Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2016-02-01, reported on 2014-12-08
module Issue1388 where
indented = Set
not-indented = Set -- This should be a parse error.
|
{
"alphanum_fraction": 0.7062937063,
"avg_line_length": 17.875,
"ext": "agda",
"hexsha": "8a0735798a938ffe693ed2095081571624820ecb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1388.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1388.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1388.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 143
}
|
module Languages.ILL.AgdaInterface where
open import nat
open import Utils.HaskellTypes
open import Utils.HaskellFunctions
open import Utils.Exception
open import Languages.ILL.Intermediate
open import Languages.ILL.Syntax
open import Languages.ILL.TypeSyntax
open import Languages.ILL.TypeCheck
{-# TERMINATING #-}
translate : ITerm → Either Exception Term
translate Triv = right Triv
translate (Var x) = right (FVar x)
translate (TTensor t₁ t₂) =
(translate t₁)
>>=E (λ e₁ → (translate t₂)
>>=E (λ e₂ → right (Tensor e₁ e₂)))
translate (Lam x a t) =
(translate t)
>>=E (λ e → right (Lam x a (close-t 0 x BV x e)))
translate (Let t₁ a PTriv t₂) =
(translate t₁)
>>=E (λ e₁ → (translate t₂)
>>=E (λ e₂ → right (Let e₁ a PTriv e₂)))
translate (Let t₁ a (PTensor (PVar x) (PVar y)) t₂) =
(translate t₁)
>>=E (λ e₁ → (translate t₂)
>>=E (λ e₂ → right (Let e₁ a (PTensor x y) (close-t 0 x LLPV x (close-t 0 y RLPV y e₂)))))
translate (Let _ _ _ _) = error IllformedLetPattern
translate (App t₁ t₂) =
(translate t₁)
>>=E (λ e₁ → (translate t₂)
>>=E (λ e₂ → right (App e₁ e₂)))
translate (Promote ts t) =
tts >>=E
(λ ttts → (translate t) >>=E
(λ tt → right (Promote ttts (foldr aux tt ts)) ))
where
tts = commExpList (map (λ x → commExpTriple (fstMapT translate x)) ts)
aux = (λ (x : Triple ITerm String Type) (v : Term) → close-t 0 (sndT x) PBV (sndT x) v)
translate (Copy t₁ x y t₂) =
(translate t₁) >>=E
(λ tt₁ → (translate t₂) >>=E
(λ tt₂ → right (Copy tt₁ (x , y) (close-t 0 x LCPV x (close-t 0 y RCPV y tt₂)))))
translate (Discard t₁ t₂) =
(translate t₁) >>=E
(λ tt₁ → translate t₂ >>=E
(λ tt₂ → right (Discard tt₁ tt₂)))
translate (Derelict t) =
(translate t) >>=E (λ tt → right (Derelict tt))
{-# TERMINATING #-}
untranslate : Term → ITerm
untranslate Triv = Triv
untranslate (FVar x) = Var x
untranslate (BVar _ x _) = Var x
untranslate (Let t₁ a PTriv t₂) = Let (untranslate t₁) a PTriv (untranslate t₂)
untranslate (Let t₁ a (PTensor xs ys) t₂) = Let (untranslate t₁) a (PTensor (PVar xs) (PVar ys)) (untranslate t₂)
untranslate (Lam x a t) = Lam x a (untranslate t)
untranslate (App t₁ t₂) = App (untranslate t₁) (untranslate t₂)
untranslate (Tensor t₁ t₂) = TTensor (untranslate t₁) (untranslate t₂)
untranslate (Promote ts t) = Promote uts (untranslate t)
where
uts = map (fstMapT untranslate) ts
untranslate (Copy t₁ p t₂) = Copy (untranslate t₁) (fst p) (snd p) (untranslate t₂)
untranslate (Discard t₁ t₂) = Discard (untranslate t₁) (untranslate t₂)
untranslate (Derelict t) = Derelict (untranslate t)
runTypeCheck : ITerm → Either Exception Type
runTypeCheck it = (translate it) >>=E (λ t → typeCheck t)
{-# COMPILED_EXPORT runTypeCheck runTypeCheck #-}
|
{
"alphanum_fraction": 0.6599496222,
"avg_line_length": 37.0533333333,
"ext": "agda",
"hexsha": "2887a814bf73613b50293843d58c8e598510a61f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "heades/Agda-LLS",
"max_forks_repo_path": "Source/ALL/Languages/ILL/AgdaInterface.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "heades/Agda-LLS",
"max_issues_repo_path": "Source/ALL/Languages/ILL/AgdaInterface.agda",
"max_line_length": 113,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "heades/Agda-LLS",
"max_stars_repo_path": "Source/ALL/Languages/ILL/AgdaInterface.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z",
"num_tokens": 961,
"size": 2779
}
|
open import Nat
open import Prelude
open import dynamics-core
open import contexts
open import binders-disjoint-checks
open import exchange
open import lemmas-consistency
open import lemmas-disjointness
open import lemmas-subst-ta
open import type-assignment-unicity
open import weakening
module preservation where
-- if d and d' both result from filling the hole in ε with terms of the
-- same type, they too have the same type.
wt-different-fill : ∀{Δ Γ d ε d1 d2 d' τ τ1} →
d == ε ⟦ d1 ⟧ →
Δ , Γ ⊢ d :: τ →
Δ , Γ ⊢ d1 :: τ1 →
Δ , Γ ⊢ d2 :: τ1 →
d' == ε ⟦ d2 ⟧ →
Δ , Γ ⊢ d' :: τ
wt-different-fill FHOuter D1 D2 D3 FHOuter
with type-assignment-unicity D1 D2
... | refl = D3
wt-different-fill (FHPlus1 eps1) (TAPlus D1 D2) D3 D4 (FHPlus1 eps2) = TAPlus (wt-different-fill eps1 D1 D3 D4 eps2) D2
wt-different-fill (FHPlus2 eps1) (TAPlus D1 D2) D3 D4 (FHPlus2 eps2) = TAPlus D1 (wt-different-fill eps1 D2 D3 D4 eps2)
wt-different-fill (FHAp1 eps) (TAAp D1 D2) D3 D4 (FHAp1 D5) = TAAp (wt-different-fill eps D1 D3 D4 D5) D2
wt-different-fill (FHAp2 eps) (TAAp D1 D2) D3 D4 (FHAp2 D5) = TAAp D1 (wt-different-fill eps D2 D3 D4 D5)
wt-different-fill (FHInl eps1) (TAInl D) D1 D2 (FHInl eps2) = TAInl (wt-different-fill eps1 D D1 D2 eps2)
wt-different-fill (FHInr eps1) (TAInr D) D1 D2 (FHInr eps2) = TAInr (wt-different-fill eps1 D D1 D2 eps2)
wt-different-fill (FHCase eps1) (TACase D x D₁ x₁ D₂) D1 D2 (FHCase eps2) = TACase (wt-different-fill eps1 D D1 D2 eps2) x D₁ x₁ D₂
wt-different-fill (FHPair1 eps1) (TAPair D D₁) D1 D2 (FHPair1 eps2) = TAPair (wt-different-fill eps1 D D1 D2 eps2) D₁
wt-different-fill (FHPair2 eps1) (TAPair D D₁) D1 D2 (FHPair2 eps2) = TAPair D (wt-different-fill eps1 D₁ D1 D2 eps2)
wt-different-fill (FHFst eps1) (TAFst D) D1 D2 (FHFst eps2) = TAFst (wt-different-fill eps1 D D1 D2 eps2)
wt-different-fill (FHSnd eps1) (TASnd D) D1 D2 (FHSnd eps2) = TASnd (wt-different-fill eps1 D D1 D2 eps2)
wt-different-fill (FHNEHole eps) (TANEHole x D1 x₁) D2 D3 (FHNEHole D4) = TANEHole x (wt-different-fill eps D1 D2 D3 D4) x₁
wt-different-fill (FHCast eps) (TACast D1 x) D2 D3 (FHCast D4) = TACast (wt-different-fill eps D1 D2 D3 D4) x
wt-different-fill (FHFailedCast x) (TAFailedCast y x₁ x₂ x₃) D3 D4 (FHFailedCast eps) = TAFailedCast (wt-different-fill x y D3 D4 eps) x₁ x₂ x₃
-- if a well typed term results from filling the hole in ε, then the term
-- that filled the hole is also well typed
wt-filling : ∀{ε Δ Γ d τ d'} →
Δ , Γ ⊢ d :: τ →
d == ε ⟦ d' ⟧ →
Σ[ τ' ∈ htyp ] (Δ , Γ ⊢ d' :: τ')
wt-filling TANum FHOuter = _ , TANum
wt-filling (TAPlus ta ta₁) FHOuter = num , TAPlus ta ta₁
wt-filling (TAPlus ta ta₁) (FHPlus1 eps) = wt-filling ta eps
wt-filling (TAPlus ta ta₁) (FHPlus2 eps) = wt-filling ta₁ eps
wt-filling (TAVar x₁) FHOuter = _ , TAVar x₁
wt-filling (TALam f ta) FHOuter = _ , TALam f ta
wt-filling (TAAp ta ta₁) FHOuter = _ , TAAp ta ta₁
wt-filling (TAAp ta ta₁) (FHAp1 eps) = wt-filling ta eps
wt-filling (TAAp ta ta₁) (FHAp2 eps) = wt-filling ta₁ eps
wt-filling (TAInl ta) FHOuter = _ , TAInl ta
wt-filling (TAInl ta) (FHInl eps) = wt-filling ta eps
wt-filling (TAInr ta) FHOuter = _ , TAInr ta
wt-filling (TAInr ta) (FHInr eps) = wt-filling ta eps
wt-filling (TACase ta x ta₁ x₁ ta₂) FHOuter = _ , TACase ta x ta₁ x₁ ta₂
wt-filling (TACase ta x ta₁ x₁ ta₂) (FHCase eps) = wt-filling ta eps
wt-filling (TAPair ta ta₁) FHOuter = _ , TAPair ta ta₁
wt-filling (TAPair ta ta₁) (FHPair1 eps) = wt-filling ta eps
wt-filling (TAPair ta ta₁) (FHPair2 eps) = wt-filling ta₁ eps
wt-filling (TAFst ta) FHOuter = _ , TAFst ta
wt-filling (TAFst ta) (FHFst eps) = wt-filling ta eps
wt-filling (TASnd ta) FHOuter = _ , TASnd ta
wt-filling (TASnd ta) (FHSnd eps) = wt-filling ta eps
wt-filling (TAEHole x x₁) FHOuter = _ , TAEHole x x₁
wt-filling (TANEHole x ta x₁) FHOuter = _ , TANEHole x ta x₁
wt-filling (TANEHole x ta x₁) (FHNEHole eps) = wt-filling ta eps
wt-filling (TACast ta x) FHOuter = _ , TACast ta x
wt-filling (TACast ta x) (FHCast eps) = wt-filling ta eps
wt-filling (TAFailedCast x y z w) FHOuter = _ , TAFailedCast x y z w
wt-filling (TAFailedCast x x₁ x₂ x₃) (FHFailedCast y) = wt-filling x y
-- instruction transitions preserve type
preserve-trans : ∀{Δ Γ d τ d'} →
binders-unique d →
Δ , Γ ⊢ d :: τ →
d →> d' →
Δ , Γ ⊢ d' :: τ
preserve-trans bd TANum ()
preserve-trans bd (TAPlus ta TANum) (ITPlus x) = TANum
preserve-trans bd (TAVar x₁) ()
preserve-trans bd (TALam _ ta) ()
preserve-trans (BUAp (BULam bd x₁) bd₁ (BDLam x₂ x₃)) (TAAp (TALam apt ta) ta₁) ITLam = lem-subst apt x₂ bd₁ ta ta₁
preserve-trans bd (TAAp (TACast ta TCRefl) ta₁) ITApCast = TACast (TAAp ta (TACast ta₁ TCRefl)) TCRefl
preserve-trans bd (TAAp (TACast ta (TCArr x x₁)) ta₁) ITApCast = TACast (TAAp ta (TACast ta₁ (~sym x))) x₁
preserve-trans bd (TAEHole x x₁) ()
preserve-trans bd (TANEHole x ta x₁) ()
preserve-trans bd (TACast ta x) (ITCastID) = ta
preserve-trans bd (TACast (TACast ta x) x₁) (ITCastSucceed x₂) = ta
preserve-trans bd (TACast ta x) (ITGround (MGArr x₁)) = TACast (TACast ta (TCArr TCHole1 TCHole1)) TCHole1
preserve-trans bd (TACast ta TCHole2) (ITExpand (MGArr x₁)) = TACast (TACast ta TCHole2) (TCArr TCHole2 TCHole2)
preserve-trans bd (TACast (TACast ta x) x₁) (ITCastFail w y z) = TAFailedCast ta w y z
preserve-trans bd (TAFailedCast x y z q) ()
preserve-trans bd (TAInl ta) ()
preserve-trans bd (TAInr ta) ()
preserve-trans (BUCase (BUInl bd) bd₁ bd₂ (BDInl x₂) x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) (TACase (TAInl ta) x ta₁ x₁ ta₂) ITCaseInl = lem-subst x (binders-disjoint-sym x₂) bd ta₁ ta
preserve-trans (BUCase (BUInr bd) bd₁ bd₂ (BDInr x₂) (BDInr x₃) x₄ x₅ x₆ x₇ x₈ x₉ x₁₀) (TACase (TAInr ta) x ta₁ x₁ ta₂) ITCaseInr = lem-subst x₁ (binders-disjoint-sym x₃) bd ta₂ ta
preserve-trans (BUCase (BUCast bd) bd₁ bd₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ x₁₀ x₁₁) (TACase {Γ = Γ} (TACast ta x₂) x ta₁ x₁ ta₂) ITCaseCast
with ~sum x₂
... | τ1~τ2 , τ3~τ4 = TACase ta x (lem-subst-cast-ta {Γ = Γ} x bd₁ τ1~τ2 ta₁) x₁ (lem-subst-cast-ta {Γ = Γ} x₁ bd₂ τ3~τ4 ta₂)
preserve-trans bd (TAPair ta ta₁) ()
preserve-trans bd (TAFst (TAPair ta ta₁)) ITFstPair = ta
preserve-trans bd (TAFst (TACast ta x)) ITFstCast
with ~prod x
... | τ1~τ2 , τ3~τ4 = TACast (TAFst ta) τ1~τ2
preserve-trans bd (TASnd (TAPair ta ta₁)) ITSndPair = ta₁
preserve-trans bd (TASnd (TACast ta x)) ITSndCast
with ~prod x
... | τ1~τ2 , τ3~τ4 = TACast (TASnd ta) τ3~τ4
preserve-trans bd (TACast ta TCRefl) (ITExpand ())
preserve-trans bd (TACast ta TCHole1) (ITGround (MGSum x₁)) = TACast (TACast ta (TCSum TCHole1 TCHole1)) TCHole1
preserve-trans bd (TACast ta TCHole1) (ITExpand ())
preserve-trans bd (TACast ta TCHole2) (ITExpand (MGSum x₁)) = TACast (TACast ta TCHole2) (TCSum TCHole2 TCHole2)
preserve-trans bd (TACast ta TCHole1) (ITGround (MGProd x₁)) = TACast (TACast ta (TCProd TCHole1 TCHole1)) TCHole1
preserve-trans bd (TACast ta TCHole2) (ITExpand (MGProd x)) = TACast (TACast ta TCHole2) (TCProd TCHole2 TCHole2)
lem-bd-ε1 : ∀{d ε d0} → d == ε ⟦ d0 ⟧ →
binders-unique d →
binders-unique d0
lem-bd-ε1 FHOuter bd = bd
lem-bd-ε1 (FHPlus1 eps) (BUPlus bd bd₁ x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHPlus2 eps) (BUPlus bd bd₁ x) = lem-bd-ε1 eps bd₁
lem-bd-ε1 (FHAp1 eps) (BUAp bd bd₁ x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHAp2 eps) (BUAp bd bd₁ x) = lem-bd-ε1 eps bd₁
lem-bd-ε1 (FHInl eps) (BUInl bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHInr eps) (BUInr bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHCase eps) (BUCase bd bd₁ bd₂ x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHPair1 eps) (BUPair bd bd₁ x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHPair2 eps) (BUPair bd bd₁ x) = lem-bd-ε1 eps bd₁
lem-bd-ε1 (FHFst eps) (BUFst bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHSnd eps) (BUSnd bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHNEHole eps) (BUNEHole bd x) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHCast eps) (BUCast bd) = lem-bd-ε1 eps bd
lem-bd-ε1 (FHFailedCast eps) (BUFailedCast bd) = lem-bd-ε1 eps bd
-- this is the main preservation theorem, gluing together the above
preservation : {Δ : hctx} {d d' : ihexp} {τ : htyp} {Γ : tctx} →
binders-unique d →
Δ , Γ ⊢ d :: τ →
d ↦ d' →
Δ , Γ ⊢ d' :: τ
preservation bd D (Step x x₁ x₂)
with wt-filling D x
... | (_ , wt) = wt-different-fill x D wt (preserve-trans (lem-bd-ε1 x bd) wt x₁) x₂
-- note that the exact statement of preservation in the paper, where Γ is
-- empty indicating that the terms are closed, is an immediate corrolary
-- of the slightly more general statement above.
preservation' : {Δ : hctx} {d d' : ihexp} {τ : htyp} →
binders-unique d →
Δ , ∅ ⊢ d :: τ →
d ↦ d' →
Δ , ∅ ⊢ d' :: τ
preservation' = preservation
|
{
"alphanum_fraction": 0.6428493747,
"avg_line_length": 56.4110429448,
"ext": "agda",
"hexsha": "f45f612a80da2a42e7660c32eda60b380fb7672b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "preservation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "preservation.agda",
"max_line_length": 182,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "preservation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3790,
"size": 9195
}
|
------------------------------------------------------------------------------
-- The relation of divisibility on partial natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.Divisibility.NotBy0 where
open import FOTC.Base
open import FOTC.Data.Nat
infix 4 _∣_
------------------------------------------------------------------------------
-- The relation of divisibility (the symbol is '\mid' not '|')
--
-- (See documentation in FOTC.Data.Nat.Divisibility.By0)
--
-- In our definition 0∤0, which is used to prove properties of the gcd
-- as it is in GHC ≤ 7.0.4, where gcd 0 0 = undefined (see
-- http://hackage.haskell.org/trac/ghc/ticket/3304).
-- Note that @k@ should be a total natural number.
_∣_ : D → D → Set
m ∣ n = (m ≢ zero) ∧ (∃[ k ] N k ∧ n ≡ k * m)
{-# ATP definition _∣_ #-}
|
{
"alphanum_fraction": 0.4830590513,
"avg_line_length": 34.4333333333,
"ext": "agda",
"hexsha": "1ddd0d61d0e0cbda35f7aed838ce4f4cdb4759a9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/NotBy0.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/NotBy0.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/Divisibility/NotBy0.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 247,
"size": 1033
}
|
module Relation.Ternary.Separation.Monad where
open import Level
open import Data.Product
open import Function using (_∘_; case_of_)
open import Relation.Unary
open import Relation.Unary.PredicateTransformer hiding (_⊔_)
open import Relation.Binary.PropositionalEquality
open import Relation.Ternary.Separation
open import Relation.Ternary.Separation.Morphisms
module Monads
{a b} {A : Set a} {B : Set b} {{r}} {u}
{{as : IsUnitalSep {C = A} r u}}
{{rb : RawSep B}}
{{jm : Morphism A B}}
{{bs : IsUnitalSep rb (Morphism.j jm u)}}
where
open Morphism jm
RawMonad : ∀ {i} (I : Set i) → (ℓ : Level) → Set _
RawMonad I ℓ = (i j : I) → PT A B ℓ ℓ
{- strong indexed monads on predicates over PRSAs, relative to the functor induced by the PRSA morphism j -}
record Monad {i} (I : Set i) ℓ (M : RawMonad I ℓ) : Set (a ⊔ b ⊔ suc ℓ ⊔ i) where
field
return : ∀ {P i₁} → ∀[ P ⇒ⱼ M i₁ i₁ P ]
bind : ∀ {P i₁ i₂ i₃ Q} → ∀[ (P ─✴ⱼ M i₂ i₃ Q) ⇒ (M i₁ i₂ P ─✴ M i₁ i₃ Q) ]
_=<<_ : ∀ {P Q i₁ i₂ i₃} → ∀[ P ⇒ⱼ M i₂ i₃ Q ] → ∀[ M i₁ i₂ P ⇒ M i₁ i₃ Q ]
f =<< mp = app (bind (wand λ where px σ → case ⊎-id⁻ˡ σ of λ where refl → f px)) mp ⊎-idˡ
_>>=_ : ∀ {Φ} {P Q i₁ i₂ i₃} → M i₁ i₂ P Φ → ∀[ P ⇒ⱼ M i₂ i₃ Q ] → M i₁ i₃ Q Φ
mp >>= f = f =<< mp
mapM′ : ∀ {P Q i₁ i₂} → ∀[ (P ─✴ Q) ⇒ⱼ (M i₁ i₂ P ─✴ M i₁ i₂ Q) ]
mapM′ f = bind (wand λ where
px σ →
case j-⊎⁻ σ of λ where
(_ , refl , σ') → return (app f px σ'))
mapM : ∀ {Φ} {P Q i₁ i₂} → M i₁ i₂ P Φ → ∀[ P ⇒ Q ] → M i₁ i₂ Q Φ
mapM mp f = mp >>= (return ∘ f)
open Monad ⦃...⦄ public
-- having the internal bind is enough to get strength
module _ {i} {I : Set i} {i₁ i₂} {P} {M} {{ _ : Monad I a M }} where
str : ∀ {Q : Pred A a} → M i₁ i₂ P Φ₁ → Φ₁ ⊎ j Φ₂ ≣ Φ → Q Φ₂ → M i₁ i₂ (P ✴ Q) Φ
str mp σ qx = app (bind (wand λ where
px σ' → case j-⊎⁻ σ' of λ where
(_ , refl , σ'') → return (px ×⟨ ⊎-comm σ'' ⟩ qx))
) mp (⊎-comm σ)
typed-str : ∀ {Φ₁ Φ₂ Φ} (Q) → M i₁ i₂ P Φ₁ → Φ₁ ⊎ j Φ₂ ≣ Φ → Q Φ₂ → M i₁ i₂ (P ✴ Q) Φ
typed-str Q mp σ qx = str {Q = Q} mp σ qx
syntax str mp σ qx = mp &⟨ σ ⟩ qx
syntax typed-str Q mp σ qx = mp &⟨ Q ∥ σ ⟩ qx
_&_ : ∀ {Q} → M i₁ i₂ P ε → ∀[ Q ⇒ⱼ M i₁ i₂ (P ✴ Q) ]
mp & q = mp &⟨ ⊎-idˡ ⟩ q
|
{
"alphanum_fraction": 0.5259067358,
"avg_line_length": 35.6307692308,
"ext": "agda",
"hexsha": "7d438700cb8642538ba91f70c230736f61b79efc",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Monad.agda",
"max_line_length": 110,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Monad.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 1035,
"size": 2316
}
|
{-# OPTIONS --cumulativity #-}
open import Agda.Builtin.Equality
mutual
_X : (Set → Set) → Set₁ → Set
_X f x = _
test : (f : Set₁ → Set) (x : Set₁) → _X f x ≡ f x
test f x = refl
Set' : Set
Set' = _X (λ X → X) Set
|
{
"alphanum_fraction": 0.5462555066,
"avg_line_length": 15.1333333333,
"ext": "agda",
"hexsha": "9327d17019ea90a981bdf60b0a74ff85657cc973",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4401.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4401.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4401.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 227
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Unit
open import lib.types.Nat
open import lib.types.TLevel
open import lib.types.Pointed
open import lib.types.Sigma
open import lib.NType2
open import lib.PathGroupoid
open import nicolai.pseudotruncations.Preliminary-definitions
open import nicolai.pseudotruncations.Liblemmas
module nicolai.pseudotruncations.SeqColim where
Sequence : ∀ {i} → Type (lsucc i)
Sequence {i} = Σ (ℕ → Type i)
(λ A → (n : ℕ) → A n → A (S n))
module _ {i} where
private
data #SeqCo-aux (C : Sequence {i}) : Type i where
#ins : (n : ℕ) → (fst C n) → #SeqCo-aux C
data #SeqCo (C : Sequence {i}) : Type i where
#trick-aux : #SeqCo-aux C → (Unit → Unit) → #SeqCo C
SeqCo : (C : Sequence {i}) → Type i
SeqCo = #SeqCo
ins : {C : Sequence {i}} → (n : ℕ) → (fst C n) → SeqCo C
ins {C} n a = #trick-aux (#ins n a) _
postulate
glue : {C : Sequence {i}} → (n : ℕ) → (a : fst C n)
→ (ins {C} n a) == (ins (S n) (snd C n a))
module SeqCoInduction {C : Sequence {i}} {j} {P : SeqCo C → Type j}
(Ins : (n : ℕ) → (a : fst C n) → P (ins n a))
(Glue : (n : ℕ) → (a : fst C n)
→ (Ins n a) == (Ins (S n) (snd C n a)) [ P ↓ (glue n a) ])
where
f : Π (SeqCo C) P
f = f-aux phantom where
f-aux : Phantom Glue → Π (SeqCo C) P
f-aux phantom (#trick-aux (#ins n a) _) = Ins n a
postulate
pathβ : (n : ℕ) → (a : fst C n) → apd f (glue n a) == (Glue n a)
open SeqCoInduction public renaming (f to SeqCo-ind ; pathβ to SeqCo-ind-pathβ)
{- we now have the induction principle [SeqCo-ind] with judgmental computation
on points and 'homotopy' computation [SeqCo-ind-pathβ] on paths.
-}
module SeqCoRec {i j} {C : Sequence {i}} {B : Type j}
(Ins : (n : ℕ) → (fst C n) → B)
(Glue : (n : ℕ) → (a : fst C n)
→ (Ins n a) == (Ins (S n) (snd C n a)))
where
private
module M = SeqCoInduction {C = C} {P = λ _ → B} Ins (λ n a → ↓-cst-in (Glue n a))
f : SeqCo C → B
f = M.f
pathβ : (n : ℕ) → (a : fst C n) → ap f (glue n a) == (Glue n a)
pathβ n a = apd=cst-in {f = f} (M.pathβ n a)
open SeqCoRec public renaming (f to SeqCo-rec ; pathβ to SeqCo-rec-pathβ)
{- we now further have the recursion principle [SeqCo-rec],
which of course is just a special case of [SeqCo-ind]
-}
{- remove the first segment of a sequence -}
removeFst : ∀ {i} → Sequence {i} → Sequence {i}
removeFst (A , f) = (λ n → A (S n)) , (λ n → f (S n))
{- removing the first segment does not change the colimit -}
module ignoreFst {i} (C : Sequence {i}) where
A = fst C
f = snd C
SC = SeqCo C
C' = removeFst C
A' = fst C'
f' = snd C'
SC' = SeqCo C'
k-ins : (n : ℕ) → A n → SC'
k-ins O a = ins O (f O a)
k-ins (S n) a = ins n a
k-glue : (n : ℕ) (a : A n) → k-ins n a == k-ins (S n) (f n a)
k-glue O a = idp
k-glue (S n) a = glue n a
-- the first map
k : SC → SC'
k = SeqCo-rec {C = C} {B = SC'} k-ins k-glue
m-ins : (n : ℕ) → A' n → SC
m-ins n a' = ins (S n) a'
m-glue : (n : ℕ) (a' : A' n) → m-ins n a' == m-ins (S n) (f' n a')
m-glue n a' = glue (S n) a'
-- the second map
m : SC' → SC
m = SeqCo-rec {C = C'} {B = SC} m-ins m-glue
-- aux
km-glue-comp : (n : ℕ) (a' : A' n) → ap (k ∘ m) (glue n a') == glue n a'
km-glue-comp n a' =
ap (k ∘ m) (glue n a')
=⟨ ap-∘ _ _ _ ⟩
ap k (ap m (glue n a'))
=⟨ ap (λ p → ap k p) (SeqCo-rec-pathβ m-ins m-glue _ _) ⟩
ap k (glue (S n) a')
=⟨ SeqCo-rec-pathβ k-ins k-glue _ _ ⟩
glue n a'
∎
-- one direction, preparation
km-ins : (n : ℕ) → (a' : A' n) → k (m (ins n a')) == ins n a'
km-ins n a' = idp
km-glue : (n : ℕ) → (a' : A' n) → (km-ins n a') == (km-ins (S n) (f' n a')) [(λ x' → k (m x') == x') ↓ (glue n a')]
km-glue n a' = from-transp (λ x' → k (m x') == x') (glue n a')
(transport (λ x' → k (m x') == x') (glue n a') (km-ins n a')
=⟨ trans-ap {A = SC'} {B = SC'} (k ∘ m) (idf SC') (glue n a') (km-ins n a') ⟩
! (ap (k ∘ m) (glue n a')) ∙ ap (idf SC') (glue n a')
=⟨ ap (λ p → (! (ap (k ∘ m) (glue n a'))) ∙ p) (ap-idf _) ⟩
! (ap (k ∘ m) (glue n a')) ∙ (glue n a')
=⟨ ap (λ p → ! p ∙ (glue n a')) (km-glue-comp n a') ⟩
! (glue n a') ∙ (glue n a')
=⟨ !-inv-l (glue n a') ⟩
km-ins (S n) (f' n a')
∎ )
-- one direction
km : (x' : SC') → k (m x') == x'
km = SeqCo-ind {P = λ x' → k (m x') == x'} km-ins km-glue
-- other direction, preparation
mk-ins : (n : ℕ) → (a : A n) → m (k (ins n a)) == ins n a
mk-ins O a = ! (glue 0 a)
mk-ins (S n) a = idp
-- auxiliary calculation
mk-glue-comp : (n : ℕ) → (a : A n) → mk-ins n a ∙ glue n a == ap (m ∘ k) (glue n a)
mk-glue-comp O a =
mk-ins O a ∙ glue O a
=⟨ !-inv-l (glue O a) ⟩
idp
=⟨ idp ⟩
ap m (idp {a = ins O (f O a)})
=⟨ ap (λ p → ap m p) (! (SeqCo-rec-pathβ k-ins k-glue O a)) ⟩
ap m (ap k (glue O a))
=⟨ ! (ap-∘ m k _) ⟩
ap (m ∘ k) (glue O a)
∎
mk-glue-comp (S n) a =
mk-ins (S n) a ∙ glue (S n) a
=⟨ idp ⟩
glue (S n) a
=⟨ ! (SeqCo-rec-pathβ m-ins m-glue n a) ⟩
ap m (glue n a)
=⟨ ap (λ p → ap m p) (! (SeqCo-rec-pathβ k-ins k-glue (S n) a)) ⟩
ap m (ap k (glue (S n) a))
=⟨ ! (ap-∘ m k _) ⟩
ap (m ∘ k) (glue (S n) a)
∎
mk-glue : (n : ℕ) → (a : A n) → (mk-ins n a) == (mk-ins (S n) (f n a)) [(λ x → m (k x) == x) ↓ (glue n a)]
mk-glue n a = from-transp (λ x → m (k x) == x) (glue n a)
(transport (λ x → m (k x) == x) (glue n a) (mk-ins n a)
=⟨ trans-ap (m ∘ k) (idf _) (glue n a) (mk-ins n a) ⟩
! (ap (m ∘ k) (glue n a)) ∙ mk-ins n a ∙ ap (idf SC) (glue n a)
=⟨ ap (λ p → ! (ap (m ∘ k) (glue n a)) ∙ (mk-ins n a) ∙ p) (ap-idf (glue n a)) ⟩
! (ap (m ∘ k) (glue n a)) ∙ mk-ins n a ∙ (glue n a)
=⟨ ap (λ p → (! (ap (m ∘ k) (glue n a))) ∙ p) (mk-glue-comp n a) ⟩
! (ap (m ∘ k) (glue n a)) ∙ ap (m ∘ k) (glue n a)
=⟨ !-inv-l (ap (m ∘ k) (glue n a)) ⟩
idp
=⟨ idp ⟩
mk-ins (S n) (f n a)
∎)
-- other direction
mk : (x : SC) → m (k x) == x
mk = SeqCo-ind {P = λ x → m (k x) == x} mk-ins mk-glue
remove : SC ≃ SC'
remove = equiv k m km mk
{- summarized -}
ignore-fst : ∀ {i} → (C : Sequence {i}) → (SeqCo C) ≃ (SeqCo (removeFst C))
ignore-fst C = ignoreFst.remove C
{- Now, we do this n times instead of once ...-}
removeInit : ∀ {i} → (C : Sequence {i}) → (n : ℕ) → Sequence {i}
removeInit C O = C
removeInit C (S n) = removeInit (removeFst C) n
ignore-init-aux : ∀ {i} → (C C' : Sequence {i}) → (SeqCo C) ≃ (SeqCo C') → (n : ℕ) → (SeqCo C) ≃ (SeqCo (removeInit C' n))
ignore-init-aux C C' e O = e
ignore-init-aux C C' e (S n) =
ignore-init-aux C (removeFst C') (ignore-fst C' ∘e e) n
{- Result: the sequential colimit of a sequence stays the same if we remove
an initial finite segment of the sequence.
-}
ignore-init : ∀ {i} → (C : Sequence {i}) → (n : ℕ) → (SeqCo C) ≃ (SeqCo (removeInit C n))
ignore-init C = ignore-init-aux C C (ide _)
-- TODO do we need this?
{- if we have a sequence and a point of the first type,
we get a point of the type after removing some initial segment
-}
new-initial : ∀ {i} (C : Sequence {i}) (n : ℕ) → (fst C n) → fst (removeInit C n) O
new-initial C O a₀ = a₀
new-initial C (S n) a₀ = new-initial (removeFst C) n a₀
module _ {i} (C : Sequence {i}) (a₀ : fst C O) where
{- nearly the same as above:
lift the 'starting point' a₀ to any later type -}
lift-point : (n : ℕ) → fst C n
lift-point O = a₀
lift-point (S n) = snd C n (lift-point n)
{- this is more special than in the text, as we only consider (0,n), not (k,n) -}
{- In the colimit, the lifted point is equal to the 'starting point' -}
lift-point-= : (n : ℕ) → ins {C = C} O a₀ == ins n (lift-point n)
lift-point-= O = idp
lift-point-= (S n) = (lift-point-= n) ∙ glue n _
{- Finally, an important definition: We say that a sequence is weakly constant
if each map is weakly constant. -}
wconst-chain : ∀ {i} → Sequence {i} → Type i
wconst-chain (A , f) = (n : ℕ) → wconst (f n)
|
{
"alphanum_fraction": 0.4889867841,
"avg_line_length": 33.0498084291,
"ext": "agda",
"hexsha": "47e20dbd8c8980538d50a03743e393493e49a60f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/pseudotruncations/SeqColim.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/pseudotruncations/SeqColim.agda",
"max_line_length": 122,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/pseudotruncations/SeqColim.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 3378,
"size": 8626
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Lemmas
open import LibraBFT.Prelude
open import LibraBFT.Base.Encode
open import LibraBFT.Base.ByteString
-- This module contains a model of cryptographic signatures on
-- certain data structures, and creation and verification
-- thereof. These data structures, defined by the WithVerSig
-- type, can be optionally signed, and if they are signed, the
-- signature covers a ByteString derived from the data structure,
-- enabling support for signature that cover only (functions of)
-- specific parts of the data structure. The module also
-- contains some properties we have found useful in other
-- contexts, though they are not yet used in this repo.
module LibraBFT.Base.PKCS where
postulate -- valid assumption
signature-size : ℕ
Signature : Set
Signature = Σ ByteString (λ s → length s ≡ signature-size)
postulate -- valid assumptions
PK : Set
SK : Set
IsKeyPair : PK → SK → Set
_≟PK_ : (pk1 pk2 : PK) → Dec (pk1 ≡ pk2)
instance
enc-PK : Encoder PK
enc-SigMB : Encoder (Maybe Signature)
sign-raw : ByteString → SK → Signature
verify : ByteString → Signature → PK → Bool
-- We assume no "signature collisions", as represented by verify-pk-inj
verify-pk-inj : ∀{bs sig pk pk'}
→ verify bs sig pk ≡ true
→ verify bs sig pk' ≡ true
→ pk ≡ pk'
verify-bs-inj : ∀{bs bs' sig pk}
→ verify bs sig pk ≡ true
→ verify bs' sig pk ≡ true
→ bs ≡ bs'
verify-sign : ∀{bs pk sk}
→ IsKeyPair pk sk
→ verify bs (sign-raw bs sk) pk ≡ true
verify-fail : ∀{bs pk sk}
→ ¬ IsKeyPair pk sk
→ verify bs (sign-raw bs sk) pk ≡ false
-- We consider a PK to be (permanently) either honest or not,
-- respresented by the following postulate. This is relevant
-- in reasoning about possible behaviours of a modeled system.
-- Specifically, the secret key corresponding to an honest PK
-- is assumed not to be leaked, ensuring that cheaters cannot
-- forge new signatures for honest PKs. Furthermore, if a peer
-- is assigned we use possession
-- of an honest PK in a given epoch to modelWe will postulate that, among
-- the PKs chosen for a particular epoch, the number of them
-- that are dishonest is at most the number of faults to be
-- tolerated for that epoch. This definition is /meta/: the
-- information about which PKs are (dis)honest should never be
-- used by the implementation -- it is only for modeling and
-- proofs.
Meta-Dishonest-PK : PK → Set
Meta-DishonestPK? : (pk : PK) → Dec (Meta-Dishonest-PK pk)
verify-pi : ∀{bs sig pk}
→ (v1 : verify bs sig pk ≡ true)
→ (v2 : verify bs sig pk ≡ true)
→ v1 ≡ v2
verify-pi {bs} {sig} {pk} _ _
with verify bs sig pk
verify-pi {bs} {sig} {pk} refl refl | .true = refl
Meta-Honest-PK : PK → Set
Meta-Honest-PK = ¬_ ∘ Meta-Dishonest-PK
-- A datatype C might that might carry values with
-- signatures should be an instance of 'WithSig' below.
record WithSig (C : Set) : Set₁ where
field
-- A decidable predicate indicates whether values have
-- been signed
Signed : C → Set
Signed-pi : ∀ (c : C)
→ (is1 : Signed c)
→ (is2 : Signed c)
→ is1 ≡ is2
isSigned? : (c : C) → Dec (Signed c)
-- Signed values must have a signature
signature : (c : C)(hasSig : Signed c) → Signature
-- All values must be /encoded/ into a ByteString that
-- is supposed to be verified against a signature.
signableFields : C → ByteString
open WithSig {{...}} public
sign : {C : Set} ⦃ ws : WithSig C ⦄ → C → SK → Signature
sign c = sign-raw (signableFields c)
Signature≡ : {C : Set} ⦃ ws : WithSig C ⦄ → C → Signature → Set
Signature≡ c sig = Σ (Signed c) (λ s → signature c s ≡ sig)
-- A value of a datatype C can have its signature
-- verified; A value of type WithVerSig c is a proof of that.
-- Hence; the set (Σ C WithVerSig) is the set of values of
-- type C with verified signatures.
record WithVerSig {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) : Set where
constructor mkWithVerSig
field
isSigned : Signed c
verified : verify (signableFields c) (signature c isSigned) pk
≡ true
open WithVerSig public
ver-signature : ∀{C pk}⦃ ws : WithSig C ⦄{c : C} → WithVerSig pk c → Signature
ver-signature {c = c} wvs = signature c (isSigned wvs)
verCast : {C : Set} ⦃ ws : WithSig C ⦄ {c : C} {is1 is2 : Signed c} {pk1 pk2 : PK}
→ verify (signableFields c) (signature c is1) pk1 ≡ true
→ pk1 ≡ pk2
→ is1 ≡ is2
→ verify (signableFields c) (signature c is2) pk2 ≡ true
verCast prf refl refl = prf
wvsCast : {C : Set} ⦃ ws : WithSig C ⦄ {c : C} {pk1 pk2 : PK}
→ WithVerSig pk1 c
→ pk2 ≡ pk1
→ WithVerSig pk2 c
wvsCast {c = c} wvs refl = wvs
withVerSig-≡ : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C}
→ {wvs1 : WithVerSig pk c}
→ {wvs2 : WithVerSig pk c}
→ isSigned wvs1 ≡ isSigned wvs2
→ wvs1 ≡ wvs2
withVerSig-≡ {wvs1 = wvs1} {wvs2 = wvs2} refl
with verified wvs2 | inspect verified wvs2 | verCast (verified wvs1) refl refl
...| vwvs2 | [ R ] | vwvs1 rewrite verify-pi vwvs1 vwvs2 | sym R = refl
withVerSig-pi : {C : Set} {pk : PK} {c : C} ⦃ ws : WithSig C ⦄
→ (wvs1 : WithVerSig pk c)
→ (wvs2 : WithVerSig pk c)
→ wvs2 ≡ wvs1
withVerSig-pi {C} {pk} {c} ⦃ ws ⦄ wvs2 wvs1
with isSigned? c
...| no ¬Signed = ⊥-elim (¬Signed (isSigned wvs1))
...| yes sc = withVerSig-≡ {wvs1 = wvs1} {wvs2 = wvs2} (Signed-pi c (isSigned wvs1) (isSigned wvs2))
data SigCheckResult {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) : Set where
notSigned : ¬ Signed c → SigCheckResult pk c
checkFailed : (sc : Signed c) → verify (signableFields c) (signature c sc) pk ≡ false → SigCheckResult pk c
sigVerified : WithVerSig pk c → SigCheckResult pk c
checkFailed≢sigVerified : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C}
{wvs : WithVerSig ⦃ ws ⦄ pk c}
{sc : Signed c} {v : verify (signableFields c) (signature c sc) pk ≡ false}
→ checkFailed sc v ≡ sigVerified wvs → ⊥
checkFailed≢sigVerified ()
data SigCheckOutcome : Set where
notSigned : SigCheckOutcome
checkFailed : SigCheckOutcome
sigVerified : SigCheckOutcome
data SigCheckFailed : Set where
notSigned : SigCheckFailed
checkFailed : SigCheckFailed
check-signature : {C : Set} ⦃ ws : WithSig C ⦄ → (pk : PK) → (c : C) → SigCheckResult pk c
check-signature pk c with isSigned? c
...| no ns = notSigned ns
...| yes sc with verify (signableFields c) (signature c sc) pk
| inspect (verify (signableFields c) (signature c sc)) pk
...| false | [ nv ] = checkFailed sc nv
...| true | [ v ] = sigVerified (record { isSigned = sc
; verified = v })
sigCheckOutcomeFor : {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C) → SigCheckOutcome
sigCheckOutcomeFor pk c with check-signature pk c
...| notSigned _ = notSigned
...| checkFailed _ _ = checkFailed
...| sigVerified _ = sigVerified
sigVerifiedVerSigCS : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C}
→ sigCheckOutcomeFor pk c ≡ sigVerified
→ ∃[ wvs ] (check-signature ⦃ ws ⦄ pk c ≡ sigVerified wvs)
sigVerifiedVerSigCS {pk = pk} {c = c} prf
with check-signature pk c | inspect
(check-signature pk) c
...| sigVerified verSig | [ R ] rewrite R = verSig , refl
sigVerifiedVerSig : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C}
→ sigCheckOutcomeFor pk c ≡ sigVerified
→ WithVerSig pk c
sigVerifiedVerSig = proj₁ ∘ sigVerifiedVerSigCS
sigVerifiedSCO : {C : Set} ⦃ ws : WithSig C ⦄ {pk : PK} {c : C}
→ (wvs : WithVerSig pk c)
→ sigCheckOutcomeFor pk c ≡ sigVerified
sigVerifiedSCO {pk = pk} {c = c} wvs
with check-signature pk c
...| notSigned ns = ⊥-elim (ns (isSigned wvs))
...| checkFailed xx xxs rewrite Signed-pi c xx (isSigned wvs) = ⊥-elim (false≢true (trans (sym xxs) (verified wvs)))
...| sigVerified wvs' = refl
failedSigCheckOutcome : {C : Set} ⦃ ws : WithSig C ⦄ (pk : PK) (c : C)
→ sigCheckOutcomeFor pk c ≢ sigVerified
→ SigCheckFailed
failedSigCheckOutcome pk c prf with sigCheckOutcomeFor pk c
...| notSigned = notSigned
...| checkFailed = checkFailed
...| sigVerified = ⊥-elim (prf refl)
|
{
"alphanum_fraction": 0.6059536935,
"avg_line_length": 39.9559471366,
"ext": "agda",
"hexsha": "ffec4d27f580f89dd3cb616017f70bf993d8e0e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Base/PKCS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Base/PKCS.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Base/PKCS.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2796,
"size": 9070
}
|
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Identity where
-- Stdlib imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; subst; sym)
open import Level using (Level; _⊔_)
open import Function.Base using (flip)
open import Data.Product using (_×_; _,_; ∃; ∃-syntax; proj₁; proj₂)
open import Data.Sum using (inj₁; inj₂)
open import Relation.Unary using (Pred)
open import Relation.Binary using (Rel)
open import Relation.Binary using (Symmetric; Transitive; IsStrictTotalOrder)
-- Local imports
open import Dodo.Binary.Equality
open import Dodo.Binary.Composition
open import Dodo.Binary.Intersection
open import Dodo.Binary.Union
open import Dodo.Unary.Equality
open import Dodo.Unary.Intersection
open import Dodo.Unary.Union
-- # Definitions
-- | Identity relation over some set
--
-- Iff `P x` holds then `⦗ P ⦘ x x` holds.
⦗_⦘ : ∀ {a ℓ : Level} {A : Set a}
→ Pred A ℓ
-------------
→ Rel A (a ⊔ ℓ)
⦗ p ⦘ x y = x ≡ y × p x
-- # Properties
module _ {a ℓ : Level} {A : Set a} {p : Pred A ℓ} where
⦗⦘-sym : Symmetric ⦗ p ⦘
⦗⦘-sym (refl , px) = (refl , px)
⦗⦘-trans : Transitive ⦗ p ⦘
⦗⦘-trans (refl , pi) (refl , _) = (refl , pi)
⦗⦘-flip : ⦗ p ⦘ ⇔₂ flip ⦗ p ⦘
⦗⦘-flip = ⇔: (λ{_ _ → ⦗⦘-sym}) (λ{_ _ → ⦗⦘-sym})
-- # Operations
module _ {a ℓ : Level} {A : Set a} {p : Pred A ℓ} where
⦗⦘-combine-⨾ : ⦗ p ⦘ ⨾ ⦗ p ⦘ ⇔₂ ⦗ p ⦘
⦗⦘-combine-⨾ = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : ⦗ p ⦘ ⨾ ⦗ p ⦘ ⊆₂' ⦗ p ⦘
⊆-proof _ _ ((refl , Px) ⨾[ x ]⨾ (refl , _)) = (refl , Px)
⊇-proof : ⦗ p ⦘ ⊆₂' ⦗ p ⦘ ⨾ ⦗ p ⦘
⊇-proof x _ (refl , Px) = (refl , Px) ⨾[ _ ]⨾ (refl , Px)
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {p : Pred A ℓ₁} {q : Pred A ℓ₂} where
⦗⦘-lift-⊆₂ : p ⊆₁ q → ⦗ p ⦘ ⊆₂ ⦗ q ⦘
⦗⦘-lift-⊆₂ (⊆: p⊆q) = ⊆: lemma
where
lemma : ⦗ p ⦘ ⊆₂' ⦗ q ⦘
lemma x .x (refl , px) = (refl , p⊆q x px)
⦗⦘-unlift-⊆₂ : ⦗ p ⦘ ⊆₂ ⦗ q ⦘ → p ⊆₁ q
⦗⦘-unlift-⊆₂ (⊆: ⦗p⦘⊆⦗q⦘) = ⊆: lemma
where
lemma : p ⊆₁' q
lemma x px = proj₂ (⦗p⦘⊆⦗q⦘ x x (refl , px))
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {p : Pred A ℓ₁} {q : Pred A ℓ₂} where
⦗⦘-lift : p ⇔₁ q → ⦗ p ⦘ ⇔₂ ⦗ q ⦘
⦗⦘-lift = ⇔₂-compose-⇔₁ ⦗⦘-lift-⊆₂ ⦗⦘-lift-⊆₂
⦗⦘-unlift : ⦗ p ⦘ ⇔₂ ⦗ q ⦘ → p ⇔₁ q
⦗⦘-unlift = ⇔₁-compose-⇔₂ ⦗⦘-unlift-⊆₂ ⦗⦘-unlift-⊆₂
⦗⦘-dist-∪ : ⦗ p ∪₁ q ⦘ ⇔₂ ⦗ p ⦘ ∪₂ ⦗ q ⦘
⦗⦘-dist-∪ = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : ⦗ p ∪₁ q ⦘ ⊆₂' ⦗ p ⦘ ∪₂ ⦗ q ⦘
⊆-proof _ _ (refl , inj₁ px) = inj₁ (refl , px)
⊆-proof _ _ (refl , inj₂ qx) = inj₂ (refl , qx)
⊇-proof : ⦗ p ⦘ ∪₂ ⦗ q ⦘ ⊆₂' ⦗ p ∪₁ q ⦘
⊇-proof _ _ (inj₁ (refl , px)) = (refl , inj₁ px)
⊇-proof _ _ (inj₂ (refl , qx)) = (refl , inj₂ qx)
⦗⦘-dist-∩ : ⦗ p ∩₁ q ⦘ ⇔₂ ⦗ p ⦘ ∩₂ ⦗ q ⦘
⦗⦘-dist-∩ = ⇔: ⊆-proof ⊇-proof
where
⊆-proof : ⦗ p ∩₁ q ⦘ ⊆₂' ⦗ p ⦘ ∩₂ ⦗ q ⦘
⊆-proof x .x (refl , Px , Qx) = (refl , Px) , (refl , Qx)
⊇-proof : ⦗ p ⦘ ∩₂ ⦗ q ⦘ ⊆₂' ⦗ p ∩₁ q ⦘
⊇-proof x .x ((refl , Px) , (_ , Qx)) = refl , (Px , Qx)
|
{
"alphanum_fraction": 0.5098827471,
"avg_line_length": 28.4285714286,
"ext": "agda",
"hexsha": "5bf925fd6f49baa3aaa7ef7821f89cd811489b6a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Identity.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Identity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1675,
"size": 2985
}
|
primitive
primLevelZero : _
|
{
"alphanum_fraction": 0.7666666667,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "2b29df98848bbb11d3ce5b4a5cd0394759e4b864",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3318-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3318-1.agda",
"max_line_length": 19,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3318-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 30
}
|
module Text.Printf where
open import Prelude hiding (parseNat)
open import Builtin.Float
private
data Padding : Set where
noPad : Padding
lPad rPad : Nat → Padding
record Flags : Set where
field
padding : Padding
padChar : Char
alternate : Bool
precision : Maybe Nat
defaultFlags : Flags
Flags.padding defaultFlags = noPad
Flags.padChar defaultFlags = ' '
Flags.alternate defaultFlags = false
Flags.precision defaultFlags = nothing
data Format : Set where
natArg : Flags → Format
strArg : Flags → Format
ustrArg : Flags → Format
floatArg : Flags → Format
charArg : Format
hexArg : Bool → Flags → Format
litString : String → Format
badFormat : String → Format
data BadFormat (s : String) : Set where
private
BadFormat′ : String → Set
BadFormat′ "" = ⊥
BadFormat′ s = BadFormat s
private
consLit : String → List Format → List Format
consLit s (litString s′ ∷ fmt) = litString (s & s′) ∷ fmt
consLit s fmt = litString s ∷ fmt
private
parseFormat : List Char → List Format
parseFormatWithFlags : Flags → List Char → List Format
parseNat′ : (Nat → Flags) → Nat → List Char → List Format
parseNat′ flags n [] = parseFormatWithFlags (flags n) []
parseNat′ flags n (c ∷ s) =
if isDigit c then parseNat′ flags (n * 10 + charToNat c - charToNat '0') s
else parseFormatWithFlags (flags n) (c ∷ s)
parseNat : (Nat → Flags) → List Char → List Format
parseNat p s = parseNat′ p 0 s
parsePadding : Flags → List Char → List Format
parsePadding f [] = parseFormatWithFlags f []
parsePadding f ('-' ∷ c ∷ s) =
if isDigit c then parseNat (λ n → record f { padding = rPad n }) (c ∷ s)
else badFormat (packString ('-' ∷ c ∷ [])) ∷ parseFormat s
parsePadding f ('0' ∷ s) = parsePadding (record f { padChar = '0' }) s
parsePadding f ('.' ∷ c ∷ s) =
if isDigit c then parseNat (λ n → record f { precision = just n }) (c ∷ s)
else badFormat (packString ('.' ∷ c ∷ [])) ∷ parseFormat s
parsePadding f (c ∷ s) =
if isDigit c then parseNat (λ n → record f { padding = lPad n }) (c ∷ s)
else parseFormatWithFlags f (c ∷ s)
parseFlags : Flags → List Char → List Format
parseFlags f ('#' ∷ s) = parseFlags (record f { alternate = true }) s
parseFlags f s = parsePadding f s
parseFormatWithFlags f [] = badFormat "" ∷ []
parseFormatWithFlags f ('d' ∷ s) = natArg f ∷ parseFormat s
parseFormatWithFlags f ('x' ∷ s) = hexArg false f ∷ parseFormat s
parseFormatWithFlags f ('X' ∷ s) = hexArg true f ∷ parseFormat s
parseFormatWithFlags f ('c' ∷ s) = charArg ∷ parseFormat s
parseFormatWithFlags f ('s' ∷ s) = strArg f ∷ parseFormat s
parseFormatWithFlags f ('S' ∷ s) = ustrArg f ∷ parseFormat s
parseFormatWithFlags f ('f' ∷ s) = floatArg f ∷ parseFormat s
parseFormatWithFlags f ('%' ∷ s) = consLit "%" $ parseFormat s
parseFormatWithFlags f ( c ∷ s) = badFormat (packString ('%' ∷ c ∷ [])) ∷ parseFormat s
parseFormat [] = []
parseFormat ('%' ∷ fmt) = parseFlags defaultFlags fmt
parseFormat (c ∷ fmt) = consLit (packString [ c ]) $ parseFormat fmt
private
pad : (String → String → String) → Char → Nat → String → String
pad _+_ c n s =
case n - length (unpackString s) of
λ { 0 → s ; d → packString (replicate d c) + s}
padLeft padRight : Char → Nat → String → String
padLeft = pad _&_
padRight = pad (flip _&_)
hexDigit : Char → Nat → String
hexDigit a n = if n <? 10 then packString [ natToChar (n + charToNat '0') ]
else packString [ natToChar (n - 10 + charToNat a) ]
{-# TERMINATING #-}
showHex′ : Char → Nat → String
showHex′ _ 0 = ""
showHex′ a n = showHex′ a (n div 16) & hexDigit a (n mod 16)
add0x : Flags → String → String
add0x flags s = if Flags.alternate flags then "0x" & s else s
pad0 : Flags → String → String
pad0 flags s =
let c = Flags.padChar flags in
ifYes c == ' ' then s else
case Flags.padding flags of
λ { noPad → s ; (lPad n) → padLeft c (n - 2) s ; (rPad _) → s }
showHex : Flags → Bool → Nat → String
showHex f _ 0 = add0x f $ pad0 f $ "0"
showHex f u n = add0x f $ pad0 f $ showHex′ (if u then 'A' else 'a') n
showFrac : Nat → Float → String
showFrac 0 _ = ""
showFrac 1 x = show (round (10 * x))
showFrac (suc p) x = show n & showFrac p (x′ - intToFloat n)
where x′ = 10 * x
n = floor x′
showPosFloat : Flags → Float → String
showPosFloat f x =
case Flags.precision f of λ
{ nothing → show x
; (just 0) → show (floor x)
; (just p) → show (floor x) & "." & showFrac p (x - intToFloat (floor x))
}
showFloat : Flags → Float → String
showFloat f x with x <? 0.0
... | true = "-" & showPosFloat f (negate x)
... | false = showPosFloat f x
withPad : Flags → String → ShowS
withPad flags s =
let c = Flags.padChar flags in
case Flags.padding flags of
λ { noPad → showString s
; (lPad n) → showString (padLeft c n s)
; (rPad n) → showString (padRight c n s)
}
private
Printf′ : List Format → Set
Printf′ [] = String
Printf′ (natArg _ ∷ fmt) = Nat → Printf′ fmt
Printf′ (hexArg _ _ ∷ fmt) = Nat → Printf′ fmt
Printf′ (strArg _ ∷ fmt) = String → Printf′ fmt
Printf′ (ustrArg _ ∷ fmt) = List Char → Printf′ fmt
Printf′ (charArg ∷ fmt) = Char → Printf′ fmt
Printf′ (floatArg _ ∷ fmt) = Float → Printf′ fmt
Printf′ (litString _ ∷ fmt) = Printf′ fmt
Printf′ (badFormat e ∷ fmt) = BadFormat′ e → Printf′ fmt
printf′ : (fmt : List Format) → ShowS → Printf′ fmt
printf′ [] acc = acc ""
printf′ (natArg p ∷ fmt) acc n = printf′ fmt (acc ∘ withPad p (show n))
printf′ (hexArg u p ∷ fmt) acc n = printf′ fmt (acc ∘ withPad p (showHex p u n))
printf′ (strArg p ∷ fmt) acc s = printf′ fmt (acc ∘ withPad p s)
printf′ (ustrArg p ∷ fmt) acc s = printf′ fmt (acc ∘ withPad p (packString s))
printf′ (floatArg p ∷ fmt) acc x = printf′ fmt (acc ∘ withPad p (showFloat p x))
printf′ (charArg ∷ fmt) acc c = printf′ fmt (acc ∘ showString (packString [ c ]))
printf′ (litString s ∷ fmt) acc = printf′ fmt (acc ∘ showString s)
printf′ (badFormat _ ∷ fmt) acc _ = printf′ fmt acc
Printf : String → Set
Printf = Printf′ ∘ parseFormat ∘ unpackString
printf : (fmt : String) → Printf fmt
printf fmt = printf′ (parseFormat $ unpackString fmt) id
|
{
"alphanum_fraction": 0.609432799,
"avg_line_length": 35.6483516484,
"ext": "agda",
"hexsha": "d9cc0b1d9af5b0cc971ff76581119ae776b18fdf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Text/Printf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Text/Printf.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Text/Printf.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2137,
"size": 6488
}
|
------------------------------------------------------------------------------
-- Arithmetic properties (using induction on the FOTC natural numbers type)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Usually our proofs use pattern matching instead of the induction
-- principle associated with the FOTC natural numbers. The following
-- examples show some proofs using it.
module FOTC.Data.Nat.PropertiesByInductionI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Data.Nat
open import FOTC.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
-- Congruence properties
+-leftCong : ∀ {a b c} → a ≡ b → a + c ≡ b + c
+-leftCong refl = refl
+-rightCong : ∀ {a b c} → b ≡ c → a + b ≡ a + c
+-rightCong refl = refl
------------------------------------------------------------------------------
N→0∨S : ∀ {n} → N n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ N n')
N→0∨S = N-ind A A0 is
where
A : D → Set
A i = i ≡ zero ∨ (∃[ i' ] i ≡ succ₁ i' ∧ N i')
A0 : A zero
A0 = inj₁ refl
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = case prf₁ prf₂ Ai
where
prf₁ : i ≡ zero → succ₁ i ≡ zero ∨ (∃[ i' ] succ₁ i ≡ succ₁ i' ∧ N i')
prf₁ h' = inj₂ (i , refl , (subst N (sym h') nzero))
prf₂ : ∃[ i' ] i ≡ succ₁ i' ∧ N i' →
succ₁ i ≡ zero ∨ (∃[ i' ] succ₁ i ≡ succ₁ i' ∧ N i')
prf₂ (i' , prf , Ni') = inj₂ (i , refl , subst N (sym prf) (nsucc Ni'))
Sx≢x : ∀ {n} → N n → succ₁ n ≢ n
Sx≢x = N-ind A A0 is
where
A : D → Set
A i = succ₁ i ≢ i
A0 : A zero
A0 = S≢0
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = →-trans succInjective Ai
+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity n = +-0x n
+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity = N-ind A A0 is
where
A : D → Set
A i = i + zero ≡ i
A0 : A zero
A0 = +-leftIdentity zero
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = trans (+-Sx i zero) (succCong Ai)
pred-N : ∀ {n} → N n → N (pred₁ n)
pred-N {n} Nn = case h₁ h₂ (N→0∨S Nn)
where
h₁ : n ≡ zero → N (pred₁ n)
h₁ n≡0 = subst N (sym (trans (predCong n≡0) pred-0)) nzero
h₂ : ∃[ n' ] n ≡ succ₁ n' ∧ N n' → N (pred₁ n)
h₂ (n' , prf , Nn') = subst N (sym (trans (predCong prf) (pred-S n'))) Nn'
+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {n = n} Nm Nn = N-ind A A0 is Nm
where
A : D → Set
A i = N (i + n)
A0 : A zero
A0 = subst N (sym (+-leftIdentity n)) Nn
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = subst N (sym (+-Sx i n)) (nsucc Ai)
∸-N : ∀ {m n} → N m → N n → N (m ∸ n)
∸-N {m} Nm Nn = N-ind A A0 is Nn
where
A : D → Set
A i = N (m ∸ i)
A0 : A zero
A0 = subst N (sym (∸-x0 m)) Nm
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = subst N (sym (∸-xS m i)) (pred-N Ai)
+-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o)
+-assoc Nm n o = N-ind A A0 is Nm
where
A : D → Set
A i = i + n + o ≡ i + (n + o)
A0 : A zero
A0 = zero + n + o ≡⟨ +-leftCong (+-leftIdentity n) ⟩
n + o ≡⟨ sym (+-leftIdentity (n + o)) ⟩
zero + (n + o) ∎
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = succ₁ i + n + o ≡⟨ +-leftCong (+-Sx i n) ⟩
succ₁ (i + n) + o ≡⟨ +-Sx (i + n) o ⟩
succ₁ (i + n + o) ≡⟨ succCong Ai ⟩
succ₁ (i + (n + o)) ≡⟨ sym (+-Sx i (n + o)) ⟩
succ₁ i + (n + o) ∎
x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n)
x+Sy≡S[x+y] Nm n = N-ind A A0 is Nm
where
A : D → Set
A i = i + succ₁ n ≡ succ₁ (i + n)
A0 : A zero
A0 = zero + succ₁ n ≡⟨ +-leftIdentity (succ₁ n) ⟩
succ₁ n ≡⟨ succCong (sym (+-leftIdentity n)) ⟩
succ₁ (zero + n) ∎
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = succ₁ i + succ₁ n ≡⟨ +-Sx i (succ₁ n) ⟩
succ₁ (i + succ₁ n) ≡⟨ succCong Ai ⟩
succ₁ (succ₁ (i + n)) ≡⟨ succCong (sym (+-Sx i n)) ⟩
succ₁ (succ₁ i + n) ∎
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} Nm Nn = N-ind A A0 is Nm
where
A : D → Set
A i = i + n ≡ n + i
A0 : A zero
A0 = zero + n ≡⟨ +-leftIdentity n ⟩
n ≡⟨ sym (+-rightIdentity Nn) ⟩
n + zero ∎
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = succ₁ i + n ≡⟨ +-Sx i n ⟩
succ₁ (i + n) ≡⟨ succCong Ai ⟩
succ₁ (n + i) ≡⟨ sym (x+Sy≡S[x+y] Nn i) ⟩
n + succ₁ i ∎
0∸x : ∀ {n} → N n → zero ∸ n ≡ zero
0∸x = N-ind A A0 is
where
A : D → Set
A i = zero ∸ i ≡ zero
A0 : A zero
A0 = ∸-x0 zero
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = zero ∸ succ₁ i ≡⟨ ∸-xS zero i ⟩
pred₁ (zero ∸ i) ≡⟨ predCong Ai ⟩
pred₁ zero ≡⟨ pred-0 ⟩
zero ∎
S∸S : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n ≡ m ∸ n
S∸S {m} Nm = N-ind A A0 is
where
A : D → Set
A i = succ₁ m ∸ succ₁ i ≡ m ∸ i
A0 : A zero
A0 = succ₁ m ∸ succ₁ zero ≡⟨ ∸-xS (succ₁ m) zero ⟩
pred₁ (succ₁ m ∸ zero) ≡⟨ predCong (∸-x0 (succ₁ m)) ⟩
pred₁ (succ₁ m) ≡⟨ pred-S m ⟩
m ≡⟨ sym (∸-x0 m) ⟩
m ∸ zero ∎
is : ∀ {i} → A i → A (succ₁ i)
is {i} Ai = succ₁ m ∸ succ₁ (succ₁ i) ≡⟨ ∸-xS (succ₁ m) (succ₁ i) ⟩
pred₁ (succ₁ m ∸ succ₁ i) ≡⟨ predCong Ai ⟩
pred₁ (m ∸ i) ≡⟨ sym (∸-xS m i) ⟩
m ∸ succ₁ i ∎
|
{
"alphanum_fraction": 0.4349759829,
"avg_line_length": 28.3888888889,
"ext": "agda",
"hexsha": "cfabc97a1ed89df80fd320c473ce6faa60f9d6f4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/PropertiesByInductionI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/PropertiesByInductionI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/PropertiesByInductionI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2373,
"size": 5621
}
|
{- This file exports the primitives of cubical Id types -}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Core.Id where
open import Cubical.Core.Primitives hiding ( _≡_ )
open import Agda.Builtin.Cubical.Id public
renaming ( conid to ⟨_,_⟩
-- TODO: should the user really be able to access these two?
; primIdFace to faceId -- ∀ {ℓ} {A : Type ℓ} {x y : A} → Id x y → I
; primIdPath to pathId -- ∀ {ℓ} {A : Type ℓ} {x y : A} → Id x y → Path A x y
; primIdElim to elimId -- ∀ {ℓ ℓ'} {A : Type ℓ} {x : A}
-- (P : ∀ (y : A) → x ≡ y → Type ℓ')
-- (h : ∀ (φ : I) (y : A [ φ ↦ (λ _ → x) ])
-- (w : (Path _ x (outS y)) [ φ ↦ (λ { (φ = i1) → λ _ → x}) ] ) →
-- P (outS y) ⟨ φ , outS w ⟩) →
-- {y : A} (w' : x ≡ y) → P y w'
)
hiding ( primIdJ ) -- this should not be used as it is using compCCHM
{- BUILTIN ID Id -}
_≡_ : ∀ {ℓ} {A : Type ℓ} → A → A → Type ℓ
_≡_ = Id
|
{
"alphanum_fraction": 0.4217506631,
"avg_line_length": 45.24,
"ext": "agda",
"hexsha": "952514dd4d02008e459d5c63e1dbbd8f86f5b11c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Core/Id.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Core/Id.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Core/Id.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 378,
"size": 1131
}
|
open import Prelude
open import dynamics-core
module grounding where
grounding : ∀{τ1 τ2} →
τ1 ▸gnd τ2 →
((τ2 ground) × (τ1 ~ τ2) × (τ1 ≠ τ2))
grounding (MGArr x) = GArrHole , TCArr TCHole1 TCHole1 , x
grounding (MGSum x) = GSumHole , TCSum TCHole1 TCHole1 , x
grounding (MGProd x) = GProdHole , TCProd TCHole1 TCHole1 , x
|
{
"alphanum_fraction": 0.6305555556,
"avg_line_length": 32.7272727273,
"ext": "agda",
"hexsha": "33ac0b145ad2322aab12931dc3cabfbe2f84c46a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "grounding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "grounding.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "grounding.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 138,
"size": 360
}
|
module Selective.EnvironmentOperations where
open import Selective.ActorMonad
open import Selective.SimulationEnvironment
open import Prelude
open import Data.List.All.Properties using (++⁺ ; drop⁺)
open import Data.List.Properties using (map-++-commute)
open import Data.Nat.Properties using (≤-reflexive)
open import Data.Product using (Σ ; _,_ ; _×_ ; Σ-syntax)
open Actor
open ValidActor
open Env
open NamedInbox
open NameSupplyStream
-- We can create a new Actor from an ActorM if we know its name.
-- This is used when spawning an actor.
new-actor : ∀ {IS A post} → ActorM ∞ IS A [] post → Name → Actor
new-actor {IS} {A} {post} m name = record
{ inbox-shape = IS
; A = A
; references = []
; pre = []
; pre-eq-refs = refl
; post = post
; computation = m ⟶ []
; name = name
}
-- An actor can be lifted to run sub-programs that need less references
lift-actor : (actor : Actor) → {pre : TypingContext} →
(references : Store) →
(pre-eq-refs : (map shape references) ≡ pre) →
ActorState ∞ (inbox-shape actor) (A actor) pre (post actor) →
Actor
lift-actor actor {pre} references pre-eq-refs m = record
{ inbox-shape = inbox-shape actor
; A = actor .A
; references = references
; pre = pre
; pre-eq-refs = pre-eq-refs
; post = actor .post
; computation = m
; name = actor .name
}
-- Replace the monadic part of an actor
-- Many of the bind-operations don't change anything except what the next step should be.
replace-actorM : (actor : Actor) → ActorState ∞ (inbox-shape actor) (A actor) (pre actor) (post actor) → Actor
replace-actorM actor m = record
{ inbox-shape = inbox-shape actor
; A = A actor
; references = references actor
; pre = pre actor
; pre-eq-refs = pre-eq-refs actor
; post = post actor
; computation = m
; name = name actor
}
-- Add one reference to an actor.
-- Used when receiving a reference, spawn, or self.
-- The precondition and references are equal via the congruence relation on consing the shape of the reference.
add-reference : (actor : Actor) → (nm : NamedInbox) → ActorState ∞ (inbox-shape actor) (A actor) (shape nm ∷ pre actor) (post actor) → Actor
add-reference actor nm m = record
{ inbox-shape = inbox-shape actor
; A = A actor
; references = nm ∷ references actor
; pre = shape nm ∷ pre actor
; pre-eq-refs = cong (_∷_ (shape nm)) (pre-eq-refs actor)
; post = post actor
; computation = m
; name = name actor
}
add-references-to-actor : (actor : Actor) → (nms : List NamedInbox) → ActorState ∞ (inbox-shape actor) (A actor) ((map shape nms) ++ pre actor) (post actor) → Actor
add-references-to-actor actor nms m = record
{ inbox-shape = inbox-shape actor
; A = A actor
; references = nms ++ references actor
; pre = map shape nms ++ pre actor
; pre-eq-refs = trans (map-++-commute shape nms (references actor)) (cong (_++_ (map shape nms)) (pre-eq-refs actor))
; post = post actor
; computation = m
; name = name actor
}
add-references-rewrite : (actor : Actor) → (nms : List NamedInbox) → {x : Message (inbox-shape actor)} →
map shape nms ++ pre actor ≡ add-references (pre actor) x →
ActorState ∞ (inbox-shape actor) (A actor) (add-references (pre actor) x) (post actor) →
Actor
add-references-rewrite actor nms {x} p m = record
{ inbox-shape = inbox-shape actor
; A = A actor
; references = nms ++ references actor
; pre = add-references (pre actor) x
; pre-eq-refs = trans (trans (map-++-commute shape nms (references actor)) (cong (_++_ (map shape nms)) (pre-eq-refs actor))) p
; post = post actor
; computation = m
; name = name actor
}
data SameValidityProof : Actor → Actor → Set₁ where
AreSame :
∀ {A A' pre pre' post post'}
{IS name references}
{per per'}
{computation computation'} →
SameValidityProof
(record
{ inbox-shape = IS
; A = A
; references = references
; pre = pre
; pre-eq-refs = per
; post = post
; computation = computation
; name = name
})
(record
{ inbox-shape = IS
; A = A'
; references = references
; pre = pre'
; pre-eq-refs = per'
; post = post'
; computation = computation'
; name = name
})
-- A proof of an actor being valid is also valid for another actor if
-- * they have the same name
-- * they have the same references
-- * they have the same inbox type
rewrap-valid-actor : {store : Store} → {actorPre : Actor} → {actorPost : Actor} →
SameValidityProof actorPre actorPost →
ValidActor store actorPre →
ValidActor store actorPost
rewrap-valid-actor AreSame va = record { actor-has-inbox = va .actor-has-inbox ; references-have-pointer = va .references-have-pointer }
data ReferenceAdded (ref : NamedInbox) : Actor → Actor → Set₁ where
RefAdded :
∀ {A A' pre pre' post post'}
{IS name references}
{per per'}
{computation computation'} →
ReferenceAdded ref
(record
{ inbox-shape = IS
; A = A
; references = references
; pre = pre
; pre-eq-refs = per
; post = post
; computation = computation
; name = name
})
(record
{ inbox-shape = IS
; A = A'
; references = ref ∷ references
; pre = pre'
; pre-eq-refs = per'
; post = post'
; computation = computation'
; name = name
})
add-reference-valid : {store : Store} → {actorPre : Actor} → {actorPost : Actor} →
{ref : NamedInbox} →
ReferenceAdded ref actorPre actorPost →
ValidActor store actorPre →
reference-has-pointer store ref →
ValidActor store actorPost
add-reference-valid RefAdded va p = record { actor-has-inbox = va .actor-has-inbox ; references-have-pointer = p ∷ (va .references-have-pointer) }
record ValidMessageList (store : Store) (S : InboxShape) : Set₁ where
field
inbox : Inbox S
valid : All (message-valid store) inbox
InboxUpdater : (store : Store) (IS : InboxShape) → Set₁
InboxUpdater store IS = ValidMessageList store IS → ValidMessageList store IS
record UpdatedInbox (store : Store) {store' : Store} (original : Inboxes store') (name : Name) : Set₂ where
field
updated-inboxes : Inboxes store'
inboxes-valid : InboxesValid store updated-inboxes
others-unaffected : ∀ {name' IS' inb} → ¬ name ≡ name' → {p' : name' ↦ IS' ∈ store'} → InboxForPointer inb store' original p' → InboxForPointer inb store' updated-inboxes p'
open ValidMessageList
open UpdatedInbox
open NameSupply
-- Update one of the inboxes in a list of inboxes.
-- All the inboxes have been proven to be valid in the context of a store,
-- and the goal is to return a new list of inboxes which are also valid for the same store.
-- We know what inbox to update via an index using the inbox name into the list.
-- The update function receives both a list of messages from the inbox we pointed out,
-- and a proof that all the messages are valid for the store.
-- The update function returns a new list of the same type,
-- and has to provide a proof that this list is also valid for the store
update-inbox : {name : Name} → {IS : InboxShape} →
(store : Store) →
{store' : Store} →
(inboxes : Inboxes store') →
(InboxesValid store inboxes) →
(name ↦ IS ∈ store') →
(f : InboxUpdater store IS) →
UpdatedInbox store inboxes name
update-inbox _ _ [] () _
update-inbox {name} store {store'} (x ∷ inboxes) (px ∷ proofs) zero f =
record { updated-inboxes = inbox updated ∷ inboxes ; inboxes-valid = (valid updated) ∷ proofs ; others-unaffected = unaffected }
where
updated = (f (record { inbox = x ; valid = px }))
unaffected : ∀ {name' IS' inb} → ¬ name ≡ name' → {p' : name' ↦ IS' ∈ store'} → InboxForPointer inb store' (x ∷ inboxes) p' → InboxForPointer inb store' (inbox updated ∷ inboxes) p'
unaffected pr zero = ⊥-elim (pr refl)
unaffected pr (suc ifp) = suc ifp
update-inbox {name} store {store'} (x ∷ inboxes) (px ∷ proofs) (suc p) f =
record { updated-inboxes = x ∷ updated-inboxes updated ; inboxes-valid = px ∷ inboxes-valid updated ; others-unaffected = unaffected }
where
updated = (update-inbox store inboxes proofs p f)
unaffected : ∀ {name' IS' inb} → ¬ name ≡ name' → {p' : name' ↦ IS' ∈ store'} → InboxForPointer inb store' (x ∷ inboxes) p' → InboxForPointer inb store' (x ∷ updated-inboxes updated) p'
unaffected pr zero = zero
unaffected pr (suc ifp) = suc (others-unaffected updated pr ifp)
-- Move the actor that is at the top of the list, to the back of the list
-- This is done to create a round-robin system for the actors, since run-env always picks the actor at the top
-- Uses the insight that the order of the inboxes soes not correspond to the order of the Actors,
-- and that moving an actor to the back doesn't change any of the proofs about actors being valid.
top-actor-to-back : Env → Env
top-actor-to-back env with (acts env) | (actors-valid env)
top-actor-to-back env | [] | _ = env
top-actor-to-back env | x ∷ acts | (y ∷ prfs) = record
{ acts = acts ++ [ x ]ˡ
; blocked = blocked env
; env-inboxes = env-inboxes env
; store = store env
; actors-valid = ++⁺ prfs [ y ]ᵃ
; blocked-valid = blocked-valid env
; messages-valid = messages-valid env
; name-supply = name-supply env
; blocked-no-progress = blocked-no-progress env
}
-- An actor is still valid if we add a new inbox to the store, as long as that name is not used in the store before
valid-actor-suc : ∀ {store actor IS} → (ns : NameSupply store) → ValidActor store actor → ValidActor (inbox# ns .name [ IS ] ∷ store) actor
valid-actor-suc ns va =
let open ValidActor
open _comp↦_∈_
in record {
actor-has-inbox = suc {pr = ns .name-is-fresh (actor-has-inbox va)} (actor-has-inbox va)
; references-have-pointer = ∀map (λ p → suc-p (ns .name-is-fresh (actual-has-pointer p)) p) (references-have-pointer va)
}
valid-references-suc : ∀ {store references IS} →
(ns : NameSupply store) →
All (reference-has-pointer store) references →
All (reference-has-pointer (inbox# (ns .name) [ IS ] ∷ store)) references
valid-references-suc ns pointers =
let open _comp↦_∈_
in ∀map (λ p → suc-p (ns .name-is-fresh (actual-has-pointer p)) p) pointers
-- All the messages in an inbox are still valid if we add a new inbox to the store, as long as that name is not used in the store before
messages-valid-suc : ∀ {store IS x} {inb : Inbox IS} → (ns : NameSupply store) → all-messages-valid store inb → all-messages-valid (inbox# ns .name [ x ] ∷ store) inb
messages-valid-suc {store} {IS} {x} ns [] = []
messages-valid-suc {store} {IS} {x} {nx ∷ _} ns (px ∷ vi) = message-valid-suc nx px ∷ (messages-valid-suc ns vi)
where
open _comp↦_∈_
fields-valid-suc : ∀ {MT} {fields : All named-field-content MT} →
FieldsHavePointer store fields →
FieldsHavePointer (inbox# ns .name [ x ] ∷ store) fields
fields-valid-suc [] = []
fields-valid-suc (FhpV ∷ valid) = FhpV ∷ fields-valid-suc valid
fields-valid-suc (FhpR x ∷ valid) = FhpR (suc-p (ns .name-is-fresh (actual-has-pointer x)) x) ∷ (fields-valid-suc valid)
message-valid-suc : (nx : NamedMessage IS) → message-valid store nx → message-valid (inbox# ns .name [ x ] ∷ store) nx
message-valid-suc (NamedM x₁ x₂) px = fields-valid-suc px
is-blocked-suc : ∀ {store actor IS} {inbs : Inboxes store} {inb : Inbox IS} → (ns : NameSupply store) → IsBlocked store inbs actor → IsBlocked (inbox# ns .name [ IS ] ∷ store) (inb ∷ inbs) actor
is-blocked-suc ns (BlockedReturn at-return no-cont) = BlockedReturn at-return no-cont
is-blocked-suc ns (BlockedReceive at-receive p inbox-for-pointer) = BlockedReceive at-receive (suc {pr = ns .name-is-fresh p} p) (suc inbox-for-pointer)
is-blocked-suc ns (BlockedSelective at-selective p inb inbox-for-pointer filter-empty) = BlockedSelective at-selective (suc {pr = ns .name-is-fresh p} p) inb (suc inbox-for-pointer) filter-empty
-- Add a new actor to the environment.
-- The actor is added to the top of the list of actors.
add-top : ∀ {IS A post} → ActorState ∞ IS A [] post → Env → Env
add-top {IS} {A} {post} m env = record
{ acts = record
{ inbox-shape = IS
; A = A
; references = []
; pre = []
; pre-eq-refs = refl
; post = post
; computation = m
; name = env .name-supply .supply .name
} ∷ acts env
; blocked = blocked env
; env-inboxes = [] ∷ env-inboxes env
; store = inbox# env .name-supply .supply .name [ IS ] ∷ store env
; actors-valid = record { actor-has-inbox = zero ; references-have-pointer = [] } ∷ ∀map (valid-actor-suc (env .name-supply .supply)) (actors-valid env)
; blocked-valid = ∀map (valid-actor-suc (env .name-supply .supply)) (blocked-valid env)
; messages-valid = [] ∷ map-suc (store env) (messages-valid env) (env .name-supply .supply)
; name-supply = env .name-supply .next IS
; blocked-no-progress = ∀map (is-blocked-suc (env .name-supply .supply)) (env .blocked-no-progress)
}
where
-- ad-hoc ∀map, because we are not using All here
map-suc : (store : Store) → {store' : Store} → {inbs : Inboxes store'} → InboxesValid store inbs → (ns : NameSupply store) → InboxesValid (inbox# ns .name [ IS ] ∷ store) inbs
map-suc store [] _ = []
map-suc store (x ∷ valid) ns = messages-valid-suc ns x ∷ (map-suc store valid ns)
record GetInbox (store : Store) {store' : Store} (inboxes : Inboxes store') {name : Name} {S : InboxShape} (p : name ↦ S ∈ store') : Set₂ where
field
messages : Inbox S
valid : all-messages-valid store messages
right-inbox : InboxForPointer messages store' inboxes p
-- Get the messages of an inbox pointed to in the environment.
-- This is just a simple lookup into the list of inboxes.
get-inbox : ∀ {name IS} → (env : Env) → (p : name ↦ IS ∈ (store env)) → GetInbox (env .store) (env .env-inboxes) p
get-inbox env point = loop (env-inboxes env) (messages-valid env) point
where
loop : {store store' : Store} → (inbs : Inboxes store') → InboxesValid store inbs → ∀ {name IS} → (p : name ↦ IS ∈ store') → GetInbox store inbs p
loop _ [] ()
loop (x ∷ _) (px ∷ _) zero = record { messages = x ; valid = px ; right-inbox = zero }
loop (_ ∷ inbs) (_ ∷ inb-valid) (suc point) =
let rec = loop inbs inb-valid point
open GetInbox
in record { messages = rec .messages ; valid = rec .valid ; right-inbox = suc (rec .right-inbox) }
open GetInbox
record UnblockedActors {store store' : Store} {original : Inboxes store'} {n : Name} (updated : UpdatedInbox store original n) : Set₂ where
field
unblocked : List Actor
unblocked-updated : All (λ act → n ≡ name act) unblocked
unblocked-valid : All (ValidActor store) unblocked
still-blocked : List Actor
blocked-no-prog : All (IsBlocked store' (updated-inboxes updated)) still-blocked
blocked-valid : All (ValidActor store) still-blocked
open UnblockedActors
unblock-actors :
{store : Store} →
{original : Inboxes store} →
{n : Name} →
(updated : UpdatedInbox store original n) →
(blocked : List Actor) →
All (ValidActor store) blocked →
All (IsBlocked store original) blocked →
UnblockedActors updated
unblock-actors updated [] [] [] = record
{ unblocked = []
; unblocked-updated = []
; unblocked-valid = []
; still-blocked = []
; blocked-no-prog = []
; blocked-valid = []
}
unblock-actors {store} {original} {n} updated (x ∷ blckd) (v ∷ blckd-valid) (ib ∷ is-blocked) with (n ≟ (name x))
... | yes p =
let rec = unblock-actors updated blckd blckd-valid is-blocked
in record
{ unblocked = x ∷ rec .unblocked
; unblocked-updated = p ∷ rec .unblocked-updated
; unblocked-valid = v ∷ rec .unblocked-valid
; still-blocked = rec .still-blocked
; blocked-no-prog = rec .blocked-no-prog
; blocked-valid = rec .blocked-valid
}
... | no ¬p =
let rec = unblock-actors updated blckd blckd-valid is-blocked
in record
{ unblocked = rec .unblocked
; unblocked-updated = rec .unblocked-updated
; unblocked-valid = rec .unblocked-valid
; still-blocked = x ∷ rec .still-blocked
; blocked-no-prog = blocked-unaffected ib ∷ rec .blocked-no-prog
; blocked-valid = v ∷ rec .blocked-valid
}
where
blocked-unaffected : IsBlocked store original x → IsBlocked store (updated-inboxes updated) x
blocked-unaffected (BlockedReturn x y) = BlockedReturn x y
blocked-unaffected (BlockedReceive x p y) = BlockedReceive x p (others-unaffected updated ¬p y)
blocked-unaffected (BlockedSelective x p a b c) = BlockedSelective x p a (others-unaffected updated ¬p b) c
update-inbox-env : ∀ {name IS} → (env : Env) → name ↦ IS ∈ (store env) →
(f : ValidMessageList (store env) IS → ValidMessageList (store env) IS) → Env
update-inbox-env {name} {IS} env p f =
let
updated = update-inbox (store env) (env-inboxes env) (messages-valid env) p f
unblock-split = unblock-actors updated (blocked env) (blocked-valid env) (blocked-no-progress env)
in record {
acts = (unblocked unblock-split) ++ acts env
; blocked = still-blocked unblock-split
; env-inboxes = updated-inboxes updated
; store = store env
; actors-valid = ++⁺ (unblock-split .unblocked-valid) (env .actors-valid)
; blocked-valid = unblock-split .blocked-valid
; messages-valid = inboxes-valid updated
; name-supply = env .name-supply
; blocked-no-progress = unblock-split .blocked-no-prog
}
record FoundReference (store : Store) (S : InboxShape) : Set₂ where
field
name : Name
reference : name comp↦ S ∈ store
lookup-reference : ∀ {store ToIS} → (pre : TypingContext) → (refs : List NamedInbox) → All (reference-has-pointer store) refs → map shape refs ≡ pre → ToIS ∈ pre → FoundReference store ToIS
lookup-reference [] refs prfs eq ()
lookup-reference (x ∷ pre₁) [] prfs () Z
lookup-reference (x ∷ pre₁) [] prfs () (S px)
lookup-reference _ (inbox# name [ shape ] ∷ refs) (reference ∷ prfs) refl Z = record { name = name ; reference = reference }
lookup-reference _ (_ ∷ refs) (_ ∷ prfs) refl (S px) = lookup-reference _ refs prfs refl px
-- looks up the pointer for one of the references known by an actor
lookup-reference-act : ∀ {store actor ToIS} → ValidActor store actor → ToIS ∈ (pre actor) → FoundReference store ToIS
lookup-reference-act {store} {actor} {ToIS} va ref = lookup-reference (pre actor) (Actor.references actor) (ValidActor.references-have-pointer va) (pre-eq-refs actor) ref
open _comp↦_∈_
open FoundReference
-- Extract the found pointer
underlying-pointer : ∀ {IS store} → (ref : FoundReference store IS) → (name ref ↦ actual (reference ref) ∈ store )
underlying-pointer ref = actual-has-pointer (reference ref)
translate-message-pointer : ∀ {ToIS A store} →
(w : FoundReference store ToIS) →
A ∈ ToIS →
A ∈ (actual (reference w))
translate-message-pointer w x = translate-⊆ (actual-handles-wanted (reference w)) x
record LiftedReferences (lss gss : TypingContext) (references : List NamedInbox) : Set₂ where
field
subset-inbox : lss ⊆ gss
contained : List NamedInbox
subset : contained ⊆ references
contained-eq-inboxes : map shape contained ≡ lss
open LiftedReferences
-- Convert a subset for preconditions to a subset for references
lift-references : ∀ {lss gss} → lss ⊆ gss → (references : List NamedInbox) → map shape references ≡ gss → LiftedReferences lss gss references
lift-references [] refs refl = record {
subset-inbox = []
; contained = []
; subset = []
; contained-eq-inboxes = refl
}
lift-references (_∷_ {y} {xs} x₁ subs) refs refl with (lift-references subs refs refl)
... | q = record {
subset-inbox = x₁ ∷ subs
; contained = contained-el ∷ contained q
; subset = (translate-∈ x₁ refs shape refl) ∷ (subset q)
; contained-eq-inboxes = combine contained-el-shape y (map shape (contained q)) xs (sym contained-el-ok) (contained-eq-inboxes q)
}
where
contained-el : NamedInbox
contained-el = lookup-parallel x₁ refs shape refl
contained-el-shape = shape contained-el
contained-el-ok : y ≡ contained-el-shape
contained-el-ok = lookup-parallel-≡ x₁ refs shape refl
combine : (a b : InboxShape) → (as bs : TypingContext) → (a ≡ b) → (as ≡ bs) → (a ∷ as ≡ b ∷ bs)
combine a .a as .as refl refl = refl
data LiftActor : Actor → Actor → Set₂ where
CanBeLifted :
∀ {A A' post post'}
{IS name references}
{lss gss}
{per}
{computation computation'} →
(lr : LiftedReferences lss gss references) →
LiftActor
(record
{ inbox-shape = IS
; A = A
; references = references
; pre = gss
; pre-eq-refs = per
; post = post
; computation = computation
; name = name
})
(record
{ inbox-shape = IS
; A = A'
; references = lr .contained
; pre = lss
; pre-eq-refs = lr .contained-eq-inboxes
; post = post'
; computation = computation'
; name = name
})
lift-valid-actor : ∀ {store} {act act' : Actor} →
LiftActor act act' →
ValidActor store act →
ValidActor store act'
lift-valid-actor (CanBeLifted lr) va =
record {
actor-has-inbox = va .actor-has-inbox
; references-have-pointer = All-⊆ (lr .subset) (va .references-have-pointer)
}
-- We can replace the actors in an environment if they all are valid for the current store.
replace-actors : (env : Env) → (actors : List Actor) → All (ValidActor (store env)) actors → Env
replace-actors env actors actorsValid = record {
acts = actors
; blocked = env .blocked
; env-inboxes = env .env-inboxes
; store = env .store
; actors-valid = actorsValid
; blocked-valid = env .blocked-valid
; messages-valid = env .messages-valid
; name-supply = env .name-supply
; blocked-no-progress = env .blocked-no-progress
}
replace-focused : {act : Actor} → (env : Env) → Focus act env →
(act' : Actor) →
(valid' : ValidActor (env .store) act') →
Env
replace-focused env@record {
acts = _ ∷ rest
; actors-valid = _ ∷ rest-valid
} Focused act' valid' =
replace-actors env (act' ∷ rest) (valid' ∷ rest-valid)
block-focused : {act : Actor} → (env : Env) → Focus act env → IsBlocked (env .store) (env .env-inboxes) act → Env
block-focused env@record {
acts = actor ∷ rest
; blocked = blocked
; actors-valid = actor-valid ∷ rest-valid
; blocked-valid = blocked-valid
} Focused blckd = record {
acts = rest
; blocked = actor ∷ blocked
; store = env .store
; env-inboxes = env .env-inboxes
; name-supply = env .name-supply
; actors-valid = rest-valid
; blocked-valid = actor-valid ∷ blocked-valid
; messages-valid = env .messages-valid
; blocked-no-progress = blckd ∷ env .blocked-no-progress
}
-- Takes a named message and a proof that the named message is valid for the store.
-- Values are valid for any store and references need a proof that the pointer is valid.
add-message : {S : InboxShape} → {store : Store} → (message : NamedMessage S) → message-valid store message → (ValidMessageList store S → ValidMessageList store S)
add-message message valid vml = record {
inbox = inbox vml ++ [ message ]ˡ
; valid = ++⁺ (ValidMessageList.valid vml) [ valid ]ᵃ
}
-- Removes the next message from an inbox.
-- This is a no-op if there are no messages in the inbox.
remove-message : {S : InboxShape} → {store : Store} → (ValidMessageList store S → ValidMessageList store S)
remove-message vml = record { inbox = drop 1 (inbox vml) ; valid = drop⁺ 1 (ValidMessageList.valid vml) }
name-fields : ∀ {MT store} → (pre : TypingContext) →
(refs : List NamedInbox) →
All (reference-has-pointer store) refs →
All (send-field-content pre) MT →
map shape refs ≡ pre →
All named-field-content MT
name-fields pre refs rhp [] eq = []
name-fields _ refs rhp (_∷_ {ValueType x} (lift lower) sfc) refl = lower ∷ (name-fields _ refs rhp sfc refl)
name-fields {store = store} _ refs rhp (_∷_ {ReferenceType x} px sfc) refl = name (lookup-reference _ refs rhp refl (_⊢>:_.actual-is-sendable px)) ∷ (name-fields _ refs rhp sfc refl)
name-fields-act : ∀ {MT} store → ∀ actor →
All (send-field-content (pre actor)) MT →
ValidActor store actor → All named-field-content MT
name-fields-act store actor sfc valid = name-fields (pre actor) (Actor.references actor) (references-have-pointer valid) sfc (pre-eq-refs actor)
unname-field : ∀ {x} → named-field-content x → receive-field-content x
unname-field {ValueType x₁} nfc = nfc
unname-field {ReferenceType x₁} nfc = _
extract-inboxes : ∀ {MT} → All named-field-content MT → List NamedInbox
extract-inboxes [] = []
extract-inboxes (_∷_ {ValueType _} _ ps) = extract-inboxes ps
extract-inboxes (_∷_ {ReferenceType x} name ps) = inbox# name [ x ] ∷ extract-inboxes ps
named-inboxes : ∀ {S} → (nm : NamedMessage S) → List NamedInbox
named-inboxes (NamedM x x₁) = extract-inboxes x₁
reference-names : {MT : MessageType} → All named-field-content MT → List Name
reference-names [] = []
reference-names (_∷_ {ValueType x} px ps) = reference-names ps
reference-names (_∷_ {ReferenceType x} name ps) = name ∷ reference-names ps
++-diff : (a b c : List InboxShape) → a ≡ b → a ++ c ≡ b ++ c
++-diff [] .[] c refl = refl
++-diff (x ∷ a) .(x ∷ a) c refl = refl
add-fields++ : ∀ MT → (x₁ : All named-field-content MT) → map shape (extract-inboxes x₁) ≡ extract-references MT
add-fields++ [] [] = refl
add-fields++ (ValueType x ∷ MT) (px ∷ x₁) = add-fields++ MT x₁
add-fields++ (ReferenceType x ∷ MT) (px ∷ x₁) = cong (_∷_ x) (add-fields++ MT x₁)
add-references++ : ∀ {S store} → (nm : NamedMessage S) → message-valid store nm → ∀ w → map shape (named-inboxes nm) ++ w ≡ add-references w (unname-message nm)
add-references++ msg@(NamedM {MT} x x₁) p w = halp (add-fields++ MT x₁)
where
halp : map shape (extract-inboxes x₁) ≡ extract-references MT → map shape (extract-inboxes x₁) ++ w ≡ extract-references MT ++ w
halp p = ++-diff (map shape (extract-inboxes x₁)) (extract-references MT) w p
valid++ : ∀ {S store} → (nm : NamedMessage S) → message-valid store nm → ∀ {w} →
All (reference-has-pointer store) w →
All (reference-has-pointer store) (named-inboxes nm ++ w)
valid++ (NamedM x x₁) v = valid-fields v
where
valid-fields : ∀ {MT store} →
{fields : All named-field-content MT} →
FieldsHavePointer store fields → ∀ {p} →
All (reference-has-pointer store) p →
All (reference-has-pointer store) (extract-inboxes fields ++ p)
valid-fields [] ps = ps
valid-fields (FhpV ∷ fhp) ps = valid-fields fhp ps
valid-fields (FhpR px ∷ fhp) ps = px ∷ (valid-fields fhp ps)
open _⊢>:_
compatible-handles : ∀ store x refs
(px : (map shape refs) ⊢>: x)
(w : FoundReference store (actual px)) →
x ⊆ actual (reference w)
compatible-handles store x refs px w =
let a = actual-handles-requested px
b = actual-handles-wanted (reference w)
in ⊆-trans a b
make-pointer-compatible : ∀ store x refs
(px : (map shape refs) ⊢>: x) →
(All (reference-has-pointer store) refs) →
(w : FoundReference store (actual px)) →
name w comp↦ x ∈ store
make-pointer-compatible store x refs px rhp w = [p: actual-has-pointer (reference w) ][handles: compatible-handles store x refs px w ]
open FieldsHavePointer
make-pointers-compatible : ∀ {MT} store pre refs (eq : map shape refs ≡ pre)
(fields : All (send-field-content pre) MT)
(rhp : All (reference-has-pointer store) refs) →
FieldsHavePointer store (name-fields pre refs rhp fields eq)
make-pointers-compatible store pre refs eq [] rhp = []
make-pointers-compatible store _ refs refl (_∷_ {ValueType x} px fields) rhp = FhpV ∷ make-pointers-compatible store _ refs refl fields rhp
make-pointers-compatible store _ refs refl (_∷_ {ReferenceType x} px fields) rhp =
let foundFw = lookup-reference _ refs rhp refl (actual-is-sendable px)
in FhpR (make-pointer-compatible store x refs px rhp foundFw) ∷ (make-pointers-compatible store _ refs refl fields rhp)
-- Removes the next message from an inbox.
-- This is a no-op if there are no messages in the inbox.
remove-found-message : {S : InboxShape} → {store : Store} → (filter : MessageFilter S) → (ValidMessageList store S → ValidMessageList store S)
remove-found-message f record { inbox = [] ; valid = [] } = record { inbox = [] ; valid = [] }
remove-found-message {s} {store} f record { inbox = (x ∷ inbox₁) ; valid = vx ∷ valid₁ } with (f (unname-message x))
... | false =
let vml = remove-found-message f (record { inbox = inbox₁ ; valid = valid₁ })
open ValidMessageList
in record { inbox = x ∷ vml .inbox ; valid = vx ∷ vml .valid }
... | true = record { inbox = inbox₁ ; valid = valid₁ }
|
{
"alphanum_fraction": 0.5941185672,
"avg_line_length": 47.3555555556,
"ext": "agda",
"hexsha": "320e1aaf078995cdd5bddd38d5e397b0d12d41ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Selective/EnvironmentOperations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Selective/EnvironmentOperations.agda",
"max_line_length": 194,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Selective/EnvironmentOperations.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 8521,
"size": 31965
}
|
{-# OPTIONS --cubical --safe #-}
module Harmony where
open import Data.Bool using (Bool; true; false; if_then_else_; _∨_; not; _∧_)
open import Data.Fin using (#_; toℕ) renaming (zero to fz; suc to fs)
open import Data.List using (List; map; []; _∷_; concatMap; foldr; head; zip; null)
open import Data.Maybe using (fromMaybe; is-nothing; Maybe; just; nothing)
open import Data.Nat using (ℕ; suc; _∸_; _<ᵇ_)
open import Data.Nat.DivMod using (_mod_; _div_)
open import Data.Product using (_×_; _,_; proj₁; proj₂; uncurry)
open import Data.Vec using (Vec; toList; []; _∷_)
open import Function using (_∘_)
open import BitVec using (BitVec; empty; insert; elements; _∩_; _∈_)
open import Counterpoint
open import Diatonic using (DiatonicDegree; thirdUp; _≡ᵈ_; degree→PC; major; pitch→DegreeCMajor)
open import Interval
open import Music
open import Note
open import Pitch hiding (I)
open import Util using (filter; concatMaybe)
-- either 0 or 1 pitch class
pointToPC : Point → List PC
pointToPC (tone p) = pitchToClass p ∷ []
pointToPC (hold p) = pitchToClass p ∷ []
pointToPC rest = []
chordToPCes : {n : ℕ} → Chord n → List PC
chordToPCes (chord ps) = concatMap pointToPC (toList ps)
pitchClassListToSet : List PC → PCSet
pitchClassListToSet = foldr insert empty
pitchClassSetToList : PCSet → List PC
pitchClassSetToList ps = fn 0 (toList ps)
where fn : ℕ → List Bool → List PC
fn i [] = []
fn i (false ∷ bs) = fn (suc i) bs
fn i (true ∷ bs) = i mod s12 ∷ fn (suc i) bs
-- Primary chords, assuming the tonic is pitch class 0.
I-maj I-min IV-maj V-maj : PCSet
I-maj = pitchClassListToSet (# 0 ∷ # 4 ∷ # 7 ∷ [])
I-min = pitchClassListToSet (# 0 ∷ # 3 ∷ # 7 ∷ [])
IV-maj = pitchClassListToSet (# 0 ∷ # 5 ∷ # 9 ∷ [])
V-maj = pitchClassListToSet (# 2 ∷ # 7 ∷ # 11 ∷ [])
-- Triads, without quality
data Triad : Set where
I : Triad
II : Triad
III : Triad
IV : Triad
V : Triad
VI : Triad
VII : Triad
--data Triad : Set where
-- I : Triad; II : Triad; III : Triad; IV : Triad; V : Triad; VI : Triad; VII : Triad
allTriads : List Triad
allTriads = I ∷ II ∷ III ∷ IV ∷ V ∷ VI ∷ VII ∷ []
triadRoot : Triad → DiatonicDegree
triadRoot I = (# 0)
triadRoot II = (# 1)
triadRoot III = (# 2)
triadRoot IV = (# 3)
triadRoot V = (# 4)
triadRoot VI = (# 5)
triadRoot VII = (# 6)
rootTriad : DiatonicDegree → Triad
rootTriad fz = I
rootTriad ((fs fz)) = II
rootTriad ((fs (fs fz))) = III
rootTriad ((fs (fs (fs fz)))) = IV
rootTriad ((fs (fs (fs (fs fz))))) = V
rootTriad ((fs (fs (fs (fs (fs fz)))))) = VI
rootTriad ((fs (fs (fs (fs (fs (fs fz))))))) = VII
triadDegrees : Triad → Vec DiatonicDegree 3
triadDegrees t =
let root = triadRoot t
third = thirdUp root
fifth = thirdUp third
in root ∷ third ∷ fifth ∷ []
infix 4 _≡ᵗ_
_≡ᵗ_ : Triad → Triad → Bool
t ≡ᵗ u = triadRoot t ≡ᵈ triadRoot u
TriadSet : Set
TriadSet = BitVec s7
triadListToSet : List Triad → TriadSet
triadListToSet [] = empty
triadListToSet (t ∷ ts) = insert (triadRoot t) (triadListToSet ts)
triadSetToList : TriadSet → List Triad
triadSetToList ts = map rootTriad (elements ts)
containingTriads : DiatonicDegree → List Triad
containingTriads fz = I ∷ IV ∷ VI ∷ []
containingTriads ((fs fz)) = II ∷ V ∷ VII ∷ []
containingTriads ((fs (fs fz))) = III ∷ VI ∷ I ∷ []
containingTriads ((fs (fs (fs fz)))) = IV ∷ VII ∷ II ∷ []
containingTriads ((fs (fs (fs (fs fz))))) = V ∷ I ∷ III ∷ []
containingTriads ((fs (fs (fs (fs (fs fz)))))) = VI ∷ II ∷ IV ∷ []
containingTriads ((fs (fs (fs (fs (fs (fs fz))))))) = VII ∷ III ∷ V ∷ []
-- from Table of Usual Root Progressions (Major Mode), Harmony (Piston 5e), page 23
record NextTriad : Set where
constructor nextTriad
field
usual : List Triad
sometimes : List Triad
rare : List Triad
open NextTriad
rootProgression : Triad → NextTriad
rootProgression I = nextTriad (IV ∷ V ∷ []) (VI ∷ []) (II ∷ III ∷ [])
rootProgression II = nextTriad (V ∷ []) (IV ∷ VI ∷ []) (I ∷ III ∷ [])
rootProgression III = nextTriad (VI ∷ []) (IV ∷ []) (I ∷ II ∷ V ∷ [])
rootProgression IV = nextTriad (V ∷ []) (I ∷ II ∷ []) (III ∷ VI ∷ [])
rootProgression V = nextTriad (I ∷ []) (IV ∷ VI ∷ []) (II ∷ III ∷ [])
rootProgression VI = nextTriad (II ∷ V ∷ []) (III ∷ IV ∷ []) (I ∷ [])
rootProgression VII = nextTriad (I ∷ III ∷ []) (VI ∷ []) (II ∷ IV ∷ V ∷ [])
previousTriads : Triad → List Triad
previousTriads I = V ∷ IV ∷ VII ∷ []
previousTriads II = VI ∷ IV ∷ []
previousTriads III = VI ∷ VII ∷ []
previousTriads IV = I ∷ V ∷ II ∷ III ∷ []
previousTriads V = I ∷ IV ∷ II ∷ VI ∷ []
previousTriads VI = IV ∷ I ∷ II ∷ V ∷ VII ∷ []
previousTriads VII = []
harmonizations : {n : ℕ} → Vec DiatonicDegree n → List (Vec Triad n)
harmonizations [] = []
harmonizations (d ∷ []) = map (_∷ []) (containingTriads d)
harmonizations (d ∷ d' ∷ ds) =
let tss = harmonizations (d' ∷ ds)
dTriads = containingTriads d
in concatMap (λ t → concatMaybe (map (prependTriad t) tss)) dTriads
where
prevOk : Triad → Triad → Bool
prevOk t x = (triadRoot t) ∈ triadListToSet (previousTriads x)
prependTriad : {n : ℕ} → Triad → Vec Triad (suc n) → Maybe (Vec Triad (suc (suc n)))
prependTriad t ts = if prevOk t (Data.Vec.head ts) then just (t ∷ ts) else nothing
halfCadence : {n : ℕ} → Vec Triad n → Bool
halfCadence [] = false
halfCadence (t ∷ []) = t ≡ᵗ V
halfCadence (_ ∷ t ∷ ts) = halfCadence (t ∷ ts)
-- Given a pitch p and a diatontic degree d, return a pitch that
-- has degree d and is 1-2 octaves lower than p.
pitchLower : Pitch → DiatonicDegree → Pitch
pitchLower p d =
let (c , o) = absoluteToRelative p
c' = degree→PC major d
in relativeToAbsolute (c' , o ∸ 2)
-- Given a soporano voice s a pitch and the other voices
-- as diatonic degrees of a major scale, voice the
-- accompaniment in close position.
voiceChord : Pitch → Vec DiatonicDegree 3 → Vec Pitch 3
voiceChord s (a ∷ t ∷ b ∷ []) =
let (s' , o) = absoluteToRelative s
a' = degree→PC major a
t' = degree→PC major t
b' = degree→PC major b
ao = downOctave a' s' o
to = downOctave t' a' ao
bo = downOctave b' t' to
in relativeToAbsolute (a' , ao) ∷
relativeToAbsolute (t' , to) ∷
relativeToAbsolute (b' , bo) ∷ []
where downOctave : PC → PC → Octave → Octave
downOctave pc₁ pc₂ o =
if toℕ pc₁ <ᵇ toℕ pc₂ then o
else (o ∸ 1)
-- Given a soprano pitch p and a triad harmonization t,
-- generate a list of possible bass notes.
-- Assumes p is in t. Only the root of the triad is
-- allowed to be doubled.
-- Each bass note is pitched 1-2 octaves below p.
bassNotes : Pitch → Triad → List Pitch
bassNotes p t =
let sop = pitch→DegreeCMajor p
root = triadRoot t
ds = toList (triadDegrees t)
ds' = filter (λ d → (sop ≡ᵈ root) ∨ not (sop ≡ᵈ d)) ds
in map (pitchLower p) ds'
-- Given a soprano pitch p and a triad harmonization t,
-- generate a harmonizing chord in root position.
-- Assumes p is in t. Only the root of the triad is
-- allowed to be doubled.
-- Each bass note is pitched 1-2 octaves below p.
-- Alto and Tenor fit inside.
-- Currently root or third is preferred for alto.
harmonizingChord : Pitch → Triad → Vec Pitch 3
harmonizingChord p t =
let sop = pitch→DegreeCMajor p
root = triadRoot t
third = thirdUp root
fifth = thirdUp third
alto = if sop ≡ᵈ root then third else root
tenor = if sop ≡ᵈ fifth then third else fifth
in voiceChord p (alto ∷ tenor ∷ root ∷ [])
where
remove : DiatonicDegree → Vec DiatonicDegree 3 → Vec DiatonicDegree 2
remove sop (d ∷ d₁ ∷ d₂ ∷ []) =
if d ≡ᵈ sop then d₁ ∷ d₂ ∷ []
else (if d₁ ≡ᵈ sop then d ∷ d₂ ∷ [] else d ∷ d₁ ∷ [])
-- Create 4 part harmonizations ending in V for a melody in C major.
voicedHarmonizations : {n : ℕ} → Vec Pitch n → List (Vec (Vec Pitch 4) n)
voicedHarmonizations {n} ps =
let ds = Data.Vec.map pitch→DegreeCMajor ps
hs : List (Vec Triad n)
hs = filter halfCadence (harmonizations ds)
in map (λ ts → Data.Vec.map (λ pt → proj₁ pt ∷ harmonizingChord (proj₁ pt) (proj₂ pt))
(Data.Vec.zip ps ts)) hs
-- Check interval between each pair of voices.
intervalsOkFilter : Vec Pitch 4 → Bool
intervalsOkFilter (s ∷ a ∷ t ∷ b ∷ []) =
null (concatMaybe (map (intervalCheck ∘ toPitchInterval)
-- ((s , a) ∷ (s , t) ∷ (s , b) ∷ (a , t) ∷ (a , b) ∷ (t , b) ∷ [])))
((s , a) ∷ (s , b) ∷ (s , t) ∷ [])))
filterIntervalsOk : {n : ℕ} → List (Vec (Vec Pitch 4) n) → List (Vec (Vec Pitch 4) n)
filterIntervalsOk xs =
let f : List (Vec Pitch 4) → Bool
f xs = foldr _∧_ true (map intervalsOkFilter xs)
in filter (f ∘ toList) xs
motionErrors : {n : ℕ} → Vec (Vec Pitch 4) n → List MotionError
motionErrors xs =
let ss = Data.Vec.map (Data.Vec.head) xs
as = Data.Vec.map (Data.Vec.head ∘ Data.Vec.tail) xs
ts = Data.Vec.map (Data.Vec.head ∘ Data.Vec.tail ∘ Data.Vec.tail) xs
bs = Data.Vec.map (Data.Vec.head ∘ Data.Vec.tail ∘ Data.Vec.tail ∘ Data.Vec.tail) xs
sas = map toPitchInterval (toList (Data.Vec.zip as ss))
sts = map toPitchInterval (toList (Data.Vec.zip ts ss))
sbs = map toPitchInterval (toList (Data.Vec.zip bs ss))
ats = map toPitchInterval (toList (Data.Vec.zip ts as))
abs = map toPitchInterval (toList (Data.Vec.zip bs as))
tbs = map toPitchInterval (toList (Data.Vec.zip bs ts))
in concatMap checkMotion (sas ∷ sts ∷ sbs ∷ ats ∷ abs ∷ tbs ∷ [])
--filterSBMotionOk : {n : ℕ} → List (Vec (Vec Pitch 4) n) → List (Vec (Vec Pitch 4) n)
--filterSBMotionOk = filter motionOkFilter
-- Given a soprano line with harmonization, generate
-- a list of possible bass lines 1-1 with soprano notes.
-- The SB counterpoint must satisfy 1st species
-- interval and motion rules.
bassLines : List (Pitch × Triad) → List (List Pitch)
-- We need to make the base case a singleton list of an empty list for
-- the general case to work. Possibly look into modifying the general
-- case to handle a base case of an empty list.
bassLines [] = [] ∷ []
bassLines ((sop , triad) ∷ pts) =
let pss = bassLines pts
basses = bassNotes sop triad
intervalOkSBs : List PitchInterval -- list of bass notes with interval (to sop) that pass intervalCheck
intervalOkSBs = filter (is-nothing ∘ intervalCheck) (map (toPitchInterval ∘ (_, sop)) basses)
intervalOkBs = map proj₁ intervalOkSBs
intervalOkBassLines = concatMap (λ ps → (map (_∷ ps) intervalOkBs)) pss
in filter (mCheck sop (Data.Maybe.map proj₁ (head pts))) intervalOkBassLines
where
-- Given a soprano pitch, possibly a second soprano pitch and a list of
-- bass pitches, if the second soprano pitch exists and there are at
-- least two bass pitches, check that the motion from the first SB pair to
-- the second is allowed. If there aren't two SB pairs, return true.
mCheck : Pitch → Maybe Pitch → List Pitch → Bool
mCheck _ nothing _ = true
mCheck _ (just _) [] = true
mCheck _ (just _) (_ ∷ []) = true
mCheck s₁ (just s₂) (b₁ ∷ b₂ ∷ _) =
let sb₁ = toPitchInterval (b₁ , s₁)
sb₂ = toPitchInterval (b₂ , s₂)
in (is-nothing ∘ uncurry motionCheck) (sb₁ , sb₂)
-- Given a soprano line with harmonization, generate
-- a list of possible triads 1-1 with soprano notes.
-- All pairwise counterpoint must satisfy 1st species
-- interval and motion rules.
chordProg : List (Pitch × Triad) → List (List Pitch)
-- We need to make the base case a singleton list of an empty list for
-- the general case to work. Possibly look into modifying the general
-- case to handle a base case of an empty list.
chordProg [] = [] ∷ []
chordProg ((sop , triad) ∷ pts) =
let pss = chordProg pts
basses = bassNotes sop triad
intervalOkSBs : List PitchInterval -- list of bass notes with interval (to sop) that pass intervalCheck
intervalOkSBs = filter (is-nothing ∘ intervalCheck) (map (toPitchInterval ∘ (_, sop)) basses)
intervalOkBs = map proj₁ intervalOkSBs
intervalOkBassLines = concatMap (λ ps → (map (_∷ ps) intervalOkBs)) pss
in filter (mCheck sop (Data.Maybe.map proj₁ (head pts))) intervalOkBassLines
where
-- Given a soprano pitch, possibly a second soprano pitch and a list of
-- bass pitches, if the second soprano pitch exists and there are at
-- least two bass pitches, check that the motion from the first SB pair to
-- the second is allowed. If there aren't two SB pairs, return true.
mCheck : Pitch → Maybe Pitch → List Pitch → Bool
mCheck _ nothing _ = true
mCheck _ (just _) [] = true
mCheck _ (just _) (_ ∷ []) = true
mCheck s₁ (just s₂) (b₁ ∷ b₂ ∷ _) =
let sb₁ = toPitchInterval (b₁ , s₁)
sb₂ = toPitchInterval (b₂ , s₂)
in (is-nothing ∘ uncurry motionCheck) (sb₁ , sb₂)
|
{
"alphanum_fraction": 0.6145825575,
"avg_line_length": 41.3138461538,
"ext": "agda",
"hexsha": "a91bbd7a3e261c2dd8a1acfbcd4350ee9d7fd891",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/Harmony.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/Harmony.agda",
"max_line_length": 109,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/Harmony.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 4449,
"size": 13427
}
|
{-# OPTIONS --verbose=10 #-}
module lemmas where
open import Data.Nat
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst)
+-suc : (n₁ n₂ : ℕ) -> (n₁ + (1 + n₂)) ≡ (1 + (n₁ + n₂))
+-suc zero n2 = refl
+-suc (suc n1) n2 rewrite +-suc n1 n2 = refl
|
{
"alphanum_fraction": 0.6055900621,
"avg_line_length": 26.8333333333,
"ext": "agda",
"hexsha": "65fd10c7d9defdca94b6c56046c1073e05fe2817",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "hablapps/safeoptics",
"max_forks_repo_path": "src/main/agda/lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "hablapps/safeoptics",
"max_issues_repo_path": "src/main/agda/lemmas.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "hablapps/safeoptics",
"max_stars_repo_path": "src/main/agda/lemmas.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 121,
"size": 322
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.FunctionOver
open import cohomology.Theory
{- Cohomology groups are independent of basepoint, and the action of
- the cohomology is independent of the basepoint-preservation path -}
module cohomology.BaseIndependence {i} (CT : CohomologyTheory i) where
open CohomologyTheory CT
C-base-indep : (n : ℤ) {A : Type i} (a₀ a₁ : A)
→ C n (A , a₀) ≃ᴳ C n (A , a₁)
C-base-indep n a₀ a₁ =
C-Susp n (_ , a₁) ∘eᴳ (C-Susp n (_ , a₀))⁻¹ᴳ
CF-base-indep : (n : ℤ) {X Y : Ptd i}
(f : fst X → fst Y) (p₁ p₂ : f (snd X) == snd Y)
→ CF-hom n (f , p₁) == CF-hom n (f , p₂)
CF-base-indep n {X} {Y} f p₁ p₂ = transport
(λ q → CF-hom n (f , p₁) == CF-hom n (f , p₂) [ uncurry _→ᴳ_ ↓ q ])
(!-inv-l (pair×= (group-ua (C-Susp n Y)) (group-ua (C-Susp n X))))
(!ᵈ (C-Susp-↓ n (f , p₁)) ∙ᵈ C-Susp-↓ n (f , p₂))
CF-λ= : (n : ℤ) {X Y : Ptd i} {f g : fst (X ⊙→ Y)}
→ (∀ x → fst f x == fst g x)
→ CF-hom n f == CF-hom n g
CF-λ= n h = CF-base-indep n _ _ _ ∙ ap (CF-hom n) (⊙λ= h idp)
CF-↓dom= : (n : ℤ) {X Y Z : Ptd i}
{f : fst (X ⊙→ Y)} {g : fst (X ⊙→ Z)} {p : Y == Z}
→ fst f == fst g [ (λ V → fst X → fst V) ↓ p ]
→ CF-hom n f == CF-hom n g [ (λ G → G →ᴳ C n X) ↓ ap (C n) p ]
CF-↓dom= n {p = idp} r =
CF-base-indep n _ _ _ ∙ ap (CF-hom n) (pair= r (from-transp! _ _ idp))
CF-↓cod= : (n : ℤ) {X Y Z : Ptd i}
{f : fst (X ⊙→ Z)} {g : fst (Y ⊙→ Z)} {p : X == Y}
→ fst f == fst g [ (λ U → fst U → fst Z) ↓ p ]
→ CF-hom n f == CF-hom n g [ (λ G → C n Z →ᴳ G) ↓ ap (C n) p ]
CF-↓cod= n {p = idp} r =
CF-base-indep n _ _ _ ∙ ap (CF-hom n) (pair= r (from-transp! _ _ idp))
|
{
"alphanum_fraction": 0.5185185185,
"avg_line_length": 36.6,
"ext": "agda",
"hexsha": "40f3f6bd15acc0e32002c6022779be5833332d7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "cohomology/BaseIndependence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "cohomology/BaseIndependence.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "cohomology/BaseIndependence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 768,
"size": 1647
}
|
module PatternSynonymOverapplied2 where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
pattern suc' x = suc x
f : Nat -> Nat
f zero = zero
f (suc' m n) = n
|
{
"alphanum_fraction": 0.6198830409,
"avg_line_length": 15.5454545455,
"ext": "agda",
"hexsha": "89e7b3e43a9d4f57b90c16195a8d7755781f8a06",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/PatternSynonymOverapplied2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/PatternSynonymOverapplied2.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/PatternSynonymOverapplied2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 59,
"size": 171
}
|
module Structure.Function.Linear where
import Lvl
open import Logic
open import Logic.Propositional
open import Relator.Equals
open import Relator.Equals.Proofs
open import Type
-- TODO: Remove this
module _ {ℓ₁}{ℓ₂}{ℓ₃} {V₁ : Type{ℓ₁}} {V₂ : Type{ℓ₂}} {S : Type{ℓ₃}} where
record LinearMap (_+₁_ : V₁ → V₁ → V₁) (_⋅₁_ : S → V₁ → V₁) (_+₂_ : V₂ → V₂ → V₂) (_⋅₂_ : S → V₂ → V₂) (f : V₁ → V₂) : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where
field
additivity : ∀{v₁ v₂ : V₁} → (f(v₁ +₁ v₂) ≡ f(v₁) +₂ f(v₂))
homogeneity1 : ∀{s : S} → ∀{v : V₁} → (f(s ⋅₁ v) ≡ s ⋅₂ f(v))
|
{
"alphanum_fraction": 0.5849056604,
"avg_line_length": 36.4375,
"ext": "agda",
"hexsha": "f6b6bcad0cdc98ba9b7c7402158293bccd0aea73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Function/Linear.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Function/Linear.agda",
"max_line_length": 155,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Function/Linear.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 274,
"size": 583
}
|
module Relation.Ternary.Separation.Monad.Identity where
open import Level
open import Function
open import Function using (_∘_; case_of_)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary
open import Relation.Unary.PredicateTransformer hiding (_⊔_)
open import Relation.Ternary.Separation
open import Relation.Ternary.Separation.Monad
open import Relation.Ternary.Separation.Morphisms
open import Data.Unit
open Monads
module Identity {ℓ}
{C : Set ℓ} {u}
{{r : RawSep C}}
{{us : IsUnitalSep r u}}
where
Id : ∀ {ℓ} → Pt C ℓ
Id P = P
instance
id-monad : Monad ⊤ ℓ (λ _ _ → Id)
Monad.return id-monad = id
app (Monad.bind id-monad f) px = app f px
|
{
"alphanum_fraction": 0.7336182336,
"avg_line_length": 23.4,
"ext": "agda",
"hexsha": "353ff6eef8911ff6e9a0f8dd6ff5c0582e60f477",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/Identity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/Identity.agda",
"max_line_length": 60,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 205,
"size": 702
}
|
module Data.Nat where
import Prelude
import Data.Bool as Bool
open Prelude
open Bool
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN ZERO zero #-}
infix 40 _==_ _<_ _≤_ _>_ _≥_
infixl 60 _+_ _-_
infixl 70 _*_
infixr 80 _^_
infix 100 _!
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
_-_ : Nat -> Nat -> Nat
zero - m = zero
suc n - zero = suc n
suc n - suc m = n - m
_*_ : Nat -> Nat -> Nat
zero * m = zero
suc n * m = m + n * m
_^_ : Nat -> Nat -> Nat
n ^ zero = 1
n ^ suc m = n * n ^ m
_! : Nat -> Nat
zero ! = 1
suc n ! = suc n * n !
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATMINUS _-_ #-}
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat -> Nat -> Bool
zero == zero = true
zero == suc _ = false
suc _ == zero = false
suc n == suc m = n == m
_<_ : Nat -> Nat -> Bool
n < zero = false
zero < suc m = true
suc n < suc m = n < m
_≤_ : Nat -> Nat -> Bool
n ≤ m = n < suc m
_>_ = flip _<_
_≥_ = flip _≤_
{-# BUILTIN NATEQUALS _==_ #-}
{-# BUILTIN NATLESS _<_ #-}
divSuc : Nat -> Nat -> Nat
divSuc zero _ = zero
divSuc (suc n) m = 1 + divSuc (n - m) m
modSuc : Nat -> Nat -> Nat
modSuc zero _ = zero
modSuc (suc n) m =
! n ≤ m => suc n
! otherwise modSuc (n - m) m
{-# BUILTIN NATDIVSUC divSuc #-}
-- {-# BUILTIN NATMODSUC modSuc #-}
div : Nat -> Nat -> Nat
div n zero = zero
div n (suc m) = divSuc n m
mod : Nat -> Nat -> Nat
mod n zero = zero
mod n (suc m) = modSuc n m
gcd : Nat -> Nat -> Nat
gcd a 0 = a
gcd a b = gcd b (mod a b)
lcm : Nat -> Nat -> Nat
lcm a b = div (a * b) (gcd a b)
even : Nat -> Bool
even n = mod n 2 == 0
odd : Nat -> Bool
odd n = mod n 2 == 1
|
{
"alphanum_fraction": 0.5330602692,
"avg_line_length": 16.5922330097,
"ext": "agda",
"hexsha": "4e920f84871f3e8832a094fb38fd3045fb1ce2bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Nat.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 676,
"size": 1709
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists with fast append
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.DifferenceList where
open import Data.List.Base as L using (List)
open import Function
open import Data.Nat.Base
infixr 5 _∷_ _++_
DiffList : ∀ {ℓ} → Set ℓ → Set ℓ
DiffList A = List A → List A
lift : ∀ {a} {A : Set a} →
(List A → List A) → (DiffList A → DiffList A)
lift f xs = λ k → f (xs k)
[] : ∀ {a} {A : Set a} → DiffList A
[] = λ k → k
_∷_ : ∀ {a} {A : Set a} → A → DiffList A → DiffList A
_∷_ x = lift (L._∷_ x)
[_] : ∀ {a} {A : Set a} → A → DiffList A
[ x ] = x ∷ []
_++_ : ∀ {a} {A : Set a} → DiffList A → DiffList A → DiffList A
xs ++ ys = λ k → xs (ys k)
toList : ∀ {a} {A : Set a} → DiffList A → List A
toList xs = xs L.[]
-- fromList xs is linear in the length of xs.
fromList : ∀ {a} {A : Set a} → List A → DiffList A
fromList xs = λ k → xs ⟨ L._++_ ⟩ k
-- It is OK to use L._++_ here, since map is linear in the length of
-- the list anyway.
map : ∀ {a b} {A : Set a} {B : Set b} →
(A → B) → DiffList A → DiffList B
map f xs = λ k → L.map f (toList xs) ⟨ L._++_ ⟩ k
-- concat is linear in the length of the outer list.
concat : ∀ {a} {A : Set a} → DiffList (DiffList A) → DiffList A
concat xs = concat' (toList xs)
where
concat' : ∀ {a} {A : Set a} → List (DiffList A) → DiffList A
concat' = L.foldr _++_ []
take : ∀ {a} {A : Set a} → ℕ → DiffList A → DiffList A
take n = lift (L.take n)
drop : ∀ {a} {A : Set a} → ℕ → DiffList A → DiffList A
drop n = lift (L.drop n)
|
{
"alphanum_fraction": 0.5125598086,
"avg_line_length": 26.125,
"ext": "agda",
"hexsha": "81476b1339dc6c1b3a9db91769863ba65b47bb82",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/DifferenceList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/DifferenceList.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/DifferenceList.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 583,
"size": 1672
}
|
module Issue665 where
postulate
A : Set
record I : Set where
constructor i
field
f : A
data Wrap : (j : I) → Set where
con : ∀ {j} → Wrap j
postulate
C : Set
anything : C
works1 : ∀ {X} -> Wrap X -> C
works1 (con {i _}) with anything
... | z = z
works2 : ∀ {X} -> Wrap X -> C
works2 (con {_}) with anything
... | z = z
bugged : ∀ {X} -> Wrap X -> C
bugged con with anything
... | z = z
|
{
"alphanum_fraction": 0.5525672372,
"avg_line_length": 14.1034482759,
"ext": "agda",
"hexsha": "41c16140220f0a87307b1a0f128bc4bf62e48aa5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue665.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue665.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue665.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 150,
"size": 409
}
|
{-# OPTIONS --without-K #-}
module F1 where
open import Data.Unit
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Data.List
open import Data.Nat
open import Data.Bool
{--
infixr 90 _⊗_
infixr 80 _⊕_
infixr 60 _∘_
infix 30 _⟷_
--}
---------------------------------------------------------------------------
-- Paths
-- Path relation should be an equivalence
data Path (A : Set) : Set where
_↝_ : (a : A) → (b : A) → Path A
id↝ : {A : Set} → (a : A) → Path A
id↝ a = a ↝ a
ap : {A B : Set} → (f : A → B) → Path A → Path B
ap f (a ↝ a') = f a ↝ f a'
pathProd : {A B : Set} → Path A → Path B → Path (A × B)
pathProd (a ↝ a') (b ↝ b') = (a , b) ↝ (a' , b')
pathProdL : {A B : Set} → List (Path A) → List (Path B) → List (Path (A × B))
pathProdL pas pbs = concatMap (λ pa → map (pathProd pa) pbs) pas
-- pi types with exactly one level of reciprocals
data B0 : Set where
ONE : B0
PLUS0 : B0 → B0 → B0
TIMES0 : B0 → B0 → B0
data B1 : Set where
LIFT0 : B0 → B1
PLUS1 : B1 → B1 → B1
TIMES1 : B1 → B1 → B1
RECIP1 : B0 → B1
-- interpretation of B0 as discrete groupoids
record 0-type : Set₁ where
constructor G₀
field
∣_∣₀ : Set
open 0-type public
plus : 0-type → 0-type → 0-type
plus t₁ t₂ = G₀ (∣ t₁ ∣₀ ⊎ ∣ t₂ ∣₀)
times : 0-type → 0-type → 0-type
times t₁ t₂ = G₀ (∣ t₁ ∣₀ × ∣ t₂ ∣₀)
⟦_⟧₀ : B0 → 0-type
⟦ ONE ⟧₀ = G₀ ⊤
⟦ PLUS0 b₁ b₂ ⟧₀ = plus ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀
⟦ TIMES0 b₁ b₂ ⟧₀ = times ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀
elems0 : (b : B0) → List ∣ ⟦ b ⟧₀ ∣₀
elems0 ONE = [ tt ]
elems0 (PLUS0 b b') = map inj₁ (elems0 b) ++ map inj₂ (elems0 b')
elems0 (TIMES0 b b') =
concatMap (λ a → map (λ b → (a , b)) (elems0 b')) (elems0 b)
-- interpretation of B1 types as 2-types
record 2-type : Set₁ where
constructor G₂
field
∣_∣₁ : Set
1-paths : List (Path ∣_∣₁)
2-paths : List (Path (Path ∣_∣₁))
open 2-type public
_⊎↝_ : {A B : Set} → List (Path A) → List (Path B) → List (Path (A ⊎ B))
p₁ ⊎↝ p₂ = map (ap inj₁) p₁ ++ map (ap inj₂) p₂
⟦_⟧₁ : B1 → 2-type
⟦ LIFT0 b0 ⟧₁ = G₂ ∣ ⟦ b0 ⟧₀ ∣₀ (map id↝ (elems0 b0)) []
⟦ PLUS1 b₁ b₂ ⟧₁ with ⟦ b₁ ⟧₁ | ⟦ b₂ ⟧₁
... | G₂ 0p₁ 1p₁ 2p₁ | G₂ 0p₂ 1p₂ 2p₂ = G₂ (0p₁ ⊎ 0p₂) (1p₁ ⊎↝ 1p₂) []
⟦ TIMES1 b₁ b₂ ⟧₁ = G₂ {!!} {!!} []
⟦ RECIP1 b0 ⟧₁ = G₂ ⊤ (map (λ _ → tt ↝ tt) (elems0 b0)) []
test10 = ⟦ LIFT0 ONE ⟧₁
test11 = ⟦ LIFT0 (PLUS0 ONE ONE) ⟧₁
test12 = ⟦ RECIP1 (PLUS0 ONE ONE) ⟧₁
{--
-- isos
data _⟷_ : B → B → Set where
-- +
swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁
assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
-- *
unite⋆ : { b : B } → TIMES ONE b ⟷ b
uniti⋆ : { b : B } → b ⟷ TIMES ONE b
swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
-- * distributes over +
dist : { b₁ b₂ b₃ : B } →
TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
factor : { b₁ b₂ b₃ : B } →
PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
-- congruence
id⟷ : { b : B } → b ⟷ b
sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
_∘_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
-- interpret isos as functors
record 0-functor (A B : 0-type) : Set where
constructor F₀
field
fobj : ∣ A ∣ → ∣ B ∣
fmor : {a b : ∣ A ∣} → (a ≡ b) → (fobj a ≡ fobj b)
fmor {a} {.a} (refl .a) = refl (fobj a)
open 0-functor public
swap⊎ : {A B : Set} → A ⊎ B → B ⊎ A
swap⊎ (inj₁ a) = inj₂ a
swap⊎ (inj₂ b) = inj₁ b
eval : {b₁ b₂ : B} → (b₁ ⟷ b₂) → 0-functor ⟦ b₁ ⟧ ⟦ b₂ ⟧
eval swap₊ = F₀ swap⊎
eval assocl₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
eval assocr₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
eval unite⋆ = ? -- : { b : B } → TIMES ONE b ⟷ b
eval uniti⋆ = ? -- : { b : B } → b ⟷ TIMES ONE b
eval swap⋆ = ? -- : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
eval assocl⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
eval assocr⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
eval dist = ? -- : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
eval factor = ? -- : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
eval id⟷ = ? -- : { b : B } → b ⟷ b
eval (sym c) = ? -- : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
eval (c₁ ∘ c₂) = ? -- : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
eval (c₁ ⊕ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
eval (c₁ ⊗ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
---------------------------------------------------------------------------
--}
|
{
"alphanum_fraction": 0.4984282908,
"avg_line_length": 30.4790419162,
"ext": "agda",
"hexsha": "eed7d6b5dbea8a5c5ea3455be3b548fc11d2f3b6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "F1.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "F1.agda",
"max_line_length": 97,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "F1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2550,
"size": 5090
}
|
module Generic.Reflection.ReadData where
open import Generic.Core
open import Generic.Function.FoldMono
‵π : ArgInfo -> String -> Term -> Term -> Term
‵π i s a b = sate π (reify i) (sate refl) ∘ sate coerce ∘ sate _,_ a $
appDef (quote appRel) (implRelArg (reify (relevance i)) ∷ explRelArg (explLam s b) ∷ [])
quoteHyp : Name -> ℕ -> Type -> Maybe (Maybe Term)
quoteHyp d p (pi s (arg i a) b) =
quoteHyp d p a >>= maybe (const nothing) (fmap (‵π i s a) <$> quoteHyp d p b)
quoteHyp d p t@(appDef n is) = just $ d == n ?> sate var (toTuple ∘ map argVal $ drop p is)
quoteHyp d p t = just nothing
quoteDesc : Name -> ℕ -> Type -> Maybe Term
quoteDesc d p (pi s (arg i a) b) =
(λ ma' b' -> maybe (λ a' -> sate _⊛_ a' (unshift′ b')) (‵π i s a b') ma')
<$> quoteHyp d p a <*> quoteDesc d p b
quoteDesc d p t = join $ quoteHyp d p t
-- We didn't need that `β` previously. Why do we need it now?
-- Or, perhaps, why didn't we need it earlier? It kinda makes sense.
quoteData : Data Type -> TC Term
quoteData (packData d a b cs ns) =
case termLevelOf (monoLastType b) ⊗ mapM (quoteDesc d (countPis a)) cs of λ
{ nothing -> throw "can't read a data type"
; (just (β , cs′)) -> (λ qa qb -> explLamsBy a ∘ curryBy b ∘ appDef (quote μ)
$ implRelArg unknown
∷ implRelArg β
∷ explRelArg (sate packData (reify d) qa qb (reify cs′) (reify ns))
∷ [])
<$> quoteTC a <*> quoteTC b
}
onFinalMu : ∀ {α} {A : Set α} -> (∀ {ι β} {I : Set ι} -> Data (Desc I β) -> TC A) -> Type -> TC A
onFinalMu k = monoLastType >>> λ
{ (appDef (quote μ) (implRelArg qι ∷ implRelArg qβ ∷ implRelArg qI ∷ explRelArg qD ∷ _)) ->
bindTC (unquoteTC qι) λ ι ->
bindTC (unquoteTC qβ) λ β ->
bindTC (unquoteTC qI) λ I ->
bindTC (unquoteTC qD) λ D -> k {ι} {β} {I} D
; _ ->
throw "the return type must be μ"
}
guncoercePure : Data Type -> Term
guncoercePure (packData d a b cs ns) = explLam "x" ∘ vis appDef (quote curryFoldMono)
$ explUncurryBy b (vis appDef d (replicate (countExplPis a) unknown))
∷ pureVar 0
∷ unmap pureCon ns
macro
readData : Name -> Term -> TC _
readData d ?r = getData d >>= quoteData >>= unify ?r
gcoerce : Name -> Term -> TC _
gcoerce fd ?r = inferNormType ?r >>= onFinalMu λ{ D@(packData _ _ b _ _) ->
quoteTC (μ D) >>= λ μD ->
traverseAll quoteTC (allCons D) >>= λ cs′ ->
unify ?r $ vis appDef fd (curryBy b μD ∷ allToList cs′)
}
guncoerce : ∀ {ι β} {I : Set ι} {D : Data (Desc I β)} {j} -> μ D j -> Term -> TC _
guncoerce {D = packData d a b cs ns} e ?r =
quoteTC e >>= λ qe -> unify ?r ∘ vis appDef (quote curryFoldMono)
$ explUncurryBy b (vis appDef d (replicate (countExplPis a) unknown))
∷ qe
∷ unmap pureCon ns
|
{
"alphanum_fraction": 0.5658119658,
"avg_line_length": 41.7857142857,
"ext": "agda",
"hexsha": "86ad5737f3613c0e702c050f2b7e051f3d81b693",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Reflection/ReadData.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Reflection/ReadData.agda",
"max_line_length": 97,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Reflection/ReadData.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 1012,
"size": 2925
}
|
-- Context extension of presheaves
module SOAS.Families.Delta {T : Set} where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Sorting
open import SOAS.Construction.Structure
open import SOAS.Families.Core {T}
-- | General context extension by a context Θ
module Unsorted where
-- Concatenate Θ to the context of a family
δ : Ctx → Family → Family
δ Θ X Γ = X (Θ ∔ Γ)
δF : Ctx → Functor 𝔽amilies 𝔽amilies
δF Θ = record { F₀ = δ Θ ; F₁ = λ f → f ; identity = refl
; homomorphism = refl ; F-resp-≈ = λ z → z }
-- | Context extension by a single type τ, a special case of δ with ⌊ τ ⌋
δ₁ : T → Family → Family
δ₁ τ = δ ⌈ τ ⌋
δ₁F_ : T → Functor 𝔽amilies 𝔽amilies
δ₁F τ = δF ⌈ τ ⌋
private
variable
Γ Δ : Ctx
α : T
module Sorted where
-- Concatenate Θ to the context of a family
δ : Ctx → Familyₛ → Familyₛ
δ Θ 𝒳 α Γ = 𝒳 α (Θ ∔ Γ)
δF : Ctx → Functor 𝔽amiliesₛ 𝔽amiliesₛ
δF Θ = record { F₀ = δ Θ ; F₁ = λ f → f ; identity = refl
; homomorphism = refl ; F-resp-≈ = λ z → z }
-- | Context extension by a single type τ, a special case of δ with ⌊ τ ⌋
δ₁ : T → Familyₛ → Familyₛ
δ₁ τ = δ ⌈ τ ⌋
δ₁F_ : T → Functor 𝔽amiliesₛ 𝔽amiliesₛ
δ₁F τ = δF ⌈ τ ⌋
|
{
"alphanum_fraction": 0.6198282592,
"avg_line_length": 24.1698113208,
"ext": "agda",
"hexsha": "e0646633413cd51c4ea580ed7873f6b91d27889e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Families/Delta.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Families/Delta.agda",
"max_line_length": 75,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Families/Delta.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 496,
"size": 1281
}
|
module CombinatoryLogic.Syntax where
open import Data.String using (String; _++_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
-- Kapitel 1, Abschnitt C, §4 (Symbolische Festsetzungen), Def. 1
infixl 6 _∙_
data Combinator : Set where
-- Kapitel 1, Abschnitt C, §3 (Die formalen Grundbegriffe)
B C W K Q Π P ∧ : Combinator
-- Kapitel 1, Abschnitt C, §2, c (Anwendung)
_∙_ : (X Y : Combinator) → Combinator
-- NOTE: for the (intensional) equality defined by Kapitel 1, Abschnitt C, §4
-- (Symbolische Festsetzungen), Festsetzung 2, we use the propositional equality
-- _≡_.
toString : Combinator → String
toString (X ∙ Y@(_ ∙ _)) = toString X ++ "(" ++ toString Y ++ ")"
toString (X ∙ Y) = toString X ++ toString Y
toString B = "B"
toString C = "C"
toString W = "W"
toString K = "K"
toString Q = "Q"
toString Π = "Π"
toString P = "P"
toString ∧ = "∧"
_ : toString (K ∙ Q ∙ (W ∙ C)) ≡ "KQ(WC)"
_ = refl
_ : toString (K ∙ ∧ ∙ (Q ∙ Π) ∙ (W ∙ C)) ≡ "K∧(QΠ)(WC)"
_ = refl
_ : toString (K ∙ ∧ ∙ ((Q ∙ Π) ∙ (W ∙ C))) ≡ "K∧(QΠ(WC))"
_ = refl
_ : toString (K ∙ K ∙ K) ≡ "KKK"
_ = refl
infix 5 _==_
-- Kapitel 1, Abschnitt C, §4 (Symbolische Festsetzungen), Def. 2
_==_ : (X Y : Combinator) → Combinator
X == Y = Q ∙ X ∙ Y
-- Kapitel 1, Abschnitt C, §4 (Symbolische Festsetzungen), Def. 3
I : Combinator
I = W ∙ K
|
{
"alphanum_fraction": 0.6185873606,
"avg_line_length": 25.8653846154,
"ext": "agda",
"hexsha": "8dce32712a56c14c701d5f8be99a61cf8973445c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "CombinatoryLogic/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "CombinatoryLogic/Syntax.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "CombinatoryLogic/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 532,
"size": 1345
}
|
open import Sec4
data ℕ : Set where
Z : ℕ
S : ℕ → ℕ
-- Now ≥ relation
_≥_ : ∀ (m : ℕ) → ∀ (n : ℕ) → Prop
Z ≥ Z = ⊤
S m ≥ Z = ⊤
Z ≥ S n = ⊥
S m ≥ S n = m ≥ n
-- Example proof
-- eqqr : ((S (S (S Z))) ≥ (S (S Z))) → ((S (S Z)) ≥ (S (S (S Z))))
-- eqqr ()
-- -- Now is ≥ equivalence relation?
-- relfexivity
reflexivity : ∀ (m : ℕ) → (m ≥ m)
reflexivity Z = ⋆
reflexivity (S m) = reflexivity m
-- -- -- Now symmetry
-- sym : ∀ (m : ℕ) → ∀ (n : ℕ) → m ≥ n → n ≥ m
-- sym Z Z p = ⋆
-- sym Z (S n) p = ⋆
-- sym (S m) Z ⋆ = {!!}
-- sym (S m) (S n) p = sym m n p
-- -- -- Now transitivity
trans'' : ∀ (m : ℕ) → ∀ (n : ℕ) → ∀ (p : ℕ) → m ≥ n → n ≥ p → m ≥ p
trans'' Z Z p p0 p1 = p1
trans'' Z (S n) p () p1
trans'' (S m) n Z p0 p1 = ⋆
trans'' (S m) Z (S p) p0 ()
trans'' (S m) (S n) (S p) p0 p1 = trans'' m n p p0 p1
-- Given the above three are satisfied, we know that it is an
-- equivalence relation!
-- Now let us try strictly greater than (>)
-- Definition of >
_>_ : ∀ (m : ℕ) → ∀ (n : ℕ) → Prop
Z > Z = ⊥
Z > S n = ⊥
S m > Z = ⊤
S m > S n = m > n
-- Now let us see of > is an equivalence relation
-- reflixvity of > not possible!
-- refl-> : ∀ (m : ℕ) → m > m
-- refl-> Z = {!!}
-- refl-> (S m) = refl-> m
-- equality
_==_ : ∀ (m : ℕ) → ∀ (n : ℕ) → Prop
Z == Z = ⊤
Z == S n = ⊥
S m == Z = ⊥
S m == S n = m == n
-- Is equiality an equivalence relation?
-- reflexivity
refl-≡ : ∀ (m : ℕ) → m == m
refl-≡ Z = ⋆
refl-≡ (S m) = refl-≡ m
-- Symmetry
sym-≡ : ∀ (m : ℕ) → ∀ (n : ℕ) → m == n → n == m
sym-≡ Z Z h = ⋆
sym-≡ Z (S n) ()
sym-≡ (S m) Z ()
sym-≡ (S m) (S n) h = sym-≡ m n h
-- Transitivity
trans-≡ : ∀ (m n p : ℕ) → m == n → n == p → m == p
trans-≡ Z n Z h0 h1 = ⋆
trans-≡ Z Z (S p) h0 h1 = h1
trans-≡ Z (S n) (S p) () h1
trans-≡ (S m) Z Z () h1
trans-≡ (S m) (S n) Z h0 ()
trans-≡ (S m) Z (S p) () h1
trans-≡ (S m) (S n) (S p) h0 h1 = trans-≡ m n p h0 h1
-- Homework ≤ on natural numbers
-- Addition of natural numbers
_+_ : ∀ (m n : ℕ) → ℕ
Z + n = n
S m + n = S (m + n)
-- Use equality, 2 + 3 == 3 + 2
eqq : ((S (S Z)) + (S ( S ( S Z)))) == ((S ( S ( S Z))) + (S (S Z)))
eqq = ⋆
infix 4 _≡_
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
eqq2 : ((S (S Z)) + (S ( S ( S Z)))) ≡ ((S ( S ( S Z))) + (S (S Z)))
eqq2 = refl
cong : ∀ (n m : ℕ) → n ≡ m → S n ≡ S m
cong n .n refl = refl
-lemma-+ : ∀ (n : ℕ) → n ≡ (n + Z)
-lemma-+ Z = refl
-lemma-+ (S n) with -lemma-+ n
-lemma-+ (S n) | h = cong n (n + Z) h
lem2 : ∀ (m n : ℕ) → (m + S n) ≡ S (m + n)
lem2 Z n = refl
lem2 (S m) n = cong (m + S n) (S (m + n)) (lem2 m n)
-- Now prove commutativity of addition
commute-+ : ∀ (m n : ℕ) → (m + n) ≡ (n + m)
commute-+ Z n = -lemma-+ n
commute-+ (S m) n with (n + S m) | (lem2 n m)
commute-+ (S m) n | .(S (n + m)) | refl = cong (m + n) (n + m) (commute-+ m n)
_<_ : ∀ (m n : ℕ) → Prop
Z < Z = ⊥
Z < S n = ⊥
S m < Z = ⊤
S m < S n = m < n
-- refl-< : ∀ (m : ℕ) → m < m
-- refl-< Z = !!
-- refl-< (S m) = !!
-- Define booleans
data 𝔹 : Set where
True : 𝔹
False : 𝔹
-- Define &&
_&&_ : ∀ (A B : 𝔹) → 𝔹
True && True = True
True && False = False
False && B = False
-- Define ||
_||_ : ∀ (A B : 𝔹) → 𝔹
True || B = True
False || True = True
False || False = False
-- Prove equivalence of two hardware functions g and f
g : ∀ (A B C : 𝔹) → 𝔹
g A B C = B && (A || C)
ff : ∀ (A B C : 𝔹) → 𝔹
ff A B C = (A && B) || ((B && C) && (B || C))
-- Equality of booleans
_==̰_ : ∀ (A B : 𝔹) → Prop
True ==̰ True = ⊤
True ==̰ False = ⊥
False ==̰ True = ⊥
False ==̰ False = ⊤
-- Now prove that for any input A B C, g ≡ ff
g≃ff : ∀ (A B C : 𝔹) → (g A B C) ==̰ (ff A B C)
g≃ff True True True = ⋆
g≃ff True True False = ⋆
g≃ff True False C = ⋆
g≃ff False True True = ⋆
g≃ff False True False = ⋆
g≃ff False False C = ⋆
_≤_ : ∀ (m n : ℕ) → Prop
Z ≤ n = ⊤
S m ≤ Z = ⊥
S m ≤ S n = m ≤ n
-- Symmetry on ≤
-- sym-≤ : ∀ (m n : ℕ) → (m ≤ n) → (n ≤ m)
-- sym-≤ Z Z ⋆ = ⋆
-- sym-≤ Z (S n) ⋆ = {!!}
-- sym-≤ (S m) Z ()
-- sym-≤ (S m) (S n) p = sym-≤ m n p
-- ≠
_≠_ : ∀ (m n : ℕ) → Prop
Z ≠ Z = ⊥
Z ≠ S n = ⊤
S m ≠ Z = ⊤
S m ≠ S n = m ≠ n
-- -- Is ≠ an equivalence relation?
-- ≠-refl
-- ≠-relf : ∀ (m : ℕ) → (m ≠ m)
-- ≠-relf Z = {!!}
-- ≠-relf (S m) = ≠-relf m
-- -- Symmetry
≠-sym : ∀ (m n : ℕ) → (m ≠ n) → (n ≠ m)
≠-sym Z Z ()
≠-sym Z (S n) p = ⋆
≠-sym (S m) Z p = ⋆
≠-sym (S m) (S n) p = ≠-sym m n p
-- -- Transitivity
-- ≠-trans : ∀ (m n p : ℕ) → (m ≠ n) → (n ≠ p) → (m ≠ p)
-- ≠-trans Z Z Z h0 ()
-- ≠-trans Z (S n) Z ⋆ ⋆ = {!!}
-- ≠-trans Z n (S p) h0 h1 = ⋆
-- ≠-trans (S m) n Z h0 h1 = ⋆
-- ≠-trans (S m) Z (S p) ⋆ ⋆ = {!!}
-- ≠-trans (S m) (S n) (S p) h0 h1 = ≠-trans m n p h0 h1
de1 : {A B : Prop} → ((¬ A) ∨ (¬ B)) ⇒ ¬ (A ∧ B)
de1 = impl (λ x → neg (impl (λ x₁ →
let y = elim1-∧ x₁
z = elim2-∧ x₁
in
elim-∨ x (λ x₃ → elim-neg y x₃) (λ x₂ → elim-neg z x₂))))
de2 : {A B : Prop} → ((¬ A) ∧ (¬ B)) ⇒ (¬ (A ∨ B))
de2 = impl (λ x → neg (impl (λ x₁ → elim-∨ x₁ (λ x₂ → elim-neg x₂ (elim1-∧ x))
(λ x₂ → elim-neg x₂ (elim2-∧ x)))))
-- Multiplication of naturals
_*_ : ∀ (m n : ℕ) → ℕ
Z * n = Z
S m * n = n + (m * n)
-- Square relation on two naturals
_r²_ : ∀ (m n : ℕ) → Prop
m r² n = (m * m) ≡ (n * n)
-- reflexivity of r²
refl-r² : ∀ (m : ℕ) → (m r² m)
refl-r² Z = refl
refl-r² (S m) = refl
sym-r² : ∀ (m n : ℕ) → (m r² n) → (n r² m)
sym-r² Z Z p = refl
sym-r² Z (S n) ()
sym-r² (S m) Z ()
sym-r² (S m) (S n) p rewrite p = refl
trans-r² : ∀ (m n p : ℕ) → (m r² n) → (n r² p) → (m r² p)
trans-r² Z n Z h0 h1 = refl
trans-r² Z Z (S p) refl ()
trans-r² Z (S n) (S p) () h1
trans-r² (S m) Z Z () h1
trans-r² (S m) (S n) Z h0 ()
trans-r² (S m) Z (S p) () h1
trans-r² (S m) (S n) (S p) h0 h1 rewrite h0
| h1 = refl
|
{
"alphanum_fraction": 0.4285232068,
"avg_line_length": 22.6145038168,
"ext": "agda",
"hexsha": "f84c7ee00534108f5ae2344363c012e368105577",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "amal029/agda-tutorial-dybjer",
"max_forks_repo_path": "lecture.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "amal029/agda-tutorial-dybjer",
"max_issues_repo_path": "lecture.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "amal029/agda-tutorial-dybjer",
"max_stars_repo_path": "lecture.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z",
"num_tokens": 2816,
"size": 5925
}
|
module Schedule where
open import Data.Bool
open import Data.Fin
open import Data.Empty
open import Data.List
open import Data.List.All
open import Data.Maybe
open import Data.Nat
open import Data.Product
open import Data.Sum
open import Data.Unit
open import Function using (_$_)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Typing
open import Syntax
open import Global
open import Channel
open import Values
open import Session
-- outcomes of step
data Event : Set where
Terminated Forked Restarted Halted New Closed NotClosed WaitSkipped : Event
SendSkipped Received NotReceived : Event
Stuck : Event
Selected NotSelected : Event
NSelected NotNSelected BranchSkipped NBranchSkipped : Event
data NextPool : Set where
_,_ : ∀ {G} → Event → ThreadPool G → NextPool
module Alternative where
step : ∀ {Gtop G1 G2} → SSplit Gtop G1 G2 → ThreadPool G1 → ThreadPool G2 → NextPool
step ss-top (tnil ina) tp2@(tnil _) = Terminated , tp2
step ss-top (tnil ina) tp2 = Stuck , tp2
step ss-top (tcons ss (Fork{G₁ = G₁}{G₂ = G₂} ss₁ κ₁ κ₂) tp) tp2
with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ with ssplit-refl-right G₁ | ssplit-refl-right G₂
... | Gunit , ss-G1GunitG1 | G2unit , ss-G2GuG2 =
Forked , (tappend ss-top ((tcons ss₁₃ (apply-cont ss-G1GunitG1 κ₁ (VUnit (ssplit-inactive-right ss-G1GunitG1)))
(tcons ss₂₄ (Ready ss-G2GuG2 (VUnit (ssplit-inactive-right ss-G2GuG2)) κ₂) tp))) tp2)
step ss-top (tcons ss (Ready ss₁ v κ) tp) tp2 =
Restarted , (tappend ss-top (tsnoc ss tp (apply-cont ss₁ κ v)) tp2)
step ss-top (tcons ss (Halt inaG x₁ x₂) tp) tp2
rewrite inactive-left-ssplit ss inaG = Halted , (tappend ss-top tp tp2)
step ss-top (tcons{G₁} ss (New s κ) tp) tp2
with ssplit-refl-right G₁
... | Gi , ss-GiG1
with ssplit-inactive-right ss-GiG1
... | ina-Gi = New , (tappend (ss-left ss-top) ((tcons (ss-left ss)
(Ready (ss-left ss-GiG1) (VPair (ss-posneg (inactive-ssplit-trivial ina-Gi)) (VChan POS (here-pos ina-Gi (subF-refl _))) (VChan NEG (here-neg ina-Gi (subF-refl _)))) (lift-cont κ))
(lift-threadpool tp))) (lift-threadpool tp2))
step ss-top (tcons{G₁}{G₂} ss cmd@(Close ss-vκ v κ) tp) tp2
with ssplit-compose ss-top ss
... | Gi , ss-top1 , ss-top2
with ssplit-refl-left-inactive Gi
... | G' , ina-G' , ss-GG'
with matchWaitAndGo ss-top1 (ss-vκ , v , κ) ss-GG' (tappend ss-top2 tp tp2) (tnil ina-G')
... | just (Gnext , tpnext) = Closed , tpnext
... | nothing
with ssplit-compose5 ss-top ss
... | Gi' , ss-top1' , ss-top2' = step ss-top1' tp (tsnoc ss-top2' tp2 cmd)
step ss-top (tcons ss cmd@(Wait ss₁ v κ) tp) tp2
with ssplit-compose5 ss-top ss
... | Gi , ss-top1 , ss-top2 =
step ss-top1 tp (tsnoc ss-top2 tp2 cmd)
step ss-top (tcons ss cmd@(Send ss₁ ss-args vch v κ) tp) tp2
with ssplit-compose5 ss-top ss
... | Gi , ss-top1 , ss-top2 =
step ss-top1 tp (tsnoc ss-top2 tp2 cmd)
step ss-top (tcons{G₁}{G₂} ss cmd@(Recv ss-vκ vch κ) tp) tp2
with ssplit-compose ss-top ss
... | Gi , ss-top1 , ss-top2
with ssplit-refl-left-inactive Gi
... | G' , ina-G' , ss-GG'
with matchSendAndGo ss-top1 (ss-vκ , vch , κ) ss-GG' (tappend ss-top2 tp tp2) (tnil ina-G')
... | just (G-next , tp-next) =
Received , tp-next
... | nothing
with ssplit-compose5 ss-top ss
... | Gi' , ss-top1' , ss-top2' =
step ss-top1' tp (tsnoc ss-top2' tp2 cmd)
step ss-top (tcons{G₁}{G₂} ss cmd@(Select ss-vκ lab vch κ) tp) tp2
with ssplit-compose ss-top ss
... | Gi , ss-top1 , ss-top2
with ssplit-refl-left-inactive Gi
... | G' , ina-G' , ss-GG'
with matchBranchAndGo ss-top1 (ss-vκ , lab , vch , κ) ss-GG' (tappend ss-top2 tp tp2) (tnil ina-G')
... | just (G-next , tp-next) =
Selected , tp-next
... | nothing
with ssplit-compose5 ss-top ss
... | Gi' , ss-top1' , ss-top2' =
step ss-top1' tp (tsnoc ss-top2' tp2 cmd)
step ss-top (tcons ss cmd@(Branch ss₁ vch dcont) tp) tp2
with ssplit-compose5 ss-top ss
... | Gi , ss-top1 , ss-top2 =
step ss-top1 tp (tsnoc ss-top2 tp2 cmd)
step ss-top (tcons{G₁}{G₂} ss cmd@(NSelect ss-vκ lab vch κ) tp) tp2
with ssplit-compose ss-top ss
... | Gi , ss-top1 , ss-top2
with ssplit-refl-left-inactive Gi
... | G' , ina-G' , ss-GG'
with matchNBranchAndGo ss-top1 (ss-vκ , lab , vch , κ) ss-GG' (tappend ss-top2 tp tp2) (tnil ina-G')
... | just (G-next , tp-next) = NSelected , tp-next
... | nothing
with ssplit-compose5 ss-top ss
... | Gi' , ss-top1' , ss-top2' =
step ss-top1' tp (tsnoc ss-top2' tp2 cmd)
step ss-top (tcons ss cmd@(NBranch ss₁ vch dcont) tp) tp2
with ssplit-compose5 ss-top ss
... | Gi , ss-top1 , ss-top2 =
step ss-top1 tp (tsnoc ss-top2 tp2 cmd)
module Original where
step : ∀ {G} → ThreadPool G → NextPool
step (tnil ina) =
Terminated , tnil ina
step (tcons ss (Fork{G₁ = G₁}{G₂ = G₂} ss₁ κ₁ κ₂) tp) with ssplit-compose ss ss₁
... | Gi , ss₁₃ , ss₂₄ with ssplit-refl-right G₁ | ssplit-refl-right G₂
... | Gunit , ss-G1GunitG1 | G2unit , ss-G2GuG2 =
Forked , (tcons ss₁₃ (apply-cont ss-G1GunitG1 κ₁ (VUnit (ssplit-inactive-right ss-G1GunitG1)))
(tcons ss₂₄ (apply-cont ss-G2GuG2 κ₂ (VUnit (ssplit-inactive-right ss-G2GuG2))) tp))
step (tcons ss (Ready ss₁ v κ) tp) =
Restarted , (tsnoc ss tp (apply-cont ss₁ κ v))
step (tcons ss (Halt inaG x₁ x₂) tp) rewrite inactive-left-ssplit ss inaG =
Halted , tp
step (tcons{G₁} ss (New s κ) tp) with ssplit-refl-right G₁
... | Gi , ss-GiG1 with ssplit-inactive-right ss-GiG1
... | ina-Gi =
New , (tcons (ss-left ss)
(apply-cont (ss-left ss-GiG1) (lift-cont κ) (VPair (ss-posneg (inactive-ssplit-trivial ina-Gi)) (VChan POS (here-pos ina-Gi (subF-refl _))) (VChan NEG (here-neg ina-Gi (subF-refl _)))))
(lift-threadpool tp))
step (tcons{G₁}{G₂} ss cmd@(Close ss-vκ v κ) tp) with ssplit-refl-left-inactive G₂
... | G' , ina-G' , ss-GG' with matchWaitAndGo ss (ss-vκ , v , κ) ss-GG' tp (tnil ina-G')
... | just (Gnext , tpnext) = Closed , tpnext
... | nothing = NotClosed , (tsnoc ss tp cmd)
step (tcons ss cmd@(Wait ss₁ v κ) tp) =
WaitSkipped , (tsnoc ss tp cmd)
step (tcons ss cmd@(Send ss₁ ss-args vch v κ) tp) =
SendSkipped , (tsnoc ss tp cmd)
step (tcons{G₁}{G₂} ss cmd@(Recv ss-vκ vch κ) tp) with ssplit-refl-left-inactive G₂
... | G' , ina-G' , ss-GG' with matchSendAndGo ss (ss-vκ , vch , κ) ss-GG' tp (tnil ina-G')
... | just (G-next , tp-next) = Received , tp-next
... | nothing = NotReceived , (tsnoc ss tp cmd)
step (tcons{G₁}{G₂} ss cmd@(Select ss-vκ lab vch κ) tp) with ssplit-refl-left-inactive G₂
... | G' , ina-G' , ss-GG' with matchBranchAndGo ss (ss-vκ , lab , vch , κ) ss-GG' tp (tnil ina-G')
... | just (G-next , tp-next) = Selected , tp-next
... | nothing = NotSelected , (tsnoc ss tp cmd)
step (tcons ss cmd@(Branch ss-vκ vch dcont) tp) =
BranchSkipped , (tsnoc ss tp cmd)
step (tcons{G₁}{G₂} ss cmd@(NSelect ss-vκ lab vch κ) tp) with ssplit-refl-left-inactive G₂
... | G' , ina-G' , ss-GG' with matchNBranchAndGo ss (ss-vκ , lab , vch , κ) ss-GG' tp (tnil ina-G')
... | just (G-next , tp-next) = NSelected , tp-next
... | nothing = NotNSelected , (tsnoc ss tp cmd)
step (tcons ss cmd@(NBranch ss-vκ vch dcont) tp) =
NBranchSkipped , (tsnoc ss tp cmd)
open Alternative
single-step : (∃ λ G → ThreadPool G) → Event × (∃ λ G → ThreadPool G)
single-step (G , tp)
with ssplit-refl-left-inactive G
... | G' , ina-G' , ss-GG'
with step ss-GG' tp (tnil ina-G')
... | ev , tp' = ev , ( _ , tp')
-- stuff to run ...
data Gas : Set where
Empty : Gas
More : Gas → Gas
-- outcomes of scheduling
data Outcome : Set where
Terminated : Outcome
_,_ : Event → Outcome → Outcome
OutOfGas : ∀ {G} → ThreadPool G → Outcome
-- thread scheduling
schedule : {G : SCtx} → Gas → ThreadPool G → Outcome
schedule Empty tp = OutOfGas tp
schedule{G} (More gas) tp
with single-step (_ , tp)
... | Terminated , _ , tp' = Terminated
... | ev , _ , tp' = ev , (schedule gas tp')
-- start main thread
start : Gas → Expr [] TUnit → Outcome
start f e =
schedule f (tcons ss-[] (run [] ss-[] e (vnil []-inactive) (halt []-inactive UUnit)) (tnil []-inactive))
|
{
"alphanum_fraction": 0.6325257856,
"avg_line_length": 40.2801932367,
"ext": "agda",
"hexsha": "b475f6b1e0831f101e46b97e44b673f25a0cb939",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Schedule.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Schedule.agda",
"max_line_length": 198,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Schedule.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 3016,
"size": 8338
}
|
{-# OPTIONS --without-K --safe #-}
module Dodo.Unary.Empty where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Data.Product using (∃-syntax)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred)
-- # Definitions
Empty₁ : ∀ {a ℓ : Level} {A : Set a} → Pred A ℓ → Set (a ⊔ ℓ)
Empty₁ {A = A} P = ∀ (x : A) → ¬ P x
NonEmpty₁ : ∀ {a ℓ : Level} {A : Set a} → Pred A ℓ → Set (a ⊔ ℓ)
NonEmpty₁ P = ∃[ x ] P x
¬₁_ : ∀ {a ℓ : Level} {A : Set a} → Pred A ℓ → Pred A ℓ
¬₁_ P x = ¬ P x
|
{
"alphanum_fraction": 0.5863377609,
"avg_line_length": 23.9545454545,
"ext": "agda",
"hexsha": "f8bf84c7de5efcc3d254eb8cb7d8081406d91feb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Unary/Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Unary/Empty.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Unary/Empty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 200,
"size": 527
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Ints.BiInvInt.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat hiding (_+_; +-comm)
open import Cubical.Data.Int
open import Cubical.Data.Bool
open import Cubical.HITs.Ints.BiInvInt.Base
-- addition
_+ᴮ_ : BiInvInt → BiInvInt → BiInvInt
m +ᴮ zero = m
m +ᴮ suc n = suc (m +ᴮ n)
m +ᴮ predr n = predr (m +ᴮ n)
m +ᴮ predl n = predl (m +ᴮ n)
m +ᴮ suc-predr n i = suc-predr (m +ᴮ n) i
m +ᴮ predl-suc n i = predl-suc (m +ᴮ n) i
-- properties of addition
+ᴮ-assoc : ∀ l m n → (l +ᴮ m) +ᴮ n ≡ l +ᴮ (m +ᴮ n)
+ᴮ-assoc l m zero i = l +ᴮ m
+ᴮ-assoc l m (suc n) i = suc (+ᴮ-assoc l m n i)
+ᴮ-assoc l m (predr n) i = predr (+ᴮ-assoc l m n i)
+ᴮ-assoc l m (predl n) i = predl (+ᴮ-assoc l m n i)
+ᴮ-assoc l m (suc-predr n i) j = suc-predr (+ᴮ-assoc l m n j) i
+ᴮ-assoc l m (predl-suc n i) j = predl-suc (+ᴮ-assoc l m n j) i
+ᴮ-unitʳ : ∀ n → n +ᴮ zero ≡ n
+ᴮ-unitʳ n i = n
+ᴮ-unitˡ : ∀ n → zero +ᴮ n ≡ n
+ᴮ-unitˡ zero i = zero
+ᴮ-unitˡ (suc n) i = suc (+ᴮ-unitˡ n i)
+ᴮ-unitˡ (predr n) i = predr (+ᴮ-unitˡ n i)
+ᴮ-unitˡ (predl n) i = predl (+ᴮ-unitˡ n i)
+ᴮ-unitˡ (suc-predr n i) j = suc-predr (+ᴮ-unitˡ n j) i
+ᴮ-unitˡ (predl-suc n i) j = predl-suc (+ᴮ-unitˡ n j) i
-- TODO: a direct proof of commutatitivty
-- (for now, we use Data.Int)
fwd-+≡+ᴮ : ∀ m n → fwd (m + n) ≡ (fwd m) +ᴮ (fwd n)
fwd-+≡+ᴮ m (pos zero) = refl
fwd-+≡+ᴮ m (pos (suc n)) = fwd-sucInt (m +pos n) ∙ cong suc (fwd-+≡+ᴮ m (pos n))
fwd-+≡+ᴮ m (negsuc zero) = fwd-predInt m
fwd-+≡+ᴮ m (negsuc (suc n)) = fwd-predInt (m +negsuc n) ∙ cong pred (fwd-+≡+ᴮ m (negsuc n))
+ᴮ≡+ : ∀ m n → m +ᴮ n ≡ fwd ((bwd m) + (bwd n))
+ᴮ≡+ m n = sym (fwd-+≡+ᴮ (bwd m) (bwd n) ∙ (λ i → (fwd-bwd m i) +ᴮ (fwd-bwd n i)))
+ᴮ-comm : ∀ m n → m +ᴮ n ≡ n +ᴮ m
+ᴮ-comm m n = +ᴮ≡+ m n ∙ cong fwd (+-comm (bwd m) (bwd n)) ∙ sym (+ᴮ≡+ n m)
-- some of the lemmas needed for a direct proof +ᴮ-comm are corollaries of +ᴮ-comm
suc-+ᴮ : ∀ m n → (suc m) +ᴮ n ≡ suc (m +ᴮ n)
suc-+ᴮ m n = +ᴮ-comm (suc m) n ∙ (λ i → suc (+ᴮ-comm n m i))
-- suc-+ᴮ m zero i = suc m
-- suc-+ᴮ m (suc n) i = suc (suc-+ᴮ m n i)
-- suc-+ᴮ m (predr n) = cong predr (suc-+ᴮ m n) ∙ predr-suc (m +ᴮ n) ∙ sym (suc-predr (m +ᴮ n))
-- suc-+ᴮ m (predl n) = cong predl (suc-+ᴮ m n) ∙ predl-suc (m +ᴮ n) ∙ sym (suc-predl (m +ᴮ n))
-- suc-+ᴮ m (suc-predr n i) j = {!!}
-- suc-+ᴮ m (predl-suc n i) j = {!!}
predr-+ᴮ : ∀ m n → (predr m) +ᴮ n ≡ predr (m +ᴮ n)
predr-+ᴮ m n = +ᴮ-comm (predr m) n ∙ (λ i → predr (+ᴮ-comm n m i))
predl-+ᴮ : ∀ m n → (predl m) +ᴮ n ≡ predl (m +ᴮ n)
predl-+ᴮ m n = +ᴮ-comm (predl m) n ∙ (λ i → predl (+ᴮ-comm n m i))
-- +ᴮ-comm : ∀ m n → n +ᴮ m ≡ m +ᴮ n
-- +ᴮ-comm m zero = +ᴮ-unitˡ m
-- +ᴮ-comm m (suc n) = suc-+ᴮ n m ∙ cong suc (+ᴮ-comm m n)
-- +ᴮ-comm m (predr n) = predr-+ᴮ n m ∙ cong predr (+ᴮ-comm m n)
-- +ᴮ-comm m (predl n) = predl-+ᴮ n m ∙ cong predl (+ᴮ-comm m n)
-- +ᴮ-comm m (suc-predr n i) j = {!!}
-- +ᴮ-comm m (predl-suc n i) j = {!!}
-- negation / subtraction
-ᴮ_ : BiInvInt → BiInvInt
-ᴮ zero = zero
-ᴮ suc n = predl (-ᴮ n)
-ᴮ predr n = suc (-ᴮ n)
-ᴮ predl n = suc (-ᴮ n)
-ᴮ suc-predr n i = predl-suc (-ᴮ n) i
-ᴮ predl-suc n i = suc-predl (-ᴮ n) i
_-ᴮ_ : BiInvInt → BiInvInt → BiInvInt
m -ᴮ n = m +ᴮ (-ᴮ n)
-- TODO: properties of negation
-- +ᴮ-invˡ : ∀ n → (-ᴮ n) +ᴮ n ≡ zero
-- +ᴮ-invˡ zero = refl
-- +ᴮ-invˡ (suc n) = (λ i → suc (predl-+ᴮ (-ᴮ n) n i)) ∙ (λ i → suc-pred (+ᴮ-invˡ n i) i)
-- +ᴮ-invˡ (predr n) = (λ i → predr (suc-+ᴮ (-ᴮ n) n i)) ∙ (λ i → predr-suc (+ᴮ-invˡ n i) i)
-- +ᴮ-invˡ (predl n) = (λ i → predl (suc-+ᴮ (-ᴮ n) n i)) ∙ (λ i → predl-suc (+ᴮ-invˡ n i) i)
-- +ᴮ-invˡ (suc-predr n i) j = {!!}
-- +ᴮ-invˡ (predl-suc n i) j = {!!}
-- +ᴮ-invʳ : ∀ n → n +ᴮ (-ᴮ n) ≡ zero
-- +ᴮ-invʳ n = {!!}
-- natural injections from ℕ
posᴮ : ℕ → BiInvInt
posᴮ zero = zero
posᴮ (suc n) = suc (posᴮ n)
negᴮ : ℕ → BiInvInt
negᴮ zero = zero
negᴮ (suc n) = pred (negᴮ n)
-- absolute value and sign
-- (Note that there doesn't appear to be any way around using
-- bwd here! Any direct proof ends up doing the same work...)
absᴮ : BiInvInt → ℕ
absᴮ n = abs (bwd n)
sgnᴮ : BiInvInt → Bool
sgnᴮ n = sgn (bwd n)
-- TODO: a direct definition of multiplication using +ᴮ-invˡ/ʳ
-- (for now we use abs and sgn, as in agda's stdlib)
_*ᴮ_ : BiInvInt → BiInvInt → BiInvInt
m *ᴮ n = caseBool posᴮ negᴮ (sgnᴮ m and sgnᴮ n) (absᴮ m * absᴮ n)
-- m *ᴮ zero = zero
-- m *ᴮ suc n = (m *ᴮ n) +ᴮ m
-- m *ᴮ predr n = (m *ᴮ n) -ᴮ m
-- m *ᴮ predl n = (m *ᴮ n) -ᴮ m
-- m *ᴮ suc-predr n i = ( +ᴮ-assoc (m *ᴮ n) (-ᴮ m) m
-- ∙ cong ((m *ᴮ n) +ᴮ_) (+ᴮ-invˡ m)
-- ∙ +ᴮ-unitʳ (m *ᴮ n)) i
-- m *ᴮ predl-suc n i = ( +ᴮ-assoc (m *ᴮ n) m (-ᴮ m)
-- ∙ cong ((m *ᴮ n) +ᴮ_) (+ᴮ-invʳ m)
-- ∙ +ᴮ-unitʳ (m *ᴮ n)) i
|
{
"alphanum_fraction": 0.5197316496,
"avg_line_length": 34.0134228188,
"ext": "agda",
"hexsha": "35ff518bfcd7f10384bfba898b08740ea4528aa5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/BiInvInt/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/BiInvInt/Properties.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/BiInvInt/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2656,
"size": 5068
}
|
-- Useless abstract
module Issue476b where
abstract
data A : Set
data A where
|
{
"alphanum_fraction": 0.743902439,
"avg_line_length": 10.25,
"ext": "agda",
"hexsha": "78c7ce5d56974e4d02c38de7c8c4b83ed650d9e5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue476b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue476b.agda",
"max_line_length": 22,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue476b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 23,
"size": 82
}
|
------------------------------------------------------------------------
-- Compiler correctness
------------------------------------------------------------------------
{-# OPTIONS --cubical --safe #-}
module Lambda.Simplified.Partiality-monad.Inductive.Compiler-correctness
where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Monad equality-with-J
open import Vec.Function equality-with-J
open import Partiality-monad.Inductive
open import Partiality-monad.Inductive.Fixpoints hiding (comp; app)
open import Partiality-monad.Inductive.Monad
open import Lambda.Simplified.Compiler
open import Lambda.Simplified.Partiality-monad.Inductive.Interpreter
open import Lambda.Simplified.Partiality-monad.Inductive.Virtual-machine
open import Lambda.Simplified.Syntax
open import Lambda.Simplified.Virtual-machine
private
module C = Closure Code
module T = Closure Tm
open Partial
open Trans-⊑
-- Some abbreviations.
evalⁿ : ∀ {n} → Tm n → T.Env n → ℕ → T.Value ⊥
evalⁿ t ρ n = app→ eval n (_ , t , ρ)
_∙ⁿ_ : T.Value → T.Value → ℕ → T.Value ⊥
(v₁ ∙ⁿ v₂) n = function (v₁ ∙ v₂) (app→ eval n)
execⁿ : State → ℕ → Maybe C.Value ⊥
execⁿ s n = app→ (transformer execP) n s
-- Compiler correctness.
mutual
⟦⟧-correct :
∀ {n} t {ρ : T.Env n} {c s}
{k : ℕ → T.Value → Maybe C.Value ⊥} {n} →
(∀ v → execⁿ ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≳[ n ]
λ n → k n v) →
execⁿ ⟨ comp t c , s , comp-env ρ ⟩ ≳[ n ]
λ n → evalⁿ t ρ (suc n) >>= k n
⟦⟧-correct (var x) {ρ} {c} {s} {k} hyp =
execⁿ ⟨ var x ∷ c , s , comp-env ρ ⟩ ≳⟨ step⇓ ⟩
execⁿ ⟨ c , val (comp-val (ρ x)) ∷ s , comp-env ρ ⟩ ≳⟨ hyp (ρ x) ⟩
(λ n → k n (ρ x)) ≡⟨ sym now->>= ⟩≳
(λ n → evalⁿ (var x) ρ (suc n) >>= k n) ∎≳
⟦⟧-correct (ƛ t) {ρ} {c} {s} {k} hyp =
execⁿ ⟨ clo (comp t (ret ∷ [])) ∷ c , s , comp-env ρ ⟩ ≳⟨ step⇓ ⟩
execⁿ ⟨ c , val (comp-val (T.ƛ t ρ)) ∷ s , comp-env ρ ⟩ ≳⟨ hyp (T.ƛ t ρ) ⟩
(λ n → k n (T.ƛ t ρ)) ≡⟨ sym now->>= ⟩≳
(λ n → evalⁿ (ƛ t) ρ (suc n) >>= k n) ∎≳
⟦⟧-correct (t₁ · t₂) {ρ} {c} {s} {k} {n} hyp =
execⁿ ⟨ comp t₁ (comp t₂ (app ∷ c)) , s , comp-env ρ ⟩ ≳⟨ (⟦⟧-correct t₁ {n = n} λ v₁ → ⟦⟧-correct t₂ λ v₂ → ∙-correct v₁ v₂ hyp) ⟩
(λ n → evalⁿ t₁ ρ (suc n) >>=′ λ v₁ →
evalⁿ t₂ ρ (suc n) >>=′ λ v₂ →
(v₁ ∙ⁿ v₂) n >>=
k n) ≡⟨ cong (evalⁿ t₁ ρ (suc n) >>=′_)
(⟨ext⟩ λ _ → associativity (evalⁿ t₂ ρ (suc n)) _ _) ⟩≳
(λ n → evalⁿ t₁ ρ (suc n) >>=′ λ v₁ →
(evalⁿ t₂ ρ (suc n) >>=′ λ v₂ → (v₁ ∙ⁿ v₂) n) >>=
k n) ≡⟨ associativity (evalⁿ t₁ ρ (suc n)) _ _ ⟩≳
(λ n → evalⁿ (t₁ · t₂) ρ (suc n) >>= k n) ∎≳
∙-correct :
∀ {n} v₁ v₂ {ρ : T.Env n} {c s}
{k : ℕ → T.Value → Maybe C.Value ⊥} {n} →
(∀ v → execⁿ ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≳[ n ]
λ n → k n v) →
execⁿ ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val v₁) ∷ s
, comp-env ρ
⟩ ≳[ n ]
λ n → (v₁ ∙ⁿ v₂) n >>= k n
∙-correct (T.ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} {zero} hyp =
execⁿ ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val (T.ƛ t₁ ρ₁)) ∷ s
, comp-env ρ
⟩ ≡⟨ refl ⟩≳
const never ≡⟨ sym never->>= ⟩≳
(λ n → (T.ƛ t₁ ρ₁ ∙ⁿ v₂) n >>= k n) ∎≳
∙-correct (T.ƛ t₁ ρ₁) v₂ {ρ} {c} {s} {k} {suc n} hyp = later (
execⁿ ⟨ app ∷ c
, val (comp-val v₂) ∷ val (comp-val (T.ƛ t₁ ρ₁)) ∷ s
, comp-env ρ
⟩ ∘ suc ≳⟨⟩
execⁿ ⟨ comp t₁ (ret ∷ [])
, ret c (comp-env ρ) ∷ s
, cons (comp-val v₂) (comp-env ρ₁)
⟩ ∀≡⟨ (λ n → cong (λ ρ′ → execⁿ ⟨ comp t₁ (ret ∷ []) , ret c (comp-env ρ) ∷ s , ρ′ ⟩ n)
(sym comp-cons)) ⟩≳
execⁿ ⟨ comp t₁ (ret ∷ [])
, ret c (comp-env ρ) ∷ s
, comp-env (cons v₂ ρ₁)
⟩ ≳⟨ (⟦⟧-correct t₁ {n = n} λ v →
execⁿ ⟨ ret ∷ []
, val (comp-val v) ∷ ret c (comp-env ρ) ∷ s
, comp-env (cons v₂ ρ₁)
⟩ ≳⟨ step⇓ ⟩
execⁿ ⟨ c , val (comp-val v) ∷ s , comp-env ρ ⟩ ≳⟨ hyp v ⟩
(λ n → k n v) ≳⟨ step⇓ ⟩
(λ n → k (suc n) v) ∎≳) ⟩
(λ n → evalⁿ t₁ (cons v₂ ρ₁) (suc n) >>= k (suc n)) ≳⟨⟩
(λ n → (T.ƛ t₁ ρ₁ ∙ⁿ v₂) (suc n) >>= k (suc n)) ∎≳)
-- Note that the equality that is used here is syntactic.
correct :
∀ t →
exec ⟨ comp t [] , [] , nil ⟩ ≡
(⟦ t ⟧ nil >>= λ v → return (just (comp-val v)))
correct t =
exec ⟨ comp t [] , [] , nil ⟩ ≡⟨ cong (λ ρ → exec ⟨ comp t [] , [] , ρ ⟩) $ sym comp-nil ⟩
exec ⟨ comp t [] , [] , comp-env nil ⟩ ≡⟨⟩
⨆ ( execⁿ ⟨ comp t [] , [] , comp-env nil ⟩
, _
) ≡⟨ ≳→⨆≡⨆ 1 (⟦⟧-correct t $ λ v →
execⁿ ⟨ [] , val (comp-val v) ∷ [] , comp-env nil ⟩ ≳⟨ step⇓ ⟩
const (return (just (comp-val v))) ∎≳) ⟩
⨆ ( (λ n → evalⁿ t nil n >>= λ v →
return (just (comp-val v)))
, _
) ≡⟨ sym ⨆->>= ⟩
(⟦ t ⟧ nil >>= λ v → return (just (comp-val v))) ∎
|
{
"alphanum_fraction": 0.3895036888,
"avg_line_length": 37.9872611465,
"ext": "agda",
"hexsha": "7affb5f368bcccd14158a9d109c1cf8f92472165",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Compiler-correctness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Compiler-correctness.agda",
"max_line_length": 149,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Compiler-correctness.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 2198,
"size": 5964
}
|
{-# OPTIONS --without-K --safe #-}
-- In this module, we define F<:⁻, F<:ᵈ (F<: deterministic defined in Pierce92) and
-- show that F<:⁻ subtyping is undecidable.
module FsubMinus where
open import Data.List as List
open import Data.Nat
open import Data.Maybe as Maybe
open import Data.Product
open import Data.Vec as Vec renaming (_∷_ to _‼_ ; [] to nil) hiding (_++_)
open import Function
open import Data.Empty renaming (⊥ to False)
open import Relation.Nullary
open import Relation.Unary using () renaming (Decidable to UDecidable)
open import Relation.Binary using () renaming (Decidable to BDecidable)
open import Relation.Binary.PropositionalEquality as ≡
open import Data.Nat.Properties as ℕₚ
open import Data.Maybe.Properties as Maybeₚ
open import Utils
-- Definition of F<:⁻
--
-- F<:⁻ is defined by removing function types (_⟶_ in the paper) from F<:.
module FsubMinus where
infix 6 var_
infixr 6 Π<:_∙_
-- Types
--
-- * ⊤ is a supertype of all types.
-- * (var n) represents a type variable.
-- * (Π<: S ∙ U) represent a universal type (∀ X <: S . U).
data Ftyp : Set where
⊤ : Ftyp
var_ : ℕ → Ftyp
Π<:_∙_ : Ftyp → Ftyp → Ftyp
-- typing context
Env : Set
Env = List Ftyp
-- shifting operation of de Bruijn indices
infixl 7 _↑_
_↑_ : Ftyp → ℕ → Ftyp
⊤ ↑ n = ⊤
(var x) ↑ n with n ≤? x
... | yes p = var (suc x)
... | no ¬p = var x
(Π<: S ∙ U) ↑ n = Π<: S ↑ n ∙ U ↑ suc n
infix 4 _<:_∈_
data _<:_∈_ : ℕ → Ftyp → Env → Set where
hd : ∀ {T Γ} → 0 <: T ↑ 0 ∈ T ∷ Γ
tl : ∀ {n T T′ Γ} → n <: T ∈ Γ → suc n <: T ↑ 0 ∈ T′ ∷ Γ
-- subtyping judgment of F<:⁻
-- The statement of the rules should be self-explanatory.
infix 4 _⊢F_<:_
data _⊢F_<:_ : Env → Ftyp → Ftyp → Set where
ftop : ∀ {Γ T} →
Γ ⊢F T <: ⊤
fvrefl : ∀ {Γ n} →
Γ ⊢F var n <: var n
fbinds : ∀ {Γ n T U} →
n <: T ∈ Γ →
Γ ⊢F T <: U →
Γ ⊢F var n <: U
fall : ∀ {Γ S₁ S₂ U₁ U₂} →
Γ ⊢F S₂ <: S₁ →
Γ ‣ S₂ ! ⊢F U₁ <: U₂ →
Γ ⊢F Π<: S₁ ∙ U₁ <: Π<: S₂ ∙ U₂
-- The remaining are some technical setup.
env-lookup : Env → ℕ → Maybe Ftyp
env-lookup [] n = nothing
env-lookup (T ∷ Γ) zero = just $ T ↑ 0
env-lookup (T ∷ Γ) (suc n) = Maybe.map (_↑ 0) $ env-lookup Γ n
lookup⇒<:∈ : ∀ {Γ n T} → env-lookup Γ n ≡ just T → n <: T ∈ Γ
lookup⇒<:∈ {[]} {n} ()
lookup⇒<:∈ {T ∷ Γ} {zero} refl = hd
lookup⇒<:∈ {T ∷ Γ} {suc n} eq with env-lookup Γ n | lookup⇒<:∈ {Γ} {n}
... | nothing | rec with eq
... | ()
lookup⇒<:∈ {T ∷ Γ} {suc n} refl | just T′ | rec = tl (rec refl)
<:∈⇒lookup : ∀ {Γ n T} → n <: T ∈ Γ → env-lookup Γ n ≡ just T
<:∈⇒lookup hd = refl
<:∈⇒lookup (tl <:∈)
rewrite <:∈⇒lookup <:∈ = refl
env-lookup′ : Env → ℕ → Maybe Ftyp
env-lookup′ Γ n = Maybe.map (repeat (suc n) (_↑ 0)) (lookupOpt Γ n)
env-lookup-same : ∀ Γ n → env-lookup Γ n ≡ env-lookup′ Γ n
env-lookup-same [] n = refl
env-lookup-same (T ∷ Γ) zero = refl
env-lookup-same (T ∷ Γ) (suc n)
rewrite env-lookup-same Γ n = sym $ Maybeₚ.map-compose (lookupOpt Γ n)
<:∈-map : ∀ {a} {A : Set a} {n T} {f : A → Ftyp} {_↑′_ : A → ℕ → A} Γ →
(∀ a n → f a ↑ n ≡ f (a ↑′ n)) →
n <: T ∈ List.map f Γ → ∃ λ a → T ≡ f a
<:∈-map {f = f} Γ comm d = aux _ d refl
where aux : ∀ {n T Γ*} Γ → n <: T ∈ Γ* → Γ* ≡ List.map f Γ → ∃ λ a → T ≡ f a
aux [] hd ()
aux (T ∷ Γ) hd refl = -, comm _ _
aux [] (tl <:∈) ()
aux (T ∷ Γ) (tl <:∈) refl with aux Γ <:∈ refl
... | a , refl = -, comm _ _
<:∈-func : ∀ {x T T′ Γ} → x <: T ∈ Γ → x <: T′ ∈ Γ → T ≡ T′
<:∈-func hd hd = refl
<:∈-func (tl T∈Γ) (tl T′∈Γ) = cong (_↑ 0) (<:∈-func T∈Γ T′∈Γ)
Ftyp-measure : Ftyp → ℕ
Ftyp-measure ⊤ = 1
Ftyp-measure (var x) = 1
Ftyp-measure (Π<: S ∙ U) = Ftyp-measure S + Ftyp-measure U
Ftyp-measure≥1 : ∀ T → Ftyp-measure T ≥ 1
Ftyp-measure≥1 ⊤ = s≤s z≤n
Ftyp-measure≥1 (var _) = s≤s z≤n
Ftyp-measure≥1 (Π<: S ∙ U) = ≤-trans (Ftyp-measure≥1 S) (≤-stepsʳ _ ≤-refl)
↑-idx : ℕ → ℕ → ℕ
↑-idx x n with n ≤? x
... | yes p = suc x
... | no ¬p = x
↑-var : ∀ x n → (var x) ↑ n ≡ var (↑-idx x n)
↑-var x n with n ≤? x
... | yes p = refl
... | no ¬p = refl
Ftyp-measure-↑ : ∀ T m → Ftyp-measure (T ↑ m) ≡ Ftyp-measure T
Ftyp-measure-↑ ⊤ m = refl
Ftyp-measure-↑ (var x) m
rewrite ↑-var x m = refl
Ftyp-measure-↑ (Π<: S ∙ U) m
rewrite Ftyp-measure-↑ S m
| Ftyp-measure-↑ U (suc m) = refl
F-measure : ∀ {Γ S U} → Γ ⊢F S <: U → ℕ
F-measure ftop = 1
F-measure fvrefl = 1
F-measure (fbinds _ D) = 1 + F-measure D
F-measure (fall D₁ D₂) = 1 + F-measure D₁ + F-measure D₂
F-deriv = Σ (Env × Ftyp × Ftyp) λ { (Γ , S , U) → Γ ⊢F S <: U }
env : F-deriv → Env
env ((Γ , _) , _) = Γ
typ₁ : F-deriv → Ftyp
typ₁ ((_ , S , U) , _) = S
typ₂ : F-deriv → Ftyp
typ₂ ((_ , S , U) , _) = U
F-measure-packed : F-deriv → ℕ
F-measure-packed (_ , D) = F-measure D
≡⊤-dec : UDecidable (_≡ ⊤)
≡⊤-dec ⊤ = yes refl
≡⊤-dec (var _) = no (λ ())
≡⊤-dec (Π<: _ ∙ _) = no (λ ())
Π<:-injective : ∀ {S U S′ U′} → Π<: S ∙ U ≡ Π<: S′ ∙ U′ → S ≡ S′ × U ≡ U′
Π<:-injective refl = refl , refl
Ftyp-≡-dec : BDecidable (_≡_ {A = Ftyp})
Ftyp-≡-dec ⊤ ⊤ = yes refl
Ftyp-≡-dec ⊤ (var _) = no (λ ())
Ftyp-≡-dec ⊤ (Π<: _ ∙ _) = no (λ ())
Ftyp-≡-dec (var _) ⊤ = no (λ ())
Ftyp-≡-dec (var x) (var y) with x ≟ y
... | yes x≡y = yes (cong var_ x≡y)
... | no x≢y = no (λ { refl → x≢y refl })
Ftyp-≡-dec (var _) (Π<: _ ∙ _) = no (λ ())
Ftyp-≡-dec (Π<: _ ∙ _) ⊤ = no (λ ())
Ftyp-≡-dec (Π<: _ ∙ _) (var _) = no (λ ())
Ftyp-≡-dec (Π<: S ∙ U) (Π<: S′ ∙ U′)
with Ftyp-≡-dec S S′ | Ftyp-≡-dec U U′
... | yes S≡S′ | yes U≡U′ = yes (cong₂ Π<:_∙_ S≡S′ U≡U′)
... | yes S≡S′ | no U≢U′ = no λ Π<:≡ → U≢U′ (proj₂ (Π<:-injective Π<:≡))
... | no S≢S′ | yes U≡U′ = no (λ Π<:≡ → S≢S′ (proj₁ (Π<:-injective Π<:≡)))
... | no S≢S′ | no U≢U′ = no (λ Π<:≡ → S≢S′ (proj₁ (Π<:-injective Π<:≡)))
-- Definition of F<:
--
-- Here we also define full F<:. We do not use it anywhere.
module Full where
infix 6 var_
infixr 6 _⇒_ Π<:_∙_
-- Types
--
-- * ⊤ is a supertype of all types.
-- * (var n) represent a type variable.
-- * (S ⇒ U) represents a function type (S ⟶ U).
-- * (Π<: S ∙ U) represents a universal type (∀ X <: S . U).
data Ftyp : Set where
⊤ : Ftyp
var_ : ℕ → Ftyp
_⇒_ : Ftyp → Ftyp → Ftyp
Π<:_∙_ : Ftyp → Ftyp → Ftyp
Env : Set
Env = List Ftyp
infixl 7 _↑_
_↑_ : Ftyp → ℕ → Ftyp
⊤ ↑ n = ⊤
(var x) ↑ n with n ≤? x
... | yes p = var (suc x)
... | no ¬p = var x
(S ⇒ U) ↑ n = S ↑ n ⇒ U ↑ n
(Π<: S ∙ U) ↑ n = Π<: S ↑ n ∙ U ↑ suc n
infix 4 _<:_∈_
data _<:_∈_ : ℕ → Ftyp → Env → Set where
hd : ∀ {T Γ} → 0 <: T ↑ 0 ∈ T ∷ Γ
tl : ∀ {n T T′ Γ} → n <: T ∈ Γ → suc n <: T ↑ 0 ∈ T′ ∷ Γ
infix 4 _⊢F_<:_
data _⊢F_<:_ : Env → Ftyp → Ftyp → Set where
ftop : ∀ {Γ T} → Γ ⊢F T <: ⊤
fvrefl : ∀ {Γ n} → Γ ⊢F var n <: var n
fbinds : ∀ {Γ n T U} →
n <: T ∈ Γ →
Γ ⊢F T <: U →
Γ ⊢F var n <: U
ffun : ∀ {Γ S₁ S₂ U₁ U₂} →
Γ ⊢F S₂ <: S₁ →
Γ ⊢F U₁ <: U₂ →
Γ ⊢F S₁ ⇒ U₁ <: S₂ ⇒ U₂
fall : ∀ {Γ S₁ S₂ U₁ U₂} →
Γ ⊢F S₂ <: S₁ →
S₂ ∷ Γ ⊢F U₁ <: U₂ →
Γ ⊢F Π<: S₁ ∙ U₁ <: Π<: S₂ ∙ U₂
env-lookup : Env → ℕ → Maybe Ftyp
env-lookup [] n = nothing
env-lookup (T ∷ Γ) zero = just $ T ↑ 0
env-lookup (T ∷ Γ) (suc n) = Maybe.map (_↑ 0) $ env-lookup Γ n
lookup⇒<:∈ : ∀ {Γ n T} → env-lookup Γ n ≡ just T → n <: T ∈ Γ
lookup⇒<:∈ {[]} {n} ()
lookup⇒<:∈ {T ∷ Γ} {zero} refl = hd
lookup⇒<:∈ {T ∷ Γ} {suc n} eq with env-lookup Γ n | lookup⇒<:∈ {Γ} {n}
... | nothing | rec with eq
... | ()
lookup⇒<:∈ {T ∷ Γ} {suc n} refl | just T′ | rec = tl (rec refl)
<:∈⇒lookup : ∀ {Γ n T} → n <: T ∈ Γ → env-lookup Γ n ≡ just T
<:∈⇒lookup hd = refl
<:∈⇒lookup (tl <:∈)
rewrite <:∈⇒lookup <:∈ = refl
env-lookup′ : Env → ℕ → Maybe Ftyp
env-lookup′ Γ n = Maybe.map (repeat (suc n) (_↑ 0)) (lookupOpt Γ n)
env-lookup-same : ∀ Γ n → env-lookup Γ n ≡ env-lookup′ Γ n
env-lookup-same [] n = refl
env-lookup-same (T ∷ Γ) zero = refl
env-lookup-same (T ∷ Γ) (suc n)
rewrite env-lookup-same Γ n = sym $ Maybeₚ.map-compose (lookupOpt Γ n)
open FsubMinus
-- Undecidability of F<:
--
-- Here we show a reduction proof from F<:⁻ to F<:. Assuming F<:⁻ subtyping being
-- undecidable (which is about to be shown below), we formalize that F<: subtyping is
-- undecidable.
module FsubUndec where
-- the interpretation function of types from F<:⁻ to F<:
infixl 5 _*
_* : Ftyp → Full.Ftyp
⊤ * = Full.⊤
var x * = Full.var x
Π<: T₁ ∙ T₂ * = Full.Π<: T₁ * ∙ (T₂ *)
*-↑-comm : ∀ (T : Ftyp) n → (T *) Full.↑ n ≡ (T ↑ n) *
*-↑-comm ⊤ n = refl
*-↑-comm (var x) n with n ≤? x
... | yes p = refl
... | no ¬p = refl
*-↑-comm (Π<: S ∙ U) n rewrite *-↑-comm S n | *-↑-comm U (suc n)
= refl
repeat*-↑-comm : ∀ T n m → repeat n (Full._↑ m) (T *) ≡ (repeat n (_↑ m) T) *
repeat*-↑-comm T zero m = refl
repeat*-↑-comm T (suc n) m
rewrite repeat*-↑-comm T n m = *-↑-comm (repeat n (_↑ m) T) m
*-injective : ∀ {S U} → S * ≡ U * → S ≡ U
*-injective {⊤} {⊤} refl = refl
*-injective {⊤} {var x} ()
*-injective {⊤} {Π<: _ ∙ _} ()
*-injective {var x} {⊤} ()
*-injective {var x} {var .x} refl = refl
*-injective {var _} {Π<: _ ∙ _} ()
*-injective {Π<: S ∙ S₁} {⊤} ()
*-injective {Π<: _ ∙ _} {var x} ()
*-injective {Π<: S ∙ S₁} {Π<: U ∙ U₁} eq
with S * | U * | *-injective {S} {U} | S₁ * | U₁ * | *-injective {S₁} {U₁}
... | S* | U* | r | S₁* | U₁* | r₁ with eq
... | refl rewrite r refl | r₁ refl = refl
Full<:∈⇒<:∈ : ∀ {Γ n T} → n Full.<: T * ∈ List.map _* Γ → n <: T ∈ Γ
Full<:∈⇒<:∈ {Γ} {n} <:∈
with Full.<:∈⇒lookup <:∈
... | eq rewrite Full.env-lookup-same (List.map _* Γ) n
with lookupOpt (List.map _* Γ) n | lookupOpt-map-inv {f = _*} Γ {n}
... | just T | inv
with inv refl
... | T′ , refl , lk
with just-injective eq
... | eq′
rewrite repeat*-↑-comm T′ n 0 | *-↑-comm (repeat n (_↑ 0) T′) 0
with *-injective eq′
... | refl = lookup⇒<:∈ (trans (env-lookup-same Γ n) aux)
where aux : env-lookup′ Γ n ≡ just (repeat n (_↑ 0) T′ ↑ 0)
aux rewrite lk = refl
Full<:∈⇒<:∈ {Γ} {n} <:∈ | () | nothing | _
<:∈⇒Full<:∈ : ∀ {Γ n T} → n <: T ∈ Γ → n Full.<: T * ∈ List.map _* Γ
<:∈⇒Full<:∈ (hd {T})
rewrite sym $ *-↑-comm T 0 = Full.hd
<:∈⇒Full<:∈ (tl {T = T} <:∈)
rewrite sym $ *-↑-comm T 0 = Full.tl (<:∈⇒Full<:∈ <:∈)
full⇒minus-gen : ∀ {Γ* S* U*} → Γ* Full.⊢F S* <: U* →
∀ {Γ S U} → Γ* ≡ List.map _* Γ → S* ≡ (S *) → U* ≡ (U *) →
Γ ⊢F S <: U
full⇒minus-gen Full.ftop {Γ} {S} {⊤} eqΓ eqS refl = ftop
full⇒minus-gen Full.ftop {Γ} {S} {var x} eqΓ eqS ()
full⇒minus-gen Full.ftop {Γ} {S} {Π<: U ∙ U₁} eqΓ eqS ()
full⇒minus-gen Full.fvrefl {Γ} {⊤} {⊤} eqΓ () eqU
full⇒minus-gen Full.fvrefl {Γ} {var x} {⊤} eqΓ refl ()
full⇒minus-gen Full.fvrefl {Γ} {Π<: S ∙ S₁} {⊤} eqΓ () eqU
full⇒minus-gen Full.fvrefl {Γ} {⊤} {var x} eqΓ () eqU
full⇒minus-gen Full.fvrefl {Γ} {var x} {var .x} eqΓ refl refl = fvrefl
full⇒minus-gen Full.fvrefl {Γ} {Π<: S ∙ S₁} {var x} eqΓ () eqU
full⇒minus-gen Full.fvrefl {Γ} {⊤} {Π<: U ∙ U₁} eqΓ () eqU
full⇒minus-gen Full.fvrefl {Γ} {var x} {Π<: U ∙ U₁} eqΓ refl ()
full⇒minus-gen Full.fvrefl {Γ} {Π<: S ∙ S₁} {Π<: U ∙ U₁} eqΓ () eqU
full⇒minus-gen (Full.fbinds T∈Γ* Dfull) {Γ} {⊤} {U} eqΓ () eqU
full⇒minus-gen (Full.fbinds {n = n} T∈Γ* Dfull)
{Γ} {var x} {U} eqΓ refl eqU = aux
where T′∈Γ : ∀ {Γ* T} → n Full.<: T ∈ Γ* → Γ* ≡ List.map _* Γ → ∃[ T′ ] (T ≡ T′ *)
T′∈Γ <:∈ refl with Full.<:∈⇒lookup <:∈
... | eq rewrite Full.env-lookup-same (List.map _* Γ) n
with lookupOpt (List.map _* Γ) n | inspect (lookupOpt (List.map _* Γ)) n
... | just T | [ lk ]
with lookupOpt-map-inv Γ lk | just-injective eq
... | T′ , refl , lkeq | eq′
rewrite repeat*-↑-comm T′ n 0
| *-↑-comm (repeat n (_↑ 0) T′) 0 = -, sym eq′
T′∈Γ <:∈ refl | () | nothing | _
aux : Γ ⊢F var n <: U
aux with T′∈Γ T∈Γ* eqΓ
... | T′ , refl rewrite eqΓ = fbinds (Full<:∈⇒<:∈ T∈Γ*) (full⇒minus-gen Dfull refl refl eqU)
full⇒minus-gen (Full.fbinds T∈Γ* Dfull) {Γ} {Π<: S ∙ S₁} {U} eqΓ () eqU
full⇒minus-gen (Full.ffun _ _) {Γ} {⊤} {U} eqΓ () eqU
full⇒minus-gen (Full.ffun _ _) {Γ} {var x₂} {U} eqΓ () eqU
full⇒minus-gen (Full.ffun _ _) {Γ} {Π<: S ∙ S₁} {U} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {⊤} {⊤} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {⊤} {var x} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {⊤} {Π<: U ∙ U₁} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {var x} {⊤} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {var x} {var x₁} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {var x} {Π<: U ∙ U₁} eqΓ () eqU
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {Π<: S ∙ S₁} {⊤} eqΓ refl ()
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {Π<: S ∙ S₁} {var x} eqΓ refl ()
full⇒minus-gen (Full.fall Dp Dbody) {Γ} {Π<: S₁ ∙ U₁} {Π<: S₂ ∙ U₂}
eqΓ refl refl = fall (full⇒minus-gen Dp eqΓ refl refl)
(full⇒minus-gen Dbody (aux eqΓ) refl refl)
where aux : ∀ {Γ*} → Γ* ≡ List.map _* Γ → (S₂ *) ∷ Γ* ≡ (S₂ *) ∷ List.map _* Γ
aux refl = refl
-- The following two functions accomplish the reduction proof.
full⇒minus : ∀ {Γ S U} → List.map _* Γ Full.⊢F S * <: U * → Γ ⊢F S <: U
full⇒minus Dfull = full⇒minus-gen Dfull refl refl refl
minus⇒full : ∀ {Γ S U} → Γ ⊢F S <: U → List.map _* Γ Full.⊢F S * <: U *
minus⇒full ftop = Full.ftop
minus⇒full fvrefl = Full.fvrefl
minus⇒full {Γ} (fbinds T∈Γ Dminus) = Full.fbinds (<:∈⇒Full<:∈ T∈Γ) (minus⇒full Dminus)
minus⇒full (fall Dp Db) = Full.fall (minus⇒full Dp) (minus⇒full Db)
-- Definition of F<:ᵈ
--
-- Definition of F<:ᵈ F<:ᵈ (F<: deterministic) is an intermediate construction in
-- Pierce92 towards the undecidability proof of F<: subtyping. This intermediate
-- construction is also shown undecidable and we directly use that result here.
module DeterministicFsubSized where
open import Induction.Nat
import Relation.Binary.EqReasoning as Eq
infix 6 var⁻_
infixr 6 Π⁺<:_∙¬_ Π⁻<:⊤∙¬_
-- Types
--
-- Types in F<:ᵈ are divided into two parts and the two parts are mutually defined.
-- The two parts are positive types [Ftyp⁺] and negative types [Ftyp⁻] and defined
-- as follows.
mutual
-- Positive types
-- * ⊤⁺ corresponds to ⊤ in F<:⁻.
-- * (Π⁺<: Ts ∙¬ U) represents a universal type where all types involved are negative types (∀ X₁ <: T₁ ... ∀ Xₙ <: Tₙ . ∀ X <: U . X).
data Ftyp⁺ (n : ℕ) : Set where
⊤⁺ : Ftyp⁺ n
Π⁺<:_∙¬_ : Vec (Ftyp⁻ n) n → Ftyp⁻ n → Ftyp⁺ n
-- Negative types
-- * (var⁻ n) corresponds to a type variable in F<:⁻.
-- * (Π⁻<:⊤∙¬_ T) represents a universal type where all parameter types are ⊤ and T is positive (∀ X₁ <: ⊤ ... ∀ Xₙ <: ⊤ . ∀ X <: T . X).
data Ftyp⁻ (n : ℕ) : Set where
var⁻_ : ℕ → Ftyp⁻ n
Π⁻<:⊤∙¬_ : Ftyp⁺ n → Ftyp⁻ n
-- shifting operation for both positive and negative types
infixl 7 _↑⁺_ _↑⁺_ ⟦_↑⁻_⟧
mutual
_↑⁺_ : ∀ {n} → Ftyp⁺ n → ℕ → Ftyp⁺ n
⊤⁺ ↑⁺ n = ⊤⁺
_↑⁺_ {m} (Π⁺<: S ∙¬ U) n = Π⁺<: ⟦ S ↑⁻ n ⟧ ∙¬ (U ↑⁻ (m + n))
_↑⁻_ : ∀ {n} → Ftyp⁻ n → ℕ → Ftyp⁻ n
(var⁻ x) ↑⁻ n with n ≤? x
... | yes p = var⁻ (suc x)
... | no ¬p = var⁻ x
_↑⁻_ {m} (Π⁻<:⊤∙¬ T) n = Π⁻<:⊤∙¬ (T ↑⁺ (m + n))
⟦_↑⁻_⟧ : ∀ {n m} → Vec (Ftyp⁻ n) m → ℕ → Vec (Ftyp⁻ n) m
⟦ nil ↑⁻ n ⟧ = nil
⟦ T ‼ S ↑⁻ n ⟧ = T ↑⁻ n ‼ ⟦ S ↑⁻ suc n ⟧
-- In F<:ᵈ, typing contexts consist only of negative types.
NEnv : ℕ → Set
NEnv n = List (Ftyp⁻ n)
nenv-lookup : ∀ {n} → NEnv n → ℕ → Maybe (Ftyp⁻ n)
nenv-lookup Γ n = Maybe.map (repeat (suc n) (_↑⁻ 0)) (lookupOpt Γ n)
-- subtyping judgment of F<:ᵈ
--
-- For a fixed n, a subtyping judgment of F<:ᵈ is a ternary predicate, among a
-- typing context (consisting of negative types), a negative type and a positive
-- type. A subtyping judgment in F<:ᵈ asserts that a negative type is a subtype of
-- a positive type in the given context. Notice that there is no subtyping relation
-- between two negative types or two positive types.
infix 4 [_]_⊢FD_<:_
data [_]_⊢FD_<:_ (n : ℕ) : NEnv n → Ftyp⁻ n → Ftyp⁺ n → Set where
fdtop : ∀ {Γ T} → [ n ] Γ ⊢FD T <: ⊤⁺
fdvar : ∀ {Γ m T S U} →
nenv-lookup Γ m ≡ just T →
[ n ] Γ ⊢FD T <: Π⁺<: S ∙¬ U →
[ n ] Γ ⊢FD var⁻ m <: Π⁺<: S ∙¬ U
fdall : ∀ {Γ T S U} →
[ n ] Vec.foldl (λ _ → _) (flip _∷_) Γ S ⊢FD U <: T →
[ n ] Γ ⊢FD Π⁻<:⊤∙¬ T <: Π⁺<: S ∙¬ U
infix 5 _*⁺ _*⁻
infix 6 Π⁻[_]∙_ Π⁺_∙_
-- the interpretation function of types from F<:ᵈ to F<:⁻
mutual
_*⁺ : ∀ {n} → Ftyp⁺ n → Ftyp
⊤⁺ *⁺ = ⊤
Π⁺<: S ∙¬ U *⁺ = Π⁻[ S ]∙ U
Π⁻[_]∙_ : ∀ {n m} → Vec (Ftyp⁻ n) m → Ftyp⁻ n → Ftyp
Π⁻[ nil ]∙ U = Π<: U *⁻ ∙ var zero
Π⁻[ S ‼ Ss ]∙ U = Π<: S *⁻ ∙ Π⁻[ Ss ]∙ U
_*⁻ : ∀ {n} → Ftyp⁻ n → Ftyp
var⁻ n *⁻ = var n
_*⁻ {n} (Π⁻<:⊤∙¬ T) = Π⁺ n ∙ T
Π⁺_∙_ : ∀ {n} → ℕ → Ftyp⁺ n → Ftyp
Π⁺ zero ∙ T = Π<: T *⁺ ∙ var zero
Π⁺ suc n ∙ T = Π<: ⊤ ∙ Π⁺ n ∙ T
module _ where
open Eq (setoid ℕ)
mutual
*-↑-comm⁺ : ∀ {m} (T : Ftyp⁺ m) n → (T *⁺) ↑ n ≡ (T ↑⁺ n) *⁺
*-↑-comm⁺ ⊤⁺ n = refl
*-↑-comm⁺ (Π⁺<: S ∙¬ U) n = Π-↑-comm⁻ S U n
Π-↑-comm⁻ : ∀ {i j} (S : Vec (Ftyp⁻ i) j) (U : Ftyp⁻ i) n →
(Π⁻[ S ]∙ U) ↑ n ≡ Π⁻[ ⟦ S ↑⁻ n ⟧ ]∙ (U ↑⁻ (j + n))
Π-↑-comm⁻ nil U n
rewrite *-↑-comm⁻ U n = refl
Π-↑-comm⁻ {j = suc j} (T ‼ S) U n
rewrite *-↑-comm⁻ T n
| Π-↑-comm⁻ S U (suc n)
| +-suc j n = refl
*-↑-comm⁻ : ∀ {m} (T : Ftyp⁻ m) n → (T *⁻) ↑ n ≡ (T ↑⁻ n) *⁻
*-↑-comm⁻ (var⁻ x) n with n ≤? x
... | yes p = refl
... | no ¬p = refl
*-↑-comm⁻ (Π⁻<:⊤∙¬ T) n = Π-↑-comm⁺ _ T n
Π-↑-comm⁺ : ∀ {i} j (T : Ftyp⁺ i) n →
(Π⁺ j ∙ T) ↑ n ≡ Π⁺ j ∙ (T ↑⁺ (j + n))
Π-↑-comm⁺ zero T n
rewrite *-↑-comm⁺ T n = refl
Π-↑-comm⁺ (suc j) T n
rewrite Π-↑-comm⁺ j T (suc n)
| +-suc j n = refl
repeat*-↑-comm⁻ : ∀ {i} (T : Ftyp⁻ i) n m →
repeat n (_↑ m) (T *⁻) ≡ (repeat n (_↑⁻ m) T) *⁻
repeat*-↑-comm⁻ T zero m = refl
repeat*-↑-comm⁻ T (suc n) m
rewrite repeat*-↑-comm⁻ T n m = *-↑-comm⁻ (repeat n (_↑⁻ m) T) m
mutual
*-injective⁺ : ∀ {n} {S U : Ftyp⁺ n} → S *⁺ ≡ U *⁺ → S ≡ U
*-injective⁺ {n} {⊤⁺} {⊤⁺} eq = refl
*-injective⁺ {.0} {⊤⁺} {Π⁺<: nil ∙¬ _} ()
*-injective⁺ {.(suc _)} {⊤⁺} {Π⁺<: _ ‼ _ ∙¬ _} ()
*-injective⁺ {n} {Π⁺<: S ∙¬ U} {⊤⁺} eq = ⊥-elim $ aux eq
where aux : ∀ {n m} {S : Vec (Ftyp⁻ n) m} {U} → ¬ Π⁻[ S ]∙ U ≡ ⊤
aux {S = nil} ()
aux {S = _ ‼ S} ()
*-injective⁺ {n} {Π⁺<: S₁ ∙¬ U₁} {Π⁺<: S₂ ∙¬ U₂} eq with Π-injective⁻ eq
... | refl , refl = refl
Π-injective⁻ : ∀ {n m} {S₁ S₂ : Vec (Ftyp⁻ n) m} {U₁ U₂ : Ftyp⁻ n} →
Π⁻[ S₁ ]∙ U₁ ≡ Π⁻[ S₂ ]∙ U₂ →
S₁ ≡ S₂ × U₁ ≡ U₂
Π-injective⁻ {S₁ = nil} {nil} {U₁} {U₂} eq
with U₁ *⁻ | U₂ *⁻ | *-injective⁻ {S = U₁} {U₂}
... | U₁* | U₂* | rec with eq
... | refl = refl , rec refl
Π-injective⁻ {S₁ = S ‼ S₁} {S′ ‼ S₂} {U₁} {U₂} eq
with S *⁻ | S′ *⁻ | Π⁻[ S₁ ]∙ U₁ | Π⁻[ S₂ ]∙ U₂
| *-injective⁻ {S = S} {S′}
| Π-injective⁻ {S₁ = S₁} {S₂} {U₁} {U₂}
... | S* | S′* | Π₁ | Π₂ | recS | rec with eq
... | refl with recS refl | rec refl
... | refl | refl , eqU = refl , eqU
*-injective⁻ : ∀ {n} {S U : Ftyp⁻ n} → S *⁻ ≡ U *⁻ → S ≡ U
*-injective⁻ {n} {var⁻ x} {var⁻ .x} refl = refl
*-injective⁻ {zero} {var⁻ _} {Π⁻<:⊤∙¬ _} ()
*-injective⁻ {suc n} {var⁻ _} {Π⁻<:⊤∙¬ _} ()
*-injective⁻ {n} {Π⁻<:⊤∙¬ T} {var⁻ x} eq = ⊥-elim $ aux _ eq
where aux : ∀ {n x} {T : Ftyp⁺ n} m → ¬ Π⁺ m ∙ T ≡ var x
aux zero ()
aux (suc m) ()
*-injective⁻ {n} {Π⁻<:⊤∙¬ T₁} {Π⁻<:⊤∙¬ T₂} eq with Π-injective⁺ n eq
... | refl = refl
Π-injective⁺ : ∀ {n} {T₁ T₂ : Ftyp⁺ n} m →
Π⁺ m ∙ T₁ ≡ Π⁺ m ∙ T₂ →
T₁ ≡ T₂
Π-injective⁺ {T₁ = T₁} {T₂} zero eq
with T₁ *⁺ | T₂ *⁺ | *-injective⁺ {S = T₁} {T₂}
... | T₁* | T₂* | rec with eq
... | refl = rec refl
Π-injective⁺ {T₁ = T₁} {T₂} (suc m) eq
with Π⁺ m ∙ T₁ | Π⁺ m ∙ T₂ | Π-injective⁺ {T₁ = T₁} {T₂} m
... | Π₁ | Π₂ | rec with eq
... | refl = rec refl
data Pi (P Q : Ftyp → Set) : ℕ → Ftyp → Set where
pzero : ∀ {U} → Q U → Pi P Q zero (Π<: U ∙ var zero)
psuc : ∀ {n S T} → P S → Pi P Q n T -> Pi P Q (suc n) (Π<: S ∙ T)
-- two predicates that capture the images of the interpretation functions
mutual
-- Covar captures the image of the interpretation function from positive types to F<:.
data Covar (n : ℕ) : Ftyp → Set where
cvtop : Covar n ⊤
cvΠ : ∀ {T} → Pi (Contra n) (Contra n) n T → Covar n T
-- Contra captures the image of the interpretation function from negative types to F<:.
data Contra (n : ℕ) : Ftyp → Set where
cnvar : ∀ m → Contra n (var m)
cnΠ : ∀ {T} → Pi (⊤ ≡_) (Covar n) n T → Contra n T
infix 5 ⟦_⟧⁺ ⟦_⟧⁻
-- the inverse functions of the interpretation functions
mutual
⟦_⟧⁺ : ∀ {n T} → Covar n T → Ftyp⁺ n
⟦ cvtop ⟧⁺ = ⊤⁺
⟦ cvΠ P ⟧⁺ = Π⁺<: ∥ P ∥⁺₁ ∙¬ ∥ P ∥⁺₂
∥_∥⁺₁ : ∀ {n m T} → Pi (Contra n) (Contra n) m T → Vec (Ftyp⁻ n) m
∥ pzero U ∥⁺₁ = nil
∥ psuc S P ∥⁺₁ = ⟦ S ⟧⁻ ‼ ∥ P ∥⁺₁
∥_∥⁺₂ : ∀ {n m T} → Pi (Contra n) (Contra n) m T → Ftyp⁻ n
∥ pzero U ∥⁺₂ = ⟦ U ⟧⁻
∥ psuc S P ∥⁺₂ = ∥ P ∥⁺₂
⟦_⟧⁻ : ∀ {n T} → Contra n T → Ftyp⁻ n
⟦ cnvar m ⟧⁻ = var⁻ m
⟦ cnΠ P ⟧⁻ = Π⁻<:⊤∙¬ ∥ P ∥⁻
∥_∥⁻ : ∀ {n m T} → Pi (⊤ ≡_) (Covar n) m T → Ftyp⁺ n
∥ pzero T ∥⁻ = ⟦ T ⟧⁺
∥ psuc S P ∥⁻ = ∥ P ∥⁻
mutual
⟦⟧⁺*⁺⇒id : ∀ {n T} (cT : Covar n T) → (⟦ cT ⟧⁺ *⁺) ≡ T
⟦⟧⁺*⁺⇒id cvtop = refl
⟦⟧⁺*⁺⇒id (cvΠ P) = ∥∥⁻Π⇒id P
∥∥⁻Π⇒id : ∀ {n m T} (P : Pi (Contra n) (Contra n) m T) →
Π⁻[ ∥ P ∥⁺₁ ]∙ ∥ P ∥⁺₂ ≡ T
∥∥⁻Π⇒id (pzero U)
rewrite ⟦⟧⁻*⁻⇒id U = refl
∥∥⁻Π⇒id (psuc S P)
rewrite ⟦⟧⁻*⁻⇒id S | ∥∥⁻Π⇒id P = refl
⟦⟧⁻*⁻⇒id : ∀ {n T} (cT : Contra n T) → (⟦ cT ⟧⁻ *⁻) ≡ T
⟦⟧⁻*⁻⇒id (cnvar m) = refl
⟦⟧⁻*⁻⇒id (cnΠ P) = ∥∥⁺Π⇒id P
∥∥⁺Π⇒id : ∀ {n m T} (P : Pi (⊤ ≡_) (Covar n) m T) → Π⁺ m ∙ ∥ P ∥⁻ ≡ T
∥∥⁺Π⇒id (pzero U) rewrite ⟦⟧⁺*⁺⇒id U = refl
∥∥⁺Π⇒id (psuc refl P) rewrite ∥∥⁺Π⇒id P = refl
infix 5 *⟦_⟧⁺ *⟦_⟧⁻ *∥_,_∥⁺
mutual
*⟦_⟧⁺ : ∀ {n} (T : Ftyp⁺ n) → Covar n (T *⁺)
*⟦ ⊤⁺ ⟧⁺ = cvtop
*⟦ Π⁺<: S ∙¬ U ⟧⁺ = cvΠ *∥ S , U ∥⁺
*∥_,_∥⁺ : ∀ {n m} (S : Vec (Ftyp⁻ n) m) (U : Ftyp⁻ n) →
Pi (Contra n) (Contra n) m (Π⁻[ S ]∙ U)
*∥ nil , U ∥⁺ = pzero *⟦ U ⟧⁻
*∥ S ‼ Ss , U ∥⁺ = psuc *⟦ S ⟧⁻ *∥ Ss , U ∥⁺
*⟦_⟧⁻ : ∀ {n} (T : Ftyp⁻ n) → Contra n (T *⁻)
*⟦ var⁻ x ⟧⁻ = cnvar x
*⟦ Π⁻<:⊤∙¬ T ⟧⁻ = cnΠ *∥ _ , T ∥⁻
*∥_,_∥⁻ : ∀ {n} m (T : Ftyp⁺ n) → Pi (⊤ ≡_) (Covar n) m (Π⁺ m ∙ T)
*∥ zero , T ∥⁻ = pzero *⟦ T ⟧⁺
*∥ suc m , T ∥⁻ = psuc refl *∥ m , T ∥⁻
mutual
*⁺⟦⟧⁺⇒id : ∀ {n} (T : Ftyp⁺ n) → ⟦ *⟦ T ⟧⁺ ⟧⁺ ≡ T
*⁺⟦⟧⁺⇒id ⊤⁺ = refl
*⁺⟦⟧⁺⇒id (Π⁺<: S ∙¬ U)
rewrite *∥∥⁺₁⇒id S U | *∥∥⁺₂⇒id S U = refl
*∥∥⁺₁⇒id : ∀ {n m} (S : Vec (Ftyp⁻ n) m) (U : Ftyp⁻ n) → ∥ *∥ S , U ∥⁺ ∥⁺₁ ≡ S
*∥∥⁺₁⇒id nil U = refl
*∥∥⁺₁⇒id (S ‼ Ss) U
rewrite *⁻⟦⟧⁻⇒id S | *∥∥⁺₁⇒id Ss U = refl
*∥∥⁺₂⇒id : ∀ {n m} (S : Vec (Ftyp⁻ n) m) (U : Ftyp⁻ n) → ∥ *∥ S , U ∥⁺ ∥⁺₂ ≡ U
*∥∥⁺₂⇒id nil U = *⁻⟦⟧⁻⇒id U
*∥∥⁺₂⇒id (S ‼ Ss) U = *∥∥⁺₂⇒id Ss U
*⁻⟦⟧⁻⇒id : ∀ {n} (T : Ftyp⁻ n) → ⟦ *⟦ T ⟧⁻ ⟧⁻ ≡ T
*⁻⟦⟧⁻⇒id (var⁻ x) = refl
*⁻⟦⟧⁻⇒id {n} (Π⁻<:⊤∙¬ T)
rewrite *∥∥⁻⇒id n T = refl
*∥∥⁻⇒id : ∀ {n} m (T : Ftyp⁺ n) → ∥ *∥ m , T ∥⁻ ∥⁻ ≡ T
*∥∥⁻⇒id zero T = *⁺⟦⟧⁺⇒id T
*∥∥⁻⇒id (suc m) T = *∥∥⁻⇒id m T
open Measure <-wellFounded F-measure-packed renaming (wfRec to F-rec)
minus⇒deterministic-gen : ∀ (D : F-deriv) →
∀ n {Γ} (S : Contra n (typ₁ D)) (U : Covar n (typ₂ D)) →
env D ≡ List.map _*⁻ Γ →
[ n ] Γ ⊢FD ⟦ S ⟧⁻ <: ⟦ U ⟧⁺
minus⇒deterministic-gen D = F-rec (λ D → prop D) pf D
where prop : F-deriv → Set
prop D = ∀ n {Γ} (S : Contra n (typ₁ D)) (U : Covar n (typ₂ D)) →
env D ≡ List.map _*⁻ Γ →
[ n ] Γ ⊢FD ⟦ S ⟧⁻ <: ⟦ U ⟧⁺
open ≤-Reasoning
pf : ∀ (D : F-deriv) →
(∀ D′ → F-measure-packed D′ < F-measure-packed D → prop D′) → prop D
pf ((Γ , S* , .⊤) , ftop) rec n S cvtop eq = fdtop
pf ((Γ , S* , .⊤) , ftop) rec n S (cvΠ ()) eq
pf ((Γ , .(var _) , .(var _)) , fvrefl) rec n S (cvΠ ()) eq
pf ((Γ , .(var m) , .⊤) , fbinds T∈Γ D) rec n (cnvar m) cvtop eq = fdtop
pf ((Γ , .(var m) , U*) , fbinds T∈Γ D) rec n {Γ′} (cnvar m) (cvΠ P) refl
with trans (sym $ env-lookup-same (List.map _*⁻ Γ′) m) $ <:∈⇒lookup T∈Γ
... | eq with lookupOpt (List.map _*⁻ Γ′) m | inspect (lookupOpt (List.map _*⁻ Γ′)) m
pf ((Γ , .(var m) , U*) , fbinds T∈Γ D) rec n {Γ′} (cnvar m) (cvΠ P) refl | refl | just T | [ lk ]
with lookupOpt-map-inv Γ′ lk
... | T′ , refl , lk′
rewrite repeat*-↑-comm⁻ T′ m 0
| *-↑-comm⁻ (repeat m (_↑⁻ 0) T′) 0
with rec (-, D) ≤-refl n *⟦ repeat m (_↑⁻ 0) T′ ↑⁻ 0 ⟧⁻ (cvΠ P) refl
... | Drec rewrite *⁻⟦⟧⁻⇒id (repeat m (_↑⁻ 0) T′ ↑⁻ 0)
= fdvar (cong (Maybe.map (repeat (suc m) (_↑⁻ 0))) lk′) Drec
pf ((Γ , .(var m) , U*) , fbinds T∈Γ D) rec n {Γ′} (cnvar m) (cvΠ P) refl | () | nothing | [ lk ]
pf ((Γ , .(var _) , U*) , fbinds T∈Γ D) rec n (cnΠ ()) U eq
pf ((Γ , .(Π<: _ ∙ _) , .(Π<: _ ∙ _)) , Dtop@(fall S₂<:S₁ U₁<:U₂))
rec n (cnΠ Ps) (cvΠ Pu) refl = fdall (aux _ n (fall S₂<:S₁ U₁<:U₂) Ps Pu ≤-refl)
where transport : ∀ {Γ T₁ T₂ S*} (S : Contra n S*)
(D : S* ∷ Γ ⊢F T₁ <: T₂) →
Σ ((⟦ S ⟧⁻ *⁻) ∷ Γ ⊢F T₁ <: T₂) (λ D′ → F-measure D′ ≡ F-measure D)
transport {Γ} {T₁} {T₂} S D
= subst (λ S → Σ (S ∷ Γ ⊢F T₁ <: T₂) (λ D′ → F-measure D′ ≡ F-measure D))
(sym $ ⟦⟧⁻*⁻⇒id S) (D , refl)
aux : ∀ {T₁ T₂} Γ m (D : List.map _*⁻ Γ ⊢F T₁ <: T₂)
(Ps : Pi (_≡_ ⊤) (Covar n) m T₁)
(Pu : Pi (Contra n) (Contra n) m T₂) →
F-measure D ≤ F-measure Dtop →
[ n ] Vec.foldl (λ _ → _) (flip _∷_) Γ ∥ Pu ∥⁺₁ ⊢FD ∥ Pu ∥⁺₂ <: ∥ Ps ∥⁻
aux Γ zero (fall <:₁ <:₂) (pzero S₁) (pzero S₂) ≤
= rec (-, <:₁) (≤-trans shrinks ≤) n S₂ S₁ refl
where shrinks : (F-measure <:₁) < suc (F-measure <:₁ + F-measure <:₂)
shrinks = begin-strict
F-measure <:₁ ≤⟨ ≤-stepsʳ (F-measure <:₂) ≤-refl ⟩
F-measure <:₁ + F-measure <:₂ <⟨ ≤-refl ⟩
suc (F-measure <:₁ + F-measure <:₂) ∎
aux Γ (suc m) (fall <:₁ <:₂) (psuc refl Ps) (psuc S₂ Pu) ≤
with transport S₂ <:₂
... | <:₂′ , eq = aux (⟦ S₂ ⟧⁻ ∷ Γ) m <:₂′ Ps Pu $
begin
F-measure <:₂′ ≡⟨ eq ⟩
F-measure <:₂ ≤⟨ ≤-stepsˡ (F-measure <:₁) ≤-refl ⟩
F-measure <:₁ + F-measure <:₂ <⟨ ≤ ⟩
suc (F-measure S₂<:S₁ + F-measure U₁<:U₂) ∎
-- The following two functions conclude the reduction proof from F<:ᵈ to F<:⁻.
minus⇒deterministic : ∀ n {Γ : NEnv n} {S U} → List.map _*⁻ Γ ⊢F S *⁻ <: U *⁺ → [ n ] Γ ⊢FD S <: U
minus⇒deterministic n {Γ} {S} {U} D with minus⇒deterministic-gen (-, D) n *⟦ S ⟧⁻ *⟦ U ⟧⁺ refl
... | D′ rewrite *⁻⟦⟧⁻⇒id S | *⁺⟦⟧⁺⇒id U = D′
deterministic⇒minus : ∀ n {Γ : NEnv n} {S U} → [ n ] Γ ⊢FD S <: U → List.map _*⁻ Γ ⊢F S *⁻ <: U *⁺
deterministic⇒minus n fdtop = ftop
deterministic⇒minus n {Γ} (fdvar {m = m} T∈Γ D)
with lookupOpt Γ m | inspect (lookupOpt Γ) m
deterministic⇒minus n {Γ} (fdvar {m = m} refl D) | just T | [ eq ]
= fbinds (lookup⇒<:∈ $ begin
env-lookup (List.map _*⁻ Γ) m ≡⟨ env-lookup-same (List.map _*⁻ Γ) m ⟩
env-lookup′ (List.map _*⁻ Γ) m ≡⟨ cong (Maybe.map (repeat (suc m) (_↑ 0)))
(lookupOpt-map Γ _*⁻ eq) ⟩
just (repeat m (_↑ 0) (T *⁻) ↑ 0) ≡⟨ cong (just ∘ (_↑ 0))
(repeat*-↑-comm⁻ T m 0) ⟩
just ((repeat m (_↑⁻ 0) T *⁻) ↑ 0) ≡⟨ cong just $ *-↑-comm⁻ (repeat m (_↑⁻ 0) T) 0 ⟩
just ((repeat m (_↑⁻ 0) T ↑⁻ 0) *⁻) ∎)
(deterministic⇒minus n D)
where open Eq (setoid (Maybe Ftyp))
deterministic⇒minus n {Γ} (fdvar {m = m} () D) | nothing | _
deterministic⇒minus n {Γ} (fdall D) = aux n _ _ _ D
where aux : ∀ {n} m {Γ} (S : Vec (Ftyp⁻ n) m) U T →
[ n ] Vec.foldl (λ _ → _) (flip _∷_) Γ S ⊢FD U <: T →
List.map _*⁻ Γ ⊢F Π⁺ m ∙ T <: Π⁻[ S ]∙ U
aux .0 nil U T D = fall (deterministic⇒minus _ D) fvrefl
aux .(suc _) (x ‼ S) U T D = fall ftop (aux _ S U T D)
|
{
"alphanum_fraction": 0.439826363,
"avg_line_length": 39.6264441592,
"ext": "agda",
"hexsha": "4aafcf4749a34ebb46473069bd29f34af434055d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "HuStmpHrrr/popl20-artifact",
"max_forks_repo_path": "agda/FsubMinus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "HuStmpHrrr/popl20-artifact",
"max_issues_repo_path": "agda/FsubMinus.agda",
"max_line_length": 139,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "HuStmpHrrr/popl20-artifact",
"max_stars_repo_path": "agda/FsubMinus.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z",
"num_tokens": 14648,
"size": 30869
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- The core of a category.
-- See https://ncatlab.org/nlab/show/core
module Categories.Category.Construction.Core {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level using (_⊔_)
open import Function using (flip)
open import Categories.Category.Groupoid using (Groupoid; IsGroupoid)
open import Categories.Morphism 𝒞
open import Categories.Morphism.IsoEquiv 𝒞
open Category 𝒞
open _≃_
Core : Category o (ℓ ⊔ e) e
Core = record
{ Obj = Obj
; _⇒_ = _≅_
; _≈_ = _≃_
; id = ≅.refl
; _∘_ = flip ≅.trans
; assoc = ⌞ assoc ⌟
; sym-assoc = ⌞ sym-assoc ⌟
; identityˡ = ⌞ identityˡ ⌟
; identityʳ = ⌞ identityʳ ⌟
; identity² = ⌞ identity² ⌟
; equiv = ≃-isEquivalence
; ∘-resp-≈ = λ where ⌞ eq₁ ⌟ ⌞ eq₂ ⌟ → ⌞ ∘-resp-≈ eq₁ eq₂ ⌟
}
Core-isGroupoid : IsGroupoid Core
Core-isGroupoid = record
{ _⁻¹ = ≅.sym
; iso = λ {_ _ f} → record { isoˡ = ⌞ isoˡ f ⌟ ; isoʳ = ⌞ isoʳ f ⌟ }
}
where open _≅_
CoreGroupoid : Groupoid o (ℓ ⊔ e) e
CoreGroupoid = record { category = Core; isGroupoid = Core-isGroupoid }
|
{
"alphanum_fraction": 0.6163301141,
"avg_line_length": 25.3111111111,
"ext": "agda",
"hexsha": "e7cdf188e4674c690cc0e291125db13dfa80d1f7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Core.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 449,
"size": 1139
}
|
open import Issue2229Reexport2
B = A
|
{
"alphanum_fraction": 0.7894736842,
"avg_line_length": 9.5,
"ext": "agda",
"hexsha": "c3d17eb25fb0c29c6515c5741850860669978db8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2229-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2229-2.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2229-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 13,
"size": 38
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Algebra.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Module
open import Cubical.Algebra.Algebra.Base
open Iso
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
module AlgebraTheory (R : Ring ℓ) (A : Algebra R ℓ') where
open RingStr (snd R) renaming (_+_ to _+r_ ; _·_ to _·r_)
open AlgebraStr (A .snd)
0-actsNullifying : (x : ⟨ A ⟩) → 0r ⋆ x ≡ 0a
0-actsNullifying x =
let idempotent-+ = 0r ⋆ x ≡⟨ cong (λ u → u ⋆ x) (sym (RingTheory.0Idempotent R)) ⟩
(0r +r 0r) ⋆ x ≡⟨ ⋆DistL+ 0r 0r x ⟩
(0r ⋆ x) + (0r ⋆ x) ∎
in RingTheory.+Idempotency→0 (Algebra→Ring A) (0r ⋆ x) idempotent-+
⋆Dist· : (x y : ⟨ R ⟩) (a b : ⟨ A ⟩) → (x ·r y) ⋆ (a · b) ≡ (x ⋆ a) · (y ⋆ b)
⋆Dist· x y a b = (x ·r y) ⋆ (a · b) ≡⟨ ⋆AssocR _ _ _ ⟩
a · ((x ·r y) ⋆ b) ≡⟨ cong (a ·_) (⋆Assoc _ _ _) ⟩
a · (x ⋆ (y ⋆ b)) ≡⟨ sym (⋆AssocR _ _ _) ⟩
x ⋆ (a · (y ⋆ b)) ≡⟨ sym (⋆AssocL _ _ _) ⟩
(x ⋆ a) · (y ⋆ b) ∎
module AlgebraHoms {R : Ring ℓ} where
open IsAlgebraHom
idAlgebraHom : (A : Algebra R ℓ') → AlgebraHom A A
fst (idAlgebraHom A) x = x
pres0 (snd (idAlgebraHom A)) = refl
pres1 (snd (idAlgebraHom A)) = refl
pres+ (snd (idAlgebraHom A)) x y = refl
pres· (snd (idAlgebraHom A)) x y = refl
pres- (snd (idAlgebraHom A)) x = refl
pres⋆ (snd (idAlgebraHom A)) r x = refl
compIsAlgebraHom : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''}
{g : ⟨ B ⟩ → ⟨ C ⟩} {f : ⟨ A ⟩ → ⟨ B ⟩}
→ IsAlgebraHom (B .snd) g (C .snd)
→ IsAlgebraHom (A .snd) f (B .snd)
→ IsAlgebraHom (A .snd) (g ∘ f) (C .snd)
compIsAlgebraHom {g = g} {f} gh fh .pres0 = cong g (fh .pres0) ∙ gh .pres0
compIsAlgebraHom {g = g} {f} gh fh .pres1 = cong g (fh .pres1) ∙ gh .pres1
compIsAlgebraHom {g = g} {f} gh fh .pres+ x y = cong g (fh .pres+ x y) ∙ gh .pres+ (f x) (f y)
compIsAlgebraHom {g = g} {f} gh fh .pres· x y = cong g (fh .pres· x y) ∙ gh .pres· (f x) (f y)
compIsAlgebraHom {g = g} {f} gh fh .pres- x = cong g (fh .pres- x) ∙ gh .pres- (f x)
compIsAlgebraHom {g = g} {f} gh fh .pres⋆ r x = cong g (fh .pres⋆ r x) ∙ gh .pres⋆ r (f x)
_∘≃a_ : {A B C : Algebra R ℓ'}
→ AlgebraEquiv B C → AlgebraEquiv A B → AlgebraEquiv A C
_∘≃a_ g f .fst = compEquiv (fst f) (fst g)
_∘≃a_ g f .snd = compIsAlgebraHom (g .snd) (f .snd)
compAlgebraHom : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''}
→ AlgebraHom A B → AlgebraHom B C → AlgebraHom A C
compAlgebraHom f g .fst = g .fst ∘ f .fst
compAlgebraHom f g .snd = compIsAlgebraHom (g .snd) (f .snd)
syntax compAlgebraHom f g = g ∘a f
compIdAlgebraHom : {A B : Algebra R ℓ'} (φ : AlgebraHom A B) → compAlgebraHom (idAlgebraHom A) φ ≡ φ
compIdAlgebraHom φ = AlgebraHom≡ refl
idCompAlgebraHom : {A B : Algebra R ℓ'} (φ : AlgebraHom A B) → compAlgebraHom φ (idAlgebraHom B) ≡ φ
idCompAlgebraHom φ = AlgebraHom≡ refl
compAssocAlgebraHom : {A B C D : Algebra R ℓ'}
(φ : AlgebraHom A B) (ψ : AlgebraHom B C) (χ : AlgebraHom C D)
→ compAlgebraHom (compAlgebraHom φ ψ) χ ≡ compAlgebraHom φ (compAlgebraHom ψ χ)
compAssocAlgebraHom _ _ _ = AlgebraHom≡ refl
module AlgebraEquivs {R : Ring ℓ} where
open IsAlgebraHom
open AlgebraHoms
compIsAlgebraEquiv : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''}
{g : ⟨ B ⟩ ≃ ⟨ C ⟩} {f : ⟨ A ⟩ ≃ ⟨ B ⟩}
→ IsAlgebraEquiv (B .snd) g (C .snd)
→ IsAlgebraEquiv (A .snd) f (B .snd)
→ IsAlgebraEquiv (A .snd) (compEquiv f g) (C .snd)
compIsAlgebraEquiv {g = g} {f} gh fh = compIsAlgebraHom {g = g .fst} {f .fst} gh fh
compAlgebraEquiv : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''}
→ AlgebraEquiv A B → AlgebraEquiv B C → AlgebraEquiv A C
fst (compAlgebraEquiv f g) = compEquiv (f .fst) (g .fst)
snd (compAlgebraEquiv f g) = compIsAlgebraEquiv {g = g .fst} {f = f .fst} (g .snd) (f .snd)
-- the Algebra version of uaCompEquiv
module AlgebraUAFunctoriality {R : Ring ℓ} where
open AlgebraStr
open AlgebraEquivs
Algebra≡ : (A B : Algebra R ℓ') → (
Σ[ p ∈ ⟨ A ⟩ ≡ ⟨ B ⟩ ]
Σ[ q0 ∈ PathP (λ i → p i) (0a (snd A)) (0a (snd B)) ]
Σ[ q1 ∈ PathP (λ i → p i) (1a (snd A)) (1a (snd B)) ]
Σ[ r+ ∈ PathP (λ i → p i → p i → p i) (_+_ (snd A)) (_+_ (snd B)) ]
Σ[ r· ∈ PathP (λ i → p i → p i → p i) (_·_ (snd A)) (_·_ (snd B)) ]
Σ[ s- ∈ PathP (λ i → p i → p i) (-_ (snd A)) (-_ (snd B)) ]
Σ[ s⋆ ∈ PathP (λ i → ⟨ R ⟩ → p i → p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ]
PathP (λ i → IsAlgebra R (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i)) (isAlgebra (snd A))
(isAlgebra (snd B)))
≃ (A ≡ B)
Algebra≡ A B = isoToEquiv theIso
where
open Iso
theIso : Iso _ _
fun theIso (p , q0 , q1 , r+ , r· , s- , s⋆ , t) i = p i
, algebrastr (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i) (t i)
inv theIso x = cong ⟨_⟩ x , cong (0a ∘ snd) x , cong (1a ∘ snd) x
, cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (_⋆_ ∘ snd) x
, cong (isAlgebra ∘ snd) x
rightInv theIso _ = refl
leftInv theIso _ = refl
caracAlgebra≡ : {A B : Algebra R ℓ'} (p q : A ≡ B) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q
caracAlgebra≡ {A = A} {B = B} p q P =
sym (transportTransport⁻ (ua (Algebra≡ A B)) p)
∙∙ cong (transport (ua (Algebra≡ A B))) helper
∙∙ transportTransport⁻ (ua (Algebra≡ A B)) q
where
helper : transport (sym (ua (Algebra≡ A B))) p ≡ transport (sym (ua (Algebra≡ A B))) q
helper = Σ≡Prop
(λ _ → isPropΣ
(isOfHLevelPathP' 1 (is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isOfHLevelPathP 1 (isPropIsAlgebra _ _ _ _ _ _ _) _ _)
(transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q)))
uaCompAlgebraEquiv : {A B C : Algebra R ℓ'} (f : AlgebraEquiv A B) (g : AlgebraEquiv B C)
→ uaAlgebra (compAlgebraEquiv f g) ≡ uaAlgebra f ∙ uaAlgebra g
uaCompAlgebraEquiv f g = caracAlgebra≡ _ _ (
cong ⟨_⟩ (uaAlgebra (compAlgebraEquiv f g))
≡⟨ uaCompEquiv _ _ ⟩
cong ⟨_⟩ (uaAlgebra f) ∙ cong ⟨_⟩ (uaAlgebra g)
≡⟨ sym (cong-∙ ⟨_⟩ (uaAlgebra f) (uaAlgebra g)) ⟩
cong ⟨_⟩ (uaAlgebra f ∙ uaAlgebra g) ∎)
|
{
"alphanum_fraction": 0.5544346915,
"avg_line_length": 43.867816092,
"ext": "agda",
"hexsha": "d03089c2677278dff2a710b2d90124ad2f5ba972",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Algebra/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Algebra/Properties.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Algebra/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3072,
"size": 7633
}
|
{-# OPTIONS --rewriting --prop #-}
open import Agda.Primitive public
open import Agda.Builtin.Nat public renaming (Nat to ℕ) hiding (_==_; _+_)
open import Agda.Builtin.Bool public
{- Basic datatypes and propositions -}
record ⊤ : Prop where
instance constructor tt
record Unit : Set where
instance constructor tt
data ⊥ : Prop where
data Empty : Set where
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_ public
infixr 42 _×_
infixl 4 _,_
record ΣP (A : Prop) (B : A → Prop) : Prop where
constructor _,_
field
fst : A
snd : B fst
open ΣP public
instance
pairP : {A : Prop} {B : A → Prop} {{a : A}} {{b : B a}} → ΣP A B
pairP {{a}} {{b}} = a , b
record ΣS (A : Set) (B : A → Set) : Set where
constructor _,_
field
fst : A
snd : B fst
open ΣS public
{-
Literal notation for natural numbers and similar things.
Later on we will use notation with literal natural numbers for things that are not always defined,
so we need to use [fromNat] and a constraint. The idea is that if we have an instance of
[Number A], that means that we can potentially use literals to denote elements of [A], as long as
instance search can figure out that the constraint is satisfied.
We need the constraint to be a set as we will pattern match on it.
-}
record Number (A : Set) : Set₁ where
field
Constraint : ℕ → Set
fromNat : (n : ℕ) {{_ : Constraint n}} → A
open Number {{...}} public
{-# BUILTIN FROMNAT fromNat #-}
instance
NumNat : Number ℕ
Number.Constraint NumNat _ = Unit
Number.fromNat NumNat n = n
{- Equality -}
data _≡_ {l} {A : Set l} (x : A) : A → Prop l where
instance refl : x ≡ x
--{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REWRITE _≡_ #-}
infix 4 _≡_
ap : {A B : Set} (f : A → B) {a b : A} → a ≡ b → f a ≡ f b
ap f refl = refl
ap2 : {A B C : Set} (f : A → B → C) {a a' : A} {b b' : B} → a ≡ a' → b ≡ b' → f a b ≡ f a' b'
ap2 f refl refl = refl
ap3 : {A B C D : Set} (f : A → B → C → D) {a a' : A} {b b' : B} {c c' : C} → a ≡ a' → b ≡ b' → c ≡ c' → f a b c ≡ f a' b' c'
ap3 f refl refl refl = refl
ap4 : {A B C D E : Set} (f : A → B → C → D → E) {a a' : A} {b b' : B} {c c' : C} {d d' : D} → a ≡ a' → b ≡ b' → c ≡ c' → d ≡ d' → f a b c d ≡ f a' b' c' d'
ap4 f refl refl refl refl = refl
_∙_ : {A : Set} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
refl ∙ refl = refl
infixr 4 _∙_
! : {A : Set} {a b : A} → a ≡ b → b ≡ a
! refl = refl
{- Lifting from Prop/Set to Set₁ -}
record Box (P : Prop) : Set where
constructor box
field
unbox : P
open Box public
{- Monads -}
record Monad {ℓ ℓ'} (M : Set ℓ → Set ℓ') : Set (lsuc ℓ ⊔ ℓ') where
field
return : {A : Set ℓ} → A → M A
_>>=_ : {A B : Set ℓ} → M A → (A → M B) → M B
_>>_ : {A B : Set ℓ} → M A → M B → M B
a >> b = a >>= (λ _ → b)
infixr 20 _>>_
open Monad {{…}} public
-- {- For the partiality monad, we use (dependent) lists of propositions in order to get rid of useless ⊤s -}
-- data ListProp : Set₁
-- pf : ListProp → Prop
-- data ListProp where
-- [] : ListProp
-- [_] : Prop → ListProp
-- _,_ : (l : ListProp) → (pf l → ListProp) → ListProp
-- pf [] = ⊤
-- pf [ p ] = p
-- pf ([] , p) = pf (p tt)
-- pf (l , q) = ΣP (pf l) (λ x → pf (q x))
-- lemma : {l : ListProp} {p : pf l → ListProp} → pf (l , p) → ΣP (pf l) (λ x → pf (p x))
-- lemma {[]} q = tt , q
-- lemma {[ p ]} q = q
-- lemma {l , p} {r} q = (fst q , snd q)
{- The partiality monad -}
record Partial (A : Set) : Set₁ where
field
isDefined : Prop
_$_ : isDefined → A
infix 5 _$_
open Partial public
instance
PartialityMonad : Monad Partial
isDefined (Monad.return PartialityMonad x) = ⊤
Monad.return PartialityMonad x Partial.$ tt = x
isDefined (Monad._>>=_ PartialityMonad a f) = ΣP (isDefined a) (λ x → isDefined (f (a $ x)))
Monad._>>=_ PartialityMonad a f Partial.$ x = f (a $ fst x) $ snd x
assume : (P : Prop) → Partial (Box P)
isDefined (assume P) = P
assume P $ x = box x
fail : {A : Set} → Partial A
isDefined fail = ⊥
{- Properties of the natural numbers -}
data _≤_ : (n m : ℕ) → Set where
instance ≤r : {n : ℕ} → n ≤ n
≤S : {n m : ℕ} → n ≤ m → n ≤ suc m
≤P : {n m : ℕ} → suc n ≤ suc m → n ≤ m
≤P ≤r = ≤r
≤P {n} {suc m} (≤S p) = ≤S (≤P p)
_+_ : ℕ → ℕ → ℕ
n + zero = n
n + suc m = suc (n + m)
infixl 20 _+_
instance
≤-+ : {n m : ℕ} → n ≤ (n + m)
≤-+ {m = zero} = ≤r
≤-+ {m = suc m} = ≤S (≤-+ {m = m})
-- ≤-+S : {m : ℕ} (n : ℕ) → m ≤ (m + suc n)
-- ≤-+S _ = ≤S ≤-+
instance
-- ≤S0 : {n : ℕ} → n ≤ suc n
-- ≤S0 = ≤S ≤r
0≤ : {n : ℕ} → 0 ≤ n
0≤ {zero} = ≤r
0≤ {suc n} = ≤S (0≤ {n})
≤SS : {n m : ℕ} {{_ : n ≤ m}} → suc n ≤ suc m
≤SS ⦃ ≤r ⦄ = ≤r
≤SS ⦃ ≤S p ⦄ = ≤S (≤SS {{p}})
≤+ : (l : ℕ) {n m : ℕ} {{_ : n ≤ m}} → (n + l) ≤ (m + l)
-- ≤+ l {{≤r}} = ≤r
-- ≤+ zero {{ ≤S p }} = ≤S p
-- ≤+ (suc l) {{ ≤S p }} = ≤SS {{≤+ l {{≤S p}}}}
≤+ zero {{p}} = p
≤+ (suc l) = ≤SS {{≤+ l}}
≤tr : {n m k : ℕ} {{_ : n ≤ m}} {{_ : m ≤ k}} → n ≤ k
≤tr ⦃ ≤r ⦄ ⦃ q ⦄ = q
≤tr ⦃ ≤S p ⦄ ⦃ ≤r ⦄ = ≤S p
≤tr ⦃ ≤S p ⦄ ⦃ ≤S q ⦄ = ≤S (≤tr {{≤S p}} {{q}})
{- Rewrite rules for the natural numbers (!!!) -}
+O-rewrite : {n : ℕ} → 0 + n ≡ n
+O-rewrite {zero} = refl
+O-rewrite {suc n} = ap suc +O-rewrite
-- {-# REWRITE +O-rewrite #-}
+S-rewrite : {n m : ℕ} → suc m + n ≡ suc (m + n)
+S-rewrite {zero} = refl
+S-rewrite {suc n} {m} = ap suc (+S-rewrite {n} {m})
-- {-# REWRITE +S-rewrite #-}
assoc : {n m k : ℕ} → (n + m) + k ≡ n + (m + k)
assoc {k = zero} = refl
assoc {n} {m} {k = suc k} = ap suc (assoc {n} {m} {k = k})
-- {-# REWRITE assoc #-}
data _===_ {l} {A : Set l} (x : A) : A → Set l where
instance refl : x === x
{-# BUILTIN EQUALITY _===_ #-}
infix 4 _===_
-- transport : {A : Set} {P : A → Set} {a b : A} → a === b → P a → P b
-- transport refl u = u
-- transport! : {A : Set} {P : A → Set} {a b : A} → a === b → P b → P a
-- transport! refl u = u
{- Instance arguments -}
⟨⟩ : {A : Prop} {{a : A}} → A
⟨⟩ {{a}} = a
{- This is the sorts that we use for the syntax, two sorts: types and terms -}
data SyntaxSort : Set where
Ty : SyntaxSort
Tm : SyntaxSort
{- Positions of variables in a context -}
data VarPos : ℕ → Set where
last : {n : ℕ} → VarPos (suc n)
prev : {n : ℕ} → VarPos n → VarPos (suc n)
-- Size of the context before (and excluding) that variable
_-VarPos'_ : (n : ℕ) → VarPos n → ℕ
(suc n) -VarPos' last = n
(suc n) -VarPos' prev k = n -VarPos' k
-- Size of the context before (and including) that variable
_-VarPos_ : (n : ℕ) → VarPos n → ℕ
n -VarPos k = suc (n -VarPos' k)
--instance
suc-VarPos'≤ : {n : ℕ} {p : VarPos (suc n)} → (suc n -VarPos' p) ≤ n
suc-VarPos'≤ {n} {last} = ≤r
suc-VarPos'≤ {suc n} {prev p} = ≤tr {{suc-VarPos'≤ {n} {p}}} {{≤S ≤r}}
{- Positions of weakening spots in a context -}
data WeakPos : ℕ → Set where
last : {n : ℕ} → WeakPos n
prev : {n : ℕ} → WeakPos n → WeakPos (suc n)
weakenPos : {n m : ℕ} → n ≤ m → WeakPos n → WeakPos m
weakenPos ≤r k = k
weakenPos (≤S p) k = prev (weakenPos p k)
{- Weakening by a group of variable in the middle of a context -}
weakenV : {n m : ℕ} {{_ : n ≤ m}} (p : WeakPos n) → VarPos n → VarPos m
weakenV {m = suc m} ⦃ r ⦄ (prev p) last = last
weakenV ⦃ ≤r ⦄ p x = x
weakenV ⦃ ≤S r ⦄ last x = prev (weakenV {{r}} last x)
weakenV ⦃ ≤S r ⦄ (prev p) (prev x) = prev (weakenV {{≤P (≤S r)}} p x)
weakenV≤r : {n : ℕ} {p : WeakPos n} {v : VarPos n} → weakenV {{≤r}} p v ≡ v
weakenV≤r {p = last} {last} = refl
weakenV≤r {p = prev p} {last} = refl
weakenV≤r {p = last} {prev v} = refl
weakenV≤r {p = prev p} {prev v} = refl
|
{
"alphanum_fraction": 0.5272992314,
"avg_line_length": 24.7409836066,
"ext": "agda",
"hexsha": "673d559c6ceb3c8694fb901107aa89558986ac73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/general-type-theories",
"max_forks_repo_path": "common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/general-type-theories",
"max_issues_repo_path": "common.agda",
"max_line_length": 155,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/general-type-theories",
"max_stars_repo_path": "common.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3153,
"size": 7546
}
|
{-# OPTIONS --without-K #-}
module Univalence where
open import Equivalence
open import Types
postulate
ua : ∀ {ℓ} {A : Set ℓ} {B : Set ℓ} → (A ≡ B) ≃ (A ≃ B)
|
{
"alphanum_fraction": 0.6012269939,
"avg_line_length": 18.1111111111,
"ext": "agda",
"hexsha": "85133e544278f63e2f161ed71dc37a666d69d1fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/Univalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/Univalence.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/Univalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 60,
"size": 163
}
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
{-
This file contains three proofs of Ω(S¹) = ℤ and the fact that the circle is
a 1-type:
- Something closely related to Mike’s original proof
- Dan’s encode-decode proof
- Guillaume’s proof using the flattening lemma.
This file is divided in a lot of different parts so that common parts can be
factored:
1. Definition of the universal cover and the encoding map (this part is common
to all three proofs)
2. Proof that [encode (loop^ n) == n] (this part is common to Mike’s proof and
the encode-decode proof)
3. Dan’s encode-decode proof that [Ω S¹ ≃ ℤ]
4. Mike’s proof that [Σ S¹ Cover] is contractible
5. Proof with the flattening lemma that [Σ S¹ S¹Cover] is contractible
6. Proof of [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ S¹Cover] is contractible (common
to Mike’s proof and the flattening lemma proof)
7. Encode-decode proof of the whole equivalence
8. Proof that the circle is a 1-type (common to all three proofs)
Keep
- 1, 2, 3 for the encode-decode proof (+ 7, 8 for S¹ is a 1-type)
- 1, 2, 4, 6 for Mike’s proof (+ 8)
- 1, 5, 6 for the flattening lemma proof (+ 8)
-}
{- 2017/02/09 favonia:
1. [loop^] is defined in terms of [Group.exp], and the lemma
[encode'-decode] is changed accordingly. Although the original
[encode-decode] can be proved without the generalized [encode'],
[encode'] seems useful in proving the isomorphism (not just
type equivalence) without flipping the two sides [Ω S¹] and [ℤ].
2. Part 9 is added for further results.
-}
module homotopy.LoopSpaceCircle where
{- 1. Universal cover and encoding map (common to all three proofs) -}
module S¹Cover = S¹RecType ℤ succ-equiv
S¹Cover : S¹ → Type₀
S¹Cover = S¹Cover.f
encode' : {x₁ x₂ : S¹} (p : x₁ == x₂) → S¹Cover x₁ → S¹Cover x₂
encode' p n = transport S¹Cover p n
encode : {x : S¹} (p : base == x) → S¹Cover x
encode p = encode' p 0
{- 2. Encoding [loop^ n] (common to Mike’s proof and the encode-decode proof) -}
ΩS¹-group-structure : GroupStructure (base == base)
ΩS¹-group-structure = Ω^S-group-structure 0 ⊙S¹
module ΩS¹GroupStruct = GroupStructure ΩS¹-group-structure
-- We define the element of [Ω S¹] which is supposed to correspond to an
-- integer [n], this is the loop winding around the circle [n] times.
loop^ : (n : ℤ) → base == base
loop^ = ΩS¹GroupStruct.exp loop
-- Compatibility of [loop^] with the addition function
abstract
loop^+ : (n₁ n₂ : ℤ) → loop^ (n₁ ℤ+ n₂) == loop^ n₁ ∙ loop^ n₂
loop^+ = ΩS¹GroupStruct.exp-+ loop
-- Now we check that encoding [loop^ n] gives indeed [n], again by induction
-- on [n]
abstract
encode'-∙ : ∀ {x₀ x₁ x₂} (p₀ : x₀ == x₁) (p₁ : x₁ == x₂) n
→ encode' (p₀ ∙ p₁) n == encode' p₁ (encode' p₀ n)
encode'-∙ idp _ _ = idp
encode'-loop : ∀ n → encode' loop n == succ n
encode'-loop = S¹Cover.coe-loop-β
encode'-!loop : ∀ n → encode' (! loop) n == pred n
encode'-!loop n = coe-ap-! S¹Cover loop n ∙ S¹Cover.coe!-loop-β n
abstract
encode'-loop^ : (n₁ n₂ : ℤ) → encode' (loop^ n₁) n₂ == n₁ ℤ+ n₂
encode'-loop^ (pos 0) n₂ = idp
encode'-loop^ (pos 1) n₂ = encode'-loop n₂
encode'-loop^ (pos (S (S n₁))) n₂ =
encode' (loop ∙ loop^ (pos (S n₁))) n₂
=⟨ encode'-∙ loop (loop^ (pos (S n₁))) n₂ ⟩
encode' (loop^ (pos (S n₁))) (encode' loop n₂)
=⟨ encode'-loop n₂ |in-ctx encode' (loop^ (pos (S n₁))) ⟩
encode' (loop^ (pos (S n₁))) (succ n₂)
=⟨ encode'-loop^ (pos (S n₁)) (succ n₂) ⟩
pos (S n₁) ℤ+ succ n₂
=⟨ ℤ+-succ (pos (S n₁)) n₂ ⟩
pos (S (S n₁)) ℤ+ n₂ =∎
encode'-loop^ (negsucc 0) n₂ = encode'-!loop n₂
encode'-loop^ (negsucc (S n₁)) n₂ =
encode' (! loop ∙ loop^ (negsucc n₁)) n₂
=⟨ encode'-∙ (! loop) (loop^ (negsucc n₁)) n₂ ⟩
encode' (loop^ (negsucc n₁)) (encode' (! loop) n₂)
=⟨ encode'-!loop n₂ |in-ctx encode' (loop^ (negsucc n₁)) ⟩
encode' (loop^ (negsucc n₁)) (pred n₂)
=⟨ encode'-loop^ (negsucc n₁) (pred n₂) ⟩
negsucc n₁ ℤ+ pred n₂
=⟨ ℤ+-pred (negsucc n₁) n₂ ⟩
negsucc (S n₁) ℤ+ n₂
=∎
encode-loop^ : (n : ℤ) → encode (loop^ n) == n
encode-loop^ n = encode'-loop^ n 0 ∙ ℤ+-unit-r n
{- 3. Dan’s encode-decode proof -}
-- The decoding function at [base] is [loop^], but we extend it to the whole
-- of [S¹] so that [decode-encode] becomes easier (and we need [loop^+] to
-- be able to extend it)
decode : (x : S¹) → (S¹Cover x → base == x)
decode =
S¹-elim loop^ (↓-→-in λ {n} q →
↓-cst=idf-in' $
! (loop^+ n 1) ∙ ap loop^ (ℤ+-comm n 1 ∙ S¹Cover.↓-loop-out q))
abstract
decode-encode : (x : S¹) (p : base == x) → decode x (encode p) == p
decode-encode _ idp = idp -- Magic!
-- And we get the theorem
ΩS¹≃ℤ : (base == base) ≃ ℤ
ΩS¹≃ℤ = equiv encode (decode base) encode-loop^ (decode-encode base)
{- 4. Mike’s proof that [Σ S¹ Cover] is contractible -}
-- We want to prove that every point of [Σ S¹ S¹Cover] is equal to [(base , O)]
paths-mike : (xt : Σ S¹ S¹Cover) → (base , 0) == xt
paths-mike (x , t) = paths-mike-c x t where
abstract
-- We do it by circle-induction on the first component. When it’s [base],
-- we use the [↓-loop^] below (which is essentially [encode-loop^]) and
-- for [loop] we use [loop^+] and the fact that [ℤ] is a set.
paths-mike-c : (x : S¹) (t : S¹Cover x) → (base , 0) == (x , t) :> Σ S¹ S¹Cover
paths-mike-c = S¹-elim
(λ n → pair= (loop^ n) (↓-loop^ n))
(↓-Π-in (λ {n} {n'} q →
↓-cst=idf-in'
(pair= (loop^ n) (↓-loop^ n) ∙ pair= loop q
=⟨ Σ-∙ (↓-loop^ n) q ⟩
pair= (loop^ n ∙ loop) (↓-loop^ n ∙ᵈ q)
=⟨ pair== (! (loop^+ n 1) ∙ ap loop^ (ℤ+-comm n 1 ∙ S¹Cover.↓-loop-out q))
(set-↓-has-all-paths-↓ ℤ-is-set) ⟩
pair= (loop^ n') (↓-loop^ n') ∎))) where
↓-loop^ : (n : ℤ) → 0 == n [ S¹Cover ↓ loop^ n ]
↓-loop^ n = from-transp _ _ (encode-loop^ n)
abstract
contr-mike : is-contr (Σ S¹ S¹Cover)
contr-mike = ((base , 0) , paths-mike)
{- 5. Flattening lemma proof that [Σ S¹ Cover] is contractible -}
--We import the flattening lemma for the universal cover of the circle
--open FlatteningS¹ ℤ succ-equiv
open S¹Cover using (module Wt; Wt; cct; ppt; flattening-S¹)
-- We prove that the flattened HIT corresponding to the universal cover of the
-- circle (the real line) is contractible
Wt-is-contr : is-contr Wt
Wt-is-contr = (cct tt 0 , Wt.elim (base* ∘ snd) (loop* ∘ snd)) where
-- This is basically [loop^] using a different composition order
base* : (n : ℤ) → cct tt 0 == cct tt n
base* (pos 0) = idp
base* (pos 1) = ppt tt 0
base* (pos (S (S n))) = base* (pos (S n)) ∙ ppt tt (pos (S n))
base* (negsucc 0) = ! (ppt tt (negsucc O))
base* (negsucc (S n)) = base* (negsucc n) ∙ ! (ppt tt (negsucc (S n)))
abstract
loop* : (n : ℤ)
→ base* n == base* (succ n) [ (λ x → cct tt 0 == x) ↓ ppt tt n ]
loop* n = ↓-cst=idf-in' (aux n) where
-- This is basically [loop^+ 1 n]
aux : (n : ℤ) → base* n ∙ ppt tt n == base* (succ n)
aux (pos 0) = idp
aux (pos (S n)) = idp
aux (negsucc 0) = !-inv-l (ppt tt (negsucc O))
aux (negsucc (S n)) =
base* (negsucc (S n)) ∙ ppt tt (negsucc (S n))
=⟨ idp ⟩
(base* (negsucc n) ∙ ! (ppt tt (negsucc (S n)))) ∙ ppt tt (negsucc (S n))
=⟨ ∙-assoc (base* (negsucc n)) _ _ ⟩
base* (negsucc n) ∙ (! (ppt tt (negsucc (S n))) ∙ ppt tt (negsucc (S n)))
=⟨ !-inv-l (ppt tt (negsucc (S n)))
|in-ctx (λ u → base* (negsucc n) ∙ u) ⟩
base* (negsucc n) ∙ idp
=⟨ ∙-unit-r _ ⟩
base* (negsucc n) ∎
-- Then, using the flattening lemma we get that the total space of [Cover] is
-- contractible
abstract
contr-flattening : is-contr (Σ S¹ S¹Cover)
contr-flattening = transport! is-contr flattening-S¹ Wt-is-contr
{- 6. Proof that [Ω S¹ ≃ ℤ] using the fact that [Σ S¹ Cover] is contractible -}
tot-encode : Σ S¹ (λ x → base == x) → Σ S¹ S¹Cover
tot-encode (x , y) = (x , encode y)
-- The previous map induces an equivalence on the total spaces, because both
-- total spaces are contractible
abstract
total-is-equiv : is-equiv tot-encode
total-is-equiv = contr-to-contr-is-equiv _ (pathfrom-is-contr base) contr-flattening
-- Hence it’s an equivalence fiberwise
abstract
encode-is-equiv : (x : S¹) → is-equiv (encode {x})
encode-is-equiv = total-equiv-is-fiber-equiv (λ _ → encode) total-is-equiv
-- We can then conclude that the loop space of the circle is equivalent to [ℤ]
ΩS¹≃ℤ' : (base == base) ≃ ℤ
ΩS¹≃ℤ' = (encode {base} , encode-is-equiv base)
{- 7. Encode-decode proof of the whole fiberwise equivalence -}
-- This is quite similar to [paths-mike], we’re doing it by circle-induction,
-- the base case is [encode-loop^] and the loop case is using the fact that [ℤ]
-- is a set (and [loop^+] is already used in [decode])
encode-decode : (x : S¹) (t : S¹Cover x) → encode (decode x t) == t
encode-decode =
S¹-elim {P = λ x → (t : S¹Cover x) → encode (decode x t) == t}
encode-loop^ (↓-Π-in (λ q → prop-has-all-paths-↓ (ℤ-is-set _ _)))
encode-is-equiv' : (x : S¹) → is-equiv (encode {x})
encode-is-equiv' x = is-eq encode (decode x) (encode-decode x) (decode-encode x)
{- 8. Proof that the circle is a 1-type -}
abstract
S¹Cover-is-set : {y : S¹} → is-set (S¹Cover y)
S¹Cover-is-set {y} = S¹-elim {P = λ y → is-set (S¹Cover y)}
ℤ-is-set (prop-has-all-paths-↓ is-set-is-prop) y
ΩS¹-is-set : {y : S¹} → is-set (base == y)
ΩS¹-is-set {y} = equiv-preserves-level ((encode {y} , encode-is-equiv y) ⁻¹)
(S¹Cover-is-set {y})
S¹-level : has-level 1 S¹
S¹-level =
S¹-elim (λ _ → ΩS¹-is-set) (prop-has-all-paths-↓ (Π-level (λ x → is-set-is-prop)))
{- 9. More stuff -}
ΩS¹-iso-ℤ : Ω^S-group 0 ⊙S¹ S¹-level ≃ᴳ ℤ-group
ΩS¹-iso-ℤ = ≃-to-≃ᴳ ΩS¹≃ℤ encode-pres-∙ where
abstract
encode-∙ : ∀ {x₁ x₂} (loop₁ : base == x₁) (loop₂ : x₁ == x₂)
→ encode (loop₁ ∙ loop₂) == encode' loop₂ (encode loop₁)
encode-∙ idp _ = idp
encode-pres-∙ : ∀ (loop₁ loop₂ : base == base)
→ encode (loop₁ ∙ loop₂) == encode loop₁ ℤ+ encode loop₂
encode-pres-∙ loop₁ loop₂ =
encode (loop₁ ∙ loop₂)
=⟨ encode'-∙ loop₁ loop₂ 0 ⟩
encode' loop₂ (encode loop₁)
=⟨ ! $ decode-encode _ loop₂ |in-ctx (λ loop₂ → encode' loop₂ (encode loop₁)) ⟩
encode' (loop^ (encode loop₂)) (encode loop₁)
=⟨ encode'-loop^ (encode loop₂) (encode loop₁) ⟩
encode loop₂ ℤ+ encode loop₁
=⟨ ℤ+-comm (encode loop₂) (encode loop₁) ⟩
encode loop₁ ℤ+ encode loop₂
=∎
abstract
ΩS¹-is-abelian : is-abelian (Ω^S-group 0 ⊙S¹ S¹-level)
ΩS¹-is-abelian = iso-preserves-abelian (ΩS¹-iso-ℤ ⁻¹ᴳ) ℤ-group-is-abelian
|
{
"alphanum_fraction": 0.5936984796,
"avg_line_length": 38.0418118467,
"ext": "agda",
"hexsha": "f032ca56bfedeb32622ce52615f1ed0e0383d95e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/LoopSpaceCircle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/LoopSpaceCircle.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/LoopSpaceCircle.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4040,
"size": 10918
}
|
------------------------------------------------------------------------
-- Normalization/simplification of kinding in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Kinding.Simple.Normalization where
open import Data.Fin using (Fin; zero; suc; raise; lift)
open import Data.Fin.Substitution using (module VarSubst)
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.List using ([]; _∷_; _∷ʳ_; map)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Product as Prod using (_,_)
open import Data.Vec as Vec using ([]; _∷_)
import Data.Vec.Properties as VecProp
open import Function using (flip; _∘_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import FOmegaInt.Syntax
open import FOmegaInt.Syntax.SingleVariableSubstitution
renaming (sub to hsub; _↑ to _H↑)
open import FOmegaInt.Syntax.HereditarySubstitution
open import FOmegaInt.Syntax.Normalization
open import FOmegaInt.Syntax.WeakEquality
open import FOmegaInt.Kinding.Simple as Simple
open import FOmegaInt.Kinding.Simple.EtaExpansion
open import FOmegaInt.Kinding.Declarative as Declarative
------------------------------------------------------------------------
-- Normalization/simplification of kinded types to simply kinded
-- types.
--
-- TODO: explain the point of this and how "simple" kinding differs
-- from "canonical" kinding.
open Syntax
open TermCtx
open SimpleCtx using (kd; tp; ⌊_⌋Asc; kd-inj′)
open Substitution hiding (subst)
open ContextConversions
open RenamingCommutesNorm
open WeakHereditarySubstitutionEquality
open WeakEqEtaExpansion
open WeakEqNormalization
open KindedHereditarySubstitution
open Simple.Kinding
open Declarative.Kinding
private
module S where
open Simple.Kinding public
open SimpleCtx public
open SimplyWfCtx public
module D where
open Declarative.Kinding public
open TermCtx public
module E = ElimCtx
mutual
-- Normalization and simultaneous simplification of kinding:
-- well-kinded types normalize to simply kinded normal forms.
nf-Tp∈ : ∀ {n} {Γ : Ctx n} {a k} →
let Γ′ = nfCtx Γ in Γ ⊢Tp a ∈ k → ⌊ Γ′ ⌋Ctx ⊢Nf nf Γ′ a ∈ ⌊ k ⌋
nf-Tp∈ {_} {Γ} (∈-var {j} x Γ-ctx Γ[x]≡kd-k)
with E.lookup (nfCtx Γ) x | nfCtx-lookup-kd x Γ Γ[x]≡kd-k
nf-Tp∈ {_} {Γ} (∈-var {j} x Γ-ctx Γ[x]≡kd-j) | kd ._ | refl =
subst (_ ⊢Nf η-exp (nfKind _ j) (var∙ x) ∈_) (⌊⌋-nf _)
(η-exp-Var∈ (lookup-kd x (nf-ctx Γ-ctx) nf-Γ[x]≡kd-nf-j)
(∈-var x (⌊⌋-lookup (nfCtx Γ) x nf-Γ[x]≡kd-nf-j)))
where
open WfsCtxOps using (lookup-kd)
nf-Γ[x]≡kd-nf-j = nfCtx-lookup-kd x Γ Γ[x]≡kd-j
nf-Tp∈ (∈-var x Γ-ctx Γ[x]≡kd-k) | tp _ | ()
nf-Tp∈ (∈-⊥-f Γ-ctx) = ∈-⊥-f
nf-Tp∈ (∈-⊤-f Γ-ctx) = ∈-⊤-f
nf-Tp∈ (∈-∀-f k-kd a∈*) = ∈-∀-f (nf-kd k-kd) (nf-Tp∈ a∈*)
nf-Tp∈ (∈-→-f a∈* b∈*) = ∈-→-f (nf-Tp∈ a∈*) (nf-Tp∈ b∈*)
nf-Tp∈ (∈-Π-i {j} {a} j-kd a∈k k-kd) =
let j′ = nfKind _ j
in subst (λ l → _ ⊢Nf Λ∙ j′ (nf (kd j′ ∷ _) a) ∈ l ⇒ _) (⌊⌋-nf j)
(∈-Π-i (nf-kd j-kd) (nf-Tp∈ a∈k))
nf-Tp∈ (∈-Π-e {a} {b} a∈Πjk b∈j _ _) =
subst (_ ⊢Nf nf _ a ↓⌜·⌝ nf _ b ∈_) (sym (⌊⌋-Kind/ _))
(Nf∈-Π-e′ (nf-Tp∈ a∈Πjk) (nf-Tp∈ b∈j))
nf-Tp∈ (∈-s-i a∈a⋯b) = nf-Tp∈ a∈a⋯b
nf-Tp∈ (∈-⇑ a∈j j<∷k) = subst (_ ⊢Nf _ ∈_) (<∷-⌊⌋ j<∷k) (nf-Tp∈ a∈j)
-- Normalization and simultaneous simplification of kind
-- well-formedness: well-formed kinds normalize to simply
-- well-formed kinds.
nf-kd : ∀ {n} {Γ : Ctx n} {k} →
let Γ′ = nfCtx Γ in Γ ⊢ k kd → ⌊ Γ′ ⌋Ctx ⊢ nfKind Γ′ k kds
nf-kd (kd-⋯ a∈* b∈*) = kds-⋯ (nf-Tp∈ a∈*) (nf-Tp∈ b∈*)
nf-kd (kd-Π j-kd k-kd) = kds-Π (nf-kd j-kd) (nf-kd k-kd)
-- Normalization and simultaneous simplification of contexts:
-- well-formed contexts normalize to simply well-formed simple
-- contexts.
nf-wf : ∀ {n} {Γ : Ctx n} {a} →
let Γ′ = nfCtx Γ in Γ ⊢ a wf → ⌊ Γ′ ⌋Ctx ⊢ nfAsc Γ′ a wfs
nf-wf (wf-kd k-kds) = wfs-kd (nf-kd k-kds)
nf-wf (wf-tp a∈*) = wfs-tp (nf-Tp∈ a∈*)
nf-ctx : ∀ {n} {Γ : Ctx n} → Γ ctx → nfCtx Γ ctxs
nf-ctx D.[] = S.[]
nf-ctx (a-wf D.∷ Γ-ctx) = nf-wf a-wf S.∷ nf-ctx Γ-ctx
-- Normal forms of type operators are η-long.
≈-η-nf : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Tp a ∈ Π j k →
let nf-Γ = nfCtx Γ
in nf nf-Γ (Λ j (weaken a · var zero)) ≈ nf nf-Γ a
≈-η-nf a∈Πjk with Nf∈-⇒-inv (nf-Tp∈ a∈Πjk)
≈-η-nf {_} {Γ} {a} {j} {k} a∈Πjk
| l , b , l-kds , b∈⌊k⌋ , ⌊l⌋≡⌊j⌋ , nf-a≡Λlb =
begin
nf nf-Γ (Λ j (weaken a · var zero))
≈⟨ ≈-Λ∙ ⌊nf-j⌋≡⌊l⌋ (begin
nf-a′ ↓⌜·⌝ η-exp (weakenKind′ nf-j) (var∙ zero)
≡⟨ cong (_↓⌜·⌝ η-exp (weakenKind′ nf-j) (var∙ zero))
(trans (sym (nf-weaken (kd nf-j) a)) (cong weakenElim nf-a≡Λlb)) ⟩
weakenElim (Λ∙ l b) ↓⌜·⌝ η-exp (weakenKind′ nf-j) (var∙ zero)
≡⟨⟩
b Elim/Var (VarSubst.wk VarSubst.↑) /⟨ ⌊ weakenKind′ l ⌋ ⟩
hsub (η-exp (weakenKind′ nf-j) (var∙ zero))
≈⟨ ≈-[∈] (≈-refl (b Elim/Var (VarSubst.wk VarSubst.↑)))
(≈-η-exp ⌊nf-j/wk⌋≡⌊l/wk⌋ (≈-var∙ zero)) ⟩
b Elim/Var (VarSubst.wk VarSubst.↑) /⟨ ⌊ weakenKind′ l ⌋ ⟩
hsub (η-exp (weakenKind′ l) (var∙ zero))
≈⟨ Nf∈-[]-η-var [] l-kds
(subst (λ l → kd l ∷ _ ⊢Nf b ∈ _) (sym ⌊l⌋≡⌊j⌋) b∈⌊k⌋) ⟩
b
∎) ⟩
Λ∙ l b
≡⟨ sym nf-a≡Λlb ⟩
nf nf-Γ a
∎
where
nf-Γ = nfCtx Γ
nf-j = nfKind nf-Γ j
nf-j∷Γ = kd nf-j ∷ nf-Γ
nf-a′ = nf nf-j∷Γ (weaken a)
⌊nf-j⌋≡⌊l⌋ = begin
⌊ nf-j ⌋ ≡⟨ ⌊⌋-nf j ⟩
⌊ j ⌋ ≡⟨ sym ⌊l⌋≡⌊j⌋ ⟩
⌊ l ⌋ ∎
where open ≡-Reasoning
⌊nf-j/wk⌋≡⌊l/wk⌋ = begin
⌊ weakenKind′ nf-j ⌋ ≡⟨ ⌊⌋-Kind′/Var nf-j ⟩
⌊ nf-j ⌋ ≡⟨ ⌊nf-j⌋≡⌊l⌋ ⟩
⌊ l ⌋ ≡⟨ sym (⌊⌋-Kind′/Var l) ⟩
⌊ weakenKind′ l ⌋ ∎
where open ≡-Reasoning
open ≈-Reasoning
-- Well-kinded hereditary substitions.
infix 4 _⊢/Tp⟨_⟩_∈_
data _⊢/Tp⟨_⟩_∈_ : ∀ {m n} → Ctx n → SKind → SVSub m n → Ctx m → Set where
∈-hsub : ∀ {n} {Γ : Ctx n} {k a} →
Γ ⊢Tp a ∈ k → Γ ⊢/Tp⟨ ⌊ k ⌋ ⟩ hsub ⌜ a ⌝ ∈ kd k ∷ Γ
∈-H↑ : ∀ {m n Δ k Γ} {σ : SVSub m n} {a} →
Δ ⊢/Tp⟨ k ⟩ σ ∈ Γ → (a TermAsc/ toSub σ) ∷ Δ ⊢/Tp⟨ k ⟩ σ H↑ ∈ a ∷ Γ
-- Normalize and simplify a well-kinded hereditary substitution.
nf-/⟨⟩∈ : ∀ {m n k Δ} {σ : SVSub m n} {Γ} → Δ ⊢/Tp⟨ k ⟩ σ ∈ Γ →
⌊ nfCtx Δ ⌋Ctx ⊢/⟨ k ⟩ nfSVSub (nfCtx Δ) σ ∈ ⌊ nfCtx Γ ⌋Ctx
nf-/⟨⟩∈ (∈-hsub {Γ = Γ} {k} {a} a∈k) =
subst₂ (⌊ nfCtx Γ ⌋Ctx ⊢/⟨ ⌊ k ⌋ ⟩_∈_)
(cong (hsub ∘ nf (nfCtx Γ)) (sym (⌞⌟∘⌜⌝-id a)))
(cong (λ j → kd j ∷ ⌊ nfCtx Γ ⌋Ctx) (sym (⌊⌋-nf k)))
(∈-hsub (nf-Tp∈ a∈k))
nf-/⟨⟩∈ (∈-H↑ {Δ = Δ} {k} {Γ} {σ} {a} σ∈Γ) =
subst (_⊢/⟨ k ⟩ nfSVSub (nfCtx (a/σ ∷ Δ)) (σ H↑) ∈ ⌊ nfCtx (a ∷ Γ) ⌋Ctx)
(cong (_∷ ⌊ nfCtx Δ ⌋Ctx) (begin
⌊ nfAsc (nfCtx Γ) a ⌋Asc ≡⟨ ⌊⌋Asc-nf a ⟩
⌊ a ⌋Asc ≡˘⟨ S.⌊⌋-TermAsc/ a ⟩
⌊ a TermAsc/ toSub σ ⌋Asc ≡˘⟨ ⌊⌋Asc-nf _ ⟩
⌊ nfAsc (nfCtx Δ) (a TermAsc/ toSub σ) ⌋Asc ∎))
(∈-H↑ (nf-/⟨⟩∈ σ∈Γ))
where
open ≡-Reasoning
a/σ = a TermAsc/ toSub σ
open ≈-Reasoning
private module P = ≡-Reasoning
mutual
-- Substitution (weakly) commutes with normalization.
nf-/⟨⟩ : ∀ {m n Δ k Γ} {σ : SVSub m n} {a j} →
Γ ⊢Tp a ∈ j → Δ ⊢/Tp⟨ k ⟩ σ ∈ Γ →
nf (nfCtx Δ) (a / toSub σ) ≈
nf (nfCtx Γ) a /⟨ k ⟩ nfSVSub (nfCtx Δ) σ
nf-/⟨⟩ {Γ = Γ} (∈-var x Γ-ctx Γ[x]≡kd-j) σ∈Γ
with E.lookup (nfCtx Γ) x | nfCtx-lookup-kd x Γ Γ[x]≡kd-j
nf-/⟨⟩ {Δ = Δ} {k} {Γ} {σ} {_} {j} (∈-var x Γ-ctx Γ[x]≡kd-j) σ∈Γ
| kd nf-j | refl with hit? σ x
... | hit a hitP =
let open WfsCtxOps using (lookup-kd)
nf-Γ-ctxs = nf-ctx Γ-ctx
nf-Γ[x]≡kd-nf-j = nfCtx-lookup-kd x Γ Γ[x]≡kd-j
nf-j-kds = lookup-kd x nf-Γ-ctxs nf-Γ[x]≡kd-nf-j
hitP-nf-σ = nf-Hit (nfCtx Δ) hitP
x∈⌊j⌋ = ∈-var x (⌊⌋-lookup (nfCtx Γ) x nf-Γ[x]≡kd-nf-j)
in begin
nf (nfCtx Δ) (Vec.lookup (toSub σ) x)
≡⟨ cong (nf (nfCtx Δ)) (lookup-toSub σ x) ⟩
nf (nfCtx Δ) (⌞ toElim (lookupSV σ x) ⌟)
≡⟨ cong (nf (nfCtx Δ) ∘ ⌞_⌟ ∘ toElim) (lookup-Hit hitP) ⟩
nf (nfCtx Δ) ⌞ a ⌟
≡˘⟨ cong (_?∙∙⟨ k ⟩ []) (lookup-Hit hitP-nf-σ) ⟩
var∙ x /⟨ k ⟩ nfSVSub (nfCtx Δ) σ
≈˘⟨ η-exp-var-Hit-/⟨⟩ hitP-nf-σ nf-j-kds x∈⌊j⌋ (nf-/⟨⟩∈ σ∈Γ) ⟩
η-exp (nfKind (nfCtx Γ) j) (var∙ x) /⟨ k ⟩ nfSVSub (nfCtx Δ) σ
∎
... | miss y missP =
let open WfsCtxOps using (lookup-kd)
nf-Γ-ctxs = nf-ctx Γ-ctx
nf-Γ[x]≡kd-nf-j = nfCtx-lookup-kd x Γ Γ[x]≡kd-j
nf-j-kds = lookup-kd x nf-Γ-ctxs nf-Γ[x]≡kd-nf-j
missP-nf-σ = nf-Miss (nfCtx Δ) missP
x∈⌊j⌋ = ∈-var x (⌊⌋-lookup (nfCtx Γ) x nf-Γ[x]≡kd-nf-j)
in begin
nf (nfCtx Δ) (Vec.lookup (toSub σ) x)
≡⟨ cong (nf (nfCtx Δ)) (lookup-toSub σ x) ⟩
nf (nfCtx Δ) ⌞ toElim (lookupSV σ x) ⌟
≡⟨ cong (nf (nfCtx Δ) ∘ ⌞_⌟ ∘ toElim) (lookup-Miss missP) ⟩
nf (nfCtx Δ) (var y)
≈⟨ nf-var-kd-⌊⌋ (nfCtx Δ) y (P.begin
⌊ E.lookup (nfCtx Δ) y ⌋Asc
P.≡˘⟨ ⌊⌋Asc-lookup (nfCtx Δ) y ⟩
S.lookup ⌊ nfCtx Δ ⌋Ctx y
P.≡⟨ lookup-/⟨⟩∈-Miss (nf-/⟨⟩∈ σ∈Γ) x∈⌊j⌋ missP-nf-σ ⟩
S.lookup ⌊ nfCtx Γ ⌋Ctx x
P.≡⟨ ⌊⌋-lookup (nfCtx Γ) x nf-Γ[x]≡kd-nf-j ⟩
kd ⌊ nfKind (nfCtx Γ) j ⌋
P.≡˘⟨ cong kd (⌊⌋-Kind/⟨⟩ (nfKind (nfCtx Γ) j)) ⟩
kd ⌊ nfKind (nfCtx Γ) j Kind/⟨ k ⟩ nfSVSub (nfCtx Δ) σ ⌋
P.∎) ⟩
η-exp (nfKind (nfCtx Γ) j Kind/⟨ k ⟩ nfSVSub (nfCtx Δ) σ) (var∙ y)
≡˘⟨ η-exp-ne-Miss-/⟨⟩ x y [] (nfKind (nfCtx Γ) j) missP-nf-σ ⟩
η-exp (nfKind (nfCtx Γ) j) (var∙ x) /⟨ k ⟩ nfSVSub (nfCtx Δ) σ
∎
nf-/⟨⟩ (∈-var _ _ _) σ∈Γ | tp a | ()
nf-/⟨⟩ (∈-⊥-f Γ-ctx) σ∈Γ = ≈-refl _
nf-/⟨⟩ (∈-⊤-f Γ-ctx) σ∈Γ = ≈-refl _
nf-/⟨⟩ (∈-∀-f {j} j-kd a∈*) σ∈Γ =
≈-∀∙ (nfKind-/⟨⟩ j-kd σ∈Γ) (nf-/⟨⟩ a∈* (∈-H↑ σ∈Γ))
nf-/⟨⟩ (∈-→-f a∈* b∈*) σ∈Γ =
≈-⇒∙ (nf-/⟨⟩ a∈* σ∈Γ) (nf-/⟨⟩ b∈* σ∈Γ)
nf-/⟨⟩ (∈-Π-i j-kd a∈k k-kd) σ∈Γ =
≈-Λ∙ (≋-⌊⌋ (nfKind-/⟨⟩ j-kd σ∈Γ)) (nf-/⟨⟩ a∈k (∈-H↑ σ∈Γ))
nf-/⟨⟩ {Δ = Δ} {k} {Γ} {σ} {a · b} (∈-Π-e a∈Πjk b∈j _ _) σ∈Γ = begin
nf (nfCtx Δ) (a / toSub σ) ↓⌜·⌝ nf (nfCtx Δ) (b / toSub σ)
≈⟨ ≈-↓⌜·⌝ (nf-/⟨⟩ a∈Πjk σ∈Γ) (nf-/⟨⟩ b∈j σ∈Γ) ⟩
(nf (nfCtx Γ) a /⟨ k ⟩ nfSVSub (nfCtx Δ) σ) ↓⌜·⌝
(nf (nfCtx Γ) b /⟨ k ⟩ nfSVSub (nfCtx Δ) σ)
≡⟨ sym (Nf∈-Π-e-/⟨⟩′ (nf-Tp∈ a∈Πjk) (nf-Tp∈ b∈j) (nf-/⟨⟩∈ σ∈Γ)) ⟩
nf (nfCtx Γ) a ↓⌜·⌝ nf (nfCtx Γ) b /⟨ k ⟩ nfSVSub (nfCtx Δ) σ
∎
nf-/⟨⟩ (∈-s-i a∈c⋯d) σ∈Γ = nf-/⟨⟩ a∈c⋯d σ∈Γ
nf-/⟨⟩ (∈-⇑ a∈j j<∷k) σ∈Γ = nf-/⟨⟩ a∈j σ∈Γ
nfKind-/⟨⟩ : ∀ {m n Δ k Γ} {σ : SVSub m n} {j} →
Γ ⊢ j kd → Δ ⊢/Tp⟨ k ⟩ σ ∈ Γ →
nfKind (nfCtx Δ) (j Kind/ toSub σ) ≋
nfKind (nfCtx Γ) j Kind/⟨ k ⟩ nfSVSub (nfCtx Δ) σ
nfKind-/⟨⟩ (kd-⋯ a∈* b∈*) σ∈Γ = ≋-⋯ (nf-/⟨⟩ a∈* σ∈Γ) (nf-/⟨⟩ b∈* σ∈Γ)
nfKind-/⟨⟩ (kd-Π j-kd k-kd) σ∈Γ =
≋-Π (nfKind-/⟨⟩ j-kd σ∈Γ) (nfKind-/⟨⟩ k-kd (∈-H↑ σ∈Γ))
-- Shorthands.
nf-[] : ∀ {n} {Γ : Ctx n} {k a j b} →
kd k ∷ Γ ⊢Tp a ∈ j → Γ ⊢Tp b ∈ k →
nf (nfCtx Γ) (a [ b ]) ≈
nf (nfCtx (kd k ∷ Γ)) a [ nf (nfCtx Γ) b ∈ ⌊ k ⌋ ]
nf-[] {_} {Γ} {k} {a} a∈j b∈k =
subst (λ c → nf (nfCtx Γ) (a [ c ]) ≈
(nf (nfCtx (kd k ∷ Γ)) a [ nf (nfCtx Γ) c ∈ ⌊ k ⌋ ]))
(⌞⌟∘⌜⌝-id _) (nf-/⟨⟩ a∈j (∈-hsub b∈k))
nfKind-[] : ∀ {n} {Γ : Ctx n} {k j b} →
kd k ∷ Γ ⊢ j kd → Γ ⊢Tp b ∈ k →
nfKind (nfCtx Γ) (j Kind[ b ]) ≋
nfKind (nfCtx (kd k ∷ Γ)) j Kind[ nf (nfCtx Γ) b ∈ ⌊ k ⌋ ]
nfKind-[] {_} {Γ} {k} {j} j-kd b∈k =
subst (λ c → nfKind (nfCtx Γ) (j Kind[ c ]) ≋
(nfKind (nfCtx (kd k ∷ Γ)) j Kind[ nf (nfCtx Γ) c ∈ ⌊ k ⌋ ]))
(⌞⌟∘⌜⌝-id _) (nfKind-/⟨⟩ j-kd (∈-hsub b∈k))
|
{
"alphanum_fraction": 0.4846845347,
"avg_line_length": 40.3154362416,
"ext": "agda",
"hexsha": "6cba79abce30af9c592c0fef5dac7c88d72841d1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Kinding/Simple/Normalization.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Kinding/Simple/Normalization.agda",
"max_line_length": 80,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Kinding/Simple/Normalization.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 6129,
"size": 12014
}
|
module Pat (BaseType : Set) where
data Ty : Set where
ι : BaseType -> Ty
_⟶_ : Ty -> Ty -> Ty
data Bwd (A : Set) : Set where
• : Bwd A
_◄_ : Bwd A -> A -> Bwd A
infixl 30 _◄_
Ctx = Bwd Ty
data Take {A : Set} : Bwd A -> A -> Bwd A -> Set where
hd : forall {x xs} -> Take (xs ◄ x) x xs
tl : forall {x y xs ys} -> Take xs x ys -> Take (xs ◄ y) x (ys ◄ y)
data Pat : Ctx -> Ctx -> Ty -> Ctx -> Set
data Pats : Ctx -> Ty -> Ctx -> Ty -> Set where
ε : forall {Θ τ} -> Pats Θ τ Θ τ
_,_ : forall {Θ₁ Θ₂ Θ₃ ρ σ τ} ->
Pat • Θ₁ ρ Θ₂ -> Pats Θ₂ σ Θ₃ τ ->
Pats Θ₁ (ρ ⟶ σ) Θ₃ τ
data Pat where
ƛ : forall {Δ Θ Θ' σ τ} -> Pat (Δ ◄ σ) Θ τ Θ' ->
Pat Δ Θ (σ ⟶ τ) Θ'
_[_] : forall {Θ Θ' Δ σ τ} ->
Take Θ σ Θ' -> Pats Δ σ • τ -> Pat Δ Θ τ Θ'
|
{
"alphanum_fraction": 0.4772727273,
"avg_line_length": 23.2941176471,
"ext": "agda",
"hexsha": "8dcaa6aeab872b35410e62c4b4d4775a47bbd083",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/Miller/Pat.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/Miller/Pat.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/Miller/Pat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 368,
"size": 792
}
|
-- Andreas, 2012-03-08
module NoNoTerminationCheck where
{-# NON_TERMINATING #-}
f : Set
f = f
-- the pragma should not extend to the following definition
g : Set
g = g
-- error: non-termination
|
{
"alphanum_fraction": 0.7,
"avg_line_length": 13.3333333333,
"ext": "agda",
"hexsha": "ce13b1a18a5c21d89bc6d3d9bee39d2e994fe41f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NoNoTerminationCheck.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NoNoTerminationCheck.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NoNoTerminationCheck.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 58,
"size": 200
}
|
open import Common.Prelude
open import Common.Reflection
open import Common.Equality
data Dec {a} (A : Set a) : Set a where
yes : A → Dec A
no : Dec A
record Eq {a} (A : Set a) : Set a where
constructor eqDict
field
_==_ : (x y : A) → Dec (x ≡ y)
module M {a} {A : Set a} {{EqA : Eq A}} where
_==_ : (x y : A) → Dec (x ≡ y)
_==_ = Eq._==_ EqA
open Eq {{...}}
private
eqNat : (x y : Nat) → Dec (x ≡ y)
eqNat zero zero = yes refl
eqNat zero (suc y) = no
eqNat (suc x) zero = no
eqNat (suc x) (suc y) with eqNat x y
eqNat (suc x) (suc .x) | yes refl = yes refl
... | no = no
eqBool : (x y : Bool) → Dec (x ≡ y)
eqBool true true = yes refl
eqBool true false = no
eqBool false true = no
eqBool false false = yes refl
unquoteDecl EqNat = define (iArg EqNat)
(funDef (def (quote Eq) (vArg (def (quote Nat) []) ∷ []))
(clause [] (con (quote eqDict) (vArg (def (quote eqNat) []) ∷ [])) ∷ []))
instance
EqBool : Eq Bool
unquoteDef EqBool =
defineFun EqBool (clause [] (con (quote eqDict) (vArg (def (quote eqBool) []) ∷ [])) ∷ [])
id : {A : Set} → A → A
id x = x
tm : QName → Term
tm eq = def (quote id) (vArg (def eq (vArg (lit (nat 0)) ∷ vArg (lit (nat 1)) ∷ [])) ∷ [])
tm₂ : QName → Term
tm₂ eq = def eq (iArg (def (quote EqNat) []) ∷ vArg (lit (nat 0)) ∷ vArg (lit (nat 1)) ∷ [])
_==′_ : ∀ {a} {A : Set a} {{EqA : Eq A}} (x y : A) → Dec (x ≡ y)
_==′_ = _==_
ok₁ : Dec (0 ≡ 1)
ok₁ = unquote (give (tm (quote _==′_)))
ok₂ : Dec (0 ≡ 1)
ok₂ = unquote (give (tm₂ (quote _==_)))
ok₃ : Dec (0 ≡ 1)
ok₃ = unquote (give (tm (quote M._==_)))
ok₄ : Dec (true ≡ false)
ok₄ = true == false
ok₅ : Dec (2 ≡ 2)
ok₅ = 2 == 2
-- Was bad.
bad : Dec (0 ≡ 1)
bad = unquote (give (tm (quote _==_)))
|
{
"alphanum_fraction": 0.5410022779,
"avg_line_length": 23.4133333333,
"ext": "agda",
"hexsha": "a69662f04eaf9c28d277bcce6270f90699fcaf08",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/UnquoteInstance.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/UnquoteInstance.agda",
"max_line_length": 94,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/UnquoteInstance.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 727,
"size": 1756
}
|
{-# OPTIONS --without-K #-}
module well-typed-syntax-eq-dec where
open import well-typed-syntax
open import common
context-pick-if : ∀ {ℓ} {P : Context → Set ℓ}
{Γ : Context}
(dummy : P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(val : P Γ) →
P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)
context-pick-if {P = P} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} dummy val = val
context-pick-if {P = P} {Γ} dummy val = dummy
context-pick-if-refl : ∀ {ℓ P dummy val} →
context-pick-if {ℓ} {P} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} dummy val ≡ val
context-pick-if-refl {P = P} = refl
|
{
"alphanum_fraction": 0.4913385827,
"avg_line_length": 37.3529411765,
"ext": "agda",
"hexsha": "653cb7853efeccba23abc1187f950235bc0da1a4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/well-typed-syntax-eq-dec.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/well-typed-syntax-eq-dec.agda",
"max_line_length": 92,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/well-typed-syntax-eq-dec.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 211,
"size": 635
}
|
module Test.NFTest where
open import Data.Nat
open import Data.List
open import Data.Product
open import Test.Factorial
open import NF
open import NF.Nat
open import NF.List
open import NF.Product
l : List (ℕ × ℕ)
l = nf ((1 , factorial 1) ∷ (1 + 1 , factorial (1 + 1)) ∷ [] ++
(5 , factorial 5) ∷ [])
|
{
"alphanum_fraction": 0.6634615385,
"avg_line_length": 22.2857142857,
"ext": "agda",
"hexsha": "95d4c871d7bf5ead12ca3e8807d8c98fd79aedd2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yanok/normalize-via-instances",
"max_forks_repo_path": "test/Test/NFTest.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yanok/normalize-via-instances",
"max_issues_repo_path": "test/Test/NFTest.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yanok/normalize-via-instances",
"max_stars_repo_path": "test/Test/NFTest.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 100,
"size": 312
}
|
module Naturals where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
-- suc (suc (suc (suc (suc (suc (suc zero))))))
{-# BUILTIN NATURAL ℕ #-}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
_+_ : ℕ → ℕ → ℕ
zero + n = n -- 0 + n ≡ n
suc m + n = suc (m + n) -- (1 + m) + n ≡ 1 + (m + n)
_ : 1 + 1 ≡ 2
_ = refl
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4
≡⟨⟩
suc 1 + 4
∎
|
{
"alphanum_fraction": 0.491416309,
"avg_line_length": 16.0689655172,
"ext": "agda",
"hexsha": "af5b1436ff5734b6f4b2874aa8341530ea7b74b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f23862b35c00b810e20f2e1e661142c024baa33",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xiongxin/playground",
"max_forks_repo_path": "plfa/src/Naturals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f23862b35c00b810e20f2e1e661142c024baa33",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xiongxin/playground",
"max_issues_repo_path": "plfa/src/Naturals.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f23862b35c00b810e20f2e1e661142c024baa33",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xiongxin/playground",
"max_stars_repo_path": "plfa/src/Naturals.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 210,
"size": 466
}
|
------------------------------------------------------------------------------
-- Filter
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.List.Filter where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.PropertiesI
open import FOTC.Base.List
open import FOTC.Data.Bool.Type
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.Type
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
------------------------------------------------------------------------------
postulate
filter : D → D → D
filter-[] : ∀ p → filter p [] ≡ []
filter-∷ : ∀ p x xs → filter p (x ∷ xs) ≡
(if p · x then x ∷ filter p xs else filter p xs)
postulate filter-List : ∀ p {xs} → List xs → List (filter p xs)
from-Bool : ∀ {b} → Bool b → b ≡ true ∨ b ≡ false
from-Bool btrue = inj₁ refl
from-Bool bfalse = inj₂ refl
-- lenght-filter : ∀ p {xs} → (∀ x → Bool (p · x)) → List xs →
-- length (filter p xs) ≤ length xs
-- lenght-filter p hp lnil =
-- le (length (filter p [])) (length [])
-- ≡⟨ ltLeftCong (lengthCong (filter-[] p)) ⟩
-- le (length []) (length [])
-- ≡⟨ ltCong length-[] (succCong length-[]) ⟩
-- le zero zero
-- ≡⟨ x≤x nzero ⟩
-- true ∎
-- lenght-filter p hp (lcons x {xs} Lxs) = case prf₁ prf₂ (from-Bool (hp x))
-- where
-- prf₁ : p · x ≡ true →
-- le (length (filter p (x ∷ xs))) (length (x ∷ xs)) ≡ true
-- prf₁ h = {!!}
-- prf₂ : p · x ≡ false →
-- le (length (filter p (x ∷ xs))) (length (x ∷ xs)) ≡ true
-- prf₂ h =
-- le (length (filter p (x ∷ xs))) (length (x ∷ xs))
-- ≡⟨ ltLeftCong (lengthCong {!!}) ⟩
-- le (length (filter p xs)) (length (x ∷ xs))
-- ≡⟨ ≤-trans (lengthList-N (filter-List p Lxs))
-- (lengthList-N Lxs)
-- (lengthList-N (lcons x Lxs))
-- (lenght-filter p hp Lxs)
-- (x<y→x≤y (lengthList-N Lxs) (lengthList-N (lcons x Lxs))
-- (lg-x<lg-x∷xs x Lxs)) ⟩
-- true ∎
|
{
"alphanum_fraction": 0.4873985476,
"avg_line_length": 34.4264705882,
"ext": "agda",
"hexsha": "8d89d66df7235eec187d97d874be1b6c9f6bf788",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/List/Filter.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/List/Filter.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/List/Filter.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 714,
"size": 2341
}
|
open import Oscar.Prelude
open import Oscar.Class
module Oscar.Class.Symmetry where
module Symmetry'
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
x y
= ℭLASS (x ,, y ,, _∼_) (x ∼ y → y ∼ x)
module Symmetry
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
where
class = ∀ {x y} → Symmetry'.class _∼_ x y
type = ∀ {x y} → Symmetry'.type _∼_ x y
method : ⦃ _ : class ⦄ → type
method {x = x} {y} = Symmetry'.method _∼_ x y
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯}
where
symmetry = Symmetry.method _∼_
syntax symmetry {x} {y} x∼y = x ⟨∼ x∼y ∼⟩ y
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
⦃ _ : Symmetry.class _∼_ ⦄
where
symmetry[_] = λ {x y} (x∼y : x ∼ y) → Symmetry.method _∼_ x∼y
|
{
"alphanum_fraction": 0.5173852573,
"avg_line_length": 20.5428571429,
"ext": "agda",
"hexsha": "80bba44ec7dd8e6429b8bb5a0357973306bee958",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Symmetry.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Symmetry.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Symmetry.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 396,
"size": 719
}
|
module UniDB.Subst.Shifts where
open import UniDB.Subst.Core
open import UniDB.Morph.Shifts
module _ {T : STX} {{vrT : Vr T}} {{apTT : Ap T T}} {{apVrT : ApVr T}} where
instance
iLkCompApShifts : LkCompAp T Shifts
lk-⊙-ap {{iLkCompApShifts}} ξ₁ ξ₂ i = begin
vr (lk (ξ₁ ⊙ ξ₂) i) ≡⟨ cong vr (shiftIx-⊙ ξ₁ ξ₂ i) ⟩
vr (lk ξ₂ (lk ξ₁ i)) ≡⟨ sym (ap-vr {T} ξ₂ (lk ξ₁ i)) ⟩
ap {T} ξ₂ (vr (lk ξ₁ i)) ∎
|
{
"alphanum_fraction": 0.5750577367,
"avg_line_length": 28.8666666667,
"ext": "agda",
"hexsha": "ad1d893482ddcf1faa1bf95d07bbf8c1898c3fef",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Subst/Shifts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Subst/Shifts.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Subst/Shifts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 214,
"size": 433
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Profunctor where
open import Level
open import Data.Product
open import Relation.Binary.Bundles
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor hiding (id)
open import Categories.Functor.Bifunctor
open import Categories.Functor.Hom
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.Equivalence
open import Function.Equality using (Π; _⟨$⟩_; cong)
Profunctor : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Set _
Profunctor {ℓ = ℓ} {e} {ℓ′ = ℓ′} {e′} C D = Bifunctor (Category.op D) C (Setoids (ℓ ⊔ ℓ′) (e ⊔ e′))
-- Calling the profunctor identity "id" is a bad idea
proid : ∀ {o ℓ e} → {C : Category o ℓ e} → Profunctor C C
proid {C = C} = Hom[ C ][-,-]
module Profunctor {o ℓ e} {o′} (C : Category o ℓ e) (D : Category o′ ℓ e) where
module C = Category C
open module D = Category D hiding (id)
open D.HomReasoning
open import Categories.Morphism.Reasoning D using (assoc²''; elimˡ; elimʳ)
-- representable profunctors
-- hom(f,1)
repˡ : ∀ (F : Functor C D) → Profunctor D C
repˡ F = record
{ F₀ = λ (c , d) → record
{ Carrier = D [ F₀ c , d ]
; _≈_ = D._≈_
; isEquivalence = D.equiv
}
; F₁ = λ (f , g) → record
{ _⟨$⟩_ = λ x → g ∘ x ∘ F₁ f
; cong = λ x → begin _ ≈⟨ refl⟩∘⟨ x ⟩∘⟨refl ⟩ _ ∎
}
; identity = λ {x} {y} {y'} y≈y' → begin
D.id ∘ y ∘ F₁ C.id ≈⟨ D.identityˡ ⟩
y ∘ F₁ C.id ≈⟨ elimʳ identity ⟩
y ≈⟨ y≈y' ⟩
y' ∎
; homomorphism = λ { {f = f0 , f1} {g = g0 , g1} {x} {y} x≈y → begin
(g1 ∘ f1) ∘ x ∘ F₁ (f0 C.∘ g0) ≈⟨ refl⟩∘⟨ x≈y ⟩∘⟨ F.homomorphism ⟩
(g1 ∘ f1) ∘ y ∘ F₁ f0 ∘ F₁ g0 ≈⟨ refl⟩∘⟨ D.sym-assoc ⟩
(g1 ∘ f1) ∘ (y ∘ F₁ f0) ∘ F₁ g0 ≈⟨ Equiv.sym assoc²'' ⟩
g1 ∘ (f1 ∘ y ∘ F₁ f0) ∘ F₁ g0 ∎
}
; F-resp-≈ = λ { {f = f0 , f1} {g = g0 , g1} (f0≈g0 , f1≈g1) {x} {y} x≈y → begin
f1 ∘ x ∘ F₁ f0 ≈⟨ f1≈g1 ⟩∘⟨ x≈y ⟩∘⟨ F-resp-≈ f0≈g0 ⟩
g1 ∘ y ∘ F₁ g0 ∎
}
}
where
open module F = Functor F
-- hom(1,f)
repʳ : (F : Functor C D) → Profunctor C D
repʳ F = record
{ F₀ = λ (c , d) → record
{ Carrier = D [ c , F₀ d ]
; _≈_ = D._≈_
; isEquivalence = D.equiv
}
; F₁ = λ (f , g) → record
{ _⟨$⟩_ = λ x → F₁ g ∘ x ∘ f
; cong = λ x → begin _ ≈⟨ refl⟩∘⟨ x ⟩∘⟨refl ⟩ _ ∎
}
; identity = λ {x} {y} {y'} y≈y' → begin
F₁ C.id ∘ y ∘ D.id ≈⟨ elimˡ identity ⟩
y ∘ D.id ≈⟨ D.identityʳ ⟩
y ≈⟨ y≈y' ⟩
y' ∎
; homomorphism = λ { {f = f0 , f1} {g = g0 , g1} {x} {y} x≈y → begin
F₁ (g1 C.∘ f1) ∘ x ∘ f0 ∘ g0 ≈⟨ F.homomorphism ⟩∘⟨ x≈y ⟩∘⟨refl ⟩
(F₁ g1 ∘ F₁ f1) ∘ y ∘ f0 ∘ g0 ≈⟨ refl⟩∘⟨ D.sym-assoc ⟩
(F₁ g1 ∘ F₁ f1) ∘ (y ∘ f0) ∘ g0 ≈⟨ Equiv.sym assoc²'' ⟩
F₁ g1 ∘ (F₁ f1 ∘ y ∘ f0) ∘ g0 ∎
}
; F-resp-≈ = λ { {f = f0 , f1} {g = g0 , g1} (f0≈g0 , f1≈g1) {x} {y} x≈y → begin
F₁ f1 ∘ x ∘ f0 ≈⟨ F-resp-≈ f1≈g1 ⟩∘⟨ x≈y ⟩∘⟨ f0≈g0 ⟩
F₁ g1 ∘ y ∘ g0 ∎
}
}
where
open module F = Functor F
-- each Prof(C,D) is a category
homProf : {o o′ ℓ e : Level} → (C : Category o ℓ e) → (D : Category o′ ℓ e) → Category _ _ _
homProf C D = record
{ Obj = Profunctor C D
; _⇒_ = NaturalTransformation
; _≈_ = _≃_
; id = id
; _∘_ = _∘ᵥ_
; assoc = λ { {f = f} {g} {h} → assoc-lemma {f = f} {g} {h}}
; sym-assoc = λ { {f = f} {g} {h} → sym-assoc-lemma {f = f} {g} {h}}
; identityˡ = λ { {f = f} → id-lemmaˡ {f = f} }
; identityʳ = λ { {f = f} → id-lemmaʳ {f = f} }
; identity² = λ z → z
; equiv = ≃-isEquivalence
; ∘-resp-≈ = λ { {f = f} {h} {g} {i} eq eq' → ∘ᵥ-resp-≃ {f = f} {h} {g} {i} eq eq' }
}
where
id-lemmaˡ : ∀ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {P K : Functor C D}
{f : NaturalTransformation P K} → id ∘ᵥ f ≃ f
id-lemmaˡ {D = D} = Category.identityˡ D
id-lemmaʳ : ∀ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {P K : Functor C D}
{f : NaturalTransformation P K} → f ∘ᵥ id ≃ f
id-lemmaʳ {D = D} = Category.identityʳ D
assoc-lemma : ∀ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E F G H : Functor C D}
{f : NaturalTransformation E F}
{g : NaturalTransformation F G}
{h : NaturalTransformation G H}
→ (h ∘ᵥ g) ∘ᵥ f ≃ h ∘ᵥ g ∘ᵥ f
assoc-lemma {D = D} = Category.assoc D
sym-assoc-lemma : ∀ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E F G H : Functor C D}
{f : NaturalTransformation E F}
{g : NaturalTransformation F G}
{h : NaturalTransformation G H}
→ h ∘ᵥ g ∘ᵥ f ≃ (h ∘ᵥ g) ∘ᵥ f
sym-assoc-lemma {D = D} = Category.sym-assoc D
∘ᵥ-resp-≃ : ∀ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {R P K : Functor C D}
{f h : NaturalTransformation P K}
{g i : NaturalTransformation R P} → f ≃ h → g ≃ i → f ∘ᵥ g ≃ h ∘ᵥ i
∘ᵥ-resp-≃ {D = D} fh gi = Category.∘-resp-≈ D fh gi
|
{
"alphanum_fraction": 0.4889309366,
"avg_line_length": 38.8602941176,
"ext": "agda",
"hexsha": "e061fd8d7887c34fd2cd24d0c95e808fd4b8c662",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Profunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Profunctor.agda",
"max_line_length": 109,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Profunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 2412,
"size": 5285
}
|
{-# OPTIONS --cubical --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Agda.Primitive using (lzero)
module Cubical.Data.DescendingList.Strict.Properties
(A : Type₀)
(_>_ : A → A → Type₀)
where
open import Cubical.Data.DescendingList.Strict A _>_
open import Cubical.HITs.ListedFiniteSet renaming (_∈_ to _∈ʰ_)
import Cubical.Data.Empty as Empty
open Empty using (⊥-elim)
open import Cubical.Relation.Nullary.DecidableEq
open import Cubical.Relation.Nullary using (Dec; Discrete) renaming (¬_ to Type¬_)
unsort : SDL → LFSet A
unsort [] = []
unsort (cons x xs x>xs) = x ∷ unsort xs
module _ where
open import Cubical.Relation.Nullary
data Tri (A B C : Set) : Set where
tri-< : A → ¬ B → ¬ C → Tri A B C
tri-≡ : ¬ A → B → ¬ C → Tri A B C
tri-> : ¬ A → ¬ B → C → Tri A B C
module IsoToLFSet
(A-discrete : Discrete A)
(>-isProp : ∀ {x y} → isProp (x > y))
(tri : ∀ x y → Tri (y > x) (x ≡ y) (x > y))
(>-trans : ∀ {x y z} → x > y → y > z → x > z)
(>-irreflexive : ∀ {x} → Type¬ x > x)
where
Tri' : A → A → Set
Tri' x y = Tri (y > x) (x ≡ y) (x > y)
open import Cubical.Foundations.Logic
open import Cubical.HITs.PropositionalTruncation
-- Membership is defined via `LFSet`.
-- This computes just as well as a direct inductive definition,
-- and additionally lets us use the extra `comm` and `dup` paths to prove
-- things about membership.
_∈ˡ_ : A → SDL → hProp lzero
a ∈ˡ l = a ∈ʰ unsort l
Memˡ : SDL → A → hProp lzero
Memˡ l a = a ∈ˡ l
Memʰ : LFSet A → A → hProp lzero
Memʰ l a = a ∈ʰ l
>ᴴ-trans : ∀ x y zs → x > y → y >ᴴ zs → x >ᴴ zs
>ᴴ-trans x y [] x>y y>zs = >ᴴ[]
>ᴴ-trans x y (cons z zs _) x>y (>ᴴcons y>z) = >ᴴcons (>-trans x>y y>z)
≡ₚ-sym : ∀ {A : Set} {x y : A} → [ x ≡ₚ y ] → [ y ≡ₚ x ]
≡ₚ-sym p = recPropTrunc squash (λ p → ∣ sym p ∣) p
>-all : ∀ x l → x >ᴴ l → ∀ a → [ a ∈ˡ l ] → x > a
>-all x (cons y zs y>zs) (>ᴴcons x>y) a a∈l =
⊔-elim (a ≡ₚ y) (a ∈ˡ zs) (λ _ → (x > a) , >-isProp {x} {a})
(λ a≡ₚy → substₚ (λ q → x > q , >-isProp) (≡ₚ-sym a≡ₚy) x>y)
(λ a∈zs → >-all x zs (>ᴴ-trans x y zs x>y y>zs) a a∈zs)
a∈l
>-absent : ∀ x l → x >ᴴ l → [ ¬ (x ∈ˡ l) ]
>-absent x l x>l x∈l = ⊥-elim (>-irreflexive (>-all x l x>l x x∈l))
>ᴴ-isProp : ∀ x xs → isProp (x >ᴴ xs)
>ᴴ-isProp x _ >ᴴ[] >ᴴ[] = refl
>ᴴ-isProp x _ (>ᴴcons p) (>ᴴcons q) = cong >ᴴcons (>-isProp p q)
SDL-isSet : isSet SDL
SDL-isSet = isSetDL.isSetDL A _>_ >-isProp A-discrete where
open import Cubical.Data.DescendingList.Properties
insert : A → SDL → SDL
>ᴴinsert : {x y : A} {u : SDL} → y >ᴴ u → (y > x) → y >ᴴ insert x u
insert x [] = cons x [] >ᴴ[]
insert x (cons y zs good) with tri x y
insert x (cons y zs good) | tri-< x<y _ _ = cons y (insert x zs) (>ᴴinsert good x<y)
insert x (cons y zs good) | tri-≡ _ x≡y _ = cons y zs good
insert x (cons y zs good) | tri-> _ _ x>y = cons x (cons y zs good) (>ᴴcons x>y)
>ᴴinsert >ᴴ[] y>x = >ᴴcons y>x
>ᴴinsert {x} (>ᴴcons {y} y>ys) y>x with tri x y
>ᴴinsert {x} {y} (>ᴴcons {z} z>zs) y>x | tri-< _ _ e = >ᴴcons z>zs
>ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-≡ _ _ e = >ᴴcons y>ys
>ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-> _ _ _ = >ᴴcons y>x
insert-correct : ∀ x ys → unsort (insert x ys) ≡ (x ∷ unsort ys)
insert-correct x [] = refl
insert-correct x (cons y zs y>zs) with tri x y
... | tri-< _ _ _ =
y ∷ unsort (insert x zs) ≡⟨ (λ i → y ∷ (insert-correct x zs i)) ⟩
y ∷ x ∷ unsort zs ≡⟨ comm _ _ _ ⟩
x ∷ y ∷ unsort zs ∎
... | tri-≡ _ x≡y _ = sym (dup y (unsort zs)) ∙ (λ i → (x≡y (~ i)) ∷ y ∷ unsort zs)
... | tri-> _ _ _ = refl
insert-correct₂ : ∀ x y zs → unsort (insert x (insert y zs)) ≡ (x ∷ y ∷ unsort zs)
insert-correct₂ x y zs =
insert-correct x (insert y zs)
∙ cong (λ q → x ∷ q) (insert-correct y zs)
abstract
-- for some reason, making [exclude] non-abstract makes
-- typechecking noticeably slower
exclude : A → (A → hProp lzero) → (A → hProp lzero)
exclude x h a = ¬ a ≡ₚ x ⊓ h a
>-excluded : ∀ x xs → x >ᴴ xs → exclude x (Memʰ (x ∷ unsort xs)) ≡ Memˡ xs
>-excluded x xs x>xs = funExt (λ a → ⇔toPath (to a) (from a)) where
import Cubical.Data.Prod as D
import Cubical.Data.Sum as D
from : ∀ a → [ a ∈ˡ xs ] → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ]
from a a∈xs = (recPropTrunc (snd ⊥) a≢x) D., inr a∈xs where
a≢x : Type¬ (a ≡ x)
a≢x = λ a≡x → (>-absent x xs x>xs (transport (λ i → [ a≡x i ∈ˡ xs ]) a∈xs ))
to : ∀ a → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ] → [ a ∈ˡ xs ]
to a (a≢x D., x) = recPropTrunc (snd (a ∈ˡ xs)) (λ {
(D.inl a≡x) → ⊥-elim (a≢x a≡x);
(D.inr x) → x }) x
cons-eq : ∀ x xs x>xs y ys y>ys → x ≡ y → xs ≡ ys → cons x xs x>xs ≡ cons y ys y>ys
cons-eq x xs x>xs y ys y>ys x≡y xs≡ys i = cons (x≡y i) (xs≡ys i)
(>ᴴ-isProp (x≡y i) (xs≡ys i)
(transp (λ j → (x≡y (i ∧ j)) >ᴴ (xs≡ys) (i ∧ j)) (~ i) x>xs)
(transp (λ j → (x≡y (i ∨ ~ j)) >ᴴ (xs≡ys) (i ∨ ~ j)) i y>ys)
i)
Memˡ-inj-cons : ∀ x xs x>xs y ys y>ys → x ≡ y → Memˡ (cons x xs x>xs) ≡ Memˡ (cons y ys y>ys) → Memˡ xs ≡ Memˡ ys
Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e =
Memˡ xs ≡⟨
sym (>-excluded x xs x>xs)
⟩ exclude x (Memʰ (x ∷ unsort xs)) ≡⟨
(λ i → exclude (x≡y i) (e i))
⟩ exclude y (Memʰ (y ∷ unsort ys)) ≡⟨
(>-excluded y ys y>ys)
⟩ Memˡ ys ∎
Memˡ-inj : ∀ l₁ l₂ → Memˡ l₁ ≡ Memˡ l₂ → l₁ ≡ l₂
Memˡ-inj [] [] eq = refl
Memˡ-inj [] (cons y ys y>ys) eq = ⊥-elim (transport (λ i → [ eq (~ i) y ]) (inl ∣ refl ∣))
Memˡ-inj (cons y ys y>ys) [] eq = ⊥-elim (transport (λ i → [ eq i y ]) (inl ∣ refl ∣))
Memˡ-inj (cons x xs x>xs) (cons y ys y>ys) e =
⊔-elim (x ≡ₚ y) (x ∈ʰ unsort ys)
(λ _ → ((cons x xs x>xs) ≡ (cons y ys y>ys)) , SDL-isSet _ _)
(recPropTrunc (SDL-isSet _ _) with-x≡y)
(⊥-elim ∘ x∉ys)
(transport (λ i → [ e i x ]) (inl ∣ refl ∣)) where
xxs = cons x xs x>xs
x∉ys : [ ¬ x ∈ˡ ys ]
x∉ys x∈ys = ⊥-elim (>-irreflexive y>y) where
y>x : y > x
y>x = (>-all y ys y>ys x x∈ys)
y∈xxs : [ y ∈ˡ (cons x xs x>xs) ]
y∈xxs = (transport (λ i → [ e (~ i) y ]) (inl ∣ refl ∣))
y>y : y > y
y>y = >-all y xxs (>ᴴcons y>x) y y∈xxs
with-x≡y : x ≡ y → (cons x xs x>xs) ≡ (cons y ys y>ys)
with-x≡y x≡y = cons-eq x xs x>xs y ys y>ys x≡y r where
r : xs ≡ ys
r = Memˡ-inj _ _ (Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e)
unsort-inj : ∀ x y → unsort x ≡ unsort y → x ≡ y
unsort-inj x y e = Memˡ-inj x y λ i a → a ∈ʰ (e i)
insert-swap : (x y : A) (zs : SDL) → insert x (insert y zs) ≡ insert y (insert x zs)
insert-swap x y zs =
unsort-inj (insert x (insert y zs)) (insert y (insert x zs))
(unsort (insert x (insert y zs))
≡⟨ (λ i → insert-correct₂ x y zs i) ⟩
x ∷ y ∷ unsort zs
≡⟨ (λ i → comm x y (unsort zs) i) ⟩
y ∷ x ∷ unsort zs
≡⟨ (λ i → insert-correct₂ y x zs (~ i)) ⟩
unsort (insert y (insert x zs)) ∎)
insert-dup : (x : A) (ys : SDL) → insert x (insert x ys) ≡ insert x ys
insert-dup x ys = unsort-inj (insert x (insert x ys)) (insert x ys)
(
unsort (insert x (insert x ys))
≡⟨ (λ i → insert-correct₂ x x ys i) ⟩
x ∷ x ∷ unsort ys
≡⟨ dup x (unsort ys) ⟩
x ∷ unsort ys
≡⟨ (λ i → insert-correct x ys (~ i)) ⟩
unsort (insert x ys) ∎
)
sort : LFSet A → SDL
sort = LFSetRec.f [] insert insert-swap insert-dup SDL-isSet
unsort∘sort : ∀ x → unsort (sort x) ≡ x
unsort∘sort =
LFPropElim.f (λ x → unsort (sort x) ≡ x)
refl
(λ x {ys} ys-hyp → insert-correct x (sort ys) ∙ cong (λ q → x ∷ q) ys-hyp)
(λ xs → trunc (unsort (sort xs)) xs)
sort∘unsort : ∀ x → sort (unsort x) ≡ x
sort∘unsort x = unsort-inj (sort (unsort x)) x (unsort∘sort (unsort x))
SDL-LFSet-iso : Iso SDL (LFSet A)
SDL-LFSet-iso = (iso unsort sort unsort∘sort sort∘unsort)
SDL≡LFSet : SDL ≡ LFSet A
SDL≡LFSet = ua (isoToEquiv SDL-LFSet-iso)
|
{
"alphanum_fraction": 0.5263093189,
"avg_line_length": 36.1511111111,
"ext": "agda",
"hexsha": "14a11f2496af691122eeac5c57b0300abe89b3d3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/DescendingList/Strict/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/DescendingList/Strict/Properties.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/DescendingList/Strict/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3620,
"size": 8134
}
|
{-# OPTIONS --without-K --safe #-}
-- Various operations and proofs on morphisms between products
-- Perhaps a bit of overkill? There is so much here that it's impossible to remember
-- it all
open import Categories.Category
module Categories.Object.Product.Morphisms {o ℓ e} (𝒞 : Category o ℓ e) where
open import Function using (flip)
open import Level
open import Categories.Object.Product.Core 𝒞
open Category 𝒞
open HomReasoning
private
variable
A B C D E F : Obj
f f′ g g′ h i : A ⇒ B
infix 10 [_]⟨_,_⟩ [_⇒_]_×_
infix 12 [[_]] [_]π₁ [_]π₂
[[_]] : Product A B → Obj
[[ p ]] = Product.A×B p
[_]⟨_,_⟩ : ∀ (p : Product B C) → A ⇒ B → A ⇒ C → A ⇒ [[ p ]]
[ p ]⟨ f , g ⟩ = Product.⟨_,_⟩ p f g
[_]π₁ : ∀ (p : Product A B) → [[ p ]] ⇒ A
[_]π₁ = Product.π₁
[_]π₂ : ∀ (p : Product A B) → [[ p ]] ⇒ B
[_]π₂ = Product.π₂
[_⇒_]_×_ : ∀ (p₁ : Product A C) (p₂ : Product B D) →
(A ⇒ B) → (C ⇒ D) → ([[ p₁ ]] ⇒ [[ p₂ ]])
[ p₁ ⇒ p₂ ] f × g = [ p₂ ]⟨ f ∘ p₁.π₁ , g ∘ p₁.π₂ ⟩
where module p₁ = Product p₁
module p₂ = Product p₂
id×id : ∀ (p : Product A B) → [ p ⇒ p ] id × id ≈ id
id×id p = begin
⟨ id ∘ π₁ , id ∘ π₂ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩
id ∎
where open Product p
repack≡id×id : ∀ (p₁ p₂ : Product A B) → repack p₁ p₂ ≈ [ p₁ ⇒ p₂ ] id × id
repack≡id×id p₁ p₂ = sym (Product.⟨⟩-cong₂ p₂ identityˡ identityˡ)
[_⇒_]π₁∘× : ∀ (p₁ : Product A C)(p₂ : Product B D) →
Product.π₁ p₂ ∘ [ p₁ ⇒ p₂ ] f × g ≈ f ∘ Product.π₁ p₁
[_⇒_]π₁∘× _ p₂ = Product.project₁ p₂
[_⇒_]π₂∘× : ∀ (p₁ : Product A C) (p₂ : Product B D) →
Product.π₂ p₂ ∘ [ p₁ ⇒ p₂ ] f × g ≈ g ∘ Product.π₂ p₁
[_⇒_]π₂∘× _ p₂ = Product.project₂ p₂
[_⇒_]×-cong₂ : ∀ (p₁ : Product A B) (p₂ : Product C D) →
f ≈ g → h ≈ i →
[ p₁ ⇒ p₂ ] f × h ≈ [ p₁ ⇒ p₂ ] g × i
[_⇒_]×-cong₂ p₁ p₂ f≈g h≈i =
Product.⟨⟩-cong₂ p₂ (∘-resp-≈ f≈g refl) (∘-resp-≈ h≈i refl)
[_⇒_]×∘⟨⟩ : ∀ (p₁ : Product A B) (p₂ : Product C D) →
([ p₁ ⇒ p₂ ] f × g) ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≈ [ p₂ ]⟨ f ∘ f′ , g ∘ g′ ⟩
[_⇒_]×∘⟨⟩ {f = f} {g = g} {f′ = f′} {g′ = g′} p₁ p₂ = begin
[ p₂ ]⟨ f ∘ p₁.π₁ , g ∘ p₁.π₂ ⟩ ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≈⟨ p₂.∘-distribʳ-⟨⟩ ⟩
[ p₂ ]⟨ (f ∘ p₁.π₁) ∘ p₁.⟨_,_⟩ f′ g′
, (g ∘ p₁.π₂) ∘ p₁.⟨_,_⟩ f′ g′ ⟩ ≈⟨ p₂.⟨⟩-cong₂ assoc assoc ⟩
[ p₂ ]⟨ f ∘ p₁.π₁ ∘ p₁.⟨_,_⟩ f′ g′
, g ∘ p₁.π₂ ∘ p₁.⟨_,_⟩ f′ g′ ⟩ ≈⟨ p₂.⟨⟩-cong₂ (∘-resp-≈ refl p₁.project₁) (∘-resp-≈ refl p₁.project₂) ⟩
[ p₂ ]⟨ f ∘ f′ , g ∘ g′ ⟩ ∎
where module p₁ = Product p₁
module p₂ = Product p₂
[_]⟨⟩∘ : ∀ (p : Product A B) → [ p ]⟨ f , g ⟩ ∘ h ≈ [ p ]⟨ f ∘ h , g ∘ h ⟩
[ p ]⟨⟩∘ = ⟺ (unique (⟺ assoc ○ ∘-resp-≈ˡ project₁) (⟺ assoc ○ ∘-resp-≈ˡ project₂))
where open Product p
repack∘repack≈id : ∀ (p₁ p₂ : Product A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≈ id
repack∘repack≈id p₁ p₂ = [ p₂ ]⟨⟩∘ ○ p₂.⟨⟩-cong₂ p₁.project₁ p₁.project₂ ○ p₂.η
where module p₁ = Product p₁
module p₂ = Product p₂
[_⇒_⇒_]×∘× : ∀ (p₁ : Product A B) (p₂ : Product C D) (p₃ : Product E F) →
([ p₂ ⇒ p₃ ] g × i) ∘ ([ p₁ ⇒ p₂ ] f × h) ≈ [ p₁ ⇒ p₃ ] (g ∘ f) × (i ∘ h)
[_⇒_⇒_]×∘× {g = g} {i = i} {f = f} {h = h} p₁ p₂ p₃ = begin
[ p₃ ]⟨ g ∘ p₂.π₁ , i ∘ p₂.π₂ ⟩ ∘ [ p₂ ]⟨ f ∘ p₁.π₁ , h ∘ p₁.π₂ ⟩ ≈⟨ [ p₂ ⇒ p₃ ]×∘⟨⟩ ⟩
[ p₃ ]⟨ g ∘ f ∘ p₁.π₁ , i ∘ h ∘ p₁.π₂ ⟩ ≈˘⟨ p₃.⟨⟩-cong₂ assoc assoc ⟩
[ p₃ ]⟨ (g ∘ f) ∘ p₁.π₁ , (i ∘ h) ∘ p₁.π₂ ⟩ ∎
where module p₁ = Product p₁
module p₂ = Product p₂
module p₃ = Product p₃
[_⇒_⇒_]repack∘× : ∀ (p₁ : Product A B) (p₂ : Product C D) (p₃ : Product C D) →
repack p₂ p₃ ∘ [ p₁ ⇒ p₂ ] f × g ≈ [ p₁ ⇒ p₃ ] f × g
[_⇒_⇒_]repack∘× {f = f} {g = g} p₁ p₂ p₃ = begin
repack p₂ p₃ ∘ [ p₁ ⇒ p₂ ] f × g ≈⟨ repack≡id×id p₂ p₃ ⟩∘⟨ refl ⟩
([ p₂ ⇒ p₃ ] id × id) ∘ ([ p₁ ⇒ p₂ ] f × g) ≈⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]×∘× ⟩
[ p₁ ⇒ p₃ ] (id ∘ f) × (id ∘ g) ≈⟨ [ p₁ ⇒ p₃ ]×-cong₂ identityˡ identityˡ ⟩
[ p₁ ⇒ p₃ ] f × g ∎
[_⇒_⇒_]repack∘repack : ∀ (p₁ p₂ p₃ : Product A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≈ repack p₁ p₃
[_⇒_⇒_]repack∘repack = repack∘
[_⇒_]_×id : ∀ (p₁ : Product A C) (p₂ : Product B C) → A ⇒ B → [[ p₁ ]] ⇒ [[ p₂ ]]
[ p₁ ⇒ p₂ ] f ×id = [ p₁ ⇒ p₂ ] f × id
[_⇒_]id× : ∀ (p₁ : Product A B) (p₂ : Product A C) → B ⇒ C → [[ p₁ ]] ⇒ [[ p₂ ]]
[ p₁ ⇒ p₂ ]id× g = [ p₁ ⇒ p₂ ] id × g
first-id : ∀ (p : Product A B) → [ p ⇒ p ] id ×id ≈ id
first-id = id×id
second-id : ∀ (p : Product A B) → [ p ⇒ p ]id× id ≈ id
second-id = id×id
[_⇒_]×id∘⟨⟩ : ∀ (p₁ : Product B D) (p₂ : Product C D) →
[ p₁ ⇒ p₂ ] f ×id ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≈ [ p₂ ]⟨ f ∘ f′ , g′ ⟩
[_⇒_]×id∘⟨⟩ {f = f} {f′ = f′} {g′ = g′} p₁ p₂ = begin
[ p₁ ⇒ p₂ ] f ×id ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≈⟨ [ p₁ ⇒ p₂ ]×∘⟨⟩ ⟩
[ p₂ ]⟨ f ∘ f′ , id ∘ g′ ⟩ ≈⟨ p₂.⟨⟩-cong₂ refl identityˡ ⟩
[ p₂ ]⟨ f ∘ f′ , g′ ⟩ ∎
where module p₂ = Product p₂
[_⇒_]id×∘⟨⟩ : ∀ (p₁ : Product B D) (p₂ : Product B E) →
[ p₁ ⇒ p₂ ]id× g ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≈ [ p₂ ]⟨ f′ , g ∘ g′ ⟩
[_⇒_]id×∘⟨⟩ {g = g} {f′ = f′} {g′ = g′} p₁ p₂ = begin
[ p₁ ⇒ p₂ ]id× g ∘ [ p₁ ]⟨ f′ , g′ ⟩ ≈⟨ [ p₁ ⇒ p₂ ]×∘⟨⟩ ⟩
[ p₂ ]⟨ id ∘ f′ , g ∘ g′ ⟩ ≈⟨ p₂.⟨⟩-cong₂ identityˡ refl ⟩
[ p₂ ]⟨ f′ , g ∘ g′ ⟩ ∎
where module p₂ = Product p₂
[_⇒_⇒_]×id∘×id : ∀ (p₁ : Product A D) (p₂ : Product B D) (p₃ : Product C D) →
[ p₂ ⇒ p₃ ] f ×id ∘ [ p₁ ⇒ p₂ ] g ×id ≈ [ p₁ ⇒ p₃ ] f ∘ g ×id
[_⇒_⇒_]×id∘×id {f = f} {g = g} p₁ p₂ p₃ = begin
[ p₂ ⇒ p₃ ] f ×id ∘ [ p₁ ⇒ p₂ ] g ×id ≈⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]×∘× ⟩
[ p₁ ⇒ p₃ ] (f ∘ g) × (id ∘ id) ≈⟨ [ p₁ ⇒ p₃ ]×-cong₂ refl identityˡ ⟩
[ p₁ ⇒ p₃ ] f ∘ g ×id ∎
[_⇒_⇒_]id×∘id× : ∀ (p₁ : Product A B) (p₂ : Product A C) (p₃ : Product A D) →
[ p₂ ⇒ p₃ ]id× f ∘ [ p₁ ⇒ p₂ ]id× g ≈ [ p₁ ⇒ p₃ ]id×(f ∘ g)
[_⇒_⇒_]id×∘id× {f = f} {g = g} p₁ p₂ p₃ = begin
[ p₂ ⇒ p₃ ]id× f ∘ [ p₁ ⇒ p₂ ]id× g ≈⟨ [ p₁ ⇒ p₂ ⇒ p₃ ]×∘× ⟩
[ p₁ ⇒ p₃ ] (id ∘ id) × (f ∘ g) ≈⟨ [ p₁ ⇒ p₃ ]×-cong₂ identityˡ refl ⟩
[ p₁ ⇒ p₃ ]id× (f ∘ g) ∎
[_⇒_,_⇒_]first↔second : ∀ (p₁ : Product A D) (p₂ : Product B D)
(p₃ : Product A C) (p₄ : Product B C) →
[ p₁ ⇒ p₂ ] f ×id ∘ [ p₃ ⇒ p₁ ]id× g ≈ [ p₄ ⇒ p₂ ]id× g ∘ [ p₃ ⇒ p₄ ] f ×id
[_⇒_,_⇒_]first↔second {f = f} {g = g} p₁ p₂ p₃ p₄ = begin
[ p₁ ⇒ p₂ ] f ×id ∘ [ p₃ ⇒ p₁ ]id× g ≈⟨ [ p₃ ⇒ p₁ ⇒ p₂ ]×∘× ⟩
[ p₃ ⇒ p₂ ] (f ∘ id) × (id ∘ g) ≈⟨ [ p₃ ⇒ p₂ ]×-cong₂ identityʳ identityˡ ⟩
[ p₃ ⇒ p₂ ] f × g ≈⟨ sym ([ p₃ ⇒ p₂ ]×-cong₂ identityˡ identityʳ) ⟩
[ p₃ ⇒ p₂ ] (id ∘ f) × (g ∘ id) ≈⟨ sym ([ p₃ ⇒ p₄ ⇒ p₂ ]×∘×) ⟩
[ p₄ ⇒ p₂ ]id× g ∘ [ p₃ ⇒ p₄ ] f ×id ∎
|
{
"alphanum_fraction": 0.4255288111,
"avg_line_length": 42.5776397516,
"ext": "agda",
"hexsha": "d893e2ea0ec4cd42d60d9aadcf76a49ac4131eef",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Object/Product/Morphisms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Object/Product/Morphisms.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Object/Product/Morphisms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3649,
"size": 6855
}
|
module LineEndings.Mac where
postulate ThisWorks : Set
|
{
"alphanum_fraction": 0.8214285714,
"avg_line_length": 56,
"ext": "agda",
"hexsha": "1507f60534091f003ca0a155369949b61489a63e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/LineEndings/Mac.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/LineEndings/Mac.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/LineEndings/Mac.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 16,
"size": 56
}
|
{-# OPTIONS --type-in-type #-}
module TypeInTypeAndUnivPoly where
open import UniversePolymorphism
-- The level metas should be solved with 0 when we have --type-in-type
fst′ : ∀ {A B} → Σ A B → A
fst′ x = fst x
|
{
"alphanum_fraction": 0.688372093,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "6580093639975af1a3f57ccd3181b6559d23893d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/TypeInTypeAndUnivPoly.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/TypeInTypeAndUnivPoly.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/TypeInTypeAndUnivPoly.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 215
}
|
module Structure.Relator.Proofs where
import Data.Either as Either
import Data.Tuple as Tuple
open import Functional
open import Function.Proofs
open import Logic
open import Logic.Propositional.Proofs.Structures
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Structure.Function
open import Structure.Operator
open import Structure.Setoid
open import Structure.Relator.Properties
open import Structure.Relator
open import Syntax.Transitivity
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level
private variable A B A₁ A₂ B₁ B₂ : Type{ℓ}
[≡]-binaryRelator : ∀ ⦃ equiv : Equiv{ℓₗ}(A) ⦄ → BinaryRelator ⦃ equiv ⦄ (_≡_)
BinaryRelator.substitution [≡]-binaryRelator {x₁} {y₁} {x₂} {y₂} xy1 xy2 x1x2 =
y₁ 🝖-[ xy1 ]-sym
x₁ 🝖-[ x1x2 ]
x₂ 🝖-[ xy2 ]
y₂ 🝖-end
reflexive-binaryRelator-sub : ∀ ⦃ equiv : Equiv{ℓₗ}(A) ⦄ {_▫_ : A → A → Type{ℓ}} ⦃ refl : Reflexivity(_▫_) ⦄ ⦃ rel : BinaryRelator ⦃ equiv ⦄ (_▫_) ⦄ → ((_≡_) ⊆₂ (_▫_))
_⊆₂_.proof (reflexive-binaryRelator-sub {_▫_ = _▫_}) xy = substitute₂ᵣ(_▫_) xy (reflexivity(_▫_))
module _
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
{f : A → B} ⦃ func : Function(f) ⦄
{P : B → Stmt{ℓₗ₃}} ⦃ rel : UnaryRelator(P) ⦄
where
[∘]-unaryRelator : UnaryRelator(P ∘ f)
[∘]-unaryRelator = [↔]-to-[←] relator-function₁ ([∘]-function ⦃ equiv-c = [↔]-equiv ⦄ ⦃ func-f = [↔]-to-[→] relator-function₁ rel ⦄)
module _
⦃ equiv-A₁ : Equiv{ℓₑ₁}(A₁) ⦄
⦃ equiv-B₁ : Equiv{ℓₑ₂}(B₁) ⦄
⦃ equiv-A₂ : Equiv{ℓₑ₃}(A₂) ⦄
⦃ equiv-B₂ : Equiv{ℓₑ₄}(B₂) ⦄
{f : A₁ → A₂} ⦃ func-f : Function(f) ⦄
{g : B₁ → B₂} ⦃ func-g : Function(g) ⦄
{_▫_ : A₂ → B₂ → Stmt{ℓₗ}} ⦃ rel : BinaryRelator(_▫_) ⦄
where
[∘]-binaryRelator : BinaryRelator(x ↦ y ↦ f(x) ▫ g(y))
BinaryRelator.substitution [∘]-binaryRelator xy1 xy2 = substitute₂(_▫_) (congruence₁(f) xy1) (congruence₁(g) xy2)
module _
⦃ equiv-A : Equiv{ℓₑ}(A) ⦄
{P : A → Stmt{ℓₗ₁}} ⦃ rel-P : UnaryRelator(P) ⦄
{▫ : Stmt{ℓₗ₁} → Stmt{ℓₗ₂}} ⦃ rel : Function ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄ ▫ ⦄
where
unaryRelator-sub : UnaryRelator(▫ ∘ P)
unaryRelator-sub = [∘]-unaryRelator
⦃ equiv-B = [↔]-equiv ⦄
⦃ func = [↔]-to-[→] relator-function₁ rel-P ⦄
⦃ rel = [↔]-to-[←] (relator-function₁ ⦃ [↔]-equiv ⦄) rel ⦄
module _
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
{P : A → Stmt{ℓₗ₁}} ⦃ rel-P : UnaryRelator(P) ⦄
{Q : B → Stmt{ℓₗ₂}} ⦃ rel-Q : UnaryRelator(Q) ⦄
{_▫_ : Stmt{ℓₗ₁} → Stmt{ℓₗ₂} → Stmt{ℓₗ₃}} ⦃ rel : BinaryOperator ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄ (_▫_) ⦄
where
binaryRelator-sub : BinaryRelator(x ↦ y ↦ P(x) ▫ Q(y))
binaryRelator-sub = [∘]-binaryRelator
⦃ equiv-A₂ = [↔]-equiv ⦄
⦃ equiv-B₂ = [↔]-equiv ⦄
⦃ func-f = [↔]-to-[→] relator-function₁ rel-P ⦄
⦃ func-g = [↔]-to-[→] relator-function₁ rel-Q ⦄
⦃ rel = [↔]-to-[←] (relator-function₂ ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄) rel ⦄
module _
⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
{P : A → Stmt{ℓₗ₁}} ⦃ rel-P : UnaryRelator(P) ⦄
{Q : B → Stmt{ℓₗ₂}} ⦃ rel-Q : UnaryRelator(Q) ⦄
where
[→]-binaryRelator : BinaryRelator(x ↦ y ↦ (P(x) → Q(y)))
[→]-binaryRelator = binaryRelator-sub{_▫_ = _→ᶠ_}
[↔]-binaryRelator : BinaryRelator(x ↦ y ↦ (P(x) ↔ Q(y)))
[↔]-binaryRelator = binaryRelator-sub{_▫_ = _↔_}
[→]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : A → Stmt{ℓₗ₁}}{Q : A → Stmt{ℓₗ₂}} → ⦃ rel-P : UnaryRelator(P) ⦄ → ⦃ rel-Q : UnaryRelator(Q) ⦄ → UnaryRelator(\x → P(x) → Q(x))
UnaryRelator.substitution ([→]-unaryRelator {P = P}{Q = Q}) xy pxqx py = substitute₁(Q) xy (pxqx(substitute₁(P) (symmetry(_≡_) xy) py))
[∀]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : B → A → Stmt{ℓₗ₁}} → ⦃ rel-P : ∀{x} → UnaryRelator(P(x)) ⦄ → UnaryRelator(\y → ∀{x} → P(x)(y))
UnaryRelator.substitution ([∀]-unaryRelator {P = P}) {x} {a} xy px {b} = substitute₁ (P b) xy px
[∃]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : B → A → Stmt{ℓₗ₁}} → ⦃ rel-P : ∀{x} → UnaryRelator(P(x)) ⦄ → UnaryRelator(\y → ∃(x ↦ P(x)(y)))
UnaryRelator.substitution ([∃]-unaryRelator {P = P}) xy = [∃]-map-proof (substitute₁(P _) xy)
instance
const-unaryRelator : ∀{P : Stmt{ℓₗ₁}} → ⦃ _ : Equiv{ℓₗ}(A) ⦄ → UnaryRelator{A = A}(const P)
UnaryRelator.substitution const-unaryRelator = const id
[¬]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ {P : A → Stmt{ℓₗ₁}} → ⦃ rel-P : UnaryRelator(P) ⦄ → UnaryRelator(\x → ¬ P(x))
[¬]-unaryRelator {P = P} = [→]-unaryRelator
[∧]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : A → Stmt{ℓₗ₁}}{Q : A → Stmt{ℓₗ₂}} → ⦃ rel-P : UnaryRelator(P) ⦄ → ⦃ rel-Q : UnaryRelator(Q) ⦄ → UnaryRelator(x ↦ P(x) ∧ Q(x))
UnaryRelator.substitution [∧]-unaryRelator xy = Tuple.map (substitute₁(_) xy) (substitute₁(_) xy)
[∨]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : A → Stmt{ℓₗ₁}}{Q : A → Stmt{ℓₗ₂}} → ⦃ rel-P : UnaryRelator(P) ⦄ → ⦃ rel-Q : UnaryRelator(Q) ⦄ → UnaryRelator(x ↦ P(x) ∨ Q(x))
UnaryRelator.substitution [∨]-unaryRelator xy = Either.map (substitute₁(_) xy) (substitute₁(_) xy)
binary-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ {P : A → A → Stmt{ℓₗ₁}} → ⦃ rel-P : BinaryRelator(P) ⦄ → UnaryRelator(P $₂_)
UnaryRelator.substitution (binary-unaryRelator {P = P}) xy pxx = substitute₂(P) xy xy pxx
binary-unaryRelatorₗ : ∀ ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {_▫_ : A → B → Stmt{ℓₗ₃}} → ⦃ rel-P : BinaryRelator(_▫_) ⦄ → ∀{x} → UnaryRelator(x ▫_)
UnaryRelator.substitution binary-unaryRelatorₗ xy x1x2 = substitute₂ _ (reflexivity(_≡_)) xy x1x2
binary-unaryRelatorᵣ : ∀ ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {_▫_ : A → B → Stmt{ℓₗ₃}} → ⦃ rel-P : BinaryRelator(_▫_) ⦄ → ∀{x} → UnaryRelator(_▫ x)
UnaryRelator.substitution binary-unaryRelatorᵣ xy x1x2 = substitute₂ _ xy (reflexivity(_≡_)) x1x2
binaryRelator-from-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ {_▫_ : A → A → Stmt{ℓₗ₁}} → ⦃ relₗ : ∀{x} → UnaryRelator(_▫ x) ⦄ → ⦃ relᵣ : ∀{x} → UnaryRelator(x ▫_) ⦄ → BinaryRelator(_▫_)
BinaryRelator.substitution binaryRelator-from-unaryRelator xy1 xy2 = substitute₁ _ xy1 ∘ substitute₁ _ xy2
instance
const-binaryRelator : ∀{P : Stmt{ℓₗ}} → ⦃ equiv-A : Equiv{ℓₗ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ → BinaryRelator{A = A}{B = B}((const ∘ const) P)
BinaryRelator.substitution const-binaryRelator = (const ∘ const) id
-- TODO: Temporary until substitution is a specialization of congruence
[¬]-binaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ ⦃ _ : Equiv{ℓₗ₃}(B) ⦄ {P : A → B → Stmt{ℓₗ₁}} → ⦃ rel-P : BinaryRelator(P) ⦄ → BinaryRelator(\x y → ¬ P(x)(y))
BinaryRelator.substitution ([¬]-binaryRelator {P = P}) xy₁ xy₂ npx py = npx(substitute₂(P) (symmetry(_≡_) xy₁) (symmetry(_≡_) xy₂) py)
|
{
"alphanum_fraction": 0.6075203866,
"avg_line_length": 47.9855072464,
"ext": "agda",
"hexsha": "a0a77a822f43c297c91b6a5aa411f14a0ea49922",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Proofs.agda",
"max_line_length": 182,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3224,
"size": 6622
}
|
module SecondOrder.VContext {ℓ} (sort : Set ℓ) where
-- a context is a binary tree whose leaves are labeled with sorts
data VContext : Set ℓ where
ctx-empty : VContext
ctx-slot : sort → VContext
_,,_ : VContext → VContext → VContext
infixl 5 _,,_
infix 4 _∈_
-- the variables of a given type in a context
data _∈_ (A : sort) : VContext → Set ℓ where
var-slot : A ∈ ctx-slot A
var-inl : ∀ {Γ Δ} (x : A ∈ Γ) → A ∈ Γ ,, Δ
var-inr : ∀ {Γ Δ} (y : A ∈ Δ) → A ∈ Γ ,, Δ
|
{
"alphanum_fraction": 0.5864811133,
"avg_line_length": 27.9444444444,
"ext": "agda",
"hexsha": "0c2803940337bd6f735d6b447d788d869644476c",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/VContext.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/VContext.agda",
"max_line_length": 67,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/VContext.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 181,
"size": 503
}
|
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.Group
open import lib.types.Int
open import lib.types.List
open import lib.types.SetQuotient
module lib.groups.FormalSum {i} where
PreFormalSum : Type i → Type i
PreFormalSum A = List (ℤ × A)
module _ {A : Type i} (dec : has-dec-eq A) where
coef-pre : PreFormalSum A → (A → ℤ)
coef-pre l a = ℤsum $ map fst $ filter (λ{(_ , a') → dec a' a}) l
-- Extensional equality
FormalSum-rel : Rel (PreFormalSum A) i
FormalSum-rel l₁ l₂ = ∀ a → coef-pre l₁ a == coef-pre l₂ a
-- The quotient
FormalSum : Type i
FormalSum = SetQuotient FormalSum-rel
-- Properties of [coef-pre]
coef-pre-++ : ∀ l₁ l₂ a
→ coef-pre (l₁ ++ l₂) a == coef-pre l₁ a ℤ+ coef-pre l₂ a
coef-pre-++ nil l₂ a = idp
coef-pre-++ ((z , a') :: l₁) l₂ a with dec a' a
... | inl _ = ap (z ℤ+_) (coef-pre-++ l₁ l₂ a)
∙ ! (ℤ+-assoc z (coef-pre l₁ a) (coef-pre l₂ a))
... | inr _ = coef-pre-++ l₁ l₂ a
flip-pre : PreFormalSum A → PreFormalSum A
flip-pre = map λ{(z , a) → (ℤ~ z , a)}
coef-pre-flip-pre : ∀ l a
→ coef-pre (flip-pre l) a == ℤ~ (coef-pre l a)
coef-pre-flip-pre nil a = idp
coef-pre-flip-pre ((z , a') :: l) a with dec a' a
... | inl _ = ap (ℤ~ z ℤ+_) (coef-pre-flip-pre l a)
∙ ! (ℤ~-ℤ+ z (coef-pre l a))
... | inr _ = coef-pre-flip-pre l a
module _ {A : Type i} {dec : has-dec-eq A} where
coef : FormalSum dec → (A → ℤ)
coef = SetQuot-rec (→-is-set ℤ-is-set) (coef-pre dec) λ=
-- extensionality of formal sums.
coef-ext : ∀ {fs₁ fs₂} → (∀ a → coef fs₁ a == coef fs₂ a) → fs₁ == fs₂
coef-ext {fs₁} {fs₂} = ext' fs₁ fs₂ where
ext' : ∀ fs₁ fs₂ → (∀ a → coef fs₁ a == coef fs₂ a) → fs₁ == fs₂
ext' = SetQuot-elim
(λ _ → Π-is-set λ _ → →-is-set $ =-preserves-set SetQuotient-is-set)
(λ l₁ → SetQuot-elim
(λ _ → →-is-set $ =-preserves-set SetQuotient-is-set)
(λ l₂ r → quot-rel r)
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → SetQuotient-is-set _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → Π-is-prop λ _ → SetQuotient-is-set _ _))
-- TODO Use abstract [FormalSum].
infixl 80 _⊞_
_⊞_ : FormalSum dec → FormalSum dec → FormalSum dec
_⊞_ = SetQuot-rec
(→-is-set SetQuotient-is-set)
(λ l₁ → SetQuot-rec SetQuotient-is-set (q[_] ∘ (l₁ ++_))
(λ {l₂} {l₂'} r → quot-rel λ a
→ coef-pre-++ dec l₁ l₂ a
∙ ap (coef-pre dec l₁ a ℤ+_) (r a)
∙ ! (coef-pre-++ dec l₁ l₂' a)))
(λ {l₁} {l₁'} r → λ= $ SetQuot-elim
(λ _ → =-preserves-set SetQuotient-is-set)
(λ l₂ → quot-rel λ a
→ coef-pre-++ dec l₁ l₂ a
∙ ap (_ℤ+ coef-pre dec l₂ a) (r a)
∙ ! (coef-pre-++ dec l₁' l₂ a))
(λ _ → prop-has-all-paths-↓ (SetQuotient-is-set _ _)))
coef-⊞ : ∀ fs₁ fs₂ a → coef (fs₁ ⊞ fs₂) a == coef fs₁ a ℤ+ coef fs₂ a
coef-⊞ = SetQuot-elim
(λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-set ℤ-is-set)
(λ l₁ → SetQuot-elim
(λ _ → Π-is-set λ _ → =-preserves-set ℤ-is-set)
(λ l₂ → coef-pre-++ dec l₁ l₂)
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → ℤ-is-set _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → Π-is-prop λ _ → ℤ-is-set _ _))
⊟ : FormalSum dec → FormalSum dec
⊟ = SetQuot-rec SetQuotient-is-set (q[_] ∘ flip-pre dec)
λ {l₁} {l₂} r → quot-rel λ a
→ coef-pre-flip-pre dec l₁ a ∙ ap ℤ~ (r a) ∙ ! (coef-pre-flip-pre dec l₂ a)
coef-⊟ : ∀ fs a → coef (⊟ fs) a == ℤ~ (coef fs a)
coef-⊟ = SetQuot-elim
(λ _ → Π-is-set λ _ → =-preserves-set ℤ-is-set)
(λ l a → coef-pre-flip-pre dec l a)
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → ℤ-is-set _ _))
⊞-unit : FormalSum dec
⊞-unit = q[ nil ]
coef-⊞-unit : ∀ a → coef ⊞-unit a == 0
coef-⊞-unit a = idp
{-
-- Favonia: These commented-out proofs are valid, but I want to promote
-- the usage of [coef-ext].
⊞-unit-l : ∀ fs → ⊞-unit ⊞ fs == fs
⊞-unit-l = SetQuot-elim
(λ _ → =-preserves-set SetQuotient-is-set)
(λ l → idp)
(λ _ → prop-has-all-paths-↓ (SetQuotient-is-set _ _))
⊞-unit-r : ∀ fs → fs ⊞ ⊞-unit == fs
⊞-unit-r = SetQuot-elim
(λ _ → =-preserves-set SetQuotient-is-set)
(λ l → ap q[_] $ ++-nil-r l)
(λ _ → prop-has-all-paths-↓ (SetQuotient-is-set _ _))
-}
⊞-unit-l : ∀ fs → ⊞-unit ⊞ fs == fs
⊞-unit-l fs = coef-ext λ a → coef-⊞ ⊞-unit fs a
⊞-unit-r : ∀ fs → fs ⊞ ⊞-unit == fs
⊞-unit-r fs = coef-ext λ a → coef-⊞ fs ⊞-unit a ∙ ℤ+-unit-r _
⊞-assoc : ∀ fs₁ fs₂ fs₃ → (fs₁ ⊞ fs₂) ⊞ fs₃ == fs₁ ⊞ (fs₂ ⊞ fs₃)
⊞-assoc fs₁ fs₂ fs₃ = coef-ext λ a →
coef ((fs₁ ⊞ fs₂) ⊞ fs₃) a
=⟨ coef-⊞ (fs₁ ⊞ fs₂) fs₃ a ⟩
coef (fs₁ ⊞ fs₂) a ℤ+ coef fs₃ a
=⟨ coef-⊞ fs₁ fs₂ a |in-ctx _ℤ+ coef fs₃ a ⟩
(coef fs₁ a ℤ+ coef fs₂ a) ℤ+ coef fs₃ a
=⟨ ℤ+-assoc (coef fs₁ a) (coef fs₂ a) (coef fs₃ a) ⟩
coef fs₁ a ℤ+ (coef fs₂ a ℤ+ coef fs₃ a)
=⟨ ! $ coef-⊞ fs₂ fs₃ a |in-ctx coef fs₁ a ℤ+_ ⟩
coef fs₁ a ℤ+ coef (fs₂ ⊞ fs₃) a
=⟨ ! $ coef-⊞ fs₁ (fs₂ ⊞ fs₃) a ⟩
coef (fs₁ ⊞ (fs₂ ⊞ fs₃)) a
∎
⊟-inv-r : ∀ fs → fs ⊞ (⊟ fs) == ⊞-unit
⊟-inv-r fs = coef-ext λ a → coef-⊞ fs (⊟ fs) a
∙ ap (coef fs a ℤ+_) (coef-⊟ fs a)
∙ ℤ~-inv-r (coef fs a)
⊟-inv-l : ∀ fs → (⊟ fs) ⊞ fs == ⊞-unit
⊟-inv-l fs = coef-ext λ a → coef-⊞ (⊟ fs) fs a
∙ ap (_ℤ+ coef fs a) (coef-⊟ fs a)
∙ ℤ~-inv-l (coef fs a)
FormalSum-group-structure : GroupStructure (FormalSum dec)
FormalSum-group-structure = record
{ ident = ⊞-unit
; inv = ⊟
; comp = _⊞_
; unitl = ⊞-unit-l
; unitr = ⊞-unit-r
; assoc = ⊞-assoc
; invr = ⊟-inv-r
; invl = ⊟-inv-l
}
FormalSum-group : Group i
FormalSum-group = group _ SetQuotient-is-set FormalSum-group-structure
has-finite-supports : (A → ℤ) → Type i
has-finite-supports f = Σ (FormalSum dec) λ fs → ∀ a → f a == coef fs a
has-finite-supports-is-prop : ∀ f → is-prop (has-finite-supports f)
has-finite-supports-is-prop f = all-paths-is-prop
λ{(fs₁ , match₁) (fs₂ , match₂) → pair=
(coef-ext λ a → ! (match₁ a) ∙ match₂ a)
(prop-has-all-paths-↓ $ Π-is-prop λ _ → ℤ-is-set _ _)}
|
{
"alphanum_fraction": 0.5373276272,
"avg_line_length": 34.4754098361,
"ext": "agda",
"hexsha": "f6dc19a210964f79fd300f11e5167eae407a48d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/FormalSum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/FormalSum.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/FormalSum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2627,
"size": 6309
}
|
-- Andreas, 2013-10-20 'with' only abstracts at base type
module WithOfFunctionType where
postulate
A B : Set
P : B → Set
mkP : (x : B) → P x
f : A → B
a : A
test : P (f a)
test with f
... | g = mkP (g a)
|
{
"alphanum_fraction": 0.5688073394,
"avg_line_length": 14.5333333333,
"ext": "agda",
"hexsha": "5e18c95deca5430452347d8324b160a0d818b2f1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/WithOfFunctionType.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/WithOfFunctionType.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/WithOfFunctionType.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 89,
"size": 218
}
|
module _ where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.TrustMe
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
open _×_
-- Nested pattern prevents record pattern translation.
f : Nat × Nat → Nat
f (zero , b) = b
f (suc a , b) = a + b
-- With catch-all case
g : Nat × Nat → Nat
g (zero , b) = b
g p = fst p + snd p
-- Definition by copatterns.
p : Nat × Nat
p .fst = 2
p .snd = 2
test-f : f p ≡ 3
test-f = refl
test-g : g p ≡ 4
test-g = refl
-- Slow reduce. primTrustMe doesn't use fast-reduce
is-refl : ∀ {A : Set} (x y : A) → x ≡ y → Bool
is-refl x y refl = true
test-slow-f : is-refl (f p) 3 primTrustMe ≡ true
test-slow-f = refl
test-slow-g : is-refl (g p) 4 primTrustMe ≡ true
test-slow-g = refl
|
{
"alphanum_fraction": 0.6252983294,
"avg_line_length": 17.4583333333,
"ext": "agda",
"hexsha": "6a53ad4c213703687d9d4a866054cb2169c4f3c9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2974.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2974.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2974.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 308,
"size": 838
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.CofiberSequence
open import cohomology.Exactness
open import cohomology.FunctionOver
open import cohomology.SplitExactRight
open import cohomology.Theory
module cohomology.Sigma {i} (CT : CohomologyTheory i) where
open CohomologyTheory CT
open import cohomology.Functor CT
open import cohomology.BaseIndependence CT
{- Cⁿ(Σx:X.Y) = Cⁿ(⋁x:X.Y) × Cⁿ(X). The proof is by constructing a
- splitting exact sequence
0 → Cⁿ(⋁x:X.Y) → Cⁿ(Σx:X.Y) → Cⁿ(X)
- by observing that the map [select : x ↦ (x, snd Yₓ)] has a left inverse
- and satisfies [Cofiber select == ⋁x:X.Y. -}
module CofSelect (X : Ptd i) (Y : fst X → Ptd i) where
select : fst X → fst (⊙Σ X Y)
select x = (x , snd (Y x))
⊙select : fst (X ⊙→ ⊙Σ X Y)
⊙select = (select , idp)
⊙Σbwin : fst (⊙Σ X Y ⊙→ ⊙BigWedge Y)
⊙Σbwin = (uncurry bwin , ! (bwglue (snd X)))
eq : Cofiber select ≃ BigWedge Y
eq = equiv Into.f Out.f into-out out-into
where
module Into = CofiberRec select {C = BigWedge Y}
bwbase (uncurry bwin) bwglue
module Out = BigWedgeRec {X = Y} {C = Cofiber select}
(cfbase _) (curry (cfcod _)) (cfglue _)
into-out : ∀ w → Into.f (Out.f w) == w
into-out = BigWedge-elim
idp (λ _ _ → idp)
(↓-∘=idf-in Into.f Out.f ∘ λ x →
ap (ap Into.f) (Out.glue-β x) ∙ Into.glue-β x)
out-into : ∀ c → Out.f (Into.f c) == c
out-into = Cofiber-elim select
idp (λ _ → idp)
(↓-∘=idf-in Out.f Into.f ∘ λ x →
ap (ap Out.f) (Into.glue-β x) ∙ Out.glue-β x)
⊙path : ⊙Cof ⊙select == ⊙BigWedge Y
⊙path = ⊙ua eq idp
cfcod-over : cfcod _ == uncurry bwin [ (λ U → fst (⊙Σ X Y) → fst U) ↓ ⊙path ]
cfcod-over = ↓-cst2-in _ _ $ codomain-over-equiv _ _
ext-glue-cst : ext-glue {s = cofiber-span select} == cst (north _)
ext-glue-cst = λ= $ Cofiber-elim _
idp
(λ {(x , y) → ! (merid _ x)})
(↓-='-from-square ∘ λ x →
ExtGlue.glue-β x ∙v⊡
tr-square (merid _ x)
⊡v∙ ! (ap-cst (north _) (cfglue _ x)))
ext-over : ext-glue == cst (north _)
[ (λ U → fst U → fst (⊙Susp X)) ↓ ⊙path ]
ext-over = ↓-cst2-in _ _ $ ext-glue-cst ◃ domain-over-equiv _ _
module CΣ (n : ℤ) (X : Ptd i) (Y : fst X → Ptd i) where
open CofSelect X Y
private
seq : HomSequence _ _
seq =
C n (⊙Susp X) ⟨ cst-hom ⟩→
C n (⊙BigWedge Y) ⟨ CF-hom n ⊙Σbwin ⟩→
C n (⊙Σ X Y) ⟨ CF-hom n ⊙select ⟩→
C n X ⊣|
eseq : is-exact-seq seq
eseq = exact-build seq
(transport (λ {(φ , ψ) → is-exact ψ φ})
(pair×= (CF-base-indep n _ _ _) (CF-base-indep n _ _ _ ∙ CF-cst n))
(transport {A = Σ _ (λ {(U , g , h) → (g (snd (⊙Σ X Y)) == snd U)
× (h (snd U) == north _)})}
(λ {((_ , g , h) , (p , q)) →
is-exact (CF-hom n (h , q)) (CF-hom n (g , p))})
(pair= (pair= ⊙path (↓-×-in cfcod-over ext-over))
(↓-×-in (from-transp _ _ idp) (from-transp _ _ idp)))
(transport {A = Σ _ (λ {(U , g) → g (cfbase _) == snd U})}
(λ {((_ , g) , p) →
is-exact (CF-hom n (g , p)) (CF-hom n (⊙cfcod ⊙select))})
(pair= (pair= (Cof².space-path ⊙select) (Cof².cfcod²-over ⊙select))
(from-transp _ _ idp))
(C-exact n (⊙cfcod ⊙select)))))
(transport (λ φ → is-exact φ (CF-hom n ⊙select))
(CF-base-indep n _ _ _)
(transport {A = Σ _ (λ {(U , g) → g (snd (⊙Σ X Y)) == snd U})}
(λ {((_ , g) , p) → is-exact (CF-hom n (g , p)) (CF-hom n ⊙select)})
(pair= (pair= ⊙path cfcod-over) (from-transp _ _ idp))
(C-exact n ⊙select)))
module SER = SplitExactRight (C-abelian n _)
(CF-hom n ⊙Σbwin) (CF-hom n ⊙select)
eseq
(CF-hom n (⊙dfst Y))
(app= $ ap GroupHom.f $ CF-inverse n ⊙select (⊙dfst Y) (λ _ → idp))
path : C n (⊙Σ X Y) == C n (⊙BigWedge Y) ×ᴳ C n X
path = SER.iso
⊙Σbwin-over : CF-hom n ⊙Σbwin == ×ᴳ-inl
[ (λ G → GroupHom (C n (⊙BigWedge Y)) G) ↓ path ]
⊙Σbwin-over = SER.φ-over-iso
⊙select-over : CF-hom n ⊙select == ×ᴳ-snd {G = C n (⊙BigWedge Y)}
[ (λ G → GroupHom G (C n X)) ↓ path ]
⊙select-over = SER.ψ-over-iso
open CofSelect public using (select; ⊙select; ⊙Σbwin)
module C⊔ (n : ℤ) (X Y : Ptd i) where
private
T : Sphere {i} 0 → Ptd i
T (lift true) = X
T (lift false) = Y
path : C n (X ⊙⊔ Y) == C n (X ⊙∨ Y) ×ᴳ C n (⊙Sphere 0)
path = ap (C n) (! (⊙ua (ΣBool-equiv-⊔ (fst ∘ T)) idp))
∙ CΣ.path n (⊙Sphere 0) T
∙ ap (λ Z → C n Z ×ᴳ C n (⊙Sphere 0)) (BigWedge-Bool-⊙path T)
|
{
"alphanum_fraction": 0.5200850159,
"avg_line_length": 33.1338028169,
"ext": "agda",
"hexsha": "7cbc08283d4584e3c25a7b17e604da55b091fdfd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "cohomology/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "cohomology/Sigma.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "cohomology/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1945,
"size": 4705
}
|
open import Data.Bool using (Bool; true; false; _∧_)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; subst)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
open import Data.Unit using (⊤; tt)
open import Data.Nat using (ℕ; zero; suc; _≤_; _≥_; _>_)
open import Data.Product using (_×_; _,_; proj₁; proj₂; Σ-syntax; ∃; ∃-syntax)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.List using (List; []; [_]; _∷_; _∷ʳ_; _++_)
open import Data.List.Reverse using (Reverse; reverseView)
open import Function using (_$_)
module SnapshotConsistency
(Addr : Set) (_≟_ : Addr → Addr → Bool) (_≤?MAXADDR : Addr → Bool) (_≤?MAXWCNT : ℕ → Bool)
(Data : Set) (defaultData : Data)
where
infixl 20 _•_
infixl 20 _⊙_
infixl 20 _++RTC_
infixl 20 _<≐>_
variable
addr : Addr
dat : Data
_≐_ : {A B : Set} → (A → B) → (A → B) → Set
s ≐ t = ∀ a → s a ≡ t a
sym-≐ : {A B : Set} {s t : A → B} → s ≐ t → t ≐ s
sym-≐ eq = λ{x → sym (eq x)}
_<≐>_ : {A B : Set} {s t u : A → B} → s ≐ t → t ≐ u → s ≐ u
_<≐>_ {A} {B} {s} {t} {u} e q = λ{x → begin s x ≡⟨ e x ⟩ t x ≡⟨ q x ⟩ u x ∎}
data SnocList (A : Set) : Set where
[] : SnocList A
_•_ : (as : SnocList A) → (a : A) → SnocList A
_⊙_ : {A : Set} → SnocList A → SnocList A → SnocList A
xs ⊙ [] = xs
xs ⊙ (ys • y) = (xs ⊙ ys) • y
data All {A : Set} (P : A → Set) : SnocList A → Set where
[] : All P []
_∷_ : ∀ {xs : SnocList A} {x : A} → All P xs → P x → All P (xs • x)
_++All_ : {A : Set} {P : A → Set} {xs ys : SnocList A} → All P xs → All P ys → All P (xs ⊙ ys)
all₁ ++All [] = all₁
all₁ ++All (all₂ ∷ x) = all₁ ++All all₂ ∷ x
mapAll : {A : Set} {P Q : A → Set} {xs : SnocList A}
→ ({x : A} → P x → Q x) → All P xs → All Q xs
mapAll pq [] = []
mapAll pq (all ∷ x) = (mapAll pq all) ∷ (pq x)
data Action : Set where
w[_↦_] : (addr : Addr) (dat : Data) → Action
f : Action
r : Action
wᶜ[_↦_] : (addr : Addr) (dat : Data) → Action
fᶜ : Action
rᶜ : Action
cp : Action
er : Action
cpᶜ : Action
erᶜ : Action
variable
ac : Action
data Regular : Action → Set where
w : Regular w[ addr ↦ dat ]
cp : Regular cp
er : Regular er
data Write : Action → Set where
w : Write w[ addr ↦ dat ]
data Snapshot : Action → Set where
f : Snapshot f
data RecoveryCrash : Action → Set where
rᶜ : RecoveryCrash rᶜ
data RegularSuccess : Action → Set where
w : RegularSuccess w[ addr ↦ dat ]
f : RegularSuccess f
data Regular×Snapshot : Action → Set where
w : Regular×Snapshot w[ addr ↦ dat ]
cp : Regular×Snapshot cp
er : Regular×Snapshot er
f : Regular×Snapshot f
data Regular×SnapshotCrash : Action → Set where
wᶜ : Regular×SnapshotCrash wᶜ[ addr ↦ dat ]
fᶜ : Regular×SnapshotCrash fᶜ
cpᶜ : Regular×SnapshotCrash cpᶜ
erᶜ : Regular×SnapshotCrash erᶜ
Trace = SnocList Action
variable
ef : Trace
ef₁ : Trace
ef₂ : Trace
ef₃ : Trace
frag : Trace
frag-w : Trace
frag-rᶜ : Trace
flist : SnocList Action
flist-w : SnocList Action
flist-rᶜ : SnocList Action
--Reflexive Transitive Closure
data RTC {A S : Set} (R : S → A → S → Set) : S → SnocList A → S → Set where
∅ : ∀ {s : S} → RTC R s [] s
_•_ : ∀ {s t u : S} {acs : SnocList A} {ac : A}
→ RTC R s acs t → R t ac u → RTC R s (acs • ac) u
_++RTC_ : {A S : Set} {R : S → A → S → Set} {s t u : S} {ef₁ ef₂ : SnocList A}
→ RTC R s ef₁ t → RTC R t ef₂ u → RTC R s (ef₁ ⊙ ef₂) u
tc-s-t ++RTC ∅ = tc-s-t
tc-s-t ++RTC (tc-t-u • rr) = (tc-s-t ++RTC tc-t-u) • rr
splitRTC : {A S : Set} {R : S → A → S → Set} {s s' : S} → (splitOn : SnocList A) → {rest : SnocList A}
→ ( fr : RTC R s (splitOn ⊙ rest) s') → Σ[ s'' ∈ S ] Σ[ fr₁ ∈ RTC R s splitOn s'' ] Σ[ fr₂ ∈ RTC R s'' rest s' ] (fr ≡ (fr₁ ++RTC fr₂))
splitRTC ef₁ {rest = []} t = (_ , t , ∅ , refl)
splitRTC ef₁ {rest = (ef₂ • ac)} (t • rr) with splitRTC ef₁ t
... | s'' , t₁ , t₂ , refl = s'' , t₁ , t₂ • rr , refl
data OneRecovery : Trace → Set where
wᶜ : {tr₁ tr₂ tr₃ : Trace} → All Regular×Snapshot tr₁ → All Regular tr₂ → All RecoveryCrash tr₃
→ OneRecovery (tr₁ ⊙ ([] • f ⊙ tr₂) ⊙ ([] • wᶜ[ addr ↦ dat ] ⊙ tr₃ • r))
fᶜ : {tr₁ tr₂ tr₃ : Trace} → All Regular×Snapshot tr₁ → All Regular tr₂ → All RecoveryCrash tr₃
→ OneRecovery (tr₁ ⊙ ([] • f ⊙ tr₂) ⊙ ([] • fᶜ ⊙ tr₃ • r))
wᶜ-nof : {tr₂ tr₃ : Trace} → All Regular tr₂ → All RecoveryCrash tr₃
→ OneRecovery (tr₂ ⊙ ([] • wᶜ[ addr ↦ dat ] ⊙ tr₃ • r))
fᶜ-nof : {tr₂ tr₃ : Trace} → All Regular tr₂ → All RecoveryCrash tr₃
→ OneRecovery (tr₂ ⊙ ([] • fᶜ ⊙ tr₃ • r))
data MultiRecovery : Trace → Set where
init : {tr : Trace} → All RecoveryCrash tr → MultiRecovery (tr • r)
one : {tr₁ tr₂ : Trace} → MultiRecovery tr₁ → OneRecovery tr₂ → MultiRecovery (tr₁ ⊙ tr₂)
data 1RFrags {S : Set} {R : S → Action → S → Set} : {s s' : S} {tr : Trace} → OneRecovery tr → RTC R s tr s' → Set where
wᶜ : {tr₁ tr₂ tr₃ : Trace} {all₁ : All Regular×Snapshot tr₁} {all₂ : All Regular tr₂} {all₃ : All RecoveryCrash tr₃}
→ {s₁ s₂ s₃ s₄ : S} (fr₁ : RTC R s₁ tr₁ s₂) (fr₂ : RTC R s₂ ([] • f ⊙ tr₂) s₃) (fr₃ : RTC R s₃ ([] • wᶜ[ addr ↦ dat ] ⊙ tr₃ • r) s₄)
→ 1RFrags (wᶜ all₁ all₂ all₃) (fr₁ ++RTC fr₂ ++RTC fr₃)
fᶜ : {tr₁ tr₂ tr₃ : Trace} {all₁ : All Regular×Snapshot tr₁} {all₂ : All Regular tr₂} {all₃ : All RecoveryCrash tr₃}
→ {s₁ s₂ s₃ s₄ : S} (fr₁ : RTC R s₁ tr₁ s₂) (fr₂ : RTC R s₂ ([] • f ⊙ tr₂) s₃) (fr₃ : RTC R s₃ ([] • fᶜ ⊙ tr₃ • r) s₄)
→ 1RFrags (fᶜ all₁ all₂ all₃) (fr₁ ++RTC fr₂ ++RTC fr₃)
wᶜ-nof : {tr₂ tr₃ : Trace} {all₂ : All Regular tr₂} {all₃ : All RecoveryCrash tr₃}
→ {s₂ s₃ s₄ : S} (fr₂ : RTC R s₂ tr₂ s₃) (fr₃ : RTC R s₃ ([] • wᶜ[ addr ↦ dat ] ⊙ tr₃ • r) s₄)
→ 1RFrags (wᶜ-nof all₂ all₃) (fr₂ ++RTC fr₃)
fᶜ-nof : {tr₂ tr₃ : Trace} {all₂ : All Regular tr₂} {all₃ : All RecoveryCrash tr₃}
→ {s₂ s₃ s₄ : S} (fr₂ : RTC R s₂ tr₂ s₃) (fr₃ : RTC R s₃ ([] • fᶜ ⊙ tr₃ • r) s₄)
→ 1RFrags (fᶜ-nof all₂ all₃) (fr₂ ++RTC fr₃)
view1R : {tr : Trace} (1r : OneRecovery tr) {S : Set} {R : S → Action → S → Set} {s s' : S} (fr : RTC R s tr s') → 1RFrags 1r fr
view1R (wᶜ {tr₁ = tr₁} {tr₂ = tr₂} {tr₃ = tr₃} all₁ all₂ all₃) {s = s₁} {s' = s₄} fr
with splitRTC (tr₁ ⊙ ([] • f ⊙ tr₂)) {rest = [] • wᶜ[ _ ↦ _ ] ⊙ tr₃ • r} fr
... | s₃ , fr-l , fr₃ , refl with splitRTC tr₁ {rest = [] • f ⊙ tr₂} fr-l
... | s₂ , fr₁ , fr₂ , refl = wᶜ fr₁ fr₂ fr₃
view1R (fᶜ {tr₁ = tr₁} {tr₂ = tr₂} {tr₃ = tr₃} all₁ all₂ all₃) {s = s₁} {s' = s₄} fr
with splitRTC (tr₁ ⊙ ([] • f ⊙ tr₂)) {rest = [] • fᶜ ⊙ tr₃ • r} fr
... | s₃ , fr-l , fr₃ , refl with splitRTC tr₁ {rest = [] • f ⊙ tr₂} fr-l
... | s₂ , fr₁ , fr₂ , refl = fᶜ fr₁ fr₂ fr₃
view1R (wᶜ-nof {tr₂ = tr₂} {tr₃ = tr₃} all₂ all₃) fr with splitRTC tr₂ fr
... | _ , fr₁ , fr₂ , refl = wᶜ-nof fr₁ fr₂
view1R (fᶜ-nof {tr₂ = tr₂} {tr₃ = tr₃} all₂ all₃) fr with splitRTC tr₂ fr
... | _ , fr₁ , fr₂ , refl = fᶜ-nof fr₁ fr₂
data MRFrags {S : Set} {R : S → Action → S → Set} : {s s' : S} {tr : Trace} → MultiRecovery tr → RTC R s tr s' → Set where
init : {tr : Trace} {all : All RecoveryCrash tr} {s s' : S} (fr : RTC R s (tr • r) s') → MRFrags (init all) fr
one : {tr₁ : Trace} {mr : MultiRecovery tr₁} {s₁ s₂ : S} {fr₁ : RTC R s₁ tr₁ s₂} → MRFrags mr fr₁
→ {tr₂ : Trace} {1r : OneRecovery tr₂} {s₃ : S} (fr₂ : RTC R s₂ tr₂ s₃) → 1RFrags 1r fr₂ → MRFrags (one mr 1r) (fr₁ ++RTC fr₂)
viewMR : {tr : Trace} (mr : MultiRecovery tr) {S : Set} {R : S → Action → S → Set} {s s' : S} (fr : RTC R s tr s') → MRFrags mr fr
viewMR (init all) fr = init fr
viewMR (one {tr₁ = tr₁} mr all) fr with splitRTC tr₁ fr
... | _ , fr-l , fr-r , refl = one (viewMR mr fr-l) fr-r (view1R all fr-r)
lastr : {S : Set} {s s' : S} {R : S → Action → S → Set} {tr : Trace} (mr : MultiRecovery tr)
→ (fr : RTC R s tr s') → (frs : MRFrags mr fr) → Σ[ s'' ∈ S ] (R s'' r s')
lastr .(init _) .fr (init fr) with fr
... | _ • x = _ , x
lastr ._ ._ (one _ ._ (wᶜ _ _ (fr₃ • x))) = _ , x
lastr ._ ._ (one _ ._ (fᶜ _ _ (fr₃ • x))) = _ , x
lastr ._ ._ (one _ ._ (wᶜ-nof _ (fr₃ • x))) = _ , x
lastr ._ ._ (one _ ._ (fᶜ-nof _ (fr₃ • x))) = _ , x
SnapshotConsistency : {S : Set} {s s' : S} {R : S → Action → S → Set} (ER : S → S → Set)
{tr : Trace} → (1r : OneRecovery tr) → (fr : RTC R s tr s') → 1RFrags 1r fr → Set
SnapshotConsistency ER ._ ._ (wᶜ {s₂ = s₂} {s₄ = s₄} _ _ _) = ER s₂ s₄
SnapshotConsistency ER ._ ._ (fᶜ {s₂ = s₂} {s₃} {s₄} _ _ _) = ER s₃ s₄ ⊎ ER s₂ s₄
SnapshotConsistency ER ._ ._ (wᶜ-nof {s₂ = s₂} {s₄ = s₄} _ _) = ER s₂ s₄
SnapshotConsistency ER ._ ._ (fᶜ-nof {s₂ = s₂} {s₃} {s₄} _ _) = ER s₃ s₄ ⊎ ER s₂ s₄
module Spec where
record State : Set where
field
volatile : Addr → Data
stable : Addr → Data
w-count : ℕ
Init : State → Set
Init s = (addr : Addr) → (State.stable s addr ≡ defaultData)
variable
t : State
t' : State
update : (Addr → Data) → ℕ → Addr → Data → (Addr → Data)
update s wcnt addr dat i with (addr ≤?MAXADDR) ∧ (wcnt ≤?MAXWCNT)
update s wcnt addr dat i | false = s i
update s wcnt addr dat i | true with addr ≟ i
update s wcnt addr dat i | true | true = dat
update s wcnt addr dat i | true | false = s i
data Step (s s' : State) : Action → Set where
w : update (State.volatile s) (State.w-count s) addr dat ≐ State.volatile s'
→ State.stable s ≐ State.stable s'
→ suc (State.w-count s) ≡ State.w-count s'
→ Step s s' w[ addr ↦ dat ]
f : State.volatile s ≐ State.volatile s'
→ State.volatile s ≐ State.stable s'
→ State.w-count s' ≡ zero
→ Step s s' f
r : State.stable s ≐ State.volatile s'
→ State.stable s ≐ State.stable s'
→ State.w-count s' ≡ zero
→ Step s s' r
wᶜ : State.stable s ≐ State.stable s'
→ Step s s' (wᶜ[ addr ↦ dat ])
fᶜ : State.volatile s ≐ State.stable s' ⊎ State.stable s ≐ State.stable s'
→ Step s s' fᶜ
rᶜ : State.stable s ≐ State.stable s'
→ Step s s' rᶜ
cp : State.volatile s ≐ State.volatile s'
→ State.stable s ≐ State.stable s'
→ State.w-count s ≡ State.w-count s'
→ Step s s' cp
er : State.volatile s ≐ State.volatile s'
→ State.stable s ≐ State.stable s'
→ State.w-count s ≡ State.w-count s'
→ Step s s' er
cpᶜ : State.stable s ≐ State.stable s' → Step s s' cpᶜ
erᶜ : State.stable s ≐ State.stable s' → Step s s' erᶜ
_⟦_⟧▸_ : State → Action → State → Set
s ⟦ ac ⟧▸ s' = Step s s' ac
_⟦_⟧*▸_ = RTC _⟦_⟧▸_
record StbP (ac : Action) : Set where --Stability Reserving Actions
field
preserve : {s s' : State} → s ⟦ ac ⟧▸ s' → (State.stable s ≐ State.stable s')
instance
stb-r : StbP r
stb-r = record { preserve = λ{(r _ ss _) → ss} }
stb-w : StbP w[ addr ↦ dat ]
stb-w = record { preserve = λ{(w _ ss _ ) → ss} }
stb-wᶜ : StbP wᶜ[ addr ↦ dat ]
stb-wᶜ = record { preserve = λ{(wᶜ ss) → ss} }
stb-rᶜ : StbP rᶜ
stb-rᶜ = record { preserve = λ{(rᶜ ss) → ss} }
stb-cp : StbP cp
stb-cp = record { preserve = λ{(cp _ ss _) → ss}}
stb-er : StbP er
stb-er = record { preserve = λ{(er _ ss _) → ss}}
stb-cpᶜ : StbP cpᶜ
stb-cpᶜ = record { preserve = λ{(cpᶜ ss) → ss}}
stb-erᶜ : StbP erᶜ
stb-erᶜ = record { preserve = λ{(erᶜ ss) → ss}}
idemₛ : {tr : Trace} → All StbP tr
→ ∀ {s s' : State} → s ⟦ tr ⟧*▸ s'
→ State.stable s ≐ State.stable s'
idemₛ [] ∅ = λ{_ → refl}
idemₛ (all ∷ x) (s2s'' • s''2s') =
idemₛ all s2s'' <≐> StbP.preserve x s''2s'
r→rs : Regular ac → Regular×Snapshot ac
r→rs w = w
r→rs cp = cp
r→rs er = er
n→sp : Regular ac → StbP ac
n→sp w = stb-w
n→sp cp = stb-cp
n→sp er = stb-er
rᶜ→sp : RecoveryCrash ac → StbP ac
rᶜ→sp rᶜ = stb-rᶜ
SpecSC-wᶜ : ∀ {s₂ s₃ s₄ : State} {tr-w tr-rᶜ}
→ {{_ : All Regular tr-w}} {{_ : All RecoveryCrash tr-rᶜ}}
→ s₂ ⟦ [] • f ⊙ tr-w ⟧*▸ s₃ → s₃ ⟦ [] • wᶜ[ addr ↦ dat ] ⊙ tr-rᶜ • r ⟧*▸ s₄
→ State.volatile s₂ ≐ State.volatile s₄
SpecSC-wᶜ {{ all₂ }} {{ all₃ }} s₂▸s₃ (s₃▹ • r sv _ _)
with splitRTC ([] • f) s₂▸s₃ | splitRTC ([] • wᶜ[ _ ↦ _ ]) s₃▹
... | s₂' , ∅ • (f vv vs _) , s₂'▸s₃ , _ | s₃' , ∅ • (wᶜ ss) , s₃'▸s₄▹ , _ =
vs <≐> idemₛ (mapAll n→sp all₂) s₂'▸s₃ <≐>
ss <≐> idemₛ (mapAll rᶜ→sp all₃) s₃'▸s₄▹ <≐> sv
SpecSC-wᶜ-nof : ∀ {s₁ s₂ s₃ s₄ : State} {tr-w tr-rᶜ}
→ {{_ : All Regular tr-w}} {{_ : All RecoveryCrash tr-rᶜ}}
→ s₁ ⟦ r ⟧▸ s₂ → s₂ ⟦ tr-w ⟧*▸ s₃ → s₃ ⟦ [] • wᶜ[ addr ↦ dat ] ⊙ tr-rᶜ • r ⟧*▸ s₄
→ State.volatile s₂ ≐ State.volatile s₄
SpecSC-wᶜ-nof {{ all₂ }} {{ all₃ }} (r sv' ss' _) s₂▸s₃ (s₃▹ • r sv _ _)
with splitRTC ([] • wᶜ[ _ ↦ _ ]) s₃▹
... | s₃' , ∅ • (wᶜ ss) , s₃'▸s₄▹ , _ =
sym-≐ sv' <≐> ss' <≐> idemₛ (mapAll n→sp all₂) s₂▸s₃ <≐>
ss <≐> idemₛ (mapAll rᶜ→sp all₃) s₃'▸s₄▹ <≐> sv
SpecSC-fᶜ : ∀ {s₂ s₃ s : State} {tr-w tr-rᶜ}
→ {{_ : All Regular tr-w}} {{_ : All RecoveryCrash tr-rᶜ}}
→ s₂ ⟦ ([] • f) ⊙ tr-w ⟧*▸ s₃ → s₃ ⟦ ([] • fᶜ) ⊙ tr-rᶜ • r ⟧*▸ s
→ State.volatile s₃ ≐ State.volatile s ⊎ State.volatile s₂ ≐ State.volatile s
SpecSC-fᶜ {{all₁}} {{all₂}} s₂▸s₃ (s₃▸s • r sv ss _)
with splitRTC ([] • f) s₂▸s₃ | splitRTC ([] • fᶜ) s₃▸s
... | _ , ∅ • f vv vs _ , ▸s₃ , _ | s₃' , ∅ • fᶜ (inj₁ vsᶜ) , s₃'▸s , _ =
inj₁ $ vsᶜ <≐> idemₛ (mapAll rᶜ→sp all₂) s₃'▸s <≐> sv
... | _ , ∅ • f vv vs _ , ▸s₃ , _ | s₃' , ∅ • fᶜ (inj₂ ssᶜ) , s₃'▸s , _ =
inj₂ $ vs <≐>
idemₛ (mapAll n→sp all₁) ▸s₃ <≐> ssᶜ <≐>
idemₛ (mapAll rᶜ→sp all₂) s₃'▸s <≐> sv
SpecSC-fᶜ-nof : ∀ {s₁ s₂ s₃ s₄ : State} {tr-w tr-rᶜ}
→ {{_ : All Regular tr-w}} {{_ : All RecoveryCrash tr-rᶜ}}
→ s₁ ⟦ r ⟧▸ s₂ → s₂ ⟦ tr-w ⟧*▸ s₃ → s₃ ⟦ [] • fᶜ ⊙ tr-rᶜ • r ⟧*▸ s₄
→ State.volatile s₃ ≐ State.volatile s₄ ⊎ State.volatile s₂ ≐ State.volatile s₄
SpecSC-fᶜ-nof {{ all₂ }} {{ all₃ }} (r sv' ss' _) s₂▸s₃ (s₃▹ • r sv _ _)
with splitRTC ([] • fᶜ) s₃▹
... | s₃' , ∅ • fᶜ (inj₁ vsᶜ) , s₃'▸s , _ = inj₁ $ vsᶜ <≐> idemₛ (mapAll rᶜ→sp all₃) s₃'▸s <≐> sv
... | s₃' , ∅ • fᶜ (inj₂ ssᶜ) , s₃'▸s , _ = inj₂ $ sym-≐ sv' <≐> ss' <≐>
idemₛ (mapAll n→sp all₂) s₂▸s₃ <≐> ssᶜ <≐>
idemₛ (mapAll rᶜ→sp all₃) s₃'▸s <≐> sv
SC : {t₀ t t' : State} {tr₀ tr : Trace} → (mr : MultiRecovery tr₀) → (1r : OneRecovery tr)
→ Init t₀ → (fr₀ : t₀ ⟦ tr₀ ⟧*▸ t) → MRFrags mr fr₀ → (fr : t ⟦ tr ⟧*▸ t') → (frs : 1RFrags 1r fr)
→ SnapshotConsistency (λ t t' → State.volatile t ≐ State.volatile t') 1r fr frs
SC mr _ init-t₀ fr₀ frs₀ ._ (wᶜ {all₂ = all₂} {all₃} fr₁ fr₂ fr₃) = SpecSC-wᶜ {{all₂}} {{all₃}} fr₂ fr₃
SC mr _ init-t₀ fr₀ frs₀ ._ (fᶜ {all₂ = all₂} {all₃} fr₁ fr₂ fr₃) = SpecSC-fᶜ {{all₂}} {{all₃}} fr₂ fr₃
SC mr _ init-t₀ fr₀ frs₀ ._ (wᶜ-nof {all₂ = all₂} {all₃} fr₂ fr₃) = SpecSC-wᶜ-nof {{all₂}} {{all₃}} (proj₂ (lastr mr fr₀ frs₀)) fr₂ fr₃
SC mr _ init-t₀ fr₀ frs₀ ._ (fᶜ-nof {all₂ = all₂} {all₃} fr₂ fr₃) = SpecSC-fᶜ-nof {{all₂}} {{all₃}} (proj₂ (lastr mr fr₀ frs₀)) fr₂ fr₃
open Spec hiding (SC)
module Prog
(runSpec : (t : State) (ac : Action) → ∃[ t' ] (t ⟦ ac ⟧▸ t'))
(RawStateᴾ : Set) (_⟦_⟧ᴿ▸_ : RawStateᴾ → Action → RawStateᴾ → Set)
(RI CI : RawStateᴾ → Set)
(AR CR : RawStateᴾ → State → Set)
(RIRI : {s s' : RawStateᴾ} {ac : Action} → Regular×Snapshot ac → s ⟦ ac ⟧ᴿ▸ s' → RI s → RI s')
(ARAR : {s s' : RawStateᴾ} {t t' : State} {ac : Action} → Regular×Snapshot ac
→ s ⟦ ac ⟧ᴿ▸ s' → t ⟦ ac ⟧▸ t' → RI s × AR s t → AR s' t')
(RICI : {s s' : RawStateᴾ} {ac : Action} → Regular×SnapshotCrash ac → s ⟦ ac ⟧ᴿ▸ s' → RI s → CI s')
(ARCR : {s s' : RawStateᴾ} {t t' : State} {ac : Action} → Regular×SnapshotCrash ac
→ s ⟦ ac ⟧ᴿ▸ s' → t ⟦ ac ⟧▸ t' → RI s × AR s t → CR s' t')
(CIRI : {s s' : RawStateᴾ} → s ⟦ r ⟧ᴿ▸ s' → CI s → RI s')
(CRAR : {s s' : RawStateᴾ} {t t' : State} → s ⟦ r ⟧ᴿ▸ s' → t ⟦ r ⟧▸ t' → CI s × CR s t → AR s' t')
(CICI : {s s' : RawStateᴾ} → s ⟦ rᶜ ⟧ᴿ▸ s' → CI s → CI s')
(CRCR : {s s' : RawStateᴾ} {t t' : State} → s ⟦ rᶜ ⟧ᴿ▸ s' → t ⟦ rᶜ ⟧▸ t' → CI s × CR s t → CR s' t')
(read : RawStateᴾ → Addr → Data)
(AR⇒ObsEquiv : {s : RawStateᴾ} {t : State} → RI s × AR s t → read s ≐ State.volatile t)
(Initᴿ : RawStateᴾ → Set)
(initᴿ-CI : (s : RawStateᴾ) → Initᴿ s → CI s)
(initᴿ-CR : (s : RawStateᴾ) → Initᴿ s → (t : State) → Init t → CR s t)
(t-init : Σ[ t ∈ State ] Init t)
where
variable
rs : RawStateᴾ
rs₁ : RawStateᴾ
rinv : RI rs
cinv : CI rs
rs' : RawStateᴾ
rs'' : RawStateᴾ
rs''' : RawStateᴾ
rinv' : RI rs'
cinv' : CI rs'
_⟦_⟧ᴿ*▸_ = RTC _⟦_⟧ᴿ▸_
data Inv (rs : RawStateᴾ) : Set where
normal : RI rs → Inv rs
crash : CI rs → Inv rs
Stateᴾ : Set
Stateᴾ = Σ[ rs ∈ RawStateᴾ ] Inv rs
data Initᴾ : Stateᴾ → Set where
init : Initᴿ rs → Initᴾ (rs , crash cinv)
variable
s : Stateᴾ
s' : Stateᴾ
s'' : Stateᴾ
s''' : Stateᴾ
data _⟦_⟧ᴾ▸_ : Stateᴾ → Action → Stateᴾ → Set where
w : rs ⟦ w[ addr ↦ dat ] ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ w[ addr ↦ dat ] ⟧ᴾ▸ (rs' , normal rinv')
f : rs ⟦ f ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ f ⟧ᴾ▸ (rs' , normal rinv')
wᶜ : rs ⟦ wᶜ[ addr ↦ dat ] ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ wᶜ[ addr ↦ dat ] ⟧ᴾ▸ (rs' , crash cinv')
fᶜ : rs ⟦ fᶜ ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ fᶜ ⟧ᴾ▸ (rs' , crash cinv')
rᶜ : rs ⟦ rᶜ ⟧ᴿ▸ rs' → (rs , crash cinv) ⟦ rᶜ ⟧ᴾ▸ (rs' , crash cinv')
r : rs ⟦ r ⟧ᴿ▸ rs' → (rs , crash cinv) ⟦ r ⟧ᴾ▸ (rs' , normal rinv')
cp : rs ⟦ cp ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ cp ⟧ᴾ▸ (rs' , normal rinv')
er : rs ⟦ er ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ er ⟧ᴾ▸ (rs' , normal rinv')
cpᶜ : rs ⟦ cpᶜ ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ cpᶜ ⟧ᴾ▸ (rs' , crash cinv')
erᶜ : rs ⟦ erᶜ ⟧ᴿ▸ rs' → (rs , normal rinv) ⟦ erᶜ ⟧ᴾ▸ (rs' , crash cinv')
_⟦_⟧ᴾ*▸_ = RTC _⟦_⟧ᴾ▸_
lift-n×s : {tr : Trace} {{_ : All Regular×Snapshot tr}} → rs ⟦ tr ⟧ᴿ*▸ rs' →
∃[ rinv' ] ((rs , normal rinv) ⟦ tr ⟧ᴾ*▸ (rs' , normal rinv'))
lift-n×s ∅ = _ , ∅
lift-n×s {{all ∷ w}} (rs*▸rs'' • rs''▸rs') =
let (rinv'' , s*▸s'') = lift-n×s {{all}} rs*▸rs''
in RIRI w rs''▸rs' rinv'' , s*▸s'' • w rs''▸rs'
lift-n×s {{all ∷ f}} (rs*▸rs'' • rs''▸rs') =
let (rinv'' , s*▸s'') = lift-n×s {{all}} rs*▸rs''
in RIRI f rs''▸rs' rinv'' , s*▸s'' • f rs''▸rs'
lift-n×s {{all ∷ cp}} (rs*▸rs'' • rs''▸rs') =
let (rinv'' , s*▸s'') = lift-n×s {{all}} rs*▸rs''
in RIRI cp rs''▸rs' rinv'' , s*▸s'' • cp rs''▸rs'
lift-n×s {{all ∷ er}} (rs*▸rs'' • rs''▸rs') =
let (rinv'' , s*▸s'') = lift-n×s {{all}} rs*▸rs''
in RIRI er rs''▸rs' rinv'' , s*▸s'' • er rs''▸rs'
lift-n : {tr : Trace} {{_ : All Regular tr}} → rs ⟦ tr ⟧ᴿ*▸ rs'
→ ∃[ rinv' ] ((rs , normal rinv) ⟦ tr ⟧ᴾ*▸ (rs' , normal rinv'))
lift-n {{all}} rs*▸rs' =
lift-n×s {{(mapAll (λ{w → w; cp → cp; er → er}) all)}} rs*▸rs'
lift-rᶜ : {tr : Trace} {{_ : All RecoveryCrash tr}} → rs ⟦ tr ⟧ᴿ*▸ rs' →
∃[ cinv' ] ((rs , crash cinv) ⟦ tr ⟧ᴾ*▸ (rs' , crash cinv'))
lift-rᶜ ∅ = _ , ∅
lift-rᶜ {{all ∷ rᶜ}} (rs*▸rs'' • rs''▸rs') =
let (cinv'' , s*▸s'') = lift-rᶜ {{all}} rs*▸rs''
in CICI rs''▸rs' cinv'' , s*▸s'' • rᶜ rs''▸rs'
lift-mr : {tr : Trace} (mr : MultiRecovery tr) (fr : rs ⟦ tr ⟧ᴿ*▸ rs') → MRFrags mr fr → Initᴿ rs
→ ∃[ cinv ] ∃[ rinv' ] let s = (rs , crash cinv) in (s ⟦ tr ⟧ᴾ*▸ (rs' , normal rinv')) × Initᴾ s
lift-mr ._ ._ (init {all = all} fr) init-rs with fr
... | fr₀ • rr with lift-rᶜ {cinv = initᴿ-CI _ init-rs} {{all}} fr₀
... | cinv₀ , fr₀ᴾ = _ , CIRI rr cinv₀ , fr₀ᴾ • r rr , init init-rs
lift-mr ._ ._ (one frs₀ fr frs) init-rs with lift-mr _ _ frs₀ init-rs
lift-mr ._ ._ (one frs₀ ._ (wᶜ {tr₃ = tr₃} {all₁ = all₁} {all₂} {all₃} fr₁ fr₂ fr₃)) init-rs | cinv₀ , rinv₀ , fr₀ᴾ , init-s with splitRTC ([] • (wᶜ[ _ ↦ _ ])) {rest = (tr₃ • r)} fr₃
... | rs'' , ∅ • s₃▸s₃' , s₃'▸r • r▸rs' , eq with lift-n×s {rinv = rinv₀} {{all₁}} fr₁
... | rinv₁ , frP₁ with lift-n×s {rinv = rinv₁} {{ ([] ∷ f) ++All mapAll r→rs all₂ }} fr₂
... | rinv₂ , frP₂ with RICI wᶜ s₃▸s₃' rinv₂
... | cinv₂' with lift-rᶜ {cinv = cinv₂'} {{all₃}} s₃'▸r
... | cinv₃ , frP₃ with CIRI r▸rs' cinv₃
... | rinv₄ = cinv₀ , rinv₄ , fr₀ᴾ ++RTC (frP₁ ++RTC frP₂ ++RTC ((∅ • wᶜ s₃▸s₃') ++RTC (frP₃ • r r▸rs'))), init-s
lift-mr ._ ._ (one frs₀ ._ (fᶜ {tr₃ = tr₃} {all₁ = all₁} {all₂} {all₃} fr₁ fr₂ fr₃)) init-rs | cinv₀ , rinv₀ , fr₀ᴾ , init-s with splitRTC ([] • fᶜ) {rest = (tr₃ • r)} fr₃
... | rs'' , ∅ • s₃▸s₃' , s₃'▸r • r▸rs' , eq with lift-n×s {rinv = rinv₀} {{all₁}} fr₁
... | rinv₁ , frP₁ with lift-n×s {rinv = rinv₁} {{ ([] ∷ f) ++All mapAll r→rs all₂ }} fr₂
... | rinv₂ , frP₂ with RICI fᶜ s₃▸s₃' rinv₂
... | cinv₂' with lift-rᶜ {cinv = cinv₂'} {{all₃}} s₃'▸r
... | cinv₃ , frP₃ with CIRI r▸rs' cinv₃
... | rinv₄ = cinv₀ , rinv₄ , fr₀ᴾ ++RTC (frP₁ ++RTC frP₂ ++RTC ((∅ • fᶜ s₃▸s₃') ++RTC (frP₃ • r r▸rs'))), init-s
lift-mr ._ ._ (one frs₀ ._ (wᶜ-nof {tr₃ = tr₃} {all₂ = all₂} {all₃} fr₂ fr₃)) init-rs | cinv₀ , rinv₀ , fr₀ᴾ , init-s with splitRTC ([] • wᶜ[ _ ↦ _ ]) {rest = (tr₃ • r)} fr₃
... | rs'' , ∅ • s₃▸s₃' , s₃'▸r • r▸rs' , eq with lift-n×s {rinv = rinv₀} {{ mapAll r→rs all₂ }} fr₂
... | rinv₂ , frP₂ with RICI wᶜ s₃▸s₃' rinv₂
... | cinv₂' with lift-rᶜ {cinv = cinv₂'} {{all₃}} s₃'▸r
... | cinv₃ , frP₃ with CIRI r▸rs' cinv₃
... | rinv₄ = cinv₀ , rinv₄ , fr₀ᴾ ++RTC (frP₂ ++RTC ((∅ • wᶜ s₃▸s₃') ++RTC (frP₃ • r r▸rs'))), init-s
lift-mr ._ ._ (one frs₀ ._ (fᶜ-nof {tr₃ = tr₃} {all₂ = all₂} {all₃} fr₂ fr₃)) init-rs | cinv₀ , rinv₀ , fr₀ᴾ , init-s with splitRTC ([] • fᶜ) {rest = (tr₃ • r)} fr₃
... | rs'' , ∅ • s₃▸s₃' , s₃'▸r • r▸rs' , eq with lift-n×s {rinv = rinv₀} {{ mapAll r→rs all₂ }} fr₂
... | rinv₂ , frP₂ with RICI fᶜ s₃▸s₃' rinv₂
... | cinv₂' with lift-rᶜ {cinv = cinv₂'} {{all₃}} s₃'▸r
... | cinv₃ , frP₃ with CIRI r▸rs' cinv₃
... | rinv₄ = cinv₀ , rinv₄ , fr₀ᴾ ++RTC (frP₂ ++RTC ((∅ • fᶜ s₃▸s₃') ++RTC (frP₃ • r r▸rs'))), init-s
ObsEquiv : Stateᴾ → State → Set
ObsEquiv (rs , _) t = read rs ≐ State.volatile t
data SR : Stateᴾ → State → Set where
ar : AR rs t → SR (rs , normal rinv) t
cr : CR rs t → SR (rs , crash cinv) t
simSR : SR s t → s ⟦ ac ⟧ᴾ▸ s' → ∃[ t' ] (t ⟦ ac ⟧▸ t' × SR s' t')
simSR {s , normal rinv} {t} (ar AR-rs-t) (w {addr = addr} {dat = dat} rs▸rs') =
let (t' , t▸t') = runSpec t w[ addr ↦ dat ]
in t' , t▸t' , ar (ARAR w rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (f rs▸rs') =
let (t' , t▸t') = runSpec t f
in t' , t▸t' , ar (ARAR f rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (wᶜ {addr = addr} {dat = dat} rs▸rs') =
let (t' , t▸t') = runSpec t wᶜ[ addr ↦ dat ]
in t' , t▸t' , cr (ARCR wᶜ rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (fᶜ rs▸rs') =
let (t' , t▸t') = runSpec t fᶜ
in t' , t▸t' , cr (ARCR fᶜ rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , crash cinv} {t} (cr CR-rs-t) (rᶜ rs▸rs') =
let (t' , t▸t') = runSpec t rᶜ
in t' , t▸t' , cr (CRCR rs▸rs' t▸t' (cinv , CR-rs-t))
simSR {s , crash cinv} {t} (cr CR-rs-t) (r rs▸rs') =
let (t' , t▸t') = runSpec t r
in t' , t▸t' , ar (CRAR rs▸rs' t▸t' (cinv , CR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (cp rs▸rs') =
let (t' , t▸t') = runSpec t cp
in t' , t▸t' , ar (ARAR cp rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (er rs▸rs') =
let (t' , t▸t') = runSpec t er
in t' , t▸t' , ar (ARAR er rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (cpᶜ rs▸rs') =
let (t' , t▸t') = runSpec t cpᶜ
in t' , t▸t' , cr (ARCR cpᶜ rs▸rs' t▸t' (rinv , AR-rs-t))
simSR {s , normal rinv} {t} (ar AR-rs-t) (erᶜ rs▸rs') =
let (t' , t▸t') = runSpec t erᶜ
in t' , t▸t' , cr (ARCR erᶜ rs▸rs' t▸t' (rinv , AR-rs-t))
runSimSR : SR s t → s ⟦ ef ⟧ᴾ*▸ s' → ∃[ t' ] (t ⟦ ef ⟧*▸ t' × SR s' t')
runSimSR SR-s-t ∅ = _ , ∅ , SR-s-t
runSimSR SR-s-t (s*▸s'' • s''▸s') =
let (t'' , t*▸t'' , SR-s''-t'') = runSimSR SR-s-t s*▸s''
(t' , t''▸t' , SR-s'-t' ) = simSR SR-s''-t'' s''▸s'
in _ , (t*▸t'' • t''▸t') , SR-s'-t'
Conformant-all : {tr : Trace} {s s' : Stateᴾ} → s ⟦ tr ⟧ᴾ*▸ s' → {t t' : State} → t ⟦ tr ⟧*▸ t' → Set
Conformant-all {s' = s'} ∅ {t' = t'} ∅ = ⊤
Conformant-all {s' = s'} (frP • _) {t' = t'} (frS • _) = Conformant-all frP frS × ObsEquiv s' t'
Conformant-1R : {tr : Trace} (1r : OneRecovery tr)
→ {s s' : Stateᴾ} (frP : s ⟦ tr ⟧ᴾ*▸ s') → 1RFrags 1r frP
→ {t t' : State } (frS : t ⟦ tr ⟧*▸ t') → 1RFrags 1r frS → Set
Conformant-1R ._ {s' = s'} ._ (wᶜ frP₁ frP₂ frP₃) {t' = t'} ._ (wᶜ frS₁ frS₂ frS₃) = Conformant-all (frP₁ ++RTC frP₂) (frS₁ ++RTC frS₂) × ObsEquiv s' t'
Conformant-1R ._ {s' = s'} ._ (fᶜ frP₁ frP₂ frP₃) {t' = t'} ._ (fᶜ frS₁ frS₂ frS₃) = Conformant-all (frP₁ ++RTC frP₂) (frS₁ ++RTC frS₂) × ObsEquiv s' t'
Conformant-1R ._ {s' = s'} ._ (wᶜ-nof frP₂ frP₃) {t' = t'} ._ (wᶜ-nof frS₂ frS₃) = Conformant-all frP₂ frS₂ × ObsEquiv s' t'
Conformant-1R ._ {s' = s'} ._ (fᶜ-nof frP₂ frP₃) {t' = t'} ._ (fᶜ-nof frS₂ frS₃) = Conformant-all frP₂ frS₂ × ObsEquiv s' t'
Conformant-all-intermediate : {s₁ s₂ s₃ : Stateᴾ} {t₁ t₂ t₃ : State} {tr tr' : Trace}
(frP : s₁ ⟦ tr ⟧ᴾ*▸ s₂) (frS : t₁ ⟦ tr ⟧*▸ t₂) (frP' : s₂ ⟦ tr' ⟧ᴾ*▸ s₃) (frS' : t₂ ⟦ tr' ⟧*▸ t₃)
→ Conformant-all (frP ++RTC frP') (frS ++RTC frS') → ObsEquiv s₁ t₁ → ObsEquiv s₂ t₂
Conformant-all-intermediate ∅ ∅ _ _ conf oe = oe
Conformant-all-intermediate (frP • sP) (frS • sS) ∅ ∅ conf oe = proj₂ conf
Conformant-all-intermediate (frP • sP) (frS • sS) (frP' • sP') (frS' • sS') conf oe = Conformant-all-intermediate (frP • sP) (frS • sS) frP' frS' (proj₁ conf) oe
conf-all++ : {s₁ s₂ s₃ : Stateᴾ} {t₁ t₂ t₃ : State} {tr tr' : Trace}
(frP : s₁ ⟦ tr ⟧ᴾ*▸ s₂) (frS : t₁ ⟦ tr ⟧*▸ t₂) (frP' : s₂ ⟦ tr' ⟧ᴾ*▸ s₃) (frS' : t₂ ⟦ tr' ⟧*▸ t₃)
→ Conformant-all frP frS → Conformant-all frP' frS'
→ Conformant-all (frP ++RTC frP') (frS ++RTC frS')
conf-all++ frP frS ∅ ∅ conf conf' = conf
conf-all++ frP frS (frP' • p) (frS' • s) conf (conf' , oe) = conf-all++ frP frS frP' frS' conf conf' , oe
Conformant : {tr : Trace} (mr : MultiRecovery tr)
{s s' : Stateᴾ} (frP : s ⟦ tr ⟧ᴾ*▸ s') → MRFrags mr frP
→ {t t' : State } (frS : t ⟦ tr ⟧*▸ t') → MRFrags mr frS → Set
Conformant (init _) {s' = s'} _ _ {t' = t'} _ _ = ObsEquiv s' t'
Conformant (one mr 1r) .(_ ++RTC frP₂) (one {s₂ = s''} frPs frP₂ frPs₂) .(_ ++RTC frS₂) (one {s₂ = t''} frSs frS₂ frSs₂) =
Conformant mr _ frPs _ frSs × ObsEquiv s'' t'' × Conformant-1R 1r frP₂ frPs₂ frS₂ frSs₂
BC-all : {tr : Trace} → All Regular×Snapshot tr → {s s' : Stateᴾ} {t : State} →
SR s t → ObsEquiv s t → (frP : s ⟦ tr ⟧ᴾ*▸ s') →
Σ[ t' ∈ State ] Σ[ frS ∈ t ⟦ tr ⟧*▸ t' ] SR s' t' × ObsEquiv s' t' × Conformant-all frP frS
BC-all [] sr oe-s-t ∅ = _ , ∅ , sr , oe-s-t , tt
BC-all (all ∷ _) sr oe-s-t (frP • _) with BC-all all sr oe-s-t frP
BC-all (all ∷ _) sr oe-s-t (frP • s''▸s') | t'' , frS'' , sr'' , oe'' , conf'' with simSR sr'' s''▸s'
BC-all (all ∷ w) sr oe-s-t (frP • w {rinv' = rinv'} rs''▸s') | t'' , frS'' , sr'' , oe'' , conf'' | t' , t''▸t' , ar ar' =
let oe' = AR⇒ObsEquiv (rinv' , ar') in t' , frS'' • t''▸t' , ar ar' , oe' , conf'' , oe'
BC-all (all ∷ cp) sr oe-s-t (frP • cp {rinv' = rinv'} rs''▸s') | t'' , frS'' , sr'' , oe'' , conf'' | t' , t''▸t' , ar ar' =
let oe' = AR⇒ObsEquiv (rinv' , ar') in t' , frS'' • t''▸t' , ar ar' , oe' , conf'' , oe'
BC-all (all ∷ er) sr oe-s-t (frP • er {rinv' = rinv'} rs''▸s') | t'' , frS'' , sr'' , oe'' , conf'' | t' , t''▸t' , ar ar' =
let oe' = AR⇒ObsEquiv (rinv' , ar') in t' , frS'' • t''▸t' , ar ar' , oe' , conf'' , oe'
BC-all (all ∷ f) sr oe-s-t (frP • f {rinv' = rinv'} rs''▸s') | t'' , frS'' , sr'' , oe'' , conf'' | t' , t''▸t' , ar ar' =
let oe' = AR⇒ObsEquiv (rinv' , ar') in t' , frS'' • t''▸t' , ar ar' , oe' , conf'' , oe'
BC-1R : {tr : Trace} → (1r : OneRecovery tr) → {s s' : Stateᴾ} {t : State} →
SR s t → ObsEquiv s t → (frP : s ⟦ tr ⟧ᴾ*▸ s') (frPs : 1RFrags 1r frP) →
Σ[ t' ∈ State ] Σ[ frS ∈ t ⟦ tr ⟧*▸ t' ] Σ[ frSs ∈ 1RFrags 1r frS ] SR s' t' × ObsEquiv s' t' × Conformant-1R 1r frP frPs frS frSs
BC-1R 1r sr s=t frP (wᶜ {all₁ = all₁} {all₂ = all₂} fr₁ fr₂ fr₃@(fr₃' • r {rinv' = rinv'} _))
with BC-all all₁ sr s=t fr₁
... | t₁ , frS₁ , sr-s₁-t₁ , s₁=t₁ , conf₁
with BC-all (([] ∷ f) ++All mapAll r→rs all₂) sr-s₁-t₁ s₁=t₁ fr₂
... | t₂ , frS₂ , sr-s₂-t₂ , s₂=t₂ , conf₂ with runSimSR sr-s₂-t₂ fr₃
... | t' , frS' , ar ar-s'-t' =
let oe' = AR⇒ObsEquiv (rinv' , ar-s'-t')
in t' , frS₁ ++RTC frS₂ ++RTC frS' , wᶜ frS₁ frS₂ frS' , ar ar-s'-t' , oe' , conf-all++ fr₁ frS₁ fr₂ frS₂ conf₁ conf₂ , oe'
BC-1R 1r sr s=t frP (fᶜ {all₁ = all₁} {all₂ = all₂} fr₁ fr₂ fr₃@(fr₃' • r {rinv' = rinv'} _))
with BC-all all₁ sr s=t fr₁
... | t₁ , frS₁ , sr-s₁-t₁ , s₁=t₁ , conf₁
with BC-all (([] ∷ f) ++All mapAll r→rs all₂) sr-s₁-t₁ s₁=t₁ fr₂
... | t₂ , frS₂ , sr-s₂-t₂ , s₂=t₂ , conf₂ with runSimSR sr-s₂-t₂ fr₃
... | t' , frS' , ar ar-s'-t' =
let oe' = AR⇒ObsEquiv (rinv' , ar-s'-t')
in t' , frS₁ ++RTC frS₂ ++RTC frS' , fᶜ frS₁ frS₂ frS' , ar ar-s'-t' , oe' , conf-all++ fr₁ frS₁ fr₂ frS₂ conf₁ conf₂ , oe'
BC-1R 1r sr s=t frP (wᶜ-nof {all₂ = all₂} fr₂ fr₃@(fr₃' • r {rinv' = rinv'} _))
with BC-all (mapAll r→rs all₂) sr s=t fr₂
... | _ , frS₂ , sr-s₂-t₂ , s₂=t₂ , conf₂ with runSimSR sr-s₂-t₂ fr₃
... | t' , frS' , ar ar-s'-t' =
let oe' = AR⇒ObsEquiv (rinv' , ar-s'-t')
in t' , frS₂ ++RTC frS' , wᶜ-nof frS₂ frS' , ar ar-s'-t' , oe' , conf₂ , oe'
BC-1R 1r sr s=t frP (fᶜ-nof {all₂ = all₂} fr₂ fr₃@(fr₃' • r {rinv' = rinv'} _))
with BC-all (mapAll r→rs all₂) sr s=t fr₂
... | _ , frS₂ , sr-s₂-t₂ , s₂=t₂ , conf₂ with runSimSR sr-s₂-t₂ fr₃
... | t' , frS' , ar ar-s'-t' =
let oe' = AR⇒ObsEquiv (rinv' , ar-s'-t')
in t' , frS₂ ++RTC frS' , fᶜ-nof frS₂ frS' , ar ar-s'-t' , oe' , conf₂ , oe'
BC-ind : {tr : Trace} (mr : MultiRecovery tr) {s s' : Stateᴾ} → Initᴾ s → (frP : s ⟦ tr ⟧ᴾ*▸ s') (frPs : MRFrags mr frP)
→ Σ[ t ∈ State ] Init t × Σ[ t' ∈ State ] SR s' t' × ObsEquiv s' t' × Σ[ frS ∈ t ⟦ tr ⟧*▸ t' ] Σ[ frSs ∈ MRFrags mr frS ] Conformant mr frP frPs frS frSs
BC-ind (init all) {s = s₀} (init rs₀) (frP • rP@(r {rinv' = rinv'} rs)) frPs with runSimSR (cr (initᴿ-CR (proj₁ s₀) rs₀ (proj₁ t-init) (proj₂ t-init))) frP
... | t'' , frS , sr' with simSR sr' rP
... | t' , rS , (ar ar-rs'-t') =
let eq = AR⇒ObsEquiv (rinv' , ar-rs'-t')
in proj₁ t-init , proj₂ t-init , t' , ar ar-rs'-t' , eq , frS • rS , init (frS • rS) , eq
BC-ind (one mr x) init-s _ (one {mr = mr₁} {fr₁ = frP₁} frPs₁ {1r = 1r} frP₂ frPs₂) with BC-ind mr init-s _ frPs₁
... | t , init-t , t'' , sr'' , oe'' , frS₁ , frSs₁ , conf₁ with BC-1R 1r sr'' oe'' frP₂ frPs₂
... | t' , frS₂ , frSs₂ , sr' , oe' , conf₂ = t , init-t , t' , sr' , oe' , frS₁ ++RTC frS₂ , one frSs₁ frS₂ frSs₂ , conf₁ , oe'' , conf₂
BC-mr : {tr : Trace} (mr : MultiRecovery tr) {s s' : Stateᴾ} → Initᴾ s → (frP : s ⟦ tr ⟧ᴾ*▸ s') → (frPs : MRFrags mr frP)
→ Σ[ t ∈ State ] Init t × Σ[ t' ∈ State ] Σ[ frS ∈ t ⟦ tr ⟧*▸ t' ] Σ[ frSs ∈ MRFrags mr frS ] Conformant mr frP frPs frS frSs
BC-mr mr init-s frP frPs =
let (t , init-t , t' , _ , _ , frS , frSs , conf) = BC-ind mr init-s frP frPs
in (t , init-t , t' , frS , frSs , conf)
BC : {tr : Trace} (mr : MultiRecovery tr) {s s' : Stateᴾ} → Initᴾ s → (frP : s ⟦ tr ⟧ᴾ*▸ s') (frPs : MRFrags mr frP)
→ {tr' : Trace} {s'' : Stateᴾ} → All Regular×Snapshot tr' → (frP' : s' ⟦ tr' ⟧ᴾ*▸ s'')
→ Σ[ t ∈ State ] Init t × Σ[ t' ∈ State ] Σ[ frS ∈ t ⟦ tr ⟧*▸ t' ] Σ[ frSs ∈ MRFrags mr frS ] Σ[ t'' ∈ State ] Σ[ frS' ∈ t' ⟦ tr' ⟧*▸ t'' ]
Conformant mr frP frPs frS frSs × Conformant-all frP' frS'
BC mr init-s frP frPs all frP' =
let (t , init-t , t' , sr' , oe' , frS , frSs , conf) = BC-ind mr init-s frP frPs
(t'' , frS' , _ , _ , conf') = BC-all all sr' oe' frP'
in (t , init-t , t' , frS , frSs , t'' , frS' , conf , conf')
SC : {s₀ s s' : Stateᴾ} {tr₀ tr : Trace} → (mr : MultiRecovery tr₀) → (1r : OneRecovery tr)
→ Initᴾ s₀ → (fr₀ : s₀ ⟦ tr₀ ⟧ᴾ*▸ s) → MRFrags mr fr₀ → (frP : s ⟦ tr ⟧ᴾ*▸ s') → (frPs : 1RFrags 1r frP)
→ SnapshotConsistency (λ{(rs , _) (rs' , _) → read rs ≐ read rs'}) 1r frP frPs
SC mr 1r init-s₀ frP₀ frPs₀ frP frPs with BC-mr (one mr 1r) init-s₀ (frP₀ ++RTC frP) (one frPs₀ frP frPs)
SC mr ._ init-s₀ frP₀ frPs₀ ._ (wᶜ frP₁ frP₂ frP₃) |
t₀ , init-t₀ , t' , ._ , one frSs ._ (wᶜ {all₁ = all₁} {all₂ = all₂} {all₃ = all₃} frS₁ frS₂ frS₃) , (_ , oe-s-t , conf , oe-s'-t')
= Conformant-all-intermediate frP₁ frS₁ frP₂ frS₂ conf oe-s-t <≐> SpecSC-wᶜ ⦃ all₂ ⦄ ⦃ all₃ ⦄ frS₂ frS₃ <≐> sym-≐ oe-s'-t'
SC mr ._ init-s₀ frP₀ frPs₀ ._ (fᶜ frP₁ frP₂ frP₃) |
t₀ , init-t₀ , t' , ._ , one frSs ._ (fᶜ {all₁ = all₁} {all₂ = all₂} {all₃ = all₃} frS₁ frS₂ frS₃) , (_ , oe-s-t , conf , oe-s'-t')
with SpecSC-fᶜ {{all₂}} {{all₃}} frS₂ frS₃
... | inj₁ req = inj₁ $ Conformant-all-intermediate (frP₁ ++RTC frP₂) (frS₁ ++RTC frS₂) ∅ ∅ conf oe-s-t <≐> req <≐> sym-≐ oe-s'-t'
... | inj₂ req = inj₂ $ Conformant-all-intermediate frP₁ frS₁ frP₂ frS₂ conf oe-s-t <≐> req <≐> sym-≐ oe-s'-t'
SC mr ._ init-s₀ frP₀ frPs₀ ._ (wᶜ-nof frP₂ frP₃) |
t₀ , init-t₀ , t' , ._ , one {fr₁ = frS₀} frSs ._ (wᶜ-nof {all₂ = all₂} {all₃ = all₃} frS₂ frS₃) , (_ , oe-s-t , conf , oe-s'-t')
= oe-s-t <≐> SpecSC-wᶜ-nof ⦃ all₂ ⦄ ⦃ all₃ ⦄ (proj₂ (lastr mr frS₀ frSs)) frS₂ frS₃ <≐> sym-≐ oe-s'-t'
SC mr ._ init-s₀ frP₀ frPs₀ ._ (fᶜ-nof frP₂ frP₃) |
t₀ , init-t₀ , t' , ._ , one frSs ._ (fᶜ-nof {all₂ = all₂} {all₃ = all₃} frS₂ frS₃) , (_ , oe-s-t , conf , oe-s'-t')
with SpecSC-fᶜ-nof {{all₂}} {{all₃}} (proj₂ (lastr mr _ frSs)) frS₂ frS₃
... | inj₁ req = inj₁ $ Conformant-all-intermediate frP₂ frS₂ ∅ ∅ conf oe-s-t <≐> req <≐> sym-≐ oe-s'-t'
... | inj₂ req = inj₂ $ oe-s-t <≐> req <≐> sym-≐ oe-s'-t'
|
{
"alphanum_fraction": 0.5047473287,
"avg_line_length": 54.0321592649,
"ext": "agda",
"hexsha": "46cb5ae5eb20b27f8da99b0ff7286fa5bb331e23",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c3ea3347071461241e3799e2cac46859e0bb64da",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yunshengtw/scftl",
"max_forks_repo_path": "agda/SnapshotConsistency.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c3ea3347071461241e3799e2cac46859e0bb64da",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yunshengtw/scftl",
"max_issues_repo_path": "agda/SnapshotConsistency.agda",
"max_line_length": 184,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "c3ea3347071461241e3799e2cac46859e0bb64da",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yunshengtw/scftl",
"max_stars_repo_path": "agda/SnapshotConsistency.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-05T11:46:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-06T16:09:29.000Z",
"num_tokens": 17149,
"size": 35283
}
|
module IrrelevantModuleParameter .(A : Set) where
postulate
a : A
-- cannot declare something of type A, since A is irrelevant
|
{
"alphanum_fraction": 0.7538461538,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "16442dc4106c0485e22f0945e4e16ca46a4b9851",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/IrrelevantModuleParameter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/IrrelevantModuleParameter.agda",
"max_line_length": 60,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/IrrelevantModuleParameter.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 33,
"size": 130
}
|
{-# OPTIONS --rewriting --prop --confluence-check --cumulativity #-}
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
open import Data.Vec.Base
open import Data.Bool
open import Data.Sum
open import ett-rr
{- Axiomatisation of the Cast calculus -}
{- diagonal cases -}
postulate cast : (A : Set ℓ) (B : Set ℓ₁) → A → B
postulate cast-set : (A : Set ℓ) → cast (Set ℓ) (Set ℓ) A ≡ A
{-# REWRITE cast-set #-}
postulate cast-prop : (A : Prop ℓ) → cast (Prop ℓ) (Prop ℓ) A ≡ A
{-# REWRITE cast-prop #-}
postulate cast-Pi : (A : Set ℓ) (B : A → Set ℓ₁) (A' : Set ℓ₂) (B' : A' → Set ℓ₃) (f : (a : A) → B a) →
cast ((a : A) → B a) ((a' : A') → B' a') f ≡
λ (a' : A') → cast _ _ (f (cast A' A a'))
{-# REWRITE cast-Pi #-}
postulate cast-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) (A' : Set ℓ₂) (B' : A' → Set ℓ₃) (x : A) (y : B x) →
cast (Σ A B) (Σ A' B') (x , y) ≡ (cast {ℓ = ℓ} {ℓ₁ = ℓ₂} A A' x , cast (B x) (B' (cast A A' x)) y)
{-# REWRITE cast-Sigma #-}
postulate cast-Sum-inj₁ : (A A' : Set ℓ) (B B' : Set ℓ₁) (a : A) →
cast (A ⊎ B) (A' ⊎ B') (inj₁ a) ≡ inj₁ (cast A A' a)
postulate cast-Sum-inj₂ : (A A' : Set ℓ) (B B' : Set ℓ₁) (b : B) →
cast (A ⊎ B) (A' ⊎ B') (inj₂ b) ≡ inj₂ (cast B B' b)
{-# REWRITE cast-Sum-inj₁ #-}
{-# REWRITE cast-Sum-inj₂ #-}
postulate cast-List-nil : (A A' : Set ℓ) →
cast (List A) (List A') [] ≡ []
postulate cast-List-cons : (A A' : Set ℓ) (a : A) (l : List {a = ℓ} A) →
cast (List A) (List {a = ℓ} A') (a ∷ l) ≡
cast A A' a ∷ cast (List A) (List A') l
{-# REWRITE cast-List-nil #-}
{-# REWRITE cast-List-cons #-}
postulate cast-Nat-zero : cast Nat Nat 0 ≡ 0
postulate cast-Nat-suc : (n : Nat ) → cast Nat Nat (suc n) ≡ suc (cast _ _ n)
{-# REWRITE cast-Nat-zero #-}
{-# REWRITE cast-Nat-suc #-}
postulate cast-Bool-true : cast Bool Bool true ≡ true
{-# REWRITE cast-Bool-true #-}
postulate cast-Bool-false : cast Bool Bool false ≡ false
{-# REWRITE cast-Bool-false #-}
postulate cast-Unit : cast ⊤ ⊤ tt ≡ tt
{-# REWRITE cast-Unit #-}
{- non-diagonal cases -}
postulate cast-Set-bad : (A : Set (lsuc ℓ)) → cast (Set (lsuc ℓ)) (Set ℓ) A ≡ raise _
{-# REWRITE cast-Set-bad #-}
postulate cast-raise : ∀ ℓ ℓ₁ → (A : Set ℓ₁) → cast (raise {ℓ = lsuc ℓ} (Set ℓ)) A (raise _) ≡ raise _
{-# REWRITE cast-raise #-}
postulate cast-Pi-Sigma : (A A' : Set ℓ) (B : A → Set ℓ₁) (B' : A' → Set ℓ₁) (f : (a : A) → B a) →
cast ((a : A) → B a) (Σ {a = ℓ} {b = ℓ₁} A' B') f ≡ raise (Σ A' B')
{-# REWRITE cast-Pi-Sigma #-}
postulate cast-Pi-Nat : (A : Set ℓ) (B : A → Set ℓ₁) (f : (a : A) → B a) →
cast ((a : A) → B a) Nat f ≡ raise Nat
{-# REWRITE cast-Pi-Nat #-}
{- Rules specific to Unk -}
postulate cast-Pi-Unk : (A : Set ℓ) (B : A → Set ℓ₁) (f : ((a : A) → B a)) →
cast ((a : A) → B a) (Unk (ℓ ⊔ ℓ₁)) f ≡ box ((a : A) → B a) f
postulate cast-Unk : (A : Set ℓ) (B : Set ℓ₁) (f : A) →
cast (Unk ℓ) B (box A f) ≡ cast A B f
postulate cast-Pi-Unk-bad : (f : Unk ℓ → Unk ℓ₁) →
cast (Unk ℓ → Unk ℓ₁) (Unk (ℓ ⊔ ℓ₁)) f ≡ raise _
{-# REWRITE cast-Pi-Unk cast-Unk cast-Pi-Unk-bad #-}
postulate cast-Sigma-Unk : (A : Set ℓ) (B : A → Set ℓ₁) (x : Σ {a = ℓ} {b = ℓ₁} A B) →
cast (Σ A B) (Unk _) x ≡ box (Σ A B) x
{-# REWRITE cast-Sigma-Unk #-}
proj : {A : Set ℓ₁} → Unk ℓ → A
proj {ℓ₁} {ℓ} {A} (box A' a') = cast {ℓ = ℓ} {ℓ₁ = ℓ₁} A' A a'
delta : Unk ℓ → Unk ℓ
delta {ℓ} x = proj {A = Unk ℓ → Unk ℓ} x x
omega : Unk (lsuc ℓ)
omega {ℓ} = delta {ℓ = lsuc ℓ} (box (Unk ℓ → Unk ℓ) (delta {ℓ = ℓ}))
|
{
"alphanum_fraction": 0.5095766129,
"avg_line_length": 30.7596899225,
"ext": "agda",
"hexsha": "5bb261a50a201f2559261ddcd678a32bf27e7f28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "77e54713836af48f5f8091373ae888feadc3d077",
"max_forks_repo_licenses": [
"WTFPL"
],
"max_forks_repo_name": "kyoDralliam/exceptional-tt",
"max_forks_repo_path": "agda-rr/cast-cic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "77e54713836af48f5f8091373ae888feadc3d077",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"WTFPL"
],
"max_issues_repo_name": "kyoDralliam/exceptional-tt",
"max_issues_repo_path": "agda-rr/cast-cic.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "77e54713836af48f5f8091373ae888feadc3d077",
"max_stars_repo_licenses": [
"WTFPL"
],
"max_stars_repo_name": "kyoDralliam/exceptional-tt",
"max_stars_repo_path": "agda-rr/cast-cic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1597,
"size": 3968
}
|
module Issue293b where
module M₁ (_ : Set₁) where
postulate P : Set
module M₂ (_ : Set) where
open M₁ Set
p : P
p = {!!}
-- Previous agda2-goal-and-context:
-- ------------------------
-- Goal: M₁.P Set
-- Current agda2-goal-and-context:
-- ------------------------
-- Goal: P
|
{
"alphanum_fraction": 0.4836601307,
"avg_line_length": 13.3043478261,
"ext": "agda",
"hexsha": "d4b84fb52504af09a90af3cfdf95496984d3676b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue293b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue293b.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue293b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 91,
"size": 306
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Order morphisms
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Core
module Relation.Binary.Morphism where
------------------------------------------------------------------------
-- Re-export contents of morphisms
open import Relation.Binary.Morphism.Definitions public
open import Relation.Binary.Morphism.Structures public
|
{
"alphanum_fraction": 0.4554079696,
"avg_line_length": 29.2777777778,
"ext": "agda",
"hexsha": "fbc6e85e277c088e7ee01846e78967a2bd4dac7b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Morphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Morphism.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 69,
"size": 527
}
|
{-
This second-order term syntax was created from the following second-order syntax description:
syntax Monad | M
type
T : 1-ary
term
ret : α -> T α
bind : T α α.(T β) -> T β | _>>=_ r10
theory
(LU) a : α b : α.(T β) |> bind (ret(a), x. b[x]) = b[a]
(RU) t : T α |> bind (t, x. ret(x)) = t
(AS) t : T α b : α.(T β) c : β.(T γ) |> bind (bind (t, x.b[x]), y.c[y]) = bind (t, x. bind (b[x], y.c[y]))
-}
module Monad.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import Monad.Signature
private
variable
Γ Δ Π : Ctx
α β : MT
𝔛 : Familyₛ
-- Inductive term declaration
module M:Terms (𝔛 : Familyₛ) where
data M : Familyₛ where
var : ℐ ⇾̣ M
mvar : 𝔛 α Π → Sub M Π Γ → M α Γ
ret : M α Γ → M (T α) Γ
_>>=_ : M (T α) Γ → M (T β) (α ∙ Γ) → M (T β) Γ
infixr 10 _>>=_
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
Mᵃ : MetaAlg M
Mᵃ = record
{ 𝑎𝑙𝑔 = λ where
(retₒ ⋮ a) → ret a
(bindₒ ⋮ a , b) → _>>=_ a b
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module Mᵃ = MetaAlg Mᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : M ⇾̣ 𝒜
𝕊 : Sub M Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 (ret a) = 𝑎𝑙𝑔 (retₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞 (_>>=_ a b) = 𝑎𝑙𝑔 (bindₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Mᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ M α Γ) → 𝕤𝕖𝕞 (Mᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (retₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (bindₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ M ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : M ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Mᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : M α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub M Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! (ret a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (_>>=_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
M:Syn : Syntax
M:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = M:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open M:Terms 𝔛 in record
{ ⊥ = M ⋉ Mᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax M:Syn public
open M:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands Mᵃ public
open import SOAS.Metatheory M:Syn public
|
{
"alphanum_fraction": 0.5270312994,
"avg_line_length": 25.5080645161,
"ext": "agda",
"hexsha": "2058e722fdc8e34f529787309d8d6b1e90c4fbfb",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Monad/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Monad/Syntax.agda",
"max_line_length": 110,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Monad/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1939,
"size": 3163
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- A type for expressions over a raw ring.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Tactic.RingSolver.Core.Expression where
open import Data.Nat.Base using (ℕ)
open import Data.Fin.Base using (Fin)
open import Data.Vec.Base as Vec using (Vec)
open import Algebra
infixl 6 _⊕_
infixl 7 _⊗_
infixr 8 _⊛_
data Expr {a} (A : Set a) (n : ℕ) : Set a where
Κ : A → Expr A n -- Constant
Ι : Fin n → Expr A n -- Variable
_⊕_ : Expr A n → Expr A n → Expr A n -- Addition
_⊗_ : Expr A n → Expr A n → Expr A n -- Multiplication
_⊛_ : Expr A n → ℕ → Expr A n -- Exponentiation
⊝_ : Expr A n → Expr A n -- Negation
module Eval
{ℓ₁ ℓ₂} (rawRing : RawRing ℓ₁ ℓ₂)
(let open RawRing rawRing)
{a} {A : Set a} (⟦_⟧ᵣ : A → Carrier) where
open import Algebra.Operations.Ring rawRing
⟦_⟧ : ∀ {n} → Expr A n → Vec Carrier n → Carrier
⟦ Κ x ⟧ ρ = ⟦ x ⟧ᵣ
⟦ Ι x ⟧ ρ = Vec.lookup ρ x
⟦ x ⊕ y ⟧ ρ = ⟦ x ⟧ ρ + ⟦ y ⟧ ρ
⟦ x ⊗ y ⟧ ρ = ⟦ x ⟧ ρ * ⟦ y ⟧ ρ
⟦ ⊝ x ⟧ ρ = - ⟦ x ⟧ ρ
⟦ x ⊛ i ⟧ ρ = ⟦ x ⟧ ρ ^ i
|
{
"alphanum_fraction": 0.4792332268,
"avg_line_length": 28.4545454545,
"ext": "agda",
"hexsha": "a4dc817a1667939368a697fc417a9b216370b37b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Expression.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Expression.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Expression.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 471,
"size": 1252
}
|
{-# OPTIONS --cubical #-}
module Exercises where
open import Part2
open import Part3
open import Part4
open import Part5
|
{
"alphanum_fraction": 0.7704918033,
"avg_line_length": 15.25,
"ext": "agda",
"hexsha": "18592afb355e366aded400b98ebf16b5bf5e8b24",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tomdjong/EPIT-2020",
"max_forks_repo_path": "04-cubical-type-theory/material/ExerciseSession3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tomdjong/EPIT-2020",
"max_issues_repo_path": "04-cubical-type-theory/material/ExerciseSession3.agda",
"max_line_length": 25,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tomdjong/EPIT-2020",
"max_stars_repo_path": "04-cubical-type-theory/material/ExerciseSession3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 31,
"size": 122
}
|
-- Some basic structures and operations for dealing
-- with non-deterministic values.
--
-- @author Sergio Antoy, Michael Hanus, Steven Libby
module nondet where
open import bool
open import nat
open import list
infixr 8 _??_
----------------------------------------------------------------------
-- A tree datatype to represent a non-deterministic value of some type.
-- It is either a value or a choice between non-deterministic values.
----------------------------------------------------------------------
data ND (A : Set) : Set where
Val : A → ND A
_??_ : ND A → ND A → ND A
----------------------------------------------------------------------
-- Some operations to define functions working this the ND datatype:
-- Apply a (deterministic) function to a non-deterministic argument.
-- This corresponds to a functor on the ND structure.
_$*_ : {A B : Set} → (A → B) → ND A → ND B
f $* (Val xs) = Val (f xs)
f $* (t1 ?? t2) = f $* t1 ?? f $* t2
-- Apply a non-deterministic function to a non-deterministic argument.
-- If ND would be an instance of the monad class, this is a monadic bind
-- with swapped arguments.
_*$*_ : {A B : Set} → (A → ND B) → ND A → ND B
f *$* (Val x) = f x
f *$* (t1 ?? t2) = f *$* t1 ?? f *$* t2
-- Apply a binary non-deterministic function to non-deterministic arguments.
apply-nd2 : {A B C : Set} → (A → B → ND C) → ND A → ND B → ND C
apply-nd2 f a b = (λ x -> (λ y -> f x y) *$* b) *$* a
-- Apply a ternary non-deterministic function to non-deterministic arguments.
apply-nd3 : {A B C D : Set} → (A → B → C → ND D) → ND A → ND B → ND C → ND D
apply-nd3 f a b c = (λ x -> (λ y -> (λ z → f x y z) *$* c) *$* b) *$* a
-- Extend a deterministic function to one with non-deterministic result:
toND : {A B : Set} → (A → B) → A → ND B
toND f x = Val (f x)
----------------------------------------------------------------------
-- Some operations to define properties of non-deterministic values:
-- Count the number of values:
#vals : {A : Set} → ND A → ℕ
#vals (Val _) = 1
#vals (t1 ?? t2) = #vals t1 + #vals t2
-- Extract the list of all values:
vals-of : {A : Set} → ND A → 𝕃 A
vals-of (Val v) = v :: []
vals-of (t1 ?? t2) = vals-of t1 ++ vals-of t2
-- All values in a Boolean tree are true:
always : ND 𝔹 → 𝔹
always (Val b) = b
always (t1 ?? t2) = always t1 && always t2
-- There exists some true value in a Boolean tree:
eventually : ND 𝔹 → 𝔹
eventually (Val b) = b
eventually (t1 ?? t2) = eventually t1 || eventually t2
-- All non-deterministic values satisfy a given predicate:
_satisfy_ : {A : Set} → ND A → (A → 𝔹) → 𝔹
(Val n) satisfy p = p n
(t1 ?? t2) satisfy p = t1 satisfy p && t2 satisfy p
-- Every value in a tree is equal to the second argument w.r.t. a
-- comparison function provided as the first argument:
every : {A : Set} → (eq : A → A → 𝔹) → A → ND A → 𝔹
every eq x xs = xs satisfy (eq x)
----------------------------------------------------------------------
|
{
"alphanum_fraction": 0.5474576271,
"avg_line_length": 34.7058823529,
"ext": "agda",
"hexsha": "f20a7bb494c37a901276600a0524dfec470260a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "mihanus/curry-agda",
"max_forks_repo_path": "nondet/nondet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "mihanus/curry-agda",
"max_issues_repo_path": "nondet/nondet.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "mihanus/curry-agda",
"max_stars_repo_path": "nondet/nondet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 901,
"size": 2950
}
|
open import Agda.Builtin.Equality
module _ (A : Set) where
data Wrap (X : Set) : Set where
wrap : X → Wrap X
data D (x : A) : ∀ y → Wrap (x ≡ y) → Set where
c : ∀ y (x≡y : x ≡ y) → D x y (wrap x≡y)
test : ∀ x y (x≡y x≡y' : Wrap (x ≡ y)) → D x y x≡y → D x y x≡y' → Set
test y .y (wrap refl) .(wrap refl) (c .y .refl) (c .y refl) = A
|
{
"alphanum_fraction": 0.5176470588,
"avg_line_length": 26.1538461538,
"ext": "agda",
"hexsha": "7d85ccc2ea8d32a51210307571b495b206b0b90c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4081.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4081.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4081.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 159,
"size": 340
}
|
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Environments
--
-- This module defines the meaning of contexts, that is,
-- the type of environments that fit a context, together
-- with operations and properties of these operations.
--
-- This module is parametric in the syntax and semantics
-- of types, so it can be reused for different calculi
-- and models.
------------------------------------------------------------------------
module Base.Denotation.Environment
(Type : Set)
{ℓ}
(⟦_⟧Type : Type → Set ℓ)
where
open import Relation.Binary.PropositionalEquality
open import Base.Syntax.Context Type
open import Base.Denotation.Notation
open import Base.Data.DependentList as DependentList
private
instance
meaningOfType : Meaning Type
meaningOfType = meaning ⟦_⟧Type
⟦_⟧Context : Context → Set ℓ
⟦_⟧Context = DependentList ⟦_⟧Type
instance
meaningOfContext : Meaning Context
meaningOfContext = meaning ⟦_⟧Context
-- VARIABLES
-- Denotational Semantics
⟦_⟧Var : ∀ {Γ τ} → Var Γ τ → ⟦ Γ ⟧ → ⟦ τ ⟧
⟦ this ⟧Var (v • ρ) = v
⟦ that x ⟧Var (v • ρ) = ⟦ x ⟧Var ρ
instance
meaningOfVar : ∀ {Γ τ} → Meaning (Var Γ τ)
meaningOfVar = meaning ⟦_⟧Var
-- WEAKENING
-- Remove a variable from an environment
⟦_⟧≼ : ∀ {Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) → ⟦ Γ₂ ⟧ → ⟦ Γ₁ ⟧
⟦ ∅ ⟧≼ ∅ = ∅
⟦ keep τ • Γ′ ⟧≼ (v • ρ) = v • ⟦ Γ′ ⟧≼ ρ
⟦ drop τ • Γ′ ⟧≼ (v • ρ) = ⟦ Γ′ ⟧≼ ρ
instance
meaningOf≼ : ∀ {Γ₁ Γ₂} → Meaning (Γ₁ ≼ Γ₂)
meaningOf≼ = meaning ⟦_⟧≼
-- Properties
⟦∅≼Γ⟧-∅ : ∀ {Γ} ρ → ⟦ ∅≼Γ {Γ = Γ} ⟧≼ ρ ≡ ∅
⟦∅≼Γ⟧-∅ {∅} ∅ = refl
⟦∅≼Γ⟧-∅ {x • Γ} (v • ρ) = ⟦∅≼Γ⟧-∅ ρ
⟦⟧-≼-trans : ∀ {Γ₃ Γ₁ Γ₂} → (Γ′ : Γ₁ ≼ Γ₂) (Γ″ : Γ₂ ≼ Γ₃) →
∀ (ρ : ⟦ Γ₃ ⟧) → ⟦_⟧ {{meaningOf≼}} (≼-trans Γ′ Γ″) ρ ≡ ⟦_⟧ {{meaningOf≼}} Γ′ (⟦_⟧ {{meaningOf≼}} Γ″ ρ)
⟦⟧-≼-trans Γ′ ∅ ∅ = refl
⟦⟧-≼-trans (keep τ • Γ′) (keep .τ • Γ″) (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-trans Γ′ Γ″ ρ)
⟦⟧-≼-trans (drop τ • Γ′) (keep .τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ
⟦⟧-≼-trans Γ′ (drop τ • Γ″) (v • ρ) = ⟦⟧-≼-trans Γ′ Γ″ ρ
⟦⟧-≼-refl : ∀ {Γ : Context} →
∀ (ρ : ⟦ Γ ⟧) → ⟦_⟧ {{meaningOf≼}} ≼-refl ρ ≡ ρ
⟦⟧-≼-refl {∅} ∅ = refl
⟦⟧-≼-refl {τ • Γ} (v • ρ) = cong₂ _•_ refl (⟦⟧-≼-refl ρ)
-- SOUNDNESS of variable lifting
weaken-var-sound : ∀ {Γ₁ Γ₂ τ} (Γ′ : Γ₁ ≼ Γ₂) (x : Var Γ₁ τ) →
∀ (ρ : ⟦ Γ₂ ⟧) → ⟦_⟧ {{meaningOfVar}} (weaken-var Γ′ x) ρ ≡ ⟦_⟧ {{meaningOfVar}} x ( ⟦_⟧ {{meaningOf≼}} Γ′ ρ)
weaken-var-sound ∅ () ρ
weaken-var-sound (keep τ • Γ′) this (v • ρ) = refl
weaken-var-sound (keep τ • Γ′) (that x) (v • ρ) = weaken-var-sound Γ′ x ρ
weaken-var-sound (drop τ • Γ′) this (v • ρ) = weaken-var-sound Γ′ this ρ
weaken-var-sound (drop τ • Γ′) (that x) (v • ρ) = weaken-var-sound Γ′ (that x) ρ
|
{
"alphanum_fraction": 0.5306872473,
"avg_line_length": 29.9010989011,
"ext": "agda",
"hexsha": "d82fa6a5da108d08a4d7ddf09597bd3301803cfe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Base/Denotation/Environment.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Base/Denotation/Environment.agda",
"max_line_length": 112,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Base/Denotation/Environment.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 1268,
"size": 2721
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Comonads
------------------------------------------------------------------------
-- Note that currently the monad laws are not included here.
{-# OPTIONS --without-K --safe #-}
module Category.Comonad where
open import Level
open import Function
private
variable
a b c f : Level
A : Set a
B : Set b
C : Set c
record RawComonad (W : Set f → Set f) : Set (suc f) where
infixl 1 _=>>_ _=>=_
infixr 1 _<<=_ _=<=_
field
extract : W A → A
extend : (W A → B) → (W A → W B)
duplicate : W A → W (W A)
duplicate = extend id
liftW : (A → B) → W A → W B
liftW f = extend (f ∘′ extract)
_=>>_ : W A → (W A → B) → W B
_=>>_ = flip extend
_=>=_ : (W A → B) → (W B → C) → W A → C
f =>= g = g ∘′ extend f
_<<=_ : (W A → B) → W A → W B
_<<=_ = extend
_=<=_ : (W B → C) → (W A → B) → W A → C
_=<=_ = flip _=>=_
|
{
"alphanum_fraction": 0.433127572,
"avg_line_length": 19.8367346939,
"ext": "agda",
"hexsha": "077ff043d05a33f27f7a4bb747330f5e04af4183",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Category/Comonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Category/Comonad.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Category/Comonad.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 330,
"size": 972
}
|
------------------------------------------------------------------------
-- Alternative definitions of weak bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Delay-monad.Bisimilarity.Alternative {a} {A : Type a} where
open import Equality.Propositional as E
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Function-universe equality-with-J hiding (_∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Delay-monad
open import Delay-monad.Bisimilarity
open import Delay-monad.Termination
-- An alternative definition of weak bisimilarity (discussed by
-- Capretta in "General Recursion via Coinductive Types", and
-- basically the one used in the paper "Partiality, Revisited: The
-- Partiality Monad as a Quotient Inductive-Inductive Type" by
-- Altenkirch, Danielsson and Kraus).
--
-- This definition is pointwise logically equivalent to the one above,
-- see Delay-monad.Partial-order.≈⇔≈₂.
infix 4 _≈₂_
_≈₂_ : Delay A ∞ → Delay A ∞ → Type a
x ≈₂ y = ∀ z → x ⇓ z ⇔ y ⇓ z
-- If A is a set, then this alternative definition of weak
-- bisimilarity is propositional (assuming extensionality), unlike _≈_
-- (see Delay-monad.Bisimilarity.¬-≳≈-propositional).
≈₂-propositional :
E.Extensionality a a →
Is-set A → ∀ {x y} → Is-proposition (x ≈₂ y)
≈₂-propositional ext A-set =
Π-closure ext 1 λ _ →
⇔-closure ext 1 (Terminates-propositional A-set)
(Terminates-propositional A-set)
-- Another alternative definition of weak bisimilarity, basically the
-- one given by Capretta in "General Recursion via Coinductive Types".
infix 4 [_]_≈₃_ [_]_≈₃′_ _≈₃_
mutual
data [_]_≈₃_ (i : Size) : Delay A ∞ → Delay A ∞ → Type a where
both-terminate : ∀ {x y v} → x ⇓ v → y ⇓ v → [ i ] x ≈₃ y
later : ∀ {x y} →
[ i ] force x ≈₃′ force y →
[ i ] later x ≈₃ later y
record [_]_≈₃′_ (i : Size) (x y : Delay A ∞) : Type a where
coinductive
field
force : {j : Size< i} → [ j ] x ≈₃ y
open [_]_≈₃′_ public
_≈₃_ : Delay A ∞ → Delay A ∞ → Type a
_≈₃_ = [ ∞ ]_≈₃_
-- If A is inhabited, then this definition is not propositional.
¬-≈₃-propositional : A → ¬ (∀ {x y} → Is-proposition (x ≈₃ y))
¬-≈₃-propositional x =
(∀ {x y} → Is-proposition (x ≈₃ y)) ↝⟨ (λ prop → prop) ⟩
Is-proposition (y ≈₃ y) ↝⟨ (_$ _) ∘ (_$ _) ⟩
proof₁ ≡ proof₂ ↝⟨ (λ ()) ⟩□
⊥ □
where
y : Delay A ∞
y = later λ { .force → now x }
proof₁ : y ≈₃ y
proof₁ = both-terminate (laterʳ now) (laterʳ now)
proof₂ : y ≈₃ y
proof₂ = later λ { .force → both-terminate now now }
-- The last definition of weak bisimilarity given above is pointwise
-- logically equivalent to _≈_. Note that the proof is
-- size-preserving.
--
-- (Given suitable notions of extensionality the two definitions are
-- not pointwise isomorphic, because given such assumptions there is
-- only one proof of never ≈₃ never, but multiple proofs of
-- never ≈ never. However, there is no Agda proof of this claim in
-- this module.)
≈⇔≈₃ : ∀ {i x y} → [ i ] x ≈ y ⇔ [ i ] x ≈₃ y
≈⇔≈₃ = record { to = to; from = from }
where
mutual
laterˡ′ : ∀ {i x x′ y} →
x′ ≡ force x →
[ i ] x′ ≈₃ y →
[ i ] later x ≈₃ y
laterˡ′ eq (both-terminate x⇓ y⇓) = both-terminate
(laterʳ (subst (_⇓ _) eq x⇓))
y⇓
laterˡ′ eq (later p) = later (laterˡ″ eq p)
laterˡ″ : ∀ {i x x′ y} →
later x′ ≡ x →
[ i ] force x′ ≈₃′ y →
[ i ] x ≈₃′ y
force (laterˡ″ refl p) = laterˡ′ refl (force p)
mutual
laterʳ′ : ∀ {i x y y′} →
y′ ≡ force y →
[ i ] x ≈₃ y′ →
[ i ] x ≈₃ later y
laterʳ′ eq (both-terminate x⇓ y⇓) = both-terminate
x⇓
(laterʳ (subst (_⇓ _) eq y⇓))
laterʳ′ eq (later p) = later (laterʳ″ eq p)
laterʳ″ : ∀ {i x y y′} →
later y′ ≡ y →
[ i ] x ≈₃′ force y′ →
[ i ] x ≈₃′ y
force (laterʳ″ refl p) = laterʳ′ refl (force p)
to : ∀ {i x y} → [ i ] x ≈ y → [ i ] x ≈₃ y
to now = both-terminate now now
to (later p) = later λ { .force → to (force p) }
to (laterˡ p) = laterˡ′ refl (to p)
to (laterʳ p) = laterʳ′ refl (to p)
from⇓ : ∀ {i x y v} → x ⇓ v → y ⇓ v → [ i ] x ≈ y
from⇓ now now = now
from⇓ p (laterʳ q) = laterʳ (from⇓ p q)
from⇓ (laterʳ p) q = laterˡ (from⇓ p q)
from : ∀ {i x y} → [ i ] x ≈₃ y → [ i ] x ≈ y
from (both-terminate x⇓v y⇓v) = from⇓ x⇓v y⇓v
from (later p) = later λ { .force → from (force p) }
|
{
"alphanum_fraction": 0.5289637202,
"avg_line_length": 33.0397350993,
"ext": "agda",
"hexsha": "62934c294ec999a6f0ccfba6384c2a9a86b287d8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Bisimilarity/Alternative.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Bisimilarity/Alternative.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Bisimilarity/Alternative.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1745,
"size": 4989
}
|
open import prelude
-- Copied pretty much verbatim
data Term : Set where
true : Term
false : Term
if_then_else_end : Term → Term → Term → Term
data Value : Term → Set where
true : Value true
false : Value false
data _⟶_ : Term → Term → Set where
E─IfTrue : ∀ {t₂ t₃} →
-----------------------------------
if true then t₂ else t₃ end ⟶ t₂
E─IfFalse : ∀ {t₂ t₃} →
-----------------------------------
if false then t₂ else t₃ end ⟶ t₃
E─IfCong : ∀ {t₁ t₁′ t₂ t₃} →
(t₁ ⟶ t₁′) →
----------------------------------------------------------
(if t₁ then t₂ else t₃ end ⟶ if t₁′ then t₂ else t₃ end)
data Redex : Term → Set where
redex : ∀ {t t′} →
t ⟶ t′ →
--------
Redex(t)
-- Proving that every term is a value or a redex
data ValueOrRedex : Term → Set where
value : ∀ {t} →
(Value(t)) →
---------------
ValueOrRedex(t)
redex : ∀ {t t′} →
t ⟶ t′ →
---------------
ValueOrRedex(t)
valueOrRedex : (t : Term) → ValueOrRedex(t)
valueOrRedex true = value true
valueOrRedex false = value false
valueOrRedex if t₀ then t₁ else t₂ end = helper (valueOrRedex t₀) where
helper : ∀ {t₀ t₁ t₂} → ValueOrRedex(t₀) → ValueOrRedex(if t₀ then t₁ else t₂ end)
helper (value true) = redex E─IfTrue
helper (value false) = redex E─IfFalse
helper (redex r) = redex (E─IfCong r)
-- From which we get some of the theorems in the book
NormalForm : Term → Set
NormalForm(t) = Redex(t) → FALSE
thm357 : ∀ {t} → Value(t) → NormalForm(t)
thm357 true (redex ())
thm357 false (redex ())
thm358 : ∀ {t} → NormalForm(t) → Value(t)
thm358 {t} nf = helper (valueOrRedex t) nf where
helper : ∀ {t} → ValueOrRedex(t) → NormalForm(t) → Value(t)
helper (value v) nf = v
helper (redex r) nf = CONTRADICTION (nf (redex r))
-- But also we can buid an interpreter.
data _⟶*_ : Term → Term → Set where
done : ∀ {t} →
--------
t ⟶* t
redex : ∀ {t t′ t″} →
t ⟶ t′ →
t′ ⟶* t″ →
----------
t ⟶* t″
-- An interpreter result
data Result : Term → Set where
result : ∀ {t t′} →
t ⟶* t′ →
Value(t′) →
---------
Result(t)
-- The interpreter just calls `valueOrRedex` until it is a value.
-- This might bot terminate!
{-# NON_TERMINATING #-}
interp : (t : Term) → Result(t)
interp t = helper₂ (valueOrRedex t) where
helper₁ : ∀ {t t′} → (t ⟶ t′) → Result(t′) → Result(t)
helper₁ r (result s v) = result (redex r s) v
helper₂ : ∀ {t} → ValueOrRedex(t) → Result(t)
helper₂ (value v) = result done v
helper₂ (redex {t} {t′} r) = helper₁ r (interp t′)
-- Examples
not : Term → Term
not(t) = if t then false else true end
_and_ : Term → Term → Term
s and t = if s then t else false end
_or_ : Term → Term → Term
s or t = if s then true else t end
ex : Term
ex = (true and false) or (not true)
-- Try normalizing (CTRL-C CTRL-N) `interp ex`
-- you get told the result but also the derivation tree for every step!
-- ```
-- result
-- (redex (E─IfCong E─IfTrue)
-- (redex E─IfFalse
-- (redex E─IfTrue
-- done)))
-- false
-- ```
|
{
"alphanum_fraction": 0.5556274256,
"avg_line_length": 21.0340136054,
"ext": "agda",
"hexsha": "74e9cbc96437610b7410c82cdf2da149e896b37a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "asajeffrey/tapl",
"max_forks_repo_path": "ch3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "asajeffrey/tapl",
"max_issues_repo_path": "ch3.agda",
"max_line_length": 84,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "asajeffrey/tapl",
"max_stars_repo_path": "ch3.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z",
"num_tokens": 1071,
"size": 3092
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Polynomials.Multivariate.Base where
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly public
{-
The Multivariate Polynomials of size n over a CommRing A is a CommRing.
This version is define as an instance of the more general constructions of gradedRing.
This done by defing Poly A n = ⊕HIT_{Vec A n} A where ⊕HIT is the HIT direct sum.
Then raising the _·_ to Poly A n.
See :
-}
open import Cubical.Algebra.GradedRing.DirectSumHIT
{-
This is define very shortly as a CommRing Instances calling a general makeGradedRing functions.
And by proving the additional properties that the _·_ is commutative.
Hence the absence of real Base and Properties files.
Some more properties that are comming from the definition using the ⊕HIT
can be found in the DirectSumHIT file such as eliminator.
-}
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
|
{
"alphanum_fraction": 0.7926565875,
"avg_line_length": 30.8666666667,
"ext": "agda",
"hexsha": "c098db6940f9ffdb6bbdac8662831e046a87e985",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 228,
"size": 926
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Exactness
open import cohomology.Theory
module cohomology.Sn {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
C-Sphere-≠ : (n : ℤ) (m : ℕ) → (n ≠ ℕ-to-ℤ m)
→ C n (⊙Lift (⊙Sphere m)) == Lift-Unit-group
C-Sphere-≠ n O neq = C-dimension n neq
C-Sphere-≠ n (S m) neq =
C n (⊙Lift (⊙Sphere (S m)))
=⟨ ! $ ⊙Susp-⊙Lift (⊙Sphere m) |in-ctx C n ⟩
C n (⊙Susp (⊙Lift (⊙Sphere m)))
=⟨ ! (succ-pred n) |in-ctx (λ k → C k (⊙Susp (⊙Lift (⊙Sphere m)))) ⟩
C (succ (pred n)) (⊙Susp (⊙Lift (⊙Sphere m)))
=⟨ group-ua (C-Susp (pred n) (⊙Lift (⊙Sphere m))) ⟩
C (pred n) (⊙Lift (⊙Sphere m))
=⟨ C-Sphere-≠ (pred n) m (λ p → neq (pred-injective n (ℕ-to-ℤ (S m)) p)) ⟩
Lift-Unit-group
∎
C-Sphere-diag : (m : ℕ) → C (ℕ-to-ℤ m) (⊙Lift (⊙Sphere m)) == C 0 (⊙Lift ⊙S⁰)
C-Sphere-diag O = idp
C-Sphere-diag (S m) =
C (ℕ-to-ℤ (S m)) (⊙Lift (⊙Sphere (S m)))
=⟨ ! $ ⊙Susp-⊙Lift (⊙Sphere m) |in-ctx C (ℕ-to-ℤ (S m)) ⟩
C (ℕ-to-ℤ (S m)) (⊙Susp (⊙Lift (⊙Sphere m)))
=⟨ group-ua (C-Susp (ℕ-to-ℤ m) (⊙Lift (⊙Sphere m))) ⟩
C (ℕ-to-ℤ m) (⊙Lift (⊙Sphere m))
=⟨ C-Sphere-diag m ⟩
C 0 (⊙Lift ⊙S⁰)
∎
|
{
"alphanum_fraction": 0.5327731092,
"avg_line_length": 32.1621621622,
"ext": "agda",
"hexsha": "76fcca1a137dc97cf374e063f3af451cbb254c66",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/Sn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/Sn.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/Sn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 638,
"size": 1190
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors
------------------------------------------------------------------------
module Data.Vec where
open import Category.Applicative
open import Data.Nat
open import Data.Fin using (Fin; zero; suc)
open import Data.List as List using (List)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_)
open import Function
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
------------------------------------------------------------------------
-- Types
infixr 5 _∷_
data Vec {a} (A : Set a) : ℕ → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
infix 4 _∈_
data _∈_ {a} {A : Set a} : A → {n : ℕ} → Vec A n → Set a where
here : ∀ {n} {x} {xs : Vec A n} → x ∈ x ∷ xs
there : ∀ {n} {x y} {xs : Vec A n} (x∈xs : x ∈ xs) → x ∈ y ∷ xs
infix 4 _[_]=_
data _[_]=_ {a} {A : Set a} :
{n : ℕ} → Vec A n → Fin n → A → Set a where
here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ zero ]= x
there : ∀ {n} {i} {x y} {xs : Vec A n}
(xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x
------------------------------------------------------------------------
-- Some operations
head : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
head (x ∷ xs) = x
tail : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
tail (x ∷ xs) = xs
[_] : ∀ {a} {A : Set a} → A → Vec A 1
[ x ] = x ∷ []
infixr 5 _++_
_++_ : ∀ {a m n} {A : Set a} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
infixl 4 _⊛_
_⊛_ : ∀ {a b n} {A : Set a} {B : Set b} →
Vec (A → B) n → Vec A n → Vec B n
[] ⊛ _ = []
(f ∷ fs) ⊛ (x ∷ xs) = f x ∷ (fs ⊛ xs)
replicate : ∀ {a n} {A : Set a} → A → Vec A n
replicate {n = zero} x = []
replicate {n = suc n} x = x ∷ replicate x
applicative : ∀ {a n} → RawApplicative (λ (A : Set a) → Vec A n)
applicative = record
{ pure = replicate
; _⊛_ = _⊛_
}
map : ∀ {a b n} {A : Set a} {B : Set b} →
(A → B) → Vec A n → Vec B n
map f xs = replicate f ⊛ xs
zipWith : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c} →
(A → B → C) → Vec A n → Vec B n → Vec C n
zipWith _⊕_ xs ys = replicate _⊕_ ⊛ xs ⊛ ys
zip : ∀ {a b n} {A : Set a} {B : Set b} →
Vec A n → Vec B n → Vec (A × B) n
zip = zipWith _,_
unzip : ∀ {a b n} {A : Set a} {B : Set b} →
Vec (A × B) n → Vec A n × Vec B n
unzip [] = [] , []
unzip ((x , y) ∷ xys) = Prod.map (_∷_ x) (_∷_ y) (unzip xys)
foldr : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → A → B n → B (suc n)) →
B zero →
Vec A m → B m
foldr b _⊕_ n [] = n
foldr b _⊕_ n (x ∷ xs) = x ⊕ foldr b _⊕_ n xs
foldr₁ : ∀ {a} {A : Set a} {m} →
(A → A → A) → Vec A (suc m) → A
foldr₁ _⊕_ (x ∷ []) = x
foldr₁ _⊕_ (x ∷ y ∷ ys) = x ⊕ foldr₁ _⊕_ (y ∷ ys)
foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} →
(∀ {n} → B n → A → B (suc n)) →
B zero →
Vec A m → B m
foldl b _⊕_ n [] = n
foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs
foldl₁ : ∀ {a} {A : Set a} {m} →
(A → A → A) → Vec A (suc m) → A
foldl₁ _⊕_ (x ∷ xs) = foldl _ _⊕_ x xs
concat : ∀ {a m n} {A : Set a} →
Vec (Vec A m) n → Vec A (n * m)
concat [] = []
concat (xs ∷ xss) = xs ++ concat xss
splitAt : ∀ {a} {A : Set a} m {n} (xs : Vec A (m + n)) →
∃₂ λ (ys : Vec A m) (zs : Vec A n) → xs ≡ ys ++ zs
splitAt zero xs = ([] , xs , refl)
splitAt (suc m) (x ∷ xs) with splitAt m xs
splitAt (suc m) (x ∷ .(ys ++ zs)) | (ys , zs , refl) =
((x ∷ ys) , zs , refl)
take : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A m
take m xs with splitAt m xs
take m .(ys ++ zs) | (ys , zs , refl) = ys
drop : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A n
drop m xs with splitAt m xs
drop m .(ys ++ zs) | (ys , zs , refl) = zs
group : ∀ {a} {A : Set a} n k (xs : Vec A (n * k)) →
∃ λ (xss : Vec (Vec A k) n) → xs ≡ concat xss
group zero k [] = ([] , refl)
group (suc n) k xs with splitAt k xs
group (suc n) k .(ys ++ zs) | (ys , zs , refl) with group n k zs
group (suc n) k .(ys ++ concat zss) | (ys , ._ , refl) | (zss , refl) =
((ys ∷ zss) , refl)
-- Splits a vector into two "halves".
split : ∀ {a n} {A : Set a} → Vec A n → Vec A ⌈ n /2⌉ × Vec A ⌊ n /2⌋
split [] = ([] , [])
split (x ∷ []) = (x ∷ [] , [])
split (x ∷ y ∷ xs) = Prod.map (_∷_ x) (_∷_ y) (split xs)
reverse : ∀ {a n} {A : Set a} → Vec A n → Vec A n
reverse {A = A} = foldl (Vec A) (λ rev x → x ∷ rev) []
sum : ∀ {n} → Vec ℕ n → ℕ
sum = foldr _ _+_ 0
toList : ∀ {a n} {A : Set a} → Vec A n → List A
toList [] = List.[]
toList (x ∷ xs) = List._∷_ x (toList xs)
fromList : ∀ {a} {A : Set a} → (xs : List A) → Vec A (List.length xs)
fromList List.[] = []
fromList (List._∷_ x xs) = x ∷ fromList xs
-- Snoc.
infixl 5 _∷ʳ_
_∷ʳ_ : ∀ {a n} {A : Set a} → Vec A n → A → Vec A (1 + n)
[] ∷ʳ y = [ y ]
(x ∷ xs) ∷ʳ y = x ∷ (xs ∷ʳ y)
initLast : ∀ {a n} {A : Set a} (xs : Vec A (1 + n)) →
∃₂ λ (ys : Vec A n) (y : A) → xs ≡ ys ∷ʳ y
initLast {n = zero} (x ∷ []) = ([] , x , refl)
initLast {n = suc n} (x ∷ xs) with initLast xs
initLast {n = suc n} (x ∷ .(ys ∷ʳ y)) | (ys , y , refl) =
((x ∷ ys) , y , refl)
init : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n
init xs with initLast xs
init .(ys ∷ʳ y) | (ys , y , refl) = ys
last : ∀ {a n} {A : Set a} → Vec A (1 + n) → A
last xs with initLast xs
last .(ys ∷ʳ y) | (ys , y , refl) = y
infixl 1 _>>=_
_>>=_ : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec A m → (A → Vec B n) → Vec B (m * n)
xs >>= f = concat (map f xs)
infixl 4 _⊛*_
_⊛*_ : ∀ {a b m n} {A : Set a} {B : Set b} →
Vec (A → B) m → Vec A n → Vec B (m * n)
fs ⊛* xs = fs >>= λ f → map f xs
-- Interleaves the two vectors.
infixr 5 _⋎_
_⋎_ : ∀ {a m n} {A : Set a} →
Vec A m → Vec A n → Vec A (m +⋎ n)
[] ⋎ ys = ys
(x ∷ xs) ⋎ ys = x ∷ (ys ⋎ xs)
-- A lookup function.
lookup : ∀ {a n} {A : Set a} → Fin n → Vec A n → A
lookup zero (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
-- An inverse of flip lookup.
tabulate : ∀ {n a} {A : Set a} → (Fin n → A) → Vec A n
tabulate {zero} f = []
tabulate {suc n} f = f zero ∷ tabulate (f ∘ suc)
-- Update.
infixl 6 _[_]≔_
_[_]≔_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A → Vec A n
[] [ () ]≔ y
(x ∷ xs) [ zero ]≔ y = y ∷ xs
(x ∷ xs) [ suc i ]≔ y = x ∷ xs [ i ]≔ y
-- Generates a vector containing all elements in Fin n. This function
-- is not placed in Data.Fin because Data.Vec depends on Data.Fin.
--
-- The implementation was suggested by Conor McBride ("Fwd: how to
-- count 0..n-1", http://thread.gmane.org/gmane.comp.lang.agda/2554).
allFin : ∀ n → Vec (Fin n) n
allFin _ = tabulate id
|
{
"alphanum_fraction": 0.4384848923,
"avg_line_length": 29.1856540084,
"ext": "agda",
"hexsha": "923ed2c82ddbcccd292833380e357282c01b5bb9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Vec.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2940,
"size": 6917
}
|
module Data.Union.Relation.Binary.Subtype where
open import Data.List using (List)
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_)
open import Data.Union using (Union; here; there; inj)
open import Function using (_∘_; id)
open import Relation.Binary.PropositionalEquality using () renaming (refl to refl≡)
open import Level using (Level; _⊔_)
-- ----------------------------------------------------------------------
-- Subtyping
private
variable
a b c d f : Level
A : Set a
B : Set b
C : Set c
D : Set d
F : A → Set f
ts ts′ : List A
infix 4 _≼_ _,_⊢_≼_
_≼_ : Set a → Set b → Set (a ⊔ b)
A ≼ B = A → B
_,_⊢_≼_ : (A : Set a) → (F : A → Set b) → List A → List A → Set (a ⊔ b)
A , F ⊢ ts ≼ ts′ = Union A F ts ≼ Union A F ts′
refl : A ≼ A
refl = id
trans : A ≼ B → B ≼ C → A ≼ C
trans A≼B B≼C = B≼C ∘ A≼B
generalize : ts ⊆ ts′ → A , F ⊢ ts ≼ ts′
generalize ts⊆ts′ (here x) = inj (ts⊆ts′ (here refl≡)) x
generalize ts⊆ts′ (there x) = generalize (ts⊆ts′ ∘ there) x
function : C ≼ A → B ≼ D → (A → B) ≼ (C → D)
function C≼A B≼D f = B≼D ∘ f ∘ C≼A
coerce : A ≼ B → A → B
coerce = id
|
{
"alphanum_fraction": 0.5584092792,
"avg_line_length": 23.2115384615,
"ext": "agda",
"hexsha": "62c22ad3afd8149d4378a494e86fc50d69007c20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-union",
"max_forks_repo_path": "src/Data/Union/Relation/Binary/Subtype.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-union",
"max_issues_repo_path": "src/Data/Union/Relation/Binary/Subtype.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-union",
"max_stars_repo_path": "src/Data/Union/Relation/Binary/Subtype.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 469,
"size": 1207
}
|
{-# OPTIONS --without-K --rewriting #-}
module lib.types.Suspension.Trunc where
open import lib.Basics
open import lib.NType2
open import lib.types.Paths
open import lib.types.Pointed
open import lib.types.Truncation
open import lib.types.Suspension.Core
module _ {i} (A : Type i) (m : ℕ₋₂) where
module SuspTruncSwap =
SuspRec
{C = Trunc (S m) (Susp A)}
[ north ]
[ south ]
(Trunc-rec
{B = [ north ] == [ south ]}
{{has-level-apply (Trunc-level {n = S m}) [ north ] [ south ]}}
(λ x → ap [_] (merid x)))
Susp-Trunc-swap : Susp (Trunc m A) → Trunc (S m) (Susp A)
Susp-Trunc-swap = SuspTruncSwap.f
Susp-Trunc-swap-Susp-fmap-trunc : ∀ (s : Susp A) →
Susp-Trunc-swap (Susp-fmap [_] s) == [ s ]
Susp-Trunc-swap-Susp-fmap-trunc =
Susp-elim
idp
idp $
λ a → ↓-='-in' $ ! $
ap (Susp-Trunc-swap ∘ Susp-fmap [_]) (merid a)
=⟨ ap-∘ Susp-Trunc-swap (Susp-fmap [_]) (merid a) ⟩
ap Susp-Trunc-swap (ap (Susp-fmap [_]) (merid a))
=⟨ ap (ap Susp-Trunc-swap) (SuspFmap.merid-β [_] a) ⟩
ap Susp-Trunc-swap (merid [ a ])
=⟨ SuspTruncSwap.merid-β [ a ] ⟩
ap [_] (merid a) =∎
abstract
Susp-Trunc-swap-natural : ∀ {i} {j} {A : Type i} {B : Type j} (f : A → B) (m : ℕ₋₂)
→ Susp-Trunc-swap B m ∘ Susp-fmap (Trunc-fmap f) ∼
Trunc-fmap (Susp-fmap f) ∘ Susp-Trunc-swap A m
Susp-Trunc-swap-natural {A = A} {B} f m =
Susp-elim
idp
idp $
Trunc-elim {{λ t → ↓-level (=-preserves-level Trunc-level)}} $ λ s →
↓-='-in' $
ap (Trunc-fmap (Susp-fmap f) ∘ Susp-Trunc-swap A m) (merid [ s ])
=⟨ ap-∘ (Trunc-fmap (Susp-fmap f)) (Susp-Trunc-swap A m) (merid [ s ]) ⟩
ap (Trunc-fmap (Susp-fmap f)) (ap (Susp-Trunc-swap A m) (merid [ s ]))
=⟨ ap (ap (Trunc-fmap (Susp-fmap f))) (SuspTruncSwap.merid-β A m [ s ]) ⟩
ap (Trunc-fmap (Susp-fmap f)) (ap [_] (merid s))
=⟨ ∘-ap (Trunc-fmap (Susp-fmap f)) [_] (merid s) ⟩
ap ([_] ∘ Susp-fmap f) (merid s)
=⟨ ap-∘ [_] (Susp-fmap f) (merid s) ⟩
ap [_] (ap (Susp-fmap f) (merid s))
=⟨ ap (ap [_]) (SuspFmap.merid-β f s) ⟩
ap [_] (merid (f s))
=⟨ ! (SuspTruncSwap.merid-β B m [ f s ]) ⟩
ap (Susp-Trunc-swap B m) (merid [ f s ])
=⟨ ap (ap (Susp-Trunc-swap B m)) (! (SuspFmap.merid-β (Trunc-fmap f) [ s ])) ⟩
ap (Susp-Trunc-swap B m) (ap (Susp-fmap (Trunc-fmap f)) (merid [ s ]))
=⟨ ∘-ap (Susp-Trunc-swap B m) (Susp-fmap (Trunc-fmap f)) (merid [ s ]) ⟩
ap (Susp-Trunc-swap B m ∘ Susp-fmap (Trunc-fmap f)) (merid [ s ]) =∎
⊙Susp-Trunc-swap : ∀ {i} (A : Type i) (m : ℕ₋₂)
→ ⊙Susp (Trunc m A) ⊙→ ⊙Trunc (S m) (⊙Susp A)
⊙Susp-Trunc-swap A m = Susp-Trunc-swap A m , idp
abstract
⊙Susp-Trunc-swap-natural : ∀ {i} {j} {A : Type i} {B : Type j} (f : A → B) (m : ℕ₋₂)
→ ⊙Susp-Trunc-swap B m ⊙∘ ⊙Susp-fmap (Trunc-fmap f) ==
⊙Trunc-fmap (⊙Susp-fmap f) ⊙∘ ⊙Susp-Trunc-swap A m
⊙Susp-Trunc-swap-natural f m = ⊙λ=' (Susp-Trunc-swap-natural f m) idp
|
{
"alphanum_fraction": 0.5488822155,
"avg_line_length": 37.4625,
"ext": "agda",
"hexsha": "779596ca80ea7802567ac12fd193c910150a6b69",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Suspension/Trunc.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Suspension/Trunc.agda",
"max_line_length": 86,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Suspension/Trunc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1253,
"size": 2997
}
|
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Weakening {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Substitution
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Weakening of valid types by one.
wk1ᵛ : ∀ {A F Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ wk1 A / (VPack _ _ (V∙ [Γ] [F]))
wk1ᵛ {A} [Γ] [F] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ]))
[σA]′ = irrelevance′ (PE.sym (subst-wk A)) [σA]
in [σA]′
, (λ [σ′] [σ≡σ′] →
irrelevanceEq″ (PE.sym (subst-wk A))
(PE.sym (subst-wk A))
[σA] [σA]′
(proj₂ ([A] ⊢Δ (proj₁ [σ])) (proj₁ [σ′]) (proj₁ [σ≡σ′])))
-- Weakening of valid type equality by one.
wk1Eqᵛ : ∀ {A B F Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ])
([A≡B] : Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A])
→ Γ ∙ F ⊩ᵛ⟨ l ⟩ wk1 A ≡ wk1 B / (VPack _ _ (V∙ [Γ] [F])) / wk1ᵛ {A} {F} [Γ] [F] [A]
wk1Eqᵛ {A} {B} [Γ] [F] [A] [A≡B] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ]))
[σA]′ = irrelevance′ (PE.sym (subst-wk A)) [σA]
in irrelevanceEq″ (PE.sym (subst-wk A))
(PE.sym (subst-wk B))
[σA] [σA]′
([A≡B] ⊢Δ (proj₁ [σ]))
|
{
"alphanum_fraction": 0.4963008631,
"avg_line_length": 33.7916666667,
"ext": "agda",
"hexsha": "cdab625c87b79e61f47a7a3c7514a4bea954f486",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Weakening.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Weakening.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Weakening.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 690,
"size": 1622
}
|
{-# OPTIONS --without-K #-}
open import HoTT
{- Move (parts of) faces of a cube around -}
module lib.cubical.elims.CubeMove where
square-push-rb : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ b : A}
{p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀}
{p₋₁ : a₀₁ == a₁₁} (p₁₋ : a₁₀ == b) (q : b == a₁₁)
→ Square p₀₋ p₋₀ p₋₁ (p₁₋ ∙ q)
→ Square p₀₋ p₋₀ (p₋₁ ∙' ! q) p₁₋
square-push-rb idp idp sq = sq
private
right-from-front-lemma : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁}
{p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁}
(sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back
{sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ (p₋₀₁ ∙ idp)} -- top
{sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ (p₋₁₁ ∙ idp)} -- bottom
{sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ (square-push-rb p₋₀₁ idp sq₋₀₋)
(square-push-rb p₋₁₁ idp sq₋₁₋) (sq₁₋₋ ⊡h' !□h hid-square)
→ Cube sq₋₋₀ (sq₋₋₁ ⊡h hid-square) sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋
right-from-front-lemma ids cu = cu
cube-right-from-front : ∀ {i} {A : Type i}
{a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ b₀ b₁ : A}
{p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀}
{p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀}
{sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left
{p₀₋₁ : a₀₀₁ == a₀₁₁}
{p₋₀₁ : a₀₀₁ == b₀} {q₋₀₁ : b₀ == a₁₀₁}
{r : b₀ == b₁}
{p₋₁₁ : a₀₁₁ == b₁} {q₋₁₁ : b₁ == a₁₁₁}
{p₁₋₁ : a₁₀₁ == a₁₁₁}
(sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ r) -- right
{p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁}
{p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁}
{sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back
{sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ (p₋₀₁ ∙ q₋₀₁)} -- top
{sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ (p₋₁₁ ∙ q₋₁₁)} -- bottom
{sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front
(sq' : Square r q₋₀₁ q₋₁₁ p₁₋₁)
→ Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ (square-push-rb p₋₀₁ q₋₀₁ sq₋₀₋)
(square-push-rb p₋₁₁ q₋₁₁ sq₋₁₋) (sq₁₋₋ ⊡h' !□h sq')
→ Cube sq₋₋₀ (sq₋₋₁ ⊡h sq') sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋
cube-right-from-front sq₋₋₁ ids cu = right-from-front-lemma sq₋₋₁ cu
|
{
"alphanum_fraction": 0.5222412318,
"avg_line_length": 37.7096774194,
"ext": "agda",
"hexsha": "61c180876d7d7b1145f8febb60974b215cee2776",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/cubical/elims/CubeMove.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/cubical/elims/CubeMove.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/cubical/elims/CubeMove.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1510,
"size": 2338
}
|
-- test termination using structured orders
module TerminationTupledAckermann where
data Nat : Set where
zero : Nat
succ : Nat -> Nat
data _×_ (A B : Set) : Set where
_,_ : A -> B -> A × B
-- addition in tupled form
add : Nat × Nat -> Nat
add (zero , m) = m
add (succ n , m) = succ (add (n , m))
-- ackermann in tupled form
ack : Nat × Nat -> Nat
ack (zero , y) = succ y
ack (succ x , zero) = ack (x , succ zero)
ack (succ x , succ y) = ack (x , ack (succ x , y))
|
{
"alphanum_fraction": 0.5769230769,
"avg_line_length": 20.5833333333,
"ext": "agda",
"hexsha": "2c4f87ae9ec6b9b33acf690541637a5b5d73f619",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/features/matrixShapedTerminationOrder/TerminationTupledAckermann.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/features/matrixShapedTerminationOrder/TerminationTupledAckermann.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/features/matrixShapedTerminationOrder/TerminationTupledAckermann.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 166,
"size": 494
}
|
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.Freudenthal
open import homotopy.IterSuspensionStable
open import homotopy.Pi2HSusp
open import homotopy.EM1HSpace
module homotopy.EilenbergMacLane where
-- EM(G,n) when G is π₁(A,a₀)
module EMImplicit {i} (A : Type i) (cA : is-connected 0 A)
(gA : has-level 1 A) (A-H : HSS A) where
private
a₀ = HSS.e A-H
X = ⊙[ A , a₀ ]
⊙EM : (n : ℕ) → Ptd i
⊙EM O = ⊙Ω X
⊙EM (S n) = ⊙Trunc ⟨ S n ⟩ (⊙Susp^ n X)
module _ (n : ℕ) where
EM = fst (⊙EM n)
embase = snd (⊙EM n)
EM-level : (n : ℕ) → has-level ⟨ n ⟩ (fst (⊙EM n))
EM-level O = gA a₀ a₀
EM-level (S n) = Trunc-level
EM-conn : (n : ℕ) → is-connected ⟨ n ⟩ (EM (S n))
EM-conn n = Trunc-preserves-conn ⟨ S n ⟩
(transport (λ t → is-connected t (fst (⊙Susp^ n X)))
(+2+0 ⟨ n ⟩₋₂) (⊙Susp^-conn n cA))
{-
π (S k) (EM (S n)) (embase (S n)) == π k (EM n) (embase n)
where k > 0 and n = S (S n')
-}
module Stable (k n : ℕ) (indexing : S k ≤ S (S n))
where
private
SSn : ℕ
SSn = S (S n)
lte : ⟨ S k ⟩ ≤T ⟨ SSn ⟩
lte = ⟨⟩-monotone-≤ $ indexing
Skle : S k ≤ (S n) *2
Skle = ≤-trans indexing (lemma n)
where lemma : (n' : ℕ) → S (S n') ≤ (S n') *2
lemma O = inl idp
lemma (S n') = ≤-trans (≤-ap-S (lemma n')) (inr ltS)
private
module SS = Susp^StableSucc X cA k (S n) Skle
abstract
stable : πS (S k) (⊙EM (S SSn))
== πS k (⊙EM SSn)
stable =
πS (S k) (⊙EM (S SSn))
=⟨ πS-below-trunc _ _ _ (≤T-ap-S lte) ⟩
πS (S k) (⊙Susp^ SSn X)
=⟨ SS.stable ⟩
πS k (⊙Susp^ (S n) X)
=⟨ ! (πS-below-trunc _ _ _ lte) ⟩
πS k (⊙EM SSn) ∎
module BelowDiagonal where
π₁ : (n : ℕ) → πS 0 (⊙EM (S (S n))) == Lift-Unit-group
π₁ n =
contr-is-0ᴳ (πS 0 (⊙EM (S (S n))))
(connected-at-level-is-contr
(raise-level-≤T (≤T-ap-S (≤T-ap-S (-2≤T ⟨ n ⟩₋₂)))
(Trunc-level {n = 0}))
(Trunc-preserves-conn 0 (path-conn (EM-conn (S n)))))
-- some clutter here arises from the definition of <;
-- any simple way to avoid this?
πS-below : (k n : ℕ) → (S k < n)
→ πS k (⊙EM n) == Lift-Unit-group
πS-below 0 .2 ltS = π₁ 0
πS-below 0 .3 (ltSR ltS) = π₁ 1
πS-below 0 (S (S n)) (ltSR (ltSR _)) = π₁ n
πS-below (S k) ._ ltS =
Stable.stable k k (inr ltS)
∙ πS-below k _ ltS
πS-below (S k) ._ (ltSR ltS) =
Stable.stable k (S k) (inr (ltSR ltS))
∙ πS-below k _ (ltSR ltS)
πS-below (S k) ._ (ltSR (ltSR ltS)) =
Stable.stable k (S (S k)) (inr (ltSR (ltSR ltS)))
∙ πS-below k _ (ltSR (ltSR ltS))
πS-below (S k) (S (S (S n))) (ltSR (ltSR (ltSR lt))) =
Stable.stable k n
(inr (<-cancel-S (ltSR (ltSR (ltSR lt)))))
∙ πS-below k _ (<-cancel-S (ltSR (ltSR (ltSR lt))))
module OnDiagonal where
π₁ : πS 0 (⊙EM 1) == πS 0 X
π₁ = πS-below-trunc 0 1 X ≤T-refl
private
module Π₂ = Pi2HSusp A gA cA A-H
π₂ : πS 1 (⊙EM 2) == πS 0 X
π₂ =
πS-below-trunc 1 2 (⊙Susp X) ≤T-refl
∙ Π₂.π₂-Suspension
πS-diag : (n : ℕ) → πS n (⊙EM (S n)) == πS 0 X
πS-diag 0 = π₁
πS-diag 1 = π₂
πS-diag (S (S n)) =
Stable.stable (S n) n ≤-refl
∙ πS-diag (S n)
module AboveDiagonal where
πS-above : (k n : ℕ) → (n < S k)
→ πS k (⊙EM n) == Lift-Unit-group
πS-above k n lt =
contr-is-0ᴳ (πS k (⊙EM n))
(inhab-prop-is-contr
[ idp^ (S k) ]
(Trunc-preserves-level 0 (Ω^-level-in -1 (S k) _
(raise-level-≤T (lemma lt) (EM-level n)))))
where lemma : {k n : ℕ} → n < k → ⟨ n ⟩ ≤T (⟨ k ⟩₋₂ +2+ -1)
lemma ltS = inl (! (+2+-comm _ -1))
lemma (ltSR lt) = ≤T-trans (lemma lt) (inr ltS)
module Spectrum where
private
module Π₂ = Pi2HSusp A gA cA A-H
spectrum0 : ⊙Ω (⊙EM 1) == ⊙EM 0
spectrum0 =
⊙Ω (⊙EM 1)
=⟨ ⊙ua (⊙≃-in (Trunc=-equiv _ _) idp) ⟩
⊙Trunc 0 (⊙Ω X)
=⟨ ⊙ua (⊙≃-in (unTrunc-equiv _ (gA a₀ a₀)) idp) ⟩
⊙Ω X ∎
spectrum1 : ⊙Ω (⊙EM 2) == ⊙EM 1
spectrum1 =
⊙Ω (⊙EM 2)
=⟨ ⊙ua (⊙≃-in (Trunc=-equiv _ _) idp) ⟩
⊙Trunc 1 (⊙Ω (⊙Susp X))
=⟨ Π₂.⊙main-lemma ⟩
X
=⟨ ! (⊙ua (⊙≃-in (unTrunc-equiv _ gA) idp)) ⟩
⊙EM 1 ∎
private
sconn : (n : ℕ) → is-connected ⟨ S n ⟩ (fst (⊙Susp^ (S n) X))
sconn n = transport (λ t → is-connected t (fst (⊙Susp^ (S n) X)))
(+2+0 ⟨ n ⟩₋₁) (⊙Susp^-conn (S n) cA)
kle : (n : ℕ) → ⟨ S (S n) ⟩ ≤T ⟨ n ⟩ +2+ ⟨ n ⟩
kle O = inl idp
kle (S n) = ≤T-trans (≤T-ap-S (kle n))
(≤T-trans (inl (! (+2+-βr ⟨ n ⟩ ⟨ n ⟩)))
(inr ltS))
module FS (n : ℕ) =
FreudenthalEquiv ⟨ n ⟩₋₁ ⟨ S (S n) ⟩ (kle n)
(fst (⊙Susp^ (S n) X)) (snd (⊙Susp^ (S n) X)) (sconn n)
spectrumSS : (n : ℕ)
→ ⊙Ω (⊙EM (S (S (S n)))) == ⊙EM (S (S n))
spectrumSS n =
⊙Ω (⊙EM (S (S (S n))))
=⟨ ⊙ua (⊙≃-in (Trunc=-equiv _ _) idp) ⟩
⊙Trunc ⟨ S (S n) ⟩ (⊙Ω (⊙Susp^ (S (S n)) X))
=⟨ ! (FS.⊙path n) ⟩
⊙EM (S (S n)) ∎
abstract
spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) == ⊙EM n
spectrum 0 = spectrum0
spectrum 1 = spectrum1
spectrum (S (S n)) = spectrumSS n
module EMExplicit {i} (G : Group i) (G-abelian : is-abelian G) where
module K₁ = EM₁ G
module HSpace = EM₁HSpace G G-abelian
open EMImplicit K₁.EM₁ K₁.EM₁-conn K₁.emlevel HSpace.H-EM₁ public
open BelowDiagonal public using (πS-below)
πS-diag : (n : ℕ) → πS n (⊙EM (S n)) == G
πS-diag n = OnDiagonal.πS-diag n ∙ K₁.π₁.π₁-iso
open AboveDiagonal public using (πS-above)
open Spectrum public using (spectrum)
|
{
"alphanum_fraction": 0.4804910864,
"avg_line_length": 29.2906403941,
"ext": "agda",
"hexsha": "36609349a3661c103f3845a2a6e4b0626c35b386",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/EilenbergMacLane.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/EilenbergMacLane.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/EilenbergMacLane.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2633,
"size": 5946
}
|
-- Andreas, 2015-07-13 Better parse errors for illegal type signatures
A : Set where B = C
|
{
"alphanum_fraction": 0.7204301075,
"avg_line_length": 23.25,
"ext": "agda",
"hexsha": "7c09b81b28b224d88102a9b2bf07bd39038dbc7d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1609a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1609a.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1609a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 93
}
|
-- Andreas, 2019-08-10, weird error for naked ellipsis
...
-- Error (weird):
-- Missing type signature for left hand side ...
-- when scope checking the declaration
-- ...
-- When following the suggestion to give a type signature,
--
-- ... : Set
--
-- Agda says:
-- The ellipsis ... cannot have a type signature
-- <EOF><ERROR>
|
{
"alphanum_fraction": 0.6458333333,
"avg_line_length": 19.7647058824,
"ext": "agda",
"hexsha": "c91b956e35c17898d92a3abb85faf4a2bcdc1a43",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Bugs/NakedEllipsisWeirdError.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Bugs/NakedEllipsisWeirdError.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Bugs/NakedEllipsisWeirdError.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 85,
"size": 336
}
|
{-# OPTIONS --safe #-}
module Cubical.Relation.Binary.Extensionality where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Base
module _ {ℓ ℓ'} {A : Type ℓ} (_≺_ : Rel A A ℓ') where
≡→≺Equiv : (x y : A) → x ≡ y → ∀ z → (z ≺ x) ≃ (z ≺ y)
≡→≺Equiv _ _ p z = substEquiv (z ≺_) p
isWeaklyExtensional : Type _
isWeaklyExtensional = ∀ {x y} → isEquiv (≡→≺Equiv x y)
isPropIsWeaklyExtensional : isProp isWeaklyExtensional
isPropIsWeaklyExtensional = isPropImplicitΠ2 λ _ _ → isPropIsEquiv _
|
{
"alphanum_fraction": 0.7195301028,
"avg_line_length": 30.9545454545,
"ext": "agda",
"hexsha": "41b789887feee6fbad928da4d01c205857d5a291",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Relation/Binary/Extensionality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Relation/Binary/Extensionality.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Relation/Binary/Extensionality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 238,
"size": 681
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Magma.Submagma where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Algebra
open import Cubical.Algebra.Magma.Morphism
open import Cubical.Relation.Unary
open import Cubical.Relation.Unary.Subtype
record IsSubmagma {c ℓ} (M : Magma c) (Member : Pred ⟨ M ⟩ ℓ) : Type (ℓ-max c ℓ) where
constructor issubmagma
private module M = Magma M
field
closed : M._•_ Preserves₂ Member
Carrier : Type _
Carrier = Subtype Member
_•_ : Op₂ Carrier
(x , subx) • (y , suby) = x M.• y , closed subx suby
is-set : isSet Carrier
is-set = isSetSubtype Member M.is-set
isMagma : IsMagma Carrier _•_
isMagma = record { is-set = is-set }
magma : Magma _
magma = record { isMagma = isMagma }
open Magma magma using (set) public
record Submagma {c} (M : Magma c) ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where
constructor mksubmagma
field
Member : Pred ⟨ M ⟩ ℓ
isSubmagma : IsSubmagma M Member
open IsSubmagma isSubmagma public
instance
SubmagmaCarrier : ∀ {c ℓ} {M : Magma c} → HasCarrier (Submagma M ℓ) _
SubmagmaCarrier = record { ⟨_⟩ = Submagma.Carrier }
module _ {ℓ} (M : Magma ℓ) where
open Magma M
∅-isSubmagma : IsSubmagma M ∅
∅-isSubmagma = record { closed = λ () }
∅-submagma : Submagma M _
∅-submagma = record { isSubmagma = ∅-isSubmagma }
U-isSubmagma : IsSubmagma M U
U-isSubmagma = record {} -- trivial
U-submagma : Submagma M _
U-submagma = record { isSubmagma = U-isSubmagma }
isPropIsSubmagma : ∀ {c ℓ} {M : Magma c} {Member : Pred ⟨ M ⟩ ℓ} → isProp (IsSubmagma M Member)
isPropIsSubmagma {Member = Member} (issubmagma a) (issubmagma b) =
cong issubmagma ((isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ2 λ _ _ → isProp[ Member ] _) a b)
|
{
"alphanum_fraction": 0.6831210191,
"avg_line_length": 24.4675324675,
"ext": "agda",
"hexsha": "2a4c00eab45f6b964d0d1120ed4f87983af6c9db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Magma/Submagma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Magma/Submagma.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Magma/Submagma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 673,
"size": 1884
}
|
-- Andreas, 2016-09-09 issue #2168 reported by Nisse
-- {-# OPTIONS -v tc.cover.splittree:30 -v tc.cc:40 #-}
open import Common.Equality
data Unit : Set where
unit : Unit
data Bool : Set where
true false : Bool
f : Unit → Bool → Bool
f unit true = false
f = λ _ _ → true
-- Testing definitional equality:
f-1 : f unit true ≡ false
f-1 = refl
f-2 : f unit false ≡ true
f-2 = refl
|
{
"alphanum_fraction": 0.6538461538,
"avg_line_length": 16.9565217391,
"ext": "agda",
"hexsha": "f40b86a7648aa4f0cf4aa933bff44099cb07a75f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2168.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2168.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2168.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 131,
"size": 390
}
|
{-# OPTIONS --without-K #-}
open import Relation.Binary.PropositionalEquality as P
data Phantom {i} {A : Set i} (a : A) : Set where
phantom : Phantom a
module _ where
private
data #Σ-aux (A : Set) (B : A → Set) : Set where
#pair : (x : A) → B x → #Σ-aux A B
Σ : (A : Set) → (A → Set) → Set
Σ A B = #Σ-aux A B
pair : ∀ {A : Set} {B : A → Set} (x : A) → B x → Σ A B
pair = #pair
module ΣElim {A} {B} {S : Σ A B → Set}
(pair* : ∀(a : A) (b : B a) → S (pair a b))
where
f-aux : Phantom pair* → (x : Σ A B) → S x
f-aux x (#pair a b) = pair* a b
f : (x : Σ A B) → S x
f = f-aux phantom
open ΣElim public renaming (f to Σ-elim)
Σ-rec : ∀ {A} {B} {S : Set} → ((x : A) → B x → S) → Σ A B → S
Σ-rec f = Σ-elim f
isΣ-hom : ∀ {A B} {S : Set} (α : (a : A) → B a → S) →
(Σ A B → S) → Set
isΣ-hom α f = ∀ a b → f (pair a b) ≡ α a b
Σ-rec-unique : ∀ {A B S} {α : (a : A) → B a → S} {f : Σ A B → S} → isΣ-hom α f →
∀ x → f x ≡ Σ-rec α x
Σ-rec-unique f-hom = Σ-elim f-hom
π₁ : ∀ {A B} → Σ A B → A
π₁ = Σ-rec (λ a _ → a)
π₂ : ∀ {A B} → (x : Σ A B) → B (π₁ x)
π₂ = Σ-elim (λ a b → b)
record ΣRecStruct (A : Set) (B : A → Set) : Set₁ where
field
Carrier : Set
inj : (a : A) → B a → Carrier
rec : ∀{S : Set} → ((a : A) → B a → S) → Carrier → S
rec-hom : ∀ {S : Set} (α : (a : A) → B a → S) →
(∀ a b → rec α (inj a b) ≡ α a b)
rec-unique : ∀ {S : Set} {α : (a : A) → B a → S} {f : Carrier → S} →
(∀ a b → f (inj a b) ≡ α a b) →
∀ x → f x ≡ rec α x
-- open ΣRecStruct public
Σ-ΣRecStruct : ∀ A B → ΣRecStruct A B
Σ-ΣRecStruct A B = record
{ Carrier = Σ A B
; inj = pair
; rec = Σ-rec
; rec-hom = λ α a b → refl
; rec-unique = Σ-rec-unique
}
ΣRecStruct-HasInduction : ∀{A B} → ΣRecStruct A B → Set₁
ΣRecStruct-HasInduction {A} {B} R =
∀ {S : Carrier → Set} (inj* : ∀(a : A) (b : B a) → S (inj a b)) →
(x : Carrier) → S x
where open ΣRecStruct R
-- I don't think that this is provable without resorting to π₂.
-- But I also conjecture that internally the negation is neither
-- provable.
∀ΣRecStruct-haveInduction : ∀{A B} (R : ΣRecStruct A B) →
ΣRecStruct-HasInduction R
∀ΣRecStruct-haveInduction R {S} inj* x = {!!}
where
open ΣRecStruct R
S-aux : Set
S-aux = Σ Carrier S
f : Carrier → S-aux
f = rec (λ a b → pair (inj a b) (inj* a b))
|
{
"alphanum_fraction": 0.4861450693,
"avg_line_length": 27.5730337079,
"ext": "agda",
"hexsha": "b8a9ecd9b2e7e2a58d01ea8dca5ff00360117580",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Sigma-Induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Sigma-Induction.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Sigma-Induction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1064,
"size": 2454
}
|
{-# OPTIONS --without-K --exact-split --safe #-}
open import Fragment.Equational.Theory
module Fragment.Equational.FreeExtension.Synthetic (Θ : Theory) where
open import Fragment.Algebra.Signature
open import Fragment.Algebra.Algebra (Σ Θ) using (Algebra)
open import Fragment.Equational.Model Θ
open import Fragment.Equational.Coproduct Θ
open import Fragment.Equational.FreeExtension.Base Θ
open import Fragment.Algebra.Free (Σ Θ) hiding (_~_)
open import Fragment.Algebra.Homomorphism (Σ Θ)
open import Fragment.Algebra.Quotient (Σ Θ)
open import Fragment.Setoid.Morphism using (_↝_)
open import Level using (Level; _⊔_)
open import Function using (_∘_)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Product using (proj₁; proj₂)
open import Data.Vec using (Vec; []; _∷_; map)
open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW
using (Pointwise; []; _∷_)
open import Relation.Binary using (Setoid; IsEquivalence)
import Relation.Binary.Reasoning.Setoid as Reasoning
import Relation.Binary.PropositionalEquality as PE
private
variable
a b ℓ₁ ℓ₂ ℓ₃ : Level
module _ (A : Model {a} {ℓ₁}) (n : ℕ) where
Terms : Algebra
Terms = Free (Atoms ∥ A ∥/≈ n)
open module T = Setoid Algebra.∥ Terms ∥/≈ renaming (_≈_ to _~_) using ()
∣inl∣ : ∥ A ∥ → T.Carrier
∣inl∣ x = atom (sta x)
infix 4 _≈_
data _≈_ : T.Carrier → T.Carrier → Set (a ⊔ ℓ₁) where
refl : ∀ {x} → x ≈ x
sym : ∀ {x y} → x ≈ y → y ≈ x
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
inherit : ∀ {x y} → x ~ y → x ≈ y
evaluate : ∀ {n xs} → (f : ops (Σ Θ) n)
→ term f (map ∣inl∣ xs) ≈ ∣inl∣ (A ⟦ f ⟧ xs)
cong : ∀ {n} → (f : ops (Σ Θ) n)
→ ∀ {xs ys} → Pointwise _≈_ xs ys
→ term f xs ≈ term f ys
axiom : ∀ {n} → (eq : eqs Θ n) → (θ : Env Terms n)
→ ∣ inst Terms θ ∣ (proj₁ (Θ ⟦ eq ⟧ₑ))
≈ ∣ inst Terms θ ∣ (proj₂ (Θ ⟦ eq ⟧ₑ))
≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record { refl = refl
; sym = sym
; trans = trans
}
instance
≈-isDenom : IsDenominator Terms _≈_
≈-isDenom = record { isEquivalence = ≈-isEquivalence
; isCompatible = cong
; isCoarser = inherit
}
module N = Setoid (∥ Terms ∥/ _≈_)
Syn-models : Models (Terms / _≈_)
Syn-models eq θ = begin
∣ inst (Terms / _≈_) θ ∣ lhs
≈⟨ N.sym (lemma {x = lhs}) ⟩
∣ inst Terms θ ∣ lhs
≈⟨ axiom eq θ ⟩
∣ inst Terms θ ∣ rhs
≈⟨ lemma {x = rhs} ⟩
∣ inst (Terms / _≈_) θ ∣ rhs
∎
where open Reasoning (∥ Terms ∥/ _≈_)
lhs = proj₁ (Θ ⟦ eq ⟧ₑ)
rhs = proj₂ (Θ ⟦ eq ⟧ₑ)
lemma = inst-universal (Terms / _≈_) θ
{h = (inc Terms _≈_) ⊙ (inst Terms θ) }
(λ x → PE.refl)
Syn-isModel : IsModel (∥ Terms ∥/ _≈_)
Syn-isModel = record { isAlgebra = Terms / _≈_ -isAlgebra
; models = Syn-models
}
Syn : Model
Syn = record { ∥_∥/≈ = ∥ Terms ∥/ _≈_
; isModel = Syn-isModel
}
∣inl∣-cong : Congruent ≈[ A ] _≈_ ∣inl∣
∣inl∣-cong p = inherit (atom (sta p))
∣inl∣-hom : Homomorphic ∥ A ∥ₐ ∥ Syn ∥ₐ ∣inl∣
∣inl∣-hom f xs = evaluate f
∣inl∣⃗ : ∥ A ∥/≈ ↝ ∥ Syn ∥/≈
∣inl∣⃗ = record { ∣_∣ = ∣inl∣
; ∣_∣-cong = ∣inl∣-cong
}
inl : ∥ A ∥ₐ ⟿ ∥ Syn ∥ₐ
inl = record { ∣_∣⃗ = ∣inl∣⃗
; ∣_∣-hom = ∣inl∣-hom
}
inr : ∥ J n ∥ₐ ⟿ ∥ Syn ∥ₐ
inr = interp Syn (λ n → atom (dyn n))
module _
(X : Model {b} {ℓ₂})
(f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ)
(g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ)
where
private module X = Setoid ∥ X ∥/≈
open Reasoning ∥ X ∥/≈
resid : Terms ⟿ ∥ X ∥ₐ
resid = subst ∥ X ∥ₐ ∣ f ∣⃗ (λ n → ∣ g ∣ (atom (dyn n)))
∣resid∣-map-∣inl∣ : ∀ {m} {xs : Vec ∥ A ∥ m}
→ Pointwise ≈[ X ]
(map ∣ resid ∣ (map ∣inl∣ xs))
(map ∣ f ∣ xs)
∣resid∣-map-∣inl∣ {xs = []} = []
∣resid∣-map-∣inl∣ {xs = x ∷ xs} = X.refl ∷ ∣resid∣-map-∣inl∣
mutual
∣resid∣-args-cong : ∀ {m} {xs ys : Vec ∥ Syn ∥ m}
→ Pointwise _≈_ xs ys
→ Pointwise ≈[ X ] (map ∣ resid ∣ xs)
(map ∣ resid ∣ ys)
∣resid∣-args-cong [] = []
∣resid∣-args-cong (p ∷ ps) = ∣resid∣-cong p ∷ ∣resid∣-args-cong ps
∣resid∣-cong : Congruent _≈_ ≈[ X ] ∣ resid ∣
∣resid∣-cong refl = X.refl
∣resid∣-cong (sym p) = X.sym (∣resid∣-cong p)
∣resid∣-cong (trans p q) = X.trans (∣resid∣-cong p) (∣resid∣-cong q)
∣resid∣-cong (inherit p) = ∣ resid ∣-cong p
∣resid∣-cong (evaluate {xs = xs} op) = begin
∣ resid ∣ (term op (map ∣inl∣ xs))
≈⟨ X.sym (∣ resid ∣-hom op (map ∣inl∣ xs)) ⟩
X ⟦ op ⟧ (map ∣ resid ∣ (map ∣inl∣ xs))
≈⟨ (X ⟦ op ⟧-cong) ∣resid∣-map-∣inl∣ ⟩
X ⟦ op ⟧ (map ∣ f ∣ xs)
≈⟨ ∣ f ∣-hom op xs ⟩
∣ f ∣ (A ⟦ op ⟧ xs)
∎
∣resid∣-cong (cong f {xs = xs} {ys = ys} ps) = begin
∣ resid ∣ (term f xs)
≈⟨ X.sym (∣ resid ∣-hom f xs) ⟩
X ⟦ f ⟧ (map ∣ resid ∣ xs)
≈⟨ (X ⟦ f ⟧-cong) (∣resid∣-args-cong ps) ⟩
X ⟦ f ⟧ (map ∣ resid ∣ ys)
≈⟨ ∣ resid ∣-hom f ys ⟩
∣ resid ∣ (term f ys)
∎
∣resid∣-cong (axiom eq θ) = begin
∣ resid ∣ (∣ inst Terms θ ∣ lhs)
≈⟨ inst-assoc Terms θ resid {lhs} ⟩
∣ inst ∥ X ∥ₐ (∣ resid ∣ ∘ θ) ∣ lhs
≈⟨ ∥ X ∥ₐ-models eq (∣ resid ∣ ∘ θ) ⟩
∣ inst ∥ X ∥ₐ (∣ resid ∣ ∘ θ) ∣ rhs
≈⟨ X.sym (inst-assoc Terms θ resid {rhs}) ⟩
∣ resid ∣ (∣ inst Terms θ ∣ rhs)
∎
where lhs = proj₁ (Θ ⟦ eq ⟧ₑ)
rhs = proj₂ (Θ ⟦ eq ⟧ₑ)
_[_,_] : ∥ Syn ∥ₐ ⟿ ∥ X ∥ₐ
_[_,_] = factor Terms _≈_ resid ∣resid∣-cong
module _
{X : Model {b} {ℓ₂}}
{f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ}
{g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ}
where
private module X = Setoid ∥ X ∥/≈
open Reasoning ∥ X ∥/≈
commute₁ : X [ f , g ] ⊙ inl ≗ f
commute₁ = X.refl
mutual
map-commute₂ : ∀ {m} {xs : Vec ∥ J n ∥ m}
→ Pointwise ≈[ X ]
(map ∣ X [ f , g ] ⊙ inr ∣ xs)
(map ∣ g ∣ xs)
map-commute₂ {xs = []} = []
map-commute₂ {xs = x ∷ xs} = commute₂ ∷ map-commute₂
commute₂ : X [ f , g ] ⊙ inr ≗ g
commute₂ {atom (dyn _)} = X.refl
commute₂ {term op xs} = begin
∣ X [ f , g ] ⊙ inr ∣ (term op xs)
≈⟨ X.sym (∣ X [ f , g ] ⊙ inr ∣-hom op xs) ⟩
X ⟦ op ⟧ (map ∣ X [ f , g ] ⊙ inr ∣ xs)
≈⟨ (X ⟦ op ⟧-cong) map-commute₂ ⟩
X ⟦ op ⟧ (map ∣ g ∣ xs)
≈⟨ ∣ g ∣-hom op xs ⟩
∣ g ∣ (term op xs)
∎
module _
{h : ∥ Syn ∥ₐ ⟿ ∥ X ∥ₐ}
(c₁ : h ⊙ inl ≗ f)
(c₂ : h ⊙ inr ≗ g)
where
mutual
map-universal : ∀ {m} {xs : Vec ∥ Syn ∥ m}
→ Pointwise ≈[ X ]
(map ∣ X [ f , g ] ∣ xs)
(map ∣ h ∣ xs)
map-universal {xs = []} = []
map-universal {xs = x ∷ xs} = universal ∷ map-universal
universal : X [ f , g ] ≗ h
universal {atom (sta x)} = X.sym c₁
universal {atom (dyn x)} = begin
∣ X [ f , g ] ∣ (atom (dyn x))
≈⟨ commute₂ ⟩
∣ g ∣ (atom (dyn x))
≈⟨ X.sym c₂ ⟩
∣ h ∣ (atom (dyn x))
∎
universal {term op xs} = begin
∣ X [ f , g ] ∣ (term op xs)
≈⟨ X.sym (∣ X [ f , g ] ∣-hom op xs) ⟩
X ⟦ op ⟧ (map ∣ X [ f , g ] ∣ xs)
≈⟨ (X ⟦ op ⟧-cong) map-universal ⟩
X ⟦ op ⟧ (map ∣ h ∣ xs)
≈⟨ ∣ h ∣-hom op xs ⟩
∣ h ∣ (term op xs)
∎
isFrex : IsCoproduct A (J n) Syn
isFrex =
record { inl = inl
; inr = inr
; _[_,_] = _[_,_]
; commute₁ = λ {_ _ X f g} → commute₁ {X = X} {f} {g}
; commute₂ = λ {_ _ X f g} → commute₂ {X = X} {f} {g}
; universal = λ {_ _ X f g h} → universal {X = X} {f} {g} {h}
}
SynFrex : FreeExtension
SynFrex = record { _[_] = Syn
; _[_]-isFrex = isFrex
}
|
{
"alphanum_fraction": 0.4189069096,
"avg_line_length": 33.5895522388,
"ext": "agda",
"hexsha": "26cec06f3b669bf85aa3b9c2d68874090da26a1f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Equational/FreeExtension/Synthetic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Equational/FreeExtension/Synthetic.agda",
"max_line_length": 77,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Equational/FreeExtension/Synthetic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 3513,
"size": 9002
}
|
{-# OPTIONS -v tc.with.display:30 #-}
-- {-# OPTIONS -v tc.with.strip:30 #-}
open import Common.Product
open import Common.Prelude
open import Common.Equality
postulate
p : Nat → Nat
-- g : Nat → Nat × Nat
-- g x .proj₁ with p x
-- g x .proj₁ | 0 = 1
-- g x .proj₁ | suc y = 0
-- g x .proj₂ = suc x
-- h : Nat → Nat × Nat
-- h x .proj₁ with p x
-- h x .proj₁ | 0 = 1
-- proj₁ (h x) | suc y = 0
-- h x .proj₂ = suc x
f : Nat → Nat × Nat
f x .proj₁ with p x
... | 0 = 1
... | suc y = 0
f x .proj₂ = suc x
test : f 0 ≡ (0 , 1)
test = refl
-- EXPECTED ERROR:
-- f 0 .proj₁ | p 0 != zero of type Nat
-- when checking that the expression refl has type f 0 ≡ (0 , 1)
|
{
"alphanum_fraction": 0.5620328849,
"avg_line_length": 19.1142857143,
"ext": "agda",
"hexsha": "127ba4fc7736066f4b1a1911313312d610e0a9fe",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1963DisplayWithPostfixCopattern.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1963DisplayWithPostfixCopattern.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1963DisplayWithPostfixCopattern.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 261,
"size": 669
}
|
{-# OPTIONS --rewriting --without-K #-}
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import Sets ℕ eqdecℕ
{- PS-contexts -}
module CaTT.Ps-contexts where
{- Rules for PS-contexts -}
data _⊢ps_#_ : Pre-Ctx → ℕ → Pre-Ty → Set₁ where
pss : (nil :: (O , ∗)) ⊢ps O # ∗
psd : ∀ {Γ f A x y} → Γ ⊢ps f # (⇒ A (Var x) (Var y)) → Γ ⊢ps y # A
pse : ∀ {Γ x A y z C t Tt} → Γ ⊢ps x # A → y == length Γ → z == S (length Γ) → C == ⇒ A (Var x) (Var y) → z == t → C == Tt → ((Γ :: (y , A)) :: (z , C)) ⊢ps t # Tt
data _⊢ps : Pre-Ctx → Set₁ where
ps : ∀ {Γ x} → Γ ⊢ps x # ∗ → Γ ⊢ps
psd↓ : ∀ {Γ f A x y z} → (Γ⊢ps₁ : Γ ⊢ps f # (⇒ A (Var x) (Var z))) → (Γ⊢ps₂ : Γ ⊢ps f # (⇒ A (Var y) (Var z))) → (p : x == y) → transport p Γ⊢ps₁ == Γ⊢ps₂ → psd Γ⊢ps₁ == psd Γ⊢ps₂
psd↓ Γ⊢ps₁ .Γ⊢ps₁ idp idp = idp
pse↓ : ∀ {Γ A B C x y a f z} → (Γ⊢ps₁ : Γ ⊢ps x # A) (a= : a == length Γ) (f= : f == S (length Γ)) (B= : B == ⇒ A (Var x) (Var a)) (z= : f == z) (C= : B == C)
→ (Γ⊢ps₂ : Γ ⊢ps y # A) (a=' : a == length Γ) (f=' : f == S (length Γ)) (B=' : B == ⇒ A (Var y) (Var a)) (z=' : f == z) (C=' : B == C)
→ (p : x == y) → transport p Γ⊢ps₁ == Γ⊢ps₂ → (pse Γ⊢ps₁ a= f= B= z= C=) == (pse Γ⊢ps₂ a=' f=' B=' z=' C=')
pse↓ _ _ _ _ _ _ _ _ _ _ _ _ idp idp = ap⁶ pse idp (is-prop-has-all-paths (is-setℕ _ _) _ _)
(is-prop-has-all-paths (is-setℕ _ _) _ _)
(is-prop-has-all-paths (eqdec-is-set eqdec-PreTy _ _) _ _)
(is-prop-has-all-paths (is-setℕ _ _) _ _)
(is-prop-has-all-paths (eqdec-is-set eqdec-PreTy _ _) _ _)
ps↓ : ∀ {Γ x y} → (Γ⊢ps₁ : Γ ⊢ps x # ∗) → (Γ⊢ps₂ : Γ ⊢ps y # ∗)
→ (p : x == y) → transport {B = λ z → Γ ⊢ps z # ∗} p Γ⊢ps₁ == Γ⊢ps₂ → (ps Γ⊢ps₁) == (ps Γ⊢ps₂)
ps↓ _ _ idp idp = idp
{- PS-contexts define valid contexts -}
Γ⊢ps→Γ⊢ : ∀ {Γ} → Γ ⊢ps → Γ ⊢C
Γ⊢psx:A→Γ⊢x:A : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ⊢t (Var x) # A
Γ⊢ps→Γ⊢ (ps Γ⊢psx) = Γ⊢t:A→Γ⊢ (Γ⊢psx:A→Γ⊢x:A Γ⊢psx)
Γ⊢psx:A→Γ⊢x:A pss = var (cc ec (ob ec) idp) (inr (idp , idp))
Γ⊢psx:A→Γ⊢x:A (psd Γ⊢psf:x⇒y) with Γ⊢t:A→Γ⊢A (Γ⊢psx:A→Γ⊢x:A Γ⊢psf:x⇒y)
Γ⊢psx:A→Γ⊢x:A (psd Γ⊢psf:x⇒y) | ar _ Γ⊢y:A = Γ⊢y:A
Γ⊢psx:A→Γ⊢x:A (pse Γ⊢psx:A idp idp idp idp idp) with (cc (Γ⊢t:A→Γ⊢ (Γ⊢psx:A→Γ⊢x:A Γ⊢psx:A)) (Γ⊢t:A→Γ⊢A (Γ⊢psx:A→Γ⊢x:A Γ⊢psx:A)) idp)
... | Γ,y:A⊢ = var (cc Γ,y:A⊢ (ar (wkt (Γ⊢psx:A→Γ⊢x:A Γ⊢psx:A) Γ,y:A⊢) (var Γ,y:A⊢ (inr (idp , idp)))) idp) (inr (idp , idp))
Γ⊢psx:A→Γ⊢ : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ⊢C
Γ⊢psx:A→Γ⊢ Γ⊢psx:A = Γ⊢t:A→Γ⊢ (Γ⊢psx:A→Γ⊢x:A Γ⊢psx:A)
-- some renamings so that useful lemmas are faster to write
-- TODO restrict these as local names
psv : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ⊢C --psvalid
psv Γ⊢ps = Γ⊢psx:A→Γ⊢ Γ⊢ps
psvar : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ⊢t (Var x) # A
psvar Γ⊢psx = Γ⊢psx:A→Γ⊢x:A Γ⊢psx
ps-ctx : Set₁
ps-ctx = Σ Pre-Ctx (λ Γ → Γ ⊢ps)
{- Eric's trick : is a src-var -}
srcᵢ-var : ∀ {Γ x A} → ℕ → Γ ⊢ps x # A → list ℕ
srcᵢ-var i pss = if i ≡ 0 then nil else (nil :: 0)
srcᵢ-var i (psd Γ⊢psx) = srcᵢ-var i Γ⊢psx
srcᵢ-var i (pse {Γ = Γ} {A = A} Γ⊢psx idp idp idp idp idp) with dec-≤ i (S (dim A))
... | inl i≤SdimA = srcᵢ-var i Γ⊢psx
... | inr SdimA<i = (srcᵢ-var i Γ⊢psx :: length Γ) :: (S (length Γ))
drop : ∀ {i} {A : Set i} → list A → list A
drop nil = nil
drop (l :: a) = l
tgtᵢ-var : ∀ {Γ x A} → ℕ → Γ ⊢ps x # A → list ℕ
tgtᵢ-var i pss = if i ≡ 0 then nil else (nil :: 0)
tgtᵢ-var i (psd Γ⊢psx) = tgtᵢ-var i Γ⊢psx
tgtᵢ-var i (pse {Γ = Γ} {A = A} Γ⊢psx idp idp idp idp idp) with dec-≤ i (S (dim A))
... | inl i≤SdimA = if i ≡ S (dim A) then drop(tgtᵢ-var i Γ⊢psx) :: length Γ else tgtᵢ-var i Γ⊢psx
... | inr SdimA<i = (tgtᵢ-var i Γ⊢psx :: length Γ) :: (S (length Γ))
src-var : (Γ : ps-ctx) → set
src-var (Γ , ps Γ⊢psx) = set-of-list (srcᵢ-var (dimC Γ) Γ⊢psx)
tgt-var : (Γ : ps-ctx) → set
tgt-var (Γ , ps Γ⊢psx) = set-of-list (tgtᵢ-var (dimC Γ) Γ⊢psx)
dim-psx-not-𝔻0 : ∀ {Γ x A} → (Γ⊢ps : Γ ⊢ps x # A) → (Γ ≠ (nil :: (0 , ∗))) → 0 < dimC Γ
dim-psx-not-𝔻0 {.(nil :: (0 , ∗))} {.0} {.∗} pss Γ≠𝔻0 = ⊥-elim (Γ≠𝔻0 idp)
dim-psx-not-𝔻0 {Γ} {x} {A} (psd Γ⊢psx) Γ≠𝔻0 = dim-psx-not-𝔻0 Γ⊢psx Γ≠𝔻0
dim-psx-not-𝔻0 {_} {x} {A} (pse {Γ = Γ} Γ⊢psx idp idp idp idp idp) Γ+≠𝔻0 = ≤T (S≤ (0≤ _)) (m≤max (max (dimC Γ) _) (dim A))
dim-ps-not-𝔻0 : ∀ {Γ} → (Γ⊢ps : Γ ⊢ps) → (Γ ≠ (nil :: (0 , ∗))) → 0 < dimC Γ
dim-ps-not-𝔻0 (ps Γ⊢psx) Γ≠𝔻0 = dim-psx-not-𝔻0 Γ⊢psx Γ≠𝔻0
dim-dangling : ∀ {Γ x A} → Γ ⊢ps x # A → dim A ≤ dimC Γ
dim-dangling pss = 0≤ _
dim-dangling (psd Γ⊢psf) = Sn≤m→n≤m (dim-dangling Γ⊢psf)
dim-dangling (pse {Γ = Γ} Γ⊢psx idp idp idp idp idp) = m≤max (max (dimC Γ) _) _
{- Definition of a few ps-contexts and their source and target in the theory CaTT -}
-- It is not necessary to define the pre contexts, as they can be infered with the derivation tree. We do it just as a sanity check
Pre-Γc : Pre-Ctx
Pre-Γc = ((((nil :: (0 , ∗)) :: (1 , ∗)) :: (2 , ⇒ ∗ (Var 0) (Var 1))) :: (3 , ∗)) :: (4 , ⇒ ∗ (Var 1) (Var 3))
Pre-Γw : Pre-Ctx
Pre-Γw = ((((((nil :: (0 , ∗)) :: (1 , ∗)) :: (2 , ⇒ ∗ (Var 0) (Var 1))) :: (3 , ⇒ ∗ (Var 0) (Var 1))) :: (4 , ⇒ (⇒ ∗ (Var 0) (Var 1)) (Var 2) (Var 3))) :: (5 , ∗)) :: (6 , ⇒ ∗ (Var 1) (Var 5))
Pre-Γ₁ : Pre-Ctx
Pre-Γ₁ = ((nil :: (0 , ∗)) :: (1 , ∗)) :: (2 , ⇒ ∗ (Var 0) (Var 1))
Pre-Γ₂ : Pre-Ctx
Pre-Γ₂ = ((((nil :: (0 , ∗)) :: (1 , ∗)) :: (2 , ⇒ ∗ (Var 0) (Var 1))) :: (3 , ⇒ ∗ (Var 0) (Var 1))) :: (4 , ⇒ (⇒ ∗ (Var 0) (Var 1)) (Var 2) (Var 3))
Γc⊢ps : Pre-Γc ⊢ps
Γc⊢ps = ps (psd (pse (psd (pse pss idp idp idp idp idp)) idp idp idp idp idp))
Γw⊢ps : Pre-Γw ⊢ps
Γw⊢ps = ps (psd (pse (psd (psd (pse (pse pss idp idp idp idp idp) idp idp idp idp idp))) idp idp idp idp idp))
Γ₁⊢ps : Pre-Γ₁ ⊢ps
Γ₁⊢ps = ps (psd (pse pss idp idp idp idp idp))
Γ₂⊢ps : Pre-Γ₂ ⊢ps
Γ₂⊢ps = ps (psd (psd (pse (pse pss idp idp idp idp idp) idp idp idp idp idp)))
Γc : ps-ctx
Γc = _ , Γc⊢ps
Γw : ps-ctx
Γw = _ , Γw⊢ps
Γ₁ : ps-ctx
Γ₁ = _ , Γ₁⊢ps
Γ₂ : ps-ctx
Γ₂ = _ , Γ₂⊢ps
src-Γc : src-var Γc ≗ singleton 0
src-Γc = (λ _ x → x) , λ _ x → x
tgt-Γc : tgt-var Γc ≗ singleton 3
tgt-Γc = (λ _ x → x) , λ _ x → x
src-Γ₁ : src-var Γ₁ ≗ singleton 0
src-Γ₁ = (λ _ x → x) , λ _ x → x
tgt-Γ₁ : tgt-var Γ₁ ≗ singleton 1
tgt-Γ₁ = (λ _ x → x) , λ _ x → x
src-Γ₂ : src-var Γ₂ ≗ set-of-list (((nil :: 0) :: 1) :: 2)
src-Γ₂ = (λ _ x → x) , λ _ x → x
tgt-Γ₂ : tgt-var Γ₂ ≗ set-of-list (((nil :: 0) :: 1) :: 3)
tgt-Γ₂ = (λ _ x → x) , λ _ x → x
src-Γw : src-var Γw ≗ set-of-list (((((nil :: 0) :: 1) :: 2) :: 5) :: 6)
src-Γw = (λ _ x → x) , λ _ x → x
tgt-Γw : tgt-var Γw ≗ set-of-list (((((nil :: 0) :: 1) :: 3) :: 5) :: 6)
tgt-Γw = (λ _ x → x) , λ _ x → x
-- TODO : cleanup and unite these two lemmas
x∉ : ∀ {Γ x} → Γ ⊢C → length Γ ≤ x → (∀ {A} → ¬ (Γ ⊢t (Var x) # A))
x∉ (cc Γ⊢ _ idp) l≤x (var _ (inl x∈Γ)) = x∉ Γ⊢ (Sn≤m→n≤m l≤x) (var Γ⊢ x∈Γ)
x∉ (cc Γ⊢ _ idp) l≤x (var _ (inr (idp , idp))) = Sn≰n _ l≤x
l∉ : ∀ {Γ x} → Γ ⊢C → length Γ ≤ x → ¬ (x ∈ Γ)
l∉ (cc Γ⊢ _ idp) l≤x (inl x∈Γ) = l∉ Γ⊢ (Sn≤m→n≤m l≤x) x∈Γ
l∉ (cc Γ⊢ _ idp) l≤x (inr idp) = Sn≰n _ l≤x
|
{
"alphanum_fraction": 0.4659290244,
"avg_line_length": 42.3485714286,
"ext": "agda",
"hexsha": "5be4328ee30901e3c96e13444d788d0ee38eb99a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "CaTT/Ps-contexts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "CaTT/Ps-contexts.agda",
"max_line_length": 195,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "CaTT/Ps-contexts.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4101,
"size": 7411
}
|
{-# OPTIONS --without-K --safe #-}
module Fragment.Tactic.Fragment where
open import Reflection hiding (name; Type; _≟_)
open import Reflection.Term using (_≟_)
open import Level using (_⊔_)
open import Relation.Binary using (Setoid)
open import Data.Bool using (Bool; _∨_; true; false; if_then_else_)
open import Data.Nat using (ℕ)
open import Data.List using (List; []; _∷_; map; sum; length)
open import Data.Vec using (fromList)
open import Data.Product using (_×_; _,_)
open import Data.Unit using (⊤; tt)
open import Data.String using (String; _++_)
open import Data.Maybe using (Maybe; just; nothing)
open import Fragment.Tactic.Utils
open import Fragment.Equational.Theory
open import Fragment.Equational.Model
open import Fragment.Equational.FreeExtension hiding (reduce)
open import Fragment.Algebra.Signature
import Fragment.Algebra.Free as Free
read-goal : List (Arg Term) → TC (Term × List (Arg Term))
read-goal (vArg x ∷ xs) = return (x , xs)
read-goal (_ ∷ xs) = read-goal xs
read-goal [] = typeError (strErr "failed to read goal" ∷ [])
read-goals : List (Arg Term) → TC (Term × Term)
read-goals xs = do (fst , xs) ← read-goal xs
(snd , _) ← read-goal xs
return (fst , snd)
extract-goals : Term → TC (Term × Term)
extract-goals (var _ args) = read-goals args
extract-goals (con _ args) = read-goals args
extract-goals (def _ args) = read-goals args
extract-goals (meta _ args) = read-goals args
extract-goals t =
typeError (strErr "can't read goals from" ∷ termErr t ∷ [])
record Operator : Set where
constructor operator
field
name : Name
normalised : Term
arity : ℕ
open Operator
record CoreCtx : Set where
field
signature : Term
theory : Term
model : Term
carrier : Term
frex : Term
record GlobalCtx : Set where
field
core : CoreCtx
operators : List Operator
telescope : List (Arg String)
lhs : Term
rhs : Term
open CoreCtx core public
pattern modelType Θ a ℓ = def (quote Model) (vArg Θ ∷ hArg a ∷ hArg ℓ ∷ [])
ctx : Name → Term → Term → TC GlobalCtx
ctx frex model goal
= do τ ← inferType model
γ ← inferType goal
signature ← extract-Σ τ
theory ← extract-Θ τ
carrier ← normalise (def (quote ∥_∥) (vra theory ∷ vra model ∷ []))
let core = record { signature = signature
; theory = theory
; model = model
; carrier = carrier
; frex = def frex []
}
operators ← extract-ops core
(inner , telescope) ← strip-telescope γ
(lhs , rhs) ← extract-goals inner
return (record { core = core
; operators = operators
; telescope = telescope
; lhs = lhs
; rhs = rhs
})
where modelErr : ∀ {a} {A : Set a} → Term → String → TC A
modelErr t err =
typeError ( termErr t
∷ strErr "isn't a"
∷ nameErr (quote Model)
∷ strErr ("(" ++ err ++ ")")
∷ []
)
extract-Σ : Term → TC Term
extract-Σ (modelType Θ _ _) = normalise (def (quote Theory.Σ) (vra Θ ∷ []))
extract-Σ t = modelErr t "when extracting the signature"
extract-Θ : Term → TC Term
extract-Θ (modelType Θ _ _) = normalise Θ
extract-Θ t = modelErr t "when extracting the theory"
extract-arity : CoreCtx → Name → TC ℕ
extract-arity ctx op
= do τ ← inferType (def (quote _⟦_⟧_)
( vra (CoreCtx.theory ctx)
∷ vra (CoreCtx.model ctx)
∷ vra (con op [])
∷ []
))
α ← extract-type-arg τ
vec-len α
extract-interp : CoreCtx → Name → ℕ → TC Term
extract-interp ctx op arity
= do let t = def (quote _⟦_⟧_)
( vra (CoreCtx.theory ctx)
∷ vra (CoreCtx.model ctx)
∷ vra (con op [])
∷ []
)
normalise (n-ary arity (apply t (vra (vec (debrujin arity)) ∷ [])))
extract-ops : CoreCtx → TC (List Operator)
extract-ops ctx
= do ops ← normalise (def (quote ops) (vra (CoreCtx.signature ctx) ∷ []))
symbols ← extract-constructors ops
arities ← listTC (map (extract-arity ctx) symbols)
interps ← listTC (mapList (map (extract-interp ctx) symbols) arities)
return (mapList (mapList (map operator symbols) interps) arities)
record FoldCtx {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor foldCtx
field
global : GlobalCtx
f : Term → B → A × B
g : Operator → List A → A
ε : B
open GlobalCtx global public
mutual
map-fold : ∀ {a b} {A : Set a} {B : Set b}
→ FoldCtx A B → List (Arg Term) → B → TC (List A × B)
map-fold ctx [] acc = return ([] , acc)
map-fold ctx (vArg x ∷ xs) acc
= do (x , acc) ← fold-acc ctx x acc
(xs , acc) ← map-fold ctx xs acc
return (x ∷ xs , acc)
map-fold ctx (_ ∷ xs) acc = map-fold ctx xs acc
fold-inner : ∀ {a b} {A : Set a} {B : Set b}
→ FoldCtx A B → Operator → Term → B → TC (List A × B)
fold-inner ctx op (var _ args) acc = map-fold ctx (ekat (arity op) args) acc
fold-inner ctx op (con _ args) acc = map-fold ctx (ekat (arity op) args) acc
fold-inner ctx op (def _ args) acc = map-fold ctx (ekat (arity op) args) acc
fold-inner ctx op (meta _ args) acc = map-fold ctx (ekat (arity op) args) acc
fold-inner ctx op (pat-lam _ args) acc = map-fold ctx (ekat (arity op) args) acc
fold-inner _ _ t _ = typeError (termErr t ∷ strErr "has no arguments" ∷ [])
fold-acc : ∀ {a b} {A : Set a} {B : Set b} → FoldCtx A B → Term → B → TC (A × B)
fold-acc ctx t acc
= do op? ← find (λ x → prefix (arity x) (normalised x) t) (FoldCtx.operators ctx)
resolve op?
where resolve : Maybe Operator → TC _
resolve (just op)
= do (args , acc) ← fold-inner ctx op t acc
return ((FoldCtx.g ctx) op args , acc)
resolve nothing = return ((FoldCtx.f ctx) t acc)
fold : ∀ {a b} {A : Set a} {B : Set b} → FoldCtx A B → Term → TC (A × B)
fold ctx t = fold-acc ctx t (FoldCtx.ε ctx)
fold-⊤ : ∀ {a} {A : Set a} → GlobalCtx
→ (Term → A) → (Operator → List A → A) → Term → TC A
fold-⊤ ctx f g t
= do (x , _) ← fold (foldCtx ctx (λ x _ → (f x , tt)) g tt) t
return x
accumulate : ∀ {a} {A : Set a} → GlobalCtx
→ (Term → A → A) → A → Term → TC A
accumulate ctx f ε t
= do (_ , acc) ← fold (foldCtx ctx (λ x acc → (tt , f x acc)) (λ _ _ → tt) ε) t
return acc
leaves : GlobalCtx → Term → TC ℕ
leaves ctx = fold-⊤ ctx (λ _ → 1) (λ _ → sum)
mutual
argsOpen : Term → List (Arg Term) → TC Bool
argsOpen τ [] = return false
argsOpen τ (vArg x ∷ xs)
= do head ← isOpen τ x
tail ← argsOpen τ xs
return (head ∨ tail)
argsOpen τ (_ ∷ xs) = argsOpen τ xs
isOpen : Term → Term → TC Bool
isOpen τ t@(var _ _) = hasType τ t
isOpen τ t@(meta _ _) = hasType τ t
isOpen τ (con c args) = argsOpen τ args
isOpen τ (def f args) = argsOpen τ args
isOpen τ unknown = return true
isOpen τ _ = return false
findOpen : GlobalCtx → List Term → Term → TC (List Term)
findOpen ctx ε t = flatten (accumulate ctx binding (return ε) t)
where binding : Term → TC (List Term) → TC (List Term)
binding t env
= do env ← env
let τ = CoreCtx.carrier (GlobalCtx.core ctx)
open? ← isOpen τ t
if open? then return (insert env t)
else return env
buildSyntax : GlobalCtx → List Term → Term → TC Term
buildSyntax ctx env t = fold-⊤ ctx buildInj buildTerm t
where bt : Term
bt = def (quote Free.BT)
( vra (GlobalCtx.signature ctx)
∷ vra (GlobalCtx.carrier ctx)
∷ vra (lit (nat (length env)))
∷ []
)
buildAtom : Term → Term
buildAtom t =
con (quote Free.Term.atom)
( hra (GlobalCtx.signature ctx)
∷ hra unknown
∷ hra bt
∷ vra t
∷ []
)
buildDyn : ℕ → Term
buildDyn n =
con (quote Free.BT.dyn)
( hra (GlobalCtx.signature ctx)
∷ hra unknown
∷ hra (GlobalCtx.carrier ctx)
∷ hra (lit (nat (length env)))
∷ vra (fin n)
∷ []
)
buildSta : Term → Term
buildSta t =
con (quote Free.BT.sta)
( hra (GlobalCtx.signature ctx)
∷ hra unknown
∷ hra (GlobalCtx.carrier ctx)
∷ hra (lit (nat (length env)))
∷ vra t
∷ []
)
buildInj : Term → Term
buildInj t with indexOf env t
... | just n = buildAtom (buildDyn n)
... | nothing = buildAtom (buildSta t)
buildTerm : Operator → List Term → Term
buildTerm op xs =
con (quote Free.Term.term)
( hra (GlobalCtx.signature ctx)
∷ hra unknown
∷ hra bt
∷ hra (lit (nat (arity op)))
∷ vra (con (name op) [])
∷ vra (vec (fromList xs))
∷ []
)
environment : List Term → Term
environment env = vec (fromList env)
macro
fragment : Name → Term → Term → TC ⊤
fragment frex model goal
= do ctx ← ctx frex model goal
env ← findOpen ctx [] (GlobalCtx.lhs ctx)
env ← findOpen ctx env (GlobalCtx.rhs ctx)
lhs ← buildSyntax ctx env (GlobalCtx.lhs ctx)
rhs ← buildSyntax ctx env (GlobalCtx.rhs ctx)
let n = length env
let frex = def (quote FreeExtension._[_])
( hra (GlobalCtx.theory ctx)
∷ vra (GlobalCtx.frex ctx)
∷ vra (GlobalCtx.model ctx)
∷ vra (lit (nat n))
∷ []
)
let setoid = def (quote ∥_∥/≈)
( hra (GlobalCtx.theory ctx)
∷ vra frex
∷ []
)
let p = def (quote Setoid.refl) (vra setoid ∷ [])
let frexify = def (quote frexify)
( vra (GlobalCtx.theory ctx)
∷ vra (GlobalCtx.frex ctx)
∷ vra (GlobalCtx.model ctx)
∷ vra (vec (fromList env))
∷ hra lhs
∷ hra rhs
∷ vra p
∷ []
)
frexify ← restore-telescope (GlobalCtx.telescope ctx) frexify
unify frexify goal
|
{
"alphanum_fraction": 0.50249759,
"avg_line_length": 34.3704819277,
"ext": "agda",
"hexsha": "12744016e01bd9a8a2af7221dbdc1425cedd567a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Tactic/Fragment.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Tactic/Fragment.agda",
"max_line_length": 85,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Tactic/Fragment.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 3091,
"size": 11411
}
|
module Issue580 where
record Bad : Set₁ where
private field A : Set
|
{
"alphanum_fraction": 0.7361111111,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "86544d812ae4c467a9379e87600fce3b7d3dd16c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue580.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue580.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue580.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 20,
"size": 72
}
|
postulate
Wrap : Set → Set
instance wrap : {A : Set} → A → Wrap A
postulate
I : Set
P : I → Set
HO = ∀ {i} {{p : P i}} → P i
postulate
X : {{ho : HO}} → Set
Y : {{ho : Wrap HO}} → Set
Works : Set
Works = X
-- Debug output shows messed up deBruijn indices in unwrapped target: P p instead of P i
Fails : Set
Fails = Y
|
{
"alphanum_fraction": 0.576119403,
"avg_line_length": 15.2272727273,
"ext": "agda",
"hexsha": "aab215f0ebcabace8e9f9c6c9869ce774f226a58",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2577.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2577.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2577.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 124,
"size": 335
}
|
------------------------------------------------------------------------
-- Most of a virtual machine
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Lambda.Virtual-machine where
open import Equality.Propositional
open import Prelude
open import Vec.Function equality-with-J
open import Lambda.Syntax
------------------------------------------------------------------------
-- Instruction set
mutual
-- Instructions.
data Instr (n : ℕ) : Type where
var : (x : Fin n) → Instr n
con : (i : ℕ) → Instr n
clo : (c : Code (suc n)) → Instr n
app : Instr n
ret : Instr n
-- Code.
Code : ℕ → Type
Code n = List (Instr n)
-- Environments and values.
open Closure Code
------------------------------------------------------------------------
-- Stacks and states
-- Stacks.
data StackElement : Type where
val : (v : Value) → StackElement
ret : ∀ {n} (c : Code n) (ρ : Env n) → StackElement
Stack : Type
Stack = List StackElement
-- States.
data State : Type where
⟨_,_,_⟩ : ∀ {n} (c : Code n) (s : Stack) (ρ : Env n) → State
pattern ⟨_∣_,_,_⟩ n c s ρ = ⟨_,_,_⟩ {n} c s ρ
------------------------------------------------------------------------
-- A kind of small-step semantics for the virtual machine
-- The result of running the VM one step.
data Result : Type where
continue : (s : State) → Result
done : (v : Value) → Result
crash : Result
-- A single step of the computation.
step : State → Result
step ⟨ var x ∷ c , s , ρ ⟩ = continue ⟨ c , val (ρ x) ∷ s , ρ ⟩
step ⟨ con i ∷ c , s , ρ ⟩ = continue ⟨ c , val (con i) ∷ s , ρ ⟩
step ⟨ clo c′ ∷ c , s , ρ ⟩ = continue ⟨ c , val (ƛ c′ ρ) ∷ s , ρ ⟩
step ⟨ app ∷ c , val v ∷ val (ƛ c′ ρ′) ∷ s , ρ ⟩ = continue ⟨ c′ , ret c ρ ∷ s , cons v ρ′ ⟩
step ⟨ ret ∷ c , val v ∷ ret c′ ρ′ ∷ s , ρ ⟩ = continue ⟨ c′ , val v ∷ s , ρ′ ⟩
step ⟨ zero ∣ [] , val v ∷ [] , ρ ⟩ = done v
step _ = crash
|
{
"alphanum_fraction": 0.4236817761,
"avg_line_length": 27.7179487179,
"ext": "agda",
"hexsha": "56cbfb16b67e3860f2fb661cefdd47aa0e9b3090",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Lambda/Virtual-machine.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Lambda/Virtual-machine.agda",
"max_line_length": 101,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Lambda/Virtual-machine.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 618,
"size": 2162
}
|
module Class.Equality where
open import Data.Bool using (Bool; if_then_else_)
open import Data.List
open import Data.Product
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality
record Eq (A : Set) : Set where
field
_≟_ : (x y : A) -> Dec (x ≡ y)
open Eq {{...}} public
record EqB (A : Set) : Set where
field
_≣_ : (x y : A) -> Bool
decCase_of_default_ : ∀ {b} {B : Set b} -> A -> List (A × B) -> B -> B
decCase a of [] default d = d
decCase a of x ∷ xs default d = if a ≣ proj₁ x then proj₂ x else (decCase a of xs default d)
open EqB {{...}} public
Eq→EqB : ∀ {A} -> {{_ : Eq A}} -> EqB A
Eq→EqB = record { _≣_ = λ x y -> ⌊ x ≟ y ⌋ }
|
{
"alphanum_fraction": 0.6212121212,
"avg_line_length": 25.9285714286,
"ext": "agda",
"hexsha": "63dcc46b069c2eee28f1e7f7053b3dfc4752eb28",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Class/Equality.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Class/Equality.agda",
"max_line_length": 94,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Class/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 253,
"size": 726
}
|
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.RPn where
open import Cubical.HITs.RPn.Base public
|
{
"alphanum_fraction": 0.7333333333,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "8a5ee85489605146abb0d1d637bfff20cc5e92e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmester0/cubical",
"max_forks_repo_path": "Cubical/HITs/RPn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmester0/cubical",
"max_issues_repo_path": "Cubical/HITs/RPn.agda",
"max_line_length": 40,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmester0/cubical",
"max_stars_repo_path": "Cubical/HITs/RPn.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 33,
"size": 105
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.