Search is not available for this dataset
text
string | meta
dict |
---|---|
module bstd.bign where
|
{
"alphanum_fraction": 0.7916666667,
"avg_line_length": 8,
"ext": "agda",
"hexsha": "3c23dcf2ebb11937c6825491c9bbbf8ad70b4c40",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/bstd",
"max_forks_repo_path": "src/bstd/bign.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/bstd",
"max_issues_repo_path": "src/bstd/bign.agda",
"max_line_length": 22,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "fe95ba440099f9cf086096469133576a9652c122",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/bstd",
"max_stars_repo_path": "src/bstd/bign.agda",
"max_stars_repo_stars_event_max_datetime": "2019-06-29T10:40:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-29T10:40:15.000Z",
"num_tokens": 7,
"size": 24
}
|
-- {-# OPTIONS -v tc.lhs.unify:100 #-}
-- Reported by project member adamgundry, 2012-10-26
-- I was trying to extend Conor's KIPLING technique (Outrageous but
-- Meaningful Coincidences, WGP 2010) which depends on indexing a
-- syntax by functions, when I hit this problem:
module Issue738 where
open import Common.Equality
data U : Set where
a : U
b : U
-- works, with explicit equality:
module Param where
data D (f : U → U) : Set where
da : (f ≡ λ x → a) → D f
db : (f ≡ λ x → b) → D f
app : ∀ {A B : Set}{f g : A → B} → f ≡ g → ∀ x → f x ≡ g x
app refl x = refl
fu : D (λ x → a) → Set
fu (da refl) = U
fu (db p) with app p a
... | ()
-- original formulation:
module Index where
data Foo : (U -> U) -> Set where
mka : Foo (\ x -> a)
mkb : Foo (\ x -> b)
foo : Foo (\ x -> a) -> Set
foo mka = ?
-- This gives the error message:
-- -- Cannot decide whether there should be a case for the constructor
-- -- mkb, since the unification gets stuck on unifying the inferred
-- -- indices
-- -- [λ x → b]
-- -- with the expected indices
-- -- [λ x → a]
-- -- when checking the definition of foo
-- But these indices cannot be unified (a and b are constants) so it
-- should be possible to exclude this case. Could we improve the
-- unifier to notice this?
-- Andreas, 2012-10-29 No, because if the domain type is empty,
-- these two lambdas cannot be disunified
|
{
"alphanum_fraction": 0.6183098592,
"avg_line_length": 24.0677966102,
"ext": "agda",
"hexsha": "1e5f0c124dc78f53c35e72cf80abba7265f0f4fa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue738.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue738.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue738.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 446,
"size": 1420
}
|
module Functors where
open import Library
open import Categories
open Cat
record Fun {a b c d} (C : Cat {a}{b})(D : Cat {c}{d}) : Set (a ⊔ b ⊔ c ⊔ d)
where
constructor functor
field OMap : Obj C → Obj D
HMap : ∀{X Y} → Hom C X Y → Hom D (OMap X) (OMap Y)
fid : ∀{X} → HMap (iden C {X}) ≅ iden D {OMap X}
fcomp : ∀{X Y Z}{f : Hom C Y Z}{g : Hom C X Y} →
HMap (comp C f g) ≅ comp D (HMap f) (HMap g)
open Fun
IdF : ∀{a b}(C : Cat {a}{b}) → Fun C C
IdF C = record{OMap = id;HMap = id;fid = refl;fcomp = refl}
_○_ : ∀{a b c d e f}{C : Cat {a}{b}}{D : Cat {c}{d}}{E : Cat {e}{f}} →
Fun D E → Fun C D → Fun C E
_○_ {C = C}{D}{E} F G = record{
OMap = OMap F ∘ OMap G;
HMap = HMap F ∘ HMap G;
fid =
proof
HMap F (HMap G (iden C))
≅⟨ cong (HMap F) (fid G) ⟩
HMap F (iden D)
≅⟨ fid F ⟩
iden E
∎;
fcomp = λ {_}{_}{_}{f}{g} →
proof
HMap F (HMap G (comp C f g))
≅⟨ cong (HMap F) (fcomp G) ⟩
HMap F (comp D (HMap G f) (HMap G g))
≅⟨ fcomp F ⟩
comp E (HMap F (HMap G f)) (HMap F (HMap G g))
∎}
infix 10 _○_
FunctorEq : ∀{a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}(F G : Fun C D) →
OMap F ≅ OMap G →
(λ {X Y} → HMap F {X}{Y}) ≅ (λ {X}{Y} → HMap G {X}{Y}) → F ≅ G
FunctorEq (functor fo fh _ _) (functor .fo .fh _ _) refl refl =
cong₂ (functor fo fh)
(iext λ _ → ir _ _)
(iext λ _ → iext λ _ → iext λ _ → iext λ _ → iext λ _ → ir _ _)
|
{
"alphanum_fraction": 0.4730538922,
"avg_line_length": 30.06,
"ext": "agda",
"hexsha": "e885856ae2efecee16d0c3bf54c6beae195e7ed2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Functors.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Functors.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Functors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 679,
"size": 1503
}
|
open import Oscar.Prelude
open import Oscar.Class.Successor₀
open import Oscar.Class.Injectivity
open import Oscar.Data.¶
open import Oscar.Data.Vec
open import Oscar.Data.Proposequality
import Oscar.Property.Thickandthin.FinFinProposequalityMaybeProposequality
module Oscar.Class.Injectivity.Vec where
instance
𝓘njection₂Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → 𝓘njection₂ (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N))
𝓘njection₂Vec .𝓘njection₂.injection₂ = _,_
[𝓘njectivity₂,₀,₁]Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → [𝓘njectivity₂,₀,₁] (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality
[𝓘njectivity₂,₀,₁]Vec = ∁
𝓘njectivity₂,₀,₁Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → 𝓘njectivity₂,₀,₁ (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality
𝓘njectivity₂,₀,₁Vec .𝓘njectivity₂,₀,₁.injectivity₂,₀,₁ ∅ = ∅
[𝓘njectivity₂,₀,₂]Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → [𝓘njectivity₂,₀,₂] (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality
[𝓘njectivity₂,₀,₂]Vec = ∁
𝓘njectivity₂,₀,₂Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → 𝓘njectivity₂,₀,₂ (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality
𝓘njectivity₂,₀,₂Vec .𝓘njectivity₂,₀,₂.injectivity₂,₀,₂ ∅ = ∅
|
{
"alphanum_fraction": 0.6359262229,
"avg_line_length": 44.5357142857,
"ext": "agda",
"hexsha": "1ea187bda3def386d77269c01888dfc30f15f716",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Injectivity/Vec.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Injectivity/Vec.agda",
"max_line_length": 149,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Injectivity/Vec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 643,
"size": 1247
}
|
{-# OPTIONS --without-K --safe #-}
-- Exact category (https://ncatlab.org/nlab/show/exact+category)
-- is a regular category
-- in which every internal equivalence is a kernel pair
module Categories.Category.Exact where
open import Level
open import Categories.Category.Core
open import Categories.Diagram.Pullback
open import Categories.Category.Cocartesian
open import Categories.Object.Coproduct
open import Categories.Morphism
open import Categories.Category.Complete.Finitely using (FinitelyComplete)
open import Categories.Diagram.Coequalizer
open import Categories.Diagram.KernelPair
open import Categories.Category.Regular
open import Categories.Morphism.Regular
open import Categories.Object.InternalRelation
record Exact {o ℓ e : Level} (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where
open Category 𝒞
open Pullback
open Coequalizer
open Equivalence
field
regular : Regular 𝒞
quotient : ∀ {X : Obj} (E : Equivalence 𝒞 X) → Coequalizer 𝒞 (R.p₁ E) (R.p₂ E)
effective : ∀ {X : Obj} (E : Equivalence 𝒞 X) → IsPullback 𝒞 (R.p₁ E) (R.p₂ E)
(arr (quotient E)) (arr (quotient E))
|
{
"alphanum_fraction": 0.7424511545,
"avg_line_length": 31.2777777778,
"ext": "agda",
"hexsha": "23cd34507e044066419c62b0e5c6ec740f6e9421",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c202a616d4f376b11e8320e641c98db2ddc9d233",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Exact.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c202a616d4f376b11e8320e641c98db2ddc9d233",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Exact.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c202a616d4f376b11e8320e641c98db2ddc9d233",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Exact.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 309,
"size": 1126
}
|
module VecS where
open import Data.Empty
open import Data.Product hiding (map)
open import Data.Sum
open import Data.Vec
open import Data.Nat
open import Data.Bool
open import Data.Nat.Properties
import Homotopy as Pi
------------------------------------------------------------------------------
data B : Set where
ZERO : B
ONE : B
PLUS : B → B → B
TIMES : B → B → B
DUAL : B → B
data BVAL : B → Set where
UNIT : BVAL ONE
LEFT : {b₁ b₂ : B} → BVAL b₁ → BVAL (PLUS b₁ b₂)
RIGHT : {b₁ b₂ : B} → BVAL b₂ → BVAL (PLUS b₁ b₂)
PAIR : {b₁ b₂ : B} → BVAL b₁ → BVAL b₂ → BVAL (TIMES b₁ b₂)
FLIP : {b : B} → BVAL b → BVAL (DUAL b)
data Iso : {b₁ b₂ : B} → BVAL b₁ → BVAL b₂ → Set where
unite₊ : {b : B} {v : BVAL b} → Iso (RIGHT {ZERO} {b} v) v
uniti₊ : {b : B} {v : BVAL b} → Iso v (RIGHT {ZERO} {b} v)
swap₊1 : {b₁ b₂ : B} {v₁ : BVAL b₁} → Iso (LEFT {b₁} {b₂} v₁) (RIGHT {b₂} {b₁} v₁)
swap₊2 : {b₁ b₂ : B} {v₂ : BVAL b₂} → Iso (RIGHT {b₁} {b₂} v₂) (LEFT {b₂} {b₁} v₂)
assocl₊1 : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} →
Iso (LEFT {b₁} {PLUS b₂ b₃} v₁) (LEFT {PLUS b₁ b₂} {b₃} (LEFT {b₁} {b₂} v₁))
assocl₊2 : {b₁ b₂ b₃ : B} {v₂ : BVAL b₂} →
Iso (RIGHT {b₁} {PLUS b₂ b₃} (LEFT {b₂} {b₃} v₂)) (LEFT {PLUS b₁ b₂} {b₃} (RIGHT {b₁} {b₂} v₂))
assocl₊3 : {b₁ b₂ b₃ : B} {v₃ : BVAL b₃} →
Iso (RIGHT {b₁} {PLUS b₂ b₃} (RIGHT {b₂} {b₃} v₃)) (RIGHT {PLUS b₁ b₂} {b₃} v₃)
assocr₊1 : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} →
Iso (LEFT {PLUS b₁ b₂} {b₃} (LEFT {b₁} {b₂} v₁)) (LEFT {b₁} {PLUS b₂ b₃} v₁)
assocr₊2 : {b₁ b₂ b₃ : B} {v₂ : BVAL b₂} →
Iso (LEFT {PLUS b₁ b₂} {b₃} (RIGHT {b₁} {b₂} v₂)) (RIGHT {b₁} {PLUS b₂ b₃} (LEFT {b₂} {b₃} v₂))
assocr₊3 : {b₁ b₂ b₃ : B} {v₃ : BVAL b₃} →
Iso (RIGHT {PLUS b₁ b₂} {b₃} v₃) (RIGHT {b₁} {PLUS b₂ b₃} (RIGHT {b₂} {b₃} v₃))
unite⋆ : {b : B} {v : BVAL b} → Iso (PAIR UNIT v) v
uniti⋆ : {b : B} {v : BVAL b} → Iso v (PAIR UNIT v)
swap⋆ : {b₁ b₂ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} → Iso (PAIR v₁ v₂) (PAIR v₂ v₁)
assocl⋆ : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} {v₃ : BVAL b₃} →
Iso (PAIR v₁ (PAIR v₂ v₃)) (PAIR (PAIR v₁ v₂) v₃)
assocr⋆ : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} {v₃ : BVAL b₃} →
Iso (PAIR (PAIR v₁ v₂) v₃) (PAIR v₁ (PAIR v₂ v₃))
dist1 : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} {v₃ : BVAL b₃} →
Iso (PAIR (LEFT {b₁} {b₂} v₁) v₃) (LEFT {TIMES b₁ b₃} {TIMES b₂ b₃} (PAIR v₁ v₃))
dist2 : {b₁ b₂ b₃ : B} {v₂ : BVAL b₂} {v₃ : BVAL b₃} →
Iso (PAIR (RIGHT {b₁} {b₂} v₂) v₃) (RIGHT {TIMES b₁ b₃} {TIMES b₂ b₃} (PAIR v₂ v₃))
factor1 : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} {v₃ : BVAL b₃} →
Iso (LEFT {TIMES b₁ b₃} {TIMES b₂ b₃} (PAIR v₁ v₃)) (PAIR (LEFT {b₁} {b₂} v₁) v₃)
factor2 : {b₁ b₂ b₃ : B} {v₂ : BVAL b₂} {v₃ : BVAL b₃} →
Iso (RIGHT {TIMES b₁ b₃} {TIMES b₂ b₃} (PAIR v₂ v₃)) (PAIR (RIGHT {b₁} {b₂} v₂) v₃)
id⟷ : {b : B} {v : BVAL b} → Iso v v
sym : {b₁ b₂ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} → Iso v₁ v₂ → Iso v₂ v₁
VSEMI : {b₁ b₂ b₃ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} {v₃ : BVAL b₃} →
Iso v₁ v₂ → Iso v₂ v₃ → Iso v₁ v₃
VPLUS1 : {b₁ b₂ b₃ b₄ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} {v₃ : BVAL b₃} {v₄ : BVAL b₄} →
Iso v₁ v₃ → Iso v₂ v₄ → Iso (LEFT {b₁} {b₂} v₁) (LEFT {b₃} {b₄} v₃)
VPLUS2 : {b₁ b₂ b₃ b₄ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} {v₃ : BVAL b₃} {v₄ : BVAL b₄} →
Iso v₁ v₃ → Iso v₂ v₄ → Iso (RIGHT {b₁} {b₂} v₂) (RIGHT {b₃} {b₄} v₄)
VTIMES : {b₁ b₂ b₃ b₄ : B} {v₁ : BVAL b₁} {v₂ : BVAL b₂} {v₃ : BVAL b₃} {v₄ : BVAL b₄} →
Iso v₁ v₃ → Iso v₂ v₄ → Iso (PAIR v₁ v₂) (PAIR v₃ v₄)
refe⋆ : {b : B} {v : BVAL b} → Iso (FLIP (FLIP v)) v
refi⋆ : {b : B} {v : BVAL b} → Iso v (FLIP (FLIP v))
rile⋆ : {b : B} {v : BVAL b} → Iso (PAIR v (PAIR v (FLIP v))) v
rili⋆ : {b : B} {v : BVAL b} → Iso v (PAIR v (PAIR v (FLIP v)))
------------------------------------------------------------------------------
-- Pi combinators
-- embed pi into the values with duals
liftT : Pi.B → B
liftT Pi.ZERO = ZERO
liftT Pi.ONE = ONE
liftT (Pi.PLUS b₁ b₂) = PLUS (liftT b₁) (liftT b₂)
liftT (Pi.TIMES b₁ b₂) = TIMES (liftT b₁) (liftT b₂)
lift : {b : Pi.B} → Pi.BVAL b → BVAL (liftT b)
lift Pi.UNIT = UNIT
lift (Pi.LEFT v) = LEFT (lift v)
lift (Pi.RIGHT v) = RIGHT (lift v)
lift (Pi.PAIR v₁ v₂) = PAIR (lift v₁) (lift v₂)
embed : {b₁ b₂ : Pi.B} → Pi.Id_B (b₁ , b₂) → Pi.BVAL b₁ → BVAL (TIMES (DUAL (liftT b₁)) (liftT b₂))
embed c v = PAIR (FLIP (lift v)) (lift (Pi.eval c v))
-- the idea would be that:
-- if eval pi-combinator v = v'
-- then we would have a proof that
-- (embed pi-combinator v , v) ~iso~ v'
pibool : Pi.B
pibool = Pi.PLUS Pi.ONE Pi.ONE
pitrue : Pi.BVAL pibool
pitrue = Pi.LEFT Pi.UNIT
ex1 : BVAL (TIMES (DUAL (PLUS ONE ONE)) (PLUS ONE ONE))
ex1 = embed {pibool} {pibool} Pi.swap₊ pitrue
-- ex1 = PAIR (FLIP (LEFT UNIT)) (RIGHT UNIT)
-- Check: PAIR (PAIR (FLIP (LEFT UNIT)) (RIGHT UNIT)) (LEFT UNIT) ~ RIGHT UNIT
|
{
"alphanum_fraction": 0.5159952607,
"avg_line_length": 45.6216216216,
"ext": "agda",
"hexsha": "eb78522fa30338cb67bc7a17252d54602a15cf05",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/VecS.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/VecS.agda",
"max_line_length": 109,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/VecS.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2490,
"size": 5064
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finite sets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin where
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Data.Fin.Base public
------------------------------------------------------------------------
-- Publicly re-export queries
open import Data.Fin.Properties public
using (_≟_; _≤?_; _<?_)
|
{
"alphanum_fraction": 0.3510273973,
"avg_line_length": 27.8095238095,
"ext": "agda",
"hexsha": "5bab778c3726408a2e745f281472e9020af675e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 83,
"size": 584
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Function setoids and related constructions
------------------------------------------------------------------------
module Function.Equality where
open import Function as Fun using (_on_)
open import Level
import Relation.Binary as B
import Relation.Binary.Indexed as I
------------------------------------------------------------------------
-- Functions which preserve equality
record Π {f₁ f₂ t₁ t₂}
(From : B.Setoid f₁ f₂)
(To : I.Setoid (B.Setoid.Carrier From) t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
open I using (_=[_]⇒_)
infixl 5 _⟨$⟩_
field
_⟨$⟩_ : (x : B.Setoid.Carrier From) → I.Setoid.Carrier To x
cong : B.Setoid._≈_ From =[ _⟨$⟩_ ]⇒ I.Setoid._≈_ To
open Π public
infixr 0 _⟶_
_⟶_ : ∀ {f₁ f₂ t₁ t₂} → B.Setoid f₁ f₂ → B.Setoid t₁ t₂ → Set _
From ⟶ To = Π From (B.Setoid.indexedSetoid To)
-- Identity and composition.
id : ∀ {a₁ a₂} {A : B.Setoid a₁ a₂} → A ⟶ A
id = record { _⟨$⟩_ = Fun.id; cong = Fun.id }
infixr 9 _∘_
_∘_ : ∀ {a₁ a₂} {A : B.Setoid a₁ a₂}
{b₁ b₂} {B : B.Setoid b₁ b₂}
{c₁ c₂} {C : B.Setoid c₁ c₂} →
B ⟶ C → A ⟶ B → A ⟶ C
f ∘ g = record
{ _⟨$⟩_ = Fun._∘_ (_⟨$⟩_ f) (_⟨$⟩_ g)
; cong = Fun._∘_ (cong f) (cong g)
}
-- Constant equality-preserving function.
const : ∀ {a₁ a₂} {A : B.Setoid a₁ a₂}
{b₁ b₂} {B : B.Setoid b₁ b₂} →
B.Setoid.Carrier B → A ⟶ B
const {B = B} b = record
{ _⟨$⟩_ = Fun.const b
; cong = Fun.const (B.Setoid.refl B)
}
------------------------------------------------------------------------
-- Function setoids
-- Dependent.
setoid : ∀ {f₁ f₂ t₁ t₂}
(From : B.Setoid f₁ f₂) →
I.Setoid (B.Setoid.Carrier From) t₁ t₂ →
B.Setoid _ _
setoid From To = record
{ Carrier = Π From To
; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y
; isEquivalence = record
{ refl = λ {f} → cong f
; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y))
; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y)
}
}
where
open module From = B.Setoid From using () renaming (_≈_ to _≈₁_)
open module To = I.Setoid To using () renaming (_≈_ to _≈₂_)
-- Non-dependent.
infixr 0 _⇨_
_⇨_ : ∀ {f₁ f₂ t₁ t₂} → B.Setoid f₁ f₂ → B.Setoid t₁ t₂ → B.Setoid _ _
From ⇨ To = setoid From (B.Setoid.indexedSetoid To)
-- A variant of setoid which uses the propositional equality setoid
-- for the domain, and a more convenient definition of _≈_.
≡-setoid : ∀ {f t₁ t₂} (From : Set f) → I.Setoid From t₁ t₂ → B.Setoid _ _
≡-setoid From To = record
{ Carrier = (x : From) → Carrier x
; _≈_ = λ f g → ∀ x → f x ≈ g x
; isEquivalence = record
{ refl = λ {f} x → refl
; sym = λ f∼g x → sym (f∼g x)
; trans = λ f∼g g∼h x → trans (f∼g x) (g∼h x)
}
} where open I.Setoid To
-- Parameter swapping function.
flip : ∀ {a₁ a₂} {A : B.Setoid a₁ a₂}
{b₁ b₂} {B : B.Setoid b₁ b₂}
{c₁ c₂} {C : B.Setoid c₁ c₂} →
A ⟶ B ⇨ C → B ⟶ A ⇨ C
flip {B = B} f = record
{ _⟨$⟩_ = λ b → record
{ _⟨$⟩_ = λ a → f ⟨$⟩ a ⟨$⟩ b
; cong = λ a₁≈a₂ → cong f a₁≈a₂ (B.Setoid.refl B) }
; cong = λ b₁≈b₂ a₁≈a₂ → cong f a₁≈a₂ b₁≈b₂
}
|
{
"alphanum_fraction": 0.4993924666,
"avg_line_length": 28.6260869565,
"ext": "agda",
"hexsha": "510171b6a31b947c941dd7dfbb610620c3307c8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Function/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Function/Equality.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Function/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1293,
"size": 3292
}
|
{-
Eilenberg–Mac Lane type K(G, 1)
-}
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-}
module Cubical.HITs.EilenbergMacLane1.Properties where
open import Cubical.HITs.EilenbergMacLane1.Base
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.Data.Empty renaming (rec to ⊥-rec) hiding (elim)
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Functions.Morphism
private
variable
ℓG ℓ : Level
module _ ((G , str) : Group ℓG) where
open GroupStr str
elimGroupoid :
{B : EM₁ (G , str) → Type ℓ}
→ ((x : EM₁ (G , str)) → isGroupoid (B x))
→ (b : B embase)
→ (bloop : ((g : G) → PathP (λ i → B (emloop g i)) b b))
→ ((g h : G) → PathP (λ i → PathP (λ j → B (emcomp g h j i))
(bloop g i) (bloop (g · h) i)) (λ _ → b) (bloop h))
→ (x : EM₁ (G , str))
→ B x
elimGroupoid Bgroup b bloop bcomp embase = b
elimGroupoid Bgroup b bloop bcomp (emloop x i) = bloop x i
elimGroupoid Bgroup b bloop bcomp (emcomp g h j i) = bcomp g h i j
elimGroupoid {B = B} Bgroup b bloop bcomp (emsquash g h p q r s i j k) = help i j k
where
help : PathP (λ i → PathP (λ j → PathP (λ k → B (emsquash g h p q r s i j k))
(elimGroupoid Bgroup b bloop bcomp g)
(elimGroupoid Bgroup b bloop bcomp h))
(λ k → elimGroupoid Bgroup b bloop bcomp (p k))
λ k → elimGroupoid Bgroup b bloop bcomp (q k))
(λ j k → elimGroupoid Bgroup b bloop bcomp (r j k))
λ j k → elimGroupoid Bgroup b bloop bcomp (s j k)
help = toPathP (isOfHLevelPathP' 1 (isOfHLevelPathP' 2 (Bgroup _) _ _) _ _ _ _)
elimSet : {B : EM₁ (G , str) → Type ℓ}
→ ((x : EM₁ (G , str)) → isSet (B x))
→ (b : B embase)
→ ((g : G) → PathP (λ i → B (emloop g i)) b b)
→ (x : EM₁ (G , str))
→ B x
elimSet Bset b bloop embase = b
elimSet Bset b bloop (emloop g i) = bloop g i
elimSet Bset b bloop (emcomp g h i j) =
isSet→SquareP
(λ i j → Bset (emcomp g h i j))
(λ j → bloop g j) (λ j → bloop (g · h) j)
(λ i → b) (λ i → bloop h i)
i j
elimSet Bset b bloop (emsquash x y p q r s i j k) =
isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (Bset x))
_ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (emsquash x y p q r s) i j k
where
g = elimSet Bset b bloop
elimProp : {B : EM₁ (G , str) → Type ℓ}
→ ((x : EM₁ (G , str)) → isProp (B x))
→ B embase
→ (x : EM₁ (G , str))
→ B x
elimProp Bprop b x =
elimSet
(λ x → isProp→isSet (Bprop x))
b
(λ g → isProp→PathP (λ i → Bprop ((emloop g) i)) b b)
x
elimProp2 : {C : EM₁ (G , str) → EM₁ (G , str) → Type ℓ}
→ ((x y : EM₁ (G , str)) → isProp (C x y))
→ C embase embase
→ (x y : EM₁ (G , str))
→ C x y
elimProp2 Cprop c =
elimProp
(λ x → isPropΠ (λ y → Cprop x y))
(elimProp (λ y → Cprop embase y) c)
elim : {B : EM₁ (G , str) → Type ℓ}
→ ((x : EM₁ (G , str)) → isGroupoid (B x))
→ (b : B embase)
→ (bloop : (g : G) → PathP (λ i → B (emloop g i)) b b)
→ ((g h : G) → SquareP (λ i j → B (emcomp g h i j))
(bloop g) (bloop (g · h)) (λ j → b) (bloop h))
→ (x : EM₁ (G , str))
→ B x
elim Bgpd b bloop bcomp embase = b
elim Bgpd b bloop bcomp (emloop g i) = bloop g i
elim Bgpd b bloop bcomp (emcomp g h i j) = bcomp g h i j
elim Bgpd b bloop bcomp (emsquash x y p q r s i j k) =
isOfHLevel→isOfHLevelDep 3 Bgpd
_ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (emsquash x y p q r s) i j k
where
g = elim Bgpd b bloop bcomp
rec : {B : Type ℓ}
→ isGroupoid B
→ (b : B)
→ (bloop : G → b ≡ b)
→ ((g h : G) → Square (bloop g) (bloop (g · h)) refl (bloop h))
→ (x : EM₁ (G , str))
→ B
rec Bgpd = elim (λ _ → Bgpd)
|
{
"alphanum_fraction": 0.5448307411,
"avg_line_length": 33.6307692308,
"ext": "agda",
"hexsha": "0505d4fd6a5eb940011a1564e929e21528276c05",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/EilenbergMacLane1/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/EilenbergMacLane1/Properties.agda",
"max_line_length": 85,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/EilenbergMacLane1/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1631,
"size": 4372
}
|
------------------------------------------------------------------------
-- An up-to technique for CCS
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude hiding (step-→)
module Bisimilarity.Weak.Up-to.CCS {ℓ} {Name : Type ℓ} where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Function-universe equality-with-J hiding (id; _∘_)
open import Bisimilarity.Weak.CCS
import Bisimilarity.Weak.Equational-reasoning-instances
open import Equational-reasoning
open import Indexed-container hiding (⟨_⟩)
open import Labelled-transition-system.CCS Name
open import Relation
open import Bisimilarity.Weak CCS
open import Bisimilarity.Weak.Up-to CCS
import Labelled-transition-system.Equational-reasoning-instances CCS
as Dummy
-- Up to (non-degenerate) context for CCS (for polyadic, coinductive
-- contexts).
Up-to-context : Trans₂ ℓ (Proc ∞)
Up-to-context R (p , q) =
∃ λ n →
∃ λ (C : Context ∞ n) →
Non-degenerate ∞ C
×
∃ λ ps →
∃ λ qs →
p ≡ C [ ps ]
×
q ≡ C [ qs ]
×
∀ x → R (ps x , qs x)
-- Up to context is monotone.
up-to-context-monotone : Monotone Up-to-context
up-to-context-monotone R⊆S =
Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $ Σ-map id $
Σ-map id (R⊆S ∘_)
-- Up to context is size-preserving.
up-to-context-size-preserving : Size-preserving Up-to-context
up-to-context-size-preserving =
_⇔_.from (monotone→⇔ up-to-context-monotone)
(λ where
(_ , C , D , ps , qs , refl , refl , ps∼qs) →
C [ ps ] ∼⟨ D [ ps∼qs ]-cong ⟩■
C [ qs ])
-- Note that up to context is not compatible (assuming that Name is
-- inhabited).
--
-- This counterexample is a minor variant of one due to Pous and
-- Sangiorgi, who state that up to context is contained in a larger
-- function that is compatible for another, "one-sided" step function
-- (see Section 6.5.3 in "Enhancements of the bisimulation proof
-- method").
¬-up-to-context-compatible : Name → ¬ Compatible Up-to-context
¬-up-to-context-compatible x comp = contradiction
where
a = x , true
data R₀ : Rel₂ ℓ (Proc ∞) where
base : R₀ (τ ∙ (a ∙) , a ∙)
R : Rel₂ ℓ (Proc ∞)
R = R₀ ⁼
!τa[R]!a : Up-to-context R (! τ ∙ (a ∙) , ! a ∙)
!τa[R]!a =
1
, ! hole fzero
, ! hole
, (λ _ → τ ∙ (a ∙))
, (λ _ → a ∙)
, refl
, refl
, (λ _ → inj₁ base)
!a[τ]⇒̂→≡ : ∀ {P} → ! a ∙ [ τ ]⇒̂ P → P ≡ ! a ∙
!a[τ]⇒̂→≡ (non-silent ¬s _) = ⊥-elim $ ¬s _
!a[τ]⇒̂→≡ (silent _ done) = refl
!a[τ]⇒̂→≡ (silent _ (step {μ = μ} s !a⟶ _)) = ⊥-elim $ name≢τ (
name a ≡⟨ !-only ·-only !a⟶ ⟩
μ ≡⟨ silent≡τ s ⟩∎
τ ∎)
drop-[] : ∀ {P Q S} →
Up-to-context R (P ∣ Q , ! S) → R (P ∣ Q , ! S)
drop-[] (_ , hole i , _ , _ , _ , P∣Q≡Ps[i] , !S≡Qs[i] , PsRQs) =
subst R (cong₂ _,_ (sym P∣Q≡Ps[i]) (sym !S≡Qs[i])) (PsRQs i)
drop-[] (_ , ∅ , _ , _ , _ , () , _)
drop-[] (_ , _ ∣ _ , _ , _ , _ , _ , () , _)
drop-[] (_ , _ ⊕ _ , _ , _ , _ , () , _)
drop-[] (_ , _ · _ , _ , _ , _ , () , _)
drop-[] (_ , ⟨ν _ ⟩ _ , _ , _ , _ , () , _)
drop-[] (_ , ! _ , _ , _ , _ , () , _)
R⊆StepR : R ⊆ ⟦ StepC ⟧ R
R⊆StepR (inj₁ base) = ⟨ lr , rl ⟩
where
lr :
∀ {P μ} →
τ ∙ (a ∙) [ μ ]⟶ P →
∃ λ Q → a ∙ [ μ ]⇒̂ Q × R (P , Q)
lr action =
_
, (a ∙ ■)
, inj₂ refl
rl :
∀ {Q μ} →
a ∙ [ μ ]⟶ Q →
∃ λ P → τ ∙ (a ∙) [ μ ]⇒̂ P × R (P , Q)
rl action =
_
, (τ ∙ (a ∙) →⟨ ⟶: action ⟩
a ∙ →⟨ ⟶: action ⟩■
∅)
, inj₂ refl
R⊆StepR {P , _} (inj₂ refl) =
⟨ Σ-map id (Σ-map id inj₂) ∘ lr
, Σ-map id (Σ-map id (inj₂ ∘ sym)) ∘ lr
⟩
where
lr : ∀ {P′ μ} →
P [ μ ]⟶ P′ →
∃ λ Q′ → P [ μ ]⇒̂ Q′ × P′ ≡ Q′
lr P⟶P′ = _ , ⟶→⇒̂ P⟶P′ , refl
-- Note the use of compatibility in [R]⊆Step[S].
[R]⊆Step[R] : Up-to-context R ⊆ ⟦ StepC ⟧ (Up-to-context R)
[R]⊆Step[R] =
Up-to-context R ⊆⟨ up-to-context-monotone (λ {x} → R⊆StepR {x}) ⟩
Up-to-context (⟦ StepC ⟧ R) ⊆⟨ comp ⟩∎
⟦ StepC ⟧ (Up-to-context R) ∎
contradiction : ⊥
contradiction = $⟨ !τa[R]!a ⟩
Up-to-context R (! τ ∙ (a ∙) , ! a ∙) ↝⟨ [R]⊆Step[R] ⟩
⟦ StepC ⟧ (Up-to-context R) (! τ ∙ (a ∙) , ! a ∙) ↝⟨ (λ s → StepC.left-to-right s (replication (par-right action))) ⟩
(∃ λ P → ! a ∙ [ τ ]⇒̂ P × Up-to-context R (! τ ∙ (a ∙) ∣ a ∙ , P)) ↝⟨ (λ { (_ , !a⟶ , hyp) →
subst (Up-to-context R ∘ (_ ,_)) (!a[τ]⇒̂→≡ !a⟶) hyp }) ⟩
Up-to-context R (! τ ∙ (a ∙) ∣ a ∙ , ! a ∙) ↝⟨ drop-[] ⟩
R (! τ ∙ (a ∙) ∣ a ∙ , ! a ∙) ↝⟨ [ (λ ()) , (λ ()) ] ⟩□
⊥ □
|
{
"alphanum_fraction": 0.4372012999,
"avg_line_length": 31.703030303,
"ext": "agda",
"hexsha": "d2b17adcb109724724def6c7128d775907ba41e2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Up-to/CCS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Up-to/CCS.agda",
"max_line_length": 139,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Up-to/CCS.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1998,
"size": 5231
}
|
-- Andreas, 2016-11-11 issue #2301,
-- reported by stedolan and fredrikNorvallForsberg:
-- compareTelescope ignored relevance.
-- Faulty behavior probably existed since 2011.
module Issue2301 where
data Box (A : Set) : Set where
wrap : A → Box A
weird : ∀ A → .A → Box A
weird A = wrap
-- SHOULD FAIL with error:
-- A → Box A !=< .A → Box A
-- when checking that the expression wrap has type .A → Box A
-- WAS: checked.
-- Since the first argument to wrap is not actually irrelevant,
-- this lets us write a function that discards irrelevance annotations:
make-relevant : ∀ {A} → .A → A
make-relevant a = unwrap (weird a)
where
unwrap : ∀ {A} → Box A → A
unwrap (wrap a) = a
-- or proves things we shouldn't:
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data Bool : Set where
tt ff : Bool
absurd : {X : Set} → X
absurd {X} = different same
where
different : weird tt ≡ weird ff → X
different ()
irr-eq : ∀ {A B : Set} {x y : A} (f : .A → B) → f x ≡ f y
irr-eq f = refl
same : weird tt ≡ weird ff
same = irr-eq weird
|
{
"alphanum_fraction": 0.6219963031,
"avg_line_length": 22.5416666667,
"ext": "agda",
"hexsha": "6bde70bd32e13d178d824c847a7a04c7bbef06e5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2301.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2301.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2301.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 354,
"size": 1082
}
|
mutual
_ : Set
_ : Set → Set
|
{
"alphanum_fraction": 0.5151515152,
"avg_line_length": 8.25,
"ext": "agda",
"hexsha": "e72cda9c90de4b9bbcf00d30964455a587cca0f9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4881c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4881c.agda",
"max_line_length": 15,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4881c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 15,
"size": 33
}
|
module Dipsy.Example.CLL where
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; _∷_; [])
open import Dipsy.Polarity using (Polarity; flip) renaming (pos to +; neg to -)
mutual
Op₀ : (r : Polarity) → Set
Op₀ r = Op [] r
Op₁ : (a r : Polarity) → Set
Op₁ a r = Op (a ∷ []) r
Op₂ : (a₁ a₂ r : Polarity) → Set
Op₂ a₁ a₂ r = Op (a₁ ∷ a₂ ∷ []) r
data Op : {n : ℕ} → Vec Polarity n → Polarity → Set where
″⊥″ : Op₀ -
″𝟏″ : Op₀ +
″⊤″ : Op₀ -
″𝟎″ : Op₀ +
″¬″ : {p : Polarity} → Op₁ (flip p) p
″⅋″ : Op₂ - - -
″⊗″ : Op₂ + + +
″&″ : Op₂ - - -
″⊕″ : Op₂ + + +
open import Dipsy.Base Op Op
pattern ⊥ = op ″⊥″ []
pattern 𝟏 = op ″𝟏″ []
pattern ⊤ = op ″⊤″ []
pattern 𝟎 = op ″𝟎″ []
pattern ¬_ A = op ″¬″ (A ∷ [])
pattern _⅋_ A B = op ″⅋″ (A ∷ B ∷ [])
pattern _⊗_ A B = op ″⊗″ (A ∷ B ∷ [])
pattern _&_ A B = op ″&″ (A ∷ B ∷ [])
pattern _⊕_ A B = op ″⊕″ (A ∷ B ∷ [])
|
{
"alphanum_fraction": 0.4749455338,
"avg_line_length": 24.1578947368,
"ext": "agda",
"hexsha": "ca617ed09072931ec6571c5716b91f40aaad6bd8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/dipsy",
"max_forks_repo_path": "src/Dipsy/Example/CLL.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/dipsy",
"max_issues_repo_path": "src/Dipsy/Example/CLL.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "06eec3f3325c71c81809ff19dfaf4fd43ba958ed",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/Dipsy",
"max_stars_repo_path": "src/Dipsy/Example/CLL.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-10T13:43:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-10T13:43:29.000Z",
"num_tokens": 450,
"size": 918
}
|
-- Andreas, 2016-09-28, solve _ <= lzero.
-- {-# OPTIONS -v tc.conv.nat:40 #-}
open import Common.Level
data C : Set₁ where
c : Set _ → C -- This meta should be solved to lzero.
-- ERROR WAS:
-- Failed to solve the following constraints:
-- [0] lsuc _0 =< lsuc lzero
-- REASON:
-- Non-canonical lzero in level constraint solver
|
{
"alphanum_fraction": 0.6557863501,
"avg_line_length": 22.4666666667,
"ext": "agda",
"hexsha": "31460d818940fda73e0dd65baffce182a8ebab63",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/LevelMetaLeqZero.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/LevelMetaLeqZero.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/LevelMetaLeqZero.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 103,
"size": 337
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Coalgebra where
-- Co-algebras of a Functor
open import Level
open import Function using (_$_)
open import Categories.Category using (Category)
open import Categories.Functor using (Functor; Endofunctor)
record F-Coalgebra {o ℓ e} {C : Category o ℓ e} (F : Endofunctor C) : Set (o ⊔ ℓ) where
open Category C
field
A : Obj
α : A ⇒ Functor.F₀ F A
open F-Coalgebra
-- Given a F-Coalgebra F, one can apply F to it to obtain an new 'iterated' F-Coalgebra
iterate : ∀ {o ℓ e} {C : Category o ℓ e} {F : Endofunctor C} → F-Coalgebra F → F-Coalgebra F
iterate {F = F} F-alg = record { A = Functor.F₀ F $ A F-alg ; α = Functor.F₁ F $ α F-alg }
|
{
"alphanum_fraction": 0.6769662921,
"avg_line_length": 32.3636363636,
"ext": "agda",
"hexsha": "b029ad4d676d451c73b278cbde017449f46b51db",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Coalgebra.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Coalgebra.agda",
"max_line_length": 92,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Coalgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 235,
"size": 712
}
|
{-# OPTIONS --without-K --safe #-}
module Data.Quiver where
-- A Quiver, also known as a multidigraph, is the "underlying graph" of
-- a category. Note how a Quiver has a *setoid* of edges.
open import Level
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
import Relation.Binary.Reasoning.Setoid as EqR
-- a Quiver has vertices Obj and edges _⇒_, where edges form a setoid over _≈_.
record Quiver o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
infix 4 _≈_ _⇒_
field
Obj : Set o
_⇒_ : Rel Obj ℓ
_≈_ : ∀ {A B} → Rel (A ⇒ B) e
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
setoid : {A B : Obj} → Setoid _ _
setoid {A} {B} = record
{ Carrier = A ⇒ B
; _≈_ = _≈_
; isEquivalence = equiv
}
module Equiv {A B : Obj} = IsEquivalence (equiv {A} {B})
module EdgeReasoning {A B : Obj} = EqR (setoid {A} {B})
|
{
"alphanum_fraction": 0.6018306636,
"avg_line_length": 28.1935483871,
"ext": "agda",
"hexsha": "3d262a18d164c441c2b1be348ecbf528128f7a4b",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Data/Quiver.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Data/Quiver.agda",
"max_line_length": 79,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Data/Quiver.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 316,
"size": 874
}
|
------------------------------------------------------------------------
-- Some definitions related to Dec
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Dec where
open import Logical-equivalence hiding (_∘_)
open import Prelude
private
variable
a : Level
A B : Type a
-- A map function for Dec.
Dec-map : A ⇔ B → Dec A → Dec B
Dec-map A⇔B = ⊎-map to (_∘ from)
where
open _⇔_ A⇔B
-- Dec preserves logical equivalences.
Dec-preserves : A ⇔ B → Dec A ⇔ Dec B
Dec-preserves A⇔B = record
{ to = Dec-map A⇔B
; from = Dec-map (inverse A⇔B)
}
-- If A and B are decided, then A × B is.
Dec-× : Dec A → Dec B → Dec (A × B)
Dec-× =
[ (λ a → [ (λ b → yes (a , b))
, (λ ¬b → no (¬b ∘ proj₂))
])
, (λ ¬a _ → no (¬a ∘ proj₁))
]
-- If A and B are decided, then A ⊎ B is.
Dec-⊎ : Dec A → Dec B → Dec (A ⊎ B)
Dec-⊎ =
[ (λ a _ → yes (inj₁ a))
, (λ ¬a →
[ (λ b → yes (inj₂ b))
, (λ ¬b → no [ ¬a , ¬b ])
])
]
|
{
"alphanum_fraction": 0.4337464252,
"avg_line_length": 20.1730769231,
"ext": "agda",
"hexsha": "e483754c11e074ed242305b846b8d51dbc86eed0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Dec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Dec.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Dec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 360,
"size": 1049
}
|
module System.Environment.Primitive where
open import IO.Primitive
open import Agda.Builtin.String
open import Agda.Builtin.List
open import Agda.Builtin.Unit
import Foreign.Haskell as FFI
open import System.FilePath.Posix
postulate
getArgs : IO (List String)
getProgName : IO String
getExecutablePath : IO AbsolutePath
lookupEnv : String → IO (FFI.Maybe String)
setEnv : String → String → IO ⊤
unsetEnv : String → IO ⊤
withArgs : ∀ {a} {A : Set a} → List String → IO A → IO A
withProgName : ∀ {a} {A : Set a} → String → IO A → IO A
getEnvironment : IO (List (FFI.Pair String String))
{-# FOREIGN GHC import qualified System.Environment as SE #-}
{-# FOREIGN GHC import Data.Text #-}
{-# FOREIGN GHC import Data.Function #-}
{-# COMPILE GHC getArgs = fmap (fmap pack) SE.getArgs #-}
{-# COMPILE GHC getProgName = fmap pack SE.getProgName #-}
{-# COMPILE GHC getExecutablePath = SE.getExecutablePath #-}
{-# COMPILE GHC lookupEnv = fmap (fmap pack) . SE.lookupEnv . unpack #-}
{-# COMPILE GHC setEnv = SE.setEnv `on` unpack #-}
{-# COMPILE GHC unsetEnv = SE.unsetEnv . unpack #-}
{-# COMPILE GHC withArgs = \ _ _ -> SE.withArgs . fmap unpack #-}
{-# COMPILE GHC withProgName = \ _ _ -> SE.withProgName . unpack #-}
{-# COMPILE GHC getEnvironment = fmap (fmap (\ (a, b) -> (pack a, pack b))) SE.getEnvironment #-}
|
{
"alphanum_fraction": 0.4861849097,
"avg_line_length": 52.2777777778,
"ext": "agda",
"hexsha": "4c09bc217f9244d7a2b0dd7ebdc7fb5db1247180",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/gallais/agda-sizedIO/823d5a0a94a4b0c4bbaaac9b23997a6d94741885/src/System/Environment/Primitive.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/gallais/agda-sizedIO/823d5a0a94a4b0c4bbaaac9b23997a6d94741885/src/System/Environment/Primitive.agda",
"max_line_length": 100,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/gallais/agda-sizedIO/823d5a0a94a4b0c4bbaaac9b23997a6d94741885/src/System/Environment/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z",
"num_tokens": 391,
"size": 1882
}
|
module bool-thms where
open import bool
open import eq
open import sum
open import empty
open import level
~~-elim : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim tt = refl
~~-elim ff = refl
&&-idem : ∀ {b} → b && b ≡ b
&&-idem{tt} = refl
&&-idem{ff} = refl
||-idem : ∀{b} → b || b ≡ b
||-idem{tt} = refl
||-idem{ff} = refl
||≡ff₁ : ∀ {b1 b2} → b1 || b2 ≡ ff → ff ≡ b1
||≡ff₁ {ff} p = refl
||≡ff₁ {tt} p = sym p
||≡ff₂ : ∀ {b1 b2} → b1 || b2 ≡ ff → b2 ≡ ff
||≡ff₂ {tt} ()
||≡ff₂ {ff}{tt} ()
||≡ff₂ {ff}{ff} p = refl
||-tt : ∀ (b : 𝔹) → b || tt ≡ tt
||-tt tt = refl
||-tt ff = refl
||-cong₁ : ∀ {b1 b1' b2} → b1 ≡ b1' → b1 || b2 ≡ b1' || b2
||-cong₁ refl = refl
||-cong₂ : ∀ {b1 b2 b2'} → b2 ≡ b2' → b1 || b2 ≡ b1 || b2'
||-cong₂ p rewrite p = refl
ite-same : ∀{ℓ}{A : Set ℓ} →
∀(b : 𝔹) (x : A) →
(if b then x else x) ≡ x
ite-same tt x = refl
ite-same ff x = refl
ite-arg : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → (f : A → B)(b : 𝔹)(x y : A) → (f (if b then x else y)) ≡ (if b then f x else f y)
ite-arg f tt x y = refl
ite-arg f ff x y = refl
𝔹-contra : ff ≡ tt → ∀{ℓ} {P : Set ℓ} → P
𝔹-contra ()
||-split : ∀ {b b' : 𝔹} → b || b' ≡ tt → b ≡ tt ⊎ b' ≡ tt
||-split{tt}{tt} p = inj₁ refl
||-split{tt}{ff} p = inj₁ refl
||-split{ff}{tt} p = inj₂ refl
||-split{ff}{ff} ()
𝔹-dec : ∀ (b : 𝔹) → b ≡ tt ⊎ b ≡ ff
𝔹-dec tt = inj₁ refl
𝔹-dec ff = inj₂ refl
&&-snd : {p1 p2 : 𝔹} → p1 && p2 ≡ tt → p2 ≡ tt
&&-snd{tt} p = p
&&-snd{ff} ()
&&-fst : {p1 p2 : 𝔹} → p1 && p2 ≡ tt → p1 ≡ tt
&&-fst{tt} p = refl
&&-fst{ff} ()
&&-combo : {p1 p2 : 𝔹} → p1 ≡ tt → p2 ≡ tt → p1 && p2 ≡ tt
&&-combo{tt} pr1 pr2 = pr2
&&-combo{ff} pr1 pr2 = 𝔹-contra pr1
&&-ff : ∀(b : 𝔹) → b && ff ≡ ff
&&-ff tt = refl
&&-ff ff = refl
ff≡tt : ff ≡ tt → ⊥ {lzero}
ff≡tt ()
|
{
"alphanum_fraction": 0.4633867277,
"avg_line_length": 21.5802469136,
"ext": "agda",
"hexsha": "791c4f73e62f834cc67b882b1a8d1cc94065f9c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "bool-thms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "bool-thms.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "bool-thms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 913,
"size": 1748
}
|
{-# OPTIONS --without-K #-}
module Data.Bits.Count where
open import Type hiding (★)
open import Data.Two hiding (_==_)
open import Data.Bits
open import Data.Bits.OperationSyntax
import Data.Bits.Search as Search
open Search.SimpleSearch
open import Data.Bits.Sum
open import Data.Bool.Properties using (not-involutive)
open import Data.Zero using (𝟘; 𝟘-elim)
import Data.Fin as Fin
open Fin using (Fin; zero; suc; #_; inject₁; inject+; raise) renaming (_+_ to _+ᶠ_)
open import Data.Maybe.NP
open import Data.Nat.NP hiding (_==_)
open import Data.Nat.Properties
import Data.Vec.NP as V
open V hiding (rewire; rewireTbl; sum) renaming (map to vmap; swap to vswap)
open import Data.Product using (_×_; _,_; uncurry; proj₁; proj₂)
open import Function.NP
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡
#⟨_⟩ : ∀ {n} → (Bits n → 𝟚) → ℕ
#⟨ pred ⟩ = sum (𝟚▹ℕ ∘ pred)
-- #-ext
#-≗ : ∀ {n} (f g : Bits n → 𝟚) → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩
#-≗ f g f≗g = sum-≗ (𝟚▹ℕ ∘ f) (𝟚▹ℕ ∘ g) (λ x → ≡.cong 𝟚▹ℕ (f≗g x))
#-comm : ∀ {n} (pad : Bits n) (f : Bits n → 𝟚) → #⟨ f ⟩ ≡ #⟨ f ∘ _⊕_ pad ⟩
#-comm pad f = sum-comm pad (𝟚▹ℕ ∘ f)
#-bij : ∀ {n} f (g : Bits n → 𝟚) → #⟨ g ∘ eval f ⟩ ≡ #⟨ g ⟩
#-bij f g = sum-bij f (𝟚▹ℕ ∘ g)
#-⊕ : ∀ {c} (bs : Bits c) (f : Bits c → 𝟚) → #⟨ f ⟩ ≡ #⟨ f ∘ _⊕_ bs ⟩
#-⊕ = #-comm
#-const : ∀ n b → #⟨ (λ (_ : Bits n) → b) ⟩ ≡ ⟨2^ n * 𝟚▹ℕ b ⟩
#-const n b = sum-const n (𝟚▹ℕ b)
#never≡0 : ∀ n → #⟨ never n ⟩ ≡ 0
#never≡0 = sum-const0≡0
#always≡2^_ : ∀ n → #⟨ always n ⟩ ≡ 2^ n
#always≡2^ n = sum-const n 1
#-dist : ∀ {n} (f₀ f₁ : Bits n → 𝟚) → sum (λ x → 𝟚▹ℕ (f₀ x) + 𝟚▹ℕ (f₁ x)) ≡ #⟨ f₀ ⟩ + #⟨ f₁ ⟩
#-dist f₀ f₁ = sum-dist (𝟚▹ℕ ∘ f₀) (𝟚▹ℕ ∘ f₁)
#-+ : ∀ {m n} (f : Bits (m + n) → 𝟚) →
#⟨ f ⟩ ≡ sum {m} (λ xs → #⟨ (λ ys → f (xs ++ ys)) ⟩ )
#-+ {m} {n} f = sum-+ {m} {n} (𝟚▹ℕ ∘ f)
#-# : ∀ {m n} (f : Bits (m + n) → 𝟚) →
sum {m} (λ xs → #⟨ (λ ys → f (xs ++ ys)) ⟩)
≡ sum {n} (λ ys → #⟨ (λ (xs : Bits m) → f (xs ++ ys)) ⟩)
#-# {m} {n} f = sum-sum {m} {n} (𝟚▹ℕ ∘ f)
#-swap : ∀ {m n} (f : Bits (m + n) → 𝟚) → #⟨ f ∘ vswap n {m} ⟩ ≡ #⟨ f ⟩
#-swap {m} {n} f = sum-swap {m} {n} (𝟚▹ℕ ∘ f)
#⟨==_⟩ : ∀ {n} (xs : Bits n) → #⟨ _==_ xs ⟩ ≡ 1
#⟨== [] ⟩ = refl
#⟨==_⟩ {suc n} (true ∷ xs) rewrite #never≡0 n | #⟨== xs ⟩ = refl
#⟨==_⟩ {suc n} (false ∷ xs) rewrite #never≡0 n | #⟨== xs ⟩ = refl
≗-cong-# : ∀ {n} (f g : Bits n → 𝟚) → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩
≗-cong-# f g f≗g = sum-≗ _ _ (cong 𝟚▹ℕ ∘ f≗g)
-- #-+ : ∀ {n a b} (f : Bits (suc n) → 𝟚) → #⟨ f ∘ 0∷_ ⟩ ≡ a → #⟨ f ∘ 1∷_ ⟩ ≡ b → #⟨ f ⟩ ≡ a + b
-- #-+ f f0 f1 rewrite f0 | f1 = refl
#-take-drop : ∀ m n (f : Bits m → 𝟚) (g : Bits n → 𝟚)
→ #⟨ (f ∘ take m) |∧| (g ∘ drop m) ⟩ ≡ #⟨ f ⟩ * #⟨ g ⟩
#-take-drop zero n f g with f []
... | true rewrite ℕ°.+-comm #⟨ g ⟩ 0 = refl
... | false = #never≡0 n
#-take-drop (suc m) n f g
rewrite ≗-cong-# ((f ∘ take (suc m)) |∧| (g ∘ drop (suc m)) ∘ 0∷_)
((f ∘ 0∷_ ∘ take m) |∧| (g ∘ drop m))
(λ x → cong₂ (λ x y → f x ∧ g y) (take-∷ m 0' x) (drop-∷ m 0' x))
| #-take-drop m n (f ∘ 0∷_) g
| ≗-cong-# ((f ∘ take (suc m)) |∧| (g ∘ drop (suc m)) ∘ 1∷_)
((f ∘ 1∷_ ∘ take m) |∧| (g ∘ drop m))
(λ x → cong₂ (λ x y → f x ∧ g y) (take-∷ m 1' x) (drop-∷ m 1' x))
| #-take-drop m n (f ∘ 1∷_) g
= sym (proj₂ ℕ°.distrib #⟨ g ⟩ #⟨ f ∘ 0∷_ ⟩ #⟨ f ∘ 1∷_ ⟩)
#-drop-take : ∀ m n (f : Bits n → 𝟚) (g : Bits m → 𝟚)
→ #⟨ (f ∘ drop m) |∧| (g ∘ take m) ⟩ ≡ #⟨ f ⟩ * #⟨ g ⟩
#-drop-take m n f g =
#⟨ (f ∘ drop m) |∧| (g ∘ take m) ⟩
≡⟨ ≗-cong-# ((f ∘ drop m) |∧| (g ∘ take m)) ((g ∘ take m) |∧| (f ∘ drop m)) (λ x → Bool°.+-comm (f (drop m x)) _) ⟩
#⟨ (g ∘ take m) |∧| (f ∘ drop m) ⟩
≡⟨ #-take-drop m n g f ⟩
#⟨ g ⟩ * #⟨ f ⟩
≡⟨ ℕ°.*-comm #⟨ g ⟩ _ ⟩
#⟨ f ⟩ * #⟨ g ⟩
∎
where open ≡-Reasoning
#-take : ∀ m n (f : Bits m → 𝟚) → #⟨ f ∘ take m {n} ⟩ ≡ 2^ n * #⟨ f ⟩
#-take m n f = #⟨ f ∘ take m {n} ⟩
≡⟨ #-drop-take m n (always n) f ⟩
#⟨ always n ⟩ * #⟨ f ⟩
≡⟨ cong (flip _*_ #⟨ f ⟩) (#always≡2^ n) ⟩
2^ n * #⟨ f ⟩
∎
where open ≡-Reasoning
#-drop : ∀ m n (f : Bits m → 𝟚) → #⟨ f ∘ drop n ⟩ ≡ 2^ n * #⟨ f ⟩
#-drop m n f = #⟨ f ∘ drop n ⟩
≡⟨ #-take-drop n m (always n) f ⟩
#⟨ always n ⟩ * #⟨ f ⟩
≡⟨ cong (flip _*_ #⟨ f ⟩) (#always≡2^ n) ⟩
2^ n * #⟨ f ⟩
∎
where open ≡-Reasoning
#⟨_==⟩ : ∀ {n} (xs : Bits n) → #⟨ flip _==_ xs ⟩ ≡ 1
#⟨ xs ==⟩ = trans (≗-cong-# (flip _==_ xs) (_==_ xs) (flip ==-comm xs)) #⟨== xs ⟩
#⇒ : ∀ {n} (f g : Bits n → 𝟚) → (∀ x → ✓ (f x) → ✓ (g x)) → #⟨ f ⟩ ≤ #⟨ g ⟩
#⇒ {zero} f g f⇒g with f [] | g [] | f⇒g []
... | true | true | _ = s≤s z≤n
... | true | false | p = 𝟘-elim (p _)
... | false | _ | _ = z≤n
#⇒ {suc n} f g f⇒g = #⇒ (f ∘ 0∷_) (g ∘ 0∷_) (f⇒g ∘ 0∷_)
+-mono #⇒ (f ∘ 1∷_) (g ∘ 1∷_) (f⇒g ∘ 1∷_)
#-∧-∨ᵇ : ∀ x y → 𝟚▹ℕ (x ∧ y) + 𝟚▹ℕ (x ∨ y) ≡ 𝟚▹ℕ x + 𝟚▹ℕ y
#-∧-∨ᵇ true y rewrite ℕ°.+-comm (𝟚▹ℕ y) 1 = refl
#-∧-∨ᵇ false y = refl
#-LEM : ∀ {n} → (f g : Bits n → 𝟚) → #⟨ f ⟩ ≡ #⟨ g |∧| f ⟩ + #⟨ |not| g |∧| f ⟩
#-LEM {zero} f g with g []
... | false = refl
... | true = ℕ°.+-comm 0 #⟨ f ⟩
#-LEM {suc n} f g
rewrite #-LEM (f ∘ 0∷_) (g ∘ 0∷_)
| #-LEM (f ∘ 1∷_) (g ∘ 1∷_)
= +-interchange #⟨ (g ∘ 0∷_) |∧| (f ∘ 0∷_) ⟩
#⟨ |not| (g ∘ 0∷_) |∧| (f ∘ 0∷_) ⟩
#⟨ (g ∘ 1∷_) |∧| (f ∘ 1∷_) ⟩
#⟨ |not| (g ∘ 1∷_) |∧| (f ∘ 1∷_) ⟩
#-∧-snd : ∀ {n} (f g : Bits n → 𝟚) → #⟨ f |∧| g ⟩ ≤ #⟨ g ⟩
#-∧-snd {zero} f g with f [] | g []
... | false | false = z≤n
... | false | true = z≤n
... | true | _ = ℕ≤.reflexive refl
#-∧-snd {suc n} f g = #-∧-snd (f ∘ 0∷_) (g ∘ 0∷_)
+-mono #-∧-snd (f ∘ 1∷_) (g ∘ 1∷_)
#-∧-fst : ∀ {n} (f g : Bits n → 𝟚) → #⟨ f |∧| g ⟩ ≤ #⟨ f ⟩
#-∧-fst f g =
#⟨ f |∧| g ⟩
≡⟨ #-≗ (f |∧| g) (g |∧| f) (|∧|-comm f g) ⟩
#⟨ g |∧| f ⟩
≤⟨ #-∧-snd g f ⟩
#⟨ f ⟩ ∎
where open ≤-Reasoning
#-∧-∨ : ∀ {n} (f g : Bits n → 𝟚) → #⟨ f |∧| g ⟩ + #⟨ f |∨| g ⟩ ≡ #⟨ f ⟩ + #⟨ g ⟩
#-∧-∨ {zero} f g = #-∧-∨ᵇ (f []) (g [])
#-∧-∨ {suc n} f g =
trans
(trans
(helper #⟨ (f ∘ 0∷_) |∧| (g ∘ 0∷_) ⟩
#⟨ (f ∘ 1∷_) |∧| (g ∘ 1∷_) ⟩
#⟨ (f ∘ 0∷_) |∨| (g ∘ 0∷_) ⟩
#⟨ (f ∘ 1∷_) |∨| (g ∘ 1∷_) ⟩)
(cong₂ _+_ (#-∧-∨ (f ∘ 0∷_) (g ∘ 0∷_))
(#-∧-∨ (f ∘ 1∷_) (g ∘ 1∷_))))
(helper #⟨ f ∘ 0∷_ ⟩ #⟨ g ∘ 0∷_ ⟩ #⟨ f ∘ 1∷_ ⟩ #⟨ g ∘ 1∷_ ⟩)
where open SemiringSolver
helper : ∀ x y z t → x + y + (z + t) ≡ x + z + (y + t)
helper = solve 4 (λ x y z t → x :+ y :+ (z :+ t) := x :+ z :+ (y :+ t)) refl
#∨' : ∀ {n} (f g : Bits n → 𝟚) → #⟨ f |∨| g ⟩ ≤ #⟨ f ⟩ + #⟨ g ⟩
#∨' {zero} f g with f []
... | true = s≤s z≤n
... | false = ℕ≤.refl
#∨' {suc _} f g = ℕ≤.trans (#∨' (f ∘ 0∷_) (g ∘ 0∷_) +-mono
#∨' (f ∘ 1∷_) (g ∘ 1∷_))
(ℕ≤.reflexive
(helper #⟨ f ∘ 0∷_ ⟩ #⟨ g ∘ 0∷_ ⟩ #⟨ f ∘ 1∷_ ⟩ #⟨ g ∘ 1∷_ ⟩))
where open SemiringSolver
helper : ∀ x y z t → x + y + (z + t) ≡ x + z + (y + t)
helper = solve 4 (λ x y z t → x :+ y :+ (z :+ t) := x :+ z :+ (y :+ t)) refl
#∨ : ∀ {m n o} {f g : Bits o → 𝟚} → #⟨ f ⟩ ≤ m → #⟨ g ⟩ ≤ n → #⟨ f |∨| g ⟩ ≤ (m + n)
#∨ {m} {n} {o} {f} {g} pf pg = ℕ≤.trans (#∨' f g) (pf +-mono pg)
#∧ : ∀ {m n o} {f g : Bits o → 𝟚} → #⟨ f ⟩ ≤ m → #⟨ g ⟩ ≤ n → #⟨ f |∧| g ⟩ ≤ (m + n)
#∧ {f = f} {g} pf pg = ℕ≤.trans (#⇒ (f |∧| g) (f |∨| g) (λ x → ∧⇒∨ (f x) (g x))) (#∨ {f = f} pf pg)
#-bound : ∀ c (f : Bits c → 𝟚) → #⟨ f ⟩ ≤ 2^ c
#-bound zero f = 𝟚≤1 (f [])
#-bound (suc c) f = #-bound c (f ∘ 0∷_) +-mono #-bound c (f ∘ 1∷_)
#-∘vnot : ∀ c (f : Bits c → 𝟚) → #⟨ f ⟩ ≡ #⟨ f ∘ vnot ⟩
#-∘vnot _ f = #-⊕ 1ⁿ f
#-∘xorᵢ : ∀ {c} (i : Fin c) (f : Bits c → 𝟚) b → #⟨ f ⟩ ≡ #⟨ f ∘ onᵢ (_xor_ b) i ⟩
#-∘xorᵢ i f b = pf
where pad = onᵢ (_xor_ b) i 0ⁿ
pf : #⟨ f ⟩ ≡ #⟨ f ∘ onᵢ (_xor_ b) i ⟩
pf rewrite #-⊕ pad f = ≗-cong-# (f ∘ _⊕_ pad) (f ∘ onᵢ (_xor_ b) i) (cong (_$_ f) ∘ sym ∘ onᵢ-xor-⊕ b i)
#-∘notᵢ : ∀ {c} (i : Fin c) (f : Bits c → 𝟚) → #⟨ f ⟩ ≡ #⟨ f ∘ notᵢ i ⟩
#-∘notᵢ i f = #-∘xorᵢ i f true
#-not∘ : ∀ c (f : Bits c → 𝟚) → #⟨ f ⟩ ≡ 2^ c ∸ #⟨ not ∘ f ⟩
#-not∘ zero f with f []
... | true = ≡.refl
... | false = ≡.refl
#-not∘ (suc c) f
rewrite #-not∘ c (f ∘ 0∷_)
| #-not∘ c (f ∘ 1∷_) = factor-+-∸ (#-bound c (not ∘ f ∘ 0∷_)) (#-bound c (not ∘ f ∘ 1∷_))
#-not∘′ : ∀ c (f : Bits c → 𝟚) → #⟨ not ∘ f ⟩ ≡ 2^ c ∸ #⟨ f ⟩
#-not∘′ c f = #⟨ not ∘ f ⟩
≡⟨ #-not∘ c (not ∘ f) ⟩
2^ c ∸ #⟨ not ∘ not ∘ f ⟩
≡⟨ ≡.cong (λ g → 2^ c ∸ g) (≗-cong-# (not ∘ not ∘ f) f (not-involutive ∘ f)) ⟩
2^ c ∸ #⟨ f ⟩
∎
where open ≡-Reasoning
difference-lemma : ∀ {n}(A B F : Bits n → 𝟚)
→ #⟨ |not| F |∧| A ⟩ ≡ #⟨ |not| F |∧| B ⟩
→ dist #⟨ A ⟩ #⟨ B ⟩ ≤ #⟨ F ⟩
difference-lemma A B F A∧¬F≡B∧¬F =
dist #⟨ A ⟩ #⟨ B ⟩
≡⟨ cong₂ dist (#-LEM A F) (#-LEM B F) ⟩
dist (#⟨ F |∧| A ⟩ + #⟨ |not| F |∧| A ⟩)
(#⟨ F |∧| B ⟩ + #⟨ |not| F |∧| B ⟩)
≡⟨ cong₂ dist (ℕ°.+-comm #⟨ F |∧| A ⟩ #⟨ |not| F |∧| A ⟩)
(ℕ°.+-comm #⟨ F |∧| B ⟩ #⟨ |not| F |∧| B ⟩) ⟩
dist (#⟨ |not| F |∧| A ⟩ + #⟨ F |∧| A ⟩)
(#⟨ |not| F |∧| B ⟩ + #⟨ F |∧| B ⟩)
≡⟨ cong₂ dist (refl {x = #⟨ |not| F |∧| A ⟩ + #⟨ F |∧| A ⟩})
(cong₂ _+_ (sym A∧¬F≡B∧¬F) (refl {x = #⟨ F |∧| B ⟩})) ⟩
dist (#⟨ |not| F |∧| A ⟩ + #⟨ F |∧| A ⟩)
(#⟨ |not| F |∧| A ⟩ + #⟨ F |∧| B ⟩)
≡⟨ dist-x+ #⟨ |not| F |∧| A ⟩ #⟨ F |∧| A ⟩ #⟨ F |∧| B ⟩ ⟩
dist #⟨ F |∧| A ⟩ #⟨ F |∧| B ⟩
≤⟨ dist-bounded {#⟨ F |∧| A ⟩} {#⟨ F |∧| B ⟩} {#⟨ F ⟩} (#-∧-fst F A) (#-∧-fst F B) ⟩
#⟨ F ⟩ ∎
where open ≤-Reasoning
#⟨_⟩ᶠ : ∀ {n} → (Bits n → 𝟚) → Fin (suc (2^ n))
#⟨ pred ⟩ᶠ = countᶠ pred (allBits _)
#⟨⟩-spec : ∀ {n} (pred : Bits n → 𝟚) → #⟨ pred ⟩ ≡ Fin.toℕ #⟨ pred ⟩ᶠ
#⟨⟩-spec {zero} pred with pred []
... | true = refl
... | false = refl
#⟨⟩-spec {suc n} pred rewrite count-++ pred (vmap 0∷_ (allBits n)) (vmap 1∷_ (allBits n))
| #⟨⟩-spec {n} (pred ∘ 0∷_)
| #⟨⟩-spec {n} (pred ∘ 1∷_)
| count-∘ 0∷_ pred (allBits n)
| count-∘ 1∷_ pred (allBits n) = refl
ext-# : ∀ {c} {f g : Bits c → 𝟚} → f ≗ g → #⟨ f ⟩ᶠ ≡ #⟨ g ⟩ᶠ
ext-# f≗g = ext-countᶠ f≗g (allBits _)
find? : ∀ {n a} {A : ★ a} → (Bits n →? A) →? A
find? = search (M?._∣_ _)
findKey : ∀ {n} → (Bits n → 𝟚) →? Bits n
findKey pred = find? (λ x → if pred x then just x else nothing)
-- -}
-- -}
-- -}
-- -}
|
{
"alphanum_fraction": 0.3634860869,
"avg_line_length": 37.4192439863,
"ext": "agda",
"hexsha": "6e45b66e9243de1e60204de5b49129a2b8af9c4e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Experimental/DataBitsCount.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Experimental/DataBitsCount.agda",
"max_line_length": 127,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Experimental/DataBitsCount.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 6107,
"size": 10889
}
|
module Pi.Interp where
open import Data.Unit
open import Data.Product
open import Data.Sum
open import Pi.Syntax
open import Pi.Opsem
-- Big-step intepreter
interp : {A B : 𝕌} → (A ↔ B) → ⟦ A ⟧ → ⟦ B ⟧
interp unite₊l (inj₂ v) = v
interp uniti₊l v = inj₂ v
interp swap₊ (inj₁ v) = inj₂ v
interp swap₊ (inj₂ v) = inj₁ v
interp assocl₊ (inj₁ v) = inj₁ (inj₁ v)
interp assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v)
interp assocl₊ (inj₂ (inj₂ v)) = inj₂ v
interp assocr₊ (inj₁ (inj₁ v)) = inj₁ v
interp assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v)
interp assocr₊ (inj₂ v) = inj₂ (inj₂ v)
interp unite⋆l (tt , v) = v
interp uniti⋆l v = (tt , v)
interp swap⋆ (v₁ , v₂) = (v₂ , v₁)
interp assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃)
interp assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃))
interp dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃)
interp dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃)
interp factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃)
interp factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃)
interp id↔ v = v
interp (c₁ ⨾ c₂) v = interp c₂ (interp c₁ v)
interp (c₁ ⊕ c₂) (inj₁ v) = inj₁ (interp c₁ v)
interp (c₁ ⊕ c₂) (inj₂ v) = inj₂ (interp c₂ v)
interp (c₁ ⊗ c₂) (v₁ , v₂) = (interp c₁ v₁ , interp c₂ v₂)
|
{
"alphanum_fraction": 0.5530596437,
"avg_line_length": 37.9705882353,
"ext": "agda",
"hexsha": "cd01ed8b4c247271599119e5628b8f3929044ee0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi/Interp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi/Interp.agda",
"max_line_length": 58,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi/Interp.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 593,
"size": 1291
}
|
module Oscar.Data.Unit where
open import Agda.Builtin.Unit public using (⊤; tt)
|
{
"alphanum_fraction": 0.756097561,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "89b65bc77c16e19506c0ab8cb639a314339819cc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Unit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Unit.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 23,
"size": 82
}
|
{-# OPTIONS --without-K #-}
module hott.loop.core where
open import sum
open import equality
open import function.core
open import function.isomorphism.core
open import function.overloading
open import pointed.core
open import sets.nat.core
Ω₁ : ∀ {i} → PSet i → PSet i
Ω₁ (X , x) = ((x ≡ x) , refl)
ΩP : ∀ {i} → ℕ → PSet i → PSet _
ΩP 0 𝓧 = 𝓧
ΩP (suc n) 𝓧 = ΩP n (Ω₁ 𝓧)
Ω : ∀ {i} → ℕ → {X : Set i} → X → Set i
Ω n {X} x = proj₁ (ΩP n (X , x))
refl' : ∀ {i} n {X : Set i}(x : X) → Ω n x
refl' n {X} x = proj₂ (ΩP n (X , x))
mapΩ₁ : ∀ {i j} → {𝓧 : PSet i}{𝓨 : PSet j}
→ PMap 𝓧 𝓨 → PMap (Ω₁ 𝓧) (Ω₁ 𝓨)
mapΩ₁ (f , refl) = ap f , refl
mapΩP : ∀ {i j} n → {𝓧 : PSet i}{𝓨 : PSet j}
→ PMap 𝓧 𝓨 → PMap (ΩP n 𝓧) (ΩP n 𝓨)
mapΩP zero f = f
mapΩP (suc n) f = mapΩP n (mapΩ₁ f)
mapΩ : ∀ {i j} n → {X : Set i}{Y : Set j}(f : X → Y)
→ {x : X} → Ω n x → Ω n (f x)
mapΩ n f = proj₁ (mapΩP n (f , refl))
constP : ∀ {i j} (𝓧 : PSet i)(𝓨 : PSet j) → PMap 𝓧 𝓨
constP _ (Y , y) = (λ _ → y) , refl
|
{
"alphanum_fraction": 0.526,
"avg_line_length": 24.3902439024,
"ext": "agda",
"hexsha": "d2b6da2a63ec0f08c1665192e6101e35b3ef50f9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/hott/loop/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/hott/loop/core.agda",
"max_line_length": 52,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/hott/loop/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 513,
"size": 1000
}
|
{-# OPTIONS --without-K --rewriting --exact-split #-}
open import lib.Basics
open import lib.types.PushoutFmap
open import lib.types.Span
open import lib.types.Coproduct
open import lib.types.Paths
open import Graphs.Definition
open import Coequalizers.Definition
open import Util.Coproducts
{- We show that given equivalences E ≃ E' and V ≃ V' that commute with endpoint maps
we get an equivalence between coequalizers V / E ≃ V' / E'. This could have been
derived from the corresponding result for pushouts in the HoTT-Agda library, but
for reference we give the proof using univalence appearing in the paper.
-}
module Coequalizers.PreserveEquivalence where
Coeq-preserves-= : {i j : ULevel} (V : Type i) (E : Type j) (π₀ π₁ : E → V)
(V' : Type i) (E' : Type j) (π₀' π₁' : E' → V')
(eV : V == V') (eE : E == E') (comm₀ : coe eV ∘ π₀ == π₀' ∘ coe eE ) (comm₁ : coe eV ∘ π₁ == π₁' ∘ coe eE) →
(Coeq (graph π₀ π₁) ≃ Coeq (graph π₀' π₁'))
Coeq-preserves-= V E π₀ π₁ .V .E .(λ x → π₀ x) .(λ x → π₁ x) idp idp idp idp = ide _
{- The easiest version of the lemma assumes that V has the same universe level as V'
and E has the same universe level as E'. -}
Coeq-emap-same-level : {i j : ULevel} {V : Type i} {E : Type j} ⦃ gph : Graph E V ⦄
{V' : Type i} {E' : Type j} ⦃ gph' : Graph E' V' ⦄
(eV : V ≃ V') (eE : E ≃ E')
(comm₀ : –> eV ∘ π₀ ∼ π₀ ∘ –> eE )
(comm₁ : –> eV ∘ π₁ ∼ π₁ ∘ –> eE ) → (Coeq gph ≃ Coeq gph')
Coeq-emap-same-level eV eE comm₀ comm₁ = Coeq-preserves-= _ _ π₀ π₁ _ _ π₀ π₁ (ua eV) (ua eE)
(λ= (λ e → coe-β eV _ ∙ comm₀ e ∙ ap π₀ (! (coe-β eE e))))
(λ= (λ e → coe-β eV _ ∙ comm₁ e ∙ ap π₁ (! (coe-β eE e))))
{- We now deal with the case where all the types can have different universe levels.
We first show that every coequalizer is equivalent to its lift to higher universe
levels. -}
module LiftGraph {i j : ULevel} (V : Type i) (E : Type j) ⦃ gph : Graph E V ⦄ (i' j' : ULevel) where
instance
lift-graph : Graph (Lift {j = j'} E) (Lift {j = i'} V)
lift-graph = graph (λ { (lift e) → lift (π₀ e)}) λ { (lift e) → lift (π₁ e)}
Coeq-Lift-≃ : Coeq gph ≃ Coeq (lift-graph)
Coeq-Lift-≃ = equiv f g f-g g-f
where
f : V / E → (Lift V) / (Lift E)
f = Coeq-rec (c[_] ∘ lift) (λ e → quot (lift e))
g : (Lift V) / (Lift E) → V / E
g = Coeq-rec (λ {(lift v) → c[ v ]}) (λ {(lift e) → quot e})
g-f : (z : V / E) → (g (f z) == z)
g-f = Coeq-elim _ (λ v → idp) (λ e → ↓-app=idf-in (! (p e)))
where
p : (e : E) → ap (g ∘ f) (quot e) ∙ idp == idp ∙' (quot e)
p e =
ap (g ∘ f) (quot e) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap (g ∘ f) (quot e)
=⟨ ap-∘ g f (quot e) ⟩
ap g (ap f (quot e))
=⟨ ap (ap g) (Coeq-rec-β= _ _ e) ⟩
ap g (quot (lift e))
=⟨ Coeq-rec-β= _ _ (lift e) ⟩
quot e
=⟨ ! (∙'-unit-l _) ⟩
idp ∙' (quot e)
=∎
f-g : (z : (Lift V) / (Lift E)) → (f (g z) == z)
f-g = Coeq-elim _ (λ v → idp) (λ {(lift e) → ↓-app=idf-in (! (p e))})
where
p : (e : E) → ap (f ∘ g) (quot (lift e)) ∙ idp == idp ∙' quot (lift e)
p e =
ap (f ∘ g) (quot (lift e)) ∙ idp
=⟨ ∙-unit-r _ ⟩
ap (f ∘ g) (quot (lift e))
=⟨ ap-∘ f g _ ⟩
ap f (ap g (quot (lift e)))
=⟨ ap (ap f) (Coeq-rec-β= _ _ _) ⟩
ap f (quot e)
=⟨ Coeq-rec-β= _ _ _ ⟩
quot (lift e)
=⟨ ! (∙'-unit-l _) ⟩
idp ∙' quot (lift e)
=∎
{- We can now derive that coequalizers preserve equivalences where
the types can have different universe levels. -}
Coeq-emap : {i j i' j' : ULevel} {V : Type i} {E : Type j} ⦃ gph : Graph E V ⦄
{V' : Type i'} {E' : Type j'} ⦃ gph' : Graph E' V' ⦄ →
(eV : V ≃ V') (eE : E ≃ E')
(comm₀ : –> eV ∘ π₀ ∼ π₀ ∘ –> eE )
(comm₁ : –> eV ∘ π₁ ∼ π₁ ∘ –> eE ) → (Coeq gph ≃ Coeq gph')
Coeq-emap {i} {j} {i'} {j'} {V} {E} ⦃ gph ⦄ {V'} {E'} ⦃ gph' ⦄ eV eE comm₀ comm₁ =
V / E
≃⟨ LEV.Coeq-Lift-≃ ⟩
Lift V / Lift E
≃⟨ Coeq-emap-same-level
(lower-equiv ⁻¹ ∘e eV ∘e lower-equiv)
(lower-equiv ⁻¹ ∘e eE ∘e lower-equiv)
(λ {(lift e) → ap lift (comm₀ e)})
(λ {(lift e) → ap lift (comm₁ e)}) ⟩
Lift V' / Lift E'
≃⟨ LEV'.Coeq-Lift-≃ ⁻¹ ⟩
V' / E'
≃∎
where
module LEV = LiftGraph V E i' j'
module LEV' = LiftGraph V' E' i j
|
{
"alphanum_fraction": 0.4912739965,
"avg_line_length": 38.8474576271,
"ext": "agda",
"hexsha": "9f9bdfc7e02eab2cb5456d30751fdea18c37ff15",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "awswan/nielsenschreier-hott",
"max_forks_repo_path": "main/Coequalizers/PreserveEquivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "awswan/nielsenschreier-hott",
"max_issues_repo_path": "main/Coequalizers/PreserveEquivalence.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "awswan/nielsenschreier-hott",
"max_stars_repo_path": "main/Coequalizers/PreserveEquivalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1866,
"size": 4584
}
|
{-
Normalize Integer Matrices
-}
{-# OPTIONS --safe #-}
module Cubical.Experiments.IntegerMatrix where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Data.Int
open import Cubical.Data.FinData
open import Cubical.Data.List
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Int
renaming (ℤ to ℤRing)
open import Cubical.Algebra.Matrix
open import Cubical.Algebra.Matrix.CommRingCoefficient
open import Cubical.Algebra.IntegerMatrix.Smith
open import Cubical.Algebra.IntegerMatrix.Diagonalization
private
variable
m n : ℕ
open Coefficient ℤRing
-- Get divisors directly
open isSmithNormal
open Smith
open isDiagonal
open Diag
getElemDiv : Mat m n → List ℤ
getElemDiv M = smith M .isnormal .divs .fst
getDiagDiv : Mat m n → List ℤ
getDiagDiv M = diagonalize M .isdiag .divs .fst
-- Constructing matrices
makeMat2×2 : ℤ → ℤ → ℤ → ℤ → Mat 2 2
makeMat2×2 a00 _ _ _ zero zero = a00
makeMat2×2 _ a01 _ _ zero one = a01
makeMat2×2 _ _ a10 _ one zero = a10
makeMat2×2 _ _ _ a11 one one = a11
makeMat3×3 : ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → ℤ → Mat 3 3
makeMat3×3 a00 _ _ _ _ _ _ _ _ zero zero = a00
makeMat3×3 _ a01 _ _ _ _ _ _ _ zero one = a01
makeMat3×3 _ _ a02 _ _ _ _ _ _ zero two = a02
makeMat3×3 _ _ _ a10 _ _ _ _ _ one zero = a10
makeMat3×3 _ _ _ _ a11 _ _ _ _ one one = a11
makeMat3×3 _ _ _ _ _ a12 _ _ _ one two = a12
makeMat3×3 _ _ _ _ _ _ a20 _ _ two zero = a20
makeMat3×3 _ _ _ _ _ _ _ a21 _ two one = a21
makeMat3×3 _ _ _ _ _ _ _ _ a22 two two = a22
-- The Tests
-- One can add flag "-vprofile.interactive:10" to this file,
-- then C-c C-n to run these tests and also get the time.
-- It turns out that, "smith" is much slower than "diagonalize"
-- and it doesn't work even for simple 3×3-matrices.
-- The "diagonalize" works only for very simple 3×3-matrices.
-- One subtle point is, if one only do one-step in Smith normalization
-- and simply add the time cost in each steps,
-- the result is far less than running the whole function "smith".
-- So the recursive procedure slows down the procedure
-- for some reasons I don't fully understand.
-- Also, the performance of "smith" is very bad at certain trivial cases,
-- much worse than some non-trivial cases.
mat1 = makeMat2×2
1 0
0 1
-- Time: 528ms
test1 = getElemDiv mat1
-- Time: 51ms
test1' = getDiagDiv mat1
mat2 = makeMat2×2
2 0
0 1
-- Time: 89,437ms
-- Why so slow?
test2 = getElemDiv mat2
-- Time: 51ms
test2' = getDiagDiv mat2
mat3 = makeMat2×2
2 1
3 5
-- Time: 3,308ms
test3 = getElemDiv mat3
-- Time: 1,887ms
test3' = getDiagDiv mat3
mat4 = makeMat2×2
4 2
2 4
-- Time: 3,284ms
test4 = getElemDiv mat4
-- Time: 1,942ms
test4' = getDiagDiv mat4
mat5 = makeMat3×3
1 0 0
0 0 0
0 0 0
-- Time: 9,400ms
test5 = getElemDiv mat5
-- Time: 337ms
test5' = getDiagDiv mat5
mat6 = makeMat3×3
1 0 0
0 1 0
0 0 1
-- Time: ???
-- It doesn't work out already.
test6 = getElemDiv mat6
-- Time: 8,598ms
test6' = getDiagDiv mat6
mat7 = makeMat3×3
1 1 0
3 2 1
2 0 1
-- Time: ???
test7 = getElemDiv mat7
-- Time: 14,149ms
test7' = getDiagDiv mat7
mat8 = makeMat3×3
2 3 1
2 2 3
1 1 0
-- Time: ???
test8 = getElemDiv mat8
-- Time: ???
-- Not working either.
test8' = getDiagDiv mat8
|
{
"alphanum_fraction": 0.6816960287,
"avg_line_length": 22.3266666667,
"ext": "agda",
"hexsha": "2331b6e54529447e807efcc1cd97f23d2cd80ae7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Experiments/IntegerMatrix.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Experiments/IntegerMatrix.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Experiments/IntegerMatrix.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1308,
"size": 3349
}
|
------------------------------------------------------------------------
-- Some properties related to the const function
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Const
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open import Logical-equivalence using (_⇔_)
open import Prelude
import Bijection eq as Bijection
open Derived-definitions-and-properties eq
open import Embedding eq
open import Equivalence eq as Eq using (_≃_)
open import Fin eq
open import Function-universe eq
open import H-level eq
open import H-level.Closure eq
open import Injection eq using (Injective)
import Nat eq as Nat
open import Univalence-axiom eq
-- If A is inhabited, then the function const : B → (A → B) is
-- injective.
const-is-injective :
∀ {a b} →
{A : Type a} {B : Type b} →
A → Injective {B = A → B} const
const-is-injective x {y} {z} =
const y ≡ const z ↝⟨ cong (_$ x) ⟩□
y ≡ z □
-- Thus, if B is a set, then const is also an embedding (assuming
-- extensionality).
const-is-embedding :
∀ {a b} →
Extensionality (a ⊔ b) (a ⊔ b) →
{A : Type a} {B : Type b} →
Is-set B →
A → Is-embedding {B = A → B} const
const-is-embedding {a} {b} ext B-set x =
_≃_.to (Injective≃Is-embedding
ext B-set
(Π-closure (lower-extensionality b a ext) 2 λ _ →
B-set)
const)
(const-is-injective x)
-- However, if B is not a set, then one can construct a counterexample
-- (assuming extensionality and univalence).
--
-- This example is due to Thierry Coquand. (His proof was not
-- identical to the one below.)
const-is-not-embedding :
∀ {a b} →
Extensionality (a ⊔ b) (lsuc b) →
Univalence b →
Univalence (# 0) →
¬ ({A : Type a} {B : Type (lsuc b)} →
A → Is-embedding {B = A → B} const)
const-is-not-embedding {a} {b} ext univ univ₀ hyp =
from-⊎ (2 Nat.≟ 4) 2≡4
where
ext-b : Extensionality b b
ext-b = lower-extensionality a (lsuc b) ext
ext-ab₊ : Extensionality a (lsuc b)
ext-ab₊ = lower-extensionality b lzero ext
ext₁ : Extensionality (# 0) (# 1)
ext₁ = lower-extensionality _ (lsuc b) ext
ext₀ : Extensionality (# 0) (# 0)
ext₀ = lower-extensionality _ _ ext
emb : Is-embedding {B = ↑ a (Fin 2) → Type b} const
emb = hyp (lift true)
2≡4 : 2 ≡ 4
2≡4 = _⇔_.to isomorphic-same-size (
Fin 2 ↝⟨ inverse $ [Fin≡Fin]↔Fin! ext₀ univ₀ 2 ⟩
Fin 2 ≡ Fin 2 ↔⟨ inverse $ ≡-preserves-≃ ext-b univ univ₀ (Eq.↔⇒≃ Bijection.↑↔) (Eq.↔⇒≃ Bijection.↑↔) ⟩
↑ b (Fin 2) ≡ ↑ b (Fin 2) ↔⟨ Eq.⟨ _ , emb (↑ b (Fin 2)) (↑ b (Fin 2)) ⟩ ⟩
const (↑ b (Fin 2)) ≡ const (↑ b (Fin 2)) ↔⟨ inverse $ Eq.extensionality-isomorphism ext-ab₊ ⟩
(↑ a (Fin 2) → ↑ b (Fin 2) ≡ ↑ b (Fin 2)) ↔⟨ →-cong ext-ab₊ (Eq.↔⇒≃ Bijection.↑↔)
(≡-preserves-≃ ext-b univ univ₀ (Eq.↔⇒≃ Bijection.↑↔) (Eq.↔⇒≃ Bijection.↑↔)) ⟩
(Fin 2 → Fin 2 ≡ Fin 2) ↝⟨ ∀-cong ext₁ (λ _ → [Fin≡Fin]↔Fin! ext₀ univ₀ 2) ⟩
(Fin 2 → Fin 2) ↝⟨ [Fin→Fin]↔Fin^ ext₀ 2 2 ⟩□
Fin 4 □)
|
{
"alphanum_fraction": 0.5371498173,
"avg_line_length": 33.8556701031,
"ext": "agda",
"hexsha": "4a7b5dfce4c7b1560fd21ec55ad7b002c11bde29",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Const.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Const.agda",
"max_line_length": 136,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Const.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1158,
"size": 3284
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of membership of vectors based on propositional equality.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Membership.Propositional.Properties where
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Product as Prod using (_,_; ∃; _×_; -,_)
open import Data.Vec hiding (here; there)
open import Data.Vec.Relation.Unary.Any using (here; there)
open import Data.List.Base using ([]; _∷_)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Vec.Relation.Unary.Any using (Any; here; there)
open import Data.Vec.Membership.Propositional
open import Data.List.Membership.Propositional
using () renaming (_∈_ to _∈ₗ_)
open import Level using (Level)
open import Function using (_∘_; id)
open import Relation.Unary using (Pred)
open import Relation.Binary.PropositionalEquality using (refl)
private
variable
a b p : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- lookup
∈-lookup : ∀ {n} i (xs : Vec A n) → lookup xs i ∈ xs
∈-lookup zero (x ∷ xs) = here refl
∈-lookup (suc i) (x ∷ xs) = there (∈-lookup i xs)
------------------------------------------------------------------------
-- map
∈-map⁺ : (f : A → B) → ∀ {m v} {xs : Vec A m} → v ∈ xs → f v ∈ map f xs
∈-map⁺ f (here refl) = here refl
∈-map⁺ f (there x∈xs) = there (∈-map⁺ f x∈xs)
------------------------------------------------------------------------
-- _++_
∈-++⁺ˡ : ∀ {m n v} {xs : Vec A m} {ys : Vec A n} → v ∈ xs → v ∈ xs ++ ys
∈-++⁺ˡ (here refl) = here refl
∈-++⁺ˡ (there x∈xs) = there (∈-++⁺ˡ x∈xs)
∈-++⁺ʳ : ∀ {m n v} (xs : Vec A m) {ys : Vec A n} → v ∈ ys → v ∈ xs ++ ys
∈-++⁺ʳ [] x∈ys = x∈ys
∈-++⁺ʳ (x ∷ xs) x∈ys = there (∈-++⁺ʳ xs x∈ys)
------------------------------------------------------------------------
-- tabulate
∈-tabulate⁺ : ∀ {n} (f : Fin n → A) i → f i ∈ tabulate f
∈-tabulate⁺ f zero = here refl
∈-tabulate⁺ f (suc i) = there (∈-tabulate⁺ (f ∘ suc) i)
------------------------------------------------------------------------
-- allFin
∈-allFin⁺ : ∀ {n} (i : Fin n) → i ∈ allFin n
∈-allFin⁺ = ∈-tabulate⁺ id
------------------------------------------------------------------------
-- allPairs
∈-allPairs⁺ : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} →
x ∈ xs → y ∈ ys → (x , y) ∈ allPairs xs ys
∈-allPairs⁺ {xs = x ∷ xs} (here refl) = ∈-++⁺ˡ ∘ ∈-map⁺ (x ,_)
∈-allPairs⁺ {xs = x ∷ _} (there x∈xs) =
∈-++⁺ʳ (map (x ,_) _) ∘ ∈-allPairs⁺ x∈xs
------------------------------------------------------------------------
-- toList
∈-toList⁺ : ∀ {n} {v : A} {xs : Vec A n} → v ∈ xs → v ∈ₗ toList xs
∈-toList⁺ (here refl) = here refl
∈-toList⁺ (there x∈) = there (∈-toList⁺ x∈)
∈-toList⁻ : ∀ {n} {v : A} {xs : Vec A n} → v ∈ₗ toList xs → v ∈ xs
∈-toList⁻ {xs = x ∷ xs} (here refl) = here refl
∈-toList⁻ {xs = x ∷ xs} (there v∈xs) = there (∈-toList⁻ v∈xs)
------------------------------------------------------------------------
-- fromList
∈-fromList⁺ : ∀ {v : A} {xs} → v ∈ₗ xs → v ∈ fromList xs
∈-fromList⁺ (here refl) = here refl
∈-fromList⁺ (there x∈) = there (∈-fromList⁺ x∈)
∈-fromList⁻ : ∀ {v : A} {xs} → v ∈ fromList xs → v ∈ₗ xs
∈-fromList⁻ {xs = _ ∷ _} (here refl) = here refl
∈-fromList⁻ {xs = _ ∷ _} (there v∈xs) = there (∈-fromList⁻ v∈xs)
------------------------------------------------------------------------
-- Relationship to Any
module _ {P : Pred A p} where
fromAny : ∀ {n} {xs : Vec A n} → Any P xs → ∃ λ x → x ∈ xs × P x
fromAny (here px) = -, here refl , px
fromAny (there v) = Prod.map₂ (Prod.map₁ there) (fromAny v)
toAny : ∀ {n x} {xs : Vec A n} → x ∈ xs → P x → Any P xs
toAny (here refl) px = here px
toAny (there v) px = there (toAny v px)
|
{
"alphanum_fraction": 0.4512008176,
"avg_line_length": 34.6371681416,
"ext": "agda",
"hexsha": "46eca87b8043d89cac9a7842188ea4639d9c89de",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Membership/Propositional/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Membership/Propositional/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Membership/Propositional/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1351,
"size": 3914
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Algebra.Free.Atoms where
open import Level using (Level; _⊔_)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
private
variable
a ℓ : Level
module _ (A : Set a) where
data BT (n : ℕ) : Set a where
sta : A → BT n
dyn : Fin n → BT n
module _ (S : Setoid a ℓ) (n : ℕ) where
open Setoid S renaming (Carrier to A)
data _≍_ : BT A n → BT A n → Set (a ⊔ ℓ) where
sta : ∀ {x y} → x ≈ y → sta x ≍ sta y
dyn : ∀ {x y} → x ≡ y → dyn x ≍ dyn y
private
≍-refl : ∀ {x} → x ≍ x
≍-refl {sta _} = sta refl
≍-refl {dyn _} = dyn PE.refl
≍-sym : ∀ {x y} → x ≍ y → y ≍ x
≍-sym (sta x≈y) = sta (sym x≈y)
≍-sym (dyn x≡y) = dyn (PE.sym x≡y)
≍-trans : ∀ {x y z} → x ≍ y → y ≍ z → x ≍ z
≍-trans (sta x≈y) (sta y≈z) = sta (trans x≈y y≈z)
≍-trans (dyn x≡y) (dyn y≡z) = dyn (PE.trans x≡y y≡z)
≍-isEquivalence : IsEquivalence _≍_
≍-isEquivalence = record { refl = ≍-refl
; sym = ≍-sym
; trans = ≍-trans
}
Atoms : Setoid a (a ⊔ ℓ)
Atoms = record { Carrier = BT (Setoid.Carrier S) n
; _≈_ = _≍_
; isEquivalence = ≍-isEquivalence
}
|
{
"alphanum_fraction": 0.5020604396,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "192fbbd2aad22b623b06e3d848908e48559c5bef",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Free/Atoms.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Free/Atoms.agda",
"max_line_length": 67,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Free/Atoms.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 552,
"size": 1456
}
|
------------------------------------------------------------------------
-- Validity of declarative kinding of Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Kinding.Declarative.Validity where
open import Data.Fin using (zero)
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Product as Prod using (_,_; _×_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst)
open import FOmegaInt.Syntax
open import FOmegaInt.Kinding.Declarative
------------------------------------------------------------------------
-- Validity of declarative kinding, subkinding and subtyping
open Syntax
open Substitution hiding (subst)
open TermCtx
open Kinding
open WfCtxOps using (lookup-kd)
open KindedSubstitution
open WfSubstitutionEquality
-- An admissible rule for kinding η-expanded type operators.
Tp∈-η : ∀ {n} {Γ : Ctx n} {a j k} →
Γ ⊢Tp a ∈ Π j k → Γ ⊢ j kd → kd j ∷ Γ ⊢ k kd →
Γ ⊢Tp Λ j (weaken a · var zero) ∈ Π j k
Tp∈-η {k = k} a∈Πjk j-kd k-kd =
∈-Π-i j-kd (subst (_ ⊢Tp _ ∈_) k′[z]≡k (∈-Π-e a∈Πjk′ z∈k k-kd′ k[z]-kd)) k-kd
where
module KL = TermLikeLemmas termLikeLemmasKind
j-wf = wf-kd j-kd
j-kd′ = kd-weaken j-wf j-kd
k-kd′ = kd-/Var k-kd (Var∈-↑ (wf-kd j-kd′) (Var∈-wk j-wf))
z∈k = ∈-var zero (j-wf ∷ kd-ctx j-kd) refl
a∈Πjk′ = Tp∈-weaken j-wf a∈Πjk
k[z]-kd = kd-[] k-kd′ (∈-tp z∈k)
k′[z]≡k = Kind-wk↑-sub-zero-vanishes k
mutual
-- Validity of kinding: the kinds of well-kinded types are well-formed.
Tp∈-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ k kd
Tp∈-valid (∈-var x Γ-ctx Γ[x]≡kd-k) = lookup-kd x Γ-ctx Γ[x]≡kd-k
Tp∈-valid (∈-⊥-f Γ-ctx) = *-kd Γ-ctx
Tp∈-valid (∈-⊤-f Γ-ctx) = *-kd Γ-ctx
Tp∈-valid (∈-∀-f k-kd a∈*) = *-kd (kd-ctx k-kd)
Tp∈-valid (∈-→-f a∈* b∈*) = *-kd (Tp∈-ctx a∈*)
Tp∈-valid (∈-Π-i j-kd a∈k k-kd) = kd-Π j-kd (Tp∈-valid a∈k)
Tp∈-valid (∈-Π-e a∈Πjk b∈j k-kd k[b]-kd) = k[b]-kd
Tp∈-valid (∈-s-i a∈b⋯c) = let a∈* = Tp∈-⋯-* a∈b⋯c in kd-⋯ a∈* a∈*
Tp∈-valid (∈-⇑ a∈j j<∷k) = proj₂ (<∷-valid j<∷k)
-- Validity of subkinding: subkinds are well-formed.
<∷-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ⊢ j kd × Γ ⊢ k kd
<∷-valid (<∷-⋯ a₂<:a₁∈* b₁<:b₂∈*) =
let a₂∈* , a₁∈* = <:-valid a₂<:a₁∈*
b₁∈* , b₂∈* = <:-valid b₁<:b₂∈*
in kd-⋯ a₁∈* b₁∈* , kd-⋯ a₂∈* b₂∈*
<∷-valid (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) =
Πj₁k₁-kd ,
kd-Π (proj₁ (<∷-valid j₂<∷j₁)) (proj₂ (<∷-valid k₁<∷k₂))
-- Validity of subtyping: subtypes that are related in some kind `k'
-- inhabit `k'.
<:-valid : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢ a <: b ∈ k → Γ ⊢Tp a ∈ k × Γ ⊢Tp b ∈ k
<:-valid (<:-refl a∈k) = a∈k , a∈k
<:-valid (<:-trans a<:b∈k b<:c∈k) =
proj₁ (<:-valid a<:b∈k) , proj₂ (<:-valid b<:c∈k)
<:-valid (<:-β₁ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) =
∈-Π-e (∈-Π-i j-kd a∈k k-kd) b∈j k-kd k[b]-kd , a[b]∈k[b]
where j-kd = wf-kd-inv (wf-∷₁ (Tp∈-ctx a∈k))
<:-valid (<:-β₂ a∈k b∈j a[b]∈k[b] k-kd k[b]-kd) =
a[b]∈k[b] , ∈-Π-e (∈-Π-i j-kd a∈k k-kd) b∈j k-kd k[b]-kd
where j-kd = wf-kd-inv (wf-∷₁ (Tp∈-ctx a∈k))
<:-valid (<:-η₁ a∈Πjk) with Tp∈-valid a∈Πjk
... | (kd-Π j-kd k-kd) = Tp∈-η a∈Πjk j-kd k-kd , a∈Πjk
<:-valid (<:-η₂ a∈Πjk) with Tp∈-valid a∈Πjk
... | (kd-Π j-kd k-kd) = a∈Πjk , Tp∈-η a∈Πjk j-kd k-kd
<:-valid (<:-⊥ b∈c⋯d) = ∈-⊥-f (Tp∈-ctx b∈c⋯d) , Tp∈-⋯-* b∈c⋯d
<:-valid (<:-⊤ b∈c⋯d) = Tp∈-⋯-* b∈c⋯d , ∈-⊤-f (Tp∈-ctx b∈c⋯d)
<:-valid (<:-∀ k₂<∷k₁ a₁<:a₂∈* ∀k₁a₁∈*) =
∀k₁a₁∈* ,
∈-∀-f (proj₁ (<∷-valid k₂<∷k₁)) (proj₂ (<:-valid a₁<:a₂∈*))
<:-valid (<:-→ a₂<:a₁∈* b₁<:b₂∈*) =
let a₂∈* , a₁∈* = <:-valid a₂<:a₁∈*
b₁∈* , b₂∈* = <:-valid b₁<:b₂∈*
in ∈-→-f a₁∈* b₁∈* , ∈-→-f a₂∈* b₂∈*
<:-valid (<:-λ a₁<:a₂∈k Λj₁a₁∈Πjk Λj₂a₂∈Πjk) = Λj₁a₁∈Πjk , Λj₂a₂∈Πjk
<:-valid (<:-· a₁<:a₂∈Πjk b₁≃b₂∈j b₁∈j k-kd k[b₁]-kd) =
let a₁∈Πjk , a₂∈Πjk = <:-valid a₁<:a₂∈Πjk
b₁∈j , b₂∈j = ≃-valid b₁≃b₂∈j
in ∈-Π-e a₁∈Πjk b₁∈j k-kd k[b₁]-kd ,
∈-⇑ (∈-Π-e a₂∈Πjk b₂∈j k-kd (kd-[] k-kd (∈-tp b₂∈j)))
(≅⇒<∷ (kd-[≃′] k-kd b₂∈j b₁∈j (≃-sym b₁≃b₂∈j)))
<:-valid (<:-⟨| a∈b⋯c) with Tp∈-valid a∈b⋯c
... | (kd-⋯ b∈* c∈*) = b∈* , Tp∈-⋯-* a∈b⋯c
<:-valid (<:-|⟩ a∈b⋯c) with Tp∈-valid a∈b⋯c
... | (kd-⋯ b∈* c∈*) = Tp∈-⋯-* a∈b⋯c , c∈*
<:-valid (<:-⋯-i a<:b∈c⋯d) =
let a∈c⋯d , b∈c⋯d = <:-valid a<:b∈c⋯d
a<:b∈* = <:-⋯-* a<:b∈c⋯d
in ∈-⇑ (∈-s-i a∈c⋯d) (<∷-⋯ (<:-refl (Tp∈-⋯-* a∈c⋯d)) a<:b∈*) ,
∈-⇑ (∈-s-i b∈c⋯d) (<∷-⋯ a<:b∈* (<:-refl (Tp∈-⋯-* b∈c⋯d)))
<:-valid (<:-⇑ a<:b∈j j<∷k) =
let a∈j , b∈j = <:-valid a<:b∈j
in ∈-⇑ a∈j j<∷k , ∈-⇑ b∈j j<∷k
-- Validity of type equality: types that are equal in some kind `k'
-- inhabit `k'.
≃-valid : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢ a ≃ b ∈ k → Γ ⊢Tp a ∈ k × Γ ⊢Tp b ∈ k
≃-valid (<:-antisym a<:b∈k b<:a∈k) = <:-valid a<:b∈k
-- Subtypes inhabiting interval kinds are proper types.
<:-⋯-* : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a <: b ∈ c ⋯ d → Γ ⊢ a <: b ∈ *
<:-⋯-* a<:b∈c⋯d =
let a∈c⋯d , b∈c⋯d = <:-valid a<:b∈c⋯d
in <:-⇑ (<:-⋯-i a<:b∈c⋯d) (<∷-⋯ (<:-⊥ a∈c⋯d) (<:-⊤ b∈c⋯d))
-- Validity of kind equality: equal kinds are well-formed.
≅-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j kd × Γ ⊢ k kd
≅-valid (<∷-antisym j<∷k k<∷j) = <∷-valid j<∷k
-- A corollary.
<:-valid-kd : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ∈ k → Γ ⊢ k kd
<:-valid-kd a<:b∈k = Tp∈-valid (proj₁ (<:-valid a<:b∈k))
----------------------------------------------------------------------
-- Strengthened versions of kind formation and kinding functionality.
-- Functionality of kind formation (strong version).
kd-[≃] : ∀ {n} {Γ : Ctx n} {a b j k} →
kd j ∷ Γ ⊢ k kd → Γ ⊢ a ≃ b ∈ j → Γ ⊢ k Kind[ a ] ≅ k Kind[ b ]
kd-[≃] k-kd a≃b∈j = let a∈j , b∈j = ≃-valid a≃b∈j in kd-[≃′] k-kd a∈j b∈j a≃b∈j
-- Functionality of kinding (strong version).
Tp∈-[≃] : ∀ {n} {Γ : Ctx n} {a b c j k} →
kd j ∷ Γ ⊢Tp a ∈ k → Γ ⊢ b ≃ c ∈ j →
Γ ⊢ a [ b ] ≃ a [ c ] ∈ k Kind[ b ]
Tp∈-[≃] a∈k b≃c∈j = let b∈j , c∈j = ≃-valid b≃c∈j in Tp∈-[≃′] a∈k b∈j c∈j b≃c∈j
|
{
"alphanum_fraction": 0.4573199809,
"avg_line_length": 41.94,
"ext": "agda",
"hexsha": "2df62b3ba16be65e60892a6b6b64310bf8954912",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Kinding/Declarative/Validity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Kinding/Declarative/Validity.agda",
"max_line_length": 79,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Kinding/Declarative/Validity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 3477,
"size": 6291
}
|
{-# OPTIONS --cubical #-}
module _ where
module _ where
import Agda.Primitive
open import Agda.Primitive.Cubical public
postulate
Path' : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATH Path' #-}
{-# BUILTIN PATHP PathP #-}
infix 4 _≡_
_≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
_≡_ {A = A} = PathP (λ _ → A)
Path = _≡_
refl : ∀ {a} {A : Set a} {x : A} → x ≡ x
refl {x = x} = \ _ → x
testPath : ∀ {A : Set} {b a : A} (let H : Path b b; H = _) → ∀ i → H i ≡ b
testPath i = refl
|
{
"alphanum_fraction": 0.4633333333,
"avg_line_length": 22.2222222222,
"ext": "agda",
"hexsha": "35ce7b9ccbb5e13a181de7e966b4f2958aa428b8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Succeed/Issue2650.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Succeed/Issue2650.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Succeed/Issue2650.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 260,
"size": 600
}
|
open import Relation.Binary using (IsDecEquivalence)
open import Agda.Builtin.Equality
module UnifyMguF (FunctionName : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName}) ⦄ where
{-
module UnifyMguF where
postulate
FunctionName : Set
instance isDecEquivalenceA : IsDecEquivalence (_≡_ {A = FunctionName})
-}
open IsDecEquivalence isDecEquivalenceA using () renaming (_≟_ to _≟F_)
open import UnifyTermF FunctionName
open import Data.Product using (∃; _,_)
open import Data.Maybe using (Maybe; just; nothing)
open import Category.Monad using (RawMonad)
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
open import Relation.Nullary using (Dec; yes; no)
open import Data.Nat using (ℕ; _≟_)
open import Function using (flip; _∘_)
open import Data.Vec using (Vec; []; _∷_)
record ⋆amgu (T : ℕ → Set) : Set where
field amgu : ∀ {m} (s t : T m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m))
open ⋆amgu ⦃ … ⦄ public
mutual
instance ⋆amguTerm : ⋆amgu Term
⋆amgu.amgu ⋆amguTerm leaf leaf acc = just acc
⋆amgu.amgu ⋆amguTerm leaf (function _ _) acc = nothing
⋆amgu.amgu ⋆amguTerm leaf (s' fork t') acc = nothing
⋆amgu.amgu ⋆amguTerm (s' fork t') leaf acc = nothing
⋆amgu.amgu ⋆amguTerm (s' fork t') (function _ _) acc = nothing
⋆amgu.amgu ⋆amguTerm (s1 fork s2) (t1 fork t2) acc =
amgu s2 t2 =<< amgu s1 t1 acc
⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) leaf acc = nothing
⋆amgu.amgu ⋆amguTerm (function fn₁ {n₁} ts₁) (function fn₂ {n₂} ts₂) acc
with fn₁ ≟F fn₂
… | no _ = nothing
… | yes _ with n₁ ≟ n₂
… | no _ = nothing
… | yes refl = amgu ts₁ ts₂ acc
⋆amgu.amgu ⋆amguTerm (function fn₁ ts₁) (_ fork _) acc = nothing
⋆amgu.amgu ⋆amguTerm (i x) (i y) (m , anil) = just (flexFlex x y)
⋆amgu.amgu ⋆amguTerm (i x) t (m , anil) = flexRigid x t
⋆amgu.amgu ⋆amguTerm t (i x) (m , anil) = flexRigid x t
⋆amgu.amgu ⋆amguTerm s t (n , σ asnoc r / z) =
(λ σ -> σ ∃asnoc r / z) <$>
amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
instance ⋆amguVecTerm : ∀ {N} → ⋆amgu (flip Vec N ∘ Term)
⋆amgu.amgu ⋆amguVecTerm [] [] acc = just acc
⋆amgu.amgu ⋆amguVecTerm (t₁ ∷ t₁s) (t₂ ∷ t₂s) acc = amgu t₁s t₂s =<< amgu t₁ t₂ acc
mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m))
mgu {m} s t = amgu s t (m , anil)
|
{
"alphanum_fraction": 0.6378494624,
"avg_line_length": 35.2272727273,
"ext": "agda",
"hexsha": "03a0ffcc8c6324f0a96f486709cb33c86b18413e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/UnifyMguF.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/UnifyMguF.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/UnifyMguF.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 953,
"size": 2325
}
|
open import FRP.JS.Nat using ( ℕ ; zero ; suc ; _≤_ ; _<_ ; _≟_ ; _+_ )
open import FRP.JS.Nat.Properties using ( ≤-impl-≯ ; <-impl-s≤ ; ≤≠-impl-< ; ≤-bot )
open import FRP.JS.Bool using ( Bool ; true ; false ; _∧_ )
open import FRP.JS.Maybe using ( Maybe ; just ; nothing )
open import FRP.JS.True using ( True ; contradiction ; dec ; yes ; no )
module FRP.JS.Array where
infixr 5 _∷_
infixr 4 _++i_
-- IArray A m n is offset m of a length n array with contents of type A
data IArray {α} (A : Set α) : ℕ → ℕ → Set α where
[] : ∀ {n} → IArray A n n
_∷_ : ∀ {m n} → (a : A) → (as : IArray A (suc m) n) → IArray A m n
data Array {α} (A : Set α) : Set α where
array : ∀ {n} → (as : IArray A 0 n) → Array A
{-# COMPILED_JS IArray function(xs,v) {
if ((xs.array.length) <= (xs.offset)) { return v["[]"](xs.offset); }
else { return v["_∷_"](xs.offset,xs.array.length,xs.head(),xs.tail()); }
} #-}
{-# COMPILED_JS [] require("agda.array").iempty #-}
{-# COMPILED_JS _∷_ function(m) { return function(n) {
return function(x) { return function(xs) { return xs.cons(x); }; };
}; } #-}
{-# COMPILED_JS Array function(as,v) {
return v.array(as.length,require("agda.array").iarray(as));
} #-}
{-# COMPILED_JS array function(n) { return function(as) { return as.array; }; } #-}
length : ∀ {α A} → Array {α} A → ℕ
length (array {n} as) = n
{-# COMPILED_JS length function() { return function() { return function(as) { return as.length; }; }; } #-}
iarray : ∀ {α A} → (as : Array {α} A) → IArray A 0 (length as)
iarray (array as) = as
{-# COMPILED_JS iarray function() { return function() { return require("agda.array").iarray; }; } #-}
⟨⟩ : ∀ {α A} → Array {α} A
⟨⟩ = array []
{-# COMPILED_JS ⟨⟩ function() { return function() { return require("agda.array").empty; }; } #-}
ilookup : ∀ {α A m n} → IArray {α} A m n → ∀ i → {m≤i : True (m ≤ i)} → {i<n : True (i < n)} → A
ilookup {m = m} [] i {m≤i} {i<m} = contradiction (≤-impl-≯ {m} {i} m≤i i<m)
ilookup {m = m} (a ∷ as) i {m≤i} {i<n}
with dec (m ≟ i)
... | yes m=i = a
... | no m≠i = ilookup as i {<-impl-s≤ {m} {i} (≤≠-impl-< {m} {i} m≤i m≠i)} {i<n}
lookup : ∀ {α A} (as : Array {α} A) i → {i<#as : True (i < length as)} → A
lookup (array as) i {i<#as} = ilookup as i {≤-bot {i}} {i<#as}
{-# COMPILED_JS lookup function() { return function() { return function(as) { return function(i) { return function() {
return require("agda.array").lookup(as,i);
}; }; }; }; } #-}
ilookup? : ∀ {α A m n} → IArray {α} A m n → ℕ → Maybe A
ilookup? [] i = nothing
ilookup? (a ∷ as) zero = just a
ilookup? (a ∷ as) (suc i) = ilookup? as i
lookup? : ∀ {α A} → Array {α} A → ℕ → Maybe A
lookup? (array as) i = ilookup? as i
{-# COMPILED_JS lookup? function() { return function() { return function(as) { return function(i) {
return require("agda.box").box(require("agda.array").lookup(as,i));
}; }; }; } #-}
imap : ∀ {α β A B m n} → (A → B) → IArray {α} A m n → IArray {β} B m n
imap f [] = []
imap f (a ∷ as) = f a ∷ imap f as
map : ∀ {α β A B} → (A → B) → Array {α} A → Array {β} B
map f (array as) = array (imap f as)
{-# COMPILED_JS map function() { return function() { return function() { return function() {
return function(f) { return function(as) { return as.map(f); }; };
}; }; }; } #-}
#filter : ∀ {α A m n} → (A → Bool) → IArray {α} A m n → ℕ → ℕ
#filter p [] l = l
#filter p (a ∷ as) l
with p a
... | true = #filter p as (1 + l)
... | false = #filter p as l
ifilter : ∀ {α A l m n} p as → IArray A l (#filter {α} {A} {m} {n} p as l)
ifilter p [] = []
ifilter p (a ∷ as)
with p a
... | true = a ∷ ifilter p as
... | false = ifilter p as
filter : ∀ {α A} → (A → Bool) → Array {α} A → Array A
filter p (array as) = array (ifilter p as)
{-# COMPILED_JS filter function() { return function() {
return function(p) { return function(as) { return as.filter(p); }; };
}; } #-}
iall : ∀ {α A m n} → (A → Bool) → IArray {α} A m n → Bool
iall f [] = true
iall f (a ∷ as) = f a ∧ iall f as
all : ∀ {α A} → (A → Bool) → Array {α} A → Bool
all f (array as) = iall f as
{-# COMPILED_JS all function() { return function() {
return function(f) { return function(as) { return as.every(f); }; };
}; } #-}
_≟i[_]_ : ∀ {α β A B l m n} → IArray {α} A l m → (A → B → Bool) → IArray {β} B l n → Bool
[] ≟i[ p ] [] = true
(a ∷ as) ≟i[ p ] (b ∷ bs) = (p a b) ∧ (as ≟i[ p ] bs)
as ≟i[ p ] bs = false
_≟[_]_ : ∀ {α β A B} → Array {α} A → (A → B → Bool) → Array {β} B → Bool
array as ≟[ p ] array bs = as ≟i[ p ] bs
{-# COMPILED_JS _≟[_]_ function() { return function() { return function() { return function() {
return function(as) { return function(p) { return function(bs) {
return require("agda.array").equals(as,bs,function(a,b) { return p(a)(b); });
}; }; };
}; }; }; } #-}
_⊆i[_]_ : ∀ {α β A B l m n} → IArray {α} A l m → (A → B → Bool) → IArray {β} B l n → Bool
[] ⊆i[ p ] bs = true
(a ∷ as) ⊆i[ p ] [] = false
(a ∷ as) ⊆i[ p ] (b ∷ bs) = (p a b) ∧ (as ⊆i[ p ] bs)
_⊆[_]_ : ∀ {α β A B} → Array {α} A → (A → B → Bool) → Array {β} B → Bool
array as ⊆[ p ] array bs = as ⊆i[ p ] bs
{-# COMPILED_JS _⊆[_]_ function() { return function() { return function() { return function() {
return function(as) { return function(p) { return function(bs) {
return require("agda.array").subseteq(as,bs,function(a,b) { return p(a)(b); });
}; }; };
}; }; }; } #-}
igrow : ∀ {α A l m n} → IArray {α} A l n → IArray A (l + m) (n + m)
igrow [] = []
igrow (a ∷ as) = a ∷ igrow as
_++i_ : ∀ {α A l m n} → IArray {α} A l m → IArray A 0 n → IArray A l (n + m)
[] ++i bs = igrow bs
(a ∷ as) ++i bs = a ∷ (as ++i bs)
_++_ : ∀ {α A} → Array {α} A → Array {α} A → Array {α} A
array as ++ array bs = array (as ++i bs)
{-# COMPILED_JS _++_ function() { return function() {
return function(as) { return function(bs) { return as.concat(bs); }; };
}; } #-}
-- Surface syntax, e.g. ⟨ 1 , 2 , 3 ⟩ : Array ℕ
infix 3 ⟨_
infixr 4 _,_
infixr 5 _⟩
data Sugar {α} (A : Set α) : Set α where
ε : Sugar A
_,_ : A → Sugar A → Sugar A
_⟩ : ∀ {α A} → A → Sugar {α} A
a ⟩ = (a , ε)
slength : ∀ {α A} → Sugar {α} A → ℕ → ℕ
slength ε m = m
slength (a , as) m = slength as (1 + m)
desugar : ∀ {α A m} as → IArray A m (slength {α} {A} as m)
desugar ε = []
desugar (a , as) = a ∷ desugar as
⟨_ : ∀ {α A} → Sugar {α} A → Array A
⟨ as = array (desugar as)
|
{
"alphanum_fraction": 0.5306949205,
"avg_line_length": 34.8804347826,
"ext": "agda",
"hexsha": "ec091b06bfbb5cf90bab7274de122064476af12a",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Array.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Array.agda",
"max_line_length": 118,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Array.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 2477,
"size": 6418
}
|
module main where
import parse
open import lib
open import huffman-types
import huffman
module parsem = parse huffman.gratr2-nt ptr
open parsem
open parsem.pnoderiv huffman.rrs huffman.huffman-rtn
open import run ptr
open noderiv {- from run.agda -}
{- imports for Huffman trees and also
Braun trees specialized to store Huffman trees
with lower frequency ones nearer the root -}
open import huffman-tree
import braun-tree as bt
open bt huffman-tree ht-compare
--open import braun-tree huffman-tree ht-compare
pqueue : ℕ → Set
pqueue = braun-tree
pq-empty : pqueue 0
pq-empty = bt-empty
pq-insert : ∀ {n : ℕ} → huffman-tree → pqueue n → pqueue (suc n)
pq-insert = bt-insert
pq-remove-min : ∀ {p : ℕ} → pqueue (suc p) → huffman-tree × pqueue p
pq-remove-min = bt-remove-min
data output-type : Set where
encode-output : string → string → string → string → output-type
decode-output : string → output-type
error-output : string → output-type -- error message if there is an error
inc-frequency : word → trie ℕ → trie ℕ
inc-frequency w t with trie-lookup t w
inc-frequency w t | nothing = trie-insert t w 1
inc-frequency w t | just c = trie-insert t w (suc c)
compute-frequencies : words → trie ℕ → trie ℕ
compute-frequencies (WordsStart w) t = inc-frequency w t
compute-frequencies (WordsNext w ww) t = compute-frequencies ww (inc-frequency w t)
inc-frequency-nonempty : ∀(w : word)(t : trie ℕ) → trie-nonempty (inc-frequency w t) ≡ tt
inc-frequency-nonempty w t with trie-lookup t w
inc-frequency-nonempty w t | nothing = trie-insert-nonempty t w 1
inc-frequency-nonempty w t | just c = trie-insert-nonempty t w (suc c)
compute-frequencies-nonempty : ∀(ws : words)(t : trie ℕ) → trie-nonempty (compute-frequencies ws t) ≡ tt
compute-frequencies-nonempty (WordsNext w ww) t = compute-frequencies-nonempty ww (inc-frequency w t)
compute-frequencies-nonempty (WordsStart w) t = inc-frequency-nonempty w t
build-huffman-pqueue : (l : 𝕃 (string × ℕ)) → pqueue (length l)
build-huffman-pqueue [] = pq-empty
build-huffman-pqueue ((s , f) :: l) = pq-insert (ht-leaf s f) (build-huffman-pqueue l)
-- where we call this function, we have enough evidence to prove the Braun tree is nonempty
process-huffman-pqueue : ∀{n} → n =ℕ 0 ≡ ff → pqueue n → huffman-tree
process-huffman-pqueue{0} () b
process-huffman-pqueue{suc n} _ t with pq-remove-min t
process-huffman-pqueue{suc 0} _ t | h , _ = h
process-huffman-pqueue{suc (suc n)} _ _ | h , t with pq-remove-min t
process-huffman-pqueue{suc (suc n)} _ _ | h , _ | h' , t =
process-huffman-pqueue{suc n} refl (pq-insert (ht-node ((ht-frequency h) + (ht-frequency h')) h h') t)
build-mappingh : huffman-tree → trie string → 𝕃 char → trie string
build-mappingh (ht-leaf s _) m l = trie-insert m s (𝕃char-to-string (reverse l))
build-mappingh (ht-node _ h1 h2) m l =
build-mappingh h2 (build-mappingh h1 m ('0' :: l)) ('1' :: l)
build-mapping : huffman-tree → trie string
build-mapping h = build-mappingh h empty-trie []
encode-word : trie string → word → string
encode-word t w with trie-lookup t w
encode-word t w | nothing = "error"
encode-word t w | just s = s
encode-words : trie string → words → string
encode-words t (WordsNext w ww) = encode-word t w ^ encode-words t ww
encode-words t (WordsStart w) = encode-word t w
data code-tree : Set where
ct-empty : code-tree
ct-leaf : string → code-tree
ct-node : code-tree → code-tree → code-tree
flip-digit : digit → digit
flip-digit Zero = One
flip-digit One = Zero
sub-ct : digit → code-tree → code-tree
sub-ct _ ct-empty = ct-empty
sub-ct _ (ct-leaf _) = ct-empty
sub-ct Zero (ct-node t1 t2) = t1
sub-ct One (ct-node t1 t2) = t2
ct-node-digit : digit → code-tree → code-tree → code-tree
ct-node-digit Zero t1 t2 = ct-node t1 t2
ct-node-digit One t1 t2 = ct-node t2 t1
ct-insert : code-tree → code → code-tree
ct-insert t (Code s (BvlitStart d)) =
-- child d of the new tree is the new leaf, and the other child is the other subtree of t
ct-node-digit d (ct-leaf s) (sub-ct (flip-digit d) t)
ct-insert t (Code s (BvlitCons d v)) =
-- child d of the new tree is obtained recursively and the other child is the other subtree of t
ct-node-digit d (ct-insert (sub-ct d t) (Code s v)) (sub-ct (flip-digit d) t)
make-code-tree : code-tree → codes → code-tree
make-code-tree t (CodesNext c cs) = make-code-tree (ct-insert t c) cs
make-code-tree t (CodesStart c) = ct-insert t c
decode-stringh : code-tree → code-tree → bvlit → string
decode-stringh orig n (BvlitCons d v) with sub-ct d n
decode-stringh orig n (BvlitCons d v) | ct-leaf s = s ^ " " ^ (decode-stringh orig orig v)
decode-stringh orig n (BvlitCons d v) | ct-empty = "error\n"
decode-stringh orig n (BvlitCons d v) | n' = decode-stringh orig n' v
decode-stringh orig n (BvlitStart d) with sub-ct d n
decode-stringh orig n (BvlitStart d) | ct-leaf s = s ^ "\n"
decode-stringh orig n (BvlitStart d) | _ = "error\n"
decode-string : code-tree → bvlit → string
decode-string t v = decode-stringh t t v
process-cmd : cmd → output-type
process-cmd (Encode ww) = step (compute-frequencies ww empty-trie) (compute-frequencies-nonempty ww empty-trie)
where step : (t : trie ℕ) → trie-nonempty t ≡ tt → output-type
step t nonempty-t =
let s1 = trie-to-string " -> " ℕ-to-string t in
let m = trie-mappings t in
let wt = build-huffman-pqueue m in
let h = process-huffman-pqueue (is-empty-ff-length (trie-mappings t) (trie-mappings-nonempty t nonempty-t)) wt in
let s2 = ht-to-string h in
let mp = build-mapping h in
let s3 = trie-to-string " <- " (λ s → s) mp in
let s4 = "! " ^ s3 ^ (encode-words mp ww) in
encode-output s1 s2 s3 s4
process-cmd (Decode cs v) =
let ct = make-code-tree ct-empty cs in
let s = decode-string ct v in
decode-output s
process-start : start → output-type
process-start (File c) = process-cmd c
process : Run → output-type
process (ParseTree (parsed-start p) :: []) = process-start p
process r = error-output ("Parsing failure (run with -" ^ "-showParsed).\n")
putStrRunIf : 𝔹 → Run → IO ⊤
putStrRunIf tt r = putStr (Run-to-string r) >> putStr "\n"
putStrRunIf ff r = return triv
doOutput : output-type → string → IO ⊤
doOutput (error-output s) basename = putStr ("Error: " ^ s ^ "\n")
doOutput (encode-output s1 s2 s3 s4) basename =
writeFile (basename ^ "-frequencies.txt") s1 >>
writeFile (basename ^ ".gv") s2 >>
writeFile (basename ^ "-mapping.txt") s3 >>
writeFile (basename ^ ".huff") s4
doOutput (decode-output s) basename = writeFile (basename ^ "-decoded.txt") s
processArgs : (showRun : 𝔹) → (showParsed : 𝔹) → 𝕃 string → IO ⊤
processArgs showRun showParsed (input-filename :: []) = (readFiniteFile input-filename) >>= processText
where processText : string → IO ⊤
processText x with runRtn (string-to-𝕃char x)
processText x | s with s
processText x | s | inj₁ cs = putStr "Characters left before failure : " >> putStr (𝕃char-to-string cs) >> putStr "\nCannot proceed to parsing.\n"
processText x | s | inj₂ r with putStrRunIf showRun r | rewriteRun r
processText x | s | inj₂ r | sr | r' with putStrRunIf showParsed r'
processText x | s | inj₂ r | sr | r' | sr' = sr >> sr' >> doOutput (process r') (base-filename input-filename)
processArgs showRun showParsed ("--showRun" :: xs) = processArgs tt showParsed xs
processArgs showRun showParsed ("--showParsed" :: xs) = processArgs showRun tt xs
processArgs showRun showParsed (x :: xs) = putStr ("Unknown option " ^ x ^ "\n")
processArgs showRun showParsed [] = putStr "Please run with the name of a file to process.\n"
main : IO ⊤
main = getArgs >>= processArgs ff ff
|
{
"alphanum_fraction": 0.6791505792,
"avg_line_length": 41.550802139,
"ext": "agda",
"hexsha": "0122d662e5d0154283c2dc8dbca853a491667d58",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "huffman/main.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "huffman/main.agda",
"max_line_length": 154,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "huffman/main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 2357,
"size": 7770
}
|
{-# OPTIONS --safe #-} -- --without-K #-}
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; sym; refl; subst; trans; cong)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness; fromWitness)
open import Function using (_∘_)
import Data.Maybe as Maybe
import Data.Empty as Empty
import Data.Unit as Unit
import Data.Nat as ℕ
import Data.Nat.Properties as ℕₚ
import Data.Product as Product
import Data.Product.Properties as Productₚ
import Data.Vec as Vec
import Data.Vec.Relation.Unary.All as All
import Data.Fin as Fin
open Maybe using (nothing; just)
open Empty using (⊥; ⊥-elim)
open Unit using (⊤; tt)
open ℕ using (ℕ; zero; suc)
open Product using (Σ-syntax; ∃-syntax; _×_; _,_; proj₂; proj₁)
open Vec using (Vec; []; _∷_)
open All using (All; []; _∷_)
open Fin using (Fin ; zero ; suc)
open Relation.Binary.PropositionalEquality.≡-Reasoning
import PiCalculus.Syntax
open PiCalculus.Syntax.Scoped
open import PiCalculus.Semantics
open import PiCalculus.LinearTypeSystem.Algebras
module PiCalculus.LinearTypeSystem.ContextLemmas (Ω : Algebras) where
open Algebras Ω
open import PiCalculus.LinearTypeSystem Ω
private
variable
n : ℕ
idxs idxsₗ idxsᵣ : Idxs n
γ : PreCtx n
idx idx' : Idx
t : Type
P Q : Scoped n
i j : Fin n
Γ Δ Ξ Θ : Ctx idxs
x x' y z : Usage idx ²
data _≔_⊗_ : Ctx idxs → Ctx idxs → Ctx idxs → Set where
[] : [] ≔ [] ⊗ []
_,_ : Γ ≔ Δ ⊗ Ξ → x ≔ y ∙² z → (Γ -, x) ≔ (Δ -, y) ⊗ (Ξ -, z)
ε : ∀ {idxs : Idxs n} → Ctx idxs
ε {idxs = []} = []
ε {idxs = _ -, _} = ε -, (0∙ , 0∙)
⊗-get : {idxs : Idxs n} {Γ Δ Ξ : Ctx idxs} (i : Fin n) → Γ ≔ Δ ⊗ Ξ → All.lookup i Γ ≔ All.lookup i Δ ∙² All.lookup i Ξ
⊗-get zero (Γ≔ , x≔) = x≔
⊗-get (suc i) (Γ≔ , x) = ⊗-get i Γ≔
⊗-idˡ : {idxs : Idxs n} {Γ : Ctx idxs} → Γ ≔ ε {idxs = idxs} ⊗ Γ
⊗-idˡ {Γ = []} = []
⊗-idˡ {Γ = Γ -, x} = ⊗-idˡ , ∙²-idˡ
⊗-unique : {Γ Γ' Δ Ξ : Ctx idxs} → Γ' ≔ Δ ⊗ Ξ → Γ ≔ Δ ⊗ Ξ → Γ' ≡ Γ
⊗-unique [] [] = refl
⊗-unique (Γ'≔ , x'≔) (Γ≔ , x≔) rewrite ⊗-unique Γ'≔ Γ≔ | ∙²-unique x'≔ x≔ = refl
⊗-uniqueˡ : {Γ Δ Δ' Ξ : Ctx idxs} → Γ ≔ Δ' ⊗ Ξ → Γ ≔ Δ ⊗ Ξ → Δ' ≡ Δ
⊗-uniqueˡ [] [] = refl
⊗-uniqueˡ (Δ'≔ , y'≔) (Δ≔ , y≔) rewrite ⊗-uniqueˡ Δ'≔ Δ≔ | ∙²-uniqueˡ y'≔ y≔ = refl
⊗-comm : {Γ Δ Ξ : Ctx idxs} → Γ ≔ Δ ⊗ Ξ → Γ ≔ Ξ ⊗ Δ
⊗-comm [] = []
⊗-comm (Γ≔ , x≔) = ⊗-comm Γ≔ , ∙²-comm x≔
⊗-assoc : {Γₘ Γₗ Γᵣ Γₗₗ Γₗᵣ : Ctx idxs}
→ Γₘ ≔ Γₗ ⊗ Γᵣ → Γₗ ≔ Γₗₗ ⊗ Γₗᵣ → Σ[ Γᵣ' ∈ Ctx idxs ] (Γₘ ≔ Γₗₗ ⊗ Γᵣ' × Γᵣ' ≔ Γₗᵣ ⊗ Γᵣ)
⊗-assoc [] [] = [] , [] , []
⊗-assoc (Γₘ≔ , xₘ≔) (Γₗ≔ , xₗ≔) with ⊗-assoc Γₘ≔ Γₗ≔ | ∙²-assoc xₘ≔ xₗ≔
... | (_ , Γₘ'≔ , Γᵣ'≔) | (_ , xₘ'≔ , xᵣ'≔) = _ , ((Γₘ'≔ , xₘ'≔) , (Γᵣ'≔ , xᵣ'≔))
⊗-assoc⁻¹ : ∀ {x y z u v : Ctx idxs} → x ≔ y ⊗ z → z ≔ u ⊗ v → ∃[ w ] (x ≔ w ⊗ v × w ≔ y ⊗ u)
⊗-assoc⁻¹ a b = let _ , a' , b' = ⊗-assoc (⊗-comm a) (⊗-comm b) in _ , ⊗-comm a' , ⊗-comm b'
⊗-comp : {Γ Δₗ Δᵣ Δ Ξ Θ : Ctx idxs}
→ Γ ≔ Δₗ ⊗ Ξ → Ξ ≔ Δᵣ ⊗ Θ
→ Γ ≔ Δ ⊗ Θ → Δ ≔ Δₗ ⊗ Δᵣ
⊗-comp l≔ r≔ Γ≔ with ⊗-assoc (⊗-comm l≔) (⊗-comm r≔)
⊗-comp l≔ r≔ Γ≔ | _ , Γ'≔ , R'≔ rewrite ⊗-uniqueˡ Γ≔ (⊗-comm Γ'≔) = ⊗-comm R'≔
⊗-idʳ : {Γ : Ctx idxs} → Γ ≔ Γ ⊗ ε
⊗-idʳ = ⊗-comm ⊗-idˡ
⊗-mut-cancel : ∀ {x y y' z : Ctx idxs} → x ≔ y ⊗ z → z ≔ y' ⊗ x → x ≡ z
⊗-mut-cancel [] [] = refl
⊗-mut-cancel (Γ≔ , x≔) (Ξ≔ , z≔) rewrite ⊗-mut-cancel Γ≔ Ξ≔ | ∙²-mut-cancel x≔ z≔ = refl
∋-≡Idx : {idxs : Idxs n} {i : Fin n} {Γ Δ : Ctx idxs} {x : Usage idx ²}
→ Γ ∋[ i ] x ▹ Δ → Vec.lookup idxs i ≡ idx
∋-≡Idx (zero x) = refl
∋-≡Idx (suc s) rewrite ∋-≡Idx s = refl
∋-≡Type : γ ∋[ i ] t → Vec.lookup γ i ≡ t
∋-≡Type zero = refl
∋-≡Type (suc t) rewrite ∋-≡Type t = refl
≡Type-∋ : Vec.lookup γ i ≡ t → γ ∋[ i ] t
≡Type-∋ {γ = _ -, _} {i = zero} refl = zero
≡Type-∋ {γ = _ -, _} {i = suc i} eq = suc (≡Type-∋ eq)
∋-⊗ : {Γ Ξ : Ctx idxs}
→ Γ ∋[ i ] x ▹ Ξ
→ Σ[ Δ ∈ Ctx idxs ]
(Γ ≔ Δ ⊗ Ξ × Δ ∋[ i ] x ▹ ε {idxs = idxs})
∋-⊗ (zero x) = _ , (⊗-idˡ , x) , zero ∙²-idʳ
∋-⊗ (suc s) with ∋-⊗ s
∋-⊗ (suc s) | _ , Γ≔ , Δ≔ = _ , (Γ≔ , ∙²-idˡ) , suc Δ≔
⊗-∋ : {Γ Δ Ξ : Ctx idxs}
→ Γ ≔ Δ ⊗ Ξ
→ Δ ∋[ i ] x ▹ ε {idxs = idxs}
→ Γ ∋[ i ] x ▹ Ξ
⊗-∋ (sp , s) (zero x) rewrite ⊗-unique sp ⊗-idˡ | ∙²-unique x ∙²-idʳ = zero s
⊗-∋ (sp , s) (suc only) rewrite ∙²-unique s ∙²-idˡ = suc (⊗-∋ sp only)
∋-ℓ∅ : {idxs : Idxs n} {Γ : Ctx idxs} {i : Fin n} {idx : Idx}→ Vec.lookup idxs i ≡ idx → Γ ∋[ i ] ℓ∅ {idx} ▹ Γ
∋-ℓ∅ {Γ = _ -, _} {i = zero} refl = zero ∙²-idˡ
∋-ℓ∅ {Γ = _ -, _} {i = suc i} eq = suc (∋-ℓ∅ eq)
-- TODO: deprecate, convert to context first
∋-uniqueʳ : {i : Fin n} {idxs : Idxs n} {Γ Δ Ξ : Ctx idxs}
→ Γ ∋[ i ] x ▹ Δ → Γ ∋[ i ] x ▹ Ξ → Δ ≡ Ξ
∋-uniqueʳ (zero a) (zero b) rewrite ∙²-uniqueˡ (∙²-comm a) (∙²-comm b) = refl
∋-uniqueʳ (suc a) (suc b) rewrite ∋-uniqueʳ a b = refl
-- TODO: deprecate, convert to context first
∋-uniqueˡ : Γ ∋[ i ] x ▹ Δ → Ξ ∋[ i ] x ▹ Δ → Γ ≡ Ξ
∋-uniqueˡ (zero a) (zero b) rewrite ∙²-unique a b = refl
∋-uniqueˡ (suc a) (suc b) rewrite ∋-uniqueˡ a b = refl
∋-lookup-≡ : Γ ∋[ i ] x ▹ Δ → All.lookup i Γ ≔ x ∙² All.lookup i Δ
∋-lookup-≡ {Δ = _ -, _} (zero x) = x
∋-lookup-≡ {Δ = _ -, _} (suc s) = ∋-lookup-≡ s
∋-lookup-≢ : Γ ∋[ i ] x ▹ Δ → ∀ j → j ≢ i → All.lookup j Γ ≡ All.lookup j Δ
∋-lookup-≢ (zero x) zero j≢i = ⊥-elim (j≢i refl)
∋-lookup-≢ (suc xati) zero j≢i = refl
∋-lookup-≢ (zero x) (suc j) j≢i = refl
∋-lookup-≢ (suc xati) (suc j) j≢i = ∋-lookup-≢ xati j (j≢i ∘ cong suc)
∙²-⊗ : {Γ Δ Ξ : Ctx idxs}
→ Γ ∋[ i ] x ▹ ε → Δ ∋[ i ] y ▹ ε → Ξ ∋[ i ] z ▹ ε
→ x ≔ y ∙² z → Γ ≔ Δ ⊗ Ξ
∙²-⊗ (zero x) (zero y) (zero z) sp
rewrite ∙²-unique x ∙²-idʳ | ∙²-unique y ∙²-idʳ | ∙²-unique z ∙²-idʳ = ⊗-idˡ , sp
∙²-⊗ (suc Γ≔) (suc Δ≔) (suc Ξ≔) sp = ∙²-⊗ Γ≔ Δ≔ Ξ≔ sp , ∙²-idˡ
diamond : {Γ Ξ Ψ : Ctx idxs}
→ i ≢ j
→ Γ ∋[ j ] x ▹ Ξ
→ Γ ∋[ i ] y ▹ Ψ
→ Σ[ Θ ∈ Ctx idxs ]
( Ξ ∋[ i ] y ▹ Θ
× Ψ ∋[ j ] x ▹ Θ
)
diamond i≢j (zero _) (zero _) = ⊥-elim (i≢j refl)
diamond i≢j (zero x) (suc ∋i) = _ , suc ∋i , zero x
diamond i≢j (suc ∋j) (zero x) = _ , zero x , suc ∋j
diamond i≢j (suc ∋j) (suc ∋i) with diamond (i≢j ∘ cong suc) ∋j ∋i
diamond i≢j (suc ∋j) (suc ∋i) | _ , ∋i' , ∋j' = _ , suc ∋i' , suc ∋j'
outer-diamond : {Γ Ξ Ψ Θ ΞΔ Δ ΨΔ : Ctx idxs}
→ i ≢ j
→ Γ ∋[ i ] x ▹ Ξ → Γ ∋[ j ] y ▹ Ψ
→ Ξ ∋[ j ] y ▹ Θ → Ψ ∋[ i ] x ▹ Θ
→ Ξ ≔ ΞΔ ⊗ Δ → Ψ ≔ ΨΔ ⊗ Δ
→ Σ[ ΘΔ ∈ Ctx idxs ] (Θ ≔ ΘΔ ⊗ Δ)
outer-diamond i≢j (zero _) (zero _) (zero _) (zero _) a b = ⊥-elim (i≢j refl)
outer-diamond i≢j (zero x₁) (suc ∋j) (suc ∈j) (zero x) (as , a) (bs , b) = _ , (bs , a)
outer-diamond i≢j (suc ∋i) (zero ∋j) (zero ∈j) (suc ∈i) (as , a) (bs , b) = _ , (as , b)
outer-diamond i≢j (suc ∋i) (suc ∋j) (suc ∈j) (suc ∈i) (as , a) (bs , b) with outer-diamond (i≢j ∘ cong suc) ∋i ∋j ∈j ∈i as bs
outer-diamond i≢j (suc ∋i) (suc ∋j) (suc ∈j) (suc ∈i) (as , a) (bs , b) | _ , s = _ , (s , a)
reverse : {Γ ΓΞ Ξ ΞΨ Ψ : Ctx idxs}
→ Γ ≔ ΓΞ ⊗ Ξ
→ Ξ ≔ ΞΨ ⊗ Ψ
→ Σ[ Θ ∈ Ctx idxs ]
( Γ ≔ ΞΨ ⊗ Θ
× Θ ≔ ΓΞ ⊗ Ψ
)
reverse Γ≔ΓΞ∙Ξ Ξ≔ΞΨ∙Ψ =
let _ , Γ≔ΞΨ∙Θ , Θ≔Ψ∙ΓΞ = ⊗-assoc (⊗-comm Γ≔ΓΞ∙Ξ) Ξ≔ΞΨ∙Ψ in
_ , Γ≔ΞΨ∙Θ , ⊗-comm Θ≔Ψ∙ΓΞ
boil : {Γ Ξ ΞΨ Θ Ψ ΘΨ : Ctx idxs}
→ Γ ∋[ i ] x ▹ Θ
→ Γ ∋[ i ] y ▹ Ξ
→ Ξ ≔ ΞΨ ⊗ Ψ
→ Θ ≔ ΘΨ ⊗ Ψ
→ All.lookup i ΘΨ ≡ ℓ∅
→ ∃[ z ] (x ≔ y ∙² z)
boil {i = zero} (zero a) (zero b) (_ , c) (_ , d) refl rewrite ∙²-unique d ∙²-idˡ with ∙²-assoc⁻¹ b c
boil {i = zero} (zero a) (zero b) (_ , c) (_ , d) refl | _ , e , f rewrite ∙²-uniqueˡ e a = _ , f
boil {i = suc i} (suc a) (suc b) (c , _) (d , _) eq = boil a b c d eq
split : x ≔ y ∙² z
→ Γ ∋[ i ] x ▹ Ξ
→ ∃[ Δ ] (Γ ∋[ i ] y ▹ Δ × Δ ∋[ i ] z ▹ Ξ)
split s (zero x) = let _ , x' , s' = ∙²-assoc x s in _ , zero x' , zero s'
split s (suc x) with split s x
split s (suc x) | _ , y , z = _ , suc y , suc z
split-ℓ∅ : {Γ ΓΨ Ψ ΓΘ Θ ΘΨ : Ctx idxs}
→ Γ ≔ ΓΨ ⊗ Ψ
→ Γ ≔ ΓΘ ⊗ Θ
→ Θ ≔ ΘΨ ⊗ Ψ
→ All.lookup i ΓΨ ≡ ℓ∅
→ All.lookup i ΓΘ ≡ ℓ∅ × All.lookup i ΘΨ ≡ ℓ∅
split-ℓ∅ {i = zero} (a , x) (b , y) (c , z) refl rewrite ∙²-unique x ∙²-idˡ with ∙²-mut-cancel y z
split-ℓ∅ {i = zero} (a , x) (b , y) (c , z) refl | refl = ∙²-uniqueˡ y ∙²-idˡ , ∙²-uniqueˡ z ∙²-idˡ
split-ℓ∅ {i = suc i} (a , _) (b , _) (c , _) eq = split-ℓ∅ a b c eq
⊢-⊗ : {γ : PreCtx n} {idxs : Idxs n} {Γ Ξ : Ctx idxs} → γ ; Γ ⊢ P ▹ Ξ → Σ[ Δ ∈ Ctx idxs ] (Γ ≔ Δ ⊗ Ξ)
⊢-⊗ 𝟘 = ε , ⊗-idˡ
⊢-⊗ (ν t m μ ⊢P) with ⊢-⊗ ⊢P
⊢-⊗ (ν t m μ ⊢P) | (_ -, _) , (P≔ , _) = _ , P≔
⊢-⊗ ((_ , x) ⦅⦆ ⊢P) with ⊢-⊗ ⊢P
⊢-⊗ ((_ , x) ⦅⦆ ⊢P) | (_ -, _) , (P≔ , _) =
let _ , x≔ , _ = ∋-⊗ x
_ , xP≔ , _ = ⊗-assoc⁻¹ x≔ P≔
in _ , xP≔
⊢-⊗ ((_ , x) ⟨ _ , y ⟩ ⊢P) =
let _ , x≔ , _ = ∋-⊗ x
_ , y≔ , _ = ∋-⊗ y
_ , P≔ = ⊢-⊗ ⊢P
_ , xy≔ , _ = ⊗-assoc⁻¹ x≔ y≔
_ , Pxy≔ , _ = ⊗-assoc⁻¹ xy≔ P≔
in _ , Pxy≔
⊢-⊗ (⊢P ∥ ⊢Q) =
let _ , P≔ = ⊢-⊗ ⊢P
_ , Q≔ = ⊢-⊗ ⊢Q
_ , PQ≔ , _ = ⊗-assoc⁻¹ P≔ Q≔
in _ , PQ≔
ctx-insert : (i : Fin (suc n)) → Usage idx ² → Ctx idxs → Ctx (Vec.insert idxs i idx)
ctx-insert zero xs' Γ = Γ -, xs'
ctx-insert (suc i) xs' (Γ -, xs) = ctx-insert i xs' Γ -, xs
ctx-remove : Ctx idxs → (i : Fin (suc n)) → Ctx (Vec.remove idxs i)
ctx-remove (Γ -, _) zero = Γ
ctx-remove (Γ -, ys -, xs) (suc i) = ctx-remove (Γ -, ys) i -, xs
ctx-update : (i : Fin n) → Usage (Vec.lookup idxs i) ² → Ctx idxs → Ctx idxs
ctx-update zero m' (ms -, m) = ms -, m'
ctx-update (suc i) m' (ms -, m) = ctx-update i m' ms -, m
fromFin : {γ : PreCtx n} {idxs : Idxs n} {Γ : Ctx idxs}
→ ∀ i
→ {y z : Usage (Vec.lookup idxs i) ²}
→ All.lookup i Γ ≔ y ∙² z
→ γ ; Γ ∋[ i ] Vec.lookup γ i ; y ▹ ctx-update i z Γ
fromFin {γ = γ -, t} {Γ = Γ -, x} zero split = zero , (zero split)
fromFin {γ = γ -, t} {Γ = Γ -, x} (suc i) split = there (fromFin i split)
#_ : {γ : PreCtx n} {idxs : Idxs n} {Γ : Ctx idxs}
→ ∀ m {m<n : True (m ℕₚ.<? n)}
→ let i = Fin.fromℕ< (toWitness m<n)
in {y : Usage (Vec.lookup idxs i) ²}
→ {check : True (∙²-computeʳ (All.lookup i Γ) y)}
→ let z , _ = toWitness check
in γ ; Γ ∋[ i ] Vec.lookup γ i ; y ▹ ctx-update i z Γ
(# m) {m<n} {check = check} =
let _ , split = toWitness check
in fromFin (Fin.fromℕ< (toWitness m<n)) split
|
{
"alphanum_fraction": 0.4795213542,
"avg_line_length": 37.1083032491,
"ext": "agda",
"hexsha": "8366994229d444c5675092e637fd17566d777f0c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z",
"max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/typing-linear-pi",
"max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/ContextLemmas.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/typing-linear-pi",
"max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/ContextLemmas.agda",
"max_line_length": 125,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/typing-linear-pi",
"max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/ContextLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z",
"num_tokens": 5650,
"size": 10279
}
|
module Examples where
open import Data.List using ([]; _∷_)
open import Data.Fin using () renaming (zero to fzero)
open import Relation.Binary using (Rel)
open import Level using () renaming (zero to lzero)
open import Syntax
open import Theory
module NatBool where
data Gr : Set where
nat : Gr
bool : Gr
data Func : Set where
zero plus true false not : Func
open PType Gr
sorting : Func -> Sorting
sorting zero = record { dom = Unit ; cod = ⌊ nat ⌋ }
sorting plus = record { dom = ⌊ nat ⌋ * ⌊ nat ⌋ ; cod = ⌊ nat ⌋ }
sorting true = record { dom = Unit ; cod = ⌊ bool ⌋ }
sorting false = record { dom = Unit ; cod = ⌊ bool ⌋ }
sorting not = record { dom = ⌊ bool ⌋ ; cod = ⌊ bool ⌋ }
Sg : Signature lzero lzero
Sg = record { Gr = Gr ; Func = Func ; sorting = sorting }
open Term Sg
data Ax : forall Γ A -> Rel (Γ ⊢ A) lzero where
not-true≡false : Ax [] ⌊ bool ⌋ (func not (func true unit)) (func false unit)
not-false≡true : Ax [] ⌊ bool ⌋ (func not (func false unit)) (func true unit)
plus-identityˡ : Ax (⌊ nat ⌋ ∷ []) ⌊ nat ⌋
(func plus (pair (func zero unit) var))
var
Th : Theory lzero lzero lzero
Th = record { Sg = Sg ; Ax = Ax }
open Theory.Theory Th
import Relation.Binary.Reasoning.Setoid as S
thm1 : forall {Γ} -> Γ ⊢ func not (func true unit) ≡ func false unit
thm1 =
begin
func not (func true unit)
≈˘⟨ cong/func (cong/func (comm/unit _ _ _)) ⟩
func not (func true (unit [ ! ]))
≈˘⟨ cong/func (comm/func _ _ _ _ _) ⟩
func not (func true unit [ ! ])
≈˘⟨ comm/func _ _ _ _ _ ⟩
func not (func true unit) [ ! ]
≈⟨ cong/sub refl (ax not-true≡false) ⟩
func false unit [ ! ]
≈⟨ comm/func _ _ _ _ _ ⟩
func false (unit [ ! ])
≈⟨ cong/func (comm/unit _ _ _) ⟩
func false unit
∎
where open S TermSetoid
|
{
"alphanum_fraction": 0.5881410256,
"avg_line_length": 27.9402985075,
"ext": "agda",
"hexsha": "b536a8ec7a383b35edaafd7532ad75648bc6435a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/exsub-ccc",
"max_forks_repo_path": "Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/exsub-ccc",
"max_issues_repo_path": "Examples.agda",
"max_line_length": 81,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/exsub-ccc",
"max_stars_repo_path": "Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z",
"num_tokens": 656,
"size": 1872
}
|
{-# OPTIONS --rewriting #-}
{-# OPTIONS --allow-unsolved-metas #-}
module NfCBPVLaws where
open import Library hiding (_×̇_)
open import NfCBPV
-- NB: mon⁺ is a comonad coalgebra
module MonIsComonadCoalgebra where
mon-id : ∀ (P : Ty⁺) {Γ} (a : ⟦ P ⟧⁺ Γ) → mon⁺ P a ⊆-refl ≡ a
mon-id (base o) x = {!monVar-id!}
mon-id (P₁ ×̇ P₂) (a₁ , a₂) = cong₂ _,_ (mon-id P₁ a₁) (mon-id P₂ a₂)
mon-id (Σ̇ I Ps) (i , a) = cong (i ,_) (mon-id (Ps i) a)
mon-id (□̇ N) f = funExtH (funExt (λ τ → cong f {!!})) -- ⊆-trans ⊆-refl τ ≡ τ
-- Identity: extract ∘ mon⁺ ≡ id
extract∘mon : ∀ (P : Ty⁺) {Γ} → extract ∘ mon⁺ P ≗ id {A = ⟦ P ⟧⁺ Γ}
extract∘mon = mon-id
-- Associativity: □-map (mon⁺ P) ∘ mon⁺ P ≡ duplicate ∘ mon⁺ P
mon∘mon : ∀ (P : Ty⁺) {Γ} (a : ⟦ P ⟧⁺ Γ) {Δ} {τ : Γ ⊆ Δ} {Φ} {τ' : Δ ⊆ Φ} →
mon⁺ P (mon⁺ P a τ) τ' ≡ mon⁺ P a (⊆-trans τ τ')
mon∘mon (base o) x = {!!} -- monVar∘monVar
mon∘mon (P₁ ×̇ P₂) (a₁ , a₂) = cong₂ _,_ (mon∘mon P₁ a₁) (mon∘mon P₂ a₂)
mon∘mon (Σ̇ I Ps) (i , a) = cong (i ,_) (mon∘mon (Ps i) a)
mon∘mon (□̇ N) f = {!!} -- □-mon∘□-mon
map-mon∘mon : ∀ (P : Ty⁺) {Γ} → □-map (mon⁺ P) ∘ mon⁺ P ≗ duplicate ∘ mon⁺ P {Γ}
map-mon∘mon P a = funExtH $ funExt λ τ → funExtH $ funExt λ τ' → mon∘mon P a
module RunIsMonadAlgebra where
-- Identity: run⁻ N ∘ return ≡ id
-- Associativity: run⁻ N ∘ ◇-map (run⁻ N) ≡ run⁻ N ∘ join
monNe : ∀{N} → Mon (Ne N)
monNe = {!!}
monNf : ∀{N} → Mon (Nf N)
monNf = {!!}
-- ◇ preserves monotonicity
------------------------------------------------------------------------
-- This needs weakening of neutrals
◇-mon : Mon A → Mon (◇ A)
◇-mon mA (return a) τ = return (mA a τ)
◇-mon mA (bind u c) τ = bind (monNe u τ) (◇-mon mA c (refl ∷ τ)) -- need monotonicity of Ne
◇-mon mA (case x t) τ = case (monVar x τ) (λ i → ◇-mon mA (t i) (refl ∷ τ))
◇-mon mA (split x c) τ = split (monVar x τ) (◇-mon mA c (refl ∷ refl ∷ τ))
-- From ◇-mon we get □-run
□-run : Run B → Run (□ B)
□-run rB c = rB ∘ ◇-map extract ∘ ◇-mon □-mon c
-- Run for Nf?
-- Seems to need a category of renamings rather just OPE
bindNf : ∀ {N} {Γ} {P} →
Ne (◇̇ P) Γ → Nf N (P ∷ Γ) → Nf N Γ
bindNf u (ret v) = ret (bind u v)
bindNf u (ne n) = ne (bind u n)
bindNf u (rec t) = rec λ i → bindNf u (t i)
bindNf u (abs t) = abs (bindNf (monNe u (_ ∷ʳ ⊆-refl)) (monNf t {!!}))
-- The remaining goal Q ∷ P ∷ Γ ⊆ P ∷ Q ∷ Γ
-- cannot be filled since OPEs do not support swap.
runNf : ∀{N} → ◇ (Nf N) →̇ Nf N
runNf (return j) = j
runNf (bind u c) = bindNf u (runNf c) -- Problem!
runNf (case x t) = {!!}
runNf (split x c) = {!!}
-- Monoidal functoriality ★
module _ {A B : ISet} (mA : Mon A) (mB : Mon B) where
zip : ⟨ ◇ A ⊙ ◇ B ⟩→̇ ◇ (A ×̂ B)
zip cA cB = join (◇-map! (λ τ a → ◇-map! (λ τ' b → mA a τ' , b) (◇-mon mB cB τ)) cA)
-- Alternative definitions of freshᶜ
freshᶜ₀ : (Γ : Cxt) → ◇ ⟦ Γ ⟧ᶜ Γ
freshᶜ₀ [] = return []
freshᶜ₀ (P ∷ Γ) = ◇-ext $
□-weak (◇-mon (monᶜ Γ) (freshᶜ₀ Γ)) -- BAD, use of ◇-mon
⋉ fresh◇
-- freshᶜ (P ∷ Γ) = ◇-ext $
-- (λ τ → ◇-mon (monᶜ Γ) (freshᶜ Γ) (⊆-trans (_ ∷ʳ ⊆-refl) τ)) -- BAD, use of ◇-mon
-- ⋉ fresh◇
freshG₀ : □ (◇ ⟦ Γ ⟧ᶜ) Γ
-- freshG₀ : (τ : Γ ⊆ Δ) → ◇ ⟦ Γ ⟧ᶜ Δ
freshG₀ [] = return []
freshG₀ (P ∷ʳ τ) = ◇-mon (monᶜ _) (freshG₀ τ) (P ∷ʳ ⊆-refl) -- BAD, use of ◇-mon
freshG₀ (refl ∷ τ) = ◇-ext $ (λ τ₁ → freshG₀ (⊆-trans τ (⊆-trans (_ ∷ʳ ⊆-refl) τ₁))) ⋉ fresh◇
|
{
"alphanum_fraction": 0.5014551804,
"avg_line_length": 30.954954955,
"ext": "agda",
"hexsha": "7ddb4ba100f107ddee02470276081190517bd8cc",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z",
"max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "andreasabel/ipl",
"max_forks_repo_path": "src-cbpv/NfCBPVLaws.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "andreasabel/ipl",
"max_issues_repo_path": "src-cbpv/NfCBPVLaws.agda",
"max_line_length": 93,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "andreasabel/ipl",
"max_stars_repo_path": "src-cbpv/NfCBPVLaws.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z",
"num_tokens": 1687,
"size": 3436
}
|
{-# OPTIONS --rewriting #-}
open import FFI.Data.Either using (Either; Left; Right)
open import Luau.Type using (Type; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_)
open import Luau.TypeNormalization using (normalize)
module Luau.FunctionTypes where
-- The domain of a normalized type
srcⁿ : Type → Type
srcⁿ (S ⇒ T) = S
srcⁿ (S ∩ T) = srcⁿ S ∪ srcⁿ T
srcⁿ never = unknown
srcⁿ T = never
-- To get the domain of a type, we normalize it first We need to do
-- this, since if we try to use it on non-normalized types, we get
--
-- src(number ∩ string) = src(number) ∪ src(string) = never ∪ never
-- src(never) = unknown
--
-- so src doesn't respect type equivalence.
src : Type → Type
src (S ⇒ T) = S
src T = srcⁿ(normalize T)
-- The codomain of a type
tgt : Type → Type
tgt nil = never
tgt (S ⇒ T) = T
tgt never = never
tgt unknown = unknown
tgt number = never
tgt boolean = never
tgt string = never
tgt (S ∪ T) = (tgt S) ∪ (tgt T)
tgt (S ∩ T) = (tgt S) ∩ (tgt T)
|
{
"alphanum_fraction": 0.6646341463,
"avg_line_length": 25.2307692308,
"ext": "agda",
"hexsha": "7607052be0e043fba3ff571c65a5e31a260e47e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_forks_repo_path": "prototyping/Luau/FunctionTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_issues_repo_path": "prototyping/Luau/FunctionTypes.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Luau/FunctionTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 326,
"size": 984
}
|
{-# OPTIONS --without-K --safe #-}
module Data.List.Kleene.Syntax where
open import Data.List hiding ([_])
open import Data.List.Kleene.Base
open import Data.Product
infixr 4 _,_
infixr 5 _]
data ListSyntax {a} (A : Set a) : Set a where
_] : A → ListSyntax A
_,_ : A → ListSyntax A → ListSyntax A
infixr 4 ⋆[_ ⁺[_ [_
⋆[_ : ∀ {a} {A : Set a} → ListSyntax A → A ⋆
⋆[ x ] = ∹ x & []
⋆[ x , xs = ∹ x & (⋆[ xs)
⁺[_ : ∀ {a} {A : Set a} → ListSyntax A → A ⁺
⁺[ x ] = x & []
⁺[ x , xs = x & ∹ (⁺[ xs)
[_ : ∀ {a} {A : Set a} → ListSyntax A → List A
[ x ] = x ∷ []
[ x , xs = x ∷ ([ xs)
private
open import Data.Nat
_ : ℕ ⋆
_ = ⋆[ 1 , 2 , 3 ]
_ : ℕ ⁺
_ = ⁺[ 1 , 2 , 3 ]
_ : List ℕ
_ = [ 1 , 2 , 3 ]
|
{
"alphanum_fraction": 0.4860724234,
"avg_line_length": 18.4102564103,
"ext": "agda",
"hexsha": "248f1b676bc2da96010a10582b3949765351d187",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-kleene-lists",
"max_forks_repo_path": "Data/List/Kleene/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-kleene-lists",
"max_issues_repo_path": "Data/List/Kleene/Syntax.agda",
"max_line_length": 46,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-kleene-lists",
"max_stars_repo_path": "Data/List/Kleene/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 327,
"size": 718
}
|
{-# OPTIONS --without-K #-}
module sets.int where
open import sets.int.definition public
open import sets.int.utils public
open import sets.int.core public
open import sets.int.properties public
|
{
"alphanum_fraction": 0.7817258883,
"avg_line_length": 21.8888888889,
"ext": "agda",
"hexsha": "870c474727ae5fcbf912b0b6374aeda52b661232",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/int.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/int.agda",
"max_line_length": 38,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/int.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 39,
"size": 197
}
|
module Issue2959.M (_ : Set₁) where
record R : Set₁ where
field
A : Set
|
{
"alphanum_fraction": 0.6455696203,
"avg_line_length": 13.1666666667,
"ext": "agda",
"hexsha": "c0d8c018ea855fa6a1e8f280b5201b2a239891d9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2959/M.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2959/M.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2959/M.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 79
}
|
{-# OPTIONS --prop #-}
postulate
f : Prop → Prop
P : Prop₁
x : Prop
x = f P
-- WAS:
-- Set₁ != Set
-- when checking that the expression P has type Prop
-- SHOULD BE:
-- Prop₁ != Prop
-- when checking that the expression P has type Prop
|
{
"alphanum_fraction": 0.6229508197,
"avg_line_length": 14.3529411765,
"ext": "agda",
"hexsha": "24b8350a3cd81cf763ddea544d808ecf8467afb8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3582.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3582.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3582.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 71,
"size": 244
}
|
{-# OPTIONS --inversion-max-depth=10 #-}
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
data ⊥ : Set where
double : Nat → Nat
double zero = zero
double (suc n) = suc (suc (double n))
postulate
doubleSuc : (x y : Nat) → double x ≡ suc (double y) → ⊥
diverge : ⊥
diverge = doubleSuc _ _ refl
{-
double ?x == suc (double ?y)
?x := suc ?x₁
suc (suc (double ?x₁)) == suc (double ?y)
suc (double ?x₁) == double ?y
?y := suc ?y₁
double ?x₁ == suc (double ?y₁)
.
.
.
-}
|
{
"alphanum_fraction": 0.5851272016,
"avg_line_length": 17.6206896552,
"ext": "agda",
"hexsha": "977d42e8a4923270e2aad670fe9a8e513902686d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue431.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue431.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue431.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 187,
"size": 511
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category; module Definitions)
-- Definition of the "Twisted" Functor between certain Functor Categories
module Categories.Functor.Instance.Twisted {o ℓ e o′ ℓ′ e′} (𝒞 : Category o ℓ e) (𝒟 : Category o′ ℓ′ e′) where
import Categories.Category.Construction.TwistedArrow as TW
open import Categories.Category.Product
open import Categories.Category.Construction.Functors
open import Categories.Functor
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Data.Product using (_,_)
private
module C = Category 𝒞
Twist : Functor (Product C.op 𝒞) 𝒟 → Functor (TW.TwistedArrow 𝒞) 𝒟
Twist F = record
{ F₀ = λ x → F₀ (dom x , cod x)
; F₁ = λ f → F₁ (dom⇐ f , cod⇒ f)
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
where
open Functor F
open TW.Morphism
open TW.Morphism⇒
Twist′ : Functor (Product C.op 𝒞) 𝒟 → Functor (Category.op (TW.TwistedArrow C.op)) 𝒟
Twist′ F = record
{ F₀ = λ x → F₀ (dom x , cod x)
; F₁ = λ f → F₁ (dom⇐ f , cod⇒ f)
; identity = identity
; homomorphism = homomorphism
; F-resp-≈ = F-resp-≈
}
where
open Functor F
open TW.Morphism
open TW.Morphism⇒
Twisted : Functor (Functors (Product C.op 𝒞) 𝒟) (Functors (TW.TwistedArrow 𝒞) 𝒟)
Twisted = record
{ F₀ = Twist
; F₁ = Nat
; identity = D.Equiv.refl
; homomorphism = D.Equiv.refl
; F-resp-≈ = λ f≈g → f≈g
}
where
open TW.Morphism
open TW.Morphism⇒
module D = Category 𝒟
Nat : {F G : Functor (Product C.op 𝒞) 𝒟} → NaturalTransformation F G → NaturalTransformation (Twist F) (Twist G)
Nat nt = ntHelper record
{ η = λ x → η nt (dom x , cod x)
; commute = λ f → commute nt (dom⇐ f , cod⇒ f)
}
where
open NaturalTransformation
|
{
"alphanum_fraction": 0.67233809,
"avg_line_length": 28.9206349206,
"ext": "agda",
"hexsha": "3088328fee06dad4ae2d5a191155f26419190a1a",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Instance/Twisted.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Instance/Twisted.agda",
"max_line_length": 114,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Instance/Twisted.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 644,
"size": 1822
}
|
module ModusPonens where
modusPonens : {P Q : Set} → (P → Q) → P → Q
modusPonens = {!!}
|
{
"alphanum_fraction": 0.595505618,
"avg_line_length": 17.8,
"ext": "agda",
"hexsha": "7ff3522791c6fc84d2a716052f3df681dc8f7ad3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "danr/agder",
"max_forks_repo_path": "problems/ModusPonens/ModusPonens.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "danr/agder",
"max_issues_repo_path": "problems/ModusPonens/ModusPonens.agda",
"max_line_length": 43,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "danr/agder",
"max_stars_repo_path": "problems/ModusPonens/ModusPonens.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z",
"num_tokens": 39,
"size": 89
}
|
module hello-world-dep-lookup where
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; _∷_)
open import Data.Fin using (Fin; zero; suc)
variable
A : Set
n : ℕ
lookup : Vec A n → Fin n → A
lookup (a ∷ as) zero = a
lookup (a ∷ as) (suc i) = lookup as i
|
{
"alphanum_fraction": 0.6568265683,
"avg_line_length": 19.3571428571,
"ext": "agda",
"hexsha": "8420c9663a1e3dd00048fc981593f454f068c698",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "avieor/agda-demos",
"max_forks_repo_path": "hello-world-dep-lookup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "avieor/agda-demos",
"max_issues_repo_path": "hello-world-dep-lookup.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "avieor/agda-demos",
"max_stars_repo_path": "hello-world-dep-lookup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 96,
"size": 271
}
|
--{-# OPTIONS --allow-unsolved-metas #-}
module StateSizedIO.GUI.WxGraphicsLibLevel3 where
open import StateSizedIO.GUI.Prelude
data GuiLev1Command : Set where
putStrLn : String → GuiLev1Command
createFrame : GuiLev1Command
addButton : Frame → Button → GuiLev1Command
createTextCtrl : Frame → String → GuiLev1Command
fireCustomEvent : Frame → GuiLev1Command
setAttribButton : Button → WxColor → GuiLev1Command
setAttribTextCtrl : TextCtrl → WxColor → GuiLev1Command
setChildredLayout : Frame → ℕ → ℕ → ℕ → ℕ → GuiLev1Command
createButton : Frame → String → GuiLev1Command
deleteButton : Button → GuiLev1Command
deleteTextCtrl : TextCtrl → GuiLev1Command
drawBitmap : DC → Bitmap → Point → Bool → GuiLev1Command
repaint : Frame → GuiLev1Command
bitmapGetWidth : Bitmap → GuiLev1Command
GuiLev1Response : GuiLev1Command → Set
GuiLev1Response createFrame = Frame
GuiLev1Response (createButton _ _) = Button
GuiLev1Response (bitmapGetWidth _) = ℤ
GuiLev1Response (createTextCtrl _ _) = TextCtrl
GuiLev1Response _ = Unit
GuiLev1Interface : IOInterface
GuiLev1Interface .Command = GuiLev1Command
GuiLev1Interface .Response = GuiLev1Response
GuiLev2State : Set₁
GuiLev2State = VarList
data GuiLev2Command (s : GuiLev2State) : Set₁ where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler :
Button
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setTimer : Frame → ℤ → List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setKeyHandler : Button
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
setOnPaint : Frame
→ List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s
GuiLev2Response : (s : GuiLev2State)
→ GuiLev2Command s → Set
GuiLev2Response _ (level1C c) = GuiLev1Response c
GuiLev2Response _ (createVar {A} a) = Var A
GuiLev2Response _ (setTimer fra x p) = Timer
GuiLev2Response _ _ = Unit
GuiLev2Next : (s : GuiLev2State) (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State
GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s _ _ = s
GuiLev2Interface : IOInterfaceˢ
Stateˢ GuiLev2Interface = GuiLev2State
Commandˢ GuiLev2Interface = GuiLev2Command
Responseˢ GuiLev2Interface = GuiLev2Response
nextˢ GuiLev2Interface = GuiLev2Next
translateLev1Local : (c : GuiLev1Command)
→ NativeIO (GuiLev1Response c)
translateLev1Local createFrame = nativeCreateFrame
translateLev1Local (setChildredLayout win a b c d) = nativeSetChildredLayout win a b c d
translateLev1Local (createButton fra str) = nativeMakeButton fra str
translateLev1Local (deleteButton bt) = nativeDeleteButton bt
translateLev1Local (deleteTextCtrl txt) = nativeDeleteTextCtrl txt
translateLev1Local (addButton fra bt) = nativeAddButton fra bt
translateLev1Local (setAttribButton bt col) = nativeSetColorButton bt col
translateLev1Local (setAttribTextCtrl txt col) = nativeSetColorTextCtrl txt col
translateLev1Local (drawBitmap dc bm p b) = nativeDrawBitmap dc bm p b
translateLev1Local (repaint fra) = nativeRepaint fra
translateLev1Local (bitmapGetWidth b) = nativeBitmapGetWidth b
translateLev1Local (putStrLn s) = nativePutStrLn s
translateLev1Local (fireCustomEvent fr) = nativeFireCustomEvent fr
translateLev1Local (createTextCtrl f str) = nativeMakeTextCtrl f str
translateLev1 : {A : Set} → IO GuiLev1Interface ∞ A → NativeIO A
translateLev1 = translateIO translateLev1Local
translateLev1List : {A : Set} → List (IO GuiLev1Interface ∞ A) → List (NativeIO A)
translateLev1List l = map translateLev1 l
translateLev2Local : (s : GuiLev2State)
→ (c : GuiLev2Command s)
→ NativeIO (GuiLev2Response s c)
translateLev2Local s (level1C c) = translateLev1Local c
translateLev2Local s (createVar {A} a) = nativeNewVar {A} a
translateLev2Local s (setButtonHandler bt proglist)
= nativeSetButtonHandler bt
(dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist))
translateLev2Local s (setTimer fra interv proglist)
= nativeSetTimer fra interv (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist))
translateLev2Local s (setKeyHandler bt proglistRight proglistLeft proglistUp proglistDown)
= nativeSetKeyHandler bt
(λ key -> case (showKey key) of λ
{ "Right" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistRight))
; "Left" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistLeft))
; "Up" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistUp))
; "Down" → (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglistDown))
; _ → nativeReturn unit
} )
translateLev2Local s (setOnPaint fra proglist)
= nativeSetOnPaint fra (λ dc rect → (dispatchList s
(map (λ prog aa → translateLev1 (prog aa dc rect)) proglist)))
translateLev2 : {s : GuiLev2State} → {A : Set}
→ IOˢ GuiLev2Interface ∞ (λ _ → A) s → NativeIO A
translateLev2 = translateIOˢ {I = GuiLev2Interface} translateLev2Local
data GuiLev3Command (s : GuiLev2State) : Set₂ where
level2C : GuiLev2Command s → GuiLev3Command s
setCustomEvent :
Frame
→ List
((x : prod s) → IOˢ GuiLev2Interface ∞ (λ _ → prod s) s)
→ GuiLev3Command s
setRightClick : Frame → List ( (x : prod s) → IOˢ GuiLev2Interface ∞ (λ _ → prod s) s)
→ GuiLev3Command s
GuiLev3Response : (s : GuiLev2State) → GuiLev3Command s → Set
GuiLev3Response s (level2C c) = GuiLev2Response s c
GuiLev3Response _ _ = Unit
GuiLev3Next : (s : GuiLev2State) → (c : GuiLev3Command s)
→ GuiLev3Response s c
→ GuiLev2State
GuiLev3Next s (level2C c) r = GuiLev2Next s c r
GuiLev3Next s (setRightClick _ _) _ = s
GuiLev3Next s (setCustomEvent _ _) _ = s
GuiLev3Interface : IOInterfaceˢ
GuiLev3Interface .Stateˢ = GuiLev2State
GuiLev3Interface .Commandˢ = GuiLev3Command
GuiLev3Interface .Responseˢ = GuiLev3Response
GuiLev3Interface .nextˢ = GuiLev3Next
translateLev3Local : (s : GuiLev2State)
→ (c : GuiLev3Command s)
→ NativeIO (GuiLev3Response s c)
translateLev3Local s (level2C c) = translateLev2Local s c
translateLev3Local s (setRightClick f proglist) =
nativeSetClickRight f
(dispatchList s (map (λ prog → translateLev2{s} ∘ prog ) proglist))
translateLev3Local s (setCustomEvent f proglist) =
nativeRegisterCustomEvent f
(dispatchList s (map (λ prog → translateLev2{s} ∘ prog ) proglist))
translateLev3 : {s : GuiLev2State} → {A : Set}
→ IOˢ GuiLev3Interface ∞ (λ _ → A) s → NativeIO A
translateLev3 = translateIOˢ {I = GuiLev3Interface} translateLev3Local
mutual
translateLev1toLev2∞ : ∀{s : GuiLev2State} → {A : Set}
→ IO' GuiLev1Interface ∞ A → IOˢ' GuiLev2Interface ∞ (λ _ → A) s
translateLev1toLev2∞ (do' c f) = doˢ' (level1C c) λ r → translateLev1toLev2 (f r)
translateLev1toLev2∞ (return' a) = returnˢ' a
translateLev1toLev2ₚ∞ : ∀{s : GuiLev2State} → {A : Set} → IO' GuiLev1Interface ∞ A
→ IOₚˢ' GuiLev2Interface ∞ A s s
translateLev1toLev2ₚ∞ (do' c f) = doˢ' (level1C c) (λ r → translateLev1toLev2ₚ (f r))
translateLev1toLev2ₚ∞ (return' a) = returnˢ' (refl , a)
translateLev1toLev2 : ∀{s : GuiLev2State} → {A : Set}
→ IO GuiLev1Interface ∞ A → IOˢ GuiLev2Interface ∞ (λ _ → A) s
translateLev1toLev2 x .forceˢ = translateLev1toLev2∞ (x .force)
translateLev1toLev2ₚ : ∀{s : GuiLev2State} → {A : Set}
→ IO GuiLev1Interface ∞ A → IOₚˢ GuiLev2Interface ∞ A s s
translateLev1toLev2ₚ x .forceˢ = translateLev1toLev2ₚ∞ (x .force)
mutual
translateLev2toLev3∞ : ∀{α}{s : GuiLev2State} → {A : GuiLev2State → Set α}
→ IOˢ' GuiLev2Interface ∞ A s → IOˢ' GuiLev3Interface ∞ A s
translateLev2toLev3∞ (doˢ'{s} c f) = doˢ' (level2C c) λ r → translateLev2toLev3 (f r)
translateLev2toLev3∞ (returnˢ' a) = returnˢ' a
translateLev2toLev3 : ∀{α}{s : GuiLev2State} → {A : GuiLev2State → Set α}
→ IOˢ GuiLev2Interface ∞ A s → IOˢ GuiLev3Interface ∞ A s
translateLev2toLev3 x .forceˢ = translateLev2toLev3∞ (x .forceˢ)
--
-- Example
--
example : IO GuiLev1Interface ∞ Frame
example =
do createFrame λ frame →
do (putStrLn "Frame created") λ _ →
return frame
private
main : NativeIO Frame
main = translateIO translateLev1Local example
|
{
"alphanum_fraction": 0.6578523057,
"avg_line_length": 37.3614457831,
"ext": "agda",
"hexsha": "258af079f13c33d8eb45c21a551b2a6cf60d8db6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "src/StateSizedIO/GUI/WxGraphicsLibLevel3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "src/StateSizedIO/GUI/WxGraphicsLibLevel3.agda",
"max_line_length": 98,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "src/StateSizedIO/GUI/WxGraphicsLibLevel3.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 3111,
"size": 9303
}
|
module Tactic.Monoid where
open import Prelude
open import Tactic.Reflection
open import Tactic.Reflection.Quote
open import Structure.Monoid.Laws
open import Tactic.Monoid.Exp
open import Tactic.Monoid.Reflect
open import Tactic.Monoid.Proofs
monoidTactic : ∀ {a} {A : Set a} {MonA : Monoid A} {{_ : MonoidLaws A {{MonA}}}} → Tactic
monoidTactic {A = A} {dict} {{laws}} hole = do
goal ← inferNormalisedType hole
`A ← quoteTC A
unify goal (def (quote _≡_) (hArg unknown ∷ hArg `A ∷ vArg unknown ∷ vArg unknown ∷ []))
<|> do typeError $ strErr "Goal is not an equality" ∷ termErr goal ∷ []
goal ← normalise goal
ensureNoMetas goal
match ← monoidMatcher dict
`dict ← quoteTC dict
`laws ← quoteTC laws
ensureNoMetas `dict
debugPrint "tactic.monoid" 20 $ strErr "monoidTactic" ∷ termErr goal ∷ strErr "dict =" ∷ termErr `dict ∷ []
(lhs , rhs) , env ← parseGoal match goal
unify hole (def (quote proof) (iArg `dict ∷ iArg `laws ∷ vArg (` lhs) ∷ vArg (` rhs) ∷
vArg (quoteEnv `dict env) ∷ vArg (con (quote refl) []) ∷ []))
<|> do typeError $ strErr "Can't prove" ∷ termErr (` lhs) ∷ strErr "==" ∷ termErr (` rhs)
∷ strErr "because" ∷ termErr (` (flatten lhs)) ∷ strErr "/=" ∷ termErr (` (flatten rhs))
∷ []
macro
auto-monoid : ∀ {a} {A : Set a} {Mon : Monoid A} {{Laws : MonoidLaws A {{Mon}}}} → Tactic
auto-monoid {{Laws}} = monoidTactic {{Laws}}
|
{
"alphanum_fraction": 0.6176870748,
"avg_line_length": 39.7297297297,
"ext": "agda",
"hexsha": "fce0527315fde401f03d77bffb3f5c278690181a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Monoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Monoid.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 492,
"size": 1470
}
|
{-# OPTIONS --guardedness #-}
module Cubical.Codata.Conat where
open import Cubical.Codata.Conat.Base public
open import Cubical.Codata.Conat.Properties public
|
{
"alphanum_fraction": 0.7914110429,
"avg_line_length": 20.375,
"ext": "agda",
"hexsha": "f35a316c922614d9b67d84e6c08b92aed68ff578",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Codata/Conat.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Codata/Conat.agda",
"max_line_length": 50,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Codata/Conat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 37,
"size": 163
}
|
-- Linear monoidal closed structure for families
module SOAS.Families.Linear {T : Set} where
open import SOAS.Common
open import SOAS.Context {T}
open import SOAS.Sorting {T}
open import SOAS.Families.Core {T}
open import SOAS.Families.Isomorphism {T}
open import Categories.Category.Monoidal
open import Categories.Category.Monoidal.Closed
open import Categories.Functor.Bifunctor
-- | Monoidal tensor and unit
-- Linear tensor product that combines two families with two disjoint contexts
data _⊗_ (X Y : Family) : Ctx → Set where
merge : (Γ Δ : Ctx) → X Γ → Y Δ → (X ⊗ Y) (Δ ∔ Γ)
infixr 20 _⊗_
pattern _⊹_ {Γ}{Δ} t s = merge Γ Δ t s
infix 30 _⊹_
-- ⊗ is a bifunctor
⊗F : Bifunctor 𝔽amilies 𝔽amilies 𝔽amilies
⊗F = record
{ F₀ = λ (X , Y) → X ⊗ Y
; F₁ = λ{ {X , Y}{X′ , Y′} (f , g) (x ⊹ y) → (f x) ⊹ (g y)}
; identity = λ{ {X , Y}{Γ}{x ⊹ y} → refl }
; homomorphism = λ{ {X , Y}{X′ , Y′}{X″ , Y″}{f , g}{f′ , g′}{Γ}{x ⊹ y} → refl }
; F-resp-≈ = λ{ (p₁ , p₂) {.(Δ ∔ Γ)} {merge Γ Δ t s} → cong₂ (merge Γ Δ) p₁ p₂ }
}
_⊗̣_ : Familyₛ → Familyₛ → Familyₛ
_⊗̣_ = sorted₂ _⊗_
𝒚 : Ctx → Family
𝒚 Γ Δ = Γ ≡ Δ
-- Family which is only inhabited at the empty context
E : Family
E = 𝒚 ∅
-- Sorted family which is only inhabited at a singleton context
N : Familyₛ
N α = 𝒚 ⌈ α ⌋
-- | Monoidal exponential
-- Linear exponential between families
_⊸_ : Family → Family → Family
(X ⊸ Y) Γ = {Δ : Ctx} → X Δ → Y (Δ ∔ Γ)
infixr 15 _⊸_
-- Linear exponential between sorted families
_⊸∙_ : Familyₛ → Familyₛ → Familyₛ
_⊸∙_ = sorted₂ _⊸_
infixr 15 _⊸∙_
-- ⊸ is a bifunctor
⊸F : Bifunctor 𝔽am.op 𝔽amilies 𝔽amilies
⊸F = record
{ F₀ = λ (X , Y) → X ⊸ Y
; F₁ = λ{ {X , Y}{X′ , Y′} (f , g) e x → g (e (f x))}
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ{ {X , Y}{X′ , Y′}{f , g} (p₁ , p₂) {Γ}{e} →
dext′ (trans (cong (g ∘ e) p₁) p₂) }
}
|
{
"alphanum_fraction": 0.5940488842,
"avg_line_length": 26.1388888889,
"ext": "agda",
"hexsha": "1963a36f916ffad8db10dd62740155796e67deee",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Families/Linear.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Families/Linear.agda",
"max_line_length": 82,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Families/Linear.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 809,
"size": 1882
}
|
open import Nat
open import Prelude
open import contexts
module core where
-- types
data htyp : Set where
b : htyp
⦇-⦈ : htyp
_==>_ : htyp → htyp → htyp
-- arrow type constructors bind very tightly
infixr 25 _==>_
-- external expressions
data hexp : Set where
c : hexp
_·:_ : hexp → htyp → hexp
X : Nat → hexp
·λ : Nat → hexp → hexp
·λ_[_]_ : Nat → htyp → hexp → hexp
⦇-⦈[_] : Nat → hexp
⦇⌜_⌟⦈[_] : hexp → Nat → hexp
_∘_ : hexp → hexp → hexp
-- the type of type contexts, i.e. Γs in the judegments below
tctx : Set
tctx = htyp ctx
mutual
-- identity substitution, substitition environments
data env : Set where
Id : (Γ : tctx) → env
Subst : (d : ihexp) → (y : Nat) → env → env
-- internal expressions
data ihexp : Set where
c : ihexp
X : Nat → ihexp
·λ_[_]_ : Nat → htyp → ihexp → ihexp
⦇-⦈⟨_⟩ : (Nat × env) → ihexp
⦇⌜_⌟⦈⟨_⟩ : ihexp → (Nat × env) → ihexp
_∘_ : ihexp → ihexp → ihexp
_⟨_⇒_⟩ : ihexp → htyp → htyp → ihexp
_⟨_⇒⦇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexp
-- convenient notation for chaining together two agreeable casts
_⟨_⇒_⇒_⟩ : ihexp → htyp → htyp → htyp → ihexp
d ⟨ t1 ⇒ t2 ⇒ t3 ⟩ = d ⟨ t1 ⇒ t2 ⟩ ⟨ t2 ⇒ t3 ⟩
-- type consistency
data _~_ : (t1 t2 : htyp) → Set where
TCRefl : {τ : htyp} → τ ~ τ
TCHole1 : {τ : htyp} → τ ~ ⦇-⦈
TCHole2 : {τ : htyp} → ⦇-⦈ ~ τ
TCArr : {τ1 τ2 τ1' τ2' : htyp} →
τ1 ~ τ1' →
τ2 ~ τ2' →
τ1 ==> τ2 ~ τ1' ==> τ2'
-- type inconsistency
data _~̸_ : (τ1 τ2 : htyp) → Set where
ICBaseArr1 : {τ1 τ2 : htyp} → b ~̸ τ1 ==> τ2
ICBaseArr2 : {τ1 τ2 : htyp} → τ1 ==> τ2 ~̸ b
ICArr1 : {τ1 τ2 τ3 τ4 : htyp} →
τ1 ~̸ τ3 →
τ1 ==> τ2 ~̸ τ3 ==> τ4
ICArr2 : {τ1 τ2 τ3 τ4 : htyp} →
τ2 ~̸ τ4 →
τ1 ==> τ2 ~̸ τ3 ==> τ4
--- matching for arrows
data _▸arr_ : htyp → htyp → Set where
MAHole : ⦇-⦈ ▸arr ⦇-⦈ ==> ⦇-⦈
MAArr : {τ1 τ2 : htyp} → τ1 ==> τ2 ▸arr τ1 ==> τ2
-- the type of hole contexts, i.e. Δs in the judgements
hctx : Set
hctx = (htyp ctx × htyp) ctx
-- notation for a triple to match the CMTT syntax
_::_[_] : Nat → htyp → tctx → (Nat × (tctx × htyp))
u :: τ [ Γ ] = u , (Γ , τ)
-- the hole name u does not appear in the term e
data hole-name-new : (e : hexp) (u : Nat) → Set where
HNConst : ∀{u} → hole-name-new c u
HNAsc : ∀{e τ u} →
hole-name-new e u →
hole-name-new (e ·: τ) u
HNVar : ∀{x u} → hole-name-new (X x) u
HNLam1 : ∀{x e u} →
hole-name-new e u →
hole-name-new (·λ x e) u
HNLam2 : ∀{x e u τ} →
hole-name-new e u →
hole-name-new (·λ x [ τ ] e) u
HNHole : ∀{u u'} →
u' ≠ u →
hole-name-new (⦇-⦈[ u' ]) u
HNNEHole : ∀{u u' e} →
u' ≠ u →
hole-name-new e u →
hole-name-new (⦇⌜ e ⌟⦈[ u' ]) u
HNAp : ∀{ u e1 e2 } →
hole-name-new e1 u →
hole-name-new e2 u →
hole-name-new (e1 ∘ e2) u
-- two terms that do not share any hole names
data holes-disjoint : (e1 : hexp) → (e2 : hexp) → Set where
HDConst : ∀{e} → holes-disjoint c e
HDAsc : ∀{e1 e2 τ} → holes-disjoint e1 e2 → holes-disjoint (e1 ·: τ) e2
HDVar : ∀{x e} → holes-disjoint (X x) e
HDLam1 : ∀{x e1 e2} → holes-disjoint e1 e2 → holes-disjoint (·λ x e1) e2
HDLam2 : ∀{x e1 e2 τ} → holes-disjoint e1 e2 → holes-disjoint (·λ x [ τ ] e1) e2
HDHole : ∀{u e2} → hole-name-new e2 u → holes-disjoint (⦇-⦈[ u ]) e2
HDNEHole : ∀{u e1 e2} → hole-name-new e2 u → holes-disjoint e1 e2 → holes-disjoint (⦇⌜ e1 ⌟⦈[ u ]) e2
HDAp : ∀{e1 e2 e3} → holes-disjoint e1 e3 → holes-disjoint e2 e3 → holes-disjoint (e1 ∘ e2) e3
-- bidirectional type checking judgements for hexp
mutual
-- synthesis
data _⊢_=>_ : (Γ : tctx) (e : hexp) (τ : htyp) → Set where
SConst : {Γ : tctx} → Γ ⊢ c => b
SAsc : {Γ : tctx} {e : hexp} {τ : htyp} →
Γ ⊢ e <= τ →
Γ ⊢ (e ·: τ) => τ
SVar : {Γ : tctx} {τ : htyp} {x : Nat} →
(x , τ) ∈ Γ →
Γ ⊢ X x => τ
SAp : {Γ : tctx} {e1 e2 : hexp} {τ τ1 τ2 : htyp} →
holes-disjoint e1 e2 →
Γ ⊢ e1 => τ1 →
τ1 ▸arr τ2 ==> τ →
Γ ⊢ e2 <= τ2 →
Γ ⊢ (e1 ∘ e2) => τ
SEHole : {Γ : tctx} {u : Nat} → Γ ⊢ ⦇-⦈[ u ] => ⦇-⦈
SNEHole : {Γ : tctx} {e : hexp} {τ : htyp} {u : Nat} →
hole-name-new e u →
Γ ⊢ e => τ →
Γ ⊢ ⦇⌜ e ⌟⦈[ u ] => ⦇-⦈
SLam : {Γ : tctx} {e : hexp} {τ1 τ2 : htyp} {x : Nat} →
x # Γ →
(Γ ,, (x , τ1)) ⊢ e => τ2 →
Γ ⊢ ·λ x [ τ1 ] e => τ1 ==> τ2
-- analysis
data _⊢_<=_ : (Γ : htyp ctx) (e : hexp) (τ : htyp) → Set where
ASubsume : {Γ : tctx} {e : hexp} {τ τ' : htyp} →
Γ ⊢ e => τ' →
τ ~ τ' →
Γ ⊢ e <= τ
ALam : {Γ : tctx} {e : hexp} {τ τ1 τ2 : htyp} {x : Nat} →
x # Γ →
τ ▸arr τ1 ==> τ2 →
(Γ ,, (x , τ1)) ⊢ e <= τ2 →
Γ ⊢ (·λ x e) <= τ
-- those types without holes
data _tcomplete : htyp → Set where
TCBase : b tcomplete
TCArr : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ==> τ2) tcomplete
-- those external expressions without holes
data _ecomplete : hexp → Set where
ECConst : c ecomplete
ECAsc : ∀{τ e} → τ tcomplete → e ecomplete → (e ·: τ) ecomplete
ECVar : ∀{x} → (X x) ecomplete
ECLam1 : ∀{x e} → e ecomplete → (·λ x e) ecomplete
ECLam2 : ∀{x e τ} → e ecomplete → τ tcomplete → (·λ x [ τ ] e) ecomplete
ECAp : ∀{e1 e2} → e1 ecomplete → e2 ecomplete → (e1 ∘ e2) ecomplete
-- those internal expressions without holes
data _dcomplete : ihexp → Set where
DCVar : ∀{x} → (X x) dcomplete
DCConst : c dcomplete
DCLam : ∀{x τ d} → d dcomplete → τ tcomplete → (·λ x [ τ ] d) dcomplete
DCAp : ∀{d1 d2} → d1 dcomplete → d2 dcomplete → (d1 ∘ d2) dcomplete
DCCast : ∀{d τ1 τ2} → d dcomplete → τ1 tcomplete → τ2 tcomplete → (d ⟨ τ1 ⇒ τ2 ⟩) dcomplete
-- contexts that only produce complete types
_gcomplete : tctx → Set
Γ gcomplete = (x : Nat) (τ : htyp) → (x , τ) ∈ Γ → τ tcomplete
-- those internal expressions where every cast is the identity cast and
-- there are no failed casts
data cast-id : ihexp → Set where
CIConst : cast-id c
CIVar : ∀{x} → cast-id (X x)
CILam : ∀{x τ d} → cast-id d → cast-id (·λ x [ τ ] d)
CIHole : ∀{u} → cast-id (⦇-⦈⟨ u ⟩)
CINEHole : ∀{d u} → cast-id d → cast-id (⦇⌜ d ⌟⦈⟨ u ⟩)
CIAp : ∀{d1 d2} → cast-id d1 → cast-id d2 → cast-id (d1 ∘ d2)
CICast : ∀{d τ} → cast-id d → cast-id (d ⟨ τ ⇒ τ ⟩)
-- expansion
mutual
-- synthesis
data _⊢_⇒_~>_⊣_ : (Γ : tctx) (e : hexp) (τ : htyp) (d : ihexp) (Δ : hctx) → Set where
ESConst : ∀{Γ} → Γ ⊢ c ⇒ b ~> c ⊣ ∅
ESVar : ∀{Γ x τ} → (x , τ) ∈ Γ →
Γ ⊢ X x ⇒ τ ~> X x ⊣ ∅
ESLam : ∀{Γ x τ1 τ2 e d Δ } →
(x # Γ) →
(Γ ,, (x , τ1)) ⊢ e ⇒ τ2 ~> d ⊣ Δ →
Γ ⊢ ·λ x [ τ1 ] e ⇒ (τ1 ==> τ2) ~> ·λ x [ τ1 ] d ⊣ Δ
ESAp : ∀{Γ e1 τ τ1 τ1' τ2 τ2' d1 Δ1 e2 d2 Δ2 } →
holes-disjoint e1 e2 →
Δ1 ## Δ2 →
Γ ⊢ e1 => τ1 →
τ1 ▸arr τ2 ==> τ →
Γ ⊢ e1 ⇐ (τ2 ==> τ) ~> d1 :: τ1' ⊣ Δ1 →
Γ ⊢ e2 ⇐ τ2 ~> d2 :: τ2' ⊣ Δ2 →
Γ ⊢ e1 ∘ e2 ⇒ τ ~> (d1 ⟨ τ1' ⇒ τ2 ==> τ ⟩) ∘ (d2 ⟨ τ2' ⇒ τ2 ⟩) ⊣ (Δ1 ∪ Δ2)
ESEHole : ∀{ Γ u } →
Γ ⊢ ⦇-⦈[ u ] ⇒ ⦇-⦈ ~> ⦇-⦈⟨ u , Id Γ ⟩ ⊣ ■ (u :: ⦇-⦈ [ Γ ])
ESNEHole : ∀{ Γ e τ d u Δ } →
Δ ## (■ (u , Γ , ⦇-⦈)) →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇒ ⦇-⦈ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ ⊣ (Δ ,, u :: ⦇-⦈ [ Γ ])
ESAsc : ∀ {Γ e τ d τ' Δ} →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
Γ ⊢ (e ·: τ) ⇒ τ ~> d ⟨ τ' ⇒ τ ⟩ ⊣ Δ
-- analysis
data _⊢_⇐_~>_::_⊣_ : (Γ : tctx) (e : hexp) (τ : htyp) (d : ihexp) (τ' : htyp) (Δ : hctx) → Set where
EALam : ∀{Γ x τ τ1 τ2 e d τ2' Δ } →
(x # Γ) →
τ ▸arr τ1 ==> τ2 →
(Γ ,, (x , τ1)) ⊢ e ⇐ τ2 ~> d :: τ2' ⊣ Δ →
Γ ⊢ ·λ x e ⇐ τ ~> ·λ x [ τ1 ] d :: τ1 ==> τ2' ⊣ Δ
EASubsume : ∀{e Γ τ' d Δ τ} →
((u : Nat) → e ≠ ⦇-⦈[ u ]) →
((e' : hexp) (u : Nat) → e ≠ ⦇⌜ e' ⌟⦈[ u ]) →
Γ ⊢ e ⇒ τ' ~> d ⊣ Δ →
τ ~ τ' →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ
EAEHole : ∀{ Γ u τ } →
Γ ⊢ ⦇-⦈[ u ] ⇐ τ ~> ⦇-⦈⟨ u , Id Γ ⟩ :: τ ⊣ ■ (u :: τ [ Γ ])
EANEHole : ∀{ Γ e u τ d τ' Δ } →
Δ ## (■ (u , Γ , τ)) →
Γ ⊢ e ⇒ τ' ~> d ⊣ Δ →
Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇐ τ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ :: τ ⊣ (Δ ,, u :: τ [ Γ ])
-- ground types
data _ground : (τ : htyp) → Set where
GBase : b ground
GHole : ⦇-⦈ ==> ⦇-⦈ ground
mutual
-- substitution typing
data _,_⊢_:s:_ : hctx → tctx → env → tctx → Set where
STAId : ∀{Γ Γ' Δ} →
((x : Nat) (τ : htyp) → (x , τ) ∈ Γ' → (x , τ) ∈ Γ) →
Δ , Γ ⊢ Id Γ' :s: Γ'
STASubst : ∀{Γ Δ σ y Γ' d τ } →
Δ , Γ ,, (y , τ) ⊢ σ :s: Γ' →
Δ , Γ ⊢ d :: τ →
Δ , Γ ⊢ Subst d y σ :s: Γ'
-- type assignment
data _,_⊢_::_ : (Δ : hctx) (Γ : tctx) (d : ihexp) (τ : htyp) → Set where
TAConst : ∀{Δ Γ} → Δ , Γ ⊢ c :: b
TAVar : ∀{Δ Γ x τ} → (x , τ) ∈ Γ → Δ , Γ ⊢ X x :: τ
TALam : ∀{ Δ Γ x τ1 d τ2} →
x # Γ →
Δ , (Γ ,, (x , τ1)) ⊢ d :: τ2 →
Δ , Γ ⊢ ·λ x [ τ1 ] d :: (τ1 ==> τ2)
TAAp : ∀{ Δ Γ d1 d2 τ1 τ} →
Δ , Γ ⊢ d1 :: τ1 ==> τ →
Δ , Γ ⊢ d2 :: τ1 →
Δ , Γ ⊢ d1 ∘ d2 :: τ
TAEHole : ∀{ Δ Γ σ u Γ' τ} →
(u , (Γ' , τ)) ∈ Δ →
Δ , Γ ⊢ σ :s: Γ' →
Δ , Γ ⊢ ⦇-⦈⟨ u , σ ⟩ :: τ
TANEHole : ∀ { Δ Γ d τ' Γ' u σ τ } →
(u , (Γ' , τ)) ∈ Δ →
Δ , Γ ⊢ d :: τ' →
Δ , Γ ⊢ σ :s: Γ' →
Δ , Γ ⊢ ⦇⌜ d ⌟⦈⟨ u , σ ⟩ :: τ
TACast : ∀{ Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 →
τ1 ~ τ2 →
Δ , Γ ⊢ d ⟨ τ1 ⇒ τ2 ⟩ :: τ2
TAFailedCast : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 →
τ1 ground →
τ2 ground →
τ1 ≠ τ2 →
Δ , Γ ⊢ d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ :: τ2
-- substitution
[_/_]_ : ihexp → Nat → ihexp → ihexp
[ d / y ] c = c
[ d / y ] X x
with natEQ x y
[ d / y ] X .y | Inl refl = d
[ d / y ] X x | Inr neq = X x
[ d / y ] (·λ x [ x₁ ] d')
with natEQ x y
[ d / y ] (·λ .y [ τ ] d') | Inl refl = ·λ y [ τ ] d'
[ d / y ] (·λ x [ τ ] d') | Inr x₁ = ·λ x [ τ ] ( [ d / y ] d')
[ d / y ] ⦇-⦈⟨ u , σ ⟩ = ⦇-⦈⟨ u , Subst d y σ ⟩
[ d / y ] ⦇⌜ d' ⌟⦈⟨ u , σ ⟩ = ⦇⌜ [ d / y ] d' ⌟⦈⟨ u , Subst d y σ ⟩
[ d / y ] (d1 ∘ d2) = ([ d / y ] d1) ∘ ([ d / y ] d2)
[ d / y ] (d' ⟨ τ1 ⇒ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒ τ2 ⟩
[ d / y ] (d' ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩
-- applying an environment to an expression
apply-env : env → ihexp → ihexp
apply-env (Id Γ) d = d
apply-env (Subst d y σ) d' = [ d / y ] ( apply-env σ d')
-- values
data _val : (d : ihexp) → Set where
VConst : c val
VLam : ∀{x τ d} → (·λ x [ τ ] d) val
-- boxed values
data _boxedval : (d : ihexp) → Set where
BVVal : ∀{d} → d val → d boxedval
BVArrCast : ∀{ d τ1 τ2 τ3 τ4 } →
τ1 ==> τ2 ≠ τ3 ==> τ4 →
d boxedval →
d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ boxedval
BVHoleCast : ∀{ τ d } → τ ground → d boxedval → d ⟨ τ ⇒ ⦇-⦈ ⟩ boxedval
mutual
-- indeterminate forms
data _indet : (d : ihexp) → Set where
IEHole : ∀{u σ} → ⦇-⦈⟨ u , σ ⟩ indet
INEHole : ∀{d u σ} → d final → ⦇⌜ d ⌟⦈⟨ u , σ ⟩ indet
IAp : ∀{d1 d2} → ((τ1 τ2 τ3 τ4 : htyp) (d1' : ihexp) →
d1 ≠ (d1' ⟨(τ1 ==> τ2) ⇒ (τ3 ==> τ4)⟩)) →
d1 indet →
d2 final →
(d1 ∘ d2) indet
ICastArr : ∀{d τ1 τ2 τ3 τ4} →
τ1 ==> τ2 ≠ τ3 ==> τ4 →
d indet →
d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ indet
ICastGroundHole : ∀{ τ d } →
τ ground →
d indet →
d ⟨ τ ⇒ ⦇-⦈ ⟩ indet
ICastHoleGround : ∀ { d τ } →
((d' : ihexp) (τ' : htyp) → d ≠ (d' ⟨ τ' ⇒ ⦇-⦈ ⟩)) →
d indet →
τ ground →
d ⟨ ⦇-⦈ ⇒ τ ⟩ indet
IFailedCast : ∀{ d τ1 τ2 } →
d final →
τ1 ground →
τ2 ground →
τ1 ≠ τ2 →
d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ indet
-- final expressions
data _final : (d : ihexp) → Set where
FBoxedVal : ∀{d} → d boxedval → d final
FIndet : ∀{d} → d indet → d final
-- contextual dynamics
-- evaluation contexts
data ectx : Set where
⊙ : ectx
_∘₁_ : ectx → ihexp → ectx
_∘₂_ : ihexp → ectx → ectx
⦇⌜_⌟⦈⟨_⟩ : ectx → (Nat × env ) → ectx
_⟨_⇒_⟩ : ectx → htyp → htyp → ectx
_⟨_⇒⦇-⦈⇏_⟩ : ectx → htyp → htyp → ectx
-- note: this judgement is redundant: in the absence of the premises in
-- the red brackets, all syntactically well formed ectxs are valid. with
-- finality premises, that's not true, and that would propagate through
-- additions to the calculus. so we leave it here for clarity but note
-- that, as written, in any use case its either trival to prove or
-- provides no additional information
--ε is an evaluation context
data _evalctx : (ε : ectx) → Set where
ECDot : ⊙ evalctx
ECAp1 : ∀{d ε} →
ε evalctx →
(ε ∘₁ d) evalctx
ECAp2 : ∀{d ε} →
-- d final → -- red brackets
ε evalctx →
(d ∘₂ ε) evalctx
ECNEHole : ∀{ε u σ} →
ε evalctx →
⦇⌜ ε ⌟⦈⟨ u , σ ⟩ evalctx
ECCast : ∀{ ε τ1 τ2} →
ε evalctx →
(ε ⟨ τ1 ⇒ τ2 ⟩) evalctx
ECFailedCast : ∀{ ε τ1 τ2 } →
ε evalctx →
ε ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ evalctx
-- d is the result of filling the hole in ε with d'
data _==_⟦_⟧ : (d : ihexp) (ε : ectx) (d' : ihexp) → Set where
FHOuter : ∀{d} → d == ⊙ ⟦ d ⟧
FHAp1 : ∀{d1 d1' d2 ε} →
d1 == ε ⟦ d1' ⟧ →
(d1 ∘ d2) == (ε ∘₁ d2) ⟦ d1' ⟧
FHAp2 : ∀{d1 d2 d2' ε} →
-- d1 final → -- red brackets
d2 == ε ⟦ d2' ⟧ →
(d1 ∘ d2) == (d1 ∘₂ ε) ⟦ d2' ⟧
FHNEHole : ∀{ d d' ε u σ} →
d == ε ⟦ d' ⟧ →
⦇⌜ d ⌟⦈⟨ (u , σ ) ⟩ == ⦇⌜ ε ⌟⦈⟨ (u , σ ) ⟩ ⟦ d' ⟧
FHCast : ∀{ d d' ε τ1 τ2 } →
d == ε ⟦ d' ⟧ →
d ⟨ τ1 ⇒ τ2 ⟩ == ε ⟨ τ1 ⇒ τ2 ⟩ ⟦ d' ⟧
FHFailedCast : ∀{ d d' ε τ1 τ2} →
d == ε ⟦ d' ⟧ →
(d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) == (ε ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) ⟦ d' ⟧
-- matched ground types
data _▸gnd_ : htyp → htyp → Set where
MGArr : ∀{τ1 τ2} →
(τ1 ==> τ2) ≠ (⦇-⦈ ==> ⦇-⦈) →
(τ1 ==> τ2) ▸gnd (⦇-⦈ ==> ⦇-⦈)
-- instruction transition judgement
data _→>_ : (d d' : ihexp) → Set where
ITLam : ∀{ x τ d1 d2 } →
-- d2 final → -- red brackets
((·λ x [ τ ] d1) ∘ d2) →> ([ d2 / x ] d1)
ITCastID : ∀{d τ } →
-- d final → -- red brackets
(d ⟨ τ ⇒ τ ⟩) →> d
ITCastSucceed : ∀{d τ } →
-- d final → -- red brackets
τ ground →
(d ⟨ τ ⇒ ⦇-⦈ ⇒ τ ⟩) →> d
ITCastFail : ∀{ d τ1 τ2} →
-- d final → -- red brackets
τ1 ground →
τ2 ground →
τ1 ≠ τ2 →
(d ⟨ τ1 ⇒ ⦇-⦈ ⇒ τ2 ⟩) →> (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
ITApCast : ∀{d1 d2 τ1 τ2 τ1' τ2' } →
-- d1 final → -- red brackets
-- d2 final → -- red brackets
((d1 ⟨ (τ1 ==> τ2) ⇒ (τ1' ==> τ2')⟩) ∘ d2) →> ((d1 ∘ (d2 ⟨ τ1' ⇒ τ1 ⟩)) ⟨ τ2 ⇒ τ2' ⟩)
ITGround : ∀{ d τ τ'} →
-- d final → -- red brackets
τ ▸gnd τ' →
(d ⟨ τ ⇒ ⦇-⦈ ⟩) →> (d ⟨ τ ⇒ τ' ⇒ ⦇-⦈ ⟩)
ITExpand : ∀{d τ τ' } →
-- d final → -- red brackets
τ ▸gnd τ' →
(d ⟨ ⦇-⦈ ⇒ τ ⟩) →> (d ⟨ ⦇-⦈ ⇒ τ' ⇒ τ ⟩)
-- single step (in contextual evaluation sense)
data _↦_ : (d d' : ihexp) → Set where
Step : ∀{ d d0 d' d0' ε} →
d == ε ⟦ d0 ⟧ →
d0 →> d0' →
d' == ε ⟦ d0' ⟧ →
d ↦ d'
-- reflexive transitive closure of single steps into multi steps
data _↦*_ : (d d' : ihexp) → Set where
MSRefl : ∀{d} → d ↦* d
MSStep : ∀{d d' d''} →
d ↦ d' →
d' ↦* d'' →
d ↦* d''
-- freshness
mutual
-- ... with respect to a hole context
data envfresh : Nat → env → Set where
EFId : ∀{x Γ} → x # Γ → envfresh x (Id Γ)
EFSubst : ∀{x d σ y} → fresh x d
→ envfresh x σ
→ x ≠ y
→ envfresh x (Subst d y σ)
-- ... for inernal expressions
data fresh : Nat → ihexp → Set where
FConst : ∀{x} → fresh x c
FVar : ∀{x y} → x ≠ y → fresh x (X y)
FLam : ∀{x y τ d} → x ≠ y → fresh x d → fresh x (·λ y [ τ ] d)
FHole : ∀{x u σ} → envfresh x σ → fresh x (⦇-⦈⟨ u , σ ⟩)
FNEHole : ∀{x d u σ} → envfresh x σ → fresh x d → fresh x (⦇⌜ d ⌟⦈⟨ u , σ ⟩)
FAp : ∀{x d1 d2} → fresh x d1 → fresh x d2 → fresh x (d1 ∘ d2)
FCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒ τ2 ⟩)
FFailedCast : ∀{x d τ1 τ2} → fresh x d → fresh x (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
-- ... for external expressions
data freshh : Nat → hexp → Set where
FRHConst : ∀{x} → freshh x c
FRHAsc : ∀{x e τ} → freshh x e → freshh x (e ·: τ)
FRHVar : ∀{x y} → x ≠ y → freshh x (X y)
FRHLam1 : ∀{x y e} → x ≠ y → freshh x e → freshh x (·λ y e)
FRHLam2 : ∀{x τ e y} → x ≠ y → freshh x e → freshh x (·λ y [ τ ] e)
FRHEHole : ∀{x u} → freshh x (⦇-⦈[ u ])
FRHNEHole : ∀{x u e} → freshh x e → freshh x (⦇⌜ e ⌟⦈[ u ])
FRHAp : ∀{x e1 e2} → freshh x e1 → freshh x e2 → freshh x (e1 ∘ e2)
-- x is not used in a binding site in d
mutual
data unbound-in-σ : Nat → env → Set where
UBσId : ∀{x Γ} → unbound-in-σ x (Id Γ)
UBσSubst : ∀{x d y σ} → unbound-in x d
→ unbound-in-σ x σ
→ x ≠ y
→ unbound-in-σ x (Subst d y σ)
data unbound-in : (x : Nat) (d : ihexp) → Set where
UBConst : ∀{x} → unbound-in x c
UBVar : ∀{x y} → unbound-in x (X y)
UBLam2 : ∀{x d y τ} → x ≠ y
→ unbound-in x d
→ unbound-in x (·λ_[_]_ y τ d)
UBHole : ∀{x u σ} → unbound-in-σ x σ
→ unbound-in x (⦇-⦈⟨ u , σ ⟩)
UBNEHole : ∀{x u σ d }
→ unbound-in-σ x σ
→ unbound-in x d
→ unbound-in x (⦇⌜ d ⌟⦈⟨ u , σ ⟩)
UBAp : ∀{ x d1 d2 } →
unbound-in x d1 →
unbound-in x d2 →
unbound-in x (d1 ∘ d2)
UBCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒ τ2 ⟩)
UBFailedCast : ∀{x d τ1 τ2} → unbound-in x d → unbound-in x (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
mutual
data binders-disjoint-σ : env → ihexp → Set where
BDσId : ∀{Γ d} → binders-disjoint-σ (Id Γ) d
BDσSubst : ∀{d1 d2 y σ} → binders-disjoint d1 d2
→ binders-disjoint-σ σ d2
→ binders-disjoint-σ (Subst d1 y σ) d2
-- two terms that do not share any binders
data binders-disjoint : (d1 : ihexp) → (d2 : ihexp) → Set where
BDConst : ∀{d} → binders-disjoint c d
BDVar : ∀{x d} → binders-disjoint (X x) d
BDLam : ∀{x τ d1 d2} → binders-disjoint d1 d2
→ unbound-in x d2
→ binders-disjoint (·λ_[_]_ x τ d1) d2
BDHole : ∀{u σ d2} → binders-disjoint-σ σ d2
→ binders-disjoint (⦇-⦈⟨ u , σ ⟩) d2
BDNEHole : ∀{u σ d1 d2} → binders-disjoint-σ σ d2
→ binders-disjoint d1 d2
→ binders-disjoint (⦇⌜ d1 ⌟⦈⟨ u , σ ⟩) d2
BDAp : ∀{d1 d2 d3} → binders-disjoint d1 d3
→ binders-disjoint d2 d3
→ binders-disjoint (d1 ∘ d2) d3
BDCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒ τ2 ⟩) d2
BDFailedCast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint (d1 ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) d2
mutual
-- each term has to be binders unique, and they have to be pairwise
-- disjoint with the collection of bound vars
data binders-unique-σ : env → Set where
BUσId : ∀{Γ} → binders-unique-σ (Id Γ)
BUσSubst : ∀{d y σ} → binders-unique d
→ binders-unique-σ σ
→ binders-disjoint-σ σ d
→ binders-unique-σ (Subst d y σ)
-- all the variable names in the term are unique
data binders-unique : ihexp → Set where
BUHole : binders-unique c
BUVar : ∀{x} → binders-unique (X x)
BULam : {x : Nat} {τ : htyp} {d : ihexp} → binders-unique d
→ unbound-in x d
→ binders-unique (·λ_[_]_ x τ d)
BUEHole : ∀{u σ} → binders-unique-σ σ
→ binders-unique (⦇-⦈⟨ u , σ ⟩)
BUNEHole : ∀{u σ d} → binders-unique d
→ binders-unique-σ σ
→ binders-unique (⦇⌜ d ⌟⦈⟨ u , σ ⟩)
BUAp : ∀{d1 d2} → binders-unique d1
→ binders-unique d2
→ binders-disjoint d1 d2
→ binders-unique (d1 ∘ d2)
BUCast : ∀{d τ1 τ2} → binders-unique d
→ binders-unique (d ⟨ τ1 ⇒ τ2 ⟩)
BUFailedCast : ∀{d τ1 τ2} → binders-unique d
→ binders-unique (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
|
{
"alphanum_fraction": 0.403398336,
"avg_line_length": 38.3086003373,
"ext": "agda",
"hexsha": "be735f542f738cdfe53b40cde8056462739742a4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "core.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "core.agda",
"max_line_length": 105,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 9551,
"size": 22717
}
|
{-# OPTIONS --rewriting #-}
module Luau.TypeCheck where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; nil; unknown; number; boolean; string; _⇒_; src; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Product using (_×_; _,_)
orUnknown : Maybe Type → Type
orUnknown nothing = unknown
orUnknown (just T) = T
srcBinOp : BinaryOperator → Type
srcBinOp + = number
srcBinOp - = number
srcBinOp * = number
srcBinOp / = number
srcBinOp < = number
srcBinOp > = number
srcBinOp == = unknown
srcBinOp ~= = unknown
srcBinOp <= = number
srcBinOp >= = number
srcBinOp ·· = string
tgtBinOp : BinaryOperator → Type
tgtBinOp + = number
tgtBinOp - = number
tgtBinOp * = number
tgtBinOp / = number
tgtBinOp < = boolean
tgtBinOp > = boolean
tgtBinOp == = boolean
tgtBinOp ~= = boolean
tgtBinOp <= = boolean
tgtBinOp >= = boolean
tgtBinOp ·· = string
data _⊢ᴮ_∈_ : VarCtxt → Block yes → Type → Set
data _⊢ᴱ_∈_ : VarCtxt → Expr yes → Type → Set
data _⊢ᴮ_∈_ where
done : ∀ {Γ} →
---------------
Γ ⊢ᴮ done ∈ nil
return : ∀ {M B T U Γ} →
Γ ⊢ᴱ M ∈ T →
Γ ⊢ᴮ B ∈ U →
---------------------
Γ ⊢ᴮ return M ∙ B ∈ T
local : ∀ {x M B T U V Γ} →
Γ ⊢ᴱ M ∈ U →
(Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V →
--------------------------------
Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V
function : ∀ {f x B C T U V W Γ} →
(Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V →
(Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W →
-------------------------------------------------
Γ ⊢ᴮ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W
data _⊢ᴱ_∈_ where
nil : ∀ {Γ} →
--------------------
Γ ⊢ᴱ (val nil) ∈ nil
var : ∀ {x T Γ} →
T ≡ orUnknown(Γ [ x ]ⱽ) →
----------------
Γ ⊢ᴱ (var x) ∈ T
addr : ∀ {a Γ} T →
-----------------
Γ ⊢ᴱ val(addr a) ∈ T
number : ∀ {n Γ} →
---------------------------
Γ ⊢ᴱ val(number n) ∈ number
bool : ∀ {b Γ} →
--------------------------
Γ ⊢ᴱ val(bool b) ∈ boolean
string : ∀ {x Γ} →
---------------------------
Γ ⊢ᴱ val(string x) ∈ string
app : ∀ {M N T U Γ} →
Γ ⊢ᴱ M ∈ T →
Γ ⊢ᴱ N ∈ U →
----------------------
Γ ⊢ᴱ (M $ N) ∈ (tgt T)
function : ∀ {f x B T U V Γ} →
(Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V →
-----------------------------------------------------
Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U)
block : ∀ {b B T U Γ} →
Γ ⊢ᴮ B ∈ U →
------------------------------------
Γ ⊢ᴱ (block var b ∈ T is B end) ∈ T
binexp : ∀ {op Γ M N T U} →
Γ ⊢ᴱ M ∈ T →
Γ ⊢ᴱ N ∈ U →
----------------------------------
Γ ⊢ᴱ (binexp M op N) ∈ tgtBinOp op
data ⊢ᴼ_ : Maybe(Object yes) → Set where
nothing :
---------
⊢ᴼ nothing
function : ∀ {f x T U V B} →
(x ↦ T) ⊢ᴮ B ∈ V →
----------------------------------------------
⊢ᴼ (just function f ⟨ var x ∈ T ⟩∈ U is B end)
⊢ᴴ_ : Heap yes → Set
⊢ᴴ H = ∀ a {O} → (H [ a ]ᴴ ≡ O) → (⊢ᴼ O)
_⊢ᴴᴱ_▷_∈_ : VarCtxt → Heap yes → Expr yes → Type → Set
(Γ ⊢ᴴᴱ H ▷ M ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴱ M ∈ T)
_⊢ᴴᴮ_▷_∈_ : VarCtxt → Heap yes → Block yes → Type → Set
(Γ ⊢ᴴᴮ H ▷ B ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴮ B ∈ T)
|
{
"alphanum_fraction": 0.4704453441,
"avg_line_length": 23.4493670886,
"ext": "agda",
"hexsha": "cabd27a8a04d41c983b5db68562b49cebaf72a1a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MeltzDev/luau",
"max_forks_repo_path": "prototyping/Luau/TypeCheck.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MeltzDev/luau",
"max_issues_repo_path": "prototyping/Luau/TypeCheck.agda",
"max_line_length": 246,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MeltzDev/luau",
"max_stars_repo_path": "prototyping/Luau/TypeCheck.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1495,
"size": 3705
}
|
module Pi.Syntax where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
infixr 12 _×ᵤ_
infixr 11 _+ᵤ_
infixr 50 _⨾_
infixr 10 _↔_
infix 99 !_
-- Types
data 𝕌 : Set where
𝟘 : 𝕌
𝟙 : 𝕌
_+ᵤ_ : 𝕌 → 𝕌 → 𝕌
_×ᵤ_ : 𝕌 → 𝕌 → 𝕌
⟦_⟧ : (A : 𝕌) → Set
⟦ 𝟘 ⟧ = ⊥
⟦ 𝟙 ⟧ = ⊤
⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
-- Combinators
data _↔_ : 𝕌 → 𝕌 → Set where
unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ↔ t
uniti₊l : {t : 𝕌} → t ↔ 𝟘 +ᵤ t
swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ↔ t₂ +ᵤ t₁
assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ↔ (t₁ +ᵤ t₂) +ᵤ t₃
assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ↔ t₁ +ᵤ (t₂ +ᵤ t₃)
unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ↔ t
uniti⋆l : {t : 𝕌} → t ↔ 𝟙 ×ᵤ t
swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ↔ t₂ ×ᵤ t₁
assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ ×ᵤ t₂) ×ᵤ t₃
assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ↔ t₁ ×ᵤ (t₂ ×ᵤ t₃)
absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ↔ 𝟘
factorzl : {t : 𝕌} → 𝟘 ↔ 𝟘 ×ᵤ t
dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ↔ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃)
factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ↔ (t₁ +ᵤ t₂) ×ᵤ t₃
id↔ : {t : 𝕌} → t ↔ t
_⨾_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ↔ t₂) → (t₂ ↔ t₃) → (t₁ ↔ t₃)
_⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ +ᵤ t₂ ↔ t₃ +ᵤ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ↔ t₃) → (t₂ ↔ t₄) → (t₁ ×ᵤ t₂ ↔ t₃ ×ᵤ t₄)
-- Some useful combinators
unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ↔ t
unite₊r = swap₊ ⨾ unite₊l
uniti₊r : {t : 𝕌} → t ↔ t +ᵤ 𝟘
uniti₊r = uniti₊l ⨾ swap₊
unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ↔ t
unite⋆r = swap⋆ ⨾ unite⋆l
uniti⋆r : {t : 𝕌} → t ↔ t ×ᵤ 𝟙
uniti⋆r = uniti⋆l ⨾ swap⋆
absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ↔ 𝟘
absorbl = swap⋆ ⨾ absorbr
factorzr : {t : 𝕌} → 𝟘 ↔ t ×ᵤ 𝟘
factorzr = factorzl ⨾ swap⋆
distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ↔ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)
distl = swap⋆ ⨾ dist ⨾ (swap⋆ ⊕ swap⋆)
factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ↔ t₁ ×ᵤ (t₂ +ᵤ t₃)
factorl = (swap⋆ ⊕ swap⋆) ⨾ factor ⨾ swap⋆
-- Inverses of combinators
!_ : {A B : 𝕌} → A ↔ B → B ↔ A
! unite₊l = uniti₊l
! uniti₊l = unite₊l
! swap₊ = swap₊
! assocl₊ = assocr₊
! assocr₊ = assocl₊
! unite⋆l = uniti⋆l
! uniti⋆l = unite⋆l
! swap⋆ = swap⋆
! assocl⋆ = assocr⋆
! assocr⋆ = assocl⋆
! absorbr = factorzl
! factorzl = absorbr
! dist = factor
! factor = dist
! id↔ = id↔
! (c₁ ⨾ c₂) = ! c₂ ⨾ ! c₁
! (c₁ ⊕ c₂) = (! c₁) ⊕ (! c₂)
! (c₁ ⊗ c₂) = (! c₁) ⊗ (! c₂)
|
{
"alphanum_fraction": 0.4647540984,
"avg_line_length": 26.5217391304,
"ext": "agda",
"hexsha": "87edbfe6686fef728f60ad7e3ef17cb95834a44f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi/Syntax.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1709,
"size": 2440
}
|
module Automata.Nondeterministic where
-- Standard libraries imports ----------------------------------------
open import Level using ()
renaming (zero to ℓ₀)
open import Data.Nat using (ℕ)
open import Data.Product using (_×_)
open import Data.Vec using (Vec ; [] ; _∷_)
open import Relation.Unary using (Pred)
open import Relation.Binary.PropositionalEquality using (_≡_)
----------------------------------------------------------------------
-- Thesis imports ----------------------------------------------------
open import Utilities.ExistsSyntax using (∃-syntax)
----------------------------------------------------------------------
record NDA (Σ : Set) : Set₁ where
constructor ⟨_,_,_,_⟩
field
Q : Set
S : Pred Q ℓ₀
F : Pred Q ℓ₀
Δ : Q → Σ → Pred Q ℓ₀
Δ* : Q → {n : ℕ} → Vec Σ n → Pred Q ℓ₀
Δ* q [] = q ≡_
Δ* q (x ∷ xs) q′ = ∃ q₀ ∶ Q • ((Δ q x q₀) × (Δ* q₀ xs q′))
Accepts : {n : ℕ} → Pred (Vec Σ n) ℓ₀
Accepts xs = ∃ q ∶ Q • (S q
× ∃ q′ ∶ Q • ((F q′)
× (Δ* q xs q′)))
-- :TODO: are these useful?
_-Reachable : ℕ → Q → Pred Q ℓ₀
_-Reachable n q q′ = ∃ xs ∶ Vec Σ n • (Δ* q xs q′)
Reachable : Q → Pred Q ℓ₀
Reachable q q′ = ∃ n ∶ ℕ • (n -Reachable) q q′
|
{
"alphanum_fraction": 0.4495268139,
"avg_line_length": 29.488372093,
"ext": "agda",
"hexsha": "eede442ed51371b5c4e3a3e5e8e5bff07690cb31",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "armkeh/agda-computability",
"max_forks_repo_path": "src/Automata/Nondeterministic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "armkeh/agda-computability",
"max_issues_repo_path": "src/Automata/Nondeterministic.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "armkeh/agda-computability",
"max_stars_repo_path": "src/Automata/Nondeterministic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 394,
"size": 1268
}
|
module ByteCount where
open import Agda.Builtin.Word
{-# FOREIGN GHC import Foreign.C.Types #-}
postulate
CSize : Set
mkCSize : Word64 → CSize
{-# COMPILE GHC CSize = type CSize #-}
{-# COMPILE GHC mkCSize = CSize #-}
ByteCount : Set
ByteCount = CSize
|
{
"alphanum_fraction": 0.69348659,
"avg_line_length": 16.3125,
"ext": "agda",
"hexsha": "c221676ee16e4ffdbddf2e92fbe3c8d2312f24e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda-editor",
"max_forks_repo_path": "src/ByteCount.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda-editor",
"max_issues_repo_path": "src/ByteCount.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c5ffd117f6d5a98f7c68a2a6b9be54a150c70945",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda-editor",
"max_stars_repo_path": "src/ByteCount.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 74,
"size": 261
}
|
------------------------------------------------------------------------
-- Primitive IO: simple bindings to Haskell types and functions
------------------------------------------------------------------------
module IO.Primitive where
open import Data.String hiding (Costring)
open import Data.Char
open import Foreign.Haskell
------------------------------------------------------------------------
-- The IO monad
postulate
IO : Set → Set
{-# COMPILED_TYPE IO IO #-}
infixl 1 _>>=_
postulate
return : ∀ {A} → A → IO A
_>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B
{-# COMPILED return (\_ -> return :: a -> IO a) #-}
{-# COMPILED _>>=_ (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-}
------------------------------------------------------------------------
-- Simple lazy IO (UTF8-based)
private
Costring = Colist Char
postulate
getContents : IO Costring
readFile : String → IO Costring
writeFile : String → Costring → IO Unit
putStr : Costring → IO Unit
putStrLn : Costring → IO Unit
{-# IMPORT System.IO.UTF8 #-}
{-# COMPILED getContents System.IO.UTF8.getContents #-}
{-# COMPILED readFile System.IO.UTF8.readFile #-}
{-# COMPILED writeFile System.IO.UTF8.writeFile #-}
{-# COMPILED putStr System.IO.UTF8.putStr #-}
{-# COMPILED putStrLn System.IO.UTF8.putStrLn #-}
|
{
"alphanum_fraction": 0.4888226528,
"avg_line_length": 28.5531914894,
"ext": "agda",
"hexsha": "27cc94399fa04774b156569aa58a40a7749d3a7f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/IO/Primitive.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/IO/Primitive.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/IO/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 315,
"size": 1342
}
|
{-# OPTIONS --cubical -van-extra-option-just-to-test-a-hack:0 #-}
|
{
"alphanum_fraction": 0.6666666667,
"avg_line_length": 33,
"ext": "agda",
"hexsha": "fd613ccbdfd1f3f463509668ed6f61efbc3b2ca6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Compiler/simple/Cubical-is-not-supported.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Compiler/simple/Cubical-is-not-supported.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Compiler/simple/Cubical-is-not-supported.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 20,
"size": 66
}
|
open import Function using (_$_)
open import Relation.Nullary using (yes; no)
open import Relation.Binary using (Decidable; Irrelevant; Antisymmetric; Setoid)
open import AKS.Algebra.Bundles using (NonZeroCommutativeRing; Field)
module AKS.Algebra.Consequences {c ℓ} (R : NonZeroCommutativeRing c ℓ) where
open import AKS.Nat using (ℕ)
open import Algebra.Bundles using (CommutativeRing)
open NonZeroCommutativeRing R using (_+_; _*_; -_; _-_; 0#; 1#) renaming (Carrier to C)
open NonZeroCommutativeRing R using (_≈_; _≉_; setoid)
open Setoid setoid using (refl; sym)
open import Relation.Binary.Reasoning.Setoid setoid
open NonZeroCommutativeRing R using (isNonZeroCommutativeRing; commutativeRing)
open CommutativeRing commutativeRing using (+-identityʳ; +-assoc; +-comm; +-congʳ; +-congˡ; +-cong; -‿cong; -‿inverseʳ)
open CommutativeRing commutativeRing using (*-identityˡ; *-cong; *-congʳ; *-congˡ; *-assoc; *-comm; zeroʳ; zeroˡ; commutativeSemiring)
open import AKS.Algebra.Structures C _≈_ using (IsField; IsEuclideanDomain; module Modulus; module Divisibility; IsIntegralDomain; IsGCDDomain; IsUniqueFactorizationDomain)
open import AKS.Algebra.Divisibility commutativeSemiring using (module Euclidean)
open Modulus using (Remainder; 0≈)
open Divisibility _*_ using (_∣_; divides)
module Division⇒EuclideanDomain
(_≈?_ : Decidable _≈_)
(≈-irrelevant : Irrelevant _≈_)
(≉-irrelevant : Irrelevant _≉_)
(∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ)
(_div_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C)
(_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C)
(division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ m * (n div m) {m≉0} + (n mod m) {m≉0})
(modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder 0# ∣_∣ _mod_ n m {m≉0})
(div-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ div y₁) {y₁≉0} ≈ (x₂ div y₂) {y₂≉0})
(mod-distribʳ-* : ∀ c a b {b≉0} {b*c≉0} → ((a * c) mod (b * c)) {b*c≉0} ≈ (a mod b) {b≉0} * c)
(*-cancelˡ : ∀ x {y z} → x ≉ 0# → x * y ≈ x * z → y ≈ z)
where
private
remainder : ∀ n m {m≉0 : m ≉ 0#} → (n mod m) {m≉0} ≈ n - m * (n div m) {m≉0}
remainder n m {m≉0} = begin
n mod m ≈⟨ sym (+-identityʳ (n mod m)) ⟩
n mod m + 0# ≈⟨ +-congˡ (sym (-‿inverseʳ (m * n div m))) ⟩
n mod m + (m * n div m - m * n div m) ≈⟨ sym (+-assoc (n mod m) (m * n div m) (- (m * n div m))) ⟩
(n mod m + m * n div m) - m * n div m ≈⟨ +-congʳ (+-comm (n mod m) (m * n div m)) ⟩
(m * n div m + n mod m) - m * n div m ≈⟨ +-congʳ (sym (division n m {m≉0})) ⟩
n - m * n div m ∎
mod-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ mod y₁) {y₁≉0} ≈ (x₂ mod y₂) {y₂≉0}
mod-cong {x₁} {x₂} {y₁} {y₂} x₁≈x₂ y₁≈y₂ {y₁≉0} {y₂≉0} = begin
x₁ mod y₁ ≈⟨ remainder x₁ y₁ {y₁≉0} ⟩
x₁ - y₁ * x₁ div y₁ ≈⟨ +-cong x₁≈x₂ (-‿cong (*-cong y₁≈y₂ (div-cong x₁≈x₂ y₁≈y₂))) ⟩
x₂ - y₂ * x₂ div y₂ ≈⟨ sym (remainder x₂ y₂ {y₂≉0}) ⟩
x₂ mod y₂ ∎
open Euclidean ∣_∣ _div_ _mod_ _≈?_ ≈-irrelevant ≉-irrelevant division modulus mod-cong mod-distribʳ-* using (gcd; gcd-isGCD) public
isIntegralDomain : IsIntegralDomain _+_ _*_ -_ 0# 1#
isIntegralDomain = record { isNonZeroCommutativeRing = isNonZeroCommutativeRing; *-cancelˡ = *-cancelˡ }
isGCDDomain : IsGCDDomain _+_ _*_ -_ 0# 1# gcd
isGCDDomain = record { isIntegralDomain = isIntegralDomain; gcd-isGCD = gcd-isGCD }
isUniqueFactorizationDomain : IsUniqueFactorizationDomain _+_ _*_ -_ 0# 1# gcd
isUniqueFactorizationDomain = record { isGCDDomain = isGCDDomain }
isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0# 1# ∣_∣ _div_ _mod_ gcd
isEuclideanDomain = record
{ isUniqueFactorizationDomain = isUniqueFactorizationDomain
; division = division
; modulus = modulus
; div-cong = div-cong
; mod-cong = mod-cong
}
module Inverse⇒Field
(_≈?_ : Decidable _≈_)
(≈-irrelevant : Irrelevant _≈_)
(≉-irrelevant : Irrelevant _≉_)
(_/_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C)
(inverse : ∀ (n m : C) {m≉0 : m ≉ 0#} → n ≈ m * (n / m) {m≉0})
where
private
∣_∣ : ∀ n {n≉0 : n ≉ 0#} → ℕ
∣ _ ∣ = 0
_mod_ : ∀ (n m : C) {m≉0 : m ≉ 0#} → C
_ mod _ = 0#
division : ∀ n m {m≉0 : m ≉ 0#} → n ≈ m * (n / m) {m≉0} + (n mod m) {m≉0}
division n m {m≉0} = begin
n ≈⟨ inverse n m {m≉0} ⟩
m * (n / m) ≈⟨ sym (+-identityʳ (m * (n / m))) ⟩
m * (n / m) {m≉0} + (n mod m) {m≉0} ∎
modulus : ∀ n m {m≉0 : m ≉ 0#} → Remainder 0# ∣_∣ _mod_ n m {m≉0}
modulus _ _ = 0≈ refl
*-cancelˡ : ∀ x {y z} → x ≉ 0# → x * y ≈ x * z → y ≈ z
*-cancelˡ x {y} {z} x≢0 x*y≡x*z = begin
y ≈⟨ sym (*-identityˡ y) ⟩
1# * y ≈⟨ *-congʳ (inverse 1# x {x≢0}) ⟩
(x * (1# / x)) * y ≈⟨ *-congʳ (*-comm x (1# / x)) ⟩
((1# / x) * x) * y ≈⟨ *-assoc _ _ _ ⟩
(1# / x) * (x * y) ≈⟨ *-congˡ x*y≡x*z ⟩
(1# / x) * (x * z) ≈⟨ sym (*-assoc _ _ _) ⟩
((1# / x) * x) * z ≈⟨ *-congʳ (*-comm (1# / x) x) ⟩
(x * (1# / x)) * z ≈⟨ *-congʳ (sym (inverse 1# x {x≢0})) ⟩
1# * z ≈⟨ *-identityˡ z ⟩
z ∎
div-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≈ x₂ → y₁ ≈ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ / y₁) {y₁≉0} ≈ (x₂ / y₂) {y₂≉0}
div-cong {x₁} {x₂} {y₁} {y₂} x₁≈x₂ y₁≈y₂ {y₁≉0} {y₂≉0} = *-cancelˡ y₁ y₁≉0 $ begin
y₁ * (x₁ / y₁) ≈⟨ sym (inverse x₁ y₁) ⟩
x₁ ≈⟨ x₁≈x₂ ⟩
x₂ ≈⟨ inverse x₂ y₂ ⟩
y₂ * (x₂ / y₂) ≈⟨ *-congʳ (sym y₁≈y₂) ⟩
y₁ * (x₂ / y₂) ∎
mod-distribʳ-* : ∀ c a b {b≉0} {b*c≉0} → ((a * c) mod (b * c)) {b*c≉0} ≈ (a mod b) {b≉0} * c
mod-distribʳ-* c a b = sym (zeroˡ c)
open Division⇒EuclideanDomain _≈?_ ≈-irrelevant ≉-irrelevant ∣_∣ _/_ _mod_ division modulus div-cong mod-distribʳ-* *-cancelˡ using (gcd; isEuclideanDomain) public
isField : IsField _+_ _*_ -_ 0# 1# _/_ gcd
isField = record { isEuclideanDomain = isEuclideanDomain }
[field] : Field c ℓ
[field] = record { isField = isField }
|
{
"alphanum_fraction": 0.5446652196,
"avg_line_length": 45.7175572519,
"ext": "agda",
"hexsha": "8d5f999fda8f6ce5b4dc6a3426c5fadc5fe4ad9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Algebra/Consequences.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Algebra/Consequences.agda",
"max_line_length": 172,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Algebra/Consequences.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 2787,
"size": 5989
}
|
------------------------------------------------------------------------------
-- Natural numbers (PCF version)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Data.Nat where
open import LTC-PCF.Base
open import LTC-PCF.Data.Nat.Rec
open import LTC-PCF.Data.Nat.Type public
infixl 7 _*_
infixl 6 _+_ _∸_
------------------------------------------------------------------------------
-- Addition with recursion on the first argument.
_+_ : D → D → D
m + n = rec m n (lam (λ _ → lam succ₁))
-- Subtraction with recursion on the second argument.
_∸_ : D → D → D
m ∸ n = rec n m (lam (λ _ → lam pred₁))
-- Multiplication with recursion on the first argument.
_*_ : D → D → D
m * n = rec m zero (lam (λ _ → lam (λ x → n + x)))
|
{
"alphanum_fraction": 0.4551214361,
"avg_line_length": 30.5483870968,
"ext": "agda",
"hexsha": "12acfb527cbd86c9aa451e0dc5cc4f51aa52347e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 221,
"size": 947
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module CombiningProofs.Erasing where
postulate
D : Set
succ₁ : D → D
data N : D → Set where
nsucc₁ : ∀ {n} → N n → N (succ₁ n)
nsucc₂ : ∀ {n} → (Nn : N n) → N (succ₁ n)
-- The types of nsucc₁ and nsucc₂ are the same.
-- (18 April 2013)
-- $ dump-agdai Erasing
-- Qname: Erasing.N.nsucc₁
-- Type: El {getSort = Type (Max []), unEl = Pi []r{El {getSort = Type (Max []), unEl = Def Erasing.D []}} (Abs "n" El {getSort = Type (Max []), unEl = Pi []r(El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Var 0 [])]}) (NoAbs "_" El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Def Erasing.succ₁ [[]r(Var 0 [])])]})})}
-- Qname: Erasing.N.nsucc₂
-- Type: El {getSort = Type (Max []), unEl = Pi []r{El {getSort = Type (Max []), unEl = Def Erasing.D []}} (Abs "n" El {getSort = Type (Max []), unEl = Pi []r(El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Var 0 [])]}) (NoAbs "Nn" El {getSort = Type (Max []), unEl = Def Erasing.N [[]r(Def Erasing.succ₁ [[]r(Var 0 [])])]})})}
|
{
"alphanum_fraction": 0.5451448041,
"avg_line_length": 45.1538461538,
"ext": "agda",
"hexsha": "aa13a50bf50323f2a1558993afe5a7c1366204e3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/CombiningProofs/Erasing.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/CombiningProofs/Erasing.agda",
"max_line_length": 334,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/CombiningProofs/Erasing.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 421,
"size": 1174
}
|
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Functions.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.WellFounded
open import Semirings.Definition
open import Orders.Total.Definition
open import Orders.Partial.Definition
open import Orders.WellFounded.Definition
open import Orders.WellFounded.Induction
module Sets.CantorBijection.Order where
order : Rel (ℕ && ℕ)
order (a ,, b) (c ,, d) = ((a +N b) <N (c +N d)) || (((a +N b) ≡ (c +N d)) && (b <N d))
totalOrder : TotalOrder (ℕ && ℕ)
PartialOrder._<_ (TotalOrder.order totalOrder) = order
PartialOrder.irreflexive (TotalOrder.order totalOrder) {fst ,, snd} (inl x) = exFalso (TotalOrder.irreflexive ℕTotalOrder x)
PartialOrder.irreflexive (TotalOrder.order totalOrder) {fst ,, snd} (inr (_ ,, p)) = exFalso (TotalOrder.irreflexive ℕTotalOrder p)
PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inl pr1) (inl pr2) = inl (TotalOrder.<Transitive ℕTotalOrder pr1 pr2)
PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inl pr1) (inr (f1 ,, f2)) = inl (identityOfIndiscernablesRight _<N_ pr1 f1)
PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inr (f1 ,, f2)) (inl x) = inl (identityOfIndiscernablesLeft _<N_ x (equalityCommutative f1))
PartialOrder.<Transitive (TotalOrder.order totalOrder) {x1 ,, x2} {y1 ,, y2} {z1 ,, z2} (inr (f1 ,, f2)) (inr (fst ,, snd)) = inr (transitivity f1 fst ,, TotalOrder.<Transitive ℕTotalOrder f2 snd)
TotalOrder.totality totalOrder (a ,, b) (c ,, d) with TotalOrder.totality ℕTotalOrder (a +N b) (c +N d)
TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inl (inl x) = inl (inl (inl x))
TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inl (inr x) = inl (inr (inl x))
TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inr eq with TotalOrder.totality ℕTotalOrder b d
TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inr eq | inl (inl x) = inl (inl (inr (eq ,, x)))
TotalOrder.totality totalOrder (a ,, b) (c ,, d) | inr eq | inl (inr x) = inl (inr (inr (equalityCommutative eq ,, x)))
TotalOrder.totality totalOrder (a ,, b) (c ,, .b) | inr eq | inr refl rewrite canSubtractFromEqualityRight {a} {b} {c} eq = inr refl
leastElement : {y : ℕ && ℕ} → order y (0 ,, 0) → False
leastElement {zero ,, b} (inl ())
leastElement {zero ,, b} (inr ())
leastElement {succ a ,, b} (inl ())
leastElement {succ a ,, b} (inr ())
mustDescend : (a b t : ℕ) → order (a ,, b) (t ,, zero) → a +N b <N t
mustDescend a b zero ord = exFalso (leastElement ord)
mustDescend a b (succ t) (inl x) rewrite Semiring.sumZeroRight ℕSemiring t = x
orderWellfounded : WellFounded order
orderWellfounded (a ,, b) = access (go b a)
where
g0 : (c : ℕ) (y : ℕ && ℕ) → order y (c ,, 0) → Accessible order y
-- We want to induct on the second entry of x here, so we decompose so as to put that first.
g : (x : ℕ) → ((y : ℕ) → y <N x → (b : ℕ) (z : ℕ && ℕ) → order z (b ,, y) → Accessible order z) → (c : ℕ) (y : ℕ && ℕ) → order y (c ,, x) → Accessible order y
g0 = rec <NWellfounded (λ z → (x : ℕ && ℕ) (x₁ : order x (z ,, zero)) → Accessible order x) f
where
p : (a b : ℕ) → a ≡ b → (a ,, zero) ≡ (b ,, zero)
p a .a refl = refl
f : (x : ℕ) (x₁ : (x₂ : ℕ) (x₃ : x₂ <N x) (x₄ : ℕ && ℕ) (x₅ : order x₄ (x₂ ,, zero)) → Accessible order x₄) (x₂ : ℕ && ℕ) (x₃ : order x₂ (x ,, zero)) → Accessible order x₂
f zero pr y ord = exFalso (leastElement ord)
f (succ m) pr (fst ,, snd) (inl pr2) = h snd fst pr2
where
go : (x : ℕ) (x₁ : (x₂ : ℕ) (x₃ : x₂ <N x) (x₄ : ℕ) (x₅ : x₄ +N x₂ <N succ (m +N zero)) → Accessible order (x₄ ,, x₂)) (x₂ : ℕ) (x₃ : x₂ +N x <N succ (m +N zero)) → Accessible order (x₂ ,, x)
go bound pr2 toProve bounded with TotalOrder.totality ℕTotalOrder (toProve +N bound) (m +N 0)
... | inl (inl bl) = pr m (le 0 refl) (toProve ,, bound) (inl bl)
... | inl (inr bl) = exFalso (noIntegersBetweenXAndSuccX (m +N 0) bl bounded)
go zero pr2 toProve _ | inr bl rewrite Semiring.sumZeroRight ℕSemiring m | Semiring.sumZeroRight ℕSemiring toProve = access λ i i<z → pr m (le 0 refl) i (inl (mustDescend (_&&_.fst i) (_&&_.snd i) (m +N zero) (identityOfIndiscernablesLeft order (identityOfIndiscernablesRight order i<z (p toProve (m +N 0) (transitivity bl (equalityCommutative (Semiring.sumZeroRight ℕSemiring m))))) refl)))
go (succ bound) pr2 toProve _ | inr bl = access desc
where
desc : (i : ℕ && ℕ) → (order i (toProve ,, succ bound)) → Accessible order i
desc (i1 ,, i2) (inl ord) = pr m (le zero refl) (i1 ,, i2) (inl (identityOfIndiscernablesRight _<N_ ord bl))
desc (i1 ,, i2) (inr (ord1 ,, ord2)) = pr2 i2 ord2 i1 (le 0 (applyEquality succ (transitivity ord1 bl)))
h : (a : ℕ) (b : ℕ) (pr2 : b +N a <N succ m +N 0) → Accessible order (b ,, a)
h = rec <NWellfounded (λ z → (x2 : ℕ) (x1 : x2 +N z <N succ (m +N zero)) → Accessible order (x2 ,, z)) go
g zero _ = g0
g (succ x) pr zero (y1 ,, y2) (inl pr1) with TotalOrder.totality ℕTotalOrder (y1 +N y2) x
g (succ x) pr zero (y1 ,, y2) (inl pr1) | inl (inl y1+y2<x) = pr x (le 0 refl) zero (y1 ,, y2) (inl y1+y2<x)
g (succ x) pr zero (y1 ,, y2) (inl pr1) | inl (inr x<y1+y2) = exFalso (noIntegersBetweenXAndSuccX x x<y1+y2 pr1)
g (succ x) pr zero (y1 ,, y2) (inl pr1) | inr y1+y2=x = access (λ y y<zs → pr x (le 0 refl) zero y (ans y y<zs))
where
ans : (y : ℕ && ℕ) → order y (y1 ,, y2) → (_&&_.fst y +N _&&_.snd y <N x) || ((_&&_.fst y +N _&&_.snd y ≡ x) && (_&&_.snd y <N x))
ans (fst ,, snd) (inl x) rewrite y1+y2=x = inl x
ans (zero ,, snd) (inr (a1 ,, a2)) rewrite y1+y2=x | a1 = exFalso (bad x y1 y2 y1+y2=x a2)
where
bad : (x y1 y2 : ℕ) → y1 +N y2 ≡ x → x <N y2 → False
bad x zero y2 y1+y2=x x<y2 = TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesRight _<N_ x<y2 y1+y2=x)
bad x (succ y1) y2 y1+y2=x x<y2 rewrite equalityCommutative y1+y2=x = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder x<y2 (identityOfIndiscernablesRight _<N_ (addingIncreases y2 y1) (Semiring.commutative ℕSemiring y2 (succ y1))))
ans (succ fst ,, snd) (inr (a1 ,, a2)) rewrite y1+y2=x = inr (a1 ,, le fst a1)
g (succ x) pr zero (zero ,, y2) (inr (fst ,, snd)) = exFalso (TotalOrder.irreflexive ℕTotalOrder (identityOfIndiscernablesLeft _<N_ snd fst))
g (succ x) pr zero (succ y1 ,, y2) (inr (fst ,, snd)) = pr y2 snd (succ (succ y1)) (succ y1 ,, y2) (inl (le 0 refl))
g (succ x) pr (succ c) y (inl z) = pr x (le 0 refl) (succ (succ c)) y (inl (identityOfIndiscernablesRight _<N_ z (applyEquality succ (transitivity (Semiring.commutative ℕSemiring c (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x c))))))
g (succ x) pr (succ c) y (inr (fst ,, snd)) with TotalOrder.totality ℕTotalOrder (_&&_.snd y) x
... | inl (inl bl) = pr x (le 0 refl) (succ (succ c)) y (inr (transitivity fst (applyEquality succ (transitivity (Semiring.commutative ℕSemiring c (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x c)))) ,, bl))
... | inl (inr bl) = exFalso (noIntegersBetweenXAndSuccX x bl snd)
g (succ x) pr (succ c) (y1 ,, .x) (inr (fst ,, _)) | inr refl with canSubtractFromEqualityRight {y1} {x} {succ (succ c)} (transitivity fst (applyEquality succ (transitivity (Semiring.commutative ℕSemiring c (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x c)))))
g (succ x) pr (succ c) (.(succ (succ c)) ,, .x) (inr (_ ,, _)) | inr refl | refl = pr x (le 0 refl) (succ (succ (succ c))) (succ (succ c) ,, x) (inl (le 0 refl))
go : (a : ℕ) → (b : ℕ) → (y : ℕ && ℕ) → order y (b ,, a) → Accessible order y
go = rec <NWellfounded (λ (a : ℕ) → (b : ℕ) → (y : ℕ && ℕ) → order y (b ,, a) → Accessible order y) g
|
{
"alphanum_fraction": 0.6151083591,
"avg_line_length": 79.9504950495,
"ext": "agda",
"hexsha": "b6a67746782ad841134514a84d1553f16153190a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/CantorBijection/Order.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/CantorBijection/Order.agda",
"max_line_length": 403,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/CantorBijection/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3016,
"size": 8075
}
|
module Basic.Axiomatic.Partial where
open import Data.Bool hiding (not; if_then_else_; _∧_)
open import Data.Vec hiding ([_]; _++_; split)
open import Function
open import Relation.Binary.PropositionalEquality
open import Data.Product
import Level as L
open import Utils.Decidable
open import Basic.AST
open import Basic.BigStep
{-
Here we define a Hoare logic for partial correctness of While programs (chapter 6.2).
The most important point here is the choice of representation for predicates.
The book mention intensional and extensional approaches. In the intensional approach,
we define a separate assertion language. However, the assertion language has to be powerful
enough to be able to express useful properties of the program state, and it takes quite a bit
of work to define such a language. An advatange of the intensional approach is that we could reuse
the same assertion language to extend the object language in other ways.
The book uses the extensional approach, and so do we. We go a bit further than the book though:
the book has boolean predicates over the program state, while we have type theoretic
"(State n → Set)" predicates. This means that our predicates can be proof-relevant and contain data,
so they can express computations and transformations on states.
However, the higher-order nature of the "(State n → Set)" representation of predicates also makes
type inference quite hard. I attepmeted to do some correctness proofs with the Hoare logics, and
it's certainly feasible, but we would need a lot more machinery and lots of helper functions to
make it convenient enough.
It's interesting to note that manual proof-writing is generally easier with Hoare logics than with
raw semantics, but here in Agda it's the opposite: the proofs in raw semantics (see e. g. the
factorial proofs in Basic.SmallStep, Basic.BigStep and Extended.FunRetRec) are pretty neat convenient,
since Agda keeps track of the program state for us and hides lots of unnecessary details.
Side note: we could have made our definition universe polymorphic. It would be a trivial extension;
the reason we don't have it is that we don't need that much power of expression for any of our proofs.
Just using "Set" suffices.
-}
{-
Predicate combinators: these just lift conjunction and implication into the State environment.
-}
_∧_ :
∀ {α β γ}{A : Set α}
→ (A → Set β)
→ (A → Set γ)
→ (A → Set _)
_∧_ f g x = f x × g x
_==>_ :
∀ {α β γ}{A : Set α}
→ (A → Set β)
→ (A → Set γ)
→ Set _
_==>_ f g = ∀ {x} → f x → g x
infixr 4 _,_
data 〈_〉_〈_〉 {n} : (State n → Set) → St n → (State n → Set) → Set₁ where
skip :
∀ {P}
→ -----------------
〈 P 〉 skip 〈 P 〉
ass :
∀ {x a P}
→ ----------------------------------------------
〈 (λ s → P (s [ x ]≔ ⟦ a ⟧ᵉ s)) 〉 x := a 〈 P 〉
_,_ :
∀ {P Q R S₁ S₂} →
〈 P 〉 S₁ 〈 Q 〉 → 〈 Q 〉 S₂ 〈 R 〉
→ --------------------------------
〈 P 〉 S₁ , S₂ 〈 R 〉
if :
∀ {P Q b S₁ S₂} →
〈 (T ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₁ 〈 Q 〉 → 〈 (F ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S₂ 〈 Q 〉
→ --------------------------------------------------------------
〈 P 〉 if b then S₁ else S₂ 〈 Q 〉
while :
∀ {P b S} →
〈 (T ∘ ⟦ b ⟧ᵉ) ∧ P 〉 S 〈 P 〉
→ ----------------------------------------
〈 P 〉 while b do S 〈 (F ∘ ⟦ b ⟧ᵉ) ∧ P 〉
cons :
∀ {P' Q' P Q S} →
P ==> P' → 〈 P' 〉 S 〈 Q' 〉 → Q' ==> Q
→ -----------------------------------------
〈 P 〉 S 〈 Q 〉
{-
A part of exercise 6.13 (associativity of statement composition with respect to our logic).
-}
split :
∀ {n P R}{S₁ S₂ : St n}
→ 〈 P 〉 S₁ , S₂ 〈 R 〉
→ ∃ λ Q
→ (〈 P 〉 S₁ 〈 Q 〉) × (〈 Q 〉 S₂ 〈 R 〉)
split (p , p₁) = _ , (p , p₁)
split (cons x p y) with split p
... | Q , (p1 , p2) = Q , (cons x p1 id , cons id p2 y)
ex-613a :
∀ {n P Q}{S₁ S₂ S₃ : St n}
→ 〈 P 〉 S₁ , (S₂ , S₃) 〈 Q 〉
→ 〈 P 〉 (S₁ , S₂) , S₃ 〈 Q 〉
ex-613a (p , p₁) with split p₁
... | _ , (p₁₁ , p₁₂) = (p , p₁₁) , p₁₂
ex-613a (cons x p x₁) = cons x (ex-613a p) x₁
ex-613b :
∀ {n P Q}{S₁ S₂ S₃ : St n}
→ 〈 P 〉 (S₁ , S₂) , S₃ 〈 Q 〉
→ 〈 P 〉 S₁ , (S₂ , S₃) 〈 Q 〉
ex-613b (p₁ , p₂) with split p₁
... | _ , (p₁₁ , p₁₂) = p₁₁ , (p₁₂ , p₂)
ex-613b (cons x p x₁) = cons x (ex-613b p) x₁
{-
Now we set out to prove soundess and completeness of our Hoare logic (see chapter 6.3).
Note that we express validity of a Hoare triple in terms of the weakest liberal precondition:
⊨ₚ { P } S { Q } := (P ==> wlp S Q)
This is just a notational conveneince, but for some reason I also find it pleasing to the eye.
-}
-- Weakest liberal precondition
------------------------------------------------------------
wlp : ∀ {n} → St n → (State n → Set) → State n → Set
wlp S Q s = ∀ {s'} → ⟨ S , s ⟩⟱ s' → Q s'
-- Soundness
------------------------------------------------------------
{-
This proof is the same as in the book, because it's rather simple and there's not
much choice.
-}
sound : ∀ {n}{S : St n}{P Q} → 〈 P 〉 S 〈 Q 〉 → (P ==> wlp S Q)
sound skip ps skip = ps
sound ass ps ass = ps
sound (p , p₁) ps (run , run₁) = sound p₁ (sound p ps run) run₁
sound (if p p₁) ps (if-true x run) = sound p (x , ps) run
sound (if p p₁) ps (if-false x run) = sound p₁ (x , ps) run
sound (while p) ps (while-true x run run₁) = sound (while p) (sound p (x , ps) run) run₁
sound (while p) ps (while-false x) = x , ps
sound (cons x p x₁) ps run = x₁ (sound p (x ps) run)
-- Completeness
------------------------------------------------------------
{-
This one differs from the book proof.
The book proves the following:
∀ S Q → 〈 wlp S Q 〉 S 〈 Q 〉
then uses "cons" and the definition of "wlp" to infer 〈 P 〉 S 〈 Q 〉 from (P ==> wlp S Q).
We instead prove completeness directly. Our job here is essentially to recurse on sub-statements,
while making the postcondition of that statement equal to the weakest precondition of the following
statement.
As a result, the proofs for the "if_then_else_" , composition and "while" cases are all
a bit simpler than the book proofs.
In the case of "while", the book makes an unnecessary twist. It uses the law of excluded middle
on "〈 while b do S , s' 〉⟶ s''" derivations, but there's actually no need for that. It would be
indeed ugly in Agda, where we would have to assume classical logic and destroy constructivity
in order to be able to write that proof.
-}
complete : ∀ {n}(S : St n){P Q} → (P ==> wlp S Q) → 〈 P 〉 S 〈 Q 〉
complete (x := a) f = cons (λ z → f z ass) ass id
complete skip f = cons (λ z → f z skip) skip id
complete (S , S₁){P}{Q} f =
complete S {P} {wlp S₁ Q} (λ ps runS runS₁ → f ps (runS , runS₁))
, complete S₁ id
complete (if b then S else S₁){P}{Q} f =
if (complete S {(T ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} (λ {(pb , pP) → λ runS → f pP (if-true pb runS)}))
(complete S₁ {(F ∘ ⟦ b ⟧ᵉ) ∧ P} {Q} (λ {(pb , pP) → λ runS₁ → f pP (if-false pb runS₁)}))
complete (while b do S){P}{Q} f =
cons f
(while
(complete S {(T ∘ ⟦ b ⟧ᵉ) ∧ W} {W}
(λ {(pb , pw) → λ runS runW → pw (while-true pb runS runW)})))
(λ {(pb , pw) → pw (while-false pb)})
where W = wlp (while b do S) Q
|
{
"alphanum_fraction": 0.5620932755,
"avg_line_length": 33.8348623853,
"ext": "agda",
"hexsha": "a982e946537f634c76ff046c9b58838fa5b4edf8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/Axiomatic/Partial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/Axiomatic/Partial.agda",
"max_line_length": 103,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/Axiomatic/Partial.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 2535,
"size": 7376
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.LT-Models where
-- Given a fixed Lawvere Theory LT and a fixed category C,
-- the Functors [LT , C] form a category.
-- The proof is basically the same as that of Functors.
open import Level
open import Categories.Category.Core using (Category)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-CartesianCategory)
open import Categories.NaturalTransformation
using (NaturalTransformation; _∘ᵥ_) renaming (id to idN)
open import Categories.NaturalTransformation.Equivalence using (_≃_; ≃-isEquivalence)
open import Categories.Theory.Lawvere using (LawvereTheory; ModelsOf_In_)
private
variable
o ℓ e o′ ℓ′ e′ : Level
-- The reason the proofs below are so easy is that _∘ᵥ_ 'computes' all the way down into
-- expressions in C, from which the properties follow.
LT-Models : LawvereTheory ℓ e → CartesianCategory o′ ℓ′ e′ → Category (ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (ℓ ⊔ ℓ′ ⊔ e′) e′
LT-Models LT C = record
{ Obj = ModelsOf LT In C
; _⇒_ = λ m₁ m₂ → NaturalTransformation (ModelsOf_In_.mod m₁) (ModelsOf_In_.mod m₂)
; _≈_ = _≃_
; id = idN
; _∘_ = _∘ᵥ_
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = ≃-isEquivalence
; ∘-resp-≈ = λ eq eq′ → ∘-resp-≈ eq eq′
}
where
module C = CartesianCategory C using (U)
open Category C.U
LT-SetoidsModels : {ℓ′ e′ : Level} → LawvereTheory ℓ e → Category (ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) (ℓ ⊔ ℓ′ ⊔ e′) (ℓ′ ⊔ e′)
LT-SetoidsModels {ℓ′ = ℓ′} {e′} LT = LT-Models LT (Setoids-CartesianCategory ℓ′ e′)
|
{
"alphanum_fraction": 0.6798396334,
"avg_line_length": 37.9565217391,
"ext": "agda",
"hexsha": "dfac09952cde29acbeeda4165ead2fa1142bab6d",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/LT-Models.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/LT-Models.agda",
"max_line_length": 113,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/LT-Models.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 583,
"size": 1746
}
|
module Auto-Modules where
open import Auto.Prelude hiding (cong; trans)
module NonemptySet (X : Set) (x : X) where
h0 : (P : X → Set) → (∀ x → P x) → Σ X P
h0 = {!!}
-- h0 = λ P h → Σ-i x (h x)
module WithRAA (RAA : ∀ A → ¬ (¬ A) → A) where
h1 : ∀ A → A ∨ ¬ A
h1 = {!!}
--h1 = λ A → RAA (A ∨ ((x : A) → ⊥)) (λ z → z (∨-i₂ (λ x → z (∨-i₁ x))))
module B where
h2 : ∀ A → A ∨ ¬ A
h2 = {!!}
module A (X : Set) (x : X) where
postulate AllSame : {x y : X} → x ≡ y
n0 : (P : X → Set) → Σ X P → ∀ x → P x
-- n0 = {!subst AllSame!} -- no solution found
n0 = λ P h x → subst P (Σ.wit h) x AllSame (Σ.prf h)
module B (X : Set) (x y : X) (P : X → Set) where
postulate p : P x
h3 : P x
h3 = {!p!}
-- h3 = p
module Setoid (X : Set)
(Eq : X → X → Set)
(refl : ∀ {x} → Eq x x)
(symm : ∀ {x₁ x₂} → Eq x₁ x₂ → Eq x₂ x₁)
(subst : ∀ {x₁ x₂} → (P : X → Set) → Eq x₁ x₂ → P x₁ → P x₂)
where
cong : ∀ {x₁ x₂} → (f : X → X) → Eq x₁ x₂ → Eq (f x₁) (f x₂)
cong = {!!} -- hole 4
-- cong = λ {x₁} {x₂} f z → subst (λ z₁ → Eq (f x₁) (f z₁)) z refl
trans : ∀ {x₁ x₂ x₃} → Eq x₁ x₂ → Eq x₂ x₃ → Eq x₁ x₃
trans = {!!} -- hole 5
-- trans = λ {x₁} {x₂} {x₃} z z₁ → subst (Eq x₁) z₁ z
|
{
"alphanum_fraction": 0.4453376206,
"avg_line_length": 24.88,
"ext": "agda",
"hexsha": "adaa96f6b723b18eb66d2d571c7066f10688b4df",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Auto-Modules.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Auto-Modules.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Auto-Modules.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 575,
"size": 1244
}
|
module Base where
data True : Set where
T : True
data False : Set where
infix 20 _*_
data _*_ (A : Set)(B : A -> Set) : Set where
<_,_> : (x : A) -> B x -> A * B
rel : Set -> Set1
rel A = A -> A -> Set
pred : Set -> Set1
pred A = A -> Set
Refl : {A : Set} -> rel A -> Set
Refl {A} R = {x : A} -> R x x
Sym : {A : Set} -> rel A -> Set
Sym {A} R = {x y : A} -> R x y -> R y x
Trans : {A : Set} -> rel A -> Set
Trans {A} R = {x y z : A} -> R x y -> R y z -> R x z
Map : {A : Set} -> rel A -> {B : Set} -> rel B -> pred (A -> B)
Map {A} _R_ _S_ f = {x y : A} -> x R y -> f x S f y
|
{
"alphanum_fraction": 0.4521008403,
"avg_line_length": 18.59375,
"ext": "agda",
"hexsha": "276ce54cb93f808c555289912277ca9e315dad8c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/univ/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/univ/Base.agda",
"max_line_length": 63,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/univ/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 253,
"size": 595
}
|
------------------------------------------------------------------------
-- Pointers to results from the paper
------------------------------------------------------------------------
-- Note that the code has evolved after the paper was published. For
-- code that is closer to the paper, see the version of the code that
-- is distributed with the paper.
{-# OPTIONS --sized-types #-}
module README.Pointers-to-results-from-the-paper where
import Bisimilarity
import Bisimilarity.CCS
import Bisimilarity.Classical
import Bisimilarity.Comparison
import Bisimilarity.Delay-monad
import Bisimilarity.Equational-reasoning-instances
import Bisimilarity.CCS.Examples
import Bisimilarity.CCS.Examples.Natural-numbers
import Bisimilarity.Step
import Bisimilarity.Up-to
import Bisimilarity.Up-to.CCS
import Bisimilarity.Up-to.Counterexamples
import Bisimilarity.Weak
import Bisimilarity.Weak.CCS
import Bisimilarity.Weak.Delay-monad
import Bisimilarity.Weak.Up-to
import Delay-monad
import Delay-monad.Bisimilarity
import Delay-monad.Bisimilarity.Alternative
import Delay-monad.Bisimilarity.Negative
import Expansion
import Expansion.CCS
import Expansion.Delay-monad
import Indexed-container
import Indexed-container.Delay-monad
import Labelled-transition-system
import Labelled-transition-system.CCS
import Labelled-transition-system.Delay-monad
import Relation
import Similarity
import Similarity.CCS
import Up-to
import Up-to.Closure
------------------------------------------------------------------------
-- Section 2
-- The Delay monad.
--
-- Note that, unlike the definition in the paper, this definition is
-- universe-polymorphic. Similar remarks apply to many definitions
-- below as well.
Delay = Delay-monad.Delay
Delay′ = Delay-monad.Delay′
-- The non-terminating computation never.
never = Delay-monad.never
-- Strong bisimilarity for the delay monad.
--
-- Note that, unlike in the paper, strong bisimilarity, weak
-- bisimilarity and the expansion relation are defined as a single
-- family (with an extra index).
[_]_∼D_ = Delay-monad.Bisimilarity.[_]_∼_
[_]_∼′D_ = Delay-monad.Bisimilarity.[_]_∼′_
-- Strong bisimilarity is transitive.
--
-- (The proof is more general than the one in the paper.)
transitiveˢ = Delay-monad.Bisimilarity.transitive-∼ʳ
------------------------------------------------------------------------
-- Section 3
-- Indexed containers.
--
-- The paper defines indexed containers with one index type, but this
-- definition uses two.
Container = Indexed-container.Container
⟦_⟧ = Indexed-container.⟦_⟧
map = Indexed-container.map
-- Index-preserving functions.
_⊆_ = Relation._⊆_
-- The greatest fixpoint.
ν = Indexed-container.ν
ν′ = Indexed-container.ν′
ν-out = Indexed-container.ν-out
ν-in = Indexed-container.ν-in
unfold = Indexed-container.unfold
-- Relation containment (_⊆_) is not antisymmetric if the index type
-- is inhabited.
⊆-not-antisymmetric = Relation.⊆-not-antisymmetric
-- The shapes of a container are in pointwise bijective correspondence
-- with the interpretation of the container applied to the constant
-- function yielding the unit type.
Shape↔⟦⟧⊤ = Indexed-container.Shape↔⟦⟧⊤
-- A container corresponding to the Delay monad.
DelayC = Indexed-container.Delay-monad.DelayC
-- A (size-preserving) logical equivalence between the direct
-- definition of the delay monad and the indirect definition using ν
-- and the container DelayC.
Delay⇔νDelayC = Indexed-container.Delay-monad.Delay⇔νDelayC
-- Bisimilarity for ν.
ν-bisimilar = Indexed-container.ν-bisimilar
-- The two components of Delay⇔νDelayC {i = ∞} are inverses up to
-- (strong) bisimilarity.
Delay⇔νDelayC-inverses =
Indexed-container.Delay-monad.Delay⇔νDelayC-inverses
------------------------------------------------------------------------
-- Section 4
-- Labelled transition systems.
LTS = Labelled-transition-system.LTS
-- The record type B.
--
-- The type is parametrised so that it can also be used to define weak
-- bisimilarity and expansion.
B = Bisimilarity.Step.Step
-- The container B^C, roughly as given in the paper.
B^C = Bisimilarity.Step.StepC′
-- The code mainly uses another definition of B^C, built up from
-- smaller building blocks, and employing a trick to make it easier
-- for Agda to infer implicit arguments.
B^C-code = Bisimilarity.Step.StepC
-- The two definitions of B^C have interpretations that are pointwise
-- logically equivalent, and in the presence of extensionality they
-- are pointwise isomorphic.
B^C-code↔B^C = Bisimilarity.Step.StepC↔StepC′
-- The interpretation of B^C is pointwise logically equivalent to B,
-- and in the presence of extensionality they are pointwise
-- isomorphic.
B↔B^C = Bisimilarity.Step.Step↔StepC′
-- The traditional definition of bisimilarity.
Bisimilar = Bisimilarity.Classical._∼_
-- The definition using ν.
[_]_∼_ = Bisimilarity.[_]_∼_
-- The two definitions are pointwise logically equivalent.
classical-and-ν-equivalent =
Bisimilarity.Comparison.classical⇔coinductive
-- The definition using ν′.
[_]_∼′_ = Bisimilarity.[_]_∼′_
-- Derived transition relations.
_⇒_ = Labelled-transition-system.LTS._⇒_
_[_]⇒_ = Labelled-transition-system.LTS._[_]⇒_
_[_]⇒̂_ = Labelled-transition-system.LTS._[_]⇒̂_
_[_]→̂_ = Labelled-transition-system.LTS._[_]⟶̂_
-- Weak bisimilarity.
[_]_≈_ = Bisimilarity.Weak.[_]_≈_
-- Expansion.
[_]_≳_ = Expansion.[_]_≳_
-- A general definition that can be instantiated with different
-- transition relations to yield strong or weak bisimilarity or the
-- expansion relation.
import Bisimilarity.General
-- The labelled transition system for the delay monad.
delay-monad-lts = Labelled-transition-system.Delay-monad.delay-monad
-- The definition of bisimilarity obtained from this LTS is pointwise
-- logically equivalent to the direct definition of strong
-- bisimilarity for the delay monad.
delay-monad-direct⇔indirect = Bisimilarity.Delay-monad.direct⇔indirect
-- Symmetry of bisimilarity for an arbitrary LTS.
--
-- Note that, due to the use of a container in the definition of
-- strong bisimilarity, the proof uses a helper function instead of
-- the copatterns left-to-right and right-to-left. Furthermore the
-- function map₃ is not used, but rather a combination of other
-- functions. Similar remarks apply to several definitions below.
symmetric = Bisimilarity.symmetric-∼
symmetric′ = Bisimilarity.symmetric-∼′
-- Transitivity of bisimilarity for an arbitrary LTS.
transitive = Bisimilarity.transitive-∼
------------------------------------------------------------------------
-- Section 5
-- CCS.
Name-with-kind = Labelled-transition-system.CCS.Name-with-kind
co = Labelled-transition-system.CCS.co
Action = Labelled-transition-system.CCS.Action
is-silent = Labelled-transition-system.CCS.is-silent
Proc = Labelled-transition-system.CCS.Proc
Proc′ = Labelled-transition-system.CCS.Proc′
_[_]→_ = Labelled-transition-system.CCS._[_]⟶_
_∉_ = Labelled-transition-system.CCS._∉_
-- The transition relation takes finite processes to finite processes.
finite→finite = Labelled-transition-system.CCS.finite→finite
-- Restricted and the corresponding lemma.
Restricted = Bisimilarity.CCS.Examples.Restricted
Restricted∼∅ = Bisimilarity.CCS.Examples.Restricted∼∅
-- ∅ is a left identity for parallel composition.
∣-left-identity = Bisimilarity.CCS.∣-left-identity
-- Proofs showing that all the CCS process constructors preserve
-- strong bisimilarity. (For ∅ the proof is simply reflexivity of
-- strong bisimilarity.)
--
-- The proofs are written in such a way that the arguments can be
-- reused for similar proofs about strong similarity. (See below for
-- proofs that are closer to the proofs in the paper.)
module Strong-bisimilarity-congruence where
_∣-cong_ = Bisimilarity.CCS._∣-cong_
·-cong = Bisimilarity.CCS._·-cong_
!-cong = Bisimilarity.CCS.!-cong_
_⊕-cong_ = Bisimilarity.CCS._⊕-cong_
⟨ν_⟩-cong = Bisimilarity.CCS.⟨ν_⟩-cong
∅-cong = Bisimilarity.reflexive-∼
-- Some proofs have been repeated in order to provide code which is
-- closer to that presented in the paper.
module As-in-the-paper where
_∣-cong_ = Bisimilarity.CCS._∣-congP_
·-cong = Bisimilarity.CCS.·-congP
!-cong = Bisimilarity.CCS.!-congP
-- The code uses overloaded equational reasoning combinators.
import Equational-reasoning
-- The proof As-in-the-paper._∣-cong_ does not use symmetric′, but the
-- overloaded combinator symmetric. Agda resolves this use of
-- symmetric to an instance corresponding to symmetric′.
symmetric′-instance =
Bisimilarity.Equational-reasoning-instances.symmetric∼′
-- Lemmas corresponding to ·-cong for expansion and weak bisimilarity.
module ·-cong where
expansion = Expansion.CCS._·-cong_
weak-bisimilarity = Bisimilarity.Weak.CCS._·-cong_
-- The example with P and Q.
P = Bisimilarity.CCS.Examples.Natural-numbers.P
Q = Bisimilarity.CCS.Examples.Natural-numbers.Q
P∼Q = Bisimilarity.CCS.Examples.Natural-numbers.P∼Q
-- The processes in the family P are irregular.
P-irregular = Bisimilarity.CCS.Examples.Natural-numbers.P-irregular
-- The combinators _■ and _∼⟨_⟩_ presented in the paper correspond to
-- two instances.
_■ = Bisimilarity.Equational-reasoning-instances.reflexive∼
_∼⟨_⟩_ = Bisimilarity.Equational-reasoning-instances.trans∼∼
-- Equations of the form [ ∞ ] P ∼ (C [ P ]) have unique solutions up
-- to bisimilarity for contexts C where every hole is under a prefix.
existence = Bisimilarity.CCS.solutions-exist
uniqueness = Bisimilarity.CCS.unique-solutions
------------------------------------------------------------------------
-- Section 6
-- Up-to techniques.
Up-to-technique = Up-to.Up-to-technique
-- Relation transformers.
Trans = Relation.Trans
-- Size-preserving transformers.
Size-preserving = Up-to.Size-preserving
-- Composition of binary relations.
_⊙_ = Relation._⊙_
-- Up to bisimilarity.
Up-to-bisimilarity =
Bisimilarity.Up-to.Up-to-bisimilarity
up-to-bisimilarity-size-preserving =
Bisimilarity.Up-to.up-to-bisimilarity-size-preserving
-- Up to context.
Up-to-context = Bisimilarity.Up-to.CCS.Up-to-context
up-to-context-size-preserving =
Bisimilarity.Up-to.CCS.up-to-context-size-preserving
-- Up to the simple context consisting of replication applied to a
-- single hole.
Up-to-! = Bisimilarity.Up-to.CCS.Up-to-!
up-to-!-size-preserving = Bisimilarity.Up-to.CCS.up-to-!-size-preserving
-- If a transformer is size-preserving, then it satisfies a
-- corresponding property for ν′ (and vice versa).
size-preserving′ = Up-to.size-preserving⇔size-preserving′
-- Size-preserving transformers are up-to techniques.
size-preserving→up-to = Up-to.size-preserving→up-to
-- Monotonicity.
Monotone = Relation.Monotone
-- The definition of Size-preserving can be simplified for monotone
-- transformers.
simplification = Up-to.monotone→⇔
-- There are at least two size-preserving relation transformers that
-- are not monotone (or extensive).
not-monotone =
Bisimilarity.Up-to.Counterexamples.∃-2-size-preserving׬[monotone⊎extensive]
-- There is a container C such that there are at least two
-- transformers that, despite preserving every approximation of the
-- greatest fixpoint of C, are not up-to techniques with respect to C.
not-up-to =
Bisimilarity.Up-to.Counterexamples.∃special-case-of-size-preserving׬up-to
-- There are monotone (and extensive) up-to techniques G and H such
-- that G ∘ H is not an up-to-technique.
not-closed-under-composition =
Bisimilarity.Up-to.Counterexamples.∃[monotone×extensive×up-to]²×¬∘-up-to
-- Size-preserving is closed under composition.
∘-closure = Up-to.∘-closure
-- It is not the case that every (monotone and extensive) up-to
-- technique is size-preserving.
¬up-to→size-preserving =
Bisimilarity.Up-to.Counterexamples.¬monotone×extensive×up-to→size-preserving
-- There are at least two up-to techniques that are not
-- size-preserving (despite being monotone and extensive).
not-size-preserving =
Bisimilarity.Up-to.Counterexamples.∃monotone×extensive×up-to׬size-preserving
-- Monotone and compatible transformers are up-to techniques.
monotone→compatible→up-to = Up-to.monotone→compatible→up-to
-- If F is monotone and symmetric, and compatible for strong
-- similarity for some LTS, then F is compatible for strong
-- bisimilarity for this LTS.
compatible-for-similarity→compatible-for-bisimilarity =
Up-to.Closure.compatible-for-similarity→compatible-for-bisimilarity
-- It is not in general the case that if F is monotone and symmetric,
-- and size-preserving for strong similarity for some LTS, then F is
-- size-preserving for strong bisimilarity for this LTS.
¬-compatible-for-similarity→compatible-for-bisimilarity =
Up-to.Closure.¬-Size-preserving-⟷/⊗
------------------------------------------------------------------------
-- Section 7
-- The companion.
Companion = Up-to.Companion
-- Transformers below the companion.
Below-the-companion = Up-to.Below-the-companion
-- Transformers are below the companion if and only if they are
-- size-preserving.
below-the-companion⇔size-preserving =
Up-to.below-the-companion⇔size-preserving
-- The companion is size-preserving.
companion-size-preserving = Up-to.companion-size-preserving
-- Compatibility.
Compatible = Up-to.Compatible
-- The large companion.
Companion₁ = Up-to.Companion₁
-- Monotone and compatible transformers are size-preserving.
compatible→size-preserving = Up-to.monotone→compatible→size-preserving
-- The large companion is below the small one.
companion₁⊆companion = Up-to.companion₁⊆companion
-- The small companion is monotone.
companion-monotone = Up-to.companion-monotone
-- The small companion is compatible if and only if it is below the
-- large one.
companion-compatible⇔companion⊆companion₁ =
Up-to.companion-compatible⇔companion⊆companion₁
-- The small companion is compatible if certain assumptions (including
-- a strong version of excluded middle) are satisfied. However, at the
-- time of writing I don't know if these assumptions are consistent
-- with the variant of Agda that is used in this development.
companion-compatible = Up-to.companion-compatible
-- The identity function is below the companion.
id-below = Up-to.id-below
-- The interpretation ⟦ C ⟧ of a container C is below the
-- corresponding companion.
⟦⟧-below = Up-to.⟦⟧-below
-- The companion composed with itself is below the companion.
companion∘companion-below = Up-to.companion∘companion-below
-- An example: If F is below the companion, then ⟦ C ⟧ ∘ F is below
-- Companion ∘ Companion, which is below the companion.
below-the-companion-example = Up-to.below-the-companion-example
-- The greatest fixpoint is pointwise logically equivalent to the
-- companion applied to an empty relation.
ν⊆companion-⊥ = Up-to.ν⇔companion-⊥
companion-⊥⊆ν = Up-to.ν⇔companion-⊥
-- The companion is an up-to technique.
companion-up-to = Up-to.companion-up-to
------------------------------------------------------------------------
-- Section 8
-- Pous and Sangiorgi's lemma 6.1.3, part (2).
6-1-3-2 = Bisimilarity.CCS.6-1-3-2
-- Instances corresponding to some equational reasoning combinators
-- mentioned in the paper.
_∼′⟨_⟩′_ = Bisimilarity.Equational-reasoning-instances.trans∼′∼′
_∼⟨_⟩′_ = Bisimilarity.Equational-reasoning-instances.trans∼∼′
_■′ = Bisimilarity.Equational-reasoning-instances.reflexive∼′
-- The primed variant of _∣-cong_.
_∣-cong′_ = Bisimilarity.CCS._∣-cong′_
-- Replication preserves strong bisimilarity (already mentioned
-- above).
!-cong₂ = Bisimilarity.CCS.!-congP
-- Proofs showing that all the CCS process constructors preserve
-- strong bisimilarity (already mentioned above).
module Strong-bisimilarity-congruence₂ = Strong-bisimilarity-congruence
-- Proofs showing that all the CCS process constructors preserve
-- strong similarity. (For ∅ the proof is simply reflexivity.)
module Strong-similarity-congruence where
_∣-cong_ = Similarity.CCS._∣-cong_
·-cong = Similarity.CCS._·-cong_
!-cong = Similarity.CCS.!-cong_
_⊕-cong_ = Similarity.CCS._⊕-cong_
⟨ν_⟩-cong = Similarity.CCS.⟨ν_⟩-cong
∅-cong = Similarity.reflexive-≤
-- Proofs showing that all the CCS process constructors, except for
-- sum, preserve the expansion relation. (For ∅ the proof is simply
-- reflexivity.)
module Expansion-almost-congruence where
_∣-cong_ = Expansion.CCS._∣-cong_
·-cong = Expansion.CCS._·-cong_
!-cong = Expansion.CCS.!-cong_
⟨ν_⟩-cong = Expansion.CCS.⟨ν_⟩-cong
∅-cong = Expansion.reflexive-≳
-- Proofs showing that all the CCS process constructors, except for
-- sum, preserve weak bisimilarity. (For ∅ the proof is simply
-- reflexivity.)
module Weak-bisimilarity-almost-congruence where
_∣-cong_ = Bisimilarity.Weak.CCS._∣-cong_
·-cong = Bisimilarity.Weak.CCS._·-cong_
!-cong = Bisimilarity.Weak.CCS.!-cong_
⟨ν_⟩-cong = Bisimilarity.Weak.CCS.⟨ν_⟩-cong
∅-cong = Bisimilarity.Weak.reflexive-≈
------------------------------------------------------------------------
-- Section 9
-- Weak bisimilarity for the delay monad.
--
-- Note that, unlike in the paper, strong bisimilarity, weak
-- bisimilarity and the expansion relation are defined as a single
-- family (with an extra index).
[_]_≈D_ = Delay-monad.Bisimilarity.[_]_≈_
[_]_≈′D_ = Delay-monad.Bisimilarity.[_]_≈′_
-- This definition is pointwise logically equivalent, in a
-- size-preserving way, to the one obtained from the LTS for the delay
-- monad.
direct⇔indirect = Bisimilarity.Weak.Delay-monad.direct⇔indirect
-- Capretta's definition of weak bisimilarity, formulated using sized
-- types.
Capretta's-weak-bisimilarity =
Delay-monad.Bisimilarity.Alternative.[_]_≈₃_
-- Capretta's definition is pointwise logically equivalent, in a
-- size-preserving way, to the one used in the paper.
direct⇔Capretta = Delay-monad.Bisimilarity.Alternative.≈⇔≈₃
------------------------------------------------------------------------
-- Section 9.1
-- Weak bisimilarity is transitive for every LTS.
transitiveʷ-lts = Bisimilarity.Weak.transitive-≈
-- The later constructors can be removed.
--
-- (Two of the proofs are more general than the corresponding proofs
-- in the paper.)
laterʳ⁻¹ = Delay-monad.Bisimilarity.laterʳ⁻¹
laterˡ⁻¹ = Delay-monad.Bisimilarity.laterˡ⁻¹
later⁻¹ = Delay-monad.Bisimilarity.later⁻¹
-- Weak bisimilarity for the delay monad is transitive.
--
-- (The proof is not quite identical to the one in the paper.)
transitiveʷ-now = Delay-monad.Bisimilarity.transitive-≈-now
transitiveʷ-later = Delay-monad.Bisimilarity.transitive-≈-later
transitiveʷ = Delay-monad.Bisimilarity.transitive-≈
------------------------------------------------------------------------
-- Section 9.2
-- If transitivity of weak bisimilarity for the delay monad is
-- size-preserving in both arguments, then weak bisimilarity is
-- trivial.
size-preserving→trivial =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈→trivial
-- Weak bisimilarity for the delay monad is reflexive.
_∎ʷ = Delay-monad.Bisimilarity.reflexive
-- The computation now x is not weakly bisimilar to never.
--
-- (The proof is more general than the one in the paper.)
now≉never = Delay-monad.Bisimilarity.now≉never
-- If transitivity of weak bisimilarity for the delay monad is
-- size-preserving in both arguments, then the carrier type is
-- uninhabited.
not-size-preservingʷ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈→uninhabited
-- If transitivity of weak bisimilarity is size-preserving in the
-- first argument, then weak bisimulations up to weak bisimilarity are
-- contained in weak bisimilarity.
size-preserving→weak-bisimulations-up-to-weak-bisimilarity-works =
Bisimilarity.Weak.Up-to.size-preserving-transitivity→up-to-weak-bisimilarity-up-to
-- The Drop-later predicate.
Drop-later = Delay-monad.Bisimilarity.Negative.Laterˡ⁻¹-∼≈
-- Drop-later A implies that A is not inhabited, and vice versa.
--
-- The implementation of basic-counterexample in the paper is
-- different, because it does not include the "and vice versa" part.
basic-counterexample =
Delay-monad.Bisimilarity.Negative.size-preserving-laterˡ⁻¹-∼≈⇔uninhabited
-- If there is a transitivity-like proof that takes a fully defined
-- weak bisimilarity proof and a strong bisimilarity proof of size i
-- to a weak bisimilarity proof of size i, then the carrier type is
-- uninhabited (and vice versa).
--
-- The implementation is superficially different from the one in the
-- paper (except for the "vice versa" part, which is not present in
-- the paper).
not-size-preservingʷˢ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈∼ʳ⇔uninhabited
-- A size-preserving translation from strong to weak bisimilarity for
-- the delay monad.
--
-- (The implementation is more general than the one in the paper.)
strong-to-weak = Delay-monad.Bisimilarity.∼→
-- Size-preserving translations from strong bisimilarity to expansion
-- and from expansion to weak bisimilarity for any LTS.
strong-to-expansion = Expansion.∼⇒≳
expansion-to-weak = Bisimilarity.Weak.≳⇒≈
-- If there is a proof of transitivity that takes a fully defined weak
-- bisimilarity proof and a weak bisimilarity proof of size i to a
-- weak bisimilarity proof of size i, then the carrier type is
-- uninhabited (and vice versa).
--
-- The implementation is superficially different from the one in the
-- paper (except for the "vice versa" part, which is not present in
-- the paper).
not-size-preservingʷʳ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈ʳ⇔uninhabited
-- Size-preserving symmetry proofs for strong and weak bisimilarity.
--
-- (Actually a single proof that works for both relations.)
symmetryˢ = Delay-monad.Bisimilarity.symmetric
symmetryʷ = Delay-monad.Bisimilarity.symmetric
-- If there is a proof of transitivity that takes a strong (or
-- alternatively weak) bisimilarity proof of size i and a fully
-- defined weak bisimilarity proof to a weak bisimilarity proof of
-- size i, then the carrier type is uninhabited (and vice versa).
not-size-preservingˢʷ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-∼≈ˡ⇔uninhabited
not-size-preservingʷˡ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈ˡ⇔uninhabited
-- If the carrier type is not inhabited, then weak bisimilarity is
-- trivial.
--
-- (The proof is more general than the one in the paper.)
trivial = Delay-monad.Bisimilarity.uninhabited→trivial
-- If the type A is uninhabited, then Drop-later A is inhabited (and
-- vice versa).
basic-counterexample′ =
Delay-monad.Bisimilarity.Negative.size-preserving-laterˡ⁻¹-∼≈⇔uninhabited
-- If the carrier type is uninhabited, then there is a fully
-- size-preserving transitivity proof for weak bisimilarity (and vice
-- versa).
size-preservingʷ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈⇔uninhabited
-- Size-preserving transitivity-like proofs involving strong and weak
-- bisimilarity.
--
-- (The type signatures of the proofs are more general than those
-- given in the paper.)
transitiveˢʷ = Delay-monad.Bisimilarity.transitive-∼ˡ
transitiveʷˢ = Delay-monad.Bisimilarity.transitive-∞∼ʳ
-- A direct definition of expansion for the delay monad.
[_]_≳D_ = Delay-monad.Bisimilarity.[_]_≳_
-- The direct definition of expansion for the delay monad is pointwise
-- logically equivalent, in a size-preserving way, to the one obtained
-- from the LTS for the delay monad.
direct⇔indirect-expansion = Expansion.Delay-monad.direct⇔indirect
-- Size-preserving transitivity-like proofs involving the direct
-- definitions of weak bisimilarity and expansion for the delay monad.
--
-- (The type signatures of the first three proofs are more general
-- than those given in the paper.)
transitiveᵉˢ = Delay-monad.Bisimilarity.transitive-∼ʳ
transitiveᵉ = Delay-monad.Bisimilarity.transitive-≳ˡ
transitiveᵉʷ = Delay-monad.Bisimilarity.transitive-≳ˡ
transitiveʷᵉ = Delay-monad.Bisimilarity.transitive-≈≲
-- Size-preserving transitivity-like proofs involving weak
-- bisimilarity and expansion defined for an arbitrary LTS.
transitiveᵉˢ-lts = Expansion.transitive-≳∼
transitiveᵉ-lts = Expansion.transitive-≳
transitiveᵉʷ-lts = Bisimilarity.Weak.transitive-≳≈
transitiveʷᵉ-lts = Bisimilarity.Weak.transitive-≈≲
-- Negative results related to expansion.
not-size-preservingˢᵉ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-∼≳ˡ⇔uninhabited
not-size-preservingᵉʷ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≳≈ˡ⇔uninhabited
not-size-preservingʷᵉ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈≳ˡ⇔uninhabited
-- The functions transitiveᵉ, transitiveᵉʷ and transitiveʷᵉ cannot in
-- general be made fully size-preserving.
not-fully-size-preservingᵉ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≳⇔uninhabited
not-fully-size-preservingᵉʷ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≳≈⇔uninhabited
not-fully-size-preservingʷᵉ =
Delay-monad.Bisimilarity.Negative.size-preserving-transitivity-≈≲⇔uninhabited
-- Up to expansion.
Up-to-expansion =
Bisimilarity.Weak.Up-to.Up-to-expansion
up-to-expansion-size-preserving =
Bisimilarity.Weak.Up-to.up-to-expansion-size-preserving
-- Relations that satisfy the diagrams of the variant of up to
-- expansion where two occurrences of the expansion relation have been
-- replaced by weak bisimilarity are contained in weak bisimilarity.
variant-of-up-to-expansion = Bisimilarity.Weak.Up-to.6-5-2-4
|
{
"alphanum_fraction": 0.73443742,
"avg_line_length": 31.3661800487,
"ext": "agda",
"hexsha": "f9f2e6f04f92594d9938ed918eecb750d3d8af6d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "README/Pointers-to-results-from-the-paper.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7149,
"size": 25783
}
|
{-# OPTIONS --type-in-type #-} -- yes, I will let you cheat in this exercise
{-# OPTIONS --allow-unsolved-metas #-} -- allows import, unfinished
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- CS410 2017/18 Exercise 2 CATEGORIES AND MONADS (worth 25%)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- NOTE (19/10/17) This file is currently incomplete: more will arrive on
-- GitHub.
-- NOTE (29/10/17) All components are now present.
------------------------------------------------------------------------------
-- Dependencies
------------------------------------------------------------------------------
open import CS410-Prelude
open import CS410-Categories
open import Ex1
------------------------------------------------------------------------------
-- Categorical Jigsaws (based on Ex1)
------------------------------------------------------------------------------
OPE : Category -- The category of order-preserving embeddings...
OPE = record
{ Obj = Nat -- ...has numbers as objects...
; _~>_ = _<=_ -- ...and "thinnings" as arrows.
; id~> = oi
; _>~>_ = _o>>_
; law-id~>>~> = idThen-o>>
; law->~>id~> = idAfter-o>>
; law->~>>~> = assoc-o>>
}
VEC : Nat -> SET => SET -- Vectors of length n...
VEC n = record
{ F-Obj = \ X -> Vec X n -- ...give a functor from SET to SET...
; F-map = \ f xs -> vMap f xs -- ...doing vMap to arrows.
-- Now prove the laws.
; F-map-id~> = extensionality \ xs -> {!!}
; F-map->~> = \ f g -> extensionality \ xs -> {!!}
}
Op : Category -> Category -- Every category has an opposite...
Op C = record
{ Obj = Obj -- ...with the same objects, but...
; _~>_ = \ S T -> T ~> S -- ...arrows that go backwards!
-- Now, find the rest!
; id~> = id~>
; _>~>_ = \ f g -> g >~> f
; law-id~>>~> = law->~>id~>
; law->~>id~> = law-id~>>~>
; law->~>>~> = {!!}
} where open Category C
CHOOSE : Set -> OPE => Op SET -- Show that thinnings from n to m...
CHOOSE X = record -- ...act by selection...
{ F-Obj = Vec X -- ...to cut vectors down from m to n.
; F-map = {!!}
; F-map-id~> = extensionality {!!}
; F-map->~> = \ f g -> extensionality {!!}
}
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- The List Monad (a warm-up)
------------------------------------------------------------------------------
-- The declaration of List has been added to the CS410-Prelude file:
-- data List (X : Set) : Set where
-- [] : List X
-- _,-_ : (x : X)(xs : List X) -> List X
-- infixr 4 _,-_
-- Appending two lists is rather well known, so I'll not ask you to write it.
_+L_ : {X : Set} -> List X -> List X -> List X
[] +L ys = ys
(x ,- xs) +L ys = x ,- (xs +L ys)
infixr 4 _+L_
-- But I will ask you to find some structure for it.
--??--2.2---------------------------------------------------------------------
LIST-MONOID : Set -> Category
LIST-MONOID X = -- Show that _+L_ is the operation of a monoid,...
record
{ Obj = One -- ... i.e., a category with one object.
; _~>_ = {!!}
; id~> = {!!}
; _>~>_ = {!!}
; law-id~>>~> = {!!}
; law->~>id~> = {!!}
; law->~>>~> = {!!}
} where
-- useful helper proofs (lemmas) go here
--??--------------------------------------------------------------------------
-- Next, functoriality of lists. Given a function on elements, show how to
-- apply that function to all the elements of a list. (Haskell calls this
-- operation "map".)
--??--2.3---------------------------------------------------------------------
list : {X Y : Set} -> (X -> Y) -> List X -> List Y
list f xs = {!!}
LIST : SET => SET
LIST = record
{ F-Obj = List
; F-map = list
; F-map-id~> = extensionality {!!}
; F-map->~> = \ f g -> extensionality {!!}
} where
-- useful helper proofs (lemmas) go here
--??--------------------------------------------------------------------------
-- Moreover, applying a function elementwise should respect appending.
--??--2.4---------------------------------------------------------------------
LIST+L : {X Y : Set}(f : X -> Y) -> LIST-MONOID X => LIST-MONOID Y
LIST+L {X}{Y} f = record
{ F-Obj = id
; F-map = list f -- this yellow will go once LIST-MONOID has arrows!
; F-map-id~> = {!!}
; F-map->~> = {!!}
} where
-- useful helper proofs (lemmas) go here
--??--------------------------------------------------------------------------
-- Next, we have two very important "natural transformations".
--??--2.5---------------------------------------------------------------------
SINGLE : ID ~~> LIST
SINGLE = record
{ xf = \ x -> x ,- [] -- turn a value into a singleton list
; naturality = \ f -> {!!}
}
--??--------------------------------------------------------------------------
-- Here, naturality means that it doesn't matter
-- whether you apply a function f, then make a singleton list
-- or you make a singleton list, then apply f to all (one of) its elements.
-- Now, define the operation that concatenates a whole list of lists, and
-- show that it, too, is natural. That is, it doesn't matter whether you
-- transform the elements (two layers inside) then concatenate, or you
-- concatenate, then transform the elements.
--??--2.6---------------------------------------------------------------------
concat : {X : Set} -> List (List X) -> List X
concat xss = {!!}
CONCAT : (LIST >=> LIST) ~~> LIST
CONCAT = record
{ xf = concat
; naturality = {!!}
} where
-- useful helper proofs (lemmas) go here
--??--------------------------------------------------------------------------
-- You've nearly built your first monad! You just need to prove that
-- single and concat play nicely with each other.
--??--2.7---------------------------------------------------------------------
module LIST-MONAD where
open MONAD LIST public
ListMonad : Monad
ListMonad = record
{ unit = SINGLE
; mult = CONCAT
; unitMult = {!!}
; multUnit = {!!}
; multMult = {!!}
} where
-- useful helper proofs (lemmas) go here
-- open LIST-MONAD
--??--------------------------------------------------------------------------
-- More monads to come...
------------------------------------------------------------------------------
-- Categories of Indexed Sets
------------------------------------------------------------------------------
-- We can think of some
-- P : I -> Set
-- as a collection of sets indexed by I, such that
-- P i
-- means "exactly the P-things which fit with i".
-- You've met
-- Vec X : Nat -> Set
-- where
-- Vec X n
-- means "exactly the vectors which fit with n".
-- Now, given two such collections, S and T, we can make a collection
-- of function types: the functions which fit with i map the
-- S-things which fit with i to the T-things which fit with i.
_-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set)
(S -:> T) i = S i -> T i
-- So, (Vec X -:> Vec Y) n contains the functions which turn
-- n Xs into n Ys.
-- Next, if we know such a collection of sets, we can claim to have
-- one for each index.
[_] : {I : Set} -> (I -> Set) -> Set
[ P ] = forall i -> P i -- [_] {I} P = (i : I) -> P i
-- E.g., [ Vec X -:> Vec Y ] is the type of functions from X-vectors
-- to Y-vectors which preserve length.
-- For any such I, we get a category of indexed sets with index-preserving
-- functions.
_->SET : Set -> Category
I ->SET = record
{ Obj = I -> Set -- I-indexed sets
; _~>_ = \ S T -> [ S -:> T ] -- index-respecting functions
; id~> = \ i -> id -- the identity at every index
; _>~>_ = \ f g i -> f i >> g i -- composition at every index
; law-id~>>~> = refl -- and the laws are very boring
; law->~>id~> = refl
; law->~>>~> = \ f g h -> refl _
}
-- In fact, we didn't need to choose SET here. We could do this construction
-- for any category: index the objects; index the morphisms.
-- But SET is plenty to be getting on with.
-- Now, let me define an operation that makes types from lists.
All : {X : Set} -> (X -> Set) -> (List X -> Set)
All P [] = One
All P (x ,- xs) = P x * All P xs
-- The idea is that we get a tuple of P-things: one for each list element.
-- So
-- All P (1 ,- 2 ,- 3 ,- [])
-- = P 1 * P 2 * P 3 * One
-- Note that if you think of List One as a version of Nat,
-- All becomes a lot like Vec.
copy : Nat -> List One
copy zero = []
copy (suc n) = <> ,- copy n
VecCopy : Set -> Nat -> Set
VecCopy X n = All (\ _ -> X) (copy n)
-- Now, your turn...
--??--2.8---------------------------------------------------------------------
-- Show that, for any X, All induces a functor
-- from (X ->SET) to (List X ->SET)
all : {X : Set}{S T : X -> Set} ->
[ S -:> T ] -> [ All S -:> All T ]
all f xs ss = {!!}
ALL : (X : Set) -> (X ->SET) => (List X ->SET)
ALL X = record
{ F-Obj = All
; F-map = all
; F-map-id~> = {!!}
; F-map->~> = {!!}
} where
-- useful helper facts go here
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Cutting Things Up
------------------------------------------------------------------------------
-- Next, we're going to develop a very general technique for building
-- data structures.
-- We may think of an I |> O as a way to "cut O-shapes into I-shaped pieces".
-- The pointy end points to the type being cut; the flat end to the type of
-- pieces.
record _|>_ (I O : Set) : Set where
field
Cuts : O -> Set -- given o : O, how may we cut it?
inners : {o : O} -> Cuts o -> List I -- given how we cut it, what are
-- the shapes of its pieces?
-- Let us have some examples right away!
VecCut : One |> Nat -- cut numbers into boring pieces
VecCut = record
{ Cuts = \ n -> One -- there is one way to cut n
; inners = \ {n} _ -> copy n -- and you get n pieces
}
-- Here's a less boring example. You can cut a number into *two* pieces
-- by finding two numbers that add to it.
NatCut : Nat |> Nat
NatCut = record
{ Cuts = \ mn -> Sg Nat \ m -> Sg Nat \ n -> (m +N n) == mn
; inners = \ { (m , n , _) -> m ,- n ,- [] }
}
-- The point is that we can make data structures that record how we
-- built an O-shaped thing from I-shaped pieces.
record Cutting {I O}(C : I |> O)(P : I -> Set)(o : O) : Set where
constructor _8><_ -- "scissors"
open _|>_ C
field
cut : Cuts o -- we decide how to cut o
pieces : All P (inners cut) -- then we give all the pieces.
infixr 3 _8><_
-- For example...
VecCutting : Set -> Nat -> Set
VecCutting X = Cutting VecCut (\ _ -> X)
myVecCutting : VecCutting Char 5
myVecCutting = <> 8>< 'h' , 'e' , 'l' , 'l' , 'o' , <>
-- Or, if you let me fiddle about with strings for a moment,...
length : {X : Set} -> List X -> Nat
length [] = zero
length (x ,- xs) = suc (length xs)
listVec : {X : Set}(xs : List X) -> Vec X (length xs)
listVec [] = []
listVec (x ,- xs) = x ,- listVec xs
strVec : (s : String) -> Vec Char (length (primStringToList s))
strVec s = listVec (primStringToList s)
-- ...an example of cutting a number in two, with vector pieces.
footprints : Cutting NatCut (Vec Char) 10
footprints = (4 , 6 , refl 10) 8>< strVec "foot"
, strVec "prints"
, <>
-- Now, let me direct you to the =$ operator, now in CS410-Prelude.agda,
-- which you may find helps with the proofs in the following.
--??--2.9---------------------------------------------------------------------
-- Using what you already built for ALL, show that every Cutting C gives us
-- a functor between categories of indexed sets.
CUTTING : {I O : Set}(C : I |> O) -> (I ->SET) => (O ->SET)
CUTTING {I}{O} C = record
{ F-Obj = Cutting C
; F-map = {!!}
; F-map-id~> = extensionality \ o -> extensionality \ { (c 8>< ps) ->
{!!} }
; F-map->~> = \ f g ->
extensionality \ o -> extensionality \ { (c 8>< ps) ->
{!!} }
} where
open _|>_ C
open _=>_ (ALL I)
--??--------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Interiors
------------------------------------------------------------------------------
-- Next, let me define the notion of an algebra for a given functor in C => C
module ALGEBRA {C : Category}(F : C => C) where
open Category C
open _=>_ F
Algebra : (X : Obj) -> Set -- we call X the "carrier" of the algebra...
Algebra X = F-Obj X ~> X -- ...and we explain how to turn a bunch of Xs
-- into one
open ALGEBRA
-- Some week, we'll build categories whose objects are algebras. Not this week.
-- Instead, let's work with them a bit.
-- If we know a way to cut I-shapes into I-shaped pieces, we can build the
-- ways to "tile" an I with I-shaped T-tiles.
data Interior {I}(C : I |> I)(T : I -> Set)(i : I) : Set where
-- either...
tile : T i -> Interior C T i -- we have a tile that fits, or...
<_> : Cutting C (Interior C T) i -> -- ...we cut, then tile the pieces.
Interior C T i
-- Let me give you an example of an interior.
subbookkeeper : Interior NatCut (Vec Char) 13
subbookkeeper = < (3 , 10 , refl _)
8>< tile (strVec "sub")
, < (4 , 6 , refl _)
8>< tile (strVec "book")
, tile (strVec "keeper")
, <> >
, <> >
-- We make a 13-interior from
-- a 3-tile and a 10-interior made from a 4-tile and a 6-tile.
-- Guess what? Interior C is always a Monad! We'll get there.
module INTERIOR {I : Set}{C : I |> I} where -- fix some C...
open _|>_ C -- ...and open it
open module I->SET {I : Set} = Category (I ->SET) -- work in I ->SET
-- tile gives us an arrow from T into Interior C T
tile' : {T : I -> Set} -> [ T -:> Interior C T ]
tile' i = tile
-- <_> gives us an algebra!
cut' : {T : I -> Set} -> Algebra (CUTTING C) (Interior C T)
cut' i = <_>
-- Now, other (CUTTING C) algebras give us operators on interiors.
module INTERIORFOLD {P Q : I -> Set} where
interiorFold :
[ P -:> Q ] -> -- if we can turn a P into a Q...
Algebra (CUTTING C) Q -> -- ...and a bunch of Qs into a Q...
[ Interior C P -:> Q ] -- ...we can turn an interior of Ps into a Q
allInteriorFold : -- annoyingly, we'll need a specialized "all"
[ P -:> Q ] ->
Algebra (CUTTING C) Q ->
[ All (Interior C P) -:> All Q ]
interiorFold pq qalg i (tile p) = pq i p
interiorFold pq qalg i < c 8>< pis > =
qalg i (c 8>< allInteriorFold pq qalg (inners c) pis)
-- recursively turn all the sub-interiors into Qs
allInteriorFold pq qalg [] <> = <>
allInteriorFold pq qalg (i ,- is) (pi , pis) =
interiorFold pq qalg i pi , allInteriorFold pq qalg is pis
-- The trouble is that if you use
-- all (interiorFold pq qalg)
-- to process the sub-interiors, the termination checker complains.
-- But if you've built "all" correctly, you should be able to prove this:
--??--2.10--------------------------------------------------------------------
allInteriorFoldLaw : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q) ->
allInteriorFold pq qalg == all (interiorFold pq qalg)
allInteriorFoldLaw pq qalg = extensionality \ is -> extensionality \ ps ->
{!!}
where
-- helper lemmas go here
--??--------------------------------------------------------------------------
-- Now, do me a favour and prove this extremely useful fact.
-- Its purpose is to bottle the inductive proof method for functions
-- built with interiorFold.
--??--2.11--------------------------------------------------------------------
interiorFoldLemma :
(pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q)
(f : [ Interior C P -:> Q ]) ->
((i : I)(p : P i) -> pq i p == f i (tile p)) ->
((i : I)(c : Cuts i)(ps : All (Interior C P) (inners c)) ->
qalg i (c 8>< all f (inners c) ps) == f i < c 8>< ps >) ->
(i : I)(pi : Interior C P i) -> interiorFold pq qalg i pi == f i pi
interiorFoldLemma pq qalg f base step i pi = {!!}
--??--------------------------------------------------------------------------
-- We'll use it in this form:
interiorFoldLaw : (pq : [ P -:> Q ])(qalg : Algebra (CUTTING C) Q)
(f : [ Interior C P -:> Q ]) ->
((i : I)(p : P i) -> pq i p == f i (tile p)) ->
((i : I)(c : Cuts i)(ps : All (Interior C P) (inners c)) ->
qalg i (c 8>< all f (inners c) ps) == f i < c 8>< ps >) ->
interiorFold pq qalg == f
interiorFoldLaw pq qalg f base step =
extensionality \ i -> extensionality \ pi ->
interiorFoldLemma pq qalg f base step i pi
open INTERIORFOLD
-- Let me pay you back immediately!
-- An interiorBind is an interiorFold which computes an Interior,
-- rewrapping each layer with < ... >
interiorBind : {X Y : I -> Set} ->
[ X -:> Interior C Y ] -> [ Interior C X -:> Interior C Y ]
interiorBind f = interiorFold f (\ i -> <_>)
-- Because an interiorBind *makes* an interior, we can say something useful
-- about what happens if we follow it with an interiorFold.
interiorBindFusion : {X Y Z : I -> Set} ->
(f : [ X -:> Interior C Y ])
(yz : [ Y -:> Z ])(zalg : Algebra (CUTTING C) Z) ->
(interiorBind f >~> interiorFold yz zalg) ==
interiorFold (f >~> interiorFold yz zalg) zalg
-- That is, we can "fuse" the two together, making one interiorFold.
-- I'll do the proof as it's a bit hairy. You've given me all I need.
-- Note that I don't use extensionality, just laws that relate functions.
interiorBindFusion f yz zalg =
(interiorBind f >~> interiorFold yz zalg)
=< interiorFoldLaw
(f >~> interiorFold yz zalg) zalg
(interiorBind f >~> interiorFold yz zalg)
(\ i p -> refl (interiorFold yz zalg i (f i p)))
(\ i c ps -> refl (zalg i) =$= (refl (c 8><_) =$= (
((all (interiorBind f >~> interiorFold yz zalg)
=[ F-map->~> (interiorBind f) (interiorFold yz zalg) >=
(all (interiorBind f) >~> all (interiorFold yz zalg))
=< refl _>~>_
=$= allInteriorFoldLaw f cut'
=$= allInteriorFoldLaw yz zalg ]=
allInteriorFold f (\ i -> <_>) >~> allInteriorFold yz zalg [QED])
=$ inners c =$= refl ps))))
]=
interiorFold (f >~> interiorFold yz zalg) zalg [QED]
where open _=>_ (ALL I)
-- You should find that a very useful piece of kit. In fact, you should
-- not need extensionality, either.
-- We need Interior C to be a functor.
--??--2.12--------------------------------------------------------------------
-- using interiorBind, implement the "F-map" for Interiors as a one-liner
interior : {X Y : I -> Set} ->
[ X -:> Y ] -> [ Interior C X -:> Interior C Y ]
interior f = {!!}
-- using interiorBindFusion, prove the following law for "fold after map"
interiorFoldFusion : {P Q R : I -> Set}
(pq : [ P -:> Q ])(qr : [ Q -:> R ])(ralg : Algebra (CUTTING C) R) ->
(interior pq >~> interiorFold qr ralg) == interiorFold (pq >~> qr) ralg
interiorFoldFusion pq qr ralg =
interior pq >~> interiorFold qr ralg
=[ {!!} >=
interiorFold (pq >~> qr) ralg [QED]
where open _=>_ (ALL I)
-- and now, using interiorFoldFusion if it helps,
-- complete the functor construction
INTERIOR : (I ->SET) => (I ->SET)
INTERIOR = record
{ F-Obj = Interior C
; F-map = interior
; F-map-id~> = {!!}
; F-map->~> = {!!}
} where open _=>_ (ALL I)
--??--------------------------------------------------------------------------
-- Now let's build the Monad.
-- You should find that all the laws you have to prove follow from the
-- fusion laws you already have.
open MONAD INTERIOR
--??--2.13--------------------------------------------------------------------
WRAP : ID ~~> INTERIOR
WRAP = record
{ xf = {!!}
; naturality = {!!}
}
-- use interiorBind to define the following
FLATTEN : (INTERIOR >=> INTERIOR) ~~> INTERIOR
FLATTEN = record
{ xf = {!!}
; naturality = {!!}
}
INTERIOR-Monad : Monad
INTERIOR-Monad = record
{ unit = WRAP
; mult = FLATTEN
; unitMult = {!!}
; multUnit = {!!}
; multMult = {!!}
} where
open _=>_ INTERIOR
--??--------------------------------------------------------------------------
open INTERIOR
open INTERIORFOLD
-- You should be able to define an algebra on vectors for NatCut, using +V
--??--2.14--------------------------------------------------------------------
NatCutVecAlg : {X : Set} -> Algebra (CUTTING NatCut) (Vec X)
NatCutVecAlg n xsc = {!!}
--??--------------------------------------------------------------------------
-- Check that it puts things together suitably when you evaluate this:
test1 : Vec Char 13
test1 = interiorFold (\ _ -> id) NatCutVecAlg 13 subbookkeeper
------------------------------------------------------------------------------
-- Cutting Up Pairs
------------------------------------------------------------------------------
module CHOICE where
open _|>_
--??--2.15--------------------------------------------------------------------
-- Show that if you can cut up I and cut up J, then you can cut up I * J.
-- You now have two dimensions (I and J). The idea is that you choose one
-- dimension in which to make a cut, and keep everything in the other
-- dimension the same.
_+C_ : {I J : Set} -> I |> I -> J |> J -> (I * J) |> (I * J)
Cuts (P +C Q) (i , j) = Cuts P i + Cuts Q j
inners (P +C Q) = {!!}
--??--------------------------------------------------------------------------
open CHOICE
-- That should get us the ability to cut up *rectangules* by cutting either
-- vertically or horizontally.
NatCut2D : (Nat * Nat) |> (Nat * Nat)
NatCut2D = NatCut +C NatCut
Matrix : Set -> Nat * Nat -> Set
Matrix X (w , h) = Vec (Vec X w) h
-- If you've done it right, you should find that the following typechecks.
-- It's the interior of a rectangle, tiled with matrices of characters.
rectangle : Interior NatCut2D (Matrix Char) (15 , 6)
rectangle = < inr (4 , 2 , refl _)
8>< < inl (7 , 8 , refl _)
8>< tile (strVec "seventy"
,- strVec "kitchen"
,- strVec "program"
,- strVec "mistake"
,- [])
, tile (strVec "thousand"
,- strVec "soldiers"
,- strVec "probably"
,- strVec "undefine"
,- [])
, <> >
, tile (strVec "acknowledgement"
,- strVec "procrastination"
,- [])
, <> >
-- Later, we'll use rectangular interiors as the underlying data structure
-- for a window manager.
-- But for now, one last thing.
--??--2.16--------------------------------------------------------------------
-- Show that if you have a vector of n Ps for every element of a list,
-- then you can make a vector of n (All P)s .
-- Hint: Ex1 provides some useful equipment for this job.
vecAll : {I : Set}{P : I -> Set}{is : List I}{n : Nat} ->
All (\ i -> Vec (P i) n) is -> Vec (All P is) n
vecAll {is = is} pss = {!!}
-- Given vecAll, show that algebra for any cutting can be lifted
-- to an algebra on vectors.
VecLiftAlg : {I : Set}(C : I |> I){X : I -> Set}
(alg : Algebra (CUTTING C) X){n : Nat} ->
Algebra (CUTTING C) (\ i -> Vec (X i) n)
VecLiftAlg C alg i (c 8>< pss) = {!!}
-- Now show that you can build an algebra for matrices
-- which handles cuts in either dimension,
-- combining them either horizontally or vertically!
NatCut2DMatAlg : {X : Set} -> Algebra (CUTTING NatCut2D) (Matrix X)
NatCut2DMatAlg _ (inl c 8>< ms) = {!!}
NatCut2DMatAlg _ (inr c 8>< ms) = {!!}
--??--------------------------------------------------------------------------
-- And that should give you a way to glue pictures together from interiors.
picture : [ Interior NatCut2D (Matrix Char) -:> Matrix Char ]
picture = interiorFold (\ _ -> id) NatCut2DMatAlg
-- You should be able to check that the following gives you something
-- sensible:
test2 = picture _ rectangle
|
{
"alphanum_fraction": 0.4711708525,
"avg_line_length": 33.3460026212,
"ext": "agda",
"hexsha": "a1c1f6c9018ccdd7cf1fe32c9045b45da4762624",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5db8e95bbcbe8dc0eec810f3e73130ecd78d207c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "m-schmidt/CS410-17-Exercises",
"max_forks_repo_path": "Ex2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5db8e95bbcbe8dc0eec810f3e73130ecd78d207c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "m-schmidt/CS410-17-Exercises",
"max_issues_repo_path": "Ex2.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5db8e95bbcbe8dc0eec810f3e73130ecd78d207c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "m-schmidt/CS410-17-Exercises",
"max_stars_repo_path": "Ex2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6768,
"size": 25443
}
|
-- A predicate transformer allowing one to express that
-- some value definitely does /not/ own some resource
infixl 9 _◇_
data _◇_ {p} (P : SPred p) (Φᵢ : Carrier) : SPred (p ⊔ a) where
⟪_,_⟫ : ∀ {Φₚ Φ} → P Φₚ → Φᵢ ⊎ Φₚ ≣ Φ → (P ◇ Φᵢ) Φ
-- | This gives another wand like thing
module _ {p q} (P : SPred p) (Q : SPred q) where
infixr 8 _◇─_
_◇─_ : SPred (p ⊔ q ⊔ a)
_◇─_ Φᵢ = ∀[ P ◇ Φᵢ ⇒ Q ]
module _ {p q} {P : SPred p} {Q : SPred q} where
pair : ε[ P ◇─ (Q ◇─ P ✴ Q) ]
pair ⟪ px , σ₁ ⟫ ⟪ qx , σ₂ ⟫ rewrite ⊎-id⁻ˡ σ₁ = px ×⟨ σ₂ ⟩ qx
module _ {p} {P : SPred p} where
◇-ε : ∀[ P ◇ ε ⇒ P ]
◇-ε ⟪ px , σ ⟫ rewrite ⊎-id⁻ˡ σ = px
-- pure : ∀ {p q} {P : SPred p} {Q : SPred q} → (P ε → Q Φ) → (P ─✴ Q) Φ
-- pure f px = {!!}
-- -- pure = {!!}
-- a pure wand is a resource-polymorphic function
-- unwand : ε[ P ─✴ Q ] → ∀[ P ⇒ Q ]
-- unwand f p = f p ⊎-idˡ
-- ✴-pure : ∀ {p q} {P : SPred p} {Q : SPred q} → (∀ {Φ} → P Φ → ε ⊎ Φ ≣ Φ → Q Φ) → ε[ P ─✴ Q ]
-- ✴-pure f px σ rewrite ⊎-id⁻ˡ σ = f px ⊎-idˡ
-- ✴-flip : ∀ {p q r} {P : SPred p} {Q : SPred q} {R : SPred r} → ε[ (P ─✴ (Q ─✴ R)) ─✴ (Q ─✴ (P ─✴ R)) ]
-- ✴-flip {P = P} {Q} {R} =
-- ✴-pure {P = P ─✴ (Q ─✴ R)} {Q = Q ─✴ (P ─✴ R)} λ f σ₁ q σ₂ p σ₃ →
-- let _ , σ₃ , σ₄ = ⊎-assoc (⊎-comm σ₂) σ₃ in f p σ₄ q (⊎-comm σ₃)
-- ─[id] : ∀ {p} {P : Pred _ p} → ε[ P ─✴ P ]
-- ─[id] px σ rewrite ⊎-id⁻ˡ σ = px
|
{
"alphanum_fraction": 0.4270122783,
"avg_line_length": 34.9047619048,
"ext": "agda",
"hexsha": "caea4c1768562d6cdf474ebe4b2f10a8387b7f61",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Experiments.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Experiments.agda",
"max_line_length": 109,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Experiments.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 786,
"size": 1466
}
|
-- This file is ported from a part of Martin Escardó's HoTT lecture notes
-- (https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html).
{-# OPTIONS --without-K --safe #-}
module Util.HoTT.Section where
open import Util.HoTT.HLevel.Core
open import Util.Prelude
open import Util.Relation.Binary.PropositionalEquality using
( Σ-≡⁺ ; subst-subst-sym )
private
variable
α β γ : Level
A B C : Set α
infix 4 _◁_
record HasSection {A : Set α} {B : Set β} (f : A → B) : Set (α ⊔ℓ β) where
field
section : B → A
isSection : ∀ x → f (section x) ≡ x
open HasSection public
record _◁_ (A : Set α) (B : Set β) : Set (α ⊔ℓ β) where
field
retraction : B → A
hasSection : HasSection retraction
open HasSection hasSection public renaming (isSection to retraction∘section)
open _◁_ public
◁-refl : A ◁ A
◁-refl = record
{ retraction = id
; hasSection = record
{ section = id
; isSection = λ _ → refl
}
}
◁-trans : A ◁ B → B ◁ C → A ◁ C
◁-trans A◁B B◁C = record
{ retraction = A◁B .retraction ∘ B◁C .retraction
; hasSection = record
{ section = B◁C .section ∘ A◁B .section
; isSection = λ x
→ trans (cong (A◁B .retraction) (B◁C .retraction∘section _))
(A◁B .retraction∘section _)
}
}
Σ-◁ : {A : Set α} {B : A → Set β} {C : A → Set γ}
→ (∀ a → B a ◁ C a)
→ Σ A B ◁ Σ A C
Σ-◁ B◁C = record
{ retraction = λ { (a , c) → a , B◁C a .retraction c }
; hasSection = record
{ section = λ { (a , b) → a , B◁C a .section b }
; isSection = λ { (a , b) → cong (a ,_) (B◁C a .retraction∘section b) }
}
}
◁-pres-IsContr : A ◁ B → IsContr B → IsContr A
◁-pres-IsContr A◁B (b , canon)
= A◁B .retraction b
, λ a
→ trans (cong (A◁B .retraction) (canon (A◁B .section a)))
(A◁B .retraction∘section a)
Σ-◁-reindexing : {A : Set α} {B : Set β} {P : A → Set γ}
→ (r : A ◁ B)
→ Σ A P ◁ Σ B (P ∘ r .retraction)
Σ-◁-reindexing {P = P} r = record
{ retraction = λ { (b , x) → r .retraction b , x }
; hasSection = record
{ section = λ where
(a , x) → r .section a , subst P (sym (r .retraction∘section a)) x
; isSection = λ where
(a , x) → Σ-≡⁺
( r .retraction∘section a
, subst-subst-sym (r .retraction∘section a)
)
}
}
|
{
"alphanum_fraction": 0.5599654875,
"avg_line_length": 23.8969072165,
"ext": "agda",
"hexsha": "f97dbaf2a07d4d48c5664659fbd36266001d7749",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/HoTT/Section.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/HoTT/Section.agda",
"max_line_length": 84,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/HoTT/Section.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 924,
"size": 2318
}
|
module TimeSpace where
open import Data.Product
open import Data.Sum
open import Data.List
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Pi.Syntax
open import Pi.Opsem
open import Pi.Eval
open import Pi.Examples
-- 𝔹+ n = 𝔹 +ᵤ … +ᵤ 𝔹
𝔹+ : ℕ → 𝕌
𝔹+ 0 = 𝟘
𝔹+ 1 = 𝔹
𝔹+ (suc (suc n)) = 𝔹 +ᵤ (𝔹+ (suc n))
-- 𝔹* n = 𝔹 ×ᵤ … ×ᵤ 𝔹
𝔹* : ℕ → 𝕌
𝔹* 0 = 𝔹
𝔹* (suc n) = 𝔹 ×ᵤ 𝔹* n
convert : ∀ {n} → 𝔹+ (2 ^ n) ↔ 𝔹* n
convert {0} = id↔
convert {1} = (uniti⋆l ⊕ uniti⋆l) ⨾ factor
convert {suc (suc n)} = split ⨾ (convert {suc n} ⊕ (coe {n} ⨾ convert {suc n})) ⨾ (uniti⋆l ⊕ uniti⋆l) ⨾ factor
where
coe : ∀ {n} → 𝔹+ ((2 ^ n) + ((2 ^ n) + 0) + 0) ↔ 𝔹+ (2 ^ (1 + n))
coe {n} rewrite +-identityʳ ((2 ^ n) + ((2 ^ n) + 0)) = id↔
split : ∀ {n m} → 𝔹+ (n + m) ↔ (𝔹+ n +ᵤ 𝔹+ m)
split {0} {m} = uniti₊l
split {1} {0} = uniti₊r
split {1} {1} = id↔
split {1} {suc (suc m)} = id↔
split {suc (suc n)} {m} = (id↔ ⊕ split) ⨾ assocl₊
-- flip the last 𝔹
flip+ : (n : ℕ) → 𝔹+ n ↔ 𝔹+ n
flip+ 0 = id↔
flip+ 1 = swap₊
flip+ (suc (suc n)) = id↔ ⊕ flip+ (suc n)
-- flip* n (b₁,…,bₙ,b) = (b₁,…,bₙ,b xor (b₁ ∧ … ∧ bₙ))
flip* : (n : ℕ) → (𝔹* n) ↔ (𝔹* n)
flip* 0 = swap₊
flip* (suc n) = dist ⨾ (id↔ ⊕ (id↔ ⊗ flip* n)) ⨾ factor
v* : (n : ℕ) → ⟦ 𝔹* n ⟧
v* 0 = 𝔽
v* 1 = 𝕋 , v* 0
v* (suc (suc n)) = 𝕋 , v* (suc n)
v+ : (n : ℕ) → n ≢ 0 → ⟦ 𝔹+ n ⟧
v+ 0 0≠0 = 0≠0 refl
v+ 1 _ = 𝔽
v+ (suc (suc n)) _ = inj₂ (v+ (suc n) (λ ()))
-- Counting number of values in given context
#ctx : ∀ {A B} → Context {A} {B} → ℕ
#ctx ☐ = 0
#ctx (☐⨾ c₂ • κ) = #ctx κ
#ctx (c₁ ⨾☐• κ) = #ctx κ
#ctx (☐⊕ c₂ • κ) = #ctx κ
#ctx (c₁ ⊕☐• κ) = #ctx κ
#ctx (☐⊗[ c₂ , x ]• κ) = 1 + #ctx κ
#ctx ([ c₁ , x ]⊗☐• κ) = 1 + #ctx κ
#st : State → ℕ
#st ⟨ c ∣ v ∣ κ ⟩ = 1 + #ctx κ
#st [ c ∣ v ∣ κ ] = 1 + #ctx κ
-- Returns the number of steps and maximum #st in a execution trace
runST : ∀ {A B} → A ↔ B → ⟦ A ⟧ → List State × ℕ × ℕ
runST c v = states , length states , foldl (λ { s st → s ⊔ #st st }) 0 states
where states = evalₜᵣ c v
-- Examples
ex1 : ℕ × ℕ
ex1 = let(_ , t , s) = runST (flip* 9) (v* 9)
in (t , s) -- t=128 , s=10
ex2 : ℕ × ℕ
ex2 = let (_ , t , s) = runST (flip+ 512) (v+ 512 (λ ()))
in (t , s) -- t=1024 , s=1
|
{
"alphanum_fraction": 0.493006993,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "facd09331772b92b961b2821dc1bd8ed0a90d91c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "TimeSpace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "TimeSpace.agda",
"max_line_length": 110,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "TimeSpace.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1256,
"size": 2288
}
|
open import Oscar.Prelude
open import Oscar.Class.Smap
open import Oscar.Data.Proposequality
open import Oscar.Class.Surjection
module Oscar.Data.Surjcollation where
𝓼urjcollation : ∀ {𝔵₁ 𝔵₂ 𝔞 𝔟} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(surjection : Surjection.type 𝔛₁ 𝔛₂)
𝔟̇
(𝔅 : 𝔛₂ → Ø 𝔟)
(𝔄 : π̂² 𝔞 𝔛₁)
→ Ø 𝔵₁ ∙̂ 𝔞 ∙̂ 𝔟 ∙̂ ↑̂ 𝔟̇
𝓼urjcollation surjection 𝔟̇ 𝔅 𝔄 = ∀ {m} → 𝔅 (surjection m) → 𝔅 (surjection m) → LeftṖroperty 𝔟̇ 𝔄 m
module _ {𝔵₁ 𝔵₂ 𝔞 𝔟 𝔟̇} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(𝔅 : 𝔛₂ → Ø 𝔟)
(𝔄 : π̂² 𝔞 𝔛₁)
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
(𝔅̇ : ∀̇ π̂² 𝔟̇ 𝔅)
(let infix 4 _⟨𝔅̇⟩_
_⟨𝔅̇⟩_ : ∀ {x} → 𝔅 x → 𝔅 x → Ø 𝔟̇
_⟨𝔅̇⟩_ p q = 𝔅̇ p q)
where
surjcollation[_]⟦_/_⟧ : 𝓼urjcollation surjection 𝔟̇ 𝔅 𝔄
surjcollation[_]⟦_/_⟧ p q .π₀ x = x ◃ p ⟨𝔅̇⟩ x ◃ q
module _ {𝔵₁ 𝔵₂ 𝔞 𝔟 𝔟̇} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂} {𝔅 : 𝔛₂ → Ø 𝔟}
(𝔄 : π̂² 𝔞 𝔛₁)
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
(𝔅̇ : ∀̇ π̂² 𝔟̇ 𝔅)
where
surjcollation⟦_/_⟧ = surjcollation[ 𝔅 ]⟦ 𝔄 / 𝔅̇ ⟧
module _ {𝔵₁ 𝔵₂ 𝔞} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(𝔄 : 𝔛₁ → 𝔛₁ → Ø 𝔞)
{𝔟} {𝔅 : 𝔛₂ → Ø 𝔟}
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
{𝔟̇} {𝔅̇ : ∀ {x} → 𝔅 x → 𝔅 x → Ø 𝔟̇}
where
surjcollation⟦_⟧ = surjcollation[ 𝔅 ]⟦ 𝔄 / 𝔅̇ ⟧
module _ {𝔵₁ 𝔵₂ 𝔞 𝔟} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(𝔅 : 𝔛₂ → Ø 𝔟)
(𝔄 : π̂² 𝔞 𝔛₁)
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
where
≡-surjcollation[_]⟦_⟧ = surjcollation[ 𝔅 ]⟦ 𝔄 / _≡_ ⟧
module _ {𝔵₁ 𝔞} {𝔛₁ : Ø 𝔵₁}
(𝔄 : π̂² 𝔞 𝔛₁)
{𝔵₂} {𝔛₂ : Ø 𝔵₂} ⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
{𝔟} {𝔅 : 𝔛₂ → Ø 𝔟} ⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
where
≡-surjcollation⟦_⟧ = ≡-surjcollation[ 𝔅 ]⟦ 𝔄 ⟧
module _ {𝔵₁ 𝔞} {𝔛₁ : Ø 𝔵₁} {𝔄 : π̂² 𝔞 𝔛₁}
where
≡-surjcollation = ≡-surjcollation⟦ 𝔄 ⟧
module Surjcollation {𝔵₁ 𝔵₂ 𝔞 𝔟̇} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂} ⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
(𝔄 : 𝔛₁ → 𝔛₁ → Ø 𝔞)
(𝔅̇ : ∀ {𝔟} {𝔅 : 𝔛₂ → Ø 𝔟} → (∀ {x} → 𝔅 x → 𝔅 x → Ø 𝔟̇))
{𝔟} {𝔅 : 𝔛₂ → Ø 𝔟}
⦃ _ : Smaphomarrow!.class 𝔄 𝔅 ⦄
where
method = surjcollation[ 𝔅 ]⟦ 𝔄 / 𝔅̇ {𝔅 = 𝔅} ⟧
infix 18 _⟹_
_⟹_ = method
|
{
"alphanum_fraction": 0.5253045923,
"avg_line_length": 28.0789473684,
"ext": "agda",
"hexsha": "482448c3c1ed912fc17c56aa4e4bd01885074912",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Surjcollation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Surjcollation.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Surjcollation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1518,
"size": 2134
}
|
{-# OPTIONS --without-K #-}
-- Finished half of the proof!
-- - functions between Bool * A and ∑ A are written
-- - One direction of the inverse proof is done!
--
-- Wrapping up the camera ready version of our
-- PLDI paper took more time than I thought it would and so
-- I got a late start on this. I think by class on Tuesday
-- I could have the other half finished.
--
-- Noet: I collaborated w/ Andre on this some.
module thm8511part2 where
open import Level using (_⊔_)
open import Data.Bool using (Bool; true; false; if_then_else_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_; proj₁; proj₂; Σ; Σ-syntax)
open import Function renaming (_∘_ to _·_)
import Relation.Binary.Core as C
import Relation.Binary.PropositionalEquality as P
--open P.≡-Reasoning
infixr 8 _∘_ -- path composition
infix 4 _≡_ -- propositional equality
infix 4 _∼_ -- homotopy between two functions
infix 4 _≃_ -- type of equivalences
-- macros from tzaikin for equational rewriting over non-standard ≡
infixr 4 _≡⟨_⟩_
infix 4 _∎
indBool : (C : Bool → Set) →
(C true) →
(C false) →
(b : Bool) →
(C b)
indBool C ct cf true = ct
indBool C ct cf false = cf
ind× : ∀ {A B : Set}
{C : A × B → Set} →
((a : A) → (b : B) → C (a , b)) →
(p : A × B) →
(C p)
ind× {C} f (a , b) = f a b
------------------------------------------------------------------------------
-- Some abbreviations and simple lemmas and paths
_≡_ : ∀ {ℓ} {A : Set ℓ} → (x y : A) → Set ℓ
_≡_ {ℓ} {A} x y = C._≡_ {ℓ} {A} x y
-- Groupoid
refl : ∀ {ℓ} {A} → (x : A) → x ≡ x
refl {ℓ} {A} x = C.refl {ℓ} {A} {x}
! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x)
! = P.sym
_∘_ : ∀ {ℓ} {A : Set ℓ} {x y z : A} →
(x ≡ y) → (y ≡ z) → (x ≡ z)
_∘_ = P.trans
unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p)
unitTransL C.refl = C.refl
unitTransR : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y)
unitTransR C.refl = C.refl
invComp : {A : Set} {x y z : A} → (p : x ≡ y) → (q : y ≡ z) →
! (p ∘ q) ≡ ! q ∘ ! p
invComp C.refl C.refl = C.refl
assocP : {A : Set} {x y z w : A} → (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) →
(p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
assocP C.refl C.refl C.refl = C.refl
invTransL : {A : Set} {x y : A} → (p : x ≡ y) → (! p ∘ p ≡ refl y)
invTransL C.refl = C.refl
invId : {A : Set} {x y : A} → (p : x ≡ y) → (! (! p) ≡ p)
invId C.refl = C.refl
-- Handy "macros" (from tzaikin)
_∎ : ∀ {ℓ} → {A : Set ℓ} → (p : A) → p ≡ p
p ∎ = refl p
_≡⟨_⟩_ : ∀ {ℓ} → {A : Set ℓ} → {q r : A} → (p : A) → p ≡ q → q ≡ r → p ≡ r
p ≡⟨ α ⟩ β = α ∘ β
-- Functors
ap : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} →
(f : A → B) → {x y : A} → (x ≡ y) → (f x ≡ f y)
ap = P.cong
apfId : {A : Set} {x y : A} → (p : x ≡ y) → ap id p ≡ p
apfId C.refl = C.refl
apfInv : ∀ {u} → {A B : Set u} {x y : A} → (f : A → B) → (p : x ≡ y) →
ap f (! p) ≡ ! (ap f p)
apfInv f C.refl = C.refl
apfTrans : ∀ {u} → {A B : Set u} {x y z : A} →
(f : A → B) → (p : x ≡ y) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q)
apfTrans f C.refl C.refl = C.refl
apfComp : {A B C : Set} {x y : A} → (f : A → B) → (g : B → C) → (p : x ≡ y) →
ap g (ap f p) ≡ ap (g · f) p
apfComp f g C.refl = C.refl
apconst : {A B : Set} {x y : A} → (p : x ≡ y) (b : B) →
ap (λ _ → b) p ≡ refl b
apconst C.refl b = C.refl
-- Transport
transport : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} (B : A → Set ℓ₂) →
{x y : A} → (x ≡ y) → B x → B y
transport = P.subst
transportId : {A B : Set} {y z : A} → (f g : A → B) →
(p : y ≡ z) → (q : f y ≡ g y) →
transport (λ x → f x ≡ g x) p q ≡ ! (ap f p) ∘ q ∘ (ap g p)
transportId f g C.refl q =
(q
≡⟨ unitTransR q ⟩
q ∘ C.refl
≡⟨ unitTransL (q ∘ C.refl) ⟩
! C.refl ∘ (q ∘ C.refl) ∎)
apd : ∀ {ℓ₁ ℓ₂} → {A : Set ℓ₁} {B : A → Set ℓ₂} →
(f : (x : A) → B x) → {x y : A} → (p : x ≡ y) →
transport B p (f x) ≡ f y
apd f C.refl = C.refl
-- Homotopies and equivalences
_∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} →
(f g : (x : A) → P x) → Set (ℓ ⊔ ℓ')
_∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x
record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv
field
g : B → A
α : (f · g) ∼ id
β : (g · f) ∼ id
record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkisequiv
field
g : B → A
α : (f · g) ∼ id
h : B → A
β : (h · f) ∼ id
iso : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f
iso (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) isequiv
postulate
univalence : {A B : Set} → (A ≡ B) ≃ (A ≃ B)
------------------------------------------------------------------------------
-- Some higher-inductive types
module Circle where
private
data S¹* : Set where
base* : S¹*
-- define the interface for S¹
S¹ : Set
S¹ = S¹*
base : S¹
base = base*
postulate
loop : base ≡ base
-- recursion principle
recS¹ : {C : Set} → (cbase : C) → (cloop : cbase ≡ cbase) → S¹ → C
recS¹ cbase cloop base* = cbase
postulate
βrecS¹ : {C : Set} → (cbase : C) → (cloop : cbase ≡ cbase) →
ap (recS¹ cbase cloop) loop ≡ cloop
-- induction principle
indS¹ : {C : S¹ → Set} →
(cbase : C base) → (cloop : transport C loop cbase ≡ cbase) →
(circle : S¹) → C circle
indS¹ cbase cloop base* = cbase
------------------------------------------------------------------------------
module Suspension where
private
data ∑* (A : Set) : Set where
N* : ∑* A
S* : ∑* A
-- define the interface for ∑A
∑ : (A : Set) → Set
∑ = ∑*
N : {A : Set} → ∑ A
N = N*
S : {A : Set} → ∑ A
S = S*
postulate
merid : {A : Set} → A → (N {A} ≡ S {A})
-- recursion principle
rec∑ : {A : Set} → {C : Set} → (cn cs : C) → (cm : A → (cn ≡ cs)) → ∑ A → C
rec∑ cn cs cm N* = cn
rec∑ cn cs cm S* = cs
postulate
βrec∑ : {A : Set} → {C : Set} → (cn cs : C) → (cm : A → (cn ≡ cs)) →
(a : A) → ap (rec∑ cn cs cm) (merid a) ≡ (cm a)
-- induction principle
ind∑ : {A : Set} → {C : ∑ A → Set} → (cn : C N) → (cs : C S) →
((a : A) → transport C (merid a) cn ≡ cs) → (s : ∑ A) → C s
ind∑ cn cs m N* = cn
ind∑ cn cs m S* = cs
------------------------------------------------------------------------------
module Join where
private
data _**_ (A B : Set) : Set where
inl* : A → A ** B
inr* : B → A ** B
-- define the interface for A*B
_*_ : (A B : Set) → Set
A * B = A ** B
inl : {A B : Set} → A → A * B
inl = inl*
inr : {A B : Set} → B → A * B
inr = inr*
postulate
glue : {A B : Set} → (c : A × B) → inl (proj₁ c) ≡ inr (proj₂ c)
-- recursion principle
rec* : {A B : Set} {D : Set} →
(ad : A → D) → (bd : B → D) →
(gd : (c : A × B) → ad (proj₁ c) ≡ bd (proj₂ c)) →
A * B → D
rec* ad bd gd (inl* a) = ad a
rec* ad bd gd (inr* b) = bd b
postulate
βrec* : {A B : Set} {D : Set} →
(ad : A → D) → (bd : B → D) →
(gd : (c : A × B) → ad (proj₁ c) ≡ bd (proj₂ c)) →
(c : A × B) → ap (rec* ad bd gd) (glue c) ≡ gd c
-- induction principle
ind* : {A B : Set} {D : A * B → Set} →
(ad : (a : A) → D (inl a)) → (bd : (b : B) → D (inr b)) →
(gd : (c : A × B) → transport D (glue c) (ad (proj₁ c)) ≡ bd (proj₂ c))
(c : A * B) → D c
ind* ad bd gd (inl* a) = ad a
ind* ad bd gd (inr* b) = bd b
------------------------------------------------------------------------------
-- Lemma 6.5.1
module ∑Bool≡S¹ where
open Circle
open Suspension
east : N ≡ S
east = merid false
west : N ≡ S
west = merid true
-- S¹ → ∑ Bool
fcircle : S¹ → ∑ Bool
fcircle = recS¹ N (east ∘ ! west)
floop : ap fcircle loop ≡ east ∘ ! west
floop = βrecS¹ N (east ∘ ! west)
-- ∑ Bool → S¹
gcircle : ∑ Bool → S¹
gcircle = rec∑ base base (λ b → if b then refl base else loop)
geast : ap gcircle east ≡ loop
geast = βrec∑ base base (λ b → if b then refl base else loop) false
gwest : ap gcircle west ≡ (refl base)
gwest = βrec∑ base base (λ b → if b then refl base else loop) true
-- round trip S¹ → S¹
gf : S¹ → S¹
gf = gcircle · fcircle
gfloop : ap gf loop ≡ loop
gfloop =
(ap gf loop
≡⟨ ! (apfComp fcircle gcircle loop) ⟩
ap gcircle (ap fcircle loop)
≡⟨ ap (ap gcircle) floop ⟩
ap gcircle (east ∘ ! west)
≡⟨ apfTrans gcircle east (! west) ⟩
ap gcircle east ∘ ap gcircle (! west)
≡⟨ ap (λ x → ap gcircle east ∘ x) (apfInv gcircle west) ⟩
ap gcircle east ∘ ! (ap gcircle west)
≡⟨ ap (λ x → ap gcircle east ∘ ! x) gwest ⟩
ap gcircle east ∘ (refl base)
≡⟨ ! (unitTransR (ap gcircle east)) ⟩
ap gcircle east
≡⟨ geast ⟩
loop ∎)
αloop : transport (λ x → gf x ≡ x) loop (refl base) ≡ refl base
αloop =
(transport (λ x → gf x ≡ x) loop (refl base)
≡⟨ transportId gf id loop (refl base) ⟩
! (ap gf loop) ∘ refl base ∘ ap id loop
≡⟨ ap (λ x → ! (ap gf loop) ∘ refl base ∘ x) (apfId loop) ⟩
! (ap gf loop) ∘ refl base ∘ loop
≡⟨ ap (λ x → ! (ap gf loop) ∘ x) (! (unitTransL loop)) ⟩
! (ap gf loop) ∘ loop
≡⟨ ap (λ x → ! x ∘ loop) gfloop ⟩
! loop ∘ loop
≡⟨ invTransL loop ⟩
refl base ∎)
βcircle : gf ∼ id
βcircle = indS¹ {λ x → gf x ≡ x} (refl base) αloop
-- round trip ∑ Bool → ∑ Bool
fg : ∑ Bool → ∑ Bool
fg = fcircle · gcircle
fgeast : ap fg east ≡ east ∘ ! west
fgeast =
(ap fg east
≡⟨ ! (apfComp gcircle fcircle east) ⟩
ap fcircle (ap gcircle east)
≡⟨ ap (ap fcircle) geast ⟩
ap fcircle loop
≡⟨ floop ⟩
(east ∘ ! west) ∎)
fgwest : ap fg west ≡ refl N
fgwest =
(ap fg west
≡⟨ ! (apfComp gcircle fcircle west) ⟩
ap fcircle (ap gcircle west)
≡⟨ ap (ap fcircle) gwest ⟩
ap fcircle (refl base)
≡⟨ C.refl ⟩
refl N ∎)
αeast : transport (λ x → fg x ≡ x) east (refl N) ≡ west
αeast =
(transport (λ x → fg x ≡ x) east (refl N)
≡⟨ transportId fg id east (refl N) ⟩
! (ap fg east) ∘ refl N ∘ ap id east
≡⟨ ap (λ x → ! (ap fg east) ∘ refl N ∘ x) (apfId east) ⟩
! (ap fg east) ∘ refl N ∘ east
≡⟨ ap (λ x → ! (ap fg east) ∘ x) (! (unitTransL east)) ⟩
! (ap fg east) ∘ east
≡⟨ ap (λ x → ! x ∘ east) fgeast ⟩
! (east ∘ ! west) ∘ east
≡⟨ ap (λ x → x ∘ east) (invComp east (! west)) ⟩
(! (! west) ∘ ! east) ∘ east
≡⟨ ! (assocP (! (! west)) (! east) east) ⟩
! (! west) ∘ ! east ∘ east
≡⟨ ap (λ x → ! (! west) ∘ x) (invTransL east) ⟩
! (! west) ∘ refl S
≡⟨ ! (unitTransR (! (! west))) ⟩
! (! west)
≡⟨ invId west ⟩
west ∎)
αwest : transport (λ x → fg x ≡ x) west (refl N) ≡ west
αwest =
(transport (λ x → fg x ≡ x) west (refl N)
≡⟨ transportId fg id west (refl N) ⟩
! (ap fg west) ∘ refl N ∘ ap id west
≡⟨ ap (λ x → ! (ap fg west) ∘ refl N ∘ x) (apfId west) ⟩
! (ap fg west) ∘ refl N ∘ west
≡⟨ ap (λ x → ! (ap fg west) ∘ x) (! (unitTransL west)) ⟩
! (ap fg west) ∘ west
≡⟨ ap (λ x → ! x ∘ west) fgwest ⟩
! (refl N) ∘ west
≡⟨ ! (unitTransL west) ⟩
west ∎)
αcircle : fg ∼ id
αcircle =
ind∑ (refl N) west (λ { false → αeast; true → αwest })
-- main lemmas
equivlemma : ∑ Bool ≃ S¹
equivlemma = (gcircle , iso (mkqinv fcircle βcircle αcircle))
lemma : ∑ Bool ≡ S¹
lemma with univalence
... | (_ , eq) = isequiv.g eq equivlemma
------------------------------------------------------------------------------
-- Lemma 8.5.10
module ∑A≡Bool*A {A : Set} where
open Suspension
open Join
f : ∑ A → Bool * A
f = rec∑ (inl true)
(inl false)
(λ a → glue (true , a) ∘ ! (glue (false , a)))
fmerid : (a : A) →
ap f (merid a) ≡ glue (true , a) ∘ ! (glue (false , a))
fmerid =
βrec∑ (inl true)
(inl false)
(λ a → glue (true , a) ∘ ! (glue (false , a)))
g : Bool * A → ∑ A
g = rec* (λ b → if b then N else S)
(λ a → S)
(λ c → indBool (λ b → (if b then N else S) ≡ S)
(merid (proj₂ c))
(refl S)
(proj₁ c))
fg = f · g
gf = g · f
gglue-true : (a : A) → (ap g (glue (true , a))) ≡ merid a
gglue-true a =
βrec* (λ b → if b then N else S)
(λ a → S)
(λ c → indBool (λ b → (if b then N else S) ≡ S)
(merid (proj₂ c))
(refl S)
(proj₁ c))
(true , a)
gglue-false : (a : A) → (ap g (glue (false , a))) ≡ refl S
gglue-false a =
βrec* (λ b → if b then N else S)
(λ a → S)
(λ c → indBool (λ b → (if b then N else S) ≡ S)
(merid (proj₂ c))
(refl S)
(proj₁ c))
(false , a)
α : (f · g) ∼ id
α = ind* (indBool (λ b → fg (inl b) ≡ id (inl b))
(refl (inl true))
(refl (inl false)))
(λ a → glue (false , a))
(λ c →
ind×
(λ b a →
indBool
(λ b →
transport
(λ z → fg z ≡ id z)
(glue (b , a))
(indBool (λ b₁ → fg (inl b₁) ≡ id (inl b₁))
(refl (inl true))
(refl (inl false))
b)
≡ glue (false , a))
-- big α equivalence proof 1
(transport (λ z → fg z ≡ id z)
(glue (true , a))
(refl (inl true))
≡⟨ transportId fg id (glue (true , a))
(refl (inl true)) ⟩
((! (ap fg (glue (true , a))))
∘ (refl (inl true))
∘ ap id (glue (true , a)))
≡⟨ ap (λ p → ((! (ap fg (glue (true , a))))
∘ (refl (inl true))
∘ p))
(apfId (glue (true , a))) ⟩
((! (ap fg (glue (true , a))))
∘ (refl (inl true))
∘ (glue (true , a)))
≡⟨ ap (λ p → ((! (ap fg (glue (true , a)))) ∘ p))
(unitTransL (glue (true , a))) ⟩
((! (ap (f · g) (glue (true , a))))
∘ (glue (true , a)))
≡⟨ ap (λ p → ((! p) ∘ (glue (true , a))))
(! (apfComp g f (glue (true , a)))) ⟩
((! (ap f (ap g (glue (true , a)))))
∘ (glue (true , a)))
≡⟨ ap (λ p → (! (ap f p)) ∘ (glue (true , a)))
(gglue-true a) ⟩
((! (ap f (merid a))) ∘ (glue (true , a)))
≡⟨ ap (λ p → (! p) ∘ (glue (true , a)))
(fmerid a) ⟩
((! (glue (true , a) ∘ ! (glue (false , a))))
∘ (glue (true , a)))
≡⟨ ap (λ p → (p ∘ (glue (true , a))))
(invComp (glue (true , a))
(! (glue (false , a)))) ⟩
((! (! (glue (false , a)))) ∘ (! (glue (true , a))))
∘ (glue (true , a))
≡⟨ ! (assocP (! (! (glue (false , a))))
(! (glue (true , a)))
(glue (true , a))) ⟩
(! (! (glue (false , a))))
∘ ((! (glue (true , a))) ∘ (glue (true , a)))
≡⟨ ap (λ p → (! (! (glue (false , a)))) ∘ p)
(invTransL (glue (true , a))) ⟩
(! (! (glue (false , a)))) ∘ (refl (inr a))
≡⟨ ! (unitTransR (! (! (glue (false , a))))) ⟩
(! (! (glue (false , a))))
≡⟨ (invId (glue (false , a))) ⟩
(glue (false , a)) ∎)
-- big α equivalence proof 2
((transport (λ z → fg z ≡ id z)
(glue (false , a))
(refl (inl false))
≡⟨ transportId fg id (glue (false , a))
(refl (inl false)) ⟩
((! (ap fg (glue (false , a))))
∘ (refl (inl false))
∘ ap id (glue (false , a)))
≡⟨ ap (λ p → (! (ap fg (glue (false , a))))
∘ (refl (inl false))
∘ p)
(apfId (glue (false , a))) ⟩
((! (ap fg (glue (false , a))))
∘ ((refl (inl false))
∘ (glue (false , a))))
≡⟨ ap (λ p → (! (ap fg (glue (false , a)))) ∘ p)
(unitTransL (glue (false , a))) ⟩
(! (ap (f · g) (glue (false , a))))
∘ (glue (false , a))
≡⟨ ! (ap (λ p → (! p) ∘ (glue (false , a)))
(apfComp g f (glue (false , a)))) ⟩
(! (ap f (ap g (glue (false , a)))))
∘ (glue (false , a))
≡⟨ ap (λ p → (! (ap f p)) ∘ (glue (false , a)))
(gglue-false a) ⟩
(! (ap f (refl S))) ∘ (glue (false , a))
≡⟨ C.refl ⟩
(refl (inl false)) ∘ (glue (false , a))
≡⟨ unitTransL (glue (false , a)) ⟩
(glue (false , a)) ∎))
b)
c)
-- fmerid : (a : A) →
-- ap f (merid a) ≡ glue (true , a) ∘ ! (glue (false , a))
β : (g · f) ∼ id
β = ind∑
(refl N)
(refl S)
(λ a →
transport (λ z → gf z ≡ id z)
(merid a)
(refl N)
≡⟨ transportId gf id (merid a) (refl N) ⟩
((! (ap gf (merid a))) ∘ (refl N) ∘ ap id (merid a))
≡⟨ ap (λ p → ((! (ap gf (merid a))) ∘ (refl N) ∘ p))
(apfId (merid a)) ⟩
((! (ap gf (merid a))) ∘ (refl N) ∘ (merid a))
≡⟨ ap (λ p → (! (ap gf (merid a))) ∘ p)
(! (unitTransL (merid a))) ⟩
((! (ap (g · f) (merid a))) ∘ (merid a))
≡⟨ ap (λ p → (! p) ∘ (merid a))
(! (apfComp f g (merid a))) ⟩
((! (ap g (ap f (merid a)))) ∘ (merid a))
≡⟨ ap (λ p → ((! (ap g p)) ∘ (merid a)))
(fmerid a) ⟩
((! (ap g (glue (true , a) ∘ ! (glue (false , a))))) ∘ (merid a))
≡⟨ ap (λ p → (! p) ∘ (merid a))
(apfTrans g (glue (true , a)) (! (glue (false , a)))) ⟩
((! ((ap g (glue (true , a))) ∘ (ap g (! (glue (false , a)))))) ∘ (merid a))
≡⟨ ap (λ p → ((! (p ∘ (ap g (! (glue (false , a)))))) ∘ (merid a)))
(gglue-true a) ⟩
((! ((merid a) ∘ (ap g (! (glue (false , a)))))) ∘ (merid a))
≡⟨ ap (λ p → ((! ((merid a) ∘ p)) ∘ (merid a)))
(apfInv g (glue (false , a))) ⟩
((! ((merid a) ∘ (! (ap g (glue (false , a)))))) ∘ (merid a))
≡⟨ ap (λ p → ((! ((merid a) ∘ (! p))) ∘ (merid a)))
(gglue-false a) ⟩
((! ((merid a) ∘ (! (refl S)))) ∘ (merid a))
≡⟨ C.refl ⟩
((! ((merid a) ∘ (refl S))) ∘ (merid a))
≡⟨ ap (λ p → (! p) ∘ (merid a))
(! (unitTransR (merid a))) ⟩
((! (merid a)) ∘ (merid a))
≡⟨ invTransL (merid a) ⟩
refl S ∎)
ΣA≃Bool*A : ∑ A ≃ Bool * A
ΣA≃Bool*A = (f , iso (mkqinv g α β))
lemma : ∑ A ≡ Bool * A
lemma with univalence
... | (_ , eq) = isequiv.g eq ΣA≃Bool*A
------------------------------------------------------------------------------
-- Lemma 8.5.9
module JoinAssoc where
open Join
lemma : {A B C : Set} → (A * B) * C ≡ A * (B * C)
lemma {A} {B} {C} = {!!}
------------------------------------------------------------------------------
-- Thm 8.5.11
open Circle
open Suspension
open Join
S² S³ : Set
S² = ∑ S¹
S³ = ∑ S²
-- Proof of the main theorem
S¹*S¹≡S³ : S¹ * S¹ ≡ S³
S¹*S¹≡S³ =
(S¹ * S¹
≡⟨ P.cong (λ a → a * S¹) (! ∑Bool≡S¹.lemma) ⟩
∑ Bool * S¹
≡⟨ P.cong (λ a → a * S¹) ∑A≡Bool*A.lemma ⟩
(Bool * Bool) * S¹
≡⟨ JoinAssoc.lemma ⟩
Bool * (Bool * S¹)
≡⟨ P.cong (λ b → Bool * b) (! ∑A≡Bool*A.lemma) ⟩
Bool * S²
≡⟨ ! ∑A≡Bool*A.lemma ⟩
S³ ∎)
------------------------------------------------------------------------------
|
{
"alphanum_fraction": 0.38194154,
"avg_line_length": 31.3688046647,
"ext": "agda",
"hexsha": "f2865517330e22f23c9ed36b286e658d86152436",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andmkent/misc-HoTT",
"max_forks_repo_path": "thm8511part2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andmkent/misc-HoTT",
"max_issues_repo_path": "thm8511part2.agda",
"max_line_length": 107,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andmkent/misc-HoTT",
"max_stars_repo_path": "thm8511part2.agda",
"max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z",
"num_tokens": 8070,
"size": 21519
}
|
-- Properties involving susbets and membership
-- between sets.
module sv20.assign2.SetTheory.Subset where
open import sv20.assign2.SetTheory.Logic
open import sv20.assign2.SetTheory.ZAxioms
memberEq : (x y z : 𝓢) → x ∈ y ∧ y ≡ z → x ∈ z
memberEq x y z (x₁ , x₂) = subs _ x₂ x₁
-- Theorem 1, p. 21 (Suppes 1960)
notInEmpty : ∀ x → x ∉ ∅
notInEmpty x h = (proj₂ _ empt) x h
prop-∅ : (x A : 𝓢) → x ∈ A → A ≢ ∅
prop-∅ x A x∈A h = notInEmpty x (subs _ h x∈A)
prop₂-∅ : (x : 𝓢) → ∃ (λ y → y ∈ x) → x ≢ ∅
prop₂-∅ x h₁ h₂ = cont _ (h₂ , prop-∅ _ _ aux-p)
where
aux : 𝓢
aux = proj₁ h₁
aux-p : aux ∈ x
aux-p = proj₂ _ h₁
-- Theorem 3, p. 22 (Suppes 1960)
subsetOfItself : ∀ {x} → x ⊆ x
subsetOfItself _ t∈x = t∈x
-- Theorem 4, p. 22 (Suppes 1960)
equalitySubset : (x y : 𝓢) → x ⊆ y ∧ y ⊆ x → x ≡ y
equalitySubset x y (x⊆y , y⊆x) = ext x y ((x⊆y x) , (y⊆x x))
-- Theorem 6, p. 23 (Suppes 1960)
trans-⊆ : (x y z : 𝓢) → x ⊆ y ∧ y ⊆ z → x ⊆ z
trans-⊆ x y z (x⊆y , y⊆z) t t∈x = y⊆z t (x⊆y t t∈x)
-- Theorem 7, p. 23 (Suppes 1960)
notContainedInItself : ∀ {x} → ¬ (x ⊂ x)
notContainedInItself (_ , x≢x) = x≢x refl
-- Theorem 8, p. 23 (Suppes 1960)
nonSymmetry-⊂ : (x y : 𝓢) (p : x ⊂ y) → ¬ (y ⊂ x)
nonSymmetry-⊂ x y (x⊆y , x≢y) (y⊆x , _) = x≢y (equalitySubset x y (x⊆y , y⊆x))
-- Theorem 10, p. 23 (Suppes 1960)
⊂→⊆ : ∀ {x y} → x ⊂ y → x ⊆ y
⊂→⊆ (x⊆y , _) z z∈x = x⊆y z z∈x
prop-⊆ : (x A B : 𝓢) → x ∈ A → A ⊆ B → x ∈ B
prop-⊆ x A B x₁ x₂ = i x₁
where
i : x ∈ A → x ∈ B
i = x₂ _
-- References
--
-- Suppes, Patrick (1960). Axiomatic Set Theory.
-- The University Series in Undergraduate Mathematics.
-- D. Van Nostrand Company, inc.
--
-- Enderton, Herbert B. (1977). Elements of Set Theory.
-- Academic Press Inc.
|
{
"alphanum_fraction": 0.5585689556,
"avg_line_length": 25.8656716418,
"ext": "agda",
"hexsha": "9f558b292a09ce04aea3eff87a9268c11125288b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Subset.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Subset.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Subset.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 858,
"size": 1733
}
|
module NaturalAndLevelDifferent where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN LEVEL ℕ #-}
|
{
"alphanum_fraction": 0.6277372263,
"avg_line_length": 15.2222222222,
"ext": "agda",
"hexsha": "b56da36ece26004eedbb7165a66f3c762e644b68",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NaturalAndLevelDifferent.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NaturalAndLevelDifferent.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NaturalAndLevelDifferent.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 137
}
|
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.rewrite:25 -v tc.with:40 --show-implicit #-}
-- {-# OPTIONS -v tc:100 #-}
-- Andreas, 2014-05-17, reported by Fabien Renaud.
-- Error in reification of interaction metas
-- leading to strange error messages for rewrite.
module _ where
open import Common.Prelude
open import Common.Equality
postulate comm : ∀{n m} → n + m ≡ m + n
-- module With where
-- foo : ∀{x y} → x + (x + y) ≡ x + (y + x)
-- foo {x} {y} with x + y | comm {x} {y}
-- foo | ._ | refl = refl
test0 : ∀{x y} → x + (x + y) ≡ x + (y + x)
test0 rewrite comm {n = {!!}} {m = {!!}} = {!!}
test : ∀{x y} → x + (x + y) ≡ x + (y + x)
test {x}{y} rewrite comm {n = {!!}} {m = {!!}} = {!!}
-- Error WAS:
-- .Agda.Primitive.Level !=< Nat of type Set
-- when checking that the expression ?0 has type Nat
-- Now this type checks.
|
{
"alphanum_fraction": 0.5555555556,
"avg_line_length": 24.6857142857,
"ext": "agda",
"hexsha": "4917dd866f846fb4760790f9f38a8a5b74e43005",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1111.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1111.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1111.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 299,
"size": 864
}
|
{-# OPTIONS --without-K #-}
open import Type
open import Type.Identities
open import Level.NP
open import Data.Two
open import Function
open import Function.Extensionality
open import Data.Product
open import Data.Sum
open import Data.Fin
open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; !_; _∙_)
open import Relation.Binary.Sum
open import HoTT
open import Explore.Sum
open import Explore.Core
open import Explore.Properties
open import Explore.Explorable
module Explore.Two where
module _ {ℓ} where
𝟚ᵉ : Explore ℓ 𝟚
𝟚ᵉ _ _∙_ f = f 0₂ ∙ f 1₂
𝟚ⁱ : ∀ {p} → ExploreInd p 𝟚ᵉ
𝟚ⁱ _ _ _P∙_ Pf = Pf 0₂ P∙ Pf 1₂
module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟚 → 𝟚 → ★₀} {r0 : R 0₂ 0₂}{r1 : R 1₂ 1₂} where
⟦𝟚ᵉ⟧ : ⟦Explore⟧ {ℓ₁} {ℓ₂} ℓᵣ R 𝟚ᵉ 𝟚ᵉ
⟦𝟚ᵉ⟧ _ _ _∙ᵣ_ fᵣ = fᵣ r0 ∙ᵣ fᵣ r1
module 𝟚ⁱ = FromExploreInd 𝟚ⁱ
open 𝟚ⁱ public using ()
renaming (sum to 𝟚ˢ
;product to 𝟚ᵖ
;reify to 𝟚ʳ
;unfocus to 𝟚ᵘ
)
module _ {ℓ} where
module _ {{_ : UA}}{{_ : FunExt}} where
Σᵉ𝟚-ok : Adequate-Σ {ℓ} (Σᵉ 𝟚ᵉ)
Σᵉ𝟚-ok _ = ! Σ𝟚-⊎
Πᵉ𝟚-ok : Adequate-Π {ℓ} (Πᵉ 𝟚ᵉ)
Πᵉ𝟚-ok _ = ! Π𝟚-×
𝟚ˡ : Lookup {ℓ} 𝟚ᵉ
𝟚ˡ = proj
𝟚ᶠ : Focus {ℓ} 𝟚ᵉ
𝟚ᶠ (0₂ , x) = inj₁ x
𝟚ᶠ (1₂ , x) = inj₂ x
explore𝟚 = 𝟚ᵉ
explore𝟚-ind = 𝟚ⁱ
lookup𝟚 = 𝟚ˡ
reify𝟚 = 𝟚ʳ
focus𝟚 = 𝟚ᶠ
unfocus𝟚 = 𝟚ᵘ
sum𝟚 = 𝟚ˢ
module _ {{_ : UA}}{{_ : FunExt}} where
open Adequacy _≡_
𝟚ˢ-ok : Adequate-sum 𝟚ˢ
𝟚ˢ-ok f = ! (Σ𝟚-⊎ ∙ Fin-⊎-+)
|
{
"alphanum_fraction": 0.5927868852,
"avg_line_length": 22.1014492754,
"ext": "agda",
"hexsha": "df1a2e05e4d48050ab3a43b8003bdbfa4df8a10b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Two.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Two.agda",
"max_line_length": 79,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Two.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 841,
"size": 1525
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Membership for containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Container.Membership where
open import Level using (_⊔_)
open import Relation.Unary using (Pred)
open import Relation.Binary.PropositionalEquality
open import Data.Container.Core
open import Data.Container.Relation.Unary.Any
module _ {s p} {C : Container s p} {x} {X : Set x} where
infix 4 _∈_
_∈_ : X → Pred (⟦ C ⟧ X) (p ⊔ x)
x ∈ xs = ◇ C (_≡_ x) xs
|
{
"alphanum_fraction": 0.5235008104,
"avg_line_length": 26.8260869565,
"ext": "agda",
"hexsha": "68892e8e4f1963a56a429831b5a0c83f27da4e72",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Membership.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Membership.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Membership.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 146,
"size": 617
}
|
{-# OPTIONS --cubical --safe #-}
module Data.Maybe.Properties where
open import Data.Maybe.Base
open import Prelude
fromMaybe : A → Maybe A → A
fromMaybe x = maybe x id
just-inj : ∀ {x y : A} → just x ≡ just y → x ≡ y
just-inj {x = x} = cong (fromMaybe x)
just≢nothing : {x : A} → just x ≢ nothing
just≢nothing p = subst (maybe ⊥ (const ⊤)) p tt
nothing≢just : {x : A} → nothing ≢ just x
nothing≢just p = subst (maybe ⊤ (const ⊥)) p tt
discreteMaybe : Discrete A → Discrete (Maybe A)
discreteMaybe _≟_ nothing nothing = yes refl
discreteMaybe _≟_ nothing (just x) = no nothing≢just
discreteMaybe _≟_ (just x) nothing = no just≢nothing
discreteMaybe _≟_ (just x) (just y) = ⟦yes cong just ,no just-inj ⟧ (x ≟ y)
|
{
"alphanum_fraction": 0.6643454039,
"avg_line_length": 28.72,
"ext": "agda",
"hexsha": "8763be39a8ae9d7838c6a18884d654191d5ef4c9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Maybe/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Maybe/Properties.agda",
"max_line_length": 75,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Maybe/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 253,
"size": 718
}
|
{-# OPTIONS --without-K #-}
open import Base
import Homotopy.TruncationHIT as T
{-
The definition of the truncation is in TruncationHIT, here I just make some
arguments implicit, define easier to use helper functions and prove the
universal property
-}
module Homotopy.Truncation {i} where
τ : (n : ℕ₋₂) → (Set i → Set i)
τ = T.τ
proj : {n : ℕ₋₂} {A : Set i} → (A → τ n A)
proj {n} {A} = T.proj n A
τ-is-truncated : (n : ℕ₋₂) (A : Set i) → is-truncated n (τ n A)
τ-is-truncated = T.τ-is-truncated
τ-is-truncated#instance : {n : ℕ₋₂} {A : Set i} → is-truncated n (τ n A)
τ-is-truncated#instance = T.τ-is-truncated _ _
τ-extend : ∀ {j} {n : ℕ₋₂} {A : Set i} {P : (τ n A) → Set j}
⦃ p : (x : τ n A) → is-truncated n (P x) ⦄ (f : (x : A) → P (proj x))
→ ((x : τ n A) → P x)
τ-extend {j} {n} {A} {P} ⦃ p ⦄ f = T.τ-rec _ _ _ f {transp} p where
abstract
transp : (pa : n ≡ ⟨-2⟩) (x y : τ n A) (x* : P x) (y* : P y)
→ transport P (T.hack-prop n A pa x y) x* ≡ y*
transp pa x y x* y* = π₁ (contr-is-prop
(transport (λ m → is-truncated m _) pa (p y))
_ _)
τ-extend-nondep : ∀ {j} {n : ℕ₋₂} {A : Set i} {B : Set j}
⦃ p : is-truncated n B ⦄ → ((f : A → B) → (τ n A → B))
τ-extend-nondep {j} {n} {A} {B} ⦃ p ⦄ f = T.τ-rec-nondep _ _ _ f {transp} p
where
abstract
transp : (pa : n ≡ ⟨-2⟩) (x y : τ n A) (x* y* : B) → x* ≡ y*
transp pa x y x* y* = π₁ (contr-is-prop
(transport (λ m → is-truncated m _) pa p)
_ _)
-- Special syntax for hProp-reflection
[_] : Set i → Set i
[_] = τ ⟨-1⟩
abstract
[]-is-prop : {A : Set i} → is-prop [ A ]
[]-is-prop = T.τ-is-truncated _ _
[]-extend : ∀ {j} {A : Set i} {P : [ A ] → Set j}
⦃ p : (x : [ A ]) → is-prop (P x) ⦄ (f : (x : A) → P (proj x))
→ ((x : [ A ]) → P x)
[]-extend f = τ-extend f
[]-extend-nondep : ∀ {j} {A : Set i} {B : Set j} ⦃ p : is-prop B ⦄
→ ((f : A → B) → ([ A ] → B))
[]-extend-nondep f = τ-extend-nondep f
-- Special syntax for hSet-reflection
π₀ : Set i → Set i
π₀ = τ ⟨0⟩
π₀-is-set : (A : Set i) → is-set (π₀ A)
π₀-is-set A = T.τ-is-truncated _ _
π₀-extend : ∀ {j} {A : Set i} {P : π₀ A → Set j}
⦃ p : (x : π₀ A) → is-set (P x) ⦄ (f : (x : A) → P (proj x))
→ ((x : π₀ A) → P x)
π₀-extend f = τ-extend f
π₀-extend-nondep : ∀ {j} {A : Set i} {B : Set j} ⦃ p : is-set B ⦄
→ ((f : A → B) → (π₀ A → B))
π₀-extend-nondep f = τ-extend-nondep f
-- Universal property of the truncation
abstract
τ-up : ∀ {j} (n : ℕ₋₂) (A : Set i) (B : Set j)
⦃ p : is-truncated n B ⦄
→ is-equiv (λ (f : τ n A → B) → (λ x → f (proj x)))
τ-up n A B ⦃ p ⦄ = iso-is-eq _
(τ-extend-nondep)
(λ _ → refl)
(λ f → funext (τ-extend ⦃ p = λ x → ≡-is-truncated n p ⦄
(λ x → refl)))
τ-extend-nondep-is-equiv : ∀ {j} (n : ℕ₋₂) (A : Set i) (B : Set j)
⦃ p : is-truncated n B ⦄ → is-equiv (τ-extend-nondep {n = n} {A} {B})
τ-extend-nondep-is-equiv n A B ⦃ p ⦄ = iso-is-eq _
(λ f → f ◯ proj)
(λ f → funext (τ-extend ⦃ λ x → ≡-is-truncated n p ⦄
(λ x → refl)))
(λ _ → refl)
-- Equivalence associated to the universal property
τ-equiv : ∀ {j} (n : ℕ₋₂) (A : Set i) (B : Set j)
⦃ p : is-truncated n B ⦄ → (τ n A → B) ≃ (A → B)
τ-equiv n A B = (_ , τ-up n _ _)
-- Equivalence associated to the universal property
τ-extend-equiv : ∀ {j} (n : ℕ₋₂) (A : Set i) (B : Set j)
⦃ p : is-truncated n B ⦄ → (A → B) ≃ (τ n A → B)
τ-extend-equiv n A B = (τ-extend-nondep , τ-extend-nondep-is-equiv n A B)
τ-fmap : {n : ℕ₋₂} {A B : Set i} → ((A → B) → (τ n A → τ n B))
τ-fmap f = τ-extend-nondep (proj ◯ f)
τ-fpmap : {n : ℕ₋₂} {A B : Set i} {f g : A → B} (h : (a : A) → f a ≡ g a)
→ ((a : τ n A) → τ-fmap f a ≡ τ-fmap g a)
τ-fpmap h = τ-extend ⦃ λ _ → ≡-is-truncated _ (τ-is-truncated _ _) ⦄
(ap proj ◯ h)
|
{
"alphanum_fraction": 0.4888888889,
"avg_line_length": 32.8991596639,
"ext": "agda",
"hexsha": "2d624e3d26506dd21fc042e89413d5db34c7383b",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Truncation.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Truncation.agda",
"max_line_length": 76,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Truncation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1674,
"size": 3915
}
|
module Lists where
open import Nats
open import Bools
open import Agda.Builtin.List public
using (List; []; _∷_)
infixr 5 _++_ _∷ʳ_
[_] : ∀ {a} {A : Set a} → A → List A
[ x ] = x ∷ []
_++_ : ∀ {a} {A : Set a} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
_∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List A
xs ∷ʳ x = xs ++ [ x ]
null : ∀ {a} {A : Set a} → List A → 𝔹
null [] = true
null (x ∷ xs) = false
reverse : ∀ {a} {A : Set a} → List A → List A
reverse [] = []
reverse (x ∷ xs) = reverse xs ∷ʳ x
replicate : ∀ {a} {A : Set a} → (n : ℕ) → A → List A
replicate zero x = []
replicate (suc n) x = x ∷ replicate n x
|
{
"alphanum_fraction": 0.4939759036,
"avg_line_length": 20.75,
"ext": "agda",
"hexsha": "ea0a90ad8c49ae71f69604825f42417ecf7fd30d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Lists.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Lists.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Lists.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 283,
"size": 664
}
|
module HelloWorld where
open import IO
open import Data.String
open import Data.Unit
main = run (putStrLn "Hello World!")
|
{
"alphanum_fraction": 0.7741935484,
"avg_line_length": 15.5,
"ext": "agda",
"hexsha": "9a0346ae9e46bcfa9bfd845f22666d6e8932eada",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/with-stdlib/HelloWorld.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/with-stdlib/HelloWorld.agda",
"max_line_length": 36,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/with-stdlib/HelloWorld.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 28,
"size": 124
}
|
open import MJ.Types as Types
import MJ.Classtable.Core as Core
module MJ.Semantics.Environments {c}(Ct : Core.Classtable c) where
open import Prelude
open import Data.List
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.All as All
open import Data.List.Relation.Unary.Any
open import MJ.LexicalScope c
{-
We equip MJ with mutable lexical environments.
We could choose to model this directly, moving the environment from
the Reader part of the evaluation monad to the State part.
Instead we choose to keep our environments immutable and model
mutability of the values in it by an indirection via the mutable store.
This greatly simplifies the treatment of environments in the interpreter
and keeps the representation lightweight, even though we support block scopes.
-}
Env : ∀ (Γ : Ctx)(W : World c) → Set
Env Γ W = All (λ a → vty a ∈ W) Γ
_⊕_ : ∀ {Γ W a} → Env Γ W → (vty a) ∈ W → Env (Γ +local a) W
_⊕_ E v = v ∷ E
open import Data.List.Any
getvar : ∀ {Γ W a} → Var Γ a → Env Γ W → vty a ∈ W
getvar px E = All.lookup E px
|
{
"alphanum_fraction": 0.7406367041,
"avg_line_length": 32.3636363636,
"ext": "agda",
"hexsha": "2c20d49f8964ed234f49550d0fa3b0490547b5c9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Semantics/Environments.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Semantics/Environments.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Semantics/Environments.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 302,
"size": 1068
}
|
------------------------------------------------------------------------------
-- ABP Lemma 2
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From Dybjer and Sander's paper: The second lemma states that given
-- a state of the latter kind (see Lemma 1) we will arrive at a new
-- start state, which is identical to the old start state except that
-- the bit has alternated and the first item in the input stream has
-- been removed.
module FOTC.Program.ABP.Lemma2ATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Base.Loop
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesATP
using ( not-x≢x
; not-involutive
)
open import FOTC.Data.List
open import FOTC.Program.ABP.ABP
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Fair.PropertiesATP
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- 30 November 2013. If we don't have the following definitions
-- outside the where clause, the ATPs cannot prove the theorems.
ds^ : D → D → D
ds^ cs' os₂^ = corrupt os₂^ · cs'
{-# ATP definition ds^ #-}
as^ : D → D → D → D → D → D
as^ b i' is' cs' os₂^ = await b i' is' (ds^ cs' os₂^)
{-# ATP definition as^ #-}
bs^ : D → D → D → D → D → D → D
bs^ b i' is' cs' os₁^ os₂^ = corrupt os₁^ · as^ b i' is' cs' os₂^
{-# ATP definition bs^ #-}
cs^ : D → D → D → D → D → D → D
cs^ b i' is' cs' os₁^ os₂^ = ack (not b) · bs^ b i' is' cs' os₁^ os₂^
{-# ATP definition cs^ #-}
os₁^ : D → D
os₁^ os₁' = tail₁ os₁'
{-# ATP definition os₁^ #-}
os₂^ : D → D → D
os₂^ ft₂ os₂'' = ft₂ ++ os₂''
{-# ATP definition os₂^ #-}
-- Helper function for Lemma 2.
helper₂ : ∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} →
Bit b →
Fair os₁' →
S' b i' is' os₁' os₂' as' bs' cs' ds' js' →
∀ ft₂ os₂'' → F*T ft₂ → Fair os₂'' → os₂' ≡ ft₂ ++ os₂'' →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]
Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'
helper₂ {b} {i'} {is'} {js' = js'} Bb Fos₁' s'
.(T ∷ []) os₂'' f*tnil Fos₂'' os₂'-eq = prf
where
postulate
prf : ∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]
Fair os₁''
∧ Fair os₂''
∧ as'' ≡ send (not b) · is' · ds''
∧ bs'' ≡ corrupt os₁'' · as''
∧ cs'' ≡ ack (not b) · bs''
∧ ds'' ≡ corrupt os₂'' · cs''
∧ js' ≡ out (not b) · bs''
{-# ATP prove prf #-}
helper₂ {b} {i'} {is'} {os₁'} {os₂'} {as'} {bs'} {cs'} {ds'} {js'}
Bb Fos₁' s'
.(F ∷ ft₂) os₂'' (f*tcons {ft₂} FTft₂) Fos₂'' os₂'-eq =
helper₂ Bb (tail-Fair Fos₁') ihS' ft₂ os₂'' FTft₂ Fos₂'' refl
where
postulate os₂'-eq-helper : os₂' ≡ F ∷ os₂^ ft₂ os₂''
{-# ATP prove os₂'-eq-helper #-}
postulate ds'-eq : ds' ≡ error ∷ ds^ cs' (os₂^ ft₂ os₂'')
{-# ATP prove ds'-eq os₂'-eq-helper #-}
postulate as'-eq : as' ≡ < i' , b > ∷ as^ b i' is' cs' (os₂^ ft₂ os₂'')
{-# ATP prove as'-eq #-}
postulate
bs'-eq : bs' ≡ ok < i' , b > ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
∨ bs' ≡ error ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
{-# ATP prove bs'-eq as'-eq head-tail-Fair #-}
postulate
cs'-eq-helper₁ :
bs' ≡ ok < i' , b > ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'') →
cs' ≡ b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
{-# ATP prove cs'-eq-helper₁ not-x≢x not-involutive #-}
postulate
cs'-eq-helper₂ :
bs' ≡ error ∷ bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'') →
cs' ≡ b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
{-# ATP prove cs'-eq-helper₂ not-involutive #-}
cs'-eq : cs' ≡ b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
cs'-eq = case cs'-eq-helper₁ cs'-eq-helper₂ bs'-eq
postulate
js'-eq : js' ≡ out (not b) · bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂'')
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove js'-eq not-x≢x bs'-eq #-}
postulate
ds^-eq : ds^ cs' (os₂^ ft₂ os₂'') ≡
corrupt (os₂^ ft₂ os₂'') ·
(b ∷ cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂''))
{-# ATP prove ds^-eq cs'-eq #-}
ihS' : S' b i' is'
(os₁^ os₁')
(os₂^ ft₂ os₂'')
(as^ b i' is' cs' (os₂^ ft₂ os₂''))
(bs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂''))
(cs^ b i' is' cs' (os₁^ os₁') (os₂^ ft₂ os₂''))
(ds^ cs' (os₂^ ft₂ os₂''))
js'
ihS' = refl , refl , refl , ds^-eq , js'-eq
-- From Dybjer and Sander's paper: From the assumption that
-- os₂' ∈ Fair and hence by unfolding Fair, we conclude that there are
-- ft₂ : F*T and os₂'' : Fair, such that os₂' = ft₂ ++ os₂''.
--
-- We proceed by induction on ft₂ : F*T using helper.
lemma₂ : ∀ {b i' is' os₁' os₂' as' bs' cs' ds' js'} →
Bit b →
Fair os₁' →
Fair os₂' →
S' b i' is' os₁' os₂' as' bs' cs' ds' js' →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]
Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'
lemma₂ {b} {is' = is'} {os₂' = os₂'} {js' = js'} Bb Fos₁' Fos₂' s' =
helper₁ (Fair-out Fos₂')
where
helper₁ : (∃[ ft₂ ] ∃[ os₂'' ] F*T ft₂ ∧ os₂' ≡ ft₂ ++ os₂'' ∧ Fair os₂'') →
∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]
Fair os₁''
∧ Fair os₂''
∧ S (not b) is' os₁'' os₂'' as'' bs'' cs'' ds'' js'
helper₁ (ft₂ , os₂'' , FTft₂ , os₂'-eq , Fos₂'') =
helper₂ Bb Fos₁' s' ft₂ os₂'' FTft₂ Fos₂'' os₂'-eq
|
{
"alphanum_fraction": 0.4733969986,
"avg_line_length": 35.756097561,
"ext": "agda",
"hexsha": "24f91c755c53c924a65c740d23813658457c894d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/ABP/Lemma2ATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/ABP/Lemma2ATP.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/ABP/Lemma2ATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2272,
"size": 5864
}
|
{-# OPTIONS --universe-polymorphism #-}
module Rewrite-with-doubly-indexed-equality where
open import Common.Level
infix 4 _≡_
data _≡_ {a} {A : Set a} : A → A → Set a where
refl : ∀ {x} → x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
sym : {A : Set}{x y : A} → x ≡ y → y ≡ x
sym refl = refl
data Nat : Set where
zero : Nat
suc : Nat → Nat
infixl 6 _+_
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
plus-zero : ∀ n → n + zero ≡ n
plus-zero zero = refl
plus-zero (suc n) rewrite plus-zero n = refl
plus-suc : ∀ n m → n + suc m ≡ suc (n + m)
plus-suc zero m = refl
plus-suc (suc n) m rewrite plus-suc n m = refl
-- Proving things about functions using rewrite
data IsRefl {A : Set}{x : A} : ∀ {y} → x ≡ y → Set where
isRefl : IsRefl refl
plus-suc-isrefl : ∀ {n m} → IsRefl (plus-suc n m)
plus-suc-isrefl {zero } {m} = isRefl
plus-suc-isrefl {suc n} {m} rewrite plus-suc n m = isRefl
-- Multiple rewrites
com : ∀ n m → n + m ≡ m + n
com n zero = plus-zero _
com n (suc m) rewrite plus-suc n m
| com n m
= refl
-- rewrite followed by with
thm : ∀ a b c → a + (b + c) ≡ (c + b) + a
thm a b c rewrite com b c with c + b
... | cb = com a cb
data List A : Set where
[] : List A
_∷_ : (x : A)(xs : List A) → List A
infixr 30 _∷_ _++_
_++_ : ∀ {A} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
-- rewrite in parameterised module
module ListProps {A : Set} where
append-nil : (xs : List A) → xs ++ [] ≡ xs
append-nil [] = refl
append-nil (x ∷ xs) rewrite append-nil xs = refl
append-assoc : (as bs cs : List A) → (as ++ bs) ++ cs ≡ as ++ (bs ++ cs)
append-assoc [] bs cs = refl
append-assoc (a ∷ as) bs cs rewrite append-assoc as bs cs = refl
-- With implicit arguments
append-assoc′ : ∀ (as : List A) {bs cs} → (as ++ bs) ++ cs ≡ as ++ (bs ++ cs)
append-assoc′ [] = refl
append-assoc′ (a ∷ as) {bs}{cs} rewrite append-assoc′ as {bs} {cs} = refl
reverse : List A → List A
reverse [] = []
reverse (x ∷ xs) = reverse xs ++ x ∷ []
reverse-append : ∀ as bs → reverse (as ++ bs) ≡ reverse bs ++ reverse as
reverse-append [] bs rewrite append-nil (reverse bs) = refl
reverse-append (a ∷ as) bs rewrite reverse-append as bs
= append-assoc (reverse bs) _ _
reverse-reverse : ∀ as → reverse (reverse as) ≡ as
reverse-reverse [] = refl
reverse-reverse (a ∷ as) rewrite reverse-append (reverse as) (a ∷ [])
| reverse-reverse as
= refl
open ListProps
map : ∀ {A B} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
_∘_ : {A : Set}{B : A → Set}{C : ∀ x → B x → Set}
(f : ∀ {x} (y : B x) → C x y)(g : ∀ x → B x)
(x : A) → C x (g x)
(f ∘ g) x = f (g x)
id : {A : Set} → A → A
id x = x
map-id : ∀ {A} (xs : List A) → map id xs ≡ xs
map-id [] = refl
map-id (x ∷ xs) rewrite map-id xs = refl
map-compose : ∀ {A B C} (f : B → C)(g : A → B)(xs : List A) →
map (f ∘ g) xs ≡ (map f ∘ map g) xs
map-compose f g [] = refl
map-compose f g (x ∷ xs) rewrite map-compose f g xs = refl
map-append : ∀ {A B} (f : A → B) (xs ys : List A) →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-append f [] ys = refl
map-append f (x ∷ xs) ys rewrite map-append f xs ys = refl
map-reverse : ∀ {A B} (f : A → B) (xs : List A) →
map f (reverse xs) ≡ reverse (map f xs)
map-reverse f [] = refl
map-reverse f (x ∷ xs) rewrite map-append f (reverse xs) (x ∷ [])
| map-reverse f xs
= refl
foldr : {A B : Set} → (A → B → B) → B → List A → B
foldr f z [] = z
foldr f z (x ∷ xs) = f x (foldr f z xs)
foldl : {A B : Set} → (B → A → B) → B → List A → B
foldl f z [] = z
foldl f z (x ∷ xs) = foldl f (f z x) xs
module FoldAssoc
{A : Set}(_∙_ : A → A → A)
(assoc : ∀ x y z → ((x ∙ y) ∙ z) ≡ (x ∙ (y ∙ z))) where
smashr = foldr _∙_
smashl = foldl _∙_
foldr-append : ∀ ∅ z xs ys → (∀ x → (∅ ∙ x) ≡ x) →
smashr z (xs ++ ys) ≡ (smashr ∅ xs ∙ smashr z ys)
foldr-append ∅ z [] ys idl = sym (idl _)
foldr-append ∅ z (x ∷ xs) ys idl rewrite assoc x (smashr ∅ xs) (smashr z ys)
| foldr-append ∅ z xs ys idl
= refl
foldl-plus : ∀ z₁ z₂ xs → smashl (z₁ ∙ z₂) xs ≡ (z₁ ∙ smashl z₂ xs)
foldl-plus z₁ z₂ [] = refl
foldl-plus z₁ z₂ (x ∷ xs) rewrite assoc z₁ z₂ x
= foldl-plus _ _ xs
foldr=foldl : ∀ ∅ → (∀ x → (∅ ∙ x) ≡ (x ∙ ∅)) →
∀ xs → foldr _∙_ ∅ xs ≡ foldl _∙_ ∅ xs
foldr=foldl ∅ id [] = refl
foldr=foldl ∅ id (x ∷ xs) rewrite id x
| foldl-plus x ∅ xs
| foldr=foldl ∅ id xs
= refl
foldr-compose : ∀ {A B C : Set} (f : B → C → C) (z : C) (g : A → B) (xs : List A) →
foldr (f ∘ g) z xs ≡ foldr f z (map g xs)
foldr-compose f z g [] = refl
foldr-compose f z g (x ∷ xs) rewrite foldr-compose f z g xs = refl
foldr-fusion : ∀ {A B C : Set} (f : B → C) (_⊕_ : A → B → B) (_⊗_ : A → C → C) (z : B) →
(∀ x y → f (x ⊕ y) ≡ (x ⊗ f y)) →
∀ xs → f (foldr _⊕_ z xs) ≡ foldr _⊗_ (f z) xs
foldr-fusion f _⊕_ _⊗_ z distr [] = refl
foldr-fusion f _⊕_ _⊗_ z distr (x ∷ xs)
rewrite sym (foldr-fusion f _⊕_ _⊗_ z distr xs)
with foldr _⊕_ z xs
... | y = distr x y
|
{
"alphanum_fraction": 0.4852862493,
"avg_line_length": 31.15,
"ext": "agda",
"hexsha": "a3a22d85d935066dff0f246477723162fd08cd9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Rewrite-with-doubly-indexed-equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Rewrite-with-doubly-indexed-equality.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Rewrite-with-doubly-indexed-equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2124,
"size": 5607
}
|
-- | The core type system.
module Ethambda.System where
open import Ethambda.Common using () -- ((<.>), (<.))
data Tp : Type -> Type where
Var : a -> Tp a
Fun : Tp a -> Tp a -> Tp a
Show a => Show (Tp a) where
show t = case t of
-- Var a => ?foo
Var a => show a
Fun a0 b0 => mbrackets a0 <+> "→" <+> show b0
-- where
-- brackets : String -> String
-- brackets s = "(" <+> s <+> ")"
-- mbrackets : Show a => Tp a -> String
-- mbrackets a = case a of
-- Var _ => neutral
-- Fun _ _ => brackets (show a)
|
{
"alphanum_fraction": 0.5090252708,
"avg_line_length": 25.1818181818,
"ext": "agda",
"hexsha": "43ce18b77348f65eed7976e13d6bc81138a2db0c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "fredefox/ethambda-agda",
"max_forks_repo_path": "src/Ethambda/System.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "fredefox/ethambda-agda",
"max_issues_repo_path": "src/Ethambda/System.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "fredefox/ethambda-agda",
"max_stars_repo_path": "src/Ethambda/System.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 193,
"size": 554
}
|
------------------------------------------------------------------------------
-- Properties for the relation _◁_
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.McCarthy91.WF-Relation.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
using ( x<y→y<x→⊥ )
open import FOTC.Data.Nat.Inequalities.PropertiesATP
using ( x∸y<Sx
; <-trans
; x<x∸y→⊥
; x∸y<x∸z→Sx∸y<Sx∸z
; x<y→y≤z→x<z
; x∸Sy≤x∸y
)
open import FOTC.Data.Nat.PropertiesATP
using ( ∸-N
; S∸S
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Data.Nat.UnaryNumbers.TotalityATP using ( 101-N )
open import FOTC.Program.McCarthy91.ArithmeticATP
open import FOTC.Program.McCarthy91.WF-Relation
------------------------------------------------------------------------------
◁-fn-N : ∀ {n} → N n → N (◁-fn n)
◁-fn-N Nn = ∸-N 101-N Nn
0◁x→⊥ : ∀ {n} → N n → ¬ (zero ◁ n)
0◁x→⊥ nzero 0◁n = prf
where
postulate prf : ⊥
{-# ATP prove prf #-}
0◁x→⊥ (nsucc Nn) 0◁Sn = prf
where
postulate prf : ⊥
{-# ATP prove prf ∸-N x∸y<Sx x<y→y<x→⊥ S∸S #-}
◁-trans : ∀ {m n o} → N m → N n → N o → m ◁ n → n ◁ o → m ◁ o
◁-trans Nm Nn No m◁n n◁o =
<-trans (∸-N 101-N Nm) (∸-N 101-N Nn) (∸-N 101-N No) m◁n n◁o
Sx◁Sy→x◁y : ∀ {m n} → N m → N n → succ₁ m ◁ succ₁ n → m ◁ n
Sx◁Sy→x◁y nzero nzero S0◁S0 = prf
where
postulate prf : zero ◁ zero
{-# ATP prove prf #-}
Sx◁Sy→x◁y nzero (nsucc {n} Nn) S0◁SSn = prf
where
postulate prf : zero ◁ succ₁ n
{-# ATP prove prf x<x∸y→⊥ S∸S #-}
Sx◁Sy→x◁y (nsucc {m} Nm) nzero SSm◁S0 = prf
where
postulate prf : succ₁ m ◁ zero
{-# ATP prove prf ∸-N x∸y<Sx S∸S #-}
Sx◁Sy→x◁y (nsucc {m} Nm) (nsucc {n} Nn) SSm◁SSn = prf
where
postulate prf : succ₁ m ◁ succ₁ n
-- 2018-06-27: The ATPs could not prove the theorem (300 sec), but
-- Vampire 4.2.2, via `online-atps`, could prove it.
--
{-# ATP prove prf x∸y<x∸z→Sx∸y<Sx∸z S∸S #-}
x◁Sy→x◁y : ∀ {m n} → N m → N n → m ◁ succ₁ n → m ◁ n
x◁Sy→x◁y {n = n} nzero Nn 0◁Sn = ⊥-elim (0◁x→⊥ (nsucc Nn) 0◁Sn)
x◁Sy→x◁y (nsucc {m} Nm) nzero Sm◁S0 = prf
where
postulate prf : succ₁ m ◁ zero
{-# ATP prove prf x∸y<Sx S∸S #-}
x◁Sy→x◁y (nsucc {m} Nm) (nsucc {n} Nn) Sm◁SSn =
x<y→y≤z→x<z (∸-N 101-N (nsucc Nm))
(∸-N 101-N (nsucc (nsucc Nn)))
(∸-N 101-N (nsucc Nn))
Sm◁SSn
(x∸Sy≤x∸y 101-N (nsucc Nn))
|
{
"alphanum_fraction": 0.511176255,
"avg_line_length": 29.6630434783,
"ext": "agda",
"hexsha": "d6d0544d699da4c2e178b58ec023f4a0535f8a46",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/McCarthy91/WF-Relation/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1189,
"size": 2729
}
|
{-# OPTIONS --universe-polymorphism #-}
module Issue256 where
open import Imports.Level
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x = λ _ → x
level : ∀ {ℓ} → Set ℓ → Level
level {ℓ} _ = ℓ
-- termination check should fail for the following definition
ℓ : Level
ℓ = const zero (Set ℓ)
-- A : Set (suc {!ℓ!})
-- A = Set (level A)
|
{
"alphanum_fraction": 0.5988538682,
"avg_line_length": 18.3684210526,
"ext": "agda",
"hexsha": "4a5a0c51cf7e76b0dfcaa2ddfe9ac8e8f9ecee2b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/Issue256.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/Issue256.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/Issue256.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 122,
"size": 349
}
|
open import Prelude
open import core
module lemmas-ground where
-- not ground types aren't hole to hole
ground-arr-not-hole : ∀{τ} →
(τ ground → ⊥) →
(τ ≠ (⦇-⦈ ==> ⦇-⦈))
ground-arr-not-hole notg refl = notg GHole
-- not ground types either have to be hole or an arrow
notground : ∀{τ} → (τ ground → ⊥) → (τ == ⦇-⦈) + (Σ[ τ1 ∈ htyp ] Σ[ τ2 ∈ htyp ] (τ == (τ1 ==> τ2)))
notground {b} gnd = abort (gnd GBase)
notground {⦇-⦈} gnd = Inl refl
notground {b ==> b} gnd = Inr (b , b , refl)
notground {b ==> ⦇-⦈} gnd = Inr (b , ⦇-⦈ , refl)
notground {b ==> τ2 ==> τ3} gnd = Inr (b , τ2 ==> τ3 , refl)
notground {⦇-⦈ ==> b} gnd = Inr (⦇-⦈ , b , refl)
notground {⦇-⦈ ==> ⦇-⦈} gnd = abort (gnd GHole)
notground {⦇-⦈ ==> τ2 ==> τ3} gnd = Inr (⦇-⦈ , τ2 ==> τ3 , refl)
notground {(τ1 ==> τ2) ==> b} gnd = Inr (τ1 ==> τ2 , b , refl)
notground {(τ1 ==> τ2) ==> ⦇-⦈} gnd = Inr (τ1 ==> τ2 , ⦇-⦈ , refl)
notground {(τ1 ==> τ2) ==> τ3 ==> τ4} gnd = Inr (τ1 ==> τ2 , τ3 ==> τ4 , refl)
|
{
"alphanum_fraction": 0.4812680115,
"avg_line_length": 43.375,
"ext": "agda",
"hexsha": "7a43ab263c0e40674ceab297b682dab509c9455f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "lemmas-ground.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "lemmas-ground.agda",
"max_line_length": 101,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "lemmas-ground.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 480,
"size": 1041
}
|
------------------------------------------------------------------------
-- Traditional non-dependent lenses with erased lens laws
------------------------------------------------------------------------
import Equality.Path as P
module Lens.Non-dependent.Traditional.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id; [_,_]) renaming (_∘_ to _⊚_)
import Bi-invertibility.Erased
open import Bijection equality-with-J as Bij using (_↔_)
open import Circle eq using (𝕊¹)
open import Circle.Erased eq as CE using (𝕊¹ᴱ)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Equivalence.Erased.Cubical eq as EEq
using (_≃ᴱ_; Is-equivalenceᴱ)
open import Equivalence.Erased.Contractible-preimages equality-with-J
as ECP using (Contractibleᴱ; _⁻¹ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F
hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as PT using (∥_∥)
open import H-level.Truncation.Propositional.Erased eq as TE
using (∥_∥ᴱ; ∣_∣)
open import Preimage equality-with-J using (_⁻¹_)
open import Surjection equality-with-J as Surjection using (_↠_)
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq as Non-dependent
hiding (no-first-projection-lens)
import Lens.Non-dependent.Traditional eq as T
import Lens.Non-dependent.Traditional.Combinators eq as TC
private
variable
a b c p : Level
A A₁ A₂ B B₁ B₂ C D : Type a
u v x₁ x₂ y₁ y₂ : A
------------------------------------------------------------------------
-- Traditional lenses
-- Lenses with erased lens laws.
record Lens (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
-- Getter and setter.
get : A → B
set : A → B → A
-- Lens laws.
@0 get-set : ∀ a b → get (set a b) ≡ b
@0 set-get : ∀ a → set a (get a) ≡ a
@0 set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂
-- A combination of get and set.
modify : (B → B) → A → A
modify f x = set x (f (get x))
instance
-- Traditional lenses with erased laws have getters and setters.
has-getter-and-setter :
Has-getter-and-setter (Lens {a = a} {b = b})
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
-- Lens A B is isomorphic to a nested Σ-type.
Lens-as-Σ :
Lens A B ↔
∃ λ (get : A → B) →
∃ λ (set : A → B → A) →
Erased ((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))
Lens-as-Σ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ l → get l , set l
, [ get-set l , set-get l , set-set l ]
; from = λ { (get , set , [ get-set , set-get , set-set ]) →
record
{ get = get
; set = set
; get-set = get-set
; set-get = set-get
; set-set = set-set
}
}
}
; right-inverse-of = refl
}
; left-inverse-of = refl
}
where
open Lens
-- In erased contexts Lens A B is equivalent to T.Lens A B.
@0 Lens≃Traditional-lens : Lens A B ≃ T.Lens A B
Lens≃Traditional-lens {A = A} {B = B} =
Lens A B ↔⟨ Lens-as-Σ ⟩
(∃ λ (get : A → B) →
∃ λ (set : A → B → A) →
Erased ((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → erased Erased↔) ⟩
(∃ λ (get : A → B) →
∃ λ (set : A → B → A) →
(∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)) ↔⟨ inverse T.Lens-as-Σ ⟩□
T.Lens A B □
-- Lenses without erased proofs can be turned into lenses with erased
-- proofs (in erased contexts).
@0 Traditional-lens→Lens : T.Lens A B → Lens A B
Traditional-lens→Lens = _≃_.from Lens≃Traditional-lens
private
-- The forward direction of Lens≃Traditional-lens.
@0 trad : Lens A B → T.Lens A B
trad = _≃_.to Lens≃Traditional-lens
private
variable
l₁ l₂ : Lens A B
------------------------------------------------------------------------
-- Somewhat coherent lenses
-- Traditional lenses with erased lens laws that satisfy some extra
-- coherence properties (that are also erased).
record Coherent-lens (A : Type a) (B : Type b) : Type (a ⊔ b) where
field
lens : Lens A B
open Lens lens public
field
@0 get-set-get : ∀ a → cong get (set-get a) ≡ get-set a (get a)
@0 get-set-set :
∀ a b₁ b₂ →
cong get (set-set a b₁ b₂) ≡
trans (get-set (set a b₁) b₂) (sym (get-set a b₂))
instance
-- Somewhat coherent lenses have getters and setters.
coherent-has-getter-and-setter :
Has-getter-and-setter (Coherent-lens {a = a} {b = b})
coherent-has-getter-and-setter = record
{ get = Coherent-lens.get
; set = Coherent-lens.set
}
-- Coherent-lens A B is equivalent to a nested Σ-type.
Coherent-lens-as-Σ :
Coherent-lens A B ≃
∃ λ (l : Lens A B) →
let open Lens l in
Erased
((∀ a → cong get (set-get a) ≡ get-set a (get a)) ×
(∀ a b₁ b₂ →
cong get (set-set a b₁ b₂) ≡
trans (get-set (set a b₁) b₂) (sym (get-set a b₂))))
Coherent-lens-as-Σ = Eq.↔→≃
(λ l → lens l , [ get-set-get l , get-set-set l ])
(λ (l , [ get-set-get , get-set-set ]) → record
{ lens = l
; get-set-get = get-set-get
; get-set-set = get-set-set
})
refl
refl
where
open Coherent-lens
-- In erased contexts Coherent-lens A B is equivalent to
-- T.Coherent-lens A B.
@0 Coherent-lens≃Traditional-coherent-lens :
Coherent-lens A B ≃ T.Coherent-lens A B
Coherent-lens≃Traditional-coherent-lens {A = A} {B = B} =
Coherent-lens A B ↔⟨ Coherent-lens-as-Σ ⟩
(∃ λ (l : Lens A B) →
let open Lens l in
Erased
((∀ a → cong get (set-get a) ≡ get-set a (get a)) ×
(∀ a b₁ b₂ →
cong get (set-set a b₁ b₂) ≡
trans (get-set (set a b₁) b₂) (sym (get-set a b₂))))) ↔⟨ (Σ-cong Lens≃Traditional-lens λ _ → erased Erased↔) ⟩
(∃ λ (l : T.Lens A B) →
let open T.Lens l in
(∀ a → cong get (set-get a) ≡ get-set a (get a)) ×
(∀ a b₁ b₂ →
cong get (set-set a b₁ b₂) ≡
trans (get-set (set a b₁) b₂) (sym (get-set a b₂)))) ↔⟨ inverse T.Coherent-lens-as-Σ ⟩
T.Coherent-lens A B □
------------------------------------------------------------------------
-- Some lemmas
-- If two lenses have equal setters, then they also have equal
-- getters (in erased contexts).
@0 getters-equal-if-setters-equal :
let open Lens in
(l₁ l₂ : Lens A B) →
set l₁ ≡ set l₂ →
get l₁ ≡ get l₂
getters-equal-if-setters-equal l₁ l₂ =
Lens.set l₁ ≡ Lens.set l₂ ↔⟨⟩
T.Lens.set (trad l₁) ≡ T.Lens.set (trad l₂) ↝⟨ T.getters-equal-if-setters-equal (trad l₁) (trad l₂) ⟩
T.Lens.get (trad l₁) ≡ T.Lens.get (trad l₂) ↔⟨⟩
Lens.get l₁ ≡ Lens.get l₂ □
-- If the forward direction of an equivalence with erased proofs is
-- Lens.get l, then the setter of l can be expressed using the other
-- direction of the equivalence (in erased contexts).
@0 from≡set :
∀ (l : Lens A B) is-equiv →
let open Lens
A≃B = EEq.⟨ get l , is-equiv ⟩
in
∀ a b → _≃ᴱ_.from A≃B b ≡ set l a b
from≡set l is-equiv =
T.from≡set (trad l) (EEq.Is-equivalenceᴱ→Is-equivalence is-equiv)
-- If A and B are "very stable n levels up" (given certain
-- assumptions), then Lens A B is "very stable n levels up".
Very-stable-Lensⁿ :
∀ n →
(A → B → For-iterated-equality n Very-stable A) →
(A → For-iterated-equality n Very-stable B) →
For-iterated-equality n Very-stable (Lens A B)
Very-stable-Lensⁿ {A = A} {B = B} n A-s B-s =
Very-stable-congⁿ _ n (inverse Lens-as-Σ) $
Very-stable-Σⁿ n (Very-stable-Πⁿ ext n λ a →
B-s a) λ _ →
Very-stable-Σⁿ n (Very-stable-Πⁿ ext n λ a →
Very-stable-Πⁿ ext n λ b →
A-s a b) λ _ →
Very-stable→Very-stableⁿ n
Very-stable-Erased
------------------------------------------------------------------------
-- Some lens isomorphisms
-- Lens preserves equivalences.
Lens-cong : A₁ ≃ A₂ → B₁ ≃ B₂ → Lens A₁ B₁ ≃ Lens A₂ B₂
Lens-cong {A₁ = A₁} {A₂ = A₂} {B₁ = B₁} {B₂ = B₂} A₁≃A₂ B₁≃B₂ =
Lens A₁ B₁ ↔⟨ Lens-as-Σ ⟩
(∃ λ (get : A₁ → B₁) →
∃ λ (set : A₁ → B₁ → A₁) →
Erased ((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↝⟨ (Σ-cong (→-cong ext A₁≃A₂ B₁≃B₂) λ get →
Σ-cong (→-cong ext A₁≃A₂ $ →-cong ext B₁≃B₂ A₁≃A₂) λ set →
Erased-cong (
(Π-cong ext A₁≃A₂ λ a → Π-cong ext B₁≃B₂ λ b →
inverse (Eq.≃-≡ B₁≃B₂) F.∘
(≡⇒≃ $ cong (_≡ _)
(get (set a b) ≡⟨ sym $ cong₂ (λ a b → get (set a b))
(_≃_.left-inverse-of A₁≃A₂ _)
(_≃_.left-inverse-of B₁≃B₂ _) ⟩
get (set (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a))
(_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b))) ≡⟨ cong get $ sym $ _≃_.left-inverse-of A₁≃A₂ _ ⟩∎
get (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂
(set (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a))
(_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b))))) ∎)))
×-cong
(Π-cong ext A₁≃A₂ λ a →
inverse (Eq.≃-≡ A₁≃A₂) F.∘
(≡⇒≃ $ cong (_≡ _)
(set a (get a) ≡⟨ cong (set a) $ sym $ _≃_.left-inverse-of B₁≃B₂ _ ⟩
set a (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ (get a))) ≡⟨ cong (λ a → set a (_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ (get a)))) $ sym $
_≃_.left-inverse-of A₁≃A₂ _ ⟩∎
set (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a))
(_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂
(get (_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂ a))))) ∎)))
×-cong
(inverse $ Π-cong ext (inverse A₁≃A₂) λ a →
inverse $ Π-cong ext B₁≃B₂ λ b₁ →
inverse $ Π-cong ext (inverse B₁≃B₂) λ b₂ →
(≡⇒≃ $ cong (λ a′ → set a′ (_≃_.from B₁≃B₂ b₂) ≡
set (_≃_.from A₁≃A₂ a) (_≃_.from B₁≃B₂ b₂))
(_≃_.from A₁≃A₂ (_≃_.to A₁≃A₂
(set (_≃_.from A₁≃A₂ a)
(_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b₁)))) ≡⟨ _≃_.left-inverse-of A₁≃A₂ _ ⟩
set (_≃_.from A₁≃A₂ a)
(_≃_.from B₁≃B₂ (_≃_.to B₁≃B₂ b₁)) ≡⟨ cong (set (_≃_.from A₁≃A₂ a)) $
_≃_.left-inverse-of B₁≃B₂ _ ⟩∎
set (_≃_.from A₁≃A₂ a) b₁ ∎)) F.∘
Eq.≃-≡ A₁≃A₂))) ⟩
(∃ λ (get : A₂ → B₂) →
∃ λ (set : A₂ → B₂ → A₂) →
Erased ((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ inverse Lens-as-Σ ⟩□
Lens A₂ B₂ □
-- If B is a proposition (when A is inhabited), then Lens A B is
-- equivalent (with erased proofs) to
-- (A → B) × Erased ((a : A) → a ≡ a).
lens-to-proposition≃ᴱ :
@0 (A → Is-proposition B) →
Lens A B ≃ᴱ ((A → B) × Erased ((a : A) → a ≡ a))
lens-to-proposition≃ᴱ {A = A} {B = B} B-prop =
Lens A B ↔⟨ Lens-as-Σ ⟩
(∃ λ (get : A → B) →
∃ λ (set : A → B → A) →
Erased
((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (
drop-⊤-left-× λ _ →
_⇔_.to contractible⇔↔⊤ $
Π-closure ext 0 λ a →
Π-closure ext 0 λ _ →
+⇒≡ (B-prop a))) ⟩
(∃ λ (get : A → B) →
∃ λ (set : A → B → A) →
Erased
((∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))) ↔⟨ (∃-cong λ get → ∃-cong λ set → Erased-cong (∃-cong λ _ →
∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ →
≡⇒≃ (
(set (set a b₁) b₂ ≡ set a b₂) ≡⟨ cong (λ b → set (set a b) b₂ ≡ _) (B-prop a _ _) ⟩
(set (set a (get a)) b₂ ≡ set a b₂) ≡⟨ cong (λ b → set (set a (get a)) b ≡ _) (B-prop a _ _) ⟩
(set (set a (get a)) (get (set a (get a))) ≡ set a b₂) ≡⟨ cong (λ b → _ ≡ set a b) (B-prop a _ _) ⟩∎
(set (set a (get a)) (get (set a (get a))) ≡ set a (get a)) ∎))) ⟩
(∃ λ (get : A → B) →
∃ λ (set : A → B → A) →
Erased
((∀ a → set a (get a) ≡ a) ×
(∀ a → B → B →
set (set a (get a)) (get (set a (get a))) ≡
set a (get a)))) ↝⟨ (∃-cong λ get →
EEq.Σ-cong-≃ᴱ-Erased (A→B→A≃ᴱA→A get) λ _ → F.id) ⟩
((A → B) ×
∃ λ (f : A → A) →
Erased
((∀ a → f a ≡ a) ×
(∀ a → B → B → f (f a) ≡ f a))) ↝⟨ (∃-cong λ get → ∃-cong λ _ → Erased-cong (∃-cong λ _ →
∀-cong ext λ a →
EEq.drop-⊤-left-Π-≃ᴱ-Erased ext (B≃ᴱ⊤ get a) F.∘
EEq.drop-⊤-left-Π-≃ᴱ-Erased ext (B≃ᴱ⊤ get a))) ⟩
((A → B) ×
∃ λ (f : A → A) →
Erased
((∀ a → f a ≡ a) ×
(∀ a → f (f a) ≡ f a))) ↔⟨ (∃-cong λ _ → ∃-cong λ f → Erased-cong (
Σ-cong (Eq.extensionality-isomorphism ext) λ f≡id →
∀-cong ext λ a →
≡⇒≃ (cong₂ _≡_ (trans (f≡id (f a)) (f≡id a)) (f≡id a)))) ⟩
((A → B) ×
∃ λ (f : A → A) →
Erased
(f ≡ P.id ×
((a : A) → a ≡ a))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-Σ↔Σ) ⟩
((A → B) ×
∃ λ (f : A → A) →
Erased (f ≡ P.id) ×
Erased ((a : A) → a ≡ a)) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩
(A → B) ×
(∃ λ (f : A → A) → Erased (f ≡ P.id)) ×
Erased ((a : A) → a ≡ a) ↝⟨ (∃-cong λ _ → EEq.drop-⊤-left-Σ-≃ᴱ-Erased $
_⇔_.to EEq.Contractibleᴱ⇔≃ᴱ⊤ Contractibleᴱ-Erased-singleton) ⟩□
(A → B) × Erased ((a : A) → a ≡ a) □
where
B≃ᴱ⊤ : (A → B) → A → B ≃ᴱ ⊤
B≃ᴱ⊤ get a = EEq.inhabited→Is-proposition→≃ᴱ⊤ (get a) (B-prop a)
A→B→A≃ᴱA→A : (A → B) → (A → B → A) ≃ᴱ (A → A)
A→B→A≃ᴱA→A get =
(A → B → A) ↝⟨ ∀-cong ext (λ a → EEq.drop-⊤-left-Π-≃ᴱ-Erased ext $ B≃ᴱ⊤ get a) ⟩□
(A → A) □
-- If equality is very stable for A (when B is inhabited) and B is a
-- proposition (when A is inhabited), then Lens A B is equivalent to
-- (A → B) × Erased ((a : A) → a ≡ a).
Very-stable-≡→lens-to-proposition≃ :
(B → Very-stable-≡ A) →
(A → Is-proposition B) →
Lens A B ≃ ((A → B) × Erased ((a : A) → a ≡ a))
Very-stable-≡→lens-to-proposition≃ {B = B} {A = A} A-s B-prop =
Stable-≡→≃ᴱ→≃ stable₁ stable₂ (lens-to-proposition≃ᴱ B-prop)
where
stable₁ : Stable-≡ (Lens A B)
stable₁ =
Very-stable→Stable 1 $
Very-stable-Lensⁿ 1
(λ _ → A-s)
(H-level→Very-stable 1 ⊚ B-prop)
stable₂ : Stable-≡ ((A → B) × Erased ((a : A) → a ≡ a))
stable₂ =
Very-stable→Stable 1 $
Very-stable-×ⁿ 1
(Very-stable-Πⁿ ext 1 λ a →
H-level→Very-stable 1 (B-prop a))
(Very-stable→Very-stable-≡ 0
Very-stable-Erased)
-- Lens A ⊤ is equivalent (with erased proofs) to
-- Erased ((a : A) → a ≡ a).
lens-to-⊤≃ᴱ : Lens A ⊤ ≃ᴱ Erased ((a : A) → a ≡ a)
lens-to-⊤≃ᴱ {A = A} =
Lens A ⊤ ↝⟨ lens-to-proposition≃ᴱ (λ _ → mono₁ 0 ⊤-contractible) ⟩
(A → ⊤) × Erased ((a : A) → a ≡ a) ↔⟨ drop-⊤-left-× (λ _ → →-right-zero) ⟩□
Erased ((a : A) → a ≡ a) □
-- Lens A ⊥ is equivalent to ¬ A.
lens-to-⊥≃ : Lens A (⊥ {ℓ = b}) ≃ (¬ A)
lens-to-⊥≃ {A = A} =
Lens A ⊥ ↝⟨ Very-stable-≡→lens-to-proposition≃ (λ ()) (λ _ → ⊥-propositional) ⟩
(A → ⊥) × Erased ((a : A) → a ≡ a) ↔⟨ (×-cong₁ λ _ → →-cong ext F.id (Bij.⊥↔uninhabited ⊥-elim)) ⟩
¬ A × Erased ((a : A) → a ≡ a) ↔⟨ (drop-⊤-right λ ¬a →
_⇔_.to contractible⇔↔⊤ $
propositional⇒inhabited⇒contractible
(H-level-Erased 1 (
Π-closure ext 1 λ a →
⊥-elim (¬a a)))
[ refl ]) ⟩□
¬ A □
-- See also lens-from-⊥≃⊤ and lens-from-⊤≃codomain-contractible below.
------------------------------------------------------------------------
-- Some lens results related to h-levels
-- If the domain of a lens is inhabited and has h-level n, then the
-- codomain also has h-level n (in erased contexts).
@0 h-level-respects-lens-from-inhabited :
∀ n → Lens A B → A → H-level n A → H-level n B
h-level-respects-lens-from-inhabited n l =
T.h-level-respects-lens-from-inhabited n (trad l)
-- Lenses with contractible domains have contractible codomains (in
-- erased contexts).
@0 contractible-to-contractible :
Lens A B → Contractible A → Contractible B
contractible-to-contractible l =
T.contractible-to-contractible (trad l)
-- A variant for Contractibleᴱ.
Contractibleᴱ→Contractibleᴱ :
Lens A B → Contractibleᴱ A → Contractibleᴱ B
Contractibleᴱ→Contractibleᴱ l c@(a , _) =
ECP.Contractibleᴱ-respects-surjection
(Lens.get l)
(λ b → Lens.set l a b
, (Lens.get l (Lens.set l a b) ≡⟨ Lens.get-set l _ _ ⟩∎
b ∎))
c
-- If A and B have h-level n given the assumption that A is inhabited,
-- then Lens A B also has h-level n.
lens-preserves-h-level :
∀ n → (A → H-level n A) → (A → H-level n B) →
H-level n (Lens A B)
lens-preserves-h-level n hA hB =
H-level.respects-surjection (_↔_.surjection (inverse Lens-as-Σ)) n $
Σ-closure n (Π-closure ext n λ a →
hB a) λ _ →
Σ-closure n (Π-closure ext n λ a →
Π-closure ext n λ _ →
hA a) λ _ →
H-level-Erased n
(×-closure n (Π-closure ext n λ a →
Π-closure ext n λ _ →
+⇒≡ $ mono₁ n (hB a)) $
×-closure n (Π-closure ext n λ a →
+⇒≡ $ mono₁ n (hA a))
(Π-closure ext n λ a →
Π-closure ext n λ _ →
Π-closure ext n λ _ →
+⇒≡ $ mono₁ n (hA a)))
-- If A has positive h-level n, then Lens A B also has h-level n (in
-- erased contexts).
@0 lens-preserves-h-level-of-domain :
∀ n → H-level (1 + n) A → H-level (1 + n) (Lens A B)
lens-preserves-h-level-of-domain {A = A} {B = B} n =
H-level (1 + n) A ↝⟨ T.lens-preserves-h-level-of-domain n ⟩
H-level (1 + n) (T.Lens A B) ↝⟨ H-level-cong _ (1 + n) (inverse Lens≃Traditional-lens) ⟩□
H-level (1 + n) (Lens A B) □
-- Lens 𝕊¹ᴱ ⊤ is not propositional (assuming univalence).
¬-lens-to-⊤-propositional :
@0 Univalence (# 0) →
¬ Is-proposition (Lens 𝕊¹ᴱ ⊤)
¬-lens-to-⊤-propositional univ =
Stable-¬
[ Is-proposition (Lens 𝕊¹ᴱ ⊤) ↝⟨ H-level-cong _ 1 (Lens-cong (inverse CE.𝕊¹≃𝕊¹ᴱ) Eq.id) ⟩
Is-proposition (Lens 𝕊¹ ⊤) ↝⟨ H-level-cong _ 1 Lens≃Traditional-lens ⟩
Is-proposition (T.Lens 𝕊¹ ⊤) ↝⟨ T.¬-lens-to-⊤-propositional univ ⟩□
⊥₀ □
]
------------------------------------------------------------------------
-- Some equality characterisation lemmas
abstract
-- An equality characterisation lemma.
equality-characterisation₁ :
let open Lens in
l₁ ≡ l₂
↔
∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g
(subst (λ set → get l₁ (set a b) ≡ b) s
(get-set l₁ a b)) ≡
get-set l₂ a b)
×
(∀ a → subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡
set-get l₂ a)
×
(∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))
equality-characterisation₁ {l₁ = l₁} {l₂ = l₂} =
let l₁′ = _↔_.to Lens-as-Σ l₁
l₂′ = _↔_.to Lens-as-Σ l₂
in
l₁ ≡ l₂ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse Lens-as-Σ)) ⟩
l₁′ ≡ l₂′ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse Σ-assoc)) ⟩
((get l₁ , set l₁) , proj₂ (proj₂ l₁′))
≡
((get l₂ , set l₂) , proj₂ (proj₂ l₂′)) ↝⟨ inverse Bij.Σ-≡,≡↔≡ ⟩
(∃ λ (gs : (get l₁ , set l₁) ≡ (get l₂ , set l₂)) →
subst (λ (get , set) →
Erased
((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)))
gs (proj₂ (proj₂ l₁′)) ≡
proj₂ (proj₂ l₂′)) ↝⟨ Σ-cong (inverse ≡×≡↔≡) (λ gs → ≡⇒↝ _ $
cong (λ (gs : (get l₁ , set l₁) ≡ (get l₂ , set l₂)) →
subst (λ (get , set) →
Erased
((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)))
gs (proj₂ (proj₂ l₁′))
≡
proj₂ (proj₂ l₂′))
(sym $ _↔_.right-inverse-of ≡×≡↔≡ gs)) ⟩
(∃ λ (gs : get l₁ ≡ get l₂ × set l₁ ≡ set l₂) →
subst (λ (get , set) →
Erased
((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)))
(_↔_.to ≡×≡↔≡ gs) (proj₂ (proj₂ l₁′)) ≡
proj₂ (proj₂ l₂′)) ↝⟨ inverse Σ-assoc ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
subst (λ (get , set) →
Erased
((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂)))
(_↔_.to ≡×≡↔≡ (g , s)) (proj₂ (proj₂ l₁′)) ≡
proj₂ (proj₂ l₂′)) ↝⟨ (∃-cong λ g → ∃-cong λ s → ≡⇒↝ _ $ cong (_≡ proj₂ (proj₂ l₂′))
push-subst-[]) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
[ subst (λ (get , set) →
(∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))
(_↔_.to ≡×≡↔≡ (g , s)) (erased (proj₂ (proj₂ l₁′))) ] ≡
[ erased (proj₂ (proj₂ l₂′)) ]) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → inverse Erased-≡↔[]≡[]) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
(subst (λ (get , set) →
(∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))
(_↔_.to ≡×≡↔≡ (g , s)) (erased (proj₂ (proj₂ l₁′))) ≡
erased (proj₂ (proj₂ l₂′)))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (≡⇒↝ _ $
cong (λ x → x ≡ erased (proj₂ (proj₂ l₂′)))
(push-subst-, {y≡z = _↔_.to ≡×≡↔≡ (g , s)} _ _))) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
(( subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁)
, subst (λ { (get , set) →
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂) })
(_↔_.to ≡×≡↔≡ (g , s))
(proj₂ (erased (proj₂ (proj₂ l₁′))))
) ≡
erased (proj₂ (proj₂ l₂′)))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (inverse ≡×≡↔≡)) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
(subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡
get-set l₂
×
subst (λ { (get , set) →
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂) })
(_↔_.to ≡×≡↔≡ (g , s))
(proj₂ (erased (proj₂ (proj₂ l₁′)))) ≡
proj₂ (erased (proj₂ (proj₂ l₂′))))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ≡⇒↝ _ $
cong (λ x → x ≡ proj₂ (erased (proj₂ (proj₂ l₂′))))
(push-subst-, {y≡z = _↔_.to ≡×≡↔≡ (g , s)} _ _))) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
(subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡
get-set l₂
×
( subst (λ { (get , set) → ∀ a → set a (get a) ≡ a })
(_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁)
, subst (λ { (get , set) →
∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁)
) ≡
proj₂ (erased (proj₂ (proj₂ l₂′))))) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → Erased-cong (∃-cong λ _ → inverse ≡×≡↔≡)) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
(subst (λ { (get , set) → ∀ a b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁) ≡
get-set l₂
×
subst (λ { (get , set) → ∀ a → set a (get a) ≡ a })
(_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁) ≡
set-get l₂
×
subst (λ { (get , set) →
∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁) ≡
set-set l₂)) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (
lemma₁ (λ { (get , set) a → ∀ b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s))
×-cong
lemma₁ (λ { (get , set) a → set a (get a) ≡ a })
(_↔_.to ≡×≡↔≡ (g , s))
×-cong
lemma₁ (λ { (get , set) a → ∀ b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)))) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a → subst (λ { (get , set) → ∀ b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a) ≡
get-set l₂ a)
×
(∀ a → subst (λ { (get , set) → set a (get a) ≡ a })
(_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡
set-get l₂ a)
×
(∀ a → subst (λ { (get , set) →
∀ b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a) ≡
set-set l₂ a))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (
(∀-cong ext λ a →
lemma₁ (λ { (get , set) b → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)))
×-cong
F.id
×-cong
(∀-cong ext λ a →
lemma₁ (λ { (get , set) b₁ → ∀ b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s))))) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → subst (λ { (get , set) → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a b) ≡
get-set l₂ a b)
×
(∀ a → subst (λ { (get , set) → set a (get a) ≡ a })
(_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡
set-get l₂ a)
×
(∀ a b₁ → subst (λ { (get , set) →
∀ b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a b₁) ≡
set-set l₂ a b₁))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ →
∀-cong ext λ a → ∀-cong ext λ b₁ →
lemma₁ (λ { (get , set) b₂ → set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)))) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → subst (λ { (get , set) → get (set a b) ≡ b })
(_↔_.to ≡×≡↔≡ (g , s)) (get-set l₁ a b) ≡
get-set l₂ a b)
×
(∀ a → subst (λ { (get , set) → set a (get a) ≡ a })
(_↔_.to ≡×≡↔≡ (g , s)) (set-get l₁ a) ≡
set-get l₂ a)
×
(∀ a b₁ b₂ → subst (λ { (get , set) →
set (set a b₁) b₂ ≡ set a b₂ })
(_↔_.to ≡×≡↔≡ (g , s)) (set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (
(∀-cong ext λ a → ∀-cong ext λ b →
lemma₂ (λ { (get , set) → get (set a b) ≡ b }) g s)
×-cong
(∀-cong ext λ a →
lemma₂ (λ { (get , set) → set a (get a) ≡ a }) g s)
×-cong
(∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ →
lemma₂ (λ { (get , set) → set (set a b₁) b₂ ≡ set a b₂ }) g s))) ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g
(subst (λ set → get l₁ (set a b) ≡ b) s
(get-set l₁ a b)) ≡
get-set l₂ a b)
×
(∀ a → subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡
set-get l₂ a)
×
(∀ a b₁ b₂ →
subst (λ get → set l₂ (set l₂ a b₁) b₂ ≡ set l₂ a b₂) g
(subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂)) ≡
set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → Erased-cong (∃-cong λ _ → ∃-cong λ _ →
∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (λ x → x ≡ _) $ subst-const g)) ⟩□
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g
(subst (λ set → get l₁ (set a b) ≡ b) s
(get-set l₁ a b)) ≡
get-set l₂ a b)
×
(∀ a → subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡
set-get l₂ a)
×
(∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))) □
where
open Lens
abstract
lemma₁ :
∀ (C : A → B → Type c) (eq : u ≡ v) {f g} →
(subst (λ x → ∀ y → C x y) eq f ≡ g)
↔
(∀ y → subst (λ x → C x y) eq (f y) ≡ g y)
lemma₁ C eq {f} {g} =
subst (λ x → ∀ y → C x y) eq f ≡ g ↔⟨ inverse $ Eq.extensionality-isomorphism ext ⟩
(∀ y → subst (λ x → ∀ y → C x y) eq f y ≡ g y) ↝⟨ (∀-cong ext λ y → ≡⇒↝ _ $
cong (λ x → x ≡ _) (sym $ push-subst-application eq _)) ⟩□
(∀ y → subst (λ x → C x y) eq (f y) ≡ g y) □
lemma₂ :
(P : A × B → Type p) (x₁≡x₂ : x₁ ≡ x₂) (y₁≡y₂ : y₁ ≡ y₂) →
∀ {p p′} →
(subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , y₁≡y₂)) p ≡ p′)
↔
(subst (λ x → P (x , y₂)) x₁≡x₂ (subst (λ y → P (x₁ , y)) y₁≡y₂ p)
≡
p′)
lemma₂ P x₁≡x₂ y₁≡y₂ {p = p} = ≡⇒↝ _ $ cong (_≡ _) $ elim¹
(λ y₁≡y₂ →
subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , y₁≡y₂)) p ≡
subst (λ x → P (x , _)) x₁≡x₂
(subst (λ y → P (_ , y)) y₁≡y₂ p))
(subst P (_↔_.to ≡×≡↔≡ (x₁≡x₂ , refl _)) p ≡⟨⟩
subst P (cong₂ _,_ x₁≡x₂ (refl _)) p ≡⟨⟩
subst P (trans (cong (_, _) x₁≡x₂) (cong (_ ,_) (refl _))) p ≡⟨ cong (λ eq → subst P (trans (cong (_, _) x₁≡x₂) eq) p) $ cong-refl _ ⟩
subst P (trans (cong (_, _) x₁≡x₂) (refl _)) p ≡⟨ cong (λ eq → subst P eq p) $ trans-reflʳ _ ⟩
subst P (cong (_, _) x₁≡x₂) p ≡⟨ sym $ subst-∘ _ _ _ ⟩
subst (λ x → P (x , _)) x₁≡x₂ p ≡⟨ cong (subst (λ x → P (x , _)) x₁≡x₂) $ sym $ subst-refl _ _ ⟩∎
subst (λ x → P (x , _)) x₁≡x₂
(subst (λ y → P (_ , y)) (refl _) p) ∎)
_
-- Another equality characterisation lemma.
equality-characterisation₂ :
let open Lens in
l₁ ≡ l₂
↔
∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b →
trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a →
trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))
equality-characterisation₂ {l₁ = l₁} {l₂ = l₂} =
l₁ ≡ l₂ ↝⟨ equality-characterisation₁ ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → subst (λ get → get (set l₂ a b) ≡ b) g
(subst (λ set → get l₁ (set a b) ≡ b) s
(get-set l₁ a b)) ≡
get-set l₂ a b)
×
(∀ a → subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡
set-get l₂ a)
×
(∀ a b₁ b₂ → subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (
(∀-cong ext λ a → ∀-cong ext λ b → ≡⇒↝ _ $ cong (_≡ _) $
lemma₁ g s a b)
×-cong
(∀-cong ext λ a → ≡⇒↝ _ $ cong (_≡ _) $
lemma₂ g s a)
×-cong
F.id)) ⟩□
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))) □
where
open Lens
@0 lemma₁ :
(g : get l₁ ≡ get l₂) (s : set l₁ ≡ set l₂) →
∀ a b →
subst (λ get → get (set l₂ a b) ≡ b) g
(subst (λ set → get l₁ (set a b) ≡ b) s
(get-set l₁ a b)) ≡
trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b)
lemma₁ g s a b =
subst (λ get → get (set l₂ a b) ≡ b) g
(subst (λ set → get l₁ (set a b) ≡ b) s
(get-set l₁ a b)) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g eq) $
subst-in-terms-of-trans-and-cong
{f = λ set → get l₁ (set a b)} {g = λ _ → b}
{x≡y = s} {fx≡gx = (get-set l₁ a b)} ⟩
subst (λ get → get (set l₂ a b) ≡ b) g
(trans (sym (cong (λ set → get l₁ (set a b)) s))
(trans (get-set l₁ a b) (cong (const b) s))) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g
(trans (sym (cong (λ set → get l₁ (set a b)) s))
(trans _ eq))) $
cong-const s ⟩
subst (λ get → get (set l₂ a b) ≡ b) g
(trans (sym (cong (λ set → get l₁ (set a b)) s))
(trans (get-set l₁ a b) (refl _))) ≡⟨ cong (λ eq → subst (λ get → get (set l₂ a b) ≡ b) g
(trans (sym (cong (λ set → get l₁ (set a b)) s)) eq)) $
trans-reflʳ _ ⟩
subst (λ get → get (set l₂ a b) ≡ b) g
(trans (sym (cong (λ set → get l₁ (set a b)) s))
(get-set l₁ a b)) ≡⟨ subst-in-terms-of-trans-and-cong {x≡y = g}
{fx≡gx = trans _ (get-set l₁ a b)} ⟩
trans (sym (cong (λ get → get (set l₂ a b)) g))
(trans (trans (sym (cong (λ set → get l₁ (set a b)) s))
(get-set l₁ a b))
(cong (const b) g)) ≡⟨ cong (λ eq → trans (sym (cong (λ get → get (set l₂ a b)) g))
(trans (trans (sym (cong (λ set → get l₁ (set a b)) s))
(get-set l₁ a b))
eq)) $
cong-const g ⟩
trans (sym (cong (λ get → get (set l₂ a b)) g))
(trans (trans (sym (cong (λ set → get l₁ (set a b)) s))
(get-set l₁ a b))
(refl _)) ≡⟨ cong (trans _) $
trans-reflʳ _ ⟩
trans (sym (cong (λ get → get (set l₂ a b)) g))
(trans (sym (cong (λ set → get l₁ (set a b)) s))
(get-set l₁ a b)) ≡⟨ sym $ trans-assoc _ _ (get-set l₁ a b) ⟩
trans (trans (sym (cong (λ get → get (set l₂ a b)) g))
(sym (cong (λ set → get l₁ (set a b)) s)))
(get-set l₁ a b) ≡⟨ cong (λ eq → trans eq (get-set l₁ a b)) $ sym $
sym-trans _ (cong (λ get → get (set l₂ a b)) g) ⟩
trans (sym (trans (cong (λ set → get l₁ (set a b)) s)
(cong (λ get → get (set l₂ a b)) g)))
(get-set l₁ a b) ≡⟨⟩
trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ∎
@0 lemma₂ :
(g : get l₁ ≡ get l₂) (s : set l₁ ≡ set l₂) →
∀ a →
subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡
trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a)
lemma₂ g s a =
subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡⟨⟩
subst (λ get → set l₂ a (get a) ≡ a) g
(subst (λ set → set a (get l₁ a) ≡ a) s
(set-get l₁ a)) ≡⟨ cong (subst (λ get → set l₂ a (get a) ≡ a) g) $
subst-in-terms-of-trans-and-cong {x≡y = s} {fx≡gx = set-get l₁ a} ⟩
subst (λ get → set l₂ a (get a) ≡ a) g
(trans (sym (cong (λ set → set a (get l₁ a)) s))
(trans (set-get l₁ a) (cong (const a) s))) ≡⟨ cong (λ eq → subst (λ get → set l₂ a (get a) ≡ a) g
(trans (sym (cong (λ set → set a (get l₁ a)) s))
(trans _ eq))) $
cong-const s ⟩
subst (λ get → set l₂ a (get a) ≡ a) g
(trans (sym (cong (λ set → set a (get l₁ a)) s))
(trans (set-get l₁ a) (refl _))) ≡⟨ cong (λ eq → subst (λ get → set l₂ a (get a) ≡ a) g
(trans (sym (cong (λ set → set a (get l₁ a)) s)) eq)) $
trans-reflʳ _ ⟩
subst (λ get → set l₂ a (get a) ≡ a) g
(trans (sym (cong (λ set → set a (get l₁ a)) s))
(set-get l₁ a)) ≡⟨ subst-in-terms-of-trans-and-cong {x≡y = g}
{fx≡gx = trans (sym (cong (λ set → set a (get l₁ a)) s)) (set-get l₁ a)} ⟩
trans (sym (cong (λ get → set l₂ a (get a)) g))
(trans (trans (sym (cong (λ set → set a (get l₁ a)) s))
(set-get l₁ a))
(cong (const a) g)) ≡⟨ cong (λ eq → trans (sym (cong (λ get → set l₂ a (get a)) g))
(trans (trans (sym (cong (λ set → set a (get l₁ a)) s))
(set-get l₁ a))
eq)) $
cong-const g ⟩
trans (sym (cong (λ get → set l₂ a (get a)) g))
(trans (trans (sym (cong (λ set → set a (get l₁ a)) s))
(set-get l₁ a))
(refl _)) ≡⟨ cong (trans _) $
trans-reflʳ _ ⟩
trans (sym (cong (λ get → set l₂ a (get a)) g))
(trans (sym (cong (λ set → set a (get l₁ a)) s))
(set-get l₁ a)) ≡⟨ sym $ trans-assoc _ _ (set-get l₁ a) ⟩
trans (trans (sym (cong (λ get → set l₂ a (get a)) g))
(sym (cong (λ set → set a (get l₁ a)) s)))
(set-get l₁ a) ≡⟨ cong (λ eq → trans eq (set-get l₁ a)) $ sym $
sym-trans _ (cong (λ get → set l₂ a (get a)) g) ⟩
trans (sym (trans (cong (λ set → set a (get l₁ a)) s)
(cong (λ get → set l₂ a (get a)) g)))
(set-get l₁ a) ≡⟨⟩
trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ∎
-- And another one.
equality-characterisation₃ :
let open Lens in
l₁ ≡ l₂
↔
∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b →
trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a →
trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡
trans (cong (λ set → set (set a b₁) b₂) s)
(set-set l₂ a b₁ b₂)))
equality-characterisation₃ {l₁ = l₁} {l₂ = l₂} =
l₁ ≡ l₂ ↝⟨ equality-characterisation₂ ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ →
∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ → ≡⇒↝ _ $
lemma g s a b₁ b₂)) ⟩□
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡
trans (cong (λ set → set (set a b₁) b₂) s)
(set-set l₂ a b₁ b₂)))) □
where
open Lens
@0 lemma :
(g : get l₁ ≡ get l₂) (s : set l₁ ≡ set l₂) →
∀ a b₁ b₂ →
(subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂) ≡
(trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡
trans (cong (λ set → set (set a b₁) b₂) s)
(set-set l₂ a b₁ b₂))
lemma g s a b₁ b₂ =
subst (λ set → set (set a b₁) b₂ ≡ set a b₂) s
(set-set l₁ a b₁ b₂) ≡
set-set l₂ a b₁ b₂ ≡⟨ cong (_≡ _) $
subst-in-terms-of-trans-and-cong {x≡y = s} {fx≡gx = set-set l₁ a b₁ b₂} ⟩
trans (sym (cong (λ set → set (set a b₁) b₂) s))
(trans (set-set l₁ a b₁ b₂)
(cong (λ set → set a b₂) s)) ≡
set-set l₂ a b₁ b₂ ≡⟨ [trans≡]≡[≡trans-symˡ] _ _ _ ⟩
trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡
trans (sym (sym (cong (λ set → set (set a b₁) b₂) s)))
(set-set l₂ a b₁ b₂) ≡⟨ cong (λ eq → trans _ (cong (λ set → set a b₂) s) ≡
trans eq (set-set l₂ a b₁ b₂)) $
sym-sym (cong (λ set → set (set a b₁) b₂) s) ⟩
trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡
trans (cong (λ set → set (set a b₁) b₂) s)
(set-set l₂ a b₁ b₂) ∎
-- And yet another one.
equality-characterisation₄ :
let open Lens in
l₁ ≡ l₂
↔
∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (s : ∀ a b → set l₁ a b ≡ set l₂ a b) →
Erased
((∀ a b →
trans (sym (trans (cong (get l₁) (s a b))
(g (set l₂ a b))))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a →
trans (sym (trans (s a (get l₁ a))
(cong (set l₂ a) (g a))))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
trans (set-set l₁ a b₁ b₂) (s a b₂) ≡
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(set-set l₂ a b₁ b₂)))
equality-characterisation₄ {l₁ = l₁} {l₂ = l₂} =
l₁ ≡ l₂ ↝⟨ equality-characterisation₃ ⟩
(∃ λ (g : get l₁ ≡ get l₂) →
∃ λ (s : set l₁ ≡ set l₂) →
Erased
((∀ a b → trans (sym (cong₂ (λ set get → get (set a b)) s g))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a → trans (sym (cong₂ (λ set get → set a (get a)) s g))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
trans (set-set l₁ a b₁ b₂) (cong (λ set → set a b₂) s) ≡
trans (cong (λ set → set (set a b₁) b₂) s)
(set-set l₂ a b₁ b₂)))) ↝⟨ (Σ-cong (inverse $ Eq.extensionality-isomorphism ext) λ g →
Σ-cong (inverse $
Eq.extensionality-isomorphism ext F.∘
∀-cong ext λ _ → Eq.extensionality-isomorphism ext) λ s →
Erased-cong (
(∀-cong ext λ a → ∀-cong ext λ b →
≡⇒↝ _ $ cong (λ eq → trans (sym eq) (get-set l₁ a b) ≡ _) (
cong₂ (λ set get → get (set a b)) s g ≡⟨⟩
trans (cong (λ set → get l₁ (set a b)) s)
(cong (λ get → get (set l₂ a b)) g) ≡⟨ cong (λ eq → trans eq (ext⁻¹ g (set l₂ a b))) $ sym $
cong-∘ _ _ s ⟩
trans (cong (get l₁ ⊚ (_$ b)) (ext⁻¹ s a))
(ext⁻¹ g (set l₂ a b)) ≡⟨ cong (λ eq → trans eq (ext⁻¹ g (set l₂ a b))) $ sym $
cong-∘ _ _ (ext⁻¹ s a) ⟩∎
trans (cong (get l₁) (ext⁻¹ (ext⁻¹ s a) b))
(ext⁻¹ g (set l₂ a b)) ∎))
×-cong
(∀-cong ext λ a →
≡⇒↝ _ $ cong (λ eq → trans (sym eq) (set-get l₁ a) ≡ _) (
cong₂ (λ set get → set a (get a)) s g ≡⟨⟩
trans (cong (λ set → set a (get l₁ a)) s)
(cong (λ get → set l₂ a (get a)) g) ≡⟨ sym $ cong₂ trans (cong-∘ _ _ s) (cong-∘ _ _ g) ⟩
trans (ext⁻¹ (ext⁻¹ s a) (get l₁ a))
(cong (set l₂ a) (ext⁻¹ g a)) ∎))
×-cong
∀-cong ext λ a → ∀-cong ext λ b₁ → ∀-cong ext λ b₂ →
≡⇒↝ _ $
cong₂ (λ p q → trans _ p ≡
trans (cong (λ set → set (set a b₁) b₂) q)
(set-set l₂ a b₁ b₂)) (
cong (λ set → set a b₂) s ≡⟨ sym $ cong-∘ _ _ s ⟩∎
ext⁻¹ (ext⁻¹ s a) b₂ ∎)
(
s ≡⟨ sym $ _≃_.right-inverse-of
(Eq.extensionality-isomorphism bad-ext) _ ⟩
⟨ext⟩ (ext⁻¹ s) ≡⟨ (cong ⟨ext⟩ $ ⟨ext⟩ λ _ → sym $
_≃_.right-inverse-of
(Eq.extensionality-isomorphism bad-ext) _) ⟩∎
⟨ext⟩ (⟨ext⟩ ⊚ ext⁻¹ ⊚ ext⁻¹ s) ∎))) ⟩□
(∃ λ (g : ∀ a → get l₁ a ≡ get l₂ a) →
∃ λ (s : ∀ a b → set l₁ a b ≡ set l₂ a b) →
Erased
((∀ a b →
trans (sym (trans (cong (get l₁) (s a b))
(g (set l₂ a b))))
(get-set l₁ a b) ≡
get-set l₂ a b) ×
(∀ a →
trans (sym (trans (s a (get l₁ a))
(cong (set l₂ a) (g a))))
(set-get l₁ a) ≡
set-get l₂ a) ×
(∀ a b₁ b₂ →
trans (set-set l₁ a b₁ b₂) (s a b₂) ≡
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(set-set l₂ a b₁ b₂)))) □
where
open Lens
-- A lemma that can be used to prove that two lenses with
-- definitionally equal getters and setters are equal.
equal-laws→≡ :
{get : A → B} {set : A → B → A}
{l₁′ l₂′ : Erased ((∀ a b → get (set a b) ≡ b) ×
(∀ a → set a (get a) ≡ a) ×
(∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂))} →
let l₁ = _↔_.from Lens-as-Σ (get , set , l₁′)
l₂ = _↔_.from Lens-as-Σ (get , set , l₂′)
open Lens
in
@0 (∀ a b → get-set l₁ a b ≡ get-set l₂ a b) →
@0 (∀ a → set-get l₁ a ≡ set-get l₂ a) →
@0 (∀ a b₁ b₂ → set-set l₁ a b₁ b₂ ≡ set-set l₂ a b₁ b₂) →
l₁ ≡ l₂
equal-laws→≡ {l₁′ = l₁′} {l₂′ = l₂′} hyp₁ hyp₂ hyp₃ =
let l₁″ = _↔_.from Lens-as-Σ (_ , _ , l₁′)
l₂″ = _↔_.from Lens-as-Σ (_ , _ , l₂′)
in
_↔_.from equality-characterisation₂
( refl _
, refl _
, [ (λ a b →
trans (sym (cong₂ (λ set get → get (set a b))
(refl _) (refl _)))
(get-set l₁″ a b) ≡⟨ cong (λ eq → trans (sym eq) _) $ cong₂-refl _ ⟩
trans (sym (refl _)) (get-set l₁″ a b) ≡⟨ cong (flip trans _) sym-refl ⟩
trans (refl _) (get-set l₁″ a b) ≡⟨ trans-reflˡ _ ⟩
get-set l₁″ a b ≡⟨ hyp₁ _ _ ⟩∎
get-set l₂″ a b ∎)
, (λ a →
trans (sym (cong₂ (λ set get → set a (get a))
(refl _) (refl _)))
(set-get l₁″ a) ≡⟨ cong (λ eq → trans (sym eq) _) $ cong₂-refl _ ⟩
trans (sym (refl _)) (set-get l₁″ a) ≡⟨ cong (flip trans _) sym-refl ⟩
trans (refl _) (set-get l₁″ a) ≡⟨ trans-reflˡ _ ⟩
set-get l₁″ a ≡⟨ hyp₂ _ ⟩∎
set-get l₂″ a ∎)
, (λ a b₁ b₂ →
subst (λ set → set (set a b₁) b₂ ≡ set a b₂) (refl _)
(set-set l₁″ a b₁ b₂) ≡⟨ subst-refl _ _ ⟩
set-set l₁″ a b₁ b₂ ≡⟨ hyp₃ _ _ _ ⟩∎
set-set l₂″ a b₁ b₂ ∎)
]
)
where
open Lens
-- An equality characterisation lemma for lenses from sets.
@0 equality-characterisation-for-sets :
let open Lens in
{l₁ l₂ : Lens A B} →
Is-set A →
l₁ ≡ l₂
↔
set l₁ ≡ set l₂
equality-characterisation-for-sets
{A = A} {B = B} {l₁ = l₁} {l₂ = l₂} A-set =
l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ Lens≃Traditional-lens ⟩
trad l₁ ≡ trad l₂ ↝⟨ T.equality-characterisation-for-sets A-set ⟩□
set l₁ ≡ set l₂ □
where
open Lens
------------------------------------------------------------------------
-- More isomorphisms/equivalences related to lenses
-- Lens ⊤ B is equivalent (with erased proofs) to Contractibleᴱ B.
lens-from-⊤≃codomain-contractible :
Lens ⊤ B ≃ᴱ Contractibleᴱ B
lens-from-⊤≃codomain-contractible = EEq.⇔→≃ᴱ
(lens-preserves-h-level-of-domain 0 (mono₁ 0 ⊤-contractible))
(ECP.Contractibleᴱ-propositional ext)
(λ l → Contractibleᴱ→Contractibleᴱ l
(ECP.Contractible→Contractibleᴱ ⊤-contractible))
(λ (b , irrB) → record
{ get = λ _ → b
; get-set = λ _ → erased irrB
; set-get = refl
; set-set = λ _ _ _ → refl _
})
-- Lens ⊥ B is equivalent to the unit type.
lens-from-⊥≃⊤ : Lens (⊥ {ℓ = a}) B ≃ ⊤
lens-from-⊥≃⊤ =
Eq.↔⇒≃ $ _⇔_.to contractible⇔↔⊤ $
record
{ get = ⊥-elim
; set = ⊥-elim
; get-set = λ a → ⊥-elim a
; set-get = λ a → ⊥-elim a
; set-set = λ a → ⊥-elim a
} ,
λ l → _↔_.from equality-characterisation₁
( ⟨ext⟩ (λ a → ⊥-elim a)
, ⟨ext⟩ (λ a → ⊥-elim a)
, [ (λ a → ⊥-elim a)
, (λ a → ⊥-elim a)
, (λ a → ⊥-elim a)
]
)
-- If A is a set and there is a lens from A to B, then A is equivalent
-- (with erased proofs) to the cartesian product of some type (that
-- can be expressed using the setter of l) and B.
--
-- This result is based on Theorem 2.3.9 from "Lenses and View Update
-- Translation" by Pierce and Schmitt.
≃ᴱΣ∥set⁻¹ᴱ∥ᴱ× :
@0 Is-set A →
(l : Lens A B) →
A ≃ᴱ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B)
≃ᴱΣ∥set⁻¹ᴱ∥ᴱ× {A = A} {B = B} A-set l = EEq.↔→≃ᴱ
(λ a → (set a , ∣ a , [ refl _ ] ∣) , get a)
(λ ((f , _) , b) → f b)
to-from
(λ a →
set a (get a) ≡⟨ set-get a ⟩∎
a ∎)
where
open Lens l
@0 B-set : A → Is-set B
B-set a =
h-level-respects-lens-from-inhabited 2 l a A-set
@0 to-from : ∀ _ → _
to-from ((f , p) , b) = flip TE.rec p λ @0 where
.TE.truncation-is-propositionʳ →
×-closure 2
(Σ-closure 2
(Π-closure ext 2 λ _ → A-set) λ _ →
mono₁ 1 TE.truncation-is-proposition)
(B-set (f b))
.TE.∣∣ʳ (a , [ q ]) →
let
lemma₁ =
set (f b) ≡⟨ cong (λ f → set (f b)) $ sym q ⟩
set (set a b) ≡⟨ ⟨ext⟩ $ set-set a b ⟩
set a ≡⟨ q ⟩∎
f ∎
lemma₂ =
get (f b) ≡⟨ cong (λ f → get (f b)) $ sym q ⟩
get (set a b) ≡⟨ get-set _ _ ⟩∎
b ∎
in
(set (f b) , ∣ f b , [ refl _ ] ∣) , get (f b) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma₁ (TE.truncation-is-proposition _ _)) lemma₂ ⟩∎
(f , p) , b ∎
-- If B is an inhabited set and there is a lens from A to B, then A is
-- equivalent (with erased proofs) to the cartesian product of some
-- type (that can be expressed using the getter of l) and B.
--
-- This result is based on Corollary 13 from "Algebras and Update
-- Strategies" by Johnson, Rosebrugh and Wood.
≃ᴱget⁻¹ᴱ× :
@0 Is-set B →
(b : B)
(l : Lens A B) →
A ≃ᴱ (Lens.get l ⁻¹ᴱ b × B)
≃ᴱget⁻¹ᴱ× {B = B} {A = A} B-set b₀ l = EEq.↔→≃ᴱ
(λ a → (set a b₀ , [ get-set a b₀ ]) , get a)
(λ ((a , _) , b) → set a b)
(λ ((a , [ h ]) , b) →
let
lemma =
set (set a b) b₀ ≡⟨ set-set a b b₀ ⟩
set a b₀ ≡⟨ cong (set a) (sym h) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎
in
(set (set a b) b₀ , [ get-set (set a b) b₀ ]) , get (set a b) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma ([]-cong [ B-set _ _ ])) (get-set a b) ⟩∎
(a , [ h ]) , b ∎)
(λ a →
set (set a b₀) (get a) ≡⟨ set-set a b₀ (get a) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎)
where
open Lens l
-- For somewhat coherent lenses the previous result can be proved
-- without the assumption that the codomain is a set.
≃ᴱget⁻¹ᴱ×-coherent :
(b : B)
(l : Coherent-lens A B) →
A ≃ᴱ (Coherent-lens.get l ⁻¹ᴱ b × B)
≃ᴱget⁻¹ᴱ×-coherent {B = B} {A = A} b₀ l = EEq.↔→≃ᴱ
(λ a → (set a b₀ , [ get-set a b₀ ]) , get a)
(λ ((a , _) , b) → set a b)
(λ ((a , [ h ]) , b) →
let
lemma₁ =
set (set a b) b₀ ≡⟨ set-set a b b₀ ⟩
set a b₀ ≡⟨ cong (set a) (sym h) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎
lemma₂₁ =
cong get (trans (set-set a b b₀)
(trans (cong (set a) (sym h))
(set-get a))) ≡⟨ trans (cong-trans _ _ _) $
cong (trans _) $
trans (cong-trans _ _ _) $
cong (flip trans _) $
cong-∘ _ _ _ ⟩
trans (cong get (set-set a b b₀))
(trans (cong (get ⊚ set a) (sym h))
(cong get (set-get a))) ≡⟨ cong₂ (λ p q → trans p (trans (cong (get ⊚ set a) (sym h)) q))
(get-set-set _ _ _)
(get-set-get _) ⟩∎
trans (trans (get-set (set a b) b₀)
(sym (get-set a b₀)))
(trans (cong (get ⊚ set a) (sym h))
(get-set a (get a))) ∎
lemma₂₂ =
sym (trans (trans (get-set (set a b) b₀)
(sym (get-set a b₀)))
(trans (cong (get ⊚ set a) (sym h))
(get-set a (get a)))) ≡⟨ trans (sym-trans _ _) $
cong₂ trans
(sym-trans _ _)
(sym-trans _ _) ⟩
trans (trans (sym (get-set a (get a)))
(sym (cong (get ⊚ set a) (sym h))))
(trans (sym (sym (get-set a b₀)))
(sym (get-set (set a b) b₀))) ≡⟨ cong₂ (λ p q → trans (trans (sym (get-set a (get a))) p)
(trans q (sym (get-set (set a b) b₀))))
(trans (cong sym $ cong-sym _ _) $
sym-sym _)
(sym-sym _) ⟩
trans (trans (sym (get-set a (get a)))
(cong (get ⊚ set a) h))
(trans (get-set a b₀)
(sym (get-set (set a b) b₀))) ≡⟨ trans (sym $ trans-assoc _ _ _) $
cong (flip trans _) $ trans-assoc _ _ _ ⟩∎
trans (trans (sym (get-set a (get a)))
(trans (cong (get ⊚ set a) h)
(get-set a b₀)))
(sym (get-set (set a b) b₀)) ∎
lemma₂′ =
subst (λ a → get a ≡ b₀)
(trans (set-set a b b₀)
(trans (cong (set a) (sym h)) (set-get a)))
(get-set (set a b) b₀) ≡⟨ subst-∘ _ _ _ ⟩
subst (_≡ b₀)
(cong get (trans (set-set a b b₀)
(trans (cong (set a) (sym h))
(set-get a))))
(get-set (set a b) b₀) ≡⟨ subst-trans-sym ⟩
trans
(sym (cong get (trans (set-set a b b₀)
(trans (cong (set a) (sym h))
(set-get a)))))
(get-set (set a b) b₀) ≡⟨ cong (flip (trans ⊚ sym) _) lemma₂₁ ⟩
trans
(sym (trans (trans (get-set (set a b) b₀)
(sym (get-set a b₀)))
(trans (cong (get ⊚ set a) (sym h))
(get-set a (get a)))))
(get-set (set a b) b₀) ≡⟨ cong (flip trans _) lemma₂₂ ⟩
trans
(trans (trans (sym (get-set a (get a)))
(trans (cong (get ⊚ set a) h)
(get-set a b₀)))
(sym (get-set (set a b) b₀)))
(get-set (set a b) b₀) ≡⟨ trans-[trans-sym]- _ _ ⟩
trans (sym (get-set a (get a)))
(trans (cong (get ⊚ set a) h)
(get-set a b₀)) ≡⟨ cong (λ f → trans (sym (f (get a))) (trans (cong (get ⊚ set a) h) (f b₀))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) (get-set a) ⟩
trans (sym (ext⁻¹ (⟨ext⟩ (get-set a)) (get a)))
(trans (cong (get ⊚ set a) h)
(ext⁻¹ (⟨ext⟩ (get-set a)) b₀)) ≡⟨ elim₁
(λ {f} eq →
trans (sym (ext⁻¹ eq (get a)))
(trans (cong f h) (ext⁻¹ eq b₀)) ≡
h)
(
trans (sym (ext⁻¹ (refl P.id) (get a)))
(trans (cong P.id h) (ext⁻¹ (refl P.id) b₀)) ≡⟨ cong₂ (λ p q → trans p (trans (cong P.id h) q))
(trans (cong sym (ext⁻¹-refl _)) sym-refl)
(ext⁻¹-refl _) ⟩
trans (refl _) (trans (cong P.id h) (refl _)) ≡⟨ trans-reflˡ _ ⟩
trans (cong P.id h) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id h ≡⟨ sym $ cong-id _ ⟩∎
h ∎)
_ ⟩∎
h ∎
lemma₂ =
subst (λ a → Erased (get a ≡ b₀))
(trans (set-set a b b₀)
(trans (cong (set a) (sym h)) (set-get a)))
[ get-set (set a b) b₀ ] ≡⟨ push-subst-[] ⟩
[ subst (λ a → get a ≡ b₀)
(trans (set-set a b b₀)
(trans (cong (set a) (sym h)) (set-get a)))
(get-set (set a b) b₀)
] ≡⟨ []-cong [ lemma₂′ ] ⟩∎
[ h ] ∎
in
((set (set a b) b₀ , [ get-set (set a b) b₀ ]) , get (set a b)) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma₁ lemma₂) (get-set a b) ⟩∎
((a , [ h ]) , b ) ∎)
(λ a →
set (set a b₀) (get a) ≡⟨ set-set a b₀ (get a) ⟩
set a (get a) ≡⟨ set-get a ⟩∎
a ∎)
where
open Coherent-lens l
------------------------------------------------------------------------
-- A conversion function
-- If A is a set, then Lens A B is equivalent to Coherent-lens A B.
≃coherent : @0 Is-set A → Lens A B ≃ Coherent-lens A B
≃coherent {A = A} {B = B} A-set = Eq.↔→≃
to
Coherent-lens.lens
(λ l → let l′ = Coherent-lens.lens l in
$⟨ H-level-Erased 1
(×-closure 1
(Π-closure ext 1 λ a →
mono₁ 2 (B-set l′ a))
(Π-closure ext 1 λ a →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
mono₁ 2 (B-set l′ a))) ⟩
Is-proposition _ ↝⟨ (λ p → cong (l′ ,_) (p _ _)) ⦂ (_ → _) ⟩
(l′ , _) ≡ (l′ , _) ↔⟨ Eq.≃-≡ Coherent-lens-as-Σ ⟩□
to l′ ≡ l □)
refl
where
@0 B-set : Lens A B → A → Is-set B
B-set l a =
h-level-respects-lens-from-inhabited 2 l a A-set
to : Lens A B → Coherent-lens A B
to l = record
{ lens = l
; get-set-get = λ a → B-set l a _ _
; get-set-set = λ a _ _ → B-set l a _ _
}
-- The conversion preserves getters and setters.
≃coherent-preserves-getters-and-setters :
{A : Type a}
(@0 s : Is-set A) →
Preserves-getters-and-setters-⇔ A B
(_≃_.logical-equivalence (≃coherent s))
≃coherent-preserves-getters-and-setters _ =
(λ _ → refl _ , refl _)
, (λ _ → refl _ , refl _)
------------------------------------------------------------------------
-- Lens combinators
module Lens-combinators where
-- If two types are isomorphic, then there is a lens between them.
↔→lens : A ↔ B → Lens A B
↔→lens A↔B = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = left-inverse-of
; set-set = λ _ _ _ → refl _
}
where
open _↔_ A↔B
-- If there is an equivalence with erased proofs between two types,
-- then there is a lens between them.
≃ᴱ→lens : A ≃ᴱ B → Lens A B
≃ᴱ→lens A≃B = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = left-inverse-of
; set-set = λ _ _ _ → refl _
}
where
open _≃ᴱ_ A≃B
-- Identity lens.
id : Lens A A
id = ≃ᴱ→lens F.id
-- The identity lens is equal to the one obtained from the
-- traditional identity lens without erased proofs.
Traditional-lens-id≡id :
Traditional-lens→Lens TC.id ≡ id {A = A}
Traditional-lens-id≡id = refl _
-- Composition of lenses.
infixr 9 _∘_
_∘_ : Lens B C → Lens A B → Lens A C
l₁ ∘ l₂ = record
{ get = λ a → get l₁ (get l₂ a)
; set = λ a c →
let b = set l₁ (get l₂ a) c in
set l₂ a b
; get-set = T.Lens.get-set l₁∘l₂
; set-get = T.Lens.set-get l₁∘l₂
; set-set = T.Lens.set-set l₁∘l₂
}
where
open Lens
@0 l₁∘l₂ : _
l₁∘l₂ = trad l₁ TC.∘ trad l₂
-- Traditional-lens→Lens commutes with composition.
@0 Traditional-lens-∘≡∘ :
{l₁ : T.Lens B C} {l₂ : T.Lens A B} →
Traditional-lens→Lens (l₁ TC.∘ l₂) ≡
Traditional-lens→Lens l₁ ∘ Traditional-lens→Lens l₂
Traditional-lens-∘≡∘ = refl _
-- Note that composition can be defined in several different ways.
-- Here are two alternative implementations.
infixr 9 _∘′_ _∘″_
_∘′_ : Lens B C → Lens A B → Lens A C
l₁ ∘′ l₂ = record (l₁ ∘ l₂)
{ set-set = T.Lens.set-set l₁∘′l₂
}
where
@0 l₁∘′l₂ : _
l₁∘′l₂ = trad l₁ TC.∘′ trad l₂
_∘″_ : Lens B C → Lens A B → Lens A C
l₁ ∘″ l₂ = record (l₁ ∘ l₂)
{ set-set = T.Lens.set-set l₁∘″l₂
}
where
@0 l₁∘″l₂ : _
l₁∘″l₂ = trad l₁ TC.∘″ trad l₂
-- These two implementations are pointwise equal to the other one.
-- However, I don't know if there is some other definition that is
-- distinct from these two (if we require that the definitions are
-- polymorphic, that get and set are implemented in the same way as
-- for _∘_, and that the three composition laws below hold).
∘≡∘′ : l₁ ∘ l₂ ≡ l₁ ∘′ l₂
∘≡∘′ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
(λ _ _ → refl _)
(λ _ → refl _)
(λ a c₁ c₂ →
let b₁ = set l₁ (get l₂ a) c₁
b₂ = set l₁ b₁ c₂
a′ = set l₂ a b₁
b′ = set l₁ (get l₂ a′) c₂
in
set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩
trans (set-set l₂ a b₁ b′)
(trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ sym $ trans-assoc _ _ _ ⟩
trans (trans (set-set l₂ a b₁ b′)
(cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁)))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ cong (flip trans _) $
elim₁
(λ eq →
trans (set-set l₂ _ b₁ _)
(cong (λ b → set l₂ a (set l₁ b c₂)) eq) ≡
trans (cong (λ b → set l₂ _ (set l₁ b _)) eq)
(set-set l₂ _ _ _))
(
trans (set-set l₂ a b₁ b₂)
(cong (λ b → set l₂ a (set l₁ b c₂)) (refl _)) ≡⟨ trans (cong (trans _) $ cong-refl _) $
trans-reflʳ _ ⟩
set-set l₂ a b₁ b₂ ≡⟨ sym $
trans (cong (flip trans _) $ cong-refl _) $
trans-reflˡ _ ⟩∎
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (refl _))
(set-set l₂ a b₁ b₂) ∎)
(get-set l₂ a b₁) ⟩
trans (trans (cong (λ b → set l₂ a′ (set l₁ b c₂))
(get-set l₂ a b₁))
(set-set l₂ a b₁ b₂))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)) ≡⟨ trans-assoc _ _ _ ⟩
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
(trans (set-set l₂ a b₁ b₂)
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨⟩
set-set (l₁ ∘′ l₂) a c₁ c₂ ∎)
where
open Lens
∘≡∘″ : l₁ ∘ l₂ ≡ l₁ ∘″ l₂
∘≡∘″ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
(λ _ _ → refl _)
(λ _ → refl _)
(λ a c₁ c₂ →
let b₁ = set l₁ (get l₂ a) c₁
b₂ = set l₁ (get l₂ a) c₂
a′ = set l₂ a b₁
b′ = set l₁ (get l₂ a′) c₂
eq : b′ ≡ b₂
eq = trans (cong (λ b → set l₁ b c₂) (get-set l₂ a b₁))
(set-set l₁ (get l₂ a) c₁ c₂)
in
set-set (l₁ ∘ l₂) a c₁ c₂ ≡⟨⟩
trans (set-set l₂ a b₁ b′)
(trans (cong (λ b → set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
(cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))) ≡⟨ cong (trans (set-set l₂ a b₁ b′)) $
trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _ ⟩
trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡⟨ elim¹
(λ {b₂} eq → trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) ≡
trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂))
(
trans (set-set l₂ a b₁ b′) (cong (set l₂ a) (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩
trans (set-set l₂ a b₁ b′) (refl _) ≡⟨ trans-reflʳ _ ⟩
set-set l₂ a b₁ b′ ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (set-set l₂ a b₁ b′) ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎
trans (cong (set l₂ a′) (refl _)) (set-set l₂ a b₁ b′) ∎)
eq ⟩
trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂) ≡⟨ trans (cong (flip trans _) $
trans (cong-trans _ _ _) $
cong (flip trans _) $ cong-∘ _ _ _) $
trans-assoc _ _ _ ⟩
trans (cong (λ b → set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
(trans (cong (set l₂ a′) (set-set l₁ (get l₂ a) c₁ c₂))
(set-set l₂ a b₁ b₂)) ≡⟨⟩
set-set (l₁ ∘″ l₂) a c₁ c₂ ∎)
where
open Lens
-- id is a left identity of _∘_.
left-identity : (l : Lens A B) → id ∘ l ≡ l
left-identity l = equal-laws→≡
(λ a b →
trans (cong P.id (get-set a b)) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id (get-set a b) ≡⟨ sym $ cong-id _ ⟩∎
get-set a b ∎)
(λ a →
trans (cong (set a) (refl _)) (set-get a) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (set-get a) ≡⟨ trans-reflˡ _ ⟩∎
set-get a ∎)
(λ a b₁ b₂ →
trans (set-set a b₁ b₂)
(trans (cong (λ _ → set a b₂) (get-set a b₁))
(cong (set a) (refl _))) ≡⟨ cong₂ (λ p q → trans _ (trans p q))
(cong-const _)
(cong-refl _) ⟩
trans (set-set a b₁ b₂) (trans (refl _) (refl _)) ≡⟨ trans (cong (trans _) trans-refl-refl) $
trans-reflʳ _ ⟩∎
set-set a b₁ b₂ ∎)
where
open Lens l
-- id is a right identity of _∘_.
right-identity : (l : Lens A B) → l ∘ id ≡ l
right-identity l = equal-laws→≡
(λ a b →
trans (cong get (refl _)) (get-set a b) ≡⟨ cong (flip trans _) $ cong-refl _ ⟩
trans (refl _) (get-set a b) ≡⟨ trans-reflˡ _ ⟩∎
get-set a b ∎)
(λ a →
trans (cong P.id (set-get a)) (refl _) ≡⟨ trans-reflʳ _ ⟩
cong P.id (set-get a) ≡⟨ sym $ cong-id _ ⟩∎
set-get a ∎)
(λ a b₁ b₂ →
trans (refl _)
(trans (cong (λ b → set b b₂) (refl _))
(cong P.id (set-set a b₁ b₂))) ≡⟨ trans-reflˡ _ ⟩
trans (cong (λ b → set b b₂) (refl _))
(cong P.id (set-set a b₁ b₂)) ≡⟨ cong₂ trans (cong-refl _) (sym $ cong-id _) ⟩
trans (refl _) (set-set a b₁ b₂) ≡⟨ trans-reflˡ _ ⟩∎
set-set a b₁ b₂ ∎)
where
open Lens l
-- _∘_ is associative.
associativity :
(l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) →
l₁ ∘ (l₂ ∘ l₃) ≡ (l₁ ∘ l₂) ∘ l₃
associativity l₁ l₂ l₃ = equal-laws→≡ lemma₁ lemma₂ lemma₃
where
open Lens
@0 lemma₁ : _
lemma₁ = λ a d →
let
f = get l₁
g = get l₂
b = get l₃ a
c = g b
c′ = set l₁ c d
x = get-set l₃ a (set l₂ b c′)
y = get-set l₂ b c′
z = get-set l₁ c d
in
trans (cong f $ trans (cong g x) y) z ≡⟨ cong (λ x → trans x z) (cong-trans f _ y) ⟩
trans (trans (cong f $ cong g x) (cong f y)) z ≡⟨ trans-assoc _ _ z ⟩
trans (cong f $ cong g x) (trans (cong f y) z) ≡⟨ cong (λ x → trans x (trans (cong f y) z)) (cong-∘ f g x) ⟩∎
trans (cong (f ⊚ g) x) (trans (cong f y) z) ∎
@0 lemma₂ : _
lemma₂ = λ a →
let
b = get l₃ a
f = set l₃ a
g = set l₂ b
x = set-get l₁ (get l₂ b)
y = set-get l₂ b
z = set-get l₃ a
in
trans (cong (f ⊚ g) x) (trans (cong f y) z) ≡⟨ sym $ trans-assoc _ _ z ⟩
trans (trans (cong (f ⊚ g) x) (cong f y)) z ≡⟨ cong (λ x → trans (trans x (cong f y)) z) (sym $ cong-∘ f g x) ⟩
trans (trans (cong f (cong g x)) (cong f y)) z ≡⟨ cong (λ x → trans x z) (sym $ cong-trans f _ y) ⟩∎
trans (cong f $ trans (cong g x) y) z ∎
@0 lemma₃ : _
lemma₃ = λ a d₁ d₂ →
let
f = set l₃ a
g = set l₂ (get l₃ a)
h = λ x → set l₁ x d₂
i = get l₂
c₁ = set l₁ (get (l₂ ∘ l₃) a) d₁
c₂ = h (i (get l₃ a))
c₂′ = h (i (get l₃ (set (l₂ ∘ l₃) a c₁)))
c₂″ = h (i (set l₂ (get l₃ a) c₁))
b₁ = g c₁
b₁′ = get l₃ (f b₁)
x = set-set l₃ a b₁ (set l₂ b₁′ c₂′)
y = get-set l₃ a b₁
z = set-set l₂ (get l₃ a) c₁
u = get-set l₂ (get l₃ a) c₁
v = set-set l₁ (get (l₂ ∘ l₃) a) d₁ d₂
c₂′≡c₂″ =
c₂′ ≡⟨ cong (h ⊚ i) y ⟩∎
c₂″ ∎
lemma₁₀ =
trans (sym (cong (h ⊚ i) y)) (cong h (cong i y)) ≡⟨ cong (trans _) (cong-∘ h i y) ⟩
trans (sym (cong (h ⊚ i) y)) (cong (h ⊚ i) y) ≡⟨ trans-symˡ (cong (h ⊚ i) y) ⟩∎
refl _ ∎
lemma₉ =
trans (cong (λ x → set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″) ≡⟨ cong (trans (cong (λ x → set l₂ x c₂′) y))
(cong-∘ (set l₂ b₁) (h ⊚ i) y) ⟩
trans (cong (λ x → set l₂ x (h (i b₁′))) y)
(cong (λ x → set l₂ b₁ (h (i x ))) y) ≡⟨ trans-cong-cong (λ x y → set l₂ x (h (i y))) y ⟩∎
cong (λ x → set l₂ x (h (i x))) y ∎
lemma₈ =
sym (cong (set l₂ b₁) (sym c₂′≡c₂″)) ≡⟨ sym $ cong-sym (set l₂ b₁) (sym c₂′≡c₂″) ⟩
cong (set l₂ b₁) (sym (sym c₂′≡c₂″)) ≡⟨ cong (cong (set l₂ b₁)) (sym-sym c₂′≡c₂″) ⟩∎
cong (set l₂ b₁) c₂′≡c₂″ ∎
lemma₇ =
trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y))) ≡⟨ sym $ cong-trans g _ (cong h (cong i y)) ⟩
cong g (trans (sym c₂′≡c₂″) (cong h (cong i y))) ≡⟨ cong (cong g) lemma₁₀ ⟩
cong g (refl _) ≡⟨ cong-refl _ ⟩∎
refl _ ∎
lemma₆ =
trans (cong (λ x → set l₂ x c₂′) y)
(trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″)))) ≡⟨ sym $ trans-assoc _ _ (trans _ (cong g (sym c₂′≡c₂″))) ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y)
(cong (set l₂ b₁) c₂′≡c₂″))
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₉ ⟩
trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ sym $ trans-assoc _ _ (cong g (sym c₂′≡c₂″)) ⟩∎
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(cong g (sym c₂′≡c₂″)) ∎
lemma₅ =
z c₂′ ≡⟨ sym $ dcong z (sym c₂′≡c₂″) ⟩
subst (λ x → set l₂ b₁ x ≡ g x) (sym c₂′≡c₂″) (z c₂″) ≡⟨ subst-in-terms-of-trans-and-cong {f = set l₂ b₁} {g = g} {x≡y = sym c₂′≡c₂″} ⟩
trans (sym (cong (set l₂ b₁) (sym c₂′≡c₂″)))
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ≡⟨ cong (λ e → trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₈ ⟩∎
trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″))) ∎
lemma₄ =
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans (trans (cong (λ x → set l₂ x c₂′) y) e)
(cong g (cong h (cong i y))))
lemma₅ ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y)
(trans (cong (set l₂ b₁) c₂′≡c₂″)
(trans (z c₂″) (cong g (sym c₂′≡c₂″)))))
(cong g (cong h (cong i y))) ≡⟨ cong (λ e → trans e (cong g (cong h (cong i y)))) lemma₆ ⟩
trans (trans (trans (cong (λ x → set l₂ x (h (i x))) y)
(z c₂″))
(cong g (sym c₂′≡c₂″)))
(cong g (cong h (cong i y))) ≡⟨ trans-assoc _ _ (cong g (cong h (cong i y))) ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(trans (cong g (sym c₂′≡c₂″))
(cong g (cong h (cong i y)))) ≡⟨ cong (trans (trans _ (z c₂″))) lemma₇ ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(refl _) ≡⟨ trans-reflʳ _ ⟩∎
trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″) ∎
lemma₃ =
cong g (trans (cong h (trans (cong i y) u)) v) ≡⟨ cong (λ e → cong g (trans e v)) (cong-trans h _ u) ⟩
cong g (trans (trans (cong h (cong i y)) (cong h u)) v) ≡⟨ cong (cong g) (trans-assoc _ _ v) ⟩
cong g (trans (cong h (cong i y)) (trans (cong h u) v)) ≡⟨ cong-trans g _ (trans _ v) ⟩∎
trans (cong g (cong h (cong i y)))
(cong g (trans (cong h u) v)) ∎
lemma₂ =
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (trans (trans _ (z c₂′))) lemma₃ ⟩
trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(trans (cong g (cong h (cong i y)))
(cong g (trans (cong h u) v))) ≡⟨ sym $ trans-assoc _ _ (cong g (trans _ v)) ⟩
trans (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (cong h (cong i y))))
(cong g (trans (cong h u) v)) ≡⟨ cong (λ e → trans e (cong g (trans (cong h u) v))) lemma₄ ⟩
trans (trans (cong (λ x → set l₂ x (h (i x))) y) (z c₂″))
(cong g (trans (cong h u) v)) ≡⟨ trans-assoc _ _ (cong g (trans _ v)) ⟩∎
trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (trans (cong h u) v))) ∎
lemma₁ =
trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))
(cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ cong (λ e → trans
(cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))) e)
(sym $ cong-∘ f g (trans _ v)) ⟩
trans (cong f (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′)))
(cong f (cong g (trans (cong h (trans (cong i y) u))
v))) ≡⟨ sym $ cong-trans f (trans _ (z c₂′)) (cong g (trans _ v)) ⟩
cong f (trans (trans (cong (λ x → set l₂ x c₂′) y) (z c₂′))
(cong g (trans (cong h (trans (cong i y) u))
v))) ≡⟨ cong (cong f) lemma₂ ⟩
cong f (trans (cong (λ x → set l₂ x (h (i x))) y)
(trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong-trans _ _ _ ⟩
trans (cong f (cong (λ x → set l₂ x (h (i x))) y))
(cong f (trans (z c₂″) (cong g (trans (cong h u) v)))) ≡⟨ cong₂ (λ p q → trans p (cong f (trans (z c₂″) q)))
(cong-∘ _ _ _)
(trans (cong-trans _ _ _) $
cong (flip trans _) $
cong-∘ _ _ _) ⟩∎
trans (cong (λ x → f (set l₂ x (h (i x)))) y)
(cong f (trans (z c₂″) (trans (cong (g ⊚ h) u) (cong g v)))) ∎
in
trans (trans x (trans (cong (λ x → f (set l₂ x c₂′)) y)
(cong f (z c₂′))))
(trans (cong (f ⊚ g ⊚ h) (trans (cong i y) u))
(cong (f ⊚ g) v)) ≡⟨ cong₂ (λ p q → trans (trans x p) q)
(trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _)
(trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
sym $ cong-trans _ _ _) ⟩
trans (trans x (cong f (trans (cong (λ x → set l₂ x c₂′) y)
(z c₂′))))
(cong (f ⊚ g) (trans (cong h (trans (cong i y) u)) v)) ≡⟨ trans-assoc _ _ _ ⟩
trans x (trans (cong f (trans (cong (λ x → set l₂ x c₂′) y)
(z c₂′)))
(cong (f ⊚ g)
(trans (cong h (trans (cong i y) u)) v))) ≡⟨ cong (trans x) lemma₁ ⟩∎
trans x (trans (cong (λ x → f (set l₂ x (h (i x)))) y)
(cong f (trans (z c₂″) (trans (cong (g ⊚ h) u)
(cong g v))))) ∎
-- Every lens of type Lens A A that satisfies a certain right
-- identity law is equal to the identity lens.
id-unique :
(id′ : Lens A A) →
((l : Lens A A) → l ∘ id′ ≡ l) →
id′ ≡ id
id-unique id′ right-identity =
id′ ≡⟨ sym $ left-identity _ ⟩
id ∘ id′ ≡⟨ right-identity _ ⟩∎
id ∎
-- An equality characterisation lemma that can be used when one of
-- the lenses is the identity.
equality-characterisation-id :
{l : Lens A A} → let open Lens l in
l ≡ id
↔
∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
Erased
((∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))
equality-characterisation-id {l = l} =
l ≡ id ↝⟨ equality-characterisation₄ ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
Erased
((∀ a b →
trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡
refl _) ×
(∀ a →
trans (sym (trans (s a (get a)) (cong P.id (g a))))
(set-get a) ≡
refl _) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
trans (cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)))
(refl _)))) ↝⟨ (∃-cong λ g → ∃-cong λ _ → Erased-cong (∃-cong λ _ →
(∀-cong ext λ _ →
≡⇒↝ _ $ cong (λ eq → trans (sym (trans _ eq)) (set-get _) ≡ _) $ sym $
cong-id (g _))
×-cong
∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
≡⇒↝ _ $ cong (_ ≡_) $ trans-reflʳ _)) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
Erased
((∀ a b →
trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) ≡
refl _) ×
(∀ a →
trans (sym (trans (s a (get a)) (g a))) (set-get a) ≡
refl _) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) ↝⟨ (∃-cong λ g → ∃-cong λ s → Erased-cong (
(∀-cong ext λ _ → ∀-cong ext λ _ →
≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
×-cong
(∀-cong ext λ _ →
≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
×-cong
F.id)) ⟩□
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a b → set a b ≡ b) →
Erased
((∀ a b → get-set a b ≡ trans (cong get (s a b)) (g b)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a b₁ b₂ →
trans (set-set a b₁ b₂) (s a b₂) ≡
cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) □
where
open Lens l
-- A lemma that can be used to show that a lens with a constant
-- setter (such as the ones produced by getter-equivalence→lens
-- below) is equal to the identity lens.
constant-setter→≡id :
{l′ : ∃ λ (get : A → A) →
∃ λ (set : A → A) →
Erased
((A → ∀ a → get (set a) ≡ a) ×
(∀ a → set (get a) ≡ a) ×
(A → A → ∀ a → set a ≡ set a))} →
let l = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
set = proj₁ (proj₂ l′)
open Lens l hiding (set)
in
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
Erased
((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _))) →
l ≡ id
constant-setter→≡id {A = A} {l′ = l′} =
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
Erased
((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → set-set a a₁ a₂ ≡ refl _))) ↝⟨ (Σ-map P.id $ Σ-map P.id λ {s} → Erased-cong (
Σ-map P.id $ Σ-map P.id λ hyp a a₁ a₂ →
trans (set-set a a₁ a₂) (s a₂) ≡⟨ cong (λ eq → trans eq (s a₂)) $ hyp _ _ _ ⟩
trans (refl _) (s a₂) ≡⟨ trans-reflˡ (s _) ⟩∎
s a₂ ∎)) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
Erased
((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ → trans (set-set a a₁ a₂) (s a₂) ≡ s a₂))) ↔⟨ (∃-cong λ _ → ∃-cong λ s → Erased-cong (∃-cong λ _ → ∃-cong λ _ →
∀-cong ext λ a → ∀-cong ext λ a₁ → ∀-cong ext λ a₂ →
≡⇒↝ F.equivalence $ cong (trans _ (s _) ≡_) (
s a₂ ≡⟨ sym $ cong-ext s ⟩
cong (λ set → set a₂) (⟨ext⟩ s) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ s) ⟩
cong (λ set → set (set a a₁) a₂) (cong const (⟨ext⟩ s)) ≡⟨ cong (cong (λ set → set (set a a₁) a₂)) $ sym $
ext-const (⟨ext⟩ s) ⟩∎
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s) ∎))) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : ∀ a → set a ≡ a) →
Erased
((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s (get a)) (g a)) ×
(∀ a a₁ a₂ →
trans (set-set a a₁ a₂) (s a₂) ≡
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ λ _ → ⟨ext⟩ s)))) ↝⟨ Σ-map P.id (Σ-map const P.id) ⟩
(∃ λ (g : ∀ a → get a ≡ a) →
∃ λ (s : A → ∀ a → set a ≡ a) →
Erased
((∀ a₁ a₂ → get-set a₁ a₂ ≡ trans (cong get (s a₁ a₂)) (g a₂)) ×
(∀ a → set-get a ≡ trans (s a (get a)) (g a)) ×
(∀ a a₁ a₂ →
trans (set-set a a₁ a₂) (s a a₂) ≡
cong (λ set → set (set a a₁) a₂) (⟨ext⟩ (⟨ext⟩ ⊚ s))))) ↔⟨ inverse equality-characterisation-id ⟩□
l″ ≡ id □
where
l″ = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
set = proj₁ (proj₂ l′)
open Lens l″ hiding (set)
-- An identity function for lenses for which the forward direction
-- is an equivalence (with erased proofs).
--
-- Note that the setter of the resulting lens is definitionally
-- equal to a constant function returning the right-to-left
-- direction of the equivalence.
--
-- Note also that two proofs, set-get and set-set, have been
-- "obfuscated". They could have been shorter, but then it might not
-- have been possible to prove getter-equivalence→lens≡.
getter-equivalence→lens :
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) →
Lens A B
getter-equivalence→lens l is-equiv = record
{ get = to
; set = const from
; get-set = const right-inverse-of
; set-get = λ a →
from (to a) ≡⟨ cong from (sym (get-set a (to a))) ⟩
from (get (set a (to a))) ≡⟨⟩
from (to (set a (get a))) ≡⟨ cong (from ⊚ to) (set-get a) ⟩
from (to a) ≡⟨ left-inverse-of _ ⟩∎
a ∎
; set-set = λ a b₁ b₂ →
let s = from≡set l is-equiv in
from b₂ ≡⟨ cong (λ set → set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩ ⊚ s)) ⟩
set (set a b₁) b₂ ≡⟨ set-set a b₁ b₂ ⟩
set a b₂ ≡⟨ sym (s a b₂) ⟩∎
from b₂ ∎
}
where
A≃B = EEq.⟨ _ , is-equiv ⟩
open _≃ᴱ_ A≃B
open Lens l
-- In erased contexts it can be proved that the function
-- getter-equivalence→lens returns its input.
@0 getter-equivalence→lens≡ :
∀ (l : Lens A B) is-equiv →
getter-equivalence→lens l is-equiv ≡ l
getter-equivalence→lens≡ l is-equiv = $⟨ TC.getter-equivalence→lens≡ (trad l) is-equiv′ ⟩
TC.getter-equivalence→lens (trad l) is-equiv′ ≡ trad l ↝⟨ cong Traditional-lens→Lens ⟩□
getter-equivalence→lens l is-equiv ≡ l □
where
is-equiv′ = EEq.Is-equivalenceᴱ→Is-equivalence is-equiv
------------------------------------------------------------------------
-- Some existence results
-- There is, in general, no lens for the first projection from a
-- Σ-type.
no-first-projection-lens :
¬ Lens (∃ λ (b : Bool) → b ≡ true) Bool
no-first-projection-lens =
Non-dependent.no-first-projection-lens
Lens contractible-to-contractible
-- There are two lenses with equal setters that are not equal
-- (assuming univalence).
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by CE.not-refl≢refl, which is only used in an
-- erased context.)
equal-setters-but-not-equal :
@0 Univalence lzero →
∃ λ (A : Type) →
∃ λ (B : Type) →
∃ λ (l₁ : Lens A B) →
∃ λ (l₂ : Lens A B) →
Lens.set l₁ ≡ Lens.set l₂ ×
l₁ ≢ l₂
equal-setters-but-not-equal _ =
block λ b →
𝕊¹ᴱ , ⊤ , l₁′ b , l₂′ , refl _ , l₁′≢l₂′ b
where
open Lens
@0 not-refl : Block "not-refl" → (x : 𝕊¹ᴱ) → x ≡ x
not-refl ⊠ = CE.not-refl
@0 not-refl≢refl : ∀ b → not-refl b ≢ refl
not-refl≢refl ⊠ = CE.not-refl≢refl
l₁′ : Block "not-refl" → Lens 𝕊¹ᴱ ⊤
l₁′ b = _≃ᴱ_.from lens-to-⊤≃ᴱ [ not-refl b ]
l₂′ : Lens 𝕊¹ᴱ ⊤
l₂′ = _≃ᴱ_.from lens-to-⊤≃ᴱ [ refl ]
l₁′≢l₂′ : ∀ b → l₁′ b ≢ l₂′
l₁′≢l₂′ b =
Stable-¬
[ l₁′ b ≡ l₂′ ↔⟨ Eq.≃-≡ (EEq.≃ᴱ→≃ $ inverse lens-to-⊤≃ᴱ)
{x = [ not-refl b ]} {y = [ refl ]} ⟩
[ not-refl b ] ≡ [ refl ] ↝⟨ cong erased ⟩
not-refl b ≡ refl ↝⟨ not-refl≢refl b ⟩□
⊥ □
]
-- A lens which is used in some counterexamples below.
bad : (a : Level) → Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)
bad a = record
{ get = P.id
; set = const P.id
; get-set = λ _ → cong lift ⊚ CE.not-refl ⊚ lower
; set-get = refl
; set-set = λ _ _ → cong lift ⊚ CE.not-refl ⊚ lower
}
-- The lens bad a has a getter which is an equivalence, but it does
-- not satisfy either of the coherence laws that Coherent-lens lenses
-- must satisfy (assuming univalence).
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by CE.not-refl≢refl, which is only used in
-- erased contexts.)
getter-equivalence-but-not-coherent :
@0 Univalence lzero →
let open Lens (bad a) in
Is-equivalence get ×
¬ (∀ a → cong get (set-get a) ≡ get-set a (get a)) ×
¬ (∀ a₁ a₂ a₃ →
cong get (set-set a₁ a₂ a₃) ≡
trans (get-set (set a₁ a₂) a₃) (sym (get-set a₁ a₃)))
getter-equivalence-but-not-coherent {a = a} univ =
_≃_.is-equivalence F.id
, Stable-¬
[ ((x : ↑ a 𝕊¹ᴱ) → cong get (set-get x) ≡ get-set x (get x)) ↔⟨⟩
((x : ↑ a 𝕊¹ᴱ) →
cong P.id (refl _) ≡ cong lift (CE.not-refl (lower x))) ↔⟨ (Π-cong ext Bij.↑↔ λ _ → Eq.id) ⟩
((x : 𝕊¹ᴱ) → cong P.id (refl _) ≡ cong lift (CE.not-refl x)) ↝⟨ trans (trans (cong-refl _) (cong-id _)) ⊚_ ⟩
((x : 𝕊¹ᴱ) → cong lift (refl x) ≡ cong lift (CE.not-refl x)) ↔⟨ (∀-cong ext λ _ →
Eq.≃-≡ $ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse Bij.↑↔) ⟩
((x : 𝕊¹ᴱ) → refl x ≡ CE.not-refl x) ↔⟨ Eq.extensionality-isomorphism ext ⟩
refl ≡ CE.not-refl ↝⟨ CE.not-refl≢refl ⊚ sym ⟩□
⊥ □
]
, Stable-¬
[ ((x y z : ↑ a 𝕊¹ᴱ) →
cong get (set-set x y z) ≡
trans (get-set (set x y) z) (sym (get-set x z))) ↔⟨⟩
((x y z : ↑ a 𝕊¹ᴱ) →
cong P.id (cong lift (CE.not-refl (lower z))) ≡
trans (cong lift (CE.not-refl (lower z)))
(sym (cong lift (CE.not-refl (lower z))))) ↔⟨ (Π-cong ext Bij.↑↔ λ _ →
Π-cong ext Bij.↑↔ λ _ →
Π-cong ext Bij.↑↔ λ _ →
Eq.id) ⟩
((x y z : 𝕊¹ᴱ) →
cong P.id (cong lift (CE.not-refl z)) ≡
trans (cong lift (CE.not-refl z))
(sym (cong lift (CE.not-refl z)))) ↝⟨ (λ hyp → hyp CE.base CE.base) ⟩
((x : 𝕊¹ᴱ) →
cong P.id (cong lift (CE.not-refl x)) ≡
trans (cong lift (CE.not-refl x))
(sym (cong lift (CE.not-refl x)))) ↔⟨ (∀-cong ext λ _ → ≡⇒≃ $ cong₂ _≡_
(sym $ cong-id _)
(trans (trans-symʳ _) $
sym $ cong-refl _)) ⟩
((x : 𝕊¹ᴱ) →
cong lift (CE.not-refl x) ≡ cong lift (refl x)) ↔⟨ (∀-cong ext λ _ →
Eq.≃-≡ $ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse Bij.↑↔) ⟩
((x : 𝕊¹ᴱ) → CE.not-refl x ≡ refl x) ↔⟨ Eq.extensionality-isomorphism ext ⟩
CE.not-refl ≡ refl ↝⟨ CE.not-refl≢refl ⟩□
⊥ □
]
where
open Lens (bad a)
-- The lenses bad a and Lens-combinators.id {A = ↑ a 𝕊¹ᴱ} have equal
-- setters, and their getters are equivalences, but they are not equal
-- (assuming univalence).
equal-setters-and-equivalences-as-getters-but-not-equal :
@0 Univalence lzero →
let l₁ = bad a
l₂ = Lens-combinators.id {A = ↑ a 𝕊¹ᴱ}
in
Is-equivalence (Lens.get l₁) ×
Is-equivalence (Lens.get l₂) ×
Lens.set l₁ ≡ Lens.set l₂ ×
l₁ ≢ l₂
equal-setters-and-equivalences-as-getters-but-not-equal {a = ℓa} univ =
let is-equiv , not-coherent , _ =
getter-equivalence-but-not-coherent univ
in
is-equiv
, _≃_.is-equivalence F.id
, refl _
, Stable-¬
[ bad ℓa ≡ id ↝⟨ (λ eq → subst (λ l → ∀ a → cong (get l) (set-get l a) ≡
get-set l a (get l a))
(sym eq)
(λ _ → cong-refl _)) ⟩
(∀ a → cong (get (bad ℓa)) (set-get (bad ℓa) a) ≡
get-set (bad ℓa) a (get (bad ℓa) a)) ↝⟨ not-coherent ⟩□
⊥ □
]
where
open Lens
open Lens-combinators
-- There is in general no split surjection from equivalences with
-- erased proofs to lenses with getters that are equivalences with
-- erased proofs, if the right-to-left direction of the split
-- surjection is required to return the lens's getter plus some proof
-- (assuming univalence).
¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get :
@0 Univalence lzero →
¬ ∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠
(∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) →
Is-equivalenceᴱ (Lens.get l))) →
∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)
¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get {a = a} univ =
Stable-¬
[ (let is-equiv₁′ , is-equiv₂′ , setters-equal , bad≢id =
equal-setters-and-equivalences-as-getters-but-not-equal univ
is-equiv₁ = EEq.Is-equivalence→Is-equivalenceᴱ is-equiv₁′
is-equiv₂ = EEq.Is-equivalence→Is-equivalenceᴱ is-equiv₂′
in
λ (f , hyp) → $⟨ setters-equal ⟩
Lens.set (bad a) ≡ Lens.set id ↝⟨ getters-equal-if-setters-equal (bad a) id ⟩
Lens.get (bad a) ≡ Lens.get id ↝⟨ (λ eq → trans (hyp _) (trans eq (sym (hyp _)))) ⟩
_≃ᴱ_.to (_↠_.from f (bad a , is-equiv₁)) ≡
_≃ᴱ_.to (_↠_.from f (id , is-equiv₂)) ↝⟨ EEq.to≡to→≡ ext ⟩
_↠_.from f (bad a , is-equiv₁) ≡
_↠_.from f (id , is-equiv₂) ↝⟨ _↠_.to (Surjection.↠-≡ f) ⟩
(bad a , is-equiv₁) ≡ (id , is-equiv₂) ↝⟨ cong proj₁ ⟩
bad a ≡ id ↝⟨ bad≢id ⟩□
⊥ □)
]
where
open Lens-combinators
-- There is in general no equivalence with erased proofs from
-- equivalences with erased proofs to lenses with getters that are
-- equivalences with erased proofs, if the right-to-left direction of
-- the equivalence is required to return the lens's getter plus some
-- proof (assuming univalence).
¬-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalence-get :
@0 Univalence lzero →
¬ ∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ
(∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) →
Is-equivalenceᴱ (Lens.get l))) →
∀ p → _≃ᴱ_.to (_≃ᴱ_.from f p) ≡ Lens.get (proj₁ p)
¬-≃ᴱ-≃ᴱ-Σ-Lens-Is-equivalence-get {a = a} univ =
Stable-¬
[ (∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ
(∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) →
Is-equivalenceᴱ (Lens.get l))) →
∀ p → _≃ᴱ_.to (_≃ᴱ_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ Σ-map (_≃_.surjection ⊚ EEq.≃ᴱ→≃) P.id ⟩
(∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠
(∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) →
Is-equivalenceᴱ (Lens.get l))) →
∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ ⟩□
⊥ □
]
------------------------------------------------------------------------
-- Isomorphisms expressed using lens quasi-inverses
private
module B {a} =
Bi-invertibility.Erased
equality-with-J (Type a) Lens
Lens-combinators.id Lens-combinators._∘_
module BM {a} =
B.More {a = a}
Lens-combinators.left-identity
Lens-combinators.right-identity
Lens-combinators.associativity
-- A form of isomorphism between types, expressed using lenses.
open B public
using ()
renaming (_≅ᴱ_ to _≅ᴱ_; Has-quasi-inverseᴱ to Has-quasi-inverseᴱ)
-- In erased contexts Has-quasi-inverseᴱ (Traditional-lens→Lens l) is
-- equivalent to TC.Has-quasi-inverse l.
@0 Has-quasi-inverseᴱ≃Has-quasi-inverse :
(l : T.Lens A B) →
Has-quasi-inverseᴱ (Traditional-lens→Lens l) ≃ TC.Has-quasi-inverse l
Has-quasi-inverseᴱ≃Has-quasi-inverse l =
(∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id × l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ →
inverse (Eq.≃-≡ Lens≃Traditional-lens)
×-cong
inverse (Eq.≃-≡ Lens≃Traditional-lens)) ⟩□
(∃ λ l⁻¹ → l TC.∘ l⁻¹ ≡ TC.id × l⁻¹ TC.∘ l ≡ TC.id ) □
where
module LC = Lens-combinators
l′ = Traditional-lens→Lens l
-- In erased contexts A ≅ᴱ B is equivalent to A TC.≅ B.
@0 ≅ᴱ≃≅ : (A ≅ᴱ B) ≃ (A TC.≅ B)
≅ᴱ≃≅ {A = A} {B = B} =
(∃ λ (l : Lens A B) → Has-quasi-inverseᴱ l) ↝⟨ Σ-cong-contra (inverse Lens≃Traditional-lens) Has-quasi-inverseᴱ≃Has-quasi-inverse ⟩□
(∃ λ (l : T.Lens A B) → TC.Has-quasi-inverse l) □
-- An equality characterisation lemma for A ≅ B that applies when A is
-- a set.
@0 equality-characterisation-for-sets-≅ᴱ :
let open Lens in
{f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≅ᴱ B} →
Is-set A →
f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂
equality-characterisation-for-sets-≅ᴱ
{f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
f₁ ≡ f₂ ↔⟨ inverse $ Eq.≃-≡ ≅ᴱ≃≅ ⟩
_≃_.to ≅ᴱ≃≅ f₁ ≡ _≃_.to ≅ᴱ≃≅ f₂ ↝⟨ TC.equality-characterisation-for-sets-≅ A-set ⟩□
set l₁₁ ≡ set l₁₂ □
where
open Lens
-- There is a logical equivalence between A ≃ᴱ B and A ≅ᴱ B.
≃ᴱ⇔≅ᴱ : (A ≃ᴱ B) ⇔ (A ≅ᴱ B)
≃ᴱ⇔≅ᴱ {A = A} {B = B} = record
{ to = λ A≃B → ≃ᴱ→lens A≃B
, ≃ᴱ→lens (inverse A≃B)
, [ lemma A≃B
, (≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens A≃B ≡⟨ cong {x = A≃B} {y = inverse $ inverse A≃B}
(λ A≃B′ → ≃ᴱ→lens (inverse A≃B) ∘ ≃ᴱ→lens A≃B′) $
sym $ EEq.to≡to→≡ ext (refl _) ⟩
≃ᴱ→lens (inverse A≃B) ∘
≃ᴱ→lens (inverse $ inverse A≃B) ≡⟨ lemma (inverse A≃B) ⟩∎
id ∎)
]
; from = λ (l₁ , l₂ , [ eq₁ , eq₂ ]) → EEq.↔→≃ᴱ
(get l₁)
(get l₂)
(ext⁻¹ $
getters-equal-if-setters-equal (l₁ ∘ l₂) id
(cong set eq₁))
(ext⁻¹ $
getters-equal-if-setters-equal (l₂ ∘ l₁) id
(cong set eq₂))
}
where
open Lens
open Lens-combinators
@0 lemma :
(C≃D : C ≃ᴱ D) → ≃ᴱ→lens C≃D ∘ ≃ᴱ→lens (inverse C≃D) ≡ id
lemma C≃D = _↔_.from equality-characterisation₂
( ⟨ext⟩ (_≃ᴱ_.right-inverse-of C≃D)
, (⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)
, [ lemma₁
, lemma₂
, lemma₃
]
)
where
@0 lemma₁ : _
lemma₁ = λ d₁ d₂ →
let lemma =
cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂)))) $
ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩
cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂)))
(cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩
cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₂)))
(⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩
cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D)
(cong (λ set → set d₂)
(⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) ≡⟨ cong (cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D)) $ cong-ext _ ⟩
cong (_≃ᴱ_.to C≃D ⊚ _≃ᴱ_.from C≃D)
(_≃ᴱ_.right-inverse-of C≃D _) ≡⟨ sym $ cong-∘ _ _ (_≃ᴱ_.right-inverse-of C≃D _) ⟩
cong (_≃ᴱ_.to C≃D)
(cong (_≃ᴱ_.from C≃D) (_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ cong (cong (_≃ᴱ_.to C≃D)) $ _≃ᴱ_.right-left-lemma C≃D _ ⟩∎
cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _) ∎
in
trans (sym
(trans (cong (λ set → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D (set d₁ d₂)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D))
(cong (λ get → get d₂)
(⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D))))
(trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _))
(_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ cong₂ (λ p q → trans (sym (trans p q))
(trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _))
(_≃ᴱ_.right-inverse-of C≃D _)))
lemma
(cong-ext _) ⟩
trans (sym
(trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _))
(_≃ᴱ_.right-inverse-of C≃D _)))
(trans (cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _))
(_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃ᴱ_.right-inverse-of C≃D _)) ⟩∎
refl _ ∎
@0 lemma₂ : _
lemma₂ = λ d →
let lemma =
cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong (cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))) $
ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩
cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))
(cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩
cong (λ set → set (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))
(⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ≡⟨ cong-ext _ ⟩∎
_≃ᴱ_.right-inverse-of C≃D _ ∎
in
trans (sym
(trans (cong (λ set → set d (_≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d)))
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D))
(cong (λ get → get d)
(⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D))))
(trans
(cong (_≃ᴱ_.to C≃D) (_≃ᴱ_.left-inverse-of C≃D _))
(_≃ᴱ_.left-inverse-of (inverse C≃D) _)) ≡⟨ cong₂ (λ p q → trans (sym p) q)
(cong₂ trans lemma (cong-ext _))
(cong₂ trans
(_≃ᴱ_.left-right-lemma C≃D _)
(EEq.left-inverse-of∘inverse C≃D)) ⟩
trans (sym (trans (_≃ᴱ_.right-inverse-of C≃D _)
(_≃ᴱ_.right-inverse-of C≃D _)))
(trans (_≃ᴱ_.right-inverse-of C≃D _)
(_≃ᴱ_.right-inverse-of C≃D _)) ≡⟨ trans-symˡ (trans _ (_≃ᴱ_.right-inverse-of C≃D _)) ⟩∎
refl _ ∎
@0 lemma₃ : _
lemma₃ = λ d d₁ d₂ →
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)
(trans (refl _)
(trans
(cong (λ _ → _≃ᴱ_.to C≃D (_≃ᴱ_.from C≃D d₂))
(_≃ᴱ_.right-inverse-of (inverse C≃D)
(_≃ᴱ_.from C≃D d₁)))
(cong (_≃ᴱ_.to C≃D) (refl _)))) ≡⟨ cong (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)) $
trans (trans-reflˡ _) $
trans (cong (flip trans _) $ cong-const _) $
trans (trans-reflˡ _) $
cong-refl _ ⟩
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(⟨ext⟩ λ _ → ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)
(refl _) ≡⟨ cong (flip (subst (λ set → set (set d d₁) d₂ ≡ set d d₂)) _) $
ext-const (⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D) ⟩
subst (λ set → set (set d d₁) d₂ ≡ set d d₂)
(cong const $ ⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)
(refl _) ≡⟨ sym $ subst-∘ _ _ _ ⟩
subst (λ set → set d₂ ≡ set d₂)
(⟨ext⟩ $ _≃ᴱ_.right-inverse-of C≃D)
(refl _) ≡⟨ subst-ext _ _ ⟩
subst (λ set → set ≡ set)
(_≃ᴱ_.right-inverse-of C≃D d₂)
(refl _) ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (
trans (refl _) (_≃ᴱ_.right-inverse-of C≃D d₂) ≡⟨ trans-reflˡ _ ⟩
_≃ᴱ_.right-inverse-of C≃D d₂ ≡⟨ sym $ trans-reflʳ _ ⟩
trans (_≃ᴱ_.right-inverse-of C≃D d₂) (refl _) ∎) ⟩
refl _ ∎
-- In erased contexts the left-to-right direction of ≃ᴱ⇔≅ᴱ is a right
-- inverse of the right-to-left direction.
@0 ≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ :
(A≃B : A ≃ᴱ B) → _⇔_.from ≃ᴱ⇔≅ᴱ (_⇔_.to ≃ᴱ⇔≅ᴱ A≃B) ≡ A≃B
≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ _ = EEq.to≡to→≡ ext (refl _)
-- The forward direction of ≃ᴱ⇔≅ᴱ maps identity to an isomorphism for
-- which the first projection is the identity.
≃ᴱ⇔≅ᴱ-id≡id :
let open Lens-combinators in
proj₁ (_⇔_.to ≃ᴱ⇔≅ᴱ F.id) ≡ id {A = A}
≃ᴱ⇔≅ᴱ-id≡id = equal-laws→≡
(λ _ _ → refl _)
(λ a →
_≃ᴱ_.left-inverse-of F.id a ≡⟨ sym $ _≃ᴱ_.right-left-lemma F.id _ ⟩
cong P.id (_≃ᴱ_.right-inverse-of F.id a) ≡⟨⟩
cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎
refl _ ∎)
(λ _ _ _ → refl _)
where
open Lens-combinators
-- If A is a set, then there is an equivalence with erased proofs
-- between A ≃ᴱ B and A ≅ᴱ B.
≃ᴱ≃ᴱ≅ᴱ :
@0 Is-set A →
(A ≃ᴱ B) ≃ᴱ (A ≅ᴱ B)
≃ᴱ≃ᴱ≅ᴱ A-set = EEq.↔→≃ᴱ
(_⇔_.to ≃ᴱ⇔≅ᴱ)
(_⇔_.from ≃ᴱ⇔≅ᴱ)
(λ (l₁ , l₂ , [ eq₁ , eq₂ ]) →
_↔_.from (equality-characterisation-for-sets-≅ᴱ A-set) $
⟨ext⟩ λ a → ⟨ext⟩ λ b →
get l₂ b ≡⟨ sym $ ext⁻¹ (ext⁻¹ (cong set eq₂) _) _ ⟩
set l₁ (set l₁ a b)
(set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ set-set l₁ _ _ _ ⟩
set l₁ a (set l₂ (get l₁ (set l₁ a b)) (get l₂ b)) ≡⟨ cong (λ b′ → set l₁ a (set l₂ b′ (get l₂ b))) $ get-set l₁ _ _ ⟩
set l₁ a (set l₂ b (get l₂ b)) ≡⟨ cong (set l₁ a) $ set-get l₂ _ ⟩∎
set l₁ a b ∎)
≃ᴱ⇔≅ᴱ∘≃ᴱ⇔≅ᴱ
where
open Lens
open Lens-combinators
-- The equivalence maps identity to an isomorphism for which the first
-- projection is the identity.
≃ᴱ≃ᴱ≅ᴱ-id≡id :
let open Lens-combinators in
(@0 A-set : Is-set A) →
proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≅ᴱ A-set) F.id) ≡ id
≃ᴱ≃ᴱ≅ᴱ-id≡id _ = ≃ᴱ⇔≅ᴱ-id≡id
-- The type Has-quasi-inverseᴱ id is not necessarily a proposition
-- (assuming univalence).
Has-quasi-inverseᴱ-id-not-proposition :
@0 Univalence lzero →
let open Lens-combinators in
∃ λ (A : Type a) →
¬ Is-proposition (Has-quasi-inverseᴱ (id {A = A}))
Has-quasi-inverseᴱ-id-not-proposition univ =
_
, Stable-¬
[ Is-proposition (Has-quasi-inverseᴱ Lens-combinators.id) ↝⟨ H-level-cong _ 1 $ Has-quasi-inverseᴱ≃Has-quasi-inverse TC.id ⟩
Is-proposition (TC.Has-quasi-inverse TC.id) ↝⟨ proj₂ $ TC.Has-quasi-inverse-id-not-proposition univ ⟩□
⊥ □
]
-- There is not necessarily a split surjection from
-- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a
-- lens between types in the same universe (assuming univalence).
¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ :
@0 Univalence lzero →
¬ ({A B : Type a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l)
¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ {a = a} univ =
Stable-¬
[ ({A B : Type a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ↝⟨ (λ hyp l →
from-equivalence (Has-quasi-inverseᴱ≃Has-quasi-inverse l) F.∘
hyp (Traditional-lens→Lens l) F.∘
from-equivalence EEq.Is-equivalence≃Is-equivalenceᴱ) ⟩
({A B : Type a}
(l : T.Lens A B) →
Is-equivalence (T.Lens.get l) ↠ TC.Has-quasi-inverse l) ↝⟨ TC.¬Is-equivalence↠Has-quasi-inverse univ ⟩□
⊥ □
]
-- There is not necessarily an equivalence with erased proofs from
-- Is-equivalenceᴱ (Lens.get l) to Has-quasi-inverseᴱ l, if l is a
-- lens between types in the same universe (assuming univalence).
¬Is-equivalenceᴱ≃Has-quasi-inverseᴱ :
@0 Univalence lzero →
¬ ({A B : Type a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ l)
¬Is-equivalenceᴱ≃Has-quasi-inverseᴱ {a = a} univ =
Stable-¬
[ ({A B : Type a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ≃ᴱ Has-quasi-inverseᴱ l) ↝⟨ (λ hyp → _≃_.surjection ⊚ EEq.≃ᴱ→≃ ⊚ hyp) ⟩
({A B : Type a}
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) ↠ Has-quasi-inverseᴱ l) ↝⟨ ¬Is-equivalenceᴱ↠Has-quasi-inverseᴱ univ ⟩□
⊥ □
]
------------------------------------------------------------------------
-- Isomorphisms expressed using bi-invertibility for lenses
-- A form of isomorphism between types, expressed using lenses.
open B public
using ()
renaming (_≊ᴱ_ to _≊ᴱ_;
Has-left-inverseᴱ to Has-left-inverseᴱ;
Has-right-inverseᴱ to Has-right-inverseᴱ;
Is-bi-invertibleᴱ to Is-bi-invertibleᴱ)
open BM public
using ()
renaming (Is-bi-invertibleᴱ-propositional to
Is-bi-invertibleᴱ-propositional)
-- In erased contexts Has-left-inverseᴱ (Traditional-lens→Lens l) is
-- equivalent to TC.Has-left-inverse l.
@0 Has-left-inverseᴱ≃Has-left-inverse :
(l : T.Lens A B) →
Has-left-inverseᴱ (Traditional-lens→Lens l) ≃ TC.Has-left-inverse l
Has-left-inverseᴱ≃Has-left-inverse l =
(∃ λ l⁻¹ → Erased (l⁻¹ LC.∘ l′ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ l⁻¹ → l⁻¹ LC.∘ l′ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse $ Eq.≃-≡ Lens≃Traditional-lens) ⟩□
(∃ λ l⁻¹ → l⁻¹ TC.∘ l ≡ TC.id ) □
where
module LC = Lens-combinators
l′ = Traditional-lens→Lens l
-- In erased contexts Has-right-inverseᴱ (Traditional-lens→Lens l) is
-- equivalent to TC.Has-right-inverse l.
@0 Has-right-inverseᴱ≃Has-right-inverse :
(l : T.Lens A B) →
Has-right-inverseᴱ (Traditional-lens→Lens l) ≃ TC.Has-right-inverse l
Has-right-inverseᴱ≃Has-right-inverse l =
(∃ λ l⁻¹ → Erased (l′ LC.∘ l⁻¹ ≡ LC.id)) ↔⟨ (∃-cong λ _ → erased Erased↔) ⟩
(∃ λ l⁻¹ → l′ LC.∘ l⁻¹ ≡ LC.id ) ↝⟨ (Σ-cong Lens≃Traditional-lens λ _ → inverse $ Eq.≃-≡ Lens≃Traditional-lens) ⟩□
(∃ λ l⁻¹ → l TC.∘ l⁻¹ ≡ TC.id ) □
where
module LC = Lens-combinators
l′ = Traditional-lens→Lens l
-- In erased contexts Is-bi-invertibleᴱ (Traditional-lens→Lens l) is
-- equivalent to TC.Is-bi-invertible l.
@0 Is-bi-invertibleᴱ≃Is-bi-invertible :
(l : T.Lens A B) →
Is-bi-invertibleᴱ (Traditional-lens→Lens l) ≃ TC.Is-bi-invertible l
Is-bi-invertibleᴱ≃Is-bi-invertible l =
Is-bi-invertibleᴱ l′ ↔⟨⟩
Has-left-inverseᴱ l′ × Has-right-inverseᴱ l′ ↝⟨ Has-left-inverseᴱ≃Has-left-inverse l ×-cong
Has-right-inverseᴱ≃Has-right-inverse l ⟩
TC.Has-left-inverse l × TC.Has-right-inverse l ↔⟨⟩
TC.Is-bi-invertible l □
where
l′ = Traditional-lens→Lens l
-- In erased contexts A ≊ᴱ B is equivalent to A TC.≊ B.
@0 ≊ᴱ≃≊ : (A ≊ᴱ B) ≃ (A TC.≊ B)
≊ᴱ≃≊ {A = A} {B = B} =
(∃ λ (l : Lens A B) → Is-bi-invertibleᴱ l) ↝⟨ (inverse $
Σ-cong (inverse Lens≃Traditional-lens) λ l →
inverse $ Is-bi-invertibleᴱ≃Is-bi-invertible l) ⟩□
(∃ λ (l : T.Lens A B) → TC.Is-bi-invertible l) □
-- An equality characterisation lemma for A ≊ᴱ B that applies when A
-- is a set.
@0 equality-characterisation-for-sets-≊ᴱ :
let open Lens in
{f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A ≊ᴱ B} →
Is-set A →
f₁ ≡ f₂ ↔ set l₁₁ ≡ set l₁₂
equality-characterisation-for-sets-≊ᴱ
{f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
f₁ ≡ f₂ ↔⟨ inverse $ Eq.≃-≡ ≊ᴱ≃≊ ⟩
_≃_.to ≊ᴱ≃≊ f₁ ≡ _≃_.to ≊ᴱ≃≊ f₂ ↝⟨ TC.equality-characterisation-for-sets-≊ A-set ⟩□
set l₁₁ ≡ set l₁₂ □
where
open Lens
-- There is a logical equivalence between A ≃ᴱ B and A ≊ᴱ B.
≃ᴱ⇔≊ᴱ : (A ≃ᴱ B) ⇔ (A ≊ᴱ B)
≃ᴱ⇔≊ᴱ = record
{ to = _⇔_.to BM.≅ᴱ⇔≊ᴱ ⊚ _⇔_.to ≃ᴱ⇔≅ᴱ
; from = _⇔_.from ≃ᴱ⇔≅ᴱ ⊚ _⇔_.from BM.≅ᴱ⇔≊ᴱ
}
-- In erased contexts the left-to-right direction of ≃ᴱ⇔≊ᴱ is a right
-- inverse of the right-to-left direction.
@0 ≃ᴱ⇔≊ᴱ∘≃ᴱ⇔≊ᴱ :
(A≃B : A ≃ᴱ B) → _⇔_.from ≃ᴱ⇔≊ᴱ (_⇔_.to ≃ᴱ⇔≊ᴱ A≃B) ≡ A≃B
≃ᴱ⇔≊ᴱ∘≃ᴱ⇔≊ᴱ _ = EEq.to≡to→≡ ext (refl _)
-- The forward direction of ≃ᴱ⇔≊ᴱ maps identity to an isomorphism for
-- which the first projection is the identity.
≃ᴱ⇔≊ᴱ-id≡id :
let open Lens-combinators in
proj₁ (_⇔_.to ≃ᴱ⇔≊ᴱ F.id) ≡ id {A = A}
≃ᴱ⇔≊ᴱ-id≡id = equal-laws→≡
(λ _ _ → refl _)
(λ a →
_≃ᴱ_.left-inverse-of F.id a ≡⟨ sym $ _≃ᴱ_.right-left-lemma F.id _ ⟩
cong P.id (_≃ᴱ_.right-inverse-of F.id a) ≡⟨⟩
cong P.id (refl _) ≡⟨ sym $ cong-id _ ⟩∎
refl _ ∎)
(λ _ _ _ → refl _)
where
open Lens-combinators
-- If A is a set, then there is an equivalence between A ≃ᴱ B and
-- A ≊ᴱ B.
≃ᴱ≃ᴱ≊ᴱ : @0 Is-set A → (A ≃ᴱ B) ≃ᴱ (A ≊ᴱ B)
≃ᴱ≃ᴱ≊ᴱ {A = A} {B = B} A-set =
A ≃ᴱ B ↝⟨ ≃ᴱ≃ᴱ≅ᴱ A-set ⟩
A ≅ᴱ B ↝⟨ inverse $ BM.≊ᴱ≃ᴱ≅ᴱ-domain (lens-preserves-h-level-of-domain 1 A-set) ⟩□
A ≊ᴱ B □
-- The equivalence ≃ᴱ≃ᴱ≊ᴱ maps identity to an isomorphism for which the
-- first projection is the identity.
≃ᴱ≃ᴱ≊ᴱ-id≡id :
let open Lens-combinators in
(@0 A-set : Is-set A) →
proj₁ (_≃ᴱ_.to (≃ᴱ≃ᴱ≊ᴱ A-set) F.id) ≡ id
≃ᴱ≃ᴱ≊ᴱ-id≡id _ = ≃ᴱ⇔≊ᴱ-id≡id
where
open Lens-combinators
-- The right-to-left direction of ≃ᴱ≃ᴱ≊ᴱ maps bi-invertible lenses to
-- their getter functions.
to-from-≃ᴱ≃ᴱ≊ᴱ≡get :
(@0 A-set : Is-set A) (A≊B@(l , _) : A ≊ᴱ B) →
_≃ᴱ_.to (_≃ᴱ_.from (≃ᴱ≃ᴱ≊ᴱ A-set) A≊B) ≡ Lens.get l
to-from-≃ᴱ≃ᴱ≊ᴱ≡get _ _ = refl _
-- The getter function of a bi-invertible lens is an equivalence (with
-- erased proofs).
Is-bi-invertibleᴱ→Is-equivalenceᴱ-get :
(l : Lens A B) →
Is-bi-invertibleᴱ l → Is-equivalenceᴱ (Lens.get l)
Is-bi-invertibleᴱ→Is-equivalenceᴱ-get l is-bi-inv =
_≃ᴱ_.is-equivalence (_⇔_.from ≃ᴱ⇔≊ᴱ (l , is-bi-inv))
-- If the getter function is an equivalence (with erased proofs), then
-- the lens is bi-invertible (with erased proofs).
Is-equivalenceᴱ-get→Is-bi-invertibleᴱ :
(l : Lens A B) →
Is-equivalenceᴱ (Lens.get l) → Is-bi-invertibleᴱ l
Is-equivalenceᴱ-get→Is-bi-invertibleᴱ {A = A} {B = B} l′ is-equiv =
block λ b →
$⟨ l⁻¹′ b , [ l∘l⁻¹≡id b , l⁻¹∘l≡id b ] ⟩
Has-quasi-inverseᴱ l ↝⟨ B.Has-quasi-inverseᴱ→Is-bi-invertibleᴱ l ⟩
Is-bi-invertibleᴱ l ↝⟨ subst (λ l → Is-bi-invertibleᴱ (erased l)) ([]-cong [ getter-equivalence→lens≡ l′ is-equiv ]) ⟩□
Is-bi-invertibleᴱ l′ □
where
open Lens
open Lens-combinators
-- A lens that is equal to l′.
l : Lens A B
l = getter-equivalence→lens l′ is-equiv
A≃B = EEq.⟨ get l , is-equiv ⟩
open _≃ᴱ_ A≃B
-- An inverse of l.
--
-- Note that the set-get and set-set proofs have been "obfuscated".
-- They could have been shorter, but then it might not have been
-- possible to prove l∘l⁻¹≡id and l⁻¹∘l≡id.
l⁻¹ : Lens B A
l⁻¹ = record
{ get = from
; set = λ _ → get l
; get-set = λ _ a →
from (get l a) ≡⟨ left-inverse-of a ⟩∎
a ∎
; set-get = λ b →
get l (from b) ≡⟨ sym $ cong (get l) $ set-get l (from b) ⟩
get l (from (get l (from b))) ≡⟨ right-inverse-of (get l (from b)) ⟩
get l (from b) ≡⟨ right-inverse-of b ⟩∎
b ∎
; set-set = λ b a₁ a₂ →
get l a₂ ≡⟨ sym $ right-inverse-of _ ⟩
get l (from (get l a₂)) ≡⟨ sym $ cong (get l) (set-set l (from b) (get l a₁) (get l a₂)) ⟩
get l (from (get l a₂)) ≡⟨ right-inverse-of _ ⟩∎
get l a₂ ∎
}
-- A blocked variant of l⁻¹.
l⁻¹′ : Block "l⁻¹" → Lens B A
l⁻¹′ ⊠ = l⁻¹
-- The lens l⁻¹ is a right inverse of l.
@0 l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹′ b ≡ id
l∘l⁻¹≡id ⊠ = constant-setter→≡id
( right-inverse-of
, right-inverse-of
, [ (λ b₁ b₂ →
get-set (l ∘ l⁻¹) b₁ b₂ ≡⟨⟩
trans (cong (get l) (get-set l⁻¹ b₁ (from b₂)))
(get-set l (from b₁) b₂) ≡⟨⟩
trans (cong (get l) (left-inverse-of (from b₂)))
(right-inverse-of b₂) ≡⟨ cong (λ eq → trans (cong (get l) eq) (right-inverse-of b₂)) $ sym $
right-left-lemma _ ⟩
trans (cong (get l) (cong from (right-inverse-of b₂)))
(right-inverse-of b₂) ≡⟨ cong (λ eq → trans eq (right-inverse-of b₂)) $
cong-∘ _ _ (right-inverse-of b₂) ⟩
trans (cong (get l ⊚ from) (right-inverse-of b₂))
(right-inverse-of b₂) ≡⟨⟩
trans (cong (get (l ∘ l⁻¹)) (right-inverse-of b₂))
(right-inverse-of b₂) ∎)
, (λ b →
set-get (l ∘ l⁻¹) b ≡⟨⟩
trans (cong (get l) (set-get l (from b)))
(set-get l⁻¹ b) ≡⟨⟩
trans (cong (get l) (set-get l (from b)))
(trans (sym (cong (get l) (set-get l (from b))))
(trans (right-inverse-of (get l (from b)))
(right-inverse-of b))) ≡⟨ trans--[trans-sym] _ _ ⟩
trans (right-inverse-of (get l (from b)))
(right-inverse-of b) ≡⟨⟩
trans (right-inverse-of (get (l ∘ l⁻¹) b))
(right-inverse-of b) ∎)
, (λ b b₁ b₂ →
set-set (l ∘ l⁻¹) b b₁ b₂ ≡⟨⟩
trans (set-set l⁻¹ b (from b₁) (from b₂))
(trans (cong (λ _ → get l (from b₂))
(get-set l⁻¹ b (from b₁)))
(cong (get l) (set-set l (from b) b₁ b₂))) ≡⟨ cong (trans _) $
trans (cong (flip trans _) $ cong-const _) $
trans-reflˡ _ ⟩
trans (set-set l⁻¹ b (from b₁) (from b₂))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨⟩
trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) (get l (from b₁))
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ b′ → trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) b′
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂))) $
right-inverse-of _ ⟩
trans (trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(right-inverse-of _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ cong (λ f → trans (trans (sym (f _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(f _)))
(cong (get l) (set-set l (from b) b₁ b₂))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
right-inverse-of ⟩
trans (trans (sym (ext⁻¹ (⟨ext⟩ right-inverse-of) _))
(trans (sym (cong (get l)
(set-set l (from b) b₁
(get l (from b₂)))))
(ext⁻¹ (⟨ext⟩ right-inverse-of) _)))
(cong (get l) (set-set l (from b) b₁ b₂)) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : ∀ b → f b ≡ f b) →
trans (trans (sym (ext⁻¹ p (f b₂)))
(trans (sym (q (f b₂))) (ext⁻¹ p (f b₂))))
(q b₂) ≡
refl _)
(λ q →
trans (trans (sym (ext⁻¹ (refl P.id) _))
(trans (sym (q _)) (ext⁻¹ (refl P.id) _)))
(q _) ≡⟨ cong (λ eq → trans (trans (sym eq) (trans (sym (q _)) eq))
(q _)) $
ext⁻¹-refl _ ⟩
trans (trans (sym (refl _))
(trans (sym (q _)) (refl _)))
(q _) ≡⟨ cong₂ (λ p r → trans (trans p r) (q _))
sym-refl
(trans-reflʳ _) ⟩
trans (trans (refl _) (sym (q _))) (q _) ≡⟨ cong (λ eq → trans eq (q _)) $ trans-reflˡ (sym (q _)) ⟩
trans (sym (q _)) (q _) ≡⟨ trans-symˡ (q _) ⟩∎
refl _ ∎)
(⟨ext⟩ right-inverse-of)
(cong (get l) ⊚ set-set l (from b) b₁) ⟩
refl _ ∎)
]
)
-- The lens l⁻¹ is a left inverse of l.
@0 l⁻¹∘l≡id : ∀ b → l⁻¹′ b ∘ l ≡ id
l⁻¹∘l≡id ⊠ = constant-setter→≡id
( left-inverse-of
, left-inverse-of
, [ (λ a₁ a₂ →
get-set (l⁻¹ ∘ l) a₁ a₂ ≡⟨⟩
trans (cong from (get-set l a₁ (to a₂)))
(get-set l⁻¹ (get l a₁) a₂) ≡⟨⟩
trans (cong from (right-inverse-of (to a₂)))
(left-inverse-of a₂) ≡⟨ cong (λ eq → trans (cong from eq) (left-inverse-of _)) $ sym $
left-right-lemma _ ⟩
trans (cong from (cong (get l) (left-inverse-of a₂)))
(left-inverse-of a₂) ≡⟨ cong (λ eq → trans eq (left-inverse-of _)) $
cong-∘ _ _ (left-inverse-of _) ⟩
trans (cong (from ⊚ get l) (left-inverse-of a₂))
(left-inverse-of a₂) ≡⟨⟩
trans (cong (get (l⁻¹ ∘ l)) (left-inverse-of a₂))
(left-inverse-of a₂) ∎)
, (λ a →
let lemma₁ =
cong from
(trans (sym (cong (get l)
(set-get l (from (get l a)))))
(trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong-trans _ _ (trans _ (right-inverse-of _)) ⟩
trans (cong from (sym (cong (get l)
(set-get l (from (get l a))))))
(cong from (trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong (λ eq → trans (cong from eq)
(cong from (trans (right-inverse-of _)
(right-inverse-of _)))) $ sym $
cong-sym _ (set-get l (from (get l a))) ⟩
trans (cong from (cong (get l)
(sym (set-get l (from (get l a))))))
(cong from (trans (right-inverse-of _)
(right-inverse-of _))) ≡⟨ cong₂ trans
(cong-∘ _ _ (sym (set-get l (from (get l a)))))
(cong-trans _ _ (right-inverse-of _)) ⟩
trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans (cong from (right-inverse-of _))
(cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p q → trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans p q))
(right-left-lemma _)
(right-left-lemma _) ⟩∎
trans (cong (from ⊚ get l)
(sym (set-get l (from (get l a)))))
(trans (left-inverse-of _)
(left-inverse-of _)) ∎
f = from ⊚ get l
lemma₂ : ∀ _ → _
lemma₂ = λ a →
trans (left-inverse-of (f a))
(left-inverse-of a) ≡⟨ cong (λ g → trans (g (f a)) (g a)) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
left-inverse-of ⟩∎
trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
(ext⁻¹ (⟨ext⟩ left-inverse-of) a) ∎
lemma₃ =
trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ≡⟨ cong₂ trans (ext⁻¹-refl _) (ext⁻¹-refl _) ⟩
trans (refl _) (refl _) ≡⟨ trans-refl-refl ⟩∎
refl _ ∎
in
trans (cong from (set-get l⁻¹ (get l a)))
(set-get l a) ≡⟨⟩
trans (cong from
(trans (sym (cong (get l)
(set-get l (from (get l a)))))
(trans (right-inverse-of _)
(right-inverse-of _))))
(set-get l a) ≡⟨ cong (λ eq → trans eq (set-get l a)) lemma₁ ⟩
trans (trans (cong f (sym (set-get l (f a))))
(trans (left-inverse-of (f (f a)))
(left-inverse-of (f a))))
(set-get l a) ≡⟨ cong (λ eq → trans (trans (cong f (sym (set-get l (f a)))) eq)
(set-get l a)) $
lemma₂ _ ⟩
trans (trans (cong f (sym (set-get l (f a))))
(trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f (f a)))
(ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))))
(set-get l a) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : ∀ a → f a ≡ a) →
trans (trans (cong f (sym (q (f a))))
(trans (ext⁻¹ p (f (f a))) (ext⁻¹ p (f a))))
(q a) ≡
trans (ext⁻¹ p (f a)) (ext⁻¹ p a))
(λ q →
trans (trans (cong P.id (sym (q a)))
(trans (ext⁻¹ (refl P.id) a)
(ext⁻¹ (refl P.id) a)))
(q a) ≡⟨ cong₂ (λ p r → trans (trans p r) (q a))
(sym $ cong-id _)
lemma₃ ⟩
trans (trans (sym (q a)) (refl _)) (q a) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩
trans (sym (q a)) (q a) ≡⟨ trans-symˡ (q a) ⟩
refl _ ≡⟨ sym lemma₃ ⟩∎
trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a) ∎)
(⟨ext⟩ left-inverse-of)
(set-get l) ⟩
trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
(ext⁻¹ (⟨ext⟩ left-inverse-of) a) ≡⟨ sym $ lemma₂ _ ⟩
trans (left-inverse-of (f a))
(left-inverse-of a) ≡⟨⟩
trans (left-inverse-of (get (l⁻¹ ∘ l) a))
(left-inverse-of a) ∎)
, (λ a a₁ a₂ →
let q = set-set l a (get l a₁) (get l a₂)
lemma =
cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l) q))
(right-inverse-of _))) ≡⟨ cong-trans _ _ (trans (sym (cong (get l) q)) (right-inverse-of _)) ⟩
trans (cong from (sym (right-inverse-of _)))
(cong from (trans (sym (cong (get l) q))
(right-inverse-of _))) ≡⟨ cong₂ trans
(cong-sym _ (right-inverse-of _))
(cong-trans _ _ (right-inverse-of _)) ⟩
trans (sym (cong from (right-inverse-of _)))
(trans (cong from (sym (cong (get l) q)))
(cong from (right-inverse-of _))) ≡⟨ cong₂ (λ p r → trans (sym p) (trans (cong from (sym (cong (get l) q))) r))
(right-left-lemma _)
(right-left-lemma _) ⟩
trans (sym (left-inverse-of _))
(trans (cong from (sym (cong (get l) q)))
(left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _))
(trans eq (left-inverse-of _))) $
cong-sym _ (cong (get l) q) ⟩
trans (sym (left-inverse-of _))
(trans (sym (cong from (cong (get l) q)))
(left-inverse-of _)) ≡⟨ cong (λ eq → trans (sym (left-inverse-of _))
(trans (sym eq) (left-inverse-of _))) $
cong-∘ _ _ q ⟩
trans (sym (left-inverse-of _))
(trans (sym (cong (from ⊚ get l) q))
(left-inverse-of _)) ≡⟨ cong (λ g → trans (sym (g _))
(trans (sym (cong (from ⊚ get l) q)) (g _))) $ sym $
_≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext)
left-inverse-of ⟩∎
trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) _))
(trans (sym (cong (from ⊚ get l) q))
(ext⁻¹ (⟨ext⟩ left-inverse-of) _)) ∎
f = from ⊚ get l
in
set-set (l⁻¹ ∘ l) a a₁ a₂ ≡⟨⟩
trans (set-set l a (get l a₁) (get l a₂))
(trans (cong (λ _ → from (get l a₂))
(right-inverse-of (get l a₁)))
(cong from (set-set l⁻¹ (get l a) a₁ a₂))) ≡⟨ cong (trans _) $
trans (cong (flip trans _) $ cong-const _) $
trans-reflˡ _ ⟩
trans (set-set l a (get l a₁) (get l a₂))
(cong from (set-set l⁻¹ (get l a) a₁ a₂)) ≡⟨⟩
trans (set-set l a (get l a₁) (get l a₂))
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l (from (get l a))
(get l a₁) (get l a₂))))
(right-inverse-of _)))) ≡⟨ cong (λ a′ → trans q
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l)
(set-set l a′ (get l a₁) (get l a₂))))
(right-inverse-of _))))) $
left-inverse-of _ ⟩
trans q
(cong from
(trans (sym (right-inverse-of _))
(trans (sym (cong (get l) q))
(right-inverse-of _)))) ≡⟨ cong (trans q) lemma ⟩
trans q
(trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))
(trans (sym (cong f q))
(ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))) ≡⟨ elim₁
(λ {f} (p : f ≡ P.id) →
(q : f a₂ ≡ f a₂) →
trans q
(trans (sym (ext⁻¹ p (f a₂)))
(trans (sym (cong f q))
(ext⁻¹ p (f a₂)))) ≡
refl _)
(λ q →
trans q
(trans (sym (ext⁻¹ (refl P.id) a₂))
(trans (sym (cong P.id q))
(ext⁻¹ (refl P.id) a₂))) ≡⟨ cong (λ eq → trans q (trans (sym eq)
(trans (sym (cong P.id q)) eq))) $
ext⁻¹-refl _ ⟩
trans q (trans (sym (refl _))
(trans (sym (cong P.id q)) (refl _))) ≡⟨ cong₂ (λ p r → trans q (trans p r))
sym-refl
(trans-reflʳ _) ⟩
trans q (trans (refl _) (sym (cong P.id q))) ≡⟨ cong (trans q) $ trans-reflˡ (sym (cong P.id q)) ⟩
trans q (sym (cong P.id q)) ≡⟨ cong (λ eq → trans q (sym eq)) $ sym $ cong-id q ⟩
trans q (sym q) ≡⟨ trans-symʳ q ⟩∎
refl _ ∎)
(⟨ext⟩ left-inverse-of)
q ⟩
refl _ ∎)
]
)
-- There is an equivalence with erased proofs between "l is
-- bi-invertible (with erased proofs) " and "the getter of l is an
-- equivalence (with erased proofs)".
Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get :
(l : Lens A B) →
Is-bi-invertibleᴱ l ≃ᴱ Is-equivalenceᴱ (Lens.get l)
Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get l = EEq.⇔→≃ᴱ
(BM.Is-bi-invertibleᴱ-propositional l)
(EEq.Is-equivalenceᴱ-propositional ext _)
(Is-bi-invertibleᴱ→Is-equivalenceᴱ-get l)
(Is-equivalenceᴱ-get→Is-bi-invertibleᴱ l)
-- There is in general no split surjection from equivalences (with
-- erased proofs) to lenses that are bi-invertible (with erased
-- proofs), if the right-to-left direction of the split surjection is
-- required to map bi-invertible lenses to their getter functions
-- (assuming univalence).
¬≃ᴱ↠≊ᴱ :
@0 Univalence lzero →
¬ ∃ λ (≃ᴱ↠≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) →
(x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) →
_≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ x) ≡ Lens.get l
¬≃ᴱ↠≊ᴱ {a = a} univ =
Stable-¬
[ (∃ λ (≃ᴱ↠≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) →
(x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) →
_≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ x) ≡ Lens.get l) ↝⟨ Σ-map
((∃-cong λ l → _≃_.surjection $ EEq.≃ᴱ→≃ $ Is-bi-invertibleᴱ≃ᴱIs-equivalenceᴱ-get l) F.∘_)
(λ hyp _ → hyp _) ⟩
(∃ λ (f : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠
(∃ λ (l : Lens (↑ a 𝕊¹ᴱ) (↑ a 𝕊¹ᴱ)) →
Is-equivalenceᴱ (Lens.get l))) →
∀ p → _≃ᴱ_.to (_↠_.from f p) ≡ Lens.get (proj₁ p)) ↝⟨ ¬-≃ᴱ-↠-Σ-Lens-Is-equivalenceᴱ-get univ ⟩□
⊥ □
]
-- There is in general no equivalence with erased proofs between
-- equivalences (with erased proofs) and lenses that are bi-invertible
-- (with erased proofs), if the right-to-left direction of the
-- equivalence is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).
¬≃ᴱ≃ᴱ≊ᴱ :
@0 Univalence lzero →
¬ ∃ λ (≃ᴱ≃ᴱ≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) →
(x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) →
_≃ᴱ_.to (_≃ᴱ_.from ≃ᴱ≃ᴱ≊ᴱ x) ≡ Lens.get l
¬≃ᴱ≃ᴱ≊ᴱ {a = a} univ =
Stable-¬
[ (∃ λ (≃ᴱ≃ᴱ≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ≃ᴱ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) →
(x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) →
_≃ᴱ_.to (_≃ᴱ_.from ≃ᴱ≃ᴱ≊ᴱ x) ≡ Lens.get l) ↝⟨ Σ-map (_≃_.surjection ⊚ EEq.≃ᴱ→≃) P.id ⟩
(∃ λ (≃ᴱ↠≊ᴱ : (↑ a 𝕊¹ᴱ ≃ᴱ ↑ a 𝕊¹ᴱ) ↠ (↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ)) →
(x@(l , _) : ↑ a 𝕊¹ᴱ ≊ᴱ ↑ a 𝕊¹ᴱ) →
_≃ᴱ_.to (_↠_.from ≃ᴱ↠≊ᴱ x) ≡ Lens.get l) ↝⟨ ¬≃ᴱ↠≊ᴱ univ ⟩□
⊥ □
]
-- The lemma ≃ᴱΣ∥set⁻¹ᴱ∥ᴱ× does not hold in general if the requirement
-- that A is a set is dropped (assuming univalence).
≄ᴱΣ∥set⁻¹ᴱ∥ᴱ× :
@0 Univalence lzero →
¬ ({A B : Type a} (l : Lens A B) →
A ≃ᴱ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B))
≄ᴱΣ∥set⁻¹ᴱ∥ᴱ× {a = a} univ =
Stable-¬
[ ({A B : Type a} (l : Lens A B) →
A ≃ᴱ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B)) ↝⟨ EEq.≃ᴱ→≃ ⊚_ ⟩
({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥ᴱ) × B)) ↝⟨ ((×-cong₁ λ _ → ∃-cong λ _ → PT.∥∥ᴱ≃∥∥) F.∘_) ⊚_ ⟩
({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ᴱ f ∥) × B)) ↝⟨ ((×-cong₁ λ _ → ∃-cong λ _ → PT.∥∥-cong $ inverse ECP.⁻¹≃⁻¹ᴱ) F.∘_) ⊚_ ⟩
({A B : Type a} (l : Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ Lens.set l ⁻¹ f ∥) × B)) ↝⟨ _⊚ Traditional-lens→Lens ⟩
({A B : Type a} (l : T.Lens A B) →
A ≃ ((∃ λ (f : B → A) → ∥ T.Lens.set l ⁻¹ f ∥) × B)) ↝⟨ TC.≄Σ∥set⁻¹∥× univ ⟩□
⊥ □
]
|
{
"alphanum_fraction": 0.3670442467,
"avg_line_length": 46.8273606371,
"ext": "agda",
"hexsha": "dc4724086c959be7572e860d727b9b61c2336ebf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Traditional/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Traditional/Erased.agda",
"max_line_length": 162,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Traditional/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 54173,
"size": 164645
}
|
{-
This second-order equational theory was created from the following second-order syntax description:
syntax Lens | L
type
S : 0-ary
A : 0-ary
term
get : S -> A
put : S A -> S
theory
(PG) s : S a : A |> get (put (s, a)) = a
(GP) s : S |> put (s, get(s)) = s
(PP) s : S a b : A |> put (put(s, a), b) = put (s, a)
-}
module Lens.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import Lens.Signature
open import Lens.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution L:Syn
open import SOAS.Metatheory.SecondOrder.Equality L:Syn
private
variable
α β γ τ : LT
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ L) α Γ → (𝔐 ▷ L) α Γ → Set where
PG : ⁅ S ⁆ ⁅ A ⁆̣ ▹ ∅ ⊢ get (put 𝔞 𝔟) ≋ₐ 𝔟
GP : ⁅ S ⁆̣ ▹ ∅ ⊢ put 𝔞 (get 𝔞) ≋ₐ 𝔞
PP : ⁅ S ⁆ ⁅ A ⁆ ⁅ A ⁆̣ ▹ ∅ ⊢ put (put 𝔞 𝔟) 𝔠 ≋ₐ put 𝔞 𝔟
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
|
{
"alphanum_fraction": 0.5969062784,
"avg_line_length": 21.98,
"ext": "agda",
"hexsha": "02ca423ec451c0c6853f97b1ebe88254af51a4b4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Lens/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Lens/Equality.agda",
"max_line_length": 99,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Lens/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 482,
"size": 1099
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Algebra.Signature
module Fragment.Algebra.Homomorphism (Σ : Signature) where
open import Fragment.Algebra.Homomorphism.Base Σ public
open import Fragment.Algebra.Homomorphism.Definitions Σ public
open import Fragment.Algebra.Homomorphism.Properties Σ public
open import Fragment.Algebra.Homomorphism.Setoid Σ public
open import Fragment.Algebra.Homomorphism.Equivalence Σ public
|
{
"alphanum_fraction": 0.8252212389,
"avg_line_length": 37.6666666667,
"ext": "agda",
"hexsha": "5f50267ccced34600b2a5575aee71fd0a143bcd4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Homomorphism.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Homomorphism.agda",
"max_line_length": 62,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Homomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 110,
"size": 452
}
|
module sv20.exam1 where
open import Data.Product using (∃-syntax) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function.Base using (_∘_)
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
-- An idiom that makes things slightly more readable (sometimes)
case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x
-- Exam starts from here:
-- 1.
first : ∀ {Object : Set} {P Q : Object → Set}
→ (∃[ x ] (P x ⊎ Q x)) ⇔ (∃[ x ] (P x) ⊎ ∃[ x ] (Q x))
-- We prove each side separately of the bijection separately. If we are able to
-- prove both ways, we will have proved the bijection
first =
record { to = to ; from = from }
where
-- First, we prove that (∃[ x ] (P x ⊎ Q x)) → (∃[ x ] (P x) ⊎ ∃[ x ] (Q x))
to : ∀ {Object : Set} {P Q : Object → Set}
→ (∃[ x ] (P x ⊎ Q x)) → (∃[ x ] (P x) ⊎ ∃[ x ] (Q x))
-- Proof
--to ⟨ x , inj₁ px ⟩ = inj₁ ⟨ x , px ⟩
--to ⟨ x , inj₂ qx ⟩ = inj₂ ⟨ x , qx ⟩
--
-- Proof explained:
to ∃x-px⊎qx =
let
⟨ x , px⊎qx ⟩ = ∃x-px⊎qx -- From ∃[ x ] (P x ⊎ Q x) we find an element x that fullfills (P x ⊎ Q x)
in case px⊎qx of -- P x ⊎ Q x indicates two possible cases, either
λ { (inj₁ px) → inj₁ ⟨ x , px ⟩ -- P x is true, and so ∃[ x ] (P x)
; (inj₂ qx) → inj₂ ⟨ x , qx ⟩ -- or, Q x is true, and so ∃[ x ] (Q x)
}
-- Now, we prove the inverse (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) → (∃[ x ] (P x ⊎ Q x))
from : ∀ {Object : Set} {P Q : Object → Set}
→ (∃[ x ] (P x) ⊎ ∃[ x ] (Q x)) → (∃[ x ] (P x ⊎ Q x))
-- Proof
--from (inj₁ ⟨ x , px ⟩) = ⟨ x , inj₁ px ⟩
--from (inj₂ ⟨ x , qx ⟩) = ⟨ x , inj₂ qx ⟩
--
-- Proof explained:
-- There are two possible properties that get fulfilled, either
from (inj₁ ⟨ x , px ⟩) = ⟨ x , inj₁ px ⟩ -- ∃[ x ] (P x) gets fulfilled
from (inj₂ ⟨ x , qx ⟩) = ⟨ x , inj₂ qx ⟩ -- or, ∃[ x ] (Q x) gets fulfilled
-- 2.
second : ∀ {Object : Set} {P Q : Object → Set} {_R_ : Object → Object → Set}
→ ∃[ x ] (P x)
→ ∃[ x ] (Q x)
→ (∀ x → P x → ∀ y → Q y → x R y)
---------------------------------
→ ∃[ x ] ∃[ y ] (x R y)
--Proof:
--second ⟨ x₁ , px₁ ⟩ ⟨ x₂ , qx₂ ⟩ ∀x→px→∀y→qy→xry = ⟨ x₁ , ⟨ x₂ , ∀x→px→∀y→qy→xry x₁ px₁ x₂ qx₂ ⟩ ⟩
--
--Proof explained:
second ∃x-px ∃x-qx ∀x→px→∀y→qy→xry =
let
⟨ x₁ , px₁ ⟩ = ∃x-px -- If we have a value from ∃[ x ] (P x), we can get an x₁ that fulfills P
⟨ x₂ , qx₂ ⟩ = ∃x-qx -- and there is a value x₂ that fulfills Q
px→∀y→qy→xry = ∀x→px→∀y→qy→xry x₁ -- For all x it is true that (P x → ∀ y → Q y → x R y), including x₁
∀y→qy→xry = px→∀y→qy→xry px₁ -- P is fulfilled by x₁
xry = ∀y→qy→xry x₂ qx₂ -- In a similar way, x₂ is a value that fulfills Qy, so we can instanciate (∀ y → Q y → x₁ R y) into (x₁ R x₂)
in ⟨ x₁ , ⟨ x₂ , xry ⟩ ⟩ -- So, we know there is an element x₁ and an element x₂ for which x₁ R x₂ is true
|
{
"alphanum_fraction": 0.4882075472,
"avg_line_length": 39.5733333333,
"ext": "agda",
"hexsha": "dc97001b86c6b4f57f2db9216b285a9d91c5c66b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/sv20/exam1.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/sv20/exam1.agda",
"max_line_length": 150,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/sv20/exam1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1266,
"size": 2968
}
|
{-# OPTIONS --without-K --safe #-}
-- https://personal.cis.strath.ac.uk/conor.mcbride/pub/DepRep/DepRep.pdf
module Experiment.Outrageous.#02 where
data Zero : Set where
magic : Zero → (X : Set) → X
magic ()
record 𝟏 : Set where
constructor void
data 𝟐 : Set where
tt : 𝟐
ff : 𝟐
If : 𝟐 → Set → Set → Set
If tt T F = T
If ff T F = F
if : (b : 𝟐) → (P : 𝟐 → Set) → P tt → P ff → P b
if tt P t f = t
if ff P t f = f
data ℕ : Set where
ze : ℕ
su : ℕ → ℕ
rec : (n : ℕ) → (P : ℕ → Set) → P ze → ((n : ℕ) → P n → P (su n)) → P n
rec ze P z s = z
rec (su n) P z s = s n (rec n P z s)
record Σ (S : Set) (T : S → Set) : Set where
constructor _,_
field
fst : S
snd : T fst
|
{
"alphanum_fraction": 0.5412445731,
"avg_line_length": 21.59375,
"ext": "agda",
"hexsha": "8cb8a964e7edb1cbf43b7b841822cfede5bb5a3d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Outrageous/#02.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Outrageous/#02.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Outrageous/#02.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 292,
"size": 691
}
|
{-# OPTIONS --without-K --safe #-}
-- Monadic Adjunctions
-- https://ncatlab.org/nlab/show/monadic+adjunction
module Categories.Adjoint.Monadic where
open import Level
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Category
open import Categories.Category.Equivalence
open import Categories.Functor
open import Categories.Monad
open import Categories.Category.Construction.EilenbergMoore
open import Categories.Category.Construction.Properties.EilenbergMoore
private
variable
o ℓ e : Level
𝒞 𝒟 : Category o ℓ e
-- An adjunction is monadic if the adjunction "comes from" the induced monad in some sense.
record IsMonadicAdjunction {L : Functor 𝒞 𝒟} {R : Functor 𝒟 𝒞} (adjoint : L ⊣ R) : Set (levelOfTerm 𝒞 ⊔ levelOfTerm 𝒟) where
private
T : Monad 𝒞
T = adjoint⇒monad adjoint
field
Comparison⁻¹ : Functor (EilenbergMoore T) 𝒟
comparison-equiv : WeakInverse (ComparisonF adjoint) Comparison⁻¹
|
{
"alphanum_fraction": 0.7674180328,
"avg_line_length": 29.5757575758,
"ext": "agda",
"hexsha": "a86a01319a976c46b642c6cdd7b115e23cd960bb",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Monadic.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Monadic.agda",
"max_line_length": 124,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Monadic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 277,
"size": 976
}
|
open import Agda.Builtin.Nat
open import Agda.Builtin.FromNat
open import Agda.Builtin.FromNeg
open import Agda.Builtin.FromString
open import Agda.Builtin.String
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Char
open import Agda.Builtin.Int
instance
NumberNat : Number Nat
Number.Constraint NumberNat _ = ⊤
Number.fromNat NumberNat n = n
StringIsString : IsString String
IsString.Constraint StringIsString _ = ⊤
IsString.fromString StringIsString s = s
ListIsString : IsString (List Char)
IsString.Constraint ListIsString _ = ⊤
IsString.fromString ListIsString s = primStringToList s
NegativeInt : Negative Int
Negative.Constraint NegativeInt _ = ⊤
Negative.fromNeg NegativeInt zero = pos 0
Negative.fromNeg NegativeInt (suc n) = negsuc n
abs : Int → Nat
abs (pos n) = n
abs (negsuc n) = suc n
postulate _+Z_ : Int → Int → Int
append : ∀ {a} {A : Set a} → List A → List A → List A
append [] ys = ys
append (x ∷ xs) ys = x ∷ append xs ys
-- no paren
give1 : Nat
give1 = suc {!4!}
-- paren
give2 : Nat
give2 = suc {!fromNat 4!}
-- no paren
give3 : List Char
give3 = append "foo" {!"bar"!}
-- paren
give4 : List Char
give4 = append "foo" {!fromString "bar"!}
-- no paren
give5 : Nat
give5 = abs {!-4!}
-- paren
give6 : Nat
give6 = abs {!fromNeg 4!}
-- 4 + ?
refine1 : Nat
refine1 = {!_+_ 4!}
-- fromNat 4 + ?
refine2 : Nat
refine2 = {!_+_ (fromNat 4)!}
-- append "foo" ?
refine3 : List Char
refine3 = {!append "foo"!}
-- append (fromString "foo") ?
refine4 : List Char
refine4 = {!append (fromString "foo")!}
-- -4 +Z ?
refine5 : Int
refine5 = {!-4 +Z_!}
-- fromNeg 4 +Z ?
refine6 : Int
refine6 = {!fromNeg 4 +Z_!}
postulate
P : Nat → Int → List Char → Set
-- No fromXs in the goal
goal : P 4 -5 "6"
goal = {!!}
|
{
"alphanum_fraction": 0.6705555556,
"avg_line_length": 19.1489361702,
"ext": "agda",
"hexsha": "5a1bfd20f23aaed289400e121c494d0fa56bdc84",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2565.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2565.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2565.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 616,
"size": 1800
}
|
module _ where
module _ (A : Set) where
postulate
F : Set₁ → Set
{-# POLARITY F ++ #-}
data D : Set where
d : F D Set → D
|
{
"alphanum_fraction": 0.5441176471,
"avg_line_length": 11.3333333333,
"ext": "agda",
"hexsha": "628ce87102ee7290413e8c67bf81c77e5d0b84b8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Polarity-pragma-in-local-module.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Polarity-pragma-in-local-module.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Polarity-pragma-in-local-module.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 49,
"size": 136
}
|
-- {-# OPTIONS -v interaction.give:30 -v 10 #-}
-- {-# OPTIONS -v tc.conv.irr:20 #-}
module GiveInSpiteOfUnsolvedIrr where
postulate
.irrAxiom : ∀ {a}{A : Set a} → .A → A
{-# BUILTIN IRRAXIOM irrAxiom #-}
postulate
_≡_ : {A : Set} → A → A → Set
funExt : ∀ {A : Set}{B : A → Set}{f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
record MC (M : Set) (op : M → M → M) : Set where
field
elem : M
fun : M → M
.match : fun ≡ op elem
unitM : ∀ {M : Set} {op : M → M → M} → MC M op
unitM {M = M} = record
{ elem = {!!}
; fun = λ x → x
; match = {!funExt ?!} -- try give here
}
{-
No variable of type
{M : Set} {.op : M → M → M} → (λ x → x) ≡ .op ?0 was found in
scope.
-}
-- This declaration needs to stay to trigger the error!
compM : ∀ {M : Set} {op : M → M → M} → MC M op → MC M op → MC M op
compM = {!!}
|
{
"alphanum_fraction": 0.4946871311,
"avg_line_length": 22.8918918919,
"ext": "agda",
"hexsha": "2c3c63da6c23397a6fea165d7e3d57db1fbd177b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/GiveInSpiteOfUnsolvedIrr.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/GiveInSpiteOfUnsolvedIrr.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/interaction/GiveInSpiteOfUnsolvedIrr.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 354,
"size": 847
}
|
-- Andreas, 2017-01-12, issue #2386
open import Agda.Primitive
data _≡_ {a b} {A : Set (a ⊔ b)} : (x y : A) → Set where
refl : (x : A) → x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
-- Should be accepted
-- The type of primTrustMe has to match the flavor of EQUALITY
primitive primTrustMe : ∀ {a b}{A : Set _} {x y : A} → x ≡ y
testTM : ∀{A : Set} {a : A} → primTrustMe {x = a} {y = a} ≡ refl _
testTM = refl _
-- Testing rewrite
subst : ∀{ℓ}{A : Set ℓ} {P : A → Set}{a b : A} → _≡_ {a = ℓ} {b = ℓ} a b → P a → P b
subst eq p rewrite eq = p
|
{
"alphanum_fraction": 0.5535055351,
"avg_line_length": 23.5652173913,
"ext": "agda",
"hexsha": "abf6224980cca2e436d1516d488beeb28c880a5c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2386BuiltinEqualityUniverseLub.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2386BuiltinEqualityUniverseLub.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2386BuiltinEqualityUniverseLub.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 225,
"size": 542
}
|
{-# OPTIONS --erased-cubical --safe #-}
module Canon where
open import Data.Fin using (Fin; #_; toℕ)
open import Data.Integer using (ℤ; +_; -[1+_]; _-_)
open import Data.List using (List; _∷_; []; map; concat; _++_; replicate; zip; length; take; drop)
open import Data.Nat using (_*_; ℕ; suc; _+_)
open import Data.Nat.DivMod using (_mod_)
open import Data.Nat.Show using (show)
open import Data.Product using (_,_; uncurry)
open import Data.Sign renaming (+ to s+ ; - to s-)
open import Data.Vec using (fromList; toList; Vec; _∷_; []) renaming (replicate to rep; zip to vzip; map to vmap; concat to vconcat; _++_ to _+v_)
open import Function using (_∘_)
open import Interval
open import Note
open import Pitch
open import MidiEvent
open import Util using (repeat)
open import Transformation
makeImitations : {k : ℕ} → List Note → Vec Opi k → Vec (List Note) k
makeImitations subject [] = []
makeImitations subject (i ∷ is) = map (transposeNoteInterval i) subject ∷ makeImitations subject is
addDelays : {k : ℕ} → Duration → Vec (List Note) k → Vec (List Note) k
addDelays d lines = ads 0 lines where
ads : {k : ℕ} → ℕ → Vec (List Note) k → Vec (List Note) k
ads n [] = []
ads n (notes ∷ lines) = (rest n ∷ notes) ∷ ads (n + d) lines
makeCanon : {k : ℕ} → List Note → ℕ → Duration → Vec Opi k → Vec (List Note) k
makeCanon subject reps d = addDelays d ∘ vmap (repeat reps) ∘ makeImitations subject
makeCanon2 : {k : ℕ} → List Note → Duration → Vec Opi k → Vec (List Note) k
makeCanon2 subject d is =
addDelays d (makeImitations (
repeat 2 subject ++
inversion subject ++
retrograde subject ++
(retrograde ∘ inversion) subject)
is)
|
{
"alphanum_fraction": 0.647967945,
"avg_line_length": 38.8222222222,
"ext": "agda",
"hexsha": "6cc2b460aa1568f2121af1ee3c1ea7f5eecc1f33",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/Canon.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/Canon.agda",
"max_line_length": 153,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/Canon.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 523,
"size": 1747
}
|
{-# OPTIONS --without-K --safe #-}
-- https://ncatlab.org/nlab/show/span
-- The colimit of a functor from this category is a pushout in the target category.
module Categories.Category.Instance.Span where
open import Level
open import Categories.Category
open import Relation.Binary.PropositionalEquality
data SpanObj : Set where
center : SpanObj
left : SpanObj
right : SpanObj
data SpanArr : SpanObj → SpanObj → Set where
span-id : ∀ {o} → SpanArr o o
span-arrˡ : SpanArr center left
span-arrʳ : SpanArr center right
span-compose : ∀ {x y z} → SpanArr y z → SpanArr x y → SpanArr x z
span-compose span-id span-id = span-id
span-compose span-id span-arrˡ = span-arrˡ
span-compose span-id span-arrʳ = span-arrʳ
span-compose span-arrˡ span-id = span-arrˡ
span-compose span-arrʳ span-id = span-arrʳ
Span : Category 0ℓ 0ℓ 0ℓ
Span = record
{ Obj = SpanObj
; _⇒_ = SpanArr
; _≈_ = _≡_
; id = span-id
; _∘_ = span-compose
; assoc = assoc
; sym-assoc = sym assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = λ {x} → identity² {x}
; equiv = isEquivalence
; ∘-resp-≈ = λ { refl refl → refl }
}
where assoc : ∀ {x y z w} {f : SpanArr x y} {g : SpanArr y z} {h : SpanArr z w} →
span-compose (span-compose h g) f ≡
span-compose h (span-compose g f)
assoc {_} {_} {_} {_} {span-id} {span-id} {span-id} = refl
assoc {_} {_} {_} {_} {span-id} {span-id} {span-arrˡ} = refl
assoc {_} {_} {_} {_} {span-id} {span-id} {span-arrʳ} = refl
assoc {_} {_} {_} {_} {span-id} {span-arrˡ} {span-id} = refl
assoc {_} {_} {_} {_} {span-id} {span-arrʳ} {span-id} = refl
assoc {_} {_} {_} {_} {span-arrˡ} {span-id} {span-id} = refl
assoc {_} {_} {_} {_} {span-arrʳ} {span-id} {span-id} = refl
identityˡ : ∀ {x y} {f : SpanArr x y} → span-compose span-id f ≡ f
identityˡ {_} {_} {span-id} = refl
identityˡ {_} {_} {span-arrˡ} = refl
identityˡ {_} {_} {span-arrʳ} = refl
identityʳ : ∀ {x y} {f : SpanArr x y} → span-compose f span-id ≡ f
identityʳ {_} {_} {span-id} = refl
identityʳ {_} {_} {span-arrˡ} = refl
identityʳ {_} {_} {span-arrʳ} = refl
identity² : {x : SpanObj} → span-compose span-id span-id ≡ span-id
identity² = refl
|
{
"alphanum_fraction": 0.5731454621,
"avg_line_length": 36.5606060606,
"ext": "agda",
"hexsha": "76b75683a85dac29f79a2f30aa729be6737d5cd3",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Span.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Span.agda",
"max_line_length": 83,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Span.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 836,
"size": 2413
}
|
module ctxt-types where
open import cedille-types
open import general-util
open import syntax-util
location : Set
location = string × posinfo -- file path and starting position in the file
-- file path and starting / ending position in file
span-location = string × posinfo × posinfo
-- missing locations
missing-location : location
missing-location = ("missing" , "missing")
missing-span-location : span-location
missing-span-location = ("missing" , "missing" , "missing")
{- we will generally keep classifiers of variables in hnf in the ctxt, although
we will not necessarily unfold recursive type definitions. -}
defScope : Set
defScope = 𝔹
pattern localScope = tt
pattern globalScope = ff
pattern concrete-datatype = globalScope
pattern abstract-datatype = localScope
defParams : Set
defParams = maybe params
data ctxt-info : Set where
-- for defining a datatype
-- datatype-def : defParams → (ind reg : kind) → ctrs → ctxt-info
-- for defining a datatype constructor
ctr-def : params → type → (ctrs-length ctr-index ctr-unerased-arrows : ℕ) → ctxt-info
-- for declaring the type that proves a type is a datatype (X/Mu)
-- mu-def : defParams → var → kind → ctxt-info
-- for declaring a variable to have a given type (with no definition)
term-decl : type → ctxt-info
-- for defining a variable to equal a term with a given type
-- maybe term, because datatype X/Mu and X/mu have params, etc... but no def
term-def : defParams → opacity → maybe term → type → ctxt-info
-- for untyped term definitions
term-udef : defParams → opacity → term → ctxt-info
-- for declaring a variable to have a given kind (with no definition)
type-decl : kind → ctxt-info
-- for defining a variable to equal a type with a given kind
type-def : defParams → opacity → maybe type → kind → ctxt-info
-- for defining a variable to equal a kind
kind-def : params → kind → ctxt-info
-- to rename a variable at any level to another
rename-def : var → ctxt-info
-- representing a declaration of a variable with no other information about it
var-decl : ctxt-info
sym-info : Set
sym-info = ctxt-info × location
data-info : Set
data-info = params × kind × kind × ctrs × encoding-defs × encoded-defs
is-term-level : ctxt-info → 𝔹
is-term-level (term-decl _) = tt
is-term-level (term-def _ _ _ _) = tt
is-term-level (term-udef _ _ _) = tt
is-term-level (ctr-def _ _ _ _ _ ) = tt
is-term-level _ = ff
record ctxt : Set where
constructor mk-ctxt
field
-- current module fields
fn : string
mn : string
ps : params
qual : qualif
-- filename → module name × symbols declared in that module,
syms : trie (string × 𝕃 string)
-- module name → filename × params,
mod-map : trie (string × params)
-- file ID's for use in to-string.agda
id-map : trie ℕ
id-current : ℕ
id-list : 𝕍 string id-current
-- symbols → ctxt-info × location
i : trie sym-info
-- concrete/global datatypes
μ : trie data-info
-- abstract/local datatypes
μ' : trie (var × args)
-- Is/D map
Is/μ : trie var
-- encoding defs (needed to generate fmaps for some datatypes, like rose tree)
μ~ : trie (𝕃 (var × tmtp))
-- highlighting datatypes (μ̲ = \Gm \_--)
μᵤ : maybe encoding-defs -- most recent datatype declaration, for use in untyped μ[']
μ̲ : stringset
ctxt-binds-var : ctxt → var → 𝔹
ctxt-binds-var Γ x = trie-contains (ctxt.qual Γ) x || trie-contains (ctxt.i Γ) x
ctxt-var-decl' : location → var → ctxt → ctxt
ctxt-var-decl' loc v Γ =
record Γ {
qual = trie-insert (ctxt.qual Γ) v (v , []);
i = trie-insert (ctxt.i Γ) v (var-decl , loc);
μ = trie-remove (ctxt.μ Γ) v;
μ' = trie-remove (ctxt.μ' Γ) v;
Is/μ = trie-remove (ctxt.Is/μ Γ) v;
μ~ = trie-remove (ctxt.μ~ Γ) v;
μ̲ = trie-remove (ctxt.μ̲ Γ) v
}
ctxt-var-decl = ctxt-var-decl' missing-location
ctxt-var-decl-loc : posinfo → var → ctxt → ctxt
ctxt-var-decl-loc pi v Γ = ctxt-var-decl' (ctxt.fn Γ , pi) v Γ
qualif-var : ctxt → var → var
qualif-var Γ v with trie-lookup (ctxt.qual Γ) v
...| just (v' , _) = v'
...| nothing = v
ctxt-get-current-mod : ctxt → string × string × params × qualif
ctxt-get-current-mod (mk-ctxt fn mn ps qual _ _ _ _ _ _ _ _ _ _ _ _) = fn , mn , ps , qual
|
{
"alphanum_fraction": 0.6650372439,
"avg_line_length": 29.6275862069,
"ext": "agda",
"hexsha": "e54924dccde4592cfa3a031bcf114d4db5585a5f",
"lang": "Agda",
"max_forks_count": 34,
"max_forks_repo_forks_event_max_datetime": "2022-02-20T18:33:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-17T11:51:36.000Z",
"max_forks_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mudathirmahgoub/cedille",
"max_forks_repo_path": "src/ctxt-types.agda",
"max_issues_count": 123,
"max_issues_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_issues_repo_issues_event_max_datetime": "2022-01-12T03:51:28.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-17T10:53:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mudathirmahgoub/cedille",
"max_issues_repo_path": "src/ctxt-types.agda",
"max_line_length": 90,
"max_stars_count": 328,
"max_stars_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mudathirmahgoub/cedille",
"max_stars_repo_path": "src/ctxt-types.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T10:33:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-14T20:06:09.000Z",
"num_tokens": 1218,
"size": 4296
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.