Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Comonad -- verbatim dual of Categories.Category.Construction.EilenbergMoore module Categories.Category.Construction.CoEilenbergMoore {o ℓ e} {C : Category o ℓ e} (M : Comonad C) where open import Level open import Categories.Morphism.Reasoning C private module C = Category C module M = Comonad M open C open M.F open HomReasoning open Equiv record Comodule : Set (o ⊔ ℓ ⊔ e) where field A : Obj coaction : A ⇒ F₀ A commute : F₁ coaction ∘ coaction ≈ M.δ.η A ∘ coaction identity : M.ε.η A ∘ coaction ≈ C.id record Comodule⇒ (X Y : Comodule) : Set (ℓ ⊔ e) where private module X = Comodule X module Y = Comodule Y field arr : X.A ⇒ Y.A commute : Y.coaction ∘ arr ≈ F₁ arr ∘ X.coaction CoEilenbergMoore : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e CoEilenbergMoore = record { Obj = Comodule ; _⇒_ = Comodule⇒ ; _≈_ = λ f g → Comodule⇒.arr f ≈ Comodule⇒.arr g ; id = record { arr = C.id ; commute = identityʳ ○ introˡ identity } ; _∘_ = compose ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Equiv compose : ∀ {X Y Z} → Comodule⇒ Y Z → Comodule⇒ X Y → Comodule⇒ X Z compose {X} {Y} {Z} f g = record { arr = f.arr ∘ g.arr ; commute = begin Comodule.coaction Z ∘ f.arr ∘ g.arr ≈⟨ pullˡ f.commute ⟩ (F₁ f.arr ∘ Comodule.coaction Y) ∘ g.arr ≈⟨ pullʳ g.commute ⟩ F₁ f.arr ∘ F₁ g.arr ∘ Comodule.coaction X ≈⟨ pullˡ (sym homomorphism) ⟩ F₁ (f.arr ∘ g.arr) ∘ Comodule.coaction X ∎ } where module f = Comodule⇒ f module g = Comodule⇒ g
{ "alphanum_fraction": 0.6133768352, "avg_line_length": 28.2923076923, "ext": "agda", "hexsha": "b49a5188dd1f9afa46875710550a368cf835da51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/CoEilenbergMoore.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/CoEilenbergMoore.agda", "max_line_length": 107, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/CoEilenbergMoore.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 697, "size": 1839 }
module CategoryTheory.Linear where open import CategoryTheory.Categories open import CategoryTheory.Functor open import CategoryTheory.BCCCs open import CategoryTheory.Monad open import CategoryTheory.Instances.Kleisli module L {n} {ℂ : Category n} (ℂ-BCCC : BicartesianClosed ℂ) (Mo : Monad ℂ) where open Category ℂ open BicartesianClosed ℂ-BCCC open Monad Mo open Functor T renaming (omap to M ; fmap to M-f) Kl : Category n Kl = Kleisli ℂ Mo -- Linear product of two objects _⊛_ : (A B : obj) -> obj A ⊛ B = (A ⊗ M B) ⊕ (M A ⊗ B) ⊕ (A ⊗ B) -- First projection from linear product *π₁ : ∀{A B} -> A ⊛ B ~> M A *π₁ {A}{B} = [ η.at A ∘ π₁ ⁏ π₁ ⁏ η.at A ∘ π₁ ] -- Second projection from linear product *π₂ : ∀{A B} -> A ⊛ B ~> M B *π₂ {A}{B} = [ π₂ ⁏ η.at B ∘ π₂ ⁏ η.at B ∘ π₂ ] -- Type class for linear products of type A ⊛ B. Need to provide -- linear product of morphisms and product laws in order to establish -- that the linear product is a product in the Kleisli category of the monad. record LinearProduct (A B : obj) : Set (lsuc n) where infix 10 ⟪_,_⟫ field -- | Data -- Linear product ⟪_,_⟫ : ∀{L} -> (L ~> M A) -> (L ~> M B) -> (L ~> M (A ⊛ B)) -- | Laws *π₁-comm : ∀{L} -> {l₁ : L ~> M A} {l₂ : L ~> M B} -> (μ.at A ∘ M-f *π₁) ∘ ⟪ l₁ , l₂ ⟫ ≈ l₁ *π₂-comm : ∀{L} -> {l₁ : L ~> M A} {l₂ : L ~> M B} -> (μ.at B ∘ M-f *π₂) ∘ ⟪ l₁ , l₂ ⟫ ≈ l₂ ⊛-unique : ∀{P} {p₁ : P ~> M A} {p₂ : P ~> M B} {m : P ~> M A⊕B} -> (μ.at A ∘ M-f *π₁) ∘ m ≈ p₁ -> (μ.at B ∘ M-f *π₂) ∘ m ≈ p₂ -> ⟪ p₁ , p₂ ⟫ ≈ m Kl-⊛ : Product Kl A B Kl-⊛ = record { A⊗B = A ⊛ B ; π₁ = *π₁ ; π₂ = *π₂ ; ⟨_,_⟩ = ⟪_,_⟫ ; π₁-comm = *π₁-comm ; π₂-comm = *π₂-comm ; ⊗-unique = ⊛-unique } -- Type class for linear categories record Linear {n} {ℂ : Category n} (ℂ-BCCC : BicartesianClosed ℂ) (Mo : Monad ℂ) : Set (lsuc n) where open Category ℂ open L ℂ-BCCC Mo field linprod : ∀(A B : obj) -> LinearProduct A B open module Li {A} {B} = LinearProduct (linprod A B) public
{ "alphanum_fraction": 0.4874307627, "avg_line_length": 33.0563380282, "ext": "agda", "hexsha": "032a80c0de4f5d88c1e768ef05324a4e1f09703d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/Linear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/Linear.agda", "max_line_length": 81, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/Linear.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 872, "size": 2347 }
-- {-# OPTIONS --cubical -vtc.lhs.split.partial:20 #-} {-# OPTIONS --cubical #-} module _ where open import Agda.Primitive.Cubical open import Agda.Builtin.Equality postulate X : Set P : I → Set p : P i1 module Test (A : Set) (i : I) (B : Set) where j = i R = P j module Z (r s : A) where a0 : I → Partial j R a0 k with k ... | _ = \ { (j = i1) → p } a : Partial j R a (j = i1) = p refining : ∀ (x y : A) → x ≡ y → A → Partial j R refining x y refl = \ { _ (j = i1) → p } refining-dot : ∀ (x y : A) → x ≡ y → A → Partial j R refining-dot x .x refl = \ { _ (j = i1) → p } refining-dot2 : ∀ (x y : A) → x ≡ y → A → Partial j R refining-dot2 x .x refl z = \ { (i = i1) → p } refining-cxt : A ≡ X → Partial j R refining-cxt refl = \ { (j = i1) → p } refining-cxt2 : B ≡ X → Partial j R refining-cxt2 refl = \ { (j = i1) → p }
{ "alphanum_fraction": 0.5119453925, "avg_line_length": 23.1315789474, "ext": "agda", "hexsha": "5c896fb6113dac7b11ed7f49e1bc5f73d850432c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3547.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue3547.agda", "max_line_length": 55, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue3547.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 354, "size": 879 }
{-# OPTIONS --without-K --safe #-} module Experiment.ListRelationProperties where open import Level open import Data.Bool hiding (_≤_; _≤?_; _<_) open import Data.Empty using (⊥; ⊥-elim) open import Data.List import Data.List.Properties as Listₚ import Data.Nat as ℕ import Data.Nat.Properties as ℕₚ open import Data.Product hiding (swap) import Data.List.Relation.Binary.Equality.Setoid as ListSetoidEquality import Data.List.Relation.Binary.Permutation.Setoid as PermutationSetoid import Data.List.Relation.Binary.Permutation.Setoid.Properties as PermutationSetoidProperties open import Data.List.Relation.Unary.All as All import Data.List.Relation.Unary.All.Properties as Allₚ open import Data.List.Relation.Unary.Any as Any open import Data.List.Relation.Unary.Linked import Data.List.Relation.Unary.Linked.Properties as Linkedₚ open import Data.List.Relation.Unary.AllPairs as AllPairs import Data.List.Relation.Unary.AllPairs.Properties as AllPairsₚ open import Data.List.Membership.Propositional open import Function.Base using (_∘_; _$_; flip) open import Relation.Binary as B import Relation.Binary.Properties.DecTotalOrder as DecTotalOrderProperties open import Relation.Binary.PropositionalEquality using (_≡_) import Relation.Binary.PropositionalEquality as ≡ hiding ([_]) import Relation.Binary.Reasoning.Setoid as SetoidReasoning open import Relation.Nullary open import Relation.Unary as U hiding (_∈_) -- stdlib foldr-preservesʳ : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B → B} → (∀ x {y} → P y → P (f x y)) → ∀ {e} → P e → ∀ xs → P (foldr f e xs) foldr-preservesʳ pres Pe [] = Pe foldr-preservesʳ pres Pe (x ∷ xs) = pres _ (foldr-preservesʳ pres Pe xs) -- stdlib module _ {a p q} {A : Set a} {P : U.Pred A p} {Q : U.Pred A q} where All-mapWith∈ : ∀ {xs : List A} → (∀ {x} → x ∈ xs → P x → Q x) → All P xs → All Q xs All-mapWith∈ f [] = [] All-mapWith∈ {x ∷ xs} f (px ∷ pxs) = f (here ≡.refl) px ∷ All-mapWith∈ (λ x∈xs Px → f (there x∈xs) Px) pxs module _ {a p} {A : Set a} {P : U.Pred A p} where All-singleton⁺ : ∀ {x} → P x → All P [ x ] All-singleton⁺ px = px ∷ [] All-reverse⁺ : ∀ {xs} → All P xs → All P (reverse xs) All-reverse⁺ {[]} [] = [] All-reverse⁺ {x ∷ xs} (px ∷ pxs) = ≡.subst (All P) (≡.sym $ Listₚ.unfold-reverse x xs) (Allₚ.++⁺ (All-reverse⁺ pxs) (All-singleton⁺ px)) module _ {a r} {A : Set a} {R : Rel A r} where -- AllPairs-map⁻ -- AllPairs-mapMaybe⁺ : (∀ x y → R x y → R (f x) (f y)) → AllPairs R xs → AllPairs R (mapMaybe f xs) -- AllPairs mapMaybe⁻ AllPairs-singleton⁺ : ∀ x → AllPairs R [ x ] AllPairs-singleton⁺ x = [] ∷ [] AllPairs-pair : ∀ {x y} → R x y → AllPairs R (x ∷ y ∷ []) AllPairs-pair Rxy = All-singleton⁺ Rxy ∷ AllPairs-singleton⁺ _ AllPairs-++⁻ʳ : ∀ xs {ys} → AllPairs R (xs ++ ys) → AllPairs R ys AllPairs-++⁻ʳ [] rxs = rxs AllPairs-++⁻ʳ (x ∷ xs) (rx ∷ rxs) = AllPairs-++⁻ʳ xs rxs AllPairs-++⁻ˡ : ∀ xs {ys} → AllPairs R (xs ++ ys) → AllPairs R xs AllPairs-++⁻ˡ [] rxs = [] AllPairs-++⁻ˡ (x ∷ xs) (rx ∷ rxs) = Allₚ.++⁻ˡ xs rx ∷ AllPairs-++⁻ˡ xs rxs AllPairs-++⁻-AllAll : ∀ xs {ys} → AllPairs R (xs ++ ys) → All (λ x → All (R x) ys) xs AllPairs-++⁻-AllAll [] rxs = [] AllPairs-++⁻-AllAll (x ∷ xs) (rx ∷ rxs) = Allₚ.++⁻ʳ _ rx ∷ AllPairs-++⁻-AllAll xs rxs AllPairs-++⁻ : ∀ xs {ys} → AllPairs R (xs ++ ys) → AllPairs R xs × AllPairs R ys × All (λ x → All (R x) ys) xs AllPairs-++⁻ xs rxs = AllPairs-++⁻ˡ xs rxs , AllPairs-++⁻ʳ xs rxs , AllPairs-++⁻-AllAll xs rxs AllPairs-∷ʳ⁺ : ∀ {x xs} → AllPairs R xs → All (flip R x) xs → AllPairs R (xs ∷ʳ x) AllPairs-∷ʳ⁺ {x} {xs} rxs px = AllPairsₚ.++⁺ rxs (AllPairs-singleton⁺ x) (All.map All-singleton⁺ px) AllPairs-∷ʳ⁻ : ∀ {x xs} → AllPairs R (xs ∷ʳ x) → AllPairs R xs × All (flip R x) xs AllPairs-∷ʳ⁻ {x} {xs} rxs with AllPairs-++⁻ xs rxs ... | rxs′ , _ , pxs = rxs′ , All.map Allₚ.singleton⁻ pxs AllPairs-reverse⁺ : ∀ {xs} → AllPairs (flip R) xs → AllPairs R (reverse xs) AllPairs-reverse⁺ {[]} [] = [] AllPairs-reverse⁺ {x ∷ xs} (rx ∷ rxs) = ≡.subst (AllPairs R) (≡.sym $ Listₚ.unfold-reverse x xs) (AllPairs-∷ʳ⁺ (AllPairs-reverse⁺ rxs) (All-reverse⁺ rx)) module _ {a r} {A : Set a} {R : Rel A r} where AllPairs-sym-reverse⁺ : Symmetric R → ∀ {xs} → AllPairs R xs → AllPairs R (reverse xs) AllPairs-sym-reverse⁺ sym = AllPairs.map sym ∘ AllPairs-reverse⁺ AllAll : ∀ {a b r} {A : Set a} {B : Set b} → REL A B r → List A → List B → Set _ AllAll R xs ys = All (λ x → All (R x) ys) xs module _ {a r} {A : Set a} {R : Rel A r} where AllPairs-reverse⁻ : ∀ {xs} → AllPairs R (reverse xs) → AllPairs (flip R) xs AllPairs-reverse⁻ {xs} rxs = ≡.subst (AllPairs (flip R)) (Listₚ.reverse-involutive xs) (AllPairs-reverse⁺ rxs) -- concat⁻ {- AllPairs-concat⁺ : ∀ {xss} → AllAll (AllAll R) xss xss → All (AllPairs R) xss → AllPairs R (concat xss) AllPairs-concat⁺ {[]} rxss pxss = [] AllPairs-concat⁺ {xs ∷ xss} (rxs ∷ rxss) (pxs ∷ pxss) = AllPairsₚ.++⁺ {xs = xs} pxs (AllPairs-concat⁺ {! proj₂ (unconsʳ rxs) !} pxss) {! !} -} AllPairs-universal : B.Universal R → U.Universal (AllPairs R) AllPairs-universal u [] = [] AllPairs-universal u (x ∷ xs) = All.universal (u _) _ ∷ AllPairs-universal u xs AllPairs-replicate⁺ : ∀ n {x} → R x x → AllPairs R (replicate n x) AllPairs-replicate⁺ ℕ.zero Rxx = [] AllPairs-replicate⁺ (ℕ.suc n) Rxx = Allₚ.replicate⁺ n Rxx ∷ AllPairs-replicate⁺ n Rxx AllPairs-replicate⁻ : ∀ {n x} → AllPairs R (replicate (ℕ.suc (ℕ.suc n)) x) → R x x AllPairs-replicate⁻ (pxs ∷ rxs) = Allₚ.replicate⁻ pxs -- AllPairs-drop⁺ -- AllPairs-zipWith⁺ : module _ {c e} (S : Setoid c e) where open Setoid S open ListSetoidEquality S Linked-resp-≋ : ∀ {r} {R : Rel Carrier r} → R Respects₂ _≈_ → (Linked R) Respects _≋_ Linked-resp-≋ resp [] [] = [] Linked-resp-≋ resp (_ ∷ []) [-] = [-] Linked-resp-≋ resp (e₁ ∷ e₂ ∷ xs≋ys) (x ∷ l) = (proj₂ resp e₁ $ proj₁ resp e₂ x) ∷ Linked-resp-≋ resp (e₂ ∷ xs≋ys) l module _ {a r} {A : Set a} {R : Rel A r} where -- Linked-pair : R x y → Linked-++⁻ʳ : ∀ xs {ys} → Linked R (xs ++ ys) → Linked R ys Linked-++⁻ʳ [] rxs = rxs Linked-++⁻ʳ (x ∷ []) {[]} rxs = [] Linked-++⁻ʳ (x ∷ []) {_ ∷ _} (y ∷ rxs) = rxs Linked-++⁻ʳ (x ∷ y ∷ xs) (_ ∷ rxs) = Linked-++⁻ʳ (y ∷ xs) rxs Linked-++⁻ˡ : ∀ xs {ys} → Linked R (xs ++ ys) → Linked R xs Linked-++⁻ˡ [] rxs = [] Linked-++⁻ˡ (x ∷ []) rxs = [-] Linked-++⁻ˡ (x ∷ y ∷ xs) (rx ∷ rxs) = rx ∷ Linked-++⁻ˡ (y ∷ xs) rxs Linked-∷⁻ʳ : ∀ {x xs} → Linked R (x ∷ xs) → Linked R xs Linked-∷⁻ʳ {x = x} = Linked-++⁻ʳ [ x ] Linked-∷ʳ⁻ˡ : ∀ {xs x} → Linked R (xs ∷ʳ x) → Linked R xs Linked-∷ʳ⁻ˡ {xs = xs} = Linked-++⁻ˡ xs {- Linked-∷ʳ₂⁺ : ∀ {xs x y} → Linked R (xs ∷ʳ x) → R x y → Linked R (xs ∷ʳ x ∷ʳ y) Linked-∷ʳ₂⁺ {[]} {x} {y} [-] Rxy = Rxy ∷ [-] Linked-∷ʳ₂⁺ {x′ ∷ xs} {x} {y} l Rxy = {! !} Linked-reverse⁺ : ∀ {xs} → Linked (flip R) xs → Linked R (reverse xs) Linked-reverse⁺ {[]} l = [] Linked-reverse⁺ {x ∷ []} l = [-] Linked-reverse⁺ {x ∷ y ∷ xs} (Rxy ∷ l) = {! Rxy ∷ !} -} -- Linked-inits⁺ -- respects -- Linked-++⁻-middle : ∀ xs {ys} → Linked R (xs ++ ys) → Last (λ x → First (R x) ys) xs Linked-universal : B.Universal R → U.Universal (Linked R) Linked-universal u [] = [] Linked-universal u (x ∷ []) = [-] Linked-universal u (x ∷ x₁ ∷ xs) = u x x₁ ∷ Linked-universal u (x₁ ∷ xs) module _ (R-trans : Transitive R) where private L⇒A : ∀ {xs} → Linked R xs → AllPairs R xs L⇒A = Linkedₚ.Linked⇒AllPairs R-trans Linked-trans-∷ : ∀ {x xs} → All (R x) xs → Linked R xs → Linked R (x ∷ xs) Linked-trans-∷ a l = Linkedₚ.AllPairs⇒Linked (a ∷ L⇒A l) Linked-trans-head : ∀ {x xs} → Linked R (x ∷ xs) → All (R x) xs Linked-trans-head = AllPairs.head ∘ L⇒A {- Linked-++⁺ : Linked R xs → Linked R ys → Frist (λ x → Last (λ y → R xy) ys) xs → Linked R (xs ++ ys) -} -- stdlib? AllPairs-trans-∷₂ : ∀ {a r} {A : Set a} {R : Rel A r} {x y ys} → Transitive R → R x y → AllPairs R (y ∷ ys) → AllPairs R (x ∷ y ∷ ys) AllPairs-trans-∷₂ R-trans Rxy rxs@(px ∷ _) = (Rxy ∷ All.map (λ {z} Ryz → R-trans Rxy Ryz) px) ∷ rxs -- Transitive R → AllPairs R (xs ∷ʳ v) → AllPairs R (v ∷ ys) -- AllPairs R (xs ++ [ v ] ++ ys) -- Transitive R → length ys ≥ 1 → AllPairs R (xs ++ ys) → AllPairs R (ys ++ zs) → -- AllPairs (xs ++ ys ++ zs)
{ "alphanum_fraction": 0.5729070837, "avg_line_length": 39.8899082569, "ext": "agda", "hexsha": "a514d687ac2cf27c4203a2adfef40d824e04419e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/ListRelationProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/ListRelationProperties.agda", "max_line_length": 102, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/ListRelationProperties.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 3507, "size": 8696 }
module ExtractFunction where open import Data.List open import ParseTree open import Data.Nat open import Data.String hiding (_++_) open import ScopeState using (ScopeState ; ScopeEnv ; replaceID ; liftIO ; getUniqueIdentifier) open import ScopeParseTree open import AgdaHelperFunctions open import Typing open import Data.Bool open import MatchUpNames open import Category.Monad.State open import Data.Product open import Data.Maybe open import Relation.Nullary open import Data.Unit using (⊤ ; tt) open import Data.Nat.Show open import ParseTreeOperations --TODO: actually, it is okay if the module has no name - in this case we do not need to rename it. getIDForModule : List ParseTree -> ScopeState Identifier getIDForModule [] = ScopeState.fail "This module seems to have no name" getIDForModule (moduleName id range₁ ∷ p) = ScopeState.return id getIDForModule (x ∷ xs) = getIDForModule xs record ExtractionEnv : Set where constructor extEnv field stuffBeforeFunc : List ParseTree stuffAfterFunc : List ParseTree rightHandSideBuilder : Maybe (Expr -> Expr) extractedExpr : Maybe Expr holesPassed : ℕ functionRebuilder : Maybe (Expr -> ParseTree) oldFunctionName : Maybe Identifier ExtractionState : Set -> Set ExtractionState = StateT ExtractionEnv ScopeState runExtractionState : {a : Set} -> ExtractionState a -> ExtractionEnv -> ScopeState a runExtractionState eMonad e = do (result , newState) <- eMonad e return result where open RawMonadState (StateTMonadState ScopeEnv (SumMonadT IOMonad String)) liftScopeState : {a : Set} -> ScopeState a -> ExtractionState a liftScopeState action ee = do a <- action return (a , ee) where open RawMonadState (StateTMonadState ScopeEnv (SumMonadT IOMonad String)) open RawMonadState (StateTMonadState ExtractionEnv (StateTMonad ScopeEnv (SumMonadT IOMonad String))) fail : {a : Set} -> String -> ExtractionState a fail s = liftScopeState $ ScopeState.fail s --assuming that start < end isInside : Range -> ℕ -> ℕ -> Bool isInside (range lastUnaffected lastAffected) start end with end ≤? lastUnaffected | lastAffected ≤? suc start ... | no p | no q = true ... | p | q = false isInIdent : Identifier -> ℕ -> ℕ -> Bool isInIdent (identifier name isInRange scope declaration {b}{c} {c2}) start end with isInRange start | isInRange end ... | after | _ = false ... | _ | before = false ... | _ | _ = true findPartInExpr : Expr -> ℕ -> ℕ -> ExtractionState Bool findPartInExpr (numLit {value} {r} {c} {c2}) start end with isInside r start end ... | true = do extEnv x y f expr h g n <- get put $ extEnv x y (just(λ a -> a)) (just $ numLit {value} {r} {c} {c2}) h g n return true ... | false = return false findPartInExpr (ident id) start end with isInIdent id start end ... | false = return false ... | true = do extEnv x y f expr h g n <- get put $ extEnv x y (just(λ a -> a)) (just $ ident id) h g n return true findPartInExpr (hole {t} {p} {c} {c2}) start end with isInside p start end ... | true = do extEnv x y f expr h g n <- get put $ extEnv x y (just(λ a -> a)) (just $ hole {t} {p} {c} {c2}) h g n return true ... | false = return false findPartInExpr (functionApp e e₁ {false} ) start end = do true <- findPartInExpr e₁ start end where false -> do true <- findPartInExpr e start end where false -> return false -- here we want to extract some subexpression of e -- so we rebuild it with rebuilder f and put it in the functionApp extEnv x y (just f) expr h g n <- get where _ -> fail "Got no function despite extraction" put $ extEnv x y (just(λ x -> functionApp (f x) e₁ {false})) expr h g n return true extEnv x y (just f) expr h g n <- get where _ -> fail "Got no function despite extraction" true <- findPartInExpr e start end where false -> do -- extract only (part of) e₁ put $ extEnv x y (just (λ a -> functionApp e (f a) {false})) expr h g n return true -- at this point we realize we want to extract the entire -- functionApp -- Therefore, we need to extract entire e and e₁ regardless of -- how far into it the selection extends. --extEnv x y f expr h g n <- get put $ extEnv x y (just (λ x -> x)) (just $ functionApp e e₁ {false} ) h g n return true findPartInExpr (functionApp e e₁ {true} ) start end = do true <- findPartInExpr e start end where false -> do true <- findPartInExpr e₁ start end where false -> return false extEnv x y (just f) expr h g n <- get where _ -> fail "Got no function despite extraction" put $ extEnv x y (just(λ x -> functionApp e (f x) {true} )) expr h g n return true extEnv x y (just f) expr h g n <- get where _ -> fail "Got no function despite extraction" namedArgument sign <- return e where _ -> do -- e is not a named argument so can be extracted by itself true <- findPartInExpr e₁ start end where false -> do put $ extEnv x y (just (λ a -> functionApp (f e) e₁ {true})) expr h g n return true put $ extEnv x y (just (λ x -> x)) (just $ functionApp e e₁ {true}) h g n return true put $ extEnv x y (just $ λ x -> x) (just $ functionApp e e₁ {true}) h g n return true findPartInExpr (implicit x) start end = do true <- findPartInExpr x start end where false -> return false extEnv x y (just f) expr h g n <- get where _ -> fail "Extraction failed" put $ extEnv x y (just(λ a -> implicit $ f a)) expr h g n return true findPartInExpr (underscore {p} {c1} {c2}) start end with isInside p start end ... | true = do extEnv x y f expr h g n <- get put $ extEnv x y (just(λ a -> a)) (just $ underscore {p} {c1} {c2}) h g n return true ... | false = return false findPartInExpr (namedArgument (typeSignature funcName funcType) {b} {bef} {aft}) start end with isInIdent funcName start end -- can't extract just the name of a variable ... | true = do extEnv x y f expr h g n <- get put $ extEnv x y (just $ λ x -> x) (just $ namedArgument (typeSignature funcName funcType) {b} {bef} {aft}) h g n return true ... | false = do true <- findPartInExpr funcType start end where false -> return false extEnv x y (just f) expr h g n <- get where _ -> fail "No function in state" put $ extEnv x y (just $ λ x -> namedArgument (typeSignature funcName $ f x) {b} {bef} {aft}) expr h g n return true sameNameAndStatus : Identifier -> Identifier -> Bool sameNameAndStatus (identifier name isInRange scope declaration {inScope1}) (identifier name₁ isInRange₁ scope₁ declaration₁ {inScope2}) = (name == name₁) ∧ (not $ inScope1 xor inScope2) isIdInExpr : (whatToSearchFor : Identifier) -> (whereToSearch : Expr) -> Bool isIdInExpr i (ident identifier₁) = sameNameAndStatus i identifier₁ isIdInExpr i (functionApp x x₁) = isIdInExpr i x ∨ isIdInExpr i x₁ isIdInExpr _ _ = false countHole : ExtractionState ⊤ countHole = do extEnv b a func exp h g n <- get put $ extEnv b a func exp (suc h) g n return tt mapState : {A B : Set} -> (A -> ExtractionState B) -> List A -> ExtractionState (List B) mapState f [] = return [] mapState f (x ∷ list) = do x1 <- f x xs <- mapState f list return (x1 ∷ xs) countHolesInSignature : TypeSignature -> ExtractionState ⊤ countHolesInExpr : Expr -> ExtractionState ⊤ countHolesInExpr hole = countHole countHolesInExpr (functionApp e e₁) = do countHolesInExpr e countHolesInExpr e₁ countHolesInExpr (namedArgument arg) = countHolesInSignature arg countHolesInExpr _ = return tt countHolesInSignature (typeSignature funcName funcType) = countHolesInExpr funcType countHolesInTree : ParseTree -> ExtractionState ⊤ countHolesInTree (signature signature₁ range₁) = countHolesInSignature signature₁ countHolesInTree (functionDefinition definitionOf params body range₁) = countHolesInExpr body countHolesInTree (dataStructure dataName parameters indexInfo constructors range₁) = do mapState countHolesInSignature parameters mapState countHolesInSignature constructors countHolesInExpr indexInfo countHolesInTree _ = return tt findPartToExtract : List ParseTree -> ℕ -> ℕ -> ExtractionState ⊤ findPartToExtract [] start end = fail "Found nothing that can be extracted" findPartToExtract (functionDefinition definitionOf params body (range a z) ∷ e) start end with (suc a) ≤? start | end ≤? z ... | yes p | yes q = do true <- findPartInExpr body start end where false -> fail "Command start and end must be in the function body" extEnv bef aft func exp h g n <- get put $ extEnv bef e func exp h (just (λ x -> functionDefinition definitionOf params x (range a z))) $ just definitionOf just ex <- return exp where nothing -> fail "Didn't get an expression to extract" mapState countHolesInTree bef return tt findPartToExtract (p ∷ ps) start end | yes a | no b = do extEnv b a func exp h g n <- get put $ extEnv (b ∷ʳ p) a func exp h g n findPartToExtract ps start end ... | p | q = fail "Command start and end not fully inside any function" findPartToExtract (p ∷ ps) start end = do extEnv b a func exp h g n <- get put $ extEnv (b ∷ʳ p) a func exp h g n findPartToExtract ps start end makeTypeFromTypes : List Expr -> ExtractionState Expr makeTypeFromTypes [] = fail "Can't make type from nothing" makeTypeFromTypes (x ∷ []) = return x makeTypeFromTypes (x ∷ xs) = do y <- makeTypeFromTypes xs return $ functionApp x y {true} makeExprFromExprs : List Expr -> ExtractionState Expr makeExprFromExprs [] = fail "Can't make expr from nothing" makeExprFromExprs (x ∷ []) = return x makeExprFromExprs (x ∷ l) = do y <- makeExprFromExprs l return $ functionApp y x {false} -- List of type signatures is environment. Contains all variables, -- including not-in-scope. Return list is the new function's environment. filterEnvironment : Expr -> List TypeSignature -> (extractedExp : Expr) -> ExtractionState (List TypeSignature) filterEnvironment resultType [] varsUsed = return [] filterEnvironment resultType (typeSignature funcName funcType ∷ environment) extractedExpr = do filteredEnv <- filterEnvironment resultType environment extractedExpr let isInExtractedExpr = isIdInExpr funcName extractedExpr let typesToCheck = Data.List.map (λ { (typeSignature n t) -> t}) filteredEnv isInTypes <- mapState (findInType funcName) typesToCheck let isIn = or isInTypes if isIn ∨ isInExtractedExpr then return $ (typeSignature funcName funcType) ∷ filteredEnv else return filteredEnv where findInType : Identifier -> Expr -> ExtractionState Bool findInType id (namedArgument (typeSignature funcName funcType)) = findInType id funcType findInType id (functionApp t t₁ {true}) = do one <- findInType id t two <- findInType id t₁ return $ one ∨ two findInType id expression = return $ isIdInExpr id expression bringIdInScope : Identifier -> Identifier bringIdInScope (identifier name isInRange scope declaration {inScope} {a} {b}) = identifier name isInRange scope declaration {true} {a}{b} containsIdInSign : TypeSignature -> Identifier -> Bool containsInType : Expr -> Identifier -> Bool containsInType (namedArgument arg) i = containsIdInSign arg i containsInType (functionApp t t₁ {true}) i = containsInType t i ∨ containsInType t₁ i containsInType expression i = isIdInExpr i expression containsIdInSign (typeSignature name funcType) id = sameNameAndStatus name id ∨ containsInType funcType id isInScope : Identifier -> Bool isInScope (identifier _ _ _ _ {isInScope}) = isInScope bringExprInScope : Expr -> Expr bringExprInScope (ident id) = ident $ bringIdInScope id bringExprInScope (functionApp e e₁ {b} ) = functionApp (bringExprInScope e) (bringExprInScope e₁) {b} bringExprInScope (implicit e) = implicit $ bringExprInScope e bringExprInScope x = x bringInScope : Expr -> Expr bringSignatureInScope : TypeSignature -> TypeSignature bringSignatureInScope (typeSignature funcName funcType) = typeSignature (bringIdInScope funcName) $ bringInScope funcType bringInScope (namedArgument arg {b} {bef} {aft}) = namedArgument (bringSignatureInScope arg) {b} {bef} {aft} bringInScope (functionApp t t₁ {true} ) = functionApp (bringInScope t) (bringInScope t₁) {true} bringInScope expression = bringExprInScope expression renameNotInScopeExpr : Identifier -> Identifier -> Expr -> Expr renameNotInScopeExpr (identifier name₁ isInRange₁ scope₁ declaration₁) to (ident (identifier name isInRange scope declaration {false} {b} {a})) with name == name₁ renameNotInScopeExpr (identifier name₁ isInRange₁ scope₁ declaration₁) (identifier name₂ isInRange₂ scope₂ declaration₂) (ident (identifier name isInRange scope declaration {false} {b} {a})) | true = ident $ identifier name₂ isInRange₂ scope₂ declaration₂ {false}{b} {a} ... | false = ident $ identifier name isInRange scope declaration {false} {b} {a} renameNotInScopeExpr from to (functionApp e e₁ {b} ) = functionApp (renameNotInScopeExpr from to e) (renameNotInScopeExpr from to e₁) {b} renameNotInScopeExpr from to (implicit e) = implicit $ renameNotInScopeExpr from to e renameNotInScopeExpr _ _ x = x renameNotInScopeOfName : Identifier -> Identifier -> Expr -> Expr renameNotInScopeSign : Identifier -> Identifier -> TypeSignature -> TypeSignature renameNotInScopeSign from to (typeSignature funcName funcType) = typeSignature funcName $ renameNotInScopeOfName from to funcType renameNotInScopeOfName from to (namedArgument arg {b} {bef} {aft}) = namedArgument (renameNotInScopeSign from to arg) {b} {bef} {aft} renameNotInScopeOfName from to (functionApp signs signs₁ {true} ) = functionApp (renameNotInScopeOfName from to signs) (renameNotInScopeOfName from to signs₁) {true} renameNotInScopeOfName from to expression = renameNotInScopeExpr from to expression -- returns list of types, which are explicit or implicit named arguments -- and a list of expressions which is the left-hand side of the new function, i.e. idents. signatureToType : Expr -> List TypeSignature -> ExtractionState (List Expr × List Expr) signatureToType result [] = return $ (result ∷ []) , [] signatureToType result (typeSignature funcName funcType ∷ laterSigns) = do let inScopeType = bringInScope funcType (restOfSigns , exprs) <- signatureToType result laterSigns false <- return $ isInScope funcName where true -> do -- in this case, we plainly don't want to rename anything let newSign = namedArgument (typeSignature funcName funcType) {true} {[]}{[]} return $ newSign ∷ restOfSigns , ident funcName ∷ exprs -- Do we need to rename the current variable? true <- return $ or $ Data.List.map (λ x -> containsIdInSign x $ bringIdInScope funcName) laterSigns where false -> do let newSign = namedArgument (typeSignature funcName funcType) {false} {[]}{[]} return $ newSign ∷ restOfSigns , exprs liftScopeState $ liftIO $ output "Need to rename a variable" newName <- liftScopeState getUniqueIdentifier let renamedSigns = Data.List.map (renameNotInScopeOfName funcName newName) restOfSigns return $ namedArgument (typeSignature newName inScopeType) {false} {[]}{[]} ∷ renamedSigns , exprs placeInRightPlace : Identifier -> (placeOverTypeSignature : Bool) -> ParseTree -> ParseTree -> List ParseTree -> List ParseTree placeInRightPlace oldFunctionName _ newsign newdef [] = newsign ∷ newdef ∷ [] placeInRightPlace oldFunctionName false newsign newdef (functionDefinition definitionOf params body range₁ ∷ program) with sameId oldFunctionName definitionOf ...| false = functionDefinition definitionOf params body range₁ ∷ placeInRightPlace oldFunctionName false newsign newdef program ... | true = newsign ∷ newdef ∷ functionDefinition definitionOf params body range₁ ∷ program placeInRightPlace oldFunctionName true newsign newdef (signature (typeSignature funcName funcType) range₁ ∷ program) with sameId oldFunctionName funcName ... | false = signature (typeSignature funcName funcType) range₁ ∷ placeInRightPlace oldFunctionName true newsign newdef program ... | true = newsign ∷ newdef ∷ signature (typeSignature funcName funcType) range₁ ∷ program placeInRightPlace x y z a (p ∷ program) = p ∷ placeInRightPlace x y z a program doExtraction : List ParseTree -> ℕ -> ℕ -> String -> ExtractionState (List ParseTree) doExtraction program startPoint endPoint filename = do scoped <- liftScopeState $ scopeParseTreeList program -- TODO: Assuming that the module only has a simple name. -- Otherwise, need to calculate the right name. identifier name _ _ declaration <- liftScopeState $ getIDForModule scoped liftScopeState $ replaceID declaration "RefactorAgdaTemporaryFile" renamedInputProgram <- liftScopeState $ matchUpNames scoped findPartToExtract renamedInputProgram startPoint endPoint extEnv b a (just expBuilder) (just extractedExp) h (just functionBuilder) (just oldFunctionName) <- get where _ -> fail "An error in doExtraction" let programWithNewHole = b ++ ((functionBuilder $ expBuilder $ hole {""} {range 0 0} {[]} {[]})∷ a) (resultTypeNewFunc ∷ []) <- liftScopeState $ liftIO $ getTypes programWithNewHole h (extractedExp ∷ []) filename where _ -> fail "Something happened in InteractWithAgda" environment <- liftScopeState $ liftIO $ getEnvironment programWithNewHole h filename newFuncName <- liftScopeState $ getUniqueIdentifier newFuncEnv <- filterEnvironment resultTypeNewFunc environment extractedExp (newFuncSignParts , newFuncArgNames) <- signatureToType resultTypeNewFunc newFuncEnv newFuncType <- makeTypeFromTypes $ newFuncSignParts let newFuncSignature = signature (typeSignature newFuncName newFuncType) (range 0 0) let newFuncDefinition = functionDefinition newFuncName newFuncArgNames extractedExp (range 0 0) replacingExpr <- makeExprFromExprs $ reverse $ ident newFuncName ∷ newFuncArgNames let oldFunction = functionBuilder $ expBuilder $ replacingExpr let placeBelowTypeSignature = isIdInExpr oldFunctionName extractedExp let completeCode = placeInRightPlace oldFunctionName (not placeBelowTypeSignature) newFuncSignature newFuncDefinition b ++ (oldFunction ∷ a) scopeCompleted <- liftScopeState $ scopeParseTreeList completeCode identifier _ _ _ d <- liftScopeState $ getIDForModule scopeCompleted liftScopeState $ replaceID d name liftScopeState $ matchUpNames scopeCompleted extract : List ParseTree -> ℕ -> ℕ -> String -> ScopeState (List ParseTree) extract p s e f = runExtractionState (doExtraction p s e f) $ extEnv [] [] nothing nothing 0 nothing nothing
{ "alphanum_fraction": 0.7151582162, "avg_line_length": 47.7211055276, "ext": "agda", "hexsha": "0a7664ab09af04b15ac0f93d00f80845e7ae3373", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/ExtractFunction.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/ExtractFunction.agda", "max_line_length": 270, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/ExtractFunction.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 5206, "size": 18993 }
-- Andreas, James, 2011-11-24 -- trigger error message 'NeedOptionCopatterns' module NeedOptionCopatterns where record Bla : Set2 where field bla : Set1 open Bla f : Bla bla f = Set -- should request option --copatterns
{ "alphanum_fraction": 0.7292576419, "avg_line_length": 16.3571428571, "ext": "agda", "hexsha": "dbd67c3f56a7e20533ff136fc9236c9eba9e7fef", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/NeedOptionCopatterns.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/NeedOptionCopatterns.agda", "max_line_length": 47, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/NeedOptionCopatterns.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 72, "size": 229 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Data.Int where open import Algebra.Group open import Classes open import Core open import Data.Int.Core open import Data.Int.Core public using (ℤ; ℤ-Negative; ℤ-Number; negsuc; pos) ℤ,+ : Group ℤ,+ = record { semigroup = record { A = ℤ; Eq = PropEq ℤ; semigroupOver = record { _⋄_ = _+_; ⋄-cong = cong2 _+_; assoc = Props.+-assoc } }; isGroup = record { isMonoid = record { id = 0; left-id = Props.+-left-id; right-id = Props.+-right-id }; iso = λ x → record { inv = neg x; left-inv = Props.+-left-inv x; right-inv = Props.+-right-inv x }; inv-cong = cong neg } } ℤ,* : Monoid ℤ,* = record { semigroup = record { A = ℤ; Eq = PropEq ℤ; semigroupOver = record { _⋄_ = _*_; ⋄-cong = cong2 _*_; assoc = Props.*-assoc } }; isMonoid = record { id = 1; left-id = Props.*-left-id; right-id = Props.*-right-id } }
{ "alphanum_fraction": 0.5141874463, "avg_line_length": 19.0655737705, "ext": "agda", "hexsha": "446148e4acc244e9b8631a240647c68e9f69d182", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Data/Int.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Data/Int.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Data/Int.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 379, "size": 1163 }
module Luau.Syntax.ToString where open import Agda.Builtin.Float using (primShowFloat) open import Luau.Syntax using (Block; Stat; Expr; VarDec; FunDec; nil; var; var_∈_; addr; _$_; function_is_end; return; local_←_; _∙_; done; block_is_end; _⟨_⟩; _⟨_⟩∈_; number; BinaryOperator; +; -; *; /; binexp) open import FFI.Data.String using (String; _++_) open import Luau.Addr.ToString using (addrToString) open import Luau.Type.ToString using (typeToString) open import Luau.Var.ToString using (varToString) varDecToString : ∀ {a} → VarDec a → String varDecToString (var x) = varToString x varDecToString (var x ∈ T) = varToString x ++ " : " ++ typeToString T funDecToString : ∀ {a} → FunDec a → String funDecToString ("" ⟨ x ⟩∈ T) = "function(" ++ varDecToString x ++ "): " ++ typeToString T funDecToString ("" ⟨ x ⟩) = "function(" ++ varDecToString x ++ ")" funDecToString (f ⟨ x ⟩∈ T) = "function " ++ varToString f ++ "(" ++ varDecToString x ++ "): " ++ typeToString T funDecToString (f ⟨ x ⟩) = "function " ++ varToString f ++ "(" ++ varDecToString x ++ ")" binOpToString : BinaryOperator → String binOpToString + = "+" binOpToString - = "-" binOpToString * = "*" binOpToString / = "/" exprToString′ : ∀ {a} → String → Expr a → String statToString′ : ∀ {a} → String → Stat a → String blockToString′ : ∀ {a} → String → Block a → String exprToString′ lb nil = "nil" exprToString′ lb (addr a) = addrToString(a) exprToString′ lb (var x) = varToString(x) exprToString′ lb (M $ N) = (exprToString′ lb M) ++ "(" ++ (exprToString′ lb N) ++ ")" exprToString′ lb (function F is B end) = funDecToString F ++ lb ++ " " ++ (blockToString′ (lb ++ " ") B) ++ lb ++ "end" exprToString′ lb (block b is B end) = "(" ++ b ++ "()" ++ lb ++ " " ++ (blockToString′ (lb ++ " ") B) ++ lb ++ "end)()" exprToString′ lb (number x) = primShowFloat x exprToString′ lb (binexp x op y) = exprToString′ lb x ++ " " ++ binOpToString op ++ " " ++ exprToString′ lb y statToString′ lb (function F is B end) = "local " ++ funDecToString F ++ lb ++ " " ++ (blockToString′ (lb ++ " ") B) ++ lb ++ "end" statToString′ lb (local x ← M) = "local " ++ varDecToString x ++ " = " ++ (exprToString′ lb M) statToString′ lb (return M) = "return " ++ (exprToString′ lb M) blockToString′ lb (S ∙ done) = statToString′ lb S blockToString′ lb (S ∙ B) = statToString′ lb S ++ lb ++ blockToString′ lb B blockToString′ lb (done) = "" exprToString : ∀ {a} → Expr a → String exprToString = exprToString′ "\n" statToString : ∀ {a} → Stat a → String statToString = statToString′ "\n" blockToString : ∀ {a} → Block a → String blockToString = blockToString′ "\n"
{ "alphanum_fraction": 0.6290566038, "avg_line_length": 37.8571428571, "ext": "agda", "hexsha": "4a3061ba8d64e1a1795e270532392032405d5bf6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Tr4shh/Roblox-Luau", "max_forks_repo_path": "prototyping/Luau/Syntax/ToString.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Tr4shh/Roblox-Luau", "max_issues_repo_path": "prototyping/Luau/Syntax/ToString.agda", "max_line_length": 212, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/Luau/Syntax/ToString.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 841, "size": 2650 }
module MJ.Examples.DynDispatch where open import Prelude import Data.Vec.All as Vec∀ open import Data.Star open import Data.Bool open import Data.List open import Data.List.Any open import Data.List.Membership.Propositional open import Data.List.All hiding (lookup) open import Data.Product hiding (Σ) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Data.String open import MJ.Types open import MJ.Classtable.Core 2 {- // We test field inheritance and // method call dispatching combining super calls and dynamic dispatch. // The Agda test is equivalent to the following Java code class Int { int x; public Int(int i) { this.x = i; return; } public int get() { System.out.println("never"); return x; } public int set (Int y) { x = y.x; // in the test main this should dispatch to // the implementation of the child Int2 return this.get(); } } class Int2 extends Int { public Int2(int i) { super(i); } public int get() { return x + 1; } public int set (Int y) { // test super dispatch return super.set(new Int(y.x + 1)); } } class Main { public static void main(String[] args) { Int y = new Int(18); Int2 x = new Int2(0); // should print 20 // because we use the set(..) and get() of Int2 // which both increment with one System.out.println(x.set(y)); } } -} INT : Cid 2 INT = (cls (# 0)) INT+ : Cid 2 INT+ = (cls (# 1)) decls : (ns : NS) → List (String × typing ns) decls METHOD = ("get" , ([] , int)) ∷ ("set" , (ref INT ∷ [] , int)) ∷ [] decls FIELD = ("x" , int) ∷ [] -- override methods; no extra fields decls+ : (ns : NS) → List (String × typing ns) decls+ METHOD = ("get" , ([] , int)) ∷ ("set" , (ref INT ∷ [] , int)) ∷ [] decls+ FIELD = [] IntegerSig = (class Object (int ∷ []) decls) Integer+Sig = (class INT (int ∷ []) decls+) -- class table signature Σ : Classtable Σ = record { Σ = λ{ (cls zero) → IntegerSig ; (cls (suc zero)) → Integer+Sig ; (cls (suc (suc ()))) ; Object → ObjectClass} ; founded = refl ; rooted = λ{ (cls zero) → super ◅ ε ; (cls (suc zero)) → super ◅ super ◅ ε ; (cls (suc (suc ()))) ; Object → ε }; Σ-Object = refl } open import MJ.Classtable.Code Σ open import MJ.Syntax Σ open import MJ.Syntax.Program Σ -- Integer class body IntegerImpl : Implementation INT IntegerImpl = implementation (body (body (set (var (here refl)) "x" (var (there (here refl))) ◅ ε) unit)) -- methods ( -- get body (body ε (get (var (here refl)) "x")) -- set ∷ (body (body (set (var (here refl)) "x" {int} (get (var (there (here refl))) "x") ◅ ε) (call (var (here refl)) "get" []))) ∷ [] ) -- Integer+ class body Integer+Impl : Implementation INT+ Integer+Impl = implementation (body (body ( set (var (here refl)) "x" (var (there (here refl))) ◅ ε) unit)) -- methods ( -- override get (body (body ε (iop (λ l r → l + r) (get (var (here refl)) "x") (num 1)))) -- set ∷ (super _ ⟨ new INT (iop (λ l r → l + r) (get (var (there (here refl))) "x") (num 1) ∷ []) ∷ [] ⟩then body ε (var (here refl))) ∷ [] ) -- Implementation of the class table Lib : Code Lib (cls zero) = IntegerImpl Lib (cls (suc zero)) = Integer+Impl Lib (cls (suc (suc ()))) Lib Object = implementation (body (body ε unit)) [] open import MJ.Semantics Σ Lib open import MJ.Semantics.Values Σ -- a simple program p₀ : Prog int p₀ = Lib , let x = (here refl) y = (there (here refl)) in body ( loc (ref INT) -- y ◅ loc (ref INT+) -- x ◅ asgn x (new INT+ ((num 0) ∷ [])) ◅ asgn y (new INT ((num 18) ∷ [])) ◅ ε ) (call (var x) "set" (var y ∷ [])) test0 : p₀ ⇓⟨ 100 ⟩ (λ {W} (v : Val W int) → v ≡ num 20) test0 = refl
{ "alphanum_fraction": 0.5316336166, "avg_line_length": 20.8669950739, "ext": "agda", "hexsha": "7a1cac57dc4a7458b7dd391b4f91bb5cef56a8b7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Examples/DynDispatch.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Examples/DynDispatch.agda", "max_line_length": 108, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Examples/DynDispatch.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 1282, "size": 4236 }
-- Andreas, 2017-09-09 -- Don't allow pattern synonyms where builtin constructor is expected data Bool : Set where true : Bool false : Bool pattern You = false {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE You #-} -- This should be rejected. -- Expected error: ;-) -- You must be a constructor in the binding to builtin FALSE -- when checking the pragma BUILTIN FALSE You
{ "alphanum_fraction": 0.6870415648, "avg_line_length": 24.0588235294, "ext": "agda", "hexsha": "9d837e5f09e34c6947aa0af79e52219e4455ba6b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/BuiltinMustBeConstructorNotPatternSynonym.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/BuiltinMustBeConstructorNotPatternSynonym.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/BuiltinMustBeConstructorNotPatternSynonym.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 103, "size": 409 }
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Typed-Syntax import Globular-TT.Syntax {- Disk and Sphere contexts - properties -} module Globular-TT.Disks {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (eqdec-index : eqdec index) where open import Globular-TT.Syntax index open import Globular-TT.Rules index rule open import Globular-TT.CwF-Structure index rule open import Globular-TT.Uniqueness-Derivations index rule eqdec-index open import Globular-TT.Typed-Syntax index rule eqdec-index {- Definition of "universal source and target variables" -} n-src : ℕ → ℕ n-tgt : ℕ → ℕ n⇒ : ℕ → Pre-Ty n-src O = O n-src (S n) = S (n-tgt n) n-tgt n = S (n-src n) n⇒ O = ∗ n⇒ (S n) = ⇒ (n⇒ n) (Var (n-src n)) (Var (n-tgt n)) dim⇒ : ∀ (n : ℕ) → dim (n⇒ n) == n dim⇒ O = idp dim⇒ (S n) = S= (dim⇒ n) {- Syntactic definition of disks and spheres -} Pre-𝕊 : ℕ → Pre-Ctx Pre-𝔻 : ℕ → Pre-Ctx Pre-𝕊 O = ⊘ Pre-𝕊 (S n) = (Pre-𝔻 n) ∙ C-length (Pre-𝔻 n) # n⇒ n Pre-𝔻 n = (Pre-𝕊 n) ∙ C-length (Pre-𝕊 n) # n⇒ n 𝕊-length : ∀ n → C-length (Pre-𝕊 n) == n-src n 𝕊-length O = idp 𝕊-length (S n) = S= (S= (𝕊-length n)) {-# REWRITE 𝕊-length #-} {- Disk and Sphere context are valid -} 𝕊⊢ : ∀ n → Pre-𝕊 n ⊢C 𝔻⊢ : ∀ n → Pre-𝔻 n ⊢C 𝕊⊢⇒ : ∀ n → Pre-𝕊 n ⊢T n⇒ n 𝕊⊢ O = ec 𝕊⊢ (S n) = cc (𝔻⊢ n) (wkT (𝕊⊢⇒ n) (𝔻⊢ n)) idp 𝔻⊢ n = cc (𝕊⊢ n) (𝕊⊢⇒ n) idp 𝕊⊢⇒ O = ob ec 𝕊⊢⇒ (S n) = ar (wkT (wkT (𝕊⊢⇒ n) (𝔻⊢ n)) (𝕊⊢ (S n))) (wkt (var (𝔻⊢ n) (inr (((𝕊-length n) ^) , idp))) (𝕊⊢ (S n))) (var (𝕊⊢ (S n)) (inr ((S= (𝕊-length n) ^) , idp))) 𝕊 : ℕ → Ctx 𝕊 n = Pre-𝕊 n , 𝕊⊢ n 𝔻 : ℕ → Ctx 𝔻 n = Pre-𝔻 n , 𝔻⊢ n Ty-n : ∀ {Γ} → Σ ℕ (λ n → Sub Γ (𝕊 n)) → Ty Γ Ty-n {Γ} (n , (γ , Γ⊢γ:Sn) ) = ((n⇒ n)[ γ ]Pre-Ty) , ([]T (𝕊⊢⇒ n) Γ⊢γ:Sn) private Pre-χ : Pre-Ty → Pre-Sub Pre-χ ∗ = <> Pre-χ (⇒ A t u) = < < Pre-χ A , n-src (dim A) ↦ t > , n-tgt (dim A) ↦ u > χ_⊢ : ∀ {Γ A} → (Γ⊢A : Γ ⊢T A) → Γ ⊢S (Pre-χ A) > Pre-𝕊 (dim A) ⇒[χ_] : ∀ {Γ A} → (Γ⊢A : Γ ⊢T A) → A == ((n⇒ (dim A))[ Pre-χ A ]Pre-Ty) χ ob Γ⊢ ⊢ = es Γ⊢ χ_⊢ {Γ} {⇒ A t u} (ar Γ⊢A Γ⊢t:A Γ⊢u:A) = let Γ⊢χt = sc χ Γ⊢A ⊢ (𝔻⊢ (dim A)) (trT (⇒[χ Γ⊢A ]) Γ⊢t:A) idp in sc Γ⊢χt (𝕊⊢ (S (dim A))) (trT (⇒[χ Γ⊢A ] >> (wk[]T (𝕊⊢⇒ (dim A)) Γ⊢χt ^)) Γ⊢u:A) idp ⇒[χ_] {Γ} {.∗} (ob _) = idp ⇒[χ_] {Γ} {(⇒ A t u)} (ar Γ⊢A Γ⊢t:A Γ⊢u:A) with eqdecℕ (n-src (dim A)) (n-tgt (dim A)) | eqdecℕ (n-src (dim A)) (n-src (dim A)) | eqdecℕ (S (n-src (dim A))) (S (n-src (dim A))) ... | inl contra | _ | _ = ⊥-elim (n≠Sn _ contra) ... | inr _ | inr n≠n | _ = ⊥-elim (n≠n idp) ... | inr _ | inl _ | inr n≠n = ⊥-elim (n≠n idp) ... | inr _ | inl _ | inl _ = let Γ⊢χt = (sc χ Γ⊢A ⊢ (𝔻⊢(dim A)) (trT ⇒[χ Γ⊢A ] Γ⊢t:A) idp) in let A=⇒[γt] = ⇒[χ Γ⊢A ] >> (wk[]T (𝕊⊢⇒ (dim A)) Γ⊢χt ^) in ⇒= (A=⇒[γt] >> (wk[]T (wkT (𝕊⊢⇒ (dim A)) (𝔻⊢ (dim A))) (sc Γ⊢χt (𝕊⊢ (S (dim A))) (trT A=⇒[γt] Γ⊢u:A) idp) ^)) idp idp χ : ∀ {Γ} → Ty Γ → Σ ℕ λ n → Sub Γ (𝕊 n) χ (A , Γ⊢A) = dim A , (Pre-χ A , χ Γ⊢A ⊢) dim-Ty-n : ∀ {Γ} (n : ℕ) → (γ : Sub Γ (𝕊 n)) → dim (fst (Ty-n {Γ} (n , γ))) == n dim-Ty-n n (γ , Γ⊢γ:Sn) = dim[] (n⇒ n) γ >> (dim⇒ n) trS-sph : ∀ {Γ n m} → (p : n == m) → {γ : Sub Γ (𝕊 n)} → {δ : Sub Γ (𝕊 m)} → fst γ == fst δ → transport p γ == δ trS-sph {Γ} {n} {m} idp {γ} {δ} x = eqS {Γ} {𝕊 m} γ δ x lemma1 : ∀ t u γ n → (if n-src n ≡ S (n-src n) then u else (if n-src n ≡ n-src n then t else (Var (n-src n) [ γ ]Pre-Tm))) == t lemma1 t u γ n with eqdecℕ (n-src n) (S (n-src n)) ... | inl n=Sn = ⊥-elim (n≠Sn _ (n=Sn)) ... | inr _ with eqdecℕ (n-src n) (n-src n) ... | inl _ = idp ... | inr n≠n = ⊥-elim (n≠n idp) lemma2 : ∀ t u γ n → (if S (n-src n) ≡ S (n-src n) then u else (if S (n-src n) ≡ n-src n then t else (Var (S (n-src n)) [ γ ]Pre-Tm))) == u lemma2 t u γ n with eqdecℕ (S (n-src n)) (S (n-src n)) ... | inl _ = idp ... | inr n≠n = ⊥-elim (n≠n idp) Pre-χTy-n : ∀ {Γ} (n : ℕ) → (γ : Sub Γ (𝕊 n)) → Pre-χ (fst (Ty-n {Γ} (n , γ))) == fst γ Pre-χTy-n O (.<> , (es _)) = idp Pre-χTy-n {Γ} (S n) (< < γ , _ ↦ t > , _ ↦ u > , (sc (sc Γ⊢γ:Sn _ Γ⊢t:A idp) _ Γ⊢u:A idp)) with eqdecℕ (n-src n) (S (n-src n)) | eqdecℕ (n-src n) (n-src n) | eqdecℕ (S (n-src n)) (S (n-src n)) ... | inl contra | _ | _ = ⊥-elim (n≠Sn _ contra) ... | inr _ | inr n≠n | _ = ⊥-elim (n≠n idp) ... | inr _ | inl _ | inr n≠n = ⊥-elim (n≠n idp) ... | inr _ | inl _ | inl _ = let χTm-n = (sc Γ⊢γ:Sn (𝔻⊢ n) Γ⊢t:A idp) in <,>= (<,>= (ap Pre-χ (wk[]T (wkT (𝕊⊢⇒ n) (𝔻⊢ n)) (sc χTm-n (𝕊⊢ (S n)) Γ⊢u:A idp) >> wk[]T (𝕊⊢⇒ n) χTm-n) >> Pre-χTy-n {Γ} n (γ , Γ⊢γ:Sn)) (ap n-src (dim[] (n⇒ n) _ >> (dim⇒ n))) (lemma1 t u γ n)) (S= (ap n-src (dim[] (n⇒ n) _ >> (dim⇒ n)))) (lemma2 t u γ n) χTy-n : ∀ {Γ} (n : ℕ) → (γ : Sub Γ (𝕊 n)) → χ {Γ} (Ty-n {Γ} (n , γ)) == (n , γ) χTy-n {Γ} n γ = Σ= (dim-Ty-n {Γ} n γ) (trS-sph {Γ} (dim-Ty-n {Γ} n γ) {snd (χ {Γ} (Ty-n {Γ} (n , γ)))} {γ} (Pre-χTy-n {Γ} n γ)) Ty-classifier : ∀ Γ → is-equiv (Ty-n {Γ}) is-equiv.g (Ty-classifier Γ) (A , Γ⊢A) = χ {Γ} (A , Γ⊢A) is-equiv.f-g (Ty-classifier Γ) (A , Γ⊢A) = Σ= (⇒[χ Γ⊢A ] ^) (has-all-paths-⊢T _ _) is-equiv.g-f (Ty-classifier Γ) (n , γ) = χTy-n {Γ} n γ is-equiv.adj (Ty-classifier Γ) (n , γ) = (is-prop-has-all-paths (is-set-Ty Γ _ _)) _ _
{ "alphanum_fraction": 0.437976438, "avg_line_length": 42.7555555556, "ext": "agda", "hexsha": "21e86a57b65ec3e64990676d6c847b0568a64d94", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "Globular-TT/Disks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "Globular-TT/Disks.agda", "max_line_length": 196, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "Globular-TT/Disks.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3091, "size": 5772 }
{-# OPTIONS --cubical --no-import-sorts #-} module NumberSecondAttempt where open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Unit.Base -- Unit open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_) open import NumberPostulates open import NumberStructures ℝℓ ℝℓ' open import NumberBundles ℝℓ ℝℓ' open import NumberInclusions ℝℓ ℝℓ' module _ where open ROrderedField ℝOF data Number : Type (ℓ-max ℝℓ ℝℓ') where ℕ[_] : (x : ℝCarrier) → Σ[ z ∈ ℕCarrier ] ℕ↪ℝ z ≡ x → Number ℤ[_] : (x : ℝCarrier) → Σ[ z ∈ ℤCarrier ] ℤ↪ℝ z ≡ x → Number ℚ[_] : (x : ℝCarrier) → Σ[ z ∈ ℚCarrier ] ℚ↪ℝ z ≡ x → Number ℝ[_] : (x : ℝCarrier) → Unit → Number ℚ₀⁺[_] : (x : ℝCarrier) → (0f ≤ x) × (Σ[ z ∈ ℚCarrier ] ℚ↪ℝ z ≡ x) → Number ℚ⁺[_] : (x : ℝCarrier) → (0f < x) × (Σ[ z ∈ ℚCarrier ] ℚ↪ℝ z ≡ x) → Number ℝ₀⁺[_] : (x : ℝCarrier) → 0f ≤ x → Number ℝ⁺[_] : (x : ℝCarrier) → 0f < x → Number num : Number → ℝCarrier num (ℕ[ x ] _) = x num (ℤ[ x ] _) = x num (ℚ[ x ] _) = x num (ℝ[ x ] _) = x num (ℚ₀⁺[ x ] _) = x num (ℚ⁺[ x ] _) = x num (ℝ₀⁺[ x ] _) = x num (ℝ⁺[ x ] _) = x data NumberType : Type where Tℕ : NumberType Tℤ : NumberType Tℚ : NumberType Tℝ : NumberType Tℚ₀⁺ : NumberType Tℚ⁺ : NumberType Tℝ₀⁺ : NumberType Tℝ⁺ : NumberType totype : NumberType → Type (ℓ-max ℝℓ ℝℓ') totype Tℕ = (x : ℝCarrier) → Lift {ℝℓ} {ℓ-max ℝℓ ℝℓ'} (Σ[ z ∈ ℕCarrier ] ℕ↪ℝ z ≡ x) totype Tℤ = (x : ℝCarrier) → Lift {ℝℓ} {ℓ-max ℝℓ ℝℓ'} (Σ[ z ∈ ℤCarrier ] ℤ↪ℝ z ≡ x) totype Tℚ = (x : ℝCarrier) → Lift {ℝℓ} {ℓ-max ℝℓ ℝℓ'} (Σ[ z ∈ ℚCarrier ] ℚ↪ℝ z ≡ x) totype Tℝ = (x : ℝCarrier) → Lift {ℓ-zero} {ℓ-max ℝℓ ℝℓ'} (Unit) totype Tℚ₀⁺ = (x : ℝCarrier) → (0f ≤ x) × (Σ[ z ∈ ℚCarrier ] ℚ↪ℝ z ≡ x) totype Tℚ⁺ = (x : ℝCarrier) → (0f < x) × (Σ[ z ∈ ℚCarrier ] ℚ↪ℝ z ≡ x) totype Tℝ₀⁺ = (x : ℝCarrier) → 0f ≤ x totype Tℝ⁺ = (x : ℝCarrier) → 0f < x +-table : NumberType → NumberType → NumberType +-table x y = y module GenericOperations where module ℕ' = ROrderedCommSemiring ℕOCSR module ℝ' = ROrderedField ℝOF module ℚ' = ROrderedField ℚOF module _ where open ℝ' postulate lemma1 : ∀ x y → 0f < x → 0f < y → 0f < (x + y) lemma2 : ∀ x y → 0f ≤ x → 0f ≤ y → 0f ≤ (x + y) _+_ : Number → Number → Number -- IsROrderedCommSemiringInclusion.preserves-+ ℕ↪ℝinc ℕ[ x ] (x₁ , p₁) + ℕ[ y ] (y₁ , q₁) = ℕ[ x ℝ'.+ y ] (x₁ ℕ'.+ y₁ , transport (λ i → ℕ↪ℝ (x₁ ℕ'.+ y₁) ≡ (p₁ i ℝ'.+ q₁ i)) (IsROrderedCommSemiringInclusion.preserves-+ ℕ↪ℝinc x₁ y₁) ) ℚ⁺[ x ] (p₂ , x₁ , p₁) + ℚ⁺[ y ] (q₂ , y₁ , q₁) = ℚ⁺[ x ℝ'.+ y ] (lemma1 x y p₂ q₂ , (x₁ ℚ'.+ y₁ , transport (λ i → ℚ↪ℝ (x₁ ℚ'.+ y₁) ≡ (p₁ i ℝ'.+ q₁ i)) (IsROrderedFieldInclusion.preserves-+ ℚ↪ℝinc x₁ y₁))) ℚ₀⁺[ x ] (p₂ , x₁ , p₁) + ℚ₀⁺[ y ] (q₂ , y₁ , q₁) = ℚ₀⁺[ x ℝ'.+ y ] (lemma2 x y p₂ q₂ , (x₁ ℚ'.+ y₁ , transport (λ i → ℚ↪ℝ (x₁ ℚ'.+ y₁) ≡ (p₁ i ℝ'.+ q₁ i)) (IsROrderedFieldInclusion.preserves-+ ℚ↪ℝinc x₁ y₁))) -- TODO: more cases -- default case x + y = ℝ[ num x ℝ'.+ num y ] tt instance 0<ℚ⁺ : ∀{x p} → ℝ'.0f ℝ'.< num (ℚ⁺[ x ] p) 0<ℚ⁺ {x} {0<x , p} = 0<x
{ "alphanum_fraction": 0.5444608567, "avg_line_length": 36.7934782609, "ext": "agda", "hexsha": "f689cb1508c4aa43bac7c3878cf170b5324fc70e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "test/NumberSecondAttempt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "test/NumberSecondAttempt.agda", "max_line_length": 145, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "test/NumberSecondAttempt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 1641, "size": 3385 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Consequences of a monomorphism between orders ------------------------------------------------------------------------ -- See Data.Nat.Binary.Properties for examples of how this and similar -- modules can be used to easily translate properties between types. {-# OPTIONS --without-K --safe #-} open import Function open import Relation.Binary open import Relation.Binary.Morphism module Relation.Binary.Morphism.OrderMonomorphism {a b ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Set a} {B : Set b} {_≈₁_ : Rel A ℓ₁} {_≈₂_ : Rel B ℓ₃} {_∼₁_ : Rel A ℓ₂} {_∼₂_ : Rel B ℓ₄} {⟦_⟧ : A → B} (isOrderMonomorphism : IsOrderMonomorphism _≈₁_ _≈₂_ _∼₁_ _∼₂_ ⟦_⟧) where open import Data.Product using (map) import Relation.Binary.Morphism.RelMonomorphism as RawRelation open IsOrderMonomorphism isOrderMonomorphism ------------------------------------------------------------------------ -- Re-export equivalence proofs module EqM = RawRelation Eq.isRelMonomorphism open RawRelation isRelMonomorphism public ------------------------------------------------------------------------ -- Properties reflexive : _≈₂_ ⇒ _∼₂_ → _≈₁_ ⇒ _∼₁_ reflexive refl x≈y = cancel (refl (cong x≈y)) irrefl : Irreflexive _≈₂_ _∼₂_ → Irreflexive _≈₁_ _∼₁_ irrefl irrefl x≈y x∼y = irrefl (cong x≈y) (mono x∼y) antisym : Antisymmetric _≈₂_ _∼₂_ → Antisymmetric _≈₁_ _∼₁_ antisym antisym x∼y y∼x = injective (antisym (mono x∼y) (mono y∼x)) compare : Trichotomous _≈₂_ _∼₂_ → Trichotomous _≈₁_ _∼₁_ compare compare x y with compare ⟦ x ⟧ ⟦ y ⟧ ... | tri< a ¬b ¬c = tri< (cancel a) (¬b ∘ cong) (¬c ∘ mono) ... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ mono) (injective b) (¬c ∘ mono) ... | tri> ¬a ¬b c = tri> (¬a ∘ mono) (¬b ∘ cong) (cancel c) respˡ : _∼₂_ Respectsˡ _≈₂_ → _∼₁_ Respectsˡ _≈₁_ respˡ resp x≈y x∼z = cancel (resp (cong x≈y) (mono x∼z)) respʳ : _∼₂_ Respectsʳ _≈₂_ → _∼₁_ Respectsʳ _≈₁_ respʳ resp x≈y y∼z = cancel (resp (cong x≈y) (mono y∼z)) resp : _∼₂_ Respects₂ _≈₂_ → _∼₁_ Respects₂ _≈₁_ resp = map respʳ respˡ ------------------------------------------------------------------------ -- Structures isPreorder : IsPreorder _≈₂_ _∼₂_ → IsPreorder _≈₁_ _∼₁_ isPreorder O = record { isEquivalence = EqM.isEquivalence O.isEquivalence ; reflexive = reflexive O.reflexive ; trans = trans O.trans } where module O = IsPreorder O isPartialOrder : IsPartialOrder _≈₂_ _∼₂_ → IsPartialOrder _≈₁_ _∼₁_ isPartialOrder O = record { isPreorder = isPreorder O.isPreorder ; antisym = antisym O.antisym } where module O = IsPartialOrder O isTotalOrder : IsTotalOrder _≈₂_ _∼₂_ → IsTotalOrder _≈₁_ _∼₁_ isTotalOrder O = record { isPartialOrder = isPartialOrder O.isPartialOrder ; total = total O.total } where module O = IsTotalOrder O isDecTotalOrder : IsDecTotalOrder _≈₂_ _∼₂_ → IsDecTotalOrder _≈₁_ _∼₁_ isDecTotalOrder O = record { isTotalOrder = isTotalOrder O.isTotalOrder ; _≟_ = EqM.dec O._≟_ ; _≤?_ = dec O._≤?_ } where module O = IsDecTotalOrder O isStrictPartialOrder : IsStrictPartialOrder _≈₂_ _∼₂_ → IsStrictPartialOrder _≈₁_ _∼₁_ isStrictPartialOrder O = record { isEquivalence = EqM.isEquivalence O.isEquivalence ; irrefl = irrefl O.irrefl ; trans = trans O.trans ; <-resp-≈ = resp O.<-resp-≈ } where module O = IsStrictPartialOrder O isStrictTotalOrder : IsStrictTotalOrder _≈₂_ _∼₂_ → IsStrictTotalOrder _≈₁_ _∼₁_ isStrictTotalOrder O = record { isEquivalence = EqM.isEquivalence O.isEquivalence ; trans = trans O.trans ; compare = compare O.compare } where module O = IsStrictTotalOrder O
{ "alphanum_fraction": 0.614973262, "avg_line_length": 34.6296296296, "ext": "agda", "hexsha": "683a529334ea2b7023ccbdc5e5ca1deb62c4effb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/OrderMonomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/OrderMonomorphism.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Morphism/OrderMonomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1320, "size": 3740 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Embedding open import Tools.Product -- Helper function where all reducible types can be reduced to WHNF. whNorm′ : ∀ {A Γ l} ([A] : Γ ⊩⟨ l ⟩ A) → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B whNorm′ (Uᵣ′ .⁰ 0<1 ⊢Γ) = U , Uₙ , idRed:*: (Uⱼ ⊢Γ) whNorm′ (ℕᵣ D) = ℕ , ℕₙ , D whNorm′ (ne′ K D neK K≡K) = K , ne neK , D whNorm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Π F ▹ G , Πₙ , D whNorm′ (emb′ 0<1 [A]) = whNorm′ [A] -- Well-formed types can all be reduced to WHNF. whNorm : ∀ {A Γ} → Γ ⊢ A → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B whNorm A = whNorm′ (reducible A) -- Helper function where reducible all terms can be reduced to WHNF. whNormTerm′ : ∀ {a A Γ l} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ a ∷ A / [A] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A whNormTerm′ (Uᵣ′ a b c) (Uₜ A d typeA A≡A [t]) = A , typeWhnf typeA , d whNormTerm′ (ℕᵣ x) (ιx (ℕₜ n d n≡n prop)) = let natN = natural prop in n , naturalWhnf natN , convRed:*: d (sym (subset* (red x))) whNormTerm′ (ne′ K D neK K≡K) (ιx (neₜ k d (neNfₜ neK₁ ⊢k k≡k))) = k , ne neK₁ , convRed:*: d (sym (subset* (red D))) whNormTerm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = f , functionWhnf funcF , convRed:*: d (sym (subset* (red D))) whNormTerm′ (emb′ 0<1 [A]) (ιx [a]) = whNormTerm′ [A] [a] -- Well-formed terms can all be reduced to WHNF. whNormTerm : ∀ {a A Γ} → Γ ⊢ a ∷ A → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A whNormTerm {a} {A} ⊢a = let [A] , [a] = reducibleTerm ⊢a in whNormTerm′ [A] [a]
{ "alphanum_fraction": 0.5996818664, "avg_line_length": 39.2916666667, "ext": "agda", "hexsha": "fd7ee97284ac039f15340129af2eb0c02061b4de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Reduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Reduction.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Reduction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 814, "size": 1886 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Groups.Abelian.Definition open import Setoids.Setoids open import Rings.Definition open import Modules.Definition module Modules.DirectSum {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+R_ : A → A → A} {_*R_ : A → A → A} (R : Ring S _+R_ _*R_) {m n o p : _} {M : Set m} {T : Setoid {m} {n} M} {_+_ : M → M → M} {G' : Group T _+_} {G : AbelianGroup G'} {_·1_ : A → M → M} {N : Set o} {U : Setoid {o} {p} N} {_+'_ : N → N → N} {H' : Group U _+'_} {H : AbelianGroup H'} {_·2_ : A → N → N} (M1 : Module R G _·1_) (M2 : Module R H _·2_) where open import Groups.Abelian.DirectSum G H open import Setoids.Product T U directSumModule : Module R directSumAbGroup λ r mn → ((r ·1 (_&&_.fst mn)) ,, (r ·2 (_&&_.snd mn))) Module.dotWellDefined directSumModule r=s t=u = productLift (Module.dotWellDefined M1 r=s (_&&_.fst t=u)) (Module.dotWellDefined M2 r=s (_&&_.snd t=u)) Module.dotDistributesLeft directSumModule = productLift (Module.dotDistributesLeft M1) (Module.dotDistributesLeft M2) Module.dotDistributesRight directSumModule = productLift (Module.dotDistributesRight M1) (Module.dotDistributesRight M2) Module.dotAssociative directSumModule = productLift (Module.dotAssociative M1) (Module.dotAssociative M2) Module.dotIdentity directSumModule = productLift (Module.dotIdentity M1) (Module.dotIdentity M2)
{ "alphanum_fraction": 0.6976256983, "avg_line_length": 65.0909090909, "ext": "agda", "hexsha": "bc3d54dff95b58fde16a7efebc2a863eb5e00542", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Modules/DirectSum.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Modules/DirectSum.agda", "max_line_length": 424, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Modules/DirectSum.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 478, "size": 1432 }
------------------------------------------------------------------------ -- There is a term without a corresponding syntactic type (given some -- assumptions) ------------------------------------------------------------------------ import Level open import Data.Universe module README.DependentlyTyped.Term-without-type (Uni₀ : Universe Level.zero Level.zero) where import Axiom.Extensionality.Propositional as E open import Data.Product open import Function renaming (const to k) import README.DependentlyTyped.NBE as NBE; open NBE Uni₀ import README.DependentlyTyped.NormalForm as NF; open NF Uni₀ import README.DependentlyTyped.Term as Term; open Term Uni₀ open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) open import Relation.Nullary using (¬_) abstract -- There are no closed neutral terms. no-closed-neutral : ∀ {σ} → ¬ (ε ⊢ σ ⟨ ne ⟩) no-closed-neutral (var ()) no-closed-neutral (t₁ · t₂) = no-closed-neutral t₁ -- There are no closed normal forms of "atomic" type. no-closed-atomic-normal : ∀ {σ} → ε ⊢ σ atomic-type → ¬ (ε ⊢ σ ⟨ no ⟩) no-closed-atomic-normal ⋆ (ne ⋆ t) = no-closed-neutral t no-closed-atomic-normal el (ne el t) = no-closed-neutral t -- There are no closed terms of "atomic" type (assuming -- extensionality). no-closed-atomic : E.Extensionality Level.zero Level.zero → ∀ {σ} → ε ⊢ σ atomic-type → ¬ (ε ⊢ σ) no-closed-atomic ext atomic t = no-closed-atomic-normal atomic (normalise ext t) -- There are terms without syntactic types, assuming that U₀ is -- inhabited (and also extensionality). -- -- One could avoid this situation by annotating lambdas with the -- (syntactic) type of their domain. I tried this, and found it to -- be awkward. One case of the function -- README.DependentlyTyped.NBE.Value.řeify returns a lambda, and I -- didn't find a way to synthesise the annotation without supplying -- syntactic types to V̌alue, řeify, řeflect, etc. term-without-type : E.Extensionality Level.zero Level.zero → U₀ → ∃₂ λ Γ σ → ∃ λ (t : Γ ⊢ σ) → ¬ (Γ ⊢ σ type) term-without-type ext u = (ε , (-, σ) , ƛ (var zero) , proof) where σ : IType ε (π el el) σ = k (U-π (U-el u) (k (U-el u))) proof : ∀ {σ} → ¬ (ε ⊢ π el el , σ type) proof (π (el t) (el t′)) = no-closed-atomic ext ⋆ t
{ "alphanum_fraction": 0.6341463415, "avg_line_length": 35.4090909091, "ext": "agda", "hexsha": "85e5c166767484b3d2dae2cee1a1593124e1a459", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/Term-without-type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/Term-without-type.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/Term-without-type.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 681, "size": 2337 }
module Scope where {- So this goes through (we don't actually check scope). But what could really go wrong? This actually isn't captured by the main theorem, since we're type checking multiple definitions. Maybe it should be strengthened. Still nothing _bad_ happens here. Could we get some weird circular thing? Probably not. The main reason to check scope is to be able to state soundness in a reasonable way. So maybe we shouldn't make a big deal of scope. -} id : _ -> _ id x = x data Nat : Set where zero : Nat suc : Nat -> Nat z = id zero
{ "alphanum_fraction": 0.7162872154, "avg_line_length": 22.84, "ext": "agda", "hexsha": "bec3e1f723017fba85e18cf16530986207399ca0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "notes/papers/implicit/examples/Scope.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "notes/papers/implicit/examples/Scope.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "notes/papers/implicit/examples/Scope.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 145, "size": 571 }
{-# OPTIONS --without-K --exact-split --rewriting #-} open import Coequalizers.Definition open import lib.Basics open import lib.types.Paths open import Graphs.Definition module Coequalizers.EdgeCoproduct where module CoeqCoprodEquiv {i j k : ULevel} (V : Type i) (E₁ : Type j) (E₂ : Type k) ⦃ gph : Graph (E₁ ⊔ E₂) V ⦄ where instance gph1 : Graph E₁ V gph1 = record { π₀ = (Graph.π₀ gph) ∘ inl ; π₁ = (Graph.π₁ gph) ∘ inl } instance gph2 : Graph E₂ (V / E₁) gph2 = record { π₀ = c[_] ∘ (Graph.π₀ gph) ∘ inr ; π₁ = c[_] ∘ (Graph.π₁ gph) ∘ inr } edge-coproduct-expand : (V / (E₁ ⊔ E₂)) ≃ ((V / E₁) / E₂) edge-coproduct-expand = equiv f g f-g g-f where f : V / (E₁ ⊔ E₂) → (V / E₁) / E₂ f = Coeq-rec (c[_] ∘ c[_]) λ { (inl x) → ap c[_] (quot x) ; (inr x) → quot x} g : (V / E₁) / E₂ → V / (E₁ ⊔ E₂) g = Coeq-rec (Coeq-rec c[_] (λ e → quot (inl e))) (λ e → quot (inr e)) f-g : (x : (V / E₁) / E₂) → (f (g x) == x) f-g = Coeq-elim (λ x' → f (g x') == x') (Coeq-elim (λ x' → f (g (c[ x' ])) == c[ x' ]) (λ v → idp) (λ e → ↓-='-in (lemma1 e))) λ e → ↓-app=idf-in $ idp ∙' quot e =⟨ ∙'-unit-l _ ⟩ quot e =⟨ ! (Coeq-rec-β= _ _ _) ⟩ ap f (quot (inr e)) =⟨ ap (ap f) (! (Coeq-rec-β= _ _ _)) ⟩ ap f (ap g (quot e)) =⟨ ! (ap-∘ f g (quot e)) ⟩ ap (f ∘ g) (quot e) =⟨ ! (∙-unit-r _) ⟩ ap (f ∘ g) (quot e) ∙ idp =∎ where lemma1 : (e : E₁) → idp ∙' ap (λ z → c[ z ]) (quot e) == ap (λ z → f (g c[ z ])) (quot e) ∙ idp lemma1 e = idp ∙' ap c[_] (quot e) =⟨ ∙'-unit-l _ ⟩ ap c[_] (quot e) =⟨ ! (Coeq-rec-β= _ _ _) ⟩ ap f (quot (inl e)) =⟨ ap (ap f) (! (Coeq-rec-β= _ _ _)) ⟩ ap f (ap (Coeq-rec c[_] (λ e → quot (inl e))) (quot e)) =⟨ idp ⟩ ap f (ap (g ∘ c[_]) (quot e)) =⟨ ! (ap-∘ f (g ∘ c[_]) (quot e)) ⟩ ap (f ∘ g ∘ c[_]) (quot e) =⟨ ! (∙-unit-r _) ⟩ ap (f ∘ g ∘ c[_]) (quot e) ∙ idp =∎ g-f : (x : V / (E₁ ⊔ E₂)) → (g (f x) == x) g-f = Coeq-elim (λ x → g (f x) == x) (λ v → idp) (λ { (inl e) → ↓-app=idf-in (! (lemma1 e)) ; (inr e) → ↓-app=idf-in (! (lemma2 e))}) where lemma1 : (e : E₁) → ap (λ z → g (f z)) (quot (inl e)) ∙ idp == idp ∙' quot (inl e) lemma1 e = ap (g ∘ f) (quot (inl e)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (g ∘ f) (quot (inl e)) =⟨ ap-∘ g f (quot (inl e)) ⟩ ap g (ap f (quot (inl e))) =⟨ ap (ap g) (Coeq-rec-β= _ _ _) ⟩ ap g (ap c[_] (quot e)) =⟨ ! (ap-∘ g c[_] (quot e)) ⟩ ap (g ∘ c[_]) (quot e) =⟨ idp ⟩ ap (Coeq-rec c[_] (λ e' → quot (inl e'))) (quot e) =⟨ Coeq-rec-β= _ _ _ ⟩ quot (inl e) =⟨ ! (∙'-unit-l _) ⟩ idp ∙' quot (inl e) =∎ lemma2 : (e : E₂) → ap (λ z → g (f z)) (quot (inr e)) ∙ idp == idp ∙' quot (inr e) lemma2 e = ap (g ∘ f) (quot (inr e)) ∙ idp =⟨ ∙-unit-r _ ⟩ ap (g ∘ f) (quot (inr e)) =⟨ ap-∘ g f (quot (inr e)) ⟩ ap g (ap f (quot (inr e))) =⟨ ap (ap g) (Coeq-rec-β= _ _ _) ⟩ ap g (quot e) =⟨ Coeq-rec-β= _ _ _ ⟩ quot (inr e) =⟨ ! (∙'-unit-l _) ⟩ idp ∙' quot (inr e) =∎
{ "alphanum_fraction": 0.373623348, "avg_line_length": 35.6078431373, "ext": "agda", "hexsha": "b04b469364ca2672d447b01f638185f8d22d5125", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Coequalizers/EdgeCoproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Coequalizers/EdgeCoproduct.agda", "max_line_length": 153, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Coequalizers/EdgeCoproduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1541, "size": 3632 }
module RMonads where open import Library open import Categories open import Functors record RMonad {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}(J : Fun C D) : Set (a ⊔ b ⊔ c ⊔ d) where constructor rmonad open Cat open Fun field T : Obj C → Obj D η : ∀{X} → Hom D (OMap J X) (T X) bind : ∀{X Y} → Hom D (OMap J X) (T Y) → Hom D (T X) (T Y) law1 : ∀{X} → bind (η {X}) ≅ iden D {T X} law2 : ∀{X Y}{f : Hom D (OMap J X) (T Y)} → comp D (bind f) η ≅ f law3 : ∀{X Y Z} {f : Hom D (OMap J X) (T Y)}{g : Hom D (OMap J Y) (T Z)} → bind (comp D (bind g) f) ≅ comp D (bind g) (bind f) open import Functors TFun : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}{J : Fun C D} → RMonad J → Fun C D TFun {C = C}{D}{J} M = let open RMonad M; open Cat; open Fun in record { OMap = T; HMap = bind ∘ comp D η ∘ HMap J; fid = proof bind (comp D η (HMap J (iden C))) ≅⟨ cong (bind ∘ comp D η) (fid J) ⟩ bind (comp D η (iden D)) ≅⟨ cong bind (idr D) ⟩ bind η ≅⟨ law1 ⟩ iden D ∎; fcomp = λ{_ _ _ f g} → proof bind (comp D η (HMap J (comp C f g))) ≅⟨ cong (bind ∘ comp D η) (fcomp J) ⟩ bind (comp D η (comp D (HMap J f) (HMap J g))) ≅⟨ cong bind (sym (ass D)) ⟩ bind (comp D (comp D η (HMap J f)) (HMap J g)) ≅⟨ cong (λ f → bind (comp D f (HMap J g))) (sym law2) ⟩ bind (comp D (comp D (bind (comp D η (HMap J f))) η) (HMap J g)) ≅⟨ cong bind (ass D) ⟩ bind (comp D (bind (comp D η (HMap J f))) (comp D η (HMap J g))) ≅⟨ law3 ⟩ comp D (bind (comp D η (HMap J f))) (bind (comp D η (HMap J g))) ∎} -- any functor is a rel monad over itself trivRM : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}(J : Fun C D) → RMonad J trivRM {D = D} J = rmonad OMap (iden D) id refl (idr D) refl where open Fun J; open Cat
{ "alphanum_fraction": 0.4957582185, "avg_line_length": 32.5172413793, "ext": "agda", "hexsha": "a3bc2b55da5cf9bedb1eff932ec896a2525fbb01", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads.agda", "max_line_length": 75, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 826, "size": 1886 }
{-# OPTIONS --safe --without-K #-} module Data.Fin.Subset.Properties.Dec where open import Data.Nat as ℕ open import Data.Fin as Fin open import Data.Empty using (⊥-elim) open import Data.Fin.Subset open import Data.Fin.Subset.Dec open import Data.Fin.Subset.Properties using (⊆⊤; p⊆p∪q; q⊆p∪q ; p∩q⊆p ; p∩q⊆q ; ⊆-poset) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Unary renaming (Decidable to Decidable₁) using () open import Data.Vec open import Function using (_∘_) open import Function.Equivalence using (_⇔_ ; equivalence) open import Relation.Nullary.Negation using (¬?) subset¬⊆∁subset : ∀ {n}{p} {P : Fin n → Set p}(P? : Decidable₁ P) → subset (¬? ∘ P?) ⊆ ∁ (subset P?) subset¬⊆∁subset {zero} P? () subset¬⊆∁subset {suc n} P? x∈s with P? (# 0) subset¬⊆∁subset {suc n} P? here | no ¬p0 = here subset¬⊆∁subset {suc n} P? (there x∈s) | no ¬p0 = there (subset¬⊆∁subset (P? ∘ suc) x∈s) subset¬⊆∁subset {suc n} P? (there x∈s) | yes p0 = there (subset¬⊆∁subset (P? ∘ suc) x∈s) ∁subset⊆subset¬ : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P) → ∁ (subset P?) ⊆ subset (¬? ∘ P?) ∁subset⊆subset¬ {zero} P? () ∁subset⊆subset¬ {suc n} P? x∈s with P? (# 0) ∁subset⊆subset¬ {suc n} P? here | no ¬p0 = here ∁subset⊆subset¬ {suc n} P? (there x∈s) | yes p0 = there (∁subset⊆subset¬ (P? ∘ suc) x∈s) ∁subset⊆subset¬ {suc n} P? (there x∈s) | no ¬p0 = there (∁subset⊆subset¬ (P? ∘ suc) x∈s) subset¬≡∁subset : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P) → subset (¬? ∘ P?) ≡ ∁ (subset P?) subset¬≡∁subset {n} P? = ⊆-antisym (subset¬⊆∁subset P?) (∁subset⊆subset¬ P?) where open Poset (⊆-poset n) renaming (antisym to ⊆-antisym) using () ∈subset⁺ : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P){x} → P x → x ∈ subset P? ∈subset⁺ {zero} P? {()} Px ∈subset⁺ {suc n} P? {x} Px with P? (# 0) ∈subset⁺ {suc n} P? {zero} Px | yes p0 = here ∈subset⁺ {suc n} P? {suc x} Px | yes p0 = there (∈subset⁺ (P? ∘ suc) Px) ∈subset⁺ {suc n} P? {zero} Px | no ¬p0 = ⊥-elim (¬p0 Px) ∈subset⁺ {suc n} P? {suc x} Px | no ¬p0 = there (∈subset⁺ (P? ∘ suc) Px) ∈subset⁻ : ∀ {n}{p} {P : Fin n → Set p}(P? : Decidable₁ P){x} → x ∈ subset P? → P x ∈subset⁻ {zero} P? {()} x∈s ∈subset⁻ {suc n} P? {x} x∈s with P? (# 0) ∈subset⁻ {suc n} P? {zero} here | yes p0 = p0 ∈subset⁻ {suc n} P? {suc x} (there x∈s) | yes p0 = ∈subset⁻ (P? ∘ suc) x∈s ∈subset⁻ {suc n} P? {.(suc _)} (there x∈s) | no ¬p0 = ∈subset⁻ (P? ∘ suc) x∈s ⇔∈subset : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P) {x} → x ∈ subset P? ⇔ P x ⇔∈subset P? = equivalence (∈subset⁻ P?) (∈subset⁺ P?) ∈∁subset⁺ : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P){x} → ¬ P x → x ∈ ∁ (subset P?) ∈∁subset⁺ P? = subset¬⊆∁subset P? ∘ (∈subset⁺ (¬? ∘ P? )) ∈∁subset⁻ : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P){x} → x ∈ ∁ (subset P?) → ¬ P x ∈∁subset⁻ P? = ∈subset⁻ (¬? ∘ P?) ∘ ∁subset⊆subset¬ P? ⇔∈∁subset : ∀ {n}{p}{P : Fin n → Set p}(P? : Decidable₁ P) {x} → x ∈ ∁ (subset P?) ⇔ (¬ P x) ⇔∈∁subset P? = equivalence (∈∁subset⁻ P?) (∈∁subset⁺ P?)
{ "alphanum_fraction": 0.5700389105, "avg_line_length": 48.1875, "ext": "agda", "hexsha": "850cebf57c5232164b4d5aec0b3a180d3d97a5ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-finitary", "max_forks_repo_path": "src/Data/Fin/Subset/Properties/Dec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-finitary", "max_issues_repo_path": "src/Data/Fin/Subset/Properties/Dec.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-finitary", "max_stars_repo_path": "src/Data/Fin/Subset/Properties/Dec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1460, "size": 3084 }
{-# OPTIONS --safe --without-K #-} module Generics.Prelude where open import Function.Base public open import Data.Product public hiding (map; uncurry; uncurry′; curry′) open import Level public using (Setω; Level; _⊔_; Lift; lift) renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality public hiding ([_]; Extensionality; ∀-extensionality) open import Data.Nat.Base public using (ℕ; zero; suc; _+_) renaming (_∸_ to _-_) open import Data.Unit public using (⊤; tt) open import Data.Empty public using (⊥) open import Data.List public using (List; []; _∷_) open import Data.Vec.Base public using (Vec; []; _∷_; map; lookup) open import Data.Fin.Base as Fin public using (Fin; zero; suc) open import Axiom.Extensionality.Propositional public open import Data.String using (String) open import Reflection public hiding (var; return; _>>=_; _>>_; assocˡ; assocʳ; visibility; relevance; module Arg) import Reflection.Argument module Arg = Reflection.Argument open import Reflection.Argument.Information public using (ArgInfo; arg-info; visibility) renaming (modality to getModality) open import Reflection.Argument.Modality public using (Modality; modality) open import Reflection.Argument.Relevance public using (Relevance; relevant; irrelevant) open import Reflection.Argument.Visibility public using (Visibility; visible; hidden; instance′) private variable m n : ℕ k : Fin n l l' : Level A B : Set l record Irr (A : Set l) : Set l where constructor irrv field .unirr : A open Irr public <_>_ : Relevance → Set l → Set l < relevant > A = A < irrelevant > A = Irr A relevance : ArgInfo → Relevance relevance = Reflection.Argument.Modality.relevance ∘ getModality -- withAI : ArgInfo → Term → Term -- withAI i t with relevance i -- ... | relevant = t -- ... | irrelevant = con (quote irrv) (vArg t ∷ []) -- macro -- Π<> : ((n , i) : String × ArgInfo) → Term → Term → Term → TC ⊤ -- Π<> (n , ai) S′ (Term.var k []) = -- unify (pi (arg ai S′) (abs n (Term.var (suc k) (vArg (withAI ai (Term.var 0 [])) ∷ [])))) -- Π<> (n , ai) S′ _ hole = typeError (strErr "" ∷ []) -- TODO: do this with reflection, using names -- TODO: deal with quantities Π<_> : ((a , i) : String × ArgInfo) (A : Set l) → (< relevance i > A → Set l') → Set (l ⊔ l') Π< _ , arg-info visible (modality relevant q) > A B = (x : A) → B x Π< _ , arg-info visible (modality irrelevant q) > A B = .(x : A) → B (irrv x) Π< _ , arg-info hidden (modality relevant q) > A B = {x : A} → B x Π< _ , arg-info hidden (modality irrelevant q) > A B = .{x : A} → B (irrv x) Π< _ , arg-info instance′ (modality relevant q) > A B = {{x : A}} → B x Π< _ , arg-info instance′ (modality irrelevant q) > A B = .{{x : A}} → B (irrv x) _→<_>_ : Set l → String × ArgInfo → Set l' → Set (l ⊔ l') A →< i > B = Π< i > A λ _ → B fun<_> : (ai@(a , i) : String × ArgInfo) {A : Set l} {B : < relevance i > A → Set l'} → (f : (x : < relevance i > A) → B x) → Π< ai > A B fun< _ , arg-info visible (modality relevant q) > f x = f x fun< _ , arg-info visible (modality irrelevant q) > f x = f (irrv x) fun< _ , arg-info hidden (modality relevant q) > f {x} = f x fun< _ , arg-info hidden (modality irrelevant q) > f {x} = f (irrv x) fun< _ , arg-info instance′ (modality relevant q) > f {{x}} = f x fun< _ , arg-info instance′ (modality irrelevant q) > f {{x}} = f (irrv x) app<_> : (ai@(a , i) : String × ArgInfo) {A : Set l} {B : < relevance i > A → Set l'} → (f : Π< ai > A B) → (x : < relevance i > A) → B x app< _ , arg-info visible (modality relevant q) > f x = f x app< _ , arg-info visible (modality irrelevant q) > f (irrv x) = f x app< _ , arg-info hidden (modality relevant q) > f x = f {x} app< _ , arg-info hidden (modality irrelevant q) > f (irrv x) = f {x} app< _ , arg-info instance′ (modality relevant q) > f x = f {{x}} app< _ , arg-info instance′ (modality irrelevant q) > f (irrv x) = f {{x}} -- Instead of the definitions from Function.Nary.NonDependent in the -- standard library, we use a *functional* representation of vectors -- of levels and types. This makes it much easier to work with -- operations like lookup and tabulate, at the cost of losing certain -- eta laws for nil and cons (see the comment for `uncurryₙ` below). Levels : ℕ → Set Levels n = Fin n → Level private variable ls ls' : Levels n []l : Levels 0 []l () _∷l_ : Level → Levels n → Levels (suc n) (l ∷l ls) zero = l (l ∷l ls) (suc k) = ls k headl : Levels (suc n) → Level headl ls = ls zero taill : Levels (suc n) → Levels n taill ls = ls ∘ suc _++l_ : Levels m → Levels n → Levels (m + n) _++l_ {zero} ls ls' = ls' _++l_ {suc m} ls ls' zero = headl ls _++l_ {suc m} ls ls' (suc x) = (taill ls ++l ls') x ⨆ : Levels n → Level ⨆ {zero} ls = lzero ⨆ {suc n} ls = ls zero ⊔ ⨆ (ls ∘ suc) Sets : (ls : Levels n) → Setω Sets {n} ls = (k : Fin n) → Set (ls k) private variable As Bs : Sets ls []S : {ls : Levels 0} → Sets ls []S () _∷S_ : Set (headl ls) → Sets (taill ls) → Sets ls (A ∷S As) zero = A (A ∷S As) (suc k) = As k headS : Sets ls → Set (headl ls) headS As = As zero tailS : Sets ls → Sets (taill ls) tailS As k = As (suc k) _++S_ : Sets ls → Sets ls' → Sets (ls ++l ls') _++S_ {zero} As Bs = Bs _++S_ {suc m} As Bs zero = headS As _++S_ {suc m} As Bs (suc k) = (tailS As ++S Bs) k Els : (As : Sets ls) → Setω Els {n} As = (k : Fin n) → As k private variable xs : Els As []El : {As : Sets {zero} ls} → Els As []El () _∷El_ : headS As → Els (tailS As) → Els As (x ∷El xs) zero = x (x ∷El xs) (suc k) = xs k headEl : Els As → headS As headEl xs = xs zero tailEl : Els As → Els (tailS As) tailEl xs k = xs (suc k) _++El_ : Els As → Els Bs → Els (As ++S Bs) _++El_ {zero} xs ys = ys _++El_ {suc m} xs ys zero = headEl xs _++El_ {suc m} xs ys (suc k) = (tailEl xs ++El ys) k ++El-proj₁ : Els (As ++S Bs) → Els As ++El-proj₁ xs zero = xs zero ++El-proj₁ xs (suc k) = ++El-proj₁ (tailEl xs) k ++El-proj₂ : Els (As ++S Bs) → Els Bs ++El-proj₂ {zero} xs k = xs k ++El-proj₂ {suc m} xs k = ++El-proj₂ (tailEl xs) k Pis : (As : Sets ls) (B : Els As → Set l) → Set (⨆ ls ⊔ l) Pis {zero} As B = B []El Pis {suc n} As B = (x : As zero) → Pis (tailS As) (λ xs → B (x ∷El xs)) Arrows : (As : Sets ls) (B : Set l) → Set (⨆ ls ⊔ l) Arrows As B = Pis As (λ _ → B) curryₙ : {B : Els As → Set l} → ((xs : Els As) → B xs) → Pis As B curryₙ {zero} f = f []El curryₙ {suc n} f = λ x → curryₙ (λ xs → f (x ∷El xs)) -- It is not possible to define the dependent version of uncurryₙ, as -- it requires the laws that `xs = []El` for all `xs : Els {zero} As` -- and `xs = headEl xs ∷El tailEl xs` for all `xs : Els {suc n} As`, -- which do not hold definitionally and require funExt to prove. uncurryₙ : Arrows As B → Els As → B uncurryₙ {zero} f _ = f uncurryₙ {suc n} f xs = uncurryₙ (f (headEl xs)) (tailEl xs) ------------------------------------ -- Some utilities to work with Setω -- TODO: move this somewhere else -- TODO: consistent naming record ⊤ω : Setω where instance constructor tt data ⊥ω : Setω where ⊥⇒⊥ω : ⊥ → ⊥ω ⊥⇒⊥ω () ⊥ω-elimω : {A : Setω} → ⊥ω → A ⊥ω-elimω () ttω : ⊤ω ttω = tt record Liftω (A : Set l) : Setω where constructor liftω field lower : A instance liftω-inst : {A : Set l} → ⦃ A ⦄ → Liftω A liftω-inst ⦃ x ⦄ = liftω x record _×ω_ (A B : Setω) : Setω where constructor _,_ field fst : A snd : B _ω,ω_ : {A B : Setω} → A → B → A ×ω B _ω,ω_ = _,_ data _≡ω_ {A : Setω} (x : A) : A → Setω where refl : x ≡ω x congω : ∀ {A b} {B : Set b} (f : ∀ x → B) → ∀ {x y : A} → x ≡ω y → f x ≡ f y congω f refl = refl cong≡ω : {A : Set l} {B : Setω} (f : ∀ x → B) → ∀ {x y : A} → x ≡ y → f x ≡ω f y cong≡ω f refl = refl cong≡ωω : {A B : Setω} (f : ∀ x → B) → ∀ {x y : A} → x ≡ω y → f x ≡ω f y cong≡ωω f refl = refl reflω : {A : Setω} {x : A} → x ≡ω x reflω = refl transω : {A : Setω} {x y z : A} → x ≡ω y → y ≡ω z → x ≡ω z transω refl refl = refl symω : {A : Setω} {x y : A} → x ≡ω y → y ≡ω x symω refl = refl instance ×ω-inst : ∀ {A B} → ⦃ A ⦄ → ⦃ B ⦄ → A ×ω B ×ω-inst ⦃ x ⦄ ⦃ y ⦄ = x , y record Σω {a} (A : Set a) (B : A → Setω) : Setω where constructor _,_ field proj₁ : A proj₂ : B proj₁ data Decω (A : Setω) : Setω where yesω : A → Decω A noω : (A → ⊥) → Decω A
{ "alphanum_fraction": 0.5700057904, "avg_line_length": 31.5145985401, "ext": "agda", "hexsha": "10160963e79f37b8040ecbdda7f4a159ef43ce3c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z", "max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/generics", "max_forks_repo_path": "src/Generics/Prelude.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/generics", "max_issues_repo_path": "src/Generics/Prelude.agda", "max_line_length": 97, "max_stars_count": 11, "max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/generics", "max_stars_repo_path": "src/Generics/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z", "num_tokens": 3248, "size": 8635 }
open import Prelude open import Nat open import dynamics-core module binders-disjoint-checks where -- these are fairly mechanical lemmas that show that the -- judgementally-defined binders-disjoint is really a type-directed -- function -- numbers lem-bdσ-num : ∀{σ n} → binders-disjoint-σ σ (N n) lem-bdσ-num {σ = Id Γ} = BDσId lem-bdσ-num {σ = Subst d y σ} = BDσSubst BDNum lem-bdσ-num UBNum lem-bd-num : ∀{d n} → binders-disjoint d (N n) lem-bd-num {d = N x} = BDNum lem-bd-num {d = d ·+ d₁} = BDPlus lem-bd-num lem-bd-num lem-bd-num {d = X x} = BDVar lem-bd-num {d = ·λ x ·[ x₁ ] d} = BDLam lem-bd-num UBNum lem-bd-num {d = d ∘ d₁} = BDAp lem-bd-num lem-bd-num lem-bd-num {d = inl x d} = BDInl lem-bd-num lem-bd-num {d = inr x d} = BDInr lem-bd-num lem-bd-num {d = case d x d₁ x₁ d₂} = BDCase lem-bd-num UBNum lem-bd-num UBNum lem-bd-num lem-bd-num {d = ⟨ d , d₁ ⟩} = BDPair lem-bd-num lem-bd-num lem-bd-num {d = fst d} = BDFst lem-bd-num lem-bd-num {d = snd d} = BDSnd lem-bd-num lem-bd-num {d = ⦇-⦈⟨ u , σ ⟩} = BDHole lem-bdσ-num lem-bd-num {d = ⦇⌜ d ⌟⦈⟨ u , σ ⟩} = BDNEHole lem-bdσ-num lem-bd-num lem-bd-num {d = d ⟨ x ⇒ x₁ ⟩} = BDCast lem-bd-num lem-bd-num {d = d ⟨ x ⇒⦇-⦈⇏ x₁ ⟩} = BDFailedCast lem-bd-num -- plus lem-bdσ-into-plus : ∀{σ d1 d2} → binders-disjoint-σ σ d1 → binders-disjoint-σ σ d2 → binders-disjoint-σ σ (d1 ·+ d2) lem-bdσ-into-plus BDσId BDσId = BDσId lem-bdσ-into-plus (BDσSubst x bd1 x₁) (BDσSubst x₂ bd2 x₃) = BDσSubst (BDPlus x x₂) (lem-bdσ-into-plus bd1 bd2) (UBPlus x₁ x₃) lem-bdσ-plus : ∀{σ d1 d2} → binders-disjoint-σ σ (d1 ·+ d2) → binders-disjoint-σ σ d1 × binders-disjoint-σ σ d2 lem-bdσ-plus BDσId = BDσId , BDσId lem-bdσ-plus (BDσSubst (BDPlus x x₁) bd (UBPlus ub ub₁)) with lem-bdσ-plus bd ... | dis1 , dis2 = BDσSubst x dis1 ub , BDσSubst x₁ dis2 ub₁ lem-bd-plus : ∀{d d1 d2} → binders-disjoint d (d1 ·+ d2) → binders-disjoint d d1 × binders-disjoint d d2 lem-bd-plus BDNum = BDNum , BDNum lem-bd-plus (BDPlus bd bd') with lem-bd-plus bd | lem-bd-plus bd' ... | bd₁ , bd₂ | bd₁' , bd₂' = BDPlus bd₁ bd₁' , BDPlus bd₂ bd₂' lem-bd-plus BDVar = BDVar , BDVar lem-bd-plus (BDLam bd (UBPlus x x₁)) with lem-bd-plus bd ... | bd₁ , bd₂ = BDLam bd₁ x , BDLam bd₂ x₁ lem-bd-plus (BDAp bd bd') with lem-bd-plus bd | lem-bd-plus bd' ... | bd₁ , bd₂ | bd₁' , bd₂' = BDAp bd₁ bd₁' , BDAp bd₂ bd₂' lem-bd-plus (BDInl bd) with lem-bd-plus bd ... | bd₁ , bd₂ = BDInl bd₁ , BDInl bd₂ lem-bd-plus (BDInr bd) with lem-bd-plus bd ... | bd' , bdσ' = BDInr bd' , BDInr bdσ' lem-bd-plus (BDCase bd (UBPlus x x₂) bd₁ (UBPlus x₁ x₃) bd₂) with lem-bd-plus bd | lem-bd-plus bd₁ | lem-bd-plus bd₂ ... | bd' , bd'' | bd₁' , bd₁'' | bd₂' , bd₂'' = BDCase bd' x bd₁' x₁ bd₂' , BDCase bd'' x₂ bd₁'' x₃ bd₂'' lem-bd-plus (BDPair bd bd₁) with lem-bd-plus bd | lem-bd-plus bd₁ ... | bd' , bd'' | bd₁' , bd₁'' = BDPair bd' bd₁' , BDPair bd'' bd₁'' lem-bd-plus (BDFst bd) with lem-bd-plus bd ... | bd' , bdσ' = BDFst bd' , BDFst bdσ' lem-bd-plus (BDSnd bd) with lem-bd-plus bd ... | bd' , bdσ' = BDSnd bd' , BDSnd bdσ' lem-bd-plus (BDHole x) with lem-bdσ-plus x ... | bdσ₁ , bdσ₂ = BDHole bdσ₁ , BDHole bdσ₂ lem-bd-plus (BDNEHole x bd) with lem-bdσ-plus x | lem-bd-plus bd ... | bdσ₁ , bdσ₂ | bd₁ , bd₂ = BDNEHole bdσ₁ bd₁ , BDNEHole bdσ₂ bd₂ lem-bd-plus (BDCast bd) with lem-bd-plus bd ... | bd₁ , bd₂ = BDCast bd₁ , BDCast bd₂ lem-bd-plus (BDFailedCast bd) with lem-bd-plus bd ... | bd₁ , bd₂ = BDFailedCast bd₁ , BDFailedCast bd₂ -- var lem-bdσ-var : ∀{σ x} → binders-disjoint-σ σ (X x) lem-bdσ-var {σ = Id Γ} = BDσId lem-bdσ-var {σ = Subst d y σ} = BDσSubst BDVar lem-bdσ-var UBVar lem-bd-var : ∀{d x} → binders-disjoint d (X x) lem-bd-var {d = N x} = BDNum lem-bd-var {d = d ·+ d₁} = BDPlus lem-bd-var lem-bd-var lem-bd-var {d = X x} = BDVar lem-bd-var {d = ·λ x ·[ x₁ ] d} = BDLam lem-bd-var UBVar lem-bd-var {d = d ∘ d₁} = BDAp lem-bd-var lem-bd-var lem-bd-var {d = inl x d} = BDInl lem-bd-var lem-bd-var {d = inr x d} = BDInr lem-bd-var lem-bd-var {d = case d x d₁ x₁ d₂} = BDCase lem-bd-var UBVar lem-bd-var UBVar lem-bd-var lem-bd-var {d = ⟨ d , d₁ ⟩} = BDPair lem-bd-var lem-bd-var lem-bd-var {d = fst d} = BDFst lem-bd-var lem-bd-var {d = snd d} = BDSnd lem-bd-var lem-bd-var {d = ⦇-⦈⟨ u , σ ⟩} = BDHole lem-bdσ-var lem-bd-var {d = ⦇⌜ d ⌟⦈⟨ u , σ ⟩} = BDNEHole lem-bdσ-var lem-bd-var lem-bd-var {d = d ⟨ x ⇒ x₁ ⟩} = BDCast lem-bd-var lem-bd-var {d = d ⟨ x ⇒⦇-⦈⇏ x₁ ⟩} = BDFailedCast lem-bd-var -- lambda lem-bdσ-into-lam : ∀{x τ d σ} → binders-disjoint-σ σ d → unbound-in-σ x σ → binders-disjoint-σ σ (·λ x ·[ τ ] d) lem-bdσ-into-lam BDσId UBσId = BDσId lem-bdσ-into-lam (BDσSubst x bd x₁) (UBσSubst x₂ ub x₃) = BDσSubst (BDLam x x₂) (lem-bdσ-into-lam bd ub) (UBLam2 (flip x₃) x₁) lem-bdσ-lam : ∀{σ x τ d} → binders-disjoint-σ σ (·λ x ·[ τ ] d) → binders-disjoint-σ σ d × unbound-in-σ x σ lem-bdσ-lam BDσId = BDσId , UBσId lem-bdσ-lam (BDσSubst (BDLam x₁ x) bd (UBLam2 x₂ ub)) with lem-bdσ-lam bd ... | bdσ , ub' = (BDσSubst x₁ bdσ ub) , (UBσSubst x ub' (flip x₂)) lem-bd-lam : ∀{d1 x τ1 d} → binders-disjoint d1 (·λ x ·[ τ1 ] d) → binders-disjoint d1 d × unbound-in x d1 lem-bd-lam BDNum = BDNum , UBNum lem-bd-lam (BDPlus bd bd₁) with lem-bd-lam bd | lem-bd-lam bd₁ ... | bd' , ub | bd₁' , ub₁ = BDPlus bd' bd₁' , UBPlus ub ub₁ lem-bd-lam BDVar = BDVar , UBVar lem-bd-lam (BDLam bd (UBLam2 x x₁)) with lem-bd-lam bd ... | bd' , ub = BDLam bd' x₁ , UBLam2 (flip x) ub lem-bd-lam (BDAp bd bd₁) with lem-bd-lam bd | lem-bd-lam bd₁ ... | bd' , ub | bd₁' , ub₁ = BDAp bd' bd₁' , UBAp ub ub₁ lem-bd-lam (BDInl bd) with lem-bd-lam bd ... | bd' , ub = BDInl bd' , UBInl ub lem-bd-lam (BDInr bd) with lem-bd-lam bd ... | bd' , ub = BDInr bd' , UBInr ub lem-bd-lam (BDCase bd (UBLam2 x x₁) bd₁ (UBLam2 x₂ x₃) bd₂) with lem-bd-lam bd | lem-bd-lam bd₁ | lem-bd-lam bd₂ ... | bd' , ub | bd₁' , ub1 | bd₂' , ub2 = (BDCase bd' x₁ bd₁' x₃ bd₂') , (UBCase ub (flip x) ub1 (flip x₂) ub2) lem-bd-lam (BDPair bd bd₁) with lem-bd-lam bd | lem-bd-lam bd₁ ... | bd' , ub | bd₁' , ub1 = BDPair bd' bd₁' , UBPair ub ub1 lem-bd-lam (BDFst bd) with lem-bd-lam bd ... | bd' , ub = BDFst bd' , UBFst ub lem-bd-lam (BDSnd bd) with lem-bd-lam bd ... | bd' , ub = BDSnd bd' , UBSnd ub lem-bd-lam (BDHole x) with lem-bdσ-lam x ... | bdσ , ubσ = BDHole bdσ , UBHole ubσ lem-bd-lam (BDNEHole x bd) with lem-bd-lam bd | lem-bdσ-lam x ... | bd' , ub | bdσ , ubσ = BDNEHole bdσ bd' , UBNEHole ubσ ub lem-bd-lam (BDCast bd) with lem-bd-lam bd ... | bd' , ub = BDCast bd' , UBCast ub lem-bd-lam (BDFailedCast bd) with lem-bd-lam bd ... | bd' , ub = BDFailedCast bd' , UBFailedCast ub -- application lem-bdσ-into-ap : ∀{σ d1 d2} → binders-disjoint-σ σ d1 → binders-disjoint-σ σ d2 → binders-disjoint-σ σ (d1 ∘ d2) lem-bdσ-into-ap BDσId BDσId = BDσId lem-bdσ-into-ap (BDσSubst x bd1 x₁) (BDσSubst x₂ bd2 x₃) = BDσSubst (BDAp x x₂) (lem-bdσ-into-ap bd1 bd2) (UBAp x₁ x₃) lem-bdσ-ap : ∀{σ d1 d2} → binders-disjoint-σ σ (d1 ∘ d2) → binders-disjoint-σ σ d1 × binders-disjoint-σ σ d2 lem-bdσ-ap BDσId = BDσId , BDσId lem-bdσ-ap (BDσSubst (BDAp x x₁) bd (UBAp ub ub₁)) with lem-bdσ-ap bd ... | dis1 , dis2 = BDσSubst x dis1 ub , BDσSubst x₁ dis2 ub₁ lem-bd-ap : ∀{d d1 d2} → binders-disjoint d (d1 ∘ d2) → binders-disjoint d d1 × binders-disjoint d d2 lem-bd-ap BDNum = BDNum , BDNum lem-bd-ap (BDPlus bd bd') with lem-bd-ap bd | lem-bd-ap bd' ... | bd₁ , bd₂ | bd₁' , bd₂' = BDPlus bd₁ bd₁' , BDPlus bd₂ bd₂' lem-bd-ap BDVar = BDVar , BDVar lem-bd-ap (BDLam bd (UBAp x x₁)) with lem-bd-ap bd ... | bd₁ , bd₂ = BDLam bd₁ x , BDLam bd₂ x₁ lem-bd-ap (BDAp bd bd') with lem-bd-ap bd | lem-bd-ap bd' ... | bd₁ , bd₂ | bd₁' , bd₂' = BDAp bd₁ bd₁' , BDAp bd₂ bd₂' lem-bd-ap (BDInl bd) with lem-bd-ap bd ... | bd₁ , bd₂ = BDInl bd₁ , BDInl bd₂ lem-bd-ap (BDInr bd) with lem-bd-ap bd ... | bd' , bdσ' = BDInr bd' , BDInr bdσ' lem-bd-ap (BDCase bd (UBAp x x₂) bd₁ (UBAp x₁ x₃) bd₂) with lem-bd-ap bd | lem-bd-ap bd₁ | lem-bd-ap bd₂ ... | bd' , bd'' | bd₁' , bd₁'' | bd₂' , bd₂'' = BDCase bd' x bd₁' x₁ bd₂' , BDCase bd'' x₂ bd₁'' x₃ bd₂'' lem-bd-ap (BDPair bd bd₁) with lem-bd-ap bd | lem-bd-ap bd₁ ... | bd' , bd'' | bd₁' , bd₁'' = BDPair bd' bd₁' , BDPair bd'' bd₁'' lem-bd-ap (BDFst bd) with lem-bd-ap bd ... | bd' , bdσ' = BDFst bd' , BDFst bdσ' lem-bd-ap (BDSnd bd) with lem-bd-ap bd ... | bd' , bdσ' = BDSnd bd' , BDSnd bdσ' lem-bd-ap (BDHole x) with lem-bdσ-ap x ... | bdσ₁ , bdσ₂ = BDHole bdσ₁ , BDHole bdσ₂ lem-bd-ap (BDNEHole x bd) with lem-bdσ-ap x | lem-bd-ap bd ... | bdσ₁ , bdσ₂ | bd₁ , bd₂ = BDNEHole bdσ₁ bd₁ , BDNEHole bdσ₂ bd₂ lem-bd-ap (BDCast bd) with lem-bd-ap bd ... | bd₁ , bd₂ = BDCast bd₁ , BDCast bd₂ lem-bd-ap (BDFailedCast bd) with lem-bd-ap bd ... | bd₁ , bd₂ = BDFailedCast bd₁ , BDFailedCast bd₂ -- inl lem-bdσ-into-inl : ∀{σ d τ} → binders-disjoint-σ σ d → binders-disjoint-σ σ (inl τ d) lem-bdσ-into-inl BDσId = BDσId lem-bdσ-into-inl (BDσSubst x bd x₁) = BDσSubst (BDInl x) (lem-bdσ-into-inl bd) (UBInl x₁) lem-bdσ-inl : ∀{σ τ d} → binders-disjoint-σ σ (inl τ d) → binders-disjoint-σ σ d lem-bdσ-inl BDσId = BDσId lem-bdσ-inl (BDσSubst (BDInl x) bd (UBInl ub)) = BDσSubst x (lem-bdσ-inl bd) ub lem-bd-inl : ∀{d τ d1} → binders-disjoint d (inl τ d1) → binders-disjoint d d1 lem-bd-inl BDNum = BDNum lem-bd-inl (BDPlus bd bd₁) = BDPlus (lem-bd-inl bd) (lem-bd-inl bd₁) lem-bd-inl BDVar = BDVar lem-bd-inl (BDLam bd (UBInl x)) = BDLam (lem-bd-inl bd) x lem-bd-inl (BDAp bd bd₁) = BDAp (lem-bd-inl bd) (lem-bd-inl bd₁) lem-bd-inl (BDInl bd) = BDInl (lem-bd-inl bd) lem-bd-inl (BDInr bd) = BDInr (lem-bd-inl bd) lem-bd-inl (BDCase bd (UBInl x) bd₁ (UBInl x₁) bd₂) = BDCase (lem-bd-inl bd) x (lem-bd-inl bd₁) x₁ (lem-bd-inl bd₂) lem-bd-inl (BDPair bd bd₁) = BDPair (lem-bd-inl bd) (lem-bd-inl bd₁) lem-bd-inl (BDFst bd) = BDFst (lem-bd-inl bd) lem-bd-inl (BDSnd bd) = BDSnd (lem-bd-inl bd) lem-bd-inl (BDHole x) = BDHole (lem-bdσ-inl x) lem-bd-inl (BDNEHole x bd) = BDNEHole (lem-bdσ-inl x) (lem-bd-inl bd) lem-bd-inl (BDCast bd) = BDCast (lem-bd-inl bd) lem-bd-inl (BDFailedCast bd) = BDFailedCast (lem-bd-inl bd) -- inr lem-bdσ-into-inr : ∀{σ d τ} → binders-disjoint-σ σ d → binders-disjoint-σ σ (inr τ d) lem-bdσ-into-inr BDσId = BDσId lem-bdσ-into-inr (BDσSubst x bd x₁) = BDσSubst (BDInr x) (lem-bdσ-into-inr bd) (UBInr x₁) lem-bdσ-inr : ∀{σ τ d} → binders-disjoint-σ σ (inr τ d) → binders-disjoint-σ σ d lem-bdσ-inr BDσId = BDσId lem-bdσ-inr (BDσSubst (BDInr x) bd (UBInr ub)) = BDσSubst x (lem-bdσ-inr bd) ub lem-bd-inr : ∀{d τ d1} → binders-disjoint d (inr τ d1) → binders-disjoint d d1 lem-bd-inr BDNum = BDNum lem-bd-inr (BDPlus bd bd₁) = BDPlus (lem-bd-inr bd) (lem-bd-inr bd₁) lem-bd-inr BDVar = BDVar lem-bd-inr (BDLam bd (UBInr x)) = BDLam (lem-bd-inr bd) x lem-bd-inr (BDAp bd bd₁) = BDAp (lem-bd-inr bd) (lem-bd-inr bd₁) lem-bd-inr (BDInl bd) = BDInl (lem-bd-inr bd) lem-bd-inr (BDInr bd) = BDInr (lem-bd-inr bd) lem-bd-inr (BDCase bd (UBInr x) bd₁ (UBInr x₁) bd₂) = BDCase (lem-bd-inr bd) x (lem-bd-inr bd₁) x₁ (lem-bd-inr bd₂) lem-bd-inr (BDPair bd bd₁) = BDPair (lem-bd-inr bd) (lem-bd-inr bd₁) lem-bd-inr (BDFst bd) = BDFst (lem-bd-inr bd) lem-bd-inr (BDSnd bd) = BDSnd (lem-bd-inr bd) lem-bd-inr (BDHole x) = BDHole (lem-bdσ-inr x) lem-bd-inr (BDNEHole x bd) = BDNEHole (lem-bdσ-inr x) (lem-bd-inr bd) lem-bd-inr (BDCast bd) = BDCast (lem-bd-inr bd) lem-bd-inr (BDFailedCast bd) = BDFailedCast (lem-bd-inr bd) -- case lem-bdσ-into-case : ∀{σ d x d1 y d2} → binders-disjoint-σ σ d → unbound-in-σ x σ → binders-disjoint-σ σ d1 → unbound-in-σ y σ → binders-disjoint-σ σ d2 → binders-disjoint-σ σ (case d x d1 y d2) lem-bdσ-into-case BDσId ubx bdσ1 uby bdσ2 = BDσId lem-bdσ-into-case (BDσSubst x bdσ x₁) (UBσSubst x₂ ubx x₃) (BDσSubst x₆ bdσ1 x₇) (UBσSubst x₄ uby x₅) (BDσSubst x₈ bdσ2 x₉) = BDσSubst (BDCase x x₂ x₆ x₄ x₈) (lem-bdσ-into-case bdσ ubx bdσ1 uby bdσ2) (UBCase x₁ (flip x₃) x₇ (flip x₅) x₉) lem-bdσ-case : ∀{σ d x d1 y d2} → binders-disjoint-σ σ (case d x d1 y d2) → (binders-disjoint-σ σ d) × (unbound-in-σ x σ) × (binders-disjoint-σ σ d1) × (unbound-in-σ y σ) × (binders-disjoint-σ σ d2) lem-bdσ-case BDσId = BDσId , UBσId , BDσId , UBσId , BDσId lem-bdσ-case (BDσSubst (BDCase x x₁ x₂ x₃ x₄) bd (UBCase x₅ x₆ x₇ x₈ x₉)) with lem-bdσ-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDσSubst x bdd x₅ , UBσSubst x₁ ubx (flip x₆) , BDσSubst x₂ bdd1 x₇ , UBσSubst x₃ uby (flip x₈) , BDσSubst x₄ bdd2 x₉ lem-bd-case : ∀{d x d1 y d2 d3} → binders-disjoint d3 (case d x d1 y d2) → (binders-disjoint d3 d) × (unbound-in x d3) × (binders-disjoint d3 d1) × (unbound-in y d3) × (binders-disjoint d3 d2) lem-bd-case BDNum = BDNum , UBNum , BDNum , UBNum , BDNum lem-bd-case (BDPlus bd bd₁) with lem-bd-case bd | lem-bd-case bd₁ ... | bdd , ubx , bdd1 , uby , bdd2 | bdd' , ubx' , bdd1' , uby' , bdd2' = BDPlus bdd bdd' , UBPlus ubx ubx' , BDPlus bdd1 bdd1' , UBPlus uby uby' , BDPlus bdd2 bdd2' lem-bd-case BDVar = BDVar , UBVar , BDVar , UBVar , BDVar lem-bd-case (BDLam bd (UBCase x x₁ x₂ x₃ x₄)) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDLam bdd x , UBLam2 (flip x₁) ubx , BDLam bdd1 x₂ , UBLam2 (flip x₃) uby , BDLam bdd2 x₄ lem-bd-case (BDAp bd bd₁) with lem-bd-case bd | lem-bd-case bd₁ ... | bdd , ubx , bdd1 , uby , bdd2 | bdd' , ubx' , bdd1' , uby' , bdd2' = BDAp bdd bdd' , UBAp ubx ubx' , BDAp bdd1 bdd1' , UBAp uby uby' , BDAp bdd2 bdd2' lem-bd-case (BDInl bd) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDInl bdd , UBInl ubx , BDInl bdd1 , UBInl uby , BDInl bdd2 lem-bd-case (BDInr bd) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDInr bdd , UBInr ubx , BDInr bdd1 , UBInr uby , BDInr bdd2 lem-bd-case (BDCase bd (UBCase x x₁ x₂ x₃ x₄) bd₁ (UBCase x₅ x₆ x₇ x₈ x₉) bd₂) with lem-bd-case bd | lem-bd-case bd₁ | lem-bd-case bd₂ ... | bdd , ubx , bdd1 , uby , bdd2 | bdd' , ubx' , bdd1' , uby' , bdd2' | bdd'' , ubx'' , bdd1'' , uby'' , bdd2'' = BDCase bdd x bdd' x₅ bdd'' , UBCase ubx (flip x₁) ubx' (flip x₆) ubx'' , BDCase bdd1 x₂ bdd1' x₇ bdd1'' , UBCase uby (flip x₃) uby' (flip x₈) uby'' , BDCase bdd2 x₄ bdd2' x₉ bdd2'' lem-bd-case (BDPair bd bd₁) with lem-bd-case bd | lem-bd-case bd₁ ... | bdd , ubx , bdd1 , uby , bdd2 | bdd' , ubx' , bdd1' , uby' , bdd2' = BDPair bdd bdd' , UBPair ubx ubx' , BDPair bdd1 bdd1' , UBPair uby uby' , BDPair bdd2 bdd2' lem-bd-case (BDFst bd) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDFst bdd , UBFst ubx , BDFst bdd1 , UBFst uby , BDFst bdd2 lem-bd-case (BDSnd bd) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDSnd bdd , UBSnd ubx , BDSnd bdd1 , UBSnd uby , BDSnd bdd2 lem-bd-case (BDHole x) with lem-bdσ-case x ... | bdd , ubx , bdd1 , uby , bdd2 = BDHole bdd , UBHole ubx , BDHole bdd1 , UBHole uby , BDHole bdd2 lem-bd-case (BDNEHole x bd) with lem-bd-case bd | lem-bdσ-case x ... | bdd , ubx , bdd1 , uby , bdd2 | bddσ , ubxσ , bdd1σ , ubyσ , bdd2σ = BDNEHole bddσ bdd , UBNEHole ubxσ ubx , BDNEHole bdd1σ bdd1 , UBNEHole ubyσ uby , BDNEHole bdd2σ bdd2 lem-bd-case (BDCast bd) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDCast bdd , UBCast ubx , BDCast bdd1 , UBCast uby , BDCast bdd2 lem-bd-case (BDFailedCast bd) with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDFailedCast bdd , UBFailedCast ubx , BDFailedCast bdd1 , UBFailedCast uby , BDFailedCast bdd2 -- pairs lem-bdσ-into-pair : ∀{σ d1 d2} → binders-disjoint-σ σ d1 → binders-disjoint-σ σ d2 → binders-disjoint-σ σ ⟨ d1 , d2 ⟩ lem-bdσ-into-pair BDσId BDσId = BDσId lem-bdσ-into-pair (BDσSubst x bdσ1 x₁) (BDσSubst x₂ bdσ2 x₃) = BDσSubst (BDPair x x₂) (lem-bdσ-into-pair bdσ1 bdσ2) (UBPair x₁ x₃) lem-bdσ-pair : ∀{σ d1 d2} → binders-disjoint-σ σ ⟨ d1 , d2 ⟩ → (binders-disjoint-σ σ d1) × (binders-disjoint-σ σ d2) lem-bdσ-pair BDσId = BDσId , BDσId lem-bdσ-pair (BDσSubst (BDPair x x₁) bdσ (UBPair x₂ x₃)) with lem-bdσ-pair bdσ ... | bdσ1 , bdσ2 = BDσSubst x bdσ1 x₂ , BDσSubst x₁ bdσ2 x₃ lem-bd-pair : ∀{d d1 d2} → binders-disjoint d ⟨ d1 , d2 ⟩ → (binders-disjoint d d1) × (binders-disjoint d d2) lem-bd-pair BDNum = BDNum , BDNum lem-bd-pair (BDPlus bd bd₁) with lem-bd-pair bd | lem-bd-pair bd₁ ... | bd' , bd'' | bd₁' , bd₁'' = BDPlus bd' bd₁' , BDPlus bd'' bd₁'' lem-bd-pair BDVar = BDVar , BDVar lem-bd-pair (BDLam bd (UBPair x x₁)) with lem-bd-pair bd ... | bd' , bd'' = BDLam bd' x , BDLam bd'' x₁ lem-bd-pair (BDAp bd bd₁) with lem-bd-pair bd | lem-bd-pair bd₁ ... | bd' , bd'' | bd₁' , bd₁'' = BDAp bd' bd₁' , BDAp bd'' bd₁'' lem-bd-pair (BDInl bd) with lem-bd-pair bd ... | bd' , bd'' = BDInl bd' , BDInl bd'' lem-bd-pair (BDInr bd) with lem-bd-pair bd ... | bd' , bd'' = BDInr bd' , BDInr bd'' lem-bd-pair (BDCase bd (UBPair x x₁) bd₁ (UBPair x₂ x₃) bd₂) with lem-bd-pair bd | lem-bd-pair bd₁ | lem-bd-pair bd₂ ... | bd' , bd'' | bd₁' , bd₁'' | bd₂' , bd₂'' = BDCase bd' x bd₁' x₂ bd₂' , BDCase bd'' x₁ bd₁'' x₃ bd₂'' lem-bd-pair (BDPair bd bd₁) with lem-bd-pair bd | lem-bd-pair bd₁ ... | bd' , bd'' | bd₁' , bd₁'' = BDPair bd' bd₁' , BDPair bd'' bd₁'' lem-bd-pair (BDFst bd) with lem-bd-pair bd ... | bd' , bd'' = BDFst bd' , BDFst bd'' lem-bd-pair (BDSnd bd) with lem-bd-pair bd ... | bd' , bd'' = BDSnd bd' , BDSnd bd'' lem-bd-pair (BDHole x) with lem-bdσ-pair x ... | bdσ' , bdσ'' = BDHole bdσ' , BDHole bdσ'' lem-bd-pair (BDNEHole x bd) with lem-bdσ-pair x | lem-bd-pair bd ... | bdσ' , bdσ'' | bd' , bd'' = BDNEHole bdσ' bd' , BDNEHole bdσ'' bd'' lem-bd-pair (BDCast bd) with lem-bd-pair bd ... | bd' , bd'' = BDCast bd' , BDCast bd'' lem-bd-pair (BDFailedCast bd) with lem-bd-pair bd ... | bd' , bd'' = BDFailedCast bd' , BDFailedCast bd'' -- fst lem-bdσ-into-fst : ∀{σ d} → binders-disjoint-σ σ d → binders-disjoint-σ σ (fst d) lem-bdσ-into-fst BDσId = BDσId lem-bdσ-into-fst (BDσSubst x bdσ x₁) = BDσSubst (BDFst x) (lem-bdσ-into-fst bdσ) (UBFst x₁) lem-bdσ-fst : ∀{σ d} → binders-disjoint-σ σ (fst d) → binders-disjoint-σ σ d lem-bdσ-fst BDσId = BDσId lem-bdσ-fst (BDσSubst (BDFst x) bdσ (UBFst x₁)) = BDσSubst x (lem-bdσ-fst bdσ) x₁ lem-bd-fst : ∀{d d1} → binders-disjoint d (fst d1) → binders-disjoint d d1 lem-bd-fst BDNum = BDNum lem-bd-fst (BDPlus bd bd₁) = BDPlus (lem-bd-fst bd) (lem-bd-fst bd₁) lem-bd-fst BDVar = BDVar lem-bd-fst (BDLam bd (UBFst x)) = BDLam (lem-bd-fst bd) x lem-bd-fst (BDAp bd bd₁) = BDAp (lem-bd-fst bd) (lem-bd-fst bd₁) lem-bd-fst (BDInl bd) = BDInl (lem-bd-fst bd) lem-bd-fst (BDInr bd) = BDInr (lem-bd-fst bd) lem-bd-fst (BDCase bd (UBFst x) bd₁ (UBFst x₁) bd₂) = BDCase (lem-bd-fst bd) x (lem-bd-fst bd₁) x₁ (lem-bd-fst bd₂) lem-bd-fst (BDPair bd bd₁) = BDPair (lem-bd-fst bd) (lem-bd-fst bd₁) lem-bd-fst (BDFst bd) = BDFst (lem-bd-fst bd) lem-bd-fst (BDSnd bd) = BDSnd (lem-bd-fst bd) lem-bd-fst (BDHole x) = BDHole (lem-bdσ-fst x) lem-bd-fst (BDNEHole x bd) = BDNEHole (lem-bdσ-fst x) (lem-bd-fst bd) lem-bd-fst (BDCast bd) = BDCast (lem-bd-fst bd) lem-bd-fst (BDFailedCast bd) = BDFailedCast (lem-bd-fst bd) -- snd lem-bdσ-into-snd : ∀{σ d} → binders-disjoint-σ σ d → binders-disjoint-σ σ (snd d) lem-bdσ-into-snd BDσId = BDσId lem-bdσ-into-snd (BDσSubst x bdσ x₁) = BDσSubst (BDSnd x) (lem-bdσ-into-snd bdσ) (UBSnd x₁) lem-bdσ-snd : ∀{σ d} → binders-disjoint-σ σ (snd d) → binders-disjoint-σ σ d lem-bdσ-snd BDσId = BDσId lem-bdσ-snd (BDσSubst (BDSnd x) bdσ (UBSnd x₁)) = BDσSubst x (lem-bdσ-snd bdσ) x₁ lem-bd-snd : ∀{d d1} → binders-disjoint d (snd d1) → binders-disjoint d d1 lem-bd-snd BDNum = BDNum lem-bd-snd (BDPlus bd bd₁) = BDPlus (lem-bd-snd bd) (lem-bd-snd bd₁) lem-bd-snd BDVar = BDVar lem-bd-snd (BDLam bd (UBSnd x)) = BDLam (lem-bd-snd bd) x lem-bd-snd (BDAp bd bd₁) = BDAp (lem-bd-snd bd) (lem-bd-snd bd₁) lem-bd-snd (BDInl bd) = BDInl (lem-bd-snd bd) lem-bd-snd (BDInr bd) = BDInr (lem-bd-snd bd) lem-bd-snd (BDCase bd (UBSnd x) bd₁ (UBSnd x₁) bd₂) = BDCase (lem-bd-snd bd) x (lem-bd-snd bd₁) x₁ (lem-bd-snd bd₂) lem-bd-snd (BDPair bd bd₁) = BDPair (lem-bd-snd bd) (lem-bd-snd bd₁) lem-bd-snd (BDFst bd) = BDFst (lem-bd-snd bd) lem-bd-snd (BDSnd bd) = BDSnd (lem-bd-snd bd) lem-bd-snd (BDHole x) = BDHole (lem-bdσ-snd x) lem-bd-snd (BDNEHole x bd) = BDNEHole (lem-bdσ-snd x) (lem-bd-snd bd) lem-bd-snd (BDCast bd) = BDCast (lem-bd-snd bd) lem-bd-snd (BDFailedCast bd) = BDFailedCast (lem-bd-snd bd) -- cast lem-bdσ-into-cast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ d → binders-disjoint-σ σ (d ⟨ τ1 ⇒ τ2 ⟩) lem-bdσ-into-cast BDσId = BDσId lem-bdσ-into-cast (BDσSubst x bd x₁) = BDσSubst (BDCast x) (lem-bdσ-into-cast bd) (UBCast x₁) lem-bdσ-cast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ (d ⟨ τ1 ⇒ τ2 ⟩) → binders-disjoint-σ σ d lem-bdσ-cast BDσId = BDσId lem-bdσ-cast (BDσSubst (BDCast x) bd (UBCast ub)) = BDσSubst x (lem-bdσ-cast bd) ub lem-bd-cast : ∀{d1 d τ1 τ2} → binders-disjoint d1 (d ⟨ τ1 ⇒ τ2 ⟩) → binders-disjoint d1 d lem-bd-cast BDNum = BDNum lem-bd-cast (BDPlus bd bd₁) = BDPlus (lem-bd-cast bd) (lem-bd-cast bd₁) lem-bd-cast BDVar = BDVar lem-bd-cast (BDLam bd (UBCast x₁)) = BDLam (lem-bd-cast bd) x₁ lem-bd-cast (BDHole x) = BDHole (lem-bdσ-cast x) lem-bd-cast (BDNEHole x bd) = BDNEHole (lem-bdσ-cast x) (lem-bd-cast bd) lem-bd-cast (BDAp bd bd₁) = BDAp (lem-bd-cast bd) (lem-bd-cast bd₁) lem-bd-cast (BDInl bd) = BDInl (lem-bd-cast bd) lem-bd-cast (BDInr bd) = BDInr (lem-bd-cast bd) lem-bd-cast (BDCase bd (UBCast x) bd₁ (UBCast x₁) bd₂) = BDCase (lem-bd-cast bd) x (lem-bd-cast bd₁) x₁ (lem-bd-cast bd₂) lem-bd-cast (BDPair bd bd₁) = BDPair (lem-bd-cast bd) (lem-bd-cast bd₁) lem-bd-cast (BDFst bd) = BDFst (lem-bd-cast bd) lem-bd-cast (BDSnd bd) = BDSnd (lem-bd-cast bd) lem-bd-cast (BDCast bd) = BDCast (lem-bd-cast bd) lem-bd-cast (BDFailedCast bd) = BDFailedCast (lem-bd-cast bd) -- failed cast lem-bdσ-into-failedcast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ d → binders-disjoint-σ σ (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) lem-bdσ-into-failedcast BDσId = BDσId lem-bdσ-into-failedcast (BDσSubst x bd x₁) = BDσSubst (BDFailedCast x) (lem-bdσ-into-failedcast bd) (UBFailedCast x₁) lem-bdσ-failedcast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) → binders-disjoint-σ σ d lem-bdσ-failedcast BDσId = BDσId lem-bdσ-failedcast (BDσSubst (BDFailedCast x) bd (UBFailedCast ub)) = BDσSubst x (lem-bdσ-failedcast bd) ub lem-bd-failedcast : ∀{d1 d τ1 τ2} → binders-disjoint d1 (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) → binders-disjoint d1 d lem-bd-failedcast BDNum = BDNum lem-bd-failedcast (BDPlus bd bd₁) = BDPlus (lem-bd-failedcast bd) (lem-bd-failedcast bd₁) lem-bd-failedcast BDVar = BDVar lem-bd-failedcast (BDLam bd (UBFailedCast x₁)) = BDLam (lem-bd-failedcast bd) x₁ lem-bd-failedcast (BDHole x) = BDHole (lem-bdσ-failedcast x) lem-bd-failedcast (BDNEHole x bd) = BDNEHole (lem-bdσ-failedcast x) (lem-bd-failedcast bd) lem-bd-failedcast (BDAp bd bd₁) = BDAp (lem-bd-failedcast bd) (lem-bd-failedcast bd₁) lem-bd-failedcast (BDInl bd) = BDInl (lem-bd-failedcast bd) lem-bd-failedcast (BDInr bd) = BDInr (lem-bd-failedcast bd) lem-bd-failedcast (BDCase bd (UBFailedCast x) bd₁ (UBFailedCast x₁) bd₂) = BDCase (lem-bd-failedcast bd) x (lem-bd-failedcast bd₁) x₁ (lem-bd-failedcast bd₂) lem-bd-failedcast (BDPair bd bd₁) = BDPair (lem-bd-failedcast bd) (lem-bd-failedcast bd₁) lem-bd-failedcast (BDFst bd) = BDFst (lem-bd-failedcast bd) lem-bd-failedcast (BDSnd bd) = BDSnd (lem-bd-failedcast bd) lem-bd-failedcast (BDCast bd) = BDCast (lem-bd-failedcast bd) lem-bd-failedcast (BDFailedCast bd) = BDFailedCast (lem-bd-failedcast bd) -- holes mutual -- For terms already holding an env, the equivalent lemms needs a judgement -- that two envs are disjoint data binders-disjoint-σs : env → env → Set where BDσsId : ∀{Γ σ} → binders-disjoint-σs σ (Id Γ) BDσsSubst : ∀{d1 σ' y σ} → binders-disjoint-σ σ' d1 → binders-disjoint-σs σ σ' → unbound-in-σ y σ' → binders-disjoint-σs σ' (Subst d1 y σ) lem-bdσs-sym : ∀{σ σ'} → binders-disjoint-σs σ σ' → binders-disjoint-σs σ' σ lem-bdσs-sym {σ = Id Γ} bd = BDσsId lem-bdσs-sym {σ = Subst d y σ} BDσsId = BDσsSubst BDσId BDσsId UBσId lem-bdσs-sym {σ = Subst d y σ} (BDσsSubst (BDσSubst x x₂ x₃) (BDσsSubst x₆ bd x₇) (UBσSubst x₁ x₄ x₅)) = BDσsSubst (BDσSubst (binders-disjoint-sym x) x₆ x₁) (BDσsSubst x₂ (lem-bdσs-sym bd) x₄) (UBσSubst x₃ x₇ (flip x₅)) lem-bdσ-into-hole : ∀{σ σ' u} → binders-disjoint-σs σ σ' → binders-disjoint-σ σ (⦇-⦈⟨ u , σ' ⟩) lem-bdσ-into-hole {σ = Id Γ} bd = BDσId lem-bdσ-into-hole {σ = Subst d y σ} BDσsId = BDσSubst (BDHole BDσId) (lem-bdσ-into-hole BDσsId) (UBHole UBσId) lem-bdσ-into-hole {σ = Subst d y σ} (BDσsSubst (BDσSubst x x₁ x₂) (BDσsSubst x₆ bd x₇) (UBσSubst x₃ x₄ x₅)) = BDσSubst (BDHole (BDσSubst (binders-disjoint-sym x) x₆ x₃)) (lem-bdσ-into-hole (BDσsSubst x₁ (lem-bdσs-sym bd) x₄)) (UBHole (UBσSubst x₂ x₇ (flip x₅))) lem-bdσ-hole : ∀{σ u σ'} → binders-disjoint-σ σ (⦇-⦈⟨ u , σ' ⟩) → binders-disjoint-σs σ σ' lem-bdσ-hole {σ = Id Γ} bd = lem-bdσs-sym BDσsId lem-bdσ-hole {σ = Subst d y σ} (BDσSubst (BDHole x) bd (UBHole x₁)) = lem-bdσs-sym (BDσsSubst x (lem-bdσ-hole bd) x₁) lem-bd-hole : ∀{d u σ} → binders-disjoint d (⦇-⦈⟨ u , σ ⟩) → binders-disjoint-σ σ d lem-bd-hole {σ = Id Γ} bd = BDσId lem-bd-hole {σ = Subst d y σ} BDNum = BDσSubst BDNum lem-bdσ-num UBNum lem-bd-hole {σ = Subst d y σ} (BDPlus bd bd₁) with lem-bd-hole bd | lem-bd-hole bd₁ ... | BDσSubst x bdσ ub | BDσSubst x₁ bdσ₁ ub₁ = BDσSubst (BDPlus x x₁) (lem-bdσ-into-plus bdσ bdσ₁) (UBPlus ub ub₁) lem-bd-hole {σ = Subst d y σ} BDVar = BDσSubst BDVar lem-bdσ-var UBVar lem-bd-hole {σ = Subst d y σ} (BDLam bd (UBHole (UBσSubst x x₁ x₂))) with lem-bd-hole bd ... | BDσSubst x₃ bdσ x₄ = BDσSubst (BDLam x₃ x) (lem-bdσ-into-lam bdσ x₁) (UBLam2 (flip x₂) x₄) lem-bd-hole {σ = Subst d y σ} (BDAp bd bd₁) with lem-bd-hole bd | lem-bd-hole bd₁ ... | BDσSubst x bdσ ub | BDσSubst x₁ bdσ₁ ub₁ = BDσSubst (BDAp x x₁) (lem-bdσ-into-ap bdσ bdσ₁) (UBAp ub ub₁) lem-bd-hole {σ = Subst d y σ} (BDInl bd) with lem-bd-hole bd ... | BDσSubst x bdσ ub = BDσSubst (BDInl x) (lem-bdσ-into-inl bdσ) (UBInl ub) lem-bd-hole {σ = Subst d y σ} (BDInr bd) with lem-bd-hole bd ... | BDσSubst x bdσ ub = BDσSubst (BDInr x) (lem-bdσ-into-inr bdσ) (UBInr ub) lem-bd-hole {σ = Subst d y σ} (BDCase bd (UBHole (UBσSubst x x₁ x₂)) bd₁ (UBHole (UBσSubst x₃ x₄ x₅)) bd₂) with lem-bd-hole bd | lem-bd-hole bd₁ | lem-bd-hole bd₂ ... | BDσSubst y bdσ ub | BDσSubst y₁ bdσ₁ ub₁ | BDσSubst y₂ bdσ₂ ub₂ = BDσSubst (BDCase y x y₁ x₃ y₂) (lem-bdσ-into-case bdσ x₁ bdσ₁ x₄ bdσ₂) (UBCase ub (flip x₂) ub₁ (flip x₅) ub₂) lem-bd-hole {σ = Subst d y σ} (BDPair bd bd₁) with lem-bd-hole bd | lem-bd-hole bd₁ ... | BDσSubst x bdσ ub | BDσSubst y₁ bdσ₁ ub₁ = BDσSubst (BDPair x y₁) (lem-bdσ-into-pair bdσ bdσ₁) (UBPair ub ub₁) lem-bd-hole {σ = Subst d y σ} (BDFst bd) with lem-bd-hole bd ... | BDσSubst x bdσ ub = BDσSubst (BDFst x) (lem-bdσ-into-fst bdσ) (UBFst ub) lem-bd-hole {σ = Subst d y σ} (BDSnd bd) with lem-bd-hole bd ... | BDσSubst x bdσ ub = BDσSubst (BDSnd x) (lem-bdσ-into-snd bdσ) (UBSnd ub) lem-bd-hole {u = u} {σ = Subst d y σ} (BDHole {u = u₁} {σ = Id Γ} BDσId) = BDσSubst (BDHole BDσId) (lem-bdσ-into-hole BDσsId) (UBHole UBσId) lem-bd-hole {u = u} {σ = Subst d y σ} (BDHole {u = u₁} {σ = Subst d₁ y₁ σ₁} (BDσSubst (BDHole (BDσSubst x x₂ x₃)) bd (UBHole (UBσSubst x₁ x₄ x₅)))) with lem-bdσ-hole bd ... | BDσsSubst x₆ q x₇ = BDσSubst (BDHole (BDσSubst (binders-disjoint-sym x) x₆ x₁)) (lem-bdσ-into-hole (BDσsSubst x₂ (lem-bdσs-sym q) x₄)) (UBHole (UBσSubst x₃ x₇ (flip x₅))) lem-bd-hole {σ = Subst d y σ} (BDNEHole {σ = Id Γ} BDσId bd) with lem-bd-hole bd ... | BDσSubst x bdσ x₁ = BDσSubst (BDNEHole BDσId x) (lem-bdσ-into-nehole BDσsId bdσ) (UBNEHole UBσId x₁) lem-bd-hole {σ = Subst d y σ} (BDNEHole {σ = Subst d₁ y₁ σ'} (BDσSubst (BDHole (BDσSubst x x₃ x₄)) x₁ (UBHole (UBσSubst x₂ x₅ x₆))) bd) with lem-bd-hole bd | lem-bdσ-hole x₁ ... | BDσSubst x₇ bdσ x₈ | BDσsSubst x₉ bdσs x₁₀ = BDσSubst (BDNEHole (BDσSubst (binders-disjoint-sym x) x₉ x₂) x₇) (lem-bdσ-into-nehole (BDσsSubst x₃ (lem-bdσs-sym bdσs) x₅) bdσ) (UBNEHole (UBσSubst x₄ x₁₀ (flip x₆)) x₈) lem-bd-hole {σ = Subst d y σ} (BDCast bd) with lem-bd-hole bd ... | BDσSubst y bdσ ub = BDσSubst (BDCast y) (lem-bdσ-into-cast bdσ) (UBCast ub) lem-bd-hole {σ = Subst d y σ} (BDFailedCast bd) with lem-bd-hole bd ... | BDσSubst y bdσ ub = BDσSubst (BDFailedCast y) (lem-bdσ-into-failedcast bdσ) (UBFailedCast ub) lem-bdσ-into-nehole : ∀{σ d u σ'} → binders-disjoint-σs σ σ' → binders-disjoint-σ σ d → binders-disjoint-σ σ ⦇⌜ d ⌟⦈⟨ u , σ' ⟩ lem-bdσ-into-nehole BDσsId BDσId = BDσId lem-bdσ-into-nehole BDσsId (BDσSubst x bd x₁) = BDσSubst (BDNEHole BDσId x) (lem-bdσ-into-nehole BDσsId bd) (UBNEHole UBσId x₁) lem-bdσ-into-nehole (BDσsSubst x bds x₁) BDσId = BDσId lem-bdσ-into-nehole (BDσsSubst (BDσSubst x x₈ x₉) (BDσsSubst x₄ bds x₅) (UBσSubst x₁ x₆ x₇)) (BDσSubst x₂ bd x₃) = BDσSubst (BDNEHole (BDσSubst (binders-disjoint-sym x) x₄ x₁) x₂) (lem-bdσ-into-nehole (BDσsSubst x₈ (lem-bdσs-sym bds) x₆) bd) (UBNEHole (UBσSubst x₉ x₅ (flip x₇)) x₃) lem-bdσ-nehole : ∀{d u σ σ'} → binders-disjoint-σ σ ⦇⌜ d ⌟⦈⟨ u , σ' ⟩ → binders-disjoint-σs σ σ' × binders-disjoint-σ σ d lem-bdσ-nehole BDσId = (lem-bdσs-sym BDσsId) , BDσId lem-bdσ-nehole (BDσSubst (BDNEHole x x₁) bd (UBNEHole x₂ ub)) with lem-bdσ-nehole bd ... | bds' , bd' = (lem-bdσs-sym (BDσsSubst x bds' x₂)) , (BDσSubst x₁ bd' ub) lem-bd-nehole : ∀{d1 d u σ} → binders-disjoint d1 ⦇⌜ d ⌟⦈⟨ u , σ ⟩ → binders-disjoint-σ σ d1 × binders-disjoint d1 d lem-bd-nehole BDNum = lem-bdσ-num , BDNum lem-bd-nehole (BDPlus bd bd₁) with lem-bd-nehole bd | lem-bd-nehole bd₁ ... | bdσ' , bd' | bd₁' , bdσ₁' = lem-bdσ-into-plus bdσ' bd₁' , BDPlus bd' bdσ₁' lem-bd-nehole BDVar = lem-bdσ-var , BDVar lem-bd-nehole (BDLam bd (UBNEHole x x₁)) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-lam bdσ' x , BDLam bd' x₁ lem-bd-nehole (BDAp bd bd₁) with lem-bd-nehole bd | lem-bd-nehole bd₁ ... | bdσ' , bd' | bd₁' , bdσ₁' = lem-bdσ-into-ap bdσ' bd₁' , BDAp bd' bdσ₁' lem-bd-nehole (BDInl bd) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-inl bdσ' , BDInl bd' lem-bd-nehole (BDInr bd) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-inr bdσ' , BDInr bd' lem-bd-nehole (BDCase bd (UBNEHole x x₁) bd₁ (UBNEHole x₂ x₃) bd₂) with lem-bd-nehole bd | lem-bd-nehole bd₁ | lem-bd-nehole bd₂ ... | bdσ' , bd' | bdσ₁' , bd₁' | bdσ₂' , bd₂' = lem-bdσ-into-case bdσ' x bdσ₁' x₂ bdσ₂' , BDCase bd' x₁ bd₁' x₃ bd₂' lem-bd-nehole (BDPair bd bd₁) with lem-bd-nehole bd | lem-bd-nehole bd₁ ... | bdσ' , bd' | bdσ₁' , bd₁' = lem-bdσ-into-pair bdσ' bdσ₁' , BDPair bd' bd₁' lem-bd-nehole (BDFst bd) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-fst bdσ' , BDFst bd' lem-bd-nehole (BDSnd bd) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-snd bdσ' , BDSnd bd' lem-bd-nehole (BDHole {u = u} {σ = Id Γ} BDσId) = lem-bdσ-into-hole BDσsId , BDHole BDσId lem-bd-nehole (BDHole {u = u} {σ = Subst d y σ'} (BDσSubst (BDNEHole x x₃) x₁ (UBNEHole x₂ x₄))) with lem-bdσ-nehole x₁ ... | bdσ , bdσs = (lem-bdσ-into-hole (BDσsSubst x bdσ x₂)) , (BDHole (BDσSubst x₃ bdσs x₄)) lem-bd-nehole (BDNEHole {σ = Id Γ} BDσId bd) with lem-bd-nehole bd ... | bdσ , bdσs = lem-bdσ-into-nehole BDσsId bdσ , BDNEHole BDσId bdσs lem-bd-nehole (BDNEHole {σ = Subst d y σ'} (BDσSubst (BDNEHole x x₃) x₁ (UBNEHole x₂ x₄)) bd) with lem-bd-nehole bd | lem-bdσ-nehole x₁ ... | bdσ , bd' | bdσs , bdσ' = (lem-bdσ-into-nehole (BDσsSubst x bdσs x₂) bdσ) , BDNEHole (BDσSubst x₃ bdσ' x₄) bd' lem-bd-nehole (BDCast bd) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-cast bdσ' , BDCast bd' lem-bd-nehole (BDFailedCast bd) with lem-bd-nehole bd ... | bdσ' , bd' = lem-bdσ-into-failedcast bdσ' , BDFailedCast bd' binders-disjoint-sym : ∀{d1 d2} → binders-disjoint d1 d2 → binders-disjoint d2 d1 binders-disjoint-sym {d2 = N x} bd = BDNum binders-disjoint-sym {d2 = d2 ·+ d3} bd with lem-bd-plus bd ... | bd1 , bd2 = BDPlus (binders-disjoint-sym bd1) (binders-disjoint-sym bd2) binders-disjoint-sym {d2 = X x} bd = BDVar binders-disjoint-sym {d2 = ·λ x ·[ x₁ ] d2} bd with lem-bd-lam bd ... | bd' , ub = BDLam (binders-disjoint-sym bd') ub binders-disjoint-sym {d2 = d2 ∘ d3} bd with lem-bd-ap bd ... | bd1 , bd2 = BDAp (binders-disjoint-sym bd1) (binders-disjoint-sym bd2) binders-disjoint-sym {d2 = inl x d2} bd = BDInl (binders-disjoint-sym (lem-bd-inl bd)) binders-disjoint-sym {d2 = inr x d2} bd = BDInr (binders-disjoint-sym (lem-bd-inr bd)) binders-disjoint-sym {d2 = case d2 x d3 x₁ d4} bd with lem-bd-case bd ... | bdd , ubx , bdd1 , uby , bdd2 = BDCase (binders-disjoint-sym bdd) ubx (binders-disjoint-sym bdd1) uby (binders-disjoint-sym bdd2) binders-disjoint-sym {d2 = ⟨ d2 , d3 ⟩} bd with lem-bd-pair bd ... | bd1 , bd2 = BDPair (binders-disjoint-sym bd1) (binders-disjoint-sym bd2) binders-disjoint-sym {d2 = fst d2} bd = BDFst (binders-disjoint-sym (lem-bd-fst bd)) binders-disjoint-sym {d2 = snd d2} bd = BDSnd (binders-disjoint-sym (lem-bd-snd bd)) binders-disjoint-sym {d2 = ⦇-⦈⟨ u , σ ⟩} bd = BDHole (lem-bd-hole bd) binders-disjoint-sym {d2 = ⦇⌜ d2 ⌟⦈⟨ u , σ ⟩} bd with lem-bd-nehole bd ... | bdσ , bd' = BDNEHole bdσ (binders-disjoint-sym bd') binders-disjoint-sym {d2 = d2 ⟨ x ⇒ x₁ ⟩} bd = BDCast (binders-disjoint-sym (lem-bd-cast bd)) binders-disjoint-sym {d2 = d2 ⟨ x ⇒⦇-⦈⇏ x₁ ⟩} bd = BDFailedCast (binders-disjoint-sym (lem-bd-failedcast bd))
{ "alphanum_fraction": 0.5834682642, "avg_line_length": 49.408, "ext": "agda", "hexsha": "dd3b5b4ba6f6a5bf68b5bce21203cb462ffbf529", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "binders-disjoint-checks.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "binders-disjoint-checks.agda", "max_line_length": 299, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "binders-disjoint-checks.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 16463, "size": 37056 }
{- This file proves a variety of basic results about paths: - refl, sym, cong and composition of paths. This is used to set up equational reasoning. - Transport, subst and functional extensionality - J and its computation rule (up to a path) - Σ-types and contractibility of singletons - Converting PathP to and from a homogeneous path with transp - Direct definitions of lower h-levels - Export natural numbers - Export universe lifting -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Prelude where open import Cubical.Core.Primitives public infixr 30 _∙_ infix 3 _∎ infixr 2 _≡⟨_⟩_ -- Basic theory about paths. These proofs should typically be -- inlined. This module also makes equational reasoning work with -- (non-dependent) paths. private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ x y z : A refl : x ≡ x refl {x = x} = λ _ → x sym : x ≡ y → y ≡ x sym p i = p (~ i) symP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) → PathP (λ i → A (~ i)) y x symP p j = p (~ j) cong : ∀ (f : (a : A) → B a) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y) cong f p i = f (p i) cong₂ : ∀ {C : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → C a b) → (p : x ≡ y) → {u : B x} {v : B y} (q : PathP (λ i → B (p i)) u v) → PathP (λ i → C (p i) (q i)) (f x u) (f y v) cong₂ f p q i = f (p i) (q i) -- The filler of homogeneous path composition: -- compPath-filler p q = PathP (λ i → x ≡ q i) p (p ∙ q) compPath-filler : ∀ {x y z : A} → x ≡ y → y ≡ z → I → I → A compPath-filler {x = x} p q j i = hfill (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) j _∙_ : x ≡ y → y ≡ z → x ≡ z (p ∙ q) j = compPath-filler p q i1 j -- The filler of heterogeneous path composition: -- compPathP-filler p q = PathP (λ i → PathP (λ j → (compPath-filler (λ i → A i) B i j)) x (q i)) p (compPathP p q) compPathP-filler : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → {B_i1 : Type ℓ} {B : A i1 ≡ B_i1} → {z : B i1} → (p : PathP A x y) → (q : PathP (λ i → B i) y z) → ∀ (i j : I) → compPath-filler (λ i → A i) B j i compPathP-filler {A = A} {x = x} {B = B} p q i = fill (λ j → compPath-filler (λ i → A i) B j i) (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (p i)) compPathP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} → {z : B i1} → (p : PathP A x y) → (q : PathP (λ i → B i) y z) → PathP (λ j → ((λ i → A i) ∙ B) j) x z compPathP p q j = compPathP-filler p q j i1 _≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z ≡⟨⟩-syntax : (x : A) → x ≡ y → y ≡ z → x ≡ z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 2 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y _∎ : (x : A) → x ≡ x _ ∎ = refl -- another definition of composition, useful for some proofs compPath'-filler : ∀ {x y z : A} → x ≡ y → y ≡ z → I → I → A compPath'-filler {z = z} p q j i = hfill (λ j → λ { (i = i0) → p (~ j) ; (i = i1) → z }) (inS (q i)) j _□_ : x ≡ y → y ≡ z → x ≡ z (p □ q) j = compPath'-filler p q i1 j □≡∙ : (p : x ≡ y) (q : y ≡ z) → p □ q ≡ p ∙ q □≡∙ {x = x} {y = y} {z = z} p q i j = hcomp (λ k → \ { (i = i0) → compPath'-filler p q k j ; (i = i1) → compPath-filler p q k j ; (j = i0) → p ( ~ i ∧ ~ k) ; (j = i1) → q (k ∨ ~ i) }) (helper i j) where helper : PathP (λ i → p (~ i) ≡ q (~ i)) q p helper i j = hcomp (λ k → \ { (i = i0) → q (k ∧ j) ; (i = i1) → p (~ k ∨ j) ; (j = i0) → p (~ i ∨ ~ k) ; (j = i1) → q (~ i ∧ k) }) y -- Transport, subst and functional extensionality -- transport is a special case of transp transport : {A B : Type ℓ} → A ≡ B → A → B transport p a = transp (λ i → p i) i0 a -- Transporting in a constant family is the identity function (up to a -- path). If we would have regularity this would be definitional. transportRefl : (x : A) → transport refl x ≡ x transportRefl {A = A} x i = transp (λ _ → A) i x -- We want B to be explicit in subst subst : (B : A → Type ℓ') (p : x ≡ y) → B x → B y subst B p pa = transport (λ i → B (p i)) pa substRefl : (px : B x) → subst B refl px ≡ px substRefl px = transportRefl px funExt : {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g funExt p i x = p x i -- J for paths and its computation rule module _ (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where J : (p : x ≡ y) → P y p J p = transport (λ i → P (p i) (λ j → p (i ∧ j))) d JRefl : J refl ≡ d JRefl = transportRefl d -- Contractibility of singletons singl : (a : A) → Type _ singl {A = A} a = Σ[ x ∈ A ] (a ≡ x) contrSingl : (p : x ≡ y) → Path (singl x) (x , refl) (y , p) contrSingl p i = (p i , λ j → p (i ∧ j)) -- Converting to and from a PathP module _ {A : I → Type ℓ} {x : A i0} {y : A i1} where toPathP : transp A i0 x ≡ y → PathP A x y toPathP p i = hcomp (λ j → λ { (i = i0) → x ; (i = i1) → p j }) (transp (λ j → A (i ∧ j)) (~ i) x) fromPathP : PathP A x y → transp A i0 x ≡ y fromPathP p i = transp (λ j → A (i ∨ j)) i (p i) -- Direct definitions of lower h-levels isContr : Type ℓ → Type ℓ isContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) isProp : Type ℓ → Type ℓ isProp A = (x y : A) → x ≡ y isSet : Type ℓ → Type ℓ isSet A = (x y : A) → isProp (x ≡ y) Square : ∀{w x y z : A} → (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → Set _ Square p q r s = PathP (λ i → p i ≡ s i) q r isSet' : Type ℓ → Type ℓ isSet' A = {x y z w : A} → (p : x ≡ y) (q : z ≡ w) (r : x ≡ z) (s : y ≡ w) → Square r p q s isGroupoid : Type ℓ → Type ℓ isGroupoid A = ∀ a b → isSet (Path A a b) Cube : ∀{w x y z w' x' y' z' : A} → {p : w ≡ y} {q : w ≡ x} {r : y ≡ z} {s : x ≡ z} → {p' : w' ≡ y'} {q' : w' ≡ x'} {r' : y' ≡ z'} {s' : x' ≡ z'} → {a : w ≡ w'} {b : x ≡ x'} {c : y ≡ y'} {d : z ≡ z'} → (ps : Square a p p' c) (qs : Square a q q' b) → (rs : Square c r r' d) (ss : Square b s s' d) → (f0 : Square p q r s) (f1 : Square p' q' r' s') → Set _ Cube ps qs rs ss f0 f1 = PathP (λ k → Square (ps k) (qs k) (rs k) (ss k)) f0 f1 isGroupoid' : Set ℓ → Set ℓ isGroupoid' A = ∀{w x y z w' x' y' z' : A} → {p : w ≡ y} {q : w ≡ x} {r : y ≡ z} {s : x ≡ z} → {p' : w' ≡ y'} {q' : w' ≡ x'} {r' : y' ≡ z'} {s' : x' ≡ z'} → {a : w ≡ w'} {b : x ≡ x'} {c : y ≡ y'} {d : z ≡ z'} → (fp : Square a p p' c) → (fq : Square a q q' b) → (fr : Square c r r' d) → (fs : Square b s s' d) → (f0 : Square p q r s) → (f1 : Square p' q' r' s') → Cube fp fq fr fs f0 f1 is2Groupoid : Type ℓ → Type ℓ is2Groupoid A = ∀ a b → isGroupoid (Path A a b) -- Essential consequences of isProp and isContr isProp→PathP : ((x : A) → isProp (B x)) → {a0 a1 : A} → (p : a0 ≡ a1) (b0 : B a0) (b1 : B a1) → PathP (λ i → B (p i)) b0 b1 isProp→PathP {B = B} P p b0 b1 = toPathP {A = λ i → B (p i)} {b0} {b1} (P _ _ _) isPropIsContr : isProp (isContr A) isPropIsContr z0 z1 j = ( z0 .snd (z1 .fst) j , λ x i → hcomp (λ k → λ { (i = i0) → z0 .snd (z1 .fst) j ; (i = i1) → z0 .snd x (j ∨ k) ; (j = i0) → z0 .snd x (i ∧ k) ; (j = i1) → z1 .snd x i }) (z0 .snd (z1 .snd x i) j)) isContr→isProp : isContr A → isProp A isContr→isProp (x , p) a b i = hcomp (λ j → λ { (i = i0) → p a j ; (i = i1) → p b j }) x isProp→isSet : isProp A → isSet A isProp→isSet h a b p q j i = hcomp (λ k → λ { (i = i0) → h a a k ; (i = i1) → h a b k ; (j = i0) → h a (p i) k ; (j = i1) → h a (q i) k }) a -- Universe lifting record Lift {i j} (A : Type i) : Type (ℓ-max i j) where instance constructor lift field lower : A open Lift public
{ "alphanum_fraction": 0.4653490118, "avg_line_length": 30.5114503817, "ext": "agda", "hexsha": "e7ffb877208996e5e4600fa372acd7b7a350d81a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/Prelude.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/Prelude.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3463, "size": 7994 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Group where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type private variable ℓ ℓ' : Level open URGStr ------------------------------------------- -- URG structure on the type of groups ------------------------------------------- 𝒮-group : (ℓ : Level) → URGStr (Group {ℓ}) ℓ 𝒮-group ℓ ._≅_ = GroupEquiv 𝒮-group ℓ .ρ = idGroupEquiv 𝒮-group ℓ .uni = isUnivalent'→isUnivalent GroupEquiv idGroupEquiv λ G H → invEquiv (GroupPath G H) ------------------------------------------- -- 𝒮ᴰ-hierarchies on top of 𝒮-group -- -- Notation: -- -- G - group -- G² - pair of groups -- F - morphism forth -- B - morphism back -- -- F B (FB) -- \ | / -- G -- | -- G ------------------------------------------- module _ (ℓ ℓ' : Level) where ---- Underlying types -- pairs of groups G² = Group {ℓ} × Group {ℓ'} -- pairs of groups + a morphism forth G²F = Σ[ (G , H) ∈ G² ] GroupHom G H -- pairs of groups + a morphism back G²B = Σ[ (G , H) ∈ G² ] GroupHom H G -- pairs of groups + morphisms forth and back G²FB = Σ[ (G , H) ∈ G² ] GroupHom G H × GroupHom H G ---- 𝒮 and 𝒮ᴰ-structures -- Group morphisms displayed over pairs of groups 𝒮ᴰ-G²\F : URGStrᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ') (λ (G , H) → GroupHom G H) (ℓ-max ℓ ℓ') 𝒮ᴰ-G²\F = make-𝒮ᴰ (λ {(G , H)} {(G' , H')} f (eG , eH) f' → (g : ⟨ G ⟩) → GroupEquiv.eq eH .fst ((f .fun) g) ≡ (f' .fun) (GroupEquiv.eq eG .fst g)) (λ _ _ → refl) λ (G , H) f → isContrRespectEquiv (Σ-cong-equiv-snd (λ f' → isoToEquiv (invIso (GroupMorphismExtIso f f')))) (isContrSingl f) where open GroupHom -- URG structure on type of two groups with a group morphism 𝒮-G²F : URGStr G²F (ℓ-max ℓ ℓ') 𝒮-G²F = ∫⟨ 𝒮-group ℓ ×𝒮 𝒮-group ℓ' ⟩ 𝒮ᴰ-G²\F -- Same as 𝒮-G²F but with the morphism going the other way 𝒮ᴰ-G²\B : URGStrᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ') (λ (G , H) → GroupHom H G) (ℓ-max ℓ ℓ') 𝒮ᴰ-G²\B = make-𝒮ᴰ (λ {(_ , H)} f (eG , eH) f' → (h : ⟨ H ⟩) → GroupEquiv.eq eG .fst (f .fun h) ≡ f' .fun (GroupEquiv.eq eH .fst h)) (λ _ _ → refl) λ _ f → isContrRespectEquiv (Σ-cong-equiv-snd (λ f' → isoToEquiv (invIso (GroupMorphismExtIso f f')))) (isContrSingl f) where open GroupHom -- Type of two groups with a group morphism going back 𝒮-G²B : URGStr G²B (ℓ-max ℓ ℓ') 𝒮-G²B = ∫⟨ 𝒮-group ℓ ×𝒮 𝒮-group ℓ' ⟩ 𝒮ᴰ-G²\B -- Morphisms going forth and back displayed over pairs of groups 𝒮ᴰ-G²\FB : URGStrᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ') (λ (G , H) → GroupHom G H × GroupHom H G) (ℓ-max ℓ ℓ') 𝒮ᴰ-G²\FB = combine-𝒮ᴰ 𝒮ᴰ-G²\F 𝒮ᴰ-G²\B -- URG structure on type of pairs of groups with morphisms going forth and back 𝒮-G²FB : URGStr G²FB (ℓ-max ℓ ℓ') 𝒮-G²FB = ∫⟨ 𝒮-group ℓ ×𝒮 𝒮-group ℓ' ⟩ 𝒮ᴰ-G²\FB
{ "alphanum_fraction": 0.5686865917, "avg_line_length": 31.9912280702, "ext": "agda", "hexsha": "66e9903aacc9796cfac68f47959c47cf83636ed4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/Group.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1344, "size": 3647 }
-- Hilbert-style formalisation of closed syntax. -- Nested terms. module OldBasicILP.UntypedSyntax.ClosedHilbert where open import OldBasicILP.UntypedSyntax.Common public -- Closed, untyped representations. data Rep : Set where APP : Rep → Rep → Rep CI : Rep CK : Rep CS : Rep BOX : Rep → Rep CDIST : Rep CUP : Rep CDOWN : Rep CPAIR : Rep CFST : Rep CSND : Rep UNIT : Rep -- Anti-bug wrappers. record Proof : Set where constructor [_] field rep : Rep open ClosedSyntax (Proof) public -- Derivations using representations in types. mutual infix 3 ⊢_ data ⊢_ : Ty → Set where app : ∀ {A B} → ⊢ A ▻ B → ⊢ A → ⊢ B ci : ∀ {A} → ⊢ A ▻ A ck : ∀ {A B} → ⊢ A ▻ B ▻ A cs : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C box : ∀ {A} → (d : ⊢ A) → ⊢ [ ᴿ⌊ d ⌋ ] ⦂ A cdist : ∀ {A B} → {r₁ r₂ : Rep} → ⊢ [ r₁ ] ⦂ (A ▻ B) ▻ [ r₂ ] ⦂ A ▻ [ APP r₁ r₂ ] ⦂ B cup : ∀ {A} → {r : Rep} → ⊢ [ r ] ⦂ A ▻ [ BOX r ] ⦂ [ r ] ⦂ A cdown : ∀ {A} → {r : Rep} → ⊢ [ r ] ⦂ A ▻ A cpair : ∀ {A B} → ⊢ A ▻ B ▻ A ∧ B cfst : ∀ {A B} → ⊢ A ∧ B ▻ A csnd : ∀ {A B} → ⊢ A ∧ B ▻ B unit : ⊢ ⊤ -- Projection from derivations to representations. ᴿ⌊_⌋ : ∀ {A} → ⊢ A → Rep ᴿ⌊ app d₁ d₂ ⌋ = APP ᴿ⌊ d₁ ⌋ ᴿ⌊ d₂ ⌋ ᴿ⌊ ci ⌋ = CI ᴿ⌊ ck ⌋ = CK ᴿ⌊ cs ⌋ = CS ᴿ⌊ box d ⌋ = BOX ᴿ⌊ d ⌋ ᴿ⌊ cdist ⌋ = CDIST ᴿ⌊ cup ⌋ = CUP ᴿ⌊ cdown ⌋ = CDOWN ᴿ⌊ cpair ⌋ = CPAIR ᴿ⌊ cfst ⌋ = CFST ᴿ⌊ csnd ⌋ = CSND ᴿ⌊ unit ⌋ = UNIT infix 3 ⊢⋆_ ⊢⋆_ : Cx Ty → Set ⊢⋆ ∅ = 𝟙 ⊢⋆ Ξ , A = ⊢⋆ Ξ × ⊢ A -- Cut and multicut. cut : ∀ {A B} → ⊢ A → ⊢ A ▻ B → ⊢ B cut d₁ d₂ = app d₂ d₁ multicut : ∀ {Ξ A} → ⊢⋆ Ξ → ⊢ Ξ ▻⋯▻ A → ⊢ A multicut {∅} ∙ d₂ = d₂ multicut {Ξ , B} (ds , d₁) d₂ = app (multicut ds d₂) d₁ -- Contraction. ccont : ∀ {A B} → ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = app (app cs cs) (app ck ci) cont : ∀ {A B} → ⊢ A ▻ A ▻ B → ⊢ A ▻ B cont d = app ccont d -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C} → ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = app (app cs (app (app cs (app ck cs)) (app (app cs (app ck ck)) cs))) (app ck ck) exch : ∀ {A B C} → ⊢ A ▻ B ▻ C → ⊢ B ▻ A ▻ C exch d = app cexch d -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C} → ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = app (app cs (app ck cs)) ck comp : ∀ {A B C} → ⊢ B ▻ C → ⊢ A ▻ B → ⊢ A ▻ C comp d₁ d₂ = app (app ccomp d₁) d₂ -- Useful theorems in functional form. dist : ∀ {A B r₁ r₂} → ⊢ [ r₁ ] ⦂ (A ▻ B) → ⊢ [ r₂ ] ⦂ A → ⊢ [ APP r₁ r₂ ] ⦂ B dist d₁ d₂ = app (app cdist d₁) d₂ up : ∀ {A r} → ⊢ [ r ] ⦂ A → ⊢ [ BOX r ] ⦂ [ r ] ⦂ A up d = app cup d down : ∀ {A r} → ⊢ [ r ] ⦂ A → ⊢ A down d = app cdown d distup : ∀ {A B r₀ r₁} → ⊢ [ r₁ ] ⦂ ([ r₀ ] ⦂ A ▻ B) → ⊢ [ r₀ ] ⦂ A → ⊢ [ APP r₁ (BOX r₀) ] ⦂ B distup d₁ d₂ = dist d₁ (up d₂) pair : ∀ {A B} → ⊢ A → ⊢ B → ⊢ A ∧ B pair d₁ d₂ = app (app cpair d₁) d₂ fst : ∀ {A B} → ⊢ A ∧ B → ⊢ A fst d = app cfst d snd : ∀ {A B} → ⊢ A ∧ B → ⊢ B snd d = app csnd d
{ "alphanum_fraction": 0.4301710731, "avg_line_length": 21.8707482993, "ext": "agda", "hexsha": "840efdeb39f552dcb01c2c7945415c25bc4f4a0a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/UntypedSyntax/ClosedHilbert.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/UntypedSyntax/ClosedHilbert.agda", "max_line_length": 95, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/UntypedSyntax/ClosedHilbert.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1593, "size": 3215 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pairs of lists that share no common elements (setoid equality) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Disjoint.Setoid {c ℓ} (S : Setoid c ℓ) where open import Level using (_⊔_) open import Relation.Nullary using (¬_) open import Function using (_∘_) open import Data.List.Base using (List; []; [_]; _∷_) open import Data.List.Relation.Unary.Any using (here; there) open import Data.Product using (_×_; _,_) open Setoid S renaming (Carrier to A) open import Data.List.Membership.Setoid S using (_∈_; _∉_) ------------------------------------------------------------------------ -- Definition Disjoint : Rel (List A) (ℓ ⊔ c) Disjoint xs ys = ∀ {v} → ¬ (v ∈ xs × v ∈ ys) ------------------------------------------------------------------------ -- Operations contractₗ : ∀ {x xs ys} → Disjoint (x ∷ xs) ys → Disjoint xs ys contractₗ x∷xs∩ys=∅ (v∈xs , v∈ys) = x∷xs∩ys=∅ (there v∈xs , v∈ys) contractᵣ : ∀ {xs y ys} → Disjoint xs (y ∷ ys) → Disjoint xs ys contractᵣ xs#y∷ys (v∈xs , v∈ys) = xs#y∷ys (v∈xs , there v∈ys)
{ "alphanum_fraction": 0.511517077, "avg_line_length": 34.027027027, "ext": "agda", "hexsha": "d9c12c294c52b57fa2b2f5983d49f3a95f47b3bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Setoid.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 348, "size": 1259 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Setoids.Setoids open import Setoids.Subset open import Setoids.Functions.Definition open import Sets.EquivalenceRelations module Setoids.Functions.Lemmas {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f : A → B} (w : WellDefined S T f) where inverseImagePred : {e : _} → {pred : B → Set e} → (sub : subset T pred) → A → Set (b ⊔ d ⊔ e) inverseImagePred {pred = pred} subset a = Sg B (λ b → (pred b) && (Setoid._∼_ T (f a) b)) inverseImageWellDefined : {e : _} {pred : B → Set e} → (sub : subset T pred) → subset S (inverseImagePred sub) inverseImageWellDefined sub {x} {y} x=y (b , (predB ,, fx=b)) = f x , (sub (symmetric fx=b) predB ,, symmetric (w x=y)) where open Setoid T open Equivalence eq
{ "alphanum_fraction": 0.6496106785, "avg_line_length": 44.95, "ext": "agda", "hexsha": "2ff86ab0b2115c4e7d15e3a0c47f99fd3c51c488", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Functions/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Functions/Lemmas.agda", "max_line_length": 157, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Functions/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 312, "size": 899 }
------------------------------------------------------------------------------ -- FOT (First-Order Theories) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Code accompanying the PhD thesis "Reasoning about Functional -- Programs by Combining Interactive and Automatic Proofs" by Andrés -- Sicard-Ramírez. -- The code presented here does not match the thesis exactly. module README where ------------------------------------------------------------------------------ -- Description -- Examples of the formalization of first-order theories showing the -- combination of interactive proofs with automatics proofs carried -- out by first-order automatic theorem provers (ATPs). ------------------------------------------------------------------------------ -- For the thesis, prerequisites, tested versions of the ATPs and use, -- see https://github.com/asr/fotc/. ------------------------------------------------------------------------------ -- Conventions -- If the module's name ends in 'I' the module contains interactive -- proofs, if it ends in 'ATP' the module contains combined proofs, -- otherwise the module contains definitions and/or interactive proofs -- that are used by the interactive and combined proofs. ------------------------------------------------------------------------------ -- First-order theories ------------------------------------------------------------------------------ -- • First-order logic with equality -- First-order logic (FOL) open import FOL.README -- Propositional equality open import Common.FOL.Relation.Binary.PropositionalEquality -- Equality reasoning open import Common.FOL.Relation.Binary.EqReasoning -- • Group theory open import GroupTheory.README -- • Distributive laws on a binary operation (Stanovský example) open import DistributiveLaws.README -- • First-order Peano arithmetic (PA) open import PA.README -- • First-Order Theory of Combinators (FOTC) open import FOTC.README -- • Logical Theory of Constructions for PCF (LTC-PCF) open import LTC-PCF.README ------------------------------------------------------------------------------ -- Agsy examples ------------------------------------------------------------------------------ -- We cannot import the Agsy examples because some modules contain -- unsolved metas, therefore see examples/Agsy/README.txt
{ "alphanum_fraction": 0.5330188679, "avg_line_length": 32.6153846154, "ext": "agda", "hexsha": "dc7d8982d7ba282219a9b44f6502362add1fa184", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/README.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/README.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 437, "size": 2544 }
open import Type module Graph.Walk.Proofs {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where open import Lang.Instance open import Logic import Lvl open import Graph{ℓ₁}{ℓ₂}(V) open import Graph.Walk{ℓ₁}{ℓ₂}{V} open import Relator.Equals.Proofs.Equiv import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Type.Properties.Singleton private variable ℓ : Lvl.Level private variable _⟶_ : Graph private variable a b : V private variable _▫_ : V → V → Type{ℓ} -- There is a walk between two vertices when there is one edge between them. instance Walk-super : (_⟶_) ⊆₂ (Walk(_⟶_)) _⊆₂_.proof Walk-super p = prepend p at -- Walk is a "smallest" reflexive-transitive closure Walk-sub : ⦃ _ : Reflexivity(_▫_) ⦄ → ⦃ _ : Transitivity(_▫_) ⦄ → ⦃ _ : (_⟶_) ⊆₂ (_▫_) ⦄ → (Walk(_⟶_)) ⊆₂ (_▫_) Walk-sub {_▫_ = _▫_}{_⟶_ = _⟶_} = intro proof where proof : Names.Subrelation(Walk(_⟶_))(_▫_) proof at = transitivity(_▫_) (reflexivity(_▫_)) (reflexivity(_▫_)) proof (prepend ab1 walkb1b) = transitivity(_▫_) (sub₂(_⟶_)(_▫_) ab1) (proof walkb1b) Walk-transitivity-raw : Names.Transitivity(Walk(_⟶_)) Walk-transitivity-raw at xz = xz Walk-transitivity-raw (prepend xb by) yz = prepend xb (Walk-transitivity-raw by yz) instance -- A walk can be joined/concatenated to form a new walk. Walk-transitivity : Transitivity(Walk(_⟶_)) Transitivity.proof Walk-transitivity = Walk-transitivity-raw instance Walk-reflexivity : Reflexivity(Walk(_⟶_)) Walk-reflexivity = intro at
{ "alphanum_fraction": 0.6947162427, "avg_line_length": 34.8409090909, "ext": "agda", "hexsha": "0dc5fe99b744a3a328a5be0f68b4bbc4fa60c381", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Graph/Walk/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Graph/Walk/Proofs.agda", "max_line_length": 111, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Graph/Walk/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 521, "size": 1533 }
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Fundamental.Variable {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- Fundamental theorem for variables. fundamentalVar : ∀ {Γ A rA x} → x ∷ A ^ rA ∈ Γ → ([Γ] : ⊩ᵛ Γ) → ∃ λ ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ rA / [Γ]) → Γ ⊩ᵛ⟨ ∞ ⟩ var x ∷ A ^ rA / [Γ] / [A] fundamentalVar here (_∙_ {A = A} {rA = rA} {l = l} [Γ] [A]) = (λ ⊢Δ [σ] → let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ])) [σA′] = maybeEmb (irrelevance′ (PE.sym (subst-wk A)) [σA]) in [σA′] , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (subst-wk A)) (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₂ ([A] ⊢Δ (proj₁ [σ])) (proj₁ [σ′]) (proj₁ [σ≡σ′])))) , (λ ⊢Δ [σ] → let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ])) [σA′] = maybeEmb (irrelevance′ (PE.sym (subst-wk A)) [σA]) in irrelevanceTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₂ [σ]) , (λ [σ′] [σ≡σ′] → irrelevanceEqTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₂ [σ≡σ′]))) fundamentalVar (there {A = A} h) ([Γ] ∙ [B]) = (λ ⊢Δ [σ] → let [h] = proj₁ (fundamentalVar h [Γ]) ⊢Δ (proj₁ [σ]) [σA] = proj₁ [h] [σA′] = irrelevance′ (PE.sym (subst-wk A)) [σA] in [σA′] , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (subst-wk A)) (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₂ [h] (proj₁ [σ′]) (proj₁ [σ≡σ′])))) , (λ ⊢Δ [σ] → let [h] = (proj₁ (fundamentalVar h [Γ])) ⊢Δ (proj₁ [σ]) [σA] = proj₁ [h] [σA′] = irrelevance′ (PE.sym (subst-wk A)) [σA] [h′] = (proj₂ (fundamentalVar h [Γ])) ⊢Δ (proj₁ [σ]) in irrelevanceTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₁ [h′]) , (λ [σ′] [σ≡σ′] → irrelevanceEqTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₂ [h′] (proj₁ [σ′]) (proj₁ [σ≡σ′]))))
{ "alphanum_fraction": 0.4891141141, "avg_line_length": 42.9677419355, "ext": "agda", "hexsha": "1b753f6172df47b3e7eac373c5ef818b2dd74c49", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z", "max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z", "max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CoqHott/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Fundamental/Variable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CoqHott/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Fundamental/Variable.agda", "max_line_length": 91, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CoqHott/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Fundamental/Variable.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z", "num_tokens": 978, "size": 2664 }
------------------------------------------------------------------------ -- Unambiguity ------------------------------------------------------------------------ module TotalParserCombinators.Unambiguity where open import Data.Product open import Function using (_$_) open import Function.Equivalence open import Relation.Binary.PropositionalEquality open import Relation.Binary.HeterogeneousEquality as H renaming (_≅_ to _≅′_) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics -- A parser is unambiguous if every string can be parsed in at most -- one way. Unambiguous : ∀ {Tok R xs} → Parser Tok R xs → Set₁ Unambiguous p = ∀ {x₁ x₂ s} (x₁∈p : x₁ ∈ p · s) (x₂∈p : x₂ ∈ p · s) → x₁ ≡ x₂ × x₁∈p ≅′ x₂∈p -- Language and parser equivalence coincide for unambiguous parsers. ≈⇒≅ : ∀ {Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → Unambiguous p₁ → Unambiguous p₂ → p₁ ≈ p₂ → p₁ ≅ p₂ ≈⇒≅ u₁ u₂ p₁≈p₂ = record { to = Equivalence.to p₁≈p₂ ; from = Equivalence.from p₁≈p₂ ; inverse-of = record { left-inverse-of = λ x∈p₁ → H.≅-to-≡ $ proj₂ $ u₁ _ x∈p₁ ; right-inverse-of = λ x∈p₂ → H.≅-to-≡ $ proj₂ $ u₂ _ x∈p₂ } }
{ "alphanum_fraction": 0.5810920945, "avg_line_length": 32.2894736842, "ext": "agda", "hexsha": "d3d3ec243783cb02190337e062c3db0b83f32d4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Unambiguity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Unambiguity.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Unambiguity.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 406, "size": 1227 }
module Data.Num.Standard where -- Standard positional notations open import Data.Nat open ≤-Reasoning renaming (begin_ to start_; _∎ to _□) -- using (≰⇒>; +-∸-assoc; ∸-mono) open import Data.Nat.Properties open import Data.Fin using (Fin) renaming (zero to Fzero; suc to Fsuc; toℕ to F→N; fromℕ≤ to N→F) open import Data.Fin.Properties using (bounded) open import Function open import Relation.Nullary -- open import Relation.Nullary.Decidable using (True; False; toWitness; toWitnessFalse; fromWitness; fromWitnessFalse) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; sym; trans; inspect) open PropEq.≡-Reasoning open import Relation.Binary ℕ-isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder ℕ-isTotalOrder = IsDecTotalOrder.isTotalOrder ℕ-isDecTotalOrder ℕ-isPartialOrder = IsTotalOrder.isPartialOrder ℕ-isTotalOrder ℕ-isPreorder = IsPartialOrder.isPreorder ℕ-isPartialOrder ≤-refl = IsPreorder.reflexive ℕ-isPreorder ≤-antisym = IsPartialOrder.antisym ℕ-isPartialOrder ≤-total = IsTotalOrder.total ℕ-isTotalOrder data Digit : (base : ℕ) → Set where D : ∀ {base} → Fin base → Digit base infixl 6 _D+_ _D+_ : ∀ {b} → Digit b → Digit b → Digit b D x D+ D {b} y with b ≤? (F→N x + F→N y) D x D+ D {b} y | yes p = D $ N→F {F→N x + F→N y ∸ b} $ start suc (F→N x + F→N y ∸ b) ≤⟨ ≤-refl (sym (+-∸-assoc 1 p)) ⟩ (suc (F→N x) + F→N y) ∸ b ≤⟨ ∸-mono {suc (F→N x) + F→N y} {b + b} {b} {b} (bounded x +-mono ( start F→N y ≤⟨ n≤1+n (F→N y) ⟩ suc (F→N y) ≤⟨ bounded y ⟩ b □ )) (≤-refl refl) ⟩ b + b ∸ b ≤⟨ ≤-refl (m+n∸n≡m b b) ⟩ b □ D x D+ D {b} y | no ¬p = D $ N→F (≰⇒> ¬p) -- start -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- ≤⟨ {! !} ⟩ -- {! !} -- □ -- begin -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ≡⟨ {! !} ⟩ -- {! !} -- ∎
{ "alphanum_fraction": 0.5189340813, "avg_line_length": 26.7375, "ext": "agda", "hexsha": "af7255a4e407aeb96bd20a3b0b95c5b9c3e69197", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Sandbox/_Standard.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Sandbox/_Standard.agda", "max_line_length": 119, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Sandbox/_Standard.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 836, "size": 2139 }
open import Prelude open import Nat open import dynamics-core open import contexts open import lemmas-disjointness module lemmas-freshness where -- if x is fresh in an hexp, it's fresh in its expansion mutual fresh-elab-synth1 : ∀{x e τ d Γ Δ} → x # Γ → freshh x e → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → fresh x d fresh-elab-synth1 apt FHNum ESNum = FNum fresh-elab-synth1 apt (FRHPlus x x₄) (ESPlus gapt x₁ x₂ x₃) = FPlus (FCast (fresh-elab-ana1 apt x x₂)) (FCast (fresh-elab-ana1 apt x₄ x₃)) fresh-elab-synth1 apt (FRHAsc frsh) (ESAsc x₁) = FCast (fresh-elab-ana1 apt frsh x₁) fresh-elab-synth1 _ (FRHVar x₂) (ESVar x₃) = FVar x₂ fresh-elab-synth1 {Γ = Γ} apt (FRHLam2 x₂ frsh) (ESLam x₃ exp) = FLam x₂ (fresh-elab-synth1 (apart-extend1 Γ x₂ apt) frsh exp) fresh-elab-synth1 apt (FRHAp frsh frsh₁) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) = FAp (FCast (fresh-elab-ana1 apt frsh x₅)) (FCast (fresh-elab-ana1 apt frsh₁ x₆)) fresh-elab-synth1 apt (FRHPair frsh frsh₁) (ESPair x x₁ x₂ x₃) = FPair (fresh-elab-synth1 apt frsh x₂) (fresh-elab-synth1 apt frsh₁ x₃) fresh-elab-synth1 apt (FRHFst frsh) (ESFst x x₁ x₂) = FFst (FCast (fresh-elab-ana1 apt frsh x₂)) fresh-elab-synth1 apt (FRHSnd frsh) (ESSnd x x₁ x₂) = FSnd (FCast (fresh-elab-ana1 apt frsh x₂)) fresh-elab-synth1 apt FRHEHole ESEHole = FHole (EFId apt) fresh-elab-synth1 apt (FRHNEHole frsh) (ESNEHole x₁ exp) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh exp) fresh-elab-ana1 : ∀{x e τ d τ' Γ Δ} → x # Γ → freshh x e → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → fresh x d fresh-elab-ana1 {Γ = Γ} apt (FRHLam1 x₁ frsh) (EALam x₂ x₃ exp) = FLam x₁ (fresh-elab-ana1 (apart-extend1 Γ x₁ apt) frsh exp ) fresh-elab-ana1 apt frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth1 apt frsh x₃ fresh-elab-ana1 apt (FRHInl frsh) (EAInl x x₁) = FInl (fresh-elab-ana1 apt frsh x₁) fresh-elab-ana1 apt (FRHInr frsh) (EAInr x x₁) = FInr (fresh-elab-ana1 apt frsh x₁) fresh-elab-ana1 {Γ = Γ} apt (FRHCase frsh x₁ frsh₁ x₂ frsh₂) (EACase x x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃) = FCase (FCast (fresh-elab-synth1 apt frsh x₁₀)) x₁ (FCast (fresh-elab-ana1 (apart-extend1 Γ x₁ apt) frsh₁ x₁₂)) x₂ (FCast (fresh-elab-ana1 (apart-extend1 Γ x₂ apt) frsh₂ x₁₃)) fresh-elab-ana1 apt FRHEHole EAEHole = FHole (EFId apt) fresh-elab-ana1 apt (FRHNEHole frsh) (EANEHole x₁ x₂) = FNEHole (EFId apt) (fresh-elab-synth1 apt frsh x₂) -- if x is fresh in the expansion of an hexp, it's fresh in that hexp mutual fresh-elab-synth2 : ∀{x e τ d Γ Δ} → fresh x d → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → freshh x e fresh-elab-synth2 FNum ESNum = FRHNum fresh-elab-synth2 (FPlus (FCast x) (FCast x₄)) (ESPlus apt x₁ x₂ x₃) = FRHPlus (fresh-elab-ana2 x x₂) (fresh-elab-ana2 x₄ x₃) fresh-elab-synth2 (FVar x₂) (ESVar x₃) = FRHVar x₂ fresh-elab-synth2 (FLam x₂ frsh) (ESLam x₃ exp) = FRHLam2 x₂ (fresh-elab-synth2 frsh exp) fresh-elab-synth2 (FAp (FCast frsh) (FCast frsh₁)) (ESAp x₁ x₂ x₃ x₄ x₅ x₆) = FRHAp (fresh-elab-ana2 frsh x₅) (fresh-elab-ana2 frsh₁ x₆) fresh-elab-synth2 (FPair frsh frsh₁) (ESPair x x₁ x₂ x₃) = FRHPair (fresh-elab-synth2 frsh x₂) (fresh-elab-synth2 frsh₁ x₃) fresh-elab-synth2 (FFst (FCast frsh)) (ESFst x x₁ x₂) = FRHFst (fresh-elab-ana2 frsh x₂) fresh-elab-synth2 (FSnd (FCast frsh)) (ESSnd x x₁ x₂) = FRHSnd (fresh-elab-ana2 frsh x₂) fresh-elab-synth2 (FHole x₁) ESEHole = FRHEHole fresh-elab-synth2 (FNEHole x₁ frsh) (ESNEHole x₂ exp) = FRHNEHole (fresh-elab-synth2 frsh exp) fresh-elab-synth2 (FCast frsh) (ESAsc x₁) = FRHAsc (fresh-elab-ana2 frsh x₁) fresh-elab-ana2 : ∀{ x e τ d τ' Γ Δ} → fresh x d → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → freshh x e fresh-elab-ana2 (FLam x₁ frsh) (EALam x₂ x₃ exp) = FRHLam1 x₁ (fresh-elab-ana2 frsh exp) fresh-elab-ana2 frsh (EASubsume x₁ x₂ x₃ x₄) = fresh-elab-synth2 frsh x₃ fresh-elab-ana2 (FHole x₁) EAEHole = FRHEHole fresh-elab-ana2 (FNEHole x₁ frsh) (EANEHole x₂ x₃) = FRHNEHole (fresh-elab-synth2 frsh x₃) fresh-elab-ana2 (FInl frsh) (EAInl x x₁) = FRHInl (fresh-elab-ana2 frsh x₁) fresh-elab-ana2 (FInr frsh) (EAInr x x₁) = FRHInr (fresh-elab-ana2 frsh x₁) fresh-elab-ana2 (FCase (FCast frsh) x (FCast frsh₁) x₁ (FCast frsh₂)) (EACase x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃) = FRHCase (fresh-elab-synth2 frsh x₁₀) x (fresh-elab-ana2 frsh₁ x₁₂) x₁ (fresh-elab-ana2 frsh₂ x₁₃)
{ "alphanum_fraction": 0.6216726053, "avg_line_length": 66.2638888889, "ext": "agda", "hexsha": "a6d73277e3427dae97fa746a3888c71efcc1bd84", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "lemmas-freshness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "lemmas-freshness.agda", "max_line_length": 289, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "lemmas-freshness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2020, "size": 4771 }
module SN where open import Relation.Unary using (_∈_; _⊆_) open import Library open import Terms open import Substitution open import TermShape public -- Inductive definition of strong normalization. infix 7 _⟨_⟩⇒_ _⇒ˢ_ mutual -- Strongly normalizing evaluation contexts SNhole : ∀ {i : Size} {Γ : Cxt} {a b : Ty} → Tm Γ b → ECxt Γ a b → Tm Γ a → Set SNhole {i} = PCxt (SN {i}) -- Strongly neutral terms. SNe : ∀ {i : Size} {Γ} {b} → Tm Γ b → Set SNe {i} = PNe (SN {i}) -- Strongly normalizing terms. data SN {i : Size}{Γ} : ∀ {a} → Tm Γ a → Set where ne : ∀ {j : Size< i} {a t} → (𝒏 : SNe {j} t) → SN {a = a} t abs : ∀ {j : Size< i} {a b}{t : Tm (a ∷ Γ) b} → (𝒕 : SN {j} t) → SN (abs t) exp : ∀ {j₁ j₂ : Size< i} {a t t′} → (t⇒ : t ⟨ j₁ ⟩⇒ t′) (𝒕′ : SN {j₂} t′) → SN {a = a} t _⟨_⟩⇒_ : ∀ {Γ a} → Tm Γ a → Size → Tm Γ a → Set t ⟨ i ⟩⇒ t′ = SN {i} / t ⇒ t′ -- Strong head reduction _⇒ˢ_ : ∀ {i : Size} {Γ} {a} → Tm Γ a → Tm Γ a → Set _⇒ˢ_ {i} t t' = (SN {i}) / t ⇒ t' -- -- Inductive definition of strong normalization. -- mutual -- -- Strongly normalizing evaluation contexts -- data SNhole {i : Size} (n : ℕ) {Γ : Cxt} : {a b : Ty} → Tm Γ b → ECxt Γ a b → Tm Γ a → Set where -- appl : ∀ {a b t u} -- → (𝒖 : SN {i} n u) -- → SNhole n (app t u) (appl u) (t ∶ (a →̂ b)) -- -- Strongly neutral terms. -- data SNe {i : Size} (n : ℕ) {Γ} {b} : Tm Γ b → Set where -- var : ∀ x → SNe n (var x) -- elim : ∀ {a} {t : Tm Γ a} {E Et} -- → (𝒏 : SNe {i} n t) (𝑬𝒕 : SNhole {i} n Et E t) → SNe n Et -- -- elim : ∀ {j₁ j₂ : Size< i}{a} {t : Tm Γ a} {E Et} -- -- → (𝒏 : SNe {j₁} n t) (𝑬𝒕 : SNhole {j₂} n Et E t) → SNe n Et -- -- Strongly normalizing terms. -- data SN {i : Size}{Γ} : ℕ → ∀ {a} → Tm Γ a → Set where -- ne : ∀ {j : Size< i} {a n t} -- → (𝒏 : SNe {j} n t) -- → SN n {a} t -- abs : ∀ {j : Size< i} {a b n}{t : Tm (a ∷ Γ) b} -- → (𝒕 : SN {j} n t) -- → SN n (abs t) -- exp : ∀ {j₁ j₂ : Size< i} {a n t t′} -- → (t⇒ : j₁ size t ⟨ n ⟩⇒ t′) (𝒕′ : SN {j₂} n t′) -- → SN n {a} t -- _size_⟨_⟩⇒_ : ∀ (i : Size) {Γ}{a} → Tm Γ a → ℕ → Tm Γ a → Set -- i size t ⟨ n ⟩⇒ t′ = _⟨_⟩⇒_ {i} t n t′ -- -- Strong head reduction -- data _⟨_⟩⇒_ {i : Size} {Γ} : ∀ {a} → Tm Γ a → ℕ → Tm Γ a → Set where -- β : ∀ {a b}{t : Tm (a ∷ Γ) b}{u} -- → (𝒖 : SN {i} n u) -- → (app (abs t) u) ⟨ n ⟩⇒ subst0 u t -- cong : ∀ {a b t t' Et Et'}{E : ECxt Γ a b} -- → (𝑬𝒕 : Ehole Et E t) -- → (𝑬𝒕' : Ehole Et' E t') -- → (t⇒ : i size t ⟨ n ⟩⇒ t') -- → Et ⟨ n ⟩⇒ Et' -- β : ∀ {j : Size< i} {a b}{t : Tm (a ∷ Γ) b}{u} -- → (𝒖 : SN {j} n u) -- → (app (abs t) u) ⟨ n ⟩⇒ subst0 u t -- cong : ∀ {j : Size< i} {a b t t' Et Et'}{E : ECxt Γ a b} -- → (𝑬𝒕 : Ehole Et E t) -- → (𝑬𝒕' : Ehole Et' E t') -- → (t⇒ : j size t ⟨ n ⟩⇒ t') -- → Et ⟨ n ⟩⇒ Et' -- Strong head reduction is deterministic. det⇒ : ∀ {a Γ} {t t₁ t₂ : Tm Γ a} → (t⇒₁ : t ⟨ _ ⟩⇒ t₁) (t⇒₂ : t ⟨ _ ⟩⇒ t₂) → t₁ ≡ t₂ det⇒ (β _) (β _) = ≡.refl det⇒ (β _) (cong (appl u) (appl .u) (cong () _ _)) det⇒ (cong (appl u) (appl .u) (cong () _ _)) (β _) det⇒ (cong (appl u) (appl .u) x) (cong (appl .u) (appl .u) y) = ≡.cong (λ t → app t u) (det⇒ x y) -- Strongly neutrals are closed under application. sneApp : ∀{Γ a b}{t : Tm Γ (a →̂ b)}{u : Tm Γ a} → SNe t → SN u → SNe (app t u) sneApp 𝒏 𝒖 = elim 𝒏 (appl 𝒖) -- Substituting strongly neutral terms record RenSubSNe {i} (vt : VarTm i) (Γ Δ : Cxt) : Set where constructor _,_ field theSubst : RenSub vt Γ Δ isSNe : ∀ {a} (x : Var Γ a) → SNe (vt2tm _ (theSubst x)) open RenSubSNe RenSN = RenSubSNe `Var SubstSNe = RenSubSNe `Tm -- The singleton SNe substitution. -- Replaces the first variable by another variable. sgs-varSNe : ∀ {Γ a} → Var Γ a → SubstSNe (a ∷ Γ) Γ theSubst (sgs-varSNe x) = sgs (var x) isSNe (sgs-varSNe x) (zero) = (var x) isSNe (sgs-varSNe x) (suc y) = var y -- The SN-notions are closed under SNe substitution. mutual substSNh : ∀ {i vt Γ Δ a b} → (σ : RenSubSNe {i} vt Γ Δ) → ∀ {E : ECxt Γ a b}{Et t} → (SNh : SNhole Et E t) → SNhole (subst (theSubst σ) Et) (substEC (theSubst σ) E) (subst (theSubst σ) t) substSNh σ (appl u) = appl (substSN σ u) subst⇒ : ∀ {i vt Γ Δ a} (σ : RenSubSNe {i} vt Γ Δ) {t t' : Tm Γ a} → t ⟨ _ ⟩⇒ t' → subst (theSubst σ) t ⟨ _ ⟩⇒ subst (theSubst σ) t' subst⇒ (σ , σ∈Ne) (β {t = t} {u = u} x) = ≡.subst (λ t' → app (abs (subst (lifts σ) t)) (subst σ u) ⟨ _ ⟩⇒ t') (sgs-lifts-term {σ = σ} {u} {t}) (β {t = subst (lifts σ) t} (substSN (σ , σ∈Ne) x)) subst⇒ σ (cong Eh Eh' t→t') = cong (substEh (theSubst σ) Eh) (substEh (theSubst σ) Eh') (subst⇒ σ t→t') -- Lifting a SNe substitution. liftsSNe : ∀ {i vt Γ Δ a} → RenSubSNe {i} vt Γ Δ → RenSubSNe {i} vt (a ∷ Γ) (a ∷ Δ) theSubst (liftsSNe σ) = lifts (theSubst σ) isSNe (liftsSNe {vt = `Var} (σ , σ∈SNe)) (zero) = var (zero) isSNe (liftsSNe {vt = `Var} (σ , σ∈SNe)) (suc y) = var (suc (σ y)) isSNe (liftsSNe {vt = `Tm } (σ , σ∈SNe)) (zero) = var (zero) isSNe (liftsSNe {vt = `Tm } (σ , σ∈SNe)) (suc y) = substSNe {vt = `Var} (suc , (λ x → var (suc x))) (σ∈SNe y) substSNe : ∀ {i vt Γ Δ τ} → (σ : RenSubSNe {i} vt Γ Δ) → ∀ {t : Tm Γ τ} → SNe t → SNe (subst (theSubst σ) t) substSNe σ (var x) = isSNe σ x substSNe σ (elim t∈SNe E∈SNh) = elim (substSNe σ t∈SNe) (substSNh σ E∈SNh) substSN : ∀ {i vt Γ Δ τ} → (σ : RenSubSNe {i} vt Γ Δ) → ∀ {t : Tm Γ τ} → SN t → SN (subst (theSubst σ) t) substSN σ (ne t∈SNe) = ne (substSNe σ t∈SNe) substSN σ (abs t∈SN) = abs (substSN (liftsSNe σ) t∈SN) substSN σ (exp t→t' t'∈SN) = exp (subst⇒ σ t→t') (substSN σ t'∈SN) -- SN is closed under renaming. renSN : ∀{Γ Δ} (ρ : Γ ≤ Δ) → RenSN Δ Γ renSN ρ = (ρ , λ x → var (ρ x)) renameSNe : ∀{a Γ Δ} (ρ : Γ ≤ Δ) {t : Tm Δ a} → SNe t → SNe (rename ρ t) renameSNe ρ = substSNe (renSN ρ) renameSN : ∀{a Γ Δ} (ρ : Γ ≤ Δ) {t : Tm Δ a} → SN t → SN (rename ρ t) renameSN ρ = substSN (renSN ρ) -- Variables are SN. varSN : ∀{Γ a x} → var x ∈ SN {Γ = Γ} {a} varSN = ne (var _) -- SN is closed under application to variables. appVarSN : ∀{Γ a b}{t : Tm Γ (a →̂ b)}{x} → t ∈ SN → app t (var x) ∈ SN appVarSN (ne t∈SNe) = ne (elim t∈SNe (appl varSN)) appVarSN (abs t∈SN) = exp (β varSN) (substSN (sgs-varSNe _) t∈SN) appVarSN (exp t→t' t'∈SN) = exp (cong (appl (var _)) (appl (var _)) t→t') (appVarSN t'∈SN) -- Subterm properties of SN -- If app t u ∈ SN then u ∈ SN. apprSN : ∀{i a b Γ}{t : Tm Γ (a →̂ b)}{u : Tm Γ a} → SN {i} (app t u) → SN {i} u apprSN (ne (elim 𝒏 (appl 𝒖))) = 𝒖 apprSN (exp (β 𝒖) 𝒕) = 𝒖 apprSN (exp (cong (appl u) (appl .u) t⇒) 𝒕) = apprSN 𝒕
{ "alphanum_fraction": 0.4610113745, "avg_line_length": 33.4724770642, "ext": "agda", "hexsha": "6cc6abff11b1c7cf168da5b3e2b24a7d35cd791c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/SN.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/SN.agda", "max_line_length": 134, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/SN.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 3309, "size": 7297 }
-- This module is used to illustrate how to import a parameterised module. module examples.syntax.ModuleB (A : Set) ((==) : A -> A -> Prop) (refl : (x : A) -> x == x) where infix 5 /\ module SubModule where postulate dummy : A data True : Prop where tt : True data False : Prop where data (/\) (P, Q : Prop) : Prop where andI : P -> Q -> P /\ Q data List : Set where nil : List cons : A -> List -> List eqList : List -> List -> Prop eqList nil nil = True eqList (cons x xs) nil = False eqList nil (cons y ys) = False eqList (cons x xs) (cons y ys) = x == y /\ eqList xs ys reflEqList : (xs : List) -> eqList xs xs reflEqList nil = tt reflEqList (cons x xs) = andI (refl x) (reflEqList xs)
{ "alphanum_fraction": 0.5561160151, "avg_line_length": 22.0277777778, "ext": "agda", "hexsha": "73af9221e18dc0c4eaedfcb0c5fb943a65db9e05", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/syntax/ModuleB.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/syntax/ModuleB.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/syntax/ModuleB.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 269, "size": 793 }
module NatEquality where open import Definitions _≟_ : (m n : ℕ) → Equal? m n _≟_ = {!!} equality-disjoint : (m n : ℕ) → m ≡ n → m ≢ n → ⊥ equality-disjoint = {!!}
{ "alphanum_fraction": 0.5714285714, "avg_line_length": 15.2727272727, "ext": "agda", "hexsha": "558477a473d9465fd8e392fbd5d0a62fa1db15d6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/NatEquality/NatEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/NatEquality/NatEquality.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/NatEquality/NatEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 63, "size": 168 }
------------------------------------------------------------------------ -- This module proves that the parser combinators correspond exactly -- to functions of type List Tok → List R (if bag equality is used for -- the lists of results) ------------------------------------------------------------------------ module TotalParserCombinators.ExpressiveStrength where open import Codata.Musical.Notation open import Data.Bool open import Data.List as List open import Data.List.Membership.Propositional import Data.List.Properties as ListProp open import Data.List.Relation.Binary.BagAndSetEquality open import Data.List.Relation.Unary.Any open import Data.List.Reverse open import Data.Product open import Function.Base open import Function.Inverse using (_↔_) import Function.Related as Related open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Binary.HeterogeneousEquality using (_≅_; _≇_; refl) open import Relation.Nullary open Related using (SK-sym) open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics as S hiding (_≅_; _∼[_]_; token) open import TotalParserCombinators.Lib private open module Tok = Token Bool _≟_ using (tok) open import TotalParserCombinators.BreadthFirst as Backend using (parse) ------------------------------------------------------------------------ -- Expressive strength -- One direction of the correspondence has already been established: -- For every parser there is an equivalent function. parser⇒fun : ∀ {R xs} (p : Parser Bool R xs) {x s} → x ∈ p · s ↔ x ∈ parse p s parser⇒fun p = Backend.parse-correct -- For every function there is a corresponding parser. module Monadic where -- The parser. grammar : ∀ {Tok R} (f : List Tok → List R) → Parser Tok R (f []) grammar f = token >>= (λ t → ♯ grammar (f ∘ _∷_ t)) ∣ return⋆ (f []) -- Correctness proof. grammar-correct : ∀ {Tok R} (f : List Tok → List R) {x s} → x ∈ grammar f · s ↔ x ∈ f s grammar-correct f {s = s} = record { to = P.→-to-⟶ (sound f) ; from = P.→-to-⟶ (complete f s) ; inverse-of = record { left-inverse-of = complete∘sound f ; right-inverse-of = sound∘complete f s } } where sound : ∀ {Tok R x s} (f : List Tok → List R) → x ∈ grammar f · s → x ∈ f s sound f (∣-right ._ x∈) with Return⋆.sound (f []) x∈ ... | (refl , x∈′) = x∈′ sound f (∣-left (S.token {t} >>= x∈)) = sound (f ∘ _∷_ t) x∈ complete : ∀ {Tok R x} (f : List Tok → List R) s → x ∈ f s → x ∈ grammar f · s complete f [] x∈ = ∣-right [] (Return⋆.complete x∈) complete f (t ∷ s) x∈ = ∣-left ([ ○ - ◌ ] S.token >>= complete (f ∘ _∷_ t) s x∈) complete∘sound : ∀ {Tok R x s} (f : List Tok → List R) (x∈pf : x ∈ grammar f · s) → complete f s (sound f x∈pf) ≡ x∈pf complete∘sound f (∣-left (S.token {t} >>= x∈)) rewrite complete∘sound (f ∘ _∷_ t) x∈ = refl complete∘sound f (∣-right .[] x∈) with Return⋆.sound (f []) x∈ | Return⋆.complete∘sound (f []) x∈ complete∘sound f (∣-right .[] .(Return⋆.complete x∈f[])) | (refl , x∈f[]) | refl = refl sound∘complete : ∀ {Tok R x} (f : List Tok → List R) s (x∈fs : x ∈ f s) → sound f (complete f s x∈fs) ≡ x∈fs sound∘complete f (t ∷ s) x∈ = sound∘complete (f ∘ _∷_ t) s x∈ sound∘complete {Tok} f [] x∈ with Return⋆.sound {Tok = Tok} (f []) (Return⋆.complete x∈) | Return⋆.sound∘complete {Tok = Tok} x∈ ... | (refl , .x∈) | refl = refl -- A corollary. maximally-expressive : ∀ {Tok R} (f : List Tok → List R) {s} → parse (grammar f) s ∼[ bag ] f s maximally-expressive f {s} {x} = (x ∈ parse (grammar f) s) ↔⟨ SK-sym Backend.parse-correct ⟩ x ∈ grammar f · s ↔⟨ grammar-correct f ⟩ x ∈ f s ∎ where open Related.EquationalReasoning -- If the token type is finite (in this case Bool), then the result -- above can be established without the use of bind (_>>=_). (The -- definition of tok uses bind, but if bind were removed it would be -- reasonable to either add tok as a primitive combinator, or make it -- possible to define tok using other combinators.) module Applicative where -- A helper function. specialise : {A B : Set} → (List A → B) → A → (List A → B) specialise f x = λ xs → f (xs ∷ʳ x) -- The parser. grammar : ∀ {R} (f : List Bool → List R) → Parser Bool R (f []) grammar f = ♯ (const <$> grammar (specialise f true )) ⊛ tok true ∣ ♯ (const <$> grammar (specialise f false)) ⊛ tok false ∣ return⋆ (f []) -- Correctness proof. grammar-correct : ∀ {R} (f : List Bool → List R) {x s} → x ∈ grammar f · s ↔ x ∈ f s grammar-correct {R} f {s = s} = record { to = P.→-to-⟶ (sound f) ; from = P.→-to-⟶ (complete f (reverseView s)) ; inverse-of = record { right-inverse-of = sound∘complete f (reverseView s) ; left-inverse-of = λ x∈ → complete∘sound f (reverseView s) _ x∈ refl refl } } where sound : ∀ {x : R} {s} f → x ∈ grammar f · s → x ∈ f s sound f (∣-right ._ x∈) with Return⋆.sound (f []) x∈ ... | (refl , x∈′) = x∈′ sound f (∣-left (∣-left (<$> x∈ ⊛ t∈))) with Tok.sound true t∈ ... | (refl , refl) = sound (specialise f true ) x∈ sound f (∣-left (∣-right ._ (<$> x∈ ⊛ t∈))) with Tok.sound false t∈ ... | (refl , refl) = sound (specialise f false) x∈ complete : ∀ {x : R} {s} f → Reverse s → x ∈ f s → x ∈ grammar f · s complete f [] x∈ = ∣-right [] (Return⋆.complete x∈) complete f (bs ∶ rs ∶ʳ true ) x∈ = ∣-left {xs₁ = []} (∣-left ( [ ◌ - ○ ] <$> complete (specialise f true ) rs x∈ ⊛ Tok.complete)) complete f (bs ∶ rs ∶ʳ false) x∈ = ∣-left (∣-right [] ( [ ◌ - ○ ] <$> complete (specialise f false) rs x∈ ⊛ Tok.complete)) sound∘complete : ∀ {x : R} {s} f (rs : Reverse s) (x∈fs : x ∈ f s) → sound f (complete f rs x∈fs) ≡ x∈fs sound∘complete f [] x∈ rewrite Return⋆.sound∘complete {Tok = Bool} x∈ = refl sound∘complete f (bs ∶ rs ∶ʳ true) x∈ = sound∘complete (specialise f true) rs x∈ sound∘complete f (bs ∶ rs ∶ʳ false) x∈ = sound∘complete (specialise f false) rs x∈ complete∘sound : ∀ {x : R} {s s′ : List Bool} f (rs : Reverse s) (rs′ : Reverse s′) (x∈pf : x ∈ grammar f · s) → s ≡ s′ → rs ≅ rs′ → complete f rs (sound f x∈pf) ≡ x∈pf complete∘sound f rs rs′ (∣-right ._ x∈) s≡ rs≅ with Return⋆.sound (f []) x∈ | Return⋆.complete∘sound (f []) x∈ complete∘sound f ._ [] (∣-right ._ .(Return⋆.complete x∈′)) refl refl | (refl , x∈′) | refl = refl complete∘sound f _ ([] ∶ _ ∶ʳ _) (∣-right ._ .(Return⋆.complete x∈′)) () _ | (refl , x∈′) | refl complete∘sound f _ ((_ ∷ _) ∶ _ ∶ʳ _) (∣-right ._ .(Return⋆.complete x∈′)) () _ | (refl , x∈′) | refl complete∘sound f rs rs′ (∣-left (∣-left (<$> x∈ ⊛ t∈))) s≡ rs≅ with Tok.sound true t∈ complete∘sound f rs (bs′ ∶ rs′ ∶ʳ true) (∣-left (∣-left (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) with proj₁ $ ListProp.∷ʳ-injective bs bs′ s≡ complete∘sound f rs (.bs ∶ rs′ ∶ʳ true) (∣-left (∣-left (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) | refl with s≡ | rs≅ complete∘sound f ._ (.bs ∶ rs′ ∶ʳ true) (∣-left (∣-left (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) | refl | refl | refl rewrite complete∘sound (specialise f true) rs′ rs′ x∈ refl refl | Tok.η t∈ = refl complete∘sound f rs (bs′ ∶ rs′ ∶ʳ false) (∣-left (∣-left (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) with proj₂ $ ListProp.∷ʳ-injective bs bs′ s≡ ... | () complete∘sound f rs [] (∣-left (∣-left (_⊛_ {s₁ = []} (<$> x∈) t∈))) () _ | (refl , refl) complete∘sound f rs [] (∣-left (∣-left (_⊛_ {s₁ = _ ∷ _} (<$> x∈) t∈))) () _ | (refl , refl) complete∘sound f rs rs′ (∣-left (∣-right ._ (<$> x∈ ⊛ t∈))) s≡ rs≅ with Tok.sound false t∈ complete∘sound f rs (bs′ ∶ rs′ ∶ʳ false) (∣-left (∣-right ._ (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) with proj₁ $ ListProp.∷ʳ-injective bs bs′ s≡ complete∘sound f rs (.bs ∶ rs′ ∶ʳ false) (∣-left (∣-right ._ (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) | refl with s≡ | rs≅ complete∘sound f ._ (.bs ∶ rs′ ∶ʳ false) (∣-left (∣-right ._ (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) | refl | refl | refl rewrite complete∘sound (specialise f false) rs′ rs′ x∈ refl refl | Tok.η t∈ = refl complete∘sound f rs (bs′ ∶ rs′ ∶ʳ true) (∣-left (∣-right ._ (_⊛_ {s₁ = bs} (<$> x∈) t∈))) s≡ rs≅ | (refl , refl) with proj₂ $ ListProp.∷ʳ-injective bs bs′ s≡ ... | () complete∘sound f rs [] (∣-left (∣-right ._ (_⊛_ {s₁ = []} (<$> x∈) t∈))) () _ | (refl , refl) complete∘sound f rs [] (∣-left (∣-right ._ (_⊛_ {s₁ = _ ∷ _} (<$> x∈) t∈))) () _ | (refl , refl) -- A corollary. maximally-expressive : ∀ {R} (f : List Bool → List R) {s} → parse (grammar f) s ∼[ bag ] f s maximally-expressive f {s} {x} = (x ∈ parse (grammar f) s) ↔⟨ SK-sym Backend.parse-correct ⟩ x ∈ grammar f · s ↔⟨ grammar-correct f ⟩ x ∈ f s ∎ where open Related.EquationalReasoning
{ "alphanum_fraction": 0.5215181997, "avg_line_length": 43.2421524664, "ext": "agda", "hexsha": "83244cca5b8935c4ec0ba128bc478b250d92b59a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/ExpressiveStrength.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/ExpressiveStrength.agda", "max_line_length": 138, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/ExpressiveStrength.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 3558, "size": 9643 }
module Everything where import Records import Basics import Modules import With import Families import Datatypes import Bool import Naturals
{ "alphanum_fraction": 0.8591549296, "avg_line_length": 12.9090909091, "ext": "agda", "hexsha": "89a26925b516bdfa337f972afd573e2a59649291", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/AIM6/HelloAgda/Everything.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/AIM6/HelloAgda/Everything.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/AIM6/HelloAgda/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 142 }
------------------------------------------------------------------------ -- Definitional interpreters can model systems with bounded space ------------------------------------------------------------------------ -- In "Reasoning on Divergent Computations with Coaxioms" Ancona, -- Dagnino and Zucca write the following: -- -- "To assess the applicability and generality of our approach much -- work is still needed. We are currently considering to apply -- coaxioms to other kinds of semantics; in particular, trace -- semantics seems particularly interesting for investigating -- whether our approach is suitable for formalizing and proving -- important safety properties of non terminating programs, as -- ensuring that a server will never try to use infinite resources. -- Other approaches based on definitional interpreters [Danielsson -- 2012], and the adoption of step counters [Amin and Rompf 2017; -- Ancona 2014; Ernst et al. 2006; Owens et al. 2016] seem to be -- appealing for proving type soundness properties with big-step -- semantics, and other results concerning program equivalence; -- however, it is not clear whether these solutions work well for -- other kinds of properties. For instance, if a program consists of -- an infinite loop that allocates new heap space at each step -- without releasing it, one would like to conclude that it will -- eventually crash even though a definitional interpreter returns -- timeout for all possible values of the step counter." -- -- This is an attempt to show that definitional interpreters can -- handle this situation. module Bounded-space where open import Equality.Propositional open import Prelude open import Tactic.By.Propositional open import Prelude.Size open import Colist equality-with-J open import Nat equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity as B hiding (reflexive; symmetric) open import Only-allocation ------------------------------------------------------------------------ -- Heaps -- Bounded heaps. (Only a size, plus a proof showing that the size is -- bounded.) record Heap (limit : ℕ) : Type where field size : ℕ bound : size ≤ limit open Heap public -- An empty heap. empty : ∀ {l} → Heap l empty = record { size = zero; bound = zero≤ _ } -- A full heap. full : ∀ l → Heap l full l = record { size = l; bound = ≤-refl } -- Reduces the heap's size by one. If the heap is empty, then it is -- returned unchanged. shrink : ∀ {l} → Heap l → Heap l shrink {l} h = record { size = pred (h .size) ; bound = pred (h .size) ≤⟨ pred≤ _ ⟩ h .size ≤⟨ h .bound ⟩∎ l ∎≤ } -- Increases the heap's size by one. If the heap already has the -- maximum size, then nothing is returned. grow : ∀ {l} → Heap l → Maybe (Heap l) grow {l} h with l ≤⊎> h .size ... | inj₁ _ = nothing ... | inj₂ h<l = just (record { size = suc (h .size) ; bound = h<l }) -- Lemmas related to grow. grow-full : ∀ {l} (h : Heap l) → h .size ≡ l → grow h ≡ nothing grow-full {l} h h≡l with l ≤⊎> h .size ... | inj₁ _ = refl ... | inj₂ h<l = ⊥-elim (+≮ 0 ( 1 + h .size ≤⟨ h<l ⟩ l ≡⟨ sym h≡l ⟩≤ h .size ∎≤)) grow-not-full : ∀ {l} (h : Heap l) → h .size < l → ∃ λ h′ → grow h ≡ just h′ × h′ .size ≡ 1 + h .size grow-not-full {l} h h<l with l ≤⊎> h .size ... | inj₂ _ = _ , refl , refl ... | inj₁ l≤h = ⊥-elim (+≮ 0 ( 1 + h .size ≤⟨ h<l ⟩ l ≤⟨ l≤h ⟩∎ h .size ∎≤)) ------------------------------------------------------------------------ -- Definitional interpreter -- One step of computation. step : ∀ {l} → Stmt → Heap l → Maybe (Heap l) step dealloc heap = just (shrink heap) step alloc heap = grow heap -- A crashing computation. crash : ∀ {i l} → Delay (Maybe (Heap l)) i crash = now nothing -- A definitional interpreter. ⟦_⟧ : ∀ {i l} → Program i → Heap l → Delay (Maybe (Heap l)) i ⟦ [] ⟧ heap = now (just heap) ⟦ s ∷ p ⟧ heap with step s heap ... | nothing = crash ... | just new-heap = later λ { .force → ⟦ p .force ⟧ new-heap } ------------------------------------------------------------------------ -- A program equivalence -- An equivalence relation that identifies programs that, given a -- sufficient amount of memory, behave identically (up to weak -- bisimilarity). infix 4 [_]_≃_ [_]_≃′_ [_]_≃_ : Size → Program ∞ → Program ∞ → Type [ i ] p ≃ q = ∃ λ c → ∀ l (h : Heap l) → c + h .size ≤ l → [ i ] ⟦ p ⟧ h ≈ ⟦ q ⟧ h [_]_≃′_ : Size → Program ∞ → Program ∞ → Type [ i ] p ≃′ q = ∃ λ c → ∀ l (h : Heap l) → c + h .size ≤ l → [ i ] ⟦ p ⟧ h ≈′ ⟦ q ⟧ h -- The relation is an equivalence relation. reflexive : ∀ {i} p → [ i ] p ≃ p reflexive _ = 0 , λ _ _ _ → B.reflexive _ symmetric : ∀ {i p q} → [ i ] p ≃ q → [ i ] q ≃ p symmetric = Σ-map id λ hyp l h c → B.symmetric (hyp l h c) transitive : ∀ {i p q r} → [ ∞ ] p ≃ q → [ ∞ ] q ≃ r → [ i ] p ≃ r transitive {p = p} {q} {r} (c₁ , p₁) (c₂ , p₂) = max c₁ c₂ , λ l h c → ⟦ p ⟧ h ≈⟨ p₁ l h (lemma₁ l h c) ⟩ ⟦ q ⟧ h ≈⟨ p₂ l h (lemma₂ l h c) ⟩∎ ⟦ r ⟧ h ∎ where lemma₁ = λ l h c → c₁ + h .size ≤⟨ ˡ≤max c₁ _ +-mono ≤-refl ⟩ max c₁ c₂ + h .size ≤⟨ c ⟩∎ l ∎≤ lemma₂ = λ l h c → c₂ + h .size ≤⟨ ʳ≤max c₁ _ +-mono ≤-refl ⟩ max c₁ c₂ + h .size ≤⟨ c ⟩∎ l ∎≤ -- The relation is compatible with respect to the program formers. []-cong : ∀ {i} → [ i ] [] ≃ [] []-cong = reflexive [] ∷-cong : ∀ {s p q i} → [ i ] p .force ≃′ q .force → [ i ] s ∷ p ≃ s ∷ q ∷-cong {dealloc} (c , p≈q) = c , λ l h c≤ → later λ { .force → p≈q l (shrink h) ( c + shrink h .size ≤⟨ ≤-refl {n = c} +-mono pred≤ _ ⟩ c + h .size ≤⟨ c≤ ⟩ l ∎≤) .force } ∷-cong {alloc} {p} {q} {i} (c , p≈q) = 1 + c , lemma where lemma : ∀ l (h : Heap l) → 1 + c + h .size ≤ l → [ i ] ⟦ alloc ∷ p ⟧ h ≈ ⟦ alloc ∷ q ⟧ h lemma l h 1+c≤ with l ≤⊎> h .size ... | inj₁ _ = now ... | inj₂ h<l = later λ { .force → p≈q l _ ( c + (1 + h .size) ≡⟨ +-assoc c ⟩≤ c + 1 + h .size ≡⟨ by (+-comm c) ⟩≤ 1 + c + h .size ≤⟨ 1+c≤ ⟩∎ l ∎≤) .force } ------------------------------------------------------------------------ -- Some examples -- The program bounded crashes when the heap is full. bounded-crash : ∀ {i l} (h : Heap l) → h .size ≡ l → [ i ] ⟦ bounded ⟧ h ≈ crash bounded-crash h h≡l rewrite grow-full h h≡l = now -- However, for smaller heaps the program loops. bounded-loop : ∀ {i l} (h : Heap l) → h .size < l → [ i ] ⟦ bounded ⟧ h ≈ never bounded-loop {l = l} h <l with grow h | grow-not-full h <l ... | .(just h′) | h′ , refl , refl = later λ { .force → later λ { .force → bounded-loop _ <l }} -- The program bounded₂ loops when there are at least two empty slots -- in the heap. bounded₂-loop : ∀ {i l} (h : Heap l) → 2 + h .size ≤ l → [ i ] ⟦ bounded₂ ⟧ h ≈ never bounded₂-loop {i} {l} h 2+h≤l with grow h | grow-not-full h (<→≤ 2+h≤l) ... | .(just h′) | h′ , refl , refl = later λ { .force → lemma } where lemma : [ i ] ⟦ force (tail bounded₂) ⟧ h′ ≈ never lemma with grow h′ | grow-not-full h′ 2+h≤l lemma | .(just h″) | h″ , refl , refl = later λ { .force → later λ { .force → later λ { .force → bounded₂-loop _ 2+h≤l }}} -- The program unbounded crashes for all heaps. unbounded-crash : ∀ {i l} (h : Heap l) → [ i ] ⟦ unbounded ⟧ h ≈ crash unbounded-crash {l = l} h = helper h (≤→≤↑ (h .bound)) where helper : ∀ {i} (h′ : Heap l) → size h′ ≤↑ l → [ i ] ⟦ unbounded ⟧ h′ ≈ crash helper h′ (≤↑-refl h′≡l) rewrite grow-full h′ h′≡l = now helper h′ (≤↑-step 1+h′≤l) with grow h′ | grow-not-full h′ (≤↑→≤ 1+h′≤l) ... | .(just h″) | h″ , refl , refl = laterˡ (helper h″ 1+h′≤l) -- The programs bounded and bounded₂ are ≃-equivalent. bounded≃bounded₂ : [ ∞ ] bounded ≃ bounded₂ bounded≃bounded₂ = 2 , λ l h 2+h≤l → ⟦ bounded ⟧ h ≈⟨ bounded-loop _ (<→≤ 2+h≤l) ⟩ never ≈⟨ B.symmetric (bounded₂-loop _ 2+h≤l) ⟩∎ ⟦ bounded₂ ⟧ h ∎ -- The programs bounded and unbounded are not ≃-equivalent. ¬bounded≃unbounded : ¬ [ ∞ ] bounded ≃ unbounded ¬bounded≃unbounded (c , c≈u) = now≉never ( crash ≈⟨ B.symmetric (unbounded-crash h) ⟩ ⟦ unbounded ⟧ h ≈⟨ B.symmetric (c≈u _ h (≤-refl +-mono zero≤ _)) ⟩ ⟦ bounded ⟧ h ≈⟨ bounded-loop h (m≤n+m _ _) ⟩∎ never ∎) where h : Heap (c + 1) h = record { size = 0 ; bound = zero≤ _ }
{ "alphanum_fraction": 0.524788668, "avg_line_length": 29.9794520548, "ext": "agda", "hexsha": "6c6dae1aed09304fecaf708082e4ba0db9aeb8f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Bounded-space.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Bounded-space.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Bounded-space.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3077, "size": 8754 }
open import Coinduction using ( ♯_ ; ♭ ) open import Data.Strict using ( Strict ; ! ) open import Data.Natural using ( Natural ; # ; _+_ ) open import Data.Bool using ( Bool ; true ; false ) open import System.IO.Transducers.Session using ( I ; Σ ; ⟨_⟩ ; * ; _&*_ ; ¿ ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ) open import System.IO.Transducers.Strict using ( _⇛_ ) module System.IO.Transducers.List where -- Length of a list length' : ∀ {T S} → (Strict Natural) → (T &* S) ⇛ ⟨ Natural ⟩ length' {I} {S} (! n) true = inp (♯ length' {S} {S} (! (n + # 1))) length' {I} {S} (! n) false = out n done length' {Σ V G} {S} (! n) b = inp (♯ length' {♭ G b} {S} (! n)) length : ∀ {S} → (* S) ⇛ ⟨ Natural ⟩ length {S} = length' {I} {S} (! (# 0)) -- Flatten a list of lists mutual concat' : ∀ {T S} → ((T &* S) &* * S) ⇛ (T &* S) concat' {I} {S} true = out true (inp (♯ concat' {S} {S})) concat' {I} {S} false = inp (♯ concat {S}) concat' {Σ W G} {S} a = out a (inp (♯ concat' {♭ G a} {S})) concat : ∀ {S} → (* (* S)) ⇛ (* S) concat {S} true = inp (♯ concat' {I} {S}) concat {S} false = out false done -- Some inclusions, which coerce traces from one session to another. -- TODO: Add more inclusions. -- TODO: Prove that these are monomorphisms. -- TODO: It would be nice if inclusions like this could be handled by subtyping. S⊆S&*T : ∀ {S T} → S ⇒ S &* T S⊆S&*T {I} = out false done S⊆S&*T {Σ V F} = inp (♯ λ a → out a S⊆S&*T) S⊆*S : ∀ {S} → S ⇒ * S S⊆*S = out true S⊆S&*T ¿S⊆*S : ∀ {S} → ¿ S ⇛ * S ¿S⊆*S {S} true = out true (S⊆S&*T {S} {S}) ¿S⊆*S {S} false = out false done
{ "alphanum_fraction": 0.5394816154, "avg_line_length": 32.5294117647, "ext": "agda", "hexsha": "f09f4a57dbe030f06471f03529e766a08fb1d95b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/List.agda", "max_line_length": 80, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 673, "size": 1659 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) open import Categories.Category.Monoidal using (Monoidal) module Categories.Category.Monoidal.Reasoning {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open import Data.Product using (_,_) open import Categories.Functor renaming (id to idF) private module C = Category C open C hiding (id; identityˡ; identityʳ; assoc) private variable X Y : Obj f g h i : X ⇒ Y open Monoidal M using (_⊗₁_; ⊗) open Functor ⊗ using (F-resp-≈; homomorphism) open HomReasoning public infixr 6 _⟩⊗⟨_ refl⟩⊗⟨_ infixl 7 _⟩⊗⟨refl ⊗-resp-≈ : f ≈ h → g ≈ i → (f ⊗₁ g) ≈ (h ⊗₁ i) ⊗-resp-≈ p q = F-resp-≈ (p , q) ⊗-resp-≈ˡ : f ≈ h → (f ⊗₁ g) ≈ (h ⊗₁ g) ⊗-resp-≈ˡ p = ⊗-resp-≈ p Equiv.refl ⊗-resp-≈ʳ : g ≈ i → (f ⊗₁ g) ≈ (f ⊗₁ i) ⊗-resp-≈ʳ p = ⊗-resp-≈ Equiv.refl p _⟩⊗⟨_ : f ≈ h → g ≈ i → (f ⊗₁ g) ≈ (h ⊗₁ i) _⟩⊗⟨_ = ⊗-resp-≈ refl⟩⊗⟨_ : g ≈ i → (f ⊗₁ g) ≈ (f ⊗₁ i) refl⟩⊗⟨_ = ⊗-resp-≈ʳ _⟩⊗⟨refl : f ≈ h → (f ⊗₁ g) ≈ (h ⊗₁ g) _⟩⊗⟨refl = ⊗-resp-≈ˡ -- removing the {_} makes the whole thing not type check anymore for some reason -- an issue was raised on the main agda GitHub repository about this -- (https://github.com/agda/agda/issues/4140) -- if this is fixed feel free to remove the {_} ⊗-distrib-over-∘ : ((f ∘ h) ⊗₁ (g ∘ i)) ≈ ((f ⊗₁ g) ∘ (h ⊗₁ i)) ⊗-distrib-over-∘ {_} = homomorphism -- This also corresponds with the graphical coherence property of diagrams modelling monoidal categories: -- | | | | -- [h] [i] [h] [i] -- | | ≈ | | -- [f] [g] | | -- | | | | -- [f] [g] -- | | -- Parallel-to-serial conversions -- -- | | | | | | -- | | | [g] [f] | -- [f] [g] = | | = | | -- | | [f] | | [g] -- | | | | | | serialize₁₂ : ∀ {X₁ Y₁ X₂ Y₂} {f : X₁ ⇒ Y₁} {g : X₂ ⇒ Y₂} → f ⊗₁ g ≈ f ⊗₁ C.id ∘ C.id ⊗₁ g serialize₁₂ {f = f} {g} = begin f ⊗₁ g ≈˘⟨ C.identityʳ ⟩⊗⟨ C.identityˡ ⟩ (f ∘ C.id) ⊗₁ (C.id ∘ g) ≈⟨ ⊗-distrib-over-∘ ⟩ f ⊗₁ C.id ∘ C.id ⊗₁ g ∎ serialize₂₁ : ∀ {X₁ Y₁ X₂ Y₂} {f : X₁ ⇒ Y₁} {g : X₂ ⇒ Y₂} → f ⊗₁ g ≈ C.id ⊗₁ g ∘ f ⊗₁ C.id serialize₂₁ {f = f} {g} = begin f ⊗₁ g ≈˘⟨ C.identityˡ ⟩⊗⟨ C.identityʳ ⟩ (C.id ∘ f) ⊗₁ (g ∘ C.id) ≈⟨ ⊗-distrib-over-∘ ⟩ C.id ⊗₁ g ∘ f ⊗₁ C.id ∎ -- Split a composite in the first component -- -- | | | | | | -- [g] | [g] | [g] [h] -- | [h] = | | = | | -- [f] | [f] [h] [f] | -- | | | | | | split₁ʳ : ∀ {X₁ Y₁ Z₁ X₂ Y₂} {f : Y₁ ⇒ Z₁} {g : X₁ ⇒ Y₁} {h : X₂ ⇒ Y₂} → (f ∘ g) ⊗₁ h ≈ f ⊗₁ h ∘ g ⊗₁ C.id split₁ʳ {f = f} {g} {h} = begin (f ∘ g) ⊗₁ h ≈˘⟨ refl⟩⊗⟨ C.identityʳ ⟩ (f ∘ g) ⊗₁ (h ∘ C.id) ≈⟨ ⊗-distrib-over-∘ ⟩ f ⊗₁ h ∘ g ⊗₁ C.id ∎ split₁ˡ : ∀ {X₁ Y₁ Z₁ X₂ Y₂} {f : Y₁ ⇒ Z₁} {g : X₁ ⇒ Y₁} {h : X₂ ⇒ Y₂} → (f ∘ g) ⊗₁ h ≈ f ⊗₁ C.id ∘ g ⊗₁ h split₁ˡ {f = f} {g} {h} = begin (f ∘ g) ⊗₁ h ≈˘⟨ refl⟩⊗⟨ C.identityˡ ⟩ (f ∘ g) ⊗₁ (C.id ∘ h) ≈⟨ ⊗-distrib-over-∘ ⟩ f ⊗₁ C.id ∘ g ⊗₁ h ∎ -- Split a composite in the second component -- -- | | | | | | -- | [h] | [h] [f] [h] -- [f] | = | | = | | -- | [g] [f] [g] | [g] -- | | | | | | split₂ʳ : ∀ {X₁ Y₁ X₂ Y₂ Z₂} {f : X₁ ⇒ Y₁} {g : Y₂ ⇒ Z₂} {h : X₂ ⇒ Y₂} → f ⊗₁ (g ∘ h) ≈ f ⊗₁ g ∘ C.id ⊗₁ h split₂ʳ {f = f} {g} {h} = begin f ⊗₁ (g ∘ h) ≈˘⟨ C.identityʳ ⟩⊗⟨refl ⟩ (f ∘ C.id) ⊗₁ (g ∘ h) ≈⟨ ⊗-distrib-over-∘ ⟩ f ⊗₁ g ∘ C.id ⊗₁ h ∎ split₂ˡ : ∀ {X₁ Y₁ X₂ Y₂ Z₂} {f : X₁ ⇒ Y₁} {g : Y₂ ⇒ Z₂} {h : X₂ ⇒ Y₂} → f ⊗₁ (g ∘ h) ≈ C.id ⊗₁ g ∘ f ⊗₁ h split₂ˡ {f = f} {g} {h} = begin f ⊗₁ (g ∘ h) ≈˘⟨ C.identityˡ ⟩⊗⟨refl ⟩ (C.id ∘ f) ⊗₁ (g ∘ h) ≈⟨ ⊗-distrib-over-∘ ⟩ C.id ⊗₁ g ∘ f ⊗₁ h ∎
{ "alphanum_fraction": 0.4146942801, "avg_line_length": 31.937007874, "ext": "agda", "hexsha": "af88d075a52cafe2c093d019beb9b69e9538b5fe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Reasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Reasoning.agda", "max_line_length": 107, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Reasoning.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2033, "size": 4056 }
-- Export only the experiments that are expected to compile (without -- any holes) {-# OPTIONS --cubical #-} module Cubical.Experiments.Everything where open import Cubical.Experiments.Brunerie public open import Cubical.Experiments.Generic public open import Cubical.Experiments.Problem open import Cubical.Experiments.FunExtFromUA public
{ "alphanum_fraction": 0.8211143695, "avg_line_length": 34.1, "ext": "agda", "hexsha": "42a85a3e4e853d3ed3d5d056f5d8e65c5783c01d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Experiments/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Experiments/Everything.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Experiments/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 76, "size": 341 }
-- Andreas, 2017-09-16, issue #2759 -- Allow empty declaration blocks in the parser. open import Agda.Builtin.Nat x0 = zero mutual x1 = suc x0 abstract x2 = suc x1 private x3 = suc x2 instance x4 = suc x3 macro x5 = suc x4 postulate x6 = suc x5 -- Expected: 6 warnings about empty blocks mutual postulate -- Empty postulate block. abstract private instance macro -- Empty macro block. -- Empty blocks are also tolerated in lets and lambdas. _ = λ (let abstract ) → let abstract in Set _ = λ (let field ) → let field in Set _ = λ (let instance ) → let instance in Set _ = λ (let macro ) → let macro in Set _ = λ (let mutual ) → let mutual in Set _ = λ (let postulate) → let postulate in Set _ = λ (let private ) → let private in Set
{ "alphanum_fraction": 0.6740547588, "avg_line_length": 19.175, "ext": "agda", "hexsha": "776f64b86ce3f153b1c8fa8f72a168bc2b200729", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2759.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2759.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2759.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 243, "size": 767 }
module plfa-code.Reasoning-legacy where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; trans) infixr 2 _≡⟨_⟩_ infix 3 _∎ _≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z ------- → x ≡ z x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z _∎ : ∀ {A : Set} (x : A) ------ → x ≡ x x ∎ = refl
{ "alphanum_fraction": 0.5, "avg_line_length": 16.4, "ext": "agda", "hexsha": "31938b3085d821d10682e974e9ce965293cc10a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Reasoning-legacy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Reasoning-legacy.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Reasoning-legacy.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 163, "size": 328 }
module Oscar.Property.Symmetry where open import Oscar.Level record Symmetry {𝔬} {⋆ : Set 𝔬} {𝔮} (_≒_ : ⋆ → ⋆ → Set 𝔮) : Set (𝔬 ⊔ 𝔮) where field symmetry : ∀ {x y} → x ≒ y → y ≒ x open Symmetry ⦃ … ⦄ public
{ "alphanum_fraction": 0.5760368664, "avg_line_length": 19.7272727273, "ext": "agda", "hexsha": "4c2663e0732aba96d9bb19bf2f54e7a52a118747", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Property/Symmetry.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Property/Symmetry.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Property/Symmetry.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 103, "size": 217 }
-- Reported by Christian Sattler on 2019-12-7 postulate A B : Set barb : Set barb = (A → (_ : B) → _) _ -- WAS: unsolved constraints. -- SHOULD: throw an error that A → ... is not a function.
{ "alphanum_fraction": 0.6294416244, "avg_line_length": 17.9090909091, "ext": "agda", "hexsha": "6d90f58eb7301abafb34df22ba7e65e0bb34072a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4268.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4268.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4268.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 65, "size": 197 }
{-# OPTIONS --type-in-type #-} data IBool : Set where itrue ifalse : IBool Bool : Set; Bool = (B : Set) → B → B → B toIBool : Bool → IBool toIBool b = b _ itrue ifalse true : Bool; true = λ B t f → t and : Bool → Bool → Bool; and = λ a b B t f → a B (b B t f) f Nat : Set; Nat = (n : Set) → (n → n) → n → n add : Nat → Nat → Nat; add = λ a b n s z → a n s (b n s z) mul : Nat → Nat → Nat; mul = λ a b n s → a n (b n s) suc : Nat → Nat; suc = λ a n s z → s (a n s z) Eq : {A : Set} → A → A → Set Eq {A} x y = (P : A → Set) → P x → P y refl : {A : Set}{x : A} → Eq {A} x x; refl = λ P px → px n2 : Nat; n2 = λ N s z → s (s z) n3 : Nat; n3 = λ N s z → s (s (s z)) n4 : Nat; n4 = λ N s z → s (s (s (s z))) n5 : Nat; n5 = λ N s z → s (s (s (s (s z)))) n10 = mul n2 n5 n10b = mul n5 n2 n15 = add n10 n5 n15b = add n10b n5 n18 = add n15 n3 n18b = add n15b n3 n19 = add n15 n4 n19b = add n15b n4 n20 = mul n2 n10 n20b = mul n2 n10b n21 = suc n20 n21b = suc n20b n22 = suc n21 n22b = suc n21b n23 = suc n22 n23b = suc n22b n100 = mul n10 n10 n100b = mul n10b n10b n10k = mul n100 n100 n10kb = mul n100b n100b n100k = mul n10k n10 n100kb = mul n10kb n10b n1M = mul n10k n100 n1Mb = mul n10kb n100b n5M = mul n1M n5 n5Mb = mul n1Mb n5 n10M = mul n5M n2 n10Mb = mul n5Mb n2 Tree : Set; Tree = (T : Set) → (T → T → T) → T → T leaf : Tree; leaf = λ T n l → l node : Tree → Tree → Tree; node = λ t1 t2 T n l → n (t1 T n l) (t2 T n l) fullTree : Nat → Tree; fullTree = λ n → n Tree (λ t → node t t) leaf -- full tree with given trees at bottom level fullTreeWithLeaf : Tree → Nat → Tree; fullTreeWithLeaf = λ bottom n → n Tree (λ t → node t t) bottom forceTree : Tree → Bool; forceTree = λ t → t Bool and true t15 = fullTree n15 t15b = fullTree n15b t18 = fullTree n18 t18b = fullTree n18b t19 = fullTree n19 t19b = fullTree n19b t20 = fullTree n20 t20b = fullTree n20b t21 = fullTree n21 t21b = fullTree n21b t22 = fullTree n22 t22b = fullTree n22b t23 = fullTree n23 t23b = fullTree n23b -- Nat conversion -------------------------------------------------------------------------------- -- convn1M : Eq n1M n1Mb; convn1M = refl -- convn5M : Eq n5M n5Mb; convn5M = refl -- convn10M : Eq n10M n10Mb; convn10M = refl -- Full tree conversion -------------------------------------------------------------------------------- -- convt15 : Eq t15 t15b; convt15 = refl -- 16 ms -- convt18 : Eq t18 t18b; convt18 = refl -- 20 ms -- convt19 : Eq t19 t19b; convt19 = refl -- 30 ms -- convt20 : Eq t20 t20b; convt20 = refl -- 1.7 s -- convt21 : Eq t21 t21b; convt21 = refl -- 3.4 s -- convt22 : Eq t22 t22b; convt22 = refl -- 6.6 s -- convt23 : Eq t23 t23b; convt23 = refl -- 13.1 s -- Full meta-containing tree conversion -------------------------------------------------------------------------------- -- convmt15 : Eq t15b (fullTreeWithLeaf _ n15 ); convmt15 = refl -- -- convmt18 : Eq t18b (fullTreeWithLeaf _ n18 ); convmt18 = refl -- -- convmt19 : Eq t19b (fullTreeWithLeaf _ n19 ); convmt19 = refl -- -- convmt20 : Eq t20b (fullTreeWithLeaf _ n20 ); convmt20 = refl -- -- convmt21 : Eq t21b (fullTreeWithLeaf _ n21 ); convmt21 = refl -- convmt22 : Eq t22b (fullTreeWithLeaf _ n22 ); convmt22 = refl -- convmt23 : Eq t23b (fullTreeWithLeaf _ n23 ); convmt23 = refl -- Full tree forcing -------------------------------------------------------------------------------- -- forcet15 : Eq (toIBool (forceTree t15)) itrue; forcet15 = refl -- 50 ms -- forcet18 : Eq (toIBool (forceTree t18)) itrue; forcet18 = refl -- 450 ms -- forcet19 : Eq (toIBool (forceTree t19)) itrue; forcet19 = refl -- 900 ms -- forcet20 : Eq (toIBool (forceTree t20)) itrue; forcet20 = refl -- 1.75 s -- forcet21 : Eq (toIBool (forceTree t21)) itrue; forcet21 = refl -- 3.5 s -- forcet22 : Eq (toIBool (forceTree t22)) itrue; forcet22 = refl -- 7.5 s -- forcet23 : Eq (toIBool (forceTree t23)) itrue; forcet23 = refl -- 15 s
{ "alphanum_fraction": 0.5542857143, "avg_line_length": 29.3795620438, "ext": "agda", "hexsha": "44e434184168326d20ef6e47cb8bda38e330ae19", "lang": "Agda", "max_forks_count": 19, "max_forks_repo_forks_event_max_datetime": "2022-03-03T19:46:54.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-05T21:11:34.000Z", "max_forks_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "int-index/smalltt", "max_forks_repo_path": "bench/conv_eval.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_issues_repo_issues_event_max_datetime": "2022-02-28T21:51:10.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-16T09:14:57.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "int-index/smalltt", "max_issues_repo_path": "bench/conv_eval.agda", "max_line_length": 80, "max_stars_count": 377, "max_stars_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "int-index/smalltt", "max_stars_repo_path": "bench/conv_eval.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T21:31:01.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-26T16:57:16.000Z", "num_tokens": 1624, "size": 4025 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Proofs where open import Data.Binary.Proofs.Multiplication using (*-homo) open import Data.Binary.Proofs.Addition using (+-homo) open import Data.Binary.Proofs.Unary using (inc-homo) open import Data.Binary.Proofs.Bijection using (𝔹↔ℕ)
{ "alphanum_fraction": 0.7147435897, "avg_line_length": 34.6666666667, "ext": "agda", "hexsha": "2f8a98ee76fefb80066a50ca9a9e97c7b69d0414", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Proofs.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 80, "size": 312 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring open import Sets.FinSet open import Groups.Groups open import Groups.Definition open import Sets.EquivalenceRelations open import Setoids.Functions.Extension open import Groups.SymmetricGroups.Definition module Groups.SymmetricGroups.Finite.Definition where snSet : (n : ℕ) → Set snSet n = SymmetryGroupElements (reflSetoid (FinSet n)) snSetoid : (n : ℕ) → Setoid (snSet n) snSetoid n = symmetricSetoid (reflSetoid (FinSet n)) SymmetricGroupN : (n : ℕ) → Group (snSetoid n) (symmetricGroupOp) SymmetricGroupN n = symmetricGroup (reflSetoid (FinSet n)) record Cycles {n : ℕ} (s : snSet n) : Set where field cycles : {n : ℕ} → (s : snSet n) → Cycles s cycles s = {!!}
{ "alphanum_fraction": 0.7461368653, "avg_line_length": 28.3125, "ext": "agda", "hexsha": "d881a649932b0f9fe76cfa00e91fa3e4314da30c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/SymmetricGroups/Finite/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/SymmetricGroups/Finite/Definition.agda", "max_line_length": 65, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/SymmetricGroups/Finite/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 267, "size": 906 }
open import SOAS.Common import SOAS.Families.Core -- Families with syntactic structure module SOAS.Metatheory.MetaAlgebra {T : Set} (open SOAS.Families.Core {T}) (⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ) (𝔛 : Familyₛ) where open import SOAS.Context {T} open import SOAS.Variable {T} open import SOAS.Construction.Structure as Structure open import SOAS.Abstract.Hom {T} import SOAS.Abstract.Coalgebra {T} as →□ ; open →□.Sorted open import SOAS.Metatheory.Algebra ⅀F private variable Γ Δ Π : Ctx α : T -- A family with support for variables, metavariables, and ⅀-algebra structure record MetaAlg (𝒜 : Familyₛ) : Set where field 𝑎𝑙𝑔 : ⅀ 𝒜 ⇾̣ 𝒜 𝑣𝑎𝑟 : ℐ ⇾̣ 𝒜 𝑚𝑣𝑎𝑟 : 𝔛 ⇾̣ 〖 𝒜 , 𝒜 〗 -- Congruence in metavariable arguments 𝑚≈₁ : {𝔪₁ 𝔪₂ : 𝔛 α Π}{σ : Π ~[ 𝒜 ]↝ Γ} → 𝔪₁ ≡ 𝔪₂ → 𝑚𝑣𝑎𝑟 𝔪₁ σ ≡ 𝑚𝑣𝑎𝑟 𝔪₂ σ 𝑚≈₁ refl = refl 𝑚≈₂ : {𝔪 : 𝔛 α Π}{σ ς : Π ~[ 𝒜 ]↝ Γ} → ({τ : T}(v : ℐ τ Π) → σ v ≡ ς v) → 𝑚𝑣𝑎𝑟 𝔪 σ ≡ 𝑚𝑣𝑎𝑟 𝔪 ς 𝑚≈₂ {𝔪 = 𝔪} p = cong (𝑚𝑣𝑎𝑟 𝔪) (dext p) -- Meta-algebra homomorphism record MetaAlg⇒ {𝒜 ℬ : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜)(ℬᵃ : MetaAlg ℬ) (f : 𝒜 ⇾̣ ℬ) : Set where private module 𝒜 = MetaAlg 𝒜ᵃ private module ℬ = MetaAlg ℬᵃ field ⟨𝑎𝑙𝑔⟩ : {t : ⅀ 𝒜 α Γ} → f (𝒜.𝑎𝑙𝑔 t) ≡ ℬ.𝑎𝑙𝑔 (⅀₁ f t) ⟨𝑣𝑎𝑟⟩ : {v : ℐ α Γ} → f (𝒜.𝑣𝑎𝑟 v) ≡ ℬ.𝑣𝑎𝑟 v ⟨𝑚𝑣𝑎𝑟⟩ : {𝔪 : 𝔛 α Π}{ε : Π ~[ 𝒜 ]↝ Γ} → f (𝒜.𝑚𝑣𝑎𝑟 𝔪 ε) ≡ ℬ.𝑚𝑣𝑎𝑟 𝔪 (f ∘ ε) -- Category of meta-algebras module MetaAlgebraStructure = Structure 𝔽amiliesₛ MetaAlg MetaAlgebraCatProps : MetaAlgebraStructure.CategoryProps MetaAlgebraCatProps = record { IsHomomorphism = MetaAlg⇒ ; id-hom = λ {𝒜}{𝒜ᵃ} → record { ⟨𝑎𝑙𝑔⟩ = cong (𝑎𝑙𝑔 𝒜ᵃ) (sym ⅀.identity) ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = refl } ; comp-hom = λ{ {𝐶ˢ = 𝒜ᵃ}{ℬᵃ}{𝒞ᵃ} g f gᵃ⇒ fᵃ⇒ → record { ⟨𝑎𝑙𝑔⟩ = trans (cong g (⟨𝑎𝑙𝑔⟩ fᵃ⇒)) (trans (⟨𝑎𝑙𝑔⟩ gᵃ⇒) (cong (𝑎𝑙𝑔 𝒞ᵃ) (sym ⅀.homomorphism))) ; ⟨𝑣𝑎𝑟⟩ = trans (cong g (⟨𝑣𝑎𝑟⟩ fᵃ⇒)) (⟨𝑣𝑎𝑟⟩ gᵃ⇒) ; ⟨𝑚𝑣𝑎𝑟⟩ = trans (cong g (⟨𝑚𝑣𝑎𝑟⟩ fᵃ⇒)) (⟨𝑚𝑣𝑎𝑟⟩ gᵃ⇒) } }} where open MetaAlg ; open MetaAlg⇒ module MetaAlgProps = MetaAlgebraStructure.CategoryProps MetaAlgebraCatProps 𝕄etaAlgebras : Category 1ℓ 0ℓ 0ℓ 𝕄etaAlgebras = MetaAlgebraStructure.StructCat MetaAlgebraCatProps module 𝕄etaAlg = Category 𝕄etaAlgebras MetaAlgebra : Set₁ MetaAlgebra = 𝕄etaAlg.Obj MetaAlgebra⇒ : MetaAlgebra → MetaAlgebra → Set MetaAlgebra⇒ = 𝕄etaAlg._⇒_ -- Identity is a meta-algebra homomorphism idᵃ : {𝒜 : Familyₛ} → (𝒜ᵃ : MetaAlg 𝒜) → MetaAlg⇒ 𝒜ᵃ 𝒜ᵃ id idᵃ 𝒜ᵃ = record { ⟨𝑎𝑙𝑔⟩ = cong (MetaAlg.𝑎𝑙𝑔 𝒜ᵃ) (sym ⅀.identity) ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = refl }
{ "alphanum_fraction": 0.6077684692, "avg_line_length": 28.5434782609, "ext": "agda", "hexsha": "5f2c6b8111964f1af9bff0a288c5dd68606cb870", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Metatheory/MetaAlgebra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Metatheory/MetaAlgebra.agda", "max_line_length": 78, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Metatheory/MetaAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 1587, "size": 2626 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Weakening where open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed import Tools.PropositionalEquality as PE -- Weakening type data _∷_⊆_ : Wk → Con Term → Con Term → Set where id : ∀ {Γ} → id ∷ Γ ⊆ Γ step : ∀ {Γ Δ A ρ} → ρ ∷ Δ ⊆ Γ → step ρ ∷ Δ ∙ A ⊆ Γ lift : ∀ {Γ Δ A ρ} → ρ ∷ Δ ⊆ Γ → lift ρ ∷ Δ ∙ U.wk ρ A ⊆ Γ ∙ A -- -- Weakening composition _•ₜ_ : ∀ {ρ ρ′ Γ Δ Δ′} → ρ ∷ Γ ⊆ Δ → ρ′ ∷ Δ ⊆ Δ′ → ρ • ρ′ ∷ Γ ⊆ Δ′ id •ₜ η′ = η′ step η •ₜ η′ = step (η •ₜ η′) lift η •ₜ id = lift η lift η •ₜ step η′ = step (η •ₜ η′) _•ₜ_ {lift ρ} {lift ρ′} {Δ′ = Δ′ ∙ A} (lift η) (lift η′) = PE.subst (λ x → lift (ρ • ρ′) ∷ x ⊆ Δ′ ∙ A) (PE.cong₂ _∙_ PE.refl (PE.sym (wk-comp ρ ρ′ A))) (lift (η •ₜ η′)) -- Weakening of judgements wkIndex : ∀ {Γ Δ n A ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρn = wkVar ρ n in ⊢ Δ → n ∷ A ∈ Γ → ρn ∷ ρA ∈ Δ wkIndex id ⊢Δ i = PE.subst (λ x → _ ∷ x ∈ _) (PE.sym (wk-id _)) i wkIndex (step ρ) (⊢Δ ∙ A) i = PE.subst (λ x → _ ∷ x ∈ _) (wk1-wk _ _) (there (wkIndex ρ ⊢Δ i)) wkIndex (lift ρ) (⊢Δ ∙ A) (there i) = PE.subst (λ x → _ ∷ x ∈ _) (wk1-wk≡lift-wk1 _ _) (there (wkIndex ρ ⊢Δ i)) wkIndex (lift ρ) ⊢Δ here = let G = _ n = _ in PE.subst (λ x → n ∷ x ∈ G) (wk1-wk≡lift-wk1 _ _) here mutual wk : ∀ {Γ Δ A ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A in ⊢ Δ → Γ ⊢ A → Δ ⊢ ρA wk ρ ⊢Δ (ℕⱼ ⊢Γ) = ℕⱼ ⊢Δ wk ρ ⊢Δ (Uⱼ ⊢Γ) = Uⱼ ⊢Δ wk ρ ⊢Δ (Πⱼ F ▹ G) = let ρF = wk ρ ⊢Δ F in Πⱼ ρF ▹ (wk (lift ρ) (⊢Δ ∙ ρF) G) wk ρ ⊢Δ (univ A) = univ (wkTerm ρ ⊢Δ A) wkTerm : ∀ {Γ Δ A t ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t in ⊢ Δ → Γ ⊢ t ∷ A → Δ ⊢ ρt ∷ ρA wkTerm ρ ⊢Δ (ℕⱼ ⊢Γ) = ℕⱼ ⊢Δ wkTerm ρ ⊢Δ (Πⱼ F ▹ G) = let ρF = wkTerm ρ ⊢Δ F in Πⱼ ρF ▹ (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) G) wkTerm ρ ⊢Δ (var ⊢Γ x) = var ⊢Δ (wkIndex ρ ⊢Δ x) wkTerm ρ ⊢Δ (lamⱼ F t) = let ρF = wk ρ ⊢Δ F in lamⱼ ρF (wkTerm (lift ρ) (⊢Δ ∙ ρF) t) wkTerm ρ ⊢Δ (_∘ⱼ_ {G = G} g a) = PE.subst (λ x → _ ⊢ _ ∷ x) (PE.sym (wk-β G)) (wkTerm ρ ⊢Δ g ∘ⱼ wkTerm ρ ⊢Δ a) wkTerm ρ ⊢Δ (zeroⱼ ⊢Γ) = zeroⱼ ⊢Δ wkTerm ρ ⊢Δ (sucⱼ n) = sucⱼ (wkTerm ρ ⊢Δ n) wkTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrecⱼ {G = G} {s = s} ⊢G ⊢z ⊢s ⊢n) = PE.subst (λ x → _ ⊢ natrec _ _ _ _ ∷ x) (PE.sym (wk-β G)) (natrecⱼ (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢G) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β G) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec ρ G) (wkTerm [ρ] ⊢Δ ⊢s)) (wkTerm [ρ] ⊢Δ ⊢n)) wkTerm ρ ⊢Δ (conv t A≡B) = conv (wkTerm ρ ⊢Δ t) (wkEq ρ ⊢Δ A≡B) wkEq : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A ≡ B → Δ ⊢ ρA ≡ ρB wkEq ρ ⊢Δ (univ A≡B) = univ (wkEqTerm ρ ⊢Δ A≡B) wkEq ρ ⊢Δ (refl A) = refl (wk ρ ⊢Δ A) wkEq ρ ⊢Δ (sym A≡B) = sym (wkEq ρ ⊢Δ A≡B) wkEq ρ ⊢Δ (trans A≡B B≡C) = trans (wkEq ρ ⊢Δ A≡B) (wkEq ρ ⊢Δ B≡C) wkEq ρ ⊢Δ (Π-cong F F≡H G≡E) = let ρF = wk ρ ⊢Δ F in Π-cong ρF (wkEq ρ ⊢Δ F≡H) (wkEq (lift ρ) (⊢Δ ∙ ρF) G≡E) wkEqTerm : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t ≡ u ∷ A → Δ ⊢ ρt ≡ ρu ∷ ρA wkEqTerm ρ ⊢Δ (refl t) = refl (wkTerm ρ ⊢Δ t) wkEqTerm ρ ⊢Δ (sym t≡u) = sym (wkEqTerm ρ ⊢Δ t≡u) wkEqTerm ρ ⊢Δ (trans t≡u u≡r) = trans (wkEqTerm ρ ⊢Δ t≡u) (wkEqTerm ρ ⊢Δ u≡r) wkEqTerm ρ ⊢Δ (conv t≡u A≡B) = conv (wkEqTerm ρ ⊢Δ t≡u) (wkEq ρ ⊢Δ A≡B) wkEqTerm ρ ⊢Δ (Π-cong F F≡H G≡E) = let ρF = wk ρ ⊢Δ F in Π-cong ρF (wkEqTerm ρ ⊢Δ F≡H) (wkEqTerm (lift ρ) (⊢Δ ∙ ρF) G≡E) wkEqTerm ρ ⊢Δ (app-cong {G = G} f≡g a≡b) = PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym (wk-β G)) (app-cong (wkEqTerm ρ ⊢Δ f≡g) (wkEqTerm ρ ⊢Δ a≡b)) wkEqTerm ρ ⊢Δ (β-red {a = a} {t = t} {G = G} F ⊢t ⊢a) = let ρF = wk ρ ⊢Δ F in PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x) (PE.sym (wk-β G)) (PE.subst (λ x → _ ⊢ U.wk _ ((lam t) ∘ a) ≡ x ∷ _) (PE.sym (wk-β t)) (β-red ρF (wkTerm (lift ρ) (⊢Δ ∙ ρF) ⊢t) (wkTerm ρ ⊢Δ ⊢a))) wkEqTerm ρ ⊢Δ (η-eq F f g f0≡g0) = let ρF = wk ρ ⊢Δ F in η-eq ρF (wkTerm ρ ⊢Δ f) (wkTerm ρ ⊢Δ g) (PE.subst (λ t → _ ⊢ t ∘ _ ≡ _ ∷ _) (PE.sym (wk1-wk≡lift-wk1 _ _)) (PE.subst (λ t → _ ⊢ _ ≡ t ∘ _ ∷ _) (PE.sym (wk1-wk≡lift-wk1 _ _)) (wkEqTerm (lift ρ) (⊢Δ ∙ ρF) f0≡g0))) wkEqTerm ρ ⊢Δ (suc-cong m≡n) = suc-cong (wkEqTerm ρ ⊢Δ m≡n) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-cong {s = s} {s′ = s′} {F = F} F≡F′ z≡z′ s≡s′ n≡n′) = PE.subst (λ x → Δ ⊢ natrec _ _ _ _ ≡ _ ∷ x) (PE.sym (wk-β F)) (natrec-cong (wkEq (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) F≡F′) (PE.subst (λ x → Δ ⊢ _ ≡ _ ∷ x) (wk-β F) (wkEqTerm [ρ] ⊢Δ z≡z′)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ≡ U.wk ρ s′ ∷ x) (wk-β-natrec _ F) (wkEqTerm [ρ] ⊢Δ s≡s′)) (wkEqTerm [ρ] ⊢Δ n≡n′)) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-zero {z} {s} {F} ⊢F ⊢z ⊢s) = PE.subst (λ x → Δ ⊢ natrec (U.wk (lift _) F) _ _ _ ≡ _ ∷ x) (PE.sym (wk-β F)) (natrec-zero (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → Δ ⊢ U.wk ρ z ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec _ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-suc {n} {z} {s} {F} ⊢n ⊢F ⊢z ⊢s) = PE.subst (λ x → Δ ⊢ natrec (U.wk (lift _) F) _ _ _ ≡ _ ∘ (natrec _ _ _ _) ∷ x) (PE.sym (wk-β F)) (natrec-suc (wkTerm [ρ] ⊢Δ ⊢n) (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → Δ ⊢ U.wk ρ z ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec _ F) (wkTerm [ρ] ⊢Δ ⊢s))) mutual wkRed : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A ⇒ B → Δ ⊢ ρA ⇒ ρB wkRed ρ ⊢Δ (univ A⇒B) = univ (wkRedTerm ρ ⊢Δ A⇒B) wkRedTerm : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t ⇒ u ∷ A → Δ ⊢ ρt ⇒ ρu ∷ ρA wkRedTerm ρ ⊢Δ (conv t⇒u A≡B) = conv (wkRedTerm ρ ⊢Δ t⇒u) (wkEq ρ ⊢Δ A≡B) wkRedTerm ρ ⊢Δ (app-subst {B = B} t⇒u a) = PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x) (PE.sym (wk-β B)) (app-subst (wkRedTerm ρ ⊢Δ t⇒u) (wkTerm ρ ⊢Δ a)) wkRedTerm ρ ⊢Δ (β-red {A} {B} {a} {t} ⊢A ⊢t ⊢a) = let ⊢ρA = wk ρ ⊢Δ ⊢A in PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x) (PE.sym (wk-β B)) (PE.subst (λ x → _ ⊢ U.wk _ ((lam t) ∘ a) ⇒ x ∷ _) (PE.sym (wk-β t)) (β-red ⊢ρA (wkTerm (lift ρ) (⊢Δ ∙ ⊢ρA) ⊢t) (wkTerm ρ ⊢Δ ⊢a))) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-subst {s = s} {F = F} ⊢F ⊢z ⊢s n⇒n′) = PE.subst (λ x → _ ⊢ natrec _ _ _ _ ⇒ _ ∷ x) (PE.sym (wk-β F)) (natrec-subst (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec _ F) (wkTerm [ρ] ⊢Δ ⊢s)) (wkRedTerm [ρ] ⊢Δ n⇒n′)) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-zero {s = s} {F = F} ⊢F ⊢z ⊢s) = PE.subst (λ x → _ ⊢ natrec (U.wk (lift ρ) F) _ _ _ ⇒ _ ∷ x) (PE.sym (wk-β F)) (natrec-zero (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec ρ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-suc {s = s} {F = F} ⊢n ⊢F ⊢z ⊢s) = PE.subst (λ x → _ ⊢ natrec _ _ _ _ ⇒ _ ∘ natrec _ _ _ _ ∷ x) (PE.sym (wk-β F)) (natrec-suc (wkTerm [ρ] ⊢Δ ⊢n) (wk (lift [ρ]) (⊢Δ ∙ ℕⱼ ⊢Δ) ⊢F) (PE.subst (λ x → _ ⊢ _ ∷ x) (wk-β F) (wkTerm [ρ] ⊢Δ ⊢z)) (PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x) (wk-β-natrec ρ F) (wkTerm [ρ] ⊢Δ ⊢s))) wkRed* : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A ⇒* B → Δ ⊢ ρA ⇒* ρB wkRed* ρ ⊢Δ (id A) = id (wk ρ ⊢Δ A) wkRed* ρ ⊢Δ (A⇒A′ ⇨ A′⇒*B) = wkRed ρ ⊢Δ A⇒A′ ⇨ wkRed* ρ ⊢Δ A′⇒*B wkRed*Term : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t ⇒* u ∷ A → Δ ⊢ ρt ⇒* ρu ∷ ρA wkRed*Term ρ ⊢Δ (id t) = id (wkTerm ρ ⊢Δ t) wkRed*Term ρ ⊢Δ (t⇒t′ ⇨ t′⇒*u) = wkRedTerm ρ ⊢Δ t⇒t′ ⇨ wkRed*Term ρ ⊢Δ t′⇒*u wkRed:*: : ∀ {Γ Δ A B ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρB = U.wk ρ B in ⊢ Δ → Γ ⊢ A :⇒*: B → Δ ⊢ ρA :⇒*: ρB wkRed:*: ρ ⊢Δ [ ⊢A , ⊢B , D ] = [ wk ρ ⊢Δ ⊢A , wk ρ ⊢Δ ⊢B , wkRed* ρ ⊢Δ D ] wkRed:*:Term : ∀ {Γ Δ A t u ρ} → ρ ∷ Δ ⊆ Γ → let ρA = U.wk ρ A ρt = U.wk ρ t ρu = U.wk ρ u in ⊢ Δ → Γ ⊢ t :⇒*: u ∷ A → Δ ⊢ ρt :⇒*: ρu ∷ ρA wkRed:*:Term ρ ⊢Δ [ ⊢t , ⊢u , d ] = [ wkTerm ρ ⊢Δ ⊢t , wkTerm ρ ⊢Δ ⊢u , wkRed*Term ρ ⊢Δ d ]
{ "alphanum_fraction": 0.353000091, "avg_line_length": 43.7569721116, "ext": "agda", "hexsha": "33a791f2018770259945384ab4bb677cdedb791e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Weakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Weakening.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Weakening.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5296, "size": 10983 }
module Pi-.Examples where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Nat.Properties open import Data.List as L open import Function using (_∘_) open import Pi-.Syntax open import Pi-.Opsem open import Pi-.Eval ----------------------------------------------------------------------------- -- Patterns and data definitions pattern 𝔹 = 𝟙 +ᵤ 𝟙 pattern 𝔽 = inj₁ tt pattern 𝕋 = inj₂ tt 𝔹+ : ℕ → 𝕌 𝔹+ 0 = 𝟘 𝔹+ 1 = 𝔹 𝔹+ (suc (suc n)) = 𝔹 +ᵤ (𝔹+ (suc n)) 𝔹^ : ℕ → 𝕌 𝔹^ 0 = 𝟙 𝔹^ 1 = 𝔹 𝔹^ (suc (suc n)) = 𝔹 ×ᵤ 𝔹^ (suc n) 𝔹* : ℕ → 𝕌 𝔹* n = 𝔹^ (1 + n) 𝔽^ : (n : ℕ) → ⟦ 𝔹^ n ⟧ 𝔽^ 0 = tt 𝔽^ 1 = 𝔽 𝔽^ (suc (suc n)) = 𝔽 , 𝔽^ (suc n) ----------------------------------------------------------------------------- -- Adaptors [A+B]+C=[C+B]+A : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (C +ᵤ B) +ᵤ A [A+B]+C=[C+B]+A = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ swap₊ [A+B]+C=[A+C]+B : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (A +ᵤ C) +ᵤ B [A+B]+C=[A+C]+B = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ assocl₊ [A+B]+[C+D]=[A+C]+[B+D] : {A B C D : 𝕌} → (A +ᵤ B) +ᵤ (C +ᵤ D) ↔ (A +ᵤ C) +ᵤ (B +ᵤ D) [A+B]+[C+D]=[A+C]+[B+D] = assocl₊ ⨾ (assocr₊ ⊕ id↔) ⨾ ((id↔ ⊕ swap₊) ⊕ id↔) ⨾ (assocl₊ ⊕ id↔) ⨾ assocr₊ A+[B+C]=B+[A+C] : ∀ {A B C} → A +ᵤ (B +ᵤ C) ↔ B +ᵤ (A +ᵤ C) A+[B+C]=B+[A+C] = assocl₊ ⨾ swap₊ ⊕ id↔ ⨾ assocr₊ Ax[BxC]=Bx[AxC] : {A B C : 𝕌} → A ×ᵤ (B ×ᵤ C) ↔ B ×ᵤ (A ×ᵤ C) Ax[BxC]=Bx[AxC] = assocl⋆ ⨾ (swap⋆ ⊗ id↔) ⨾ assocr⋆ [AxB]×C=[A×C]xB : ∀ {A B C} → (A ×ᵤ B) ×ᵤ C ↔ (A ×ᵤ C) ×ᵤ B [AxB]×C=[A×C]xB = assocr⋆ ⨾ (id↔ ⊗ swap⋆) ⨾ assocl⋆ [A×B]×[C×D]=[A×C]×[B×D] : {A B C D : 𝕌} → (A ×ᵤ B) ×ᵤ (C ×ᵤ D) ↔ (A ×ᵤ C) ×ᵤ (B ×ᵤ D) [A×B]×[C×D]=[A×C]×[B×D] = assocl⋆ ⨾ (assocr⋆ ⊗ id↔) ⨾ ((id↔ ⊗ swap⋆) ⊗ id↔) ⨾ (assocl⋆ ⊗ id↔) ⨾ assocr⋆ -- FST2LAST(b₁,b₂,…,bₙ) = (b₂,…,bₙ,b₁) FST2LAST : ∀ {n} → 𝔹^ n ↔ 𝔹^ n FST2LAST {0} = id↔ FST2LAST {1} = id↔ FST2LAST {2} = swap⋆ FST2LAST {suc (suc (suc n))} = Ax[BxC]=Bx[AxC] ⨾ (id↔ ⊗ FST2LAST) FST2LAST⁻¹ : ∀ {n} → 𝔹^ n ↔ 𝔹^ n FST2LAST⁻¹ = ! FST2LAST ----------------------------------------------------------------------------- -- Reversible Conditionals -- NOT(b) = ¬b NOT : 𝔹 ↔ 𝔹 NOT = swap₊ -- CNOT(b₁,b₂) = (b₁,b₁ xor b₂) CNOT : 𝔹 ×ᵤ 𝔹 ↔ 𝔹 ×ᵤ 𝔹 CNOT = dist ⨾ (id↔ ⊕ (id↔ ⊗ swap₊)) ⨾ factor -- CIF(c₁,c₂)(𝔽,a) = (𝔽,c₁ a) -- CIF(c₁,c₂)(𝕋,a) = (𝕋,c₂ a) CIF : {A : 𝕌} → (c₁ c₂ : A ↔ A) → 𝔹 ×ᵤ A ↔ 𝔹 ×ᵤ A CIF c₁ c₂ = dist ⨾ ((id↔ ⊗ c₁) ⊕ (id↔ ⊗ c₂)) ⨾ factor CIF₁ CIF₂ : {A : 𝕌} → (c : A ↔ A) → 𝔹 ×ᵤ A ↔ 𝔹 ×ᵤ A CIF₁ c = CIF c id↔ CIF₂ c = CIF id↔ c -- TOFFOLI(b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (b₁ ∧ … ∧ bₙ)) TOFFOLI : {n : ℕ} → 𝔹^ n ↔ 𝔹^ n TOFFOLI {0} = id↔ TOFFOLI {1} = swap₊ TOFFOLI {suc (suc n)} = CIF₂ TOFFOLI -- TOFFOLI(b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (¬b₁ ∧ … ∧ ¬bₙ)) TOFFOLI' : ∀ {n} → 𝔹^ n ↔ 𝔹^ n TOFFOLI' {0} = id↔ TOFFOLI' {1} = swap₊ TOFFOLI' {suc (suc n)} = CIF₁ TOFFOLI' -- RESET(b₁,…,bₙ) = (b₁ xor (b₁ ∨ … ∨ bₙ),…,bₙ) RESET : ∀ {n} → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n RESET {0} = id↔ RESET {1} = swap⋆ ⨾ CNOT ⨾ swap⋆ RESET {suc (suc n)} = Ax[BxC]=Bx[AxC] ⨾ CIF RESET (swap₊ ⊗ id↔) ⨾ Ax[BxC]=Bx[AxC] ----------------------------------------------------------------------------- -- Reversible Copy -- copy(𝔽,b₁,…,bₙ) = (b₁,b₁,…,bₙ) COPY : ∀ {n} → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n COPY {0} = id↔ COPY {1} = swap⋆ ⨾ CNOT ⨾ swap⋆ COPY {suc (suc n)} = assocl⋆ ⨾ (COPY {1} ⊗ id↔) ⨾ assocr⋆ ----------------------------------------------------------------------------- -- Arithmetic -- INCR(b̅) = INCR(b̅ + 1) INCR : ∀ {n} → 𝔹^ n ↔ 𝔹^ n INCR {0} = id↔ INCR {1} = swap₊ INCR {suc (suc n)} = (id↔ ⊗ INCR) ⨾ FST2LAST ⨾ TOFFOLI' ⨾ FST2LAST⁻¹ ----------------------------------------------------------------------------- -- Control flow zigzag : 𝔹 ↔ 𝔹 zigzag = uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ [A+B]+C=[C+B]+A ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l zigzagₜᵣ = evalₜᵣ zigzag 𝔽 ----------------------------------------------------------------------------- -- Iteration trace₊ : ∀ {A B C} → A +ᵤ C ↔ B +ᵤ C → A ↔ B trace₊ f = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ assocl₊ ⨾ (f ⊕ id↔) ⨾ assocr₊ ⨾ (id↔ ⊕ ε₊) ⨾ unite₊r -- Given reversible F : 𝔹^n ↔ 𝔹^n, generate a circuit to find x̅ such that F(x̅) = (𝔽,…) -- via running (LOOP F)(𝔽,𝔽̅). -- (id↔ ⊗ F)((LOOP F)(𝔽,𝔽̅)) = (𝔽,𝔽,…) LOOP : ∀ {n} → 𝔹^ n ↔ 𝔹^ n → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n LOOP {0} F = id↔ LOOP {1} F = id↔ ⊗ F LOOP {suc (suc n)} F = trace₊ ((dist ⊕ id↔) ⨾ [A+B]+C=[A+C]+B ⨾ (factor ⊕ id↔) ⨾ ((RESET ⨾ (id↔ ⊗ F) ⨾ COPY ⨾ (id↔ ⊗ ! F)) ⊕ id↔) ⨾ (dist ⊕ id↔) ⨾ [A+B]+C=[A+C]+B ⨾ (factor ⊕ (id↔ ⊗ INCR))) module loop_test where -- Examples -- AND(𝔽,a,b) = AND(a∧b,a,b) AND : 𝔹^ 3 ↔ 𝔹^ 3 AND = FST2LAST ⨾ (dist ⨾ (id↔ ⊕ (id↔ ⊗ (dist ⨾ (id↔ ⊕ (id↔ ⊗ swap₊)) ⨾ factor))) ⨾ factor) ⨾ FST2LAST⁻¹ NAND : 𝔹^ 3 ↔ 𝔹^ 3 NAND = AND ⨾ (NOT ⊗ id↔) -- OR(𝔽,a,b) = OR(a∨b,a,b) OR : 𝔹^ 3 ↔ 𝔹^ 3 OR = FST2LAST ⨾ (dist ⨾ ((id↔ ⊗ (dist ⨾ (id↔ ⊕ (id↔ ⊗ swap₊)) ⨾ factor)) ⊕ (id↔ ⊗ (id↔ ⊗ swap₊))) ⨾ factor) ⨾ FST2LAST⁻¹ NOR : 𝔹^ 3 ↔ 𝔹^ 3 NOR = OR ⨾ (NOT ⊗ id↔) -- XOR(a,b) = XOR(a xor b,b) XOR : 𝔹^ 2 ↔ 𝔹^ 2 XOR = distl ⨾ (id↔ ⊕ (swap₊ ⊗ id↔)) ⨾ factorl tests : List (∃[ n ] (𝔹^ n ↔ 𝔹^ n)) tests = (_ , LOOP AND) ∷ (_ , LOOP NAND) ∷ (_ , LOOP OR) ∷ (_ , LOOP NOR) ∷ (_ , LOOP XOR) ∷ [] results : List (Σ[ t ∈ 𝕌 ] ⟦ t ⟧) results = L.map (λ {(_ , c) → proj₁ (eval' c (𝔽^ _))}) tests -- (_ , 𝔽 , 𝔽 , 𝔽 , 𝔽) ∷ -- (_ , 𝔽 , 𝔽 , 𝕋 , 𝕋) ∷ -- (_ , 𝔽 , 𝔽 , 𝔽 , 𝔽) ∷ -- (_ , 𝔽 , 𝔽 , 𝔽 , 𝕋) ∷ -- (_ , 𝔽 , 𝔽 , 𝔽) ∷ [] ----------------------------------------------------------------------------- -- Data Structures Conversions 𝟙+ : ℕ → 𝕌 𝟙+ 0 = 𝟘 𝟙+ 1 = 𝟙 𝟙+ (suc (suc n)) = 𝟙 +ᵤ (𝟙+ (suc n)) convert : ∀ {n} → 𝟙+ (2 ^ n) ↔ 𝔹^ n convert {0} = id↔ convert {1} = id↔ convert {suc (suc n)} = split ⨾ (convert {suc n} ⊕ (coe {n} ⨾ convert {suc n})) ⨾ (uniti⋆l ⊕ uniti⋆l) ⨾ factor where coe : ∀ {n} → 𝟙+ ((2 ^ n) + ((2 ^ n) + 0) + 0) ↔ 𝟙+ (2 ^ (1 + n)) coe {n} rewrite +-identityʳ ((2 ^ n) + ((2 ^ n) + 0)) = id↔ split : ∀ {n m} → 𝟙+ (n + m) ↔ (𝟙+ n +ᵤ 𝟙+ m) split {0} {m} = uniti₊l split {1} {0} = uniti₊r split {1} {1} = id↔ split {1} {suc (suc m)} = id↔ split {suc (suc n)} {m} = (id↔ ⊕ split) ⨾ assocl₊ 2047→2¹¹-1 : 𝟙+ 2047 ↔ (- 𝟙 +ᵤ 𝔹^ 11) 2047→2¹¹-1 = uniti₊l ⨾ ((η₊ ⨾ swap₊) ⊕ id↔) ⨾ assocr₊ ⨾ (id↔ ⊕ convert {11}) incr+ : ∀ {n} → 𝟙+ n ↔ 𝟙+ n incr+ {0} = id↔ incr+ {1} = id↔ incr+ {2} = swap₊ incr+ {suc (suc (suc n))} = (id↔ ⊕ incr+) ⨾ A+[B+C]=B+[A+C] incr+' : 𝟙+ 2047 ↔ 𝟙+ 2047 incr+' = 2047→2¹¹-1 ⨾ (id↔ ⊕ INCR) ⨾ ! 2047→2¹¹-1 v : (n : ℕ) → ¬ n ≡ 0 → ⟦ 𝟙+ n ⟧ v 0 0≠0 = 0≠0 refl v 1 _ = tt v (suc (suc n)) _ = inj₂ (v (suc n) (λ ())) len1 = proj₂ (eval' (incr+ {2047}) (v 2047 (λ ()))) -- 32721 len2 = proj₂ (eval' incr+' (v 2047 (λ ()))) -- 20143 len3 = proj₂ (eval' 2047→2¹¹-1 (v 2047 (λ ()))) -- 12433 v' = (proj₂ ∘ proj₁) (eval' 2047→2¹¹-1 (v 2047 (λ ()))) len4 = proj₂ (eval' (id↔ ⊕ INCR) v') -- 3453 v'' = (proj₂ ∘ proj₁) (eval' (id↔ ⊕ INCR) v') len5 = proj₂ (eval' (! 2047→2¹¹-1) v'') -- 249 ----------------------------------------------------------------------------- -- Higher-Order Combinators hof- : {A B : 𝕌} → (A ↔ B) → (𝟘 ↔ - A +ᵤ B) hof- c = η₊ ⨾ (c ⊕ id↔) ⨾ swap₊ comp- : {A B C : 𝕌} → (- A +ᵤ B) +ᵤ (- B +ᵤ C) ↔ (- A +ᵤ C) comp- = assocl₊ ⨾ (assocr₊ ⊕ id↔) ⨾ ((id↔ ⊕ ε₊) ⊕ id↔) ⨾ (unite₊r ⊕ id↔) app- : {A B : 𝕌} → (- A +ᵤ B) +ᵤ A ↔ B app- = swap₊ ⨾ assocl₊ ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l ----------------------------------------------------------------------------- -- Algebraic Identities inv- : {A : 𝕌} → A ↔ - (- A) inv- = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ assocl₊ ⨾ (ε₊ ⊕ id↔) ⨾ unite₊l dist- : {A B : 𝕌} → - (A +ᵤ B) ↔ - A +ᵤ - B dist- = uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ uniti₊l ⨾ (η₊ ⊕ id↔) ⨾ assocl₊ ⨾ ([A+B]+[C+D]=[A+C]+[B+D] ⊕ id↔) ⨾ (swap₊ ⊕ id↔) ⨾ assocr₊ ⨾ (id↔ ⊕ ε₊) ⨾ unite₊r neg- : {A B : 𝕌} → (A ↔ B) → (- A ↔ - B) neg- c = uniti₊r ⨾ (id↔ ⊕ η₊) ⨾ (id↔ ⊕ ! c ⊕ id↔) ⨾ assocl₊ ⨾ ((swap₊ ⨾ ε₊) ⊕ id↔) ⨾ unite₊l
{ "alphanum_fraction": 0.4100183262, "avg_line_length": 30.5410447761, "ext": "agda", "hexsha": "f084db79f9cb4d3f255bfde9bbc95926c9f4b4a7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi-/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi-/Examples.agda", "max_line_length": 122, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi-/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4626, "size": 8185 }
-- Agda program using the Iowa Agda library open import bool module PROOF-appendAddLengths (Choice : Set) (choose : Choice → 𝔹) (lchoice : Choice → Choice) (rchoice : Choice → Choice) where open import eq open import nat open import list open import maybe --------------------------------------------------------------------------- -- Translated Curry operations: ++ : {a : Set} → 𝕃 a → 𝕃 a → 𝕃 a ++ [] x = x ++ (y :: z) u = y :: (++ z u) append : {a : Set} → 𝕃 a → 𝕃 a → 𝕃 a append x y = ++ x y --------------------------------------------------------------------------- appendAddLengths : {a : Set} → (x : 𝕃 a) → (y : 𝕃 a) → ((length x) + (length y)) ≡ (length (append x y)) appendAddLengths [] y = refl appendAddLengths (x :: xs) y rewrite appendAddLengths xs y = refl ---------------------------------------------------------------------------
{ "alphanum_fraction": 0.4389140271, "avg_line_length": 25.2571428571, "ext": "agda", "hexsha": "5294fa52d2ede43be95445194e5d3a6b5420f42b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phlummox/curry-tools", "max_forks_repo_path": "currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-appendAddLengths.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phlummox/curry-tools", "max_issues_repo_path": "currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-appendAddLengths.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phlummox/curry-tools", "max_stars_repo_path": "currypp/.cpm/packages/currycheck/examples/withVerification/PROOF-appendAddLengths.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 884 }
{-# OPTIONS --without-K #-} module algebra.group.core where open import level open import algebra.monoid.core open import equality.core open import function.isomorphism open import sum record IsGroup {i} (G : Set i) : Set i where field instance mon : IsMonoid G open IsMonoid mon public field inv : G → G linv : (x : G) → inv x * x ≡ e rinv : (x : G) → x * inv x ≡ e Group : ∀ i → Set (lsuc i) Group i = Σ (Set i) IsGroup module _ {i} {G : Set i} ⦃ grp : IsGroup G ⦄ where open IsGroup ⦃ ... ⦄ left-translation-iso : (g : G) → G ≅ G left-translation-iso g = record { to = λ x → g * x ; from = λ x → inv g * x ; iso₁ = λ x → sym (assoc _ _ _) · ap (λ u → u * x) (linv g) · lunit x ; iso₂ = λ x → sym (assoc _ _ _) · ap (λ u → u * x) (rinv g) · lunit x } right-translation-iso : (g : G) → G ≅ G right-translation-iso g = record { to = λ x → x * g ; from = λ x → x * inv g ; iso₁ = λ x → assoc _ _ _ · ap (λ u → x * u) (rinv g) · runit x ; iso₂ = λ x → assoc _ _ _ · ap (λ u → x * u) (linv g) · runit x }
{ "alphanum_fraction": 0.5077720207, "avg_line_length": 25.1739130435, "ext": "agda", "hexsha": "0602fac044275ce23571ccccf19bbc234b906970", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra/group/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra/group/core.agda", "max_line_length": 50, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra/group/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 424, "size": 1158 }
-- Andreas, 2015-09-18, issue reported by Guillaume Brunerie {-# OPTIONS --rewriting #-} data _==_ {A : Set} (a : A) : A → Set where idp : a == a {-# BUILTIN REWRITE _==_ #-} postulate A : Set a b : A r : a == b {-# REWRITE r #-} r = idp -- Should not work, as this behavior is confusing the users. -- Instead, should give an error that rewrite rule -- can only be added after function body.
{ "alphanum_fraction": 0.6253101737, "avg_line_length": 20.15, "ext": "agda", "hexsha": "ea2957663540fd5fa034e293afb7c375dc6edc4c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1651.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1651.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1651.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 125, "size": 403 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A delimited continuation monad ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Category.Monad.Continuation where open import Category.Applicative open import Category.Applicative.Indexed open import Category.Monad open import Function.Identity.Categorical as Id using (Identity) open import Category.Monad.Indexed open import Function open import Level ------------------------------------------------------------------------ -- Delimited continuation monads DContT : ∀ {i f} {I : Set i} → (I → Set f) → (Set f → Set f) → IFun I f DContT K M r₂ r₁ a = (a → M (K r₁)) → M (K r₂) DCont : ∀ {i f} {I : Set i} → (I → Set f) → IFun I f DCont K = DContT K Identity DContTIMonad : ∀ {i f} {I : Set i} (K : I → Set f) {M} → RawMonad M → RawIMonad (DContT K M) DContTIMonad K Mon = record { return = λ a k → k a ; _>>=_ = λ c f k → c (flip f k) } where open RawMonad Mon DContIMonad : ∀ {i f} {I : Set i} (K : I → Set f) → RawIMonad (DCont K) DContIMonad K = DContTIMonad K Id.monad ------------------------------------------------------------------------ -- Delimited continuation operations record RawIMonadDCont {i f} {I : Set i} (K : I → Set f) (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M reset : ∀ {r₁ r₂ r₃} → M r₁ r₂ (K r₂) → M r₃ r₃ (K r₁) shift : ∀ {a r₁ r₂ r₃ r₄} → ((a → M r₁ r₁ (K r₂)) → M r₃ r₄ (K r₄)) → M r₃ r₂ a open RawIMonad monad public DContTIMonadDCont : ∀ {i f} {I : Set i} (K : I → Set f) {M} → RawMonad M → RawIMonadDCont K (DContT K M) DContTIMonadDCont K Mon = record { monad = DContTIMonad K Mon ; reset = λ e k → e return >>= k ; shift = λ e k → e (λ a k' → (k a) >>= k') return } where open RawIMonad Mon DContIMonadDCont : ∀ {i f} {I : Set i} (K : I → Set f) → RawIMonadDCont K (DCont K) DContIMonadDCont K = DContTIMonadDCont K Id.monad
{ "alphanum_fraction": 0.5140946011, "avg_line_length": 32.2, "ext": "agda", "hexsha": "d20f67265b38f0a82038faec3d243030218a277a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Continuation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Continuation.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Continuation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 693, "size": 2093 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Semigroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.StrictEquiv open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Record open Iso private variable ℓ : Level -- Semigroups as a record, inspired by the Agda standard library: -- -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Bundles.agda#L48 -- https://github.com/agda/agda-stdlib/blob/master/src/Algebra/Structures.agda#L50 -- -- Note that as we are using Path for all equations the IsMagma record -- would only contain isSet A if we had it. record IsSemigroup {A : Type ℓ} (_·_ : A → A → A) : Type ℓ where constructor issemigroup field is-set : isSet A assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z record SemigroupStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor semigroupstr field _·_ : A → A → A isSemigroup : IsSemigroup _·_ infixl 7 _·_ open IsSemigroup isSemigroup public Semigroup : Type (ℓ-suc ℓ) Semigroup = TypeWithStr _ SemigroupStr semigroup : (A : Type ℓ) (_·_ : A → A → A) (h : IsSemigroup _·_) → Semigroup semigroup A _·_ h = A , semigroupstr _·_ h record SemigroupEquiv (M N : Semigroup {ℓ}) (e : ⟨ M ⟩ ≃ ⟨ N ⟩) : Type ℓ where constructor semigroupequiv -- Shorter qualified names private module M = SemigroupStr (snd M) module N = SemigroupStr (snd N) field isHom : (x y : ⟨ M ⟩) → equivFun e (x M.· y) ≡ equivFun e x N.· equivFun e y open SemigroupStr open IsSemigroup open SemigroupEquiv -- Develop some theory about Semigroups using various general results -- that are stated using Σ-types. For this we define Semigroup as a -- nested Σ-type, prove that it's equivalent to the above record -- definition and then transport results along this equivalence. module SemigroupΣTheory {ℓ} where RawSemigroupStructure : Type ℓ → Type ℓ RawSemigroupStructure X = X → X → X RawSemigroupEquivStr = AutoEquivStr RawSemigroupStructure rawSemigroupUnivalentStr : UnivalentStr _ RawSemigroupEquivStr rawSemigroupUnivalentStr = autoUnivalentStr RawSemigroupStructure SemigroupAxioms : (A : Type ℓ) → RawSemigroupStructure A → Type ℓ SemigroupAxioms A _·_ = isSet A × ((x y z : A) → x · (y · z) ≡ (x · y) · z) SemigroupStructure : Type ℓ → Type ℓ SemigroupStructure = AxiomsStructure RawSemigroupStructure SemigroupAxioms SemigroupΣ : Type (ℓ-suc ℓ) SemigroupΣ = TypeWithStr ℓ SemigroupStructure isPropSemigroupAxioms : (A : Type ℓ) (_·_ : RawSemigroupStructure A) → isProp (SemigroupAxioms A _·_) isPropSemigroupAxioms _ _ = isPropΣ isPropIsSet λ isSetA → isPropΠ3 λ _ _ _ → isSetA _ _ SemigroupEquivStr : StrEquiv SemigroupStructure ℓ SemigroupEquivStr = AxiomsEquivStr RawSemigroupEquivStr SemigroupAxioms SemigroupAxiomsIsoIsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A) → Iso (SemigroupAxioms A _·_) (IsSemigroup _·_) fun (SemigroupAxiomsIsoIsSemigroup s) (x , y) = issemigroup x y inv (SemigroupAxiomsIsoIsSemigroup s) M = is-set M , assoc M rightInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl leftInv (SemigroupAxiomsIsoIsSemigroup s) _ = refl SemigroupAxioms≡IsSemigroup : {A : Type ℓ} (_·_ : RawSemigroupStructure A) → SemigroupAxioms _ _·_ ≡ IsSemigroup _·_ SemigroupAxioms≡IsSemigroup s = isoToPath (SemigroupAxiomsIsoIsSemigroup s) Semigroup→SemigroupΣ : Semigroup → SemigroupΣ Semigroup→SemigroupΣ (A , semigroupstr _·_ isSemigroup) = A , _·_ , SemigroupAxiomsIsoIsSemigroup _ .inv isSemigroup SemigroupΣ→Semigroup : SemigroupΣ → Semigroup SemigroupΣ→Semigroup (A , _·_ , isSemigroupΣ) = semigroup A _·_ (SemigroupAxiomsIsoIsSemigroup _ .fun isSemigroupΣ) SemigroupIsoSemigroupΣ : Iso Semigroup SemigroupΣ SemigroupIsoSemigroupΣ = iso Semigroup→SemigroupΣ SemigroupΣ→Semigroup (λ _ → refl) (λ _ → refl) semigroupUnivalentStr : UnivalentStr SemigroupStructure SemigroupEquivStr semigroupUnivalentStr = axiomsUnivalentStr _ isPropSemigroupAxioms rawSemigroupUnivalentStr SemigroupΣPath : (M N : SemigroupΣ) → (M ≃[ SemigroupEquivStr ] N) ≃ (M ≡ N) SemigroupΣPath = SIP semigroupUnivalentStr SemigroupEquivΣ : (M N : Semigroup) → Type ℓ SemigroupEquivΣ M N = Semigroup→SemigroupΣ M ≃[ SemigroupEquivStr ] Semigroup→SemigroupΣ N SemigroupIsoΣPath : {M N : Semigroup} → Iso (Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e) (SemigroupEquivΣ M N) fun SemigroupIsoΣPath (e , x) = e , isHom x inv SemigroupIsoΣPath (e , h) = e , semigroupequiv h rightInv SemigroupIsoΣPath _ = refl leftInv SemigroupIsoΣPath _ = refl SemigroupPath : (M N : Semigroup) → (Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e) ≃ (M ≡ N) SemigroupPath M N = Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e ≃⟨ strictIsoToEquiv SemigroupIsoΣPath ⟩ SemigroupEquivΣ M N ≃⟨ SemigroupΣPath _ _ ⟩ Semigroup→SemigroupΣ M ≡ Semigroup→SemigroupΣ N ≃⟨ isoToEquiv (invIso (congIso SemigroupIsoSemigroupΣ)) ⟩ M ≡ N ■ -- We now extract the important results from the above module isPropIsSemigroup : {A : Type ℓ} (_·_ : A → A → A) → isProp (IsSemigroup _·_) isPropIsSemigroup _·_ = subst isProp (SemigroupΣTheory.SemigroupAxioms≡IsSemigroup _·_) (SemigroupΣTheory.isPropSemigroupAxioms _ _·_) SemigroupPath : (M N : Semigroup {ℓ}) → (Σ[ e ∈ ⟨ M ⟩ ≃ ⟨ N ⟩ ] SemigroupEquiv M N e) ≃ (M ≡ N) SemigroupPath {ℓ = ℓ} = SIP (autoUnivalentRecord (autoRecordSpec (SemigroupStr {ℓ}) SemigroupEquiv (fields: data[ _·_ ∣ isHom ] prop[ isSemigroup ∣ (λ _ → isPropIsSemigroup _) ])) _ _)
{ "alphanum_fraction": 0.7042643229, "avg_line_length": 36.3550295858, "ext": "agda", "hexsha": "ef7ac7509d5d1b3c72560a571acd28384acfb708", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Algebra/Semigroup/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Algebra/Semigroup/Base.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Algebra/Semigroup/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2080, "size": 6144 }
module STLC1.Kovacs.Convertibility where open import STLC1.Kovacs.Substitution public -------------------------------------------------------------------------------- -- Convertibility (_~_ ; ~refl ; _~⁻¹ ; lam ; app ; β ; η) infix 3 _∼_ data _∼_ : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A → Set where refl∼ : ∀ {Γ A} → {M : Γ ⊢ A} → M ∼ M _⁻¹∼ : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A} → (p : M₁ ∼ M₂) → M₂ ∼ M₁ _⦙∼_ : ∀ {Γ A} → {M₁ M₂ M₃ : Γ ⊢ A} → (p : M₁ ∼ M₂) (q : M₂ ∼ M₃) → M₁ ∼ M₃ ƛ∼ : ∀ {Γ A B} → {M₁ M₂ : Γ , A ⊢ B} → (p : M₁ ∼ M₂) → ƛ M₁ ∼ ƛ M₂ _∙∼_ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⇒ B} {N₁ N₂ : Γ ⊢ A} → (p : M₁ ∼ M₂) (q : N₁ ∼ N₂) → M₁ ∙ N₁ ∼ M₂ ∙ N₂ _,∼_ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A} {N₁ N₂ : Γ ⊢ B} → (p : M₁ ∼ M₂) (q : N₁ ∼ N₂) → M₁ , N₁ ∼ M₂ , N₂ π₁∼ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⩕ B} → (p : M₁ ∼ M₂) → π₁ M₁ ∼ π₁ M₂ π₂∼ : ∀ {Γ A B} → {M₁ M₂ : Γ ⊢ A ⩕ B} → (p : M₁ ∼ M₂) → π₂ M₁ ∼ π₂ M₂ red⇒ : ∀ {Γ A B} → (M : Γ , A ⊢ B) (N : Γ ⊢ A) → (ƛ M) ∙ N ∼ cut N M red⩕₁ : ∀ {Γ A B} → (M : Γ ⊢ A) (N : Γ ⊢ B) → π₁ (M , N) ∼ M red⩕₂ : ∀ {Γ A B} → (M : Γ ⊢ A) (N : Γ ⊢ B) → π₂ (M , N) ∼ N exp⇒ : ∀ {Γ A B} → (M : Γ ⊢ A ⇒ B) → M ∼ ƛ (wk M ∙ 0) exp⩕ : ∀ {Γ A B} → (M : Γ ⊢ A ⩕ B) → M ∼ π₁ M , π₂ M exp⫪ : ∀ {Γ} → (M : Γ ⊢ ⫪) → M ∼ τ ≡→∼ : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A} → M₁ ≡ M₂ → M₁ ∼ M₂ ≡→∼ refl = refl∼ instance per∼ : ∀ {Γ A} → PER (Γ ⊢ A) _∼_ per∼ = record { _⁻¹ = _⁻¹∼ ; _⦙_ = _⦙∼_ } -------------------------------------------------------------------------------- renwk : ∀ {Γ Γ′ A B} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ A) → (wk {B} ∘ ren η) M ≡ (ren (liftₑ η) ∘ wk) M renwk η M = ren○ (wkₑ idₑ) η M ⁻¹ ⦙ (λ η′ → ren (wkₑ η′) M) & ( rid○ η ⦙ lid○ η ⁻¹ ) ⦙ ren○ (liftₑ η) (wkₑ idₑ) M rencut : ∀ {Γ Γ′ A B} → (η : Γ′ ⊇ Γ) (M : Γ ⊢ A) (N : Γ , A ⊢ B) → (cut (ren η M) ∘ ren (liftₑ η)) N ≡ (ren η ∘ cut M) N rencut η M N = sub◑ (idₛ , ren η M) (liftₑ η) N ⁻¹ ⦙ (λ σ → sub (σ , ren η M) N) & ( rid◑ η ⦙ lid◐ η ⁻¹ ) ⦙ sub◐ η (idₛ , M) N -- (~ₑ) ren∼ : ∀ {Γ Γ′ A} → {M₁ M₂ : Γ ⊢ A} → (η : Γ′ ⊇ Γ) → M₁ ∼ M₂ → ren η M₁ ∼ ren η M₂ ren∼ η refl∼ = refl∼ ren∼ η (p ⁻¹∼) = ren∼ η p ⁻¹ ren∼ η (p ⦙∼ q) = ren∼ η p ⦙ ren∼ η q ren∼ η (ƛ∼ p) = ƛ∼ (ren∼ (liftₑ η) p) ren∼ η (p ∙∼ q) = ren∼ η p ∙∼ ren∼ η q ren∼ η (p ,∼ q) = ren∼ η p ,∼ ren∼ η q ren∼ η (π₁∼ p) = π₁∼ (ren∼ η p) ren∼ η (π₂∼ p) = π₂∼ (ren∼ η p) ren∼ η (red⇒ M N) = coe (((ƛ (ren (liftₑ η) M) ∙ ren η N) ∼_) & rencut η N M) (red⇒ (ren (liftₑ η) M) (ren η N)) ren∼ η (red⩕₁ M N) = red⩕₁ (ren η M) (ren η N) ren∼ η (red⩕₂ M N) = red⩕₂ (ren η M) (ren η N) ren∼ η (exp⇒ M) = coe ((λ M′ → ren η M ∼ ƛ (M′ ∙ 0)) & renwk η M) (exp⇒ (ren η M)) ren∼ η (exp⩕ M) = exp⩕ (ren η M) ren∼ η (exp⫪ M) = exp⫪ (ren η M) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.266067178, "avg_line_length": 30.0079365079, "ext": "agda", "hexsha": "a929e767bb2ffca97db693d4425678f7e30a54ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC1/Kovacs/Convertibility.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC1/Kovacs/Convertibility.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC1/Kovacs/Convertibility.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1759, "size": 3781 }
module Perm where open import Basics open import All open import Splitting data _~_ {X : Set} : List X -> List X -> Set where [] : [] ~ [] _,-_ : forall {x xs ys zs} -> (x ,- []) <[ ys ]> zs -> xs ~ zs -> (x ,- xs) ~ ys permute : {X : Set}{xs ys : List X} -> xs ~ ys -> {P : X -> Set} -> All P xs -> All P ys permute [] <> = <> permute (i ,- is) (p , ps) = riffle i (p , <>) (permute is ps) reflP : {X : Set}(xs : List X) -> xs ~ xs reflP [] = [] reflP (x ,- xs) = sl (srs xs) ,- reflP xs insP : forall {X : Set}{x : X}{xs xs' ys ys'} -> (x ,- []) <[ xs' ]> xs -> (x ,- []) <[ ys' ]> ys -> xs ~ ys -> xs' ~ ys' insP (sl i) j p with isSRS i insP (sl .(srs _)) j p | mkSRS = j ,- p insP (sr i) j (k ,- p) = let _ , k' , j' = llswap (_ , j , k) in k' ,- insP i j' p l2r : forall {X : Set}{x : X}{xs xs' ys'}(i : (x ,- []) <[ xs' ]> xs)(p' : xs' ~ ys') -> Sg (List X) \ ys -> Sg ((x ,- []) <[ ys' ]> ys) \ j -> xs ~ ys l2r (sl i) (j ,- p) with isSRS i l2r (sl .(srs _)) (j ,- p) | mkSRS = _ , j , p l2r (sr i) (k' ,- p') with l2r i p' ... | _ , j' , p with llswap (_ , k' , j') ... | _ , j , k = _ , j , (k ,- p) transP : {X : Set}{xs ys zs : List X} -> xs ~ ys -> ys ~ zs -> xs ~ zs transP [] [] = [] transP (i ,- p) q' with l2r i q' ... | _ , j , q = j ,- transP p q symP : {X : Set}{xs ys : List X} -> xs ~ ys -> ys ~ xs symP [] = [] symP (i ,- p) = insP i (sl (srs _)) (symP p) swapP : {X : Set}(xs ys : List X) -> (xs +L ys) ~ (ys +L xs) swapP [] ys rewrite ys +L[] = reflP ys swapP (x ,- xs) ys = insS ys x xs ,- swapP xs ys catP : forall {X : Set}{as bs cs ds : List X} -> as ~ cs -> bs ~ ds -> (as +L bs) ~ (cs +L ds) catP [] q = q catP (x ,- p) q = catS x (srs _) ,- catP p q permap : forall {X Y}(f : X -> Y){xs xs' : List X} -> xs ~ xs' -> list f xs ~ list f xs' permap f [] = [] permap f (x ,- p) = splimap f x ,- permap f p cartNil : forall {I}(is : List I){J} -> cart {J = J} is [] == [] cartNil [] = refl [] cartNil (i ,- is) = cartNil is cartCons : forall {I J}(is : List I)(j : J)(js : List J) -> cart is (j ,- js) ~ (list (_, j) is +L cart is js) cartCons [] j js = [] cartCons (i ,- is) j js with catP (swapP (list (i ,_) js) (list (_, j) is)) (reflP (cart is js)) ... | z rewrite assoc+L (list (i ,_) js) (list (_, j) is) (cart is js) | assoc+L (list (_, j) is) (list (i ,_) js) (cart is js) = (sl (srs (list (_, j) is +L cart (i ,- is) js))) ,- transP (catP (reflP (list (i ,_) js)) (cartCons is j js)) z cartLemma : forall {I J}(is : List I)(js : List J) -> cart is js ~ list swap (cart js is) cartLemma {I}{J} [] js rewrite cartNil js {I} = [] cartLemma {I}{J} (i ,- is) js with catP (reflP (list (i ,_) js)) (cartLemma is js) ... | z rewrite sym (listlist swap (_, i) (i ,_) (\ j -> refl (i , j)) js) | catNatural swap (list (_, i) js) (cart js is) = transP z (symP (permap (\ ji -> snd ji , fst ji) (cartCons js i is)))
{ "alphanum_fraction": 0.4750254842, "avg_line_length": 36.3333333333, "ext": "agda", "hexsha": "cb5a3be9fb4d595ad18327e46cb885b084cf6247", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Perm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Perm.agda", "max_line_length": 97, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Perm.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 1206, "size": 2943 }
-- Andreas, 2012-09-19 propagate irrelevance info to dot patterns {-# OPTIONS --experimental-irrelevance #-} -- {-# OPTIONS -v tc.lhs:20 #-} module ShapeIrrelevantIndex where data Nat : Set where Z : Nat S : Nat → Nat data Good : ..(_ : Nat) → Set where goo : .(n : Nat) → Good (S n) good : .(n : Nat) → Good n → Nat good .(S n) (goo n) = Z
{ "alphanum_fraction": 0.6096866097, "avg_line_length": 23.4, "ext": "agda", "hexsha": "f131cfff36264337b85f667208c298a855ccf51e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ShapeIrrelevantIndex.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ShapeIrrelevantIndex.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ShapeIrrelevantIndex.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 119, "size": 351 }
module Pi.Examples where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Vec as V hiding (map) open import Pi.Syntax open import Pi.Opsem open import Pi.Eval pattern 𝔹 = 𝟙 +ᵤ 𝟙 pattern 𝔽 = inj₁ tt pattern 𝕋 = inj₂ tt 𝔹^ : ℕ → 𝕌 𝔹^ 0 = 𝟙 𝔹^ 1 = 𝔹 𝔹^ (suc (suc n)) = 𝔹 ×ᵤ 𝔹^ (suc n) ----------------------------------------------------------------------------- -- Adaptors [A+B]+C=[C+B]+A : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (C +ᵤ B) +ᵤ A [A+B]+C=[C+B]+A = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ swap₊ [A+B]+C=[A+C]+B : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (A +ᵤ C) +ᵤ B [A+B]+C=[A+C]+B = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ assocl₊ [A+B]+[C+D]=[A+C]+[B+D] : {A B C D : 𝕌} → (A +ᵤ B) +ᵤ (C +ᵤ D) ↔ (A +ᵤ C) +ᵤ (B +ᵤ D) [A+B]+[C+D]=[A+C]+[B+D] = assocl₊ ⨾ (assocr₊ ⊕ id↔) ⨾ ((id↔ ⊕ swap₊) ⊕ id↔) ⨾ (assocl₊ ⊕ id↔) ⨾ assocr₊ Ax[BxC]=Bx[AxC] : {A B C : 𝕌} → A ×ᵤ (B ×ᵤ C) ↔ B ×ᵤ (A ×ᵤ C) Ax[BxC]=Bx[AxC] = assocl⋆ ⨾ (swap⋆ ⊗ id↔) ⨾ assocr⋆ [AxB]×C=[A×C]xB : ∀ {A B C} → (A ×ᵤ B) ×ᵤ C ↔ (A ×ᵤ C) ×ᵤ B [AxB]×C=[A×C]xB = assocr⋆ ⨾ (id↔ ⊗ swap⋆) ⨾ assocl⋆ [A×B]×[C×D]=[A×C]×[B×D] : {A B C D : 𝕌} → (A ×ᵤ B) ×ᵤ (C ×ᵤ D) ↔ (A ×ᵤ C) ×ᵤ (B ×ᵤ D) [A×B]×[C×D]=[A×C]×[B×D] = assocl⋆ ⨾ (assocr⋆ ⊗ id↔) ⨾ ((id↔ ⊗ swap⋆) ⊗ id↔) ⨾ (assocl⋆ ⊗ id↔) ⨾ assocr⋆ -- FST2LAST(b₁,b₂,…,bₙ) = (b₂,…,bₙ,b₁) FST2LAST : ∀ {n} → 𝔹^ n ↔ 𝔹^ n FST2LAST {0} = id↔ FST2LAST {1} = id↔ FST2LAST {2} = swap⋆ FST2LAST {suc (suc (suc n))} = Ax[BxC]=Bx[AxC] ⨾ (id↔ ⊗ FST2LAST) FST2LAST⁻¹ : ∀ {n} → 𝔹^ n ↔ 𝔹^ n FST2LAST⁻¹ = ! FST2LAST -- NOT(b) = ¬b NOT : 𝔹 ↔ 𝔹 NOT = swap₊ -- CNOT(b₁,b₂) = (b₁,b₁ xor b₂) CNOT : 𝔹 ×ᵤ 𝔹 ↔ 𝔹 ×ᵤ 𝔹 CNOT = dist ⨾ (id↔ ⊕ (id↔ ⊗ swap₊)) ⨾ factor -- CIF(c₁,c₂)(𝔽,a) = (𝔽,c₁ a) -- CIF(c₁,c₂)(𝕋,a) = (𝕋,c₂ a) CIF : {A : 𝕌} → (c₁ c₂ : A ↔ A) → 𝔹 ×ᵤ A ↔ 𝔹 ×ᵤ A CIF c₁ c₂ = dist ⨾ ((id↔ ⊗ c₁) ⊕ (id↔ ⊗ c₂)) ⨾ factor CIF₁ CIF₂ : {A : 𝕌} → (c : A ↔ A) → 𝔹 ×ᵤ A ↔ 𝔹 ×ᵤ A CIF₁ c = CIF c id↔ CIF₂ c = CIF id↔ c -- TOFFOLI(b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (b₁ ∧ … ∧ bₙ)) TOFFOLI : {n : ℕ} → 𝔹^ n ↔ 𝔹^ n TOFFOLI {0} = id↔ TOFFOLI {1} = swap₊ TOFFOLI {suc (suc n)} = CIF₂ TOFFOLI -- TOFFOLI(b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (¬b₁ ∧ … ∧ ¬bₙ)) TOFFOLI' : ∀ {n} → 𝔹^ n ↔ 𝔹^ n TOFFOLI' {0} = id↔ TOFFOLI' {1} = swap₊ TOFFOLI' {suc (suc n)} = CIF₁ TOFFOLI' -- RESET(b₁,…,bₙ) = (b₁ xor (b₁ ∨ … ∨ bₙ),…,bₙ) RESET : ∀ {n} → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n RESET {0} = id↔ RESET {1} = swap⋆ ⨾ CNOT ⨾ swap⋆ RESET {suc (suc n)} = Ax[BxC]=Bx[AxC] ⨾ CIF RESET (swap₊ ⊗ id↔) ⨾ Ax[BxC]=Bx[AxC] ----------------------------------------------------------------------------- -- Reversible Copy -- copy(𝔽,b₁,…,bₙ) = (b₁,b₁,…,bₙ) COPY : ∀ {n} → 𝔹 ×ᵤ 𝔹^ n ↔ 𝔹 ×ᵤ 𝔹^ n COPY {0} = id↔ COPY {1} = swap⋆ ⨾ CNOT ⨾ swap⋆ COPY {suc (suc n)} = assocl⋆ ⨾ (COPY {1} ⊗ id↔) ⨾ assocr⋆ ----------------------------------------------------------------------------- -- Arithmetic -- INCR(b̅) = INCR(b̅ + 1) INCR : ∀ {n} → 𝔹^ n ↔ 𝔹^ n INCR {0} = id↔ INCR {1} = swap₊ INCR {suc (suc n)} = (id↔ ⊗ INCR) ⨾ FST2LAST ⨾ TOFFOLI' ⨾ FST2LAST⁻¹ iterate : (n : ℕ) → (𝔹^ n ↔ 𝔹^ n) → Vec ⟦ 𝔹^ n ⟧ (2 ^ n) iterate n f = go initial where initial : ∀ {m} → ⟦ 𝔹^ m ⟧ initial {zero} = tt initial {suc zero} = 𝔽 initial {suc (suc m)} = 𝔽 , initial go : ∀ {m} → ⟦ 𝔹^ n ⟧ → Vec ⟦ 𝔹^ n ⟧ m go {0} v = [] go {suc m} v = let v' = eval f v in v ∷ go v' INCRₜₑₛₜ = iterate 4 INCR
{ "alphanum_fraction": 0.4550218341, "avg_line_length": 29.1101694915, "ext": "agda", "hexsha": "b46100e3dc942b4ab3dbf83f603e12f79e120733", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi/Examples.agda", "max_line_length": 104, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2022, "size": 3435 }
------------------------------------------------------------------------ -- A correct implementation of tree sort ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- The algorithm and the treatment of ordering information is taken -- from Conor McBride's talk "Pivotal pragmatism". -- The module is parametrised by a total relation. open import Equality open import Prelude hiding (id; _∘_; lower) module Tree-sort.Full {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) {A : Type} (le : A → A → Type) (total : ∀ x y → le x y ⊎ le y x) where open Derived-definitions-and-properties eq open import Bag-equivalence eq using () renaming (Any to AnyL) open import Bijection eq using (_↔_) open import Function-universe eq hiding (Kind; module Kind) open import List eq ------------------------------------------------------------------------ -- Extending the order with new minimum and maximum elements -- A extended with a new minimum and maximum. data Extended : Type where min max : Extended [_] : (x : A) → Extended infix 4 _≤_ _≤_ : Extended → Extended → Type min ≤ y = ⊤ [ x ] ≤ [ y ] = le x y x ≤ max = ⊤ _ ≤ _ = ⊥ -- A pair of ordering constraints (written as a record type to aid -- type inference). infix 4 _,_ record _≤[_]≤_ (l : Extended) (x : A) (u : Extended) : Type where constructor _,_ field lower : l ≤ [ x ] upper : [ x ] ≤ u ------------------------------------------------------------------------ -- Ordered lists data Ordered-list (l u : Extended) : Type where nil : (l≤u : l ≤ u) → Ordered-list l u cons : (x : A) (xs : Ordered-list [ x ] u) (l≤x : l ≤ [ x ]) → Ordered-list l u -- Conversion to ordinary lists. to-list : ∀ {l u} → Ordered-list l u → List A to-list (nil l≤u) = [] to-list (cons x xs l≤x) = x ∷ to-list xs ------------------------------------------------------------------------ -- Unbalanced binary search trees infix 5 node syntax node x lx xu = lx -[ x ]- xu data Search-tree (l u : Extended) : Type where leaf : (l≤u : l ≤ u) → Search-tree l u node : (x : A) (lx : Search-tree l [ x ]) (xu : Search-tree [ x ] u) → Search-tree l u -- Any. AnyT : ∀ {l u} → (A → Type) → Search-tree l u → Type AnyT P (leaf _) = ⊥ AnyT P (node x l r) = AnyT P l ⊎ P x ⊎ AnyT P r ------------------------------------------------------------------------ -- An ad-hoc universe consisting of lists, ordered lists and search -- trees -- The purpose of this universe is to allow overloading of Any, _∈_ -- and _≈-bag_. -- Codes. data Kind : Type where list ordered-list search-tree : Kind -- Index type. -- -- Note that Agda infers values of type ⊤ automatically. Index : Kind → Type Index list = ⊤ Index _ = Extended -- Interpretation. ⟦_⟧ : (k : Kind) → (Index k → Index k → Type) ⟦ list ⟧ _ _ = List A ⟦ ordered-list ⟧ l u = Ordered-list l u ⟦ search-tree ⟧ l u = Search-tree l u -- Any. Any : ∀ {k l u} → (A → Type) → (⟦ k ⟧ l u → Type) Any {list} = AnyL Any {ordered-list} = λ P → AnyL P ∘ to-list Any {search-tree} = AnyT -- Membership. infix 4 _∈_ _∈_ : ∀ {k l u} → A → ⟦ k ⟧ l u → Type x ∈ xs = Any (λ y → x ≡ y) xs -- Bag equivalence. infix 4 _≈-bag_ _≈-bag_ : ∀ {k₁ k₂ l₁ u₁ l₂ u₂} → ⟦ k₁ ⟧ l₁ u₁ → ⟦ k₂ ⟧ l₂ u₂ → Type xs ≈-bag ys = ∀ z → z ∈ xs ↔ z ∈ ys ------------------------------------------------------------------------ -- Singleton trees singleton : ∀ {l u} (x : A) → l ≤[ x ]≤ u → Search-tree l u singleton x (l≤x , x≤u) = leaf l≤x -[ x ]- leaf x≤u -- Any lemma for singleton. Any-singleton : ∀ (P : A → Type) {l u x} (l≤x≤u : l ≤[ x ]≤ u) → Any P (singleton x l≤x≤u) ↔ P x Any-singleton P {x = x} l≤x≤u = Any P (singleton x l≤x≤u) ↔⟨⟩ ⊥ ⊎ P x ⊎ ⊥ ↔⟨ ⊎-left-identity ⟩ P x ⊎ ⊥ ↔⟨ ⊎-right-identity ⟩ P x □ ------------------------------------------------------------------------ -- Insertion into a search tree insert : ∀ {l u} (x : A) → Search-tree l u → l ≤[ x ]≤ u → Search-tree l u insert x (leaf _) l≤x≤u = singleton x l≤x≤u insert x (ly -[ y ]- yu) (l≤x , x≤u) with total x y ... | inj₁ x≤y = insert x ly (l≤x , x≤y) -[ y ]- yu ... | inj₂ y≤x = ly -[ y ]- insert x yu (y≤x , x≤u) -- Any lemma for insert. Any-insert : ∀ (P : A → Type) {l u} x t (l≤x≤u : l ≤[ x ]≤ u) → Any P (insert x t l≤x≤u) ↔ P x ⊎ Any P t Any-insert P {l} {u} x (leaf l≤u) l≤x≤u = Any P (singleton x l≤x≤u) ↔⟨ Any-singleton P l≤x≤u ⟩ P x ↔⟨ inverse ⊎-right-identity ⟩ P x ⊎ ⊥ ↔⟨⟩ P x ⊎ Any P (leaf {l = l} {u = u} l≤u) □ Any-insert P x (ly -[ y ]- yu) (l≤x , x≤u) with total x y ... | inj₁ x≤y = Any P (insert x ly (l≤x , x≤y)) ⊎ P y ⊎ Any P yu ↔⟨ Any-insert P x ly (l≤x , x≤y) ⊎-cong id ⟩ (P x ⊎ Any P ly) ⊎ P y ⊎ Any P yu ↔⟨ inverse ⊎-assoc ⟩ P x ⊎ Any P ly ⊎ P y ⊎ Any P yu □ ... | inj₂ y≤x = Any P ly ⊎ P y ⊎ Any P (insert x yu (y≤x , x≤u)) ↔⟨ id ⊎-cong id ⊎-cong Any-insert P x yu (y≤x , x≤u) ⟩ Any P ly ⊎ P y ⊎ P x ⊎ Any P yu ↔⟨ lemma _ _ _ _ ⟩ P x ⊎ Any P ly ⊎ P y ⊎ Any P yu □ where -- The following lemma is easy to prove automatically (for -- instance by using a ring solver). lemma : (A B C D : Type) → A ⊎ B ⊎ C ⊎ D ↔ C ⊎ A ⊎ B ⊎ D lemma A B C D = A ⊎ B ⊎ C ⊎ D ↔⟨ id ⊎-cong ⊎-assoc ⟩ A ⊎ (B ⊎ C) ⊎ D ↔⟨ id ⊎-cong ⊎-comm ⊎-cong id ⟩ A ⊎ (C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⟩ (A ⊎ C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⊎-cong id ⟩ ((A ⊎ C) ⊎ B) ⊎ D ↔⟨ (⊎-comm ⊎-cong id) ⊎-cong id ⟩ ((C ⊎ A) ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⊎-cong id ⟩ (C ⊎ A ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⟩ C ⊎ (A ⊎ B) ⊎ D ↔⟨ id ⊎-cong inverse ⊎-assoc ⟩ C ⊎ A ⊎ B ⊎ D □ ------------------------------------------------------------------------ -- Turning an unordered list into a search tree to-search-tree : List A → Search-tree min max to-search-tree = foldr (λ x t → insert x t _) (leaf _) -- No elements are added or removed. to-search-tree-lemma : ∀ xs → to-search-tree xs ≈-bag xs to-search-tree-lemma [] = λ z → z ∈ leaf {l = min} {u = max} _ ↔⟨⟩ z ∈ [] □ to-search-tree-lemma (x ∷ xs) = λ z → z ∈ insert x (to-search-tree xs) _ ↔⟨ Any-insert (λ x → z ≡ x) _ _ _ ⟩ z ≡ x ⊎ z ∈ to-search-tree xs ↔⟨ id ⊎-cong to-search-tree-lemma xs z ⟩ z ∈ x ∷ xs □ ------------------------------------------------------------------------ -- Appending two ordered lists with an extra element in between infixr 5 append syntax append x lx xu = lx -⁅ x ⁆- xu append : ∀ {l u} (x : A) → Ordered-list l [ x ] → Ordered-list [ x ] u → Ordered-list l u nil l≤x -⁅ x ⁆- xu = cons x xu l≤x cons y yx l≤y -⁅ x ⁆- xu = cons y (yx -⁅ x ⁆- xu) l≤y -- Any lemma for append. Any-append : ∀ (P : A → Type) {l u} x (lx : Ordered-list l [ x ]) (xu : Ordered-list [ x ] u) → Any P (lx -⁅ x ⁆- xu) ↔ Any P lx ⊎ P x ⊎ Any P xu Any-append P x (nil l≤x) xu = P x ⊎ Any P xu ↔⟨ inverse ⊎-left-identity ⟩ ⊥ ⊎ P x ⊎ Any P xu □ Any-append P x (cons y yx l≤y) xu = P y ⊎ Any P (append x yx xu) ↔⟨ id ⊎-cong Any-append P x yx xu ⟩ P y ⊎ Any P yx ⊎ P x ⊎ Any P xu ↔⟨ ⊎-assoc ⟩ (P y ⊎ Any P yx) ⊎ P x ⊎ Any P xu □ ------------------------------------------------------------------------ -- Inorder flattening of a tree flatten : ∀ {l u} → Search-tree l u → Ordered-list l u flatten (leaf l≤u) = nil l≤u flatten (l -[ x ]- r) = flatten l -⁅ x ⁆- flatten r -- Flatten does not add or remove any elements. flatten-lemma : ∀ {l u} (t : Search-tree l u) → flatten t ≈-bag t flatten-lemma {l} {u} (leaf l≤u) = λ z → z ∈ nil {l = l} {u = u} l≤u ↔⟨⟩ z ∈ leaf {l = l} {u = u} l≤u □ flatten-lemma (l -[ x ]- r) = λ z → z ∈ flatten l -⁅ x ⁆- flatten r ↔⟨ Any-append (λ x → z ≡ x) _ _ _ ⟩ z ∈ flatten l ⊎ z ≡ x ⊎ z ∈ flatten r ↔⟨ flatten-lemma l z ⊎-cong id ⊎-cong flatten-lemma r z ⟩ z ∈ l ⊎ z ≡ x ⊎ z ∈ r ↔⟨⟩ z ∈ l -[ x ]- r □ ------------------------------------------------------------------------ -- Sorting -- Sorts a list. tree-sort : List A → Ordered-list min max tree-sort = flatten ∘ to-search-tree -- The result is a permutation of the input. tree-sort-permutes : ∀ xs → tree-sort xs ≈-bag xs tree-sort-permutes xs = λ z → z ∈ tree-sort xs ↔⟨⟩ z ∈ flatten (to-search-tree xs) ↔⟨ flatten-lemma (to-search-tree xs) _ ⟩ z ∈ to-search-tree xs ↔⟨ to-search-tree-lemma xs _ ⟩ z ∈ xs □
{ "alphanum_fraction": 0.4658441855, "avg_line_length": 31.7173913043, "ext": "agda", "hexsha": "2282e1017923041a2ad2186e11e44a17efde8659", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Tree-sort/Full.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Tree-sort/Full.agda", "max_line_length": 106, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Tree-sort/Full.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3186, "size": 8754 }
module Issue734a where module M₁ (Z : Set₁) where postulate P : Set Q : Set → Set module M₂ (X Y : Set) where module M₁′ = M₁ Set open M₁′ p : P p = {!!} -- Previous and current agda2-goal-and-context: -- Y : Set -- X : Set -- --------- -- Goal: P q : Q X q = {!!} -- Previous and current agda2-goal-and-context: -- Y : Set -- X : Set -- ----------- -- Goal: Q X postulate X : Set pp : M₂.M₁′.P X X pp = {!!} -- Previous agda2-goal-and-context: -- ---------------- -- Goal: M₁.P Set -- Current agda2-goal-and-context: -- -------------------- -- Goal: M₂.M₁′.P X X
{ "alphanum_fraction": 0.4747634069, "avg_line_length": 13.2083333333, "ext": "agda", "hexsha": "dc6ef7a1c631933beed92000c1544c40d5843d14", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue734a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue734a.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue734a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 223, "size": 634 }
{-# OPTIONS --prop --rewriting #-} module Examples.Gcd where open import Examples.Gcd.Euclid public open import Examples.Gcd.Clocked public open import Examples.Gcd.Spec public open import Examples.Gcd.Refine public
{ "alphanum_fraction": 0.7935779817, "avg_line_length": 24.2222222222, "ext": "agda", "hexsha": "07fd1a4fac9b44dc5614d380d54680ed6f3bc6e9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Gcd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Gcd.agda", "max_line_length": 39, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Gcd.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 50, "size": 218 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.GradedRing.Instances.Polynomials where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Unit open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.Monoid.Instances.NatVec open import Cubical.Algebra.AbGroup open import Cubical.Algebra.AbGroup.Instances.Unit open import Cubical.Algebra.DirectSum.DirectSumHIT.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.GradedRing.Base open import Cubical.Algebra.GradedRing.DirectSumHIT private variable ℓ : Level open Iso open GradedRing-⊕HIT-index open GradedRing-⊕HIT-⋆ module _ (ARing@(A , Astr) : Ring ℓ) (n : ℕ) where open RingStr Astr open RingTheory ARing PolyGradedRing : GradedRing ℓ-zero ℓ PolyGradedRing = makeGradedRingSelf (NatVecMonoid n) (λ _ → A) (λ _ → snd (Ring→AbGroup ARing)) 1r _·_ 0LeftAnnihilates 0RightAnnihilates (λ a b c → ΣPathP ((+n-vec-assoc _ _ _) , (·Assoc _ _ _))) (λ a → ΣPathP ((+n-vec-rid _) , (·IdR _))) (λ a → ΣPathP ((+n-vec-lid _) , (·IdL _))) ·DistR+ ·DistL+
{ "alphanum_fraction": 0.676132522, "avg_line_length": 30.1836734694, "ext": "agda", "hexsha": "82f0f4b40b20b92c6a7d10d791fa11911e158d76", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/GradedRing/Instances/Polynomials.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/GradedRing/Instances/Polynomials.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/GradedRing/Instances/Polynomials.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 438, "size": 1479 }
module std-lib where open import IO using (IO; run; putStrLn; _>>_) open import Data.Unit using (⊤) open import Codata.Musical.Notation using (♯_) import Agda.Builtin.IO using (IO) open import Function using (_$_) main1 : Agda.Builtin.IO.IO ⊤ main1 = run (♯ putStrLn "hallo" >> ♯ putStrLn "welt") main2 : Agda.Builtin.IO.IO ⊤ main2 = run (do ♯ putStrLn "hallo" ♯ putStrLn "welt" ) main3 : Agda.Builtin.IO.IO ⊤ main3 = run $ do ♯ putStrLn "hallo" ♯ putStrLn "welt" main4 : Agda.Builtin.IO.IO ⊤ main4 = run $ do ♯ putStrLn "hallo" ♯ (do ♯ putStrLn "welt" ♯ putStrLn "!") main : Agda.Builtin.IO.IO ⊤ main = main3
{ "alphanum_fraction": 0.6510172144, "avg_line_length": 19.3636363636, "ext": "agda", "hexsha": "47a1cc56958cbb119cf1670967207f8d33585773", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "neosimsim/merkdas", "max_forks_repo_path": "agda-coinductive-io/std-lib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "neosimsim/merkdas", "max_issues_repo_path": "agda-coinductive-io/std-lib.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "neosimsim/merkdas", "max_stars_repo_path": "agda-coinductive-io/std-lib.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z", "num_tokens": 227, "size": 639 }
module Sessions.Syntax.Values where open import Prelude hiding (both) open import Relation.Unary open import Data.Maybe open import Data.List.Properties using (++-isMonoid) import Data.List as List open import Sessions.Syntax.Types open import Sessions.Syntax.Expr open import Relation.Ternary.Separation.Morphisms data Runtype : Set where endp : SType → Runtype chan : SType → SType → Runtype flipped : Runtype → Runtype flipped (endp x) = endp x flipped (chan α β) = chan β α data Ends : Runtype → Runtype → Runtype → Set where lr : ∀ {a b} → Ends (endp a) (endp b) (chan a b) rl : ∀ {a b} → Ends (endp b) (endp a) (chan a b) instance ≺-raw-sep : RawSep Runtype RawSep._⊎_≣_ ≺-raw-sep = Ends ≺-has-sep : IsSep ≺-raw-sep IsSep.⊎-comm ≺-has-sep lr = rl IsSep.⊎-comm ≺-has-sep rl = lr IsSep.⊎-assoc ≺-has-sep lr () IsSep.⊎-assoc ≺-has-sep rl () RCtx = List Runtype open import Relation.Ternary.Separation.Construct.ListOf Runtype public End : SType → Runtype → Set End α τ = [ endp α ] ≤ [ τ ] ending : ∀ {ys} → Ends (endp γ) ys (chan α β) → End γ (chan α β) ending lr = -, divide lr ⊎-idˡ ending rl = -, divide rl ⊎-idˡ mutual Env = Allstar Val data Closure : Type → Type → Pred RCtx 0ℓ where clos : ∀ {a} → Exp b (a ∷ Γ) → ∀[ Env Γ ⇒ Closure a b ] Endptr = Just ∘ endp data Val : Type → Pred RCtx 0ℓ where tt : ε[ Val unit ] cref : ∀[ Endptr α ⇒ Val (cref α) ] pairs : ∀[ Val a ✴ Val b ⇒ Val (prod a b) ] clos : Exp b (a ∷ Γ) → ∀[ Env Γ ⇒ Val (a ⊸ b) ]
{ "alphanum_fraction": 0.629653821, "avg_line_length": 25.9491525424, "ext": "agda", "hexsha": "8dab7e1e53e63b4912348c8a2d014baefb226878", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Sessions/Syntax/Values.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Sessions/Syntax/Values.agda", "max_line_length": 71, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Sessions/Syntax/Values.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 570, "size": 1531 }
-- Jesper, 2018-10-16: When solving constraints produces a term which -- contains the same unsolved metavariable twice, only the first -- occurrence should be turned into an interaction hole. open import Agda.Builtin.Equality postulate Id : (A : Set) → A → A → Set allq : (∀ m n → Id _ m n) ≡ {!!} allq = refl
{ "alphanum_fraction": 0.6996805112, "avg_line_length": 28.4545454545, "ext": "agda", "hexsha": "32b3534ec60a23bbdf6923f125073cebe7dd92ee", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2273b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2273b.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2273b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 91, "size": 313 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Products ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Product where open import Function open import Level open import Relation.Nullary open import Agda.Builtin.Equality infixr 4 _,′_ infix 4 -,_ infixr 2 _×_ _-×-_ _-,-_ ------------------------------------------------------------------------ -- Definition open import Agda.Builtin.Sigma hiding (module Σ) public renaming (fst to proj₁; snd to proj₂) module Σ = Agda.Builtin.Sigma.Σ renaming (fst to proj₁; snd to proj₂) -- The syntax declaration below is attached to Σ-syntax, to make it -- easy to import Σ without the special syntax. infix 2 Σ-syntax Σ-syntax : ∀ {a b} (A : Set a) → (A → Set b) → Set (a ⊔ b) Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B ∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃ = Σ _ ∃-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃-syntax = ∃ syntax ∃-syntax (λ x → B) = ∃[ x ] B ∄ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∄ P = ¬ ∃ P ∄-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∄-syntax = ∄ syntax ∄-syntax (λ x → B) = ∄[ x ] B ∃₂ : ∀ {a b c} {A : Set a} {B : A → Set b} (C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c) ∃₂ C = ∃ λ a → ∃ λ b → C a b _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b) A × B = Σ[ x ∈ A ] B _,′_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → A × B _,′_ = _,_ ------------------------------------------------------------------------ -- Unique existence -- Parametrised on the underlying equality. ∃! : ∀ {a b ℓ} {A : Set a} → (A → A → Set ℓ) → (A → Set b) → Set (a ⊔ b ⊔ ℓ) ∃! _≈_ B = ∃ λ x → B x × (∀ {y} → B y → x ≈ y) ------------------------------------------------------------------------ -- Functions -- Sometimes the first component can be inferred. -,_ : ∀ {a b} {A : Set a} {B : A → Set b} {x} → B x → ∃ B -, y = _ , y <_,_> : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ {x} → B x → Set c} (f : (x : A) → B x) → ((x : A) → C (f x)) → ((x : A) → Σ (B x) C) < f , g > x = (f x , g x) map : ∀ {a b p q} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} → (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q map f g (x , y) = (f x , g y) map₁ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B) → A × C → B × C map₁ f = map f id map₂ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : A → Set c} → (∀ {x} → B x → C x) → Σ A B → Σ A C map₂ f = map id f zip : ∀ {a b c p q r} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} → (_∙_ : A → B → C) → (∀ {x y} → P x → Q y → R (x ∙ y)) → Σ A P → Σ B Q → Σ C R zip _∙_ _∘_ (a , p) (b , q) = ((a ∙ b) , (p ∘ q)) swap : ∀ {a b} {A : Set a} {B : Set b} → A × B → B × A swap (x , y) = (y , x) _-×-_ : ∀ {a b i j} {A : Set a} {B : Set b} → (A → B → Set i) → (A → B → Set j) → (A → B → Set _) f -×- g = f -[ _×_ ]- g _-,-_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → (A → B → C) → (A → B → D) → (A → B → C × D) f -,- g = f -[ _,_ ]- g curry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} → ((p : Σ A B) → C p) → ((x : A) → (y : B x) → C (x , y)) curry f x y = f (x , y) curry′ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A × B → C) → (A → B → C) curry′ = curry uncurry : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Σ A B → Set c} → ((x : A) → (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y uncurry′ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → (A × B → C) uncurry′ = uncurry
{ "alphanum_fraction": 0.3741748086, "avg_line_length": 28.0518518519, "ext": "agda", "hexsha": "13a7711e4f124b1618b713d99240a893e9c3747c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1621, "size": 3787 }
module New where module _ where open import Agda.Primitive record IsBottom {ℓ-⊥} (⊥ : Set ℓ-⊥) ℓ-elim : Set (lsuc ℓ-elim ⊔ ℓ-⊥) where field ⊥-elim : ⊥ → {A : Set ℓ-elim} → A open IsBottom ⦃ … ⦄ public record Bottom ℓ-⊥ ℓ-elim : Set (lsuc (ℓ-elim ⊔ ℓ-⊥)) where field ⊥ : Set ℓ-⊥ instance ⦃ isBottom ⦄ : IsBottom ⊥ ℓ-elim ¬_ : ∀ {a} → Set a → Set (a ⊔ ℓ-⊥) ¬_ p = p → ⊥ open Bottom ⦃ … ⦄ public record IsEquivalence {a} {A : Set a} {ℓ} (_≈_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field reflexivity : ∀ x → x ≈ x symmetry : ∀ x y → x ≈ y → y ≈ x transitivity : ∀ x y z → x ≈ y → y ≈ z → x ≈ z open IsEquivalence ⦃ … ⦄ public record Equivalence {a} (A : Set a) ℓ : Set (a ⊔ lsuc ℓ) where infix 4 _≈_ field _≈_ : A → A → Set ℓ ⦃ isEquivalence ⦄ : IsEquivalence _≈_ open Equivalence ⦃ … ⦄ public {-# DISPLAY Equivalence._≈_ _ = _≈_ #-} infix 4 _≉_ _≉_ : ∀ {a} {A : Set a} {ℓ} ⦃ _ : Equivalence A ℓ ⦄ {b} ⦃ _ : Bottom b ℓ ⦄ → A → A → Set (b ⊔ ℓ) _≉_ {ℓ = ℓ} x y = ¬ (x ≈ y) record _and_ {ℓ} (A : Set ℓ) (B : Set ℓ) : Set ℓ where field and₁ : A and₂ : B record _NOR_ {ℓ} (A : Set ℓ) (B : Set ℓ) : Set (lsuc ℓ) where field ⦃ bottom ⦄ : Bottom ℓ ℓ nor₁ : A → ⊥ nor₂ : B → ⊥ NOT : ∀ {ℓ} (A : Set ℓ) → Set (lsuc ℓ) NOT A = A NOR A _AND_ : ∀ {ℓ} (A B : Set ℓ) → Set (lsuc (lsuc ℓ)) _AND_ A B = (NOT A) NOR (NOT B) _OR_ : ∀ {ℓ} (A B : Set ℓ) → Set (lsuc (lsuc ℓ)) _OR_ A B = NOT (A NOR B) record Natlike {a} (A : Set a) ℓ b : Set (lsuc (b ⊔ a ⊔ ℓ)) where field zero : A suc : A → A ⦃ equivalence ⦄ : Equivalence A ℓ ⦃ bottom ⦄ : Bottom b ℓ suc-inj : ∀ {x} {y} → suc x ≈ suc y → x ≈ y cong-suc : ∀ {x y} → x ≈ y → suc x ≈ suc y zero≉one : zero ≉ suc zero zero-is-bottommost : ∀ x → suc x ≉ zero break-suc1 : suc zero ≉ suc (suc zero) break-suc1 x = zero≉one (suc-inj x) break-suc : ∀ x → suc x ≉ suc (suc x) break-suc x x₁ = {!suc-inj x₁!} record Isomorphic {a} (A : Set a) ℓᵃ ⦃ _ : Equivalence A ℓᵃ ⦄ {b} (B : Set b) ℓᵇ ⦃ _ : Equivalence B ℓᵇ ⦄ : Set (a ⊔ ℓᵃ ⊔ b ⊔ ℓᵇ) where field toB : A → B toA : B → A isoA : ∀ x → toA (toB x) ≈ x isoB : ∀ x → toB (toA x) ≈ x open import Agda.Builtin.Nat open import Agda.Builtin.Equality instance IsEquivalence≡ : ∀ {a} {A : Set a} → IsEquivalence {a} {A} _≡_ IsEquivalence.reflexivity IsEquivalence≡ x = refl IsEquivalence.symmetry IsEquivalence≡ x .x refl = refl IsEquivalence.transitivity IsEquivalence≡ x .x z refl x₂ = x₂ module _ where open import Prelude using (it) instance EquivalenceNat : Equivalence Nat lzero Equivalence._≈_ EquivalenceNat = _≡_ record NatIso {a} (A : Set a) ℓ : Set (a ⊔ lsuc ℓ) where field ⦃ equivalence ⦄ : Equivalence A ℓ isoNat : Isomorphic A ℓ Nat lzero record Op₂ {a} (A : Set a) : Set a where infixl 6 _∙_ field _∙_ : A → A → A open Op₂ ⦃ … ⦄ public record Op₀ {a} (A : Set a) : Set a where field ε : A open Op₀ ⦃ … ⦄ public record MonoidWithSuc {a} (A : Set a) : Set a where field instance op2 : Op₂ A op0 : Op₀ A ¡ : A → A open MonoidWithSuc ⦃ … ⦄ public private module ZC where private module ASD where open import Prelude.Nat using () instance MonoidWithSucLevel : MonoidWithSuc Level Op₂._∙_ (MonoidWithSuc.op2 MonoidWithSucLevel) = _⊔_ Op₀.ε (MonoidWithSuc.op0 MonoidWithSucLevel) = lzero MonoidWithSuc.¡ MonoidWithSucLevel = lsuc module _ where open import Agda.Builtin.Nat instance MonoidWithSucNat : MonoidWithSuc Nat Op₂._∙_ (MonoidWithSuc.op2 MonoidWithSucNat) = _+_ Op₀.ε (MonoidWithSuc.op0 MonoidWithSucNat) = 0 MonoidWithSuc.¡ MonoidWithSucNat = suc open import Agda.Builtin.Nat open import Agda.Builtin.Equality instance op0fromm : ∀ {a} {A : Set a} ⦃ _ : MonoidWithSuc A ⦄ → Op₀ A op0fromm = op0 module _ where private foo : Nat → Set (¡ ε) foo x = x ∙ x ≡ x → Set bar : 4 ∙ 2 ≡ Nat.suc 5 bar = refl module _ where open import Agda.Primitive infix -65536 ℞_ ℞_ : ∀ ℓ → Set (lsuc ℓ) ℞_ ℓ = Set ℓ module _ where open import Agda.Primitive
{ "alphanum_fraction": 0.5646481178, "avg_line_length": 24.7225433526, "ext": "agda", "hexsha": "977507fa9b787ee136b0357eb70cd9a4f8c784dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/New.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/New.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/New.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1843, "size": 4277 }
-- Andreas, 2022-06-10 -- A failed attempt to break Prop ≤ Set. -- See https://github.com/agda/agda/issues/5761#issuecomment-1151336715 {-# OPTIONS --prop --cumulativity #-} data ⊥ : Set where record ⊤ : Set where constructor tt data Fool : Prop where true false : Fool Bool : Set Bool = Fool True : Bool → Set True true = ⊤ True false = ⊥ X : Fool → Set true≡false : X true → X false true≡false x = x X = True -- Now we have True true → True false which looks dangerous... -- But we cannot exploit it: fails : ⊥ fails = true≡false tt -- ERROR: -- ⊤ !=< (True _) -- when checking that the expression tt has type X _
{ "alphanum_fraction": 0.6525157233, "avg_line_length": 17.1891891892, "ext": "agda", "hexsha": "5a435557ff2081efb12f45d6c5e778bb6b7ac13e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/PropCumulative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/PropCumulative.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/PropCumulative.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 198, "size": 636 }
{-# OPTIONS --without-K --safe #-} -- | Exclusive option. Exactly one of the options holds at the same time. module Dodo.Nullary.XOpt where -- Stdlib imports open import Level using (Level; _⊔_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Nullary using (¬_; Dec; yes; no) -- # XOpt₂ data XOpt₂ {a b : Level} (A : Set a) (B : Set b) : Set (a ⊔ b) where xopt₁ : ( a : A) → (¬b : ¬ B) → XOpt₂ A B xopt₂ : (¬a : ¬ A) → ( b : B) → XOpt₂ A B xopt₂-apply : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → ( A → C ) → ( B → C ) ----------------- → ( XOpt₂ A B → C ) xopt₂-apply f g (xopt₁ a _) = f a xopt₂-apply f g (xopt₂ _ b) = g b xopt₂-dec₁ : {a b : Level} {A : Set a} {B : Set b} → XOpt₂ A B → Dec A xopt₂-dec₁ (xopt₁ a ¬b) = yes a xopt₂-dec₁ (xopt₂ ¬a b) = no ¬a xopt₂-dec₂ : {a b : Level} {A : Set a} {B : Set b} → XOpt₂ A B → Dec B xopt₂-dec₂ (xopt₁ a ¬b) = no ¬b xopt₂-dec₂ (xopt₂ ¬a b) = yes b xopt₂-elim₁ : {a b : Level} {A : Set a} {B : Set b} → ¬ A → XOpt₂ A B → B xopt₂-elim₁ ¬a (xopt₁ a ¬b) = ⊥-elim (¬a a) xopt₂-elim₁ _ (xopt₂ ¬a b) = b xopt₂-elim₂ : {a b : Level} {A : Set a} {B : Set b} → ¬ B → XOpt₂ A B → A xopt₂-elim₂ _ (xopt₁ a ¬b) = a xopt₂-elim₂ ¬b (xopt₂ ¬a b) = ⊥-elim (¬b b) xopt₂-select₁ : {a b : Level} {A : Set a} {B : Set b} → A → XOpt₂ A B → ¬ B xopt₂-select₁ _ (xopt₁ _ ¬b) = ¬b xopt₂-select₁ a (xopt₂ ¬a _) = ⊥-elim (¬a a) xopt₂-select₂ : {a b : Level} {A : Set a} {B : Set b} → B → XOpt₂ A B → ¬ A xopt₂-select₂ b (xopt₁ _ ¬b) = ⊥-elim (¬b b) xopt₂-select₂ b (xopt₂ ¬a _) = ¬a xopt₂-sum : {a b : Level} {A : Set a} {B : Set b} → XOpt₂ A B → A ⊎ B xopt₂-sum (xopt₁ a _) = inj₁ a xopt₂-sum (xopt₂ _ b) = inj₂ b -- # XOpt₃ data XOpt₃ {a b c : Level} (A : Set a) (B : Set b) (C : Set c) : Set (a ⊔ b ⊔ c) where xopt₁ : ( a : A) → (¬b : ¬ B) → (¬c : ¬ C) → XOpt₃ A B C xopt₂ : (¬a : ¬ A) → ( b : B) → (¬c : ¬ C) → XOpt₃ A B C xopt₃ : (¬a : ¬ A) → (¬b : ¬ B) → ( c : C) → XOpt₃ A B C xopt₃-apply : {a b c d : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d} → ( A → D ) → ( B → D ) → ( C → D ) ------------------- → ( XOpt₃ A B C → D ) xopt₃-apply f g h (xopt₁ a _ _) = f a xopt₃-apply f g h (xopt₂ _ b _) = g b xopt₃-apply f g h (xopt₃ _ _ c) = h c xopt₃-dec₁ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → XOpt₃ A B C → Dec A xopt₃-dec₁ (xopt₁ a _ _) = yes a xopt₃-dec₁ (xopt₂ ¬a _ _) = no ¬a xopt₃-dec₁ (xopt₃ ¬a _ _) = no ¬a xopt₃-dec₂ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → XOpt₃ A B C → Dec B xopt₃-dec₂ (xopt₁ _ ¬b _) = no ¬b xopt₃-dec₂ (xopt₂ _ b _) = yes b xopt₃-dec₂ (xopt₃ _ ¬b _) = no ¬b xopt₃-dec₃ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → XOpt₃ A B C → Dec C xopt₃-dec₃ (xopt₁ _ _ ¬c) = no ¬c xopt₃-dec₃ (xopt₂ _ _ ¬c) = no ¬c xopt₃-dec₃ (xopt₃ _ _ c) = yes c xopt₃-elim₁ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → ¬ A → XOpt₃ A B C → XOpt₂ B C xopt₃-elim₁ ¬a (xopt₁ a _ _) = ⊥-elim (¬a a) xopt₃-elim₁ _ (xopt₂ _ b ¬c) = xopt₁ b ¬c xopt₃-elim₁ _ (xopt₃ _ ¬b c) = xopt₂ ¬b c xopt₃-elim₂ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → ¬ B → XOpt₃ A B C → XOpt₂ A C xopt₃-elim₂ ¬b (xopt₁ a _ ¬c) = xopt₁ a ¬c xopt₃-elim₂ ¬b (xopt₂ _ b _) = ⊥-elim (¬b b) xopt₃-elim₂ ¬b (xopt₃ ¬a _ c) = xopt₂ ¬a c xopt₃-elim₃ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → ¬ C → XOpt₃ A B C → XOpt₂ A B xopt₃-elim₃ _ (xopt₁ a ¬b _) = xopt₁ a ¬b xopt₃-elim₃ _ (xopt₂ ¬a b _) = xopt₂ ¬a b xopt₃-elim₃ ¬c (xopt₃ _ _ c) = ⊥-elim (¬c c) xopt₃-select₁ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → A → XOpt₃ A B C → ¬ B × ¬ C xopt₃-select₁ a (xopt₁ _ ¬b ¬c) = ¬b , ¬c xopt₃-select₁ a (xopt₂ ¬a _ _) = ⊥-elim (¬a a) xopt₃-select₁ a (xopt₃ ¬a _ _) = ⊥-elim (¬a a) xopt₃-select₂ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → B → XOpt₃ A B C → ¬ A × ¬ C xopt₃-select₂ b (xopt₁ _ ¬b _) = ⊥-elim (¬b b) xopt₃-select₂ b (xopt₂ ¬a _ ¬c) = ¬a , ¬c xopt₃-select₂ b (xopt₃ _ ¬b _) = ⊥-elim (¬b b) xopt₃-select₃ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → C → XOpt₃ A B C → ¬ A × ¬ B xopt₃-select₃ c (xopt₁ _ _ ¬c) = ⊥-elim (¬c c) xopt₃-select₃ c (xopt₂ _ _ ¬c) = ⊥-elim (¬c c) xopt₃-select₃ c (xopt₃ ¬a ¬b _) = ¬a , ¬b xopt₃-select₁₂ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → A → B → XOpt₃ A B C → ⊥ xopt₃-select₁₂ a b x = proj₁ (xopt₃-select₁ a x) b xopt₃-select₂₃ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → B → C → XOpt₃ A B C → ⊥ xopt₃-select₂₃ b c x = proj₂ (xopt₃-select₂ b x) c xopt₃-select₁₃ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → A → C → XOpt₃ A B C → ⊥ xopt₃-select₁₃ a c x = proj₂ (xopt₃-select₁ a x) c xopt₃-sum : {a b c : Level} {A : Set a} {B : Set b} {C : Set c} → XOpt₃ A B C → A ⊎ B ⊎ C xopt₃-sum (xopt₁ a _ _) = inj₁ a xopt₃-sum (xopt₂ _ b _) = inj₂ (inj₁ b) xopt₃-sum (xopt₃ _ _ c) = inj₂ (inj₂ c)
{ "alphanum_fraction": 0.526085225, "avg_line_length": 37.7593984962, "ext": "agda", "hexsha": "0f311649946d7165812cb62c7a9c853d489aad31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Nullary/XOpt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Nullary/XOpt.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Nullary/XOpt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2597, "size": 5022 }
module Issue2486.Haskell where {-# FOREIGN GHC data MyList a = Nil | Cons a (MyList a) #-}
{ "alphanum_fraction": 0.670212766, "avg_line_length": 11.75, "ext": "agda", "hexsha": "7a76489399b25bb9c233dd5ac94105ce93f706fe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2486/Haskell.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2486/Haskell.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2486/Haskell.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 94 }
------------------------------------------------------------------------------ -- Property <→◁ ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- The <→◁ property proves that the recursive calls of the McCarthy 91 -- function are on smaller arguments. module FOTC.Program.McCarthy91.WF-Relation.LT2WF-RelationATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.PropertiesATP using ( S∸S ) open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP using ( x<0→⊥ ) open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x<y→x≤y ; x≥y→y>0→x∸y<x ; x∸y<Sx ; x<y∨x≥y ; Sx≯y→x≯y ; x≯y→x≤y ; x≤y→x∸y≡0 ; x<y→0<y∸x ) open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.TotalityATP using ( 100-N ; 101-N ) open import FOTC.Program.McCarthy91.WF-Relation ------------------------------------------------------------------------------ <→◁-helper : ∀ {n m k} → N n → N m → N k → m < n → succ₁ n < k → succ₁ m < k → k ∸ n < k ∸ m → k ∸ succ₁ n < k ∸ succ₁ m <→◁-helper nzero Nm Nk p qn qm h = ⊥-elim (x<0→⊥ Nm p) <→◁-helper (nsucc Nn) Nm nzero p qn qm h = ⊥-elim (x<0→⊥ (nsucc Nm) qm) <→◁-helper (nsucc {n} Nn) nzero (nsucc {k} Nk) p qn qm h = prfS0S where postulate k≥Sn : k ≥ succ₁ n k∸Sn<k : k ∸ (succ₁ n) < k prfS0S : succ₁ k ∸ succ₁ (succ₁ n) < succ₁ k ∸ succ₁ zero {-# ATP prove k≥Sn x<y→x≤y #-} {-# ATP prove k∸Sn<k k≥Sn x≥y→y>0→x∸y<x #-} {-# ATP prove prfS0S k∸Sn<k S∸S #-} <→◁-helper (nsucc {n} Nn) (nsucc {m} Nm) (nsucc {k} Nk) p qn qm h = k∸Sn<k∸Sm→Sk∸SSn<Sk∸SSm (<→◁-helper Nn Nm Nk m<n Sn<k Sm<k k∸n<k∸m) where postulate k∸Sn<k∸Sm→Sk∸SSn<Sk∸SSm : k ∸ succ₁ n < k ∸ succ₁ m → succ₁ k ∸ succ₁ (succ₁ n) < succ₁ k ∸ succ₁ (succ₁ m) {-# ATP prove k∸Sn<k∸Sm→Sk∸SSn<Sk∸SSm S∸S #-} postulate m<n : m < n Sn<k : succ₁ n < k Sm<k : succ₁ m < k k∸n<k∸m : k ∸ n < k ∸ m {-# ATP prove m<n #-} {-# ATP prove Sn<k #-} {-# ATP prove Sm<k #-} {-# ATP prove k∸n<k∸m S∸S #-} <→◁ : ∀ {n m} → N n → N m → m ≯ 100' → m < n → n ◁ m <→◁ nzero Nm p h = ⊥-elim (x<0→⊥ Nm h) <→◁ (nsucc {n} Nn) nzero p h = prfS0 where postulate prfS0 : succ₁ n ◁ zero {-# ATP prove prfS0 x∸y<Sx S∸S #-} <→◁ (nsucc {n} Nn) (nsucc {m} Nm) p h with x<y∨x≥y Nn 100-N ... | inj₁ n<100 = <→◁-helper Nn Nm 101-N m<n Sn≤101 Sm≤101 (<→◁ Nn Nm m≯100 m<n) where postulate m≯100 : m ≯ 100' m<n : m < n Sn≤101 : succ₁ n < 101' Sm≤101 : succ₁ m < 101' {-# ATP prove m≯100 Sx≯y→x≯y #-} {-# ATP prove m<n #-} {-# ATP prove Sn≤101 #-} {-# ATP prove Sm≤101 x≯y→x≤y #-} ... | inj₂ n≥100 = prf-n≥100 where postulate 0≡101∸Sn : zero ≡ 101' ∸ succ₁ n 0<101∸Sm : zero < 101' ∸ succ₁ m {-# ATP prove 0≡101∸Sn x≤y→x∸y≡0 #-} {-# ATP prove 0<101∸Sm x≯y→x≤y x<y→0<y∸x #-} prf-n≥100 : succ₁ n ◁ succ₁ m prf-n≥100 = subst (λ t → t < 101' ∸ succ₁ m) 0≡101∸Sn 0<101∸Sm
{ "alphanum_fraction": 0.4868813357, "avg_line_length": 32.25, "ext": "agda", "hexsha": "dd6ff82009f9f73d757ec194dc919b3972ca5c3c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/LT2WF-RelationATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/LT2WF-RelationATP.agda", "max_line_length": 83, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/LT2WF-RelationATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1447, "size": 3354 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.GroupStructure where open import Cubical.Algebra.Group.EilenbergMacLane.Base open import Cubical.Algebra.Group.EilenbergMacLane.WedgeConnectivity open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.AbGroup.Base open import Cubical.Data.Nat open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.HLevels open import Cubical.Foundations.Pointed open import Cubical.Foundations.Path open import Cubical.Homotopy.Loopspace open import Cubical.HITs.EilenbergMacLane1 open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; rec2 to trRec2) open import Cubical.HITs.Susp open import Cubical.Functions.Morphism private variable ℓ : Level module _ {G : AbGroup ℓ} where infixr 34 _+ₖ_ infixr 34 _-ₖ_ open AbGroupStr (snd G) renaming (_+_ to _+G_ ; -_ to -G_ ; +Assoc to +AssocG) private help : (n : ℕ) → n + (4 + n) ≡ (2 + n) + (2 + n) help n = +-suc n (3 + n) ∙ cong suc (+-suc n (suc (suc n))) hLevHelp : (n : ℕ) → isOfHLevel ((2 + n) + (2 + n)) (EM G (2 + n)) hLevHelp n = transport (λ i → isOfHLevel (help n i) (EM G (2 + n))) (isOfHLevelPlus {n = 4 + n} n (isOfHLevelTrunc (4 + n))) helper : (g h : fst G) → PathP (λ i → Path (EM₁ (AbGroup→Group G)) (emloop h i) (emloop h i)) (emloop g) (emloop g) helper g h = comm→PathP ((sym (emloop-comp _ h g) ∙∙ cong emloop (+Comm h g) ∙∙ emloop-comp _ g h)) _+ₖ_ : {n : ℕ} → EM G n → EM G n → EM G n _+ₖ_ {n = zero} = _+G_ _+ₖ_ {n = suc zero} = rec _ (isGroupoidΠ (λ _ → emsquash)) (λ x → x) (λ x → funExt (looper x)) λ g h i j x → el g h x i j where looper : fst G → (x : _) → x ≡ x looper g = (elimSet _ (λ _ → emsquash _ _) (emloop g) (helper g)) el : (g h : fst G) (x : EM₁ (AbGroup→Group G)) → Square (looper g x) (looper (g +G h) x) refl (looper h x) el g h = elimProp _ (λ _ → isOfHLevelPathP' 1 (emsquash _ _) _ _) (emcomp g h) _+ₖ_ {n = suc (suc n)} = trRec2 (isOfHLevelTrunc (4 + n)) (wedgeConEM.fun G G (suc n) (suc n) (λ _ _ → hLevHelp n) ∣_∣ ∣_∣ refl) σ-EM : (n : ℕ) → EM-raw G (suc n) → Path (EM-raw G (2 + n)) ptEM-raw ptEM-raw σ-EM n x = merid x ∙ sym (merid ptEM-raw) -ₖ_ : {n : ℕ} → EM G n → EM G n -ₖ_ {n = zero} x = -G x -ₖ_ {n = suc zero} = rec _ emsquash embase (λ g → sym (emloop g)) λ g h → sym (emloop-sym _ g) ◁ (flipSquare (flipSquare (emcomp (-G g) (-G h)) ▷ emloop-sym _ h) ▷ (cong emloop (+Comm (-G g) (-G h) ∙ sym (GroupTheory.invDistr (AbGroup→Group G) g h)) ∙ emloop-sym _ (g +G h))) -ₖ_ {n = suc (suc n)} = map λ { north → north ; south → north ; (merid a i) → σ-EM n a (~ i)} _-ₖ_ : {n : ℕ} → EM G n → EM G n → EM G n _-ₖ_ {n = n} x y = _+ₖ_ {n = n} x (-ₖ_ {n = n} y) +ₖ-syntax : (n : ℕ) → EM G n → EM G n → EM G n +ₖ-syntax n = _+ₖ_ {n = n} -ₖ-syntax : (n : ℕ) → EM G n → EM G n -ₖ-syntax n = -ₖ_ {n = n} -'ₖ-syntax : (n : ℕ) → EM G n → EM G n → EM G n -'ₖ-syntax n = _-ₖ_ {n = n} syntax +ₖ-syntax n x y = x +[ n ]ₖ y syntax -ₖ-syntax n x = -[ n ]ₖ x syntax -'ₖ-syntax n x y = x -[ n ]ₖ y lUnitₖ : (n : ℕ) (x : EM G n) → 0ₖ n +[ n ]ₖ x ≡ x lUnitₖ zero x = +IdL x lUnitₖ (suc zero) _ = refl lUnitₖ (suc (suc n)) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) λ _ → refl rUnitₖ : (n : ℕ) (x : EM G n) → x +[ n ]ₖ 0ₖ n ≡ x rUnitₖ zero x = +IdR x rUnitₖ (suc zero) = elimSet _ (λ _ → emsquash _ _) refl λ _ _ → refl rUnitₖ (suc (suc n)) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) (wedgeConEM.right G G (suc n) (suc n) (λ _ _ → hLevHelp n) ∣_∣ ∣_∣ refl) commₖ : (n : ℕ) (x y : EM G n) → x +[ n ]ₖ y ≡ y +[ n ]ₖ x commₖ zero = +Comm commₖ (suc zero) = wedgeConEM.fun G G 0 0 (λ _ _ → emsquash _ _) (λ x → sym (rUnitₖ 1 x)) (rUnitₖ 1) refl commₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelTruncPath {n = 4 + n}) (wedgeConEM.fun G G _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (hLevHelp n) _ _) (λ x → sym (rUnitₖ (2 + n) ∣ x ∣)) (λ x → rUnitₖ (2 + n) ∣ x ∣) refl) cong₂+₁ : (p q : typ (Ω (EM∙ G 1))) → cong₂ (λ x y → x +[ 1 ]ₖ y) p q ≡ p ∙ q cong₂+₁ p q = (cong₂Funct (λ x y → x +[ 1 ]ₖ y) p q) ∙ (λ i → (cong (λ x → rUnitₖ 1 x i) p) ∙ (cong (λ x → lUnitₖ 1 x i) q)) cong₂+₂ : (n : ℕ) (p q : typ (Ω (EM∙ G (suc (suc n))))) → cong₂ (λ x y → x +[ (2 + n) ]ₖ y) p q ≡ p ∙ q cong₂+₂ n p q = (cong₂Funct (λ x y → x +[ (2 + n) ]ₖ y) p q) ∙ (λ i → (cong (λ x → rUnitₖ (2 + n) x i) p) ∙ (cong (λ x → lUnitₖ (2 + n) x i) q)) isCommΩEM : (n : ℕ) (p q : typ (Ω (EM∙ G (suc n)))) → p ∙ q ≡ q ∙ p isCommΩEM zero p q = sym (cong₂+₁ p q) ∙∙ (λ i j → commₖ 1 (p j) (q j) i) ∙∙ cong₂+₁ q p isCommΩEM (suc n) p q = (sym (cong₂+₂ n p q) ∙∙ (λ i j → commₖ (suc (suc n)) (p j) (q j) i) ∙∙ cong₂+₂ n q p) cong-₁ : (p : typ (Ω (EM∙ G 1))) → cong (λ x → -[ 1 ]ₖ x) p ≡ sym p cong-₁ p = main embase p where decoder : (x : EM G 1) → embase ≡ x → x ≡ embase decoder = elimSet _ (λ _ → isSetΠ λ _ → emsquash _ _) (λ p i → -[ 1 ]ₖ (p i)) λ g → toPathP (funExt λ x → (λ i → transport (λ i → Path (EM G 1) (emloop g i) embase) (cong (-ₖ_ {n = 1}) (transp (λ j → Path (EM G 1) embase (emloop g (~ j ∧ ~ i))) i (compPath-filler x (sym (emloop g)) i) ))) ∙∙ (λ i → transp (λ j → Path (EM G 1) (emloop g (i ∨ j)) embase) i (compPath-filler' (sym (emloop g)) (cong-∙ (-ₖ_ {n = 1}) x (sym (emloop g)) i) i)) ∙∙ (cong (sym (emloop g) ∙_) (isCommΩEM 0 (cong (-ₖ_ {n = 1}) x) (emloop g))) ∙∙ ∙assoc _ _ _ ∙∙ cong (_∙ (cong (-ₖ_ {n = 1}) x)) (lCancel (emloop g)) ∙ sym (lUnit _)) main : (x : EM G 1) (p : embase ≡ x) → decoder x p ≡ sym p main x = J (λ x p → decoder x p ≡ sym p) refl cong-₂ : (n : ℕ) (p : typ (Ω (EM∙ G (2 + n)))) → cong (λ x → -[ 2 + n ]ₖ x) p ≡ sym p cong-₂ n p = main _ p where pp : (a : _) → PathP (λ i → 0ₖ (suc (suc n)) ≡ ∣ merid a i ∣ₕ → ∣ merid a i ∣ₕ ≡ 0ₖ (2 + n)) (cong (λ x → -[ 2 + n ]ₖ x)) λ p → cong ∣_∣ₕ (sym (merid ptEM-raw)) ∙ cong (λ x → -[ 2 + n ]ₖ x) p pp a = toPathP (funExt λ x → (λ k → transp (λ i → Path (EM G (2 + n)) ∣ merid a (i ∨ k) ∣ ∣ ptEM-raw ∣) k (compPath-filler' (cong ∣_∣ₕ (sym (merid a))) (cong (-ₖ-syntax (suc (suc n))) (transp (λ j → Path (EM G (2 + n)) ∣ ptEM-raw ∣ ∣ merid a (~ j ∧ ~ k) ∣) k (compPath-filler x (sym (cong ∣_∣ₕ (merid a))) k))) k)) ∙∙ cong (cong ∣_∣ₕ (sym (merid a)) ∙_) (cong-∙ (λ x → -[ 2 + n ]ₖ x) x (sym (cong ∣_∣ₕ (merid a))) ∙ isCommΩEM (suc n) (cong (λ x → -[ 2 + n ]ₖ x) x) (cong ∣_∣ₕ (σ-EM n a))) ∙∙ (λ k → (λ i → ∣ merid a (~ i ∨ k) ∣) ∙ (λ i → ∣ compPath-filler' (merid a) (sym (merid ptEM-raw)) (~ k) i ∣) ∙ cong (λ x → -ₖ-syntax (suc (suc n)) x) x) ∙ sym (lUnit _)) decoder : (x : EM G (2 + n)) → 0ₖ (2 + n) ≡ x → x ≡ 0ₖ (2 + n) decoder = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelTruncPath {n = 4 + n}) λ { north → pp ptEM-raw i0 ; south → pp ptEM-raw i1 ; (merid a i) → pp a i} main : (x : EM G (2 + n)) (p : 0ₖ (2 + n) ≡ x) → decoder x p ≡ sym p main x = J (λ x p → decoder x p ≡ sym p) refl rCancelₖ : (n : ℕ) (x : EM G n) → x +[ n ]ₖ (-[ n ]ₖ x) ≡ 0ₖ n rCancelₖ zero x = +InvR x rCancelₖ (suc zero) = elimSet _ (λ _ → emsquash _ _) refl λ g → flipSquare (cong₂+₁ (emloop g) (λ i → -ₖ-syntax 1 (emloop g i)) ∙ rCancel (emloop g)) rCancelₖ (suc (suc n)) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) λ { north → refl ; south i → +ₖ-syntax (suc (suc n)) ∣ merid ptEM-raw (~ i) ∣ (-ₖ-syntax (suc (suc n)) ∣ merid ptEM-raw (~ i) ∣) ; (merid a i) j → hcomp (λ r → λ { (i = i0) → 0ₖ (2 + n) ; (i = i1) → ∣ merid ptEM-raw (~ j ∧ r) ∣ₕ -[ 2 + n ]ₖ ∣ merid ptEM-raw (~ j ∧ r) ∣ ; (j = i0) → ∣ compPath-filler (merid a) (sym (merid ptEM-raw)) (~ r) i ∣ -[ 2 + n ]ₖ ∣ compPath-filler (merid a) (sym (merid ptEM-raw)) (~ r) i ∣ ; (j = i1) → 0ₖ (2 + n)}) (help' a j i) } where help' : (a : _) → cong₂ (λ x y → ∣ x ∣ -[ suc (suc n) ]ₖ ∣ y ∣) (σ-EM n a) (σ-EM n a) ≡ refl help' a = cong₂+₂ n (cong ∣_∣ₕ (σ-EM n a)) (cong (λ x → -[ 2 + n ]ₖ ∣ x ∣) (σ-EM n a)) ∙∙ cong (cong ∣_∣ₕ (σ-EM n a) ∙_) (cong-₂ n (cong ∣_∣ₕ (σ-EM n a))) ∙∙ rCancel _ lCancelₖ : (n : ℕ) (x : EM G n) → (-[ n ]ₖ x) +[ n ]ₖ x ≡ 0ₖ n lCancelₖ n x = commₖ n (-[ n ]ₖ x) x ∙ rCancelₖ n x assocₖ : (n : ℕ) (x y z : EM G n) → (x +[ n ]ₖ (y +[ n ]ₖ z) ≡ (x +[ n ]ₖ y) +[ n ]ₖ z) assocₖ zero = +AssocG assocₖ (suc zero) = elimSet _ (λ _ → isSetΠ2 λ _ _ → emsquash _ _) (λ _ _ → refl) λ g i y z k → lem g y z k i where lem : (g : fst G) (y z : _) → cong (λ x → x +[ suc zero ]ₖ (y +[ suc zero ]ₖ z)) (emloop g) ≡ cong (λ x → (x +[ suc zero ]ₖ y) +[ suc zero ]ₖ z) (emloop g) lem g = elimProp _ (λ _ → isPropΠ λ _ → emsquash _ _ _ _) (elimProp _ (λ _ → emsquash _ _ _ _) refl) assocₖ (suc (suc n)) = elim2 (λ _ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelTruncPath {n = 4 + n}) λ a b → trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) (λ c → main c a b) where lem : (c : _) (a b : _) → PathP (λ i → (∣ a ∣ₕ +[ suc (suc n) ]ₖ (∣ b ∣ₕ +[ suc (suc n) ]ₖ ∣ merid c i ∣ₕ) ≡ (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ) +[ suc (suc n) ]ₖ ∣ merid c i ∣ₕ)) (cong (λ x → ∣ a ∣ₕ +[ suc (suc n) ]ₖ x) (rUnitₖ (suc (suc n)) ∣ b ∣) ∙ sym (rUnitₖ (suc (suc n)) (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ))) ((λ i → ∣ a ∣ₕ +[ suc (suc n) ]ₖ (∣ b ∣ₕ +[ suc (suc n) ]ₖ ∣ merid ptEM-raw (~ i) ∣ₕ)) ∙∙ cong (λ x → ∣ a ∣ₕ +[ suc (suc n) ]ₖ x) (rUnitₖ (suc (suc n)) ∣ b ∣) ∙ sym (rUnitₖ (suc (suc n)) (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ)) ∙∙ λ i → (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ) +[ suc (suc n) ]ₖ ∣ merid ptEM-raw i ∣ₕ) lem c = raw-elim G (suc n) (λ _ → isOfHLevelΠ (2 + n) (λ _ → isOfHLevelPathP' (2 + n) (isOfHLevelTrunc (4 + n) _ _) _ _)) (raw-elim G (suc n) (λ _ → isOfHLevelPathP' (2 + n) (isOfHLevelTrunc (4 + n) _ _) _ _) ((sym (rUnit refl) ◁ λ _ → refl) ▷ (sym (lCancel (cong ∣_∣ₕ (merid ptEM-raw))) ∙ λ i → (λ j → ∣ merid ptEM-raw (~ j ∨ ~ i) ∣ₕ) ∙∙ lUnit (λ j → ∣ merid ptEM-raw (~ j ∧ ~ i) ∣ₕ) i ∙∙ cong ∣_∣ₕ (merid ptEM-raw)))) main : (c a b : _) → (∣ a ∣ₕ +[ suc (suc n) ]ₖ (∣ b ∣ₕ +[ suc (suc n) ]ₖ ∣ c ∣ₕ) ≡ (∣ a ∣ₕ +[ suc (suc n) ]ₖ ∣ b ∣ₕ) +[ suc (suc n) ]ₖ ∣ c ∣ₕ) main north a b = lem ptEM-raw a b i0 main south a b = lem ptEM-raw a b i1 main (merid c i) a b = lem c a b i σ-EM' : (n : ℕ) (x : EM G (suc n)) → Path (EM G (suc (suc n))) (0ₖ (suc (suc n))) (0ₖ (suc (suc n))) σ-EM' zero x = cong ∣_∣ₕ (σ-EM zero x) σ-EM' (suc n) = trElim (λ _ → isOfHLevelTrunc (5 + n) _ _) λ x → cong ∣_∣ₕ (σ-EM (suc n) x) σ-EM'-0ₖ : (n : ℕ) → σ-EM' n (0ₖ (suc n)) ≡ refl σ-EM'-0ₖ zero = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) σ-EM'-0ₖ (suc n) = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) private lUnit-rUnit-coh : ∀ {ℓ} {A : Type ℓ} {x : A} (p : x ≡ x) (r : refl ≡ p) → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r lUnit-rUnit-coh p = J (λ p r → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r) refl σ-EM'-hom : (n : ℕ) → (a b : _) → σ-EM' n (a +ₖ b) ≡ σ-EM' n a ∙ σ-EM' n b σ-EM'-hom zero = wedgeConEM.fun G G 0 0 (λ _ _ → isOfHLevelTrunc 4 _ _ _ _) l r p where l : _ l x = cong (σ-EM' zero) (lUnitₖ 1 x) ∙∙ lUnit (σ-EM' zero x) ∙∙ cong (_∙ σ-EM' zero x) (sym (σ-EM'-0ₖ zero)) r : _ r x = cong (σ-EM' zero) (rUnitₖ 1 x) ∙∙ rUnit (σ-EM' zero x) ∙∙ cong (σ-EM' zero x ∙_) (sym (σ-EM'-0ₖ zero)) p : _ p = lUnit-rUnit-coh (σ-EM' zero embase) (sym (σ-EM'-0ₖ zero)) σ-EM'-hom (suc n) = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _) (wedgeConEM.fun G G _ _ (λ x y → transport (λ i → isOfHLevel (help n i) ((σ-EM' (suc n) (∣ x ∣ₕ +ₖ ∣ y ∣ₕ) ≡ σ-EM' (suc n) ∣ x ∣ₕ ∙ σ-EM' (suc n) ∣ y ∣ₕ))) (isOfHLevelPlus {n = 4 + n} n (isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _))) (λ x → cong (σ-EM' (suc n)) (lUnitₖ (suc (suc n)) ∣ x ∣) ∙∙ lUnit (σ-EM' (suc n) ∣ x ∣) ∙∙ cong (_∙ σ-EM' (suc n) ∣ x ∣) (sym (σ-EM'-0ₖ (suc n)))) (λ x → cong (σ-EM' (suc n)) (rUnitₖ (2 + n) ∣ x ∣) ∙∙ rUnit (σ-EM' (suc n) ∣ x ∣) ∙∙ cong (σ-EM' (suc n) ∣ x ∣ ∙_) (sym (σ-EM'-0ₖ (suc n)))) (lUnit-rUnit-coh (σ-EM' (suc n) (0ₖ (2 + n))) (sym (σ-EM'-0ₖ (suc n))))) σ-EM'-ₖ : (n : ℕ) → (a : _) → σ-EM' n (-ₖ a) ≡ sym (σ-EM' n a) σ-EM'-ₖ n = morphLemmas.distrMinus (λ x y → x +[ suc n ]ₖ y) (_∙_) (σ-EM' n) (σ-EM'-hom n) (0ₖ (suc n)) refl (λ x → -ₖ x) sym (λ x → sym (lUnit x)) (λ x → sym (rUnit x)) (lCancelₖ (suc n)) rCancel ∙assoc (σ-EM'-0ₖ n) -Dist : (n : ℕ) (x y : EM G n) → -[ n ]ₖ (x +[ n ]ₖ y) ≡ (-[ n ]ₖ x) +[ n ]ₖ (-[ n ]ₖ y) -Dist zero x y = (GroupTheory.invDistr (AbGroup→Group G) x y) ∙ commₖ zero _ _ -Dist (suc zero) = k where -- useless where clause. Needed for fast type checking for some reason. l : _ l x = refl r : _ r x = cong (λ z → -[ 1 ]ₖ z) (rUnitₖ 1 x) ∙ sym (rUnitₖ 1 (-[ 1 ]ₖ x)) p : r ptEM-raw ≡ l ptEM-raw p = sym (rUnit refl) k = wedgeConEM.fun G G 0 0 (λ _ _ → emsquash _ _) l r (sym p) -Dist (suc (suc n)) = elim2 (λ _ _ → isOfHLevelTruncPath {n = 4 + n}) (wedgeConEM.fun G G (suc n) (suc n) (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (hLevHelp n) _ _) (λ x → refl) (λ x → cong (λ z → -[ (suc (suc n)) ]ₖ z) (rUnitₖ (suc (suc n)) ∣ x ∣ₕ) ∙ sym (rUnitₖ (suc (suc n)) (-[ (suc (suc n)) ]ₖ ∣ x ∣ₕ))) (rUnit refl)) addIso : (n : ℕ) (x : EM G n) → Iso (EM G n) (EM G n) Iso.fun (addIso n x) y = y +[ n ]ₖ x Iso.inv (addIso n x) y = y -[ n ]ₖ x Iso.rightInv (addIso n x) y = sym (assocₖ n y (-[ n ]ₖ x) x) ∙∙ cong (λ x → y +[ n ]ₖ x) (lCancelₖ n x) ∙∙ rUnitₖ n y Iso.leftInv (addIso n x) y = sym (assocₖ n y x (-[ n ]ₖ x)) ∙∙ cong (λ x → y +[ n ]ₖ x) (rCancelₖ n x) ∙∙ rUnitₖ n y
{ "alphanum_fraction": 0.4499718416, "avg_line_length": 38.4158653846, "ext": "agda", "hexsha": "888bde0c4a8bf7f896ac3faec36d26fede5339f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/GroupStructure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/GroupStructure.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/GroupStructure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7201, "size": 15981 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of functions, such as associativity and commutativity ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level open import Relation.Binary open import Data.Sum -- The properties are parameterised by the following "equality" relation module Algebra.FunctionProperties {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Data.Product ------------------------------------------------------------------------ -- Unary and binary operations open import Algebra.FunctionProperties.Core public ------------------------------------------------------------------------ -- Properties of operations Associative : Op₂ A → Set _ Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z)) Commutative : Op₂ A → Set _ Commutative _∙_ = ∀ x y → (x ∙ y) ≈ (y ∙ x) LeftIdentity : A → Op₂ A → Set _ LeftIdentity e _∙_ = ∀ x → (e ∙ x) ≈ x RightIdentity : A → Op₂ A → Set _ RightIdentity e _∙_ = ∀ x → (x ∙ e) ≈ x Identity : A → Op₂ A → Set _ Identity e ∙ = (LeftIdentity e ∙) × (RightIdentity e ∙) LeftZero : A → Op₂ A → Set _ LeftZero z _∙_ = ∀ x → (z ∙ x) ≈ z RightZero : A → Op₂ A → Set _ RightZero z _∙_ = ∀ x → (x ∙ z) ≈ z Zero : A → Op₂ A → Set _ Zero z ∙ = (LeftZero z ∙) × (RightZero z ∙) LeftInverse : A → Op₁ A → Op₂ A → Set _ LeftInverse e _⁻¹ _∙_ = ∀ x → ((x ⁻¹) ∙ x) ≈ e RightInverse : A → Op₁ A → Op₂ A → Set _ RightInverse e _⁻¹ _∙_ = ∀ x → (x ∙ (x ⁻¹)) ≈ e Inverse : A → Op₁ A → Op₂ A → Set _ Inverse e ⁻¹ ∙ = (LeftInverse e ⁻¹) ∙ × (RightInverse e ⁻¹ ∙) LeftConical : A → Op₂ A → Set _ LeftConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → x ≈ e RightConical : A → Op₂ A → Set _ RightConical e _∙_ = ∀ x y → (x ∙ y) ≈ e → y ≈ e Conical : A → Op₂ A → Set _ Conical e ∙ = (LeftConical e ∙) × (RightConical e ∙) _DistributesOverˡ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverˡ _+_ = ∀ x y z → (x * (y + z)) ≈ ((x * y) + (x * z)) _DistributesOverʳ_ : Op₂ A → Op₂ A → Set _ _*_ DistributesOverʳ _+_ = ∀ x y z → ((y + z) * x) ≈ ((y * x) + (z * x)) _DistributesOver_ : Op₂ A → Op₂ A → Set _ * DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +) _IdempotentOn_ : Op₂ A → A → Set _ _∙_ IdempotentOn x = (x ∙ x) ≈ x Idempotent : Op₂ A → Set _ Idempotent ∙ = ∀ x → ∙ IdempotentOn x IdempotentFun : Op₁ A → Set _ IdempotentFun f = ∀ x → f (f x) ≈ f x Selective : Op₂ A → Set _ Selective _∙_ = ∀ x y → (x ∙ y) ≈ x ⊎ (x ∙ y) ≈ y _Absorbs_ : Op₂ A → Op₂ A → Set _ _∙_ Absorbs _∘_ = ∀ x y → (x ∙ (x ∘ y)) ≈ x Absorptive : Op₂ A → Op₂ A → Set _ Absorptive ∙ ∘ = (∙ Absorbs ∘) × (∘ Absorbs ∙) Involutive : Op₁ A → Set _ Involutive f = ∀ x → f (f x) ≈ x LeftCancellative : Op₂ A → Set _ LeftCancellative _•_ = ∀ x {y z} → (x • y) ≈ (x • z) → y ≈ z RightCancellative : Op₂ A → Set _ RightCancellative _•_ = ∀ {x} y z → (y • x) ≈ (z • x) → y ≈ z Cancellative : Op₂ A → Set _ Cancellative _•_ = (LeftCancellative _•_) × (RightCancellative _•_) Congruent₁ : Op₁ A → Set _ Congruent₁ f = f Preserves _≈_ ⟶ _≈_ Congruent₂ : Op₂ A → Set _ Congruent₂ ∙ = ∙ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ LeftCongruent : Op₂ A → Set _ LeftCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≈_ ⟶ _≈_ RightCongruent : Op₂ A → Set _ RightCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_
{ "alphanum_fraction": 0.5397203213, "avg_line_length": 27.5491803279, "ext": "agda", "hexsha": "84957b40c4a25a39e2458f4c62c9e0e86b2210f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1299, "size": 3361 }
module AbsToConDecl where x where data D (A : Set) : Set where c : D A
{ "alphanum_fraction": 0.5975609756, "avg_line_length": 13.6666666667, "ext": "agda", "hexsha": "bd6abb2f533785267cb3b1c1ea405c7ce6fe56cb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/AbsToConDecl.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/AbsToConDecl.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/AbsToConDecl.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 82 }
{-# OPTIONS --copatterns #-} module Tree where data Bool : Set where true false : Bool record Tree (A : Set) : Set where field label : A child : Bool -> Tree A open Tree -- corecursive function defined by copattern matching alternate : {A : Set}(a b : A) -> Tree A -- deep copatterns: label (child (alternate a b) false) = b child (child (alternate a b) false) true = alternate a b child (child (alternate a b) false) false = alternate a b -- shallow copatterns child {A = A} (alternate a b) true = alternate b a label {A = A} (alternate a b) = a {- Delivers an infinite tree a b b a a a a b b b b b b b b ... -} infixr 5 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A collect : List Bool -> {A : Set} -> Tree A -> List A collect [] t = [] collect (b :: l) t = label t :: collect l (child t b) test : List Bool test = collect (true :: true :: true :: []) (alternate true false) -- should give true :: false : true :: []
{ "alphanum_fraction": 0.5588507878, "avg_line_length": 23.9777777778, "ext": "agda", "hexsha": "8f9620e68b5bcb82bde3f03e1ba4c7796a81e6e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/features/Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/features/Tree.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/features/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 321, "size": 1079 }
{-# OPTIONS --copatterns #-} module SizedPolyIO.Base where open import Data.Maybe.Base open import Data.Sum renaming (inj₁ to left; inj₂ to right; [_,_]′ to either) open import Function open import Level using (_⊔_) renaming (suc to lsuc) open import Size open import NativePolyIO record IOInterface γ ρ : Set (lsuc (γ ⊔ ρ)) where field Command : Set γ Response : (m : Command) → Set ρ open IOInterface public module _ {γ ρ} (I : IOInterface γ ρ) (let C = Command I) (let R = Response I) where mutual record IO (i : Size) {α} (A : Set α) : Set (α ⊔ γ ⊔ ρ) where coinductive constructor delay field force : {j : Size< i} → IO' j A data IO' (i : Size) {α} (A : Set α) : Set (α ⊔ γ ⊔ ρ) where do' : (c : C) (f : R c → IO i A) → IO' i A return' : (a : A) → IO' i A data IO+ (i : Size) {α} (A : Set α) : Set (α ⊔ ρ ⊔ γ) where do' : (c : C) (f : R c → IO i A) → IO+ i A open IO public module _ {γ ρ} {I : IOInterface γ ρ} (let C = Command I) (let R = Response I) where return : ∀{i α}{A : Set α} (a : A) → IO I i A force (return a) = return' a do : ∀{i α}{A : Set α} (c : C) (f : R c → IO I i A) → IO I i A force (do c f) = do' c f do1 : ∀{i} (c : C) → IO I i (R c) do1 c = do c return infixl 2 _>>=_ _>>='_ _>>_ mutual _>>='_ : ∀{i α}{A B : Set α} (m : IO' I i A) (k : A → IO I (↑ i) B) → IO' I i B do' c f >>=' k = do' c λ x → f x >>= k return' a >>=' k = force (k a) _>>=_ : ∀{i α}{A B : Set α} (m : IO I i A) (k : A → IO I i B) → IO I i B force (m >>= k) = force m >>=' k _>>_ : ∀{i α}{B : Set α} (m : IO I i Unit) (k : IO I i B) → IO I i B m >> k = m >>= λ _ → k {-# NON_TERMINATING #-} translateIO : ∀{α}{A : Set α} → (translateLocal : (c : C) → NativeIO (R c)) → IO I ∞ A → NativeIO A translateIO translateLocal m = case (force m {_}) of λ{ (do' c f) → (translateLocal c) native>>= λ r → translateIO translateLocal (f r) ; (return' a) → nativeReturn a } -- Recursion -- trampoline provides a generic form of loop (generalizing while/repeat). -- Starting at state s : S, step function f is iterated until it returns -- a result in A. fromIO+' : ∀{i α}{A : Set α} → IO+ I i A → IO' I i A fromIO+' (do' c f) = do' c f fromIO+ : ∀{i α}{A : Set α} → IO+ I i A → IO I i A force (fromIO+ (do' c f)) = do' c f _>>=+'_ : ∀{i α}{A B : Set α} (m : IO+ I i A) (k : A → IO I i B) → IO' I i B do' c f >>=+' k = do' c λ x → f x >>= k _>>=+_ : ∀{i α}{A B : Set α} (m : IO+ I i A) (k : A → IO I i B) → IO I i B force (m >>=+ k) = m >>=+' k mutual _>>+_ : ∀{i α}{A B : Set α} (m : IO I i (A ⊎ B)) (k : A → IO I i B) → IO I i B force (m >>+ k) = force m >>+' k _>>+'_ : ∀{j α}{A B : Set α} (m : IO' I j (A ⊎ B)) (k : A → IO I (↑ j) B) → IO' I j B do' c f >>+' k = do' c λ x → f x >>+ k return' (left a) >>+' k = force (k a) return' (right b) >>+' k = return' b -- loop trampoline : ∀{i α}{A S : Set α} (f : S → IO+ I i (S ⊎ A)) (s : S) → IO I i A force (trampoline f s) = case (f s) of \{ (do' c k) → do' c λ r → k r >>+ trampoline f } -- simple infinite loop forever : ∀{i α}{A B : Set α} → IO+ I i A → IO I i B force (forever (do' c f)) = do' c λ r → f r >>= λ _ → forever (do' c f) whenJust : ∀{i α}{A : Set α} → Maybe A → (A → IO I i (Unit {α})) → IO I i Unit whenJust nothing k = return _ whenJust (just a) k = k a
{ "alphanum_fraction": 0.4879587156, "avg_line_length": 30.3304347826, "ext": "agda", "hexsha": "6b6ab465d6a0108e806c8ff3022aa010bf623bb2", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/SizedPolyIO/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/SizedPolyIO/Base.agda", "max_line_length": 89, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedPolyIO/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1438, "size": 3488 }
module Negative2 where data Tree (A : Set) : Set where leaf : Tree A node : (A -> Tree A) -> Tree A data Bad : Set where bad : Tree Bad -> Bad
{ "alphanum_fraction": 0.582278481, "avg_line_length": 15.8, "ext": "agda", "hexsha": "2915072e45a98bd53e78795cb3c043eab97e756b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Negative2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Negative2.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Negative2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 49, "size": 158 }
module Issue312 where record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ syntax Σ A (λ x → B) = Σ[ x ∶ A ] B _×_ : Set → Set → Set A × B = Σ[ _ ∶ A ] B postulate T : Set → Set → Set equal : ∀ {A} → T A A _and_are_ : (A B : Set) → T A B → Set -- Check that it parses to the right thing check : ∀ A B → (A × B) and Σ A (λ x → B) are equal
{ "alphanum_fraction": 0.5282555283, "avg_line_length": 18.5, "ext": "agda", "hexsha": "a34d1c1d681ce91b29247154c47e48c02a59797e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue312.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue312.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue312.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 170, "size": 407 }
module sv20.class-exercise where open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; s≤s; z≤n) -- Subset definition taken from: https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html -- Notice that irrelevance is not the same as function dot-pattern: https://agda.readthedocs.io/en/v2.6.1/language/function-definitions.html#dot-patterns postulate .irrAx : ∀ {ℓ} {A : Set ℓ} -> .A -> A record Subset (A : Set) (P : A -> Set) : Set where constructor _#_ field elem : A .certificate : P elem .certificate : {A : Set}{P : A -> Set} -> (x : Subset A P) -> P (Subset.elem x) certificate (a # p) = irrAx p _ : Subset ℕ (_≤ 3) _ = 3 # s≤s (s≤s (s≤s z≤n)) --_ = 0 # z≤n --_∈_ : ? --(a # p) ∈ s = ?
{ "alphanum_fraction": 0.6092896175, "avg_line_length": 28.1538461538, "ext": "agda", "hexsha": "a7d097e6ab081bb8d4b6c8cac7787adf3c4b0cc2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/class-exercise.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/class-exercise.agda", "max_line_length": 153, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/class-exercise.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 277, "size": 732 }
{-# OPTIONS --without-K --safe #-} module Data.List.Kleene.Properties where open import Data.List.Kleene.Base open import Relation.Binary open import Relation.Unary open import Function module _ {a r} {A : Set a} {R : Rel A r} where infix 4 _≈_ _≈_ = R open import Algebra.FunctionProperties _≈_ foldr-universal : Transitive _≈_ → ∀ {b} {B : Set b} (h : B ⋆ → A) f e → ∀[ f ⊢ Congruent₁ ] → (h [] ≈ e) → (∀ x xs → h (∹ x & xs) ≈ f x (h xs)) → ∀ xs → h xs ≈ foldr⋆ f e xs foldr-universal trans h f e cong-f base cons [] = base foldr-universal trans h f e cong-f base cons (∹ x & xs) = (cons x xs) ⟨ trans ⟩ cong-f (foldr-universal trans h f e cong-f base cons xs) foldr-fusion : Transitive _≈_ → Reflexive _≈_ → ∀ {b c} {B : Set b} {C : Set c} (f : C → A) {_⊕_ : B → C → C} {_⊗_ : B → A → A} e → ∀[ _⊗_ ⊢ Congruent₁ ] → (∀ x y → f (x ⊕ y) ≈ x ⊗ f y) → ∀ xs → f (foldr⋆ _⊕_ e xs) ≈ foldr⋆ _⊗_ (f e) xs foldr-fusion trans refl h {f} {g} e cong-g fuse = foldr-universal trans (h ∘ foldr⋆ f e) g (h e) cong-g refl (λ x xs → fuse x (foldr⋆ f e xs))
{ "alphanum_fraction": 0.5008064516, "avg_line_length": 34.4444444444, "ext": "agda", "hexsha": "b3279d0c8b668ed1d75122eb081dc31e9a8771aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-kleene-lists", "max_forks_repo_path": "Data/List/Kleene/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-kleene-lists", "max_issues_repo_path": "Data/List/Kleene/Properties.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-kleene-lists", "max_stars_repo_path": "Data/List/Kleene/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 460, "size": 1240 }
------------------------------------------------------------------------------ -- Unary naturales numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.UnaryNumbers where open import LTC-PCF.Base ------------------------------------------------------------------------------ [0] = zero [1] = succ₁ [0] [2] = succ₁ [1] [3] = succ₁ [2] [4] = succ₁ [3] [5] = succ₁ [4] [6] = succ₁ [5] [7] = succ₁ [6] [8] = succ₁ [7] [9] = succ₁ [8]
{ "alphanum_fraction": 0.3338278932, "avg_line_length": 25.9230769231, "ext": "agda", "hexsha": "03a19a4ba2ad136ff55d56bc0c1b9e9518b6a4af", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/UnaryNumbers.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/UnaryNumbers.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/UnaryNumbers.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 162, "size": 674 }
module Category.Profunctor.Joker where open import Agda.Primitive using (Level; _⊔_; lsuc) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Category.Functor using (RawFunctor; module RawFunctor) open import Category.Functor.Lawful open import Category.Profunctor open import Category.Choice open import Relation.Binary.PropositionalEquality using (refl) Joker : ∀ {l₁ l₂ l₃} (F : Set l₂ → Set l₃) (A : Set l₁) (B : Set l₂) → Set l₃ Joker F _ B = F B jokerProfunctor : ∀ {l₁ l₂} {F : Set l₁ → Set l₂} → RawFunctor F → ProfunctorImp (Joker F) jokerProfunctor f = record { dimap = λ _ h g → h <$> g ; lmap = λ _ g → g ; rmap = λ h g → h <$> g } where open RawFunctor f jokerLawfulProfunctor : ∀ {l₁ l₂} {F : Set l₁ → Set l₂} {FFunc : RawFunctor F} → LawfulFunctorImp FFunc → LawfulProfunctorImp (jokerProfunctor FFunc) jokerLawfulProfunctor f = record { lmapId = refl ; rmapId = <$>-identity ; dimapLmapRmap = refl } where open LawfulFunctor f jokerChoice : ∀ {l₁ l₂} {F : Set l₁ → Set l₂} → RawFunctor F → ChoiceImp (Joker F) jokerChoice f = record { isProfunctor = jokerProfunctor f ; left' = inj₁ <$>_ ; right' = inj₂ <$>_ } where open RawFunctor f
{ "alphanum_fraction": 0.6862416107, "avg_line_length": 34.0571428571, "ext": "agda", "hexsha": "02987aace45904872fcc9537579c491270b4a5d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Category/Profunctor/Joker.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Category/Profunctor/Joker.agda", "max_line_length": 149, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Category/Profunctor/Joker.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 442, "size": 1192 }
------------------------------------------------------------------------ -- The Agda standard library -- -- M-types (the dual of W-types) ------------------------------------------------------------------------ {-# OPTIONS --without-K --guardedness --sized-types #-} module Codata.Musical.M where open import Codata.Musical.Notation open import Level open import Data.Product hiding (map) open import Data.Container.Core as C hiding (map) -- The family of M-types. data M {s p} (C : Container s p) : Set (s ⊔ p) where inf : ⟦ C ⟧ (∞ (M C)) → M C -- Projections. module _ {s p} (C : Container s p) where head : M C → Shape C head (inf (x , _)) = x tail : (x : M C) → Position C (head x) → M C tail (inf (x , f)) b = ♭ (f b) -- map module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} (m : C₁ ⇒ C₂) where map : M C₁ → M C₂ map (inf (x , f)) = inf (shape m x , λ p → ♯ map (♭ (f (position m p)))) -- unfold module _ {s p ℓ} {C : Container s p} (open Container C) {S : Set ℓ} (alg : S → ⟦ C ⟧ S) where unfold : S → M C unfold seed = let (x , f) = alg seed in inf (x , λ p → ♯ unfold (f p)) ------------------------------------------------------------------------ -- Legacy import Codata.M as M open import Codata.Thunk import Size module _ {s p} {C : Container s p} where fromMusical : ∀ {i} → M C → M.M C i fromMusical (inf t) = M.inf (C.map rec t) where rec = λ x → λ where .force → fromMusical (♭ x) toMusical : M.M C Size.∞ → M C toMusical (M.inf (s , f)) = inf (s , λ p → ♯ toMusical (f p .force))
{ "alphanum_fraction": 0.490625, "avg_line_length": 25, "ext": "agda", "hexsha": "632ea2c73248e648f35b6242717c1ef0179f8a94", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/M.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/M.agda", "max_line_length": 74, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/M.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 516, "size": 1600 }
-- Andreas, 2013-03-15 issue reported by Nisse -- {-# OPTIONS -v tc.proj:40 -v tc.conv.elim:40 #-} -- {-# OPTIONS -v tc.inj.check:45 #-} -- {-# OPTIONS -v tc.proj.like:45 #-} module Issue821 where import Common.Level data D (A : Set) : Set where c : D A → D A -- f is projection like, but could also be injective!? f : (A : Set) → D A → D A f A (c x) = x postulate A : Set P : D A → Set x : D A p : P x Q : P (f A x) → Set Foo : Set₁ Foo = Q p -- WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Conversion.hs:466 -- Reason was that f is projection-like so the test x =?= f A x -- actually becomes x =?= x .f with unequal spine shapes (empty vs. non-empty). -- Agda thought this was impossible. -- Expected error: -- x != (f A x) of type (D A) -- when checking that the expression p has type P (f A x) -- Projection-likeness of f will turn this into: -- x != (f _ x) of type (D A)
{ "alphanum_fraction": 0.6233367451, "avg_line_length": 23.2619047619, "ext": "agda", "hexsha": "75d1d944f208583c4cb5ceef0dcd5c838d1dce8a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue821.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue821.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue821.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 318, "size": 977 }
module Examples where -- The terms of AExp assign a binding time to each subterm. For -- program specialization, we interpret terms with dynamic binding -- time as the programs subject to specialization, and their subterms -- with static binding time as statically known inputs. A partial -- evaluation function (or specializer) then compiles the program into -- a residual term for that is specialized for the static inputs. The -- main complication when defining partial evaluation as a total, -- primitively recursive function will be the treatment of the De -- Bruijn variables of non-closed residual expressions. -- Before diving into the precise definition, it is instructive to -- investigate the expected result of partial evaluation on some -- examples. {- module AExp-Examples where open import Data.Product -- (We pre-define some De Bruijn indices to improve -- readability of the examples:) x : ∀ {α Δ} → AExp (α ∷ Δ) α x = Var hd y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α y = Var (tl hd) z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α z = Var (tl (tl hd)) -- A very simple case is the addition of three constants, where one -- is dynamically bound and two are bound statically: -- 5D +D (30S +S 7S) -- ex1 : AExp [] (D Int) -- ex1 = DAdd (DInt 5) (AAdd (AInt 30) (AInt 7)) -- ex1' : AExp [] (D Int) -- ex1' = AApp (ALam (DAdd (DInt 5) x)) (AApp (ALam (DInt x) (AInt 30) (AInt 7))) -- TODO: this example does not work due to the very restrictive type -- off Add/DAdd. We could add a subsumption operator to AExp that -- turns a static expression into a dynamic one and then build a -- smart constructor for addition on top of that -- Note:This case is omitted in the same way as we impose the restriction that -- a dynamic function can only have components which are also dynamic. -- Another simple case is the specialization for a static identity -- function: -- (Sλ x → x) (42D) ---specializes to--> 42D ex1 : AExp [] (D Int) ex1 = AApp (ALam (Var hd)) (DInt 42) ex1-spec : Exp [] Int ex1-spec = EInt 42 -- The above example can be rewritten as an open AExp term that -- should be closed with a suitable environment. This representation -- does not only corresponds more directly with the notion of -- ``static inputs'', it also illustrates a typical situation when -- specializing the body of a lambda abstraction: -- The program ex1' takes an Int→Int function x as a static input. --ex1' : AExp [ AFun (D Int) (D Int) ] (D Int) --ex1' = AApp x (DInt 42) --------------------- -- Some more examples --------------------- ------------------ -- Pairs ------------------ ------------------ -- a. Static Pairs ------------------ ex2 : AExp [] (D Int) ex2 = Snd (AInt 42 , DInt 42) ex3 : AExp [] (D Int) ex3 = AApp (ALam (Snd (Var hd))) (AInt 42 , DInt 42) -- similar to ex1' --ex3' : AExp [ AFun (AInt • (D Int)) (D Int) ] (D Int) --ex3' = AApp x (AInt 42 , DInt 42) ------------------- -- b. Dynamic Pairs ------------------- ex4 : AExp [] (D Int) ex4 = AApp (ALam (DSnd (Var hd))) ( DInt 43 ḋ DInt 42) -- similar to ex1' --ex4' : AExp [ AFun (D (Int • Int)) (D Int) ] (D Int) --ex4' = AApp x (DInt 43 ḋ DInt 42) --------------------- -- Sums --------------------- ----------------- -- a. Static Sums ----------------- ex5 : AExp [] AInt ex5 = Case {α₂ = AInt} (Tl (AInt 0)) (Var hd) (Var hd) ex6 : AExp [] AInt ex6 = Case {α₁ = AInt} (Tr (AInt 0)) (Var hd) (AInt 10) ex7 : AExp [] (AFun AInt AInt) ex7 = Case {α₂ = AInt} (Tl (ALam (Var hd))) (Var hd) (ALam (Var hd)) ------------------ -- b. Dynamic Sums ------------------ ex8 : AExp [] (D Int) ex8 = DCase {σ₂ = Int} (DTl (DInt 0)) (Var hd) (Var hd) ex9 : AExp [] (D Int) ex9 = DCase {σ₁ = Int} (DTr (DInt 0)) (Var hd) (DInt 10) ex10 : AExp [] (D (Fun Int Int)) ex10 = DCase {σ₂ = Int} (DTl (DLam (Var hd))) (Var hd) (DLam (Var hd)) -- The partial evaluation of ex1' requires an environment to look up -- the static input. As a first approximation, a single input of -- type α is just some annotated term of type type α: Input : ∀ α → Set Input α = (∃ λ Δ → AExp Δ α) ---------------------------- -- alternative specification ---------------------------- --record Sg (S : Set) (T : S → Set) : Set where -- constructor _,_ -- field -- ffst : S -- ssnd : T ffst --open Sg public --Input' : ∀ α → Set --Input' α = Sg ACtx \ x → AExp x α -- Note that [input'] should be equivalent to [input] -- (convenience constructor for Inputs) inp : ∀ {α Δ} → AExp Δ α → Input α inp {α} {Δ} e = Δ , e -- An environment is simply a list of inputs that agrees with a -- given typing context. data AEnv : ACtx → Set where [] : AEnv [] _∷_ : ∀ {α Δ} → Input α → AEnv Δ → AEnv (α ∷ Δ) lookup : ∀ {α Δ} → AEnv Δ → α ∈ Δ → Input α lookup [] () lookup (x ∷ env) hd = x lookup (x ∷ env) (tl id) = lookup env id -- Thus, an environment like ex1'-env should be able to close ex1' -- and a partial evaluation of the closure should yield the same -- result as in example ex1: --ex1'-env : AEnv [ AFun (D Int) (D Int) ] --ex1'-env = inp (ALam {[]} {D Int} (Var hd)) ∷ [] -- Similarly, an environment like ex3'-env should be able to close ex3' -- and a partial evaluation of the closure should yield the same -- result as in example ex3: --ex3'-env : AEnv [ AFun (AInt • (D Int)) (D Int) ] --ex3'-env = inp (ALam {[]} {AInt • (D Int)} (Snd (Var hd))) ∷ [] -- Also, an environment like ex4'-env should be able to close ex4' -- and a partial evaluation of the closure should yield the same -- result as in example ex4: --ex4'-env : AEnv [ AFun (D (Int • Int)) (D Int) ] --ex4'-env = inp (ALam {[]} {D (Int • Int)} (DSnd (Var hd))) ∷ [] -- TODO: unit test ex1'-spec = ex1-spec ex3'-spec = ex1-spec ex4'-spec = ex1-spec -- (some definitions for the example) open import Data.Maybe _=<<_ : ∀ {A B : Set} → (A → Maybe B) → Maybe A → Maybe B f =<< mx = maybe′ f nothing mx liftM2 : ∀ {A B C : Set} → (A → B → Maybe C) → Maybe A → Maybe B → Maybe C liftM2 f mx my = (λ x → (λ y → f x y) =<< my) =<< mx -- The partial function ex1'-pe demonstrates the desired calculation -- for the specific case of ex1': ex1'-pe : ∀ {Δ} → AEnv Δ → AExp Δ (D Int) → Maybe (Exp [] Int) ex1'-pe {Δ} env (AApp ef ei) = liftM2 fromApp (fromInput =<< fromVar ef) (fromInt ei) where fromInput : ∀ {α} → Input α → Maybe (Exp [] Int → Exp [] Int) fromInput (_ , ALam {D Int} (Var hd)) = just (λ x → x) -- Sλ x/D → x fromInput _ = nothing fromVar : ∀ {α} → AExp Δ α → Maybe (Input α) fromVar (Var x) = just (lookup env x) fromVar _ = nothing fromApp : (Exp [] Int → Exp [] Int) → Exp [] Int → Maybe (Exp [] Int) fromApp f x = just (f x) fromInt : ∀ {α} → AExp Δ α → Maybe (Exp [] Int) fromInt (DInt i) = just (EInt {[]} i) fromInt _ = nothing ex1'-pe _ _ = nothing open import Relation.Binary.PropositionalEquality check-ex1'-pe : ex1'-pe ex1'-env ex1' ≡ just (ex1'-spec) check-ex1'-pe = refl -- Similarly the partial function ex3'-pe demonstrates the desired calculation -- for the specific case of ex3': ex3'-pe : ∀ {Δ} → AEnv Δ → AExp Δ (D Int) → Maybe (Exp [] Int) ex3'-pe {Δ} env (AApp ef ei) = liftM2 fromApp (fromInput =<< fromVar ef) (fromPair ei) where fromInput : ∀ {α} → Input α → Maybe ((ℕ * (Exp [] Int)) → Exp [] Int) fromInput (_ , ALam {AInt • (D Int)} (Snd (Var hd))) = just (λ x → (snd x)) -- Sλ x/(S*D) → (snd x) fromInput _ = nothing fromVar : ∀ {α} → AExp Δ α → Maybe (Input α) fromVar (Var x) = just (lookup env x) fromVar _ = nothing fromApp : ((ℕ * (Exp [] Int)) → Exp [] Int) → (ℕ * (Exp [] Int)) → Maybe (Exp [] Int) fromApp f x = just (f x) fromPair : ∀ {α} → AExp Δ α → Maybe (ℕ * (Exp [] Int)) fromPair ((AInt j) , (DInt i)) = just (j , (EInt {[]} i)) fromPair _ = nothing ex3'-pe _ _ = nothing open import Relation.Binary.PropositionalEquality check-ex3'-pe : ex3'-pe ex3'-env ex3' ≡ just (ex3'-spec) check-ex3'-pe = refl -- Similarly the partial function ex3'-pe demonstrates the desired calculation -- for the specific case of ex3': ex4'-pe : ∀ {Δ} → AEnv Δ → AExp Δ (D Int) → Maybe (Exp [] Int) ex4'-pe {Δ} env (AApp ef ei) = liftM2 fromApp (fromInput =<< fromVar ef) (fromDPair ei) where fromInput : ∀ {α} → Input α → Maybe (((Exp [] Int) * (Exp [] Int)) → Exp [] Int) fromInput (_ , ALam {D (Int • Int)} (DSnd (Var hd))) = just (λ x → (snd x)) -- Sλ x/(S*D) → (snd x) fromInput _ = nothing fromVar : ∀ {α} → AExp Δ α → Maybe (Input α) fromVar (Var x) = just (lookup env x) fromVar _ = nothing fromApp : (((Exp [] Int) * (Exp [] Int)) → Exp [] Int) → ((Exp [] Int) * (Exp [] Int)) → Maybe (Exp [] Int) fromApp f x = just (f x) fromDPair : ∀ {α} → AExp Δ α → Maybe ((Exp [] Int) * (Exp [] Int)) fromDPair ((DInt j) ḋ (DInt i)) = just ((EInt {[]} j) , (EInt {[]} i)) fromDPair _ = nothing ex4'-pe _ _ = nothing open import Relation.Binary.PropositionalEquality check-ex4'-pe : ex4'-pe ex4'-env ex4' ≡ just (ex4'-spec) check-ex4'-pe = refl -- The examples above show several problems for a total -- generalization to arbitrary term with the current datastructures: -- - the argument to fromApp is not primitive recursive -- What? -- - the result type of fromInput generates the context of the returned expression -- ``out of thin air'' -- - Note "out of thin air" in a sense that the "typing context for the value" is only restricted by -- the value v itself thus any Δ which types v will do. Also note there is no connection between -- "typing context for the value" and the "typing context" -- TODO: continue -- Dλ y → let f = λ x → x D+ y in Dλ z → f z term1 : AExp [] (D (Fun Int (Fun Int Int))) term1 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DAdd x y)))) -- Dλ y → let f = λ x → (Dλ w → x D+ y) in Dλ z → f z -- Dλ y → (λ f → Dλ z → f z) (λ x → (Dλ w → x D+ y)) -- wrong term2 : AExp [] (D (Fun Int (Fun Int Int))) term2 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DLam {σ₁ = Int} (DAdd y z))))) -- ? term3 : AExp [] (D (Fun Int (Fun Int Int))) term3 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) (DInt 0)) -- correct! term4 : AExp [] (D (Fun Int (Fun Int (Fun Int Int)))) term4 = DLam (AApp (ALam (DLam (AApp y x))) ((ALam (DLam {σ₁ = Int} (DAdd y z))))) ------------------ -- Some more terms ------------------ -} {- module CheckExamples where open import Relation.Binary.PropositionalEquality open SimpleAEnv open AExp-Examples check-ex1 : pe ex1 [] ≡ ex1-spec check-ex1 = refl ------------- -- Similarly ------------ check-ex3 : pe ex3 [] ≡ ex1-spec check-ex3 = refl ------- -- Also ------- check-ex4 : pe {Γ = []} ex4 [] ≡ ESnd (EInt 43 , EInt 42) check-ex4 = refl module Examples where open SimpleAEnv open import Relation.Binary.PropositionalEquality x : ∀ {α Δ} → AExp (α ∷ Δ) α x = Var hd y : ∀ {α₁ α Δ} → AExp (α₁ ∷ α ∷ Δ) α y = Var (tl hd) z : ∀ {α₁ α₂ α Δ} → AExp (α₁ ∷ α₂ ∷ α ∷ Δ) α z = Var (tl (tl hd)) -- Dλ y → let f = λ x → x D+ y in Dλ z → f z term1 : AExp [] (D (Fun Int (Fun Int Int))) term1 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DAdd x y)))) -- Dλ y → let f = λ x → (Dλ w → x D+ y) in Dλ z → f z -- Dλ y → (λ f → Dλ z → f z) (λ x → (Dλ w → x D+ y)) term2 : AExp [] (D (Fun Int (Fun Int Int))) term2 = DLam (AApp (ALam (DLam (AApp (ALam y) x))) ((ALam (DLam {σ₁ = Int} (DAdd y z))))) -- closed pe. In contrast to BTA5, it is now not clear what Γ is -- given an expression. So perhaps AEnv has it's merrits after all? pe[] : ∀ {α} → AExp [] α → Imp [] α pe[] e = pe e [] ex-pe-term1 : pe[] term1 ≡ ELam (ELam (EVar hd)) ex-pe-term1 = refl ex-pe-term2 : pe[] term2 ≡ ELam (ELam (EVar hd)) ex-pe-term2 = refl -------------------------- -- Tests on pairs and sums -------------------------- -}
{ "alphanum_fraction": 0.5486655579, "avg_line_length": 33.2289473684, "ext": "agda", "hexsha": "c56259d3081466dece6b4dca258dda0683d95ef4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "luminousfennell/polybta", "max_forks_repo_path": "Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "luminousfennell/polybta", "max_issues_repo_path": "Examples.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "luminousfennell/polybta", "max_stars_repo_path": "Examples.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z", "num_tokens": 4250, "size": 12627 }
open import Numeral.Natural open import Type module Formalization.ClassicalPredicateLogic.Syntax {ℓₚ ℓᵥ ℓₒ} (Prop : ℕ → Type{ℓₚ}) (Var : Type{ℓᵥ}) (Obj : ℕ → Type{ℓₒ}) where open import Data.ListSized import Lvl open import Functional using (_∘_ ; _∘₂_ ; swap) open import Sets.PredicateSet using (PredSet) private variable ℓ : Lvl.Level private variable n : ℕ data Term : Type{ℓᵥ Lvl.⊔ ℓₒ} where var : Var → Term -- Variables func : Obj(n) → List(Term)(n) → Term -- Constants/functions -- Formulas. -- Inductive definition of the grammatical elements of the language of predicate logic. data Formula : Type{ℓₚ Lvl.⊔ ℓᵥ Lvl.⊔ ℓₒ} where _$_ : Prop(n) → List(Term)(n) → Formula -- Relations ⊤ : Formula -- Tautology (Top / True) ⊥ : Formula -- Contradiction (Bottom / False) _∧_ : Formula → Formula → Formula -- Conjunction (And) _∨_ : Formula → Formula → Formula -- Disjunction (Or) _⟶_ : Formula → Formula → Formula -- Implication Ɐ : Var → Formula → Formula ∃ : Var → Formula → Formula infix 1011 _$_ infixr 1005 _∧_ infixr 1004 _∨_ infixr 1000 _⟶_ -- Negation ¬_ : Formula → Formula ¬_ = _⟶ ⊥ -- Double negation ¬¬_ : Formula → Formula ¬¬_ = (¬_) ∘ (¬_) -- Reverse implication _⟵_ : Formula → Formula → Formula _⟵_ = swap(_⟶_) -- Equivalence _⟷_ : Formula → Formula → Formula p ⟷ q = (p ⟵ q) ∧ (p ⟶ q) -- (Nor) _⊽_ : Formula → Formula → Formula _⊽_ = (¬_) ∘₂ (_∨_) -- (Nand) _⊼_ : Formula → Formula → Formula _⊼_ = (¬_) ∘₂ (_∧_) -- (Exclusive or / Xor) _⊻_ : Formula → Formula → Formula _⊻_ = (¬_) ∘₂ (_⟷_) infix 1010 ¬_ ¬¬_ infixl 1000 _⟵_ _⟷_
{ "alphanum_fraction": 0.6347230865, "avg_line_length": 23.6323529412, "ext": "agda", "hexsha": "cf4c5aff3c5a5c929fd468ed2fad143bc419458f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ClassicalPredicateLogic/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ClassicalPredicateLogic/Syntax.agda", "max_line_length": 128, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ClassicalPredicateLogic/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 621, "size": 1607 }
-- Andreas, 2018-06-14, issue #2513, do not allow conflicting relevance info. postulate Foo : {A : Set} → ..(@irrelevant A) → A -- Should fail. (Currently: parse error)
{ "alphanum_fraction": 0.6609195402, "avg_line_length": 24.8571428571, "ext": "agda", "hexsha": "de408e4becd193e4428ff5ad39139b627aff3d2c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ConflictingRelevance2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ConflictingRelevance2.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ConflictingRelevance2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 55, "size": 174 }
{- This second-order signature was created from the following second-order syntax description: syntax Inception | IA type L : 0-ary P : 0-ary A : 0-ary term rec : L P -> A inc : L.A P.A -> A theory (S) p : P a : P.A |> inc (l. rec (l, p[]), x. a[x]) = a[p[]] (E) a : L.A |> k : L |- inc (l. a[l], x. rec(k, x)) = a[k] (W) m : A a : P.A |> inc (l. m[], x. a[x]) = m[] (A) p : (L,L).A a : (L,P).A b : P.A |> inc (l. inc (k. p[l, k], x. a[l,x]), y. b[y]) = inc (k. inc(l. p[l,k], y.b[y]), x. inc(l. a[l,x], y.b[y])) -} module Inception.Signature where open import SOAS.Context -- Type declaration data IAT : Set where L : IAT P : IAT A : IAT open import SOAS.Syntax.Signature IAT public open import SOAS.Syntax.Build IAT public -- Operator symbols data IAₒ : Set where recₒ incₒ : IAₒ -- Term signature IA:Sig : Signature IAₒ IA:Sig = sig λ { recₒ → (⊢₀ L) , (⊢₀ P) ⟼₂ A ; incₒ → (L ⊢₁ A) , (P ⊢₁ A) ⟼₂ A } open Signature IA:Sig public
{ "alphanum_fraction": 0.5332011893, "avg_line_length": 20.5918367347, "ext": "agda", "hexsha": "6d84aad74b43a8375a565719099a39972ad95dee", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Inception/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Inception/Signature.agda", "max_line_length": 163, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Inception/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 424, "size": 1009 }
module Oscar.Data.Equality where open import Agda.Builtin.Equality public using (_≡_; refl) public open import Relation.Binary.PropositionalEquality public using (_≢_) public open import Relation.Binary.PropositionalEquality public using (cong; cong₂; cong-app; subst; subst₂; sym; trans) public open import Oscar.Level open import Oscar.Function open import Oscar.Relation infix 4 _≡̇_ _≡̇_ : ∀ {a} {A : Set a} {b} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) → Set (a ⊔ b) f ≡̇ g = ∀ x → f x ≡ g x ≡̇-refl : ∀ {a} {A : Set a} {b} {B : A → Set b} (f : (x : A) → B x) → f ≡̇ f ≡̇-refl _ _ = refl ≡̇-sym : ∀ {a} {A : Set a} {b} {B : A → Set b} {f g : (x : A) → B x} → f ≡̇ g → g ≡̇ f ≡̇-sym f≡̇g = sym ∘ f≡̇g ≡̇-trans : ∀ {a} {A : Set a} {b} {B : A → Set b} {f g : (x : A) → B x} → f ≡̇ g → {h : (x : A) → B x} → g ⟨ _≡̇ h ⟩→ f ≡̇-trans f≡̇g g≡̇h x = trans (f≡̇g x) (g≡̇h x) open import Oscar.Category ≡-setoid : ∀ {a} (A : Set a) → Setoid A a Setoid._≋_ (≡-setoid A) = _≡_ Setoid.≋-reflexivity (≡-setoid A) = refl Setoid.≋-symmetry (≡-setoid A) = sym Setoid.≋-transitivity (≡-setoid A) x≡y = trans x≡y ≡̇-setoid : ∀ {a} {A : Set a} {b} (B : A → Set b) → Setoid ((x : A) → B x) (a ⊔ b) Setoid._≋_ (≡̇-setoid B) = _≡̇_ Setoid.≋-reflexivity (≡̇-setoid B) = ≡̇-refl _ Setoid.≋-symmetry (≡̇-setoid B) = ≡̇-sym Setoid.≋-transitivity (≡̇-setoid B) = ≡̇-trans
{ "alphanum_fraction": 0.550036523, "avg_line_length": 36.0263157895, "ext": "agda", "hexsha": "de6d2974d34ebb4066f32edc2b25a56748d80c1d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Equality.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 688, "size": 1369 }
module Example where open import Base open import Nat open import univ -- Application _#_ : {A : S}{F : El A -> S}{pF : Map _==_ _=S_ F} -> El (pi A F pF) -> (x : El A) -> El (F x) el < f , pf > # x = f x -- Projection π₀ : {A : S}{F : El A -> S}{pF : Map _==_ _=S_ F} -> El (sigma A F pF) -> El A π₀ (el < x , Fx >) = x π₁ : {A : S}{F : El A -> S}{pF : Map _==_ _=S_ F} -> (p : El (sigma A F pF)) -> El (F (π₀ p)) π₁ (el < x , Fx >) = Fx
{ "alphanum_fraction": 0.4600431965, "avg_line_length": 19.2916666667, "ext": "agda", "hexsha": "0b6618e346c7bec43d51edbc4a7adfd510d21142", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/univ/Example.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/univ/Example.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/univ/Example.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 209, "size": 463 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Lists.Lists module Rings.Polynomial.Multiplication {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Ring R open Group additiveGroup open import Groups.Polynomials.Definition additiveGroup open import Groups.Polynomials.Group additiveGroup open Setoid S open Equivalence eq _*P_ : NaivePoly → NaivePoly → NaivePoly [] *P b = [] (x :: a) *P [] = [] (x :: a) *P (y :: b) = (x * y) :: (((map (x *_) b) +P (map (y *_) a)) +P (0R :: (a *P b))) abstract +PCommutative : {x y : NaivePoly} → polysEqual (x +P y) (y +P x) +PCommutative {x} {y} = comm (record { commutative = groupIsAbelian }) {x} {y} p*Commutative : {a b : NaivePoly} → polysEqual (a *P b) (b *P a) p*Commutative {[]} {[]} = record {} p*Commutative {[]} {x :: b} = record {} p*Commutative {x :: a} {[]} = record {} p*Commutative {x :: xs} {y :: ys} = *Commutative ,, +PwellDefined (+PCommutative {map (_*_ x) ys} {map (_*_ y) xs}) (reflexive ,, p*Commutative {xs} {ys}) zeroTimes1 : {a : NaivePoly} (c : A) → (c ∼ 0G) → polysEqual (map (_*_ c) a) [] zeroTimes1 {[]} c c=0 = record {} zeroTimes1 {x :: a} c c=0 = transitive (transitive *Commutative (*WellDefined reflexive c=0)) (timesZero {x}) ,, zeroTimes1 {a} c c=0 zeroTimes2 : {a : NaivePoly} (c : A) → polysEqual a [] → polysEqual (map (_*_ c) a) [] zeroTimes2 {[]} c a=0 = record {} zeroTimes2 {x :: a} c (fst ,, snd) = transitive (*WellDefined reflexive fst) (timesZero {c}) ,, zeroTimes2 {a} c snd mapWellDefined : (a c : A) (bs : NaivePoly) → (a ∼ c) → polysEqual (map (_*_ a) bs) (map (_*_ c) bs) mapWellDefined a c [] a=c = record {} mapWellDefined a c (x :: bs) a=c = *WellDefined a=c reflexive ,, mapWellDefined a c bs a=c mapWellDefined' : (a : A) (bs cs : NaivePoly) → polysEqual bs cs → polysEqual (map (_*_ a) bs) (map (_*_ a) cs) mapWellDefined' a [] [] bs=cs = record {} mapWellDefined' a [] (x :: cs) (fst ,, snd) = transitive (*WellDefined reflexive fst) (timesZero {a}) ,, Equivalence.symmetric (Setoid.eq naivePolySetoid) (zeroTimes2 {cs} a (Equivalence.symmetric (Setoid.eq naivePolySetoid) snd)) mapWellDefined' a (x :: bs) [] (fst ,, snd) = transitive (*WellDefined reflexive fst) (timesZero {a}) ,, zeroTimes2 {bs} a snd mapWellDefined' a (b :: bs) (c :: cs) (fst ,, snd) = *WellDefined reflexive fst ,, mapWellDefined' a bs cs snd *PwellDefinedL : {a b c : NaivePoly} → polysEqual a c → polysEqual (a *P b) (c *P b) *PwellDefinedL {[]} {[]} {[]} a=c = record {} *PwellDefinedL {[]} {[]} {x :: c} a=c = record {} *PwellDefinedL {[]} {x :: b} {[]} a=c = record {} *PwellDefinedL {[]} {b :: bs} {c :: cs} (fst ,, snd) = transitive (transitive *Commutative (*WellDefined reflexive fst)) (timesZero {b}) ,, Equivalence.transitive (Setoid.eq naivePolySetoid) (Equivalence.transitive (Setoid.eq naivePolySetoid) {_} {(map (_*_ c) bs) +P (0G :: (cs *P bs))} (Equivalence.transitive (Setoid.eq naivePolySetoid) {_} {[] +P (0G :: (cs *P bs))} (reflexive ,, ans) (+PwellDefined (Equivalence.symmetric (Setoid.eq naivePolySetoid) (zeroTimes1 {bs} c fst)) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (cs *P bs)}))) (+PwellDefined (Equivalence.symmetric (Setoid.eq naivePolySetoid) (Group.identRight polyGroup {map (_*_ c) bs})) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (cs *P bs)}))) (+PwellDefined {(map (_*_ c) bs +P [])} {0G :: (cs *P bs)} {(map (_*_ c) bs) +P map (_*_ b) cs} (+PwellDefined (Equivalence.reflexive (Setoid.eq naivePolySetoid) {map (_*_ c) bs}) (Equivalence.symmetric (Setoid.eq naivePolySetoid) (zeroTimes2 {cs} b (Equivalence.symmetric (Setoid.eq naivePolySetoid) snd)))) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (cs *P bs)})) where ans : polysEqual [] (map id (cs *P bs)) ans rewrite mapId (cs *P bs) = *PwellDefinedL snd *PwellDefinedL {a :: as} {[]} {[]} a=c = record {} *PwellDefinedL {a :: as} {[]} {x :: c} a=c = record {} *PwellDefinedL {a :: as} {b :: bs} {[]} (fst ,, snd) = transitive (transitive *Commutative (*WellDefined reflexive fst)) (timesZero {b}) ,, Equivalence.transitive (Setoid.eq naivePolySetoid) (+PwellDefined {(map (_*_ a) bs +P map (_*_ b) as)} {0G :: (as *P bs)} {[] +P []} {[]} (+PwellDefined {map (_*_ a) bs} {map (_*_ b) as} {[]} {[]} (zeroTimes1 {bs} a fst) (zeroTimes2 {as} b snd)) (reflexive ,, *PwellDefinedL {as} {bs} {[]} snd)) (record {}) *PwellDefinedL {a :: as} {b :: bs} {c :: cs} (fst ,, snd) = *WellDefined fst reflexive ,, +PwellDefined {(map (_*_ a) bs) +P (map (_*_ b) as)} {0G :: (as *P bs)} {map (_*_ c) bs +P map (_*_ b) cs} {0G :: (cs *P bs)} (+PwellDefined {map (_*_ a) bs} {map (_*_ b) as} {map (_*_ c) bs} {map (_*_ b) cs} (mapWellDefined a c bs fst) (mapWellDefined' b as cs snd)) (reflexive ,, *PwellDefinedL {as} {bs} {cs} snd) *PwellDefinedR : {a b c : NaivePoly} → polysEqual b c → polysEqual (a *P b) (a *P c) *PwellDefinedR {a} {b} {c} b=c = Equivalence.transitive (Setoid.eq naivePolySetoid) (p*Commutative {a} {b}) (Equivalence.transitive (Setoid.eq naivePolySetoid) (*PwellDefinedL b=c) (p*Commutative {c} {a})) *PwellDefined : {a b c d : NaivePoly} → polysEqual a c → polysEqual b d → polysEqual (a *P b) (c *P d) *PwellDefined {a}{b}{c}{d} a=c b=d = Equivalence.transitive (Setoid.eq naivePolySetoid) (*PwellDefinedL a=c) (*PwellDefinedR b=d) private *1 : (a : NaivePoly) → polysEqual (map (_*_ 1R) a) a *1 [] = record {} *1 (x :: a) = Ring.identIsIdent R ,, *1 a *Pident : {a : NaivePoly} → polysEqual ((1R :: []) *P a) a *Pident {[]} = record {} *Pident {x :: a} = Ring.identIsIdent R ,, Equivalence.transitive (Setoid.eq naivePolySetoid) (+PwellDefined {map (_*_ 1R) a +P []} {0G :: []} {map (_*_ 1R) a} {[]} (Group.identRight polyGroup) (reflexive ,, record {})) (Equivalence.transitive (Setoid.eq naivePolySetoid) (Group.identRight polyGroup {map (_*_ 1R) a}) (*1 a)) private mapMap' : (f g : A → A) (xs : NaivePoly) → map f (map g xs) ≡ map (λ x → f (g x)) xs mapMap' f g [] = refl mapMap' f g (x :: xs) rewrite mapMap' f g xs = refl mapMap'' : (f g : A → A) (xs : NaivePoly) → Setoid._∼_ naivePolySetoid (map f (map g xs)) (map (λ x → f (g x)) xs) mapMap'' f g xs rewrite mapMap' f g xs = Equivalence.reflexive (Setoid.eq naivePolySetoid) mapWd : (f g : A → A) (xs : NaivePoly) → ((x : A) → (f x) ∼ (g x)) → polysEqual (map f xs) (map g xs) mapWd f g [] ext = record {} mapWd f g (x :: xs) ext = ext x ,, mapWd f g xs ext mapDist' : (b c : A) → (as : NaivePoly) → polysEqual (map (_*_ (b + c)) as) (map (_*_ c) as +P map (_*_ b) as) mapDist' b c [] = record {} mapDist' b c (x :: as) = transitive (Ring.*DistributesOver+' R {b} {c} {x}) groupIsAbelian ,, mapDist' b c as mapTimes : (a b : NaivePoly) (c : A) → polysEqual (a *P (map (_*_ c) b)) (map (_*_ c) (a *P b)) mapTimes [] b c = record {} mapTimes (a :: as) [] c = record {} mapTimes (a :: as) (x :: b) c = transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) ,, trans (+PwellDefined {(map (_*_ a) (map (_*_ c) b)) +P map (_*_ (c * x)) as} {0G :: (as *P map (_*_ c) b)} {map (_*_ c) (map (_*_ a) b +P map (_*_ x) as)} (trans (+PwellDefined {map (_*_ a) (map (_*_ c) b)} {map (_*_ (c * x)) as} {map (_*_ c) (map (_*_ a) b)} (trans (mapMap'' (_*_ a) (_*_ c) b) (trans (mapWd (λ x → a * (c * x)) (λ x → c * (a * x)) b (λ x → transitive *Associative (transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)))) (sym (mapMap'' (_*_ c) (_*_ a) b)))) (trans (mapWd (_*_ (c * x)) (λ y → c * (x * y)) as λ y → symmetric *Associative) (sym (mapMap'' (_*_ c) (_*_ x) as)))) (sym (mapDist (_*_ c) *DistributesOver+ (map (_*_ a) b) (map (_*_ x) as)))) (symmetric timesZero ,, mapTimes as b c)) (sym (mapDist (_*_ c) *DistributesOver+ (map (_*_ a) b +P map (_*_ x) as) (0G :: (as *P b)))) where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) mapTimes' : (a b : NaivePoly) (c : A) → polysEqual (map (_*_ c) (a *P b)) ((map (_*_ c) a) *P b) mapTimes' a b c = trans (trans (mapWellDefined' c (a *P b) (b *P a) (p*Commutative {a} {b})) (sym (mapTimes b a c))) (p*Commutative {b} {map (_*_ c) a}) where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) bumpTimes' : (a bs : NaivePoly) (b : A) → polysEqual (a *P (b :: bs)) (map (_*_ b) a +P (0G :: (a *P bs))) bumpTimes' [] bs b = reflexive ,, record {} bumpTimes' (x :: a) bs b = transitive *Commutative (symmetric identRight) ,, trans (+PwellDefined {map (_*_ x) bs +P map (_*_ b) a} {0G :: (a *P bs)} {_} {0G :: (a *P bs)} (+PCommutative {map (_*_ x) bs} {map (_*_ b) a}) (ref {0G :: (a *P bs)})) (trans (sym (Group.+Associative polyGroup {map (_*_ b) a})) (+PwellDefined {map (_*_ b) a} {_} {map (_*_ b) a} {_} (ref {map (_*_ b) a}) (trans (trans (+PwellDefined {map (_*_ x) bs} {_} {map (_*_ x) bs} (ref {map (_*_ x) bs}) (reflexive ,, p*Commutative {a})) (sym (bumpTimes' bs a x))) (p*Commutative {bs})))) where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) bumpTimes : {a b : NaivePoly} → polysEqual (a *P (0G :: b)) (0G :: (a *P b)) bumpTimes {[]} {b} = reflexive ,, record {} bumpTimes {x :: a} {[]} = timesZero ,, trans (sym (Group.+Associative polyGroup {[]} {map (_*_ 0G) a})) ans where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) ans : polysEqual (map id (map (_*_ 0G) a +P (0G :: (a *P [])))) [] ans rewrite mapId (map (_*_ 0G) a +P (0G :: (a *P []))) = (+PwellDefined {map (_*_ 0G) a} {0G :: (a *P [])} {[]} {[]} (zeroTimes1 0G reflexive) (reflexive ,, p*Commutative {a})) bumpTimes {x :: a} {b :: bs} = timesZero ,, trans (+PwellDefined {((x * b) :: map (_*_ x) bs) +P map (_*_ 0G) a} {0G :: (a *P (b :: bs))} {(x * b) :: map (_*_ x) bs} {0G :: (a *P (b :: bs))} (trans (+PwellDefined {(x * b) :: map (_*_ x) bs} {map (_*_ 0G) a} {(x * b) :: map (_*_ x) bs} {[]} (ref {(x * b) :: map (_*_ x) bs}) (zeroTimes1 0G reflexive)) (Group.identRight polyGroup {(x * b) :: map (_*_ x) bs})) (ref {0G :: (a *P (b :: bs))})) (identRight ,, trans (+PwellDefined {map (_*_ x) bs} {_} {map (_*_ x) bs} ref (bumpTimes' a bs b)) (Group.+Associative polyGroup {map (_*_ x) bs} {map (_*_ b) a} {0G :: (a *P bs)})) where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) *Pdistrib : {a b c : NaivePoly} → polysEqual (a *P (b +P c)) ((a *P b) +P (a *P c)) *Pdistrib {[]} {b} {c} = record {} *Pdistrib {a :: as} {[]} {[]} = record {} *Pdistrib {a :: as} {[]} {c :: cs} rewrite mapId cs | mapId ((map (_*_ a) cs +P map (_*_ c) as) +P (0G :: (as *P cs))) = reflexive ,, +PwellDefined {(map (_*_ a) cs) +P (map (_*_ c) as)} {_} {(map (_*_ a) cs) +P (map (_*_ c) as)} (Equivalence.reflexive (Setoid.eq naivePolySetoid)) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (as *P cs)}) *Pdistrib {a :: as} {b :: bs} {[]} rewrite mapId bs | mapId ((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) = reflexive ,, +PwellDefined {(map (_*_ a) bs) +P (map (_*_ b) as)} {_} {(map (_*_ a) bs) +P (map (_*_ b) as)} (Equivalence.reflexive (Setoid.eq naivePolySetoid)) (Equivalence.reflexive (Setoid.eq naivePolySetoid) {0G :: (as *P bs)}) *Pdistrib {a :: as} {b :: bs} {c :: cs} = *DistributesOver+ ,, trans (+PwellDefined {(map (_*_ a) (bs +P cs)) +P (map (_*_ (b + c)) as)} {0G :: (as *P (bs +P cs))} {(map (_*_ a) bs +P map (_*_ b) as) +P ((map (_*_ a) cs) +P (map (_*_ c) as))} {0G :: ((as *P bs) +P (as *P cs))} (trans (+PwellDefined (mapDist (_*_ a) *DistributesOver+ bs cs) (mapDist' b c as)) (trans (sym (+Assoc {map (_*_ a) bs} {map (_*_ a) cs})) (trans (+PwellDefined (ref {map (_*_ a) bs}) (trans (trans (+Assoc {map (_*_ a) cs} {map (_*_ c) as}) ref) (+PCommutative {map (_*_ a) cs +P map (_*_ c) as} {map (_*_ b) as}))) (+Assoc {map (_*_ a) bs} {map (_*_ b) as})))) (reflexive ,, *Pdistrib {as} {bs} {cs})) (trans (sym (+Assoc {(map (_*_ a) bs +P map (_*_ b) as)} {(map (_*_ a) cs +P map (_*_ c) as)} {0G :: ((as *P bs) +P (as *P cs))})) (trans (+PwellDefined (ref {map (_*_ a) bs +P map (_*_ b) as}) (trans (trans (+PwellDefined (ref {map (_*_ a) cs +P map (_*_ c) as}) (symmetric identLeft ,, +PCommutative {as *P bs})) (+Assoc {map (_*_ a) cs +P (map (_*_ c) as)} {0G :: (as *P cs)} {0G :: (as *P bs)})) (+PCommutative {(map (_*_ a) cs +P map (_*_ c) as) +P (0G :: (as *P cs))} {0G :: (as *P bs)}))) (+Assoc {map (_*_ a) bs +P map (_*_ b) as} {0G :: (as *P bs)}))) where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) open Group polyGroup renaming (+Associative to +Assoc ; 0G to 0P) hiding (identLeft) *Passoc : {a b c : NaivePoly} → polysEqual (a *P (b *P c)) ((a *P b) *P c) *Passoc {[]} {b} {c} = record {} *Passoc {a :: as} {[]} {c} = record {} *Passoc {a :: as} {b :: bs} {[]} = record {} *Passoc {a :: as} {b :: bs} {c :: cs} = *Associative ,, trans (+PwellDefined {(map (_*_ a) ((map (_*_ b) cs +P map (_*_ c) bs) +P (0G :: (bs *P cs))) +P map (_*_ (b * c)) as)} {0G :: (as *P ((map (_*_ b) cs +P map (_*_ c) bs) +P (0G :: (bs *P cs))))} {(((map (_*_ (a * b)) cs) +P (map (_*_ (a * c)) bs)) +P (map (_*_ a) (0G :: (bs *P cs)))) +P (map (_*_ (b * c)) as)} {0G :: (((map (_*_ b) (as *P cs)) +P (map (_*_ c) (as *P bs))) +P (as *P (0G :: (bs *P cs))))} (+PwellDefined {map (_*_ a) ((map (_*_ b) cs +P map (_*_ c) bs) +P (0G :: (bs *P cs)))} {map (_*_ (b * c)) as} {((map (_*_ (a * b)) cs +P map (_*_ (a * c)) bs) +P ((a * 0G) :: map (_*_ a) (bs *P cs)))} {map (_*_ (b * c)) as} (trans (mapDist (_*_ a) *DistributesOver+ (map (_*_ b) cs +P map (_*_ c) bs) (0G :: (bs *P cs))) (+PwellDefined {map (_*_ a) (map (_*_ b) cs +P map (_*_ c) bs)} {(a * 0G) :: map (_*_ a) (bs *P cs)} {map (_*_ (a * b)) cs +P map (_*_ (a * c)) bs} (trans (mapDist (_*_ a) *DistributesOver+ (map (_*_ b) cs) (map (_*_ c) bs)) (+PwellDefined {map (_*_ a) (map (_*_ b) cs)} {map (_*_ a) (map (_*_ c) bs)} {map (_*_ (a * b)) cs} (trans (mapMap'' (_*_ a) (_*_ b) cs) (mapWd (λ x → a * (b * x)) (_*_ (a * b)) cs (λ x → *Associative))) (trans (mapMap'' (_*_ a) (_*_ c) bs) (mapWd (λ x → a * (c * x)) (_*_ (a * c)) bs λ x → *Associative)))) (ref {(a * 0G) :: map (_*_ a) (bs *P cs)}))) (ref {map (_*_ (b * c)) as})) (reflexive ,, trans (*Pdistrib {as} {(map (_*_ b) cs +P map (_*_ c) bs)} {0G :: (bs *P cs)}) (+PwellDefined {(as *P (map (_*_ b) cs +P map (_*_ c) bs))} {as *P (0G :: (bs *P cs))} {(map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs))} (trans (*Pdistrib {as} {map (_*_ b) cs} {map (_*_ c) bs}) (+PwellDefined {as *P map (_*_ b) cs} {as *P map (_*_ c) bs} {map (_*_ b) (as *P cs)} (mapTimes as cs b) (mapTimes as bs c))) (ref {as *P (0G :: (bs *P cs))})))) (trans (trans (sym (Group.+Associative polyGroup {((map (_*_ (a * b)) cs) +P (map (_*_ (a * c)) bs)) +P ((a * 0G) :: map (_*_ a) (bs *P cs))})) (trans (sym (Group.+Associative polyGroup {(map (_*_ (a * b)) cs) +P (map (_*_ (a * c)) bs)})) (trans (sym (Group.+Associative polyGroup {map (_*_ (a * b)) cs})) (+PwellDefined {map (_*_ (a * b)) cs} (ref {map (_*_ (a * b)) cs}) (trans (trans ans (Group.+Associative polyGroup {map (_*_ c) (map (_*_ a) bs +P map (_*_ b) as)})) (+PwellDefined {_} {0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)} {map (_*_ c) ((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs)))} (sym (mapDist (_*_ c) *DistributesOver+ ((map (_*_ a) bs +P map (_*_ b) as)) (0G :: (as *P bs)))) (ref {0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)}))))))) (Group.+Associative polyGroup {map (_*_ (a * b)) cs} {map (_*_ c) ((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs)))})) where open Equivalence (Setoid.eq naivePolySetoid) renaming (transitive to trans ; symmetric to sym ; reflexive to ref) open Group polyGroup renaming (+Associative to +Assoc ; 0G to 0P) hiding (identLeft ; identRight) ans2 : polysEqual ((map (_*_ a) (bs *P cs) +P (map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs))) +P (as *P (0G :: (bs *P cs)))) (map (_*_ c) (as *P bs) +P (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)) ans2 = trans (+PwellDefined {_} {as *P (0G :: (bs *P cs))} {_} {as *P (0G :: (bs *P cs))} (trans (+Assoc {map (_*_ a) (bs *P cs)} {map (_*_ b) (as *P cs)} {map (_*_ c) (as *P bs)}) (+PCommutative {map (_*_ a) (bs *P cs) +P map (_*_ b) (as *P cs)} {map (_*_ c) (as *P bs)})) ref) (trans (sym (+Assoc {map (_*_ c) (as *P bs)} {_} {as *P (0G :: (bs *P cs))}) ) (+PwellDefined {map (_*_ c) (as *P bs)} {_} {map (_*_ c) (as *P bs)} ref (trans (+PwellDefined {map (_*_ a) (bs *P cs) +P map (_*_ b) (as *P cs)} {as *P (0G :: (bs *P cs))} {((map (_*_ a) bs) *P cs) +P ((map (_*_ b) as) *P cs)} {0G :: (as *P (bs *P cs))} (+PwellDefined {map (_*_ a) (bs *P cs)} {map (_*_ b) (as *P cs)} {map (_*_ a) bs *P cs} {map (_*_ b) as *P cs} (mapTimes' bs cs a) (mapTimes' as cs b)) (bumpTimes {as} {bs *P cs})) (trans (trans (+PwellDefined {(map (_*_ a) bs *P cs) +P (map (_*_ b) as *P cs)} {0G :: (as *P (bs *P cs))} {cs *P (map (_*_ a) bs +P map (_*_ b) as)} {cs *P (0G :: (as *P bs))} (trans (+PwellDefined {map (_*_ a) bs *P cs} {map (_*_ b) as *P cs} {cs *P map (_*_ a) bs} {cs *P map (_*_ b) as} (p*Commutative {_} {cs}) (p*Commutative {_} {cs})) (sym (*Pdistrib {cs} {map (_*_ a) bs} {map (_*_ b) as}))) (trans (reflexive ,, trans (*Passoc {as} {bs} {cs}) (p*Commutative {_} {cs})) (sym (bumpTimes {cs} {as *P bs})))) (sym (*Pdistrib {cs} {(map (_*_ a) bs) +P (map (_*_ b) as)} {0G :: (as *P bs)}))) (p*Commutative {cs} {(map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))}))))) ans : polysEqual ((map (_*_ (a * c)) bs) +P (((a * 0G) :: map (_*_ a) (bs *P cs)) +P (map (_*_ (b * c)) as +P (0G :: ((map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs)) +P (as *P (0G :: (bs *P cs)))))))) ((map (_*_ c) ((map (_*_ a) bs) +P (map (_*_ b) as))) +P (((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))) ans = trans (trans (+PwellDefined {map (_*_ (a * c)) bs} {_} {map (_*_ c) (map (_*_ a) bs)} (trans (mapWd (_*_ (a * c)) (λ x → c * (a * x)) bs (λ x → transitive (*WellDefined *Commutative reflexive) (symmetric *Associative))) (sym (mapMap'' (_*_ c) (_*_ a) bs))) (trans (+PCommutative {(a * 0G) :: map (_*_ a) (bs *P cs)} {map (_*_ (b * c)) as +P (0G :: ((map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs)) +P (as *P (0G :: bs *P cs))))}) (trans (sym (+Assoc {map (_*_ (b * c)) as})) (+PwellDefined {map (_*_ (b * c)) as} {_} {map (_*_ c) (map (_*_ b) as)} (trans (mapWd (_*_ (b * c)) (λ x → c * (b * x)) as λ x → transitive (*WellDefined *Commutative reflexive) (symmetric *Associative)) (sym (mapMap'' (_*_ c) (_*_ b) as))) (transitive identLeft (transitive (transitive timesZero (symmetric timesZero)) (symmetric identRight)) ,, trans (+PCommutative {(map (_*_ b) (as *P cs) +P map (_*_ c) (as *P bs)) +P (as *P (0G :: (bs *P cs)))} {map (_*_ a) (bs *P cs)}) (trans (+Assoc {map (_*_ a) (bs *P cs)} {(map (_*_ b) (as *P cs)) +P (map (_*_ c) (as *P bs))} {as *P (0G :: (bs *P cs))}) ans2)))))) (+Assoc {map (_*_ c) (map (_*_ a) bs)})) (+PwellDefined {(map (_*_ c) (map (_*_ a) bs)) +P (map (_*_ c) (map (_*_ b) as))} {(((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))} {map (_*_ c) ((map (_*_ a) bs) +P (map (_*_ b) as))} {(((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))} (sym (mapDist (_*_ c) (*DistributesOver+) (map (_*_ a) bs) (map (_*_ b) as))) (ref {(((c * 0G) :: map (_*_ c) (as *P bs)) +P (0G :: (((map (_*_ a) bs +P map (_*_ b) as) +P (0G :: (as *P bs))) *P cs)))}))
{ "alphanum_fraction": 0.5544491003, "avg_line_length": 134.3377483444, "ext": "agda", "hexsha": "4890c735f9d9ab696f282952eeb34d20a05d4a4b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Polynomial/Multiplication.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Polynomial/Multiplication.agda", "max_line_length": 2797, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Polynomial/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 7997, "size": 20285 }
module Relation.Binary.Lattice.Residuated where open import Level open import Algebra.FunctionProperties using (Op₂) open import Algebra.Structures using (IsMonoid) open import Algebra using (Monoid) open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.Lattice using (Lattice; IsLattice) open import Data.Product LeftResidual : ∀ {c ℓ₂} {L : Set c} → (_≤_ : Rel L ℓ₂) -- The partial order. → (_∙_ : Op₂ L) -- The monoid operation. → (_◁_ : Op₂ L) -- The left residual. → Set (c ⊔ ℓ₂) LeftResidual _≤_ _∙_ _◁_ = ∀ y z → (((z ◁ y) ∙ y) ≤ z) × (Maximum _≤_ (z ◁ y)) RightResidual : ∀ {c ℓ₂} {L : Set c} → (_≤_ : Rel L ℓ₂) -- The partial order. → (_∙_ : Op₂ L) -- The monoid operation. → (_▷_ : Op₂ L) -- The right residual. → Set (c ⊔ ℓ₂) RightResidual _≤_ _∙_ _▷_ = ∀ x z → ((x ∙ (x ▷ z)) ≤ z) × (Maximum _≤_ (x ▷ z)) record IsResiduated {c ℓ₁ ℓ₂} {L : Set c} (_≈_ : Rel L ℓ₁) -- The underlying equality. (_≤_ : Rel L ℓ₂) -- The partial order. (_∨_ : Op₂ L) -- The join operation. (_∧_ : Op₂ L) -- The meet operation. (_∙_ : Op₂ L) -- The monoid operation. (ε : L) -- The identity element. (_▷_ : Op₂ L) -- The right residual. (_◁_ : Op₂ L) -- The left residual. : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where field isLattice : IsLattice _≈_ _≤_ _∨_ _∧_ isMonoid : IsMonoid _≈_ _∙_ ε isLeftResidual : LeftResidual _≤_ _∙_ _◁_ isRightResidual : RightResidual _≤_ _∙_ _▷_ ∙-monotonic : _∙_ Preserves₂ _≤_ ⟶ _≤_ ⟶ _≤_ -- ∀ x y x -- y ≤ x ▷ z -- ⇔ x ∙ y ≤ z -- ⇔ x ≤ z ◁ y module Pre = IsPreorder (IsPartialOrder.isPreorder (IsLattice.isPartialOrder isLattice)) -- theorems about the residuals, requires _∙_ to be monotonic ∙-at-left : ∀ x y z → y ≤ (x ▷ z) → (x ∙ y) ≤ z ∙-at-left x y z P = Pre.trans (∙-monotonic Pre.refl P) (proj₁ (isRightResidual x z)) ∙-at-right : ∀ x y z → x ≤ (z ◁ y) → (x ∙ y) ≤ z ∙-at-right x y z P = Pre.trans (∙-monotonic P Pre.refl) (proj₁ (isLeftResidual y z)) apply-▷ : ∀ x y z → (x ∙ y) ≤ z → y ≤ (x ▷ z) apply-▷ x y z P = proj₂ (isRightResidual x z) y apply-◁ : ∀ x y z → (x ∙ y) ≤ z → x ≤ (z ◁ y) apply-◁ x y z P = proj₂ (isLeftResidual y z) x -- other modules monoid : Monoid c ℓ₁ monoid = record { isMonoid = isMonoid } lattice : Lattice c ℓ₁ ℓ₂ lattice = record { isLattice = isLattice } record Residuated c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _≤_ infixr 6 _∨_ infixr 7 _∧_ infixr 5 _∙_ infixr 8 _▷_ _◁_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≤_ : Rel Carrier ℓ₂ -- The partial order. _∨_ : Op₂ Carrier -- The join operation. _∧_ : Op₂ Carrier -- The meet operation. _∙_ : Op₂ Carrier -- The monoid operation. ε : Carrier -- The identity element. _▷_ : Op₂ Carrier -- The right residual. _◁_ : Op₂ Carrier -- The left residual. isResiduated : IsResiduated _≈_ _≤_ _∨_ _∧_ _∙_ ε _▷_ _◁_
{ "alphanum_fraction": 0.4984537532, "avg_line_length": 34.2019230769, "ext": "agda", "hexsha": "e937c2aa64ecece20e0ca45ec450bec989074ac7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cf4b37b85b13aced9a36f3216d676ee5599059f6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/relalg", "max_forks_repo_path": "src/Relation/Binary/Lattice/Residuated.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cf4b37b85b13aced9a36f3216d676ee5599059f6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/relalg", "max_issues_repo_path": "src/Relation/Binary/Lattice/Residuated.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "cf4b37b85b13aced9a36f3216d676ee5599059f6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/relalg", "max_stars_repo_path": "src/Relation/Binary/Lattice/Residuated.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1267, "size": 3557 }
{- An induction principle for paths in a pushout, described in Kraus and von Raumer, "Path Spaces of Higher Inductive Types in Homotopy Type Theory" https://arxiv.org/abs/1901.06022 -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.Pushout.KrausVonRaumer where open import Cubical.Foundations.Everything open import Cubical.Data.Sigma open import Cubical.HITs.Pushout.Base private interpolate : ∀ {ℓ} {A : Type ℓ} {x y z : A} (q : y ≡ z) → PathP (λ i → x ≡ q i → x ≡ z) (_∙ q) (idfun _) interpolate q i p j = hcomp (λ k → λ { (j = i0) → p i0 ; (j = i1) → q (i ∨ k) ; (i = i1) → p j }) (p j) interpolateCompPath : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) {z : A} (q : y ≡ z) → (λ i → interpolate q i (λ j → compPath-filler p q i j)) ≡ refl interpolateCompPath p = J (λ z q → (λ i → interpolate q i (λ j → compPath-filler p q i j)) ≡ refl) (homotopySymInv (λ p i j → compPath-filler p refl (~ i) j) p) module ElimL {ℓ ℓ' ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {f : A → B} {g : A → C} {b₀ : B} (P : ∀ b → Path (Pushout f g) (inl b₀) (inl b) → Type ℓ''') (Q : ∀ c → Path (Pushout f g) (inl b₀) (inr c) → Type ℓ''') (r : P b₀ refl) (e : (a : A) (q : inl b₀ ≡ inl (f a)) → P (f a) q ≃ Q (g a) (q ∙ push a)) where Codes : (d : Pushout f g) (q : inl b₀ ≡ d) → Type ℓ''' Codes (inl b) q = P b q Codes (inr c) q = Q c q Codes (push a i) q = Glue (Q (g a) (interpolate (push a) i q)) (λ { (i = i0) → _ , e a q ; (i = i1) → _ , idEquiv (Q (g a) q) }) elimL : ∀ b q → P b q elimL _ = J Codes r elimR : ∀ c q → Q c q elimR _ = J Codes r refl-β : elimL b₀ refl ≡ r refl-β = transportRefl _ push-β : (a : A) (q : inl b₀ ≡ inl (f a)) → elimR (g a) (q ∙ push a) ≡ e a q .fst (elimL (f a) q) push-β a q = J-∙ Codes r q (push a) ∙ fromPathP (subst (λ α → PathP (λ i → Q (g a) (α i)) (e a q .fst (elimL (f a) q)) (e a q .fst (elimL (f a) q))) (interpolateCompPath q (push a) ⁻¹) refl) module ElimR {ℓ ℓ' ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {f : A → B} {g : A → C} {c₀ : C} (P : ∀ b → Path (Pushout f g) (inr c₀) (inl b) → Type ℓ''') (Q : ∀ c → Path (Pushout f g) (inr c₀) (inr c) → Type ℓ''') (r : Q c₀ refl) (e : (a : A) (q : inr c₀ ≡ inl (f a)) → P (f a) q ≃ Q (g a) (q ∙ push a)) where Codes : (d : Pushout f g) (q : inr c₀ ≡ d) → Type ℓ''' Codes (inl b) q = P b q Codes (inr c) q = Q c q Codes (push a i) q = Glue (Q (g a) (interpolate (push a) i q)) (λ { (i = i0) → _ , e a q ; (i = i1) → _ , idEquiv (Q (g a) q) }) elimL : ∀ b q → P b q elimL _ = J Codes r elimR : ∀ c q → Q c q elimR _ = J Codes r refl-β : elimR c₀ refl ≡ r refl-β = transportRefl _ push-β : (a : A) (q : inr c₀ ≡ inl (f a)) → elimR (g a) (q ∙ push a) ≡ e a q .fst (elimL (f a) q) push-β a q = J-∙ Codes r q (push a) ∙ fromPathP (subst (λ α → PathP (λ i → Q (g a) (α i)) (e a q .fst (elimL (f a) q)) (e a q .fst (elimL (f a) q))) (interpolateCompPath q (push a) ⁻¹) refl) -- Example application: pushouts preserve embeddings isEmbeddingInr : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {f : A → B} (g : A → C) → isEmbedding f → isEmbedding (inr {f = f} {g = g}) isEmbeddingInr {f = f} g fEmb c₀ c₁ = isoToIsEquiv (iso _ (fst ∘ bwd c₁) (snd ∘ bwd c₁) bwdCong) where Q : ∀ c → inr c₀ ≡ inr c → Type _ Q _ q = fiber (cong inr) q P : ∀ b → inr c₀ ≡ inl b → Type _ P b p = Σ[ u ∈ fiber f b ] Q _ (p ∙ cong inl (u .snd ⁻¹) ∙ push (u .fst)) module Bwd = ElimR P Q (refl , refl) (λ a p → subst (P (f a) p ≃_) (cong (λ w → fiber (cong inr) (p ∙ w)) (lUnit (push a) ⁻¹)) (Σ-contractFst (inhProp→isContr (a , refl) (isEmbedding→hasPropFibers fEmb (f a))))) bwd : ∀ c → (t : inr c₀ ≡ inr c) → fiber (cong inr) t bwd = Bwd.elimR bwdCong : ∀ {c} → (r : c₀ ≡ c) → bwd c (cong inr r) .fst ≡ r bwdCong = J (λ c r → bwd c (cong inr r) .fst ≡ r) (cong fst Bwd.refl-β)
{ "alphanum_fraction": 0.4949275362, "avg_line_length": 30.2189781022, "ext": "agda", "hexsha": "9dd6434ade34dd2a51668d7caa492703377decff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/HITs/Pushout/KrausVonRaumer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/HITs/Pushout/KrausVonRaumer.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/HITs/Pushout/KrausVonRaumer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1864, "size": 4140 }
record R₁ : Set₂ where field _≡_ : {A : Set₁} → A → A → Set postulate A B : Set record R₂ (r₁ : R₁) : Set₂ where open R₁ r₁ field cong : (A : Set₁) (x y : A) (F : A → Set) → x ≡ y → F x ≡ F y subst : (P : Set → Set₁) → A ≡ B → P A → P B postulate _≡_ : {A : Set₁} → A → A → Set r₁ : R₁ r₁ .R₁._≡_ = _≡_ postulate r₂ : ∀ r₁ → R₂ r₁ open R₂ (r₂ r₁) record R₃ (@0 A : Set₁) : Set₁ where constructor [_] field f : A postulate r₃ : R₃ Set push-subst-[] : (P : Set → Set₁) (p : P A) (eq : A ≡ B) → subst (λ A → R₃ (P A)) eq [ p ] ≡ [ subst P eq p ] _ : (eq : A ≡ B) → (subst (λ _ → R₃ Set) eq r₃ ≡ r₃) ≡ ([ subst (λ _ → Set) eq (r₃ .R₃.f) ] ≡ r₃) _ = λ eq → cong _ _ _ (_≡ _) (push-subst-[] _ _ _)
{ "alphanum_fraction": 0.4665792923, "avg_line_length": 18.6097560976, "ext": "agda", "hexsha": "5985960f8bac16cbda93156720667d5ebe80b6b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue5007.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue5007.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue5007.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 377, "size": 763 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Paths module lib.types.Unit where pattern tt = unit ⊙Unit : Ptd₀ ⊙Unit = ⊙[ Unit , unit ] abstract -- Unit is contractible Unit-is-contr : is-contr Unit Unit-is-contr = (unit , λ y → idp) Unit-is-prop : is-prop Unit Unit-is-prop = raise-level -2 Unit-is-contr Unit-is-set : is-set Unit Unit-is-set = raise-level -1 Unit-is-prop Unit-level = Unit-is-contr ⊤-is-contr = Unit-is-contr ⊤-level = Unit-is-contr ⊤-is-prop = Unit-is-prop ⊤-is-set = Unit-is-set
{ "alphanum_fraction": 0.6549912434, "avg_line_length": 19.6896551724, "ext": "agda", "hexsha": "e21a8d038fe1cd6027c8b900ceabe93f2bab22cf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Unit.agda", "max_line_length": 45, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 188, "size": 571 }
open import Syntax module Categories.Category.Construction.Renaming {ℓ₁ ℓ₂} (Sg : Signature ℓ₁ ℓ₂) where open import Relation.Binary using (Rel) open import Data.List using (List; []; [_]; _∷_; length; _++_) open import Level using (zero; _⊔_) open import Categories.Category open Signature Sg data ren : Rel Context ℓ₁ where id : forall {Γ} -> ren Γ Γ _∙_ : forall {Γ₁ Γ₂ Γ₃} -> ren Γ₂ Γ₃ -> ren Γ₁ Γ₂ -> ren Γ₁ Γ₃ ! : forall {Γ} -> ren Γ [] ⟪_,_⟫ : forall {Γ Γ₁ Γ₂} -> ren Γ Γ₁ -> ren Γ Γ₂ -> ren Γ (Γ₂ ++ Γ₁) p : forall {Γ Γ′} -> ren (Γ′ ++ Γ) Γ q : forall {Γ Γ′} -> ren (Γ′ ++ Γ) Γ′ data _≐_ : forall {Γ Γ′} -> Rel (ren Γ Γ′) ℓ₁ where refl : forall {Γ Γ′} {f : ren Γ Γ′} -> f ≐ f sym : forall {Γ Γ′} {f g : ren Γ Γ′} -> f ≐ g -> g ≐ f trans : forall {Γ Γ′} {f g h : ren Γ Γ′} -> f ≐ g -> g ≐ h -> f ≐ h identityˡ : forall {Γ Γ′} {f : ren Γ Γ′} -> (id ∙ f) ≐ f identityʳ : forall {Γ Γ′} {f : ren Γ Γ′} -> (f ∙ id) ≐ f assoc : forall {Γ Γ′ Γ″ Γ‴} {h : ren Γ Γ′} {g : ren Γ′ Γ″} {f : ren Γ″ Γ‴} -> ((f ∙ g) ∙ h) ≐ (f ∙ (g ∙ h)) !-unique : forall {Γ} {f : ren Γ []} -> ! ≐ f β₁/⟪⟫ : forall {Γ Γ₁ Γ₂} {f : ren Γ Γ₁} {g : ren Γ Γ₂} -> (p ∙ ⟪ f , g ⟫) ≐ f β₂/⟪⟫ : forall {Γ Γ₁ Γ₂} {f : ren Γ Γ₁} {g : ren Γ Γ₂} -> (q ∙ ⟪ f , g ⟫) ≐ g η/⟪⟫ : forall {Γ Γ₁ Γ₂} {f : ren Γ (Γ₂ ++ Γ₁)} -> ⟪ p {Γ = Γ₁} ∙ f , q {Γ′ = Γ₂} ∙ f ⟫ ≐ f cong/∙ : forall {Γ₁ Γ₂ Γ₃} {g i : ren Γ₁ Γ₂} {f h : ren Γ₂ Γ₃} -> f ≐ h -> g ≐ i -> (f ∙ g) ≐ (h ∙ i) cong/⟪⟫ : forall {Γ Γ₁ Γ₂} {f h : ren Γ Γ₁} {g i : ren Γ Γ₂} -> f ≐ h -> g ≐ i -> ⟪ f , g ⟫ ≐ ⟪ h , i ⟫ Ren : Category ℓ₁ ℓ₁ ℓ₁ Ren = record { Obj = Context ; _⇒_ = ren ; _≈_ = _≐_ ; id = id ; _∘_ = _∙_ ; assoc = assoc ; sym-assoc = sym assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identityˡ ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = cong/∙ } open import Categories.Category.Cartesian Ren open import Categories.Category.BinaryProducts Ren open import Categories.Object.Product Ren open import Categories.Object.Terminal Ren private P : forall {Γ₁ Γ₂} -> Product Γ₁ Γ₂ P {Γ₁} {Γ₂} = record { A×B = Γ₂ ++ Γ₁ ; π₁ = p ; π₂ = q ; ⟨_,_⟩ = ⟪_,_⟫ ; project₁ = β₁/⟪⟫ ; project₂ = β₂/⟪⟫ ; unique = λ x x₁ → begin ⟪ _ , _ ⟫ ≈˘⟨ cong/⟪⟫ x x₁ ⟩ ⟪ _ , _ ⟫ ≈⟨ η/⟪⟫ ⟩ _ ∎ } where open Category.HomReasoning Ren C : Cartesian C = record { terminal = T ; products = record { product = P } } where T : Terminal T = record { ⊤ = [] ; ⊤-is-terminal = record { ! = ! ; !-unique = λ f → !-unique {f = f} } }
{ "alphanum_fraction": 0.4717182497, "avg_line_length": 32.6860465116, "ext": "agda", "hexsha": "d4720918301e228b54acce7fd50048dc5b59c566", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Categories/Category/Construction/Renaming.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Categories/Category/Construction/Renaming.agda", "max_line_length": 105, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Categories/Category/Construction/Renaming.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 1221, "size": 2811 }
{-# OPTIONS --without-K #-} module NTypes.Unit where open import Equivalence open import NTypes open import PathStructure.Unit open import Types 1-isProp : isProp ⊤ 1-isProp _ _ = merge-path _ 1-isSet : isSet ⊤ 1-isSet _ _ = prop-eq (sym-equiv split-merge-eq) 1-isProp
{ "alphanum_fraction": 0.7262773723, "avg_line_length": 18.2666666667, "ext": "agda", "hexsha": "cb70fc79c4e51cdc793b0f06c661782dafbfdc4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes/Unit.agda", "max_line_length": 45, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 83, "size": 274 }