Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PushoutDef module Homotopy.PushoutUP {m} (D : pushout-diag m) (P : Set m → Set m) ⦃ PA : P (pushout-diag.A D) ⦄ ⦃ PB : P (pushout-diag.B D) ⦄ ⦃ PC : P (pushout-diag.C D) ⦄ where open pushout-diag D -- Idea : [cocone E = (A → E) ×_(C → E) (B → E)] record cocone (top : Set m) : Set m where constructor _,_,_ field A→top : A → top B→top : B → top h : (c : C) → (A→top (f c)) ≡ (B→top (g c)) open cocone public cocone-eq-raw : (top : Set m) {a1 a2 : A → top} {b1 b2 : B → top} {h1 : (c : C) → a1 (f c) ≡ b1 (g c)} {h2 : (c : C) → a2 (f c) ≡ b2 (g c)} (p1 : a1 ≡ a2) (p2 : b1 ≡ b2) (p3 : transport _ p1 (transport _ p2 h1) ≡ h2) → (a1 , b1 , h1) ≡ (a2 , b2 , h2) cocone-eq-raw top refl refl refl = refl cocone-eq : (top : Set m) {a1 a2 : A → top} {b1 b2 : B → top} {h1 : (c : C) → a1 (f c) ≡ b1 (g c)} {h2 : (c : C) → a2 (f c) ≡ b2 (g c)} (p1 : a1 ≡ a2) (p2 : b1 ≡ b2) (p3 : (c : C) → happly p1 (f c) ∘ h2 c ≡ h1 c ∘ happly p2 (g c)) → (a1 , b1 , h1) ≡ (a2 , b2 , h2) cocone-eq top refl refl p3 = cocone-eq-raw top refl refl (funext (λ c → ! (refl-right-unit _) ∘ ! (p3 c))) open import Homotopy.PullbackDef D→top : (top : Set m) → pullback-diag m D→top top = diag (A → top) , (B → top) , (C → top) , (λ u → u ◯ f) , (λ u → u ◯ g) cocone-to-pullback : (top : Set m) → cocone top → pullback (D→top top) cocone-to-pullback top (a , b , h) = (a , b , funext h) pullback-to-cocone : (top : Set m) → pullback (D→top top) → cocone top pullback-to-cocone top (a , b , h) = (a , b , happly h) cocone-equiv-pullback : (top : Set m) → cocone top ≃ pullback (D→top top) cocone-equiv-pullback top = (cocone-to-pullback top , iso-is-eq _ (pullback-to-cocone top) (λ p → ap (λ u → _ , _ , u) (funext-happly _)) (λ c → ap (λ u → _ , _ , u) (happly-funext _))) pullback-equiv-cocone : (top : Set m) → pullback (D→top top) ≃ cocone top pullback-equiv-cocone top = (pullback-to-cocone top , iso-is-eq _ (cocone-to-pullback top) (λ c → ap (λ u → _ , _ , u) (happly-funext _)) (λ p → ap (λ u → _ , _ , u) (funext-happly _))) compose-cocone-map : (D E : Set m) (Dcocone : cocone D) → ((f : D → E) → cocone E) compose-cocone-map D E (A→top , B→top , h) f = ((f ◯ A→top) , (f ◯ B→top) , (λ c → ap f (h c))) is-pushout : (D : Set m) ⦃ PD : P D ⦄ (Dcocone : cocone D) → Set _ is-pushout D Dcocone = (E : Set m) ⦃ PE : P E ⦄ → is-equiv (compose-cocone-map D E Dcocone) compose-cocone-map-compose : (D E F : Set m) (Dcocone : cocone D) (f : D → E) (g : E → F) → compose-cocone-map E F (compose-cocone-map D E Dcocone f) g ≡ compose-cocone-map D F Dcocone (g ◯ f) compose-cocone-map-compose D E F Dcocone f g = ap (λ u → ((g ◯ (f ◯ cocone.A→top Dcocone)) , (g ◯ (f ◯ cocone.B→top Dcocone)) , u)) (funext (λ c → compose-ap g f (cocone.h Dcocone c))) module _ (D : Set m) ⦃ PD : P D ⦄ (Dcocone : cocone D) (Dpushout : is-pushout D Dcocone) (E : Set m) ⦃ PE : P E ⦄ (Ecocone : cocone E) (Epushout : is-pushout E Ecocone) where private DE-eq : (D → E) ≃ cocone E DE-eq = (compose-cocone-map D E Dcocone , Dpushout E) ED-eq : (E → D) ≃ cocone D ED-eq = (compose-cocone-map E D Ecocone , Epushout D) DD-eq : (D → D) ≃ cocone D DD-eq = (compose-cocone-map D D Dcocone , Dpushout D) EE-eq : (E → E) ≃ cocone E EE-eq = (compose-cocone-map E E Ecocone , Epushout E) D→E : D → E D→E = (DE-eq ⁻¹) ☆ Ecocone E→D : E → D E→D = (ED-eq ⁻¹) ☆ Dcocone abstract D→E→D : (λ x → E→D (D→E x)) ≡ (λ x → x) D→E→D = equiv-is-inj (compose-cocone-map D D Dcocone , Dpushout D) _ _ (! (compose-cocone-map-compose D E D Dcocone D→E E→D) ∘ (ap (λ u → compose-cocone-map E D u E→D) (inverse-right-inverse DE-eq Ecocone) ∘ (inverse-right-inverse ED-eq Dcocone ∘ ap (λ u → _ , _ , u) (funext (λ c → ! (ap-id _)))))) E→D→E : (λ x → D→E (E→D x)) ≡ (λ x → x) E→D→E = equiv-is-inj (compose-cocone-map E E Ecocone , Epushout E) _ _ (! (compose-cocone-map-compose E D E Ecocone E→D D→E) ∘ (ap (λ u → compose-cocone-map D E u D→E) (inverse-right-inverse ED-eq Dcocone) ∘ (inverse-right-inverse DE-eq Ecocone ∘ ap (λ u → _ , _ , u) (funext (λ c → ! (ap-id _)))))) pushout-equiv-pushout : D ≃ E pushout-equiv-pushout = (D→E , iso-is-eq _ E→D (happly E→D→E) (happly D→E→D))
{ "alphanum_fraction": 0.53730352, "avg_line_length": 36.4274193548, "ext": "agda", "hexsha": "04b4746d05a3bd121add166430251177730bc9f5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/PushoutUP.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/PushoutUP.agda", "max_line_length": 79, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/PushoutUP.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1913, "size": 4517 }
open import Categories open import Monads module Monads.CatofAdj.TermAdjObj {a b}{C : Cat {a}{b}}(M : Monad C) where open import Library open import Functors open import Naturals open import Adjunctions open import Monads.CatofAdj M open import Categories.Terminal open import Monads.EM M open import Monads.EM.Adjunction M open import Adjunctions.Adj2Mon open Cat open Fun open Monad M open NatT open Adj lemX : R EMAdj ○ L EMAdj ≅ TFun M lemX = FunctorEq _ _ refl refl EMObj : Obj CatofAdj EMObj = record { D = EM; adj = EMAdj; law = lemX; ηlaw = idl C; bindlaw = λ{X Y f} → cong bind (stripsubst (Hom C X) f (fcong Y (cong OMap (sym lemX))))} open ObjAdj open Adj alaw1lem : ∀{c d}{D : Cat {c}{d}} (T : Fun C C)(L : Fun C D)(R : Fun D C) (p : R ○ L ≅ T) (η : ∀ {X} → Hom C X (OMap T X)) → (right : ∀ {X Y} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (left : ∀ {X Y} → Hom D (OMap L X) Y → Hom C X (OMap R Y)) → (ηlaw : ∀ {X} → left (iden D {OMap L X}) ≅ η {X}) → ∀ {X}{Z}{f : Hom C Z (OMap R X)} → (nat : comp C (HMap R (right f)) (comp C (left (iden D)) (iden C)) ≅ left (comp D (right f) (comp D (iden D) (HMap L (iden C))))) → (lawb : left (right f) ≅ f) → f ≅ comp C (subst (λ Z₁ → Hom C Z₁ (OMap R X)) (fcong Z (cong OMap p)) (HMap R (right f))) η alaw1lem {D = D} .(R ○ L) L R refl η right left ηlaw {X}{Z}{f} nat lawb = trans (trans (trans (sym lawb) (cong left (trans (sym (idr D)) (cong (comp D (right f)) (trans (sym (fid L)) (sym (idl D))))))) (trans (sym nat) (cong (comp C (HMap R (right f))) (idr C)))) (cong (comp C (HMap R (right f))) ηlaw) alaw2lem : ∀{c d}{D : Cat {c}{d}} (T : Fun C C)(L : Fun C D)(R : Fun D C) (p : R ○ L ≅ T) → (right : ∀ {X Y} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (bind : ∀ {X Y} → Hom C X (OMap T Y) → Hom C (OMap T X) (OMap T Y)) → (natright : {X₁ X' : Obj C} {Y Y' : Obj D} (f₁ : Hom C X' X₁) (g : Hom D Y Y') (h : Hom C X₁ (OMap R Y)) → right (comp C (HMap R g) (comp C h f₁)) ≅ comp D g (comp D (right h) (HMap L f₁))) → ∀ {X}{Z} {W} {k : Hom C Z (OMap T W)}{f : Hom C W (OMap R X)} → (bindlaw : HMap R (right (subst (Hom C Z) (fcong W (cong OMap (sym p))) k)) ≅ bind k) → subst (λ Z → Hom C Z (OMap R X)) (fcong Z (cong OMap p)) (HMap R (right (comp C (subst (λ Z → Hom C Z (OMap R X)) (fcong W (cong OMap p)) (HMap R (right f))) k))) ≅ comp C (subst (λ Z → Hom C Z (OMap R X)) (fcong W (cong OMap p)) (HMap R (right f))) (bind k) alaw2lem {D = D} .(R ○ L) L R refl right bind natright {X}{Z}{W}{k}{f} bindlaw = trans (trans (cong (HMap R) (trans (cong (λ k₁ → right (comp C (HMap R (right f)) k₁)) (sym (idr C))) (trans (natright (iden C) (right f) k) (trans (cong (λ h → comp D (right f) (comp D (right k) h)) (fid L)) (trans (sym (ass D)) (idr D)))))) (fcomp R)) (cong (comp C (HMap R (right f))) bindlaw) ahomlem : ∀{c d}{D : Cat {c}{d}} (T : Fun C C)(L : Fun C D)(R : Fun D C)(p : R ○ L ≅ T) → (right : ∀ {X Y} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (natright : {X₁ X' : Obj C} {Y Y' : Obj D} (f₁ : Hom C X' X₁) (g : Hom D Y Y') (h : Hom C X₁ (OMap R Y)) → right (comp C (HMap R g) (comp C h f₁)) ≅ comp D g (comp D (right h) (HMap L f₁))) → {X : Obj D}{Y : Obj D}{f : Hom D X Y} → {Z : Obj C} {f₁ : Hom C Z (OMap R X)} → comp C (HMap R f) (subst (λ Z₁ → Hom C Z₁ (OMap R X)) (fcong Z (cong OMap p)) (HMap R (right f₁))) ≅ subst (λ Z₁ → Hom C Z₁ (OMap R Y)) (fcong Z (cong OMap p)) (HMap R (right (comp C (HMap R f) f₁))) ahomlem {D = D} .(R ○ L) L R refl right natright {X}{Y}{f}{Z}{g} = trans (sym (fcomp R)) (cong (HMap R) (sym (trans (cong (λ g₁ → right (comp C (HMap R f) g₁)) (sym (idr C))) (trans (natright (iden C) f g) (trans (cong (λ h → comp D f (comp D (right g) h)) (fid L)) (trans (sym (ass D)) (idr D))))))) Llawlem : ∀{c d}{D : Cat {c}{d}} (T : Fun C C)(L : Fun C D)(R : Fun D C)(p : R ○ L ≅ T) → (right : ∀ {X Y} → Hom C X (OMap R Y) → Hom D (OMap L X) Y) → (bind : ∀ {X Y} → Hom C X (OMap T Y) → Hom C (OMap T X) (OMap T Y)) → (bindlaw : {X Y : Obj C} {f : Hom C X (OMap T Y)} → HMap R (right (subst (Hom C X) (fcong Y (cong OMap (sym p))) f)) ≅ bind f) → ∀{X Z} → {f : Hom C Z (OMap R (OMap L X))} {f' : Hom C Z (OMap T X)} → (q : f ≅ f') → subst (λ Z₁ → Hom C Z₁ (OMap R (OMap L X))) (fcong Z (cong OMap p)) (HMap R (right f)) ≅ bind f' Llawlem .(R ○ L) L R refl right bind bindlaw {X}{Z}{f}{.f} refl = bindlaw
{ "alphanum_fraction": 0.4359489051, "avg_line_length": 35.1282051282, "ext": "agda", "hexsha": "fe1c90c4353df997cdefc5e1d7733a6d7ad77d20", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/CatofAdj/TermAdjObj.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/CatofAdj/TermAdjObj.agda", "max_line_length": 80, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/CatofAdj/TermAdjObj.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 2096, "size": 5480 }
{-# OPTIONS --without-K #-} module NTypes.Product where open import NTypes open import PathOperations open import PathStructure.Product open import Types ×-isSet : ∀ {a b} {A : Set a} {B : Set b} → isSet A → isSet B → isSet (A × B) ×-isSet A-set B-set x y p q = split-eq p ⁻¹ · ap (λ y → ap₂ _,_ y (ap π₂ p)) (A-set _ _ (ap π₁ p) (ap π₁ q)) · ap (λ y → ap₂ _,_ (ap π₁ q) y) (B-set _ _ (ap π₂ p) (ap π₂ q)) · split-eq q where split-eq : (p : x ≡ y) → ap₂ _,_ (ap π₁ p) (ap π₂ p) ≡ p split-eq = π₂ (π₂ (π₂ split-merge-eq))
{ "alphanum_fraction": 0.5703839122, "avg_line_length": 26.0476190476, "ext": "agda", "hexsha": "1db86558239b2c150e8a7127d080f1257080f47c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes/Product.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 231, "size": 547 }
{-# OPTIONS --without-K #-} module sets.int.utils where open import sum open import equality open import function open import sets.nat.core open import sets.int.definition open import hott.level module _ {i}{X : Set i}(hX : h 2 X) (f : ℕ → ℕ → ℕ → ℕ → X) (u : ∀ n n' d m m' e → f n n' m m' ≡ f (d + n) (d + n') (e + m) (e + m')) where private g : ℕ → ℕ → ℤ → X g n n' = elim-ℤ hX (f n n' , u n n' 0) lem : (n n' d m m' : ℕ) → g n n' (m [-] m') ≡ g (d + n) (d + n') (m [-] m') lem n n' d m m' = u n n' d m m' 0 v : (n n' d : ℕ) → g n n' ≡ g (d + n) (d + n') v n n' d = funext λ m → elim-prop-ℤ (λ m → hX (g n n' m) (g (d + n) (d + n') m)) (lem n n' d) m hX' : h 2 (ℤ → X) hX' = Π-level λ _ → hX elim₂-ℤ : ℤ → ℤ → X elim₂-ℤ = elim-ℤ hX' (g , v) elim₂-prop-ℤ : ∀ {i}{X : ℤ → ℤ → Set i} → (∀ n m → h 1 (X n m)) → ((n n' m m' : ℕ) → X (n [-] n') (m [-] m')) → ∀ n m → X n m elim₂-prop-ℤ {i}{X} hX f = elim-prop-ℤ hX' g where g : (n n' : ℕ) → ∀ m → X (n [-] n') m g n n' = elim-prop-ℤ (hX (n [-] n')) (f n n') hX' : ∀ n → h 1 (∀ m → X n m) hX' n = Π-level λ m → hX n m elim₃-prop-ℤ : ∀ {i}{X : ℤ → ℤ → ℤ → Set i} → (∀ n m p → h 1 (X n m p)) → ((n n' m m' p p' : ℕ) → X (n [-] n') (m [-] m') (p [-] p')) → ∀ n m p → X n m p elim₃-prop-ℤ {i}{X} hX f = elim-prop-ℤ hX' g where g : (n n' : ℕ) → ∀ m p → X (n [-] n') m p g n n' = elim₂-prop-ℤ (hX (n [-] n')) (f n n') hX' : ∀ n → h 1 (∀ m p → X n m p) hX' n = Π-level λ m → Π-level λ p → hX n m p
{ "alphanum_fraction": 0.4006289308, "avg_line_length": 28.9090909091, "ext": "agda", "hexsha": "c79988714b1e3b49fb174545a05e11b9850746f4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/int/utils.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/int/utils.agda", "max_line_length": 81, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/int/utils.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 770, "size": 1590 }
module Generic.Lib.Category where open import Category.Functor public open import Category.Applicative public open import Category.Monad public open RawFunctor {{...}} public open RawApplicative {{...}} hiding (_<$>_; _<&>_; _<$_; zip; zipWith) renaming (_⊛_ to _<*>_) public open RawMonad {{...}} hiding (pure; _<$>_; _<&>_; _<$_; _⊛_; _<⊛_; _⊛>_; _⊗_; rawFunctor; zip; zipWith) public fmap = _<$>_
{ "alphanum_fraction": 0.6749379653, "avg_line_length": 33.5833333333, "ext": "agda", "hexsha": "51d3a4883410207e356cc32bf8dd34dc9ac16859", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Category.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 136, "size": 403 }
module Issue4835.ModA where data A : Set where a : A -> A
{ "alphanum_fraction": 0.6557377049, "avg_line_length": 12.2, "ext": "agda", "hexsha": "447b27a85e10e6807cad48883ac27b59f22673f6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4835/ModA.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4835/ModA.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4835/ModA.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 61 }
-- Andreas, 2014-12-03 Issue reported by Fabien Renaud postulate A : Set f : A → A g : A → A f x = g x ok : A → A ok x = x g x = f x -- Only `f` and `g` should be colored red, not `ok`.
{ "alphanum_fraction": 0.5647668394, "avg_line_length": 11.3529411765, "ext": "agda", "hexsha": "381fe55c5b86ab7a6682d80b7209c68494ba7961", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1084.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1084.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1084.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 193 }
postulate X Y Z A : Set record R : Set where field x : X y : Y z : Z module M where postulate x : X y : Y r : R r = record { M; z = zz } where postulate zz : Z -- Record update. Same as: record r { y = ... } r2 : R r2 = record { R r; y = y } where postulate y : Y module M2 (a : A) where postulate w : Y z : Z r3 : A → R r3 a = record { M hiding (y); M2 a renaming (w to y) }
{ "alphanum_fraction": 0.5278450363, "avg_line_length": 14.2413793103, "ext": "agda", "hexsha": "6789e9365356d2194cd4612476e07ae0ce8e8e92", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/RecordFromModule2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/RecordFromModule2.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/RecordFromModule2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 163, "size": 413 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The reflexive transitive closures of McBride, Norell and Jansson ------------------------------------------------------------------------ -- This module could be placed under Relation.Binary. However, since -- its primary purpose is to be used for _data_ it has been placed -- under Data instead. module Data.Star where open import Relation.Binary open import Function open import Level infixr 5 _◅_ -- Reflexive transitive closure. data Star {i t} {I : Set i} (T : Rel I t) : Rel I (i ⊔ t) where ε : Reflexive (Star T) _◅_ : ∀ {i j k} (x : T i j) (xs : Star T j k) → Star T i k -- The type of _◅_ is Trans T (Star T) (Star T); I expanded -- the definition in order to be able to name the arguments (x -- and xs). -- Append/transitivity. infixr 5 _◅◅_ _◅◅_ : ∀ {i t} {I : Set i} {T : Rel I t} → Transitive (Star T) ε ◅◅ ys = ys (x ◅ xs) ◅◅ ys = x ◅ (xs ◅◅ ys) -- Sometimes you want to view cons-lists as snoc-lists. Then the -- following "constructor" is handy. Note that this is _not_ snoc for -- cons-lists, it is just a synonym for cons (with a different -- argument order). infixl 5 _▻_ _▻_ : ∀ {i t} {I : Set i} {T : Rel I t} {i j k} → Star T j k → T i j → Star T i k _▻_ = flip _◅_ -- A corresponding variant of append. infixr 5 _▻▻_ _▻▻_ : ∀ {i t} {I : Set i} {T : Rel I t} {i j k} → Star T j k → Star T i j → Star T i k _▻▻_ = flip _◅◅_ -- A generalised variant of map which allows the index type to change. gmap : ∀ {i j t u} {I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u} → (f : I → J) → T =[ f ]⇒ U → Star T =[ f ]⇒ Star U gmap f g ε = ε gmap f g (x ◅ xs) = g x ◅ gmap f g xs map : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → T ⇒ U → Star T ⇒ Star U map = gmap id -- A generalised variant of fold. gfold : ∀ {i j t p} {I : Set i} {J : Set j} {T : Rel I t} (f : I → J) (P : Rel J p) → Trans T (P on f) (P on f) → TransFlip (Star T) (P on f) (P on f) gfold f P _⊕_ ∅ ε = ∅ gfold f P _⊕_ ∅ (x ◅ xs) = x ⊕ gfold f P _⊕_ ∅ xs fold : ∀ {i t p} {I : Set i} {T : Rel I t} (P : Rel I p) → Trans T P P → Reflexive P → Star T ⇒ P fold P _⊕_ ∅ = gfold id P _⊕_ ∅ gfoldl : ∀ {i j t p} {I : Set i} {J : Set j} {T : Rel I t} (f : I → J) (P : Rel J p) → Trans (P on f) T (P on f) → Trans (P on f) (Star T) (P on f) gfoldl f P _⊕_ ∅ ε = ∅ gfoldl f P _⊕_ ∅ (x ◅ xs) = gfoldl f P _⊕_ (∅ ⊕ x) xs foldl : ∀ {i t p} {I : Set i} {T : Rel I t} (P : Rel I p) → Trans P T P → Reflexive P → Star T ⇒ P foldl P _⊕_ ∅ = gfoldl id P _⊕_ ∅ concat : ∀ {i t} {I : Set i} {T : Rel I t} → Star (Star T) ⇒ Star T concat {T = T} = fold (Star T) _◅◅_ ε -- If the underlying relation is symmetric, then the reflexive -- transitive closure is also symmetric. revApp : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → Sym T U → ∀ {i j k} → Star T j i → Star U j k → Star U i k revApp rev ε ys = ys revApp rev (x ◅ xs) ys = revApp rev xs (rev x ◅ ys) reverse : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → Sym T U → Sym (Star T) (Star U) reverse rev xs = revApp rev xs ε -- Reflexive transitive closures form a (generalised) monad. -- return could also be called singleton. return : ∀ {i t} {I : Set i} {T : Rel I t} → T ⇒ Star T return x = x ◅ ε -- A generalised variant of the Kleisli star (flip bind, or -- concatMap). kleisliStar : ∀ {i j t u} {I : Set i} {J : Set j} {T : Rel I t} {U : Rel J u} (f : I → J) → T =[ f ]⇒ Star U → Star T =[ f ]⇒ Star U kleisliStar f g = concat ∘′ gmap f g _⋆ : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → T ⇒ Star U → Star T ⇒ Star U _⋆ = kleisliStar id infixl 1 _>>=_ _>>=_ : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} {i j} → Star T i j → T ⇒ Star U → Star U i j m >>= f = (f ⋆) m -- Note that the monad-like structure above is not an indexed monad -- (as defined in Category.Monad.Indexed). If it were, then _>>=_ -- would have a type similar to -- -- ∀ {I} {T U : Rel I t} {i j k} → -- Star T i j → (T i j → Star U j k) → Star U i k. -- ^^^^^ -- Note, however, that there is no scope for applying T to any indices -- in the definition used in Category.Monad.Indexed.
{ "alphanum_fraction": 0.5192481884, "avg_line_length": 31.7697841727, "ext": "agda", "hexsha": "b85e442ff8e890e098d410149a2f21e4acf69c1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1696, "size": 4416 }
open import Data.Nat using (ℕ) module Data.BitVector.Properties.LatticeProperties (n : ℕ) where open import Data.BitVector open import Algebra.Structures open import Relation.Binary.PropositionalEquality open import Data.Vec open import Data.Product hiding (map) import Data.Bool.Properties as Bool private module BitProperties = IsBooleanAlgebra Bool.isBooleanAlgebra -- All these properties follow trivially from the bit properties. TODO: generalize the pattern to just reuse the bitproperties ∨-comm : ∀ {n} (x y : BitVector n) → bitwise-or x y ≡ bitwise-or y x ∨-comm [] [] = refl ∨-comm (x ∷ xs) (y ∷ ys) rewrite BitProperties.∨-comm x y | ∨-comm xs ys = refl ∧-comm : ∀ {n} (x y : BitVector n) → bitwise-and x y ≡ bitwise-and y x ∧-comm [] [] = refl ∧-comm (x ∷ xs) (y ∷ ys) rewrite BitProperties.∧-comm x y | ∧-comm xs ys = refl ∨-assoc : ∀ {n} (x y z : BitVector n) → bitwise-or (bitwise-or x y) z ≡ bitwise-or x (bitwise-or y z) ∨-assoc [] [] [] = refl ∨-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite BitProperties.∨-assoc x y z | ∨-assoc xs ys zs = refl ∧-assoc : ∀ {n} (x y z : BitVector n) → bitwise-and (bitwise-and x y) z ≡ bitwise-and x (bitwise-and y z) ∧-assoc [] [] [] = refl ∧-assoc (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite BitProperties.∧-assoc x y z | ∧-assoc xs ys zs = refl ∨∧-absorb : ∀ {n} (x y : BitVector n) → bitwise-or x (bitwise-and x y) ≡ x ∨∧-absorb [] [] = refl ∨∧-absorb (x ∷ xs) (y ∷ ys) rewrite proj₁ BitProperties.absorptive x y | ∨∧-absorb xs ys = refl ∧∨-absorb : ∀ {n} (x y : BitVector n) → bitwise-and x (bitwise-or x y) ≡ x ∧∨-absorb [] [] = refl ∧∨-absorb (x ∷ xs) (y ∷ ys) rewrite proj₂ BitProperties.absorptive x y | ∧∨-absorb xs ys = refl ∨-cong : ∀ {n} {x y u v : BitVector n} → x ≡ y → u ≡ v → bitwise-or x u ≡ bitwise-or y v ∨-cong refl refl = refl ∧-cong : ∀ {n} {x y u v : BitVector n} → x ≡ y → u ≡ v → bitwise-and x u ≡ bitwise-and y v ∧-cong refl refl = refl isLattice : ∀ {n} → IsLattice _≡_ (bitwise-or {n}) bitwise-and isLattice = record { isEquivalence = isEquivalence ; ∨-comm = ∨-comm ; ∨-assoc = ∨-assoc ; ∨-cong = ∨-cong ; ∧-comm = ∧-comm ; ∧-assoc = ∧-assoc ; ∧-cong = ∧-cong ; absorptive = ∨∧-absorb , ∧∨-absorb } ∨∧-distribʳ : ∀ {n} (x y z : BitVector n) → bitwise-or (bitwise-and y z) x ≡ bitwise-and (bitwise-or y x) (bitwise-or z x) ∨∧-distribʳ [] [] [] = refl ∨∧-distribʳ (x ∷ xs) (y ∷ ys) (z ∷ zs) rewrite BitProperties.∨-∧-distribʳ x y z | ∨∧-distribʳ xs ys zs = refl isDistributiveLattice : ∀ {n} → IsDistributiveLattice _≡_ (bitwise-or {n}) bitwise-and isDistributiveLattice = record { isLattice = isLattice ; ∨-∧-distribʳ = ∨∧-distribʳ } ∨-complementʳ : ∀ {n} (x : BitVector n) → bitwise-or x (bitwise-negation x) ≡ ones n ∨-complementʳ [] = refl ∨-complementʳ (x ∷ xs) rewrite BitProperties.∨-complementʳ x | ∨-complementʳ xs = refl ∧-complementʳ : ∀ {n} (x : BitVector n) → bitwise-and x (bitwise-negation x) ≡ zero n ∧-complementʳ [] = refl ∧-complementʳ (x ∷ xs) rewrite BitProperties.∧-complementʳ x | ∧-complementʳ xs = refl ¬-cong : ∀ {n} {i j : BitVector n} → i ≡ j → bitwise-negation i ≡ bitwise-negation j ¬-cong refl = refl isBooleanAlgebra : ∀ {n} → IsBooleanAlgebra _≡_ bitwise-or bitwise-and bitwise-negation (ones n) (zero n) isBooleanAlgebra = record { isDistributiveLattice = isDistributiveLattice ; ∨-complementʳ = ∨-complementʳ ; ∧-complementʳ = ∧-complementʳ ; ¬-cong = ¬-cong }
{ "alphanum_fraction": 0.6177639047, "avg_line_length": 39.1555555556, "ext": "agda", "hexsha": "00ee8d7974418fec6a37be61c72696ea3c16e4f7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z", "max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "copumpkin/bitvector", "max_forks_repo_path": "Data/BitVector/Properties/LatticeProperties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "copumpkin/bitvector", "max_issues_repo_path": "Data/BitVector/Properties/LatticeProperties.agda", "max_line_length": 128, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/bitvector", "max_stars_repo_path": "Data/BitVector/Properties/LatticeProperties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z", "num_tokens": 1402, "size": 3524 }
------------------------------------------------------------------------------ -- Well-founded induction on the relation TreeT ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Mirror.TreeR.Induction.Acc.WellFoundedInduction where open import FOTC.Base open import FOT.FOTC.Program.Mirror.Induction.Acc.WellFounded open import FOT.FOTC.Program.Mirror.TreeR open import FOTC.Program.Mirror.Type ------------------------------------------------------------------------------ -- The relation TreeR is well-founded. postulate wf-TreeR : WellFounded TreeR -- Well-founded induction on the relation TreeT. wfInd-TreeR : (P : D → Set) → (∀ {t} → Tree t → (∀ {t'} → Tree t' → TreeR t' t → P t') → P t) → ∀ {t} → Tree t → P t wfInd-TreeR P = WellFoundedInduction wf-TreeR
{ "alphanum_fraction": 0.50499002, "avg_line_length": 34.5517241379, "ext": "agda", "hexsha": "7721b15a75dff253fabe6de05daf8edb2d8f549b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/TreeR/Induction/Acc/WellFoundedInduction.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/TreeR/Induction/Acc/WellFoundedInduction.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/TreeR/Induction/Acc/WellFoundedInduction.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 230, "size": 1002 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Queue.1List where open import Cubical.Foundations.Everything open import Cubical.Structures.Queue open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Maybe open import Cubical.Data.List open import Cubical.Data.Sigma module 1List {ℓ} (A : Type ℓ) (Aset : isSet A) where open Queues-on A Aset Q = List A emp : Q emp = [] enq : A → Q → Q enq = _∷_ deq : Q → Maybe (Q × A) deq [] = nothing deq (x ∷ []) = just ([] , x) deq (x ∷ x' ∷ xs) = deqMap (enq x) (deq (x' ∷ xs)) Raw : RawQueue Raw = (Q , emp , enq , deq) WithLaws : Queue WithLaws = (Q , S , isSetQ , refl , deq-enq , isInjEnq , isInjDeq) where S = str Raw isSetQ : isSet Q isSetQ = isOfHLevelList 0 Aset deq-enq : ∀ a q → deq (enq a q) ≡ just (returnOrEnq S a (deq q)) deq-enq a [] = refl deq-enq a (x ∷ []) = refl deq-enq a (x ∷ x' ∷ xs) = subst (λ t → deqMap (enq a) (deqMap (enq x) t) ≡ just (returnOrEnq S a (deqMap (enq x) t))) (deq-enq x' xs ⁻¹) refl isInjEnq : ∀ a a' q q' → enq a q ≡ enq a' q' → (a ≡ a') × (q ≡ q') isInjEnq _ _ _ _ p = fst c , ListPath.decode _ _ (snd c) where c = ListPath.encode _ _ p isInjReturnOrEnq : ∀ a a' qr qr' → returnOrEnq S a qr ≡ returnOrEnq S a' qr' → (a ≡ a') × (qr ≡ qr') isInjReturnOrEnq a a' nothing nothing p = cong snd p , refl isInjReturnOrEnq a a' nothing (just (q' , b')) p = ⊥.rec (lower (ListPath.encode _ _ (cong fst p))) isInjReturnOrEnq a a' (just (q , b)) nothing p = ⊥.rec (lower (ListPath.encode _ _ (cong fst p))) isInjReturnOrEnq a a' (just (q , b)) (just (q' , b')) p = fst c , cong just (ΣPathP (ListPath.decode _ _ (snd c) , cong snd p)) where c = ListPath.encode _ _ (cong fst p) isInjDeq-lemma : ∀ q q' → MaybePath.Cover (deq q) (deq q') → q ≡ q' isInjDeq-lemma [] [] _ = refl isInjDeq-lemma [] (y ∷ q') c = ⊥.rec (lower (subst (MaybePath.Cover nothing) (deq-enq y q') c)) isInjDeq-lemma (x ∷ q) [] c = ⊥.rec (lower (subst (λ r → MaybePath.Cover r nothing) (deq-enq x q) c)) isInjDeq-lemma (x ∷ q) (y ∷ q') c = cong₂ _∷_ (fst p) (isInjDeq-lemma q q' (MaybePath.encode _ _ (snd p))) where p : (x ≡ y) × (deq q ≡ deq q') p = isInjReturnOrEnq _ _ _ _ (subst (uncurry MaybePath.Cover) (ΣPathP (deq-enq x q , deq-enq y q')) c) isInjDeq : ∀ q q' → deq q ≡ deq q' → q ≡ q' isInjDeq _ _ p = isInjDeq-lemma _ _ (MaybePath.encode _ _ p) Finite : FiniteQueue Finite = (Q , str WithLaws , subst isEquiv (sym (funExt foldrCons)) (idIsEquiv _))
{ "alphanum_fraction": 0.5736665423, "avg_line_length": 30.4659090909, "ext": "agda", "hexsha": "3a9ac6bb969b52dea10b307e5beac2f49a14948d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Queue/1List.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Queue/1List.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Queue/1List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1068, "size": 2681 }
module Common.Context where open import Common public -- Contexts. data Cx (U : Set) : Set where ∅ : Cx U _,_ : Cx U → U → Cx U -- Vector contexts. data VCx (U : Set) : ℕ → Set where ∅ : VCx U zero _,_ : ∀ {n} → VCx U n → U → VCx U (suc n) -- Inversion principles for contexts. module _ {U : Set} where inv,₁ : ∀ {Γ Γ′ : Cx U} {A A′ : U} → (Γ Cx., A) ≡ (Γ′ , A′) → Γ ≡ Γ′ inv,₁ refl = refl inv,₂ : ∀ {Γ Γ′ : Cx U} {A A′ : U} → (Γ Cx., A) ≡ (Γ′ , A′) → A ≡ A′ inv,₂ refl = refl -- Decidable equality for contexts. module ContextEquality {U : Set} (_≟ᵁ_ : (A A′ : U) → Dec (A ≡ A′)) where _≟ᵀ⋆_ : (Γ Γ′ : Cx U) → Dec (Γ ≡ Γ′) ∅ ≟ᵀ⋆ ∅ = yes refl ∅ ≟ᵀ⋆ (Γ′ , A′) = no λ () (Γ , A) ≟ᵀ⋆ ∅ = no λ () (Γ , A) ≟ᵀ⋆ (Γ′ , A′) with Γ ≟ᵀ⋆ Γ′ | A ≟ᵁ A′ (Γ , A) ≟ᵀ⋆ (.Γ , .A) | yes refl | yes refl = yes refl (Γ , A) ≟ᵀ⋆ (Γ′ , A′) | no Γ≢Γ′ | _ = no (Γ≢Γ′ ∘ inv,₁) (Γ , A) ≟ᵀ⋆ (Γ′ , A′) | _ | no A≢A′ = no (A≢A′ ∘ inv,₂) -- Context membership, or nameless typed de Bruijn indices. module _ {U : Set} where infix 3 _∈_ data _∈_ (A : U) : Cx U → Set where instance top : ∀ {Γ} → A ∈ Γ , A pop : ∀ {B Γ} → A ∈ Γ → A ∈ Γ , B pop² : ∀ {A B C Γ} → A ∈ Γ → A ∈ Γ , B , C pop² = pop ∘ pop i₀ : ∀ {A Γ} → A ∈ Γ , A i₀ = top i₁ : ∀ {A B Γ} → A ∈ Γ , A , B i₁ = pop top i₂ : ∀ {A B C Γ} → A ∈ Γ , A , B , C i₂ = pop² top [_]ⁱ : ∀ {A Γ} → A ∈ Γ → ℕ [ top ]ⁱ = zero [ pop i ]ⁱ = suc [ i ]ⁱ -- Context inclusion, or order-preserving embedding. module _ {U : Set} where infix 3 _⊆_ data _⊆_ : Cx U → Cx U → Set where instance done : ∅ ⊆ ∅ skip : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊆ Γ′ , A keep : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ , A ⊆ Γ′ , A skip² : ∀ {A B Γ Γ′} → Γ ⊆ Γ′ → Γ ⊆ Γ′ , B , A skip² = skip ∘ skip keep² : ∀ {A B Γ Γ′} → Γ ⊆ Γ′ → Γ , B , A ⊆ Γ′ , B , A keep² = keep ∘ keep instance refl⊆ : ∀ {Γ} → Γ ⊆ Γ refl⊆ {∅} = done refl⊆ {Γ , A} = keep refl⊆ trans⊆ : ∀ {Γ Γ′ Γ″} → Γ ⊆ Γ′ → Γ′ ⊆ Γ″ → Γ ⊆ Γ″ trans⊆ η done = η trans⊆ η (skip η′) = skip (trans⊆ η η′) trans⊆ (skip η) (keep η′) = skip (trans⊆ η η′) trans⊆ (keep η) (keep η′) = keep (trans⊆ η η′) unskip⊆ : ∀ {A Γ Γ′} → Γ , A ⊆ Γ′ → Γ ⊆ Γ′ unskip⊆ (skip η) = skip (unskip⊆ η) unskip⊆ (keep η) = skip η unkeep⊆ : ∀ {A Γ Γ′} → Γ , A ⊆ Γ′ , A → Γ ⊆ Γ′ unkeep⊆ (skip η) = unskip⊆ η unkeep⊆ (keep η) = η weak⊆ : ∀ {A Γ} → Γ ⊆ Γ , A weak⊆ = skip refl⊆ weak²⊆ : ∀ {A B Γ} → Γ ⊆ Γ , A , B weak²⊆ = skip² refl⊆ bot⊆ : ∀ {Γ} → ∅ ⊆ Γ bot⊆ {∅} = done bot⊆ {Γ , A} = skip bot⊆ -- Monotonicity of context membership with respect to context inclusion. module _ {U : Set} where mono∈ : ∀ {A : U} {Γ Γ′} → Γ ⊆ Γ′ → A ∈ Γ → A ∈ Γ′ mono∈ done () mono∈ (skip η) i = pop (mono∈ η i) mono∈ (keep η) top = top mono∈ (keep η) (pop i) = pop (mono∈ η i) reflmono∈ : ∀ {A Γ} → (i : A ∈ Γ) → i ≡ mono∈ refl⊆ i reflmono∈ top = refl reflmono∈ (pop i) = cong pop (reflmono∈ i) transmono∈ : ∀ {A Γ Γ′ Γ″} → (η : Γ ⊆ Γ′) (η′ : Γ′ ⊆ Γ″) (i : A ∈ Γ) → mono∈ η′ (mono∈ η i) ≡ mono∈ (trans⊆ η η′) i transmono∈ done η′ () transmono∈ η (skip η′) i = cong pop (transmono∈ η η′ i) transmono∈ (skip η) (keep η′) i = cong pop (transmono∈ η η′ i) transmono∈ (keep η) (keep η′) top = refl transmono∈ (keep η) (keep η′) (pop i) = cong pop (transmono∈ η η′ i) -- Concatenation of contexts. module _ {U : Set} where _⧺_ : Cx U → Cx U → Cx U Γ ⧺ ∅ = Γ Γ ⧺ (Γ′ , A) = (Γ ⧺ Γ′) , A id⧺₁ : ∀ {Γ} → Γ ⧺ ∅ ≡ Γ id⧺₁ = refl id⧺₂ : ∀ {Γ} → ∅ ⧺ Γ ≡ Γ id⧺₂ {∅} = refl id⧺₂ {Γ , A} = cong² _,_ id⧺₂ refl weak⊆⧺₁ : ∀ {Γ} Γ′ → Γ ⊆ Γ ⧺ Γ′ weak⊆⧺₁ ∅ = refl⊆ weak⊆⧺₁ (Γ′ , A) = skip (weak⊆⧺₁ Γ′) weak⊆⧺₂ : ∀ {Γ Γ′} → Γ′ ⊆ Γ ⧺ Γ′ weak⊆⧺₂ {Γ} {∅} = bot⊆ weak⊆⧺₂ {Γ} {Γ′ , A} = keep weak⊆⧺₂ -- Thinning of contexts. module _ {U : Set} where _∖_ : ∀ {A} → (Γ : Cx U) → A ∈ Γ → Cx U ∅ ∖ () (Γ , A) ∖ top = Γ (Γ , B) ∖ pop i = (Γ ∖ i) , B thin⊆ : ∀ {A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊆ Γ thin⊆ top = weak⊆ thin⊆ (pop i) = keep (thin⊆ i) -- Decidable equality of context membership. module _ {U : Set} where data _=∈_ {A : U} {Γ} (i : A ∈ Γ) : ∀ {B} → B ∈ Γ → Set where same : i =∈ i diff : ∀ {B} → (j : B ∈ Γ ∖ i) → i =∈ mono∈ (thin⊆ i) j _≟∈_ : ∀ {A B : U} {Γ} → (i : A ∈ Γ) (j : B ∈ Γ) → i =∈ j top ≟∈ top = same top ≟∈ pop j rewrite reflmono∈ j = diff j pop i ≟∈ top = diff top pop i ≟∈ pop j with i ≟∈ j pop i ≟∈ pop .i | same = same pop i ≟∈ pop ._ | diff j = diff (pop j)
{ "alphanum_fraction": 0.4339062168, "avg_line_length": 25.2032085561, "ext": "agda", "hexsha": "484db1dd499ee51f8eb2247470b69eb08bf1e2fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "Common/Context.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "Common/Context.agda", "max_line_length": 73, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "Common/Context.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2509, "size": 4713 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Rings.Definition open import Rings.IntegralDomains.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Ring {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Setoid I open import Fields.FieldOfFractions.Addition I open import Fields.FieldOfFractions.Group I open import Fields.FieldOfFractions.Multiplication I fieldOfFractionsRing : Ring fieldOfFractionsSetoid fieldOfFractionsPlus fieldOfFractionsTimes Ring.additiveGroup fieldOfFractionsRing = fieldOfFractionsGroup Ring.*WellDefined fieldOfFractionsRing {a} {b} {c} {d} = fieldOfFractionsTimesWellDefined {a} {b} {c} {d} Ring.1R fieldOfFractionsRing = record { num = Ring.1R R ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I } Ring.groupIsAbelian fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} = Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Equivalence.transitive (Setoid.eq S) (Group.+WellDefined (Ring.additiveGroup R) (Ring.*Commutative R) (Ring.*Commutative R)) (Ring.groupIsAbelian R))) Ring.*Associative fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Ring.*Associative R) (Ring.*Associative' R)) (Ring.*Commutative R) Ring.*Commutative fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} = Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) (Ring.*WellDefined R (Ring.*Commutative R) (Ring.*Commutative R)) Ring.*DistributesOver+ fieldOfFractionsRing {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} = need where open Setoid S open Ring R open Equivalence eq inter : b * (a * ((c * f) + (d * e))) ∼ (((a * c) * (b * f)) + ((b * d) * (a * e))) inter = transitive *Associative (transitive *DistributesOver+ (Group.+WellDefined additiveGroup (transitive *Associative (transitive (*WellDefined (transitive (*WellDefined (*Commutative) reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative))) reflexive) (symmetric *Associative))) (transitive *Associative (transitive (*WellDefined (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive) (symmetric *Associative))))) need : ((a * ((c * f) + (d * e))) * ((b * d) * (b * f))) ∼ ((b * (d * f)) * (((a * c) * (b * f)) + ((b * d) * (a * e)))) need = transitive (Ring.*WellDefined R reflexive (Ring.*WellDefined R reflexive (Ring.*Commutative R))) (transitive (Ring.*WellDefined R reflexive (Ring.*Associative R)) (transitive (Ring.*Commutative R) (transitive (Ring.*WellDefined R (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) reflexive) (transitive (symmetric (Ring.*Associative R)) (Ring.*WellDefined R reflexive inter))))) Ring.identIsIdent fieldOfFractionsRing {record { num = a ; denom = b }} = need where open Setoid S open Equivalence eq need : (((Ring.1R R) * a) * b) ∼ (((Ring.1R R * b)) * a) need = transitive (Ring.*WellDefined R (Ring.identIsIdent R) reflexive) (transitive (Ring.*Commutative R) (Ring.*WellDefined R (symmetric (Ring.identIsIdent R)) reflexive))
{ "alphanum_fraction": 0.7027252503, "avg_line_length": 92.2051282051, "ext": "agda", "hexsha": "05c20a00e1de7414cb215425d8de9e7c0b6b4e6a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/FieldOfFractions/Ring.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/FieldOfFractions/Ring.agda", "max_line_length": 536, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/FieldOfFractions/Ring.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1098, "size": 3596 }
module Oscar.Category.Semigroup where open import Oscar.Category.Setoid open import Oscar.Level module _ {𝔬 𝔮} (setoid : Setoid 𝔬 𝔮) where open Setoid setoid record IsSemigroup (_∙_ : ⋆ → ⋆ → ⋆) : Set (𝔬 ⊔ 𝔮) where field extensionality : ∀ {f₁ f₂} → f₁ ≋ f₂ → ∀ {g₁ g₂} → g₁ ≋ g₂ → g₁ ∙ f₁ ≋ g₂ ∙ f₂ associativity : ∀ f g h → (h ∙ g) ∙ f ≋ h ∙ (g ∙ f) open IsSemigroup ⦃ … ⦄ public record Semigroup 𝔬 𝔮 : Set (lsuc (𝔬 ⊔ 𝔮)) where field setoid : Setoid 𝔬 𝔮 open Setoid setoid public infixl 7 _∙_ field _∙_ : ⋆ → ⋆ → ⋆ ⦃ isSemigroup ⦄ : IsSemigroup setoid _∙_
{ "alphanum_fraction": 0.5933884298, "avg_line_length": 23.2692307692, "ext": "agda", "hexsha": "e98a416278cac575920953964db3e9769ce179e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category/Semigroup.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category/Semigroup.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category/Semigroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 283, "size": 605 }
{-# OPTIONS --rewriting #-} open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_) open import Properties.Equality using (_≢_) module Luau.Subtyping where -- An implementation of semantic subtyping -- We think of types as languages of trees data Tree : Set where scalar : ∀ {T} → Scalar T → Tree function : Tree function-ok : Tree → Tree function-err : Tree → Tree data Language : Type → Tree → Set data ¬Language : Type → Tree → Set data Language where scalar : ∀ {T} → (s : Scalar T) → Language T (scalar s) function : ∀ {T U} → Language (T ⇒ U) function function-ok : ∀ {T U u} → (Language U u) → Language (T ⇒ U) (function-ok u) function-err : ∀ {T U t} → (¬Language T t) → Language (T ⇒ U) (function-err t) scalar-function-err : ∀ {S t} → (Scalar S) → Language S (function-err t) left : ∀ {T U t} → Language T t → Language (T ∪ U) t right : ∀ {T U u} → Language U u → Language (T ∪ U) u _,_ : ∀ {T U t} → Language T t → Language U t → Language (T ∩ U) t unknown : ∀ {t} → Language unknown t data ¬Language where scalar-scalar : ∀ {S T} → (s : Scalar S) → (Scalar T) → (S ≢ T) → ¬Language T (scalar s) scalar-function : ∀ {S} → (Scalar S) → ¬Language S function scalar-function-ok : ∀ {S u} → (Scalar S) → ¬Language S (function-ok u) function-scalar : ∀ {S T U} (s : Scalar S) → ¬Language (T ⇒ U) (scalar s) function-ok : ∀ {T U u} → (¬Language U u) → ¬Language (T ⇒ U) (function-ok u) function-err : ∀ {T U t} → (Language T t) → ¬Language (T ⇒ U) (function-err t) _,_ : ∀ {T U t} → ¬Language T t → ¬Language U t → ¬Language (T ∪ U) t left : ∀ {T U t} → ¬Language T t → ¬Language (T ∩ U) t right : ∀ {T U u} → ¬Language U u → ¬Language (T ∩ U) u never : ∀ {t} → ¬Language never t -- Subtyping as language inclusion _<:_ : Type → Type → Set (T <: U) = ∀ t → (Language T t) → (Language U t) -- For warnings, we are interested in failures of subtyping, -- which is whrn there is a tree in T's language that isn't in U's. data _≮:_ (T U : Type) : Set where witness : ∀ t → Language T t → ¬Language U t → ----------------- T ≮: U
{ "alphanum_fraction": 0.5905511811, "avg_line_length": 34.2698412698, "ext": "agda", "hexsha": "943f459b747346ecd2e6d006ef810f5d3a8c7ead", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "EtiTheSpirit/luau", "max_forks_repo_path": "prototyping/Luau/Subtyping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "EtiTheSpirit/luau", "max_issues_repo_path": "prototyping/Luau/Subtyping.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "d37d0c857ba543ea47f0b8fce5678f7aadf5239e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "EtiTheSpirit/luau", "max_stars_repo_path": "prototyping/Luau/Subtyping.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 731, "size": 2159 }
{-# OPTIONS --cubical --guarded -W ignore #-} module combinations-of-lift-and-list where open import Clocked.Primitives open import Cubical.Foundations.Prelude open import Cubical.Data.List as List open import Cubical.Data.List.Properties open import Cubical.Data.Sum using (_⊎_; inl; inr) --**********************************************************************-- --**********************************************************************-- -- Combining the monads Lift and List freely and via a distributive law -- --**********************************************************************-- --**********************************************************************-- -- In this document I want to define a monad, called ListLift, that is the free combination of the Lift monad and the List monad. -- In order to do so, I will first define the Lift monad and the List monad, and check that they are indeed monads (Step 1 and 2). -- Then I define the LiftList monad, check that it is a monad (Step 3), and finally check that it is the free monad on the algebra -- structures of a delay algebra and a monoid (Step 4). -- In addition to the free combination of the List and the Lift monads, I also compose the two monads to form the monad -- LcL : A → Lift(List A). This composition uses a distributive law, which I prove does indeed satisfy all the axioms for a -- distributive law. --************************-- -- Step 1: The Lift monad -- --************************-- -- Defining the monad myLift. --(note that the return/unit is just x → nowL x) data myLift (A : Set) (κ : Cl) : Set where nowL : A → (myLift A κ) stepL : ▹ κ (myLift A κ) → (myLift A κ) bindL : {A B : Set} (κ : Cl) → (A → (myLift B κ)) → myLift A κ → myLift B κ bindL κ f (nowL a) = f a bindL κ f (stepL x) = stepL \(α) → bindL κ f (x α) identity : {A : Set} → A → A identity x = x MultL : {A : Set} (κ : Cl) → (myLift (myLift A κ) κ) → (myLift A κ) MultL κ = bindL κ identity mapL : {A B : Set} (κ : Cl) → (A → B) → (myLift A κ) → (myLift B κ) mapL κ f (nowL x) = nowL (f x) mapL κ f (stepL x) = stepL (\ α → mapL κ f (x α)) --checking that it is indeed a monad -- needs to satisfy three monad laws: -- unit is a left-identity for bind: bind (f, return) = f -- unit is a right-identity for bind: bind (return, x) = x -- bind is associative: bind (\x ­> bind (g, f(x)), x) = bind(g,bind(f, x)) -- The first of these is satisfied by definition -- The other two laws we check here below -- unit law, two versions to learn and remember to ways of doing guarded recursion in agda: unitlawL : {A : Set}(κ : Cl) → ∀(x : (myLift A κ)) → (bindL {A} κ nowL x) ≡ x unitlawL κ (nowL x) = refl unitlawL κ (stepL x) = cong stepL (later-ext (\ α → unitlawL κ (x α))) unitlawL' : {A : Set}(κ : Cl) → ∀(x : (myLift A κ)) → (bindL {A} κ nowL x) ≡ x unitlawL' κ (nowL x) = refl unitlawL' κ (stepL x) = \ i → stepL (\ α → unitlawL' κ (x α) i ) -- associative law: associativelawL : {A B C : Set}(κ : Cl) → ∀(f : A → (myLift B κ)) → ∀ (g : B → (myLift C κ)) → ∀ (y : (myLift A κ)) → (bindL κ (\ x → (bindL κ g (f x))) y) ≡ (bindL κ g (bindL κ f y)) associativelawL κ f g (nowL x) = refl associativelawL κ f g (stepL x) = cong stepL (((later-ext (\ α → associativelawL κ f g (x α))))) -- Some properties that will be useful later: -- interaction of mapL and MultL: MultMap : {A B : Set} (κ : Cl) → ∀(x : myLift (myLift A κ) κ) → ∀(f : A → B) → mapL κ f (MultL κ x) ≡ MultL κ (mapL κ (mapL κ f) x) MultMap κ (nowL x) f = refl MultMap κ (stepL x) f = \ i → stepL (\ α → MultMap κ (x α) f i) -- mapmap for mapL mapmapL : {A B C : Set} (κ : Cl) → ∀(f : A → B) → ∀(g : B → C) → ∀(x : myLift A κ) → mapL κ g (mapL κ f x) ≡ mapL κ (\ y → g(f y)) x mapmapL κ f g (nowL x) = refl mapmapL κ f g (stepL x) = (\ i → stepL (\ α → mapmapL κ f g (x α) i )) --************************-- -- Step 2: The List monad -- --************************-- -- Defining the monad List --List is already defined, but we define a unit and multiplication for it, so it becomes a monad List-unit : {A : Set} → A → List A List-unit x = [ x ] List-mult : {A : Set} → List (List A) → List A List-mult {A} = foldr _++_ [] List-bind : {A B : Set} → (A → List B) → List A → List B List-bind f [] = [] List-bind f (x ∷ xs) = (f x) ++ (List-bind f xs) -- and some other useful functions for later safe-head : {A : Set} → A → List A → A safe-head x [] = x safe-head _ (x ∷ _) = x tail : {A : Set} → List A → List A tail [] = [] tail (x ∷ xs) = xs -- Proving that this forms a monad -- satisfying the laws: -- List-mult (List-unit L) = L -- List-mult (map List-unit L) = L -- List-mult (List-Mult L) = List-mult (map List-mult L) -- and both the unit and the multiplication are natural transformations -- List-mult (List-unit L) = L List-unitlaw1 : {A : Set} → ∀(L : List A) → List-mult (List-unit L) ≡ L List-unitlaw1 [] = refl List-unitlaw1 (x ∷ L) = cong (_++_ [ x ]) (List-unitlaw1 L) -- List-mult (map List-unit L) = L List-unitlaw2 : {A : Set} → ∀(L : List A) → List-mult (map List-unit L) ≡ L List-unitlaw2 [] = refl List-unitlaw2 (x ∷ L) = cong (_++_ [ x ]) (List-unitlaw2 L ) -- List-mult (List-Mult L) = List-mult (map List-mult L) lemma : {A : Set} → ∀(L₁ L₂ : List (List A)) -> List-mult (L₁ ++ L₂) ≡ (List-mult L₁) ++ (List-mult L₂) lemma [] L₂ = refl lemma (L₁ ∷ L₃) L₂ = L₁ ++ List-mult (L₃ ++ L₂) ≡⟨ cong (L₁ ++_) (lemma L₃ L₂) ⟩ L₁ ++ ((List-mult L₃) ++ (List-mult L₂)) ≡⟨ sym (++-assoc L₁ (List-mult L₃) (List-mult L₂)) ⟩ (L₁ ++ List-mult L₃) ++ List-mult L₂ ≡⟨ refl ⟩ (List-mult (L₁ ∷ L₃)) ++ (List-mult L₂) ∎ List-multlaw : {A : Set} -> ∀(L : List (List (List A))) -> List-mult (List-mult L) ≡ List-mult (map List-mult L) List-multlaw [] = refl List-multlaw (L ∷ L₁) = List-mult (L ++ List-mult L₁) ≡⟨ lemma L (List-mult L₁) ⟩ (List-mult L ++ List-mult (List-mult L₁)) ≡⟨ cong (List-mult L ++_) (List-multlaw L₁) ⟩ List-mult L ++ List-mult (map List-mult L₁) ∎ -- the unit is a natural transformation: nattrans-Listunit : {A B : Set} → ∀(f : A → B) → ∀(x : A) → map f (List-unit x) ≡ List-unit (f x) nattrans-Listunit f x = refl -- the multiplication is a natural transformation: lemma-map++ : {A B : Set} → ∀(f : A → B) → ∀(xs ys : List A) → map f (xs ++ ys) ≡ (map f xs) ++ (map f ys) lemma-map++ f [] ys = refl lemma-map++ f (x ∷ xs) ys = cong ((f x) ∷_) (lemma-map++ f xs ys) nattrans-Listmult : {A B : Set} → ∀(f : A → B) → ∀(xss : List (List A)) → map f (List-mult xss) ≡ List-mult (map (map f) xss) nattrans-Listmult f [] = refl nattrans-Listmult f (xs ∷ xss) = map f (xs ++ List-mult xss) ≡⟨ lemma-map++ f xs (List-mult xss) ⟩ map f xs ++ map f (List-mult xss) ≡⟨ cong (map f xs ++_) (nattrans-Listmult f xss) ⟩ map f xs ++ List-mult (map (map f) xss) ∎ --****************************-- -- Step 3: The ListLift monad -- --****************************-- --Now that we have a list monad and a lift monad, I want to show that the following combination of the two is again a monad: --ListLift : (A : Set) → (κ : Cl) → Set --ListLift A κ = List (A ⊎ (▹ κ (ListLift A κ))) data ListLift (A : Set) (κ : Cl) : Set where conLL : List (A ⊎ (▹ κ (ListLift A κ))) -> ListLift A κ --***algebraic structure for ListLift***-- --nowLL and stepLL turn ListLift into a delay algebra structure: nowLL : {A : Set} (κ : Cl) → A → (ListLift A κ) nowLL κ a = conLL [ (inl a) ] stepLL : {A : Set} (κ : Cl) → ▹ κ (ListLift A κ) → (ListLift A κ) stepLL κ a = conLL [ (inr a) ] --union, derived from list concatenation, turns ListLift into a monoid: _∪_ : {A : Set} {κ : Cl} → (ListLift A κ) → (ListLift A κ) → (ListLift A κ) _∪_ {A} {κ} (conLL x) (conLL y) = conLL (x ++ y) --proof that this union does indeed provide a monoid structure: conLLempty-rightunit : {A : Set} (κ : Cl) → ∀ (xs : (ListLift A κ)) → xs ∪ conLL [] ≡ xs conLLempty-rightunit κ (conLL x) = conLL (x ++ []) ≡⟨ cong conLL (++-unit-r x) ⟩ conLL x ∎ conLLempty-leftunit : {A : Set} (κ : Cl) → ∀ (xs : (ListLift A κ)) → conLL [] ∪ xs ≡ xs conLLempty-leftunit κ (conLL x) = refl assoc∪ : {A : Set} {κ : Cl} → ∀(xs ys zs : (ListLift A κ)) → (xs ∪ ys) ∪ zs ≡ xs ∪ (ys ∪ zs) assoc∪ {A} {κ} (conLL x) (conLL x₁) (conLL x₂) = cong conLL (++-assoc x x₁ x₂) --a bind operator to make ListLift into a monad bindLL : {A B : Set} (κ : Cl) → (A → (ListLift B κ)) → ListLift A κ → ListLift B κ bindLL κ f (conLL []) = conLL [] bindLL κ f (conLL (inl x ∷ x₁)) = (f x) ∪ bindLL κ f (conLL x₁) bindLL κ f (conLL (inr x ∷ x₁)) = (stepLL κ (\ α → bindLL κ f (x α))) ∪ bindLL κ f (conLL x₁) --bind commutes with ∪ bindLL∪ : {A B : Set} (κ : Cl) → ∀(f : A → (ListLift B κ)) → ∀(xs ys : (ListLift A κ)) → bindLL κ f (xs ∪ ys) ≡ (bindLL κ f xs) ∪ (bindLL κ f ys) bindLL∪ κ f xs (conLL []) = bindLL κ f (xs ∪ conLL []) ≡⟨ cong (bindLL κ f) (conLLempty-rightunit κ xs) ⟩ bindLL κ f xs ≡⟨ sym (conLLempty-rightunit κ (bindLL κ f xs)) ⟩ (bindLL κ f xs ∪ conLL [])∎ bindLL∪ κ f (conLL []) (conLL (x ∷ x₁)) = bindLL κ f (conLL (x ∷ x₁)) ≡⟨ sym (conLLempty-leftunit κ (bindLL κ f (conLL (x ∷ x₁)))) ⟩ (conLL [] ∪ bindLL κ f (conLL (x ∷ x₁))) ∎ bindLL∪ κ f (conLL (inl x₂ ∷ x₃)) (conLL (x ∷ x₁)) = (f x₂ ∪ bindLL κ f ((conLL x₃) ∪ (conLL (x ∷ x₁)))) ≡⟨ cong (f x₂ ∪_) (bindLL∪ κ f (conLL x₃) (conLL (x ∷ x₁))) ⟩ (f x₂ ∪ (bindLL κ f (conLL x₃) ∪ bindLL κ f (conLL (x ∷ x₁)))) ≡⟨ sym (assoc∪ (f x₂) (bindLL κ f (conLL x₃)) (bindLL κ f (conLL (x ∷ x₁)))) ⟩ ((f x₂ ∪ bindLL κ f (conLL x₃)) ∪ bindLL κ f (conLL (x ∷ x₁))) ∎ bindLL∪ κ f (conLL (inr x₂ ∷ x₃)) (conLL (x ∷ x₁)) = (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪ bindLL κ f ((conLL x₃) ∪ (conLL (x ∷ x₁)))) ≡⟨ cong (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪_) (bindLL∪ κ f (conLL x₃) (conLL (x ∷ x₁))) ⟩ (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪ ((bindLL κ f (conLL x₃) ∪ bindLL κ f (conLL (x ∷ x₁))))) ≡⟨ sym (assoc∪ (conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ [])) (bindLL κ f (conLL x₃)) (bindLL κ f (conLL (x ∷ x₁)))) ⟩ ((conLL (inr (λ α → bindLL κ f (x₂ α)) ∷ []) ∪ bindLL κ f (conLL x₃)) ∪ bindLL κ f (conLL (x ∷ x₁))) ∎ --and a map function to prove naturality of bind and now mapLL : {A B : Set} (κ : Cl) → (f : A → B) → (ListLift A κ) → (ListLift B κ) mapLL κ f (conLL []) = conLL [] mapLL κ f (conLL (inl x ∷ x₁)) = conLL ([ inl (f x) ]) ∪ mapLL κ f (conLL x₁) mapLL κ f (conLL (inr x ∷ x₁)) = (stepLL κ (\ α → mapLL κ f (x α))) ∪ mapLL κ f (conLL x₁) --***proving that ListLift is a monad***-- --bindLL and nowLL need to be natural transformations nattrans-nowLL : {A B : Set} (κ : Cl) → ∀(f : A → B) → ∀(x : A) → mapLL κ f (nowLL κ x) ≡ nowLL κ (f x) nattrans-nowLL {A}{B} κ f x = refl --TODO: bind is a natural transformation -- bindLL and nowLL also need to satisfy three monad laws: -- unit is a left-identity for bind: bind (f, nowLL) = f -- unit is a right-identity for bind: bind (nowLL, x) = x -- bind is associative: bind (\x ­> bind (g, f(x)), x) = bind(g,bind(f, x)) -- unit is a left-identity for bind unitlawLL1 : {A B : Set} (κ : Cl) → ∀ (f : A → (ListLift B κ)) → ∀ (x : A) → (bindLL {A} κ f (nowLL κ x)) ≡ f x unitlawLL1 κ f x = (f x ∪ conLL []) ≡⟨ conLLempty-rightunit κ (f x) ⟩ f x ∎ -- unit is a right-identity for bind unitlawLL2 : {A : Set}(κ : Cl) → ∀(x : (ListLift A κ)) → (bindLL κ (nowLL κ) x) ≡ x unitlawLL2 κ (conLL []) = refl unitlawLL2 κ (conLL (inl x ∷ x₁)) = (conLL ([ inl x ]) ∪ bindLL κ (nowLL κ) (conLL x₁)) ≡⟨ cong (conLL ([ inl x ]) ∪_ ) (unitlawLL2 κ (conLL x₁)) ⟩ (conLL ([ inl x ]) ∪ conLL x₁) ≡⟨ refl ⟩ conLL (inl x ∷ x₁) ∎ unitlawLL2 κ (conLL (inr x ∷ x₁)) = (stepLL κ (\ α → bindLL κ (nowLL κ) (x α))) ∪ bindLL κ (nowLL κ) (conLL x₁) ≡⟨ cong ((stepLL κ (\ α → bindLL κ (nowLL κ) (x α))) ∪_) (unitlawLL2 κ (conLL x₁)) ⟩ (stepLL κ (\ α → bindLL κ (nowLL κ) (x α))) ∪ conLL x₁ ≡⟨ cong (_∪ conLL x₁) (\ i → stepLL κ (\ α → unitlawLL2 κ (x α) i ) ) ⟩ conLL ([ inr x ]) ∪ conLL x₁ ≡⟨ refl ⟩ conLL (inr x ∷ x₁) ∎ -- bind is associative assoclawLL : {A B C : Set}(κ : Cl) → ∀(f : A → (ListLift B κ)) → ∀ (g : B → (ListLift C κ)) → ∀ (x : (ListLift A κ)) → (bindLL κ (\ y → (bindLL κ g (f y))) x) ≡ (bindLL κ g (bindLL κ f x)) assoclawLL {A} {B} {C} κ f g (conLL []) = refl assoclawLL {A} {B} {C} κ f g (conLL (inl x ∷ x₁)) = (bindLL κ g (f x) ∪ bindLL κ (λ y → bindLL κ g (f y)) (conLL x₁)) ≡⟨ cong (bindLL κ g (f x) ∪_) (assoclawLL κ f g (conLL x₁)) ⟩ (bindLL κ g (f x) ∪ bindLL κ g (bindLL κ f (conLL x₁))) ≡⟨ sym (bindLL∪ κ g (f x) (bindLL κ f (conLL x₁))) ⟩ bindLL κ g (f x ∪ bindLL κ f (conLL x₁)) ∎ assoclawLL {A} {B} {C} κ f g (conLL (inr x ∷ x₁)) = (conLL (inr (λ α → bindLL κ (λ y → bindLL κ g (f y)) (x α)) ∷ []) ∪ bindLL κ (λ y → bindLL κ g (f y)) (conLL x₁)) ≡⟨ cong (conLL (inr (λ α → bindLL κ (λ y → bindLL κ g (f y)) (x α)) ∷ []) ∪_) (assoclawLL κ f g (conLL x₁)) ⟩ (conLL (inr (λ α → bindLL κ (λ y → bindLL κ g (f y)) (x α)) ∷ []) ∪ (bindLL κ g (bindLL κ f (conLL x₁)))) ≡⟨ cong (_∪ (bindLL κ g (bindLL κ f (conLL x₁)))) (\ i → stepLL κ (\ α → assoclawLL κ f g (x α) i ) ) ⟩ ((bindLL κ g (conLL (inr (λ α → bindLL κ f (x α)) ∷ []))) ∪ (bindLL κ g (bindLL κ f (conLL x₁))) ) ≡⟨ sym (bindLL∪ κ g (conLL (inr (λ α → bindLL κ f (x α)) ∷ [])) (bindLL κ f (conLL x₁))) ⟩ bindLL κ g (conLL (inr (λ α → bindLL κ f (x α)) ∷ []) ∪ bindLL κ f (conLL x₁)) ∎ -- If I want to do it via fixpoints instead: module WithFix where LiftList : (A : Set) → (κ : Cl) → Set LiftList A κ = fix (\ (X : ▹ κ Set) → List(A ⊎ (▸ κ \ α → (X α)))) nowLLfix : {A : Set} (κ : Cl) → A → (LiftList A κ) nowLLfix κ a = [ (inl a) ] stepLLfix : {A : Set} (κ : Cl) → ▹ κ (LiftList A κ) → (LiftList A κ) stepLLfix {A} κ a = transport (λ i → fix-eq (λ (X : ▹ κ Type) → List (A ⊎ (▸ κ (λ α → X α)))) (~ i)) [ (inr a) ] --***********************************************************************-- -- Step 4: The ListLift monad as the free delay-algebra and monoid monad -- --***********************************************************************-- -- We already know that (ListLift, stepLL) forms a delay algebra structure -- and (Listlift, conLL [], _∪_) forms a monoid. -- What we need to show is that ListLift is the free monad with these properties. -- That is, for a set A, and any other structure (B, δ, ε, _·_) where (B, δ) is a delay algebra and (B, ε, _·_) a monoid -- given a function f : A → B, there is a unique function ListLift A → B extending f that preserves the algebra structures. record IsDelayalg {A : Set}(κ : Cl)(nextA : ▹ κ A → A) : Set where constructor isdelayalg record IsMonoid {A : Set} (ε : A) (_·_ : A → A → A) : Set where constructor ismonoid field assoc : (x y z : A) → (x · y) · z ≡ x · (y · z) leftid : (x : A) → ε · x ≡ x rightid : (x : A) → x · ε ≡ x record DelayMonoidData (A : Set) (κ : Cl) : Set where constructor dmdata field nextA : ▹ κ A → A ε : A _·_ : A → A → A record IsDelayMonoid {A : Set}(κ : Cl) (dm : DelayMonoidData A κ) : Set where constructor isdelaymonoid open DelayMonoidData dm field isMonoid : IsMonoid (ε) (_·_) isDelayalg : IsDelayalg κ (nextA) open IsMonoid isMonoid public open IsDelayalg isDelayalg public record IsPreservingDM {A B : Set}(κ : Cl) dmA dmB (g : A → B) : Set where constructor ispreservingDM open DelayMonoidData dmA renaming (ε to εA) open DelayMonoidData dmB renaming (ε to εB; nextA to nextB; _·_ to _*_) field unit-preserve : g (εA) ≡ εB next-preserve : (x : ▹ κ A) → g (nextA x) ≡ nextB (\ α → g (x α)) union-preserve : (x y : A) → g (x · y) ≡ (g x) * (g y) record IsExtending {A B : Set}{κ : Cl} (f : A → B) (h : (ListLift A κ) → B) : Set where constructor isextending field extends : (x : A) → h (nowLL κ x) ≡ (f x) --fold defines the function we are after fold : {A B : Set}{κ : Cl} → isSet A → isSet B → ∀ dm → IsDelayMonoid {B} κ dm → (A → B) → (ListLift A κ) → B fold setA setB (dmdata nextB ε _·_) isDMB f (conLL []) = ε fold setA setB dm@(dmdata nextB ε _·_) isDMB f (conLL (inl x ∷ x₁)) = (f x) · fold setA setB dm isDMB f (conLL x₁) fold setA setB dm@(dmdata nextB ε _·_) isDMB f (conLL (inr x ∷ x₁)) = (nextB (\ α → fold setA setB dm isDMB f (x α))) · fold setA setB dm isDMB f (conLL x₁) --fold extends the function f : A → B -- direct proof: fold-extends-f : {A B : Set}{κ : Cl} → ∀(setA : isSet A) → ∀(setB : isSet B) → ∀ dm → ∀(isDMB : IsDelayMonoid {B} κ dm) → ∀ (f : A → B) → ∀ (x : A) → fold setA setB dm isDMB f (nowLL κ x) ≡ f x fold-extends-f setA setB dm isDMB f x = IsDelayMonoid.rightid isDMB (f x) -- or via the record "IsExtending": fold-extends : {A B : Set}{κ : Cl} → ∀(setA : isSet A) → ∀(setB : isSet B) → ∀ dm → ∀(isDMB : IsDelayMonoid {B} κ dm) → ∀ (f : A → B) → IsExtending f (fold setA setB dm isDMB f) IsExtending.extends (fold-extends setA setB dm isDMB f) x = IsDelayMonoid.rightid isDMB (f x) module _ {A B : Set}{κ : Cl} (setA : isSet A) (setB : isSet B) (dm : _) (isDMB : IsDelayMonoid {B} κ dm) (f : A → B) where open IsPreservingDM open DelayMonoidData dm renaming (nextA to nextB) --fold preseves the DelayMonoid structure fold-preserves : IsPreservingDM {ListLift A κ}{B} κ (dmdata (stepLL κ) (conLL []) _∪_) dm (fold setA setB dm isDMB f) unit-preserve fold-preserves = refl next-preserve fold-preserves x = IsDelayMonoid.rightid isDMB (nextB (λ α → fold setA setB dm isDMB f (x α))) union-preserve fold-preserves (conLL xs) (conLL ys) = lemma-union xs ys where lemma-union : ∀ xs ys → fold setA setB dm isDMB f (conLL xs ∪ conLL ys) ≡ (fold setA setB dm isDMB f (conLL xs) · fold setA setB dm isDMB f (conLL ys)) lemma-union [] y = sym (IsDelayMonoid.leftid isDMB (fold setA setB dm isDMB f (conLL y))) lemma-union (inl x ∷ x₁) y = (f x · fold setA setB dm isDMB f (conLL (x₁ ++ y))) ≡⟨ cong (f x ·_) (lemma-union x₁ y) ⟩ ((f x · (fold setA setB dm isDMB f (conLL x₁) · fold setA setB dm isDMB f (conLL y)))) ≡⟨ sym (IsDelayMonoid.assoc isDMB (f x) (fold setA setB dm isDMB f (conLL x₁)) (fold setA setB dm isDMB f (conLL y))) ⟩ ((f x · fold setA setB dm isDMB f (conLL x₁)) · fold setA setB dm isDMB f (conLL y)) ∎ lemma-union (inr x ∷ x₁) y = (nextB (λ α → fold setA setB dm isDMB f (x α)) · fold setA setB dm isDMB f (conLL (x₁ ++ y))) ≡⟨ cong (nextB (λ α → fold setA setB dm isDMB f (x α)) ·_) (lemma-union x₁ y) ⟩ ( (nextB (λ α → fold setA setB dm isDMB f (x α)) · (fold setA setB dm isDMB f (conLL x₁) · fold setA setB dm isDMB f (conLL y)))) ≡⟨ sym (IsDelayMonoid.assoc isDMB (nextB (λ α → fold setA setB dm isDMB f (x α))) (fold setA setB dm isDMB f (conLL x₁)) (fold setA setB dm isDMB f (conLL y))) ⟩ ((nextB (λ α → fold setA setB dm isDMB f (x α)) · fold setA setB dm isDMB f (conLL x₁)) · fold setA setB dm isDMB f (conLL y)) ∎ --and fold is unique in doing so. That is, for any function h that both preserves the algebra structure and extends the function f : A → B, -- h is equivalent to fold. module _ {A B : Set} {κ : Cl} (h : ListLift A κ → B) (setA : isSet A) (setB : isSet B) (dm : _) (isDMB : IsDelayMonoid {B} κ dm) (f : A → B) (isPDM : IsPreservingDM {ListLift A κ}{B} κ (dmdata (stepLL κ) (conLL []) _∪_ ) dm h) (isExt : IsExtending f h) where open DelayMonoidData dm renaming (nextA to nextB) fold-uniquenessLL : (x : (ListLift A κ)) → h x ≡ (fold setA setB dm isDMB f x) fold-uniquenessLL (conLL []) = h (conLL []) ≡⟨ IsPreservingDM.unit-preserve isPDM ⟩ ε ≡⟨ refl ⟩ fold setA setB dm isDMB f (conLL []) ∎ fold-uniquenessLL (conLL (inl x ∷ x₁)) = h (conLL (inl x ∷ x₁)) ≡⟨ refl ⟩ h ((conLL [ inl x ]) ∪ (conLL x₁)) ≡⟨ IsPreservingDM.union-preserve isPDM (conLL [ inl x ]) (conLL x₁) ⟩ ((h (conLL [ inl x ])) · (h (conLL x₁)) ) ≡⟨ cong (_· (h (conLL x₁)) ) (IsExtending.extends isExt x) ⟩ (f x · (h (conLL x₁))) ≡⟨ cong (f x ·_)(fold-uniquenessLL (conLL x₁)) ⟩ (f x · fold setA setB dm isDMB f (conLL x₁)) ∎ fold-uniquenessLL (conLL (inr x ∷ x₁)) = h (conLL (inr x ∷ x₁)) ≡⟨ cong (h ) refl ⟩ h ((conLL [ inr x ]) ∪ (conLL x₁)) ≡⟨ IsPreservingDM.union-preserve isPDM (conLL [ inr x ]) (conLL x₁) ⟩ (h (conLL [ inr x ])) · (h (conLL x₁)) ≡⟨ cong (_· h (conLL x₁)) refl ⟩ ((h (stepLL κ x)) · (h (conLL x₁)) ) ≡⟨ cong (_· h (conLL x₁)) (IsPreservingDM.next-preserve isPDM x) ⟩ (((nextB (λ α → h (x α))) · (h (conLL x₁)))) ≡⟨ cong (_· h (conLL x₁)) (cong (nextB) (later-ext (\ α → fold-uniquenessLL (x α)))) ⟩ ((nextB (λ α → fold setA setB dm isDMB f (x α))) · (h (conLL x₁))) ≡⟨ cong (nextB (λ α → fold setA setB dm isDMB f (x α)) ·_) (fold-uniquenessLL (conLL x₁)) ⟩ (nextB (λ α → fold setA setB dm isDMB f (x α)) · fold setA setB dm isDMB f (conLL x₁)) ∎ --************************************************-- -- Composing Lift and List via a distributive law -- --************************************************-- --We now define a composite monad of the List and Lift monads, formed via a distributive law. LcL : (A : Set) → (κ : Cl) → Set LcL A κ = myLift (List A) κ -- the unit of this monad is simply the composit of the units for Lift (nowL x) and List ([x]) nowLcL : {A : Set} {κ : Cl} → A → (LcL A κ) nowLcL x = nowL [ x ] -- LcL is a monad via a distributive law, distributing List over Lift. -- Here is the distributive law: distlawLcL : {A : Set} (κ : Cl) → List (myLift A κ) → (LcL A κ) distlawLcL κ [] = nowL [] distlawLcL κ (nowL x ∷ xs) = MultL κ (nowL (mapL κ (([ x ]) ++_) (distlawLcL κ xs))) distlawLcL κ (stepL x ∷ xs) = stepL (\ α → distlawLcL κ ((x α) ∷ xs)) --proof that distlawLcL is indeed a distributive law: --unit laws: unitlawLcL1 : {A : Set} (κ : Cl) → ∀(x : myLift A κ) → (distlawLcL κ (List-unit x )) ≡ mapL κ List-unit x unitlawLcL1 κ (nowL x) = refl unitlawLcL1 κ (stepL x) = (\ i → stepL (\ α → unitlawLcL1 κ (x α) i )) unitlawLcL2 : {A : Set} (κ : Cl) → ∀(xs : List A) → (distlawLcL κ (map nowL xs)) ≡ nowL xs unitlawLcL2 κ [] = refl unitlawLcL2 κ (x ∷ xs) = mapL κ (λ ys → x ∷ ys) (distlawLcL κ (map nowL xs)) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (unitlawLcL2 κ xs) ⟩ mapL κ (λ ys → x ∷ ys) (nowL xs) ≡⟨ refl ⟩ nowL (x ∷ xs) ∎ --multiplication laws: -- In the proof of the first multiplication law, I need a lemma about list concatenation, -- namely that putting a singleton list in front of a list of lists, and concatening the result -- yields the same list as putting the element of the signleton in front of the first list in the list of lists, -- and then concatenating the result. -- The lemma is split into two parts, first the general result as described in words here, -- followed by the specific situation in which I need it in the proofs below. lemma7a : {A : Set} → ∀(x : A) → ∀(xss : (List (List A))) → List-mult ((x ∷ safe-head [] xss) ∷ tail xss ) ≡ List-mult (([ x ]) ∷ xss) lemma7a x [] = refl lemma7a x (xs ∷ xss) = refl lemma7b : {A : Set} (κ : Cl) → ∀(y : myLift (List (List A)) κ) → ∀(x : A) → mapL κ (λ xss → List-mult ((x ∷ safe-head [] xss) ∷ tail xss)) y ≡ mapL κ (λ xss → List-mult (([ x ]) ∷ xss)) y lemma7b κ (nowL xss) x = cong nowL (lemma7a x xss) lemma7b κ (stepL xss) x = (\ i → stepL (\ α → lemma7b κ (xss α) x i )) -- in addition, I need this rather technical lemma that allows me to pull a mapL through the distributive law. -- without it, I could not finish the proof. lemma8 : {A : Set} (κ : Cl) → ∀(x : A) → ∀(xs : myLift (List A) κ) → ∀(xss : List (myLift (List A) κ)) → mapL κ (λ yss → ((x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (xs ∷ xss)) ≡ distlawLcL κ (mapL κ (λ ys → x ∷ ys) xs ∷ xss) lemma8 κ x (nowL ys) [] = refl lemma8 κ x (stepL ys) [] = (\ i → stepL (λ α → lemma8 κ x (ys α) [] i )) lemma8 κ x (nowL []) (zs ∷ xss) = mapL κ (λ yss → (x ∷ safe-head [] yss) ∷ tail yss) (mapL κ (λ zss → [] ∷ zss) (distlawLcL κ (zs ∷ xss))) ≡⟨ mapmapL κ ((λ zss → [] ∷ zss)) ((λ yss → (x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (zs ∷ xss)) ⟩ mapL κ (λ yss → (x ∷ safe-head [] ([] ∷ yss)) ∷ tail ([] ∷ yss)) (distlawLcL κ (zs ∷ xss)) ≡⟨ refl ⟩ mapL κ (λ yss → (x ∷ []) ∷ yss) (distlawLcL κ (zs ∷ xss)) ∎ lemma8 κ x (nowL (y ∷ ys)) (zs ∷ xss) = mapL κ (λ yss → (x ∷ safe-head [] yss) ∷ tail yss) (mapL κ (λ zss → (y ∷ ys) ∷ zss) (distlawLcL κ (zs ∷ xss))) ≡⟨ mapmapL κ ((λ zss → (y ∷ ys) ∷ zss)) ((λ yss → (x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (zs ∷ xss)) ⟩ mapL κ (λ yss → (x ∷ safe-head []((y ∷ ys) ∷ yss)) ∷ tail((y ∷ ys) ∷ yss)) (distlawLcL κ (zs ∷ xss)) ≡⟨ refl ⟩ mapL κ (λ yss → (x ∷ y ∷ ys) ∷ yss) (distlawLcL κ (zs ∷ xss)) ∎ lemma8 κ x (stepL ys) (zs ∷ xss) = (\ i → stepL (λ α → lemma8 κ x (ys α) (zs ∷ xss) i )) --now we are ready to prove the multiplication laws: multlawLcL1 : {A : Set} (κ : Cl) → ∀(xss : List (List (myLift A κ))) → distlawLcL κ (List-mult xss) ≡ mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) xss)) multlawLcL1 κ [] = refl multlawLcL1 κ ([] ∷ xss) = distlawLcL κ (List-mult xss) ≡⟨ multlawLcL1 κ xss ⟩ mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ refl ⟩ mapL κ (λ ys → List-mult ([] ∷ ys)) (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ sym (mapmapL κ (\ ys → [] ∷ ys) List-mult ((distlawLcL κ (map (distlawLcL κ) xss)))) ⟩ mapL κ List-mult (mapL κ (λ ys → [] ∷ ys) (distlawLcL κ (map (distlawLcL κ) xss))) ∎ multlawLcL1 κ ((nowL x ∷ []) ∷ xss) = mapL κ (λ ys → x ∷ ys) (distlawLcL κ (List-mult xss)) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (multlawLcL1 κ xss) ⟩ mapL κ (λ ys → x ∷ ys) (mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) xss))) ≡⟨ mapmapL κ List-mult (λ ys → x ∷ ys) (distlawLcL κ (map (distlawLcL κ) xss)) ⟩ mapL κ (λ ys → x ∷ List-mult ys) (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ refl ⟩ mapL κ (λ ys → List-mult (([ x ]) ∷ ys)) (distlawLcL κ (map (distlawLcL κ) xss)) ≡⟨ sym( mapmapL κ (λ ys → ([ x ]) ∷ ys) List-mult (distlawLcL κ (map (distlawLcL κ) xss))) ⟩ mapL κ List-mult (mapL κ (λ ys → ([ x ]) ∷ ys) (distlawLcL κ (map (distlawLcL κ) xss))) ∎ multlawLcL1 κ ((nowL x ∷ y ∷ xs) ∷ xss) = mapL κ (λ ys → x ∷ ys) (distlawLcL κ (List-mult ((y ∷ xs) ∷ xss))) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (multlawLcL1 κ ((y ∷ xs) ∷ xss)) ⟩ mapL κ (λ ys → x ∷ ys) (mapL κ List-mult (distlawLcL κ (map (distlawLcL κ) ((y ∷ xs) ∷ xss)))) ≡⟨ mapmapL κ List-mult (λ ys → x ∷ ys) (distlawLcL κ (map (distlawLcL κ) ((y ∷ xs) ∷ xss))) ⟩ mapL κ (λ yss → x ∷ (List-mult yss)) (distlawLcL κ (map (distlawLcL κ) ((y ∷ xs) ∷ xss))) ≡⟨ refl ⟩ mapL κ (λ yss → x ∷ List-mult yss) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)) ≡⟨ refl ⟩ mapL κ (λ yss → List-mult (([ x ]) ∷ yss)) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)) ≡⟨ sym (lemma7b κ ((distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss))) x) ⟩ mapL κ (λ yss → List-mult ((x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)) ≡⟨ sym (mapmapL κ ((λ yss → ((x ∷ safe-head [] yss) ∷ tail yss))) List-mult ((distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss)))) ⟩ mapL κ List-mult (mapL κ (λ yss → ((x ∷ safe-head [] yss) ∷ tail yss)) (distlawLcL κ (distlawLcL κ (y ∷ xs) ∷ map (distlawLcL κ) xss))) ≡⟨ cong (mapL κ List-mult) (lemma8 κ x ((distlawLcL κ (y ∷ xs))) ((map (distlawLcL κ) xss))) ⟩ mapL κ List-mult (distlawLcL κ (mapL κ (λ ys → x ∷ ys) (distlawLcL κ (y ∷ xs)) ∷ (map (distlawLcL κ) xss))) ∎ multlawLcL1 κ ((stepL x ∷ xs) ∷ xss) = (\ i → stepL (\ α → multlawLcL1 κ ((x α ∷ xs) ∷ xss) i )) lemma9a : {A : Set} (κ : Cl) → ∀(x : ▹ κ (myLift A κ)) → ∀(y : ▹ κ (myLift (List (myLift A κ)) κ)) → MultL κ (stepL (λ α → stepL (λ β → mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) ≡ MultL κ (stepL (λ β → stepL (λ α → mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) lemma9a κ x y = cong (MultL κ) (cong stepL (later-ext λ α → cong stepL (later-ext λ β → cong₂ (mapL κ) (funExt (λ ys → cong (distlawLcL _) (cong₂ _∷_ (tick-irr x α β) refl))) (sym (tick-irr y α β))))) lemma9 : {A : Set} (κ : Cl) → ∀(x : ▹ κ (myLift A κ)) → ∀(y : myLift (List (myLift A κ)) κ) → MultL κ (stepL (λ α → (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) y))) ≡ MultL κ (mapL κ (λ ys → stepL (λ α → distlawLcL κ (x α ∷ ys))) y) lemma9 κ x (nowL y) = refl lemma9 κ x (stepL y) = stepL (λ α → stepL (λ β → MultL κ (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) ≡⟨ lemma9a κ x y ⟩ stepL (λ β → stepL (λ α → MultL κ (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (y β)))) ≡⟨ ( (\ i → stepL (\ β → lemma9 κ x (y β) i ))) ⟩ stepL (λ β → MultL κ (mapL κ (λ ys → stepL (λ α → distlawLcL κ (x α ∷ ys))) (y β))) ∎ multlawLcL2 : {A : Set} (κ : Cl) → ∀(xs : List (myLift (myLift A κ) κ)) → distlawLcL κ (map (MultL κ) xs) ≡ MultL κ (mapL κ (distlawLcL κ) (distlawLcL κ xs)) multlawLcL2 κ [] = refl multlawLcL2 κ (nowL (nowL x) ∷ xs) = distlawLcL κ ((nowL x) ∷ map (MultL κ) xs) ≡⟨ refl ⟩ mapL κ (λ ys → x ∷ ys) (distlawLcL κ (map (MultL κ) xs)) ≡⟨ cong (mapL κ (λ ys → x ∷ ys)) (multlawLcL2 κ xs) ⟩ mapL κ (λ ys → x ∷ ys) (MultL κ (mapL κ (distlawLcL κ) (distlawLcL κ xs))) ≡⟨ MultMap κ (mapL κ (distlawLcL κ) (distlawLcL κ xs)) (λ ys → x ∷ ys) ⟩ MultL κ (mapL κ (mapL κ (λ ys → x ∷ ys)) (mapL κ (distlawLcL κ) (distlawLcL κ xs)) ) ≡⟨ cong (MultL κ) (mapmapL κ ((distlawLcL κ)) (mapL κ (λ ys → x ∷ ys)) ((distlawLcL κ xs))) ⟩ MultL κ (mapL κ (λ ys → mapL κ (λ zs → x ∷ zs) (distlawLcL κ ys)) (distlawLcL κ xs)) ≡⟨ refl ⟩ MultL κ (mapL κ (λ ys → (distlawLcL κ) ((nowL x) ∷ ys)) (distlawLcL κ xs)) ≡⟨ cong (MultL κ) (sym (mapmapL κ ((λ ys → (nowL x) ∷ ys)) ((distlawLcL κ)) ((distlawLcL κ xs)))) ⟩ MultL κ (mapL κ (distlawLcL κ) (mapL κ (λ ys → (nowL x) ∷ ys) (distlawLcL κ xs))) ∎ multlawLcL2 κ (nowL (stepL x) ∷ xs) = distlawLcL κ ((stepL x) ∷ map (MultL κ) xs) ≡⟨ refl ⟩ stepL (λ α → distlawLcL κ (x α ∷ map (MultL κ) xs)) ≡⟨ refl ⟩ stepL (λ α → distlawLcL κ (map (MultL κ) ((nowL (x α)) ∷ xs))) ≡⟨ (\ i → stepL (\ α → multlawLcL2 κ (((nowL (x α)) ∷ xs)) i )) ⟩ stepL (λ α → MultL κ (mapL κ (distlawLcL κ) (distlawLcL κ ((nowL (x α) ∷ xs)))) ) ≡⟨ refl ⟩ MultL κ (stepL (λ α → (mapL κ (distlawLcL κ) (distlawLcL κ ((nowL (x α) ∷ xs)))))) ≡⟨ refl ⟩ MultL κ (stepL (λ α → (mapL κ (distlawLcL κ) (mapL κ (λ ys → x α ∷ ys) (distlawLcL κ xs))))) ≡⟨ cong (MultL κ) ((λ i → stepL (\ α → (mapmapL κ ((λ ys → x α ∷ ys)) ((distlawLcL κ)) ((distlawLcL κ xs))) i ))) ⟩ MultL κ (stepL (λ α → (mapL κ (λ ys → distlawLcL κ (x α ∷ ys)) (distlawLcL κ xs)))) ≡⟨ lemma9 κ x (distlawLcL κ xs) ⟩ MultL κ (mapL κ (λ ys → stepL (λ α → distlawLcL κ (x α ∷ ys))) (distlawLcL κ xs)) ≡⟨ refl ⟩ MultL κ (mapL κ (λ ys → (distlawLcL κ) ((stepL x) ∷ ys)) (distlawLcL κ xs)) ≡⟨ cong (MultL κ) (sym (mapmapL κ ((λ ys → (stepL x) ∷ ys)) ((distlawLcL κ)) ((distlawLcL κ xs)))) ⟩ MultL κ (mapL κ (distlawLcL κ) (mapL κ (λ ys → (stepL x) ∷ ys) (distlawLcL κ xs))) ∎ multlawLcL2 κ (stepL x ∷ xs) = (\ i → stepL (\ α → multlawLcL2 κ ((x α ∷ xs)) i )) -- Bonusmaterial: -- we define a union on LcL. _l∪l_ : {A : Set} {κ : Cl} → (LcL A κ) → (LcL A κ) → (LcL A κ) nowL x l∪l nowL y = nowL (x ++ y) nowL x l∪l stepL y = stepL (\ α → (nowL x l∪l (y α))) stepL x l∪l y = stepL (\ α → ((x α) l∪l y)) --nowL [] is a unit for l∪l left-unitl∪l : {A : Set} {κ : Cl} → ∀(x : LcL A κ) → (nowL []) l∪l x ≡ x left-unitl∪l (nowL x) = refl left-unitl∪l (stepL x) = stepL (λ α → nowL [] l∪l x α) ≡⟨ ((\ i → stepL (\ α → left-unitl∪l (x α) i ))) ⟩ stepL (λ α → x α) ≡⟨ refl ⟩ stepL x ∎ right-unitl∪l : {A : Set} {κ : Cl} → ∀(x : LcL A κ) → x l∪l (nowL []) ≡ x right-unitl∪l (nowL x) = cong nowL (++-unit-r x) right-unitl∪l (stepL x) = stepL (λ α → x α l∪l nowL []) ≡⟨ ((\ i → stepL (\ α → right-unitl∪l (x α) i ))) ⟩ stepL (λ α → x α) ≡⟨ refl ⟩ stepL x ∎ --mapL κ f distributes over l∪l if f distributes over ++ dist-mapL-l∪l : {A B : Set} (κ : Cl) → ∀(f : (List A) → (List B)) → ∀(fcom : ∀(xs : List A) → ∀(ys : List A) → f (xs ++ ys) ≡ f xs ++ f ys) → ∀(x : (LcL A κ)) → ∀(y : LcL A κ) → mapL κ f (x l∪l y) ≡ (mapL κ f x) l∪l (mapL κ f y) dist-mapL-l∪l κ f fcom (nowL x) (nowL y) = cong nowL (fcom x y) dist-mapL-l∪l κ f fcom (nowL x) (stepL y) = (\ i → stepL (\ α → dist-mapL-l∪l κ f fcom (nowL x) (y α) i )) dist-mapL-l∪l κ f fcom (stepL x) y = \ i → stepL (\ α → dist-mapL-l∪l κ f fcom (x α) y i )
{ "alphanum_fraction": 0.4619460501, "avg_line_length": 59.2252252252, "ext": "agda", "hexsha": "c5d1d8a5c7048a2269ad44c6867cd7b42563c4eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "add34af6c5c0c106c7aaa2d9612d54e041ab5d3b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Saizan/Agda-proofs", "max_forks_repo_path": "combinations-of-lift-and-list.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "add34af6c5c0c106c7aaa2d9612d54e041ab5d3b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Saizan/Agda-proofs", "max_issues_repo_path": "combinations-of-lift-and-list.agda", "max_line_length": 179, "max_stars_count": null, "max_stars_repo_head_hexsha": "add34af6c5c0c106c7aaa2d9612d54e041ab5d3b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Saizan/Agda-proofs", "max_stars_repo_path": "combinations-of-lift-and-list.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13840, "size": 39444 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Categories.Definition module Categories.Functor.Definition where record Functor {a b c d : _} (C : Category {a} {b}) (D : Category {c} {d}) : Set (a ⊔ b ⊔ c ⊔ d) where field onObj : Category.objects C → Category.objects D onArrow : {S T : Category.objects C} → Category.arrows C S T → Category.arrows D (onObj S) (onObj T) mapId : {T : Category.objects C} → onArrow (Category.id C T) ≡ Category.id D (onObj T) mapCompose : {X Y Z : Category.objects C} → (f : Category.arrows C X Y) (g : Category.arrows C Y Z) → onArrow (Category._∘_ C g f) ≡ Category._∘_ D (onArrow g) (onArrow f)
{ "alphanum_fraction": 0.6653386454, "avg_line_length": 50.2, "ext": "agda", "hexsha": "663546f348297e0ae3378abd5879ec509c41155f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Categories/Functor/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Categories/Functor/Definition.agda", "max_line_length": 175, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Categories/Functor/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 244, "size": 753 }
module Stuck where postulate I : Set i j : I data D : I → I → Set where d : D i i e : D j j f : ∀ {x} → D i x → Set₁ f d = Set
{ "alphanum_fraction": 0.4928571429, "avg_line_length": 10.7692307692, "ext": "agda", "hexsha": "32bcea23ba0616deedaaab827769f9db5886a4cb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Stuck.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Stuck.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Stuck.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 63, "size": 140 }
module SetOmega where postulate IsType : ∀ {a} → Set a → Set Bad : IsType (∀ a → Set a)
{ "alphanum_fraction": 0.5773195876, "avg_line_length": 13.8571428571, "ext": "agda", "hexsha": "f8b5139e4aab3dfd5aae3b6e645cae963d4da8b4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/SetOmega.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/SetOmega.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/SetOmega.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 36, "size": 97 }
open import Agda.Builtin.Bool data Test : Set where CTest : Bool -> {Bool} -> Test {-# COMPILE AGDA2HS Test #-} getTest : Test → Bool getTest (CTest b) = b {-# COMPILE AGDA2HS getTest #-} putTest : Bool → Test → Test putTest b (CTest _ {b'}) = CTest b {b'} {-# COMPILE AGDA2HS putTest #-}
{ "alphanum_fraction": 0.6372881356, "avg_line_length": 19.6666666667, "ext": "agda", "hexsha": "1a7e035c73e8412830568f4f6147d65c2c8c6a01", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Datatypes.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Datatypes.agda", "max_line_length": 39, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Datatypes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 97, "size": 295 }
open import Relation.Binary.Core using (Rel) module GGT.Definitions {a b ℓ₁ ℓ₂} {G : Set a} -- The underlying group carrier {Ω : Set b} -- The underlying space (_≈_ : Rel G ℓ₁) -- The underlying group equality (_≋_ : Rel Ω ℓ₂) -- The underlying space equality where open import Level open import Algebra.Core open import Relation.Unary open import Algebra.Bundles using (Group) open import Algebra.Definitions _≋_ using (Congruent₁) ActAssoc : Opᵣ G Ω → Op₂ G → Set _ ActAssoc _·_ _∙_ = ∀ (o : Ω) (g : G) (h : G) → (o · (g ∙ h)) ≋ ((o · g) · h) ActLeftIdentity : G → Opᵣ G Ω → Set _ ActLeftIdentity ε _·_ = ∀ (o : Ω) → (o · ε) ≋ o ·-≋-Congruence : Opᵣ G Ω → Set _ ·-≋-Congruence _·_ = ∀ (g : G) → Congruent₁ (_· g) -- ∀ (o1 o2 : Ω) (g : G) → o1 ≋ o2 → (o1 · g) ≋ (o2 · g) ≈-Ext : Opᵣ G Ω → Set _ ≈-Ext _·_ = ∀ {g h : G} → ∀ {o : Ω} → g ≈ h → (o · g) ≋ (o · h)
{ "alphanum_fraction": 0.5731981982, "avg_line_length": 30.6206896552, "ext": "agda", "hexsha": "7243b15d1e3c55e77a0f3a8c3d3e6d7d4c61e5ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zampino/ggt", "max_forks_repo_path": "src/ggt/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zampino/ggt", "max_issues_repo_path": "src/ggt/Definitions.agda", "max_line_length": 76, "max_stars_count": 2, "max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zampino/ggt", "max_stars_repo_path": "src/ggt/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z", "num_tokens": 381, "size": 888 }
module MJ.Examples.Exceptions where open import Prelude open import Data.Star import Data.Vec.All as Vec∀ open import Data.List open import Data.List.Any open import Data.List.Membership.Propositional open import Data.List.All hiding (lookup) open import Data.Product hiding (Σ) open import Relation.Binary.PropositionalEquality open import MJ.Examples.Integer open import MJ.Types open import MJ.Classtable open import MJ.Classtable.Code Σ open import MJ.Syntax Σ open import MJ.Syntax.Program Σ open import MJ.Semantics Σ Lib open import MJ.Semantics.Values Σ -- Integer class body caught : Prog int caught = Lib , let x = (here refl) y = (there (here refl)) v = (there (there (here refl))) in body ( loc int ◅ loc (ref INT) ◅ loc (ref INT) ◅ asgn v (num 0) ◅ asgn x (new INT (num 9 ∷ [])) ◅ asgn y (new INT (num 18 ∷ [])) ◅ (try (block ( -- perform a side effect on the heap: writing 18 to x's int field run (call (var x) "set" {_}{void} (var y ∷ [])) -- raise the exception ◅ raise ◅ ε )) catch (block ( -- read the 18 from x's field asgn v (call (var x) "get" []) ◅ ε ))) ◅ ε ) (var v) uncaught : Prog int uncaught = Lib , let x = (here refl) y = (there (here refl)) v = (there (there (here refl))) in body ( loc int ◅ loc (ref INT) ◅ loc (ref INT) ◅ asgn v (num 0) ◅ asgn x (new INT (num 9 ∷ [])) ◅ asgn y (new INT (num 18 ∷ [])) ◅ asgn v (call (var x) "get" []) ◅ raise ◅ ε ) (var v) test : caught ⇓⟨ 100 ⟩ (λ v → v ≡ num 18) test = refl test₂ : uncaught ⇓⟨ 100 ⟩! (λ μ e → e ≡ other) test₂ = refl
{ "alphanum_fraction": 0.5677821894, "avg_line_length": 22.8961038961, "ext": "agda", "hexsha": "198a0f14dd3e85319ae7eb32dc62844f9c0b795a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Examples/Exceptions.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Examples/Exceptions.agda", "max_line_length": 75, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Examples/Exceptions.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 570, "size": 1763 }
module STLC.Type.Relation where open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import STLC.Term open import STLC.Type open import STLC.Type.Context using (Ctxt) open import Data.Vec using (_∷_; lookup) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality as Eq using (refl; _≡_; sym; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) infix 4 _⊢_⦂_ data _⊢_⦂_ { m n } (Γ : Ctxt m n) : Term m -> Type n -> Set where ⊢# : ∀ { x : Fin m } -- --------------- -> Γ ⊢ # x ⦂ lookup Γ x ⊢ƛ : ∀ { t τ₁ τ₂ } -> τ₁ ∷ Γ ⊢ t ⦂ τ₂ -- ----------------- -> Γ ⊢ ƛ t ⦂ τ₁ ⇒ τ₂ ⊢_·_ : ∀ { t₁ t₂ τ₁ τ₂ } -> Γ ⊢ t₁ ⦂ τ₁ ⇒ τ₂ -> Γ ⊢ t₂ ⦂ τ₁ -- ------------------ -> Γ ⊢ t₁ · t₂ ⦂ τ₂ _⊬_⦂_ : ∀ { m n } -> Ctxt m n -> Term m -> Type n -> Set Γ ⊬ t ⦂ τ = ¬ (Γ ⊢ t ⦂ τ) module Lemmas₀ where ⊢-subst : ∀ { m n } { Γ₁ Γ₂ : Ctxt m n } { t₁ t₂ : Term m } { τ₁ τ₂ : Type n } -> Γ₁ ≡ Γ₂ -> t₁ ≡ t₂ -> τ₁ ≡ τ₂ -> Γ₁ ⊢ t₁ ⦂ τ₁ -> Γ₂ ⊢ t₂ ⦂ τ₂ ⊢-subst refl refl refl hyp = hyp ⊢-Γ-subst : ∀ { m n } { Γ₁ Γ₂ : Ctxt m n } { t : Term m } { τ : Type n } -> Γ₁ ≡ Γ₂ -> Γ₁ ⊢ t ⦂ τ -> Γ₂ ⊢ t ⦂ τ ⊢-Γ-subst ≡-Γ hyp = ⊢-subst ≡-Γ refl refl hyp ⊢-τ-subst : ∀ { m n } { Γ : Ctxt m n } { t : Term m } { τ₁ τ₂ : Type n } -> τ₁ ≡ τ₂ -> Γ ⊢ t ⦂ τ₁ -> Γ ⊢ t ⦂ τ₂ ⊢-τ-subst ≡-τ hyp = ⊢-subst refl refl ≡-τ hyp -- TODO: Substitutions on typing derivations -- TODO: Equivalent for Value e.g. value ⦂ τ relation w/ some lemmas :)
{ "alphanum_fraction": 0.4967532468, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "22006800de83af86f9d3e258bb447593fb46cc7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-types", "max_forks_repo_path": "src/STLC/Type/Relation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-types", "max_issues_repo_path": "src/STLC/Type/Relation.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-types", "max_stars_repo_path": "src/STLC/Type/Relation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 678, "size": 1540 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Ix : Set where ix : .(i : Nat) (n : Nat) → Ix data D : Ix → Set where mkD : ∀ n → D (ix n n) data ΣD : Set where _,_ : ∀ i → D i → ΣD foo : ΣD → Nat foo (i , mkD n) = n d : ΣD d = ix 0 6 , mkD 6 -- Check that we pick the right (the non-irrelevant) `n` when binding -- the forced argument. check : foo d ≡ 6 check = refl
{ "alphanum_fraction": 0.5970149254, "avg_line_length": 16.75, "ext": "agda", "hexsha": "299da8dcde60772bc2d13a6465631fa15279f1e3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/ForcingRelevance.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/ForcingRelevance.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/ForcingRelevance.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 165, "size": 402 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Reverse view ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Reverse where open import Data.List.Base as L hiding (reverse) open import Data.List.Properties open import Function open import Relation.Binary.PropositionalEquality -- If you want to traverse a list from the end, then you can use the -- reverse view of it. infixl 5 _∶_∶ʳ_ data Reverse {a} {A : Set a} : List A → Set a where [] : Reverse [] _∶_∶ʳ_ : ∀ xs (rs : Reverse xs) (x : A) → Reverse (xs ∷ʳ x) module _ {a} {A : Set a} where reverse : (xs : List A) → Reverse (L.reverse xs) reverse [] = [] reverse (x ∷ xs) = cast $ _ ∶ reverse xs ∶ʳ x where cast = subst Reverse (sym $ unfold-reverse x xs) reverseView : (xs : List A) → Reverse xs reverseView xs = cast $ reverse (L.reverse xs) where cast = subst Reverse (reverse-involutive xs)
{ "alphanum_fraction": 0.559454191, "avg_line_length": 29.3142857143, "ext": "agda", "hexsha": "3d973c37d8f3c5ed2d2af1b312e0cf7b4181f7bf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Reverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Reverse.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Reverse.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 270, "size": 1026 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable propositional membership over vectors ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; decSetoid) module Data.Vec.Membership.DecPropositional {a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) where ------------------------------------------------------------------------ -- Re-export contents of propositional membership open import Data.Vec.Membership.Propositional {A = A} public open import Data.Vec.Membership.DecSetoid (decSetoid _≟_) public using (_∈?_)
{ "alphanum_fraction": 0.5279255319, "avg_line_length": 35.8095238095, "ext": "agda", "hexsha": "a30532192626eaf5ccf6766ff7b18af88797ca02", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/DecPropositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/DecPropositional.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/DecPropositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 149, "size": 752 }
------------------------------------------------------------------------ -- Encodings and properties of higher-order extrema and intervals in -- Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Typing.Encodings where open import Data.Fin using (zero) open import Data.Fin.Substitution using (Sub; Lift; TermSubst) open import Data.Fin.Substitution.ExtraLemmas open import Data.Nat using (suc) open import Data.Product using (_,_; proj₁; proj₂; _×_) open import Relation.Binary.PropositionalEquality hiding ([_]) open import FOmegaInt.Syntax open import FOmegaInt.Typing open import FOmegaInt.Typing.Validity open Syntax open TermCtx open Substitution hiding (subst; _/_; _Kind/_) open Typing open TypedSubstitution open TypedNarrowing ---------------------------------------------------------------------- -- Injection of shapes into kinds. -- For every shape `k' there is a kind `⌈ k ⌉' that erases/simplifies -- back to `k', i.e. `⌈_⌉' is a right inverse of kind erasure `⌊_⌋'. -- -- NOTE. The definition of the injection `⌈_⌉' is rather intuitive, -- but it is neither the only right inverse of `⌊_⌋', nor even the -- "most canonical" one. Below we define two alternatives `⌈_⌉↓' and -- `⌈_⌉↑' which, in addition to being right-inverse to `⌊_⌋', have -- some appealing order-theoretic properties. ⌈_⌉ : ∀ {n} → SKind → Kind Term n ⌈ ★ ⌉ = * ⌈ j ⇒ k ⌉ = Π ⌈ j ⌉ ⌈ k ⌉ ⌊⌋∘⌈⌉-id : ∀ {n} k → ⌊ ⌈_⌉ {n} k ⌋ ≡ k ⌊⌋∘⌈⌉-id ★ = refl ⌊⌋∘⌈⌉-id (j ⇒ k) = cong₂ _⇒_ (⌊⌋∘⌈⌉-id j) (⌊⌋∘⌈⌉-id k) -- The kind `⌈ k ⌉' is well-formed (in any well-formed context). ⌈⌉-kd : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉ kd ⌈⌉-kd ★ Γ-ctx = *-kd Γ-ctx ⌈⌉-kd (j ⇒ k) Γ-ctx = let ⌈j⌉-kd = ⌈⌉-kd j Γ-ctx in kd-Π ⌈j⌉-kd (⌈⌉-kd k (wf-kd ⌈j⌉-kd ∷ Γ-ctx)) ---------------------------------------------------------------------- -- Encodings and properties of extremal kinds. -- The empty interval (note the use of absurd bounds). ∅ : ∀ {n} → Kind Term n ∅ = ⊤ ⋯ ⊥ -- Well-formedness of the empty interval kind. ∅-kd : ∀ {n} {Γ : Ctx n} → Γ ctx → Γ ⊢ ∅ kd ∅-kd Γ-ctx = kd-⋯ (∈-⊤-f Γ-ctx) (∈-⊥-f Γ-ctx) -- Right-inverses of kind simplification: for every shape `k' there -- are two canonical kinds `⌈ k ⌉↓' and `⌈ k ⌉↑', such that -- -- 1. `⌈_⌉↓' and `⌈_⌉↑' are right-inverses for `⌊_⌋', i.e. `⌈ k ⌉↓' -- and `⌈ k ⌉↑' both simplify to `k', -- -- 2. `⌈ k ⌉↓' and `⌈ k ⌉↑' are limits, i.e. they are the least -- resp. greatest kinds for which 1 holds. -- -- NOTE. Rather than thinking of `⌈_⌉↓' and `⌈_⌉↑' as right-inverses -- of kind simplifications, one may instead think of `⌊_⌋' as defining -- a "kind space" `S(k, Γ) = { j | ⌊ j ⌋ ≡ k, Γ ⊢ j kd }' ordered by -- subkinding, and interpret `⌈ k ⌉↓' and `⌈ k ⌉↑' as the extrema of -- the space `S(k, Γ)' associated with `k'. mutual ⌈_⌉↓ : ∀ {n} → SKind → Kind Term n ⌈ ★ ⌉↓ = ∅ ⌈ j ⇒ k ⌉↓ = Π ⌈ j ⌉↑ ⌈ k ⌉↓ ⌈_⌉↑ : ∀ {n} → SKind → Kind Term n ⌈ ★ ⌉↑ = * ⌈ j ⇒ k ⌉↑ = Π ⌈ j ⌉↓ ⌈ k ⌉↑ mutual -- Proof of point 1 above: `⌈_⌉↓' and `⌈_⌉↑' are right-inverses of -- `⌊_⌋'. ⌊⌋∘⌈⌉↓-id : ∀ {n} k → ⌊ ⌈_⌉↓ {n} k ⌋ ≡ k ⌊⌋∘⌈⌉↓-id ★ = refl ⌊⌋∘⌈⌉↓-id (j ⇒ k) = cong₂ _⇒_ (⌊⌋∘⌈⌉↑-id j) (⌊⌋∘⌈⌉↓-id k) ⌊⌋∘⌈⌉↑-id : ∀ {n} k → ⌊ ⌈_⌉↑ {n} k ⌋ ≡ k ⌊⌋∘⌈⌉↑-id ★ = refl ⌊⌋∘⌈⌉↑-id (j ⇒ k) = cong₂ _⇒_ (⌊⌋∘⌈⌉↓-id j) (⌊⌋∘⌈⌉↑-id k) mutual -- `⌈ k ⌉↓' and `⌈ k ⌉↑' are well-formed (in any well-formed -- context). ⌈⌉↓-kd : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉↓ kd ⌈⌉↓-kd ★ Γ-ctx = ∅-kd Γ-ctx ⌈⌉↓-kd (j ⇒ k) Γ-ctx = let ⌈j⌉↑-kd = ⌈⌉↑-kd j Γ-ctx in kd-Π ⌈j⌉↑-kd (⌈⌉↓-kd k (wf-kd ⌈j⌉↑-kd ∷ Γ-ctx)) ⌈⌉↑-kd : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉↑ kd ⌈⌉↑-kd ★ Γ-ctx = *-kd Γ-ctx ⌈⌉↑-kd (j ⇒ k) Γ-ctx = let ⌈j⌉↓-kd = ⌈⌉↓-kd j Γ-ctx in kd-Π ⌈j⌉↓-kd (⌈⌉↑-kd k (wf-kd ⌈j⌉↓-kd ∷ Γ-ctx)) mutual -- Proof of point 2 above: `⌈ k ⌉↓' and `⌈ k ⌉↑' are the least -- resp. greatest (well-formed) kinds that have shape `k'. ⌈⌉↑-maximum : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k <∷ ⌈ ⌊ k ⌋ ⌉↑ ⌈⌉↑-maximum (kd-⋯ a∈* b∈*) = <∷-⋯ (<:-⊥ a∈*) (<:-⊤ b∈*) ⌈⌉↑-maximum (kd-Π {j} j-kd k-kd) = let ⌈⌊j⌋⌉↓<∷j = ⌈⌉↓-minimum j-kd in <∷-Π ⌈⌊j⌋⌉↓<∷j (⌈⌉↑-maximum (⇓-kd ⌈⌊j⌋⌉↓<∷j k-kd)) (kd-Π j-kd k-kd) ⌈⌉↓-minimum : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ ⌈ ⌊ k ⌋ ⌉↓ <∷ k ⌈⌉↓-minimum (kd-⋯ a∈* b∈*) = <∷-⋯ (<:-⊤ a∈*) (<:-⊥ b∈*) ⌈⌉↓-minimum (kd-Π {j} {k} j-kd k-kd) = <∷-Π (⌈⌉↑-maximum j-kd) (⌈⌉↓-minimum k-kd) (⌈⌉↓-kd ⌊ Π j k ⌋ (kd-ctx j-kd)) -- Some corollaries. -- Minima are subkinds of maxima. ⌈⌉↓<∷⌈⌉↑ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉↓ <∷ ⌈ k ⌉↑ ⌈⌉↓<∷⌈⌉↑ k Γ-ctx = subst (_ ⊢ ⌈ k ⌉↓ <∷_) (cong ⌈_⌉↑ (⌊⌋∘⌈⌉↓-id k)) (⌈⌉↑-maximum (⌈⌉↓-kd k Γ-ctx)) -- Minima are subkinds of the "intuitively" injected shapes. ⌈⌉↓<∷⌈⌉ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉↓ <∷ ⌈ k ⌉ ⌈⌉↓<∷⌈⌉ k Γ-ctx = subst (_ ⊢_<∷ ⌈ k ⌉) (cong ⌈_⌉↓ (⌊⌋∘⌈⌉-id k)) (⌈⌉↓-minimum (⌈⌉-kd k Γ-ctx)) -- Maxima are superkinds of the "intuitively" injected shapes. ⌈⌉<∷⌈⌉↑ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉ <∷ ⌈ k ⌉↑ ⌈⌉<∷⌈⌉↑ k Γ-ctx = subst (_ ⊢ ⌈ k ⌉ <∷_) (cong ⌈_⌉↑ (⌊⌋∘⌈⌉-id k)) (⌈⌉↑-maximum (⌈⌉-kd k Γ-ctx)) -- Every well-kinded type inhabits the maximum kind associated with -- its shape. ∈-⇑-⌈⌉↑ : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢Tp a ∈ ⌈ ⌊ k ⌋ ⌉↑ ∈-⇑-⌈⌉↑ a∈k = ∈-⇑ a∈k (⌈⌉↑-maximum (Tp∈-valid a∈k)) ---------------------------------------------------------------------- -- Encodings and properties of higher-order extrema -- Higher-order extremal types, indexed by shapes. -- -- NOTE. We will define a variant of the higher-order extrema indexed -- by possibly dependent kinds below. ⊥⟨_⟩ : ∀ {n} → SKind → Term n ⊥⟨ ★ ⟩ = ⊥ ⊥⟨ j ⇒ k ⟩ = Λ ⌈ j ⌉ ⊥⟨ k ⟩ ⊤⟨_⟩ : ∀ {n} → SKind → Term n ⊤⟨ ★ ⟩ = ⊤ ⊤⟨ j ⇒ k ⟩ = Λ ⌈ j ⌉ ⊤⟨ k ⟩ -- ⊥⟨ k ⟩ and ⊤⟨ k ⟩ inhabit ⌈ k ⌉. ∈-⊥⟨⟩ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢Tp ⊥⟨ k ⟩ ∈ ⌈ k ⌉ ∈-⊥⟨⟩ ★ Γ-ctx = ∈-⊥-f Γ-ctx ∈-⊥⟨⟩ (j ⇒ k) Γ-ctx = let ⌈j⌉-kd = ⌈⌉-kd j Γ-ctx ⌈j⌉∷Γ = wf-kd ⌈j⌉-kd ∷ Γ-ctx in ∈-Π-i ⌈j⌉-kd (∈-⊥⟨⟩ k ⌈j⌉∷Γ) ∈-⊤⟨⟩ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢Tp ⊤⟨ k ⟩ ∈ ⌈ k ⌉ ∈-⊤⟨⟩ ★ Γ-ctx = ∈-⊤-f Γ-ctx ∈-⊤⟨⟩ (j ⇒ k) Γ-ctx = let ⌈j⌉-kd = ⌈⌉-kd j Γ-ctx ⌈j⌉∷Γ = wf-kd ⌈j⌉-kd ∷ Γ-ctx in ∈-Π-i ⌈j⌉-kd (∈-⊤⟨⟩ k ⌈j⌉∷Γ) -- ⊥⟨ k ⟩ and ⊤⟨ k ⟩ are extremal types in ⌈ k ⌉. ⊥⟨⟩-minimum : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ ⌈ k ⌉ → Γ ⊢ ⊥⟨ k ⟩ <: a ∈ ⌈ k ⌉ ⊥⟨⟩-minimum {k = ★ } a∈* = <:-⊥ a∈* ⊥⟨⟩-minimum {k = j ⇒ k} a∈⌈j⇒k⌉ = <:-trans (<:-λ (⊥⟨⟩-minimum a·z∈⌈k⌉) (∈-⊥⟨⟩ (j ⇒ k) Γ-ctx) Λa·z∈⌈j⇒k⌉) (<:-η₁ a∈⌈j⇒k⌉) where Γ-ctx = Tp∈-ctx a∈⌈j⇒k⌉ Λa·z∈⌈j⇒k⌉ = Tp∈-η a∈⌈j⇒k⌉ a·z∈⌈k⌉ = proj₂ (Tp∈-Λ-inv Λa·z∈⌈j⇒k⌉) ⊤⟨⟩-maximum : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ ⌈ k ⌉ → Γ ⊢ a <: ⊤⟨ k ⟩ ∈ ⌈ k ⌉ ⊤⟨⟩-maximum {k = ★ } a∈* = <:-⊤ a∈* ⊤⟨⟩-maximum {k = j ⇒ k} a∈⌈j⇒k⌉ = <:-trans (<:-η₂ a∈⌈j⇒k⌉) (<:-λ (⊤⟨⟩-maximum a·z∈⌈k⌉) Λa·z∈⌈j⇒k⌉ (∈-⊤⟨⟩ (j ⇒ k) Γ-ctx)) where Γ-ctx = Tp∈-ctx a∈⌈j⇒k⌉ Λa·z∈⌈j⇒k⌉ = Tp∈-η a∈⌈j⇒k⌉ a·z∈⌈k⌉ = proj₂ (Tp∈-Λ-inv Λa·z∈⌈j⇒k⌉) -- An alternate pair of higher-order extremal types inhabiting the -- family of kinds ⌈ k ⌉↑, rather than ⌈ k ⌉. ⊥↑⟨_⟩ : ∀ {n} → SKind → Term n ⊥↑⟨ ★ ⟩ = ⊥ ⊥↑⟨ j ⇒ k ⟩ = Λ ⌈ j ⌉↑ ⊥↑⟨ k ⟩ ⊤↑⟨_⟩ : ∀ {n} → SKind → Term n ⊤↑⟨ ★ ⟩ = ⊤ ⊤↑⟨ j ⇒ k ⟩ = Λ ⌈ j ⌉↑ ⊤↑⟨ k ⟩ -- ⊥↑⟨ k ⟩ and ⊤↑⟨ k ⟩ inhabit ⌈ k ⌉↑. ∈-⊥↑⟨⟩ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢Tp ⊥↑⟨ k ⟩ ∈ ⌈ k ⌉↑ ∈-⊥↑⟨⟩ ★ Γ-ctx = ∈-⊥-f Γ-ctx ∈-⊥↑⟨⟩ (j ⇒ k) Γ-ctx = let ⌈j⌉↑-kd = ⌈⌉↑-kd j Γ-ctx ⌈j⌉↑∷Γ = wf-kd ⌈j⌉↑-kd ∷ Γ-ctx ⌈k⌉↑-kd = ⌈⌉↑-kd k ⌈j⌉↑∷Γ in ∈-⇑ (∈-Π-i ⌈j⌉↑-kd (∈-⊥↑⟨⟩ k ⌈j⌉↑∷Γ)) (<∷-Π (⌈⌉↓<∷⌈⌉↑ j Γ-ctx) (<∷-refl (⌈⌉↑-kd k ((wf-kd (⌈⌉↓-kd j Γ-ctx)) ∷ Γ-ctx))) (kd-Π ⌈j⌉↑-kd ⌈k⌉↑-kd)) ∈-⊤↑⟨⟩ : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢Tp ⊤↑⟨ k ⟩ ∈ ⌈ k ⌉↑ ∈-⊤↑⟨⟩ ★ Γ-ctx = ∈-⊤-f Γ-ctx ∈-⊤↑⟨⟩ (j ⇒ k) Γ-ctx = let ⌈j⌉↑-kd = ⌈⌉↑-kd j Γ-ctx ⌈j⌉↑∷Γ = wf-kd ⌈j⌉↑-kd ∷ Γ-ctx ⌈k⌉↑-kd = ⌈⌉↑-kd k ⌈j⌉↑∷Γ in ∈-⇑ (∈-Π-i ⌈j⌉↑-kd (∈-⊤↑⟨⟩ k ⌈j⌉↑∷Γ)) (<∷-Π (⌈⌉↓<∷⌈⌉↑ j Γ-ctx) (<∷-refl (⌈⌉↑-kd k ((wf-kd (⌈⌉↓-kd j Γ-ctx)) ∷ Γ-ctx))) (kd-Π ⌈j⌉↑-kd ⌈k⌉↑-kd)) -- ⊥↑⟨ k ⟩ and ⊤↑⟨ k ⟩ are extremal types in ⌈ k ⌉↑. ⊥↑⟨⟩-minimum : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ ⊥↑⟨ ⌊ k ⌋ ⟩ <: a ∈ ⌈ ⌊ k ⌋ ⌉↑ ⊥↑⟨⟩-minimum {k = b ⋯ c} a∈b⋯c = <:-⊥ a∈b⋯c ⊥↑⟨⟩-minimum {k = Π j k} a∈Πjk with Tp∈-valid a∈Πjk ... | kd-Π j-kd k-kd = <:-trans (<:-λ (⊥↑⟨⟩-minimum a·z∈k′) (∈-⊥↑⟨⟩ ⌊ Π j k ⌋ Γ-ctx) (∈-⇑ Λa·z∈Πjk Πjk<∷⌈Πjk⌉↑)) (<:-⇑ (<:-η₁ a∈Πjk) Πjk<∷⌈Πjk⌉↑) where Πjk<∷⌈Πjk⌉↑ = ⌈⌉↑-maximum (kd-Π j-kd k-kd) Γ-ctx = Tp∈-ctx a∈Πjk ⌈⌊j⌋⌉↓<∷j = ⌈⌉↓-minimum j-kd Λa·z∈Πjk = Tp∈-η a∈Πjk a·z∈k = proj₂ (Tp∈-Λ-inv Λa·z∈Πjk) a·z∈k′ = ⇓-Tp∈ ⌈⌊j⌋⌉↓<∷j a·z∈k ⊤↑⟨⟩-maximum : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ a <: ⊤↑⟨ ⌊ k ⌋ ⟩ ∈ ⌈ ⌊ k ⌋ ⌉↑ ⊤↑⟨⟩-maximum {k = b ⋯ c} a∈b⋯c = <:-⊤ a∈b⋯c ⊤↑⟨⟩-maximum {k = Π j k} a∈Πjk with Tp∈-valid a∈Πjk ... | kd-Π j-kd k-kd = <:-trans (<:-⇑ (<:-η₂ a∈Πjk) Πjk<∷⌈Πjk⌉↑) (<:-λ (⊤↑⟨⟩-maximum a·z∈k′) (∈-⇑ Λa·z∈Πjk Πjk<∷⌈Πjk⌉↑) (∈-⊤↑⟨⟩ ⌊ Π j k ⌋ Γ-ctx)) where Πjk<∷⌈Πjk⌉↑ = ⌈⌉↑-maximum (kd-Π j-kd k-kd) Γ-ctx = Tp∈-ctx a∈Πjk ⌈⌊j⌋⌉↓<∷j = ⌈⌉↓-minimum j-kd Λa·z∈Πjk = Tp∈-η a∈Πjk a·z∈k = proj₂ (Tp∈-Λ-inv Λa·z∈Πjk) a·z∈k′ = ⇓-Tp∈ ⌈⌊j⌋⌉↓<∷j a·z∈k -- Yet another variant of higher-order extremal types, this time -- indexed by possibly dependent kinds. ⊥′⟨_⟩ : ∀ {n} → Kind Term n → Term n ⊥′⟨ a ⋯ b ⟩ = ⊥ ⊥′⟨ Π j k ⟩ = Λ j ⊥′⟨ k ⟩ ⊤′⟨_⟩ : ∀ {n} → Kind Term n → Term n ⊤′⟨ a ⋯ b ⟩ = ⊤ ⊤′⟨ Π j k ⟩ = Λ j ⊤′⟨ k ⟩ -- A higher-order variant of *. *⟨_⟩ : ∀ {n} → Kind Term n → Kind Term n *⟨ a ⋯ b ⟩ = * *⟨ Π j k ⟩ = Π j *⟨ k ⟩ -- Substitution commutes with ⊥′⟨_⟩, ⊤′⟨_⟩ and *⟨_⟩. module EncSubstLemmas {T} (l : Lift T Term) where open SubstApp l open Lift l hiding (var) ⊥′⟨⟩-/ : ∀ {n m} {σ : Sub T m n} k → ⊥′⟨ k ⟩ / σ ≡ ⊥′⟨ k Kind/ σ ⟩ ⊥′⟨⟩-/ (a ⋯ b) = refl ⊥′⟨⟩-/ (Π j k) = cong (Λ _) (⊥′⟨⟩-/ k) ⊤′⟨⟩-/ : ∀ {n m} {σ : Sub T m n} k → ⊤′⟨ k ⟩ / σ ≡ ⊤′⟨ k Kind/ σ ⟩ ⊤′⟨⟩-/ (a ⋯ b) = refl ⊤′⟨⟩-/ (Π j k) = cong (Λ _) (⊤′⟨⟩-/ k) *⟨⟩-/ : ∀ {n m} {σ : Sub T m n} k → *⟨ k ⟩ Kind/ σ ≡ *⟨ k Kind/ σ ⟩ *⟨⟩-/ (a ⋯ b) = refl *⟨⟩-/ (Π j k) = cong (Π _) (*⟨⟩-/ k) open EncSubstLemmas (TermSubst.termLift termSubst) public open EncSubstLemmas (TermSubst.varLift termSubst) public renaming (⊥′⟨⟩-/ to ⊥′⟨⟩-/Var; ⊤′⟨⟩-/ to ⊤′⟨⟩-/Var; *⟨⟩-/ to *⟨⟩-/Var) -- Well-formedness of higher-order star kinds. kd-*⟨⟩ : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ *⟨ k ⟩ kd kd-*⟨⟩ (kd-⋯ a∈* b∈*) = *-kd (Tp∈-ctx a∈*) kd-*⟨⟩ (kd-Π j-kd k-kd) = kd-Π j-kd (kd-*⟨⟩ k-kd) -- ⊥′⟨ k ⟩ and ⊤′⟨ k ⟩ inhabit *⟨ k ⟩. ∈-⊥′⟨⟩ : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢Tp ⊥′⟨ k ⟩ ∈ *⟨ k ⟩ ∈-⊥′⟨⟩ (kd-⋯ a∈* b∈*) = ∈-⊥-f (Tp∈-ctx a∈*) ∈-⊥′⟨⟩ (kd-Π j-kd k-kd) = ∈-Π-i j-kd (∈-⊥′⟨⟩ k-kd) ∈-⊤′⟨⟩ : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢Tp ⊤′⟨ k ⟩ ∈ *⟨ k ⟩ ∈-⊤′⟨⟩ (kd-⋯ a∈* b∈*) = ∈-⊤-f (Tp∈-ctx a∈*) ∈-⊤′⟨⟩ (kd-Π j-kd k-kd) = ∈-Π-i j-kd (∈-⊤′⟨⟩ k-kd) -- A helper: any well-formed kind k is a subkind of *⟨ k ⟩. *⟨⟩-maximum : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k <∷ *⟨ k ⟩ *⟨⟩-maximum (kd-⋯ a∈* b∈*) = <∷-⋯ (<:-⊥ a∈*) (<:-⊤ b∈*) *⟨⟩-maximum (kd-Π j-kd k-kd) = <∷-Π (<∷-refl j-kd) (*⟨⟩-maximum k-kd) (kd-Π j-kd k-kd) -- ⊥′⟨ k ⟩ and ⊤′⟨ k ⟩ are extremal types in *⟨ k ⟩. ⊥′⟨⟩-minimum : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ ⊥′⟨ k ⟩ <: a ∈ *⟨ k ⟩ ⊥′⟨⟩-minimum {k = b ⋯ c} a∈b⋯c = <:-⊥ a∈b⋯c ⊥′⟨⟩-minimum {k = Π j k} a∈Πjk = <:-trans (<:-λ (⊥′⟨⟩-minimum a·z∈k) (∈-⊥′⟨⟩ Πjk-kd) (∈-⇑ Λa·z∈Πjk Πjk-kd<∷*⟨Πjk⟩)) (<:-η₁ (∈-⇑ a∈Πjk Πjk-kd<∷*⟨Πjk⟩)) where Λa·z∈Πjk = Tp∈-η a∈Πjk a·z∈k = proj₂ (Tp∈-Λ-inv Λa·z∈Πjk) Πjk-kd = Tp∈-valid a∈Πjk Πjk-kd<∷*⟨Πjk⟩ = *⟨⟩-maximum Πjk-kd ⊤′⟨⟩-maximum : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ a <: ⊤′⟨ k ⟩ ∈ *⟨ k ⟩ ⊤′⟨⟩-maximum {k = b ⋯ c} a∈b⋯c = <:-⊤ a∈b⋯c ⊤′⟨⟩-maximum {k = Π j k} a∈Πjk = <:-trans (<:-η₂ (∈-⇑ a∈Πjk Πjk-kd<∷*⟨Πjk⟩)) (<:-λ (⊤′⟨⟩-maximum a·z∈k) (∈-⇑ Λa·z∈Πjk Πjk-kd<∷*⟨Πjk⟩) (∈-⊤′⟨⟩ Πjk-kd)) where Λa·z∈Πjk = Tp∈-η a∈Πjk a·z∈k = proj₂ (Tp∈-Λ-inv Λa·z∈Πjk) Πjk-kd = Tp∈-valid a∈Πjk Πjk-kd<∷*⟨Πjk⟩ = *⟨⟩-maximum Πjk-kd -- Applications of higher-order extrema result in lower-order extrema. ≃-⊥′⟨⟩-· : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ Π j k kd → Γ ⊢Tp a ∈ j → Γ ⊢ ⊥′⟨ Π j k ⟩ · a ≃ ⊥′⟨ k Kind[ a ] ⟩ ∈ *⟨ k Kind[ a ] ⟩ ≃-⊥′⟨⟩-· (kd-Π {j} {k} j-kd k-kd) a∈j = subst₂ (_ ⊢ ⊥′⟨ Π j k ⟩ · _ ≃_∈_) (⊥′⟨⟩-/ _) (*⟨⟩-/ _) (≃-β′ ⊥⟨k⟩ a∈j ⊥⟨Πjk⟩) where ⊥⟨Πjk⟩ = ∈-⊥′⟨⟩ (kd-Π j-kd k-kd) ⊥⟨k⟩ = ∈-⊥′⟨⟩ k-kd ≃-⊤′⟨⟩-· : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ Π j k kd → Γ ⊢Tp a ∈ j → Γ ⊢ ⊤′⟨ Π j k ⟩ · a ≃ ⊤′⟨ k Kind[ a ] ⟩ ∈ *⟨ k Kind[ a ] ⟩ ≃-⊤′⟨⟩-· (kd-Π {j} {k} j-kd k-kd) a∈j = subst₂ (_ ⊢ ⊤′⟨ Π j k ⟩ · _ ≃_∈_) (⊤′⟨⟩-/ _) (*⟨⟩-/ _) (≃-β′ ⊤⟨k⟩ a∈j ⊤⟨Πjk⟩) where ⊤⟨Πjk⟩ = ∈-⊤′⟨⟩ (kd-Π j-kd k-kd) ⊤⟨k⟩ = ∈-⊤′⟨⟩ k-kd ---------------------------------------------------------------------- -- Encodings and properties of higher-order intervals infix 6 _⋯⟨_⟩_ -- Higher-order interval kinds. _⋯⟨_⟩_ : ∀ {n} → Term n → Kind Term n → Term n → Kind Term n a ⋯⟨ c ⋯ d ⟩ b = a ⋯ b a ⋯⟨ Π j k ⟩ b = Π j (weaken a · var zero ⋯⟨ k ⟩ weaken b · var zero) -- Higher order interval kinds have the same shape as their -- kind-indices. ⌊⌋-⋯⟨⟩ : ∀ {n} {a b : Term n} k → ⌊ a ⋯⟨ k ⟩ b ⌋ ≡ ⌊ k ⌋ ⌊⌋-⋯⟨⟩ (a ⋯ b) = refl ⌊⌋-⋯⟨⟩ (Π j k) = cong (⌊ j ⌋ ⇒_) (⌊⌋-⋯⟨⟩ k) -- "Idempotence" of higher order interval kinds. ⋯⟨⟩-idempotent : ∀ {n} {a b : Term n} k → a ⋯⟨ a ⋯⟨ k ⟩ b ⟩ b ≡ a ⋯⟨ k ⟩ b ⋯⟨⟩-idempotent (a ⋯ b) = refl ⋯⟨⟩-idempotent (Π j k) = cong (Π j) (⋯⟨⟩-idempotent k) -- Well-formedness of higher-order interval kinds. kd-⋯⟨⟩ : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ k → Γ ⊢ a ⋯⟨ k ⟩ b kd kd-⋯⟨⟩ a∈k b∈k with Tp∈-valid a∈k kd-⋯⟨⟩ a∈c⋯d b∈c⋯d | kd-⋯ _ _ = kd-⋯ (Tp∈-⋯-* a∈c⋯d) (Tp∈-⋯-* b∈c⋯d) kd-⋯⟨⟩ a∈Πjk b∈Πjk | kd-Π j-kd k-kd = kd-Π j-kd (kd-⋯⟨⟩ a·z∈k b·z∈k) where a·z∈k = proj₂ (Tp∈-Λ-inv (Tp∈-η a∈Πjk)) b·z∈k = proj₂ (Tp∈-Λ-inv (Tp∈-η b∈Πjk)) -- NOTE. We would like to show that the inverse of the above also -- holds, i.e. that given a well-formed higher-order interval kind `a -- ⋯⟨ k ⟩ b', we have `a ∈ k' and `b ∈ k'. Unfortunately this is not -- true because the definition of `a ⋯⟨ k ⟩ b' is a bit too forgetful -- when the kind-index `k' is itself an interval `k = c ⋯ d', that is, -- when `a' and `b' are proper types. E.g. the kind `⊥ ⋯⟨ ∅ ⟩ ⊤' is -- well-formed, but clearly `⊥ , ⊤ ∉ ø'. -- -- However, as the following lemma illustrates, we can invert some -- judgments about higher-order intervals with "sensible" kind -- indices, such as those resulting from shapes via ⌈_⌉. Still, a -- proper inversion lemma would require more work, in particular one -- has to contract the kinding derivations of the η-expanded bounds -- `a' and `b' back into their non-expanded form. -- Higher-order interval kinds indexed by `⌈ k ⌉' for some `k' are -- subkinds of `⌈ k ⌉'. ⋯⟨⌈⌉⟩-<∷-⌈⌉ : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ⋯⟨ ⌈ k ⌉ ⟩ b kd → Γ ⊢ a ⋯⟨ ⌈ k ⌉ ⟩ b <∷ ⌈ k ⌉ ⋯⟨⌈⌉⟩-<∷-⌈⌉ {k = ★ } (kd-⋯ a∈* b∈*) = <∷-⋯ (<:-⊥ a∈*) (<:-⊤ b∈*) ⋯⟨⌈⌉⟩-<∷-⌈⌉ {k = j ⇒ k} (kd-Π ⌈j⌉-kd a·z⋯⟨⌈k⌉⟩b·z-kd) = <∷-Π (<∷-refl ⌈j⌉-kd) (⋯⟨⌈⌉⟩-<∷-⌈⌉ a·z⋯⟨⌈k⌉⟩b·z-kd) (kd-Π ⌈j⌉-kd a·z⋯⟨⌈k⌉⟩b·z-kd) -- Two corollaries. -- Types inhabiting a type interval indexed by a shape `k' also -- inhabit `⌈ k ⌉`. Tp∈-⋯⟨⌈⌉⟩-inv : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢Tp a ∈ b ⋯⟨ ⌈ k ⌉ ⟩ c → Γ ⊢Tp a ∈ ⌈ k ⌉ Tp∈-⋯⟨⌈⌉⟩-inv a∈b⋯⟨⌈k⌉⟩c = ∈-⇑ a∈b⋯⟨⌈k⌉⟩c (⋯⟨⌈⌉⟩-<∷-⌈⌉ (Tp∈-valid a∈b⋯⟨⌈k⌉⟩c)) -- Types related in a type interval indexed by a shape `k' are also -- related in `⌈ k ⌉`. <:-⋯⟨⌈⌉⟩-inv : ∀ {n} {Γ : Ctx n} {a b c d k} → Γ ⊢ a <: b ∈ c ⋯⟨ ⌈ k ⌉ ⟩ d → Γ ⊢ a <: b ∈ ⌈ k ⌉ <:-⋯⟨⌈⌉⟩-inv a<:b∈c⋯⟨⌈k⌉⟩d = <:-⇑ a<:b∈c⋯⟨⌈k⌉⟩d (⋯⟨⌈⌉⟩-<∷-⌈⌉ (<:-valid-kd a<:b∈c⋯⟨⌈k⌉⟩d)) -- Subkinding of higher-order interval kinds. <∷-⋯⟨⟩ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ k} → Γ ⊢ a₂ <: a₁ ∈ k → Γ ⊢ b₁ <: b₂ ∈ k → Γ ⊢ a₁ ⋯⟨ k ⟩ b₁ <∷ a₂ ⋯⟨ k ⟩ b₂ <∷-⋯⟨⟩ a₂<:a₁∈k b₁<:b₂∈k with <:-valid-kd a₂<:a₁∈k <∷-⋯⟨⟩ a₂<:a₁∈c⋯d b₁<:b₂∈c⋯d | kd-⋯ _ _ = <∷-⋯ (<:-⋯-* a₂<:a₁∈c⋯d) (<:-⋯-* b₁<:b₂∈c⋯d) <∷-⋯⟨⟩ a₂<:a₁∈Πjk b₁<:b₂∈Πjk | kd-Π j-kd k-kd = let a₂∈Πjk , a₁∈Πjk = <:-valid a₂<:a₁∈Πjk b₁∈Πjk , b₂∈Πjk = <:-valid b₁<:b₂∈Πjk Γ-ctx = kd-ctx j-kd j-wf = wf-kd j-kd j∷Γ-ctx = j-wf ∷ Γ-ctx z∈k = ∈-var zero j∷Γ-ctx refl z≃z∈k = ≃-refl z∈k a₂<:a₁∈Πjk′ = <:-weaken j-wf a₂<:a₁∈Πjk b₁<:b₂∈Πjk′ = <:-weaken j-wf b₁<:b₂∈Πjk k[z]≡k = Kind-wk↑-sub-zero-vanishes _ a₂·z<:a₁·z∈k[z] = <:-· a₂<:a₁∈Πjk′ z≃z∈k b₁·z<:b₂·z∈k[z] = <:-· b₁<:b₂∈Πjk′ z≃z∈k a₂·z<:a₁·z∈k = subst (_ ⊢ _ <: _ ∈_) k[z]≡k a₂·z<:a₁·z∈k[z] b₁·z<:b₂·z∈k = subst (_ ⊢ _ <: _ ∈_) k[z]≡k b₁·z<:b₂·z∈k[z] in <∷-Π (<∷-refl j-kd) (<∷-⋯⟨⟩ a₂·z<:a₁·z∈k b₁·z<:b₂·z∈k) (kd-⋯⟨⟩ a₁∈Πjk b₁∈Πjk) -- A corollary: equality of higher-order interval kinds. ≅-⋯⟨⟩ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ k} → Γ ⊢ a₁ ≃ a₂ ∈ k → Γ ⊢ b₁ ≃ b₂ ∈ k → Γ ⊢ a₁ ⋯⟨ k ⟩ b₁ ≅ a₂ ⋯⟨ k ⟩ b₂ ≅-⋯⟨⟩ (<:-antisym a₁<:a₂∈k a₂<:a₁∈k) (<:-antisym b₁<:b₂∈k b₂<:b₁∈k) = <∷-antisym (<∷-⋯⟨⟩ a₂<:a₁∈k b₁<:b₂∈k) (<∷-⋯⟨⟩ a₁<:a₂∈k b₂<:b₁∈k) -- A variant of kind-driven η-expansion that only expands the head. η-exp : ∀ {n} → Kind Term n → Term n → Term n η-exp (_ ⋯ _) a = a η-exp (Π j k) a = Λ j (η-exp k (weaken a · var zero)) -- Soundness of η-expansion. ≃-η-exp : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ a ≃ η-exp k a ∈ k ≃-η-exp {_} {_} {_} {b ⋯ c} a∈b⋯c = ≃-refl a∈b⋯c ≃-η-exp {_} {_} {a} {Π j k} a∈Πjk with Tp∈-valid a∈Πjk ... | kd-Π j-kd k-kd = begin a ≃⟨ ≃-sym (≃-η a∈Πjk) ⟩ Λ j (weaken a · var zero) ≃⟨ ≃-λ′ (≅-refl j-kd) (≃-η-exp a·z∈k) ⟩ Λ j (η-exp k (weaken a · var zero)) ∎ where open ≃-Reasoning a·z∈k = proj₂ (Tp∈-Λ-inv (Tp∈-η a∈Πjk)) -- A singleton introduction rule for higher-order interval kinds. ∈-s⟨⟩-i : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢Tp η-exp k a ∈ a ⋯⟨ k ⟩ a ∈-s⟨⟩-i a∈k with Tp∈-valid a∈k ∈-s⟨⟩-i a∈b⋯c | kd-⋯ _ _ = ∈-s-i a∈b⋯c ∈-s⟨⟩-i a∈Πjk | kd-Π j-kd k-kd = ∈-Π-i j-kd (∈-s⟨⟩-i a·z∈k) where a·z∈k = proj₂ (Tp∈-Λ-inv (Tp∈-η a∈Πjk)) -- A corollary: we can kind (the η-expansion of) a type with explicit -- lower and uper bounds in the interval defined by these bounds. Tp∈-<:-⋯ : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ b <: a ∈ k → Γ ⊢ a <: c ∈ k → Γ ⊢Tp η-exp k a ∈ b ⋯⟨ k ⟩ c Tp∈-<:-⋯ b<:a∈k a<:c∈k = ∈-⇑ (∈-s⟨⟩-i (proj₁ (<:-valid a<:c∈k))) (<∷-⋯⟨⟩ b<:a∈k a<:c∈k) -- Bound projection rules for higher-order intervals. -- -- NOTE. These lemmas are a bit weaker than one might like. In -- particular, the additional premises `Γ ⊢ a , b , c ∈ k' might seem -- redundant. But recall that we cannot, in general, invert -- well-formed higher-order intervals, i.e. `Γ ⊢ b ⋯⟨ k ⟩ c kd' does -- *not* imply `Γ ⊢ b ∈ k' and `Γ ⊢ c ∈ k'. Similarly, `Γ ⊢ a ∈ b ⋯⟨ -- k ⟩ c' does *not* imply `Γ ⊢ a ∈ k'. To see this, consider again -- the kind `⊥ ⋯⟨ ∅ ⟩ ⊤', which is well-formed and inhabited by both -- `⊥' and `⊤', yet clearly `⊥ , ⊤ ∉ ø'. <:-⋯⟨⟩-⟨|⟩ : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ k → Γ ⊢Tp c ∈ k → Γ ⊢Tp a ∈ b ⋯⟨ k ⟩ c → Γ ⊢ b <: a ∈ k × Γ ⊢ a <: c ∈ k <:-⋯⟨⟩-⟨|⟩ {k = _ ⋯ _} a∈d⋯e b∈d⋯e c∈d⋯e a∈b⋯c = <:-⇑ (<:-⋯-i (<:-⟨| a∈b⋯c)) (<∷-⋯ (<:-⟨| b∈d⋯e) (<:-|⟩ a∈d⋯e)) , <:-⇑ (<:-⋯-i (<:-|⟩ a∈b⋯c)) (<∷-⋯ (<:-⟨| a∈d⋯e) (<:-|⟩ c∈d⋯e)) <:-⋯⟨⟩-⟨|⟩ {k = Π _ _} a∈Πjk b∈Πjk c∈Πjk a∈Πjb·z⋯⟨k⟩c·z = let Λa·z∈Πjk = Tp∈-η a∈Πjk Λb·z∈Πjk = Tp∈-η b∈Πjk Λc·z∈Πjk = Tp∈-η c∈Πjk _ , a·z∈k = Tp∈-Λ-inv Λa·z∈Πjk _ , b·z∈k = Tp∈-Λ-inv Λb·z∈Πjk _ , c·z∈k = Tp∈-Λ-inv Λc·z∈Πjk Λa·z∈Πjb·z⋯⟨k⟩c·z = Tp∈-η a∈Πjb·z⋯⟨k⟩c·z _ , a·z∈b·z⋯⟨k⟩c·z = Tp∈-Λ-inv Λa·z∈Πjb·z⋯⟨k⟩c·z b·z<:a·z∈k , a·z<:c·z∈k = <:-⋯⟨⟩-⟨|⟩ a·z∈k b·z∈k c·z∈k a·z∈b·z⋯⟨k⟩c·z Λjb·z<:Λja·z∈Πjk = <:-λ b·z<:a·z∈k Λb·z∈Πjk Λa·z∈Πjk Λja·z<:Λjc·z∈Πjk = <:-λ a·z<:c·z∈k Λa·z∈Πjk Λc·z∈Πjk Λja·z<:a∈kΠjk = <:-η₁ a∈Πjk a<:Λja·z∈kΠjk = <:-η₂ a∈Πjk Λjc·z<:c∈kΠjk = <:-η₁ c∈Πjk b<:Λjb·z∈kΠjk = <:-η₂ b∈Πjk in <:-trans (<:-trans b<:Λjb·z∈kΠjk Λjb·z<:Λja·z∈Πjk) Λja·z<:a∈kΠjk , <:-trans (<:-trans a<:Λja·z∈kΠjk Λja·z<:Λjc·z∈Πjk) Λjc·z<:c∈kΠjk <:-⋯⟨⟩-⟨| : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ k → Γ ⊢Tp c ∈ k → Γ ⊢Tp a ∈ b ⋯⟨ k ⟩ c → Γ ⊢ b <: a ∈ k <:-⋯⟨⟩-⟨| a∈k b∈k c∈k a∈b⋯⟨k⟩c = proj₁ (<:-⋯⟨⟩-⟨|⟩ a∈k b∈k c∈k a∈b⋯⟨k⟩c) <:-⋯⟨⟩-|⟩ : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ k → Γ ⊢Tp c ∈ k → Γ ⊢Tp a ∈ b ⋯⟨ k ⟩ c → Γ ⊢ a <: c ∈ k <:-⋯⟨⟩-|⟩ a∈k b∈k c∈k a∈b⋯⟨k⟩c = proj₂ (<:-⋯⟨⟩-⟨|⟩ a∈k b∈k c∈k a∈b⋯⟨k⟩c) -- An interval introduction rule for subtypes inhabiting higher-order -- interval kinds. <:-⋯⟨⟩-i : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ∈ k → Γ ⊢ η-exp k a <: η-exp k b ∈ a ⋯⟨ k ⟩ b <:-⋯⟨⟩-i a<:b∈k with <:-valid-kd a<:b∈k <:-⋯⟨⟩-i a<:b∈c⋯d | kd-⋯ _ _ = <:-⋯-i a<:b∈c⋯d <:-⋯⟨⟩-i a<:b∈Πjk | kd-Π j-kd _ = let j-wf = wf-kd j-kd Γ-ctx = <:-ctx a<:b∈Πjk j∷Γ-ctx = j-wf ∷ Γ-ctx a∈Πjk , b∈Πjk = <:-valid a<:b∈Πjk a<:b∈Πjk′ = <:-weaken j-wf a<:b∈Πjk a·z<:b·z∈k[z] = <:-· a<:b∈Πjk′ (≃-refl (∈-var zero j∷Γ-ctx refl)) a·z<:b·z∈k = subst (_ ⊢ _ <: _ ∈_) (Kind-wk↑-sub-zero-vanishes _) a·z<:b·z∈k[z] a·z<:b·z∈a·z⋯⟨k⟩b·z = <:-⋯⟨⟩-i a·z<:b·z∈k in <:-λ a·z<:b·z∈a·z⋯⟨k⟩b·z (∈-⇑ (∈-s⟨⟩-i a∈Πjk) (<∷-⋯⟨⟩ (<:-refl a∈Πjk) a<:b∈Πjk)) (∈-⇑ (∈-s⟨⟩-i b∈Πjk) (<∷-⋯⟨⟩ a<:b∈Πjk (<:-refl b∈Πjk))) -- Any interval indexed by *⟨ k ⟩ can be re-indexed by k *⟨⟩-⋯⟨⟩ : ∀ {n} {a b : Term n} k → a ⋯⟨ *⟨ k ⟩ ⟩ b ≡ a ⋯⟨ k ⟩ b *⟨⟩-⋯⟨⟩ (a ⋯ b) = refl *⟨⟩-⋯⟨⟩ (Π j k) = cong (Π j) (*⟨⟩-⋯⟨⟩ k) -- *⟨ k ⟩ is equal to the HO interval bounded by ⊥′⟨ k ⟩ and ⊤′⟨ k ⟩. *⟨⟩-⊥⟨⟩⋯⟨⟩⊤⟨⟩ : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ *⟨ k ⟩ ≅ ⊥′⟨ k ⟩ ⋯⟨ k ⟩ ⊤′⟨ k ⟩ *⟨⟩-⊥⟨⟩⋯⟨⟩⊤⟨⟩ (kd-⋯ a∈* b∈*) = ≅-refl (*-kd (Tp∈-ctx a∈*)) *⟨⟩-⊥⟨⟩⋯⟨⟩⊤⟨⟩ {_} {Γ} (kd-Π {j} {k} j-kd k-kd) = ≅-Π (≅-refl j-kd) (≅-trans (*⟨⟩-⊥⟨⟩⋯⟨⟩⊤⟨⟩ k-kd) (subst₂ (_ ⊢_≅_) (*⟨⟩-⋯⟨⟩ k) (*⟨⟩-⋯⟨⟩ k) (≅-⋯⟨⟩ ⊥⟨k⟩≃Λ⊥⟨k⟩·z ⊤⟨k⟩≃Λ⊤⟨k⟩·z))) where module KL = TermLikeLemmas termLikeLemmasKind Γ-ctx = kd-ctx j-kd z∈j = ∈-var zero (wf-kd j-kd ∷ Γ-ctx) refl Πjk-kd′ = kd-weaken (wf-kd j-kd) (kd-Π j-kd k-kd) eq₁ = cong (λ k → (Λ (weakenKind j) k) · var zero) (sym (⊥′⟨⟩-/Var k)) eq₂ = cong (λ k → (Λ (weakenKind j) k) · var zero) (sym (⊤′⟨⟩-/Var k)) k′[z] = (k Kind/Var _) Kind[ var zero ] ⊥⟨k⟩≃Λ⊥⟨k⟩·z = subst₂ (_ ⊢_≃ weaken (Λ j ⊥′⟨ k ⟩) · var zero ∈_) (cong ⊥′⟨_⟩ (Kind-wk↑-sub-zero-vanishes k)) (cong *⟨_⟩ (Kind-wk↑-sub-zero-vanishes k)) (subst (kd j ∷ Γ ⊢ ⊥′⟨ k′[z] ⟩ ≃_∈ *⟨ k′[z] ⟩) eq₁ (≃-sym (≃-⊥′⟨⟩-· Πjk-kd′ z∈j))) ⊤⟨k⟩≃Λ⊤⟨k⟩·z = subst₂ (_ ⊢_≃ weaken (Λ j ⊤′⟨ k ⟩) · var zero ∈_) (cong ⊤′⟨_⟩ (Kind-wk↑-sub-zero-vanishes k)) (cong *⟨_⟩ (Kind-wk↑-sub-zero-vanishes k)) (subst (kd j ∷ Γ ⊢ ⊤′⟨ k′[z] ⟩ ≃_∈ *⟨ k′[z] ⟩) eq₂ (≃-sym (≃-⊤′⟨⟩-· Πjk-kd′ z∈j))) ---------------------------------------------------------------------- -- Encodings and admissible kinding rules of bounded quantifiers and -- operators -- Bounded operator kind. Π′ : ∀ {n} → Term n → Term n → Kind Term n → Kind Term (suc n) → Kind Term n Π′ a b j k = Π (a ⋯⟨ j ⟩ b) k -- Bounded universal quantifiers. ∀′ : ∀ {n} → Term n → Term n → Kind Term n → Term (suc n) → Term n ∀′ a b k c = Π (a ⋯⟨ k ⟩ b) c -- Bounded type abstraction. Λ′ : ∀ {n} → Term n → Term n → Kind Term n → Term (suc n) → Term n Λ′ a b k c = Λ (a ⋯⟨ k ⟩ b) c -- A formation rule for bounded operator kinds. ∈-Π′-f : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢Tp a ∈ j → Γ ⊢Tp b ∈ j → kd (a ⋯⟨ j ⟩ b) ∷ Γ ⊢ k kd → Γ ⊢ Π′ a b j k kd ∈-Π′-f a∈j b∈j k-kd = kd-Π (kd-⋯⟨⟩ a∈j b∈j) k-kd -- An introduction rule for bounded universal quantifiers. ∈-Π′-i : ∀ {n} {Γ : Ctx n} {a b j c k} → Γ ⊢Tp a ∈ j → Γ ⊢Tp b ∈ j → kd (a ⋯⟨ j ⟩ b) ∷ Γ ⊢Tp c ∈ k → Γ ⊢Tp Λ′ a b j c ∈ Π′ a b j k ∈-Π′-i a∈j b∈j c∈k = ∈-Π-i (kd-⋯⟨⟩ a∈j b∈j) c∈k -- An elimination rule for bounded universal quantifiers. ∈-Π′-e : ∀ {n} {Γ : Ctx n} {a b c j k d} → Γ ⊢Tp a ∈ Π′ b c j k → Γ ⊢ b <: d ∈ j → Γ ⊢ d <: c ∈ j → Γ ⊢Tp a · η-exp j d ∈ k Kind[ η-exp j d ] ∈-Π′-e a∈Πbcjk b<:d∈j d<:c∈j = let d∈j , _ = <:-valid d<:c∈j in ∈-Π-e a∈Πbcjk (Tp∈-<:-⋯ b<:d∈j d<:c∈j) -- A formation rule for bounded universal quantifiers. ∈-∀′-f : ∀ {n} {Γ : Ctx n} {a b k c} → Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ k → kd (a ⋯⟨ k ⟩ b) ∷ Γ ⊢Tp c ∈ * → Γ ⊢Tp ∀′ a b k c ∈ * ∈-∀′-f a∈k b∈k c∈* = ∈-∀-f (kd-⋯⟨⟩ a∈k b∈k) c∈* -- An introduction rule for bounded universal quantifiers. ∈-∀′-i : ∀ {n} {Γ : Ctx n} {a b k c d} → Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ k → kd (a ⋯⟨ k ⟩ b) ∷ Γ ⊢Tm c ∈ d → Γ ⊢Tm Λ′ a b k c ∈ ∀′ a b k d ∈-∀′-i a∈k b∈k c∈d = ∈-∀-i (kd-⋯⟨⟩ a∈k b∈k) c∈d -- An elimination rule for bounded universal quantifiers. ∈-∀′-e : ∀ {n} {Γ : Ctx n} {a b c k d e} → Γ ⊢Tm a ∈ ∀′ b c k d → Γ ⊢ b <: e ∈ k → Γ ⊢ e <: c ∈ k → Γ ⊢Tm a ⊡ η-exp k e ∈ d [ η-exp k e ] ∈-∀′-e a∈∀bckd b<:e∈k e<:c∈k = let e∈k , _ = <:-valid e<:c∈k in ∈-∀-e a∈∀bckd (Tp∈-<:-⋯ b<:e∈k e<:c∈k) ------------------------------------------------------------------------ -- Stone and Harper's singleton (sub)kinding rules. -- -- See p. 3 (216) of C. A. Stone and R. Harper, Deciding Type -- Equivalence in a Language with Singleton Kinds, proc. POPL'00, ACM, -- 2000. -- An encoding of Stone and Harper's singleton kinds. S : ∀ {n} → Term n → Kind Term n S a = a ⋯ a -- Singleton kind formation. kd-s : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢Tp a ∈ * → Γ ⊢ S a kd kd-s a∈* = kd-⋯ a∈* a∈* -- Singleton introduction for kinding is exactly the `∈-s-i' kinding rule. -- Singleton introduction for equality. -- -- NOTE. This is just a weaker version of `≃-s-i'. ≃-s-i′ : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ≃ b ∈ * → Γ ⊢ a ≃ b ∈ S a ≃-s-i′ a≃b∈* = ≃-s-i a≃b∈* -- Singleton elimination. ≃-s-e : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Tp a ∈ S b → Γ ⊢ a ≃ b ∈ * ≃-s-e a∈b⋯b = <:-antisym (<:-|⟩ a∈b⋯b) (<:-⟨| a∈b⋯b) -- Subkinding of singletons. <∷-s-* : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢Tp a ∈ * → Γ ⊢ S a <∷ * <∷-s-* a∈* = <∷-⋯ (<:-⊥ a∈*) (<:-⊤ a∈*) <∷-s-s : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ≃ b ∈ * → Γ ⊢ S a <∷ S b <∷-s-s (<:-antisym a<:b∈* b<:a∈*) = <∷-⋯ b<:a∈* a<:b∈* -- Equality of singleton kinds. -- -- NOTE. This is just a weaker version of `≅-⋯'. ≅-s : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ≃ b ∈ * → Γ ⊢ S a ≅ S b ≅-s a≃b∈* = ≅-⋯ a≃b∈* a≃b∈* ------------------------------------------------------------------------ -- Cardelli and Longo's power (sub)kinding rules. -- -- See p. 8 (424) of L. Cardelli, G. Longo, A Semantic Basis for -- Quest, JFP 1(4), Cambridge University Press, 1991. -- An encoding of Cardelli and Longo's power kinds. P : ∀ {n} → Term n → Kind Term n P a = ⊥ ⋯ a -- Power kind formation. kd-p : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢Tp a ∈ * → Γ ⊢ P a kd kd-p a∈* = kd-⋯ (∈-⊥-f (Tp∈-ctx a∈*)) a∈* -- Power kind introduction. ∈-p-i : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢Tp a ∈ * → Γ ⊢Tp a ∈ P a ∈-p-i a∈* = ∈-⇑ (∈-s-i a∈*) (<∷-⋯ (<:-⊥ a∈*) (<:-refl a∈*)) -- Subkinding of power kinds. <∷-p : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a <: b ∈ * → Γ ⊢ P a <∷ P b <∷-p a<:b∈* = <∷-⋯ (<:-⊥ (∈-⊥-f (<:-ctx a<:b∈*))) a<:b∈* -- Power kinding is equivalent to subtyping of proper types. ∈P⇒<: : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Tp a ∈ P b → Γ ⊢ a <: b ∈ * ∈P⇒<: a∈Pb = <:-|⟩ a∈Pb <:⇒∈P : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a <: b ∈ * → Γ ⊢Tp a ∈ P b <:⇒∈P a<:b∈* = ∈-⇑ (∈-p-i (proj₁ (<:-valid a<:b∈*))) (<∷-p a<:b∈*)
{ "alphanum_fraction": 0.4216097254, "avg_line_length": 35.4282178218, "ext": "agda", "hexsha": "28314b21e1556c00b30de982f8b6c4dc88917684", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Typing/Encodings.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Typing/Encodings.agda", "max_line_length": 79, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Typing/Encodings.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 17635, "size": 28626 }
module Ex6Edit where -- git would rather indicate that nothing has happened 0/15 {- This is the file where you should work. -} open import CS410-Prelude open import CS410-Nat open import Ex6AgdaSetup -- the setup gives you a nondependent pair type _**_ -- because that's what the compiler can exchange with Haskell code {- The key editor data structure is the cursor. A Cursor M X represents being somewhere in the middle of a sequence of X values, holding an M. -} record Cursor (M X : Set) : Set where constructor _<[_]>_ field beforeMe : Bwd X atMe : M afterMe : List X infix 2 _<[_]>_ {- An editor buffer is a nested cursor: we're in the middle of a bunch of *lines*, holding a cursor for the current line, which puts us in the middle of a bunch of characters, holding the element of One. -} Buffer : Set Buffer = Cursor (Cursor One Char) (List Char) {- This operator, called "chips", shuffles the elements from a backward list on to the start of a forward list, keeping them in the same order. -} _<>>_ : {X : Set} -> Bwd X -> List X -> List X [] <>> xs = xs (xz <: x) <>> xs = xz <>> (x :: xs) {- The "fish" operator goes the other way. -} _<><_ : {X : Set} -> Bwd X -> List X -> Bwd X xz <>< [] = xz xz <>< (x :: xs) = (xz <: x) <>< xs {- You can turn a buffer into a list of lines, preserving its text. -} bufText : Buffer -> List (List Char) bufText (sz <[ cz <[ <> ]> cs ]> ss) = sz <>> ((cz <>> cs) :: ss) {- Here's an example of a proof of a fact about fish and chips. -} firstFishFact : {X : Set} -> (xz : Bwd X)(xs : List X) -> (xz <>< xs) <>> [] == xz <>> xs firstFishFact xz [] = refl firstFishFact xz (x :: xs) = firstFishFact (xz <: x) xs {- You will need more such facts. -} {- EXERCISE 6.1 -} {- When we start the editor with the command ./Edit foo.txt the contents of foo.txt will be turned into a list of lines. Your (not so tricky) mission is to turn the file contents into a buffer which contains the same text. (1 mark) -} initBuf : List (List Char) -> Buffer initBuf ss = [] <[ [] <[ <> ]> [] ]> [] {- As you can see, the current version will run, but it always gives the empty buffer, which is not what we want unless the input is empty. -} {- Next comes the heart of the editor. You get a keystroke and the current buffer, and you have to say what is the new buffer. You also have to say what is the extent of the change. The tricky part is this: you have to be honest enough about your change report, so that we don't underestimate the amount of updating the screen needs. -} Honest : Buffer -> Change ** Buffer -> Set Honest b (allQuiet , b') = b == b' Honest b (cursorMove , b') = bufText b == bufText b' Honest (sz <[ _ ]> ss) (lineEdit , (sz' <[ _ ]> ss')) = (sz == sz') ** (ss == ss') Honest _ (bigChange , _) = One record UpdateFrom (b : Buffer) : Set where -- b is the starting buffer constructor _///_ field update : Change ** Buffer -- change and new buffer honest : Honest b update open UpdateFrom infix 2 _///_ {- EXERCISE 6.2 -} {- Implement the appropriate behaviour for as many keystrokes as you can. I have done a couple for you, but I don't promise to have done them correctly. -} keystroke : Key -> (b : Buffer) -> UpdateFrom b keystroke (char c) (sz <[ cz <[ <> ]> cs ]> ss) = lineEdit , (sz <[ cz <[ <> ]> c :: cs ]> ss) /// refl , refl -- see? same above and below keystroke (arrow normal right) (sz <: s <[ [] <[ <> ]> cs ]> ss) = cursorMove , (sz <[ ([] <>< s) <[ <> ]> [] ]> cs :: ss) /// within (\ x -> sz <>> (x :: cs :: ss)) turn s into ([] <>< s) <>> [] because sym (firstFishFact [] s) keystroke k b = allQuiet , b /// refl {- Please expect to need to invent extra functions, e.g., to measure where you are, so that up and down arrow work properly. -} {- Remember also that you can always overestimate the change by saying bigChange, which needs only a trivial proof. But you may find that the display will flicker badly if you do. -} {- (char c) 1 mark enter 2 marks backspace delete 2 marks for the pair left right 2 marks for the pair (with cursorMove change) up down 2 marks for the pair (with cursorMove change) -} {- EXERCISE 6.3 -} {- You will need to improve substantially on my implementation of the next component, whose purpose is to update the window. Mine displays only one line! -} render : Nat ** Nat -> -- height and width of window -- CORRECTION! width and height Nat ** Nat -> -- first visible row, first visible column Change ** Buffer -> -- what just happened List Action ** -- how to update screen (Nat ** Nat) -- new first visible row, first visible column render _ tl (allQuiet , _) = ([] , tl) render _ tl (_ , (_ <[ cz <[ <> ]> cs ]> _)) = (goRowCol 0 0 :: sendText (cz <>> cs) :: []) , tl {- The editor window gives you a resizable rectangular viewport onto the editor buffer. You get told the current size of the viewport which row and col of the buffer are at the top left of the viewport (so you can handle documents which are taller or wider than the window) the most recent change report and buffer You need to figure out whether you need to move the viewport (by finding out if the cursor is still within the viewport) and if so, where to. You need to figure out what to redisplay. If the change report says lineEdit and the viewport has not moved, you need only repaint the current line. If the viewport has moved or the change report says bigChange, you need to repaint the whole buffer. You will need to be able to grab a rectangular region of text from the buffer, but you do know how big and where from. Remember to put the cursor in the right place, relative to where in the buffer the viewport is supposed to be. The goRowCol action takes *viewport* coordinates, not *buffer* coordinates! You will need to invent subtraction! -} {- Your code does not need to worry about resizing the window. My code does that. On detecting a size change, my code just calls your code with a bigChange report and the same buffer, so if you are doing a proper repaint, the right thing will happen. -} {- 2 marks for ensuring that a buffer smaller than the viewport displays correctly, with the cursor in the right place, if nobody changes the viewport size 2 marks for ensuring that the cursor remains within the viewport even if the viewport needs to move 1 mark for ensuring that lineEdit changes need only affect one line of the display (provided the cursor stays in the viewport) -} {- Your code then hooks into mine to produce a top level executable! -} main : IO One main = mainLoop initBuf (\ k b -> update (keystroke k b)) render {- To build the editor, just do make Ex6Edit in a shell window. To run the editor, once compiled, do make edit in the shell window, which should become the editor window. To quit the editor, do ctrl-C like an old-fashioned soul. -} {- There is no one right way to do this exercise, and there is some scope for extension. It's important that you get in touch if you need help, either in achieving the basic deliverable, or in finding ways to explore beyond it. -}
{ "alphanum_fraction": 0.6414846012, "avg_line_length": 38.3737373737, "ext": "agda", "hexsha": "4096d093cd6b6f3e1b0340e5ae9fcf334ef7e5e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "clarkdm/CS410", "max_forks_repo_path": "Ex6Edit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "clarkdm/CS410", "max_issues_repo_path": "Ex6Edit.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "clarkdm/CS410", "max_stars_repo_path": "Ex6Edit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2053, "size": 7598 }
{- Defines different notions of morphisms and properties of morphisms of groups: - GroupHom (homomorphisms) - GroupEquiv (equivs which are homomorphisms) - GroupIso (isos which are homomorphisms) - Image - Kernel - Surjective - Injective - Mono - BijectionIso (surjective + injective) -} {-# OPTIONS --safe #-} module Cubical.Algebra.Group.Morphisms where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Structure open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.DirProd open import Cubical.Data.Sigma open import Cubical.Reflection.RecordEquiv private variable ℓ ℓ' ℓ'' ℓ''' : Level record IsGroupHom {A : Type ℓ} {B : Type ℓ'} (M : GroupStr A) (f : A → B) (N : GroupStr B) : Type (ℓ-max ℓ ℓ') where -- Shorter qualified names private module M = GroupStr M module N = GroupStr N field pres· : (x y : A) → f (x M.· y) ≡ f x N.· f y pres1 : f M.1g ≡ N.1g presinv : (x : A) → f (M.inv x) ≡ N.inv (f x) unquoteDecl IsGroupHomIsoΣ = declareRecordIsoΣ IsGroupHomIsoΣ (quote IsGroupHom) GroupHom : (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') GroupHom G H = Σ[ f ∈ (G .fst → H .fst) ] IsGroupHom (G .snd) f (H .snd) GroupIso : (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') GroupIso G H = Σ[ e ∈ Iso (G .fst) (H .fst) ] IsGroupHom (G .snd) (e .Iso.fun) (H .snd) IsGroupEquiv : {A : Type ℓ} {B : Type ℓ'} (M : GroupStr A) (e : A ≃ B) (N : GroupStr B) → Type (ℓ-max ℓ ℓ') IsGroupEquiv M e N = IsGroupHom M (e .fst) N GroupEquiv : (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') GroupEquiv G H = Σ[ e ∈ (G .fst ≃ H .fst) ] IsGroupEquiv (G .snd) e (H .snd) groupEquivFun : {G : Group ℓ} {H : Group ℓ'} → GroupEquiv G H → G .fst → H .fst groupEquivFun e = e .fst .fst -- Image, kernel, surjective, injective, and bijections open IsGroupHom open GroupStr private variable G H : Group ℓ isInIm : GroupHom G H → ⟨ H ⟩ → Type _ isInIm {G = G} ϕ h = ∃[ g ∈ ⟨ G ⟩ ] ϕ .fst g ≡ h isInKer : GroupHom G H → ⟨ G ⟩ → Type _ isInKer {H = H} ϕ g = ϕ .fst g ≡ 1g (snd H) Ker : GroupHom G H → Type _ Ker {G = G} ϕ = Σ[ x ∈ ⟨ G ⟩ ] isInKer ϕ x Im : GroupHom G H → Type _ Im {H = H} ϕ = Σ[ x ∈ ⟨ H ⟩ ] isInIm ϕ x isSurjective : GroupHom G H → Type _ isSurjective {H = H} ϕ = (x : ⟨ H ⟩) → isInIm ϕ x isInjective : GroupHom G H → Type _ isInjective {G = G} ϕ = (x : ⟨ G ⟩) → isInKer ϕ x → x ≡ 1g (snd G) isMono : GroupHom G H → Type _ isMono {G = G} f = {x y : ⟨ G ⟩} → f .fst x ≡ f .fst y → x ≡ y -- Group bijections record BijectionIso (G : Group ℓ) (H : Group ℓ') : Type (ℓ-max ℓ ℓ') where constructor bijIso field fun : GroupHom G H inj : isInjective fun surj : isSurjective fun
{ "alphanum_fraction": 0.6261682243, "avg_line_length": 26, "ext": "agda", "hexsha": "38ff0c7d44177b63928104cc0edf30a62e7f93ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Morphisms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Morphisms.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Morphisms.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:30:17.000Z", "num_tokens": 1088, "size": 2782 }
-- Showing that destroy-guardedness in Issue1209-4 indeed does -- destroy guardedness {-# OPTIONS --safe --guardedness --no-sized-types #-} record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream destroy-guardedness : ∀ {A} → Stream A → Stream A destroy-guardedness xs .head = xs .head destroy-guardedness xs .tail = xs .tail repeat : ∀ {A} → A → Stream A repeat x .head = x repeat x .tail = destroy-guardedness (repeat x)
{ "alphanum_fraction": 0.6842105263, "avg_line_length": 22.619047619, "ext": "agda", "hexsha": "57119ee0b5bf2c0cee612da09b1832809832d86a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1209-4-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1209-4-2.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1209-4-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 138, "size": 475 }
open import Nat open import Prelude open import contexts open import core open import canonical-value-forms module canonical-boxed-forms where canonical-boxed-forms-b : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d boxedval → d == c canonical-boxed-forms-b (TAVar _) (BVVal ()) canonical-boxed-forms-b wt (BVVal v) = canonical-value-forms-b wt v -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for boxed values at arrow type data cbf-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CBFLam : ∀{Δ d τ1 τ2} → (Σ[ x ∈ Nat ] Σ[ d' ∈ ihexp ] (d == (·λ x [ τ1 ] d') × Δ , ■ (x , τ1) ⊢ d' :: τ2)) → cbf-arr Δ d τ1 τ2 CBFCastArr : ∀{Δ d τ1 τ2} → (Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] (d == (d' ⟨ τ1' ==> τ2' ⇒ τ1 ==> τ2 ⟩) × (τ1' ==> τ2' ≠ τ1 ==> τ2) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2'))) → cbf-arr Δ d τ1 τ2 canonical-boxed-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d boxedval → cbf-arr Δ d τ1 τ2 canonical-boxed-forms-arr (TAVar x₁) (BVVal ()) canonical-boxed-forms-arr (TALam f wt) (BVVal v) = CBFLam (canonical-value-forms-arr (TALam f wt) v) canonical-boxed-forms-arr (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-arr (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-arr (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVArrCast x₁ bv) = CBFCastArr (_ , _ , _ , refl , x₁ , wt) canonical-boxed-forms-arr (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇-⦈ → d boxedval → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) × (τ' ground) × (Δ , ∅ ⊢ d' :: τ')) canonical-boxed-forms-hole (TAVar x₁) (BVVal ()) canonical-boxed-forms-hole (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-hole (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-hole (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVHoleCast x₁ bv) = _ , _ , refl , x₁ , wt canonical-boxed-forms-hole (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d boxedval → τ ≠ b → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) → τ ≠ ⦇-⦈ → ⊥ canonical-boxed-forms-coverage TAConst (BVVal x) nb na nh = nb refl canonical-boxed-forms-coverage (TAVar x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TALam _ wt) (BVVal x₁) nb na nh = na _ _ refl canonical-boxed-forms-coverage (TAAp wt wt₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TAEHole x x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TANEHole x wt x₁) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TACast wt x) (BVVal ()) nb na nh canonical-boxed-forms-coverage (TACast wt x) (BVArrCast x₁ bv) nb na nh = na _ _ refl canonical-boxed-forms-coverage (TACast wt x) (BVHoleCast x₁ bv) nb na nh = nh refl canonical-boxed-forms-coverage (TAFailedCast x x₁ x₂ x₃) (BVVal ())
{ "alphanum_fraction": 0.5141745414, "avg_line_length": 47.9733333333, "ext": "agda", "hexsha": "ab748ba77a8d9b8a1a41da39769080df8ca94b75", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "canonical-boxed-forms.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "canonical-boxed-forms.agda", "max_line_length": 102, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "canonical-boxed-forms.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 1242, "size": 3598 }
{-# OPTIONS --no-termination-check #-} module Data.Bin.BinDivNt where open import Data.Bin open import Data.Bin.Properties open import Data.Product open import Relation.Binary open StrictTotalOrder <-strictTotalOrder open import Relation.Nullary open import Data.Bin.Utils open import Data.Bin.Minus _divMod-nt_ : Bin → Bin → (Bin × Bin) a divMod-nt b with a <? b ... | yes _ = (fromℕ 0 , a) ... | no _ with a divMod-nt (b *2) ... | (d , m) with m <? b ... | yes _ = (d *2 , m) ... | no _ = (fromℕ 1 + (d *2) , m - b)
{ "alphanum_fraction": 0.6126126126, "avg_line_length": 25.2272727273, "ext": "agda", "hexsha": "e71bc3f41a2a6bc3788e116978a5d8984b56bf0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/BinDivNt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/BinDivNt.agda", "max_line_length": 42, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/BinDivNt.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 190, "size": 555 }
data Unit : Set where unit : Unit test : Unit test = {!!}
{ "alphanum_fraction": 0.5901639344, "avg_line_length": 10.1666666667, "ext": "agda", "hexsha": "87fc1390e0d32551855519cc79e0e1797bccd519", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Interactive/Issue1430.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Interactive/Issue1430.agda", "max_line_length": 21, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Interactive/Issue1430.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 19, "size": 61 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.groups.Homomorphism open import lib.types.TwoSemiCategory open import lib.two-semi-categories.Functor module lib.two-semi-categories.GroupToCategory where group-to-cat : ∀ {i} → Group i → TwoSemiCategory lzero i group-to-cat G = record { El = ⊤ ; Arr = λ _ _ → G.El ; Arr-level = λ _ _ → raise-level 0 G.El-level ; two-semi-cat-struct = record { comp = G.comp ; assoc = G.assoc ; pentagon-identity = λ _ _ _ _ → =ₛ-in (prop-path (has-level-apply G.El-level _ _) _ _) } } where module G = Group G homomorphism-to-functor : ∀ {i j} {G : Group i} {H : Group j} → G →ᴳ H → TwoSemiFunctor (group-to-cat G) (group-to-cat H) homomorphism-to-functor {G = G} {H = H} φ = record { F₀ = idf ⊤ ; F₁ = φ.f ; pres-comp = φ.pres-comp ; pres-comp-coh = λ _ _ _ → =ₛ-in $ prop-path (has-level-apply H.El-level _ _) _ _ } where module G = Group G module H = Group H module φ = GroupHom φ
{ "alphanum_fraction": 0.627264061, "avg_line_length": 25.5853658537, "ext": "agda", "hexsha": "3ca5cd671d52a77406d698ee71ade6ba1c88b5a5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/two-semi-categories/GroupToCategory.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/two-semi-categories/GroupToCategory.agda", "max_line_length": 92, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/two-semi-categories/GroupToCategory.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 359, "size": 1049 }
open import AbstractInterfaces public module OrdersAndEqualities {{_ : IsProc}} {{_ : IsTime}} {{_ : IsMsg}} {{_ : IsEvent}} where -- _≡ₑ_ is a decidable equality on events within one process. data _≡ₑ_ : ∀ {P T T′} → Event P T → Event P T′ → Set where refl≡ₑ : ∀ {P T} {a b : Event P T} → a ≡ₑ b _≢ₑ_ : ∀ {P T T′} → Event P T → Event P T′ → Set a ≢ₑ b = ¬ (a ≡ₑ b) ≡→≡ₑ : ∀ {P T T′} {a : Event P T} {b : Event P T′} → T ≡ T′ → a ≡ₑ b ≡→≡ₑ refl = refl≡ₑ ≢→≢ₑ : ∀ {P T T′} {a : Event P T} {b : Event P T′} → T ≢ T′ → a ≢ₑ b ≢→≢ₑ T≢T′ refl≡ₑ = refl ↯ T≢T′ _≡ₑ?_ : ∀ {T T′ P} → (a : Event P T) (b : Event P T′) → Dec (a ≡ₑ b) _≡ₑ?_ {T} {T′} a b with T ≡ₜ? T′ a ≡ₑ? b | yes T≡T′ = yes (≡→≡ₑ T≡T′) a ≡ₑ? b | no T≢T′ = no (≢→≢ₑ T≢T′) -- _≅ₑ_ is a decidable equality on events across all processes. data _≅ₑ_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → Event Pᵢ Tᵢ → Event Pⱼ Tⱼ → Set where refl≅ₑ : ∀ {P T} {a : Event P T} {b : Event P T} → a ≅ₑ b _≇ₑ_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → Event Pᵢ Tᵢ → Event Pⱼ Tⱼ → Set a ≇ₑ b = ¬ (a ≅ₑ b) ≡ₑ→≅ₑ : ∀ {P T T′} {a : Event P T} {b : Event P T′} → a ≡ₑ b → a ≅ₑ b ≡ₑ→≅ₑ refl≡ₑ = refl≅ₑ ≢ₑ→≇ₑ : ∀ {P T T′} {a : Event P T} {b : Event P T′} → a ≢ₑ b → a ≇ₑ b ≢ₑ→≇ₑ a≢b refl≅ₑ = refl≡ₑ ↯ a≢b ≢ₚ→≇ₑ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → Pᵢ ≢ Pⱼ → a ≇ₑ b ≢ₚ→≇ₑ P≢P′ refl≅ₑ = refl ↯ P≢P′ ≢ₜ→≇ₑ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → Tᵢ ≢ Tⱼ → a ≇ₑ b ≢ₜ→≇ₑ T≢T′ refl≅ₑ = refl ↯ T≢T′ _≅ₑ?_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → (a : Event Pᵢ Tᵢ) (b : Event Pⱼ Tⱼ) → Dec (a ≅ₑ b) _≅ₑ?_ {Pᵢ} {Pⱼ} a b with Pᵢ ≡ₚ? Pⱼ a ≅ₑ? b | yes refl with a ≡ₑ? b a ≅ₑ? b | yes refl | yes a≡b = yes (≡ₑ→≅ₑ a≡b) a ≅ₑ? b | yes refl | no a≢b = no (≢ₑ→≇ₑ a≢b) a ≅ₑ? b | no Pᵢ≢Pⱼ = no (≢ₚ→≇ₑ Pᵢ≢Pⱼ) -- _<ₑ_ is a decidable strict total order on events within one process. _<ₑ_ : ∀ {T T′ P} → Event P T → Event P T′ → Set _<ₑ_ {T} {T′} a b = T <ₜ T′ _≮ₑ_ : ∀ {P T T′} → Event P T → Event P T′ → Set a ≮ₑ b = ¬ (a <ₑ b) trans<ₑ : ∀ {P T T′ T″} {a : Event P T} {b : Event P T′} {c : Event P T″} → a <ₑ b → b <ₑ c → a <ₑ c trans<ₑ = trans<ₜ tri<ₑ : ∀ {T T′ P} → (a : Event P T) (b : Event P T′) → Tri (a <ₑ b) (a ≡ₑ b) (b <ₑ a) tri<ₑ {T} {T′} a b with tri<ₜ T T′ tri<ₑ a b | τ₍ T<T′ T≢T′ T′≮T = τ₍ T<T′ (≢→≢ₑ T≢T′) T′≮T tri<ₑ a b | τ₌ T≮T′ T≡T′ T′≮T = τ₌ T≮T′ (≡→≡ₑ T≡T′) T′≮T tri<ₑ a b | τ₎ T≮T′ T≢T′ T′<T = τ₎ T≮T′ (≢→≢ₑ T≢T′) T′<T irrefl<ₑ : ∀ {P T} {a : Event P T} → a ≮ₑ a irrefl<ₑ {a = a} with tri<ₑ a a irrefl<ₑ | τ₍ a<a a≢a a≮a = a≮a irrefl<ₑ | τ₌ a≮a a≡a _ = a≮a irrefl<ₑ | τ₎ a≮a a≢a a<a = a≮a _<ₑ?_ : ∀ {P T T′} → (a : Event P T) (b : Event P T′) → Dec (a <ₑ b) a <ₑ? b with tri<ₑ a b a <ₑ? b | τ₍ a<b a≢b b≮a = yes a<b a <ₑ? b | τ₌ a≮b a≡b b≮a = no a≮b a <ₑ? b | τ₎ a≮b a≢b b<a = no a≮b -- _⊳_ is a strict partial order on events across all processes. data _⊳_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → Event Pᵢ Tᵢ → Event Pⱼ Tⱼ → Set where lift⊳ : ∀ {P T T′} {a : Event P T} {b : Event P T′} → a <ₑ b → a ⊳ b pass⊳ : ∀ {Cᵢ Cⱼ Pᵢ Pⱼ Tₘ Tⱼ} {{_ : Tₘ ≡ sucₜ Cᵢ}} {{_ : Tⱼ ≡ sucₜ (Tₘ ⊔ₜ Cⱼ)}} → {m : Msg Pᵢ Pⱼ Tₘ} {a : Event Pᵢ Tₘ} {b : Event Pⱼ Tⱼ} → isSendₑ {Cᵢ} m a → isRecvₑ {Cⱼ} m b → a ⊳ b trans⊳ : ∀ {Pᵢ Pⱼ Pₖ Tᵢ Tⱼ Tₖ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} {c : Event Pₖ Tₖ} → a ⊳ b → b ⊳ c → a ⊳ c _⋫_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → Event Pᵢ Tᵢ → Event Pⱼ Tⱼ → Set a ⋫ b = ¬ (a ⊳ b) clock⊳ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → a ⊳ b → Tᵢ <ₜ Tⱼ clock⊳ (lift⊳ Tᵢ<Tⱼ) = Tᵢ<Tⱼ clock⊳ (pass⊳ {Cᵢ} {Cⱼ} {{refl}} {{refl}} _ _) = n<s[n⊔m]ₜ (sucₜ Cᵢ) Cⱼ clock⊳ (trans⊳ a⊳b b⊳c) = trans<ₜ (clock⊳ a⊳b) (clock⊳ b⊳c) irrefl⊳ : ∀ {P T} {a : Event P T} → a ⋫ a irrefl⊳ (lift⊳ {a = a} a<a) = a<a ↯ irrefl<ₑ {a = a} irrefl⊳ (pass⊳ x y) = (x , y) ↯ absurdₑ irrefl⊳ (trans⊳ {Tᵢ = Tᵢ} {Tⱼ} a⊳b b⊳a) with tri<ₜ Tᵢ Tⱼ irrefl⊳ (trans⊳ a⊳b b⊳a) | τ₍ Tᵢ<Tⱼ Tᵢ≢Tⱼ Tⱼ≮Tᵢ = clock⊳ b⊳a ↯ Tⱼ≮Tᵢ irrefl⊳ (trans⊳ a⊳b b⊳a) | τ₌ Tᵢ≮Tⱼ Tᵢ≡Tⱼ Tⱼ≮Tᵢ = clock⊳ a⊳b ↯ Tᵢ≮Tⱼ irrefl⊳ (trans⊳ a⊳b b⊳a) | τ₎ Tᵢ≮Tⱼ Tᵢ≢Tⱼ Tⱼ<Tᵢ = clock⊳ a⊳b ↯ Tᵢ≮Tⱼ asym⊳ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → a ⊳ b → b ⋫ a asym⊳ a⊳b b⊳a = irrefl⊳ (trans⊳ a⊳b b⊳a) -- _⇒_ is a decidable strict total order on events across all processes. data _⇒_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → Event Pᵢ Tᵢ → Event Pⱼ Tⱼ → Set where diff⇒ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → Tᵢ <ₜ Tⱼ → a ⇒ b same⇒ : ∀ {Pᵢ Pⱼ T} {a : Event Pᵢ T} {b : Event Pⱼ T} → Pᵢ <ₚ Pⱼ → a ⇒ b _⇏_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → Event Pᵢ Tᵢ → Event Pⱼ Tⱼ → Set a ⇏ b = ¬ (a ⇒ b) lift⇒ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → a ⊳ b → a ⇒ b lift⇒ = diff⇒ ∘ clock⊳ trans⇒ : ∀ {Pᵢ Pⱼ Pₖ Tᵢ Tⱼ Tₖ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} {c : Event Pₖ Tₖ} → a ⇒ b → b ⇒ c → a ⇒ c trans⇒ (diff⇒ Tᵢ<Tⱼ) (diff⇒ Tⱼ<Tₖ) = diff⇒ (trans<ₜ Tᵢ<Tⱼ Tⱼ<Tₖ) trans⇒ (diff⇒ Tᵢ<Tⱼ) (same⇒ Pⱼ<Pₖ) = diff⇒ Tᵢ<Tⱼ trans⇒ (same⇒ Pᵢ<Pⱼ) (diff⇒ Tⱼ<Tₖ) = diff⇒ Tⱼ<Tₖ trans⇒ (same⇒ Pᵢ<Pⱼ) (same⇒ Pⱼ<Pₖ) = same⇒ (trans<ₚ Pᵢ<Pⱼ Pⱼ<Pₖ) ≮→⇏ : ∀ {Pᵢ Pⱼ T} {a : Event Pᵢ T} {b : Event Pⱼ T} → Pᵢ ≮ₚ Pⱼ → a ⇏ b ≮→⇏ Pᵢ≮Pⱼ (diff⇒ T<T) = T<T ↯ irrefl<ₜ ≮→⇏ Pᵢ≮Pⱼ (same⇒ Pᵢ<Pⱼ) = Pᵢ<Pⱼ ↯ Pᵢ≮Pⱼ ≮×≮→⇏ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → Tᵢ ≮ₜ Tⱼ → Pᵢ ≮ₚ Pⱼ → a ⇏ b ≮×≮→⇏ Tᵢ≮Tⱼ Pᵢ≮Pⱼ (diff⇒ Tᵢ<Tⱼ) = Tᵢ<Tⱼ ↯ Tᵢ≮Tⱼ ≮×≮→⇏ Tᵢ≮Tⱼ Pᵢ≮Pⱼ (same⇒ Pᵢ<Pⱼ) = Pᵢ<Pⱼ ↯ Pᵢ≮Pⱼ ≮×≢→⇏ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} {a : Event Pᵢ Tᵢ} {b : Event Pⱼ Tⱼ} → Tᵢ ≮ₜ Tⱼ → Tᵢ ≢ Tⱼ → a ⇏ b ≮×≢→⇏ Tᵢ≮Tⱼ Tᵢ≢Tⱼ (diff⇒ Tᵢ<Tⱼ) = Tᵢ<Tⱼ ↯ Tᵢ≮Tⱼ ≮×≢→⇏ Tᵢ≮Tⱼ Tᵢ≢Tⱼ (same⇒ Pᵢ<Pⱼ) = refl ↯ Tᵢ≢Tⱼ tri⇒₌ : ∀ {Pᵢ Pⱼ T} → (a : Event Pᵢ T) (b : Event Pⱼ T) → Tri (a ⇒ b) (a ≅ₑ b) (b ⇒ a) tri⇒₌ {Pᵢ} {Pⱼ} a b with tri<ₚ Pᵢ Pⱼ tri⇒₌ a b | τ₍ Pᵢ<Pⱼ Pᵢ≢Pⱼ Pⱼ≮Pᵢ = τ₍ (same⇒ Pᵢ<Pⱼ) (≢ₚ→≇ₑ Pᵢ≢Pⱼ) (≮→⇏ Pⱼ≮Pᵢ) tri⇒₌ a b | τ₌ Pᵢ≮Pⱼ refl Pⱼ≮Pᵢ = τ₌ (≮→⇏ Pᵢ≮Pⱼ) refl≅ₑ (≮→⇏ Pⱼ≮Pᵢ) tri⇒₌ a b | τ₎ Pᵢ≮Pⱼ Pᵢ≢Pⱼ Pⱼ<Pᵢ = τ₎ (≮→⇏ Pᵢ≮Pⱼ) (≢ₚ→≇ₑ Pᵢ≢Pⱼ) (same⇒ Pⱼ<Pᵢ) tri⇒ : ∀ {Tᵢ Tⱼ Pᵢ Pⱼ} → (a : Event Pᵢ Tᵢ) (b : Event Pⱼ Tⱼ) → Tri (a ⇒ b) (a ≅ₑ b) (b ⇒ a) tri⇒ {Tᵢ} {Tⱼ} a b with tri<ₜ Tᵢ Tⱼ tri⇒ a b | τ₍ Tᵢ<Tⱼ Tᵢ≢Tⱼ Tⱼ≮Tᵢ = τ₍ (diff⇒ Tᵢ<Tⱼ) (≢ₜ→≇ₑ Tᵢ≢Tⱼ) (≮×≢→⇏ Tⱼ≮Tᵢ (sym≢ Tᵢ≢Tⱼ)) tri⇒ a b | τ₌ Tᵢ≮Tⱼ refl Tⱼ≮Tᵢ = tri⇒₌ a b tri⇒ a b | τ₎ Tᵢ≮Tⱼ Tᵢ≢Tⱼ Tⱼ<Tᵢ = τ₎ (≮×≢→⇏ Tᵢ≮Tⱼ Tᵢ≢Tⱼ) (≢ₜ→≇ₑ Tᵢ≢Tⱼ) (diff⇒ Tⱼ<Tᵢ) irrefl⇒ : ∀ {P T} {a : Event P T} → a ⇏ a irrefl⇒ {a = a} with tri⇒ a a irrefl⇒ | τ₍ a⇒a a≢a a⇏a = a⇏a irrefl⇒ | τ₌ a⇏a a≢a _ = a⇏a irrefl⇒ | τ₎ a⇏a a≢a a⇒a = a⇏a _⇒?_ : ∀ {Pᵢ Pⱼ Tᵢ Tⱼ} → (a : Event Pᵢ Tᵢ) (b : Event Pⱼ Tⱼ) → Dec (a ⇒ b) a ⇒? b with tri⇒ a b a ⇒? b | τ₍ a⇒b a≇b b⇏a = yes a⇒b a ⇒? b | τ₌ a⇏b a≅b b⇏a = no a⇏b a ⇒? b | τ₎ a⇏b a≇b b⇒a = no a⇏b
{ "alphanum_fraction": 0.4693514954, "avg_line_length": 34.4591836735, "ext": "agda", "hexsha": "698f122d9077f5fe0c2915fc7e4957d7fe1c6c8a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/lamport-timestamps", "max_forks_repo_path": "OrdersAndEqualities.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/lamport-timestamps", "max_issues_repo_path": "OrdersAndEqualities.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "b685baa99230c3d5fd1e41c66d325575b70308c4", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/lamport-timestamps", "max_stars_repo_path": "OrdersAndEqualities.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5158, "size": 6754 }
{-# OPTIONS --without-K --allow-unsolved-metas --exact-split #-} module 17-cubical-diagrams where import 16-pushouts open 16-pushouts public -- Section 15.1 Commuting cubes -- Cubes {- We specify the type of the homotopy witnessing that a cube commutes. Imagine that the cube is presented as a lattice * / | \ / | \ / | \ * * * |\ / \ /| | \ ‌/ | |/ \ / \| * * * \ | / \ | / \ | / * with all maps pointing in the downwards direction. Presented in this way, a cube of maps has a top face, a back-left face, a back-right face, a front-left face, a front-right face, and a bottom face, all of which are homotopies. A term of type coherence-cube is a homotopy filling the cube. -} coherence-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → UU _ coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (((h ·l back-left) ∙h (front-left ·r f')) ∙h (hD ·l top)) ~ ((bottom ·r hA) ∙h ((k ·l back-right) ∙h (front-right ·r g'))) coherence-hexagon : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → UU l coherence-hexagon α β γ δ ε ζ = Id ((α ∙ β) ∙ γ) (δ ∙ (ε ∙ ζ)) hexagon-rotate-120 : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv ε) (inv δ) α ζ (inv γ) (inv β) hexagon-rotate-120 refl refl refl refl refl .refl refl = refl hexagon-rotate-240 : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon γ (inv ζ) (inv ε) (inv β) (inv α) δ hexagon-rotate-240 refl refl refl refl refl .refl refl = refl hexagon-mirror-A : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon ε ζ (inv γ) (inv δ) α β hexagon-mirror-A refl refl refl refl refl .refl refl = refl hexagon-mirror-B : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv α) δ ε β γ (inv ζ) hexagon-mirror-B refl refl refl refl refl .refl refl = refl hexagon-mirror-C : {l : Level} {A : UU l} {x u u' v v' y : A} (α : Id x u) (β : Id u u') (γ : Id u' y) (δ : Id x v) (ε : Id v v') (ζ : Id v' y) → coherence-hexagon α β γ δ ε ζ → coherence-hexagon (inv γ) (inv β) (inv α) (inv ζ) (inv ε) (inv δ) hexagon-mirror-C refl refl refl refl refl .refl refl = refl {- Since the specification of a cube is rather lengthy, we use Agda's parametrized module system in order to avoid having to specify the same variables multiple times. -} module Cubes {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) where {- The symmetry group D_3 acts on a cube. However, the coherence filling a a cube needs to be modified to show that the rotated/reflected cube again commutes. In the following definitions we provide the homotopies witnessing that the rotated/reflected cubes again commute. Note: although in principle it ought to be enough to show this for the generators of the symmetry group D_3, in practice it is more straightforward to just do the work for each of the symmetries separately. One reason is that some of the homotopies witnessing that the faces commute will be inverted as the result of an application of a symmetry. Inverting a homotopy twice results in a new homotopy that is only homotopic to the original homotopy. We first provide some constructions involving homotopies that will help us manipulating coherences of cubes. -} -- We show that a rotation of a commuting cube again commutes. coherence-cube-rotate-120 : coherence-cube hC k' k hD hA f' f hB g' g h' h back-left (htpy-inv back-right) (htpy-inv top) (htpy-inv bottom) (htpy-inv front-left) front-right coherence-cube-rotate-120 a' = ( ap (λ t → t ∙ (ap h (back-left a'))) ( ap (λ t' → t' ∙ inv (bottom (hA a'))) ( ap-inv k (back-right a')))) ∙ ( ( hexagon-rotate-120 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap (λ t → (front-right (g' a')) ∙ t) ( ap (λ t' → t' ∙ inv (front-left (f' a'))) ( ap-inv hD (top a')))))) coherence-cube-rotate-240 : coherence-cube h' hB hD h g' hA hC g f' k' f k (htpy-inv back-right) top (htpy-inv back-left) (htpy-inv front-right) bottom (htpy-inv front-left) coherence-cube-rotate-240 a' = ( ap (λ t → _ ∙ t) (ap-inv k (back-right a'))) ∙ ( ( hexagon-rotate-240 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap ( λ t → inv (front-left (f' a')) ∙ t) ( ap (λ t' → t' ∙ _) (ap-inv h (back-left a')))))) {- We show that a reflection through the plane spanned by the vertices A', A, and D of a commuting cube again commutes. Note: Since the vertices A' and D must always be fixed, the vertex A determines the mirror symmetry. -} coherence-cube-mirror-A : coherence-cube g f k h g' f' k' h' hA hC hB hD (htpy-inv top) back-right back-left front-right front-left (htpy-inv bottom) coherence-cube-mirror-A a' = ( ap (λ t → _ ∙ t) (ap-inv hD (top a'))) ∙ ( hexagon-mirror-A ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-mirror-B : coherence-cube hB h' h hD hA g' g hC f' f k' k back-right (htpy-inv back-left) top bottom (htpy-inv front-right) front-left coherence-cube-mirror-B a' = ( ap (λ t → t ∙ (ap k (back-right a'))) ( ap (λ t → t ∙ _) (ap-inv h (back-left a')))) ∙ ( hexagon-mirror-B ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-mirror-C : coherence-cube k' hC hD k f' hA hB f g' h' g h (htpy-inv back-left) (htpy-inv top) (htpy-inv back-right) (htpy-inv front-left) (htpy-inv bottom) (htpy-inv front-right) coherence-cube-mirror-C a' = ( ap ( λ t → (t ∙ inv (front-left (f' a'))) ∙ (ap h (inv (back-left a')))) ( ap-inv hD (top a'))) ∙ ( ( ap (λ t → _ ∙ t) (ap-inv h (back-left a'))) ∙ ( ( hexagon-mirror-C ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap ( λ t → inv (front-right (g' a')) ∙ t) ( ap (λ t' → t' ∙ _) (ap-inv k (back-right a'))))))) open Cubes public rectangle-back-left-front-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ f) ∘ hA) ~ (hD ∘ (h' ∘ f')) rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (h ·l back-left) ∙h (front-left ·r f') rectangle-back-right-front-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((k ∘ g) ∘ hA) ~ (hD ∘ (k' ∘ g')) rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (k ·l back-right) ∙h (front-right ·r g') coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( bottom) ( htpy-refl' hD) ( pair hA ( pair ( h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair hA ( pair ( k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( htpy-refl' hA) ( top) coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c = ( λ a' → ( ap ( concat ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom a') ( hD (k' (g' a')))) ( right-unit))) ∙h ( c) rectangle-top-front-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ hB) ∘ f') ~ ((hD ∘ k') ∘ g') rectangle-top-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (front-left ·r f') ∙h (hD ·l top) rectangle-back-right-bottom-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ f) ∘ hA) ~ ((k ∘ hC) ∘ g') rectangle-back-right-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = ( bottom ·r hA) ∙h (k ·l back-right) {- coherence-htpy-square-rectangle-top-fl-rectangle-br-bot-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( htpy-inv front-right) ( htpy-refl' h) ( pair g' (pair (hB ∘ f') ( htpy-inv (rectangle-top-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)))) ( pair g' (pair (f ∘ hA) ( htpy-inv ( rectangle-back-right-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)))) ( htpy-refl' g') ( htpy-inv back-left) coherence-htpy-square-rectangle-top-fl-rectangle-br-bot-cube = {!!} -} rectangle-top-front-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((hD ∘ h') ∘ f') ~ ((k ∘ hC) ∘ g') rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (hD ·l top) ∙h (htpy-inv (front-right) ·r g') rectangle-back-left-bottom-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g))→ ((h ∘ hB) ∘ f') ~ ((k ∘ g) ∘ hA) rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (h ·l (htpy-inv back-left)) ∙h (bottom ·r hA) is-pullback-back-left-is-pullback-back-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f : A → B} {g : A → C} {h : B → D} {k : C → D} {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} {f' : A' → B'} {g' : A' → C'} {h' : B' → D'} {k' : C' → D'} {hA : A' → A} {hB : B' → B} {hC : C' → C} {hD : D' → D} (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-pullback h hD (pair hB (pair h' front-left)) → is-pullback k hD (pair hC (pair k' front-right)) → is-pullback g hC (pair hA (pair g' back-right)) → is-pullback f hB (pair hA (pair f' back-left)) is-pullback-back-left-is-pullback-back-right-cube {f = f} {g} {h} {k} {f' = f'} {g'} {h'} {k'} {hA = hA} {hB} {hC} {hD} top back-left back-right front-left front-right bottom c is-pb-front-left is-pb-front-right is-pb-back-right = is-pullback-left-square-is-pullback-rectangle f h hD ( pair hB (pair h' front-left)) ( pair hA (pair f' back-left)) ( is-pb-front-left) ( is-pullback-htpy { f = h ∘ f} ( k ∘ g) ( bottom) { g = hD} ( hD) ( htpy-refl) { c = pair hA (pair (h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))} ( pair hA (pair (k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair ( htpy-refl) ( pair top ( coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c))) ( is-pullback-rectangle-is-pullback-left-square g k hD ( pair hC (pair k' front-right)) ( pair hA (pair g' back-right)) ( is-pb-front-right) ( is-pb-back-right))) is-pullback-back-right-is-pullback-back-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f : A → B} {g : A → C} {h : B → D} {k : C → D} {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} {f' : A' → B'} {g' : A' → C'} {h' : B' → D'} {k' : C' → D'} {hA : A' → A} {hB : B' → B} {hC : C' → C} {hD : D' → D} (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-pullback h hD (pair hB (pair h' front-left)) → is-pullback k hD (pair hC (pair k' front-right)) → is-pullback f hB (pair hA (pair f' back-left)) → is-pullback g hC (pair hA (pair g' back-right)) is-pullback-back-right-is-pullback-back-left-cube {f = f} {g} {h} {k} {f' = f'} {g'} {h'} {k'} {hA = hA} {hB} {hC} {hD} top back-left back-right front-left front-right bottom c is-pb-front-left is-pb-front-right is-pb-back-left = is-pullback-left-square-is-pullback-rectangle g k hD ( pair hC (pair k' front-right)) ( pair hA (pair g' back-right)) ( is-pb-front-right) ( is-pullback-htpy' ( h ∘ f) { f' = k ∘ g} ( bottom) ( hD) { g' = hD} ( htpy-refl) ( pair hA (pair (h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) { c' = pair hA (pair (k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))} ( pair ( htpy-refl) ( pair top ( coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c))) ( is-pullback-rectangle-is-pullback-left-square f h hD ( pair hB (pair h' front-left)) ( pair hA (pair f' back-left)) ( is-pb-front-left) ( is-pb-back-left))) descent-is-equiv : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) (c : cone j h B) (d : cone i (pr1 c) A) → is-equiv i → is-equiv (pr1 (pr2 d)) → is-pullback (j ∘ i) h (cone-comp-horizontal i j h c d) → is-pullback j h c descent-is-equiv i j h c d is-equiv-i is-equiv-k is-pb-rectangle = is-pullback-is-fiberwise-equiv-fib-square j h c ( ind-is-equiv ( λ y → is-equiv (fib-square j h c y)) ( i) ( is-equiv-i) ( λ x → is-equiv-left-factor ( fib-square (j ∘ i) h ( cone-comp-horizontal i j h c d) x) ( fib-square j h c (i x)) ( fib-square i (pr1 c) d x) ( fib-square-comp-horizontal i j h c d x) ( is-fiberwise-equiv-fib-square-is-pullback (j ∘ i) h ( cone-comp-horizontal i j h c d) ( is-pb-rectangle) ( x)) ( is-fiberwise-equiv-fib-square-is-pullback i (pr1 c) d ( is-pullback-is-equiv' i (pr1 c) d is-equiv-i is-equiv-k) x))) coherence-htpy-square-is-pullback-bottom-is-pullback-top-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( front-left) ( htpy-refl' k) ( pair f' ( pair ( g ∘ hA) ( rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair f' ( pair ( hC ∘ g') ( rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( htpy-refl' f') ( back-right) coherence-htpy-square-is-pullback-bottom-is-pullback-top-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c = ( htpy-inv ( htpy-inv ( htpy-assoc ( h ·l (htpy-inv back-left)) ( bottom ·r hA) ( (k ·l back-right) ∙h (htpy-refl' (k ∘ (hC ∘ g'))))))) ∙h ( ( htpy-ap-concat' ( h ·l (htpy-inv back-left)) ( htpy-inv (h ·l back-left)) ( _) ( htpy-left-whisk-htpy-inv h back-left)) ∙h ( htpy-inv (htpy-inv-con (h ·l back-left) _ _ ( ( ( htpy-inv (htpy-assoc (h ·l back-left) (front-left ·r f') _)) ∙h ( ( htpy-inv ( htpy-assoc ( (h ·l back-left) ∙h (front-left ·r f')) ( hD ·l top) ( (htpy-inv front-right) ·r g'))) ∙h htpy-inv ( htpy-con-inv _ (front-right ·r g') _ ( (htpy-assoc (bottom ·r hA) _ _) ∙h (htpy-inv (c)))))) ∙h ( htpy-inv ( htpy-ap-concat (bottom ·r hA) _ _ htpy-right-unit)))))) is-pullback-bottom-is-pullback-top-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv hA → is-equiv hB → is-equiv hC → is-equiv hD → is-pullback h' k' (pair f' (pair g' top)) → is-pullback h k (pair f (pair g bottom)) is-pullback-bottom-is-pullback-top-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-hA is-equiv-hB is-equiv-hC is-equiv-hD is-pb-top = descent-is-equiv hB h k ( pair f (pair g bottom)) ( pair f' (pair hA (htpy-inv (back-left)))) ( is-equiv-hB) ( is-equiv-hA) ( is-pullback-htpy {f = h ∘ hB} ( hD ∘ h') ( front-left) {g = k} ( k) ( htpy-refl' k) { c = pair f' ( pair ( g ∘ hA) ( rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))} ( pair ( f') ( pair ( hC ∘ g') ( rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair ( htpy-refl' f') ( pair ( back-right) ( coherence-htpy-square-is-pullback-bottom-is-pullback-top-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c))) ( is-pullback-rectangle-is-pullback-left-square ( h') ( hD) ( k) ( pair k' (pair hC (htpy-inv front-right))) ( pair f' (pair g' top)) ( is-pullback-is-equiv' hD k ( pair k' (pair hC (htpy-inv front-right))) ( is-equiv-hD) ( is-equiv-hC)) ( is-pb-top))) is-pullback-top-is-pullback-bottom-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv hA → is-equiv hB → is-equiv hC → is-equiv hD → is-pullback h k (pair f (pair g bottom)) → is-pullback h' k' (pair f' (pair g' top)) is-pullback-top-is-pullback-bottom-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-hA is-equiv-hB is-equiv-hC is-equiv-hD is-pb-bottom = is-pullback-top-is-pullback-rectangle h hD k' ( pair hB (pair h' front-left)) ( pair f' (pair g' top)) ( is-pullback-is-equiv h hD ( pair hB (pair h' front-left)) is-equiv-hD is-equiv-hB) ( is-pullback-htpy' h htpy-refl (k ∘ hC) front-right ( cone-comp-vertical h k hC ( pair f (pair g bottom)) ( pair hA (pair g' back-right))) { c' = cone-comp-vertical h hD k' ( pair hB (pair h' front-left)) ( pair f' (pair g' top))} ( pair back-left ( pair ( htpy-refl) ( ( ( ( htpy-assoc ( bottom ·r hA) (k ·l back-right) (front-right ·r g')) ∙h ( htpy-inv c)) ∙h ( htpy-assoc ( h ·l back-left) (front-left ·r f') (hD ·l top))) ∙h ( htpy-ap-concat' ( h ·l back-left) ( (h ·l back-left) ∙h htpy-refl) ( (front-left ·r f') ∙h (hD ·l top)) ( htpy-inv htpy-right-unit))))) ( is-pullback-rectangle-is-pullback-top h k hC ( pair f (pair g bottom)) ( pair hA (pair g' back-right)) ( is-pb-bottom) ( is-pullback-is-equiv g hC ( pair hA (pair g' back-right)) is-equiv-hC is-equiv-hA))) is-pullback-front-left-is-pullback-back-right-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv f' → is-equiv f → is-equiv k' → is-equiv k → is-pullback g hC (pair hA (pair g' back-right)) → is-pullback h hD (pair hB (pair h' front-left)) is-pullback-front-left-is-pullback-back-right-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-f' is-equiv-f is-equiv-k' is-equiv-k is-pb-back-right = is-pullback-bottom-is-pullback-top-cube-is-equiv hB h' h hD hA g' g hC f' f k' k back-right (htpy-inv back-left) top bottom (htpy-inv front-right) front-left ( coherence-cube-mirror-B f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c) is-equiv-f' is-equiv-f is-equiv-k' is-equiv-k is-pb-back-right is-pullback-front-right-is-pullback-back-left-cube-is-equiv : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → is-equiv g' → is-equiv h' → is-equiv g → is-equiv h → is-pullback f hB (pair hA (pair f' back-left)) → is-pullback k hD (pair hC (pair k' front-right)) is-pullback-front-right-is-pullback-back-left-cube-is-equiv f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c is-equiv-g' is-equiv-h' is-equiv-g is-equiv-h is-pb-back-left = is-pullback-bottom-is-pullback-top-cube-is-equiv hC k' k hD hA f' f hB g' g h' h back-left (htpy-inv back-right) (htpy-inv top) ( htpy-inv bottom) (htpy-inv front-left) front-right ( coherence-cube-rotate-120 f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c) is-equiv-g' is-equiv-g is-equiv-h' is-equiv-h is-pb-back-left -- Section 15.2 Fiberwise pullbacks. {- We show that if we have a square of families, such that the base square is a pullback square, then each square of fibers is a pullback square if and only if the square of total spaces is a pullback square. -} cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → cone f g C → (C → UU l8) → UU (l4 ⊔ (l5 ⊔ (l6 ⊔ (l7 ⊔ l8)))) cone-family {C = C} PX f' g' c PC = (x : C) → cone ((tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) (g' (pr1 (pr2 c) x)) (PC x) htpy-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {P : A → UU l3} (Q : B → UU l4) {f f' : A → B} (H : f ~ f') (g : (x : A) → P x → Q (f x)) {g' : (x : A) → P x → Q (f' x)} (K : (x : A) → ((tr Q (H x)) ∘ (g x)) ~ (g' x)) → (toto Q f g) ~ (toto Q f' g') htpy-toto Q H g K t = eq-pair (H (pr1 t)) (K (pr1 t) (pr2 t)) tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) → cone-family PX f' g' c PC → cone (toto PX f f') (toto PX g g') (Σ C PC) tot-cone-cone-family PX f' g' c c' = pair ( toto _ (pr1 c) (λ x → pr1 (c' x))) ( pair ( toto _ (pr1 (pr2 c)) (λ x → (pr1 (pr2 (c' x))))) ( htpy-toto PX ( pr2 (pr2 c)) ( λ z → (f' (pr1 c z)) ∘ (pr1 (c' z))) ( λ z → pr2 (pr2 (c' z))))) map-canpb-tot-cone-cone-fam-right-factor : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → Σ ( canonical-pullback f g) ( λ t → canonical-pullback ((tr PX (π₃ t)) ∘ (f' (π₁ t))) (g' (π₂ t))) → Σ ( Σ A PA) ( λ aa' → Σ (Σ B (λ b → Id (f (pr1 aa')) (g b))) ( λ bα → Σ (PB (pr1 bα)) ( λ b' → Id ( tr PX (pr2 bα) (f' (pr1 aa') (pr2 aa'))) ( g' (pr1 bα) b')))) map-canpb-tot-cone-cone-fam-right-factor {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' = swap-total-Eq-structure ( λ a → Σ B (λ b → Id (f a) (g b))) ( PA) ( λ a bα a' → Σ (PB (pr1 bα)) ( λ b' → Id (tr PX (pr2 bα) (f' a a')) (g' (pr1 bα) b'))) map-canpb-tot-cone-cone-fam-left-factor : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → (aa' : Σ A PA) → Σ (Σ B (λ b → Id (f (pr1 aa')) (g b))) ( λ bα → Σ (PB (pr1 bα)) ( λ b' → Id ( tr PX (pr2 bα) (f' (pr1 aa') (pr2 aa'))) ( g' (pr1 bα) b'))) → Σ ( Σ B PB) ( λ bb' → Σ (Id (f (pr1 aa')) (g (pr1 bb'))) ( λ α → Id (tr PX α (f' (pr1 aa') (pr2 aa'))) (g' (pr1 bb') (pr2 bb')))) map-canpb-tot-cone-cone-fam-left-factor {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' aa' = ( swap-total-Eq-structure ( λ b → Id (f (pr1 aa')) (g b)) ( PB) ( λ b α b' → Id (tr PX α (f' (pr1 aa') (pr2 aa'))) (g' b b'))) map-canonical-pullback-tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → Σ ( canonical-pullback f g) ( λ t → canonical-pullback ((tr PX (π₃ t)) ∘ (f' (π₁ t))) (g' (π₂ t))) → canonical-pullback (toto PX f f') (toto PX g g') map-canonical-pullback-tot-cone-cone-family {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' = ( tot (λ aa' → ( tot (λ bb' → eq-pair')) ∘ ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa'))) ∘ ( map-canpb-tot-cone-cone-fam-right-factor PX f' g' c c') is-equiv-map-canonical-pullback-tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → is-equiv (map-canonical-pullback-tot-cone-cone-family PX f' g' c c') is-equiv-map-canonical-pullback-tot-cone-cone-family {X = X} {A} {B} {C} PX {PA} {PB} {PC} {f} {g} f' g' c c' = is-equiv-comp ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( tot (λ aa' → ( tot (λ bb' → eq-pair')) ∘ ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa'))) ( map-canpb-tot-cone-cone-fam-right-factor PX f' g' c c') ( htpy-refl) ( is-equiv-swap-total-Eq-structure ( λ a → Σ B (λ b → Id (f a) (g b))) ( PA) ( λ a bα a' → Σ (PB (pr1 bα)) ( λ b' → Id (tr PX (pr2 bα) (f' a a')) (g' (pr1 bα) b')))) ( is-equiv-tot-is-fiberwise-equiv (λ aa' → is-equiv-comp ( ( tot (λ bb' → eq-pair')) ∘ ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa')) ( tot (λ bb' → eq-pair')) ( map-canpb-tot-cone-cone-fam-left-factor PX f' g' c c' aa') ( htpy-refl) ( is-equiv-swap-total-Eq-structure _ _ _) ( is-equiv-tot-is-fiberwise-equiv (λ bb' → is-equiv-eq-pair ( pair (f (pr1 aa')) (f' (pr1 aa') (pr2 aa'))) ( pair (g (pr1 bb')) (g' (pr1 bb') (pr2 bb'))))))) triangle-canonical-pullback-tot-cone-cone-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → ( gap (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c')) ~ ( ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ∘ ( toto _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)))) triangle-canonical-pullback-tot-cone-cone-family PX f' g' c c' (pair x y) = refl is-pullback-family-is-pullback-tot : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → is-pullback f g c → is-pullback (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c') → (x : C) → is-pullback ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x) is-pullback-family-is-pullback-tot PX {PA} {PB} {PC} {f} {g} f' g' c c' is-pb-c is-pb-tot = is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)) ( is-pb-c) ( is-equiv-right-factor ( gap (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c')) ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( toto _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x))) ( triangle-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( is-equiv-map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( is-pb-tot)) is-pullback-tot-is-pullback-family : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {C : UU l4} (PX : X → UU l5) {PA : A → UU l6} {PB : B → UU l7} {PC : C → UU l8} {f : A → X} {g : B → X} → (f' : (a : A) → PA a → PX (f a)) (g' : (b : B) → PB b → PX (g b)) → (c : cone f g C) (c' : cone-family PX f' g' c PC) → is-pullback f g c → ( (x : C) → is-pullback ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)) → is-pullback (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c') is-pullback-tot-is-pullback-family PX {PA} {PB} {PC} {f} {g} f' g' c c' is-pb-c is-pb-c' = is-equiv-comp ( gap (toto PX f f') (toto PX g g') (tot-cone-cone-family PX f' g' c c')) ( map-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( toto _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x))) ( triangle-canonical-pullback-tot-cone-cone-family PX f' g' c c') ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map _ ( gap f g c) ( λ x → gap ( (tr PX (pr2 (pr2 c) x)) ∘ (f' (pr1 c x))) ( g' (pr1 (pr2 c) x)) ( c' x)) ( is-pb-c) ( is-pb-c')) ( is-equiv-map-canonical-pullback-tot-cone-cone-family PX f' g' c c') {- We show that identity types commute with pullbacks. -} cone-ap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (c1 c2 : C) → let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in cone ( λ (α : Id (p c1) (p c2)) → (ap f α) ∙ (H c2)) ( λ (β : Id (q c1) (q c2)) → (H c1) ∙ (ap g β)) ( Id c1 c2) cone-ap f g (pair p (pair q H)) c1 c2 = pair ( ap p) ( pair ( ap q) ( λ γ → ( ap (λ t → t ∙ (H c2)) (inv (ap-comp f p γ))) ∙ ( ( inv (htpy-nat H γ)) ∙ ( ap (λ t → (H c1) ∙ t) (ap-comp g q γ))))) tr-id-right : {l1 : Level} {A : UU l1} {a b c : A} (q : Id b c) (p : Id a b) → Id (tr (λ y → Id a y) q p) (p ∙ q) tr-id-right refl refl = refl cone-ap' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (c1 c2 : C) → let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in cone ( λ (α : Id (p c1) (p c2)) → tr (λ t → Id (f (p c1)) t) (H c2) (ap f α)) ( λ (β : Id (q c1) (q c2)) → (H c1) ∙ (ap g β)) ( Id c1 c2) cone-ap' f g (pair p (pair q H)) c1 c2 = pair ( ap p) ( pair ( ap q) ( λ γ → ( tr-id-right (H c2) (ap f (ap p γ))) ∙ ( ( ap (λ t → t ∙ (H c2)) (inv (ap-comp f p γ))) ∙ ( ( inv (htpy-nat H γ)) ∙ ( ap (λ t → (H c1) ∙ t) (ap-comp g q γ)))))) is-pullback-cone-ap : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → (c1 c2 : C) → let p = pr1 c q = pr1 (pr2 c) H = pr2 (pr2 c) in is-pullback ( λ (α : Id (p c1) (p c2)) → (ap f α) ∙ (H c2)) ( λ (β : Id (q c1) (q c2)) → (H c1) ∙ (ap g β)) ( cone-ap f g c c1 c2) is-pullback-cone-ap f g (pair p (pair q H)) is-pb-c c1 c2 = is-pullback-htpy' ( λ α → tr (λ x → Id (f (p c1)) x) (H c2) (ap f α)) ( λ α → tr-id-right (H c2) (ap f α)) ( λ β → (H c1) ∙ (ap g β)) ( htpy-refl) ( cone-ap' f g (pair p (pair q H)) c1 c2) { c' = cone-ap f g (pair p (pair q H)) c1 c2} ( pair htpy-refl (pair htpy-refl htpy-right-unit)) ( is-pullback-family-is-pullback-tot ( λ x → Id (f (p c1)) x) ( λ a → ap f {x = p c1} {y = a}) ( λ b β → (H c1) ∙ (ap g β)) ( pair p (pair q H)) ( cone-ap' f g (pair p (pair q H)) c1) ( is-pb-c) ( is-pullback-is-equiv ( toto _ f (λ a α → ap f α)) ( toto _ g (λ b β → (H c1) ∙ (ap g β))) ( tot-cone-cone-family ( Id (f (p c1))) ( λ a → ap f) ( λ b β → (H c1) ∙ (ap g β)) ( pair p (pair q H)) ( cone-ap' f g (pair p (pair q H)) c1)) ( is-equiv-is-contr _ ( is-contr-total-path (q c1)) ( is-contr-total-path (f (p c1)))) ( is-equiv-is-contr _ ( is-contr-total-path c1) ( is-contr-total-path (p c1)))) ( c2)) {- Next we show that for any commuting cube, if the bottom and top squares are pullback squares, then so is the square of fibers of the vertical maps in cube. -} {- square-fib-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → (c : coherence-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → (a : A) → ( ( tot (λ d' p → p ∙ (bottom a)) ∘ ( fib-square h hD (pair hB (pair h' front-left)) (f a))) ∘ ( fib-square f hB (pair hA (pair f' back-left)) a)) ~ ( ( fib-square k hD (pair hC (pair k' front-right)) (g a)) ∘ ( fib-square g hC (pair hA (pair g' back-right)) a)) square-fib-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c .(hA a') (pair a' refl) = eq-pair ( pair ( top a') ( ( tr-id-left-subst ( top a') ( k (g (hA a'))) ( ( ( inv (front-left (f' a'))) ∙ ( ap h ((inv (back-left a')) ∙ refl))) ∙ ( bottom (hA a')))) ∙ ( ( ( assoc (inv (ap hD (top a'))) _ (bottom (hA a'))) ∙ {!!}) ∙ ( distributive-inv-concat (ap k (back-right a')) (front-right (g' a')) ∙ ( ( ap ( concat (inv (front-right (g' a'))) ?) ( inv (ap-inv k (back-right a')))) ∙ ( ap ( concat (inv (front-right (g' a'))) ?) ( ap (ap k) (inv right-unit)))))))) -}
{ "alphanum_fraction": 0.4823027161, "avg_line_length": 38.6131202691, "ext": "agda", "hexsha": "fbd108bb73a5a6f2879648d3ed0cab41afc55c56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/17-cubical-diagrams.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/17-cubical-diagrams.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/17-cubical-diagrams.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19698, "size": 45911 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.FinSet.Definition open import Groups.Definition open import Groups.SymmetricGroups.Definition open import Decidable.Sets open import Boolean.Definition module Groups.FreeGroup.Definition where data FreeCompletion {a : _} (A : Set a) : Set a where ofLetter : A → FreeCompletion A ofInv : A → FreeCompletion A freeCompletionMap : {a b : _} {A : Set a} {B : Set b} (f : A → B) (w : FreeCompletion A) → FreeCompletion B freeCompletionMap f (ofLetter x) = ofLetter (f x) freeCompletionMap f (ofInv x) = ofInv (f x) freeInverse : {a : _} {A : Set a} (l : FreeCompletion A) → FreeCompletion A freeInverse (ofLetter x) = ofInv x freeInverse (ofInv x) = ofLetter x ofLetterInjective : {a : _} {A : Set a} {x y : A} → (ofLetter x ≡ ofLetter y) → x ≡ y ofLetterInjective refl = refl ofInvInjective : {a : _} {A : Set a} {x y : A} → (ofInv x ≡ ofInv y) → x ≡ y ofInvInjective refl = refl ofLetterOfInv : {a : _} {A : Set a} {x y : A} → ofLetter x ≡ ofInv y → False ofLetterOfInv () decidableFreeCompletion : {a : _} {A : Set a} → DecidableSet A → DecidableSet (FreeCompletion A) decidableFreeCompletion {A = A} dec = pr where pr : (a b : FreeCompletion A) → (a ≡ b) || (a ≡ b → False) pr (ofLetter x) (ofLetter y) with dec x y ... | inl refl = inl refl ... | inr x!=y = inr λ p → x!=y (ofLetterInjective p) pr (ofLetter x) (ofInv y) = inr λ () pr (ofInv x) (ofLetter y) = inr λ () pr (ofInv x) (ofInv y) with dec x y ... | inl refl = inl refl ... | inr x!=y = inr λ p → x!=y (ofInvInjective p) freeCompletionEqual : {a : _} {A : Set a} (dec : DecidableSet A) (x y : FreeCompletion A) → Bool freeCompletionEqual dec x y with decidableFreeCompletion dec x y freeCompletionEqual dec x y | inl x₁ = BoolTrue freeCompletionEqual dec x y | inr x₁ = BoolFalse freeCompletionEqualFalse : {a : _} {A : Set a} (dec : DecidableSet A) {x y : FreeCompletion A} → ((x ≡ y) → False) → (freeCompletionEqual dec x y) ≡ BoolFalse freeCompletionEqualFalse dec {x = x} {y} x!=y with decidableFreeCompletion dec x y freeCompletionEqualFalse dec {x} {y} x!=y | inl x=y = exFalso (x!=y x=y) freeCompletionEqualFalse dec {x} {y} x!=y | inr _ = refl freeCompletionEqualFalse' : {a : _} {A : Set a} (dec : DecidableSet A) {x y : FreeCompletion A} → .((freeCompletionEqual dec x y) ≡ BoolFalse) → (x ≡ y) → False freeCompletionEqualFalse' dec {x} {y} pr with decidableFreeCompletion dec x y freeCompletionEqualFalse' dec {x} {y} () | inl x₁ freeCompletionEqualFalse' dec {x} {y} pr | inr ans = ans
{ "alphanum_fraction": 0.6778451659, "avg_line_length": 42.4696969697, "ext": "agda", "hexsha": "61d2691d87f0b91fe74356b57b751c382003c759", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/FreeGroup/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/FreeGroup/Definition.agda", "max_line_length": 160, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/FreeGroup/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 951, "size": 2803 }
{-# OPTIONS --without-K #-} module PathStructure.Id.Tr {a b} {A : Set a} {B : Set b} where open import Equivalence open import PathOperations open import Types tr-split : {a a′ : A} {b b′ : B} (p : a ≡ a′) → tr (λ _ → B) p b ≡ b′ → b ≡ b′ tr-split {b = b} {b′ = b′} = J (λ _ _ p → tr (λ _ → B) p b ≡ b′ → b ≡ b′) (λ _ p → p) _ _ tr-merge : {a a′ : A} {b b′ : B} (p : a ≡ a′) → b ≡ b′ → tr (λ _ → B) p b ≡ b′ tr-merge {b = b} {b′ = b′} = J (λ _ _ p → b ≡ b′ → tr (λ _ → B) p b ≡ b′) (λ _ p → p) _ _ tr-eq : {a a′ : A} {b b′ : B} (p : a ≡ a′) → (tr (λ _ → B) p b ≡ b′) ≃ (b ≡ b′) tr-eq p = tr-split p , (tr-merge p , λ q → J (λ _ _ p → tr-split p (tr-merge p q) ≡ q) (λ _ → refl) _ _ p) , (tr-merge p , λ q → J (λ _ _ p → (b b′ : B) (q : tr (λ _ → B) p b ≡ b′) → tr-merge p (tr-split p q) ≡ q) (λ _ _ _ _ → refl) _ _ p _ _ q) -- In presence of univalence axiom, this statement -- can also be proven from tr-eq. tr-≡ : {a a′ : A} {b b′ : B} (p : a ≡ a′) → (tr (λ _ → B) p b ≡ b′) ≡ (b ≡ b′) tr-≡ {b = b} {b′ = b′} = J (λ _ _ p → (tr (λ _ → B) p b ≡ b′) ≡ (b ≡ b′)) (λ _ → refl) _ _
{ "alphanum_fraction": 0.4220665499, "avg_line_length": 29.2820512821, "ext": "agda", "hexsha": "868c79239d4b16ca25ad72628d3f186b1a0e0ac0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/PathStructure/Id/Tr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/PathStructure/Id/Tr.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/PathStructure/Id/Tr.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 574, "size": 1142 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.DiffInt.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.HITs.Ints.DiffInt.Base open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Relation.Binary.Base open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients open BinaryRelation relIsEquiv : isEquivRel rel relIsEquiv = equivRel {A = ℕ × ℕ} relIsRefl relIsSym relIsTrans where relIsRefl : isRefl rel relIsRefl (a0 , a1) = refl relIsSym : isSym rel relIsSym (a0 , a1) (b0 , b1) p = sym p relIsTrans : isTrans rel relIsTrans (a0 , a1) (b0 , b1) (c0 , c1) p0 p1 = inj-m+ {m = (b0 + b1)} ((b0 + b1) + (a0 + c1) ≡⟨ +-assoc (b0 + b1) a0 c1 ⟩ ((b0 + b1) + a0) + c1 ≡[ i ]⟨ +-comm b0 b1 i + a0 + c1 ⟩ ((b1 + b0) + a0) + c1 ≡[ i ]⟨ +-comm (b1 + b0) a0 i + c1 ⟩ (a0 + (b1 + b0)) + c1 ≡[ i ]⟨ +-assoc a0 b1 b0 i + c1 ⟩ (a0 + b1) + b0 + c1 ≡⟨ sym (+-assoc (a0 + b1) b0 c1) ⟩ (a0 + b1) + (b0 + c1) ≡⟨ cong (λ p → p . fst + p .snd) (transport ΣPath≡PathΣ (p0 , p1))⟩ (b0 + a1) + (c0 + b1) ≡⟨ sym (+-assoc b0 a1 (c0 + b1))⟩ b0 + (a1 + (c0 + b1)) ≡[ i ]⟨ b0 + (a1 + +-comm c0 b1 i) ⟩ b0 + (a1 + (b1 + c0)) ≡[ i ]⟨ b0 + +-comm a1 (b1 + c0) i ⟩ b0 + ((b1 + c0) + a1) ≡[ i ]⟨ b0 + +-assoc b1 c0 a1 (~ i) ⟩ b0 + (b1 + (c0 + a1)) ≡⟨ +-assoc b0 b1 (c0 + a1)⟩ (b0 + b1) + (c0 + a1) ∎ ) relIsProp : BinaryRelation.isPropValued rel relIsProp a b x y = isSetℕ _ _ _ _ discreteℤ : Discrete ℤ discreteℤ = discreteSetQuotients (discreteΣ discreteℕ λ _ → discreteℕ) relIsProp relIsEquiv (λ _ _ → discreteℕ _ _) private _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 6) ]) ≡ true _ = refl _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 7) ]) ≡ false _ = refl
{ "alphanum_fraction": 0.5514112903, "avg_line_length": 36.0727272727, "ext": "agda", "hexsha": "f81847ecfc36122da21017898431c7a0c2eb0303", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/HITs/Ints/DiffInt/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/HITs/Ints/DiffInt/Properties.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/HITs/Ints/DiffInt/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 873, "size": 1984 }
postulate FunctorOps : Set module FunctorOps (ops : FunctorOps) where postulate map : Set postulate IsFunctor : Set module IsFunctor (fun : IsFunctor) where postulate ops : FunctorOps open FunctorOps ops public -- inside here `FunctorOps.map ops` gets printed as `map` open IsFunctor -- out here it should too test : (F : IsFunctor) → FunctorOps.map (ops F) test F = F -- EXPECTED: IsFunctor !=< map F
{ "alphanum_fraction": 0.7228915663, "avg_line_length": 21.8421052632, "ext": "agda", "hexsha": "5378698c9d8e6d55e7afa1a0035fb4063efb49b0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue958.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue958.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue958.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 125, "size": 415 }
module Issue208 where record R : Set where foo : Set foo = {!!}
{ "alphanum_fraction": 0.6323529412, "avg_line_length": 13.6, "ext": "agda", "hexsha": "7b29324f8d3ed5139b6635c9a08a7900d31e06ef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue208.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue208.agda", "max_line_length": 21, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/interaction/Issue208.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 21, "size": 68 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness open import cohomology.Theory module cohomology.Unit {i} (CT : CohomologyTheory i) where open CohomologyTheory CT module _ (n : ℤ) where private ⊙LU = ⊙Lift {j = i} ⊙Unit Cof-Unit-is-Unit : ⊙Cof (⊙idf ⊙LU) == ⊙LU Cof-Unit-is-Unit = ⊙ua (⊙≃-in {X = _ , cfbase} e idp) where e : Cofiber (idf (Lift {j = i} Unit)) ≃ Lift Unit e = equiv (λ _ → lift unit) (λ _ → cfbase) (λ _ → idp) (Cofiber-elim {f = idf _} {P = λ c → cfbase == c} idp (λ _ → cfglue (lift unit)) (λ _ → ↓-cst=idf-in idp)) C-Unit-is-contr : is-contr (CEl n ⊙LU) C-Unit-is-contr = (Cid n ⊙LU , λ x → lemma₂ x ∙ app= (ap GroupHom.f (CF-ident n)) x) where lemma₁ : (x : CEl n (⊙Cof (⊙idf _))) → Cid n ⊙LU == CF n (⊙cfcod' (⊙idf _)) x lemma₁ x = ! (itok (C-exact n (⊙idf _)) _ [ x , idp ]) ∙ app= (ap GroupHom.f (CF-ident n)) (CF n (⊙cfcod' (⊙idf _)) x) lemma₂ : (x : CEl n ⊙LU) → Cid n ⊙LU == CF n (⊙idf _) x lemma₂ = transport {A = Σ (Ptd i) (λ X → fst (⊙LU ⊙→ X))} (λ {(X , H) → (c : CEl n X) → Cid n ⊙LU == CF n H c}) (pair= Cof-Unit-is-Unit (prop-has-all-paths-↓ (⊙→-level (Lift-level Unit-is-prop)))) lemma₁ C-Unit : C n ⊙LU == 0ᴳ C-Unit = contr-is-0ᴳ _ C-Unit-is-contr
{ "alphanum_fraction": 0.4860068259, "avg_line_length": 29.8979591837, "ext": "agda", "hexsha": "01695d42215c72f0931233c21e5ea46712afbff6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/Unit.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 603, "size": 1465 }
module Numeral.Natural.Decidable where open import Data open import Data.Boolean open import Functional open import Lang.Inspect open import Logic.Propositional open import Numeral.Natural open import Structure.Function open import Structure.Function.Domain open import Structure.Relator.Properties open import Type.Properties.Decidable module _ where open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv instance [≡?]-decider : Decider(2)(_≡_)(_≡?_) [≡?]-decider {𝟎} {𝟎} = true [≡]-intro [≡?]-decider {𝟎} {𝐒 y} = false \() [≡?]-decider {𝐒 x} {𝟎} = false \() [≡?]-decider {𝐒 x} {𝐒 y} with (x ≡? y) | [≡?]-decider {x} {y} ... | 𝑇 | true xy = true (congruence₁(𝐒) xy) ... | 𝐹 | false nxy = false (nxy ∘ injective(𝐒)) zero?-decider : Decider(1)(_≡ 𝟎)(zero?) zero?-decider {𝟎} = true [≡]-intro zero?-decider {𝐒 x} = false \() module _ where open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Divisibility open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Relation.Divisibility.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv instance [∣]-decider : Decider(2)(_∣_)(_∣₀?_) [∣]-decider {𝟎} {𝟎} = true Div𝟎 [∣]-decider {𝟎} {𝐒 y} = false [0]-divides-not [∣]-decider {𝐒 x} {y} with y mod 𝐒(x) | inspect(\x → y mod 𝐒(x)) x ... | 𝟎 | intro eq = true ([↔]-to-[→] mod-divisibility eq) ... | 𝐒 _ | intro eq = false ([𝐒]-not-0 ∘ transitivity(_≡_) (symmetry(_≡_) eq) ∘ [↔]-to-[←] mod-divisibility) module _ where open import Data.Boolean.Stmt open import Data.Boolean.Stmt.Proofs open import Data.List open import Data.List.Decidable as List open import Data.List.Equiv.Id open import Lang.Inspect open import Logic.Classical open import Logic.Predicate open import Numeral.Natural.LinearSearch open import Numeral.Natural.Oper.Divisibility open import Numeral.Natural.Prime open import Numeral.Natural.Prime.Proofs open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Classical open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Type.Properties.Decidable.Proofs open import Syntax.Implication.Dependent open import Syntax.Implication using (•_•_⇒₂-[_]_) -- A naive primality test using bruteforce. -- It checks if there are any divisors between 2 and p. -- Note: The performance and space should be terrible on this implementation because it checks whether the list of all divisors is empty. prime? : ℕ → Bool prime? 0 = 𝐹 prime? 1 = 𝐹 prime? n@(𝐒(𝐒 _)) = decide(2)(_≡_) ⦃ [∃]-intro _ ⦃ List.[≡]-decider ⦃ dec = [≡?]-decider ⦄ ⦄ ⦄ (findBoundedAll 2 n (_∣₀? n)) ∅ instance Prime-decider : Decider(1)(Prime)(prime?) Prime-decider {𝟎} = false \() Prime-decider {𝐒 𝟎} = false \() Prime-decider {n@(𝐒(𝐒 x))} with prime? n | inspect prime? n ... | 𝑇 | intro eq = true $ eq ⇒ (prime? n ≡ 𝑇) ⇒-[ [↔]-to-[←] IsTrue.is-𝑇 ] IsTrue(prime? n) ⇒-[ [↔]-to-[←] (decider-true ⦃ List.[≡]-decider ⦃ dec = [≡?]-decider ⦄ ⦄) ] findBoundedAll 2 n (_∣₀? n) ≡ ∅ ⇒-[ (\empty {_} → [↔]-to-[←] (findBoundedAll-emptyness{f = _∣₀? n}) empty) ] (∀{d} → (2 ≤ d) → (d < n) → IsFalse(d ∣₀? n)) ⇒-[ (\p {i} → [↔]-to-[←] (decider-false ⦃ [∣]-decider ⦄) ∘₂ p) ] (∀{d} → (2 ≤ d) → (d < n) → ¬(d ∣ n)) ⇒-[] (∀{d} → (2 ≤ d) → (d < 𝐒(𝐒(x))) → ¬(d ∣ 𝐒(𝐒(x)))) ⇒-[ (\p {d} div 2d dx → p{d} 2d (succ dx) div) ] (∀{d} → (d ∣ 𝐒(𝐒(x))) → (2 ≤ d) → ¬(d ≤ 𝐒(x))) ⇒-[ (\p {d} div → [¬→]-disjunctive-formᵣ ⦃ decider-to-classical ⦃ [≡?]-decider ⦄ ⦄ \ nd0 → antisymmetry(_≤_)(_≡_) ([≤]-without-[𝐒] (divides-upper-limit div)) (sub₂(_≯_)(_≤_) (p{𝐒 d} div (succ ([≢]-to-[<]-of-0ᵣ nd0))))) ] (∀{d} → (𝐒(d) ∣ 𝐒(𝐒(x))) → ((d ≡ 0) ∨ (d ≡ 𝐒(x)))) ⇒-[ intro ] Prime n ⇒-end ... | 𝐹 | intro eq = false \p → • ( p ⇒ Prime(n) ⇒-[ prime-only-divisors ] (∀{d} → (d ∣ n) → ((d ≡ 1) ∨ (d ≡ n))) ⇒-[ (\p {d} 2d dn div → [∨]-elim (\{[≡]-intro → [≤][0]ᵣ-negation ([≤]-without-[𝐒] 2d)}) (\{[≡]-intro → irreflexivity(_<_) dn}) (p div)) ] (∀{d} → (2 ≤ d) → (d < n) → ¬(d ∣ n)) ⇒-[ ((\p {i} → [↔]-to-[→] (decider-false ⦃ [∣]-decider ⦄) ∘₂ p)) ] (∀{d} → (2 ≤ d) → (d < n) → IsFalse(d ∣₀? n)) ⇒-[ [↔]-to-[→] findBoundedAll-emptyness ] findBoundedAll 2 n (_∣₀? n) ≡ ∅ ⇒-[ [↔]-to-[→] (decider-true ⦃ List.[≡]-decider ⦃ dec = [≡?]-decider ⦄ ⦄) ] IsTrue(prime? n) ⇒-end ) • ( eq ⇒ (prime? n ≡ 𝐹) ⇒-[ [↔]-to-[←] IsFalse.is-𝐹 ] IsFalse(prime? n) ⇒-end ) ⇒₂-[ disjointness ] Empty ⇒-end import Data.Either as Either open import Data.List.Relation.Membership using (_∈_) open import Data.List.Relation.Membership.Proofs open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Logic.Propositional.Theorems open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Proofs open import Numeral.Natural.Relation.Order.Existence using ([≤]-equivalence) open import Structure.Function.Domain open import Structure.Operator open import Structure.Operator.Properties open import Syntax.Transitivity prime-composite-not : ∀{n} → Prime(n) → Composite(n) → ⊥ prime-composite-not {.(𝐒(𝐒(a)) ⋅ 𝐒(𝐒(b)))} p (intro a b) = Either.map1 (\()) ((\()) ∘ cancellationₗ(_+_) {x = a} ∘ injective(𝐒) ∘ injective(𝐒)) (prime-only-divisors p {𝐒(𝐒(a))} (divides-with-[⋅] {c = 𝐒(𝐒(b))} ([∨]-introₗ divides-reflexivity))) -- Using Numeral.Natural.Decidable.prime?, when it is false, there is a divisor d between 2 and n for n. This means that (d ∣ n). Equivalently ∃(k ↦ d ⋅ k ≡ n). The proof of Composite uses these d and k. prime-or-composite : ∀{n} → Prime(𝐒(𝐒(n))) ∨ Composite(𝐒(𝐒(n))) prime-or-composite{n} = [¬→]-disjunctive-formᵣ ⦃ decider-to-classical ⦃ Prime-decider ⦄ ⦄ $ ¬ Prime(𝐒(𝐒(n))) ⇒-[ [↔]-to-[→] (decider-false ⦃ Prime-decider ⦄) ] IsFalse(prime? (𝐒(𝐒(n)))) ⇒-[ [↔]-to-[←] (decider-false ⦃ List.[≡]-decider ⦃ dec = [≡?]-decider ⦄ ⦄) ] findBoundedAll 2 (𝐒(𝐒(n))) (_∣₀? 𝐒(𝐒(n))) ≢ ∅ ⇒-[ non-empty-inclusion-existence ] ∃(_∈ findBoundedAll 2 (𝐒(𝐒(n))) (_∣₀? 𝐒(𝐒(n)))) ⇒-[ [∃]-map-proof ([↔]-to-[→] (findBoundedAll-membership {f = _∣₀? 𝐒(𝐒(n))})) ] ∃(d ↦ (2 ≤ d) ∧ (d < 𝐒(𝐒(n))) ∧ IsTrue(d ∣₀? 𝐒(𝐒(n)))) ⇒-[ [∃]-map-proof ([∧]-map id ([↔]-to-[←] (decider-true ⦃ [∣]-decider ⦄))) ] ∃(d ↦ (2 ≤ d) ∧ (d < 𝐒(𝐒(n))) ∧ (d ∣ 𝐒(𝐒(n)))) ⇒-[ (\{([∃]-intro (𝐒 𝟎) ⦃ [∧]-intro ([∧]-intro (succ()) _) _ ⦄) ; ([∃]-intro (𝐒(𝐒 d)) ⦃ [∧]-intro ([∧]-intro d2 dn) div ⦄) → [∃]-intro d ⦃ [∧]-intro dn div ⦄}) ] ∃(d ↦ (𝐒(𝐒(d)) < 𝐒(𝐒(n))) ∧ (𝐒(𝐒(d)) ∣ 𝐒(𝐒(n)))) ⇒-[ (\{([∃]-intro d ⦃ [∧]-intro dn div ⦄) → [∃]-intro d ⦃ [∧]-intro dn ([∃]-intro div ⦃ divides-quotient-correctness {yx = div} ⦄) ⦄}) ] ∃(d ↦ (𝐒(𝐒(d)) < 𝐒(𝐒(n))) ∧ ∃{Obj = 𝐒(𝐒(d)) ∣ 𝐒(𝐒(n))}(q ↦ (𝐒(𝐒(d)) ⋅ divides-quotient q ≡ 𝐒(𝐒(n))))) ⇒-[ (\{([∃]-intro d ⦃ [∧]-intro dn ([∃]-intro q ⦃ prod ⦄) ⦄) → [∃]-intro (d , [∃]-witness ([↔]-to-[←] [≤]-equivalence (divides-quotient-composite (succ (succ min)) dn {q}))) ⦃ congruence₂ᵣ(_⋅_)(𝐒(𝐒(d))) (([∃]-proof ([↔]-to-[←] [≤]-equivalence (divides-quotient-composite (succ (succ min)) dn {q})))) 🝖 prod ⦄}) ] ∃{Obj = ℕ ⨯ ℕ}(\(a , b) → (𝐒(𝐒(a)) ⋅ 𝐒(𝐒(b)) ≡ 𝐒(𝐒(n)))) ⇒-[ [↔]-to-[←] composite-existence ] Composite(𝐒(𝐒 n)) ⇒-end prime-xor-composite : ∀{n} → Prime(𝐒(𝐒(n))) ⊕ Composite(𝐒(𝐒(n))) prime-xor-composite {n} = [⊕]-or-not-both prime-or-composite (Tuple.uncurry prime-composite-not) open import Data.Tuple -- open import Numeral.Natural.Inductions {-# TERMINATING #-} -- TODO: Use strong induction. (a < n) because (a ⋅ b = n). prime-factor-existence : ∀{n} → ∃(PrimeFactor(𝐒(𝐒(n)))) prime-factor-existence {n} with prime-or-composite{n} ... | Either.Left p = [∃]-intro (𝐒(𝐒(n))) ⦃ intro ⦃ p ⦄ ⦄ ... | Either.Right c with [∃]-intro(a , b) ⦃ p ⦄ ← [↔]-to-[→] composite-existence c with [∃]-intro d ⦃ pa ⦄ ← prime-factor-existence{a} = [∃]-intro d ⦃ divisor-primeFactors ([↔]-to-[→] divides-[⋅]-existence ([∃]-intro (𝐒 (𝐒 b)) ⦃ p ⦄)) pa ⦄
{ "alphanum_fraction": 0.5379049676, "avg_line_length": 55.119047619, "ext": "agda", "hexsha": "b371d33f9a9e26b1b16306ebb4793d399e0a6256", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Decidable.agda", "max_line_length": 418, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3734, "size": 9260 }
open import Level using (0ℓ) open import Function using (_$_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; trans; cong; cong₂; isEquivalence; setoid; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.WithK using (≡-irrelevant) open import Relation.Nullary.Negation using (contradiction) open ≡-Reasoning open import Data.Unit using (⊤; tt) open import Agda.Builtin.FromNat using (Number) open import Data.Product using (_,_) open import AKS.Primality using (IsPrime; Prime; bézout-prime) module AKS.Modular.Quotient.Properties {P : Prime} where open Prime P using () renaming (prime to p; isPrime to p-isPrime) open IsPrime p-isPrime using (1<p) open import AKS.Nat using (ℕ; zero; suc; _<_; _≤_; _∸_) renaming (_+_ to _+ℕ_; _*_ to _*ℕ_; _≟_ to _≟ℕ_) open import AKS.Nat using (<⇒≤; [n∸m]+m≡n; suc-mono-≤; *-mono-≤; ≤-refl) import AKS.Nat as Nat import Data.Nat.Properties as Nat open import AKS.Nat.Divisibility using (_%_; %-distribˡ-+; %-distribˡ-∸; %-distribˡ-*; m%n%n≡m%n; n<m⇒n%m≡n; n%m<m; n%n≡0; 0%m≡0; 1%m≡1; [m+kn]%n≡m%n) open import AKS.Nat.GCD using (+ʳ; +ˡ) open import AKS.Modular.Quotient.Base using (ℤ/[_]; ℤ✓; mod; mod<p; module Operations) open Operations {P} using ([_]; _+_; _*_; -_; _⁻¹; _/_; _≟_; p≢0; ℤ/[]-irrelevance; n≢0⇒mod[n]≢0) open import Algebra.Structures {A = ℤ/[ P ]} _≡_ using ( IsCommutativeRing; IsRing; IsAbelianGroup ; IsGroup; IsMonoid; IsSemigroup; IsMagma ) open import Algebra.Definitions {A = ℤ/[ P ]} _≡_ using ( _DistributesOver_; _DistributesOverʳ_; _DistributesOverˡ_ ; RightIdentity; LeftIdentity; Identity; Associative; Commutative ; RightInverse; LeftInverse; Inverse ) open import AKS.Algebra.Structures (ℤ/[ P ]) _≡_ using (IsNonZeroCommutativeRing; IsIntegralDomain; IsGCDDomain; IsDecField) open import Algebra.Bundles using (Ring; CommutativeRing) open import AKS.Algebra.Bundles using (NonZeroCommutativeRing; DecField) open import AKS.Unsafe using (≢-irrelevant) +-isMagma : IsMagma _+_ +-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _+_ } mod≡mod%p : ∀ (x : ℤ/[ P ]) → mod x ≡ (mod x % p) {p≢0} mod≡mod%p (ℤ✓ x x<p) = sym (n<m⇒n%m≡n x<p) mod≡mod%p%p : ∀ (x : ℤ/[ P ]) → mod x ≡ ((mod x % p) {p≢0} % p) {p≢0} mod≡mod%p%p x = begin mod x ≡⟨ mod≡mod%p x ⟩ mod x % p ≡⟨ sym (m%n%n≡m%n (mod x) p) ⟩ mod x % p % p ∎ +-assoc : Associative _+_ +-assoc x y z = ℤ/[]-irrelevance $ begin ((mod x +ℕ mod y) % p +ℕ mod z) % p ≡⟨ cong₂ (λ a b → (a +ℕ b) % p) (%-distribˡ-+ (mod x) (mod y) p {p≢0}) (mod≡mod%p z) ⟩ ((mod x % p +ℕ mod y % p) % p +ℕ mod z % p) % p ≡⟨ sym (%-distribˡ-+ (mod x % p +ℕ mod y % p) (mod z) p) ⟩ ((mod x % p +ℕ mod y % p) +ℕ mod z) % p ≡⟨ cong (λ a → (a % p) {p≢0}) (Nat.+-assoc (mod x % p) (mod y % p) (mod z)) ⟩ (mod x % p +ℕ (mod y % p +ℕ mod z)) % p ≡⟨ %-distribˡ-+ (mod x % p) (mod y % p +ℕ mod z) p ⟩ (mod x % p % p +ℕ (mod y % p +ℕ mod z) % p) % p ≡⟨ cong₂ (λ a b → (a +ℕ (b +ℕ mod z) % p) % p) (sym (mod≡mod%p%p x)) (sym (mod≡mod%p y)) ⟩ (mod x +ℕ (mod y +ℕ mod z) % p) % p ∎ +-isSemigroup : IsSemigroup _+_ +-isSemigroup = record { isMagma = +-isMagma ; assoc = +-assoc } +-comm : Commutative _+_ +-comm x y = ℤ/[]-irrelevance $ begin (mod x +ℕ mod y) % p ≡⟨ cong (λ a → (a % p) {p≢0}) (Nat.+-comm (mod x) (mod y)) ⟩ (mod y +ℕ mod x) % p ∎ +-identityˡ : LeftIdentity 0 _+_ +-identityˡ x = ℤ/[]-irrelevance $ begin (0 % p +ℕ mod x) % p ≡⟨ cong (λ a → (0 % p +ℕ a) % p) (mod≡mod%p x) ⟩ (0 % p +ℕ mod x % p) % p ≡⟨ sym (%-distribˡ-+ 0 (mod x) p) ⟩ (0 +ℕ mod x) % p ≡⟨ sym (mod≡mod%p x) ⟩ mod x ∎ open import Algebra.FunctionProperties.Consequences.Propositional using (comm+idˡ⇒idʳ; comm+invˡ⇒invʳ; comm+distrˡ⇒distrʳ) +-identityʳ : RightIdentity 0 _+_ +-identityʳ = comm+idˡ⇒idʳ +-comm {0} +-identityˡ +-identity : Identity 0 _+_ +-identity = +-identityˡ , +-identityʳ +-isMonoid : IsMonoid _+_ 0 +-isMonoid = record { isSemigroup = +-isSemigroup ; identity = +-identity } -‿inverseˡ : LeftInverse 0 -_ _+_ -‿inverseˡ (ℤ✓ zero x<p) = refl -‿inverseˡ (ℤ✓ (suc x) x<p) = ℤ/[]-irrelevance $ begin ((p ∸ suc x) +ℕ suc x) % p ≡⟨ cong (λ a → (a % p) {p≢0}) ([n∸m]+m≡n (<⇒≤ x<p)) ⟩ p % p ≡⟨ n%n≡0 p ⟩ 0 ≡⟨ sym (0%m≡0 p {p≢0}) ⟩ 0 % p ∎ -‿inverseʳ : RightInverse 0 -_ _+_ -‿inverseʳ = comm+invˡ⇒invʳ {_⁻¹ = -_} +-comm -‿inverseˡ -‿inverse : Inverse 0 -_ _+_ -‿inverse = -‿inverseˡ , -‿inverseʳ +-isGroup : IsGroup _+_ 0 -_ +-isGroup = record { isMonoid = +-isMonoid ; inverse = -‿inverse ; ⁻¹-cong = cong -_ } +-isAbelianGroup : IsAbelianGroup _+_ 0 -_ +-isAbelianGroup = record { isGroup = +-isGroup ; comm = +-comm } *-isMagma : IsMagma _*_ *-isMagma = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _*_ } *-assoc : Associative _*_ *-assoc x y z = ℤ/[]-irrelevance $ begin ((mod x *ℕ mod y) % p *ℕ mod z) % p ≡⟨ cong₂ (λ a b → (a *ℕ b) % p) (%-distribˡ-* (mod x) (mod y) p {p≢0}) (mod≡mod%p z) ⟩ (((mod x % p) *ℕ (mod y % p)) % p *ℕ (mod z % p)) % p ≡⟨ sym (%-distribˡ-* ((mod x % p) *ℕ (mod y % p)) (mod z) p) ⟩ (((mod x % p) *ℕ (mod y % p)) *ℕ mod z) % p ≡⟨ cong (λ a → (a % p) {p≢0}) (Nat.*-assoc (mod x % p) (mod y % p) (mod z)) ⟩ ((mod x % p) *ℕ ((mod y % p) *ℕ mod z)) % p ≡⟨ %-distribˡ-* (mod x % p) ((mod y % p) *ℕ mod z) p ⟩ ((mod x % p % p) *ℕ (((mod y % p) *ℕ mod z) % p)) % p ≡⟨ cong₂ (λ a b → (a *ℕ ((b *ℕ mod z) % p)) % p) (sym (mod≡mod%p%p x)) (sym (mod≡mod%p y)) ⟩ (mod x *ℕ ((mod y *ℕ mod z) % p)) % p ∎ *-isSemigroup : IsSemigroup _*_ *-isSemigroup = record { isMagma = *-isMagma ; assoc = *-assoc } *-comm : Commutative _*_ *-comm x y = ℤ/[]-irrelevance $ begin (mod x *ℕ mod y) % p ≡⟨ cong (λ a → (a % p) {p≢0}) (Nat.*-comm (mod x) (mod y)) ⟩ (mod y *ℕ mod x) % p ∎ *-identityˡ : LeftIdentity 1 _*_ *-identityˡ x = ℤ/[]-irrelevance $ begin (1 % p *ℕ mod x) % p ≡⟨ cong (λ a → ((a *ℕ mod x) % p) {p≢0}) (1%m≡1 1<p) ⟩ (1 *ℕ mod x) % p ≡⟨ cong (λ a → a % p) (Nat.*-identityˡ (mod x)) ⟩ mod x % p ≡⟨ sym (mod≡mod%p x) ⟩ mod x ∎ *-identityʳ : RightIdentity 1 _*_ *-identityʳ = comm+idˡ⇒idʳ *-comm {1} *-identityˡ *-identity : Identity 1 _*_ *-identity = *-identityˡ , *-identityʳ *-isMonoid : IsMonoid _*_ 1 *-isMonoid = record { isSemigroup = *-isSemigroup ; identity = *-identity } *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ r x y = ℤ/[]-irrelevance $ begin (mod r *ℕ ((mod x +ℕ mod y) % p)) % p ≡⟨ cong (λ a → (a *ℕ ((mod x +ℕ mod y) % p)) % p) (mod≡mod%p r) ⟩ (mod r % p *ℕ ((mod x +ℕ mod y) % p)) % p ≡⟨ sym (%-distribˡ-* (mod r) (mod x +ℕ mod y) p) ⟩ (mod r *ℕ (mod x +ℕ mod y)) % p ≡⟨ cong (λ a → (a % p) {p≢0}) (Nat.*-distribˡ-+ (mod r) (mod x) (mod y)) ⟩ (mod r *ℕ mod x +ℕ mod r *ℕ mod y) % p ≡⟨ %-distribˡ-+ (mod r *ℕ mod x) (mod r *ℕ mod y) p ⟩ ((mod r *ℕ mod x) % p +ℕ (mod r *ℕ mod y) % p) % p ∎ *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ = comm+distrˡ⇒distrʳ {_} {_} {_*_} {_+_} *-comm *-distribˡ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ +-*-isRing : IsRing _+_ _*_ -_ 0 1 +-*-isRing = record { +-isAbelianGroup = +-isAbelianGroup ; *-isMonoid = *-isMonoid ; distrib = *-distrib-+ } +-*-isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0 1 +-*-isCommutativeRing = record { isRing = +-*-isRing ; *-comm = *-comm } open import Data.Empty using (⊥) 0≢1 : [ 0 ] ≢ [ 1 ] 0≢1 [0]≡[1] = false where 0≡1 : zero ≡ 1 0≡1 = begin 0 ≡⟨ sym (0%m≡0 p {p≢0}) ⟩ 0 % p ≡⟨ cong mod [0]≡[1] ⟩ 1 % p ≡⟨ 1%m≡1 1<p ⟩ 1 ∎ false : ⊥ false with 0≡1 ... | () +-*-isNonZeroCommutativeRing : IsNonZeroCommutativeRing _+_ _*_ -_ 0 1 +-*-isNonZeroCommutativeRing = record { isCommutativeRing = +-*-isCommutativeRing ; 0#≉1# = 0≢1 } +-*-nonZeroCommutativeRing : NonZeroCommutativeRing 0ℓ 0ℓ +-*-nonZeroCommutativeRing = record { isNonZeroCommutativeRing = +-*-isNonZeroCommutativeRing } ⁻¹-inverse-lemma₁ : ∀ (n : ℤ/[ P ]) x y → 1 +ℕ x *ℕ mod n ≡ y *ℕ p → ((mod n *ℕ (p ∸ (x % p) {p≢0})) % p) {p≢0} ≡ (1 % p) {p≢0} ⁻¹-inverse-lemma₁ n x y 1+x*n≡y*p = begin (mod n *ℕ (p ∸ x % p)) % p ≡⟨ cong (λ t → (t % p) {p≢0}) (Nat.*-distribˡ-∸ (mod n) p (x % p)) ⟩ ((1 +ℕ mod n *ℕ p) ∸ (1 +ℕ mod n *ℕ (x % p))) % p ≡⟨ %-distribˡ-∸ (1 +ℕ mod n *ℕ p) (1 +ℕ mod n *ℕ (x % p)) p 1+n*x%p≤1+n*p ⟩ ((1 +ℕ mod n *ℕ p) ∸ (1 +ℕ mod n *ℕ (x % p)) % p) % p ≡⟨ cong (λ t → ((1 +ℕ mod n *ℕ p) ∸ t) % p) lemma ⟩ ((1 +ℕ mod n *ℕ p) ∸ 0) % p ≡⟨ [m+kn]%n≡m%n 1 (mod n) p ⟩ 1 % p ∎ where lemma : ((1 +ℕ mod n *ℕ (x % p) {p≢0}) % p) {p≢0} ≡ 0 lemma = begin (1 +ℕ mod n *ℕ (x % p)) % p ≡⟨ cong (λ t → ((1 +ℕ t *ℕ (x % p) {p≢0}) % p) {p≢0}) (mod≡mod%p n) ⟩ (1 +ℕ (mod n % p) *ℕ (x % p)) % p ≡⟨ %-distribˡ-+ 1 ((mod n % p) *ℕ (x % p)) p ⟩ (1 % p +ℕ ((mod n % p) *ℕ (x % p)) % p) % p ≡⟨ cong (λ t → (1 % p +ℕ t) % p) (sym (%-distribˡ-* (mod n) x p)) ⟩ (1 % p +ℕ (mod n *ℕ x) % p) % p ≡⟨ sym (%-distribˡ-+ 1 (mod n *ℕ x) p) ⟩ (1 +ℕ mod n *ℕ x) % p ≡⟨ cong (λ t → ((1 +ℕ t) % p) {p≢0}) (Nat.*-comm (mod n) x) ⟩ (1 +ℕ x *ℕ mod n) % p ≡⟨ cong (λ t → (t % p) {p≢0}) 1+x*n≡y*p ⟩ (y *ℕ p) % p ≡⟨ [m+kn]%n≡m%n 0 y p ⟩ 0 % p ≡⟨ 0%m≡0 p ⟩ 0 ∎ 1+n*x%p≤1+n*p : 1 +ℕ mod n *ℕ (x % p) {p≢0} ≤ 1 +ℕ mod n *ℕ p 1+n*x%p≤1+n*p = suc-mono-≤ (*-mono-≤ {mod n} ≤-refl (<⇒≤ (n%m<m x p))) ⁻¹-inverse-lemma₂ : ∀ (n : ℤ/[ P ]) x y → 1 +ℕ y *ℕ p ≡ x *ℕ mod n → ((mod n *ℕ (x % p) {p≢0}) % p) {p≢0} ≡ (1 % p) {p≢0} ⁻¹-inverse-lemma₂ n x y 1+y*p≡x*n = begin (mod n *ℕ (x % p)) % p ≡⟨ cong (λ t → (t *ℕ (x % p)) % p) (mod≡mod%p n) ⟩ ((mod n % p) *ℕ (x % p)) % p ≡⟨ sym (%-distribˡ-* (mod n) x p) ⟩ (mod n *ℕ x) % p ≡⟨ cong (λ t → (t % p) {p≢0}) (Nat.*-comm (mod n) x) ⟩ (x *ℕ mod n) % p ≡⟨ cong (λ t → (t % p) {p≢0}) (sym 1+y*p≡x*n) ⟩ (1 +ℕ y *ℕ p) % p ≡⟨ [m+kn]%n≡m%n 1 y p ⟩ 1 % p ∎ ⁻¹-inverse : ∀ n {n≢0} → n * (n ⁻¹) {n≢0} ≡ 1 ⁻¹-inverse n {n≢0} with bézout-prime (mod n) p (n≢0⇒mod[n]≢0 n≢0) (mod<p n) p-isPrime ... | +ʳ x y 1+x*n≡y*p = ℤ/[]-irrelevance (⁻¹-inverse-lemma₁ n x y 1+x*n≡y*p) ... | +ˡ x y 1+y*p≡x*n = ℤ/[]-irrelevance (⁻¹-inverse-lemma₂ n x y 1+y*p≡x*n) /-inverse : ∀ x y {y≢0} → x ≡ y * (x / y) {y≢0} /-inverse x y {y≢0} = begin x ≡⟨ sym (*-identityʳ x) ⟩ x * 1 ≡⟨ cong (λ a → x * a) (sym (⁻¹-inverse y {y≢0})) ⟩ x * (y * (y ⁻¹) {y≢0}) ≡⟨ sym (*-assoc x y ((y ⁻¹) {y≢0})) ⟩ (x * y) * (y ⁻¹) {y≢0} ≡⟨ cong (λ a → a * (y ⁻¹) {y≢0}) (*-comm x y) ⟩ (y * x) * (y ⁻¹) {y≢0} ≡⟨ *-assoc y x ((y ⁻¹) {y≢0}) ⟩ y * (x / y) {y≢0} ∎ open import AKS.Algebra.Consequences +-*-nonZeroCommutativeRing using (module Inverse⇒Field) open Inverse⇒Field _≟_ ≡-irrelevant ≢-irrelevant _/_ /-inverse using (gcd) renaming (isField to +-*-/-isField; [field] to +-*-/-field) public +-*-/-isDecField : IsDecField _≟_ _+_ _*_ -_ 0 1 _/_ gcd +-*-/-isDecField = record { isField = +-*-/-isField } +-*-/-decField : DecField 0ℓ 0ℓ +-*-/-decField = record { isDecField = +-*-/-isDecField }
{ "alphanum_fraction": 0.5135393992, "avg_line_length": 40.5830388693, "ext": "agda", "hexsha": "987ae01c3b3dfc19a4243e8a65df42354bbf951a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Modular/Quotient/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Modular/Quotient/Properties.agda", "max_line_length": 150, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Modular/Quotient/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 5547, "size": 11485 }
-- {-# OPTIONS -v tc.term.exlam:100 -v extendedlambda:100 -v int2abs.reifyterm:100 #-} -- Andreas, 2013-02-26 module Issue778 (Param : Set) where open import Common.Prelude works : Nat → Nat works with zero ... | zero = λ { zero → zero; (suc x) → suc x } ... | suc _ = λ { x → x } test : Nat → Nat test = λ { zero → zero; (suc x) → aux x } where aux : Nat → Nat aux x with works x ... | zero = zero ... | suc y = works y -- There was a internal error in connection to extended lambda and -- where blocks in parametrized modules.
{ "alphanum_fraction": 0.6064400716, "avg_line_length": 27.95, "ext": "agda", "hexsha": "510318a99615a0ca0167d871719c95a136eed7a8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue778.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue778.agda", "max_line_length": 86, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue778.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 173, "size": 559 }
{-# OPTIONS --cubical --no-import-sorts --safe --postfix-projections #-} open import Cubical.Core.Everything open import Cubical.Functions.Embedding open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport -- A helper module for deriving univalence for a higher inductive-recursive -- universe. -- -- U is the type of codes -- El is the decoding -- un is a higher constructor that requires paths between codes to exist -- for equivalences of decodings -- comp is intended to be the computational behavior of El on un, although -- it seems that being a path is sufficient. -- -- Given a universe defined as above, it's possible to show that the path -- space of the code type is equivalent to the path space of the actual -- decodings, which are themselves determined by equivalences. -- -- The levels are left independent, but of course it will generally be -- impossible to define this sort of universe unless ℓ' < ℓ, because El will -- be too big to go in a constructor of U. The exception would be if U could -- be defined independently of El, though it might be tricky to get the right -- higher structure in such a case. module Cubical.Foundations.Univalence.Universe {ℓ ℓ'} (U : Type ℓ) (El : U → Type ℓ') (un : ∀ s t → El s ≃ El t → s ≡ t) (comp : ∀{s t} (e : El s ≃ El t) → cong El (un s t e) ≡ ua e) where private variable A : Type ℓ' module UU-Lemmas where reg : transport (λ _ → A) ≡ idfun A reg {A} i z = transp (λ _ → A) i z nu : ∀ x y → x ≡ y → El x ≃ El y nu x y p = transportEquiv (cong El p) cong-un-te : ∀ x y (p : El x ≡ El y) → cong El (un x y (transportEquiv p)) ≡ p cong-un-te x y p = comp (transportEquiv p) ∙ uaTransportη p nu-un : ∀ x y (e : El x ≃ El y) → nu x y (un x y e) ≡ e nu-un x y e = equivEq {e = nu x y (un x y e)} {f = e} λ i z → (cong (λ p → transport p z) (comp e) ∙ uaβ e z) i El-un-equiv : ∀ x i → El (un x x (idEquiv _) i) ≃ El x El-un-equiv x i = λ where .fst → transp (λ j → p j) (i ∨ ~ i) .snd → transp (λ j → isEquiv (transp (λ k → p (j ∧ k)) (~ j ∨ i ∨ ~ i))) (i ∨ ~ i) (idIsEquiv T) where T = El (un x x (idEquiv _) i) p : T ≡ El x p j = (comp (idEquiv _) ∙ uaIdEquiv {A = El x}) j i un-refl : ∀ x → un x x (idEquiv (El x)) ≡ refl un-refl x i j = hcomp (λ k → λ where (i = i0) → un x x (idEquiv (El x)) j (i = i1) → un x x (idEquiv (El x)) (j ∨ k) (j = i0) → un x x (idEquiv (El x)) (~ i ∨ k) (j = i1) → x) (un (un x x (idEquiv (El x)) (~ i)) x (El-un-equiv x (~ i)) j) nu-refl : ∀ x → nu x x refl ≡ idEquiv (El x) nu-refl x = equivEq {e = nu x x refl} {f = idEquiv (El x)} reg un-nu : ∀ x y (p : x ≡ y) → un x y (nu x y p) ≡ p un-nu x y p = J (λ z q → un x z (nu x z q) ≡ q) (cong (un x x) (nu-refl x) ∙ un-refl x) p open UU-Lemmas open Iso equivIso : ∀ s t → Iso (s ≡ t) (El s ≃ El t) equivIso s t .fun = nu s t equivIso s t .inv = un s t equivIso s t .rightInv = nu-un s t equivIso s t .leftInv = un-nu s t pathIso : ∀ s t → Iso (s ≡ t) (El s ≡ El t) pathIso s t .fun = cong El pathIso s t .inv = un s t ∘ transportEquiv pathIso s t .rightInv = cong-un-te s t pathIso s t .leftInv = un-nu s t minivalence : ∀{s t} → (s ≡ t) ≃ (El s ≃ El t) minivalence {s} {t} = isoToEquiv (equivIso s t) path-reflection : ∀{s t} → (s ≡ t) ≃ (El s ≡ El t) path-reflection {s} {t} = isoToEquiv (pathIso s t) isEmbeddingEl : isEmbedding El isEmbeddingEl s t = snd path-reflection
{ "alphanum_fraction": 0.6042059854, "avg_line_length": 34.0275229358, "ext": "agda", "hexsha": "ac7c847361e1bf335603ec5ac61cf7c5484eae53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Foundations/Univalence/Universe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Foundations/Univalence/Universe.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Foundations/Univalence/Universe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1353, "size": 3709 }
open import Agda.Builtin.FromNat open import Data.Nat.Base as ℕ using (ℕ; suc; zero; _>_; _≤?_) open import Data.List.Base as L using (List; _∷_; []; _++_) open import Relation.Nullary.Decidable using (True) open import Relation.Binary.PropositionalEquality as P using (_≡_) module Data.Pos where open import Data.Nat.FromNat public data ℕ⁺ : Set where suc : ℕ → ℕ⁺ instance NumberPos : Number ℕ⁺ NumberPos = record { Constraint = Pos; fromNat = fromℕ } where Pos : ℕ → Set Pos n = True (suc zero ≤? n) fromℕ : (n : ℕ) {{p : Pos n}} → ℕ⁺ fromℕ zero {{()}} fromℕ (suc zero) = suc zero fromℕ (suc (suc n)) = suc (suc n) toℕ : ℕ⁺ → ℕ toℕ (suc n) = suc n _+_ : ℕ⁺ → ℕ⁺ → ℕ⁺ suc m + n = suc (m ℕ.+ toℕ n) toℕ-+ : (m {n} : ℕ⁺) → toℕ m ℕ.+ toℕ n ≡ toℕ (m + n) toℕ-+ (suc m) = P.refl replicate⁺ : ∀ {a} {A : Set a} → ℕ⁺ → A → List A replicate⁺ (suc n) x = x ∷ L.replicate n x replicate⁺-++-commute : ∀ {a} {A : Set a} {x : A} (m n : ℕ⁺) → replicate⁺ m x ++ replicate⁺ n x ≡ replicate⁺ (m + n) x replicate⁺-++-commute (suc m) (suc n) = P.cong (_ ∷_) (replicate-++-commute m (suc n)) where replicate-++-commute : ∀ {a} {A : Set a} {x : A} (m n : ℕ) → L.replicate m x ++ L.replicate n x ≡ L.replicate (m ℕ.+ n) x replicate-++-commute zero n = P.refl replicate-++-commute (suc m) n = P.cong (_ ∷_) (replicate-++-commute m n)
{ "alphanum_fraction": 0.5675482487, "avg_line_length": 30.4130434783, "ext": "agda", "hexsha": "15e5de43ac57d8b1a22014b7d0efae462cef7b22", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/Data/Pos.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/Data/Pos.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/Data/Pos.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 582, "size": 1399 }
-- Andreas, 2011-09-12 -- eta for records in unifier -- {-# OPTIONS -v tc.lhs.unify:25 #-} module Issue455 where postulate A : Set a : A record Fork : Set where constructor pair field fst : A snd : A open Fork data D : Fork -> Set where c : (x y : A) -> D (pair x y) postulate p : Fork f : D p -> Set f (c .(fst p) .(snd p)) = A -- should work! {- Unifier gives up on: f z = {!z!} Cannot decide whether there should be a case for the constructor c, since the unification gets stuck on unifying the inferred indices [pair x y] with the expected indices [p] -} record ⊤ : Set where constructor tt data E : ⊤ -> Set where e : E tt postulate q : ⊤ g : E q -> Set g e = ⊤
{ "alphanum_fraction": 0.6161473088, "avg_line_length": 15.6888888889, "ext": "agda", "hexsha": "775195e1b4d0e073d78d644fa35b49aed0fa168f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue455.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue455.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue455.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 233, "size": 706 }
open import Nat open import Prelude open import contexts open import core module canonical-value-forms where canonical-value-forms-b : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d val → d == c canonical-value-forms-b TAConst VConst = refl canonical-value-forms-b (TAVar x₁) () canonical-value-forms-b (TAAp wt wt₁) () canonical-value-forms-b (TAEHole x x₁) () canonical-value-forms-b (TANEHole x wt x₁) () canonical-value-forms-b (TACast wt x) () canonical-value-forms-b (TAFailedCast wt x x₁ x₂) () canonical-value-forms-b (TAFst wt) () canonical-value-forms-b (TASnd wt) () canonical-value-forms-arr : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d val → Σ[ x ∈ Nat ] Σ[ d' ∈ iexp ] ((d == (·λ x [ τ1 ] d')) × (Δ , ■ (x , τ1) ⊢ d' :: τ2)) canonical-value-forms-arr (TAVar x₁) () canonical-value-forms-arr (TALam _ wt) VLam = _ , _ , refl , wt canonical-value-forms-arr (TAAp wt wt₁) () canonical-value-forms-arr (TAEHole x x₁) () canonical-value-forms-arr (TANEHole x wt x₁) () canonical-value-forms-arr (TACast wt x) () canonical-value-forms-arr (TAFailedCast x x₁ x₂ x₃) () canonical-value-forms-arr (TAFst wt) () canonical-value-forms-arr (TASnd wt) () canonical-value-forms-prod : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ⊗ τ2) → d val → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] ((d == ⟨ d1 , d2 ⟩ ) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2)) canonical-value-forms-prod (TAVar x₁) () canonical-value-forms-prod (TAAp wt wt₁) () canonical-value-forms-prod (TAEHole x x₁) () canonical-value-forms-prod (TANEHole x wt x₁) () canonical-value-forms-prod (TACast wt x) () canonical-value-forms-prod (TAFailedCast wt x x₁ x₂) () canonical-value-forms-prod (TAFst wt) () canonical-value-forms-prod (TASnd wt) () canonical-value-forms-prod (TAPair wt wt₁) (VPair dv dv₁) = _ , _ , refl , wt , wt₁ -- this argues (somewhat informally, because you still have to inspect -- the types of the theorems above and manually verify this property) -- that we didn't miss any cases above; this intentionally will make this -- file fail to typecheck if we added more types, hopefully forcing us to -- remember to add canonical forms lemmas as appropriate canonical-value-forms-coverage1 : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d val → τ ≠ b → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ==> τ2)) → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ⊗ τ2)) → ⊥ canonical-value-forms-coverage1 TAConst VConst = λ z _ _ → z refl canonical-value-forms-coverage1 (TAVar x₁) () canonical-value-forms-coverage1 (TALam _ wt) VLam = λ _ z _ → z _ _ refl canonical-value-forms-coverage1 (TAAp wt wt₁) () canonical-value-forms-coverage1 (TAEHole x x₁) () canonical-value-forms-coverage1 (TANEHole x wt x₁) () canonical-value-forms-coverage1 (TACast wt x) () canonical-value-forms-coverage1 (TAFailedCast wt x x₁ x₂) () canonical-value-forms-coverage1 (TAFst wt) () canonical-value-forms-coverage1 (TASnd wt) () canonical-value-forms-coverage1 (TAPair wt wt₁) (VPair dv dv₁) ne h = λ z → z _ _ refl canonical-value-forms-coverage2 : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇·⦈ → d val → ⊥ canonical-value-forms-coverage2 (TAVar x₁) () canonical-value-forms-coverage2 (TAAp wt wt₁) () canonical-value-forms-coverage2 (TAEHole x x₁) () canonical-value-forms-coverage2 (TANEHole x wt x₁) () canonical-value-forms-coverage2 (TACast wt x) () canonical-value-forms-coverage2 (TAFailedCast wt x x₁ x₂) () canonical-value-forms-coverage2 (TAFst wt) () canonical-value-forms-coverage2 (TASnd wt) ()
{ "alphanum_fraction": 0.5433703616, "avg_line_length": 47.0111111111, "ext": "agda", "hexsha": "6dccea372d1f0f4b655c24ec1f0ef367e70ce48a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda", "max_forks_repo_path": "canonical-value-forms.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z", "max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazel-palette-agda", "max_issues_repo_path": "canonical-value-forms.agda", "max_line_length": 88, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazel-palette-agda", "max_stars_repo_path": "canonical-value-forms.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z", "num_tokens": 1291, "size": 4231 }
module Arith where open import Common.IO open import Common.Nat renaming (_∸_ to _-_) -- workaround for #1855 open import Common.Unit test : Nat test = 4 foobar : Nat -> Nat foobar zero = zero foobar (suc n) = suc (suc n) main : IO Unit main = -- n <- readNat , printNat 0 ,, printNat (0 + 1) ,, printNat (1 * 2) ,, printNat (suc (suc (suc (suc zero))) - suc zero) ,, printNat test ,, printNat (foobar 4) ,, -- printNat n ,, return unit
{ "alphanum_fraction": 0.6225596529, "avg_line_length": 18.44, "ext": "agda", "hexsha": "7f76215dc47f0b17eba683e48a3c2138b90c6925", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Arith.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Arith.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Arith.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 164, "size": 461 }
module SafeFlagPostulate where data Empty : Set where postulate inhabitant : Empty
{ "alphanum_fraction": 0.8117647059, "avg_line_length": 14.1666666667, "ext": "agda", "hexsha": "c1b0ca201799f28d4d6f5e64839cd963d01db79d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/SafeFlagPostulate.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/SafeFlagPostulate.agda", "max_line_length": 30, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/SafeFlagPostulate.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 20, "size": 85 }
module Data.Bin.NatHelpers where open import Relation.Binary.PropositionalEquality open import Data.Empty open import Data.Fin using (Fin; zero; suc) renaming (toℕ to finToℕ) open import Data.Nat using(ℕ; zero; suc; _≤_; _+_; _*_; s≤s; z≤n; ≤′-step; ≤′-refl; _<_; _∸_) open import Data.Nat.Properties using(_*-mono_; ≤′⇒≤; ≤⇒≤′) open import Function using (_∘_) open import Relation.Nullary ≤-step : ∀ {a b} → a ≤ b → a ≤ suc b ≤-step = ≤′⇒≤ ∘ ≤′-step ∘ ≤⇒≤′ *2-mono : ∀ x → x ≤ x * 2 *2-mono zero = z≤n *2-mono (suc x) = s≤s (≤-step (*2-mono x)) kojojo : ∀ (b : Fin 2) x → x ≢ 0 → suc x ≤ finToℕ b + x * 2 kojojo b zero nz = ⊥-elim (nz refl) kojojo zero (suc y) nz = s≤s (s≤s (*2-mono y)) kojojo (suc zero) (suc y) nz = s≤s (s≤s (≤-step (*2-mono y))) kojojo (suc (suc ())) (suc y) nz *2-gives-space : ∀ {x y z} → (x < y) → z < 2 → x * 2 + z < y * 2 *2-gives-space {suc x} {suc (suc y)} (s≤s (s≤s less)) zz = s≤s (s≤s (*2-gives-space {x} {suc y} (s≤s less) zz)) *2-gives-space (s≤s z≤n) (s≤s (s≤s z≤n)) = s≤s (s≤s z≤n) *2-gives-space (s≤s z≤n) (s≤s z≤n) = s≤s z≤n open import Data.Product x≮z→x≡z+y : ∀ {x z} → ¬ x < z → ∃ λ y → x ≡ z + y x≮z→x≡z+y {zero} {zero} x≮z = zero , refl x≮z→x≡z+y {suc x} {zero} x≮z = suc x , refl x≮z→x≡z+y {zero} {suc z} x≮z = ⊥-elim (x≮z (s≤s z≤n)) x≮z→x≡z+y {suc x} {suc z} x≮z with x≮z→x≡z+y {x} {z} (λ z' → x≮z (s≤s z')) x≮z→x≡z+y {suc .(z + y)} {suc z} x≮z | y , refl = y , refl +-elim₁ : ∀ {x y z} → z + x < z + y → x < y +-elim₁ {x} {y} {zero} lt = lt +-elim₁ {x} {y} {suc z} (s≤s lt) = +-elim₁ {x} {y} {z} lt import Data.Nat.Properties open import Algebra.Structures open IsCommutativeSemiring (Data.Nat.Properties.isCommutativeSemiring) +-elim₂ : ∀ {x y z} → x + z < y + z → x < y +-elim₂ {x} {y} {z} lt rewrite +-comm x z | +-comm y z = +-elim₁ {x} {y} {z} lt
{ "alphanum_fraction": 0.5069124424, "avg_line_length": 40.6875, "ext": "agda", "hexsha": "8d7eb939ed6d0446b823e7c0515a92dd476b0ebf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/NatHelpers.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/NatHelpers.agda", "max_line_length": 115, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/NatHelpers.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 974, "size": 1953 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Base where {- Defines groups and adds the smart constructors [makeGroup-right] and [makeGroup-left] for constructing groups from less data than the standard [makeGroup] constructor. -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid open import Cubical.Algebra.Semigroup open import Cubical.Reflection.RecordEquiv private variable ℓ : Level record IsGroup {G : Type ℓ} (1g : G) (_·_ : G → G → G) (inv : G → G) : Type ℓ where constructor isgroup field isMonoid : IsMonoid 1g _·_ ·InvR : (x : G) → x · inv x ≡ 1g ·InvL : (x : G) → inv x · x ≡ 1g open IsMonoid isMonoid public unquoteDecl IsGroupIsoΣ = declareRecordIsoΣ IsGroupIsoΣ (quote IsGroup) record GroupStr (G : Type ℓ) : Type ℓ where constructor groupstr field 1g : G _·_ : G → G → G inv : G → G isGroup : IsGroup 1g _·_ inv infixr 7 _·_ open IsGroup isGroup public Group : ∀ ℓ → Type (ℓ-suc ℓ) Group ℓ = TypeWithStr ℓ GroupStr Group₀ : Type₁ Group₀ = Group ℓ-zero group : (G : Type ℓ) (1g : G) (_·_ : G → G → G) (inv : G → G) (h : IsGroup 1g _·_ inv) → Group ℓ group G 1g _·_ inv h = G , groupstr 1g _·_ inv h isSetGroup : (G : Group ℓ) → isSet ⟨ G ⟩ isSetGroup G = GroupStr.isGroup (snd G) .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set makeIsGroup : {G : Type ℓ} {e : G} {_·_ : G → G → G} { inv : G → G} (is-setG : isSet G) (·Assoc : (x y z : G) → x · (y · z) ≡ (x · y) · z) (·IdR : (x : G) → x · e ≡ x) (·IdL : (x : G) → e · x ≡ x) (·InvR : (x : G) → x · inv x ≡ e) (·InvL : (x : G) → inv x · x ≡ e) → IsGroup e _·_ inv IsGroup.isMonoid (makeIsGroup is-setG ·Assoc ·IdR ·IdL ·InvR ·InvL) = makeIsMonoid is-setG ·Assoc ·IdR ·IdL IsGroup.·InvR (makeIsGroup is-setG ·Assoc ·IdR ·IdL ·InvR ·InvL) = ·InvR IsGroup.·InvL (makeIsGroup is-setG ·Assoc ·IdR ·IdL ·InvR ·InvL) = ·InvL makeGroup : {G : Type ℓ} (1g : G) (_·_ : G → G → G) (inv : G → G) (is-setG : isSet G) (·Assoc : (x y z : G) → x · (y · z) ≡ (x · y) · z) (·IdR : (x : G) → x · 1g ≡ x) (·IdL : (x : G) → 1g · x ≡ x) (·InvR : (x : G) → x · inv x ≡ 1g) (·InvL : (x : G) → inv x · x ≡ 1g) → Group ℓ makeGroup 1g _·_ inv is-setG ·Assoc ·IdR ·IdL ·InvR ·InvL = _ , helper where helper : GroupStr _ GroupStr.1g helper = 1g GroupStr._·_ helper = _·_ GroupStr.inv helper = inv GroupStr.isGroup helper = makeIsGroup is-setG ·Assoc ·IdR ·IdL ·InvR ·InvL Group→Monoid : Group ℓ → Monoid ℓ Group→Monoid (A , groupstr _ _ _ G) = A , monoidstr _ _ (IsGroup.isMonoid G) makeGroup-right : {A : Type ℓ} → (1g : A) → (_·_ : A → A → A) → (inv : A → A) → (set : isSet A) → (·Assoc : ∀ a b c → a · (b · c) ≡ (a · b) · c) → (·IdR : ∀ a → a · 1g ≡ a) → (·InvR : ∀ a → a · inv a ≡ 1g) → Group ℓ makeGroup-right 1g _·_ inv set ·Assoc ·IdR ·InvR = makeGroup 1g _·_ inv set ·Assoc ·IdR ·IdL ·InvR ·InvL where abstract ·InvL : ∀ a → inv a · a ≡ 1g ·InvL a = inv a · a ≡⟨ sym (·IdR _) ⟩ (inv a · a) · 1g ≡⟨ cong (_·_ _) (sym (·InvR (inv a))) ⟩ (inv a · a) · (inv a · (inv (inv a))) ≡⟨ ·Assoc _ _ _ ⟩ ((inv a · a) · (inv a)) · (inv (inv a)) ≡⟨ cong (λ □ → □ · _) (sym (·Assoc _ _ _)) ⟩ (inv a · (a · inv a)) · (inv (inv a)) ≡⟨ cong (λ □ → (inv a · □) · (inv (inv a))) (·InvR a) ⟩ (inv a · 1g) · (inv (inv a)) ≡⟨ cong (λ □ → □ · (inv (inv a))) (·IdR (inv a)) ⟩ inv a · (inv (inv a)) ≡⟨ ·InvR (inv a) ⟩ 1g ∎ ·IdL : ∀ a → 1g · a ≡ a ·IdL a = 1g · a ≡⟨ cong (λ b → b · a) (sym (·InvR a)) ⟩ (a · inv a) · a ≡⟨ sym (·Assoc _ _ _) ⟩ a · (inv a · a) ≡⟨ cong (a ·_) (·InvL a) ⟩ a · 1g ≡⟨ ·IdR a ⟩ a ∎ makeGroup-left : {A : Type ℓ} → (1g : A) → (_·_ : A → A → A) → (inv : A → A) → (set : isSet A) → (·Assoc : ∀ a b c → a · (b · c) ≡ (a · b) · c) → (·IdL : ∀ a → 1g · a ≡ a) → (·InvL : ∀ a → (inv a) · a ≡ 1g) → Group ℓ makeGroup-left 1g _·_ inv set ·Assoc ·IdL ·InvL = makeGroup 1g _·_ inv set ·Assoc ·IdR ·IdL ·InvR ·InvL where abstract ·InvR : ∀ a → a · inv a ≡ 1g ·InvR a = a · inv a ≡⟨ sym (·IdL _) ⟩ 1g · (a · inv a) ≡⟨ cong (λ b → b · (a · inv a)) (sym (·InvL (inv a))) ⟩ (inv (inv a) · inv a) · (a · inv a) ≡⟨ sym (·Assoc (inv (inv a)) (inv a) _) ⟩ inv (inv a) · (inv a · (a · inv a)) ≡⟨ cong (inv (inv a) ·_) (·Assoc (inv a) a (inv a)) ⟩ (inv (inv a)) · ((inv a · a) · (inv a)) ≡⟨ cong (λ b → (inv (inv a)) · (b · (inv a))) (·InvL a) ⟩ inv (inv a) · (1g · inv a) ≡⟨ cong (inv (inv a) ·_) (·IdL (inv a)) ⟩ inv (inv a) · inv a ≡⟨ ·InvL (inv a) ⟩ 1g ∎ ·IdR : ∀ a → a · 1g ≡ a ·IdR a = a · 1g ≡⟨ cong (a ·_) (sym (·InvL a)) ⟩ a · (inv a · a) ≡⟨ ·Assoc a (inv a) a ⟩ (a · inv a) · a ≡⟨ cong (λ b → b · a) (·InvR a) ⟩ 1g · a ≡⟨ ·IdL a ⟩ a ∎
{ "alphanum_fraction": 0.4654792508, "avg_line_length": 30.0883977901, "ext": "agda", "hexsha": "b209bc5d1470a8fe77acd2073a65ffcc860a1082", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Base.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2296, "size": 5446 }
{-# OPTIONS --without-K #-} module NTypes.Id where open import GroupoidStructure open import NTypes open import PathOperations open import Transport open import Types -- This should also be derivable from hLevel-suc from -- HomotopyTypes.HLevel module. Id-isSet : ∀ {a} {A : Set a} {x y : A} → isSet A → isSet (x ≡ y) Id-isSet {x = x} {y = y} A-set _ _ pp qq = path pp ⁻¹ · path qq where split-path : {p q : x ≡ y} (pp : p ≡ q) → A-set _ _ p q ≡ pp · A-set _ _ q q split-path pp = J (λ p q pp → A-set _ _ p q ≡ pp · A-set _ _ q q) (λ _ → refl) _ _ pp path : {p q : x ≡ y} (pp : p ≡ q) → A-set _ _ p q ≡ pp path pp = J (λ p q pp → A-set _ _ p q ≡ pp) (λ p → split-path (A-set _ _ p p ⁻¹) · p⁻¹·p (A-set _ _ p p)) _ _ pp -- From the lectures. Id-isSet-alt : ∀ {a} {A : Set a} {u v : A} → isSet A → isSet (u ≡ v) Id-isSet-alt {u = u} {v = v} H r s α β = id·p α ⁻¹ · ap (λ z → z · α) (p⁻¹·p (H′ r)) ⁻¹ · p·q·r (H′ r ⁻¹) (H′ r) α ⁻¹ · ap (λ z → H′ r ⁻¹ · z) ( tr-post r α (H′ r) ⁻¹ · apd H′ α · apd H′ β ⁻¹ · tr-post r β (H′ r) ) · p·q·r (H′ r ⁻¹) (H′ r) β · ap (λ z → z · β) (p⁻¹·p (H′ r)) · id·p β where H′ = λ q → H u v r q
{ "alphanum_fraction": 0.4917898194, "avg_line_length": 24.36, "ext": "agda", "hexsha": "39dc0ce27cad3f60eb441c1dc187d82f27a55275", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes/Id.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes/Id.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes/Id.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 561, "size": 1218 }
{-# OPTIONS --cubical #-} module Data.Binary.PerformanceTests.Conversion where open import Prelude open import Data.Binary.Definition open import Data.Binary.Conversion using (⟦_⇓⟧) -- open import Data.Binary.Conversion.Strict open import Data.Binary.Conversion.Fast -- one-thousand : 𝔹 -- one-thousand = 2ᵇ 1ᵇ 1ᵇ 2ᵇ 1ᵇ 2ᵇ 2ᵇ 2ᵇ 2ᵇ 0ᵇ -- f : 𝔹 -- f = one-thousand n : ℕ n = 5000000 -- The actual performance test (uncomment and time how long it takes to type-check) -- _ : ⟦ ⟦ n ⇑⟧ ⇓⟧ ≡ n -- _ = refl
{ "alphanum_fraction": 0.6982248521, "avg_line_length": 22.0434782609, "ext": "agda", "hexsha": "94409fb50cf6f657e3dc9e02bbddf85df6bb85bb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/PerformanceTests/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/PerformanceTests/Conversion.agda", "max_line_length": 83, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/PerformanceTests/Conversion.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 196, "size": 507 }
module ModuleArgs where open import Common.Nat open import Common.IO open import Common.Unit module X (y : Nat) where addTo : Nat -> Nat addTo x = y + x open X 23 -- should return 35 main : IO Unit main = printNat (addTo 12)
{ "alphanum_fraction": 0.6995708155, "avg_line_length": 14.5625, "ext": "agda", "hexsha": "40d969a5cc92f76b6a197deafd7de7b2dc706187", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/ModuleArgs.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/ModuleArgs.agda", "max_line_length": 26, "max_stars_count": 7, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/ModuleArgs.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 70, "size": 233 }
open import Nat open import Prelude open import Hazelnut-core module Hazelnut-declarative where -- declarative type checking judgement for ė data _⊢_::_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where DVar : {Γ : ·ctx} {t : τ̇} {n : Nat} → (n , t) ∈ Γ → Γ ⊢ X n :: t DAp : {Γ : ·ctx} {e1 e2 : ė} {t t2 : τ̇} → Γ ⊢ e1 :: (t2 ==> t) → Γ ⊢ e2 :: t2 → Γ ⊢ (e1 ∘ e2) :: t DNum : {Γ : ·ctx} {n : Nat} → Γ ⊢ N n :: num DPlus : {Γ : ·ctx} {e1 e2 : ė} → Γ ⊢ e1 :: num → Γ ⊢ e2 :: num → Γ ⊢ (e1 ·+ e2) :: num DEHole : {Γ : ·ctx} → Γ ⊢ <||> :: <||> DFHole : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ e :: t → Γ ⊢ <| e |> :: <||> DApHole : {Γ : ·ctx} {e1 e2 : ė} → Γ ⊢ e1 :: <||> → Γ ⊢ e2 :: <||> → Γ ⊢ (e1 ∘ e2) :: <||> DLam : {Γ : ·ctx} {e : ė} {t1 t2 : τ̇} {n : Nat} → n # Γ → (Γ ,, (n , t1)) ⊢ e :: t2 → Γ ⊢ (·λ n e) :: (t1 ==> t2) -- erasure of ascriptions, following the 312 notes. data ||_|| : {e : ė} → ė → Set where -- EraseAsc : {e : ė} {x : Nat} → -- ||_|| : ė → ė -- || e ·: x || = || e || -- || X x || = X x -- || ·λ x e || = ·λ x || e || -- || N n || = N n -- || e1 ·+ e2 || = || e1 || ·+ || e2 || -- || <||> || = <||> -- || <| e |> || = <| || e || |> -- || e1 ∘ e2 || = || e1 || ∘ || e2 || decbidir : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ e :: t → (Γ ⊢ e => t) + (Γ ⊢ e <= t) -- synthesis cases decbidir (DVar x) = Inl (SVar x) decbidir (DAp d1 d2) with decbidir d1 | decbidir d2 ... | Inl s1 | Inl s2 = Inl (SAp s1 (ASubsume s2 TCRefl)) ... | Inl s1 | Inr a2 = Inl (SAp s1 a2) ... | Inr a1 | Inl s2 = Inl (SAp {!!} (ASubsume s2 TCRefl)) ... | Inr a1 | Inr a2 = Inl (SAp {!!} a2) decbidir DNum = Inl SNum decbidir (DPlus d1 d2) with decbidir d1 | decbidir d2 ... | Inl s1 | Inl s2 = Inl (SPlus (ASubsume s1 TCRefl) (ASubsume s2 TCRefl)) ... | Inl s1 | Inr a2 = Inl (SPlus (ASubsume s1 TCRefl) a2) ... | Inr a1 | Inl s1 = Inl (SPlus a1 (ASubsume s1 TCRefl)) ... | Inr a1 | Inr a2 = Inl (SPlus a1 a2) decbidir DEHole = Inl SEHole decbidir (DFHole d) with decbidir d ... | Inl synth = Inl (SFHole synth) ... | Inr (ASubsume d' _) = Inl (SFHole d') ... | Inr (ALam x ana) = Inl {!!} decbidir (DApHole d1 d2) with decbidir d1 | decbidir d2 ... | Inl s1 | Inl s2 = Inl (SApHole s1 (ASubsume s2 TCRefl)) ... | Inl s1 | Inr a2 = Inl (SApHole s1 a2) ... | Inr a1 | Inl s2 = Inl (SApHole {!!} (ASubsume s2 TCRefl)) ... | Inr a1 | Inr a2 = Inl (SApHole {!!} a2) -- analysis case decbidir (DLam x d) = Inr (ALam {!!} {!!}) bidirdec : {Γ : ·ctx} {e : ė} {t : τ̇} → (Γ ⊢ e => t) + (Γ ⊢ e <= t) → Γ ⊢ e :: t -- synthesis cases bidirdec (Inl (SAsc d)) = {!!} bidirdec (Inl (SVar x)) = DVar x bidirdec (Inl (SAp d1 d2)) = DAp (bidirdec (Inl d1)) (bidirdec (Inr d2)) bidirdec (Inl SNum) = DNum bidirdec (Inl (SPlus d1 d2)) = DPlus (bidirdec (Inr d1)) (bidirdec (Inr d2)) bidirdec (Inl SEHole) = DEHole bidirdec (Inl (SFHole d)) = DFHole (bidirdec (Inl d)) bidirdec (Inl (SApHole d1 d2)) = DApHole (bidirdec (Inl d1)) (bidirdec (Inr d2)) --analysis cases bidirdec (Inr (ASubsume x x₁)) = {!synthunicity!} bidirdec (Inr (ALam x d)) = DLam x (bidirdec (Inr d)) -- to be an isomoprhism you have to preserve structure. -- to : {Γ : ·ctx} {e : ė} {t : τ̇} → -- (d : Γ ⊢ e :: t) → -- (bidirdec (decbidir d)) == d -- to d = {!!} -- from : {Γ : ·ctx} {e : ė} {t : τ̇} → -- (dd : (Γ ⊢ e => t) + (Γ ⊢ e <= t)) → -- (decbidir (bidirdec dd)) == dd -- from dd = {!!}
{ "alphanum_fraction": 0.4224747475, "avg_line_length": 38.4466019417, "ext": "agda", "hexsha": "a76797dda0670a8ecc58ec8685f040a7e1d8ccb8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ivoysey/agda-tfp16", "max_forks_repo_path": "Hazelnut-declarative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ivoysey/agda-tfp16", "max_issues_repo_path": "Hazelnut-declarative.agda", "max_line_length": 82, "max_stars_count": 2, "max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ivoysey/agda-tfp16", "max_stars_repo_path": "Hazelnut-declarative.agda", "max_stars_repo_stars_event_max_datetime": "2016-04-14T02:19:58.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-09T13:35:22.000Z", "num_tokens": 1787, "size": 3960 }
{-# OPTIONS --cubical --safe #-} module Data.Integer.Literals where open import Data.Integer open import Literals.Number open import Data.Unit instance numberNat : Number ℤ numberNat = record { Constraint = λ _ → ⊤ ; fromNat = λ n → ⁺ n }
{ "alphanum_fraction": 0.6590038314, "avg_line_length": 17.4, "ext": "agda", "hexsha": "8bff814f1eb6fd1dbcfbd48503d2c53bb0fcf39a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Integer/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Integer/Literals.agda", "max_line_length": 34, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Integer/Literals.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 73, "size": 261 }
module plfa-exercises.Practice where --------------------------------------- Naturals --------------------------------------- -- Inductive definition of Numbers (new datatype) data ℕ : Set where -- Judgements (two in total for this case) zero : ℕ -- No hypothesis and one conclusion suc : ℕ → ℕ -- One hypothesis and one conclusion seven : ℕ seven = suc (suc (suc (suc (suc (suc (suc zero)))))) --seven′ = --7 pred : ℕ → ℕ pred zero = zero pred (suc n) = n --- -- Gives us the power of writing 3 to signify suc (suc (suc zero)) :) {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; _≢_; refl; cong; sym; trans) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎) open import Function.Base using (flip) open import Relation.Nullary using (¬_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Product using (_×_; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) _+_ : ℕ → ℕ → ℕ zero + n = n -- +-def₀ (suc m) + n = suc (m + n) -- +-def₁ --_ : (suc (suc zero)) + (suc (suc (suc zero))) ≡ (suc (suc (suc (suc (suc zero))))) --_ = -- begin -- (suc (suc zero)) + (suc (suc (suc zero))) -- ≡⟨⟩ -- inductive case -- suc ((suc zero) + (suc (suc (suc zero)))) -- ≡⟨⟩ -- inductive case -- suc (suc (zero + (suc (suc (suc zero))))) -- ≡⟨⟩ -- base case -- suc (suc (suc (suc (suc zero)))) -- ∎ -- --_ : 2 + 3 ≡ 5 --_ = -- begin -- 2 + 3 -- (suc 1) + 3 -- ≡⟨⟩ -- suc (1 + 3) -- ≡⟨⟩ -- suc (suc 0 + 3) -- ≡⟨⟩ -- suc (suc (0 + 3)) -- ≡⟨⟩ -- suc (suc 3) -- ≡⟨⟩ -- suc 4 -- ≡⟨⟩ -- 5 -- ∎ -- -- --_ : (suc (suc zero)) + (suc (suc (suc zero))) ≡ (suc (suc (suc (suc (suc zero))))) --_ = refl _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) _^_ : ℕ → ℕ → ℕ n ^ zero = suc zero n ^ (suc m) = n * (n ^ m) -- Monus _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n infixl 6 _+_ _∸_ infixl 7 _*_ infixr 8 _^_ -- Superfun binary numbers :D data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = (inc b) O _ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O _ = refl toᵇ : ℕ → Bin toᵇ zero = ⟨⟩ O toᵇ (suc n) = inc (toᵇ n) fromᵇ : Bin → ℕ fromᵇ ⟨⟩ = zero fromᵇ (b O) = let n = fromᵇ b in n + n fromᵇ (b I) = let n = fromᵇ b in suc (n + n) _ : toᵇ 11 ≡ (⟨⟩ I O I I) _ = refl _ : fromᵇ (inc (⟨⟩ I O I I)) ≡ 12 _ = refl --_ = begin -- (fromᵇ (⟨⟩ I I O O)) -- ≡⟨ 12 ≡⟨⟩ 12 ∎ ⟩ -- 12 -- ∎ --_ : Set₉₁₁₁₁₁₁₁₁₁₁₁₁₁₁₁₁₁₁₁₁ --_ : Set₀ _ : Set _ = suc 11 ≡ 12 _+ᵇ_ : Bin → Bin → Bin ⟨⟩ +ᵇ b = b b +ᵇ ⟨⟩ = b --(b O) +ᵇ ⟨⟩ = b O (b O) +ᵇ (d O) = (b +ᵇ d) O (b O) +ᵇ (d I) = (b +ᵇ d) I --(b I) +ᵇ ⟨⟩ = b I (b I) +ᵇ (d O) = (b +ᵇ d) I (b I) +ᵇ (d I) = (inc (b +ᵇ d)) O -- Proving the following is trivial mod-left : ∀ {b : Bin} → ⟨⟩ +ᵇ b ≡ b mod-left = refl -- But not its complement. This is due to "case trees" (or how Agda implements -- functions under the hood) -- https://agda.readthedocs.io/en/v2.6.0.1/language/function-definitions.html#case-trees mod-right : ∀ {b : Bin} → b +ᵇ ⟨⟩ ≡ b mod-right {⟨⟩} = refl mod-right {b O} = refl mod-right {b I} = refl -- Also, I'm confused on the implications of improper "case trees". If the -- second rule wasn't reachable, the following code would run even -- if the rule was nonesense (eg, changing `b +ᵇ ⟨⟩ = b O O`) but it doesn't -- work! The rule must make sense. So, Agda is applying the rule after all and -- not ignoring it even thought it can't be reached directly in proofs _ : (⟨⟩ I O I I I) +ᵇ (⟨⟩ O O I) ≡ ⟨⟩ I I O O O _ = refl ---proppre : ∀ (n : ℕ) → zero + suc n ≡ suc (zero + n) ---proppre zero = refl ---proppre (suc n) = --- begin --- zero + suc (suc n) --- ≡⟨⟩ --- zero + suc (zero + suc n) --- ≡⟨⟩ --- suc (zero + suc n) --- ∎ --≡⟨ cong suc (proppre n) ⟩ -- Taken it from book assoc-+ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) assoc-+ zero n p = refl assoc-+ (suc m) n p rewrite assoc-+ m n p = refl comm-+₀ : ∀ (m : ℕ) → m + zero ≡ m comm-+₀ zero = refl comm-+₀ (suc n) rewrite comm-+₀ n = refl --comm-+₀ (suc n) = -- begin -- zero + suc n -- ≡⟨⟩ -- zero + suc (zero + n) -- ≡⟨⟩ -- suc (zero + n) -- ≡⟨ cong suc (comm-+₀ n) ⟩ -- suc (n + zero) -- ≡⟨⟩ -- suc n + zero -- ∎ succ_right : ∀ (n m : ℕ) → suc (n + m) ≡ n + suc m succ_right zero m = refl succ_right (suc n) m rewrite succ_right n m = refl --succ_right (suc n) m = cong suc (succ_right n m) --succ_right (suc n) m = -- begin -- suc (suc n + m) -- ≡⟨⟩ -- suc (suc (n + m)) -- ≡⟨ cong suc (succ_right n m) ⟩ -- suc (n + suc m) -- ≡⟨⟩ -- suc n + suc m -- ∎ comm-+ : ∀ (n m : ℕ) → n + m ≡ m + n comm-+ zero n = sym (comm-+₀ n) comm-+ (suc n) m rewrite comm-+ n m | succ_right m n = refl --comm-+ (suc n) m = trans (cong suc (comm-+ n m)) (succ_right m n) --comm-+ (suc n) m = -- begin -- suc n + m -- ≡⟨⟩ -- +-def₁ -- suc (n + m) -- ≡⟨ cong suc (comm-+ n m) ⟩ -- suc (m + n) -- ≡⟨ succ_right m n ⟩ -- m + suc n -- ∎ -- Try evaluating and type-checking the following expressions: -- comm-+ zero -- (flip comm-+) zero -- λ n m → cong suc (comm-+ n m) -- λ m n → succ_right m n -- λ m n → sym (succ_right m n) -- λ n m → trans (cong suc (comm-+ n m)) (succ_right m n) monus : ∀ (n : ℕ) → zero ∸ n ≡ zero monus zero = refl monus (suc n) = refl --monus : ∀ {n : ℕ} → zero ∸ n ≡ zero --monus {zero} = refl --monus {suc n} = refl inc≡suc : ∀ (b : Bin) → fromᵇ (inc b) ≡ suc (fromᵇ b) inc≡suc ⟨⟩ = refl inc≡suc (b O) rewrite sym (comm-+₀ (fromᵇ b)) = refl inc≡suc (b I) rewrite comm-+₀ (fromᵇ (inc b)) | inc≡suc b | succ_right (fromᵇ b) (fromᵇ b) | comm-+₀ (fromᵇ b) | succ_right (fromᵇ b) (fromᵇ b) = refl -- `toᵇ (fromᵇ b) ≡ b` doesn't hold for all values, just for some. -- So the following is false --tofromb≢b : ∀ (b : Bin) → ¬ (toᵇ (fromᵇ b) ≡ b) --tofromb≢b ⟨⟩ = λ() --tofromb≢b = ? -- impossible to prove _ : ¬ (toᵇ (fromᵇ ⟨⟩) ≡ ⟨⟩) _ = λ() --from∘toᵇ₀ : ∀ (n : ℕ) → fromᵇ ((toᵇ n) O) ≡ fromᵇ (toᵇ n) + fromᵇ (toᵇ n) --from∘toᵇ₀ zero = refl --from∘toᵇ₀ (suc n) = refl -- --from∘toᵇ₁ : ∀ (n : ℕ) → fromᵇ ((toᵇ n) I) ≡ suc (fromᵇ (toᵇ n) + fromᵇ (toᵇ n)) --from∘toᵇ₁ zero = refl --from∘toᵇ₁ (suc n) = refl monobin₀ : ∀ (b : Bin) → inc (inc (b +ᵇ b)) ≡ (inc b +ᵇ inc b) monobin₀ ⟨⟩ = refl monobin₀ (b O) = refl monobin₀ (b I) rewrite monobin₀ b = refl monobin : ∀ (n : ℕ) → toᵇ (n + n) ≡ (toᵇ n) +ᵇ (toᵇ n) monobin zero = refl monobin (suc n) rewrite sym (succ_right n n) | monobin n | monobin₀ (toᵇ n) = refl --mononat₀ : ∀ (a : Bin) → a +ᵇ ⟨⟩ ≡ a --mononat₀ ⟨⟩ = refl --mononat₀ (b O) = refl --mononat₀ (b I) = refl -- --mononat₁ : ∀ (a b : Bin) → fromᵇ (inc (a +ᵇ b)) ≡ suc (fromᵇ a + fromᵇ b) --mononat₁ ⟨⟩ b rewrite inc≡suc b = refl --mononat₁ a ⟨⟩ rewrite mononat₀ a | comm-+₀ (fromᵇ a) | inc≡suc a = refl --mononat₁ = ? ---- λ a → fromᵇ (inc (a +ᵇ ⟨⟩)) ≡ suc (fromᵇ a + fromᵇ ⟨⟩) ---- fromᵇ (inc b) ≡ suc (fromᵇ b) -- --mononat : ∀ (a b : Bin) → fromᵇ (a +ᵇ b) ≡ fromᵇ a + fromᵇ b --mononat ⟨⟩ _ = refl --mononat a ⟨⟩ rewrite mononat₀ a | comm-+₀ (fromᵇ a) = refl ----mononat a ⟨⟩ = ---- begin ---- fromᵇ (a +ᵇ ⟨⟩) ---- ≡⟨ cong fromᵇ (mononat₀ a) ⟩ ---- fromᵇ (a) ---- ≡⟨ sym (comm-+₀ (fromᵇ a)) ⟩ ---- fromᵇ a + zero ---- ≡⟨⟩ ---- fromᵇ a + fromᵇ ⟨⟩ ---- ∎ --mononat (a O) (b O) rewrite -- mononat a b -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ a + fromᵇ b) -- | comm-+ (fromᵇ b) (fromᵇ a + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ a) (fromᵇ b + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ b) -- = refl --mononat (a I) (b O) rewrite -- mononat a b -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ a + fromᵇ b) -- | comm-+ (fromᵇ b) (fromᵇ a + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ a) (fromᵇ b + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ b) -- = refl --mononat (a O) (b I) rewrite -- mononat a b -- | sym (succ_right (fromᵇ a + fromᵇ a) (fromᵇ b + fromᵇ b)) -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ a + fromᵇ b) -- | comm-+ (fromᵇ b) (fromᵇ a + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ a) (fromᵇ b + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ b) -- = refl --mononat (a I) (b I) rewrite -- mononat₁ a b -- | sym (succ_right (fromᵇ a + fromᵇ a) (fromᵇ b + fromᵇ b)) -- | sym (succ_right (fromᵇ a + fromᵇ b) (fromᵇ a + fromᵇ b)) -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ a + fromᵇ b) -- | comm-+ (fromᵇ b) (fromᵇ a + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ a) (fromᵇ b + fromᵇ b) -- | assoc-+ (fromᵇ a) (fromᵇ b) (fromᵇ b) -- = refl -- Really hard!! Keep working on it! -- IT WASN'T HARD!!! I JUST COULDN'T SEE THE RIGHT REWRITE!! from∘toᵇ : ∀ (n : ℕ) → fromᵇ (toᵇ n) ≡ n from∘toᵇ zero = refl from∘toᵇ (suc n) rewrite inc≡suc (toᵇ n) | from∘toᵇ n = refl --from∘toᵇ (suc n) = -- begin -- fromᵇ (toᵇ (suc n)) -- ≡⟨⟩ -- fromᵇ (inc (toᵇ n)) -- ≡⟨ inc≡suc (toᵇ n) ⟩ -- suc (fromᵇ (toᵇ n)) -- ≡⟨ cong suc (from∘toᵇ n) ⟩ -- suc n -- ∎ swap-m-n-+ : ∀ (m n p) → m + (n + p) ≡ n + (m + p) swap-m-n-+ m n p rewrite sym (assoc-+ m n p) | sym (assoc-+ n m p) | comm-+ m n = refl right-zero-* : ∀ (n : ℕ) → n * 0 ≡ 0 right-zero-* zero = refl right-zero-* (suc n) rewrite right-zero-* n = refl suc-right-* : ∀ (m n) → m * suc n ≡ m + m * n suc-right-* zero n = refl suc-right-* (suc m) n rewrite suc-right-* m n | sym (assoc-+ n m (m * n)) | comm-+ n m | assoc-+ m n (m * n) = refl comm-* : ∀ (m n : ℕ) → m * n ≡ n * m comm-* zero n rewrite right-zero-* n = refl comm-* (suc m) n rewrite comm-* m n | suc-right-* n m = refl distr-*-+ : ∀ (m n p) → (m + n) * p ≡ m * p + n * p distr-*-+ zero _ _ = refl distr-*-+ (suc m) n p rewrite distr-*-+ m n p | assoc-+ p (m * p) (n * p) = refl distl-*-+ : ∀ (p m n) → p * (m + n) ≡ p * m + p * n distl-*-+ zero _ _ = refl distl-*-+ (suc p) m n rewrite distl-*-+ p m n | sym (assoc-+ (m + n) (p * m) (p * n)) | sym (assoc-+ (m + p * m) n (p * n)) | assoc-+ m n (p * m) | comm-+ n (p * m) | assoc-+ m (p * m) n = refl assoc-* : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) assoc-* zero n p = refl assoc-* (suc m) n p rewrite assoc-* m n p | distr-*-+ n (m * n) p | assoc-* m n p = refl swap-m-n-* : ∀ (m n p) → m * (n * p) ≡ n * (m * p) swap-m-n-* m n p rewrite sym (assoc-* m n p) | sym (assoc-* n m p) | comm-* m n = refl distr-^-* : ∀ (m n p) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) --distr-^-* m n zero = -- begin -- (m * n) ^ zero -- ≡⟨⟩ -- (m * n) ^ 0 -- ≡⟨⟩ -- suc 0 -- ≡⟨⟩ -- 1 -- ≡⟨⟩ -- 1 + 0 -- ≡⟨⟩ -- 1 + 0 * 1 -- ≡⟨⟩ -- (suc 0) * 1 -- ≡⟨⟩ -- (suc 0) * 1 -- ≡⟨⟩ -- 1 * 1 -- ≡⟨⟩ -- 1 * (n ^ 0) -- ≡⟨⟩ -- (m ^ zero) * (n ^ zero) -- ≡⟨⟩ -- (m ^ 0) * (n ^ 0) -- ∎ distr-^-* _ _ zero = refl distr-^-* zero zero (suc p) = refl distr-^-* zero (suc n) (suc p) = refl distr-^-* (suc m) zero (suc p) rewrite right-zero-* (suc m ^ suc p) | right-zero-* m = refl distr-^-* (suc m) (suc n) (suc p) rewrite -- (suc m * suc n) ^ suc p ≡ suc m ^ suc p * suc n ^ suc p -- -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ (suc m ^ p + m * suc m ^ p) * (suc n ^ p + n * suc n ^ p) distr-*-+ (suc m ^ p) (m * suc m ^ p) (suc n ^ p + n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * (suc n ^ p + n * suc n ^ p) -- + m * suc m ^ p * (suc n ^ p + n * suc n ^ p) | assoc-* m (suc m ^ p) (suc n ^ p + n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * (suc n ^ p + n * suc n ^ p) -- + m * (suc m ^ p * (suc n ^ p + n * suc n ^ p)) | distl-*-+ (suc m ^ p) (suc n ^ p) (n * suc n ^ p) -- suc (n + m * suc n) ^ p + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | comm-* m (suc n) -- suc (n + (m + n * m)) ^ p -- + (n + (m + n * m)) * suc (n + (m + n * m)) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | comm-* n m -- suc (n + (m + m * n)) ^ p -- + (n + (m + m * n)) * suc (n + (m + m * n)) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | sym (suc-right-* m n) -- suc (n + m * suc n) ^ p -- + (n + m * suc n) * suc (n + m * suc n) ^ p -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distr-^-* (suc m) (suc n) p -- suc m ^ p * suc n ^ p + (n + m * suc n) * (suc m ^ p * suc n ^ p) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distr-*-+ n (m * suc n) (suc m ^ p * suc n ^ p) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + m * suc n * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + m * (suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p)) | distl-*-+ m (suc m ^ p * suc n ^ p) (suc m ^ p * (n * suc n ^ p)) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + m * suc n * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | comm-* m (suc n) -- suc m ^ p * suc n ^ p + (n * (suc m ^ p * suc n ^ p) -- + (m + n * m) * (suc m ^ p * suc n ^ p)) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) -- + (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | distr-*-+ m (n * m) (suc m ^ p * suc n ^ p) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | swap-m-n-* n (suc m ^ p) (suc n ^ p) -- suc m ^ p * suc n ^ p + -- (suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + suc m ^ p * (n * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (suc m ^ p * (n * suc n ^ p))) | swap-m-n-* (suc m ^ p) n (suc n ^ p) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * (n * (suc m ^ p * suc n ^ p))) | sym (assoc-* m n (suc m ^ p * suc n ^ p)) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + m * n * (suc m ^ p * suc n ^ p)) | comm-* m n -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) | assoc-+ (suc m ^ p * suc n ^ p) (n * (suc m ^ p * suc n ^ p)) (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- ≡ -- suc m ^ p * suc n ^ p + -- (n * (suc m ^ p * suc n ^ p) + -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p))) -- QED = refl --distr-^-* (suc m) (suc n) (suc p) -- rewrite -- distr-*-+ (suc m ^ p) (m * suc m ^ p) (suc n ^ p + n * suc n ^ p) -- | assoc-* m (suc m ^ p) (suc n ^ p + n * suc n ^ p) -- | distl-*-+ (suc m ^ p) (suc n ^ p) (n * suc n ^ p) -- | comm-* m (suc n) -- | comm-* n m -- | sym (suc-right-* m n) -- | distr-^-* (suc m) (suc n) p -- | distr-*-+ n (m * suc n) (suc m ^ p * suc n ^ p) -- | distl-*-+ m (suc m ^ p * suc n ^ p) (suc m ^ p * (n * suc n ^ p)) -- | comm-* m (suc n) -- | distr-*-+ m (n * m) (suc m ^ p * suc n ^ p) -- | swap-m-n-* n (suc m ^ p) (suc n ^ p) -- | swap-m-n-* (suc m ^ p) n (suc n ^ p) -- | sym (assoc-* m n (suc m ^ p * suc n ^ p)) -- | comm-* m n -- | assoc-+ (suc m ^ p * suc n ^ p) (n * (suc m ^ p * suc n ^ p)) -- (m * (suc m ^ p * suc n ^ p) + n * m * (suc m ^ p * suc n ^ p)) -- = refl --------------------------------------- Relations --------------------------------------- data _≤_ : ℕ → ℕ → Set where z≤n : ∀ {n : ℕ} → zero ≤ n s≤s : ∀ {m n : ℕ} → m ≤ n → suc m ≤ suc n _ : 2 ≤ 4 _ = s≤s (s≤s z≤n) --_ = s≤s {1} {3} (s≤s {0} {2} (z≤n {2})) inv-s≤s : ∀ {m n : ℕ} → suc m ≤ suc n → m ≤ n inv-s≤s (s≤s m≤n) = m≤n inv-z≤n : ∀ {m : ℕ} → m ≤ zero → m ≡ zero inv-z≤n z≤n = refl refl-≤ : ∀ {n : ℕ} → n ≤ n refl-≤ {zero} = z≤n refl-≤ {suc o} = s≤s refl-≤ trans-≤ : ∀ {m n p : ℕ} → m ≤ n → n ≤ p → m ≤ p trans-≤ z≤n _ = z≤n trans-≤ (s≤s m≤n) (s≤s n≤p) = s≤s (trans-≤ m≤n n≤p) antisym-≤ : ∀ {m n : ℕ} → m ≤ n → n ≤ m → m ≡ n antisym-≤ z≤n n≤m = sym (inv-z≤n n≤m) antisym-≤ (s≤s m≤n) (s≤s n≤m) = cong suc (antisym-≤ m≤n n≤m) open import Data.Sum using (_⊎_; inj₁; inj₂) renaming ([_,_] to case-⊎) --data Total (m n : ℕ) : Set where -- forward : m ≤ n → Total m n -- flipped : n ≤ m → Total m n -- --total-≤ : ∀ (m n : ℕ) → Total m n --total-≤ zero _ = forward z≤n --total-≤ (suc m) zero = flipped z≤n --total-≤ (suc m) (suc n) with total-≤ m n --... | forward m≤n = forward (s≤s m≤n) --... | flipped n≤m = flipped (s≤s n≤m) total-≤` : ∀ (m n : ℕ) → m ≤ n ⊎ n ≤ m total-≤` zero _ = inj₁ z≤n total-≤` _ zero = inj₂ z≤n total-≤` (suc m) (suc n) with total-≤` m n ... | inj₁ m≤n = inj₁ (s≤s m≤n) ... | inj₂ n≤m = inj₂ (s≤s n≤m) --+-monoʳ-≤ : ∀ (n p q : ℕ) → p ≤ q → (n + p) ≤ (n + q) --+-monoʳ-≤ zero _ _ p≤q = p≤q --+-monoʳ-≤ (suc n) p q p≤q = s≤s (+-monoʳ-≤ n p q p≤q) +-monoʳ-≤ : ∀ {n p q : ℕ} → p ≤ q → (n + p) ≤ (n + q) +-monoʳ-≤ {zero} p≤q = p≤q +-monoʳ-≤ {suc n} p≤q = s≤s (+-monoʳ-≤ {n} p≤q) +-monoˡ-≤ : ∀ {m n p : ℕ} → m ≤ n → (m + p) ≤ (n + p) +-monoˡ-≤ {m} {n} {p} m≤n rewrite comm-+ m p | comm-+ n p = +-monoʳ-≤ m≤n -- From book ≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p → m ≤ p ≤-trans z≤n _ = z≤n ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p) +-mono-≤ : ∀ {m n p q : ℕ} → m ≤ n → p ≤ q → (m + p) ≤ (n + q) +-mono-≤ m≤n p≤q = ≤-trans (+-monoˡ-≤ m≤n) (+-monoʳ-≤ p≤q) -- Exercises *-monoʳ-≤ : ∀ {n p q : ℕ} → p ≤ q → (n * p) ≤ (n * q) *-monoʳ-≤ {zero} p≤q = z≤n *-monoʳ-≤ {suc n} p≤q = +-mono-≤ p≤q (*-monoʳ-≤ {n} p≤q) *-monoˡ-≤ : ∀ {m n p : ℕ} → m ≤ n → (m * p) ≤ (n * p) *-monoˡ-≤ {m} {n} {p} m≤n rewrite comm-* m p | comm-* n p = *-monoʳ-≤ {p} {m} {n} m≤n *-mono-≤ : ∀ {m n p q : ℕ} → m ≤ n → p ≤ q → (m * p) ≤ (n * q) *-mono-≤ {_} {n} m≤n p≤q = ≤-trans (*-monoˡ-≤ m≤n) (*-monoʳ-≤ {n} p≤q) infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} → zero < suc n s<s : ∀ {m n : ℕ} → m < n → suc m < suc n <-trans : ∀ {m n p} → m < n → n < p → m < p --<-trans {m} {suc n} {suc p} z<s (s<s n<p) = z<s {p} --<-trans {suc m} {suc n} {suc p} (s<s m<n) (s<s n<p) = s<s (<-trans m<n n<p) <-trans z<s (s<s n<p) = z<s <-trans (s<s m<n) (s<s n<p) = s<s (<-trans m<n n<p) trichotomy : ∀ (m n) → (m ≡ n) ⊎ (m < n) ⊎ (n < m) trichotomy zero zero = inj₁ refl trichotomy zero (suc n) = inj₂ (inj₁ z<s) trichotomy (suc m) zero = inj₂ (inj₂ z<s) trichotomy (suc m) (suc n) with trichotomy m n ... | inj₁ m≡n = inj₁ (cong suc m≡n) ... | inj₂ (inj₁ m<n) = inj₂ (inj₁ (s<s m<n)) ... | inj₂ (inj₂ n<m) = inj₂ (inj₂ (s<s n<m)) +-monoʳ-< : ∀ {n p q} → p < q → (n + p) < (n + q) +-monoʳ-< {zero} p<q = p<q +-monoʳ-< {suc n} p<q = s<s (+-monoʳ-< p<q) +-monoˡ-< : ∀ {m n p} → m < n → (m + p) < (n + p) +-monoˡ-< {m} {n} {p} m<n rewrite comm-+ m p | comm-+ n p = +-monoʳ-< m<n +-mono-< : ∀ {m n p q} → m < n → p < q → (m + p) < (n + q) +-mono-< m<n p<q = <-trans (+-monoˡ-< m<n) (+-monoʳ-< p<q) -- From Software Verification Class (nice exercises but the two first are -- unnecessary in Agda because the proofs are basically the relation -- definition) ≡0 : ∀ {n : ℕ} → ¬( 0 < n ) → n ≡ 0 ≡0 {zero} _ = refl ≡0 {suc n} ¬0<n = ⊥-elim (¬0<n z<s) --0< : ∀ {n : ℕ} → n ≢ 0 → 0 < n 0< : ∀ {n : ℕ} → ¬( n ≡ 0 ) → 0 < n 0< {zero} 0≢0 = ⊥-elim (0≢0 refl) 0< {suc n} s≢0 = z<s ¬n<z : ∀ {n : ℕ} → ¬( n < 0 ) ¬n<z () m<sn→m<n⊎m≡n : {m n : ℕ} → (m < suc n) → (m < n) ⊎ (m ≡ n) m<sn→m<n⊎m≡n {zero} {zero} _ = inj₂ refl m<sn→m<n⊎m≡n {zero} {suc n} _ = inj₁ z<s m<sn→m<n⊎m≡n {suc m} {zero} (s<s ()) m<sn→m<n⊎m≡n {suc m} {suc n} (s<s m<sn) with m<sn→m<n⊎m≡n {m} {n} m<sn ... | inj₁ m<n = inj₁ (s<s m<n) ... | inj₂ m≡n = inj₂ (cong suc m≡n) suc-step : {m n : ℕ} → (m < suc n) × (m ≢ n) → m < n suc-step {zero} {zero} ⟨ 0<1 , 0≢0 ⟩ = 0< 0≢0 suc-step {zero} {suc n} ⟨ 0<ssn , 0≢sn ⟩ = z<s suc-step {suc m} {zero} ⟨ s<s m<0 , sm≢0 ⟩ = ⊥-elim (¬n<z m<0) suc-step {suc m} {suc n} ⟨ s<s m<sn , sm≢sn ⟩ with m<sn→m<n⊎m≡n m<sn ... | inj₁ m<n = s<s m<n ... | inj₂ m≡n = ⊥-elim (sm≢sn (cong suc m≡n)) -- This idea of using returning ∃ in Athena might be fundamental but it is -- clumsy or cumbersome in Agda discrete : ∀ {n : ℕ} → ¬ (∃[ m ] (n < m × m < suc n)) discrete {zero} ⟨ _ , ⟨ z<s , s<s () ⟩ ⟩ discrete {suc n} ⟨ zero , ⟨ () , _ ⟩ ⟩ discrete {suc n} ⟨ suc m , ⟨ s<s n<m , s<s m<sn ⟩ ⟩ = discrete ⟨ m , ⟨ n<m , m<sn ⟩ ⟩ -- This is unnecessary because it is the same as pred n -- proj₁ (S4 {_} {n} _) ≡ pred n --S4 : ∀ {m n : ℕ} → suc m < n → ∃[ n' ] ( n ≡ suc n' ) S4 : ∀ {m n : ℕ} → m < n → ∃[ n' ] ( n ≡ suc n' ) S4 {_} {zero} () S4 {_} {suc n} _ = ⟨ n , refl ⟩ -- more interesting is: S4' : ∀ {m n : ℕ} → suc m ≤ n → ∃[ n' ] ( n ≡ suc n' ) S4' {_} {zero} () S4' {_} {suc n} _ = ⟨ n , refl ⟩ -- It is more interesting because, this is not true: -- S4' : ∀ {m n : ℕ} → m ≤ n → ∃[ n' ] ( n ≡ suc n' ) -- as opposed to S4. -- But still, it's something that isn't necessary in Agda irreflexive : ∀ {m : ℕ} → ¬(m < m) irreflexive {zero} () irreflexive {suc m} (s<s m<m) = irreflexive m<m trichotomy₂ : ∀ (m n) → (m ≡ n × ¬(m < n) × ¬(n < m)) ⊎ (m < n × m ≢ n × ¬(n < m)) ⊎ (n < m × m ≢ n × ¬(m < n)) trichotomy₂ zero zero = inj₁ ⟨ refl , ⟨ irreflexive , irreflexive ⟩ ⟩ trichotomy₂ zero (suc n) = inj₂ (inj₁ ⟨ z<s , ⟨ (λ()) , (λ()) ⟩ ⟩) trichotomy₂ (suc m) zero = inj₂ (inj₂ ⟨ z<s , ⟨ (λ()) , (λ()) ⟩ ⟩) trichotomy₂ (suc m) (suc n) with trichotomy₂ m n ... | inj₁ ⟨ m≡n , ⟨ ¬m<n , ¬n<m ⟩ ⟩ = inj₁ ⟨ cong suc m≡n , ⟨ (λ{(s<s m<n) → ¬m<n m<n}) , (λ{(s<s n<m) → ¬n<m n<m}) ⟩ ⟩ ... | inj₂ (inj₁ ⟨ m<n , ⟨ m≢n , ¬n<m ⟩ ⟩) = inj₂ (inj₁ ⟨ s<s m<n , ⟨ (λ{sm≡sn → m≢n (cong pred sm≡sn)}) , (λ{(s<s n<m) → ¬n<m n<m}) ⟩ ⟩) ... | inj₂ (inj₂ ⟨ n<m , ⟨ m≢n , ¬m<n ⟩ ⟩) = inj₂ (inj₂ ⟨ s<s n<m , ⟨ (λ{sm≡sn → m≢n (cong pred sm≡sn)}) , (λ{(s<s m<n) → ¬m<n m<n}) ⟩ ⟩) --open import Function.Equivalence using (_⇔_) record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ <-if-≤ : ∀ {m n} → suc m ≤ n → m < n <-if-≤ {zero} {suc n} z≤s = z<s <-if-≤ {suc m} {suc n} (s≤s sm≤n) = s<s (<-if-≤ sm≤n) ≤-if-< : ∀ {m n} → m < n → suc m ≤ n ≤-if-< {zero} {suc n} z<s = s≤s z≤n ≤-if-< {suc m} {suc n} (s<s m<n) = s≤s (≤-if-< m<n) ≤-iff-< : ∀ {m n} → (suc m ≤ n) ⇔ (m < n) ≤-iff-< = record { to = <-if-≤ ; from = ≤-if-< } pred-smaller : ∀ {m n} → suc m ≤ n → m ≤ n pred-smaller {zero} _ = z≤n pred-smaller {suc m} {suc n} (s≤s sm≤n) = s≤s (pred-smaller sm≤n) <-trans-revisited : ∀ {m n p} → m < n → n < p → m < p <-trans-revisited {m} {n} {p} m<n n<p = <-if-≤ (≤-trans (≤-if-< m<n) (pred-smaller (≤-if-< n<p))) --- data even : ℕ → Set data odd : ℕ → Set data even where zero-e : even zero suc-e : ∀ {n : ℕ} → odd n → even (suc n) data odd where suc-o : ∀ {n : ℕ} → even n → odd (suc n) --- data Can : Bin → Set data One : Bin → Set data Can where zero-C : Can (⟨⟩ O) one-C : ∀ {b : Bin} → One b → Can b data One where oneO : One (⟨⟩ I) oneO-O : ∀ {b : Bin} → One b → One (b O) oneO-I : ∀ {b : Bin} → One b → One (b I) _ : Can (⟨⟩ I) _ = one-C oneO inc-Bin : ∀ {b : Bin} → One b → One (inc b) inc-Bin oneO = oneO-O oneO inc-Bin (oneO-O ob) = oneO-I ob inc-Bin (oneO-I ob) = oneO-O (inc-Bin ob) inc-Can : ∀ {b : Bin} → Can b → Can (inc b) inc-Can zero-C = one-C oneO inc-Can (one-C ob) = one-C (inc-Bin ob) to-Can : ∀ (n : ℕ) → Can (toᵇ n) to-Can zero = zero-C to-Can (suc n) = inc-Can (to-Can n) twicebinisO : ∀ {b : Bin} → One b → b +ᵇ b ≡ b O twicebinisO {⟨⟩ I} _ = refl twicebinisO {b O} (oneO-O ob) rewrite twicebinisO ob = refl twicebinisO {b I} (oneO-I ob) rewrite twicebinisO ob = refl to∘from-Can : ∀ {b : Bin} → Can b → toᵇ (fromᵇ b) ≡ b to∘from-Can zero-C = refl to∘from-Can (one-C oneO) = refl to∘from-Can {b O} (one-C (oneO-O ob)) rewrite monobin (fromᵇ b) | to∘from-Can (one-C ob) | twicebinisO ob = refl to∘from-Can {b I} (one-C (oneO-I ob)) rewrite monobin (fromᵇ b) | to∘from-Can (one-C ob) | twicebinisO ob = refl --------------------------------------- Equality --------------------------------------- module ≤-Reasoning where infix 1 begin≤_ infixr 2 _≤⟨⟩_ _≤⟨_⟩_ infix 3 _∎≤ begin≤_ : ∀ {x y : ℕ} → x ≤ y → x ≤ y begin≤ x≤y = x≤y _≤⟨⟩_ : ∀ (x : ℕ) {y : ℕ} → x ≤ y → x ≤ y x ≤⟨⟩ x≤y = x≤y _≤⟨_⟩_ : ∀ (x : ℕ) {y z : ℕ} → x ≤ y → y ≤ z → x ≤ z x ≤⟨ x≤y ⟩ y≤z = trans-≤ x≤y y≤z _∎≤ : ∀ (x : ℕ) → x ≤ x x ∎≤ = refl-≤ open ≤-Reasoning +-monoʳ-≤` : ∀ {n p q : ℕ} → p ≤ q → (n + p) ≤ (n + q) +-monoʳ-≤` {zero} p≤q = p≤q +-monoʳ-≤` {suc n} {p} {q} p≤q = begin≤ suc n + p ≤⟨⟩ suc (n + p) ≤⟨ s≤s (+-monoʳ-≤` p≤q) ⟩ suc (n + q) ≤⟨⟩ suc n + q ∎≤ pred≡ : ∀ {m n : ℕ} → suc m ≡ suc n → m ≡ n pred≡ = cong pred ≡to≤ : ∀ {m n : ℕ} → m ≡ n → m ≤ n ≡to≤ {zero} {zero} _ = refl-≤ ≡to≤ {suc m} {suc n} sm≡sn = s≤s (≡to≤ (cong pred sm≡sn)) +-monoˡ-≤` : ∀ {m n p : ℕ} → m ≤ n → (m + p) ≤ (n + p) +-monoˡ-≤` {m} {n} {p} m≤n = begin≤ m + p ≤⟨ ≡to≤ (comm-+ m p) ⟩ p + m ≤⟨ +-monoʳ-≤` {p} {m} {n} m≤n ⟩ p + n ≤⟨ ≡to≤ (comm-+ p n) ⟩ n + p ∎≤ +-mono-≤` : ∀ {m n p q : ℕ} → m ≤ n → p ≤ q → (m + p) ≤ (n + q) +-mono-≤` {m} {n} {p} {q} m≤n p≤q = begin≤ m + p ≤⟨ +-monoˡ-≤` m≤n ⟩ n + p ≤⟨ +-monoʳ-≤` p≤q ⟩ n + q ∎≤ --even-comm′ : ∀ (m n : ℕ) -- → even (m + n) -- ------------ -- → even (n + m) --even-comm′ m n ev with m + n | comm-+ m n --... | .(n + m) | refl = ev --------------------------------------- Isomorphism --------------------------------------- postulate extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g _+′_ : ℕ → ℕ → ℕ m +′ zero = m m +′ suc n = suc (m +′ n) same-app : ∀ (m n : ℕ) → m +′ n ≡ m + n same-app m n rewrite comm-+ m n = helper m n where helper : ∀ (m n : ℕ) → m +′ n ≡ n + m helper _ zero = refl helper m (suc n) = cong suc (helper m n) same-+-+′ : _+′_ ≡ _+_ same-+-+′ = extensionality (λ m → extensionality (λ n → same-app m n)) --open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) -- --private -- variable -- ℓ ℓ₁ : Level --infix 0 _≃_ --record _≃_ (A : Set ℓ) (B : Set ℓ₁) : Set (ℓ ⊔ ℓ₁) where record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ ≃-refl : ∀ {A : Set} → A ≃ A ≃-refl = record { to = λ x → x ; from = λ y → y ; from∘to = λ x → refl ; to∘from = λ y → refl } ≃-sym : ∀ {A B : Set} → A ≃ B → B ≃ A ≃-sym A≃B = record { to = from A≃B ; from = to A≃B ; from∘to = to∘from A≃B ; to∘from = from∘to A≃B } open import Function.Base using (_∘_) ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C → A ≃ C ≃-trans A≃B B≃C = record { to = to B≃C ∘ to A≃B ; from = from A≃B ∘ from B≃C ; from∘to = λ{x → begin from A≃B (from B≃C (to B≃C (to A≃B x))) ≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩ from A≃B (to A≃B x) ≡⟨ from∘to A≃B x ⟩ x ∎ } ; to∘from = λ{y → begin to B≃C (to A≃B (from A≃B (from B≃C y))) ≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩ to B≃C (from B≃C y) ≡⟨ to∘from B≃C y ⟩ y ∎ } } infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ ≃-implies-≲ : ∀ {A B : Set} → A ≃ B → A ≲ B ≃-implies-≲ A≃B = record { to = to A≃B ; from = from A≃B ; from∘to = from∘to A≃B } -- Idea: Prove that (ℕ) is isomorph to (Can) -- Idea: Prove that (+, ℕ) is isomorph to (+ᵇ, Can) --record _⇔_ (A B : Set) : Set where -- field -- to : A → B -- from : B → A -- Exercise: implement reflexive, symetric and transitive properties on _⇔_ ℕ≲Bin : ℕ ≲ Bin ℕ≲Bin = record { to = toᵇ ; from = fromᵇ ; from∘to = from∘toᵇ } data Dec-Can : Set where num : ∀ (b : Bin) → Can b → Dec-Can toᵈᶜ : ℕ → Dec-Can toᵈᶜ n = num (toᵇ n) (to-Can n) --toᵈᶜ n = num (to-Can n) fromᵈᶜ : Dec-Can → ℕ fromᵈᶜ (num b _) = fromᵇ b --from∘toᵈᶜ (suc n) = ? -- λ n → fromᵈᶜ (toᵈᶜ (suc n)) ≡ suc n -- λ cb → toᵈᶜ (fromᵈᶜ (num cb)) ≡ num cb -- λ b ob → toᵈᶜ (fromᵈᶜ (num (b O) (one-C (oneO-O ob)))) --to∘fromᵈᶜ : ∀ (y : Dec-Can) → toᵈᶜ (fromᵈᶜ y) ≡ y --to∘fromᵈᶜ (num (⟨⟩ O) zero-C) = refl --to∘fromᵈᶜ (num (⟨⟩ I) (one-C oneO)) = refl --to∘fromᵈᶜ (num (b O) (one-C (oneO-O {b} ob))) rewrite monobin (fromᵇ b) = ? ---- λ b ob → toᵈᶜ (fromᵈᶜ (num (b O) (one-C (oneO-O ob)))) ---- λ b ob → λ b ob → num (toᵇ (fromᵇ b + fromᵇ b)) (to-Can (fromᵇ b + fromᵇ b)) --to∘fromᵈᶜ = ? ----to∘fromᵈᶜ (num b cb) = ---- begin ---- toᵈᶜ (fromᵈᶜ (num b cb)) ---- ≡⟨⟩ ---- toᵈᶜ (fromᵇ b) ---- ≡⟨⟩ ---- num (toᵇ (fromᵇ b)) (to-Can (fromᵇ b)) ---- ≡⟨ ? ⟩ ---- num b cb ---- ∎ --ℕ≃Can : ℕ ≃ Dec-Can --ℕ≃Can = -- record -- { to = toᵈᶜ -- ; from = fromᵈᶜ -- ; from∘to = from∘toᵇ -- ; to∘from = ? -- to∘fromᵈᶜ -- to∘from-Can -- } --num (zero-C) --------------------------------------- Decidable --------------------------------------- -- Use `Dec` to create elements for `Can`. Look if this is enough to prove `ℕ ≃ Can` -- Ans: NO. Decidables don't do what you thought they do --------------------------------------- Last --------------------------------------- -- Prove that `sqrt 2` is irrational -- Stuff to take into account and add to agda neovim: -- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_load "plfa/part1/Naturals.agda" []) -- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_compute_toplevel DefaultCompute "2 + suc 3") # Already done by plugin -- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_infer_toplevel AsIs "2 + suc 3") # THIS SHOULD BE PART OF THE STUFF IN MAGDA -- -- Other stuff: -- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_show_module_contents_toplevel AsIs "Eq") -- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_why_in_scope_toplevel "Eq") -- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_why_in_scope (InteractionId 1) (Range (Just "plfa/part1/Naturals.agda") (Interval (Pn () 1 76 1) (Pn () 1 76 19))) "Eq") ---- IOTCM "plfa/part1/Naturals.agda" None Direct (Cmd_autoOne (InteractionId 1) noRange "") ---- IOTCM "plfa/part1/Naturals.agda" NonInteractive Indirect (Cmd_infer Simplified 103992 (intervalsToRange (Just (mkAbsolute "plfa/part1/Naturals.agda")) [Interval (Pn () 50 75 1) (Pn () 52 79 1)]) "3 + suc 2")
{ "alphanum_fraction": 0.4476735199, "avg_line_length": 29.5388127854, "ext": "agda", "hexsha": "f0cc33c8df8e4996f9c39df5a70268b8fd86a957", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/plfa-exercises/Practice.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/plfa-exercises/Practice.agda", "max_line_length": 212, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/plfa-exercises/Practice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 15718, "size": 32345 }
module Impure.STLCRef.Properties.Soundness where open import Data.Nat open import Data.Sum open import Data.Product as Pr open import Data.List open import Data.Vec hiding (_∷ʳ_) open import Data.Star open import Function open import Extensions.List open import Relation.Binary.PropositionalEquality as P open import Relation.Binary.Core using (REL; Reflexive) open import Relation.Binary.List.Pointwise as PRel hiding (refl) open import Impure.STLCRef.Syntax hiding (id) open import Impure.STLCRef.Welltyped open import Impure.STLCRef.Eval ref-value-lemma : ∀ {n A Γ Σ} {e : Exp n} → Γ , Σ ⊢ e ∶ Ref A → Val e → ∃ λ i → e ≡ (loc i) ref-value-lemma (var x) () ref-value-lemma (loc p) (loc i) = i , refl ref-value-lemma (p · p₁) () ref-value-lemma (ref p) () ref-value-lemma (! p) () progress : ∀ {Γ Σ A} {e : Exp 0} {μ} → Γ , Σ ⊢ μ → Γ , Σ ⊢ e ∶ A → -------------------------------------- Val e ⊎ ∃₂ λ e' μ' → (e , μ ≻ e' , μ') progress p unit = inj₁ unit progress p (var ()) progress p (loc {i = i} q) = inj₁ (loc i) progress p (ƛ wt) = inj₁ (ƛ _ _) progress p (f · e) with progress p f progress p (() · e) | inj₁ unit progress p (() · e) | inj₁ (loc i) progress p (ƛ f · e) | inj₁ (ƛ _ _) = inj₂ (_ , (_ , AppAbs)) progress p (f · e) | inj₂ (_ , _ , f≻f') = inj₂ (_ , (_ , (Appₗ f≻f'))) progress p (ref wt) with progress p wt progress p (ref wt) | inj₁ v = inj₂ (_ , (_ , (RefVal v))) progress p (ref wt) | inj₂ (_ , _ , wt≻wt') = inj₂ (_ , _ , Ref wt≻wt') progress p (! wt) with progress p wt progress p (! wt) | inj₁ v with ref-value-lemma wt v progress p (! loc q) | inj₁ (loc .i) | (i , refl) = inj₂ (_ , (_ , (DerefLoc (P.subst (_<_ _) (pointwise-length p) ([]=-length q))))) progress p (! wt) | inj₂ (_ , _ , wt≻wt') = inj₂ (_ , (_ , (Deref wt≻wt'))) progress p (wt ≔ x) with progress p wt | progress p x progress p (wt ≔ x) | _ | inj₂ (_ , _ , x≻x') = inj₂ (_ , (_ , (Assign₂ x≻x'))) progress p (wt ≔ x) | inj₂ (_ , _ , wt≻wt') | _ = inj₂ (_ , _ , Assign₁ wt≻wt') progress p (wt ≔ x) | inj₁ v | inj₁ w with ref-value-lemma wt v progress p (loc q ≔ x) | inj₁ (loc .i) | inj₁ w | (i , refl) = inj₂ (_ , (_ , Assign (P.subst (_<_ _) (pointwise-length p) ([]=-length q)) w)) postulate sub-preserves : ∀ {n Γ Σ A B x} {e : Exp (suc n)} → (B ∷ Γ) , Σ ⊢ e ∶ A → Γ , Σ ⊢ x ∶ B → Γ , Σ ⊢ (e / sub x) ∶ A !!-loc : ∀ {n Σ Σ' A μ i} {Γ : Ctx n} → Rel (λ A x → Γ , Σ ⊢ proj₁ x ∶ A) Σ' μ → Σ' ⊢loc i ∶ A → (l : i < length μ) → Γ , Σ ⊢ proj₁ (μ !! l) ∶ A !!-loc [] () !!-loc (x∼y ∷ p) here (s≤s z≤n) = x∼y !!-loc (x∼y ∷ p) (there q) (s≤s l) = !!-loc p q l -- extending the store preserves expression typings ⊒-preserves : ∀ {n Γ Σ Σ' A} {e : Exp n} → Σ' ⊒ Σ → Γ , Σ ⊢ e ∶ A → Γ , Σ' ⊢ e ∶ A ⊒-preserves ext unit = unit ⊒-preserves ext (var x) = var x ⊒-preserves ext (loc x) = loc (xs⊒ys[i] x ext) ⊒-preserves ext (ƛ p) = ƛ (⊒-preserves ext p) ⊒-preserves ext (p · q) = (⊒-preserves ext p) · ⊒-preserves ext q ⊒-preserves ext (ref p) = ref (⊒-preserves ext p) ⊒-preserves ext (! p) = ! (⊒-preserves ext p) ⊒-preserves ext (p ≔ q) = (⊒-preserves ext p) ≔ (⊒-preserves ext q) ≻-preserves : ∀ {n Γ Σ A} {e : Exp n} {e' μ' μ} → Γ , Σ ⊢ e ∶ A → Γ , Σ ⊢ μ → e , μ ≻ e' , μ' → --------------------------------- ∃ λ Σ' → Γ , Σ' ⊢ e' ∶ A × Σ' ⊒ Σ × Γ , Σ' ⊢ μ' ≻-preserves unit p () ≻-preserves (var x) p () ≻-preserves (loc p) p₁ () ≻-preserves (ƛ wt) p () ≻-preserves {Σ = Σ} (ƛ wt · wt₁) p AppAbs = Σ , sub-preserves wt wt₁ , ⊑-refl , p ≻-preserves {Σ = Σ} (ref {x = x} {A} wt) p (RefVal v) = let ext = ∷ʳ-⊒ A Σ in Σ ∷ʳ A , loc (P.subst (λ i → _ ⊢loc i ∶ _) (pointwise-length p) (∷ʳ[length] Σ A)) , ext , pointwise-∷ʳ (PRel.map (⊒-preserves ext) p) (⊒-preserves ext wt) ≻-preserves {Σ = Σ₁} (! loc x) p (DerefLoc l) = Σ₁ , !!-loc p x l , ⊑-refl , p ≻-preserves {Σ = Σ₁} (loc x ≔ y) p (Assign l v) = Σ₁ , unit , ⊑-refl , pointwise-[]≔ p x l y -- contextual closure ≻-preserves {Σ = Σ} (wt-f · wt-x) p (Appₗ r) = Pr.map id (λ{ (wt-f' , ext , q) → wt-f' · ⊒-preserves ext wt-x , ext , q}) (≻-preserves wt-f p r) ≻-preserves (f · x) p (Appᵣ r) = Pr.map id (λ{ (x' , ext , q) → ⊒-preserves ext f · x' , ext , q}) (≻-preserves x p r) ≻-preserves (ref wt) p (Ref r) = Pr.map id (λ{ (wt' , ext) → ref wt' , ext}) (≻-preserves wt p r) ≻-preserves (! wt) p (Deref r) = Pr.map id (λ{ (wt' , ext) → ! wt' , ext}) (≻-preserves wt p r) ≻-preserves (y ≔ x) p (Assign₁ r) = Pr.map id (λ{ (y' , ext , q) → y' ≔ ⊒-preserves ext x , ext , q}) (≻-preserves y p r) ≻-preserves (y ≔ x) p (Assign₂ r) = Pr.map id (λ{ (x' , ext , q) → ⊒-preserves ext y ≔ x' , ext , q}) (≻-preserves x p r) -- preservation for multistep reductions preservation : ∀ {n} {e : Exp n} {Γ Σ A μ μ' e'} → Γ , Σ ⊢ e ∶ A → Γ , Σ ⊢ μ → e , μ ≻* e' , μ' → ----------------------------------------------- ∃ λ Σ' → Γ , Σ' ⊢ e' ∶ A × Σ' ⊒ Σ × Γ , Σ' ⊢ μ' preservation wt ok ε = _ , wt , ⊑-refl , ok preservation wt ok (x ◅ r) with ≻-preserves wt ok x ... | Σ₂ , wt' , Σ₂⊒Σ , μ₂ok with preservation wt' μ₂ok r ... | Σ₃ , wt'' , Σ₃⊒Σ₂ , μ₃ = Σ₃ , wt'' , ⊑-trans Σ₂⊒Σ Σ₃⊒Σ₂ , μ₃ -- fueled evaluation open import Data.Maybe eval : ∀ {e : Exp zero} {Σ A μ} ℕ → [] , Σ ⊢ e ∶ A → [] , Σ ⊢ μ → --------------------------------------- Maybe (∃ λ Σ' → ∃ λ e' → ∃ λ μ' → (e , μ ≻* e' , μ') × Val e' × ([] , Σ' ⊢ e' ∶ A)) eval 0 _ _ = nothing eval (suc n) p q with progress q p eval (suc n) p q | inj₁ x = just (_ , _ , _ , ε , x , p) eval (suc n) p q | inj₂ (e' , μ' , step) with ≻-preserves p q step ... | (Σ₂ , wte' , ext , μ'-ok) with eval n wte' μ'-ok ... | nothing = nothing ... | just (Σ₃ , e'' , μ'' , steps , v , wte'') = just (Σ₃ , e'' , μ'' , step ◅ steps , v , wte'')
{ "alphanum_fraction": 0.4984063077, "avg_line_length": 37.25625, "ext": "agda", "hexsha": "5cc4dde581af12e33d9e184a3fa3d145a44c510f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Impure/STLCRef/Properties/Soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Impure/STLCRef/Properties/Soundness.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Impure/STLCRef/Properties/Soundness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2562, "size": 5961 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Alternatives where open import Level open import Categories.Adjoint open import Categories.Category open import Categories.Functor renaming (id to idF) open import Categories.NaturalTransformation import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D : Category o ℓ e module _ (L : Functor C D) (R : Functor D C) where private module C = Category C module D = Category D module L = Functor L module R = Functor R record FromUnit : Set (levelOfTerm L ⊔ levelOfTerm R) where field unit : NaturalTransformation idF (R ∘F L) module unit = NaturalTransformation unit field θ : ∀ {X Y} → C [ X , R.₀ Y ] → D [ L.₀ X , Y ] commute : ∀ {X Y} (g : C [ X , R.₀ Y ]) → g C.≈ R.₁ (θ g) C.∘ unit.η X unique : ∀ {X Y} {f : D [ L.₀ X , Y ]} {g : C [ X , R.₀ Y ]} → g C.≈ R.₁ f C.∘ unit.η X → θ g D.≈ f module _ where open C.HomReasoning open MR C θ-natural : ∀ {X Y Z} (f : D [ Y , Z ]) (g : C [ X , R.₀ Y ]) → θ (R.₁ f C.∘ g) D.≈ θ (R.₁ f) D.∘ L.₁ g θ-natural {X} {Y} f g = unique eq where eq : R.₁ f C.∘ g C.≈ R.₁ (θ (R.₁ f) D.∘ L.₁ g) C.∘ unit.η X eq = begin R.₁ f C.∘ g ≈⟨ commute (R.₁ f) ⟩∘⟨refl ⟩ (R.₁ (θ (R.₁ f)) C.∘ unit.η (R.F₀ Y)) C.∘ g ≈⟨ C.assoc ⟩ R.₁ (θ (R.₁ f)) C.∘ unit.η (R.₀ Y) C.∘ g ≈⟨ pushʳ (unit.commute g) ⟩ (R.₁ (θ (R.₁ f)) C.∘ R.₁ (L.₁ g)) C.∘ unit.η X ≈˘⟨ R.homomorphism ⟩∘⟨refl ⟩ R.₁ (θ (R.₁ f) D.∘ L.₁ g) C.∘ unit.η X ∎ θ-cong : ∀ {X Y} {f g : C [ X , R.₀ Y ]} → f C.≈ g → θ f D.≈ θ g θ-cong eq = unique (eq ○ commute _) θ-natural′ : ∀ {X Y} (g : C [ X , R.₀ Y ]) → θ g D.≈ θ C.id D.∘ L.₁ g θ-natural′ g = θ-cong (introˡ R.identity) ○ θ-natural D.id g ○ D.∘-resp-≈ˡ (θ-cong R.identity) where open D.HomReasoning open MR C counit : NaturalTransformation (L ∘F R) idF counit = ntHelper record { η = λ d → θ C.id ; commute = λ f → begin θ C.id D.∘ L.₁ (R.₁ f) ≈˘⟨ θ-natural′ (R.₁ f) ⟩ θ (R.₁ f) ≈⟨ unique (CH.⟺ (MR.cancelʳ C (CH.⟺ (commute C.id))) CH.○ CH.⟺ (C.∘-resp-≈ˡ R.homomorphism)) ⟩ f D.∘ θ C.id ∎ } where open D.HomReasoning module CH = C.HomReasoning unique′ : ∀ {X Y} {f g : D [ L.₀ X , Y ]} (h : C [ X , R.₀ Y ]) → h C.≈ R.₁ f C.∘ unit.η X → h C.≈ R.₁ g C.∘ unit.η X → f D.≈ g unique′ _ eq₁ eq₂ = ⟺ (unique eq₁) ○ unique eq₂ where open D.HomReasoning zig : ∀ {A} → θ C.id D.∘ L.F₁ (unit.η A) D.≈ D.id zig {A} = unique′ (unit.η A) (commute (unit.η A) ○ (C.∘-resp-≈ˡ (R.F-resp-≈ (θ-natural′ (unit.η A))))) (introˡ R.identity) where open C.HomReasoning open MR C L⊣R : L ⊣ R L⊣R = record { unit = unit ; counit = counit ; zig = zig ; zag = C.Equiv.sym (commute C.id) } record FromCounit : Set (levelOfTerm L ⊔ levelOfTerm R) where field counit : NaturalTransformation (L ∘F R) idF module counit = NaturalTransformation counit field θ : ∀ {X Y} → D [ L.₀ X , Y ] → C [ X , R.₀ Y ] commute : ∀ {X Y} (g : D [ L.₀ X , Y ]) → g D.≈ counit.η Y D.∘ L.₁ (θ g) unique : ∀ {X Y} {f : C [ X , R.₀ Y ]} {g : D [ L.₀ X , Y ]} → g D.≈ counit.η Y D.∘ L.₁ f → θ g C.≈ f module _ where open D.HomReasoning open MR D θ-natural : ∀ {X Y Z} (f : C [ X , Y ]) (g : D [ L.₀ Y , Z ]) → θ (g D.∘ L.₁ f) C.≈ R.₁ g C.∘ θ (L.₁ f) θ-natural {X} {Y} {Z} f g = unique eq where eq : g D.∘ L.₁ f D.≈ counit.η Z D.∘ L.₁ (R.₁ g C.∘ θ (L.₁ f)) eq = begin g D.∘ L.₁ f ≈⟨ pushʳ (commute (L.₁ f)) ⟩ (g D.∘ counit.η (L.F₀ Y)) D.∘ L.F₁ (θ (L.F₁ f)) ≈⟨ pushˡ (counit.sym-commute g) ⟩ counit.η Z D.∘ L.₁ (R.₁ g) D.∘ L.₁ (θ (L.₁ f)) ≈˘⟨ refl⟩∘⟨ L.homomorphism ⟩ counit.η Z D.∘ L.₁ (R.₁ g C.∘ θ (L.₁ f)) ∎ θ-cong : ∀ {X Y} {f g : D [ L.₀ X , Y ]} → f D.≈ g → θ f C.≈ θ g θ-cong eq = unique (eq ○ commute _) θ-natural′ : ∀ {X Y} (g : D [ L.₀ X , Y ]) → θ g C.≈ R.₁ g C.∘ θ D.id θ-natural′ g = θ-cong (introʳ L.identity) ○ θ-natural C.id g ○ C.∘-resp-≈ʳ (θ-cong L.identity) where open C.HomReasoning open MR D unit : NaturalTransformation idF (R ∘F L) unit = ntHelper record { η = λ _ → θ D.id ; commute = λ f → begin θ D.id C.∘ f ≈˘⟨ unique (DH.⟺ (cancelˡ (DH.⟺ (commute D.id))) DH.○ D.∘-resp-≈ʳ (DH.⟺ L.homomorphism)) ⟩ θ (L.₁ f) ≈⟨ θ-natural′ (L.₁ f) ⟩ R.₁ (L.₁ f) C.∘ θ D.id ∎ } where open C.HomReasoning module DH = D.HomReasoning open MR D unique′ : ∀ {X Y} {f g : C [ X , R.₀ Y ]} (h : D [ L.₀ X , Y ]) → h D.≈ counit.η Y D.∘ L.₁ f → h D.≈ counit.η Y D.∘ L.₁ g → f C.≈ g unique′ _ eq₁ eq₂ = ⟺ (unique eq₁) ○ unique eq₂ where open C.HomReasoning zag : ∀ {B} → R.F₁ (counit.η B) C.∘ θ D.id C.≈ C.id zag {B} = unique′ (counit.η B) (⟺ (cancelʳ (⟺ (commute D.id))) ○ pushˡ (counit.sym-commute (counit.η B)) ○ D.∘-resp-≈ʳ (⟺ L.homomorphism)) (introʳ L.identity) where open D.HomReasoning open MR D L⊣R : L ⊣ R L⊣R = record { unit = unit ; counit = counit ; zig = D.Equiv.sym (commute D.id) ; zag = zag } module _ {L : Functor C D} {R : Functor D C} where fromUnit : FromUnit L R → L ⊣ R fromUnit = FromUnit.L⊣R fromCounit : FromCounit L R → L ⊣ R fromCounit = FromCounit.L⊣R
{ "alphanum_fraction": 0.4376493072, "avg_line_length": 37.375, "ext": "agda", "hexsha": "4b6336843edd74997942d3a1af4cee2650bdb5c8", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Alternatives.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Alternatives.agda", "max_line_length": 131, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Alternatives.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 2580, "size": 6279 }
-- Trying to define ≤ as a datatype in Prop doesn't work very well: {-# OPTIONS --enable-prop #-} open import Agda.Builtin.Nat data _≤'_ : Nat → Nat → Prop where zero : (y : Nat) → zero ≤' y suc : (x y : Nat) → x ≤' y → suc x ≤' suc y ≤'-ind : (P : (m n : Nat) → Set) → (pzy : (y : Nat) → P zero y) → (pss : (x y : Nat) → P x y → P (suc x) (suc y)) → (m n : Nat) → m ≤' n → P m n ≤'-ind P pzy pss .0 y (zero .y) = ? ≤'-ind P pzy pss .(suc x) .(suc y) (suc x y pf) = ?
{ "alphanum_fraction": 0.4799196787, "avg_line_length": 29.2941176471, "ext": "agda", "hexsha": "79db398669d30bc098687243a5d17f2ab5ed31d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/Fail/Prop-LeqNoEliminator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/Fail/Prop-LeqNoEliminator.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/Fail/Prop-LeqNoEliminator.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 209, "size": 498 }
module Lookup where data Bool : Set where false : Bool true : Bool data IsTrue : Bool -> Set where isTrue : IsTrue true data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B module Map (Key : Set) (_==_ : Key -> Key -> Bool) (Code : Set) (Val : Code -> Set) where infixr 40 _⟼_,_ infix 20 _∈_ data Map : List Code -> Set where ε : Map [] _⟼_,_ : forall {c cs} -> Key -> Val c -> Map cs -> Map (c :: cs) _∈_ : forall {cs} -> Key -> Map cs -> Bool k ∈ ε = false k ∈ (k' ⟼ _ , m) with k == k' ... | true = true ... | false = k ∈ m Lookup : forall {cs} -> (k : Key)(m : Map cs) -> IsTrue (k ∈ m) -> Set Lookup k ε () Lookup k (_⟼_,_ {c} k' _ m) p with k == k' ... | true = Val c ... | false = Lookup k m p lookup : {cs : List Code}(k : Key)(m : Map cs)(p : IsTrue (k ∈ m)) -> Lookup k m p lookup k ε () lookup k (k' ⟼ v , m) p with k == k' ... | true = v ... | false = lookup k m p
{ "alphanum_fraction": 0.4595086442, "avg_line_length": 22.4285714286, "ext": "agda", "hexsha": "7a95d920f432f11566f575675375514294ca1677", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/Lookup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/Lookup.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/Lookup.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 407, "size": 1099 }
-- Andreas, 2014-03-05, reported by xcycl.xoo, Mar 30, 2009 -- {-# OPTIONS -v tc.with:60 #-} open import Common.Prelude renaming (Nat to ℕ; module Nat to ℕ) data Nat : ℕ → Set where i : (k : ℕ) → Nat k toNat : (n : ℕ) → Nat n toNat n = i n fun : (n : ℕ) → ℕ fun n with toNat n fun .m | i m with toNat m fun .Set | i .l | i l = 0 -- 'Set' is ill-typed here and should trigger an error FORCE_FAIL_HERE_UNTIL_ISSUE_142_IS_REALLY_FIXED
{ "alphanum_fraction": 0.6431818182, "avg_line_length": 22, "ext": "agda", "hexsha": "e3d143d6f72542a310398692bebedc75c5e291d4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue142.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue142.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue142.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 164, "size": 440 }
id : Set → Set id A = A
{ "alphanum_fraction": 0.5, "avg_line_length": 8, "ext": "agda", "hexsha": "398748dcb3eda8d2d87374ee6dc9898d3571588b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2536-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2536-1.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2536-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 11, "size": 24 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Correctness of differentiation with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Correctness where -- The denotational properties of the `derive` transformation -- for Calculus Nehemiah. In particular, the main theorem -- about it producing the correct incremental behavior. open import Nehemiah.Syntax.Type open import Nehemiah.Syntax.Term open import Nehemiah.Denotation.Value open import Nehemiah.Denotation.Evaluation open import Nehemiah.Change.Type open import Nehemiah.Change.Term open import Nehemiah.Change.Value open import Nehemiah.Change.Evaluation open import Nehemiah.Change.Validity open import Nehemiah.Change.Derive open import Nehemiah.Change.Implementation open import Base.Denotation.Notation open import Relation.Binary.PropositionalEquality open import Data.Integer open import Theorem.Groups-Nehemiah open import Postulate.Extensionality import Parametric.Change.Correctness Const ⟦_⟧Base ⟦_⟧Const ΔBase apply-base diff-base nil-base ⟦apply-base⟧ ⟦diff-base⟧ ⟦nil-base⟧ meaning-⊕-base meaning-⊝-base meaning-onil-base derive-const implementation-structure as Correctness open import Algebra.Structures private flatmap-funarg-equal : ∀ (f : ℤ → Bag) (Δf : Δ₍ int ⇒ bag ₎ f) Δf′ (Δf≈Δf′ : Δf ≈₍ int ⇒ bag ₎ Δf′) → (f ⊞₍ int ⇒ bag ₎ Δf) ≡ (f ⟦⊕₍ int ⇒ bag ₎⟧ Δf′) flatmap-funarg-equal f Δf Δf′ Δf≈Δf′ = ext lemma where lemma : ∀ v → f v ++ FunctionChange.apply Δf v (+ 0) ≡ f v ++ Δf′ v (+ 0) lemma v rewrite Δf≈Δf′ v (+ 0) (+ 0) refl = refl derive-const-correct : Correctness.Structure derive-const-correct (intlit-const n) = refl derive-const-correct add-const w Δw .Δw refl w₁ Δw₁ .Δw₁ refl rewrite mn·pq=mp·nq {w} {Δw} {w₁} {Δw₁} | associative-int (w + w₁) (Δw + Δw₁) (- (w + w₁)) = n+[m-n]=m {w + w₁} {Δw + Δw₁} derive-const-correct minus-const w Δw .Δw refl rewrite sym (-m·-n=-mn {w} {Δw}) | associative-int (- w) (- Δw) (- (- w)) = n+[m-n]=m { - w} { - Δw} derive-const-correct empty-const = refl derive-const-correct insert-const w Δw .Δw refl w₁ Δw₁ .Δw₁ refl = refl derive-const-correct union-const w Δw .Δw refl w₁ Δw₁ .Δw₁ refl rewrite ab·cd=ac·bd {w} {Δw} {w₁} {Δw₁} | associative-bag (w ++ w₁) (Δw ++ Δw₁) (negateBag (w ++ w₁)) = a++[b\\a]=b {w ++ w₁} {Δw ++ Δw₁} derive-const-correct negate-const w Δw .Δw refl rewrite sym (-a·-b=-ab {w} {Δw}) | associative-bag (negateBag w) (negateBag Δw) (negateBag (negateBag w)) = a++[b\\a]=b {negateBag w} {negateBag Δw} derive-const-correct flatmap-const w Δw Δw′ Δw≈Δw′ w₁ Δw₁ .Δw₁ refl rewrite flatmap-funarg-equal w Δw Δw′ Δw≈Δw′ = refl derive-const-correct sum-const w Δw .Δw refl rewrite homo-sum {w} {Δw} | associative-int (sumBag w) (sumBag Δw) (- sumBag w) = n+[m-n]=m {sumBag w} {sumBag Δw} open Correctness.Structure derive-const-correct public
{ "alphanum_fraction": 0.6667786362, "avg_line_length": 39.6933333333, "ext": "agda", "hexsha": "7689cdf22c5497a98e5666bdd47cb61a592c9280", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Change/Correctness.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Change/Correctness.agda", "max_line_length": 103, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Change/Correctness.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1056, "size": 2977 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Groups.Subgroups.Definition open import Groups.Lemmas open import Groups.Abelian.Definition open import Groups.Subgroups.Normal.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Subgroups.Normal.Lemmas where data GroupKernelElement {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) : Set (a ⊔ b ⊔ c ⊔ d) where kerOfElt : (x : A) → (Setoid._∼_ T (f x) (Group.0G H)) → GroupKernelElement G hom groupKernel : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → Setoid (GroupKernelElement G hom) Setoid._∼_ (groupKernel {S = S} G {H} {f} fHom) (kerOfElt x fx=0) (kerOfElt y fy=0) = Setoid._∼_ S x y Equivalence.reflexive (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x x₁} = Equivalence.reflexive (Setoid.eq S) Equivalence.symmetric (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x prX} {kerOfElt y prY} = Equivalence.symmetric (Setoid.eq S) Equivalence.transitive (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Equivalence.transitive (Setoid.eq S) groupKernelGroupOp : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → (GroupKernelElement G hom) → (GroupKernelElement G hom) → (GroupKernelElement G hom) groupKernelGroupOp {T = T} {_·A_ = _+A_} G {H = H} hom (kerOfElt x prX) (kerOfElt y prY) = kerOfElt (x +A y) (transitive (GroupHom.groupHom hom) (transitive (Group.+WellDefined H prX prY) (Group.identLeft H))) where open Setoid T open Equivalence eq groupKernelGroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → Group (groupKernel G hom) (groupKernelGroupOp G hom) Group.+WellDefined (groupKernelGroup G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt a prA} {kerOfElt b prB} = Group.+WellDefined G Group.0G (groupKernelGroup G fHom) = kerOfElt (Group.0G G) (imageOfIdentityIsIdentity fHom) Group.inverse (groupKernelGroup {T = T} G {H = H} fHom) (kerOfElt x prX) = kerOfElt (Group.inverse G x) (transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H prX) (invIdent H))) where open Setoid T open Equivalence eq Group.+Associative (groupKernelGroup {S = S} {_·A_ = _·A_} G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Group.+Associative G Group.identRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.identRight G Group.identLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.identLeft G Group.invLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invLeft G Group.invRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invRight G injectionFromKernelToG : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → GroupKernelElement G hom → A injectionFromKernelToG G hom (kerOfElt x _) = x injectionFromKernelToGIsHom : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → GroupHom (groupKernelGroup G hom) G (injectionFromKernelToG G hom) GroupHom.groupHom (injectionFromKernelToGIsHom {S = S} G hom) {kerOfElt x prX} {kerOfElt y prY} = Equivalence.reflexive (Setoid.eq S) GroupHom.wellDefined (injectionFromKernelToGIsHom G hom) {kerOfElt x prX} {kerOfElt y prY} i = i groupKernelGroupPred : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → A → Set d groupKernelGroupPred {T = T} G {H = H} {f = f} hom a = Setoid._∼_ T (f a) (Group.0G H) groupKernelGroupPredWd : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → {x y : A} → (Setoid._∼_ S x y) → (groupKernelGroupPred G hom x → groupKernelGroupPred G hom y) groupKernelGroupPredWd {S = S} {T = T} G hom {x} {y} x=y fx=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined hom (Equivalence.symmetric (Setoid.eq S) x=y)) fx=0 groupKernelGroupIsSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → Subgroup G (groupKernelGroupPred G hom) Subgroup.closedUnderPlus (groupKernelGroupIsSubgroup {S = S} {T = T} G {H = H} hom) g=0 h=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.groupHom hom) (Equivalence.transitive (Setoid.eq T) (Group.+WellDefined H g=0 h=0) (Group.identLeft H)) Subgroup.containsIdentity (groupKernelGroupIsSubgroup G hom) = imageOfIdentityIsIdentity hom Subgroup.closedUnderInverse (groupKernelGroupIsSubgroup {S = S} {T = T} G {H = H} hom) g=0 = Equivalence.transitive (Setoid.eq T) (homRespectsInverse hom) (Equivalence.transitive (Setoid.eq T) (inverseWellDefined H g=0) (invIdent H)) Subgroup.isSubset (groupKernelGroupIsSubgroup G hom) = groupKernelGroupPredWd G hom groupKernelGroupIsNormalSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A → A → A} {_·B_ : B → B → B} (G : Group S _·A_) {H : Group T _·B_} {f : A → B} (hom : GroupHom G H f) → normalSubgroup G (groupKernelGroupIsSubgroup G hom) groupKernelGroupIsNormalSubgroup {T = T} G {H = H} hom k=0 = transitive groupHom (transitive (+WellDefined reflexive groupHom) (transitive (+WellDefined reflexive (transitive (+WellDefined k=0 reflexive) identLeft)) (transitive (symmetric groupHom) (transitive (wellDefined (Group.invRight G)) (imageOfIdentityIsIdentity hom))))) where open Setoid T open Group H open Equivalence eq open GroupHom hom abelianGroupSubgroupIsNormal : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {G : Group S _+_} {pred : A → Set c} → (s : Subgroup G pred) → AbelianGroup G → normalSubgroup G s abelianGroupSubgroupIsNormal {S = S} {_+_ = _+_} {G = G} record { isSubset = predWd ; closedUnderPlus = respectsPlus ; containsIdentity = respectsId ; closedUnderInverse = respectsInv } abelian {k} {l} prK = predWd (transitive (transitive (transitive (symmetric identLeft) (+WellDefined (symmetric invRight) reflexive)) (symmetric +Associative)) (+WellDefined reflexive commutative)) prK where open Group G open AbelianGroup abelian open Setoid S open Equivalence eq
{ "alphanum_fraction": 0.6575886137, "avg_line_length": 92.4936708861, "ext": "agda", "hexsha": "9179619497335ad84fd545b2d23825722f321e2d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Subgroups/Normal/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Subgroups/Normal/Lemmas.agda", "max_line_length": 387, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Subgroups/Normal/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 2828, "size": 7307 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Bool open import lib.types.Empty open import lib.types.Lift open import lib.types.Sigma open import lib.types.Pi module lib.types.Coproduct where module _ {i j} {A : Type i} {B : Type j} where Coprod-elim : ∀ {k} {C : A ⊔ B → Type k} → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → Π (A ⊔ B) C Coprod-elim f g (inl a) = f a Coprod-elim f g (inr b) = g b ⊔-elim = Coprod-elim Coprod-rec : ∀ {k} {C : Type k} → (A → C) → (B → C) → (A ⊔ B → C) Coprod-rec {C = C} = Coprod-elim {C = λ _ → C} ⊔-rec = Coprod-rec Coprod= : Coprod A B → Coprod A B → Type (lmax i j) Coprod= (inl a₁) (inl a₂) = Lift {j = (lmax i j)} $ a₁ == a₂ Coprod= (inl a₁) (inr b₂) = Lift Empty Coprod= (inr b₁) (inl a₂) = Lift Empty Coprod= (inr b₁) (inr b₂) = Lift {j = (lmax i j)} $ b₁ == b₂ Coprod=-in : {x y : Coprod A B} → (x == y) → Coprod= x y Coprod=-in {inl _} idp = lift idp Coprod=-in {inr _} idp = lift idp Coprod=-out : {x y : Coprod A B} → Coprod= x y → (x == y) Coprod=-out {inl _} {inl _} c = ap inl $ lower c Coprod=-out {inl _} {inr _} c = Empty-rec $ lower c Coprod=-out {inr _} {inl _} c = Empty-rec $ lower c Coprod=-out {inr _} {inr _} c = ap inr (lower c) Coprod=-in-equiv : (x y : Coprod A B) → (x == y) ≃ Coprod= x y Coprod=-in-equiv x y = equiv Coprod=-in Coprod=-out (f-g x y) (g-f x y) where f-g : ∀ x' y' → ∀ c → Coprod=-in (Coprod=-out {x'} {y'} c) == c f-g (inl a₁) (inl .a₁) (lift idp) = idp f-g (inl a₁) (inr b₂) b = Empty-rec $ lower b f-g (inr b₁) (inl a₂) b = Empty-rec $ lower b f-g (inr b₁) (inr .b₁) (lift idp) = idp g-f : ∀ x' y' → ∀ p → Coprod=-out (Coprod=-in {x'} {y'} p) == p g-f (inl _) .(inl _) idp = idp g-f (inr _) .(inr _) idp = idp inl=inl-equiv : (a₁ a₂ : A) → (inl a₁ == inl a₂) ≃ (a₁ == a₂) inl=inl-equiv a₁ a₂ = lower-equiv ∘e Coprod=-in-equiv (inl a₁) (inl a₂) inr=inr-equiv : (b₁ b₂ : B) → (inr b₁ == inr b₂) ≃ (b₁ == b₂) inr=inr-equiv b₁ b₂ = lower-equiv ∘e Coprod=-in-equiv (inr b₁) (inr b₂) inl≠inr : (a₁ : A) (b₂ : B) → (inl a₁ ≠ inr b₂) inl≠inr a₁ b₂ p = lower $ Coprod=-in p inr≠inl : (b₁ : B) (a₂ : A) → (inr b₁ ≠ inl a₂) inr≠inl a₁ b₂ p = lower $ Coprod=-in p instance ⊔-level : ∀ {n} → has-level (S (S n)) A → has-level (S (S n)) B → has-level (S (S n)) (Coprod A B) ⊔-level {n} pA pB = has-level-in (⊔-level-aux pA pB) where instance _ = pA; _ = pB ⊔-level-aux : has-level (S (S n)) A → has-level (S (S n)) B → has-level-aux (S (S n)) (Coprod A B) ⊔-level-aux _ _ (inl a₁) (inl a₂) = equiv-preserves-level (inl=inl-equiv a₁ a₂ ⁻¹) ⊔-level-aux _ _ (inl a₁) (inr b₂) = has-level-in (λ p → Empty-rec (inl≠inr a₁ b₂ p)) ⊔-level-aux _ _ (inr b₁) (inl a₂) = has-level-in (λ p → Empty-rec (inr≠inl b₁ a₂ p)) ⊔-level-aux _ _ (inr b₁) (inr b₂) = equiv-preserves-level ((inr=inr-equiv b₁ b₂)⁻¹) Coprod-level = ⊔-level module _ {i j} {A : Type i} {B : Type j} where Coprod-rec-post∘ : ∀ {k l} {C : Type k} {D : Type l} → (h : C → D) (f : A → C) (g : B → C) → h ∘ Coprod-rec f g ∼ Coprod-rec (h ∘ f) (h ∘ g) Coprod-rec-post∘ h f g (inl _) = idp Coprod-rec-post∘ h f g (inr _) = idp ⊔-rec-post∘ = Coprod-rec-post∘ module _ {i i' j j'} {A : Type i} {A' : Type i'} {B : Type j} {B' : Type j'} (f : A → A') (g : B → B') where ⊔-fmap : A ⊔ B → A' ⊔ B' ⊔-fmap (inl a) = inl (f a) ⊔-fmap (inr b) = inr (g b) infix 80 _⊙⊔_ _⊙⊔_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊙⊔ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inl (pt X) ] _⊔⊙_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j) X ⊔⊙ Y = ⊙[ Coprod (de⊙ X) (de⊙ Y) , inr (pt Y) ] module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : X ⊙→ Z) (g : Y ⊙→ Z) where ⊙⊔-rec : X ⊙⊔ Y ⊙→ Z ⊙⊔-rec = Coprod-rec (fst f) (fst g) , snd f ⊔⊙-rec : X ⊔⊙ Y ⊙→ Z ⊔⊙-rec = Coprod-rec (fst f) (fst g) , snd g module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} (f : X ⊙→ X') (g : Y ⊙→ Y') where ⊙⊔-fmap : X ⊙⊔ Y ⊙→ X' ⊙⊔ Y' ⊙⊔-fmap = ⊔-fmap (fst f) (fst g) , ap inl (snd f) ⊔⊙-fmap : X ⊔⊙ Y ⊙→ X' ⊔⊙ Y' ⊔⊙-fmap = ⊔-fmap (fst f) (fst g) , ap inr (snd g) codiag : ∀ {i} {A : Type i} → A ⊔ A → A codiag = Coprod-rec (idf _) (idf _) ⊙codiag : ∀ {i} {X : Ptd i} → X ⊙⊔ X ⊙→ X ⊙codiag = (codiag , idp) -- A binary sigma is a coproduct ΣBool-equiv-⊔ : ∀ {i} (Pick : Bool → Type i) → Σ Bool Pick ≃ Pick true ⊔ Pick false ΣBool-equiv-⊔ Pick = equiv into out into-out out-into where into : Σ _ Pick → Pick true ⊔ Pick false into (true , a) = inl a into (false , b) = inr b out : (Pick true ⊔ Pick false) → Σ _ Pick out (inl a) = (true , a) out (inr b) = (false , b) abstract into-out : ∀ c → into (out c) == c into-out (inl a) = idp into-out (inr b) = idp out-into : ∀ s → out (into s) == s out-into (true , a) = idp out-into (false , b) = idp ⊔₁-Empty : ∀ {i} (A : Type i) → Empty ⊔ A ≃ A ⊔₁-Empty A = equiv (λ{(inl ()); (inr a) → a}) inr (λ _ → idp) (λ{(inl ()); (inr _) → idp}) module _ {i j k} {A : Type i} {B : Type j} (P : A ⊔ B → Type k) where Π₁-⊔-equiv-× : Π (A ⊔ B) P ≃ Π A (P ∘ inl) × Π B (P ∘ inr) Π₁-⊔-equiv-× = equiv to from to-from from-to where to : Π (A ⊔ B) P → Π A (P ∘ inl) × Π B (P ∘ inr) to f = (λ a → f (inl a)) , (λ b → f (inr b)) from : Π A (P ∘ inl) × Π B (P ∘ inr) → Π (A ⊔ B) P from (f , g) (inl a) = f a from (f , g) (inr b) = g b abstract to-from : ∀ fg → to (from fg) == fg to-from _ = idp from-to : ∀ fg → from (to fg) == fg from-to fg = λ= λ where (inl _) → idp (inr _) → idp
{ "alphanum_fraction": 0.4950751685, "avg_line_length": 33.0685714286, "ext": "agda", "hexsha": "78f9e16db0954ec35912ec51832db2bc0e153e2b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Coproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Coproduct.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2782, "size": 5787 }
module nat-to-string where open import bool open import char open import eq open import list open import maybe open import nat open import nat-division open import nat-thms open import product open import string open import termination ℕ-to-digitsh : (base : ℕ) → 1 < base ≡ tt → (x : ℕ) → ↓𝔹 _>_ x → 𝕃 ℕ ℕ-to-digitsh _ _ 0 _ = [] ℕ-to-digitsh base bp (suc x) (pf↓ fx) with (suc x) ÷ base ! (<=ℕff2 base bp) ... | q , r , p , _ = r :: (ℕ-to-digitsh base bp q (fx (÷<{base}{q}{r}{x} bp p))) ℕ-to-digits : ℕ → 𝕃 ℕ ℕ-to-digits x = reverse (ℕ-to-digitsh 10 refl x (↓-> x)) digit-to-string : ℕ → string digit-to-string 0 = "0" digit-to-string 1 = "1" digit-to-string 2 = "2" digit-to-string 3 = "3" digit-to-string 4 = "4" digit-to-string 5 = "5" digit-to-string 6 = "6" digit-to-string 7 = "7" digit-to-string 8 = "8" digit-to-string 9 = "9" digit-to-string _ = "unexpected-digit" digits-to-string : 𝕃 ℕ → string digits-to-string [] = "" digits-to-string (d :: ds) = (digit-to-string d) ^ (digits-to-string ds) ℕ-to-string : ℕ → string ℕ-to-string 0 = "0" ℕ-to-string (suc x) = digits-to-string (ℕ-to-digits (suc x)) string-to-digit : char → maybe ℕ string-to-digit '0' = just 0 string-to-digit '1' = just 1 string-to-digit '2' = just 2 string-to-digit '3' = just 3 string-to-digit '4' = just 4 string-to-digit '5' = just 5 string-to-digit '6' = just 6 string-to-digit '7' = just 7 string-to-digit '8' = just 8 string-to-digit '9' = just 9 string-to-digit _ = nothing -- the digits are in order from least to most significant digits-to-ℕh : ℕ → ℕ → 𝕃 ℕ → ℕ digits-to-ℕh multiplier sum [] = sum digits-to-ℕh multiplier sum (x :: xs) = digits-to-ℕh (10 * multiplier) (x * multiplier + sum) xs digits-to-ℕ : 𝕃 ℕ → ℕ digits-to-ℕ digits = digits-to-ℕh 1 0 digits string-to-ℕ : string → maybe ℕ string-to-ℕ s with 𝕃maybe-map string-to-digit (reverse (string-to-𝕃char s)) ... | nothing = nothing ... | just ds = just (digits-to-ℕ ds)
{ "alphanum_fraction": 0.650129199, "avg_line_length": 28.0434782609, "ext": "agda", "hexsha": "db05bf422ebdaf27a13686a7d65a1762322ef5cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "nat-to-string.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "nat-to-string.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "nat-to-string.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 697, "size": 1935 }
{-# OPTIONS --type-in-type #-} module Compilation.Encode.Examples where open import Context open import Type.Core open import Compilation.Data open import Compilation.Encode.Core open import Function open import Data.Product open import Data.List.Base module ProdTreeTreeExample where open ProdTreeTree open prodTreeTree ProdTreeTree′ = ⟦ prodTreeTree ⟧ᵈ ProdTree′ : Set -> Set -> Set ProdTree′ with ProdTreeTree′ ... | ø ▶ PT′ ▶ T′ = PT′ Tree′ : Set -> Set Tree′ with ProdTreeTree′ ... | ø ▶ PT′ ▶ T′ = T′ mutual fromProdTree : ∀ {A B A′ B′} -> (A -> A′) -> (B -> B′) -> ProdTree A B -> ProdTree′ A′ B′ fromProdTree f g (Prod tree) = Wrap λ R h -> h $ fromTree (λ{ (x , y) _ k -> k (f x) (g y) }) tree fromTree : ∀ {A A′} -> (A -> A′) -> Tree A -> Tree′ A′ fromTree f (Leaf x) = Wrap λ R g h -> g $ f x fromTree f (Fork prod) = Wrap λ R g h -> h $ fromProdTree f f prod {-# TERMINATING #-} mutual toProdTree : ∀ {A B A′ B′} -> (A -> A′) -> (B -> B′) -> ProdTree′ A B -> ProdTree A′ B′ toProdTree f g (Wrap k) = k _ λ tree -> Prod $ toTree (λ k -> k _ λ x y -> f x , g y) tree toTree : ∀ {A A′} -> (A -> A′) -> Tree′ A -> Tree A′ toTree f (Wrap k) = k _ (Leaf ∘ f) (Fork ∘ toProdTree f f) module ListExample where list : Data⁺ (ε ▻ (ε ▻ ⋆)) list = PackData $ ø ▶ ( endᶜ ∷ Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ ∷ [] ) List′ : Set -> Set List′ with ⟦ list ⟧ᵈ ... | ø ▶ L′ = L′ fromList : ∀ {A} -> List A -> List′ A fromList [] = Wrap λ R z f -> z fromList (x ∷ xs) = Wrap λ R z f -> f x $ fromList xs {-# TERMINATING #-} toList : ∀ {A} -> List′ A -> List A toList (Wrap k) = k _ [] λ x xs -> x ∷ toList xs module InterListExample where data InterList (A B : Set) : Set where InterNil : InterList A B InterCons : A -> B -> InterList B A -> InterList A B interlist : Data⁺ (ε ▻ (ε ▻ ⋆ ▻ ⋆)) interlist = PackData $ ø ▶ ( endᶜ ∷ Var (vs vz) ⇒ᶜ Var vz ⇒ᶜ Var (vs vs vz) ∙ Var vz ∙ Var (vs vz) ⇒ᶜ endᶜ ∷ [] ) InterList′ : Set -> Set -> Set InterList′ with ⟦ interlist ⟧ᵈ ... | ø ▶ IL′ = IL′ fromInterList : ∀ {A B} -> InterList A B -> InterList′ A B fromInterList InterNil = Wrap λ R z f -> z fromInterList (InterCons x y yxs) = Wrap λ R z f -> f x y $ fromInterList yxs {-# TERMINATING #-} toInterList : ∀ {A B} -> InterList′ A B -> InterList A B toInterList (Wrap k) = k _ InterNil λ x y yxs -> InterCons x y $ toInterList yxs module TreeForestExample where mutual data Tree (A : Set) : Set where node : A -> Forest A -> Tree A data Forest (A : Set) : Set where nil : Forest A cons : Tree A -> Forest A -> Forest A treeForest : Data⁺ (ε ▻ (ε ▻ ⋆) ▻ (ε ▻ ⋆)) treeForest = PackData $ ø ▶ ( Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ ∷ [] ) ▶ ( endᶜ ∷ Var (vs vs vz) ∙ Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ ∷ [] ) TreeForest′ = ⟦ treeForest ⟧ᵈ Tree′ : Set -> Set Tree′ with TreeForest′ ... | ø ▶ T′ ▶ F′ = T′ Forest′ : Set -> Set Forest′ with TreeForest′ ... | ø ▶ T′ ▶ F′ = F′ mutual fromTree : ∀ {A} -> Tree A -> Tree′ A fromTree (node x forest) = Wrap λ R f -> f x $ fromForest forest fromForest : ∀ {A} -> Forest A -> Forest′ A fromForest nil = Wrap λ R z f -> z fromForest (cons tree forest) = Wrap λ R z f -> f (fromTree tree) (fromForest forest) {-# TERMINATING #-} mutual toTree : ∀ {A} -> Tree′ A -> Tree A toTree (Wrap k) = k _ λ x forest -> node x $ toForest forest toForest : ∀ {A} -> Forest′ A -> Forest A toForest (Wrap k) = k _ nil λ tree forest -> cons (toTree tree) (toForest forest) module MNExample where mutual data M (A : Set) : Set where p : A -> M A n : N -> M A data N : Set where m : M N -> N mn : Data⁺ (ε ▻ (ε ▻ ⋆) ▻ ε) mn = PackData $ ø ▶ ( Var vz ⇒ᶜ endᶜ ∷ Var (vs vz) ⇒ᶜ endᶜ ∷ [] ) ▶ ( Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ ∷ [] ) MN′ = ⟦ mn ⟧ᵈ M′ : Set -> Set M′ with MN′ ... | ø ▶ M′ ▶ N′ = M′ N′ : Set N′ with MN′ ... | ø ▶ M′ ▶ N′ = N′ {-# TERMINATING #-} mutual fromM : ∀ {A B} -> (A -> B) -> M A -> M′ B fromM f (p x) = Wrap λ R g h -> g $ f x fromM f (n x) = Wrap λ R g h -> h $ fromN x fromN : N -> N′ fromN (m x) = Wrap λ R f -> f $ fromM fromN x {-# TERMINATING #-} mutual toM : ∀ {A B} -> (A -> B) -> M′ A -> M B toM f (Wrap k) = k _ (λ x -> p (f x)) (λ x -> n (toN x)) toN : N′ -> N toN (Wrap k) = k _ λ x -> m (toM toN x)
{ "alphanum_fraction": 0.5086556957, "avg_line_length": 24.8882978723, "ext": "agda", "hexsha": "9a11f5e406990bfe3a08d0c6f7c1eb10bd151fe0", "lang": "Agda", "max_forks_count": 399, "max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z", "max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "AriFordsham/plutus", "max_forks_repo_path": "papers/unraveling-recursion/code/src/Compilation/Encode/Examples.agda", "max_issues_count": 2493, "max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "AriFordsham/plutus", "max_issues_repo_path": "papers/unraveling-recursion/code/src/Compilation/Encode/Examples.agda", "max_line_length": 93, "max_stars_count": 1299, "max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "AriFordsham/plutus", "max_stars_repo_path": "papers/unraveling-recursion/code/src/Compilation/Encode/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z", "num_tokens": 1848, "size": 4679 }
module FFI.Data.Bool where {-# FOREIGN GHC import qualified Data.Bool #-} data Bool : Set where false : Bool true : Bool {-# COMPILE GHC Bool = data Data.Bool.Bool (Data.Bool.False|Data.Bool.True) #-}
{ "alphanum_fraction": 0.690821256, "avg_line_length": 23, "ext": "agda", "hexsha": "4b04b0339c0950d9864beeaad9f90327100591a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FreakingBarbarians/luau", "max_forks_repo_path": "prototyping/FFI/Data/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FreakingBarbarians/luau", "max_issues_repo_path": "prototyping/FFI/Data/Bool.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/FFI/Data/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 51, "size": 207 }
module test where
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 9, "ext": "agda", "hexsha": "b27246cacf819429f33043126f3a010afdf20a73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test.agda", "max_line_length": 17, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4, "size": 18 }
module Data.Either.Equiv where import Lvl open import Data.Either as Either open import Structure.Function.Domain open import Structure.Function open import Structure.Operator open import Structure.Setoid open import Type private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable A B : Type{ℓ} record Extensionality ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ (equiv : Equiv{ℓₑ}(A ‖ B)) : Type{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓₑ} where constructor intro private instance _ = equiv field ⦃ Left-function ⦄ : Function Left ⦃ Right-function ⦄ : Function Right ⦃ Left-injective ⦄ : Injective Left ⦃ Right-injective ⦄ : Injective Right Left-Right-inequality : ∀{x : A}{y : B} → (Left x ≢ Right y)
{ "alphanum_fraction": 0.6875, "avg_line_length": 33.3913043478, "ext": "agda", "hexsha": "b4572dc7b1dcde98cf39b02ae61e0fccc441e7ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Either/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Either/Equiv.agda", "max_line_length": 173, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Either/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 293, "size": 768 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.SuspProduct open import homotopy.SuspSmash open import homotopy.JoinSusp open import cohomology.Theory module cohomology.SphereProduct {i} (CT : CohomologyTheory i) where open CohomologyTheory CT open import cohomology.Wedge CT module _ (n : ℤ) (m : ℕ) (X : Ptd i) where private space-path : ⊙Susp (⊙Lift {j = i} (⊙Sphere m) ⊙× X) == ⊙Susp (⊙Lift (⊙Sphere m)) ⊙∨ (⊙Susp X ⊙∨ ⊙Susp^ (S m) X) space-path = SuspProduct.⊙path (⊙Lift (⊙Sphere m)) X ∙ ap (λ Z → ⊙Susp (⊙Lift (⊙Sphere m)) ⊙∨ (⊙Susp X ⊙∨ Z)) (SuspSmash.⊙path (⊙Lift (⊙Sphere m)) X ∙ ⊙*-⊙Lift-⊙Sphere m X) C-Sphere× : C n (⊙Lift {j = i} (⊙Sphere m) ⊙× X) == C n (⊙Lift (⊙Sphere m)) ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X)) C-Sphere× = ! (group-ua (C-Susp n (⊙Lift {j = i} (⊙Sphere m) ⊙× X))) ∙ ap (C (succ n)) space-path ∙ CWedge.path (succ n) (⊙Susp (⊙Lift (⊙Sphere m))) (⊙Susp X ⊙∨ ⊙Susp^ (S m) X) ∙ ap (λ H → C (succ n) (⊙Susp (⊙Lift (⊙Sphere m))) ×ᴳ H) (CWedge.path (succ n) (⊙Susp X) (⊙Susp^ (S m) X) ∙ ap2 _×ᴳ_ (group-ua (C-Susp n X)) (group-ua (C-Susp n (⊙Susp^ m X)))) ∙ ap (λ H → H ×ᴳ (C n X ×ᴳ C n (⊙Susp^ m X))) (group-ua (C-Susp n (⊙Lift (⊙Sphere m))))
{ "alphanum_fraction": 0.5244544771, "avg_line_length": 34.9736842105, "ext": "agda", "hexsha": "f9fc04be0ed30ba77fcbeb4f42cc241ee31fa18f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/SphereProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/SphereProduct.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/SphereProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 624, "size": 1329 }
------------------------------------------------------------------------ -- A type soundness result ------------------------------------------------------------------------ module Lambda.Closure.Functional.Type-soundness where import Category.Monad.Partiality as Partiality open import Category.Monad.Partiality.All as All using (All; now; later) open import Codata.Musical.Notation open import Data.Fin using (Fin; zero; suc) open import Data.Maybe using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.Any as Maybe using (just) open import Data.Nat open import Data.Vec using (Vec; []; _∷_; lookup) open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Nullary open All.Alternative private open module E {A : Set} = Partiality.Equality (_≡_ {A = A}) using (_≈_; now; laterˡ) open import Lambda.Closure.Functional open Lambda.Closure.Functional.PF using (fail) open Lambda.Closure.Functional.Workaround using (⟪_⟫P) open import Lambda.Syntax open Lambda.Syntax.Closure Tm -- WF-Value, WF-Env and WF-MV specify when a -- value/environment/potential value is well-formed with respect to a -- given context (and type). mutual data WF-Value : Ty → Value → Set where con : ∀ {i} → WF-Value nat (con i) ƛ : ∀ {n Γ σ τ} {t : Tm (1 + n)} {ρ} (t∈ : ♭ σ ∷ Γ ⊢ t ∈ ♭ τ) (ρ-wf : WF-Env Γ ρ) → WF-Value (σ ⇾ τ) (ƛ t ρ) infixr 5 _∷_ data WF-Env : ∀ {n} → Ctxt n → Env n → Set where [] : WF-Env [] [] _∷_ : ∀ {n} {Γ : Ctxt n} {ρ σ v} (v-wf : WF-Value σ v) (ρ-wf : WF-Env Γ ρ) → WF-Env (σ ∷ Γ) (v ∷ ρ) WF-MV : Ty → Maybe Value → Set WF-MV σ = Maybe.Any (WF-Value σ) -- Variables pointing into a well-formed environment refer to -- well-formed values. lookup-wf : ∀ {n Γ ρ} (x : Fin n) → WF-Env Γ ρ → WF-Value (lookup Γ x) (lookup ρ x) lookup-wf zero (v-wf ∷ ρ-wf) = v-wf lookup-wf (suc x) (v-wf ∷ ρ-wf) = lookup-wf x ρ-wf -- If we can prove All (WF-MV σ) x, then x does not "go wrong". does-not-go-wrong : ∀ {σ x} → All (WF-MV σ) x → ¬ x ≈ fail does-not-go-wrong (now (just _)) (now ()) does-not-go-wrong (later x-wf) (laterˡ x↯) = does-not-go-wrong (♭ x-wf) x↯ -- Well-typed programs do not "go wrong". mutual ⟦⟧-wf : ∀ {n Γ} (t : Tm n) {σ} → Γ ⊢ t ∈ σ → ∀ {ρ} → WF-Env Γ ρ → AllP (WF-MV σ) (⟦ t ⟧ ρ) ⟦⟧-wf (con i) con ρ-wf = now (just con) ⟦⟧-wf (var x) var ρ-wf = now (just (lookup-wf x ρ-wf)) ⟦⟧-wf (ƛ t) (ƛ t∈) ρ-wf = now (just (ƛ t∈ ρ-wf)) ⟦⟧-wf (t₁ · t₂) (t₁∈ · t₂∈) {ρ} ρ-wf = ⟦ t₁ · t₂ ⟧ ρ ≅⟨ ·-comp t₁ t₂ ⟩P ⟦ t₁ ⟧ ρ ⟦·⟧ ⟦ t₂ ⟧ ρ ⟨ (⟦⟧-wf t₁ t₁∈ ρ-wf >>=-congP λ { .{_} (just f-wf) → ⟦⟧-wf t₂ t₂∈ ρ-wf >>=-congP λ { .{_} (just v-wf) → ∙-wf f-wf v-wf }}) ⟩P ∙-wf : ∀ {σ τ f v} → WF-Value (σ ⇾ τ) f → WF-Value (♭ σ) v → AllP (WF-MV (♭ τ)) ⟪ f ∙ v ⟫P ∙-wf (ƛ t₁∈ ρ₁-wf) v₂-wf = later (♯ ⟦⟧-wf _ t₁∈ (v₂-wf ∷ ρ₁-wf)) type-soundness : ∀ {t : Tm 0} {σ} → [] ⊢ t ∈ σ → ¬ ⟦ t ⟧ [] ≈ fail type-soundness t∈ = does-not-go-wrong (All.Alternative.sound (⟦⟧-wf _ t∈ []))
{ "alphanum_fraction": 0.5302648172, "avg_line_length": 34.8571428571, "ext": "agda", "hexsha": "32a483cf7896676cfbb36280a58e1debec47fae1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Closure/Functional/Type-soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Closure/Functional/Type-soundness.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Closure/Functional/Type-soundness.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1248, "size": 3172 }
{-# OPTIONS --no-termination-check #-} -- Testing how the pragmas are saved in the agda interface files (using -- the program dump-agdai). -- 13 July 2012. Because for example the --no-termination-check is a -- PragmaOption it is saved as: -- -- iPragmaOptions = [["--no-termination-check"]] module OptionPragma where
{ "alphanum_fraction": 0.7133956386, "avg_line_length": 26.75, "ext": "agda", "hexsha": "3d3369edfd6b96bd62c1798a3b9a4f7acf497ebb", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "notes/agda-interface/OptionPragma.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "notes/agda-interface/OptionPragma.agda", "max_line_length": 71, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "notes/agda-interface/OptionPragma.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 81, "size": 321 }
F : (A A : Set) → Set F A _ = A
{ "alphanum_fraction": 0.3939393939, "avg_line_length": 8.25, "ext": "agda", "hexsha": "da80f82800e3f736b61056fda3bca5cb4c9b002e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Issue5250/Issue5250.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Issue5250/Issue5250.agda", "max_line_length": 21, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Issue5250/Issue5250.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 18, "size": 33 }
-- Andreas, 2020-02-10, issue 4429, reported by Nisse -- -- Injectivity analysis can make type checker loop (or slow down) -- since it reduces the rhs of definitions. -- -- Try to be smarter and do not needlessly invoke the injectivity -- analysis. For instance, do not consider a projection pattern -- a proper match for the sake of injectivity, since a metavariable -- cannot occupy its position (unlike for constructor and literal patterns). -- {-# OPTIONS -v tc.inj.check:45 #-} record _⇔_ (A B : Set) : Set where field to : A → B from : B → A postulate A : Set {-# TERMINATING #-} to : A → A to = to -- An approximation of slow but terminating code. {-# TERMINATING #-} from : A → A from = from -- An approximation of slow but terminating code. works : A ⇔ A works = record { to = to ; from = from } test : A ⇔ A test ._⇔_.to = to test ._⇔_.from = from -- WAS: Definition by copatterns loops, because the injectivity -- checker tries to reduce the rhs. -- Should pass, since now injectivity checker does not consider -- a projection pattern as proper match. -- Thus, injectivity for this function would be pointless.
{ "alphanum_fraction": 0.6853448276, "avg_line_length": 24.6808510638, "ext": "agda", "hexsha": "db0c7827969cd7453e62983e0e53131992178ca3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4429Injectivity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4429Injectivity.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4429Injectivity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 316, "size": 1160 }
-- Andreas, 2014-05-22 module _ where module M where f : Set f = f module N where f : Set f = f -- OUTPUT IS: -- -- Termination checking failed for the following functions: -- f, f -- Problematic calls: -- f (at /home/abel/tmp/bla/Agda/test/bugs/TerminationReportQualified.agda:7,7-8) -- f (at /home/abel/tmp/bla/Agda/test/bugs/TerminationReportQualified.agda:11,7-8) -- Expected: Qualified names M.f and N.f
{ "alphanum_fraction": 0.6822429907, "avg_line_length": 19.4545454545, "ext": "agda", "hexsha": "a6cbffe88d11c7a4e94818a7b0a6edbbbca29685", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1140.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1140.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1140.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 144, "size": 428 }
{-# OPTIONS --cubical #-} module Cubical.Codata.Stream where open import Cubical.Codata.Stream.Base public open import Cubical.Codata.Stream.Properties public
{ "alphanum_fraction": 0.7950310559, "avg_line_length": 23, "ext": "agda", "hexsha": "0e22ce71af8b408961e50544a8b0bc9c35d41438", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Codata/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Codata/Stream.agda", "max_line_length": 51, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Codata/Stream.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 35, "size": 161 }
open import Agda.Builtin.Nat data D : Set where c : D → D record R : Set where constructor mkR field f : Nat f : D → R f (c x) = mkR zero f' : D → Nat → R f' (c x) n = mkR n postulate P : (A : Set) → A → Set g : (x : D) → P R (f x) → P D x g' : (n : Nat) (x : D) → P R (f' x n) → P D x h : (x : D) → P R (mkR zero) → P D (c x) h x = g _ h' : (n : Nat) (x : D) → P R (mkR n) → P D (c x) h' n x = g' n _
{ "alphanum_fraction": 0.4504716981, "avg_line_length": 15.7037037037, "ext": "agda", "hexsha": "95c5e3d970f51be2ff500335c82796ef22a57c7e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2944.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2944.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2944.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 207, "size": 424 }
------------------------------------------------------------------------ -- Functional semantics and type soundness proof for an untyped -- λ-calculus with constants ------------------------------------------------------------------------ module Lambda.Substitution.Functional where open import Category.Monad.Partiality as Partiality using (_⊥; never) open import Category.Monad.Partiality.All as All using (All; now; later) open import Codata.Musical.Notation open import Data.Maybe as Maybe using (Maybe) open import Data.Maybe.Relation.Unary.Any as Maybe using (just) open import Data.Vec using ([]) open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open All.Alternative private open module E {A : Set} = Partiality.Equality (_≡_ {A = A}) open module R {A : Set} = Partiality.Reasoning (P.isEquivalence {A = A}) open import Lambda.Syntax open WHNF open import Lambda.Substitution open import Lambda.Closure.Functional using (module PF; module Workaround) open Workaround hiding (_>>=_) ------------------------------------------------------------------------ -- Semantics infix 5 _∙_ -- Note that this definition gives us determinism "for free". mutual ⟦_⟧′ : Tm 0 → Maybe (Value 0) ⊥P ⟦ con i ⟧′ = return (con i) ⟦ var () ⟧′ ⟦ ƛ t ⟧′ = return (ƛ t) ⟦ t₁ · t₂ ⟧′ = ⟦ t₁ ⟧′ >>= λ v₁ → ⟦ t₂ ⟧′ >>= λ v₂ → v₁ ∙ v₂ where open Workaround _∙_ : Value 0 → Value 0 → Maybe (Value 0) ⊥P con i ∙ v₂ = fail ƛ t₁ ∙ v₂ = later (♯ ⟦ t₁ / sub ⌜ v₂ ⌝ ⟧′) ⟦_⟧ : Tm 0 → Maybe (Value 0) ⊥ ⟦ t ⟧ = ⟪ ⟦ t ⟧′ ⟫P ------------------------------------------------------------------------ -- Example Ω-loops : ⟦ Ω ⟧ ≈ never Ω-loops = later (♯ Ω-loops) ------------------------------------------------------------------------ -- Some lemmas open PF hiding (_>>=_) -- An abbreviation. infix 5 _⟦·⟧_ _⟦·⟧_ : Maybe (Value 0) ⊥ → Maybe (Value 0) ⊥ → Maybe (Value 0) ⊥ v₁ ⟦·⟧ v₂ = v₁ >>= λ v₁ → v₂ >>= λ v₂ → ⟪ v₁ ∙ v₂ ⟫P where open PF -- _⟦·⟧_ preserves equality. _⟦·⟧-cong_ : ∀ {k v₁₁ v₁₂ v₂₁ v₂₂} → Rel k v₁₁ v₂₁ → Rel k v₁₂ v₂₂ → Rel k (v₁₁ ⟦·⟧ v₁₂) (v₂₁ ⟦·⟧ v₂₂) v₁₁≈v₂₁ ⟦·⟧-cong v₁₂≈v₂₂ = v₁₁≈v₂₁ >>=-cong λ v₁ → v₁₂≈v₂₂ >>=-cong λ v₂ → ⟪ v₁ ∙ v₂ ⟫P ∎ -- The semantics of application is compositional (with respect to the -- syntactic equality which is used). ·-comp : (t₁ t₂ : Tm 0) → ⟦ t₁ · t₂ ⟧ ≅ ⟦ t₁ ⟧ ⟦·⟧ ⟦ t₂ ⟧ ·-comp t₁ t₂ = ⟦ t₁ · t₂ ⟧ ≅⟨ >>=-hom ⟦ t₁ ⟧′ _ ⟩ PF._>>=_ ⟦ t₁ ⟧ (λ v₁ → ⟪ Workaround._>>=_ ⟦ t₂ ⟧′ (λ v₂ → v₁ ∙ v₂) ⟫P) ≅⟨ ((⟦ t₁ ⟧ ∎) >>=-cong λ _ → >>=-hom ⟦ t₂ ⟧′ _) ⟩ ⟦ t₁ ⟧ ⟦·⟧ ⟦ t₂ ⟧ ∎ ------------------------------------------------------------------------ -- Type soundness -- WF-Value and WF-MV specify when a (potential) value is well-formed -- with respect to a given type. WF-Value : Ty → Value 0 → Set WF-Value σ v = [] ⊢ ⌜ v ⌝ ∈ σ WF-MV : Ty → Maybe (Value 0) → Set WF-MV σ = Maybe.Any (WF-Value σ) -- If we can prove All (WF-MV σ) x, then x does not "go wrong". does-not-go-wrong : ∀ {σ x} → All (WF-MV σ) x → ¬ x ≈ PF.fail does-not-go-wrong (now (just _)) (now ()) does-not-go-wrong (later x-wf) (laterˡ x↯) = does-not-go-wrong (♭ x-wf) x↯ -- Well-typed programs do not "go wrong". mutual ⟦⟧-wf : ∀ (t : Tm 0) {σ} → [] ⊢ t ∈ σ → AllP (WF-MV σ) ⟦ t ⟧ ⟦⟧-wf (con i) con = now (just con) ⟦⟧-wf (var ()) var ⟦⟧-wf (ƛ t) (ƛ t∈) = now (just (ƛ t∈)) ⟦⟧-wf (t₁ · t₂) (t₁∈ · t₂∈) = ⟦ t₁ · t₂ ⟧ ≅⟨ ·-comp t₁ t₂ ⟩P ⟦ t₁ ⟧ ⟦·⟧ ⟦ t₂ ⟧ ⟨ (⟦⟧-wf t₁ t₁∈ >>=-congP λ { .{_} (just f-wf) → ⟦⟧-wf t₂ t₂∈ >>=-congP λ { .{_} (just v-wf) → ∙-wf f-wf v-wf }}) ⟩P ∙-wf : ∀ {σ τ f v} → WF-Value (σ ⇾ τ) f → WF-Value (♭ σ) v → AllP (WF-MV (♭ τ)) ⟪ f ∙ v ⟫P ∙-wf {f = con _} () _ ∙-wf {f = ƛ t₁} (ƛ t₁∈) v₂∈ = later (♯ ⟦⟧-wf _ (/-preserves t₁∈ (sub-preserves v₂∈))) type-soundness : ∀ {t σ} → [] ⊢ t ∈ σ → ¬ ⟦ t ⟧ ≈ PF.fail type-soundness t∈ = does-not-go-wrong (All.Alternative.sound (⟦⟧-wf _ t∈))
{ "alphanum_fraction": 0.4650675361, "avg_line_length": 30.027972028, "ext": "agda", "hexsha": "e4b368a3b4ca7a5e4a2bd586f30aa8d7af045258", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Lambda/Substitution/Functional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Lambda/Substitution/Functional.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Lambda/Substitution/Functional.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1670, "size": 4294 }
{-# OPTIONS --without-K --safe #-} module Cham.Name where open import Data.String Name : Set Name = String
{ "alphanum_fraction": 0.6818181818, "avg_line_length": 12.2222222222, "ext": "agda", "hexsha": "fb62ebea2bf70d9cfd2e34c790a0654d814cea12", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "riz0id/chemical-abstract-machine", "max_forks_repo_path": "agda/Cham/Name.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "riz0id/chemical-abstract-machine", "max_issues_repo_path": "agda/Cham/Name.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "riz0id/chemical-abstract-machine", "max_stars_repo_path": "agda/Cham/Name.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 26, "size": 110 }
------------------------------------------------------------------------------ -- Axiomatic PA properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Axiomatic.Mendelson.PropertiesI where open import PA.Axiomatic.Mendelson.Base open import PA.Axiomatic.Mendelson.Relation.Binary.EqReasoning open import PA.Axiomatic.Mendelson.Relation.Binary.PropositionalEqualityI using ( ≈-sym ) ------------------------------------------------------------------------------ succCong : ∀ {m n} → m ≈ n → succ m ≈ succ n succCong = S₂ +-leftIdentity : ∀ n → zero + n ≈ n +-leftIdentity = S₅ +-rightIdentity : ∀ n → n + zero ≈ n +-rightIdentity = S₉ A A0 is where A : ℕ → Set A i = i + zero ≈ i A0 : A zero A0 = +-leftIdentity zero is : ∀ i → A i → A (succ i) is i ih = succ i + zero ≈⟨ S₆ i zero ⟩ succ (i + zero) ≈⟨ S₂ ih ⟩ succ i ∎ x+Sy≈S[x+y] : ∀ m n → m + succ n ≈ succ (m + n) x+Sy≈S[x+y] m n = S₉ A A0 is m where A : ℕ → Set A i = i + succ n ≈ succ (i + n) A0 : A zero A0 = zero + succ n ≈⟨ +-leftIdentity (succ n) ⟩ succ n ≈⟨ S₂ (≈-sym (+-leftIdentity n)) ⟩ succ (zero + n) ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + succ n ≈⟨ S₆ i (succ n) ⟩ succ (i + succ n) ≈⟨ S₂ ih ⟩ succ (succ (i + n)) ≈⟨ S₂ (≈-sym (S₆ i n)) ⟩ succ (succ i + n) ∎ +-rightCong : ∀ {m n p} → n ≈ p → m + n ≈ m + p +-rightCong {m} {n} {p} h = S₉ A A0 is m where A : ℕ → Set A i = i + n ≈ i + p A0 : A zero A0 = zero + n ≈⟨ S₅ n ⟩ n ≈⟨ h ⟩ p ≈⟨ ≈-sym (S₅ p) ⟩ zero + p ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + n ≈⟨ S₆ i n ⟩ succ (i + n) ≈⟨ S₂ ih ⟩ succ (i + p) ≈⟨ ≈-sym (S₆ i p) ⟩ succ i + p ∎ +-leftCong : ∀ {m n p} → m ≈ n → m + p ≈ n + p +-leftCong {m} {n} {p} h = S₉ A A0 is p where A : ℕ → Set A i = m + i ≈ n + i A0 : A zero A0 = m + zero ≈⟨ +-rightIdentity m ⟩ m ≈⟨ h ⟩ n ≈⟨ ≈-sym (+-rightIdentity n) ⟩ n + zero ∎ is : ∀ i → A i → A (succ i) is i ih = m + succ i ≈⟨ x+Sy≈S[x+y] m i ⟩ succ (m + i) ≈⟨ S₂ ih ⟩ succ (n + i) ≈⟨ ≈-sym (x+Sy≈S[x+y] n i) ⟩ n + succ i ∎ +-asocc : ∀ m n o → m + n + o ≈ m + (n + o) +-asocc m n o = S₉ A A0 is m where A : ℕ → Set A i = i + n + o ≈ i + (n + o) A0 : A zero A0 = zero + n + o ≈⟨ +-leftCong (+-leftIdentity n) ⟩ n + o ≈⟨ ≈-sym (+-leftIdentity (n + o)) ⟩ zero + (n + o) ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + n + o ≈⟨ +-leftCong (S₆ i n) ⟩ succ (i + n) + o ≈⟨ S₆ (i + n) o ⟩ succ (i + n + o) ≈⟨ S₂ ih ⟩ succ (i + (n + o)) ≈⟨ ≈-sym (S₆ i (n + o)) ⟩ succ i + (n + o) ∎ +-comm : ∀ m n → m + n ≈ n + m +-comm m n = S₉ A A0 is m where A : ℕ → Set A i = i + n ≈ n + i A0 : A zero A0 = zero + n ≈⟨ +-leftIdentity n ⟩ n ≈⟨ ≈-sym (+-rightIdentity n) ⟩ n + zero ∎ is : ∀ i → A i → A (succ i) is i ih = succ i + n ≈⟨ S₆ i n ⟩ succ (i + n) ≈⟨ S₂ ih ⟩ succ (n + i) ≈⟨ ≈-sym (x+Sy≈S[x+y] n i) ⟩ n + succ i ∎ *-leftZero : ∀ n → zero * n ≈ zero *-leftZero = S₇ *-rightZero : ∀ n → n * zero ≈ zero *-rightZero n = S₉ A A0 is n where A : ℕ → Set A i = i * zero ≈ zero A0 : A zero A0 = *-leftZero zero is : ∀ i → A i → A (succ i) is i ih = succ i * zero ≈⟨ S₈ i zero ⟩ zero + i * zero ≈⟨ +-leftIdentity (i * zero) ⟩ i * zero ≈⟨ ih ⟩ zero ∎ x*Sy≈x+[x*y] : ∀ m n → m * succ n ≈ m + m * n x*Sy≈x+[x*y] m n = S₉ A A0 is m where A : ℕ → Set A i = i * succ n ≈ i + i * n A0 : A zero A0 = zero * succ n ≈⟨ *-leftZero (succ n) ⟩ zero ≈⟨ ≈-sym (S₅ zero) ⟩ zero + zero ≈⟨ +-rightCong (≈-sym (*-leftZero n)) ⟩ zero + zero * n ∎ is : ∀ i → A i → A (succ i) is i ih = succ i * succ n ≈⟨ S₈ i (succ n) ⟩ succ n + (i * succ n) ≈⟨ +-rightCong ih ⟩ succ n + (i + i * n) ≈⟨ S₆ n (i + i * n) ⟩ succ (n + (i + i * n)) ≈⟨ succCong (≈-sym (+-asocc n i (i * n))) ⟩ succ (n + i + (i * n)) ≈⟨ succCong (+-leftCong (+-comm n i)) ⟩ succ (i + n + (i * n)) ≈⟨ succCong (+-asocc i n (i * n)) ⟩ succ (i + (n + i * n)) ≈⟨ succCong (+-rightCong (≈-sym (S₈ i n))) ⟩ succ (i + succ i * n) ≈⟨ ≈-sym (S₆ i (succ i * n)) ⟩ succ i + succ i * n ∎ *-rightCong : ∀ {m n p} → n ≈ p → m * n ≈ m * p *-rightCong {m} {n} {p} h = S₉ A A0 is m where A : ℕ → Set A i = i * n ≈ i * p A0 : A zero A0 = zero * n ≈⟨ *-leftZero n ⟩ zero ≈⟨ ≈-sym (*-leftZero p) ⟩ zero * p ∎ is : ∀ i → A i → A (succ i) is i ih = succ i * n ≈⟨ S₈ i n ⟩ n + i * n ≈⟨ +-rightCong ih ⟩ n + i * p ≈⟨ +-leftCong h ⟩ p + i * p ≈⟨ ≈-sym (S₈ i p) ⟩ succ i * p ∎ *-leftCong : ∀ {m n p} → m ≈ n → m * p ≈ n * p *-leftCong {m} {n} {p} h = S₉ A A0 is p where A : ℕ → Set A i = m * i ≈ n * i A0 : A zero A0 = m * zero ≈⟨ *-rightZero m ⟩ zero ≈⟨ ≈-sym (*-rightZero n) ⟩ n * zero ∎ is : ∀ i → A i → A (succ i) is i ih = m * succ i ≈⟨ x*Sy≈x+[x*y] m i ⟩ m + m * i ≈⟨ +-leftCong h ⟩ n + m * i ≈⟨ +-rightCong ih ⟩ n + n * i ≈⟨ ≈-sym (x*Sy≈x+[x*y] n i) ⟩ n * succ i ∎
{ "alphanum_fraction": 0.3933298041, "avg_line_length": 27.7794117647, "ext": "agda", "hexsha": "89e3ed3eaefe8fd801bc744bc49148865901a508", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Axiomatic/Mendelson/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Axiomatic/Mendelson/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Axiomatic/Mendelson/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2514, "size": 5667 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Orders.Total.Definition open import Rings.IntegralDomains.Definition module Rings.Orders.Total.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where open Ring R open Group additiveGroup open Setoid S open SetoidPartialOrder pOrder open TotallyOrderedRing order open SetoidTotalOrder total open PartiallyOrderedRing pOrderRing open import Rings.Lemmas R open import Rings.Orders.Partial.Lemmas pOrderRing abstract lemm2 : (a : A) → a < 0G → 0G < inverse a lemm2 a a<0 with totality 0R (inverse a) lemm2 a a<0 | inl (inl 0<-a) = 0<-a lemm2 a a<0 | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (invLeft {a}) (identLeft {a}) (orderRespectsAddition -a<0 a)) a<0)) lemm2 a a<0 | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq identRight) t) (Equivalence.reflexive eq) a<0)) where t : a + 0G ∼ 0G t = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) 0=-a) (invRight {a}) lemm2' : (a : A) → 0G < a → inverse a < 0G lemm2' a 0<a with totality 0R (inverse a) lemm2' a 0<a | inl (inl 0<-a) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a (<WellDefined (identLeft {a}) (invLeft {a}) (orderRespectsAddition 0<-a a)))) lemm2' a 0<a | inl (inr -a<0) = -a<0 lemm2' a 0<a | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq identRight) t) 0<a)) where t : a + 0G ∼ 0G t = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) 0=-a) (invRight {a}) ringMinusFlipsOrder : {x : A} → (Ring.0R R) < x → (Group.inverse (Ring.additiveGroup R) x) < (Ring.0R R) ringMinusFlipsOrder {x = x} 0<x with totality (Ring.0R R) (Group.inverse (Ring.additiveGroup R) x) ringMinusFlipsOrder {x} 0<x | inl (inl 0<inv) = exFalso (SetoidPartialOrder.irreflexive pOrder bad') where bad : (Group.0G (Ring.additiveGroup R) + Group.0G (Ring.additiveGroup R)) < (x + Group.inverse (Ring.additiveGroup R) x) bad = ringAddInequalities 0<x 0<inv bad' : (Group.0G (Ring.additiveGroup R)) < (Group.0G (Ring.additiveGroup R)) bad' = SetoidPartialOrder.<WellDefined pOrder (Group.identRight (Ring.additiveGroup R)) (Group.invRight (Ring.additiveGroup R)) bad ringMinusFlipsOrder {x} 0<x | inl (inr inv<0) = inv<0 ringMinusFlipsOrder {x} 0<x | inr 0=inv = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive (Setoid.eq S)) (groupLemmaMove0G (Ring.additiveGroup R) 0=inv) 0<x)) ringMinusFlipsOrder' : {x : A} → (Group.inverse (Ring.additiveGroup R) x) < (Ring.0R R) → (Ring.0R R) < x ringMinusFlipsOrder' {x} -x<0 with totality (Ring.0R R) x ringMinusFlipsOrder' {x} -x<0 | inl (inl 0<x) = 0<x ringMinusFlipsOrder' {x} -x<0 | inl (inr x<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (Group.invLeft (Ring.additiveGroup R)) (Group.identRight (Ring.additiveGroup R)) bad)) where bad : ((Group.inverse (Ring.additiveGroup R) x) + x) < (Group.0G (Ring.additiveGroup R) + Group.0G (Ring.additiveGroup R)) bad = ringAddInequalities -x<0 x<0 ringMinusFlipsOrder' {x} -x<0 | inr 0=x = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (symmetric (groupLemmaMove0G' (Ring.additiveGroup R) (symmetric 0=x))) (Equivalence.reflexive (Setoid.eq S)) -x<0)) where open Equivalence eq ringMinusFlipsOrder'' : {x : A} → x < (Ring.0R R) → (Ring.0R R) < Group.inverse (Ring.additiveGroup R) x ringMinusFlipsOrder'' {x} x<0 = ringMinusFlipsOrder' (SetoidPartialOrder.<WellDefined pOrder {x} {Group.inverse (Ring.additiveGroup R) (Group.inverse (Ring.additiveGroup R) x)} {Ring.0R R} {Ring.0R R} (Equivalence.symmetric (Setoid.eq S) (invInv (Ring.additiveGroup R))) (Equivalence.reflexive (Setoid.eq S)) x<0) ringMinusFlipsOrder''' : {x : A} → (Ring.0R R) < (Group.inverse (Ring.additiveGroup R) x) → x < (Ring.0R R) ringMinusFlipsOrder''' {x} 0<-x = SetoidPartialOrder.<WellDefined pOrder (invInv (Ring.additiveGroup R)) (Equivalence.reflexive (Setoid.eq S)) (ringMinusFlipsOrder 0<-x) ringCanCancelPositive : {x y c : A} → (Ring.0R R) < c → (x * c) < (y * c) → x < y ringCanCancelPositive {x} {y} {c} 0<c xc<yc = SetoidPartialOrder.<WellDefined pOrder (Group.identLeft additiveGroup) (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive (Group.invLeft additiveGroup)) (Group.identRight additiveGroup))) q'' where open Equivalence (Setoid.eq S) have : 0R < ((y * c) + (Group.inverse additiveGroup (x * c))) have = SetoidPartialOrder.<WellDefined pOrder (Group.invRight additiveGroup) reflexive (orderRespectsAddition xc<yc (Group.inverse additiveGroup _)) p1 : 0R < ((y * c) + ((Group.inverse additiveGroup x) * c)) p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (symmetric (Equivalence.transitive eq (*Commutative) (Equivalence.transitive eq ringMinusExtracts (inverseWellDefined additiveGroup *Commutative))))) have q : 0R < ((y + Group.inverse additiveGroup x) * c) q = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq (Equivalence.transitive eq (Group.+WellDefined additiveGroup *Commutative *Commutative) (symmetric *DistributesOver+)) *Commutative) p1 q' : 0R < (y + Group.inverse additiveGroup x) q' with totality 0R (y + Group.inverse additiveGroup x) q' | inl (inl pr) = pr q' | inl (inr y-x<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq *Commutative (Ring.timesZero R)) k)) where f : ((y + inverse x) + (inverse (y + inverse x))) < (0G + inverse (y + inverse x)) f = orderRespectsAddition y-x<0 _ g : 0G < inverse (y + inverse x) g = SetoidPartialOrder.<WellDefined pOrder invRight identLeft f h : (0G * c) < ((inverse (y + inverse x)) * c) h = ringCanMultiplyByPositive 0<c g i : (0R + (0G * c)) < (((y + inverse x) * c) + ((inverse (y + inverse x)) * c)) i = ringAddInequalities q h j : 0R < (((y + inverse x) + (inverse (y + inverse x))) * c) j = SetoidPartialOrder.<WellDefined pOrder (Equivalence.transitive eq identLeft (Equivalence.transitive eq *Commutative (Ring.timesZero R))) (symmetric (Equivalence.transitive eq *Commutative (Equivalence.transitive eq *DistributesOver+ (Group.+WellDefined additiveGroup *Commutative *Commutative)))) i k : 0R < (0R * c) k = SetoidPartialOrder.<WellDefined pOrder reflexive (*WellDefined invRight reflexive) j q' | inr 0=y-x = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (*WellDefined x=y reflexive) reflexive xc<yc)) where f : inverse 0G ∼ inverse (y + inverse x) f = inverseWellDefined additiveGroup 0=y-x g : 0G ∼ (inverse y) + x g = Equivalence.transitive eq (symmetric (invIdent additiveGroup)) (Equivalence.transitive eq f (Equivalence.transitive eq (Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian) (+WellDefined reflexive (invInv additiveGroup)))) x=y : x ∼ y x=y = transferToRight additiveGroup (symmetric (Equivalence.transitive eq g groupIsAbelian)) q'' : (0R + x) < ((y + Group.inverse additiveGroup x) + x) q'' = orderRespectsAddition q' x ringCanCancelNegative : {x y c : A} → c < (Ring.0R R) → (x * c) < (y * c) → y < x ringCanCancelNegative {x} {y} {c} c<0 xc<yc = r where open Equivalence eq p0 : 0R < ((y * c) + inverse (x * c)) p0 = SetoidPartialOrder.<WellDefined pOrder invRight reflexive (orderRespectsAddition xc<yc (inverse (x * c))) p1 : 0R < ((y * c) + ((inverse x) * c)) p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (Equivalence.transitive eq (inverseWellDefined additiveGroup *Commutative) (Equivalence.transitive eq (symmetric ringMinusExtracts) *Commutative))) p0 p2 : 0R < ((y + inverse x) * c) p2 = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq (Group.+WellDefined additiveGroup *Commutative *Commutative) (Equivalence.transitive eq (symmetric *DistributesOver+) *Commutative)) p1 q : (y + inverse x) < 0R q with totality 0R (y + inverse x) q | inl (inl pr) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder bad c<0)) where bad : 0R < c bad = ringCanCancelPositive pr (SetoidPartialOrder.<WellDefined pOrder (symmetric (Equivalence.transitive eq *Commutative (Ring.timesZero R))) *Commutative p2) q | inl (inr pr) = pr q | inr 0=y-x = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (*WellDefined x=y reflexive) reflexive xc<yc)) where x=y : x ∼ y x=y = Equivalence.transitive eq (symmetric identLeft) (Equivalence.transitive eq (Group.+WellDefined additiveGroup 0=y-x reflexive) (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive invLeft) identRight))) r : y < x r = SetoidPartialOrder.<WellDefined pOrder (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive (invLeft)) identRight)) (Group.identLeft additiveGroup) (orderRespectsAddition q x) posTimesNeg : (a b : A) → (0G < a) → (b < 0G) → (a * b) < 0G posTimesNeg a b 0<a b<0 with orderRespectsMultiplication 0<a (lemm2 _ b<0) ... | bl = <WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ (<WellDefined (Equivalence.reflexive eq) ringMinusExtracts bl)) negTimesPos : (a b : A) → (a < 0G) → (b < 0G) → 0G < (a * b) negTimesPos a b a<0 b<0 with orderRespectsMultiplication (lemm2 _ a<0) (lemm2 _ b<0) ... | bl = <WellDefined (Equivalence.reflexive eq) twoNegativesTimes bl halvePositive : (a : A) → 0R < (a + a) → 0R < a halvePositive a 0<2a with totality 0R a halvePositive a 0<2a | inl (inl x) = x halvePositive a 0<2a | inl (inr a<0) = exFalso (irreflexive {a + a} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) identRight (ringAddInequalities a<0 a<0)) 0<2a)) halvePositive a 0<2a | inr x = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq x) (Equivalence.symmetric eq x)) identRight) 0<2a)) halvePositive' : {a b : A} → (a + a) ∼ b → 0R < b → 0R < a halvePositive' {a} {b} pr 0<b = halvePositive a (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr) 0<b) 0<1 : (0R ∼ 1R → False) → 0R < 1R 0<1 0!=1 with totality 0R 1R 0<1 0!=1 | inl (inl x) = x 0<1 0!=1 | inl (inr x) = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq twoNegativesTimes identIsIdent) (orderRespectsMultiplication (lemm2 1R x) (lemm2 1R x)) 0<1 0!=1 | inr x = exFalso (0!=1 x) 1<0False : (1R < 0R) → False 1<0False 1<0 with orderRespectsMultiplication (lemm2 _ 1<0) (lemm2 _ 1<0) ... | bl = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder 1<0 (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (twoNegativesTimes) identIsIdent) bl))) orderedImpliesCharNot2 : (0R ∼ 1R → False) → 1R + 1R ∼ 0R → False orderedImpliesCharNot2 0!=1 x = irreflexive (<WellDefined (identRight {0R}) x (ringAddInequalities (0<1 0!=1) (0<1 0!=1))) open import Rings.InitialRing R open Equivalence eq fromNPreservesOrder' : (0R ∼ 1R → False) → {a b : ℕ} → (fromN a) < (fromN b) → a <N b fromNPreservesOrder' nontrivial {a} {b} a<b with TotalOrder.totality ℕTotalOrder a b ... | inl (inl x) = x ... | inl (inr x) = exFalso (irreflexive (<Transitive a<b (fromNPreservesOrder (0<1 nontrivial) x))) ... | inr x = exFalso (irreflexive (<WellDefined (fromNWellDefined x) reflexive a<b)) reciprocalPositive : (a b : A) → .(0<a : 0R < a) → (a * b ∼ 1R) → 0R < b reciprocalPositive a 1/a 0<a ab=1 with totality 0G 1/a ... | inl (inl x) = x ... | inl (inr x) = exFalso (1<0False (<WellDefined (transitive *Commutative ab=1) timesZero' (ringCanMultiplyByPositive 0<a x))) ... | inr x = exFalso (anyComparisonImpliesNontrivial 0<a (transitive (transitive (symmetric timesZero) (*WellDefined reflexive x)) ab=1)) reciprocalPositive' : (a b : A) → .(0<a : 0R < a) → (b * a ∼ 1R) → 0R < b reciprocalPositive' a 1/a 0<a ab=1 = reciprocalPositive a 1/a 0<a (transitive *Commutative ab=1) reciprocal<1 : (a b : A) → .(1<a : 1R < a) → (a * b ∼ 1R) → b < 1R reciprocal<1 a b 0<a ab=1 with totality b 1R ... | inl (inl x) = x ... | inr b=1 = exFalso (irreflexive (<WellDefined (symmetric ab=1) (transitive (symmetric identIsIdent) (transitive *Commutative ((*WellDefined reflexive (symmetric b=1))))) 0<a)) ... | inl (inr x) = exFalso (irreflexive (<WellDefined identIsIdent ab=1 (ringMultiplyPositives (0<1 (anyComparisonImpliesNontrivial 0<a)) (0<1 (anyComparisonImpliesNontrivial 0<a)) 0<a x))) isIntDom : (nonempty : 1R ∼ 0R → False) → IntegralDomain R IntegralDomain.intDom (isIntDom n) {a} {b} ab=0 a!=0 with totality 0R b ... | inr 0=b = symmetric 0=b IntegralDomain.intDom (isIntDom n) {a} {b} ab=0 a!=0 | inl (inl 0<b) with totality 0R a ... | inl (inl x) = exFalso (irreflexive (<WellDefined reflexive ab=0 (orderRespectsMultiplication x 0<b))) ... | inl (inr x) = exFalso (irreflexive (<WellDefined ab=0 timesZero' (ringCanMultiplyByPositive 0<b x))) ... | inr x = exFalso (a!=0 (symmetric x)) IntegralDomain.intDom (isIntDom n) {a} {b} ab=0 a!=0 | inl (inr b<0) with totality 0R a ... | inl (inl x) = exFalso (irreflexive (<WellDefined (transitive *Commutative ab=0) timesZero' (ringCanMultiplyByPositive x b<0))) ... | inl (inr x) = exFalso (irreflexive (<WellDefined reflexive (transitive twoNegativesTimes ab=0) (orderRespectsMultiplication (lemm2 a x) (lemm2 b b<0)))) ... | inr x = exFalso (a!=0 (symmetric x)) IntegralDomain.nontrivial (isIntDom n) = n
{ "alphanum_fraction": 0.6942768088, "avg_line_length": 72.1483253589, "ext": "agda", "hexsha": "ddd13feafeca480830a01a54b2b71efc75927c2f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Orders/Total/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Orders/Total/Lemmas.agda", "max_line_length": 333, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Orders/Total/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 5189, "size": 15079 }
{-# OPTIONS --without-K --safe #-} -- This is a utility module. module Utils where open import Induction.WellFounded as Wf open import Data.List as List open import Data.List.All open import Data.Nat open import Data.Maybe open import Data.Product as , open import Data.Empty open import Function open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality infix 6 _! _! : ∀ {a} {A : Set a} → A → List A a ! = a ∷ [] infixl 5 _‣_ _‣_ : ∀ {a} {A : Set a} → List A → List A → List A l₁ ‣ l₂ = l₂ ++ l₁ lookupOpt : ∀ {a} {A : Set a} → List A → ℕ → Maybe A lookupOpt [] n = nothing lookupOpt (x ∷ l) zero = just x lookupOpt (x ∷ l) (suc n) = lookupOpt l n module _ {a} {A : Set a} where lookupOpt-map-inv : ∀ {b} {B : Set b} {f : A → B} l {n e} → lookupOpt (List.map f l) n ≡ just e → ∃[ e' ] (e ≡ f e' × lookupOpt l n ≡ just e') lookupOpt-map-inv [] {n} () lookupOpt-map-inv (x ∷ l) {zero} refl = x , refl , refl lookupOpt-map-inv (x ∷ l) {suc n} eq = lookupOpt-map-inv l eq lookupOpt-map : ∀ {b} {B : Set b} l (f : A → B) {n e} → lookupOpt l n ≡ just e → lookupOpt (List.map f l) n ≡ just (f e) lookupOpt-map [] f () lookupOpt-map (x ∷ l) f {zero} refl = refl lookupOpt-map (x ∷ l) f {suc n} eq = lookupOpt-map l f eq lookupOpt-All : ∀ {b} {P : A → Set b} {l n e} → lookupOpt l n ≡ just e → All P l → P e lookupOpt-All {n = n} () [] lookupOpt-All {n = zero} refl (px ∷ all) = px lookupOpt-All {n = suc n} eq (px ∷ all) = lookupOpt-All eq all lookupOpt-app₁ : ∀ (l₁ l₂ : List A) {n} → n < length l₁ → lookupOpt (l₁ ++ l₂) n ≡ lookupOpt l₁ n lookupOpt-app₁ [] l₂ {n} () lookupOpt-app₁ (x ∷ l₁) l₂ {zero} (s≤s n<l) = refl lookupOpt-app₁ (x ∷ l₁) l₂ {suc n} (s≤s n<l) = lookupOpt-app₁ l₁ l₂ n<l lookupOpt-app₂ : ∀ (l₁ l₂ : List A) n → lookupOpt (l₁ ++ l₂) (length l₁ + n) ≡ lookupOpt l₂ n lookupOpt-app₂ [] l₂ n = refl lookupOpt-app₂ (x ∷ l₁) l₂ n = lookupOpt-app₂ l₁ l₂ n repeat : ∀ {a} {A : Set a} → ℕ → (f : A → A) → A → A repeat zero f = id repeat (suc n) f = f ∘ (repeat n f) ≤?-yes : ∀ {m n} (m≤n : m ≤ n) → (m ≤? n) ≡ yes m≤n ≤?-yes z≤n = refl ≤?-yes (s≤s m≤n) rewrite ≤?-yes m≤n = refl ≤?-no : ∀ {m n} (m>n : ¬ m ≤ n) → ∃ λ ¬p → (m ≤? n) ≡ no ¬p ≤?-no {m} {n} m>n with m ≤? n ... | yes p = ⊥-elim $ m>n p ... | no _ = -, refl module Measure {a b ℓ} {A : Set a} {B : Set b} {_≺_ : Rel A ℓ} (≺-wf : WellFounded _≺_) (m : B → A) where open import Level using () renaming (zero to lzero) import Relation.Binary.Reasoning.Base.Triple as Triple open Wf.Inverse-image {_<_ = _≺_} m using (wellFounded) open Wf.All (wellFounded ≺-wf) lzero using (wfRec) public module LexicographicMeasure {a b c d ℓ₁ ℓ₂} {A : Set a} {B : A → Set b} {C : Set c} {D : C → Set d} {_≺A_ : Rel A ℓ₁} {[_]_≺B_ : ∀ x → Rel (B x) ℓ₂} (≺A-wf : WellFounded _≺A_) (≺B-wf : ∀ {x} → WellFounded ([ x ]_≺B_)) (mC : C → A) (mD : ∀ {c} → D c → B (mC c)) where open import Level using () renaming (zero to lzero) module Lex = Wf.Lexicographic _≺A_ [_]_≺B_ open Lex renaming (wellFounded to lex-wf ; _<_ to _≺′_) open Lex using (left ; right) public open Wf.Inverse-image renaming (wellFounded to m-wf) measure : Σ C D → Σ A B measure (c , d) = mC c , mD d ΣAB-wf : WellFounded _≺′_ ΣAB-wf = lex-wf ≺A-wf ≺B-wf infix 3 _≺_ _≺_ = _≺′_ on ,.map mC mD measure-wf : WellFounded _≺_ measure-wf = m-wf measure ΣAB-wf open Wf.All measure-wf lzero using (wfRec) public
{ "alphanum_fraction": 0.5116981132, "avg_line_length": 33.4033613445, "ext": "agda", "hexsha": "426b148fd77c89730e95791091c8dd3f05509a81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "HuStmpHrrr/popl20-artifact", "max_forks_repo_path": "agda/Utils.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "HuStmpHrrr/popl20-artifact", "max_issues_repo_path": "agda/Utils.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "HuStmpHrrr/popl20-artifact", "max_stars_repo_path": "agda/Utils.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z", "num_tokens": 1488, "size": 3975 }
-- Andreas, 2015-02-24 data N : Set where zero : N suc : N → N data Sing : (n : N) → Set where sing : ∀ n → Sing n data D : Set → Set where c : ∀ n → D (Sing n) test : (A : Set) → D A → N test .(Sing n) (c n) = n -- this should crash Epic as long as n is considered forced in constructor c -- should succeed now
{ "alphanum_fraction": 0.5779816514, "avg_line_length": 17.2105263158, "ext": "agda", "hexsha": "fe70bfeb47ed4a08795acb6131f55077afc3cb21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Issue1441-4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Issue1441-4.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue1441-4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 117, "size": 327 }
{- Cubical Agda with K This file demonstrates the incompatibility of the --cubical and --with-K flags, relying on the well-known incosistency of K with univalence. The --safe flag can be used to prevent accidentally mixing such incompatible flags. -} {-# OPTIONS --cubical --no-import-sorts --with-K #-} module Cubical.WithK where open import Cubical.Data.Equality open import Cubical.Data.Bool open import Cubical.Data.Empty private variable ℓ : Level A : Type ℓ x y : A uip : (prf : x ≡p x) → prf ≡c reflp uip reflp i = reflp transport-uip : (prf : A ≡p A) → transport (ptoc prf) x ≡c x transport-uip {x = x} prf = cong (λ m → transport (ptoc m) x) (uip prf) ∙ transportRefl x transport-not : transport (ptoc (ctop notEq)) true ≡c false transport-not = cong (λ a → transport a true) (ptoc-ctop notEq) false-true : false ≡c true false-true = sym transport-not ∙ transport-uip (ctop notEq) absurd : (X : Type) → X absurd X = transport (cong sel false-true) true where sel : Bool → Type sel false = Bool sel true = X inconsistency : ⊥ inconsistency = absurd ⊥
{ "alphanum_fraction": 0.6916058394, "avg_line_length": 22.3673469388, "ext": "agda", "hexsha": "180ca8484684ee5226c5f2d92646f50268782a40", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/WithK.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/WithK.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/WithK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 357, "size": 1096 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFmap open import lib.types.Sigma open import lib.types.Span module lib.types.Join where module _ {i j} (A : Type i) (B : Type j) where *-span : Span *-span = span A B (A × B) fst snd infix 80 _*_ _*_ : Type _ _*_ = Pushout *-span module JoinElim {i j} {A : Type i} {B : Type j} {k} {P : A * B → Type k} (left* : (a : A) → P (left a)) (right* : (b : B) → P (right b)) (glue* : (ab : A × B) → left* (fst ab) == right* (snd ab) [ P ↓ glue ab ]) = PushoutElim left* right* glue* open JoinElim public using () renaming (f to Join-elim) module JoinRec {i j} {A : Type i} {B : Type j} {k} {D : Type k} (left* : (a : A) → D) (right* : (b : B) → D) (glue* : (ab : A × B) → left* (fst ab) == right* (snd ab)) = PushoutRec left* right* glue* open JoinRec public using () renaming (f to Join-rec) module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙*-span : ⊙Span ⊙*-span = ⊙span X Y (X ⊙× Y) ⊙fst ⊙snd infix 80 _⊙*_ _⊙*_ : Ptd _ _⊙*_ = ⊙Pushout ⊙*-span module _ {i i' j j'} {A : Type i} {A' : Type i'} {B : Type j} {B' : Type j'} (eqA : A ≃ A') (eqB : B ≃ B') where *-span-emap : SpanEquiv (*-span A B) (*-span A' B') *-span-emap = ( span-map (fst eqA) (fst eqB) (×-fmap (fst eqA) (fst eqB)) (comm-sqr λ _ → idp) (comm-sqr λ _ → idp) , snd eqA , snd eqB , ×-isemap (snd eqA) (snd eqB)) *-emap : A * B ≃ A' * B' *-emap = Pushout-emap *-span-emap module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} where ⊙*-emap : X ⊙≃ X' → Y ⊙≃ Y' → X ⊙* Y ⊙≃ X' ⊙* Y' ⊙*-emap ⊙eqX ⊙eqY = ≃-to-⊙≃ (*-emap (⊙≃-to-≃ ⊙eqX) (⊙≃-to-≃ ⊙eqY)) (ap left (snd (⊙–> ⊙eqX)))
{ "alphanum_fraction": 0.5342541436, "avg_line_length": 30.6779661017, "ext": "agda", "hexsha": "29a472d7239454c61c85fb2410c62319807ba89e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Join.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Join.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Join.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 790, "size": 1810 }
module Auto.Prelude where open import Agda.Primitive public using (Level) data ⊥ : Set where ¬ : Set → Set ¬ A = A → ⊥ ⊥-e : (A : Set) → ⊥ → A ⊥-e A () record ⊤ : Set where record _∧_ (A B : Set) : Set where constructor ∧-i field fst : A snd : B data _∨_ (A B : Set) : Set where ∨-i₁ : A → A ∨ B ∨-i₂ : B → A ∨ B ∨-e : (A B C : Set) → A ∨ B → (A → C) → (B → C) → C ∨-e A B C (∨-i₁ x) h₁ h₂ = h₁ x ∨-e A B C (∨-i₂ x) h₁ h₂ = h₂ x data Π (A : Set) (F : A → Set) : Set where fun : ((a : A) → F a) → Π A F record Σ (X : Set) (P : X → Set) : Set where constructor Σ-i field wit : X prf : P wit data ℕ : Set where zero : ℕ succ : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + n = n succ m + n = succ (m + n) data Fin : ℕ → Set where zero : ∀ {n} → Fin (succ n) suc : ∀ {n} → Fin n → Fin (succ n) data List (X : Set) : Set where [] : List X _∷_ : X → List X → List X _++_ : {X : Set} → List X → List X → List X [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) data Vec (X : Set) : ℕ → Set where [] : Vec X zero _∷_ : ∀ {n} → X → Vec X n → Vec X (succ n) -- ----------------------------------- data _≡_ {a} {A : Set a} (x : A) : A → Set where refl : x ≡ x subst : {i j : Level} {X : Set i} → (P : X → Set j) → (x y : X) → y ≡ x → P x → P y subst P x .x refl h = h trans : ∀ {a} {A : Set a} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl sym : ∀ {a} {A : Set a} → {x y : A} → x ≡ y → y ≡ x sym refl = refl cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl data _IsRelatedTo_ {a : Level} {Carrier : Set a} (x y : Carrier) : Set a where relTo : (x∼y : x ≡ y) → x IsRelatedTo y begin_ : {a : Level} {Carrier : Set a} → {x y : Carrier} → x IsRelatedTo y → x ≡ y begin relTo x∼y = x∼y _∎ : {a : Level} {Carrier : Set a} → (x : Carrier) → x IsRelatedTo x _∎ _ = relTo refl _≡⟨_⟩_ : {a : Level} {Carrier : Set a} → (x : Carrier) {y z : Carrier} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _ ≡⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z) -- -----------------------------------
{ "alphanum_fraction": 0.4641148325, "avg_line_length": 20.6930693069, "ext": "agda", "hexsha": "adf68ce6285d47bd5b8424f3ee8b9b965263be4c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Auto/Prelude.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Auto/Prelude.agda", "max_line_length": 114, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Auto/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 927, "size": 2090 }
------------------------------------------------------------------------ -- A specification of the language χ ------------------------------------------------------------------------ open import Atom -- The specification is parametrised by an instance of χ-atoms. module Chi (atoms : χ-atoms) where open import Equality.Propositional open import Prelude hiding (const) open χ-atoms atoms -- Abstract syntax. mutual data Exp : Type where apply : Exp → Exp → Exp lambda : Var → Exp → Exp case : Exp → List Br → Exp rec : Var → Exp → Exp var : Var → Exp const : Const → List Exp → Exp data Br : Type where branch : Const → List Var → Exp → Br -- Substitution. mutual infix 6 _[_←_] _[_←_]B _[_←_]⋆ _[_←_]B⋆ _[_←_] : Exp → Var → Exp → Exp apply e₁ e₂ [ x ← e′ ] = apply (e₁ [ x ← e′ ]) (e₂ [ x ← e′ ]) lambda y e [ x ← e′ ] = lambda y (if x V.≟ y then e else e [ x ← e′ ]) case e bs [ x ← e′ ] = case (e [ x ← e′ ]) (bs [ x ← e′ ]B⋆) rec y e [ x ← e′ ] = rec y (if x V.≟ y then e else e [ x ← e′ ]) var y [ x ← e′ ] = if x V.≟ y then e′ else var y const c es [ x ← e′ ] = const c (es [ x ← e′ ]⋆) _[_←_]B : Br → Var → Exp → Br branch c xs e [ x ← e′ ]B with V.member x xs ... | yes _ = branch c xs e ... | no _ = branch c xs (e [ x ← e′ ]) _[_←_]⋆ : List Exp → Var → Exp → List Exp [] [ x ← e′ ]⋆ = [] (e ∷ es) [ x ← e′ ]⋆ = e [ x ← e′ ] ∷ es [ x ← e′ ]⋆ _[_←_]B⋆ : List Br → Var → Exp → List Br [] [ x ← e′ ]B⋆ = [] (b ∷ bs) [ x ← e′ ]B⋆ = b [ x ← e′ ]B ∷ bs [ x ← e′ ]B⋆ infix 5 ∷_ infix 4 _[_←_]↦_ data _[_←_]↦_ (e : Exp) : List Var → List Exp → Exp → Type where [] : e [ [] ← [] ]↦ e ∷_ : ∀ {x xs e′ es′ e″} → e [ xs ← es′ ]↦ e″ → e [ x ∷ xs ← e′ ∷ es′ ]↦ e″ [ x ← e′ ] -- Operational semantics. data Lookup (c : Const) : List Br → List Var → Exp → Type where here : ∀ {xs e bs} → Lookup c (branch c xs e ∷ bs) xs e there : ∀ {c′ xs′ e′ bs xs e} → c ≢ c′ → Lookup c bs xs e → Lookup c (branch c′ xs′ e′ ∷ bs) xs e infixr 5 _∷_ infix 4 _⇓_ _⇓⋆_ mutual data _⇓_ : Exp → Exp → Type where apply : ∀ {e₁ e₂ x e v₂ v} → e₁ ⇓ lambda x e → e₂ ⇓ v₂ → e [ x ← v₂ ] ⇓ v → apply e₁ e₂ ⇓ v case : ∀ {e bs c es xs e′ e″ v} → e ⇓ const c es → Lookup c bs xs e′ → e′ [ xs ← es ]↦ e″ → e″ ⇓ v → case e bs ⇓ v rec : ∀ {x e v} → e [ x ← rec x e ] ⇓ v → rec x e ⇓ v lambda : ∀ {x e} → lambda x e ⇓ lambda x e const : ∀ {c es vs} → es ⇓⋆ vs → const c es ⇓ const c vs data _⇓⋆_ : List Exp → List Exp → Type where [] : [] ⇓⋆ [] _∷_ : ∀ {e es v vs} → e ⇓ v → es ⇓⋆ vs → e ∷ es ⇓⋆ v ∷ vs
{ "alphanum_fraction": 0.4134214186, "avg_line_length": 29.0505050505, "ext": "agda", "hexsha": "561e36cea39d6d82c3a59608292274c017038a26", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Chi.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Chi.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Chi.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 1124, "size": 2876 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation with respect to a -- setoid which is decidable. This is a generalisation of what is -- commonly known as Order Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Sublist.DecSetoid {c ℓ} (S : DecSetoid c ℓ) where import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEquality import Data.List.Relation.Binary.Sublist.Setoid as SetoidSublist import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties as HeterogeneousProperties open import Level using (_⊔_) open DecSetoid S open DecSetoidEquality S ------------------------------------------------------------------------ -- Re-export core definitions open SetoidSublist setoid public ------------------------------------------------------------------------ -- Additional relational properties _⊆?_ : Decidable _⊆_ _⊆?_ = HeterogeneousProperties.sublist? _≟_ ⊆-isDecPartialOrder : IsDecPartialOrder _≋_ _⊆_ ⊆-isDecPartialOrder = record { isPartialOrder = ⊆-isPartialOrder ; _≟_ = _≋?_ ; _≤?_ = _⊆?_ } ⊆-decPoset : DecPoset c (c ⊔ ℓ) (c ⊔ ℓ) ⊆-decPoset = record { isDecPartialOrder = ⊆-isDecPartialOrder }
{ "alphanum_fraction": 0.5857946554, "avg_line_length": 30.2553191489, "ext": "agda", "hexsha": "9b8287eef9e0de81aca2a87641d1001c54350209", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecSetoid.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Sublist/DecSetoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 360, "size": 1422 }
module DifferentArities where data Nat : Set where zero : Nat suc : Nat -> Nat f : Nat -> Nat -> Nat f zero = \x -> x f (suc n) m = f n (suc m)
{ "alphanum_fraction": 0.5506329114, "avg_line_length": 13.1666666667, "ext": "agda", "hexsha": "e07cf9a5834820332c025a0411d25f0aa6a9c071", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "test/fail/DifferentArities.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "test/fail/DifferentArities.agda", "max_line_length": 29, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/DifferentArities.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 59, "size": 158 }
-- This file derives some of the Cartesian Kan operations using transp {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.CartesianKanOps where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude coe0→1 : ∀ {ℓ} (A : I → Type ℓ) → A i0 → A i1 coe0→1 A a = transp A i0 a -- "coe filler" coe0→i : ∀ {ℓ} (A : I → Type ℓ) (i : I) → A i0 → A i coe0→i A i a = transp (λ j → A (i ∧ j)) (~ i) a -- Check the equations for the coe filler coe0→i1 : ∀ {ℓ} (A : I → Type ℓ) (a : A i0) → coe0→i A i1 a ≡ coe0→1 A a coe0→i1 A a = refl coe0→i0 : ∀ {ℓ} (A : I → Type ℓ) (a : A i0) → coe0→i A i0 a ≡ a coe0→i0 A a = refl -- coe backwards coe1→0 : ∀ {ℓ} (A : I → Type ℓ) → A i1 → A i0 coe1→0 A a = transp (λ i → A (~ i)) i0 a -- coe backwards filler coe1→i : ∀ {ℓ} (A : I → Type ℓ) (i : I) → A i1 → A i coe1→i A i a = transp (λ j → A (i ∨ ~ j)) i a -- Check the equations for the coe backwards filler coe1→i0 : ∀ {ℓ} (A : I → Type ℓ) (a : A i1) → coe1→i A i0 a ≡ coe1→0 A a coe1→i0 A a = refl coe1→i1 : ∀ {ℓ} (A : I → Type ℓ) (a : A i1) → coe1→i A i1 a ≡ a coe1→i1 A a = refl -- "squeezeNeg" coei→0 : ∀ {ℓ} (A : I → Type ℓ) (i : I) → A i → A i0 coei→0 A i a = transp (λ j → A (i ∧ ~ j)) (~ i) a coei0→0 : ∀ {ℓ} (A : I → Type ℓ) (a : A i0) → coei→0 A i0 a ≡ a coei0→0 A a = refl coei1→0 : ∀ {ℓ} (A : I → Type ℓ) (a : A i1) → coei→0 A i1 a ≡ coe1→0 A a coei1→0 A a = refl -- "master coe" -- defined as the filler of coei→0, coe0→i, and coe1→i -- unlike in cartesian cubes, we don't get coei→i = id definitionally coei→j : ∀ {ℓ} (A : I → Type ℓ) (i j : I) → A i → A j coei→j A i j a = fill A (λ j → λ { (i = i0) → coe0→i A j a ; (i = i1) → coe1→i A j a }) (inS (coei→0 A i a)) j -- "squeeze" -- this is just defined as the composite face of the master coe coei→1 : ∀ {ℓ} (A : I → Type ℓ) (i : I) → A i → A i1 coei→1 A i a = coei→j A i i1 a coei0→1 : ∀ {ℓ} (A : I → Type ℓ) (a : A i0) → coei→1 A i0 a ≡ coe0→1 A a coei0→1 A a = refl coei1→1 : ∀ {ℓ} (A : I → Type ℓ) (a : A i1) → coei→1 A i1 a ≡ a coei1→1 A a = refl -- equations for "master coe" coei→i0 : ∀ {ℓ} (A : I → Type ℓ) (i : I) (a : A i) → coei→j A i i0 a ≡ coei→0 A i a coei→i0 A i a = refl coei0→i : ∀ {ℓ} (A : I → Type ℓ) (i : I) (a : A i0) → coei→j A i0 i a ≡ coe0→i A i a coei0→i A i a = refl coei→i1 : ∀ {ℓ} (A : I → Type ℓ) (i : I) (a : A i) → coei→j A i i1 a ≡ coei→1 A i a coei→i1 A i a = refl coei1→i : ∀ {ℓ} (A : I → Type ℓ) (i : I) (a : A i1) → coei→j A i1 i a ≡ coe1→i A i a coei1→i A i a = refl -- only non-definitional equation coei→i : ∀ {ℓ} (A : I → Type ℓ) (i : I) (a : A i) → coei→j A i i a ≡ a coei→i A i = coe0→i (λ i → (a : A i) → coei→j A i i a ≡ a) i (λ _ → refl) -- do the same for fill fill1→i : ∀ {ℓ} (A : ∀ i → Type ℓ) {φ : I} (u : ∀ i → Partial φ (A i)) (u1 : A i1 [ φ ↦ u i1 ]) --------------------------- (i : I) → A i fill1→i A {φ = φ} u u1 i = comp (λ j → A (i ∨ ~ j)) (λ j → λ { (φ = i1) → u (i ∨ ~ j) 1=1 ; (i = i1) → outS u1 }) (outS u1) filli→0 : ∀ {ℓ} (A : ∀ i → Type ℓ) {φ : I} (u : ∀ i → Partial φ (A i)) (i : I) (ui : A i [ φ ↦ u i ]) --------------------------- → A i0 filli→0 A {φ = φ} u i ui = comp (λ j → A (i ∧ ~ j)) (λ j → λ { (φ = i1) → u (i ∧ ~ j) 1=1 ; (i = i0) → outS ui }) (outS ui) filli→j : ∀ {ℓ} (A : ∀ i → Type ℓ) {φ : I} (u : ∀ i → Partial φ (A i)) (i : I) (ui : A i [ φ ↦ u i ]) --------------------------- (j : I) → A j filli→j A {φ = φ} u i ui j = fill A (λ j → λ { (φ = i1) → u j 1=1 ; (i = i0) → fill A u ui j ; (i = i1) → fill1→i A u ui j }) (inS (filli→0 A u i ui)) j -- We can reconstruct fill from hfill, coei→j, and the path coei→i ≡ id. -- The definition does not rely on the computational content of the coei→i path. fill' : ∀ {ℓ} (A : I → Type ℓ) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) --------------------------- (i : I) → A i [ φ ↦ u i ] fill' A {φ = φ} u u0 i = inS (hcomp (λ j → λ {(φ = i1) → coei→i A i (u i 1=1) j; (i = i0) → coei→i A i (outS u0) j}) t) where t : A i t = hfill {φ = φ} (λ j v → coei→j A j i (u j v)) (inS (coe0→i A i (outS u0))) i fill'-cap : ∀ {ℓ} (A : I → Type ℓ) {φ : I} (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) --------------------------- → outS (fill' A u u0 i0) ≡ outS (u0) fill'-cap A u u0 = refl
{ "alphanum_fraction": 0.4465640581, "avg_line_length": 30.3486842105, "ext": "agda", "hexsha": "a54f2f9d7127620f5279a6408d26b5a851ca8ea5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/CartesianKanOps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/CartesianKanOps.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/CartesianKanOps.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2144, "size": 4613 }
module Numeral.Natural.Oper.DivMod.Proofs where import Lvl open import Data open import Data.Boolean.Stmt open import Logic.Predicate open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.FlooredDivision.Proofs.DivisibilityWithRemainder open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs.DivisibilityWithRemainder open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.DivisibilityWithRemainder open import Numeral.Natural.Relation.DivisibilityWithRemainder.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Operator open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties open import Syntax.Transitivity -- The division theorem. [⌊/⌋][mod]-is-division-with-remainder : ∀{x y} → (((x ⌊/⌋ 𝐒(y)) ⋅ 𝐒(y)) + (x mod 𝐒(y)) ≡ x) [⌊/⌋][mod]-is-division-with-remainder {x}{y} with [∃]-intro r ⦃ p ⦄ ← [∣ᵣₑₘ]-existence-alt {x}{y} = ((x ⌊/⌋ 𝐒(y)) ⋅ 𝐒(y)) + (x mod 𝐒(y)) 🝖[ _≡_ ]-[ congruence₂(_+_) (congruence₂ₗ(_⋅_)(𝐒(y)) ([⌊/⌋][∣ᵣₑₘ]-quotient-equality {x}{y}{r}{p})) ([mod][∣ᵣₑₘ]-remainder-equality {x}{y}{r}{p}) ] (([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + (𝕟-to-ℕ ([∣ᵣₑₘ]-remainder p)) 🝖[ _≡_ ]-[ [∣ᵣₑₘ]-is-division-with-remainder {x}{𝐒(y)}{r} p ] x 🝖-end [⌊/⌋][mod]-is-division-with-remainder-pred-commuted : ∀{x y} ⦃ _ : IsTrue(positive?(y)) ⦄ → ((y ⋅ (x ⌊/⌋ y)) + (x mod y) ≡ x) [⌊/⌋][mod]-is-division-with-remainder-pred-commuted {x} {𝐒 y} = [≡]-with(_+ (x mod 𝐒(y))) (commutativity(_⋅_) {𝐒(y)}{x ⌊/⌋ 𝐒(y)}) 🝖 [⌊/⌋][mod]-is-division-with-remainder {x}{y} -- Floored division and multiplication is not inverse operators for all numbers. -- This shows why it is not exactly. [⌊/⌋][⋅]-semiInverseOperatorᵣ : ∀{a b} → ((a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b) ≡ a −₀ (a mod 𝐒(b))) [⌊/⌋][⋅]-semiInverseOperatorᵣ {a}{b} = (a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b) 🝖[ _≡_ ]-[ OneTypeTwoOp.moveᵣ-to-invOp {b = a mod 𝐒(b)}{c = a} (([⌊/⌋][mod]-is-division-with-remainder {y = b})) ] a −₀ (a mod 𝐒(b)) 🝖-end -- Floored division and multiplication is not inverse operators for all numbers. -- This theorem shows that modulo is the error term (difference between the actual value for it to be inverse and value of the operation). [⌊/⌋][⋅]-inverseOperatorᵣ-error : ∀{a b} → (a mod 𝐒(b) ≡ a −₀ (a ⌊/⌋ 𝐒(b) ⋅ 𝐒(b))) [⌊/⌋][⋅]-inverseOperatorᵣ-error {a}{b} = (a mod 𝐒(b)) 🝖[ _≡_ ]-[ OneTypeTwoOp.moveᵣ-to-invOp {a = a mod 𝐒(b)}{b = (a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b)}{c = a} (commutativity(_+_) {a mod 𝐒(b)}{(a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b)} 🝖 [⌊/⌋][mod]-is-division-with-remainder {y = b}) ] a −₀ (a ⌊/⌋ 𝐒(b) ⋅ 𝐒(b)) 🝖-end
{ "alphanum_fraction": 0.6338526912, "avg_line_length": 58.8333333333, "ext": "agda", "hexsha": "c8e6532287da60d411a339ae80f5f911b75079bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/DivMod/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/DivMod/Proofs.agda", "max_line_length": 219, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/DivMod/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1235, "size": 2824 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality cong : {A B : Set} (f : A → B) → {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl +-identityʳ : (x : Nat) → x + 0 ≡ x +-identityʳ zero = refl +-identityʳ (suc n) = cong suc (+-identityʳ n) +-assoc : (x y z : Nat) → (x + y) + z ≡ x + (y + z) +-assoc zero _ _ = refl +-assoc (suc m) n o = cong suc (+-assoc m n o) data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin inc : Bin → Bin inc nil = x1 nil inc (x0 x) = x1 x inc (x1 x) = x0 (inc x) to : Nat → Bin to zero = (x0 nil) to (suc x) = inc (to x) postulate from : Bin → Nat data Can : Bin → Set where Can- : ∀ {n} → from (to n) ≡ n → Can (to n) data Σ (A : Set) (B : A → Set) : Set where ⟨_,_⟩ : (x : A) → B x → Σ A B postulate to'' : (x : Nat) → Σ Bin Can to∘from' : (a : Bin) → (b : Can a) → to'' (from a) ≡ ⟨ a , b ⟩ to∘from' .(to _) (Can- x) = {!!}
{ "alphanum_fraction": 0.5082146769, "avg_line_length": 20.75, "ext": "agda", "hexsha": "7e99d65d5190319f03df495f902b320107f963c0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3813.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3813.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3813.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 405, "size": 913 }
-- Andreas, 2017-09-03, issue #2730: -- Skip termination check when giving. -- C-c C-SPC fails because of termination problems, but -- C-u C-c C-SPC should succeed here. f : Set f = {! f !}
{ "alphanum_fraction": 0.6614583333, "avg_line_length": 21.3333333333, "ext": "agda", "hexsha": "46b64184449a1336de25fc7553c220c4eae4562d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/GiveWithForce.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/GiveWithForce.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/GiveWithForce.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 61, "size": 192 }
module Prelude.IO where open import Prelude.Bool open import Prelude.Char open import Prelude.Nat open import Prelude.String open import Prelude.Unit open import Prelude.Vec open import Prelude.Float postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} infixl 1 _>>=_ postulate return : ∀ {A} → A → IO A _>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B numArgs : Nat getArg : Nat -> String args : Vec String numArgs args = buildArgs numArgs where buildArgs : (n : Nat) -> Vec String n buildArgs Z = [] buildArgs (S n) = snoc (buildArgs n) (getArg n) {-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-} {-# COMPILED_EPIC _>>=_ (u1 : Unit, u2 : Unit, x : Any, f : Any) -> Any = iobind(x,f) #-} {-# COMPILED_EPIC numArgs () -> BigInt = foreign BigInt "numArgsBig" () #-} {-# COMPILED_EPIC getArg (n : BigInt) -> Any = foreign Any "getArgBig" (n : BigInt) #-} postulate natToString : Nat -> String readNat : IO Nat readStr : IO String putStr : String -> IO Unit printChar : Char -> IO Unit putStrLn : String -> IO Unit putStrLn s = putStr s >>= \_ -> putStr "\n" printFloat : Float -> IO Unit printFloat f = putStr (floatToString f) printNat : Nat -> IO Unit printNat n = putStr (natToString n) printBool : Bool -> IO Unit printBool true = putStr "true" printBool false = putStr "false" {-# COMPILED_EPIC natToString (n : Any) -> String = bigToStr(n) #-} {-# COMPILED_EPIC readNat (u : Unit) -> Any = strToBig(readStr(u)) #-} {-# COMPILED_EPIC putStr (a : String, u : Unit) -> Unit = foreign Int "wputStr" (mkString(a) : String); primUnit #-} -- {-# COMPILED_EPIC putStrLn (a : String, u : Unit) -> Unit = putStrLn (a) #-} {-# COMPILED_EPIC readStr (u : Unit) -> Data = readStr(u) #-} {-# COMPILED_EPIC printChar (c : Int, u : Unit) -> Unit = printChar(c) #-} infixr 2 _<$>_ _<$>_ : {A B : Set}(f : A -> B)(m : IO A) -> IO B f <$> x = x >>= λ y -> return (f y) infixr 0 bind bind : ∀ {A B} → IO A → (A → IO B) → IO B bind m f = m >>= f infixr 0 then then : ∀ {A B} -> IO A -> IO B -> IO B then m f = m >>= λ _ -> f syntax bind e (\ x -> f) = x <- e , f syntax then e f = e ,, f
{ "alphanum_fraction": 0.5984360626, "avg_line_length": 27.8717948718, "ext": "agda", "hexsha": "d3aa51d55aea69b3cb91c23d041c3092bf70729e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/epic/Prelude/IO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/epic/Prelude/IO.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/epic/Prelude/IO.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 737, "size": 2174 }
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.Properties where open import Level open import Data.Product using (Σ; _,_) open import Function.Equality using (Π) open import Categories.Category open import Categories.Category.Product open import Categories.Category.Instance.Setoids open import Categories.Functor open import Categories.Functor.Construction.Constant open import Categories.Functor.Construction.LiftSetoids open import Categories.Functor.Bifunctor open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.NaturalTransformation.Dinatural hiding (_≃_) import Categories.Morphism.Reasoning as MR private variable o ℓ ℓ′ e : Level C D E : Category o ℓ e module _ {F G : Functor C D} where private module C = Category C module D = Category D open D open MR D open HomReasoning open Functor F′ : Bifunctor C.op C D F′ = F ∘F πʳ G′ : Bifunctor C.op C D G′ = G ∘F πʳ NT⇒Dinatural : NaturalTransformation F G → DinaturalTransformation F′ G′ NT⇒Dinatural β = dtHelper record { α = η ; commute = λ f → ∘-resp-≈ʳ (elimʳ (identity F)) ○ ⟺ (commute f) ○ introˡ (identity G) } where open NaturalTransformation β Dinatural⇒NT : DinaturalTransformation F′ G′ → NaturalTransformation F G Dinatural⇒NT θ = ntHelper record { η = α ; commute = λ f → introˡ (identity G) ○ ⟺ (commute f) ○ ∘-resp-≈ʳ (elimʳ (identity F)) } where open DinaturalTransformation θ replaceˡ : ∀ {F′} → NaturalTransformation F G → F ≃ F′ → NaturalTransformation F′ G replaceˡ {F′} α F≃F′ = ntHelper record { η = λ X → η X ∘ ⇐.η X ; commute = λ {X Y} f → begin (η Y ∘ ⇐.η Y) ∘ F₁ F′ f ≈⟨ pullʳ (⇐.commute f) ⟩ η Y ∘ F₁ F f ∘ ⇐.η X ≈⟨ pullˡ (commute f) ○ assoc ⟩ F₁ G f ∘ η X ∘ ⇐.η X ∎ } where open NaturalIsomorphism F≃F′ open NaturalTransformation α replaceʳ : ∀ {G′} → NaturalTransformation F G → G ≃ G′ → NaturalTransformation F G′ replaceʳ {G′} α G≃G′ = ntHelper record { η = λ X → ⇒.η X ∘ η X ; commute = λ {X Y} f → begin (⇒.η Y ∘ η Y) ∘ F₁ F f ≈⟨ pullʳ (commute f) ⟩ ⇒.η Y ∘ F₁ G f ∘ η X ≈⟨ pullˡ (⇒.commute f) ○ assoc ⟩ F₁ G′ f ∘ ⇒.η X ∘ η X ∎ } where open NaturalIsomorphism G≃G′ open NaturalTransformation α module _ (F : Bifunctor C D E) where -- there is natural transformation between two partially applied bifunctors. appˡ-nat : ∀ {X Y} → (f : Category._⇒_ C X Y) → NaturalTransformation (appˡ F X) (appˡ F Y) appˡ-nat f = F ∘ˡ (constNat f ※ⁿ idN) appʳ-nat : ∀ {X Y} → (f : Category._⇒_ D X Y) → NaturalTransformation (appʳ F X) (appʳ F Y) appʳ-nat f = F ∘ˡ (idN ※ⁿ constNat f) module _ {F G : Bifunctor C D E} (α : NaturalTransformation F G) where private module C = Category C module D = Category D module E = Category E appˡ′ : ∀ X → NaturalTransformation (appˡ F X) (appˡ G X) appˡ′ X = α ∘ₕ idN appʳ′ : ∀ X → NaturalTransformation (appʳ F X) (appʳ G X) appʳ′ X = α ∘ₕ idN -- unlift universe level module _ {c ℓ ℓ′ e} {F G : Functor C (Setoids c ℓ)} (α : NaturalTransformation (LiftSetoids ℓ′ e ∘F F) (LiftSetoids ℓ′ e ∘F G)) where open NaturalTransformation α open Π unlift-nat : NaturalTransformation F G unlift-nat = ntHelper record { η = λ X → record { _⟨$⟩_ = λ x → lower (η X ⟨$⟩ lift x) ; cong = λ eq → lower (cong (η X) (lift eq)) } ; commute = λ f eq → lower (commute f (lift eq)) }
{ "alphanum_fraction": 0.6329009108, "avg_line_length": 32.0619469027, "ext": "agda", "hexsha": "fd38778622d8de28aae8c4989a5aa92cd02dd5a8", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/Properties.agda", "max_line_length": 133, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1317, "size": 3623 }