var (weaken Γ) /Var-weaken ρ Γ = begin weaken (ρ /Var Γ) ≡⟨ Tp.map-weaken ⟩ (ρ /Var Γ) / Tp.wk ≡⟨ /Var-/ ρ Γ Tp.wk ⟩ ρ /Var (Γ / Tp.wk) ≡⟨ sym (cong (_/Var_ ρ) (Tp.map-weaken {ρ = Γ})) ⟩ ρ /Var (weaken Γ) ∎ -- Term variable substitution (renaming) commutes with term variable -- lookup in typing context. /Var-lookup : ∀ {m n k} (x : Fin m) (ρ : Sub Fin m k) (Γ : Ctx k n) → lookup (ρ /Var Γ) x ≡ lookup Γ (lookup ρ x) /Var-lookup x ρ Γ = op-<$> (lookup-functor-morphism x) (λ x → lookup Γ x) ρ -- Term variable substitution (renaming) commutes with weakening of -- typing contexts with an additional term variable. /Var-∷ : ∀ {m n k} (a : Type n) (ρ : Sub Fin m k) (Γ : Ctx k n) → a ∷ (ρ /Var Γ) ≡ (ρ Var.↑) /Var (a ∷ Γ) /Var-∷ a [] Γ = refl /Var-∷ a (x ∷ ρ) Γ = cong (_∷_ a) (cong (_∷_ (lookup Γ x)) (begin map (λ x → lookup Γ x) ρ ≡⟨ refl ⟩ map (λ x → lookup (a ∷ Γ) (suc x)) ρ ≡⟨ map-∘ _ _ ρ ⟩ map (λ x → lookup (a ∷ Γ) x) (map suc ρ) ∎)) -- Invariants of term variable substitution (renaming) idVar-/Var : ∀ {m n} (Γ : Ctx m n) → Γ ≡ (Var.id /Var Γ) wkVar-/Var-∷ : ∀ {m n} (Γ : Ctx m n) (a : Type n) → Γ ≡ (Var.wk /Var (a ∷ Γ)) idVar-/Var [] = refl idVar-/Var (a ∷ Γ) = cong (_∷_ a) (wkVar-/Var-∷ Γ a) wkVar-/Var-∷ Γ a = begin Γ ≡⟨ idVar-/Var Γ ⟩ Var.id /Var Γ ≡⟨ map-∘ _ _ VarSubst.id ⟩ Var.wk /Var (a ∷ Γ) ∎ ------------------------------------------------------------------------ -- Substitutions in well-typed terms -- Helper lemmas for applying type and term equalities in typing -- derivations ⊢subst : ∀ {m n} {Γ₁ Γ₂ : Ctx m n} {t₁ t₂ : Term m n} {a₁ a₂ : Type n} → Γ₁ ≡ Γ₂ → t₁ ≡ t₂ → a₁ ≡ a₂ → Γ₁ ⊢ t₁ ∈ a₁ → Γ₂ ⊢ t₂ ∈ a₂ ⊢subst refl refl refl hyp = hyp ⊢substCtx : ∀ {m n} {Γ₁ Γ₂ : Ctx m n} {t : Term m n} {a : Type n} → Γ₁ ≡ Γ₂ → Γ₁ ⊢ t ∈ a → Γ₂ ⊢ t ∈ a ⊢substCtx refl hyp = hyp ⊢substTp : ∀ {m n} {Γ : Ctx m n} {t : Term m n} {a₁ a₂ : Type n} → a₁ ≡ a₂ → Γ ⊢ t ∈ a₁ → Γ ⊢ t ∈ a₂ ⊢substTp refl hyp = hyp -- Type substitutions lifted to well-typed terms module WtTermTypeSubst where open TypeLemmas hiding (_/_; _[/_]; weaken) private module Tp = TypeLemmas module Tm = TermTypeLemmas module C = CtxSubst infixl 8 _/_ -- Type substitutions lifted to well-typed terms _/_ : ∀ {m n k} {Γ : Ctx m n} {t : Term m n} {a : Type n} → Γ ⊢ t ∈ a → (σ : Sub Type n k) → Γ C./ σ ⊢ t Tm./ σ ∈ a Tp./ σ _/_ {Γ = Γ} (var x) σ = ⊢substTp (lookup-⊙ x {ρ₁ = Γ}) (var x) _/_ {Γ = Γ} (Λ ⊢t) σ = Λ (⊢substCtx (sym (map-weaken-⊙ Γ σ)) (⊢t / σ ↑)) λ' a ⊢t / σ = λ' (a Tp./ σ) (⊢t / σ) μ a ⊢t / σ = μ (a Tp./ σ) (⊢t / σ) _[_] {a = a} ⊢t b / σ = ⊢substTp (sym (sub-commutes a)) ((⊢t / σ) [ b Tp./ σ ]) ⊢s · ⊢t / σ = (⊢s / σ) · (⊢t / σ) fold a ⊢t / σ = fold (a Tp./ σ ↑) (⊢substTp (sub-commutes a) (⊢t / σ)) unfold a ⊢t / σ = ⊢substTp (sym (sub-commutes a)) (unfold (a Tp./ σ ↑) (⊢t / σ)) -- Weakening of terms with additional type variables lifted to -- well-typed terms. weaken : ∀ {m n} {Γ : Ctx m n} {t : Term m n} {a : Type n} → Γ ⊢ t ∈ a → C.weaken Γ ⊢ Tm.weaken t ∈ Tp.weaken a weaken {t = t} {a = a} ⊢t = ⊢subst (sym map-weaken) (Tm./-wk t) (/-wk {t = a}) (⊢t / wk) -- Weakening of terms with additional type variables lifted to -- collections of well-typed terms. weakenAll : ∀ {m n k} {Γ : Ctx m n} {ts : Vec (Term m n) k} {as : Vec (Type n) k} → Γ ⊢ⁿ ts ∈ as → C.weaken Γ ⊢ⁿ map Tm.weaken ts ∈ map Tp.weaken as weakenAll {ts = []} {[]} [] = [] weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts -- Shorthand for single-variable type substitutions in well-typed -- terms. _[/_] : ∀ {m n} {Γ : Ctx m (1 + n)} {t a} → Γ ⊢ t ∈ a → (b : Type n) → Γ C./ sub b ⊢ t Tm./ sub b ∈ a Tp./ sub b ⊢t [/ b ] = ⊢t / sub b -- A weakened version of the shorthand for single-variable type -- substitutions that fits well with well-typed type application. _[/_]′ : ∀ {m n} {Γ : Ctx m n} {t a} → C.weaken Γ ⊢ t ∈ a → (b : Type n) → Γ ⊢ t Tm./ sub b ∈ a Tp./ sub b ⊢t [/ b ]′ = ⊢substCtx Tp.map-weaken-⊙-sub (⊢t / sub b) -- Term substitutions lifted to well-typed terms module WtTermTermSubst where private module Tp = TermTypeSubst module Tm = TermTermSubst module Var = VarSubst module C = CtxLemmas TmSub = Tm.TermSub Term infix 4 _⇒_⊢_ -- Well-typed term substitutions are collections of well-typed terms. _⇒_⊢_ : ∀ {m n k} → Ctx m n → Ctx k n → TmSub m n k → Set Γ ⇒ Δ ⊢ ρ = Δ ⊢ⁿ ρ ∈ Γ infixl 8 _/_ _/Var_ infix 10 _↑ -- Application of term variable substitutions (renaming) lifted to -- well-typed terms. _/Var_ : ∀ {m n k} {Γ : Ctx k n} {t : Term m n} {a : Type n} (ρ : Sub Fin m k) → ρ C./Var Γ ⊢ t ∈ a → Γ ⊢ t Tm./Var ρ ∈ a _/Var_ {Γ = Γ} ρ (var x) = ⊢substTp (sym (C./Var-lookup x ρ Γ)) (var (lookup ρ x)) _/Var_ {Γ = Γ} ρ (Λ ⊢t) = Λ (ρ /Var ⊢substCtx (C./Var-weaken ρ Γ) ⊢t) _/Var_ {Γ = Γ} ρ (λ' a ⊢t) = λ' a (ρ Var.↑ /Var ⊢substCtx (C./Var-∷ a ρ Γ) ⊢t) _/Var_ {Γ = Γ} ρ (μ a ⊢t) = μ a (ρ Var.↑ /Var ⊢substCtx (C./Var-∷ a ρ Γ) ⊢t) ρ /Var (⊢t [ b ]) = (ρ /Var ⊢t) [ b ] ρ /Var (⊢s · ⊢t) = (ρ /Var ⊢s) · (ρ /Var ⊢t) ρ /Var (fold a ⊢t) = fold a (ρ /Var ⊢t) ρ /Var (unfold a ⊢t) = unfold a (ρ /Var ⊢t) -- Weakening of terms with additional term variables lifted to -- well-typed terms. weaken : ∀ {m n} {Γ : Ctx m n} {t : Term m n} {a b : Type n} → Γ ⊢ t ∈ a → b ∷ Γ ⊢ Tm.weaken t ∈ a weaken {Γ = Γ} {b = b} ⊢t = Var.wk /Var ⊢substCtx (C.wkVar-/Var-∷ Γ b) ⊢t -- Weakening of terms with additional term variables lifted to -- collections of well-typed terms. weakenAll : ∀ {m n k} {Γ : Ctx m n} {ts : Vec (Term m n) k} {as : Vec (Type n) k} {b : Type n} → Γ ⊢ⁿ ts ∈ as → b ∷ Γ ⊢ⁿ map Tm.weaken ts ∈ as weakenAll {ts = []} {[]} [] = [] weakenAll {ts = _ ∷ _} {_ ∷ _} (⊢t ∷ ⊢ts) = weaken ⊢t ∷ weakenAll ⊢ts -- Lifting of well-typed term substitutions. _↑ : ∀ {m n k} {Γ : Ctx m n} {Δ : Ctx k n} {ρ b} → Γ ⇒ Δ ⊢ ρ → b ∷ Γ ⇒ b ∷ Δ ⊢ ρ Tm.↑ ⊢ρ ↑ = var zero ∷ weakenAll ⊢ρ -- The well-typed identity substitution. id : ∀ {m n} {Γ : Ctx m n} → Γ ⇒ Γ ⊢ Tm.id id {zero} {Γ = []} = [] id {suc m} {Γ = a ∷ Γ} = id ↑ -- Well-typed weakening (as a substitution). wk : ∀ {m n} {Γ : Ctx m n} {a} → Γ ⇒ a ∷ Γ ⊢ Tm.wk wk = weakenAll id -- A well-typed substitution which only replaces the first variable. sub : ∀ {m n} {Γ : Ctx m n} {t a} → Γ ⊢ t ∈ a → a ∷ Γ ⇒ Γ ⊢ Tm.sub t sub ⊢t = ⊢t ∷ id -- Application of term substitutions lifted to well-typed terms _/_ : ∀ {m n k} {Γ : Ctx m n} {Δ : Ctx k n} {t a ρ} → Γ ⊢ t ∈ a → Γ ⇒ Δ ⊢ ρ → Δ ⊢ t Tm./ ρ ∈ a var x / ⊢ρ = lookup-⊢ x ⊢ρ Λ ⊢t / ⊢ρ = Λ (⊢t / (WtTermTypeSubst.weakenAll ⊢ρ)) λ' a ⊢t / ⊢ρ = λ' a (⊢t / ⊢ρ ↑) μ a ⊢t / ⊢ρ = μ a (⊢t / ⊢ρ ↑) (⊢t [ a ]) / ⊢ρ = (⊢t / ⊢ρ) [ a ] (⊢s · ⊢t) / ⊢ρ = (⊢s / ⊢ρ) · (⊢t / ⊢ρ) fold a ⊢t / ⊢ρ = fold a (⊢t / ⊢ρ) unfold a ⊢t / ⊢ρ = unfold a (⊢t / ⊢ρ) -- Shorthand for well-typed single-variable term substitutions. _[/_] : ∀ {m n} {Γ : Ctx m n} {s t a b} → b ∷ Γ ⊢ s ∈ a → Γ ⊢ t ∈ b → Γ ⊢ s Tm./ Tm.sub t ∈ a ⊢s [/ ⊢t ] = ⊢s / sub ⊢t ------------------------------------------------------------------------ -- Encoding of additional well-typed term operators -- -- These correspond to admissible typing rules for the asscociated -- term operators. module WtTermOperators where open TypeOperators renaming (id to idTp) open TypeOperatorLemmas open TypeLemmas hiding (id) private module Ut = TermOperators module ⊢Tp = WtTermTypeSubst module ⊢Tm = WtTermTermSubst -- Polymorphic identity function id : ∀ {m n} {Γ : Ctx m n} → Γ ⊢ Ut.id ∈ idTp id = Λ (λ' (var (zero)) (var zero)) -- Bottom elimination/univeral property of the initial type ⊥-elim : ∀ {m n} {Γ : Ctx m n} (a : Type n) → Γ ⊢ Ut.⊥-elim a ∈ ⊥ →' a ⊥-elim a = λ' ⊥ ((var zero) [ a ]) -- Unit value tt : ∀ {m n} {Γ : Ctx m n} → Γ ⊢ Ut.tt ∈ ⊤ tt = id -- Top introduction/universal property of the terminal type ⊤-intro : ∀ {m n} {Γ : Ctx m n} → (a : Type n) → Γ ⊢ Ut.⊤-intro a ∈ a →' ⊤ ⊤-intro {n = n} a = λ' a (id {n = n}) -- Packing existential types as-∃_pack_,_ : ∀ {m n} {Γ : Ctx m n} (a : Type (1 + n)) (b : Type n) {t : Term m n} → Γ ⊢ t ∈ a [/tp b ] → Γ ⊢ Ut.as-∃ a pack b , t ∈ ∃ a as-∃ a pack b , ⊢t = Λ (λ' (∀' (weaken↑ a →' var (suc zero))) ((var zero [ weaken b ]) · ⊢t′)) where ⊢t′ = ⊢Tm.weaken (⊢substTp (weaken-sub a b) (⊢Tp.weaken ⊢t)) -- Unpacking existential types unpack_in'_ : ∀ {m n} {Γ : Ctx m n} {s : Term m n} {t : Term (1 + m) (1 + n)} {a : Type (1 + n)} {b : Type n} → Γ ⊢ s ∈ ∃ a → a ∷ weakenCtx Γ ⊢ t ∈ weaken b → Γ ⊢ Ut.unpack_in'_ s t {a} {b} ∈ b unpack_in'_ {a = a} {b = b} ⊢s ⊢t = (⊢s [ b ]) · Λ (⊢substTp a≡ (λ' a ⊢t)) where a≡ : a →' weaken b ≡ weaken↑ a / (sub b) ↑ →' weaken b a≡ = cong (λ a → a →' weaken b) (begin a ≡⟨ sym (id-vanishes a) ⟩ a / TypeLemmas.id ≡⟨ cong (λ σ → a / σ) (sym (id-↑⋆ 1)) ⟩ a / (TypeLemmas.id) ↑ ≡⟨ cong (λ σ → a / σ ↑) (sym wk-⊙-sub) ⟩ a / (wk ⊙ sub b) ↑ ≡⟨ cong (λ σ → a / σ) (↑⋆-distrib 1) ⟩ a / wk ↑ ⊙ (sub b) ↑ ≡⟨ /-⊙ a ⟩ a / wk ↑ / (sub b) ↑ ∎) -- n-ary term abstraction λⁿ : ∀ {m n k} {Γ : Ctx m n} (as : Vec (Type n) k) {b : Type n} {t : Term (k + m) n} → as ++ Γ ⊢ t ∈ b → Γ ⊢ Ut.λⁿ as t ∈ as →ⁿ b λⁿ [] ⊢t = ⊢t λⁿ (a ∷ as) ⊢t = λⁿ as (λ' a ⊢t) infixl 9 _·ⁿ_ -- n-ary term application _·ⁿ_ : ∀ {m n k} {Γ : Ctx m n} {s : Term m n} {ts : Vec (Term m n) k} {as : Vec (Type n) k} {b : Type n} → Γ ⊢ s ∈ as →ⁿ b → Γ ⊢ⁿ ts ∈ as → Γ ⊢ s Ut.·ⁿ ts ∈ b _·ⁿ_ {ts = []} {[]} ⊢s [] = ⊢s _·ⁿ_ {ts = _ ∷ _} {_ ∷ _} ⊢s (⊢t ∷ ⊢ts) = ⊢s ·ⁿ ⊢ts · ⊢t -- Record/tuple constructor new : ∀ {m n k} {Γ : Ctx m n} {ts : Vec (Term m n) k} {as : Vec (Type n) k} → Γ ⊢ⁿ ts ∈ as → Γ ⊢ Ut.new ts {as} ∈ rec as new {ts = []} {[]} [] = tt new {ts = _ ∷ _} {a ∷ as} (⊢t ∷ ⊢ts) = Λ (λ' (map weaken (a ∷ as) →ⁿ var zero) (var zero ·ⁿ ⊢Tm.weakenAll (⊢Tp.weakenAll (⊢t ∷ ⊢ts)))) -- Field access/projection π : ∀ {m n k} {Γ : Ctx m n} (x : Fin k) {t : Term m n} {as : Vec (Type n) k} → Γ ⊢ t ∈ rec as → Γ ⊢ Ut.π x t {as} ∈ lookup as x π () {as = []} ⊢t π {m} {Γ = Γ} x {as = a ∷ as} ⊢t = (⊢t [ b ]) · ⊢substTp as′→ⁿb′≡ (λⁿ as′ (var x′)) where as′ = a ∷ as x′ = inject+ m x b = lookup as′ x b′ = lookup (as′ ++ Γ) x′ as′→ⁿb′≡ : as′ →ⁿ b′ ≡ (map weaken as′ →ⁿ var zero) [/tp b ] as′→ⁿb′≡ = begin as′ →ⁿ b′ ≡⟨ cong (λ b → as′ →ⁿ b) (lookup-++-inject+ as′ Γ x) ⟩ as′ →ⁿ b ≡⟨ cong (λ as′ → as′ →ⁿ b) (sym (map-weaken-⊙-sub {ρ = as′})) ⟩ map weaken as′ ⊙ sub b →ⁿ b ≡⟨ sym (/-→ⁿ (map weaken as′) (var zero) (sub b)) ⟩ (map weaken as′ →ⁿ var zero) [/tp b ] ∎
{ "alphanum_fraction": 0.4900670249, "avg_line_length": 38.7845433255, "ext": "agda", "hexsha": "f0396d170fa707bcff47118ced40039296767087", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z", "max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/system-f-agda", "max_forks_repo_path": "src/SystemF/WtTerm.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/system-f-agda", "max_issues_repo_path": "src/SystemF/WtTerm.agda", "max_line_length": 79, "max_stars_count": 68, "max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/system-f-agda", "max_stars_repo_path": "src/SystemF/WtTerm.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z", "num_tokens": 7075, "size": 16561 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFmap open import lib.types.Sigma open import lib.types.Span module lib.types.Join where module _ {i j} (A : Type i) (B : Type j) where *-span : Span *-span = span A B (A × B) fst snd infix 80 _*_ _*_ : Type _ _*_ = Pushout *-span module _ {i j} {A : Type i} {B : Type j} where jleft : A → A * B jleft = left jright : B → A * B jright = right jglue : ∀ a b → jleft a == jright b jglue = curry glue module JoinElim {k} {P : A * B → Type k} (jleft* : (a : A) → P (jleft a)) (jright* : (b : B) → P (jright b)) (jglue* : ∀ a b → jleft* a == jright* b [ P ↓ jglue a b ]) where private module M = PushoutElim {d = *-span A B} {P = P} jleft* jright* (uncurry jglue*) f = M.f glue-β = curry M.glue-β Join-elim = JoinElim.f module JoinRec {k} {C : Type k} (jleft* : (a : A) → C) (jright* : (b : B) → C) (jglue* : ∀ a b → jleft* a == jright* b) where private module M = PushoutRec jleft* jright* (uncurry jglue*) f = M.f glue-β = curry M.glue-β Join-rec = JoinRec.f module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙*-span : ⊙Span ⊙*-span = ⊙span X Y (X ⊙× Y) ⊙fst ⊙snd infix 80 _⊙*_ _⊙*_ : Ptd _ _⊙*_ = ⊙Pushout ⊙*-span module _ {i i' j j'} {A : Type i} {A' : Type i'} {B : Type j} {B' : Type j'} (eqA : A ≃ A') (eqB : B ≃ B') where *-span-emap : SpanEquiv (*-span A B) (*-span A' B') *-span-emap = ( span-map (fst eqA) (fst eqB) (×-fmap (fst eqA) (fst eqB)) (comm-sqr λ _ → idp) (comm-sqr λ _ → idp) , snd eqA , snd eqB , ×-isemap (snd eqA) (snd eqB)) *-emap : A * B ≃ A' * B' *-emap = Pushout-emap *-span-emap module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} where ⊙*-emap : X ⊙≃ X' → Y ⊙≃ Y' → X ⊙* Y ⊙≃ X' ⊙* Y' ⊙*-emap ⊙eqX ⊙eqY = ≃-to-⊙≃ (*-emap (⊙≃-to-≃ ⊙eqX) (⊙≃-to-≃ ⊙eqY)) (ap left (snd (⊙–> ⊙eqX)))
{ "alphanum_fraction": 0.529555447, "avg_line_length": 25.9113924051, "ext": "agda", "hexsha": "9680ada16f91c8ea750b4530beae56545f16c47e", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Join.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Join.agda", "max_line_length": 117, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Join.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 901, "size": 2047 }
module OlderBasicILP.Indirect.Hilbert.Sequential where open import OlderBasicILP.Indirect public -- Derivations, as Hilbert-style combinator sequences. mutual data Tm : Set where NIL : Tm VAR : ℕ → Tm → Tm MP : ℕ → ℕ → Tm → Tm CI : Tm → Tm CK : Tm → Tm CS : Tm → Tm NEC : Tm → Tm → Tm CDIST : Tm → Tm CUP : Tm → Tm CDOWN : Tm → Tm CPAIR : Tm → Tm CFST : Tm → Tm CSND : Tm → Tm UNIT : Tm → Tm _⧻ᵀᵐ_ : Tm → Tm → Tm US ⧻ᵀᵐ NIL = US US ⧻ᵀᵐ VAR I TS = VAR I (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ MP I J TS = MP I J (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CI TS = CI (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CK TS = CK (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CS TS = CS (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ NEC SS TS = NEC SS (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CDIST TS = CDIST (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CUP TS = CUP (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CDOWN TS = CDOWN (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CPAIR TS = CPAIR (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CFST TS = CFST (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ CSND TS = CSND (US ⧻ᵀᵐ TS) US ⧻ᵀᵐ UNIT TS = UNIT (US ⧻ᵀᵐ TS) APP : Tm → Tm → Tm APP TS US = MP 0 0 (US ⧻ᵀᵐ TS) BOX : Tm → Tm BOX TS = NEC TS NIL infix 3 _⊢×_ data _⊢×_ (Γ : Cx (Ty Tm)) : Cx (Ty Tm) → Set where nil : Γ ⊢× ∅ var : ∀ {Ξ A} → A ∈ Γ → Γ ⊢× Ξ → Γ ⊢× Ξ , A mp : ∀ {Ξ A B} → A ▻ B ∈ Ξ → A ∈ Ξ → Γ ⊢× Ξ → Γ ⊢× Ξ , B ci : ∀ {Ξ A} → Γ ⊢× Ξ → Γ ⊢× Ξ , A ▻ A ck : ∀ {Ξ A B} → Γ ⊢× Ξ → Γ ⊢× Ξ , A ▻ B ▻ A cs : ∀ {Ξ A B C} → Γ ⊢× Ξ → Γ ⊢× Ξ , (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C nec : ∀ {Ξ Ξ′ A} → (ss : ∅ ⊢× Ξ′ , A) → Γ ⊢× Ξ → Γ ⊢× Ξ , [ ss ]× ⦂ A cdist : ∀ {Ξ A B TS US} → Γ ⊢× Ξ → Γ ⊢× Ξ , TS ⦂ (A ▻ B) ▻ US ⦂ A ▻ APP TS US ⦂ B cup : ∀ {Ξ A TS} → Γ ⊢× Ξ → Γ ⊢× Ξ , TS ⦂ A ▻ BOX TS ⦂ TS ⦂ A cdown : ∀ {Ξ A TS} → Γ ⊢× Ξ → Γ ⊢× Ξ , TS ⦂ A ▻ A cpair : ∀ {Ξ A B} → Γ ⊢× Ξ → Γ ⊢× Ξ , A ▻ B ▻ A ∧ B cfst : ∀ {Ξ A B} → Γ ⊢× Ξ → Γ ⊢× Ξ , A ∧ B ▻ A csnd : ∀ {Ξ A B} → Γ ⊢× Ξ → Γ ⊢× Ξ , A ∧ B ▻ B unit : ∀ {Ξ} → Γ ⊢× Ξ → Γ ⊢× Ξ , ⊤ [_]× : ∀ {Ξ Γ} → Γ ⊢× Ξ → Tm [ nil ]× = NIL [ var i ts ]× = VAR [ i ]ⁱ [ ts ]× [ mp i j ts ]× = MP [ i ]ⁱ [ j ]ⁱ [ ts ]× [ ci ts ]× = CI [ ts ]× [ ck ts ]× = CK [ ts ]× [ cs ts ]× = CS [ ts ]× [ nec ss ts ]× = NEC [ ss ]× [ ts ]× [ cdist ts ]× = CDIST [ ts ]× [ cup ts ]× = CUP [ ts ]× [ cdown ts ]× = CDOWN [ ts ]× [ cpair ts ]× = CPAIR [ ts ]× [ cfst ts ]× = CFST [ ts ]× [ csnd ts ]× = CSND [ ts ]× [ unit ts ]× = UNIT [ ts ]× infix 3 _⊢_ _⊢_ : Cx (Ty Tm) → Ty Tm → Set Γ ⊢ A = ∃ (λ Ξ → Γ ⊢× Ξ , A) [_] : ∀ {A Γ} → Γ ⊢ A → Tm [ Ξ , ts ] = [ ts ]× -- Monotonicity with respect to context inclusion. mono⊢× : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢× Ξ → Γ′ ⊢× Ξ mono⊢× η nil = nil mono⊢× η (var i ts) = var (mono∈ η i) (mono⊢× η ts) mono⊢× η (mp i j ts) = mp i j (mono⊢× η ts) mono⊢× η (ci ts) = ci (mono⊢× η ts) mono⊢× η (ck ts) = ck (mono⊢× η ts) mono⊢× η (cs ts) = cs (mono⊢× η ts) mono⊢× η (nec ss ts) = nec ss (mono⊢× η ts) mono⊢× η (cdist ts) = cdist (mono⊢× η ts) mono⊢× η (cup ts) = cup (mono⊢× η ts) mono⊢× η (cdown ts) = cdown (mono⊢× η ts) mono⊢× η (cpair ts) = cpair (mono⊢× η ts) mono⊢× η (cfst ts) = cfst (mono⊢× η ts) mono⊢× η (csnd ts) = csnd (mono⊢× η ts) mono⊢× η (unit ts) = unit (mono⊢× η ts) mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (Ξ , ts) = Ξ , mono⊢× η ts -- Concatenation of derivations. _⧻_ : ∀ {Γ Ξ Ξ′} → Γ ⊢× Ξ → Γ ⊢× Ξ′ → Γ ⊢× Ξ ⧺ Ξ′ us ⧻ nil = us us ⧻ var i ts = var i (us ⧻ ts) us ⧻ mp i j ts = mp (mono∈ weak⊆⧺₂ i) (mono∈ weak⊆⧺₂ j) (us ⧻ ts) us ⧻ ci ts = ci (us ⧻ ts) us ⧻ ck ts = ck (us ⧻ ts) us ⧻ cs ts = cs (us ⧻ ts) us ⧻ nec ss ts = nec ss (us ⧻ ts) us ⧻ cdist ts = cdist (us ⧻ ts) us ⧻ cup ts = cup (us ⧻ ts) us ⧻ cdown ts = cdown (us ⧻ ts) us ⧻ cpair ts = cpair (us ⧻ ts) us ⧻ cfst ts = cfst (us ⧻ ts) us ⧻ csnd ts = csnd (us ⧻ ts) us ⧻ unit ts = unit (us ⧻ ts) -- Modus ponens and necessitation in expanded form. app : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B app {A} {B} (Ξ , ts) (Ξ′ , us) = Ξ″ , vs where Ξ″ = (Ξ′ , A) ⧺ (Ξ , A ▻ B) vs = mp top (mono∈ (weak⊆⧺₁ (Ξ , A ▻ B)) top) (us ⧻ ts) box : ∀ {A Γ} → (t : ∅ ⊢ A) → Γ ⊢ [ t ] ⦂ A box (Ξ , ts) = ∅ , nec ts nil
{ "alphanum_fraction": 0.418934636, "avg_line_length": 31.152173913, "ext": "agda", "hexsha": "ba6ccc85113ca23385450fdf7cf7e477cd578406", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OlderBasicILP/Indirect/Hilbert/Sequential.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OlderBasicILP/Indirect/Hilbert/Sequential.agda", "max_line_length": 85, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OlderBasicILP/Indirect/Hilbert/Sequential.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2499, "size": 4299 }
{-# OPTIONS --without-K --safe --overlapping-instances #-} module SmallInterpreter where open import Data.Char hiding (_≤_) open import Data.Bool hiding (_≤_) open import Data.Nat hiding (_≤_) open import Data.Unit import Data.Nat as N open import Data.Product open import Data.Sum open import Relation.Binary.PropositionalEquality open import Relation.Nullary import Data.String as Str open import Data.Nat.Show import Data.List as List open import Data.Empty infix 3 _:::_,_ infix 2 _∈_ infix 1 _⊢_ data `Set : Set where `Bool : `Set _`⇨_ : `Set → `Set → `Set `⊤ : `Set _`×_ : `Set → `Set → `Set infixr 2 _`⇨_ data Var : Set where x' : Var y' : Var z' : Var -- Inequality proofs on variables data _≠_ : Var → Var → Set where x≠y : x' ≠ y' x≠z : x' ≠ z' y≠x : y' ≠ x' y≠z : y' ≠ z' z≠x : z' ≠ x' z≠y : z' ≠ y' ⟦_⟧ : `Set → Set ⟦ `Bool ⟧ = Bool ⟦ (t `⇨ s) ⟧ = ⟦ t ⟧ → ⟦ s ⟧ ⟦ `⊤ ⟧ = ⊤ ⟦ (t `× s) ⟧ = ⟦ t ⟧ × ⟦ s ⟧ data Γ : Set where · : Γ _:::_,_ : Var → `Set → Γ → Γ data _∈_ : Var → Γ → Set where H : ∀ {x Δ t } → x ∈ x ::: t , Δ TH : ∀ {x y Δ t } → ⦃ prf : x ∈ Δ ⦄ → ⦃ neprf : x ≠ y ⦄ → x ∈ y ::: t , Δ !Γ_[_] : ∀ {x} → (Δ : Γ) → x ∈ Δ → `Set !Γ_[_] · () !Γ _ ::: t , Δ [ H ] = t !Γ _ ::: _ , Δ [ TH ⦃ prf = i ⦄ ] = !Γ Δ [ i ] infix 30 `v_ infix 30 `not_ infix 27 _`∧_ infix 26 _`∨_ infix 25 _`xor_ infix 24 _`,_ infixl 22 _`₋_ data _⊢_ : Γ → `Set → Set where `false : ∀ {Δ} → Δ ⊢ `Bool `true : ∀ {Δ} → Δ ⊢ `Bool `v_ : ∀ {Δ} → (x : Var) → ⦃ i : x ∈ Δ ⦄ → Δ ⊢ !Γ Δ [ i ] _`₋_ : ∀ {Δ t s} → Δ ⊢ t `⇨ s → Δ ⊢ t → Δ ⊢ s --application `λ_`:_⇨_ : ∀ {Δ tr} → (x : Var) → (tx : `Set) → x ::: tx , Δ ⊢ tr → Δ ⊢ tx `⇨ tr `not_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool _`∧_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool _`∨_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool _`xor_ : ∀ {Δ} → Δ ⊢ `Bool → Δ ⊢ `Bool → Δ ⊢ `Bool _`,_ : ∀ {Δ t s} → Δ ⊢ t → Δ ⊢ s → Δ ⊢ t `× s `fst : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ t `snd : ∀ {Δ t s} → Δ ⊢ t `× s → Δ ⊢ s `tt : ∀ {Δ} → Δ ⊢ `⊤ data ⟨_⟩ : Γ → Set₁ where [] : ⟨ · ⟩ _∷_ : ∀ {x t Δ} → ⟦ t ⟧ → ⟨ Δ ⟩ → ⟨ x ::: t , Δ ⟩ !_[_] : ∀ {x Δ} → ⟨ Δ ⟩ → (i : x ∈ Δ) → ⟦ !Γ Δ [ i ] ⟧ !_[_] [] () !_[_] (val ∷ env) H = val !_[_] (val ∷ env) (TH ⦃ prf = i ⦄) = ! env [ i ] interpret : ∀ {t} → · ⊢ t → ⟦ t ⟧ interpret = interpret' [] where interpret' : ∀ {Δ t} → ⟨ Δ ⟩ → Δ ⊢ t → ⟦ t ⟧ interpret' env `true = true interpret' env `false = false interpret' env `tt = tt interpret' env ((`v x) ⦃ i = idx ⦄) = ! env [ idx ] interpret' env (f `₋ x) = (interpret' env f) (interpret' env x) interpret' env (`λ _ `: tx ⇨ body) = λ (x : ⟦ tx ⟧) → interpret' (x ∷ env) body interpret' env (`not x) = not (interpret' env x) interpret' env (l `∧ r) = interpret' env l ∧ interpret' env r interpret' env (l `∨ r) = interpret' env l ∨ interpret' env r interpret' env (l `xor r ) = interpret' env l xor interpret' env r interpret' env (f `, s) = interpret' env f ,′ interpret' env s interpret' env (`fst p) with interpret' env p interpret' env (`fst p) | f , s = f interpret' env (`snd p) with interpret' env p interpret' env (`snd p) | f , s = s instance v_type₁ : ∀ {x Δ t} → x ∈ x ::: t , Δ v_type₁ = H v_type₂ : ∀ {x y Δ t} → ⦃ prf : x ∈ Δ ⦄ → ⦃ x ≠ y ⦄ → x ∈ y ::: t , Δ v_type₂ = TH instance xy : x' ≠ y' xy = x≠y xz : x' ≠ z' xz = x≠z yx : y' ≠ x' yx = y≠x yz : y' ≠ z' yz = y≠z zx : z' ≠ x' zx = z≠x zy : z' ≠ y' zy = z≠y pf : interpret (`λ x' `: `Bool ⇨ `v x') ≡ λ x → x pf = refl
{ "alphanum_fraction": 0.4267612772, "avg_line_length": 27.0273972603, "ext": "agda", "hexsha": "32379ec0a7f6995601a4b5a6ec1783303f7731fc", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-06-18T12:31:11.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-18T06:14:18.000Z", "max_forks_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sseefried/well-typed-agda-interpreter", "max_forks_repo_path": "SmallInterpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sseefried/well-typed-agda-interpreter", "max_issues_repo_path": "SmallInterpreter.agda", "max_line_length": 88, "max_stars_count": 3, "max_stars_repo_head_hexsha": "2a85cc82934be9433648bca0b49b77db18de524c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sseefried/well-typed-agda-interpreter", "max_stars_repo_path": "SmallInterpreter.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-18T12:37:46.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-18T12:06:14.000Z", "num_tokens": 1724, "size": 3946 }
-- Intuitionistic propositional calculus. -- Hilbert-style formalisation of closed syntax. -- Nested terms. module IPC.Syntax.ClosedHilbert where open import IPC.Syntax.Common public -- Derivations. infix 3 ⊢_ data ⊢_ : Ty → Set where app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B ci : ∀ {A} → ⊢ A ▻ A ck : ∀ {A B} → ⊢ A ▻ B ▻ A cs : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cpair : ∀ {A B} → ⊢ A ▻ B ▻ A ∧ B cfst : ∀ {A B} → ⊢ A ∧ B ▻ A csnd : ∀ {A B} → ⊢ A ∧ B ▻ B unit : ⊢ ⊤ cboom : ∀ {C} → ⊢ ⊥ ▻ C cinl : ∀ {A B} → ⊢ A ▻ A ∨ B cinr : ∀ {A B} → ⊢ B ▻ A ∨ B ccase : ∀ {A B C} → ⊢ A ∨ B ▻ (A ▻ C) ▻ (B ▻ C) ▻ C infix 3 ⊢⋆_ ⊢⋆_ : Cx Ty → Set ⊢⋆ ∅ = 𝟙 ⊢⋆ Ξ , A = ⊢⋆ Ξ × ⊢ A -- Cut and multicut. cut : ∀ {A B} → ⊢ A → ⊢ A ▻ B → ⊢ B cut t u = app u t multicut : ∀ {Ξ A} → ⊢⋆ Ξ → ⊢ Ξ ▻⋯▻ A → ⊢ A multicut {∅} ∙ u = u multicut {Ξ , B} (ts , t) u = app (multicut ts u) t -- Contraction. ccont : ∀ {A B} → ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = app (app cs cs) (app ck ci) cont : ∀ {A B} → ⊢ A ▻ A ▻ B → ⊢ A ▻ B cont t = app ccont t -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = app (app cs (app (app cs (app ck cs)) (app (app cs (app ck ck)) cs))) (app ck ck) exch : ∀ {A B C} → ⊢ A ▻ B ▻ C → ⊢ B ▻ A ▻ C exch t = app cexch t -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C} → ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = app (app cs (app ck cs)) ck comp : ∀ {A B C} → ⊢ B ▻ C → ⊢ A ▻ B → ⊢ A ▻ C comp t u = app (app ccomp t) u -- Useful theorems in functional form. pair : ∀ {A B} → ⊢ A → ⊢ B → ⊢ A ∧ B pair t u = app (app cpair t) u fst : ∀ {A B} → ⊢ A ∧ B → ⊢ A fst t = app cfst t snd : ∀ {A B} → ⊢ A ∧ B → ⊢ B snd t = app csnd t boom : ∀ {C} → ⊢ ⊥ → ⊢ C boom t = app cboom t inl : ∀ {A B} → ⊢ A → ⊢ A ∨ B inl t = app cinl t inr : ∀ {A B} → ⊢ B → ⊢ A ∨ B inr t = app cinr t case : ∀ {A B C} → ⊢ A ∨ B → ⊢ A ▻ C → ⊢ B ▻ C → ⊢ C case t u v = app (app (app ccase t) u) v -- Convertibility. data _⋙_ : ∀ {A} → ⊢ A → ⊢ A → Set where refl⋙ : ∀ {A} → {t : ⊢ A} → t ⋙ t trans⋙ : ∀ {A} → {t t′ t″ : ⊢ A} → t ⋙ t′ → t′ ⋙ t″ → t ⋙ t″ sym⋙ : ∀ {A} → {t t′ : ⊢ A} → t ⋙ t′ → t′ ⋙ t congapp⋙ : ∀ {A B} → {t t′ : ⊢ A ▻ B} → {u u′ : ⊢ A} → t ⋙ t′ → u ⋙ u′ → app t u ⋙ app t′ u′ congi⋙ : ∀ {A} → {t t′ : ⊢ A} → t ⋙ t′ → app ci t ⋙ app ci t′ congk⋙ : ∀ {A B} → {t t′ : ⊢ A} → {u u′ : ⊢ B} → t ⋙ t′ → u ⋙ u′ → app (app ck t) u ⋙ app (app ck t′) u′ congs⋙ : ∀ {A B C} → {t t′ : ⊢ A ▻ B ▻ C} → {u u′ : ⊢ A ▻ B} → {v v′ : ⊢ A} → t ⋙ t′ → u ⋙ u′ → v ⋙ v′ → app (app (app cs t) u) v ⋙ app (app (app cs t′) u′) v′ congpair⋙ : ∀ {A B} → {t t′ : ⊢ A} → {u u′ : ⊢ B} → t ⋙ t′ → u ⋙ u′ → app (app cpair t) u ⋙ app (app cpair t′) u′ congfst⋙ : ∀ {A B} → {t t′ : ⊢ A ∧ B} → t ⋙ t′ → app cfst t ⋙ app cfst t′ congsnd⋙ : ∀ {A B} → {t t′ : ⊢ A ∧ B} → t ⋙ t′ → app csnd t ⋙ app csnd t′ congboom⋙ : ∀ {C} → {t t′ : ⊢ ⊥} → t ⋙ t′ → app (cboom {C = C}) t ⋙ app cboom t′ conginl⋙ : ∀ {A B} → {t t′ : ⊢ A} → t ⋙ t′ → app (cinl {A = A} {B}) t ⋙ app cinl t′ conginr⋙ : ∀ {A B} → {t t′ : ⊢ B} → t ⋙ t′ → app (cinr {A = A} {B}) t ⋙ app cinr t′ congcase⋙ : ∀ {A B C} → {t t′ : ⊢ A ∨ B} → {u u′ : ⊢ A ▻ C} → {v v′ : ⊢ B ▻ C} → t ⋙ t′ → u ⋙ u′ → v ⋙ v′ → app (app (app ccase t) u) v ⋙ app (app (app ccase t′) u′) v′ -- TODO: Verify this. beta▻ₖ⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B} → app (app ck t) u ⋙ t -- TODO: Verify this. beta▻ₛ⋙ : ∀ {A B C} → {t : ⊢ A ▻ B ▻ C} → {u : ⊢ A ▻ B} → {v : ⊢ A} → app (app (app cs t) u) v ⋙ app (app t v) (app u v) -- TODO: What about eta for ▻? beta∧₁⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B} → app cfst (app (app cpair t) u) ⋙ t beta∧₂⋙ : ∀ {A B} → {t : ⊢ A} → {u : ⊢ B} → app csnd (app (app cpair t) u) ⋙ u eta∧⋙ : ∀ {A B} → {t : ⊢ A ∧ B} → t ⋙ app (app cpair (app cfst t)) (app csnd t) eta⊤⋙ : ∀ {t : ⊢ ⊤} → t ⋙ unit -- TODO: Verify this. beta∨₁⋙ : ∀ {A B C} → {t : ⊢ A} → {u : ⊢ A ▻ C} → {v : ⊢ B ▻ C} → app (app (app ccase (app cinl t)) u) v ⋙ app u t -- TODO: Verify this. beta∨₂⋙ : ∀ {A B C} → {t : ⊢ B} → {u : ⊢ A ▻ C} → {v : ⊢ B ▻ C} → app (app (app ccase (app cinr t)) u) v ⋙ app v t -- TODO: What about eta and commuting conversions for ∨? What about ⊥?
{ "alphanum_fraction": 0.3433969614, "avg_line_length": 27.902173913, "ext": "agda", "hexsha": "2d361f3c5fc20be7b2be49ec3ff319581a1df069", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "IPC/Syntax/ClosedHilbert.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "IPC/Syntax/ClosedHilbert.agda", "max_line_length": 87, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "IPC/Syntax/ClosedHilbert.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2413, "size": 5134 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Sets.Facts.Product where open import Data.Bool using (Bool ; true ; false) open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong₂) open import Cats.Category open import Cats.Category.Sets using (Sets) import Cats.Category.Sets.Facts.Terminal instance hasBinaryProducts : ∀ {l} → HasBinaryProducts (Sets l) hasBinaryProducts .HasBinaryProducts._×′_ A B = record { prod = A × B ; proj = λ where true → proj₁ false → proj₂ ; isProduct = λ p → record { arr = λ x → p true x , p false x ; prop = λ where true → λ _ → refl false → λ _ → refl ; unique = λ eq x → cong₂ _,_ (eq true x) (eq false x) } } hasFiniteProducts : ∀ {l} → HasFiniteProducts (Sets l) hasFiniteProducts = record {}
{ "alphanum_fraction": 0.625, "avg_line_length": 27.8787878788, "ext": "agda", "hexsha": "9fee3eebd4151780b5f4be086eb84ab1ec3d5a91", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Sets/Facts/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Sets/Facts/Product.agda", "max_line_length": 76, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Sets/Facts/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 254, "size": 920 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality open import Agda.Builtin.String open import Agda.Builtin.List Id : (A : Set) → A → A → Set Id _ = _≡_ pattern suc² n = suc (suc n) pattern suc³ n = suc (suc² n) _ : (n : Nat) → Id Nat (suc³ n) (suc (suc n)) _ = {!!} data Vec {a} (A : Set a) : Nat → Set a where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) pattern [_] x = x ∷ [] foo : List Nat → List Nat foo [] = {!!} foo (x ∷ xs) = {!!} bar : Nat → Nat bar zero = {!!} bar (suc zero) = {!!} bar (suc² n) = {!!} _ : ∀ x → Id (Vec Nat _) [ x ] [ x ] _ = {!!}
{ "alphanum_fraction": 0.5268456376, "avg_line_length": 18.0606060606, "ext": "agda", "hexsha": "ed5da5487345f7f4f62f8f1bb098a977debad023", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2762.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2762.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2762.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 240, "size": 596 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer division ------------------------------------------------------------------------ module Issue846.OldDivMod where open import Data.Nat as Nat open import Data.Nat.Properties open SemiringSolver open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ) import Data.Fin.Properties as Fin open import Induction.Nat open import Relation.Nullary.Decidable open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Function ------------------------------------------------------------------------ -- Some boring lemmas private lem₁ : (m k : ℕ) → Nat.suc m ≡ suc (toℕ (Fin.inject+ k (fromℕ m)) + 0) lem₁ m k = cong suc $ begin m ≡⟨ sym $ Fin.to-from m ⟩ toℕ (fromℕ m) ≡⟨ Fin.inject+-lemma k (fromℕ m) ⟩ toℕ (Fin.inject+ k (fromℕ m)) ≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩ toℕ (Fin.inject+ k (fromℕ m)) + 0 ∎ lem₂ : ∀ n → _ lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl lem₃ : ∀ n k q (r : Fin n) eq → suc n + k ≡ toℕ r + suc q * n lem₃ n k q r eq = begin suc n + k ≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k)) refl n k ⟩ n + suc k ≡⟨ cong (_+_ n) eq ⟩ n + (toℕ r + q * n) ≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) := r :+ (con 1 :+ q) :* n) refl n (toℕ r) q ⟩ toℕ r + suc q * n ∎ ------------------------------------------------------------------------ -- Division infixl 7 _divMod_ _div_ _mod_ -- A specification of integer division. record DivMod (dividend divisor : ℕ) : Set where constructor result field quotient : ℕ remainder : Fin divisor property : dividend ≡ toℕ remainder + quotient * divisor -- Integer division with remainder. -- Note that Induction.Nat.<-rec is used to establish termination of -- division. The run-time complexity of this implementation of integer -- division should be linear in the size of the dividend, assuming -- that well-founded recursion and the equality type are optimised -- properly (see "Inductive Families Need Not Store Their Indices" -- (Brady, McBride, McKinna, TYPES 2003)). _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod_ m n {≢0} = <-rec Pred dm m n {≢0} where Pred : ℕ → Set Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor 1+_ : ∀ {k n} → DivMod (suc k) n → DivMod (suc n + k) n 1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq) dm : (dividend : ℕ) → <-Rec Pred dividend → Pred dividend dm m rec zero {≢0 = ()} dm zero rec (suc n) = result 0 zero refl dm (suc m) rec (suc n) with compare m n dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k) where r = suc (Fin.inject+ k (fromℕ m)) dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m) dm (suc .(suc n + k)) rec (suc n) | greater .n k = 1+ rec (suc k) le (suc n) where le = s≤′s (s≤′s (n≤′m+n n k)) -- Integer division. _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _div_ m n {≢0} = DivMod.quotient $ _divMod_ m n {≢0} -- The remainder after integer division. _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor _mod_ m n {≢0} = DivMod.remainder $ _divMod_ m n {≢0}
{ "alphanum_fraction": 0.5219457646, "avg_line_length": 33.1203703704, "ext": "agda", "hexsha": "56030c1b6c8b44903cdd9db4979de0d7e7ac2d56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/LibSucceed/Issue846/OldDivMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/LibSucceed/Issue846/OldDivMod.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/LibSucceed/Issue846/OldDivMod.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 1192, "size": 3577 }
postulate A : Set T : A → Set g : {{a : A}} → Set → T a test : {{a b : A}} → Set test {{a}} {{b}} = {!g A!} -- C-u C-u C-c C-d gives T b
{ "alphanum_fraction": 0.4068965517, "avg_line_length": 16.1111111111, "ext": "agda", "hexsha": "4d1fe4041df7e4a585de9400ef0b8d143ecc3376", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2568.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2568.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2568.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 67, "size": 145 }
module _ where module A where syntax c x = ⟦ x data D₁ : Set where b : D₁ c : D₁ → D₁ module B where syntax c x = ⟦ x ⟧ data D₂ : Set where c : A.D₁ → D₂ open A open B test₁ : D₂ test₁ = ⟦ (⟦ c b) ⟧ test₂ : D₂ → D₁ test₂ ⟦ x ⟧ = ⟦ x test₃ : D₁ → D₂ test₃ b = c b test₃ (⟦ x) = ⟦ x ⟧ test₄ : D₁ → D₂ test₄ A.b = B.c A.b test₄ (A.⟦ x) = B.⟦ x ⟧ test₅ : D₂ → D₁ test₅ B.⟦ x ⟧ = A.⟦ x -- Should work.
{ "alphanum_fraction": 0.49543379, "avg_line_length": 11.2307692308, "ext": "agda", "hexsha": "837b73c4a2632e08762eccc4ff44047453e8b7f5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1194e.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1194e.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1194e.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 226, "size": 438 }
module simpleAgda where -- main : IO () -- main = putStrLn "Testing simple Idris" -- -- Some simple equivalent Idris and Agda code. -- -- data N = Z | Suc N data N : Set where Z : N suc : N -> N -- one : N -- one = Suc Z one : N one = suc Z -- addOne : N -> N -- addOne Z = Suc Z -- addOne (Suc n) = Suc (Suc n) addOne : N -> N addOne Z = suc Z addOne (suc a) = suc (suc a) -- add : N -> N -> N -- add Z s = s -- add (Suc a) b = add a (Suc b) add : N -> N -> N add Z s = s add (suc a) b = add a (suc b) -- data Vec : Type -> N -> Type where -- Nil : Vec a Z -- (::) : a -> Vec a n -> Vec a (Suc n) data Vec (A : Set) : N -> Set where Nil : Vec A Z cons : {n : N} -> A -> Vec A n -> Vec A (suc n) -- empt : Vec N Z -- empt = Nil empt : Vec N Z empt = Nil open import Agda.Builtin.Nat -- test : Vec Nat (Suc Main.one) -- test = 1 :: 2 :: Nil test : Vec Nat (suc (suc Z)) test = cons 1 (cons 2 Nil) -- test2 : Vec Nat (Suc (Suc Main.one)) -- test2 = 3 :: 4 :: 5 :: Nil test2 : Vec Nat (suc (suc (suc Z))) test2 = cons 3 (cons 4 (cons 5 Nil)) -- concat : Vec g a -> Vec g b -> Vec g (add a b) -- concat Nil rest = rest -- concat (a :: rest) b = concat rest (a :: b) concat : {a b : N} {g : Set} -> (Vec g a) -> (Vec g b) -> (Vec g (add a b)) concat Nil rest = rest concat (cons a rest) b = concat rest (cons a b) -- t3 : Vec (addOne $ addOne $ addOne $ addOne Main.one) Nat -- t3 = concat test test2 t3 : Vec Nat (addOne (addOne (addOne (addOne one)))) t3 = concat test test2
{ "alphanum_fraction": 0.5439414115, "avg_line_length": 21.768115942, "ext": "agda", "hexsha": "4ae8c4c37f722608110d621384f8130f94efb44e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-27T16:25:18.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-27T16:25:18.000Z", "max_forks_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hjorthjort/IdrisToAgda", "max_forks_repo_path": "simpleAgda.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1", "max_issues_repo_issues_event_max_datetime": "2019-11-28T17:52:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-28T17:52:42.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hjorthjort/IdrisToAgda", "max_issues_repo_path": "simpleAgda.agda", "max_line_length": 75, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hjorthjort/IdrisToAgda", "max_stars_repo_path": "simpleAgda.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-29T20:42:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-16T23:22:50.000Z", "num_tokens": 567, "size": 1502 }
-- Andreas, 2015-07-10, issue reported by asr -- {-# OPTIONS -v scope:20 #-} -- {-# OPTIONS -v scope.createModule:10 #-} module _ where module A where module Y where module B where -- FAILS: module X = A open X public -- open A public --WORKS module C = B -- On maint and master: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Scope/Monad.hs:107 {- createModule Issue1607.C module macro ScopeInfo current = Issue1607 context = TopCtx modules scope scope Issue1607 public modules A --> [Issue1607.A] B --> [Issue1607.B] scope Issue1607.A public modules Y --> [Issue1607.A.Y] scope Issue1607.A.Y scope Issue1607.B public modules X --> [Issue1607.B.X] Y --> [Issue1607.B.X.Y] scope Issue1607.B.X public modules Y --> [Issue1607.B.X.Y] scope Issue1607.B.X.Y scope Issue1607.C Copying scope Issue1607.B to Issue1607.C createModule Issue1607.C.X Copying scope Issue1607.B.X to Issue1607.C.X createModule Issue1607.C.X.Y Copying scope Issue1607.B.X.Y to Issue1607.C.X.Y createModule Issue1607.C.X.Y Copying scope Issue1607.B.X.Y to Issue1607.C.X.Y -}
{ "alphanum_fraction": 0.6387802971, "avg_line_length": 21.6779661017, "ext": "agda", "hexsha": "032b0674aab4bd51a629655b6c817fa029099c5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1607.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1607.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1607.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 385, "size": 1279 }
module Foundation.Bottom where open import Foundation.Primitive record IsBottom {ℓ-⊥} (⊥ : Set ℓ-⊥) ℓ-elim : ℞ ⟰ ℓ-elim ⊔ ℓ-⊥ where field ⊥-elim : ⊥ → {A : Set ℓ-elim} → A open IsBottom ⦃ … ⦄ public record Bottom ℓ-⊥ ℓ-elim : ℞₁ ℓ-elim ⊔ ℓ-⊥ where field ⊥ : Set ℓ-⊥ instance ⦃ isBottom ⦄ : IsBottom ⊥ ℓ-elim ¬_ : ∀ {a} → Set a → ℞ a ⊔ ℓ-⊥ ¬_ p = p → ⊥ open Bottom ⦃ … ⦄ public
{ "alphanum_fraction": 0.551980198, "avg_line_length": 19.2380952381, "ext": "agda", "hexsha": "b4777c70063590a895d185589be976bf947d24c2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Foundation/Bottom.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Foundation/Bottom.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Foundation/Bottom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 205, "size": 404 }
{- Define finitely generated ideals of commutative rings and show that they are an ideal. Parts of this should be reusable for explicit constructions of free modules over a finite set. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.FGIdeal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Powerset open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.FinData hiding (elim) open import Cubical.Data.Nat using (ℕ) open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.Ring.QuotientRing open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.RingSolver.ReflectionSolving private variable ℓ : Level module _ (Ring@(R , str) : CommRing ℓ) where infixr 5 _holds _holds : hProp ℓ → Type ℓ P holds = fst P open CommRingStr str open RingTheory (CommRing→Ring Ring) open Sum (CommRing→Ring Ring) linearCombination : {n : ℕ} → FinVec R n → FinVec R n → R linearCombination α V = ∑ (λ i → α i · V i) sumDist+ : ∀ {n : ℕ} (α β V : FinVec R n) → linearCombination (λ i → α i + β i) V ≡ linearCombination α V + linearCombination β V sumDist+ α β V = ∑Ext (λ i → ·Ldist+ (α i) (β i) (V i)) ∙ ∑Split (λ i → α i · V i) (λ i → β i · V i) dist- : ∀ {n : ℕ} (α V : FinVec R n) → linearCombination (λ i → - α i) V ≡ - linearCombination α V dist- α V = ∑Ext (λ i → -DistL· (α i) (V i)) ∙ ∑Dist- (λ i → α i · V i) dist0 : ∀ {n : ℕ} (V : FinVec R n) → linearCombination (replicateFinVec n 0r) V ≡ 0r dist0 {n = n} V = ∑Ext (λ i → 0LeftAnnihilates (V i)) ∙ ∑0r n isLinearCombination : {n : ℕ} → FinVec R n → R → Type ℓ isLinearCombination V x = ∃[ α ∈ FinVec R _ ] x ≡ linearCombination α V {- If x and y are linear combinations of l, then (x + y) is a linear combination. -} isLinearCombination+ : {n : ℕ} {x y : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V y → isLinearCombination V (x + y) isLinearCombination+ V = map2 λ α β → (λ i → α .fst i + β .fst i) , cong₂ (_+_) (α .snd) (β .snd) ∙ sym (sumDist+ _ _ V) {- If x is a linear combinations of l, then -x is a linear combination. -} isLinearCombination- : {n : ℕ} {x : R} (V : FinVec R n) → isLinearCombination V x → isLinearCombination V (- x) isLinearCombination- V = map λ α → (λ i → - α .fst i) , cong (-_) (α .snd) ∙ sym (dist- _ V) {- 0r is the trivial linear Combination -} isLinearCombination0 : {n : ℕ} (V : FinVec R n) → isLinearCombination V 0r isLinearCombination0 V = ∣ _ , sym (dist0 V) ∣ {- Linear combinations are stable under left multiplication -} isLinearCombinationL· : {n : ℕ} (V : FinVec R n) (r : R) {x : R} → isLinearCombination V x → isLinearCombination V (r · x) isLinearCombinationL· V r = map λ α → (λ i → r · α .fst i) , cong (r ·_) (α .snd) ∙∙ ∑Mulrdist r (λ i → α .fst i · V i) ∙∙ ∑Ext λ i → ·Assoc r (α .fst i) (V i) generatedIdeal : {n : ℕ} → FinVec R n → IdealsIn Ring generatedIdeal V = makeIdeal Ring (λ x → isLinearCombination V x , isPropPropTrunc) (isLinearCombination+ V) (isLinearCombination0 V) λ r → isLinearCombinationL· V r open isCommIdeal genIdeal : {n : ℕ} (R : CommRing ℓ) → FinVec (fst R) n → CommIdeal R fst (genIdeal R V) x = isLinearCombination R V x , isPropPropTrunc +Closed (snd (genIdeal R V)) = isLinearCombination+ R V contains0 (snd (genIdeal R V)) = isLinearCombination0 R V ·Closed (snd (genIdeal R V)) r = isLinearCombinationL· R V r syntax genIdeal R V = ⟨ V ⟩[ R ] FGIdealIn : (R : CommRing ℓ) → Type (ℓ-suc ℓ) FGIdealIn R = Σ[ I ∈ CommIdeal R ] ∃[ n ∈ ℕ ] ∃[ V ∈ FinVec (fst R) n ] I ≡ ⟨ V ⟩[ R ]
{ "alphanum_fraction": 0.5900047371, "avg_line_length": 40.2095238095, "ext": "agda", "hexsha": "155828212dfb936e09bc1de6b9af34708d70f698", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_line_length": 102, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/FGIdeal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 1374, "size": 4222 }
open import Prelude open import Nat open import dynamics-core open import contexts module lemmas-gcomplete where -- if you add a complete type to a complete context, the result is also a -- complete context gcomp-extend : ∀{Γ τ x} → Γ gcomplete → τ tcomplete → x # Γ → (Γ ,, (x , τ)) gcomplete gcomp-extend {Γ} {τ} {x} gc tc apart x_query τ_query x₁ with natEQ x x_query gcomp-extend {Γ} {τ} {x} gc tc apart .x τ_query x₂ | Inl refl = tr (λ qq → qq tcomplete) (someinj x₂) tc gcomp-extend {Γ} {τ} {x} gc tc apart x_query τ_query x₂ | Inr x₁ = gc x_query τ_query x₂
{ "alphanum_fraction": 0.6903114187, "avg_line_length": 44.4615384615, "ext": "agda", "hexsha": "ab574168bea29ca8fae0a20e7b820692ac5c8acc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "lemmas-gcomplete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "lemmas-gcomplete.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "lemmas-gcomplete.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 202, "size": 578 }
{-# OPTIONS --without-K #-} module FinVecProperties where open import Data.Nat using (ℕ; _+_; _*_) open import Data.Fin using (Fin; zero; suc; inject+; raise) open import Data.Sum using (inj₁; inj₂; [_,_]′) open import Data.Product using (_×_; proj₁; proj₂; _,′_) open import Data.Vec using (Vec; []; _∷_; tabulate; allFin) renaming (_++_ to _++V_; concat to concatV; map to mapV) open import Data.Vec.Properties using (tabulate∘lookup; lookup∘tabulate; lookup-allFin; lookup-++-inject+; tabulate-∘) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; module ≡-Reasoning) open import Function using (_∘_; id) -- open import Equiv using (_∼_; p∘!p≡id) open import FinEquiv using (module Plus; module Times; module PlusTimes) open import FinVec using (FinVec; 0C; 1C; _∘̂_; _⊎c_; _×c_; unite+; uniti+; unite+r; uniti+r; swap+cauchy; assocl+; assocr+; unite*; uniti*; unite*r; uniti*r; swap⋆cauchy; assocl*; assocr*; dist*+; factor*+; distl*+; factorl*+; right-zero*l; right-zero*r ) open import Proofs using ( -- FiniteFunctions finext; -- VectorLemmas _!!_; lookupassoc; unSplit; lookup-++-raise; tabulate-split; concat-map; left!!; right!!; map-map-map; lookup-map; map-∘ ) ------------------------------------------------------------------------------ -- Two ways for reasoning about permutations: we use whichever is more -- convenient in each context -- I: we can reason about permutations by looking at their action at -- every index. This exposes the underlying raw vectors... infix 4 _∼p_ _∼p_ : {n m : ℕ} (p₁ p₂ : Vec (Fin m) n) → Set _∼p_ {n} p₁ p₂ = (i : Fin n) → p₁ !! i ≡ p₂ !! i ∼p⇒≡ : {n : ℕ} {p₁ p₂ : Vec (Fin n) n} → (p₁ ∼p p₂) → p₁ ≡ p₂ ∼p⇒≡ {n} {p₁} {p₂} eqv = begin ( p₁ ≡⟨ sym (tabulate∘lookup p₁) ⟩ tabulate (_!!_ p₁) ≡⟨ finext eqv ⟩ tabulate (_!!_ p₂) ≡⟨ tabulate∘lookup p₂ ⟩ p₂ ∎) where open ≡-Reasoning cauchyext : {m n : ℕ} (π : FinVec m n) → tabulate (_!!_ π) ≡ π -- this is just tabulate∘lookup, but it hides the details; should this -- be called 'join' or 'flatten' ? cauchyext π = tabulate∘lookup π 1C!!i≡i : ∀ {m} {i : Fin m} → 1C {m} !! i ≡ i 1C!!i≡i = lookup∘tabulate id _ !!⇒∘̂ : {n₁ n₂ n₃ : ℕ} → (π₁ : Vec (Fin n₁) n₂) → (π₂ : Vec (Fin n₂) n₃) → (i : Fin n₃) → π₁ !! (π₂ !! i) ≡ (π₂ ∘̂ π₁) !! i !!⇒∘̂ π₁ π₂ i = begin ( π₁ !! (π₂ !! i) ≡⟨ sym (lookup∘tabulate (λ j → (π₁ !! (π₂ !! j))) i) ⟩ tabulate (λ i → π₁ !! (π₂ !! i)) !! i ≡⟨ refl ⟩ (π₂ ∘̂ π₁) !! i ∎) where open ≡-Reasoning -- II: we can relate compositions of permutations of type equivalences -- and pull back properties of permutations from properties of -- equivalences ∘̂⇒∘ : {m n o : ℕ} → (f : Fin m → Fin n) → (g : Fin n → Fin o) → tabulate f ∘̂ tabulate g ∼p tabulate (g ∘ f) -- note the flip! ∘̂⇒∘ f g i = begin ( (tabulate f ∘̂ tabulate g) !! i ≡⟨ lookup∘tabulate _ i ⟩ (tabulate g) !! (tabulate f !! i) ≡⟨ lookup∘tabulate _ (tabulate f !! i) ⟩ g (tabulate f !! i) ≡⟨ cong g (lookup∘tabulate f i) ⟩ g (f i) ≡⟨ sym (lookup∘tabulate (g ∘ f) i) ⟩ tabulate (g ∘ f) !! i ∎) where open ≡-Reasoning -- we could go through ~p, but this works better in practice ~⇒≡ : {m n : ℕ} {f : Fin m → Fin n} {g : Fin n → Fin m} → (f ∘ g ∼ id) → (tabulate g ∘̂ tabulate f ≡ 1C) ~⇒≡ {f = f} {g} β = ∼p⇒≡ (λ i → trans (∘̂⇒∘ g f i) (cong (λ x → x !! i) (finext β))) ------------------------------------------------------------------------------ -- A permutation and its inverse compose to the identity -- -- Here we just exploit the connection to type equivalences to get all -- the properties for free. -- additives unite+∘̂uniti+~id : ∀ {m} → (unite+ {m}) ∘̂ uniti+ ≡ 1C {m} unite+∘̂uniti+~id {m} = ~⇒≡ {m} {n = m} (p∘!p≡id {p = Plus.unite+ {m}}) uniti+∘̂unite+~id : ∀ {m} → (uniti+ {m}) ∘̂ unite+ ≡ 1C {m} uniti+∘̂unite+~id {m} = ~⇒≡ {m} {n = m} (p∘!p≡id {p = Plus.uniti+}) unite+r∘̂uniti+r~id : ∀ {m} → (unite+r {m}) ∘̂ uniti+r ≡ 1C {m + 0} unite+r∘̂uniti+r~id {m} = ~⇒≡ {m} (p∘!p≡id {p = Plus.unite+r {m}}) uniti+r∘̂unite+r~id : ∀ {m} → (uniti+r {m}) ∘̂ unite+r ≡ 1C {m} uniti+r∘̂unite+r~id {m} = ~⇒≡ (p∘!p≡id {p = Plus.uniti+r}) swap+-inv : ∀ {m n} → swap+cauchy m n ∘̂ swap+cauchy n m ≡ 1C swap+-inv {m} {n} = ~⇒≡ (Plus.swap-inv m n) assocl+∘̂assocr+~id : ∀ {m n o} → assocl+ {m} {n} {o} ∘̂ assocr+ {m} ≡ 1C assocl+∘̂assocr+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Plus.assocl+ {m}}) assocr+∘̂assocl+~id : ∀ {m n o} → assocr+ {m} {n} {o} ∘̂ assocl+ {m} ≡ 1C assocr+∘̂assocl+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Plus.assocr+ {m}}) -- multiplicatives unite*∘̂uniti*~id : ∀ {m} → (unite* {m}) ∘̂ uniti* ≡ 1C {1 * m} unite*∘̂uniti*~id {m} = ~⇒≡ {m} {n = 1 * m} (p∘!p≡id {p = Times.unite* {m}}) uniti*∘̂unite*~id : ∀ {m} → (uniti* {m}) ∘̂ unite* ≡ 1C {m} uniti*∘̂unite*~id {m} = ~⇒≡ {1 * m} {n = m} (p∘!p≡id {p = Times.uniti* {m}}) unite*r∘̂uniti*r~id : ∀ {m} → (unite*r {m}) ∘̂ uniti*r ≡ 1C {m * 1} unite*r∘̂uniti*r~id {m} = ~⇒≡ {m} {n = m * 1} (p∘!p≡id {p = Times.unite*r {m}}) uniti*r∘̂unite*r~id : ∀ {m} → (uniti*r {m}) ∘̂ unite*r ≡ 1C {m} uniti*r∘̂unite*r~id {m} = ~⇒≡ {m * 1} {n = m} (p∘!p≡id {p = Times.uniti*r {m}}) swap*-inv : ∀ {m n} → swap⋆cauchy m n ∘̂ swap⋆cauchy n m ≡ 1C swap*-inv {m} {n} = ~⇒≡ (Times.swap-inv m n) assocl*∘̂assocr*~id : ∀ {m n o} → assocl* {m} {n} {o} ∘̂ assocr* {m} ≡ 1C assocl*∘̂assocr*~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Times.assocl* {m}}) assocr*∘̂assocl*~id : ∀ {m n o} → assocr* {m} {n} {o} ∘̂ assocl* {m} ≡ 1C assocr*∘̂assocl*~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = Times.assocr* {m}}) -- Distributivity right-zero*l∘̂right-zero*r~id : ∀ {m} → right-zero*l {m} ∘̂ right-zero*r {m} ≡ 1C {m * 0} right-zero*l∘̂right-zero*r~id {m} = ~⇒≡ {f = proj₁ (PlusTimes.factorzr {m})} (p∘!p≡id {p = PlusTimes.distzr {m}}) right-zero*r∘̂right-zero*l~id : ∀ {m} → right-zero*r {m} ∘̂ right-zero*l {m} ≡ 1C right-zero*r∘̂right-zero*l~id {m} = ~⇒≡ { f = proj₁ (PlusTimes.factorz {m})} (p∘!p≡id {p = PlusTimes.distz {m}}) dist*+∘̂factor*+~id : ∀ {m n o} → dist*+ {m} {n} {o} ∘̂ factor*+ {m} ≡ 1C dist*+∘̂factor*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.dist {m}}) factor*+∘̂dist*+~id : ∀ {m n o} → factor*+ {m} {n} {o} ∘̂ dist*+ {m} ≡ 1C factor*+∘̂dist*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.factor {m}}) distl*+∘̂factorl*+~id : ∀ {m n o} → distl*+ {m} {n} {o} ∘̂ factorl*+ {m} ≡ 1C distl*+∘̂factorl*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.distl {m}}) factorl*+∘̂distl*+~id : ∀ {m n o} → factorl*+ {m} {n} {o} ∘̂ distl*+ {m} ≡ 1C factorl*+∘̂distl*+~id {m} {_} {o} = ~⇒≡ (p∘!p≡id {p = PlusTimes.factorl {m}}) ------------------------------------------------------------------------------ -- Now the main properties of sequential composition 0C∘̂0C≡0C : 1C {0} ∘̂ 1C {0} ≡ 1C {0} 0C∘̂0C≡0C = refl ∘̂-assoc : {m₁ m₂ m₃ m₄ : ℕ} → (a : Vec (Fin m₂) m₁) (b : Vec (Fin m₃) m₂) (c : Vec (Fin m₄) m₃) → a ∘̂ (b ∘̂ c) ≡ (a ∘̂ b) ∘̂ c ∘̂-assoc a b c = finext (lookupassoc a b c) ∘̂-rid : {m n : ℕ} → (π : Vec (Fin m) n) → π ∘̂ 1C ≡ π ∘̂-rid π = trans (finext (λ i → lookup-allFin (π !! i))) (cauchyext π) ∘̂-lid : {m n : ℕ} → (π : Vec (Fin m) n) → 1C ∘̂ π ≡ π ∘̂-lid π = trans (finext (λ i → cong (_!!_ π) (lookup-allFin i))) (cauchyext π) -- 1C₀⊎x≡x : ∀ {m n} {x : FinVec m n} → 1C {0} ⊎c x ≡ x 1C₀⊎x≡x {x = x} = cauchyext x unite+∘[0⊎x]≡x∘unite+ : ∀ {m n} {x : FinVec m n} → unite+ ∘̂ (1C {0} ⊎c x) ≡ x ∘̂ unite+ unite+∘[0⊎x]≡x∘unite+ {m} {n} {x} = finext pf where pf : (i : Fin n) → (0C ⊎c x) !! (unite+ !! i) ≡ unite+ !! (x !! i) pf i = begin ( tabulate (λ y → x !! y) !! (tabulate id !! i) ≡⟨ cong (λ j → tabulate (λ y → x !! y) !! j) (lookup∘tabulate id i) ⟩ tabulate (λ y → x !! y) !! i ≡⟨ lookup∘tabulate (_!!_ x) i ⟩ x !! i ≡⟨ sym (lookup∘tabulate id (x !! i)) ⟩ tabulate id !! (x !! i) ∎) where open ≡-Reasoning uniti+∘x≡[0⊎x]∘uniti+ : ∀ {m n} {x : FinVec m n} → uniti+ ∘̂ x ≡ (1C {0} ⊎c x) ∘̂ uniti+ uniti+∘x≡[0⊎x]∘uniti+ {m} {n} {x} = finext pf where pf : (i : Fin n) → x !! (uniti+ !! i) ≡ uniti+ !! ((0C ⊎c x) !! i) pf i = begin ( x !! (tabulate id !! i) ≡⟨ cong (_!!_ x) (lookup∘tabulate id i) ⟩ x !! i ≡⟨ sym (lookup∘tabulate (λ y → x !! y) i) ⟩ tabulate (λ y → x !! y) !! i ≡⟨ sym (lookup∘tabulate id _) ⟩ tabulate id !! (tabulate (λ y → x !! y) !! i) ∎) where open ≡-Reasoning 1C⊎1C≡1C : ∀ {m n} → 1C {m} ⊎c 1C {n} ≡ 1C 1C⊎1C≡1C {m} {n} = begin ( tabulate {m} (inject+ n ∘ _!!_ 1C) ++V tabulate {n} (raise m ∘ _!!_ 1C) ≡⟨ cong₂ (_++V_ {m = m}) (finext (λ i → cong (inject+ n) (lookup-allFin i))) (finext (λ i → cong (raise m) (lookup-allFin i))) ⟩ tabulate {m} (inject+ n) ++V tabulate {n} (raise m) ≡⟨ unSplit {m} id ⟩ tabulate {m + n} id ∎) where open ≡-Reasoning idˡ⊕ : ∀ {m n} {x : FinVec m n} → uniti+ ∘̂ (1C {0} ⊎c x) ≡ x ∘̂ uniti+ idˡ⊕ {m} {n} {x} = finext pf where open ≡-Reasoning pf : (i : Fin n) → (1C {0} ⊎c x) !! (uniti+ !! i) ≡ (uniti+ !! (x !! i)) pf i = begin ( tabulate (λ y → x !! y) !! (tabulate id !! i) ≡⟨ cong (_!!_ (tabulate λ y → x !! y)) (lookup∘tabulate id i) ⟩ (tabulate (λ y → x !! y)) !! i ≡⟨ lookup∘tabulate (λ y → x !! y) i ⟩ x !! i ≡⟨ sym (lookup∘tabulate id (x !! i)) ⟩ tabulate id !! (x !! i) ∎) -- [,]-commute : {A B C D E : Set} → {f : A → C} → {g : B → C} → {h : C → D} → -- ∀ x → h ([ f , g ]′ x) ≡ [ (h ∘ f) , (h ∘ g) ]′ x -- [,]-commute (inj₁ x) = refl -- [,]-commute (inj₂ y) = refl -- private left⊎⊎!! : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → (p₁ : FinVec m₁ n₁) → (p₂ : FinVec m₂ n₂) → (p₃ : FinVec m₃ m₁) → (p₄ : FinVec m₄ m₂) → (i : Fin n₁) → (p₃ ⊎c p₄) !! ( (p₁ ⊎c p₂) !! inject+ n₂ i ) ≡ inject+ m₄ ( (p₁ ∘̂ p₃) !! i) left⊎⊎!! {m₁} {m₂} {_} {m₄} {_} {n₂} p₁ p₂ p₃ p₄ i = let pp = p₃ ⊎c p₄ in let qq = p₁ ⊎c p₂ in begin ( pp !! (qq !! inject+ n₂ i) ≡⟨ cong (_!!_ pp) (lookup-++-inject+ (tabulate (inject+ m₂ ∘ _!!_ p₁)) (tabulate (raise m₁ ∘ _!!_ p₂)) i) ⟩ pp !! (tabulate (inject+ m₂ ∘ _!!_ p₁ ) !! i) ≡⟨ cong (_!!_ pp) (lookup∘tabulate _ i) ⟩ pp !! (inject+ m₂ (p₁ !! i)) ≡⟨ left!! (p₁ !! i) (inject+ m₄ ∘ (_!!_ p₃)) ⟩ inject+ m₄ (p₃ !! (p₁ !! i)) ≡⟨ cong (inject+ m₄) (sym (lookup∘tabulate _ i)) ⟩ inject+ m₄ ((p₁ ∘̂ p₃) !! i) ∎ ) where open ≡-Reasoning right⊎⊎!! : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → (p₁ : FinVec m₁ n₁) → (p₂ : FinVec m₂ n₂) → (p₃ : FinVec m₃ m₁) → (p₄ : FinVec m₄ m₂) → (i : Fin n₂) → (p₃ ⊎c p₄) !! ( (p₁ ⊎c p₂) !! raise n₁ i ) ≡ raise m₃ ( (p₂ ∘̂ p₄) !! i) right⊎⊎!! {m₁} {m₂} {m₃} {_} {n₁} {_} p₁ p₂ p₃ p₄ i = let pp = p₃ ⊎c p₄ in let qq = p₁ ⊎c p₂ in begin ( pp !! (qq !! raise n₁ i) ≡⟨ cong (_!!_ pp) (lookup-++-raise (tabulate (inject+ m₂ ∘ _!!_ p₁)) (tabulate (raise m₁ ∘ _!!_ p₂)) i) ⟩ pp !! (tabulate (raise m₁ ∘ _!!_ p₂) !! i) ≡⟨ cong (_!!_ pp) (lookup∘tabulate _ i) ⟩ pp !! raise m₁ (p₂ !! i) ≡⟨ right!! {m₁} (p₂ !! i) (raise m₃ ∘ (_!!_ p₄)) ⟩ raise m₃ (p₄ !! (p₂ !! i)) ≡⟨ cong (raise m₃) (sym (lookup∘tabulate _ i)) ⟩ raise m₃ ((p₂ ∘̂ p₄) !! i) ∎ ) where open ≡-Reasoning ⊎c-distrib : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → {p₁ : FinVec m₁ n₁} → {p₂ : FinVec m₂ n₂} → {p₃ : FinVec m₃ m₁} → {p₄ : FinVec m₄ m₂} → (p₁ ⊎c p₂) ∘̂ (p₃ ⊎c p₄) ≡ (p₁ ∘̂ p₃) ⊎c (p₂ ∘̂ p₄) ⊎c-distrib {m₁} {m₂} {m₃} {m₄} {n₁} {n₂} {p₁} {p₂} {p₃} {p₄} = let p₃₄ = p₃ ⊎c p₄ in let p₁₂ = p₁ ⊎c p₂ in let lhs = λ i → p₃₄ !! (p₁₂ !! i) in begin ( tabulate lhs ≡⟨ tabulate-split {n₁} {n₂} ⟩ tabulate {n₁} (lhs ∘ inject+ n₂) ++V tabulate {n₂} (lhs ∘ raise n₁) ≡⟨ cong₂ _++V_ (finext (left⊎⊎!! p₁ _ _ _)) (finext (right⊎⊎!! p₁ _ _ _)) ⟩ tabulate {n₁} (λ i → inject+ m₄ ((p₁ ∘̂ p₃) !! i)) ++V tabulate {n₂} (λ i → raise m₃ ((p₂ ∘̂ p₄) !! i)) ≡⟨ refl ⟩ (p₁ ∘̂ p₃) ⊎c (p₂ ∘̂ p₄) ∎) where open ≡-Reasoning private concat!! : {A : Set} {m n : ℕ} → (a : Fin m) → (b : Fin n) → (xss : Vec (Vec A n) m) → concatV xss !! (Times.fwd (a ,′ b)) ≡ (xss !! a) !! b concat!! zero b (xs ∷ xss) = lookup-++-inject+ xs (concatV xss) b concat!! (suc a) b (xs ∷ xss) = trans (lookup-++-raise xs (concatV xss) (Times.fwd (a ,′ b))) (concat!! a b xss) ×c-equiv : {m₁ m₂ n₁ n₂ : ℕ} (p₁ : FinVec m₁ n₁) (p₂ : FinVec m₂ n₂) → (p₁ ×c p₂) ≡ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) ×c-equiv p₁ p₂ = let zss = mapV (λ b → mapV (λ x → b ,′ x) p₂) p₁ in begin ( (p₁ ×c p₂) ≡⟨ refl ⟩ mapV Times.fwd (concatV zss) ≡⟨ sym (concat-map zss Times.fwd) ⟩ concatV (mapV (mapV Times.fwd) zss) ≡⟨ cong concatV (map-map-map Times.fwd (λ b → mapV (λ x → b ,′ x) p₂) p₁) ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) ∎) where open ≡-Reasoning lookup-2d : {A : Set} (m n : ℕ) → (k : Fin (m * n)) → {f : Fin m × Fin n → A} → concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i ,′ j)))) !! k ≡ f (Times.bwd k) lookup-2d m n k {f} = let lhs = concatV (tabulate {m} (λ i → tabulate {n} (λ j → f (i ,′ j)))) a = proj₁ (Times.bwd {m} {n} k) b = proj₂ (Times.bwd {m} {n} k) in begin ( lhs !! k ≡⟨ cong (_!!_ lhs) (sym (Times.fwd∘bwd~id {m} k)) ⟩ lhs !! (Times.fwd (a ,′ b)) ≡⟨ concat!! a b _ ⟩ (tabulate {m} (λ i → tabulate {n} (λ j → f (i ,′ j))) !! a) !! b ≡⟨ cong (λ x → x !! b) (lookup∘tabulate _ a) ⟩ tabulate {n} (λ j → f (a ,′ j)) !! b ≡⟨ lookup∘tabulate _ b ⟩ f (a ,′ b) ≡⟨ refl ⟩ f (Times.bwd k) ∎) where open ≡-Reasoning ×c!! : {m₁ m₂ n₁ n₂ : ℕ} (p₁ : FinVec m₁ n₁) (p₂ : FinVec m₂ n₂) (k : Fin (n₁ * n₂)) → (p₁ ×c p₂) !! k ≡ Times.fwd (p₁ !! proj₁ (Times.bwd k) ,′ p₂ !! proj₂ (Times.bwd {n₁} k)) ×c!! {n₁ = n₁} p₁ p₂ k = let a = proj₁ (Times.bwd {n₁} k) in let b = proj₂ (Times.bwd {n₁} k) in begin ( (p₁ ×c p₂) !! k ≡⟨ cong₂ _!!_ (×c-equiv p₁ p₂) (sym (Times.fwd∘bwd~id {n₁} k)) ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) !! Times.fwd (a ,′ b) ≡⟨ concat!! a b _ ⟩ ((mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂)) p₁) !! a) !! b ≡⟨ cong (λ x → x !! b) (lookup-map a _ p₁) ⟩ mapV Times.fwd (mapV (λ x → p₁ !! a ,′ x) p₂) !! b ≡⟨ cong (λ x → x !! b) (sym (map-∘ Times.fwd _ p₂)) ⟩ mapV (Times.fwd ∘ (λ x → p₁ !! a ,′ x)) p₂ !! b ≡⟨ lookup-map b _ p₂ ⟩ Times.fwd (p₁ !! a ,′ p₂ !! b) ∎) where open ≡-Reasoning ×c-distrib : ∀ {m₁ m₂ m₃ m₄ n₁ n₂} → {p₁ : FinVec m₁ n₁} → {p₂ : FinVec m₂ n₂} → {p₃ : FinVec m₃ m₁} → {p₄ : FinVec m₄ m₂} → (p₁ ×c p₂) ∘̂ (p₃ ×c p₄) ≡ (p₁ ∘̂ p₃) ×c (p₂ ∘̂ p₄) ×c-distrib {m₁} {m₂} {m₃} {m₄} {n₁} {n₂} {p₁} {p₂} {p₃} {p₄} = let p₃₄ = p₃ ×c p₄ in let p₁₂ = p₁ ×c p₂ in let p₂₄ = p₂ ∘̂ p₄ in let p₁₃ = p₁ ∘̂ p₃ in let lhs = λ i → p₃₄ !! (p₁₂ !! i) in let zss = mapV (λ b → mapV (λ x → b ,′ x) (p₂ ∘̂ p₄)) (p₁ ∘̂ p₃) in begin ( tabulate {n₁ * n₂} (λ i → p₃₄ !! (p₁₂ !! i)) ≡⟨ finext (λ j → cong (_!!_ p₃₄) (×c!! p₁ p₂ j)) ⟩ tabulate {n₁ * n₂} (λ i → p₃₄ !! Times.fwd (p₁ !! proj₁ (Times.bwd i) ,′ p₂ !! proj₂ (Times.bwd i))) ≡⟨ finext (λ j → ×c!! p₃ p₄ _) ⟩ tabulate (λ i → let k = Times.fwd (p₁ !! proj₁ (Times.bwd i) ,′ p₂ !! proj₂ (Times.bwd i)) in Times.fwd (p₃ !! proj₁ (Times.bwd k) ,′ p₄ !! proj₂ (Times.bwd k))) ≡⟨ finext (λ i → cong₂ (λ x y → Times.fwd (p₃ !! proj₁ x ,′ p₄ !! proj₂ y)) (Times.bwd∘fwd~id {m₁} {m₂} (p₁ !! proj₁ (Times.bwd i) ,′ _)) (Times.bwd∘fwd~id (_ ,′ p₂ !! proj₂ (Times.bwd i)))) ⟩ tabulate (λ i → Times.fwd (p₃ !! (p₁ !! proj₁ (Times.bwd i)) ,′ (p₄ !! (p₂ !! proj₂ (Times.bwd i))))) ≡⟨ finext (λ k → sym (lookup-2d n₁ n₂ k)) ⟩ tabulate (λ k → concatV (tabulate {n₁} (λ z → tabulate {n₂} (λ w → Times.fwd ((p₃ !! (p₁ !! z)) ,′ (p₄ !! (p₂ !! w)))))) !! k) ≡⟨ tabulate∘lookup _ ⟩ concatV (tabulate {n₁} (λ z → tabulate {n₂} (λ w → Times.fwd ((p₃ !! (p₁ !! z)) ,′ (p₄ !! (p₂ !! w)))))) ≡⟨ cong concatV (finext (λ i → tabulate-∘ Times.fwd (λ w → ((p₃ !! (p₁ !! i)) ,′ (p₄ !! (p₂ !! w)))))) ⟩ concatV (tabulate (λ z → mapV Times.fwd (tabulate (λ w → (p₃ !! (p₁ !! z)) ,′ (p₄ !! (p₂ !! w)))))) ≡⟨ cong concatV (finext (λ i → cong (mapV Times.fwd) (tabulate-∘ (λ x → (p₃ !! (p₁ !! i)) ,′ x) (_!!_ p₄ ∘ _!!_ p₂)))) ⟩ concatV (tabulate (λ z → mapV Times.fwd (mapV (λ x → (p₃ !! (p₁ !! z)) ,′ x) p₂₄))) ≡⟨ cong concatV (tabulate-∘ _ (_!!_ p₃ ∘ _!!_ p₁)) ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (λ x → y ,′ x) p₂₄)) p₁₃) ≡⟨ sym (×c-equiv p₁₃ p₂₄) ⟩ (p₁ ∘̂ p₃) ×c (p₂ ∘̂ p₄) ∎) where open ≡-Reasoning -- there might be a simpler proofs of this using tablate∘lookup 1C×1C≡1C : ∀ {m n} → (1C {m} ×c 1C {n}) ≡ 1C {m * n} 1C×1C≡1C {m} {n} = begin ( 1C {m} ×c 1C ≡⟨ ×c-equiv 1C 1C ⟩ concatV (mapV (λ y → mapV Times.fwd (mapV (_,′_ y) (1C {n}))) (1C {m})) ≡⟨ cong (concatV {n = m}) (sym (tabulate-∘ _ id)) ⟩ concatV {n = m} (tabulate (λ y → mapV Times.fwd (mapV (_,′_ y) (1C {n})))) ≡⟨ cong (concatV {n = m}) (finext (λ y → sym (map-∘ Times.fwd (λ x → y ,′ x) 1C))) ⟩ concatV (tabulate {n = m} (λ y → mapV (Times.fwd ∘ (_,′_ y)) (1C {n}))) ≡⟨ cong (concatV {m = n} {m}) (finext (λ y → sym (tabulate-∘ (Times.fwd ∘ (_,′_ y)) id))) ⟩ concatV (tabulate {n = m} (λ a → tabulate {n = n} (λ b → Times.fwd (a ,′ b)))) ≡⟨ sym (tabulate∘lookup _) ⟩ tabulate (λ k → concatV (tabulate {n = m} (λ a → tabulate {n = n} (λ b → Times.fwd (a ,′ b)))) !! k) ≡⟨ finext (λ k → lookup-2d m n k) ⟩ tabulate (λ k → Times.fwd {m} {n} (Times.bwd k)) ≡⟨ finext (Times.fwd∘bwd~id {m} {n}) ⟩ 1C {m * n} ∎ ) where open ≡-Reasoning ------------------------------------------------------------------------------ -- A few "reveal" functions, to let us peek into the representation reveal1C : ∀ {m} → allFin m ≡ 1C reveal1C = refl reveal0C : [] ≡ 1C {0} reveal0C = refl reveal⊎c : ∀ {m₁ n₁ m₂ n₂} → {α : FinVec m₁ m₂} → {β : FinVec n₁ n₂} → α ⊎c β ≡ tabulate (Plus.fwd ∘ inj₁ ∘ _!!_ α) ++V tabulate (Plus.fwd {m₁} ∘ inj₂ ∘ _!!_ β) reveal⊎c = refl ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4605446029, "avg_line_length": 37.0744274809, "ext": "agda", "hexsha": "fdb796c951b2066a55ca1d1f0668bbb171f21226", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/FinVecProperties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/FinVecProperties.agda", "max_line_length": 81, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/FinVecProperties.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 9286, "size": 19427 }
module Agda.Builtin.String where open import Agda.Builtin.Bool open import Agda.Builtin.List open import Agda.Builtin.Char postulate String : Set {-# BUILTIN STRING String #-} primitive primStringToList : String → List Char primStringFromList : List Char → String primStringAppend : String → String → String primStringEquality : String → String → Bool primShowChar : Char → String primShowString : String → String
{ "alphanum_fraction": 0.7364864865, "avg_line_length": 24.6666666667, "ext": "agda", "hexsha": "23307b665dfaacc542141a98fcc6c08a659a4b7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/String.agda", "max_line_length": 47, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/String.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 112, "size": 444 }