Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2018-03-12
-- The fix for #2963 introduced a change in the quotation behavior
-- of method definitions inside a record.
open import Agda.Builtin.Float
open import Agda.Builtin.Reflection
open import Agda.Builtin.List
open import Agda.Builtin.Unit
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
infixl 6 _>>=_
_>>=_ = bindTC
macro
getDef : Name → Term → TC ⊤
getDef x a = getDefinition x >>= quoteTC >>= unify a
record Foo (A : Set) : Set where
constructor mkFoo
field foo : A
foo₁ : A
foo₁ = foo
open module FooI = Foo {{...}}
postulate
A : Set
instance FooA : Foo A
-- Projection-like
foo₂ : {A : Set} {r : Foo A} → A
foo₂ {r = mkFoo x} = x
bar : A
bar = foo
bar₁ : A
bar₁ = foo₁
bar₂ : A
bar₂ = foo₂ {r = FooA}
pattern rArg v x = arg (arg-info v relevant) x
pattern vArg x = rArg visible x
pattern hArg x = rArg hidden x
pattern iArg x = rArg instance′ x
pattern `? = hArg unknown
pattern fun₀ b = function (clause [] [] b ∷ [])
pattern fun₁ tel p b = function (clause tel (p ∷ []) b ∷ [])
pattern fun₂ tel p q b = function (clause tel (p ∷ q ∷ []) b ∷ [])
-- foo {{r}} = Foo.foo {_} r
foo-def : getDef foo ≡ fun₁
(("r" , iArg (def (quote Foo) (vArg (var 0 []) ∷ []))) ∷ [])
(iArg (var 0))
(def (quote Foo.foo) (`? ∷ vArg (var 0 []) ∷ []))
foo-def = refl
-- Andreas, 2018-03-12: Behavior before fix of #2963:
-- foo₁ {{r}} = Foo.foo₁ {_} r
-- foo₁-def : getDef foo₁ ≡ fun₁ (iArg (var "r")) (def (quote Foo.foo₁) (`? ∷ vArg (var 0 []) ∷ []))
-- NOW:
-- foo₁ {A} {{r}} = Foo.foo₁ {A} r
foo₁-def : getDef foo₁ ≡ fun₂
(("A" , hArg (agda-sort (lit 0))) ∷ ("r" , iArg (def (quote Foo) (vArg (var 0 []) ∷ []))) ∷ [])
(hArg (var 1)) (iArg (var 0))
(def (quote Foo.foo₁) (hArg (var 1 []) ∷ vArg (var 0 []) ∷ []))
foo₁-def = refl
-- bar = foo {_} FooA
bar-def : getDef bar ≡ fun₀ (def (quote Foo.foo) (`? ∷ vArg (def (quote FooA) []) ∷ []))
bar-def = refl
-- bar₁ = Foo.foo₁ {A} FooA
bar₁-def : getDef bar₁ ≡ fun₀ (def (quote Foo.foo₁) (hArg (def (quote A) []) ∷ vArg (def (quote FooA) []) ∷ []))
bar₁-def = refl
-- bar₂ = foo₂ {_} {FooA}
bar₂-def : getDef bar₂ ≡ fun₀ (def (quote foo₂) (`? ∷ hArg (def (quote FooA) []) ∷ []))
bar₂-def = refl
--- Originally reported test case ---
defToTerm : Name → Definition → List (Arg Term) → Term
defToTerm _ (function cs) as = pat-lam cs as
defToTerm _ (data-cons d) as = con d as
defToTerm _ _ _ = unknown
derefImmediate : Term → TC Term
derefImmediate (def f args) = getDefinition f >>= λ f' → returnTC (defToTerm f f' args)
derefImmediate x = returnTC x
reflectTerm : Name → TC Term
reflectTerm n = getType n >>= λ ty → getDefinition n >>= λ x →
derefImmediate (defToTerm n x []) >>= λ x → checkType x ty
macro
reflect : Name → Term → TC ⊤
reflect n a = reflectTerm n >>= quoteTC >>= unify a
{- Define typeclass Semigroup a => Plus a -}
record SemigroupLaws {ℓ} (t : Set ℓ) : Set ℓ where
infixr 5 _++_
field
_++_ : t → t → t
-- associative : ∀ {a b c} → (a ++ b) ++ c ≡ a ++ b ++ c
record PlusOp {ℓ} (t : Set ℓ) : Set ℓ where
field
semigroup : SemigroupLaws t
infixr 6 _+_
_+_ = SemigroupLaws._++_ semigroup
instance
floatPlus : PlusOp Float
floatPlus = record { semigroup = record { _++_ = Agda.Builtin.Float.primFloatPlus } }
open PlusOp {{...}}
-- The issue:
works : Float
works = PlusOp._+_ floatPlus 3.0 5.0
resultWorks : Term
resultWorks = reflect works
fails : Float
fails = 3.0 + 5.0
resultFails : Term
resultFails = reflect fails
|
{
"alphanum_fraction": 0.6008943544,
"avg_line_length": 26.1167883212,
"ext": "agda",
"hexsha": "07ed605a6eec7eeda56f932aed0fa449250982c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue2226.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2226.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2226.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1266,
"size": 3578
}
|
module Issue586 where
{-# NO_TERMINATION_CHECK #-}
Foo : Set
Foo = Foo
|
{
"alphanum_fraction": 0.7083333333,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "77a7ab1c16467c144b1562bdbdca1f0ca320b484",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue586.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue586.agda",
"max_line_length": 28,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue586.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 19,
"size": 72
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation.Dinatural where
open import Level
open import Data.Product
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
open import Categories.Category
open import Categories.NaturalTransformation as NT hiding (_∘ʳ_)
open import Categories.Functor
open import Categories.Functor.Construction.Constant
open import Categories.Functor.Bifunctor
open import Categories.Category.Product
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
C D E : Category o ℓ e
record DinaturalTransformation (F G : Bifunctor (Category.op C) C D) : Set (levelOfTerm F) where
eta-equality
private
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G
open D hiding (op)
open Commutation
field
α : ∀ X → D [ F.F₀ (X , X) , G.F₀ (X , X) ]
commute : ∀ {X Y} (f : C [ X , Y ]) →
[ F.F₀ (Y , X) ⇒ G.F₀ (X , Y) ]⟨
F.F₁ (f , C.id) ⇒⟨ F.F₀ (X , X) ⟩
α X ⇒⟨ G.F₀ (X , X) ⟩
G.F₁ (C.id , f)
≈ F.F₁ (C.id , f) ⇒⟨ F.F₀ (Y , Y) ⟩
α Y ⇒⟨ G.F₀ (Y , Y) ⟩
G.F₁ (f , C.id)
⟩
-- We add this extra proof, because, again, we want to ensure the opposite of the
-- opposite of dinatural transformation is definitionally equal to itself.
op-commute : ∀ {X Y} (f : C [ X , Y ]) →
[ F.F₀ (Y , X) ⇒ G.F₀ (X , Y) ]⟨
F.F₁ (C.id , f) ⇒⟨ F.F₀ (Y , Y) ⟩
(α Y ⇒⟨ G.F₀ (Y , Y) ⟩
G.F₁ (f , C.id))
≈ F.F₁ (f , C.id) ⇒⟨ F.F₀ (X , X) ⟩
(α X ⇒⟨ G.F₀ (X , X) ⟩
G.F₁ (C.id , f))
⟩
op : DinaturalTransformation G.op F.op
op = record
{ α = α
; commute = op-commute
; op-commute = commute
}
-- to reduce the burden of constructing a DinaturalTransformation, we introduce
-- another helper.
record DTHelper (F G : Bifunctor (Category.op C) C D) : Set (levelOfTerm F) where
private
module C = Category C
module D = Category D
module F = Functor F
module G = Functor G
open D hiding (op)
open Commutation
field
α : ∀ X → D [ F.F₀ (X , X) , G.F₀ (X , X) ]
commute : ∀ {X Y} (f : C [ X , Y ]) →
[ F.F₀ (Y , X) ⇒ G.F₀ (X , Y) ]⟨
F.F₁ (f , C.id) ⇒⟨ F.F₀ (X , X) ⟩
α X ⇒⟨ G.F₀ (X , X) ⟩
G.F₁ (C.id , f)
≈ F.F₁ (C.id , f) ⇒⟨ F.F₀ (Y , Y) ⟩
α Y ⇒⟨ G.F₀ (Y , Y) ⟩
G.F₁ (f , C.id)
⟩
dtHelper : ∀ {F G : Bifunctor (Category.op C) C D} → DTHelper F G → DinaturalTransformation F G
dtHelper {D = D} θ = record
{ α = α
; commute = commute
; op-commute = λ f → assoc ○ ⟺ (commute f) ○ sym-assoc
}
where open DTHelper θ
open Category D
open HomReasoning
module _ {F G H : Bifunctor (Category.op C) C D} where
private
module C = Category C
open Category D
open HomReasoning
open Functor
open MR D
infixr 9 _<∘_
infixl 9 _∘>_
_<∘_ : NaturalTransformation G H → DinaturalTransformation F G → DinaturalTransformation F H
θ <∘ β = dtHelper record
{ α = λ X → η (X , X) ∘ α X
; commute = λ {X Y} f → begin
F₁ H (C.id , f) ∘ (η (X , X) ∘ α X) ∘ F₁ F (f , C.id) ≈˘⟨ pushˡ (pushˡ (θ.commute (C.id , f))) ⟩
((η (X , Y) ∘ F₁ G (C.id , f)) ∘ α X) ∘ F₁ F (f , C.id) ≈⟨ assoc ○ pullʳ (β.commute f) ⟩
η (X , Y) ∘ F₁ G (f , C.id) ∘ α Y ∘ F₁ F (C.id , f) ≈⟨ pullˡ (θ.commute (f , C.id)) ○ pullʳ (⟺ assoc) ⟩
F₁ H (f , C.id) ∘ (η (Y , Y) ∘ α Y) ∘ F₁ F (C.id , f) ∎
}
where module θ = NaturalTransformation θ
module β = DinaturalTransformation β
open θ
open β
_∘>_ : DinaturalTransformation G H → NaturalTransformation F G → DinaturalTransformation F H
β ∘> θ = dtHelper record
{ α = λ X → α X ∘ η (X , X)
; commute = λ {X Y} f → begin
F₁ H (C.id , f) ∘ (α X ∘ η (X , X)) ∘ F₁ F (f , C.id) ≈⟨ refl⟩∘⟨ pullʳ (θ.commute (f , C.id)) ⟩
F₁ H (C.id , f) ∘ α X ∘ F₁ G (f , C.id) ∘ η (Y , X) ≈˘⟨ assoc ○ ∘-resp-≈ʳ assoc ⟩
(F₁ H (C.id , f) ∘ α X ∘ F₁ G (f , C.id)) ∘ η (Y , X) ≈⟨ β.commute f ⟩∘⟨refl ⟩
(F₁ H (f , C.id) ∘ α Y ∘ F₁ G (C.id , f)) ∘ η (Y , X) ≈˘⟨ pushʳ (assoc ○ pushʳ (θ.commute (C.id , f))) ⟩
F₁ H (f , C.id) ∘ (α Y ∘ η (Y , Y)) ∘ F₁ F (C.id , f) ∎
}
where module θ = NaturalTransformation θ
module β = DinaturalTransformation β
open θ
open β
module _ {F G : Bifunctor (Category.op C) C D} where
private
module C = Category C
open Category D
open HomReasoning
open Functor
open MR D
infixl 9 _∘ʳ_
_∘ʳ_ : ∀ {E : Category o ℓ e} →
DinaturalTransformation F G → (K : Functor E C) → DinaturalTransformation (F ∘F ((Functor.op K) ⁂ K)) (G ∘F ((Functor.op K) ⁂ K))
_∘ʳ_ {E = E} β K = dtHelper record
{ α = λ X → α (F₀ K X)
; commute = λ {X Y} f → begin
F₁ G (F₁ K E.id , F₁ K f) ∘ α (F₀ K X) ∘ F₁ F (F₁ K f , F₁ K E.id)
≈⟨ F-resp-≈ G (identity K , C.Equiv.refl) ⟩∘⟨ refl ⟩∘⟨ F-resp-≈ F (C.Equiv.refl , identity K) ⟩
F₁ G (C.id , F₁ K f) ∘ α (F₀ K X) ∘ F₁ F (F₁ K f , C.id)
≈⟨ commute (F₁ K f) ⟩
F₁ G (F₁ K f , C.id) ∘ α (F₀ K Y) ∘ F₁ F (C.id , F₁ K f)
≈˘⟨ F-resp-≈ G (C.Equiv.refl , identity K) ⟩∘⟨ refl ⟩∘⟨ F-resp-≈ F (identity K , C.Equiv.refl) ⟩
F₁ G (F₁ K f , F₁ K E.id) ∘ α (F₀ K Y) ∘ F₁ F (F₁ K E.id , F₁ K f)
∎
}
where module β = DinaturalTransformation β
module E = Category E
open β
infix 4 _≃_
_≃_ : Rel (DinaturalTransformation F G) _
β ≃ δ = ∀ {X} → α β X ≈ α δ X
where open DinaturalTransformation
≃-isEquivalence : IsEquivalence _≃_
≃-isEquivalence = record
{ refl = refl
; sym = λ eq → sym eq
; trans = λ eq eq′ → trans eq eq′
}
≃-setoid : Setoid _ _
≃-setoid = record
{ Carrier = DinaturalTransformation F G
; _≈_ = _≃_
; isEquivalence = ≃-isEquivalence
}
-- for convenience, the following are some helpers for the cases
-- in which the bifunctor on the right is extranatural.
Extranaturalʳ : ∀ {C : Category o ℓ e} → Category.Obj D → (F : Bifunctor (Category.op C) C D) → Set _
Extranaturalʳ A F = DinaturalTransformation (const A) F
Extranaturalˡ : ∀ {C : Category o ℓ e} → (F : Bifunctor (Category.op C) C D) → Category.Obj D → Set _
Extranaturalˡ F A = DinaturalTransformation F (const A)
module _ {F : Bifunctor (Category.op C) C D} where
open Category D
private
module C = Category C
variable
A : Obj
X Y : C.Obj
f : X C.⇒ Y
open Functor F
open HomReasoning
open MR D
extranaturalʳ : (a : ∀ X → A ⇒ F₀ (X , X)) →
(∀ {X X′ f} → F₁ (C.id , f) ∘ a X ≈ F₁ (f , C.id) ∘ a X′) →
Extranaturalʳ A F
extranaturalʳ a comm = dtHelper record
{ α = a
; commute = λ f → ∘-resp-≈ʳ identityʳ ○ comm ○ ∘-resp-≈ʳ (⟺ identityʳ)
}
open DinaturalTransformation
extranatural-commʳ : (β : DinaturalTransformation (const A) F) →
F₁ (C.id , f) ∘ α β X ≈ F₁ (f , C.id) ∘ α β Y
extranatural-commʳ {f = f} β = ∘-resp-≈ʳ (⟺ identityʳ) ○ commute β f ○ ∘-resp-≈ʳ identityʳ
-- the dual case, the bifunctor on the left is extranatural.
extranaturalˡ : (a : ∀ X → F₀ (X , X) ⇒ A) →
(∀ {X X′ f} → a X ∘ F₁ (f , C.id) ≈ a X′ ∘ F₁ (C.id , f)) →
Extranaturalˡ F A
extranaturalˡ a comm = dtHelper record
{ α = a
; commute = λ f → pullˡ identityˡ ○ comm ○ ⟺ (pullˡ identityˡ)
}
extranatural-commˡ : (β : DinaturalTransformation F (const A)) →
α β X ∘ F₁ (f , C.id) ≈ α β Y ∘ F₁ (C.id , f)
extranatural-commˡ {f = f} β = ⟺ (pullˡ identityˡ) ○ commute β f ○ pullˡ identityˡ
|
{
"alphanum_fraction": 0.5044990272,
"avg_line_length": 35.6017316017,
"ext": "agda",
"hexsha": "3d7188c2480a8e439931c246ee4e86295b33f501",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/NaturalTransformation/Dinatural.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/NaturalTransformation/Dinatural.agda",
"max_line_length": 140,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/NaturalTransformation/Dinatural.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3115,
"size": 8224
}
|
open import Spire.Type
module Spire.Hybrid where
----------------------------------------------------------------------
data Context : Set₁
Environment : Context → Set
ScopedType : Context → Set₁
ScopedType Γ = Environment Γ → Set
data Context where
∅ : Context
_,_ : (Γ : Context) (A : ScopedType Γ) → Context
Environment ∅ = ⊤
Environment (Γ , A) = Σ (Environment Γ) A
data Var : (Γ : Context) (A : ScopedType Γ) → Set₁ where
here : ∀{Γ A} → Var (Γ , A) (λ vs → A (proj₁ vs))
there : ∀{Γ A} {B : ScopedType Γ}
→ Var Γ A → Var (Γ , B) (λ vs → A (proj₁ vs))
lookup : ∀{Γ A} → Var Γ A → (vs : Environment Γ) → A vs
lookup here (vs , v) = v
lookup (there i) (vs , v) = lookup i vs
ScopedType₂ : (Γ : Context) → ScopedType Γ → Set₁
ScopedType₂ Γ A = (vs : Environment Γ) → A vs → Set
----------------------------------------------------------------------
data Term (Γ : Context) : ScopedType Γ → Set₁
eval : ∀{Γ A} → Term Γ A → (vs : Environment Γ) → A vs
-- ----------------------------------------------------------------------
data Term Γ where
{- Type introduction -}
`⊥ `⊤ `Bool `ℕ `Type : ∀{ℓ}
→ Term Γ (const (Type ℓ))
`Π `Σ : ∀{ℓ}
(A : Term Γ (const (Type ℓ)))
(B : Term (Γ , λ vs → ⟦ ℓ ∣ eval A vs ⟧) (const (Type ℓ)))
→ Term Γ (λ _ → Type ℓ)
`⟦_⟧ : ∀{ℓ}
(A : Term Γ (const (Type ℓ)))
→ Term Γ (const (Type (suc ℓ)))
{- Value introduction -}
`tt : Term Γ (const ⊤)
`true `false : Term Γ (const Bool)
`zero : Term Γ (const ℕ)
`suc : Term Γ (const ℕ) → Term Γ (const ℕ)
`λ : ∀{A} {B : ScopedType₂ Γ A}
(f : Term (Γ , A) (λ vs → B (proj₁ vs) (proj₂ vs)))
→ Term Γ (λ vs → (v : A vs) → (B vs v))
_`,_ : ∀{A} {B : ScopedType₂ Γ A}
(a : Term Γ A)
(b : Term Γ (λ vs → B vs (eval a vs)))
→ Term Γ (λ vs → Σ (A vs) (λ v → B vs v))
{- Value elimination -}
`var : ∀{A} (a : Var Γ A) → Term Γ A
`elim⊥ : ∀{A ℓ}
(P : Term Γ (const (Type ℓ)))
(x : Term Γ (const ⊥))
→ Term Γ A
`elimBool : ∀{ℓ}
(P : Term (Γ , const Bool) (const (Type ℓ)))
(pt : Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , true) ⟧))
(pf : Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , false) ⟧))
(b : Term Γ (const Bool))
→ Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , eval b vs) ⟧)
`elimℕ : ∀{ℓ}
(P : Term (Γ , (const ℕ)) (const (Type ℓ)))
(pz : Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , zero) ⟧))
(ps : Term ((Γ , const ℕ) , (λ { (vs , n) → ⟦ ℓ ∣ eval P (vs , n) ⟧ }))
(λ { ((vs , n) , p) → ⟦ ℓ ∣ eval P (vs , suc n) ⟧ }))
(n : Term Γ (const ℕ))
→ Term Γ (λ vs → ⟦ ℓ ∣ eval P (vs , eval n vs) ⟧)
_`$_ : ∀{A} {B : ScopedType₂ Γ A}
(f : Term Γ (λ vs → (v : A vs) → (B vs v)))
(a : Term Γ A)
→ Term Γ (λ vs → B vs (eval a vs))
`proj₁ : ∀{A} {B : ScopedType₂ Γ A}
(ab : Term Γ (λ vs → Σ (A vs) (B vs)))
→ Term Γ A
`proj₂ : ∀{A} {B : ScopedType₂ Γ A}
(ab : Term Γ (λ vs → Σ (A vs) (B vs)))
→ Term Γ (λ vs → B vs (proj₁ (eval ab vs)))
----------------------------------------------------------------------
{- Type introduction -}
eval `⊥ vs = `⊥
eval `⊤ vs = `⊤
eval `Bool vs = `Bool
eval `ℕ vs = `ℕ
eval `Type vs = `Type
eval (`Π A B) vs = `Π (eval A vs) λ v → eval B (vs , v)
eval (`Σ A B) vs = `Σ (eval A vs) λ v → eval B (vs , v)
eval `⟦ A ⟧ vs = `⟦ eval A vs ⟧
{- Value introduction -}
eval `tt vs = tt
eval `true vs = true
eval `false vs = false
eval `zero vs = zero
eval (`suc n) vs = suc (eval n vs)
eval (`λ f) vs = λ v → eval f (vs , v)
eval (a `, b) vs = eval a vs , eval b vs
{- Value elimination -}
eval (`var i) vs = lookup i vs
eval (`elim⊥ P x) vs = elim⊥ (eval x vs)
eval (`elimBool {ℓ} P pt pf b) vs =
elimBool (λ v → ⟦ ℓ ∣ eval P (vs , v) ⟧)
(eval pt vs)
(eval pf vs)
(eval b vs)
eval (`elimℕ {ℓ} P pz ps n) vs =
elimℕ (λ v → ⟦ ℓ ∣ eval P (vs , v) ⟧)
(eval pz vs)
(λ n rec → eval ps ((vs , n) , rec))
(eval n vs)
eval (f `$ a) vs = (eval f vs) (eval a vs)
eval (`proj₁ ab) vs = proj₁ (eval ab vs)
eval (`proj₂ ab) vs = proj₂ (eval ab vs)
----------------------------------------------------------------------
|
{
"alphanum_fraction": 0.4588755217,
"avg_line_length": 30.8560606061,
"ext": "agda",
"hexsha": "2227f88da652d1b1ea394a735e2328267da7c53a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-17T21:00:07.000Z",
"max_forks_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "spire/spire",
"max_forks_repo_path": "formalization/agda/Spire/Hybrid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "spire/spire",
"max_issues_repo_path": "formalization/agda/Spire/Hybrid.agda",
"max_line_length": 76,
"max_stars_count": 43,
"max_stars_repo_head_hexsha": "3d67f137ee9423b7e6f8593634583998cd692353",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "spire/spire",
"max_stars_repo_path": "formalization/agda/Spire/Hybrid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T17:10:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-28T23:25:33.000Z",
"num_tokens": 1578,
"size": 4073
}
|
------------------------------------------------------------------------
-- An example
------------------------------------------------------------------------
module Mixfix.Cyclic.Example where
open import Codata.Musical.Notation
open import Data.Vec using ([]; _∷_; [_])
open import Data.List as List
using (List; []; _∷_) renaming ([_] to L[_])
open import Data.List.Relation.Unary.Any as Any using (here; there)
import Codata.Musical.Colist as Colist
open import Data.Product using (∃₂; -,_)
open import Data.Unit.Polymorphic using (⊤)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Fin using (Fin; #_; zero; suc)
import Data.List.Relation.Binary.Pointwise as ListEq
import Data.String as String
open String using (String; _++_)
import Data.String.Properties as String
open import Relation.Binary
open DecSetoid (ListEq.decSetoid String.≡-decSetoid) using (_≟_)
open import Function using (_∘_)
open import Data.Bool using (Bool; if_then_else_)
open import Relation.Nullary.Decidable using (⌊_⌋)
import Relation.Binary.PropositionalEquality as P
open import IO
import Level
open import Mixfix.Fixity hiding (_≟_)
open import Mixfix.Operator
open import Mixfix.Expr
open import Mixfix.Cyclic.PrecedenceGraph
hiding (module PrecedenceGraph)
import Mixfix.Cyclic.Grammar as Grammar
import Mixfix.Cyclic.Show as Show
import TotalParserCombinators.BreadthFirst as BreadthFirst
------------------------------------------------------------------------
-- Operators
atom : Operator closed 0
atom = record { nameParts = "•" ∷ [] }
plus : Operator (infx left) 0
plus = record { nameParts = "+" ∷ [] }
ifThen : Operator prefx 1
ifThen = record { nameParts = "i" ∷ "t" ∷ [] }
ifThenElse : Operator prefx 2
ifThenElse = record { nameParts = "i" ∷ "t" ∷ "e" ∷ [] }
comma : Operator (infx left) 0
comma = record { nameParts = "," ∷ [] }
wellTyped : Operator postfx 1
wellTyped = record { nameParts = "⊢" ∷ "∶" ∷ [] }
------------------------------------------------------------------------
-- Precedence graph
mutual
private
levels : ℕ
levels = 5
a = # 0
pl = # 1
ii = # 2
c = # 3
wt = #_ 4 {n = levels}
g : PrecedenceGraph
g = record
{ levels = levels
; ops = λ p fix → List.mapMaybe (hasFixity fix) (ops p)
; ↑ = ↑
}
where
Precedence : Set
Precedence = Fin levels
ops : Precedence → List (∃₂ Operator)
ops zero = (-, -, atom) ∷ []
ops (suc zero) = (-, -, plus) ∷ []
ops (suc (suc zero)) = (-, -, ifThen) ∷
(-, -, ifThenElse) ∷ []
ops (suc (suc (suc zero))) = (-, -, comma) ∷ []
ops (suc (suc (suc (suc zero)))) = (-, -, wellTyped) ∷ []
ops (suc (suc (suc (suc (suc ())))))
↑ : Precedence → List (Precedence)
↑ zero = []
↑ (suc zero) = a ∷ []
↑ (suc (suc zero)) = pl ∷ a ∷ []
↑ (suc (suc (suc zero))) = ii ∷ pl ∷ a ∷ []
↑ (suc (suc (suc (suc zero)))) = c ∷ a ∷ []
↑ (suc (suc (suc (suc (suc ())))))
------------------------------------------------------------------------
-- Expressions
open PrecedenceCorrect cyclic g
• : ExprIn a non
• = ⟪ here P.refl ∙ [] ⟫
_+_ : Outer pl left → Expr (a ∷ []) → ExprIn pl left
e₁ + e₂ = e₁ ⟨ here P.refl ∙ [] ⟩ˡ e₂
i_t_ : Expr anyPrecedence → Outer ii right → ExprIn ii right
i e₁ t e₂ = ⟪ here P.refl ∙ e₁ ∷ [] ⟩ e₂
i_t_e_ : Expr anyPrecedence → Expr anyPrecedence → Outer ii right →
ExprIn ii right
i e₁ t e₂ e e₃ = ⟪ there (here P.refl) ∙ e₁ ∷ e₂ ∷ [] ⟩ e₃
_,_ : Outer c left → Expr (ii ∷ pl ∷ a ∷ []) → ExprIn c left
e₁ , e₂ = e₁ ⟨ here P.refl ∙ [] ⟩ˡ e₂
_⊢_∶ : Outer wt left → Expr anyPrecedence → ExprIn wt left
e₁ ⊢ e₂ ∶ = e₁ ⟨ here P.refl ∙ [ e₂ ] ⟫
------------------------------------------------------------------------
-- Some tests
open Show cyclic g
fromNameParts : List NamePart → String
fromNameParts = List.foldr _++_ ""
toNameParts : String → List NamePart
toNameParts = List.map (String.fromList ∘ L[_]) ∘ String.toList
parseExpr : String → List String
parseExpr = List.map (fromNameParts ∘ show) ∘
BreadthFirst.parse (Grammar.expression cyclic g) ∘
toNameParts
runTest : String → List String → IO (⊤ {ℓ = Level.zero})
runTest s₁ s₂ = do
putStrLn ("Testing: " ++ s₁)
Colist.mapM′ putStrLn (Colist.fromList p₁)
putStrLn (if ⌊ p₁ ≟ s₂ ⌋ then "Passed" else "Failed")
where p₁ = parseExpr s₁
main = run do
runTest "•+•⊢•∶" []
runTest "•,•⊢∶" []
runTest "•⊢•∶" L[ "•⊢•∶" ]
runTest "•,i•t•+•⊢•∶" L[ "•,i•t•+•⊢•∶" ]
runTest "i•ti•t•e•" ("i•ti•t•e•" ∷ "i•ti•t•e•" ∷ [])
|
{
"alphanum_fraction": 0.5279230287,
"avg_line_length": 30.6474358974,
"ext": "agda",
"hexsha": "b875c347f791417421e219c1990319bcfd21be28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Cyclic/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Cyclic/Example.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Cyclic/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1533,
"size": 4781
}
|
module Prelude where
infixr 90 _∘_
infixr 50 _∧_
infix 20 _⟸⇒_
infixl 3 _from_
_from_ : (A : Set) -> A -> A
A from a = a
_∘_ : {A B C : Set} -> (A -> B) -> (C -> A) -> C -> B
(f ∘ g) x = f (g x)
record _∧_ (A B : Set) : Set where
field
p₁ : A
p₂ : B
open _∧_ public renaming (p₁ to fst; p₂ to snd)
_,_ : {A B : Set} -> A -> B -> A ∧ B
x , y = record { p₁ = x; p₂ = y }
swap : {A B : Set} -> A ∧ B -> B ∧ A
swap p = (snd p , fst p)
_⇐⇒_ : Set -> Set -> Set
A ⇐⇒ B = (A -> B) ∧ (B -> A)
|
{
"alphanum_fraction": 0.4604743083,
"avg_line_length": 16.8666666667,
"ext": "agda",
"hexsha": "49ff3483babdd8a3781d838ba3eeb183b8083c1f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/lattice/Prelude.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/lattice/Prelude.agda",
"max_line_length": 53,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/lattice/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 247,
"size": 506
}
|
-- Andreas, 2020-02-18, issue #4450 raised by Nisse
--
-- ETA pragma should be considered unsafe, since type-checking may loop.
{-# OPTIONS --safe --guardedness #-}
open import Agda.Builtin.Equality
record R : Set where
coinductive
field
force : R
open R
{-# ETA R #-}
foo : R
foo .force .force = foo
-- test : foo .force ≡ foo
-- test = refl
-- test makes type checker loop;
-- ETA with --safe is a soft error and only raised after
-- the whole file is processed.
|
{
"alphanum_fraction": 0.6750524109,
"avg_line_length": 18.3461538462,
"ext": "agda",
"hexsha": "6012137a82c495c2602c8dc89cd270cfbb6378ce",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4450.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4450.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4450.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 132,
"size": 477
}
|
open import Relation.Binary.Core
module PLRTree.Order {A : Set} where
open import Data.Nat
open import Data.Sum
open import PLRTree {A}
open import Relation.Binary
open DecTotalOrder decTotalOrder hiding (refl)
height : PLRTree → ℕ
height leaf = zero
height (node t x l r)
with total (height l) (height r)
... | inj₁ hl≤hr = suc (height r)
... | inj₂ hr≤hl = suc (height l)
_≺_ : PLRTree → PLRTree → Set
t ≺ t' = height t <′ height t'
|
{
"alphanum_fraction": 0.6883408072,
"avg_line_length": 21.2380952381,
"ext": "agda",
"hexsha": "0fdc139867139aace9d2dcfed7b4a26a2acc9287",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Order.agda",
"max_line_length": 46,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 143,
"size": 446
}
|
{-# OPTIONS --without-K #-}
module well-typed-quoted-syntax where
open import common
open import well-typed-syntax
open import well-typed-syntax-helpers public
open import well-typed-quoted-syntax-defs public
open import well-typed-syntax-context-helpers public
open import well-typed-syntax-eq-dec public
infixr 2 _‘‘∘’’_
quote-sigma : (Γv : Σ Context Typ) → Term {ε} (‘Σ’ ‘Context’ ‘Typ’)
quote-sigma (Γ , v) = ‘existT’ ⌜ Γ ⌝c ⌜ v ⌝T
_‘‘∘’’_ : ∀ {A B C}
→ □ (‘□’ ‘’ (C ‘‘→'’’ B))
→ □ (‘□’ ‘’ (A ‘‘→'’’ C))
→ □ (‘□’ ‘’ (A ‘‘→'’’ B))
g ‘‘∘’’ f = (‘‘fcomp-nd’’ ‘'’ₐ f ‘'’ₐ g)
Conv0 : ∀ {qH0 qX} →
Term {Γ = (ε ▻ ‘□’ ‘’ qH0)}
(W (‘□’ ‘’ ⌜ ‘□’ ‘’ qH0 ‘→'’ qX ⌝T))
→ Term {Γ = (ε ▻ ‘□’ ‘’ qH0)}
(W
(‘□’ ‘’ (⌜ ‘□’ ‘’ qH0 ⌝T ‘‘→'’’ ⌜ qX ⌝T)))
Conv0 {qH0} {qX} x = w→ ⌜→'⌝ ‘'’ₐ x
|
{
"alphanum_fraction": 0.4772727273,
"avg_line_length": 29.8571428571,
"ext": "agda",
"hexsha": "1f06241fd0c4ff5c6970b08d780205bc0a8afa1b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/well-typed-quoted-syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/well-typed-quoted-syntax.agda",
"max_line_length": 67,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/well-typed-quoted-syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 417,
"size": 836
}
|
open import Relation.Binary using (Preorder)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
module Category.Monad.Monotone.Reader {ℓ}(pre : Preorder ℓ ℓ ℓ) where
open Preorder pre renaming (Carrier to I; _∼_ to _≤_; refl to ≤-refl)
open import Relation.Unary.Monotone pre
open import Relation.Unary.PredicateTransformer using (Pt)
open import Data.Product
open import Function
open import Level hiding (lift)
open import Category.Monad
open import Category.Monad.Monotone.Identity pre
open import Category.Monad.Monotone pre
ReaderT : Pred I ℓ → Pt I ℓ → Pt I ℓ
ReaderT E M P = λ i → E i → M P i
Reader : (Pred I ℓ) → Pt I ℓ
Reader E = ReaderT E Identity
record ReaderMonad E (M : Pred I ℓ → Pt I ℓ) : Set (suc ℓ) where
field
ask : ∀ {i} → M E E i
reader : ∀ {P} → (E ⇒ P) ⊆ M E P
local : ∀ {P E'} → (E ⇒ E') ⊆ (M E' P ⇒ M E P)
asks : ∀ {A} → (E ⇒ A) ⊆ M E A
asks = reader
module _ {M : Pt I ℓ}⦃ Mon : RawMPMonad M ⦄ where
private module M = RawMPMonad Mon
module _ {E}⦃ mono : Monotone E ⦄ where
instance
open RawMPMonad
reader-monad : RawMPMonad (ReaderT E M)
return reader-monad x e = M.return x
_≥=_ reader-monad m f e = m e M.≥= λ i≤j px → f i≤j px (wk i≤j e)
open ReaderMonad
reader-monad-ops : ReaderMonad E (λ E → ReaderT E M)
ask reader-monad-ops e = M.return e
reader reader-monad-ops f e = M.return (f e)
local reader-monad-ops f c e = c (f e)
lift-reader : ∀ {P} E → M P ⊆ ReaderT E M P
lift-reader _ z _ = z
|
{
"alphanum_fraction": 0.6453900709,
"avg_line_length": 30.4117647059,
"ext": "agda",
"hexsha": "40535b7221f7d0f999f09a7a752fe0756a9748d8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Category/Monad/Monotone/Reader.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Category/Monad/Monotone/Reader.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Category/Monad/Monotone/Reader.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 533,
"size": 1551
}
|
open import Nat
open import Prelude
open import List
open import core
open import judgemental-erase
open import checks
open import moveerase
module aasubsume-min where
-- this predicate on derivations of actions bans the cases that induce
-- non-determinism.
mutual
aasubmin-synth : ∀{Γ e t α e' t'} → (Γ ⊢ e => t ~ α ~> e' => t') → Set
aasubmin-synth (SAZipAsc1 x) = aasubmin-ana x
aasubmin-synth (SAZipApArr x x₁ x₂ d x₃) = aasubmin-synth d
aasubmin-synth (SAZipApAna x x₁ x₂) = aasubmin-ana x₂
aasubmin-synth (SAZipPlus1 x) = aasubmin-ana x
aasubmin-synth (SAZipPlus2 x) = aasubmin-ana x
aasubmin-synth (SAZipHole x x₁ d) = aasubmin-synth d
aasubmin-synth _ = ⊤
aasubmin-ana : ∀{Γ e α e' t} → (Γ ⊢ e ~ α ~> e' ⇐ t) → Set
aasubmin-ana (AASubsume x x₁ SAConAsc x₃) = ⊥
aasubmin-ana (AASubsume x x₁ (SAConLam x₃) x₄) = ⊥
aasubmin-ana (AASubsume x x₁ s x₃) = aasubmin-synth s
aasubmin-ana (AAZipLam x₁ x₂ d) = aasubmin-ana d
aasubmin-ana _ = ⊤
-- the minimization predicate propagates through subsumption rules
min-ana-lem : ∀{e e' e◆ Γ t t' t'' α}
{a : erase-e e e◆}
{b : Γ ⊢ e◆ => t'}
{c : t ~ t''} →
(d : Γ ⊢ e => t' ~ α ~> e' => t'')
→ aasubmin-ana (AASubsume a b d c) → aasubmin-synth d
min-ana-lem (SAMove x) min = <>
min-ana-lem (SADel) min = <>
min-ana-lem (SAConAsc) min = <>
min-ana-lem (SAConVar p) min = <>
min-ana-lem (SAConLam x₁) min = <>
min-ana-lem (SAConApArr x) min = <>
min-ana-lem (SAConApOtw x) min = <>
min-ana-lem (SAConNumlit) min = <>
min-ana-lem (SAConPlus1 x) min = <>
min-ana-lem (SAConPlus2 x) min = <>
min-ana-lem (SAConNEHole) min = <>
min-ana-lem (SAFinish x) min = <>
min-ana-lem (SAZipAsc1 x) min = min
min-ana-lem (SAZipAsc2 x x₁ x₂ x₃) min = <>
min-ana-lem (SAZipApArr x x₁ x₂ c x₃) min = min
min-ana-lem (SAZipApAna x x₁ x₂) min = min
min-ana-lem (SAZipPlus1 x) min = min
min-ana-lem (SAZipPlus2 x) min = min
min-ana-lem (SAZipHole x x₁ c) min = min
-- any derivation of an action can be minimized to avoid this cases that
-- induce non-determinism.
mutual
min-synth : ∀{Γ e t α e' t'} → (d : Γ ⊢ e => t ~ α ~> e' => t') →
Σ[ e'' ∈ ê ] Σ[ d' ∈ Γ ⊢ e => t ~ α ~> e'' => t' ] aasubmin-synth d'
min-synth (SAMove x) = _ , SAMove x , <>
min-synth SADel = _ , SADel , <>
min-synth SAConAsc = _ , SAConAsc , <>
min-synth (SAConVar p) = _ , SAConVar p , <>
min-synth (SAConLam x₁) = _ , SAConLam x₁ , <>
min-synth (SAConApArr x) = _ , SAConApArr x , <>
min-synth (SAConApOtw x) = _ , SAConApOtw x , <>
min-synth SAConNumlit = _ , SAConNumlit , <>
min-synth (SAConPlus1 x) = _ , SAConPlus1 x , <>
min-synth (SAConPlus2 x) = _ , SAConPlus2 x , <>
min-synth SAConNEHole = _ , SAConNEHole , <>
min-synth (SAFinish x) = _ , SAFinish x , <>
min-synth (SAZipAsc2 x x₁ x₂ x₃) = _ , SAZipAsc2 x x₁ x₂ x₃ , <>
min-synth (SAZipAsc1 x) with min-ana x
... | _ , a , b = _ , SAZipAsc1 a , b
min-synth (SAZipApArr x x₁ x₂ d x₃) with min-synth d
... | _ , a , b = _ , (SAZipApArr x x₁ x₂ a x₃) , b
min-synth (SAZipApAna x x₁ x₂) with min-ana x₂
... | _ , a , b = _ , SAZipApAna x x₁ a , b
min-synth (SAZipPlus1 x) with min-ana x
... | _ , a , b = _ , SAZipPlus1 a , b
min-synth (SAZipPlus2 x) with min-ana x
... | _ , a , b = _ , SAZipPlus2 a , b
min-synth (SAZipHole x x₁ d) with min-synth d
... | _ , a , b = _ , SAZipHole x x₁ a , b
min-ana : ∀{Γ e α e' t} → (d : Γ ⊢ e ~ α ~> e' ⇐ t) → Σ[ e'' ∈ ê ] Σ[ d' ∈ Γ ⊢ e ~ α ~> e'' ⇐ t ] aasubmin-ana d'
min-ana (AASubsume {Γ = Γ} x x₁ (SAMove x₂) x₃) = _ , AAMove x₂ , <>
min-ana (AASubsume x x₁ SADel x₃) = _ , AADel , <>
min-ana (AASubsume {Γ = Γ} {t = t} {t' = t'} x x₁ SAConAsc x₃) = _ , AAConAsc {Γ = Γ} {t = t} , <>
min-ana (AASubsume x x₁ (SAConVar p) x₃) = _ , AASubsume x x₁ (SAConVar p) x₃ , <>
min-ana (AASubsume EETop SEHole (SAConLam x₃) TCRefl) = _ , AAConLam1 x₃ MAArr , <>
min-ana (AASubsume EETop SEHole (SAConLam x₃) TCHole2) = _ , AAConLam1 x₃ MAHole , <>
min-ana (AASubsume EETop SEHole (SAConLam x₃) (TCArr x₄ x₅)) = _ , AAConLam1 x₃ MAArr , <>
min-ana (AASubsume x x₁ (SAConApArr x₂) x₃) = _ , AASubsume x x₁ (SAConApArr x₂) x₃ , <>
min-ana (AASubsume x x₁ (SAConApOtw x₂) x₃) = _ , AASubsume x x₁ (SAConApOtw x₂) x₃ , <>
min-ana (AASubsume x x₁ SAConNumlit x₃) = _ , AASubsume x x₁ SAConNumlit x₃ , <>
min-ana (AASubsume x x₁ (SAConPlus1 x₂) x₃) = _ , AASubsume x x₁ (SAConPlus1 x₂) x₃ , <>
min-ana (AASubsume x x₁ (SAConPlus2 x₂) x₃) = _ , AASubsume x x₁ (SAConPlus2 x₂) x₃ , <>
min-ana (AASubsume x x₁ SAConNEHole x₃) = _ , AASubsume x x₁ SAConNEHole x₃ , <>
min-ana (AASubsume x x₁ (SAFinish x₂) x₃) = _ , AASubsume x x₁ (SAFinish x₂) x₃ , <>
min-ana (AASubsume x x₁ (SAZipAsc2 x₂ x₃ x₄ x₅) x₆) = _ , AASubsume x x₁ (SAZipAsc2 x₂ x₃ x₄ x₅) x₆ , <>
min-ana (AASubsume x x₁ (SAZipAsc1 x₂) x₃) with min-ana x₂
... | a , b , c = _ , AASubsume x x₁ (SAZipAsc1 b) x₃ , c
min-ana (AASubsume x x₁ (SAZipApArr x₂ x₃ x₄ x₅ x₆) x₇) with min-synth x₅
... | a , b , c = _ , AASubsume x x₁ (SAZipApArr x₂ x₃ x₄ b x₆) x₇ , c
min-ana (AASubsume x x₁ (SAZipApAna x₂ x₃ x₄) x₅) with min-ana x₄
... | a , b , c = _ , AASubsume x x₁ (SAZipApAna x₂ x₃ b) x₅ , c
min-ana (AASubsume x x₁ (SAZipPlus1 x₂) x₃) with min-ana x₂
... | a , b , c = _ , AASubsume x x₁ (SAZipPlus1 b) x₃ , c
min-ana (AASubsume x x₁ (SAZipPlus2 x₂) x₃) with min-ana x₂
... | a , b , c = _ , AASubsume x x₁ (SAZipPlus2 b) x₃ , c
min-ana (AASubsume x x₁ (SAZipHole x₂ x₃ x₄) x₅) with min-synth x₄
... | a , b , c = _ , AASubsume x x₁ (SAZipHole x₂ x₃ b) x₅ , c
min-ana (AAMove x) = _ , AAMove x , <>
min-ana AADel = _ , AADel , <>
min-ana AAConAsc = _ , AAConAsc , <>
min-ana (AAConVar x₁ p) = _ , AAConVar x₁ p , <>
min-ana (AAConLam1 x₁ x₂) = _ , AAConLam1 x₁ x₂ , <>
min-ana (AAConLam2 x₁ x₂) = _ , AAConLam2 x₁ x₂ , <>
min-ana (AAConNumlit x) = _ , AAConNumlit x , <>
min-ana (AAFinish x) = _ , AAFinish x , <>
min-ana (AAZipLam x₁ x₂ d) with min-ana d
... | a , b , c = _ , AAZipLam x₁ x₂ b , c
-- these theorems argue that if a derivation is already subsumption
-- minimal than the minimzer does not change the resultant
-- expression--that it's conservative in this sense. they do not argue
-- that the derivation that's computer is itself the same as the input
-- derivation.
mutual
min-fixed-synth : ∀ {Γ e t α e' t'} →
(d : Γ ⊢ e => t ~ α ~> e' => t') →
aasubmin-synth d →
e' == π1 (min-synth d)
min-fixed-synth (SAMove x) min = refl
min-fixed-synth SADel min = refl
min-fixed-synth SAConAsc min = refl
min-fixed-synth (SAConVar p) min = refl
min-fixed-synth (SAConLam x₁) min = refl
min-fixed-synth (SAConApArr x) min = refl
min-fixed-synth (SAConApOtw x) min = refl
min-fixed-synth SAConNumlit min = refl
min-fixed-synth (SAConPlus1 x) min = refl
min-fixed-synth (SAConPlus2 x) min = refl
min-fixed-synth SAConNEHole min = refl
min-fixed-synth (SAFinish x) min = refl
min-fixed-synth (SAZipAsc1 x) min with min-fixed-ana x min
... | qq with min-ana x
... | (e'' , d' , min') = ap1 (λ q → q ·:₁ _) qq
min-fixed-synth (SAZipAsc2 x x₁ x₂ x₃) min = refl
min-fixed-synth (SAZipApArr x x₁ x₂ d x₃) min with min-fixed-synth d min
... | qq with min-synth d
... | (e'' , d' , min') = ap1 (λ q → q ∘₁ _) qq
min-fixed-synth (SAZipApAna x x₁ x₂) min with min-fixed-ana x₂ min
... | qq with min-ana x₂
... | (e'' , _ , _) = ap1 (λ q → _ ∘₂ q) qq
min-fixed-synth (SAZipPlus1 x) min with min-fixed-ana x min
... | qq with min-ana x
... | (e'' , _ , _) = ap1 (λ q → q ·+₁ _) qq
min-fixed-synth (SAZipPlus2 x) min with min-fixed-ana x min
... | qq with min-ana x
... | (e'' , _ , _) = ap1 (λ q → _ ·+₂ q) qq
min-fixed-synth (SAZipHole x x₁ d) min with min-fixed-synth d min
... | qq with min-synth d
... | (e'' , _ , _) = ap1 ⦇⌜_⌟⦈ qq
min-fixed-ana : ∀ {Γ e t α e' } →
(d : Γ ⊢ e ~ α ~> e' ⇐ t) →
aasubmin-ana d →
e' == π1 (min-ana d)
min-fixed-ana (AASubsume x x₁ (SAMove x₂) x₃) min = refl
min-fixed-ana (AASubsume x x₁ SADel x₃) min = refl
min-fixed-ana (AASubsume x x₁ SAConAsc x₃) min = abort min
min-fixed-ana (AASubsume x₁ x₂ (SAConVar p) x₃) min = refl
min-fixed-ana (AASubsume x₁ x₂ (SAConLam x₃) x₄) min = abort min
min-fixed-ana (AASubsume x x₁ (SAConApArr x₂) x₃) min = refl
min-fixed-ana (AASubsume x x₁ (SAConApOtw x₂) x₃) min = refl
min-fixed-ana (AASubsume x x₁ SAConNumlit x₃) min = refl
min-fixed-ana (AASubsume x x₁ (SAConPlus1 x₂) x₃) min = refl
min-fixed-ana (AASubsume x x₁ (SAConPlus2 x₂) x₃) min = refl
min-fixed-ana (AASubsume x x₁ SAConNEHole x₃) min = refl
min-fixed-ana (AASubsume x x₁ (SAFinish x₂) x₃) min = refl
min-fixed-ana (AASubsume x x₁ (SAZipAsc1 x₂) x₃) min with min-fixed-ana x₂ min
... | qq with min-ana x₂
... | (e'' , _ , _) = ap1 (λ q → q ·:₁ _) qq
min-fixed-ana (AASubsume x x₁ (SAZipAsc2 x₂ x₃ x₄ x₅) x₆) min = refl
min-fixed-ana (AASubsume x x₁ (SAZipApArr x₂ x₃ x₄ x₅ x₆) x₇) min with min-fixed-synth x₅ min
... | qq with min-synth x₅
... | (e'' , d' , min') = ap1 (λ q → q ∘₁ _) qq
min-fixed-ana (AASubsume x x₁ (SAZipApAna x₂ x₃ x₄) x₅) min with min-fixed-ana x₄ min
... | qq with min-ana x₄
... | (e'' , _ , _) = ap1 (λ q → _ ∘₂ q) qq
min-fixed-ana (AASubsume x x₁ (SAZipPlus1 x₂) x₃) min with min-fixed-ana x₂ min
... | qq with min-ana x₂
... | (e'' , _ , _) = ap1 (λ q → q ·+₁ _) qq
min-fixed-ana (AASubsume x x₁ (SAZipPlus2 x₂) x₃) min with min-fixed-ana x₂ min
... | qq with min-ana x₂
... | (e'' , _ , _) = ap1 (λ q → _ ·+₂ q) qq
min-fixed-ana (AASubsume x x₁ (SAZipHole x₂ x₃ x₄) x₅) min with min-fixed-synth x₄ min
... | qq with min-synth x₄
... | (e'' , _ , _) = ap1 ⦇⌜_⌟⦈ qq
min-fixed-ana (AAMove x) min = refl
min-fixed-ana AADel min = refl
min-fixed-ana AAConAsc min = refl
min-fixed-ana (AAConVar x₁ p) min = refl
min-fixed-ana (AAConLam1 x₁ x₂) min = refl
min-fixed-ana (AAConLam2 x₁ x₂) min = refl
min-fixed-ana (AAConNumlit x) min = refl
min-fixed-ana (AAFinish x) min = refl
min-fixed-ana (AAZipLam x₁ x₂ d) min with min-fixed-ana d min
... | qq with min-ana d
... | (e'' , _ , _) = ap1 (λ q → ·λ _ q) qq
|
{
"alphanum_fraction": 0.5796562935,
"avg_line_length": 50.3037383178,
"ext": "agda",
"hexsha": "e7b28ff905711006892aacc875767434e75fb1da",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "aasubsume-min.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "aasubsume-min.agda",
"max_line_length": 119,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "aasubsume-min.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 4640,
"size": 10765
}
|
module Basic.Compiler.Test where
open import Basic.AST
open import Basic.Compiler.Code
open import Basic.Compiler.Machine
open import Basic.BigStep
open import Data.Fin
open import Data.Nat
open import Data.Vec
open import Data.Product
open import Data.Bool
open import Data.List
open Basic.BigStep.Fac
{- Just a sandbox for testing the interpreters in Compiler.Machine -}
fac' : Code 3
fac' = 𝓒⟦ fac ⟧ˢ
test = trace fac' [] (1 ∷ 0 ∷ 0 ∷ []) 1000
-- normal form of "test"
-- (PUSH 0 ∷
-- STORE (suc zero) ∷
-- PUSH 1 ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , [] , 1 ∷ 0 ∷ 0 ∷ [])
-- ∷
-- (STORE (suc zero) ∷
-- PUSH 1 ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 0 ∷ [] , 1 ∷ 0 ∷ 0 ∷ [])
-- ∷
-- (PUSH 1 ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , [] , 1 ∷ 0 ∷ 0 ∷ [])
-- ∷
-- (STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 1 ∷ [] , 1 ∷ 0 ∷ 0 ∷ [])
-- ∷
-- (LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (FETCH zero ∷
-- FETCH (suc zero) ∷
-- LT ∷
-- BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (FETCH (suc zero) ∷
-- LT ∷
-- BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , nat 1 ∷ [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (LT ∷
-- BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , nat 0 ∷ nat 1 ∷ [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , bool true ∷ [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 0 ∷ [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 1 ∷ nat 0 ∷ [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 1 ∷ [] , 1 ∷ 0 ∷ 1 ∷ [])
-- ∷
-- (FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 1 ∷ nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ []
-- , [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (FETCH zero ∷
-- FETCH (suc zero) ∷
-- LT ∷
-- BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (FETCH (suc zero) ∷
-- LT ∷
-- BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (LT ∷
-- BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , nat 1 ∷ nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (BRANCH
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷
-- MUL ∷
-- STORE (suc (suc zero)) ∷
-- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ [])
-- (FETCH (suc zero) ∷
-- PUSH 1 ∷
-- ADD ∷
-- STORE (suc zero) ∷
-- FETCH (suc (suc zero)) ∷
-- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ [])
-- ∷ [])
-- (NOOP ∷ [])
-- ∷ []
-- , bool false ∷ [] , 1 ∷ 1 ∷ 1 ∷ [])
-- ∷
-- (NOOP ∷ [] , [] , 1 ∷ 1 ∷ 1 ∷ []) ∷ ([] , [] , 1 ∷ 1 ∷ 1 ∷ []) ∷ []
|
{
"alphanum_fraction": 0.4421984266,
"avg_line_length": 22.9949748744,
"ext": "agda",
"hexsha": "c595a1600fa3affd9c078bb951605eae73d5a95c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Compiler/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Compiler/Test.agda",
"max_line_length": 70,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Compiler/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 4401,
"size": 9152
}
|
module List.Permutation.Base.Preorder (A : Set) where
open import List.Permutation.Base A
open import List.Permutation.Base.Equivalence A
open import Data.List
open import Relation.Binary
open import Relation.Binary.PropositionalEquality hiding ([_])
∼-preorder : Preorder _ _ _
∼-preorder = record {
Carrier = List A;
_≈_ = _≡_;
_∼_ = _∼_;
isPreorder = record {
isEquivalence = Relation.Binary.Setoid.isEquivalence (setoid (List A)) ;
reflexive = reflexive-aux;
trans = trans∼
}
}
where
reflexive-aux : {i j : List A} → i ≡ j → i ∼ j
reflexive-aux {i = i} {j = .i} refl = refl∼
|
{
"alphanum_fraction": 0.4982035928,
"avg_line_length": 34.7916666667,
"ext": "agda",
"hexsha": "aa638665904a0b888a49eae043b55a736a9b437b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/List/Permutation/Base/Preorder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/List/Permutation/Base/Preorder.agda",
"max_line_length": 106,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/List/Permutation/Base/Preorder.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 202,
"size": 835
}
|
-- div shouldn't termination check, but it also shouldn't make the termination
-- checker loop.
module Issue503 where
data Bool : Set where
true : Bool
false : Bool
if_then_else_ : {C : Set} -> Bool -> C -> C -> C
if true then a else b = a
if false then a else b = b
data Nat : Set where
zero : Nat
succ : Nat -> Nat
pred : Nat -> Nat
pred zero = zero
pred (succ n) = n
_+_ : Nat -> Nat -> Nat
zero + b = b
succ a + b = succ (a + b)
_*_ : Nat -> Nat -> Nat
zero * _ = zero
succ a * b = (a * b) + b
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC succ #-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
_-_ : Nat -> Nat -> Nat
a - zero = a
a - succ b = pred (a - b)
_<_ : Nat -> Nat -> Bool
a < zero = false
zero < succ b = true
succ a < succ b = a < b
div : Nat -> Nat -> Nat
div m n = if (m < n) then zero else succ (div (m - n) n)
|
{
"alphanum_fraction": 0.570781427,
"avg_line_length": 19.1956521739,
"ext": "agda",
"hexsha": "59945a9d43a0c12fb38fbbe1f82be6bc31ad1dcf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue503.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue503.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue503.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 294,
"size": 883
}
|
module rewriting where
open import lib
open import cedille-types
open import conversion
open import ctxt
open import general-util
open import is-free
open import lift
open import rename
open import subst
open import syntax-util
private
mk-phi : var → (eq t t' : term) → term
mk-phi x eq t t' =
Phi posinfo-gen
(Rho posinfo-gen RhoPlain NoNums eq
(Guide posinfo-gen x (TpEq posinfo-gen t t' posinfo-gen))
(Beta posinfo-gen (SomeTerm t posinfo-gen) (SomeTerm id-term posinfo-gen)))
t t' posinfo-gen
head-types-match : ctxt → trie term → (complete partial : type) → 𝔹
head-types-match Γ σ (TpApp T _) (TpApp T' _) = conv-type Γ T (substs Γ σ T')
head-types-match Γ σ (TpAppt T _) (TpAppt T' _) = conv-type Γ T (substs Γ σ T')
head-types-match Γ σ T T' = tt
rewrite-t : Set → Set
rewrite-t T = ctxt → (is-plus : 𝔹) → (nums : maybe stringset) →
(eq left : term) → (right : var) → (total-matches : ℕ) →
T {- Returned value -} ×
ℕ {- Number of rewrites actually performed -} ×
ℕ {- Total number of matches, including skipped ones -}
infixl 4 _≫rewrite_
_≫rewrite_ : ∀ {A B : Set} → rewrite-t (A → B) → rewrite-t A → rewrite-t B
(f ≫rewrite a) Γ op on eq t₁ t₂ n with f Γ op on eq t₁ t₂ n
...| f' , n' , sn with a Γ op on eq t₁ t₂ sn
...| b , n'' , sn' = f' b , n' + n'' , sn'
rewriteR : ∀ {A : Set} → A → rewrite-t A
rewriteR a Γ op on eq t₁ t₂ n = a , 0 , n
{-# TERMINATING #-}
rewrite-term : term → rewrite-t term
rewrite-terma : term → rewrite-t term
rewrite-termh : term → rewrite-t term
rewrite-type : type → rewrite-t type
rewrite-typeh : type → rewrite-t type
rewrite-kind : kind → rewrite-t kind
rewrite-tk : tk → rewrite-t tk
rewrite-liftingType : liftingType → rewrite-t liftingType
rewrite-rename-var : ∀ {A} → var → (var → rewrite-t A) → rewrite-t A
rewrite-rename-var x r Γ op on eq t₁ t₂ n =
let x' = rename-var-if Γ (renamectxt-insert empty-renamectxt t₂ t₂) x t₁ in
r x' Γ op on eq t₁ t₂ n
rewrite-abs : ∀ {ed} → var → var → (⟦ ed ⟧ → rewrite-t ⟦ ed ⟧) → ⟦ ed ⟧ → rewrite-t ⟦ ed ⟧
rewrite-abs x x' g a Γ = let Γ = ctxt-var-decl x' Γ in g (rename-var Γ x x' a) Γ
rewrite-term t Γ op on eq t₁ t₂ sn =
case rewrite-terma (erase-term t) Γ op on eq t₁ t₂ sn of λ where
(t' , 0 , sn') → t , 0 , sn'
(t' , n , sn') → mk-phi t₂ eq t t' , n , sn'
rewrite-terma t Γ op on eq t₁ t₂ sn =
case conv-term Γ t₁ t of λ where
tt → case on of λ where
(just ns) → case trie-contains ns (ℕ-to-string (suc sn)) of λ where
tt → Var posinfo-gen t₂ , 1 , suc sn -- ρ nums contains n
ff → t , 0 , suc sn -- ρ nums does not contain n
nothing → Var posinfo-gen t₂ , 1 , suc sn
ff → case op of λ where
tt → case rewrite-termh (hnf Γ unfold-head t tt) Γ op on eq t₁ t₂ sn of λ where
(t' , 0 , sn') → t , 0 , sn' -- if no rewrites were performed, return the pre-hnf t
(t' , n' , sn') → t' , n' , sn'
ff → rewrite-termh t Γ op on eq t₁ t₂ sn
rewrite-termh (App t e t') =
rewriteR App ≫rewrite rewrite-terma t ≫rewrite rewriteR e ≫rewrite rewrite-terma t'
rewrite-termh (Lam pi NotErased pi' y NoClass t) =
rewrite-rename-var y λ y' → rewriteR (Lam pi NotErased pi' y' NoClass) ≫rewrite
rewrite-abs y y' rewrite-terma t
rewrite-termh (Var pi x) = rewriteR (Var pi x)
rewrite-termh = rewriteR
rewrite-type T Γ tt on eq t₁ t₂ sn
with rewrite-typeh (hnf Γ unfold-head-no-lift T tt) Γ tt on eq t₁ t₂ sn
...| T' , 0 , sn' = T , 0 , sn'
...| T' , n , sn' = T' , n , sn'
rewrite-type = rewrite-typeh
rewrite-typeh (Abs pi b pi' x atk T) =
rewrite-rename-var x λ x' →
rewriteR (Abs pi b pi' x') ≫rewrite rewrite-tk atk ≫rewrite
rewrite-abs x x' rewrite-type T
rewrite-typeh (Iota pi pi' x T T') =
rewrite-rename-var x λ x' →
rewriteR (Iota pi pi' x') ≫rewrite rewrite-type T ≫rewrite
rewrite-abs x x' rewrite-type T'
rewrite-typeh (Lft pi pi' x t l) =
rewrite-rename-var x λ x' →
rewriteR (Lft pi pi' x') ≫rewrite
rewrite-abs x x' rewrite-term t ≫rewrite
rewrite-liftingType l
rewrite-typeh (TpApp T T') =
rewriteR TpApp ≫rewrite rewrite-typeh T ≫rewrite rewrite-type T'
rewrite-typeh (TpAppt T t) =
rewriteR TpAppt ≫rewrite rewrite-typeh T ≫rewrite rewrite-term t
rewrite-typeh (TpEq pi t₁ t₂ pi') =
rewriteR (TpEq pi) ≫rewrite rewrite-term t₁ ≫rewrite
rewrite-term t₂ ≫rewrite rewriteR pi'
rewrite-typeh (TpLambda pi pi' x atk T) =
rewrite-rename-var x λ x' →
rewriteR (TpLambda pi pi' x') ≫rewrite rewrite-tk atk ≫rewrite
rewrite-abs x x' rewrite-type T
rewrite-typeh (TpArrow T a T') =
rewriteR TpArrow ≫rewrite rewrite-type T ≫rewrite rewriteR a ≫rewrite rewrite-type T'
rewrite-typeh (TpLet pi (DefTerm pi' x T t) T') Γ =
rewrite-type (subst Γ (Chi posinfo-gen T t) x T') Γ
rewrite-typeh (TpLet pi (DefType pi' x k T) T') Γ =
rewrite-type (subst Γ T x T') Γ
rewrite-typeh (TpParens _ T _) = rewrite-type T
rewrite-typeh (NoSpans T _) = rewrite-type T
rewrite-typeh (TpHole pi) = rewriteR (TpHole pi)
rewrite-typeh (TpVar pi x) = rewriteR (TpVar pi x)
-- If we ever implement kind-level rewriting, we will need to go through
-- all the types of kind pi binding a term or type-to-kind arrow
-- if the right-hand side variable is free in the types of the bound variable,
-- and substitute each occurence of the term variable (eta-expanding if necessary)
-- in the body of the type with itself surrounded by a rewrite back the original
-- expected type (unless we lifted a term, then it gets really tricky because
-- we may not want to rewrite back?).
rewrite-kind = rewriteR
rewrite-liftingType = rewriteR
rewrite-tk (Tkt T) = rewriteR Tkt ≫rewrite rewrite-type T
rewrite-tk (Tkk k) = rewriteR Tkk ≫rewrite rewrite-kind k
post-rewriteh : ctxt → var → term → (ctxt → var → term → tk → tk) → (var → tk → ctxt → ctxt) → type → type × kind
post-rewriteh Γ x eq prtk tk-decl (Abs pi b pi' x' atk T) =
let atk' = prtk Γ x eq atk in
Abs pi b pi' x' atk' (fst (post-rewriteh (tk-decl x' atk' Γ) x eq prtk tk-decl T)) , star
post-rewriteh Γ x eq prtk tk-decl (Iota pi pi' x' T T') =
let T = fst (post-rewriteh Γ x eq prtk tk-decl T) in
Iota pi pi' x' T (fst (post-rewriteh (tk-decl x' (Tkt T) Γ) x eq prtk tk-decl T')) , star
post-rewriteh Γ x eq prtk tk-decl (Lft pi pi' x' t lT) =
Lft pi pi' x' t lT , liftingType-to-kind lT
post-rewriteh Γ x eq prtk tk-decl (TpApp T T') =
flip uncurry (post-rewriteh Γ x eq prtk tk-decl T') λ T' k' →
flip uncurry (post-rewriteh Γ x eq prtk tk-decl T) λ where
T (KndPi pi pi' x' atk k) → TpApp T T' , hnf Γ unfold-head-no-lift (subst Γ T' x' k) tt
T (KndArrow k k'') → TpApp T T' , hnf Γ unfold-head-no-lift k'' tt
T k → TpApp T T' , k
post-rewriteh Γ x eq prtk tk-decl (TpAppt T t) =
let t2 T' = if is-free-in check-erased x T' then Rho posinfo-gen RhoPlain NoNums eq (Guide posinfo-gen x T') t else t in
flip uncurry (post-rewriteh Γ x eq prtk tk-decl T) λ where
T (KndPi pi pi' x' (Tkt T') k) →
let t3 = t2 T' in TpAppt T t3 , hnf Γ unfold-head-no-lift (subst Γ t3 x' k) tt
T (KndTpArrow T' k) → TpAppt T (t2 T') , hnf Γ unfold-head-no-lift k tt
T k → TpAppt T t , k
post-rewriteh Γ x eq prtk tk-decl (TpArrow T a T') = TpArrow (fst (post-rewriteh Γ x eq prtk tk-decl T)) a (fst (post-rewriteh Γ x eq prtk tk-decl T')) , star
post-rewriteh Γ x eq prtk tk-decl (TpLambda pi pi' x' atk T) =
let atk' = prtk Γ x eq atk in
flip uncurry (post-rewriteh (tk-decl x' atk' Γ) x eq prtk tk-decl T) λ T k →
TpLambda pi pi' x' atk' T , KndPi pi pi' x' atk' k
post-rewriteh Γ x eq prtk tk-decl (TpParens pi T pi') = post-rewriteh Γ x eq prtk tk-decl T
post-rewriteh Γ x eq prtk tk-decl (TpVar pi x') with env-lookup Γ x'
...| just (type-decl k , _) = mtpvar x' , hnf Γ unfold-head-no-lift k tt
...| just (type-def nothing _ T k , _) = mtpvar x' , hnf Γ unfold-head-no-lift k tt
...| just (type-def (just ps) _ T k , _) = mtpvar x' , abs-expand-kind ps (hnf Γ unfold-head-no-lift k tt)
...| _ = mtpvar x' , star
post-rewriteh Γ x eq prtk tk-decl T = T , star
{-# TERMINATING #-}
post-rewrite : ctxt → var → (eq t₂ : term) → type → type
post-rewrite Γ x eq t₂ T = subst Γ t₂ x (fst (post-rewriteh Γ x eq prtk tk-decl T)) where
prtk : ctxt → var → term → tk → tk
tk-decl : var → tk → ctxt → ctxt
prtk Γ x t (Tkt T) = Tkt (fst (post-rewriteh Γ x t prtk tk-decl T))
prtk Γ x t (Tkk k) = Tkk (hnf Γ unfold-head-no-lift k tt)
tk-decl x atk (mk-ctxt mod ss is os d) =
mk-ctxt mod ss (trie-insert is x (h atk , "" , "")) os d where
h : tk → ctxt-info
h (Tkt T) = term-decl T
h (Tkk k) = type-decl k
-- Functions for substituting the type T in ρ e @ x . T - t
{-# TERMINATING #-}
rewrite-at : ctxt → var → term → 𝔹 → type → type → type
rewrite-ath : ctxt → var → term → 𝔹 → type → type → type
rewrite-at-tk : ctxt → var → term → 𝔹 → tk → tk → tk
rewrite-at-tk Γ x eq b (Tkt T) (Tkt T') = Tkt (rewrite-at Γ x eq b T T')
rewrite-at-tk Γ x eq b atk atk' = atk
rewrite-at Γ x eq b T T' =
if ~ is-free-in tt x T'
then T
else if b && ~ head-types-match Γ (trie-single x (Hole posinfo-gen)) T T'
then rewrite-ath Γ x eq ff (hnf Γ unfold-head-no-lift T tt) (hnf Γ unfold-head-no-lift T' tt)
else rewrite-ath Γ x eq b T T'
rewrite-ath Γ x eq b (Abs pi1 b1 pi1' x1 atk1 T1) (Abs pi2 b2 pi2' x2 atk2 T2) =
Abs pi1 b1 pi1' x1 (rewrite-at-tk Γ x eq tt atk1 atk2) (rewrite-at (ctxt-var-decl x1 Γ) x eq b T1 (rename-var Γ x2 x1 T2))
rewrite-ath Γ x eq b (Iota pi1 pi1' x1 T1 T1') (Iota pi2 pi2' x2 T2 T2') =
Iota pi1 pi1' x1 (rewrite-at Γ x eq tt T1 T2) (rewrite-at (ctxt-var-decl x1 Γ) x eq b T1' (rename-var Γ x2 x1 T2'))
rewrite-ath Γ x eq b (Lft pi1 pi1' x1 t1 lT1) (Lft pi2 pi2' x2 t2 lT2) =
Lft pi1 pi1' x1 (if is-free-in tt x (mlam x2 t2) then mk-phi x eq t1 t2 else t1) lT1
rewrite-ath Γ x eq b (TpApp T1 T1') (TpApp T2 T2') =
TpApp (rewrite-at Γ x eq b T1 T2) (rewrite-at Γ x eq b T1' T2')
rewrite-ath Γ x eq b (TpAppt T1 t1) (TpAppt T2 t2) =
TpAppt (rewrite-at Γ x eq b T1 T2) (if is-free-in tt x t2 then mk-phi x eq t1 t2 else t1)
rewrite-ath Γ x eq b (TpArrow T1 a1 T1') (TpArrow T2 a2 T2') =
TpArrow (rewrite-at Γ x eq tt T1 T2) a1 (rewrite-at Γ x eq tt T1' T2')
rewrite-ath Γ x eq b (TpEq pi1 t1 t1' pi1') (TpEq pi2 t2 t2' pi2') =
TpEq pi1 t2 t2' pi1'
rewrite-ath Γ x eq b (TpLambda pi1 pi1' x1 atk1 T1) (TpLambda pi2 pi2' x2 atk2 T2) =
TpLambda pi1 pi1' x1 (rewrite-at-tk Γ x eq tt atk1 atk2) (rewrite-at (ctxt-var-decl x1 Γ) x eq b T1 (rename-var Γ x2 x1 T2))
rewrite-ath Γ x eq b (TpLet pi1 (DefTerm pi1' x1 oc1 t1) T1) T2 = rewrite-at Γ x eq b (subst Γ t1 x1 T1) T2
rewrite-ath Γ x eq b T1 (TpLet pi2 (DefTerm pi2' x2 oc2 t2) T2) = rewrite-at Γ x eq b T1 (subst Γ t2 x2 T2)
rewrite-ath Γ x eq b (TpLet pi1 (DefType pi1' x1 k1 T1ₗ) T1) T2 = rewrite-at Γ x eq b (subst Γ T1ₗ x1 T1) T2
rewrite-ath Γ x eq b T1 (TpLet pi2 (DefType pi2' x2 k2 T2ₗ) T2) = rewrite-at Γ x eq b T1 (subst Γ T2ₗ x2 T2)
rewrite-ath Γ x eq b (TpVar pi1 x1) (TpVar pi2 x2) = TpVar pi1 x1
rewrite-ath Γ x eq b (TpHole pi1) (TpHole pi2) = TpHole pi1
rewrite-ath Γ x eq b (TpParens pi1 T1 pi1') T2 = rewrite-at Γ x eq b T1 T2
rewrite-ath Γ x eq b T1 (TpParens pi2 T2 pi2') = rewrite-at Γ x eq b T1 T2
rewrite-ath Γ x eq b (NoSpans T1 pi1) T2 = rewrite-at Γ x eq b T1 T2
rewrite-ath Γ x eq b T1 (NoSpans T2 pi2) = rewrite-at Γ x eq b T1 T2
rewrite-ath Γ x eq tt T1 T2 = rewrite-at Γ x eq ff (hnf Γ unfold-head-no-lift T1 tt) (hnf Γ unfold-head-no-lift T2 tt)
rewrite-ath Γ x eq ff T1 T2 = T1
|
{
"alphanum_fraction": 0.6403380185,
"avg_line_length": 48.7268907563,
"ext": "agda",
"hexsha": "6370269840c0a1376e00d480e32dccc0ff398923",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/rewriting.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/rewriting.agda",
"max_line_length": 158,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/rewriting.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4350,
"size": 11597
}
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Lens.Pair where
open import Prelude
open import Lens.Definition
⦅fst⦆ : Lens (A × B) A
⦅fst⦆ .fst (x , y) = lens-part x (_, y)
⦅fst⦆ .snd .get-set s v i = v
⦅fst⦆ .snd .set-get s i = s
⦅fst⦆ .snd .set-set s v₁ v₂ i = v₂ , s .snd
⦅snd⦆ : Lens (A × B) B
⦅snd⦆ .fst (x , y) = lens-part y (x ,_)
⦅snd⦆ .snd .get-set s v i = v
⦅snd⦆ .snd .set-get s i = s
⦅snd⦆ .snd .set-set s v₁ v₂ i = s .fst , v₂
|
{
"alphanum_fraction": 0.5739130435,
"avg_line_length": 24.2105263158,
"ext": "agda",
"hexsha": "47ab57c37b65d843c1d4db3efd9e500ba5c92dd8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Lens/Pair.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Lens/Pair.agda",
"max_line_length": 54,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Lens/Pair.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 227,
"size": 460
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Rels where
open import Data.Product
open import Function hiding (_⇔_)
open import Level
open import Relation.Binary
open import Relation.Binary.Construct.Composition
open import Relation.Binary.PropositionalEquality
open import Categories.Category.Core
-- the category whose objects are sets and whose morphisms are binary relations.
Rels : ∀ o ℓ → Category (suc o) (suc (o ⊔ ℓ)) (o ⊔ ℓ)
Rels o ℓ = record
{ Obj = Set o
; _⇒_ = λ A B → REL A B (o ⊔ ℓ)
; _≈_ = λ L R → L ⇔ R
; id = λ x y → Lift ℓ (x ≡ y)
; _∘_ = λ L R → R ; L
; assoc = (λ { (b , fxb , c , gbc , hcy) → c , ((b , (fxb , gbc)) , hcy)})
, λ { (c , (b , fxb , gbc) , hcy) → b , fxb , c , gbc , hcy}
; sym-assoc = (λ { (c , (b , fxb , gbc) , hcy) → b , fxb , c , gbc , hcy})
, (λ { (b , fxb , c , gbc , hcy) → c , ((b , (fxb , gbc)) , hcy)})
; identityˡ = (λ { (b , fxb , lift refl) → fxb}) , λ {_} {y} fxy → y , fxy , lift refl
; identityʳ = (λ { (a , lift refl , fxy) → fxy}) , λ {x} {_} fxy → x , lift refl , fxy
; identity² = (λ { (_ , lift p , lift q) → lift (trans p q)}) , λ { (lift refl) → _ , lift refl , lift refl }
; equiv = record
{ refl = id , id
; sym = swap
; trans = λ { (p₁ , p₂) (q₁ , q₂) → (q₁ ∘′ p₁) , p₂ ∘′ q₂}
}
; ∘-resp-≈ = λ f⇔h g⇔i →
(λ { (b , gxb , fky) → b , proj₁ g⇔i gxb , proj₁ f⇔h fky }) ,
λ { (b , ixb , hby) → b , proj₂ g⇔i ixb , proj₂ f⇔h hby }
}
|
{
"alphanum_fraction": 0.5210984595,
"avg_line_length": 40.3513513514,
"ext": "agda",
"hexsha": "667d1f7883820cbd27eeba3359532dcc3b165c6c",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Rels.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Rels.agda",
"max_line_length": 111,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Rels.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 612,
"size": 1493
}
|
open import Data.Nat using (ℕ; zero; suc)
open import Data.Bool using (Bool; true; false)
data even : ℕ → Set
data odd : ℕ → Set
data even where
zero : even zero
suc : ∀ {n : ℕ} → odd n → even (suc n)
data odd where
suc : ∀ {n : ℕ} → even n → odd (suc n)
mutual
data even′ : ℕ → Set where
zero : even′ zero
suc : ∀ {n : ℕ} → odd′ n → even′ (suc n)
data odd′ : ℕ → Set where
suc : ∀ {n : ℕ} → even′ n → odd′ (suc n)
{-
/Users/wadler/sf/src/extra/Mutual.agda:3,6-10
Missing definition for even
-}
|
{
"alphanum_fraction": 0.5823754789,
"avg_line_length": 20.88,
"ext": "agda",
"hexsha": "4c6604d0410449a2b9580418bccc76d69a8d87e5",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/Mutual.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/Mutual.agda",
"max_line_length": 47,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/Mutual.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 194,
"size": 522
}
|
{-# OPTIONS --without-K --exact-split #-}
module 03-natural-numbers where
import 02-pi
open 02-pi public
-- Section 3.1 The formal specification of the type of natural numbers
data ℕ : UU lzero where
zero-ℕ : ℕ
succ-ℕ : ℕ → ℕ
{- We define the numbers one-ℕ to ten-ℕ -}
one-ℕ : ℕ
one-ℕ = succ-ℕ zero-ℕ
two-ℕ : ℕ
two-ℕ = succ-ℕ one-ℕ
three-ℕ : ℕ
three-ℕ = succ-ℕ two-ℕ
four-ℕ : ℕ
four-ℕ = succ-ℕ three-ℕ
five-ℕ : ℕ
five-ℕ = succ-ℕ four-ℕ
six-ℕ : ℕ
six-ℕ = succ-ℕ five-ℕ
seven-ℕ : ℕ
seven-ℕ = succ-ℕ six-ℕ
eight-ℕ : ℕ
eight-ℕ = succ-ℕ seven-ℕ
nine-ℕ : ℕ
nine-ℕ = succ-ℕ eight-ℕ
ten-ℕ : ℕ
ten-ℕ = succ-ℕ nine-ℕ
-- Remark 3.1.2
ind-ℕ : {i : Level} {P : ℕ → UU i} → P zero-ℕ → ((n : ℕ) → P n → P(succ-ℕ n)) → ((n : ℕ) → P n)
ind-ℕ p0 pS zero-ℕ = p0
ind-ℕ p0 pS (succ-ℕ n) = pS n (ind-ℕ p0 pS n)
-- Section 3.2 Addition on the natural numbers
-- Definition 3.2.1
add-ℕ : ℕ → ℕ → ℕ
add-ℕ x zero-ℕ = x
add-ℕ x (succ-ℕ y) = succ-ℕ (add-ℕ x y)
add-ℕ' : ℕ → ℕ → ℕ
add-ℕ' m n = add-ℕ n m
-- Exercises
-- Exercise 3.1
min-ℕ : ℕ → (ℕ → ℕ)
min-ℕ zero-ℕ n = zero-ℕ
min-ℕ (succ-ℕ m) zero-ℕ = zero-ℕ
min-ℕ (succ-ℕ m) (succ-ℕ n) = succ-ℕ (min-ℕ m n)
max-ℕ : ℕ → (ℕ → ℕ)
max-ℕ zero-ℕ n = n
max-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m
max-ℕ (succ-ℕ m) (succ-ℕ n) = succ-ℕ (max-ℕ m n)
-- Exercise 3.2
mul-ℕ : ℕ → (ℕ → ℕ)
mul-ℕ zero-ℕ n = zero-ℕ
mul-ℕ (succ-ℕ m) n = add-ℕ (mul-ℕ m n) n
-- Exercise 3.3
pow-ℕ : ℕ → (ℕ → ℕ)
pow-ℕ m zero-ℕ = one-ℕ
pow-ℕ m (succ-ℕ n) = mul-ℕ m (pow-ℕ m n)
-- Exercise 3.4
factorial : ℕ → ℕ
factorial zero-ℕ = one-ℕ
factorial (succ-ℕ m) = mul-ℕ (succ-ℕ m) (factorial m)
-- Exercise 3.5
_choose_ : ℕ → ℕ → ℕ
zero-ℕ choose zero-ℕ = one-ℕ
zero-ℕ choose succ-ℕ k = zero-ℕ
(succ-ℕ n) choose zero-ℕ = one-ℕ
(succ-ℕ n) choose (succ-ℕ k) = add-ℕ (n choose k) (n choose (succ-ℕ k))
-- Exercise 3.6
Fibonacci : ℕ → ℕ
Fibonacci zero-ℕ = zero-ℕ
Fibonacci (succ-ℕ zero-ℕ) = one-ℕ
Fibonacci (succ-ℕ (succ-ℕ n)) = add-ℕ (Fibonacci n) (Fibonacci (succ-ℕ n))
{- The above definition of the Fibonacci sequence uses Agda's rather strong
pattern matching definitions. Below, we will give a definition of the
Fibonacci sequence in terms of ind-ℕ. In particular, the following is a
solution that can be given in terms of the material in the book.
The problem with defining the Fibonacci sequence using ind-ℕ, is that ind-ℕ
doesn't give us a way to refer to both (F n) and (F (succ-ℕ n)). So, we have
to give a workaround, where we store two values in the Fibonacci sequence
at once.
The basic idea is that we define a sequence of pairs of integers, which will
be consecutive Fibonacci numbers. This would be a function of type
ℕ → ℕ².
Such a function is easy to give with induction, using the map ℕ² → ℕ² that
takes a pair (m,n) to the pair (n,n+m). Starting the iteration with (0,1)
we obtain the Fibonacci sequence by taking the first projection.
However, we haven't defined cartesian products or booleans yet. Therefore
we mimic the above idea, using ℕ → ℕ instead of ℕ². -}
shift-one : ℕ → (ℕ → ℕ) → (ℕ → ℕ)
shift-one n f = ind-ℕ n (λ x y → f x)
shift-two : ℕ → ℕ → (ℕ → ℕ) → (ℕ → ℕ)
shift-two m n f = shift-one m (shift-one n f)
Fibo-zero-ℕ : ℕ → ℕ
Fibo-zero-ℕ = shift-two zero-ℕ one-ℕ (const ℕ ℕ zero-ℕ)
Fibo-succ-ℕ : (ℕ → ℕ) → (ℕ → ℕ)
Fibo-succ-ℕ f =
shift-two (f one-ℕ) (add-ℕ (f one-ℕ) (f zero-ℕ)) (λ x → f (succ-ℕ (succ-ℕ x)))
Fibo-function : ℕ → ℕ → ℕ
Fibo-function =
ind-ℕ
( Fibo-zero-ℕ)
( λ n → Fibo-succ-ℕ)
Fibo : ℕ → ℕ
Fibo k = Fibo-function k zero-ℕ
|
{
"alphanum_fraction": 0.6241554054,
"avg_line_length": 23.0649350649,
"ext": "agda",
"hexsha": "43ad8cd399399439fe0a0465b075ea40fb227a4f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/03-natural-numbers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/03-natural-numbers.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/03-natural-numbers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1543,
"size": 3552
}
|
module Basic.Axiomatic.Total where
open import Data.Bool hiding (not; if_then_else_; _∧_)
open import Data.Vec hiding ([_]; _++_; split)
open import Function
open import Relation.Binary.PropositionalEquality
open import Data.Product renaming (map to prodMap)
open import Data.Nat
open import Relation.Nullary
open import Data.Empty
import Level as L
open import Utils.Decidable
open import Basic.AST
open import Basic.BigStep
{-
Total axiomatic correctness (The first part of chapter 6.4).
For general notes on axiomatic correctness see Partial.agda
The most interesting part is here is the proof of completeness (exercise 6.33).
-}
_∧_ :
∀ {α β γ}{A : Set α}
→ (A → Set β)
→ (A → Set γ)
→ (A → Set _)
_∧_ f g x = f x × g x
_==>_ :
∀ {α β γ}{A : Set α}
→ (A → Set β)
→ (A → Set γ)
→ Set _
_==>_ f g = ∀ {x} → f x → g x
infixr 4 _,_
data 〈_〉_〈_〉 {n} : (State n → Set) → St n → (State n → Set) → Set₁ where
skip :
∀ {P}
→ -----------------
〈 P 〉 skip 〈 P 〉
ass :
∀ {x a P}
→ ----------------------------------------------
〈 (λ s → P (s [ x ]≔ ⟦ a ⟧ᵉ s)) 〉 x := a 〈 P 〉
_,_ :
∀ {P Q R S₁ S₂} →
〈 P 〉 S₁ 〈 Q 〉 → 〈 Q 〉 S₂ 〈 R 〉
→ --------------------------------
〈 P 〉 S₁ , S₂ 〈 R 〉
if :
∀ {P Q b S₁ S₂} →
〈 (T ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₁ 〈 Q 〉 → 〈 (F ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₂ 〈 Q 〉
→ --------------------------------------------------------------
〈 P 〉 if b then S₁ else S₂ 〈 Q 〉
{-
This is the only difference between the partial and total system.
The definition is exactly the same as in the book.
-}
while :
∀ {b S}
→ (P : ℕ → State n → Set)
→ (∀ n → P (suc n) ==> (T ∘ ⟦ b ⟧ᵉ))
→ (P 0 ==> (F ∘ ⟦ b ⟧ᵉ))
→ (∀ n → 〈 P (suc n) 〉 S 〈 P n 〉)
→ ---------------------------------
〈 (λ s → ∃ λ n → P n s) 〉 while b do S 〈 P 0 〉
cons :
∀ {P' Q' P Q S} →
P ==> P' → 〈 P' 〉 S 〈 Q' 〉 → Q' ==> Q
→ -----------------------------------------
〈 P 〉 S 〈 Q 〉
-- Weakest precondition
------------------------------------------------------------
wp : ∀ {n} → St n → (State n → Set) → State n → Set
wp S Q s = ∃ λ s' → ⟨ S , s ⟩⟱ s' × Q s'
-- Soundness
------------------------------------------------------------
{-
This is more complicated than the soundess proof for the partial system,
because we have to construct an actual big-step derivation.
In the "if" case we have to evaluate the branch condition to
see whether we should return an "if-true" or an "if-false" derivation.
In the "while" case we recurse on the natural number "measure" of the loop,
building an appropriately sized derivation for the loop
-}
sound : ∀ {n}{S : St n}{P Q} → 〈 P 〉 S 〈 Q 〉 → (P ==> wp S Q)
sound skip ps = _ , skip , ps
sound ass ps = _ , ass , ps
sound (p , p₁) ps with sound p ps
... | s' , runp , qs' with sound p₁ qs'
... | s'' , runp₁ , qs'' = s'' , (runp , runp₁) , qs''
sound (if {b = b} p p₁) {s} ps with ⟦ b ⟧ᵉ s | inspect ⟦ b ⟧ᵉ s
... | true | [ b≡true ] =
let Tb = ≡true→T b≡true
in prodMap id
(λ x₁ → (if-true Tb (proj₁ x₁)) , (proj₂ x₁))
(sound p {s} (Tb , ps))
... | false | [ b≡false ] =
let Fb = ≡false→F b≡false
in prodMap id
(λ x₁ → (if-false Fb (proj₁ x₁)) , (proj₂ x₁))
(sound p₁ {s} (Fb , ps))
sound (while{b = b}{S = S} P pre post decr) {s} (start , ps) = go s start ps
where
go : ∀ s n → P n s → wp (while b do S) (P 0) s
go s zero ps = s , while-false (post ps) , ps
go s (suc n) ps with sound (decr n) ps
... | s' , runS , ps' with go s' n ps'
... | s'' , runW , ps'' = s'' , while-true (pre n ps) runS runW , ps''
sound (cons x p x₁) ps with sound p (x ps)
... | s' , runp , qs' = s' , runp , x₁ qs'
-- Completeness
------------------------------------------------------------
complete : ∀ {n}(S : St n){P Q} → (P ==> wp S Q) → 〈 P 〉 S 〈 Q 〉
complete (x := exp) {P}{Q} f = cons go ass id
where go : P ==> (λ s → Q (s [ x ]≔ ⟦ exp ⟧ᵉ s))
go {s} ps with f ps
go ps | ._ , ass , qs' = qs'
complete skip {P}{Q} f = cons go skip id
where go : P ==> Q
go {s} ps with f ps
go ps | x , skip , qs' = qs'
complete (S , S₁){P}{Q} f = complete S {P} {wp S₁ Q} go , complete S₁ id
where go : P ==> wp S (wp S₁ Q)
go {s} ps with f ps
go {s} ps | s' , (run , run₂) , qs' = _ , run , s' , run₂ , qs'
complete (if b then S else S₁){P}{Q} f =
if (complete S {(T ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} go1) (complete S₁ {(F ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} go2)
where go1 : ((T ∘ ⟦ b ⟧ᵉ) ∧ P) ==> wp S Q
go1 {s} (pb , ps) with f ps
go1 (pb , ps) | s' , if-true pb' run , qs' = s' , run , qs'
go1 (pb , ps) | s' , if-false pb' run , qs' with trans (sym (F→≡false pb')) (T→≡true pb)
... | ()
go2 : ((F ∘ ⟦ b ⟧ᵉ) ∧ P) ==> wp S₁ Q
go2 {s} (pb , ps) with f ps
go2 (pb , ps) | s' , if-true pb' run , qs' with trans (sym $ F→≡false pb) (T→≡true pb')
... | ()
go2 (pb , ps) | s' , if-false pb' run , qs' = s' , run , qs'
{-
This is the interesting part. I needed to do quite a bit of thinking to get this right.
So, we'd like to construct a proof of total corectness given the validity of a Hoare triple.
We're much less constrained here than in pretty much all of the other proofs, because our objective
is to construct a suitable P *predicate* for the loop body. Recall the axiom for "while"
while :
∀ {b S}
→ (P : ℕ → State n → Set)
→ (∀ n → P (suc n) ==> (T ∘ ⟦ b ⟧ᵉ))
→ (P 0 ==> (F ∘ ⟦ b ⟧ᵉ))
→ (∀ n → 〈 P (suc n) 〉 S 〈 P n 〉)
→ ---------------------------------
〈 (λ s → ∃ λ n → P n s) 〉 while b do S 〈 P 0 〉
-}
complete {n}(while b do S){P}{Q} f = cons pre-loop loop post-loop
where
{-
P must decrease on each iteration, and P 0 must imply that the loop has finished, and
P (suc n) must imply that the loop's still running.
The only sensible choice for the decreasing loop variant is the length of the derivation
of the loop:
-}
loop-size : ∀ {n b s s'}{S : St n} → ⟨ while b do S , s ⟩⟱ s' → ℕ
loop-size (while-true x runS runW) = suc (loop-size runW)
loop-size (while-false x) = zero
{- And now the loop predicate can be defined as: -}
P' : ℕ → State n → Set
P' n s = ∃₂ λ s' (runW : ⟨ while b do S , s ⟩⟱ s') → (loop-size runW ≡ n) × Q s'
{- The construction of the loop body proof is slightly complicated by the fact that if we want
to recurse on the measure "n" argument, then we have to unfold the loop derivation two layers
deep (because the successor case for indction on "n" implies "(suc (suc n))" value for the
derivation length -}
body : ∀ n → 〈 P' (suc n) 〉 S 〈 P' n 〉
body n = complete S (go n)
where
go : ∀ n → P' (suc n) ==> wp S (P' n)
go zero (x , while-false x₁ , () , qs')
go zero (s''' , while-true x₁ runW (while-true x₂ runW₁ runW₂) , () , qs')
go (suc n₂) (x , while-false x₁ , () , qs')
go (suc n₂) (s' , while-true x₁ runW (while-false x₂) , () , qs')
go zero (s' , while-true x₁ runW (while-false x₂) , psize , qs') =
s' , runW , s' , while-false x₂ , refl , qs'
go (suc n) {s1} (slast , while-true pb1 runS1 (while-true pb2 runS2 runW2) , psize1 , qslast)
with go n (slast , while-true pb2 runS2 runW2 , cong pred psize1 , qslast)
... | s2 , runS3 , s3 , runW3 , psize3 , q3 =
_ , runS1 , s3 , (while-true pb2 runS3 runW3) , cong suc psize3 , q3
pre-loop : P ==> (λ s → ∃ λ n → P' n s)
pre-loop {s} ps with f ps
... | s' , runW , qs' = loop-size runW , s' , runW , refl , qs'
post-loop : P' 0 ==> Q
post-loop (s' , while-false pb , psize , qs') = qs'
post-loop (s' , while-true pb x₁ x₂ , () , qs')
loop : 〈 (λ s → ∃ λ n → P' n s) 〉 while b do S 〈 P' 0 〉
loop = while P' pre post body
where
pre : ∀ n → P' (suc n) ==> (T ∘ ⟦ b ⟧ᵉ)
pre n (s' , while-true pb _ _ , _) = pb
pre n (s' , while-false _ , () , qs')
post : P' 0 ==> (F ∘ ⟦ b ⟧ᵉ)
post (s' , while-true pb runS runW , () , qs')
post (s' , while-false pb , refl , qs') = pb
|
{
"alphanum_fraction": 0.4767110266,
"avg_line_length": 33.2648221344,
"ext": "agda",
"hexsha": "1937ed508e03fd865675c6bd3c795b24e3c589e2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Axiomatic/Total.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Axiomatic/Total.agda",
"max_line_length": 101,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Axiomatic/Total.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 3163,
"size": 8416
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Construction.Limit where
open import Function using (_$_)
open import Categories.Adjoint
open import Categories.Adjoint.Equivalence
open import Categories.Adjoint.Properties
open import Categories.Category
open import Categories.Category.Equivalence
open import Categories.Category.Construction.Cones
open import Categories.Category.Complete
open import Categories.Category.Cocomplete
open import Categories.Category.Construction.Functors
open import Categories.Functor
open import Categories.Functor.Construction.Diagonal
open import Categories.Functor.Construction.Constant
open import Categories.NaturalTransformation renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; module ≃)
open import Categories.Diagram.Cone.Properties
open import Categories.Diagram.Duality
import Categories.Diagram.Limit as Lim
import Categories.Diagram.Cone as Con
import Categories.Morphism.Reasoning as MR
module _ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (Com : Complete o′ ℓ′ e′ C) {J : Category o′ ℓ′ e′} where
private
module C = Category C
module J = Category J
open C
open HomReasoning
open Lim.Limit
open Con.Cone⇒ renaming (commute to ⇒-commute)
open MR C
K⇒lim : ∀ {F G : Functor J C} (α : NaturalTransformation F G) (K : Con.Cone F) →
Cones G [ nat-map-Cone α K , limit (Com G) ]
K⇒lim {G = G} α K = rep-cone (Com G) (nat-map-Cone α K)
lim⇒lim : ∀ {F G : Functor J C} (α : NaturalTransformation F G) →
Cones G [ nat-map-Cone α (limit (Com F)) , limit (Com G) ]
lim⇒lim {F} α = K⇒lim α (limit (Com F))
id-Cone : ∀ X → Con.Cone {C = C} {J = J} (const X)
id-Cone X = record
{ apex = record
{ ψ = λ _ → C.id
; commute = λ _ → C.identity²
}
}
X⇒limΔ : ∀ X → Cones (const {C = J} X) [ id-Cone X , limit (Com (const X)) ]
X⇒limΔ X = rep-cone (Com (const X)) _
LimitF : Functor (Functors J C) C
LimitF = record
{ F₀ = λ F → apex (Com F)
; F₁ = λ {F G} α → arr (lim⇒lim α)
; identity = λ {F} → terminal.!-unique (Com F) $ record
{ arr = C.id
; commute = id-comm
}
; homomorphism = λ {F G H} {α β} →
let module α = NaturalTransformation α
module β = NaturalTransformation β
in terminal.!-unique₂ (Com H) {_} {terminal.! (Com H)}
{record { commute = λ {j} → begin
proj (Com H) j ∘ arr (lim⇒lim β) ∘ arr (lim⇒lim α) ≈⟨ pullˡ (⇒-commute (lim⇒lim β)) ⟩
(β.η j ∘ proj (Com G) j) ∘ arr (lim⇒lim α) ≈⟨ assoc ⟩
β.η j ∘ proj (Com G) j ∘ arr (lim⇒lim α) ≈⟨ pushʳ (⇒-commute (lim⇒lim α)) ⟩
(β.η j ∘ α.η j) ∘ proj (Com F) j ∎ }}
; F-resp-≈ = λ {F G} {α β} eq → terminal.!-unique (Com G) $ record
{ commute = ⇒-commute (lim⇒lim β) ○ ∘-resp-≈ˡ (⟺ eq)
}
}
Δ⊣LimitF : ΔF J ⊣ LimitF
Δ⊣LimitF = record
{ unit = ntHelper record
{ η = λ X → rep (Com (const X)) (id-Cone X)
; commute = λ {X Y} f → terminal.!-unique₂ (Com (const Y))
{record
{ apex = record
{ ψ = λ _ → f
; commute = λ _ → C.identityˡ
}
}}
{record
{ commute = cancelˡ (⇒-commute (X⇒limΔ Y))
}}
{record
{ commute =
⇒-commute (Cones (const Y) [ lim⇒lim (constNat f)
∘ nat-map-Cone⇒ (constNat f) (terminal.! (Com (const X)) {id-Cone X}) ])
○ identityʳ
}}
}
; counit = ntHelper record
{ η = counit-nat
; commute = λ α → ⇒-commute (lim⇒lim α)
}
; zig = λ {X} → ⇒-commute (X⇒limΔ X)
; zag = λ {F} →
let apF = apex (Com F)
align : Cones F [ limit (Com F) , nat-map-Cone (counit-nat F) (id-Cone apF) ]
align = record
{ arr = C.id
; commute = identityʳ ○ identityʳ
}
limF⇒limF : Cones F [ limit (Com F) , limit (Com F) ]
limF⇒limF = Cones F [ Cones F [ lim⇒lim (counit-nat F)
∘ nat-map-Cone⇒ (counit-nat F) (terminal.! (Com (const apF))) ]
∘ align ]
in terminal.!-unique₂ (Com F)
{limit (Com F)}
{record { commute = ∘-resp-≈ʳ (⟺ identityʳ) ○ ⇒-commute limF⇒limF }}
{record { commute = identityʳ }}
}
where counit-nat : (F : Functor J C) → NaturalTransformation (const (apex (Com F))) F
counit-nat F = ntHelper record
{ η = proj (Com F)
; commute = λ f → identityʳ ○ ⟺ (limit-commute (Com F) f)
}
module _ {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (Coc : Cocomplete o′ ℓ′ e′ C) {J : Category o′ ℓ′ e′} where
private
module C = Category C
module J = Category J
open C
open MR C
Com : Complete o′ ℓ′ e′ C.op
Com F = Colimit⇒coLimit C (Coc (Functor.op F))
LF : Functor (Functors J.op op) C.op
LF = LimitF C.op Com {J.op}
ColimitF : Functor (Functors J C) C
ColimitF = Functor.op LF ∘F opF⇐
ColimitF⊣Δ : ColimitF ⊣ ΔF J
ColimitF⊣Δ = ⊣×≃⇒⊣ helper ≃.refl ΔF≃
where Δ⊣LimitFᵒᵖ : ΔF J.op ⊣ LF
Δ⊣LimitFᵒᵖ = Δ⊣LimitF op Com {J.op}
opF⊣ : opF⇐ {A = J} {C} ⊣ opF⇒
opF⊣ = StrongEquivalence.F⊣G.R⊣L Functorsᵒᵖ-equiv
helper : ColimitF ⊣ opF⇒ ∘F Functor.op (ΔF J.op)
helper = opF⊣ ∘⊣ Adjoint.op Δ⊣LimitFᵒᵖ
ΔF≃ : opF⇒ ∘F Functor.op (ΔF J.op) ≃ ΔF J
ΔF≃ = record
{ F⇒G = record
{ η = λ _ → idN
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; F⇐G = record
{ η = λ _ → idN
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; iso = λ X → record
{ isoˡ = identity²
; isoʳ = identity²
}
}
|
{
"alphanum_fraction": 0.5259878669,
"avg_line_length": 36.5209580838,
"ext": "agda",
"hexsha": "6c696a299afae7cbd73504d83824367700204c4f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Functor/Construction/Limit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Functor/Construction/Limit.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Functor/Construction/Limit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2123,
"size": 6099
}
|
------------------------------------------------------------------------
-- Strong bisimilarity for partially defined values, along with a
-- proof showing that this relation is pointwise isomorphic to path
-- equality
------------------------------------------------------------------------
{-# OPTIONS --cubical --sized-types #-}
module Delay-monad.Bisimilarity.For-all-sizes where
open import Equality.Path hiding (ext)
open import Prelude
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Delay-monad
private
variable
a : Level
A : Type a
x : A
i : Size
mutual
-- A variant of strong bisimilarity that relates values of any size,
-- not only those of size ∞.
--
-- Note: I have not managed to prove that this relation is pointwise
-- isomorphic to strong bisimilarity as defined in
-- Delay-monad.Bisimilarity (when the relation is restricted to
-- fully defined values).
infix 4 [_]_∼ˢ_ [_]_∼ˢ′_
data [_]_∼ˢ_ {A : Type a} (i : Size) :
Delay A i → Delay A i → Type a where
now : [ i ] now x ∼ˢ now x
later : {x y : Delay′ A i} →
[ i ] x ∼ˢ′ y → [ i ] later x ∼ˢ later y
record [_]_∼ˢ′_ {A : Type a}
(i : Size) (x y : Delay′ A i) : Type a where
coinductive
field
force : {j : Size< i} → [ j ] x .force ∼ˢ y .force
open [_]_∼ˢ′_ public
mutual
-- Strong bisimilarity is reflexive. Note that the proof is
-- size-preserving.
reflexiveˢ : (x : Delay A i) → [ i ] x ∼ˢ x
reflexiveˢ (now x) = now
reflexiveˢ (later x) = later (reflexiveˢ′ x)
reflexiveˢ′ : (x : Delay′ A i) → [ i ] x ∼ˢ′ x
reflexiveˢ′ x .force = reflexiveˢ (x .force)
mutual
-- Extensionality: Strong bisimilarity implies equality.
ext : {x y : Delay A i} →
[ i ] x ∼ˢ y → x ≡ y
ext now = refl
ext (later p) = cong later (ext′ p)
ext′ : {x y : Delay′ A i} →
[ i ] x ∼ˢ′ y → x ≡ y
ext′ p i .force = ext (p .force) i
mutual
-- The extensionality proof maps reflexivity to reflexivity.
ext-reflexiveˢ :
(x : Delay A i) →
ext (reflexiveˢ x) ≡ refl {x = x}
ext-reflexiveˢ (now x) = refl
ext-reflexiveˢ {i = i} (later x) =
ext (reflexiveˢ (later x)) ≡⟨⟩
cong later (ext′ (reflexiveˢ′ x)) ≡⟨ cong (cong later) (ext′-reflexiveˢ′ x) ⟩
cong later refl ≡⟨⟩
refl ∎
ext′-reflexiveˢ′ :
(x : Delay′ A i) →
ext′ (reflexiveˢ′ x) ≡ refl {x = x}
ext′-reflexiveˢ′ x i j .force = ext-reflexiveˢ (x .force) i j
-- Equality implies strong bisimilarity.
≡⇒∼ : {x y : Delay A i} → x ≡ y → [ i ] x ∼ˢ y
≡⇒∼ {x = x} eq = subst ([ _ ] x ∼ˢ_) eq (reflexiveˢ x)
≡⇒∼′ : {x y : Delay′ A i} → x ≡ y → [ i ] x ∼ˢ′ y
≡⇒∼′ eq .force = ≡⇒∼ (cong (λ x → x .force) eq)
private
≡⇒∼″ : {x y : Delay′ A i} → x ≡ y → [ i ] x ∼ˢ′ y
≡⇒∼″ {x = x} eq = subst ([ _ ] x ∼ˢ′_) eq (reflexiveˢ′ x)
-- The three lemmas above map reflexivity to reflexivity.
≡⇒∼-refl :
{x : Delay A i} →
≡⇒∼ (refl {x = x}) ≡ reflexiveˢ x
≡⇒∼-refl {x = x} =
≡⇒∼ refl ≡⟨⟩
subst ([ _ ] x ∼ˢ_) refl (reflexiveˢ x) ≡⟨ subst-refl ([ _ ] x ∼ˢ_) (reflexiveˢ x) ⟩∎
reflexiveˢ x ∎
≡⇒∼′-refl :
{x : Delay′ A i} →
≡⇒∼′ (refl {x = x}) ≡ reflexiveˢ′ x
≡⇒∼′-refl i .force = ≡⇒∼-refl i
private
≡⇒∼″-refl :
{x : Delay′ A i} →
≡⇒∼″ (refl {x = x}) ≡ reflexiveˢ′ x
≡⇒∼″-refl {x = x} =
≡⇒∼″ refl ≡⟨⟩
subst ([ _ ] x ∼ˢ′_) refl (reflexiveˢ′ x) ≡⟨ subst-refl ([ _ ] x ∼ˢ′_) (reflexiveˢ′ x) ⟩∎
reflexiveˢ′ x ∎
-- ≡⇒∼′ and ≡⇒″ are pointwise equal.
≡⇒∼′≡≡⇒∼″ :
{x y : Delay′ A i} {eq : x ≡ y} →
≡⇒∼′ eq ≡ ≡⇒∼″ eq
≡⇒∼′≡≡⇒∼″ = elim
(λ eq → ≡⇒∼′ eq ≡ ≡⇒∼″ eq)
(λ x →
≡⇒∼′ refl ≡⟨ ≡⇒∼′-refl ⟩
reflexiveˢ′ x ≡⟨ sym ≡⇒∼″-refl ⟩∎
≡⇒∼″ refl ∎)
_
private
-- Extensionality and ≡⇒∼/≡⇒∼′ are inverses.
ext∘≡⇒∼ :
{x y : Delay A i}
(eq : x ≡ y) → ext (≡⇒∼ eq) ≡ eq
ext∘≡⇒∼ = elim
(λ eq → ext (≡⇒∼ eq) ≡ eq)
(λ x → ext (≡⇒∼ refl) ≡⟨ cong ext ≡⇒∼-refl ⟩
ext (reflexiveˢ x) ≡⟨ ext-reflexiveˢ x ⟩∎
refl ∎)
ext′∘≡⇒∼′ :
{x y : Delay′ A i}
(eq : x ≡ y) → ext′ (≡⇒∼′ eq) ≡ eq
ext′∘≡⇒∼′ = elim
(λ eq → ext′ (≡⇒∼′ eq) ≡ eq)
(λ x → ext′ (≡⇒∼′ refl) ≡⟨ cong ext′ ≡⇒∼′-refl ⟩
ext′ (reflexiveˢ′ x) ≡⟨ ext′-reflexiveˢ′ x ⟩∎
refl ∎)
mutual
≡⇒∼∘ext :
{x y : Delay A i}
(eq : [ i ] x ∼ˢ y) →
≡⇒∼ (ext eq) ≡ eq
≡⇒∼∘ext now =
≡⇒∼ (ext now) ≡⟨⟩
≡⇒∼ refl ≡⟨ ≡⇒∼-refl ⟩∎
now ∎
≡⇒∼∘ext (later {x = x} {y = y} p) =
≡⇒∼ (ext (later p)) ≡⟨⟩
≡⇒∼ (cong later (ext′ p)) ≡⟨⟩
subst ([ _ ] later x ∼ˢ_) (cong later (ext′ p))
(later (reflexiveˢ′ x)) ≡⟨ sym $ subst-∘ ([ _ ] later x ∼ˢ_) later _ {p = later (reflexiveˢ′ x)} ⟩
subst (λ y → [ _ ] later x ∼ˢ later y) (ext′ p)
(later (reflexiveˢ′ x)) ≡⟨ elim¹
(λ eq → subst (λ y → [ _ ] later x ∼ˢ later y) eq (later (reflexiveˢ′ x)) ≡
later (subst ([ _ ] x ∼ˢ′_) eq (reflexiveˢ′ x))) (
subst (λ y → [ _ ] later x ∼ˢ later y) refl
(later (reflexiveˢ′ x)) ≡⟨ subst-refl (λ y → [ _ ] later x ∼ˢ later y) _ ⟩
later (reflexiveˢ′ x) ≡⟨ cong later $ sym $ subst-refl ([ _ ] x ∼ˢ′_) _ ⟩∎
later (subst ([ _ ] x ∼ˢ′_) refl (reflexiveˢ′ x)) ∎)
(ext′ p) ⟩
later (subst ([ _ ] x ∼ˢ′_) (ext′ p) (reflexiveˢ′ x)) ≡⟨⟩
later (≡⇒∼″ (ext′ p)) ≡⟨ cong later $ sym ≡⇒∼′≡≡⇒∼″ ⟩
later (≡⇒∼′ (ext′ p)) ≡⟨ cong later (≡⇒∼′∘ext′ p) ⟩∎
later p ∎
≡⇒∼′∘ext′ :
{x y : Delay′ A i}
(eq : [ i ] x ∼ˢ′ y) →
≡⇒∼′ (ext′ eq) ≡ eq
≡⇒∼′∘ext′ eq i .force = ≡⇒∼∘ext (eq .force) i
-- Strong bisimilarity and equality are pointwise isomorphic.
∼↔≡ : {x y : Delay A i} → [ i ] x ∼ˢ y ↔ x ≡ y
∼↔≡ = record
{ surjection = record
{ logical-equivalence = record
{ to = ext
; from = ≡⇒∼
}
; right-inverse-of = ext∘≡⇒∼
}
; left-inverse-of = ≡⇒∼∘ext
}
∼′↔≡ : {x y : Delay′ A i} → [ i ] x ∼ˢ′ y ↔ x ≡ y
∼′↔≡ = record
{ surjection = record
{ logical-equivalence = record
{ to = ext′
; from = ≡⇒∼′
}
; right-inverse-of = ext′∘≡⇒∼′
}
; left-inverse-of = ≡⇒∼′∘ext′
}
|
{
"alphanum_fraction": 0.4276306371,
"avg_line_length": 29.4725738397,
"ext": "agda",
"hexsha": "994d4ba1f3799d16e280b203e2481e725304ba69",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Bisimilarity/For-all-sizes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Bisimilarity/For-all-sizes.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Bisimilarity/For-all-sizes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3001,
"size": 6985
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.FunctionOver
open import groups.ProductRepr
open import cohomology.Theory
open import cohomology.WedgeCofiber
{- For the cohomology group of a suspension ΣX, the group inverse has the
- explicit form Cⁿ(flip-susp) : Cⁿ(ΣX) → Cⁿ(ΣX).
-}
module cohomology.InverseInSusp {i} (CT : CohomologyTheory i)
(n : ℤ) {X : Ptd i} where
open CohomologyTheory CT
open import cohomology.Functor CT
open import cohomology.BaseIndependence CT
open import cohomology.Wedge CT
private
module CW = CWedge n (⊙Susp X) (⊙Susp X)
module Subtract = SuspRec {C = fst (⊙Susp X ⊙∨ ⊙Susp X)}
(winl south)
(winr south)
(λ x → ap winl (! (merid x)) ∙ wglue ∙ ap winr (merid x))
subtract = Subtract.f
⊙subtract : ⊙Susp X ⊙→ ⊙Susp X ⊙∨ ⊙Susp X
⊙subtract = (subtract , ! (ap winl (merid (pt X))))
projl-subtract : ∀ σ → projl _ _ (subtract σ) == Susp-flip σ
projl-subtract = Susp-elim idp idp $
↓-='-from-square ∘ vert-degen-square ∘ λ x →
ap-∘ (projl _ _) subtract (merid x)
∙ ap (ap (projl _ _)) (Subtract.merid-β x)
∙ ap-∙ (projl _ _) (ap winl (! (merid x))) (wglue ∙ ap winr (merid x))
∙ ((∘-ap (projl _ _) winl (! (merid x))
∙ ap-idf _)
∙2 (ap-∙ (projl _ _) wglue (ap winr (merid x))
∙ (Projl.glue-β _ _
∙2 (∘-ap (projl _ _) winr (merid x) ∙ ap-cst _ _))))
∙ ∙-unit-r _
∙ ! (FlipSusp.merid-β x)
projr-subtract : ∀ σ → projr _ _ (subtract σ) == σ
projr-subtract = Susp-elim idp idp $
↓-∘=idf-in' (projr _ _) subtract ∘ λ x →
ap (ap (projr _ _)) (Subtract.merid-β x)
∙ ap-∙ (projr _ _) (ap winl (! (merid x))) (wglue ∙ ap winr (merid x))
∙ ((∘-ap (projr _ _) winl (! (merid x)) ∙ ap-cst _ _)
∙2 (ap-∙ (projr _ _) wglue (ap winr (merid x))
∙ (Projr.glue-β _ _
∙2 (∘-ap (projr _ _) winr (merid x) ∙ ap-idf _))))
fold-subtract : ∀ σ → fold (subtract σ) == south
fold-subtract = Susp-elim idp idp $
↓-app=cst-in ∘ ! ∘ λ x →
∙-unit-r _
∙ ap-∘ fold subtract (merid x)
∙ ap (ap fold) (Subtract.merid-β x)
∙ ap-∙ fold (ap winl (! (merid x))) (wglue ∙ ap winr (merid x))
∙ ((∘-ap fold winl (! (merid x)) ∙ ap-idf _)
∙2 (ap-∙ fold wglue (ap winr (merid x))
∙ (Fold.glue-β
∙2 (∘-ap fold winr (merid x) ∙ ap-idf _))))
∙ !-inv-l (merid x)
cancel :
×ᴳ-fanin (C-is-abelian n _) (CF-hom n (⊙Susp-flip X)) (idhom _) ∘ᴳ ×ᴳ-diag
== cst-hom
cancel =
ap2 (λ φ ψ → ×ᴳ-fanin (C-is-abelian n _) φ ψ ∘ᴳ ×ᴳ-diag)
(! (CF-λ= n projl-subtract))
(! (CF-ident n) ∙ ! (CF-λ= n projr-subtract))
∙ transport (λ {(G , φ , ψ) → φ ∘ᴳ ψ == cst-hom})
(pair= (CW.path) $ ↓-×-in
(CW.Wedge-in-over ⊙subtract)
(CW.⊙Wedge-rec-over (⊙idf _) (⊙idf _)
▹ ap2 ×ᴳ-fanout (CF-ident n) (CF-ident n)))
(! (CF-comp n ⊙fold ⊙subtract)
∙ CF-λ= n (λ σ → fold-subtract σ ∙ ! (merid (pt X)))
∙ CF-cst n)
C-Susp-flip-is-inv :
CF-hom n (⊙Susp-flip X) == inv-hom (C n (⊙Susp X)) (C-is-abelian _ _)
C-Susp-flip-is-inv = group-hom= $ λ= λ g →
! (Group.inv-unique-l (C n (⊙Susp X)) _ g (app= (ap GroupHom.f cancel) g))
|
{
"alphanum_fraction": 0.543544458,
"avg_line_length": 36.0879120879,
"ext": "agda",
"hexsha": "9a9310aaa4506c8ae582f774e283ba60579865d1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/stash/cohomology/InverseInSusp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/stash/cohomology/InverseInSusp.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/stash/cohomology/InverseInSusp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1350,
"size": 3284
}
|
{-# OPTIONS --safe --warning=error #-}
open import Setoids.Setoids
open import Groups.SymmetricGroups.Definition
open import Groups.FreeGroup.Definition
open import Decidable.Sets
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import LogicalFormulae
open import Boolean.Definition
module Groups.FreeGroup.Word {a : _} {A : Set a} (decA : DecidableSet A) where
data ReducedWord : Set a
wordLength : ReducedWord → ℕ
firstLetter : (w : ReducedWord) → .(0 <N wordLength w) → FreeCompletion A
data PrependIsValid (w : ReducedWord) (l : FreeCompletion A) : Set a where
wordEmpty : wordLength w ≡ 0 → PrependIsValid w l
wordEnding : .(pr : 0 <N wordLength w) → .(freeCompletionEqual decA l (freeInverse (firstLetter w pr)) ≡ BoolFalse) → PrependIsValid w l
data ReducedWord where
empty : ReducedWord
prependLetter : (letter : FreeCompletion A) → (w : ReducedWord) → PrependIsValid w letter → ReducedWord
firstLetter empty ()
firstLetter (prependLetter letter w x) pr = letter
wordLength empty = 0
wordLength (prependLetter letter w pr) = succ (wordLength w)
prependLetterRefl : {x : FreeCompletion A} {w : ReducedWord} → {pr1 pr2 : PrependIsValid w x} → prependLetter x w pr1 ≡ prependLetter x w pr2
prependLetterRefl {x} {empty} {wordEmpty refl} {wordEmpty refl} = refl
prependLetterRefl {x} {empty} {wordEmpty refl} {wordEnding () x₂}
prependLetterRefl {x} {empty} {wordEnding () x₁} {pr2}
prependLetterRefl {x} {prependLetter letter w x₁} {wordEmpty ()} {pr2}
prependLetterRefl {x} {prependLetter letter w x₁} {wordEnding pr x₂} {wordEmpty ()}
prependLetterRefl {x} {prependLetter letter w x₁} {wordEnding pr2 r2} {wordEnding pr1 r1} = refl
prependLetterInjective : {x : FreeCompletion A} {w1 w2 : ReducedWord} {pr1 : PrependIsValid w1 x} {pr2 : PrependIsValid w2 x} → prependLetter x w1 pr1 ≡ prependLetter x w2 pr2 → w1 ≡ w2
prependLetterInjective {x = x} {empty} {empty} {pr1} {pr2} pr = refl
prependLetterInjective {x = x} {prependLetter l1 w1 x1} {prependLetter .l1 .w1 .x1} {wordEnding pr₁ x₁} {wordEnding pr₂ x₂} refl = refl
prependLetterInjective' : {x y : FreeCompletion A} {w1 w2 : ReducedWord} {pr1 : PrependIsValid w1 x} {pr2 : PrependIsValid w2 y} → prependLetter x w1 pr1 ≡ prependLetter y w2 pr2 → x ≡ y
prependLetterInjective' refl = refl
badPrepend : {x : A} {w : ReducedWord} {pr : PrependIsValid w (ofInv x)} → (PrependIsValid (prependLetter (ofInv x) w pr) (ofLetter x)) → False
badPrepend (wordEmpty ())
badPrepend {x = x} (wordEnding pr bad) with decidableFreeCompletion decA (ofLetter x) (ofLetter x)
badPrepend {x} (wordEnding pr ()) | inl x₁
badPrepend {x} (wordEnding pr bad) | inr pr2 = pr2 refl
badPrepend' : {x : A} {w : ReducedWord} {pr : PrependIsValid w (ofLetter x)} → (PrependIsValid (prependLetter (ofLetter x) w pr) (ofInv x)) → False
badPrepend' (wordEmpty ())
badPrepend' {x = x} (wordEnding pr x₁) with decidableFreeCompletion decA (ofInv x) (ofInv x)
badPrepend' {x} (wordEnding pr ()) | inl x₂
badPrepend' {x} (wordEnding pr x₁) | inr pr2 = pr2 refl
|
{
"alphanum_fraction": 0.7307439105,
"avg_line_length": 52.3793103448,
"ext": "agda",
"hexsha": "1821abad4bd1c8ec808cdd4a58700db91d725f37",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FreeGroup/Word.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FreeGroup/Word.agda",
"max_line_length": 186,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FreeGroup/Word.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 986,
"size": 3038
}
|
{-# OPTIONS --allow-unsolved-metas #-}
{- Diamond operator. -}
module TemporalOps.Diamond where
open import CategoryTheory.Categories
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open import TemporalOps.Common
open import TemporalOps.Next
open import TemporalOps.Delay
open import TemporalOps.Diamond.Functor public
open import TemporalOps.Diamond.Join
open import TemporalOps.Diamond.JoinLemmas
import Relation.Binary.PropositionalEquality as ≡
open import Data.Product
open import Relation.Binary.HeterogeneousEquality as ≅
using (_≅_ ; ≅-to-≡ ; ≡-to-≅ ; cong₂)
open import Data.Nat.Properties
using (+-identityʳ ; +-comm ; +-suc ; +-assoc)
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
M-◇ : Monad ℝeactive
M-◇ = record
{ T = F-◇
; η = η-◇
; μ = μ-◇
; η-unit1 = refl
; η-unit2 = η-unit2-◇
; μ-assoc = λ{A}{n}{k} -> μ-assoc-◇ {A} {n} {k}
}
where
η-◇ : I ⟹ F-◇
η-◇ = record
{ at = λ A n x -> zero , x
; nat-cond = λ {A} {B} {f} {n} {a} → refl }
private module μ = _⟹_ μ-◇
private module η = _⟹_ η-◇
private module F-◇ = Functor F-◇
open ≡.≡-Reasoning
η-unit2-◇ : {A : τ} {n : ℕ} {a : ◇ A at n} → (μ.at A n (F-◇.fmap (η.at A) n a)) ≡ a
η-unit2-◇ {A} {n} {k , v} with inspect (compareLeq k n)
-- n = k + l
η-unit2-◇ {A} {.(k + l)} {k , v} | snd==[ .k + l ] with≡ pf =
begin
μ.at A (k + l) (F-◇.fmap (η.at A) (k + l) (k , v))
≡⟨⟩
μ.at A (k + l) (k , (Functor.fmap (F-delay k) (η.at A) at (k + l)) v)
≡⟨⟩
μ-compare A (k + l) k ((Functor.fmap (F-delay k) (η.at A) at (k + l)) v) (compareLeq k (k + l))
≡⟨ cong (λ x → μ-compare A (k + l) k ((Functor.fmap (F-delay k) (η.at A) at (k + l)) v) x) pf ⟩
μ-compare A (k + l) k ((Functor.fmap (F-delay k) (η.at A) at (k + l)) v) snd==[ k + l ]
≡⟨⟩
μ-shift k l ⌞ (rew (delay-+-left0 k l) ((Functor.fmap (F-delay k) (η.at A) at (k + l)) v)) ⌟
≡⟨ cong!
(delay-+-left0-eq k l ((Functor.fmap (F-delay k) (η.at A) at (k + l)) v)
((Functor.fmap (F-delay (k + 0)) (η.at A) at (k + l)) v′) pr)
⟩
μ-shift k l (rew (delay-+ k 0 l) ((Functor.fmap (F-delay (k + 0)) (η.at A) at (k + l)) v′))
≡⟨ cong (λ x → μ-shift k l x) (fmap-delay-+-n+k k 0 l v′) ⟩
μ-shift k l ((Functor.fmap (F-delay 0) (η.at A) at l) (rew (delay-+ k 0 l) v′))
≡⟨⟩ -- Def. of Functor.fmap (F-delay 0)
μ-shift k l ((η.at A) l (rew (delay-+ k 0 l) v′))
≡⟨⟩ -- Def. of η.at
μ-shift k l (0 , rew (delay-+ k 0 l) v′)
≡⟨⟩
k + 0 , rew (sym (delay-+ k 0 l)) (rew (delay-+ k 0 l) v′)
≡⟨ cong (λ x → k + 0 , x) (rew-cancel v′ (delay-+ k 0 l)) ⟩
k + 0 , rew (delay-+0-left k (k + l)) v
≡⟨ ≅-to-≡ {_} {◇ A at (k + l)}
(cong₂ {A = ℕ} {_} {λ n v → ◇ A at (k + l)}
(λ x y → x , y) (≡-to-≅ (+-identityʳ k)) (≅.sym v≅v′)) ⟩
k , v
∎
where
v′ : delay A by (k + 0) at (k + l)
v′ = rew (delay-+0-left k (k + l)) v
v≅v′ : v ≅ v′
v≅v′ = rew-to-≅ (delay-+0-left k (k + l))
pr : (Functor.fmap (F-delay k) (η.at A) at (k + l)) v
≅ (Functor.fmap (F-delay (k + 0)) (η.at A) at (k + l)) v′
pr = cong₂ (λ x y → (Functor.fmap (F-delay x) (η.at A) at (k + l)) y)
(≡-to-≅ (sym (+-identityʳ k))) v≅v′
v-no-delay : A at l
v-no-delay = rew (delay-+-left0 k l) v
-- k = suc n + l
η-unit2-◇ {A} {n} {.(n + suc l) , v} | fst==suc[ .n + l ] with≡ pf =
begin
μ.at A n (F-◇.fmap (η.at A) n (n + suc l , v))
≡⟨⟩
μ.at A n (n + suc l , (Functor.fmap (F-delay (n + suc l)) (η.at A) at n) v)
≡⟨⟩
μ-compare A n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (η.at A) at n) v) (compareLeq (n + suc l) n)
≡⟨ cong (λ x → μ-compare A n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (η.at A) at n) v) x) pf ⟩
μ-compare A n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (η.at A) at n) v) fst==suc[ n + l ]
≡⟨⟩
n + suc l , rew (delay-⊤ n l) top.tt
≡⟨ cong (λ x → n + suc l , x) (eq n l v) ⟩
n + suc l , v
∎
where
eq : ∀ (n l : ℕ) -> (v : delay A by (n + suc l) at n )
-> rew (delay-⊤ n l) top.tt
≡ v
eq zero l v = refl
eq (suc n) l v = eq n l v
μ-assoc-◇ : {A : τ} {n : ℕ} {a : ◇ ◇ ◇ A at n}
-> (μ.at A n (μ.at (F-◇.omap A) n a))
≡ (μ.at A n (F-◇.fmap (μ.at A) n a))
μ-assoc-◇ {A} {n} {k , v} with inspect (compareLeq k n)
-- n = k + l
μ-assoc-◇ {A} {.(k + l)} {k , v} | snd==[ .k + l ] with≡ pf =
begin
μ.at A (k + l) (μ.at (F-◇.omap A) (k + l) (k , v))
≡⟨⟩
μ.at A (k + l) (μ-compare (F-◇.omap A) (k + l) k v ⌞ compareLeq k (k + l) ⌟)
≡⟨ cong! pf ⟩
μ.at A (k + l) (μ-compare (F-◇.omap A) (k + l) k v (snd==[ k + l ]))
≡⟨⟩
μ.at A (k + l) (μ-shift k l (rew (delay-+-left0 k l) v))
≡⟨ ≅-to-≡ (μ-interchange {A} {l} {k} {rew (delay-+-left0 k l) v}) ⟩
μ-shift k l (μ.at A l ⌞ rew (delay-+-left0 k l) v ⌟)
≡⟨ cong! (v≡v′-rew k l v v′ v≅v′) ⟩
μ-shift k l (μ.at A l (rew (delay-+ k 0 l) v′))
≡⟨⟩ -- Def. of (F-delay 0).fmap
μ-shift k l ((Functor.fmap (F-delay 0) (μ.at A) at l) (rew (delay-+ k 0 l) v′))
≡⟨ cong (λ x → μ-shift k l x) (sym (fmap-delay-+-n+k k 0 l v′)) ⟩
μ-shift k l ⌞ rew (delay-+ k 0 l) ((Functor.fmap (F-delay (k + 0)) (μ.at A) at (k + l)) v′) ⌟
≡⟨ cong!
(sym (delay-+-left0-eq k l ((Functor.fmap (F-delay k) (μ.at A) at (k + l)) v)
((Functor.fmap (F-delay (k + 0)) (μ.at A) at (k + l)) v′) pr))
⟩
μ-shift k l (rew (delay-+-left0 k l) ((Functor.fmap (F-delay k) (μ.at A) at (k + l)) v))
≡⟨⟩
μ-compare A (k + l) k ((Functor.fmap (F-delay k) (μ.at A) at (k + l)) v) (snd==[ k + l ])
≡⟨ cong (λ x → μ-compare A (k + l) k ((Functor.fmap (F-delay k) (μ.at A) at (k + l)) v) x) (sym pf) ⟩
μ-compare A (k + l) k ((Functor.fmap (F-delay k) (μ.at A) at (k + l)) v) (compareLeq k (k + l))
≡⟨⟩
μ.at A (k + l) (k , (Functor.fmap (F-delay k) (μ.at A) at (k + l)) v)
≡⟨⟩
μ.at A (k + l) (F-◇.fmap (μ.at A) (k + l) (k , ?))
∎
where
v′ : delay (◇ ◇ A) by (k + 0) at (k + l)
v′ = rew (delay-+0-left k (k + l)) v
v≅v′ : v ≅ v′
v≅v′ = rew-to-≅ (delay-+0-left k (k + l))
pr : (Functor.fmap (F-delay k) (μ.at A) at (k + l)) v
≅ (Functor.fmap (F-delay (k + 0)) (μ.at A) at (k + l)) v′
pr = ≅.cong₂ (λ x y → (Functor.fmap (F-delay x) (μ.at A) at (k + l)) y)
(≡-to-≅ (sym (+-identityʳ k))) v≅v′
v≡v′-rew : ∀ {A} (k l : ℕ) -> Proof-≡ (delay-+-left0 {A} k l)
(delay-+ {A} k 0 l)
v≡v′-rew zero l v v′ ≅.refl = refl
v≡v′-rew (suc k) l = v≡v′-rew k l
-- k = suc n + l
μ-assoc-◇ {A} {.n} {.(n + suc l) , v} | fst==suc[ n + l ] with≡ pf =
begin
μ.at A n (μ.at (F-◇.omap A) n (n + suc l , v))
≡⟨⟩
μ.at A n (μ-compare (F-◇.omap A) n (n + suc l) v ⌞ compareLeq (n + suc l) n ⌟)
≡⟨ cong! pf ⟩
μ.at A n (μ-compare (F-◇.omap A) n (n + suc l) v (fst==suc[ n + l ]))
≡⟨⟩
μ.at A n (n + suc l , rew (delay-⊤ n l) top.tt)
≡⟨⟩
μ-compare A n (n + suc l) (rew (delay-⊤ n l) top.tt) ⌞ compareLeq (n + suc l) n ⌟
≡⟨ cong! pf ⟩
μ-compare A n (n + suc l) (rew (delay-⊤ n l) top.tt) (fst==suc[ n + l ])
≡⟨⟩
n + suc l , rew (delay-⊤ n l) top.tt
≡⟨⟩
μ-compare A n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (μ.at A) at n) v) (fst==suc[ n + l ])
≡⟨ cong (λ x -> μ-compare A n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (μ.at A) at n) v) x) (sym pf) ⟩
μ-compare A n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (μ.at A) at n) v) (compareLeq (n + suc l) n)
≡⟨⟩
μ.at A n (n + suc l , (Functor.fmap (F-delay (n + suc l)) (μ.at A) at n) v)
≡⟨⟩
μ.at A n (F-◇.fmap (μ.at A) n (n + suc l , v))
∎
|
{
"alphanum_fraction": 0.4302218115,
"avg_line_length": 45.7989417989,
"ext": "agda",
"hexsha": "171de18e7f59caf15f4be05fe9da83ec2acb782a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/Diamond.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/Diamond.agda",
"max_line_length": 119,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/Diamond.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 3714,
"size": 8656
}
|
module Ex1Sol where
----------------------------------------------------------------------------
-- EXERCISE 1 -- NUMBERS, LISTS, VECTORS (a driving lesson)
--
-- VALUE: 15%
-- DEADLINE: 5pm, Friday 2 October (week 2)
--
-- DON'T SUBMIT, COMMIT! Create your own private version of the CS410 repo,
-- hosted somewhere like BitBucket, and invite users "pigworker" and
-- "jmchapman" to collaborate with you on the project. The last version of
-- your repo committed before the deadline is the "official" version, for
-- marking purposes, but we're unlikely to penalise submission over the
-- weekend. You can trust us not to look until Monday!
--
-- The purpose of this exercise is to get you used to using Agda and its
-- emacs interface.
----------------------------------------------------------------------------
open import CS410-Prelude
-- HINT: your tasks are heralded with the eminently searchable tag, "???"
-- TIP: when you load this file, you should see 11 open goals, which is
-- too many to think about at once; use comments {- .. -} to switch off the
-- parts of the file you haven't reached yet.
----------------------------------------------------------------------------
-- "Nat" -- the type of unary natural numbers
----------------------------------------------------------------------------
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-} -- means we can write 2 for suc (suc zero)
-- TERMINOLOGY Set and "type". By "type", I mean anything you can put to
-- the right of : to classify the thing to the left of :, so "Set" is a
-- type, as in Nat : Set, and Nat is a type, as in zero : Nat. Being a
-- Set is *one* way of being a type, but it is not the only way. In
-- particular, try uncommenting this (and then change your mind).
{-+}
mySet : Set
mySet = Set
{+-}
-- SPOT THE DIFFERENCE: in Haskell, we'd write
--
-- data Nat = Zero | Suc Nat
--
-- saying what the type is called and what is in it, and then we'd find
-- that Zero :: Nat and Suc :: Nat -> Nat. Also, constructors live in a
-- separate namespace, with capital initial letters.
--
-- In Agda, we say what type each thing belongs to. Everything lives in
-- the same namespace. Capitalisation is only a social convention. I tend
-- to use capitals for typey things and lower case for valuey things.
-- And we use just the one colon for typing, not two, because types are
-- more important than lists.
----------------------------------------------------------------------------
-- ??? 1.1 addition (score: ? / 1)
--
-- There are lots of ways to add two numbers together. Do you inspect the
-- first? Do you inspect the second? Make sure you get the correct numerical
-- answer, whatever you do. You may need to revisit this problem later, when
-- the way addition works has a significant impact on types.
----------------------------------------------------------------------------
_+N_ : Nat -> Nat -> Nat
zero +N n = n
suc m +N n = suc (m +N n)
infixr 3 _+N_
-- NOTATION: a name _+N_ with underscores in it serves double duty.
-- (1) it is a perfectly sensible PREFIX operator, so _+N_ 2 2 makes sense
-- (2) it describes the INFIX usage of the operator, with the underscores
-- showing where the arguments go, with EXTRA SPACING, so the infix
-- version of _+N_ 2 2 is 2 +N 2.
-- When you think you're done, uncomment these unit tests, e.g., by turning
-- {-+} to {-(-} and {+-} to {-)-}. They should typecheck ok.
{-+}
testPlus1 : 2 +N 2 == 4
testPlus1 = refl
testPlus2 : 0 +N 5 == 5
testPlus2 = refl
testPlus3 : 5 +N 0 == 5
testPlus3 = refl
{+-}
----------------------------------------------------------------------------
-- ??? 1.2 multiplication (score: ? / 1)
--
-- There's also a lot of choice in how to multiply, but they all rely on
-- repeated addition. Find a way to do it.
----------------------------------------------------------------------------
_*N_ : Nat -> Nat -> Nat
m *N n = {!!}
infixr 4 _*N_
-- unit tests
{-+}
testMult1 : 2 *N 2 == 4
testMult1 = refl
testMult2 : 0 *N 5 == 0
testMult2 = refl
testMult3 : 5 *N 0 == 0
testMult3 = refl
testMult4 : 1 *N 5 == 5
testMult4 = refl
testMult5 : 5 *N 1 == 5
testMult5 = refl
testMult6 : 2 *N 3 == 6
testMult6 = refl
{+-}
----------------------------------------------------------------------------
-- ??? 1.3 subtraction I (score: ? / 1)
--
-- Subtraction is a nuisance. How do you take a big number away from a
-- smaller one? Give the closest answer you can to the correct answer.
----------------------------------------------------------------------------
_-N1_ : Nat -> Nat -> Nat
m -N1 n = {!!}
-- unit tests
{-+}
testSubN1-1 : 4 -N1 2 == 2
testSubN1-1 = refl
testSubN1-2 : 42 -N1 37 == 5
testSubN1-2 = refl
{+-}
----------------------------------------------------------------------------
-- "Maybe" allows for the possibility of errors
----------------------------------------------------------------------------
data Maybe (X : Set) : Set where
yes : X -> Maybe X
no : Maybe X
-- SPOT THE DIFFERENCE: in Haskell, these are "Just" and "Nothing"
-- LATER, we'll revisit Maybe and define it in terms of more basic ideas.
----------------------------------------------------------------------------
-- ??? 1.4 subtraction II (score: ? / 1)
--
-- Implement subtraction with a type acknowledging that failure can happen.
----------------------------------------------------------------------------
_-N2_ : Nat -> Nat -> Maybe Nat
m -N2 n = {!!}
-- unit tests
{-+}
testSubN2-1 : 4 -N2 2 == yes 2
testSubN2-1 = refl
testSubN2-2 : 42 -N2 37 == yes 5
testSubN2-2 = refl
testSubN2-3 : 37 -N2 42 == no
testSubN2-3 = refl
{+-}
----------------------------------------------------------------------------
-- _N>=_ as a relation, not a test
----------------------------------------------------------------------------
_N>=_ : Nat -> Nat -> Set -- not Two (a.k.a. Bool), but Set
-- the set of "ways it can be true"
-- i.e., what counts as EVIDENCE
m N>= zero = One -- anything is at least zero in a boring way
zero N>= suc n = Zero -- no way is zero bigger than a successor
suc m N>= suc n = m N>= n -- the way to compare successors
-- What's funny is that it's just an ordinary program, computing by
-- pattern matching and recursion.
----------------------------------------------------------------------------
-- ??? 1.5 subtraction III (score: ? / 1)
--
-- Implement subtraction with explicit evidence that the inputs are
-- amenable to subtraction.
----------------------------------------------------------------------------
_-N3_-:_ : (m : Nat) -> (n : Nat) -> m N>= n -> Nat
m -N3 n -: p = {!!}
-- DON'T PANIC about the syntax (m : Nat) -> (n : Nat) ->
-- The type of both those arguments is Nat. However, when we write the
-- type this way, we can name those arguments for use further along in
-- the type, i.e. in the third argument. That's an example of a *dependent*
-- type. In fact, the regular syntax Nat -> is short for (_ : Nat) -> where
-- we don't bother naming the thing.
-- NOTICE that we can have fancy multi-place operators.
-- HINT: you will need to learn about the "absurd" pattern, written ().
-- unit tests
{-+}
testSubN3-1 : 4 -N3 2 -: <> == 2
testSubN3-1 = refl
testSubN3-2 : 42 -N3 37 -: <> == 5
testSubN3-2 = refl
{+-}
-- Uncomment this test and try to fill in the missing bits to make it work.
{-+}
testSubN3-3 : 37 -N3 42 -: {!!} == {!!}
testSubN3-3 = refl
{+-}
-- HAHA! YA CANNAE! So comment it out again.
-- EXTRA! You can
-- write (m : Nat) -> (n : Nat) ->
-- as (m : Nat)(n : Nat) -> -- omitting all but the last ->
-- or as (m n : Nat) -> -- two named args sharing a type.
-- NOTICE how the defining equations for _N>=_ play a crucial role in the
-- typechecking of the above.
-- NOTICE that attempts II and III take contrasting approaches to the
-- problem with I. II broadens the output to allow failure. III narrows the
-- input to ensure success.
-- LATER, we'll see how to make the proof-plumbing less explicit
-- SUSPICIOUS: why aren't they asking us to define division?
----------------------------------------------------------------------------
-- List -- the thing that was [ .. ] in Haskell
----------------------------------------------------------------------------
data List (X : Set) : Set where -- X scopes over the whole declaration...
[] : List X -- ...so you can use it here...
_::_ : X -> List X -> List X -- ...and here.
infixr 3 _::_
----------------------------------------------------------------------------
-- ??? 1.6 concatenation (score: ? / 1)
----------------------------------------------------------------------------
_+L_ : {X : Set} -> List X -> List X -> List X
[] +L ys = ys
(x :: xs) +L ys = x :: (xs +L ys)
infixr 3 _+L_
-- DON'T PANIC about the "curly braces" syntax. It's very similar to the
-- (m : Nat) -> syntax we saw, above. It describes an argument by giving
-- its type, Set, and a name X to allow dependency. All the braces do is
-- set the default usage convention that X is by default INVISIBLE. Any
-- time you use the function _+L_, Agda will try to figure out what is
-- the appropriate thing to put for the invisible argument, which is the
-- element type for the lists. She will usually succeed, because the types
-- of the lists you feed in will be a dead giveaway.
-- SPOT THE DIFFERENCE: back when you learned Haskell, you learned about
-- TWO ideas, FUNCTIONS and POLYMORPHISM. Now you can see that there was
-- only ONE IDEA, after all. This sort of collapse will keep happening.
-- The world is simpler, made of a smaller number of better articulated
-- parts.
-- unit test
{-+}
testConcL : (0 :: 1 :: 2 :: []) +L (3 :: 4 :: [])
== 0 :: 1 :: 2 :: 3 :: 4 :: []
testConcL = refl
{+-}
----------------------------------------------------------------------------
-- ??? 1.7 take I (score: ? / 1)
--
-- Given a number, n, and a list, xs, compute the first n elements of xs.
-- Of course, there will be a tiny little problem if the caller asks for
-- more elements than are available, hence the name of the function.
-- You must ensure that the list returned is indeed a prefix of the list
-- supplied, and that it has the requested length if possible, and at most
-- that length if not.
----------------------------------------------------------------------------
mis-take : {X : Set} -> Nat -> List X -> List X
mis-take n xs = {!!}
-- unit test
{-+}
testMisTake : mis-take 3 (0 :: 1 :: 2 :: 3 :: 4 :: [])
== 0 :: 1 :: 2 :: []
testMisTake = refl
{+-}
----------------------------------------------------------------------------
-- ??? 1.8 take II (score: ? / 2)
--
-- Fix mis-take by acknowledging the possibility of error. Ensure that your
-- function returns "yes" with a list of exactly the right length if
-- possible, or says "no". You may need to use the "with" construct to
-- inspect the result of the recursive call.
----------------------------------------------------------------------------
may-take : {X : Set} -> Nat -> List X -> Maybe (List X)
may-take n xs = {!!}
-- unit test
{-+}
testMayTake1 : may-take 3 (0 :: 1 :: 2 :: 3 :: 4 :: [])
== yes (0 :: 1 :: 2 :: [])
testMayTake1 = refl
testMayTake2 : may-take 6 (0 :: 1 :: 2 :: 3 :: 4 :: [])
== no
testMayTake2 = refl
testMayTake3 : may-take 5 (0 :: 1 :: 2 :: 3 :: 4 :: [])
== yes (0 :: 1 :: 2 :: 3 :: 4 :: [])
testMayTake3 = refl
{+-}
----------------------------------------------------------------------------
-- ??? 1.9 length (score: ? / 1)
----------------------------------------------------------------------------
-- Show how to compute the length of a list.
length : {X : Set} -> List X -> Nat
length xs = {!!}
-- unit test
{-+}
testLength : length (0 :: 1 :: 2 :: 3 :: 4 :: []) == 5
testLength = refl
{+-}
----------------------------------------------------------------------------
-- "Vectors" -- Lists indexed by length
----------------------------------------------------------------------------
-- We seem to be troubled by things fouling up when lists have the wrong
-- length. Here's a way to make list-like structures whose types let us
-- keep tabs on length: the "vectors".
data Vec (X : Set) : (n : Nat) -> Set where -- n's not in scope after "where"
[] : Vec X zero -- it's zero here,...
_::_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n) -- ...successor, there
-- DON'T PANIC
-- Vec X is not a Set, but rather an INDEXED FAMILY of sets. For each n in
-- Nat, Vec X n is a Set. The index, n, is the length. The constructors are
-- just like those of List, except that their types also tell the truth
-- about length, via the index.
-- NOTICE that when we write a "cons", x :: xs, the length of the tail, xs,
-- is an invisible argument.
-- DON'T PANIC about the reuse of constructor names. We're usually starting
-- with types and working towards code, so it is almost always clear which
-- type's constructors we mean.
-- SUSPICION: we declared List, then wrote length, then invented Vec.
-- Perhaps there is some way to say "Vec is List indexed by length" and
-- have it invented for us.
----------------------------------------------------------------------------
-- ??? 1.10 concatenation (score: ? / 1)
----------------------------------------------------------------------------
-- When we concatenate vectors, we add their lengths.
_+V_ : {X : Set}{m n : Nat} -> Vec X m -> Vec X n -> Vec X (m +N n)
[] +V ys = ys
(x :: xs) +V ys = x :: (xs +V ys)
infixr 3 _+V_
-- NOTICE that even though m and n are numbers, not types, they can
-- still be invisible.
-- DON'T PANIC if this doesn't work out to be just as easy (or even easier)
-- than for lists. You may need to tinker with your definition of _+N_ to
-- make _+V_ typecheck smoothly. That's because the defining equations for
-- _+N_ are all the typechecker has to go on when seeing that your code
-- here fits together properly.
-- unit test
{-+}
testConcV : (0 :: 1 :: 2 :: []) +V (3 :: 4 :: [])
== 0 :: 1 :: 2 :: 3 :: 4 :: []
testConcV = refl
{+-}
----------------------------------------------------------------------------
-- ??? 1.11 take (score: ? / 2)
----------------------------------------------------------------------------
-- Now we know the lengths, we can give a PRECONDITION for taking.
take : {X : Set}{m : Nat}(n : Nat) -> m N>= n -> Vec X m -> Vec X n
take n p xs = {!!}
-- unit test
{-+}
testTake1 : take 3 <> (0 :: 1 :: 2 :: 3 :: 4 :: [])
== 0 :: 1 :: 2 :: []
testTake1 = refl
testTake3 : take 5 <> (0 :: 1 :: 2 :: 3 :: 4 :: [])
== 0 :: 1 :: 2 :: 3 :: 4 :: []
testTake3 = refl
{+-}
-- check you can't finish this
{-+}
testTake2 : take 6 {!!} (0 :: 1 :: 2 :: 3 :: 4 :: [])
== {!!}
testTake2 = refl
{+-}
----------------------------------------------------------------------------
-- Chopping: one last wild weird new thing
----------------------------------------------------------------------------
-- Here's a thing you'd struggle to do in Haskell. It's really about seeing.
-- A vector of length m +N n is "Choppable" if you can show how it is given
-- by concatenating a vector of length m and a vector of length n.
data Choppable {X : Set}(m n : Nat) : Vec X (m +N n) -> Set where
chopTo : (xs : Vec X m)(ys : Vec X n) -> Choppable m n (xs +V ys)
----------------------------------------------------------------------------
-- ??? 1.12 chop (score: ? / 2)
----------------------------------------------------------------------------
chop : {X : Set}(m n : Nat)(xs : Vec X (m +N n)) -> Choppable m n xs
chop zero n xs = chopTo [] xs
chop (suc m) n (x :: xs) with chop m n xs
chop (suc m) n (x :: .(xs +V ys)) | chopTo xs ys = chopTo (x :: xs) ys
-- DON'T PANIC if you can't pattern match on the vector right away, because
-- the fact is that without looking at WHERE TO CHOP, you don't know if you
-- need to.
-- HINT You can access vectors only from the "left end", which is a big
-- clue about which number you should inspect.
-- HINT Much like in -N2 and may-take, you will probably benefit from using
-- the "with" feature to allow you to match on the outcome of a recursive
-- call.
-- DON'T PANIC if dotty things appear spontaneously in your patterns. That's
-- knowledge for free: the pattern checker is saying "you don't need to ask,
-- because I know that the only thing which goes here is such-and-such".
-- unit test
{-+}
testChop : chop 3 2 (0 :: 1 :: 2 :: 3 :: 4 :: [])
== chopTo (0 :: 1 :: 2 :: []) (3 :: 4 :: [])
testChop = refl
{+-}
-- SUSPICION: unit tests may, in this case, be a little beside the point
-- TERMINOLOGY: we call this method "constructing a view" of vectors. The
-- datatype Choppable explains how we would like to be able to look at
-- vectors. The chop function *proves* that we always can. We get for free
-- that we can look at vectors as being made by [] and _::_, but now we
-- can PROGRAM new ways of looking: vectors as made by _+V_.
-- Welcome to the new programming.
|
{
"alphanum_fraction": 0.5169848319,
"avg_line_length": 34.6087824351,
"ext": "agda",
"hexsha": "0877980b5cfbcc64613b5fb55349d4fb76667262",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Ex1Sol.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Ex1Sol.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Ex1Sol.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4519,
"size": 17339
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Homotopy_Equivalence where
open import Basic_Types
open import Identity
-- ------------------------------------
-- In homotopy type theory, a homotopy is just a point-wise equality (path)
-- between to (dependent) functions f and g
infix 2 _~_
_~_ : ∀ {A : Set} {B : A → Set} → ∀ (f g : ∀ (x : A) → B x) → Set
_~_ {A} f g = ∀ (x : A) → f x ≡ g x
-- operations on homotopies, which give them groupoid-like structures
hp-refl : ∀ {A : Set} {B : A → Set} → ∀ (f : ∀ (a : A) → B a) → f ~ f
hp-refl {A} f = λ (x : A) → refl (f x)
hp-inv : ∀ {A : Set} {B : A → Set} {f g : ∀ (a : A) → B a} → f ~ g → g ~ f
hp-inv {A} H = λ (x : A) → inv (H x)
hp-concat : ∀ {A : Set} {B : A → Set} {f g h : ∀ (a : A) → B a} →
f ~ g → g ~ h → f ~ h
hp-concat {A} H K = λ (x : A) → (H x) ∙ (K x)
-- naturality of homotopies
<<<<<<< HEAD
hpna : ∀ {A B : Set} {x y : A} → ∀ (p : x ≡ y) → ∀ (f g : A → B) → ∀ (H : f ~ g) →
(H x) ∙ (ap g p) ≡ (ap f p) ∙ (H y)
hpna {_} {_} {x} {x} (refl x) f g H = (right_unit (H x)) ∙ (inv (left_unit (H x)))
=======
>>>>>>> a0dc66dca08059f740d9290f3d1cad1bb007d721
infix 3 _·_
_·_ : ∀ {A : Set} {B : A → Set} {f g h : ∀ (a : A) → B a} →
f ~ g → g ~ h → f ~ h
H · K = hp-concat H K
hp-ass : ∀ {A : Set} {B : A → Set} {f g h k : ∀ (a : A) → B a} →
∀ (H : f ~ g) (K : g ~ h) (L : h ~ k) → H · (K · L) ~ (H · K) · L
hp-ass {A} H K L = λ (x : A) → p-ass (H x) (K x) (L x)
hp-left_unit : ∀ {A : Set} {B : A → Set} {f g : ∀ (a : A) → B a} →
∀ (H : f ~ g) → (hp-refl f) · H ~ H
hp-left_unit {A} H = λ (x : A) → left_unit (H x)
hp-right_unit : ∀ {A : Set} {B : A → Set} {f g : ∀ (a : A) → B a} →
∀ (H : f ~ g) → H · (hp-refl g) ~ H
hp-right_unit {A} H = λ (x : A) → right_unit (H x)
-- whiskering operations
whis-r : ∀ {A B C : Set} {f g : A → B} → ∀ (H : f ~ g) → ∀ (h : B → C) →
(comp h f) ~ (comp h g)
<<<<<<< HEAD
whis-r {A} H h = λ (x : A) → ap h (H x)
=======
whis-f {A} h H = λ (x : A) → ap h (H x)
>>>>>>> a0dc66dca08059f740d9290f3d1cad1bb007d721
whis-l : ∀ {A B C : Set} {g h : B → C} → ∀ (H : g ~ h) → ∀ (f : A → B) →
(comp g f) ~ (comp h f)
whis-l {A} H f = λ (x : A) → H (f x)
-- ------------------------------------
-- equivalences
-- first, let's consider quasi-equivalences
qinv : ∀ {A B : Set} → ∀ (f : A → B) → Set
qinv {A} {B} f = Σ g ∶ (B → A) , (((comp f g) ~ id) × ((comp g f) ~ id))
isequiv : ∀ {A B : Set} → ∀ (f : A → B) → Set
isequiv {A} {B} f = (Σ g ∶ (B → A) , ((comp f g) ~ id)) × (Σ h ∶ (B → A) , ((comp h f) ~ id))
isequivid : ∀ {A : Set} → isequiv (id {A})
isequivid {A} = ((id {A} , hp-refl (id {A})) , (id {A} , hp-refl (id {A})))
-- the relation between quasi-inverse and equivalence is as following:
q→e : ∀ {A B : Set} → ∀ (f : A → B) → qinv f → isequiv f
q→e f q = ((π₁ q , π₁ (π₂ q)) , (π₁ q , π₂ (π₂ q)))
e→q : ∀ {A B : Set} → ∀ (f : A → B) → isequiv f → qinv f
e→q {A} {B} f ((g , fgid) , (h , hfid)) = (comp h (comp f g) , (e→q1 , e→q2))
where e→q1 : comp f (comp h (comp f g)) ~ id
e→q1 = (whis-l {B} {A} {B} (whis-r {A} {A} {B} hfid f) g) · fgid
e→q2 : comp (comp h (comp f g)) f ~ id
e→q2 = (whis-l {A} {B} {A} (whis-r {B} {B} {A} fgid h) f) · hfid
-- the above two lemmas shows that quasi-equivalence and equivalence are
-- logically equivalent
-- ------------------------------------
-- type equivalence
infix 3 _≃_
_≃_ : ∀ (A B : Set) → Set
A ≃ B = Σ f ∶ (A → B) , (isequiv f)
-- type equivalence is an equivalence relation on Set
≃-refl : ∀ (A : Set) → A ≃ A
≃-refl A = id {A} , isequivid {A}
-- ------------------------------------
-- The higher groupoid structure of type formers
-- Cartesian product types
p×1 : ∀ {A B : Set} {x y : A × B} → x ≡ y → π₁ x ≡ π₁ y
p×1 {_} {_} {x} {x} (refl x) = refl (π₁ x)
p×2 : ∀ {A B : Set} {x y : A × B} → x ≡ y → π₂ x ≡ π₂ y
p×2 {_} {_} {x} {x} (refl x) = refl (π₂ x)
p≡p× : ∀ {A B : Set} {x y : A × B} → ∀ (p : x ≡ y) → (π₁ x ≡ π₁ y) × (π₂ x ≡ π₂ y)
p≡p× = λ p → (p×1 p , p×2 p)
p×≡p : ∀ {A B : Set} {x1 y1 : A} {x2 y2 : B} →
((x1 ≡ y1) × (x2 ≡ y2)) → (x1 , x2) ≡ (y1 , y2)
p×≡p {_} {_} {x1} {x1} {x2} {x2} (refl x1 , refl x2) = refl (x1 , x2)
|
{
"alphanum_fraction": 0.4376181474,
"avg_line_length": 35.5630252101,
"ext": "agda",
"hexsha": "019d80992f1d7306ede9c703f9aac929257c01ac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andyfreeyy/agda_and_math",
"max_forks_repo_path": "HoTT/Homotopy_Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andyfreeyy/agda_and_math",
"max_issues_repo_path": "HoTT/Homotopy_Equivalence.agda",
"max_line_length": 93,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andyfreeyy/agda_and_math",
"max_stars_repo_path": "HoTT/Homotopy_Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-24T10:56:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T09:01:42.000Z",
"num_tokens": 1917,
"size": 4232
}
|
open import Numeral.Natural
open import Relator.Equals
open import Type.Properties.Decidable
open import Type
module Formalization.ClassicalPredicateLogic.Semantics
{ℓₘ ℓₚ ℓᵥ ℓₒ}
(Prop : ℕ → Type{ℓₚ})
(Var : Type{ℓᵥ}) ⦃ var-eq-dec : Decidable(2)(_≡_ {T = Var}) ⦄
(Obj : ℕ → Type{ℓₒ})
where
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.ListSized
import Data.ListSized.Functions as List
open import Formalization.ClassicalPredicateLogic.Syntax(Prop)(Var)(Obj)
open import Functional using (_∘_ ; _∘₂_)
import Logic.Propositional as Logic
import Logic.Predicate as Logic
open import Sets.PredicateSet using (PredSet)
open Sets.PredicateSet.BoundedQuantifiers
open import Syntax.Function
open import Type.Dependent renaming (intro to _,_)
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
module _ where
private variable P : Type{ℓₚ}
private variable n : ℕ
-- Model.
-- A model decides which propositional constants that are true or false.
record Model : Type{ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ ℓᵥ Lvl.⊔ Lvl.𝐒(ℓₘ)} where
field
Domain : Type{ℓₘ}
function : Obj(n) → List(Domain)(n) → Domain
predicate : Prop(n) → List(Domain)(n) → Bool
private variable 𝔐 : Model
-- Also called: Variable assignment.
VarMapping : Model → Type
VarMapping(𝔐) = Var → Model.Domain(𝔐)
mapSingle : VarMapping(𝔐) → Var → Model.Domain(𝔐) → VarMapping(𝔐)
mapSingle 𝔰 x t y =
if decide(2)(_≡_) ⦃ var-eq-dec ⦄ x y
then t
else 𝔰(y)
private variable 𝔰 : VarMapping(𝔐)
module _ ((𝔐 , 𝔰) : Σ Model VarMapping) where
val : Term → Model.Domain(𝔐)
val₊ : List(Term)(n) → List(Model.Domain(𝔐))(n)
val(var v) = 𝔰(v)
val(func f x) = Model.function 𝔐 f (val₊ x)
val₊ {0} ∅ = ∅
val₊ {𝐒(n)} (t ⊰ ts) = (val t ⊰ val₊ {n} ts)
--val₊ = List.map val
-- Satisfication relation.
-- ((𝔐 , 𝔰) ⊧ φ) means that the formula φ is satisfied in the model 𝔐 with the variable mapping.
-- Or in other words: A formula is true in the model 𝔐.
_⊧_ : (Σ Model VarMapping) → Formula → Type{ℓₘ}
(𝔐 , 𝔰) ⊧ (f $ x) = Lvl.Up(IsTrue(Model.predicate 𝔐 f (val₊(𝔐 , 𝔰) x))) -- A model decides whether a relation is satisfied.
(𝔐 , 𝔰) ⊧ ⊤ = Unit -- All models satisfy top.
(𝔐 , 𝔰) ⊧ ⊥ = Empty -- No model satisfies bottom.
(𝔐 , 𝔰) ⊧ (φ ∧ ψ) = ((𝔐 , 𝔰) ⊧ φ) Logic.∧ ((𝔐 , 𝔰) ⊧ ψ) -- A model satisfies a conjunction when it satisfies both of the propositions.
(𝔐 , 𝔰) ⊧ (φ ∨ ψ) = ((𝔐 , 𝔰) ⊧ φ) Logic.∨ ((𝔐 , 𝔰) ⊧ ψ) -- A model satisfies a disjunction when it satisfies any one of the propositions.
(𝔐 , 𝔰) ⊧ (φ ⟶ ψ) = Logic.¬((𝔐 , 𝔰) ⊧ φ) Logic.∨ ((𝔐 , 𝔰) ⊧ ψ)
(𝔐 , 𝔰) ⊧ (Ɐ(x) φ) = Logic.∀ₗ(t ↦ (𝔐 , mapSingle{𝔐 = 𝔐} 𝔰 x t) ⊧ φ)
(𝔐 , 𝔰) ⊧ (∃(x) φ) = Logic.∃(t ↦ (𝔐 , mapSingle{𝔐 = 𝔐} 𝔰 x t) ⊧ φ)
-- Satisfication of a set of formulas.
-- This means that a model satisfies all formulas at the same time.
_⊧₊_ : (Σ Model VarMapping) → PredSet{ℓ}(Formula) → Type
𝔐 ⊧₊ Γ = ∀ₛ(Γ) (𝔐 ⊧_)
-- Validity of a formula.
-- A formula is valid when it is true independent of any model.
Valid : Formula → Type
Valid(φ) = Logic.∀ₗ(_⊧ φ)
-- Satisfiability of sets of formulas.
-- A set of formulas is valid when there is a model that satisfies all of them at the same time.
Satisfiable : PredSet{ℓ}(Formula) → Type
Satisfiable(Γ) = Logic.∃(_⊧₊ Γ)
-- Unsatisfiability of sets of formulas.
Unsatisfiable : PredSet{ℓ}(Formula) → Type
Unsatisfiable{ℓ} = Logic.¬_ ∘ Satisfiable{ℓ}
-- Semantic entailment of a formula.
-- A hypothetical statement. If a model would satisfy all formulas in Γ, then this same model satisifes the formula φ.
_⊨_ : PredSet{ℓ}(Formula) → Formula → Type
Γ ⊨ φ = ∀{𝔐} → (𝔐 ⊧₊ Γ) → (𝔐 ⊧ φ)
_⊭_ : PredSet{ℓ}(Formula) → Formula → Type
_⊭_ = (Logic.¬_) ∘₂ (_⊨_)
-- Axiomatization of a theory by a set of axioms.
-- A set of axioms is a set of formulas.
-- A theory is the closure of a set of axioms.
-- An axiomatization is a subset of formulas of the theory which entails all formulas in the axiomatized theory.
_axiomatizes_ : PredSet{ℓ₁}(Formula) → PredSet{ℓ₂}(Formula) → Type
Γ₁ axiomatizes Γ₂ = ∀{φ} → (Γ₁ ⊨ φ) → Γ₂(φ)
-- A set of formulas is closed when it includes all formulas that it entails.
Closed : PredSet{ℓ}(Formula) → Type
Closed(Γ) = Γ axiomatizes Γ
_⊨₊_ : PredSet{ℓ₁}(Formula) → PredSet{ℓ₂}(Formula) → Type
Γ₁ ⊨₊ Γ₂ = ∀{𝔐} → (𝔐 ⊧₊ Γ₁) → (𝔐 ⊧₊ Γ₂)
_⊭₊_ : PredSet{ℓ₁}(Formula) → PredSet{ℓ₂}(Formula) → Type
_⊭₊_ = (Logic.¬_) ∘₂ (_⊨₊_)
|
{
"alphanum_fraction": 0.6160525201,
"avg_line_length": 38.3902439024,
"ext": "agda",
"hexsha": "aecc4b75845f993d931fd7110a353b4272e3509c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/ClassicalPredicateLogic/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/ClassicalPredicateLogic/Semantics.agda",
"max_line_length": 157,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/ClassicalPredicateLogic/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1830,
"size": 4722
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some examples of how to use non-trivial induction over the natural
-- numbers.
------------------------------------------------------------------------
module README.Data.Nat.Induction where
open import Data.Nat
open import Data.Nat.Induction
open import Data.Product using (_,_)
open import Function using (_∘_)
open import Induction.WellFounded
open import Relation.Binary.PropositionalEquality
-- Doubles its input.
twice : ℕ → ℕ
twice = rec _ λ
{ zero _ → zero
; (suc n) twice-n → suc (suc twice-n)
}
-- Halves its input (rounding downwards).
--
-- The step function is mentioned in a proof below, so it has been
-- given a name. (The mutual keyword is used to avoid having to give
-- a type signature for the step function.)
mutual
half₁-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) (_ , half₁n , _) → suc half₁n
}
half₁ : ℕ → ℕ
half₁ = cRec _ half₁-step
-- An alternative implementation of half₁.
mutual
half₂-step = λ
{ zero _ → zero
; (suc zero) _ → zero
; (suc (suc n)) rec → suc (rec n (≤′-step ≤′-refl))
}
half₂ : ℕ → ℕ
half₂ = <′-rec _ half₂-step
-- The application half₁ (2 + n) is definitionally equal to
-- 1 + half₁ n. Perhaps it is instructive to see why.
half₁-2+ : ∀ n → half₁ (2 + n) ≡ 1 + half₁ n
half₁-2+ n = begin
half₁ (2 + n) ≡⟨⟩
cRec _ half₁-step (2 + n) ≡⟨⟩
half₁-step (2 + n) (cRecBuilder _ half₁-step (2 + n)) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRecBuilder _ half₁-step (1 + n) in
half₁-step (1 + n) ih , ih) ≡⟨⟩
half₁-step (2 + n)
(let ih = cRecBuilder _ half₁-step n in
half₁-step (1 + n) (half₁-step n ih , ih) , half₁-step n ih , ih) ≡⟨⟩
1 + half₁-step n (cRecBuilder _ half₁-step n) ≡⟨⟩
1 + cRec _ half₁-step n ≡⟨⟩
1 + half₁ n ∎
where open ≡-Reasoning
-- The application half₂ (2 + n) is definitionally equal to
-- 1 + half₂ n. Perhaps it is instructive to see why.
half₂-2+ : ∀ n → half₂ (2 + n) ≡ 1 + half₂ n
half₂-2+ n = begin
half₂ (2 + n) ≡⟨⟩
<′-rec _ half₂-step (2 + n) ≡⟨⟩
half₂-step (2 + n) (<′-recBuilder _ half₂-step (2 + n)) ≡⟨⟩
1 + <′-recBuilder _ half₂-step (2 + n) n (≤′-step ≤′-refl) ≡⟨⟩
1 + Some.wfRecBuilder _ half₂-step (2 + n)
(<′-wellFounded (2 + n)) n (≤′-step ≤′-refl) ≡⟨⟩
1 + Some.wfRecBuilder _ half₂-step (2 + n)
(acc (<′-wellFounded′ (2 + n))) n (≤′-step ≤′-refl) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n
(<′-wellFounded′ (2 + n) n (≤′-step ≤′-refl))) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n
(<′-wellFounded′ (1 + n) n ≤′-refl)) ≡⟨⟩
1 + half₂-step n
(Some.wfRecBuilder _ half₂-step n (<′-wellFounded n)) ≡⟨⟩
1 + half₂-step n (<′-recBuilder _ half₂-step n) ≡⟨⟩
1 + <′-rec _ half₂-step n ≡⟨⟩
1 + half₂ n ∎
where open ≡-Reasoning
-- Some properties that the functions above satisfy, proved using
-- cRec.
half₁-+₁ : ∀ n → half₁ (twice n) ≡ n
half₁-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
half₂-+₁ : ∀ n → half₂ (twice n) ≡ n
half₂-+₁ = cRec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) (_ , half₁twice-n≡n , _) →
cong (suc ∘ suc) half₁twice-n≡n
}
-- Some properties that the functions above satisfy, proved using
-- <′-rec.
half₁-+₂ : ∀ n → half₁ (twice n) ≡ n
half₁-+₂ = <′-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n (≤′-step ≤′-refl))
}
half₂-+₂ : ∀ n → half₂ (twice n) ≡ n
half₂-+₂ = <′-rec _ λ
{ zero _ → refl
; (suc zero) _ → refl
; (suc (suc n)) rec →
cong (suc ∘ suc) (rec n (≤′-step ≤′-refl))
}
|
{
"alphanum_fraction": 0.4656690141,
"avg_line_length": 28.4,
"ext": "agda",
"hexsha": "a338c1c10f4b24bc8172bc255b2e3516738acc4f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Data/Nat/Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Data/Nat/Induction.agda",
"max_line_length": 75,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Data/Nat/Induction.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1557,
"size": 4544
}
|
{-# OPTIONS --without-K #-}
module LeftCancellation where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product using (_,_; _,′_; proj₁; proj₂)
open import Function renaming (_∘_ to _○_)
-- explicit 'using', to show how little of HoTT is needed
open import SimpleHoTT using (refl; ap; _∘_; !; _≡_; _≡⟨_⟩_ ; _∎)
open import Equivalences
open import TypeEquivalences using (swap₊)
open import Inspect
----------------------------------------------------------------------------
-- Very complex proof that we can cancel units on the left of ⊎
-- Some repeated patterns:
-- use injectivity of equivalences to go from f x ≡ f y to x ≡ y
injectivity : {A B : Set} (equiv : (⊤ ⊎ A) ≃ (⊤ ⊎ B)) → (a : A) → equiv ⋆ inj₁ tt ≡ equiv ⋆ inj₂ a → (inj₁ tt ≡ inj₂ a)
injectivity equiv x path = inj≃ equiv (inj₁ tt) (inj₂ x) path
-- Use that disjoint unions are, well, disjoint, to derive a contradiction
bad-path : {A : Set} → (x : A) → inj₁ tt ≡ inj₂ x → ⊥
bad-path x path = proj₁ (thm2-12-5 tt (inj₂ x)) path
left-cancel-⊤ : {A B : Set} → ((⊤ ⊎ A) ≃ (⊤ ⊎ B)) → A ≃ B
left-cancel-⊤ {A} {B} (f₁ , mkisequiv g₁ α₁ h₁ β₁) with f₁ (inj₁ tt) | inspect f₁ (inj₁ tt) | g₁ (inj₁ tt) | inspect g₁ (inj₁ tt)
left-cancel-⊤ {A} {B} (f₁ , mkisequiv g₁ α₁ h₁ β₁) | inj₁ tt | ⟪ eq₁ ⟫ | inj₁ tt | ⟪ eq₂ ⟫ = f , equiv₁ (mkqinv g α β)
where equiv = (f₁ , mkisequiv g₁ α₁ h₁ β₁)
f : A → B
f a with f₁ (inj₂ a) | inspect f₁ (inj₂ a)
f a | inj₂ b | _ = b
f a | inj₁ tt | ⟪ eq ⟫ with bad-path a inject
where inject = injectivity equiv a (eq₁ ∘ ! eq)
f a | inj₁ tt | ⟪ eq ⟫ | ()
g : B → A
g b with g₁ (inj₂ b) | inspect g₁ (inj₂ b)
g b | inj₂ a | _ = a
g b | inj₁ tt | ⟪ eq ⟫ with bad-path b inject
where inject = injectivity (sym≃ equiv) b (eq₂ ∘ ! eq)
g b | inj₁ tt | ⟪ eq ⟫ | ()
α : f ○ g ∼ id
α b with g₁ (inj₂ b) | inspect g₁ (inj₂ b)
α b | inj₁ tt | ⟪ eq ⟫ with bad-path b inject
where inject = injectivity (sym≃ equiv) b (eq₂ ∘ ! eq)
α b | inj₁ tt | ⟪ eq ⟫ | ()
α b | inj₂ a | ⟪ eq ⟫ with f₁ (inj₂ a) | inspect f₁ (inj₂ a)
α b | inj₂ a | ⟪ eq ⟫ | inj₁ tt | ⟪ eq₃ ⟫ with bad-path a inject
where inject = injectivity equiv a (eq₁ ∘ ! eq₃)
α b | inj₂ a | ⟪ eq ⟫ | inj₁ tt | ⟪ eq₃ ⟫ | ()
α b | inj₂ a | ⟪ eq ⟫ | inj₂ b′ | ⟪ eq₃ ⟫ =
proj₁ (inj₁₁path b′ b) (ap swap₊ (! (ap f₁ eq ∘ eq₃) ∘ α₁ (inj₂ b)))
β : g ○ f ∼ id
β a with f₁ (inj₂ a) | inspect f₁ (inj₂ a)
β a | inj₁ tt | ⟪ eq ⟫ with bad-path a inject
where inject = injectivity equiv a (! (eq ∘ ! eq₁))
... | ()
β a | inj₂ b | ⟪ eq ⟫ with g₁ (inj₂ b) | inspect g₁ (inj₂ b)
... | inj₁ tt | ⟪ eq₃ ⟫ with bad-path a inject
where inject = injectivity equiv a (! (ap f₁ eq₃) ∘ (α₁ (inj₂ b)) ∘ ! eq)
β a | inj₂ b | ⟪ eq ⟫ | inj₁ tt | ⟪ eq₃ ⟫ | ()
β a | inj₂ b | ⟪ eq ⟫ | inj₂ a′ | ⟪ eq₃ ⟫ = proj₁ (inj₁₁path a′ a) (ap swap₊ ((! eq₃) ∘ ap g₁ (! eq) ∘ β₂ (inj₂ a)))
where module EQ = qinv (equiv₂ {f = f₁} (proj₂ equiv))
β₂ = EQ.β
left-cancel-⊤ (f₁ , mkisequiv g α h β) | inj₁ tt | ⟪ eq₁ ⟫ | inj₂ a | ⟪ eq₂ ⟫ with bad-path a inject
where equiv = (f₁ , mkisequiv g α h β)
inject = injectivity equiv a (eq₁ ∘ ! (α (inj₁ tt)) ∘ (ap f₁ eq₂))
left-cancel-⊤ (f₁ , mkisequiv g α h β) | inj₁ tt | ⟪ eq₁ ⟫ | inj₂ a | ⟪ eq₂ ⟫ | ()
left-cancel-⊤ (f₁ , mkisequiv g α h β) | inj₂ b | ⟪ eq₁ ⟫ | inj₁ tt | ⟪ eq₂ ⟫ with bad-path b (! (α (inj₁ tt)) ∘ (ap f₁ eq₂) ∘ eq₁ )
... | ()
left-cancel-⊤ {A} {B} (f₁ , mkisequiv g₁ α₁ h₁ β₁) | inj₂ b₁ | ⟪ eq₁ ⟫ | inj₂ a₁ | ⟪ eq₂ ⟫ = f , equiv₁ (mkqinv g α β)
where equiv = (f₁ ,′ mkisequiv g₁ α₁ h₁ β₁)
module EQ = qinv (equiv₂ {f = f₁} (proj₂ equiv))
β₂ = EQ.β
f : A → B
f a with f₁ (inj₂ a)
f a | inj₂ b′ = b′
f a | inj₁ tt = b₁
g : B → A
g b with g₁ (inj₂ b)
g b | inj₂ a′ = a′
g b | inj₁ tt = a₁
α : f ○ g ∼ id
α b with g₁ (inj₂ b) | inspect g₁ (inj₂ b)
... | inj₂ a′ | ⟪ eq ⟫ with f₁ (inj₂ a′) | inspect f₁ (inj₂ a′)
... | inj₂ b′ | ⟪ eq₃ ⟫ = ! (proj₁ (inj₁₁path b b′) (ap swap₊ (! (α₁ (inj₂ b)) ∘ ap f₁ eq ∘ eq₃)))
... | inj₁ tt | ⟪ eq₃ ⟫ with bad-path b (! (! (α₁ (inj₂ b)) ∘ (ap f₁ eq) ∘ eq₃))
α b | inj₂ a′ | ⟪ eq ⟫ | inj₁ tt | ⟪ eq₃ ⟫ | ()
α b | inj₁ tt | ⟪ eq ⟫ with f₁ (inj₂ a₁) | inspect f₁ (inj₂ a₁)
α b | inj₁ tt | ⟪ eq ⟫ | inj₁ tt | ⟪ eq₃ ⟫ = proj₁ (inj₁₁path b₁ b) (ap swap₊ (!(! (α₁ (inj₂ b)) ∘ ap f₁ eq ∘ eq₁)))
α b | inj₁ tt | ⟪ eq ⟫ | inj₂ b′ | ⟪ eq₃ ⟫ with bad-path b′ (! (α₁ (inj₁ tt)) ∘ ap f₁ eq₂ ∘ eq₃)
... | ()
β : g ○ f ∼ id
β a with f₁ (inj₂ a) | inspect f₁ (inj₂ a)
β a | inj₁ tt | ⟪ eq ⟫ with g₁ (inj₂ b₁) | inspect g₁ (inj₂ b₁)
... | inj₁ tt | ⟪ eq₃ ⟫ = proj₁ (inj₁₁path a₁ a) (ap swap₊ (! eq₂ ∘ ! (ap g₁ eq) ∘ β₂ (inj₂ a)))
β a | inj₁ tt | ⟪ eq ⟫ | inj₂ a′ | ⟪ eq₃ ⟫ with bad-path a′ ((! (β₂ (inj₁ tt)) ∘ ap g₁ eq₁) ∘ eq₃)
... | ()
β a | inj₂ b | ⟪ eq ⟫ with g₁ (inj₂ b) | inspect g₁ (inj₂ b)
β a | inj₂ b | ⟪ eq₃ ⟫ | inj₁ tt | ⟪ eq ⟫ with bad-path a (! eq ∘ ap g₁ (! eq₃) ∘ β₂ (inj₂ a))
... | ()
β a | inj₂ b | ⟪ eq₃ ⟫ | inj₂ a′ | ⟪ eq ⟫ = proj₁ (inj₁₁path a′ a) (ap swap₊ (! eq ∘ ap g₁ (! eq₃) ∘ β₂ (inj₂ a)))
|
{
"alphanum_fraction": 0.4906685994,
"avg_line_length": 51.1018518519,
"ext": "agda",
"hexsha": "6f765490d640fb73cbdd414c2858748daff576d7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/LeftCancellation.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/LeftCancellation.agda",
"max_line_length": 132,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/LeftCancellation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2356,
"size": 5519
}
|
{- Basic theory about transport:
- transport is invertible
- transport is an equivalence ([pathToEquiv])
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.Transport where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Function using (_∘_)
-- Direct definition of transport filler, note that we have to
-- explicitly tell Agda that the type is constant (like in CHM)
transpFill : ∀ {ℓ} {A : Type ℓ}
(φ : I)
(A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ])
(u0 : outS (A i0))
→ --------------------------------------
PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0)
transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0
transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A
transport⁻ p = transport (λ i → p (~ i))
subst⁻ : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (B : A → Type ℓ') (p : x ≡ y) → B y → B x
subst⁻ B p pa = transport⁻ (λ i → B (p i)) pa
transport-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → A → p i) (λ x → x) (transport p)
transport-fillerExt p i x = transport-filler p x i
transport⁻-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → p i → A) (λ x → x) (transport⁻ p)
transport⁻-fillerExt p i x = transp (λ j → p (i ∧ ~ j)) (~ i) x
transport-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → p i → B) (transport p) (λ x → x)
transport-fillerExt⁻ p = symP (transport⁻-fillerExt (sym p))
transport⁻-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B)
→ PathP (λ i → B → p i) (transport⁻ p) (λ x → x)
transport⁻-fillerExt⁻ p = symP (transport-fillerExt (sym p))
transport⁻-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : B)
→ PathP (λ i → p (~ i)) x (transport⁻ p x)
transport⁻-filler p x = transport-filler (λ i → p (~ i)) x
transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) →
transport⁻ p (transport p a) ≡ a
transport⁻Transport p a j = transport⁻-fillerExt p (~ j) (transport-fillerExt p (~ j) a)
transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) →
transport p (transport⁻ p b) ≡ b
transportTransport⁻ p b j = transport-fillerExt⁻ p j (transport⁻-fillerExt⁻ p j b)
substEquiv : ∀ {ℓ ℓ'} {A : Type ℓ} {a a' : A} (P : A → Type ℓ') (p : a ≡ a') → P a ≃ P a'
substEquiv P p = (subst P p , isEquivTransport (λ i → P (p i)))
liftEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : A ≃ B) → P A ≃ P B
liftEquiv P e = substEquiv P (ua e)
transpEquiv : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → ∀ i → p i ≃ B
transpEquiv P i .fst = transp (λ j → P (i ∨ j)) i
transpEquiv P i .snd
= transp (λ k → isEquiv (transp (λ j → P (i ∨ (j ∧ k))) (i ∨ ~ k)))
i (idIsEquiv (P i))
uaTransportη : ∀ {ℓ} {A B : Type ℓ} (P : A ≡ B) → ua (pathToEquiv P) ≡ P
uaTransportη P i j
= Glue (P i1) λ where
(j = i0) → P i0 , pathToEquiv P
(i = i1) → P j , transpEquiv P j
(j = i1) → P i1 , idEquiv (P i1)
pathToIso : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → Iso A B
Iso.fun (pathToIso x) = transport x
Iso.inv (pathToIso x) = transport⁻ x
Iso.rightInv (pathToIso x) = transportTransport⁻ x
Iso.leftInv (pathToIso x) = transport⁻Transport x
isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B}
→ transport p ≡ transport q → p ≡ q
isInjectiveTransport {p = p} {q} α i =
hcomp
(λ j → λ
{ (i = i0) → retEq univalence p j
; (i = i1) → retEq univalence q j
})
(invEq univalence ((λ a → α i a) , t i))
where
t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd)
t = isProp→PathP (λ i → isPropIsEquiv (λ a → α i a)) _ _
transportUaInv : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → transport (ua (invEquiv e)) ≡ transport (sym (ua e))
transportUaInv e = cong transport (uaInvEquiv e)
-- notice that transport (ua e) would reduce, thus an alternative definition using EquivJ can give
-- refl for the case of idEquiv:
-- transportUaInv e = EquivJ (λ _ e → transport (ua (invEquiv e)) ≡ transport (sym (ua e))) refl e
isSet-subst : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ (isSet-A : isSet A)
→ ∀ {a : A}
→ (p : a ≡ a) → (x : B a) → subst B p x ≡ x
isSet-subst {B = B} isSet-A p x = subst (λ p′ → subst B p′ x ≡ x) (isSet-A _ _ refl p) (substRefl {B = B} x)
-- substituting along a composite path is equivalent to substituting twice
substComposite : ∀ {ℓ ℓ'} {A : Type ℓ} → (B : A → Type ℓ')
→ {x y z : A} (p : x ≡ y) (q : y ≡ z) (u : B x)
→ subst B (p ∙ q) u ≡ subst B q (subst B p u)
substComposite B p q Bx i =
transport (cong B (compPath-filler' p q (~ i))) (transport-fillerExt (cong B p) i Bx)
-- transporting along a composite path is equivalent to transporting twice
transportComposite : ∀ {ℓ} {A B C : Type ℓ} (p : A ≡ B) (q : B ≡ C) (x : A)
→ transport (p ∙ q) x ≡ transport q (transport p x)
transportComposite = substComposite (λ D → D)
-- substitution commutes with morphisms in slices
substCommSlice : ∀ {ℓ ℓ′} {A : Type ℓ}
→ (B C : A → Type ℓ′)
→ (F : ∀ a → B a → C a)
→ {x y : A} (p : x ≡ y) (u : B x)
→ subst C p (F x u) ≡ F y (subst B p u)
substCommSlice B C F p Bx a =
transport-fillerExt⁻ (cong C p) a (F _ (transport-fillerExt (cong B p) a Bx))
constSubstCommSlice : ∀ {ℓ ℓ'} {A : Type ℓ}
→ (B : A → Type ℓ')
→ (C : Type ℓ')
→ (F : ∀ a → B a → C)
→ {x y : A} (p : x ≡ y) (u : B x)
→ (F x u) ≡ F y (subst B p u)
constSubstCommSlice B C F p Bx = (sym (transportRefl (F _ Bx)) ∙ substCommSlice B (λ _ → C) F p Bx)
-- transporting over (λ i → B (p i) → C (p i)) divides the transport into
-- transports over (λ i → C (p i)) and (λ i → B (p (~ i)))
funTypeTransp : ∀ {ℓ ℓ'} {A : Type ℓ} (B C : A → Type ℓ') {x y : A} (p : x ≡ y) (f : B x → C x)
→ PathP (λ i → B (p i) → C (p i)) f (subst C p ∘ f ∘ subst B (sym p))
funTypeTransp B C {x = x} p f i b =
transp (λ j → C (p (j ∧ i))) (~ i) (f (transp (λ j → B (p (i ∧ ~ j))) (~ i) b))
-- transports between loop spaces preserve path composition
overPathFunct : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ x) (P : x ≡ y)
→ transport (λ i → P i ≡ P i) (p ∙ q)
≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q
overPathFunct p q =
J (λ y P → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q)
(transportRefl (p ∙ q) ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)))
-- substition over families of paths
-- theorem 2.11.3 in The Book
substInPaths : ∀ {ℓ} {A B : Type ℓ} {a a' : A}
→ (f g : A → B) → (p : a ≡ a') (q : f a ≡ g a)
→ subst (λ x → f x ≡ g x) p q ≡ sym (cong f p) ∙ q ∙ cong g p
substInPaths {a = a} f g p q =
J (λ x p' → (subst (λ y → f y ≡ g y) p' q) ≡ (sym (cong f p') ∙ q ∙ cong g p'))
p=refl p
where
p=refl : subst (λ y → f y ≡ g y) refl q
≡ refl ∙ q ∙ refl
p=refl = subst (λ y → f y ≡ g y) refl q
≡⟨ substRefl {B = (λ y → f y ≡ g y)} q ⟩ q
≡⟨ (rUnit q) ∙ lUnit (q ∙ refl) ⟩ refl ∙ q ∙ refl ∎
-- special cases of substInPaths from lemma 2.11.2 in The Book
module _ {ℓ : Level} {A : Type ℓ} {a x1 x2 : A} (p : x1 ≡ x2) where
substInPathsL : (q : a ≡ x1) → subst (λ x → a ≡ x) p q ≡ q ∙ p
substInPathsL q = subst (λ x → a ≡ x) p q
≡⟨ substInPaths (λ _ → a) (λ x → x) p q ⟩
sym (cong (λ _ → a) p) ∙ q ∙ cong (λ x → x) p
≡⟨ assoc (λ _ → a) q p ⟩
(refl ∙ q) ∙ p
≡⟨ cong (_∙ p) (sym (lUnit q)) ⟩ q ∙ p ∎
substInPathsR : (q : x1 ≡ a) → subst (λ x → x ≡ a) p q ≡ sym p ∙ q
substInPathsR q = subst (λ x → x ≡ a) p q
≡⟨ substInPaths (λ x → x) (λ _ → a) p q ⟩
sym (cong (λ x → x) p) ∙ q ∙ cong (λ _ → a) p
≡⟨ assoc (sym p) q refl ⟩
(sym p ∙ q) ∙ refl
≡⟨ sym (rUnit (sym p ∙ q))⟩ sym p ∙ q ∎
|
{
"alphanum_fraction": 0.5141818182,
"avg_line_length": 43.8829787234,
"ext": "agda",
"hexsha": "d80d99b461346103f757faccb68a7e270949f299",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Foundations/Transport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Foundations/Transport.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Foundations/Transport.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 3333,
"size": 8250
}
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Constructions.Terminal where
open import Data.Product using (proj₁ ; proj₂)
open import Level
open import Cats.Category.Base
import Cats.Category.Constructions.Iso as Iso
import Cats.Category.Constructions.Unique as Unique
module Build {lo la l≈} (Cat : Category lo la l≈) where
open Category Cat
open Iso.Build Cat
open Unique.Build Cat
IsTerminal : Obj → Set (lo ⊔ la ⊔ l≈)
IsTerminal ⊤ = ∀ X → ∃! X ⊤
record HasTerminal : Set (lo ⊔ la ⊔ l≈) where
field
⊤ : Obj
isTerminal : IsTerminal ⊤
! : ∀ X → X ⇒ ⊤
! X = ∃!′.arr (isTerminal X)
!-unique : ∀ {X} (f : X ⇒ ⊤) → ! X ≈ f
!-unique {X} f = ∃!′.unique (isTerminal X) _
⇒⊤-unique : ∀ {X} (f g : X ⇒ ⊤) → f ≈ g
⇒⊤-unique f g = ≈.trans (≈.sym (!-unique f)) (!-unique g)
⊤-unique : ∀ {X} → IsTerminal X → X ≅ ⊤
⊤-unique {X} term = record
{ forth = ! X
; back = term ⊤ .∃!′.arr
; back-forth = ≈.trans (≈.sym (term X .∃!′.unique _)) (term X .∃!′.unique _)
; forth-back = ⇒⊤-unique _ _
}
terminal-unique : ∀ {X Y} → IsTerminal X → IsTerminal Y → X ≅ Y
terminal-unique X-term Y-term
= HasTerminal.⊤-unique (record { isTerminal = Y-term }) X-term
open Build public using (HasTerminal)
private
open module Build′ {lo la l≈} {C : Category lo la l≈}
= Build C public using (IsTerminal ; terminal-unique)
|
{
"alphanum_fraction": 0.5803508772,
"avg_line_length": 23.3606557377,
"ext": "agda",
"hexsha": "59d34030e3c027ac7a820564057131655e15b902",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z",
"max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Terminal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Terminal.agda",
"max_line_length": 82,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Terminal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z",
"num_tokens": 505,
"size": 1425
}
|
-- 2012-10-20 Andreas
module Issue721c where
data Bool : Set where
false true : Bool
record Foo (b : Bool) : Set where
field
_*_ : Bool → Bool → Bool
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
record ∃ {A : Set} (B : A → Set) : Set where
constructor pack
field fst : A
snd : B fst
dontExpandTooMuch : (F : Foo false) → ∃ λ t → t ≡ t
dontExpandTooMuch F = pack t t
where open Foo F
d = λ x → x * x
t = d (d (d (d true)))
-- t should not be expanded in the error message
|
{
"alphanum_fraction": 0.5768500949,
"avg_line_length": 21.08,
"ext": "agda",
"hexsha": "d6ae45c8ad66bf3423cfb4fe3e48d666076ed509",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue721c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue721c.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue721c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 187,
"size": 527
}
|
{-# OPTIONS --no-termination-check #-}
module Lambda where
module Prelude where
data Bool : Set where
true : Bool
false : Bool
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y
_∧_ : Bool -> Bool -> Bool
true ∧ y = y
false ∧ y = false
_∨_ : Bool -> Bool -> Bool
true ∨ y = true
false ∨ y = y
¬_ : Bool -> Bool
¬ true = false
¬ false = true
data List (A : Set) : Set where
nil : List A
_::_ : A -> List A -> List A
_++_ : {A : Set} -> List A -> List A -> List A
nil ++ ys = ys
(x :: xs) ++ ys = x :: xs ++ ys
filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter p nil = nil
filter p (x :: xs) = if p x then x :: filter p xs else filter p xs
postulate
String : Set
Char : Set
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN FALSE false #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN STRING String #-}
{-# BUILTIN CHAR Char #-}
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL nil #-}
{-# BUILTIN CONS _::_ #-}
primitive
primStringEquality : String -> String -> Bool
_==_ = primStringEquality
infix 10 if_then_else_
infixr 50 _::_ _++_
infixl 5 _∨_
infixl 7 _∧_
infix 50 ¬_
infix 15 _==_
open Prelude
Name : Set
Name = String
data Exp : Set where
var : Name -> Exp
ƛ_⟶_ : Name -> Exp -> Exp
_$_ : Exp -> Exp -> Exp
infixl 50 _$_
infix 20 ƛ_⟶_
infix 80 _[_/_]
infix 15 _∈_
_∈_ : Name -> List Name -> Bool
x ∈ y :: ys = x == y ∨ x ∈ ys
x ∈ nil = false
-- Free variables
FV : Exp -> List Name
FV (var x) = x :: nil
FV (s $ t) = FV s ++ FV t
FV (ƛ x ⟶ t) = filter (\y -> ¬ (x == y)) (FV t)
-- Fresh names
fresh : Name -> Exp -> Name
fresh x e = fresh' (FV e)
where
fresh' : List Name -> Name
fresh' xs = "z" -- TODO
-- Substitution
_[_/_] : Exp -> Exp -> Name -> Exp
var x [ r / z ] = if x == z then r else var x
(s $ t) [ r / z ] = s [ r / z ] $ t [ r / z ]
(ƛ x ⟶ t) [ r / z ] =
if x == z then ƛ x ⟶ t
else if x ∈ FV r then ( let y : Name
y = fresh x r
in ƛ y ⟶ t [ var y / x ] [ r / z ]
)
else ƛ x ⟶ t [ r / z ]
|
{
"alphanum_fraction": 0.4806508355,
"avg_line_length": 20.8623853211,
"ext": "agda",
"hexsha": "0dedd0bd966af5fbc7eeb78e998889e6d542d525",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Lambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Lambda.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Lambda.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 829,
"size": 2274
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Construction.LiftSetoids where
open import Level
open import Relation.Binary
open import Function.Equality
open import Function using (_$_) renaming (id to idf)
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor
private
variable
c ℓ : Level
-- Use pattern-matching (instead of explicit calls to lower) to minimize the
-- number of needed parens, and also make it syntactically apparent that
-- this is indeed just a Lift.
LiftedSetoid : ∀ c′ ℓ′ → Setoid c ℓ → Setoid (c ⊔ c′) (ℓ ⊔ ℓ′)
LiftedSetoid c′ ℓ′ S = record
{ Carrier = Lift c′ Carrier
; _≈_ = λ where (lift x) (lift y) → Lift ℓ′ $ x ≈ y
; isEquivalence = record
{ refl = lift refl
; sym = λ where (lift eq) → lift $ sym eq
; trans = λ where (lift eq) (lift eq′) → lift $ trans eq eq′
}
}
where open Setoid S
LiftSetoids : ∀ c′ ℓ′ → Functor (Setoids c ℓ) (Setoids (c ⊔ c′) (ℓ ⊔ ℓ′))
LiftSetoids c′ ℓ′ = record
{ F₀ = LiftedSetoid c′ ℓ′
; F₁ = λ f → record
{ _⟨$⟩_ = λ where (lift x) → lift $ f ⟨$⟩ x
; cong = λ where (lift eq) → lift $ cong f eq
}
; identity = idf
; homomorphism = λ where {f = f} {g = g} (lift eq) → lift $ cong g $ cong f eq
; F-resp-≈ = λ where fx≈gy (lift x≈y) → lift $ fx≈gy x≈y
}
|
{
"alphanum_fraction": 0.6046676096,
"avg_line_length": 32.1363636364,
"ext": "agda",
"hexsha": "643cd797caa90147d5da2797358c6884b8043522",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Construction/LiftSetoids.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Construction/LiftSetoids.agda",
"max_line_length": 80,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Construction/LiftSetoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 484,
"size": 1414
}
|
{-# OPTIONS --cubical #-}
module Type.Cubical.SubtypeSet where
open import Function.Axioms
open import Functional
open import Logic.Predicate as PTLogic using () renaming ([∃]-intro to intro)
import Lvl
open import Structure.Function.Domain using (intro ; Inverseₗ ; Inverseᵣ)
open import Structure.Relator.Properties
open import Structure.Type.Identity
open import Type.Cubical.Equiv
import Type.Cubical.Logic as Logic
open import Type.Cubical.Path.Equality
open import Type.Cubical.Univalence
open import Type.Cubical
open import Type.Properties.MereProposition
open import Type.Properties.Singleton.Proofs
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level
private variable T A B P Q : Type{ℓ}
{-
module _ {P Q : T → Type} ⦃ prop-P : ∀{x} → MereProposition{ℓ}(P(x)) ⦄ ⦃ prop-Q : ∀{x} → MereProposition{ℓ}(Q(x)) ⦄ where
prop-set-extensionalityₗ : (P ≡ Q) ← (∀{x} → P(x) ↔ Q(x))
prop-set-extensionalityₗ pq = functionExtensionalityOn P Q (propositional-extensionalityₗ pq)
-}
--data Prop{ℓ} : Type{Lvl.𝐒(ℓ)} where
-- intro : (T : Type{ℓ}) → ⦃ MereProposition(T) ⦄ → Prop
Prop = \{ℓ} → PTLogic.∃{Obj = Type{ℓ}} (T ↦ MereProposition(T))
⊤ : Prop
⊤ = intro(Logic.⊤) ⦃ prop-top ⦄
⊥ : Prop
⊥ = intro(Logic.⊥) ⦃ prop-bottom ⦄
¬_ : Prop{ℓ} → Prop
¬(intro A) = intro(Logic.¬ A) ⦃ prop-negation ⦄
_⟶_ : Prop{ℓ₁} → Prop{ℓ₂} → Prop
(intro A) ⟶ (intro B) = intro(A → B) ⦃ prop-implication ⦄
_∨_ : Prop{ℓ₁} → Prop{ℓ₂} → Prop
(intro A) ∨ (intro B) = intro(A Logic.∨ B)
_∧_ : Prop{ℓ₁} → Prop{ℓ₂} → Prop
(intro A) ∧ (intro B) = intro(A Logic.∧ B) ⦃ prop-conjunction ⦄
∃ : (T → Prop{ℓ}) → Prop
∃ P = intro(Logic.∃(PTLogic.[∃]-witness ∘ P))
-- ∀ₚ : (T → Prop{ℓ}) → Prop
-- ∀ₚ P = intro(PTLogic.∀ₗ(PTLogic.[∃]-witness ∘ P)) ⦃ {!prop-universal!} ⦄
record SubtypeSet {ℓₑ ℓ} (T : Type{ℓ}) : Type{ℓ Lvl.⊔ Lvl.𝐒(ℓₑ)} where
constructor filter
field _∋_ : T → Prop{ℓₑ}
open SubtypeSet using (_∋_) public
{- TODO: When Structure is generalized to arbitrary logic symbols
import Structure.Sets.Names
open Structure.Sets.Names.From-[∋] (_∋_) public
-}
_∈_ : T → SubtypeSet{ℓ}(T) → Prop
_∈_ = swap(_∋_)
_∉_ : T → SubtypeSet{ℓ}(T) → Prop
_∉_ = (¬_) ∘₂ (_∈_)
_∌_ : SubtypeSet{ℓ}(T) → T → Prop
_∌_ = (¬_) ∘₂ (_∋_)
∅ : SubtypeSet(T)
∅ ∋ _ = ⊥
𝐔 : SubtypeSet(T)
𝐔 ∋ _ = ⊤
∁ : SubtypeSet{ℓ}(T) → SubtypeSet(T)
(∁ A) ∋ x = A ∌ x
_∪_ : SubtypeSet{ℓ₁}(T) → SubtypeSet{ℓ₂}(T) → SubtypeSet(T)
(A ∪ B) ∋ x = (A ∋ x) ∨ (B ∋ x)
_∩_ : SubtypeSet{ℓ₁}(T) → SubtypeSet{ℓ₂}(T) → SubtypeSet(T)
(A ∩ B) ∋ x = (A ∋ x) ∧ (B ∋ x)
_∖_ : SubtypeSet{ℓ₁}(T) → SubtypeSet{ℓ₂}(T) → SubtypeSet(T)
(A ∖ B) ∋ x = (A ∋ x) ∧ (B ∌ x)
unmap : (A → B) → SubtypeSet{ℓ}(B) → SubtypeSet(A)
unmap f(A) ∋ x = A ∋ f(x)
-- map : (A → B) → SubtypeSet{ℓ}(A) → SubtypeSet(B)
-- map f(A) ∋ y = ∃(x ↦ (A ∋ x) ∧ (f(x) ≡ y))
-- TODO: Maybe SubtypeSet should require that the witness is a HSet?
-- ⊶ : (A → B) → SubtypeSet(B)
-- (⊶ f) ∋ y = ∃(x ↦ PTLogic.[∃]-intro (f(x) ≡ y) ⦃ {!!} ⦄)
|
{
"alphanum_fraction": 0.6091644205,
"avg_line_length": 28.5384615385,
"ext": "agda",
"hexsha": "333cf94252d1d632c24ffab609119eb4cd9c4272",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/SubtypeSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/SubtypeSet.agda",
"max_line_length": 121,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/SubtypeSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1312,
"size": 2968
}
|
module _ where
open import Haskell.Prelude
open import Agda.Builtin.Equality
-- ** Foreign HS code
-- language extensions
{-# FOREIGN AGDA2HS
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE FlexibleInstances #-}
#-}
-- imports
{-# FOREIGN AGDA2HS
import Data.Monoid
#-}
-- ** Datatypes & functions
data Exp (v : Set) : Set where
Plus : Exp v → Exp v → Exp v
Lit : Nat → Exp v
Var : v → Exp v
{-# COMPILE AGDA2HS Exp deriving (Show,Eq) #-}
eval : (a → Nat) → Exp a → Nat
eval env (Plus a b) = eval env a + eval env b
eval env (Lit n) = n
eval env (Var x) = env x
{-# COMPILE AGDA2HS eval #-}
-- ** Natural numbers
listSum : List Int → Int
listSum [] = 0
listSum (x ∷ xs) = x + sum xs
{-# COMPILE AGDA2HS listSum #-}
monoSum : List Integer → Integer
monoSum xs = sum xs
{-# COMPILE AGDA2HS monoSum #-}
polySum : ⦃ iNum : Num a ⦄ → List a → a
polySum xs = sum xs
{-# COMPILE AGDA2HS polySum #-}
{-# FOREIGN AGDA2HS
-- comment
-- another comment
bla :: Int -> Int
bla n = n * 4
{- multi
line
comment
-}
#-}
-- ** Extra builtins
ex_float : Double
ex_float = 0.0
{-# COMPILE AGDA2HS ex_float #-}
postulate
toInteger : Word → Integer
ex_word : Word
ex_word = fromInteger 0
{-# COMPILE AGDA2HS ex_word #-}
ex_char : Char
ex_char = 'a'
{-# COMPILE AGDA2HS ex_char #-}
char_d : Char
char_d = toEnum 100
{-# COMPILE AGDA2HS char_d #-}
-- ** Polymorphic functions
_+++_ : List a → List a → List a
[] +++ ys = ys
(x ∷ xs) +++ ys = x ∷ (xs +++ ys)
{-# COMPILE AGDA2HS _+++_ #-}
listMap : (a → b) → List a → List b
listMap f [] = []
listMap f (x ∷ xs) = f x ∷ listMap f xs
{-# COMPILE AGDA2HS listMap #-}
mapTest : List Nat → List Nat
mapTest = map (id ∘ _+_ 5)
{-# COMPILE AGDA2HS mapTest #-}
-- ** Lambdas
plus3 : List Nat → List Nat
plus3 = map (λ n → n + 3)
{-# COMPILE AGDA2HS plus3 #-}
doubleLambda : Nat → Nat → Nat
doubleLambda = λ a b → a + 2 * b
{-# COMPILE AGDA2HS doubleLambda #-}
cnst : a → b → a
cnst = λ x _ → x
{-# COMPILE AGDA2HS cnst #-}
-- ** Constraints
second : (b → c) → a × b → a × c
second f (x , y) = x , f y
{-# COMPILE AGDA2HS second #-}
doubleTake : (n m : Int) → ⦃ IsNonNegativeInt n ⦄ → ⦃ IsNonNegativeInt m ⦄ → List a → List a × List a
doubleTake n m = second (take m) ∘ splitAt n
{-# COMPILE AGDA2HS doubleTake #-}
initLast : (xs : List a) → ⦃ NonEmpty xs ⦄ → List a × a
initLast xs = init xs , last xs
{-# COMPILE AGDA2HS initLast #-}
-- ** Proofs
assoc : (a b c : Nat) → a + (b + c) ≡ (a + b) + c
assoc zero b c = refl
assoc (suc a) b c rewrite assoc a b c = refl
thm : (xs ys : List Nat) → sum (xs ++ ys) ≡ sum xs + sum ys
thm [] ys = refl
thm (x ∷ xs) ys rewrite thm xs ys | assoc x (sum xs) (sum ys) = refl
-- (custom) Monoid class
record MonoidX (a : Set) : Set where
field memptyX : a
mappendX : a → a → a
open MonoidX {{...}} public
{-# COMPILE AGDA2HS MonoidX #-}
instance
MonoidNat : MonoidX Nat
memptyX {{MonoidNat}} = 0
mappendX {{MonoidNat}} i j = i + j
{-# COMPILE AGDA2HS MonoidNat #-}
instance
MonoidFunNat : {a : Set} → MonoidX (a → Nat)
memptyX {{MonoidFunNat}} _ = memptyX
mappendX {{MonoidFunNat}} f g x = mappendX (f x) (g x)
{-# COMPILE AGDA2HS MonoidFunNat #-}
instance
MonoidFun : {a b : Set} → {{MonoidX b}} → MonoidX (a → b)
memptyX {{MonoidFun}} _ = memptyX
mappendX {{MonoidFun}} f g x = mappendX (f x) (g x)
{-# COMPILE AGDA2HS MonoidFun #-}
sumMonX : ∀{a} → {{MonoidX a}} → List a → a
sumMonX [] = memptyX
sumMonX (x ∷ xs) = mappendX x (sumMonX xs)
{-# COMPILE AGDA2HS sumMonX #-}
sumMon : ∀{a} → {{Monoid a}} → List a → a
sumMon [] = mempty
sumMon (x ∷ xs) = x <> sumMon xs
{-# COMPILE AGDA2HS sumMon #-}
-- Using the Monoid class from the Prelude
data NatSum : Set where
MkSum : Nat → NatSum
{-# COMPILE AGDA2HS NatSum #-}
instance
SemigroupNatSum : Semigroup NatSum
SemigroupNatSum ._<>_ (MkSum a) (MkSum b) = MkSum (a + b)
MonoidNatSum : Monoid NatSum
MonoidNatSum .mempty = MkSum 0
double : ⦃ Monoid a ⦄ → a → a
double x = x <> x
doubleSum : NatSum → NatSum
doubleSum = double
{-# COMPILE AGDA2HS SemigroupNatSum #-}
{-# COMPILE AGDA2HS MonoidNatSum #-}
{-# COMPILE AGDA2HS double #-}
{-# COMPILE AGDA2HS doubleSum #-}
-- Instance argument proof obligation that should not turn into a class constraint
hd : (xs : List a) → ⦃ NonEmpty xs ⦄ → a
hd [] = error "hd: empty list"
hd (x ∷ _) = x
{-# COMPILE AGDA2HS hd #-}
five : Int
five = hd (5 ∷ 3 ∷ [])
{-# COMPILE AGDA2HS five #-}
-- ** Booleans
ex_bool : Bool
ex_bool = true
{-# COMPILE AGDA2HS ex_bool #-}
ex_if : Nat
ex_if = if true then 1 else 0
{-# COMPILE AGDA2HS ex_if #-}
if_over : Nat
if_over = (if true then (λ x → x) else (λ x → x + 1)) 0
{-# COMPILE AGDA2HS if_over #-}
if_partial₁ : List Nat → List Nat
if_partial₁ = map (if true then 1 else_)
{-# COMPILE AGDA2HS if_partial₁ #-}
if_partial₂ : List Nat → List (Nat → Nat)
if_partial₂ = map (if true then_else_)
{-# COMPILE AGDA2HS if_partial₂ #-}
if_partial₃ : List Bool → List (Nat → Nat → Nat)
if_partial₃ = map if_then_else_
{-# COMPILE AGDA2HS if_partial₃ #-}
if_partial₄ : List Bool → List (Nat → Nat)
if_partial₄ = map (if_then 1 else_)
{-# COMPILE AGDA2HS if_partial₄ #-}
if_partial₅ : Bool → Nat → List Nat → List Nat
if_partial₅ b f = map (if b then f else_)
{-# COMPILE AGDA2HS if_partial₅ #-}
|
{
"alphanum_fraction": 0.6165638437,
"avg_line_length": 21.9221311475,
"ext": "agda",
"hexsha": "c2d6ab16b60e62e515316a78ce8553b940eabec6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/agda2hs",
"max_forks_repo_path": "test/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/agda2hs",
"max_issues_repo_path": "test/Test.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/agda2hs",
"max_stars_repo_path": "test/Test.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1891,
"size": 5349
}
|
{- Conatural number properties (Tesla Ice Zhang et al., Feb. 2019)
This file defines operations and properties on conatural numbers:
- Infinity (∞).
- Proof that ∞ + 1 is equivalent to ∞.
- Proof that conatural is an hSet.
- Bisimulation on conatural
- Proof that bisimulation is equivalent to equivalence (Coinductive Proof
Principle).
- Proof that this bisimulation is prop valued
The standard library also defines bisimulation on conaturals:
https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat/Bisimilarity.agda
-}
{-# OPTIONS --cubical --safe --guardedness #-}
module Cubical.Codata.Conat.Properties where
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Empty
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Codata.Conat.Base
Unwrap-prev : Conat′ → Type₀
Unwrap-prev zero = Unit
Unwrap-prev (suc _) = Conat
unwrap-prev : (n : Conat′) -> Unwrap-prev n
unwrap-prev zero = _
unwrap-prev (suc x) = x
private -- tests
𝟘 = conat zero
𝟙 = succ 𝟘
𝟚 = succ 𝟙
succ𝟙≡𝟚 : succ 𝟙 ≡ 𝟚
succ𝟙≡𝟚 i = 𝟚
pred𝟚≡𝟙 : unwrap-prev (force 𝟚) ≡ 𝟙
pred𝟚≡𝟙 i = 𝟙
∞ : Conat
force ∞ = suc ∞
∞+1≡∞ : succ ∞ ≡ ∞
force (∞+1≡∞ _) = suc ∞
∞+2≡∞ : succ (succ ∞) ≡ ∞
∞+2≡∞ = (cong succ ∞+1≡∞) ∙ ∞+1≡∞
_+_ : Conat → Conat → Conat
_+′_ : Conat′ → Conat → Conat′
force (x + y) = force x +′ y
zero +′ y = force y
suc x +′ y = suc (x + y)
n+∞≡∞ : ∀ n → n + ∞ ≡ ∞
n+′∞≡∞′ : ∀ n → n +′ ∞ ≡ suc ∞
force (n+∞≡∞ n i) = n+′∞≡∞′ (force n) i
n+′∞≡∞′ zero = refl
n+′∞≡∞′ (suc n) = λ i → suc (n+∞≡∞ n i)
∞+∞≡∞ : ∞ + ∞ ≡ ∞
force (∞+∞≡∞ i) = suc (∞+∞≡∞ i)
conat-absurd : ∀ {y : Conat} {ℓ} {Whatever : Type ℓ} → zero ≡ suc y → Whatever
conat-absurd eq = ⊥-elim (transport (cong diag eq) tt)
where
diag : Conat′ → Type₀
diag zero = Unit
diag (suc _) = ⊥
module IsSet where
≡-stable : {x y : Conat} → Stable (x ≡ y)
≡′-stable : {x y : Conat′} → Stable (x ≡ y)
force (≡-stable ¬¬p i) = ≡′-stable (λ ¬p → ¬¬p (λ p → ¬p (cong force p))) i
≡′-stable {zero} {zero} ¬¬p′ = refl
≡′-stable {suc x} {suc y} ¬¬p′ =
cong′ suc (≡-stable λ ¬p → ¬¬p′ λ p → ¬p (cong pred′′ p))
≡′-stable {zero} {suc y} ¬¬p′ = ⊥-elim (¬¬p′ conat-absurd)
≡′-stable {suc x} {zero} ¬¬p′ = ⊥-elim (¬¬p′ λ p → conat-absurd (sym p))
isSetConat : isSet Conat
isSetConat _ _ = Stable≡→isSet (λ _ _ → ≡-stable) _ _
isSetConat′ : isSet Conat′
isSetConat′ m n p′ q′ = cong (cong force) (isSetConat (conat m) (conat n) p q)
where p = λ where i .force → p′ i
q = λ where i .force → q′ i
module Bisimulation where
open IsSet using (isSetConat)
record _≈_ (x y : Conat) : Type₀
data _≈′_ (x y : Conat′) : Type₀
_≈′′_ : Conat′ → Conat′ → Type₀
zero ≈′′ zero = Unit
suc x ≈′′ suc y = x ≈ y
-- So impossible proofs are preserved
x ≈′′ y = ⊥
record _≈_ x y where
coinductive
field prove : force x ≈′ force y
data _≈′_ x y where
con : x ≈′′ y → x ≈′ y
open _≈_ public
bisim : ∀ {x y} → x ≈ y → x ≡ y
bisim′ : ∀ {x y} → x ≈′ y → x ≡ y
bisim′ {zero} {zero} (con tt) = refl
bisim′ {zero} {suc x} (con ())
bisim′ {suc x} {zero} (con ())
bisim′ {suc x} {suc y} (con eq) i = suc (bisim eq i)
force (bisim eq i) = bisim′ (prove eq) i
misib : ∀ {x y} → x ≡ y → x ≈ y
misib′ : ∀ {x y} → x ≡ y → x ≈′ y
misib′ {zero} {zero} _ = con tt
misib′ {zero} {suc x} = conat-absurd
misib′ {suc x} {zero} p = conat-absurd (sym p)
-- misib′ {suc x} {suc y} p = con λ where .prove → misib′ (cong pred′ p)
misib′ {suc x} {suc y} p = con (misib (cong pred′′ p))
prove (misib x≡y) = misib′ (cong force x≡y)
iso″ : ∀ {x y} → (p : x ≈ y) → misib (bisim p) ≡ p
iso′ : ∀ {x y} → (p : x ≈′ y) → misib′ (bisim′ p) ≡ p
iso′ {zero} {zero} (con p) = refl
iso′ {zero} {suc x} (con ())
iso′ {suc x} {zero} (con ())
iso′ {suc x} {suc y} (con p) = cong con (iso″ p)
prove (iso″ p i) = iso′ (prove p) i
osi : ∀ {x y} → (p : x ≡ y) → bisim (misib p) ≡ p
osi p = isSetConat _ _ _ p
path≃bisim : ∀ {x y} → (x ≡ y) ≃ (x ≈ y)
path≃bisim = isoToEquiv (iso misib bisim iso″ osi)
path≡bisim : ∀ {x y} → (x ≡ y) ≡ (x ≈ y)
path≡bisim = ua path≃bisim
isProp≈ : ∀ {x y} → isProp (x ≈ y)
isProp≈ = subst isProp path≡bisim (isSetConat _ _)
|
{
"alphanum_fraction": 0.5782761653,
"avg_line_length": 26.4418604651,
"ext": "agda",
"hexsha": "031826651a3dab05451847119f7848589dd85a38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Codata/Conat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Codata/Conat/Properties.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Codata/Conat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2032,
"size": 4548
}
|
module Generic.Test.DeriveEq where
open import Generic.Main
open import Data.Vec using (Vec) renaming ([] to []ᵥ; _∷_ to _∷ᵥ_)
module DeriveEqStar where
open import Relation.Binary
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
instance StarEq : ∀ {i t} {I : Set i} {T : Rel I t} {i j}
{{iEq : Eq I}} {{tEq : ∀ {i j} -> Eq (T i j)}} -> Eq (Star T i j)
unquoteDef StarEq = deriveEqTo StarEq (quote Star)
module DeriveEqVec where
instance VecEq : ∀ {n α} {A : Set α} {{aEq : Eq A}} -> Eq (Vec A n)
unquoteDef VecEq = deriveEqTo VecEq (quote Vec)
xs : Vec ℕ 3
xs = 2 ∷ᵥ 4 ∷ᵥ 1 ∷ᵥ []ᵥ
test₁ : xs ≟ xs ≡ yes refl
test₁ = refl
test₂ : xs ≟ (2 ∷ᵥ 4 ∷ᵥ 2 ∷ᵥ []ᵥ) ≡ no _
test₂ = refl
module DeriveEqD where
data D {α β} (A : Set α) (B : A -> Set β) : ∀ {n x} -> Vec (B x) n -> ℕ -> Set (α ⊔ β) where
c₁ : ∀ {x n} (ys : Vec (B x) n) m -> .A -> D A B ys m
c₂ : ∀ {x n m y} {ys zs : Vec (B x) n}
-> D A B (y ∷ᵥ ys) 0 -> Vec A m -> D A B ys (suc n) -> D A B zs n
-- `VecEq` is in scope.
instance DEq : ∀ {α β} {A : Set α} {B : A -> Set β} {n m x} {ys : Vec (B x) n}
{{aEq : Eq A}} {{bEq : ∀ {x} -> Eq (B x)}} -> Eq (D A B ys m)
unquoteDef DEq = deriveEqTo DEq (quote D)
-- -- Seems like the problem is that irrelevance and metavariables resolution do not play well.
-- module DeriveEqE where
-- data E {α} (A : Set α) : ∀ {n} -> .(Vec A n) -> Set α where
-- c₁ : ∀ {n} -> .(xs : Vec A n) -> E A xs
-- instance EEq : ∀ {α n} {A : Set α} .{xs : Vec A n} -> Eq (E A xs)
-- unquoteDef EEq = deriveEqTo EEq (quote E)
-- -- Variable xs is declared irrelevant, so it cannot be used here
-- -- when checking that the expression xs has type _B_76 A _ n₁ _ n₁
module DeriveEqF where
data F {α} (A : Set α) : Set α where
c₁ : ∀ {n} -> .(Vec A n) -> F A
instance FEq : ∀ {α} {A : Set α} -> Eq (F A)
unquoteDef FEq = deriveEqTo FEq (quote F)
|
{
"alphanum_fraction": 0.5507394187,
"avg_line_length": 35.6545454545,
"ext": "agda",
"hexsha": "93c7ad6a981ee75e30528978e9c18b82c234ca72",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/DeriveEq.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/DeriveEq.agda",
"max_line_length": 95,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/DeriveEq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 786,
"size": 1961
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" in multiple Setoids.
------------------------------------------------------------------------
-- Example use:
--
-- open import Data.Maybe.Properties
-- open import Data.Maybe.Relation.Binary.Equality
-- open import Relation.Binary.Reasoning.MultiSetoid
--
-- begin⟨ S ⟩
-- x ≈⟨ drop-just (begin⟨ setoid S ⟩
-- just x ≈⟨ justx≈mz ⟩
-- mz ≈⟨ mz≈justy ⟩
-- just y ∎)⟩
-- y ≈⟨ y≈z ⟩
-- z ∎
-- Note this module is not reimplemented in terms of `Reasoning.Setoid`
-- as this introduces unsolved metas as the underlying base module
-- `Base.Single` does not require `_≈_` be symmetric.
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Reasoning.MultiSetoid where
open import Function.Base using (flip)
open import Level using (_⊔_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.Reasoning.Setoid as EqR
------------------------------------------------------------------------
-- Combinators that take the current setoid as an explicit argument.
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
data IsRelatedTo (x y : _) : Set (c ⊔ ℓ) where
relTo : (x∼y : x ≈ y) → IsRelatedTo x y
infix 1 begin⟨_⟩_
begin⟨_⟩_ : ∀ {x y} → IsRelatedTo x y → x ≈ y
begin⟨_⟩_ (relTo eq) = eq
------------------------------------------------------------------------
-- Combinators that take the current setoid as an implicit argument.
module _ {c ℓ} {S : Setoid c ℓ} where
open Setoid S renaming (_≈_ to _≈_)
infixr 2 step-≈ step-≈˘ step-≡ step-≡˘ _≡⟨⟩_
infix 3 _∎
step-≈ : ∀ x {y z} → IsRelatedTo S y z → x ≈ y → IsRelatedTo S x z
step-≈ x (relTo y∼z) x∼y = relTo (trans x∼y y∼z)
step-≈˘ : ∀ x {y z} → IsRelatedTo S y z → y ≈ x → IsRelatedTo S x z
step-≈˘ x y∼z x≈y = step-≈ x y∼z (sym x≈y)
step-≡ : ∀ x {y z} → IsRelatedTo S y z → x ≡ y → IsRelatedTo S x z
step-≡ _ x∼z P.refl = x∼z
step-≡˘ : ∀ x {y z} → IsRelatedTo S y z → y ≡ x → IsRelatedTo S x z
step-≡˘ _ x∼z P.refl = x∼z
_≡⟨⟩_ : ∀ x {y} → IsRelatedTo S x y → IsRelatedTo S x y
_ ≡⟨⟩ x∼y = x∼y
_∎ : ∀ x → IsRelatedTo S x x
_∎ _ = relTo refl
syntax step-≈ x y∼z x≈y = x ≈⟨ x≈y ⟩ y∼z
syntax step-≈˘ x y∼z y≈x = x ≈˘⟨ y≈x ⟩ y∼z
syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
|
{
"alphanum_fraction": 0.5339456869,
"avg_line_length": 30.5365853659,
"ext": "agda",
"hexsha": "42ddd8ad4595b78fa17e18e0ffba1e1e07523d48",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/MultiSetoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/MultiSetoid.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/MultiSetoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 945,
"size": 2504
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Function
open import Data.Unit
open import Data.List as List
open import Data.Char
open import Data.Nat as ℕ
open import Data.Product
open import Data.String
open import Relation.Nullary using (Dec; yes; no)
open import Category.Functor
open import Reflection
open import Optics.Functorial
module Optics.Reflection where
private
tcMapM : {A B : Set} → (A → TC B) → List A → TC (List B)
tcMapM f [] = return []
tcMapM f (x ∷ xs) = do
y ← f x
ys ← tcMapM f xs
return (y ∷ ys)
count : ℕ → List ℕ
count 0 = []
count (suc n) = 0 ∷ List.map suc (count n)
List-last : {A : Set} → A → List A → A
List-last d [] = d
List-last d (x ∷ []) = x
List-last d (x ∷ xs) = List-last d xs
ai : {A : Set} → A → Arg A
ai x = arg (arg-info visible relevant) x
record MetaLens : Set where
constructor ml
field
mlName : Name
mlType : Type
mkDef : Term
-- Example call:
-- Let:
-- > record Test : Set where
-- > constructor test
-- > field
-- > firstField : ℕ
-- > secondField : Maybe String
--
-- Then; consider the call:
--
-- > go Test test [x , y] 2 secondField
--
-- What we want to generate is:
--
--
-- > secondField : Lens Name (Maybe String)
-- > secondField = lens (λ { F rf f (test x y)
-- > → (RawFunctor._<$>_ rf)
-- > (λ y' → test x y') (f y)
-- > })
--
-- Which is captured by the MetaLens
go : Name → Name → List String → ℕ → (Name × Arg Name) → TC MetaLens
go rec cName vars curr (lensName , (arg _ fld)) = do
-- Get the type of the field; in our case: Mabe String
tyFld ← (getType fld >>= parseTy)
-- compute the full lens type: Lens Test (Maybe String)
let finalTy = def (quote Lens) (ai (def rec []) ∷ ai tyFld ∷ [])
-- compute the clause of the lens:
return (ml lensName finalTy genTerm)
where
parseTy : Type → TC Type
parseTy (pi _ (abs _ t)) = parseTy t
parseTy (var (suc x) i) = return (var x i)
parseTy r = return r
-- We might be at field 0; but our de Bruijn index depends
-- on the total of fields
curr' : ℕ
curr' = List.length vars ∸ suc curr
testxy : Pattern
testxy = Pattern.con cName (List.map (ai ∘ Pattern.var) vars)
myabs : Term → Term
myabs t = pat-lam (Clause.clause (ai (Pattern.var "F") ∷ ai (Pattern.var "rf") ∷ ai (Pattern.var "f") ∷ ai testxy ∷ []) t ∷ []) []
myvar : ℕ → List (Arg Term) → Term
myvar n args = var (List.length vars + n) args
RawFunctor-<$>-var2 : Term → Term → Term
RawFunctor-<$>-var2 testxy' fy =
let rawf = quote RawFunctor._<$>_
in def rawf (ai (myvar 1 []) ∷ (ai testxy') ∷ (ai fy) ∷ [])
f-varN : Term
f-varN = myvar 0 (ai (var curr' []) ∷ [])
xy' : List (Arg Term)
xy' = let xs = reverse (count (List.length vars))
in List.map (λ m → ai (var (suc+set0 m) [])) xs
where
suc+set0 : ℕ → ℕ
suc+set0 m = case m ℕ.≟ curr' of
λ { (no _) → suc m
; (yes _) → zero
}
testxy' : Term
testxy' = lam visible (abs "y'" (con cName xy'))
-- We will now generate the RHS of second field: lens (λ { F rf ⋯
genTerm : Term
genTerm = con (quote lens) (ai (myabs (RawFunctor-<$>-var2 testxy' f-varN)) ∷ [])
mkLensFrom : Name → Definition → List Name → TC (List MetaLens)
mkLensFrom rec (record-type c fs) lnames = do
let xs = count (List.length fs)
let vars = List.map (flip Data.String.replicate 'v' ∘ suc) xs
tcMapM (uncurry (go rec c vars)) (List.zip xs (List.zip lnames fs))
mkLensFrom _ _ _ = typeError (strErr "Not a record" ∷ [])
defineLens : MetaLens → TC ⊤
defineLens (ml n ty trm)
= do -- typeError (nameErr n ∷ strErr "%%" ∷ termErr ty ∷ strErr "%%" ∷ termErr trm ∷ [])
declareDef (arg (arg-info visible relevant) n) ty
defineFun n (Clause.clause [] trm ∷ [])
mkLens : Name → List Name → TC ⊤
mkLens rec lenses = do
r ← getDefinition rec
res ← mkLensFrom rec r lenses
tcMapM defineLens res
return tt
-- usage will be: unquoteDecl = mkLens RecordName
|
{
"alphanum_fraction": 0.5710491368,
"avg_line_length": 31.375,
"ext": "agda",
"hexsha": "07234d049f07c26faf9f9c30cf7d9844b6c7baf1",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "Optics/Reflection.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "Optics/Reflection.agda",
"max_line_length": 135,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "Optics/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 1424,
"size": 4518
}
|
{-
This second-order signature was created from the following second-order syntax description:
syntax CommRing | CR
type
* : 0-ary
term
zero : * | 𝟘
add : * * -> * | _⊕_ l20
one : * | 𝟙
mult : * * -> * | _⊗_ l30
neg : * -> * | ⊖_ r50
theory
(𝟘U⊕ᴸ) a |> add (zero, a) = a
(𝟘U⊕ᴿ) a |> add (a, zero) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊕C) a b |> add(a, b) = add(b, a)
(𝟙U⊗ᴸ) a |> mult (one, a) = a
(𝟙U⊗ᴿ) a |> mult (a, one) = a
(⊗A) a b c |> mult (mult(a, b), c) = mult (a, mult(b, c))
(⊗D⊕ᴸ) a b c |> mult (a, add (b, c)) = add (mult(a, b), mult(a, c))
(⊗D⊕ᴿ) a b c |> mult (add (a, b), c) = add (mult(a, c), mult(b, c))
(𝟘X⊗ᴸ) a |> mult (zero, a) = zero
(𝟘X⊗ᴿ) a |> mult (a, zero) = zero
(⊖N⊕ᴸ) a |> add (neg (a), a) = zero
(⊖N⊕ᴿ) a |> add (a, neg (a)) = zero
(⊗C) a b |> mult(a, b) = mult(b, a)
-}
module CommRing.Signature where
open import SOAS.Context
open import SOAS.Common
open import SOAS.Syntax.Signature *T public
open import SOAS.Syntax.Build *T public
-- Operator symbols
data CRₒ : Set where
zeroₒ addₒ oneₒ multₒ negₒ : CRₒ
-- Term signature
CR:Sig : Signature CRₒ
CR:Sig = sig λ
{ zeroₒ → ⟼₀ *
; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; oneₒ → ⟼₀ *
; multₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
; negₒ → (⊢₀ *) ⟼₁ *
}
open Signature CR:Sig public
|
{
"alphanum_fraction": 0.5062916358,
"avg_line_length": 23.2931034483,
"ext": "agda",
"hexsha": "21e448f32f7ffe0ba851a14c7895613d0300ff13",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/CommRing/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/CommRing/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/CommRing/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 686,
"size": 1351
}
|
module examplesPaperJFP.Console where
open import examplesPaperJFP.NativeIOSafe
open import examplesPaperJFP.BasicIO hiding (main)
open import examplesPaperJFP.ConsoleInterface public
IOConsole : Set → Set
IOConsole = IO ConsoleInterface
--IOConsole+ : Set → Set
--IOConsole+ = IO+ ConsoleInterface
translateIOConsoleLocal : (c : ConsoleCommand) → NativeIO (ConsoleResponse c)
translateIOConsoleLocal (putStrLn s) = nativePutStrLn s
translateIOConsoleLocal getLine = nativeGetLine
translateIOConsole : {A : Set} → IOConsole A → NativeIO A
translateIOConsole = translateIO translateIOConsoleLocal
main : NativeIO Unit
main = nativePutStrLn "Console"
|
{
"alphanum_fraction": 0.7991004498,
"avg_line_length": 30.3181818182,
"ext": "agda",
"hexsha": "38e20ccbd1cb8c1bec373c62530f52d5b011de9c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/Console.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/Console.agda",
"max_line_length": 77,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/Console.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 168,
"size": 667
}
|
open import Signature
import Program
-- | Herbrand model that takes the distinction between inductive
-- and coinductive clauses into account.
module Herbrand (Σ : Sig) (V : Set) (P : Program.Program Σ V) where
open import Function
open import Data.Empty
open import Data.Product as Prod renaming (Σ to ⨿)
open import Data.Sum as Sum
open import Relation.Unary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Program Σ V
open import Terms Σ
mutual
record Herbrand-ν (t : T∞ ⊥) : Set where
coinductive
field
bw-closed :
(∀ (i : dom-ν P) {σ} →
(t ~ app∞ σ (χ (geth-ν P i))) →
∀ (j : dom (getb-ν P i)) →
(app∞ σ (χ (get (getb-ν P i) j))) ∈ Herbrand-ν)
⊎ (t ∈ Herbrand-μ)
data Herbrand-μ : T∞ ⊥ → Set where
fw-closed : (t : T∞ ⊥) → (t ∈ Herbrand-μ) → (i : dom-μ P) (σ : Subst∞ V ⊥) →
t ≡ app∞ σ (χ (geth-μ P i)) → (j : dom (getb-μ P i)) →
Herbrand-μ (app∞ σ (χ (get (getb-μ P i) j)))
coind-μ : {t : T∞ ⊥} → t ∈ Herbrand-ν → Herbrand-μ t
open Herbrand-ν public
|
{
"alphanum_fraction": 0.5834084761,
"avg_line_length": 30.8055555556,
"ext": "agda",
"hexsha": "afdc71420798a8b498d86517f0721513026d3459",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "LP/Herbrand.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "LP/Herbrand.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "LP/Herbrand.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 399,
"size": 1109
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Bool.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
-- Obtain the booleans
open import Agda.Builtin.Bool public
infixr 6 _and_
infixr 5 _or_
not : Bool → Bool
not true = false
not false = true
_or_ : Bool → Bool → Bool
false or false = false
false or true = true
true or false = true
true or true = true
_and_ : Bool → Bool → Bool
false and false = false
false and true = false
true and false = false
true and true = true
caseBool : ∀ {ℓ} → {A : Type ℓ} → (a0 aS : A) → Bool → A
caseBool att aff true = att
caseBool att aff false = aff
_≟_ : Discrete Bool
false ≟ false = yes refl
false ≟ true = no λ p → subst (caseBool ⊥ Bool) p true
true ≟ false = no λ p → subst (caseBool Bool ⊥) p true
true ≟ true = yes refl
Dec→Bool : ∀ {ℓ} {A : Type ℓ} → Dec A → Bool
Dec→Bool (yes p) = true
Dec→Bool (no ¬p) = false
|
{
"alphanum_fraction": 0.6883988495,
"avg_line_length": 21.7291666667,
"ext": "agda",
"hexsha": "e4c5f37352e54000c1f8d72db89f0e84fd6cf0b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Bool/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Bool/Base.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Bool/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 344,
"size": 1043
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.QuotientRing where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetQuotients hiding (_/_)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.QuotientRing renaming (_/_ to _/Ring_) hiding (asRing)
private
variable
ℓ : Level
_/_ : (R : CommRing ℓ) → (I : IdealsIn R) → CommRing ℓ
R / I =
fst asRing , commringstr _ _ _ _ _
(iscommring (RingStr.isRing (snd asRing))
(elimProp2 (λ _ _ → squash/ _ _)
commEq))
where
asRing = (CommRing→Ring R) /Ring (CommIdeal→Ideal I)
_·/_ : fst asRing → fst asRing → fst asRing
_·/_ = RingStr._·_ (snd asRing)
commEq : (x y : fst R) → ([ x ] ·/ [ y ]) ≡ ([ y ] ·/ [ x ])
commEq x y i = [ CommRingStr.·Comm (snd R) x y i ]
[_]/ : {R : CommRing ℓ} {I : IdealsIn R} → (a : fst R) → fst (R / I)
[ a ]/ = [ a ]
|
{
"alphanum_fraction": 0.5823754789,
"avg_line_length": 32.625,
"ext": "agda",
"hexsha": "f5e2e55e58d506ef411151aa9f97a05fbbe39044",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/QuotientRing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 333,
"size": 1044
}
|
{-# OPTIONS --rewriting #-}
module RingSolving where
open import Data.Nat hiding (_≟_)
open import Data.Nat.Properties hiding (_≟_)
import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality
open import Agda.Builtin.Equality.Rewrite
open import Function
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
module _ (A : Set) where
infixr 5 _+H_
infixr 6 _*H_
infixr 5 _:+_
infixr 6 _:*_
infixr 5 _+A_
infixr 6 _*A_
postulate
#0 : A
#1 : A
_+A_ : A → A → A
_*A_ : A → A → A
data Poly : Set where
con : A → Poly
var : Poly
_:+_ : Poly → Poly → Poly
_:*_ : Poly → Poly → Poly
data Horner : Set where
PC : A → Horner
PX : A → Horner → Horner
scalMapHorner : (A → A) → Horner → Horner
scalMapHorner f (PC x) = PC (f x)
scalMapHorner f (PX x xs) = PX (f x) (scalMapHorner f xs)
postulate
extensionality : {S : Set}{T : S -> Set}
{f g : (x : S) -> T x} ->
((x : S) -> f x ≡ g x) ->
f ≡ g
postulate
+A-id-l : ∀ m → #0 +A m ≡ m
*A-id-l : ∀ m → #1 *A m ≡ m
+A-id-r : ∀ m → m +A #0 ≡ m
*A-id-r : ∀ m → m *A #1 ≡ m
+A-assoc : ∀ m n p → (m +A n) +A p ≡ m +A n +A p
*A-assoc : ∀ m n p → (m *A n) *A p ≡ m *A n *A p
+A-comm : ∀ m n → m +A n ≡ n +A m
*A-comm : ∀ m n → m *A n ≡ n *A m
*A-+A-distrib : ∀ m n p → m *A (n +A p) ≡ m *A n +A m *A p
*A-annhiliate-r : ∀ m → m *A #0 ≡ #0
*A-annhiliate-l : ∀ m → #0 *A m ≡ #0
*A-+A-distrib′ : ∀ m n p → (m +A n) *A p ≡ m *A p +A n *A p
*A-+A-distrib′ m n p =
begin
(m +A n) *A p ≡⟨ *A-comm (m +A n) p ⟩
p *A (m +A n) ≡⟨ *A-+A-distrib p m n ⟩
p *A m +A p *A n ≡⟨ cong₂ (_+A_) (*A-comm p m) (*A-comm p n) ⟩
m *A p +A n *A p
∎
where open ≡-Reasoning
{-# REWRITE +A-id-l *A-id-l +A-id-r *A-id-r *A-annhiliate-r *A-annhiliate-l +A-assoc *A-assoc *A-+A-distrib #-}
_+H_ : Horner → Horner → Horner
_+H_ (PC x) (PC y) = PC (x +A y)
_+H_ (PC x) (PX y ys) = PX (x +A y) ys
_+H_ (PX x xs) (PC y) = PX (x +A y) xs
_+H_ (PX x xs) (PX y ys) = PX (x +A y) (_+H_ xs ys)
is-lt : (m : ℕ) → (n : ℕ) → n ⊔ (m Data.Nat.+ suc n) ≡ m Data.Nat.+ suc n
is-lt m n = m≤n⇒m⊔n≡n $
begin
n ≤⟨ n≤1+n n ⟩
suc n ≤⟨ m≤n+m (suc n) m ⟩
m Data.Nat.+ suc n
∎
where open ≤-Reasoning
_*H_ : Horner → Horner → Horner
_*H_ (PC x) y = scalMapHorner (x *A_) y
_*H_ (PX x xs) y = (scalMapHorner (x *A_) y) +H (PX #0 (xs *H y))
evaluate : Horner → A → A
evaluate (PC x) v = x
evaluate (PX x xs) v = x +A (v *A evaluate xs v)
varH : Horner
varH = PX #0 $ PC #1
conH : A → Horner
conH = PC
construct : Poly → A → A
construct (con x) a = x
construct var a = a
construct (p :+ p2) a = construct p a +A construct p2 a
construct (p :* p2) a = construct p a *A construct p2 a
normalize : Poly → Horner
normalize (con x) = conH x
normalize var = varH
normalize (x :+ y) = normalize x +H normalize y
normalize (x :* y) = normalize x *H normalize y
swap : ∀ m n j k → (m +A n) +A (j +A k) ≡ (m +A j) +A (n +A k)
swap m n j k =
begin
(m +A n) +A (j +A k) ≡⟨ +A-assoc m n (j +A k) ⟩
m +A (n +A (j +A k)) ≡⟨ cong (m +A_) $ sym $ +A-assoc n j k ⟩
m +A ((n +A j) +A k) ≡⟨ cong (\ φ → m +A (φ +A k)) $ +A-comm n j ⟩
m +A ((j +A n) +A k) ≡⟨ cong (m +A_) $ +A-assoc j n k ⟩
m +A (j +A (n +A k)) ≡⟨ sym $ +A-assoc m j (n +A k) ⟩
(m +A j) +A (n +A k)
∎
where open Eq.≡-Reasoning
swap2-+A : ∀ m n p → m +A (n +A p) ≡ n +A (m +A p)
swap2-+A m n p =
begin
m +A (n +A p) ≡⟨ +A-assoc m n p ⟩
(m +A n) +A p ≡⟨ cong ( _+A p) $ +A-comm m n ⟩
(n +A m) +A p ≡⟨ sym $ +A-assoc n m p ⟩
n +A (m +A p)
∎
where open Eq.≡-Reasoning
swap2-*A : ∀ m n p → m *A (n *A p) ≡ n *A (m *A p)
swap2-*A m n p =
begin
m *A (n *A p) ≡⟨ *A-assoc m n p ⟩
(m *A n) *A p ≡⟨ cong ( _*A p) $ *A-comm m n ⟩
(n *A m) *A p ≡⟨ sym $ *A-assoc n m p ⟩
n *A (m *A p)
∎
where open Eq.≡-Reasoning
+A-+H-homo : ∀ j k a → evaluate j a +A evaluate k a ≡ evaluate (j +H k) a
+A-+H-homo (PC x) (PC x₁) a = refl
+A-+H-homo (PC x) (PX x₁ k) a = refl
+A-+H-homo (PX x x₁) (PC x₂) a =
begin
x +A ((a *A evaluate x₁ a) +A x₂) ≡⟨ cong (x +A_) $ +A-comm (a *A evaluate x₁ a) x₂ ⟩
x +A (x₂ +A (a *A evaluate x₁ a))
∎
where open Eq.≡-Reasoning
+A-+H-homo (PX x x₁) (PX x₂ y) a rewrite +A-+H-homo x₁ y a =
begin
(x +A (a *A evaluate x₁ a)) +A (x₂ +A (a *A evaluate y a)) ≡⟨ swap x (a *A evaluate x₁ a) x₂ (a *A evaluate y a) ⟩
(x +A x₂) +A ((a *A evaluate x₁ a) +A (a *A evaluate y a)) ≡⟨ cong (\φ → (x +A x₂) +A φ) (sym $ *A-+A-distrib a (evaluate x₁ a) (evaluate y a)) ⟩
(x +A x₂) +A (a *A (evaluate x₁ a +A evaluate y a)) ≡⟨ cong (\φ → (x +A x₂) +A (a *A φ)) (+A-+H-homo x₁ y a) ⟩
(x +A x₂) +A (a *A evaluate (x₁ +H y) a)
∎
where open Eq.≡-Reasoning
scale-evaluate : ∀ x k a → x *A evaluate k a ≡ evaluate (scalMapHorner (x *A_) k) a
scale-evaluate x (PC x₁) a = refl
scale-evaluate x (PX x₁ k) a =
begin
x *A evaluate (PX x₁ k) a ≡⟨⟩
x *A (x₁ +A (a *A evaluate k a)) ≡⟨ *A-+A-distrib x x₁ (a *A evaluate k a) ⟩
(x *A x₁) +A (x *A (a *A evaluate k a)) ≡⟨ cong ((x *A x₁) +A_) $ swap2-*A x a $ evaluate k a ⟩
(x *A x₁) +A (a *A (x *A evaluate k a)) ≡⟨ cong (\ φ → (x *A x₁) +A (a *A φ)) $ scale-evaluate x k a ⟩
(x *A x₁) +A (a *A evaluate (scalMapHorner (x *A_) k) a) ≡⟨⟩
evaluate (PX (x *A x₁) (scalMapHorner (x *A_) k)) a ≡⟨⟩
evaluate (scalMapHorner (x *A_) (PX x₁ k)) a
∎
where open Eq.≡-Reasoning
*A-*H-homo : ∀ j k a → evaluate j a *A evaluate k a ≡ evaluate (j *H k) a
*A-*H-homo (PC x) k a = scale-evaluate x k a
*A-*H-homo (PX x j) k a =
begin
evaluate (PX x j) a *A evaluate k a ≡⟨⟩
(x +A a *A evaluate j a) *A evaluate k a ≡⟨ *A-+A-distrib′ x (a *A evaluate j a) (evaluate k a) ⟩
x *A (evaluate k a) +A (a *A evaluate j a) *A evaluate k a ≡⟨ cong₂ _+A_ (scale-evaluate x k a) (cong (a *A_) (*A-*H-homo j k a)) ⟩
evaluate (scalMapHorner (_*A_ x) k) a +A evaluate (PX #0 (j *H k)) a ≡⟨ +A-+H-homo (scalMapHorner (_*A_ x) k) (PX #0 (j *H k)) a ⟩
evaluate (scalMapHorner (_*A_ x) k +H PX #0 (j *H k)) a ≡⟨⟩
evaluate (PX x j *H k) a
∎
where open Eq.≡-Reasoning
isoToConstruction : (x : Poly) → (a : A) → construct x a ≡ evaluate (normalize x) a
isoToConstruction (con x) a = refl
isoToConstruction var a = refl
isoToConstruction (x :+ y) a
rewrite isoToConstruction x a
| isoToConstruction y a
| +A-+H-homo (normalize x) (normalize y) a
= refl
isoToConstruction (x :* y) a
rewrite isoToConstruction x a
| isoToConstruction y a
| *A-*H-homo (normalize x) (normalize y) a
= refl
solve : (x y : Poly) → normalize x ≡ normalize y → (a : A) → construct x a ≡ construct y a
solve x y eq a =
begin
construct x a ≡⟨ isoToConstruction x a ⟩
evaluate (normalize x) a ≡⟨ cong (\φ → evaluate φ a) eq ⟩
evaluate (normalize y) a ≡⟨ sym $ isoToConstruction y a ⟩
construct y a
∎
where open Eq.≡-Reasoning
test-a : Poly
test-a = (var :+ con #1) :* (var :+ con #1)
test-b : Poly
test-b = var :* var :+ two :* var :+ con #1
where
two = con #1 :+ con #1
blah : (x : A) → (x +A #1) *A (x +A #1) ≡ (x *A x) +A (#1 +A #1) *A x +A #1
blah x = solve test-a test-b refl x
|
{
"alphanum_fraction": 0.4891025641,
"avg_line_length": 33.9130434783,
"ext": "agda",
"hexsha": "ccbf7cf90c4ac28651ac1bfdb2b751bc9cb4b39e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-02-17T08:46:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-02-17T08:46:57.000Z",
"max_forks_repo_head_hexsha": "cf6faf7103acd54c67f3464b1968387a98dd8fa2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "dominiquedevriese/reviews",
"max_forks_repo_path": "agda-src/RingSolving.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "cf6faf7103acd54c67f3464b1968387a98dd8fa2",
"max_issues_repo_issues_event_max_datetime": "2022-02-17T16:51:24.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-02-17T09:10:00.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "dominiquedevriese/reviews",
"max_issues_repo_path": "agda-src/RingSolving.agda",
"max_line_length": 152,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "cf6faf7103acd54c67f3464b1968387a98dd8fa2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "dominiquedevriese/reviews",
"max_stars_repo_path": "agda-src/RingSolving.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-22T15:07:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-08T00:57:08.000Z",
"num_tokens": 3445,
"size": 7800
}
|
import Lvl
open import Data.Boolean
open import Type
module Data.List.Sorting.Functions {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
open import Data.List
import Data.List.Functions as List
-- Inserts an element to a sorted list so that the resulting list is still sorted.
insert : T → List(T) → List(T)
insert x ∅ = List.singleton(x)
insert x (y ⊰ l) = if(x ≤? y) then (x ⊰ y ⊰ l) else (y ⊰ insert x l)
-- Merges two sorted lists so that the resulting list is still sorted.
merge : List(T) → List(T) → List(T)
merge = List.foldᵣ insert
-- Merges a list of sorted lists so that the resulting list is still sorted.
mergeAll : List(List(T)) → List(T)
mergeAll = List.foldᵣ merge ∅
open import Data.Tuple
open import Data.Option
import Data.Option.Functions as Option
-- Extracts a smallest element from a list.
extractMinimal : List(T) → Option(T ⨯ List(T))
extractMinimal ∅ = None
extractMinimal (x ⊰ ∅) = Some(x , ∅)
extractMinimal (x ⊰ l@(_ ⊰ _)) = Option.map(\{(la , las) → if(x ≤? la) then (x , l) else (la , x ⊰ las)}) (extractMinimal l)
|
{
"alphanum_fraction": 0.6550777676,
"avg_line_length": 34.15625,
"ext": "agda",
"hexsha": "619ba9d085a64ad5d58892eb88af4b0dd479d3f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Sorting/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Sorting/Functions.agda",
"max_line_length": 124,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Sorting/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 331,
"size": 1093
}
|
{-# OPTIONS --without-K #-}
module Types where
-- Universe levels
postulate -- Universe levels
Level : Set
zero : Level
suc : Level → Level
max : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX max #-}
-- Empty type
data ⊥ {i} : Set i where -- \bot
abort : ∀ {i j} {P : ⊥ {i} → Set j} → ((x : ⊥) → P x)
abort ()
abort-nondep : ∀ {i j} {A : Set j} → (⊥ {i} → A)
abort-nondep ()
¬ : ∀ {i} (A : Set i) → Set i
¬ A = A → ⊥ {zero}
-- Unit type
record unit {i} : Set i where
constructor tt
⊤ = unit -- \top
-- Booleans
data bool {i} : Set i where
true : bool
false : bool
-- Dependent sum
record Σ {i j} (A : Set i) (P : A → Set j) : Set (max i j) where -- \Sigma
constructor _,_
field
π₁ : A -- \pi\_1
π₂ : P (π₁) -- \pi\_2
open Σ public
-- Disjoint sum
data _⊔_ {i j} (A : Set i) (B : Set j) : Set (max i j) where -- \sqcup
inl : A → A ⊔ B
inr : B → A ⊔ B
-- Product
_×_ : ∀ {i j} (A : Set i) (B : Set j) → Set (max i j) -- \times
A × B = Σ A (λ _ → B)
-- Dependent product
Π : ∀ {i j} (A : Set i) (P : A → Set j) → Set (max i j)
Π A P = (x : A) → P x
-- Natural numbers
data ℕ : Set where -- \bn
O : ℕ
S : (n : ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO O #-}
{-# BUILTIN SUC S #-}
-- Truncation index (isomorphic to the type of integers ≥ -2)
data ℕ₋₂ : Set where
⟨-2⟩ : ℕ₋₂
S : (n : ℕ₋₂) → ℕ₋₂
⟨-1⟩ : ℕ₋₂
⟨-1⟩ = S ⟨-2⟩
⟨0⟩ : ℕ₋₂
⟨0⟩ = S ⟨-1⟩
_-1 : ℕ → ℕ₋₂
O -1 = ⟨-1⟩
(S n) -1 = S (n -1)
⟨_⟩ : ℕ → ℕ₋₂
⟨ n ⟩ = S (n -1)
⟨1⟩ = ⟨ 1 ⟩
⟨2⟩ = ⟨ 2 ⟩
_+2+_ : ℕ₋₂ → ℕ₋₂ → ℕ₋₂
⟨-2⟩ +2+ n = n
S m +2+ n = S (m +2+ n)
-- Integers
data ℤ : Set where -- \bz
O : ℤ
pos : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
-- Lifting
record lift {i} (j : Level) (A : Set i) : Set (max i j) where
constructor ↑ -- \u
field
↓ : A -- \d
open lift public
|
{
"alphanum_fraction": 0.4855794442,
"avg_line_length": 16.2991452991,
"ext": "agda",
"hexsha": "1bc05a3599c20dd4e18b3d7aa7cf8f6d92004285",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Types.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Types.agda",
"max_line_length": 75,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Types.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 843,
"size": 1907
}
|
------------------------------------------------------------------------------
-- Auxiliary properties of the McCarthy 91 function
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.McCarthy91.AuxiliaryPropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x<y→y≤z→x<z )
open import FOTC.Data.Nat.PropertiesATP
using ( +-N
; ∸-N
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP
using ( x<x+1 )
open import FOTC.Program.McCarthy91.ArithmeticATP
open import FOTC.Program.McCarthy91.McCarthy91
------------------------------------------------------------------------------
--- Auxiliary properties
postulate x>100→x<f₉₁-x+11 : ∀ {n} → N n → n > 100' → n < f₉₁ n + 11'
{-# ATP prove x>100→x<f₉₁-x+11 +-N ∸-N x<y→y≤z→x<z x<x+1 x+1≤x∸10+11 #-}
-- Case n ≡ 100 can be proved automatically
postulate f₉₁-100 : f₉₁ 100' ≡ 91'
{-# ATP prove f₉₁-100 100+11>100 100+11∸10>100 101≡100+11∸10 91≡100+11∸10∸10 #-}
postulate f₉₁x+11<f₉₁x+11 : ∀ n →
n ≯ 100' →
f₉₁ (n + 11') < f₉₁ (f₉₁ (n + 11')) + 11' →
f₉₁ (n + 11') < f₉₁ n + 11'
{-# ATP prove f₉₁x+11<f₉₁x+11 #-}
postulate f₉₁-x≯100-helper : ∀ m n →
m ≯ 100' →
f₉₁ (m + 11') ≡ n →
f₉₁ n ≡ 91' →
f₉₁ m ≡ 91'
{-# ATP prove f₉₁-x≯100-helper #-}
postulate
f₉₁-110 : f₉₁ (99' + 11') ≡ 100'
f₉₁-109 : f₉₁ (98' + 11') ≡ 99'
f₉₁-108 : f₉₁ (97' + 11') ≡ 98'
f₉₁-107 : f₉₁ (96' + 11') ≡ 97'
f₉₁-106 : f₉₁ (95' + 11') ≡ 96'
f₉₁-105 : f₉₁ (94' + 11') ≡ 95'
f₉₁-104 : f₉₁ (93' + 11') ≡ 94'
f₉₁-103 : f₉₁ (92' + 11') ≡ 93'
f₉₁-102 : f₉₁ (91' + 11') ≡ 92'
f₉₁-101 : f₉₁ (90' + 11') ≡ 91'
{-# ATP prove f₉₁-110 99+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-109 98+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-108 97+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-107 96+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-106 95+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-105 94+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-104 93+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-103 92+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-102 91+11>100 x+11∸10≡Sx #-}
{-# ATP prove f₉₁-101 90+11>100 x+11∸10≡Sx #-}
postulate
f₉₁-99 : f₉₁ 99' ≡ 91'
f₉₁-98 : f₉₁ 98' ≡ 91'
f₉₁-97 : f₉₁ 97' ≡ 91'
f₉₁-96 : f₉₁ 96' ≡ 91'
f₉₁-95 : f₉₁ 95' ≡ 91'
f₉₁-94 : f₉₁ 94' ≡ 91'
f₉₁-93 : f₉₁ 93' ≡ 91'
f₉₁-92 : f₉₁ 92' ≡ 91'
f₉₁-91 : f₉₁ 91' ≡ 91'
f₉₁-90 : f₉₁ 90' ≡ 91'
{-# ATP prove f₉₁-99 f₉₁-x≯100-helper f₉₁-110 f₉₁-100 #-}
{-# ATP prove f₉₁-98 f₉₁-x≯100-helper f₉₁-109 f₉₁-99 #-}
{-# ATP prove f₉₁-97 f₉₁-x≯100-helper f₉₁-108 f₉₁-98 #-}
{-# ATP prove f₉₁-96 f₉₁-x≯100-helper f₉₁-107 f₉₁-97 #-}
{-# ATP prove f₉₁-95 f₉₁-x≯100-helper f₉₁-106 f₉₁-96 #-}
{-# ATP prove f₉₁-94 f₉₁-x≯100-helper f₉₁-105 f₉₁-95 #-}
{-# ATP prove f₉₁-93 f₉₁-x≯100-helper f₉₁-104 f₉₁-94 #-}
{-# ATP prove f₉₁-92 f₉₁-x≯100-helper f₉₁-103 f₉₁-93 #-}
{-# ATP prove f₉₁-91 f₉₁-x≯100-helper f₉₁-102 f₉₁-92 #-}
{-# ATP prove f₉₁-90 f₉₁-x≯100-helper f₉₁-101 f₉₁-91 #-}
f₉₁-x≡y : ∀ {m n o} → f₉₁ m ≡ n → o ≡ m → f₉₁ o ≡ n
f₉₁-x≡y h refl = h
|
{
"alphanum_fraction": 0.5222568755,
"avg_line_length": 37.1263157895,
"ext": "agda",
"hexsha": "d1bc19e731f762e475469ad6c287bd791b79e602",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/AuxiliaryPropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/AuxiliaryPropertiesATP.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/AuxiliaryPropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1639,
"size": 3527
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module ExtractFunction where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
plus : Nat -> Nat -> Nat
plus = {! !}
function1 : (x : Nat) -> (y : Nat) -> Nat
function1 x y = plus x y
pickTheFirst : Nat -> Bool -> Nat
pickTheFirst x y = x
function2 : Nat -> Bool -> Nat
function2 x y = pickTheFirst x y
|
{
"alphanum_fraction": 0.6527777778,
"avg_line_length": 20,
"ext": "agda",
"hexsha": "7c3aaba3c81865926290b27b713c90ead5ba3362",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractFunction.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractFunction.agda",
"max_line_length": 41,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/ExtractFunction.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 112,
"size": 360
}
|
{-# OPTIONS --without-K #-}
open import Base
open import Algebra.Groups
open import Integers
open import Homotopy.Truncation
open import Homotopy.Pointed
open import Homotopy.PathTruncation
open import Homotopy.Connected
-- Definitions and properties of homotopy groups
module Homotopy.HomotopyGroups {i} where
-- Loop space
Ω : (X : pType i) → pType i
Ω X = ⋆[ ⋆ X ≡ ⋆ X , refl ]
Ω-pregroup : (X : pType i) → pregroup i
Ω-pregroup X = record
{ carrier = (⋆ X) ≡ (⋆ X)
; _∙_ = _∘_
; e = refl
; _′ = !
; assoc = concat-assoc
; right-unit = refl-right-unit
; left-unit = λ _ → refl
; right-inverse = opposite-right-inverse
; left-inverse = opposite-left-inverse
}
Ωⁿ-pregroup : (n : ℕ) ⦃ ≢0 : n ≢ O ⦄ (X : pType i) → pregroup i
Ωⁿ-pregroup O ⦃ ≢0 ⦄ X = abort-nondep (≢0 refl)
Ωⁿ-pregroup 1 X = Ω-pregroup X
Ωⁿ-pregroup (S (S n)) X = Ωⁿ-pregroup (S n) (Ω X)
-- Homotopy groups
πⁿ-group : (n : ℕ) ⦃ >0 : n ≢ O ⦄ (X : pType i) → group i
πⁿ-group n X = π₀-pregroup (Ωⁿ-pregroup n X)
fundamental-group : (X : pType i) → group i
fundamental-group X = πⁿ-group 1 ⦃ ℕ-S≢O 0 ⦄ X
-- Homotopy groups of loop space
πⁿ-group-from-πⁿΩ : (n : ℕ) ⦃ ≢0 : n ≢ 0 ⦄ (X : pType i)
→ πⁿ-group (S n) X ≡ πⁿ-group n (Ω X)
πⁿ-group-from-πⁿΩ O ⦃ ≢0 ⦄ X = abort-nondep (≢0 refl)
πⁿ-group-from-πⁿΩ 1 X = refl
πⁿ-group-from-πⁿΩ (S (S n)) X = refl
-- Homotopy groups of spaces of a given h-level
abstract
truncated-πⁿ-group : (n : ℕ) ⦃ ≢0 : n ≢ 0 ⦄ (X : pType i)
(p : is-truncated (n -1) ∣ X ∣)
→ πⁿ-group n X ≡ unit-group
truncated-πⁿ-group O ⦃ ≢0 ⦄ X p = abort-nondep (≢0 refl)
truncated-πⁿ-group 1 X p =
unit-group-unique _
(proj refl ,
π₀-extend ⦃ p = λ x → truncated-is-truncated-S _ (π₀-is-set _ _ _) ⦄
(λ x → ap proj (π₁ (p _ _ _ _))))
truncated-πⁿ-group (S (S n)) X p =
truncated-πⁿ-group (S n) (Ω X) (λ x y → p _ _ x y)
Ωⁿ : (n : ℕ) (X : pType i) → pType i
Ωⁿ 0 X = X
Ωⁿ (S n) X = Ω (Ωⁿ n X)
πⁿ : (n : ℕ) (X : pType i) → pType i
πⁿ n X = τ⋆ ⟨0⟩ (Ωⁿ n X)
other-πⁿ : (n : ℕ) (X : pType i) → pType i
other-πⁿ n X = Ωⁿ n (τ⋆ ⟨ n ⟩ X)
ap-Ω-equiv : (X Y : pType i) (e : X ≃⋆ Y)
→ Ω X ≃⋆ Ω Y
ap-Ω-equiv X Y e = transport (λ u → Ω X ≃⋆ Ω u) (pType-eq e) (id-equiv⋆ _)
τ⋆Ω-is-Ωτ⋆S : (n : ℕ₋₂) (X : pType i)
→ τ⋆ n (Ω X) ≃⋆ Ω (τ⋆ (S n) X)
τ⋆Ω-is-Ωτ⋆S n X = (τ-path-equiv-path-τ-S , refl)
τ⋆kΩⁿ-is-Ωⁿτ⋆n+k : (k n : ℕ) (X : pType i)
→ τ⋆ ⟨ k ⟩ (Ωⁿ n X) ≃⋆ Ωⁿ n (τ⋆ ⟨ n + k ⟩ X)
τ⋆kΩⁿ-is-Ωⁿτ⋆n+k k O X = id-equiv⋆ _
τ⋆kΩⁿ-is-Ωⁿτ⋆n+k k (S n) X =
equiv-compose⋆ (τ⋆Ω-is-Ωτ⋆S _ _) (ap-Ω-equiv _ _
(equiv-compose⋆ (τ⋆kΩⁿ-is-Ωⁿτ⋆n+k (S k) n _)
(transport (λ u → Ωⁿ n (τ⋆ ⟨ n + S k ⟩ X) ≃⋆ Ωⁿ n (τ⋆ ⟨ u ⟩ X))
(+S-is-S+ n k) (id-equiv⋆ _))))
πⁿ-is-other-πⁿ : (n : ℕ) (X : pType i) → πⁿ n X ≃⋆ other-πⁿ n X
πⁿ-is-other-πⁿ n X =
transport (λ u → πⁿ n X ≃⋆ Ωⁿ n (τ⋆ ⟨ u ⟩ X)) (+0-is-id n)
(τ⋆kΩⁿ-is-Ωⁿτ⋆n+k 0 n X)
contr-is-contr-Ω : (X : pType i) → (is-contr⋆ X → is-contr⋆ (Ω X))
contr-is-contr-Ω X p = ≡-is-truncated ⟨-2⟩ p
contr-is-contr-Ωⁿ : (n : ℕ) (X : pType i) → (is-contr⋆ X) → is-contr⋆ (Ωⁿ n X)
contr-is-contr-Ωⁿ O X p = p
contr-is-contr-Ωⁿ (S n) X p = contr-is-contr-Ω _ (contr-is-contr-Ωⁿ n X p)
connected-other-πⁿ : (k n : ℕ) (lt : k < S n) (X : pType i)
→ (is-connected⋆ ⟨ n ⟩ X → is-contr⋆ (other-πⁿ k X))
connected-other-πⁿ k n lt X p =
contr-is-contr-Ωⁿ k _ (connected⋆-lt k n lt X p)
connected-πⁿ : (k n : ℕ) (lt : k < S n) (X : pType i)
→ (is-connected⋆ ⟨ n ⟩ X → is-contr⋆ (πⁿ k X))
connected-πⁿ k n lt X p =
equiv-types-truncated _ (π₁ (πⁿ-is-other-πⁿ k X) ⁻¹)
(connected-other-πⁿ k n lt X p)
|
{
"alphanum_fraction": 0.5505036755,
"avg_line_length": 32.2192982456,
"ext": "agda",
"hexsha": "c658083bdbcdb3ebafa13a328507b7ddf1bf5811",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/HomotopyGroups.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/HomotopyGroups.agda",
"max_line_length": 78,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/HomotopyGroups.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1881,
"size": 3673
}
|
{-# OPTIONS -W ignore #-}
module Issue2596b where
-- This warning will be ignored
{-# REWRITE #-}
-- but this error will still be raised
f : Set
f = f
|
{
"alphanum_fraction": 0.660130719,
"avg_line_length": 15.3,
"ext": "agda",
"hexsha": "c1c574cc275200f3e35958ebcb759fce0cbd297e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2596b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2596b.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2596b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 41,
"size": 153
}
|
{-# OPTIONS --without-K #-}
module hott.level.sets.core where
open import sum
open import equality.core
open import sets.unit
open import sets.empty
open import hott.level.core
⊤-contr : ∀ {i} → contr (⊤ {i})
⊤-contr = tt , λ { tt → refl }
⊥-prop : ∀ {i} → h 1 (⊥ {i})
⊥-prop x _ = ⊥-elim x
|
{
"alphanum_fraction": 0.6224489796,
"avg_line_length": 19.6,
"ext": "agda",
"hexsha": "9bd99c35ee3e92169a8cea0e4c90dcfe4ebc5280",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/level/sets/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/level/sets/core.agda",
"max_line_length": 33,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/hott/level/sets/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 107,
"size": 294
}
|
{-# OPTIONS --without-K #-}
module equality.core where
open import sum
open import level using ()
open import function.core
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
sym : ∀ {i} {A : Set i} {x y : A}
→ x ≡ y → y ≡ x
sym refl = refl
_·_ : ∀ {i}{X : Set i}{x y z : X}
→ x ≡ y → y ≡ z → x ≡ z
refl · p = p
infixl 9 _·_
ap : ∀ {i j}{A : Set i}{B : Set j}{x y : A}
→ (f : A → B) → x ≡ y → f x ≡ f y
ap f refl = refl
ap₂ : ∀ {i j k}{A : Set i}{B : Set j}{C : Set k}
{x x' : A}{y y' : B}
→ (f : A → B → C)
→ x ≡ x' → y ≡ y' → f x y ≡ f x' y'
ap₂ f refl refl = refl
subst : ∀ {i j} {A : Set i}{x y : A}
→ (B : A → Set j) → x ≡ y
→ B x → B y
subst B refl = id
subst₂ : ∀ {i j k} {A : Set i}{x x' : A}
{B : Set j}{y y' : B}
→ (C : A → B → Set k)
→ x ≡ x' → y ≡ y'
→ C x y → C x' y'
subst₂ C refl refl = id
singleton : ∀ {i}{A : Set i} → A → Set i
singleton {A = A} a = Σ A λ a' → a ≡ a'
singleton' : ∀ {i}{A : Set i} → A → Set i
singleton' {A = A} a = Σ A λ a' → a' ≡ a
J' : ∀ {i j}{X : Set i}{x : X}
→ (P : (y : X) → x ≡ y → Set j)
→ P x refl
→ (y : X)
→ (p : x ≡ y)
→ P y p
J' P u y refl = u
J : ∀ {i j}{X : Set i}
→ (P : (x y : X) → x ≡ y → Set j)
→ ((x : X) → P x x refl)
→ (x y : X)
→ (p : x ≡ y)
→ P x y p
J P u x y p = J' (P x) (u x) y p
|
{
"alphanum_fraction": 0.3981213873,
"avg_line_length": 21.2923076923,
"ext": "agda",
"hexsha": "3821c6b1fc0cd49f7f1d930a4a667458661a15f2",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "equality/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/equality/core.agda",
"max_line_length": 50,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "equality/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 651,
"size": 1384
}
|
-- The ATP pragma with the role <hint> can be used with functions.
module ATPHint where
postulate
D : Set
data _≡_ (x : D) : D → Set where
refl : x ≡ x
sym : ∀ {m n} → m ≡ n → n ≡ m
sym refl = refl
{-# ATP hint sym #-}
|
{
"alphanum_fraction": 0.5859030837,
"avg_line_length": 16.2142857143,
"ext": "agda",
"hexsha": "236010f509616d05866b812877e743ce9bd1507c",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "examples/ATPHint.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "examples/ATPHint.agda",
"max_line_length": 66,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "examples/ATPHint.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 81,
"size": 227
}
|
{-# OPTIONS --cubical-compatible #-}
open import Agda.Builtin.Bool
data D : Bool → Set where
true : D true
false : D false
F : @0 D false → Set₁
F false = Set
|
{
"alphanum_fraction": 0.6407185629,
"avg_line_length": 15.1818181818,
"ext": "agda",
"hexsha": "cdc0703418ae6cf51874a26af15b87972bba9e55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue4172-2.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue4172-2.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue4172-2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 52,
"size": 167
}
|
------------------------------------------------------------------------
-- Abstract well-formed typing contexts
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Data.Context.WellFormed where
open import Level using (suc; _⊔_; Lift; lift)
open import Data.Fin using (Fin)
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Nat using (ℕ)
open import Data.Unit using (⊤; tt)
open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_)
open import Data.Vec.Relation.Unary.All.Properties using (gmap)
open import Relation.Binary using (REL)
open import Relation.Unary using (Pred)
open import Data.Context
------------------------------------------------------------------------
-- Abstract well-formed typing
-- An abtract well-formedness judgment _⊢_wf : Wf Tp Tm is a binary
-- relation which, in a given Tp-context, asserts the well-formedness
-- of Tm-terms.
Wf : ∀ {t₁ t₂} → Pred ℕ t₁ → Pred ℕ t₂ → ∀ ℓ → Set (t₁ ⊔ t₂ ⊔ suc ℓ)
Wf Tp Tm ℓ = ∀ {n} → REL (Ctx Tp n) (Tm n) ℓ
------------------------------------------------------------------------
-- Abstract well-formed typing contexts and context extensions.
--
-- A well-formed typing context (Γ wf) is a context Γ in which every
-- participating T-type is well-formed.
module ContextFormation {t ℓ} {T : Pred ℕ t} (_⊢_wf : Wf T T ℓ) where
infix 4 _wf _⊢_wfExt
infixr 5 _∷_
-- Well-formed typing contexts and context extensions.
data _wf : ∀ {n} → Ctx T n → Set (t ⊔ ℓ) where
[] : [] wf
_∷_ : ∀ {n t} {Γ : Ctx T n} → Γ ⊢ t wf → Γ wf → t ∷ Γ wf
data _⊢_wfExt {m} (Γ : Ctx T m) : ∀ {n} → CtxExt T m n → Set (t ⊔ ℓ) where
[] : Γ ⊢ [] wfExt
_∷_ : ∀ {n t} {Δ : CtxExt T m n} →
(Δ ++ Γ) ⊢ t wf → Γ ⊢ Δ wfExt → Γ ⊢ t ∷ Δ wfExt
-- Inversions.
wf-∷₁ : ∀ {n} {Γ : Ctx T n} {a} → a ∷ Γ wf → Γ ⊢ a wf
wf-∷₁ (a-wf ∷ _) = a-wf
wf-∷₂ : ∀ {n} {Γ : Ctx T n} {a} → a ∷ Γ wf → Γ wf
wf-∷₂ (_ ∷ Γ-wf) = Γ-wf
wfExt-∷₁ : ∀ {m n} {Γ : Ctx T m} {Δ : CtxExt T m n} {a} →
Γ ⊢ a ∷ Δ wfExt → (Δ ++ Γ) ⊢ a wf
wfExt-∷₁ (a-wf ∷ _) = a-wf
wfExt-∷₂ : ∀ {m n} {Γ : Ctx T m} {Δ : CtxExt T m n} {a} →
Γ ⊢ a ∷ Δ wfExt → Γ ⊢ Δ wfExt
wfExt-∷₂ (_ ∷ Γ-wf) = Γ-wf
-- Operations on well-formed contexts that require weakening of
-- well-formedness judgments.
record WellFormedWeakenOps (typeExtension : Extension T)
: Set (suc (t ⊔ ℓ)) where
private module C = WeakenOps typeExtension
open C hiding (lookup; extLookup)
-- Weakening of well-formedness judgments.
field wf-weaken : ∀ {n} {Γ : Ctx T n} {a b} → Γ ⊢ a wf → Γ ⊢ b wf →
(a ∷ Γ) ⊢ weaken b wf
-- Convert a well-formed context (extension) to its All representation.
toAll : ∀ {n} {Γ : Ctx T n} → Γ wf → All (λ t → Γ ⊢ t wf) (toVec Γ)
toAll [] = []
toAll (t-wf ∷ Γ-wf) =
wf-weaken t-wf t-wf ∷ gmap (wf-weaken t-wf) (toAll Γ-wf)
extToAll : ∀ {m n} {Γ : Ctx T m} {Δ : CtxExt T m n} →
All (λ t → Γ ⊢ t wf) (toVec Γ) → Γ ⊢ Δ wfExt →
All (λ a → (Δ ++ Γ) ⊢ a wf) (toVec (Δ ++ Γ))
extToAll ts-wf [] = ts-wf
extToAll ts-wf (t-wf ∷ Δ-wfExt) =
wf-weaken t-wf t-wf ∷ gmap (wf-weaken t-wf) (extToAll ts-wf Δ-wfExt)
-- Lookup the well-formedness proof of a variable in a context.
lookup : ∀ {n} {Γ : Ctx T n} → Γ wf → (x : Fin n) → Γ ⊢ (C.lookup Γ x) wf
lookup Γ-wf x = All.lookup x (toAll Γ-wf)
extLookup : ∀ {m n} {Γ : Ctx T m} {Δ : CtxExt T m n} →
All (λ t → Γ ⊢ t wf) (toVec Γ) → Γ ⊢ Δ wfExt →
∀ x → (Δ ++ Γ) ⊢ (C.lookup (Δ ++ Γ) x) wf
extLookup ts-wf Γ-wf x = All.lookup x (extToAll ts-wf Γ-wf)
------------------------------------------------------------------------
-- Trivial well-formedness.
--
-- This module provides a trivial well-formedness relation and the
-- corresponding trivially well-formed contexts. This is useful when
-- implmenting typed substitutions on types that either lack or do not
-- necessitate a notion of well-formedness.
module ⊤-WellFormed {ℓ} {T : Pred ℕ ℓ} (typeExtension : Extension T) where
infix 4 _⊢_wf
-- Trivial well-formedness.
_⊢_wf : Wf T T ℓ
_ ⊢ _ wf = Lift ℓ ⊤
open ContextFormation _⊢_wf public
-- Trivial well-formedness of contexts and context extensions.
ctx-wf : ∀ {n} (Γ : Ctx T n) → Γ wf
ctx-wf [] = []
ctx-wf (a ∷ Γ) = lift tt ∷ ctx-wf Γ
ctx-wfExt : ∀ {m n} (Δ : CtxExt T m n) {Γ : Ctx T m} → Γ ⊢ Δ wfExt
ctx-wfExt [] = []
ctx-wfExt (a ∷ Δ) = lift tt ∷ ctx-wfExt Δ
module ⊤-WfWeakenOps where
wfWeakenOps : WellFormedWeakenOps typeExtension
wfWeakenOps = record { wf-weaken = λ _ _ → lift tt }
open WellFormedWeakenOps public
|
{
"alphanum_fraction": 0.5263266146,
"avg_line_length": 33.5310344828,
"ext": "agda",
"hexsha": "532afdd778e18116bfd6732475b97db09bc4d715",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/Data/Context/WellFormed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/Data/Context/WellFormed.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/Data/Context/WellFormed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1718,
"size": 4862
}
|
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Properties where
open import Definition.Untyped
open import Definition.Typed
open import Tools.Empty using (⊥; ⊥-elim)
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Escape context extraction
wfTerm : ∀ {Γ A t} → Γ ⊢ t ∷ A → ⊢ Γ
wfTerm (ℕⱼ ⊢Γ) = ⊢Γ
wfTerm (Emptyⱼ ⊢Γ) = ⊢Γ
wfTerm (Unitⱼ ⊢Γ) = ⊢Γ
wfTerm (Πⱼ F ▹ G) = wfTerm F
wfTerm (var ⊢Γ x₁) = ⊢Γ
wfTerm (lamⱼ F t) with wfTerm t
wfTerm (lamⱼ F t) | ⊢Γ ∙ F′ = ⊢Γ
wfTerm (g ∘ⱼ a) = wfTerm a
wfTerm (zeroⱼ ⊢Γ) = ⊢Γ
wfTerm (sucⱼ n) = wfTerm n
wfTerm (natrecⱼ F z s n) = wfTerm z
wfTerm (Emptyrecⱼ A e) = wfTerm e
wfTerm (starⱼ ⊢Γ) = ⊢Γ
wfTerm (conv t A≡B) = wfTerm t
wfTerm (Σⱼ a ▹ a₁) = wfTerm a
wfTerm (prodⱼ F G a a₁) = wfTerm a
wfTerm (fstⱼ _ _ a) = wfTerm a
wfTerm (sndⱼ _ _ a) = wfTerm a
wf : ∀ {Γ A} → Γ ⊢ A → ⊢ Γ
wf (ℕⱼ ⊢Γ) = ⊢Γ
wf (Emptyⱼ ⊢Γ) = ⊢Γ
wf (Unitⱼ ⊢Γ) = ⊢Γ
wf (Uⱼ ⊢Γ) = ⊢Γ
wf (Πⱼ F ▹ G) = wf F
wf (Σⱼ F ▹ G) = wf F
wf (univ A) = wfTerm A
wfEqTerm : ∀ {Γ A t u} → Γ ⊢ t ≡ u ∷ A → ⊢ Γ
wfEqTerm (refl t) = wfTerm t
wfEqTerm (sym t≡u) = wfEqTerm t≡u
wfEqTerm (trans t≡u u≡r) = wfEqTerm t≡u
wfEqTerm (conv t≡u A≡B) = wfEqTerm t≡u
wfEqTerm (Π-cong F F≡H G≡E) = wfEqTerm F≡H
wfEqTerm (app-cong f≡g a≡b) = wfEqTerm f≡g
wfEqTerm (β-red F t a) = wfTerm a
wfEqTerm (η-eq F f g f0≡g0) = wfTerm f
wfEqTerm (suc-cong n) = wfEqTerm n
wfEqTerm (natrec-cong F≡F′ z≡z′ s≡s′ n≡n′) = wfEqTerm z≡z′
wfEqTerm (natrec-zero F z s) = wfTerm z
wfEqTerm (natrec-suc n F z s) = wfTerm n
wfEqTerm (Emptyrec-cong A≡A' e≡e') = wfEqTerm e≡e'
wfEqTerm (η-unit e e') = wfTerm e
wfEqTerm (Σ-cong F _ _) = wf F
wfEqTerm (fst-cong _ _ a) = wfEqTerm a
wfEqTerm (snd-cong _ _ a) = wfEqTerm a
wfEqTerm (Σ-η _ _ x _ _ _) = wfTerm x
wfEqTerm (Σ-β₁ F G x x₁) = wfTerm x
wfEqTerm (Σ-β₂ F G x x₁) = wfTerm x
wfEq : ∀ {Γ A B} → Γ ⊢ A ≡ B → ⊢ Γ
wfEq (univ A≡B) = wfEqTerm A≡B
wfEq (refl A) = wf A
wfEq (sym A≡B) = wfEq A≡B
wfEq (trans A≡B B≡C) = wfEq A≡B
wfEq (Π-cong F F≡H G≡E) = wf F
wfEq (Σ-cong F x₁ x₂) = wf F
-- Reduction is a subset of conversion
subsetTerm : ∀ {Γ A t u} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ≡ u ∷ A
subsetTerm (natrec-subst F z s n⇒n′) =
natrec-cong (refl F) (refl z) (refl s) (subsetTerm n⇒n′)
subsetTerm (natrec-zero F z s) = natrec-zero F z s
subsetTerm (natrec-suc n F z s) = natrec-suc n F z s
subsetTerm (Emptyrec-subst A n⇒n′) =
Emptyrec-cong (refl A) (subsetTerm n⇒n′)
subsetTerm (app-subst t⇒u a) = app-cong (subsetTerm t⇒u) (refl a)
subsetTerm (β-red A t a) = β-red A t a
subsetTerm (conv t⇒u A≡B) = conv (subsetTerm t⇒u) A≡B
subsetTerm (fst-subst F G x) = fst-cong F G (subsetTerm x)
subsetTerm (snd-subst F G x) = snd-cong F G (subsetTerm x)
subsetTerm (Σ-β₁ F G x x₁) = Σ-β₁ F G x x₁
subsetTerm (Σ-β₂ F G x x₁) = Σ-β₂ F G x x₁
subset : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A ≡ B
subset (univ A⇒B) = univ (subsetTerm A⇒B)
subset*Term : ∀ {Γ A t u} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ t ≡ u ∷ A
subset*Term (id t) = refl t
subset*Term (t⇒t′ ⇨ t⇒*u) = trans (subsetTerm t⇒t′) (subset*Term t⇒*u)
subset* : ∀ {Γ A B} → Γ ⊢ A ⇒* B → Γ ⊢ A ≡ B
subset* (id A) = refl A
subset* (A⇒A′ ⇨ A′⇒*B) = trans (subset A⇒A′) (subset* A′⇒*B)
-- Can extract left-part of a reduction
redFirstTerm : ∀ {Γ t u A} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ∷ A
redFirstTerm (conv t⇒u A≡B) = conv (redFirstTerm t⇒u) A≡B
redFirstTerm (app-subst t⇒u a) = (redFirstTerm t⇒u) ∘ⱼ a
redFirstTerm (β-red A t a) = (lamⱼ A t) ∘ⱼ a
redFirstTerm (natrec-subst F z s n⇒n′) = natrecⱼ F z s (redFirstTerm n⇒n′)
redFirstTerm (natrec-zero F z s) = natrecⱼ F z s (zeroⱼ (wfTerm z))
redFirstTerm (natrec-suc n F z s) = natrecⱼ F z s (sucⱼ n)
redFirstTerm (Emptyrec-subst A n⇒n′) = Emptyrecⱼ A (redFirstTerm n⇒n′)
redFirstTerm (fst-subst F G x) = fstⱼ F G (redFirstTerm x)
redFirstTerm (snd-subst F G x) = sndⱼ F G (redFirstTerm x)
redFirstTerm (Σ-β₁ F G x x₁) = fstⱼ F G (prodⱼ F G x x₁)
redFirstTerm (Σ-β₂ F G x x₁) = sndⱼ F G (prodⱼ F G x x₁)
redFirst : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A
redFirst (univ A⇒B) = univ (redFirstTerm A⇒B)
redFirst*Term : ∀ {Γ t u A} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ t ∷ A
redFirst*Term (id t) = t
redFirst*Term (t⇒t′ ⇨ t′⇒*u) = redFirstTerm t⇒t′
redFirst* : ∀ {Γ A B} → Γ ⊢ A ⇒* B → Γ ⊢ A
redFirst* (id A) = A
redFirst* (A⇒A′ ⇨ A′⇒*B) = redFirst A⇒A′
-- No neutral terms are well-formed in an empty context
noNe : ∀ {t A} → ε ⊢ t ∷ A → Neutral t → ⊥
noNe (conv ⊢t x) n = noNe ⊢t n
noNe (var x₁ ()) (var x)
noNe (⊢t ∘ⱼ ⊢t₁) (∘ₙ neT) = noNe ⊢t neT
noNe (fstⱼ _ _ ⊢t) (fstₙ neT) = noNe ⊢t neT
noNe (sndⱼ _ _ ⊢t) (sndₙ neT) = noNe ⊢t neT
noNe (natrecⱼ x ⊢t ⊢t₁ ⊢t₂) (natrecₙ neT) = noNe ⊢t₂ neT
noNe (Emptyrecⱼ A ⊢e) (Emptyrecₙ neT) = noNe ⊢e neT
-- Neutrals do not weak head reduce
neRedTerm : ∀ {Γ t u A} (d : Γ ⊢ t ⇒ u ∷ A) (n : Neutral t) → ⊥
neRedTerm (conv d x) n = neRedTerm d n
neRedTerm (app-subst d x) (∘ₙ n) = neRedTerm d n
neRedTerm (β-red x x₁ x₂) (∘ₙ ())
neRedTerm (natrec-subst x x₁ x₂ d) (natrecₙ n₁) = neRedTerm d n₁
neRedTerm (natrec-zero x x₁ x₂) (natrecₙ ())
neRedTerm (natrec-suc x x₁ x₂ x₃) (natrecₙ ())
neRedTerm (Emptyrec-subst x d) (Emptyrecₙ n₁) = neRedTerm d n₁
neRedTerm (fst-subst _ _ d) (fstₙ n) = neRedTerm d n
neRedTerm (snd-subst _ _ d) (sndₙ n) = neRedTerm d n
neRedTerm (Σ-β₁ F G x x₁) (fstₙ ())
neRedTerm (Σ-β₂ F G x x₁) (sndₙ ())
neRed : ∀ {Γ A B} (d : Γ ⊢ A ⇒ B) (N : Neutral A) → ⊥
neRed (univ x) N = neRedTerm x N
-- Whnfs do not weak head reduce
whnfRedTerm : ∀ {Γ t u A} (d : Γ ⊢ t ⇒ u ∷ A) (w : Whnf t) → ⊥
whnfRedTerm (conv d x) w = whnfRedTerm d w
whnfRedTerm (app-subst d x) (ne (∘ₙ x₁)) = neRedTerm d x₁
whnfRedTerm (β-red x x₁ x₂) (ne (∘ₙ ()))
whnfRedTerm (natrec-subst x x₁ x₂ d) (ne (natrecₙ x₃)) = neRedTerm d x₃
whnfRedTerm (natrec-zero x x₁ x₂) (ne (natrecₙ ()))
whnfRedTerm (natrec-suc x x₁ x₂ x₃) (ne (natrecₙ ()))
whnfRedTerm (Emptyrec-subst x d) (ne (Emptyrecₙ x₂)) = neRedTerm d x₂
whnfRedTerm (fst-subst _ _ d) (ne (fstₙ n)) = neRedTerm d n
whnfRedTerm (snd-subst _ _ d) (ne (sndₙ n)) = neRedTerm d n
whnfRedTerm (Σ-β₁ F G x x₁) (ne (fstₙ ()))
whnfRedTerm (Σ-β₂ F G x x₁) (ne (sndₙ ()))
whnfRed : ∀ {Γ A B} (d : Γ ⊢ A ⇒ B) (w : Whnf A) → ⊥
whnfRed (univ x) w = whnfRedTerm x w
whnfRed*Term : ∀ {Γ t u A} (d : Γ ⊢ t ⇒* u ∷ A) (w : Whnf t) → t PE.≡ u
whnfRed*Term (id x) Uₙ = PE.refl
whnfRed*Term (id x) Πₙ = PE.refl
whnfRed*Term (id x) Σₙ = PE.refl
whnfRed*Term (id x) ℕₙ = PE.refl
whnfRed*Term (id x) Emptyₙ = PE.refl
whnfRed*Term (id x) Unitₙ = PE.refl
whnfRed*Term (id x) lamₙ = PE.refl
whnfRed*Term (id x) prodₙ = PE.refl
whnfRed*Term (id x) zeroₙ = PE.refl
whnfRed*Term (id x) sucₙ = PE.refl
whnfRed*Term (id x) starₙ = PE.refl
whnfRed*Term (id x) (ne x₁) = PE.refl
whnfRed*Term (conv x x₁ ⇨ d) w = ⊥-elim (whnfRedTerm x w)
whnfRed*Term (x ⇨ d) (ne x₁) = ⊥-elim (neRedTerm x x₁)
whnfRed* : ∀ {Γ A B} (d : Γ ⊢ A ⇒* B) (w : Whnf A) → A PE.≡ B
whnfRed* (id x) w = PE.refl
whnfRed* (x ⇨ d) w = ⊥-elim (whnfRed x w)
-- Whr is deterministic
whrDetTerm : ∀{Γ t u A u′ A′} (d : Γ ⊢ t ⇒ u ∷ A) (d′ : Γ ⊢ t ⇒ u′ ∷ A′) → u PE.≡ u′
whrDetTerm (conv d x) d′ = whrDetTerm d d′
whrDetTerm d (conv d′ x₁) = whrDetTerm d d′
whrDetTerm (app-subst d x) (app-subst d′ x₁) rewrite whrDetTerm d d′ = PE.refl
whrDetTerm (β-red x x₁ x₂) (β-red x₃ x₄ x₅) = PE.refl
whrDetTerm (fst-subst _ _ x) (fst-subst _ _ y) rewrite whrDetTerm x y = PE.refl
whrDetTerm (snd-subst _ _ x) (snd-subst _ _ y) rewrite whrDetTerm x y = PE.refl
whrDetTerm (Σ-β₁ F G x x₁) (Σ-β₁ F₁ G₁ x₂ x₃) = PE.refl
whrDetTerm (Σ-β₂ F G x x₁) (Σ-β₂ F₁ G₁ x₂ x₃) = PE.refl
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-subst x₃ x₄ x₅ d′) rewrite whrDetTerm d d′ = PE.refl
whrDetTerm (natrec-zero x x₁ x₂) (natrec-zero x₃ x₄ x₅) = PE.refl
whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-suc x₄ x₅ x₆ x₇) = PE.refl
whrDetTerm (Emptyrec-subst x d) (Emptyrec-subst x₂ d′) rewrite whrDetTerm d d′ = PE.refl
whrDetTerm (app-subst d x) (β-red x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d lamₙ)
whrDetTerm (β-red x x₁ x₂) (app-subst d x₃) = ⊥-elim (whnfRedTerm d lamₙ)
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-zero x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d zeroₙ)
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-suc x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d sucₙ)
whrDetTerm (natrec-zero x x₁ x₂) (natrec-subst x₃ x₄ x₅ d′) = ⊥-elim (whnfRedTerm d′ zeroₙ)
whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-subst x₄ x₅ x₆ d′) = ⊥-elim (whnfRedTerm d′ sucₙ)
whrDetTerm (fst-subst _ _ x) (Σ-β₁ F G x₁ x₂) = ⊥-elim (whnfRedTerm x prodₙ)
whrDetTerm (snd-subst _ _ x) (Σ-β₂ F G x₁ x₂) = ⊥-elim (whnfRedTerm x prodₙ)
whrDetTerm (Σ-β₁ F G x x₁) (fst-subst _ _ y) = ⊥-elim (whnfRedTerm y prodₙ)
whrDetTerm (Σ-β₂ F G x x₁) (snd-subst _ _ y) = ⊥-elim (whnfRedTerm y prodₙ)
whrDet : ∀{Γ A B B′} (d : Γ ⊢ A ⇒ B) (d′ : Γ ⊢ A ⇒ B′) → B PE.≡ B′
whrDet (univ x) (univ x₁) = whrDetTerm x x₁
whrDet↘Term : ∀{Γ t u A u′} (d : Γ ⊢ t ↘ u ∷ A) (d′ : Γ ⊢ t ⇒* u′ ∷ A) → Γ ⊢ u′ ⇒* u ∷ A
whrDet↘Term (proj₁ , proj₂) (id x) = proj₁
whrDet↘Term (id x , proj₂) (x₁ ⇨ d′) = ⊥-elim (whnfRedTerm x₁ proj₂)
whrDet↘Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ d′) =
whrDet↘Term (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _) (whrDetTerm x x₁) (proj₁ , proj₂)) d′
whrDet*Term : ∀{Γ t u A u′} (d : Γ ⊢ t ↘ u ∷ A) (d′ : Γ ⊢ t ↘ u′ ∷ A) → u PE.≡ u′
whrDet*Term (id x , proj₂) (id x₁ , proj₄) = PE.refl
whrDet*Term (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRedTerm x₁ proj₂)
whrDet*Term (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRedTerm x proj₄)
whrDet*Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ proj₃ , proj₄) =
whrDet*Term (proj₁ , proj₂) (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _)
(whrDetTerm x₁ x) (proj₃ , proj₄))
whrDet* : ∀{Γ A B B′} (d : Γ ⊢ A ↘ B) (d′ : Γ ⊢ A ↘ B′) → B PE.≡ B′
whrDet* (id x , proj₂) (id x₁ , proj₄) = PE.refl
whrDet* (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRed x₁ proj₂)
whrDet* (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRed x proj₄)
whrDet* (A⇒A′ ⇨ A′⇒*B , whnfB) (A⇒A″ ⇨ A″⇒*B′ , whnfB′) =
whrDet* (A′⇒*B , whnfB) (PE.subst (λ x → _ ⊢ x ↘ _)
(whrDet A⇒A″ A⇒A′)
(A″⇒*B′ , whnfB′))
-- Identity of syntactic reduction
idRed:*: : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A :⇒*: A
idRed:*: A = [ A , A , id A ]
idRedTerm:*: : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t :⇒*: t ∷ A
idRedTerm:*: t = [ t , t , id t ]
-- U cannot be a term
UnotInA : ∀ {A Γ} → Γ ⊢ U ∷ A → ⊥
UnotInA (conv U∷U x) = UnotInA U∷U
UnotInA[t] : ∀ {A B t a Γ}
→ t [ a ] PE.≡ U
→ Γ ⊢ a ∷ A
→ Γ ∙ A ⊢ t ∷ B
→ ⊥
UnotInA[t] () x₁ (ℕⱼ x₂)
UnotInA[t] () x₁ (Emptyⱼ x₂)
UnotInA[t] () x₁ (Πⱼ x₂ ▹ x₃)
UnotInA[t] x₁ x₂ (var x₃ here) rewrite x₁ = UnotInA x₂
UnotInA[t] () x₂ (var x₃ (there x₄))
UnotInA[t] () x₁ (lamⱼ x₂ x₃)
UnotInA[t] () x₁ (x₂ ∘ⱼ x₃)
UnotInA[t] () x₁ (zeroⱼ x₂)
UnotInA[t] () x₁ (sucⱼ x₂)
UnotInA[t] () x₁ (natrecⱼ x₂ x₃ x₄ x₅)
UnotInA[t] () x₁ (Emptyrecⱼ x₂ x₃)
UnotInA[t] x x₁ (conv x₂ x₃) = UnotInA[t] x x₁ x₂
redU*Term′ : ∀ {A B U′ Γ} → U′ PE.≡ U → Γ ⊢ A ⇒ U′ ∷ B → ⊥
redU*Term′ U′≡U (conv A⇒U x) = redU*Term′ U′≡U A⇒U
redU*Term′ () (app-subst A⇒U x)
redU*Term′ U′≡U (β-red x x₁ x₂) = UnotInA[t] U′≡U x₂ x₁
redU*Term′ () (natrec-subst x x₁ x₂ A⇒U)
redU*Term′ PE.refl (natrec-zero x x₁ x₂) = UnotInA x₁
redU*Term′ () (natrec-suc x x₁ x₂ x₃)
redU*Term′ () (Emptyrec-subst x A⇒U)
redU*Term′ PE.refl (Σ-β₁ F G x x₁) = UnotInA x
redU*Term′ PE.refl (Σ-β₂ F G x x₁) = UnotInA x₁
redU*Term : ∀ {A B Γ} → Γ ⊢ A ⇒* U ∷ B → ⊥
redU*Term (id x) = UnotInA x
redU*Term (x ⇨ A⇒*U) = redU*Term A⇒*U
-- Nothing reduces to U
redU : ∀ {A Γ} → Γ ⊢ A ⇒ U → ⊥
redU (univ x) = redU*Term′ PE.refl x
redU* : ∀ {A Γ} → Γ ⊢ A ⇒* U → A PE.≡ U
redU* (id x) = PE.refl
redU* (x ⇨ A⇒*U) rewrite redU* A⇒*U = ⊥-elim (redU x)
|
{
"alphanum_fraction": 0.5951848667,
"avg_line_length": 38.2565789474,
"ext": "agda",
"hexsha": "24d44724f7dd019d7007736bdacc38cead9db14d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Properties.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6090,
"size": 11630
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
open import Relation.Binary using (Setoid)
module Fragment.Algebra.Free.Syntax {a ℓ}
(Σ : Signature)
(A : Setoid a ℓ)
where
open import Fragment.Algebra.Algebra Σ
open import Fragment.Algebra.Free.Base Σ
open import Data.Fin using (Fin)
open import Data.Vec using ([]; _∷_)
module _ {n} where
⟨_⟩ : Fin n → ∥ Free (Atoms A n) ∥
⟨ n ⟩ = atom (dyn n)
⟨_⟩ₛ : Setoid.Carrier A → ∥ Free (Atoms A n) ∥
⟨ x ⟩ₛ = atom (sta x)
⟨_⟩₀ : ops Σ 0 → ∥ Free (Atoms A n) ∥
⟨ f ⟩₀ = term f []
⟨_⟩₁_ : ops Σ 1 → ∥ Free (Atoms A n) ∥ → ∥ Free (Atoms A n) ∥
⟨ f ⟩₁ t = term f (t ∷ [])
_⟨_⟩₂_ : ∥ Free (Atoms A n) ∥
→ ops Σ 2
→ ∥ Free (Atoms A n) ∥
→ ∥ Free (Atoms A n) ∥
s ⟨ f ⟩₂ t = term f (s ∷ t ∷ [])
|
{
"alphanum_fraction": 0.5511904762,
"avg_line_length": 23.3333333333,
"ext": "agda",
"hexsha": "052caeb68939f6e521c854d1ab402330b267505b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Free/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Free/Syntax.agda",
"max_line_length": 63,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Free/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 331,
"size": 840
}
|
-- Transport properties
{-# OPTIONS --without-K --safe --exact-split #-}
module Constructive.Axiom.Properties.Transport where
-- agda-stdlib
open import Level renaming (suc to lsuc; zero to lzero)
open import Data.Sum as Sum
open import Data.Product as Prod
open import Relation.Binary.PropositionalEquality
open import Function.Base
import Function.LeftInverse as LInv -- TODO use new packages
import Function.Equality as Eq
-- agda-misc
open import Constructive.Common
open import Constructive.Combinators
open import Constructive.Axiom
open import Constructive.Axiom.Properties.Base
module Transport
{a b p} {A : Set a} {B : Set b}
(f : A → B) (g : B → A) (inv : ∀ x → f (g x) ≡ x)
where
private
∃Pf→∃P : {P : B → Set p} → ∃ (λ x → P (f x)) → ∃ P
∃Pf→∃P (x , Pfx) = (f x , Pfx)
∃P→∃Pf : {P : B → Set p} → ∃ P → ∃ (λ x → P (f x))
∃P→∃Pf {P = P} (x , Px) = g x , subst P (sym (inv x)) Px
∃Qg→∃Q : {Q : A → Set p} → ∃ (λ x → Q (g x)) → ∃ Q
∃Qg→∃Q (x , Qgx) = g x , Qgx
lpo-transport : LPO A p → LPO B p
lpo-transport lpo P? =
Sum.map ∃Pf→∃P (contraposition ∃P→∃Pf) $ lpo (DecU-map f P?)
llpo-transport : LLPO A p → LLPO B p
llpo-transport llpo P? Q? w =
Sum.map (contraposition ∃P→∃Pf) (contraposition ∃P→∃Pf) $
llpo (DecU-map f P?) (DecU-map f Q?)
(contraposition (Prod.map ∃Pf→∃P ∃Pf→∃P) w)
wlpo-Alt-transport : WLPO-Alt A p → WLPO-Alt B p
wlpo-Alt-transport wlpo-Alt P? =
Sum.map (contraposition ∃P→∃Pf) (DN-map ∃Pf→∃P) $ wlpo-Alt (DecU-map f P?)
wlpo-transport : WLPO A p → WLPO B p
wlpo-transport = wlpo-Alt⇒wlpo ∘′ wlpo-Alt-transport ∘′ wlpo⇒wlpo-Alt
mr-transport : MR A p → MR B p
mr-transport mr P? ¬¬∃P =
∃Pf→∃P $ mr (DecU-map f P?) (DN-map ∃P→∃Pf ¬¬∃P)
mp-transport : MP A p → MP B p
mp-transport = mr⇒mp ∘′ mr-transport ∘′ mp⇒mr
wmp-transport : WMP A p → WMP B p
wmp-transport wmp {P = P} P? hyp =
∃Pf→∃P $ wmp (DecU-map f P?)
λ Q? → Sum.map (DN-map ∃Qg→∃Q) (DN-map λ {(x , Px , ¬Qgx) →
g x , (subst P (sym (inv x)) Px) , ¬Qgx }) $ hyp (DecU-map g Q?)
mp⊎-transport : MP⊎ A p → MP⊎ B p
mp⊎-transport mp⊎ P? Q? w =
Sum.map (DN-map ∃Pf→∃P) (DN-map ∃Pf→∃P) $
mp⊎ (DecU-map f P?) (DecU-map f Q?)
(contraposition (Prod.map (contraposition ∃P→∃Pf)
(contraposition ∃P→∃Pf)) w)
open Transport public
module TransportByLeftInverse
{a b p} {A : Set a} {B : Set b} (linv : B LInv.↞ A) =
Transport {p = p} (LInv.LeftInverse.from linv Eq.⟨$⟩_)
(LInv.LeftInverse.to linv Eq.⟨$⟩_) (LInv.LeftInverse.left-inverse-of linv)
|
{
"alphanum_fraction": 0.582038651,
"avg_line_length": 33.4050632911,
"ext": "agda",
"hexsha": "7ca926cf57e7a8e6e5a59d173037e42277bf417c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Constructive/Axiom/Properties/Transport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Constructive/Axiom/Properties/Transport.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Constructive/Axiom/Properties/Transport.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1091,
"size": 2639
}
|
open import Preliminaries
module Idea where
{- de Bruijn indices are representd as proofs that
an element is in a list -}
data _∈_ {A : Set} : (x : A) (l : List A) → Set where -- type \in
i0 : {x : A} {xs : List A} → x ∈ x :: xs
iS : {x y : A} {xs : List A} → x ∈ xs → x ∈ y :: xs
{- types of the STLC -}
data Tp : Set where
b : Tp -- uninterpreted base type
_⇒_ : Tp → Tp → Tp -- type \=>
{- contexts are lists of Tp's -}
Ctx = List Tp
_,,_ : Ctx → Tp → Ctx
Γ ,, τ = τ :: Γ
infixr 10 _⇒_
infixr 9 _,,_
infixr 8 _⊢_ -- type \entails
infix 9 _⊇_
data _⊢_ (Γ : Ctx) : Tp → Set
data _≡_ {Γ : Ctx} : {τ : Tp} → Γ ⊢ τ → Γ ⊢ τ → Set
_⊢c_ : Ctx → Ctx → Set
_⊇_ : Ctx → Ctx → Set -- type \sup=
ids : {Γ : Ctx} → Γ ⊢c Γ
rename : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → Γ ⊢ τ → Γ' ⊢ τ
subst : {Γ Γ' : Ctx}{τ : Tp} → Γ ⊢c Γ' → Γ' ⊢ τ → Γ ⊢ τ
_·ss_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊢c Γ2 → Γ2 ⊢c Γ3 → Γ1 ⊢c Γ3
subst1 : {Γ : Ctx} {τ τ0 : Tp} → Γ ⊢ τ0 → (Γ ,, τ0) ⊢ τ → Γ ⊢ τ
{- Γ ⊢ τ represents a term of type τ in context Γ -}
data _⊢_ (Γ : Ctx) where
c : Γ ⊢ b -- some constant of the base type
v : {τ : Tp}
→ τ ∈ Γ
→ Γ ⊢ τ
lam : {τ1 τ2 : Tp}
→ Γ ,, τ1 ⊢ τ2
→ Γ ⊢ τ1 ⇒ τ2
app : {τ1 τ2 : Tp}
→ Γ ⊢ τ1 ⇒ τ2
→ Γ ⊢ τ1
→ Γ ⊢ τ2
foo : {A : Tp} (e1 e2 : Γ ⊢ A) → e1 ≡ e2 → Γ ⊢ A
{-foo : (e1 : ™ Gamma A) (e2 : ™ Gamma A) -> e1 \equiv e2 -> ™ Gamma A-}
Γ' ⊇ [] = Unit
Γ' ⊇ (τ :: Γ) = (Γ' ⊇ Γ) × (τ ∈ Γ')
rename-var : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → τ ∈ Γ → τ ∈ Γ'
rename-var (ρ , x') i0 = x'
rename-var (ρ , _) (iS x) = rename-var ρ x
p· : {Γ : Ctx} {Γ' : Ctx} → Γ ⊇ Γ' → {τ : Tp} → (Γ ,, τ) ⊇ Γ'
p· {Γ' = []} ren = <>
p· {Γ' = (τ :: Γ')} (ρ , x) = p· ρ , iS x
idr : {Γ : Ctx} → Γ ⊇ Γ
idr {[]} = <>
idr {τ :: Γ} = p· idr , i0
-- category with families notation
p : {Γ : Ctx} {τ : Tp} → (Γ ,, τ ⊇ Γ)
p = p· idr
addvar-ren : {Γ Γ' : Ctx} {τ : Tp} → Γ' ⊇ Γ → Γ' ,, τ ⊇ Γ ,, τ
addvar-ren ρ = (p· ρ , i0)
data _≡_ {Γ : Ctx} where
CongApp : {τ1 τ2 : Tp} {e e' : Γ ⊢ τ1 ⇒ τ2} {e1 e1' : Γ ⊢ τ1}
→ e ≡ e' → e1 ≡ e1'
→ (app e e1) ≡ (app e' e1')
CongLam : {τ1 τ2 : Tp} {e e' : (τ1 :: Γ) ⊢ τ2}
→ e ≡ e'
→ (lam e) ≡ (lam e')
SubstId : ∀ {τ} {e : Γ ⊢ τ} → subst ids e ≡ e
SubstComp : ∀ {Γ1 Γ2} {τ} {θ' : Γ ⊢c Γ2} {θ : Γ2 ⊢c Γ1} {e : Γ1 ⊢ τ} → subst θ' (subst θ e) ≡ subst (θ' ·ss θ) e
Stepβ : {τ1 τ2 : Tp} {e : Γ ,, τ1 ⊢ τ2} {e1 : Γ ⊢ τ1}
→ (app (lam e) e1) ≡ subst1 e1 e
Refl : {τ : Tp} {e : Γ ⊢ τ} → e ≡ e
Trans : {τ : Tp} {e1 e2 e3 : Γ ⊢ τ}
→ e1 ≡ e2 → e2 ≡ e3
→ e1 ≡ e3
SubstCong : ∀ {Γ2} {τ} {Θ : Γ ⊢c Γ2} {e1 e2 : Γ2 ⊢ τ} → e1 ≡ e2 → subst Θ e1 ≡ subst Θ e2
RenCong : ∀ {Γ2} {τ} {ρ : Γ ⊇ Γ2} {e1 e2 : Γ2 ⊢ τ} → e1 ≡ e2 → rename ρ e1 ≡ rename ρ e2
rename ρ c = c
rename ρ (v x) = v (rename-var ρ x)
rename ρ (lam e) = lam (rename (addvar-ren ρ) e)
rename ρ (app e e') = app (rename ρ e) (rename ρ e')
rename ρ (foo e1 e2 p) = foo (rename ρ e1) (rename ρ e2) (RenCong p)
_·rr_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 ⊇ Γ3 → Γ1 ⊇ Γ3
_·rr_ {Γ1} {Γ2} {[]} ρ2 ρ3 = <>
_·rr_ {Γ1} {Γ2} {x :: Γ3} ρ2 (ρ3 , x3) = (ρ2 ·rr ρ3) , rename-var ρ2 x3
Γ' ⊢c [] = Unit
Γ' ⊢c (τ :: Γ) = (Γ' ⊢c Γ) × (Γ' ⊢ τ)
_·rs_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊇ Γ2 → Γ2 ⊢c Γ3 → Γ1 ⊢c Γ3
_·rs_ {Γ1} {Γ2} {[]} ρ θ = <>
_·rs_ {Γ1} {Γ2} {τ3 :: Γ3} ρ (θ , e) = ρ ·rs θ , rename ρ e
addvar : {Γ Γ' : Ctx} {τ : Tp} → Γ ⊢c Γ' → (Γ ,, τ) ⊢c (Γ' ,, τ)
addvar θ = p ·rs θ , v i0
ids {[]} = <>
ids {τ :: Γ} = p ·rs ids , v i0
subst-var : {Γ Γ' : Ctx}{τ : Tp} → Γ ⊢c Γ' → τ ∈ Γ' → Γ ⊢ τ
subst-var (θ , e) i0 = e
subst-var (θ , _) (iS x) = subst-var θ x
subst1 e0 e = subst (ids , e0) e
-- composition of renamings and substitutions
_·sr_ : {Γ1 Γ2 Γ3 : Ctx} → Γ1 ⊢c Γ2 → Γ2 ⊇ Γ3 → Γ1 ⊢c Γ3
_·sr_ {Γ1} {Γ2} {[]} θ ρ = <>
_·sr_ {Γ1} {Γ2} {τ3 :: Γ3} θ (ρ , x) = _·sr_ θ ρ , subst-var θ x
_·ss_ {Γ3 = []} θ1 θ2 = <>
_·ss_ {Γ1} {Γ2} {τ :: Γ3} θ1 (θ2 , e2) = θ1 ·ss θ2 , subst θ1 e2
subst θ c = c
subst θ (v x) = subst-var θ x
subst θ (lam e) = lam (subst (addvar θ) e)
subst θ (app e e') = app (subst θ e) (subst θ e')
subst {Γ} {Γ'} {τ} Θ (foo e1 e2 p) = foo (subst Θ e1) (subst Θ e2) (SubstCong p)
postulate
semfoo : (A : Set) (x y : A) -> x == y -> A
module Semantics (B : Set) (elB : B) where
⟦_⟧t : Tp → Set
⟦_⟧c : Ctx → Set
⟦_⟧v : {Γ : Ctx} {τ : Tp} → τ ∈ Γ → ⟦ Γ ⟧c → ⟦ τ ⟧t
⟦_⟧ : {Γ : Ctx} {τ : Tp} → Γ ⊢ τ → ⟦ Γ ⟧c → ⟦ τ ⟧t
sound : {Γ : Ctx} {τ : Tp} {e : Γ ⊢ τ} {e' : Γ ⊢ τ} → e ≡ e'
→ (γ : ⟦ Γ ⟧c) → ⟦ e ⟧ γ == ⟦ e' ⟧ γ
⟦ b ⟧t = B
⟦ τ1 ⇒ τ2 ⟧t = ⟦ τ1 ⟧t → ⟦ τ2 ⟧t
⟦ [] ⟧c = Unit
⟦ τ :: Γ ⟧c = ⟦ Γ ⟧c × ⟦ τ ⟧t
⟦_⟧v i0 γ = snd γ
⟦_⟧v (iS x) γ = ⟦ x ⟧v (fst γ)
⟦ c ⟧ γ = elB
⟦ v x ⟧ γ = ⟦ x ⟧v γ
⟦ lam e ⟧ γ = \ x → ⟦ e ⟧ (γ , x)
⟦ app e1 e2 ⟧ γ = ⟦ e1 ⟧ γ (⟦ e2 ⟧ γ)
⟦ (foo e1 e2 p) ⟧ γ = semfoo {!!} (⟦ e1 ⟧ γ) (⟦ e2 ⟧ γ) (sound {_} {_} {e1} {e2} p γ)
⟦_⟧s : {Γ Γ' : Ctx} → Γ ⊢c Γ' → ⟦ Γ ⟧c → ⟦ Γ' ⟧c
⟦_⟧s {Γ' = []} θ _ = <>
⟦_⟧s {Γ' = τ :: Γ'} (θ , e) γ = ⟦ θ ⟧s γ , ⟦ e ⟧ γ
⟦_⟧r : {Γ Γ' : Ctx} → Γ ⊇ Γ' → ⟦ Γ ⟧c → ⟦ Γ' ⟧c
⟦_⟧r {Γ' = []} θ _ = <>
⟦_⟧r {Γ' = τ :: Γ'} (θ , x) γ = ⟦ θ ⟧r γ , ⟦ x ⟧v γ
interp-rename-var : {Γ' Γ : Ctx} {τ : Tp} (x : τ ∈ Γ) (θ : Γ' ⊇ Γ)
→ (γ' : ⟦ Γ' ⟧c) → ⟦ rename-var θ x ⟧v γ' == (⟦ x ⟧v (⟦ θ ⟧r γ'))
interp-rename-var i0 θ γ' = Refl
interp-rename-var (iS x) θ γ' = interp-rename-var x (fst θ) γ'
interp-subst-var : {Γ' Γ : Ctx} {τ : Tp} (x : τ ∈ Γ) (θ : Γ' ⊢c Γ)
→ (γ' : ⟦ Γ' ⟧c) → ⟦ subst-var θ x ⟧ γ' == (⟦ x ⟧v (⟦ θ ⟧s γ'))
interp-subst-var i0 θ γ' = Refl
interp-subst-var (iS x) θ γ' = interp-subst-var x (fst θ) γ'
interp-p· : {Γ : Ctx} {Γ' : Ctx} → (θ : Γ ⊇ Γ') → {τ : Tp} (γ' : _)
→ ⟦ p· θ {τ = τ} ⟧r γ' == ⟦ θ ⟧r (fst γ')
interp-p· {Γ' = []} θ γ' = Refl
interp-p· {Γ' = τ' :: Γ'} θ γ' = ap2 _,_ (interp-p· (fst θ) _) Refl
interp-idr : {Γ : Ctx} (γ : _) → ⟦ idr {Γ} ⟧r γ == γ
interp-idr {[]} γ = Refl
interp-idr {x :: Γ} γ = ap (λ x₁ → x₁ , snd γ) (interp-idr (fst γ) ∘ interp-p· idr γ)
interp-rename : {Γ' Γ : Ctx} {τ : Tp} (e : Γ ⊢ τ) (θ : Γ' ⊇ Γ)
→ (γ' : ⟦ Γ' ⟧c) → ⟦ rename θ e ⟧ γ' == (⟦ e ⟧ (⟦ θ ⟧r γ'))
interp-rename c θ γ' = Refl
interp-rename (v x) θ γ' = interp-rename-var x θ γ'
interp-rename (lam e) θ γ' = λ= (λ x → ap ⟦ e ⟧ (ap2 _,_ (interp-p· θ (γ' , x)) Refl) ∘ interp-rename e (addvar-ren θ) (γ' , x))
interp-rename (app e e₁) θ γ' = ap2 (λ f x → f x) (interp-rename e θ γ') (interp-rename e₁ θ γ')
interp-rename (foo e1 e2 p) Θ γ' = {!!} --interp-rename e1 Θ γ'
interp-·rs : {Γ1 Γ2 Γ3 : Ctx} → (θ1 : Γ1 ⊇ Γ2) (θ2 : Γ2 ⊢c Γ3) (γ : _) → ⟦ θ1 ·rs θ2 ⟧s γ == ⟦ θ2 ⟧s (⟦ θ1 ⟧r γ)
interp-·rs {Γ3 = []} θ1 θ2 γ = Refl
interp-·rs {Γ3 = τ :: Γ3} θ1 (θ2 , e) γ = ap2 _,_ (interp-·rs θ1 θ2 γ) (interp-rename e θ1 γ)
interp-subst : {Γ' Γ : Ctx} {τ : Tp} (e : Γ ⊢ τ) (θ : Γ' ⊢c Γ)
→ (γ' : ⟦ Γ' ⟧c) → ⟦ subst θ e ⟧ γ' == (⟦ e ⟧ (⟦ θ ⟧s γ'))
interp-subst c θ γ' = Refl
interp-subst (v x) θ γ' = interp-subst-var x θ γ'
interp-subst (lam e) θ γ' = λ= (λ x → ap (λ h → ⟦ e ⟧ (h , x)) (ap ⟦ θ ⟧s (interp-idr γ' ∘ interp-p· idr (γ' , x)) ∘ interp-·rs (p· idr) θ _) ∘ interp-subst e (addvar θ) (γ' , x))
interp-subst (app e e₁) θ γ' = ap2 (λ f x → f x) (interp-subst e θ γ') (interp-subst e₁ θ γ')
interp-subst (foo e1 e2 p) Θ γ' = {!!} --interp-subst e1 Θ γ'
interp-·ss : {Γ1 Γ2 Γ3 : Ctx} → (θ1 : Γ1 ⊢c Γ2) (θ2 : Γ2 ⊢c Γ3) (γ : _) → ⟦ θ1 ·ss θ2 ⟧s γ == ⟦ θ2 ⟧s (⟦ θ1 ⟧s γ)
interp-·ss {Γ3 = []} θ1 θ2 γ = Refl
interp-·ss {Γ3 = τ :: Γ3} θ1 (θ2 , e) γ = ap2 _,_ (interp-·ss θ1 θ2 γ) (interp-subst e θ1 γ)
interp-ids : ∀ {Γ} (γ : _) → ⟦ ids {Γ} ⟧s γ == γ
interp-ids {[]} γ = Refl
interp-ids {τ :: Γ} γ = ap (λ x → x , snd γ) (((interp-idr (fst γ) ∘ interp-p· idr γ) ∘ interp-ids (⟦ p ⟧r γ)) ∘ interp-·rs p ids γ)
sound (CongApp D D') γ = ap2 (λ f x → f x) (sound D γ) (sound D' γ)
sound (CongLam D) γ = λ= (λ x → sound D (γ , x))
sound {e' = e'} SubstId γ = ap ⟦ e' ⟧ (interp-ids γ) ∘ interp-subst e' ids γ
sound (SubstComp {θ' = θ'}{θ}{e = e}) γ = ((! (interp-subst e _ γ) ∘ ap ⟦ e ⟧ (! (interp-·ss θ' θ γ))) ∘ interp-subst e θ (⟦ θ' ⟧s γ)) ∘ interp-subst (subst θ e) θ' γ
sound (Stepβ {e = e} {e1 = e1}) γ = ! (interp-subst e (ids , e1) γ) ∘ ap (λ x → ⟦ e ⟧ (x , ⟦ e1 ⟧ γ)) (! (interp-ids γ))
sound Refl γ = Refl
sound (Trans D D₁) γ = sound D₁ γ ∘ sound D γ
sound {Γ'} (SubstCong {Γ} {τ} {Θ} {e1} {e2} D) γ = {!!} --(! (interp-subst e2 Θ γ) ∘ sound D (⟦ Θ ⟧s γ)) ∘ interp-subst e1 Θ γ
sound {Γ'} (RenCong {Γ} {τ} {ρ} {e1} {e2} D) γ = {!!} --(! (interp-rename e2 ρ γ) ∘ sound D (⟦ ρ ⟧r γ)) ∘ interp-rename e1 ρ γ
|
{
"alphanum_fraction": 0.4285872453,
"avg_line_length": 39.6140350877,
"ext": "agda",
"hexsha": "c582334b1d4b3e093d040f58531505738296912c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity/Idea.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity/Idea.agda",
"max_line_length": 183,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity/Idea.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 4831,
"size": 9032
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Reducibility {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Valid types are reducible.
reducibleᵛ : ∀ {A rA Γ l}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ A ^ rA / [Γ]
→ Γ ⊩⟨ l ⟩ A ^ rA
reducibleᵛ [Γ] [A] =
let ⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevance′ (subst-id _) (proj₁ ([A] ⊢Γ [id]))
-- Valid type equality is reducible.
reducibleEqᵛ : ∀ {A B rA Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ rA / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A ≡ B ^ rA / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ A ≡ B ^ rA / reducibleᵛ [Γ] [A]
reducibleEqᵛ {A = A} [Γ] [A] [A≡B] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceEq″ (subst-id _) (subst-id _) PE.refl PE.refl
(proj₁ ([A] ⊢Γ [id])) [σA] ([A≡B] ⊢Γ [id])
-- Valid terms are reducible.
reducibleTermᵛ : ∀ {t A rA Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ rA / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ∷ A ^ rA / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ t ∷ A ^ rA / reducibleᵛ [Γ] [A]
reducibleTermᵛ {A = A} [Γ] [A] [t] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceTerm″ (subst-id _) PE.refl PE.refl (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] (proj₁ ([t] ⊢Γ [id]))
-- Valid term equality is reducible.
reducibleEqTermᵛ : ∀ {t u A rA Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ rA / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A ^ rA / [Γ] / [A]
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A ^ rA / reducibleᵛ [Γ] [A]
reducibleEqTermᵛ {A = A} [Γ] [A] [t≡u] =
let [σA] = reducibleᵛ {A = A} [Γ] [A]
⊢Γ = soundContext [Γ]
[id] = idSubstS [Γ]
in irrelevanceEqTerm″ PE.refl PE.refl (subst-id _) (subst-id _) (subst-id _)
(proj₁ ([A] ⊢Γ [id])) [σA] ([t≡u] ⊢Γ [id])
|
{
"alphanum_fraction": 0.5099337748,
"avg_line_length": 35.5294117647,
"ext": "agda",
"hexsha": "bb6b696cdfb892597eba845bc68ac587e850ea80",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_line_length": 86,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Reducibility.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 1008,
"size": 2416
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.ImplShared.Consensus.Types
import LibraBFT.ImplShared.Util.Crypto as Crypto
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Types.Ledger2WaypointConverter where
new : LedgerInfo → Ledger2WaypointConverter
new ledgerInfo = mkLedger2WaypointConverter
(ledgerInfo ^∙ liEpoch)
(ledgerInfo ^∙ liTransactionAccumulatorHash)
(ledgerInfo ^∙ liVersion)
--(ledgerInfo ^∙ liTimestamp)
(ledgerInfo ^∙ liNextEpochState)
|
{
"alphanum_fraction": 0.7886393659,
"avg_line_length": 34.4090909091,
"ext": "agda",
"hexsha": "f2780f47725ac4082fedbc51f2ad1e7bfca2f2e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/Ledger2WaypointConverter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/Ledger2WaypointConverter.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/Ledger2WaypointConverter.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 212,
"size": 757
}
|
module Sessions.Syntax.Expr where
open import Prelude
open import Sessions.Syntax.Types
open import Relation.Ternary.Separation.Construct.List Type
data Exp : Type → LCtx → Set where
var : ∀[ Just a ⇒ Exp a ]
-- value constructors
unit : ε[ Exp unit ]
letunit : ∀[ Exp unit ✴ Exp a ⇒ Exp a ]
-- linear function introduction and elimination
lam : ∀ a → ∀[ ((a ∷_) ⊢ Exp b) ⇒ Exp (a ⊸ b) ]
ap : ∀[ Exp (a ⊸ b) ✴ Exp a ⇒ Exp b ]
-- product introduction and elimination
pairs : ∀[ Exp a ✴ Exp b ⇒ Exp (prod a b) ]
letpair : ∀[ Exp (prod a b) ✴ (λ Γ → a ∷ b ∷ Γ) ⊢ Exp c ⇒ Exp c ]
-- communication
mkchan : ∀ α → ε[ Exp (prod (cref α) (cref (α ⁻¹))) ]
send : ∀ {b} → ∀[ Exp a ✴ Exp (cref (a ! b)) ⇒ Exp (cref b) ]
recv : ∀ {b} → ∀[ Exp (cref (a ¿ b)) ⇒ Exp (prod (cref b) a) ]
-- fork ; TODO unit
fork : ∀[ Exp (unit ⊸ unit) ⇒ Exp unit ]
-- termination
terminate : ∀[ Exp (cref end) ⇒ Exp unit ]
|
{
"alphanum_fraction": 0.5337361531,
"avg_line_length": 29.2058823529,
"ext": "agda",
"hexsha": "e60a3a9176b2013b451f347b75daeef4716f1432",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Sessions/Syntax/Expr.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Sessions/Syntax/Expr.agda",
"max_line_length": 69,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Sessions/Syntax/Expr.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 345,
"size": 993
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Setoids.Setoids
open import Setoids.Subset
module Setoids.Intersection.Lemmas {a b : _} {A : Set a} (S : Setoid {a} {b} A) {c d : _} {pred1 : A → Set c} {pred2 : A → Set d} (s1 : subset S pred1) (s2 : subset S pred2) where
open import Setoids.Intersection.Definition S
open import Setoids.Equality S
intersectionCommutative : intersection s1 s2 =S intersection s2 s1
intersectionCommutative i = (λ t → _&&_.snd t ,, _&&_.fst t) ,, λ t → _&&_.snd t ,, _&&_.fst t
intersectionAssociative : {e : _} {pred3 : A → Set e} (s3 : subset S pred3) → intersection (intersection s1 s2) s3 =S intersection s1 (intersection s2 s3)
intersectionAssociative s3 x = (λ pr → _&&_.fst (_&&_.fst pr) ,, (_&&_.snd (_&&_.fst pr) ,, _&&_.snd pr)) ,, λ z → (_&&_.fst z ,, _&&_.fst (_&&_.snd z)) ,, _&&_.snd (_&&_.snd z)
|
{
"alphanum_fraction": 0.6680161943,
"avg_line_length": 52,
"ext": "agda",
"hexsha": "a3966c3e69cd8a78d21b745a0459625a0d042196",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Intersection/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Intersection/Lemmas.agda",
"max_line_length": 179,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Intersection/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 332,
"size": 988
}
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Paths
module lib.types.CommutingSquare where
{- maps between two functions -}
infix 0 _□$_
_□$_ = CommSquare.commutes
CommSquare-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂}
{A₀ : Type i₀} {A₁ : Type i₁} {A₂ : Type i₂}
{B₀ : Type j₀} {B₁ : Type j₁} {B₂ : Type j₂}
{f₀ : A₀ → B₀} {f₁ : A₁ → B₁} {f₂ : A₂ → B₂}
{hA : A₀ → A₁} {hB : B₀ → B₁}
{kA : A₁ → A₂} {kB : B₁ → B₂}
→ CommSquare f₁ f₂ kA kB
→ CommSquare f₀ f₁ hA hB
→ CommSquare f₀ f₂ (kA ∘ hA) (kB ∘ hB)
CommSquare-∘v {hA = hA} {kB = kB} (comm-sqr □₁₂) (comm-sqr □₀₁) =
comm-sqr λ a₀ → ap kB (□₀₁ a₀) ∙ □₁₂ (hA a₀)
CommSquare-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
{f₀ : A₀ → B₀} {f₁ : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁}
→ CommSquare f₀ f₁ hA hB → (hA-ise : is-equiv hA) (hB-ise : is-equiv hB)
→ CommSquare f₁ f₀ (is-equiv.g hA-ise) (is-equiv.g hB-ise)
CommSquare-inverse-v {f₀ = f₀} {f₁} {hA} {hB} (comm-sqr □) hA-ise hB-ise =
comm-sqr λ a₁ → ap hB.g (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁))) ∙ hB.g-f (f₀ (hA.g a₁))
where module hA = is-equiv hA-ise
module hB = is-equiv hB-ise
abstract
-- 'r' with respect to '∘v'
CommSquare-inverse-inv-r : ∀ {i₀ i₁ j₀ j₁}
{A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
{f₀ : A₀ → B₀} {f₁ : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁}
(cs : CommSquare f₀ f₁ hA hB) (hA-ise : is-equiv hA) (hB-ise : is-equiv hB)
→ ∀ a₁ → (CommSquare-∘v cs (CommSquare-inverse-v cs hA-ise hB-ise) □$ a₁)
== is-equiv.f-g hB-ise (f₁ a₁) ∙ ! (ap f₁ (is-equiv.f-g hA-ise a₁))
CommSquare-inverse-inv-r {f₀ = f₀} {f₁} {hA} {hB} (comm-sqr □) hA-ise hB-ise a₁ =
ap hB ( ap hB.g (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁)))
∙ hB.g-f (f₀ (hA.g a₁)))
∙ □ (hA.g a₁)
=⟨ ap-∙ hB (ap hB.g (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁)))) (hB.g-f (f₀ (hA.g a₁)))
|in-ctx _∙ □ (hA.g a₁) ⟩
( ap hB (ap hB.g (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁))))
∙ ap hB (hB.g-f (f₀ (hA.g a₁))))
∙ □ (hA.g a₁)
=⟨ ap2 _∙_
(∘-ap hB hB.g (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁))))
(hB.adj (f₀ (hA.g a₁)))
|in-ctx _∙ □ (hA.g a₁) ⟩
( ap (hB ∘ hB.g) (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁)))
∙ hB.f-g (hB (f₀ (hA.g a₁))))
∙ □ (hA.g a₁)
=⟨ ! (↓-app=idf-out $ apd hB.f-g (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁))))
|in-ctx _∙ □ (hA.g a₁) ⟩
( hB.f-g (f₁ a₁)
∙' (! (□ (hA.g a₁) ∙ ap f₁ (hA.f-g a₁))))
∙ □ (hA.g a₁)
=⟨ lemma (hB.f-g (f₁ a₁)) (□ (hA.g a₁)) (ap f₁ (hA.f-g a₁)) ⟩
hB.f-g (f₁ a₁) ∙ ! (ap f₁ (hA.f-g a₁))
=∎
where module hA = is-equiv hA-ise
module hB = is-equiv hB-ise
lemma : ∀ {i} {A : Type i} {a₀ a₁ a₂ a₃ : A}
(p₀ : a₀ == a₁) (p₁ : a₃ == a₂) (p₂ : a₂ == a₁)
→ (p₀ ∙' (! (p₁ ∙ p₂))) ∙ p₁ == p₀ ∙ ! p₂
lemma idp idp idp = idp
-- 'l' with respect to '∘v'
CommSquare-inverse-inv-l : ∀ {i₀ i₁ j₀ j₁}
{A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁}
{f₀ : A₀ → B₀} {f₁ : A₁ → B₁} {hA : A₀ → A₁} {hB : B₀ → B₁}
(cs : CommSquare f₀ f₁ hA hB) (hA-ise : is-equiv hA) (hB-ise : is-equiv hB)
→ ∀ a₀ → (CommSquare-∘v (CommSquare-inverse-v cs hA-ise hB-ise) cs □$ a₀)
== is-equiv.g-f hB-ise (f₀ a₀) ∙ ! (ap f₀ (is-equiv.g-f hA-ise a₀))
CommSquare-inverse-inv-l {f₀ = f₀} {f₁} {hA} {hB} (comm-sqr □) hA-ise hB-ise a₀ =
ap hB.g (□ a₀)
∙ ( ap hB.g (! (□ (hA.g (hA a₀)) ∙ ap f₁ (hA.f-g (hA a₀))))
∙ hB.g-f (f₀ (hA.g (hA a₀))))
=⟨ ! (hA.adj a₀) |in-ctx ap f₁
|in-ctx □ (hA.g (hA a₀)) ∙_
|in-ctx ! |in-ctx ap hB.g
|in-ctx _∙ hB.g-f (f₀ (hA.g (hA a₀)))
|in-ctx ap hB.g (□ a₀) ∙_ ⟩
ap hB.g (□ a₀)
∙ ( ap hB.g (! (□ (hA.g (hA a₀)) ∙ ap f₁ (ap hA (hA.g-f a₀))))
∙ hB.g-f (f₀ (hA.g (hA a₀))))
=⟨ ∘-ap f₁ hA (hA.g-f a₀)
|in-ctx □ (hA.g (hA a₀)) ∙_
|in-ctx ! |in-ctx ap hB.g
|in-ctx _∙ hB.g-f (f₀ (hA.g (hA a₀)))
|in-ctx ap hB.g (□ a₀) ∙_ ⟩
ap hB.g (□ a₀)
∙ ( ap hB.g (! (□ (hA.g (hA a₀)) ∙ ap (f₁ ∘ hA) (hA.g-f a₀)))
∙ hB.g-f (f₀ (hA.g (hA a₀))))
=⟨ ↓-='-out' (apd □ (hA.g-f a₀))
|in-ctx ! |in-ctx ap hB.g
|in-ctx _∙ hB.g-f (f₀ (hA.g (hA a₀)))
|in-ctx ap hB.g (□ a₀) ∙_ ⟩
ap hB.g (□ a₀)
∙ ( ap hB.g (! (ap (hB ∘ f₀) (hA.g-f a₀) ∙' □ a₀))
∙ hB.g-f (f₀ (hA.g (hA a₀))))
=⟨ lemma hB.g (□ a₀) (ap (hB ∘ f₀) (hA.g-f a₀)) (hB.g-f (f₀ (hA.g (hA a₀)))) ⟩
! (ap hB.g (ap (hB ∘ f₀) (hA.g-f a₀)))
∙' hB.g-f (f₀ (hA.g (hA a₀)))
=⟨ ∘-ap hB.g (hB ∘ f₀) (hA.g-f a₀)
|in-ctx ! |in-ctx _∙' hB.g-f (f₀ (hA.g (hA a₀))) ⟩
! (ap (hB.g ∘ hB ∘ f₀) (hA.g-f a₀))
∙' hB.g-f (f₀ (hA.g (hA a₀)))
=⟨ !-ap (hB.g ∘ hB ∘ f₀) (hA.g-f a₀)
|in-ctx _∙' hB.g-f (f₀ (hA.g (hA a₀))) ⟩
ap (hB.g ∘ hB ∘ f₀) (! (hA.g-f a₀))
∙' hB.g-f (f₀ (hA.g (hA a₀)))
=⟨ ! (↓-='-out' (apd (hB.g-f ∘ f₀) (! (hA.g-f a₀)))) ⟩
hB.g-f (f₀ a₀) ∙ ap f₀ (! (hA.g-f a₀))
=⟨ ap-! f₀ (hA.g-f a₀) |in-ctx hB.g-f (f₀ a₀) ∙_ ⟩
hB.g-f (f₀ a₀) ∙ ! (ap f₀ (hA.g-f a₀))
=∎
where module hA = is-equiv hA-ise
module hB = is-equiv hB-ise
lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{a₀ a₁ a₂ : A} {b : B}
(p₀ : a₀ == a₁) (p₁ : a₂ == a₀) (q₀ : f a₂ == b)
→ ap f p₀ ∙ (ap f (! (p₁ ∙' p₀)) ∙ q₀) == ! (ap f p₁) ∙' q₀
lemma f idp idp idp = idp
|
{
"alphanum_fraction": 0.4496332081,
"avg_line_length": 41.7089552239,
"ext": "agda",
"hexsha": "d1da78a7b73e8a7a3d26da9a73584def9982a6b6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/CommutingSquare.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/CommutingSquare.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/CommutingSquare.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2915,
"size": 5589
}
|
-- This is an example emphasizing the important of a linearity check
-- in the positivity check.
--
-- Currently it does not type check since there is no universe subtyping.
module PositivityCheckNeedsLinearityCheck where
data Eq (S : Set2) : Set2 -> Set where
refl : Eq S S
subst' : {S S' : Set2} -> Eq S S' -> S -> S'
subst' refl s = s
-- what happens if Eq is considered covariant in its first argument?
-- then because of subtyping,
p : Eq Set1 Set
p = refl
S : Set
S = subst' p Set
-- now S, which evaluates to Set, is in Set
|
{
"alphanum_fraction": 0.6800731261,
"avg_line_length": 17.6451612903,
"ext": "agda",
"hexsha": "d2027ac399acec09da32fb8644814732a43ae824",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/PositivityCheckNeedsLinearityCheck.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/PositivityCheckNeedsLinearityCheck.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/PositivityCheckNeedsLinearityCheck.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 152,
"size": 547
}
|
{-# OPTIONS --erased-cubical --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Cubical.HCompU where
open import Agda.Primitive
open import Agda.Builtin.Sigma
open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_;
primHComp to hcomp; primTransp to transp; primComp to comp;
itIsOne to 1=1)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to outS; inc to inS)
module Helpers where
-- Homogeneous filling
hfill : ∀ {ℓ} {A : Set ℓ} {φ : I}
(u : ∀ i → Partial φ A)
(u0 : A [ φ ↦ u i0 ]) (i : I) → A
hfill {φ = φ} u u0 i =
hcomp (λ j → \ { (φ = i1) → u (i ∧ j) 1=1
; (i = i0) → outS u0 })
(outS u0)
-- Heterogeneous filling defined using comp
fill : ∀ {ℓ : I → Level} (A : ∀ i → Set (ℓ i)) {φ : I}
(u : ∀ i → Partial φ (A i))
(u0 : A i0 [ φ ↦ u i0 ]) →
∀ i → A i
fill A {φ = φ} u u0 i =
comp (λ j → A (i ∧ j))
(λ j → \ { (φ = i1) → u (i ∧ j) 1=1
; (i = i0) → outS u0 })
(outS {φ = φ} u0)
module _ {ℓ} {A : Set ℓ} where
refl : {x : A} → x ≡ x
refl {x = x} = λ _ → x
sym : {x y : A} → x ≡ y → y ≡ x
sym p = λ i → p (~ i)
cong : ∀ {ℓ'} {B : A → Set ℓ'} {x y : A}
(f : (a : A) → B a) (p : x ≡ y)
→ PathP (λ i → B (p i)) (f x) (f y)
cong f p = λ i → f (p i)
isContr : ∀ {ℓ} → Set ℓ → Set ℓ
isContr A = Σ A \ x → (∀ y → x ≡ y)
fiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ ⊔ ℓ')
fiber {A = A} f y = Σ A \ x → f x ≡ y
open Helpers
primitive
prim^glueU : {la : Level} {φ : I} {T : I → Partial φ (Set la)}
{A : Set la [ φ ↦ T i0 ]} →
PartialP φ (T i1) → outS A → hcomp T (outS A)
prim^unglueU : {la : Level} {φ : I} {T : I → Partial φ (Set la)}
{A : Set la [ φ ↦ T i0 ]} →
hcomp T (outS A) → outS A
-- Needed for transp.
primFaceForall : (I → I) → I
transpProof : ∀ {l} → (e : I → Set l) → (φ : I) → (a : Partial φ (e i0)) → (b : e i1 [ φ ↦ (\ o → transp (\ i → e i) i0 (a o)) ] ) → fiber (transp (\ i → e i) i0) (outS b)
transpProof e φ a b = f , \ j → comp (\ i → e i) (\ i →
\ { (φ = i1) → transp (\ j → e (j ∧ i)) (~ i) (a 1=1)
; (j = i0) → transp (\ j → e (j ∧ i)) (~ i) f
; (j = i1) → g (~ i) })
f
where
b' = outS {u = (\ o → transp (\ i → e i) i0 (a o))} b
g : (k : I) → e (~ k)
g k = fill (\ i → e (~ i)) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ ~ i)) i (a 1=1)
; (φ = i0) → transp (\ j → e (~ j ∨ ~ i)) (~ i) b' }) (inS b') k
f = comp (\ i → e (~ i)) (\ i → \ { (φ = i1) → transp (\ j → e (j ∧ ~ i)) i (a 1=1); (φ = i0) → transp (\ j → e (~ j ∨ ~ i)) (~ i) b' }) b'
{-# BUILTIN TRANSPPROOF transpProof #-}
|
{
"alphanum_fraction": 0.3844036697,
"avg_line_length": 40.875,
"ext": "agda",
"hexsha": "cb074778afa666bde0170e5a17471343ac14cb2b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda",
"max_line_length": 171,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Cubical/HCompU.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1237,
"size": 3270
}
|
{-# OPTIONS --safe #-}
module Invert where
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Nat.Properties
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
(g ∘ f) x = g (f x)
pred₂ : ℕ → ℕ
pred₂ = pred ∘ pred
lemma : (a b : ℕ) → pred₂ (suc a + suc a) ≡ pred₂ (suc b + suc b)
→ a + a ≡ b + b
lemma a b p =
begin
a + a ≡⟨⟩
pred₂ (suc (suc (a + a))) ≡⟨⟩
pred₂ (suc (suc a + a)) ≡⟨ cong (pred₂ ∘ suc) (+-comm (suc a) a) ⟩
pred₂ (suc (a + suc a)) ≡⟨⟩
pred₂ (suc a + suc a) ≡⟨ p ⟩
pred₂ (suc b + suc b) ≡⟨⟩
pred₂ (suc (b + suc b)) ≡⟨ cong (pred₂ ∘ suc) (+-comm b (suc b)) ⟩
pred₂ (suc (suc b + b)) ≡⟨⟩
b + b
∎ where open ≡-Reasoning
invert : (a b : ℕ) → a + a ≡ b + b → a ≡ b
invert zero zero p = refl
invert (suc m) (suc n) p = cong suc (invert m n (lemma m n (cong pred₂ p)))
|
{
"alphanum_fraction": 0.5216881594,
"avg_line_length": 25.0882352941,
"ext": "agda",
"hexsha": "74049821bde48b8b288184acf2e4c6ca9ee734b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "anqurvanillapy/fpl",
"max_forks_repo_path": "agda/Invert.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "anqurvanillapy/fpl",
"max_issues_repo_path": "agda/Invert.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9576d5b76e6a868992dbe52930712ac67697bed2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "anqurvanillapy/fpl",
"max_stars_repo_path": "agda/Invert.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-24T22:47:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-24T22:47:47.000Z",
"num_tokens": 394,
"size": 853
}
|
module _ where
postulate D : Set
module A where
infixr 5 _∷_
postulate
_∷_ : Set₁ → D → D
module B where
infix 5 _∷_
postulate
_∷_ : Set₁ → Set₁ → D
open A
open B
foo : D
foo = Set ∷ Set
-- Expected error:
--
-- <preciseErrorLocation>
-- Ambiguous name _∷_. It could refer to any one of
-- A._∷_ bound at ...
-- B._∷_ bound at ...
|
{
"alphanum_fraction": 0.5983379501,
"avg_line_length": 11.6451612903,
"ext": "agda",
"hexsha": "1204be9268681716198cf4430218f1f2b914adc7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1194m.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1194m.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1194m.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 135,
"size": 361
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Tables, basic types and operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Table.Base where
open import Data.Nat
open import Data.Fin
open import Data.Product using (_×_ ; _,_)
open import Data.List as List using (List)
open import Data.Vec as Vec using (Vec)
open import Function using (_∘_; flip)
------------------------------------------------------------------------
-- Type
record Table {a} (A : Set a) n : Set a where
constructor tabulate
field lookup : Fin n → A
open Table public
------------------------------------------------------------------------
-- Basic operations
module _ {a} {A : Set a} where
head : ∀ {n} → Table A (suc n) → A
head t = lookup t zero
tail : ∀ {n} → Table A (suc n) → Table A n
tail t = tabulate (lookup t ∘ suc)
uncons : ∀ {n} → Table A (suc n) → A × Table A n
uncons t = head t , tail t
remove : ∀ {n} → Fin (suc n) → Table A (suc n) → Table A n
remove i t = tabulate (lookup t ∘ punchIn i)
------------------------------------------------------------------------
-- Operations for transforming tables
module _ {a} {A : Set a} where
rearrange : ∀ {m n} → (Fin m → Fin n) → Table A n → Table A m
rearrange f t = tabulate (lookup t ∘ f)
module _ {a b} {A : Set a} {B : Set b} where
map : ∀ {n} → (A → B) → Table A n → Table B n
map f t = tabulate (f ∘ lookup t)
_⊛_ : ∀ {n} → Table (A → B) n → Table A n → Table B n
fs ⊛ xs = tabulate λ i → lookup fs i (lookup xs i)
------------------------------------------------------------------------
-- Operations for reducing tables
module _ {a b} {A : Set a} {B : Set b} where
foldr : ∀ {n} → (A → B → B) → B → Table A n → B
foldr {n = zero} f z t = z
foldr {n = suc n} f z t = f (head t) (foldr f z (tail t))
foldl : ∀ {n} → (B → A → B) → B → Table A n → B
foldl {n = zero} f z t = z
foldl {n = suc n} f z t = foldl f (f z (head t)) (tail t)
------------------------------------------------------------------------
-- Operations for building tables
module _ {a} {A : Set a} where
replicate : ∀ {n} → A → Table A n
replicate x = tabulate (λ _ → x)
------------------------------------------------------------------------
-- Operations for converting tables
module _ {a} {A : Set a} where
toList : ∀ {n} → Table A n → List A
toList = List.tabulate ∘ lookup
fromList : ∀ (xs : List A) → Table A (List.length xs)
fromList = tabulate ∘ List.lookup
fromVec : ∀ {n} → Vec A n → Table A n
fromVec = tabulate ∘ Vec.lookup
toVec : ∀ {n} → Table A n → Vec A n
toVec = Vec.tabulate ∘ lookup
|
{
"alphanum_fraction": 0.4631655726,
"avg_line_length": 28.5625,
"ext": "agda",
"hexsha": "1e4eec31ec7a6fe62b67ceea11a122db3bf3dba3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Base.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Table/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 791,
"size": 2742
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using () renaming (Category to Setoid-Category)
open import Categories.Category.Monoidal
module Categories.Enriched.NaturalTransformation
{o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where
open import Level
open import Categories.Category.Monoidal.Properties M using (module Kelly's)
open import Categories.Category.Monoidal.Reasoning M
open import Categories.Category.Monoidal.Utilities M
open import Categories.Enriched.Category M
open import Categories.Enriched.Functor M renaming (id to idF)
open import Categories.Morphism.Reasoning V
import Categories.Morphism.IsoEquiv V as IsoEquiv
open import Categories.NaturalTransformation using (ntHelper)
renaming (NaturalTransformation to Setoid-NT)
open Setoid-Category V renaming (Obj to ObjV; id to idV)
open Commutation
open Monoidal M
open Shorthands
module _ {c d} {C : Category c} {D : Category d} where
private
module C = Category C
module D = Category D
module U = Underlying D
record NaturalTransformation (F G : Functor C D) : Set (ℓ ⊔ e ⊔ c) where
eta-equality
private
module F = Functor F
module G = Functor G
field
comp : ∀ X → F.₀ X U.⇒ G.₀ X
commute : ∀ {X Y} →
[ C [ X , Y ] ⇒ D [ F.₀ X , G.₀ Y ] ]⟨
unitorˡ.to ⇒⟨ unit ⊗₀ C [ X , Y ] ⟩
comp Y ⊗₁ F.₁ ⇒⟨ D [ F.₀ Y , G.₀ Y ] ⊗₀ D [ F.₀ X , F.₀ Y ] ⟩
D.⊚
≈ unitorʳ.to ⇒⟨ C [ X , Y ] ⊗₀ unit ⟩
G.₁ ⊗₁ comp X ⇒⟨ D [ G.₀ X , G.₀ Y ] ⊗₀ D [ F.₀ X , G.₀ X ] ⟩
D.⊚
⟩
-- A shorthand for the components of a natural transformation:
--
-- α [ X ]
--
-- is the X-component of the family { αₓ } of "morphisms" that
-- forms the natural transformation α.
infixl 16 _[_]
_[_] = comp
open NaturalTransformation
open D hiding (id)
open IsoEquiv._≃_
id : ∀ {F : Functor C D} → NaturalTransformation F F
id {F} = record
{ comp = λ _ → D.id
; commute = λ {X} {Y} → begin
⊚ ∘ D.id ⊗₁ F.₁ ∘ λ⇐ ≈⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
⊚ ∘ D.id ⊗₁ idV ∘ idV ⊗₁ F.₁ ∘ λ⇐ ≈⟨ pullˡ unitˡ ⟩
unitorˡ.from ∘ idV ⊗₁ F.₁ ∘ λ⇐ ≈⟨ pullˡ unitorˡ-commute-from ⟩
(F.₁ ∘ unitorˡ.from) ∘ λ⇐ ≈⟨ cancelʳ unitorˡ.isoʳ ⟩
F.₁ ≈˘⟨ cancelʳ unitorʳ.isoʳ ⟩
(F.₁ ∘ unitorʳ.from) ∘ ρ⇐ ≈˘⟨ pullˡ unitorʳ-commute-from ⟩
unitorʳ.from ∘ F.₁ ⊗₁ idV ∘ ρ⇐ ≈˘⟨ pullˡ unitʳ ⟩
⊚ ∘ idV ⊗₁ D.id ∘ F.₁ ⊗₁ idV ∘ ρ⇐ ≈˘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
⊚ ∘ F.₁ ⊗₁ D.id ∘ ρ⇐ ∎
}
where module F = Functor F
infixr 9 _∘ᵥ_
-- Vertical composition
_∘ᵥ_ : {F G H : Functor C D} →
NaturalTransformation G H → NaturalTransformation F G →
NaturalTransformation F H
_∘ᵥ_ {F} {G} {H} α β = record
{ comp = λ X → α [ X ] U.∘ β [ X ]
; commute = λ {X} {Y} →
begin
⊚ ∘ (⊚ ∘ α [ Y ] ⊗₁ β [ Y ] ∘ λ⇐) ⊗₁ F.₁ ∘ λ⇐
≈⟨ helper (α [ Y ]) (β [ Y ]) F.₁ λ⇐ ⟩
⊚ ∘ α [ Y ] ⊗₁ (⊚ ∘ β [ Y ] ⊗₁ F.₁ ∘ λ⇐) ∘ λ⇐
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ commute β ⟩∘⟨refl ⟩
⊚ ∘ α [ Y ] ⊗₁ (⊚ ∘ G.₁ ⊗₁ β [ X ] ∘ ρ⇐) ∘ λ⇐
≈˘⟨ helper (α [ Y ]) G.₁ (β [ X ]) ρ⇐ ⟩
⊚ ∘ (⊚ ∘ α [ Y ] ⊗₁ G.₁ ∘ λ⇐) ⊗₁ β [ X ] ∘ ρ⇐
≈⟨ refl⟩∘⟨ commute α ⟩⊗⟨refl ⟩∘⟨refl ⟩
⊚ ∘ (⊚ ∘ H.₁ ⊗₁ α [ X ] ∘ ρ⇐) ⊗₁ β [ X ] ∘ ρ⇐
≈˘⟨ refl⟩∘⟨ assoc ⟩⊗⟨refl ⟩∘⟨refl ⟩
⊚ ∘ ((⊚ ∘ H.₁ ⊗₁ α [ X ]) ∘ ρ⇐) ⊗₁ β [ X ] ∘ ρ⇐
≈⟨ refl⟩∘⟨ split₁ʳ ⟩∘⟨refl ⟩
⊚ ∘ ((⊚ ∘ H.₁ ⊗₁ α [ X ]) ⊗₁ β [ X ] ∘ ρ⇐ ⊗₁ idV) ∘ ρ⇐
≈⟨ pullˡ (pullˡ ⊚-assoc-var) ⟩
((⊚ ∘ H.₁ ⊗₁ (⊚ ∘ α [ X ] ⊗₁ β [ X ]) ∘ α⇒) ∘ ρ⇐ ⊗₁ idV) ∘ ρ⇐
≈˘⟨ pushʳ (pushʳ (switch-tofromˡ associator (to-≈ triangle-iso))) ⟩∘⟨refl ⟩
(⊚ ∘ H.₁ ⊗₁ (⊚ ∘ α [ X ] ⊗₁ β [ X ]) ∘ idV ⊗₁ λ⇐) ∘ ρ⇐
≈˘⟨ pushʳ (split₂ʳ ⟩∘⟨refl) ⟩
⊚ ∘ H.₁ ⊗₁ ((⊚ ∘ α [ X ] ⊗₁ β [ X ]) ∘ λ⇐) ∘ ρ⇐
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ assoc ⟩∘⟨refl ⟩
⊚ ∘ H.₁ ⊗₁ (⊚ ∘ α [ X ] ⊗₁ β [ X ] ∘ λ⇐) ∘ ρ⇐
∎
}
where
module F = Functor F
module G = Functor G
module H = Functor H
helper : ∀ {X₁ X₂ X₃ X₄ Y₁ Y₂ Z} (f : X₃ U.⇒ X₄) (g : Y₁ ⇒ D [ X₂ , X₃ ])
(h : Y₂ ⇒ D [ X₁ , X₂ ]) (i : Z ⇒ Y₁ ⊗₀ Y₂) →
⊚ ∘ (⊚ ∘ f ⊗₁ g ∘ λ⇐) ⊗₁ h ∘ i ≈
⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h ∘ i) ∘ λ⇐
helper f g h i = begin
⊚ ∘ (⊚ ∘ f ⊗₁ g ∘ λ⇐) ⊗₁ h ∘ i
≈˘⟨ refl⟩∘⟨ assoc ⟩⊗⟨refl ⟩∘⟨refl ⟩
⊚ ∘ ((⊚ ∘ f ⊗₁ g) ∘ λ⇐) ⊗₁ h ∘ i
≈⟨ refl⟩∘⟨ split₁ʳ ⟩∘⟨refl ⟩
⊚ ∘ ((⊚ ∘ f ⊗₁ g) ⊗₁ h ∘ λ⇐ ⊗₁ idV) ∘ i
≈⟨ pullˡ (pullˡ ⊚-assoc-var) ⟩
((⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h) ∘ α⇒) ∘ λ⇐ ⊗₁ idV) ∘ i
≈˘⟨ pushʳ (pushʳ (switch-tofromˡ associator (to-≈ Kelly's.coherence-iso₁))) ⟩∘⟨refl ⟩
(⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h) ∘ λ⇐) ∘ i
≈⟨ pullʳ (pullʳ unitorˡ-commute-to) ⟩
⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h) ∘ idV ⊗₁ i ∘ λ⇐
≈˘⟨ refl⟩∘⟨ pushˡ split₂ʳ ⟩
⊚ ∘ f ⊗₁ ((⊚ ∘ g ⊗₁ h) ∘ i) ∘ λ⇐
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ assoc ⟩∘⟨refl ⟩
⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h ∘ i) ∘ λ⇐
∎
-- A V-enriched natural transformation induces an ordinary natural
-- transformation on the underlying functors.
UnderlyingNT : {F G : Functor C D} → NaturalTransformation F G →
Setoid-NT (UnderlyingFunctor F) (UnderlyingFunctor G)
UnderlyingNT {F} {G} α = ntHelper (record
{ η = comp α
; commute = λ {X Y} f →
begin
⊚ ∘ α [ Y ] ⊗₁ (F.₁ ∘ f) ∘ λ⇐ ≈⟨ refl⟩∘⟨ split₂ʳ ⟩∘⟨refl ⟩
⊚ ∘ (α [ Y ] ⊗₁ F.₁ ∘ idV ⊗₁ f) ∘ λ⇐ ≈˘⟨ refl⟩∘⟨ extendˡ unitorˡ-commute-to ⟩
⊚ ∘ (α [ Y ] ⊗₁ F.₁ ∘ λ⇐) ∘ f ≈⟨ extendʳ (commute α) ⟩
⊚ ∘ (G.₁ ⊗₁ α [ X ] ∘ ρ⇐) ∘ f ≈⟨ refl⟩∘⟨ extendˡ unitorʳ-commute-to ⟩
⊚ ∘ (G.₁ ⊗₁ α [ X ] ∘ f ⊗₁ idV) ∘ ρ⇐ ≈˘⟨ refl⟩∘⟨ split₁ʳ ⟩∘⟨refl ⟩
⊚ ∘ (G.₁ ∘ f) ⊗₁ α [ X ] ∘ ρ⇐ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ to-≈ Kelly's.coherence-iso₃ ⟩
⊚ ∘ (G.₁ ∘ f) ⊗₁ α [ X ] ∘ λ⇐ ∎
})
where
module F = Functor F
module G = Functor G
module UnderlyingNT {F} {G} α = Setoid-NT (UnderlyingNT {F} {G} α)
module _ {c d e} {C : Category c} {D : Category d} {E : Category e} where
private
module C = Category C
module D = Category D
module E = Category E
module U = Underlying E
open NaturalTransformation
infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_
-- Left- and right-hand composition with a functor
_∘ˡ_ : {G H : Functor C D} (F : Functor D E) →
NaturalTransformation G H → NaturalTransformation (F ∘F G) (F ∘F H)
_∘ˡ_ {G} {H} F α = record
{ comp = λ X → F.₁ ∘ α [ X ]
; commute = λ {X Y} →
begin
E.⊚ ∘ (F.₁ ∘ α [ Y ]) ⊗₁ (F.₁ ∘ G.₁) ∘ λ⇐ ≈⟨ refl⟩∘⟨ pushˡ ⊗-distrib-over-∘ ⟩
E.⊚ ∘ (F.₁ ⊗₁ F.₁) ∘ (α [ Y ] ⊗₁ G.₁) ∘ λ⇐ ≈˘⟨ extendʳ F.homomorphism ⟩
F.₁ ∘ D.⊚ ∘ (α [ Y ] ⊗₁ G.₁) ∘ λ⇐ ≈⟨ refl⟩∘⟨ commute α ⟩
F.₁ ∘ D.⊚ ∘ (H.₁ ⊗₁ α [ X ]) ∘ ρ⇐ ≈⟨ extendʳ F.homomorphism ⟩
E.⊚ ∘ (F.₁ ⊗₁ F.₁) ∘ (H.₁ ⊗₁ α [ X ]) ∘ ρ⇐ ≈˘⟨ refl⟩∘⟨ pushˡ ⊗-distrib-over-∘ ⟩
E.⊚ ∘ (F.₁ ∘ H.₁) ⊗₁ (F.₁ ∘ α [ X ]) ∘ ρ⇐ ∎
}
where
module F = Functor F
module G = Functor G
module H = Functor H
_∘ʳ_ : {G H : Functor D E} →
NaturalTransformation G H → (F : Functor C D) →
NaturalTransformation (G ∘F F) (H ∘F F)
_∘ʳ_ {G} {H} α F = record
{ comp = λ X → α [ F.₀ X ]
; commute = λ {X Y} →
begin
E.⊚ ∘ α [ F.₀ Y ] ⊗₁ (G.₁ ∘ F.₁) ∘ λ⇐ ≈⟨ refl⟩∘⟨ split₂ʳ ⟩∘⟨refl ⟩
E.⊚ ∘ (α [ F.₀ Y ] ⊗₁ G.₁ ∘ idV ⊗₁ F.₁) ∘ λ⇐ ≈˘⟨ refl⟩∘⟨ extendˡ unitorˡ-commute-to ⟩
E.⊚ ∘ (α [ F.₀ Y ] ⊗₁ G.₁ ∘ λ⇐) ∘ F.₁ ≈⟨ extendʳ (commute α) ⟩
E.⊚ ∘ (H.₁ ⊗₁ α [ F.₀ X ] ∘ ρ⇐) ∘ F.₁ ≈⟨ refl⟩∘⟨ extendˡ unitorʳ-commute-to ⟩
E.⊚ ∘ (H.₁ ⊗₁ α [ F.₀ X ] ∘ F.₁ ⊗₁ idV) ∘ ρ⇐ ≈˘⟨ refl⟩∘⟨ split₁ʳ ⟩∘⟨refl ⟩
E.⊚ ∘ (H.₁ ∘ F.₁) ⊗₁ α [ F.₀ X ] ∘ ρ⇐ ∎
}
where
module F = Functor F
module G = Functor G
module H = Functor H
-- Horizontal composition
_∘ₕ_ : {H I : Functor D E} {F G : Functor C D} →
NaturalTransformation H I → NaturalTransformation F G →
NaturalTransformation (H ∘F F) (I ∘F G)
_∘ₕ_ {_} {I} {F} {_} α β = (I ∘ˡ β) ∘ᵥ (α ∘ʳ F)
|
{
"alphanum_fraction": 0.4623181493,
"avg_line_length": 37.7747747748,
"ext": "agda",
"hexsha": "6b1c6944a261b0591600b58170e545ac0f70fcad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Enriched/NaturalTransformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Enriched/NaturalTransformation.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Enriched/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4192,
"size": 8386
}
|
-- This file tests that implicit record fields are not printed out (by
-- default).
-- Andreas, 2016-07-20 Repaired this long disfunctional test case.
module ImplicitRecordFields where
record R : Set₁ where
field
{A} : Set
f : A → A
{B C} D {E} : Set
g : B → C → E
postulate
A : Set
r : R
data _≡_ {A : Set₁} (x : A) : A → Set where
refl : x ≡ x
foo : r ≡ record
{ A = A
; f = λ x → x
; B = A
; C = A
; D = A
; g = λ x _ → x
}
foo = refl
-- EXPECTED ERROR:
-- .R.A r != A of type Set
-- when checking that the expression refl has type
-- r ≡ record { f = λ x → x ; D = A ; g = λ x _ → x }
|
{
"alphanum_fraction": 0.5211480363,
"avg_line_length": 18.3888888889,
"ext": "agda",
"hexsha": "183342e4e44018aea301f8552001d389ba2ee53e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ImplicitRecordFields.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ImplicitRecordFields.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ImplicitRecordFields.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 241,
"size": 662
}
|
module with-equalities where
open import Agda.Builtin.List
open import Common.Bool
open import Common.Equality
module _ {A : Set} where
filter : (A → Bool) → List A → List A
filter p [] = []
filter p (x ∷ xs) =
if p x then x ∷ filter p xs else filter p xs
filter-filter : ∀ p xs → filter p (filter p xs) ≡ filter p xs
filter-filter p [] = refl
filter-filter p (x ∷ xs) with p x in eq
... | false = filter-filter p xs -- easy
... | true -- second filter stuck on `p x`: rewrite by `eq`!
rewrite eq = cong (x ∷_) (filter-filter p xs)
open import Agda.Builtin.Nat
open import Agda.Builtin.Sigma
double : Nat → Set
double m = Σ Nat λ n → n + n ≡ m
-- 2*_ : Nat → Σ Nat double
-- 2*_ n with m ← n + n = m , n , {!!}
-- At this point we do not remember that m ≡ n + n and cannot
-- conclude the proof.
-- If only we could give a name to the proof that
-- `p ≡ e` after a `with p ← e` clause !
2*_ : Nat → Σ Nat double
2*_ n with m ← n + n in eq = m , n , eq
data ⊥ : Set where
⊥-elim : ⊥ → {A : Set} → A
⊥-elim ()
¬odd0 : ∀ n → 2 * n + 1 ≡ 0 → ⊥
¬odd0 zero ()
¬odd0 (suc n) ()
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
module _ {A : Set} where
oddhead : ∀ {n} → Vec A (2 * n + 1) → A
oddhead {n} xs
-- here we cannot split on `xs` because Agda does not know
-- whether `2 * n + 1` can unify with `0` or not
-- A possible solution: abstract over p and then match on xs.
-- with p ← (2 * n + 1) | xs
-- ... | x ∷ _ = x
-- ... | [] = {!!}
-- The problem however is that Agda insists we should consider
-- two cases: `xs = []` and `xs = x ∷ _`. And in the `[]` branch
-- we only know that:
-- p : Nat
-- n : Nat
-- xs : Vec A 0
-- If only we had somehow recorded that `p ← (2 * n + 1)` happened!
-- This is what the inspect construct allows us to do.
with p ← (2 * n + 1) in eq | xs
... | x ∷ _ = x
-- we can now use this equality proof to dismiss the impossible case.
... | [] = ⊥-elim (¬odd0 n eq)
-- If you do not want to name the nat corresponding to `2 * n + 1`,
-- you can use inspect together with an implicit with
oddhead' : ∀ {n} → Vec A (2 * n + 1) → A
oddhead' {n} xs with {2 * n + 1} in eq | xs
... | x ∷ _ = x
... | [] = ⊥-elim (¬odd0 n eq)
|
{
"alphanum_fraction": 0.5468483816,
"avg_line_length": 27.9523809524,
"ext": "agda",
"hexsha": "08397c0dd1528c227d0c4d9e8aec9cec5455d6bd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/with-equalities.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/with-equalities.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/with-equalities.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 838,
"size": 2348
}
|
module Algebra.LabelledGraph.Theorems where
open import Algebra.LabelledGraph
open import Algebra.LabelledGraph.Reasoning
open import Algebra.Dioid
open import Algebra.Graph using (Graph)
import Algebra.Graph as Graph
import Algebra.Graph.Reasoning as Graph
import Algebra.Graph.Theorems as Graph
import Algebra.Dioid.Bool as Bool
import Algebra.Dioid.Bool.Theorems as Bool
-- | Laws of labelled graphs
associativity : ∀ {A D eq} {d : Dioid D eq} {a b c : LabelledGraph d A} {r : D} -> (a [ r ]> b) [ r ]> c ≡ a [ r ]> (b [ r ]> c)
associativity {_} {_} {_} {_} {a} {b} {c} {r} = right-decomposition >> symmetry left-decomposition
absorption : ∀ {A D eq} {d : Dioid D eq} {a b : LabelledGraph d A} {r : D} -> a [ r ]> b ≡ a [ r ]> b + a + b
absorption {_} {_} {_} {d} {a} {b} {r} =
begin
(a [ r ]> b) ≡⟨ symmetry right-identity ⟩
(a [ r ]> b) [ Dioid.zero d ]> ε ≡⟨ right-decomposition ⟩
(a [ r ]> b) + (a + ε) + (b + ε) ≡⟨ L (R right-identity ) ⟩
(a [ r ]> b) + a + (b + ε) ≡⟨ R right-identity ⟩
(a [ r ]> b) + a + b
∎
idempotence : ∀ {A D eq} {d : Dioid D eq} {a : LabelledGraph d A} -> a ≡ a + a
idempotence {_} {_} {_} {_} {a} =
begin
a ≡⟨ symmetry right-identity ⟩
a + ε ≡⟨ symmetry right-identity ⟩
a + ε + ε ≡⟨ right-decomposition ⟩
(a + ε) + (a + ε) + (ε + ε) ≡⟨ right-congruence left-identity ⟩
(a + ε) + (a + ε) + ε ≡⟨ right-identity ⟩
(a + ε) + (a + ε) ≡⟨ right-congruence right-identity ⟩
(a + ε) + a ≡⟨ left-congruence right-identity ⟩
a + a
∎
left-absorption : ∀ {A D eq} {d : Dioid D eq} {a b : LabelledGraph d A} {r : D} -> a [ r ]> b ≡ a [ r ]> b + a
left-absorption {_} {_} {_} {_} {a} {b} {r} =
begin
(a [ r ]> b) ≡⟨ absorption ⟩
(a [ r ]> b) + a + b ≡⟨ L (R idempotence) ⟩
(a [ r ]> b) + (a + a) + b ≡⟨ associativity ⟩
(a [ r ]> b) + (a + a + b) ≡⟨ R zero-commutativity ⟩
(a [ r ]> b) + (b + (a + a)) ≡⟨ R (symmetry associativity) ⟩
(a [ r ]> b) + ((b + a) + a) ≡⟨ R (L zero-commutativity) ⟩
(a [ r ]> b) + ((a + b) + a) ≡⟨ symmetry associativity ⟩
(a [ r ]> b) + (a + b) + a ≡⟨ L (symmetry associativity) ⟩
(a [ r ]> b) + a + b + a ≡⟨ L (symmetry absorption) ⟩
(a [ r ]> b) + a
∎
right-absorption : ∀ {A D eq} {d : Dioid D eq} {a b : LabelledGraph d A} {r : D} -> a [ r ]> b ≡ a [ r ]> b + b
right-absorption {_} {_} {_} {_} {a} {b} {r} =
begin
(a [ r ]> b) ≡⟨ absorption ⟩
(a [ r ]> b) + a + b ≡⟨ R idempotence ⟩
(a [ r ]> b) + a + (b + b) ≡⟨ symmetry associativity ⟩
(a [ r ]> b) + a + b + b ≡⟨ L (symmetry absorption) ⟩
(a [ r ]> b) + b
∎
right-distributivity : ∀ {A D eq} {d : Dioid D eq} {a b c : LabelledGraph d A} {r : D} -> (a + b) [ r ]> c ≡ a [ r ]> c + b [ r ]> c
right-distributivity {_} {_} {_} {_} {a} {b} {c} {r} =
begin
(a + b) [ r ]> c ≡⟨ right-decomposition ⟩
a + b + (a [ r ]> c) + (b [ r ]> c) ≡⟨ L zero-commutativity ⟩
(a [ r ]> c) + (a + b) + (b [ r ]> c) ≡⟨ L (symmetry associativity) ⟩
((a [ r ]> c) + a) + b + (b [ r ]> c) ≡⟨ L (L (symmetry left-absorption)) ⟩
(a [ r ]> c) + b + (b [ r ]> c) ≡⟨ associativity ⟩
(a [ r ]> c) + (b + (b [ r ]> c)) ≡⟨ R zero-commutativity ⟩
(a [ r ]> c) + ((b [ r ]> c) + b) ≡⟨ R (symmetry left-absorption) ⟩
(a [ r ]> c) + (b [ r ]> c)
∎
left-distributivity : ∀ {A D eq} {d : Dioid D eq} {a b c : LabelledGraph d A} {r : D} -> a [ r ]> (b + c) ≡ a [ r ]> b + a [ r ]> c
left-distributivity {_} {_} {_} {_} {a} {b} {c} {r} =
begin
a [ r ]> (b + c) ≡⟨ left-decomposition ⟩
a [ r ]> b + a [ r ]> c + (b + c) ≡⟨ symmetry associativity ⟩
a [ r ]> b + a [ r ]> c + b + c ≡⟨ L associativity ⟩
a [ r ]> b + (a [ r ]> c + b) + c ≡⟨ L (R zero-commutativity) ⟩
a [ r ]> b + (b + a [ r ]> c) + c ≡⟨ L (symmetry associativity) ⟩
a [ r ]> b + b + a [ r ]> c + c ≡⟨ L (L (symmetry right-absorption)) ⟩
a [ r ]> b + a [ r ]> c + c ≡⟨ associativity ⟩
a [ r ]> b + (a [ r ]> c + c) ≡⟨ R (symmetry right-absorption) ⟩
a [ r ]> b + a [ r ]> c
∎
-- | Conversion functions
-- These allow for a conversion between LabelledGraphs labelled by Bools and ordinary Graphs.
-- As `graph-laws` and `labelled-graph-laws` demonstrates, these preserve their respective laws.
to-graph : ∀ {A} -> LabelledGraph Bool.bool-dioid A -> Graph A
to-graph ε = Graph.ε
to-graph (v x) = Graph.v x
to-graph (x [ Bool.false ]> y) = to-graph x Graph.+ to-graph y
to-graph (x [ Bool.true ]> y) = to-graph x Graph.* to-graph y
labelled-graph-laws : ∀ {A} {x y : LabelledGraph Bool.bool-dioid A} -> x ≡ y -> (to-graph x) Graph.≡ (to-graph y)
labelled-graph-laws reflexivity = Graph.reflexivity
labelled-graph-laws (symmetry eq) = Graph.symmetry (labelled-graph-laws eq)
labelled-graph-laws (transitivity eq eq₁) = Graph.transitivity (labelled-graph-laws eq)
(labelled-graph-laws eq₁)
labelled-graph-laws (left-congruence {r = r} eq) with r
... | Bool.true = Graph.*left-congruence (labelled-graph-laws eq)
... | Bool.false = Graph.+left-congruence (labelled-graph-laws eq)
labelled-graph-laws (right-congruence {r = r} eq) with r
... | Bool.true = Graph.*right-congruence (labelled-graph-laws eq)
... | Bool.false = Graph.+right-congruence (labelled-graph-laws eq)
labelled-graph-laws (dioid-congruence eq) = dioid-recur eq
where
dioid-recur : ∀ {A} {x y : LabelledGraph Bool.bool-dioid A} {r s : Bool.Bool}
-> r Bool.≡ s -> (to-graph (x [ r ]> y)) Graph.≡ (to-graph (x [ s ]> y))
dioid-recur Bool.reflexivity = Graph.reflexivity
dioid-recur (Bool.symmetry eq) = Graph.symmetry (dioid-recur eq)
dioid-recur (Bool.transitivity eq eq₁) = Graph.transitivity (dioid-recur eq) (dioid-recur eq₁)
labelled-graph-laws zero-commutativity = Graph.+commutativity
labelled-graph-laws (left-identity {r = r}) with r
... | Bool.true = Graph.*left-identity
... | Bool.false = Graph.+commutativity Graph.>> Graph.+identity
labelled-graph-laws (right-identity {r = r}) with r
... | Bool.true = Graph.*right-identity
... | Bool.false = Graph.+identity
labelled-graph-laws (left-decomposition {r = r} {s}) with r | s
... | Bool.true | Bool.true = Graph.*associativity Graph.>> Graph.decomposition
... | Bool.true | Bool.false = Graph.*+ltriple
... | Bool.false | Bool.true = Graph.+*ltriple
... | Bool.false | Bool.false = Graph.++ltriple
labelled-graph-laws (right-decomposition {r = r} {s}) with r | s
... | Bool.true | Bool.true = Graph.decomposition
... | Bool.true | Bool.false = Graph.*+rtriple
... | Bool.false | Bool.true = Graph.+*rtriple
... | Bool.false | Bool.false = Graph.++rtriple
labelled-graph-laws (label-addition {r = r} {s}) with r | s
... | Bool.true | Bool.true = Graph.+idempotence
... | Bool.true | Bool.false = Graph.+associativity Graph.>> Graph.absorption
... | Bool.false | Bool.true = (Graph.+commutativity Graph.>> Graph.+associativity) Graph.>> Graph.absorption
... | Bool.false | Bool.false = Graph.+idempotence
from-graph : ∀ {A D eq} {d : Dioid D eq} -> Graph A -> LabelledGraph d A
from-graph Graph.ε = ε
from-graph (Graph.v x) = v x
from-graph {_} {_} {_} {d} (x Graph.+ y) = from-graph x [ Dioid.zero d ]> from-graph y
from-graph {_} {_} {_} {d} (x Graph.* y) = from-graph x [ Dioid.one d ]> from-graph y
graph-laws : ∀ {A D eq} {d : Dioid D eq} {x y : Graph A} -> x Graph.≡ y -> _≡_ {A} {D} {eq} {d} (from-graph x) (from-graph y)
graph-laws {x = x} {.x} Graph.reflexivity = reflexivity
graph-laws {x = x} {y} (Graph.symmetry eq) = symmetry (graph-laws eq)
graph-laws {x = x} {y} (Graph.transitivity eq eq₁) = transitivity (graph-laws eq) (graph-laws eq₁)
graph-laws {x = .(_ Graph.+ _)} {.(_ Graph.+ _)} (Graph.+left-congruence eq) = left-congruence (graph-laws eq)
graph-laws {x = .(_ Graph.* _)} {.(_ Graph.* _)} (Graph.*left-congruence eq) = left-congruence (graph-laws eq)
graph-laws {x = .(_ Graph.* _)} {.(_ Graph.* _)} (Graph.*right-congruence eq) = right-congruence (graph-laws eq)
graph-laws {x = .(_ Graph.+ _)} {.(_ Graph.+ _)} Graph.+commutativity = zero-commutativity
graph-laws {x = .(_ Graph.+ (_ Graph.+ _))} {.(_ Graph.+ _ Graph.+ _)} Graph.+associativity = symmetry associativity
graph-laws {x = .(Graph.ε Graph.* y)} {y} Graph.*left-identity = left-identity
graph-laws {x = .(y Graph.* Graph.ε)} {y} Graph.*right-identity = right-identity
graph-laws {x = .(_ Graph.* (_ Graph.* _))} {.(_ Graph.* _ Graph.* _)} Graph.*associativity = symmetry associativity
graph-laws {x = .(_ Graph.* (_ Graph.+ _))} {.(_ Graph.* _ Graph.+ _ Graph.* _)} Graph.left-distributivity = left-distributivity
graph-laws {x = .((_ Graph.+ _) Graph.* _)} {.(_ Graph.* _ Graph.+ _ Graph.* _)} Graph.right-distributivity = right-distributivity
graph-laws {x = .(_ Graph.* _ Graph.* _)} {.(_ Graph.* _ Graph.+ _ Graph.* _ Graph.+ _ Graph.* _)} Graph.decomposition = right-decomposition
to-from-identity : ∀ {A} {x : Graph A} -> (to-graph (from-graph x)) Graph.≡ x
to-from-identity {x = Graph.ε} = Graph.reflexivity
to-from-identity {x = Graph.v x} = Graph.reflexivity
to-from-identity {x = x₁ Graph.+ x₂} = Graph.symmetry (Graph.+left-congruence (Graph.symmetry (to-from-identity {x = x₁})))
Graph.>> Graph.symmetry (Graph.+right-congruence (Graph.symmetry (to-from-identity {x = x₂})))
to-from-identity {x = x₁ Graph.* x₂} = Graph.symmetry (Graph.*left-congruence (Graph.symmetry (to-from-identity {x = x₁})))
Graph.>> Graph.symmetry (Graph.*right-congruence (Graph.symmetry (to-from-identity {x = x₂})))
from-to-identity : ∀ {A} {x : LabelledGraph Bool.bool-dioid A} -> (from-graph (to-graph x)) ≡ x
from-to-identity {x = ε} = reflexivity
from-to-identity {x = v x} = reflexivity
from-to-identity {x = x₁ [ d ]> x₂} with d
... | Bool.true = symmetry (left-congruence (symmetry (from-to-identity {x = x₁})))
>> symmetry (right-congruence (symmetry (from-to-identity {x = x₂})))
... | Bool.false = symmetry (left-congruence (symmetry (from-to-identity {x = x₁})))
>> symmetry (right-congruence (symmetry (from-to-identity {x = x₂})))
|
{
"alphanum_fraction": 0.574632713,
"avg_line_length": 55.7923497268,
"ext": "agda",
"hexsha": "be64e777a8554ac9bf665a5999b5684d061c9d9e",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2019-05-09T23:53:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-17T20:48:20.000Z",
"max_forks_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "snowleopard/alga-proofs",
"max_forks_repo_path": "src/Algebra/LabelledGraph/Theorems.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_issues_repo_issues_event_max_datetime": "2018-06-23T13:54:02.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-04-12T16:25:13.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "snowleopard/alga-proofs",
"max_issues_repo_path": "src/Algebra/LabelledGraph/Theorems.agda",
"max_line_length": 140,
"max_stars_count": 60,
"max_stars_repo_head_hexsha": "0fdb96c0233d9be83eba637f0434d0fd22aefb1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "snowleopard/alga-proofs",
"max_stars_repo_path": "src/Algebra/LabelledGraph/Theorems.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:05:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-12-27T14:57:04.000Z",
"num_tokens": 3778,
"size": 10210
}
|
------------------------------------------------------------------------------
-- Examples of translation of logical schemata
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.SchemataATP where
open import FOL.Base
------------------------------------------------------------------------------
module NonSchemas where
postulate
A B C : Set
A¹ : D → Set
A² B² : D → D → Set
A³ B³ C³ : D → D → D → Set
postulate id : A → A
{-# ATP prove id #-}
postulate id¹ : ∀ {x} → A¹ x → A¹ x
{-# ATP prove id¹ #-}
postulate id² : ∀ {x y} → A² x y → A² x y
{-# ATP prove id² #-}
postulate ∨-comm : A ∨ B → B ∨ A
{-# ATP prove ∨-comm #-}
postulate ∨-comm² : ∀ {x y} → A² x y ∨ B² x y → B² x y ∨ A² x y
{-# ATP prove ∨-comm² #-}
postulate ∧∨-dist : A ∧ (B ∨ C) ↔ A ∧ B ∨ A ∧ C
{-# ATP prove ∧∨-dist #-}
postulate
∧∨-dist³ : ∀ {x y z} →
(A³ x y z ∧ (B³ x y z ∨ C³ x y z)) ↔
(A³ x y z ∧ B³ x y z ∨ A³ x y z ∧ C³ x y z)
{-# ATP prove ∧∨-dist³ #-}
module Schemas where
postulate id : {A : Set} → A → A
{-# ATP prove id #-}
postulate id¹ : {A¹ : D → Set} → ∀ {x} → A¹ x → A¹ x
{-# ATP prove id¹ #-}
postulate id² : {A² : D → D → Set} → ∀ {x y} → A² x y → A² x y
{-# ATP prove id² #-}
postulate ∨-comm : {A B : Set} → A ∨ B → A ∨ B
{-# ATP prove ∨-comm #-}
postulate ∨-comm² : {A² B² : D → D → Set} → ∀ {x y} →
A² x y ∨ B² x y → B² x y ∨ A² x y
{-# ATP prove ∨-comm² #-}
postulate ∧∨-dist : {A B C : Set} → A ∧ (B ∨ C) ↔ A ∧ B ∨ A ∧ C
{-# ATP prove ∧∨-dist #-}
postulate ∧∨-dist³ : {A³ B³ C³ : D → D → D → Set} → ∀ {x y z} →
(A³ x y z ∧ (B³ x y z ∨ C³ x y z)) ↔
(A³ x y z ∧ B³ x y z ∨ A³ x y z ∧ C³ x y z)
{-# ATP prove ∧∨-dist³ #-}
module SchemaInstances where
-- A schema
-- Current translation: ∀ p q x. app(p,x) → app(q,x).
postulate schema : (A B : D → Set) → ∀ {x} → A x → B x
-- Using the current translation, the ATPs can prove an instance of
-- the schema.
postulate
d : D
A B : D → Set
instanceC : A d → B d
{-# ATP prove instanceC schema #-}
|
{
"alphanum_fraction": 0.4214703425,
"avg_line_length": 27.5172413793,
"ext": "agda",
"hexsha": "64876c272ba7b06b6b11e7936dac9939f2bb6bd1",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/SchemataATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/SchemataATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/SchemataATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 848,
"size": 2394
}
|
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --guardedness #-}
open import Agda.Builtin.Equality
open import Data.Product
open import Level
open import Relation.Unary using (_⊆_)
module is-lib.InfSys.Coinduction {𝓁} where
private
variable
U : Set 𝓁
open import is-lib.InfSys.Base {𝓁}
open import is-lib.InfSys.Induction {𝓁}
open MetaRule
open IS
{- Coinductive interpretation -}
record CoInd⟦_⟧ {𝓁c 𝓁p 𝓁n : Level} (is : IS {𝓁c} {𝓁p} {𝓁n} U) (u : U) : Set (𝓁 ⊔ 𝓁c ⊔ 𝓁p ⊔ 𝓁n) where
coinductive
constructor cofold_
field
unfold : ISF[ is ] CoInd⟦ is ⟧ u
{- Coinduction Principle -}
coind[_] : ∀{𝓁c 𝓁p 𝓁n 𝓁'}
→ (is : IS {𝓁c} {𝓁p} {𝓁n} U)
→ (S : U → Set 𝓁')
→ (S ⊆ ISF[ is ] S) -- S is consistent
→ S ⊆ CoInd⟦ is ⟧
CoInd⟦_⟧.unfold (coind[ is ] S cn Su) with cn Su
... | rn , c , refl , pr = rn , c , refl , λ i → coind[ is ] S cn (pr i)
{- Apply Rule -}
apply-coind : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (rn : is .Names) → RClosed (is .rules rn) CoInd⟦ is ⟧
apply-coind {is = is} rn = prefix⇒closed (is .rules rn) {P = CoInd⟦ _ ⟧} λ{(c , refl , pr) → cofold (rn , c , refl , pr)}
{- Postfix - Prefix -}
coind-postfix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → CoInd⟦ is ⟧ ⊆ ISF[ is ] CoInd⟦ is ⟧
coind-postfix x = x .CoInd⟦_⟧.unfold
coind-prefix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → ISF[ is ] CoInd⟦ is ⟧ ⊆ CoInd⟦ is ⟧
coind-prefix x = cofold x
|
{
"alphanum_fraction": 0.5364281109,
"avg_line_length": 30.4117647059,
"ext": "agda",
"hexsha": "714e91a63f45bef9ec4e29b80e4b557768267314",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/is-lib/InfSys/Coinduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/is-lib/InfSys/Coinduction.agda",
"max_line_length": 123,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/is-lib/InfSys/Coinduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 688,
"size": 1551
}
|
{-# OPTIONS --without-K #-}
import Level as L
open L using (Lift; lift)
open import Type hiding (★)
open import Function.NP
open import Algebra
open import Algebra.FunctionProperties.NP
open import Data.Nat.NP hiding (_^_)
open import Data.Nat.Properties
open import Data.One hiding (_≤_)
open import Data.Sum
open import Data.Maybe.NP
open import Data.Product
open import Data.Bits
open import Data.Bool.NP as Bool
open import Data.Fin using (Fin)
open import Function.NP
open import Function.Equality using (_⟨$⟩_)
import Function.Inverse.NP as FI
open FI using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from)
import Function.Related as FR
open import Function.Related.TypeIsomorphisms.NP
open import Relation.Binary.NP
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_; _≗_)
open import Search.Type
open import Search.Searchable renaming (Searchable to Searchable)
open import Search.Searchable.Product
open import Search.Searchable.Sum
open import Search.Searchable.Maybe
--open import Search.Searchable.Fin
open import Search.Derived
module sum where
_≈Sum_ : ∀ {A} → (sum₀ sum₁ : Sum A) → ★ _
sum₀ ≈Sum sum₁ = ∀ f → sum₀ f ≡ sum₁ f
_≈Search_ : ∀ {A} → (s₀ s₁ : Search _ A) → ★₁
s₀ ≈Search s₁ = ∀ {B} (op : Op₂ B) f → s₀ op f ≡ s₁ op f
_⊎'_ : ★₀ → ★₀ → ★₀
A ⊎' B = Σ Bool (cond A B)
_μ⊎'_ : ∀ {A B} → Searchable A → Searchable B → Searchable (A ⊎' B)
μA μ⊎' μB = μΣ μBit (λ { {true} → μA ; {false} → μB })
open import Data.Fin using (Fin; zero; suc)
open import Data.Vec.NP as Vec using (Vec; tabulate; _++_) renaming (map to vmap; sum to vsum; foldr to vfoldr; foldr₁ to vfoldr₁)
vmsum : ∀ {c ℓ} (m : Monoid c ℓ) {n} →
let open Mon m in
Vec C n → C
vmsum m = vfoldr _ _∙_ ε
where open Mon m
vsgsum : ∀ {c ℓ} (sg : Semigroup c ℓ) {n} →
let open Sgrp sg in
Vec C (suc n) → C
vsgsum sg = vfoldr₁ _∙_
where open Sgrp sg
-- let's recall that: tabulate f ≗ vmap f (allFin n)
-- searchMonFin : ∀ n → SearchMon (Fin n)
-- searchMonFin n m f = vmsum m (tabulate f)
searchFinSuc : ∀ {m} n → Search m (Fin (suc n))
searchFinSuc n _∙_ f = vfoldr₁ _∙_ (tabulate f)
searchVec : ∀ {m A} n → Search m A → Search m (Vec A n)
searchVec zero searchᴬ op f = f []
searchVec (suc n) searchᴬ op f = searchᴬ op (λ x → searchVec n searchᴬ op (f ∘ _∷_ x))
searchVec-spec : ∀ {A} (μA : Searchable A) n → searchVec n (search μA) ≈Search search (μVec μA n)
searchVec-spec μA zero op f = ≡.refl
searchVec-spec μA (suc n) op f = search-ext μA op (λ x → searchVec-spec μA n op (f ∘ _∷_ x))
searchVec-++ : ∀ {A} n {m} (μA : Searchable A) sg
→ let open Sgrp sg in
(f : Vec A (n + m) → C)
→ search (μVec μA (n + m)) _∙_ f
≈ search (μVec μA n) _∙_ (λ xs →
search (μVec μA m) _∙_ (λ ys →
f (xs ++ ys)))
searchVec-++ zero μA sg f = Sgrp.refl sg
searchVec-++ (suc n) μA sg f = search-sg-ext μA sg (λ x →
searchVec-++ n μA sg (f ∘ _∷_ x))
sumVec-swap : ∀ {A} n {m} (μA : Searchable A)(f : Vec A (n + m) → ℕ)
→ sum (μVec μA n) (λ xs → sum (μVec μA m) (λ ys → f (xs ++ ys)))
≡ sum (μVec μA m) (λ ys → sum (μVec μA n) (λ xs → f (xs ++ ys)))
sumVec-swap n {m} μA f = sum-swap (μVec μA n) (μVec μA m) (λ xs ys → f (xs ++ ys))
simple : ∀ {A : Set}{P : A → A → Set} → (∀ x → P x x) → {x y : A} → x ≡ y → P x y
simple r ≡.refl = r _
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.6048850575,
"avg_line_length": 34.8,
"ext": "agda",
"hexsha": "956e9d03c4207d46d06ed8d6d38a6ca03b103c0e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Old/Sum/sum.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Old/Sum/sum.agda",
"max_line_length": 130,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Old/Sum/sum.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 1282,
"size": 3480
}
|
open import Coinduction hiding (unfold) renaming (♯_ to Thunk; ♭ to Force)
module Brainfuck where
---------- A very basic Prelude ----------
record Pair (a b : Set) : Set where
constructor _,_
field
fst : a
snd : b
data Maybe (a : Set) : Set where
Nothing : Maybe a
Just : (x : a) -> Maybe a
return : {a : Set} -> a -> Maybe a
return x = Just x
data Nat : Set where
Zero : Nat
Succ : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
data Bool : Set where
True : Bool
False : Bool
if_then_else : {a : Set} -> Bool -> a -> a -> a
if True then t else f = t
if False then t else f = f
data List (a : Set) : Set where
Nil : List a
Cons : a -> List a -> List a
---------- Bits and Bytes ----------
data Bit : Set where
O : Bit
I : Bit
data Vec (a : Set) : Nat -> Set where
Nil : Vec a 0
Cons : {n : Nat} -> (x : a) -> (xs : Vec a n) -> Vec a (Succ n)
Byte : Set
Byte = Vec Bit 8
incr : {n : Nat} -> Vec Bit n -> Vec Bit n
incr Nil = Nil
incr (Cons O xs) = Cons I xs
incr (Cons I xs) = Cons O (incr xs)
decr : {n : Nat} -> Vec Bit n -> Vec Bit n
decr Nil = Nil
decr (Cons O xs) = Cons I (decr xs)
decr (Cons I xs) = Cons O xs
isZero : {n : Nat} -> Vec Bit n -> Bool
isZero Nil = True
isZero (Cons O xs) = isZero xs
isZero (Cons I xs) = False
zero : {n : Nat} -> Vec Bit n
zero {Zero} = Nil
zero {Succ k} = Cons O zero
---------- The state of the machine ----------
data Stream (a : Set) : Set where
Cons : a -> ∞ (Stream a) -> Stream a
zeros : Stream Byte
zeros = Cons zero (Thunk zeros)
record State : Set where
constructor _,_,_,_,_
field
left : Stream Byte
current : Byte
right : Stream Byte
stdin : Stream Byte
stdout : List Byte
init : Stream Byte -> State
init stdin = zeros , zero , zeros , stdin , Nil
stepLeft : State -> State
stepLeft (Cons left lefts , current , right , stdin , stdout) =
(Force lefts) , left , (Cons current (Thunk right)) , stdin , stdout
stepRight : State -> State
stepRight (left , current , Cons right rights , stdin , stdout) =
Cons current (Thunk left) , right , Force rights , stdin , stdout
output : State -> State
output (left , current , right , stdin , stdout) =
left , current , right , stdin , (Cons current stdout)
input : State -> State
input (left , current , right , Cons b stdin , stdout) =
left , b , right , Force stdin , stdout
increment : State -> State
increment (left , current , right , stdin , stdout) =
left , (incr current) , right , stdin , stdout
decrement : State -> State
decrement (left , current , right , stdin , stdout) =
left , (decr current) , right , stdin , stdout
---------- The Brainfuck language ----------
data Command : Set where
>_ : (c : Command) -> Command
<_ : (c : Command) -> Command
+_ : (c : Command) -> Command
-_ : (c : Command) -> Command
·_ : (c : Command) -> Command
,_ : (c : Command) -> Command
[_]_ : (body : Command) -> (c : Command) -> Command
□ : Command
infix 25 [_]_
-- sequence c1 c2 computes a new command equivalent to c1 followed by c2
sequence : Command -> Command -> Command
sequence (> c) c' = > (sequence c c')
sequence (< c) c' = < (sequence c c')
sequence (+ c) c' = + (sequence c c')
sequence (- c) c' = - (sequence c c')
sequence (· c) c' = · (sequence c c')
sequence (, c) c' = , (sequence c c')
sequence ([ body ] c) c' = [ body ] (sequence c c')
sequence □ c' = c'
step : Pair Command State -> Maybe (Pair Command State)
step ((> cmd) , s) = return (cmd , stepRight s)
step ((< cmd) , s) = return (cmd , stepLeft s)
step ((+ cmd) , s) = return (cmd , increment s)
step ((- cmd) , s) = return (cmd , decrement s)
step ((· cmd) , s) = return (cmd , output s)
step ((, cmd) , s) = return (cmd , input s)
step ([ body ] cmd , s) = if isZero (State.current s)
then return (cmd , s)
else (return ((sequence body ([ body ] cmd)) , s))
step (□ , s) = Nothing
data Trace : Set where
Step : State -> ∞ Trace -> Trace
Stop : State -> Trace
run : Pair Command State -> Trace
run (cmd , s) with step (cmd , s)
run (cmd , s) | Nothing = Stop s
run (cmd , s) | Just x = Step s (Thunk (run x))
interpret : Command -> (stdin : Stream Byte) -> Trace
interpret c stdin = run (c , init stdin)
|
{
"alphanum_fraction": 0.5850340136,
"avg_line_length": 25.993902439,
"ext": "agda",
"hexsha": "e7ea6f8a3cd8632ba2e60e9bace4e6ea878d6d22",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-05T17:14:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-22T21:07:11.000Z",
"max_forks_repo_head_hexsha": "66702edbf12366c35c04e201a381be555616deec",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wouter-swierstra/Brainfuck",
"max_forks_repo_path": "Brainfuck.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "66702edbf12366c35c04e201a381be555616deec",
"max_issues_repo_issues_event_max_datetime": "2021-08-09T12:49:13.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-18T17:57:28.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wouter-swierstra/Brainfuck",
"max_issues_repo_path": "Brainfuck.agda",
"max_line_length": 76,
"max_stars_count": 32,
"max_stars_repo_head_hexsha": "66702edbf12366c35c04e201a381be555616deec",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wouter-swierstra/Brainfuck",
"max_stars_repo_path": "Brainfuck.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-28T17:11:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T22:21:32.000Z",
"num_tokens": 1317,
"size": 4263
}
|
------------------------------------------------------------------------
-- Various equality checkers (some complete, all sound)
------------------------------------------------------------------------
import Axiom.Extensionality.Propositional as E
import Level
open import Data.Universe
-- The code makes use of the assumption that propositional equality of
-- functions is extensional.
module README.DependentlyTyped.Equality-checker
(Uni₀ : Universe Level.zero Level.zero)
(ext : E.Extensionality Level.zero Level.zero)
where
open import Category.Monad
open import Data.Maybe
import Data.Maybe.Categorical as Maybe
open import Data.Product
open import Function hiding (_∋_) renaming (const to k)
import README.DependentlyTyped.NBE as NBE; open NBE Uni₀ ext
import README.DependentlyTyped.NormalForm as NF; open NF Uni₀
import README.DependentlyTyped.Term as Term; open Term Uni₀
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary as Dec using (Dec; yes)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product
open P.≡-Reasoning
open RawMonadZero (Maybe.monadZero {f = Level.zero})
-- Decides if two "atomic type proofs" are equal.
infix 4 _≟-atomic-type_
_≟-atomic-type_ :
∀ {Γ σ} (σ′₁ σ′₂ : Γ ⊢ σ atomic-type) → Dec (σ′₁ ≡ σ′₂)
⋆ ≟-atomic-type ⋆ = yes P.refl
el ≟-atomic-type el = yes P.refl
mutual
private
-- A helper lemma.
helper-lemma :
∀ {Γ₁ sp₁₁ sp₂₁ σ₁}
(t₁₁ : Γ₁ ⊢ π sp₁₁ sp₂₁ , σ₁ ⟨ ne ⟩) (t₂₁ : Γ₁ ⊢ fst σ₁ ⟨ no ⟩)
{Γ₂ sp₁₂ sp₂₂ σ₂}
(t₁₂ : Γ₂ ⊢ π sp₁₂ sp₂₂ , σ₂ ⟨ ne ⟩) (t₂₂ : Γ₂ ⊢ fst σ₂ ⟨ no ⟩) →
t₁₁ · t₂₁ ≅-⊢n t₁₂ · t₂₂ → t₁₁ ≅-⊢n t₁₂ × t₂₁ ≅-⊢n t₂₂
helper-lemma _ _ ._ ._ P.refl = P.refl , P.refl
-- Decides if two neutral terms are identical. Note that the terms
-- must have the same context, but they do not need to have the same
-- type.
infix 4 _≟-⊢ne_
_≟-⊢ne_ : ∀ {Γ σ₁} (t₁ : Γ ⊢ σ₁ ⟨ ne ⟩)
{σ₂} (t₂ : Γ ⊢ σ₂ ⟨ ne ⟩) →
Dec (t₁ ≅-⊢n t₂)
var x₁ ≟-⊢ne var x₂ = Dec.map′ var-n-cong helper (x₁ ≟-∋ x₂)
where
helper : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁}
{Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} →
var x₁ ≅-⊢n var x₂ → x₁ ≅-∋ x₂
helper P.refl = P.refl
t₁₁ · t₂₁ ≟-⊢ne t₁₂ · t₂₂ with t₁₁ ≟-⊢ne t₁₂
... | Dec.no neq = Dec.no (neq ∘ proj₁ ∘ helper-lemma _ t₂₁ _ t₂₂)
... | yes eq = Dec.map′
(·n-cong eq)
(proj₂ ∘ helper-lemma t₁₁ _ t₁₂ _)
(t₂₁ ≟-⊢no t₂₂ [ fst-cong $ indexed-type-cong $ helper eq ])
where
helper : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂ ⟨ ne ⟩} →
t₁ ≅-⊢n t₂ → σ₁ ≅-Type σ₂
helper P.refl = P.refl
var _ ≟-⊢ne _ · _ = Dec.no λ ()
_ · _ ≟-⊢ne var _ = Dec.no λ ()
-- Decides if two normal forms are identical. Note that the terms
-- must have the same type.
infix 4 _≟-⊢no_[_]
_≟-⊢no_[_] : ∀ {Γ₁ σ₁} (t₁ : Γ₁ ⊢ σ₁ ⟨ no ⟩)
{Γ₂ σ₂} (t₂ : Γ₂ ⊢ σ₂ ⟨ no ⟩) →
σ₁ ≅-Type σ₂ → Dec (t₁ ≅-⊢n t₂)
ne σ′₁ t₁ ≟-⊢no ne σ′₂ t₂ [ P.refl ] = ne≟ne σ′₁ σ′₂ (t₁ ≟-⊢ne t₂)
where
ne≟ne : ∀ {Γ σ} {t₁ t₂ : Γ ⊢ σ ⟨ ne ⟩}
(σ′₁ : Γ ⊢ σ atomic-type) (σ′₂ : Γ ⊢ σ atomic-type) →
Dec (t₁ ≅-⊢n t₂) → Dec (ne σ′₁ t₁ ≅-⊢n ne σ′₂ t₂)
ne≟ne ⋆ ⋆ (yes P.refl) = yes P.refl
ne≟ne el el (yes P.refl) = yes P.refl
ne≟ne _ _ (Dec.no neq) = Dec.no (neq ∘ helper)
where
helper :
∀ {Γ₁ σ₁ σ′₁} {t₁ : Γ₁ ⊢ σ₁ ⟨ ne ⟩}
{Γ₂ σ₂ σ′₂} {t₂ : Γ₂ ⊢ σ₂ ⟨ ne ⟩} →
ne σ′₁ t₁ ≅-⊢n ne σ′₂ t₂ → t₁ ≅-⊢n t₂
helper P.refl = P.refl
ƛ t₁ ≟-⊢no ƛ t₂ [ eq ] =
Dec.map′ ƛn-cong helper
(t₁ ≟-⊢no t₂ [ snd-cong $ indexed-type-cong eq ])
where
helper :
∀ {Γ₁ σ₁ τ₁} {t₁ : Γ₁ ▻ σ₁ ⊢ τ₁ ⟨ no ⟩}
{Γ₂ σ₂ τ₂} {t₂ : Γ₂ ▻ σ₂ ⊢ τ₂ ⟨ no ⟩} →
ƛ t₁ ≅-⊢n ƛ t₂ → t₁ ≅-⊢n t₂
helper P.refl = P.refl
ne _ _ ≟-⊢no ƛ _ [ _ ] = Dec.no λ ()
ƛ _ ≟-⊢no ne _ _ [ _ ] = Dec.no λ ()
-- Tries to prove that two terms have the same semantics. The terms
-- must have the same type.
⟦_⟧≟⟦_⟧ : ∀ {Γ σ} (t₁ t₂ : Γ ⊢ σ) →
Maybe (⟦ t₁ ⟧ ≅-Value ⟦ t₂ ⟧)
⟦ t₁ ⟧≟⟦ t₂ ⟧ with normalise t₁ ≟-⊢no normalise t₂ [ P.refl ]
... | Dec.no _ = ∅
... | yes eq = return (begin
[ ⟦ t₁ ⟧ ] ≡⟨ normalise-lemma t₁ ⟩
[ ⟦ normalise t₁ ⟧n ] ≡⟨ ⟦⟧n-cong eq ⟩
[ ⟦ normalise t₂ ⟧n ] ≡⟨ P.sym $ normalise-lemma t₂ ⟩
[ ⟦ t₂ ⟧ ] ∎)
-- Tries to prove that two semantic types are equal, given
-- corresponding syntactic types. The types must have the same
-- context.
infix 4 _≟-Type_
_≟-Type_ : ∀ {Γ σ₁} (σ₁′ : Γ ⊢ σ₁ type)
{σ₂} (σ₂′ : Γ ⊢ σ₂ type) →
Maybe (σ₁ ≅-Type σ₂)
⋆ ≟-Type ⋆ = return P.refl
el t₁ ≟-Type el t₂ = helper <$> ⟦ t₁ ⟧≟⟦ t₂ ⟧
where
helper : ∀ {Γ₁} {v₁ : Value Γ₁ (⋆ , _)}
{Γ₂} {v₂ : Value Γ₂ (⋆ , _)} →
v₁ ≅-Value v₂ → (el , v₁) ≅-Type (el , v₂)
helper P.refl = P.refl
π σ′₁ τ′₁ ≟-Type π σ′₂ τ′₂ = helper τ′₁ τ′₂ =<< σ′₁ ≟-Type σ′₂
where
helper :
∀ {Γ₁ σ₁ τ₁} (τ′₁ : Γ₁ ▻ σ₁ ⊢ τ₁ type)
{Γ₂ σ₂ τ₂} (τ′₂ : Γ₂ ▻ σ₂ ⊢ τ₂ type) →
σ₁ ≅-Type σ₂ → Maybe (Type-π σ₁ τ₁ ≅-Type Type-π σ₂ τ₂)
helper τ′₁ τ′₂ P.refl = Type-π-cong <$> (τ′₁ ≟-Type τ′₂)
_ ≟-Type _ = ∅
|
{
"alphanum_fraction": 0.527761986,
"avg_line_length": 32.5740740741,
"ext": "agda",
"hexsha": "864a6b8c4b1ffafc1000c761f48355b49ef2a9e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "README/DependentlyTyped/Equality-checker.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "README/DependentlyTyped/Equality-checker.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "README/DependentlyTyped/Equality-checker.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 2315,
"size": 5277
}
|
{-# OPTIONS --cubical --no-import-sorts #-}
module SetQuotientTest where
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ)
open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.NatPlusOne using (HasFromNat; 1+_; ℕ₊₁; ℕ₊₁→ℕ)
open import Cubical.HITs.Ints.QuoInt using (HasFromNat; signed) renaming
( abs to absᶻ
; pos to pos
; neg to neg
)
open import Cubical.HITs.Ints.QuoInt hiding (_+_; -_; +-assoc; +-comm)
open import Cubical.HITs.Rationals.QuoQ using
( ℚ
; onCommonDenom
; onCommonDenomSym
; eq/
; _//_
; _∼_
; isSetℚ
)
renaming
( [_] to [_]ᶠ
; ℕ₊₁→ℤ to [1+_ⁿ]ᶻ
)
open import Cubical.HITs.SetQuotients as SetQuotient using () renaming (_/_ to _//_)
postulate
_<ᶻ_ : ℤ → ℤ → hProp ℓ-zero
_<'_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → hProp ℓ-zero
(aᶻ , aⁿ) <' (bᶻ , bⁿ) =
let aⁿᶻ = [1+ aⁿ ⁿ]ᶻ
bⁿᶻ = [1+ bⁿ ⁿ]ᶻ
in (aᶻ * bⁿᶻ) <ᶻ (bᶻ * aⁿᶻ)
postulate
<'-respects-∼ˡ : ∀ a b x → a ∼ b → a <' x ≡ b <' x
<'-respects-∼ʳ : ∀ x a b → a ∼ b → x <' a ≡ x <' b
_<_ : ℚ → ℚ → hProp ℓ-zero
a < b = SetQuotient.rec2 {R = _∼_} {B = hProp ℓ-zero} isSetHProp _<'_ <'-respects-∼ˡ <'-respects-∼ʳ a b
isProp⊎ˡ : ∀{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → (A → ¬ᵗ B) → isProp (A ⊎ B)
isProp⊎ˡ pA pB A⇒¬B (inl x) (inl y) = cong inl (pA x y)
isProp⊎ˡ pA pB A⇒¬B (inr x) (inr y) = cong inr (pB x y)
isProp⊎ˡ pA pB A⇒¬B (inl x) (inr y) = ⊥-elim (A⇒¬B x y)
isProp⊎ˡ pA pB A⇒¬B (inr x) (inl y) = ⊥-elim (A⇒¬B y x)
⊎ᵖ-syntax : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → {[ P ] → [ ¬ Q ]} → hProp _
⊎ᵖ-syntax P Q {P⇒¬Q} = ([ P ] ⊎ [ Q ]) , isProp⊎ˡ (isProp[] P) (isProp[] Q) P⇒¬Q
syntax ⊎ᵖ-syntax P Q {P⇒¬Q} = [ P⇒¬Q ] P ⊎ᵖ Q
postulate
<-asym : ∀ x y → [ x < y ] → [ ¬(y < x) ]
_#_ : ℚ → ℚ → hProp ℓ-zero
x # y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x)
_⁻¹''' : (x : ℚ) → [ x # 0 ] → ℚ
_⁻¹''' = SetQuotient.elim {R = _∼_} {B = λ x → [ x # 0 ] → ℚ} φ _⁻¹'' ⁻¹''-respects-∼ where
φ : ∀ x → isSet ([ x # 0 ] → ℚ)
φ x = isSetΠ (λ _ → isSetℚ)
_⁻¹'' : (a : ℤ × ℕ₊₁) → [ [ a ]ᶠ # 0 ] → ℚ
x ⁻¹'' = {!!}
⁻¹''-respects-∼ : (a b : ℤ × ℕ₊₁) (r : a ∼ b)
→ PathP (λ i → [ eq/ a b r i # 0 ] → ℚ) (a ⁻¹'') (b ⁻¹'')
⁻¹''-respects-∼ a b r = {!!}
|
{
"alphanum_fraction": 0.537887711,
"avg_line_length": 33.96,
"ext": "agda",
"hexsha": "219e51b894ccb1f1ff1f536302a42d526f729935",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "test/SetQuotientTest.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "test/SetQuotientTest.agda",
"max_line_length": 103,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "test/SetQuotientTest.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1326,
"size": 2547
}
|
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
open import Agda.Builtin.Unit
open import Agda.Builtin.Nat
-- setup
infixl 5 _>>=_
_>>=_ = bindTC
defToTerm : Name → Definition → List (Arg Term) → Term
defToTerm _ (function cs) as = pat-lam cs as
defToTerm _ (data-cons d) as = con d as
defToTerm _ _ _ = unknown
data Tm : Set where
tm : Term → Tm
macro
unfold : Name → Term → TC ⊤
unfold x a = getDefinition x >>= λ d → unify a (defToTerm x d [])
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
Point = Vec Nat 3
renderBuffer : List Point → List Nat
renderBuffer [] = []
renderBuffer ((x ∷ y ∷ z ∷ []) ∷ xs) = x ∷ y ∷ z ∷ renderBuffer xs
renderBuffer' : List Point → List Nat
renderBuffer' = unfold renderBuffer
ps : List Point
ps = (1 ∷ 2 ∷ 3 ∷ []) ∷ (4 ∷ 5 ∷ 6 ∷ []) ∷ []
open import Agda.Builtin.Equality
check : renderBuffer' ps ≡ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ []
check = refl
|
{
"alphanum_fraction": 0.6230529595,
"avg_line_length": 21.8863636364,
"ext": "agda",
"hexsha": "6a8317b8d0c94f65cc8ce11e00bba9af9bac2b38",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2203.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2203.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2203.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 356,
"size": 963
}
|
--------------------------------------------------------------------------------
-- This file contains the definition of a context-free grammar, as well as a
-- parser for those grammars that are actually of LL1 type. There is currently
-- no check if the grammar is actually a LL1 grammar, so the parser might loop
-- indefinitely or return an error message in certain cases, even if the string
-- actually matches the grammar.
--------------------------------------------------------------------------------
{-# OPTIONS --type-in-type #-}
module Parse.LL1 where
import Data.String as S
open import Data.Sum using (isInj₁)
open import Class.Monad.Except
open import Data.String using (fromList; toList; uncons)
open import Data.List using (boolDropWhile)
open import Data.Tree
open import Prelude
record CFG (V : Set) (MultiChar : Set) : Set₁ where
field
S : V
R : V → Set
AllRules : (v : V) → List (R v)
-- whether to keep track of the result
V' : Set
V' = V × Bool
field
Rstring'' : {v : V} → R v → List (V' ⊎ MultiChar ⊎ String)
Terminal : Set
Terminal = MultiChar ⊎ String
isMultiChar : Terminal → Bool
isMultiChar (inj₁ _) = true
isMultiChar (inj₂ _) = false
terminalLength : Terminal → ℕ
terminalLength (inj₁ x) = 1
terminalLength (inj₂ y) = S.length y
Rule : Set
Rule = ∃[ v ] R v
Rstring : {v : V} → R v → List (V ⊎ MultiChar ⊎ String)
Rstring r = map (Data.Sum.map₁ proj₁) (Rstring'' r)
Rstring' : Rule → List (V ⊎ Terminal)
Rstring' (_ , r) = Rstring r
SynTree : Set
SynTree = Tree (Rule ⊎ Char)
private variable v : V
produces-ε : R v → Bool
produces-ε = null ∘ Rstring
module _ {V MultiChar : Set} (showV : V → String)
(matchMulti : MultiChar → Char → Bool) (showMulti : MultiChar → String)
(G : CFG V MultiChar) (M : Set → Set) {{_ : Monad M}} {{_ : MonadExcept M String}} where
-- we don't care if it is actually a LL1 grammar
private variable v : V
open CFG G
showTerminal : Terminal → String
showTerminal (inj₁ x) = showMulti x
showTerminal (inj₂ y) = y
match : String → Terminal → Bool
match s (inj₁ x) with strHead s
... | nothing = false
... | just c = matchMulti x c
match s (inj₂ y) = strTake (S.length y) s ≣ y
-- select the first rule satisfying the predicate
firstRule : (v : V) → (R v → Bool) → Maybe (R v)
firstRule v P = head $ boolDropWhile (not ∘ P) $ AllRules v
{-# NON_TERMINATING #-}
parsingTable : V → String → Maybe Rule
parsingTable v' x = -,_ <$> firstRule v' (startWith x) <∣> firstRule v' produces-ε
-- select the first rule starting with x, or the first that is empty
where
startWith : String → R v → Bool
startWith x = helper x ∘ Rstring
where
helper : String → List (V ⊎ Terminal) → Bool
helper x [] = false
helper x (inj₁ v ∷ rest) with boolFilter (startWith x) (AllRules v)
... | [] = if null $ boolFilter produces-ε (AllRules v) then false else helper x rest
... | _ = true
helper x (inj₂ t ∷ _) = match x t
{-# NON_TERMINATING #-}
parseWithInitNT : V → String → M (SynTree × String)
parseWithInitNT v a = do
(y , rest) ← helper [ inj₁ v ] a
maybe
(λ z → return (z , rest)) (throwError "BUG: Error while creating syntax tree.")
(resToTree y)
where
helper : List (V ⊎ Terminal) → String → M (List (Rule ⊎ Char) × String)
helper [] s = return ([] , s)
helper (inj₁ x ∷ stack) s with parsingTable x s
... | just r = map₁ (inj₁ r ∷_) <$> helper (Rstring' r ++ stack) s
... | nothing = throwError $
"No applicable rule found for non-terminal " + showV x + "\nRemaining:\n" + s
helper (inj₂ y ∷ stack) s with uncons s | match s y
... | just (x , _) | true = let prepend = if isMultiChar y then inj₂ x ∷_ else id
in map₁ prepend <$> helper stack (strDrop (terminalLength y) s)
... | just _ | false = throwError $
"Mismatch while parsing characters: tried to parse " + showTerminal y +
" but got '" + s + "'"
... | nothing | _ = throwError ("Unexpected end of input while trying to parse " + showTerminal y)
resToTree : List (Rule ⊎ Char) → Maybe SynTree
resToTree x = proj₁ <$> resToTree' x
where
needsChild : V' ⊎ Terminal → Bool
needsChild (inj₁ x) = true
needsChild (inj₂ (inj₁ x)) = true
needsChild (inj₂ (inj₂ y)) = false
attachChild : V' ⊎ Terminal → Bool
attachChild (inj₁ (_ , b)) = b
attachChild _ = true
resToTree' : List (Rule ⊎ Char) → Maybe (SynTree × List (Rule ⊎ Char))
ruleChildren : List (V' ⊎ Terminal) → List (Rule ⊎ Char) → Maybe (List SynTree × List (Rule ⊎ Char))
resToTree' [] = nothing
resToTree' (inj₁ l ∷ l₁) with ruleChildren (Rstring'' (proj₂ l)) l₁
... | just (fst , snd) = just (Node (inj₁ l) fst , snd)
... | nothing = nothing
resToTree' (inj₂ l ∷ l₁) = just (Node (inj₂ l) [] , l₁)
ruleChildren [] l = just ([] , l)
ruleChildren (x ∷ s) l with needsChild x | resToTree' l
... | false | _ = ruleChildren s l
... | true | just (t , rest) = (if attachChild x then map₁ (t ∷_) else id) <$> ruleChildren s rest
... | true | nothing = nothing
|
{
"alphanum_fraction": 0.5713497609,
"avg_line_length": 36.4966442953,
"ext": "agda",
"hexsha": "d58ff05892df3816bb254b3dd5d80ccb7fdf0697",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "src/Parse/LL1.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "src/Parse/LL1.agda",
"max_line_length": 110,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "src/Parse/LL1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 1612,
"size": 5438
}
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Limits where
open import Cubical.Categories.Limits.Base public
open import Cubical.Categories.Limits.Initial public
open import Cubical.Categories.Limits.Terminal public
open import Cubical.Categories.Limits.Pullback public
|
{
"alphanum_fraction": 0.8321167883,
"avg_line_length": 34.25,
"ext": "agda",
"hexsha": "96e88f017ad6aa4e0b4e841bf1f95c17e5815c81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mzeuner/cubical",
"max_forks_repo_path": "Cubical/Categories/Limits.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mzeuner/cubical",
"max_issues_repo_path": "Cubical/Categories/Limits.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "63c770b381039c0132c17d7913f4566b35984701",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mzeuner/cubical",
"max_stars_repo_path": "Cubical/Categories/Limits.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 55,
"size": 274
}
|
------------------------------------------------------------------------
-- A terminating parser data type and the accompanying interpreter
------------------------------------------------------------------------
module RecursiveDescent.InductiveWithFix.Internal where
open import Data.Bool
open import Data.Product.Record
open import Data.Maybe
open import Data.BoundedVec.Inefficient
import Data.List as L
open import Data.Nat
open import Category.Applicative.Indexed
open import Category.Monad.Indexed
open import Category.Monad.State
open import RecursiveDescent.Index
open import Utilities
------------------------------------------------------------------------
-- Lifting non-terminals
-- Extends a non-terminal type with a fresh non-terminal.
data Lift (i : Index) (r : Set) (nt : ParserType₁) : ParserType₁ where
fresh : Lift i r nt i r
↟ : forall {i' r'} -> nt i' r' -> Lift i r nt i' r'
------------------------------------------------------------------------
-- Parser data type
-- A type for parsers which can be implemented using recursive
-- descent. The types used ensure that the implementation below is
-- structurally recursive.
-- The parsers are indexed on a type of nonterminals.
data Parser (tok : Set) (nt : ParserType₁) : ParserType₁ where
!_ : forall {e c r}
-> nt (e , c) r -> Parser tok nt (e , step c) r
fix : forall {e c r}
-> Parser tok (Lift (e , step c) r nt) (e , c) r
-> Parser tok nt (e , step c) r
symbol : Parser tok nt (false , leaf) tok
ret : forall {r} -> r -> Parser tok nt (true , leaf) r
fail : forall {r} -> Parser tok nt (false , leaf) r
bind₀ : forall {c₁ e₂ c₂ r₁ r₂}
-> Parser tok nt (true , c₁) r₁
-> (r₁ -> Parser tok nt (e₂ , c₂) r₂)
-> Parser tok nt (e₂ , node c₁ c₂) r₂
bind₁ : forall {c₁ r₁ r₂} {i₂ : r₁ -> Index}
-> Parser tok nt (false , c₁) r₁
-> ((x : r₁) -> Parser tok nt (i₂ x) r₂)
-> Parser tok nt (false , step c₁) r₂
alt₀ : forall {c₁ e₂ c₂ r}
-> Parser tok nt (true , c₁) r
-> Parser tok nt (e₂ , c₂) r
-> Parser tok nt (true , node c₁ c₂) r
alt₁ : forall {c₁} e₂ {c₂ r}
-> Parser tok nt (false , c₁) r
-> Parser tok nt (e₂ , c₂) r
-> Parser tok nt (e₂ , node c₁ c₂) r
------------------------------------------------------------------------
-- Lifting parsers
Map : (ParserType₁ -> ParserType₁) -> Set2
Map F = forall {nt nt' i r} ->
(nt i r -> nt' i r) -> (F nt i r -> F nt' i r)
liftMap : forall (F : ParserType₁ -> ParserType₁) {i' r'} ->
Map F -> Map (Lift i' r' ∘₂ F)
liftMap F map g fresh = fresh
liftMap F map g (↟ x) = ↟ (map g x)
lift' : forall {tok nt i r i' r'}
(F : ParserType₁ -> ParserType₁) -> Map F ->
Parser tok (F nt) i r -> Parser tok (F (Lift i' r' nt)) i r
lift' F map (! x) ~ ! (map ↟ x)
lift' F map (fix {e} {c} {r} p) ~ fix (lift' (Lift (e , step c) r ∘₂ F)
(liftMap F map) p)
lift' F map symbol ~ symbol
lift' F map (ret x) ~ ret x
lift' F map fail ~ fail
lift' F map (bind₀ p₁ p₂) ~ bind₀ (lift' F map p₁) (\x -> lift' F map (p₂ x))
lift' F map (bind₁ p₁ p₂) ~ bind₁ (lift' F map p₁) (\x -> lift' F map (p₂ x))
lift' F map (alt₀ p₁ p₂) ~ alt₀ (lift' F map p₁) (lift' F map p₂)
lift' F map (alt₁ e p₁ p₂) ~ alt₁ e (lift' F map p₁) (lift' F map p₂)
-- Note that lift p is linear in the size of p (in a sense; note that
-- p can contain higher-order components), assuming that p contains at
-- most <some constant> occurrences of fix.
lift : forall {tok nt i r i' r'} ->
Parser tok nt i r -> Parser tok (Lift i' r' nt) i r
lift p = lift' (\nt -> nt) (\f -> f) p
------------------------------------------------------------------------
-- Run function for the parsers
-- Grammars.
Grammar : Set -> ParserType₁ -> Set1
Grammar tok nt = forall {i r} -> nt i r -> Parser tok nt i r
-- Extends a grammar with a case for a fresh non-terminal.
_▷_ : forall {tok nt i r} ->
Grammar tok nt -> Parser tok nt i r ->
Grammar tok (Lift i r nt)
(g ▷ p) fresh = lift p
(g ▷ p) (↟ x) = lift (g x)
-- Parser monad.
P : Set -> IFun ℕ
P tok = IStateT (BoundedVec tok) L.List
PIMonadPlus : (tok : Set) -> RawIMonadPlus (P tok)
PIMonadPlus tok = StateTIMonadPlus (BoundedVec tok) L.monadPlus
PIMonadState : (tok : Set) -> RawIMonadState (BoundedVec tok) (P tok)
PIMonadState tok = StateTIMonadState (BoundedVec tok) L.monad
private
open module LM {tok} = RawIMonadPlus (PIMonadPlus tok)
open module SM {tok} = RawIMonadState (PIMonadState tok)
using (get; put; modify)
-- For every successful parse the run function returns the remaining
-- string. (Since there can be several successful parses a list of
-- strings is returned.)
-- This function is structurally recursive with respect to the
-- following lexicographic measure:
--
-- 1) The upper bound of the length of the input string.
-- 2) The parser's proper left corner tree.
mutual
parse : forall {tok nt} -> Grammar tok nt ->
forall n {e c r} ->
Parser tok nt (e , c) r ->
P tok n (if e then n else pred n) r
parse g n (! x) = parse g n (g x)
parse g n (fix p) = parse (g ▷ fix p) n p
parse g zero symbol = ∅
parse g (suc n) symbol = eat =<< get
parse g n (ret x) = return x
parse g n fail = ∅
parse g n (bind₀ p₁ p₂) = parse g n p₁ >>= parse g n ∘′ p₂
parse g zero (bind₁ p₁ p₂) = ∅
parse g (suc n) (bind₁ p₁ p₂) = parse g (suc n) p₁ >>= parse↑ g n ∘′ p₂
parse g n (alt₀ p₁ p₂) = parse g n p₁ ∣ parse↑ g n p₂
parse g n (alt₁ true p₁ p₂) = parse↑ g n p₁ ∣ parse g n p₂
parse g n (alt₁ false p₁ p₂) = parse g n p₁ ∣ parse g n p₂
parse↑ : forall {tok nt} -> Grammar tok nt ->
forall n {e c r} -> Parser tok nt (e , c) r -> P tok n n r
parse↑ g n {true} p = parse g n p
parse↑ g zero {false} p = ∅
parse↑ g (suc n) {false} p = parse g (suc n) p >>= \r ->
modify ↑ >>
return r
eat : forall {tok n} -> BoundedVec tok (suc n) -> P tok (suc n) n tok
eat [] = ∅
eat (c ∷ s) = put s >> return c
|
{
"alphanum_fraction": 0.5221780361,
"avg_line_length": 38.6863905325,
"ext": "agda",
"hexsha": "bcebc17ed783cb280b970758fd700597b0247292",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/InductiveWithFix/Internal.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/InductiveWithFix/Internal.agda",
"max_line_length": 84,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/InductiveWithFix/Internal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 2031,
"size": 6538
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
-- This module proves the two "VotesOnce" proof obligations for our fake handler
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
import LibraBFT.Concrete.Properties.VotesOnce as VO
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Consensus.RoundManager.Properties
open import LibraBFT.Impl.Handle
open import LibraBFT.Impl.Handle.Properties
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Util.Util
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
open EpochConfig
open import LibraBFT.Yasm.Types
open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk})
open WithSPS impl-sps-avp
open Structural impl-sps-avp
-- In this module, we prove the two implementation obligations for the VotesOnce rule. Note
-- that it is not yet 100% clear that the obligations are the best definitions to use. See comments
-- in Concrete.VotesOnce. We will want to prove these obligations for the fake/simple
-- implementation (or some variant on it) and streamline the proof before we proceed to tackle more
-- ambitious properties.
module LibraBFT.Impl.Properties.VotesOnce where
-- This is the information we can establish about the state after the first time a signature is
-- sent, and that we can carry forward to subsequent states, so we can use it to prove
-- VO.ImplObligation₁.
LvrProp : CarrierProp
LvrProp v rm = ( v ^∙ vEpoch ≢ (₋rmEC rm) ^∙ rmEpoch
⊎ (v ^∙ vEpoch ≡ (₋rmEC rm) ^∙ rmEpoch × v ^∙ vRound ≤ (₋rmEC rm) ^∙ rmLastVotedRound))
LvrCarrier = PropCarrier LvrProp
firstSendEstablishes : Vote → PK → (origSt : SystemState) → SystemStateRel Step
firstSendEstablishes _ _ _ (step-peer (step-cheat _)) = Lift (ℓ+1 ℓ-RoundManager) ⊥
firstSendEstablishes v' pk origSt sysStep@(step-peer {pid'} {pre = pre} pstep@(step-honest _)) =
( ReachableSystemState pre
× ¬ MsgWithSig∈ pk (signature v' unit) (msgPool pre)
× LvrCarrier pk (₋vSignature v') (StepPeer-post pstep)
)
open PeerCanSignForPK
isValidNewPart⇒fSE : ∀ {pk v'}{pre : SystemState} {post : SystemState} {theStep : Step pre post}
→ Meta-Honest-PK pk
→ (ivnp : IsValidNewPart (₋vSignature v') pk theStep)
→ firstSendEstablishes v' pk pre theStep
isValidNewPart⇒fSE {pre = pre} {theStep = step-peer {pid = β} {outs = outs} pstep} hpk (_ , ¬init , ¬sentb4 , mws , _)
with Any-++⁻ (actionsToSentMessages β outs) (msg∈pool mws)
-- TODO-1 : Much of this proof is not specific to the particular property being proved, and could be
-- refactored into Yasm.Properties. See proof of unwind and refactor to avoid redundancy?
...| inj₂ furtherBack = ⊥-elim (¬sentb4 (MsgWithSig∈-transp mws furtherBack))
...| inj₁ thisStep
with pstep
...| step-cheat isCheat
with thisStep
...| here refl
with isCheat (msg⊆ mws) (msgSigned mws) (transp-¬∈GenInfo₁ ¬init mws)
...| inj₁ dis = ⊥-elim (hpk dis)
...| inj₂ sentb4 rewrite msgSameSig mws = ⊥-elim (¬sentb4 sentb4)
isValidNewPart⇒fSE {pk}{v'}{pre}{theStep = step-peer {β} {postst} {outs} {.pre} pstep} hpk (r , ¬init , ¬sentb4 , mws , refl , zefl , vpk)
| inj₁ thisStep
| step-honest {.β} hstep
with senderMsgPair∈⇒send∈ outs thisStep
...| nm∈outs , refl
with hstep
...| step-msg {_ , P m} m∈pool ini
with impl-sps-avp {m = msgWhole mws} r hpk hstep nm∈outs (msg⊆ mws) (msgSigned mws) (transp-¬∈GenInfo₁ ¬init mws )
...| inj₂ sentb4 rewrite msgSameSig mws = ⊥-elim (¬sentb4 sentb4)
...| inj₁ (vpk' , _)
with noEpochIdChangeYet {ppre = peerStates pre β} r refl hstep ini
...| eids≡
with newVoteSameEpochGreaterRound r hstep (¬subst ¬init (msgSameSig mws)) hpk (msg⊆ mws) nm∈outs (msgSigned mws)
(¬subst ¬sentb4 (msgSameSig mws))
...| refl , refl , newlvr
with StepPeer-post-lemma pstep
...| post≡ = r , ¬sentb4 , mkCarrier (step-s r (step-peer (step-honest hstep)))
mws
(override-target-≡ {a = β})
vpk'
(inj₂ ( trans eids≡ (auxEid post≡)
, ≤-reflexive (trans newlvr (auxLvr post≡))))
where auxEid = cong (_^∙ rmEpoch ∘ ₋rmEC)
auxLvr = cong (_^∙ rmLastVotedRound ∘ ₋rmEC)
ImplPreservesLvr : PeerStepPreserves LvrProp
-- We don't have a real model for the initial peer state, so we can't prove this case yet.
-- Eventually, we'll prove something like a peer doesn't initialize to an epoch for which
-- it has already sent votes.
ImplPreservesLvr r prop (step-init uni) = ⊥-elim (uninitd≢initd (trans (sym uni) (carrInitd prop)))
ImplPreservesLvr {pre = pre} r prop (step-msg {m} m∈pool inited)
with carrProp prop
...| preprop
with noEpochIdChangeYet r refl (step-msg m∈pool inited) (carrInitd prop)
...| eids≡
with preprop
...| inj₁ diffEpoch = inj₁ λ x → diffEpoch (trans x (sym eids≡))
...| inj₂ (sameEpoch , rnd≤ppre)
with (msgPart (carrSent prop)) ^∙ vEpoch ≟ (₋rmEC (peerStates pre (msgSender (carrSent prop)))) ^∙ rmEpoch
...| no neq = ⊥-elim (neq sameEpoch)
...| yes refl
with lastVoteRound-mono r refl (step-msg m∈pool inited) (carrInitd prop)
...| es≡⇒lvr≤
= inj₂ (eids≡ , ≤-trans rnd≤ppre (es≡⇒lvr≤ eids≡))
LvrCarrier-transp* : ∀ {pk sig} {start : SystemState}{final : SystemState}
→ LvrCarrier pk sig start
→ (step* : Step* start final)
→ LvrCarrier pk sig final
LvrCarrier-transp* lvrc step-0 = lvrc
LvrCarrier-transp* lvrc (step-s s* s) = Carrier-transp LvrProp ImplPreservesLvr s (LvrCarrier-transp* lvrc s*)
fSE⇒rnd≤lvr : ∀ {v' pk}
→ {final : SystemState}
→ Meta-Honest-PK pk
→ ∀ {pre : SystemState}{post : SystemState}{theStep : Step pre post}
→ firstSendEstablishes v' pk post theStep
→ Step* post final
→ LvrCarrier pk (signature v' unit) final
fSE⇒rnd≤lvr hpk {theStep = step-peer (step-honest _)} (_ , _ , lvrc) step* = LvrCarrier-transp* lvrc step*
vo₁ : VO.ImplObligation₁
-- Initialization doesn't send any messages at all so far; Agda figures that out so no proof
-- required here. In future it may send messages, but any verifiable Signatures for honest PKs
-- they contain will be from GenesisInfo.
vo₁ {pid} {pk = pk} {pre = pre} r sm@(step-msg {(_ , nm)} m∈pool pidini)
{m = m} {v'} hpk v⊂m m∈outs sig ¬init ¬sentb4 vpb v'⊂m' m'∈pool sig' ¬init' refl rnds≡
with msgsToSendWereSent {pid} {nm} m∈outs
...| _ , vm , _ , refl , _
with newVoteSameEpochGreaterRound r (step-msg m∈pool pidini) ¬init hpk v⊂m m∈outs sig ¬sentb4
...| eIds≡' , suclvr≡v'rnd , _
-- Use unwind to find the step that first sent the signature for v', then Any-Step-elim to
-- prove that going from the poststate of that step to pre results in a state in which the
-- round of v' is at most the last voted round recorded in the peerState of the peer that
-- sent v'
with Any-Step-elim {Q = LvrCarrier pk (₋vSignature v') pre}
(fSE⇒rnd≤lvr {v'} hpk)
(Any-Step-map (λ _ ivnp → isValidNewPart⇒fSE {v' = v'} hpk ivnp)
(unwind r hpk v'⊂m' m'∈pool sig' ¬init'))
...| mkCarrier r' mws ini vpf' preprop
-- The fake/trivial handler always sends a vote for its current epoch, but for a
-- round greater than its last voted round
with sameSig⇒sameVoteData (msgSigned mws) sig' (msgSameSig mws)
...| inj₁ hb = ⊥-elim (PerState.meta-sha256-cr pre r hb)
...| inj₂ refl
with msgSender mws ≟NodeId pid
...| no neq =
-- We know that *after* the step, pid can sign v (vpb is about the post-state). For v', we
-- know it about state "pre"; we transport this to the post-state using
-- PeerCanSignForPK-Stable. Because EpochConfigs known in a system state are consistent with
-- each other (i.e., trivially, for now because only the initial EpochConfig is known), we can
-- use PK-inj to contradict the assumption that v and v' were sent by different peers (neq).
let theStep = step-peer (step-honest sm)
vpf'' = PeerCanSignForPK-stable r theStep vpf'
𝓔s≡ = availEpochsConsistent {pid} {msgSender mws} (step-s r theStep) vpb vpf''
in ⊥-elim (neq (trans (trans (sym (nid≡ vpf''))
(PK-inj-same-ECs (sym 𝓔s≡)
(trans (pk≡ vpf'') (sym (pk≡ vpb)))))
(nid≡ vpb)))
vo₁ {pid} {pk = pk} {pre = pre} r sm@(step-msg m∈pool ps≡)
{v' = v'} hpk v⊂m m∈outs sig ¬init ¬sentb4 vpb v'⊂m' m'∈pool sig' _ refl rnds≡
| _ , vm , _ , refl , _
| eIds≡' , suclvr≡v'rnd , _
| mkCarrier r' mws ini vpf' preprop
| inj₂ refl
| yes refl
with preprop
...| inj₁ diffEpoch = ⊥-elim (diffEpoch eIds≡')
...| inj₂ (sameEpoch , v'rnd≤lvr)
-- So we have proved both that the round of v' is ≤ the lastVotedRound of
-- the peer's state and that the round of v' is one greater than that value,
-- which leads to a contradiction
= ⊥-elim (1+n≰n (≤-trans (≤-reflexive suclvr≡v'rnd)
(≤-trans (≤-reflexive rnds≡) v'rnd≤lvr)))
-- TODO-1: This proof should be refactored to reduce redundant reasoning about the two votes. The
-- newVoteSameEpochGreaterRound property uses similar reasoning.
vo₂ : VO.ImplObligation₂
vo₂ {pid = pid} {pk = pk} {pre = pre} r (step-msg {_ , nm} m∈pool pinit) {v = v} {m}
hpk v⊂m m∈outs sig ¬init vnew vpk v'⊂m' m'∈outs sig' ¬init' v'new vpk' es≡ rnds≡
with msgsToSendWereSent {pid} {nm} m∈outs
...| _ , vm , pm , refl , refl
with proposalHandlerSentVote {pid} {0} {pm} {vm} {peerStates pre pid} m∈outs
...| _ , v∈outs
with v⊂m
-- Rebuilding keeps the same signature, and the SyncInfo included with the
-- VoteMsg sent comprises QCs from the peer's state. Votes represented in
-- those QCS have signatures that have been sent before, contradicting the
-- assumption that v's signature has not been sent before.
...| vote∈qc {vs = vs} {qc} vs∈qc v≈rbld (inV qc∈m)
rewrite cong ₋vSignature v≈rbld
| procPMCerts≡ {0} {pm} {peerStates pre pid} {vm} v∈outs
| SendVote-inj-v (Any-singleton⁻ v∈outs)
with qcVotesSentB4 r pinit
(VoteMsgQCsFromRoundManager r (step-msg m∈pool pinit) hpk v⊂m m∈outs qc∈m) vs∈qc ¬init
...| mws = ⊥-elim (vnew mws)
vo₂ {pid = pid} {pk = pk} {pre = pre} r (step-msg {_ , nm} m∈pool pinit) {v = v} {m} {v'} {m'}
hpk v⊂m m∈outs sig ¬init vnew vpk v'⊂m' m'∈outs sig' ¬init' v'new vpk' es≡ rnds≡
| _ , vm , pm , refl , refl
| _ , v∈outs
| vote∈vm
with msgsToSendWereSent {pid} {nm} {m'} {st = peerStates pre pid} m'∈outs
...| _ , vm' , pm , refl , refl
with proposalHandlerSentVote {pid} {0} {pm} {vm'} {peerStates pre pid} m'∈outs
...| _ , v'∈outs
rewrite cong ₋vmVote (SendVote-inj-v (trans (Any-singleton⁻ v∈outs) (sym (Any-singleton⁻ v'∈outs))))
with v'⊂m'
...| vote∈vm = refl
...| vote∈qc {vs = vs} {qc} vs∈qc v≈rbld (inV qc∈m)
rewrite cong ₋vSignature v≈rbld
| procPMCerts≡ {0} {pm} {peerStates pre pid} {vm} v∈outs
| SendVote-inj-v (Any-singleton⁻ v∈outs)
| cong ₋vmVote (SendVote-inj-v (trans (Any-singleton⁻ v∈outs) (sym (Any-singleton⁻ v'∈outs))))
with qcVotesSentB4 r pinit
(VoteMsgQCsFromRoundManager r (step-msg m∈pool pinit) hpk v'⊂m' m'∈outs qc∈m) vs∈qc ¬init'
...| mws = ⊥-elim (v'new mws)
|
{
"alphanum_fraction": 0.610699069,
"avg_line_length": 53.9319148936,
"ext": "agda",
"hexsha": "aa4fe33f6c3f2379b58ec9fcbb7d316955dc8d26",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Properties/VotesOnce.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4146,
"size": 12674
}
|
module Prelude.Exit where
open import Prelude.Char
open import Prelude.IO
open import Prelude.Unit
postulate
exit : Char → IO Unit
{-# COMPILED_EPIC exit (n : Int, u : Unit) ->
Unit = foreign Unit "exit" (n : Int) #-}
exitSuccess : Char
exitSuccess = '\NUL'
exitFailure : Char
exitFailure = '\SOH'
|
{
"alphanum_fraction": 0.6493902439,
"avg_line_length": 18.2222222222,
"ext": "agda",
"hexsha": "aaaa2260d289f2e34b156138c4651273fe153702",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/epic/Prelude/Exit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/epic/Prelude/Exit.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/epic/Prelude/Exit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 86,
"size": 328
}
|
-- Agda program using the Iowa Agda library
open import bool
module PROOF-evendoublecoin
(Choice : Set)
(choose : Choice → 𝔹)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where
open import eq
open import nat
open import list
open import maybe
---------------------------------------------------------------------------
-- Translated Curry operations:
add : ℕ → ℕ → ℕ
add zero x = x
add (suc y) z = suc (add y z)
coin : Choice → ℕ → ℕ
coin c1 x = if choose c1 then x else suc x
double : ℕ → ℕ
double x = add x x
even : ℕ → 𝔹
even zero = tt
even (suc zero) = ff
even (suc (suc x)) = even x
---------------------------------------------------------------------------
add-suc : ∀ (x y : ℕ) → add x (suc y) ≡ suc (add x y)
add-suc zero y = refl
add-suc (suc x) y rewrite add-suc x y = refl
-- auxiliary property for x+x instead of double:
even-add-x-x : ∀ (x : ℕ) → even (add x x) ≡ tt
even-add-x-x zero = refl
even-add-x-x (suc x) rewrite add-suc x x | even-add-x-x x = refl
evendoublecoin : (c1 : Choice) → (x : ℕ) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x rewrite even-add-x-x (coin c1 x) = refl
---------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5176663928,
"avg_line_length": 24.34,
"ext": "agda",
"hexsha": "ac4ee4d205a1dd99f5004efe35792271019b4114",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-10-09T16:02:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-09T16:02:18.000Z",
"max_forks_repo_head_hexsha": "c34d76595b23e5152e6a5883ad3b0ec1d840f6d9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "DouglasRMiles/pakcs_lib",
"max_forks_repo_path": "docs/src/tooldocs/verify/PROOF-evendoublecoin.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c34d76595b23e5152e6a5883ad3b0ec1d840f6d9",
"max_issues_repo_issues_event_max_datetime": "2021-02-24T12:41:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-21T22:25:13.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "DouglasRMiles/pakcs_lib",
"max_issues_repo_path": "docs/src/tooldocs/verify/PROOF-evendoublecoin.agda",
"max_line_length": 75,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "c34d76595b23e5152e6a5883ad3b0ec1d840f6d9",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "DouglasRMiles/pakcs_lib",
"max_stars_repo_path": "docs/src/tooldocs/verify/PROOF-evendoublecoin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-21T22:25:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-06T18:32:48.000Z",
"num_tokens": 357,
"size": 1217
}
|
-- Andreas, 2018-06-03, issue #3057 reported by nad.
-- We should not allow the public import of an ambiguous identifier
-- {-# OPTIONS -v scope:20 #-}
module Issue3057 where
module M where
postulate
A : Set
a : A
open M public renaming (a to A)
-- Should fail
|
{
"alphanum_fraction": 0.6714801444,
"avg_line_length": 16.2941176471,
"ext": "agda",
"hexsha": "ce6d12cf7c80969701499395f87aee4301a172c9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3057.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3057.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3057.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 79,
"size": 277
}
|
{-
This file contains:
- Definition of set truncations
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.SetTruncation.Base where
open import Cubical.Core.Primitives
-- set truncation as a higher inductive type:
data ∥_∥₂ {ℓ} (A : Type ℓ) : Type ℓ where
∣_∣₂ : A → ∥ A ∥₂
squash₂ : ∀ (x y : ∥ A ∥₂) (p q : x ≡ y) → p ≡ q
|
{
"alphanum_fraction": 0.6281690141,
"avg_line_length": 19.7222222222,
"ext": "agda",
"hexsha": "0a2e801936bb60cc82a0ad3f42145177152d1121",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/SetTruncation/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/SetTruncation/Base.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/SetTruncation/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 133,
"size": 355
}
|
------------------------------------------------------------------------
-- "Equational" reasoning combinator setup
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
open import Labelled-transition-system
module Bisimilarity.Classical.Equational-reasoning-instances
{ℓ} {lts : LTS ℓ} where
open import Bisimilarity.Classical lts
open import Equational-reasoning
instance
reflexive∼ : Reflexive _∼_
reflexive∼ = is-reflexive reflexive-∼
symmetric∼ : Symmetric _∼_
symmetric∼ = is-symmetric symmetric-∼
trans∼∼ : Transitive _∼_ _∼_
trans∼∼ = is-transitive transitive-∼
convert∼∼ : Convertible _∼_ _∼_
convert∼∼ = is-convertible id
|
{
"alphanum_fraction": 0.581300813,
"avg_line_length": 23.8064516129,
"ext": "agda",
"hexsha": "f5c1e2d747f03fb8a03334227d8ecb491cad7f5d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Classical/Equational-reasoning-instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Classical/Equational-reasoning-instances.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Classical/Equational-reasoning-instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 197,
"size": 738
}
|
{-# OPTIONS -v 2 #-}
module Leftovers.Examples where
open import Leftovers.Utils
open import Leftovers.Leftovers
open import Leftovers.Equality
open import Data.Bool
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Product
open import Data.Unit
-- notNot : ∀ b → not (not b) ≡ b
-- notNot = (by {A = ∀ b → not (not b) ≡ b} (cases (quote Bool)) {!!}) -- (refl , refl)
-- applyTo : ∀ {ℓ1 ℓ2} {X : Set ℓ1} { Y : Set ℓ2 } → (X → Y) → X → Y
-- applyTo f x = f x
-- infixr 40 applyTo
-- syntax applyTo e₁ (λ x → e₂) = x ≔ e₁ ︔ e₂
plusZero : ∀ n → n ≡ n + 0
plusZero =
getNormal (by {A = ∀ n → n ≡ n + 0} (cases (quote ℕ)) ((λ x → cong suc (plusZero x)) , refl))
-- (by {A = ∀ n → n ≡ n + 0} (cases (quote ℕ)) ((λ x → cong suc (plusZero x)) , refl))
-- plusZero' : ∀ n → n ≡ n + 0
-- plusZero' = getNormal
-- ((the ((zero ≡ zero × (∀ x → suc x ≡ suc x + 0)) → ∀ n → n ≡ n + 0) λ h → identity (λ { zero → proj₁ h ; (suc x) → (proj₂ h) x }))
-- (refl , λ x → cong suc (plusZero' x)))
-- -- plusZero'' : ∀ n → n ≡ n + 0
-- -- plusZero'' = (the (zero ≡ zero → (∀ x → suc x ≡ suc x + 0) → ∀ n → n ≡ n + 0) λ h1 h2 → (λ { zero → h1 ; (suc x) → h2 x})) refl ((the (Dummy → ∀ x → suc x ≡ suc x + 0) (λ {dummy → λ x → cong suc (plusZero'' x)})) dummy)
-- -- plusZero' =
-- -- let
-- -- h : (zero ≡ zero × ∀ n → suc n ≡ (suc n) + 0)
-- -- h = refl , λ n → cong suc (plusZero' n)
-- -- in λ { zero → proj₁ h ; (suc x) → (proj₂ h) x}
-- -- plusZeroR : ∀ n → n + 0 ≡ n
-- -- plusZeroR = by (refl-cases (quote ℕ)) ?
|
{
"alphanum_fraction": 0.5164765526,
"avg_line_length": 30.3461538462,
"ext": "agda",
"hexsha": "1a3ca2e30681a9acba0d3a34f0046f3c04534e20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_forks_repo_path": "src/Leftovers/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_issues_repo_path": "src/Leftovers/Examples.agda",
"max_line_length": 226,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "01b60b405009feaada181af175f019ceb89e42b2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/AgdaLeftovers",
"max_stars_repo_path": "src/Leftovers/Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 633,
"size": 1578
}
|
-- This example comes from the discussion on Issue423.
module SolveNeutralApplication where
postulate
A : Set
a b : A
T : A → Set
mkT : ∀ a → T a
phantom : A → A → A
data Bool : Set where
true false : Bool
f : Bool → A → A
f true x = phantom x a
f false x = phantom x b
-- Andreas, 2012-09-07: the original f did not have "phantom x",
-- thus, x was cleary unused. With fixing issue 691 Agda tracks
-- constant functions in the type system, thus, reasoning as below
-- no longer works. We have to make f use its second argument.
-- We can solve the constraint
-- f x _4 == f x y
-- with
-- _4 := y
-- since the application of f is neutral.
g : (x : Bool)(y : A) → T (f x y)
g x y = mkT (f x _)
|
{
"alphanum_fraction": 0.6420612813,
"avg_line_length": 23.9333333333,
"ext": "agda",
"hexsha": "9759975315e1b24accc8bc64e9e0b06e01c8c75f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/SolveNeutralApplication.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/SolveNeutralApplication.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/SolveNeutralApplication.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 232,
"size": 718
}
|
open import Coinduction using ( ∞ ; ♯_ ; ♭ )
open import Data.Bool using ( Bool ; true ; false ; if_then_else_ )
open import Data.Empty using ( ⊥ )
open import Data.Maybe using ( Maybe ; just ; nothing )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import Data.Unit using ( ⊤ ; tt )
open import Data.Natural using ( Natural ; # )
open import Data.String using ( String )
open import Data.ByteString using ( ByteString ; strict ; length )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
module System.IO.Transducers.Session where
-- Unidirectional sessions. These can be viewed as trees,
-- where each node is labelled by a set A, and has a child
-- for each element of A.
-- These are a lot like session types, but are unidirectional,
-- not bidirectional, and are not designed to support session
-- mobility.
-- They are also a lot like arenas in game semantics, but again
-- are unidirectional.
-- They're a lot like the container types from Ghani, Hancock
-- and Pattison's "Continuous functions on final coalgebras".
-- Note that we are supporting weighted sets, similar to theirs,
-- in order to support induction over weights of input,
-- e.g. on bytestring input we can do induction over the length
-- of the bytestring.
-- Finally, they are a lot like automata: states are sessions,
-- acceptors are leaves, transitions correspond to children.
infixr 4 _∼_
infixr 6 _⊕_
infixr 7 _&_ _&*_
-- Weighting for a set
Weighted : Set → Set
Weighted A = A → Natural
-- Discrete weighting function
δ : ∀ {A} → (Weighted A)
δ a = # 1
-- Sessions are trees of weighted sets
data Session : Set₁ where
I : Session
Σ : {A : Set} → (W : Weighted A) → (F : ∞ (A → Session)) → Session
-- Equivalence of sessions
data _∼_ : Session → Session → Set₁ where
I : I ∼ I
Σ : {A : Set} → (W : Weighted A) → {F₁ F₂ : ∞ (A → Session)} →
∞ (∀ a → ♭ F₁ a ∼ ♭ F₂ a) → (Σ W F₁ ∼ Σ W F₂)
∼-refl : ∀ {S} → (S ∼ S)
∼-refl {I} = I
∼-refl {Σ V F} = Σ V (♯ λ a → ∼-refl {♭ F a})
∼-sym : ∀ {S T} → (S ∼ T) → (T ∼ S)
∼-sym I = I
∼-sym (Σ V F) = Σ V (♯ λ a → ∼-sym (♭ F a))
∼-trans : ∀ {S T U} → (S ∼ T) → (T ∼ U) → (S ∼ U)
∼-trans I I = I
∼-trans (Σ V F) (Σ .V G) = Σ V (♯ λ a → ∼-trans (♭ F a) (♭ G a))
-- Inital alphabet
Γ : Session → Set
Γ I = ⊥
Γ (Σ {A} W F) = A
Δ : ∀ S → (Weighted (Γ S))
Δ I ()
Δ (Σ W F) a = W a
_/_ : ∀ S → (Γ S) → Session
I / ()
(Σ W F) / a = ♭ F a
-- IsI S is inhabited whenever S ≡ I
IsI : Session → Set
IsI I = ⊤
IsI (Σ V F) = ⊥
-- IsΣ S is inhabited whenever S is of the form Σ V F
IsΣ : Session → Set
IsΣ I = ⊥
IsΣ (Σ V F) = ⊤
-- IsΣ respects ≡.
IsΣ-≡ : ∀ {S} {isΣ : IsΣ S} {T} → (S ≡ T) → (IsΣ T)
IsΣ-≡ {Σ V F} refl = tt
IsΣ-≡ {I} {} refl
-- Singletons
⟨_w/_⟩ : (A : Set) → (Weighted A) → Session
⟨ A w/ W ⟩ = Σ W (♯ λ a → I)
⟨_⟩ : Set → Session
⟨ A ⟩ = ⟨ A w/ δ ⟩
-- Sequencing
_&_ : Session → Session → Session
I & T = T
(Σ V F) & T = Σ V (♯ λ a → ♭ F a & T)
-- Units and associativity
unit₁ : ∀ {S} → (I & S ∼ S)
unit₁ = ∼-refl
unit₂ : ∀ {S} → (S & I ∼ S)
unit₂ {I} = I
unit₂ {Σ V F} = Σ V (♯ λ a → unit₂ {♭ F a})
assoc : ∀ {S T U} → (S & (T & U) ∼ (S & T) & U)
assoc {I} = ∼-refl
assoc {Σ V F} = Σ V (♯ λ a → assoc {♭ F a})
-- Lazy choice
_+_ : Session → Session → Session
S + T = Σ δ (♯ λ b → if b then S else T)
-- Strict choice
_⊕_ : Session → Session → Session
I ⊕ T = I
S ⊕ I = I
S ⊕ T = S + T
-- Lazy option
¿ : Session → Session
¿ S = S + I
-- Lazy Kleene star
-- It would be nice if I could just define * S = ¿ (S & * S),
-- but that doesn't pass the termination checker, so I have
-- to expand out the definition.
hd : Session → Set
hd I = Bool
hd (Σ {A} W F) = A
wt : ∀ S → (Weighted (hd S))
wt I = δ
wt (Σ W F) = W
mutual
tl : ∀ S T → (hd S) → Session
tl I T true = T &* T
tl I T false = I
tl (Σ W F) T a = (♭ F a) &* T
_&*_ : Session → Session → Session
S &* T = Σ (wt S) (♯ tl S T)
* : Session → Session
* S = I &* S
+ : Session → Session
+ S = S &* S
-- Bytes
Bytes' : Session
Bytes' = + ⟨ ByteString strict w/ length ⟩
Bytes : Session
Bytes = * ⟨ ByteString strict w/ length ⟩
-- TODO: weight strings by their length?
Strings' : Session
Strings' = + ⟨ String ⟩
Strings : Session
Strings = * ⟨ String ⟩
|
{
"alphanum_fraction": 0.5674053555,
"avg_line_length": 22.2153846154,
"ext": "agda",
"hexsha": "4f0eef6a478572c8bc60754c7ff0a7180f4a907d",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Session.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Session.agda",
"max_line_length": 70,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Session.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 1662,
"size": 4332
}
|
module Structure.Relator.Names where
import Lvl
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Logic.Propositional.Xor
open import Numeral.Natural
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Lvl.Level
private variable T A B C D E : Type{ℓ}
ConversePattern : (Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt{ℓ}) → (A → B → Stmt) → (B → A → Stmt) → Stmt
ConversePattern(_▫_)(_▫₁_)(_▫₂_) = ∀{x}{y} → (x ▫₁ y) ▫ (y ▫₂ x)
Subrelation : (A → B → Stmt{ℓ₁}) → (A → B → Stmt{ℓ₂}) → Stmt
Subrelation(_▫₁_)(_▫₂_) = ∀{x}{y} → (x ▫₁ y) → (x ▫₂ y)
TransitivityPattern : (A → B → Stmt{ℓ₁}) → (B → C → Stmt{ℓ₂}) → (A → C → Stmt{ℓ₃}) → Stmt
TransitivityPattern(_▫₁_)(_▫₂_)(_▫₃_) = ∀{x}{y}{z} → (x ▫₁ y) → (y ▫₂ z) → (x ▫₃ z)
FlippedTransitivityₗPattern : (A → C → Stmt{ℓ₁}) → (B → C → Stmt{ℓ₂}) → (A → B → Stmt{ℓ₃}) → Stmt
FlippedTransitivityₗPattern(_▫₁_)(_▫₂_)(_▫₃_) = ∀{x}{y}{z} → (x ▫₁ z) → (y ▫₂ z) → (x ▫₃ y)
FlippedTransitivityᵣPattern : (A → B → Stmt{ℓ₁}) → (A → C → Stmt{ℓ₂}) → (B → C → Stmt{ℓ₃}) → Stmt
FlippedTransitivityᵣPattern(_▫₁_)(_▫₂_)(_▫₃_) = ∀{x}{y}{z} → (x ▫₁ y) → (x ▫₂ z) → (y ▫₃ z)
module _ (_▫_ : T → T → Stmt{ℓ}) where
Symmetry : Stmt
Symmetry = ConversePattern(_→ᶠ_)(_▫_)(_▫_)
Asymmetry : Stmt
Asymmetry = ConversePattern(_→ᶠ_)(_▫_)((¬_) ∘₂ (_▫_))
Reflexivity : Stmt
Reflexivity = ∀{x : T} → (x ▫ x)
Transitivity : Stmt
Transitivity = TransitivityPattern(_▫_)(_▫_)(_▫_)
SwappedTransitivity : Stmt
SwappedTransitivity = ∀{x y z : T} → (y ▫ z) → (x ▫ y) → (x ▫ z)
-- Also called: Left Euclidean.
FlippedTransitivityₗ : Stmt
FlippedTransitivityₗ = FlippedTransitivityₗPattern(_▫_)(_▫_)(_▫_)
-- Also called: Right Euclidean.
FlippedTransitivityᵣ : Stmt
FlippedTransitivityᵣ = FlippedTransitivityᵣPattern(_▫_)(_▫_)(_▫_)
Irreflexivity : Stmt
Irreflexivity = ∀{x : T} → ¬(x ▫ x)
-- Also called: Total, complete, connex.
ConverseTotal : Stmt
ConverseTotal = ConversePattern(_∨_)(_▫_)(_▫_)
ConverseDichotomy : Stmt
ConverseDichotomy = ConversePattern(_⊕_)(_▫_)(_▫_)
-- Also called: Comparison.
CoTransitivity : Stmt
CoTransitivity = ∀{x y z : T} → (x ▫ z) → ((x ▫ y) ∨ (y ▫ z))
module _ (_▫₁_ : T → T → Stmt{ℓ₁}) (_▫₂_ : T → T → Stmt{ℓ₂}) where
Antisymmetry : Stmt
Antisymmetry = ∀{a b} → (a ▫₁ b) → (b ▫₁ a) → (a ▫₂ b)
ConverseTrichotomy : Stmt
ConverseTrichotomy = ∀{x y} → (x ▫₁ y) ∨ (x ▫₂ y) ∨ (y ▫₁ x)
module _ (_▫₁_ : A → B → Stmt{ℓ₁}) (_▫₂_ : A → A → Stmt{ℓ₂}) where
Subtransitivityₗ : Stmt
Subtransitivityₗ = TransitivityPattern(_▫₂_)(_▫₁_)(_▫₁_)
module _ (_▫₁_ : A → B → Stmt{ℓ₁}) (_▫₂_ : B → B → Stmt{ℓ₂}) where
Subtransitivityᵣ : Stmt
Subtransitivityᵣ = TransitivityPattern(_▫₁_)(_▫₂_)(_▫₁_)
|
{
"alphanum_fraction": 0.6135144798,
"avg_line_length": 33.6987951807,
"ext": "agda",
"hexsha": "d584cb0cfbb8ce2fb2283a45cfbd581b74872840",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Names.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Names.agda",
"max_line_length": 97,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Names.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1249,
"size": 2797
}
|
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.IO
open import Agda.Builtin.String
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
data Sing : Nat → Set where
sing : Sing zero
data Vec : Nat → Set where
nil : Vec zero
cons : ∀ n → Vec n → Vec (suc n)
isTailNil : ∀ m n → Sing m → Vec n → Bool
isTailNil .0 .1 sing (cons zero v) = true -- two `zero`s are buried in the dot patterns, which to resurrect?
isTailNil _ _ _ _ = false
shouldBeFalse = isTailNil 0 2 sing (cons 1 (cons 0 nil))
isFalse : false ≡ shouldBeFalse
isFalse = refl
magic : false ≡ true → String
magic ()
f : (b : Bool) → false ≡ b → String
f false eq = "Phew!"
f true eq = magic eq
main = putStr (f shouldBeFalse refl)
|
{
"alphanum_fraction": 0.6857463524,
"avg_line_length": 22.8461538462,
"ext": "agda",
"hexsha": "ec6f155922bba48791c05e9efe0da2ee868f5bbd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3903.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3903.agda",
"max_line_length": 109,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3903.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 274,
"size": 891
}
|
------------------------------------------------------------------------------
-- Elimination properties for the inequalities
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Inequalities.EliminationPropertiesI where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
------------------------------------------------------------------------------
0<0→⊥ : ¬ (zero < zero)
0<0→⊥ 0<0 = t≢f (trans (sym 0<0) lt-00)
S<0→⊥ : ∀ {n} → ¬ (succ₁ n < zero)
S<0→⊥ {n} h = t≢f (trans (sym h) (lt-S0 n))
x<0→⊥ : ∀ {n} → N n → ¬ (n < zero)
x<0→⊥ nzero 0<0 = 0<0→⊥ 0<0
x<0→⊥ (nsucc _) Sn<0 = S<0→⊥ Sn<0
x<x→⊥ : ∀ {n} → N n → ¬ (n < n)
x<x→⊥ nzero 0<0 = 0<0→⊥ 0<0
x<x→⊥ (nsucc {n} Nn) Sn<Sn = ⊥-elim (x<x→⊥ Nn (trans (sym (lt-SS n n)) Sn<Sn))
0>0→⊥ : ¬ (zero > zero)
0>0→⊥ 0>0 = t≢f (trans (sym 0>0) lt-00)
0>S→⊥ : ∀ {n} → ¬ (zero > succ₁ n)
0>S→⊥ {n} h = t≢f (trans (sym h) (lt-S0 n))
0>x→⊥ : ∀ {n} → N n → ¬ (zero > n)
0>x→⊥ nzero 0>0 = 0>0→⊥ 0>0
0>x→⊥ (nsucc _) 0>Sn = 0>S→⊥ 0>Sn
x>x→⊥ : ∀ {n} → N n → ¬ (n > n)
x>x→⊥ Nn = x<x→⊥ Nn
S≤0→⊥ : ∀ {n} → N n → ¬ (succ₁ n ≤ zero)
S≤0→⊥ nzero S0≤0 = t≢f (trans (sym S0≤0) (trans (lt-SS zero zero) lt-00))
S≤0→⊥ (nsucc {n} _) SSn≤0 =
t≢f (trans (sym SSn≤0) (trans (lt-SS (succ₁ n) zero) (lt-S0 n)))
0≥S→⊥ : ∀ {n} → N n → ¬ (zero ≥ succ₁ n)
0≥S→⊥ Nn 0≥Sn = S≤0→⊥ Nn 0≥Sn
x<y→y<x→⊥ : ∀ {m n} → N m → N n → m < n → ¬ (n < m)
x<y→y<x→⊥ nzero Nn 0<n n<0 = ⊥-elim (0>x→⊥ Nn n<0)
x<y→y<x→⊥ (nsucc Nm) nzero Sm<0 0<Sm = ⊥-elim (0>x→⊥ (nsucc Nm) Sm<0)
x<y→y<x→⊥ (nsucc {m} Nm) (nsucc {n} Nn) Sm<Sn Sn<Sm =
x<y→y<x→⊥ Nm Nn (trans (sym (lt-SS m n)) Sm<Sn) (trans (sym (lt-SS n m)) Sn<Sm)
S≯0→⊥ : ∀ {n} → ¬ (succ₁ n ≯ zero)
S≯0→⊥ {n} h = ⊥-elim (t≢f (trans (sym (lt-0S n)) h))
|
{
"alphanum_fraction": 0.4187992126,
"avg_line_length": 33.3114754098,
"ext": "agda",
"hexsha": "ed93db98cc499feb56b26953e0b20c93e6d192ca",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Inequalities/EliminationPropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Inequalities/EliminationPropertiesI.agda",
"max_line_length": 84,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Inequalities/EliminationPropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1000,
"size": 2032
}
|
data Bool : Set where
true : Bool
false : Bool
not : Bool → Bool
not true = false
not false = true
data ℕ : Set where
O : ℕ
S : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
O + a = a
S a + b = S (a + b)
_*_ : ℕ → ℕ → ℕ
O * a = O
S a * b = a + (a * b)
_or_ : Bool → Bool → Bool
true or _ = true
false or b = b
if_then_else_ : {A : Set} → Bool → A → A → A
if true then x else y = x
if false then x else y = y
infixl 60 _*_
infixl 40 _+_
infixr 20 _or_
infix 5 if_then_else_
infixr 40 _::_
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
_∘_ : {A : Set} -> {B : A -> Set} -> {C : (x : A) -> B x -> Set} ->
(f : {x : A} -> (y : B x) -> C x y) -> (g : (x : A) -> B x) ->
(x : A) -> C x (g x)
_∘_ f g a = f (g a)
plus-two = S ∘ S
map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs
_++_ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
x :: xs ++ ys = x :: (xs ++ ys)
data Vec (A : Set) : ℕ -> Set where
nil : Vec A O
cons : (n : ℕ) -> A -> Vec A n -> Vec A (S n)
head : {A : Set} {n : ℕ} -> Vec A (S n) -> A
head (cons n v vs) = v
vmap : {A B : Set} (n : ℕ) -> (A -> B) -> Vec A n -> Vec B n
vmap .O f nil = nil
vmap .(S n) f (cons n x xs) = cons n (f x) (vmap n f xs)
vmap′ : {A B : Set} (n : ℕ) -> (A -> B) -> Vec A n -> Vec B n
vmap′ O f nil = nil
vmap′ (S n) f (cons .n x xs) = cons n (f x) (vmap n f xs)
data Fin : ℕ -> Set where
fzero : {n : ℕ} -> Fin (S n)
fsuc : {n : ℕ} -> Fin n -> Fin (S n)
_!_ : {n : ℕ}{A : Set} -> Vec A n -> Fin n -> A
nil ! ()
cons n x a ! fzero = x
cons n x a ! fsuc b = a ! b
tabulate : {n : ℕ}{A : Set} -> (Fin n -> A) -> Vec A n
tabulate {O} f = nil
tabulate {S n} f = cons n (f fzero) (tabulate (f ∘ fsuc))
data False : Set where
record True : Set where
trivial : True
trivial = _
isTrue : Bool -> Set
isTrue true = True
isTrue false = False
_<_ : ℕ -> ℕ -> Bool
_ < O = false
O < S n = true
S m < S n = m < n
length : {A : Set} -> List A -> ℕ
length [] = O
length (x :: xs) = S (length xs)
lookup : {A : Set}(xs : List A)(n : ℕ) -> isTrue (n < length xs) -> A
lookup (x :: xs) O b = x
lookup (x :: xs) (S n) b = lookup xs n b
lookup [] a ()
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
data _≤_ : ℕ -> ℕ -> Set where
≤O : {m n : ℕ} -> m == n -> m ≤ n
≤I : {m n : ℕ} -> m ≤ n -> m ≤ S n
leq-trans : {l m n : ℕ} -> l ≤ m -> m ≤ n -> l ≤ n
leq-trans a (≤O refl) = a
leq-trans a (≤I b) = ≤I (leq-trans a b)
min : ℕ -> ℕ -> ℕ
min a b with a < b
min a b | true = a
min a b | false = b
filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter f [] = []
filter f (x :: xs) with f x
... | true = x :: filter f xs
... | false = filter f xs
data _≠_ : ℕ -> ℕ -> Set where
z≠s : {n : ℕ} -> O ≠ S n
s≠z : {n : ℕ} -> S n ≠ O
s≠s : {m n : ℕ} -> n ≠ m → S n ≠ S m
data Equal? (n m : ℕ) : Set where
eq : n == m -> Equal? n m
neq : n ≠ m -> Equal? n m
|
{
"alphanum_fraction": 0.4543028686,
"avg_line_length": 18.6211180124,
"ext": "agda",
"hexsha": "08277dcd5fa4a72d9f6428edda57223223eaa22e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-06-03T06:32:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-12-02T02:10:26.000Z",
"max_forks_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shouya/thinking-dumps",
"max_forks_repo_path": "agda-tutorial/basics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc",
"max_issues_repo_issues_event_max_datetime": "2015-08-04T22:05:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-06-14T06:07:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shouya/thinking-dumps",
"max_issues_repo_path": "agda-tutorial/basics.agda",
"max_line_length": 69,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shouya/thinking-dumps",
"max_stars_repo_path": "agda-tutorial/basics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T01:02:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-14T17:18:34.000Z",
"num_tokens": 1289,
"size": 2998
}
|
{- formatted printing like printf, except type-safe (as proposed
in "Cayenne -- a language with dependent types" by Augustsson).
The types of the rest of the arguments are computed from the
format string. -}
module string-format where
open import char
open import eq
open import list
open import nat
open import nat-to-string
open import string
{- We will first convert the format string to the following type,
so we can avoid default cases in the definition of format-th
(cf. string-format-issue.agda). -}
data format-d : Set where
format-nat : format-d → format-d
format-string : format-d → format-d
not-format : (c : char) → format-d → format-d
empty-format : format-d
format-cover : 𝕃 char → format-d
format-cover ('%' :: 'n' :: s) = format-nat (format-cover s)
format-cover ('%' :: 's' :: s) = format-string (format-cover s)
format-cover (c :: s) = not-format c (format-cover s)
format-cover [] = empty-format
format-th : format-d → Set
format-th (format-nat v) = ℕ → format-th v
format-th (format-string v) = string → format-th v
format-th (not-format c v) = format-th v
format-th empty-format = string
format-t : string → Set
format-t s = format-th (format-cover (string-to-𝕃char s))
format-h : 𝕃 char → (d : format-d) → format-th d
format-h s (format-nat v) = λ n → format-h (s ++ (string-to-𝕃char (ℕ-to-string n))) v
format-h s (format-string v) = λ s' → format-h (s ++ (string-to-𝕃char s')) v
format-h s (not-format c v) = format-h (s ++ [ c ] ) v
format-h s empty-format = 𝕃char-to-string s
format : (f : string) → format-t f
format f = format-h [] (format-cover (string-to-𝕃char f))
format-type-test : Set
format-type-test = format-t "%n% of the %ss are in the %s %s"
format-test : string
format-test = format "%n% of the %ss are in the %s %s" 25 "dog" "toasty" "doghouse"
format-test-lem : format-test ≡ "25% of the dogs are in the toasty doghouse"
format-test-lem = refl
|
{
"alphanum_fraction": 0.6770833333,
"avg_line_length": 34.2857142857,
"ext": "agda",
"hexsha": "50e162f21eaa93d6b997b583516dc52fdf3436ec",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "string-format.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "string-format.agda",
"max_line_length": 85,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "string-format.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 571,
"size": 1920
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.